SN 16893.000
         ENGINEERING AND
    COST EFFECTIVENESS STUDY
OF FLUORIDE EMISSIONS CONTROL
              (FINAL REPORT)

               JANUARY 1972
               VOLUME II
      Prepared under Contract EHSD 71-14
                   for
        OFFICE OF AIR PROGRAMS
  ENVIRONMENTAL PROTECTION AGENCY
Resources Research, Inc.             TRW Systems Group
 7600 Colshire Drive              7600 Colshire Drive
McLean, Virginia 22101           , McLean, Virginia 22101

-------
SN 16893.000
ENGINEERING AND
COS1' EFFECTIVENESS STUDY
OF FLU()RIDE EMISSIONS CONTROL
(FINAL REPORT)
JANUARY 1972
J.M. Robinson (Program Manager), G.I. Gruber, W.O. Lusk, and M.J. Santy
VOLUME II
Prepared under Contract EHSD 71-14
for
OFFICE OF AIR PROGRAMS
ENVIRONMENTAL PROTECTION AGENCY
Resources Research, Inc.

7600 Coishire Drive

McLean, Virginia 22101
TR W Systems Group
7600 Colshire Drive

McLean, Virginia 22101

-------
l.
2.
, 3.
SUMMARY. . . . .
INTRODUCTION
-CONTENTS
.'. . . .
" . . . . .
. . . . . .
. . . . .
. . . . .,. . .
. . . . .
. . . .
. . . . . . .
INDUSTRIAL SOURCES
,3.1
3.2
3.3 "
3.4
3.5
3.6
. . . . . . . . . . .
. . . .
. . . . . .
General.
. . . . . . . .
. . . .
. . .. .
. . . . . .
3.1.1 Economic Analyses - Discussion. . . . . .
3.1.2, Thermochemical Analysis Approach. . . . .

Primary Alumium Smelting Industry. . ~ . . . . . . .

3.2. 1 ' General. . . . . . . .,. . . . . . . . .
3.2.? : Industry, Description. . . . . . . . . . .
3.2;3 ; Production Trends. . . . . . . . . . . .
3.2.4 ,Fluoride Control and Emission Summary
3.2.5 Process Description. . . . . . . . . . .
3.2.6 'Economic Analysis. .. ~ . . . . . . . .

Ironand,Steel Industry.. .'............'

3.3.1 Gener:a1 . . . . . . . . . . . . . . . . .
3..3.2 Industry Description. . . . . . ',' .. .
,,3:3.3:, , Production Trends. ... .. . '. . . . .
3.3.4 ': ,Fluoride Control and Emissions Summary.
3.3.5 Process Description and Economics. . . .
3.3.6 Economic Analysis. . . . . . . .. . . .

Coal Combustion - Electrical Power Generation. . . .

3.4. 1 ' Gene ra 1 . . . . . .'. . . . . . . . . . .
3.4.2 'Industry Description. . . . . . . . . . .
3.4.3 Production Trends. . . . . . . . . . . .
3.4.4 Control Techniques. . . . . . . . . . . .
3.4.5 Process Description.. . . . . . . . . .
3.4.6 Economic Analysis. . . . . . . . . . . .'

Phosphate Rock Processing. . . . . . . . . . . . . .

3.5.1 General. . . . . . . . . . . . . . . . .
3.5.2 Industry Description. . . . . . . . . . .
3.5.3 Production Trends. . .. . . . . . . . .
.' 3.5.4 ' Fluoride Control and Emissions Summary. .
3.5.5 Wet Process Description. . . . . . . . .
3.5.6 'Economic Analysis. . . . . . .'. . . . .

Glass Manufacture. . . . . . . . . ; . . . . . . . .

3.6.1 General. . . . . . . . . . . . . . . . .
3.6.2 Industry Description. . . . . . . . . . ..
3.6.3 Production Trends. . . . . . . . . . . .
3.6.4 Fluoride Emission Control Techniques. . .
3.6.5 Fluoride Emissions. . . . . . . . . . . .
i i i
Page
1- 1
2-1
3-1
3-1

3-1
3-11

3"" 1 3

3-13
3-13
3-16
3-20
3-22
3-36

3-57

3-57
3-57
3-58
3-59
3-64
3-99

3-127

3- 127
3-127
3- 128
3-131
3-133
3- 1 35

3- 1 37

3-137
3- 1 37
3- 1 39
3- 143
3- 143
3- 194

3-217

3- 21 7
3-217
3-217
3-220
3-220

-------
3.7
3.8
3.9
3.10
3.11
3.12
CONTENTS (Continued)
3.6.6 Economic Analysis. . . . . . . .. .. . .

Frit Smelting'. . . . . .. . . . . .'. . . . . .'. . .

3.7. 1 Genera 1 . . . . . . . . . . . . . '.'. . . .
3.7.2 Industry Description. . . . . . . . . . . .
3.7.3 Production Trends. . . .. . . . . . . . .
3.7.4 Fluoride Control Techniques. . ~ . . . . .
3.7.5 Fluoride Emissions. . . . .. . '. . . . . .
3.7.6 'EconqmicAnalysis . . . . . . . . . . . . '.
i '.
Heavy Clay Products;, . ..,. . . . . . .. .. . . . . .

3.8.1 General'. . . . : . . . . . . . . . . . . .
3.8.2 ,Industry Description. . . . . . . . . . .
3.8.3 Production Trends. . . . . . . . . . . . .
3.8.4 Fluoride Emission Control Techniques. . . .
3.8.5 Fluoride Emissions.. . . . . . . . . . . .
3.8.6 Economic ,Analysis . . . . . . . . . . . . .

Expanded Cl ay Aggregate. .. . .. . . . . . . . . . . .


3.9. 1 ' Genera 1 . . .'. '.; . . .. . . . . . . . . .

3.9.2 Industry Description.. . . . . . . . . . .
3.9.,3 Production Trends. " . . . . . .. . . . .
3.9.4 Fluoride Emission Control Techniques. . . .
3.9.5 ',: Fluori de Emi ssi ons., . . . . . . . . . . . .
3.9.6 Economic Analysis. . . . . . . . . . . . .

Cement r~anufacture . .. . . . . . " . . . . . . . . .

3. 10. 1 . Gene ra 1 . . . . . . . . . . . . . . . . . .
3.10.2 Industry Description. . . . .. . . . . . .
3.10.3 Production Trends . . . . . . . . . . . . .
3.10.4 Fluoride Emission Control Technique. . . .
3.10.5 Fluoride Emissions. . . . . . . .. . . . .
3.10.6 ,Economic Analysis. . . . . . . . . . . . .

HF Alkylation Processes. . . . . . . . . . . . . . . .

3.11.1 General...'...'...... " . . . . .
3.11.2 Industry Description. . . . . . . . . . . .
3. 11 .3 Producti on Trends. . . . . . . " . . . . .
3.11.4 Fluoride Emission Control Techniques. . . .
3.11.5 , Fluor.ide Emissions. . . . . . . . . . . . .
3.11.6 Economic Analysis. . . . . . .. '. . . . .

HF Production. .' . ;. . . . . . . . . . . . . . . . . .

3. 1 2. 1 Gene ra 1 . . . . . . . . . . . . . . . . . .
3.12.2 Industry Description. . . . . . .. . . . .
3.12.3 ,Production Trends ...,.........
3. 12.4 Fl uori de Emi ss i on Control Techni ques. . . .
3.12.5", '.Fluoride Emis~ions. . . . . . . . . . . . .
3.12.6 Economic Analysis. . . . . . . . . . . . .
3.12.7 Impact of Control. . . . . . . . . . . . .
iv
Page
3-224

3-231

3-231
3-231
3- 2 31
3-231
3- 2 35
3-240

3- 245

3-245 '
3-245
.3-245
3-249
3-249
3-249

3-259

3-259
3-259
3-259
3-262
3-262
3-262

3-271

3-271
3-271
3-271
3-277
3-277
3-283

3-287

3-287
3- 287
3-287
3-289
3-291
3-291

3-295

3-295
3-295
3-295
3-295
3-300
3- 300
3-300

-------
4.
3.13
3.14
,CONTENTS (Continued)
Nonferrous Metals Smelting and Refining Industry. . .
: \ , ' .

3. 1 3. 1 ' General.'...'. '.. . . . . .. " .

3.1-3\2' " ..:Copper Smelting and Refining Industry. . .
3.13.3 ,-Lead Smelting and Refinining Industry. . .
3.13.4 Zinc Smelting and Refining Industry. . ..

Other Industries. . . . . . . . . . . . . . . . . . .

3.14.1 ' . Fluorine and Fluorocarbon Chemicals'.'
3.14.2 Uranium Fluoride Production. . . . . . . .
3.14.3 Aluminum Anodizing. . . . . .. . .'. . . .
3.14.4 Beryllium Production. . . . . . . . . . . .
RESEARCH AND DEVELOPMENT PLANNING. . .
,4.1
4.2
. . . . . .
. . . . .
Page
3- 303

3-303
3-304
3-307
3-311

3-318

3- 318
3- 319
3-321
3- 322

4-1
Summary and Priorities. . . . . .. .. . .. .. .. 4-1

Detail ed Projects by Indus try. . . . . . . . . . . . . 4-5

4.2.1 Primary Aluminum Smelting Industry. . . . . 4-5
4.2.2 Iron and Steel Manufacture. . . . . . . . . 4-7
4.2.3 Coal Combustion. . . . ~ . . . . . . . .. 4-14
4.2.4 Cement, Ceramic and Glass Manufacture. . . 4-22
4.2.5 Nonferrous Metals Smelting and Refining
Industry. . . . . . . . . . . . . . . . . . 4-30
5.
ENVIRONMENTAL EFFECTS. . . . . .
. . . .
. . . . . . . . . . .
5-1
5.1 Vegetation Effects . . . . . . . . . . . . . . . . . . 5-1
5.2 Effects on Farm Animals. . . . . . . . . . . . .'.  . 5-3
5.3 Fl uori de Effects in  Man. . . . . . . . . . . . . . . . 5-7
5.4 Etching of Glass . . . . . . . . . . . . . . . . . . . 5-10
5.5 Effects of Fl uori des on  Structures . . . . . . . . . . 5-11
6.
MEASUREMENT TECHNOLOGY. . . .
. . . . . . .
6.1
6.2
6.3
. . . . .
. . . .
6-1
S amp 1 i n g . . . . . . . . . . . . . . . . . . . . . .. 6 - 1

6.1.1 Sampling Procedures. . . . . . . . . . . . 6-1
6.1.2 Performance of Sampling Trains. . . . . . . 6-2
6.1.3 Process Factors Affecting Sampling. . . . . 6-7
6.1.4 Sampling Summary. . . . . . . . . . . . . . 6-8

Fluoride Separation. . . . . . . ~ . . . . . . . . . . 6-9

Anal yti ca 1 Methods. . . . . . . . . . . . . . . . . . 6- 11

6.3.1 Summary of Ana lyti ca 1 Methods and
Recommendations. . . . . . . . . . . . . . 6-12
Spectrophotometric Analysis. . . . . . . . 6-15
6.3.2
v

-------
VOLUME n
7.
8.
6.3.3
6.3.4
6.3.5
APPENDIX ..
BIBLIOGRAPHY.
"CONTENTS (Continued)
Page

TitrimetricAnalysis. . .: . . . . . . .. 6-17
Instrumental Methods.... . . . . . . . . 6-19
Conti nuous and Semi continuous Methods ... . 6-24
. . . . . .
. . . . .
. . . .. .
. . . . . .
e. . . .
"..' . . . .
- -.
vi
. .. . . . . .
. 'e," . . . .
., 7-1
. 8-1

-------
.~
"'C
C
Q)
Q.
'Q.
«
.
.......

-------
7. . APPENDIX
7.1
FLUORIDE EMISSION CONTROL EQUIPMENT
Two general .types of pollution control equipment are currently

employed for control of fluoride e~ission - wet collection equipment and

dry collection equipment..

7.1.1 Wet Collection(.4303, 4376, 4379)
. .
Fluoride-containing effluent streams typically contain fluorides
either as gaseous species or as combinations of particulate and gaseous
species. For this reason., the ~ajority of pollutant capture devices used
for fluoride remova~ are of the wet type. Wet collection systems simul-
taneously removecboth gaseous and particulate pollutants though not to
the same level of eff"iciency.

In the collection of gaseous fluorides, the primary removal
mechanism in wet collection is the absorption of the gaseous fluoride
into water or other suitable solvents. The basic operation consists of
the diffusion of the fluoride gas molecules to the water surface. Con-
centration differentials near the liquid/gas interface serve as the
driving force: Control equipment designed applying this principle is
characterized by high interfacial surface areas, turbulence in the gas
phase, and high diffusion. coefficients. Fortunately, in the area of
fluoride emission control, the most. common gaseous chemical species
to be controll~d have high solubility in w~ter.
Particulate collection in liquid scrubbers depends upon a somewhat
different set of physical processes. The primary collection mechanism
is the impaction of solid particulate materi~l on liquid droplets generated
in the scrubber. The function of the liquid scrubber is to generate
and place in contact with the exhaust gas stream a sufficient number of
liquid droplets in the appropriate droplet size range. Additional
physical mechanisms by which particulate dispersoids are collected in
wet scrubbers are Brownian diffusion, condensation of liquid
on the particulate material, and agglomeration. In each case,
the relative effective size of the particul~te material is increased
in the scrubber, thus facilitating its ultimate collection and disposal.
7-1

-------
It should be noted that the mechanisms of gaseous and particulate
collection in liquid collectors are somewhat different and that a liquid
scrubber designed to maximize gaseous fluoride removal may be significantly
less effective in the collection of particulate f1uoride-cont~ining
material. Application of scrubbers to spe~ific industrial effluent
cleaning tasks should be made only on the basis of careful consideration
of the relative importance of the gaseous and particulate fluoride
emissions and analysis of the particle size distribution in the effluent
gas stream to be cleaned.
Spray Towers/Chambers
7.1.1.1
A chamber scrubber consists of a chamber into which water or an
aqueous solution is introduced through spray nozzles. The gas stream
may make a single direct pass through the chamber, or the path may be
controlled by a series of baffles. Several such chambers or scrubbers
are often used sequentially to produce the desired degree of pollutant
removal. These devices are characterized by a very low pressure drop
for the gas phase (0.1 to 0.5 inch of water). Water pre~sure required
for spray operation ranges from 20 to 100 pounds per square inch. Water
consumption is usually in the range of 1/2 to 2 gallons per 1000 cubic
feet of gas treated. (4303) .

Spray chambers are used for the removal of both particulate and
. gaseous pollutants. The efficiencies of these devices are generally
rather low for particulate materials and are suitable only for the
removal of particulate materials 10 microns in size or larger.. For
the collection of smaller particulate material, very high water pressures
have been successfully used. Water pressures on the order of 300 to 450
pounds per square inch (psi) produce a fog spray which will achieve
collection efficiencies of the order of 90% for particles in the 1 to 2
micron size range. The larger water pressure drops required to achieve
high efficiency fog spray result in a proportionally higher pump horsepower
and operating cost. Baffled spray chambers require higher gas velocities
and result in greater gas pressure drops which, in turn, require
for greater fan horsepower to recover the lost pressure head and for more
expensive ductwork.
7-2

-------
The simple spray chamber is often used effectively for gaseous

pollution control, especially when treating some of the relatively more
soluble pollutants. Surface contact area, an important consideration in
gaseous absorption, is relatively low in spray chambers compared with
other types of liquid scrubbers. For this reason, simple spray chambers
must be very large to produce efficiencies equivalent to more sophisti-
cated liquid collection systems. Exhaust gases containing hydrogen
fluoride and silicon tetrafluoride from the phosphate fertilizer industry
may be passed through a series of six or more spray towers prior to
release to the atmosphere. The overall efficiencies reported for this
type of multiple spray installation are greater than 90%. There are no
limitations on gas throughput volume other than those imposed by equip-
ment size limits. However, gas flow rates of approximately 800 lb/hr-ft2
have been demonstrated as the upper limit, to prevent excessive liquid
entrainment. (4376)
Spray chambers or towers, because of their simple design, represent
one of the most economical control devices to purchase and install. The
.operating and maintenance expenses associated with this type of device
are also low because of the mechanical simplicity. Primary maintenance
problems are caused by the use of small, high-pressure nozzles which may
tend to clog under prolonged usage. The low pressure drops (generally
less than 1 inch of water) allow the use of inexpensive ductwork and
fans to convey the effluent gas stream to the collector.
7.1.1.2 Packed Bed Scrubbers
The packed bed scrubber is similar to the spray chamber described
above in that the effluent gas stream to be cleaned is directed through
a chamber or tower in which it makes contact with the scrubbing liquid.
The high liquid surface area exposed to the gas stream is produced by
interaction with the packed bed. The packed bed may be in the form
. . .. '" . . . .

of a fixed packing or loose material whi~h is supported by the action
of the gas stream passing through it. This latter type is called a
7-3

-------
floating bed scrubber.
this type of scrubber
the gas flow.

The fixed packed bed scrubber is not often used strictly for par-
ticulate pollutant collection. Operating problems have been encountered
when this type of collector is utilized to clean a gas stream containing
an excessively high concentration of particulate material. Therefore, in
conjunction with this type of equipment, some form of dry collection equip-
ment is used that eliminates much of the particulate load on the wet
scrubber and helps prevent clogging.
Scrubbing liquid.is generally passed through
in a direction crosscurrent or countercurrent to
The floating bed units, in which the packing is supported by the
upward motion of the exhaust gas stream, are reported to be more resistant
to clogging caused by particulate collection than the fixed packed bed
units. (4045, 4304) This reported increased ability to handle particulate
contaminant is attributed to the relative motion between the packing
materials which produces a self-cleaning action and allows the collected
particulate material to be removed by the liquid flow. High particulate
removal efficiencies (95 to 98 %) have been reported for the floating bed
scrubbing units.
The primary application of the packed bed scrubber has been in the
removal of gaseous fluoride pollutants other than SiF4' Gaseous silicon
tetrafluoride, the most common fluoride pollutant, may cause considerable
maintenance problems in this type of installation by hydrolyzing to form
silica hydrate, a solid which tends to clog the packed bed, thus increasing
air flow resistance and eventually making the scrubbing system inoperative.
A condition known as flooding occurs when the upward gas velocity
in the packed tower reaches a point at which there is a hold-up of liquid
phase on the packing. In this condition, the liquid held in the packing
builds up and eventually increases the pressure drop across the packed
tower unit to the point where liquid will be entrained and carried out
with the exhaust stream. Care must be taken in the design and operation of
tower equipment to ensure that this flooding condition is avoided and a
reasonable pressure drop is maintained. Properly designed packing mater-
ials allow a high liquid surface area to be maintained within the scrubber.
7-4

-------
Operation at proper 1iquid-to-gas.f1ow ratios can achieve high gaseous
pollutant removal at relatively low gas flow resistances. Packing mater-
ials commonly used are plastic materials of various shapes, including
rings, spria1 rings, ber1 saddles, and other shapes which allow a high
ratio of surface area to volume.
Utility consumption for the packed bed scrubber depends on the
desi~n of the bed, the packing material used and the collection efficiency
desired. Typical water consumption for the packed bed scrubber ranges from
5 to 10 gpm per 1000 CFM. Normal packed scrubber design dictates a
pressure drop of from 1 to 10 inches of water with a total horsepower
requirement of 0.3 to 2.8 for fan and pumping costs. Efficiencies of
95 to 98% have been realized for both particulate and ,gaseous control,
although not necessarily concurrently.
The choice between crossflow and countercurrent scrubber design is
dependent.on the particular application. However, generally the crossf1ow
scrubber is applied to situations where the bed depth is less than 6 feet
and countercurrent design is applied at bed depths of 6 feet or more.
These applications are based on the lowest combination of installed capi-
tal cost and operating cost.
7.1.1.3 Wet Cyclone Scrubbers

Wet cyclones are characterized by tangential entry of the air stream
to be cleaned. The air stream passes through the collector in a spiral
path. The liquid stream is directed outward from the center, of the circu-
lar collection chamber. The cyclonic scrubber thus possesses some of the
characteristics of both the simple dry cyclone collector and the spray
chamber.
Particulate collection is accomplished by combining centrifugal

, '
acceleration of the particles toward the chamber wall with the action of
the spray drop1~ts .in c~~tacting and removing the particle. Particulate
collection efficiences are generally in excess of 90% for ~articles
5 microns or larger. Gaseous fluoride capture is produced by the
intimate turbulent contact between the exhaust gas stream and the water
7-5

-------
particles generated by spray nozzles and air stream shear forces within the
scrubbing unit. Liquid requirements are generally on the order of 2 to
10 gallons of water per 1000 cubic feet of gas treated. Gaseous collection
efficiencies range up to 99% with pressure drops of 1 to 8 inches of water~
Total fan and pump horsepower vary from 1 to 2 per 1000 CFM. Wet Cyclones
have been designed to treat up to 100,000 CFM.

In summary, the wet cyclone has desirable characteristics when the
gas stream to be cleaned contains both particulate and gaseous materials.
The wet cyclone has an adequate capacity for handling high input dust
loadings and produces acceptable collection efficiencies for both medium-
sized (>5 microns) particulate and gaseous pollutants. Where extremely
high particulate collection efficiencies are required, however, the wet
cyclone is used in conjunction with other more efficient collection units.
The purchase, installation and operating costs associated with cyclonic
scrubbers are comparable with those of packed bed units for situations
where the exhaust gas stream to be cleaned represents a high gas flow
rate; however, the cyclonic scrubber requires less maintenance.
7~1.1.4 Self-Induced Spray Scrubbers
In this type of scrubber, the gas liquid contact is created as a
result of impingement of the carrier gas upon a liquid. The performance
characteristics are thus dependent upon the gas flow rate through the
collector. The effluent gas stream to be cleaned is impinged upon the
surface of the scrubbing liquid; the scrubbing liquid is fragmented and
broken into droplet sized particles by the kinetic energy in the gas
stream. The liquid droplets formed are entrained, and the effluent gas
stream is passed through further sections in which turbulent contact
between the liquid and gas phases occur.

Particulate collection efficiency approaches 90% for particles
2 microns and larger. For medium efficiency collection units of this type,
pressure drops range between 3 and 6 inches of water. The entrained water
droplets and the collected particulate material are removed in the final.
demisting stage of the induced spray scrubber. (4172) This type of equip-
ment is particularly applicable to gas streams with high dust loadings
since continuous removal of sludge can be accomplished with the
7-6

-------
installation of a screw conveyor.. No pumping horsepower is required since
the water remains at essentially atmospheric pressure and is atomized by
the gas stream.
Another advantage of the induced spray collector lies in the fact
that construction does not involve close clearances or small orifices.
Clogging, which often represents the bulk of the maintenance problems in
wet collectors, would not be expected under normal operating conditions.
Gaseous collection efficiency in the self-induced spray scrubber
has been reported to be greater than 99% for hydrogen fluoride and silicon
tetrafluoride removal. The control system reported in these observations
was a two-stage scrubbing operation with sequential induced spray col-
lectors. Liquid-to-gas requirements are generally lower for this type
unit than for most other wet collectors. Liquid requirements range
between 1/4 to 3 gal'lons of liquid per 1000 cubic feet of gas. Fan horse-
power for head recovery is from 0.7 to 1.4 per 1000 CFM of treated gas.

7.1.1.5 Orifice Plate Bubblers
The orifice plate bubbler is a class of wet impingement scrubber.
. The gas stream to be cleaned is passed through a perforated plate and
impinged on baffles where the gas jets attain maximum velocity. The
impingement baffles are covered by a layer of scrubbing liquid during
operation. The gas stream passing through the baffle plate prevents the
flow of liquid through the perforated plate. Intimate mixing of the gas
streams anq the liquid occurs facilitating both gas transfer to the liquid
phase and particulate collection by the scrubbing liquid.

Particulate collection efficiencies from 90 to 95% have been
reported for 2-micron-diameter dust particles. Several stages of perfor-
ated plate and impingement baffle may be assembled into a single collector
unit. The particulate removal efficiency is directly related to the number
of plates used in the scrubber. As is usual in the design of wet col-
lectors, a mist eliminator is used following the last baffle plate section.
Pressure drop through the impingement baffle system has been reported
between 1 to fo inches of water depending upon the size and number of per-
forations used, and the number of impingement plates in the collector.(4303)
7-7

-------
Gaseous fluoride removal efficieocies of between 99 to 99.5% have
been reported for the orifice plate type bubblers in application in the
aluminum industry.(4605} High collection efficiencies for both particulate
and gaseous pollutants make this unit applicable in a wide range of con-
trol situations. Water usage runs from 1 to 5 gpm per 1000 CFM and the
total (fan and pump) horsepower requirements range from 0.5 to 3 per
1000 CFM.
Clogging has not proved to be a problem in this equipment even
though the perforations in the plate are typically only 1/4 inch or less
in diameter. Clogging is prevented by high (75 ft/sec or more) gas vel-
ocities through these orifices which ~gitate the liquid on the surface of
the plate and keep the dust particles in suspension.

7.1;1;6 Venturi Scrubbers
The basic distinguishing design feature of the venturi scrubber is
the passage of the exhaust gas stream through a venturi-type constriction.
In this constriction, high linear gas velocities of the,order of 12,000
to 42,000 feet per minute are attained. The scrubbing liquid is usually
introduced normal to the gas flow at or near the minimum ,flow area of the
venturi. The high gas velocity at this point atomizes the scrubbing
liquid into fine droplets that are maintained in turbulent contact with
the gas stream.

Particulate collection efficiencies in the venturi scrubber are
directly related to the gas phase energy input. Gas pressure drops of
10 to 100 inches of water are common in this type unit with particulate
collection efficiency for submicron particles approaching 99% at the
higher pressure drops. The freedom from clogging afforded by the rela-
tively simple liquid distribution system of this type unit makes possible
the treatment of exhaust streams containing high dust loads. The high
particulate removal efficiency further makes the venturi scrubber most
applicable when particulate removal is of primary importance.
The intimate gas-liquid contact obtained in this type unit allows
the efficient removal of gaseous as well as particulate pollutants. Gas-
eous fluoride removal efficiencies of from 80 to 99% have been reported
7-8

-------
. .
in the aluminum industry. The venturi pressure drops associated with these
reported efficiencies ranged from 15 to 50 inches of water.(4303, 4305)

Scrubber liquid requirements for this type of control equipment
range from 3 to over 8 gallons per 1000 cubic feet of gas.
7.1.1.7 Jet Scrubber

Another type of scrubber operated on the venturi principle is the
jet scrubber or ejector venturi design. As in the case of the standard
venturi scrubber, the basic operating principle consists of passage of the
exhaust gas flow through a restrictive orifice. In the ejector venturi
design, the energy impelling the gas stream through the orifice comes
from a high pressure liquid spray rather than from the gas phase pressure
drop across the collecting unit i.e., water is. used to aspirate the dust
laden gas through the ejector. The ejector provides the head for the gas,
although large induced drafts (above several inches of water) are usually
avoided to maintain a high entrainment ratio. The larger the entrainment
ratio, the less water is used for a given gas flow rate. Typical water
usage ranges from 50 to 100 gpm per 1000 CFM with a pressure drop of 50
. to 100 psi for the water across the ejector. This amounts to 1 to
5 pump hp per 1000 CFM. Particulate and gaseous collection efficiencies
experienced with the ejector venturi design are comparable with those
attained in conventional venturi scrubbing. In both devices, the air
stream is brought into intimate and turbulent contact with a fine droplet
spray.
The jet scrubber is usually followed by a baffled or settling
chamber to capture the water treated particulate matter and water droplets.
The main use for this type of equipment is in situations where it is not
economical to add a fan to the system;.
A wide range of sizes is available in this type of collection unit
and multiple banks of ejector venturis have been used to control large
process emission sources.
7.1.1.8 Dynamic Wet Scrubbers

In the dynamic wet scrubber, liquid is mechanically sheared into
fine droplets and then contacted with the dust laden gas stream. The
7-9

-------
shearing usually is accomplished by injecting the water into fan blades
which simultaneously mix the water and dust streams and recover the lost
pressure head of th~ effl uent stream. The wetted impell er and a housi ng

. ,
hold the collected dust particles and prevent ~eentrainment. The dust
collection efficiency is approximately 95% for 1 micron particles. No
pressure drop incurred by the process stream, however, there is a 3 to 20
hp/1000 CFM requirement for the fan to disperse the water and recover the
head. Many of the higher horsepower dynamic units are being displaced
with venturi scrubbers.. Typical water consumption varies from 3 to 5 gpm
per lDOO CFM. Good gaseous collection efficiencies can be expected from
the dynamic wet scrubber because of the intimate mixing of the water and
the. process stream.
. 7.1.2
Dry Removal Systemsl4303, 4376, 4379)
Since the primary fluoride pollutants are gaseous species or
combinations of gaseo~~ species and nonsoluhle fluoride particulate species,
dry collection systems, which have limited ability for removal of gases
from effluent streams, are seldom used. Under certain conditions, dry
collection systems have been appl ied to fluoride emissions control either
to decrease the particulate load on subsequent control equipment or to
collect a solid adsorbantthat has been used 'to reduce the stream's gaseous
fluoride content. In either case, the dry collection equipment is usually
followed by secondary or eventertiary.treatment. Three main classes of
dry collection equipment are available: mechanical collection equipment,
electrostatic precipitatiDn, and fabric filtration.'

7.1.2.1' Mechanical Collectors'
. .

Mechanical collectors (inertial separators) have proven to be reli-
able collectors of dry fluoride particulate material in a number of air
poll.ution control applications. These devices collect particUlate material
by the use of centrifugal force, gravitational force, or by rapid changes
in the direction of the dust laden stream. ~echanical devices are simple
to construct, relatively inexpensive, and operate at moderate pressure
drops. Generally, the efficiency of the mechanical collector will increase
1 .
markedly with increased dust loadings, thus, it is often used as a pre-
collector preceding more efficient control equipment which is susceptible
7...10

-------
to overload. Common types of dry mechanical collectors employed in
industry include the settling chamber, the louver type collector, the
cyclone, the impingement collector, and the dynamic collector.

Settling Chamber.(4379) The settling chamber directs the dust
laden gas into an oversized duct where the gas velocity drops to a point
where the entrained particles drop out because of the force of gravity.
This. type of equipment is used in relatively high particulate concentra-
tions (above 5 grains/ft3) with particles sizes of 50 microns or larger.
Dust collection efficiencies range from 50 wt % to 90% depending on dust
particle size distribution. The pressure drop through the settling chamber
ranges from 0.2 to 0.5 inch water gauge (wg) resulting in a low fan horse
power requirement of 0.04 to 0.12 per 1000 CFMof treated gas. Since the
efficiency of the settling chamber is relatively low for dispersoid particu-
lates and has no effect on gaseous pollutants, this type of equipment is
generally used for pretreatment of a gaseous stream that is to be fed to
some more efficient type of collection equipment. The volume of gas that is
treated by this type of equipment is limited only by the space available for
the unit designed to treat that volume. The typical gas velocity through
. the chamber ranges from 5 to 10 feet per second.

Baffle Chamber.(4379) In the baffle chamber, settling is aided by
using the momentum of the heavy particulate matter to separate it from the
carrier gas. The dust laden gas enters the baffle chamber and is directed
downward around a baffle and out the top of the chamber. The heavy dust
particles tend to continue moving downward and are separated from the gas
stream. They drop out a small opening in the bottom of the chamber and
are collected. The baffle chamber is used for the same type of conditions
as is the settling chamber with the advantage of a smaller space require-
ment. Gas velocities of 20 to 40 feet per second are typical in the
baffle chamber with a pressure drop of 0.1 to 0.5 inch of water. The
fan horse power requirement needed to compensate for this pressure drop is
0.02 to 0.12 per 1000 CFM of treated gas. The baffle chamber has a
collection efficiency of from 50 to 90% depending on the dust particles to
be removed (usually above 50-micron diameter).
7-11

-------
Skimming Chamber. (4379) The skiriming chamber is similar to the
baffle chamber in that it uses the greater momentum of the dust particles
to separate them from the gas stream. The dirty gas stream enters an
enclosed metal s~roll tangentially and the dust is carried to the edge by
inertia. A concentrated dust stream is skimmed from the edge of the scroll
and sent to a secondary cleaner. Gas velocities of 35 to 70 feet per
second are typical for this type of equipment. Efficiencies of .70% are
obtainable with particles 20 microns in diameter. Pressure drops of up to
1 inch of water can be expected with a resulting fan horsepower require-
ment of from 0.02 to 0.24 per 1000 CFM. The limiting size for this
type of equipment is 50,000 CFM.

Louver Type Collectors. (4379) This type of equipment also employs
the difference in momentum between the dust particles and the carrier gas
to separate out the dust. The incoming gas must make a sharp bend in order
to escape through the louver (slots) in the wall. The heavier dust
particles are carried to the end of the apparatus where they are carried
out by a small portion of the original gas stream in a concentrated stream.
Efficiency of 80% can be obtained on 20-micron particles at gas velocities
of 35 to 70 feet per second. Flow rates are limited to 30,000 CFM for this
type of equipment. A pressure drop of 0.5 to 2 inches of water can be .
expected through this type of equipment requiring from 0.12 to 0.48 fan hp
per 1000 CFM to return the gas stream to pretreatment pressure conditions.

Dry CYC10nes.(4379). In a cyclone, the dust laden gas enters the top
of the apparatus tangentially, forming a vortex that extends downward
toward the bottom of the cone-shaped base. At this point the gas then
reverses its direction and moves up the center of the outer vortex in a
vortex core. The separation of the dust occurs during the downward flow of
gas when the inertia of the particles forces them out of the gas stream
toward: the wall of the cyclone. At the bottom of the cone, the particles
continue to move downwards because of their momentum in that direction and.
are collected through a hole at the base of the cone.
7-12

-------
The simple cyclone is typi~ally applied to streams up to
50,000 CFM and can obtain 50% efficiency on 20-micron particles. Pressure
drops of 0.5 to 3 inches of water are typical with gas velocities of 35 to
70 feet per second. Fan horsepower requirements are from 0.12 to 0.74
per 1000 CFM to recover the lost pressure head.

There are several modifications of the simple cyclone also.
employed as dust collection equipment. The high efficiency cyclone employs
a relatively smaller diameter and higher gas ve1o~ities in order to obtain
a greater efficiency. Efficiencies of 80% have been obtained on 10-micron
particles. Flow rates in this type of cyclone are limited to 12,000 CFM
with an increased pressure drop of 3 to 5 inches of water because of the
increased gas velocities. The larger pressure drop dictated by this equip-
ment requires a proportionally larger fan horsepower requirement in order
to recover the lost pressure head. Another common variation on the simple
cyclone is the multiple cyclone in which many small diameter cyclones are
employed to treat the same amount of gas as a conventional cyclone. The
effect of this approach is to decrease the effective diameter and increase
the efficiency. An efficiency of 90% is nominal for 7.5-micron particles.
The p:,essure drop and fan horsepower for the multiple cyclone is similar to
the high efficiency cyclone.

Impingement Co11ector.(4379) The impingement collector also uses
the higher momentum of the dust particles to separate them from the carrier
gas. The dirty gas is accelerated by a venturi and the particle momentum
carries the dust particles through a slot in a facing metal plate where they
impinge on another plate and are collected. The carrier gas tends to
diffuse away from the path of the dust particles. It strikes the first
metal plate and is carried away rather than going through the slot. This
type of equipment can produce a 90% efficiency on la-micron particles with
a pressure drop of from 1. to 2 inches of water. Almost unlimited flow rates
are handled by impingement equipment with gas velocities of from 50 to
100 feet per second. Fan horsepower requirements for head recovery are from
0.24 to 0.48 per 1000 CPM.
7-13

-------
f-
Dry Dynamic Collector. (4379) The. dry dynamic collector is unique
in that it uses a specially designed fan to'separate the dust particles
from the carrier gas and thus has no effective pressure drop. The gas
stream is drawn into the collector and accelerated by the impellers of the
fan causing the heavy dust particles to be thrown to the outside of the fan
chamber. Here they are collected as a concentrated stream and sent to a
hopper where they settle out. Since the dynamic collector employs a fan,
there is no pressure.drop thrQugh the equipment ancl the only utility required
for this equipment is the horsepower for the collector itself. The
horsepower required for a dynamic collector is slightly greater than for a
fan for the same duty, since the mechanical efficiency is somewhat smaller
for the collector. Normally the dynamic collector can handle up to
17,000 CFM of dirty gas with efficiencies of 80% on 15-micron particles.

7.1.2.2 Electrostatic Precipitation(4303)

Electrostatic precipitators use an electrical field for charging
the particles in the incoming, pollutant-laden gas causing the charged
particles to migrate to a collecting electrode because of the electrical
field. . Particles are collected on the opposite-polarity electrode and
transferred to storage for disposal. Control equipment of this type has
had extensive application in many fields of pollution control. A primary
advantage of electrostatic precipitators is the relatively low operating
costs of these units. Power requirements are low with the gas pressure
drop rarely exceeding 1/2 to 1 inch of water. Additional power must, of
course, be supplied in the form of electric energy required to ionize and
collect the particulate material. The total power requirements for
electrostatic precipitator units, however, are low compared with power
requirements to attain equivalent efficiencies with other collecting
mechanisms; they range between 0.1 and 0.6 kw per 1000 CFM. Electrostatic
precipitation units are commonly designed to operate at greater than 90%
particulate removal on particles of 2. microns or less with gas flow rates
from 10,000 to 2,000,000 CFM. The initial cost (purchase and installation)
of electrostatic precipitation equipment is high relative to initial costs
for mechanical collectors or wet scrubbing systems.
7-14

-------
7.1.2.3 Fabric Filtration(4303)
The third class of dry collection equipment which must be considered
in a survey of fluoride emissions control equipment is fabric filters. In
this type of unit, the exhaust gas stream to be treated is passed through a
fabric filter bag which collects the particulate material in the exhaust
gases while allowing the gases to pass through to the stack for emission.
Very large areas of fabric are used to filter gas streams. The pressure
drop or resistance to air flow in fabric filter units increases as the dust
loading builds up on the fabric. In general, the range of pressure drops
for this type of unit is between 5 and 10 inches of water. Various cleaning
mechanisms are used periodically to remove collected particulate material
from the fabric filters.
Particulate collection efficiency for this type of unit often exceeds
99.5%. Fabric filter units are relatively unaffected by dust loading or
gas throughput up to their design capacity. For this reason they represent
one of the most positive and efficient particulate control devices
available. When used in conjunction with a solid adsorbent substance,
fabric filtration can achieve a high degree of gaseous pollutant removal in
fluoride control applications.

Fabric filtration suffers from two major limitations. Humid gas
streams cause problems because of caking and binding of the collected
particulate material on the fabric surface. This causes greatly increased
pressure drop and, in some cases, prevents air flow through the filter
installation. The second major limitation is in the cleaning of high
temperature exhaust gases. Certain fabric filter materials, such as glass
fibers and aromatic polyimide fabrics, have the ability to withstand exhaust
gas streams up to 5500F. For gas temperatures above this level, or when
it is desirable to use less expensive filtering materials such as nylon,
cotton or wool, the gas stream must be cooled prior to entry into the
fabric filter unit.
7-15

-------
7.2 PLANT LOCATIONS
Inventories of industrial plant locations and capacities were
prepared for the industries which are known or potential sources for the
emission of significant quantities of soluble fluorides to the atmosphere.
The industries covered are: phosphate rock processing; iron and steel
production; primary aluminum smelting; coal burning, steam electric power
generation; hydrogen fluoride production; clay products; glass products;
enamel frits; and non-ferrous metal smelters.
7.2.1
Phosphate Rock Processing
Tables 7-1 through 7-5 list capacities and plant locations for the
manufacture of: wet-process phosphoric acid, normal superphosphate, triple
superphosphate, ammonium phosphates, and elemental phosphorus.
7.2.2
Itonand Steel Production Plant Locations
There are 51 important locations where iron and steel are produced.
The major concentrations of iron and steel mills are in western
Pennsylvania, northern Ohio, and around the lower tip of Lake Michigan
(Illinois and Indiana). Large iron and steel plants are located in 12
other states as well. These plants are listed in Table 7-6 (compiled from
References 4006 and 4275).

Not listed in the table are 112 electric arc furnaces in 39 locations
scattered in 17 states. These include a few relatively large arc furnaces
listed as making only carbon steel. Most of these 112 furnaces are rela-
tively small, and the average capacity for the entire group is about 40
tons per heat. their omission i~ consequently deemed of very little com-
parative significance.
Attention should be directed to 10 blast furnaces in Utah and 4
blast furnaces in California because of the fact that iron ore mined in the
western states may have significant amounts of fluoride. Only one fluoride
level in western ore has been found in the available publications: the
fluoride content of the iron ore was found to average approximately
3000 ppm (Anon., Fluoride Control At Geneva Works, Intermountain Industry
and Review, pp. 22-26, December 1957). This is a higher fluoride level
than was reported in England for ironstone, 950 to 1200 ppm ~reat Britain,
7-16

-------
L
Table 7-1.
State and Ci ty
Arkans as
Helena
California
Edison
Hanford
Helm
Lathrop
tlichols
Trona
Delaware
North Claymont
Florida
Bartow
Bartow
BartoVi
Bartol'l
Brews ter
Fort r1eade
Mulberry
Pierce
Pierce
Pi ney Poi nt
Pl ant Ci ty
Tampa
I~hi te Spri ngs
Idaho
Ke 11 ogg
Pocate 11 0
III i noi s
Depue
East St. Louis
Streator
Tusco 1 a
Iowa
Fort r1adi son
Loui s i ana
Convent
Gei smar
Wet Process Phosphoric Acid Plant Locations(4274)
and Capacities 1969 '
Ragion
--
Bakersfield
--
Fres no
Stockton

San Francisco-
Oakland
San Bernardino-
Riverside-Ontario
Wi lmi n9ton
--
--
--
--
--
--
--
--
--
--
Tampa-St. Petersburg
Tampa-St. Petersburg
--
--
--
--
St. Louis
--
--
--
--
--
Company
Arkla Chern. Corp.
AFC, Inc.

Reserve Oil & Gas

Valley Nitrogen Producers,
Inc.

Occidental Chern. Co.

Collier Carbon & Chern.
Corp.

American Potash and Chern.
Corp.
Allied Chern. Corp.
CF Chemicals, Inc.
Internation Minerals
& Chern. Corp.
USS Agri-Chemicals, Inc.
W.R. Grace & Co.
American Cyanamid Co.
U.S. Agri-Chemicals, Inc.
F.S. Royster Co.
Continental Oil Co.
Farmland Industries, Inc.
Borden, I nc.
Central Phosphates, Inc.
Tennessee Corp.
Occidental Chern. Co.
North Idaho Phosphate Co.
J.R. Simplot Co.
r~ew Jersey Zi nc Co.

Allied Chemical Corp.

Borden, Inc.

rlational Distillers &
Chern. Corp.
Sinclair Oil Corp.
Freeport Sulphur Co.
Allied Chern. Corp.
.7-17
Capacity, Thousand Tons
P205 Per Year
Ortho
60
17
30
50
18
9
37
650
170
120
350
220
230
180
275
220
220
275
650
275
30
265
HiO
37
24
40
225
700
200
Super
5
13
3
50
15
17
33
110

-------
Table 7-1.
Wet Process Phosphoric Acid Plant Locations(4274)
and Capacities 196~ (continued)
      Capacity, Thousand Tons
      P205 Per Year
 State and City Regi on Company   Ortho Supe r
Mississippi      
 Pascau~oula -- Coastal Chem. Corp.  150 
~1i ssouri      
 Jopl i n -- Farmers Chem. Co.  55 
 Jopli n -- W.R. Grace & Co.  35 
North Carolina      
 Aurora -- . Texas Gulf Sulphur Co. 500 100
Texas       
 Pasadena Hous ton 01 i n 11a thi eson Chem. Corp. 225 
 Pasadena Hous ton Phosphate Chemicals, Inc. GO 25
 Texas City Galveston-Texas City Borden. I nc.   60 
Utah       
 Salt Lake City Salt Lake City Stauffer Chem. Co.  70 51
*       
Total plant capacity is listed under "or tho. "  Super acids may then be made by evaporating water
from ortho acids. The super acid capacities shown here are for those companies with this type
of concentrating equipment.      
7-18

-------
Table 7-2.
State and City
Alabama
Bessemer
Birmingham
Decatur
Demopo1is
Dothan
Dothan
Montgomery
Mon tgome ry
Montgomery
Selma
Ca1 i forni a
Edison
Lathrop
Richmond
Flori da.
Cottonda1e
Jacksonville
Ni cho1s
Pensacola
Pierce
Tampa
Georgia
Albany

Albany

Athens

Atlanta

Columbus

Corde1e

Douglas

East Point
Macon
Macon
Moultrie
Pelham
Savannah
Savannah
Savannah
Sa vannah
Savannah
Valdosta
Normal Superphosphate Plant Locations
and Capacities (1969)
Region
Birmingham
Birmingham
--
--
n
n
Montgomery
t10ntgomery
Montgomery
Montgomery
Bakers fi e 1 d

Stock ton

San Francisco-
Oakland
Jacksonville
n
Pensacola
--
Tampa-St. Petersburg
Albany
Albany
n
Atlanta
Columbus
--
--
Atlanta
tlacon
Macori
--
--
Savannah
Savannah
Savannah
Savannah
Savannah
n
Company
F.S. Royster Co.
Mobile Chem. Co.
Alabama Farmers Coop., Inc.
Central Farmers Coop., Inc.
Home Guano Co.
~'obil e Chem. Co.
Continental Oil Co.
Mobile Chem. Co.
Tennessee Corp.
Central a Farmers Coop., Inc.
AFC, Inc.
Occidental Petroleum Corp.
Stauffer Chem. Co.
Wilson & Toomer Fertilizer
Wilson & Toomer Fertilizer
t.lobi1e Chem. Co.
Continental Oil Co.
Continental Oil Co.
Tennessee Corp.
,
Swift & Co.
U.S. Agri-Chemica1s, Inc.
F.S. Royster Co.
.S\~i ft & Co.
U.S. Agri-Chemicals, Inc.
Cotton Producers Assn.
Columbia Nitrogen Corp..
Tennessee Corp.
Cotton States Fertilizer
Co.
F.S. Royster Co.
Columbia Nitrogen Corp.
Pelham Phosphate Co.
Continental Oil Co.
Kaiser Aluminum & Chem.
Corp. .
Mobile Chem. Co.
f1utual Fertilizer Co.

Southern States Phosphate
& Ferti 1 i zer Co.

Georgia Fertilizer Co.
7-19
Capacity, Thousand Tons
P205 Per Year
Ortho
50
--
50
50
40
--
--
--
n
20
100
n
50
50
125
n
--
n
n
--
n
75
n
n
70
20
75
40
50
100
60
--
150
--
50
150
75
Super

-------
Table 7-2.
State and City
Illinois
Ashkum
Ca 1 umet City

Chicago Heights
Danvi lle
Danville
East St. Louis
East St. Louis
Fulton
Morris
National Stock Yards
National Stock Yards
Streator
Indiana
Fort Wayne
Indianapolis
Indi anapol is'
Indianapolis
Indianapolis
. Jeffersonville
Iowa
Dubuque
Humboldt
Mason Ci ty
Perry
Kansas
Kansas Ci ty
Kentucky
London
Russell vill e
Winchester
Louisiana
Baton Rouge
Ha rvey
Lake Charles
New Orleans
Shreveport
Normal Superphosphate Plant Locations
and Capacities' (1969) (continued)
Region
--
Chicago
Chicago
n
--
St. Louis
St. Loui s
--
--
St. Loui s
St. Loui s
--
Fort Wayne
Indianapolis
Indianapolis
Indianapolis
Indianapolis
Louisvi lle
Dubuque
--
--
--
Kansas Ci ty
--
--
Loui s vi 11 e
Baton Rouge
New Orleans
Lake Charles
New Orleans
Shreveport
Company
Occidental Petroleum Corp.
Swift & Co.
U.S. Agri-Chernical, Inc.
Continental Oil Co.
National Distillers &
Chern. Corp.
F.S. Services, Inc.
Mobil Chern. Corp.
Continental Oil Co.
Gilerist Plant Food Co.
Swi ft & Co.
Continental Oil Co.
Borden, Inc.
Mobil Chern. M Co.

Borden, I nc.

. Indiana Farm Bureau Coop.
Assn, Inc.

International Minerals
& Chem. Corp.

F.S. Royster Co.
Indiana Farm Bureau Coop.
Assn, Inc.
f.1obi 1 Chern. Co.

Continental Oil Co.

International Minerals
& Chern. Corp. \

W.R. Grace & Co.
Gulf Oil Corp.
Continental Oil Co.
Borden, I nc.
Southern States Coop, Inc.
Louisiana Agricultural
Supply Co., Inc..
Swift & Co.
Kelly, Weber & Co., Inc.
U.S. Agri-Chemicals, Inc.
Mobil Chern. Co.
7-20
Capacity, Thousand Tons
P205 Per Year
Ortho Super
 25 
 -- 
 -- 
 -- 
 n 
 60 
 -- 
 -- 
 -- 
 -- 
 -- 
 -- 
 n 
 -- 
 90 
 -- 
 90 
, 40 
--
--
--
--
40
--
25
20
25
--
30
--
--

-------
Tab 1 e 7 - 2 .
State and Ci ty
Maine
Sears port
Sears port
Maryl and
Baltimore
Baltimore
Ba lti more
Ba ltimore
Baltimore
Massachusetts
North B i11 eri ca
North Weymouth
Michigan
Lansing
Saginaw
Saginaw
Sagi naw
Minnesota
Winona
Mississippi
Jackson
Jackson
Magee
Marks
Meridian
Pascagoula
Tupelo
Mi ssouri
Joplin
New Jersey
Carteret.
New York
Buffalo
Normal Superphosphate Plant Locations
and Capacities (1969) (continued)
Region
Compa ny
--
W. R. Grace & Co.

Northern Chem.
Industries, Inc.
--
Ba ltimore
Ba lt i more
Ba 1 ti more
Baltimore
Continental Oil. 'Co.
W.R. Grace & Co.
Kerr-r~cGee Chem. Corp.
Olin Mathieson Chern. Corp.
F. S. Roys te r Co.
Baltimore
Lowe 11
Bos ton
Lowe11 Rendering Co.
Continental Oil Co.
Lansing
Saginaw
Saginaw
Saginaw
W.R. Grace & Co.
Borden, I nc.
Continental Oil Co.
Farm Bureau Services, Inc.
--
Cenex, Inc.
/
Jackson
Jackson
Mobil Chern. Co.

F.S. Royster Co.

Magee Coop.

Riverside Fertilizer
Factory

. Atlas Fertilizer & Chem. Co.
--
--
n
n
Coasta1 Chern. Corp.

International Minerals
& Chem. Corp.
--
--
W.R. Grace & Co.
--
Continental Oi1 Co.
Buffa 10
Continenta1 Oil Co.
7-21
Capacity, Thousand Tons
P205 Per Year
Ortho
Super
n
n
n
--
n
--
100
30
n
n
--
--
50
50
--
50
30
n
n
- -
--
n
--
--

-------
Table 7-2.
Norma 1 Superphos,phate Pl ant Locati ons
and Capaci~ies (1969) (continued)
        Capaci ty, Thousand Tons
         PZ05 Per Year
State and City Region  Company     Ortho Super
North Carolina          
Charlotte Charlotte F.S. Rays ter Co.    50 
Greensboro Greensboro-Winston- Conti nenta 1 Oil Co.   -- 
 Salem-High Point         
Greensboro Greensboro-Winston- Swi ft & Co.     -- 
 Salem-High Point         
Greensboro Greensboro-Winston- U.S. Agri - Chemi ca 1 s, Inc.  -- 
 . Salem-High Point         
Ri ege hlDod -- Kaiser Aluminum & Chem.  50 
  Corp.        
Selma -- Mobi 1 Chem. Co.    -- 
Wilmington Wil mi ngton t.10bi 1 Chem. Co.    -- 
Wilmington Wilmi ngton Swi ft & Co.     -- 
Wilmington Wil mi ngton U.S. Agri-Chemicals, Inc.  --
OhiO          
Cai ro -- ~onti nenta 1 Oil Co.   -- 
Ci nci nna ti Cincinnati International Minerals &  -- 
  Chem. Corp.      
Ci nci nnati Cincinnati Mobil Chem. Co.    --
Cleveland Cleveland Continental Oil Co.   -- 
Cleveland Cleveland Swi ft & Co.     -- 
Col umbus Columbus Borden, Inc.     -- 
Co 1 umbus Columbus Federa 1 Chem. Co.  ' --
columbus Co 1 umbus W. R. Grace & Co.    -- 
Lockland Cincinnati Tennessee Corp.    100 
Toledo Toledo F.S. Rays ter Co.    100 
Washington, -- Continental Oil Co.   --
Court House          
Oklahoma          
Oklahoma City Oklahoma City American Cyanamid Co.   50 
Pennsyl vani a          
Philadelrhia Phil adel phi a Kerr-t1cGee Chem. Corp.  --
South Carol i na          
Cha rl es ton CharI es ton Continental Oil Co.   -- 
Charleston Cha rl es ton W. R. Grace & Co.    --
CharI es ton Charleston 110bi 1 Chem. Co.    -- 
Charleston Charleston Pl anters Fertil i zer Co.  -- 
Charleston CharI eston F.S. Rays ter Co.    40 
Spartanburg -- International 1.1i nera 1 s &  -- 
  Chem. Corp.      
7-22

-------
Table 7-2.
State and Ci ty
Tennessee
Chattanooga
Knoxville
LaVergne
Memphis
Mt. Pl easant
Nashvi 11 e
Nashville
Nas hvi 11 e
Nashvi 11e
Tenco
Wales
Texas
Comanche
Galena Park

Hous ton
Littlefield
Plainview

Sulphur Springs
Utah
North Salt Lake
Virginia
Chesapeake
Norfo 1 k
Norfo 1 k
Norfol k
Norfo 1 k
Norfo 1 k
Richmond
Richmond
Washington
Tacoma
Wisconsin
Madison
Prairie DuChien
Normal Superphosphate Pl~nt Locations
and Capacities (1969) (continued)
Reg i on
--
Knoxvi 11 e
--
Memph i s
--
Nashvill e
Nashvi lle
Nashville
Nashville
Knoxvi lle
--
--
Hous ton
Houston
--
--
--
Sa 1 t Lake Ci ty
Norfolk-Portsmouth
Norfolk-Portsmouth
Norfolk-Portsmouth
Norfolk-Portsmouth
Norfolk-Portsmouth
Norfolk-Portsmouth
Richmond
Richmond
Tacoma
Madi son
--
Company
A.D. Adair & McCarty
Bro., Inc.

Continental Oil Co.

Tennessee Farmers Coop.

Mobil Chem. Co.

t40bile Chem. Co.

Continental Oil Co.
Federal Chem. Co.

W.R. Grace & Co.

U.S. Agri-Chemicals Inc.

Tennessee Farmers Coop.

International Minerals &
Chem. Corp.
Central 1exas Fertilizer
Co., Inc.
American Plant Food Corp.
Occidental Petroleum Corp.
Caprock Fertilizer Co.
Occidental Petroleum Co.
Farmland Industries, Inc.
/
Mi nera 1 Ferti 1 i zer Co.
F.S. Royster Co.
Borden, Inc.
.Farmers Guano Co.
W.R. Grace & Co.
Swift & Co.
Weaver Fertilizer Co., Inc.
Mobil Chemical Co.
Richmond Guana Co.
Stauffer Chem. Co.
F.S.. Royster Co.
F.S. .Services, Inc.
7-23
Capacity, Thousand Tons
P205 Per Year

Ortho Super
25
--
30
--
--
--
--
--
--
30
--
15
--
n
3D
--
50
25
100
60
50
--
n
60
--
60
--
BO
120

-------
Tab le 7-3.
Triple $uperphosph~te Plant Locations (4274)
~nd Capacities (1969).
       Capacity, Thousand Tons
       P205 Per Year
 State and City Region  Compa ny  Ortho Super
Alabama       
 Wil son Dam --  Tennessee Valley Authority 30 
Florida       
 Agricola --  Swift & Co.  175 
 Bartow --  W.R. Grace & Co.  565 
 Bartow --  International Minerals 450 
    & Chern. Corp.   
 Brewster --  American Cyanamid Co.  400 
 Ft. Meade --  U.S. Agri-Chemicals, Inc. 245 
 Green Bay --  Farmland Industries, Inc. 100 
 Mulberry --  F.S. Royster Co.  510 
 Nichols --  Mobil Chern. Co.  400 
 Pierce --  Continental Oil Co.  400 
 Plant City Tampa-St.Petersburg Central Phos pha te, I nc . 255 
 Port Manatee --  Borden. I nc.  70 
 Tampa Tampa-St. Petersburg Tennessee Corp.  850 
 White Springs --  Occidental Petroleum Corp. 150 
Idaho        
 Conda --  El Paso Products Co.  128 
 Pocate 110 --  J.R. Sirilplot, Co.  130 
Missouri       
 Joplin --  W.R. Grace & Co.  32 
North Carol i na       
 Aurora --  Texas Gulf Sulphur Co. 355 
Utah        
 Sa It lake City Sa It lake City Stauffer Chern. Co.  100 
Washi ngton       
 Tacoma Tacoma  Stauffer Chern. Co.  -- 
7-24

-------
Tab:' e 7,-4.
Ammonium Phosphate P'an~ Locations(4274)
and Capacities ('9~9) (continued)
State and Ci ty
Alabama
Cherokee
Muscle Shoals
Ari zona
Chandler
Arkansas
Hel ena
Ca 1 i furni a
Brea
Edison
Fontana
Hanford
Helm
Lathrop

Nichols
Pi ttsburg
Richmond
Florida
Barto\~
Bartow
Brews ter
Mulberry
Pierce
Pierce

Piney Point

Pl ant City
Tampa
White Spri ngs
Reg i on
--
--
Phoenix
--
Anaheim-
Santa Ana-
Garden Grove

Bakersfield
Sa n Berna rd i no-
Ri vers i de-
Ontario
--
Fres no
Stock ton

San Franci sco-
Oakl and
San Franci sco-
Oakland

Sa n Fra nc i sco-
Oakland
--
--
--
--
--
--
--
Tampa-
St. Petersburg

Tampa-
St. Petersburg
--
*See footnote at end of table.
Company
U.S. Agri-Chemical, Inc.
Tennessee Valley Authori ty
Arizona Agrochemical Corp.
Arkla Chem. Corp.
Collier Carbon &
Chern. Corp.
A FC, I nc .

Kaiser Steei Corp.
Reserve Oil & Gas

Va 11 ey Ni trogen
Producers, I nc.

Occidental Petroleum Corp.

Collier Carbon & Chern.
Corp.

She 11 Chern. Co.
Chevron Chern. Co.
W.R. Grace & Co.
International Minerals &
Chern. Corp.
American Cyanamid Co.
F.S. Royster Co.
Continental Oil Co.
Farmland Industries, Inc.
Borden, I nc.
Central Phosphates, Inc.
Tennessee Corp.
Occidental Petroleum Corp.
7-25
Capacity, Thousand Tons
P205 Per Year
180
157
35
100
50
88
24
--
170
40
60
12
--
200
650
200
100
400
200
128
200
390
309
*
Product
D
D,L,N
D,S,
D
L
D,S,
D
D,S
D,M,S
I~ ,L
D,M,S
D
N
D
D
D
D
D
D
D
D
,
D,M
D,L

-------
Table 7-4.
Ammonium Phosphate P1ant.Locations(4274)
and Capacities (1969) (continued)
       Capaci ty, Thousa'nd Tons ,*
 State and City Region'  Company  P205 Per Year Product
Idaho        
 Kellogg -- North Idaho Phosphate 50 D,I1,L
   Co.    
 Poca te 11 0 -- J.R. Simp10t Co. 286 D,L
Illinois       
 Chi cago Hei ghts Chicago Stauffer Chern. Co. 25 D,M
 Depue -- New Jersey Zinc Co. 270 ' D
 Henry -- W.R. Grace & Co. 100 D,M
 Morri s -- Stauffer ,Chern. Co. 26 L
 Streator -- Bordon, Inc.  37 D,M
Iowa        
 Fort Madison -- Chevron Chern. Co. -- N
 Fort Madi son -- Sinc1ilir Oil Corp. 420 D,L
Kansas       
 Lawrence -- ,FMC Corp.  -- L
Louisiana       
 Dona1dsonville -- Gulf Oil Corp. 300 D,L '
 Geismar -- Allied Chern. Corp. 420 D,L
 Lu1 i ng -- Monsanto Co.  300 D,N
Michigan       
 Dearborn Detroit Ford Motor Co. 18 D
Miss~ssippi       
 Pascagou1a -- Coas ta 1 Chern. Corp. 420 D,M,N
Missouri       
 Joplin -- Farmers Chern. Co. 200 D,M
 Joplin -- W.F. Grace & Co. -- D
North Carol i na       
 Aurora -- Texas Gulf Sulphur Co. 220 D
*
,See footnote at end of table.
7-26

-------
Table 7-4~,:Ammonium Phosphate -Plant Locations and(4274)
Capac.ities ,(1969) (cont)nl,J~d)
 State and City    Capacity, Thousand Tons *
 Region  Company P205 Per Year Product
Texas ; ,.  "Ii'   
 Brownfield  --  Goodpasture Grain & 100 L
   '.  Milling Co.  
 Dilll11itt  -.  Elcor Chem. Corp. 25 L
 Ga 1 ena Park --  American Plant Food Corp. 175 S
 Hous ton  Hous ton . ~ . Occidental Petroleum -- D,S
    Corp. .  
 Kerens  --  Ni pak 100 D
 Pasadena  Houston  Olin Mathieson Chern. 700 D,M,S
     Corp.  
 Pasade!1a  Hous ton  Phosphate Chemicals, Inc. 50 D
 Plainview  --  Occidental Petroleum 20 D,S
     Corp.  
Utah       
 Salt lake City Sa 1 t Lake Ci ty  Stauffer Chem. Co. 175 D,M,S,l
Washi ngton      
 Kennewick  --  'Chevron Chem. Co. -- N
*.       
D = Di Ammonium Phosphates    
l = Liquid (Ammonium Polyphosphates ) Solutions  
M = Monoammonium Phosphates    
N = Anmonium Phosphates - Nitrates'    
S = Anmonium Phosphates - Sulfates    
7-27

-------
Table 7-5.1 ElemelJtali,Phosphoru,sPlan:\: :Locatio~s
and Cap'abil i.t i~es .' (,Apri 1 -"1'969).
State and City
Alabama
Muscle Shoals
Florida
Nichols
Pierce
Tarpon Spri ngs
Idaho
Pocate110
Soda Springs
Mo.ntana
S i1 ver Bow
South Carolina
Cha r les ton
Tennessee
Columbia
Columbia
Mt. P1 easant .
Mt. Pleasant
. -
Region
..
Company
. .
--
Tennessee Va Hey Authority.
--
Mobil Chern  . Co..
Conti nenta1 Oi 1 Co.

Stauffer Chern. Co".
--
Tampa-St. Petersburg
--
FMC Corp

Monsanto Co~
--
--
Stauffer Chern. Co.
Charleston
Mobil Chern. Co.
'.
..
--
Hooker Chern. Corp...
Monsanto Co;
. Mobil Chern. Co..
Stauffer Chern. Co.'
Mo
--
--
7-28
Capacity,. Thousand Tons
. P4 Per Year

Ortho Super
40
6 
30 
23 
145 r.'
100 
42 
10 
70
140
. 20
63

-------
Table 7-6.
Location of Iron and SteelWorks (1~70)(4006~4275)
   Steel Works , Steel Works, Steel Works,
 - Integra ted  Number of Number of Number of
 Iron and Steel Ironworks, Open Hearth Electric Arc Basic Oxygen
 Works, Number ( ) Number of ( ) Furnaces ( ) Furnaces () Furnaces ( )
State and City of Blast Furnaces a Blast Furnaces a  (Tons/Heat) b (Tons/Heat) c (Tons/Heat) d
Alabama     
Birmingham  5   
Gadsden 2   2(370) 2(300)
Jefferson 8  21(4100)  
City     
Woodward  4   
California     
Alameda   4(600)  
Fontana 4  8(1800)  3(300)
Los Ange 1 es    6(305) 
Torrance   4(280)  
Colorado     
Pueblo 4    2(236)
Delaware     
New Castle    2(300) 
III i noi s     
Chicago 1    
Eas t - Chi cago 8    
Grani te Ci ty 2    2 (440)
Peori a   5(875)  
Riverdale 1    
South Chicago 15  4(1000) 4(600) 2(240)
I ndi ana     
East Chicago 3  39(7520) 2(240) 4(1040)
Gary 12  36(5400)  
Porter City     2(600)
Kentucky     
Ashland 3    2(360)
Covington   7(630) 3(225) 
Maryland     
Baltimore   18(6000) 6( 87) 2(400)
Sparrows Pt 10    
(a)Average blast furnace capacity = 1000 tons/day   
(b)Average open hearth furnaces = 2 heats/day   
(c)Listed electric arc furnaces = 3.5 heats/day   
(d) Average basic -oxygen furnaces = 12 heats/day   
7-29

-------
Table 7-6. Location of Iron and Steel Works(4006,4275)
(1970) (continued) .
    Steel Works, Steel Works, Steel Works,
 Integrated   Number of Number of Number of
 Iron and Steel Ironworks, Open Hearth Electric Arc Basic Oxygen
- Works, Number( ) Number of () Furnaces ( ) Furnaces ( ) Furnace ( )
State and City of Blast Furnaces a Blast Furnaces a (Tons/Heat) b (Tons/Heat) c (Tons/Heat) d
Michigan      
Dearborn 3     
Detroit     4(700) 11 (2030)
Ecorse 4     
Trenton 2     
Mi nnesota      
Dul uth 2   9(1350)  
New York      
Albany     5(80) 
Buffa 1 0 2 4   
Erie City      2(200)
Lackawana 7   14(3100)  3(870)
No. Tonawanda  1   
Syracuse     5{ 95) 
Troy  1   
Ohio      
Campbe 11 4     
Canton 2    17(1880) 
Cleveland 8 2 16(3880)  4(900)
.Hamilton 1     
Jackson  1   
Lorain 5     
Mahoni ng Cty    12(2520)  
Mans fi el d    6(1020) 2(200) 
Middletown 2   6 ( 1860)  2(400)
Portsmouth 2   5(1600)  
Steubenv1l1 e 5   11 (2360)  2(550)
Toledo  2   2(150)
Warren 1    2(370) 2(300)
Youngstown 10     
(a)Average blast furnace capacity = 1000 tons/day   
(b)Average open hearth furnaces = 2 heats/day    
(c)Listed electric arc furnaces = 3.5 heats/day    
(d) Average basic oxygen furnaces = 12 heats/day    
7-30

-------
-.----L- -
Table 7-6.
Location of Iron and Steel Works(4006,4275)
(1970) (Continued)
    Steel Works, Steel Works, S tee 1 Works.
 Integra ted   Number of Number of Number of
 Iron and Steel Ironworks, Open Hearth Electric Arc Bas i c Oxygen
 . Works, Number () Number of () Furnaces ( ) Furnaces ( ) Furnaces ( )
State and City of Blast Furnaces a . Blast Furnaces a (Tons/Heat) b (Tons/Heat) c (Tons/Heat) d
Pennsyl vani a      
Aliquippa 5     
Allegheny Cty    59(13,630) 16(800) 4(540)
Beaver Ci ty     9(600) 7(985)
Beth 1 ehem 5    6(235) 4(500)
Braddock 6     
Bucks County    9(3550) 4(500) 
Ches ter    5(750)  
Coatesvi 11 e    6(870) 3(345) 
Dauphin    4(775) 3(450) 
Duq ues ne 5     
Erie  1   
Fairless Hills 3     
Farrell 2     
Ivy Rock 2     
Johnstown 5    2(130) 
McKeesport 4     
Mercer Ci ty    11(1650) 3(220) 2(300)
Midland 3     
M; ffl i n Cty     2(58) 
Monessen 3   8(1760)  2(400)
Montgomery Cty      2(280)
Neville Isl.  2   
Philadelphia     2(180) 
Pittsburgh 5     
Ranki n 5     
Sharpsvi lle  2   
Sheridan  1   
Tennessee      
Rockwood  2   
Texas      
Da Has    5(1250)  
Hous ton  1   
Lone Star  1   
Utah      
Provo 3   10(3400)  
Virginia      
Lynchburg  2   
(a)Average blast furnace capacity = 1000 tons/day   
(b)Average open hearth furnaces - 2 heats/day    
(c)Listed electric arc furnaces = 3.5 heats/day    
(d)Average basic oxygen furnaces - 12 heats/day    
7-31

-------
Table 7-6.
Location of Iron and Steel Works(4006,4275)
(1970) (continued)
 Integra ted  S tee 1 Works, S tee 1 Works, Steel Works,
  Number of .Number of Number of
 Iron and Steel Ironworks, Open Hearth Electric Arc Basic Oxygen
 Works, Number Number of Fu rnaces ( ) Furnaces ( Furnaces ( 
State and Ci ty of Blast Furnaces(a) Blast Furnaces(a) (Tons/Heat) b (Tons/Heat) c) (Tons/Heat) d)
Washington     
Seattle    4 (280) 
West Virginia     
Weirton 4    2(670)
(a) Average blast furnace capacity = 1000 tons/day   
(b)Average open hearth furnaces = 2 heats/day   
(c)Listed electric arc furnaces = 3.5 heats/day   
(d) ..    
Average basic oxygen furnaces = 12 heats/day   
84th Annual Report on Alkali, Etc., Works by the Chief Inspectors, 1947,
London, H.M. Stationery Office (1948) and 85th Annual Report (1949)J.
In general, sintering plants are located at integrated iron and
steel works. No separate listing is available.
7.2.3-
Primary Aluminum Smelting Plant Locati.ons
There are 29 separate locations i~ the U.S. where aluminum reduc-
tion plants are operated or under construction.

The locations of these reduction plants and their production capac-
ities are listed in Table 7-7.
7.2.4
Coal Burning Steam-Electric Power Plant Locations
Most of the coal consumed in the United States is burned for
. .
generation of power by steam-electric power plants. The electric power
utility industry used 312,000~000 tons of coal in 1969. The locations
of coal burning electric utility plants are given in Table 7-8, along
with the coal consumption reported for 1969.

Since total anthracite coal production is only 5,000,000 tons
(1968) and is decreasing, the fluoride emissions 'from combustion of
anthracite coal are not considered as significant.
7-32 .

-------
Table 7-7.
Pl ant Capacity for Manufacturing (4273)
Primary Aluminum .
 Annua 1 Capaci ty, Reduction Cell
State and City Tons Types*
Alabama   
Sheffield 221 ,000  HS
Scottsboro 210,000 (planned) PB
Arkansas   
Arkadelphia 63,000  HS
Jones Mills 122,000  PB
Indiana   
Evansville 175,000  PB
Kentucky   
Hawsville 45,000  PB
Louisiana   
Chalmette 260,000  HS
Lake Charles 35,000  PB
Maryland   
Frederick 90,000  PB
Missouri   
New Madrid 110,000 (planned) PB
Montana   
Columbia Fans 175,000  VS
New York   
Massena 125,000  PB
North Carolina 128,000  HS
Badin 100,000  PB
Ohio   
Hannibal 240,000  PB
Oregon   
The Da 11 es 87,000  VS
Trontdale 100,000  PB
Tennessee   
Alcoa 200,000  all
New Johnsonville 140,000  PB
Texas   
Corpus Christi 110,000  HS
Point Comfort 175,000  VS
Rockdale 275,000  PB
Washington   
Bell ingham 265,000  PB
Longview 190,000  HS
Tacoma 81,000  HS
Spokane 206,000  PB
Vancouver 100,000  PB
Wenatchee 175,000  PB
West Virginia   
Ravenswood 163,000  PB
*PB = Prebaked Anode   
HS = Horizontal Stud Soderberg   
VS = Vertical Stud Soderberg   
7-33

-------
Table 7-8. Location of Coal Burning Stea~-Electric(4382) 
  Util i ty Plants (1969)  
  Coal Burned in   Coal Burned in
State and Ci ty  1969, 1000 Tons State and City 1969, 1000 Tons
ALABAMA    GEORGIA  
Bucks  1,274  Bidd County 155 
Chickasaw  50  .Cobb County 209 
Gadsden  224  Floyd County 740 
Gorgas  1,865  Mi 11 edgev 111 e 2,963 
Demopo1is  1,380  Cobb County 1,326 
Wi 1 sonvi 11 e  3,273  Brunswick 303 
Pride  2.,106  Daugherty City 404 
Pride  1,335  Coweta City 1,389 
Stevenson  4,042  Corde1e 17. 
Gantt  23  TOTAL GEORGIA  7,506
Anda1usia  96  
TOTAL ALABAMA   15,668 ILLINOIS  
ARIZONA    Ba rtonv 111 e 983 
   Peoria 8 
Joseph City  397  E. Peori a 520 
TOTAL ARIZONA    Bartonv111 e . 100 
  397 Montgomery Co. 1,057 
ARKANSAS    Grand Tower 417 
   Hutsonvil1e 481 
TOTAL ARKANSAS  0 Meredosia 805 
    Dixon 270 
COLORADO    Chicago 2,608 
A1amosa  3. Rockford 98 
 Joliet 3,995 
Denver  1,514  Kincaid 2,401 
Cameo  85  Pekin 793 
Boulder  430  Stickney 1,257 
Montrose  55  Rockford 187 
Durango  9  Waukegan 2,021 
Canon City  126  Lockport Twp. 3,048 
Pueblo  1  Joppa 3,511 
Colorado Springs 39  Havana 369 
Fort Coll ins  2  Hennepin 377 
Wa1senburg  12  Oakwood 517 
Hayden  541  Wood River 1,639 
Nuc1 a  65  Moline 18 
TOTAL COLORADO  2,882 Monsanto 267 
    Venice 1,022 
CONNECTICUT.    Fairfield 36 
Milford  . 728  Highland 28 
  Mount Carmel 60 
Montville  467  Peru 32 
Norwa 1k  843  Rochelle 30 
Stamford  57  Springfield 512 
Wallingford  18  Winnetka 22 
TOTAL. CONNECTICUT   2,113 Marion 207 
DELAWARE    TOTAL ILLINOIS  29,706
Wilmington  817  INDIANA  
Mi 11 sboro  467  I nd. -Ill. -Line 2,227 
Dover  57  Madison 4,280 
TOTAL DELAWARE  1,341 Sullivan 1,125 
    Lawrenceburg 2,829 
DISTRICT OF COLUMBIA   Mishawaka 763 
Washington, D.C. 777  Indianapolis 851 
 Petersburg 851 
TOTAL DISTRICT OF   Centerton 769 
COLUMBIA   777 Dune Acres 1,298 
    Michigan City 342 
FLORI DA    Gary 813 
Red Level  940  Terre Haute 388 
  Edwardsport 447 
Pensacola  184  New Albany 1,763 
Chattahoochee  192  Nob1esville 110 
Panama Ci ty  930  Terre Haute 2,295 
Tampa  2,286  Rushvi11e 5 
TOTAL FLORIDA   4,532 Newburg 458 
7-34

-------
Table '7-8.
Location of .Coal. BurningS.team-Electric(4382)
Utility Plants (1969): (continued)
 Coal Burned in  Coa 1 Burned in
State and City 1969, 1000 Tons State and City 1969, 1000 Tons
. INDIANA   KENTUCKY  
. , (Conti nued)   (Continued)  
. Evansvi 11 e 295  Burnside 421 
Anderson   Ford 272 
Crawf'dsv'le 87  TOTAL KENTUCKY  
Fort Wayne 76   14,481
Frankfort . 74  LOUISIANA  
Huntingsburg 8   
Jasper 45  TOTAL LOUISIANA  0
Logansport 83    
Peru 58  MASSACHUSETTS  
Richmond 53 .  Holyoke  
Richmond 141  398 
,:Washington 58  Worcester 63 
  New Bedford 3 
. TOTAL INDIANA 22,592 Somerset 730 
   Salem 243 
IOWA   Springfield 20 
Dubuque 101  W. Spri ngfi e 1 d 446 
Clinton 513  TOTAL MASSACHUSETTS  1,903
Lansing 121   
Boone 9  MARYLAND  
Iowa Falls 1  Baltimore  
Cedar Rapi ds 493  3,451 
Marsha 11 town 155  Vienna 243 
Iowana 304  Cumberland 49 
C' cil B1 uffs 172  Wi 11 i amsport 389 
Des Moines 347  Chalk Point 1,122 
. Carroll 3  Dickerson 1,464 
Charles City 5  Hagerstown 89 
Eagle Grove 0.6 TOTAL MARYLAND  6,807
Storm Lake 2   
Sioux City 14  MICHIGAN  
.Water100 94  West 01 ive  
.Sa1ix 172  1,349 
E.ddyvil1 e 227  Muskegon 1,139 
Burlington 519  Battle Creek 39 
Ames 20  Kalamazoo 31 
Cedar Falls 26  Essexvil1e 1,385 
Mt. Pleasant 22  Comstock 151 
Muscatine 112  Milwaukee 125 
'Pe 11 a 37  Essexville 1,357 
Sibley 5  Grand Rapi ds 26 
Webster City 11  Erie 955 
Humboldt 22  Detroit 2,113 
Spencer 37  Marysvil1e 6B4 
Montpelier 121  Wyandotte 26 
Creston 1  River Rouge 1,994 
TOTAL IOWA   E. China Twp. 4,484 
 3,667 Trenton 2,425 
KANSAS   Wyandotte 67 
  Harbor Beach 234 
Riverton 19  Ma rquette 508 
Parsons 1  Escanaba 77 
Lawrence 73  L'anse 26 
Tecumseh 60  Co 1 dwa ter . 34 
Kansas Ci ty. 168  Gladstone 13 
  Grand Haven 69 
TOTAL KANSAS  321 Holland 81 
KENTUCKY   Lansing 546 
  Traverse Ci.ty 144 
Louisa 1,094  Wyandotte 63 
Bergen 489  Boyne City 108 
Ca rro 11 ton 638  TOTAL MICHIGAN  20,253
Pi nevi 11 e 49   
Tyrone 98  MINNESOTA  
Loui svi 11 e 2,210    
Henderson 84  Sherburn 19 
Owensboro 497  Aurora 336 
Drakesboro 3,858  Cohasset 486 
Paducah 4;472  Duluth 203 
Sebree 242  Minneapolis 1,301 
Hawesvi 11 e 57  St: Paul 505. 
  7-35  

-------
Table ' Location of Co~l Burning' ~te~m~Electric(4382)  
7-8.'  
  Utility Plants (1969)'(continued) .   
  Coal Burned in   Coal Burned in
State and City 1969" 1000 Tons  State and City 1969, 1000 Tons
MINNESOTA     NEBRASKA   
(Continued)     ( Conti nued)   
Granite Falls 63   Bellevue 89  
Red Wing  28   Omaha 59  
St. Cloud  17   TOTAL NEBRASKA  885
Mankato  21   
Winona  34   NEW HAMP?HIRE   
Oak Part Hts. 1,207     
Crookston  .19   Bow 934  
Fergus Fa 11 s  622   TOTAL NEW HAMPSHIRE  934
Ortonville  70.   
Alexandria  5-   NEW JERSEY   
Austin  15     
Detroit Lakes 3   Penns Grove 128  
. Fa i rmont  6   Bees 1eys Pt. 757  
Hibbing  45   At1 anti c City 142  
Litchfield  4   Sayer v i 11 e 584  
Moorhead  2   Holland 341  
New U1m  12   Ridgeland 985  
Rochester  61   Jersey Ci ty 287  
Sleepy Eye  4   Hami lton Twp 926  
Springfield  2   Vine1and 136  
Two Harbors  6   TOTAL NEW JERSEY  4,286 .
Virginia  52   
Wi 11 mar   15   NEW MEXICO   
Worthington  7     
Elk River  22   Farmi ngton 2,778  
TOTAL MINNESOTA  5,192  .Raton 19  
     TOTAL NEW MEXICO  2,797
MISSISSIPPI        
Gulfport  548   NEW YORK   
TOTAL MISSISSIPPI  ..548  Rosetown 995  
     New York City Area 3,866  
MISSOURI     Union 358  
Montrose  . 1,725   Torry 425  
Kansas City  389   E. Corni ng 241  
Jefferson City    Brainbridge 129  
   Lansing 798  
Hexi co  49   Bethlehem 939  
Seda li a     Dunkirk 1,350  
Clinton     Tonawanda 1,600  
P1 easant Hi 11     
Sibley  413   Oswego 823  
St. Joseph  39   Tompkins Cove 367  
   Rochester 297  
St. Louis  2,468   Greece 574  
West A1 ton  2,079   Jamestown 121  
Chi 11 i cothe  45    
Co 1 umbia  137   TOTAL NEW YORK  12,883
Fulton  . 25      
Hannibal  42   ~   
Independence  23   Moapa 631  
Macon  1    
Marsha 11  2   TOTAL NEVADA  631
Poplar Bl uff  0.6      
Sprin9fie1d  28   NORTH. DAKOTA    
Randolph Co.  : 1,166   Beulah 66 49 
Chamois  153   Mandan 463 ~ 
Mi ssouri City 75   Minot 18 -
TOTAL MISSOURI 8,860   Fargo 81  
     Grand Forks 49  
MONTANA     Devils lake 5649 
  . ,   Jamestown .49 49" 
Sidney  306   Wahpeton 8W 
Billings  283   Va 11 ey Ci ty 23 -
TOTAL foI>NTANA  .589  Stanton 1,184  
     Vel va  86  
NEBRASKA     Grand Forks 4  
Alliance  4   Stanton 807  
Fremont  7   TOTAL NORTH DAKOTA  2,894
Fremont  8      
Lincoln  2   NORTH CAROLINA   
Hallam  168   Moncure 969  
Lincoln  10  I Go1dsboro 922  
    .',7-36'    

-------
Table 7-8. Loca ti on of .Coa 1 Burning Steam-E1ectric(4382) 
  Uti 1 ity P1 ants (1969) (continued)  
  Coal Burned in     Coal Burned in
State and Ci ty 1969, 1000 Tons   . State and City 1969, 1000 Tons
NORTH CAROLI NA    PENNSYLVANIA  
(Continued)     
      Sprin9dale 765 
Roxboro  2,213    Elrama 1,541 
Ashville  546    South Heights 1,365 
Wilmi ngton  536    Brunot Island 559 
Lumberton  268    Middletown 199 
Belmont  3,074    Reading 860 
Spencer  1,243    Portland 1,055 
Cliffside  601    Erie 351 
Draper  778    Sa'xton 119 
Terre 11  3,311    Seward 601 
Mount Holly  1,746    Shawville 1,783 
Greenville  1    Warren 236 
Kinston  17    Wi 11 iamsburg 116 
I Chapel Hi 11  22    Homer City 311 
'TOTAL NORTH CAROLINA  16,247   W. Pittsburgh 1,062 
   York Haven 2,294 
OHIO      Hauto 9 
     Ho ltwood 502 
New Richmond  2,556    Martins Creek 855 
North 8end  1,019    Pittston 377 
Ashtabula  1,018    Sunbury 1,395 
Avon Lake  1,427    Plum Creek Twp 3,345 
Eastlake  1,811    Philadelphia Area 3,476 
Cleveland  1,685    Reesedale 1,053 
Conesvi 11 e  1,275    Mil esburg 160 
Columbus  282    Courtney 1,218 
Athens  631    Springdale 752 
Co 1 umbu's  93    Masontown 26 
S. Dayton  852    Chambers burg  24 
Dayton  1,026    Lansdale 42 
Miamisbur9      Quakertown 20 
Di 11es Bottom 1,247    TOTAL PENNSYLVANIA  26,471
Lorain  305      
Akron  203  SOUTH CAROLINA  
Springfield  86    Hartsvi11e  
Warren      426 
Nil es  570    Chappels 50 
Stratton  3,539    Pe lzer 1,001 
Toronto  470    Duncan 41 
Bri 11 iant  2,996    Canadys 753 
Beverly  3,630    Parr 76 
Philo  962    Irmo 430 
Brill i ant  569    Beech Island 269 
Bluffton  56    Conway' 540 
Cheshire  2,894    Moncks Corner 50 
Toledo  361    TOTAL SOUTH CAROLINA  3,636
Oregon  1,497      
Toledo    SOUTH DAKOTA  
Ce 11 na  37       
Co 1 umbus .  82    Rapid City 94 
Dover  40    Lead 97 
E. Palestine  24    Mobridge 19 
Hamil ton  161    Sioux Falls 26 
Martins Ferry  37    Aberdeen 18 
Napoleon  31    Mitche 11 19 
Norwa lk  41    Watertown 4 
Orrvi 11 e  62    TOTAL SOUTH DAKOTA  277
Pa i nesvi 11 e  65    
Piqua  93  TENNESSEE  
Reading  31    Memphis  
St. Marys  25    1,212 
Shelby  38    Oak Ridge 1,556 
Troy  65    Gallatin 2,939 
TOTAL OHIO      Johnsonville 1,892 
 33,892   Johnsonville 1,650 
OKLAHOMA      Kingston 4,030 
     Rogervill e 1,798 
Oklahoma City  1    TOTAL TENNESSEE  15,077
Ponca City  0.1     
TOTAL OKLAHOMA        
7-37

-------
Tab 1 e 7 -8 .
Location of Coal Burning Steam~Electric(4382)
Utility Plants (1969) (continued) .
State and City
State and Ci ty
Coal Burned in
1969, 1000 Tons
TEXAS
Houston
TOTAL TEXAS
UTAH
Cedar City
Castle Gate
o rem
Provo
TOTAL UTAH

WEST vIRGINIA

Cabin Creek
Glasgow
Graham
Power
Albright
Morgantown
Rivesville
St. Marys
Capti na
Albright
Mt. Storm

TOTAL WEST VIRGINIA

WISCONSIN

Ashland
Madi son
La Crosse
Superior
Milwaukee
St. . Francis
Oak Creek
Port Washington
Oak CreeR
Milwaukee
Appleton
Beloit
Sheboygan
Sheboygan
Cassvill e
Beloit
Rothchil d
Green Bay
Manitowoc
Marshfield
Menasha
Richland Ctr.
Alma
Genoa
Genoa
Cassville

TOTAL WISCONSIN
WYOMING

Osage
Gi 11 ette
Sheridan
Glen Rock
KE!II8IIerer
TOTAL WYOMING
VERMONT
Burlington
TOTAL VERMONT
Coal Burned in
1969,1000 Tons
o
VIRGINIA

Carbo
Glen Lyn
Riverton
Alexandria
Bremo Bl uff
Chester
Portsmouth
Oumfri es
Norfolk
Richmond
Yorktown
Oanvi 11 e

TOTAL VIRGINIA

TOTAL UNITED STATES(a)
7
351
0.2
17
375
432 .
1,221
2,651
629
753
2,889
544
771
l,6Bl
304
2,679

14,554
98
119
52
24
28
43
1,084
857
2,507
519

63
313 .
28
632
440
1,059
. 177 .
115
77
41
7
612
10
385
135
9,425
231
104
32
1,489
1,216
3,072
37
37
(a)ooes not include all coal burning steam-electric pla.nts.
plants is 333 million tons.
1,990
1,000
71'
1,062
546
1,634
353
433
132
113
559
36
7,929
-
306,438
Estimated U.S. total for 1970. for all such
7-38

-------
7.2.5 Hydrogen Fluoride Production Plant LQcations
The locations and production capacity of manufacturers of hydrogen
. fluoride are listed in.Table 7-9.
7.2.6 Clay Products Plant Locations

Producers of clay products number about 1200 in the USA (Department
of Commerce 1967, Census of Manufacturers). Table 7-10 lists the quantities
of clay products manufactured by processes involving heating or firing at
temperatures above 1800°F. Because of the widespread availability of clay
and the diverse use of clay products, it is assumed that the ratio of high
temperature to low temperature clay products is constant for each state.
This allows calculation of the quantity of clay fired on a state by state
basis. The result of this calculation is shown in Table 7-11. The "clay
products II indus try covers the manufacture of pottery and stoneware;
refractories; heavy clay products; a"'chitectural terra cotta; lightweight
aggregates; and Portland and other hydraulic cements.
7.2.7 Manufacture of Glass Products
Glass container and fiber plant locations are listed in Table 7-12.
7.2.8 Manufacturers of Enamel Frits
Manufacturers of enamels frits are a rather small group; their
locations are listed in Table 7-13.
7.2.9
Nonferrous Metal Smelters
Tables 7-14,7-15 and 7-16 list plant locations,.c:ompany names,'.
and capacities for copper, lead and zinc smelters. It should be noted
that listed capacities are normally higher than actual production rates,
which are dependent upon market conditions.
7-:39

-------
Table T-9. Plant CapaCities for Hydrogen
Fluoride Production(4274)
Location
Annual Capacity
Tons
California
Bay Point
12,000
Del aware
North C1aymont
25,000
111 i noi s
Joliet
13,000
Kentucky
Calvert City
25,000
Louisiana
Baton Rouge
Geismar
Gramercy
1 5 , 000
40,000
30,000
New Jersey

Deepwater
Pau1sboro
90,000
11 ,000
Ohio.
Cleveland
12,000
Texas
Houston
La Porte
Point Comfort
18,000
75,000
45,000
West Virginia
Nitro
20,000
7-40

-------
Table 7-10. Clay Sold or Used by Producers in the United States in
1968, by Ki nd (4278) (th.ousands of short tons) "
          Mi sce 11 aneous 
       Ball Fire Clay and  Clay Including" 
    Uses  Kao 1 in Clay Stoneware Clay Bentonite Slip Clay Total
 Pottery and stoneware:        
 Whiteware, etc..................... 112 282    ------ 394
 Stoneware, art pottery, flowerpots,       
 and glaze slip...................   59   60 120
 Floor and wall tile................ 52 143 329   53 577
 Refractories:         
 Firebrick and block................ 398  2772   ------ 3,227
 Bauxite, high-alumina brick........   18   ------ 18
'-I Fire-clay mortar...................   114   ------ 114
I Clay cruc i b 1 es . . . . . . . . . . . . . . . . . . . . .      ------ ------
~     
....... Glass refractories.................       ------
      ------
 Foundries and steelworks...........   485 745  ------ 1 ,234
 Zinc retorts.......................      ------ ------
 Saggers, pi ns, sti lts, and wads....      ------ ------
 Other refractories................. 70 114 341   52 515
 Heavy clay products:        
 Building bri ck, paving brick,       
 draintile, sewer pipe, kindred       
 prod ucts. . . . . . . . . . . . . . . . . . . . . . . . . ..   3813   19,873 23,686
 Architectural terra cotta...........      ------ ------
 Lightweight aggregates..............      9,280 9,280
 Portland and other hydraulic cements 63     11,222 11 ,284

-------
Table 7-11.
Fired Clays Sold or Used(4278)
(thousands of short tons)
State Kaolin Fire Clay Bentonite Miscellaneous Types Totals
Alabama  560.8  919.4 1480.2
Arizona  0.1 28.5 22.1 50.3
Arkansas    342.0 342.0
California 6.2 506.3 32.1 968.9 1513.5
Colorado  228.4 1.8 168.3 398.5
Connecticut    87.8 87.8
Delaware    5.4 5.4
Georgia 842.5   733.9 1581.4
Idaho    5.4 5.4
Illinois  234.3  936.0 1170.3
Indiana  167.5  616.1 783.6
Iowa    568.8 568.8
Kansas  144.9  348.3 493.2
Kentucky  186.3  460.4 646.7
Louisiana    388.5 388.5
Maine    18.9 18.9
Mary1 and    485.1 485.1
 ,    
Massachusetts    115.6 115.6
Michigan    1169.3 1169.3
Minnesota    105.3 105.3
Mississippi   269.2 478.4 747.6
Missouri  1011.0  616.1 1627.1
Montana    13.5 13.5
Nebraska    66.6 66.6
New Hampshire    18.5 18.5
New Jersey  79.9  120.1 200.0
New Mexico  1.9  28.8 30.7
New York    753.8 753.8
North Carolina 10.6(1)   1489.5 1500.1
Ohio  1907.3  1231.6 3138.9
Oklahoma  0.4  326.7 327.1
Oregon   1.0 95.4 96.4
Pennsylvania  1352.8  724.5 2077 . 3
South Carolina 147.2   609.8 757.0
Tennessee    516.9 516.9
Texas  727.9 89.8 1290.2 2007.9
Utah  11.3 1.0 64.3 76.6
Virginia    657.9 657.9
Washington    63.0 63.0
West Virginia    87.3 87.3
Wisconsin    7.7 7.7
Wyoming   1724.6  1724.6
'. Others 101. 6 533.4 217.8 249.6 1102.4
(l)North Carolina and Florida uses combined   
7-42

-------
Table 7-12.
Locations of Mqnufacturers of
Glass Productsl4277) .
Container Plants Fiber Plants
Alabama 1 California 3
California 15 Florida 1
Connecticut 1 Kentucky 1
Florida 3 Kansas 3
Georgia 2 New Jersey 4
Illinois 9 North Carolina 1
Indiana 10 Ohio 4
Louisiana 3 Rhode Island 1
Maryland 3 Pennsylvania 2
Michigan 1 South Carolina 1
Minnesota 1 Texas 3
Mississippi 4 Total Production 
New Jersey 9 i n 1 967 305,000 tons
New York 5   
North Carolina 2   
Ohio 4   
Oklahoma 6   
Oregon 1   
Pennsylvania 14   
South Carolina 1   
Texas 5   
Washington 1   
West Virginia 4   
Wisconsin 1   
Tota 1 Production    
in 1967 8.865,900 tons   
7-43

-------
Table 7-13. Locations of Manufacturers of
Enamel Frits(4280) .
Location
Number
California

Los Angeles

I 11 i no i s

Chicago
1
2
Indiana.
Frankfort
1
Kentucky

Louisville
1
Maryland

Baltimore
1
Michigan

Muskegon

New York
Buffalo
Rochester
1
1
1
Ohio
Cleveland
Marysville
Salem
1
1
1
Pennsylvania

Ford Ci ty
Pittsburgh
Scranton
1
1
1
Tennessee
Nashville
1
Wisconsin

Kohler
Milwaukee
1
1
7-44

-------
Tab 1 e 7-14.
Primary Copper Smelter Plant
Locations and Capacities
    Charge Capacity
State and City  Company 1000 tons/year (a)
Texas    
 E1 Paso Asarco (c) 420
Arizona   
 Hoyden Kennecott Copper Co. 420
 Hoyden Asarco  420
 Mi ami Inspiration Consolidated 
  Copper Co. 450
 Superior Magma Copper Co. 150
 San Manuel Magma Copper Co. 403
 Doug 1 as Phelps Dodge Corp. 1250
 Morenci Phelps Dodge Corp. 900
 Ajo Phelps Dodge Corp. 300
Nevada    
 Mc Gill Kennecott Copper Co. 400
New Mexico   
 Hurley Kennecott Copper Co. 400
Utah    
 Garfield Kennecott Copper Co. 1000
Montana   
 Anaconda Anaconda Co. 1000
Washington   
 Tacoma Asarco \. 600
   \ 
Tennessee   
 Copperhi11 Tennessee Corp. 90
Michigan   
 White Pine White Pine Copper Co. 90 (b)
Total capacity (exc1. White Pine Copper Co.) 8203
(a)Tonnage capacity for smelting materials that yield a product. 
(b)Thousands of tons of copper.  
(c)American Smelting and Refining Co.  
   1 
7-45

-------
"
Table 7-15. Primary Zinc Smelter Plant
Locations and Capacities'
   Zinc Capacity
State and City Company  1000 tons/year
Texas   
Corpus Christi Asarco  108
Amarillo Asarco  54
Dumas American Zinc  57
Oklahoma   
Blackwell Blackwell Zinc Co.  90
Henryetta Eagle-Picher Cd.  54
Bartlesville National Zinc Co.  65
Idaho   
Kellogg Bunker-Hill Co. I 110
Montana  
Great Falls Anaconda Co.  162
Anaconda Anaconda Co.  87
Illinois   
Monsanto American Zinc Co.  84
Depue New Jersey Zinc Co.  57
West Virginia   
Meadowbrook Matthiessin and Hegeler  50
Pennsylvania   
Palmerton New Jersey Zinc Co.  110
Josephtown St. Joseph Lead Co.  175
   -
Total Capaci ty   1263
7-46

-------
Table .7-l6. . Primary Lead Smelter Plant
Locati ons and Capacities '.
. .
. State ~nd' C'ity
Texas
El Paso
Utah
Tooele
Idaho
Bradley
Montana
East Helena
I
California
Selby
Missouri
Glover
Buick
Herculaneum
Tota 1 Capaci ty
.' :-
'I Company
. .
. ,
Asarco
.,
International Smelting and
Refining Co.
Bunker Hi 11 Co.
Asarco
Asarco
Asarco
Missouri Lead Co.
. St. Joseph Lead Co.
7-47
..
Capaci.ty
1000 Tons/Year
. ,
.360
300
390
360
192
180
300
600
-
2682

-------
7.3
PHYSICOCHEMICAL PARAMETERS OF EVOLVED FLOURIDES
The physical and chemical properties of the'fluQride compounds present
as both major and minor fluoride-containing components of process effluent
streams are prescribed in the following tables.
,I . ,"
This section contains its own separate bibliography, covering the

. .
references used as sources for the data presented.. .
7-48

-------
PHYSICAL AND CHEMICAL
PROPERTIES OF FLUORIDE COMPOUNDS
PRESENT IN PROCESS EFFLUENT STREAMS
Compound Page
A1F3 7-51
BF3 7-52
BaF2 7-53
BaSiF6 7-54
CaF2 .7-55
F2 7-56
FeF2 7-57
FeF3 7-57
HF 7-58
H2SiF6 7-65
KF 7-71
K2SiF6 7-76
MgF2 7-77
NH4HF2 7-78
{NH4)2SiF6 7-78
NH4F 7-79
Na3A1F6 7-80
NaF 7-81
Na2SiF6 7-83
SiF4 7-86
UFS 7-88
7-49

-------
. . .
. .
SUPPLEMENTARY SOLUBILITY DATA
Compound
Page
CaF2 7-90
H2SiF6 7-91
KF 7-92
K2SiFS 7-96
NH4F 7-97
Na3A1FS 7-99
NaF 7-100
. Na 2S i F 6 7-102
Bib1 iography
7-104
7-50

-------
Al F3
MW 83.97
MP Sublimes at 1291°C
Den~ity - 2.88 2 g/cm3
Vapor Pressure Data
Temperature
°e
Pressure
mm Hg
1098 16.4
1123 33.4
1181 1 30 . 7
1218 254.7 .
1275 553.9
1294 767
Solubility of A1F3 in H20 at 25°C - 0.56 g/100g H20
Solubility of A1F3 in Aqueous Solutions of HF at 25°e
Gms. per 100 Solid Gms. per 100 Solid
gms. sat. 501. Phase gms. sat. 501. Phase
--

HF A1F3 HF A1F3

0.0 0.55 A1F3.H20 27.64 19.68 1.3.6
0.77 0.39 II 28.90 14.84 II
2.00 1.56 II 30.66 12.52 II
4.96 2.74 II 31.07 13.42 II
10.44 5.37 II 31.90 13.21 II
17.77 9.58 II 34.07 13.63 II
21.08 16.63 II 36.13 13.44 II
22.94 19.00 II 37.08 14.18 II
26.30 19.68 'j .3.6 37.81 17.07 II
1.3.6 = A1F3.3HF.6H20; 1.3.3 = A1F3.3HF..3H20

Heat of formation at 25°e - -355.7 Kcal/g mole
Heat of Sublimation at 1291°e - 73.0 ~ .4 Kcal/g mole
Entropy at 298°K - 23 eu .
eriti cal Temperature .- 2424°e
.7-51
Gms Per 100
9ms. sat. sol.
HF A 1 F 3

39.01 16.08
41.00 14.03
42.45 12.96
46 . 88 1 0 . 43
51. 80 7 . 1 5
54.03 6.18
57.57 .5.04
60.83 4.00
62.73 3.53
Solid
Phase
1.3.3
II
II
II
II
II
II
II
II

-------
BF3
MW - 67 . 82
MP - -127.1 °C
BP - -100. 3°C
3
Sp.Vol. - 5.6 ft /lb. @ 70°F=1 atm
Density at B.P. - 1.6 g/cm3
Solubility in H20 at O°C and 762 mm Hg -322 g/100g H20
Vapor Pressure Data:
Temperature Pressure  
 °c    
-127.3  69.8 mm. Hg Heat Capacity (gas): 
-120.5  139.7 mm.Hg 1000K - 6.98 cal/g mole _oK
-112.4  291.4 mm.Hg 3000K -11.42 II
-110.0  355.7 mm.Hg 5000K -14.39 II
  , ' 
-105.3  514.3 mm.Hg lOOQoK -17. 94 II'
-100.3  760 mm.Hg  
-73.3  4.61 atm.  
-63.3  7.50 atm.  
-54.4  10.00 atm.  
-49.25  13.8 atm.  
-29.96  '27.9 atm.  
-12.25 (C.T.) 49.0 atm.  
Heat of Fusion @ -128°C - 101.Kcal/g mole
Heat of Vaporization - 4.06 Kcal/g mole
Heat of Fonnation at 298°K- -265.4 Kcal/g mole
Entropy at 298°K - 60.70 eu
Critical Temperature - -12.25.:!:. .03°C
Cri ti ca 1 Pressure - 49.2 + . 1 atm.
7-52

-------
BaF2
MW - 175.3
MP - 1327°C
BP - 1927°C
Density - 4.89 g/cm3
:Solubility ofB~F2 i~ water
1.59 g/liter of sat. solution at 10°C
1.61 g/liter of sat. solution at 20°C
1.62 g/liter of sat. solution at 30°C
Note - at a concentration of 1.21 9 BaF2/ liter of sat.
Solubility of BaF?
Norma 1 i ty of
.HCl at beginning
0.01
0.10
1.0
in Hydrochloric Acid
Gm. Moles BaF2
Dissolved per liter.
0.0123
0.0414
O. 11 40
Heat of Formation (Solid) at 298°K - -296.9 Kcal/g mole
Heat of Fusion - 3.0 Kcal/g mole
Heat of Vaporization - 83.0 Kcal/g mole
Entropy at 298°K - 23.0 eu.
7-53
solution pH = 4.4
pH of

Sat. sol.
-----.-..--...
3.0
1.6
0.11

-------
Ba SiF6
MW - 279 . 41
MP ~ Dissociation starts at 327°e
Density - 4.29 g/cm3
Solubility of BaSiF6 in Water
tOe
a
16
25
35
Gms. BaS iF 6

per 100cc. sat. sol. 
0.015
0.019
0.025
0.028
pH ~4.4 at a concentration of 0.27 g~ams BaSiF6/100 m1
tOe
45 '
55
78
, Gms. BaSi F
,6
, '
p~r 100 gms. sat. sol.
0.031
0.035
0.044
Note -
, H20.
Dissociation Pressure Data:
Temperature Pressure
De mm Hg
416 29
443 63
476 247
481 303
487 360
498 537
For the reaction BaSiF6 (S)~BaF2(S) + SiF4(g)
Heat of Dissociation- -43 Kca1/g mole
Heat of Fonnation (solid) at 298°K- - 691.6 Kcal/ 9 mole
7-54

-------
L
I
. .'.
, "
.',

. ',f
:~. .
CaF2
i1'
i ,,~:
, ;'
t ',:,
MW - 78.08

MP .,. 1418°C

BP - 2513°C .
, 3 .
Density - 3.18 g/cm

. Sol ubil ity of CaF 2
, ,J,
':
"
, "
, "
, ..,
in Water
; ~:
Gms. C a ~2 pe r 1 i te r sat. sol.
tOe
! i
o 0.013 (flurospar) 
15 0.015 (fluorspar) 
18 0.016  ' "
 "
18 0.018  
   . ~.'
18 0.015 (calcined) I';.
25 0.018  
 0.016 (fl uorspar) ,
25 '
25 0.040 (pH = 6.4) 
40 0.017 (fluorspar) .,
So 1 ubi 1 i ty of CaF 2.in Aeeti c Aci d

Gms. CaF2 dissolved per 100 cc. in aqueous "
tOe 0.5 Normal CH3COOH. 1.0 Normal CH3COOH.
40................. 0.0153, 0~0175
60................. 0.0178 0.0203
. 80................. 0.0206 0.0237
100........~........ G.0229 0.0264
2.0 Normal CH3COOH.
0.0192
o . 0229
o .0267
0.0300
Solubility of CaF2

Normality
of aq. HCl
0.01
0.10
1.00
in Hydrochloric Acid at 25°e
Gm. moles CaF2
Dissolved per liter
0.00087
0.0053
0.0280
pH of
sat. sol.
2.02
1.05
0.04
Heat of Formation (Solid) at 298°K -, -290.3. Kcal/g mole
. .
Heat of Fusion - 7.10 Kcal/g mole

Heat of Vaporzation - 83.0 Kcal/g mol~
. .
Entropy at 298°K - 16.4 eu.
."
7-55

-------
F2
M~J - 38.00
MP --219.62°C
BP.--188.14°C
Spec. Vol~me @ 70°F, 1 atm. ~ 10.2 ft3/1b.
Density (liquid)@ BP.- 1.108 g/cm3
Dens i ty (gas) @ O°C, 1 atm:-- ,1.696 g/li ter
Viscosity (gas @ O°C, 1 atm) - 0.021'8 cpo
Vapor Pressure Data:
Temperature
°C
Pressure
m m Hg
1
10
40
100
400
760
. ,
-223
-214.1
-207.7
-202.7
-193.2
-187.9
Entropy at 298°K - 48.6 eu
Heat of Fusion.at M.P. - 372 Cal/g mole
Heat of Vaporization at B.P. - 1,564+3 cal/g mole
Heat Capacity Data (gas) .
;300oK - 7.45 Cal/g mole oK
5000K - 8.05 II
. 800,oK - 8.62 II
1 200 ° I<. - 8. 99 II
. .
7-56
Critical temperature - 144°K
Cirtical Pressure - 55 atm.

-------
MW - 93.84
MP ~ Sublimes at."", 1100°C
Dens ity - 4.09 g/ cm3
Heat of Format; on at 298°K-
. MW ~ 11 2. 84
MP - Sublimes at ~ 1000°C
Dens i ty -. 3.52 g/ cm3
FeF2
-154.2 Kcal/gmole
FeF3
7-57

-------
HF
MW - 20.01
MP - -83°C
BP - 19.5°C
Spec. Vol. @ 70°F, 1 atm. - 17 ft3/1b
Density of liquid @ O°C -.1.0015 g/cm3
Viscosity @ GOC ~ 0.25 cp

Infinite solubility in H20 and Alcohol
Viscosity of Liquid HF
        93.4% HF
        0.5% H20
 Pure HF  Commerical HF . f2!!s0H 6. 1
tin °C Centistokes  centipoise  
 C   cp  C   C
-68.75 0.780   0.914  0 . 893   
~62.5 .668   ~772  .797   0.983
-56.25 .585   .666  .720   .878
-50.0 .507   .570  .645   .788
-43.75 .450   .498  .579   .720
-37.5 .397   .434  .525   .668
-31. 25 .360   .387  .472   .615
- 25.0 .330   .350 .  .420   .575
-18.75 .306   .320  .377   .533
-12.5 .285   .296  .353   .499
- 6.25 .270   .274  .330   .470
0.0 .256   .256  .310   .447
+ 6.25 .243   .240     
Boiling Point of HF-H20 Mixtures at 760 mm Hg    
G. Mole H20 Mole % HF B.p.  G. Mole H20 Mole % HF B.p.
per 1000 g. HF  °C  per 1000 g. HF   °C
 o 100.00  10.93  82.07  46.05
667 6.98 101.45  6.01  89.28  32. 12
384 11.52 102.83  5.64  89.87  28.3
204 19 . 70 106.02  4.72  91.38  29.5
164 23.32 107.55  4.54  91. 80  28.95
    , 7-58.     

-------
  HF (Cont)   
154 24.46 108.60 4.0 92.06 27.92
138 26.63 108.80 3.5 ' 93.04 26.89
113 30 .62 11 0.93 3.0 94.03 25.90
100 . 33.26 111. 35 2.5 95.02 24.89
73 40.48 111.10 2.0 96.01 23.88
66.1 43.08 109.90 1.5 97.00 22.87
53.8 48.19 106.00 1.0 98.00 21.86
45.0 52.66 100.6 0.75 98.50 21. 14
39.7 55.78 85.5 0.5 99.00 20.81
35.0 58.86 79.25 0.4 99.20 20.58
31. 3 61.51 86.55 0.3 99.40 20.35
25.7 66.09 74.65 0.2 99.64 20.10
24.7 66.99 68.55 o. 1 99.82 19.84
20.85 70.39 62.35 0.005 99.91 19.70
18.05 73.48 58.55 0 100 19.54
12.88 79.55 44.55   
  Composition Wt% HF   
Liquid Vapor B.p. Li qui d Vapor B.p.
°C °C
5.47 0.87 101.6 42.2 50. 1 111.4
10. 1 2.03 102.8 47.0 65.7 108.7
20.6 7.06 106.8 49.2  106.8
24.7 11.6 108.4 52.9 82.6 101.7
30.1 19.4 110.3 54.8 87.4 98.9
36.2 32.8 111.7 58.6 92.9 90.9
36.8 34.4 112.0 60.7 97.3 86.6
37.6 36.4 112.1 64.1 98.0 79.0
38.22 38.15 112.3 66.2 98.7 74.6
38.27 38.26 112.4 72.0 98.8 61.6
39.2 41.1 112.1 81.4 99.3 45.1
   89.0 99.5 33.5
7-59

-------
    HF ( Cant)     
 Freezing Points of HF-H20 mixtures     
 ~.      
  Gm. Moles HF per Solid  Gm. Moles HF per   Solid
 tOC 100 gm. Moles HF+H20 Phase tOC 100 gm. Moles. HF+H20   Phase
 -0.9 0.777 Ice -75.4 69.8 2HF.H20
 -6.3 5.64 II -75.7 71.0  II 
 -9.8 8.09 II -81. 7 74.3  II 
 -23.0 15.65 II -91.1 76.2  II 
 -41.4 21.6 II -101. 3 77.6 II +4HF .H20
 -60.0 26.5 II -100.7 78.6 4 HF. 1~20
 - 70. 1 . 27.6 . II+HF. H20 -100.3 79.6 II  
 -62.7 30.7 HF. H20 -100.2 80.0 II  
 -59.4 32.1 II -100.6 81. 7 II  
 -48.9. 37.1 II -105.4 86.4 II  
 -43.5 40.3 II -110.8 88.3 II + HF
 -36.1 47.8 II -106.9 89.4 HF  
 -35.3 50.0 II -99.7 91.3 II  
 -35.8 51. 5 II -93.6 93.9 II  
 -41.5 57.5 II -88.9 96.1 II  
 -51.0 62.7 II -86.9 97.4 II  
 -68.3 67.5 II -85.4 98.2 II  
[    
I -75. 1 68.5 11-+2 HF .H20 -82.9 100.00 II  
I     
Solubility of HF in Benzene
tOC of the Liquid HF from which
its vapor was conducted
-77
-18
o
b.pt.
Degree of Association - Gaseons HF
Temp. oK =
234
4.37
(HF)n;n =
252
4.08
3.715 3.38 3.465 3.215 3.475 2.385
263
Gm. Moles HF dissolved per 100 gm. Mole HF+C6H6
20° 30° 40° 50° 60°
2.48
3.85
4.32
6.73
2.03
3.15
3.55
5.48
1. 12
1. 73
1.96
2.98
0.71
1.02
1. 17
1.80
1.58
2.44
2.75
4.22
274
278
282
285
289
7-60

-------
HF (Cant)
Vapor Pressure of the HF-H20 System
(P in mm Hg)
. . - -,~--~,"--"--'-,
....- ..----.-..-.--
39.20. Temp, °C.
36.70
.wt % HF
mole % HF
5.00
4.52
10.00
9.09
12.85
11.65
19.00
17.42
27.60
25.56
---.. -. --~---'-"_.'--'
'--T"""--------_._._~-'------"'- -.-.
PHF

PH 0
2
P * ----

- 1___.__---..

PHF 0.11
PH 0 49.5
2
.PT. -. - -.----.-- ._--~~_~.~_1
.PHF 0.21
PH 0 83.0
2
PT
0.53
14.9
1.37
10.0
5.59
10. 1
25
25
1 5.43
1. 20
11.37
15.69
25
....---~--------
0.53
44.9
0.82
43.7
.40
40
39.1
45.93
0.86
44.52
1.57
40.30
.2.48
40
50
22. 14
34.0
6.50
41.0
76.9
p8.6
57.6
50
83.21
77 . 76
70. 17
60.08
47.50 .
56.14
50
0.49
131. 5
1.52
117.6
4.63
PHF
PH 0
2
.l_-~:~~~_.~ 19. 12
. PHF 1.97 3.78
PH 0 267.0 244.3
2
PT
10.61
72.7
60
60
104.0
108.63
.9.69
83.31
24.39
60
6.35
237.6
75
75
207.9
153.3
26 8 ~ 97
248.08
243.95
217.59
177 . 6~
75
*
PT = Total system pressure in mm Hg. .
7-61

-------
u
o
I
W
0::
=> .
I- 60
~
w
a..
~
w
I-
HF - H20 BOILING P01NT CURVE
120
2 .
100
80
40
1 = lIQUI D PHASE
2 = GAS PHASE
20
o
o
40 60
HF CONCENTRAnON - WT. %
20
80
100
. 7-62

-------
PHASE DIAG RAM SY STEM
HF - H20
2700
I
2500
~ 2300
Z
.
Q..
~ 21 00
LJJ
~
1900
1700
o
20 40' 60 80
HF-CONC. IN MOL-%
100
00
:"250
~ -500
Z
.
Q..

~ -750
I-
- 1 000
-1250
o
25
50
WT. - % HF
75
100
7-63

-------
HF'(.Cont}
SolUbility of HF in Octane
tOC of sat. sol. in Octane 25.1°'
Moles HF per 100 moles HF + C8H18 0.338

Heat of Formation of the ga~ -64.8 Kcal/g mole'
at 298°K '.
Heat of Vaporization @ SP. -97.5 cal/gram
Heat of Fusi on @ mp. - 54.7 cal/gram
Entropy at 298°K ~ 41 .63 eu.
Critical Temperature - 230.2°C
Heat Capacity of the gas:
1000K -.6.9Q cal/g mole _oK
3000K .. 6.93 II
500 ° K - 6.95 II
lOOooK - 7.19 II
1500° K .. 7.64 II
Heat capacity of the Liquid @ -3°C- 0.838 cal/gram _oK
Vapor Pressure Data: '
Data below O°C Data above 75°F
Temperature Pressure Temperature
°c mm Hg. of
10
40
100 '
400
36.0°
0.276
45.2°
0.235
51.0°
O. 194
66.3°
0.170
-66
-45
-28
-2.5
75
150
200
250
300
400
Pressure
psia.
17.0
50.0
88.2
146
230
432
7-64

-------
H2Si F 6
MW -, 1 44 . 07
Equil i bri urn in the H2Si F 6-H20 System at 720 mm Hg' Pressure
% H2SiF6 in Solution Distillate
Be,fore , After  HF/SiF4 SiF4/Hl2
Di sti 11 ati,on Di sti 11 ati on Mean mole ratio mole ratio
10. 1 11. 1 10.6 5.65 0.354
11.1 11.7 11 .4 3.49 0.573
14.0 16.4 15.2 1.46 1 .370
'16.3 20.5 18.4 1.11 1 . 802
23.,6 27.9 25.8 0.56 3.571
'3Q.2 31.4 30.8 0.29 ' ' 6.897
, Heat of Formation at 298°K - -557.2 Kcal/g mole
/
7-65

-------
    H2SiF6 (Cont)     
Equil i bri urn in the H2Si F6-H20 System    .,. 
       '"   
  x=H2SiF6.6H20, y=Si(HF2;3H20)4' z=~20   
 ...        
BP 0C' Weight percent of liquid phase Weight percent of gas phase  
 HF H 25 i F 6 x Y z HF .H 2S i F 6 x Y z
104.4 0.2 24.1 40.8 2.2 57.0 0.2 2.5 3.5 1.6 94.9
107.3 "' .8 29.7 47.2 7.6 45.2 .2 ' 5.3 8.3 1.'6 90.1
108.1 -4.4 26.0 17.8 44.0 38.2 3.3 1.4 2 3.8 87.9
(8.3)
108.8 .9 33.2 52.7 8.5 38.8 .2 9.7 16.0 1.7 82.3
111.4 1.9 36.2 51.5 18.9 29.6 .2 18.0 30.3 1.9 67.8
112.7 2.7 38.3 50.5 26.9 23.0 .3 25.9 43.7 2.7 53.6
113.1 . 5.6 33.7 23.7 56.0 20.3 5.2 12.3 A(5.0) 34.2 60.8
114.3 4.6 38.0 37.5 46.0 16.5 . 1 30.7 53.4 .6 46.0
115.2 6.3 37.9 26.5 63.3 10.2 1.0 39.1 62.3 9.8 27.9
115.3 7.6 37.3 17.6 75.6 6.8 3.6 39.3 46.0 36.1 17.9
115.3 7.9 37.2 15.6 78.6 5.8 5.4 36.4 29.3 54.5 16.2
115.5 6.5 38.5 26.4 65.1 8.5 .2 46.3 79.6 2.4 18.0
115.5 8.9 37.9 10.4 88.8 .8 3.5 50.2 67.3 32.6 . 1
115.7 7.9 37.0 15.0 79.0 6.0 5.4 55.1 29.7 54.3 16.0
115.7 9. 1 36.7 6.7 91.3 2.0 7.8 36.1 14.3 77.6 8.1
7-66

-------
, H25iF6 (Cant)
   x=5i(HF2.3H20)4' y=Hl2.4H20, z=H20   
 Weight percent of liquid phase Weight percent of gas phase 
BP °C          
 HF H 25 i F 6 x Y z HF' H 25 i F 6 x Y z
11 5'.9 10.8 34.2 ' 95.0 3.6 1.4' 12.8 27.4 76.1 14.5 9.4
113.5 ' 9.8 '25.8 71. 7 7.5 20.8 8.6 .4 1.1 23.6 75.3
113.3 18.6 16.4 45.6' '39.3 15. 1 14.3 .F. 1.6 39.6 58.8
110.'3 30.1 0 0 84.3 15.7 19.4 0 0 54.3 45.7
110.0 25.3 5.2 14.6 66.8 18.6 17.3 . 1 .3 48.4 51.3
108.4 8.3 22.7 63.1. 5.6 31.3, ,6.0 .5 1.3 16.4 82.3
108.4 24.7 0 0 , 69.1 30.9 11.6 0.0 0 32.5 67.5
106. 8 20,.6 0 0 57.7 42.3 7. 1 0 0 19.8 80.2
102.8 10. 1 0 0 '28.3 71. 7 2.0, ° 0 5.7 94.3
101.6 5.5 0 0 15.3 '84.7 .9 0 0 2.4 97.6
  x=Si(HF2.3H20)4' y=H2F2.4H20, z=H4F4.7H20   
113.2 26.7 14.9 41.4 6.2 52.4 36.4 1.2 3.4 46.6 50.0
112.5 28.3 11.6 32.4 39.6 28.2 35.0 . 1 .3 97.9 B(1.8)
112.4 38.3 0 0 17.6 82.4 ,38.3 0 0 17.9 82.1
112.3 38.2 0 0 19.2 80.8 38.1 0 0 21. 5 78.5
112.1 37.6 0 0 39.1, 60.9 36.4 0 0 77.6 22.4
112.0 36.8 0 0 64.7 35.3 34.4 0 0 9f). 4 8(3.6)
111.7 36.2 0 0 84.0 ,16.0 32.8 0 ' 0 91.9 B(8.1)
7-67

-------
H2SiF6 (Cont)
x=Si (HF 2. 3H'20) 4' y=Hl2~2H20 ,z=H4F 4. 7H20
Weight percent of liquid phase
Weight percent of gas phase
'BP °C HF H2Si F 6 'x, y .z HF H2Si ~6, 'x y z
   , ,  f .' . 
     -' --,      
115.3 12.5 33.0 91.7 0.7 7.6 18.3  23.3 , 64.7 A(33.1) B(2.1)
114.9 15.6 29.8 82.8 4.6 12.6, 26.9 - 14'. 1, 39.2 A(20.4) 40.5
114.9 19~6 27.2 75.6 18.5 5.9 35.4  11.8 -32.8' 43.7-" 23.5
113.2 27.6 15.3 42.5 '7.5 50.0 40.4,  1.6 ,4.6 2L2 ,74.2
112.1 39.2, 0 0 97.2 2.8 41.1 ,. O' 0 83.5 16.5
111.9 29.8 16. 1 44.7 28.0 27.2 -.49.9,  2.4 6.6 93~2 C( .2)
111.4 42.2 0 0 75.5 24.5 50. 1  0 0 18.3' 81. 7
111.2 .39. 1 5.0 14.0 31.3 54.7 54.1  .4 1.1 94.7 C(4.1),
,108.7 47.0 0 0 40.7 59.3 65.7  0 0 7204 C(27.6)
   x=Si(HF2.3H20)4r y=H2F2~2H20, z=H2F2   
101.7 52.9 0.0 0.0 99.4 0.6 82.6 0.0 0.0 36.7 63.3
98.9 54.8 0 0 95.4 4.6 87.4 0 0 26.6 73.4
90.9 58.6 0 0 87.4 12.6 92.9 0 0 15.0 85.0
86.6 60.7 0 0 82.9 17. 1 97.3 0 0 5.7 94.3
79.0 64. 1 0 0 75.8 24.2 99.0 0 0 2. 1 97.9
74.6' 66.2 0 0 71.3 28.7 98.7 0 0 2.7 97.3
61.6 72.0 0 0 59. 1 40.9 98.8 0 0 2.5 97.5
45.1 81.4 0 0 39.3 60.7 99.3 0 0 ' 1. 5 98.5
33.5 89.0 0 0 23.2 76.8 99.5 0 0 1.0 99.0
7-68

-------
. H2SiF6 (Cant)
  x=Si(HF2.3H20)4t y=H2F2.2H20t z=H2SiF6.6H20  
 Weight percent of liquid phase Weiaht percent of qasphase
BP °C     
 HF H2SiF6 x Y z HF H 2S i F 6 x Y z
116. 1 10.1 36.0 98.9 0.4 0.7 9.8 36.0 98.4 D(0.6) 1.0
115.6 12.9 34.4 84.9 8.4 6.7 16.8 35.4 35.1 25.1 39.8
115.4 15.4 31.6 85.7 13.0 1.3 .25.6 23.4 57.8 37.6 4.6
115.2 9.3 38.1 87.1 1.1 11.8 3.6 51.8 13.4 4.4 82.2
114.8 18.6 29.0 77.2 20.7 2. 1 33.7 19.9 6.2 62.9 30.9
114.2 17.3 32.9 53.0 22.8 24.2 26.7 36 . 8 D ( 16 . 8) 18.8 64.4
113.4 23.9 24.5 65.0 33.1 1.9 44.8 12.0 D(6.8) 72.2 21.0
104.4 37.2 16.7 .4 70.6 29.0 71.6. 8.8 D(57.3) 27.2 15.5
   x=H2F2' y=H2F2.2H20t z=H2SiF6.6H20   
100.9 26.1 32.4 7.0 36.3 56.7 37.3 58.2 51.8 0(37.7) 10.5
100.1 36.3 20.7 5.8 58.0 36.2 74.6 13.9 73.6 . 2. 1 24.3
95.9 33.6 26.0 10.4 44.1 45.5 57.6 36.7 65.7 D(21.0) 13.3
94.0 45.7 12.0 8.7 70.3 21.0 87.7 4.0 81.8 11.2 7.0
89.5 22.9 38.7 12.5 19.7 67.7 5.2 93.2 30.5 D( 65.7) 3.8
76.2 49.2 18.6 28.9 38.5 32.6 66.6 32.2 75. 1 D ( 22 . 1) 2.8
70.1 40.5 27.5 27.9 24.0 48.1 26.5 72.6 46.4 D(51.6) 2.0
67. 1 60.7 9.0 34.5 49.8 15.7 92.2 2. 1 87.6 8.7 3.7
63.8 54.1 16.5 35.2 35.9 28.9 63.0 35.8 72.5 D(24.7) 2.8
62.5 33.0 36.0 28.6 8.4 63.0 .6 98.4 27.6 D(70. 1) 2.3
46.9 60.0 17. 1 48.8 21.2 29.9 26.3 73.0 46.3 0 ( 52. 1) 1.6
7-69

-------
HiSi F 6 (Cant)
x=H2F2' y=SiF4' z=H2SiF6.6H20
 Weight percent of liquid phase Weight percent of gas phase
BP °C HF H2S:i'F6 x y z HF . H2SiF6 .x y. z
46.6 69.6 9.3 53.9 29.8 16.3 43.3 56.2 58.7 40.1 1.2
33.7 53.1 25.3 .50.2 5.5 44.3 .9 96.0 26.5 66.4 7.1
 ".    20.$     
32.7 70.6 11.9 61.1 18.1 6.0 93.6 31.8 67.2 1.0
25.5 92.0 .7 84.5 14.3 1.2 77.4 . 21.8. 83.1 15.0 1.9
.. A = Hl2.4H20"
"B = H20
C = H F
2 2
D = Si F 4
7-70

-------
MW-58.10

MP ... 846°C

BP ... 1505°e . .

Density = 2.85 g/cm3

Vapor Pressure Data:

Temp~rature

0e .

795

982'

1050

. 1137

1297

1383

$0 1 ubil i ty ofKF in H2~

tOe Gms. KF .
Per 100 gms.
. sat. sol.
-3.2 5.0
-6.5 10.0
-12.2 15.0
-19.5 20.0
-21.8 (Eutec.)21.5
-20.0 22.7
o 30.90
10 34.87
15 38.13
17.5 41.52
17.7 47.7
KF
Pressure
mm Hg
1
10 .
40
100
400
. 760
Solid
Phase
Ice
II
II
II
11+ KF.4H20
KF.4H20

II
11
11
11
11+ KF. 2H20
7-71
tOe
o
17.5
18
20
25
30
35
40.2
45
60
80
Gms. KF  Solid
Per 100 gms.  Phase
. sat. sol.  
44.30 KF.2H20 '
47.52 11 
48.02 11 
48.70 11 
50.41 11 
51.95 II 
54.65 11 
58.08 11 
58.62 KF
58.72 11 
60.01 11 

-------
  KF (Cant)     
Equilibrium in the KF-HF-H20 System      
 At 00C At 200C At 40°C   
Gms. per 100 Gms. per 100 Gms. pe r 100   Solid
gms. sat. sol. gms. sat. sol. gms. sat. sol.   Phase
KF HF KF HF KF HF   
42.77 0.0 47.75 0.0 56 . 36 0:0 .' KF.2H20
  47.80 0~27 58.50 0.30 II  
44.15 0.36 47.90 0.72 59.20 1.37 KF.2H20+KF.HF
41.00 0.38 38.30 0.82 39.70 1.50 KF.HF
39.66 0.43 35.47 1. 12 37.28 1.89  II 
29.75 0.71 31.00 1.46 32.28 2.95  II 
27.33 0.95 21. 53 5.05 29.72 4.23  KF .HF
24.08 1. 25 20.50 6.88 27.60 7.24 II  
22.86 1. 41 21. 47 10.04 27. 10 9.26 II  
20.12 1.89 26.70 17.97 29.. 12 14.22 II  
17.85 2.40 27.70 18.34 30.75 17.55 II  
14.72 4.15 38.00 28.38 38.40 23.80 II  
14.08 5.23 40.67 29.84 46.07 . 30.00 II  
14.63 6.43 41.57 30.55 47.80 31. 95 II  
16.30 10.43 42.94 31.36 48.83 32.72 II  
21.50 17.71 43.41 31. 68 50.71 34.41 II  
25.23 21.27   52.60 35.22 II  
27.89 24.07     II  
31.60 26.87     II  
    52.80 35.68 KF. HF+KF. 2HF
30. 72 27.54 41.70 33.05 50.74 . 36.57 KF.2HF
29.86 29.20 42.80 32.25 48.87 38.60 II  
29.81 32.33 41.68 33.14 49.15 39.40 II  
29.40 34.83 40.55 34.00 48.92 40.53 II  
27.95 37.14 39.77 36.54   II  
  40.37 38.82   II  
27.29 38.52 37.62 40.18   II  
7-72

-------
  KF (Cont)     
Equilibrium in the KF-HF-H20 System     
At 00C At 200C At 40°C   
Gms. per 100 Gms. per 100 Gms. per 100  Solid
gms. sat. sol. gms. sat. soL gms . sat . sol.  Phase
KF HF KF HF KF HF  
26.77 40.35 35.37 41.90 46.24 42.98 2KF.5HF
26.66 42.10 34.42 44.20 44.70 44.46 II 
26.42 44.30   43.40 46.21 II 
26.82 45.83   42.75 48.03 II 
25.59 45.09 34.00 45.27   II 
24.02 45.42 31.00 47.55 38.17 50.54 KF.3HF
22.85 46.75 30.56 47.77 37.41 51. 38 II 
22.38 47.50 29.64 48.68 37.05 52.04 II 
22.30 48.16 28.86 49.50 36.98 52.50 II 
20.98 50.74 28.75 50.01   II 
20. 56 . 50.82 28.64 50.26   II 
19 . 46 51.30 26.04 51. 81 34.21 54.20 KF.4HF
18.00 52.08 21.36 55.30 31.46 55.76 II 
15.87 54.01 18.67 58.58 29.68 56.74 II 
12.50 57.60 17.64 62.23 27.74 58.07 II 
10.68 60.57 17.45 64.12 26.25 60.54 II 
9.86 64.13 18.36 66.60   II 
10.30 68.10 19.20 67.15   II 
12.01 69.80     II 
14.17 71.57     II 
15.85 72.42     II 
19.84 73.27     II 
23 . 62 74.60     II 
7-73 .

-------
  KF (Cont)  
Equilibrium in the KF-HF System   
 Mol   Mol 
 Fraction   Fraction 
 HF in   HF in 
tOC Solution Solid Phase tOC Solution Solid Phase
-83.7 1.000 HF 64'.0 0.7173 KF. 5HF
-85.2 0.9875 II. (64.3) (0.714) II
-86.9 0.9732 II 64.3 0.7115 II
-89.5 0.9580 II 63.4 0.7040 II
-92.8 0.9466 II 61.8 0.6969 II + KF. 2H F
-97.0 0.9311 II + KF. 4H F 62.4 0.6932 KF. 2H F
-45.0 . O. 91 43 KF.4HF 70.0 0.6777 II
8.0 0.8884 II 71.7 0.6670 II
48.0 0 . 8572 II 71. 1 0.6606 II
63.2 0.8355 II 68.3 (0.649) "+ a KF . HF
67.7 0.8241 II 84. 0.6435 a KF. HF
.71.8 0.8086 II 128 0.6197 II
(72.0) (6.8000) II .148 0.6014 II
72.0 0.7993 II 175 0.5695 II
71.0 0.7901 II 189 0.5488 II .
67.8 0.7783 II 195 0.5382 II +PKF.HF
(63.6) (0.771) II + KF.3HF 217 0.5218 PKF. HF
64.4 0.7676 KF. 3HF 231 0.5103 II
65.4 0.7583 II 234 0.5075 II
(65.8) (0.7500) II 236.8 0.5032 II
65.8 0.7490 II (239.0) (0.5000) II
65.5 0.7438 II 238.8 0.4996 II
64.5 0.7342 II 236 0.4847 II
62.6 0.7278 II 229.5 0.4860 II + KF
62.4 (0.727) II +2KF.5HF 292 0.4775 KF
62.7 0.725 KF.5HF 346 0.4646 II
7-74

-------
KF (Cont)
Heat of Formation
Heat of'Formation
Heat of Formation
(Solid)' - -135.6 Kca1lg mole
(l i qu id) - - 130.9 II
(gaseous)R -205.4 II
Entropy at 29goK (solid) ~
Enfropy at 298°K (1; qui d ..
,Entropy at 298°K (gaseous)-
Heat Capacity Data:
, Cp (solid -3000K - 11.48 ca,l/g mole-oK
8000K- 13.71
12000K-14.76
Cp (Liquid) - 3000K to 20000K - 16.00 cal/g mole-oK'
Cp (gaseou$) - 3000K - 17.30cal/g moleoK
, .
, 8000K - 19.97
12000K - 19.73
1800° K -' 19,.78
15.98 eu.
18.20 eu.
77.40 eu.
II
II
II
7-75

-------
MW - 220.27
MP - Decompositi on starts at 4270e .
Density - 2.665 g/cm3 .
Dissociation Pressure Data
Solubility of K2SiF6

gms. K2S i F 6
per 100 cc.
sat. sol.
0.077
0.09
0.132
O. 1147
0.113
tOe
o
14
16
17
20
Temperature
°e
Pressure
mm Hg

34.5

116.8

275.8

485.4 .

636.8

810.7

.811.8
K2Si F6
gms. K2SiF6  gms. K2S iF 6
per 100 cc.  per 100 cc.
sat. soL tOe sat. soL
0.177  60 0.377 
0.246  70 0.420 
0.220  78 0.462 
0.268  88 0.500 
0.322  100 0.82 
Heat of Formation (Solid) at 298°K - -52.8 Kcal/g mole
Heat of Dissociation at 7000e - 21.2 Kca1/g mole
698
760
800
833
857
878
879
in H20
tOe
. 25
35
40
. 45
55
7-76

-------
.-
I
I
I
!
[
MgF2
. MW - 62.31
MP - 1266 °C
BP -.2239 °C
So 1 ub il ity Data:
@ l8°C, .0076 g/lOO 9 H20
(insoluble in hot water)
Heat of Formation (Solid) at 298°K - -268.7 Kcal/gmole
Heat of Fonnation (liquid) at 298°K - -259~6Kcal/g mole
Heat of Fonnation (gas) at 298°K - -173.2 Kcallg mole
Eritropy (solid) at 298°K - 13.8 eu
Entropy (liquid) at 298°K ~ 15.4 eu
Entropy (gas) at 298°K - 61.9 eu
Heat Capacity Data:
Cp (solid) - lOooK - 0.27 cal/g mole-oK
3000K - 14.06 II
5000K - 16.81 II
8000K - 18.41 . II
l5000K - 20.42 II
. .

Cp ( liquid) ~300oK to 40000K - 22.57 cal/g mole _oK
Cp (gas) - 1000K - 8.24 cal/g mole _OK
3000K - 11.06 II
5000K - 12.53
8000K - 13.41
. 1 5000 K - 1 3 . 72
II
II
II
7-77

-------
NH4HF2
MW 57.0
MP 124°C.
Density. 1.503 g/cm3
(NH4)2SiF6
MW 178.14
Density 2.011 (oct.)
2.152 (hex.)
Solubility in H20 18.6 9/100 cm3H20 @ 17°C
55.5 g/100 cm3H20 @ 100°C
Heat of Fonnation at .298°K -36.6 Kca1/g mole
7-78

-------
NH4F
MW 37.04
MP Sublimes
Density 1.315 g/cm3
NH4F solubility in H20 @ O°C 100 gms/100 ml H20
Soluble in alcohol
insoluble in NH3
Heat of Formation -111.6 Kcal/g.mo1e
at 298°K
Heat Capacity Data
Temperature
°C
-69.9
-45.8
-35.4
-30.7
-25.0
1.4
10.7
Sp Heat
cal/g mole oK
12.62
14.12
15.34
19.44
14.26
16.18
15.06
7-79

-------
Na3A1F6
MW 209.94
MP lOOO°C
3
Density 2.90 g/cm
Heat of Formation at 298°K -789.90 Kcal/g mole
Entropy at 298°K 57.42 eu.
Heat Capacity Data (Solid)
lOooK 9.52 Cal/g mole oK
3000K 46.92 II
5000K 58.87 II
8000K 72.74 II
lOOOoK 75.87 II
7-80

-------
MW 41.99

MP 988°e

BP 1695°e

Density 2.558 g/cm3

Vapor Pressure Data

Temperature
e

1077

1240

1363

1455

1617

1704

Solubility of NaF in H22-

tOe d*..of
sat: sol.
.0
20
25
30
35
1. 0384
1.0354
Solubility of NaF in aqueous
NaF
Pressure
om Hq.
1
10
40
100
400
760
Gms. NaF per
100 gms. sat. sol.

3.53

3.90

3.98

4.05

4.13

HF at 200e
tOe
Gms. NaF per
100 gms. sat. sol.
40
50
60
80
100
4.21
4.35
4.47
4.66
.4.83
Gms. per 100 gms. H22- Gms. per 100 gms. H2~ 
NaF. HF. Solid Phase. NaF HF. Solid Phase.
-     
3.96 0.0 NaF 2.46 1. 16 NaF. HF
4.14 0.081 II 2.49 1. 20 II
4.19 0.104 II 2.20 1.55 II
4.23 . O. 135 II 2.04 2.22 II
4.51 0.420 II 2.01 2.70 II
4.56 0.484 II +NaF.HF 1.88 4.17 II
3.45 0.660 NaF. HF 1.83 8.68 II
2.99 0.831 II 1. 79 10.28 II
* d = density
7-81

-------
NaF (Cont.)
Entropy at 298°K (solid) 12.31 eu
Entropy at 298°K (liquid) 17.83 eu
Entropy at 298°K (gas) 52.12 eu
Heat Capacity Data:
Cp (solid)
lOo.OK

3o.o.oK

5o.o.oK
8o.o.oK
150.0. oK
2.0.3 ca1/g mole oK
10..54 II.
12.25 II
13.57 II
16.64 II
Cp (liquid) 4o.o.oK 12.22 II
 7o.o.oK 13.32 II
 1100.° K 16.68 II
Cp (Gas) 3o.o.oK 7.95 II
 lOo.o.oK 9.0.0. II
 27o.o.oK 9.34 II
Critical Temperature 3o.75°C
Critical Pressure 1330. atms
Heat of Formation (Solid) at 298°K -137.11 Kca1/g mole
Heat of Formation (liquid) at 298°K -129.90. II
Heat of FormationC gas) at 2900K -70..0.9 II
7-82

-------
Na2Si F 6
MW 188.04

MP decomposition starts at 327°e
Density 2.679 g/cm3
Vapor Pressure Data:
Temperature Pressure
°e mm Hg
516 19
572 63
629 163
682 387
709 620
Heat of Formation at 298°K-677 Kca1/g mole
Heat of decompositon for the reaction
Na2SiF6(s)~2NaF (s) + SiF4(g) is -28 Kca1/g mole
:01ubi1ity of Na2SiF6 in H20

Gms. Na2SiF6
per 100 gms. sat. sol.
Average
. 0.41
.53
.60
.61
.63
.67
.75
.84
.94
tOe
o
10
15
16
17.5
20

25
30
35
tOe
40
45
50
55
60
70
7-8
80
90
100
7-83
Gms. Na2SiF6
per 100 gms. sat. sol.
Average
1.02
1. 12
1. 22
1.33
1.44
1.68
. 1.92
2.17
2.42

-------
Mt~ 104.09
MP -90.2°C
BP -65°C
Sp. Vol. .3.7 ft3/1b @ 70°F; ~ atm.
Density of gas 4.67 g/liter @ O°C, 1 atm.
Density of liquid 1.66 g/cm3 @ -95°C, 1
Vapor Pressure Data;
Below 1 atm.
Pressure
mm. Hg
-Ii.
Temperature
°C
SiF4
-144 1
-134.8 5
-130.4 10
-125.9 20
-120.8 40
-117.5 60
-113.3 100
-110.2 200
-100.7 400
-94.8 760 "
Solubility of SiF4 in Organic Solvents
Solvent
Methyl Alcohol (abs.)
Ethyl II (96.1 Wt.%)
II II (abs.)
II II (96.1 Wt.%)
II " (94.3 Wt.%)
II " (92.6 Wt.%)
" " (91. 0 Wt. %)
Iso propyl alcohol
(98%)
Above 1 atm.

Temperature
°C
Pressure
atms.
-84.4
-67.9
-52.6
-33.3
2
5
10
20
at 30°C and 1 atm Total Pressure
"ct.so1vent"
gms. sat. sol ~
32.8
39.0
36.4
37.8
38.1
38.8
39.0
57.2
60.8
61.5
63.4
63.9
39.4
28.2
7-86

-------
2iF 4 (Cont)
Amyl Alcohol
Glyco 1
Di ethylene glycol
Glycerol
Acetone (annydrous)
Acetic Acid (glacial)
Pyruvic Acid (38-45%)
20.9
17.3
.26.2
26.2
5.7
3.2
1.1
1.1
4.4
Critical Temperature 14.1oC
Critical Pressure 36.7 atm.
Heat of Formation @ 298°K -385.9 Kcal/ g mole
Heat of Sublimation @ -94.8°C 58.9 cal/gram
Entropy at 298°K 68 eu.
Heat Capacity Data (gas):
100 OK 8.24 cal/g mole _oK
300 ° K 16. 13 II
500 ° K 20.53 II
800 oK 23.56 II
1200 oK 24.79 II
7-87

-------
MW - 352.02
MP - 69.2 °e @ 2 atm.
BP - Sublimes @ 56°e @ 1 atm.
Density @ 210e - 4.68 g/cm3
Vapor Pressure Data:

Temperature
°e
-38.8
-13.8
4.4
18.2
42.7
55.7
Soluble in eel 4
Decomposes in H20, ether, alcohol
Heat of Formation (gas) at 298°K
Entropy (gas) at 298°K 90.76 eu.
UF6
Pressure
mm Hg.
l'
10
40
100
400
760
-505 Kcal/g mole'
7-88

-------
Supplementary Solubility Data
7-89

-------
CaF2
Solubility of CaF2 in Various Aqueous Solutions at 18°C   
Aq. solution of:  Normal i ty  Gms. CaF2 
    of aq. sol vent  dissolved per 1 iter
Acetic acid   O. 083n *CH 3COOH  0.0308 
   '.    
II II   O. 166n II  0.0383 
II II   0.333n II  0.0407 
II II   0.833n II  0.0498 
Ammonia    LOn NH40H  0.0176 
II    1.66n II  0.0175 
Ammonium Chloride  0.25n NH4CL  0.0208 
II II   0.50n II  0.0258 
II II   LOn II  0.0278 
II II   1.66n II  0.0278 
II Acetate  0.33n CH3COONH40 0 . 0 2() 3 
. II II   0.71n II  0.0219 
II II   1.42n II  0.0245 
II II   1.66n II  0.0255 
* n = normality
7-90

-------
MW 144.07
. ~q~.librium in the MgO -. P205-=-.t12SiF6-H20 System at 25°C
Solubility of MgSiF6 in H3P04 solutions: Solid Phase MgSiF6.6H20 throughout.
Gms per 100 Gms per 100
gms. sat. sol. gms. sat. sol.
F P205 MgO F
16.5 0.0 1.5 2.8
12.5 7.7 1.5 3.0
10.3 13.0 0.7 1.7
7.0 21.8 0.6 0.8
4.8 27.9 0.5 0.7
Composition of Invariant Solutions:
Gms. per 100
gms. sat. sol. .
MgO F P20S Solid Phase
8.7 2.3 32.9 MgSiF6.6H20 + MgHP04 + Mg(H2P04)2.2H20
4.0 0.3 54.9 II + Mg(H2P04)2 + Mg(H2P04)2.2H20
8.3 0.0 33.1 MgHP04.3H20 + Mg(H2P04)2.4H20
4.6 0.0 53.3 Mg(H2P04)2.2H20 + Mg(H2P04)2.4H20
3.2 0.0 59.6 II + Mg(Hl04)2

Equilibrium in the PbSiF6 - H2SiF6 - H20 System at 20°C

Gms. per 100 Gms. per 100
gms. sat. sol. gms. sal. sol.
H2SiF6 PbSiF6 Solid PhaseH2SiF6 PbSiF6

0.0 68.97 PbSiF6.4H20 13.93 43.10
0.98 67.96 II 25.82 23.95
7.34 56.50 II 39.65 10.38
MgO
5.7
4.6
4.3
2.9
2.2
H 2S i F 6
7-91
P205
33.5
35.3
45.1
55.5
57.7
Solid Phase
PbSiF6.4H20

II
II

-------
KF
-
Solubility of KF in Anhydrous Organic Solvents
Solvent
tOC     Solubility
18 10.0 gms. per 100 gms. CH30H (d.= 0.864)
25 10.2 "   (d.= 0.865)
20 0.192 gms. per 1 00 gms..sat. sol.
30 0.168   "   
40 0.150   "   
50 0.125   "   
20 0.106   "   
30 0.096   "   
40 0.068   "   
50 0.023   "   
.55 0.016   "   
23 0.34 gm. per 100 gms. sat. sol.
18 0.00022 gms. per 1000 gms. actone
37 0.00025   "   
Methano 1
Methanol
Ethanol
Propanol (99.6%)
Acetone
Acetonitrile
18 0.0036 gms.
25 0.0024
Equilibrium in the KF-NH4F-H20 System At 25°C
Gms. per 100
gms. sat. sol.
!!.H4~ KF
a 48.96
1. 70 48.76
3.49 38.63
per 100 gms. acetonitrile
"
"
Gms. per 100
gms.sat. sol.

J:!.H4~
13.77
16.88
20.37
 Solid
KF Phase
41.26 NHl
35.43 "
29.92 II
Solid
Phase
KF.2H20
II
7-92

-------
   KF (cont)     
6.53 48.15 II 26.44   23.70 II
8.04 48.42 II 31.59   16.85 II
10.08 47.88 II 36.03   10.69 II
10.77 47.93 NHl 41. 27   4.57 II
11. 09 47.39 II 42.92   1.48 II
12.14 45.09 II 44.85   n.no II
Equilibrium in the K~-NiF2~20 System     
Gms. per 100  Gms. per 100  
gms. sat. sol. Solid gms. sat. sol.  Solid
....._. _._-_._-~. -------_.~    
Ni F2 KF Phase NiF2   KF Phase
1. 98 1. 21 MC* 2.01   1. 1 8 MC
1. 20 3.52 II 1.12   4.30. II
0.80 6.32 II 0.26   9.25 II
0.52 9.64 II 0.03   15.4 II
0.40 12.9 II 0.01   19.2 II
0.01 16.8 II    22.1 II
 20.2 II    25.0 II
 25.5 II    27.7 II
 28.1 II    31.3 II
 33.0 II    36.8 II
 37.5 II    41.3 II
Equilibrium in the KF-C2H50H~H20 System at 25°C

Gms. per 100
Gms. Upper Layer
C2H50H
92.67
 Gms. per 100 
 'Gms. Lower Layer 
KF C2H50H H20
45.33 0.67 54.00
37.82 1. 70 60.49
28.68 4.7 66.85
KF
1. 23
H20
.6.07
1. 16
83.30
15.54
* MC = Mixed Crystals
7-93

-------
    Kf (Cont)    
  2.86 65.81 .31.33    
  4.47 57.4 38.13 20.90 11.9 67.2
  5.47 53.04 41.49    
      18.55 15.6 65.85
  6.93 47.52 45.55    
  8.84 41.28 49.88 15.7 21.8 62.5
  9.55 38.66 51.79    
      13.57 27.27 59.15
  10.52 35.91 53.57    
      11.43 33.23 54.34
  11 30 .59 11 30 59
  Equilibrium in the KF-C3~70H - H20 System at 25° C  
   Gms. per 100     Gms.per 100 
  Gms. Homogeneous Liquid   Gms. Homoqeneous Liquid 
  KF C3H70H H20 KF C3H70H H20
  O. 17 96.78 3.05 8.15 7.49 --
  84.36
-. 0:31 78.91 21. 19 10.00 5.97 84.03
0-         
0  0.62 66.29 33.09 12.21 4.39 83.41
..t:: 
0 
u  0.81 59.97 39.22 14.18 3.45 82.37
0- 
c::( 
0-  1.29 47.46 51.21 18.75 1.89 79.35
>,
c.. 1.77 35.40 62.83 25.83 0.74 73.43
o 
~ 
Q..  2.50 19.05 78.45 35.38 0.23 64.38
      . .  
  5.32 10.64 84.04 47.02 0.039 52.34 .
  Equllibrium in the KF-C3H50H- H20 System at 20°C    
   Results in terms of gms. per 100 gms. of solvent, alcohol + water 
  qms. per 100 qms. Solvent   Gms. per 100 qms. Solvent 
0- KF CH3CHOHCH3 . H20 KF CH3CHOHCH3 H20
 o
..t::  
 u 51 .826 1 .555 98.445 12.385 21.438 78.562
0-
 ro
o- 38.748 2.965 97.035 5.071 59.339 40.661
 >,
 0..        
 0        
 ~        
 0..        
 0        
 VI        
. 7-94
-'

-------
KF(Cont)
26.039 6.525 93.475  3.973  65.455 34.545
17.812 . 12.215 87.785  1.705  82.750 17.250
~qui1ibrium in the KF - Acetone - H20 System at 20°C   
Gms. per 100 gms.     Gms. per 100 gms. 
Homogeneous Mixture     Homogeneous Mixture 
KF  (CH3) 2CO H20  KF  (CH3) 2CO H20
46.3  trace 53.7  9.17  23.53 67.30
44.24  0.24 55.52  5.00  38.72 56.28
33.34  1.00 65.66  3.06  47.89 46.84
29.86  1.60 68.54  1.38  58.06 40.55
25.74  3.02 71.24  0.979  62.60 36.42
20.28  5.90 73.80  0.75  65.41 33.84
16.31  9.72 73.97  0.50  69.58 29.92
12.40  15.59 72.01  0  98 2*
Equilibrium in the KF-KI-H2<2-       
Sat. Sol. Mole % Sat. sol. mole %  Sat. sol. mole % 
KI KF  KI KF  KI KF 
13.92 0.0  9.42 4.74  3.78 12.25 
12.58 1.34  7.49 7.10  2.22 15.30 
10.08 4.34  6.22 8.81  1. 21 18.97 
9.44 4.69  5.19 10.53  0.0 23.92 
7-95

-------
    K2S i F 6    
._Eq~~librium in the K2~iF6 - KB~-H20 System at 25~£_-  
Sat. SoL Wt. %  Sat. Sol. Wt. % 
.!2Si F 6-  KBr Solid Phase -!2SiF6- KBr Solid Phase
0.15   0.0 K2S i F 6 0.19 26.30 K2Si F 6 ;
.02   6.58 II .09 28.61 II
.02   7.92 II .05 33.26 II
.01  11. 05 II .07 36.42 II
.09  17.14 II .09 40.05 II
.07  22.56 II .14 40.47 KZSiF6 + KBr
     0.0 40 . 51 KBr
Solubility of K2SiF6
Solvent
in Saturated KN03 and KC1 at 17°C

Gms. K2Si F 6 per
100 cc. sat. sol.
O. 1147
0.0048
0.0048
Solutions at 14°C
Water
Aq. Sat. KN03 Solution
Aq. Sat. KC1 Solution
Solubility of K2SiF6 in Aqueous Ethanol
Wt. Percent Gms. K2SiF6
C2H50H per liter
in Solvent sat. sol.
Wt. Percent

C2H50H
in solvent
0.0
8.7
15.9
0.9
0.46
0.21
27.3 .
42.4
50
93.7
Gms. K2S i F 6
per 1; ter .
sat. sol.
0.09
0.05
0.039
0.0096
7-96

-------
NHl

Equilibrium in the CoF2-=-~~4F-~20 System
at 20°C
Gms. per 100 gms..=_~at'_.E.~
CoF2 NH4F
-Cr.-j4- - . --~g-
0.21 9.7
0.08 12.4
0.02 18.4
o . 0 1 5 20 . 8
0.010 24.1
0.009 34.3
Solid
Phase
CoF2.4H20
II
COF2.2NHl.2H20

II
II
II
II
At 50°C
Gms. pe r 100 gms. -~.~.!.:~.
CoF2 _~HL
0.40 3.6
0.08 14.5
0.06 17.3
0.03 22.6
0.015 24.8
0.014 27.6
o .013 29 . 5
Solid
Phase
-- -
CoF2'4H20
CoF2.2NHl.2H20

II
II
II
II
II
~qui1ibrium in the CuF2 - NH4F - H20 System at 20°C

Gms. per 100 gms. sat. sol. Solid Gms. per 100 gms. sat. sol.
CuF 2 NHl Phase CuF 2 NHl
'2:15" 2.2 CUF2.2H200~ -35.5-
0.44 19.2 II 0.53 41.9
0.36 22.1 CuF2.2NHl.2H20 0.52 44.1
0.55 27.8
~quilibrium in the NiF2 - NH4F - H20 System
at 20°C
Gms. per 100 gms. sat. sol.
Ni F2 NHl
1.07 3.4
0.91 6.4
0.72 9.4
0.51 10.4
0.17 17.1
0.07 23.0
0.02 28.5
0.01 37.4
0.00 41.2
Solid
Phase
NiF2.4H20
II
II
NiF2.2NH4F.2H20
II
II
II
II
II
7-97
at 50°C
~~s per 100 gms sat. sol.
NiF2 ..N~L-
1.60 5.0
1.04 8.1
o . 36 13. 1
0.15 17.7
0.10 20.5
0.04 26.2
0.02 32.4
0.01 37.3
0.0 41.5
Solid
Phase
CuF2.2NH4F.2H20
II + NHl
NHl
Solid
Phase
NiF2.4H20-
II
~~i F 2' 2rjH4 F .2H20
".
II
II
II
II
II

-------
. ,Equilibrium in the BeF2 - NH4F - H?O System at QOC
.Gms. per 100 gms. sat. sol. Solid Gms. per 100 gms.sat. s01.
NH4F BeF2 Phase NH4F BeF2
15.45 33.70 BeF2.NH4F 18.97 17.75
15.60 30.40 II 17.50 18.21
16.50 28.50 II 16.20 10..60
18.76 26.90 II 17.40 8.76
19.90 25. 10 II 19.08 7.00
21. 80 24. 70 II 20.60 6 . 30
21.74 25.00 II 25.85 5.06
21.80 25.10 II + S5 37.304..14
21.5722.48 S5 43.40 2.49
20.37 22.05 II 43.20 0.50
20.15 20.16 II 43.40 0.0
SS ~ Solid Solution

Equilibrium in the CdF2 - NH4F- H20 System at 20°C.

Gms. per 100 gms. sat. sol. 
CdF2 NH4F

4.0 1.6
NH4F (Cont)
Solid
Phase
CdF2
2.4
1.8
. 0.4
0.87
0.57
5.4
12.3 .
20.8
28.9
40.9
II
II
CdF2.2NH4F.2H20

II
II
7-98
Solid
Phase
S5
II
II + BeF2.2NH4F
BeF2.2NH4F
II
II
II
II
II
NH4F
II

-------
-------->
Na3A1F6
Solubility of N~A1Fn in Various Aqueous Salt Solutions at 25°C
Aluminum Nitrate
Moles per 1000 moles H20

2 [Al (N03) 3] A1Nal6

o . 0 0 . 34
0.49 0.65
0.96 loll
3.05 2.91
5.09 4.37
10.03 7.72
12.12 9.01
14.37 10.62
19.76 14.36
Ferric Nitrate
Moles per 1000 moles H20
2[Fe(N03)3]
0.99
3.09
4.90
6.98
.9.80
14.90
19.82
24.88
A1Nal6
0.81
1. 87
2.50
3.17
3.93
5.03
6.02
6.86
Aluminum Chloride
Moles per 1000 moles H20

A12C18 A1Na3F6

0.50 0.66
1.02 1.14
3.23 2.94
5.12 4.12
7.22 5.39
9.25 6.57
12.03 7.92
15.27 9.53
20.28 11.41
Ferric Chloride
Moles per 1000 moles H20
2(FeC13)
1.00
2.94
4.90
7.44
10.19
14.94
19.70
25.28
A1Nal6
0.73
1. 55
1. 99
2.20
2.27
2.23
2.05
1.88
The solid phase in each case was unchanged cryolite.
7-99
Aluminum Sulfate
Moles per 1000 moles H20

A12(S04)3 A1Na3F6

o . 40 0 . 56
0.74 0.87
1. 56 1. 59
3.33 2.84
5.08 4.02
7.59 5.54
10.50 7.13
13.72 8.63
17.04 10.06
Ferric Sulfate
Moles per 1000 moles H20

Fe2(S04)3 A1Na3F6
1.02 0.58
3.04 1 . 13
5.13 1.57
7.04 1.81
9.95 2.23
14 . 82 2 . 88
19.16 3.22
24.55 . 3.70

-------
NaF
Solubility of NaF in Aqueous 'Solution
~ercent H202 in Solvent
0.0
15.72
31. 43
of H202 at 25°e
Gms Moles
NaF per 1000 qms.
0.9989
1 .216
1.457
solvent
Equilibrium in the NaF - BeF 4=-H20 System     
 Gms. per 100 gms. sat. sol. Solid Gms per 100 qms. sat. soL Solid
tOe NaF Na2BeF 4  Phase tOe NaF Na2ReF 4 Phase
0- 3:8T 0.22 NaF +. Na2BeF 6() 3.85 0.47 NaF + Na2BeF 4
20 3.84 0.26 II II 80 3.85 0.57 II II
40 3.76 0.45 II II 94 3.85 0.80 II II
Solubility of NaF in NaOH Solutions   
~It. Percent  Gms. NaF per 100 gms. sat. solution at: 0e
NaOH in Solvent 0° 20° 40° 80° 94°
O.tX ';'H20) 3.99 4.10 4.47 4.48 4.73
0.81 3.49 3.40 3.51 3.56 3.47
1.67  2.89   
2.30 2.65 2.70 2.81 2.82 3.03
2.70 2.37 2.45 2.70 2.84 2.73
5.66  1.68   
7~90  1. 25   
18.40  0.38   
Equilibrium in the NaF - Na2i04~H20 System
Gms. per 100 gms sat. soL Solid Gms. per 100 gms. sat. soL Solid
~a2~04- NaF Phase tOe ~i04-- ~ Phase
0.0 3.92 Ice + NaF 25 8.67 2.35 NaF + l.r
4.07 0.0 11 + Na.10 II 11.48 1. 74 1.1
1.68 3.42 II + II +NaF II 21.34 0.37 II + Na.10
0.0 3.92 NaF II 31.71 0.0 Na.10
3.95 3.20 II 33.26 33.10 trace II + Na.10+Na
6.39 2.98 II +Na.10 35 0.0 4.03 NaF
8.34 0.0 . Na.10 II 4.34 3.18 II
o . 0 3 . 93 N a F II 8 . 62 2 . 50 II + 1. 1
9.50 2.50 II + Na.10 II 9.58 2.09 1.1
7-100
tOe
-3.0
-1.12
-3.06
10.
II
II
II
15
II

-------
   NaF (Con~.)    
II 11.70 0.0 Na.10 II 11-. 60 1. 57 II
17.47 12.58 1. 91 1.l+Na.10+NaFIi 18.11 0.62 II
25 0.0 3.98 NaF II 32.80 trace II +Na
II 4.48 3.13 II II 32.96 0.0 Na
Na.10=Na2S04.10H20; Na = Na2S04; 1.1 = NaF.Na2S04'
Solubility of NaF in Various Alcohols
Gms. NaF per 100 Qms. sat. solution in:
Methyl Alcohol
Ch30H
0.413
0.440
0.458
0.476
0.484
tOC
Ethyl Alcohol
C2H50H
0.095
0.108
0.119
0.158
O. 1 79
n Butyl Alcohol
CH3(CH2)2Ch20H
0.0030
0.0041
0.0043
0.0049
0.0054
20
30
40
50
55
Solubility of NaF in Acetone
tOC d. of sat. sol.
18 0.792
37 0.770
Gms. NaF per 1000 per Acetone
0.000024
0.000027
Equilibrium in the NaF - NaCl-H20 System      
tOC Gms. per 100 qms. sat. sol.  Solid tOG Gms per 100 qms sal sol Solid
 NaCl NaF  Phase  NaCl NaF  Phase
25 26.40 0.0 NaGl 35 26.18 0.34 NaCl+NaF
II 26.12 0.31 . II +NaF II 26. 13 0.29 II 
II 26.24 0.12 II II II 18.43 0.54 NaF 
II 0.0 3.98 NaF  II 5.41 2.38 II 
35 26.62 0.0 NaGl II 0.0 4.00 II 
7-101

-------
Na2Si F6
~quil~brium in the Na2SiF6 - H3P04 - NaCl System

P205 Results are expressed as gms. Na2SiF6 per 100 gms. sat. sol.
I~t% vJt% NaCl at 40°C . Wt. % NaCl at 80°C
----

o 2 4 f) 2 4
1.10 2.07
1.15 2.01
1.09 0.196 0.105 1.9 0.73
0.95 .181 .100 1.75 .59
.78 .127 .067 1.45 .47
.61 .066 .043 1.25 .38
With 0.6% A1203 added, the Solubility is increased:

0.33
.25
.19
1
5
10
15
20
25
10
20
25
E q-~2~~~~~~~__~_h_~.._~~g~_i!_6. -=---~~:_~__=__~2~_~~~_~~-~-~-~_.~~.~-
Sat. Sol. Wt.% Sat.
NaCl NazSiF6 Density NaCl
0.0 0.65 11.69
0.41 0.206 1.0047 15.00
1.18 0.079 1.0083 18.09
2.48 0.041 1.0171 26.29
4.12 0.028 1.0291 26.36
7.87 0.017 1.0562
Sol.14L%....

~2SiF6-
0.012
n.oog
0.007
0.006
0.0
Solubility of Na2SiF6 in aqueous

Results at l7°C
Gm. Moles Na2S04 Gm. Moles Na2SiF6

per 1000 gms. per 1000 gms.
solvent sat. sol.
solution of Na2S04

Results at 20°C
Gm. Moles Na2S04

per 1000 gms.
solvent
0.000
0.050
0.125
0.250
0.375
0.500
---_..--~...._..u_--'----'-'. - _0.0
0.0329
0.0143
0.0068
0.0042
0.0034
0.0029
0.000
0.0050
0.0100
0.0150
0.0250
0.0500
7-102
0.38
.34
.24
.18
0.90
.62
.48
Densi ty
, .0835 .
1 .1080
1 . 1337
1 .2021
1.2023
GTI. Moles Na2SiF6
per 1000 gms.
saLso] .
-----'..'-"--'--"--
01.0363
0.0336
0.0309
0.0284
0.0201
0.0168

-------
Na2SiF6 (Cont)
~quilibrium in the Na2S~F6 - HCl - NaCl System 
Gms. per 100 gms. Sat. Sol.  
HCl NaCl _Na2~iF6- Density Solid Phase
0.0 2.06 0.07 . 1.0150 Na2Si F 6
2.03 1. 97 .19 1.0240 II
4.07 1.91 .21 1 .0356 II
5.92 1.99 .20 1.0456 If
11.82 1.97 . 12 1.0734 II
15.15 1.98 . 11 1.0905 II
18.94 2.06 ~07 1. 1095 II
0.0 26.35 .013 1.2037 Na2si F 6 + NaCl
1.61 23.45 .034 1. 1913 NaCl
3.20 21.09 .046 1. 1794 II
4.80 18.80 .043 1. 1685 II
7.66 14.67 .043 1.1522 II
12.01 9.35 .040 1. 1312 II
13.46 7.85 . .040 1. 1265 II
17.67 4.03 .041 1.1194 II
7 - 1 03 .

-------
1.
2.
3.
4.
5.
6.
7.
8.
BIBLIOGRAPHY
Gmelin~ Handbook of In6rQanicChemistry, 8th. ed., 1959,
Verlag Chemie, Weinheim/Bergstrasse, Germany.
Handbook of Chemistry and Physics, 45th. ed., 1964-1965,
Chemical Rubber Co..
Linke, W. F., Solubilities of Inorganic and Metal
Organic Compounds, 4th. ed., Vol. 2, 1965, American Chemical
Society, Washington, D. C.
Matheson Gas Data Book, 4th ed., 1966, Matheson of Canada
Ltd~, Ontario.
Perry, R. H. Chilton, C. H., Kirpatrick, S. D., Chemical
Engineers Handbook, 4th. ed., 1963, McGraw Hill Co..

Seidell, A., Solubilities of Inorganic and Metal Organic
Compounds, 3rd. ed., Vol. 1,1940, U. S. National Institute
of Health, D. Van Nostroand Co. Inc., New York.
Simons, J. H., Fluorine Chemistry, Vol. 1,1950, Academic
Press Inc., New York.
U.S. Department of Agriculture, Tennessee Valley Authority,
Superphosphate: Its History, Chemistry, and Manufacture,
U.S. Government Printing Office, December 1964.
7-104

-------
>-.
~
Q.
~
m
.2
..a
co
.
co

-------
8,
BIBLIOGRAPHY
() () 0 1 1\1 f' ,., 1,11\ t\I. /I J. . n .
"F'_IIr1RIMF"
PFPT. OnTH/lMSTFn. FXPT. ST~., 19~A. ~A-Q
nno~ SH/lPTRn, lFON/lpn
"PIlPTn nFTFRMI1\I"TTClI\I OF FI.IJClRT1\IF TI\I PHn,PH/lTF= pnr:KC;"
At\IAI.. r.HFM.. l'::!An. ~? c,AQ-7n
nno4
R F 1\11\1 F T T. R T r: H "R 11 r:.
"APp.AP/HIIS FnR REU1I/FRTNr. FlIJnRTI'IF r:nMPOIlt\lns FRr)I>1 R"W
PHnSPHflRTC IICTn I.TOllnoS"
II.S. ?9?9.A90. ?? MIIR lQAn
non'i Hn'.I.!Nr.SI.JnPTH. r.Ut\ITrl1\1 II.
I1I1FFLllnPTl\llITTnl\1 OF PHnSPH/lTF onr.I(1I
II . S. ? . A ::\ 9 . ~ A 1. 1 7 .1111\1 F 1 95 R
nnnA
POWFLI,. R. H.
"RAPln nFTFRMTl\lATTnl\1 nF FLllnpTI1F FRnM PFFRI\r.Tnov MATFP11\',S RY
FIISTnl\l-PYRnl,YSTS II
II.S. IITnMTC fNFRr,y COMM.. 19'5A. nRI\I'--?~l? If, PP.
onoQ TNTfRN/lTInNIlL MTNfRlIl.S ~ CHFMTr.III. r.nRP.
"IIRsnRPTIrll\l OF S11,1r:nl\l TF=TRI\F'.llnRTnF Tt\1 PHnSDH"TF PIIPTF1r.ATTr11\1 II
r. FR. 9 47 ,79 1, ? ~ "II r, 1 9 c; A
on 1 n r,l ns S, r.mH FR H.
"HynRnFtllnRTr AC:ln "
I'.S. ?,R6'5.711, ;n nFC: 19"jR
nnll T/lRRIITTnt-.l, r,Rl1ny r. FARR, THl1n n. r. ,lnl\IFS, THOMAS M.
"RECOl/fRY OF R¥-PRnnllrT F=LlJClRTI\IF "
TNO. Ft-.Ir,.CHfM.. T9<;P, <;n, 1<;?C;.-~
OOlA
Fnx, F..I. f, JArKsnN, W.A.
"STFAM nISTTLLlITTOt-.1 nF FI,IIOPTI\IF
n F II '- II M TNT F F R nil S no F c:; "
AI\IAI. rHFM.. 19'59. ::\1. lAS7-A?
FROM PFRr:I-II,mnr: ArTn snl,IITH1"1C:;
onl7 C:HIISS. RORFRT L. r. Tnw. PHILTP S.
"TnTAL AIR-POI.LIITrnl\l FMTSSrnl\1 TI\I Lns MI(.;FLFS r.OllI\lTV"
,I. ATR pn'-'_IIT10N r.OI\ITRnl, 1Ic:;c:;nc:.. 1QAn. 1n, ~C,l-AA
nn?~
R T r, n T. R f R 1\1 1\ R n
" r n M P L F x - F F R T T U 7 F R M "N II F 1\ r T II R F R V 1\1 I TO 1 r " r. 1 11 T D. FliT M F 1\1 T [I F
PHnSPHI\TF RnC:K "
II.S. ?,RAl.A7R. I\lnll ?<;. 19~R
nn?A
FOX, F..I. r. HILL. W.L. .
"FACTnRS AFFEC:TTNr. FlllORTl\lF \lnr,I\TTI.T71\T1n~.1 nIlR1W:' lIr.1nlll,I\TTOt\1
OF PHnSPHIITF ROCK WITH SIILFIIRTr 1\1\11") PHnspHnoTr I\rTns"
.I.. AGR. Fonn CHEM.. 19'59. 7. 47R-R::\
on::n
HTRS,IIIR\lT. VILIO P. r. KF:I\ITTIlMlII\. FI,S"
"nFTFRMTNATTOI\I OF FL!lnRP,IF TN THF PRFSFNrF
nTSTIIRRTNr. TONS"
Z. " 1\1 A L. r H FM .. 1 Q 5 9. 1 7 I. V'i l, -9
nF SF:VFRlll
n()3~ STLVFRM.III\I, H.P. f. RnWFI\I. F..I.
"PYRnHnRClI_YSIS nF CRvnUTF dl\ln nTHFR FI,lInRTnF-RFI\RTW; MATFR1AI.S"
II 1\111 L. C H F M .. 1 Q I) 9. ":\ 1. 1 q A ()-I)
8-1
"
:'

-------
nn"'!, HnLLT, I\Ir,S\olnRTH CI.TI\IT(11\1 /I. I. KTRKI Al\ln, 1./Tl.1 TAM A.
" n F F'-' If I R T 1\1 ,... T T 1\1 r, PH n S P HAT FRO r. K "
11.<;. ?,99C:;,43A, /\1Ir, R. 191',1
nn?,,,, \/fI[04.441'" lIP~. lR 1Q<;0
OO')R 7 IIFFL T. .1 FR nMF C.
" F '. II n R T n F S T 1\1 A I R fl F II \../ A T F R P '. 1'11\, T F F F n T /II r. c::. n n T II M F 1.11 n P T n F "
WATFR F'. SFWAr,F wnRKS. 19')0. 97. ?'3<;-A
001',0
SP Fr.HT, R II I\In nl PH C.
"FFFFr:T nF \../I\STF I1T spnSIII. nF THF PFRRI.F DHnc::.PH/lTI-' Rnry
TI\lnIISTRY 11\1 FLnRTn/l 1)/11 r:nl\InTTTnl\1 flF RFCFTI/T/l1(:. STRF/\MS II
TRlII\IS. 11M. TI\IS1. M1I\ITl\lr, MFT. FI\Ir.PS. pn. TFCH. PIIR. /llrl.
/ R 7 R -H. I 11\1 M T 1\1 11\1 r, F 1\1(:.. T R 7, 7 7Q -R 41, 1 Q <; n
8-2

-------
()()!',l. Mr. r.nRn. r.~RFY P.
"THF PHVSTn,.nr,Tf: ASPFr.TS nF ATMnSDHFRTr. Pnt.'.IITTn1'.l"
TNn. MFn.. 1qSO. 1q. q7-101
on!',?
PHTI.LIPS. r,.
"nFTFr.TTn1'.1 1\f\1I) FSTTM/lTTrl1'.1 nF sr." "1.1. /lMrlll1\ITS nF TMPIIRTTTF, 11\1
THF hTR"
NATIIQF. 1q<;0. lASe Aq?-":\
(1()!',4
Mr. r.ARF. lFWTS r..
"/'I1R pnU.IITTn1'.1 RV T1'.lnIlSTRTAI- FIIMFS (:,/lSFS A1'.ln nllSTS "
TRII1\I<:;. !1M. 1f\IST. MT1'.IT1'.Ir:. MFT. F/l.I(:'R<:;. 1A7. TFr.H. PIIR. 1'.111.
?ql.S-F( IN ''''T1\111\1(:, FI\I(:,. lA7. Nn. q. g71-.~1. 1Q')()
nOA7 M/lIIST. FRNFq J.
"nFFLlInRI/l.IATInl\l nF PHnSPHIITF Rnr.K"
u.s. ?4Qq.7A7. MAR. ?3 1QS()
()()AA HIIRRIIr.H. THFnnnRF /1.1. f. HIr:.1\IFTT. TRIIIIIS P.
"nFFLilnR I/l.I/'ITIf\Ir, PHnSPHATF Rnr.K "
II . S. ? 4Q q . ":\ R '). MAR. ? ':\ 1 q ') 0
on7n ZARFL. HFRMAN W.
"r,nnn FIIMF r.IJ/l.ITRnl. FFATIIRFS 1'.IFW HF PI.MIT "
(HFM. INns.. IQS(). AA. SOR-Q
n07"
.IEI,ISRIIRV.III.A/l.1
"RAPIn PHnTnMFTRr.r. nFTFRMTf\IATInl\l nF FI.llnSTur./'ITF 11'.1
HV[)RnFl.\lnRIr. IIr.In flMrll\ITIJM FLllrlRInF snnTIlM FI.llflRInF.Af\1n
cn'.nRFn FI.lJnRTnFS "
ANALVST. lQ'50. 75. ?5A-A":\
<:;nl.IIRI.F
n07A RRANnT. ALLEN n.
"PRnRI.EMS nF IIIR pn'-'.IIT I n/l.l "
I R n N r. S T FE L E I\tr. R. .. 1 q" (). 77 N n. A, 7" - A ':\
00A3 RARRATT. FRFDFRICK f. TMPFRIAL (HFM TNn LTn
"TRFATII\Ir, r.nRRnSI\lF r,I\SFS Tn RF/l.lnFR THFM TNl\lnr.llrJIIS"
RRIT. A?4.R4R. .!III\IF 17 lQ4q
00R4 MAIJST. FRI\!F<:;T .1. (". HrJLI.TI\t(;S\>JnRTH. r.LP.tTn/l.1 A.
"nFFLllnRII\J./ITTn1'.1 IlF PHnSPHATF Rnr.K"
II.S. ?,47R.?00. 1I1Ir, Q lq4q
OOR7
HflRRnLn. r:.nRnn1'.1 r.. f. HIIRLRIIRT. RAI.PH II.
" n F \I T r. F A 1'.1 n T F r. H 1'.1 T (.) II F F n R R!I P T n n F T F r:> M T 1\1 AT T n I\i
FLllnR T nF<:;"
A/l.IAL. CHFM.. lQ4Q. 71. 1504-A
n F F F F I. I 11= 1\1 T
OORA PATIN. I..R.
" A ( TI V IT I F S n F T H F S T F F I. I N nil S TRY T 1\1 A RAT HI r: A I R P n 1.1.11 T T n 1\1 "
PRnr.. SMnKF PRF\/ENTInN A<:;snr.. AM.. lQ4q. 4? 44-q
()(lQl MCCARF. l.nlIIS C. f, RnSF. A.H.
"nIiST 4I\ID FIIMF STANnARn<:;" .
Il\ln. F/l.II;. (HEM.. lQ4Q. 41. 73RA-Qn
ooQ? CHIIR(H. PHIL F.
" n I Li I TT n N n F WAS T F S T A ( K r, A SF <:; T 1'.1 T H FliT M n <:; D H F R F "
INn. Fl\ir,. (HF.M.. Tq4Q. 41. 77<;':\-1',
8-3

-------
()oq 'J,
r. M! P F 1\1 T F IJ. r HAP I. F" p. r. S M Y T'~. H F 1\1 R v F.
"THF A<:..S6Y flF lIr.r.IITF. VAPnR TnXTr.TTY liMn
T 1\1 T F R P I~ FT AT T n 1\1 n F R 1= <:"11 L T <:.. n N ", TN 1= T Y - C; T \(
.1. TI\III. HYr.. TflXTr,rll.. 1<1/+q. '>,1. ':\4':\-A
T H F r. RAn T 1\1 r. A 1\1 n
rHFI'~Tr.lIL r.nMPfllll\lnc; "
o nQ I,
',lTFNFR. Hrll,IIIRI1 A. f, RlIRTI=U.. prlRFRT p.
"ATMnSPHFRTr, S!lMPI. TI\'(~ STIII1Y nF J\IF pnr.KI=T pprlPFf.I.AI\IT ?A MAY -
?A .1111\11" 1'lA0"
ARMY FNVTRnl\IMFf\lTAI. Hyr.TFI\IF A(:',FI\Ir.v. Fnr.Fwnnn APC::FI\IAI.. Mn..
10f,<1. 3RP
OOQA r,ml~n. f'IFI,If.TI\'
" S n 1\1 T r: P R F r T P TT A T HI t\1 n F S M n K F F II M F S 1I1\1 n nil S T P JI P ,. T r: t F S "
r:HFr~. FI\Ir,.. 19c.;o. ,7 Nn. 10. 11A-19
OOg7 FI,',IS. .I.F. r. MIISr,RlI\/F. W.K.R.
"nFTFRMIJ\llITTnN nF FLllnRTNF TI\I flRr,A"ITr. r.nMPnllf\lns"
.I. r:HFM. snc. 19,O. 19AQ-70
OnQq
SMTTH. LEF R. f, C/lI,FFF. .JnH'" n.
"RFMnVlIL nF HynRnr,FN FI.llnRlnF ANn
r.!\S r:nI\IT" T NT Nr., HVnRnr;Ff\1 r.HI,nR TnF"
II.S. ?,?A.777. nCT. ?4 1Q,O
STl,rcml TFTR/lFI.IIORTnF FRnM II
n100 MI\f;TLI.. PAil I. /I. r. pnLSTn",. MYRA
" SAM PI., T 1\1 r; C F R TAT f\.1 A T M n S P H F R T r. r. nI\.l T " M T 1\1 hf\1 T S
. \/FI\ITIIR I Sr:RIIFlFlFR II
/lNI\I.. CHFM.. 1Q,n. ?? 1174-7
RY II SMAI,I. SCLlI,I=
n10'>, WFRNFR. FnwlIRn 1I.
"s lIP FR PHn S PH/! T F ,,,, 111\.1/ I F II C TIIR II\Ir.. PI. III\'T"
II.S. ?<;3l.79R. I\.ln\l. ?R 1Q,O
0107 MIlIIST, FR"IFST .1. f. Hnll.TI\If;SI.lrlRTH. r:1 TI\ITnl\1 A.
"FnRMTI\If; pnRnllC; I\lnlll/l,FS"
II . S. ')., ., ., . n ? 7. I) Fr.. <; T 9 r; 0
011'>, KFtLnr;r;, HFRFlFRT H.
"MF:TA'.J.IIRf;Tr.AL RFAr.TTnNS nF FI,IJrlPTnFC;"
J. MFTIII.S 191. TRIINS.. 137-41(1Q<;1)
OJ 1, MIlf;TLI.. PMIL I.
"nF.TFRMTNATTnl\l PRnr.FnIlRF=S"
11M. Tf\ln. HYr.. Llssnc. all ART.. 19,0, 11, ,,-A':\
01IA STFR"', ARTHIIR r.. r. (;RFHIFlIIRr., LFrJJ\..llIRn
"ATR pnl,",IITTnf\1 - THF STilT liS TnnAV"
AM~ .I. PIIR. HFlI/.TH.J9,1. 41. ?7-'>,7
0117
SMITH. LFF R. f. CI\I.FFF.. .lnHN n.
"RF.MnIlAI. nF HynRnf;FI\1 FI.llnRTrlF LlI\If) STur:nN
(;ASFS cn"ITATNII\1(; HynRnC;FI\I CH/.nRTI1F"
II.S. ?<;?A.77A. nr.T.?4. 19,n
TI=TR /IF/,lInR T nF FRnM
n1?n MC CAIII.t.Y. nAVyn A. r. I.TF=N. lIRTHIiR P.
IIHynRnr,FN Fl.llnR TnF 11
II.S. ?,:\7.nu... .''''''. q ]q')]
nl?A MIINr.FR. H. p.
"PPFSFNT STlITI/S nF II TR-pnr.r.IITTnl\' RFSFlIR(HII
MFCH. F"Ir,.. lQ')l. 7'>,. 40<;-11
8-4

-------
()1":\l r.H~TSTTF. A.r..
"tIlR-prllLlITTnl\l. A PRnRLFM nF THF PRnr.FSS Tt\lnIISTPTFS"
M F C H . F 1\1 (;.. 1 q ') 1. '7... ') 7 n - 1 . ') 7 ')
Ol..')
(;FRTr.KF. STF(;FRTFn r. KIIRMIFS. RRlIl\ln
" S T (;1\1 T F T r: fI N r. F AI\In S nil p. r. F S n F T H F F I. F f\o1 F 1\1T
R F S c:; F M FRS '. A r. s"
STAHL II. FTSFI\I. 1q')1 ~ 71. 4')4-7
F I.lln P T 1\1 f: TN k A S T r:
nl~A THnMSFN. S. MTI.TnN
"Ar.lnTMFTRlr. TITRATTnNS TN THF Fl.llnSTur.Tr.flr.Tn C:;YSTFM "
111\161.. CHFM.. lq')I. ?~. q73-5
nn7
SAU;RIIRY. JAsn1\1 M. r. r.nJ.F. .JIIMFS w.
"nFTFRMTI\IATTnl\l nF F1.lInRTNF IN Mnf\lnFl.llnpTt\IAT~1) rwr:.Af'..rrc
cnMPnlll\lns TN flIR 1I1\1f) ""IITFR "
fI 1\1 1\1. . CHFM.. 1 Q') 1. ?... An3-A
n'I ~R MIJr\l(~FR. HAMI\IFTT P.
"t>TR pnU.IITTnN LIT I.nw III.TITIInFS. TFCHNTOIIFS'FnR sTllnv. "
CHFM. FI\Ir.. PRnr.RFSS. lQ51. 47. 4~A-Q
nl~Q HnLLIN(;SWnRTH. r.LINTnN II.
"nF:FLlJnR I "lilT I nN OF PHnSPHIITF pnr.K"
I'.S. ?55A.541. '.IIII\IF 1? lq51
0140 HnLLII\I(;SWnRTH. CLINTnN A.
"nFFLIlOR I "IATII\I(; PHnSPHATF Rnr.K "
I' . S. 1'. '5 '5 n - 54?
n141 RIITT. f.HARLFS po.
"f')FFLllnRTI\IATEn TRTr.IILr.TIIM PHnSPHATF"
1I . S. l. 56') .., '51. All (; n 1 q '5 1
n14A MAC INTIRF. W.H. r. WTNTFRRFRr.. S.H.
"FFFFr.T nF FLIIORTNF r.ARRIFRS nl\l r.Rnps AI\If) nPIITI\II\r.F l"lITFPS"
INn. FNr.. r.HEM.. lq51. 4~. 17q7-q
n1'50 HnLLINr.swnRTH. r.LINTnN A.
"RECO\lF.RY nF HYf)RnF'-,lnR Te: ACTn FRnM PHnSPHflTF pnCK "
II.S. ?7?A.Q?A. nFr. l~ IQ<;5
n151 Hnnr.FS. WM.II. r. FLnvn. ,nSFPH F.
"FI.IJnSTLICATF IN FLnTIITTn"l OF PHnSPHATF nRF"
II. S. 7..7 4R . q 3q. .1111\1 F '5 I q') A
0155 HnLLlf\Ir:.S\>.lnRTH. CLII\ITnl\1 A. r. WTLLTAMS. .lnHN c.
"nFFLllnR I 1\1 LIT I n", nF PHOSPHATF. RnCK';'
II.S. ?754.1qI. .III LV In lq5A
nl% WTLLIAMS. r.HIIRI.FS R.
"ATR pnu.IITInN FROM FLllnRTf)FS"
J. IIIR POLLlJTION CONTROl. Assnc.. lQ,)A. A. Inn-I'
n15Q CHATKT"I. SAIIL W. r. PARKS. THnMAS n.
"HynRnr..FN FIJlnRTnF nFTFr.TOR"
II.S. ?741.'544. lIPR 10 IQ5A
'8-5

-------
(11 A ()
LT T M A H T [\1 F [\1. R. r.. f. M F F r. HAM. 1"'..1.
IIRFMnI/II'. nF HIII.n(;FI\IS r.IIRRnt\I nTnXTnF Mln IIFRrlsn'." FRnM "IR T'" A
S P R "V T nw FR II
.1. IITR pnl.I.IITTnf\! r.nflITRnJ. ASSnr.., 19')A. A. 17-?().49
01Al. FI11\1"""I13 MTU=S. S.R. f. (JIIAr:KFI\IRIISH, F.w.
." R F LI A R I L IT V n F (H F M T r. A L fI 1\1 II LV SF S F n R F r= R T T I.T 7 FRS A fli n F F F n S"
.1. ASSOr.. nFFT(. A(;R. (HFM1STS. 19<;'). ":IA. l(\R--=lO
O?14 Sr.HMTTT. r:HARLFS R. F. SMTLFV. SFVMOIIR H.
"FlIfORTI\IF"
II.S. ?70A.A7"'. APR. 19 1951)
O?l') GRIMALDT. F.S. f. TNGRAM. RLIINr.H
"nF.TFRMTNAT1nN nF SMIIL' liNn LIIR(;F /1M nil fliTS nF FLlfnRTNF Tfli RnrKS"
II t\11I L. (H FM.. 19 I) '). ? 7. q] R -? 1
8-6

-------
(17?S
O?4?
r-: '. r-: r- P. S. I. A ~I R F 1\, ( FA. r. n F r. K FR. r. '. IFF n R n F.
"nFTFP~Alt\l.lITl(W 111' Fl.llrJRlr1F T1\1 (llP lIl-Il\ <;TlI(1< r.lIS <;(lMPI ICe; I\Y I!q
nF AJ\I Int\I-SPFClFTC FI.Fr.TRnnF"
A 1\, "I.. r. H F M .. 1 q '1 P. ld I( 1 1 ). 1 A') P -/'-.] (F 1\1(; )
r.nnn. PH 11. 1 P r..
"RI'=r.r1l/FRY m= HyrHH1FI.IInRlr. ACTn FRnM I,.JIIQF FI.IJnRf1STllr.Tr. Acrn.
PRFLTI..Ijt\I/lRY <;1'1I1)1FS."
II. S . R II R. M 1 '" F S. R F P . 1 N V F ST. 1 9 A R. 1\1 n . 7 ? P" 1 4 P P . (F 1\1 r. )
074') MfI~ SHAI.'.. R. S ~
"FJFLn TFST FOR THF nFTFRMl1\IIITT01\1 nF HvnRnr.F1\1 FU1nPlr1F 11'; AlP"
At\IALYST (l.nNnnt\I). 19AR. 9":\(111":\).. R?l-A (FI\Ir.J
O?54
07AO
O?AA
IJRIISOIISKAYA. 1..1\1.
"EFFFCT OF FLIJORInFS nf\1 r.L/lSS FnPMIHlnf\1 lIf\ln THF ppnPFPTTFS [1F
FI.lIOROfll.IIMII\IOPHnSPHATF r.'.ASSFS ".
1 H. P R I K L. K H T M . (L F 1\1 T 1\.1 r. RAn J. 1 9 A R. 4 1 ( 1 1 ). 7 '1 A 1 - 7 (P I ) S S )
KAYF. SAMIJFI.
"FI.Fr.TRnANAI.YTH;A'. nFTFRMJNATTnN OF MnJ.Fr.lIlllR FI.'IORII\IF TI\I THI"
ATMnSPHFRF "
A N A L.. r. H F M.. 19 h A. 40 ( ] 4). 77 ] 7 -1 R (F N r. )
HARFL. KARL.
"SFPARflTTOt\1 OF (;ASFOIIS ANn SOLTn FLlInRTNF r.nMPnllt\lns RV
IMPIII,r,FMFNT nN ." FTUFR " .
STAIIR. RFTNI-lALTIlt\Ir, LIIFT. lQAA. ?A(7J. ?A1-A(r,FRJ
O?P4 nAMnN. W.A.
"ARATFMENT OF AIR pnUJJTTON TN THF r.HFMTr.AI. TNnl/<;TRY "
CHEMISTRY r. INnIISTRY. ]9r:;C;, 17f>n-70
07An WILcnx. JAMFS n.
"ISOKTNETIr. FLOW AMn SAMPLIt\Ir."
AIR .RFPAIR. 1956. '). 77h.245
O?P7
O?A9
SHFRWTN. K.A.
"FFFUJEI\ITS FRnM THF. MANIIFACTI/RE OF SIIPFRPHOSPH/lTF Allin r.nMPnlll\lf)
FFRTTLl7FRC; "
CHFMTSTRY f, TI\lnIlSTRY. ]9')1). 1?74-R]
MILL FR. RAI.PH
"TRFATIN(; PHnSPHATF RnCK FOR THF RFr.OI/FRV nF
CHFMTr./lI..C:; ANn pqOnllr.TTON OF FFRTTtT7FRS"
II.S. ?72A.h34. 77 nFr. 1951)
F '.11 n P T 1\1 F
n791 SCHALL. E.n. f, WTllTAMSON. H.r..
II SP.EC TRnPHnTnMETR IC nFTFRM IN AT Tnl\' nF FLI InR T nF"
J. Assnc. nFFTC. Ar,R. r.HEMISTS. 19~'). 3R. 4')4-9
n?Q3 MTLLFR. RALPH
"nTCAI.r.TIIM PHnSPHATF "
II.S. ?77R,A3";. 77 DFr. 1951)
O?Q7
CHAMRFRC;. I.FSI.TF A.
"THF Ln/lI(;-R/lt\Ir.E FFFFr.T OF IMDIISTPTl>1. ATP Pfll.,.IITTn'" nN THF . .
PIIRTTY nF /lTR MI\SSFS NATTnN-WTDF. TS THF MA<;<.; SFI.F-r.I.FMlr/lIr.( II
.I. hIR POI.I.IITInN Cn1\'TRn,- ASSOC., 19~5, S. 147-3. ]R4-~
8-7
'._.,;1 :

-------
() ::I ()? ' r. H ,.. R I. K. S. f. \I F:N K f\ T F S H /1M. V.
"PHnSPHt\TTr. FFRTTI.T7FRS WITHnilT THF IISF nF Sill_FliP"
r. H F M. f\ r.. F n,m T fI. 1 9 A R. ] 9 ( 4 I. 7 f) r::, - 7 () (F 1\1 r.. I
n~()'2,
TFSKF. \"'nl_Fr..fI,l\lr..
" F '''IT S S T n 1\1 n F (R F A S F nil F Tn IMP R n 1/ F M HI T S HI P q n r: F S S /11\1 n
nPFRATT.nl\l TI\I THF r.HFMTr.t\L Il\InllSTPV "
STlIIIR. RFTI\IHALTIJI\Ir.. I-'IFT. 19AR. ?R('2,I. ]()7-]'2, (r..FRI
PLAI\IT
()'2,()4 l)fl~SFV. JlIMFS A.
"SnIlR(F SlIMPL TI\Ir.. TFO-lI\IIOIIF FnR PARTT(II1.ATF /ll\In r..I\SFnIlS
FLllflRTnFS "
,I. /lIR POI_LIlT. r:OI\ITR. ASS.. ]9AR. lR(]I. 17-14 (f=I\Ir..1
n 1() ')
M fI, ( L F t\ 1\1. n A 1/ I n (. f. M r. (111\1 F.. n F '- R F R T r..
"FFFF.(TS nF t\CIJH HvnRnr..EN FLlInRTnF liNn I\ITT~nr..EN nTnXTnF
EXPOSIIRFS 01\1 (TTRIIS /\1\111 nRl\llIMFI\IT"'. PI_MITS nF (FNTR/IL FI:nRTnA"
ENVTROI\I. Sr:I. TFr.Hl\lnl... 190R. ?(AI. 44/~-9 (1::1\1r..1
(1'2,()Q Tt\I\It\RF. T St\n
"PRFHFflTJI\lr.. nF f1RE FnR II FFRRnMI\I\Ir..AI\IFSF FIIRI\IA(E: A RF(FI\IT
TRFI\II1 TI\I JAPAI\I "
J . M F T A I. S.. 19 A R. 7 () ( "i 1. A 1- 7 (F 1\1 r.. I
0::110
HII\II1AWI. IRRAHIM' .JOSEPH
"TNJIIRY RY SULFIIR nlnXTI1F HvnRnr..FI\IFLllnRII1F Al\ln r.HLnRIf\lF liS
ORSF.RVFO AI\In RFFf.Fr.TFn nl\l \lFr.FTI\TInl\l Tf\1 THF FTI='.fl"
J. "I R P n ,-,_" T. ( nl\! T R. /!. S S . .19'; A. ] R ( "i 1. '2, 0 7 - 1/ (1:1\1 r. I
017,
(R nss. FR lII\IK I..
"nF:VF:LnPMF.NTS TI\I FUlnRTnF. EMTSSTnf\IS FRnM PHnSPHATF. PRnr.FSSTf\Ir.
PLt\NTS "
~I. AIR pnLLlIT. UJI\ITP. ASS.. 19A9. ]9(11. 15-17 (F.I\lr..1
0327 HA~RTSS. RnRF.RT (.
"SPECIFIC-InN F.LFCTROnF MF.ASIJRFMF.I\ITS nl\l
F I. II n R I 1\1 F I 1\1 /.I T M n S PH F R I r. P R F. ( T PIT" T T n f\1 "
.I. APPL. MFTEnRnL.. 19';9. RPI. ?99-301
RRnMTNF (HLORTNF ANn
( F 1\1 r:)
0331 HOIISTON. F.r.. ,
"COMPOIINO FERTJUZFRS FRnM ROCK PHnSPHATF
PHnSPHnRlr: Ar:TOS Al\ln AMMnI\ITA"
I 1\1n. F 1\1 r.,. r. HEM.. 19 "i 1. 4::1. 74 11-1 R
1\1 TTR T ( ANn
0334 SMT TH. .InHI\1 ,J.
"r..LASS (nMPns TT TnI\I" ,
II.S. 7."i79.709. ?"i nFr. 19"i]
034R SMTLFY. S.H.
"cnNTTI\IIIOlJS DIspnSAL OF FI.llnRTNF - RFA(TTON WTTH SIJPFRHEATFD
STEAM"
TNO. HI(;. r:HFM.. 1954.46.244-7
03"i3
RROWN. F.!..
"OIlANTIT ATT \IE (OU.ECT T ON AND Rf:r.nVFRY
IHI TON-FXCHAI\Ir.F CnLlIMl\1 " ,
MTKRnCHIM. ACTA. 19r::,4. 577-31
nF SIUU\ RY THF IISF nF
8-8

-------
rns") STI.VFPMAN. I.FS'-TF
"StlMPI.T1'-Ir; TI\ISTRIJMF.NTS FnR fdR-pnl.I.IITlfll\l SIIRIIFYS"
PIIF\. HFALTH RFPTS. (II.S.l. lqSl.. Aq. q14-;n
O~Al MnRRTS. H.F.
"11\!TFr..RtlTFI1 pnl.I.IITTn~.' r.n~IT~HlI."
PFTRnl.FIIM PFFTI\IFR. lq<;4.:q I\ln.1"? "??O-~l
()37? RFP.I.V. r-r1\.I/I~I) M.
"RF.r.nIlFRY nF snLIIRI.F I;AS AI\II1 AFRnsnl.S FRr1M /lIR STPFIIMS"
INI1. FI\II;. r.HFM.. lq'i4. 4A. 17Aq-77
n~77 r.nlLTNr..s. r,TLRFRT H.
"tlRsnRPTlnl\l ANI) Fxr.RFTTnl\l nF TI\IHI\I.Fn FI.llnrnnFS "
ARCH. TNI1. HY(;. nr.r.IIPIITHII\Il\L MFI1.. ]\:)')1. 4. 'iRS-qO
n~R1 RIIRFORn. W.R.
"n T S P n s 1.\ L 0 F FI.ll OR T 1\1 FRY r. 1111 S T T r. S r. R II R R T 1'-1 r.. "
TRI.\I\IS. 4TH INTERN. r.lll\lr..R. SnTI. sr.T.. M~STFR[,,\!lM. lqc;n. ?lqR-?n~
O~RS MIlr.TI\ITlRF. i,IAUFR H.
"TRFATMFI\IT nF FUJORTr. FFFUJENTS Tn nRTtlT"I /lMMnI\ITIIM FI.llnRTnF"
II.S. 2.'5A4.R9'5. '5 FFF\ lqS?
03Rh
MtlCTNTIRF. WALTFR H.
"TRFATMENT OF FLlJnRTr. FFFLIJENTS Tn OF\TIITI\I
FLIIOSTUr.ATF IINI1COR) HVI1ROFf-'JORTr. I\r.Tn "
II.S. ?'5A4.R94. '5 Fi=R lq'52
M 1\ 1;1\1 F S T II /VI
03RR WAnHWI\NT. T.K.
"MECHIIN1SM OF F-LIIORTI\IF RFMnVAI. F\Y Ud.r.TIIM S""I.TS"
CIIPRFI\IT seT.' (TNnTA1. 1qS1. ?O. ?93-4
0400 SEELY. F\FN K.
f'nETEr.TTON OF MTr.Rnl\l I\l\ln SIIF\MTr.RnN r.HI.nRTnF PlIRTTClFS"
1.\1\.llIL. r.HEM.. lq'5? ")4. '57A-q
0403 lI\Rr,ENT. Fn\...IARD .1.
"FFFFr.TS nF AIR-F\nRNF FllIORlnFS nl\l ITVFSTnr.1< "
'PRfJe. II.S. TF.r.H. r.nI\IF. lIIR PO'-'.IITTnl\l.lq'in. 1-,4-7")
n404 MILLER. VERNON l.
"FFFFCT OF lITMOSPHF.Rlr. FLiIORTnF nl\l \,JlISHTI\Ir..Tn1'-1 /lr,RTr.III.TIIPF"
PROC. II.S. TEr.H. r.O"IF. AIR pnLUITTnl\l. lq'iO.llA-?? .
0431
MlIY. M.l.
"tl TR POLLIIT TIlI\I r.nNTRnl. "
INSTRIIMFI\ITS liNn t\l.ITnM I.\TT 01\1. 1qSA. ")q. q()R-q
04')q MlIRKIISOf\I. KENI\IETH F.
"THF IISE OF SODIIIM FLIIORTDF Tf\I.TI-!F. MI\I\IIIFlIC-:TIIRF nF STFFL"
INI). MF.!).. 1947. lh. 434-h
8-9

-------
nf, A?,
MIINTFR. Pt..IIf. A.
"HYnl~nFI.llnRTr: Ar.Tn-\.jIlTFR JlI\1n Hynpr1Fl.llnPTr
Jlr:ll1-HynROFUlnSTur:Tr: lIr:T[)-I.-JL\TI-'R "
T 1\1 f). F ~.I r.,. r: H F M .. T q 4 7. :~ q. 4? 7 -?', T
Of.q1 ROflP[). I.HH\II\P.I\ ''''.
" F i\I\/1 P. f 1 '" M F NT A I. H F 111- T H P P. n R '- F M S P fC f. t\ T F n 1(1
n F r: F 1\1 T R II I. T 7 1\ T T I )1\1 A S [1 R ~ F R \I F n T t\1 II TV P T r: ill.
JIM. .1. PIIR. HFI\I.TH. 1Q4R. ?,R. qRA-qA
('~ ',M.I
~FTPrlPrl'.TTMI r:nt"'tJlll~ITT"
Ot;O] r.,IIFR I 1\'. HFNR I
"FvnLIITTnN nF THF PHnSPHATF FFRTTU7FP.S TI\'f)IISTRY "
CHTMIF lIN[) TNnIlSTRIF. 1q4R. C;q. ?'O-A
nC;O? WHTTTilKFR. H.II.
"I1IR POLLIITTnl\l"
AM. ./. PI/R. HFIU.TH.
Iq4R. ?,R. 7Al-Q
n')o~ l.nNG. KFNNFTH F.
"R FMn\lllL nF HY[)RI1r.,Ff\1 FI.l/nR TnF FRrll" I\lnf\llInllfCrlIiS FI)f Tnc; "
. ".S. ?4?A.'i5R. ?h 1I11r. lQ47
O'i04 I.FnNARn. fd\1r.FI R.
"RFCO\lFRY nF HYDRO(,FI\I F/.llnR 1m: FPnM r.lISFS"
II.S. 7.475.74<;. lq 1I11r. lq47
O')OA
5111 ICHFLL I. IITI\'r:FNT
" SA" C H F L L I. \I T W-: F NT: M fd\1I11\ I. n f\1 F F R T T '. T 7 F Q ~ Mill R II r. T II P F "
nAVIsnN CHFM. r.nRP. lq47. 1?A DP. RFIITFWFn TN r:HFM.
NFWS. ]Q47. 7'5. ?R'in
F Nr...
0')07
STLVFRMAN. L\LFXANDFP
"snMF RFr.FNT DFIIFl.nPMF"'TS T'" II/.IFPICII'" r.!.II.S'S ~II"IIJFA(TIIPF. TIT.
lq3A Tn ]Q47."
lIM. CFRlIM. snr:. RilL!.. lQ47. 'h. ?'A7-77
O'iOR
HII_L. W.L.
"IICTn PYRn- AI\1Il MFTIIPHnSPH/ITFS ppnnllr.FfI
nFCnMPnSITTnf\l nF Mnf\Inr.III.r.TIIM PHnSPHlITF"
Hm. Ff\lr.. CHFM.. ,lQ47. ?,Q. lAA7-7'
RY THFRMIII.
O'iOQ QIJANClIITf\I. M.
"I\IFwr.nMMFRClIlL MFTHnns FnR r.nMPIFX FFRTTlT7FRS"
II\\[)\IST~IF r.HIMTOIIF. lq47. ~4. 1A"-7
0'510 RnwlFR. R.r..
"THF RTSK nF FLllnRnSIS TI\I MM:,I\IFSTlIM Fnllf\tnRTFS"
RRTT. .I. INn. MFn.. IQ47. 4. ?lA-?'.?~l
O'il?
MIll_FR. \/.'-.
"L I M F PAP E R S lII\l n HI n T r. A Tn R P L II f\1 T S T f\1
11\1\/ F STIr. A T rr) 1\\ S "
J. A~R. Fonn r:HFM.. lQ')~. 1. ')?A-Q
FI.llnDTNF ilTR-pnUIITTnl\l
8-10

-------
() " 1 ,~
f-1 F M F n "'. \". r. . I. .
"<.;r:T"f"TTi-Ir. RrilF\lnl\>
-------
(I">'i')
r, F r:, R. r~ II II. T f\1T r, . M. R. H.
"pi-1nSPHmnr: tlr.Tn LOW rf\1 FLllnRTf\IF"
r~F'~. 1.nn':\.7q? ?1. ,111f\IF lqAn
O">'ih
HFNnRTr.KsnN. F.R.
" fH S P FRS T n 1\1 A I\In F F F F r. T S
FI,flRTIi/I"
,I. IJIR pnl.'./lTlnl\l U1f\ITP.III.
nF ATR~RnRNF FI.llnRTnFS pi r.HITP/lI.
/lssnr... lQA1. 11. ??n-"i.?3?
OI;A'i
1,~/lHPr.HFMI F /I.I1 /lPR 1q,)9
() " A A P i\ ,~ K FR. A ~
"i\TR i\l\ln WIITFR pnLLIITTON TN THF IRnl\1 tlf\ln STFEI. TI\I[JIISP-1Y"
,J. TRnf\1 STFFI. TNST.. 1Q,)R. IR9. ;;>97-10;;> (I.Ol\lnOI\I)
()'i70
./lnAM'). nONAI,n F.
"r.nl.nTTMFTRTr. MFTHnn FOR r.nNTTNIIIlIIS REr.npnHIr; lIt\ll\I.VqS flF
II T'vlns PH FR I r: F tI!OR T OF: 'TI: S T r.HAM RI: R Af\InT f\IT Fq F F R FI\I r. F<;T /If) I FS
l"TTH THF MINT-AnAK AI\IIII.Y7FR"
Llf\IIIL. r.HFM.. IQAI. 11.117-19
O'i71 /.1r.HFNRY. r.HARI.FS R.
"MOf\ITHIRIN(; nF FI.IIORTnF r.nNTF=NT OF fliR I.I"TFP /ll\ln \/F.(;r-T"1Tnl\l"
.I. AIR. pnU.llrrnr-.,1 r:(}t<.tTRrlN Assnr... lQA1. 11. AA-70
0'i77
rn S H n P . C . A .
"SIIr.r.FSSFIIi. CLF.Af\ITN(; nF OPFN-HFARTH FXHfdlST r:;IIS
F.NFRr,y VFNTI/RI Sr.RIIRRFR"
,I. /lTR POLLtITTnN r:nf\ITRrrI. ASSOr... 19A1. 11. W'J,-7
\,JTTH /I HT(;H
05R? Ln[Jr:;F. .IAMFS p.
"ArR PrlLLIITTnN "
AI\It'd.. r.HFM.. ]QA]. 33. 1R-DR
0<)Q1 STRAI\I(;F. .IOHI\I P.
"r.nI\ITPlllnliS PAPTS PFQ RT'-'.rnN RFr.nRnFR FrlR i\IR r.rlf\11/1MTf\IMITS"
,I. hiR pn'-'./lTTmi r.nI\ITDn,. Assnr:.. 1QA(). In. 4?'>,-A
0<)'1 ?
Pt\CK. M.R.
"nF.TFRMTt\lATTnN OF f.ASF:ntIS ANn ,PARTIr.III.LlTF Tf\lnpr.I\f\ITr: FI,/lnPTl1J:<;
TN THF tlTMnSPHFRF"
AM. S nr.. T F S T T f\1r:; MAT F. R TilL S. S P F: r.. T F. r. H. PII P. '. .' 1  R 1 .
7.1-44
O')q'i
YFRlLFY. FF.'.IX I..
IIA NF.\./ r.hS-I.TQ/ITn
cnf\ITRnl."
.I. /I T R pnU.IIT T nN
If\ITFRPHASF RFt>r.Tnp IIPPUFn Tn AIR pnl.l.IITTrll\l
r:nf\ITRnL ASsnr... 19A1. 11. TQ-?,:\
OAn? FATTH. W.I..
'.'I\TR pnLl.l1TTn1\1 RF.VIFI,J 1Q<)R-C;Q. RTF.Nf\IJAf. RF\/TFW.II

TNn. F.I\I(;. r.HEM.. lQAO. <;? QA7-71
8-12
~', ~.,,~,",-,..!~~.:
t:'1~'-} " - ~;

-------
Of, 0" AI'.In t\1 .
"FFRTTI.T7FP PRnnllr.TTIl~1 "
r. H ~ M. f- i\I r:.. P R n r:. R .. T Q f, O. 'i f,. i\1 n . 7. 1 '2, 4 - 4 1
Of,07
CLARK. K .r:..
" PH Y S T C II I. A ,,1 n C H F M I Ct. '. r. H A R 1\ r. T F P T S T T r. S n F
At\ln SllPFRPHnSPHIITFS MI\RKFTFn Ti\I 1Q""-"f,.
snl.IIRTI.TTY r1F PHIlSPHf1RIIS. "
.1. /lr:.P. Fnnn r.HFM.. 1Qf,(). A. '/-7
MTYFn f=FRTTI.TlFRS
T. F nOM S /I i\1n
OA1":\
M" i\I t\!T i\1 r:.. P 1\ III. n. \I.
"HIr:.H-I\t\IAI.YSIS PHflSPHATF. FFRTHT7F.R I\i\In FFFn-r:.R/lnF nTr.III.f.TI"'"
PH[lSPH/lTF "
I'.S. ,/.q7A.1.1q. '/1 MI\R lq61
OA1.4 FI.FKTRnKFMISK A/S
" /I P P /I RAT II S F n R C H A R r:.. I i\1 r:. ALII M I Nil M - F I. F r. Ton I. Y S I S F 11 Q i\1 A r. F S "
r:.F~. 1.0Rq.55":\. /'/ SFPT lq60
OAl'i
I\KTIFRnLAr:.ET SVFNSKA FI.AKTFARRIKEN
"REMOVAL OF FLIIORlt\IF-CONTAINlt\lr:. flIR
IINITS "
r:.FR. 1.0Q6.04l.?Q nFC lQAO
FRnM IILIIMTt\IIIM-FI.Fr.TROI.YSTS
nAtA PHTLRRonK. w.n.
"PRnCFSS KINETICS OF OXYr:.EN STFFI.MAKTi\Ir:."
.I. MFTAI.S. lq61. n. nn-'/o
OA/l KFRLTF. \"'~HR' I..
" S T F Fl. "
II. S. '/. q q 3.7 R 1. 2'5 JI J I. Y 1 q n 1
OA?? MAMNI "'r,. PAl". n. \/.
"nFFLI!ORINATFn- PHOSPHATIC ANIMA'- FFFn AMn PHOSPHATIC FFRTILT7FR"
1'.S. 2.qq?.Q14. lR .!lI'-Y lQ61
OA?3
FNnFVEI. n. C.
"APPL ICATION nF 1\ r:.AS F.JFr.TOR
r.nN\lFYOR TIlt\IMF'- ,,'
S. AFRIr.AN MECH. FNr:.R.. 1QnO.
FOR FIIMF Mtn nliST cnNTROI. It\1 A
Q. 1" n-A
On?4
ATKlt\l. SYf)NFY
"A MFTHnf) FOR RFr.O\/FRTNr:. FI.IIORTNF. AS
'F.ROM WFT-PROr.FSS PHOSPHORIr. Ar.Tn. "
1M f). FNr:.. r.HEM.. lQnl. '53. 70'5-7
snnTIlM STl.Tr.OFIJJnRIf)F
On25
THOMAS. MOYFR n.
"AN ATMOSPHERIr. FLIIORJf)F RF.r.ORnFR"
AM. SOC. TESTINr:. MATERIA'-S. SPFC. TFCH.
4Q - 5 7
PHR'-.. lQ5Q, Nn./5n.
0627 pnTASSF FT FNr:.RAIS r.HIMIOIIES
"PHOSPHATE FF.RTIUZFQS "
FR. 1. 1 4Q . Q 1 q. '2, .1 A t\1 1 Q 5 R
o A '/ R M n t\1 T F C A TI III T SO c: T F TAr:. F. N F R A'- F P F R I. IT t\1 nil S T PIA M T N F R A R I A F r. H T M I
"C:flNTTMllnl/S SIIPFRPHOSPHATF PROCFSS "
r:.FR. 1,014.17.Q. ?,? l\1Ir:. lQ57
06?Q SEYMOIIR, .!I\MES E.
"ENRTr.HFn SIIPFRPHnSPHATF "
11.5. 2.QOR,56l. 13 nr.T lQ5Q
8-13
,'.

-------
nt, '0, 1 ,III r: !H, S . M. p.
"TI-1F r.HFJl.lIr.IIL fll\lfllVS1S OF flIR P01.LlITt".I\ITS 11
pl'n:qsr.TF"ICF PIIP'S.. 1QAO. 44R PP.
nt-, '~''>
1"Hl;'1 II S. MnVFR D.
" I\! [:1.' 11"lnFRSTM1nJ"'r..s FRnM r.IIRRFI\IT ATMnSPHFRTr, pnl.I.IITTn'" RFSF,..DU'"
M". ,I. PIIR'.JC HF"'.TH. 1Q')Q. 4Q. 1AA4-9
11(,'),/, 1\1. TMfI~l. R()RFRT '..
"THFRMnnVI\IAMJr. FII"Ir.TTn"IS nF snMF
III.IIMTf\IIIM RnRn"l "f\ID UTHTIIM"
,I. C H F /'-1. PH V S .. 19') q. 3 1. 1 03') -R
r..ASFnIIS DT ATnMTC HAL TDFS nF
(lA4;>
HflMMTf\Ir..~ Wt".LTFR .1.
"r.mITflMTI\IAI\IT rJlf\ICFNTRATTnNS T'" THF flTMnSPHFRF nF Lns M1r..FI.Fc,
C nll"ITV"
.1. !lTR pnL'.iJTlnN r.n"'TRn'. ASSnr... 19AO. 10. 7-IA
OA/,(,
S C H V TlI.. F RAN 7
"nFFLllnRJNATF.D PHnSPHATF snLIIRI.F T'" r.TTRJr. r.r.TD"
1'.<;. ?9IA.37? R DFf. lQC;q
(\ (",4 7 H r. I I P J '" . '.1 A R R EN F.
"MFTAL MISTS AND ALlIMT"IIIM LnSSFS TN THE HIILL PRnr.FSS "
,I. FLFr:TRnr.HEM. snr... ,19AO. 107. ;>?6-'31
() A t, R
SKAf\IA\lT. M.D.
"nFTFRMJ"I,ATTON OF SMALL AMntlNTS nF HVDRnr..F"1 FLllnRTDF lAiJTH TI-IF
TJTllf\ITIIM-r.HRnMOTROPTr. Af.TD RFAr..FNT ".
7!1\1nnSKAVA lAR. lqSR. ;>4. AR3
nA4q SJL\lFRMt".N. LFSlTF
"HnT r..I\S STREAMS. ITT."
J"'D. WASTFS. 1q,9, 4. 104-A
nASI PRI"'G. ROAERT T.
"RFMnVAL OF HALTDF.S FROM r,ASF.S "
II.S. ?919.174. ?9 nFr. 1959
nAS3 KI\MTENSKI. R.
"SENSITIVE DEvrr.E FOR INnICATINr.. cnl\lTAMTNATTON OF THF AIR"
1:1. F. C TR Or: HIM. A r. T A. } 9 C; 9, 1. ?7 R -A? .
nA')g ARl\lnLn. FRANCIS A.
"THF. PRF.SENT STATIIS nF RFSEAR(.H TN THF STIIDV nF FLllnRTDF.S"
A.M.A. ARCH. ,If\In. HFA'.TH. 19AO. ?1. 30R-}1
nAAR .InCHMA"''''. F. '
"nLD AND "IEW IN THE OPACIFlr.ATlnN OF r..LASS RV FLllnRTnFS"
r..LAS-FMlIIt-KERAMO-TFCHNIK. 19AO. 11. lr;?-R
OA7? TIIFTS. RARRARA .I.
~'I\ METHnn FOR IDF.NTIFVT"'r.. PARTTr:IILATF FLllnRJnE r:nMPnllf\IDS"
1\ N A L. r: H r M. ACT A . 1 Q A 0 . ? 3. ? og -} 4 (I N F: f\1 r.. I.T S H )
0(-,77
SEM. MATHIAS n.
"r:nlLEr.TlnI\l OF Al\lnDF GASES
PROnIJr:TTON nF AI.IJMTNIIM "
I'.S. ?,947.A73, ? Allr.. 19AO
FRnM FIIRN!lr.F.S FnR FLFr.TRnLVTTC
8-14

-------
OAR 1 Sill. L T II A 1\1. .1.1..
"PRflRI.FMS AI\II1 r.ONTRnI. nF
CLIIY Tl\lnllSTRIFS II
.J . I 1\1 ST. F II E I.. 1 q 6 0 . 3 3 .
AIR PflLUITInl\1 11\1 THF IIIISTRAI. 1111\1 HFIWY
43A-4?
nARH MnSFR. FRWII\I
"FI.llnRII\IF RFr.nVFRY FRf1M WASTF r,hSFS"
II. S. ? q {. ~ . q ] 4. 'i .1111. Y 1 q A 0
OARq FI.FKTRI"lKFMISK filS
"CLFAI\II"Ir; nF r,IISFS FRnM FLECTROLYTIC
RFcnllFRY nF FLllflRll\IF THERFFRnM"
RRTT. A'3R,703,?? JIII\IF ]qAO
/lUIMINIlM FIIRt-IAr.FS 1I,I\In
()Aq 1 AnAtvlS. nnt-IALn F.
"AIITOMATIC IIP1nSPHERIr. F'-'JnRlnF pnLLIITIINT MIAI.Y7FR "
AI\IAL. r.HEM.. 1qC;q. 31. ]?4q-'i4
OA94
AnAMS, nONIlLn F.
"At-I AIITOMATIC ATMOSPHERIC: FLllnRInF flI\JIII.YZFR WITH
A P P LI CAT I 01\1 T n nT H F R PO U-' ) TAN T S "
J. AIR POtl.tJTION CONTROl. ASSOr... 19'i9, q. ]AO-R
pnTFl\lTI AI.
OAQ7 CHnLAK. .JAr.nR
"FUIORlnFS: CRITIr.AL
AIR' Fonn ANn WflTfR "
J. OCCIIPATIONAL MFn..
RFVIEW. I. THE Or.r.IIRRFNr.F OF FLIIOR InF 11\1
19'iQ, 1.1')01-]1
0700 THnMAS. MOVFR n.
"AIR-pnLLlJTTnl\i RF.I/TI=W ]QC;4-]9C:;C:;"
11\1 n. F t-I(;. r. HF M ., 1950. 4 R, 1 I') 77-7
-
070A vnNNEr,IIT, RFRNIIRn
"HALOr,FI\1 VAPOR nETEr.TOR"
11.5. ?'.774,fJ5?', lR nH 195fJ
071?
ROr;F.RS. LFWIS H.
"SMoe; FFFECTS ANn CHEMICAL ANALYSIS nF THF. '.OS A!\1e;ELF.S
A TMOSPHER E"
J. AIR POU-'JTION CONTROL ASSOC. 195A. n. TA'i-70
0714 HEATHFRTON~ RICHARn C.
'''DISPOSAL l1F FLlJORlnF WASTES"
II.S. ATnMI[ E!\IERr,y r.nMM. TIn-7517. 19'iA. ?7'i-A'i
0715 MAVROniNEANlJ, R.
" A P PAR A T II SAN 0 PRO C F n IJ R F. S FOR SAM P LT N r, ill\l n /I N A I. Y Z I N r, A J R FOR
FUJORII1FS "
CONTRIRS. ROYCE THOMPSON INST.. ]9'i5. lA. ]7~-RO
07??
r,nLnMill\l. ARTHIIR
"THF. Ol1nR PHASE OF IIIR POLLIlTInN "
PROC. AIR POLLIITIOl\t cmlTROL A~SOr...
PP.
]Q'i'i, 4P. PilPFR Nn.3(-" Q
()7'3'i
HFSS. RAYMnl\l11 W.
"MANIIFACTlJRINr; r.HFMISTS AssnCIATION FI.FVFI\ITH AIR ANn WhTF.R
P n I. Ll JT InN (r. 0 N F F R E N r. F) "
Il\In. WASTES, 1Q57, 7. 7]-~
8-15

-------
; ).., '?,q
I III,'; FR. 1/ I r. T nR 1<.
"FI_nr.r.IIL/\TInt\1 SIIRSTnFI\Ir.F M--in FI'.TRIlTInl\1 nF PHnSP~ATF SI.TI~F<;.
11/. FI.flr.r.IIUITTnl\1 RY r..IIMS 1\I\1n pnl.YFI.Fr.TPnI.YTFS JlI\1n THFIR
I '\1 F I. II F 1\1 r. F n 1\1 F 11. T R II T I fl 1\1 R II T F. "
.1. r. fl UJ1T 11 <; r. I .. 14<; 7. 1;:>. ;:> ~ ()-4
1)( I, 1 (; \,/ I P T S r.i, fIr,j. ,I n S F PH
" IJ F T F R rv, 11\1 II TIn ~I n F F ,_" n R I n F S T 1\,
IIPPI\PI\TII,<;/HIJ) PRnr.FnIJRFS. II
til\'fll.. CHFM.. 14<;7. ;:>9. AA7-9;:>
P '. 111\.1 T T I <; <; II FliT R fI 1\111 I.} A T FR.
() 7 I, i{
R rlr; F R <; . L F "'IT S H .
"HTr..H-SFNSTTIVITY r.nI\.lTIl\.lllntlS TNSTRIIMFNTATInl\' FnR IITMOSPHFP IC
fI,t\II\I. v SF SII
r.H~M. FN~. PRn~R.. 19<;7. <;3. 3AJ-4
() 7l,Q
HIIj)RISS. FRM.lr.TS \I.
"SMnr, FXPFRIMFNTS I 1\' './lRf,F r:HI\MAFR.<;1I
T"In. FN(;. r:HFM.. 19<;7.44. J?44-<;()
()7'i{) \/f'PFII\II(;TF MF.TAI.Ll.JFRKF RAIISHnFFI\'-RFRNnnRF III () c:; '. () 0 <;. I' 'i A II r.. 1 9 <; 9
n7<;4 RflFR. nnNIlLn R.
"FUlnRn AI_COHOLS II
INn. F.I\'C;. CHEM.. ]4<;9. 51. A;:>9-30
07hn KIILI-CHFMIF AKT.-c;FS.
1I1I1_KYU1UIM I NIJM F'_"OR HIF S "
c:.F.R. J .009 .A30. h .JII~F 1957
07AA SNnWRIILL. ARTH/JR F.
"r.nl\ITROL nF AIR pn ,-,_" T Tnl\1 AT r.nMTI\I(:n npt=RIITInl\ISII
.1. AlP. pnLl_11T In", r.ONTROL ASSOr... 14<;9. 4. 'i4-R
07h7 RnKFRTS. I.OllIS R.
"FVIILIIIITION OF flRsnRPTInl\' SIIMPI.TI\I(; nF.VTCFS II
.1. AIR pnLUITlnl\, cnNTROL Assnr... 19<;9. 9. 5]-1
07hR FIITTH. W.I_.
IIAIR pnLl/JTION ARATFMr=NT-S/JR\lFY OF r:IIRRr=I\'T PRAr:TTr:FS Min r:n<;T<; "
(HFM. Fl\ir.. PROc;p.. 19,9. 1)1). t\1n.~. 3R-43
0771 RFSSON.' ALRFRT
"PROCFnIIRF FOR RFCOVFRY
r.HFMIr.AL ANALYSTS"
R' ILL. 1\ CAn. N A TI-. M F n . .
OF ATMOSPHFRTr. SMOKF PIIRTICLFS FOR
195A. 140. ?]9-?0 (PI\RTS)
0771'.
HApc;RA\lF. J.H.n.
"RECOVFRY OF FIIME ANn nllST FROM MFTALLIIR(;Ir.",. (;ASFS AT TRtdl,.
RR I TT SH cm.IIMR I A"
r.AN. MIt\IJNc; MFT. RIIU.<;;:>. 3<;9-hl)
0773
HFl\inRTr.KSON. F.R. '
IIIIIR pntLlJTIOI\I SIIMPUNr. AI\1n AI\IALYSIS
SIILFATF Pl/tPINr. nPFRATIONS"
TIIPPI. 1459. 42.NO.I). 173A-17hll
WTTH.SPECIAL REFFRFN(F Tn
8-16

-------
07R4 HnLLM'm. .rOSHIIlI 7.
II()IIALTTATIVF ANn ()1IM\ITTTlITIVF FAr.TORS IN ATMOSPHFRIr. POU.IITInN
SAM P L I "I (; II
Pf,RTJr.IILATF EMISSIn"l. PROr.. SYMPnSIllM AIR POLLIITION
PHILAnFLPHIA. 1957. '1-36
07RR HITr.Hr.Or.K. LAIIRF.N R.
"/lIR POI.Ll1TI0"1 ARATFMF.NT A MANA(;FMF.NT PRORI.F.MII
r.HFfvI. FNr.. PRO(;R.. 1459. '55,NO.4, 4q-5~
07R9 STRATMANN. H.
"MF.ASIIRFMENT /INn DISTRIRIITION OF f,flSFOIIS tdR. r.O"ITAMI"llITTON 1"1
THF. II TMOSPHERF. "
7.. AF.ROSnt.-FORSr.H. II-THF.RAP., J9'5R, 7."ln.l. 'Q-?5
079' r.nF.TZ. ALEXANDF.R
"RACTF.RIOL(1(;Ir.AL TFST FOR AJR-ROR"'F IRRTT""ITS"
IND. FNf" r.HEM,. 1959, 51, 77'-4
0799 DAMON, W,A~
"nFlIL INf, WITH NOXInliS r.ASF.S"
CHFM, f'. PRnr.ESS ENf", 1959. 40, J 1-1'
ORO~ HnWARD, n.H.
"A pnRTARlF cnNTTNllnllS ANALY7.FR
I"tnIlSTRJAL ENVIRONMFNTS"
A.M.A. ARCH, TND, HF.ALTH. 195Q,
FnR r,ASFOIiS FI.IIOR TDF S T"I
19. 3'5"i-A4
nROA WFST. PHILIP W.
"DETFRMJNATTON OF TOTAL f,ASF.OIIS POLLIITlINTS TN ATMOSPHF.RF II
ANAL. CHFM., 1959.31,399-401
ORn7
nEL EANII, M.
" n I S TR I R IJT ION
DF.TERMINEO RY
If,IENA. 1957.
OF AIR-POLUJTlON7.0NES IN A STEFI.-WORKT!IIr, r.F.NTFR
MFANS OF AIR-IONTZATION TN\lFSTIf,ATTO"'S"
foJ. 41-51 rRI/r.HlIRESTI
()R09 YOClIM. .rOHN E.
"THF nF.TERIORATInN. OF MATERIALS TN pnLLIITFn ATMOSPHF.RFS"
,I. AIR POUJJTTON CONTROl. ASSOr... 19'5R. R, ,n3-R

ORl? SIEMENS & HALSKT lIKT.-hFS.
"PIiRIFlr.ATInN OF SIUr.ON TETRAr.HJ.ORTnFII
r,ER. 95<;.41<;. ~ .rAN 1957
OR13 \,IOLFF. r,IIFNTFR A.
"PIJRTFYT"Ir, STLTr.ON TFTRllr.HLnRTnF II
II.S. ?R57,'it9. .71 nr.T I9<;A
OR15
ELLTS. R.W.
"AN INVFsrrr.ATION .Tn OFTERMINF. THF. FFFF.r.T OF FI-,'nRI"IF. flNn
ALI/MTNA ON THF. PRnnllr.TInN EFFTr.TFNCY nF HAND-RLOWN L Ir,HTTNr,
J. Sor.. r,LASS TEr.Ht\IOL.. 195A. 47.. ?AlT-?7nT
WAR"
ORIA F.ISF.NSTADT. M~
"MnLFr.IILAR r.OMPOSTTTn"l OF ALKALI FI.llnRlnF. Vf,PORS II
J. CHFM. PHYS. 195R. '9. 797-R04
ORIR SOCIFTF ANON. m::s Mt."IIIFAr.T. SATNT-f,ORAT"I, r.HAII"'Y f'. r.IDFY
"FFRTTUZFR MAt\JIIFAr.TIIRF fiNO STMIILTMIFOIIS F\(TRAr.TTOJ\I OF
AI.IIMT"lliM FROM "IATIIRAI. lIUJMINliM PHOSPHlITF"
FR. J. 075 ,49 1, 1 R 0 r. T 19'54
. 8-17

-------
() f' I. I.
1-111 lIS 1-'. HFI_MIIT
"THF UII\'T~,III. flF AIR PIJRTTY 11\1 THF ATMOSPHFPF "
7. fI f-I) II S n ,- - F n R S r. H. II. T H F RAP.. 1 q <=; R. 7. 7 () <=; -17
np4 "
~rISSMIf). 1I11r,IIST T.
"PI
-------
r1RQ<=; I-'F~F(~lln. F.!!..
" M 1 r. R 1111 F T F R M T 1\1 A TIn 1\1 II F F I. F M F 1\1 T 1\ R V F I 11[1 p T 1\1 F "
7.HIIR. III\IAI.. KHIM.. 1Q<:;7. 1? <:;11-1<:;
OQO'i Sr.HMITT. H.
"THF FLllflRTI\IE PRnRLFM TI\I ALIIMTt\IIIM PI.At.ITS"
F )( T. M FT. A I. I J M I f\111 M . 1 Q f... 1. ? 9 7 - 1 ()? n T S CII S S T n 1\1 1 () 1 (~ t\1 r.. )
()Q Of...
PIICK. M.R.
"T AKT t\1r.. FI.llnR II1F
FTI. TFRS "
,I. I\IR pnU-,ITTnN
SIIMPI FS FRnM THF ATMnSpPHFQF 1>l1TH r..LASS
cnt\ITRn,- Assnc.. 1QA1. 1~. 7,74-77 (FNf~)
OQ () R
FRr.I\. nLAV
"SFLFr.TT\lF tlRSnRPTTnl\1 nF HvnRnr.Ff\1 FI.llnRTnF FRnM r..ASFS
F L F r. T R n I. Y T T r. P R n nil r. T HI f\1 n F A '-' I M I I\III~' \..JT T H \I F R T T r. A L
SPIKF-snf)FRRERr. Af\lnnFS "
TTnSSKR. K.lI:MI. AERr.VFSFN MFT.. 19A3. /3. 115-19 (ENr..1
T 1\1 THF
091() FnWI\Rns. .1.\1.
"FAr.TnRS AFFECTTf\Ir. THFRMAL FFFTr.TFI\lr.v Tt\1 STFF'-MAKTNr.. ppnr.FSSFS "
,I. If\IST. FIIFL. 14A'i. 1R(?971. 443-'i()
OQ 14
HF.f\IRV. ,JACK I..
"FACTnRS AFFF.r.TTI\Ir. FI.llnRTf)F FMTSSTnf\1 FRnM
F. X P F R T M F NT A L A L II M T f\1I1 M R F nil C T T nt\' C F L I. S "
F)(T. '''FT. AI.IIMTNIJM. lQA1. ? A7-R1
10()()O AMPFRF
()9?1 LnRn. .I.
"IITILT7.II.TTnt\1 nF FlIlnRTOF FFFUIFNTS nFTHF SIJPFRPHnSPHlITF
I t\IOI,'S TR Y"
It\If)TAI\I ,I. TFCHl\lnL.. 19AA. 4(101. 3()7-9
09? .,
MIIClf\ITIRF. W"H.
"FIISFn CA3(pn41 /: QF=I.ATInf\1 nF nFr..RFF nF
FFRTIU7FR \/lILIIF. flF nIIF"ICHEn FllSlnNS flF
snlL SCT.. 1944. <:;7. 4?<:;-4/
nFFI.llnR P,llIT In~1 Tn
Rnr.K PHnSPHATF "
()9 ? 4
FI.MnRF. KFI.'-V L.
"nFFL\IORINATTnN nF PHflSPHATF Rnr.K IN THF MflUFf\1 STATF. FM:Tfl
AFFFr.TING RATF nF nFFI.llnRINlITTnN. "
T"In. FNr.. r.HFM.. 194/.34. 4()-R
()Q? A S r. n T T. T. R .
" II TT '- T 7. f1 T T n "I n F F I. II n R 1 1\1 F R F S n 1 'R r. F S "
lIl!STRI\LIIlf\1 .1.. sr.T.. 19"".7. lOA-IT
()931 SMTTH. RIILPH T.'
" 1\ I R - P n U, lJ TI n 1\1 P R n R I. F M S n F T H F PH n S P H 1\ T F HI Il II S T P. V "
MrJNT. AIIR. MTI\IF.S r..FnL.. SPFC. PIIRI.. 1\1[1.4/. 19A7. 4A-P
OQ3C;
FISH FR. RTr.HARn LFRnv
"r..AS-LTotJln CHRnMtHnr.RAPHY nF I/nUHTI.F If\lnR,r..ANTr. Fl.tJnRTnFS.
THFRMnrWNAMICS nF snLlITInN nF SFI.,FCTFn MFTI\L HAunFS I/TI\
r.IIS-I. TOilln r.HRnMATnr.RtlPHY"
nTSS. /lRSTR. R /7(111. lQA7. 3ROQ
8-19

-------
nq~l YAFFF. (HARI.FS n.
IIA.n~nSpl~F~T( r.nl\lr.Fi\ITRflTTnf\IS OF FUJnRTnFS Tf\1 flUIMTNIIM-RFnllr.TH1~!
, PI. (If\ITS"
.1. T f\1n. I I yr,. Tn X T r. Of. .. 1 94 A . 7 A , 79 - 3 1
()Cj 4 ::I
Pfl~rFR. RICHARn w,
IIFI.llflPTNF PRonIICTIOf\1 Pfll/FS WAY FOR f\IFI.j r.HFMT(III. Tf\lnIlSTPY II
r. H F M . ,. M FT. F 1\1 r, .. 1 9 Lt h . <; 3. f\1 n . 7 . 1 n h - 1 n R
()q 4/,
Mfll)nRSKY. 'S.I..
IIpnTflSSTllMMETflPHOSPH.lITF - b. POTFNTTlIl. HTr,H-Af\IAI.YSTS
F F ~ TT '. T 7 F R MAT F R TAl. II
ThID. FNf;. CHFM.. 194n. 3? 744-?4R
()qL..R f.'FARSnf\l. flf\lnPFw. .'
11(1 PRn.IFCTFn CENTRfll. MTI.'. r=nR THE nllRHI\M FI.llnRSPIIR
RIIU.. T.f\IST.MTI\ITf\If; MFT..]941'>. Nn. 471'>.19 PP.
p\1 n I 1ST R Y II
()Q 4c) I. II N n I 1\1
II P R n n I I r. T T ON n F R fRY U. T II M n X I n F II
TPIIt\IS. 11M. IN ST. CHFM. FNr,RS.. ]94<;.41. 1'>71-h91
nqt;() Fnx. F..!.
"THFRMlIL nF=FLllnRTt\IATTnt\1 nF SIIPFRPHnSPHIHF"
T t\1 n. F N r,. r. HE.. 194 1'>. 3 R. ::I 79 - 34
nq <;?
SIIRr,FNT. E..!.
"FI.lrORInES AS AN INntJSTRIAL HFALTH PRORI.FM II
INn. Hyr,.FfllINnATInt\1 .11M.. INC.. PROC. RTH MIN.
79-3')
MFFTTt\Ir,.1943.
()q <; 3 1,oJ I '-'. I AM S. C H A R L E SR. -
IIATMnSPHERTC cnNTAMlf\IATInN FRnM THE CASTINr, nF MAGNFSTIJM II
.!.' TNn. HYr,. TOXICDL.. 1942. 74. 777-?Rn
nq<;7 MANSFTELn. r,EnRr,E R.
liTHE ROLE OF FLlIORlt\IF IN PHOSPHb.TE nFPnSTTTnN"
AM. .I. SC I.. 1940. ?3A. A63-79
nq<;q WTlLIAMS, CHARLES R.
II r. Cl L L F C T I 0 f\1 0 F F LI lOR In F FilM E S Tt\1 A T R "
,I. It\In~ HYr,. TO)(1COI... 1q4'5. 27. 11'5-117
()q A4
PII(;SLFY. H..I.
1It\IEW nPHI-HFARTH FIIPf\IArFS AT HnMFSTFlln
r. .II R N F r, T E - I '-'- T N OJ S S T F F L r. OR PO R b. TT 0 t\11I
Tt\ISTRIIMENTATTON. 194').. 1 NO. '). 3-4

S H T L F f\1. .! 0 S E P H
"RFRYI.LTIIM OXTf)E
FXTRb.CTION"
INn. MFn.. 1Q44.
wnRKS nF
n91'><;
FROM RFRY'..
HFALTH HlI7l1RnS TNr.TnfNT Tn
13, 41'>4-41'>Q
nQI'>R
MACTt\ITTRF. 1.j.H.
"THE I NFL IIENCE nF
SIIPf=R PHnSPHA TI:: SIt
.I. ASSOC. OFFICIAL
CFRTb.IN FAr:TORS nt\1 RFMnI//H. OF FLIIORTf\IF FRnM
A r, R. r. H F M .. 1 9 4 1. 74. 477 -4 R Q
nq71
THFonOROII. n.r,.
"ANALYSIS OF r,ASFS URERATFf) f)IJRTNr,
cnMMFRCIALLY AVAILARLF r..1.ASSFS "
\/ACIIIIM. 19AA. 16(5). 237-739
THF TTP-OFF OF SOMF
8-20

-------
I
I
I~
nq 74 .IIlH",snN, R 1 CHIIIH1 f.=.
"flIISTF"".L flS A snlIRr.F nF WIITFR 011111. TTV TMPIITRMFI\IT"
.1. SA"IIT. F"I(;. nIV. AM. snc. CIVTI. F"Ir..RS.. TqAA, Q7(l). 7l.'i-')I,7
nq 71,
SPTFLRFRr,FR. F.
"pRnf)!ICTTn", nF PRnTFr.TT\lF ATMnSP~FRFS I'" /IN TI\ITFr-RATf.=1) STFFt.
PI.I\"IT " .
T R n '" ~ T F F I. F 1\1 (; R .. 1 q A';. 4 7 ( ] 7). T 7 '; - T "), n
7()14 RnIlRRr11\I. P.
"AI\IALYTICAI. PRORLFMS pnSFf) RV pnl.UITTn'" RV FI.llnRTI\IF cnMPnll"lflSII
ATR pnLLIITInN cnNTROL ASSN-J. nCT A7, 17. Nn. ](). AAl-::I
?()T'; FIIRRAH. H.
"MAI\IIIAI. PRnCFf)IIRFS FnR FSTIM/lTTn"l nF I\TMnSPI-IFRTC FI.IIr1RTnFS "
IITR PnI.I.IIT I nt-J r.nNTRnL ASSN-.!. I\ln\l 14A7.17. I\'n. 1T. 7::!P-l.]
7()7';
sTRnllP. P.T.
"ALIIMINIIM T"If)IISTRY "
APPL Ir.ATlnNS nF FII"'nAMFNTAt THFRMnnvNAMTr.S
PRnCFSSFS-T~T cnNF lqA7. ::14::1-';1,
Tn MFTALI.IJRr-Tr.AL
? () 7" SF F R A r. H. H. M ., \I n"l. S P R II 1\, (;. S. .
"FLlJIlRHAIISHALT IJNf) FUJIlRFMTSSTnN \In''l 7FMFI\'TnFFFN "
7FMFNT-KALK-r,IPS. ..IAN 1qAR. ?T. I\ln. T. l-R
7()77
KRFICHFLT. T.F.. KFM"ITT7. n.A.. r.IIFFF. S.T.
"ATMnSPHFRTC EMISSTnNS FRnM MAI\IIIFAr.TIIRF nF pnRHH'f) r.FMFNT"
II.S. PIIRLTr. HFALTH SFR\lTr.F-FN\lTRnl\'MFI\IT"'. HFIIt.T~ SF~\lTr.F ATR
pnLLIITTnl\.I-1Qh7, PIIRL QQQ-IIP-T7. l.7
7 () 7 R F 1\1 r, LT S H , M.
"FtiJIlRTNF RFr.nVFRV FRnM PHnSPH,fITTr. FFRTTI.T7FR MA""IFM:TIIQF"
C H F M f. P R n r. F S S F 1\1 r.. , n F r. 1 Q A 7. l. R. hi r I . l'. l.'~ - -, .
7()?Q WRT(;HT, R..!.
"r.nl\Ir.FPTS flFF.LFr.TI~Ir. ARC FIiRNAr.F FIIMF r.nNTRIII."
ATR PO,-,-,JTlflN r.nl\.ITRni. ASSN-.I. MARr.H lQAR. ]R, "In. 3. 17C;-R
7()"),::! VlI.!fll\. S.
"RLIIF RTRROl\.1 STFFL WTTH RLIIF ~KTFS"
IRnN Ar'-m STFFL FN(;R. Allr, 1QAR, 4'). "lfl. p. 71-'i
7()::IR AHn, n.
".JEI\ISSFI\' F)(I-Il\IIST Sr.RIIRRFR"
FFFFr.TT\lF ATR PRnTFr.TlnN SYSTFM.
" P R 1 Q A q. ,,? ", ii, l. . A? () -::I
7()4'i ARnWI\', .I,W.
" F L E C T R I CAR r. M F L T I 1\1 (; N F W F R t\ T 1\, S T F F I. M A K T 1\' r, "
RLAST FIIRNAr.E f. STFEI. PI. ANT, .IIILV 19l,Q. ')7, I\Ifl. 7. ')l.7-,)7
70A? Nnt-IF
"F)(TR"r.T1\1F PRnCFSSFS-III.IIMTI\IIIM "
CHt=M f. PRnCFSS FNr" nFC 1QAR, l.q, "tn. 1? ?~
?OA4 SHFRwnnn, W.L.
"SHFRt.'nno PRnCFSS FnR r.nNTTNllnIlS STFFI.MIIKTI\Ir, "
CAN MTI\I f. MFT RilL, SFPT 19AR, 1,1. I\ln. A77, l()fJf..-74
8-21

-------
? nAG ''In''l F
"Y19hR 1FFF r:FMFi\lT 1"lnIiSTRY TFf.H"ITf.fd. rnl\IFFRF"Ir:F l()TH"
lFFF. 19hR. ST. I. nil IS. Mn.. ?()-?L.
? n A 1 R F 1\1 1\1 1= T T. K. I.,' . .
"pnLLl1Tln"l rnl\lTRnl. IS STFF.I. MFFTII\Ir, r.HIII.I.FI\Ir:F"
I R r I 1\1 II r, 1=. "I n \I 1 Q hR. ? n ? 1\1 n . ? 1. 9 S - 1 ()?
? nq -:>. r.r1 II L S fll\l. n. r. .
"Hnl.) H1 FIGIIRF: RnT/lRY KlI.i\I r.IIP/lr.TTY"
Rnr:K pqnOIIr.TS. APR 19A? 6'5. I\ln. 4. 11'5-11',. 119
?n9A lINnSIIY. G.r..
"nnl\lT THRnl-/ At,JIIY nIIST"
l'
?lS7 MlIPSTnNF. G.E.
"lICTO FJ.nw FOR SIJPERPHnSPHIITF M/lI\'"F/lr.T"RF"
RRIT r.HFM ENG. SEPT J9AA. 11. Nn. 9. l()A~
8-22

-------
?1 <;1'1
nTT, R.P., HAT(H~Rn. R.F.
"(nI\.IHU1L nF FLllnRTnF FMTSSIO~IS AT HARI/FV
PRnCESS AI.\IMINIIM Rfl1ll(TInN MTI.I. "
. AT R POLl,IJT T nf\1 Ult\ITRnl. ASSN-.I, SFPT 1 9"~.
1\ ',II M T ~III M 1 N r: - Sf In F P K F D 1,
11, ~I fl. 9, l..~ '( -I. '~
? 1 <;q
M(PHFF, n.T.
" P OW F R P L /HIT II S 1 f\11, H 1 r, H S II L F II R (n 1\ I. T 1\ K F S S T F D S HI R F II II r: f' h T J.>
P 0 1- LII TI 0 N "
II\InllS WATER r. WASTES, ,IAN-FER 19"1, R, I\ln. 1,9-11
?103 Fnr,EwnRTH, T.r,.
"SOMF nFVELOPMFNTS IN AI.lIMII\IlIM RFnllr:TTnl\t "
C 1\ N M T 1\1 r. M F T RilL, A II r, 1 967., 5 Ii, ~1O. "n 4 , Ii R ." -"
7.170 NnNF
"PIPF SYSTEM SOllFLU1FS NnxIOllS FIIMF<; "
ROCK PRonIiCTS, nEC 19"3,00, Nn. 1?, 9<;
?17? HARRISON, .IP., R.P., HOAn, .I.r,.
"RAGHnIlSF CLEANS 500 r.FMFNT KTl.1\1 r,/.ISFS "
AIR ENI" MAR 1903. 5. NO.3, 14-1"
?17R MCKTRROI\I, .I.H.
"nEVFLOPMENTS IN nliST Cnt_LECTInN f'OIIIPMFI\IT "
CAN MTN r. MET ~II.. OCT 1962. ?7.. Nn. I? 71~-1'i
7.179 RIVERS. R.n.
"OPERATING PRINr.IPLFS OF NON-TONT7.11\11, FI.Fr:TROSTATTr. IITR FTUFRS"
ASHRAE-TRANS. 1962. oR. 9?-101
21Al
GACKENRACH. R.E.
"CORROSION PRORLFMS TN PHOSPHORTC 1Ir. In Al\ln PHOSPI-IATF.
FFR TT '- T 7. FR MANIJFAr.TIIRF"
MATlS PROTECTION. .IAN 1903, ? 1\10. 1. liO-?, 54-7
21R7 lEWIS, r,., MYF.RS, C.F.
"VAPORI7.ATION PROPERTIES OF TROI\I PHnSPI-ITnFS"
.I PHYS CHFM, ,IlJf\IF. 196"1. "7, NO. A, 1?R9-9?
n91
HERRICK, R,A.
"RAGHnIlSF. TEST PROr,RIIM FOR OXVr,FN I./II\I(Fn npFl\1 HFhRTH FIIMF
CONTROL" .
AIR POLLlJTION CONTROL IISSN-.I. ,IAN 19""1, 1~. Nn. 1. ?R-3?
7.193
HOIISTOl\t. W.M.. .LAVEI\IIIF.. W.II.
"CIJRRENT RENEFICIATION PRACTIr.FS FnR
FLORTnA "
MIN ENr.. NOV 190? 14, NO. 11.44-9
PFRRI.F PHnSPHATF IN.
2195
RARNES. R.
"IMC INCREASES
BONNIE FLORIDA
EN1, r. MTN. 11111,
CONCFNTRATFn-PHOSPHATF nllTPIIT liO% WTTH f\1F'..J
PI. A~IT "
1903. 1"4. Nn. R. 9R-lnn
8-23

-------
? 1 ,] q
flPljf1KS. S.H., I<'TI-'I.If\!(~. R.II., Rnss, T.C.
"SfliJ,PI. If\Ir, SYSTFMS FnR \-I"STF r..I\S 1\t\lIILyq S FRf1M fI\JFf\I-HFI\DTH 1\1,11)
/I,I/I\( FIIRr'I/I.CFS"
T R (11)1 F, S T F F L I 1\1 S T - ,I. M" R 1 q f. "I. ? 0 1. P P T t\I T Tf\1 (: f\.1 r 1. "I, ? (I ? - . r
? 1 qq
"'dIHLR/ln. W.
"/lIII'-(:/l8FI\I RFT I1FI< R/lIICH(:'IISFf\iTSTIIIIRIIW:; 1/flf\1 '.T(HTRrH:Ff\lfll'Ff'f\I"
STI\HL II FISFf\I. ,111LY 1l)f-,'>,. ~n. !\In. 1">. q?l-Q
? ? Ii I, S I IS S M 1\ f\!. V. H .
"/lIR pnl.LIITlnf\1 liNn ITS cnNTRnl. HI STFFI. Tl\lnliSTRY "
I R n 1\1 F. S T F F L F N r.. p. M /I Y T q A ? ~ q. 1\1 n. ">. R 0 -"
??ns H1TCHcnCK. l.R.
"/lIR SlIl\lTT/lTTnN nFVFIJ1PMFI\ITS"
/lIR pnUIITlnN rnl\ITPrJL I\<:,SI\I-,I. MIIY 1qA7. 1? I\In. ">. ??'~-A
??nA
\./f'HMFIFR. W.. \.IFTf\IF(I<'. H.
"nIH:'III\I[7I1TTnl\l MJn f'ST/lRI.TSHMFI\IT nF SPFCTlIL (I.FI\I\I AIR
n F P /I R T M F 1\1 T S T f\1 1 R n 1\1 /I I\In ST F Fl. P '-II f\1 T <:. "
ST/lHL II FISFI\I. nCT 14Aq, Rq, I\ln. ;>0. IORQ-ql
??lO
Ri\(F, W.F., lFWIS, R.
"FFFF(TTVF <:.(RIIRRFR Tn RFMnlff:: CHLnRIl\lF FRnM 1I1.IIMTI\IIIIM-F/lCTnRv.
G/lSFnIIS FFFUIFI\ITS"
I f\1 S T M F TAL S -.I. M II MAR 1 Q A 4. q;>. P P T t\I T 1\1 n. 7, ? ()" - 7
??lq PFIRCF. .I.W.
"RIISING CFMFNT PI. liNT 1I\ISTRIIMFNTlITTnl\l nl\l PRFnICTi\RI.F S/lIITI\I(:,S"
PIT 111\11) QIIARRY. 10 IIPR 1qA4. "'(-.. I\ln.10. nQ-40.1"i"l.
???O nlln/l. W.H.
"RF()IITRFMFI\ITS FnR CFi>1FNT PL/lI\IT nFSTr..I\I"
f\1TI\IFRALS PRnCFS<;TI\IG. ,1111\1 lQA4. '). I\ln. 1. 1Q-?3
???l
TIIFlFR. n.H.
"G/IS SCRIIRRTNG PIIYS l)flIlRI.F nTIITnFNn"
MII\IFRALS PRnCFSS1t\1c:.. .11\1\1 )QA4. '). I\tn.
1. ?4-7
???~ PF/lCnCK. G.F.H.
"FIIMF /11\10 nliST RFMfllll\L 11\1 MnnFRN MILL"
,llIl\lInR TI\ISTI\I FI\IGR<;-.I. IIPR 1Q';4. 74. PRTI\IT 1\111. 7. ?03-1A
7??">
CRA1,ISHI\W, C..I.
"R/lTF nF nllST FMTSC;Tfll\l FRnM PRFr.TPTT/lTnR-FFFFCT nF CH/If\Ir:FS ri,'
ASH cnl\lT FI\IT"
FNc:.INFFR, ,IIII\IF lQ';~. '71". I\ln. ')AO'). 114Q-'il.
777(, WALKFR. A.R.
"FI_FCTRnSTIITTC PRFCTI-'TT/lTrlRS"
AM CITY.SFPT lQA4, 7Q. I\ln. Q, 14A, 1">0. l')?
?777 f\lnNF
" M n n F R 1\1 F F R T T '- T S F R P '. 1\ 1\1 T "
CHFM r. PRnCFSS Fl\1c:.. "In\! 1QA-~. 44, I\ln. 11. Af,7-Q
7?7Q WFTI\IRnTTFR. F.
"I\IOW COMMFRCTAt-ATF"I SYI\ITHFSTS FRm~ SIIPFRPHnSPHIITF RYPRnnll(T "
CHFM FI\IG. APR 1QA4. 71. I\ln. Q. 13?-4
8-24

-------
??~? t\lnl\lF
"IIRMcn STFFI.'S MIJnFRt\1T7 fiT Tnt\I PRnr..Rt\M t\T IISH'.IIt\111 1,'nRKS"
RLt\ST FIIPt\I/!(~F t\t\ln STFFI PLAI\IT. 1 .It\/Il 1qA4. ')?"/llrl.l. ?~-'~1.7q
??":\4 MTTCHFLI.. R.T.
" FilM F r. L F II t\1 T 1\1 r.. 11 T F R R I" II II L F t\ /II n S P F t\1 r. FR' S T F F I. 1-1 ilK T /II r, P' "'" T S "
STFFL TTMFS. FFR lQAI.. lRR. t\ln. 4QR7. ?1/-1"
?? 4 4 r." '. FC F Tn. R. P .
"Wf:T cvr.LnNF. SCRIIRS PHnSPHI1TF nllST "
MT/IIFRIILS PRnCESSTN(;. ",nv 19f,4. '5. "In. 11. ?O
'?4" r..RANT. H.n.
"pnLlIITIn"l r.rlt\ITRnL T"I PHrlSPHnlUr: flr:rn PI.MIT"
r.HEM FI\Ir.. PRnGRF.SS. .lA'" 1C)A4. AO. "In. 1. "'-"
??4A
RLonMFTFLn. R.n.
"IIIR POLLI'TIO'" r.ONTRnl. TN INnllSTRV "
AIR F.Nr... ,!IINE lC)A":\. '). "m. A. 7. R. q. pr,S. ?4-A.
2A-30. tlllr,. pr..S. ?R:":\O. SF PT. Pr.S. ":\()-":\'. 34-A
,III LV. Pr.S.
? ? " 1 TIE T I r, . ,I R .. R.
"NEW FCONOMTCS OF STFF.LMAKINr.."
IRO'" r. STEEL F.Nr.R. SFPT 1C)AC). 4A. NO. q. 111-1')
?/ '52
RROTHF. R.
"TNCRFASIN(; EFFICIFNCV nF EXISTTNr, TNSTALLI\TTnNS FOR
OF nliST FROM RtAST FIJRNACE FUIF r..AS "
STI\HL IJ F.TSEN. q .lAM 1QAC). RC). "10. 1. ":\()-')
AFMnlflll.
??5~
R ROTH F. R.
"PRORLEMS OF nl~T
SINTFRIN!'; PLANTS"
STAHL II EISEN. 1.2
RF.MnVAL FROM Wt\STF r,t\SES OF IRnN nRF
OFC 1QAA. AR. "In. ?'). 1414-,?
??'54
LOWENKAMP. H.
"F.FFECT ClF FUFL TVPF AMn FIIF.L RATF nil! vTFLn A/lm CHI AI. TTV nF
IRON SI"'TER "
STAHL II EISEN. ::\ APR ]qf,C). RQ. NO.7. ":\,7-4?
?7.'5(-, MEJER-CORTF.S. E.
"METHons ANn RFSIII.TS OF OPF.RATINr.. S/o1I\I.I. OPFN HFIIRTH FIIR"IIICFS "
STAHL If EISEN. 10 JilL 1Qf,C). RQ. I\In. T4. 7A1-l,
22r;7 HnLnFM. C.
"nEVELOPMF.NTS T"I PROCFSSINr.. nF UOIlTn STFFI."
IRON f. STEEL INST-.I. .111'" lqf,C). ?(17. PT. A. R()A-?"
225A
CliFFE. S. T.
"AIR POLLIITANT EMISSIONS FROM COAt-FTRFn pnWFR PI.ANTS-PFPORT
Nn." 1 "
AIR pnLLUTInN cnNTROL ASSI\I-.I. SEPT 1QA4. 14. Wl. C). 3')':\-A?
22 r;q
GERSTtF. R. W.
"ATR pnLLIITI\NT
REPORTNO. ?"
AIR POLL liT ION
FMTSSTnNS FROM CnAL-FTRFn pnWFR PLI\NTS
CONTROL AS<;N-J. FER 1QA"i. 1". Nn. ? ')c)-A4
8-25

-------
77Al ,i\rnHS. M. R.
"HEflL TH flSPFrTS flE /llR pnl.l.IITH1t\1 FRnM Tt\Ir.Tt\Ir:RIITIW.S "
IISMF-NIIT TNrlNFRATnR r.nNFERENCF-PRnr. lR-70 MAY 19A4. l7R-~1
77A7 CliFFE. S. T.
"/lIR Pr11.UJT/lNTS FRIlM PIlWER PUlt\ITS"
It\lniiS Hyr,TFt\IF Fr1IJNI)IITInN. 77 l\NNIJ/I'- MFFTfN(:-TP/lf\IS. lqA7. /+77-7
nA~ II/IF. .1.11.
"1'lTMnSPHFRTr. FLIJRIlMFTRTr. FI.llnRTnF ANi\f.Y7FP "
/lTR pnLLlITTnN r.nNTRnL ASSN-.I. MAY ]9AS. 1">. Nfl. ">. 1Q">-7
.77 A 4 K n F t\1r:.. P.
''(If\lfll.YSF \InN HIlr.HIlFFI'I-FTNSAT1STnFFFt\1 "
STi\HL II FTSFN. 77 IIPP 19A5. RS. Nn. R. 4RO-1
77(-,7
PHILLIPS. R.A.
"IIIITnMATTnN nF PIlRTI.ANn r.EMFNT PI.Af\IT IIqt\I(; nTr:.TT(lI. (llf\ITPrll.
cnMPIITFR"
MINFRALS PRnCESSING. nEC 19A4. ">. Nn. 17. 37-A
??AR
FIlt\IK F. r,.
"ELFKTRnFNTSTAIiRER Tt\1 DER 7.:EMFNTTI\IOIISTPTF"
ZEMENT-KALK-GIPS. MAR ]qA5. 1R. Nn. ~. q4-lnA
7?7D Hi\RRIS. F.R.. RETSER. F.R.
"CI.FAt\IJt\IG SINTER PI.ANT Gt\S WITH VENTIIRT SCPIIRRFP "
f.IlR pnL'-'ITrrlN CnNTRnL lISSN-.J. FER lqA">. I">. Nn. 7. 4A-9
??77
LTHnll. O.A.
"FUlnRTt\IE r.nMPOIJNns /IS RYPRonliCTS nF PHnSPHnRlr, Aun
MlINIIFACTIIRF "
CHEM ~ PRnCFSS FNG. Nnl/ 1Q"4. 45. Nn. 11. A04-11
777~ NnNE
"RFTHFLEM r.HALLENGFS MTnWEST "
IRnN Ar,F. APR 19AC:;. lQ<;'. Nn. 17. A7-74
?774 FITTFRFR. G.R.
"flCTn IlPFN HFlIRTH RFSFlIRr.H nVFR PAST HIFI\ITY YFIIRS"
MET snc ATMF-nPFN HFlIRTH PRnr.. 19A~. 4A. 1R~-A
227<; RARNSI.FY. R.P.. THnRNTnN. D.S.
"FFFTCIFt\ICY OF CflRRnN RFMOVAI. RY nXYGFt\1 It\1 /lRr. FIIPt\IAr.ES"
IRnN f. STEFl. INST-SPFr.TlIl. Rf'PflRT. lQA4. R7. R7-Q,
277R /lNnt\IYMOIJS .
"MATERIALS FOR CFRAMIC PROCESSTNG"
CER It\IOIISTRY. .liIN ]QA9. 97. Nn. 1. 71-]17
?7RO Hnl/IS. .I.F.
" R no F FIR T t\1 r:. /I t\1n R F H F fI T F II R t\I/I r. F "
I R n N r. S TEE I. E 1\1 GR. .1111\1 F 1 Q A Q. 4 A . M n . A . R Q - Q ')
??Rl ASTTFR. J.
"WORLn I..jIDE DEVFfJlPMFNT nF PEI.I.ETI7Tt\IG nF TRnt\1 nRF "
REV nF METAI.LlIRGIE. nEC 19AR. A<;. t\ln. P. R]3-"
??R4 HILL. /I.r.
" A I R a II A I. I T Y S T At\1 n A R n S F n R F 1.11 n R If) EVE r:. F T fIT T n 1\1 F F F F r. T S "
ATR pnLLlJTTnN CIlNTRIlI. ASSN-.I. MAY lQAQ. ]Q. t\ln. <;. ~~I-A
8-26

-------
??RI) r./IRR. n.
"RIILK HlHlnLTN!; TI\I FFRTTI.T7FR M/lI\IIIF/lr.TIIDF "
/lIISTPAtI",,1 r.HFfI.1 FNr:;. JIJI.Y 19AR. 9. I\ln. 7. P-1S
?7HA
FI.IIX. J.H.. SMTTHsnN. n.J.. SMTTHSnl\l. D..~'.
"STMPI.TFIFn nliST SliMPLINr, lIPP/lPliTIIS FnR "SF I 1\1 IRIl"1 Mill STFFI.
""nqKS"
IRflI\l F: STFFI. INST-.I. nFr. IQAR. ?nA. pOTl\lT "'n. P. 11PP-Q~
,?,?P7
STnNF. R.l.. r./lHN. n.s.
"1/1. TRlIFINF-PIIRTTCLF r.nl\lr.FI\ITR/lTTnl\l MIl) <;TPFf\I(:TH [IF 1I~IFIPFn IPflf\1
nR FP F L L FT S "
snc MII\I EN(;RS OF lITME-TRANS. nFr. IQAP. 741. hill. 4. 'i~~-7
??Q,? MCMANIIS. r:;.J..
"II.S. STFELMAKERS liP Tn Tnp PRFSSIIRF "
IRnl\1 lIf-F. APR lQ(-,O. 7n3. I\ln. 17. Il()-I11
?7Q, RI.ASIIM. H. A... CLAIIS. n.
"nlJST cnNTRnL IN CF.RlIMIr. PLANTS" -
STAIIR-RFINHALTIJNG DF.R !.IJFT. FFR 19(-,0. ,?Q. I\ln. '? 4R-'i3
1'1'94 SQIIIRFS. R.,I.
"f\lEW nFVELOPMFNTS I 1\1 IJSF nF FARRIr. FTLTFR DIIST r.nU.Fr.Tnp.s"
FII. TRATTOf\l f. SEPARATTnN. MAR-APR lqAo. A. ,,'n. '? lAl-?
'?? 9 I)
PFTRnv. L.A.,. MASHKnv. \I.M.. KnTFI. I\ITKn\l. YII.\I.. FRF.Tr)FI\17nl\l. F.
"PROf)IICTlnf\l nF MPTAU_IlFD PFLLFTS FRnM snKnl.n\l-SIIp.F\AT MTI\II~I(~
RENFFICATION COMRINF INDIJSTRIAL PF.U.FTC:; "
STAL, f)EC lQ6A; Nn. 17.. 1065-Q
?'?O(-, THRINf,. M.W.
"N EXT r, E f\I ERA TT ON I f\I S TEE I. M A KIN f,"
IRON f. STFEL, O1:T IQ6R. 41, Nn. In. 44A-I)()
??9Q GF.RSTRERr:;ER. R.
"PRnCESS COMPIJTFRS 11\1 r.FMEi\lT wnRKS "
STEMENS. FER lQ69. 36. NO. ?. 46-1)1
7.300
ALCOCFR. A.E., POTTER. L.A.. FELDSTEIN. M.. MnnRF., H.
"cnLLECTTON AND ANALYSIS OF INnR(;lINTr. nliST nnWI\IWTI\'n nF snIlRr,F:
FFFLI/F.NTS"
AIR pnLLlITInN cnNTROL lISSN-,J. lIPR lQAQ. 10. I\ln. 4. ?3A-R
7.304 TnMANY, J.P.
"CONTROL OF ALIJMTI\IIJM r.HI.nR InF. FIIMF.S"
LIr.HT MET/IL A!;F.. OCT 10AR. ?A. I\ln. O-l(). lQ-?n. "',A
2305
lJRusnVSKlIYA, L.N., KnSTnMARn\lll. V.I\I.. STI\ITKIIS. R.I.
"ISSLFnnVANIE stEKI.onRRAZnVANTYA T S\lnT<;T\I
FLoRALYIIMnFOSFATNYKH STFKnL "
ZHlJRNAL PRIKLAf)NIJI KHIMII, MAR I96R. 41. I\ln. 3. I)nO-4
?30A
Lyl\lr:;, S.
"EFFECT OF FLl/oR mE AS CRYSTAU T SlITTnN PRnMflTnR
SYSTEM NA?0-CAO-Mr.0-III?03-SI0/ "
f-LIISS TF.CHNOLnr;y, nFr. 106R, o. Nn. A. 170-R4
T 1\1 f, I. /I S S F S T '"
7.307 CilVl\N/lf,H, P.E.
"I.nw TFMPFRATI/RF. RLAST FI/RN/lr.F "
C/IN MlI\l F: MFT RilL. /111(; 10AR. AI. I\lf1. A7A. Qf,P.-7/.
8-27

-------
I
?"l,ln PFf\I!\IFR, M.
"r.HflRAr.TFRTSTTr. nTII(;RflMS FOR r.FMFNT '.,JnPKS"
7i=I'iF~.IT-I1 /I T T r: M I X T f\! G n F R /l1~ M I X T '" r. F M F 1\' T P '. M I TS "
/III F R F R F TT II'" G S - T F U1 "JT K, n r. T ] q f-, q, T (), "10. 1 n, A 1 -"
;I ":\ ] ') GO I. II R r. H T '" , fl. (; ., S H '. F 1/ T f\!, n . 1\1 .
"flf\lflI..Y7TN(; THF \.JnRi10(;FI\.IFTTY OF THF
MOL T F. f\1 r, LAS S "
(;'.II<;S r. r.FR/lMTCS.<;FPT-OCT ]qAR. 7'), 1\1(1. q, In, <=,q4-7
? ":\ ]<=;
[) F 1- S F '" . W .
"r.HFMJCflL FIINnAMFI\ITflLS OF THF PROntICTTOt" (JF PTC; TRON
r. R . /I f\I n 1 0';1: f\1J TNT H F. R '. fI S T F II R N A C F "
ARCHT\I FIIFR nAS FTSFf\IHIIFTTFNWF.SFI\I. "'OV ]qf-,q, 4(), "10.
I.~ T T H ? (1 :t
]], Q()]-(J
7"l,17
Rm/F~ /I.n.
" 10-/ A S T F (; fI S C '- F. fI f\J Tf\1 r,<; Y S T F M S F OR '. A R r, F r." P 1\ r. IT Y R II S J r fl Y Y r, F hi
FIIR f\lflr. F S "
YROf\1 E: STEEL ENf;R. ,JIlf\I.]Q70. 47. NO. I, 74-Cln
7~lR HARRIFS. n.R.
"IRONMAKINr, If\1 A MflnFRI\1 RI.AST FIIRNACF"
PROC OF INST CHFM FNf;R. ]qAR. ]Q')-707
?~7"i ROZHANSKII. A.I.. VELIKonNYJ. \I. G.. SAKHNO, 1\1.1\1.
"FUIE GAS EMISSIOf\1 IN GLASS FIIRI\IAr.F.S "
GLASS E: CFRAMICS. ,IIILY-AIIG IgoR. 25. 1\'0. 7,R, 4"i"i-R
? ::17 R
AI\IONYMOIIS
"OPFN HFARTH FIIRNAr.F. SHOP TO RF VTRTII/lI.LV S~OKF'_FSS WTTH
AnnITIONOF FIFTH PRFr.IPTTATOR" .
I!\InIlS HFATING. OCT lqf-,q. 3''1. 1\10. 10. IqR"i, ]qRf-,. TqRR
733n TOMANY, J.P.
"SYSTFM FOR CONTROL OF AI.IJMINIIM r.HLOR TnF FIIMFS "
AIR POLL liT ION r.nNTROL lISSN-,I. ,IIII\IF Iqf-,q, ]q. f\10.
A, l.?()-~
?"l,~l SJNGHAL, R.K.
"FIIMF ClFANI"IG SYSTFMS IISF.n Tf\1 STFFI. Tf\lnIlSTRY-T"
STEFL TIMES, AIIG lqAq., lq7, NO. R, "i3I-R
7~33 MCCALnIN, R.O.
" II S F 0 F A I R r. R AFT T f\1 A I R POL '-' I T T n 1\, R F SF II P r H "
AIR POLLlJTION COf\iTROI. ASS"I-,I. ,IIII\IF 19AQ. TQ, f\lrl. A. 4nS-Q
23~4 TANAKA, T., KAWASI. H. .
"EFFFCT OF FLlJORInFS Of\1 RRAZART'- TTY Tf\1 A'-"MTf\IIIM HARn SOI.nFR"
.IAPA"I T"IST Llf,HT MFTI\I.S-.I. SFPT lq,:,Q. 19, 1\10. q, 3R3-gn
2337
G R A I N G F R, .I . A .. R ( II. M FR. R . W ., (; II R SO f\1. II .
"FIIMFLFSS RFFININf, I~I FI.Fr.TRTr. IIRC FIIR"'f.lr.FS \'1TI-I nYY-GflS
RIJRNFR S "
Jf\IST FIIFL-.I. MAY lqAq. 47. NO. 340. 70n-A
8-28

-------
?'nq IIr.HTKflWtl. S.
"STt\ITFRTt\Ir, TF.r.Ht\ITOIIF" TN .IIIPIIM"
RI.flST FIIRt\ILlr.F f. STFFL PLI\NT. SFPT
1 q A q, C, 7, 1\111. q, 7 <-., (. - (, .~
?~~? TAHFRT, M.. HATNFS, ~.F.
"nPTTMT7I\TTn1\1 nF FAr-:TrlRS AFFFr.TTt\I(; Sr.PIIRRFR pF=PFrIRMfI"Ir.F"
AIR pnLlIlTTm.1 r.nMTRnL IISSt\I-.I. .1I1t\IF 1QAq, 1Q, hlf1. A, 4?7-'~1
?~4A (;RIIY. S.A.R.
" I R n t\1 M A K T t\1 ~ II
TRnl\' f, STFFL II\IST-.I, .11It\IF 19A9. ?07, DPP,IT till. A, 7',,>q-~?
?~4R
lHIL TSOVA. O.F.
IITNTFRACTInN OF KTN(;TSFPP PHOSPHnRITF wTTH wFT PRnr.FSS
PHOSPHOR Te: Ae: II) "
ZHIIRf\JAL PRIKLIIOt\IOI KHTMTT. MAR 19A9. 4? I\In. ",,>, l.R1-(,
?~SO RFR.THFT. A.
IIIRSIn r.OI\ITTNllnIIS STFFLMIIKIN~ PRf1r.FSSIi
I ROt\1 f. STEFl. INST-,I. .III"IF: 19AQ. ?07. PRTI\IT 1\ln. A, 7Q()-7
?~SS JFSr.HIIR, R.
IISTFFI.MIIKPI~ FIIRNA(F=" FRnM VIFwpnTl\lT nF= DPnr,i="S
STAHL II FISFN, MIIR 1QAQ. RQ. NO. A, ?74-AO
T F r. Hr.1 i 11. r 1 r, '( II
?~5A AOIICHI. A.
IIRATF A 1\1 I) MFCHANI.SM nF SIUr.A RFOIlr.TTflt\11I
IRON f. STFEL TNST .IAPIII\I-TRANS. 19fi9. 9. t\10. ?, 1';3-h1
??'iR
MFRRITT. R.F., .10Ht\ISOt\I, F.I\.
IIf)IRFr.T FI.lInRINATTI1t\I-AI)I)TTlnN OF FI.llnPT"IF= Tn T"IOFt\IFS 111\.10
Ae:ENAPHTHYI.FNFS II
J ORf,ANIC CHEM. .IIINF 1QAA. 31. Nfl. A, 1AS9-A~
?359 TF'-LFR. A.,I.
"e:ONTRnL OF t';ASFOIiS FLllnR TOF FMT SSTOr-tS II
CHEM FNf, PROf,RFSS. MI\R 1Qh7. h"">. NO. "">. 7S-Q
23AO SPF:CHT. R.r... CALACFTO. R.R.
IIf,ASFOIiS FLlJORIOF. FMISSTf1I\IS FROM ST/lTTnl\l/lRY SOIIRq:SII
CHEM ENG PROGRESS. MAY 19A7. 63. Nfl. S. 7A-A4
?"3A4
nANKOFF. J.O., LINDSAY. R.W., MA(;nR. .I.K.
"REe:RYSTA'-'.IZATION RFHAVInllR OF LOW-r./If~RON
RASIC OPEN-HEARTH STEFI.SII
IRON f. STEEL. .IAN 19A7, 40, Nn. 1. ?-A
RASTC nXY(;FN liNn
?30' PARKFR. C.M.
IIROP AIR CtEAI\II"'G FXPFRIFNe:ESIi
AIR POLL liT TON cnl\ITRnL tlSSN-J. flilr. 1QAA. 10, I\ln. A. 44A-A
23AR
I\IOI\IF
II I R..n"IMII K 11\1(; T nM nR ROI.J II
S T F E L TIM F S. 1 Q ~. t\ln. "n, -A .
"">0 P. R59-03
'137, nF( 1A-?",,>. p. pnQ-1~, nFr.
?':\Aq
OF.tI\NS. .IR., I\.F=.. SKI\P.lI\. .1.1\.
IIf)EOXIOATlnl\l RY PNF:IIMATTe: IN.IFCTTnN nF (;RIIPHITF"
,I n F M FT A ,- S. II. D R 1 q A 7. 19, t\1O. 4. ""> 7 -4 0
8-29

-------
,'1"(1 r'1r.I-IPT[)r;F. n.I..
"p1Hlr;RFSS Tf\I flPF~1 HFt\PTH STFF'-Mt\KTI\'r,"
I-II.I\ST FIIPI\It\r:F f. STFF!. PI.MIT. nr:T 19AA. 1)4. I\'n. TO. q43-S]
7 CI, 7 7 ~Jr1 1\1 F
" t\ T R P nJ. I. II T T n N "
Pfl\.IT. nr:T ]QAI). 4,
I\ln. 4. 36R-71
8-30

-------
~
,
? ,",Q 7
lllvif11IR. M.n.. 1II\.InFRHTLI.. n.w.
II R F S P nI\.l S F n F r, II T "I F fI P I r, S Tn II
AI\.If1 f1PFI\.I HFl\RTH 1)11ST II
.I flTR pnL1.lITTnN UINTRrli. ASSN.
r. n M RIl\.l /I T Trll\.l n J: <.; III. F 1 I R "If !)( I n F
.lA'" 1Q7n. ?O. ;'Irl. 1.
'"' 1-4
?"J,QR
.lnR nAI\.I. W. \In "I
II R fI n T /I L Fl. n w S C R II R R FRS F n R r. n n I.T 1\.1 r, MIf) r. I. F fl. "1 I :\1(: n F n I I: F I. II F
r,/IS FRnM RI.AST FIIRI\.IAr:FS npF.RIITFn ''''TTII Hlr.H TnD PPFSSIIDFII
JHlIIFX RlIl\.lnsr.H. IIFr. 1QAQ. I\.ln. I). 71)1)-Q
?40() RnwnFN. F.
"ACIn r.nRRnSION ANn SMIIT FMISSTn"l RY KTI.I\.I FYHAIIST r,LlSFSII
RRIT r.FR SOC-TRANS, SFPT 19A9, AR. I\.ln. 5. ??7-":3Q
7403 ROSSI, r.., PERIN. A.
"snME "lnTFS ON RROWN FIJMF PownFRS"
IRON f. STEEL INST-.l, .nCT 1\10 YFbR. 1'07. PRT"IT I\.ln. TO. 13AI)-R
1'404
INNES. .I.A., MELOIII\.If=Y. H.F.
"META'-'.IZEI1 Ar.(;LOMFRATES - A RAW MIITFRTAI. FnR STFFLMAKT"Ir,"
"IRnl\.l STEEL INST (I.nl\.lnnNI. NOV 19AQ. 1'07. PRTNT I\ln. 11.
1437-43
?407 HEMnN. W.r..I..
"AIR POLLIITION PRORI.FMS nF STFFI. TI\InIISTRY"
AIR POLLlJTIOI\I COI\ITRnl. ASSN-,J, ,IIII\IE 1QAn, JO. "'n. 3, ?OR-JR
?40Q
WHI:::ELFR, f).H., nAY, .I.V.
IIPLANI\IFn PROGRAM br.HTF\lFS FFFFr.TT\lF fllR pnL'.IITTnN r.n"ITRnL LIT
r.RAMMFRCY II
EN r, f. M T N .I. .J 1 11\1 E 1 Q A O. 1 AI, 1\1 n. A. I' 0 0-1)
1'410 STnKINr.FR, H.F.
IITnXTc:nl.nr;Tr. TNTERACTTnNS nF MTXTIIRFS nF AIR pnl.'.IITANTSII
INT ,I AIR POLLlJTlnN, ,)I I "IF 1QAO. 1'. Nn. 4, 313-?A
1'417
SIILLIVAI\I. .J.L.. MIIRPHY. R.P.
"PRORI.FMS AND r.ONTROL OF AIR pn'-'.IITTnl\.l TN AIISTRAI. T ""1 HFb\lY
CLAY T I\InlJSTR IF S "
INST FIJFL-J, SEPT lQAn. 33. 1\.10. 73A, 4"J,f,-4?

PANFRTANcn, A.
IIIL FI.II(1RIJRn nI MAr;NFSIO f\lFI RM:NT r.RTn'-TTTr.T PFR L
ELETTROLISI DELL ALI.IJMINln "
METALlIIRG1A ITALT Af\lA , Allr; 19AO. 51'. I\ln. R. '131-"J,
?4n
I' 411tr:,NONF
"HOW TO ROOST RLAST FIIRNACE FFFTr.TFNr.V "
STEEL, NOV 1959.. 145. I\ln. 19. lA?
?41Q FIINKF. r..
"ELEKTRISC:HE ENTSTAIIRIINr.SANLlH~EI\I "
ZEMENT-KAtK-GIPS. MAY 1959.11'. "'n. ". 1RQ-QA
?4?O SMFLLIF. 0.(;.
"FnR HIIRn"l PORTLANn r.FMENT SAMPLF r.n"'TRnl. SPIIRKS FIIFI. Fr.nl\lnMVII
RnCK PRnOIJr.TS. MAY 14AO, £'3, 1\.1r1. '). 17R. 1RO. 1R4
241'2
LFECH. H.R.
"snMF ASPECTS OF
II\II1IISTRY "
CHEM f. INOIJSTRY,
TNnRr.ANlr. FI.llnRTNF r.nMPnlll\lns TH r.HFI.1Ir."I.
MAR 19AO, Nn. 10, ?4?-50
8-31
[.

-------
:)/, ;r;, II A IHH)f~ 1(. A.
"FLFCTf.!1CITV SIIPPI v TI1 L/lR(;F FI.FCTRTC-ARC FIIR~IACFS "
,II 11\1 Hl f.! T 1\1 S T I\! f' 1\1 (~R S - .I . A P R 1 9 /1 0 . 7 () . P R 1 1\1 TT 1\1 (; 1\, n . 7. 1 C) 1 -? () 1
? I, ?I.
1-/ I" f r.Ii< T r. H. n . n .
" I" I. Fr. T P. n - P R F C 1 JJ ! T t\ HI R I" n R h . JAY. "
T ~ n r\1 F. S T F F I.. <; f P T 1 q /1 0 . "J, ~. ~.Ir1.
10. 4<)/-7
7/.? ,;
I\IIII\IF
"/ICY,!" <;T 1"1"1. crn'l P I\I\!V"
1 R r H\I F. S TEl" I. PI ~ R. MAR 1 q /1 (). '2, 7. 1\1 fl. ~. t\ / - II 14
? I. 7 "7 1\1 n ~.I F
" A '. L R II S rr: n P F 1\1 H FAR T H R n n S T S K F V S T ml F SOli T P I IT "
STFFL. nFr: 19<)9.14<). I\ln. ?4. 1()? 1()4
?I. ?CJ
nAHL(;p 1"1\1. S.F.
" PH V SIr: n - r: H F M 1 r: A I.
IH:T PIH1CFSSr-S "
ACTA pn\.VTFCHI\IT(A
R II C K r.. R nil 1\1 n n I" PH n <; P H n R T r. A ( T n ;.11\1\111 F /I(~ T II P F R V
sr:IINnTNAVIr:A. 19AO. Nn. 7. 1<)
?1.'2,() (;RFFI\I. ,I.!. T.. HAVFS. n.M..
"V"CI II I,.,' PL" I\IT FnR ST FF \. nF(;/\ SS 11\1r:."
T R n 1\1 f. r: f) II I. T R A fl F S R F \I. n r: T 1 9 An. 1 R 1. 1\1 n . I. R 1 '2,. R /7- '2, ?
?4'2,1 \..JFRFR. H..I.
""IR pnLl.IITTnl\1 PRnRI.FMS nF Fnllt,,mRV TI\lnIlSTRV"
flTP pnU.IJTInN r:OI\ITRnl. IISSI\I-,I. IIPP 19A1. 11. I'm. 1..1<)7-7/
? I, '2, '2,
IIflAMS. fl.F.
"OIIt\I\ITTTATTVF STllnv nF UMFn FTI.TFR PL\PFR TFCHr,ITr1I1F FlIP
Fl.llflRP.lF ATR pnl.UITTnl\1 STllnIFS "
INT J AIR f. WATER POLLIITTnN. SFPT 19A1. ?(). I\'n. R. ?47-r:,r:,
?4'2,/1 wnRPALL. W.F.
"FUIflRINE IN U1RNISH STm,IF "
RRIT r:FR snC-TPANS. ,1111\11" 19/11. An. I\'n. A. '2,1'11-9
?I,3R
IORAL. S.H.. LnRO. ,I.. r..IIPTA. .I.
"STIIIJTFS 11\1 SVI\!THFSTS nF HI(;H (;Pt\flF r:Rvnl.TTF FPnM STUCFnliS
FI.IIORSPAR-1 "
,J Sr:I f. INnlJS RFSFARr:H. .JlII.V 19A1. ?nn. I\'n.7. //19-7/1
7439 ,.,100RF. R.I".
"FI.IIORSPAR ROOSTS KTLI\I FFFIr:TFN(V"
ROCK ppnDIJCTS. nFC 19/1(). /13. I\ln. 1/. lOR. 11n. 11/
?44()
I\IONf
" PRO IJ II r: T I ON OF F 1..lm R SPAR
TNIJIJSTRIAI. r:HFMTST. ,fI".V
379-1'1'2,
HvnpOFIIIOPTr. t.r.Tn AI\ln Fl.llflR1DFS"
1 q /1 1. '2, 7. 1\1 n. /, '2, 7. I. '2, R. '2, 1 r; - 1 P . A 1 I ~
?447 FSS. T.:I.
"ARMr:O AT RIITLFR "
I R n N F. S T I" F L F 1\1 (; R. /\ II r:. 1 9 /1 1. '2, R. 1\1 n. R. A / -/\ /1
2441'1 SMITH. .I.H.
"AIR pnU.IITTnN r:Ol\ITRnl. TI\I OXVr..FN STFF'.Mt\K11\Ir:. "
J OF MFTAI.S. SEPT 19/11. 13. I\ln. q. A~/-4
?4S? RRANnT. w.F.
"SVMPIlS1IJM nN FAIRI.FSS l,.JnRKS OPFI\I HFL\RTH SHnp"
I R ml F. ST I" F I. F 1\1 r; R. .Ii 11\1 F 1 9 AI. ~ R. 1\1 n. A. 1 1 A - / >1
8-32

-------
-.J,7f-,1.. (;PI\FF, H. M.
"Fr,r11\lnMTCS nF PAW MlITFP.T1\I.S PRFPI\RI\TTnl\, Fnp RI.I\ST FIIP"'l\r.F"
.\ [IF MFTI\LS, I\PR 1QA'1. 17, "In. 4. ?,RQ_o/,
I,() n A
r~I\I..>NFS, T.M., I.nl.//IITF. .IR.. 14."1.
"/1 r.nST 1If\IIII.YSTS nF I\TP-pnU.I/TIn"l r.nf\ITRnl.S Tf-I THF TI'ITFr;P1\P:(1
IRn,,' !\"tn STFFL TNnllSTRY II
RATTF'-'.F MFMnPTAI. JNSTTTIITF. MAY lC}AC}. ?r:;C}
I, () n 7
"IA TT '1 "11\ '. S r. T F. N r. F FIlII 1'1 n 1\ T T n "-I
"FMTssrnN r:r1"ITRn'. RI.l\ST FIIRNI\r.F nPFI..> AT Tf1"-' nDF SP.iTFP. Thie:
S P Fe T A I. F [J R F I (; "I (: II R Q. F. "I T Y S elF "I r. F T 1\1 F n 1-1 ivl lilT r ]r\1 P r~ I I r., p A 1,1 .
\--IASH..n.r... 1C}hQ. 12
PI.M.lTS II
l..nOA vnN FnFRSTFR~ HFTNZ
"THF "IIIMRFRS OF MAN PAST ANn FIITIIRF."
TLLT",nTS IINTV.. IIRRANA. RlnLn(;Tr.1\'- r.nMPIfTFP '-I\R.. I\PfJ lqAA. 74
t.nnq
HFRMANN. F.V.
IIpnp\ILATInN FnRECASTTI\I(; MFTHnnS"
II RF.pnRT nN FnRFCASTTNr, ANn FSTTMIITTN(;
TRANS.. WASH.. n.r....IIII\IF !C)(-,4. A'5
MFTHnns, nFPT.nF
4()10 ATtANTA RFf.TnN METRnpnL TTAN P'-At\iI\IIN(; r.nMMT SSln"l
"FSTTMATTI\I(; Hnl/STI\I(; ANn pnPIJLATTnN nATI\"
(;FnR(;TlI. MARCH 19A9, 4'5
4()l'3 RLtIF. n.n.
"RAW MATF.RTAL.S FOR AI.IIMI"IIIM PRnnllr.TTnl\' "
RIIMINF.S INFORMATInN (}RCI/LAR Nn. 7A7'1. 1qC:;4. 11
4() 17
()\INCAN. W.E.
lI(nl\fC Fl\fT R II T T N(;
ILLINnIS"
A I MF. TECH PIIBL
OPF.RATTnNS AT THE= MAHnNTNr, MTI\IT"-I(; r.n RI1STr:LI\P
NO. ?()40. 1Q46. 14
4023 HIGNETT. T.p.. SIF.(;Fl. M.R.
"RECOVFRY OF FLl/nRINF. FROM STA(K (;ASFS "
IND AND FN(; CHFM. Nnv 194C}. 41. Nn. 11. 74C}?'-7l..Q~
4024 HILL. W.L.. JAcnR. K.n.
"PHnSPHATF ROCK AS MI FcnNnMIr. snllPr.F nF FI.IlIiP P,/FI'
MTN EN~. nr.T IQS4. A. Nn. 10. C}Q4-10nO
4025 JACnR. K.n~. MARSHAlL. H.L.. RFYNnlns. n.~. TPFMFAPNF. T.H.
"cnMPnSITln~1 ANn PRnPFPTIFS nF SIIPFPPHnSPH/lTF"
INn AMI) FI\I(; CHEM. JII"-IE lq4? ?4. NO. A. 77?-77P.
402A LAY. w.r.. .
II~INK ANn FLnAT SFPI\PATlnN IMPRnVFS FI.llnpSP/lR RFr:nVF.RV "
EN(; ANn MIN-.I. 19l..7. 14R. Nn. 10. An-R~
40~Q QIIIN~I. .I.E.
"FUJnRSPAR PRnnllr.TlnN OZARK MAHOl\IT"I(; r.n f\IflPTH(;!lTF r.nLrl "
nFCD-TREFOIL. NnV-D~C IQS3. 7-}4
lin?, 1 Sr:HFNr.I<. (;.
"MINERVAS CRYSTAL FLIJOR~PAR nPFRATTnNS RIlr.K THF TTnE"
ROCK PRonIiCTS. JAN IQ57. AO. NO.1. 9A-101)
8-33

-------
I., (t";'?
S T I" 1/ F 1\1 . T. /1 0
"GFrJLnGY nF THF l\!nfJTH(:,(lTF FlllflPSDI\P nTSTRTr.1
II 0 S 0 r: I" fl I. 0 <; II R 1/ F Y M T 1\1 f' R (I I. T f\1 V F S T T G /I T 1111\\ F T f' I. I)
MF-1.~. 14"i/,
r.rllJ1R /lnr!"
STII11II-S ".,/1P<:
I.(p,"r \,jl-S.'. 1./1MrII\IT, 1,.J/1IJIj-"\I. I~ oR.
""'if I.'. T 1\1 (:, K F 1\1 T II r. K Y F'.II n Q SPA R T i\ T r. T 1\1 (:, S "
"''tT N FI\IG. M/lY lq,)4. "i/.?-')44
I, () 18
I, n/,?
PFTTTT. A.R.
IIF1.lInR 1 nF sr.RIIRRr:RS"
CHFM FNG."iR, Nn. p.
/lIiG 1Q<;1. ?"in-?"i?
St>t'TTH, ,1.1.., SNFLL, H.II.
" S F. L F r. T T f\1 G nil S T r. 0 L '. F r. Trl RC:; "
r.HFM FI\I(:, PRn(;RFSS, ,1/11\1 19AR, A4, I\In. 1. A()-A1
4()44 SHFRWTN, K.I\.
"SCRIIRRFRS FIIR SIIPFRPHflSPH/1TF nFN GI\SFS"
TP/If\IS TI\IST r.HFM Ef\I(;RS, 19')4, SIIPPI.FMFI\IT. c!,? "i1?Q-IJ14()
4() I, ,;
4()/+A
4()4g
L. () <; l
4()')4
4(),),)
K1FU~I\r.K, I\.W.
"THF nFVFI.OPMFf\IT OF Flni\TTI\.I(; RFn Sr.RIIRRFRS "
r.HFM FNGR PRO(;RFSS, 19A1, ')7, NO.3'). <;1-')4
HIIFFSTIITlFR, K.K.
"snllR C F S HIf) (JIIANT IT T F S nF F LIIOR T nF S Fvnl.lIF.n FRrJM THF
Mi\t\llJFACTlIRE OF FF.RTILT7FR ANn RF.LATFn PRonllr.TS"
,J AIR POlUITION CONTRf1L ASSN, nF.r. 19AA, 11, I\ln. 1;>, hR?-AR/,
cnCHRAI\I, C.I\I., SLFFPY, W.C.,
"FIIMFS TN I\LIIMII\IIIM SMFLTTN(;
RFcn\!FRY "
,I M F Till. S, 1 9 7 (), ? '? 1 -4
FRi\f\IK, W.R.
r.HFMI STRY nF Fllnl.IITTnN ".~.II"J
1\ l\Iill\lY MOl IS
"(; I II NT FilM F C AT C H F R STOP S F I. I In RIO E F M T S S T n 1\1"
CHEM ENr" FER 195R, ""i, ~~-~R
GRAVF., (;.,
"nF.TFCTION
STF.FlWORKS
STAIIR, ./AI\I
NAGEL. H.
nF REMnVAL OF
ANn ME ASIIR 11\1(;
196R, '?R, 1\1n.
FI.lJnRINF IN THF WIISTF (;ASFS ilF A
AIR r.1I1ALITY TN TTS SIIRp.nlll\'nTI\IGS "
1,9-1A
SCHIIFNFMAN, J..I.
"AIR POLLlITTON ASPEns OF THE TRml ANn STFFI. Tl\.lnIlSTRY"
II.S. nHFW, PHS, nIII nF AIR POLLIITTOI\I, Wi\SI-1.I'.C.. PHS PII~I. 1\1(1.
999-AP-1, ,)lINE 1963, ~4 .
4057 WFFny, R.C.
"HOW AIR POLlIITIOf\1 CAf\\ RF r.ONTROL'-Fn TI\' A PI.AI\IT"
RRICK C'-AY RECORn, 19(-,7, 151,NO. 3. ')1-')1
40IJR SCHIIFn, A.
"ntIST MFASIIREMEI\ITS Tf\1 r.FRAMTC '.!ORKS . MFTHnns Al\ln RFSIII.TS "
RFR. nFIIT. KFRAM. (;FS., 19(-'R, 4'), I\1n. 11. ,),)7-(-'?
40hO ACKERMANN, C., HFNNTCKF, H.W.
"PRORLF.M OF OIiST MFASIIREMENT IN THE r.ERAMTC TNnllSTPY "
R E R. D F.I IT. K E R AM. G E S ., 19 n R, 4 IJ, 1\10 . 1 1, <; n 3 - A ')
8-34

-------
I.OA1 NFWMAt\I. A.r..O.
"SIMPLF APPARATIIS FOR SFPARIITINr. FI.llflD.Tf\IF
AI.IJMlf\IOSIUr.ATF<; RY PYROHynRn'.Y<;TS"
1If\IALYST. lQAA. q1. Nfl. llD. A?7-11
FRrJM
40A? HRISHIKFSAt\I. K.r..
"RFMO\lAI. nF FLIJnRINF FROM ALlIMTf\I/I RY STF/IM "
KRISHIKFSAf\I. II.S. 1.44?AOA. M/lY A. 1qAQ

1~()A3 THOMAS. S.H.
" 1\ T P P 0 1.1. liT 1 n f\1 MI n r. I 1\ S<; M II f\11I F 1\ r. T II R HI r. "
r.1. 1\ S S 1 f\1 n.. ., q h y. "i () . f\1 n . '5. ? 1 "i - 1 Q
4()o4
R Y n FR. R hJ .. M C MAC K I t\I. .I . J .
"SOMF FACTORS AFFFCTINr. STACK FMTSSTONS FRO/-l h r.1.II<;S r.n/\ITI\PIFR
FII~NACF "
(;LASS INn.. lQAQ. "i(). NO. A. ':\07-1()
4 () A '5 H 0 L M F S. .I. T .. K 0 P P F L ~ I.. R .. ,In f\1 K F. 1\. II .
"FUlTnI7:En Rf:n nTSpnStll. nF FUlnRT/\IF"
INn HI r. C H F M PRO r. F S S n F SIr, N n F v F '- n P. 1 Q f, 7. f,. f\1 n. 4. ,,() R - 1 ":\
40Af, ARRAHIIM. R.P.
"nIiST SAMPUN(; ANn AIR TFSTTNr. Tf\1 Tf\InII<;TPv "
K ERA M . Z .. 1 Q 6 7. 1 q. f\IO. A. 49 1 -9 ?
40A7 Sr.HIIFTl. H.
"OIlST FXTRAr.TION FROM ROTl.FR FI.IIF r.A<;FS"
KFRAM Z.. lQ67. rQ. NO. A. 4AQ-91
400A WENZFl. R.
"nIIST PRORLH~S TN THF r.i=RAMIr. TNnliSTRY "
KFRAM Z.. lQA7. lQ. f\ln. R. 4Q4
40A9 RFI(;HTON. J.
"AIR POLLUTION - THF SPFr.TAL Il\lnIlSTRTIII. PROCFSSFS"
ROY SOC HFAI.TH .I. 19A7. R7. Nn. 4. ?1'5-1R
4070
OLSON. R.S.. TVETER. F.C.. SIIRLS. J.P.. SHAW. R.(;.
"METHOD OF PRO[)IICINr. HYDROr.F:N FUIORlnF Af\ln sn'.IJRTLIlFn
RERYLLIIIM"
11.5. 3.375.060. MARCH 19lif!
4072 AOZSIN. M.
IIAIR POLL liT ION ARATFMFNT IN THF r.FRhMTt. Tf\lnIISTRY II
J AIR POLLUTION r.ONTROL ASSN. ]9AA. lA. I\ln. A. 1":\?-,,:\
4073
RownEN. E.
IIFIRINr. IN THE HEAVY CLAY ANO RFFRAr.TO~TFS
(1950-19b4) "
J ARTT CERAM SOC. 1.9£>'5. iI. NO.1. 11Q-3A
T I\IOIISTR T F:S
4074 MORANA. 5..1.. SIMONS. r..F., FPSTFIN. A.. RI\Y. R.H.
IIPROCFSS FOR PRODIICTNr. Hlr.H PIIRITY RFRYI.I.TII/-I FI.IIORlnF"
II.S. 3.705,03'5. SFPT 7. 19li5
4075
KAR S TFN, H.
II[)IIST FXTRACTION
I N[)IIS TR V"
TONINO-ZIr. KERAM
FOR MAr.HINES liNn hPPARlITIIS IN THF r.FRAMTr.
RIINOSr.HAIJ, 19A5. R9. f\IOS.5-li. 110-1R
4076 SCHLE(;FL. H.
IIOUST REMOVAI- TN THF (;1.A5S ENAMH HI() r.FRlIMIr. TNnllSTRTFS "
r.LAS-FMATL-KERlIMO-TFCH. ]965. 16. NO.3. Rq-Q4
8..,35

-------
4()77
4()7!1
L,n7Q
L.(\Rn
L.()R]
I I" H M /\ t-l ~1. H.. I nr. H f' R. F. W . .
"I1F TFR M HIli T T nr--I f1F F '.lInR 1 ~IF
CI.Jt\lKFR 1I~ln nIISTS"
T n ~I 1 ~I 1,- 7 T r., - K F R /\ M R II ~m <; r. H III I .
SFFRIIr.H. H."".
T~I rFMHIT Tl\lnll<;TRV R/\I,/ MIITFPI/\I.<;
191',') .
RQ. Nns. ~-4. 4q-~4
I: I I F PST F ~I /\ I I . n. I,'.. '.11 I,. /I p. A. I. .
"r.I~TTTC/lL rnMPTI/lTI(l~1 rlF rFRIIMTr FnR""1T~Ir.. MFTHnns
r.H/\RfI(~TFR I7/1TTI11\I nF PIIPTJrIlLf\TF <;vSTFM<; "
""" rFRIlM snr. RIII.'-. 19A~. 44. I\Jn.~. ;:>nq-1~
I/T
r!IIFR. F.
"nll<;T RFMnllllL - A MI\,lnR Hvr.,FNTr PRnRI.F"" I~I THF r.FR/\Mlr jf\lnll<;TPY"
f-IiRn-rFRAtv\. 19A~. n. I\ln. R, ;:>"1',-73
,..,11 I F L L FR. F R II 1\1 7
"MFTHnn ANn MFIINS FnR JMPRnVTI\Ir..
F R n M K T I. ~I I,J /\ S T F r. 1\ SF S "
II. S. .~. J 1'>;:> .43 J. n Fr. ;:>;:>. 1 q A4
FI,Fr.TRTr PRFrTPTTlITJf1~1 nF nllST
I

1. I\ln. '5. 10;:>-ln4 4nR? 7FISFL. H.r... "FOIITPMFNT liNn MFTHnns II<;Fn TI\I AMFRTrlll\' rFMFI\IT wnRKS " 7FMFNT-KALK-r..IPS. lqA;:>. 1'). Nn. Q. ~q]-QR 4()R~ CHATKTN. S.W.. PARKS. T.n.. r..LASSRRnnK. "I\PPARATIIS FnR FLlInRInF III\'IILVSIS " II.S. ;:>.741.')44. APRTI. IO. Iq,)A 40RA r. T . HnLLTNr;swnRTH. r.!I. "TRFflTMFNT nF PHnSPHIITF (1II.(11IM ANn IIRIII\!TIIM". II.S. 2,773,731'>. nFr 11. RnCK Tn RFcnVFR PHnSPHnRllS FLllnR P-IF 1q~" 40R7 HIIRVFV. R.r... "IIRI\I\IIIiM TF.TRIIFI.llnRTf1F " II.S. ;:>.I'>RQ.16'). SFPT 14. 19'54 40RR '~ORq 40q 0 rHAKRA\lARTV. P.R.. RMIFR,IFF, T. "STllnTFS nl\1 THF FI.Fr.TRnLVTIr PRFPIIRIITTnN nF RFPVI.UIIM nXTnF FA nM R FR VI. " .J S r T 1 1\1 n R F SF 1\ R C H (T N n T II). 1 q ~ 4 . 1 ~ R, ~I n . q, A ;:> ') - 3 3 r.,',nss. f;.H.. r;Rnss. .I.H. "PROCESS FOR PRnnll(TTnN nF SIIRSTAI\'TTAI,,-y AMMnNIIiM STurnFI.IH1RInF FRnM nFN f;AS " II.S. 2,7An,I);:>4, FFR ')'. 1ql)7 PHnSPHI\TF-FRFF r..I, n S S, r... H . "PRnCFSS FnR REenv snl. In Ud.CTIIM cnLLnTnllL SILTCIl snl.IITTml FRnM II snu ITl nf\I" II.S. ?,7AO.'5;:>~. FFR '5. ]Q,)7 F 1.11 n R I n F r n 1\, T f1 T ~, T 1\, r.. p p n n MI n WFlIK /lOIIFnIlS FI.llnSTI.Trrr. f1(Tn 4()ql r;Lnss. r,.H.. f;Rnss. .I.H. "PRnnllr.TInt\1 OF FI.lfnqTI\IF r.nMPnll~,lns" II.S. ;:>.7RO,')?;:>. FFR '). ]Q,)7 40q;:> MIIRK. J.R. "snllRrFS nF ATR pnl.l,IITTnl\1 I.ITFRf1TIIRF " T N n F r--I r.. r H F M. 1 q ') S. 4 7. 1\1 n. s. q 7 A - ~ 1 8~36


-------
4nQ4 SFARnR~. G.T.. RROWN. H.S.
"FI.llnRTNF PROr.FSS FnR SFPARIHTn~1 nF MIITFRTA1.S"
II.S. 2.R"1"1.A17. MbV A. 19')A
4 nq <; r. H A R R T ~I. \I.
"FI.llnR T ~IF"
CHIM f. INn. 19')4. 72. ~'n. 3. 524-2R
4n9A
RTFf\IFRT. b.
"F'.IInpSPAp PRFPIIRI\TTn~l: II SVNTHFTTr:
WbSTF: Fl.llnRSPbR RTCH I~1 SIUCII"
CHFM.ING TF:r.H, 14<:;7, 29, 7?l-2A
r.Rvnl. TTF FRnM r:Pllr)F 1If\1n
4nQ7
QIJF:VAII\lIL'-ER, A.
"INOIISTRUI. lJSES OF Fl.IIORINE bNn ITS OFRIVATT\lFS-nAN~FRS Tn
P FRS n N~' F L A ~I f) T H F S II R ROil ~I 0 IN r, S "
CHTM f. INf). (PIIRTS). 19')7, 77, Nn. 1. 41-<;7
4()qR GLnC:KF.R. E.M.
"A'-'IMINIIM FUIOR InF MA~IIIFIlr.TIIRF "
II.S. ;>.A4;>,42A. JIILV A. 195A
4n99 Mnr.KRIN, I., KNIIPP, W.J.
"POTASSIlJM-FLIIORINE (;I.ASSES"
lJ.S. 7,A40,4Rl, JllNE 74, lq5R
4101 TOLLF:Y. W.R.
"PROf)IICTION OF IJR~NTlJM-r.A'-CIIIM HIIORInF"
II.S. 2,RRO,05Q, MARCH 31, 1Q5Q
4103 ALLEN, n.R.
"PREPARATIC1~1 OF ALl!MINIIM FLllnRInF"
II.S. 7.,95R,575, NOV 1, 1960
4104 HANSFORn, R.C. .
" PRE PAR A T I C1 N [1 F R A SIC: M F T A I. F L IIn p T 0 F S"
. II.S. 2,959,557, NOV R, 1960
4105 MnCKRTN, I.
"PRnrilJC:TlON OF METAL FlIlORInES II
II.S. ;>,972,515, FER ;>1. 19A1
410A
FRAIIENOI ENST, H.
"CALCULATIONS ON FLIlORTnE-OPACIFTFn r,'-l>SSFS A~1n THF ,-nss OF
FllJORINF nIJRIN(; GLASSMFLTIN~ "
(;lAS EMAI'- KERAMO TFCH. ]9A], 17, Nn. A, ]94-9R. NO.7, 23R-42
4109 GERNES, D.r.., KIN(;, W.R.
"PRnOlICING AlIIMlf""M FUIORIOE "
11.5. 3,057,6R1. nCT Q. 19A2
4110 HINKLE. J.H~, JR. .
"AlI.JMINUM ANf) sonlllM IIUIMINIIM FUIORTnFS"
II . S. 3, 063 , 799, NO V 13, 196;> .
4111
RAElIMERT, P.A.F.
"ppnr.FSS OF PRnnlJ(TNG FI.llnRT~IF r.nMPnll~lns
FlllnRTNE-r.ONTAINlt\'~ MINFRALS FTr: "
II.S. 3,065.050, Nn\l ?O, 19A2
FRnM
4121 cnCHRAN, C.N., SLEEPY, W.C., FRANK,
"FUMES IN ALlJMINllM SMELTING"
J METALS, 1970, ;;1;>. ~IO. 9, 54-7
W. R.
8-37

-------
/,1;';> F:1~nMHFP. n.I,'.
" 1\1 F H \., /I Y T n H At\1 n I F 1\1 rJ 1\1 M " G 1\1 F T T r. T" r. mn T F "
fCf\fr, F. MTI\I .1. 1QAQ. 17(). 9?-97
1,17-:>' r\lrlf\IF
" H /\ 1\11\1 /\ M T I\IT f\I (; T 1\1 ,~ 1 1\1 ~I F <:; n T t\ "
Ff\Ir. F, I'vITf\I ,I. Nnv 19AR. 1A9. 9?-94
/,1 ? L.
f\1[l!\lF
""ITr'If\IF<:;nTII IITTUTY I-IfT<:; TIlr.nf\lTTF Rn"IMI7/\"
FI.Fr \,lnp.Ln. MAY 19(,R. 11'.9. 33
L, 1 ? "i T T T T M l\ 1\1. n. I,.J .' L F R T r. K. r.. E .
" T II UJ r-.I TT F R E N F FIe II T J n "I "
r.q[\1 r.nf\lG.I. APRIl. JQAR. <;4. ?A-7R+
I,J7A f\lnNF
"Tt\cnl\IITF PELLETS PIIT MFSARI RArK Tn l,.JnRK"
CHFM ~ FNG. Nnv 191'.7. 4<;. An-A4
4 J ? 7 F.IIII [\1 S. H.. Hli [\1 T. L. f\ .
"FFFFrT nF HAI\InUNG PRnrFnllRFS nt\1 r.REEN-RAI.'. PFI.'.FT nil AI. TTY"
MJN FNr.. MAY 191'.7. J9. 1'.1-1'.4
417R
f\lnf\IF
"NFW FRTE
Sr.R FENS"
Ff\Ir. f. MIN
TArnNITE FJ.nWSHEET IIPr.RllnF<; r:nf\Ir.FI\ITRlITFS WTTH FTII":
,I. APRIL 191'.7. 1AR. 11'5-J1R
4179
P F '- FIn FR. E. P.. S r n F T F I. n. .I .
"PRELIMINARY FrnNnMTr 1I1\1/\LYSTS nF
MII\INFsnTII T/\rn"/TTE "
MTN FNr.. SFPT 1967._19. 107-11?
T H F 1 INn F R r. R nil 1\1 [) M T r-.q 1\1 G n F
4131 FTNF. M.M.
"THE FlEI\IEFIrATION OF. IRnN nRFS "
srT AM FR. .IAN 196R. ?JR. Nn. 1. ?R-3<;
413? nFVANEY.F.n.
"THF rnl\ICENTRATIDN ANn PF'-'.FTT7HIr. nF TIlr.nl\11TF "
MI/l.IFR/\LS PRnC:ESSTI\Ir.. .llI/I./ 19"'7. R. Nn. 1. ??-?7
4133 nFVIINFY. F.n.
"THE c:nNC:ENTR/\TTnN ANn PFI.I.FTT7TNr. nF TIlr.nNTTF "
MIf\lFR/\lS PRnrF<;<;ING. Nnll 19AA. Nn. 11. ?4-,R
4134 nFVANFY. F.n.
"THF rnNrENTRI\TION A."1n PELI.ETT7T"Ir. nF TM~nl\ITTF "
MINFRAI. PRnr.ESSTNr.. OFr 19AA. 7. 1A-?,n
413'5
IIRTCH. n.M.
"PYROl.YST<; ANn Ar.r.LnMERATIn/l.1 TRFNns nnMTNATFn FlY PF,-,.FTT7T"Jr..:
ETC"
MTNINr. ENG. FER 1970. ?? Nn. ? TOR-TTn
4137 RAN. T.F.. VIOl.ETTA. n.c:.
"n-L M-I\I FW c:nMM ER r. I AI. I ROI\IM AK II\Ir. PRnr F S S"
IRON STFEL FNr.R. SEPT 19AR. 4<;. NO.9. 101-TT3
4139 MILLFR. ,I.A.
"PITCH HANnl.II\IG 1'" AI.I'MII\IIIM PRfTnIlr.T1n"I"
R F Y NO I. n S M FT A L S r: n M P 1\ 1\1 Y. P 3 1 '5 -'1 7 0
8-38

-------
r---
~~
4 1 4 n t\1 F '. S n f\1. H. W .
"VTscnSITV STARTUTV nF RTNnFRS Fnp. SnnJ::.RRFRr:. J::I,"'r.TPf)l1FS "
C"RI~nf\1 nT\lT<:;fnN. r:.RFAT I.AKFS CARRrlf\! r.nppnPATrr1~1. p. ':\71-':\'.H1
4 1 4? M 1\ f\1 n L. p. H .
"SFPARATTnt\1 AN'n COI.'-Fr.TTnN nF r.ASFnl/S Min PI\RTTr.'rr,AT~ FI.I/flRlnFS"
RnVCF THnMPC;nl\l INSTITIITF FnR PI.At\IT RFC;FlIpr.H. nfCr. f.,-ll. lq7n
414~ WI\TIINARF. T.
" S 1/ S T I In T F S n t\1 P T T r. H F n R S n n F R R F R r:. 1\1\1 n n F S "
NTPPnf\1 LTGHT MFTIIL RFC;F/IRCH L/lRnp/\HIRv. ,1/\P"f\I. p. 'J,,)l-'n'J,
41 44 7. II'R R 7. V C K I. R. ,I .
"!lPPUC!lTTn"'S OF FLIITnT7.!lTION TO THF PRnnllr.nnf\1 nF
/\1.IIMIt\IIIM r:nMPi\NY nF r./lt\ll\ni\. p. ?7'J,-?RC:;
/\ '.IIM 1 ~I/\ "
L.)4'1 r.HFRRY. ,fnHN M. .
"F'.lInRTt\IF RFcn\lFRY TI\I PHnSPH/lTF M!lt\IIIFhr:TIli:>F"
\"'/1 TFR /I.Nn W/\STF S Ff\lr:.lf\IFFR TNr.. p. 1'')
4l4(-' r. I \/R Y. ,I. P .
"Cnt\ISTnFRI\T1n"'s nf\1 MonFR'" snnFRRFRr. r,FI,I.S \-ITTH IIFRTTU'I.
PFCHINFY CnMpMIY. FRMIr.F. p. ]R')-]q')
<;T11I1 S"
4]47 SCIILLIFT. R.
"cnt\ISInFRIITTONS 0t\1 MonFRN CFU.S WITH PRFRI\KFn /\W1nFS "
PFCHTNFY CnMPIINY. FRIINCF. P. ?lg-??q
4]4R nFHLFR. R.F.
"I\IHJ IISPFCTS TI\I THF. r.nNSTRllr.TTON nF t\1.IIMTI\IIIM PI,t\I\ITS"
II Lli M T 1\111 M T 1\1 n II ST RTF -/I K T T F 1\1 -r. F SF L L S C H /I FT. S I., T T7. F R L /\ f\1 n. D. 7'J, q - ? 4 f.,
414q
FRr.I\. nLAV
"SFLFCTT\lF ARSI1RPTIIl", OF FI-,'nRTt\lF FRnM THF (~"SF<; FROM
RFnflCTION nFLLS WTTH I/FRTTCi\L SPTKF snnFPRFPr. I\f\IIII)FS"
TFCHI\ITr.IIL \INI"FRSTTY nF NORWAY. p. r.1":\-qf.,
1\ I,ll fvl T 1\1111-"
4151
HFNRY. .J1lr.K t.
"/\ S.T"nv nF FI\r.TnRS flFFFr.TTI\Ir:. Fl.llnRTnF FMTSqnf\1 FRnlVi
I\MPFRF FXPFRIMFNT/\I. !lI,IIMII\IIIM PFnllr.TTI1I\I r.FI,'.' "
MFT/\LS nT\lISTnN RFSJ::/lRr.H. KATSFR AI.IIMTf\IIIM F. r:HFMTU,'.
P. (-'7-R 1
l() non
r:nRP..
4157 Sr.HMITT. H.
"THF FLIIROII\IF PRORI.FM Tt\1 i\1-"MTt\IIIM PIIlf\ITS "
AUIMJI\IIIM-HIJTTF RHFTI\IFFI.nFN. r,I=PMMIY. p. q7-1 rn
4]'13
MnnRF. R..J. .
"wIl\ln Mlln WFIITHF.R SIIMMARTFS Fnp CHFMTr.I\', PL"t\IT
pnl.lIlTT nl\l r.ni\lTR nL" .
SYMPnSIIIM nf\.1 AIR PrJU,lITTnN r.nf\ITRI11.. p. Q-14
!II" <; T I, 1\1 " 1\1 n II T P
4]')4
i\Nnt\IVMnIIS
"RFRY'-'.1IJM ANn RF.RY,-'. TIIM At,-nyS"
KIRK-OTTVMER FNr.y. nF (HFM. TF(HN.
4'50-474
?Nn Fn. 19A4. VOl.. ':\. P.
4155
1,/11.,-. .JnHN F.
"FLllnRIt\IF r.nMPOllt\lnS 1NnRr.IINIr."
KI~K-nTHMER. FNCY nF r:HF.M. TFr.HNnt..
P. f.,1n-A?"i
?Nn Fn..
lCJf.,4.
IInl,. g.
8-39

-------
/,1 "A
"'1 '07
/, 1 SR
/, 1 ",:)
"'1An
L>l A 1
41A?
41h:>'
;,(,:
I.' r1f'- T f\! S I ''''I. ". M .
'II:: 1\1 r: I "'I F F P T 1\1i, " f\1II r. fl S T F F F F r: T T \I F f\1 F S S S T 11[)y n F F I, III lOT II F
p.ll SS Tlms r:nf\lTPfllu
TP\.' SYSTFMS r.,PflIlP. Mr.I,F 1\1'1. \lTP(~Tf\IT ". Tf\ITFO T;~ OI::PIIOT "'Ill. 1.
nF( 1q7n
fJ."RRFP. .I.r..
uFI.llnRTnF RFr.n\lFRY FRIlM PHnSPHnPIiS PRnnllr.TTn"'I"
(: H F M T r. A I. F f\1 r, T "'I F F R 1 f\I r, P P n r, P F S S. \I n I.. A A. f\1 n. ]].
f\11l\! . 1 q 7 n
p. "A-A?
SfITrTF. .I.W.
u~TP nll"LTTY ST!lI\lnAPns FnR THF pRnTFCTTnf\1 nF FlIP/~ A"!I"'fll,S H'IIi~
FI.llnPTnFS"
.lnIlRI\I"I. nF /lIR pnLLlITTnf\1 Assnr.TflTTnf\I. \lnL. ]q. f\ln. 4. "PRTI,
]qAQ.?":Iq-?4?
Hnnr,F. HARnr,n C.
.'lAIR OIl"LTTY r.RTTFRI" FnR THF FFFFr.TS nF FllIllPTrrFS n~1 MII"I"
,lflIlRl\llIi. nF THF !lIR pnl.l.IITlnf\I r.nf\ITPn,- "ssnCIIITHIf\I. APRIl 1Q70.
\lnL. ?O Nn. 4, ??A-?":I?
KINr." r-..H.
.'I 1\ II Tn 10111 T I r. " N 1\ L Y S I S I '" F F P T 1 U 7 F P P '. II f\1 T S "
r.HEMlr.IIL ANn PRnr.FSS FNr:INEFPINr:. M"V ]Q70, A?-A4
RPFI"'FR. R.F.
"FFFFCTS nF \lARlnIiS FL.llnRTf1F snIIPr.ES mo.l (TTRIIS r-.pnlHH ""If'
FRIlIT PRonllr:Tlnl\l "
FI\IV1Rnw..1ENTAL SCIFI\Ir:F F: TFCHf\lnLnr:v, I/n,-. :>, I\ln.4, ,~p1nl. ]QACJ.
37R-3R1
CHFI\Ir,. .IlIl. I E YF-O
"FLIIOROORr,ANIr: AClns- 1"-' snYRFA"-' LFAI/FS F)(pnSFn Tn FI.IIOPlnF .'I
Ef\I\lIRnf\IMENTAL SCIENCF liNn TFCH".JnI.nr.,y. ifni.. ? f\ln. '5, MIIY ]qAR,
:>'A7-370
cnCHRAf\I. C.M.
"FIIMFS 1"-1 AI.tJMINIiM
R FCnVFPY "
,lnIIRf\I/lI. nF MFTIII.S.
SMFI.TINr-.: CHFMTSTPY nF Fvnl.IITTrl'" ."i\If)
SFPT. ]Q7n. '54-<;7
41h4 PFARSnN. T.r...
"THEM CHFMICAI RACKr-.ROIiNO OF THF "I.IIMTI\IIIM Tf\If)IJSTPY .'I
RRITTS'H AUIMT"-IIIM cn.. P.1-10":l
41A'1 I\l\lnl\IYMnIIS
"II T THF R FAf1Y: NEW Rni ITF S Tn f.lynRnF IlInR T C /lr. Tn"
CHFMI(/IL WEEK. ,J/IN A. 1Q71. P. 47-4R
4]AA
YII. ".q f\1r-.-Hn
"r:t.S (HROMIlTOr-.RAPHlr. TnFI\IT1FTr.I\TTnf\1
EN II 1 R n t-.I M E "-I TAL S r. I F "-I r. F F: T F r. H f\f n I. n r: Y ,
4Q ? - ')
nF FlllnpnrlRr,IIf\ITr.
\lnl.. L. f\1f1.A. ,111"1
/J r. T n S 11
lQ7n,
41h7 WEST. PHILTP W.
"SPFCTROPHnTOMFTRlr. nFTFRM11\IIITTnN nF IITMnspHFRTr. FLllnRTnFS II
EN II I R n "-I. S C I. f. T F C H "-I n '- .. ,III NFl Q 7 O. \! n '-. 4 "'"l. A. 4 R 7 - 4 g 1
41hR KNAPP, LFSTFR '-.
"TR.FATMFI\JT OF r-.hSFSFllnl.IIEn T"-I Tf.lF PRnnIlCTTnl\1 nF i\I.IH~Tf\llIr"11I
II.S. ":I,')03,1R4. 31 MAR 1Q70
8-40

-------
41Aq
CF'.F"'7A. (;..1.
" n F Sf (; I\.iT '" (; AIR POL LilT T 0 "I r. 0 NT R 0 L S Y q 1= M S "
CHEMlr.AI. E"I(;INFFRI"I(; PRO(;RFSS. VOl.. AI'.. "In.
11-4()
1 1. "I n \I .
lQ7().
L'1 7 () R. FEn FR. r..
"IIMMONIIIM NITRATE TRFNDS "
r.HFMICIIL EN(;INEFRIN(; PRn(;RFSS, \lor.. 1'.4, Nn.~. MAY 1qA~. 4q-~~
4171 HTr.KFY. H.R.
"1I1.IIMT"IIiM RFIlIlr.TI Ol\! FFFI.IIFNT r.O"ITRnI. "
R F SO JlR r. F S P. F S F II R r. H. 11\1 r. .. A P P. i\ r. T r r. A ,. !=I P [ Fr... P. 1 -1 1
4177
OOYLF, HAROLD
"THF nOYLE SCRIJRRFR"
INIlIISTRI/lI. ANn F"I(;I"IFFRI"'f,
lq'57, r:,7-A7
CHFMISTRY. \101.. 4Q Nn. 17. [!Fr..
417~ HOYT, r.HARLFS
"AIR OIIALITY CONTROl. IN FLORTnll PHOSPHIITF I"'DIISTRY "
FLORIDA SECTION AIR POL'-'JTION r.ONTRnI. i\SSOr... Or.T. 7. 1qAR
Lt 174
MITCHFI.I., D.A.
"NP/NPK ,TOTALLY SOLIIRLF, COMPOII"ID FFRTTI.T7FRS IISTN(; "ITTRTr.
IICIn"
POWFR:(;AS r.ORPORATIO"1 I.TD, FN(;LANn
4]7'5
ROTHMIIN, CHARLES.
"ENf,INFERINf, CONTRnl. OF INnlfSTRIAL AIT POLLIITIfl"l: STATF OF THF
ART lQA6"
HFATINr" PIPIN(; ~ AIR r.oNnITIONINr" MARr.H 1QAA. p. ]41-14R
4176 HILLYER, JOHN r..
"REMOVAL OF Fl.lIORInFS FROM TNOIISTRTAL WASTE WilT FRS "
II.S. 2,q14,474,- 74 NOV. lq5q
4177
HI.LFR, A..I.
"SELECTION OF AIR POLLlJTION CONTROL FEOIITPMFNT "
FI.ORTnA FN(;TNI:ERTN(; ANn IN[)\lSTRTAL FXPFRTMF"'T STIlT ION.
X\I NO.Q, SFPT lQ61. PIIPER NO. 7nr:,
\/01. .
417R CROCKFR, R.R.
"MTNTMTZTN(; AIR POLI.IJTION r.ONTROI. COSTS"
CHEMICAL EN(;INEERIN(; PROf,RFSS, VOL. 1'.4. NO.4. APRIL 1QAR. 7Q-Rr:,
417q ANONYMOIIS
"FI_"ORInF C:ONTROI. AT (;FI\IFVA WORKS"
INTERMOII"ITATI\I INf)IIQRY A"ln MI"ITNr.. RF\lTFIA'. nEC 1qC:;7, P.77-7A
41RO
A ELL A C K, F R \I IN'
"FUJORI[)ATION r.HEMIC:III.S - THF SIIPPLY PTC:TIIRF "
JOURNAL AMERIr.AN WAlFR WORKS ASSOr.T/lTTON. 1/(11..
lQ70 .
1'.7 NO.4. /lPRII.
41Rl (;FRARn. (;ARY .
"EXTRACTIVE METALLlJR(;Y OF ALlJMINIIM "
T"'TFRSr.TFNr.F PIJRLISHFRS. \101.. 7.III.IIMTI\IIIM
41R2 SCHMITT, H.
"THF. FLIIORINE PRORLFM IN ALIIMT"IIiM PI.IINTS "
AUJMTI\IIIM-HIITTF RHFI"IFFLnF.I\I, (;FRMhI\IY. P. Q7-1 n~
8-41
..' .

-------
L.1 R"
1,1 A')
RI.IIF. n.n.
"PI\W MI\TFPJlII.S FrJP "IIIMTI\IIIM
II ~II TF n q /IT F S [) F P 1\ J.( T M F 1\1 T n F
cIPr,.7A7<:'
ppnnllr.T1rtl\1 "
THF TNTFPTnp. MI\prH 1Q')4.
T 1\1 F fl .
41 >~4
H F I\IP Y. .11\ r K I..
"1\ STI1!1Y nF FI\r.TIIRS flFFFrTINr. FLllnPTnF
1\ M P F P F F X P F P I M F 1\1 T 1\ I. /II II tvI T [\11 1M R F n I ,r T T f) 1\1
flTMF TNTFR.NATJnl\IAL 1II.IIMTNIlM SYMPnSTllM,
Iq A;:>
F M T ,S Sin 1\1 F P II r-1 1 () () () (,
r F I I. S"
NFW YnRK. FF8 1R-77.
nFPT nF HFtll.TH. t=nllrl\TTfll\' III\I!) I"FI.FI\PF
"rnl\ITRfli. TFr.HI\ITQIIFS FnR FLllflRTI1F t=MTSSTnl\IS "
FN\lTPnI\IMFNTAL Ht=AI.TH St=R.Vlr.F. I\'I\THlf\IAI. I\IP pnl.l.IITInN r.nl\ITRfJl,
tln",,,r\I.. MAY 1~. 1q7()
I. li~ A IHI n 1\1 Y I" n I I S
"r.TtlI\IT FliMf r.ATCHFR. .STnpSFI.llnRTrlF FMISSIfH\.I"
rHFMlr.lIl. t=Nr.II\lfRINr.. FFR ;:>4. 1q'1A. p. AA-h7
41A7
I~ 1 AR
4IRq
41 gO
I
41q 1
41q ;:>
41q-:>,
41q4
1\ 1\1 fl I\IY MnllS
"CnMMIII\IITY AIR OIIl\'.TTY r.llInFS"
i\t-1FRICI\N INnIISTR.II\L HyrdFNF AssnCIATTnl\1
1. .I A f\1- F F R 19 Aq, p. q <; -1 () 1
.lnIIPI\II\I,. \lnl.. ':\(). ".In.
C nc HR /.11\1, r:. 1\1.
" r. H F M T S TRY n F F \I n I. II TIn 1\1 1\ 1\1 n P F r. n \I F P Y n F F I 1M F S T f\1 1\ 1.11 M I 1\111 M
S M F L TI f\1r. "
TMS-AIMF Af\INIIAL MFF':'TI\Ir., PAPFR Nn. 17()-7;:>. FFR 1h-1q, 1CIN)
Kt=RR, .lAMFS p.
"THt= Sill. FIIR ANn
II.S. nFPI\RTMEI\IT
I\,ln. A;:>5'1
Sill. F II R I r. 1\ r. J n I I\1f) II S TRY n F t=" S T F R /,1 II I\JT T F n S TAT F S "
n F T H F J 1\1 T t= R I n R, R I I P F III I n F M J N F S . 1 q A". r I I) r. .
K F Y, W A I. L A r. F w.
"MINERALS FOR r.HFMIr.1I1
II.S. nFPAR.TMENT nF THF
1\, n. R ? 4 4
MI\NIIFA(TIIPII\Ir. "
T 1\1 T F R I n R, R I ) R F "" n F M T 1\' F S . ] CJ h <:', r: p~ r .
pnpnFF, C .c.
" 1\ 1\1 F \I A I.t J A TIn N
RFsnIlRr.F.S "
IJ.S. nFPARTMENT
RfPnRT A61]
nF THt= l"t=STFRI\1 PHnSPHI\TF II\lnIiSTRY "I\1f) ITS
nF THF TNTFRInR, RIIRt=1I1I nF MTf\tFC:;,
1QA'1,
L II X n f\1, S. (; .
"F,-"nRInF. F.MISSInN nIJRII\Ir.
INTFRNATlnNAL snr.IFTY FnR
APR.TL ]970, AI-A5
FIRI[\Ir. nF pnTTFPY If\1 r.nl\ITII\llInIIS KII,I\'<;"
FLllnRTnF RFSFIIPU~. IIn,.. ?, 1\11'1.7.
eRn S S, F . '. ., .I R .
"FLI1nRlnF IIPTAKF FRnM
TNTFRNATTnNAL snr.IETY
APR.IL lQ70, CJ7-QQ
r.YPSIlM pnl\lns "
FnR F1..llnRTnF RFSFtlprH.
II n ,,. '2, hi r I . ? .
RnSFI\IRFR(;FR. r..
"THF FFFFCT nF FUJnRInF FMISSInl\l<; NFAR II HYI1Rnr.FI\1 FI,llIlRTnF
F"r.TnRY"
PHFRf\IIITInN"L snr.It=TY FnR FLllnRInF PFSFI\prH, Ilnl,. 1. ,lllt,Y
1 Q A A, 41 -4Q
8-42

-------
41 q <;
41q,;
41 q 7
41qR
41qq
4?00
I
I:
4?01
41'01'
M/H:nOt\16Ln. H.F.
"FI.IIORTnF AS flIR POU.IIT...t\IT "
It\ITFRt\It\TIONt.L SOnFTY FOR FLllnRInF
1 q,;q. 4-1?
RFSFARr.H. I/nl.. 2 t\ln.1. .''''1\1
KR Fr.HI\I[ AK, .1.
"FLIIORInF HAll\Rns I\MrIW~ wFLnFRS"
It\ITFRNATTnt\II\L SOCIFTY FOR FLIlORTnF
1 q,;q. 1 ':I -? 4
R F S F 1\ R r. H . Iln I.. ? Nil. 1. . 1 MI
M6cIICH. p.
"AIR. pn,-,.IITfnl\l RY F'.lInRTnF r.nMPOIII\InS I\IFI\R 1\(\1
TNTFRt\II\TInN61. SOr.IFTY FnR FLllnRTnF RFSr-I\Rr.H.
19';9. ?R-3?
I\1.!IMTt\IIIM FM:TrlPY"
I/nl..? I\ln.1. .1 A 1\1
COl. n M R T N I, M.
"nRSFRVATIOt\IS ON FLltnRTNF POLLIITTON
AI.I/MINIIM PI."'NT IN TRFNTINO"
It\ITI"Rt\16TTnt\IN"'L SOCIFTY FOR FLllORTnF
19';9, 4()-4R
nilF TO FMTssTnt\IS FRnM "'1\\
P F SF 6 P. r. H. \I n I. .? "I n . 1. .1 61\1
C R 0 S S , F. I. ., JR.
"FLllnRInF FMISSTONS FROM PHOSPH"'TF
INTF.RNATION"'L SOCTI:TY FOR FLIlORTnF
APRTL ]969, 97-105
PRnr.FSSTt\Ir:. PLANTS"
RFSFARr.H, \lnl.? Nn.?
CAVI\r:.I\IA. r,.
"FUlnRft\IF - CONTA'II\.ITN(; Tt\InIlSTRTAI. POI.'-'ITAI\ITS "
INTFRt\I/lTIONH S.nCIFTY FOR FLiJORInF DFSFARr.H. VOL.? "'0.4. Or.T
19 f>9, ? 1 4-??l
ROVAY, F.
"FFRTILIZFRS "
INTFRt\IATION6l
1969, ???-??R
SJlCIFTY FOR Fl.1lORInF RF<;FARr.H. \lnl..2 Nn.4, nr.T
C R 0 S S. F. I. ., .I R .
"HIGH FLUORIDE U:VELS HI A cnRIlS (;ROVF nilE TO A r;YPSIlM POl\ln
DYKF RRFAK"
INTERt\IATIONAl SOCTETY FOR FLIlORTnF RFSFARCH. VOI..3 1\10.1. .1"'1\1
1970, 27-30
4203 SIMONS. J.H.
"FUIOR T NF CHEM I STRY"
ACAnFMIC PRFSS INC.. PIIR. 1950. 1/111... 1. A15 PP.
4?OR SIN(;MASTFR ANn RRFYFR
"F.N(;It\IFFRTf\I(; ANn FCONOMTC STliny OF FMT<;STnN r.nt\ITRnL"
SIN(;MASTER ANn BRFYFR. Tf\.lTFRTM RFPnRT. 197(). ':I() PP
42?:1 ANONYMOIIS
"AT THE REAfW: NEW ROIIHS TO HynROFLlInRIC A(In "
C HEM T C A L W F F K. n ., A t\/ 1 9 7]. ? p
42?5
4?31
VAR(;A. .1.. .IR.. PRTNr.TPAI. TNVF.STI(;ATOR
"SYSTFMS ANALYSIS STIJf1Y OF THE INTFr,RATFn IRON Af\ln STFFI.
TNnIlSTRY. CONTRAr.T t\tn. PH2?-6R-';<;"
nTVISION OF PROCESS r.ONTROl ENr,INFFRINr,.NAPCA.15 MAY 19';9
MCC"'NN, C,R.
"NDeX) FMISSTONS liT LnW FXCFSS - AIR IF\lFLS TN PIILVERTlFn-r.nIlL
COMRIIST I o t\1 "
AMFRICAN SOCIFTY DF MFCH"''''TCAL FNr,TI\IF.FRS. 7()-W6/6PC-3. A Aile;
70, 9 P
8-43

-------
/, :; 'J, 'J,
L, 7 ">, /,
47''',(.,
KIRK.IlTHMFP
IIIII.U\IIITIIM IIlIln IIRIIIIITIlM CnMPnlll\lns"
FN(YCI.l1PFnTII flF (HFf'-IT(t\I. TFrH~lnl.nr..Y. 1Q("P.
KTRK. nTHMFP
"FI.llnRT~IF rnMPnlll\InS TI\'npr;IINlr"
FIII(Y(U1PFnlll nF (HFr-11(1I1. TFrHlllnl.nr;y. 1qAR
SIIR \lFY
" T F I. F P H n 1\1 F S 1\ M P I, I III r;
I. n S t\ III(:. F L F S A R F 1\ II
TFI.(nlll
flF RIII\lnnMIY r,HI1SFI\' "'llnnT7T"tr., PI.IIIIITS Till T~I",
4.7">'7 MI-TI\I.S HIII\lnRonK I/nl..?
"HFI\T TRFATII\Ir;. r.I.Flllllp.lr;. Allin FTI\iTSHTIIIC:"
t\MFP,TUIIII snrTFTH nF MFTIII.S. RTH Fn.. 1qA4
/,7 ':In
1I1I1(l111YMIlIIS
II T H F n I I. II 1\1 n r; II S .1 n II R III II I. "
n TI. 11111() r; A S J nil R N 1\ '.. R F F I 1\1 I 1\, r; I S S II F. 1'1' (.1 II P 7 1. P p. q ?, - 1/ ()
41' ':Iq I\IFI.snlll. W. I..
"PFTRnLFIiM "
RFFTI\IIIIIr; ENr;INEERINr.. 4TH En.. ]95R. Mrr..RlIl.J-HTl.f.. P. 7':J,R
/,?L+(1 In I. AI\ln f,lI S .lnIIRIIIII'.
IIIIIPRA/0I1F.ST TnlllS "'I\ln III\ISI./FRS"
THF na liNn r.IIS .lnIlRI\llIt. ?? FFR 71. PP. A"-71
L,741
RFSHFIIRFS. R.I..
"PFRsnl\llIL r.nMMIJt-.1 ICIIT Inl\I"
IJt-.II\lFRSAL nIL PRnnlJr.TS cn.. WFSTERN SFP\llrF n1STRI(T. A MIIY 71
474~ KTRK. nT~MFR
IIFN(yr.LnPE()IA nF r.HFMH-:lIl. TF.CHt-.lnl.nr;y "
I t-.JTFR sr: I ENr.F PllRf, I SHFR S. t-.IFW ynRK. I 9A'1. \In " . 9
4 7Lt ':I
41'44
4?4A
(HFMI(III. Ffllr;II\IFFRING
"FI.llnRI1I1F-r.HEMI(ALS r.m-IPf.F.X r..FTTTIlIr.. t\ RTr.. R0nST"
CHFMIClIl. EI\Ir;INFFRINr... 1R .1111\" AC;. PP. q7-94
SHRFVF. R.N.
"r.HFMICI\I. PRnCFSS IIII()IISTRIFS "
(HFMlr:lII. PRnr:FSS INnilSTRIFS. ,Rn Fn.. 19(,,7. Mr,r..Rt\H-HTI.I,
f\lFW ynRK
r. n. .
III\IONYMOIIS
"Fl.\lnRSPAR lIN() CRynUTF."
Mlf\lERlII.S YEARROnK 19M~. vnL I-II.
IlF MTII1FS. WASHI"-Ir.TOIII n.r:.. 19A9
, J S n F P T n F I III T F RIll R. R II R F 1\ II
41'47 KIRK. nTHMFR
" Fl\1 C Y C 1. n P F n I A n F r. H F M I r. II I. T F r. H III n I n r.. Y II
I IIITFR sr. I EI\I(F PIIRI. I SHFR S. I\IFI.J ynRI<. , qAI.). 1/01,. 1'1
41'48
Mlnl\IYMnIJS
II I R n III Allin S T F 171. "
MIIIIFRIII.S YF.ARROnK lqAR. I/nl.
nF MINF.S. WASHlllir..TnN. n.c..
1- T T. I' S n F P T n r- T lilT F R I n D. R I I P F 1\ II
1QA9
4? 4'1 1'.1/1 r.. F!.. H.
" n F= T F r. T T n III ANn REM n IIA'. n F F 1.11 n R TIll F I III W /I S T "' r.. l\~ r- ~ 11 F S T F F f.I" [l r.> ~ S II
STt\IIR-HFINHALT LIIFT. \In!.. ?R. IIln. 1. .111111 j9AR
8-44

-------
4 '? <; () F f\ R 1 "I. p.
1It\1.IIM1"IIIM. PROF11.F OF ""I INnIlSTRY"
M F T t\ L S W F F K. M r. r. R t\ H H 1 I. I. I "I r. ., 1 q A q
4;><;1 F1"Ir.FR. r..r..
"11.LI"101S FUlnRSPhRII
1LLI"101S ST/.ITF r.FOLnr.Ir.I\I. SIIR\!FY. r.TRr.lll.lIP 1QA. 1Qhn. P. ;>l.
~;><;;> K1RK. nTHMFR
"FI\lr.Yr.I.nPFn1t\ flF r.HFM1r.I\L TFr.HI\lnLnr.y "
T "I T FRS r. 1 F '" r. F PI J R '. 1 S H F P S. "I F W Y n R K. 1 q A". \I n,.. 1
4;>')3 MnYFRS. n.
III\IF.W TFr.HI\IIOUF.S IN ALlIMINIiM PRnnllCTTnl\1 "
CHF.MIr.AI. ENr.INFF.RING. '5 .IIINF. Iqh7
4;>,4 HICKFY. H.R.
IIPERSOl\IAL r.nMMIJI\ITr.ATIfll\11I
FFR Iq71
4;>5'5 KIRK. OTHMER
"F.'Nr.yr.LOPFn1A nF r.HFMTr.f\I. TFP-II\lnLOr,v"
I '" T FRS C I EN r. F P tJ R I. ISH FRS, '" F W v 0 R K, 1 g (-.", 1/ n'.. 1 ()
4'?'30 TRW SYSTEMS GROIIP
IIr.LlISS FIJRNilCF FM I SS IOl\IS ARATFMFf\lT "
E!\IGJNFFRJ!\Ir. STllfJY PRnr.RAM, MARCH Iq7j
4;>')7 KIRK, nTHMFR
IIFNr:YCLOPEnIA OF r:HFMTr:AI. nr:HI\IOLOr.Y "
I"'TF.RSCIF."'f.F. PIIRUSHI7RS. /lIF'" YORK. ]QA". 1/01.. P
'4;>'3R
WFYL, W.A. .
"FUIOR I"'E r:OMPrull\lnS TI\' r.1.ASS TFf.HI\10Lnr.Y hl\1n r:FRI\MIr.S "
F'-IIORINE CHF.MISTRY. VO'.. I. STMn"'s. ,I.H., F.n.. f\lF'4 ynRK.
ACAnF.MTC PRFSS. Iq5(). P. 5')R '
4~'3q GAITH. W.'-.
"T"'f)flSTRTA,- CHEMIf.t\I.S"
.I. WILFY A!\ln SONS INr... 3Rn Fn.. ]<.)0'
4;:161 TRIoI SYSTF.MS r,ROIIP
"AIR POLLUTANT EMISSTnN Ftlr.TORS"
DEPT OF H.F..W.. CONTRACT 1\10. ?;>-oq-Ijq
4?h?
MANIIFACTIIRING r.HF.MISTS ASSOr..
"ATMOSPHF.RIr. F.MISSIO"'S r.ROM WFT-PROr.ESS PHnSPHflRrr. lIr.rn
MANIIFACTIIR F"
PIIP>UC HEALTH SF,R\lTCF.' nF.PT OF HF.t\LTH Fnllr.I\TTnN ANn W17/.FARF.
APR 7C1
4;>63 RIXRY, n.w~ .
IIPH.oSPHATE FERTIU7FRS: PRnPFRTTFS 111\1[) PRnr.FSC;F<; 11
THE SULFUR INSTITIITF. TF.CHI\IIr.AL RIILLFTTI\' "'n. R, 110 nh
4704 SPFALMAN, M.L~
"PERSONAL cnMMIINICATTn"J"
MAR 71
4;>", II 1\1 0 I\1Y MOilS
"SIIPFRPHOSPHATE: ITS HISTORY. CHF.MTC;TRY IIf\lf) MMIlIFflr.TIIPF"
11.5. nF.PT nF Ar.R Ir.IIL TIIRF ANn TFNI\'FS".FF VhLLFY IIIITHnR TTY
8-45

-------
/, :.' ("'\ (,
/, ? (, 7
/,7(-' fI
I,;' Aq
!.! f II \ T ~I sri ,,1, ,I F R P Y
"PI:RSflNIII. r.rJMMIJ~ITr./!TTn~I"
I:> R 1, II P P 7 1
SlN~M/\STFR liNn RRFYFR r.rJ.
"(:r-n,I'!QIII. TI-'r.H~lrnIJFS FI"JP 1-'1.lIfJRTnF FMTSSTn~IS "
F~I\lrRnhtr4FNTI\L HF/lI.TH SFPI/Tr.F. SFPT 7()
PI-'FI.F. R.
"r.1rr'If~I(; F~Ir,r~IFFPS HMlrH,nnK "
.lrJHI\I Hrl.FY 1I1'1f) sn~ls. rr'Ir... 1\1 F I.,' YIJDK. '~I)r, f'["I., '~r.>I)
]lJ47
Pi) , I.; 'I 1 [.1 (.: ,
TIlr,(~IIRT. A.F.
"H/lt\lnRClnK nF MTI\IFR/Il. nRFSSING"
.lnH~1 I,.JTI-FY liNn SONS. I~Ir:.. t\IFW ynRK. 1q4')
4?7() KIIPF/!II nF MT~IFS
"M r f\1 F R /I ,. S Y FAR R I JI)I(
IIS~Pll-1QAq
L.771
/.77 ?
477:1,
lQAR"
r'ir. K F F. A. r, .
"SYSTFI4S STllrw
T ~I nil S TRY II
r,I/lPCII r.nt\ITRI\r.T
n F F M T S S T n t\1 S P R T M 1\ R Y t\1 n ~I - F F R R nil SSM F U T 1\1 (;
PHRA-(-,')-R')
SMI1r.H. n.r..
"InF.NTTFICATJr1f\1 At\1f) OII'lIl.ITATIVF r.HFMrr:1I1.
n. VAt\1 ~lnSTRIINn r.n.. f\IFI,.J ynRK. 1Q4(-,
fIt,l /II. Y S r S n F 1/, T ~.I F R 1\ I. .S"
SI,IF.Ft\IFY. ,I.W.
"PHnSPHI\TF Rnr:K"
PRFPRTf\IT FRnM 1qAq RIIRFIIII
\..'IISHHIr,TnN. n.r... 1Q30
n F M T t\1 F S M T ~I F R 1\ I. S Y F II R R n n K .
4/7L. nTRFCTnR nF CHFMIr.AL PRnnllr.FRS
" t\lnNF"
STAt\IFnRn RFSf.ARr.H If\ISTITIJTF. MFNLn PARK. r.AI.TF.. 197()
477') Af\lmIYMI.11IS
"nIRFr.TnRY nF PWf\1 Mln STFFL wnRKS nF THF IISh Mil) r.6f\ll\nll "
td4FRTr./lt\1 IRnt\1 /11\11) STFFI. INSTTTIiTF. \.1I1SHTI\I(:H11\1, n.r.., 1970
/+77 A
4777
r,RFAT
"R4 Tf-!
\..jnRK S
( P4R)
RRITtdt\1
/I t\1 t\1 II A '. RFPIIRT AI.K/!I.I FTr.."
RY THF r.HTFF TNSPFr.TnRS. 1Q47.
ANn R<;P; 1\1\11\lIlhl. RFPrJRT (1q4Qj
H . M. S T 1\ T r (11,' FRY n F FIr. F
ANnt\IYMnIIS .
"r.FMFt\IT AI\ln STRIIr.TIIRI\I. r.LAY PRnnllr.TS "
I I. S. n F P T n F r. n M M F R r. F I Q f-, 7 r. F f\1 S liS n F M Mil 'F /I r. T I I P F P S .
Mr.67(7}-3?R. WIISHTNr,TnN. n.r... 1Q70
4 7 7 R Y n 111\1 r:. \". H .
"r.nhl.-RTTIlMINfliIS ANn I.TGf\IJTF MT~.IFR/!'.:S YFIIRPf1l1!< 1Q(,R"

RIIREAII nF MINES. \In I.. 1-11. \.JASHTI\IGTrl~l. n.r... lCJ{,q
477Q II I\lnf\IY t4nll S
"r.nf\ITRnl TF(H1\IIOIIFS FnR FI.llnrnnF EMTSSTfl~IS (nR/lFT r.npy)"
nFPIIRTMEI\IT nF HFI\LTH. Fill 1r.1\T 1nl\I /11\111 \,'FI_FflRF. SH'T 7()
8-46

-------
4?RO Al\lfll\lYMnllS
"pnRr:FLAIN FNAMFL TNC\TTTIITF"
pnRr:FI.ATN FNAMFI. TNSTITIJTE, TI\Ir... WASHnl(~Tnr,l. fl.r... 1Qf.,Q
4?P1 nnllr.I.AS. H.
"r.n"L"
SRT. MIIY A7
4 ? R? I.. ~ F. ". A .
"PFRsnI\IIIL r:nMMIlt\ITr:/lTTnl\l"
TRI,.I SYSTFMS r.pnjlP. MAY f.,7
4?R 3 /lNnNYMnllS
"r.PI TRFNDS ANn FnRFr:/lSTS"
Tl\lTFRNATInNAL SYSTFf04S OFc:;yr.N. Tt-.'r.,. .11It-.'F 7('\ - f~"V 71
1..?R4 SIR
"".S, Fl.FCTRTr: POWFR .Tf\JnIlSTRY"
M/lY (,7. RFPnRT Nn. ":\?1
4?A'i K INr., .W.R.
"PFRsnNAL cnMMIiNICATTnt-.I" .
ENVIRONMFNTAL PRnTFCTTnN Ar.FNr.V.MAV 71
4?Ao RnVARNICK. R,
"IMPACT OF CHANr.ES TM STEFLMAKTMr. TFr.H~lnl.nr.v II
ARTHIIR n, LTTTLF. TNr.,. Nnv oQ.
4?A7 HIIRn, D, A,
"STFEL II
SRI R~pnRT NO.lq2, DFC 03
4?AR SEMRAII, K. .
"AIR POLlIITTnN ~nNTRnL "
SRI .RFPnRT Nn..-31)":\.; Allr. I)A
4;:1Aq LFVY, Y.
"ALIIMINIIM: PAST ANn.FIITIIRF "
FEnER~~ RESERVE AA~K OF SAN FRANr.Isr.n. 1q71
4;:1qn
RROWN, M.S.
"PRlJnIlCTION,
THE"
R.A, Pf'AFr.FR
MARKETINr.. AND CONSllMPTTnM nF r.npPFR ANn AI.IIMTt\IIIM,
cnMPANY. lQoA
4i'Q 1 ANnNYMOIIS .
"MINFRAL FACTS ANn PRnRLFMS"
RlIREAII OF MINES, II,S. nFPT nF INTFRTnR. 1Qo'i Fn.. PP. ??7-?40
4;?Q7..HURD, n.A.
"CEMENT"
STANFORD RESEARCH INST TTIITF, MAY (1)
4?q 3 ANnNYMOUS
"MINERAL FAr:TS ANn PAnRLFMS"
II,S, DEPT nF INTFRInR. RIIREAII nF MTNFS. 1Q"C:; Fn,. PP. ?O?-?O":\
. 42q4 PRIIITT. E.~.
"II,S, PETlltnlF-IIM INnllSTRY "
STANFnRD RFSEARCHINSTITIITF. Nnv 04
47.q c:; ANnNYMOUS
"ANNIIA!. REFININr. SIIRVEY"
THE nIl. ANn GAS ,JnIlRNAL. MAR 71
8-47
-. - d__.'_-

-------
I, ;".) /-, II t\lnt\'v~1[1IIS
II r. I-f F ivI T r. II '- P IH1 F T '- F. S "
Sr.H~IFLI- PIIRLTSHTNr, r.n.. .IIII.Y 7n
1,;)q7 KIRK. rlTHMFP
1IFr\Ir.Yr.I.nPFnT A nF r:HFMTr.M. TFr:HNnl.nr.V "
TI\ITFRSr.TFNr.F PIIRUSHFRS. NFW ynRK. lqA~
4;:19 R
SFr.RFTI\RY nF HFI\LTH. Fnllr./lTIIlI\I /If\tn WFI.FIIRF
II N /I TlI1I\I /I L F MIS S If) 1\1 S T II 1\1 n 1\ P n S S T II n Y . to P F P n R T TnT H F r. I' /,1 r.. P F S <;
[IF THF IINHFO STATFS"
nFPT~ IJF HEALTH. Fnllr:IITTnN ANn WEJ.FARE. IIPpF;Nnlx F. MIIR 7n
I, ;:I q C) III. '. F ~I . R. I. .
" r FRS n N /I L r. n M M II N I C to T Hll\l"
PRI. TRI.j SYST~MS r.RnIIP. APRIl. 71
I. .--Inn
T()TFRA. R.S.
IIPI\RAMFTERS WHIr.H II\IFIIIFI\Ir.F FLllnRInF FMTSSTnNS Fp.nM fWD SliM
pnHns "
1I~IT\lFRSITY nF FL.IlRTnA. MAR 7n
l, 301 IIPcn-MSA
"STACK SAMPLINr. STllnTFS"
/lPCn-MSA. ]96~-lq7n
~~O;:l ARERf\tFTHY. R.F.
"MFTHnn FnR nF.TF.RMINATlnl\l nF FI.llnRTNF TN r.nl\l."
RIIREAII nF MINES. I'.S~ nFPT nF TI\ITFRTnR. LoJASHT",r,TnI\l.
11.r... lQA7
~3n-:l,
CAPLAN. K..f. .
"WFT r:nLlFr.TnRS ANn ARsnRRTInN nF r,ASFS"
flIR pnLlIlTInNMANIIALI PART IT r.nNTPnl. FnIITPMFI\IT.
CH. q. AMERICAN TNnllSTRTIIL Hyr;IENF Assnr.. 19hR
r.H. A Min'
~3()4 TnMtoNY
"AIR pnU.YTION RY MFr.HIIl\iICAL MFTHnns "
Il\lnllSTPUL WASTE nispnSIlL. REH'HnI.O PIIRLTSHII\Ir. r.n.. lQf,R
4 3() I) 1\ I\lnl\lYMnl JS
"PRELIMINARY REStJl.TS nF THF AI.IIMTNIIM II\InIiSTRY STliny"
SINr.MASTFR~RRFYFR
43nA AFRnTFr.
"WET Sr.R,lJRRF.RS 11\1 THF PHnSPHATF FFRTTI.T7FR Tf\tnIISTRIFS"
II FR n T F. C I Nnll S T R I F. S. r, R FEN W I r. H. r: r 1 "11\1
4307
RnSSANo, A.T.
"RECENT OEVElnPMENTS IN THFr.nNTRnL nF /lIR pnLI.IITTnN
PRIMARY A!.IIMINIIM SMF.LTFRS T",1 THE I'.S."
SFcnNnINTERNATIONAI. r.I.EAN AIR cnNr.RFSS. WIISi-fTNr,TnN.
A-II nFC 7n .
FRnM
n.r...
430R KEENAN. R.r..
"INnIlSTRIAL Hyr.IENF AI\In TnXIr.nI.nr,y"
vnl. /6. PP. /41.1944
430q nnERsr.HIIK, v.c.
"FLFr.TRnlYTIC PRnnllr.TTON OF AI.I/MJNIIM "
CANAniAN PATENT 613,3';7 ('IAN All
8-48
. ~.,
"..-,....,-:;',

-------
4~10
RVSS, T.r,.
"THFMISTRV nF FLllnRTNF Mln ITS TI\lnI~r.."r\ITr. r.nMpnll~lns"
S TfI TF P II R I.T S H T 1\, r, H r 111 SF F n R S r. T F N T T F T r., TF r: H I\IT r. II L, ANn
r.HJ::MTr."L I.JTERATIIRF. Mnsr.nw. 19')1,. I\Fr. TR ?\9?7. PART']
r. ? II.S.
4 ~ 1) w T 1- L A R n. H. H.
" T 1\1 n II S T RIA I. F N r, 1 N F F R I 1\1 r, r. H F M I r. A'- /.I 1\, A I, V S T S"
\Int. "i. 19::\'3. P. 7
4~1? WIlLI\Rn. H.H.
"ANAL. r.HEM. II
ANAL'. r.HFM. ,vnL ?? 19"i0. P. 1190
431::\ SHIIFV. r,.A.
"nFFlr.IAL'Ar,R. CHFMISTS"
.I. Assnc. nFFlr.IAL Ar,R. CHFMISTS. vnL. lR. 1q~"i. P. 1"iA
4314 REVNnLns, n.5.
"nFFICIAL I\r.R. CHFMISTS"
.1. A5SOI':. OFFICIAL At;R. r.HF.MISTS. \lnr. lR. 1R,,\"i. P. lOR
'4'31"1 ARM5TRnNr., w.n. ,
"INn liST RIAL ENr.INFFRINr. r:HFMIr:A'- ANA'-VSIS"
1I\ln. FNr,. r:HEM. ANAL. Fn., vnl. ,R. 19~A. P. ~R4
4311, I\IIFLSFN. .I.P. ,
"AM A ARr:H. INn. HYG. ANn ncr.IIP. MFn. "
1 N n A M A ARC H. TN n ~ H V r,'. ANn n C CliP. M F n .. VOL 11. 1 9') '). p. 1-.1
4317 NEWMAN. A.c.n.
"ANAL. CHFM. ACTA. "
ANAL. CHFM. ACTA., VOL 19, 19')R. p. 471
431A ZIPHIN, I.
"ANAL~ r.HEM. IU
ANAl. CHEM.. VOL 7.9.191)7. PP. ~10
4319 NIELSEN. H.M.
"ANAL. (HFM. "
ANAL. CHEM., VOL 30, 19"iA, P. 1004'
437.0 SII\Ir,FR, L.
"ANAL. r.HEM. "
ANAL. CHFM.. vnl 26, 19"i4, p. 904
437.1 HAtL. R..J.
"ANALYST II
ANALYST, VOl~ 6~, 1963. P. 76
4322 AtCOCK. N.W.
"ANAL. CHEM. II
ANAL. CHEM.. VOL 40. r9AA. p. 1397
437.3 TAVFS. n.R.
"ANAL. CHFM. "
ANAL. CHFM.. VOL 40. 19AR. p. '04
4324 TAVFS. n.R.
"TALANTA "
TAtANTA. VOl. 15. 19AA. P. 9A9
43?5 TIISL. .1.
II ANAL. CHFM. If
AI\IAL. CHFM.. VO'- 41. 191,9. P. 31)?
8-49

-------
/, 'J,? f,
STII!\RT. .1.'..
"/U,IIILYST"
III\IIII.YST. ifni. Qe:;. lQ7(). p. In':\?
1,'1,77 F\FI..r.HFq. R.
IIT/lI.II~IT/I "
TIII.M1TII. IInl. A. 19f,1. PP. HA':\.-A7()
1.-~7~~
p.llrlKn. 11.1(.
II 7 H I HJ. 1\ t-.I /II.. K H T M. "
/lHIlP. 1I~11\f.. KHTM.. \In'. 7. 19');>. PP. ;>Al-?P4
4'),?Q MIII.'Kn\l. F.M.
"~Jr"1\/YF MFI.nny fiNAL T 7 /I KHTM "
SnSTA\lA pnn7Fr..,t-.I. vnn.. lQA7. e;Q-A4
4'),,:\() P.IIIH1Tr.K flNn .J/lr.Ksml I.flP..
"(lMAnA(-F nATh-SHFFTS"
RIIRnrr.K ANn ./Jlr.Ksnl\l LAR.. ,.,IISKF(:,.nl\J.MTr.H.
4'1,'),1 IIn"MS. n.F.
"M,lhl. r.HFM. "
flt-.IAI.. r.HFM.. vnl. ':\? 19An. PP. nl?-B1A
/. '), ':\? I.' F <; T. P. W .
"F '" V. Sr.I. ANn T F r. HI\lfl '- . "
FNV. sr.T. AND TFCHNnl.~ \lnl 4. 197n. PP. ~R7-4Q1 .
4'J,'),':\ wTllflRn. H.H.
"ANAL. r.HFM. "
1If\IAl. CHFM.. vnl ?4. TQ"i? PP.. AA?-AAe;
4,:\ '), 4 !. T 1\1(:,/\ 1\1 F. .J..I.
"1\1\11\1.. r.HFM. n
1If\IAL. £:HFM.. \lnl 3Q. lQA7. p. AAl
4'),'),<=; FRANT. M.S.
"SCTl. "
S£:IL.. VOL 154. 19M,. P~ 155':\
4':\3A S£:HlILTZ. F.A.
"flf\IAl.' r.HFM. "
fiNAL. CHFM.. \lOl 43. TQ71. p.'5n?
4'),'),7 RAIIMAf\IN. F.W.
"ANAL. r.HIM. Ar.TA. "
ANAL. CHIM. ACTA.. \In!. 4? lqAR. PP. 1?7-13;>
433R nIlRST. R.A.
"ANAL. CHFM. "
ANAL. CHFM.. vnl ,:\q. lQf,7. PP. 14R3-14A"i
43':\9 \lANnFRRnRr..H. N.F.
"TAlAI\ITII "
T A U\ 1\1 T 1\. \I n '-. I '5 .
lQAA. PP. lnng-In1':\
4,:\4n RRlITn"'. l.r...
"ANAL. £:HFM. "
ANAL. £:HFM.. VOL 43. 1'171. P. "i7Q
~.
8-50

-------
4~41 KlnCKnw. D.
"j\~II\L. f:HFM. "
ANtlL. f:HFM.. VOl. 4? ]Q70. P. 1 AR?
414? RFVII. fl..
"/INAL. CHFM. Ar.TA. "
ANAL. f:HFM. ACTA.. VOL 41. 196R. P. ?4,
4~4~ CIIRMIf:HAFl. I.
"III\I/ILYST"
HIALYST. vnl q4. 1Q6Q. P. 717
4144 ANONYMOUS
"RRITJSH PATENT"
RRITJSH PATENT. 1.156.915. 10 ,!IllY A5
4345 KOSTA. l. .
"ANAL. CHEM. "
ANAL. CH~M.. VOL 42. lQ70. p. R31
4~46 CURRAN. D.J.
" A N 1\ L. C H F:M. "
ANAL. CHEM.. VOL 40. lQ6A. P. ?A7
4347 O'DnNNFLL. T.A.
" A N 1\ L. C H EM. "
ANAL. CHEM.. VOLL33. 1961. P. 337
434R PAPPAS. W.S.
"AI\IAL.. CHEM. ".
ANAL. CHEM.. VOL 40. lQ6R. P. 217R.
4349 KNIr,HT. H.S.
"ANAL. f:HFM. "
ANAL. f:HFM.. VOL 30. 19,A. P. ?030
4350 HANST. P.l.
"APPLIED SPECTROSCOPY"
APPLIED SPECTROSCOPY, VOL 24. lQ70. P. tAl
4351 ADAMS, D.F.
"MEETJNr. OF INSTRIJMENT SOCIETY OF AMFRICA"
INSTRtlMENT SOCIETY OF AMERICA. NW ynRK. SFPT 19%
4353 C l A IJ S S. ,I. K .
"STlJDY OF FUJORF:SCENT TAPE SF:NSTTIVF Tn HYf)R.nr,FI\1 FLllnRTDF"
D . R . C. R E PO R T, Sf AN FOR D RES F. A R f: H T 1\1 S T T TilT F, M 1\ Y I Q 5 7
4354 Llf,HT, T.S.
"INDUSTRIAL ANALYSIS AND CONTROL WTTH H1N SEU:r.TTVE Ef.Fr.TRnnF"
NBS SP-314
4355
MCCIINF .
"nr\! THE ESTARLISHMENT OF AIR .0IlAI. ITY r:RTTFRI A. l41TH RFFFR~I\If:E
TO THF FFFEf:TS OF ATMOSPHF:RIC .FI.IIORTNF TN IIFr..FTIITTnl\I"
AIR CJIIALITY MONOf,RAPH #;169-4. AMF:RIr.AN PETROI.FIIM TNST1TIITF.
N . Y ., 1 Q 69
4356
SHOPE. .1.1..
"FlIlOROSIS OF LlvF.STOr.K"
AIR OIlALITY MONOGRAPH #;I 6Q-4,
N. Y.. 1 Q 6Q
AMFRlf:AI\I PFTROLFIIM INSTTTIlTF.
8-51

-------
l. ~"7
I, ~ <)1<
L..~<;c)
1.-:>'';0
n t\1 TAR I n P R n II 1 ~I r. F. r. A 1\1 A n A
"1)f-.pnRT nF. THF PI 11-'.1 IT Tnt\1 nF hTR. I.JATFR ANn <;nTI. Tf\1 TI-1FC
H1\-.!I"<:;HIP<; nF r)II~If\I. Mfllll.Tnf\l. I\ND <;HFRRRnnKF. HAI.nIMAf\II', r.11IIhITV"
F R II ~I K F n r, r,. f.) II f F '" I <; P R nl T FR. Tn R n "I Tn. 1 Q A I<
C "'vIPR FI.I.,
"FI.llflRlnF
KFTTFPI~Ir,
lq7n
1 . I~ .
ARSTR/lCT<:;: MII\lnf\II\TFD RTRI.Tnr,Rt\PHY"
'.ARIlRIITnRY. II"'TVFRSTTY OF r.T~Ir.TIlIf\IATT.
r. T f\1 C T f\Ir,\ II T T .
PHILLIPS. P.H.
"FI.llnRnSTS PRrJRI.FrJ1 TN I.TIIFSTnr.K PRnDllr.TTnf\1 A Ri=pnRT (IF TI.H':
U1MM1TTFF nf\1 hf\IjMAI. f\IIITRTTTnN" .
1-1 II T Trl f\1 A I. II r. II D F M V n F S r. T F f\1 r. F S - "'II TT n "ltl!. R F S F II R r. H r. nt I f\1 r. T I
P II R I. T r. 1\ T T n f\1 f\1 n. R ? I... \-.1/1<:; H HI r.. T n N . D . r. . . 1 q A n
7TMMF1~MAN. P.W.
" T M P II R T T T F S r 1\1 II T R II 1\1 D T H FIR T f\1 F '. II F t\I(~ F n 1\1 P '. flf\1 T
P R n r. F F D T "I (; S n F T H F F T R S T f\1 II T T n f\1 A I. A T R P n I. LIlT T nf\1
II n '. 1 q 4 q, P P . 1 "I I) - 1 L.. 1. PAS II n F 1\111, 1 Q') ()
'. T F F "
SVMPrlS Il1lvl.
4"1,;1 HflRRS. r..S. .
" F U In R n Sf S T '" r. 1\ T T L F !\III D S H F F P "
RIIJ.LFTII\I Nn. ?3'). III\ITI/FR<:;jTY flF TFI\I"'FS<;FF
FXPFRTMFNT STATlnN. KNnxIITLLF. lq,)4
43A?
1,3(-,3
4'1,(-,4
43AI)
43AA
4"1A7
4?,AR
t\r,R Tr.III. TIIRIII.
(;PFF"'. H.H.
" /I f\1 nil T R R F II K n F T 1\1 f) II S T R T II I. F '.11 n R n c:; T <:; T f\1 r. 1\ T T I. F "
PRnr.FFnTI\I(; nF THF RnVIII. <:;nr.TFTY fIF.MFDrr.TNF. vnl...
7Ql)-7QA. lQ4A .
3A. PD.
SAVARli. R.S.
"FFFFr.TS nF ATRRnR"IF FLllnRrr1FS nN r.HTI.nRF'" !.TVTNr, nN SAIlIITF
ISLAND"
,J. lIM. DENTlii. lIssnr... vnt. 4Q. PP. 3Q-41). .IIII.Y lQ,)4
lI(;lITF. .I.A.
"TNDIISTRIAL FI.llnRnSTS. A STIIDVOF THF
A"ITMAI.S NEAR FT. WTI.I.TAM. sr.nTLAf\lfl"
MFflTU>I. RFSFIIRr.H r.nIlNr.TI. MFM. Nn. n.
I. nl\H)nf\l. 1 Q 4Q
HA7ARn Tn MAN /lND
H.M. STlITTnNFRY nFFTr.F.
MIIRRAV. M.M.
"Fl.llnRTII1F HAZARDS WITH SPFr.Tt\1. RFFFPFIlIr.F
r.nl\ISFClIIFNr:E<:; nF Tf\IDIISTP T AI. pRnr.FS<;F<:; "
LflN(FT. vnl.. ? pP. R?1-R?4. lq4A
Tn snMF snr.TIII.
SPFDFR. E. .
"RnF="IT(;FNn(;RAPHTr. STII.nV nF O<:;SFnIlS I.Fc;rOIlIS nF DAPMnliS nR
FLllnRnSTS nF PHnSPHATF RFr,InNS nF MnRnr.r.n "
.JflIIRNAI. OF RAOTnl.OGTF FT O'F'.Fr.TRnl.nr,TF. vn'. ?0. DD. l1A-]??
1 q::\1'>
SC:HMIDT. H.W.
"snMF PRnRLt=MS TN IISTN(; FI.llnRTI\IF T"IRnr.KFT SY<;TFMS,
PRnC:F.EflIN(;S OF THE ppnPFI.I.A"IT THFRMnDYf\lflMTr.S Allin H/If\IJ1I.1f\1r, r.n~IFFII
SPF:r.rAI- RPT 12. PP. lA::\-?O? F"Ir..Tf\IFFDTf\Ir: FXPFRTlvIFf\IT C:;T/lTTn~l.
nHTn STflTF lINTVFRSlTV. r.nLlIMRIlS. lQAO
\-.IALDRnTT. (;.1..
IIFf.llnRTDF TN C:LTf\iTC:AI. MFnrr:TIIIF "
rNTFRNATrONAL t\RrHTIIFS nF IILI.FRr,y
SIIPPLFMFf\IT 1 Tn vnl. ?O. lQA?
Allin 6PPLTFn TMMII"'nl.nr,y.
8-52

-------
4~AQ MnHAMFn. A.H.
"!":YTO(;ENIC FFFE!":T~ OF HynRor;FFI\I FtilORTnF TRFIITMFI\IT OF TOMATO
PI. ANTS"
JAPCII. vn,-. IA. PP. 1Q<;-39A. ,!lINF 1QAA
417n
!":Hnl. AK. ,I.
"CIJRRFI\IT INFORMATION ON THF OIJANTTTTFS OF FI.1/nRTnF TI\I IITR.
Fnnn. ANn WATER"
AMA ARCH. INn. HFA'-TH. VOL '1. PP. 11'-~1~. APR 196n
4171 II.~. nFPT nF HFIII.TH. FnllCATIOl\1 Ar-.In WF,-FAPF
"AIR pnLLlJTrnNMEA~I/RFMENT OF THE I\IATTnl\llI'- ATR-SIIMPUI\Ir; .
1\1 E TW n R K. A N A L Y S ISO F S Y S PEN n F 0 .p II R TT !": 1/ 1- AT F S r. 0'-'- F C TEn 1953 -1 q <; 7"
XIIRLTC HFAI.TH SFRVTCE PIIAUf:ATTON NO. A~7. 195A
437? (;MF.L I N
"HANnAOOK OF INnRr;ANlr. f:HFMTSTRY "
VERLA(; !":HEMIE. WFINHFTM/AER(;STRASSE. (;FRMANY. ~TH En.. 1Q<;9
43B ANONYMOIIS
"HANOAClOK nF CHEMISTRY ANO PHYSTC~ "
CHFMICAL RIIARER CO.. 45TH Fn.. 19A4-19A~
4174
LINKE. W.F.
"~OLIIAILTTIES OF INnR(;ANIC
AMERICAN CHEMICA'- SOCIFTY.
19A5
ANn MFT AI. OR r;AI\I r.OMPOIIl\lnS "
W4SHIN(;TON. n.r... 4TH EI1.. VO'-. ,.
4375 MATHE~ON .
"MATHE~nN ~AS DATA AonK"
MATHEsnN OF CANAnA LTn.. ONTARIO. 4TH Fn.. 19A6
437A PERRY, R.H.
"CHEMICAL EN~INf.:ER~ HANI1AOOK "
MC~RAW HILL CO.. 4TH FO.. 1963
4377
SEInELL. A.
"SOUIAILTTTES
11.5. NATIONAL
NFW YORK. 3RI1
OF INnR(;ANIC ANn METAL-OR(;ANIC r.OMPOIINns "
IN~TTTIJTE OF HEALTH, n. VAN NOSTRANI1 CO.. INC..
EI1.. VOL 1. 1940 . .
437A KING. W.R.
"FATE OF FLIIORINE IN COAL UPON COMAIISrrON"
ENVIRONMENTAL PROTECTInN A(;FNCY
4379 SAR(;EI\IT. (;ORDON n.
"n1l5T COL'-ECTION EClIITPMENT "
CHEMICAL ENGINEERING. VOL. 7A. NO. '1. "ANltARY n. 196Q. PP.
130-150
43AO
NATlOI\IAL AIR POL'-"TION CONTROl. AnM.TI\ITSTRATTON
"NATIONAL FMISSION~TANI1ARO~ STllnY II
NATJnN~L AIR POLLUTTON CONTROL AOMINISTRATION.
1. MAR 1970 .
APPENDTX. VOL.
43Al MORI. M.
"PRESENTED AT THE 64TH ANNIIAl MFFTTN(; OF THF AIT POL '-liT 101\1
cnNTROL ASSOC 1 AT ION "
AIR POLLUTION CONTROL ASSOCIATTON. AT'-AI\ITTC r.ny. NEW JFRSFY.
JUNE 22-JIJLY 7..1971
43A2 ANONYMOIIS
"STEAM-ELECTRIC PLANT FACTORS"
NATIONAL COAL ASSOCIATION. W~SHIN(;TON.
n.!":..
1970 EO.
8-53

-------
/.', P ":>,
~npPFP. HFPRFRT
"MnnFR1\1 r.nST-Ff\I(~It\lFFR 11\1r.. TFr.H"ITnIIFS"
~1C r. R 1\ \.' HI'.',. 1\1 F I...) V I) R K. 1 q 7 ()
/, ',p L.
SHIH. r..r..
"I\PPI.lr.I\HTi.TTV f1F rlQr..I\1\I1r. sm,Tns Tn TI.1I= nFliFI.nPMF"IT nr- f\11:l/
TFr.H"qnIlFS FOR RFMIl\Ill\lr.. nXlnFS nF SIII.FIIR FPIIM I=I,IIF r,""FS"
TQ\., RFPnRT t\lnL 1 ()hhq-hnll-Rn-Iln. PRFPIIRr:::n Ff1R 1\'IIPr." III.II)FD
r.nNTRI\r.T PH ??-hR-4h. APRIL 1q7n
t.":>, P <;
F 1\1 V I R (11\1 M F 1\1 T 1\ I. F "-I r, I 1\1 F F P I (\/(~. I 1\1 r. .
IIRII[K(;RnIJi\,ln 1"-!FORMIITlnl\l FOR FSTI\R'.ISHMFI\IT nr::: f\1I\Tlfll\l/\l.
S T 1\ 1\1 n 1\ R n S n F P F R F n R M "1\1 r. F FOR 1\1 F W S n II R r. F S (n P /\ F T ) " .
F 1\1 Ii I R n 1\1 M F N TAL F= N r., T '" F F R T t\I (; . T N r. . 1 C; Mil R r: H . 1 q 7 1. r.. /\ 1 1\1 i= S 1/ T " II=- .
FUlP T nA
(, '" RAP F T FRS. M. S.
lip ,. ANT nFST(;"1 II"-In Fr:nl\lnMTFS Fnp r.HFMlr:III, FI\ir..TI\IFFpS"
r,l r: r.. R 1\ H '-I I '. '. . 1 q h A
4~R7 SI\R,r..FNT. (;.n.
"nIiST r.nLl.Fr.TTNr. F()IIIPMFI\IT"
[HFMIr:I\I. FNr.INFFRTI\I(;. lqhq
4~RR RI\Rr.nr:K ANn WTLcnx r:nMPIINV
" I I S F F' II. T J\ 1'1 L F S F n R F '" r, I 1\1 F FRS J\ 1\1 n S T F A M II S FRS"
A/\RCOr:K I\t\ln WTlcnx r:nMPIlt\lV. 19h9
4~Rq
t\lFW vnRK RlnWFR r.nMPI\NV
"R ilL L F T T 1\1 S h4 l-R? . h h 1 -R ? ,f, 7 h -R . f, 7~ -R . h A 4. Aq 1
'. F T T FRS 1\10. F. -1 Tn F - 1 h"
"IFI...) ynRK RLnWFR CrIMPI\"'Y
/\ 1\1 n F 1\1 r.. I 1\1 F F ,] 11\1 r..
4':\9() PRT\fATF COMMlJNTCIITln1\l
IIlInp /lIR r:nRRFr.TTnN Tnsr.IISSTn"-'"
1\1(11\1 F
4~ql CFTLCOTF cnMPANV
" T F. L L F R F T T F Mil "'II AI. Af\1 n 1'111 L L F TT N 1? -1 "
CFTLcnTF cnMPANV. 1q70
439? HII1\ITTf\Ir.,TON ALLnvs
"RF.STSTANCE Tn UJRRnsrn"I"
HI''''TINr.,TO/\I ALLnys. 19f,'i. RFV. 1q7()
43q3 1If\IO/\IYMnIIS
IIMI"IFRII'.S YFAPRf)rlK"
vnLIIMFS I-II. P. 9?9
500~ SMITH. L.K.
" FilM F F. X P n S I J R F S FR. n M '" F '. n T "-If~ W T T H '. n H 1-1 V n R n r..1=f\1 F I, F r. T Q n n r::: S "
liNN nCCIiPATTOf\IIIL HYr.,. (!,rll\lnn1\I). I\PP. 19A7. 10(?). 11":>'-71
')00')
SHFFHY. J.P.
"AIR pnLLtITTON I'" .IM.KsnNVI'-'.F FI,nRTn/\ (/\ PII.nT STlinv -
IIIIr.,.-SFPT. 19h1 \ "
PIIRL!C HFALTH SERVIr:F. CTf\ICIN"IATT nHln. nT\I. nF I\IP pnl,'-"TlIl1\1
(I\P-3). APR. 19h3. hI) PP
')()lO
FFLnSTFTN. MILTON
"TnXTCTTY nF IITR pn'.'-'JTI\NTS"
RAY IIRFI\. ATR pnLLIITTn1\1 cnf\lTRnL
CAlIF.. IQA3, ?()P
nTSTRTr:T. SAN FRIlf\lClscn.
8-54

-------
. :'> .~~t1f~~ ,-'.
')011 CHnlARK, ..1.
"RE!";lllT!,,; OF A FIVE-YFAR INVE!";TI(;ATTOM OF AIR pnLl.lJT I nl\l HI
!':II\I!':II\IMIITI" ,
AR!':H. 11\10. HYG. or:!':IIPATIONAl MFn.. VOt. A:314-~;)C;. 1Q';?
c)01~ (;RTMFS. W.R.
"SOUJRTLTTY OF NORtE r.ASES IN MOUEN FIJInRInFS.
OF NAF-lRF4 ANn NAF-lRF4-tJF4"
J. PHYS. CHEM., VOt. 6?:R6?-RAA. 19')R
1.11\1 MTxTIIRFC:;
5014 HORVATH. H.
"THE R FFRACT I VE INnF x OF FREON 12"
A P Pl. 0 PT., 6 ( 6) : 1140. .11 iN E 1 q 67
5015 IVIE, J.D.
"PERFORMANCE OF FlIIORFSCENT TYPE FUInRTnF RFf:ORnFRS FnR
AMAIENT IISE"
INSTRIIMENT nEVELOPMF.NT CO., RF.STnN, VA. ANn RFsnIIR!,:F.S
RESEARCH INC., GAINFSVIlLE, FLA.. 19A7. ;?OP
')016 MARSHALL, R.S.
"TtiE nETERMINATION OF TOTAL FLiIORInF TN ATR RY
MICRODIFFUSION nf:HNTOIIF" ,
ANALYST, Q4(1l1Q):4Q3-4Qq, JIINE 19A9, 14 RFF!";
IISTNr, "
5017 AEWERS, J.~.
, "nETERMINATION OF FLI,JORII\I!: RY PROMPT (r,AMMAI-RAnTATTnl\l FRnM
P'ROTON AOMBARDMENT. PART I. THEORY liNn FXPFRTMFI\ITAL MFTHnn"
ANALYST (CAMRRInr,F). 94(1114) :1-14, .IAI\I. '19f,9
5020 BONn, A.M.
"nETERMINATION OF FUIORIDE RY ATOMIC ARSORPTIOI\I SPFCTRnMETRY "
ANAL. CHEM., 40(3) :560-563, MARCH 19AR, 14 REFS
5021 KIRSCH, F.W.
"A NEW ROUTE TO Ol.EFTNS ALKYLATION"
OIL GAS .I., 6/'(29) :120-124. 127. .JIILY 15. ]9AR
5023 BRIGHT, ROAFRT N., ,
"GAS CHROMATO(;RAPHIC SEPARATION OF LOW MOLFf.IJI.AR WEI(;HT
FUIOROCARRONS"
MICHIGAN UNIV." ANN ARAOR, DEPT. OF MEf:H. EN(;R.. MARf:H 196A,
12P, CONTR~.tT AF-AFOSR-I144-67, PROJ. 9750-02, AFOSR-AR-1199
5026 BOHLANOER~ R.F.
"A!lTOMATIC STEAM OISTTUATIONS OF FtllnRIOF INTO !";M A '-'- VOtIIM!:,S"
NATIONAL LEAD CO. OF OHIO, CINCINNATI, 7 FFR 19A9, 15 P

5021 A~HTON, J.T.
"tHE SOLUBILITY OF CERTAIN r,ASFOIIS, FLfJORII\IE r.nMPnlll\lnS '1\1 WATFR "
.J~ CHEM. SOC., Nn. A:17q3-17q6. 1.96R
I '
i
502Q B.JLEV. J.J..
"r.)ETERMINATION OF TRACES OF SULFUR F'-'IORT~IF liNn ROROI\I TI\'
ORGANIC MATERIALS RY OXYGEN RAMR COMRIlSTTnN II
A N At . C H E III ., 33 ( 1 2) :t 7" 0-1 76? , NOV. 1 q A 1, 1? R F F S
5030 CRALLEY, l.V.
"TENTATIVE IIIETHOD OF ANALYSIS FOR FlIlORtOF r:nNHNT OF THE
ATMOSPHERE AND PLANT TISSUES II
HEAL TH LAR. SCI., 6(2) :64-R3, APRIL 19AQ. n R~FS
8-U
.J -.

-------
t,n'~l rYi\I.I.f=Y. '..1/.
"TFf\ITi\TII/F MFTHnn [IF 1I~IAI.YSIS FnR FLilnRTnF
IITMrISPHF~F 1I1\ln PI.IIf\IT TISSIIFS"
HFIILTH I.AR. SrI., A(71:R4-101, /lPRI!. laAa.
(nf\ITFf\IT nF THF
?"I RFFS
t; (\ 'J, I.
R p r )1./ t,l. H tI R R Y
"II NFl,' If\ISTRIIMFNT FnR THF MFII<:;IIRFMFNT nF (;/lSFnIIS FI.llnRInFS HI
I. F SS T H II 1\1 n f\1 F P /I R T P F R R 1 L I. 1 n N "
1.f=Ji~H If\ISTRlllv1Ff\ITS I.Tn.. (IIRI.FTrlN PI. liP: (nf\ITIIRIrl). I9AQ. 11 n
"rn 7 F R II 1\1 T 7. R n R F R T '..
"U1111. STRFI\I(:,THFNS ITS pns IT Tn 1\1 "
Mlf\III\I(; FI\I(;II\IEFRII\Ir,. ?I(?1 :ln4-}07. FFR 19A9
" () 4 1 R n '-'.. R. H .
" T H F R n L F n F (H F M 1 ( tI I. T H F R M 0 n Y f\I A M T ( S
P P r) R '- F M <:; 1 f\1 R 0 1 '. F P S "
,I. F J\I(~. PO \.I F R R'J,. 4, 1 -4 A 7. } 9 A 1
IN ANAI.Y7II\Ir, (;AS-<:;IOF
"i()4?
ERTL, O.W.
"FI.Fr.TROSTATTC (;IIS CLFANII\J(;"
S. A F R 1 r. AN M F (H. F N (; R. (.10 H Af\1 f\1 F S R II R (;) .
1aA7 .
lA(R):15Q-1AR. MIIR(H
,)()44
(;RtlIlF. (;FOR(;F
"nFTFr.TJOf\1 AI\ln RFMO\lfll. nF Fl.llnRIf\IF TN THFWIISTF (;ASFS nF A
STEFlwnRKS ANn MFASIIRTf\I(; AIR nllll'.TTY TI\I ITS <:;1 IRPnl/J\tn 1 1\1(;<:;"
STIIII(:,. ~R(1):a-17, JAM laAR
')()4S IIl\lnNYMntJS
" 1 f\1 0 I) S T R T A '. AIR P n '-'-' J TIn f\1 r. 0 1\1 T R n I. "
HFflTIN(;. PIPIN(;, AIR (nNOITInNTN(;, "IR("II, 179-a4. MAR lQA7
S()4A nliRlIsnFF, '.. -
"(I. F 1\ f\1 F R A I R 1\ NO T H F (;" S T f\I nil S TRY"
/1M. (;IIS J. 194 ("II, "I?-"I"i,'J,R.4(),4?, MI\R laA7
sn4R RFFSF.. J.T.
"FXPFRIFI\ICF WITH FI.F(TRnSTflTT( FI.Y-flSH r.nU.FCT1nl\l FOIITPMFf\IT
S F R V It\1 r, S T F. A M - F I. F r. T R 1 r. t, 1= J\I r= RAT 1 f\I(~ P '. HI T S "
J. AIR pn'-UJTION r:nJ\ITRO'. Assnr.. lR(R) :"7'J,-S7R. tlll(; 1aAR
S () 4a
n7nLlf\IS. (;.
"AIR pn'.LlJTANT FMISSTnN 1NVFNTnRY nF
PIIRI. 1 r. HFAI. TH SFRV I r.F. nIiRHAM. f\1.r...
cnl\ITRn,-. APTn-AR-4, lAP. IIPRII. 19AR
f\lnRTHWFST II\tr)TAf\III"
f\lfI T. r. F 1\1 T F R F n R tI 1 p P n '. .
5()'57
RLnnMFTFl.n. R.O.
" C (] S T S F F FIr. I F N r. I F S A f\1 n II N S n I. \I FOP R n R '. F M S n F 1\ 1 P P n '-'.11 T 1 n f\1
r:nI\ITRnL FOIII PMFI\IT"
J. AIR pn'.LJ!TInf\1 r.n~ITRn,- AsSnr.., 17(1). ,1/lf\1 laA? 7R-,:\?
"i()5'J,
n7KER. M.S.
"f)IJST r.ONTRnLS FOR nllTnnnR WnRK11\1(; IIRF/I<:;. T1-S PIIRf.lr.
IITTlTTIFS (nMM1TTFF "
,I. AIR pn'-'_I/TInN r.nf\ITRnI. ASSnr... lR(R) :,19-,??, /l1I(;IIST laAR
SO"i4
M lie K F f\ll IF, \I. r, .
"THF pnWFR Tr'.tnIISTRY IIf\IO /lIR pnU.IIT1nl\llI
P II R I.. 1 r. H F A '. T H S 10 R \I 1 (F. 1../ /I S H 1 f\1 r.. T n f\1. n. r. . .
P n L LilT 1 ()J\I, f\1 n \I. ? R, 1 a A ? I? P P
OTV. nF /lIR
8-56

-------
~055 SHALF. r..C.
"nPFRIITTNr.. r.HARM:TF:RTSTIr.S nF A HTf,H-TFMPFRIITIIRF FLFr.TPnST/lTIr.
PRFr.IPTTATnR" .
RIJRFAIJ nF MINES. MORr..ANTOWN. W. VA.. RI 777(,. ,")J.Y lQf,9. 19
P. MnRf,ANTnWN r.nAL RFSFARCH r.FNTFR
<:'057 RnIJRROI'II. p.
"nF.TFRMlr--IATTON IlF FI.IJnRTOF POLLlITInN RV
IITILI7.ING PAPFR TMPRFf,r--JATFO WIT\-! snnll"
AtlLL. Ir--ISFRM. ?4(1):7~-~0. ,IAN-FFR 19(,,9
A RIIPTf1 TFnU\ITf\111=
IFDFN(/../)
505A MAVRonTNEANII. R.
"IMPROVFD APPARATUS ANO PROCEOtlRES FOR SAMPUNf, ANO A~I"I. VlTr--lr,
AIR FOR FU'ORIOF.S".
cnNTRTA. AOYCF. THOMPSON TNST.. lAC31. Jllr--IF 195,. 173-Rn
5059 MAVROnIf\IEANIJ. R. ,
"PHnrnFLECTRIr. ENo-pnINT OFTF.RMINATTnN TN THE TITRATTnr--1 OF
F'.lInRTnFS WTTH THORIIJM NITRATF"
cnNTRIR. ROYCE THOMPSON INST.. lA(31. .IlINF 195,. IAl-A
50(,,0 MAVRnnI"IFANII. R.
"A SIMPLF METHOO FOR THE DETFr.TInN nF \/nLflTTI.F FI.lIORTnFS
CONTRIR. ROYCE THOMPSON INST.. lRllI. nFr. 1954. R?-4
T "I 1\ 1 R"
5963
F.r..f,ERRAATEN. V.L.
"OETECTION nF FREF FLIJORINE IN THF ATMnSPHFRF
RAnIOTRACER ANA(YSIS "
INTERN. J. APPL. RAnIATION ISOTOPFS. vnL. IA.
lA~-191
RV I131
MARCH 19f>7,
5067 BENSON. S.W. .
"THF. ELIMINATION OF HF FROM HOT FUJnRINIITFn FTHt\f\IFS"
J. PHVS. CHEM.~ 69L11I. NOV 1965. 3R9R-39n5
506R LAHMANN. E. ,
"METHODS FOR MEASIIRTNr.. GASEOUS AIR POLUITIO"'S"
STAIJB. 25C91, SEPT 1965. 17-7.7
, 5069 HORVATH. H.
"THE RFFRAr.TIVF TNOEX OF FREON P"
APPL. OPT.. 6C61 :1140. ,IIINE 1967
5070,GUERRANT. GOROON O.
, "METHOD AND APPARATUS FOR CONTINIJnIlS MONTTORTNr.. OF FLIIORTOF
E:FFLlJENT "
U~S. 3,461,043, 12 AIJr.. 1969, 3 P
5071 BLANDFR. M. .
"SOllIBILITV OF NOBLE r..ASES TN MOUEN FUIORInES "
J. PHVS. CHEM., 6'3(71 :1164-1167" .!I'LV 1959
5077 FI EL 0, PAUL E. '
"THF. SOlU8ILITIF.S OF HF ANnnF TN MnUFN FUJnRTnFS "
OAK RIDGE NATIONAL LABORATORY. CONF-(,(.,n907-1. RFPT.
ORNL-P-2202. 27 JUNE 1966. 17 p.
5074 RENEnICT. H.M.
"SOME CHEMIr.AL l\"ln PHYSICAL CHIIRACTFRTSTICS OF FLIIO~InF
COMPOIJf\IDS AFTER CONr.ENTRATION RY Pf.ANTS IN LFA\lFS"
STANFORn RESEARr.H INST.. SOUTH PASAnFr--IA. SO. r.ALTF. L/IRS..
APRIL 1963. 16 PP .
8-67

-------
"in7';
c;r.HI\FFFR. ,.H.
" S n LI 'R T ,. IT Y n F H Y n R n r.. F 1\1 F '.II n R 1 n F 1 t\1 M n I. T F 1\1 F '- I I rw Tr1 F S "
.1. DHYS. r.HFM.. h~(l?) :lqqq-?On? nFr. 1qSq
snu,
\..1 F [ 1\1 <; T F 1 1\1 . '.. H .
"1\ SFMI-IIIITnMI\TFn MFTHnn FnR THF nFTJ:RMTI\.I/lTTnl\l flF
II PI. A.r'm PI.ANT TTSSIIFS"
rnI\ITRII~. Rnyr.F THflMPSnl\1 INST. \In I . ??(4) :?07-??O.
F '.' II1R 1 "IF' ",
nFr. lqh~
SrnH
,I 1\ r. n R S n 1\1. ,I. S .
"STllnIFS nl\l THF MFlIc;lIr~FMF!\tT flF FI.llflPlnF 11\1 /lIR 1\1'11) PI,/lI\IT
TI SSIIF.S RY THF I>JJI.I.I\RI1-I"I!\tTFR 1\1\11' SFM.T-/lIITnMl\lFf)\"FTI-trln<;"
,I. AIR Pili_un InN r.nNTRnl. Assnr.. 1A(7) :,:\1',7-':\71. ,IIII.Y 1C)hh
sn7~ Mr.CI\LnTN. R.n.
" F V II L II II TIN r. II T R P n 1.1. II T T n 1\1 P R n R'- F M S (II r.c~ F P T fI R '- F J:CI II 1 PM F 1\1 T . A I\In
PRnr.FnIJRFS) "
/lPr.H. FN\lTRnN. HFA'-TH ? 7?R-33. MARCH 1qh1
SOR? RIIRTnN. WILLIAM R. .
"Rt\I>J MIITFRIALS FOR MAI\IIIFAr:TIIRF nF r.FMHIT"
PM-Ir.-R':\4R, WIISHII\Ir.TnN,n.r:.. RIIRFAII nFMJl\lFS 191',7, 41',-')) P
SOR')
IJ1\t7
8-58

-------
~ln7 TFLLFR. AARnN J.
"r.AS Sr.RURRF.R APPlIRATIIS IINO PRnr.FSS"
II.S. ":\,'505,7AA. 14 "PRTL ]97n. 4P
~10A CHnPFY, N.P.
" A L. K Y '. AT] ON UNIT Y I F LOS n U A L R F. N F FIT"
CHFM. FN(;., 67(?~I:n7.-13~, 17. OFC ]960
"iln9 nIlMON. W.A.
"THF TRFIITMF.NT OF WASTF r.ASFS yt\1 r.HFMTr:AI. TJ\IOII<;TRY "
TRANS. INST. r.HFM. FNr.RS. (Lnl\lnml), ":\1(11:76-3~. ]9~":\
5110 HIXSON, ARTHUR w.
"RECOVERY OF ACIDIC (;ASF.S"
II.S. 2,449,'537, 21 SFPT 194A, 4P
5115 RILLTNr,S. CHARLFS F. .
"SIMtll.TANEnIlS REMOVAL OF
MINERAL wonL FILTERS"
.1. AIR PDLLIITION CONTROl.
ACln r.ASES
MTSTS
A 1\1 n F II MF S W T T H
ASSOC., AD) n9<;-?n?, Nnv 19~A
511A GRAIII:, r,EORr,E .
"nETECTION AND REMOVAL OF FlIII)RINF. TN THF. WASTF C;ASF.S nF A
STEFLWnRI(S AND MEASURTNr, AIR OIlAUTY TI\I ITS SIIRROIINOTI\I(;S"
STAll A, 7.A(1}-9-17, .IAN 196A
5119AAERNATHY, R.F. .
"RARE FLEMENTS TN COAL"
AUREAU OF MINE$, WASHII\lr.TON,o.C., II\IFn. CIRC. A]63, 1963, B PP
5124 MCILVAINE, R.W.
"AIR POLLUTION EQIITPMENT FOR FOIJl\lnRV CIIPnLAS "
- J. AIR POLlUTInN CONTROL ASSOC., l7(AI :~4n-544, Allf, ]91>7
'5125 EWALD, G.W. .
"SYNTHETIC FAARICS MAY SOLVE YOIIR SPF.r.TAI. nllST r.nI\ITRnL PRnRLFMS"
AIR ENG. 7(Cn :22:6, SEPT 1965
~129 VON JnRDAN, 2.
"VENTURI ANn RAnJAL FLnw SCRIIRRF.RS FnR r.nnL TNr. ANn CLFANTNr, OF
UTILITY ANn WASTE GASFS "
STAHL F.ISEN, AI>(A} :399:406, A APRIL 1966, (nIlSSFLOORFI,
. (£;ERMAt\ll
5130 SEILER, ED
"DESI£;N FOR AIR POLLIITTnN CONTROL. SF.I.FCTTI\I(; TOWER PAr.KIN(;"
AIR COND.,HEATIN£;, VENT., 65(5J :11.13.1<;,]7, MAV 196R.
5133 WENTZEL, K.F.
"FlIJORINE-CONTAININ£; EMMISSIONS IN THF. VTr.TI\IITV OF RRTr.KwnRKS"
STAIJR 25(3):45-50~ MAR 1965

5136 PRINDLE, R.A. .
"AIR POLLUTION ANn- cnMMIfNlTv H.F.ALTH (r.HAPTFR F.Tr.HTFENI "
MEDICAL CLIMATOLOGY, 1964, 505-1R
5137 JEWELL, J.P.
"CONTROL OF FLlJORInE EMTSSJONS "
PROC. ANN. SANITARY WATF.R RFSOIIRr.FS FNr,. r.nI\IF.. 1965, PP
226-32, VANoERRILT IINIv., NASHVTLLF, TFNN
8-59

-------
<:, ] -:>, q F P. r:~., n L 1\ Ii

IIRFCOIIFRY 1II\ln IJTTl.T7ATI0t-1 OF FI.llnRI"IF ppnnllCTS FJJnM AI 11M IN 11M
Fl. F r T P r II. Y S 1 S I./t-. S T F r: II <; F S" .
IIRWf\SSFP, IIRr:IIS SCHwFRSTOFFTFCHNTK, nFCHFMII-NnNnr:PI\PH,
<;Q(10/'<;-10AQJ, 1QAR
<; 11.?
1\ ~!IWYM(), 1<:

" C I 'R R F 1\1 T S T 1\ T II S /11\1 n FliT' J R F P R n S P F C T S - S T F F '. 1 "If) I J .S T P Y 1\ 1 R
P n '-I.. I I TIn N C n t-I T R n L "
GOTH UII\Ir:. '!lIR PO'-'-IJTlflll' - lQA7, PIIRT 1\1' ,<:/IR(nM, nl\1
toTP/I,JIITFR PllL/., P ?-:>,qO-A, i'-11\Y 1<'-JR, lGA7
'j14-:>'
1"II.snl\l. F.I..
" S T 1\ T F "'1 F III T n F F. '.. W 1 I S n t-I F n R T H F <: F N tI T F S II R C n M M TT T F F n 1\1 II 1 p
!I t-I n 1./ II T F R P n '-'. II TIn 1\1 "
QOTH CfJI\I(:,. '!lIR pnL'.. - lqA7, PART TII' ,SIJRcnM. nl\1 AIP./""!lTFD.
pnu... P ?A?Q-4,). MIIY l')-]R. 1GA7
<;144
F R T L. n . 1'" .
"F'.FCTRnSTi\TTC r:1\<:' CLFIII\IIt-Jr:"
S. AFTTCAN MFf:H. FI\lr.R. (.JnHlIlllt-IFSRIIRr:l.
JQA7
lA(R) :1')q-1AR. I"'I\RC.H
">14<;
SIILL I \lAI\', R.F.
"I\IITnMi\TIC SYSTFMS FnR RFMnVlIl. nF nFPnSTTS FRnM rlPFI\1
FI.IIFS RnnFS WI\STF HFlIT tlllin FIIFI FTRFn RnTl.FRS"
TRnt-1 STFFI. FI\Ir:.. 44(1) :Q7-lfn. ..Ii\t-I 1QA7
HFIIRTH
'j14A
HIIMMnNn. WTlLII\M F.
" S Fen 1\, n II R Y R R II S S - II 1\1 n f-< R rJl\l 7 F - M FIT 1 t-I r: P R n C F S S "
PIIR. HFtlLTH SFRVIr.F. r.TI\ICTI\'I\IIITT. nHln. PHS-PIIR-QQQ-IIP-40.
1QA7, P ?70-?R4, 1\1 AT I 111\1 II I. r.Ft-ITFR FnR hTR pnl.LIITInt-1 r.nr'ITRrll.
<;11<1, I\KFRLm./. F.I/.
" M n n T FIr. A TIn 1\1 TnT H F F n 1\, T A 1\1 A n P F 1\1 H F II R T H P R F r. T P T TAT n R S "
.1. hIR pnu-,ITInlll r.nl\ITRnl. Assnc., 7(11:::\Q-4::\. MlIY lQ'j7
<;14Q f:!lMPRFLL. W.W.
"nFI/FI.nPMFNT OF AN FlH:TR Tf:-FIiRNlIf:F nilST Cnl\'TRn!. SYSTFM"
.I. (sIR pnU.I/TrnN cnNTRnl. As<:,nr.., l?I]?):'i74-7. nFr. lqA?
<;1')0 RRIFF, R.S.
"PRnPFRTTF<:' AI\ln r.nI\ITRnL nF FLFCTRTr.-/lRC STFFL FIIRNAr.F FIIMFS"
.1. AIR. pnLI.IITTnl\l r.nl\ITRnl. Assnr.. A(4) :??O-?04 (FFR lQ'j7)
'i151 RFNr:STnRFF, r:.W.P.
"A RFSFAR(H APPROA(H Tn THF r.nNTRnl nF
STFFLMAKINr: PRnr.FSSFS"
,I. AIR pnu-,ITTnl\l U) III TFHlI. ASSnf:. n(41,
F M T c; c:; 1 nl\1 S F R nM
170-? ([\PR TI. 1 9/',-:>')
')1')1'
RII\IT7FR. W."'.
IInFSIr:J\' nPFRATInN At-In MJlTJ\ITFNJlt-1CF nF A l"iO-TnJ\l
FIiRt-II\r.F f)IIST r.DI.I.F(T I nl\1 SYSTFM II
IPnN STFFL FNGR. 44(1.1 :77-R<; .I"I\IE lGA7
F ,- F r. T P T C.
51'j') WILKINsnN, F.M.
II W F T I,j II <:, H T 1\1 r: n F R n F r: 1\ SF S - L" r. K A W II J\I t-/ t't "
PRFPRII\IT, RFTHLFHFM STFFI- (nRP., I\IFW vnRK. 19AA. 1?P
8-60

-------
515A nA 1\1 I FL SnI\l. .fOHN A.
"AIR POl.L"TION FNf,TI\IFFRII\If, MANIIAI."
PIIRLIC HFALTH SERVICF. CINCINNATI. PHS-PIIR-999-AP-40.
19 67. 1\1 " TI 0 N A I. C E N T F. R FOR A I R POI. '-' IT T Il N r. Il 1\1 T R 01.
Rq? p..
5157 SIMON. HFRRERT
"RAr;HOIISFS "
PtIRUr: HFJ\UH SF.RVICF.. CINCINNATT.
106-13~. 1967. NATIIlNAL CENTFR FOR
PHS-PIIR-999-AP-40. P.
ATR pnLL1ITTnl\l CnNTRnl.
515R SIMON. HFRRFRT
"SIN(;LF-STAGE ELECTRlr.AI. PRECIPITATORS"
PURLIC HEALTH SERVIr.F. CINCINNATI. PHS-PIIR-9Q9-AP.-40. P
135-156. 1967. NATIONAL CENTER FOR AIR POUIITTON r.ONTP.flI.
5159 nFY. HOWARD F.
"AFTFRRIIRNERS"
PIIAUC HEALTH SERVICE. CINCIII/NATI. PHS-PIIA-999-AP-40. P.
171-1R7. 1967. NATIONAl CENTER FOR.AIR POLLIITTON CONTROL
51A1 HAMMONn. WILLIAM F.
"SECONnARY ALIiMINIIM-MELTINc; PROr.FSSFS"
PlIRLIC HEALTH SFRVICF. CINCINNATI. PHS-PIJR-999-AP-40. p.
2A4-292. 1967. NATIONAL CENTER FOR AIR POUIITJOt-..1 r.Ot-..1T P. 11 I.
51A2NANCE. .JAMES T.
"METAL SEPARATION PROCESSES" .
PIIRLIC HEALTH SERVICE. CINCINNATI.
305-309. 1967. NATIONAL CENTER FOR
PHS-PIIR-999-AP-40. P.
ATR POLLIITTON
5167 JOHNSON. .I.E.
"WET WASHING OF OPEN HEARTH GASES"
IRON STEEL ENGR.. 44(2) :96-9R. FER 19A7
5169 RILLINGS. C.E.
"FIIRTHER INVESTIGATrrJNS OF THE CONTINIJOIJS SLAG WOOL FILTER "
J. AIR POLLUTION CONTROL ASSOC.. R(11 :53-M. MAY 195R
5170 WHITRY. K.T.
"EVALIIATION OF AIR CLEANERS FOR OCCIJPTFn SPACFS"
J. AIR POLLUTION CONTROL ASSOC.. 11(111:503-15. NOV 1961
5171 HIINT, M.
Ii THE CONTROL OF
STEEl WOR K S"
PROC. CLEAN AIR
VOL. 2. 33 P
nll5T ANn FUME FMISSIONS FROM 111\1 INTF(;RATF.n
CON F.. IJNIV. NF.W SOIITH WALES. ]9A? PAPER 15.
5175 HOAK. R.D.
"POLLUTION CONTROL- TI\I THE STEEL TNf)IISTRY "
CHEM. -ENG.PROGR.. 62110] :4R-52, OCT 196A
5176 BRANDT, AoO. .
"ClIRRENT STATIJS ANn FIJTIJRE PRO.SPFr.TS - STFEl Il\lnliSTRY AIR
POLLIJTION CONTROL" .
PROC. NATl. CONF. AIR POLLIITTIlN. 3Rn. WASHIl\lc;TON. D.C.. 19M,.
PP. 236-41
5177 CHAPMAN. H.M.
"EXPERIENCE WITH
I N TH F. A ET H L E HEM
J. AIR POL LIlT ION
SFLFcnD AIR pnI. I. IITTOt-..I r.ONTROL TNSTAI_.LATIONS
STEF.l COMPANY"
CONTROL ASSOC.. 131121. 604-A. 629. nEC 1963
8-61
'c.
. ~

-------
'-,17P
T H n~'. r.. w .

"THF r,flU.Fr.TTn", ()F nPFN HFARTH nllST A"ln TTS RFr.tAMATTIl"1 1I<;T"Ir.
THF <:;1 If HI PPflr.FSS"

CII"'. MpITNr. 11"") MFT RIII.I.. (Mn"ITPFI\I.! C;9(A'i4) :1/1''1-"'\"'\. flr.T lqAA
'ilRl 1'.1I1HLFR. F.II..I. .
"Mf"THnr1C:; nF RFnllrIJ\Ir. pnl.l.IITln'" ri\'!SFn f-\Y C:;PFr.TFTr I"lflIISTRTF<:; II
FII~nPFI\"1 rn"IF. ON fliR pnl.LIITln"l. STRASRnIiRr.. 19A4. P :nq-?R;'>
'ilR? FFRRflRT. RFN7n
"FXDFR1Fl\lr:FC, TI\I nF\lf=lnppH; AN FFFFr.TT\lF Pf\1.1,\ITTn1\1 r:nJ\ITl>f)!
SYSHM FflR C,IJRMFRr,f'n IIPr: FFRRn"I.I.ny FIIR"llIr.F flPf"RIITTn1\11I
.1..1. MFTlIl.S. ;:>0(4) :9')-10l,. APRTI. 19f-,R
">1q;:> PIII/IFS. F.
"THF U'''ITRnl. nF FIIMF FRntvl FI.Fr.TRTr ARr FIIP"IIIr:F.C,"
.1. T R n 1\1 S T F F I. T N ST. 1 I n 1\1 n n J\I). / n 11 I' J : 1 1 n -1 1 1'. F F R 1 9 h "'\
'11q",\ 1"II,I.FT. HnWARn P.
II T H F \I F "I T II R I S r R II R R F R F n R I. I. F A M I M r. n X Y r. F "J"
IRmi STFH F"I(;R.. 3R(7J :l?A-131. .IIIIY 19A1
"ilQ7
HIII\IT1"'r.TnJ\l. RnRFRT r..
"ARC FIIRNAr:F FIIMF rnJ\ITRnI. PRfI.rTTr.FS"
PRFPRIMT. i\MFRIClII\I AIR FILTFR ro.. INr:..
p. 19AR(APr.fI PflPFR AR-131)
I. nil I S\lll.I.F.
KY.. 19
'5199 FRFRHi\RnT. .I.F.
"THE \/FNTIIR I WASHFR FnR RI.AST FIIR"IACF r..AS"
IRnJ\1 STFFL ENr..R.. 3;:>(3) :AA-71. MflRrH 1QA'5
'11'00 PFTTIT. r.RANT fl.
"FLEr.TRIC FIIRJ\!ArF nllST r.nJ\ITRnL SVSTFM"
.J. AIR POLUITTnN rO"ITRnl. Assnr.13(p):A07-AnQ.A?1, nFl., 191'"'\
');:>01 EISFI\IRflRTH, MANFRFn
"OIIST RFMn\ltlL FRnM \.)flSTF r.ASFS 1",1 A STFFL PI.t\"IT"
R I \I . I "I (;.. 1 0 ( 1 0) : 7 ;:> n - 7 ? 9. n r T 1 9 A 9 (IT tI I.!
'5?04
~ILLFT. HOWARn p.
"PRnFIT nRIFNTFn SYSTFMS FnR
nFSlr.M AND nPFRATlnN FnR AIR
1QAR. P 7'i-R'5. (AIMF)
pnU.11T T nJ\' rnJ\ITRnL "
pnl.l.IITTflJ\1 r.n"'TRflL. "IFI') VflRK.
s;:>ns .lnJ\IEs.WIU.IAM P.
"nEVFI.nPMENT nF THF \lFNTIJR I Sr.RIIRRFR "
INn.'FNr.. CHEM.. 4111]):1'4;:>4-?4;:>7. Nfl\/ 1Q4Q
'5?07 RnRFJ\ISTFIN. MIIRRAY
"flIR pnLL"TlnN rn1\ITRnl. TN J\ln"I-FFRROIiS MJ:Tfll.'.IIRr..Tr:fli. Tl\lnliSTRY "
IJ\ln. HFATIJ\Ir., 34(10) :1RAA.lRAR.1R70. nr.T 19f-,7
snn
r;RAtlF. r.FnRr. .
II S n M F F X P F R I E "I C E S I.) IT H A NO" F L F X PER T M F N T A I.
RFMrl\IlIl. FRnM RRnWJ\1 SMnKF"
STAIIR (FJ\lr,I.TSH). ;:>7(10):7-1/. neT 19A7
P '. lI"'n F n R nil S T
5;?Il cnIlLTFR, R.S.
"SMnKF nliST FIIMF.S CLnSFLY cnI\ITRnU.FO TIll FI.Ff.TRlr. FIIR""Af.FS"
I R 0 "I A r, F, 1 7 3 ( ? J : 1 07- 1 1 n . 1 4 J /I N 1 q ') 4
57 P PIINCH. r..
"r.AS CLFANI~IG 11\1 THF IRnN AJ\ln STFFI. Tt\lnllc,TRY "
IRON ANn STFFL INST.. LnNonN. SR-R3. 19A3. P 10-;:>3
8-62

-------
~7.1~ SPEFR. E.R.
"OPERATION OF ELECTROSTATIC PRFCTPTT/lTnRSON O.H. FIIRf\lM:FS /IT
F /I I R L F S S WOR K S, "
IRON ANn STEEL INST.. LONDON, SP-6, 195R. P 07-74
'57.14 GAW, R.r..
"ca S CL E AN I NG"
IRON STEEL ENGR., 37(10) :81-A5, OCT 19AO
'57.1A IIYS. .I.M.
"THF REt>.IFFTCATION OF RAw MATFRTALS TN THF STFFI. TNnllSTRY ""In
TTS'EFFFCT liP ON AIR POLL liT ION r.Ot>.ITR'nL" ,
.1. AIR POLL liT ION CONTROL ASSOC.. 13(11:70-?7.37.. .1AN 190'1

'5?lA REIn, r..F.
"EXPERTENCE IN CLEANING RLAST FIIRNACF r,AS'
WASHER"
IRON STEEL ENGR., 31{A) :134-139. AIle; 1960
WTTH THE ORTFlr.F
'5219 WEI N. W.
"OPERATING EXPERIENCE WITH POWER PLANT,STACKS ANn THETR nESTr,N "
COMAIISTION. 41 (41 :29-34. OCT 19(,9
'5:?2~ nAVI ES, E.
"THE CONTROL OF FUME FROM ARC FIIRNACES "
FIIME ARR ESTMENT. SPEC I AL REPT. A3. LONnON.
WILLIAM LEA AND CO.. LTn.
] 9/)4. P 133-143.
57.23 nour.LAs. I.H.
"nIRECT FUME EXTRACTION
TON ARC FURNACE"
FUME ARRESTMENT. SPECIAL
WILLIAM lEA ANn CO.
ANn COLLECTION APPlTFn Tn A FTFTEEN
REPT. R3. lONnON. 19h4. P 144-]49.
'57.24' HOFF, H. ,
"CONVFRTER WASTE GAS CLEANINr; RY THF 'MTNTMIIM r.AS' MFTHnn AT
FRIEO. KRUPP. "
FlIME ARRESTMENT. SPECIAL REPT. R3. LONnON. 19h4, P 1()4-10R.
WILLIAM LEA ANn CO.. LTn.
5225 HOLLANO. M.
"OIRECT FUME EXTRACTION FOR lARGF ARC FIIRNACFS "
FIIME ARRESTMENT. SPEC T AL REPT. R3. LONnON. ] 9h4.
WILLIAM lEA ANn CO.. lTn.
P 1'50-159.
5226 MITCHEll. R.T.
"DRY ELECTROSTATIC PRECIPITATORS ANO WIIAGNFR-RTRO WET I.JASHTI\I(;
SYSTEMS"
FUME ARRESTMENT. SPECIAL REPT. R3, LONnON. 19h4. P AO-R'5.
WILLIAM LEA AND' CO.. LTD.
5227 MOR ITA, S.,
"OPERATION AND ECONOMY OF THE OXYGEN cnNVFRTER r.AS REr.OVERY
PROCESS" ,
FUME ARRESTMENT. SPECIAL REPT. A3. LnNnON. 1904. P 109-115.
WILLIAM LEA AND CO.. LTO.
5230 MIIRRAY, ROBERT C.
"STORAGE VESSELS"
PIIRUC HEALTH SF.RVICE. CINCINNATT.
606-67.9. 1967. NATIONAL r.ENTF.R FOR
PHS-PIIR-999-AP-40. P
ATR POLLIITIO"I CONTRnL
8-63
I ,0

-------
,,;> -~"
I);> -~(,
S7'1,7
S?"R
I,) ..; ')
'-IIIP" T. -1.1-<.
II;-i-'MRPf\;\IF Hflfll1 flPFRf\TT~lh PFRFnRMMH-;F /I"'n TMPRflIlFtviF~ITS"
jJ P F P P T 1,1"1. /I <:, S IX.. 1 P n [,I /I~' ns T F F 1 F "I r, R S. C I. F 1/ I: 1.111,1 n. 1 g A A. "11 p
I.fl\,IF. .I.R.
II f\ '" n r~ T f: 1 r. F r, l\ S \,j f\ S '-I I: R II
lII'i F p. T ~I ST. rIf:: 1-1 Ti'.1 T '" (~. "1 F T 1\ I. . .
"I. Y ., Ilf 11. . 1 A : ?" - "1 r) , 1 q 'i 7
Hln PFTPn,.. F",r,R S (1\ 1 MF) .
Sr,H~If: 1 f)FR, R.I..
II f' "I h 1 '" f: F p 1 W~ I I (J 1- II f.-r T r 1 ~I l\ ~I n M l\ 1 "I T F "I /I ~, r F fl F f== I, F r T D () S T f\ T T r
(JRr:rTRTTIITflPS IH'I i)PF~1 Hf::l\RTH FIIP~Il\U:S II
.'. /I I R P n '-'. II T 1 fl '" r 1 HII T P (II. II S S n r, .. 1 ':\ ( R) :" 4 R -" ':\. 1\ II (; 1 l) A '~
. 1 /I r K S m.l. /I.
II FilM F r IJ /I [\1 T "I G T '" /I " II X f:: II R "'II r F S "
1,/ T '. I.T /I M I. F!I /I "In r n .. I. Tn. 1 g A 4. P
S P F C 1 II '. R F PT. R ":\
(-,1-A4. FIIMF IIRI~FSTMI-'[\'T.
nIIPRFY. R.'..
"(nt~PT'.I\TIn[\1 nF flTR Pfll.I.IIT/lNT FMT.SSTnt\1 FllrTnRS"
PIIRI.TC HFIII.TH SFRVICF. ntiRHIlM. /'\I.r... PIIR. ~Ifl. gqG-I\P-4? A7
P. 19AR. NIlTInNAI. r.F"'TFR FnR /lIR pnU.1ITTml r.m.IT p (11.
'i ;> I,;> K 1\ "I F. .,. r~ .
"FIIMF r.fl"'TRfll.-FI.FCTRTr MFI.TI"Ir, FIIRNI\CFS"
II f~. F n II /'\1 n R Y M II /,\'. 1 R ( 1 1 ) :"" - ":\ '). i\1 fl \I 1 g I) n
<;;>4"
<;? itl..
'5?4A
THflM/lS. F.A.
II I/F"1TIIP1 G/IS srRIIRRFPS "
.1. MFTlIl.S. 17(':\1 :;>(-,4-;>AA. M/lRr.H 19A'i
RPH7FR. W.W.
" n F SIr.. t\1 II [\1 n n P F R /I T I flt\1 n F A FilM F 1\ '" n nil S T r. n '-'. F I: TT flt\1
TWfl lon-Tnt\1 ELf::rTRH:-FIlPNArFS"
1 Rfl/'\' STFF!. FNGR., 41(;»:11'i-1?':\, FFR lqA4
SYSTFM 1::(11<
RFHR Ft\lnT, 1\t\ITnN
"GAS r.1.FANI"Ir.. IN PFI.I\TTfl~1
PRnCFSS AT nRFRHI\IISF.f\1 ",
AIR liNn W!lTFR Pfl!.. IN THF
P q n -q A
Tn nXYhf::t\1 PRF-RFFT~'T",Ir, Mln THf== prnlV-1
I Rnt\1 1\~ln STEFl. Hln., l.flt\lnn~I,
lQ'iR,
5;>47 HTPP, NnRRFRT F.
"nFVFU1PI-1ENTS 1/'\1 r..AS CI.f::/lNIt\Ir.. - hRFIlT I.I\KFS STI"f::I. cnpP."
lRnt\1 STFF!. FNr-.R., 44(R1 :l()1-1()R, Allr.. 19A7
'3?" 1
'57')3
r.!lMPRFLL, w.w.
"HTr..H-FNFRr..Y WFT Sr.RIIRRFPS (1It\1 SATISF'IIr.TflRTI_Y I:I_I=IIN ""I_/IST
FIIRI\IACF Tnp r-.I\S"
P R fl r. . 1\ M . T N ST. M TNT t\1 h M FT. P F T R nl.. 1= N r, R S. r. n ~I f::. R L 1\ c::. T
FIIR~IA(F. \inL. 1R:,:\?q-':\3'i. 1qAq
W II TK T /'\1 S, F. R .
"THF APPLTCIITTnN nF FI.FI:TRnSTATIC PRFCIPIT!lTTnt\' Tn THF r.nl\ITPfli.
nF FIIMF 1/'\1 THF STFFL T[\lnIISTRY "
I Rnt\1 1I~ln STFEL l"I<:'T., l_n~lnnl\l, SR-R3. P 74-,:\'), lQA4, FIIMF
APRFSTMF[\IT
'5;>'14 StiCK FTT. l,/I'IUFR .1.
"nIIST-FI/ME r.ot\ITRnl. SYSTEM"
1.1 . S. 3. 4q 4 , 1 n 7. :1 p, 1 n FER 1 q 7 n
8-64

-------
L-
,
'i/'i'i SACKFTT. WAlTFR ,I.
"HIr..H FFFIr.IENCY nISCHARr,E CnNTRnL SYSTFM FnR tJ r:HFMIU"-
PRr)CFSSIf\!G PLAI\IT" '
II.S. 3.499.731. 3 P. 10 MARr.H 197()
'i?'1n ,/lIf:NG. CARl. F.
"METHnn ANn APPARATIIS FOR EXHAlfSTING r..ASFS FRnM Tl\lnllSTP T ttl.
RUILnlNGS "
II.S.. 3.49?7R9. 4 p. 3 FER 197()
S?n? RICKLFS. RnRERT N.
"WASTF REcnVERY ANI) pnl.l.IITION i'lRflTFMF.f\IT"
CHFM. ENr.... VOL. 72:133-152. 27 SEPT J9A5
5?nn r.FLFNZA. G.J. .
"AIR pnLLlITlnN PRnALEMC; FACEn RY THF IRnN ANn STEFL INnllSTRY "
PLANT ENG.. 24(91 :60-63. 30 APRIL 1970
<;?n9 DnNosn. JUL IUS J.
"nEVElnPMENT OF A PRACTICAL ANn ECONOMICAL PRnCESS FOR
RE"'OVING THE AlIIMINllM CHLORInE SMnKF NIITSANCE nIJRINr.. THE
CHLORINATION OF AlIIMINIlM ALLOYS" .
SMOKE PREVEN. ASSOC. OF AMERICA. PRnr.. SMnKE PRFVENT. ASSOC.
AM. 40TH. 1947. 39-42 P ,
5/70 KARAE. K.
"FLlIORInF EMISSInN FRnM FERTILTSFR PRnnllr.TInN"
CHFM. F"'r..R.. LnNnO/\l. 4h (7) :CF.2nR. SFPT } 9AR
5?73 MCCARE. LnUIS Ci
"ATMOSPHERIC POLlIITION "
TNn. ENG. CHEM.. 47(R) :95A-96A. AIJr.. 1955
5/75 BRANDT. C. STAFfORD
"FLUORIDE ,ANALYSIS"
INTERN. J.AIR WATER POLLUTION. LONnnN. VOL7:10AI-10A5. 19"3
9061 WILLF.TT. H.C.
"METEOROLOGY AS A FACTOR IN AIR POLlIITTON".
INn. MEO.. 1950. 19. 116-20
9063 JOHNSTONE. H.F.
"PROPERTIES ANO AEHAVInR nF AIR r.nNTAMTf\IAMTS II
INn. MEO..1950. 19. 107-15
906h FRICK. H.
"ECONOMICAL DUST EXTRACTION 1M THF r.FRAMIr. FtlCTnRY II
KERAM.Z.. 1967. 19. Nn. R. 4R7-R.9
"
9075 CHILTON. T.H.
"PROCESS ENFRr,y"
CHEM. ENG~., 1950. 57 NO.5. ]03-50
907h nANSFR. HARnLO W.
"ELIMINATF STACK nUSTS ANO MISTS II
CHEM. ENG.. 1950. 57. NO.5. ]5R-AO
90R7 CHAKRAVARTY. P.A.
"PROD\JCTION OF AERYLLIUM OXIr)E FROM RF.RYL"
J SCI IND RESEARCH (INnIA). 1~54. 13A. NO. 11. 7R3-R7
9123 NnNF:
"HCONITE RUILn-IlP ON THE MESART II
MIN ENG. SEPT 196R. ?O. RI-R4
8-65
. ~';" . 1. ..
,.~/> ~,
':. t' .- .-t,:
'~'.'~', ~
',.I':i'

-------
'J ) I) (I
U\II/.I". PI(HflRn I). F, .lnHI\I<;Tn~l. HflRnf.n <;.
"rl.II:~qr/l1 RFflcrlrJ1Il<; 1111 '.n<; /I"Ir.F'.F<; <;Mnr."
P['fIC. I\1/lTI.. /lIR prll.fIITln1l1 syr"'Pfl<;TlfM. lqC;?
? ,?A-,:\/.
q :>(-,1,
IrlTI\Ir:."
STFFI_. .JlI'.Y lqAQ. 1AS. 1Iln. ~. ,:\Q-40
QCJ,A4 LTr.HTNFR. M.W.
"nr:VFIJIPMEI\ITS I 1\1 IRn1lIM/lK1Nr. AI\1/) STFFI.MIIKTI\Ir.."
RI.AST FIJRNAr.F f. STFFI. PI.lINT. I\ln\l lQAA. <)4. 1\ln. 11. ]O?'J,-7
Q1r-.'i nS\
-------
(Jl, ? A
I\1I1I-IF
11f\'F\
-------