Radian  Corporation
                   8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78757 « TELEPHONE 512/454-9535
                         FINAL REPORT
                           VOLUME II

                  GAP Contract No. EHSD 71-5

                  A THEORETICAL STUDY OF NOX
               ABSORPTION USING AQUEOUS ALKALINE
                       AND DRY SORBENTS
CHEMICAL RESEARCH • SYSTEMS ANALYSIS •  COMPUTER SCIENCE • CHEMICAL ENGINEERING

-------
        Radian    Radian  Corporation
                   8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78757 • TELEPHONE 512/454-9535

 RAD-71-200-007-01
                           FINAL REPORT
                            VOLUME II

                    OAP  Contract No. EHSD 71-5

                    A THEORETICAL STUDY OF NOX
                 ABSORPTION USING AQUEOUS ALKALINE
                        AND DRY SORBENTS
                          Presented to:

                     OFFICE OF AIR PROGRAMS
                  ENVIRONMENTAL PROTECTION AGENCY
                    411 West Chapel Hill Street
                    Durham, North Caroline 27701
                         31 December 1971
CHEMICAL RESEARCH  •  SYSTEMS ANALYSIS • COMPUTER SCIENCE  •  CHEMICAL ENGINEERING

-------
Radian Corporation
Technical Note
Number
200-007-02
200-007-03a
200-007-04a
200-007-06
200-007-09
200-007-11
200-007-12
200-007-14
200-007-15
200-007-16
8SOO SHOAL ClEEK ILVD. . P. O. lOX 9948 . AUSTIN, TEXAS 7"66' TELEPHONE 512 - 454-9535
LIST OF TECHNICAL NOTES
IN VOLUME II
Title
Review of the Literature on Experimental
Studies of the Aqueous Absorption of
Nitrogen Oxides
Gas Phase Equilibrium in the System
NOx - H:,P
Compilation of Thermodynamic Properties
for Compounds of Interest in Nitrogen
Oxides Aqueous Absorption Processes
High Temperature Behavior of Anhydrous
and Hydrated Nitrites and Nitrates
Material Balance Calculations for NOx
Aqueous Sorption in a Packed Tower
Selected Values for Equilibrium Constants
Used in the Aqueous Equilibrium Formulation
Vapor Film Mass Transfer Coefficients
for £NOg and HNOs in a Packed Tower
Results of Literature Search on Aqueous
Sorption of Nitrogen Oxides
Calculation of Decomposition Pressures
Over Metal Nitrates and Nitrites
Listing of Subroutines for the Gas Phase
Equilibrium Model

-------
Radian Corporation
8409 RESEARCH BLVD.
.
AUSTIN, TEXAS 78758
.
TELEPHONE 512 . 454.9535
TECHNICAL NOTE 200-007-02
REVIEW OF THE LITERATURE ON EXPERIMENTAL
STUDIES OF THE AQUEOUS ABSORPTION
OF NITROGEN OXIDES
8 January 1971
Prepared by:
Terry B. Parsons
Engineer/Scientist
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8409 REseARCH BLVD. . P.O. BOX "ilB . AUSTIN, TEXAS 78158 . TELEPHONE 512 . 4S4-953!1
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX "48 . AUSTIN, TEXAS 787S8 . TELEPHONE 512 . <154-9535
1.0
INTRODUCTION
references were selected as the most valuable for a theoretical
description. The 70 remaining references contained practical
information such as equipment descriptions and operating con-
ditions or empirical relationships between operating variables
and absorption coefficients. Many of these references were in
Russian.
From the literature search to find infor.mation for a
theoretical description of sorption processes, it was found
that much had been published concerning experimental studies
of the rate and mechanism of aqueous sorption of nitrogen
oxides. A review of the results that had been previously
reported was considered an essential first step in developing
a theoretical description. This technical note gives a summary
of part of what has been reported in the literature.
1.
The report "Systems Study of Nitrogen
Oxide Control Methods for Stationary
Sources".
Some of the 50 references of most interest were
evaluated solely on the basis of the abstract. In some cases,
the original articles were in Russian, Japanese, or Hungarian.
A translation could not be obtained in time to include the
information in this note. In other instances, the article was
not available at the University of Texas Library, through the
Inter-Library Loan System, or from independent libraries which
usually supply photocopies. In such instances, the biblio-
graphical reference includes the volume and number of the
abstract from which information was taken.
There were four sources for acquisition of pertinent
literature.
2.
NAPCA publication AP-12, Nitrogen Oxides:
An Annotated Bibliography and a computer
compilation of abstracts from the Air
Pollution Technical Information Center
(APTIC) .
3.
Chemical Abstracts from January 1947 to

October 1970.
4.
Radian technical files.
Around 120 abstracts and/or articles including four
doctoral dissertations were collected on the rate and mechanism
of absorption.
After preliminary evaluation, 50 of these
-2-

-------
Radian Corporation
IMD9 RESEARCH BlVD. . P.O. BOX 9948 . AUSTIN, TEXAS 7B1S8 . TELEPHONE 512 . 4S4-9S3S
2.0
SUMMARY OF EXPERIMENTAL STUDIES ON THE ABSORPTION
RATE AND MECHANISM
The industrial production of nitric acid involves the
absorption of nitrogen dioxide into water or nitric acid.
Efforts to design absorption processes of high efficiency have
prompted some research on factors controlling the rate of
absorption. Some research on nitrogen oxides sorption has also
been carried out with gas cleaning processes in mind. The
published results generally involve an assumption that a certain
step or process is rate controlling. Derivation of the result-
ing rate equations, construction of absorption equipment,
collection of rate data, and demonstration that the data fit
the proposed rate equation are usually described in the results.
The fact remains that an adequate theoretical description of
the process has not yet been given. It is not known under
what conditions gas or liquid film diffusion or chemical reac-
tion limits the rate of aqueous absorption. Further, the
mechanism and kinetics of the reaction between water and nitrogen
oxides have not been established.
Table I is a summary of experimental studies on the
rate of aqueous NOx absorption. Since experimental studies
have been carried out under a widely varying range of condi-
tions, an attempt has been made to present information in as
uniform a manner as possible. Table I was compiled in an
effort to simplify and summarize the extensive amount of data
and to facilitate comparison of results obtained under different
conditions.
-3-

-------
GAS CmlPOSITION
r. NO. end NO
1n 01 trogen.
Initial concen-
tration:
(gmolee/ s)
NO. 4-12xlQ-'
NO 3-gxlO'
NO. . .1-.3mole1.
NO . .07,.2mole1.
I
.j:-
I
2. NO. - NO
mixtures in N:;a.
Varying concen-
trations. Ini-
tial concen-
tration:
(grooles/cm')
NO . lxlO'"
N.O. - 0.1-Q.4
xlO .
NO tit .025moleX
N,O. - .003-.012
mole1.
3. NO,- N. Mix-
tures. Concen-
tration NO,
- 3.5-4.5 mole1..
TABLE I (cont.)
GAS COMPOSITION
3.
(continued)
4. 0.45-11.6
Vor. 1. eNo,
eNOl - NO. + 2N. O.
I
\J1
I
ABSORBING MEDIUM

10-601. Aqueous
Nitric Acid
r. 11.0
2. NaOH 101.
3. CaCl. soln.
with vapor
pressure - 751.
of that over
pure water.
r.

2.
2.7-34.a
NeOH
5.7-69.g1.
IINO,
ill!:.L.!
EXPERIMENTAL STUDIES ON THE AOUEOUS ABSORPTION OF NITROGEN OXIDES

APPARATUS AND
OPERATING CONDITIONS
Falling film tower. Sf!
long, r.25" Ld. Ges
flow rate 10-13t/min.
Add rate - 300cc/min.
Turbulent conditions
liquid agitated effi-
ciently. Maximum Rey-
nolds number - 530.
Wetted wall column,
2.3 em - Ld., height
. 18.1 em. Inter-
fadal aree - 128.2
~ 1 cm8. Gas Reynold I 8
No. - 100-600.
1. Wetted wall column
~~~d; N~:4~ ~~Oo-mO.

2. Batch absorption
vessel, stirred gas
passed through stirred
liquid. Liquid sur-
face 7r.5 cm', T-25'C.
Gas rate - 66 t/hr.
APPARATUS AND
OPERATING APPARATUS
Bubble-cap-plate column
containing one plate.
Liquid flow rates 300
and 600 cc/min., gas
slot velocities - 1.18
end 2.36 ft./sec.
The equipment was
run until steady state
flow was reached.
5. Mixture of 3 solutions:
N. and NO. con- distilled water
taining 4.8 mole1. NaOH-201.{wt.)
NO.. NaCl-241.(wt.)
ABSORBING MEDIUM
Water and 15 wt.
1. IINO,
Wetted wall column
100 em long, Ld. -
2.15 cm. Liquid flow
- 210 ml/min. Tempera-
tures from 83 to 132'F.
N. flow rate - .0775
Ib./min. The same
liquid and gas flow
rates were used for
all experiments.
QUANTITIES MEASURED
Light absorption by NO.
was measured every 30
seconds using a photocell
until the system came to
equilibrium. HNO. and
HNOa were measured after
equilibrium had been
reached. [HNO. J was the
value obteined by titra-
tion with permanganate.
NOa concentration was
determined photometri-
cally. N~ \MS added
from a constant pres-
sure burette to re-
place the volume of
gas absorbed. Photo-
cell and gas burette
readings were taken
at IS-second intervals.
Celculated CTotal . Cr

- PNOa + 2PN:;!O. + PN~03 .
Expressed rate of NO:;!
removal as

(=1:&)(fas volume )
~O, - lit nterfacial
area
The paper stated, "The NOli
disappearing from the gas
stream was calculated
from the gas flow and gas
analyses. Liquor analy-
ses showed the amount of
NO. absorbed when NaOH
was the absorbent". It
was assumed :that since
the liquid volume was
large relative to the sur-
face, the change in liquid
concentration was small
during a run. One inlet
and one outlet determina-
tion were made for the
gases.
QUANTITIES MEASURED
Liquid from the column
was collected for 10-
20 minutes at constant
flow rates. Exit
gas samples were con-
taminated with a mist
'and could not be ana-
lyzed. Liquid samples
were analyzed for HN03
by titreting with
standard NaOIi.
Liquid flow rates .were
determined by timed,
volumetric measurements.
Entering gases were
sampled once and exit
gases were sampled twice
to determine NO. Exit
liquids for distilled
water and NaCl runs were
titrated with standard
NaOH. The removal
efficiency was defined
as the percent eNOa re-
moved from the entering
gas. Removal efficien-
cy was calculated from
ges and liquid flow
rates and entering gas
analyses and exit gas
and liquid analyses.
RESULTS AND DISCUSSION
I\EFERENCF;

DE-006
The rate of NOa removal was ex~ressed
per unit area of uacid surface I. The
rate was greater at 2SoC than at 40°C.
The rate decreased with increasing acid
"concentration. The rate of NO evolu-
tion was less than 1/3 th" rete of NO.
absorption. The rate was assumed to
be limited by chemical reaction since
the diffusion limiting rete equation
showed the rate proportional to
PNO, + PN O. and this was not applicable.

The results were expressed by Rate
- K[N.O.] . K[NO, J' for acids more
dilute than 301.. With 3D-601.cBcids,
Rate - K[N.O. J - C[N.a. Jt[NOJ~.

Rate of absorption into H.O or dilute CA-014
acid proportional to PNO~ or PN.O. if

PNO was low. Rate - b[NaO.]. The rate

constant b was dependent on temperature
and gas and liquid flow rates. If- PNO
was higher, Rate D b[N O.J+C[N.o,f.
For absorption into al~aline solutions,
Rate - b[N:aO,,] when PNO was low. When

PNO was higher, the rate of removal was

much higher with alkali than with water
at the same flow conditions and tempera-
ture, The rate was then described by
Rate - b[N.O. J+ d[N,O,]. For absorption
into calcium chloride, the absorption
rate was lower than that into pure water.
The volume of the gas space had no effect
on absorption rate.
"The absorption coefficient d/x with d
the tube diameter and x the effective
film thiekness was plotted vs. the
Reynold I S number for some orthe runs
aa shown ~,n Figure 5 (CH-027).
CH-027
.-....-., -
,,,w,."".
.-,.......
.-........
- --- -
-_..~
F1GUU 6. EfI'tet ,-,r au Va:LOCITT U
A880,,"10:'O or NO, III W~~W.1oIo
Tows.
cont.
RESULTS AND DISCUSSION
REFERENCE
CH-027
From this plot it was concluded that
the absorption coefficient was propor-
tional to the Reynold I s number to the
0.8 power. The variation of absorp-
tion rate with concentration of N~,
NIO.' or the absorbing medium was not
d scussed, although data were available
to describe these variations. The
ratio of film thicknesses for evapora-
tion was plotted vs, t acid or base
in absorbing medium. A maximum et
pure water as tile absorbing medium
was interpreted to mean that the rate
was greater than in acid or alkali.
NO was found in the exit gas.
The rate was assumed to be controlled
by chemical reaction. The reaction
N;O..+ ~O ;! HNO;+ HN03 was assumed to
describe the mechanism. The overall
reaction was taken as 3/2 NgO..+ HIID
;1 2HN03+ NO and was assumed to be
irreversible under the conditions of
the experiment. The resulting rate
equation was
-dCN.O./dt - ACN.O.
The rate equation was integrated and
the data were plotted in the form of
the resulting equation with good
agreement for the predicted slope.
1f1!~006
Results are shown in the graph below.
NO wes found in the exit gas when
NaOH was the Borbent.
P E-007
"
,-
5
~.
r
A'!ISOAOtNC, "Io.UIO
O'U'(AILi(NTAL-OJStU..L(O WAn
6- .. -lQ"'NooDH ICX./O.
G- -~"""'I8o(.l ..
-.-rHtOAtTiCAL -20""N-.OM ..
.. '~"'N..CI ..
..
TtW,...:r.
FIau..... Elroci elaempe..."u.... .eat_.ll'mn.-"",

-------
I
0-
I
TABLE I
GAS COMPOSITION

~~re ~O. o~t-r.r
mole1. Concentra-
tion for most
runs Ie.. than
11.
7. NO-NO. mix-
ture with N .
eND. - 0.6~i.2,
and 4 mole],.

NO varied for
each concen-
tration of eNo.
from 0 to 8.2
molel.
8. No.-N. mis-
tures.
5-25 molel
~~t~2~~~a - .06-.2
TABLE I
(cont.)
GAS COMPOSITION
9.
3-151 NO. in
No
I
--oJ
I
10. Pure NO.-
N.O, mixture
(no carrier gas)
Pressures from
0.06 to 0.3 atm.
11. NO.-N.O,
mixture in No
(cont.)
ABSORBING MEDIUM

Demineralized
water.
Demineralized
water.
Deionized wacar.
ABSORBING MEDIUM
Degassed water
O1s ti lled ,
degassed water
Degassed de-
ionizad water
APPARATUS AND
OPERATING CONDITIONS
30 liter glass jar,
agitated liquid, gas
introduced through per-
forated disk disperser.
Bubbles released through
disk were broken up by
agitator. Liquid rate
was 1090-1100 cc/min.
Gas rate was .035-J)7 Ibl
min. Average tempera-
ture - 25'C.
Wetted wall column, 73
em long, Ld. - 2.15 em.
Wa ter flow rate - 270
ml/min. . N flow rate
- .032 IbJmin. Experi-
ments carried out at
room temperature.
Wetted wall column.
The range of gas
rates covered Reynolds
numbers from 170 to
350.

co~~;~~ ~~:: t~o:

0.03 to 0.3 sec.
Temperatures were
25 and 40'C. Columns
of different dimen-
slons were used.
APPARATUS AND
OPERATING COND1TIONS
A wetted wall column was
used with special care
taken to insure laminar
gas and liquid flow.
Height - 13.6 em, Ld.
- 3.6 em. Contact timea
of 0.2 to 0.4 seconds
were used. Temperature
was 25-35'C.
Laminar liquid jets of
I/mm diameter and con-
tact times of .005 and
.025 seconds were formed
at the tip of a thin
81a88 tube. The wacer
rate was 3 m/sec.
Stirred pot - cl~sed
system surrounded by
con.tant'tlmperature
~~~. 0 ~~'O;~~ures
QUANTITIES MEASURED

Exit liquid samples were
analyzed with NaOH for
HN03 content. Cas sam-
ples were analyzed for
NO and NO,. Results
were expressed 88 re-
moval efficiency of NO.
or the percent NO:a re-
moved from the. entering
gas.
~~ ~~ ~~le~~~~d m::~~red

gases. Exit liquid sam-
ples were analyzed for
nitrous and nitric acids.
Material balances were
made comparing NO and
eND. entering with NO,
eND.. HNo, & HNO.leaving.

~l~hi:s fo~u~~e t~~:r~:r
balance.
RESULTS AND DISCUSSION
The rate equation' developed previousl
(PE-006) was modified to include the
effects of NO. The integrated form of
the rate .equ'!tion predicted that a ploc
of results would give a series of
straight lines with negative slopes and
8 constant intercept. The data fit the
predicted form. The rate constant was
predicted and found to depend on the
gas-liquid ,contact area. Removal
efficiency (\NO. removed from entering
gas) was found to increase with gas-
liquid contact area. The applicable
rate equation was of the form
-dCeNO,/dt - KCN.O, + K'~OCNO. .
REFERENCE
PE-008
The average rate of disappearance of KO-024
eNO. is greater when NO is increased. KO-026
When NO was high, tha data did not fit
the rate equation

-dCeNO./dt - KCN.O.

A new mechanism was proposed involv-
ing the following reactions as the
rate determining steps.

N.03+ Ha0 i! 2HNO.

N.O, + RoO ;I HNO.+ HNO.

The resulting rate equation was developed.

-d(eNO. k Idt - K(NO.); + K' (NO)g(NO')8

- K"(HNO,)~

~6) el~~t~h~ ~:;;~ls~~o~~h~~~:~ (P~;s

revised to include HNO:; and was ~eck-
ed by usir.g it to calculate outlet gas
composition. Calculated values com-
pared with experimental within t 51 for
mos t cases.
Exit liquid samples were The rate of absorption was linearly
analyzed by collection proportional to the bulk gas N.O,
under NaOH and MeO:. and concentration and was independent of
titrating with H~l. Ab- gas velocity. The rate was also
sorbed nitrogen oxides independent of contact time. and
in whatever form were slightly dependent on temperature.
reported as NO.. The data were analyzed in terms of
The columns were oper- the penetration theory and used to
ated with CO. and with calculate a rate constant for the
NH3 to establish 8 gas reaction between N.O. and HgO and
film coefficient corre- an equilibrium constant for the phy-
lation. sical aolution of N.O, in water.
The effects of gas rate,
gas composition,. contact
time, and temperature on 1 NO.
the rate were studied. Absorption race waa upresaed as ~:. e:ec.
QUANTITIES MEASURED
tOa and NH3 absorptions
were conducted to verify
flow conditions..NOa was
detennined photometrically
and HNO. and HN03 were
determined from liquid
samples. A mass- balance
was set up around the
absorber. The absorp-
tion rate was expressed
in gmoles equivalent NO:;/
min. It was found that
the difference between
NO. entering and NOa
leaving was 30-607. great-
er than the absorption
rate calculated from

;il~~~ =~:l~:~;iber'~~ a
reae tion between NO. and
water in the gas phase.
Leaving liquid was
sampled and its conduc-
tivity measured to deter-
~~~~i~~~~s S~:ddle:~ate

reached. Liquid samples
were analyzed for HN0I
by acidimetric analys a
and HNO. by oxidimetric
analysis .
NO. -N. O. was added and
the pressure change
with respect to time in
a closed system with
constant temperature
bath was measured. When
pressure reached a con-
stant value, gas samples
were taken under Ha 0:.
and titrated with NaOH.
The absorbing solution
was analyzed for HNOI
by titrating with NaOH.
WE-009
RESULTS AND DISCUSSION
REFERENCE
DE-007
The absorption rate was proportional
~~o:h~n a~~~a~~l~a~~~~l t~:s;~~: ~;s

considered lower than would be the
case if diffusion were 'controlling.
In developing rate expressions the
gas phase reaction between N.D. and
water, as well as the liberation of
NO were neglected. Differential
equations were developed to describe
NO. -N.O. diffusion and N.O. dissolu-
tion and its reaction with water.
The nonlinear equations were solved
numerically and values for H IRI) were
computed where H is the solubility
of N. O. in water and K i8 the rate
of reaction of NaO. and water. It '
was concluded that gas phase resistance
would be important at higher eNO; con-
centrations but that at. lower concentra-
tions the resistance to mass transfer
shifts to the liquid phase.
Using a previously derived equation
for the rate of absorption of a
dissolving gas which reacts with
the solvent according to a first
order reaction, the quantity HIKD
was determined for the reaction
N O. + H.O. Diffusion resistance 10
tte gas phase was eliminated by using

~~~:l N~~;Nt~~;arI~e p~~~~r~io:~~. t~e-

its concentration at the gas-liquid
interface. The decomposition of HNOo
resulting from N.O. + H:fD ;! HND; + HNO. to form
NO and .N:.O. Bnd the subsequent reac-
tion of N.O. were taken into account.
The fact that some HNO. was formed by
the reaction of N.03 and water was
discussed but was not applied to the
calculations.
KR-OQ6
A rate equation baaed on the reaction
N.O, + 11,,0 ;I- HNO, + HNO. as the rate
eontrolllng step wss develop ad. Tha
measured rate was greater than the
predicted one when NO was present 80
the rate equation was modified to the
form .
Rate - K(PNo.) + K(PNO) (PNo" ) .
CH-028

-------
TABLE I (cont.)
GAS COMPOSITIOl<
12. Not .ppli-
cable
I
00
I
13. NO, in
dilute mixture..
Concentration
from 0.1 to 121;
14. Mixtures
of NO and NO,.
Concentration
not described
except [NO]/
[NO, ] > 1

IS. 1. N,O,-
NO, mixtures.
2.
TABLE I (cont.)
GAS COMPOSITION
NOCI
ABSORBING MEDIUM
W.ter
Water
Solutions of
~~HNJ:~~O. .
1. NaNO. solu-
tions.
~ill~~t:~ d~::
areated
ABSORBING MEDIUM
J
16. NO-NO, mix- Na~CO., Ca(OH).,
cures of unspeci- and CaCOo Bolu-
fied concentra- tions.
tion
17. Mixtures
of NO., N~O.
and N,O. 1n
lIitrogen.
NO. concentra-
tion was 0.4
to 13 volume 1..
I
\D
I
18. Industrial
fases cont.in-
ng NO, NO.,
and N.. 03 10 con-
centrations of
0.2S1 and
higher.
19. NO-NO.
mixtures
20. NO, -NO
mix t\lres
Water and HNO.
Alksline solu-
tion.
~aOH solutions
W.ter and
HNOo solution.
APPARATUS AND
OPERATING CONDITIONS

Liquid N.O. was 'inj ected
by needle into 8 stream
of weter flowing at high
velocity in a closed
system. Temperatures of
2 to 20'C were used.
Apparatus not described.
Gas velocity up to O.S
t/min. Ten>perat\lre 17
to 20'C.
Not described in the
abstract.
Laminar j e~ apparatus
\t atmospheric pressure.
APPARATUS AND
OPERATING CONDITIONS
Apparatus not described
in the abstract.
Cocurrent felling film
tower 17-S0 C. Gss
Reynolds numbers were
600-4000. Liquid load-
ing was 0.3-1.0 t/min.
Packed columns.. GaSGS
~~l~~M~. ~gh linear
Apparatus not described
in the abstract.
Apparatus not described
in the abstract. Gas
velocity w.s 0.3 to S.O
mIne. Tamperatures of
20 and SO' C were used.
QUANTITIES MEASURED

The temperature differ-
entials at various
points downstream from
the point of inj ection
were determined using
thermocouples.
The optical density of
a solution formed by
NO, absorbed by 61
methanol containing 3g
benzidine/ t was mea-
sured and found propor-
tional to the concentra-
tion of NO,.

Not described in tha
abstract.
In the experiments with
NOCl+the. concent!'ation 8
. of H, Cl and NOa were
determined by analysis
of the outlet liquid.
[HNO,], [It+], [NO;] and
[Cl-] wera studied as
a function of NOCI pres-
sure.
QUANTITI ES MEASURED
Experiments not described
in the abstract.
The experimental proce-
dure was not described
in the abstract.
The experiments were
not described in the
abstract.
Experimental conditions
were not described in
the abstract.
Experimental procedure
not described in the
abltr,ct.
RESULTS AND DISCUSSION
REFERENCE
MO~008
The rate of the reaction N,O.+ Ho0
was calculated and compared to values
obtained from gas absorption data.
(WE-009, KR-006). A mechanism for
the NaO. water reaction was proposed
as follows with (3) the rate determining
stap. 0. NNO. ;! 2NO, (1)
2Nu, ;! ONONO. (2)
ONONO, ;! NO+ + NO; (3)
NO+ +!DH ;! 30NOW (4 )
HONOH+ ;! It+ + HONO (S)
The resulting rate equation was

~ a -K,Kof,[N,O.]
K1 and Kg are the equilibrium constants
for (1) and (2) and f. is the forward
rate of step (3).
K ... K1 ~ f3 was measured. No check
was made on the validity of the rate
equation.

An empirical relationship was develop-
ed relating 10g[NO. ] and log C1(C1-degree
of absorption of NO;). There was a
minimum in the' plot log [NO;] vs. log Q.
at 2.SxlO-'" NO,. -
80-006
The rate of NO; absorption changes
with the equilibrium concentration of
N;O. in the gas. The rate for NIIO,
depends on its equilibrium concentra-
tion in the gas. When [NOJ/[NO,] > I,
the absorption is accelerated.

The hydrolysis mechanism WaS con-
sidered

N.O. " NO+ + NO; (1)

NO+ + Ho0 ;! H+ + UNO, (2)

The rate determining step was found
to be (1) rather than (2). The
reasons are not clearly described in
the abstract. Tho article 18 un-
available at preaent.
EL-004
MA-032
RESULTS AND DISCUSSION
REFERENCE
PE-OIO
The rates of absorption were found to
increase for sorbing solutions io the
order CaC03 J Naa C03, Ca(OH);. When
Na;C03 solutions \-.ere used Na03 was
absorbed faster than NO;. The sorbing
solution must contain at least. 4 g
NaaC03/L. The absorption rate was
lowered when the density of the sorb-
ing solution w:JS increased by large
amounts of NO; and NO;.
The rate of absorption was found to
be independent of the liquid velocity.
The resistance was caused by the
liquid phase. chemical reactions. The
driving force was determined by [N.O.]
and was independent of [HNOa J in tho
absorbing medium, the degree of oxida-
tion of the gas phase. and the counter-
diffusion of NO.
MU-004
The rate of absorption of Na03 was
~;~~~~~y i~r~h~r~~~~al ~~n i~~e c~~~en-

contained equimolar quantities of NO
and NO;. the rate was proportional
to their combined concentrations up
to O. 2S1.. If both NO, and N.O, are
present. the relative proportion of
NO increases. The absorption rate

~~~b;~u~~ ~~e v~3~ :~w;~~ R~~O;~:orp-
tion rate decreased as the tempera.
ture increased.
ZH-OOI
The completeness of the absorption
reaction reaches a maximum at a 1:1
mole ratio of NO to NO,. At this
ratio the NO + NO; concentration has
no effect an the completeness of
reaction.
MI-OOS
The rate of absorption decreased
with risinf temperature. At low
concentrot ans the rate is indepen-
dent of gas velocity but at some
concentration it begins to depend
on the velocity. \,hen [NO.] > [NO].
mostly No" is dissolved. When
[NO] > [NO,], mostly N.O. goes into
solution. The rate of absorption
of N.O, is 1.4 times as fast as the
rate of No".
ZH-002

-------
TABLE I (cont.)
GAS COMPOSITION
21. Equimolar
mixture of NO
and NO.
22. NO mixtures
in nitrogen
23. Und iluted NO
+ NO. end
pure No"
I
....
o
I
24. 801 NO.
mixtures:
1. in N.
2. in eir

;ithi~7~.NOO.
2S. NO-NO.
mixtures.
Concentra-
tion not given
in the abstract.
TABLE I (cont.)
GAS COMPOSITION
26. N oxides.
No further des-
cription given
10 abstract
27. NO, NO.
mixture.
Total concen-
tration from
0.05 to 1.41.
28. NO. snd
N. O. . N:I con-
centrsUons
given in thL
"batract.
I
....
....
I
29. NO + NO.
Total concen-
trstion 0.5
to 3.51
30 . NO mix ture..
Concentra-
tion not g1 van
in abstract.
Some NO. mus t
sleo have been
present.
31. Pure
mixtures of NO
~~~Ng, toN~b6tied

The rest was NO.
Some measure,-
ments mede with
pure NO..
ABSORBING MEDIUM
::~gO. ~o~~~~~~
Totai concentra-
tion of ell 3 .
34-61.
Solutions of
::~. ~~eCls .
(NH. ,. SO.
Water. HNOa
solutions, NeOR
solutions, NeNo.,
solutions
Water ..nd IINO.
solutions
Ca(OH). solu-
tions .
ABSORBING MEDIUM
NS;a COa solutions
contsining NeNO.
and NsNO..
Ns,CO, solutions
containing NeNO.
and NeNO..
51 IINO. solution
APPARATUS AND
OPERATING CONDITIONS
~:c~~&~a~s th:s not
abstract.
Static ges phsse, mildly
&git.ted liquid phese.
1. Gas bubbled through
liquid.

2. Surface absorp tion
with r spid movement of
gss end liquid.

3. Surface absorption
with quiet state of gas
and liquid.
A 45 mm diameter column
filled with glass rings
was used. Gas velo-
cities of 0.2 =/sec
and liquid rates of 7.2
m./m' were used.
~:c~ig:~a~s th:" not
abstract.
APPARATUS AND
OPERATING CONDITIONS
QUANTITIES MEASURED
The procedure was not
described in the
abstract.
The experimental proce-
dure was not described
in the ebstract.
The experimental proce-
dure was not described
in the ebstract.
"!be experimental proce-
dure was not described
in the abstract.
The experimental proce-
dure was not described
in the ebstract.
QUANTITIES MEASURED
RESULTS AND DISCUSSION
REPERENCE
KR-007
The rate was proportional to [N,O.].".
The absorption efficiency is sharply
reduced when [Na,CO.] < 31. Nitrite
causes. a greater reduction in efficiency
than nitrate. The author suggests it
is due to the effect on the decomposi-
tion of HNO,.

Sulfite Absorption: For [NO] < .1 bar,
the absorption rate was. K,PNO(g)kgl

m:' hr. Kl wss the mass transfer coef-
ficient.For [NO) > .1 bar, Rate.
K, (P-Pi)NO with Pi the equilibrium

pressure at the interface.

Absorption with Fe++ Salts: The driving
torce expression must take into account
the equilibrium:

K D [FeNo++]/[Fe++J[NO]
Po-014
~g\t~~, b~~~~i~~s~;~~~d ~t :b~~tN~~e end AT-002

same rate. For the mixture, when NO >
NO" the absorbate is in the form of
Na03.

~~~e~~~t ~et~~d + o~o~ar~d a~:~r~~~ ~~~~;~
tJiBi11m; .

For .the method of uiet as and li uta:
a O. pure a was a Bar e muc more
rapidly than N,O. at 2S'C. The rate of
absorption of N,O, decreased with in-
creasing concentration of NaOH or HNO,.
The rate for N,O. decreased with increas-
ing concentration of HNO,. The rate for
Na 03 increases with increasing NaOH
concentration over l25g1 t;
For mixture 1, the rate of Btbhseorpa tsoiOrbn-
was. K, PNO, and 80-901 of ab
ed oxides formed IINO..
For mixture 2, the rate at PNO, > 0.5
atm was. KPNOa.
For mixture 3, only 60-75% of the oxides
absorbed formed IINO..
TS-OOI
GA -008
An increase 1n the concentration of N
oxides gave an increase in the absorp-
tion rate. The rate decreased at

t~c~h:S~~!~~:~:t~fe~he :8 id~~~:::ed
~~:t~~o~t~~~rf~;e ~d I~~~~:~;nfn c:~l~~lon
decreased the ebsorption rate.
RESULTS AND DISCUSSION
REFERENCE
KR-008
Packed towers - 18 m high, The experimental proce-
diameter. 7 m, tempera- dure was not described:ln
ture - 2S-35'C, pres- the abstract.
sure 1.30-5 atm, gas flow
rate .2-.3 misec, liquid
flow rate 9.5 m'/ma hr.
Packing was ceramic rings.
The apparatus is called
the Penn apparatus. It
is not described further
in the abstract. Gas
flow rates of .5-3. ml
sec were used.
A rapidly revolving
mechanical absorber
was used. The gas
veloci ty corresponded
to a contact time of
2.4 sec. Temperature
was 20-22'C. The con-
di tions were highly
turbulent.

30-199 g/' A venturi scrubber
N..CO. solutions with throat diameter
. 6 mID Was used.
HNO, solutions
normality. 0.1,
0.01, and 0.001.
HCl present to
determine influ-
ence of Cl - .
normality. 0.01
to 0.04 N,#nflu-
ence of ~ . ++
~~+ Cdn als~ .
examined.
Water
The apparatus was
not described in the
abstrsct. Tempera-
ture was 30'C.
~a~~~~ar 8i:rl:~p~~a~h~

of Kramen (KR-006;
example 10). The jet
diameter was 0.87 mID and
the length was varied
between 2 and 6 em. The
The coefficient of
absorption efficiency
is defined as equilTalent
N oxides absorbed/ equi-
valent Nsa CO, used. An
absorption coefficient
is also discussed but not
defined in the abstract.
The experimental proce-
dure was not described
in the abstract.
A volumetric absorption
coefficient Kget in kg/
m3 hr. atm was deter-
mined.
The concentrations of
HNOa and HN03 were
correlated with the
,onductivity of their
solutions. The absorp-
tion rate was expressed
as the rate of forma-
tion of IINO..
The exit liquid was
analyzed for total acid
(HNO. + HNO.) by quench-
ing with a known amount
of 0.1 N NaOR end back
titrating with HCl. The
IINO. content was
The concentration of Naa CO, had no
effec t on the degree of absorption at
values higher than 30-3S g/,. The
degree of absorption decreased wi th
increasing NaNOa and NaNOs concen-
tration.
The products from sorption with NaaCO.
were NaNOs and NaNOa. It was found
that the coefficient of efficiency
a) increases with increasing liquid
flow rate and increasing initial con-
centration of N oxides, and b) de-
creases with increasing gas flow rate
and increasing NaaCOs concentration.

It was postulated that HNOs forma-
tion takes place via IINO. formation.
In testing the hypothesis, the rates
of NO, end N, O. absorption by 57.
HNOa were found to be equal.
PO-Ol5
GA-009
!'he following was found concerning
Kget:
I.. It was a maximum 'ae 501 cunver-
dion of NO to NOa.
2. It decreased with decreasing
concentration of N oxides in the
entering gas.
3. It decreased with an increase
in Ns:,CO, concentration.
The absorption rate WaS saId to be
controlled by the diffusion rate of
;mo, from the gas-liquid interface
°.0 the solution. It was found that
Cl- acce!frates the absor~tion and
Mg++, Pb ,Zn*, and~' have
negligible effect. Cd appeered to
accelerate absorption. The equili-
brium concentration of HNOa was much
greater in the system NO-HoO-HNO.-
HCl than in the system NO-H,O-HNO..
The original article is in Japsnese.
An empirical equation for the
dependence of the total acid concen-
tration on [eNO,), [eND.)., jet
length, jet diameter, and water and
gas flow rates was developed using
regression analysis. All results
were then extrapolated to a value
VA-006
01-001
HO-009

-------
TABLE I (cont.)
GAS COMPOSITION
31.
(cont.)
I
I-'
N
I
TABLE I
GAS COMPOSITION

32. NO-NO. mix-
tures 10 alr.
Concentration of
N oxides. 98-
4.11. 821 of
the NO wss oxi-
dized- to NO..
33. II1xtures
of N.O, and
IINO, in 0..
I
I-'
W
I
34 . Mixtures
containing NO
and NOa. The
NO was oxidized
from 30 to 601
The concentra-
tion of NO + NO,
varied up to
1.21.
35 . II1x ture of
0.5-3.51 NO +
NO,.
ABSORBING MEDIUM
(cont.)
ABSORBING MEDIUM

Ca(OH). solutions
concentration
range 30-l30g/ J.
Water
N...CO. solu-
tIons of '
g/J.
Na. Co. solu-
tions of 30-
198.8 g/J.
APPARATUS AND
OPERATING CONDITIONS

liquid flow rate was 100
-130 ml/min and the gas
rate was 10-40 J/hr.
Experiments were ther-
mostated at 25.C.
APPARATUS AND
OPERATING CONDITIONS
QUANTITIES MEASURED

determined separately by
oxidation with KMnO, and
with spectrophotometry.
QUANTITIES MEASURED
RESULTS AND DISCUSSION
REFERENCE
of gas flow of 40 t/hr and water rate HO-009
of 100 ml/min. Since the gas contained
00 diluent gas, diffusion resistance
was considered negligible and the rate was
was considered determined by the two reactions:

N.O, + H.O ;I lINe. + IINO. (1)

N.O. + HoO ;I 211N0. (2)

Based 00 the stoichiometry of these
reactions, t1.te time rate of change
of Na03 and NaO. were expressed in
terms of the concentrations of HNOa
and IINO.. The results are glven in the)
following figure.
'10
,co
!
!
!W
"
IIIIII
Abb.4
;-.rub UC'JLIiOIi (11 und Itu"tion (2) ,.:bildl'cc S~lr.:t\:nlllft
vnd ulp.:uicc S:iun: ill Abhill~i[:,ldl von drr GJ,ruulnlJldo
knurlS. Vtt"",ribtil dn Sluhl, ,. 1,436.10' '"
It can be seen that the rate ot: change
of N;a03 according to reaction 2 i8
greatest et 50'7. NO. and 50'7. NO.
An equation derived previously and
used by Kremers (KR-006) was used to
obtain a rate constant for reaction
2. The equation is based on the pene-
tration theory. According to the equa-
tion, tha rate should be proportional
to the concentration of N. O. in the bulk
gas. There was e deviation from linearity.
The authors steted also that another
posaible mechanism is the gas phase forma-
tion and subsequent diffusion of lINe..
RESULTS AND DISCUSSION
REFERENCE
GA-OlO
A horizontal absorber Entering and exit gases
containing an axial shaft were analyzed for NO and
to which discs were NO; and the absorbing
attached was used. The liquid was analyzed for
discs were perforated nitrite and nitrate.
and formed blades and The absorption coef-
were rotated at high ficient Kg depended on
speeds to produce high the concentration of NO
~as and liquid turbulence. and NO; in the gas, the
,..ountercurrent flow was volume rate of gas flow,
used. The gas had to be the speed of rotation of
separated from entrained the discs, the tempera-
mist after it left the ture. and the Ca(OH).
absorber. Gas velocity concentration. Kg was
was 400 m' gas/m3 ab- expressed in leg 1m3 Ihr/
sorber/hr. The tempera- atm.
ture was 30°C.
A bubble-cap column in
an autoclave: was used.
The temperacure and
pressure were varied
up to 90.C and 50 atm.
A column .iith a centri-
'ugal sprayer Was used.
.he liquid rate was 2.2
-6.m3/tIi' hr and the gas
rate was 167 m3 1m3 hr.
The temperature was 10..
40°C and the spray velo-
city was 23 m/sec.
t turbul{!nt gas scrubber
venturi) was used. The
gas feed rate was 32-
132 t/min the gss velo-
city was 18-78 m/sec end
the liquid rate relative
to the 88S rate was .68
-4.13 J/m3.
The measurements were
not described in the
abstract.
The measurements were
not described in the
abstract. The degree
of absorption J a., and
the coefficient of
absorption Kg were
calculated from the
data.
Inlet and outlet NO end
NO; were determined in
the gas and the volu-
metric absorption coef...
ficient K, e was express-
ed in Kg moles of N./
m3/hr/atm. The degree
of ebsorption was also
calculated.
The rate of absorption was dependent
on the concentration of nitrogen oxides
at low peripheral disc speeds. At
higher speeds, the absorption rates
became equal for high and low initial
concentrations. The rates of absorp-
tion for gases of equal concentra-
tions containing (1) NO. and (2) NO.
+ NO in equimolar proportions were
only slightly different in the mechan-
ical absorb,er, The percent of nitrogen
oxides removed from the gas stream by
the mechanical absorber was reported
to be higher then in commercial packed
towers.
Empirical relationships between the
rate con~tant for disappearance of
NO; and temperature or pressure were
developed. It was found that the
rate of disappearance of NO; was
K(NO, P (HoD]. The proposed mechanism
inVOlved the following steps.
2ND. (g) ~ N.O, (t) (1)
N.O, (t) ~ 2No,,(t) (2)
2ND, (t)+ HoD ~ HNo" + IINO. (3)
Step 3 was proposed as rate controlling.
AT -003
When 38-40'7. of the NO WaS oxidized
to N02 J the degree of absorption and
the absorption coefficient increased
as the concentration NO + NO; in the
gas.. With increasing temper..ture a.
and Kg decreased.
GA-Oll
An empirical relationship was found
for the dependence of 1<0 a on gas
velocity, liquid rate. nitrogen oxide
concentration, sodium carbonate con...
centration end degree of oddation of
NO. The highest velue of the absorp-
tion coefficient was at 501 oxidation.
VA-009

-------
TABLE 1
GAS COMPOSITION
36.
Pure NO
37. NO in
nitrogen in the
range 0.7-381
I
t-'
.p-
I
38. Nitr.c
oxide; 1'1:
in nitrogen.
39. Three
series of
experiments
were conducted
in. which -the
concentrations
of NO + NO.
were:
1. 0.25-0.51
2. 0.9-1.01
3. 2.0-2.51

65'1: of the N
oxides were
oxidized to NO.
TABLE I
GAS COMPOSITION
40. Two series
of experiments
were conduc ted
with a mixture
of NO+NO, in ni-
trogen in the
following con-
centrations:
1.
2.
0.5-0.7'1:
1.0-1.3'1:
~!d:~f~~e off
NO to NO. wes
varied from 30
to 70'1:.
I
t-'
VI
I
(cont.)
ABSORBING MEDIUM

Peso. and PeCl.
solutions, .25-
.62 M in FeSO..
PeSO. solutions
from 5.6 to
20.51.
201 PeSO. solu.
tions.
APPARATUS AND
OPERATING CONDITIONS
QUANTITIES MEASURED
RESULTS AND DISCUSSION
The apparatus was not The procedure was not Absorption 18 reported to take place
described in the abstract. described in the abstract. by fonnation of the complex [PeNO)--.
The pressure of NO was aq
varied up to 1 arm and The results were expressed in terms
the t~erature from 0 of an equilibrium constant
to 50.C. K. V P
~ NO

where V is ~e li ters of NO absorbed
per mole Fe . The resul ts were
independertt of the concentration of
FeCI, .

The absorption rate 'Was linearly
proportional to the concentration of
NO in the gss up to 8'1:. At concen-
trations hi!\her. the chemical cspacity
of the sorhent must be taken into
account. The high solubility of NO in
the range. 7 to 8.7. was proposed as the
reason for the negligible liquid film
resistance in that range. It was con-
cluded that the rate of the absorption
reaction process is limited by diffusion
kinetics and that liquid film diffusion
was negligible up to concentrations of
8-12%.
A stirred pot reactor
was used. Gas was
passed over the surface
of a stirred liquid at
0.2 '/ndn. Liquid sur-
face was 50.05 cm'.
Temperature was 20.C.
A packed column 510 mm
high and 27.8 mm Ld.
Aas used. The tempera-
ture was 20°C. Gas
'elocity was 0.09-1.
on/sec.
The absorbing A mechanical absorber
medium was a similar to that des-
solution of ca!- cribed in example 32
cium oxida of wss used. The gas
3-5 and 30-35 g/, rate was 400 mO gas/
The original ni- mOhr. The peripheral
trite nitrate disc speed was 23 m/
content was var- sec and the tempera-
ied from 50-450 rure was 65-75.C.
g/"
(cont.)
ABSORBING MEDIUM
The absorbing
medium was a
solution of CaO
containing 4-6
g/' and 200-250
g/' calcium ni-
trate + nitrite.
APPARATUS AND
OPERATING CONDITIONS
The apparatus described
in example 39 was used.
The ~as rate was 300-320
m3/m hr. the peripheral
disc speed was 23 m/sec
and the temperature was
30-35°C.
The concentration of
NO in the inlet and
exi t gas was measured.
An absorption rate
and an absorption coef-
ficient were calculated
in the units kg/m.hr
and kg/m'hr atm.
The entering and exit
concentrations of NO
in the gas were meas-
ured. The absorption
coefficient Ko was
calculated from

Rate a Kg
-------
,-
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 99.118 . AUSTIN, TEXAS 71158 . TELEPHONE 512 . 454-9515
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 18158 . TELEPHONE 512 . 454-9535
3.0
DISCUSSION OF RESULTS
of the rate measurements (DE-007, WE-009) and reports a value
obtained from his own research.
3.1
Absorption with Gases Containing NO~- N~O~
The work in Table I, numbers 3-6, 8-13, 15, 24, 26 and
33 is based on the absorption of gases initially containing
only NOa in a range of concentrations from 0.1 to 25%. Some
work was also done (numbers 10 and 23) with gases consisting of
undiluted NOa-Na04' Absorbents used were water and solutions of
NaOH, HN03,.NaCl, and NaN03. Chambers and Sherwood (CH-027,
Table I, number 3) concluded the rate of absorption was diffusion
controlled based on a plot of tube diameter/effective film
thickness ~. Reynold's number.
Carberry (CA-015) reviewed most of the NOa-Na04 work.

The equilibrium reaction
3NOa+ Ha°
~
2HN03+ NO
(1)
where
K
a
PNO aHNO
.~
PNOa aHa 0
had been considered a valid description of the NOa-Na04
absorption process. Data were usually plotted in the form
It has been pointed out (CA-014 and DE-006) that the
rate equation for diffusion controlling shows the rate propor-
tional to the sum of the concentrations of NOg and Na04'
Peters and coworkers (PE-006, 7, 8, and CH-028, Table I, numbers
4, 5, 6, and 11) on the other hand used a variety of equipment
types and showed the absorption rate linearly proportional to
the concentration of Na04 or the square of the concentration of
NOa. They also demonstrated that even when no NO is added in
the inlet gas, its presence must be taken into account in the
rate equation due to the decomposition of HNOa in acid sorbents.
Wendel and Pigford (WE-009) and Dekker and coworkers (DE-007)
also found the rate proportional to the concentration of
Na04 in the gas.
PNO
loglo PNO
a
vs.
%(wt.) HN03
~arberry plotted the data in the form loglo PNO/P~.~ and
II 4
found the rate constan~ to be independent of temperature.
3.2
Absorption with Gases Containing NO
Except for the work of Chambers and Sherwood (CH-027)
there is general agreement that chemical reaction between NOa-
Na04 and water is rate controlling. Several mechanisms for the
reaction have been proposed and the rate of the reaction has
been measured. Moll (MO-008) gives a good summary and discussion
Table I numbers 22, 36, 37, and 38 are concerned with the
absorption of pure nitric oxide or nitric oxide diluted with
inert carrier gas. Absorbents used were NaaS03' (NH4)a, S03
FeCla, and FeS04. Pozin (PO-014, number 22) found that absorp-
tion rate for sulfites as the absorbent depended on the con-
centration of NO in bulk gas and at the gas-liquid interface.
For Fe++ salts as the absorbent, the complex [FeNO]++ was formed.

Sirotkin and coworkers (SI-007, number 36) also used FeS04.
The abstract of the original article reported that the complex
[FeNO]-- was formed. Since the article was a translation, it is
aq
quite possible that an error was made. Ganz (Ga-012, numbers 37
-16-
-17-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 99<18 . AUSTIN, TEXAS 7B7S8 . TELEPHONE 512 . 454-9S15
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 99<118 . AUSTIN, TeXAS 78758 . TELEPHONE 512 . 454-9515
and 38) also investigated absorption using FeS04' He used a
stirred pot reactor and found the absorption rate was limited
by gas film diffusion.
3.2
Absorption with Gases Containing NO and NO~
There was general agreement (VA-009, number 35; VA-006,

number 29; MI-005, number 19) that the absorption rate was a

maximum at a 1:1 mole ratio of NO; to NO or at 50% oxidation of

NO. These results are well expressed graphically by Hofmeister
and Koh1haas (HO-009, number 31).
Numbers 1, 2, 7, 14, 16-21, 23-25, 27-29, 31, 32, 34,
and 35 discuss absorption of gases initially containing both
NO and NO; with the total concentration varying from .5 to
100%. Absorbents used were water and solutions of HNOa, NaOH,
CaC1;, NaOH + Na;COa+ NaHCOa, Na;COa, NaNOa, Ca(OHg), CaCOa,
and Na;COa + NaNO; + NaN03. There was wide agreement (PE-010,
number 16; KR-007, number 21; MU-004, number 17; GA-008, number
25; KR-008, number 26) that the presence of nitrate and nitrites
in the absorbent reduces the rate of absorption. Perelman (PE-
010) reported the rate to increase for sorbents in the order
CaCOa, NaaCOa, Ca(OH);. Atroshchenko (AT-002, number 23) and
Caudle and Denbigh (CA-014, number 2) reported the rate of
absorption was faster in water than in HNOa or CaC1; solutions,
respectively. The effect of the presence or concentration of
Na;COa in the sorbing solution was investigated by several
workers (VA-006, number 29; PO-015, number 27; and KR-008,
number 26). Krustev (KR-008) reported that the presence of Na;C03
had no effect above a lower limiting concentration. Var1amov
(VA-006) stated that the absorption coefficient decreased with
increasing Na;COa concentration. Pozin (PO-015) defined an
efficiency coefficient as
Most workers agreed that the absorption. rate was
proportional to the concentration of N;Oa or the product of
NO and NO; concentrations (KR-007, number 21; ZH-001, number
18; EL-004, number 14; KO-026, number 26). Perelman (PE-010,
number 16) and Zhavoronkov (ZH-002, number 20) and several
other workers have stated that the rate of N;03 absorption is
greater than the rate of N;04 absorption. Atroshchenko (AT-002,
number 23) found that the relative rates depended on the
experimental apparatus. His results are discussed in more
detail in Table I, number 23. Ganz (GA-009, GA-010) found the
rates to be about equal in his apparatus (see numbers 28 and 32
and the following discussion).
equivalent oxides absorbed
equivalent Na;COa used
Koval (KO-024, KO-026, number 7) performed an extensive
investigation on the effect of adding nitric oxide on the absorp-
tion of NOa+ Na04 by water. His work seems to have been performed
with great care and the mechanism he proposed explained some
results found by previous workers. Although he did not measure
the rates predicted by the rate equations resulting from his
mechanism, he made a material balance and demonstrated that the
stoichiometry resulting from his mechanism agreed with the
actual stoichiometry. Some of the most significant observations
in Koval's work are as follows:
and. stated that the coefficient decreased with increasing
Na;COa concentration.
-18-
-19-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 18758 . TELEPHONE 512 . 454-9$15
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
1. That the absorption rate
liquid contact area was demonstrated
in a variety of equipment types with
is a function of the gas-
by conducting experiments
other factors held constant.
is faster than the first is that both proceed by ionization
mechanisms:
N,.°3
~
NO+ + NO;
(4)
2. In absorption experiments, the concentration of
components NO, NO,., N,.03' N,.O~, HNO,., and HNOs must be monitored.
Early investigators assumed that the concentration of HNO,. was
negligible but Koval demonstrated its importance even when nitric
oxide was not added in the inlet gas.
N:aO~
~
NO+ + NO;
(5 )
Koval speculated that the ionization of N,.Os is faster than that
of N,.O~ since N,.O~ ionization to form NO+ and NO; involves
isomerization from 0aNNO,. to ONONO,..
3. Analytical techniques are important in the NOx-H,.O
system. For instance, many investigators titrated the liquid
absorption products directly with NaOH. Koval showed that
decomposition of HNO,. between the time of sampling and the
analysis time could result in values for total acid from 4 to
20% too low. In addition, the titration curve for titration
of nitrous acid with sodium hydroxide is not sharp since HNO,.
is always decomposing and the pH changes with time.
Varlamov and Drobysheva (VA-009, number 35) tried to
determine the relative effects of mass transfer and chemical
reaction on the absorption of NO-NO,. mixtures in a venturi
scrubber. They used equation 6
1
Kca
1 + 1
K;a ~HkLa
(6)
N,.O~ (t)+ H,.O(t)
~
HNO"(t)+ HNOS(t)
(2) .
to calculate ~H where Kca is the overall absorption coefficient,
kG a is the gas phase mass transfer coefficient and kLa is the
liquid-phase mass transfer coefficient. The factor 8 is the
coefficient representing the effect of chemical reaction and
H is the Henry's Law coefficient. The mass transfer coefficients
for NO + NO,. were calculated by determining the coefficients for
CO,. in water (sparingly soluble gas, liquid phase resistance
rate limiting) and SO,. in water (highly soluble gas, resistance
of gas and liquid phases comparable) and correcting for the
differences in diffusion rates, viscosities, and densities of
COa, SO,., and NO + NO,.. It was concluded that "the boundary
of chemical interaction between reacting components moves toward
the liquid surface" with increasing liquid flow rate, and that
"the rate is influenced by both diffusion of the active component
in the gas and diffusion of the active component and the reaction
product in the liquid".
4. When NO and NO,. are both present in the inlet gas,
the reactions suggested by Koval to be of importance are as
follows.
NgOs (t)+ H,.O(t)
~
2HNO,. (t)
(3)
Reaction 3 is faster than reaction 2 but whether it is in
equilibrium is not known. The equilibrium for the second
reaction in the gas phase is well described but in the
aqueous phase it has not been studied extensively. An
explanation (KO-026) for the fact that the second reaction
-20-
-21-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TeXAS 78758 . TELEPHONE 512 . .c54-9535
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 7B7S8 . TELEPHONE 512 - 454-95]5
Ganz and coworkers (GA-013, GA-014) investigated the
absorption of mixtures of NO and NOa by solutions of CaO
containing calcium nitrate and calcium nitrite. The equipment
used was a horizontal mechanical absorber containing a revolving
axial shaft to which were connected blades or discs causing highly
turbulent flow conditions. Most of the work of Ganz is generally
concerned with developing empirical relationships between the
absorption coefficient and hydrodynamic or physical factors with
little regard for theory and mechanism. However, in the case
of the mechanical absorber, discussion of a possible reaction
pathway was presented. The influence of the NOa :NO ratio in
the gas and the concentration of nitrate, nitrite and CaO in
the absorbing medium were investigated (see Table I, numbers 39
and 40). Some of the qualitative results are summarized in
points 1 through 4.
CaO rather than
of the nitrite,
oxidized to NOa
an excess of Ca(NOa)a. When there is an excess
reaction 7 takes place and NO is given off or
thus limiting the percent absorption.
Ca(NOa )a+ 2NOa
i!
Ca(N03);+ 2NO
(7)
It is proposed that in the presence of excess CaO, reaction 7
is restricted and the decrease in percent absorption is retarded.
3. It was proposed that in the mechanical absorber,
reaction takes place simultaneously via NOa and Na03 and that
the rates of the two reactions are equal. The proposition is
based on several observed facts.
a.
The content of NO in the exit gas was always
greater than NO;, even when the entering gas
ratio NOa :NO was ~ 1.
1. Depending on the concentrations of calcium oxide,
calcium nitrite and calcium nitrate, formation and precipitation
of the basic salt Ca(0H;)a. Ca(N03)a. 2HaO occurs. Gorfunke1
(GO-007) also reports the possibility of formation of
CaO . Ca(N03);. 2H;O.
b.
If only N;03 absorption were taking place,
the products would be totally nitrite.
However, more nitrate than nitrite is
formed.
2. When the nitrite-nitrate concentration in the
absorbing liquor is small the presence or concentration of
calcium oxide has no effect on the percent of nitrogen oxides
absorbed. When the concentration of nitrite + nitrate is
higher, an increase in its concentration causes a decrease in
the percent of NO + NOa removed from the gas. An increase in
the CaO concentration then retards the decrease in absorption.
Ganz explained this effect by stating that in the mechanical
absorber, calcium oxide is dissolved faster than Ca(OH)a can
react to fOrlli nitrites and nitrates so there is an excess of
4. It was proposed that in the mechanical absorber,
nitrogen oxides are almost completely oxidized to NO; and the
rate of NOa absorption becomes equal to the rate of Na03
absorption resulting in the formation of equimo1ar amounts of
nitrite and nitrate. The nitrite undergoes inversion accord-
ing to reaction 7 and NO is liberated and oxidized in the
liquid.
-22-
-23-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 18758 . TELEPHONE 512 . 64-9S15
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
Andrew and Hanson (AN-DOl) also discussed absorption for
the case of both NO and NOa present in the inlet gas. The authors
stated that the mechanism of absorption is dependent on the
relative concentrations of NO and NOa. They described four
possible absorption mechanisms and developed rate equations for
a laboratory sieve plate for each mechanism. The rate equations
were expressed in terms of the plate efficiency ~ defined as
In Figure 1, ~fh' for example, refers to the plate efficiency
due to mechanism fh. The mechanisms corresponding to the
alphabetic designations in Figure 1 are as follows.
Alphabetic
Designation
in Figure 1
fh
chemical NO~ absorbed
chem1cal NOa enter1ng
Chemical NOa meant NOa+ 2Na04+ Na03+ ~HNOa. Figure 1, taken
directly from Andrew and Hanson (AN-DOl) shows the plate
efficiencies predicted from the rate equations for each mechanism.
Some physical constants had to be estimated to obtain Figure 1.
e
cd
100"1.
100'7.
ik
~
.
T - 10 SEC.
G. 10 CM/S£C.
25°C
~ I~.
...
G
;;:
tJ
~
Mechanism
Diffusion across the gas and
Na04' Subsequent hydrolysis
decomposes to Na03' Na03(g)
liquid films as NOa and
of Na04 to HNOa, which
or HNOa(g) given off.
Diffusion as NOa, dimerization in solution, and
hydrolysis of Na04' HNOa(g) given off.
Diffusion as HNOa(g)- Na03(g) equilibrium mixture.

HNOa decomposition in aqueous phase. NO given off.
Gas phase formation of HN03 and HNOa. HN03 both
dissolves in mist and diffuses into aqueous phase.
HNOa(g) decomposes.
Figure 2, also from Andrew and Hanson (AN-DOl), shows
measured total plate efficiencies and shows the numerical
agreement between predicted and measured values of total ~.
The values obtained experimentally are indicated by 0 and X,
while the predicted values are indicated by the lines.
."1,
O. I 10
CHEMICAL NO, CONCENTRATION (GMMOL/Co.?.IO')
FIG. 6. Predicted component and total plate efficiencies.
FIGURE
1
-24-
-25-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TeXAS 78758 . TELEPHONE 512 . 454-9535
100 "10
100'.
2S"c
~
...

~
"".
U .
j;: .
::.
10,,"
1"10
001
. 01 I J%
[N02~ O£MJCA~ N02CONCENTRATION (GMMO./CM'x Kf> )

Fro, 7. A camparison of measured wilb predicted plate efficiencies.
FIGURE 2
From Figure 1, one can determine the controlling mechanism
for this model at different gas concentrations with the relative
proportions of NO and NO; constant. Figure 1 shows that at low
gas strengths, mechanisms e and cd (diffusion as NO; and HNOa-Na03)
are important while at higher strengths, mechanism fh (diffusion
as N;04- NOa) is most important. The point was also made that
as the proportion of NO increases, mechanism cd involving Na03-HNOa
becomes more important than mechanism e involving NOa. The con-
tribution of mechanism ik is never important. The mechanisms
operable at different gas concencrations are shown in Table II.
-26-
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . ~9S15
TABLE
II
MECHANISM OF ABSORPTION AT VARYING
GAS CONCENTRATIONS
GAS CONCENTRATION
MECHANISM
> .01 mo1e%
Na04 diffusion and hydrolysis
mechanism depends on NO/NOa ratio
< .01 mo1e%
< .01 mo1e% (NO/NOa < .5)
< .01 mo1e% (NO/NOa > 5)
liquid film limited solution of NOa

absorption and liquid phase decom-
position of HNOa
< .01 mo1e% (5.0 > NO/NOg > 0.5
more than one mechanism is of
importance
-27-

-------
Radian Corporation
AN-OOl
AT-002
AT-003
BO-006
CA-014
CA-015
CH-027
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
BIBLIOGRAPHY
Andrew, S. P. S., and D. Hanson, "The Dynamics of
Nitrous Gas Absorption," Chem. En,;. ScL, 14, p. 105
(1961).
Atroshchenko, V. I., "Absorption of Nitrogen Oxides
by Alkaline Solutions and the Influence of the State
of the Gas and Liquid Phases," Ukrain. Khim. Zhur.,
g, 442-59 (1937).; f..A., 32 :20078.
Atroschenko, V. I., and V. T. Efimov, "Kinetics of
the Reaction of Liquid Dinitrogen Tetroxide with Nitric
Acid," Ukrain. Khim. Zhur., 23, 675-83 (1957); f..A. ,g:7826h.
Borok, M. T., "Degree of Absorption of Nitrogen Dioxide
by Water as a Function of the Gas Concentration,"
Zhur. Prik1. Khim., 33, 1761-6 (1960); f..A., 54 :23620c.
Caudle, P. G., and K. G. Denbigh, "Kinetics of the
Absorption of Nitrogen Peroxide into Water and Aqueous
Solutions," Trans. Far. Soc., 49, 39-52 (1953);
f..A., 47 :7870b
Carberry, J. J., Chem. En,;. ScL, 2"
189-94, (1959.).
Chambers, F. S., T. K. Sherwood, "Absorption of
Dioxide by Aqueous Solutions," Ind. Eng. Chem.,
pp. 1415-22 (1937).
Nitrogen
29, (12),
-28-
Radian Corporation
CH-028
DE-006
DE-007
E'L-004
GA-008
GA-009
GA-010
8409 RESEARCH BLVD. . P.O. BOX 7948 . AUSTIN, TEXAS 78758 . TELEPHONE SI2 . <454-9535
Chen, J. W., "Nitrogen Dioxide and Dinitrogen Tetroxide
Simultaneous Reactions with Water," Doctoral Dissertation,
Univ. of Illinois (Urbana), (1959).
Denbigh, K. G., and A. J.

Gas Absorption in Aqueous
pp. 790-801, (1947).
Prince, "Kinetics of Nitrous
Nitric Acid," ~. Chem. Soc.,
Dekker, W. A., E. Snoeck, and H. Kramers, "The Rate
of Absorption of NOa in Water," Chem. Eng. ScL, 11,
61-71 (1959).
Elenkov, D., and Iv. Krustev, "Kinetics and Mechanism
of the Absorption of Nitrogen Oxides in Alkaline Solu-
tions," Izv. Otd. Khim. Nauki, Bulg. Akad. Nauk, 1969,
2(4), 771-80; f..A., Zl:70266x.
Ganz, S. N., et a1., "Absorption of Nitrogen Oxides
with Milk of Lime in Mechanical Absorbers," Izv.
Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol., i,
(1), 155-9, (1962); f..A., R:3245e.
Ganz, S. N., "Kinetics of Nitric Acid Formation in
Rapidly Revolving Mechanical Absorbers," Zhur. Prikl.
Khim., 1037-48 (1955); f..A., 50:4597f.
Ganz, S. N., and S. B. Kravchinskaya, "Rate of Absorption
of Nitrogen Oxides by Ca(OH)a Solutions in Mechanical
Absorbers with High R.P .M.:' ~. Ae£!.. Chem. (USSR),
28, 133-41 (1955).
-29-

-------
'-
I
I
Radian Corporation
GA-011
GA-012
GA-013
GA-014
GO-007
HO-009
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXA.S 78758 . TELePHONE 512 . .54-9535
Radian Corporation
84lJ9 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . .54-9535
Ganz, S. N., and 1. E. Kuznetsov, "Alkali Absorption
of Nitrogen Oxides in a Column Provided with a Centri-
fugal Sprayer," Zh. Prikl. Khim., 36 (8), 1693-7 (1963);
f.!., 60 :7694h.
KO-024
KO-026
Ganz, S. N., and L. 1. Mamon, "Kinetics of Film
Absorption of Nitric Oxide by Ferrous Sulfate," ~.
~. Chem. (USSR), 30, 391-9 (1957).
KR-006
Ganz, S. N., "Effect of Hydrodynamic Condition on the
Rat~ of Absorption of Nitrogen Oxides by Solutions
of Calcium Hydroxide in a Mechanical Absorber on a
Semip1ant Scale, I," ~. ~. Chern. (USSR), 30, 1383-
91 (1957).
KR-007
Ganz, S. N., and M. A. Lokshin, "Influence of Funda-
mental Physicochemical Factors on the Absorption Rate
of Nitrogen Oxides in Ca(OH)g Solution in High-Speed
Mechanical Absorbers," ~. ~. Chem. (USSR), 30,
1592-1600 (1957).
KR-008
MA-032
Gorfunke1, V. E., and Ya. 1. Kil'man, "Preparation of
Solutions of Calcium Nitrite-Nitrate by Absorption of
Nitrogen Oxides from Nitrose Gas Tailing with Milk
of Lime, II," Referat. . Zhur., Khim., 1958, Abstract No.
1875; f.h.., g:12599g.
MI-005
Hofmeister, H. K. and R. Koh1haas, "Absorption of NO-
NO:;! Mixtures by a Laminar Water Jet," Ber. Bunsenges.
Physik. Chem., 69 (3) 232-8 (1965).
MO-008
-30-
Koval, E. J., and M. S. Peters, "How does NO Effect
Reactions of Aqueous NOli?'" 1.&E.C., 52,1011-14 (1960).
Koval, E. J., "Influence of Nitric Oxide on Aqueous
Nitrogen Dioxide Reactions," Doctoral Dissertation,
Univ. of Illinois (Urbana) (1958).
Kramers, H., M. P. Blind, and E. Snoeck, "Absorption
of Nitrogen Tetroxide by Water Jets," Chem. Eng, Sci.,
14,115 (1961).
Krustev, Iv" "Absorption of Nitrogen Oxides by Solutions
Containing Sodium Carbonate, Sodium Nitrit~ and Sodium
Nitrate," Izv. Otd. Khim. Nauki, Bu1g. Akad. Nauk, 1968,
1(1), 109-23; f.!., 70:107834x.
Krustev, Iv., "Absorption of Nitrogen Oxides by Sodium
Carbonate Solutions Under Industrial Conditions,"
Khim. Ind. (Sofia), 1968 (4), 147-51; f.~., 69:78766y.
Marrucci, G., "The Hydrolysis Reaction of N:;!O","
Rend. Accad. Sci. Fis. Mat., 32, 233-42 (1965);
----- -
f.!., 66:108766f.
Mirev, D., et a1., "Absorption of Nitrogen Oxides
Vibrating Layers of NaOH Solutions," Compt. Rend.
Bu1gare Sci., 14, 259-62 (1961); f.!., ~:66b.
by
Acad.
Moll, Albert James, "The Rate of Hydrolysis of Nitrogen
Tetroxide," Dissertation, Univ. of Washington (Chemical
Engineering), 1966.
-31-

-------
Radian Corporation
MU-004
01-001
PE-006
PE-007
PE-008
PE-010
PO-014
8409 RESEARCH BLVD. . P.O. BOX ".,8 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9S15
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . 454-9535
Mucskai, L., "Absorption Kinetics of Nitrogen Oxides,
II," ~. Kem. Folyoirat, 1£(8), 350-4, (1966);
.£.!., 65:l4875g.
PO-015
Oishi, Yasumichi, "Absorption
by Nitric Acid under Bubbling
Soc. Japan, Ind. Chem. Sect.,
50:l5l85c.
Velocity of Nitric Oxide
Conditions," ;[. Chem.
59, 5-8 (1956); .£.!.,
51-007
Peters, M.S., C. P. Ross, and J. E. Klein, "Controlling
Mechanism in the Aqueous Absorption of Nitrogen Oxides.,"
A.I.Ch.E. Journal, Vol. 1(1), pp. 105-11 (1955).
TS-OOl
Peters, M.S., and J. L. Holman,
Phase Reactions between Nitrogen
I&EC, 47(12), 2536-9 (1955).
"Vapor- and Liquid-
Dioxide and Water," .
VA-006
Peters, M.

Absorption
(1959) .
5., and E. J. Koval, "Nitrogen Oxide
in an Agitated Reactor, I&EC, 51, 577-80
VA-009
Perelman, 5., and L. Kantorovich, "The Alkaline
Absorption of Nitrogen Oxides," ~. Chem. Ind. (USSR),
17,(6), 3-9 (1940); .£.!., 34:75501.
WE-009
Pozin, M. E., et a1., "Velocity and Mechanism of Absorp-
tion of Nitric Oxide by Aqueous Salt Solutions," Izv.
Vysshikh Uchebn. Zavedenii, Khim. ~ Khim. Tekhnol., 6
(6) 974-81 (1963); .£.!., £l:152ge. -
ZH-OOl
ZH-002
-32-
Pozin, M. E., et al., "The Absorption of Nitrogen
Oxides in Soda Solutions in the Penn Apparatus for the
Production of Sodium Nitrate," Trudy Leningrad. Teknol.
Inst. im. Lensoveta, 36, 120-32 (1956); .£.!., ~:14l06e.
Sirotkin, G.
Nitric Oxide

Zhur. Prikl.
V. Starostin, "Absorption of
Solutions of Ferrous Salts,"
1141-4 (1954); .£.!., 49:793li.
D., and V.
by Aqueous
Khim., y...,
Tseitlin, A. N., and Yu. V. Lender, "Absorption of
Nitrogen Oxides of High Concentration by Water," Zh.
Prik1. Khim., 38 (4), 761-5 (1965); .£.!., 63 :1503b.
Varlamov, M. L., and O. M. Drobysheva, "Absorption of
Nitrogen Oxides in Low Concentrations by Sodium Carbonate
Solutions in an Apparatus of the Venturi-Tube Type,"
Izvest. Vysshikh Ucheb. Zavedenii Khim. .!. Khim. Tekhnol.,
l(l), 146-50 (1960); .£.!., 54:2l89li.
Varlamov, M. L., and O. M. Drobysheva, "Mass Transfer
and Chemical Reaction in a Venturi Scrubber," Zhur
Priklad. Khim., 33, 2020-9 (1960); '£.!.,2i:17ll9i.
Wendel J M., and R. L. Pigford, "Kinetics of Nitrogen
Tetroxide Absorption in Water," A. loCh. E. Journal, ~,
249-56 (1958).
Zhavoronkov, N. M., et al., "The Study of Absorption
of Nitrogen Oxides by Alkaline Solutions in Columns
with Filler Bodies," Khim. Prom., 1954, 419-23; .£.~.,
49:5078e.
Zhavoronkov, N. M. and Yu. M. Martynov, "The Kinetics
of the Absorption of Nitrogen Oxides by Water and
Aqueous Solutions of Nitric Acid," Khim. Prom., 1959,
150-5; .£.!., 58 :5099a.
-33-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512/454.9535
TECHNICAL NOTE 200-007-03a
GAS PHASE EQUILIBRIUM IN THE
SY STEM NOx - Ha °
23 August 1971
Prepared by:
Terry B. Parsons
Philip S. Lowell
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8500 SHOAlCREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 - 454-9535
This note is a modification of Technical Note
200-007-03. It includes changes made when an equation involv-
ing N;Os was added to the system of equations used to describe
gaseous nitrogen oxides equilibria. Note 03a is identical to
Note 03 except for addit'ions on pages 2, 3, 6, 7, 9, 10, 11,
15, 16, and 17, and corrections on pages 10 and 13.

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9515
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . 454-9535
The following species were taken into consideration
1.0
INTRODUCTION
This note describes the chemical basis and the
formulation of equations for a computer program to calculate
composition in the gas phase at equilibrium. The system of
interest contains nitrogen oxides, water, and their reaction
products. The ability to quantitatively describe the chemical
composition at equilibrium is important. With this informa-
tion it is possible to predict which species are significant
in the mass transfer mechanism. This note, however, describes
only the chemical basis and problem formulation. The appli-
cations of the computer program and the results will be
discussed in a later note.
N20 H20
NO HN02
N02 HN03
N203 02
N204 N2
N20S 
The gas phase program was written to be compatible
with the aqueous equilibrium formulation developed to describe
equilibria in scrubber solutions. Ultimately, both gas and
aqueous phase formulations will be used to describe equilibria
in the system NOx-C02-H20-MeO, where MeO is a metal oxide.
The oxides NgO and NgOS are not formed in amounts
great enough to be of significance for the mass balance.
Even though NgOs is thermodynamically unstable with respect to
formation of NII03 or Ng04 above 29BoK (sr-026, p. 16), its con-
centration will be of significance for thermodynamic screening
considerations. Both NO and NOg are stable with respect to
decomposition into their elements.
Reaction 2-1 is slow enough to be considered the rate

limiting step in nitric acid manufacture.
NO + ~02
N02
(2.,.1)
2.0
CHEMISTRY
Only 5-10% of the NO formed during combustion is oxidized to
N02, since the residence time for most stationary combustion
processes is too short (BA-003,. p.l-B). Chilton (CH-032,
pp.29-30) calculated 6 minutes for the time required at 43°C
for reaction 2-1 to go to 95% completion at atmospheric
pressure, 10% NO and 7% 02' Therefore, the reaction was con-
sidered kinetically limited and was not included in the gas
phase equilibrium formulation. Reactions 2.,.2 through 2.,.6 were
included in the formulation:
In order to calculate the amount of each of the
species present in the gas phase at equilibrium, the species,
their possible reactions, and the resulting products must be
identified. For the purposes of these calculations, the only
components present in the gas phase were assumed to be the
various nitrogen oxides and water, their reaction products,
and inerts (see section 3). The interaction between sulfur
dioxide and nitrogen oxides is a kinetics problem and was not
considered.
2N02(g)
~
N204(g)
(2-2)
-2-

-------
Radian Corporation
8SOO SHOALCREEK BLVD. . P. O. BOX 'I'/'B . AUSTIN. TEXAS 187SB . TELEPHONE S12. 'S..,53S
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX ".tI8 . AUSTIN, TEXAS 7B758 . TELEPHONE 512 . .454-9535
NO(g) + NOII(g) ~ Na03(g)  (2...3)
Na04(g) + HaO(g) ~ HNOa(g) + HN03(g) (2...4)
Na03(g) + HaO(g) ~ 2HNOa(g)  (2... 5)
NO (g) + Nil 06 (g) ~ NOli (g)+ Nil 04 (g) (2-6)
with subsequent diffusion and dissolution in water droplets.
Others reported no mist formation or were able to eliminate it
by filtering the carrier gas repeatedly.
The equilibria in 2-2, 2-3, and 2-5 have been investigated and
found to be attained quite rapidly (CH-032, p.55, WA-014, WA-
015, pp.11-12). Wayne and Yost (WA-014, WA-016) measured the
rate of formation of HNOa, but expressed the rate constant and
the equilibrium constant for the reaction as written in 2-7,
(2) Nitric oxide has been found in the exit gas
when sodium hydroxide was the sorbent for gases initially
containing only NOa. The sorption products of an NOa, Na04
mixture in NaOH are nitrites and nitrates; there is no unionized
aqueous HNOa or HN03 present. Therefore, any NO formed could
not be a result of decomposition of aqueous HNOa. The nitric
oxide must then have resulted from decomposition of gaseous
HNOa. Since no nitric oxide was present in the inlet gas,
reaction 2...5 could not be the path for HNOa formation and
reaction 2-4 must have taken place.
NO + NOa + HaO
~
2HNOa
(2~7)
(3) Several investigators have attempted to observe
a homogeneous reaction between water vapor and nitrogen dioxide
in the absence of a condensed phase. In many cases, it was
concluded that no reaction took place. The conclusions were
based on the fact that either no pressure change occurred, or
no mist was visible.
making no distinction between reactions 2-5 and 2-6 and no
assumptions about the mechanism. They reported half times as
short as 0.014 seconds.
Whether or not nitric acid is formed by reaction in
the gas phase such as that given in 2-4 has long been a matter
of some controversy. The question has been discussed by nearly
every author that has written about nitrogen oxides absorption.
Carberry (CA-015) summarized some of the data published up to
1959 and Wendel and Pigford (WE-009) also gave a summary and
discussion of the findings of many investigators. The pertinent
facts are:
(1) Many investigators have observed mist or fog
formation when gaseous nitrogen oxides are absorbed into
aqueous solutions. They have interpreted the mist formation
as proof of a homogeneous gas phase reaction to produce HN03(g)
Wendel and Pigford (WE-009) discussed a possible
explanation for mist formation and for the presence of NO in the
exit gas. According to their theory, the heat of solution of
highly soluble gases causes vaporization of some water. The
vapor diffuses outward into the relatively cooler gas stream
and condenses forming a mist or fog. Na04-NOa mixtures can
then be absorbed in the condensed water vapor forming nitric
and nitrous acids. The NO is given off when nitrous acid
decomposes. These workers passed Na04 gas through an absorber
with the gas at 25°C and the water 40°C. A dense mist was
formed, but the amount of condensation decreased markedly as the
gas temperature increased from 25 to 40°C.
-3-
-4-

-------
Radian Corporation
840'9 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . "54-~
Radian Corporation
8409 RESEARCH BlVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . "54-9S3S
Goyer (GO-012) reported, however, that the absorption
of NOa in mist droplets is negligible. As suggested to him in
a private communication from S. P. S. Andrew, Goyer proposed a
mechanism by which gaseous HN03 molecules form nuclei on which
wate~apor condenses. The homogeneous gas phase reaction to
form HN03 is proposed to take place between NOa and HaO rather
than between Na04 and HaO as in the liquid phase. A nitrogen
stream saturated with NOa was mixed with an air stream saturated
with water vapor in a mixing chamber. NOa was determined
photometrically in the inlet and outlet gases. Apparently no
condensed phase was present in the mixing chamber other than a
mist which formed on mixing. Even below 20% relative humidity
of the air-water vapor stream, a mist formed, but it evaporated
as the temperature was slowly increased and before it could be
detected on a filter. At higher relative humidities the mist
was collected on a filter and analyzed for HN03.
formed when NaCl nuclei were added to the gas mixture, but NOa
removal did not increase. It was therefore concluded that NOa
removal occurred through a gas phase reaction mechanism rather
than through absorption into mist droplets.
3.0
PROBLEM FORMULATION
3.1
Description of the Method
There are i components for which we wish to calculate

the mole fraction, Y., present at equilibrium. The components
1-
are listed below.
Two types of experiments were run in the mixing
chamber with 88% relative humidity and 4-7% NOa-Na04' The
concentration of NOa was continuously measured photometrically.
In some experiments, the gases were heated upon mixing. In
these cases, the amount of mist formed was slight and remained
constant. The amount of NOa removed increased, which was
attributed to an increase in the rate of reaction between NOa(g)
and HaO(g)'
i Component
1 lnerts
2 NO
3 NOa
4 Na03
5 Na04
6 HaO
7 HNOa
8 HN03
9 N005
In other experiments the gases were cooled on
mixing. In these experiments, mist formation was quite exten-
sive due to the condensation of water vapor. At lower
temperatures the NOa removal decreased due to the decrease in
reaction rate between NOa(g) and HaO(g)' At temperatures below
the dew point, mist formation also decreased since there were
few HN03 nuclei due to decreased reaction rate. A heavy mist
"Inerts" is used to describe flue gas components which are not
considered chemically reactive in the equilibrium formulation.
The other eight components are involved in the j
reactions which are also listed.
-5-
-6-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 4S4-9S3S
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . "54-9535
3.2
EQuL1ibrium Constant Expressions
...L  Reaction
1 2N01a ~ ND04
2 NO + NOD ~ Nla03
3 ND04+ Hla0 t! HNOg + HN03
4 Ng03+ HgO i! 2HNOa
5 NO + Ng05 t! NOg+ NgO"
The jth reaction is represented by 3-2 where a and ~
are the stoichiometric coefficients.
I Clij
i
Reactants
+!
\' ~,. Products
L ~J
(3-2)
i
h .th ..
The equilibrium constant for t e J-- react~on ~s shown in 3-3.
The relation between the mole fraction Yi and the number of
moles, ni' for each component is defined by 3-1 where NT is
the total number of moles including inerts.
9
I Yi
i=l
9
I ni/NT
i=l
1
(3..1)
K. =
J
~. .
n ai ~J
i
n Clij
ai
(3-3)
i
In addition, we wish to
cNO , chemical NOa, CNO' chemical
The~e input variables are defined
described in section 3.3.
define three other variables:
NO, and CHaO' chemical HaO.
by the mass balance equations
The activity, a., is defined
th ~
fi' of the i-- component and
For a standard state of unit
activity is given by 3-4.
as the quotient
the fugacity at
fugacity at one
of the fugacity,
standard state.
atmosphere, the
Finally, we can write an equation for the
constant for each of the j reactions listed above.
of the equilibrium constant expressions is given in
equilibrium
The form
section 3.2.
a.
~
"'
f./f~
~ ~
f. /1
~
f.
~
(3-4)
By combining the three mass balance equations and the
five equilibrium constant expressions we obtain a system of eight
nonlinear equations which can be solved for the eight unknowns.,
The system of non-linear equations is solved using an iterative
procedure originally developed for solving aqueous solution
equilibria.
Fugacities may be calculated from partial pressures using 3-5
where Yi is the mole fraction, P is the total pressure, and
vi is the fugacity coefficient.
f.
~
ViPi
ViYiP
(3-5)
Substituting 3-4 and 3-5 into 3-3, taking the log
of both sides, and rearranging gives 3-6.
-7-
-8-

-------
Radian Corporation
8409 RESEARCH BlYD. . P.O. BOX "~8 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . <454-95]5
ln K.
J
I ~ij In(viYiP) - I (1ij In( ViYiP)
i i
(3.. 6a)
[I( ~ij -(1ij ) ] lnP + I (~ij - C'ij) lnYi + I( ~ij -(1ij )In
i i i
V.
J.
(3..6b)
The variables are K., P, v. and y.. The total pressure is one
J J. J.
of the program inputs. The fugacity coefficients are very
close to one for the conditions of this problem. The equili-
brium constants for each of the reactions are known as a
function of temperature, so they can be calculated from the
input temperature (see Section 4.0). The remaining variables
are the Yi's, the mole fractions which we wish to calculate.
3.3
Mass Balance Equations
Considering the stoichiometry of the reactions of
interest, we can account for the chemical NO, NO~ and H~O
by writing the mass balance equations shown in 3~7, 3-8, and
3-9.
CNO
a
nNO~ + 2i1Na 04 + nNa Oa + \nHNO~ + % nHNOa+ 3nNg 05
I
NT \YNO
~
+ 2YN 0 + YN 0
a 4 a a
+ ~YHNOa + %YHNOa + 3YNaOJ
(3-7)
-9-
Radian Corporation
8409 RESEARCH BlVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TelEPHONE 512 . 454-9535
CNO
nNO + n~Oa + \nHNOa - ~nHNOa- nNg05
NT(YNO + YNaOa + \YHNOa - \YHNOa- YNa05)
(3- 8)
CHaO
nRa 0 + \nHNOa + \nHNOa
NT (YRa 0 + ~YHNOa + ~YHNOa)
(3-9)
The next step in the
number of moles, NT,
NO, NOa and Ra0.
formulation is to express the total
in terms of the mole fractions and chemical
NT
n 1 + CNOa + (..NO + CRa 0 - (nNa Oa + nNg 04 + ~nHNOg + ~nHNO:n~ ~ )
n1 + CNO~ + CNO + CH" 0
1 + (YN 0 + YN 0 + \YHNO + ~YHNO + YN~05)
aa a4 , a.
(3-10)
Substitution of Equation 3-10 into Equations 3-7, 3~8, and 3-9
and taking the sums of Equations 3-7 + 3-8 and of Equations
3-7 + 3-9 gives the following three mass balance equations in
terms of only the inputs (nl and chemical NO, NOa and HaO) and
the Y i ' s .
CNO"
nl+ CNO+ CNOa+ CHaO -
(YNO" + 2YN" 0.. + Na04 + ~HNOa + %YHNOa+3YNaOc!
( 1 + YN ° + YN ° + \YHNO + \YHNO +~05)
a a a 4 a "
(3-11)
-10-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX "48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9515
Radian Corporation
8500 SHOAL CREEK 8LVD. . P. O. BOX 9948 . AUSTIN, TeXAS 78757 . TELEPHONE 512 - 454.95]5
CNO+CNO
1)1 +CNO+CNO: +CRg 0 =
(YNO+YNO~+2YN~0~+2YN~0~+YHNO~+YHNO~+2YNA05)
(1 + YN 0 + YN 0 + ~YHNO + ~YHNO+ YN 0 )
23 ~4 2 3 25
(3-12)
t:.G~ t:.H~ - Tt:.S~ (4-2a)
t:.G~ - RT tnKT (4-2b)
tnKT ~!:.H0 - t:.Sf) (4-2c)
- ~
R T
CNO +CH., 0
n1+CNoicN02+CRgO
= (YNO~+2YN~0~+YN~0~+YHNO~+2YHNO~+YH20+3YN205)
( 1 + YNa 03 + YN2 04 + ~YHN02 + ~YHN03 + YNg OJ
(3-13)
Thus, the equilibrium constant for a reaction at temperature T
may be calculated by evaluating the right hand side of Equa-
tion 4-2c. The enthalpy term is evaluated from Equation 4-3
and likewise, the entropy term from Equation 4-4.
The mass balance equations are solved in the log domain as are
the equilibrium expressions described in 3.2. When the three mass
balance equations are combined with the five equilibrium constant
expressions the number of equations (8) is equal to the number
of unknowns and the Yi'S can be calculated.
t:.HT. = L {6ij[t:.Hf +
J i 298i
T
f Cp(T).dT!
. ~.J
298
a. . [ !:.H°f +
~J 298 .
~
T
J Cp(T)idT]}
298
4.0
CALCULATION OF EQUILIBRIUM CONSTANTS
T
L (6ij - C7.ij)[ t:.Hf + J Cp(T) idT]
i 298i 298
(4-3)
As discussed in 3.2 the dependence of the equilibrium
constants K. on temperature is known. The following is a
J
description of how K. may be calculated. Consider the
J
general gas phase reaction indicated by Equation 4-1, with
i reactants and Products where a... and S.. are the stoichio-
~J ~J
metric coefficients.
t:.5T. = L {Sij[S298.+
J i ~
T
r
J
298
Cp(T)i
T
T
dT] - o.ij[S298.+ J
~ 298
CP~T)i dTJ}
L o.ij Reactants
i

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 64-9515
Radian Corporation
84D9 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
where
Cp(T)
A + BT + CT2- D/T2
(4-5)
Integrating the heat capacity terms,
temperature limits, substituting ~H~
and collecting like terms results in
following form:
substituting the
and ~S~ in Equation 4-2c,
an equation of the
M = L (a ij - a... )A.
 1.J 1.
  i  
~ = L (a ij - Ct.. )B.
 1.J 1.
  i  
~c  I (e ij - \
= a.. . IC'
 1.J 1.
  i  
~D = L (a ij - Ct.. )D.
 1.J 1.
  i  
tnKT
l/R(kl+ ~ tnT + kaT-:! + ~T-1 + lesT + kaT:!) (4-6)
The form of the constants Kl through Ke is given below.
k1
[ I (aij- a.ij)S298.J + M(-J,n 298.16-1)
i 1.
+ ~(-298.16) + (-~)(298.16):! ~C + (-~)(29~~16)a
Standard state thermodynamic properties and high temperature
heat capacity data are needed to evaluate the constants k1
through ka. The values in Table 4-1 were used. The resulting
constants for each reaction are given in Table 4-2.
ka
M
k3
(-~) ~D
k4
( -1 ) [ \' (a.. - a...) ~of ]
f: 1.J 1.J 298.
1. 1.
+ 298.16 M
+ (298.16)2
2
~B + (298.16)3
3
~C + C9~.16) ~D
ks
(~)~
ke
(1/6) ~C
-13-
-14-

-------
     TABLE 4-1  
    THERMODYNAMIC PROPERTIES  
  6Ho S298 (ca1)    
 COMPOUND £298 (kcal) A (ca1) B (ca1 x 103) C (ca1 X lOB) D (ca1 X 10-5)
 HNO:a(g) -18.84 59.54 13.25 3.26  2.86
 HN03(g) -32.1 63.62 10.72 8.48  0.344
 H:aO(g) -57.77 45.07 6.78 3.57 -0.46 
 NO(g) 21.56 50.35 7.03 0.92  0.140
 NO:a(g) 7.91 57.34 10.26 2.04  1.61
 N:a03(g) 19.80 73.91 20.50 2.05  5.14
I        
.... N:a04 (g) 2.17 72.72 26.09 2.72  7.g5
V1 
I       
 Ng 05 (g) 2.70 82.80 34.24 0.79  13.40
Radian
TABLE 4-2
CONSTANTS FOR EQUATION 4-6
REACTION   K3x10-5 -3 K,;x104 Kax10B
K, ~ K..x10
2NOg +t N:a °4 -81. 664 5.57 -2.365 16.837 - 6.80 
NO + NO:a +t N:a 03 -56.998 3.21 -1.695 11.760 - 4.55 
N:a04 + ~O +t HN02+ HN03 66.231 -8.90 2.373 - 8.661 27.25 -7.667
N203+ H:a0 +t 2HN02 4.728 -0.78 -0.290 - 0.284 4.50 -7.667
NO + N:a05 +t N02+ N204 31.199 -4.92 1.99 11. 514 15.25 
I
....
a.
I
Radian

-------
Radian Corporation
8C09 RESEARCH BLVD. . '.0. BOX 99-48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 
-------
Equilibrium Gas
Composition
i NO:a' N:a04
~-----------------
NO:a, N:a04' NO,
Ng03
I
I-'
00
I
TABLE 5-1
Experimental Measurements on Gas
Mixtures at Equilibrium
Experimental
243-273°K. A bulb
containing solid or
liquid N:a04 was im-
mersed in a thermo-
stat whose tempera-
ture could be set
between room tem-
perature and -50°C.
Measured Quantities
PHO , the partial
pre~sure of NOg was
determined spectro-
photometrically.
------------------------ ------------------------
Solid N:a04 was added
to NO gas and the
reactants allowed to
reach equilibrium in
a system of known
volume and tempera-
ture. The pressure
was measured at
temperatures fro~
5 to 45°C.
TABLE 5-1
(Continued)
Equilibrium Gas
Composition
NO, NOa, Ng03,
Na04o' HaO, HNOa,
HN03
~-----------------
NO, N03, Na04o'
'N303' HaO,
HNOa, HN03
I
II-'
\C
I
Experimental
NOa was measured in-
to a thermostatted
reaction vessel. A
mixture of NO-H~O(g)
of known compos~-
tion was added. Ten
minutes was allowed
for equilibrium to
be reached.
------------------------
NO, NOa and HaO were
isolated and allowed
to reach equilibrium
at ambient tempera-
ture.
The pressure (at a
measured volume and
temperature) of NO
added was reported.
The amount of N:a04o
added in grams was
reported. The total
pressure at equili-
brium in the system
(at a measured
volume and tempera-
ture) was measured.
Measured Quantities
NOa added, mole frac-
tion of HaO in NO
added, pressure at
equilibrium, and
equilibrium concen-
tration of NOa by
spectrophotometry
were measured.
------------------------
The added amounts
of NO, NOa and H °
were measured. fhe
amount of NOa at
equilibrium was
measured from its
absorbance at 420
m~. HN03(g) was
not included in
the mass balance
or the calculations.
Calculated Quantities
The total pressure P in
the bulb was calculated
from the vapor pressure
of NaO at the tempera-
ture o! interest using
the equations of Giaque
and Kemp (GI-006). The
equilibrium constant
was calculated from
Kp = (PNO )3/(P-PNO ).
3 a
The data fit the ex-
pression

10g10Kp = 9.0l79-2947.4/T
----------------------------
The equilibrium con-
SLant for the reaction
N303 ~ NO + NOa was
calculated using (1)
mass balance equations,
(2) Giaque and Kemp's
(GI-006) values for
the equilibrium con-
stant K=(PNO )3/PN 0 ,
3 3 4
and (3) the equation
for total pressure equal
to the sum of partial
pressures of NO, NOa,
Na03 and Na04'
Calculated Quantities
The equilibrium constant
for the reaction NO +
NO + HaO ~ 2HNO was
calculated from (1) the
measured quantities,
(2) the equilibrium
constants for Na03 and
Na040 dissociation, (3)
mass balance equations
and the equilibrium
constant for the reac-
tion
3NOa+HaO ~ 2HN03+NO
----------------------------
The equilibrium con-
centrations of HNOa,
NO, N304o' N~03 and
HpO were calculated.
The equilibrium con-
stant for NO + N03 +
HaO ~ 2HNOa was cal-
culated.
References
VO-007
-----------
BE-023
References
AS-004
----------_.
WA-019,
WA-013

-------
1-
Radian Corporation
8409 RESEARCH BLVD. . P.O. 80X "CB . AUSTIN, TeXAS 78758 . TELEPHONE 512 . 0454-95]5
Radian Corporation
8409 RESEARCH BLVD. . P.O. lOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . C54-953S
to equilibrium mixtures were found. Mellor's Comprehensive
Treatise on Inorganic and Theoretical Chemistry was also
consulted, including a supplement on nitrogen published in
1967 (ME-009). The supplement contains a twenty-page review
on the analytical chemistry of nitrogen compounds. Nothing was
reported there on the determination of gaseous HN02 or HN03.
Koval, who studied the absorption of NO-N02 mixtures in a
wetted-wall column, stated (KO-026, p. 55) that analytical
techniques were not sufficiently developed to allow determina-
tion of gaseous HN02.
concentrations, and these inputs were used to recalculate
equilibrium concentrations with the gas phase equilibrium
program. A comparison of these calculated values with the
reported values is shown in Table 5-2. It is obvious that the
concentrations are all of the same order of magnitude.
Klemenc (KL-008) critically discussed four methods of
analysis of gas mixtures containing NO, NO~, N203' N204' H20,
HN02 and HN03 in a lengthy article. None 'of the methods allow~d
the direct measurement of HN02 and HNO~.
The data of Vosper (VO-007) and Beattie and Bell (BE-023)
as discussed in Table 5-1 were also used to calculate equili-
brium concentrations using the equilibrium program. Vosper's'
data are compared with calculated values in Table 5-3 and
Beattie's in Table 5-4. Note that Beattie measured only the
total pressure at equilibrium. Using his reported volumes and
temperatures, the number of moles present at equilibrium was
derived. That number is compared with the sum of the number
of moles calculated for each component by the equilibrium pro-
gram.
Wayne and Yost (WA-014, WA-016) measured the rate of
the reaction forming HNOp.(g) from light absorption of NOp'
measured using an electron-multiplier photo-tube and photo-
graphing the screen of a cathode-ray oscilloscope. Calculated
equilibrium concentrations of HN02(g) were reported as well
as input H20 and (NOp' + Np'03)' However, the apparatus
was a flow system and the total pressure at equilibrium was not
obtainable. The input NO pressure was not reported either, so
calculations or comparisons could not be made with their data.
Ashmore and Tyler (AS-004, see Table 5-2) investigated the
equilibrium system and reported the equilibrium concentrations
of each of the species of interest. The only one of the re-
ported values that was a measured value was the NOp' concentration.
The other values were calculated using reported equilibrium
constants and mass balance equations. It was possible to cal-
culate C"o' C and C from the reported equilibrium
" N02 HgO
Waldorf and Babb (WA-019) made essentially the same
investigations as Ashmore and Tyler (AS-004). Again, the only
equilibrium concentration measured was N02, and all the other
reported equilibrium concentrations were calculated from
equilibrium constants and mass balance equations. Waldorf
and Babb ignored the formation of HN03 and also apparently
neglected to account for the reaction of Ng03 to form HN02.
They reported (WA-013) corrected values for the equilibrium
constant, but they did not report the corrected equilibrium
concentrations, so no calculations or comparisons could be made
with their data. The data were not reported in Waldorf's
dissertation (WA-015).
In summary, an attempt was made to compare measured
and calculated values of equilibrium composition in the gas
phase system NO,-H20. The only measured equilibrium concentrations
-20-
-21-

-------
Radian Corporation
8"'09 RESEARCH BLVD. " P.O. BOX ".tI8 " AUSTIN, TEXAS 78158 " TELEPHONE 512 . <454-9535
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 99.t18 " AUSTIN, TEXAS 78158 . TELEPHONE 512 . 454-9535
reported in the literature were for the component NOa. The
comparison of measured and calculated NOa partial pressures in
Tables 5-2 and 5-3 showed good agreement. Measured and calcu-
lated total number of moles also agreed satisfactorily as demon-
strated in Table 5-4.
TABLE 5-2
Comparison of Ashmore and Tyler's Values with
Calculated Equilibrium Concentrations
  P(atm)  
 T-80.70C T'-=19.950C
 ~~~~~~~~ Calculated ~~~~~~~~ Calculated
Comnound  
NO .5800 .5808 .6717 .6724
NOa .0233 .0263 .0204 .0227
NaOa .00058 .00059 .0105 .0104
Na04 .00007 .00012 .0045 .0049
HaO .13013 .13280 .0170 .0201
HNOa .01401 .00740 .0180 .0116
HNOa .000050 .000045 .000054 .000047
-22-
-23-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 99i18 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 04S4-9S15
Radian Corporation
8C09 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . 454-9515
TABLE 5-4
TABLE 5-3
Comparison of Vosper's Measured
Values with Calculated
Concentration at 273.2°K
Comparison of Beattie's Values
for NT with Calculated Values
PNO in atm
2
Measured Calculated
.067 .073
.050 .053
.031 .032
.017 .018
 NT Calculated NT Calculate':
 by Equilibrium from Measur~d Total
TOC Program Pressure BE-023)
25.04 .0358 .0353
25.04 .0345 .0341
25.04 .0395 .0391
45.12 .0144 .0152
45.04 .0452 .0463
-24-
-25-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX ""8 . AUSTIN, TEXAS 78758 . TelEPHONE 512 . 4S4.9S3S
Radian Corporation
84M RESEARCH BLVD. . P.O. BOX 99<18 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . .c~9535
6.0
SUMMARY
7.0
This note discussed the chemical basis for describing
the equilibria established between NO, NOa and HaO in the gas
phase. The method of formulating the problem mathematically
and solving the resulting equations for compositions was also
given. Calculated values were compared when possible with
measured values reported in the literature.
AS-004
BA-003
BE-023
CA-015
CH-032
GI-006
GO-012
HI-006
KL-008
-26-
BIBLIOGRAPHY
Ashmore, P. G., and G. J. Tyler, "The Formation and
Thermodynamic Properties of Nitrous Acid Vapour",
J. Chern. Soc. 61, 1017-21 (1961).
Bartok, W., et. al., "Systems Study of Nitrogen Oxide
Control Methods for Stationary Sources", Prepared by
Esso Research and Engr. Co., Govt. Research Lab for
NAPCA under Contract PH-22-68-55, May 1, 1969.
Beattie, 1. R., et. al., "Dinitrogen Trioxide. Part
1. Stability in the Gaseous Phase", J. Chern. Soc.,
1957, 1681-6.
Carberry, J. J., Chern. Eng. Sci. 189, 94 (1959).
Chilton, T. H., The Chemistry of Nitrogen Oxid,es",
Strong Water, 25-53, MIT Press, Cambridge (1968).
Giauque, W. F., and J. D. Kemp, "The Entropies of
Nitrogen Tetroxide and Nitrogen Dioxide. The Heat
Capacity from 15 K to the Boiling Point. The Heat
of Vaporization and Vapor Pressure. The Equilibria
Na04=2NOa=2NO+Oa", J. Chern. Phys. £. 40-52 (1938).
Goyer, Guy G., "The Formation of Nitric Acid Mists",
J. Colloid Sci. 18(7), 616-24 (1963).
Hisatsune, I. C., J. Phys. Chern. 65, 2249-53 (1961).
Klernenc, A., "Zur Kenntnis
Methoden zur Gasana1yse irn
HNOa-HN03." Monatsh. Chern.
der Sa1petersaure X.

system Na-NO-NOa-Na04-Na03-
83, 334-345 (1952)
-27-

-------
Radian Corporation
KO-026
ME-009
ST-026
VO-007
WA-013
WA-014
WA-Ol5
WA-016
WA-019
&c09 RESEARCH BlVO. . P.O. BOX 99J18 . AUSTIN, TEXAS 78158 . TElePHONE 512 . ~9S35
Radian Corporation
84D9 RESEARCH BlVD. . P.O. BOX 99418 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . ~54-9S3S
Koval, E. J., "Influence of Nitric Oxide on Aqueous
Nitrogen Dioxide Reactions", Doctoral Dissertation,
University of Illinois (Urbana) (1958).
WE-009
Mellor's Comprehensive Treatise Qa Inorganic wru!
Theoretical Chemistry, Vol. VIII, Supp. II, Part II,
John Wiley and Sons, Inc., New York, N.Y. (1967).
Stern, Kurt H., "High Temperature Properties and
Decomposition of Inorganic Salts, Part 3. Nitrate
and Nitrites", A preprint, will be available from
NSRDS-NBS around May 1971.
Vosper, Alan J., "Dissociation of Dinitrogen Tetroxide
in the Gas Phase", J. Chern. Soc. A. 1970, 625-27.
Waldorf, D. M. and A. L. Babb,
of NO, N02, HaO, and HNOa", J.
1165 (1964).
"Vapor-Phase Equilibrium
Chern. Phys. 40(4),
Wayne, L. G., D. M. Yost, "Kinetics of the Rapid Gas
Phase Reaction Between NO, NOa and HaO", J. Chern. Phys.
19(1),41-7 (1951).
Waldorf, D. M., "Reactions and Equilibria in the Nitrogen
Oxides - Water System", Doctoral Dissertation, Univer-
sity of Washington, Seattle (1962).
Wayne, L. G. and D. M. Yost, "Rate of the Rapid Gas
Phase Reaction Between NO, NOa and HaO", J. Chern. Phys.
18, 767-8 (1950).
Waldorf, D.

of NO, NO:!,
(1963) .
M. and A. L. Babb, "Vapor-Phase Equilibrium
H20 and HNOa", J. Chern. Phys. 39(2), 432-5
-28-
Wendel, M., R. L. Pigford, "Kinetics of Nitrogen
Tetroxide Absorption in Water", AIChE Journal ~,
249-56 (1958).
-29-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN. TEXAS 78757 . TELEPHONE 512/454.9535
TECHNICAL NOTE 200-007-04a
COMPILATION OF THERMODYNAMIC PROPERTIES FOR
COMPOUNDS OF INTEREST IN NITROGEN OXIDES
AQUEOUS ABSORPTION PROCESSES
7 October 1971
Prepared by:
Nancy P. Phillips
Terry B. Parsons
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8500 SHOAL CREEK 8LVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512-454-9535
This technical note contains corrections to
Technical Note 200-007-04. Corrections appear on page
the text and page 18 of the Bibliography. In addition
and VI of the Appendix have been replaced by tables in
estimated values of nitrate and nitrite heat capacities
the heat of formation of CuO have been corrected.
14 of

Tables V
which

and
:-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 4S4-9S3S
Radian Corporation
1.0
INTRODUCTION
The thermodynamic properties of metal nitrates,
nitrites and oxides as well as the oxides of nitrogen are
necessary for calculating equilibrium constants for nitrate
or nitrite decomposition reactions. These reactions are of
interest in describing the thermal decomposition of nitrates
and nitrites for regeneration of metal oxide sorbents for NOx'
Thermodynamic data were collected for the nitrates,
nitrites, nitrides, and hydroxides of 35 metals and for
several nitrogen oxides. The data were compiled in a data base
using a previously written program (PA-9l6) which also retrieves
the stored data. Properties for compounds for which no experi-
mentally determined values have been reported were estimated.
The
standard heat
heat capacity
is lower; and
tions.
thermodynamic properties tabulated were: the
of formation and absolute entropy at 25°C; the
from 273°K to 20000K or the data limit, whichever
the temperature, type, and heat of phase transi-
8409 RESEARCH BLVD. . P.O. BOX "48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
The compilations searched included:
1.
JANAF Thermochemical Tables and Addendums
(ST-906, ST-9l7, ST-9l8, ST-9l9).
2.
National Bureau of Standards, Selected
of Chemical Thermodynamic Properties
(RO-907, WA-90l, WA-9l8).
Values
3.
Landolt-Boernstein, Chemische-Physikalische
Tabellen, Vol.2, Part 4: IIKalorische
Zustandsgrossen" (LA-908).
4.
K. K. Kelley, et al., U. S. Bureau of Mines,
Contributions to the Data on Theoretical
Metallurgy, Parts 3, 5, 8, 10, 12, 13, and 14,
(KE-909-KE-9l4, CO-9l3).
5.
O. Kubaschewski, et al., Metallurgical

Thermochemistry (KU-903).
This technical note describes the methods of data
collection, the extent to which data were available, the method
of storing and retrieving the data, and the methods of estimating
data that were unavailable from the literature.
A survey of the open literature from 1945 through
January 1970 was carried out by searching Chemical Abstracts
from 1947 to January 1971. It was felt that all earlier
reliable values would have been reported in the compilations.
The topics searched included:
2.0
DATA SOURCES
The sources of the reported data were existing
compilations and the open literature.
alkaline earth hydroxides, nitrates, nitrides, nitrites
alkali metal hydroxides, nitrates, nitrides, nitrites
enthalpy
entropy
heat capacity
-2-

-------
Radian Corporation
84D9 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 ~ 4S4-9S35
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . 454-9515
heat of formation
hydroxides
nitrates
nitric acid
nitrides
nitrites
nitrous acid
4.0
CONFLICTING VALUES
specific heat
thermodynamics
Occasionally, the compilations reported widely
differing values for a property of some substance. Two
values were considered to be conflicting if there was greater
than one kilocalorie per mole difference for the heats of
formation or greater than one calorie per mole per degree K
difference for the absolute entropies. In such cases, the
original articles were obtained, if possible, in an attempt
to resolve the conflict. One of the values was selected to be
added to the data base. The selected value was accompanied by
the bibliographic entry RA-001, which references this technical
note and indicates that values differing from the one selected
have been reported.
Abstracts of all promising articles from the open
literature were obtained. Approximately 30 of the original
articles were collected for further study. In some cases,
it was necessary to extract the data directly from the
abstract when the original publication was not available.
If so, care was taken to insure that the bibliographic entry
includes the volume and number of the abstract.
The following criteria have been used in selecting
the values used in the data base for the heat of formation.
3.0
DATA STORAGE AND RETRIEVAL
1. Calorimetric measurements have generally
been preferred. These methods are usually the most straight-
forward and the experiments are normally carried out at or
near room temperature. Vapor pressure or EMF measurements
are usually recorded at elevated temperatures. The accuracy
of conversion to standard conditions depends on availability
of heat capacity data, for which the authors sometimes rely
A previously written computer program was used to
store, tabulate, and retrieve the thermodynamic data and
references. The program is also capable of calculating and
plotting equilibrium constants, enthalpies, entropies, and
heat capacities of specified reactions as a function of
temperature.
on estimetcd "'.1['.11.:25.
The data for each compound of interest as well as
for sulfates, sulfites, carbonates and mixed metal oxides
are tabulated and printed in the Appendix in Tables V and VI.
Table V contains standard heats of formation, absolute entropies,
and transition data. Table VI contains heat capacity data.
2. Data for which the author has described his
estimation of error have been preferred.
3.
Values which fit best into our estimation
correlation were chosen.
-3-
-4-

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TelEPHONE 511 . "54-9535
Criteria used in the selection of entropy values
ar.e as follows:
heat
high
1. Entropy values calculated
capacities have been preferred over
temperature data.
from low temperature
those obtained from
2.

were favored.
Values for which an error estimation was made
The selected heats of formation are discussed in
Table I and the selected entropy values in Table II. Where
one reference follows another in parentheses, the second
reference was cited by the first author as the basis for his
data. Tables I and II are ineluded in the Appendix.
5.0
ESTIMATED THERMODYNAMIC PROPERTIES
Table III shows what data were reported in the literatur~
for the compounds of interest. Data were tabulated for approxi-
mately 220 compounds, including hydrates. Measured heats of
formation were reported for 55% of the pure compounds; measured
entropies for 25%; and measured heat capacities for 20%. It
was found that the nitrites as a group lacked the most data,
especially for heat capacity and entropy. Since thermodynamic
properties were not reported for all the compounds of interest,
some of the data were estimated. Methods for estimating heats of
formation, absolute entropies, and heat capacities were previously
developed and had been applied to metal sulfates, sulfites,
carbonates, and mixed metal oxides under Contract PH-86-68-68
to the National Air Pollution Control Administration. A
detailed discussion of the methods and results has been
published (PA-9l6).
-5-

-------
- --"       - ..-. -"" - --            
           TABLE III             
         THERMODYNAMIC DATA AVAILABLE FROM THE LITERATURE       
 CATION ELEMENT        ANIONS          
      OXIDE  SULFATE CARBONATE NITRATE NITRITE NITRIDE HYDROXIDES
     t,H0* So C * t,H0 S'*C t,H0 S~C * t,H0 So* C * t,H0 So C t,H0 So C t,H0 So C t,Hu So Cp
     f p f p p f p  f p f  p f  p f 
 Ag K K K K K   K K K K K E       
 Al K K K K E   E E E E  E K K K K   
 Ba K K K K K   K K K K E E K K.  K  K
 Be K K K K E   E E E E E E K K K K K K
 Bi K K K K E   E E E E  E    K   
 Ca K K K K K   K K K K E E K K K K K K
 Cd K K K K K   K E E E E E K   K K  
 Ce+3 K K K K    E E E E  E K      
 Ce+4 K K K K E   E E E E  E       
 Co K K K K K   K E E E E E    K K  
 Co+3 K              K   K   
 Cr+3 K K K      E E   E K K K K   
 Cr+6 K K E          E       
 Cs K K   K E   K E K E E     K   
 Cu+l K K K K E   E E E E E E K      
 Cu+2 K K K K K   K E E E E E    K K K
 Fe+2 K K K K K   E E E E E E    K  K
 Fe+3 K K K K E   E E E E  E    K K K
 Ga K K K      E E   E K K  K K K
 ~~+4~ K K K      E E   E K K     
 Hf +4 K K K      E E   E       
 K K K K K K   K K K K E E    K K K
 La K K K K    E E E E  E K K     
 Li K K K K K   K E K K E E K K K K K K
 Mg K K K K K   K K K E E E K K K K K K
 Mn+2 K K K K K   K E E E E E   K K K  
 Mn+3 K K K K E   E E E E  E    K   
 Mn+4 K K K      E E   E       
 Mo+4 K K        E           
 Mo+6 K K K       E   E       
 I K - known value                    
 0\ E - estimated value                   
 I                   
 * - not used in. estimation programs                
 TABLE III (cont'd.)                 Page 2  
 CATION ELEMENT        ANIONS          
      OXIDE  SULFATE CARBONATE NITRATE NITRITE NITRIDE HYDROXIPI;'(! -
     t,H0* So C * t,H0 SOtc t,H0 SOtc * t,H0 SO* C * t,H0 So C t,H0 So C 611° S.o C 611° So c
     f :16 P f :l P f:l P f p f p f  P f  P f  P
 Na K K K K K   K K K K E K    K K K 
 Ni+2 K K K K K   K E E E E E    K K  
I Ni+3 K         E        K   
I                  
I Pb+2 K K K K K   K E E E E E    K K  
 Pb+4 K K K      E E          
 Rb K K   K K   K E K K K E    K   
 Sb+3 K K K K E   E E E E  E       
 Sn+2 K K K      E E  E E    K K  
 Sn+4 K K K K E   E E E E  E    K   
 Sr K K K K K   K K K K E E K   K  K 
 Ta+3 K              K K K    
 Ta+5 K K K       E   E       
 Ti+2 K K K      E E  E E       
 Ti+3 K K K      E E   E K K K    
 Ti+4 K K K      E E   E       
 V+2 K K K       E   E       
 V+3 K K K       E   E  K K    
 V+4 K K K                 
 V+5 K K K       E   E       
 W+4 K K K       E   E       
I W+6 K K K       E   E       
Zn K K K K K   K E E E E E K  K K K  
 Zr+2 K         E   E   K K    
I                 K   
 Zr+4 K K K K E   E E E E  E      
I
-..J
I

-------
Radian Corporation
8409 RESEARCH BLVO. . P.O. BOX "48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9515
5.1
ESTIMATION OF HEAT OF FORMATION
Standard heats of formation were estimated for
35 metal nitrates and nitrites. Reported values for heat of
formation for the corresponding metal oxides, nitrites,
nitrates and carbonate or sulfate were used to estimate the
unknown nitrite and nitrate heats. A computer program retrieved
the 71 known heats of formation indicated by K in Table III
for sulfates, carbonates, nitrates, and nitrites which had
previously been stored in the data base. The program employs
a method based on that of Erdos (ER-001) to perform the estima-
tion. This method is based on the theory that the heat of
reaction may be determined by summing the energies of all bonds
formed during the course of the reaction. When a metal oxide
(cation) i and an acid (anion) j react to form a salt, ij,
the following equation may be written for estimating the heat
of reaction.
R n.
- 6H.. '" B.. (K. - A.) J
~J ~J ~ J
(1)
B.. is the number of ion pair bonds formed, K~ is
~J .
the cation combining power, A. is the anion combining power,
J
and n. is the anion exponent.
J
The heat of formation of a salt from a.. moles of
~J
cation and b.. moles of anion is shown in Equation (2).
~J

6H!.J' '" a. .1lH~ + b. .6H~ + 6H~.
. 1J ~ ~J J 1 J
(2)
f f
The values for bH. and 6H. are known; some of the
R 1 J .
6H.. are known; a.., b.., and B.., are determ1ned
1J ~J 1J ~J
stoichiometry of the reactioh.
6H~. and thus
~J
from the
-8-
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX "48 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . .cS4-9S35
Values for K., A., and n. are obtained by correlation
1f J J
of existing data for 6H.. with a least squares technique. The
1J
solution for K, A, and n involved solving a set of 30 simultaneous
nonlinear equations. Once K., A. and n. were known, bH~. could
1 J J 1J
be calculated and the heats of formation were estimated for
desired combinations of cations and anions. Table IV gives the
estimated values and the reported values on which the correla-
tion was based. The RMS error is 2.28 cal/two ionic bonds
formed.
5.2
ESTIMATION OF ABSOLUTE ENTROPIES
Absolute entropies were estimated for nitrates and
nitrites for which no reported values were found. The results
were based on known values for six nitrates: AgN0s, KNOs,
NaNOs, Ba(NOs)a, Ca(NOs)a, and Mg(NOs)a and one nitrite, AgNOa. The
known and estimated values are compiled in Table V in the
Appendix.
In order to estimate the nitrate and nitrite entropies,
a computer program retrieved known compound entropies from the
data base. It then calculated anion entropy contributions for
+1 and +2-metal nitrates and +l-metal nitrites employing a
modification of Latimer's method (LA-923). This method is based
on subtraction of the metal or cation contribution from the
compound entropy and making a correction for ionic forces.
Latimer's anion entropy values for +3 and +4-metal nitrates and
+2-metal nitrites (LA-923) were adopted since no data were
available with which to calculate values. The anion contribu-
tions were then added to Latimer's cation values (LA-923) to
obtain the estimated compound entropies.
-9-

-------
L                        
                TABLE IV       
             HE AT OF FOR M AT ION ~T 25 DES C 
               CALORIES/GRAM MOLE     
    CO'-POUND  I J PA rc~s OF      HE AT OF FORMAT ION 
             IONIC SON OS   C A L CU LA TED  A C TU AL ERROR
   , AG) 2 ( C031  1  1 1.0  -1.2551+02  -1.?098+0;> 11.62111+00
   , AL 12' C0313  2  1 3.0  -7.0876+02     
   , 8 AI   ' C031  3  1 1.0  -2.3778+02  -2.R716+02 1'..181111-01
   , ~E "    C031  II  1 1.0  -2.117110+02     
   , RI 12' C0313  5  1 3.0  -11.7503+02     
   , CA I   ' C031 6  1 1.0  -2.8561+02  -2.9811+02 -2.5065+00
   , CD I   ( C031  7  1 1.0  -1.7752+02  -1.78116+02 -'3.3617-01
   ' C[+3121 C0313  a  1 3.G  -3.n91(,+02     
   , CE +11 1   ( ::0312  9  1 2.0  -4.;09C+02     
   , CO I   ' C031 10  1 1.0  -1.7059+02  -1.7330+02 -2.7069+00
   I CS 12 I C031 11  1 1. G  -2.7291+02     
   ' CU+112' C031 12  1 1.0  -1.112:37+02     
I   ( CU +21   ' C031 13  1 1.0  -1.11521+02  -1.11210+02 3.108'3+00
t-'   ' Ff +2 "    C031 111  1 1.C  - 1.7152+02  -1.7855+02 - 1 . D 31 9 + 00
o       
I   ' FE+312' C0313 15  1 3.0  -5.011112+02     
   , K 12' C031 16  1 1.0  -2.7327+02  -~.7187+02 1.3977+00
   , LA 12' C~3)3 17  1 3.0  -7.97116+02     
   I LI 121 C031 13  1 1.0  - 2 . !3 B'3 5 + G-2  -2.~02()+02 -1.3C86+00
   ! "G "    C031 13  1 1.0  -2.6033+02  -2.10398+02 -3.;>579+00
   , ,'1111 +21   ' ::031 2C  1 ). 0  -2.10114+02  -2.13711+82 - 3 . 3082 + 00
   , loiN + 3 I 2 ( :: 03 I 3 21  1 3.G  -5.11527+02     
   I NA 12 I C031 22  1 1.0  - 2 .6%2+02  -2.F972+02 -9.31130-C2
   , NI "    C031 23  1 1.0  -1.688'3+02  -1.'5298+02 5. .:31 72 + OC
   I PB +2 "    C031 211  1 1.C  - 1 . 7 7.3 0 +.0 2  -1.\;723+['2 5.07112+QO
   , C?812' C031 25  1 1.0  -2.7007+02  -."2.;;9111'. +02 <;.3583-01
   ' 58+3121 C0313 26  1 3.0  -11.6'337+02     
   , SN +11 I   , C :)312 27  1 2.0  -3.3132+02     
   , SRI   ( ::031 28  1 1.0  -2.8739+02  -2.'1038+(12 -2.3873+QD
   I 2N I   ' ::031 29  1 1. (1  -1.9163+02  -1.1368+02 -2.li423+SC
   , 21' +11 1  I c:J312 3G  1 2.0  - 5.0327+02     
    AS I? ( S 0111   ? 1. Q  -1.7117+G2  -1.703£.+02 8.15C3-81
    AL 12' SOli) 3 :? 2 3.0  -8.2838+02  -8.?03e+02 -1.'::834-03
    q A I  , S all I   ;> 1.0  - 3.4572+02  -3.499~+iJ2 -.3.2;76+CO
  ,  ~E I  I 504) II 2 1.0  -2.6555+02  -2.q5b~+02 -11.7684-84
  ,  O! ) 2 ,  SOli) 3 5 2 ~.O  -6.SS10.G?  -6.0.810+02 -3.12011-::'3
  (  C A I  ,  S 1)4 I C 2 1. G  -3.3750+02  -3.11019+02 -2.59112+00
  ,  CD I  I  SOli) 7 2 1.0  -2.2233+02  -2.2120+02 1 . 1 3711 + GO
 (  cr. +3) 2'  S 041 3 8 2 3.0  -9.5300"02  -9.'5300+02 -11.7684-03
  ,  Cf" +4 I  (  S 04 I 2 9 2 2.0  - 5.60GO+02  -5.5000+02 -2.5711-03
  ,  CO I  I  S 0'" IJ 2 1.0  -2.1"05+02  -2.1190+()2 7. . 11112 .. 00
  ,  CS 121  S 0111 11 2 I.a  - 3.4230+02  -3.BGC+02 3.8013+00
 ,  CU + J 12'  S 04 I 12 2 1.0  -1.7'351+02  -1.7951"[;2 -2.'!755-011
 ,  CU +2 I ,  S Oil I 13 2 1.0  -1.8433+02  -1.91122+02 1.1356-01
 ,  FE+21 ,  SOli) 14 2 1.0  -2.2110+02  -2.2041 +02 6.39811-01
 ,  n:+312'  SI)ll I 3 15 2 3.0  -6.1560+02  -6.1560+02 -1.0300-03
 C  K 12'  S alii 16 2 1. Q  -3.11069+02  -3.4234+02 -1.6586+00
 ,  L A 12'  S 04 I 3 17 2  3.0  -9.3930+02  -9.3980+02 -11.11 708-03
 ,  LI 12'  S 04 I 18 2 1.0  - 3.11 507+02  -3.4258+02 2.118116+00
 C  ~s» 1  SOli I 19 2 1.0  - 3.0531+02  -3.~550+02 -1.9257-01
 ,  ,'1N +2 I ,  S 041 20 2  1.0  -2.5024+02  -2.5395+02 2.2863+00
 '  MN+312'  S Oil 13 21  2  3.0  -6.6630+02  -6.S£>90+02 -1.3539-03
 ,  NAI21  S 0111 22 2  1.0  -3.3173+02  -3.30611+02 1.0939+00
 ,  NI) '  S Oil I 23 2 1.0  -2.1139+02  -2.1350+02 -2.1120+00
I '  PR +21 (  S 0'11 2"  2  1.0  -2.1874+02  -2.1933+02 -5.9861-01
~... ,  RBI2!  S 0111 25  2  1.0  - 3.3856+02  -3."050+02 -1.9353+08
h-' '  58+312'  S 01113 26 2  3.D  - 5.7420+02  -5.71120+02 -3.4332-011
.     
 '  SN +11 I (  S aliI 2 27  2  2.0  - 3.93140+02  -3.'33110+02 5.8365-04
 ,  SRI '  SOli) 28  2  1.0  - 3.4436+02  -3.411'37+02 -6.1175-01
 I  7.N I I  S 0111 23  2  1.0  -2.3229+02  -2.B6'1+02 -1.11::;111+00
 ,  ZR+" I I  S 01112 30  2  2.0  -5.9701+02  -5.'!7Dl+02 -2.85314-03
 ,  AG I '  N031 1  3  .5  -2.8760+01  -2.'3130+01 -9.1)9711-01
 ,  AL I '  1110313 2  3  1.5  - 2 . 3 9 38 + 0 2     
 ,   9AI '  N0312 3  3  1.0  -2.3723+02  -2.3711+02 1.2053-Ql
 ,  BE I '  N0312 II  3  1.0  -1.7171+02     
 ,   £II I '  N0313 5  3  1.5  -1.3321+02     
 ,  C A I (  N0312 £>  3  1.0  -2.2519+02  -2. 242e+02 9.1475-01
 ,  CO I '  N0312 7  3  1.0  -1.0858+02  -1.0906+02 -11.3268-01
 ,   CE+31 '   N0313 8  3  1.5  -3.0668+02     
 ,   CE +4 I (   N03111 9  3  2.D  - 3.3266+02     
 (   CO I ,   N :1312 Ii)  3  1.0  -1.:3017+02  -1.[:050+02 -3.3110-01
 I   CS I I   tIi:>3) 11  3  .5  -1.2015+02  -1.2180+02 -1.;523+00
 ,   CU + 11 '   N031 12  3  .5  -3.26111+01     
 ,   CCI +2 I I   N0312 1 3  3  1.0  -7.0356+01  -7.?IIOO+01 -2.rJlI37+00
 ,   "( +2 I '   N0312 111  3  1.0  -1.0723+02     

-------
  ( FE +3 I  ( N0313 15 3 1.5 -1.371)1+02  
  ( K I  ( N031 16 3 .5 -1.1817+::;2 -1.1710+02 4.6&05-01
  ( lAI  ( N0313 17 3 1 . 5 -2.'3'333+02  
  ( LII  ( N031 la 3 .5 -1.11l'4+02 -1.152C+02 1 . '3414 + 00
  ( MS I  ( N0312 19 3 I.G -1.9157+02 -1.'!8?7+Q2 2.5986+00
 ( MN +2 I  ( N03 I 2 20 3 1.0 -1.4260+02  
  I MN +3 I  ( N03 13 21 3 1.5 -1.6247+02  
  I NAI  ( N:J3 I 22 3 .5 -1.1137+02 -1.1185.+02 1.2C35-01
 ( N! I  ( W'312 23 3 1.0 -9.7<150+(:;1 -'3.120G+Dl -1.7498+00
 ( PA +2 I  ( N0312 24 3 1.0 -1.0519+!J2 -1.0aCO+(\2 -2.3097+00
 ( PSI  ( N031 2S 3 .5 -1.1750+02 -1.1700+02 '5.0145-()1
  I S~ +3 I  ( N03 13 26 3 1.5 -1.1662+02  
 ( SN +4 I  ( N0314 27 3 2.-0 - 1.6 7.? E.+02  
 ( SR I  ( N0312 28 3 1.0 -2.3368+02 -2.~33(1+0? -1.1715-01
 ( IN I  ( N0312 29 3 1. C -1.182'3+02 -1.1560+02 2.S'34f.+00
 I ZII +<1 I ( N ')3 I 
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78158 . TELEPHONE 512 . .cS4-9S3S
The RMS errors for the estimated +l-metal nitrate
and the +2-metal nitrates were respectively 0.925 and 2.62
entropy units.
5.3
ESTIMATION OF HEAT CAPACITIES
Heat capacity coefficients for metal
whose corresponding oxide heat capacities were
estimated. The results were based on reported
data for the nitrates, nitrites, and oxides of
shown in Table III.
nitrates and nitrites
known have been
heat capacity
seven metals as
The estimation method used for the nitrates involved
adding an increment, ~C , to known oxide heat capacities. The
p
increment was calculated by a computer program by subtracting
oxide heat capacity coefficients from known nitrate heat capacity
coefficients. Using a least squares method, an average nitrate
increment was obtained. The increment ~C was then added to each
p
set of oxide coefficients yielding an estimated nitrate heat capacity.
The temperature range of validity for the estimated coefficients
was taken to be that of the coefficients for the corresponding
oxide. The same method was applied to the estimation of nitrite
heat capacities.
The accuracy of this estimation technique was indicated
by the fractional error, which is defined as the RMS error divided
by the average known heat capacity for the group of compounds of
interest. For the nitrate correlation, the fractional error was
0.208. The fractional error for the nitrite correlation could
not be estimated on the basis of one compound. The estimated
values were added to the data base. Table VI is a compila-
tion of kaown and estimated heat capacity coefficients. It is
included in the Appendix.
-14-
Radian Corporation
8C09 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 - .c54-9S1S
6.0
SUMMARY
Thermodynamic data were compiled for 220 compounds
including the pure and hydrated nitrates, nitrites, nitrides,
and hydroxides of 35 metals plus several nitrogen oxides. Data
were collected and evaluated from the compilations and the open
literature. When widely differing values were reported, one
value was selected after consulting the original references.
Standard heats of formation and absolute entropies were estimated
for nitrates and nitrites for which no data were reported. Co-
efficients for heat capacity equations were estimated for 39
nitrates and 45 nitrites for which no data were reported. The
accuracy of each correlation was determined by comparing
accepted values with those calculated by each method and
computing a root mean square (RMS) error. The estimated values
were also compiled in the data base. A copy of the data base
arranged in alphabetical order is contained in the Appendix
in Tables V and VI. Table V contains the standard heats of
formation, absolute entropies, and transition data; Table VI
is a tabulation of the heat capacity data. Tables I and II
are also included in the Appendix. They contain a description
of values selected for heat of formation and entropy when widely
differing reported values were found.
-15-

-------
r
AB-902
AO-OG 1
AO- 9Q 2
8 A- 00 1
BA-928
BE- 002
BE-923
BE-928
BE-930
e 1- 00 1
81-002
81-003
80- 00 1
1'>0- 00 2
BO-914
8R- 00 1
8 R- 002
BR-003
B R- DOli
8 R- 91 2
BU-918
C A- 00 1
C A-DO 2
PAGE:
9I. lo'3-UdI9f.SI.

-------
C 4- 003
C 4- 00 'I
C 4- 005
C 4- DC 6
CA-007
C A- DC 8
C A- 003
C A- Die
0- 011
C 4- 012
C 4- 01 3
C 4- 014
0- 01<;
C 4- 01 {;
C 4- 017
C ~- 01 <;
C!.- 01";1
C ~- S: 0
C 4- 02 1
C 4- 022
C A- 0,3
C A~ 02 4
C 4- 025
C4-07.6
C A- 02 7
C 4- 0;> 8
C A- 02 '3
C 4- IJ 3 0
C A- 031
C A- 03;>
'!ISlIC5r.4?HY (CONT rNUEOI
PA,jE:
CHEMICAL 4IJST'14CTS.52:7CE.
PP. 43-9( i9531.
N.4. lANOIYA. T. GRU:>TN. POlTTtKH. INST.
CHEMIC4l 49ST:HCTs.se:7432D 4.4. FOTIEV. ZH. PRIKl. KHIM. VCl. 35.
P P. 2402- 3 ( 1 % 2 1 .
CHEI-I IC 4l 43ST R ACTS, E.4: 11950F.
VOL. 7C, PD. 711-17(13661.
I.J.8,c:ttR, 6.G.
TURN')Ull, J. PHYS. CHEM.
CHEMICAL 4B5T:<4CT5,s9:134030. A.4. SHIOlOVSKII, A.A. VOSKRESENSKII.
2H. FIZ. KHIM. vnl. 37. PP. 2002-711%31.
CHEMICAL AS5TRACTS,6s:193U;F. G. V. rrOlIDER, ET 4l. 2H. FIl. KHIM.
VOL. 40. PP. 2160.-701196('1.
CHE~ICAl ABSTR4CT?,s4:62874. H.W. GOLDSTEIN. ET Al. J. PHYS.CHEM. VOL.
0, PP. 1445-9\19591.
CHEMICAL ABSTR4CTS 64:14186.
REPT. INVEST. NO. 6587119651.
R. BAR4NY, l.H. AD4MI, U. S. 
-------
AB-902
AO- OU 1
AO- 902
B A- 00 1
BA-928
BE - 00 2
BE-923
BE-928
BE-930
6 1- 00 1
81-002
81- 00 3
BO- 00 1
&0-002
BO-914
BR- 00 1
BR-002
B R- 003
a R- 004
BR- 912
BU-918
(6- 00 1
C A - 00 2
PAGE:
9I~LIO<;RAPHY
Abel, Herren E., and J. Prois1-Wien, HUber das gleic.hgewicht
zwischen stickstoff-monoxyd, -dioxyd und -trioxyd," Z. E1ektrochem.
35,712-15 (1929).
L. H. ADA!'!I. F.:. G. KING. U. ~. BUR. MINfS. REPT. OF INVEST.
NO. 6611. 119651.
AOAMS. M.J..AND J.E. HouSE. JR.. TR~NS. ILL. STAT": ACAD. Set.. 63111.
83. 1197010 C.A. 73-39428C.
R. F.. BARqOW. n. AL.. TRANS. FAR. SOC.. YOLo 510 P. 14BO.
119551.

Bauer, T. W., H. L. Johns ton, and E. C. Kerr, "Low Tempera ture
Heat Capacities of Inorganic Solids. IV. Heat Cagacities and
Entropies of LiOH and of LiOH'HaO from 15 to 300 K. Third
Law Check on the Entropies Through the Reaction LiOH + H~O
(Gas) = LiOH'HaO," J. Amer. Chern. Soc. 72, 5174-77 (1950).
BERTHELOT. E5S AI DE Mi:CANIC\lE CHH'.IGUr. PART 10 O. 319.
Beattie, LR., and S. W. Bell, ItDinitrogen Trioxide. Part 1.
Stability in the Gaseous Phase," J. Chern. Soc., London 1957,
1681-6 (1957). ----

Berthelot, M., "Sur Lea Principes G~neraux. de 1a Thermochimie,"
Ann. Chim. Phys., Ser. 5,~, 5-214 (1875).

Berthelot, M., "Sur 1es Oxydes de l'azote," Ann. Chim. Phys..
Ser. 5, &, 145-214 (1875).
3IBLIOGRAPHY ICONTINUEDI
W. BILTZ. Z. ELEKTROCHEM.. YOLo 37. P. 498 119311.
w. BILTZ. Z. ANOPG. CHEM.. YOLo 71. P. 427 /19111.
II. BILTZ, 0. AL.. Z. ANORG. CHEM.. VOL. 233. P. 257 119371.
J. BOUSQUET. G. PERACHON. COMPT. RENO.. VOL. 258. NO. 15.
P. 3869 119641.
BOERICKE AND 3ANGfRT. U. S. P.UREAU OF MII,ES. REPT. OF INYf.ST.
NO. 3813 119451.

Bouzat, M., "Compos~s Cuproannnoniques," Ann. Chim. Phys., Ser.7,
29, 305-83 (1903).
l. BREWER. CHEMICAL REVIEWS. YOlo :2. P. 1 119531.
BRITZKE AND KAPUSTINSKII. Z. ANORG. CHEM.. YOlo 1"4. P. 323.
119301.
BRITZKE AND KAPUSTINSKII. J. PHYS. CHEM. !USSRI. VOL. 5. P. 1:'5.
119341 .
L. BREWER. L. BROMLEY. THE CHEMISTRY AND METALLURGY OF MISCELLANEOUS
MATERIALS. fl9SDI.
BROYN. O.l'.!.. \/. SMITH. ANO W. U,lMER. J. AME\1. (HEM. ~OC. ss.
921. 119371.
Bureau, "Contribution ~ l'etude Experimenta1e de 1a Pr~paration
et des Propriet~s des Nitrites," Ann. Chim. (Paris) Ser 11 8
1-142 (1937). . . '-'
CHEMICAL ABSTRACTS.64:S9%A. ..A. SHIOLOvS~I!. A.A. VOSKR:::SENSKII. ZH.
FIl. KHI~. YOLo 39. PP. 3Q97-'Hl%SI.
CHE!o!ICAL ABS1\1ACTS. E4: 74340. T .K.
YOlo 'I. po. lo9-7h119E>51.
INGRAH4..,.
P. ~oRI£R. CtN. MET. QUART

-------
C 4- (; 0 3
C 4- 00 4
(4- 005
C 4- DC 6
(4-007
C 4- DC 8
C 4- 00 '3
C 4- ole
C 4- G 11
C 4- 012
C 4- 01 3
C4-014
(4- 015
C 4- 016
C 4- 017
(;-01';
C to- 01 .j
(~- ::;: 0
(4- 021
C 4- 027.
(4- ot. 3
C A~ 024
(4-1)25
C 4- 07.6
0- 027
(A- 028
C A- 02 \)
C4- 030
C 4- 031
C 4- 032
'! ISL IO Gr. 4? HY I CONT INU EO 1
PA,jE:
(HO! IC 4L A'!STQ 4CTS. 52: 70(.
PP. 7:,H. II.E. "ELL. M. TAG4MT. J. PHYS. CHEM.
VOL. 67. PI'. 2432-6 115631.
CHEMICAL ABSTRANS 58:6257F~ 101.101. WELLER. E.G. KING U. S. aUF/.
MINES. RE?T. INVEST. NO. 6147 (1%31.
PAGE:
~IRLrOGp.APHY ICOfJ1!NUEOI
CH~MICAL 4PST;{ACTs.sa:Z1C;C. F.A.
KHI;~. VOL. 35. po. 956-7 1l'J611.
T.."I. REZl1KHT'JA. ZH. '~IZ.
V.UZ Nrrs .'"';v.
CHr."'ICAL OEST?AiT,;54:21971';. Ii.". WELL,-R. E.G. KTNG. U. S. BUR. '~INE5
PEcT. INVT.ST. i'~U'. :=.590 (l~FO).
CHEMICAL ogST~ACTS ;,,:9327D. N.G. 80RONCH[£VO . L.A. ZHAf'~OVA. ZH. FIZ
K'H~.VOl. 4,3. PI'. 13£6-70 11%61.
ChE"'ICAL ABSTRACTS 64:16722G V.A.
VOL. 1. ?? 1371-4 (1965J.
L~VTTSKII.. ~T
AL. [L_EKTPO~HHnYA.
CHEMICAL ASSTP4CTS 54:17(:2%. C. aRISI. F. AB!!4TT!SU. AN"!. CHII'''.
(ROME I VCL. ::,0. PP.lS5-9(1'350J. S'E!'.: TR-GOS
CHE/HCAL A8STflOCTS 5S:702€H. V. A. LEVITSKII. T. N. PEZUKiHI'4. ZH.
FIZ KMIM.V'~L. 37. PD. l13S-? Cl%!I. SEt: TI<-005.
CHEMICAL 48STIHCTS <.1:1321E. L.A.7HARKO'I0. N.G. "AR4NCHEf.:VA. 2H. F1Z.
KHIM. VOL. 38. PD. 752-4 Cl?E41.
CHEMICOL 4?STiHCTS ;;5:9511. V.A. LEVITSK!!. [T OLe IZV. AKA~.N4UK SSSR
NE(1RGAN. ,"ATEnoLY. VOL. 2. PP. 32,5-31 11'35GI. SEe TR"':D05.
CHEMICAL 4BSTRACTS 56:136260. F. ~1ASSOZ24. ANN. OHM. (ROMEI VOL. 52.
PP. 51-8..
CHEMICAL A8STRACTS GS:9822G. l.M. L[NEV. I.A. NOVOKHOTSKIY. IZV. AKAO.
NAUK SSSP. MET ALLY. PP. 73-3. (1%&1. SEE TR-005
CHEMICAL 4BSTRACTS ,,5: 9BHC:.
VOL. 34S. po. 134-6 (19651.
M. FISCHER.
2. ANORG. 4LLGEM. CHEM.
CHEMICAL ABSTRACTS 63:121>5F. R.
NO. £618. 11%51. SEE TR-OG5.
~4RANY. u. $.
BUR. MINES. RSPT. INVEST
CHEMICAL ABSTR4CTS 56:20'1(;(. Z.V. PROSHINo. T.N. REZUKHINA. ZHUR.
"JEORGAN. KHIM. VC'l. 5. PP. lClb-21 (1%01. SEE TR-005
CHEt'ICAL A?STI:1ACTS 51:12705:". L. !<. lENEV. I. A. NOVOKH4TSKII. IZV,
AKAD. NAUK 5SSR. MET. I GORN. DELO. PP. S7-9G 11?"4) SEE TR-005.
CHEMICAL A9ST~OCTS 59:nF. T. N. REZUKHINA. V. A. LEVITSKII. ZH. FIZ.
KHI!"~-. VOL. 37. ~~. 6E7-S t 1"163) ~[~ TR-CG5.
3
4

-------
C ~- 03 3
C ~- 034
C A- 035
C A- 036
C A- 037
C A- 038
C A- 0 3 ~
CA-040
C A- 04 1
CA-042
C ~- Oq 3
C A- 04 4
C A- 045
C ~- 04 f,
C A- 047
C A- 04 8
C A- 04 '3
C A- OS 0
C A- OS 1
C ~- 052
C A- 05 3
C A- 05 q
C A- 055
CA-056
C ~- 057
C A- 0: 9
0- 05 '3
C A- OE. 0
0- 06 1
C A- 06 2
9IRLIOG"APHY ICONTYNUEO,
PAGE:
CHE"'ICAL ~eSTi)ACT<; (;3:50070 A.N. r;OLUBENKi), ET AL. ZH. FJ? KHIM. VOL.
39. PP. 1154-7 11%51.
CHE",ICAL ~BSH)"TS 63:77G10. V. A. LEVnSKJI. n AL. ELEKTROKHIMIYA
VOL. 1. PP. 237-'3 119GSI. SfE TR-0()5.
CHE"'ICAL ABSTRACTS 63:77010. A. N. GOLU3E',KO. T. N. REZUKHINA. ZH.
FlZ. KHII~. VOL. 3<). PP. 151'3-21 11%51 SEt TR-OO~.
CHEMICAL ABSTRACTS 63:638<)0. Y. A. ZAJONCHKOVSKIJ. E. V. RUBAL'SKAYA.
IZV. AKAO. NAUK SSSR. NEOROAN. MATERIALY. VOL. 10 PP. 257-9 11%51.
CHEMICAL ~SSTL. 10. PP. 2400-3 11%51 SEE TR-OO~.
CHEMICAL ABSTRACTS 59:24730. I. A. NOVOKHATSKII. IZV. AKAO. NAUK SSSR
OTO. TEKHN. NAUK. HET. I GORN. OELO 1963.
CHEMICAL ABSTRACTS 62:9867H. B. I. PANFILOV. N. N. FEOOOS'EV. 2H
NEORGAN. KHI"'. VOL. 10 PP. 299- 9 119651. SEE TR-OOS.
CHEMICAL ABSTRACTS 60:238'3(. L. A. ZHARKOVA. ET AL. OOKL. AKAO. NAUK
SSSR. VOL. 128. PP. 992-4119591.
CHEMIC~L ABSTRACTS 5S:7022H. M. KOEHLER. U.S. BUR. HINES. REPT. INVEST
NO. 5700. (19601. SEE TR-COS.
CHEMICAL ~BSTRACTS 55: 11057C. L. ~. RElNITSKIJ. K.G.KHOMUKOV. OOKL.
AK~O. NAUK SSSR.. VOL. 131. PP. 32!;- 6 ( 1960 I. SEE TR-005.
CHEHIC~L ~BSTR~CTS 56:15COOH. A. S. BEREZHNOI. OOPOVIOI AK~O. NAUK
UKR. RSR. PP. 65-8 11962.. SEE TR-005.
CHEMIC~L aBSTR~CTS 60:2387(. T. N. REZUKHINA. V. A. LEVITSKII. ZH. FIZ
KHIM.. VOL. 37. pc. 2357-~0 (1963. SEE'TR-005.

CHEMICAL ABSTRACTS 57:2927E. R. B~RANY. ET AL. U. S. BUR. HINES. REPT.
INVEST. NO. 5973 (1962.. SEE TR-OOS.
CHEHIC~L ~BSTR~CTS 56:13212B. W. W. WELLER.K.K. KELLfY U. S. BUR. MINE
REPT. INV~ST. NO. 6191 (1%31.
CHEMICAL ~BSTRACTS S7:13233C. L.a. REZNITSKII. K. G. KHOMYAKOV. VESTN.
MOSK. UNIV.. SER. II. KHIM. VOL. 15. PP. 28-30( 19601 SEE TR-005.
CHEMICAL AI3STRACTS G2:Q6960. R. L. ALTMAN. J. PHYS. CHEH. VOL. 68
PD. 3'125-0 11%4.. SEE TR-005.
PAGE:
'HBLIOGP.~PHY (CONTINUED.
CHEMIC~L ~BSTRACTS 64:74350. O. J. KLEPPA.A. NAVROTSKY. INORGAN. CHEM.
VOL 5. PP.192-J 11961;. SEE TR-OO!;.
CHEMIC~L A9STR~CTS 57: 15893'3.[. G. ,ONG. ET ~L. U. S. BUR. MINES.
REPT. INVEST. NO. 6049 11%2' SEE TR-OD5.
CHEMICAL ABSTRACTS 58:SI03C. W. II. IIELLER. E. G. KING. U.S. SUR. MINE
REPT. INVEST. NO. 6130 (19£-.2.. SEE TR-OO&.
CHEMIC~L ~!!STqACTS 56:10999H. \I.W. WELLER. c:. G. ;(ING. U. S. BUR.
MINES. REPT. INVEST. NO. 595'1 (1961. .
CHEMIC~L A'ISTRACTS 62:125C9H. ~.N. GOLUBENKO. T. N. RE:ZUKHINA. 2H. FIl
KHIM. VOL. 38. po. 2920-! 11%41.
CHEMIC~L ~8STiHCTS;1:5270C. L. M. LENEV. I. ~. NOVOKHATSKII. IlV.
~K~O. ~J~IJI( SSSR. ME T. I GORN. DELO ;>P. 47-51 (19.. ~I. SE~ TR-QC5
CHEMICAL ABST'HCTS 6'1:7432G. I. A. NOVOKHqSKII. L. M. LCN..'J. IlV.
VYSSHIKH. \JCHE3N. Z~VEOEN!I. TSVETN. MET. VOL. .~ "F. G8-7q. SEE T;7-0(:5
CHEMIC~L ABSTiHCTS 6G:89118C.N. A. LA'IOIYA. [T AL. I7V. AK~(). N~UK
SSSR. NEORG. M~TER. VOL. 2 . PP. 2050-7 (135£1.
CHEMICAL ABSTRACTS 66:694S4J. D. PHOGEswa~~ R~O.
CHEM. VCL. 71. PD. 537-401l'1r71. SE TR-CCS.
v.v. D~D4P~.
J. ?HVS.
CHEMICAL A8STR~CTS 49:7'11<)G. KU4N PAN
SER II. V!'!L. 1. DP. 1-15 119:;'11.
J. CHINESE CHE~. 50[. IT~IW~N'
CHEI'ICdL A!!STR~CTS 'Ie.: 1131F. E .J. HUBER. C.1:. HOLLEY
SOC. VOL. 75. PP. 3SQQ-S 119531.
J. ~MER. ~H:.M.
CHEMIC~L ~BSTR~CTS 57:2927F.
INVEST. NO. S'HZ 11962..
A. 'J. HA H
U. S. BU'? MINES. nPT.
CHEMICAL ~~STqACTS 5b:1362S~.
VOL. 52. OD. 51-8 11%21.
F. Ma~S~ZZA.
ANN. CHIM. (~O~r.1
CHEMICAL ~BSTqACTS 61:11662F. ~.~. IIELLER. ET dL.
MINES. REPT. INVEST. NO. 6513 (19641.
u. ~. QUR.
5
6

-------
C A- OE. 3
C A- 06 4
C A- 06 5
C A- 06 6
C A- 06 7
C A- 06 8
C A- On 9
C A- 010
C A- 07 1
C A- 072
C A- 07 3
C A- 074
C A- 075
C A- 07 n
C A- 077
C A- 07 S
C A- 07 '3
(4- 08 a
0- 081
C A- 08 2
C A- 08 3
C A- OS 4
(4- 08 5
C H- ao 1
CH- 00 Z
C 0- 00 I
C 0- GO 2
CO- 913
PAGE:
BIBLIOGRAPHY (CONTINUED.
CHEI'ICAL ARSTRACTS 63:14148H. B. 1. PANFILOV. N. N. FEOOOS'EV.
ZH. NEORGA~. KHI~. VOL. 1C. PP. 1844-7 (19&51.
CHEMICAL ABSTRACTS 65:6386H. W. W. WELLER.
RF~T. INVEST. NO. 6782 (19£61
U. S. BUP.. MINES.
CHEI'ICAL ABSTRACTS 66:8'31190.
VOL. 20. PP. 2568-72 (1%61.
O. J. KLEPPA. ACTA. CHEM. SCANO.
CHI:"ICAL ABSTRACTS 56:100gH. E. F. WESTRUM. A. F. BEAU:. J. PHVS.
CHEM. VOL. 65. PD. 353-5 (1%11.
CHEMICAL ABSTRACTS 5S:60H. E. H. P. CORDrUNKE. G. MEYER. REC.
TIHV. CHIM.. VOL. 81. PP. 670- 8 11%21.
CHEMICAL ABSTRACTS 63:9122G. T. N. REZUKHINA. ET.AL.. ELEKTROKHIMIYA
VOL.I. PP.467-71 119651. SEE TK-OOS.
CHEMICAL ABSTRACTS 54:17028[.
VOL. 611. PP.376-7I19E.01.
L.G. HfLPER. fT AL. J. PHYS.
CHEM. .
CHEMICAL ABSTRACT'S.S4:IOIIGSF. E.ERDOS. ET AL. CaLL. CZECH. CHEM.
COP'lMUN.. VOL.211. PP. 383(--113119591.
CHEMICAL Ae'STlHCT'S.511: 14901lE. K.M.KOLBINA. ET AL. VESTNII< LENINGRAD
UNIV.. VOL.15. sn~. KHIM. I rrz.. PI'. 122-9(19601.
CHEMICAL AB'STRACTS.61:177IG. G.A. 9fRGMAN. E.I.SCHMUK. IZV. AKAO.
NAUK SSSR "ET. I GORN. DELO. NO.3. PP.91-9(lS6111.
CHEMICAL ABSTRACTS.57:1323I1C. W.W.WfLLER. E.G.KING. U.S. BUR. MIN~S.
REPT. INVEST. tJO r,01l0 119621.
CHEMICAL ABST~ACTS.57:2927r,. J.W.COBBLE.J.E.MCDONALO. J. PHVS.
CHEM.. VOL.!,;6. P.79111%21.
CHEMICAL ABSTRACTS. 57: 3911C. E.O.CAHR. ET AL. J. CHEM. PHYS..
VOL. 35. PP. 608-18 119611.
CHEMICAL ABSTI'IACTS.58:S4SQB. T.N. REZUKHINA. ET AL. ZH. FIZ. KHIM..
VOL. 35. PP.2639-42 (19611.
CHEMICAL !SST!HCTs.5a:5102C. R. BARANY. U. <;. SUI'!. HINES. REPT.
INVEST. tJO 6143 119621.
"'A<;(;
~IBLIOGRAPHY (CONTINUEOI
CHEto1ICAL ABSTRACTs.55:a02!';G. L. REZNITSKII. K.G.KHOMYAKOV. VESTNIK
MOSKOV. UNIV.. sr:q. II. VOLdS. PP. 110-2 (19601.
CHEMICAL A8STRACT'S.66:S91D4V. M. G. ZURAVLEVA. MHER. NAUCH. KONF.
SOVNAR. NIZHNEV. EKON. RAIONA. VOL~. POLIo INST.. VOL.2.PPZ36-9(19651.
CHE"ICAL ABST!HCTS.68:699IZ. A.A.5HIDLOVSKII. A.A.VOSKRESENSKII.
2H. FH. KHIM.. VOL.41. PP.12116-7 11%71.
CHEMICAL ABSTRACTS. 59: 125FB. H. SCHAEFER. ET AL.. Z. AN OR'>. ALLG.
CHEM.. VOL. 321. ~P. III-55 11%3/.
CHEMICAL A8STRACTS.S8:7586F. H. SCHAEFER.f.:T AL. 7.. ANORG. ALLGEM.
CHEM.. VOL 319. ~P. 327-36(1%31.
CHEMICAL ABSTPACTS.SS:707.H. S.A. SHCHUKAREV.
2HUR. NEORG. KHI".. VOL. 5. PP.1S31-3 (1%01.
A.N. RY ABOV.
CHEMICAL A85TRACTS.61:127098. K.K. KELLEY. w. II. WELLER. U. S.
BUR. MINES. REPT. INVEST. tlO. 6511 (1%11/.
CHEMICAL A9STRACT5.56:12374E. T. N. REZUKHINA. fT AL.. OOKL.
AKAO.NAUK SSSP. VOL. 13'3. PP. 1'105-8 119£1/.
J. CHIPMAN. J. AM. CHEM. SOC.. VOL. 83. P. 1762 11961/.
J. CHIPMAN. H. M. CHAN. TRANS. AMcrt. SOC. METALS. VOL, 38. P. 70
( I 911 71 .
J.p. CCU~HLIN, cnNTRI8UfION~ TO THE nATA ON THEORfTICAL M~TALLURGY.
U. S. BUR. MINES BULL. 542 (19511'.
COUPTOIS AND GASTfN. COlirT. REND.. VOL. 207. P. 1?20 (19'~1.
COUGHLIN. JAMES poO U.S.B.M, 1JULL. 5112. :ONTRI!!UTTONS TO THO;: DATA ON
THEORETICAL METALLURGY. PT. XII. (1'3511/.
7
q

-------
DE-914
DO-910
00-911
DR-901
Ow- 001
E i:1- 001
E Q- 0:;,
EW-901
!'E- g::; 3
r L- DO 1
FO-903
r Q- DC I
P-'3C5
FR-913
FR-914
Gt;:- '3C2
SE-'!C3
G 0- CC I
f:R- no I
GR-911
GU-904
GU-911
HA-936
H(- 00 1
H£- DC 2
~I!\LIOGI'4PHY ICC~ITINUEOI
9
P4GE:
deForcrand, R., "Cupric Hydrates, and the Heat of Formation of
Copper Nitrate. Comparison with Uranyl Nitrate," Compt. Rend.
Acad. Sci. (Paris) 121,441-4 (1913).

Dode, Maurice, "Thermochemistry of Alkali and Alkaline Earth
Nitrites," Compt. Rend. Acad. Sci. (Paris) 203, 365-7 (1936).

Dod~, Maurice, "Sur la chaleur de neutralisation de l'acide
azoteux et sur la thermochimie de quelques-uns de ses sels,"
Bull. Soc. Chim. Fr., Ser. 5,~, 2093-2105 (1937).

Dreger, Lloyd H., V. V. Dadape, and J. L. Margrave,
"Sublimation and Decomposition Studies on Boron Nitride
and Aluminum Nitride," J. Phys. Chem. 66, 1556-9 (1957).

4.S.0WORKIN. IoI.4.9REDIG. J. PHYC:;. CHEM.. VOL.72. 01'.1277-81119681.
E. Ei:100S. THERMpOYN4M. PROP. OF SULFITES.FIRST COMMUN. IN 'COLLECTION
C2ECHOSLCV. CHEM. COMMUN..PR4GUE.VOL.27.PP.1428.1437119621.
E. ERDOS. THERMODYN4M. PROF. OF SULFITE5.SEC. COMMUN. IN 'COLLECTION
CZECHOSLDV. CHEM. COMMUN..FRAGUE.VOL.27.PP.2273-?',83119621.

Ewing, Warren W., C. F. Glick, and H. E. Rasmussen,
"Vapor Pressure-Temperature Relations and Heats of Solution
and Dilution 'of the Binary System Manganous Nitrate-Water,"
J. Amer. Chem. Soc. 64, 1445-9 (1942).
FERI'Ofi. J.H.. 4NO 4. KJEKSHUS. 4CT4 CHEM. SC4ND.. 24131. 1015.
1 1'3701 .
H. FLOOD. O.J. KLEPP4. J. 4MER. CHEM. SOC. VOL. G'3. 1'1'. '3'38-1002
11 '3471 .
Fox, R. K., D. F. Swinehart, and A. B. Garret, "The
Equilibria of Manganese Hydroxide, Mn(OH)a~ in Solutions
of Hydrochloric Acid and Sodium Hydroxide, J. Amer.
Chem. Soc. 63, 1779-82 (1941).
!'RICKE ~ND QONGES. Z. 4NOP[,. CHEM.. VOL. 250. P. ~02 11'!421.
I'RISCH. f'(.4.. 4ND J.L. M4RGiHVE. J. PHYS. CHEM.. f'91.111. !8EJ.
11%51.
PAGE:
10
~18L!()GRAPHY ICONTINUEOI
Fricke, R., and S. Rihl, "Eigenschaften V erbrennungswarme
und Bestandigkeit von Eisen [II] -hydroxyd," Z. Anorg.
Allg. Chem. 251, 414-21 (1943).

Fricke, R., E. Gwinner, and C. Feichtner, "Uber Warmeinhalt
und Gitterzustand verschieden aktiver Formen von CuO und
uber die Bildungswarme des Cu(OH)a' XXXI. Mitteil. uber
aktive Stoffe von R. Fricke und Mitarbeitern," Ber. Deut.
Chem. Ges. B 11, 1744-54 (1938).

(',DANSKY. L.M.. o.J. P[6",-C. AND L.S. H[PLCII. ~4''laOIdt~ JOURNAL OF"
CHC"ISTRV. 4~. 1710. (1370).
G~ 0 A NS K y, L. M ., r:. L .
12(11. 135. 11%71.
3ERTq~MD. AN~ L.S. HE?LER, J. c~r~. ~NG. DATA,
~,!. Q. Gcr,r1,
J. PI-'YS. CHC"'.. VOL. ,;..
P. ?.~~. (19F").
P.. C. Gp"I'!:..
...i. EL(CT~(),:t.!tM. sac.. VOL.
IGf., P. 41;::
119591.
Gross, P., et al., "Heats of Formation of (l~Beryllium Chloride
and (l. and a-Beryllium Nitride," Trans. Faraday Soc. 62, 2719-24
(1 Q6(,' .
Guntz, A., and F. Benoit, "Sur la Chaleur de Combinaison des
Metaux Alcalino-Terreux Avec L'Oxyg~ne, L'Hydrog~ne et L'Azote "
Ann. Chim. (Paris), Ser. 9, 20, 5-33 (1923). '
Guntz, A., and Martin, "Sur la pr~paration des nitrates anhydres
de manganese, cuivre, nickel, cobalt," Bull. Soc. Chim. Fr. 1,
1004-11 (1909).
Ha tton, W. E.. et al., "The Chemical Thermodynamic Properties of
Calcium Hydroxide," J. Amer. Chem. Soc. 81, 5028-30 (1959).
L. S. HEPLER.
II S'S 61 .
R. L.
!}I') dH 6,""
J. U,c-q. CHE~,. SOC. Val. 0,0. PP. 3S35-~O
L.G.HEOLE~. R.N.0(\lOef:"G. CHf~. REVlfIiS. VOL. ~8. PP. 229-5<11'3681.

-------
HE- DO J
H I- CO I
HI-906
HO-910
HO-919
HU- OGI
HU- 00 2
HU- 00 3
HU-004
HU- 006
HU- 00 7
HU- 00 a
HU- 9C 3
HU-908
HU-909
I >J- r.o I
IN- C02
J A- DO I
JE- ocn
J 0- 00 I
JU- DO I
JU-901
JU-902
K A-::10 I
K A- 00 3
KE-::JO 1
KE- r:r::?
K(- O;:-S
~ISlIOGRAPHY ICONTINUED)
PAGE:
L. 1;. Hf"l<::>. C. N. "'ULOc;OW. J. PHYS. CHf.,~.. VOl.~2. P. ?~2 11':'5~1.
C. HI'7° 119541.
E. J. HUgfR. C. HOlLfY. J. PHYS. CHEM.. VOL. 67. p. 7'13 119631.
E.J. HUBfR. C. HOllEY. J. PHYS. CHf,~.. VOL. 67. P. 1731 11%31.
E.J. HUS<:R. C. HOLLEY. J.
~HEM.
("J". O~TA. VOL.
1 !, ?
Z~? 119E81.
G. l. HUI.PHRF.Y. J. AM. CHf.~,. SOC.. VOL. 75. P. 20('16 11g5!1.
(.J. HUBE". C. HfJllEY. J. AI'I. CHEM. SOC.. VOL. 77. P. 1444119551.
HUMPHQEY.
r-.L.. J. A~\E~. CH[~. scr... 75. 28::JC. 111531.
Humphrey, G. L., and O'Brien, J. Amer. Chem. Soc. 73, 2261 (1951).
PAGE:
RIRlIOGCAcHY ICONTINUEDI
Humphrey, G. L., "The Heats of Formation of TiO, TigOs, TisOs]. and
TiOa from Combustion Calorimetry," J. Amer. Chern. Soc. 73, 151S7-90
(19:>1) .
T.R. INGcAHA,... TpA~5. MET. SOC. AIME VOL. 227 PP.1419-26119~!I. SEE
TR-OC5 AND TP.-OO~
T.R. ING~4H4P. TP4NS.
rQ-a05 A~'IJ TO-DC~
I1ET. SOC. AI~E VDl. 233. pO.359-E3119651. 5EE
JANAF THrA~OCHEM!C~L TABlE~.THE ~O~ CHEMICAL CO..~IDl4NO.~ICHIGAN.
a.u G., 19f,1;...
K. JElLINEK. J. ZAKOWSKI!. Z. ANORc. Cf'EM.. Val. 1"2. PP.l-53.
1I'??51.
H.l. JOHNSTa~l. [T. Al.. J. AM. CHE:'. SOC.. Val. 1~. F. Ill.?
IIgC;lI.

JUZA AND !':EYEw. 7. 4NORG. CH~'1., VOL. 21:. P. 273119331.
Justice, Bruce H., "Heat Capacities and Thermodynamic Properties
of a-Beryllium Nitride from 25° to 3100K,II J. Chern. Eng. Data .!!!:
(3),384-6 (1969).
Juza, Robert, A. Neuber, and H. Hahn, IIZur Kenntnis des Zinknitrides,
Metallamide und Metallnitride," Z. Anorg. Chem. 239, 273-81 (1938).
KAPU5TIr;~KII ANO r-OU.IT\
-------
Y.C- CCf4
II [- 005
K E - OO?
II S- %9
K [- 91 G
K S- 911
K[-912
111::- 'H.~
II E- 914
K r- ao 1
K!-G02
II L- DO 1
K 0- OCH
K~- 0::: 1
K R- CO 2
KU- 00:
KU- 0(; 2
KU-003
K U- 004
KU-COS
KU- 30!
KU-9D6
KU-9D7
L A- CG 1
L A- 'JG 2
L >\- 30.1
LA-916
LA-923
FA'j, :
"I"UOGC4PHV (COl-.,. INUEOI
¥I.. '<. KElLfV.
5Se411%7I.
~:.. w. W~LLE~. u. s.
3l1R. MINES. R[",. IWE<;T. NO.
K. ~. KELLfY. cor,TRrS:.;T!O"!S TO THE0AT4 ON T"IECRcTIC4L
",rnLLURGV. U.<;. RUR,au 0" ~!N::S ?ULLET IN 4:J€. 119371.
K. Ii'. KELLEY. THE ENT"OPIES OF INCRGaNIC sueST aNUS: REVISION OF
DAT4. U. ". Bup,:a.u OF ~1[NES eULL. 477119501.
KEllEY. II. K., U.<;.B.'1. 3ULL. 564, CONTRBUTIONS TO THE aHa ON
THrCqETICAL !'.,TALLURGY. FT. XIII, 119601.
V.~LLEY. ~.~.. U.~.E.M. BULL. 476,
TrCAl METAllU"GY. PT. X. (1949).
CONTRIBUTrONS TO THE DaTa ON THEORE-
KELLEY. K.K.. u.s.a.l-!. BULL. 407. CONTRr9UTIONS TO THE DaTa ON THF.:ORE-
TICAL METALLUQGY. "T. VrTI. f!9371.
V.ELLEY. K.II..AND ':.G. KING. u.s.e./<. BULL. 592. !:IJNTRIBUTIONS TO THE
04TA ON THEORETIcaL METaLLURGY. PT. XIV. (19611.
KELLEY. K .K.. U.';.S.M. BULL. 333. CONTRIBUTIONS TO THI: DHA ON THtORE-
nCAl METaLLUPGY. PT. V. (19%1.
KELLEV. K.K.. U.S.S.P':. nULL. 383. CONTRIBUTIONS TO THE DH~ ON THf:ORE-
TICaL ~ET~lLUP.GY. n. III. 119351.
10.'. A.
KIP.~JfW. J. CHIM. GEN. (USSRI. VOL. 15. P. 156~. 11940.
E. G..KING. \r:.
579111%1).
II. WELLER. U. ~. BUR. ~INE<;. REPT. OF INVEST. NO.
KLE1'M ~ND SCHNICK. z. ~NOP.G. CHEM.. VOL. 225. P. 153 119361.
i
-------
L E- Or.!
11-908
~ A-IJr.; 1
~ A- DO 2
M A- 00 3
M A- 005
~ ~- ? 2 S
M~- '328
MA- 93 3
M A- 94 3
MA-946
MA-947
MA-948
MA-949
ME - ao 1
ME-OC3
'H- 00 1
MI-~06
MI- 907
':0- 00 1
"0- as 2
MO-913
'"u- 'J 11
/1111.'1'2.
MU-912
MY-901
NA-935
~Io,LrOG,4P~Y (CONTINUEDI
PAGE:
L~VITS~II. F.T AL.. "U3S. J. PHYS. (HEM.. VOL. 3~.. NO.6. ". 671 119611
Linevsky, Milton J., "Spectroscopic Studies of the Vaporization
of High Temperature Materials," Missile andSpace Div., Gen. E1ec.
Co., Philadelphia, Pa. (1968).
P. G.MASLOV. IH~"MOGYN4M. CHARACTERISTICS OF C~Lr!UM. GALLIUM. INDIUM.
AND THALL WI< COMCI)Ur;o,. ZHUq. OB<.CHCEIKHI'I..V OL. ~9. PP .1413-14231 19591.
A. D. MAH. J. AM. CHEM.
S OC.,
VOL. 31. p. 15e2 119:91.
A.D. MAH. U. ,. ~I.fR. MIN"S. REPORT OF INVEST IGATI !)NS "10. S'Jf.5.
11%21.
I.:C. E. =". 3 (1~(2).
OTD. TEKHN.
Morssair
( llS\I~, 1890).
~UST AJOKI.
f} qCi P). C.
ar::vo, ANN. ~calJ. ~CI. F[nN!C~E, S:R. ~, V!, NO. q,3-1£
4. 53-~f.SQ0.
Mustajoki, Arvo, "The Specific Heat of Cesium Nitrate in the
Temperature Range 50-450°C as well as the Heats of Transition
and Fusion" Suom. Tied. Toim. Ann. Acad. ScL Fennicae,
Serf A, VI~ No.7 (1957).

My, Le Van, "E'tude mic!'ocalcL'imetrique des nyarates de cuivre
et de nickel. I. HYG~oxyd~s de cuivre et de nickel. II. Nitrates
de cuivre et de nickel," Bull. Soc. Chim. Fr., Serf 5, 1964 (3)
545-49 (1964).

National Bureau of Standards, "Preliminary Rept" on the Thermodynamic
Properties of Selected Light-Element Compounds, Nat. Bur. Stana. Rep.
No. 6928 (1960).
15
16

-------
NA-936
N B- 00 I
N 8- OOZ
N g- 00 3
N9- ocq
N 8- OC S
NE- 'Oq
NE-907
NE-908
NE-909
NE-9l0
N 0- QO 5
o R- no I
ow- 00 1
OW-OOZ
P ~- 00 1
P ~- 00 Z
PA-9l6
P E- 00 I
FL- '1[']
po- 91Z
P R- '103
P a- CC 1
IH- CCZ
R 4- CO 3
P a- 0 (; ~
I" a- 005
P~GE :
11
'H9LIOGRapHY ICONT!~UEO)
Nasanen, Reino, "Die potentiometrische Bestimmung des Loslichkeit-
produktes von Manganhydroxyd," Z. Phys. Chern. Abt A 191 54-64
(1942) . ' . -'
SElE:CTEO VUUES M" CHEM. THERM. PROPr.RTIES .f'~RT I.N~TTON~L ,>URf4U
CF ST~N04ROS.1S65.
SElE:CTEO V~LUES OF CHEM. THERM. PRaPERTIES.P4RT IT.N4TION4L BURE~U
OF ST~NO~qO~.19~6.
F.QOSSINl.ET ale SELECTrO V~LUES OF CHE~. THEP~. PROPERTIES. N~TL.
BUPE ~U OF S T ~NO~P!:'S. C It! CUUR SOD. 1195 Z I.
NaTION~l STaNO~RO REFERENCE O~T4 SERIES N8S-7. HIGH Te:MPER~TURE PROP-
ERTIE~ 4NO DECOMPOSITION OF INORG~NIC ~ALT~. PART 1 5UbF4TES.
SElECTED VALUES OF CHEM. THERM. PROPS.. NATNL. BUR. STOS.. TARLES
FOR FIRST 3q ELEMENTS IN STD. ORDER OF 4RR4NGEMENT. TN Z70-3 11'1681.
NEOELJKOVIC. VON lJ.. Z. ANORtj. 4LLG. CHEM.. 35711-Z)' 103. 11?661.
Neubauer, C. A., and J. L. Margrave, "The Heat of Formation of
Aluminum Nitride," Z. Anorg. Chern. 290, 82-86 (1957).

Neumann, B., C. Kroger, auJ rt. ttaebler, "Die Bildungswarmen der Nitride.
II. Die Azotierungswarmen von Lithium, Aluminum, Beryllium, und
Magnesium," Z. Anorg. Chern. 204,81-96 (1932).

Neumann, B., C. Kroger, and H. Kunz, "Die Bildungswarmen der Nitride.
V. Die Verbrennungswarmen einiger Metalle und Metallnitride,"
Z. Anorg. Chern. 218. 379-401 (1934).

Neumann, B., C. Kroger, and R. Kunz, "Uber die Bildungswarmen der
Nitride. III. Die LOsungswarmen eini~er Metalle und Metallnitride
in Sauren," 7.. Anorg. Chern. 207, 133-6:4 (1932).
NOMUP~. SHrJlCHIRO. J. PHYS. SOC. J~P4N 16(7). 1352119£>11.
".H. ORTN':P. J. CHEM. PHYS.. VOL. 3q. P. 556 11'1F.II.
8. OWENS. S. W. MAYER. J. INORG. NUCL. CHE'i.. VOL. Z6. P. SOlt
I1SSq). SEE: TP-OCS. TR-OC,(;.
PAGE:
18
~If\LIOGQ~PHY ICONTINUEOI
OWEN. J. ~M. CHft-'. SOC.. VOL. 56. P. lESS 1l93~1.
fI:.PARRAV~N(,. G.MDLOUORI. HTI. R. AC~O. LINCEY. ~n;>. E. VOL. 7.
P. lec:!' 11c:!Z~).
HT I. RENIJ. ACOO. LINCET. SER. r;. VOL. 7.
P~RP~VAN(' ~NO ~Al~UORl.
P. IDe:! IIQ:'8).

Parsons, Terry, Gary D. Schroeder, and David DeBerry, "Applicability
of Metal Oxides to the Development of New Processes for Removing
SO~ from Flue Gases," Tracor, Inc., Austin, Texas (1969).
J.H.PERRY. CHE:MIC~L ENGIN~rRING H~N0900K.MCGRD~ ~!LL eOOK CO..INC..
qTH EDITICNIl901.
PlEKHOTKIN. V.F.. J. 4PPLIED CHEM. U.S.S.R.. qOlI1). ZQ70. 11'1671.
P('UILlEN. P~UlETTE. ~~!D JFA'. SAUREL. ,C.R. ~CA{). <;CI.. PARIS. SER. C.
2 E G C Z 5 I. 1 f, r; I. C 196 e I. C. A. (9- t 211 au.
PROTSEN~(\. p.r.. !OT AL.. rzv. VYSS~. UCHEB. z~vn:~.. KHI~.. KHI,.,.
TEKHNOl.. I?Cllt 3. 11%9), c.~. n-I(1(!2%Q.
THIS '~llF \lAS SELECTED FROM SEVERAL
~AOrA" TrC~NICAL NOTC 2CC-OQ7-CG.
DIFFERENT REPOPTED V~LUES. SEE
RAOI~N ESTJ~DTEI) VALUE USING MODIFIED ERDOS METHalJ. SEE TECHNIC4L
NOTE iCO-D07-QG.
R4CIAN ESTI~ATED VALUE U;!NG MOOIFI~D l~TIMER ~[THOD. SE': TECHNIC~L
~OTE 2CD-~r+7-04.
RAC'!AN EST!MHEO VALUE USING LATIMER'S AfdCN VAUFS. SEE TECHNIC~L
fl:cTF 20C- '::G ~-CG.
QA!JIAN E~TI"AT(D V~LUE USING MOoIFI:.O MOP'''5 RUL.. SEE HCHNI!:AL
~~T€ 2SQ-r.r:-7-04.

-------
'-------.-----
IH-'!2;,
R f- 00 I
<1 E- f102
,qr:-ao!
f't:- 1)05
II a- 0[; 1
R 0- aD 2
II 0- 00 3
p 0- 00 ~
R 0- Oc. 5
R 0- 00 f;
RI)- <:!07
5 4- a 01
SA-916
SA-9l7
SA-918
5 c- 0 G 1
s c- aD 2
S C- 00 1
S C- DOlf
S C- '31 2
SC-9l9
SC-920
SE-910
5 H- 00 1
: H- : 0 2
S!-SCl
SI-9Ql
SI-9CC:
PAuL
~I~LIOGR40HV (CONTINUEDI
R4V, J4M,S 0..411'0 R. b. fIGG. JR.. J. PHVS. CHEM. £0. IS"<)-lfOG
(19,'f.l.
4. PEISM4N. J. 4"'ER. CHE". SOC.. VOL. RD. PP.355~-9 119551.
L.4. REn:TTSKII. lH. 1'12. K'iII'!.. VOL. 38. P. 160 119r;~I.ICHfMIC4L
4B5TR4CTS.Fl:?OO~F.1
RENEG4DE 4ND CON,TE4NU. ~ULL. SOC. CHIM. FR4NCE. VOL. 15.
p.717 11gIqI.
IIrr,EG4DE 4NO CONSTE4NU. COMPT. RrNO.. VOL. 158. P. 9~1; 1191~1.
W. ROTH. ? ElEKTO('CHEI'.. VOL. ~I;. P. 42 I H401.
w.ROTH. 4NNU4l T4~LES OF CONST4NTS 4NO NUMERIC4L !)4T4.XI. SECT. 12,
'THEPMOCHE~'!STRY 11931-19341.' HERM4NN 4'10 CO.. P4RIS. 11,}311.
101. ROTH. G. BECI(EP. Z. PHYSIK. CHEM.. VOL. 4159., O. i (15321.
To ~OSENGVIST, J. IRON 4NO ,TrEl INSTITUTE. VOL. 176. p. 3(..
(19541.
W.4. ROTH. F I 4 T 'PEOORTS OF GER!"4N SCIENCE. INORG. CHEM..
VOL. ~. o. 214 (19~81.
ROSS 11111 4'1D BICHOIISKV. THfRMOCHEMISTRV Of CHEMIC4l SU3ST4NC;:S.
NrW YORK 1l~36'.
PO<:S INI, F. D.. ~T ~L.. SfLECTEO V411IES OF CHE1-:Jr.4L THER"IODYN4MIC
P~,)PERT.l':S. CIRCUL4Q 01' TliE '4T ION~L 9URE~U OF SUND4R!:'S S('C), (19521.
P. 543~T!FP. ~NN. CHI~. PliVS.. VOL. 22. P.S 11&1!11.
Sano, "The Dissociation Equilibrium of Chromium Nitride," J. Chem.
~OC- Janan 58, 9~1_4 (1937).

~ato, Scl. Pap. Inst. Phys. Chem. Res., Tokyo 35, 158 (1939).
P4':;E:
~I~LIOG'HPHV ICO'lTTNUEDI
Sabatier. P., Compt. Rend. Acad. Sci. (Paris) 125, 301 (1897).
H. SC!HEI'f.0.
( 1 9;~» .
H. HtITL~ND. ?. ANORG. CHEt-1.. VOL. ~n4. ? '?!4S:,
N. G. SCH"I4LL. E. MINZL. 7. PHVST!<. CHEM. IFR~NI(I'URTI. VOL. 47.
p. 1~2 11%51.
R. SCHENCK. P.VO,~ OrR FOeST. ? 4NO'~f:.. CH,M.. VOL. 2'11. ep. 145-
57. (19301.
SCHENCI( 4ND .,4U'3.
z. AN{)P~. CHEM.. VOL. 173. P. '?5 Cl'32?).
<;C HUERM6.":N. f..., t.ND V C'N
74(5), 4;:::2, (1°70).
LJ. NFDELJKOV rc.
~.rH. mH\'<:',E.Nf:ES.
">lVS. C>lEM.
Schwei te, H. E., and E. Hey, "Uber die Lo'sungswarmen des Calciumoxyds
und des Calciumhydroxyds in ihrer Abhangi~keit von der Konzentration der
Salzsaure,1I Z. Anorg. Chem. 217, 396-400 (1934).
Schwiete, H. E., and A. Pranschke, "Technique of Determining the
Heats of Solution in Acids of Different Concentrations," Zement
J.~'t, 593-8 (1.935).

Seybolt, A. U., and R. A. Oriani, "Pressure-Temperature-Composition
Relations in the Cr-N Terminal Solid Solution," J. Metals .!h AIME
Trans. 206, 556-62 (1956).
c. :; ~O~"I"'i:.
J. 4.~. CHfM.
vCL. ~;~. ?P. 9€4-.r- (1?4().
"., t., \~ .. .
S~C~"'o.TE, "]t,YL!'~, 4!'>.ri ?OE~!CK,r, u. -.::,.
3~~,4 C 194~). J. a~. C~E,~. s::c... VGl.
;:.Uq. M!NF:~.
~, E. 0.. 1: (\ 1
~EPT. INVf~,T. NO.
11')Q<.).
S!",\':!\.I toN;) T'...aLE'? Z.. lU;OC:G. Cl;[~.t
VOL. lr.;.~. P.
;:: c,3 (1 q? 7) .
Sillen, L. G., Stabilit! Constants of Metal-Ion Complexes, Section I:
Inorganic ~, Spec al Publ~catTOn No. 17, London: The ChemicaL
Society, BurTIngton House, W.l (1964).
SI[-,q::~~. ~.Q.. .3.',:0
c.~. 7Q--:;1~7CY.
\.~ . F .
;:14')"'.lE, J. P'
-------
SL-905
SL-906
S T - 00 1
ST-OOZ
S T - 906
ST-917
S T- 918
ST-919
S T - 9Z 0
ST-926
S U- 00 1
T .- 001
TA-911
T A- 913
T H- 00 1
TH-908
T R- DO 1
T R- OC Z
T R- CO 3
T R- 00 q
T'I- 00 5
T R- OC I;
T R- 007
T R- 008
T R- 009
T R-1)1 0
V 4- ac 1
PAGE:
21
PIBLIOGRAPHY ICONT INUEO'
Slade, R. E'l and G.-I. Higson, "Dissociation Pressure of Some Nitrides,"
Chem. News~, 166 (1913).
Slade, R. E., and G. 1. Higson, "The Dissociation Pressures of Some
Nitrides," J. Chem. Soc., London 115,215-16 (1919).
J.R. STUB'3LES. F.O. RICHARDSON. TRANS. FARAQAY SOC.. VOL. 56.
P. 11160 119601.
R.p. STEIG':"!. E.D. cnER. J. PHYS. CHEM.. VOL. 72. PP. 2231-3119681.
STULL. D. R.. PROJECT DIPECTOR. AND ST AFF. DOW CHEMICAL CO.. JANAF
THERMOCHEMICAL TABLES. PB 168 370. 119651.
STULL. O. R.. PROJECT DIRECTOR. AND STAFF. DOW CHEMICAL CO.. JANAF
THERMOCHEI'\ICAL TABLES. FIRST ADDENDUlh PB 1&8 37!)-1. 11%61.
STULL. O. 1/.. PROJECT DII/ECTOR. AND STAFF. DOW CWEMICAL CO.. JANAF
THERMOCHEMICAL TA8LES. SECOND ADDENDUM. PB 168 371]-Z. 119671.
STULL. D. R.. PROJECT DIRECTOR. AND STAFF. OOW CHEMICAL CO.. JAN4F
THERMOCHEI'\ICAL TA8LES. THII;D ADDENDUM. PB 168 370-3.11%81.
STULL. D.R.. O.L. HILOENBRAND. F.L. OETTING. G.c. SINKE. J. CHEM. ENG.
DATA. 15111. 5Z. 119701.
STERN. KURT H.. HIGH TEMPERATURE PROPERTIES AND DECOMPOSITION OF IN-
ORGANIC SALTS. PART 3. NITRATES AND NITRITES. PREPRINT. 119701.
K. SUDO. SCIENCE REPT. RESEARCH IN5T. TOWOKU UNIV.. SER...
VOt.--Z. P. 507 11'1501.
M. T AGAMI. W. BELL. J. PHYS. CHEM.. VOL. 70. P. 3735 119f:DI.
Taylor, K., and L. S. wells, "Heat of Solut1on of Calcium and
Magnesium Oxides and Hydroxides," J. Res. Nat. Bur. Stand. 21,
133-49 (1938).
PAGE:
2_2
BIBLIOGPAPWY ICONT INUEDI
TAYLOR. A. 'I.. JP.. AND D.F. SMITH. U. S..BUR. MINES. REP. INVEST. NO.
5%7 119621.
rHOMSEN. THER"10CHf.MISCHE UNTERSUCHUNGEN. BARTH. L£IPZIG 11B82-
18RGI.

Thomsen, J., Thermochemische Untersuchungen, Barth, Leipzig (1882-86).
TRACOR VALUE ESTIMATED USING MODIFrCI KOPP'S RULf.. SEE TECHNICAL
MEMORANDA DDq-DD9-CHli AND OCII-OOS-C~I~A
TRACOR VALUE ESTIMATED USING MODI~1EO ERDOS METHOD. SEE TECHNICAL
MEMORANDA DOQ-D09-CHI AND GO~-009-CHIA.
TRACOR VALUE ESTIMATED USING MODIFI~D LATIMER ~~THOD. SEE TECHNICAL
M£MORANOUM OC4-DC9-CHS.
HEAT CAPACITY OBTAINED BY SUMMING HEAT CAPACITIES OF CONSTITUENT
OXIDES FROM TRACO~ DATA EASE. SEE TECHNICAL MEMO~ANDUH DrQ-DD9-CH3.
HEAT OF FORMATION OBTAINfD BY COHeINING HEAT OF R~ACTION FROM
LITERATURE WITH HEATS OF FORHATION FROM TRACOR DATA 9ASE.
ABSOLUTE ENTROPY OBTAINE[\ AY COMBINING ENTROPY O~ REACTION !'ROM
LITERATURE WITH ABSOLUTE ENTROPIES FROM TRACOR DATA BASE.
ENTROPIES -rop TUNGSTHES AND MOLYBDATES EST IHAHn FROM
OSSERVATIONS BASED ON RE~ULTS IN TECHNICAL MEMDRA~DUM 004-00S-CH5.
TWE HEAT r.APACITY OF CR03 WAS ESTIMATED FROM THE 4EAT CAPACITIES
OF W03 AND 1'1003.
TRACOR VALUE eSTIMATED FpOM OXIDE HEAT CAPACITY. SEE TECHNICAL
HEI'ORANDUM OC~-Or.9-CH13.
THIS VALUE HA~ BEEN SELECTED AS TH~ BEST OF SEVERAL DIFFFRENT
REPORTED VALUES. SEE TECHNICAL MEMORANDUH OOll-009-CHI8
V. A. VANYUKOV. N. A. KISELEVA. YU8. SBOR. TRUD. KAFfD. I lAR. TYAZH.
METALL. f~OSK. IN$T. TSVETNYKH METALL. r ZOLOTA NO.7. P. 3GQ. 119391.

-------
VE-905
W A- 00 1
W A- DC'
W A- 90 I
WA-9I2
W A- 91 8
WE - 00 I
WE-9I9
W I- 00 I
W I- 00 2
W 0- 00 1
W 0- 002
W 0- nrB
Y A- 90"
PAGE:
fHBLIOGPAPHY ICONT INUEO)

Verhoek, F. R., and F. Daniels, "The Dissociation Constants of
Nitrogen Tetroxide and of Nitrogen Trioxide II J. Amer. Chern Soc
53, 1250-63 (1931). ,. .
VON WARTEN9~RG. 7. ANURG. CHE~., VOL. 71. P. 1127 (1911).
J. S. WARNER. J. ELECTROCHEM. SOC.. VOL. 1111. P. ;/\ 11%71.
WAG~AN. n.D..Er ~L.. SELECTED VALUES OF CHEMICAL THERMODYNAMIC PROPER-
TIES. TABLES FOR ELEMENTS 35-53. TECH. NOTE 270-". 11%9).

Wagman, Donald D., Private Communication (January 15, 1971).
WAG:-
-------
APPENDIX

-------
Mn(N03):a
COMPOUND VALUE (KCAL!MOLE) 
-137.73
-137.73
-166.32
-142.6
TABLE I (cont'd.)
COMPOUND VALUE (KCAL!MOLE) 
Fe(N03)3
.9H:aO
CsN03
Co(N03) :a
-785.2
-784.4
-783.7
-121.8
-118.1
-118.11
-100.5
-102.9
-102.9
TABLE I
CONFLICTING VALUES FOR THE STANDARD HEAT
OF FORMATION OF INORGANIC COMPOUNDS
REFERENCE
WA-901, WA-912 (EW-901)
ST-926 (WA-901)
RO-907 (EW-901,GU-911)
RA-002
REFERENCE
WA-901, WA-912 (BE-928)
RO-907 (BE-928)
LA-90B (RO-907)
ST-926 (WA-901, WA-918)
LA-908
RO-907
WA-901, WA-912 (GU-911)
RO-907 (GU-911)
PL-903
REMARKS
Both reported values were
based on the same data, but
they differ by approximately
30 kcal.

Ewing (EW-901) calori-
metrically measured the heat
solution and the heats of
dilution up to 24m for
Mn(N03):a' Guntz (GU-9l1) also
measured the heat of solution.
In a private communication
(WA-912) Wagman stated the
reference used in his compila-
tion (WA-901), but did not cite
the values used to calculate
the heat of formation from
Ewing's solution data. Rossini
(RO-907) gave no further infor-
mation concerning the calculation
of his value.
The value which agreed
closest with the Radian esti-
mate (RA-002) was accepted.
REMARKS
All three reported values
were based on Berthelot's
measurements. Lando1t-
Boernstein (LA-908) cites
Rossini's; but Rossini's
compilation (NBS Circular
500) was revised by
Wagman (WA-901).
The most recently calcu-
lated value was adopted.
Stern (ST-926) cites an
unpublished value of
Wagman's NBS compilation
series (WA-90l, WA-9l8).
This series is an ongoing
revision of NBS Circular
500 (RO-907) which reports
a value in agreemen t wi th
that given by Landolt-
Boernstein. The revised
value was accepted.
P1ekhotkin (PL-903) stated
that the value he gives has
been reported in reference
books, but he does not give
the reference. Guntz (GU-911)
measured the heat of dissolu-
tion of Co(N03):a by calorimetry;
his data served as the basis for
determinations of the heat of
formation by Rossini (RO-907) and
Wagman (WA-901, WA-9l2). Both
are National Bureau of Standards
ACCEPTED
VALUE (KCAL/MOLE) 
-137.73
Page 2
ACCEPTED
VALUE (KCAL !MOLE)
-785.2
-121.8
-100.5

-------
TABLE I (cont'd.)
COMPOUND VALUE(KCAL~OLE)
Ni(N03) a
I
I Ca(NOa) a
-99.2
-102.2
-101.5
-177 . 2
-178.3
-178.3
, TABLE I (cont'd.)
: COMPOUND VALUE (KCAL/MOLE) 
Ba(NOa)a
Ba3Na
-183.6
-174~0
-187.6
-86.9:1:8
-86.9
-89.10:1:21
-89.900
REFERENCE
WA-90l, WA-9l2 (GU-9ll)
RO-907 (GU-911)
PL-903
ST-926 (WA-9l8)
RO-907 (DO-9l0)
PL-903
REFERENCE
ST-926
RO-907
PL-903
KU-903
RO-907
LA-908
KE-91l
(WA-9l8)
(BE-928,
BU-918,
DO-911)
BE-930,
DO-9l0,
(RO-907)
(GU-904)
(WE-9l9 [GU-904])
(LA-9l6 [GU-904])
REMARKS
publications, but Wagman's
technical notes are an
ongoing revision of Rossini's
compilation.

Wagman's value was adopted.
See remarks for Co(N03)a'
Stern (ST~926) cites a
value reported by Wagman
(WA-9l8) who is in the
process of revising NBS
Circular 500 (RO-907).
However, Ca(NOa)a was not
included in Wagman's com-
pilation. In Stern's
bibliography there was a
statement that sometimes
REMARKS
he reported values of
Wagman not yet published.
Assuming that this was the
case for Ca(NOa)a Stern's
value was accepted.

Plekhotkin's reference
is not clear (see remarks
for Co(N03)a)'
See remarks for
Ca(NOa)a' Stern's value
was accepted.
Guntz (GU-904) in his
1923 article describes his
determination of the heat of
formation. The heat of solu-
tion of Ba3Na in hydrochloric
acid was measured by calorimetry.
The data were then employed in
a Hess cycle to obtain the heat
of formation.
Landolt-Boernstein
(LA-9l6, LA-908), Kubaschewski
(KU-903), Rossini (RO-907), and
Kelley (KE-9ll) all base their
values on Guntz's data, using
redetermined values in the cycle.
Page 3
ACCEPTED
VALUE(KCAL~OLE)
-99.2
-177.2
Page 4
ACCEPTED
VALUE (KCAL/MOLE) 
-183.6
-86.9

-------
TABLE I (cont'd.)
COMPOUND VALUE (KCAL/MOLE)
AlN
-76.0
-76.0
-76.5:1:1. 0
-76.48
-57.7
-57.4
-71.8:1:2
TABLE I (cont'd.)
COMPOUND VALUE (KCAL/MOLE) 
REFERENCE
ST-906
WA-918
KU-903
LA-908
RO-907
KE-911
LI-908
REFERENCE
(NE-907, MA-946)
(NE-907~
(NE-907
(NE-908
(NE-908)
tiN -80.7:1:1 ST-919 ~HU-908, NE-909)
 -80.5:1:1.5 ST-906 NA-935}
 -80.4:1:0.8 KU - 903 (HU-908, HU-909,
   HU-903, WE-9l9)
 -79.4 LA-908 (HO-919)
 -73.0 RO-907 (NE-909)
 -80.2:1:0.2 MA-943 (HU-908)
VN
-51. 9:1:2.5
-41.42
-41.
-41.430
KU-903
LA-908
RO-907
KE-91l
(MA-947, MA-948)
(KE-911)
(KE-911)
(SL-905, SL-906)
REMARKS
Page 5
ACCEPTED
V AWE (KCAL /MOLE)
Kubaschewski's value was
adopted here because 1) the
author states an error estimate,
and 2) Lando1t-Boernstein
references an early Kubaschewski
work (WE-919) which was later
revised.

The JANAF Thermochemical
Tables (ST-906) adopted an
average of the values reported
by Neubauer and Margrave (NE-907)
in 1957 and by A.D. Mah (MA-946)
in 1961, both of which were ob-
tained by calorimetric measure-
ments. Kubaschewski (KU-903)
and Lando1t-Boernstein (LA-908),
having accepted Neubauer's data,
agree closely with the JANAF value;
-76.0
In 1932, Neumann, Kroger, and
Haeb1er (NE-908) reported a much
lower value, which was adopted by
Kelley (KE-911) and Rossini (RO-907).
The latter, a National Bureau of
Standards publication, has recently
been revised by Wagman (WA-9l8),
who agrees with the JANAF tables.
In a 1962 article, Dreger and co-
workers (DR-901) reviewed the heat
of formation data published for
AlN, and they stated that Neumann's
data are in error, but do not give
any reason for this decision.

Linevsky (LI-908) recently
reported a value determined by
REMARKS
Page 6
ACCEPTED
VALUE (KCAL/MOLE) 
vapor pressure measure-
ments; only the abstract
of this article was obtained
The JANAF value was
adopted.

The most recent JANAF value
(ST-919) was selected because Stull
averages Humphrey's latest data
(HU-908), Humphrey's data corrected
for anatase, and Neumann's data
(NE-909). This includes nearly
all the reported values. The
earlier JANAF value (ST-906) was
revised by Stull. Hoch's data
(HO-919) were rejected by Stull
because of large uncertainties in
comparison to Humphrey's calori-
metric data (HU-903, HU-908,
HU-909) .
-80.7
Slade and Higson (SL-905, SL-906)
studied the thermal dissociation of
VN. Kelley (KE-9ll) applied an
estimated entropy value to Slade's
data to obtain the heat of forma-
tion. Kelley's data are rejected
because they are based on an esti-
mated value.
None
Mah's reports (MA-947, MA-948)
did not contain any data on the
compound in question. Therefore
we could not accept Kubaschewski's
data.

-------
IABLE 1 (con'td.)
COMPOUND VALUE (KCAL/MOLE) 
Cr:aN
-30.5
-23.4
-27.3:1:0.8
-25.30:1:14
-26.72
-30.8:1:1.1
-23.500
TABLE I (cont'd.)
COMPOUND
VALUE (KCAL/MOLE) 
-61. 5
-60.6
-81.
MneN:a
MnsN:a
-48.2:1:0.6
-48.2
-48.8
-57.8
-57.77
REFERENCE
WA-90l
RO-907
KU-903
LA-908
Ml-906
MA-943
SE-9l0
(MA-943)
(SA-9l6)
(KU-906)
REFERENCE
WA-90l, WA-9l2 (MA-933)
LA-908 (MA-933)
RO-907 (SA-9l7)
MA-933  
LA-908 (MA-925) 
WA-90l  
RO-907 (NE-908, NE-9l0,
 SA-9l7) 
KE-91l (NE-909) 
REMARKS

A.D. Mah (MA-943) measured
the heat of formation of CraN
by combustion calorimetry.
She reviewed the data previously
reported by Sano (SA-9l6) and
Seybolt and Oriani (SE-9l0),
stating that their results could
not be compared with her own since
no heat capacity data are available
for the temperatures at which they
worked. Sano's article has not
been translated from Japanese,
and so was not read. Seybolt
and Oriani measured the solu-
bility and activity of nitrogen
in the Cr-N solid solution.
Rossini (RO-907) adopted the
data of Sano, but Wagman recently
revised that compilation, and
based his value on Mah's work.
Landolt-Boernstein referenced
a 1959 work of Kubaschewski, who
later revised this value upward
and reduced the error estimate.
T. Mills (MI-906) carried out
a thermogravimetric study of the
compound in question. However,
we were not able to investigate
this source further because the
report was not available.

The accepted value was
Wagman's, based on Mah's research.
REMARKS
Wagman (WA-90l) and Landolt-
Boernstein (LA-908) base their
values on experimental work
carried ou t by A. D. Mah. Her
report (MA-933) was read; she
determined the heat of formation
of Mn4N by combustion calorimetry
to be -30.3:1:0.4 kcal, which
Landolt-Boernstein apparently
doubled to get tHo for MneNa. In
a private communi~ation (WA-9l2),
Wagman states the source of his
data, but does not describe
calculations employed. It seems
possible that, after doubling
6Ho for Mn4N, an additional
in~ement was added to account
for a heat of reaction for

2 Mn4N +! MneN a

Rossini's value was rejected
because 1) Mah's data had not yet
been published, and 2) Wagman's
compilation updates the 1952 value.

Wagman's value was adopted.
A. D. Mah (MA-933) determined
the heat of formation of MnsNa by
bomb calorimetry. Her results were
published in 1958, six years after
Rossini's compilation (RO-907).
Although Wagman's (WA-90l) source was
not reported, it appears that it
probably was Mah's data.

Mah's original results were
accepted.
Page 7
ACCEPTED
VALUE (KCAL/Mr9 ~)
-30.5
Page 8
ACCEPTED
VALUE (KCAL/MOLE) 
-61. 5
-48.2

-------
TABLE 1 (cont'd.)
('nM~
Zn sN :a
MO:aN
VALUE (KCAL/MOLE)
-5.4
-6.9
-5.3:2.0
-5.31
-19.5%0.3
-19.50
-16.6:2.1
-16.6 %0.5
-16.6%0.6
TABLE I (cont'd.)
COMPOUND VALUE (KCAL/MOLE) 
BesN :a
-140.6%0.3
-140.6%0.6
-136. :r6
-134.70
-134.7%5.0
-135.7
-133.5
REFERENCE
WA-918
RO-907 (JU-902)
KU-903(WE-919)
LA-908 (WE-919)
MA-943
WA-901, WA-912
LA-908 (KU-906
KU-903 (KU-907
NE-909
REFERENCE
~T-918
ST-906
HO-910
lA-908
Ku-903
Ro-907
KE-911
fMA-943)
NE-909 ])
[NE-909 ])
(GR-911)
(GR-911)
~KU-906)
WE-919)
NE-908, NE-909)
(NE-908)
REMARKS
RO-907 was eliminated
since Juza's value (JU-902),
obtained by solution calori-
metry was high compared to other
reported values. Landolt-
Boernstein (LA-908) and
Kubaschewski (KU-903) adopt
a value reported earlier by
Weibke and Kubaschewski
(WE-9l9) which was unavailable.
Wagman's revision (WA-9l8) of
Circular 500 (RO-907) is the
accepted value because it is
the most recently redetermined
value.
The values reported in
the compilations are based
on two similarly conducted
experiments done by Mah
(MA-943) and Neumann and co-
workers (NE-909). The heat
of combustion of MO:aN was
measured using bomb calorimetry;
MO:aN( )+30:a(g)- ZMoOs(c)+~N:a(g).
Mah cgfubined this value with
her previously determined standard
heat of formation of MoOs to
obtain the heat of formation
for the nitride.
Neumann also measured the
heat of reaction for the com-
bustion of molybdenum metal.
REMARKS
ZMo + 30:a ~ 2MoOs
By combining the two
equations, he obtained the
heat of formation for MO:aN.

Mah's value was accepted
because of the higher purity
of the MO:aN used and avail-
ability of the standard heat
of formation of MoOs.
The 6Ho in the JANAF
Thermochemical Tables (ST-9l8,
ST-906) is a weighted mean
value of data from Gross,
et al. (GR-9ll) and the same
data with JANAF's corrected
value for ammonia. Gross and
coworkers measured the heat of
chlorination of a-BesN:a to
a-BeCl:a. and the heat of reac-
tion of Be with ammonia.
Hoenig and Searcy (HO-9l0)
have investigated the decomposi-
tion reaction.
BesN:a(c) = 3Be(g) + N:a(g)

using the Knudsen technique.
Stull, using 2nd and 3rd law
methods, analyzed the data
obtained and rejected the
results (ST-9l8).
Page 9
ACCEPTED
VALUE (KCAL/MOLE)
-5.4
-19.5
Page 10
ACCEPTED
VALUE (KCAL /MOLE)
-140.6

-------
TABLE I (cont'd.)
COMPOUND VAUJE(KCAL/MOLE)
REMARKS
REFERENCE
Lando1t-Boernstein
(LA-908) adopted a
value reported by
Kubaschewski and Evans
(KU-906) in 1959. However,
in Kubaschewski's 1967
compilation, a 1943 value
reported by Weibke and
Kubaschewski (WE-919)
was adopted and a large
error estimate was given.
The original literature was
not obtained.
-Kg11ey's 1937 compila-
tion (KE-911) cited an
out-of-date 1936 Lando1t-
Boernstein publication
based on data reported by
Neumann, Kroeger and Haeb1er
(NE-908) .

Rossini (RO-907) accepted
a combination of data reported
by Neumann et a1. (NE-908,
NE-909).
SraNa
-91.3%4.
-93.4:1:5.0
-93.4
lA-908 (WE-919)
KU -903 (RO-907)
RO-907 (GU-904)
The accepted value was
JANAF's.

The value reported in
Kubaschewski's later compila-
tion (KU-903) and in NBS
Circular 500, (RO-907) based
on solution calorimetry data
of Guntz and Benoit (GU-904)
was accepted. Lando1t-
Boernstein (LA-908) adopted
TABLE I (cont'd.)
COMPOUND VALUE (KCAL/MOLE) 
REMARKS
REFERENCE
a value reported in 1943
by Weibke and Kubaschewski
(WE-919). The latter was
unavailable. Thus, no check
on the original source could
be made.
Page 11
ACCEPTED
VALUE (KCAL/MOLE) 
-93.4
Page 12
ACCEPTED
VALUE (KCAL/MnT.1<')
TaN -60.0:1:.6 LA-908 fMA-949) Mah and Gellert (MA-949) -59.0
 -59.0:1:1. 2 KU-903 MA-949J KU-907, determined the heat of forma- 
   NE-909 ) tion of TaN by combustion 
 -58.2 RO-907 (NE-909) calorimetry. Lando1t-Boernstein 
    (LA-908) accepted this value with- 
    out any corrections. Kubaschewski 
    (KU-903) however adopted a value 
    obtained by averaging Mah's data 
    with that reported by Neumann, 
    Kroger and Kunz in 1934. Rossini's 
    value (RO-907) based on Neumann's 
    data was not accepted because at 
    the time of publication of his 
    work, Mah's data were not  
    available.    
    Kubaschewski's average was 
    accepted.    
Mg(OH) a -221.0:1:0.5 ST-9l8  Since Kubaschewski's value 
 -221.0:1:0.7 ST-906  seemed questionable, we checked 
 -221.0 RO-907  his source, NBS Circular 500 
 -220.9 lA-908  (RO-907). But the reported value 
 -8.85:1:0.2 KU-903 (RO-907) did not agree with the value 
    reported by Kubaschewski.  

-------
TABLE 1 (cont'd.)
f'nMtUUND
VALUE (KCAL/MOLE)
Ca(OH)a
-237.5:1:1.5
-235.7
-235.8
Fe(OH)a
-137.2:1:0.7
-136.0
-135.8
-135.8
TABLE 1 (cont'd.)
COMPOUND VALUE (KCAL/MOLE)
REFERE~CE
KU-903
LA-908
RO-907
~HA-936)
RO-907)
TA-9ll, SC-Y19,
SC-920, MO-913)
ST-918 (FR-913)
WA-901, WA-912 (FR-913,
TH-908)
RO-907 (FR-913, TH-908)
LA-908 (RO-907)
REFERENCE
Page 13
REMARKS
ACCEPTED
VALUE (KCAL/MOLE)
After eliminating
Kubaschewski's value,
we selected the value
agreed upon by Stull
(ST-906, ST-918) and
Rossini (RO-907).
Kubaschewski's value
(KU-903) was acce~ted here
because 1) Hatton s (HA-936)
is the most recently
determined value (1959) and 2)
he is the only author to give
limits of accuracy. Note
that Hatton's data were not
available to Rossini at the
time of publication of his
compilation (RO-907) in 1952.
-237.5
Fricke and Rihl (FR-913)
investigated the heat of
combustion for the reaction

Fe(OH)a(c)+~a(g)=~Fe203(C)+HaO(~)

and found it to be -29.8:1:O.b5 kca1/mole.
From these data Stull (ST-918)
aetermined the heat of formation,
including an estimate of error.
J. Thomsen (TH-908) measured
the enthalpy changes of the
following reactions:
Page 14
REMARKS
ACCEPTED
VALUE (KCAL/MOLE)
Reaction 6»°R, 291~

FeC1a(c)=FeC1a(400 HaO) -17.9 kca1/mo1e

FeC1a(200 H 0)+HaS04(200 HaO)=
FeS04(200 ~aO)+2HC1(200 HaO)-3.6 kcal/mo1e

FeS04(aq)+2KOH(aq)=
Fe(OH)2(C)+KaS04(aq)
-6.34 kcal/mo1e
Stull, in his dis-
cussion of Fe(OH) ,
refers to Thomsenis data.
He points out that
Thomsen's results depend
on the assumption that in
his second reaction, 200
moles of water are present.
Stull rejects the data on
this basis.
Using the data of Fricke
and Rih1 and Thomsen,
Rossini (RO-907) calculated
6»°f' This value has been
redetermined by Wagman
(WA-901) .
We agree with Stull's
comments, and accept the
value he reports based on
Fricke and Rih1's data.

-------
TABLE I (cont'd.)
COMPOUND
Co (OH)a
Cu(OH)a
VALUE (KCAL/MOLE)
-129.4
-129.0
-131.2
-105.9
-107.64%2.0
-107.5
-107.2
TABLE I (cont'd.)
COMPOUND VALUE (KCAL/MOLE)
REFERENCE
GE-903
WA-901, WA-912 (TH-908)
RO-907 (TH-908)
GE-902
ST-918
WA-901
RO-907
(MY -901)
(FR-914. TH-908,
SA-918, DE-914,
BO-914)
REFERENCE
N aOs(g) +20.0 RO-907 
+17.5%4.5 CO-913 (AB-902)
 +20.0 LA-908 
 +19.8 ST-906 (BE-9235 AB-902,
   VE-905
 +20.0 HI-906 
REMARKS
Gedansky, Bertrand, and
Hepler (GE-903) recently
determined the heat of forma
tion of Co (OH)a from calori-
metric measurements of the
heats of precipitation and
solution of the compound.
Wagman (WA-901) and
Rossini (RO-907) both base
their values on J. Thomsen's.
data (TH-908) published in
1882-86. Wagman's value
revises Rossini's, and agrees
well with Gedansky's data.

Gedansky's value was
accepted.
Gedansky et a1. (GE-902)
recently measured by calorimetry
the heat of solution of Cu(OH)a(c)
in perch10ric acid, and the heat
of precipitation for the reaction
CuS04 (di1.) + 2NaOH (di1.) =
Cu(OH):a(c) + NaaS04 (di1.)
The author seemed to have accounted
fully for all possible errors.

L. V. My (MY-901) determined the
heat of reaction for the decomposi-
tion

Cu(OH)a(C)=CuO(c)+ HaP (g).
REMARKS
Using reported heats of
formation for CuO(c) and
HaO(g), ~of for Cu(OH)a
was calculated.
Wagman's sources are not
known (WA-90l). In an earlier
NBS compilation, Rossini (RO-907)
cites several references, but
his value was not accepted
because it was revised by
Wagman's publication.
Gedansky's value was
accepted.
Coughlin's value (CO-9l3) was
derived from measured free energy
data and estimated heat capacity
and entropy data. This value was
the only one not in good agree7
ment with the other four.
Hisatune's (HI-906) is calcu-
lated from spectroscopic and
structural data.
Stull (ST-906) recalculated
~R to be 9.7 kca1/mo1e for the

reaction.
NaOs ? NO + NOa

from all the cited equilibrium
measurements.
Stull's value was accepted.
Page 1~

ACCEPTED
VALUE (KCAL/MOLE)

-129.4
-105.9
Page 16
ACCEPTED
VALUE (KCAL/MOLE)
+19.8

-------
COMPOUND
Be3Na
LiOH . HaO
VALUE (E.U .)
8.157
8.17
12
12
17 .07
17.07%0.05
22.
TABLE II (cont' d.)
COMPOUND
Ca(OH)a
Mn(OH).
Co(OH)a
VALUE (E.U.)
19.9%0.0
19.93
19.93%0.1
18.2
23.7
21.1
21.1
22.3
19.
TABLE II
CONFLICTING VALUES FOR THE ABSOLUTE
ENTROPY OF INORGANIC COMPOUNDS
REFERENCE
ST-918 (JU-901)
JU-901
ST-906
KE-911
LA-908 (M-928~
KE-912 (M-928,'
RO-907
REFERENCE
KU-903
LA-908
KE-912
RO-907
(HA-936)
WA-901 WA-912
(FO-9(h, NA-936)
RO-907
LA-908 (RO-907)
GE-903
WA-901 (SI-901)
REMARKS
ACCEPTED VALUE (E.U.)
8.157
The early JANAF
value (ST-906) and
Kelley's value (KE-911)
are not acceptable because
they are estimated.

B. H. Justice (JU-901)
measured the heat capacity
of ~-Be3Na from 25-310oK
by adiabatic calorimetry.
Stull (ST-918) calculated
the absolute entropy by
integrating the data based
on Sa5 = 0.002 e.u.
The more recen t JANAF
value was adopted.
Rossini (RO-907) did not
cite a reference for his
reported entropy value.
Therefore the original source
could not be checked.
17.07
Lando1t-Boernstein (LA-908)
and K. K. Kelley (KE-912) cited
Bauer,Johnston, and Kerr's heat
capacity data (BA-928), which
yielded

S298.15 - S16.00 = 17.04

and S16.00 = 0.03 (by extrapolation).
The sum is 17.07%0.05 (KE-912).
Page 2
REMARKS
ACCEPTED VALUE (E.U.)
The value agreed
upon by three of the four
compilations was se1ect~d.
This value was calculated
from heat capacity data
measured by Hatton and
coworkers (HA-936).
19.9
Lando 1 t-Boerns tein
(LA-908) references NBS
Circular 500 (RO-907).
An attempt was made to
check the source, but no
reference was given in
the latter publication.
Therefore Wagman's value
(WA-901) was chosen. It
was calculated from free
energy data obtained from
the solubility measure-
ments of Fox et a1. (FO-903)
and R. Nasanen (NA-936).
23.7
Wagman (WA-901) used the
free energy data of Si11en
(SI-901) to calculate the
absolute entropy of Co(OH)a(c).

Gedansky et a1. (GE-903)
derived their value from
reported heats of formation
of Co(OH)a, Co+~ and free
22.3

-------
TABLE II (cont'd.)
COMPOUND
VALUE (E.U .)
Cd(OH)a
23.
22.8
22.8
21.5%0.5
REFERENCE
WA-9l8
LA-908
RQ-907
KE-9l2
(RO-907)
Page 3
REMARKS
ACCEPTED VALUE (E.U.)
energy data. Since
Gedansky's value for
6Hf for Co (OH)a was
adopted, his entropy
value was selected in
order to keep the data
base as internally
consistent as possible.
Landolt-Boernstein (LA-908)
cites Rossini's value (RO-907)
but Rossini does not give a
reference.
Kelley's value was elimi-
nated because it was estimated.
It is not known what source
Wagman (WA-9l8) used, because
the bibliography for his compila-
tion has not yet been published.

Wagman's value was selected.
23.

-------
        ------ ----
DATE 6 OCT. 1971    t'AGE: 1 
     TABLE OF CONTENTS   
     CHEMICAL COMPOUND DATA FILE   
IIG   AL2ITI03).3 2 BA3N2 BI211/20&)3  
AGN02  IIL21V206)3 t3E BI2IWO~)j  
AGN03  AL.2IWOII)3 BEAL2011 2 BOIGAS)  
AGI/03  liS  BECOj ASIGA51  
AG2AL2011  AS203 t3ECROIl 8203  
AG2C03  ? 115205 t3ECR2011 A2S3  
AG2CROII  AS2S3 REFE201+ C  
AG2CR2011  2 AS2S5 BEMOOII CA  
AG2FE2011  2 AS21C0313 BEO CAAL20~  
/lG2MOOIl  2 A$21S0313 BES 2 CAALII07  
AG20  2 AS21S01113 BES03 CAC03  
AG2S  B  I:!ESOII CIICROII  
AG2503  BA  BETI03 CACR2011  
AG25011  BAAL2011 8EV206 CAFE2011  
AG2TI 03  8AC03 I:!EWOII 2 CAM003  
A62WOII  BACROII SEIN02):? CAMOOII  
AL   BACR2011 BE(N03)2 CAO  
ALN  BAFE2011 BEIOHI2 CAS  
 2 All N02) 3  2 BAM003 BE3N2 CAS03  
ALlNOj)j  BAMOOII BI CASO~  
ALIN03)3.&tl20 8AO 2 BIIN0213 CATI03  
 :? All N03) 3. 9H20 BAS I:!IIN0313 CAV206  
 ? All Ottl3  BAS03 2 BIIOll13 C/lwOIl  
AL.203  BASOI! 81205 CAIN02)2  
 2 AL2S  BATI03 012S5 CIIIN0312  
AL253  BIIV206 0121AL201113 2 CAIN0312.2H20  
AL2TI 05  BA~IOI! I:!I21C0313 2 C/lINO.j12..jH20  
IIL21C0313 HfdN0212 fJI21CROl!13 2 CAIN03)c.'+H20  
AL21CROll13 2 BAIN02)2.H20 t312ICR20,+)3 CAIOH)2  
AL2(CR2011)3 BA(N03)2 BI2(FE2011)3 CA2FE2Q5  
AL21F(2011)3 2 BAIOHI2 tH 2 I MOOII ).3 CA3:IJ2  
AL2IMOOII)3 ::> BAIOH)2.H20 BI21S031.3 CO  
A1.2(50313 2 8AIOH)2.8H20 812(501115 CDAL2011  
AL2(501113 2 BA2TIOII BI21TI0313 CDC03  
    1 INDICATES ADDITION OR REVISION   
    2 INDICATES INCOMt'LETE OATil   
DATE 6 OCT. 1';171     PAGE: :?
     TAOLE OF CONTENTS  
     CHEMICAL. COMPOUND OATA FILE  
CDCRO~  2 CUS4 2 CRIN03)3 CUCR20~ 
CDCR2011  CO   2 CRIN03)6 CUFE02 
CDFE204  COAL2011 2 CRIOHI3 CUFE204 
COM004  COC03 2 CR2N CU,"1004 
COO  COCROI! CR203 CUN02 
CDS  COCR204 2 CR207 CUN03 
CDSQ3  COFE2011 2 CR2S3 CUD 
COS04  COMOOII 2 CR2IC03)3 CUO*CUSO'+ 
CDTI03  2 CO~POUNO 2 CR21S0313 CUS 
COV206  COO 2 CR21S01113 CUS03 
COw04  CDS CS CUS04 
COIN0212  CuS03 2 CSN02 CUTI03 
COIN03)2  COSo'! CSN03 CUI/03 
 2 COIN0312.2tt20 COTI03 2 CSN03.4H20 CUI/206 
 2 COIN0312.IIH20 COV206 2 CSOH CUWOII 
 2 COIOHI2  COW04 2 CSOH.H20 CUIN02)2 
 2 C03N2  COIN0212 CS2AL.2011 CUIN03)2 
CE   CO (tJn3) 2 2 CS2C03 2 CUINO~12.3H20 
 2 CEN  " COIN0312.2H20 CS2Ct\04 2 CUIN03)2.6H20 
CE02  2 COINO~12.3H20 CS2CH04 CUIOH)2 
 2 C£S  2 COIN031
-------
-- -".---- -         
DATE 6 OCT. 1971     PAGE.: .3
     TABLE OF CONTENTS  
     CHE~ICAL COMPOUNO DATA FILE  
  FEAL201f  F£2IWOIfI.3  IR LA2S3 
  FEC03  F[304  IR02 2 LA2IC0.3)~ 
  FECR04  FE4N  IRS2 2 LA.2IS03)~ 
  FECR201f  611 2 IRS3 LA21S04P 
  FEM004  2 GAN 2 IRISOIfI2 LI 
  FEO  ? GAS 2 IR2S3 LIAL02 
  FES  2 GAIN0213  K LIFE02 
  FES03  2 GAIN0313  KAL02 LIN02 
  FESOIf  2 GI\IOHI3  KFE02 LIN0.3 
  FES2  GI\;'03  KN02 2 LIN0.3..3H20 
  FETI03  GA2S.3  KNO.3 LIOH 
  FEV206  2 Gi\2IC03)3  KOH LIOH.H20 
  FEW04  2 GA2(S0313 2 KOH.H20 LIVO~ 
  FEIN0212  2 GA21$01f13 2 KOH.O.7SH20 LI2C03 
 2 FEnJC213  GE  2 KOH.2H20 LI 2CROif 
 FEIN0312  2 GEOIGASI  KV03 LI2CR201f 
 2 FEIN0312.6H20 GE02  K2C03 LI 2M004 
 FEIN0313  GES  K2CROif LI20 
 2 FEIN03)3.9H20 2 GES2  K2CR201f LI2S 
 2 FEIOHI2  <' GEIC0312  K2MOOif LI2S03 
 FECOHI3  ? GlC S03) 2  K20 LI2S01f 
 FE2N  2 GEISOlf12  K2S LI2TI03 
 FE203  2 GE3N4  K2S03 LI2W04 
 2 FE2TI04  HF-   K2S04 LI3N 
 2 FE:2TI05  2 dFN  K2TI03 ~G 
 FE21AL201f13 HF02  K2WOlf MGAL201f 
 FE21C0313 2 HFS2  LA ~GC03 
 FE21CRC413 2 HFIC0312 2 LAN MGCROIf 
 FE21CR201f13 2 HFIN0214 2 LAS MGCR201f 
 FE21MOOlf13 2 HFIt,0314 2 LAS2 MGFE201f 
 FE21S0313 2 HFISMI2 2 LAIN0213 plGMOOIf 
 FE21S01f13 2 HFIS0412  LAIN03)3 MGO 
 F~2ITI03)3 tt2  2 LAIN03)3.6H20 MGS 
 FE21V206)3 H;':OIGASI  LI\203 MGS03 
    1 INDICATES ADDITION OR REVISION  
    2 INDICATES INCOMPLETE OATA  
DATE 6 OCT. 1 '371     PAGE: 4
     TABLE OF CONTENTS  
     CHEMICAL COMPOUNO DATA FILE  
MGSOIf  2 MNIN0312.6H20 NAAL02 2 NB21S031S 
MGTI03  MNIN0313 NACL 2 NB21S01f1:J 
MGTI205  2 MNIN0311f NAFE02 NI 
MGV206  2 MNIOHI2 NAN02 NIAL204 
MGW04  2 MNIOH)3 I\iAN03 NIC03 
1% 1 N02) 2  2 Mf\iISCIf12 NAOH NICROIf 
MGIN0312  MN203 2 NAOH.H20 NICR201f 
 2 MGIN0312.2H20 MN21 AL.204) 3 2 NAOH.2H20 NIFE201f 
 2 MGIN0312.6H20 M~121C03103 2 NAOH.3H20 NIMOOIf 
MGIOHI2  MN2ICR04)3 2 NAOH.3.5H20 NIO 
 2 MG2TIOif  MN21CR201f13 2 NAOH.IfH20 NIS 
MG3N2  MN2(FE201f13 2 NAOH.5H20 NIS03 
MN   MN21MOOlf13 2 NAOH.7H20 NISOIf 
MNAL201f  MN21S03)o3 NAV03 NITI003 
MNC03  MN21S0lf)3 NA2C03 NIV206 
MNCROIf  MN21TI0313 r~A2CROIf NIwO" 
I',NCR201f  MN21V20613 NA2CR201f NIIN02)2 
IVlNFE201f  MN21W0413 NA2M004 NIIN0312 
MNM004  2 MN3N2 NA2M0207 2 NIIN0312.~H20 
MNO  MN30Q NA20 2 NIIN0312.6H20 
I~N02  MNIfN NA2S 2 NIIOHI2 
MNS  2 MNSN2 NA2S03 2 NIICH)3 
 MNS03  2 MN8N2 NA2S04 2 NI3N 
 MNS04  MO   NA2TI03 NI3S2 
 MNS2  2 1'1002 2 NA2TI20S NOIGI 
 f~NTI03  1'1003 2 NA2TI307 N021GI 
 MNV206  M052 NA2WOlf N2031GI 
 MNWOQ  ~'OS3 NA2W207 N201f1G) 
 MNIN0212  2 MCIC03)3 "'B N205 
 2 MNIN0213  2 MOIS0313 2 NBO N2051GI 
 2 MNIN0211f  2 1'10(504)3 2 NB02 N21GASI 
 MNIN03)2  M02N M!20S 02 
 2 MNINOjI2.jH20 2 M02S3 2 NB2S5 PB 
 2 i'1NIN0312.IfH20 NA   2 NB21C031S PBAL204 
    1 INDICATES ADDITION DR R~VISION  
    2 INDICATES INCOMPLETE DATA  

-------
DAT~ 6 OCT. 1971    PAGE: 5
     TABLE or CONTENTS  
     CHEMICAL COMPOUND DATA FILE  
PBC03  2 RBOH. 2ti20 SB201+ SNS2 
 2 PBC03*PBO RB2C03 2 SB205 SNIAL201+12 
 2 PI3C03*2PBO 2 Ro2D SH2S3 SNIC0312 
PBCROI+  2 RB2S SB21AL201+13 SNICROI+I
    TABLE OF CONTENTS  
    CHEMICAL COMPOUND DATA FILE  
SRWD4  TI UITI0312 2 Y21C0313 
SRIN0212  2 TIC03 UIV20612 2 Y21S0313 
5RIN0312  TIN UIWOl+12 2 Y21S01+)3 
 2 SRIN03)2.I+H20 TIO 2 U2S3 ZN 
 2 SRIOHI2  TI02 U30B ZNAL201+ 
 2 SRIOHI2.H20 2 TIS03 V ZNC03 
 2 SRIOH)2.8H20 2 TISOI+ 2 VC03 ZNCROI+ 
 2 SR2TIOl+  TIS2 2 IIN ZNCR204 
 2 SR3N2  2 TI 1 N0212 VO ZNFE201+ 
SIGASI  2 TI 1 N02 1 3 VOSOI+ ZNM004 
TA   2 TIIN02)4 VS ZNO 
TAN  2 TIIN0312 2 VS03 ZNO'.2ZNS04 
 2 TA2N  2 TI IN0313 2 IIS04 ZNS 
TA20S  2 TIIN0314 V203 ZNS03 
 2 TA2S5  2 TI 1501+12 V204 ZN50" 
 2 TA21C03)5 TI203 V205 ZNTI03 
 2 TA21S03)5 2 TI21C03)3 2 V2S3 ZNV206 
 2 TA2 1 SOI+) 5 2 TI 21 S031 3 2 V254 ZNW04 
TH   2 TI21S01+13 2 V2S5 ZNIN0212 
TH02  TI 305 2 V21C03)3 ZNIN0312 
 2 THS  U 2 V21S0313 2 ZNIN03)2.H20 
THS2  U02 2 V21S0413 2 ZNIN0312.2H20 
THIAL20"12 U02S01+ III 2 ZNIN0312.4H20 
THIC03)2  U03 W02 2 ZNIN0312.6H20 
THICR0412 2 US W03 2 ZNIOHI2 
THICR20412 US2 WS2 ZN2TI04 
TH (FE201+ 1,2 UIAL20412 2 WIC0312 2 ZN3N2 
THIMOOl+12 UIC0312 2 WIC0313 ZR 
THIS03)2  UICR04)2 2 WIS0312 ZRN 
THIS0412  UICR20412 2 WIS03)3 ZR02 
THITI0312 UIFE20412 2 IIIIS0412 2 ZRS2 
THIV206)2 UIMOOl+12 2 IIIIS0413 ZRIAL20412 
 THIW0412  UIS03)2 Y ZRIC0312 
 TH2S3  UISOl+12 Y203 ZRICRO..)2 
    1 INDICATES ADDITION OR REVISION  
    2 INDICATES INCOMPLETE DATA  

-------
DATe;
6
OCT.
1971
lRICR20'+)~
lRIFE20,+)2
lRI10100'+)2
2 ZRIN02)2
2 ZRCN02),+
2 ZRIN03)2
2 ZRIN03)2.6H20
lRIN03),+
2 lRIOH)'+
2 ZRIOH),+.H20
2 ZRCOH)'+.2H20
ZRIS03)2
ZRISC,+)2
ZRITI03)2
ZRIV206)2
ZRIWO'+)2
2 ZR3N2
PAGE:
TAHLE OF CONTENTS
CHEMICAL COMPOUND DATA FILl
1 INDICATES ADnITION OR REVISION
2 INDICATES INCOMPLETE DATA
7

-------
DATE
6
COMPCUND
IIG
AGN02
AGNO:~
AGV03
AG211L204
AG2C03
I\G2Cn04
AG2CR204
AG2r(204
AG2~1004
AG20
AG2S
AG2S03
I\G2S04
AG2T103
AG2W04
AL
ALN
All N02 I 3
IILlNQ313
ALIN03)3.6H20
ALHJ03)3.9H20
ALlOHliS
AL203
AL2S
IIL2S3
DIITE
(,
COMPOUND
AL2TI05
AL21C03)3
AL2ICROIf)3
AL21CR204)3
AL21FE2011)3
AL2 1 :\10011):3
AL21S03)3
IIL21S0413
AL21TI03)3
AL2IV?06)3
AL21WOIIJ3
AS
AS203

~v205
AS2S3
AS2S5
IIS21C03)3
I\S21S03)3
I\S21S01113
B
BA
81111L204
811C03
BACR04
AACR2011
BArE201f
BAM003
OAMOOIf
OC T.
19"11
HEAT OF
FORMATION
25 DEG.C
KCAL/GMOLf.
.00
-10.77
-29.73
-199.53
-413.&4
-120.88
-172.37
-3011.20
-205.53
-216.60
-7.30
-7.75
-114.40
-170.3&
-239.37
-230.70
.00
-76.00
-190.82
-239.38
"681.30
-697.96
-301f.20
-1100.16
-29.38
-172.8~
OCT.
1971
HEAT OF FORMATION. ENTROPY. AND TRANSITION DATA ICONTINUED)
HEAT OF
FORMATION
25 DEG.C
KCALIGMOLE
-622.9&
-707.03
-849.81
-1236.00
-975.13
-979.92
-661.91
-820.38
-10711.60
-1532.00
-1023.70
.00
-156.91
...21'3.31
-30.00
-35.00
-56&.67
-287.16
-~3&.,H
-51&.32
-350.49
-3U8.7U
-377.04
TABLE V
THER~ODYNAMIC PROPERTIlS OF INORGANIC COMPOUNDS
t
-------
rJATE
6
CC1r>'POIJND
RAO
I3AS
P,ASO~
BAS04
BATI03
BAV:?06
BA~j(14
BIII~I02)2
BAIUC2);:'.1I20
I3AIN(3)<'
RI\(OH)2
[\AICII)2.H20
BII(Orl)2./11120
8A2TI04
8113~12
HE
SCAL204
('[C03
r)ECRO'~
BECR201/
8(FE204
B01004
BrO
BES
13f.503
R(SOI/
rETI03
B[V?'06
F.;E\~04
RE(N02);>
OC T.
1971
IIEIIT OF FOKMIITH1N. ENTROPY, AND TRANSITION OAT A ICO~JTIr~LJ[D)
REFERLNCES
TRANSITIUN O/llA
HfAT TYPL KLFLKlNCFS
KCAl.1
GMOLE
HEAT OF
FORMATION
2<; DEG.C
KCALIGMULE.
-132.07
-lU6.00
-2A2.60
-.54~.9'"
-394.60
-567..5/1
-4Ub.Ou
-).83.60
-2~4.5()
-237.11
-226.10
-299.00
-799.50
-86.90
.00
-542.99
-246.89
-C'94.44
..424.43
-335.85
-5.37.96
-143.03
-~5.90
-232.20
-2/15.65
-368.42
-521.71
-.552.,+5
-136.65
KEF ERENCE S
LA-001.CII-OO,?
CA-019.TK-010
Nt3-UU:"
LII-Glll
CA-063.TR-002
TK-002
cr,-025
ST-926,RII-001
f{O-~07
81-':126
LA-90£l
RU-90"
RO-907
KU-903.RII-001
TR-002.CII-065
TR-002
TK-lJ02
TR-002
TK-002
TR-002
LA-OOI
Ku-001.NB-003
TR-002
NO-00:5
Tt<-(j(12
TR-002
TR-(jC,~
RA-OOc'
A13S0LUTE
ElnROPY
C Al/G!\iIQLf /
OEG. ~
16.79
20.90
28.6U
31..49
25.78
45.7(1
3;:>. CJO
43.70
51.10
47.00
36.30
2.2.'
19.18
15.0':1
?A.7';:;
23.82
25.97
:?4.57
3. ,!,7
8.40
1':1.20
18.62
17.21
36.38
23.50
34.~0
PIIGe:
3
TEMP.
l1EG.C
LIl-OOl
1923.00
;>700.00
15.78
S-L
L-(:i
LA-UU1
LA-001.TK-OIO
TR-lJ03
LII-C'(;l
1150.00
1350.00
9.70
S-s
S-L
LA-001.CA-002
LA-DOl
TR-003
(A-025
HA-OOI/
275.00
S-L
8T-926
ST-926,KE-912
595.00
2'16.00
4U8.00
3.72
S-L
S-S
S-L
6.00
LA-908.RO-907
MI-':I07
KU-001
LA-908
LA-001
TR-uo3
TR-003
11<-003
TR-003
TR-003
TR-OD3
L/I..OOl
1283.00
2.99
S-L
LA-001
2550.00
4120.00
16.99
S-L
L-G
LA-UOl
KU-001.lA-00l
TR..003
CII-005
l'R-003
TR-003
lR-ClJ3
RII-OG4
3.30 \ S-S
880.00
CA-005
  DATE 6 OCT. 1971 HEAT OF FnRMATION. ENTROPY. AND TRANS I TJ O~I nllTA (CONTINUED)  PAGE: 4
  COMPOllrHl  HEAT OF R.UEi(13   -J38.:lI) Lt.-Onl.NS-OOI 36.12 LA-ODl.NI3-001 704.00  S-S LA-OUl 
               817.00 6.81 S-L  
 I3I2S3    -43.80 NB-003.wI-00l 35.30 NS..003      
 8I2IAL2(14)3  -1549.30 TR-002 78.2v KE-OOl      
 ~r2Ic(3)3   -476.57 TR-002 55.20 TR-003      
 PJ2(CfH:4)3  -618.62 TI~-u02 1UF;.4C f:E-C'Ol      
 812(02011)3  -1024.00 TR-002 96.20 K£-OOl      
 BI2IF[2DII)3  -727.92 TK-002 106.40 K£~OOl      
 JI2IMO(4)3  -749.':16 TH-QD2 79.80 TR-C07      
 1312(503)3   -1137.28 TK-002 64.20 TR-003      
 GI2Isr,4)3   -608.1u r,]-001.wI-!101 72.30 TR-[JG3      
 RI2(TIU3)3  -826.0e TH-002 70.40 KE-001      
 RPIV206)3  -1300.00 TR-002 1f~3.00 KE-001      
 QI2IW04):,\   -794.59 TR-002 77.40 TK-007      
 80( GtI.5)    -5.30 LA-001 '16.59 LA-OOl      
 RSIGAS)    -£10.00 JA-001 ';:;1.6~ JII-OJI      
 8203   -306.10 KU-OOl.TR-OlO 12.86 ~A-OOl 450.00 5.49 S-L LA-OOl 
 R2S3    -57.00 LA-001.NI3..003 14.61 TR-OU3 310.00  ::i-L LA-001.KU-001
 C      .00 Jr,-OOl 1.36 JA-001      
 CA      .UU    9.9'1 LA-001 440.00 .24 s~s LA-OOl 
               850.00 2.07 S-L  
 CIIALC'C,Ij   -';:;55.50 KU-01l1 27..50 KU-001      
 C!\AI..4r:7         42.5u KU-001      
 C/lC03   -288.11 LI\-OU1 22.19 LA-OOl      
 C ,'r'\04   -329.44 L~-OOl 32.01 Lt.-DOl      
 CIICR2011   -492.40 CA-038 28.82 TK-003      
 CAFF?C4   -.~b7.;:5 CA-042.TR-010 34.70 KU-I)Ol.LA-001 1240.00 25.85 S-L KU-OOl 
I                  
I                    

-------
OIlTE
6
COMPOUND
("M'003
CAM004
CI10
CIIS
CAS03
C.'S04
CATI03
CAV?06
CAW04
("II (:~0212
CI\IN0312
CAlr-J0312..2H20
CIIIN0312.3H20
CAIN0312.4H20
CilfOHI2
ClI2FE205
03"12
CD
CDAL204
C D.C 0.3
COCR04
CDCR204
COFE204
CDM004
COO
CDS
COS03
Cl1Si')4
DATE
(,
COMPOUND
CDTI03
COV20(,
CD\~04
CD(~I0212
COINa312
CDlrJ0312.2H20
COINa312.4H20
C!)IOHI2
C0.3N2
CE
CEN
CE02
CES
('E52
CEIC0312
CE (t'J0213
CEINO;ol4
CElrJ0313
CE 1 r,J0314
CEIS0312
CE(S0412
CE203
CE2S3
CE21C0313
CE21S0313
CE21S0413
CE3S11
GO
COIIL:>,04
COC03
OC T.
1971
ilEA T OF FOKMA TI ON. ENTROPY. AND TRIINSI TI Or! DATA 1 CONT H!UEO)
HEAT OF
FORMATION
2:5 DE.G.e
KC"ALlG,"QL.E
-277.80
-3(,9.21
-151.73
-114.20
-275.88
-340.19
-370.00
-558.70
-402.50
-177.20
-224.28
-367.80
-436.90
-509.10
-237.~G
-501.28
-104.30
.00
-466.54
-178.46
-224.10
-361.66
-2511.73
-267.85
-61.18
-34.47
-163.90
-221.20
OCT.
1971
HEAT OF FORMATION. ENTROPY. AND TRANSITION OIlTA ICONTINUEO)
HEAT OF
FORMATION
25 DEG.C
KCAL/GMOLE
-292.23
-451.32
-283.05
-70.71
-10':/.06
-252.30
-394.11
-134.,)0
38.60
.00
-11.90
-233.00
-118.00
-153.90
-468.01
-245.13
-255.8f.\
-306.68
-332.66
.443.14
-560.00
-434.90
..298.70
-953.00
-421.50
.00
-466.50
-173.30
HI::.F-F:Hf.,'JCCS
CII-020
CA-077.TR-OI0
L/I-00l.rJB-003
LA-OOI. TR-OlO
MA-OOI
LA-OOI
CA-055
CII-05U
CA-071.TR-OI0
Sl~92&.HA~001
S1-926
LII-908
LA-906
LA-906
KU-905.RA-001
KU-OOl
LA-908
TR.-UU2
LA-OOl
TH-002
TH-002
TR-002
TR-002
LA-OOl
LA-001.NB-003
CA.-OOI
LA.-OOl
K[FF:HENCES
TR.-002
TK-002
TR-002.I'II-001
RA-002
SI-':/26.WII-'918
WI\-':H8
WA-918
"A-':/18
KU~903.RO-907
LA-908
LA-001.NB-003
KU-001
Nd-uu3
B-002
KA-002
RA~002
RA-002
RA-002
TR.002
Nlh003.WI~001
KU-001.CA-018
Nd-003.KU-001
MII-001
KU-OOl
CA-055
K£-002
flBSOLUTr
ENTROPY
CAL/G~OLf.1
DEG. r<
2~.70
29.30
9.48
13.50
24.20
25.49
22.40
42.8U
30.20
39.30
46.20
64.30
14.10
81.00
19.93
45.10
25.10
12.37
21.18
25.16
37.35
32.42
34.5'7
33.17
13.09
16.9E:>
27.80
29.41
ABS0l.UTr
ENTROPY
CAL/GMOLEI
OEG. K
25.80
4~.98
32.16
42.90
48.20
23.00
16.63
14.89
18.80
18.82
58.80
69.80
31.80
36.00
32.41
51.60
60.60
68.10
7.18
25.48
21.99
KEFERE.NCES
CA-02l
KU-OUl.CA-017
NB..003.LA-001
KU-00l.NB-003
LA-OOl
LA-OOl
KU-001.TR-OlO
CA-052
KU-OOl.TR-OlU
RA-004
LA~9U8.ST-926
LA-908
I..A..908
LA-908.RO-907
LA..90a.KA-001
KU-OOl
LA-90B
LA-OOI
TR-003
LA-Oul
TR-003
TR-003
TR-003
TR-003
LA-DOl
LA-OOl.NO-003
TR-003
LA-OOI
REFERENCES
TR-003
TR-003
TR-003
KA-004
RA..OO.3
..A-918.RA-001
LA-001
CA-066
TR-003
TR-OU3
RA-004
RA-004
TR-003
CA-01~.TR-OIO
TR-003
TR-003
TR-003
TI'\-003
LA-OOI
TR-003
TR-003
TEMP.
OEG.c
2603.00
3570.00
1193.00
1391.00
1260.00
266.00
360.0D
392.00
561.00
51.10
39.10
1195.00
321.00
792.00
859.00
10UO.OO
TEMP.
DEG.C
360.00
59.50
393.00
4..0.00
771.00
1890.00
2050.00
4~~.00
1127.00
1490.00
PAGE:
5
TRII~JSITIUN OIlTA
HEAT TYPE RE.FEHENCES
KCAlI
G,"'OLE
12.23
1.49
2.39
6.69
.55
5.09
1.53
~-L
I..-G
LA-DOl
~-S
~-L
s-s
LA-001,CA-002
KU-001,LA-001
~-S
~-S
S-L
~-L
ST-926
LA-908
S-L
~-L
LA-908.RO-907
LA-908.RO-90'7
S-L
S-L
LA-908.KU-903.
LA-OOI
s-s
~-S
S-L
LA-00l.CA-002
PAGE:
6
TRANSITION DATA
HEAT TYPE H~FERENCES
KCAlI
GMOLE
4.35
7.80
3.U8
.00
.13
3.66
S-I.
~-L
s-s
::i-S
S-I.
S-L
ST-926
S-L
RO-907
S-s
s-s
::i-L
LA-OOl
KU-OOl
KU-OOl
LA-OOl

-------
OCT.
1971
HEAT OF FORMATION. ENTROPY. AND TRANSITION nATA ICO~TINUEDI
DI\TE
6
CQII,Pour'JD
flEIlT OF
FOH"'1A TI 01';
25 OEG.C
KCALlG~1OLl
CClCP(14
COCR20'~
CO.£204
COI"OO'.
CO'1PIJUND
cno
cns
COSQ3
COS04
CGT103
COV206
CN,OIl
COIN02)?
C~)( ~:0312
C()(~)0312.2t120
C(: I f!03 I 2. 3H20
CC I "~3) 2. 4H2~1
CO (r,fn3 J 2. 6H?O
-221.4'.:1
-350.60
-255.26
-265.21
.00
,,57.07
-21.01
-161.15
-211.90
-2B'J.50
-448.11
-280.&1
-63.40
-100.50
-244.o:!G
-316.90
-389.10
-528.4')
CO(OH)2
COIOH)3
~o?
C02S3
C03ri
C0304
C031':4
C~
-129.40
-111.30
..94.01
-51.00
2.00
-216.20
-15.\Je
.00
ClUJ
CR03
CR Pi02) 3
CR(1-jn2J~
CR (~j03 I 3
-29.80
-142.03
KEFEKENCLS
ABSOLUTE
UJTROPY
CIIL/Gt-IQLF/
DEG. K
Kt:.F ERLNCEI':
TR-003
CA-034
KlJ-001. TR-00,1
TR-003
LA-DOl
TH-OU3
TR-003
LA-OOl
CA-O,B
TR-003
TH-Ol',~
RA-004
i/ DATA
HEAT TYPE REFERENCES
KCALI
GMOLE
:s-~
CA-056
TR-U02
C/I-064
TK-002
TR-OU2
35.0~
21.00
62.20
30.87
9.60
1.10
.10
.35
3.49
:S-L
::'-L
LA-DOl
LA-GUI
LII-OOI
~0-OO'+.TR.01(1
TR-U02
AU-OOl. TR-01f1
CII-063.CII-055
TR-002
TR-Ou~
RA-Oll2
tJll-9111.RII-OOl
1'11\-';/01
WA-'JOI
1'111-901
WIl-901
12.65
15.82
25.5U
21.07'
23.8U
42.68
~9. .9(0;
40.60
~5.90
:s-s
CA-002
GE'-906.RA-00l
WA-901
L/I,-OOl
N(3-003
KU-903
LIl-OUl
KLJ-001
22.30
51.03
26.40
2'+.61
:S-L
fW-901
5.68
\-IA-901.KE-'Hl
L/I-001
7.85
11.2U
:s-s
:s-S
:S-L
HO-907.1'0-912
55.20
:s-s
S-L
LA-OUl
S-L
OIlTE 6 OC T. 1911 HEAT OF FORMATION. ENTROPY. AND TRANSITIOn DATil (CONTINUEO)  PAGE: 8
cord'Our'JD  HEAT OF R[FERENCES ABSOLUTE REFERENCEs   TRANSITIUN DATA 
   FORMATION    ENTROPY   TEMP. HEAT TYPE Hl.FERENCES
   25 DEG.C CAL/G"VIOLf /   OEG.C KCALI   
   KCIIL/GMOLE    DEG. K     GMOLE   
CR(N03)6                  
CR(OHI3   -254.30 1'111-901          
CR2N    -60.50 WA-901.RA-OUl          
CR203   -212.58 LA-DOl 19.31 LII-OOI 32.80  s-s LA-OUl 
             2440.UO  S-L  
CR207   -3'+4.91 L/I-QOl 70.4/\ LA-OU1      
CR2S3         25.21 TR-003      
CR2(C03)3         'f".4V rR-OQ3      
CR2(S0313         53.40 TR-003      
CR?!SO't),~         61.50 TR-Ou,3      
CS    .00    20.14 LA-OOI 2B.64 .52 S-L LA-OUI 
C~N02    -88.69 RA-002 31.4'f RII-OC3 4U6.00  :O-L 5r-926 
CSNC3   -121.80 5T-926 35.08 kA-003 151.50 .89 s-s ~'U-912 
             ,+05.50 3.31 S-L  
CSN"3.4H20            42.70  :S-L HO-901 
CSOH    -91.15 LA-908     223.00 1.16 s-s LA-90/!.RO-901
             212030 1.61 S-L  
CSOH.H20   -186.90 RO-901          
csnL2011   -539.18 TR-002 45.80 TK-OU3      
CS2C03   -212.51 TK-002 43.23 Tf:\~003 792.00  S-L HE-OOl 
CS2CR04   -318.00 'TR-002 58.40 KE-OOl      
CS2CR04   -551.92 TR-002 55.00 KE-OOl      
CS2FE204   -321016 TR-002 52.86 TK-003      
CS2M(1()4   -;354.01 TR-002          
CS20    -1b.OO L/I-001.CO-(l01 2'~. 90 TR-Oli3. CO-0(11 4'::10.0U 4.58 S-L CO-OU1 
CS2S    -B1.1CJ N~-003.KU-OOI 65.14 TR-Ou3      
C52503   -266.60 CA-08D 46.20 T,{-003      
CS2S04   -339.00 LA-OO] 50.89 TR-003 66'0.00  ::.-$ LA~001.CII-002
             122.00 .~O :s-s  
             1UU'+.GU 9.::.t\ :>-L  
CS2TI03   -368.44 TR-002 31.10 TR-OC3      
CS2V206   -~)54.30 TR~l)O<, 10.20 KE-OUl      
CS2WO,+   -391.00 TR-UU2          
CS2(GI    27.55 LA-vOl 56.81 LII-OO]      

-------
DATE
&
COMPOUND
CU
CUIIL204
CUC03
CUCR04
CUCR204
CUFF.:02
CUFE204
CUM004
CUN02
CUN03
Cuo
CUO*CUS04
CUS
CUS03
CUS04
CUTJ03
CUV03
CUV206
CUW04
CUIN0212
CUINC312
CUIN0312.3H20
CUIN0312.&H20
CUIOHI2
CU2AL204
CU'2C03
CU2CR04
CU2CR204
CU2M004
CU20
CU2S
CU2S03
DATE
6
COMPOUND
CU2S04
CU2TI03
CU2W04
CU3N
CIOI
FE
FEIIL204
FEC03
FECR04
FECR204
FE~004
FEO
FES
FES03
FES04
FES2
FETI 03
FEV206
FEW04
FE nJ02 1,2
FEIN0213
FEIN0312
FElf'0312.6H20
FEIN0313
FE n:03) 3. 9H20
FEIOHI2
FEIOHI3
FE2N
OCT.
1~1l
HEAT OF FORMATION. ENTROPY. AND TRANSITION DIITA ICONTINUED)
HEAT OF
FORMATION
25 DEG.C
KCALIGMOLE
.00
-439.03
-142.10
-189.80
-321.74
-115.90
-2::S7.~1
-233.21
-1&.84
-32.84
-37.25
-222.35
-11.50
-127.28
-184.22
-264.49
-208.&8
-417.15
-247.76
-36.70
-72.40
-290.90
-504.50
-lU5.9U
-439.71
"142.29
-18~.~0
-319.04
-233.18
-40.78
-19.~3
-127.06
OCT.
1971
HEAT OF FORMATION. ENTROPY. AND TRIINSITION DATA ICONTINUED)
HEAT OF
FORMATION
25 DEG.C
KCAL/GMOLE
-179.51
-265.20
-247.85
17.80
-26.'+0
.OU
-474.40
-178.55
-225.6~
-3'+9.50
-26~.'+5
-63.7&
-22.80
-165.54
-220.41
-42.'+5
-295.1U
-452.87
-28'+.52
-70.36
-88.59
-107.23
-137.01
-785.2U
-137.20
-196.70
-.90
KEFEKENCES
TK-OU2
LA-001
TI<-002
TR-002
TK-U02
CA-U42
TR-002
RA_002
RA-U02
ST-~18
IN..001
LA-001.KU-00l
TR-U02
LA-OOl
TK-002
TR..002
TR-002
Tf~-002. WI-DOl
RA-002
WA-~01.ST-926
WA-901
WA-901
GE..~02.RA..001
TI<-002
TR-002
TI<-002
TI<..002
TR..U02
LA-UOl
LA-001.NB-C03
TR-002
REFERENCES
LA-UU1
TR-002
TR-002
WA-901.LA-9C8
LA-OOl
CA-U32.CA..054
LA-OOl
TR-002
CA-U&8.TR-OIO
TR-U02
LA-001
KU-001.LII-001
TR-U02
LA-001
LA-U01.KU..001
LA..OOl. TR-010
Tf/-002
TR-002
RA-UU2
RA-002
RA-U02
RA-002
WA-'::I01.RA-OOl
ST-918.RA-OOl
WA-901
LA-';08.KU-903
ABSOLUTf
ENTROPY
CAL/GMOLEI
DEG. K
7.9&
25.68
21.02
35.25
30.32
21.2U
32.47
31.07
26.64
32.21:1
10.19
38.03
15.90
<15.70
27.07
23.71
29.60
42.88
30.06
40.8U
46.10
20.70
40.20
37.63
47.00
4.3.6U
46.75
22.52
28.88
40.60
ABSOLUlr
ENTROPY
CAL/GMOLEI
OEG. K
38.46
36.1U
45.70
47.16
6.49
25.4U
22.19
3".85
34.90
30.9U
14.19
15.20
25.30
25.68
12.70
25.30
42.48
31.50
40.40
45.7U
55.40
25.50
2".2U
REFERENCES
LA-OOl
TR-003
LA-DOl
TR-003
TR-003
CA-062
TR-003
TR-003
RA-003
RA-OU3
LA-001
IN-DOl
LA-001.KU-001
TR-003
LA-DOl
TR..003
KE-OOl
TR-003
TR..003
RA-004
RA-003
6E-902
TR-003
TR-003
KE-001
KE..OOl
TR-007
LA-DOl
LA-001.N6-003
TR-003
R£FERlNCES
LA-DOl
TR..OU3
TR-007
LA-DOl
LA-OUl
KU-001
LA-001
TR-003
LA-001.KU-001
CA-064
LA-OOl
KU-001.LA-001
TR-003
LA-DOl
LA-OU1."". vu.L
LA-001.KU-00l
TR-003
CA-064
RA-OO"
RA-003
RA-004
WA-901
LA-908.KU-~03
TEMP.
DEG.C
1084.00
1197.00
255.00
24.40
1230.00
103.00
350.00
1127.00
TEMP.
DE6.C
760.00
9U6.00
14U1.00
1535.00
2180.00
-84.70
1377.00
138.00
325.00
1195.00
1370.00
&0.50
50.10
PAGE:
9
TRANSITION DATA
HEAT TYPE REFERENCES
KCALI
GMOLE
15.38
8.70
13.38
1.34
.20
5.49
3.11
S..L
LA-001
S"L
CA-062
S-L
ST-926
S-L
LA-90S
S-L
S-S
S-S
S..L
LA-001
LA-001.KU-001
PAGE:
10
TRANSITION DATA
HEAT TYPE KlFER£NCES
KCALI
GMOLE
.UO
.21
.11
3.70
7.48
.57
.12
7.73
21.70
S-S
s-s
s-s
-:S-L
LA-OOl
S..L
LA-001.KU-001
S-s
S-L
s..s,
s..s
S..L
LA-OOl
KU-001.LA-001
S-L
LA-001.KU-OU1
S-L
RO-907
S..L
LA..90B.RO-907

-------
DATE
(,
COio'.POU/'JD
FE203
IT2T J O~
FE2Tr05
FE2(I\L201f)3
FE2(C03):'\
FE2(CR04)3
FE2 (Ci'204) 3
FE2(MOQU)3
FE2(S03)3
FE2(S04)3
""F.2(TT03)3
FE2IV20f,)3
FE2 1 ~J(4) 3
FE304
F(4N
3A
GIIN
GIIS
GII (r'!02) 3
GIIHJ03)3
GAICH)3
611203
GA2S3
G1I21C03)3
GII21$03)3
Sll2 1 Sn'l) 3
GE
GEO(GAS)
6E02
GES
OCT,
1971
IIEAT OF FORMATION. ENTROPY. AND TRANSITION DATA (CONTINUED)
REFERltJCf.S
TRI\.'JSITIUtJ DATA
liE A T IT PE. t
TK-002
Tt<-U02
CI.-009
TK-G02
TR..U02
TK-002
UI-OOI
39.00
37,40
61.60
41j.80
09,80
79.6U
69. 'I U
53.I)U
61.90
53.80
126.4U
67.00
34.97
KU-OOI
KU-OUI
KE-OOI
lR-003
1<£-001
"E-DUI
TR-OU7
TK-OU3
TR-003
K[-OOl
I4.00
20.2..% ;>.jG ::'-L  

-------
--~               
 DATE 6 OCT. 1911 HEAT OF FORMATION. ENTROPY. AND TRANSITION DIITA ICONTINUED)  PAGE: 13
 COMPOUND  HEAT OF REFERENCES ABSOLUTE KEFEKENCES   TRANSITIUN DATA 
    FORMATION  ENTROPY  TEMP. HEAT TYPE KEFEKENCES
    25 DEG.C CAL/GMOLEI  DEG.C KCALi   
    KCAL/GMOLE  DEG. K    GMOLE   
KOH    -101.50 ST-917 16.65 ST-920 249.00 1.51 S-S ST-917.KU-903
          4UO.00 2.24 S-L  
          1327.00 32.00 L.-G  
KOH.H20   -179.50 LA-906    143.00  S-L LA-906.RO-907
KOH.0.75H20  -161.70 RO-907         
KOH.2H20   -251.20 RO-907         
KVO:'l   -277.:'3 TR..OO;: 29.90 KE-OOl      
K2C03   -271.67 LA-OOl 36.07 LA-OOl 250.00  S-S LA-DOl 
          428.00  S..S  
          622.'00  s-s  
          901.00 7.79 S-L  
K2CR04   -319.72 TR..002 47.60 KE-OOl      
K2CR204   "541.19 TR-002 44.10 KE-001      
K2M004   -356.90 TR-002 43.55 TR-007      
K20    -66.36 LA-DOl 23.48 LA-OOl      
K2S    -87.86 LA-001.TR-010 26.34 TR-003 146.40 .09 S-S LA-001.KU-00l
          835.00  S-L  
K2S03   -266.90 NB-003 37.40 TR-003      
K2S04   -j42.j4 LA-OOl 41.97 LA-OOl 595.00 2.25 s-s LA-001.CA-002
          1069.00 8.75 S-L  
K2TI03   -384.60 CA-063 32.90 TR-003      
K2W04   -390.84 TR..002 42.50 TR-007      
LA     .00  13.69 LA-DOl 548.00  S-S LA-OOl 
          709.00  s..s  
          920.00 2.70 S"L  
LAN    -71.50 KU..903 11 .60 KE-911      
LAS    -108.00 S ',..002 16.60 TR..003      
LAS2   -145.00 KU-001.TR-010 18.62 TR-003      
LAIN02)3   -239.95 RA-002         
LA(N03)3   -299.83 RA-002 56.60 RA-004      
LAIN03)3.6H20       43.00  S..S RO-907 
          66.50  S-L  
LA203   -430.50 HU-001.TR-010 30.55 LA-DOl 2315.00  S-L LA..001 
          42UO.00  L.-G  
DATE 6 OCT. 1971 HEAT OF FORMATION. ENTROPY. AND TRANSITION DATA (CONTINUED)  PAGE: 14
COMPOUND  HEAT OF REFERENCES ABSOLUTE K£FERlNCE~   TRANSITIUN DATA 
   FORMATION  ENTROPY   TEMP. HEAT TYPE KEF£KENCES
   25 DEG.c CAL/GMOLEI   DEG.C KCALI   
   KCAL/GMOLE  DEG. K     GMOLE   
LA2S3   -282.00 KU..001.TR-010 32.IH TR-003      
LA2IC03)3      51.60 TR-003      
LA2(S03)3      60.60 TR-003      
LA21S04)3   -939.60 WI-DOl 68.70 TR-003      
LI    .00  6.70 LA-DOl 180.50 .72 S..L LA-DOl 
LIAL02   -284.29 KU-001.LA-00l 12.69 LA-001.KU-001      
UFE02   -173.70 KU-OOl 18.00 tW-001      
LIN02   -96.60 ST.926.RO-907 21.34 RA..003 96.00  S-S ST..926.PR-903
          220.00  S-L  
LIN03   -115.20 LA-908 24.96 RA-003 -10.00  s-S 5C-912.FE-903.
          120.00  S.S 5T-926 
          170.00  S-S  
          2jO.OO  s-s  
          253.00 6.04 S-L  
LlN03.3H20  -328.60 RO-907     29.90 8.jj S-L NE-904 
LIOH   -115.84 SI-917 10.22 5r..917 413.00  S-S ST-917.LA-908.
          471.30 5.01 S..L I
-------
DATE
6
CO~~POUND
MG
~GIIL;>O'~
MGC03
rl.GCR04
:%CH204
MGFE204
MGM004
~1GO
MGS
MGS03
MGS04
MGTJ03
MGTI?05
MGV206
MGW04
MG(N02)2
W,GIN03)2
MGIN03)2.2H20
MGIN03)2.6H?O
MG(OH)2
~.1G2T I Of.!
r'G3N2
I-'N
MNAL204
r'1NC03
~f,rJCRC4
MNCR 20'.
MNFF:204
DATE
6
COMPOUND
I
I M.NM004
N'NO
MNO::!
MhiS
MNS03
I MNS04

MNS2
MNTI03
MNV206
",r.j.,04
MNI~102)2
MNINC?)3
MNIN02)4
MNIN03)2
MNIN03)?3H20
r~NIN03)2.4H20
MNI~I03)2.6H20
MNlrJ03)~
MNnl03)4
MNIOH)2
r.~~1 I 0H) 3
MNIS04)2
mJ?03
\lii\j2IAL204).3
!Y;N2IC03).3
"~J2 (CROll) 3
w,;2 I CP.204).3
~,r'J2 I FE2C/I) 3
rM',2 111,004) 3
M~J2 I S03) 3
M~12 I S04).3
"';,12 I TI03) 3
OCT,
1971
HEAT OF FORMATION, ENTROPY, AND TRANSITION DATA (CONTINUEO)
HEAT OF
FORMA TI ON
25 DEG.C
KCAL/GMOLE
-551.00
-263.98
-307.08
-453.10
-349.20
-334.80
-11+3.63
-83.00
-241.00
-305.50
-371.50
-6UO.I0
-527.90
-373.40
-153.63
-188.97
-334.70
-624.0G
-221.00
-110.20
-501.10
-213.74
-256.88
-396.12
-293.00
OCT.
1971
HEAT OF FORMIITION. ENTHOPY. AND TRIINSITION DATA ICONTINUED)
HEAT OF
FORMATION
25 DEG.C
KCAL/GMOLE
-284.40
-91.93
-124.16
-49.'15
-197.37
-253.9~
-49.50
-324.30
-484.18
-312.60
-104.01
-]11.56
-137.73
-3511.90
-566.90
-162.47
-166.20
-212.00
-229.11
-1430.00
-545.46
-688.01
-1080.20
-810.67
-818.86
-502.39
-666.90
-906.26
REFERENCES
.00
C/I-048.CA-049
JA-001.LA-001
TR-002
CA-038.TR-010
CA-042,CA-047
CA-077.TR-OI0
LA-001.NB-(103
CA-019.NO-003
NB-003
JA-OOl
CA-04:3
CII-04:5
CA-U50
CA-044
RA-OU2
51-926
MA-928
LA-901:1
ST-918.RA-00l
ST-906.LA-908
.00
CII-021
LA-OUl
TR-002
Tf{-UU2
CA-U28
KEFERENCES
CII-029
LA-001
LA-001
LA-UU1
TA-002
LA-DOl
KU-OOl
TA-OO?
TR-002
CA-030
RII-U02
RII-002
WA-901.RA-OOI
LA-908
WII-901
RA-002
WA-901
nO-907
LA-OOl
TK-002
TR-U1I2
Tf{-002
TH-002
TR-UU2
TA-UU2
TK-002
WI-OOl
Tt<-G02
ABSOLUTE
ENTROPY
CAlIGMDLEI
DEG. K
7.18
19.25
15.70
32.00
25.30
28.28
28.40
6.4U
10.60
22.50
21.90
17.80
3U.40
38.27
26.86
37.60
39.20
15.10
24.1:\0
21.00
1.5';1
25.18
20,47
34.75
29.82
31.'37
ARSOLUTE
ENTROPY
CAL/GMOLEI
r"JEG. K
31.27
14.26
12.69
HI.c/!
24.40
26.18
15,32
23.20
42.38
29.56
40.30
45.60
55.30
66.30
23.10
34.30
26.40
68.40
411.60
96.60
86.40
96.60
69.20
53.60
61.7U
60.60
REFERENCES
LA-OUl
KU-OOl
JA-OOl.LA-OOl
TR-003
KU-001.LA-OOl
LA-OOl
CA-Ol7
LA-001.NB-003
LA-OOl
TR-003
JA-OOl
KU-001.LA-OOl
KU-OC1.LA-OOl
CA-051
TR-003
RA-004
LA-908.KE-912
ST-918
KU-001
ST-906.KU-903
LA-OOl
TR-003
LA-OOl
TR-003
TR-003
TR-003
REF EHENCE~
TH-003
LA-OOl
LA-001
LA-C01
[R-OO.2
LA-OOI
TR-003
TR-OU3
TR-003
TA-003
RII-004
HA-003
RA-004
HA-004
WII-901.HA-OOl
TR-OU3
LA-OUI
KE-OOl
lR-003
KE-OOl
KE-OOl
KE-OOl
TR-007
TR-003
TR-003
KE-OOl
TEMP.
DEG.C
649,50
1120.00
2l35.0r:
2200.00
392.00
957.00
28U2.00
1127.00
130.00
90.00
550.00
786.00
727.00
11Ul.00
1131.00
1244.00
1577.00
TEMP.
DEG.C
-155.40
1180.00
250.00
1530.UO
460.00
7UO.OO
35.50
31 ell)
25.80
6UO.00
PAGE:
15
TRANSITIUN DATA
HEAT TYPE REFERENCES
KCIILI
GMOLE
2.14
31.49
18.49
3.50
9.8[,
.11
.22
.54
.54
,43
3.49
.35
:S-L
L-G
S-L
LA-OUl
KU-OOl
S-L
S-5
S-S
KU-OOl
LA-OOl
S-L
LA-OOl
S-L
JA-OOl
:S-L
S-L
RO-907
LA-90B
s-S
:::;..S
s-S
:S-S
S-S
S.L
S-L
KU-903.KE-909
LA-OOl
CA-027
PAGE:
16
TRANSITIUN DATA
HEAT TYPE REFERENCES
KCALI
G~OLE
13.00
6.31
6.50
9.61
.51
S..S
S-L
S-S
S-L
LA-OOl
LA-001
LA-OOI
S-S
S-L
LA-001.CA-002
S-L
S-L
S-L
LA-Y08.RO-,;/07
RO-901
LA-908.RO-901.
S-S
LA-OOl

-------
 DATE 6 OCT. 1911 HEAT OF FORM/ITION. ENTROPY. AND TRANSITION aHA (CONTINUED I  PIIGE: 17
 COMPOUND  HEAT OF REFERENCES ABSOLUTE HEFERI::NCES   TRANSITIUN DATA 
    FORMATION  ENTROPY   TEMP. HEAT TTPE REFERENCES
    25 DEG.C CALlGMDLfl   DEG.C KCALI   
    KCAL/GMOLE  OEG. K     GMOLE   
MN2(V20613  -1.369.60 TR-002 1.3.3.20 KE-OOl      
MN?'(W04).3   -862.24 TR-002 66.80 TR-OIJ7      
MN3N2               
MN.304   -.331.12 LA-OOI 35.72 LA-OOI 1172.00 4.49 S-S 1..11-001 
           1590.00  S-L  
~'NIIN   -30.30 MA-925.M/I-933 31.00 MA-925      
MN5N2   -48.20 MA-925,RA-001          
foIN8N2   -61.!:)0 wA-901.RA-OOl          
MO     .00  6.83 LA-OOI 2622.00 6.59 S-L I..A-001 
M002   -140.83 L/I-001 11.06 LA-OOI      
M003   -171.88 L/I-001 18.57 LA-OC1 795.00 12.54 S-L LA-DOl 
           1155.00 32.97 L.-G  
MOS2   -60.40 KU-001.TR-010 16.00 KU-001.LA-001      
"1053   -61.47 LII-OOI 15.89 L/I-OOI      
MO(C0.313      50.10 KE-OOI      
,",0(503)3      63.60 TR-003      
"10(504)3      67.80 KE-OOI      
M02rJ   -19.50 MII-943.RA-001 21.00 LA-908.KU-903      
~02S3   -92.50 KU-001.TR-010 28.00 KU-001.LA-00l      
NA     .00  12.28 LA-OOl 97.82 .62 S-L LA-OOl 
           890.00 21.27 L-G  
NAAL02   -270.67 LA-001.KU-001 16.89 LA-001.KU-001.      
NI\CL   -98.26 .,IA-001 17.24 .,IA-001      
NAFE02   -166.40 TR-002 21.10 LII-001.KU-001      
NAN02   -85.72 ST-926 25.34 RA-003 162.00 .30 S-S LA-908,RO-907.
           281.00 2.48 ::i-L AO-902.ST-926
NAN03   -111.85 51-926 27.80 LA-908.RO-907 -.30.00  ::i-S SC-912.FE-903
           160.00  ::i..S  
           275.00 1.12 '::i-S  
           3Ub.00 3.69 S-L  
NAOH   -101.90 ST-917 15.40 ST-917.KE-9] 2 2';12.95 1.52 ::i-S ST-917,KU-903,
           319.25 1.52 ::i-L LII-908 
           1390.00 34.50 L-G  
NAOH.H20   -175.10 LA-'308 20.20 LA-908.RO-901 64.20  S-L LA-908.RO-907
 DATE 6 OCT. 1911 HEAT OF FORMATION. ENTROPY, AND TRIINSITION nATA (CONTINUEO I  PAGE: 18
 COMPOUND  HEAT OF REFERENCES ABSOLUTE REFERENCES   TRANSITION DATA 
    FORMATION   ENTROPY   TEMP. HEAT "PE HEFEHENCES
    25 DEG.C CAL/GI'I,OLEI   DEG.C KCALI   
    KCAL/GMOL[   DEG. K     GMDLE   
NIIOII.2H20       116.86 51-906 13.50 3.8& ::i-L SI-906 
NAOH.3H20       60.99 51-906      
NAOH.3.5H20      68.44 SI-90& 15.50 5.38 ::i-L RO-907,SI-906
NAOH.4H20       16.11 SI-906      
NADH.5H2D       92.27 51-906      
NAOH.7H20       125.80 SI-9U6      
NAV03   -276.47 CA-041 27,40 KE-001      
NI\2C03   -2&9.72 LA-001..,IA-00l 32.1+9 LA-001,.,IA-001 35&.00  s-S LA-OOlt .,11\-001
            486.00  ::i-S  
            618.00  s-s  
            851+.';0 7.88 S-L  
NII2CR04   -318.60 CA-Ob9 42.60 KE-001      
NA2CR20'1   -508.14 TK-U02 39.20 KE-OOl      
N/l2:'<004   -.354.00 CA-045 38.10 CA-017      
NII2M0207   -539.40 CA-045 59.90 CII-046      
NA20   -102.87 LA-001 16.99 LA-OOI 920.00 11.20 S-L LA-OOl 
NA.2S   -92.40 KU-001.TR-OI0 22.48 LA-OOl 950.00 1.19 S-L  
1I1\2S03   -2bO.40 CA-003.LA-00l .34.88 LA-001      
NA2S04   -330.&4 LA-001 35.&9 LA-001 25'3.00 2.64 S-S LA-001.CA-002
            884.00 6.86 S-L  
NA2TI03   -379.50 CA-06.3 29.10 KU-001.LA-001 287.00 .40 s-S KU-001,LA-00l
            1030.00 16.80 :>-L  
NA2TI205       41.111 KU-001,LI\-001 985.00 26.20 ::i-L KU-001.LA-001
NI\2TI.3D7       55.90 KU-001,LA-00l 1128.00 37.10 S-L KlJ-Oo.1 
NI\2W04   -.382.60 CII-045 39.10 TR-007      
NII?W207   -597..s0 CA-0'l5 60.80 CA-046      
~JB     .00   8.72 LII-001 2487.00 6.40 ::i-L LA-001 
NBO    -116.11 LA-OOl 11.99 LI\-OOl      
"Ieo?   -189.'33 LII-001 13.02 LA-OOl      
NH205   -455.10 LA-OUl 32.78 LA-OOl 8UO.00  ::i-S LA-OU1 
            1100.00  ::i-S  
            1512.00 24.58 S-L  
N!:I2S5       51.80 K£-OOl      
NB2!C03)5       e5.30 K£-OOl      

-------
DATE
6
C:O~POUND
N8?(~051~
~W2 (51;415
"JI
NlfoL~04
~I I C 0:3
NICR04
:,IICR204
~IIF[204
tJI r~004
"'10
~JIS
NIS03
NIS04
NITIn3
NIV?'06
IHW04
NI(N021~
rHHI0312
NI(N0312.3H20
NI(N0312.6H20
NI(OHI2
NI(OHI3
, NI3N
~Jy"3S2

I NO(GI
Ne2(GI
r.120:3(G I
i :1204 «(, )
I r.!205
N205(GI
OCT.
1971
HEAT OF FORMATlnN. ENTROPY. AND TRANSITION DATA (CONTINUED I
HEFER£NCES
TRANSITIUN DATA
HEAT TYPE ~EFE~~NCES
KCAL/
G"'IOLE
HEAT OF
FORMATION
25 DEG.C
KCAL/G/,~OU:
-465.32
-162.'J8
-216.48
-348.74
-256.50
-26U.26
-57.26
-20.2U
-155.86
-213.50
-287.75
-443.59
-271.62
-61.40
-99.20
-.317.00
-521i.60
-126.60
-160.00
.20
-47.50
21.56
7.91
19.80
2.17
-10.00
2.7U
REFERENCES
.00
C/I-057
LA-UU1
TR-002
TR-002
CA-036
TH-002
LA-001
KU-001.TR-010
TR-002
LA-OOI
CA-035.CA-055
Tt~-002
CII-030
RA-002
WA-901.Rfo-001
WA-901
WA-901
WA-901
1'111-901
WA-901.KU-903
KU-OOl.TR-Oln
FH-905
ST-906
5T-906.I-s LA-OOI 
  P9CR204   -357.23 TH-U02 35.02 TR-003      
  P3F£204   -251.22 TK-U02 37.17 H'-OU3      
  PRM()04   -?65.b5 LII-UUl 35.77 TR-003 lU65.00  :>-L LA-OOI 
  P90     -!)2.37 LA-OOI 15.6U LA-OOI 1189.00  s-s LA-OOI 
                890.00 2.80 :>-L  
                1472. GO 50.89 L-G  
 i PAO*P8S04   -275.20 K[-003 51.97 KE-003 970.00  :>-L LA-OOI 
  ['802    -66.011 LA-Cr.l 18.26 L.A-OOI      
 I pns     -22.52 LA-00l.NB-OC3 21.79 NB-003.LA-001 1114.00 4.16 :>-L LA-00l.NB-003
 [ PBS03   -157.00 CA~OU6 30.4U TR-003      
  ['aS04   -a':l.33 LA-Olll 35.17 LA-(JUI 8Ul.00 7.30 :>-5 LA-OU1.CA-C02
                1087.00 9.60 S-L  
  PBT.10~,   -2115.34 TI'I-002 28.41 TR-ou3 490.00 1.15 :>-5 LA-OOl.KU-OOI
                1170.ou  :>-L  
  PAV?06   -445.55 TR-UU2 47.58 TR-003      
  P'3w04   -277.49 T,.(-UO;> 34.76 TH-003      
  i'Bf~JO?12    ..66010 RA-U02 45.50 RA-004      
  P'JO:C2)11                  
  P!3(N03)2   -lU8.00 S, -926. WA-91'\ 50.80 RA-003      
  f'f"! (~;()311,         71.50 RA-004      
  PB«()H)2   -123.30 10111-918 21.00 LII-':IlI (I, t{(j-~)O 1      
  PF.!(S0412         ~9.5U T R-tJiJ3      
  PH304   -175.1+1 LA~OOl 50.46 LA-OOl      
  PO      .00    9.03 LA-DOl 1555.00 4.11 :>-1.. LA-OOI 
 I POC03         24.09 TR-003      

-------
       - ---- .--. .~      
 OIlTE 6 OCT. 1971 HEAT OF FORMATION. ENTROPY. AND TRANSITION DATA I CONTINUED 1  PAGE: 21
 CO~POUND  HEAT OF KEFEKENCf.S A8S0LUTf HEFER~NCES   TRANSITION DATA 
    FORMATION  ENTROPY  TEMP. HEAT TYPE KEFEKENCES
    25 DEG.C CAL/GMOL.EI  DEG.C KCALI   
    KCALIGMOLE  DEG. K    GMOLE   
PD~    -27.60 HE-U02.TR..OI0 13.37 LA-OUl      
PDS    -18.00 HE-002 17.72 TR-003      
PDS03      27.60 TR-OO~      
PD5011      28.70 TR-003      
PDS2   ..19.00 HE-002 17.72 TR-003      
RBN02   -86.71 ST-926 29.711 RA-003 1122.00  ~-L PR-903 
RBN03   -117.00 LA-9U8 33.38 RA-003 160.00 .93 ~-s Sf-92l 
          215.00 .77 ~-~  
          281.00 .23 5-S  
          310.013 1.11 ~-L  
R130H   -96.87 LA-906.RO-907    2115.00 1.70 S-S LA-908.RO-907
          301.0U 1.62 ~-L  
RBOH.H20   -177.80 RO-907         
RBOH.2H20   -250.80 RO-907         
RB2C03   -269.118 LA-OOl 39.83 TR-003 -3U3.00  s-S LA-DOl 
          873.00  5-L  
R820   -78.811 LA-DOl 26.50 TR-OU3 567.00 8.50 5-L I.A-OOl 
R132S   -83.20 NB-003.KU-00l 31.70 TR-003      
R82S03   -265.32 fR-002 112.80 TR-OU3      
RB2S011   -3110.50 RO-907.LA-908 111.53 TR-003 650.00  s-s LI\-001.CA-002
          881.00 2.11 5-S  
          1U111.00  S-L  
RE     .00  8.88 LA-OU1 3180.00 9.08 S-L LA-001 
RE92   -101.116 LA-OOl 11.39 LA-DOl      
RE03   -1115.911 LA-U01 19.30 LIl-OOl 160.00  ~-L I.A-OOl 
RES2   -11,2.70 CA-0711.TR-010 19.22 LA-OOl      
RE53   -119.80 KU-U01 23.0U KU-Oll1      
RE207   -295.16 LA-DOl 149.52 LA-DOl 300.30 15.80 S-L LA-OOl 
          360.30 11.70 L-G  
RE208   -1118.2'+ LI\-OOl    150.00  ~-L LA-001 
RE2S7   -101.90 CA-0111.KU-00l 148.00 KU-OUl      
RH     .00  7,55 LA-OUl 1960.00  ~-L LA-001 
RHC03      23,89 TR-003      
RHO    -23.89 LA-001 12.90 LA-OOl      
 DATE 6 OCT. 1971 HEAT OF FORMATION. ENTROPY. AND TRANSITION DATA (CONTI NUED)  PAGE: 22
 COMPOUND  HEAT OF REFERENCES ARSOLUTf HEFERE.NCES   TRANSITION OAT A  
    FORMATION  ENTROPY  TEMP. HEAT TYPE KEFEK(NCES
    25 DEG.e CAL/GMOLEI  aEG.e KCALI   
    KCALIGMOLE  aEG. K    GMOLE   
RH5       17.52 TR-003      
RH503      21.140 TR-OU3      
RH5011      28.50 TI<-003      
RH20   -22.67 LA-OOl 27.70 TR-003      
RH203   -70.95 LA-OOl 26.50 TR-003      
RH2S      32,911 TR-003      
RH2S0'+      118.69 TR-003      
RH2S3      29.80 TR-003      
RH2(501413      66.1U TR-003      
RU     .00  6.82 LA-001 1035.00 .U3 S-5 LA-DOl 
          1200.00  s-s  
          1500.00 .23 s-s  
          25UO.OU  5-L  
RU02   -12.20 CA-082.eA-083 12.50 CA-016      
RU03IGA5)   -18.00 CI\-016 63.70 eA-016      
RU0I4(GA5)   -116.10 CA-016 65.50 CA-016.0R-00l      
RUS2   -140.00 KU-001.TR-OI0 10.140 HE-002.TR-OIO      
5     .00 NB-003,JA-00l 7.63 LA-OU1.NI3-003 95.31 .10 S-S LA-OOl 
          101.00 .00 s-s  
          115.18 .111 S-L  
          141111.60  L-G  
58     .00  10.92 LA-001 914.60  S-::; LA-DOl 
          1113.00  S-5  
          630.90 11.88 ~"L  
56203   -169.,+0 CA-060 31.65 CA-OID      
562014   -216.90 CA-U60.TR-010 30,20 LA-OOl      
56205   -210.23 LA-OOl 29.89 L.A-OOl      
58253   -~0.50 KU-001.TR-010 113.50 eA-073.TR-OI0 5146.00 5.60 S-L LA-D01.KU-001,
562(AL201413  -1362.5Q Tt{-002 71.140 KE..OOl      
582(C0313   -1168,09 Tt{-OU2 50.,+U TR-003      
562(CR0I4)3  -611.09 T.R-002 99.60 K£-001      
5B2(CR2014)3  -991.12 TK-002 89.'+0 K£-OOl      
5B21FE201413  -737.07 TR-002 99.60 K£-001      
582(MOO1l13  -7110.01 TR-D02 15.00 TR-007      

-------
 DATE 6 OCT. 1971 HEAT OF FOHMf,TlrJN, fNTf 1 v?0613  -129'+.'+0 TR-002 136.20 I\E-OUl      
S821wO'+13   -785.00 TR-002 72.60 Tn-ou7      
SC      .00 KR-001 8.20 KE-OO'+.LA..001      
~C203   -'+56.16 HU-004.TR-(l10 18.40 CA-014      
SC2(C031:'1         43.'+0 TK-OU3      
5C2(503)3         52.',0 TR-OIJ3      
SC2(50413         60.50 TR-Ou3      
SJ      .00    '+.W7 LA-OOl 1'120$.00 11.11 :)-1. LA-OUl 
5101G1I5)    -23.20 KU-OOl.LA-COl ~0.5~ KU-001      
SI02   -217.72 KU-U!J1. Tf{-('} 0  10.0U LA-GU1.NO-U02 867.00 .12 :)-5 LA-OOI 
              1610.00 2.04 :)-1.  
SIS(GASI    10.90$ JA-UOI 5o$.4j JII-Or'l      
5152    -'+9.00 JA-OOl.KU-OOl 18.00 KE-001.TR-003 lU90.00  S-I.  
511C03)2         31.20 I'-E-OIl1      
SII80312         40.20 K'::-OOI      
51(S0412         32.10 TR-003      
StJ      .00    12.26 LA-OOI 18.00 .60 s-s LA-OOI 
              2U2.80 .00 s-s  
              20$1.90 1.69 S-I.  
5NC03         24.4':1 TK-Ou3      
SNO     -68.33 LA-UOl.Nf:!-002 13.50 LA-OU1.NB-002 1'+6~.00 38.'+6 L-G LA-OU1 
SNO::!   -138.75 LA-001.NG-OOl 12.50 LA~OOl.f\d-On '+10.00 .45 s-s LA-OOt 
SN-S     -2'+.3C! LA-UOl...1-001 18.'IU LA~(]U1.KU':.001 5/J'+.00 .16 :)-S LA-OOl.KU-OOl
              8eO.QO 7.55 S-I.  
S'JS03         28.00 TR-003      
~NSO,+         2':1 01 U  TR-ou3      
~NS;:>   -39.90 LA-001.KU-OU1 2('. d~ LA-uU1.i0 :)-5 L/I-001 
              77U.OO 2.20 :)-1.  
              10$6"'.00 3.3.18 L-G  
SRAL20'+   -559.81 CII-022 26.88 lR~Ou3      
SRC03   -290.98 1.11-001 23.17 LII-OU1 Y2'+.00 .'+0 :)-5 I.A-OOI 
              1'+97.00  ~-L  
SRCRO'I   -330$.0$6 TK-U02 .36.4:> TR-003      
SRCR20'+   -514.63 TR-U02 31.52 Tr{-!JU3      
SRF[2C'+   -350.06 TK-002 33.61 TR-CtJ3      
SRM003   ~3U8.60 CI\-02'1          
SRMOO'+   -375.20 TK-002 32.2" TR.003      
SRO    -140.1'+ LI\-UOl.CA~007 13.00 LA-001 2'16U.OO 16.70 S-I. LA-001 
              32UO.OO ]C!6.62 L..-G  
SRS    -lU8.10 KU-UOl.TR-010 H.. 50  I'-U-00l.LA-001      
C::R~rJ3   .279.'+0 CA-(,06 ;;>6.9lJ TR-OO:~      
SRS04   -3'+4.97 LI\-OOl 29.07 1.1\-001 1152.00  :)-S LA-001.C/I-OU2
              16U5.00  :)-L  
SRT! 03   -393.50 TH-UU2 25.9':1 LA-OOl      
SRV206   -502.9b TR-002 44.08 TR-003      

-------
       -----.---      
 DATE 6 OCT. 1971 HEAT OF FORMATION, ENTROPY, AND TRANSITION DATA I CONTINUED)  PAGE: 25
 COMPOUND  HEAT OF REFERENCES ABSOLUTF. REFERENCES   TRANSITIUN OAT A  
    FORMATION  ENTROPY  TEMP. HEAT TYPE "t:FEKI:.NCES
    25 DEG.C CAL/GMOLEI  DEG.C KCALI   
    KCAL/GMOLE  DEG. K    GMOLE   
SRWOq   -393.00 CA-023 28.30 CA..023      
SRIN02)2   -182.20 sr-926 q2.00 RA-OOq 2H.00  ::;-s ST-926 
          288.00  S-S  
          q03.00  S"L  
SRIN03)2   -233.80 ST-926 '+6.50 TA..913 6q5.00 10.65 S-L ST-926,RO-907,
SRIN03)2.QH20 -51&+.50 RO..907         
SRIOH)2   -229,30 RO-907    535.00 5.'+9 S-L KE-909 
SRIOH)2.H20  -302.30 RO-907         
SRIOH)2.8H20  -801.20 RO-907         
SR2T! 0'+      38.00 KU-001,LA-00l      
SR3tJ2   -93.'+0 KU-903.RA-00l    1030.00  S-L KU-903 
SIGAS)   52.80 LA-OOl '+0.09 LA-OOl      
TA     .00  9.89 LA-OOl 2996.00 7.50 S-L LA-OOl 
TAN    -59.00 KU-903,RA-001 12.20 KU-903 3090.00  S-L LA-908,KU-903
TA2N   -6Q.70 KU-903.MA-9Q3         
TA205   -Q88.50 KU..001.TR-010 3'+.15 LA-OOl 1320.00  ::;-5 LA-OOl 
          1880.00  S-L  
TA2S5      53.20 KE..OOl      
TA21C03)5      86.70 KE-OOl      
TA21S03)5      109.2u KE..OOI      
TA2IS0,+)5      116.20 KE..OOl      
TH     .00  12.75 LA-OOI 225.00  S-S LA-OOl 
          lQOO.OO .67 ::;-S  
          1695.00 3.7Q S-L  
TH02   -29Q.09 LA-001 15.59 LA-OOl 2950.00  ::;-L LA-OOl 
          i+'+OO.CJU  L-G  
THS    -99.96 LA-OOl 20.92 TR-003      
THS2   -109.89 LA..OOl 20.92 TR-003 1905.00  S-L LA..001,KU-00l
THIAL20,+)2  -1101.50 TR-U02 Q'+.50 KE-OOl      
THIC03)2   -519.62 TR-002 37.50 KE..OOl      
THICRO&+)2   -61'+.33 TR..002 63.30 I
-------
 DAT[ G 0(' T. 1971 HEAT OF FOH~!AT InN. rfHROPY. ANO T~MJSr nOr,) nllTA (CONT PWEO I  PAGE: 27
 ('o;vyr>lIIJD  HEIIT uF RLFEKE"NC£'S IIHSOLU T.- KE.Ff.KUJC[S   TRANSITIUN OI\TA 
    FOI~MAT10N    E.;.ITROPY   Trr~p. HrllT TYPE KEF(KLtlJCES
    25 DlG.C ClIl.IGi~OLU   OEG.C KCIILI   
    KCAL/GMOLE    ~)(r;. '"     G"iOLE   
U03    -291.70 LA-UI)l 23.55 LA-Olii      
US     -91.00 CA-075.KU-OOl IB.OO KU-OU1 2462.00  S-L CA-075 
US:?    -120.0(: KU.lItll 2E.DU KU-OUI 13~O.OC  s-s KU-OUI 
              1680.00  S-L  
U(AL20412   -1063.00 TK-U02 48.00 I\E-OOI      
U(CQ312   -478.20 TH-()02 111. 00 KE-OOI      
L!(CR04)2   -573.04 TK-002 66.!30 KE-Olll      
U(Cr2Q412   -63':1.08 TQ-C02 60.00 t\[-OOl      
U(FF."204)2   -650.72 T,~-002 66.80 Ki..-Olll      
U(M004)2   -66U.~7 TR-O.J2 41.9U Ti{-lJu7      
U(S03)2   -1~~1. ,)IJ TR-~I,J2 :; iJ . ()'J tI(-'.'..; 1      
u(sn4)2   -563.00 1111-001 40.00 TK-003      
U(TI03)2   -714.04 TK-UU2 42.HlI Kl-OOI      
U (V2"16) "   -1027.20 TR-002 91.20 I'E-001      
U(WO'j)2   -6d9.71J TK-002 40.60 TR-OU7      
U2S3   -224.liO KU-l,()l 35.0) KU-Gv1      
lJ308   -85".10 KU-UOI 67.50 KiJ-OOl.1I\-(J111      
v      .00    7.00 LA-OOI 1730.00 4.18 S-L LA-OOI 
VC03         21.49 TR-003      
VN          8.91 KU-9(j3.K[-912 2050.00  ::;-L LA-Y08.KU-9D3
Vf1     -97.9~ LA-DOl 9.29 LA-DOl :11UO.ou  L-G LA-OOI 
V.JS04   -313.10 FI.-001 27.10 j'L-OOl      
VS     -44.91 LA-001 14.50 LA-OOI 19UO.00  S-L LA-OOI 
\1$03         25.00 TR-:)03      
V'S04         26.10 TR-003      
V203   -289.79 LA-UUl 23.48 Lt.-OUI 1967.00  S-L LA.001 
V2C4   -3..3.78 LA-OOI <:4.30 LA-OOI 72.00 2.05 ::;-s LA-001 
              1542.00 27.19 ::;-L  
              ;>7UU.CU  L-G  
V20'i   -372.68 LA-00l.NB-003 31.21 LA-001.NU-003 670.00 15.55 S-L LA-001 
              18uO.ou  L-G  
V2S3         25.00 TR-003      
V2S4         30.20 TH-OU3      
V2S5         50.20 KE.-001      
 DATE '" OCT. 1971 HEIIT O~ rOHMIlTION. EI.JTIWI-'Y. AND IRANSlTI0~J [1I1TA (CONTINUED)  PIIGE: 28
 COI>CPOUNO  liE II T OF R[FEHU,CfS A£1S0Lulr REff.RENCES   THMJSI T IUr,) DATA 
    FOR"1ATION    ENTROPY   TEMP. HEAT TYPE. ~EFERENCES
    25 OEG.C CAL/GMOL'I   OEG.C !~\'I   -279.61J CA-U2801R-010 32.2U t,U-UU1.1I\-O"1      
7.~'Jf~004   -283.39 TR-U02 31,17 TR-003      
Z'.'O    -tl3.3d LA-OD1 10.3':1 LA-OUI 19-/5.00 12.49 ::;-L LA-OOI 
71~O*2ZrJS04  -?51.36 1111-002 66.'1'1 IN-DU2      
Z',S    -48.50 LA-u(jI.1\i8-Cl,:~ 13.i!U LA-CLl.N8-00.~      
Z~JSr)3   -178.48 TR-002 25.8u TR-003      
ZrJSC4   -233.69 LA-00l.NB-Ou3 29.77 LA-001.NI:3-003 75'1.00 4.74 S-S CA-002 
zrH 1(13   -309.30 CA-039 24.:>1 TR-OO:'!      

-------
 DATE 6 OCT. 1971 HEAT OF FOR~ATION, ENTROPY, AND TRANSITION DATA (CONTINUED)  PAGE: 29
 COMPOUND  HEAT OF KEFERENCES ASSOLUTE REFERENCES   TRANSITIUN DATA 
    FORMATION  ENTROPY  TEMP. HEAT TYPE t
-------
L-                 
       TABLE VI         
DATE 6 ocr. 1971 THERMODYNAMIC PROPERTIES OF INORGANIC COMPOUNDS  PAGE: 1
     HEAT CAPACITY ICAL/GMOLE/DEG.K)    
     EQUATION CP = A + BT + CTn? D/Tn2   
 COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFERENCES 
    A BXI0..3  CXI0n6 DXI0n-5 DEGREES CENTIGRADE  
AG   5.38 1.7~  .00   -.17 25.00 TO 961.28 LA-001.PE-00l 
    7.50 .00  .00   .00 961.28 TO 1200.00  
AGN02   3.65 28.10  .00  -2.~7 59.00 TO 200.00 RA-005 
AGN03   8.76 ~5.18  .00   .00 25.00 TO 210.00 LA-908 
    30.58 .00  .00   .00 210.00 TO 327.00  
AGV03   31.11 j.88  .00   1.'+5 25.00 TO 700.00 TR-OO" 
AG2AL.204  39.66 11.38  .00   1.92 25.00 TO 100.00 TR-OO~ 
AG2C03   19.57 2~.36  .00   .00 25.00 TO 227.00 L.A-001.KE-002 
AG2CR04   34.54 12.44  .00   ~.96 25.00 TO 100.0U TR-OO~ 
AG2CR204  ~1.18 9.2'+  .00   3.1'+ 25.00 TO 100.0U TR-004 
AG2FE204  39.11 21.19  .00   5.60 25.00 TO 100.00 TR-OO~ 
AG2M004   33.31 12.94  .00   j.68 25.00 TO 100.0U TR-004 
AG20   13.25 7.0~  .00   .00 25.00 TO 700.00 LA-001 
AG2S   10.13 26.~0  .00   .00 25.00 TO 179.00 KU-001.LA-001 
    21.64 .00  .00   .00 119.00 TO 511.00  
AG2S03   20.16 22.14  .00   .00 25.00 TO 100.00 TR-001 
AG2S04   23.39 27.58  .00   .24 25.00 TO 657.00 LA-001 
AG2TI 03   30.39 8.02  .00   3.50 25.00 TO 100.00 TR-OO~ 
AG2WO'+   35.55 8.91  .00   ~.80 25.00 TO 100.0U TR-OO~ 
AL   '+'95 2.95  .00   .01 25.00 TO &58.&0 LA-001.PE-00l 
    7.00 .00  .00   .00 658.60 TO 127.00  
ALN   6.66 3.62  .00   .51 .00 TO 1127.00 ST-906 
ALIN02)3  ~.27 17.10  .00  -3.'+5 59.00 TO 200.0U RA-005 
ALIN03)3  63.09 27.57  .00  20.55 25.00 TO 627.00 RA-005 
ALIN0313.6H20 16.29 290.80  .00   .19 .00 TO 2'''99 LA-908 
ALIN03)3.9H20            TO   
ALIOH)!              TO   
AL203   26.40 ~.3~  .00   7.92 25.00 TO 700.00 LA-001.NB-002 
AL.2S              TO   
DATE 6 OCT. 1911 HEAT CAPACITY ICAL/GMOLE/DEG.K) CONTINUED   PAGE: 2
     EQUATION CP = A + BT + CT..2 D/Tn2   
 COMPOUND  COEFFICIENTS       rEMPERATURE RANGE REFERENCES 
    A BX10..3  CX10.*6 DX10.*-5 DEGREES CENTIGRADE  
AL2S3   31.99 .98  .00   7.28 25.00 TO 700.00 TR-009 
Al2TI05   ~3.5'+ 5.28  .00  11.42 25.00 TO 700.0U TR-004 
AL21C0313  65.57 21.9~  .00  25.23 25.00 TO 700.00 TR-OOI 
Al21CR0413  90.26 20.54  .00  22.79 25.00 TO 700.0U TR-OO~ 
AL21CR204)3 111.98 10.93  .00  19.1~ 2-'5.00 TO 100.00 TR-004 
AL21F(204)3 105.78 48.60  .00  24.14 25.00 TO 100.0U TR..004 
AL21M00413  86.59 22.03  .00  18.96 25.00 TO 700.00 TR-004 
AL.2IS03)3  41.14 49.64  .00   7.92 25.00 TO 700.00 TR-OOI 
Al21S04)3  81.51 1~.96  .00  26.66 25.00 TO 100.0U LA-OOI 
AL21TI03)3  77.80 1.28  .00  18.41 25.00 TO 7UO.OU TR-004 
AL21V20613  113.32 6.52  .00  52.61! 25.00 TO 1UO.00 TR-004 
AL.21 WO'q 3  93.30 10.13  .00  22.31 25.00 TO 100.0U TR-004 
AS   5.23 2.22  .00   .01 25.00 TO 5UO.OU L.A-001.PE-001 
AS203   8.31 48.60  .00   .00 25.00 TO 3UO.OU KU-001 
AS205              TO   
AS2S3   13.95 ~5.20  .00   -.6'+ 25.00 TO 300.00 TR-009 
AS2S5              TO   
AS21C0313  41.54 66.20  .00  17.31 25.00 TO 3UO.00 TR-001 
AS21S0313  29.10 93.90  .00   .00 25.00 TO 300.00 TR-001 
AS21S0413  36.27 101.80  .00  1.74 25.00 TO 300.0U TR-OOl 
B   1.46 4.52  .00  -.04 25.00 TO 7UO.OU LA-001.PE-00l 
BA   5.43 3.15  .00   .01 25.00 TO 310.00 LA-OOl 
    2.46 6.98  .00  -.17 370.00 TO 710.00  
    7.50 .00  .00   .00 71U.00 TO 12UO.OU  
BAAL.204   39.1'+ 5.38  .00  9.91 25.00 TO 700.0U TR-OOI! 
BAC03   20.76 11.69  .00  1!.17 25.00 TO 700.00 L.A-001 
BACROI!   3~.02 6. 'II!  .00  6.94 25.00 TO 1UO.OU TR-004 
BACR201!   41.26 3.24  .00  5.72 25.00 TO 700.00 TR-004 
BAFE204   39.19 15.19  .O~  7.59 25.00 TO 700.00 TR-004 
BAM003              TO   

-------
OtlTl 1', Oc r. ) ')71 HEAT CIII'I\.CI TY (CIIL/G~nL[/OEG,K) C Mn 1 NUEL1    PAGE: 3
    [l.'l.!AI10IJ CI' = A t nT t CT.*~ 011**2   
CO\TOI'r~D  COlFF 1Cl£;.TS       !EVP[KATURE HIINGE KU l!5.00 TO 700.0U LII-OOI 
RAS   14.59 -.08   .OU   1.77 25.liO TO 7UU.UU TH-UII9 
DlIsC.~   19.1>4 1(,.14   .00   1.98 ;>5.00 TU 700.0U TK-OiJl 
I'1ASO'I   33.76  .lJ3   .00   8.39 25.00 TO 7UU.OU LA-DOl 
0l1TI03   29.03 2.04   .00   4.58 25.0n TO ]5UU.OU KU-UUl 
Ht..V;>Cf..   61.'IU 1.70   .00   16.1\9 2~.U\l 10 7UO.I)U TH-004 
811'1104   35.02 <'.97   .00   &.80 25,00 TO 700.00 TR-004 
HA(N02)2  6.78 SI.40   .UO   -2.~6 <;':1.00 10 20U.oo HA-01l5 
l'1\(kC;:')?!i20             TO   
8/1(~J03)2  30.05 35.70   .00   4.Ul 25.Un TO 571.00 KL-91J':I 
CiA C 011);>   H,.90 :).Gf1 TO 7:)0.OU T q - 0 IJ 1 
Br:CRO!i   ;>9.73 'J. 40   .00   8.12 25.0'0 TO 70U.OU TK-004 
erCH204   36.'37 (,.?C   .00   6.91 25.00 1\.: 7UO.OU TI~-OU4 
RF.'FT2Q4   3'+.';;0 Ib.7:;   .00   8.7/ 25.CO TO 700.GU TK-004 
BEM004   28.51 'J. ') 0   ,UO   6.d5 25.00 10 7UU.OU IH-OU4 
BEO   8.45 4.120   .00   3.1' 25.UO 10 7Ull.OU LA-O[Il, CA-012 
8ES   10.31 2. f,t   . iJ D   2.95 2~.t;n TC 700.UI) TR-UC'J 
BES03   15.36 1~.10   .00   ').1' 25.00 TO 7UO.OU TK-OOI 
gESQ4   14.47 .W.32   .00   2.1:1 25.00 TO 6un.ou CA-Ou5 
eFT I 03   25.5e 4 . '~t)   .00   6.67 25.UO TO 7UU.UU TR-004 
nAT£ 6 OC T. 1971 HEAT CAPAC1TY (CAL/GMOLE/OEG.K) corn I rNED   PAGE: 4
    E;;'IJIII10[, C~' = fI + fH + CT**~ 0/T**2   
CO~POUNO  COEYF1C}£i,TS       TEMPERATUHE RM~GE Kt:H.KlNCLS 
   A r:!!(] 0"'*.3   CX)O**6  L1XIU**-5 [JEG~[E~o Ct.,H X G'~ A CE  
BEV2U(,   57.42 4.'72   .00   18.U/ 2~.OO 1U 7UU.Ou TR-004 
[JE\'lu4   3U.74 ~. °)3   .CO   7.9b ;:;:~ ,I".JC TO 7U 0.(11) TK-DO'. 
HE: C ",02 12  2.4'1 54. 5b   .00   -1.7/ 59,UO TO 2UO.OU nA-UO~ 
BE C ",U3) 2  41.70 20.Y3   ,00   1'1.23 25.00 TO 627.0U I   2.~7   . ~ 0   -3.nu ;C' 4. h4 TO 13'1. UQ ST-':!l/:! 
   15.80 le.Oj   .00   4.23 U4.00 TO 526.80  
RE3:"2   15.00 10.64   .00   1.54 .00 TC 1727.00 ST-91!i,ST-'J06 
[)X   4.48 5.40   .UU   -.Ou 2:>.00 TO 271.~0 LA-OOl,PE-uOl 
   7.50  .00   .00    .00 271,:50 10 7UO.OU  
[1 I cr,;O;~) 3  3.....05 7 Cj . 5 v   . ;:~ ()   -7.41 ')1).. t..; f) 10 2UG.CU KA-005 
81([\)0313  62.2':> ~~Y. qd   . ;; ')   16.5'1 ?~.~G 10 'jue.eu :,A-U[):) 
[)X«)HI3               TI)   
H1~o3   24"'.3 e.oo   .tJO    .uo 25.uO YO 5uU.ou LA-[){J] 
8I~s3   2a.89 6.10   .liU    . fJ1 25.00 TC 6UU.UU KIJ.onl,LA-OO] 
f\!2(f"L?0!i)3 10.3.94 2l.n,2   .00   ;:'3.77 2~.Un TO 5UO.OU T;{-OU4 
B12(C03)3  63.89 ~5.5':1   .00   17..H 2~.OO TO 5110.0U TK-(Jr)1 
HI2(crW'I)3  U8.5ts 24.1':1   .OU   14.iJ'f 25.UO 10 7UO,OU TK-UU4 
'312 (C'<20'1) 3 11 0.30 14.'D   .~ ,..,   11.? ;;~ 25. I) n IlJ 5uO.er.; rK-OO'+ 
  . U....J   
B12(F[2C'l)3 95.16 6~.17   .00   1U.64 2:'1.no TO 5UO.OO TH-n04 
BI2C'~Or.:!i)3  8'1.':11 2:',69   .00   11.04 2~.UO TO 5uO.Uu TK-n04 
':Jt2(S'::::<)3  4~.46 ~j.~Q   .00    .co 2~.Ca fl. 5IJU.OU TH-(101 
<312(S04)3  52.63 61.?2   .00   1. 7'1 25.0n TO 5UO.00 TK-OOI 
,H;>(TI03n  16 .lc~ lO.q:J   ,:;1)   111. Lt --) ~)~) . I.. r.' TO ~o D .1]1) TR-I.'l:' 
'n", r V?f1{,I.~  ]f-II.;U ll.J. :;'7   .:.",.   3'1. <,,4 :' ~ . ; 1 TO ; iJ r.: . I~ U T~-lJ ell 
GI2(\'.D'1)3  ':11.6;> J 3. ld   .OU   14.3'1 25.tJO TO ')I10.UI1 TK-UU4 
,',n (G.~~)               TU   
dSCGIIS)   5.9(, '1.73   -2.12    .uu 25.uI'I TO 7;>,7.00 .JA-OUI 
8203   8.7.S ~:).'fu   .uo   1.31 2:) . ~j I! Ie 7U 11. I; IJ I.A-(lfJ1 
B2<;3   14.32 22. n.>   .00    .67 2~'. 0(1 10 .HIJ.OO TK-OOY 

-------
        - --.--     
DATE 6 OCT. l'Hl HEAT CAPACITY (CAL/GMOLE/OEG.KI CONTINUED   PAGE: 5
     EQUATION CP = A -+- 8T -+- Ch-2 D/h.2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE KEFEKENCES 
    A AX10..3  CXI0..6 DXI0--~5 UEGREES CENTIGRADE  
C    2.90 2.119  .00  1.118 25.00 TO 121.00 .JA~OOl 
    6.02 .01+  .00  9.15 12-'.00 TO 1127.00  
CA    5.02 3.111  .00  -.12 25.00 TO 11110.00 LA-001.PE-001
    1.29 7.91  .00  -1.97 111+0.00 TO 7UO.OU  
CAAL2011   36.00 5.96  .00  1.96 25.00 TO 1500.0U KU-OU1 
CAALII01   66.09 5.48  .00  17.80 25.00 TO 1500.00 KU-OOI 
CAC03    211.97 5.211  .00  6.20 25.00 TO 1uO.OU LA-001 
CACROII    33.14 6.118  .00  6.62 227.00 TO 621.00 TI(-OOI+ 
CACR2011   110.31 3.21  .00  5.40 25.00 TO 600.00 TR-004 
CAFE2011   39.39 4.76  .00  3.66 25.00 TO 12UO.00 LA-001.KU-00l
CAM003              TO   
CAMOO4    31.92 6.98  .00  5.35 227.00 TO 621.00 TR-004 
CAO    11.86 1.08  .00  1.66 227.00 TO 621.00 LA-OOl 
CAS    10.20 3.80  .00  .00 25.00 TO 121.00 KU-001.LA-001.
              TO  TR-U09 
CAS03    18.11 16.18  .00  1.66 25.00 TO 6UO.OU TR-OOl 
CASOII    11.22 23.37  .00  .33 25.00 TO 7UO.OU LA-001.NB-003
CATI03    30.47 1.36  .00  6.69 25.00 TO 1260.00 KU.001 
CAV20E.    58.36 11.98  .00  14.87 25.00 TO 600.0U TI{-004 
CAWOI+    311.15 3.01  .00  6.111 227.00 TO 627.00 TR-OOII 
CAIN0212  5.90 51.44  .00  -3.28 59.00 TO 200.00 RA-005 
CIIIN0312  29.37 36.81  .00  11.13 25.00 TO 521.00 LA-908.KE-909
CACN0312.2H20           TO   
CA(N0312.3H20           TO   
CACN0312.4ii20           TO   
CACOHI2   8.90 23.54  .00  .05 .00 TO 126.80 LA-90B 
CA2FE205  47.18 20.75  .00  6.87 25.00 TO 600.00 TR-004 
CA3N2    20.114 22.00  .00  .00 25.00 TO 521.00 LA..908.KU.903.
              TO  KE-909 
CO    4.16 3.13  .00  -.36 25.00 TO 321.00 LA~001.PE..001
    1.10 ,00  .00  .00 321.00 TO 100.00  
COAL2011   36.05 6.112  .00  1.92 25.00 TO 7UO.OU TR-004 
DATE 6 OCT. 1911 HEAT CAPAC ITY CCAL/GMOLE/DEG.KI CONTINUED   PAGE: 6
     EQUATION CP = A + 8T + CT-.2 U/T..2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE I(EFEKENCES 
    A BX10..3 CXI0..6 DX10.--5 OEGREES CENTIGRADE  
COC03    22.70 1.94  .00   5.11 25.00 TO 1UO.00 TR..OOl 
COCR04    30.93 7.48  .00   4.96 25.00 TO 1UO.OU TR~UOI+ 
CDCR204    38.11 4.28  .00   ~. 74 25.00 TO 100.00 TR..OOII 
CDFE2011    36.10 16.83  .00   5.60 25.00 TO 700.0U TR-004 
CDM004    29.11 1.98  .00   3.68 25.00 TO 100.0U TR-OOII 
COO    9.65 2.08  .00   .00 25.00 TO 100.00 LA-OOl 
CDS    12.93 .81  .00   .00 25.00 TO 700.00 LA..OOl.KU-OOl 
CDS03    16.56 11.18  .00   .00 25.00 TO 1UO.00 TR-OOl 
CDS04    18.49 18.118  .00   .01 25.00 TO 7UO.00 LA-OOI 
CDTI03    26.18 3.06  .00   3.50 25.00 TO 1UO.OU TI(-ou" 
CDV206    58.62 2.80  .00   111.91 25.00 TO 1UO.00 n~..oo.. 
CDWOII    31.91+ ".01  .00   4.80 25.00 TO 100.00 TR-OOII 
CDIN0212   3.69 52.1111  .00   .4.911 59.00 TO 2UO.00 RA-005 
COIN0312   112.90 19.01  .00   11.06 25.00 TO 627.00 RA..005 
CDCN0312.2H20           TO   
CDIN0312.I+H20           TO   
COIOHI2              TO   
CD3N2              TO   
cr    5.93 3.711  .00   .10 25.00 TO 717.00 LA-OOl.P(-OOl 
    8.00 .00  .00   .00 117.00 TO 2121.00  
CEN              TO   
CE02    15.00 2.51  .00   .00 25.00 TO 1100.0U LA-OOl 
crs              TO   
CES2    18.12 .27  .00   ".1J3 25.00 TO 1100.0u TR~009 
CEIC0312   111.11 1~.21+  .00   11.511 25.00 TO 1100.00 TR..001 
CEIN0213   3.66 78.70  .00   -7.41 59.00 TO 2UO.00 RA-005 
Cf.IN02111   3.10 103.20  .00   ..9.88 59.00 TO 2uO.OU RA-005 
CEIN03)3   62.~7 28.57  .00   1£..59 300.00 TO 621.00 RA-005 
CECN03111   81.51 36.38  .00   22.12 25.00 TO 621.00 RA-OU5 
CEIS0312   28.83 32.11  .00   .00 25.00 TO 1700.00 TR-001 

-------
OAT£ 6 00 I. l~ 11 r-'flT CfIr'LCIT( (r,',L/(.:::'Lr Il)rr",;) crl~'TJ 1.,Ur;;    PAGr: .,
    rO:U/IIIOf\J Ci' = fI + DT + CT.'" LI/H *2   
COMPOOWO  COf.FFIClfJ.TS       lO.P[Rf.TUHE ii/Hi(;l t't.FEHt:..NClS 
   {\ i)X10*",3   C;;1 (;hf,  L:xlQ**-5 L1EC,I-?[t.~. CUJT !r;r, ,n :~l  
(,L«'0'1)2  j3.61. 3f..UO TO 17UiJ.Oll TH-U!)l 
CI"<,')   25017 6..:13   .00    .OU 30U.(I(1 T0 a40.00 CA-OlB 
(r?,<:3   30.15 2.91   ,0(1   -.64 30U.OO TO 840.0[1 TR-nu':I 
(r'?(cr~?)?  b4.~'! ~.:I.9~   .GO   n.,n 3Uu.00 TO 8'!U.GO TR-UU1 
c:: ? (~r 3)::-  45.90 ~1.63   .no    .OU 3uu.OO TU 8'10.00 Tf/-OOl 
(f"? (S!:4 J '"  !i3.07 ~Y.55   .00   1.74 3UO.00 TO 840.00 TR-001 
CI: ":<:'+               TO   
r!~   5.79 2.41   .00    .5Y 25.00 TO 4/+5.00 LI\-OOl,PE-U01 
   -3.11 1U.46   .00   -15.73 445.00 TO 1UO.uu  
CO"Lt'f't!   31. '33 6. :\8   .00   7.52 25.00 TO 1UO.OO TR-UU4 
r ""~C'lj   2". :;~) 'I. ')1   .00   5.37 2~.UO TO 12UO.OU TH-U!!l 
c:nrf?()/!   32.82 7.4"   .00   '+.5& 25.00 TO 100.0U TH-OO" 
rncr<204   40.05 4.23   .00   3.33 25.00 TO 12UO.OU TK-OO'+ 
r.:OFE<'O"   3U,45 31.56   .00   3.01 2~.OO TO 5UO.OU CI\-056 
   48.21  .00   .UU    .OU 50U.OO TO lUUO,UU  
C'WOO',   31.5') 7.94   .DO   3.2tS 25.00 TO 1UO.OU TR-004 
CO/,POUN()              TO   
CrO   11.53 2.04   .00   -.4U 25.00 TO 1200.0U LA-OOl 
COS   10.69 2./H   .00    .O~ 25.00 TO 700.00 L.A.OOl 
C%03   16."'1 17.14   .00   ..4U 25.0a TO 12uO.00 TR-OOl 
C0S04   .30.09 Y. '31   .00    .01 25.00 TO 1UO.00 L.A-OOl 
Cr)TIO~   2B.66 3.01   .00   3.0':1 25.00 10 12UO.OU TR-OO'+ 
fJ;V~Of   65.39 -3.'12   .00   17.94 2~.00 TO 1200.00 TR-004 
C f)\,J('"   33.83 3.91   .00   4."0 25.00 TO 1200.00 TR-OO" 
CO(~;02)2  5.58 52.40   .00   -5.3" 59.00 TO 200.0U KA-005 
Cr (;,rJ3J2  4".79 18.91   .00   10.66 25.00 TO 627.00 RA-005 
CO( ~I03) 2. 2H20             TO   
CD (i,O:~) 2. .3H20             TO   
CO(N03J2.4H20             TO   
DATE 6 ocr. 1971 HEAT CAPACITY (CAL/GMOLE/OEG.KI CONTINUED    PAGE: 8
    EIoIUATION CP = A + BT + CT*.2 D/Tn2   
COl'POUNO  COEFFICIENTS       TEMPERATURE RANGE REFERENCES 
   A BXI0.*3   CXI0n6  OXI0n-5 DEGREES CENTIGRADE.  
CO(N0312.6H20             TO   
CC(OH)2               TO   
CO(01l)3               TO   
C02   6.58 9.13   -2.65    .00 25.00 TO 1700.00 L.A-OOl 
C02S3               TO   
Cr\31\J               TO   
C0304   30.82 11.01   .00   5.76 25.00 TO 700.00 LA-OOl 
([):~S4   3B.27 12.59   .0.0   4.90 25.00 TO 700.00 TK-009 
CR   5.8" ~.35   .UU    .8<;J 25.UO TO 12UO.OU LA-U01,PE-UOl 
C'<1)   9.8/+ 3.90   .00    .00 .00 TO 527.00 KU-903 
CR03   21.28 5.40   .00   4.96 25.00 TO 100.0U TK-008 
CR(N02)3  5.33 76.50   .CO   -5.54 59.00 TO 200.0U RA-005 
(;:?(NOnE.  .3.45 156.50   .00   -9.81 59.00 TO 200.0U KA-005 
Cr.(N0313  64.15 26.50   .00   18.46 25.00 TO 627.00 RI\-005 
CR(N0316  121.05 ~6.20   .00   3B.14 25.00 TO 627.00 RA-005 
CP.(Oh)3               TO   
CR2N   11.01 16.40   .00    .00 25.00 TO 527.00 KE-909 
CH?o3   28.52 ,!. 20   .00   3.74 25.00 TO 1200.0U L.A-OU1 
CR207               TO   
Cr.2S3   34.12 -1.16   .00   3.10 25.00 TO 12UO.OU TK-009 
C~i?(C03J3  F.7.h9 19.RO   .00   21.05 25.00 TO 12UO.OO TH - 0 (J1 
CR;>(Srn)3  4':1.26 47.50   .UO   3.14 2~.00 TO 12uO.OU TR-OU1 
cr~2 (Sr.4).3  56."3 55.42   .00   5.48 25.00 TO 1200.0U TK-001 
CS   1.50  .00   .00    .00 25.00 TO 28.64 LA-UU1,rE-u01 
   1.60  .00   .00    .00 26.64 TO 627.00  
CS~JO?               TO   
CSWJ.3   21.57 55.1\7   .0.0    .ou 5U.00 TU 151.UO ~'U-9l2 
   21.03 32.66   .on    .UU lS1.nn To 4U5.UIJ  
CS"I03.4H20              10   
CS01!               1U   

-------
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG,KI CONTINUED   PAGE: 9
    EQUATION CP = fI + BT + CT**2 D/h*2   
COMPOUND  COEFFICIENTS      TEI":PERATURE RANGE R£FERt:NCES 
   A !3XI0**3  CXI0**6  DXI0**-5 DEGREES CENTIGRADE  
CSDH.H20           TO   
CS2AL204           TO   
C$2C03            TO   
CS2CR04            TO   
CS2CR04            TO   
CS2FE204           TO   
CS2MOOl+            TO   
C520            TO   
CS2S            TO   
C52S03            TO   
CS2S01+            TO   
CS2TI03            TO   
CS2V206            TO   
CS2W04            TO   
CS2IG)   8.85 8.6'+  -3.29    .00 25.00 TO 12UO.OU LA-001 
CU   5.40 1.50  .00   -.Ou 25.00 TO 108'+.UO LA-001,PE-001 
   7.50 .00  .00    .00 108'+.UO TO 12UO.OU  
CUAL204   35.67 9.1'+  .00   7.92 25.00 TO 7UO,OU TR-004 
CUC03   22.32 10.66  .00   5.77 25.00 TO 7uO.OU TR-001 
CUCR04   30.55 10.20  .00   4,96 25.00 TO 7UO.OU TR-OO'+ 
CUCR204   37.79 7.00  .00   3.74 25.00 TO 7uO.00 TR-OO'+ 
CUFE02   20.67 lU.23  .00   2.8U 25.00 TO 7UO.OU TR-OO'+ 
CUFE201+   33.01 1.36  .00   1.'+'+ 25.00 TO 9UO.OO CA-079 
CUM004   29.33 10.70  .00   3.66 25.00 TO 7UO.OU TR-OO'+ 
CUN02   4.'+7 28.03  .00   ..2.47 59.00 TO 200.0U RA-005 
CUN03   24.07 11.32  .00   5.53 25.00 TO 627,00 RA-005 
cuo   9.27 '+.80  .00    .00 2!:i.00 TO 7UO,OU LA-001 
CUO*CUS04  28.07 21.97  .00    .03 25.00 10 700,OU TR-004 
CUS   11.13 3.68  .00   -.22 25.00 TO 7UO.OU TR-009,KE-002 
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.KI CONTINUED   PAGE: 10
    EQUATION CP = A + AT + CT**2 0/T**2   
COr.,POUND  COEFFICIENTS       TEMPERATURE RANGE REFEKENCES 
   A BX10**3  CX10**6  OX10**-5 DEGREES CENTIGRADE  
CUS03   16.18 19.90  .00    .OU 2:>.00 TO 7UO.OU TR..OOI 
CUS04   16.80 17.18  .00    .03 25.00 TO 6UO,OU LA-OU1 
CUTl03   26.40 5.78  .00   3.5U 25.00 TO 700,OU TR-004 
CUV03   31.93 3.21  .00   7.45 25.00 TU 7UO.OU TR-OU'+ 
CUV206   56.2'+ 5.52  .00   1'+.91 25.00 TO 700.00 TR-OO'+ 
CUWo'+   31,56 6.73  .00   4.80 25.00 TO 7UO.00 TR-004 
CUIN0212  3.32 5!:i.16  .00   -'+.94 59.00 TO 200.00 RA-005 
CUIN0312  42.53 21.73  .00   11.06 25.00 TO 627.00 RA-005 
CUIN0312,3H20           TO   
CUIN0312.6H20           TO   
CUIOHI2   13.71 17.86  .00   -5.99 24.84 TO 160.00 51-918 
   29.11 .53  .00   12.00 160.00 TO 1227.00  
CU2AL204  41.30 10.0'+  .00   7.92 25.00 TO 7UO.OU TR-OO'+ 
CU2C03   27.95 11,56  .00   5.77 25.00 TO 7UO.OU TR-001 
CU2CR04   36.18 11.10  ,00   4.9& 25.00 TO 700.00 TR-OO'+ 
CU2CR204  43.'+2 7.90  .00   3.74 25.00 TO 7UO.OO TR-OO'+ 
CU2M004   3'+.95 11.60  ,00   3.66 25.00 TO 700.00 TR..OO'+ 
CU20   1'+.89 5.70  .00    .00 25.00 TO 700.00 LA-~Ol 
CU2S   19.'+9 .00  .00    .00 25.00 TO 103.00 LA..001 
   23.2'+ .00  .CO    .00 103.00 TO 350.00  
   20"H .00  ,00    ,OU 35U.00 TO 7UO,OU  
CU2S03   21.60 20.80  .00    .00 25.00 TO 7uO,OU TR-OOI 
CU2S04   24.19 23.40  .00    .58 25.00 TU 7UO.00 TR-001 
CU2Tl03   32.02 6.66  .00   3.50 25.00 TO 7UO.00 TR-OO'+ 
CU2WO'+   37,19 7.63  ,00   '+,80 25.00 TO 7UO.OU TR-004 
CU3N             TO   
C(OI   6.31 1.96  -.36    .00 25.00 TO 1700.00 LA-001 
FE   '+.13 6.38  .00    .00 .00 TO 76U.on PE-001 
FEflL204   38.05 6.3,+  ,00   8.68 25.00 TO 7UO.00 TR-004 
FEC03   11.62 26.78  ,00    .00 2!>.00 TO 5UO.OU LA-OU1 

-------
OIlTE 6 OC T. 1971 HEAT CAPACITY (CAL/GMOLl/DEG.K) CONTINUED    PAGE: 11
    EQUA TI ON CP = A + 8T + CT**2 D/T**2   
C OMPOU'"O  cm:FFIC IEfHS       T01PERATURE RANGE KUUU.NCt::S 
   A BX10*.3   CX10**6  DX10**-5 UEGREES CENTIGRADE  
rECR04   32.94 7.40   .00   5.72 ;>5.00 TO 7uO.OU TR-004 
FfCR204   36.96 5.3'+   .00   7.62 25.00 TO 15UO.OU LA-OUl.KU-U01
FTM004   31.72 7.90   .00   4.44 25.00 TO 7uO.OO TR-004 
F(O   11.66 2.00   .00    .76 25.00 TU 12UO.00 LA-OOI 
F(S   5.19 26.'+0   .00    .00 25.00 TO 138.00 KU-001,LA-UOl
   17.'+0  .00   .00    .00 136.00 TO 325.00  
   12.20 2.38   .GO    .00 325.00 TC 1195.00  
FEs03   18.57 17.10   .00    .76 25.00 TO 1200.0U TR-OOI 
FfS04   20.96 19.7'+   .00   1.3'+ 2~.00 TO 1200.OU TR-001 
FfC;2   18.00 1.1&   .00   3.12 25.00 TO 700.0U LA-00l,KU-001
FETlO~   27.87 4.36   .00   4.79 25.00 TO 1370.00 LA-001.KU-00l
FEV206   65.51 -3.1~6   .00   19.09 25.00 TO 1200.00 TR-004 
t=EW04   33.'15 3.93   .00   5.5b :? ~; . (j (1 TO 12UO.OU TR-OO'+ 
F[(iII02)2  5.70 52.36   .00   -4.18 59.00 TO 200.00 RA-005 
F((N02)3  12.95 72.40   .00   1.79 59.00 TO 200.00 RA-005 
F((N03)2  44.91 18.93   .00   11.82 25.00 TO 627.00 HA-005 
Ff(N03)2.6H20             TO   
F[(NO:~)3  71.71 22.::>7   .00   ;'5.130 25.00 TO 627.UU RA-UU5 
FE(N03)3.91120             TO   
FE(OH)2   26.13 3.1 '+   .00   3.69 24.84 TO 1227.00 ST-918 
Ff(OH)3   31.74 7. BO   .00   9.04 24.64 TO 1227.00 SJ-91B 
FE2N   1'''91 6.09   .00    .OG 25.00 TO 727.00 KU-903,KE-909,
               TO  LA-908 
F[203   23.48 IB.59   .00   3.55 25.00 TO 617 .00 LA-001 
   35. ';)8  .00   .00    .00 671.(J0 TO 767.00  
   31.70 1.76   .00   .OU 767.00 TO 12UO.OU  
t=E2T104   '10.4'1 '1.98   .00   5.0~ 25.Gr. TO 12UO.OU TR-U04 
FE2TI05   40.61 19,';7   .00   7.04 25.00 TO 677.00 TR-004 
FT2 (AL204) 3 105.67 2'1.71   .UO   29.37 25.UI) TO 7uO.OU TR-U04 
FE2(C03)3  82.9.3 11.33   .00   35.72 25.00 TO 12UO,OU TR-001 
FE2(CR04)3  90.31 3U.'-)5   .00   <:U.47 25.00 TO 7UO.OU TR-UU4 
DATE 6 OC T. 1971 HfAT CAP/'CITY (CAL/GMnLf/OEG.K) CONTINUEO   PAGE: 12
    EQUATION CP = A + 9.34  .33   .00   29.6.:1 2~.OO TO 12UO.OU TR-004 
FT2 P~O()4) 3  86.64 .:12.45   .vO   16.64 25.liO TO 7uO.ou TR-004 
FE2(S03)3  44.21 63.119   .00   3.55 25.00 TO 671.00 TR-001 
FE2(S04)3  51.38 71.81   .UO   5.29 25.00 TO 6UO,OU TR-0111 
t=E2(T!03)3  ~5.16 -3.33   .00   28.9iJ 25.0" TO 12U(1.0U TR-004 
FE2(V?06).3  205.32 -22.6'+   .00   73.42 25.UO TO 1200.0U TR-004 
FE2(WO'l).3  110.65 -.47   .00   ~2.80 25.00 TO 12uO.OU TR-OO'l 
F(304   21.87 '.8.1')   .00    ,00 ?5.GD TO 627.0J lA-OOl 
   47.97  .00   .00    .00 627.00 TO 1200.00  
Ff4N   26.84 8.16   .00    .00 25.00 TO 727.00 LA-908 
G".   6.23  .00   .00    .OU 25.00 TO 29.7P. LA-UUl 
   6.64  .OU   .00    .00 29.78 TO 7UO.OU  
GAN               TO   
GA~               TO   
GIICN02)3  -3.05 88.10   .00   -7.41 59.00 TO 2UO.OU RA~005 
GIIUJ03)3  55.77 37.~9   .UO   16.59 25.00 TO 600.UU nll-U05 
G,,(CH).3               TO   
GA203   11.77 25.18   .00    .00 25.00 Tv 6UO.OU LA-Olll 
GA2S3   17.34 ~1.8~   .UO   -.6'1 25.00 TO 6UO.OU TR-009 
GA2(C(13)3  50.93 '12.78   .00   17.31 25.00 TO 6UO.OU TK-001 
GA2(SC3).3  32.5U 70.4';   .on    .011 25.CG TO 6lJO.Ul1 TK-001 
GA2(S04)3  39.67 7B.40   .00   1.74 25.00 TO 600.00 TR-OUl 
GE   5.94  .88   .00    .54 25.00 TO 937.20 LA-OOl 
   7.00  .0(;   .00    .00 937.20 TO 12UO.OU  
GEO(GAS)              TO   
GE02   11.19 7.17   .00    .00 25.00 TO 707.0U LII-OUl 
GES   10.66 3.72   .00    .OU 25.0~ TO 17UlJ.OU CII-072 
GrS2   1'+.14 6.25   ,00    .00 25.00 TO 825.00 CA-072 
GE(C03)2  37.31 18.90   .00   11.54 25.00 TO 707.0U TR-001 
G((S03);>  25.02 37..:17   ,00    .00 25.00 TO 7uO.00 TR-0f11 

-------
DATE 6 OC T. 1971 HEAT CAPACITY (CA~/GMO~E/DEG.KI CONTINUED   PAGE: 1.5
    El.IUATION CP = A + 8T + CT**2 0/Tu2   
CONIPOUND  COEFFICIENTS       TEMPERATURE RANGE RE.FERENCE.S 
   A BXI0**3  CXI0n6  DXI0u~5 DEGREES CENTIGRADE  
GE(SO~12  29.80 112.65  .00   1.16 25.00 TO 7UO.OU TH-OUl 
GE3N4             TO   
HF   5.73 1.19  .00   -.00 2:J.00 TO 12UO.OU LA-OOI 
HFN   9.811 2.22  .00    .00 25.00 TO 1121.00 KE.~909 
HF02   17.38 2.08  .00   3.48 25.00 TO 1200.0U LA-OOI 
HFS2   21.11 -.16  .00   3.05 25.00 TO 1200.00 TR-009 
HF(C0312  113.~9 13.81  .00   15.02 25.00 TO 12UO.00 TR-OOl 
HF(N0214  5.118 102.80  .00   ..6.ln 59.00 TO 200.00 HA-005 
HF(N0314  113.89 35.95  .00   25.60 2~.UO TO 621.00 RA-005 
HF(S03J2  31.20 32.28  .00   3.~8 25.00 TO 1200.00 TR-OOI 
HF(SO~12  35.98 37.56  .00   11.611 2:J.00 10 1200.00 TR-OOI 
H2   6.911 -.19  .117    .00 25.00 10 12UO.00 JA-001 
H20(GASI  6.78 3.57  -.~6    .00 25.00 10 2700.0U LA-OOI 
IR   ~.56 1.112  .00    .00 25.00 TO 1200.0U LA-OU1.PE-00l
IR02   9.17 15.19  .00    .00 25.00 TO 7UO.OU LA-GOI 
IRS2   12.89 12.95  .00   -.~3 25.00 TO 700.0u T/'<-009.wE-001
IRS3             10   
IR(SO~12  27.77 50.68  .00   1.16 25.00 TO 7UO.OU TR-001 
IR2S3             TO   
K   7.16 .00  .00    .OU 25.00 TO 63.20 LA.,001 
   8.91 -1I.6~  2.99    .00 63.20 TO 700.0U  
KAL02   22.16 6.83  .00   ~.16 25,00 TO 700.0U TR-OOII 
KFE02   29.811 2.61  .00   8.62 25.00 TO 900.00 TR-OOII 
KN02   5.98 29.84  .GO   ~2.27 59.00 TO 2UO.OU RA~005 
KN03   111.55 28.39  .00    .00 25,00 TO 127.90 LA-908 
   28.80 .00  .00    .00 127.90 TO 3311.50  
   29.~9 .00  .00    .00 5311.30 TO ~27.0n  
KOH   2.07 38.79  .00   -.31 .00 TO 2119.00 ST~917 
   18.80 .00  .00    ,OU 2119,00 TO 1227.00  
KOH,H20             10   
OATE 6 OC T. 1971 HEAT CAPACITY (CA~/GMO~E/DEG.KI CONTINUED   PAGE: 111
    El.IUATION CP = A + 8T + CT**2 0/T,0*2   
COMPOUND  COEFFICIENTS      TEMPERATURE RANGE REFERENCES 
   A HXI0,,,*3   CXI0**6  OXI0u..5 DEGREES CENTIGRADE  
KOH.O.75H20            TO   
KOH.2H20             TO   
KV03   36.25 1.57   .00   9.68 25.00 TO 900.00 TR-OOII 
K2C03   50.97 15.19   .00   6.17 25.00 TO 900.0U JA-001 
K2CRO~   39.19 111.72   .00   5..3b 25.00 TO 700.0U TR-QOII 
K2CR20~   116.~.3 11.52   .00   '1.111 25.00 TO 900.0U TR-OOII 
K2MOOII   37.97 15.;>2   .00   'I.OCJ 25.00 TO 7UO.OO TR-QOII 
K20   17.91 9..32   .00    .110 25.00 TO 900.00 LA-OOI 
K2S   16.78 1I.7~   .00    .OU 25.00 TO 5'17.00 DW-001 
K2S03   2~.82 2~.42   .00    .~O 25.00 TO 1200.0U TR-OOI 
K2S011   28.76 2.3.79   .00   ~.26 2~.OO TO 595.00 LA-001 
   .33.59 13.40   .00    .00 595.00 TC lU69.UO  
   ~7.78  .00   .00    .OU lU69.UO TO 12UO.OU  
K2TI03   55.04 10.30   .00   3.9U ?:J.OO TO 9UO.OU TR-OOII 
K2W04   40.21 11.25   .00   5.20 25.00 TO 9UO.OU TH-OO~ 
LA   6.17 1.60   .00    .00 25.00 TO 5118.00 LA-001,PE-001
LAN              TO   
~AS              TO   
LlIS2              TO   
LA(N0213  5.50 77.10   .00   -5.78 5<;.00 TO 2UO.OU RA-005 
LA(N03)3  6'1.31 26.94   .00   18.23 2~.00 TO 627.00 RA-Q05 
LA(N0313.6H20            TO   
L/l203   28.86 3.07   .00   .3.27 25.00 TO 700.00 NB-00.3.LA-001
L/l2S.3   311.114 -.29   .00   2.62 25.00 TO 700.0U TR-009 
LA2(C0313  68.03 20.67   .00   20.58 25.00 TO 700.0U TR-OOI 
LA2(S03J3  49.59 118.37   .00   3.27 25.00 TO 7UO.OU Tf~..OOl 
LA2(SO~13  56.76 56.29   .00   5.01 25.00 TO 7UO.OU TH-001 
LI   5.11 4.47   .00    .52 25.00 TO 180.50 ~A.,001 
   8.~6 -3.51   1.96    .00 18U.50 TO 7UO.OO  
LI AL02   20.66 5.21   .00   5.65 25.00 TO 700.0U TR-004 

-------
------------- ------- ----             
DATE 6 OCT. 1971 HEAT CAPACITY (CAL/GMOLE/DEG.KI CONTINUED   PAGE: 15
     EIoIUA TI ON C:P = A ... AT ... Ch*2 0/T**2   
COMPOUND  COEFF IC IErJT5       TEMPERATURE RANGE REFEKENCE5 
    A BXI0**3  CX10**6  DXI0**-5 DEGREES CENTIGRADE  
LIFE02   20.69 10.42  .00   4.49 25.00 TO 7UO.00 TR-OO" 
LIN02   ".49 28.22  .00   -.78 59.00 TO 2UO.OU RA-005 
LIN03   1".98 21.20  .00    .00 25.00 TO 253.00 LA-908 
    26.60 .00  .00    .00 253.00 TO 427.00  
LIN03.3H20            TO   
L.IOH   2.99 23.75  .00    .11 .00 TO 471,30 5T-917 
    17.5.3 2.87  .00   10.63 471.30 TO 1727,00  
LIOH.H20  ".23 50.8"  .00    .28 .00 TO 24.99 LA-908 
LIV03   31.95 ~...O  .00   9.14 25.00 TO 7UQ.OU TR-OO" 
LI2C03   5.04 '+9,66  .00   .2.8~ 2~.00 TO "10.00 JA-OOl 
    4.30 "2.42  .00   1.35 410.00 TO 720.00  
LI 2CR04   36.22 11.48  .00   8.33 25,00 TO 700.0U TR-004 
U2CR204  43.46 8.28  .00   7.12 25.00 TO 700.00 TK-OO'+ 
LI2M004   3".99 11.98  .00   7.0& 2:>.00 TO 700.0U TR-004 
LI20   14.9.3 6.08  .00   3..38 25.00 TO 700.00 LA-UOl 
LI25   16.79 4.96  .00   3.1& 25.00 TO 7UO.00 TR-009 
LI2503   21.84 21.18  .00   3.38 25.00 TO 700,00 TR-OOl 
L.I2504   2".2.3 23.82  .00   3.96 25.00 TO 7UO.OU TR-OOl 
LI2T103   32.06 7.06  .00   6.88 25.00 TO 700.00 TR-004 
LI 2\0104   37.23 6.01  .00   8.17 25.00 TO 700.0U TR-004 
LI3N   27.71 ~.92  .00   10.13 24.84 TO 1727.00 5T-918 
MG   5.52 2.33  .00    .30 25.00 TO 6"9.50 L.A-001,PE-OOl
    8.10 .00  .00    .00 649.50 TO 727.00  
M6AL204   36.80 6.40  .00   9.78 25.00 TO 1500.00 KU-OOl 
MGC03   18.61 13,79  .00   '''16 25.00 TO 427.00 JA-001,L.A-00l
MGCR04   31."6 7.1'+  .00   &,"'+ 25.00 TO 700.00 TR-OO" 
MGCR204   40.20 3.56  .00   9.58 25,00 TO 1500.00 KU..OOl 
MGFE204   21.05 4".~5  .00   .00 25.00 TO 392.00 LA-OOl 
    ..5.39 .00  .00   .00 392.00 TO 957.00  
    25.66 1~.57  .00   IOU 957.00 TO 1750.00  
MGM004   25.19 12.60  .00   .00 25.00 TO 827,00 CA-0.76 
DATE 6 OC T. 1971 HEAT CAPACITY CChL/GMOLE/DEG,KI CONTINUED   PAGE: 16
    EQUATION CP = A ... AT ... CT**2 D/h*2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE KE.FEKENCES 
   A '3X10**.3  CX10**6  DX10**-5 DEGREES CENTIGRADE  
MGO   10.17 1.7'+  .00   1.'+8 25.00 TO 1727.00 LA-OOl 
MGS   9.24 2.50  .00   -.01 25.00 TO 7UO.00 JA-OOl 
/oIG50.3   17.09 16.!J4  .00   1.48 25.00 TO 7UO.OU TR-OOl 
MG504   16.53 21.80  .00    .02 25.00 TO 1127.00 JA-OOl 
MGTI03   28.29 ~.28  .00   6.5~ 25.00 TO 15UO.OU KU-001,L.A-U01
I-'GTI205   4«+.«+.3 .s.70  .00   8.40 25.00 TO 12UO,OU TR.004 
MGV206   6«+.03 -3.72  .00   19.81 25,00 TO 1200.0U TR-OO«+ 
MGWO«+   32.'+7 3.67  .00   &.27 25.00 TO 1200.00 TR-OO" 
MGIN0212  4.22 52.10  .00   -3.«+6 59.00 TO 20U.OU RA-005 
MGIN0312  10.68 71.20  .00   -1.79 25.00 TO 327.00 LA-'306,KE-909
MGIN0312.?H20           TO   
MGIN0312.6H2D           TO   
MG(OHI2   2.12 '+8.4'+  .00    .10 .00 TO 226.80 5T-916 
   16.59 15.39  .00   1.8«+ 22&.80 TO 726.80  
MG2TI 04   35.96 8.5«+  .00   6.89 :>5.00 TO 1545.00 KE-002 
MG3N2   20.77 11.20  .00    .00 25.00 TO 550.00 KU-903,K(.909
   20.07 10.6&  .00    .00 550.00 TO 788.00  
   26.50 .00  .UO    .OU 78&.00 TO lU27.UO  
MN   ~.76 7.47  .00    .00 .00 TO 825.00 PE-001 
MNAL204   37.50 6.26  .00   8.80 25.00 TO 700.0U TR-004 
MNC03   21.99 9.~0  .00   ".69 25.00 TO 427.00 LA-001,KE-002
MNCR04   32.39 7.34  .00   5.6&+ 25.00 TO 700.00 T~-OO'+ 
MNCR204   39.63 «+.14  .00   ".62 25.00 TO 1200.00 TR-004 
MNFE204   5'+.87 -'+.32  .00   19.29 25.00 TO 12UO.OU TR-OO«+ 
MNM004   31.12 7.83  .00   '+.56 2:>.00 TO 7UO.00 TR-004 
MNO   11.10 1.94  .00    .88 25.00 TO 1200.00 LA.OOl 
MN02   16.59 2.4«+  .00   3.88 25.00 TO 500.0U LA-OOl 
MrJS   11.'+0 1.80  .00    .00 25.00 TO 1200.0U LA-DOl 
MNS03   18.01 17.04  .00    .88 25.00 TO 12UO.OU TR-OOl 
MN50"   29.24 8.92  .00   7.0" 25.00 TO 7UO,OU L.A-OOl 

-------
'-----                 
I                 
 DATE 6 OCT. 1 '371 HEAT CAPACITY ICAL/GMOLE/DEG.KI CONTINUED   PAGE; 11
     EQUATION CP = A + 8T + CT**2 D/T**2   
 COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFERE.NCES 
    A BX10**3  CX10**6  DXlO**-5 DEGREES CENTIGRADE  
 MNS2   20.31 .20  .00   3.~~ 25.00 TO 500.00 TR-OO'3 
 MNTI03   28.2'+ 2.92  .00   ~.38 25.00 TO 1200.0U TR-OO~ 
 MNV206   6~.96 -3.52  .00   19.21 25.00 TO 1200.0U TR-OU'+ 
 MNWO'+   33.39 3.81  .00   5.68 2~.00 TO 1200.00 TR-aO'+ 
 MNIN0212  5.15 52.30  .00   -~.06 59.UO TO 2UO.OU RA-UU5 
 MNIN02J3  3.'+3 19.10  .00   -5.80 59.00 TO 2UO.00 RA-005 
 MNIN02),+  ~.69 1113.2U  .00   -6.0J 59.00 TO 2uO.OU RA-005 
 MN(N03)2  ~'+.36 18.81  .00   11.9'+ 25.00 TO 627.00 RA-005 
 MN(N03)2.3H20           TO   
 MN(N03)2.~H20           TO   
 MNIN03)2.6H20 102.59 H8.1 0  .00    .00 25.00 TO 127.00 MA-925 
 MNHJ03)3  62.25 29.59  .00   18.21 25.00 TO 627.00 RA-005 
 Mn(ND3)~  83.10 36.31  .00   26.0U 25.00 TO 500.00 RA-005 
 MrJIOH)2             TO   
 MNIOHI3             TO   
 MN(SO'+)2  35.19 37.92  .00   5.0'+ 25.00 TO 500.0U TR-OOl 
 MN203   2~.13 8.38  .00   3.23 25,00 TO 700.0U L.A-OOl 
 MN2IAL20~)3 103.911 21.110  .00   21.00 25.00 TO 700.00 TR-OO'+ 
 MN21C03)3  63.89 25.97  .00   20.5" 25.00 TO 7UO,OU TR-OOl 
 MN2(CRO,+)3  88.58 2'+.57  .00   18.10 25.00 TO 1UO,OU TH-OO~ 
 ~N2(CP.20~)3 110,30 1'+.97  .00   1".~~ 25.00 TO 700.00 TH-OO" 
 MN2(FE204)3 10~,10 52.6~  .00   20.0~ 25.00 TO 7UO.OU TH-OO~ 
 MN2(M00413  8'+.91 26.07  .00   1'+.26 2~.00 TO 7UU.OU TR-OO'+ 
 MN2(S0313  45.~6 53.&8  .00   3.23 25.00 TO 700.0U TR-OOl 
 MN2(S0413  52.63 61.6u  .00   ".97 2~.00 TO 7UO.OU TR-OOl 
 r~r:2 (TI03) 3  76,12 11.31  ,00   13.72 <'5.00 TO 7UO.OO TR-004 
 MN2(V206)3  171. &'+ 10.55  .00   47.95 25.00 TO 700.0U TR-004 
 MN21W04)3  91.62 14.16  .00   17.62 25.00 TO 7UO.OU TR-OO" 
 MN3N2   22,32 22.'+0  .00    .00 25.00 TO 527.00 KE-909,LA-908
DATE & OC T. 1971 HEAT CAPACITY (CAL./GMOLE/DEG.K) CONTINUED   PAGE: 18
    EC.lUATION CP = A + 8T + CT**2 011**2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFERENCES 
   A BX10...3  CXI0**6  OX10**-5 ~EGREES CENTIGRADE  
MN304   34.62 10.82  ,00   2.20 25.00 TO 1172.00 LA-OOl 
   50.17 .00  .00    ,00 1172,00 TO 1221,00  
MN4N   21.15 30.50  ,00    .00 25,00 TO 527.00 KE-909 
MN5N2   30,55 38,40  .00    .UU 25,00 TO 527.00 KE-909,KU-'303
MN8N2   42,30 60,99  .00    .00 25.00 TO 527.00 LA-908 
MO   5.31 1.49  .00   -.00 25.00 TO 1200.00 LA-001,PE-00l
M002             TO   
"'1003   20,06 5.90  ,00   3,68 25.00 TO 7UO.OU L.A-001 
MOS2   11.20 13.50  .00    .ou 25,00 TO 450.00 KE-002 
MOS3   25,64 2.5"  .00   3,03 25.00 TO 7UO.OO TR-009 
MO(C0313  59.23 23.50  ,00   20,99 25.00 TO 700.00 TR-OOl 
MO(S03)3  '+0.79 51.20  .00   3.&8 25,00 TO 1UO.OU TR-OOl 
MO(S04)3  '+7.96 59.12  .00   5.42 25.00 TO 7UO.OU TR-OOl 
M02N   11.19 13,8u  .00    .OU 25.00 TO 527.00 KE-909,LA-908,
             TO  KU-903 
M02S3             TO   
NA   6.74 ,DO  .00    .OU 25.00 TO 91.82 LA-OOl 
   9,08 -5.02  2,87    .00 97.82 TO 7UO.OU  
NAAL02   21.05 ~.81  ,00   3.96 25.UO TO 7UO.OU TR-OU'+ 
IIJACL   9.88 5.42  ,00   -.5" 25.00 TO 721.00 JA-OOl 
NAFE02   21,08 10.08  ,00   2.80 25.00 TO 100.00 TR-004 
NAN02   ~.85 21.92  .00   -2.49 5':1.00 TO 2UO.00 NO-905 
NAN03   6,34 53.52  ,00    .00 25.00 TO 216.20 KE-909 
   35.70 .00  .00    .00 27&.20 TO 30&.2U  
   51.00 ,00  .CO    .00 30&,20 TO 421,00  
NAOH   1.80 35.97  .00   -.20 .00 TO 292.95 ST-911 
   20,56 .00  .00    ,00 292.95 TO 1727.00  
NAOH,H20            TO   
NAO~.2H20            TO   
NJlOH.3H20            TO   
NAOH.3.51120           10   

-------
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.KI CONTINUr.O    PAGE: 19
    EQUATION CP = A + AT + C1'**2 D/T**2   
CO~~POUNO  COEFFICIENTS       TEMPERATURE RANGE IH.FEIH.NCES 
   A BX10u3   CXlO**6  OXlO**-5 UEGREES CENTIGRADE  
NAOH.IIH20             TO   
NAOH.5H2C             TO   
NAOH.7H20             TO   
NAV05   52.33 5.06   .00   7.1+5 25.00 TO 700.00 TR-OOI+ 
NA2C03   2.65 58.53   .00   "5.85 25.00 TO 1+86.00 LA-001.JA-001
   12.08 30.68   .00   1.27 1+86.00 TO 851+.00  
NA2CROl+   36.98 10.80   .00   1+.96 25.00 TO 700.0U TR-OOI+ 
NI\~CR201+  1+1+.22 7.59   .00   3.74 25.00 TO 7UO.OU TR-OOI+ 
~J!l2~004   35.75 11.28   .00   3.68 25.00 TO 7Uo.OU TR-OOII 
NA2M0207  55.79 17.11   .00   7..% 25.00 TO 1UO.OU TR-OUI+ 
NA.8   .00   -.22 25.UO TO 1UU.ou KE.-OU2 
NA2S03   22.60 20.50   .00    .00 25.00 TO 7UO.OU LA-001.CA-D04
t'A2S011   15.55 52..71   .UU    .00 :>::>.UO TO 259.UO LA-OUl 
   29.05 19.33   .00    .00 259.00 TO 881+.00  
   41.16 .Ou   .00    .00 8B4.00 TO 1200.0U  
NA2TI03   25.18 2.0.12   .00    .00 25.00 TO 281.00 KU-001.LA-001
   25.95 17.00   .00    .00 287.00 TO 1100.00  
NA2TI205  1+9.32 7.0t>   .UO   'h6u 25.00 TO 10UO.UU KU-OOl 
NA2TI 307  63.46 10.64   .00   5.61+ 25.00 TO 1100.0U KU-001 
NA2W04   37.99 1.33   .Oc,   11.80 25.00 TO 700.0U TR-OOII 
NI\?W201   60.28 9.25   .00   9.59 25.00 TO 700.0U TR-OOI+ 
NO   5.66 .96   .00   -.00 25.00 TO 1.<00.00 LA-OOl 
NAO              TO   
NH02              TO   
NB205   36.22 5.54   .00   11.88 25.00 To 1200.00 LA-OOl 
NB2s5   1+5.53 -.07   .00   3.81 25.00 TO 1200.0U TR-OO'J 
N[J2(C0315  101.1+9 31+.87   .00   35.75 25.00 TO 1200.00 TR-001 
N[32(S0315  70.7'/ 81.0'+   .00   11.88 25.UO TO 12uO.OU TR-OU1 
r'JB2 (SCII 15  82.72 9'+.2'+   .110   7.78 25.UO TO 1200.0U TR-OOl 
DATE 6 OCT. 1911 HEAT CAPACITY (CAL/GMOLE/OEG.K) cOin INUED   PAGE: 20
    ((WATION CP = A + 8T + CT**2 D/T**2   
COMPounD  COEFFICIENTS       Tn:PER A TURE RANGE REFERENCES 
   A BXI0**3   CX10**6  DX10**-5 DEGREES CENTIGRADE  
~11   '+.11 6.95   .00    ,02 25.00 TO 357.20 LA-OU1.PE-00l
   6.UU 1.80   .DC   -.01 357.20 TO 12UO.ou  
NIIIL2011   113.33  .23   .00   12.4U 25.00 TO 7UO.OU Tf(~OOIi 
NIC03   25.87 6.57   ,00   7.06 ?5.00 TO 1~00.01J TR-OOI 
NICR04   38.21 1.2':1   .uo   ':I, '1.1 25.01) TO 7UO.OU TR~OO'+ 
r.;Icr;2011   '+1.34 2.90   .00   5.05 25.UO TO 1200.0U TR~OOIf 
~JIFE20'+   51.62 2/:!.25   .00   '+.6(, 25,00 TO 582.00 CA-056 
   118.66  .lie   .co    .00 5£12.00 TO lUUO.UU  
NIMOOI+   36.98 1.79   ,OU   1:1.16 25.00 TO 7uO.Ou TR-OU4 
NIO   ~4.99 31.5b   .00   -3,8':1 25.(J1) TO 250.00 LA-001 
   11.18 2.02   .uo    .OU 250.UO TO 12UO.OU  
NIS   '.:1.25 12./:\0   .00    ,00 25.00 TO 321.00 LA-001.KU-001
NIS03   27.69 7.213   .UO   ~.5b 25.00 TO 7UO.00 TR-001 
NIS04   3U.08 9.92   .00    .ou 25.uO TO 7UO.UU LA-001 
~,I TI 03   2'J.95 1.68   .UO   4,1\1 2::>.UO TO 12UO.OU TR-OOlf 
NIV20e.   66.61 -11.76   .00   19.65 2::>.UO TO 1200.0U TR~UUII 
tJl.IO'+   35.11 2.63   .CO   6.11 25.00 TO 1.200.00 TH-OOI+ 
NI(N0212  6.86 51.06   .00   -3.63 5'J.00 TO 2UO.OU RA~005 
NI(N0312  116.07 17.6'+   ,00   12.Y/ 2~.OO TO 627.00 RA-005 
NI(N0312,3H20             TO   
NI(N0312.6H20             TO   
NIIOHI2               TO   
r.JIfOH13               TO   
NI3N               TO   
NI3S2               TO   
NO(G)   7.03  .92   .00    .14 25.00 TO <'227.00 KE-9U'.:I 
N02(GI   10.01 2.28   .OU   1.67 25.00 TO 1727.00 KE-909 
N?03«(,1   20.50 2.05   .00   5.14 25.00 TO 1827.00 ST-906 
N201+(GI   26.09 2.72   .UO   7.95 21+.81+ TO 1827.00 ST~906 
N205   12.29 36.00   .00    .00 25.UO TO 32.1+0 ST-'.:I06 

-------
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.KI CONTINUED   PAGE: 21
    Et.lUATION CP = A + AT + CT**2 D/T**2   
COfl/'POUND  COEFFICIENTS       TEMPERATURE RANGE REFERENCES 
   A BX10u3  CX10**6  OX10u-5 DEGREES CENTIGRADE  
N2051GI   3'+.2'+ .7~  .00   15.'+0 32.'+0 TO 1727.00 ST..906 
N21GASI   6.30 1.83  ...33    .00 25.00 TO 1727.00 JA..001 
02   6.53 2.06  ".36    .00 25.00 TO 2700.00 LA..OOl 
PA   5.67 2.26  .00    .02 25.00 TO 327.40 LA..001,PE~UOI
   7.86 .9'+  .21    .00 327.40 TO 7uO.OU  
PRAL204   37.00 8.34  .00   7.92 25.00 TO 600.0U TR"004 
PBC03   23.65 ~.87  .00   5.77 25.00 TO 6uO.OU TR"OOl 
P[3C03*PBO            TO   
PBC03*2PBO            TO   
PBCR04   31.88 9.40  .00   '+.9& 25.00 TO 6UO.OU Tt~-004 
PBCR204   39.12 6.20  .00   3.74 25.00 TO 600.00 TR..OO'+ 
PAFE204   3'+.07 22.59  .00   3.55 25.00 TO 6UO.OU TR"OO'+ 
PSMOO"   30.60 9.90  .00   3.68 25.00 TO 600.00 TR-OO'+ 
PBO   10.60 4.00  .00    .00 25.00 TO 600.00 LA-OOl 
PSo*PBS04  21.55 35.01  .00   ..'+.20 25.00 TO 6UO.OU TR-OU4 
PB02   12.70 7.80  .CO    .OU 25.00 TO 7UU.OU LA-OOl 
PSS   10.66 3.92  .00    .00 25.00 TO 6UO.OU KU-001,LA-UOl
PBS03   17.51 19.10  .00    .OU 25.00 TO 6UO.00 TR-OOl 
PBSO'+   10.94 31.01  .00   -'+.2U 25.00 TO 700.00 LA-001 
PBTI03   18.70 23.30  .00    .00 27.00 TO 6UO.OU KU-OOl 
PBV206   57.11 7.90  .00   13.21 25.00 TO 6UO.OU TR-OO'+ 
PAw04   32.89 5.93  .00   '+.80 25.00 TO 6UO.OU TR-OO'+ 
PAIN0212  '+.64 54.36  .00   -4.94 59.00 TO 2UO.OU RA-005 
PAIN0214  .79 lU8.5U  .00   -9.88 5'.:1.00 TO 2UO.OU RA..OU5 
PBIN0312  43.85 20.93  .00   11.06 25.00 10 600.00 RA-005 
PBIN0314  79.21 '+1.67  .00   22.12 25.00 TO 627.00 RA-005 
PBIOHI2             TO   
P81S0412  31.30 '+3.28  .00   1.16 25.00 TO 700.00 TR-001 
PB304             TO   
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.KI CONTINUED   PAGE: 22
    EQUATIOill CP = A + 8T + CT**2 0/T**2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFERE.NCES 
   A AXI0**3  CX10**6  DXlO**-5 DEGREE.S CENTIGRADE  
PO   5.87 1.33  .00    .1'+ 25.00 TO 12UO.00 LA-001,PE-U01
PDC03   16.35 20.06  .00   5.77 25.00 10 5UO.00 TR-OOl 
PDO   3.30 14.19  .00    .ou 25.00 TO 5UO.OU LA-001 
PDS   5.16 13.07  .00   -.21 25.00 10 5UO.00 TR-OO'.:! 
PDS03   10.21 29.29  .00    .00 2~.00 TO 7UO.OU TR-OOl 
PDS04   12,60 ~1.93  .00    .58 25.00 TO 5UO.00 TR-001 
PDS2             10   
RBN02             TO   
RAN03   25.11 '+U.70  .00    .00 50.00 TO 160.00 MU-911 
   27.'+9 69.80  .00    .00 160.00 TO 22U.00  
   56.06 16.50  .00    .OU 22U.00 TO 281.00  
   39.00 .00  .00    .0\1 281.00 TO 310.00  
   51.61 2.02  .00    .00 310.00 TO 55U.00  
RBoli             TO   
RBOII.H20            TO   
RAOH.2H20            TO   
Rf32C03   28.38 .00  .00    .OU 25.00 TO 26.00 LA-001 
RB20             TO   
RB2S             TO   
RA2S03             10   
RA2S011             TO   
RE   5.66 1.30  .00   -.00 25.00 10 1200.0U LA-'OOl,PE-001
RE02             TO   
RE03             TO   
RES2             TO   
RES3             TO   
RE207             TO   
RE200             TO   
RE2S7             TO   
RH   5.'+9 2.0&  .00    .01 25.00 TO 1200.00 LA-001,PE.-001

-------
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.K) CONTINUED   PAGE: 23
    EQUATION CP = A + AT + CT**2 D/T**2   
COMPOUND  COEFFICIENTS       TEMPEHATURE RANGE REFERENCES 
   A aXI0*-3  CXI0**6  UXI0**~5 UEGREES CENTIGRADE  
RHC03   22.89 11..39  .00   5.77 25.00 TO 700.00 TR~OOl 
RHO   9.8~ 5.53  .00    .00 25.00 TO 700.00 LA~OOl 
RHS   11.70 ~.ijl  .00   ~.21 25.00 TO 700.00 TR-009 
RHS03   16.75 20.63  .00    .00 25.00 TO 700.00 TR~OOl 
RHSO~   19.~0 2.3.27  .00    .58 25.00 TO 7UO.OU TR-OOl 
RH20   15.60 6.~7  .00    .00 25.00 TO 900.0U LA-DOl 
RH203   20.72 13.7&  .00    .00 25.00 TO 900.00 LA-OOl 
RH2S   17.~7 5..35  .00   -.21 25.00 TO 9UO,OU TR~009 
RH2S0ij   2~.90 2ij.21  .00    .58 25.00 TO 600.0U TR~OOl 
RH2S3   26.31 10.ij2  .00   -.6~ 25.00 TO 9UO.OU TR-009 
RH2IS0~)3  ij8.62 67.01  .00   1.7ij 25.00 TO 6UO.OU TR-Oul 
RU   5.2ij 1.50  .00   -.00 ?5.00 TO 727.00 LA-OU1 
   7.20 .00  .00    .OU 727.00 TO 12UO.OU  
RU02             TO   
RU03IGAS)            TO   
RUO~(GAS)            TO   
RUS2             TO   
S   5.~1 .00  .00    .00 25.00 TO 115.18 JA~UU1 
   7.~6 ~9.8~  15.H    .00 115.18 TO ijijij.60  
   3.39 6.86  ~.OO    .00 ~~~.60 TU 1200.00  
SB   5.50 1.76  .00    .00 2~.OO TO 6.30.90 LA~OU1.PE-UOl
   7.50 .00  .00    .00 63U.90 TO 7UO.00  
SB203   19.09 17.08  .00    .00 25.00 TO 900.0U LA-001 
SB20~   22.60 16.20  .00    .00 25.00 TO 700.00 LA~OOl 
SB205             TO   
SB2S3   211.20 13.20  .00    .00 25.00 TO 6118.00 KU~001.KE-002
SB2IAL20~)3 98.30 30.10  .00   23.77 25.00 TO 700.00 Tt~-OO~ 
S82(C03)3  58.25 ~1I.68  .00   17.31 25.00 TO 900.0U TR-OOI 
SB2ICRO~)3  82.9~ .3~.28  .00   111.87 25.00 TO 700.0U TR~OOIl 
SB2(CR20ij)3 10~.66 2~.67  .00   11.22 25.00 TO 900.0U TR-OOII 
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.K) CONTINUEO   PAGE: 2'+
    EQUATION CP = A + BT + CT**2 D/T**2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFERENCES 
   A BXI0**3  CXI0**6  DXI0**-5 DEGREES CENTIGRADE  
SF!2(FE20~)3 lijll.IIO 5.12  .00   50.51 25.00 TO 9UO.OU TR~UUij 
SB2IMOO~)3  79.27 ~'+.78  .00   11.0ij 25.00 TO 7uO.OU TR-OO'+ 
SF\2IS03)3  39.82 62.38  .00    .00 25.00 TO 900.0U TR-001 
SB21S0ij)3  ~6.99 70.30  .00   1.711 25.00 TO 9UO.00 TR-OOl 
5B21TI03)3  70.ij8 i!0.U2  .00   10.ij9 25.00 TO 9U~.. OU TR~OO" 
SB21V206)3  182.75 -1.~6  .00   56.86 25.00 TO 90lhOU TR~OOIl 
S!32IWOII)3  85.98 22.87  .00   lij.39 25.00 TO 900.0U TR~OOij 
SC   6.12 1.ij5  .00    .ij~ 25.00 TO 15UO.OU KR-001 
SC203   23.16 5.6~  .00    .00 25.00 TO 17UO.OU LA-001 
5C21C03)3  62.32 23.211  .00   17.31 25.00 TO 17UO.OU TR-U01 
SC21S03)3  ij3.89 50.911  .00    .OU 25.00 TO 1700.00 Tt~~OOl 
SC2(SO~)3  51.06 5~./J6  .UO   1.7.. 25.00 TO 17UO.OU TR-001 
SI   5.80 .55  .00   1.09 25.00 TO 700.00 LA~001,PE-001
SJOIGAS)            TO   
SJ02   11.21 8.20  .00   2.70 25.00 TO 867.00 LA-001 
   111.ijO 1.9..  .00    .00 867.00 TO 1610.00  
SJSIGAS)  7.25 2.ijl  ~.78    .00 25.00 TO 17UO.OU JA-001 
SIS2   22.80 -2.86  .UO   8.60 2~.00 TO 1610.00 TR~UO'3,JA-OOl
SJ(C03)2  ~5.18 11.12  .00   20.57 25.00 TO 1610.00 TR-001 
511S0::l)2  25.03 3B.ijU  .00   2.6'3 25.00 TO 867.00 TR-001 
51(5011)2  29.81 113.68  ,00   3.85 25.00 TO 867.00 TR-001 
5N   ~.1I3 6.28  ,00    .00 25.00 TO 231.90 LA-001,PE-001
   7.30 .00  .00    .Ou 231.90 TO 7UU.OU  
5NC03   22.60 ':1..36  .00   5.77 25.UO TO 7UU.OU TR-001 
SNO   9.55 3.50  .00    .00 25.00 TO 700.00 LA~001,NI:!-002
SN02   17.65 2...0  .00   5.16 25.00 TO 1200.00 LA~OOl,NB-001
SNS   8.ij8 7.ij3  . .00   -.95 25.00 TO 5811.00 LA~OOl,KU~OOl
   9.78 3.7ij  ,00    .00 584.00 TO 880.00  
SNS03   16.116 18.6U  .UO    .uu 2~.00 TO 7UU.OU TR-001 

-------
DATE 6 OCT. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.K) CONTINUED   PAGE: 25
    E!.IUA TI ON CP = A + OT + Ch*2 0/T**2   
COMPOUN~  COEFFICIENTS       TEMPERATURE RANGE ~EFE~ENCES 
   A BX10**3  CX10**6  DX10**-5 DEGREES CENTIGRADE  
SNS04   18.85 21.24  .00    .58 25.00 TO 700.00 TR-OOI 
SNS2   15.51 '+.20  .00    .ou 25.00 TO 700.0U LA-001,KU-00l
SNIAL.204)2  70.46 11.08  .00   21.00 25.00 TO 700.0U TR.004 
SN(C03)2  43.76 14.13  .00   16.70 25.00 TO 1200.0U TR-OOl 
SNICR04)2  60.22 13.20  .00   15.07 25.00 TO 700.00 TR-OO" 
SNICR204)2  74.70 6.79  .00   12.63 25.00 TO 12UO.OU TR-OU4 
SNIFE20,+)2  105.18 -10.13  .00   '+1.98 25.00 TO 1200.00 TR-OO'+ 
SNIMOO'+)2  57.77 14.19  .00   12.52 25.00 TO 7uO.OU TR-OO,+ 
SNIN02)2  3.59 53.8&  .00   -4.94 59.00 TO 20.0.0U RA-005 
SN(N02)4  5.75 lU5.10  .00   ..4.73 59.00 TO 200.00 RA-005 
SN(N03)2  42.80 20.~3  .00   11.0& 25.00 TO &27.00 RA-005 
S~J (N03) '+  8'+.16 36.27  .00   27.28 25.00 TO 627.00 RA-005 
SN(OH)2             TO   
SN(OH),+             TO   
SN(s03)2  31.'+8 32.60  .00   5.16 25.00 TO 1200.00 TR-OOl 
SN(SO'+)2  56.26 37.88  .00   6.32 25.00 TO 12uO.OU TR-OOl 
SNcTI03)2  51.91 '+.36  .00   12.15 25.00 TO 1200.00 TA-004 
SN(V206)2  125.36 -8.52  .00   '+1.83 25.00 TO 1200.00 TR-OO'+ 
SN(WO'l)2  62.25 6.26  .00   1'+.1:':> 2:':>.00 TO 12UO.OU TR-OO'+ 
S02   7.02 9.75  -3.58    .OU 25.00 TO 12UO.OU LA-OOl 
S03   6.90 20.37  -7.12    .OU 25.UO TO 12UO.00 LA-OOl 
SR   5.61 1.35  .00    .01 25.00 TO 7UO.00 LA-OOl 
SRIIL.204   ~8.1~ 5.'+"  .00   ".73 25.00 TO 7UO.00 TH..OO'+ 
SRC03   21.41 8.56  .00   3.39 2~.00 TO 1UO.00 LA-OOl 
SRCR04   33.62 6.52  .00   6.76 25.00 TO 1UO.OU TR-OO'+ 
SRCR204   4U.86 3.32  .UO   5.54 25.00 TO 1uU.ou TR-UO'+ 
SRFE204   38.79 15.87  .00   7.41 25.00 TO 700.0U TR-OO'+ 
SPM003             TO   
SRM004   32.39 7.02  .00   5.4!! 25.UO TO 7uO.OU TR..OU4 
SRO   12.33 1.12  .00   1.81 25.00 TO 7UO.OU LA-OOl 
DIITE 6 OC T. 1971 HEAT CAPACITY ICAL/GMOLE/DEG.K) CONTI NUEO    PAGE: 26
    EQUA TION CP = A + 8T + CT**2 D/T**2   
COMPOUND  COEFFICIENTS       TEMPERATURE RANGE REFEKENCES 
   A BX10**3  CXI0U&  OX10u-~ DEG~E£S CE:NTIGRAOE  
SRS   1'+.20 .00  .UO   1.59 25.00 TO 1UO.OU TR-009 
SRS03   19.24 16.22  .00   1.81 25.GO TO 7UO.OU TR-001 
SRSO'+   21.19 13.30  .00   -.00 25.00 TO 12uO.Ou LA-OOI 
SRTI03   28.23 2.0,+  .00   '+.56 25.00 TO 1500.00 LA-001.KU-001
SRV2D6   61.31 1.85  .00   16.71 25.00 TO 1UO.00 TR-004 
SRWO'+   3'+.62 3.05  .00   6.6U 25.00 TO 1UO.OU TA-U04 
SR(H02)2  6.38 51.48  .UU   -3.1" 5':1.00 TO 2uO.OU RA...005 
SRCN03)2  28.10 39.42  .00   3.58 25.00 TO 621.00 TA-'313 
Sf\(~103)2.'+H20           TO   
SR(01!)2   1.64 ~~.'+O  .00    .ou 25.00 TO 535.00 KE-909 
   36.50 .00  .00    .00 535.00 TO 921.00  
SR(OH)2.H20           TO   
SR(OH)2.8H20           TO   
SR;>TI04   38.'+5 3.8'+  .UO   4.67 25.00 TO 15uO.OU KU-U01.LA-U01
SR3N2             TO   
S(GAS)   5.97 -1.26  .'+1    .00 25.00 TO 1700.00 LA-OOI 
T/I   6.2& .'12  .00    .30 25.00 TO 12UO.OU LA-OU1.PE-U01
TA~J   1.73 1.80  .00    .00 25.00 TO 527.00 KE-909.KU-903.
             TO  LA-908 
TA2N             TO   
TA::>05   56.98 b.56  .00   5.95 2~.00 TO 1200.00 LA-OOl 
H2S5   '+6.30 .95  .GO   4.88 25.00 TO 120C.OU TR-C09 
TA2(C03)5  102.26 35.89  .00   34.8U 25.00 TO 12UO.OU TR-001 
T1\2(503)5  71.53 82.06  .00   5.95 25.00 TO 12UO.ou TA-001 
T/l2(S(";4)5  53.,+!! 95.26  .00   8.85 25.00 TO 1200.00 TR-OOl 
TH   5.18 4.5'+  .00    .OU 25.00 TO 1200.00 L.A-001,PE-uOl
TH02   15.83 2.88  .00   1.60 25.00 TO 1200.00 L.A-001 
THS             TO   
THS2   19.55 .6'+  .00   1.1& 25.00 TO 12UO.01J TA-009 
TH(AL2Q4)2  68.64 11.56  .00   17.44 25.00 TO 7UO.OU TR-004 
THI(03)2  ~1.9'+ 14.61  .00   13.14 25.00 TO 1200.0U TA-OOI 

-------
DATE 6 OCT. 1971 HEAT CAPACITY CCAL/GMOLE/DEG.K) CONTI NUEO    PAGE: 27
    EC;UAT1JN CP = A + BT + CT....2 0/T**2   
CO~1POUND  COEFFICIENTS       TEMPERATURE RANGE REFEKENCES 
   A BX10**:1   CX10U6  Dx10**-5 DEGREES CENTIGRADE  
TIICCROII)2  58.110 13.613   .CO   11.51 2tJ,OO TO 7UO.OU TR~OUII 
THCCK204)2  72.88 7.27   .00   9.08 25.00 TO 1200.00 TK..004 
TH(FE204)2  10j.~6 -9.65   ,00   38.42 25.00 TO 1200.00 TR-004 
TH(M004)2  55.95 14.68   .00   8.96 25.00 TO 7uO.OU TR-004 
TH(S0.3)2  29.65 33.08   .00   1.60 25.00 TO 1200.00 TR-001 
TH(S04)2  25.00 55.20   .00    .00 25.00 TO 6~7.00 CA-011 
TH(TI0.3)2  50.09 4.84   .00   8.59 25,00 TO 12uO.00 TK-004 
TH(V206)2  12~.54 -8.04   .00   ~8.27 25.00 TO 1200.00 TR-004 
TH(W04)2  60.43 6.74   .00   11.19 25.00 TO 1200.00 TK-004 
TH2So3               TO   
TI   6.~8 1.13   .00    .6':/ 25.00 TO 1668.00 JA-OU1 
TIc03   22.90 10.24   .00   7.02 25.00 TO 1200.00 TK-OOl 
TIN   11.91  .94   .00   2.96 25.00 TO 1727.00 LA-908,t.00 TO 12UO.OU LA-OOI 
U02S04   26.90 26.lIO   .00    .00 2:').00 TO 500.0U OW-OOl 
U03   22.08 2.54   .00   2.97 25,00 TO 6UO.00 LA-OOl 
US              TO   
US2   15.20 8.70   .00    .00 25.00 TO 352.00 KU-OOI 
UCAL204)2  72.00 10..10   .00   19.80 25.00 10 700.0U TR-004 
UIC03)2   45.30 13, .35   .GO   15.50 25.00 TO 12uO.OU TR-001 
UCCR04)2  61.76 12. '12   .00   13.87 25.00 TU 700.00 TR-004 
l'(CR2:J4)2  76.24 6.02   .110   l1.'Ij 2:').00 TO 1200.00 TR-004 
U(FE204)2  106.72 -10.Y1   .00   40.78 25.00 TO 12UO.OU TR-OO'l 
UCM004)2  59.31 13.'12   .00   11.31 25.00 TU 700.00 TK-004 
U(S03)2   33.01 31.82   .00   ~.96 25.00 TO 12UO.OU TR-001 
U(S04)2   37.79 31.10   .00   5.12 2tJ.00 TO 12UO.OU TR-C01 
U(TI0.3)2  53.4tJ 3.58   .00   10.95 25.00 TO 1200.0U TR-004 
UIV2(6)2  126.'30 -9.30   .ce   40.63 2tJ.OO TO 12UO.00 TH-004 
UIWQ'I)2   63.18 5.48   .00   13.55 25.00 TO 12UO.00 TK-004 
U?S.3              TO   
u308   67.50 8.83   .00   11.94 25.00 TO 6UO.00 KU-001 
V   4.36 2.42   .00   ...28 2tJ.GO TO 1200.00 LA-001.PE-001
VC03   24..17 9.fJ6   .00   7.03 25.00 TO 12UO.OU TR-U01 
VN   10.94 2.1U   .00   2.21 25.00 10 1527.00 LA-908,K£-,:/09
va   11.31 3.22   .00   1.26 25.00 TO 1200.0U LA-OOl 

-------
'-----                 
I                 
 DATE 6 OC T. 1971 HEAT CAPACITY (CAL/GMOLE/DEG.K) CONTINUED   PAGE: 29
     EQUATION CP = A + AT + CT.*2 D/T**2   
 COMPOUr,jQ  COEFFI C I E"NTS      TEMPERATURE KANGE KEFEKENCES 
    A B)(10**3  CXlO**6  UX10u~5 UEGREES CENTIGRADE  
 VOS04   21.15 19.46  .00   4.52 12.00 TO 120.00 TK-OOl 
 VS   13.18 2.10  .00   1.04 25.00 TO 1200.00 TR-009 
 VS03   18.22 18.32  .00   1.26 25.00 TO 11UO.OU TR-001 
 VS04   20.61 20.96  .00   1.84 25.00 TO 12UO.OU TK-001 
 V:>03   29.34 4.76  .00   5.42 25.00 TO 1200.0U LA-OOl 
 V2'J4   29.89  .00  .00    .00 25.00 TO 12.00 LA-OOl 
    35.69 3.45  .00   7.89 12.00 TO 12UO.00  
 V:>05   46.51 3.90  .00   13.21 25.00 TO 610.00 LA-001,NB-003
    45.58  .00  .00    .00 670.00 TO 12UO.OU  
 V2~3   34.93 1.40  .00   4.7!! 25.00 TO 12UO.OU TK-009 
 V;>S4   42.61 -.69  .00   6.15 25.00 TO 1200.0U TK-009 
 V'S5   63.11 -11.06  .00   17.26 25.00 TO 12UO.00 TR~009 
 V2(C03)3  68.50 22.36  .00   22.13 25.00 TO 12UO.00 TK-001 
 V2(S03)3  50.01 50.06  .00   5.4~ 25.00 TO 11UO.OU TK-OOl 
 V2(s04)3  57.24 5(.98  .00   7.16 25.00 TO 12UU.OU TR-U01 
 ~J   5.85  .12  .00    .24 2~.00 TO 3311.00 JA-001 
 wo:>   15.49 3.58  ,00   2.80 25.00 TO 2121.00 JA-001 
 ~J(13   20.81 3.81  .00   3.85 25.00 TG 771.00 JII-OOl 
    20.I$U 2.76  .UO   -.lu 771.UO TO 1472.00  
    31.50  .00  .00    .00 1472.00 TO 1667.00  
 WS;:>   21.55 -.36  .00   2.91 2~.00 TO 12UO.OU TR-009 
 I.(C03):>   41.60 15.,H  .00   14.34 25.00 TO ;;>721.()[) TR-001 
 .W(C03)3   57.4~ 23.13  .00   18.20 25.00 TO 1661.00 TR-001 
 W(S03)2   31.65 32.09  .00   3.34 25.00 TO 1uo.00 TR-001 
 ~,( 503) 3   43.03 47.23  .00   4.80 2~.O[) TO 12UO.OU TR-UU1 
 ~;(S04)2   36.43 31.37  .00   4.50 25.00 TO 12UO.00 TR-001 
 WIS04)3   50.20 55.15  .00   6.54 25.00 TO 1200.00 TR-001 
 Y   5.59 1.90  .00   -.29 25.00 10 15UO.00 KU-001 
 Y203   29.00 1.20  .00   4,78 25.00 TO 10 U 0 .011 KU-C01 
 Y2(C03)3  &8.71 18.80  ,00   22.09 25.00 TO 1000.00 TK-OO:" 
OIlTE 6 oC T. 1911 HEAT CArllC ITY (CIIL/GMOLE/OEG.K) CONTINUED    PAGE: 30
    Ef,;UATION CP = II + 8T + CT**2 D/T**2   
cor,'POUNO  COEFFICIENTS       TEMPERATURE RANGE KEFERENCES 
   A BXIO**3   CX10**6  UX10u-5 DEGREES CENTIGRADE  
Y2(S03)3  50.,s3 46.50   .00   4.7!! 25.00 TO 10UO.00 TH-001 
Y;;>(S0413  ~7.50 54.42   .00   6.51:! 25.00 TO lUUO.UU TR-001 
7.N   ~.33 2.42   .00   -.01 2~.00 TO 419.50 LA-001,PE-001
   1.48  .00   .00    .00 419.50 TO 7UO.OU  
7.NIIL204   36.11 5.56   .00   10.10 25.00 TC 700.00 TR-004 
ZNC03   24.76 1.08   .00   7.95 25.00 TO 1.2uO.OU TR-001 
ZNCRC4   32.99 6.62   ,00   7.14 25.00 TO 100.0U TR-004 
ZlICR204   25.49 21.69   .00    .00 2~.On TO 7UO.OU LA-001 
zr.IFE204   30.79 13.89   .00    ,00 25.00 TO 700.00 LA-001 
ZNM004   31.76 7.12   .00   5,86 25.00 TO 7UO.00 TR-004 
ZNO   H."(O 1.;>2   ,00   2.16 ;>S.uO 10 12UO.OU LA-DU1 
UJO*2ZNS04  45.82 42.79   .00   2.18 25.00 TU 100.00 TR-004 
2rJS   12.1(, 1.24   .00   1.3b 25.00 TO 921.00 LII-001,KU-OO]
Z~ISO,s   1t!.bl 1:!7.?6   .00   1:!.1t! 25.00 TO 12UO.OU TR-U01 
Z~:"04   11.0& 20.79   .00    .00 25.00 TO 727.00 LA-001,NI:!-003
l~!TI03   2t!.83 2.19   .00   5.66 25.00 TO 1200.0U TR-004 
Z~'V206   65.56 -4.24   .00   20.51 25.00 TO 1200.00 TK-004 
n;I'j04   33.99 3.15   .00   6.97 25.0(1 TO 1200.0U TR-iJ04 
7.r! (NO?)2  5.75 ~1.58   .00   -2.76 5':1.00 TO 200.00 RA-005 
n (1,03)2  44.96 HI.15   .CO   13.24 25.00 TO 621.00 P.A-005 
zrl(fl.03)2.H2(1             TO   
zr.; (r,03) 2. ::>d20             TO   
7r: I I\0312.4H20             TO   
ZtJ(r)03)2.f;rlI:!O             TO   
IN(OIl):>               TO   
7N?T r ell   3':1.!J0 5.54   .00   7.69 25.00 TO 1500.00 LA-001,Ku-U01
Zr-i3r12   19. ':13 20.1'.0   .00    .00 2~.00 TO 427.00 KE-90':1 
ZP   6.83 1.12   .00    .91 <'5.00 TO 862.00 KU-001 
   1.'d1  .no   ,00    .00 86~.OO TO 11UO.00  

-------
DATE 6 OC T. 1971 HEAT CAPACITY (CAL/GMOL~/DEG.K) CONTINUED   PAGE: 31
    EQlJ.ATION CP = A .. RT + CT**2 0/T**2   
COv'POUr~D  CUEFFICI[NTS       TEMPERATURE RANGE REFERENCE.S 
   A f3X10**3   CX10**6  DX10**-5 DEGHEES CENTIGRADE  
ZR~:   11.10 1.68   .00   1.72 25.00 TO 1427.00 KE-909,KU-903,
               TO  L.A-908 
ZR02   H..63 1.80   .00   .3..36 25.00 TO 700.0U LA-OOl 
ZP~2   20..35 -.44   .00   2.92 25.00 TO 7UO.OU TR-OO'J 
ZR(AL204)2  69.44 10.'H!   .00   19.20 25.00 TO 700.00 TR-OOII 
ZR(C03)2  42.74 13.53   .UO   14.90 25.00 TO 700.00 TR-001 
7R(CR04)2  59.20 12.60   .00   13.27 25.00 TO 7UO.OU TR-004 
ZR(CR204)2  73.68 6,19   .00   10.84 25.UO TO 7uO.OU TR-OOII 
7R (FEU'4) 2  69.55 31..~1   .00   1'+.5i 25.00 10 1UO.OU 1R-001I 
ZR(M'.J04)2  56.75 13.(,0   .00   1U.72 25.00 Te IU 0.0 U TR-OOII 
ZR(N02)2              TO   
. 7.R(N02)4  4.75 1U2.50   .00   -6.53 59.00 TO 2UO.OU RA-005 
ZP(h03)2              TO   
ZR(N03)2.61120             TO   
ZR(~~C3)'1  8.3.14 .35.67   .00   25.48 25.00 TO 627.00 RA-005 
ZR(OH)4               TO   
ZR(OH)I.i.H20             TO   
ZR(OH)4.2H20             TO   
ZR(S03)2  30.115 32.00   .00   3.36 25.00 TO 7UO.OU TR-UU1 
ZR(S04)2  35.23 37.28   .00   4.52 25.00 10 700.0U TR-001 
ZP(TI0312  50.89 3.76   .00   10.35 25.00 TO 700.0U TR-OOII 
ZP.(V20612  114.58 3.25   .00   33.17 25.00 10 7UO.OU TR-OOII 
7.R(W04)2  61.23 5.66   .00   12.95 25.00 10 7UO.OU TR-004 
ZR3r.:2   21.64 26.0i)   .00    .00 25.00 10 527.00 LA-908,KE-909

-------
Radian Corporation
8500 SHOALCREEK BLVD. . AUSTIN, TEXAS 78758 . TELEPHONE 512 -454.9535
TECHNICAL NOTE 200-007-06
HIGH TEMPERATURE BEHAVIOR OF ANHYDROUS
AND HYDRATED NITRITE AND NITRATES
13 August 1971
Prepared by:
Terry B. Parsons

Nancy P. Phillips
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8500 SHOALCREEI( BLVD. . P. O. BOX 99iS . AUSTIN, TEXAS 79758 . TelEPHONE 512. 4S04.9535
Radian Corporation
8500 SHOALCREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 7B7S8 . TELEPHONE 512. -4S<4-~35
1.0
INTRODUCTION
1.2
Significance of the Nitrate-Nitrite Thermal
Decomposition Process
This technical note presents the results of a liter-
ature review on the high temperature behavior of metal nitrates
and nitrites. The findings of the review are discussed in
terms of their implications for the use of thermal decomposition
as a regeneration method in a nitrogen oxides removal process.
1.1
Literature Survey
Thermal decomposition is being considered as a possible
method of regeneration for the products of a nitrogen oxides
removal process. One way of evaluating nitrate decomposition as
a regeneration process is to examine the energy requirements,
i.e., to compare the relative magnitudes of the free energy
changes involved when different metal nitrates undergo decompo-
sition in a specified temperature range. This evaluation method
was applied in the thermodynamic screening of sulfate decompo-
sition processes for regeneration of metal oxide SO; sorbents
(LO-Ol7) .
Examination of the literature on nitrate-nitrite
decomposition was facilitated by the existence of several
reviews (ST-026, LE-005, SC-029, GA-038). K. H. Stern was
kind enough to provide a copy of the unedited manuscript
(ST-026) of his forthcoming NBS publication, "High Temperature
Properties and Decomposition of Inorganic Salts. Part 3.
Nitrites and Nitrates." This review covered the literature on
anhydrous salts published up to 1964 and some later publica-
tions. Chemical Abstracts was used to search the literature
In the case of nitrate decomposition, thermodynamic
screening based on simple well-defined decomposition reactions
is difficult to apply. A series of complex, interdependent
reactions take place during decomposition. Gaseous decomposition
products react with each other in a manner that can be repre-
sented by the series of reactions given in (1-1) through (1-5)
for pertinent information published after 1964. The review
by Gastwirt and Johnson (GA-038) was not obtained in time to
be evaluated. The dissertations of Lee (LE-005) and Schneller
(SC-029) contained detailed reviews for a limited number of
compounds.
NO + NOa ~ Na03
2NOa ~ Na04
Na03 + HaO ~ 2HNOa
Na04 + HaO ~ HNOa + HN03
NO + ~Oa ~ NOs
(1-1)
(1-2)
(1-3)
(1-4)
(1-5)
Some of the references treated in the reviews were
further consulted for more details. Many references not dis-
cussed by the reviewers were also consulted. In some cases,
only the abstract of a reference was consulted. In those
cases, the volume and number from Chemical Abstracts is given
in the bibliography. Details were gathered concerning experi-
mental methods, phase transitions, decomposition behavior and
products, and proposed reactions. These details were tabulated
in a consistent form for each metal nitrate and nitrite. The
tabulated data are presented and discussed in Section 2.0.
Lee reported (LE-005) that Cho and Johnson (CH-035) also
found nitrous oxide, NaO, among the reaction products of lithium
nitrate decomposition. The product, found using mass spectroscopy,
was not reported by many other authors as a decomposition product.
As pointed out by Lee (LE-005), (1) it probably wasn't noticed
since it is only produced in small amounts, and (2) if alkaline
absorption were used as the method of analysis, NaO would show
up as NO.
-2-

-------
Radian Corporation
asoo SHOAlCREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78758 . TELEPHONE 512. -4S4.9S)~
Radian Corporation
8SOO 5HOAlCREEK BLVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 78758 . TELEPHONE 512. "s-t-9535
A computer program has been written (see Technical
Note 200-007-03) to calculate the existing number of moles of
each of the species appearing in the above equations under
given conditions of temperature, pressure and total chemical
NO and NOa. This program does not consider the effects of
reaction (1-5). The program was written to describe gas phase
conditions in aqueous scrubbers where the residence time and
temperature limits are such that the reaction in (1-5) is
kinetically limited. This may not be the case at the higher
temperatures encountered in thermal decomposition.
data base and the missing properties including high temperature
heat capacities have been estimated for the anhydrous salts
(see Technical Note 200-007-04). Therefore, the possibility now
exists of calculating equilibrium constants (free energies) for
any reaction involving oxides, nitrates, nitrites and the
gaseous species of interest. The problem of formulating a
representative reactfon still remains.
2.0
TABULATED DATA
Gaseous decomposition products also react with the
product oxides and nitrites in secondary reactions that may be
partially inhibited by removing gaseous products in a flowing
gas stream. However, the secondary reactions may also occur
in the melt where the gaseous products exist as bubbles before
they are evolved. Therefore removal of the product gases after
they have already left the melt would not entirely inhibit side
reactions.
The details collected from the literature concerning
nitrate-nitrite behavior are summarized in Table I. Temperatures
and enthalpies of crystalline phase transitions and melting
points are listed under the column heading "Transitions." Experi-
mental details of decomposition experiments, temperatures of
significance in the decomposition process, products identified
and reactions proposed are listed under the column heading
"Decomposition." References are given in the Bibliography in
Section 4.0. Table I is included at the end of Section 3.
The complications discussed above prohibit the formu-
lation of a simple, realistic, generalized decomposition reaction
for which a free energy change may be calculated that gives a
meaningful description of the decomposition process. With
careful evaluation of assumptions, valuable calculations may be
made. Stern (ST-026) and Kelley (KE-02l) have made equilibrium
calculations based on simplified reactions and involving some
assumptions about activities in the melt. The only gas phase
reaction considered was (1-5). Their calculations were limited,
however, by the lack of both high temperature heat capacity data
and standard state thermodynamic properties for some of the
nitrates and most of the nitrites. The reported thermodynamic
properties of the anhydrous and hydrated nitrates and nitrites
and the gaseous species have been collected and tabulated in a
The temperatures of significance listed in the
Decomposition Section should be considered carefully. "Decompo-
sition temperature" is not a meaningful description unless the
author has specified what he has observed as evidence of decompo-
sition. One accepted definition is "that temperature at which
the partial pressure of the gaseous decomposition products
reached 1 atmosphere." It is doubtful that any of the tempera-
tures listed in Table I refer to the decomposition temperature
so defined. Many are given as results of TGA studies and refer
to the temperature at which weight loss corresponding to nitrogen
oxides evolution began. Others simply refer to the temperature
at which some visible evidence of decomposition such as bubbling
or evolution of either Oa or brown NOa fumes was apparent.
-3-
-4-

-------
Radian Corporation
esoo SHOALCREEK BLVD. . P. Q. BOX 99.8 . AUSTIN, TEXAS 7ern . TELEPHONE 512 - 4S4.9S3S
Radian Corporation
esoo SHOALCREEK BLVD. . P. O. BOX ".0 . AUSTIN, TEXAS 7B7S8 . TELEPHONE 512. 4S4-953S
Others refer to the temperature at which the decomposition rate
was the greatest. Another accepted definition (KU-005) is the
temperature at which there is a sharp break in conductance
through a capillary tube containing the salt. Since molten
nitrates or nitrate-nitrite mixtures find some practical applica-
tions, many studies have been conducted to determine (1) the
lowest temperature at which nitrate ion begins to break down in
the melt and (2) the range of temperatures over which decompo-
sition occurs but is still slow enough that the melt can be
used in the process of interest. Kust and Burke (KU-005, KU-012)
have observed nitrite ion in pure NaN03 - KN03 eutectic melts as
low as 295°C, indicating that some decomposition has already
taken place. This type of information is valuable for determining
the onset of decomposition but not the temperature required for
rapid reaction rates.
or the ability to distort the anion which is determined by the
electronic configuration of the cation. Several authors (SH-017,
LA-OIl, TK-OOl, AL-006, BO-008) have noticed that thermal
stability increases with the decrease in polarizing power or
electronegativity from lithium to cesium or beryllium to barium.
The polarizing power is described quantitatively by the term
e/rB where e is the electron charge and r the ionic radius.
Obviously, as the ionic radius increases from lithium to cesium
and beryllium to barium the polarizing power decreases and the
ionic character increases.
3.0
DISCUSSION
Other indications of thermal stability have been
discussed. Tkach (TK-OOl) pointed out that melting points and
decomposition temperatures usually increase with heat of forma-
tion. Stern (ST-025) discussed the usefulness of free energy
functions for describing thermal stability. He developed a
correlation for the heat of the decomposition reaction forming
Na06 and metal oxide as a function of r},z/Z*. Z* is the effective
nuclear charge felt by the electron in a bond and r is the covalent
metallic radius. Stern (ST-026) and Bordyushkova, et al. (BO-OOB)
pointed out the difference in stability and behavior of ionic and
covalent nitrates. Stern's generalizations were as follows:
This section contains some generalizations that can
be made after examining the data summarized in Table I. It
also gives some explanations proposed by various authors for the
variations in thermal stabilities of nitrates and nitrites.
Some proposed mechanisms and the possible paths for nitrite-
nitrate decomposition are also presented.
Ionic nitrates, in which the nitrate ion
is a distinct entity (not distorted or
deformed) such as it exists in aqueous
solutions, melc to form stable liquids.
The decomposition of metallic salts of oxyanions has
been described by Stern (ST-025) as decomposition of the oxyanion
accompanied by change of the metal from occupying a nitrate to
occupying an oxide lattice. Such reasoning would lead to the
prediction that all nitrates (sulfates, carbonates, etc.) decompose
around the temperature at which the nitrate (sulfate, carbonate,
etc.) ion became unstable. Variations in thermal stability of
metal nitrates must therefore be explained by some property of
the metal ion. One such property is the cation polarizing power,
Some decomposition of the melt from
nitrate to nitrite occurs, and the
nitrites and nitrates are stable with-
in overlapping temperature ranges.
Therefore the decomposition path is
complicated.
-5-
-6-

-------
Radian Corporation
B500 SHOALCREEK BlVD. . P. O. BOX 99-iB . AUSTIN, TEXAS 78758 . TElEPHONE 512. 045
-------
 LT' .... 
.i- m . T 
'" ~~"llJ 
~~.. JlJ-42 
.ilh Jl4U ~11: IU."" 
 .,' Ita' 
.i- =-308 'ow 327 
  ~id. UO.., 
 S' c.' 'e
j- 3)4.7 ,.. 
"0-6) 'ow 61}." 
  1."'.64) 
..'
...
. 310 .. !70-(!0
'1- '12-60( ~c::. ::~.6IIC
Co'
...
~i- ~~~.U .i- ~~:::
"'ld 692
"
..
I
'f
....
.. )8
No d~ d'
y
Odd.:
zrO.
w"
..
z...
m
Rf
..L\!!oL!L
TDO'WTtmES flY SJG1I:JFIWt:! IJt IIJTAATI nJER7'W. D1rQlQ'OSITJOfi!
. Ionic BondIng
.... Covalent 80ndlns
.
C,"
tin... Fa" Cdt IU" ~I""

~~g jow ~()( = ~~g-2Jt ~ ~g;~16 iCN ~~~
280 ~ld.: Taap. ~~~::280-JC ;!~.~u.o f!~::JOO
. 0 4M-' 10 300-) uO '00-)0
aat 60-100 1-
~1~.: ..t
riO, 200 ~!d.:
riO. 4"~.
..
""
T,
v
T,
'"
'u
..
..
T,
Pd"
       H ..
  .  C . 0 , ..
  AI"  Ii , . Ci lor
  ~:~~r~60-80     
  ~l.~.: 190-46     
 z".. C.  C. .. ., ., '"
:E:: ~~-2' ~~de: 2..     
. 340.47       
"I' Cd'
:iov ng-21/ ~r~::>JOO
~:~1 :~~-SO Cdo 4]5-~
"
'"
1."
'0"
..
.b
T,
Slgot >90
91
Slow 98
....
n.
..
So
Pb'
..-
..
;i- }~~-10 t~1~:> ~;~ ~~.:r~.2!
1'bO, ns 81,0. '60-600

-------
   TABLE I - DECONPOSITION BEHAVIOR OF ANHYDROUS AND HYDRATED NITRITES AND NITRATES  
        TRANSITIONS    DECO~IPOSITION         
   COMPOUND ~ ~ ~H(Kcal/mole) ~ ...li:.£L. Method/Cor.:mencs  Pro due ts Reactions   ~  DISCUSSION
  1. LiNO,  220  SoL  SI-026 300 Stable   NO, NO. 2LiNO, ;t Li:aO + NO  SI-026 Stern (SI-026) reports
          350 Slow dccomposi-    + NO, (1)  the gaseous products
            tiOD.          oxidize the ni::rite to
           >350 Norc rapid de-         nitrate if they are not
            composition.         removed.  
     96  S-S  PR-003  A thin 2.0 ern  At 250 2LiNO, ~ Li,O + N'~h LE-005 The reactions were
     226  SoL     layer of mol ten  co 350:   found to be mainly homo-
            nitrite was  0" N~, N.O" t! :\0 + :\02 (3)  geneous (in the melt)
            contained in a  N,O, 0,  rather than to involve
            platinum dish  L1N03, Reactions involving  gaseous nitrogen oxides.
            under a flow-  LI,O. products:    N:I 03 and N0:;t concen-
            Lng argon at..  NO, g1 v- LiNO;j+ NOlO" ;! LiNO"  crations in the mol ten
            r.:osphcrc in  cn off  oj. 2NO (4)  phase are very small;
            a muffle fur-  above   both are consUII:cd in
            nace. Tempera-  450. 2LiNO;l + ~;I g: O;! 2Li(~~  other reactions in the
            ture was con-    melt as soon as they
            stant: 1°C.   Li; 0 + 2NO; ;! LiNO~  were formed (reactions
            Experiments    4, 5, and 6). Reae-
            were done at    + LiNO, (6)  tion (7) was found to
            250, 300, 350,   2LiNO, + 2NO ~ 2LiNO~  be strongly tempera cure 
            .:md 4500.     + N, ( )  de;:»endent. The ",ice
            Compositions of   2LiNO, ~ 2LiNO, + ~~)  rn.nge of proportions of
            the melt and gas    Ni and i\O found at
            phase were de-    dlfferent temperatures
            termined after         is attributed to the
            0, 1, 2, 3, 4,         temperature dependence
            5 and 6 hours.         of this essentially
           160 NO was first         irreversiblt! reac::ion.
            detected ilt 1600.         The sequence or rcac-
            Kinetic runs         tions is 1n the order
 o           were not possi-         4, 5, 7 J arid 8. After
 I           ble:! at 4500 sinC2        II certain period, (7)
            the reac tion         becomes rate control-
            vessel overflo"-Cd.        ling. The rate 3t which
                   a steady dccoxr.posltion
                        ,,'as obtained \\'as found
                        to depend on the solu-
                        bility of gases in the
                        melt. The mechani sm
                        for this decor.:position
                        appears to depend on
                        temperature and melt
                        composition. The stoi-
                        chiometries are differ-
                        ~~5. at T~~O ~e~g~!o~n~t
                        450 is the only one for
                        which NO" could be de-
                        tected in the gaseous
                        products. This agreed
                        with the reports by
                        Pcncloux (PE.01S) that
                        a rapid, high te:n?era-
                        ture decomposition pro-
                        duced KO; while a slow,
                        low tc:aperature decom-
                        position produced ~O.
                        n".e solubilities of ~O
                        and N0;l in the u:elt can
                        (cont.) 
       TRANSITIONS    DECO~IPOSITION         
   CO,IPOtJ:ID ~ !:!J!.£ I\!;(Kcal/mole) ~ ...li:.£L. Method/Comments ~ Reactions   ~  DISCUSSION 
  ,I.. LiNOa (cont.)                    probably account for
                        part of these results.
                        The deco;r.posi tion rato
                        WLlS considerably fnster
                        at 450, . and t\O;l was
                        detected in the gas.
                        The decomposition is
                        st111 slow at 350. 
  2. LiNO,  120  S-S  SC-Ol2 293 Decomposi tion 0,  LiNO" ~ LiNO, + %O~  SI-026 Stern reports oxides
     170  s-s  PR-003  begins slowly at      ( a)   of nitrogcrI can also be
     230  S-S     about 400 above         fanned if container
     253  SoL 6.04 SI-026  the mel ting          material is not inert.
         SC-012  point.          Nitrite product dissolves
         80-008 383-420 I>1easurable 0;         in melted nitrate. 
            pressures achiev-            
            ed in this range.            
           >457 Rate is appre-            
            ciable only in            
            this range.             
           450,500 Nitrate still O~. N~O UN03 ~ LiNO, + %O~  CH-035 Tho rate constants for
            stable.    ( a)   (90) were rr.easured at
                  LiNO, + LiNOb ~ LiS 0   450 and 500'C. Nitrous
                  + 2N, (9)   oxide (N20) was detected
                     in the gaseous products
                        using mass spectrcmetry.
I                           
I-'  3. LiNO,' 3H,,0 29.9  SoL 8.33 NE-004                 
I-'                         
I                           
  4. NaNO,  162  S-S .299 AD-002 >330 Nitrite unstable N;03. 2NaNO, ;! Na:aO + NO  SI-026 If the gas phase 1s
     281  SoL 2.48 SI-026  above 330.  NO. NOa J  + NO, (10)   continually removed. this
     166  S-S  PR-003      NaaO       15 the only reaction ttm:
     283  SoL  PR-003              occurs.  
     161  S-S .285 NO-005                 
           330-380 Ni trate is  Na, NO. 2NaNO; + 2NO ~ 2NaNO~  ~-026 These are the reac tions
            formed.  NaN03  + N, (11   involving the products
                  Na,O + ~N~~g,Nan~)   NO and NO, and the re-
                    maining nitrite. The
                    nitrate is stable in
                  NaND; + NO:a t! NaN03   this temperature rango
                   + NO (13)   (~-~~6)~ unreactive
           600-750 Nitrate begins 0,  NaN03 ~ NaNO, + %Ot  SI-026 The activation energy
            to decompose      ( 4)   for this reaC cion has
            to nitrite.          been reported as 44.7
                        and 40.3 kcal.  
           600-750 Nitrite decorn- N;. 0:1 2NaNO~ ~ Na,O + Nt  SI-026 The activation energy
            poses to the   + /2 0, ( 5)   for this reaction has
            oxide.          been reported as 42.8
                        kcal. Decot:1position of
                        NO and KO~ to the ele-
                        ments has been consider-
                        ed kinetically limited.
                        (cont.)  

-------
      TRANSITIONS     DECOMPOSITION     
  CO~:pOUND ~ !m! .H(kca1fr.:o1e) ~ ...l!:.fL Method!Cor::T1cnts ~ Reactions  ~ DISCUSSION 
 4. NaNO, (cant.)             A rnechanism of N; pro-
               duction has therE:fore
                been suggested which
                involves the fonnatlon
                of a super oxide which
                decomposes to Ns; 0 and
                0,  
         Study of the N;. NaO, Na,O + 3NO ~ 2NaNOt CH-036 In order to account for
         action of NO NaNO, + iN, ( 6)  the fortI1stion of nitrous
         00 Ns;O.   Na,O + 4NO ~ 2NaN0t  oxide and N , reactions
            (16) and (d~were pro-
            + N,O ( 7)  posed.  
         The NaND; -NO" NO, NaNO. NaNO, + ~O~O ~ NaN0h8) 02-006 At temperatures above
         sys t..::m ''''0'15   250, the rate of the
         studied.       reaction NO" - NO + l:iO;
        150 No reaction.      bGcomes appreciable.
             NO production and :\0;
        200 10% conversion      consumption affect 01-
         of NaND; to      trite oxidation. The
         NaN03.       reaction proceeds to the
        250 H.J..:dmum extent      left rather than the
         of rcaction.      right.  
        > 250 Reaction (as        
         written) di-        
         minishes.         
I                  
t-'    160 S-S  SC-012 500 Liquid NaN03 NaNO, NaNO. it) ~ NaNO, (t) ST-026 The liquid nitrates and
N 5. NaNO,)  
I    275 S-S 1.12 FE-003  still stab1a.  + \0, (19)  nitrites are reported to
         be completely miscible
    306 Sol 3.70 ST-026 600 Slow d\1composi-      and arc: reported to for:n
     tion of melt.     
    308 Sol  BO-008         a "virtually ideal" soh..
     600-750 Pseudo equili-      tion (ST-026). The .qui-
         brium between      librium const<,!nts for
         air and mel t      2NaNO. (s)- Na,0(s)+2NO,iY
         containing      + iO,(g) to 7000 K and
         NaN03 CL"1d NaNDa.      NaNO, (L)- NaNO, (t)+iO,
                from 800 to 1000'K have
                been calculated (ST-026).
        510 Decomposition  Same  BO-008   
         begins .35 evi-        
         denced by         
         .:tppcarance of        
         .057. nitrite        
         in the melt.        
 6. Kl\O,  47 S-S 0.199 PR-003 410-460 Noticeable de- ~b' NO, 2KNO, ~ ~~O + NO, (20) ST-026 Caseous products react
      AD-002  composition.  wi th KNO, and K" 0 if
    437 Sol  PR-003  Inert atmos-      they are not rE:moved.
      phere with gas-        
    440 Sol  ST-026  eous products        
         re1toved.         
        (cant.) (cant.) (cant.)  (cant.)  (cant.)  (cant.) 
     TRANSITIONS   DECOMPOSITION 
  CONPOUND T(OC) !m! AH(kca1/mo1e) ~ !i:.2L Method/Comments ~ Reactions 
 6. KNO, (cant.)     410-460 In air, without Na, NO, 2KNO,+ 2NO ~ 2KNO.
        gaseous product KNO,  + N, (21)
         removal, nitrate  Ka ° + 2NO; ;! KNO; 
         is still stable.  + KNO. (22)
           KNO,+ NO, ~ KNO,+(~~)
        550-750 In oxygen atInos-  KNO, + \0, iI KNO. (24)
         b~:r~s n~~r~~~OID-     
         pose.     
        >800 Nitrite decom.. K"O KNO, - K"O + \N,+ \OJ
         poses to oxide.     (25
         KNO:. in NO:. at- NO, KNO. KNo.+ NO, iI KNO,+(~~)
         mosphere.
        130 No reac tion as     
         wrl tten.     
        140 Considerable     
         reaction rate.     
        200 Reaction rate     
         is at a maximum.     
I              
t-' 7. KNO.  127.9 S-S 1.22 YA-004 530 Ne1t is stable KNO, KNO, (t) ~ KNO, (t) 
w    334.3 Sol 2.30   in air to this  + \0, (26)
I    113 S-S .56 ST-026  temperature.     
    123 5-S .72  650 Decomposition     
    128 S-S 1.3   begins in air.     
    334 Sol 2.3        
~
ST-026
DISCUSSION
KND,) i5 stable in this
temperature range.
ST-026
Up to 600 the KNO, re-
mains s tab Ie. Between
600 and 750 the reae tion
is in equilibrium since
the KNO,) is unstable.
ST-026
02-006
The reaction is reversi-
ble with the maximum KNO"
formation at 200. Appa-
rently it is difficult
to establish equilibrium
since the rate of the
reaction NO:. t! NO + \011
becomes appreciable.
Above 200, then, the
amount of !
-------
     TRANSITIONS   DECOHPOSITION     
  COMPOUND ~ Im. ~H(l;0, (30)  (No.9).  
     ta.ken as that       
   405.5 SoL 3.37 HU-012  at which .057.        
        nitrite could        
        be detected in        
        the melte        
 12. CsNO, '411,0 42.7 SoL  RO-007          
 13. Bo(NO,),            No evidence was found
             in the literature for
              the existence of this
              compound. 
 14. Ba(NO.),     125 Decomposi tion Ba.O(NO'>..    SI-026 The nitrate is 0 hygro-
       is rapid above NOa     scopic solid. 
        this tempera-        
        ture.        
       (cont.) (cont.) (cont.)  (cont.) (cont.)  (cont.) 
COMPOUND
TRANSITIONS
~ Im. lIH(kca1/mo1e)
DECOMPOSITION
~
!J:.fL Method/Comments
175-200 This temperature
range was estab-
lished for de-
composition
from the thermo-
gram recorded
~;t: ~~a~~~g /min.
produc t8
Reactions
~
SH-Ol7
DISCUSSION
14.
Ba(NO.),
(cont. }
It was difficult to pre...
pare a crystalline
nitrate. Usually a
viscous mass was obtainEd
Th1s is the least stable
of the alkaline earth
nitrates.
15.
Ba(NO.),
.411,0
55-205
The TGA experi-
ments were car-
ried out 1n a
stream of air.
Gaseous products
were not anal~d
Salt began to
loose water of
hydration.

Maximum ra to of
weight Ipsa.

No further weight BeO
loss. Oxide
formed at this
temperature.

Decomposition
of the nitrat~
in NO was stud-
iad. Tho ni-
trite was pro-
duced as a
product.

Nitrite prod-
uct decomposese
WE-021
There was no evidence
(no breaks in tho therm-
ogram) for formation of
the "nhydrous ni trate.
55
460
I
I-'
VI
I
16.
118 (NO, ),
Not des-
cribed.
118 (NO~), + 2NO SI-026
" Mg\NO, ).+ 2NO, (31)
The existence of the
anhydrous nitrite is
uncertain. It appeared
as an intennediate in
the decomposition of the
nitrate in NO.
107
17 . Mg (NO,),
'211,0
Method not
described.
NO I N0at
N,
Mg(NO,), ;I 1180 + ~~~~)

N,O. " NO + NO, (33))
Mg(NO ) + 2NO
;I MgtN~, ),+ ~NO (31)
2M!;CH4NO, "Mg(NO.).
+Mg(NOa a \3,,)
Mg(NO~).+ 2NO
;I Mg\NU,),+ N, (34)
LE-005
Lao (LE-005) stated that
tho 1905 Investigations
of Ray and Gangul1 (com-
plete reference not giv-
an in LE-005) indica tad
the nitrite decomposes
at a low temperature.
Lee olso discusscd the
work of Oza and Dipali
(OZ-009) carried out at
llOoC. The overall
stoichiometry was found

~y 2~gh + t~~~o~~n~~~

Apparently temperatures
reached were never high
enough so that decompo-
sition of the nitrate
could occur. It was can-
c1udad that tho extent
of reaction (34) was val)'

~~~~; ~1~: ::~il ~~d

-------
COMPOUND
TRANSITIONS
~ !XES. 6H(kcal/mole) .l\2h-
DECOMPOSITION

~ Method/C01TI1Ients ~

327 The solid is
reported to bo
stable up to
this temperature.
The melt 18 re-
poreed to be un-
stable, but 00
mel ting point
was given.

Decomposi cion
occurs at this
temperature
if nitric ox"
ide is present.
Reactions
~
sr-026
DISCUSSION
18. Mg(NO,),
Not given.
Stern reports that the
stability depends 00 the
gas phase. Decompositio n
may occur at temperatures
lower than 327, Stern
calculated equilibrium
pressures for:

118 (NO,), ~ Mg0+2NO, +\0,
(3)

The calculations indica-
ted decomposition would
be complete between 500
and 600'K (327'C\
127
I
t-'
a>
I
19. ~(NO,), 130 SoL  RD.007   
 . 1100       
20. ~(NO,). 90 SoL 9.8 LA-008 60 Begins losing Final
 . 1100      water of hy- Produce:
      dracion. 1180
      80-90 Endothermal 
       effect (SH-018). 
      85-90 Endothermal 
       effect (BE-036). 
      125-180 Unidentified 
       thcmal effect 
       (SH-018). 
      145-150 Endothermal 
       effect (BE-036). 
      230 Formation 
       NS(N03)j .2H,O 
       (BE-O 6 . 
      240 Formation 
       I1g(NO ) '1100 
       (WE-ohj. 
      310 Formation 
       ~~i~~')' (WE- 
      370 Formation 
       ~fg (NO.). (BE- 
       036). 
      430 Formation 
       1180 (BE-036). 
      455 Formation 
       1180 (WE-021). 
WE-02l
BE-036
Three thermogravimecric
studies have been re-
ported for the hexahy-
drate (BE-036. SH-018.
WE-On). The te"'pera-
tures reported for heat
effects are in fair
agreement. N'o reactions
were proposed however
and nei ther the gaseous
products nor the inter-
mediates were analyzed.
The results agree fairly
well with Stern's esti-
mate of the range of
stability for the nitrate
I1g(NO,), ~ MgO + 2NO.
+ %0. (35)
KE-02l
Kelley (KE-021) stated
the hexahydrate is tho
fOml that crystallizes
from water at ordinary
temperatures. He cal...
culated the free energy

(cont.)
     TRANSITIONS    DECOMPOSITION       
  Cm:J>OUND T('C) ~ 6H(kcal/mole) ~ ~ Methbd/C01TI1Ients ~ Reactions  ~ DISCUSSION 
 20. ,(NO.),           of the dehydration reac-
  . 1100           ~~on a~~ ~ggIK~50fh~0~~ta
  (cont.)          
             indicated that dehydra-
             tion would be com~lete
             near 450'K (l72'C . 
             Free energy calculations
             for (35) indicated a 
             decon:position p,ressure
             of 1 atrn would be reach-
             ed at 288'C.   
 21. Ca(NO.). 266 S-S  sr-026 267-315 Decomposl tlon Mainly Ca(NO.), ~ CaO + NO sr-026 Stern reports (36) and
   360 S-S  sr-026  pressures were NO + NO. (36)  ~37) were the reactions
        measureable ln  Ca(NO ) + 2NO   or which decomposition
   392 Sol  ST-026  this tempera'"  ~ Ca~N~.).+ ~NO (37)  pressures were measured.
        ture range.   Reaction (36) should 
             probably be written 
             Ca(NOa)a ;! CaO + NaO~
                 (36)
             Na03 ;! NO + NOa (32b)
             However t the temperatures
             at which the decomposi-
             tion was studied were
             ~~~O;o~~~. ret~~~e~a~~lf;
             inconsistent with the
I             accepted idea that n1...
t-'             trate-nitrite melts are
"             ~gl~~irg66 :~:~~e t~~~~
I            
             melting point. The re-
             ported transition points
             were taken from heating
             curves and the nature
             of the phases was not
             described (sr-026). 
       370-480 Reaction (3B) NO, N, Same as (36) and (37). sr-021> Stern and l.ee both dis..
        becomes 1m-  as well as  LE-005 cussed the 1953 work of
        portant.  Ca(NO ),+ 2NO   Oza and Oza. Only small
          t! Ca~N03)a+ N, (38)  amounts of Ng were de-
           tected in agreement with
             the reports of early 
             workers. This was ac-
             counted for by the ex-
             hf:h:;i~~;~~~t~~es the
             reverse of (37) becomes
             more important and there
             exists less ~o to react
             as in (38). Note that
             the reaction involving
             the oxide and ~Oa' such
             as reaction (33) for Mgo,
             was not proposeC!. 
       (cont.) (cont.) (cont.) (cont.)    (cant.) 

-------
     TRANSITIONS      DECOMPOSITION         
  CO~!POUND !!.:& ~ 6H(kcal/mole) ~ l!:.£L Ncthod/Comrnents Products Reactions  ~  DISCUSSION  
 21. ca(I'O')5     420-450 The decornposi- NO, N, 4Ca(NO~), ~ 2Ca(NO,), SI-026 Stern and Lee also both
  (cont.      tion in this    + 2Ca + 2NO + N, LE-005 commented 00 the rate
        temperature      (39)  studies of Protsenko and
        range was stud-       Bordyushkova published
        led in argon,        in 1965. The overall
        air, and under       stoichiometry in argon
        vacuum. Rcac...       was given by (39). Th.
        tion (39) be-        nitrate is still relative
        comes important       ly stable in the tempera-
        in this range.       ture range studied. The
                   decomposition rates in
                   air and vacuum were  
                   greater than in argon.
                   Rate constants and an
                   activation energy tolere
                   calculated for (39). 
       Tempera-      ~&: ~o: 2CaO + 4NO, ;! Ca(N03 ~a LE-005 The relative amounts of
       tures      + Ca(NO,),  (40  the products formed in
       above        Ca(NO,), ~ Ca(NO,)~  this range depend 00 the
       the dc-        + 0, (1)  temperature ~nd the dura-
       cornposi-          tion of decomposition and
       cion            the amount of nitrite
       tempera-            undergoing decoJ'lposition
       ture of            (LE-005). Lee suggests
       the ni-            that ultimately the ni.;
       trate.            trite decomposition ratc
                   is dependent on the rate
                   of reactions involving
I                   Ca(NO.), and CaO in the
.....                   melt.     
00                       
I 22. Ca(I'O,), 'H,O      The nitrite,  Mostly Ca(NO,), i! CaO + NO OZ-003 Oza stated that earlier
       mixed wi th char- NO.   + NO, (36)  workers have noticed
        coal, was evac- ~~de N:o. C + NII03 t! CO~+ N~O  nitrite decomposition
        usted and heat-  beginning at 330 and 36Q
        ed in stages to CO, only   (42)  His work showed that the
        4000. The gas- at 280. C + 2NOg t! CO:a+ 2ND  ~~~O:~~~i 2~~n w~~gir;s ~t
        eous products  CaCO,,;   (43) 
        were analyzed  CaO.  C + 2NO ~ CO,+ Nt4~  evolved. It is probably
        as well as the    slO\" at that temperature
        solid residue.    and could go unnoticed
       80 Dehydration    CaO + CO, ~ CaCO, (45)  if the nit rogen oxides
           reacted in the t;.el t. 
        (3/4 the water).       In the presence of char-
       280 CO, first cvolv-   2CaO + 4NO, t! Ca(N2Q ~a  coal, however, the pro-
        ed. Also NO and   + Ca(NO,),  (.  duct nitrogen oxides 
        N;;;. N;: 0 ana1y-       would rather react to
        sis not perform..       form CO2 than react with
        ed. Nitrite de-       CaO or Ca(NOa):I. In
        composition be..       fact, nitrate was found
        gan at this        in the residue on1y in
        temperature.        4 hour experiments at
       350 ~~'N~b ~~~~~~~:       4100 when smaller  
             amounts of charcoal were
              added.     
       400 NO and Na evolv-       A further result is th<1:
        ed in greater        the nitr
-------
CO:1POUND'
23. Ca(NO.).
I
I\)
o
I
CO~!POUND
23. C(~~~~~5
I
I\)
I-'
I
TRANSITIONS
~ ~ "'{(kcal/mole) ~
561 SoL 5.09 LA-OOS
TRANSITIONS
T('C) 1m.!!. ~H(kcal/mole)
~
DECO~OSITION
250-350
575
475
(cont.)
~ Method/Comments

No experimental
measurements
performed.
~
CaO pellets were
packed into an
absorption cham-
ber and 10% NO,
10 N; was c ireu..
laced at a rate
of J.9 moles/hr.

The rate of reac-
tion (40) is max-
imum 10 this
temperature range.
Ca(~O,), is oxi-
dized to Ca(NO')g
beginning at 250 .
Lazarini and co-
workers cited
575°C from an
earlier publica-
tion by Addison
as the temperature
at to/hleh bubbles
appeared in a cal-
cium nitrate melt.
Lazarini also cited
this temperature
from Duval's TGA
measurements as the
one at which decom-
position began. He
stated that it is
commonly found that
alkaline earth n1-
traces begin to de-
compose at tempera"
tures below cheir
melting point.
Ca(N03}; was pre-
pared by drying the
tetrahydrate at 120
or 1600 C for 24 hrs.
The decomposition of
the anhydrous sal t
was studied on a
(cont.)
DECO~OSITION
!!:..£L Method/Comments
thermobalsnce at
a heating r3tc
of 51:1 C/min. Gas-
eous resc tion
products were
removed by a
flowing stream
of N;.
Decomposition
began at this
temperature.
455
Products
Isothermal meas"
urements of the
variation of
weight 1055 with
time were made
at 440, 450, 460
and 475. Gaseous
produc ts were
removed.
CaO.
gaseous
products
not ana-
lyzed.
r~l~~~e~e~::~-
sing at 120 and
200 were used to
trOduce the an-
Th~r~~~~;~~i-

tion wa5 stud-
ied at tempera-
tures below the
melting point
(470 to <550).
Caseous products
were removed
onl~' ,pprln9~-~l\~,ly.
)":;':-:'-,1':" J
g~,~O.
net ther
N;. N;O
nor N;O.
could
be detec-
ted. The
condensed
phase was
not stud..
ied.
Reac tions
Ca(NO,), ;! CaO + 2NO,
+~. (47)
2CaO + 4NO, ;! Ca (N(40~). AT-010
+ Ca(NO,). 0)
Not given.
Reactions
None g1 ven.
None given.
~
LA-Oll
BO-009
~
ST-026
DISCUSSION
Stern (ST-026). findins
no data published prior
to 1964 on decomposition
'of the anhydrous salt,
calculated thermodynamic
data for reaction (47)
from 25 to 527'C.
A dissociation pressure
of 0.6 atrn was calculated
for 527'C although the
reported mel ting point
is 561'.
The rate of absorption
of NO; on CaO was stud..
led and the products
were the nitrate and the
nitrite. These results
are in contrast to those
found at 0° C by Oza for
absorption of a mixture
of NO and 1'\0;. OZa re-
ported no nitrite forma-
tion at all.
LA-Oll
(Addi-
son)
LA-Oll
(Duval)
LA-Oll
From the thermogram it
was evident that weight
loss began at 455°C. It
was not possible to
carry out the decomposi-
tion at the 5°C/min.
heating rate because
(cont.)
(cont.)
DISCUSSION
spattering occurred.
Therefore, it is not
known at what tempe.ra-
ture the residue con-
sisted of oxide.
From the shape of the
weight loss curves ob-
tained isothcnnally, a
physical description of
the decomposition mech-
anism was obtained.
First the nitrate begins
to decompose to a limit-
ed extent. Then it be..
gins to melt and the
weight loss curve be-
comes linear. Cas bub-
bles were observed in
the melt. ~inally the
solid phase (CaO) crys-
tallizes from the melt
and at the same time the
weight reaches a constant
value. According to
Lazarini I S mechanism,
the rate of decomposition
is limited by diffusion
of the g3seous decompo-
sition products (bubble~
at the phase boundary.
It is stated that the
surface area is reduced
by melting and then re-
mains constant, 80 that
a constant decomposition
rate results.
The decomposition was
slow at 470, but small
increases in temperature
caused a great increase
in reaction rate. The
amount of oxygen evolved
was constant throughout
the reaction. The pro-
duction of NO went
through a minimum in the
middle of the reaction j
at the same time, a max-
imum in NO, production
occurred.

-------
     TRANSITIONS    DECOHPOSITION     
  COHPOUND !C.£l. !m! 6H(kca1/mole) ~ ~ Method/Comments ~ Reactions ~ DISCUSSION
 23. Ca(NO,~,      Decomposition was        
  (cont.      continued by        
       raising the tcm-        
        perature (still        
        belmv the melt-        
        ing point) until        
        00 morc g3S cvo-        
        lution was 00-        
        ticed. The de-        
        composition was        
        slow. 00 melting        
        ~~c~~;;~~r;~~ the        
        pro due t was in        
        the fo~ of well        
        distinguished        
        crystals.         
        The dccomposi- Not Not given. SH-017 No comments were made
        tion was stud- given.     in the abstract con-
        ied by thermo-      earning tho composition
        gravimetry at      of the residue or the
        a heating rate      gaseous production.
        of 6.9c Imin.     
       480-5DO The dccornpo-        
        sition was         
        found to take        
        place in this        
I        temperature         
N        range.         
N        DTA "'35 used lIoi trous None given GO-014 See discussion for
I        to study Ca(N03)2 fumes"     Sr(NO,).. (No. 26).
        dccornposi tion.     
        The heating rate        
        was 15°C/min.        
        End otherms were        
        recorded at 552,        
        609. and 642.        
       550 Fusion         
       581 Rapid bubbling.        
       642 Rapid evolution        
        of nitrous         
        fumes.         
 24. Ca(NO,), 'nH,O      The follm~ing Not des- None given. GL-008 This work was done in a
        ten'perature  cribed.     study of the evaporation
        ranges of sta-      and crystallization of
        bility were       solutions containing
        found for the      nitrates I carbonates I
        hydrates.       and sulfates.
       26-126 Tctrahydrate        
       126-215 Trihydr ate         
       215-315 Dihydrate         
       315-435 Y~nohydrate         
       (cont.) (cone.)  (cont.) (cont.) (oont.) (oont.)
     TRANSITIONS    DECOMPOSITION     
  CO}!POUND !C.£l. !XE£ 6H(kca1/mo1e) ~ ....!.!:..£L Method/Comments ~ Reactions ~ DISCUSSION
 24. Ca(NO,), .nH,O     435 Anhydrous ni-        
  (cont.)      trate         
       >500 Nitrate decem-        
        posi tion.         
           Ca(NO,), ~ CaO + ~~~~ KE-021 Kelley reported the tet-
            + .1.;0,  rahydrate crystallizes
                from water at ordinary
                temperatures. This is
                in agreement wi th Gla..
                dushko (GL-008). Kelley
                also states that the
                tetrahydrate can be de-
                hydrated wi thout decom-
                position and that the
                dehydration sequence in..
                vol ves the tetrahydratc I
                the trihydrate and the
                dihydrate with no forma-
                tion of the monohydrate.
                These results are in
                contrast to those of
                Gladusko (GL-008) who
                reported the formation
                of the tr,onohydrate in
                the range 315-435.
                Kelley calcuLated the
                free energy of (47) os
                a function of tempera-
I                ture up to abou t 600. C.
N                He found that the de-
W                composition pressure
I                becomes 1 atrn at 544°C
                if the Na forming reac-
                tion is neglected.
        :rherroogravimet- CaO. gas None given. WE-021 Wendlandt's results for
        ric analysis was phase     the range of stability
        used to study not stu~     of the anhydrous salt
        the dccomposi- ied.     ~~~~~s~~~h (~~~~g8):
        tion of the tet-     
        rahydrate. The      However, no evidence of
        heating rate       r:lonohydratc format ion
        was 5°C/min. and      was found. The tempera-
        a slow stream of      tures of formation for
        air was passed      the cri- and dihydrates
        through the fur-      were quite easily dis-
        nace. The £01-      tinguished from the heat--
        lO\ving tCJ:1pera-      1n8 curve. Note that
        Cures of interest      Lazarin! reported he
        were noted.       was unable to carry out
       50 Began losing       the decomposition at a
        water.       heating rate of SOC/min,
       130 Formation       the same as used by
             Wendlandt I because of
        Ca(NO,),' 3H,0      spattering. 
       160 FOl11lstion         
        Ca(NO,),' 2H,0        
       (cont.) (cont.)         

-------
    TRANSITIONS    DECOMPOSITION        
  COMPOUND ~ !II!!. l>H(kcal/mole) ~ ....!.crL Method/Cotm\cnts Products Reactions  ~  DISCUSSION 
 24. Ca(NO.~. 'nllo°     220-425 Anhydrous salt           
  (cont.      stable in this           
        r~gion.           
       645 No further           
        weight loss.           
 25. Sr(NO.). 274 S-S  ST-026 264 Decomposition Not given Sr(NO~? ;!SrO+NO ST-026 Stern and Lee both 
   285 S-S    measurcable at by Scern + N . (48) LE-005 cOtIlI1cnt on the work of
        this tempera- or Lee. sr(NO~)b+ NO.   Oza and Patel. Both
   421 SoL    ture.  (49)  the gas phsse and tre
   385 SoL   550 Decomposition  ~ Sr N .).+ N.   condensed phases were
      Sr(NO~)&+ 2NO   analrzed. The mechanism
        temperature  ~ Sr N .).+ N. (50)  in (,8) through (52) was
        reported by aza  
        (ST-026, LE-005)  SrO + 2N05 + %0.   proposed. The equilibria
          i! Sr(NOa ::I (51)  in (50) and (51) are
       640 Oxide formation   apparently quite tempera-
          NO. ~ NO + %0. (52)  ture dependent. Oza
              pointed out that for (51)
              the equilibrium is 00 tho
              side oE nitrate forma-
              tion up to 6400 and ox-
              ide fomation above that
              temperature. Stern re-
              marked that far an 
              carlier decomposition
              study carried out at tem
              peraturcs up to 369, no
              N form.1::ion was reported
              .
I              He concluded that reac-
N              tion (50) does not become
~              important until higher
I              temperatures are reached.
        The kinetics When 4Sr(NO.). ~ 2Sr(NO?)~ LE-005 The kinetic study of
        were studied nitrate + 2SrO + 2NO+No (3 ST-026 Protsenko and Bordyush~
        at 420 and 450 is sta~ Sr(NO.). ~ Sr(NO.)~  kova was discussed by
        where the ni - bIe: NO, + %0. ( 4)  Lee and Stern. The over-
        trate is still NO"" SrO,  all rcaction ,...as repo:.-ted
        stable. Sr(NO.)..     as (53) while (54) was
         At high-     proposed to account for
         er tem':     the presence of oxygen
         peratures:     in th~ reaction products.
         °2, N2,     This differs from the
         NO, N02.     work of Oza who proposed
         SrO, and     that oxygen was produced
         Sr(NO.)..     by the dissociation of
             NO. as in reaction (52).
 26. Sr(NO.). 645 SoL 10.65 LA-008 615,672 Stern cited     ST-026 Stern reported that there
     ST-026  these tempera-      was disagreement on the
   618 SoL  ST-026  tures as those      temperature of both the
     reported by      melting point and the
   605 SoL  ST-026  dif ferent      beginning of decorr.posl-
   605   LA-OIl  authors for      tion. He found no detail.
   SoL   the beginning      cd studies on the decom-
   570 SoL    of decomposi-      position of the anhydrous
   645 'SoL    tion as evi-      salt published up to1964.
        denced by           
        (cont.)           
26.
COMPOUND

Sr(NO.).
(cont. )
TRANSITIONS
T('C} !II!!. 6H(kcal/mole)
DECOMPOSITION
~
!!:£L Method/COimlents

bubbles appear-
ing in the melt.
~
Reactions
~
DISCUSSION
TCA was used to
study the de-
composition of
the anhydrous
salt at a heat-
ing rate of
6-9°/minute.

Decomposition
temperature
None
given.
None given.
SH-017
Calcium and barium ni tmtes
were also studied in this
work. The decomposi tion
temperature for the stron-
tium salt should be'be-
tween that for the calcium
and barium salts. Shargo-
rodskii found, however,
that strontium nitrate

~:~:~~~~~e a~h:n h;t~h~r
calcium or barium.
580-600
680
TGA was used at
~f h5:~~~fn~~;~

Gaseous products
were removed by
a flowing stream
of nitrogen.

First notice-
able weight loss.

Constant weight.
Isothermal meas-
urements of
weight loss vs.
time were maae
at 480, 500,
520 and 540.
None
given.
Nona given.
LA-Oll
Lazarini proposed the same
course of reaction as that
described for the decom-
position of calcium ni-
trate: some decomposition
before the melting point,
melting with decomposi-
tion, and crystallization
of the oxide. The fact
that decomposition occurr.
ed before the melting
point was suggested co
account for the discrep-
ancies in reported mel t-
ing points.
480
I
N
I.n
I
280
TGA was used at
~f h5~X~g'mi~~~e.

Reaction products
were removed in
a slow stream of
air. Thermal
effects were
noted at the
following tem-
peratures.

~~~f~o~~ ~~t~

temperature.

Rapid weight
loss.

Constant weight
of unknown com-
position.

No furthar weight
108S. oxide form-
ed.
None
g1 ven.
None 8i ven.
WE-oil
./
;~~i~o:~~:;t~~~b~~ ~~e

the range 440-510 is un-
known. The percent weight
loss did not correspond
to either formation of
the nitrite or a basic
nitrate. It is interest..
ing to note that Lazar!ni
reported no weight 108s

~~e t~o~~O ~f b~~ ~:r~~:r cite
publication according to
:~~c~O~;dw a~e~80gosition
280-440
440-510
64S

-------
      ._~-~~--          
    TRANSITIONS     DECOMPOSITION       
  COMPOUND I!:.£l !m. lIH(kcal/mole) ~ ..1.!:..£L Method/Comments ~ Reactions  ~ DISCUSSION 
 26. Sr(NO,~.      Dl'A was used to Nitrous None given.  GO-014 A physical description 
  (cant.      study the de- fumes.     of decomposition was given
       composition.      for calcium, strontium 
        The heating      and barium nitrates. At
        rate was 15'C/      temper stures up to 50a 
        minute. Tern..      above the melting point
        peratures for      bubbling occurs. About
        endotherms were      50a above the temperature
        620 and 726.      of first visible bubbling.
       618 Fus ion       decomposition to the oxide
             and nitrogen oxides occurs
       635 Slight evolu-      accompanied by a strong
        tion of brown      endotherm and rapid evolu-
        nitrous fumes.      tion of nitrous fumes. 
       672 Vigorous bub..         
        bling.          
       715 Rapid evolution         
        of brown nitrous         
        fumes.          
 27. Ba(NO.). 203 S-S  ST-026 250 Decomposition At low Ba~N~b)' ~ BaO + NO, ST-026 Decomposi tion has been 
   230 S-S    has been noted tempera" (55) LE-005 observed as low as 250aC,
        as low as this tures, Ba(NO,),+ 2NO ~ Ba(NO,)., which is probably why 
   262- Sol    temperature. mostly + 2NO (56)  there is wide disagree..
   284    400 The resc tion NO and     ment in reported values
        between BaO and a little BaO + 3NO ;t Ba(NOt),  ~~:~~udi~~i~~ f~~~~40'C
        NO; becomes N,. At + %N, 57) 
I        tempera- Ba(NO,), ~ Ba(NO,)~  showed rate to vary in
N        important above tures  the order air> vacuum >
0\        this tempera.. high e- + 0, ( 8)  argon. 
I        ture.  nough        
       525 The nitrate for tha        
        begins to slow.. nitrate        
        ~h1~e~:~~;:- at to de..        
        compose        
        ture.  NO~ and        
           ~is~re        
           formed.        
        The decomposi.. At 400' See reactions 55..58.. OZ-002 This work was reviewed 
        tion was studied the     by Lee and Stern, but 
        over the range products     many of the results were
        400-550. The are mas t..     not discussed. OZ8 con-
        effects of time, ly NO     eluded that the reactions
        mass of starting with some     occur in the melt since
        material, and NO, and     with increased mass of 
        addition of n1.. ~~6' ~~e     starting material more 
        trate were also     nitrate is produced and
        studied.  amount of     less nitrogen oxides are
       400 Reaction is NO, in-     produced. Reaction (57)
        slow.  creases.     was proposed as the methoc
              of N:a production w1Jh the
       550 Nitrate decom..      reaction occurring mainly
        position be..      in the melt. Reaction 
        comes imporcant.      (57) was found to take 
       (cant.) (cant.) (cant.) (cant.)   place at 200'C. 
        (cant.) (cant.) 
    TRANSITIONS      DECOMPOSITION       
  COMPOUND I!:.£l !m. ~H(kcal/mole) ~ ~ Method/Comments ~ Reactions ~ DISCUSSION 
 27. Ba(NO,).      A TGA study un... Gaseous 2Ba(NO,), ~ Ba(NO,)~ PA-013 These studies were per-
  (cant.)      der vacuum was products + BaO+ J,N, (5)  formed under nonequili.
        carried out from not ana.. Ba(NO,), ;1 BaO + ~~g,  brium conditions with 
        90 to 700'C. lyzed. + %0,  gaseous products remcwed.
        Gases were re-   Reaction (59) is just 
        moved from the      the sum of 2 times (55)
        condensed phase.      plus (56) plus (57). 
        The solid pro..      Reaction (60) was pro"
        ducts were      posed for nitrate de- 
        studied using      composition but was not
        IR methods.      verified experimentally.
        The following     
        was found ~         
       90-150 Nitrate forma-         
        tion wi th          
        stoichiometry         
        as in reaction         
        (59).          
       150-450 Constant weight.         
       450-600 Weight loss,         
        oxide fOnTIation         
        according to         
        proposed reac"         
        tion (60).         
        The reaction  Ba(NO ) + 2N,0.  OZ-007 Reactions (61') and (62)
        bet,.,Ieen N:a O.  - BatNb,),.:. 2N.Ot  should also be considered
        and Ba(r\0a)a   . 61)  in the mechanism for ni..
I        was studied be..  B~O B:(~~~', - Ba(N~~~,  trite decomposition since
N        low 350 and   ~~:y m:i~~t ih~e ni~~~~e in
"-I        that of Na O.  
I        + BaD below      reaction is not apprecia"
        500. The dura"      ble until 300 and the ox-
        tion of each      ide reaction becomes 
        reac tion was      appreciable at 200. 
        30 minutes.      
 28. Ba(NO,). 595 Sol 6.0 LA-008 525-550 Slow decom..  Ba(NO,), ~ Ba(NO,), ST -026 Decomposition of the 
   588 Sol  GO-014  position has  + 0, (58)  liquid jus t above the 
        been observed  overall:    melting point is slow. 
        in this tem..     Decomposition pressures
        perature   Ba(NO,), ~ BaO + 2N~  for (60) were calculated
        range.   + %0, (60  by Stern up to 800' K and
               extrapolated to 1100' K
                and by Kelley (KE-02l).
        rtrA was used None None given.  GO-014 The value for melting 
        to study the given.     temperature is low~r than
        decomposi tion      the value reported 1n 
        of barium       several compilations. 
        nitrate. The      No decomposition was 
        following were      noticed up to 588, which
        noted.       is in disagreement with
       < 587 No thermal       the work of Oza (OZ-005)
        effects.       who reported nitrite 
              formation at 525. 
       588 Fus 10n  (cant.) (cant.)  (cant.) (cant.) 
        (cant.)   

-------
    TRANSITIONS   DECOMPOSITION  
  COMPOUND T(OC) !m t,H(kcal/mole) ~ ~ Method/Comments ~ Reactions ~ DISCUSSION
 28. Ba(NO.~.     605 Slight bubbling.     
  (cont.     661 Slight evolution     
        of 01 trauB fumes     
        (NO.).     
       692 Rapid evolution     
        of 01 traus fumes     
        (No..>.     
        TGA was used to Not Nooe g1 ven. SH-017 Barium nitrate began to
        study the de- given.   decompose before stron-
        compos! tion at     tlum nitrate according
        a heatin, rate     to thla a tudy .
        of 6-9'C minute.    
       555-600 Thla was estab-     
        l1shed as the     
        decomposition     
        temperature.     
        TGA was used to BaO, None given. LA-Oll Bao.. 10 still stable at
        study the de- BaO.    500 in N. and 540 in 0..
        compos! cion.    and 1 t is B lwsys the reac-
        Reaction pro-     tion product. The BaD
        ducts were re-     which results is oxidized
        moved by a     by the 02 produced from
        nitrogen stream.     No.. dissolution. The
        Some isothermal     rate of decomgosltioo
        rate measure..     was said to be limited bY
        ments were     transfer of gas bubbles
I        carried out at'     through the gas-soUd
N        460. 480 and     interface.
CD        500.     
I            
       495 Decomposition     
        temperature in     
        N; atmosphere.     
       540 Decomposition     
        temperature 10     
        0. atmosphere.     
 29. 'l1tanium           No evidence for the
  Nitrite           existence of this com-
             pound was found.
 30. Ti(NO.). 58 SoL ST-026 58 Stable at least TiO.. NO. None given ST-026 
       up to this tcm- O.  
        perature.     
 31. Vandium           No evidence was found for
  Nitrite           the existence of this
             compound.
TRANSITIONS
DECOMPOSITION
32.
COMPOUND

Vanadium
Ni trats
TlOC) !m.!! ~Hlkcal/mole) ~
33.
Chromium
Nitrite
34. Cr(NO.>.
35. Cr(NO.>. . 9H" 0
I
N
\0
I
~
Method/Comments
60
TGA was used in
a vacuum and in
N. atmosphere.

Rapid decompo-
sition begins.

The rate of
decomposition
is greatest at
this point.

The first plat-
eau correspond...
ing to Cr30.
was reported at
this tempera-
ture.
100
zoo
96
Lowest sample
temperature at
which HNOa va-
pors were ob-
served.

First cnda..
thermic effect
caused by the
mel ting of the
salt in its
water of crys..
tallization.

Interval dur-
ing which
second endo-
thermal effect
occurs. This
is due to the
simultaneous
boiling of the
melt and decem...
position of the
nitrate.

}'1aximum concen-
tration of HNO~
vapors (4. 76X)
recorded at this
temperature..
< 120
120-160
130
~
~
Reactions
DISCUSSION
No evidence was found for
the exis tence of this com...
pound.
No evidence for the
existence of this com-
pound was found.
Cr. 0.
None given..
ST-026
Stern reports that
although no stable inter-
mediate was observed be-
low 2000 C in the thermo-
gram. the decomposition
may have involved a series
of unstable oxide nitrates.
None given.
KA-022
Spectra...
metric
analy sis
of gas-
eous pro"
ducts
showed
traces
of HNO..
the con...
centretion
of which
increased
with in-
creasing
tempera-
tura.

-------
~
COMPOUND
35. Cr(NO.). '9H.,0
(cont.)
TRANSITIONS
!.C£l. !x2.2. 6H(kcal/mole)
~
I
IN
o
I
36. Manganese
Nitrite
37. Mn(NO.).
  DECOMPOSITION    
..!!.:.£L Method/Comments ~ Reactions  ~ DISCUSSION
 TGA apparatus Analysis None given.  WE-02l In the interval 250-380.C
 was employed in of the     a plateau was reached in
 ;ht~n:;~dhe:~~h gas phasa     the thermotram. The com-
 was not     position 0 this .phase
 ;~fo~i~~n~f A carried     was unknown; however t the
 out.     author states that it did
 slow stream of      not correspond to a basic
 air was passed      nitrate.
 through the      
 furnace.      
55 Salt began to      
 lose water of      
 hydration.      
55-250 A rapid weight      
 loss was ob-      
 served 10 this      
 range.      
250-380 Constant. weight.      
380-445 Funher weight      
 loss.      
445 Constant weight      
 Crg03 formed.      
 Decomposi tion Crn(OH)3n-lN:O nCr(NO.). '9H.,0 MA-042 The author stated that
 to a basic 01-  ~ Crn(OH)'n-lNO.  ~~~~:~~s d~~~h~~;~;~~
 trD;tc was HNO., H.,O 
 carried out in + (3n-l)HNO. (g)  nitrate intermediates.
 presence of re-  + (6n+l)H.,0(g)  By not allowing the de-
 ducing agent   composition to go to
 such as alcohol    (63)  complction. the stable
 or acctone to     intermediates were iden-
 prevent conver-      tified.
 sion of Cr(IlI)      
 to Cr(VI).      
       No evidence for the exis-
       tence of this compound
       was found.
-160 Decomposition Mno. Mn(NO.). ;t MnO.+ 2N~ ST-026 Stern reported that con-
 begins. NO,   (64 DE-024 flicting opinions exist
180 Another study Mn01..     ~~ ~~: ;~l:c~ie ~on:~~r60n
 at 10-' tmJ Hg      and Gatehouse (AD-004)
 resulted in this      characterized it as
 decomposi tion      cavalent, but Dehnicke
 temperature.      and Straehle (DE-024)
230 Rate of decem-      reported that the salt
 position is      had considerable ionic
 greatest at      character.
 this tempera..      Some disagreement olso
 ture when      exists on the composition
 reaction is      of tha oxide produced by
 carried out      thermal decomposition.
 in an atmosphere      Stern gives reaction (64)
 of dry N..      
    TRANSITIONS    DECO~IPOSITION      
  COMPOUND ~ !xI!.!!. flHCkcal/molc) ~ ..!!.:.£L Ncchod/Commencs ~ Resc clons  ~  DISCUSSION 
 37. .1n(NO,~.     > 50 Some decomposi-    KA-023 Absorption of NO, by MoO,
  (cont.      tion of the ni-     was studied. The results
        trate occurs.     showed that the absorp-
             tion efficiency decreased
             with increasing tempera..
             ture due to product de-
             composition beginning at
             50.C.   
 38. Mn(N~ .411,0 37.1 SoL  RO-007  TGA study of  Mn(NO,>. '4H~0  LU-Oll Lumme and Raivio (LU..Oll)
        stability and  - Mn(NO.).' H,O   stated that during inves-
        kinetics in  + 2H.,0 (65\  tigations of n-hydrates
        static air.     carried out by Duval (DU-
       50-184 16.6% measured Mn(NO,).    009) and Dubois (DU-007,
        weight less .2H.,0    DU-008), no stable inter-
        corresponding     mediate hydrates were
        to partial de..     detected. Dubois found
        hydration.     ~~o~r~:r:gi:e a~m~80~
       184-279 Weight loss Mn0a. Mn(N03). .2~0   300.C, which. changed to
        (58.57.) H.O, NO. ~ MooO. + 2H., +2NOt   Mn,O, and Moo,O, at higher
           66)  t~mperatures. Duval re..
       279-528 Constant     ported the product at
        \V'eigh t"     70QoC as Mn301" 
            The activat1.on enerries
       528-635 Weight 10s5) Mn;03) MnO. ~ ~Mn.O.+ tOt   for reaction ('65), (66 ,
        (10.27,). O.  67)  and (67' were reported
             to ba 9.3 % 0.3, 23.7 %
I             0.5, and 45.7 % 2 kcal!
IN             mole respectively.
....                
I        A pyrolysis    LU-Oll This investigation was
        study in a    (HE-014) done by HegedUs (HE-014)
        .honnal acmes-     and reviewed by Lwr.me and
        phere" gave t11C     Raiv10 (LU-Oll) . No sta-
        £olloHing rc-     ble 'intermediate hydrate
        suIts:     was detected in this
       50-230 Decomposition ~-MnO,    study. The l-f.n0a stable
        of tetrahydrate    temperature range was
        during this     found to be lower than
        temperature     that re)orted in reference
        interval.     (LU-011 . 
       450-580 Further decem- (1-MnaO"       
        posi tion.       
 39. Mn(NO.). 25.8 SoL 9.61 MA-025 22-51 Melting of the Spcctro- None given.  KA-022    
  '6H.,0    RO-007  nitrate in its metric       
      LA-008  water of erys- analysis       
        tallization. of gnscous       
       117-61 Boiling of the products       
        melt occurred showed       
        along wi th traces of       
        partial rcmov- HN03, the       
        a1 of the water. eoncentra..       
        tion of       
       (cont.) (cont.) (cont.) (cont.)  (cont.)  (eont.) 

-------
    TRANSITIONS    DECOMPOSITION    
  COMPOUND !..C.:£l !ms. AH(kca1/mo1e) ....!!2h.. ~ Method/Comments Produces Reae cions  ....!!2h..  DISCUSSION
 39. Mn(NO,).     145 Temperature at which None g1 ven.  KA-022  
  '6HgO      which first HNO, increased     
  (cant.)      vapors were ob- with in-     
        served. creasing     
       186 Dccornposi tion tempera-     
        of the sample ture.     
        became inten-      
        sive, followed      
        by cooling to      
        168.      
       215 Temperature at      
        which maximum      
        concentration of      
        HN03 vapors re-      
        corded (1.16%).      
          Mn(NO,). '6HgO(t)  KE-021 Using heats of formation
          ;! MnO.+ 2NO.+ 6HgO(t)  reported in the Ii cera.. 
           ture, Kelley calculated
           (68)  overall heats of decompo-
          Mn(NO,) , '6H,O(t)   sitlon (reactions 68 and
            69) at 298.2°K. He also
          ;! MnO,+ 2NO.+ 6HgOiA)  estimated free energies
           (69)  and equilibrium pressure-
            temperature relationships
             associated witb the SSIDe
             reactions.
I 40. Ferrous           No evidence for tho exis-
I.N  Nitrite           tence of this compound was
N             found. 
I             
 41. Ferrous           No evidence for the exis-
  Nt trate J           tence of this compound was
  Anhydrous           found. 
 42. Fe (N0il). 60.5 SoL  RO-007       No information concerning
  . 6Hg           the decomposition of this
            compound was found
 43. Ferric           No evidence was found for
  Ni tri te           the existence of this
             compound.
 44. Fe(NO.). 35- SoL  AN-008 100-250 Sample decom-    AN-OOa DTA analysis of catalyst
  100     posed over this     mixtures gave these reA
        range in a DTA     suIts. The article was
        study.     not available in English.
            and the identity of the
             compound for which these
             data were reported 1s
             questionable.
       (cant.) (cont.) (cant.) (cont.)  (cant.)  (core .)
     TRANSITIONS   DECOMPOSITION    
  COMPOUND !..C.:£l !ms. tJI(kcal/mo1e) ....!!2h.. ~ Method/Comments ~ Reactions  ....!!2h.. DISCUSSIC~
 44. Fe (NO.).      Room Slow dec~posl-    LO-014 This investigation was
  (cant.)     Temper&- tion occurs.     the first successful
      ture      attempt to isolate the
       - 70 RApid decomposi- Fea O.    compound. It was report-
        tion occurs     ad to be a yellw-brown
        under reduced     involatile solid having
        pressure.     low thermal stability.
            Stern (ST-026) reported
             that anh?;drOus ferric
             nitrate ad only been
             prepared as the vola tile
             edduct Fe (NO.), . N. 0, ,
             although Fe(NO.), might
             exist in the vapor stato.
 45. Fe(NO,>. 50.1 S.L  RO-007  The s tabilL ty and    LU-010 Lumme and JunkkarLnen
  .91100      kinetics of decOt1)o    (LU-010) reported an
       position were     i~~~v:t~~6 ~:l'~o~; and
        studied using TGA    
        ~~~~ ~f h~~5~~'hr.     a reaction order of 0.55
        in an atmosphere     for reaction (71).
        of sta.tic air.      
       50-139 Partial dehydra- Fe(NO.>' Fe(NO,). '9~0    
        tion occurs (18.9 '5HgO ~ Fe(NO.),' HgO    
        :t wt. loss.)  +4HgO (70)   
       139-405 Further weirht ....e.o&, Fe(NO,), '5H~    
I        loss (74.4% . NO~, 0' - "Fe~o,+ 5 °    
I.N         an Hg +3N .+ ,/,0. (71)   
""       405-850 Constant weight.      
I              
       84 First HNO:s Spec tro- Nono given.  KA-022 The HNO:s observed at
        vapors were de.. metric   840 C could have been
        tected. analysos    an impurity attached to
       <120 Endothermic of gas-    the original sample and
        effect due to eQUS pro-    does not necessarily
        melting of the ducts    mean that nitrate decom-
        showed    position had begun
        salt in its traces of   
        water of crys- HN03 va-     
        tallization. pars.     
       120-160 Interval during      
        which simultan-      
        eous boiling of      
        the melt and de-      
        composition of      
        the nitrate      
        occurred.      
       163.5 Greatest HNO:s      
        vapor concen-      
        tration (11.52%)      
        was observed at      
        this poin t.      
       (cant.) (cant.) (cant.) (cont.)  (cant.) (cant.) 

-------
       ------ - ------------------  --------...---------...--------
   TRANSITIONS      DECOMPOSITION    
 COMPOUND T('C) ~ ~H(kcal/mo1e) ~ J..C.£L Method/Comnents Products Reactions ~  DISCUSSION
 45. Fe(NO,),      TGA study emp10>,"  None given. WE-02l This investigator t in
 .9H.0      ing a heating    contrast to Lumme (LU-OlO),
 (cant.)      rate of 5.4'C/    did not observe a stable
      min. A slow    intermediate hydrate or
       stream of sir    anhydrous nitrate.
       removed the       
       gaseous products.      
       The following      
       thermal effects      
       were observed:      
      35 Salt began to      
       lose water of      
       hydration.       
      445 Constant. weight      
       achieved.       
       This TGA study  3:0~6 H. 0 ~ 2HNO, (7 2) KE-026 This behavior of this
       in air was    compound was described
       carried out in    as unique in that no red-
       two parts: 1.    brown NO. fumes were
       Programmed     detected. The author
       heating rate of    proposed that the NOa
       5.6' C/min.. and    formed, if. any, reacted
       II: Extended    with excess water vapor
I       run lasting ....    according to reaction
IJJ       84 hours over a    (73). 
~       43D' tempcra-    No stable intermediate
I       ture span.     was detected in either
       fo~ ! eo to    run. The final product
       o C :     was analyzed by X-ray
           diffractionj the result
      100-150 Weight .10ss be-    was in agreement wi th
       fan during this    all other studies with
       nterval.>     the exception of that of
      25D Decomposition    Duval (DU-010) discussed
         below. 
       approaching     Note the lower decom-
       completion     position temperature
      350 Cons tent weight a.-Fe.Os   :t~:e~P~~~~!~~O~a~:. the
       as shown on   
       thermog rom.       
       Run II (20-450'C):      
      20-100 Weight 10s5 be-      
       gan during this      
       interval.       
      200 Decomposition      
       fairly complete.      
      215-450 1.1'4 weight 1000 a.-Fe. Oa     
       recorded during     
       this interval.      
      38 Begins to lose 1100. NO, None given DU-010 The final product report..
       water of crys-    ed by Duval 10 in dis-
       tallization.    agreement with the re-
          aults of other investiga
      (cant.)  (cant.)  (cant.) (cont.) (cant.) tara (KE-026. (cant.)
     TRANSITIONS     DECOMPOSITION    
  COMPOUND T('C) !m£. AH(kcal/mole) ~ !.C..£L Method/Comments ~ Reactions .J!2!..... DISCUSSION 
 45. Fe (NO.).      120 Red fumes given   DU-010 LU-010. WE-02l). The
  .98,0      off. Decompo-    temperature at which
  (cant.)      sition begins.    constant weight is reach-
       144 Reaction becomes    ed 1s .... 100-150 degrees
        intense.     lower than that reported
            in several of the studies
       160 Reaction slows    (LU-010. WE-02l) although
        down as it    in fair agreement with
        approaches this    the third (KE-026).
        temperature.      
        Last traces of      
        n1 trogen oxides      
        observed.       
       311-1000 Constant weight. Fea O.     
 46. Co(NO,),     -100 Decomposition NO,  ST-026 Stern regards the eX18-
       begins     tenee of this compound
             as doubtful.  
 47. Co(NO.),     100-105 Decomposition COa 0. None given. ST-026 No intermediate 10 formed
       begins.    in the decomposition.
       -170. Conflicting      
       270 reported tem-      
        peratures at      
        which rate of      
        decomposition      
        is a maximum.      
I       180 Decomposition Co:) 0. ,  DE-024   
IJJ        in a vacuum NOa' 0;     
V1        occurs at this      
I        temperature.      
 48. Co(NO,), -33 S-S 1.7 PO-012  rtrA study Car-  None given. SA-026 Note that the thermal
  '61100 20 S-S 0.7 PO-012  ried out with    effect at 150-180' C
    0.1-0.15 g     reported in this investi-
   57 SoL  RO-007  samples. Heat-    gat ion corresponds to the
        lng rate was    decomposition temperature
        15-17'C/min.    for the anhydrous salt
        The fallowing    reported by Dehnicke and
        thennel effects    Straeh1e (DE-024). No
        were observed:    explanation was made in
       55-60 Melting in     the abstract for the
        water of crys-    affect at 250-80. It was
        tallizatlon.    8180 reported that an
           exothermic effect occurre:l
       150-180 Evolution of NO,   but the abstract does not
        gaseous product.    state at what temperature
       250-280 E~dotherma1    it took place.  
        "£feet.       
       280-80. FInal product COa 0.     
        10 stable.       
       (cant.) (cant.)  (cant.) (cant.) (cant.) (cant.)  

-------
    TRANSITIONS   DECOMPOSITION    
  COMPOUND T(.C) Im 6II(kcal/mole) ..!!L.... .:!!:£L Method/Comments ~ Reacclons ..!!L.... DISCUSSION 
 48. Co {NO, ),      The decomposi-    LV-009 This study elso generatsd
  '611,0      tion wes studied     the activation energies
  (cont.;)      under air and     for resction (73) in
       dynamic nitrogen     stetic eir end dynamic
        atmospheres us-     nitrogen atmospheres.
        ing TCA. Ths     Thsy ara 9.7 ,. 1 and
        ~:~~~:s h~e~~~C/     11.4 ,. 1 kcel/mole re-
            spectively. 
        min.     Aftsr losing ell its
        In air. the     weter of hydretion be-
        thermogram show-     tween 50 end 233.C, the
        ed the following:     selt decomposed diractly
       50-233 38.7~ we18ht Co (NO.)., Co(NO),' 6'i0  to Co30.. 
        1088. 11,0, - Co{~O,),+ 11,0   
         (73)   
       233-280 52 .6~ weight ColO., CO{NO&)~ - V,Co.Ot   
        loss. NO., 0. + 2N, V,O, 74)   
       280- - Constent weight.      
       800       
        The nitrogen      
        etmosphere ther-      
        mogram was simi-      
        lar:      
       <50-227 34. 2~ weight Co{NO,).. Reaction (73)   
        loss. 11,0     
       227 -315 54.9~ weight CoaO.. Reaction (74)   
I        1088. NOa. 0.     
Ii.)       315- - Constent weight.      
0\       800       
I              
       22-51 Endothermel ef- Spectra-   KA-022 This study was reviewed
        feet due to metric    by Lumme end Junkker1nen
        melting of the analysis    (LU-009) who reported
        nitrate in the of gas-    similar results. 
        water of crys- eous     
        tallization. products     
       118-51 Endothermic showed     
        effect caused traces     
        ~hs b~~t~n~i~~ of IINO,     
        vapors.     
        removal of      
        part of the      
        water of      
        crystallize-      
        tion.      
       138 First appear-      
        ente of HNOa      
        vapors.      
       190-245 Intense decom-      
        position.      
       217.5 Temperature at      
        which greatest      
        concentration      
       (cont.) (cont.) (cont.) (cont.) (cont.) (cont.) 
    TRANSITIONS    DECOMPOSITION    
  COMPOUND T(.C) Im AH(kcal/mole) ..!!L.... .:!!:£L Mathod/Comments Products bactlons ..!!L.... DISCUSSION 
 48. Co(NO')t      (n~~J ~:~o~:-      
  '611,0 cont.)      corded.      
       235 -40 Unexplained      
        thermal effect.      
        TGA was us ad to  None given WE-021 Wendlandt reported no
        study this com-     intermediate breaks in
        pound. The heee-     the decomposition curve.
        ing rate was S .4°     He also noted thet the
        CImino A slow     minimum oxide level tern-
        s tream of air     perature mr cobalt ni-
        wes pes.ed through    trate wes the lowest of
        the furnace.     all 15 compounds studied.
       50 Dehydration be-     His results are similar
           to those given by Lumma
        gins.     (LU-009). 
       290 Oxide level Co.D.     
        reached.     
        TGA was used for NO..I100   KE-026 Constent weight is not
        two types of r.una Co. O.    echieved et any stege
        in eir. Typa I    before complete decompo-
        runs were pro-     sition to cobalto-cobaltic
        grammed runs at     oxide. 
        :f h;~~~~m~:~e     An increase in tlme, or
            slower heating rate, w..
        from 20 to 1040. C.    found to lower the decom-
        Type II wes en     po.1tion temperatura.
I        extended run      
Ii.)        lesting 53 hours      
....        from 20-350.C.      
I        TVI>e I Run:      
       350 Decomposition to      
        C03 0.. complete.      
        TVI>e II Run:      
       ISO Red-brown fume..      
       210 Decomposition      
        complete.      
 49. Ni{Ne,).     220 Temperature at    5'1'-026 Thi8 compound i8 reported
       which decompo-    AD-OOS to be slightly volatile.
        si tion in vac-     ~~ ~~c~~~P~;~~O~~l r:~~~ior
        uum occurs.    
       260 ~~~~n:n 1:n     ~aseou8 N; 0.. . Addison
           AD-005) stete. that
            reaction of the carbonyl
        argon atmos -     with liquid N.O. rasult.
        phere up to     in formation of the oi-
        this tempera-     trete. 
        ture.     
 50. Ni{NO.),     260 Decomposition Ni{Ne,).   5'1'-026  
       begins at thi.     
        temperature.      
       105 Decomposition NiO   KA-014 Kalincbenko. without 011>-
        occur..     ing . reference, (cont.)

-------
~--             
    TRANSITIONS     DECOMPOSITION  
         I    
  COMPOUND 1m !m. AH(kcal/mole) ~ ~ Method/Comments ~ Reactions -!!L DISCUSSION
 SO. Nl(NO.~.           reports thst decompositiO'l
  (cont.           occurs at a much lower
            temperature than that
             reported by Stern (ST-026).
             He 8180 states that dis-
             agreement exists concern-
             ;~~~e w~~~eratu~e
             correspond to the various
             phases and the composition
             of the phases.
 51. Ni(NO,>. 56.7 S-I,.  RO-007  MA was carried   SA-026 
    out with 0.1-    
  '61100 SO Sox.  SA-026  0.15 g samples.    
   55 Sox.  KA-014  Rote of heating    
     wes 15-17' CImino    
        ~he t~h:~:~~am    
        showed 5 peaks:    
       50 Melting in    
        water of crys..    
        tallization.    
       136.7 Dehydration Ni (NO.),   
        .3N.0   
       270,275, Further dehy-    
       340 dration takes    
I        place.    
W       800 Final product NiO   
CO        identified.    
I           
        TeA. study C.Dr-   KE-026 The slower heating rate
        ried out in air    resulted in lower decom..
        in two parts:    position temperatures
        1. Progrmmned    and the formation of a
        run employing    stable intermediate not
        a heatin, rate    detected 10 the tempera-
        of 5-6'C min.    ture programmed run. The
        from 20 to    author states that evo-
        4010'C.    lution of NO, fumes prior
           to 250°C suggests that
       200 Weight loss 1100   nitrate decomposition
        corresponding    starts before 4 moles of
        to slightly    water are evolved.
        more than one    
        H,O.     
       <250 Red brown f\mles NO,   
       400 Decomposition NiO   
        essentially com.    
        plete.    
       >400 Constant weight.    
        II. Extended run    
        lasting 77 hours,    
        36 minutes from    
       (cant.)  (continued) (cont.) (cont.) (cont.) (cont.)
51.
COMPOUND

~~~Ng. >.
(co~t.>
TRANSITIONS
~ !I2!. 6H(kcal/mole)
.J!!t:..
 55
 10
I 
W 

'1.16Ni~OH),
NiO

-------
Co.'iPOUND
51. Ni(NO.>.
. 6H., 0
(cont.>
TRANSITIONS
~ !I2!. IIHCkcal/mole) ~
..!!:.£L !lethod/Comments

TGA we. used in
a slow stream of
air. Gaseous
products were
not enelyzed.

Loss of water of
hydration.

R.spid weight
loss.

Formation
Ni (NO.>.

R.spid weight
loss

Cons ~ent weight.
50
50-205
205
>205
505
32-51
Experimental
details not
given in' ab-
stract.

Melting in
water of hy-
dration.

Partial de-
hydration

Observation
of HN03 va-
pors.

Decampod tion
of nitrate.

Greatest con-
centration of
HN03 vapors
observed .'

Unexplained
thermal
effect.
127 -162
138
I
.p-
O
I
162-259
235
290-337
52.
CuNO.
53. CuNO.
54. Cu (NO. >.
DECOMPOSITION
~
a_ctions
None given
....!!!!:...
DISCUSSION
NiO
WE-02l Only one stable hydrate
intermediate was observed.
Spectra-
photo-
metric
analysis
of gas-
eous
products
showed
traces of
IINO.
vapors
None given
KA-022
No evidence for the for-
mation of this compound
WeS found in the litere-
ture.
No evidence for the for-
mation of this compound
was found in the litera-
ture.
Stern (ST-026) states
that there are conflict-
ing reports concerning
the existence of this
compound.
    TRANSITIONS    DECOMPOSITIONS     
  COMPOUND ~ ~ J\H(kcal/mole) ~ ..!!:£L Mechod/Commencs ~ Reactions  ~  DISCUSSION
 55. Cu(NO.>. 255 SoL  ST-026 <227 Vaporization of NO; J 0; None given.  ST-026 ,  Stern reports that the
   180- S-G 15.E   the solid snlt.     vspor pressure of Cu(NO,).
   200     Only the solid     has been determined.
       phase undergoes       
        decompo 5i tion       
        1n this range.       
       >227 Both solid and       
        vapor decompose       
        above this tem..       
        perature.       
       325-75 R.snge 'of study CUO, NO., 'Cu++ + NO; ;t CuO + Net KU-012 The mechanism and kinetics
        In equ1molar O. (76)  of decomposition in alks-
        melt of NaNO. -  NO! + NO; ;1' 2NO. + %O~  li metal melts were stud...
        KN03.   ied. CuO was found to
           (77  cetalyze reaction (77).
             The author concluded that
             possibly CuO might cata-
             lyze any acid-base reac-
             tion in nitrate solvents
             where No:r Ion i8 the
             ...termedlate spee1'es.
             Other metal oxides mi8ht
             act similarly.
 56. Cu(NO.>. '3H.,0     This study wes    LU-008 The actlvatioo energies
      carried out by     for reac tions (78) and
        means of TGA at     (79) were calculated to
        ~£ h~~~~g'mf~~e     be 13.2 ,. 2 and 48.4 ,. 2
I            kcel/mole respectively.
.p-        in static air.     The reaction orders were
I-'       86-250 39. n weight Cu (NOJOH Cu(NO ). '3H.0   also determined.
I         'Some disagreement exists
        loss. HNO. - Cu(~O.>OH + 1IN0t  concerning the composi-
       250 Basic salt 11.0 + 2H.,0 78)  tion of the intermediate
        formed.     as reported in earlier
       250-305 46.8% weight CuO Cu(NO.>OH - CuO + IINO.  papers. Lumme ane! Junk-
        1088.   (79)  karinen (LU-008) state
       305-550 Thermogram     that most investigators
           agree that some sort of
        shows nearly     basic nitrate i8 formed
        constant weight.     at 250 heving s composi-
        corresponding     tion of either Cu(NO.). .
        to CuO forma-     OH,.. or Cu(NO.)(OH). .
        tion.     However Keely and !innor
             (KE-026) report no basic
             intermediate formation.
        TGA was used 1n    KE-026 Decomposition was com-
        two types of     pleted at a lower tom-
        experiments.     perature when the heat-
        hJf~cm 20 to     ;~~u~:~~ w~~ :~~~;~~~a~~~
            the formation of an
       200-250 Most of water :Jc0' CuO,    oxynl trate was found.
        10ss occurred N .      
        during this      
        interval.       
       (cont.) (cont.) (cont.) (cont.)  (cont.)   (cont.)

-------
COMPOUND

~6. Cu(NO.). '311.0
(cont. )
TRANSITIONS
!!:fl ~ AH(kca1/mo1e)
~
DECOMPOSITION
350
~ Method/Cotments
210
 70
 70-165
 165
I 
~ 
.... 
III 165-325
I
 325
120
-200
203
310-446
> 400
Ce»!POU!'D li:£l.
56. Cu(NO~).'31\P
(cant.)
TRANSITIONS
~ ~H(kcal/mole)
~
Decomposi tion
essentially
complete.
II. 35 (tram 20
to 0:
Decomposition
complete
The decomposi..
tion in a slow
stream of air
was studied
using TGA "Ii th
a hcating rate
of 5.4'C/min.
The gaseous
pro clue ts \"ere
not analyzed.

Salt began to
dehydrate.

Rapid weight
1055.

Break in the
curve corres-
ponding to a
basic nitrate.

Further decom-
posi tion was
observed.
CuO level.
r1J:A was employ-
ed by this in-
vestigator. l'o
l1ttcr.Jpt \"'as made
to analyze pro-
ducts or propose
rncchanist:ls. The

~C~~!g'm~~~e was

Dissolution.
Initial appear-
coce of nitrous
fume 5 .
Rapid nitrous
fumes.

UfA curve showed
a change from
endothermal to
cxo~hcrm.11.
1'0 further visi-
ble reaction.
Products
Cu,O(NO.),
CuO
DECOMPOSITION
Reactions
None given.
- 480
~ Method/CoTmlents
~7 .
Cu(NO.).
'~H.0
SOL
8.7
LA-008
24.4
58. AgNO.
I
~
N
I
85-140
(cant.)
Peak of exother-
mal portion of
curve with grad-
ual decrease to
761 'C.
Weight of sample
befoue and after
heating was meas-
ured in four
different atmos"
pheres.

Range of study.

1. Unsealed
Vessel J restrict-
ed air flow.
II.
sel.
III.
sel.
Sealed ves-
Open ves-
Decomposition
took place in
a va.cuum; NO:a
evolved was
trapped in a
chilled receiv-
ing nas k.
(cant.)
~
~M. NO,
(cant.)
Reactions
AgNO,
or
AgNO.
~ Ag + NO, (80)
-Ag+NO+J,O,
(81)
2~~g, ~ Ag + AgN~h)
3AgNO, - 2Ag + AgNO,
+ NO,+ NO (8;»
(cant.)
SC-029
(Diver&)
SC-029
(Div-
ers &
Shimiel-
zu)
~
DISCUSSION
WE-021
This investigator also
reported the fortr.3.tion
of a basic nitrate inter-
mediate, although dif-
ferent in cCJ.:1position
from those mentioned
above.
GO-014
~
DISCUSSIO:l
LU-008
This paper does not deal
directly with the hexahy-
drate, but rather with
the trihydrate. However
in a brief discussion of
reported intermediates
in the decomposition of
both sal ts t the authors
stated that formation of
the basic salts
Cu(NO.),.." (OH)"'38 and
Cu(NO.),.. (OH),.. had
been reported. It was
also noted that the de-
composition behavior of
the hexahydrate in air
and vacuum is quite dif-
ferent from that of the
trihydrate. No further
details were given.

A survey of the Ii tera-
ture on AgNO~ decomposi-
tion WaS prepared in 1969

~~9~: WTh;c~~~~;~~s (;~-

this survey are g1 ven
here in chronological
order.
The earliest study led
the investigation to the
followin8 conclusions:
No AgO was formed. The
nitrite decomposed ac-
cording to reaction (80).
If NO~ is not removed t
it reacts with the sample
to form AgNO. and NO.
These results indicated
that 0/3 of the nitrogen
in the original sample
went to NO~, and y 3
formed nitrate and nitric
oxide. From the informa.
tion gained in several
side experiments, it was
concluded that AgN03
fomed from Ag and NO;.
No reaction between
(cant.) (cant.)

-------
COMPOUNO
58. 4NO.
(cont.)
TRANSITIONS
~ !I2.! AH(kcal/mole) ~
DECOHPOSITION
..!.C:fL Method/Commenta
~
Reactions
~
DISCUSSION
         811 ver 01 cr1 te and NO;
         was detected even after
         prolonsed contnct.
  Samples were  ~N~i) + NO. ~ 4NOt84) SC-029 Oswald. 1n contrast to
  heated rapidly  (Oswald) .Divers (above). found
  in vacuum system.      that ,NO and NO do
 100 Rate:. of decem-      react 84 L In a~dition.
  pas! j.~on was      he studied the rates of
       decomposition at various
  s10,,".       temperatures. The solid
 130 Noticeable rate      products of decomposition
  of decomposi-      were found to be predom-
  tion.       inanely silver, with
 200 Rapic' jecomposi-      traces of 4NO.. No sU-
  tion.       ver nitrite was found.
  I. Study carried  4NO. ~ 4 + NO. (80) SC-029 Under the first set of
  out at 1950 un-   (Cen- experimental conditions t
  der vacuum. gas-     ter- resction (80) went to
  eous products     szwer completion. However, 1£
  remove.     and the gaseous products re-
  II. Decomposl-  ~N~i) + NO. ~ AgNOt 84) Chedn- malned 10 contact with
   aki) the sample, the overall
  tion carried   reaction was (82). which
  out under pres-  2~~g, ~ 4 + 4N~h)  is the sum of (80) and
  sure.    (84). Reduction of NO.
     4 + NO. ~ AgNO, (85)  to NO was visually ob-
      served during the course
I         of the decomposition.
./"        
W          
I         Reaction (84) was in-
  Dry NO. was passed  4No,,+ NO. ~ 4NO~84)  vestigated. A waight
  ~~~~s ,,:~oi06~r 7  + NO  incrcas.a corres)ondlng
     to 85.1% of (84 was
         observed. Attempts to
         observe the reverse of
         resction (84) failed.
  Kinetic measure- 99.7'1: 4NO. ~ 4 + NO. (80) SC-029 The results of this stu-
  ments of AgNO. NO~. ~~g. ~ 4 + 4N~~2) 031um...- dy along with those of
  decomposition O. 'I: NO thal & Centnerszwer and Checin-
  were made by sbJd)o- at 1 mtn. Chedn- ski (above) confirmed
  ing either volume 100'1: NO    aki) thet (80) occurred .!.!l
  change or pres.. at 1 at:m.     VACUO) while at atmos-
  sure change. The      pn.Frc pressure (82)
  composition of      occurred. A combination
  the gas was ana..      of these two reactions
  1yzed as a func-      took place at inter-
  tion of pressure.      mediate pressures. They
 (cont.)  (cont.) (cont.) (cont.)  (cont.)  (cont.)
COMPOUND

58. AgNO.
(cont.)
TRANSITIONS
T(.C) !I2.! 6II(kcal/mole) ~
DECOMPOSITION
..!.C:fL Method/Comments
Products
Reaetions
...!!h...
DISCUSSION
Microscopic
study of decom-
position.
SC-029
( Schaum
and
Becker)
8180 found that increas-
ing the pressure resulted
in a decreased initial
velocity, and that lower
decomposition temperaturES
occurred at lower pres-
sures. They obse~ved an
induction period 1n the
interval from 150 to 195.
C at constant pressure.
Activation energies were
measured 10 this range.

They found that the de-
composition varied
according to the method
by which the crystals
were grown.
4.
4NO. ,
NO
2AgNO. . Ag + .AgNOa
+ NO (u2)
SC-029
( Randell,
Manov,
and
Brown)
A study of the thermody-
namics of decomposition
at atmospheric pressure
according to reaction
(82) was carried out by
equilibrium vapor pres-
sure measurements. The
results confj.rmed that
tha activities of 4NO..
Ag. and AgNO, can be
taken as uni ty. The
relative amount of AgNO.
in contact with 4 +

~N~tg~ih~~~~d e~~e~~v~n
the vapor pressure of NO.
I
./"
./"
I
128
This was re-
ported .as tha
beginning of
decomposi tion
9f pura 4NO..
4.0,
NO. NO.
24NO, ~ Ag. ° + NO
+ NO. (86)
SC-029 Reaction (86) had been
(Oza) r.ropoaed by Oza as tha
'primary stage" of ni-
trite decomposition. He
attempted to detect sil-
ver oxide 1n the decom-
position products of both
pure AgNO. and a mixture
of 4NO. and As O. No
4.0 was found In either
case. He cone 1uded that
(82) wes the primary
stage. but that NO and

N°in a;~~~~:~ ;~~e~i;:~t

he was able to isolate
4 0 by dec01J1posing the
nilrite in pure ox~gen
for 4 hours at 130 C.

re~c~~~~e(8'~~r)ew:~

proposed to account for
the products found.
The sUver. oxide formed
(cont.) (cont.)
As. AgNO. 4NO.+ NO ~ 4NO.
4NO. ,NO. + NU. (87)

NO. . 4NO. + IJO. ~ AgNOI
(u8)
(cont. )
(cont.)
(cont.)(cont.)

-------
TRANSITIONS
TC'C) .~ 6HCkcal/mo1e)
DECOMPOSITION
COMPOUNU
58 . AgNO.
(cont.)
~
...!.!:£L. Method/Comments
~
Reactions
Ag.O + NO. - Ag.o.
+ NO ~89)

Ag O,NO,NO. AgNO
+' AgNO. ~90)

~.~+ NO. - AgN0h1)
..!!!L
OISCUSSION

in the priml'ry decomposi-
tion reaction was said
to rese t wi th NO to pro~
duce mainly AgNO~.
90
Decomposi tion
temperature.
SC-029
(Bo1dy-
rev &
Erosh-

~~4)
The effect of crystal
size on the rate of char...
mal decomposition was
investigated. An optimum
size was reported. The
temperature range studied
for decomposition was 70
to 105.

th~t d~~~~r~~~e~~t~h:S

rate of decomposition
between large and small
crystals was much less
thsn the difference at
low temperatures.
SC-029
(Bo1dy-
rev) &
Erosh-
kin,
1966)
The effect of additives
on AgN02 decomposition
was investigated. NiO
and Ni::! 03 were reported
to accelerate the reac-
tion; VoOa. ThOa, CdO,
and W03 had 00 effect;
AggO, CuI, and Li:aO de-
creased the rate.
I
~
VI
I
The kinetics of Ag,
t~e7IDal decompo... NO~
51 tlan were
studied under
vacuum '-lith con-
tinuous evacua-
tion. The ir-
radiated and
unirradiated
samples were
placed in a
quartz or aIu...
"minum boat.
SC-029
This investigation of the
kinetics of thermal de...
composition of AgNO.
employed both unirradla-
ted and irradiated salts.
The decomposition curves
were linear in the 15 to
45% weight loss region.
The contacting envelope
mechanism waS verified
by microscopic observa-
tion, and a kinetically
descriptive equation was
derived. Exposure to
cobalt...60 gamma radiation
had an unusual stablU.zJng
effect on the salt; a

::~~:r~S~h~:S ph~~~:~~n~O
120 Decomposes at Ag, NO. 
 this tempera"  
 ture. TCA was  
 used.   
(cont.) (cont.) (cont.) (cont.)
SI-026
PA-013
Stern reports that the
investigation of the
decomposition of this
salt is in the prelimin-
ary stages. The kinetics
(cont.)
(cont.)
    TRANSITIONS     DECOMPOSITION       
  COMPOUND ~ I:tl!!. ~HCkcs1/mole) ~ ~ Method/Comments ~  Reactions  ~  DI SUC SSION 
 58. AgNO.              are reported to be first...
  (cont.)              order I and an activation
               energy of - 25kJ/mole
                has been reported. 
       128 AgNOa begins to Ag,O, 2AgNO, - Ag. ° + N~86) 02-006 Oza studied the action
        decompose form- NO, snd + NO~  of NOa on AgNOa and its
        ing ABaO, NO, NO.      decomposition products.
        and NOa.      Reaction (91) is nagligi-
       130 AgN01> oxidized AgNO.s . ~N~1> + NO. - AgN0h4)  ble at 130°C but contri-
        butes considerably at
        by N , to AgNO.. Bnd NO  higher temperatures.
       130 and Si1 ver oxide  Ag.O + NO. - AgNO~91)  Reaction (86) is not con-
       above resets with NO;.  +Ag   sidered to be the true
              decomposi tion mechanism
                by ttIany investigators
                because no Ag;O is de-
                tected in the reaction
                products. 
 59. Agl/O. 160 S-S 0,66 RO-007 >127 Ag.O is very  2AgNO. ~ Ag.O + 2NO~ ST-026 Stern reports that the
     0.609 LA-008  unstable above  + '.i0. (9 )  decomposition equilibria
      SI-026  this tempera"  2NO. a 2NO + O. (93)  of this system is compli-
     0.57  ture.    cated by the thermal
     0.55 AD-002 210 AgNO. me1 ts.  2AgNO. - 2Ag + 2NO~  instability of Ag.O. De-
      + 0. ( 4)  composition is reported
   159.4 5-5 0.561 RE-006 240-250 Decomposition  Ag.O - 2Ag + !.i0. (95)  to be negligible below
   210  2.76 JA-013  becomes   its melting point, but
   SoL  appreciable.       becomes appreciable above
I   209.6 SoL 2.96 JA-012          it. Partial pressures
~   210 SoL 2.98 ST-026          for AgN03 decomposition
(J\            were calculated at 298,
I   214 SoL  GO-014          400, 500, 600, and 700'K.
                5~7o~o~a5. ~09s:~de a~t
                427'C - 1.94 atm. 
          ~~a' 0.,     PA-013 Kinetic: studies showed
               that there was an indue-
          either      tion time at lower 
          Ag or      ~58f~)a;~r~~ ~;c;e~~~~ at
          Ag.O      with increasing tempera..
                ture. At relatively
                g;~~n~~~:r~~d~~~i~~
                period, the decomposition
                was first order. At
                520°C, the activation
                energy was reported to be
                - 14 '" 2 kCel/mo1e.
        In'A was used      GO-014   
        from 50 to         
        744 at heating         
        rate of 15'C/         
        min. No pro-         
        duct anal~SiS         
       (cont.) (cont. (cont.) (cont.)  (cont.)  (cont.) 

-------
    TRANSITIONS     DECOMPOSITION   
  COMPOUND !C.£l. ~ llH(kcal!mole) ~ !!:.fL Nethod/Comments ~ Reactions ~ DISCUSSION
 59. AgNO.      was performed.      
  (cont.)     214 Fusion       
       305 Rapid bubbling      
        occurred.       
       469 Rapid nitrous      
        fumes were ob-      
        served.       
        TGA was used.      
       444 AgN03 was report- Ag, "n1-    DU-Oll This decomposition tem-
        ad to be stable trous     perature is 1n general
        up to this tem- vapors".     agreement with most other
        perature J at HNO.     studies (PA-013, GO-014).
        which sudden vapors.     However Stern reports a
        evolution of      much lower value.
        01 trous vapors      
        occurred.       
       608 Formation of      
        metallic silver.      
 60. Zinc             No evidence for the
  Ni trite             existence of this com-
               round was found in tho
               Iterature.
I 61. Zn(NO.).     100 Stable up to  Zn(NO.). ;I Zno + 2No. ST-026 
.po       this point.  + \0. (96)  
"       240 Slight decom-      
I        pos! tion.       
       >240 Decomposition Zno,     
        becomes in- NOg, 0Il     
        creesingly     
        rapid.       
 62. Zn(NO.). 36.1 SoL RO-007  TGA was used to Zno None g1 ven  WE-02l The gaseous decomposition
  '6HgO      study the decom--      product was assumed to
       position of this      be NOg slnce the reaction
        hydrated nitrate      was carried out in a
        in air. The      slow stream of air.
        heating rate was      
        5.4'C/min.      
       40 Salt began to      
        dehydrate.      
       160 Intermediate      
        product, Zn(NO.).      
       340 Constant weight.      
        formation of ZnO.      
       (cont.) (cont.) (cont.) (cont.)  (cont.) (cont.)
    TRANSITIONS    DECOMPOSITION  
  COMPOUND I!:£2. ~ 6H(kcel/mole) ~ ~ Method/Comments ~ Reactions ~ DISCUSSION
 62. Zn(NO.).      rtrA was used to NO.. HNo. None g1 ven. GO-014 
  '6~0      study the beha..    
  (con .)      vi or of this    
       salt from 40 to    
        740. A heating    
        rate of ISoC/min.    
        was employed.    
       42 Hydrate dissolu-    
        tion.    
       281 Slight IIn1trous    
        fume s II (brown    
        ~~!drd nitric    
       332 Rapid IInitrous    
        fumes".    
       470 Thermal reaction    
        complete.    
       25-30 Thermal effects   SH-OIS The abstract of this
       120-160 were reported at    paper stated that the
       290-295 these tempera-    thermal effects record-
       - tures from a    ed were due to dehydra"
       TGA study.    tion. fusion. or decom-
            position. A comparison
            of these results with
            those above shows the
            ~i~;;t:f~~~~o~~~~:~~y is
I            t&e second corresponds
.po            to dehydretion (WE-02l),
00            and the third to nitrate
I            ~~m)~ition (GO-014.
 63. Cd (NO. ).         . PR-OIO This compound slightly
           contaminated with the
            basic salt is reported
            to decompose slowly 10
            air with evolution of
            nitrogen oxides and for..
            mation of a water-insolu-
            ble mass containing a
            mixtura of basic salts.
 64. Cd (NO.).       TGA study from   PR-OIO 
  '2HgO      0 to SOO'C.    
       44 The dihydrate HgO   
        melts with   
        pardal loss of    
        water.    
       119 Dehydration    
        complete Cd (NO.).    
       (cont.) (cont.) (cont.) (cont.) (cont.) (cont.)

-------
      TRANSITIONS      DECONPOSITION     
   CO~!POUND I..L:fl ~ 6H(kcal!mole) ....!!£L.... ..1J:£L Nethod!Conments ~ Reactions ....!!£L.... DISCUSSION 
  64. Cd(NO,),     247 Endothermic  Basic      
   '2H,0      effect due to salts.      
   (eont.)      nitrite decem..       
        position and       
         fonnation of       
         basic salts.       
        328)341 Decomposition       
         of b3Sic snIts.       
        371.7 Forn:ation of CdO      
         final product.       
  65. Cd(NO,). 360 SoL 4.3 ST-026 300 Rapid decompo- CdO. NOa, 2Cd (NO,), ;! 2CdO ST-026 The decomposition 15 
        s1 ticn takes 0, + 4NOa+ 0; (97) reported to be reversible
         place above   and to yield 00 inter..
         this tempera-    mediates. 
         ture.        
              BA-040 The effect of 5 moleX
               addition of Ni, Pb, Zn.
               and Ag nitrates 00 
               Cd(N03); decomposition
               was investigated. All
               additives were reported
               to have decreased the
               decomposition tempera-
               ture from 360°C to 335-
               45° C and to have 10- 
               creased the rate of 
 I              rese tion. Note that 360"C
 ~              was reported by Stern
 \0              (ST-026) as the melting
 I              point. 
  66. Cd(NO,). 59.5 SoL 7.8 RO-007  TGA was used in  None given WE-02l The gaseous produces 
   .41100      this investigD.-    were assu:Iled to be NO:!
        tion. The heat..    since the resction took
         ing ratc Has 5.4°C/   place in air. 
         1I1in. and the    
         reac tion took       
         placc in a slaw       
         stream of air.       
         The follo"ing       
         temperatures       
         of interest were       
         reported:        
        50 Salt began to       
         lose water of       
         hydration, fol-       
         lowed by rapid       
         weight loss.       
        220-280 Constant weight. Cd(NO.),      
        > 280 Nitrogen oxides       
         evolved.        
        435 Oxide level  CdO      
        (cont.) (cont.)  (cont.) (cont.) (cont.) (cont.) 
      TRANSITIONS      DECONFOSITION     
   CONFOUND I..L:fl ~ ~H(kcal!mol.) ....!!£L.... ~ Hothod/Comments Products Reactions ~ DISCUSSION 
  66. Cd (NO. ),      The method em..  None given GO-014    
   .4H.0      ployed in this       
   (cont.>      study was MA.       
        The standard       
         employed w,']s       
         alumina and the       
         ~~:tg~c/~i~.       
         Both thermograms       
         and visual ohser-       
         vations were       
         reported.        
        66 Hydrate solution.       
        345 Slight "nitrous"       
         furccs (bro"n NO, ~       
        379 Rapid IInitrous"       
         fumes.        
        540 Decomposition       
         complete.        
        30-50 This TGA study   SH-018 The abstract of the paper
        110-200 resulted in     did not specifically ide".
        350-80 three thermal    tify the thermal effects.
         effects.     It stated that all effects
               were due to either dehy..
               dration. fusion, or de...
               composition. If compared
               to the results above 
I               (WE-02l. GO-014). it 
VI               appears that the first
o               effect is due to fusion
I               of the nitrate in its
               water of crystallization
               The second effect corres.
               ponds to dehydration. and
               the last to nitrate 
               decomposi tion. 
  67. Al(NO.),            No evidence for the 
               existence of this com..
               pound was found. 
  68. IJ.(NO,>,           ST-026 This compound has been
               prepared by vacuum sub..
               limation of its adduct
               :;t~ ~fi~t~ p~~d~~n~~nsed
               -78°C. None of its pro-
               perties have been meas-
               ured as yet. 
  69. Al (NO, >, '911a0     150-450 Temperature  alumina  AB-003 ;i:~ ;:~~r:;~~e~a~~~d
        range in the rea~ liNO"  
         tion chamber in H;O. N;Oa   in this study to deter-
        (cont.) which (ig'i>~~~osi-  (cont.) ) mine optimal conditions
        (cont.) (cont. (cont.) 

-------
             ---
   TRANSITIONS     DECOMPOSITION   
 CmlPOUND IC.£l ~ ~H(kcal/mole) .J!!L... ~ Method/Comments ~ Reactions .J!!L... DISCUSSION
69. Al(NO.~. '91\,0      ticn occurred     for n1 crogen recovery
 (cont.      in the presence     in the form of HNO.. It
       of steam.     was found. chat 1n the
             presence of steam, N:.0a
             was formed which is easily
             converted to HN03.
       DTA was used.  Al(NO.).' 9Ho0 DR-002 This study was undertaken
      70-400 Deeh endotherm  J   to determine the sequence
       wit 3 parts:  70-100'  of phase conversions dur-
          ing thermal decomposition
      70-110 I. Dehydration Al(NO.). Al(NO.).' 6H.0  10 air. The dependence
       to lower hydrate. .6Ho0 1   of the rates of these
      110-120 II. Removal of Ho0 160-180'  processes on temperature
       hygroscopic   was also of interest.
       moisture.  nAl.O.' mN.O.' pHo°  ~~~e f~;~i~~ : me~~~~al
      160-180 III. Decompo-  1 200-400'  analysis. ~lgh tempera-
       sition to basic   ture X-ray diffraction,
       salts.   Al.O. amorph. (98)  IR spectroscopy. optical
      >200 Formation of a-     ~~h:;:~lograPhy. and
       morphous sub-    
       stance.     
      390 Completion of Al:l°a    
       decomposition    
       and formation     
       of oxide.     
       Al(NO.), .9Ho0 Al. (OH). 3Al(NOt)~'9~0 MA-042 The decomposition was
       was held at a NO. ~ A13 ° >aN .  halted at this tempera-
I       temperature of  + HNO. (8)+ 19H.~~  ture to determine the
VI       150 for 5 to   composition of the stable.
.....       10 hours until   (99  intermediate basic nitrma.
I       evolution of     
       HN03 vapor     
       ceased.     
      95 First appear- Spectro-   KA-022 
       ance of HN03 metric    
       vapors. analysis    
      <120 Melting in of gas-    
       its water of cous    
       crystallization. products    
       showed    
      120-160 Simul taneous traces    
       boiling of the of HNO..    
       melt and de-    
       composition of     
       the nitrate.     
      137 Naximum con...     
       centration     
       (6.78%) HNO.     
       vapors record-     
       ed at this     
       temperature.     
      308-336 Unexplained     
       endothermic     
       effect. (eont.) (cont.) (cont.) (eont.)
      (cont.) (cant.)
TRANSITIONS
CONPOUND !!:£l !xE.! 6II(kcal/mole)
69. Al(NO.). '9Ho0
(cont.)
DECOMPOSITION
....!!!h...
~ Method/Comments

TGA was us ed to
study the decom-
position in air

~;~~ bf h5~Z:g,

min. The follow...
ing temperatures
of interest were
reported:

Slow loss of
water.
~
Reactions
.J!!L...
WE-021
DISCUSSION

No evidence for the
anhydrous nitrate or any
other stable intermediate
was found in this. tudy .
No analy-
sis of
gaseous
products.
None given.
50
Ho°
90
460
Weight loss
became rapid.
Oxide level.
Al.O.
 70. Gallium          No evidence for the
  Nitti te          exis tence of this com-
            pound was found. 
 71. Ga(NO.).     40 Dehydration Ga(NO.).  ST-026 Stern reported th.t this
       200 Formation of Ga.O.   compound was probably
        oxide   prepared by dehydration
           of the hydrate under
            vacuum at 40'C. A large
            fraction of the salt was
            reported to have been
I            200~c~ted to Ca.O:. at
VI           
N             
I 72. Indium          No evidence for the
  Ni tri te          existence of this com-
            pound was found. 
 73. !n(NO.).     90 Compound is   ST-026 Thi. nitrate was prepared
       stable at leaat    at 90'C. 
        up to this     
        temperature.     
 74. TINO 169 S-S  ST-026       
   186 SoL         
 75. TINO. 61.2 S-S 0.239 ST-026 266-340 Experimental NO 2TlNO. (c) ~ Tl.O(e) ST-026 Ve~or pressure data for
   143 S-S 0.91   rente of vapori-  + 2NO. (g) + '0. a)  the ran~e 490-612'K are
     zat on study.   reporte . 
   210 SoL 2.1   In addition to  00)   
      WE-02l  decomposition.     
   205 SoL 2.26  TINOa was found     
      ST-026  to vaproize a8     
      (Kleppa  the salt.     
      6< Me-       
      Carthy)       
   (cont.) (cant.) (cont.) (cont.) (eont.) (cont.) (cant.) (cant.) (cont.) 

-------
t
I
75.
COXPOUND
TlNo.
(oont.)
76. Germanium
Nitrite
77.
Germanium
Nitrete
78. Tin Nitrite
I  
V1  
U,) 79. Sn(NO.).
I 
 80. Pb(NO.).
TRANSITIONS
!C£l ~
75 S-S
143 s-s
91
AHCkoel/mole) ..!!L
NE-003
SOL
DECONPOSITION
~ Nethod/COtm1ents
~
TlNO. ,
~O
Reactions
..!!L
WE-02l
DISCUSSION
50
&nall amounts of
absorbed water
were 109 t.

Anhydrous form.

Nitrogen oxides
were evolved.

Incernlodlate
level of unknown
composition.

Continued weight
loss until term-
inotion of oxpor-
iment.
The study was done with
TGA in a stream of air:
The unknown species re-
ported in the 460-505.
ranga reportedly did not
correspond to e1 ther
Tl 0 or Tl, O. . Further
wel~ht loss beginning at
505 C indioates that the
intermediate is either
volatile or decomposes
lnto volatile products.
60
265
460-505
505-725
No evidence for the
existence of chis com-
pound has been found.
No evidence for the
existence of this com-
pound wee found.
No evidence for the
existence of this com-
pound has been found.
ST-026
98
Decomposition
begins.
SnO.
ST-026
No intermediate oxide-
n1 trate was found.
TGA was used
with continuous
removal of gas-
eous produc ts .
Decomposition
products wore
analyzed using
IR and UV spec-
troscopy. Cas-
eous pI' oducts
were also
analyzed.

Weight loss.

Constant weight. Pb(NO.)..
Stoiohiometry PbO,
corresponded to NO
2PbO and Pb(No.). .

300-320 Weight loss.
3~b~~~b)t Mb(N~i61) PA-Ol3 ~~W ti::s s~~~~;ei~~e;~en-
mediate formed between
320 and 450. The stoiohi.
ometry indioeted that tho
~~~~~~~ ~~: :~~~~}~.,
pointed out that the ni-
trite should be unstable
at that temperature since
it begins to decozr.poso
as low as 150. The faot
that lead Was found to
undergo some oxidation
(final produot PbO,. 7)
indicated that reaction
(102) oould havo taken
place:
Pb(NO.).+ 2NO ~ PbCNO )
+ 2NU. (102)'
Reaotion (102) would
(.ont.) (oont.)
110-230
230-300
(ooot.)
(oont.)
(oont.)
(oont.)
    TRANSITIo.~S    DECONPOSITION    
  CONPOUND !C£l !XI!.S. ~HCko.l/mole) ..!!L ~ Method/Ccnm1ents ~ Reactions ..!!L DISCUSSION
 80. Pb(NO.~.     320-450 Constant weight.     account for the presence
  (oont.      Product not     of nitrite. Since pro-
       identified.     duct gases were removed
       450-500 Waight loss. NO not    the rosc tion would have
        evolved.    to take place in the melt.
       500 Constant weight. Pb01.,.     
        Product iden-      
        tified as PbO,. 7      
 81. Pb(NO.).      The decompo8i- Final 6Pb(NO.). ;! 2Pb(NO.). ST-026 Stern described the work
       tion was studied Produc ts : .2PbO + 8NO. + ~~03a)  of Neumtlnn and Sonntag
        by measuring the ~~b: 0.,  and the original article
        total pressure ~p~~~~&), .~~~~O  (~. El.kt., 39, 799 (1933)J
        and analyzing Intome-  was not cons\Uted. In
        tho solid phases. discos: + 2NO:+.oIJO. (103b)  oontrest to PatU (PA-
        Product gases Pb(NO.).  013) see below, Neumann
        were continually .2PbO, Pb(NO.). '5PbO ;! 6PbO  and Sonntag found no
        removed. :~~~g~). + 2NO.+ oIJO, (1030)  oxidation of lead. Their
       266-359 The product was .Overall:   identification of the
          basic nitrate intermcdia
        Pb(NO.). '2PbO.  6Pb(NO ). ~ 6PbO +  which they formulated
       352-462 The produc t we s  + 12N&.+ 30, (103d)  as 3PbO' N~ O. agrees wi th
        Pb(NO.). '5PbO.  or,   the stoic 10metry found
       415-536 The product was  Pb(NO.). ;! PbO (l~~~'  ~~0:!6~1 f~~ ~~~rf~~g~e-
        PbO.  + oIJO,  composi tion. The pro-
            duot 6PbO'N O. or
             Pb(NO.). '5PgO, steble
I             1n the range from 352 co
V1             ~~~de~~me~l~~a~~e t~~-
./:-             termedlate found by Patli
I             in tho renge 320 to 450.
        TGA was used Final None given. WE-02l The intermediata found
        with a stream of produc t:    by Wendlandt did not
        air to remove PbO.    have the same composition
        gaseous product&. Inter-    as those of Neumann and
        The heating rate mediate:    Sonntag. The final pro-
        was 5.4°C/min. Pb(NO.).    duct was PbO, in agreo-
       245 Beginning of .PbO    ment with Neumann but
        slow weight     not with PatU.
        loss.      
       370-435 Rapid weight      
        loss and evolu-      
        tion of nitrogen      
        "'xides.      
       435 Dreak in the      
        thennogram.      
        Composition      
        corresponded to      
        PbtO(NO.)~ or      
        ~~r~Od~it~~'      
        stability.      
       (oont.) (oont.) (oont.) (oont.) (oont.) (oont.)

-------
    TRANSITIONS     DECOMPOSITION   
  COMPOSITION ~ ~ t\H(kcal/mole) ~ ...:rcrL Nethod/Comrnents ~  Reactions ~ DISCUSSION
 81. Pb(NO.~.     435-575 Rapid dccornposi-      
  (cont.       tion.      
       575-  Constant weight.      
         PbO Has the      
         product.      
         TGA was used Final None g1 ven PA-013 Pat!1 also investigated
         with continuous product:    the decomposition of lead
         removal of gas.. PbO,..    nitrate, but he did not
         cous produc ts.    publish details of the
         Solid products     results. He did report
         tvere analyzed by     that the final product
         lR and UV spec-     ~~~i~~~i~~m~~~~ t~~~e P~~r:
         troscopy.    
       230- ? Constant weight.     dation took place. He
         Composi tion not     cited the work of Vratny
             and Gugliorta (J. i~m'
         reported.     Nucl ., 25, 112"9" ( ]
         No other details     InWhich It was reported
         reported.     that significant oxide..
              tion took place during
              Pb(NO.). decomposition.
              The results are clearly
              in disagreement.
 82. Bismuth            No evidence for the exis-
  Nitrite            tence of this compound
              was found. 
I               
V1 83. Bi(NO.).       The reaction    LA-024  
V1        was studied on      
I         a thermobalance      
         with a heating      
         ratc of 5° C/min.      
       90  Decomposition      
         begins.      
       100-250 Rate o£ decorn..      
         position at a      
         maximum.      
       560  Oxide formed Bia03     
 84. Bi(NO.). '5Ho0     40  The nitrate HN03,   LA-024 An intermediate oxynitrab!
        melts in its BiONO.    was reported in this s tu-
         water of erys..    dy. Note that the rate
         tallization;     of reaction increases at
         ~~~:n ~~t . is     100° C for both the penta.
             hydrate and the anhydrous
       100  Rate of decom-     nitrate (see above). The
         position be-     same oxide is observed as
             a £ioa1 product at approx.
         comes very fast     imately the same tempera-
         at this point.     ture. 
       (cont.) (cont.) (cont.)  (cont.) (cont.) (cont.)
    TRANSITIONS     DECOMPOSITION   
  COHPOUND ~ ~ ~H(kcal/mole) ~ ...!E£L Method/Comments ~ - Reactions ~ DISCUSSION
 84. Bi(NO.).'5Ho°     180  Reaction slows      
  ~c.ont.)       down.      
      600  Oxide level Bi,O.     
       ..49  Loses water of    DU-011 The exact identity of
         crystallization.     the original substance
       49-600 Slow weight     was not given, but from
         loss.     comparison with Bi(NO.).
             '5H.0 (LA-024). it
       --600  Forms oxide. Bi.O,    appears to be the penta-
             hydrate. 
 85. BiONO.     190  Stable up to    LA-024  
         this point.      
       500-  Constant weight. Bi.O.     
 86. BiONO, 'Ho0       TGA was used in    WE-021 No stable anhydrous
         a stream of air     BiONO, intermediate was
         at a heating     detected. Both this
         rate of 54°cl     hydrate and its anhydrous
         minute.     form reached the oxide
       50  Loss of water     level within 5'C of each
         of hydration     other in two separate
             experiments (LA-024.
       505  Constant waight Bi. O.    WE-02l) . 
         reached.     
 87. Zirconium            No evidence of the forma-
I  Nitrite            tion o£ this compound
V1            
C1\              was found. 
I               
 88. Zr(NO,).           ST-026 This compound has been
              ~~eb:r~~r~gy~;o~~~~~~~d
 89. ZrO(NO,). '5Ho0       TGA study at ZrO:a   WE-027 No stable intermediate
       haating rata of     was observed.
         45' C/minute.      
       575  Oxide formed.      
 90. Molybdenum             
  Nitrite            No evidence for the
              existence of this com-
              pound was found.
 91. Molybdenum            No evidence for the
  Ni trate            existence of this com.
              pound was found.
 92. Tungsten            No evidence for the
            existence of this com-
  Nitrite            pound was fOW'ld.

-------
COMPOUND
93. Tungsten
Ni trate
94.
Hafnium
Nitrite
95.
Hafnium
Nitrate
96. Tantalum
Nitrite
97. Tantalum
Nitrate
I
V1
...a
I
TRANSITIONS
!.!:£l In!!. 6H(kcal/mole) ~
DECOMPOSITION
~ Method/C=ents
~
Reactions
~
DISCUSSION
No evidence for the
existence of this com-
pound was found.
No evidence for the
existence of this com.
pound was found.
No evidence for the
existence of this com-
pound was found.
No evidence for the
existence of this com-
pound was found.
No evidence for the
existence of this com-
pound was found.

-------
Radian Corporation
4.0
AB-003
AD-002
AD-005
AL-006
AN-008
AT-OIO
BA-040
8500 SHOALCREEK BlVD. . P. O. BOX 9948 . AUSTIN. TEXAS 7815B . TELEPHONE 512 ~ 4504.9535
Radian Corporation
8500 SHOALCREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 1B7S8 . TELEPHONE 512. 04S4.9535
BIBLIOGRAPHY
BE-036
Abdullaev, A. B., et al., "Effect of Water Vapor on the
Completeness of Nitric Acid Regeneration During the
Thermal Decomposition of Aluminum Nitrate Nonahydrate,"
l. ~. Chern. USSR 43(1), 166-7 (1970).
BO-008
Adams, M. J. and J. E. House, Jr., Trans. Ill. State
Acad. Sci. 63(1), 83-5 (1970). Chern. Abstracts
73:39428c.
BO-009
Addison, C. C., ~ al., "Transition Metal Nitrites,"
Proc. Chern. Soc. 1961, 306-7 (1961).
Alekseenko, L. A., "The Effect of Polarization
Phenomena on the Thermal Stability of Solid Sub-
stances," Sbornik Nauch. Rabot. Akad. Nauk Beloruss.
S.S.R., Inst. Khim. 1956(5), 36-50. Chern. Abstracts
52:8703d.
BO-OIO
CH-035
Anokhin, V. N., ~ al., "Thermal Decomposition of
Chromium Trioxide and its Mixtures with the Crystal
Hydrate of Ferric Nitrate," Izv. Vyssh. Ucheb. Zaved.,
Khim. Khim. Tekhnol. 11(9), 1039-43 (1968). Chern.
Abstracts LQ:43600h.
CH-036
DE-024
Atroshchenko, V. I., G. K. Goncharenko and S. G.
Sedasheva, "Kinetics of Absorption of Nitrogen Dioxide
by Solid Calcium Oxide," Khim. Prom., Inform. Nauk.-
Tekhn. ~. 1965 (1), 27-9. Chern. Abstracts 63:2656e.
DR-002
Bagov, 1. Kh., "Gravimetric and Thermographic Analysis
of Cadmium Nitrate," Uch. Zap. Kabardino-Balkar. Univ.,
Ser. Sel-Khoz. Khim.-Biol. 1966 (29), 333-7 (1966).
Chern. Abstracts 69:24066b.
-58.
Berg, L. G., I. A. Borukhov and M. T. Saibova,
"Thermal Decomposition of Magnesium Nitrate," Uzb.
Khim. Zh. 14(2), 32-4 (1970). Chern. Abstracts 73:20994n.
Bordyushkova, E. A., P. I. Protsenko and L. N.
Venerovskaya, "Kinetics of Thermal Dissociation and
Stability of Melts and Alkali-Metal Nitrates," l.
~. Chern. ~ 40(7), 1386-90 (1967).
Bousquet, Jean and Michel Doumeng, "Studying the Gas
Phase Produced by Thermal Decomposition of Nitrates.
Application to Calcium Nitrate," Bull. Soc. Chim. Fr.
1968 (10), 3994-9 (1968).
Bond, B. D. and P. Wm. Jacobs, "The Thermal Decomposition
of Sodium Nitrate," l. Chern. Soc. (London) 1966, 1265-8
(1966) .
Cho, S. H. and E. F. Johnson, "Kinetics of the Thermal
Decomposition of Lithium Nitrate," USAEC Report Matt-
324, 1964.
Chretien, A., J. Heubel ana J. C. Casanova, Compt.
Rend. 242, 1479 (1956). (Cited in LE-005.)
Dehnicke, Kurt and Joachim Straehle, "Preparation and
Characteristics of Water-Free Mn(N03)a and Co(N03)a,"
Ber. 97(5), 1502-10 (1964). Chern. Abstracts6l:3895a.
Drobot, N. M. and E. I. Khaazanov, "Thermal
sition of Aluminum Nitrate Nonahydrate," l.
Chern. USSR. 42(12), 2529-33 (1969).
Decompo-
~.
-59-

-------
Radian Corporation
asoo SHOALCREEK 'alVD. . P. O. sox 99~8 . AUSTIN, TEXAS 18158 . TELEPHONE 512 .1j>4.9S3S
Radian Corporation
5SOO SHOALCREEK BLVD. . P. O. sox 99~a . AUSTIN, IEXAS 7BTSa . tELEPHONE 512. «504.9535
DU-010
DU-011
FE-003
GA-038
GL-008
GO-014
HE-014
JA-012
Duval, C., "Thermal Stability of Analytical Standards
VII," Anal. Chim. Acta 20, 263-7 (1959).
JA-013
Duval, C., "Thermal Decomposition of Analytical
Standards IV," Anal. Chim. Acta 16, 221-25 (1957).
JO-015
Fermor, James H. and Arne Kjekshus, "Entropies and
Melting Points of Univalent Nitrates," Acta Chern.
Scand. 24(3), 1015-24 (1970).
KA-013
Gastwirt, L. E. and E. F. Johnson, "The Thermal
Decomposition of Lithium Nitrate," USAEC Report
98, 1961. (Cited in LE-005.)
Matt-
KA-014
Gladushko, V. 1. and P. T. Shevchenko, "Evaporation
of Solutions and Granulation of Calcium Nitrate in
a Fluidized Bed," Dokl. Vses. Nauch. Kon£. Rab.
Kotedr Tekhnol. Neorg. Veshchestv, Nauch Uchrezhd.
Proekt. Organ., 4th, Tashkent 1964, 226-31, (Pub.
1966). Chern. Abstracts 66:9697ld.
KA-022
KA-023
Gordon, S. and C. Campbell, "Differential Thermal
Analysis of Inorganic Compounds. Nitrates and
Perchlorates of the Alkali and Alkaline Earth Groups
and Their Subgroups," Anal. Chern. ll, 1102-9 (1965).
KE-021
Hegedus, A. J., Acta Chim. Acad. Sci. Hungaricae,
46, 311 (1965). (Cited in LU-Oll.)
Janz, George J., D. W. James and J. Goodkin, "Heat
and Entropy of Fusion and Cryoscopic Constant of
Silver Nitrate," I. Phys. Chern. 64(7), 937-8 (1960).
KE-026
-60-
Janz, G. J. and F. J. Kelly, "Fusion and Prefusion in
Silver Nitrate," I. Phys. Chern. .21.(12), 2848-50 (1963).
Johnson, E. R. and J. Forten, "Radiation-induced
Decomposition of Inorganic Nitrates," Far. Soc. Disc.
31, 238-46 (1961).
Kalinchenko, I. I. and A. I. Purtov, "Thermal
Decomposition of Nickel Nitrate Crystalhydrates,"
Russ. l. Inorg. Chern. 11(10),2212-15 (1966).
Kalinchenko, 1. 1. and A. 1. Purtov, "Thermal
Decomposition of Nickel Nitrate Hexahydrate,"
I. Inorg. Chern. 11(7), 891-93 (1966).
~.
Karavaev, M. M. and I. P. Kirillov, "Thermal
Decomposition of Some Nitrates," Izv. Vyssh.
Zaved., Khim. Khim. Tekhnol. £, 231-7 (1959).
Abstracts 53:l87l8i.
Ucheb.
Chern.
Kainz, G. and J. Mayer, "Absorption of N02 on Mn02 in
C-H Determinations. II. The Influence of Grain Size,
Water Content and Temperature," Mikrochim. Acta 1962,
241-8 (1962). Chern. Abstracts 2l:50c.
Kelley, K. K., "Energies and Equilibria in the
Decomposition of Nitrates of Manganese, Magnesium,
Calcium, Barium, and Aluminum and in Reactions of
Nitrogen Peroxide," U.S. Bureau of Mines, Report of
Investigations, No. 3776, 1-33 (1944).
Keely, W. M. and H.' W. Maynor, "Thermal Studies of
Nickel, Cobalt, Iron, and Copper Oxides and Nitrates,"
I. Chem. Eng. ~~, 297 (1963).
-61-

-------
Radian Corporation
KU-005
KU-012
LA-008
LA-Oll
LA-024
LE-005
LO-014
LO-Ol7
LU-008
LU-009
Radian Corporation
esoo SHOALCREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 11758 . TELEPHONI: 512. <4S4.9S3S
B500 SHOALCREEK BlVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 18158 . TELEPHONE 512 - 4S4.9S3S
Kust, R. N. and J. D. Burke, "Thermal Decomposition
in Alkali Metal Nitrate Melts," Inorg. Nuc1. Chem.
Letters ~, 333-5 (1970).
Kus t, R. N.
Copper (II)
Solvents, "
and J. D. Burke, "Autocatalysis in the
Nitrate Decomposition in Alkali Nitrate
Inorg. Chem. ~(8), 1748-51 (1969).
LU-OlO
Landolt-Bornstein, "Kalorische Zustandsgrossen,"

1(4), Springer-Verlag, Berlin, 1961.
Lazarini, Franc and Brapko S.
Decomposition of the Alkaline
Monatsh. ~. 97(5), 1318-25
Brcic, "Thermal

Earth Nitrates,"
(1966).
Lazarini, Franc and Branko S. Brcic, "Thermal
Decomposition of Some Bismuth Double Nitrates,"
Monatsh. ~. 100(4), 1260-5 (1969).
LU-Oll
Lee, Augustine Kwok Kwun, Kinetics and Mechanism of
the Thermal Decomposition of Molten Anhydrous Lithium
Nitrite, Dissertation, Princeton Univ., 1968.
Lovej oy, D. J. and A. J. Vosper, "Anhydrous Iron (III)
Nitrate," Chern, Communications, 1968 (20), 1208 (1968).
MA-042
Lowell, Philip S., g a1., "Selection of Metal
for Removing SOl! frOm Flue Gas" I&EC Process
,-
and Develop. 10(3), 384 (1~7l).
MU-012
Oxides
Design
Lumme, Paavo and Kauko Junkkarinen, "Thermogravimetric
Studies. Part IX. Thermal Stability and Kinetics of
Decomposition of Copper (II) Chloride Dihydrate,
Bromide Anhydrate, Nitrate Trihydrate and Sulphate
Pentahydrate in Nitrogen," Suomen Kemistilehti A
41(4), 122-8 (1968).
NE-003
-62-
Lwnme, Paavo and Kauko Junkkarinen, "Thermogravimetric
Studies. Part VIII. Thermal Stability and Kinetics
~f Decomposition of Cobalt (II) Carbonate Anhydrate,
Chloride and Nitrate Hexahydrates, Bromide and Iodide
Dihydrates and Sulphate Heptahydrate in Air and Nitro-
gen," Suomen Kemistilehti A 41(4), 114-21 (1968).
Lwnme, Paavo and Kauko Junkkarinen, "Thermogravimetric
Studies. Part XI. Thermal Stability and Kinetics of
the Decomposition of Ferrous Chloride Tetrahydrate and
Sulphate ~eptahydrate and Ferric Chloride Hexahydrate,
Nitrate Nonohydrate and Sulphate Hexahydrate in Static
Air and of Ferrous Chloride Tetrahydrate in a Dynamic
Nitrogen Atmosphere," Suomen Kemistilehti A 41, 220-25
(1968).
Lumme, Paavo and M. Raivio, "Thermogravimetric Studies.
Part X. Thermal Stability and Kinetics of the Decomposi-
tion of Manganese(II) Chloride Tetrahydrate, Bromide
Dihydrate and Iodide Monohydrate in Air and Nitrogen and
of Manganese(II) Nitrate Tetrahydrate and Sulfate Hernihy-
drate in Air", Suomen Kemistilehti A, 41, 194-202 (1968).
Matusevich, 1. S., "Mechanism of the Dissociation of
Nitrates,":[.~. Chern. USSR 42(7),1561-62 (1969).
Mustajoki, Arvo, "The Specific Heat of Cesium Nitrate
in the Temperature Range 50-450 Degrees C as well as
the Heats of Transition and Fusion," Suom. Tied. Toim.
Ann. Acad. Sci. Fennicae, Ser. ~, VI(7) (1957).
Newns, D. M.
of Entropies
Reference to
and L. A. K. Stave ley, "The Significance
of Transition in Salts, with Special
Nitrates," Chern. Rev. 66(3) 267-78 (1966).
-63-

-------
NE-004
Radian Corporation
OZ-009
Radian Corporation
esoo SHOAlCREEK BLVD. . P. O. BOX 9'HS . AUSTIN, TEXAS 78758 . TELEPHONE 512 - "504-9535
NO-005
NY-002
OZ-002
OZ-003
OZ-004
02-005
OZ-006
02-007
8500 SHOALCREEK BLVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 79758 . TELEPHONE 512. 4s.4.9535
Nede1jkovic, Lj., ~. Anorg. A11g. Chern. 357(1-2),
103-6 (1968).
Nomura, Shoichiro, "Thermal Properties of NaN02,"

~. Phys. Soc. Japan 16(7), 1352-7 (1961).
PA-Ol3
Nygren, M. and A. Magne1i, "Tracing Phase Transitions
by Means of High Frequency Alternating Current Measure-
ments Using a Q-Meter," Ark. Kemi 28(16), 217-21 (1967).
Chern. Abstracts 69:90786n.
PE-015
PO-Ol2
Oza, T. M. and J. C. Jha, "Thermal Decomposition of
Barium Nitrite," ~. Indian 'Chem. Soc. 43(120), 759-63
(1966).
PR-003
Oza, T. M. and V. T. Oza, "Reactions of Hyponitrites.
Part V. The Action of Charcoal on Calcium Nitrite,"
~. Indian Chern. Soc. 32(9), 595-8 (1955).
PR-OlO
Oza, T. M. and V. T. Oza, "Thermal Decomposition of
Calcium Nitrite II," ~. Indian Chern. Soc. 11(10)
625-30 (1955).
PU-002
Oza, T. M., J. C. Jha, and E. 1. Ezekiel, "Thermal
Decomposition of Barium- and Mercury(II) Nitrate,"
~. Indian Chern. Soc., 45 (5),420-4 (1968).
RE-006
Oza, V. T., "Action of Nitrogen Dioxide and Its
Dissociation Products on Nitrites of Sodium,
Potassium, and Silver," ~. Indian Chern. Soc. 35(6),
411-14 (1958).
RO-007
Oza, V. T., J. C. Jha and T. M. Oza, "Action of
Dinitrogen Tetroxide on Barium Nitrite and Barium
Oxide," Ind. ~. Chern. 1(1), 38-9 (1967).
SA-026
-64-
Oza, T. M., and N. L. Dipa1i, I. Indian Chern. Soc.,
1[, 305 (1950); (cited in LE-005 and ST-026).
Pati1, K. C., R. K. Gosavi and C.
Spectra and Thermal Decomposition
and Nitrates," Inorg. Chern. Acta.
N. R. Rao, "Infrared
of Metal Nitrites
1(1), 155-60 (1967).
Pene1oux, A., "Thermodynamics of the Decomposition of
Nitrites," Compt. Rend., 228, 1940-2 (1949).
Poui11en, Paulette and Jean Saure1, £.
Paris, Ser. £ 266(25), 1661-3 (1968).
.Q.i: 62110u.
]i. Acad. Sc i.
Chern. Abstracts
Protsenko, P. 1., ~ a1., Izv. Vyssh. Ucheb. Zaved.,
Khim. Khim. Tekhno1. 11(1), 3-5 (1969). Chern.
Abstracts 70:100296q.
Protsenko, P. I., ~ a1., "Preparation and Properties
of Cadmium Nitrite Dihydrate," Russ. ~. Inorg. Chern.
14(1), 40-3 (1969).
Purtov, A. I., et a1., "Decomposition Kinetics of a
Crystalline Nickel Nitrate Hydrate," Russ. ~. Inorg.
Chern. 13(11), 1510-3 (1968).
Reinsborough, V. C. and F. E. W. Wetmore, Aust. ~.
Chern. 20(1), 1-8 (1967).
Rossini, F. E., et a1., Selected Values of Chemical
Thermodynamic Properties, Circular of the NBS 500
(1952).
Saibova, M. T., N. A. Parpiev and S. Tashkodzhaev,
"Thermographic Analysis of Nickel and Cobalt Nitrates,"
Uz~. Khim. Zh. 12(1), 9-11 (1968). Chern. Abstracts
69:32604r.
-65-

-------
Radian Corporation
SC-012
SC-029
SH-017
SH-018
ST-025
ST-026
TK-OOl
TR-006
~ SHOALCREEK BLVD. . P. O. BOX ~43 . AUSTIN, TEXAS 7B7SB . TELEPHONE 512. 4S4.~3S
Radian Corporation
6Sro 5HOALCREEK BLVD. . P. O. sox 9948 . AUSTIN, TEXAS 7B758 . TELEPHONE 512. 454.'rS3S
Schuermann, Eberhard and Lj. Nedeljkovic, "Kalorimetrie
and Thermodynamik Des Systems LiN03-NaN03," Ber.
Bunsenges. Phvs. Chem. 74(5),462-70 (1970).
WE-02l
Schneller, J.. W., Thermal Decomposition
Silver Nitrite and Silver Permanganate,
University of Vermont, 1969.
Studies of
Dissertation,
WE-027
Shargorodskii, S. D. and 0. 1. Shor, "A Study of the
Thermal Decomposition of Beryllium, Calcium, Strontium,
and Barium Nitrates and Carbonates," Ukrain. Khim. Zhur.
20, 357-62 (1954). Chem. Abstracts 49:2932e.
YA-004
Shargorodskii, S. D. and O. 1. Shor, "Thermal Decompo-
sition of Nitrates and Carbonates of Magnesium, Zinc,
and Cadmium," Ukrain. Khim. Zhur. 16(4), 426-33 (1950),
Chem. Abstracts 48:6806h.
Stern, Kurt H., "The Effect
Decomposition of Salts with
46, 645 (1969).
of Cations on the Thermal
Oxyanions," J.. ~. Educ.
Stern, Kurt H., "High Temperature
Decomposition of Inorganic Salts.
and Nitrites."
Properties and
Part 3. Nitrate
Tkach, O. D., "Thermal Stability of Nitrates,"
Materialv Konf. Sibirsk. Tekhnol. Inst., Krasnovarsk,
USSR 1965, 28-32 (1965). Chem. Abstracts 65:33l6d.
Tranter, G. C., C. C. Addison and D. B. Sowerby,
"The Reaction of Hydrated Bismuth Nitrate with Nitro-
gen Oxides," J.. Ino;:&,. Nuc. Chem. 30, 97-103 (1968).
-66-
Wendlandt, Wesley W., "The Thermal Decomposition of
Inorganic Compounds. II~ Metal Nitrates," Texas J..
Sci. 10, 392-8 (1958).
Wendlandt, Wesley W., "The Themolysis of the
Earth and Other Metal Nitrates," Anal. Chim.
435-9 (1956). Chern. Abstracts 5l:l0283g.
Rare
Acta 15,
Yagfarov, M. Sh., "A New Method for the Measurement
of Heat Capacities and Heat Changes," Russ. J.. Phvs.
Chem. 43(6), 909-12 (1969).
-67-

-------
Radian Corporation
8409 RESEARCH BLVD.
TELEPHONE 512 . 454-9535
AUSTIN. TEXAS 78758
.
.
TECHNICAL NOTE 200-007-09
MATERIAL BALANCE CALCULATIONS FOR NOx
AQUEOUS SORPTION IN A PACKED TOWER
7 June 1971
Prepared by:
Terry B. Parsons
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8409 RESEARCH BlVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 
-------
Stream A[NO(g),NOo(g),N2J
Stream B[NOo(g),NoJ
I
N
I
HoO, NaOH
REHFATER
NO(g),NOo
SCRUBBER
No, Hg ° (g)
H ° NaOH, NO, NO~
o ,
FIGURE 1
N~ ,NO(g) ,NO~g)
To Gas Analyzer
Condenser

-------
Radian Corporation
8409 RESEARCH BlVD. . P.O. BOX "~8 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 4S4-9S3S
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . <154-95]5
NO and NOg in the liquid phase are obtained by measuring
nitrite and nitrate.
In Equations 1, 2, and 3 the following symbols have been
used:
The material entering and leaving the scrubber is
expressed in gram-moles of NO and NOa per minute. The number
of moles per minute was calculated from measured concentrations
and from flow rates obtained from corrected rotameter readings.
The calculations are discussed in more detail in the following
sections.
W
mass rate of flow per second
CR
coefficient of discharge, a function
of Reynold's number
Ac
annular area of the rotameter
2.0
GAS ENTERING THE SCRUBBER
g
acceleration due to gravity
The gas flow rates were measured using rotameters
calibrated with air at 77cF and 1 atm. However, nitrogen was
used as the carrier gas in the actual experiments so a correctiol
was needed for ,the molecular weight (density) difference. The
calibration was carried out at a pressure of 1 atm or 29.9 inches
mercury. The flow measurements were conducted with pressure
differences of up to 6 inches of mercury gage so that a pressure
correction was also necessary. The magnitude of the corrections
was calculated by considering Brown's* equations for mass rate
of flow of a fluid through a rotameter.
P
gas density
Vf
volume of float
Af
maximum cross sectional area of float
Pf
density of float
For an ideal gas:
 [2gp(Pf - p)VfJ~ (1)
W CRAo Af(l - ~/A~)
Ii!! CRAo[2gpPfVf/AfJ~ (2)
 CtAcp~ (3)
p/M
n/V
P/RT
(4a)
or
p
PM/RT
(4b)
where M is the gram molecular weight.
Substituting (4b) into (3):
* Brown, G. G., et a1., Unit Operations, p. 162, John Wiley
and Sons, New York, (1952~
W
C~Ao(PM/RT)~
(5 )
-3-
-4-

-------
Radian Corporation
84D9 RESEARCH BLVD. . '.0. BOX "48 . AUSTIN, TEXA.S 78758 . TELEPHONE 512 . <454-9535
We wish to express the rate of flow in terms of moles rather
than mass, so (5) can be rewritten:
W/M
C~Ao(rJT)~
(6)
The factors for pressure corrections were calculated from
Equation 7.
(P/29.9)~
-
1 + (b,P/2)/29.9
(7)
where P is the pressure at which experiments were conducted and
6P is the pressure drop measured in inches of mercury.
The rotameter calibration curves were in units of standard
cubic feet per hour. The factor for conversion to gram moles
per minute, including the correction for the difference in
molecular weights of air and nitrogen, is 2.04xlO-g. It was
found that the maximum temperature correction would not exceed
.007% so a temperature correction was not applied.
Gas entered the preheater in two separate streams,
each having a slightly different flow rate. The flow rates were
converted from units of standard cubic feet per hour to total
moles per minute, so multiplication by the concentration of NO
or NOg in each stream gave the rate of flow in moles chemical
NO or NO; per minute. One entering stream contained both NO
and NO; as shown by DR and UV analysis. The other entering
stream was assumed to contain NOg only, however, the stream was
not analyzed for NO. A summary of the calculations for gas
entering the scrubber is given in Table I.
-5-

-------
TABLE 1
GAS ENTERING THE SCRUBBER
 Flow Rates r:J in  Concentrations in ppm  Entering
 total moles/minute  NO NO~  moles NO 106 moles NO~ 108
 Stream A Stream B Stream A Stream B Stream A Stream B minute x minute x
RUN ~A ~B NOA NOB NOaA N09B = NOANA+ NOBNB = N09A~A+ N09p~~
NO.
1 .2936 .2483 350  120 256 102.76 101.03
2 .3873 .3182 350  120 265 135.60 130.80
3 .4938 .3877 350  120 265 172 .80 162.00
I
a-
I

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TElEPHONE 512 . 4504-95]5
3.0
GAS LEAVING THE CONDENSER
The two entering streams were combined in the
preheater before entering the scrubber, so the total gas flow
leaving the scrubber was just the sum of the two entering rates.
Again the concentrations were measured using IR and UV analysis.
The gas stream leaving the scrubber, however, was saturated with
water vapor which had to be removed since it interferes in the
IR analysis. The water vapor was removed in a condenser in
which some of the NO and NOg were also removed. The calculation
of moles of NO and NOg removed per minute in the condenser is
discussed in Section 5.0. The calculations for moles chemical
NO and NOg leaving the condenser per minute are summarized in
Table II.
4.0
LIQUID LEAVING THE SCRUBBER
The amount of NO and NOg leaving the scrubber in
the scrubbing liquid was calculated by multiplying liquid flow
~te in ml water per minute by the concentrations of nitrate and
nitrite measured using wet chemical methods. The liquid flow
was not varied in the three experiments. Nitrite and nitrate
are related to chemical NO and NOg as discussed in Section 1.0.
The calculations for chemical NO and NOg leaving in the
scrubber liquid are summarized in Table III.
5.0
NO AND NO~ LEAVING IN THE CONDENSATE
The amount of chemical NO and NOg leaving in the
condensate in moles per minute was calculated by multiplying
the number of ml water condensed per minute by the concentra-
tions of nitrite and nitrate in the condensate. The condensation
rate in ml HgO per minute was calculated as follows:
-7-

-------
TABLE II
GAS LEAVING THE CONDENSER
 G Flow (tot~l moles) Concentration Material Leaving the Condenser 
 as m1nute (ppm)  
RUN Nout = ~A+ NB   moles NO x 108 = NoutNO moles NO~ x 108 = NoutNOa
NO. ....wL .1& minute minute
1  0.5419 180 97.5 97.54 52.84 
2  0.7055 190 97.5 134.05 68.79 
3  0.8815 210 97.5 185.12 85.95 
I
00
I
TABLE III
LIQUID LEAVING SCRUBBER
   Concentration
RUN W = Liquid Flow  (mg/ t)
NO. (m1 H~O/minute) NO; NO:
 1 710 4.00 1.70
 2 710 4.15 1.80
 3 710 4.58 2.05
I    
'"   
I    
M~~eria1 Z~~r;~'mi~u~~exS~o~~bing Liquid
J!.Io- - ~1NO- J!.Io - - ~NO- C - NO; - NO; C ~O;
~ - II 3 - . 3 NO - 2NOa =
+ 3~O:
2
61.74
64.05
19.47
20.61
21.14
21. 72
60.08
62.95
70.69
23.48
23.61
70.56

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 0(54-9535
moles ~O condensed
minute
(mole~ ~O(g»). - (mole~ HoO(g»)
m1nute 1n m1nute out
moles ~O(g)
minute
p*
total moles gas ('~)
minute PN
o
-
The total pressure is assumed to be closely approximated by

PN + P~ 0' and it is assumed to be 1 atmosphere. p~ 0 is
a .~ a
the vapor pressure of water in mm of mercury at the temperature

of interest. The temperature entering the condenser was 102°F

and it was 60°F at the condenser outlet.
Substituting (9) into (8) gives:
moles ~O(g) condensed
minute
plelo
( H~O
760-plOo
HoO
peO
H~O )
760-p8(j
HoO
total moles gas
minute
.056 Nout
where Nout is the gas flow leaving the scrubber. The condensation
rate in m1 ~O/minute is obtained by multiplying by the molecular
weight of water and assuming a solution density of 19/m1. The
only experiment for which the condensate was available for chemical
analysis was Run 2. The calculations are summarized in Table IV.
-10-
(8)
(9)
(10)
(11)

-------
RUN
NO.
I
~
~
I
w = m1 H~~ Condensed
m~nute
(.056)(18)(~ t)
ou
1
2
0.5454
0.7111
3
0.8892
TABLE IV
NO AND NO~ LEAVING IN THE CONDENSER
Concentration
(mg/ t)
~~
1.5
558.0
Material Leaving in the Condensate
(moles )
minute x 108
~O; = ~ ~O; = ~ ~O = ~o; 2 NO: ~Oe = NO; ~ 3NO;
.0232
6.40
-3.19
9.61

-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX "48 . AUSTIN, TEXAS 7!158 . TelEPHONE 512 . CS4.95]S
6.0
SUMMARY
The results of the calculations discussed in Sections
2 through 5 are summarized in Table V. The chemical NO and NOs
entering the scrubber should equal the sum of (1) chemical NO
and NOa leaving the condenser, (2) chemical NO and NOs in the
condensate, and (3) chemical NO and NOs in the scrubber liquid.
-12-

-------
   TABLE V     
   MATERIAL BALANCE SUMMARY    
     Scrubber  Liquid  
  Gas In 6 Gas Out of + Li;Uid Out 6 + Condensed '" 
  (mo1e/min x 10 ) Condenser (mole min x 10 )    
 Run 1 NO 102.76 97.54 + 2 1. 14 + ?  118.68
 N02 101. 03 52.84 + 60.08 + ?  112.92
 Run 2 NO 135.6 134.05 + 21.72 + (-3.2)  152.57
I         
.... N02 130.8 68.79 + 62.95 + 9  140.74
w   
I         
 Run 3 NO 172.8 185.12 + 23.61 + ? .. 208.73
 N02 162.0 85.95 + 70.56 + ?  156.51

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512/454-9535
TECHNICAL NOTE 200-007-11
Selected Values for Equilibrium Constants
Used in the Aqueous Equilibrium Formulation
10 September 1971
Prepared by:
T. B. Parsons
Engineer/Scientist
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL FNGINEERING

-------
Radian Corporation
B500 SHOAL CIlEEK BLVD. . P. O. BOX ma . AUSTIN, TEXAS 78757 . TELEPHONE 512.45-4.9535
Radian Corporation
B500 SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 1B757 . TELEPHONE 512.45-4-9535
1.0
INTRODUCTION AND BACKGROUND
2.0
ACTIVITY COEFFICIENTS
In order to analyze process performance and design
equipment for aqueous alkaline sorption processes it is
necessary to develop a mathematical description of vapor-
liquid, ionic, and liquid-solid equilibria which take place
in the process. Radian has developed a vapor-liquid-solid
formulation which calculates the equilibrium distribution
among the various gaseous, aqueous, and crystalline species
present in aqueous alkaline scrubbing processes. Part of the
data required for this formulation are the values of thermo-
dynamic equilibrium constants and activity coefficients at
varying temperatures for the reactions and species of interest.
The model was originally developed to describe limestone wet
scrubbing processes for SOa removal. In order to extend the
model to describe alkaline scrubbing processes for NO. removal,
equilibrium constants for the following reactions had to be
added:
In the equilibrium formulation presently in use,
equilibrium constants are defined in terms of activities
(fugacities) of the reactants and products. The activities
are the product of a molality and an activity coefficient.
The activity coefficients, Yi, are correlated as a function of
ionic strength. The correlation form is the equation given in
equation (4), where A and B are constants determined by the
dielectric constant of the solvent, I is the ionic strength and
Zi the ionic charge for the ith species.
log Yi
a -I~
AZ. [ 0 ~
1 l+Ba.I
1
+ b.IJ + U.I
1 1
(4)
HN03 (g) ~ HN03( t) (la)
HNO 3( t) ~ H+ + NO~ (lb)
HNOa(g) ~ HNO:a(t) (2a)
HNOa(t) ~ H+ + NO; (2b)
NO(g) t! NO ( t) (3)
The parameters ~., b., and U. are characteristic of the ionic
1 1 1
or uncharged species. For ionic species Ui is zero, and for
uncharged species Z. and b. are zero. The values for ~. and
1 1 1
bi were chosen so as to obtain a curve of log Yi vs. I that
closely agreed with those published by Garrels (GA-003), Klotz
(KL-OOl), or Davies (DA-OOl) for the different ionic species
of interest. For all uncharged aqueous species, Ui was chosen
to be 0.076 from Garrels' value for HaC03. Nitrate and hydrogen
ion activity coefficient parameters were p~eviously selected
for the limestone based process description. For the alkaline
scrubbing model, therefore, activity coefficient parameters for
NO;, HNOa(t)' and HN03(t) ~emained to be specified. The nitrate
ion parameters were used to calculate nitrite ion activity
coefficients. The value Ui = .076 was used for the uncharged
species HNO:a(t) and HN03(t)'
In addition, activity coefficients for the species HNOa(t)'
HN03(t)' NO;, NO~, and NO(t) were needed. This Technical
Note documents the selection of equilibrium constants and
activity coefficients from the literature for addition to the
aqueous ionic equilibrium formulation.
It should be pointed out that some mean ionic
activity coefficient data for alkali metal nitrites exist
-2-

-------
Radian Corporation
8500 SHOAL CREEK 8lVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 18757 . TElEPHONE 512. -45-4.9535
Radian Corporation
8SOOSHOAlCREEKBlVD. . P.O.BOX99-48 . AUSTIN, TEXAS 78757 . TELEPHONESI2."S4-9S35
(RA-026, CH-04l) which could be correlated using an extension
of the mean salt method developed by Radian to obtain nitrite
ion activity coefficient parameters (see Technical Note 200-403-
22). In addition, Davis and deBruin (DA-012) critically
evaluated all the data published concerning HN03 and calculated
a consistent set of activity coefficients. Finally, Schmid
and Krenmayr (SC-015) have investigated the activity coefficient
of HNOa as a function of ionic strength for the equilibrium
HNOa(t) ~ Na03(t) + HaO.
The following paragraphs describe how each
equilibrium constants were selected or re-calculated
in the equilibrium model.
of the
for use
3.1
Nitric Acid Dissociation Constant
Radian has proposed further work to update the
aqueous equilibrium model and increase its accuracy by including
data such as those described above. The rather detailed process
of data analysis required (see Technical Note 200-403-22) as
well as the application of the equilibrium model to process
design are, however, beyond the scope of Contract EHSD 71-5.
Five references were consulted in selecting a value
for the dissociation constant and temperature dependence of
the constant for nitric acid. Hood and Reilly (HO-014) used
proton magnetic resonance to measure the degree of dissociation,
a, with some assumptions made concerning the proton shift of the
undissociated acid. The equilibrium constant was calculated
from determinations of a at 0, 25, and 70°C, using equation (5),
a form of the Ostwald Dilution Law. Yu is the activity coefficient
of undissociated HN03, a is the activity, and Cs is the stoichio-
metric molar HN03 concentration.
3.0
EQUILIBRIUM CONSTANTS
= aH+aNO;
K Yu
Cs(l-a)
(5)
Publications reporting experimental measurements of
the equilibrium constants of interest were found by consulting
I
the compilation of Sillen, Stability Constants of Metal-Ion
Complexes (SI-OOl). This compilation covered the literature
up to 1960 and did not include data for vapor-liquid equilibrium
constants such as those needed for reactions (la) and (2a).
Chemical Abstracts was also used to obtain these data and to
obtain information published after 1960.
Log Kyu was extrapolated to obtain K at infinite diluti01 .
Activity coefficients for 25°C had to be used to calculate
activities at 0 and 70°C. The authors found 6Ha98 for the
dissociation reaction to be -3.3 kcal/mole from a plot of log K
vs. ~. Their K values are given in Table I. The values in
parentheses resulted from calculating the proton shift for
undissociated HN03 by assuming the degree of dissociation at
50 mole % HN03 is zero. If the proton shift is obtained using
other data for a published by Krawetz (KR-012), the higher K
values (not in parentheses) result.
The literature had to be evaluated to insure that,
if possible, constants were selected which were based on (1) data
extrapolated to infinite dilution (1=0) and (2) activities
rather than molalities. Data giving the temperature dependence
of equilibrium constants were also necessary.
-3-
-4-

-------
Radian Corporation
ISO) SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN. TEXAS 11m7 . TELEPHONE 512. <454.9535
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 9'i
-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX ~94B . AUSTIN, TEXAS 78757 . TELEPHONE 512.451-9535
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - -45-4.9535
K =
(YSCs r
Y C (l-a.)
u s
° °
~r(Tr) and 65r(Tr) are the enthalpy and entropy of the
dissociation reaction at the reference temperature, Tr' which
is 298.15~. Helgeson separated the variable ~;(T) into a
contribution due to electrostatic interaction, bS;(Tr)' and a
contribution due to nonelectrostatic interaction, 65~(Tr)' The
electrostatic entropy contribution was described as a function
of temperature using the Born or Bjerrum expression for the
linear relationship between the free energy of dissociation
and the dielectric constant of the solvent. The nonelectro-
static entropy contribution was described as a function of
temperature using equation (14)
a pK value greater than HN03 or HN03 should have a pK value
smaller than the indicator, which has a pK value of -3.3.
Davis and deBruin (DA-012) measured the partial
pressures of HN03 over 2-l6M solutions and calculated a set of
mean ionic and molecular activity coefficients which were
consistent with some previously published data for higher con-
centrations. He used the data of Krawetz (KR-012) and Hood and
Reilly (HO-014) for a.. Using these coefficients, the dissocia-
tion constant was calculated according to equation (11)
(11)
~~ (T) = bS~ (Tr) + JT
Tr
bCp ° (T)
n
T
dT
(14)
9
where (YSCS)9 = (Y%C%J and Y is the activity coefficient and C

the molality. The molality of stoichiometric HN03, Cs' is
defined in equation (12) where u stands for undissociated.
In equation (14) the non electrostatic contribution
to the heat capacity of dissociation bCp~(T) is defined by (15).
C s = Cu + C %
(12)
9
bCpno (T) = a. + I3T + AT
(15)
The value obtained by Davis and deBruin for K at 25°C was 18.8 %
2.3. The data for a. were edited to obtain this value and the
authors pointed out the need for more accurate data.
The coefficients a. and 13 and the factor 65~(Tr) were obtained by
least squares fits of reported data. The A coefficient was
ignored.
lIF;(T) = ~;(Tr) - Tr65;(Tr)
T
- J

Tr
°
~r (T) dT
(13)
Helgeson applied the method to many dissociation
reactions. For the case of nitric acid, he used the data of
Krawetz and Hood and Reilly as well as that of Noyes (NO-Oll)
and Young et al (YO-007). He felt it was necessary to edit
the data and exclude one of the high temperature points based
on a personal communication that the nitrate ion disproportionates
above 250°C. For the case of nitric acid ~;(Tr) and ~;(Tr)
were also obtained by a least squares fit of the data. The
value obtained by Helgeson for ~~(Tr)' -4,100 cal/mole, was
the same as that obtained by Young (YO-007), using the data
of Noyes (NO-Oll) and Krawetz (KR-012). Hood and Reilly,
-8-
Helgeson (HE-001) gave a theoretical treatment of a
method of estimation of the temperature dependence of log K for
dissociation reactions. The method is based on equation (13)
which describes the free energy of the dissociation reaction.
-7-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512.4;4.9535
Radian Corporation
asoo SHOAL CREEK BLVD. . P. O. BOX 994a . AUSTIN, TEXAS 78757 . TELEPHONE 512. 4s-t.9535
however, obtained a value of -3,300 cal/mole.
concluded that more high temperature data are
determine log K(T) and 6R;(Tr).
Helgeson
required to
KA
[H+] [NO;]
[HNO a]
II
C \meas

AO ( AO- Ameas)
(17)
log K = 6.557 - 320.88 (~)- 0.01359T
(16)
In (17), C is the concentration in moles/~, AO is the
conductivity of HNOa at infinite dilution, which is the sum of
conductivities of H+ and NO;, and ~eas is the measured
conductivity. The units of KA were moles/liter. The activity
coefficients for each of the species were not taken into account.
The results are given in Table II. The authors calculated a
heat of dissociation of 4,480 cal but they did not specify the
temperature or the method of calculation.
In a compilation of ionization constants published
in the same year-as the theoretical work of Helgeson (HE-001),
Barnes, Helgeson, and Ellis (BA-050) gave equation (16) for
the temperature dependence of log K for nitric acid dissocia-
tion up to 300°C.
This equation was based on the data of Young (YO-007) and
Hood, Reilly and Redlich (HO-038). It gives a value of
log K = 1.43 at 25°C. This value was used by Radian in the
equilibrium formulation.
TABLE II
Results of Klemenc and Hayek (KL-007)
for the Dissociation Constant of HNOII
3.2
Nitrous Acid Dissociation Constant
The work of Klemenc and Hayek (KL-007), Vassian and
Eberhardt (VA-all) and Lumme and Tummavuori (LU-005, TU-007)
was reviewed in order to select an equilibrium constant for
nitrous acid dissociation.
~ K(moles/ t) 
    _4
O. 3.2 :I: 0.3 x 10 
    _4
12.5 4.6 :I: 0.4 x 10 
  :I: 0.6  _4
30. 6.0 x 10 
Klemenc and Hayek measured the conductivities of
solutions of HIIS04 and Ba(NOII)a at 0 and l2.5°C. In order to
calculate the dissociation constant of HNOa, the nitrite
conductivity at infinite dilution was also needed. It was
determined by measuring conductivities of KNOll solutions of
varying concentrations and assuming KNOll is completely disso-
ciated. Published transport numbers of H+ and ~ were used to
calculate their conductivities at infinite dilutions. The
data were used in (17) to calculate the dissociation constant.
During investigation of complex formation between
cadmium and nitrite ions, it was necessary for Vassian and
Eberhardt (VA-Oil) to take into account the dissociation
constant for nitrous acid. They used a solution of .0226F
KNOa adjusted to ionic strength 1.0 and .07 and pH 3.25. They
measured ~NO spectrophotometrically at 358 m~ which is one of
II
-9-
-10-

-------
Radian Corporation
B50D SHOAL CREEK BLVD. . P. Q. BOX 99"8 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - "s....9535
Radian Corporation
B500 SHOAL CREEK BLVD. . P. O. BOX 99"8 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - "~-9535
the wavelengths of maximum absorption of HNO:a (WA-015). Their
results are given in Table III. Note that these investigators
also ignored the activity coefficients of NO; and HNO:a.
TABLE IV
Nitrous Acid Dissociation Constant
of Lunune and Tununavuori (LU-005, TU-007)
TABLE III
-L K (moles/ J,)
.07 15.5 x 10-4
 _4
1.0 15.9 x 10
tOC  K 
15 5.97 x 10-4
25 7.24 x 10- 4
 7.94 -4
35 x 10
Results of Vassian and Eberhardt (VA-Oll)
at 25°C for the Dissociation Constant of HNO:a
The temperature dependence was also calculated and
is given in (19). The data are valid up to 38°C.
log K = -5.8554 X 103 (~) - 60.571 x 10-3T + 34.558
(19)
Lunune and Tununavuori (LU-005, TU-007) measured the
dissociation constant of HNO:a by performing potentiometric
titrations at 15, 20, 25 and 35°C in solutions of sodium
nitrite, nitrate, and perchlorate at varying ionic strengths.
Their values were extrapolated to zero ionic strength using
equation (18),
3.2
Vapor-Liquid Equilibrium Constant for Nitrous Acid
The only data found for the nitrous acid vapor-liquid
equilibrium were published in 1929 by Abel and Neusser (AB-006).
(-1.023)I~
pK = pKo +
1 + aI~
+ BI
(18)
The authors carefully conducted numerous equilibrium
experiments in which they measured concentrations in both the
gas phase and the aqueous phase. From the aqueous phase
measurements, they provided sufficient data for calculating the
activities of HNO:a(t)' H+, and NO;, since the dissociation
constant of HNO:a(t) is known. Since activity coefficients for
these species were unknown at the time, Abel and Neusser's
equilibrium constant was reported in concentration units.
which in effect takes into account the activity coefficients
since it is of the same form as semi-empirical correlations
of log y vs. I. The results, given in Table IV, were used
in the equilibrium model.
-11-
-12-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. Q. BOX 9948 . AUSTIN, TEXAS 71757 . TELEPHONE 512. ..5-4-9535
Radian Corporation
8SOO SHOAt CREEK BLVD. . P. O. BOX 99",8 . AUSTIN, TEXAS 78751 . TELEPHONE 512. <151-9535
The gas phase data were reported in units of
concentration of nitrogen +3, which includes both HNOa(g) and
Na03()' Therefore a correction had to be made for the amount
of Na~3( ) present. After some recalculations, it was therefore
Possiblegto determine K1 = ~O /~O ,the vapor liquid
au.) a(g)
equilibrium constant, from the data of Abel and Neusser.
nitrosylsulfuric acid formed by reaction of the absorbed +3
nitrogen with HaS04 was titrated with permanganate.
3HNO a
~
H+ + NO~ + 2NO + H20
(20)
Abel and Neusser's calculations did not take into
account activity coefficients of the species of interest or
equilibrium constants for the possible aqueous phase reactions.
In addition, they did not correct for the equilibrium concentra-
tion of Na03 in the vapor due to equation 21. Fortunately the
authors published their experimental findings in detail and it
was possible to recalculate the vapor-liquid equilibrium
constant using the Radian aqueous equilibrium model. The
aqueous equilibria of importance for the system are given in
(25) through (28).
Abel and Neusser used a solution of KNOa and HN03
under 1 atm NO which was bubbled through the closed, constant
temperature system to suppress the decomposition of nitrous
acid according to reaction (20).
[Equation (20) is simply the sum of two times (21) plus two
times (22) plus (23) plus (24)].
 2HNO a ~ Na03 + H20 (21)
 Na03 ~ NO + NO 2 (22)
 2NOa ~ Na04  (23)
Na04 + HaO ~ HN02 + HN03 (24)
HNO 3 (.e) ~ H+ + NO~ (25)
HNO 2 (.e) ~ H+ + NO; (26)
KNO 2 (.e) ~ K+ + NO; (27)
KNO 3(.e) ~ K+ + NO~ (28)
After allowing two days for the system to reach equilibrium,
they measured (1) NO~ content in the reaction vessel using
permanganate titration and back titration with oxalic acid and
(2) the hydrogen ion concentration. The gas in equilibrium with
the aqueous phase was absorbed in concentrated sulfuric acid.
At the conclusion of the experiments nitrogen was bubbled through
the gas absorption flask to drive off the "strongly held"
dissolved NO which had a solubility of 46.9 mg/.e. The
When the aqueous model was originally programmed and
the equilibrium constants were selected some simplifications
were made (LO-007, p.80). It was anticipated that in lime-
stone wet scrubbing processes, the amounts of sodium and
potassium would not be accurately known. Further, it was
recognized that the complexes of sodium and potassium are
"relatively weak and of the same order of magnitude". Some
examples are given in Table V.
-13-
-14-

-------
Radian Corporation
S5ClO SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TeXAS 78757 . TELEPHONE 512. 4S4.9S35
TABLE V
Dissociation Constants (SI-001) for
Complexes of Sodium and Potassium
 Reaction  Log K 
NaSO~ +t Na+ + SO~ -.72  
KSO~ ~ K+ + SO: '-.96  
NaNOs  + - .4  .1
~ Na + NOs :!:
KNOs +t K+ + NO~ .23 :!: .03
Therefore, there was no provision made for calculations
involving potassium. Instead, the constants for sodium were
used and any potassium present was treated as the equivalent
amount of sodium.
The data of Abel and Neusser were recalculated in
the following manner. The measured molalities of NO;, NO~ and
K+ were input to the equilibrium model and the ionic strength
and activities of HNOa(t)' H+, and NO; were calculated. It
was assumed that KNOa is completely dissociated. The authors
conducted experiments at ionic strengths of .2, .65, .7, .95,
1.25, 1.45, 2.5 and 3.5. Only the data taken at ionic strengths
of 1.45 and below were used in Radian calculations (data from
Abel and Neusser's Tables 1 through 6). The data were taken
from columns 5, 7, 8, and 9 of the Tables. About 40 data
points were used. The results are given in Table VI,
-15-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 7B757 . TELEPHONE 512.454.9535
TABLE VI
Results of Calculations
Using the Data of Abel and Neusser (AB-006)
in the Radian Aqueous Equilibrium Model
-16-

-------
Z9 JUN 71
'-I
I
29 JUN 71
00
I
11:11:!>2'263
502 .0.00000
C02 .0.00000
S03 -0.00000
NAZO .7.!>0000-02
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH .
1111\:!>3.7'19
S02
C02
S03
NA20
.0.00000
-0.00000
-0.00000
"'7.50000-02
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH -
N20!> -1.00000-01
HCL -0.00000
MOLAL\TY
6011/'-02
2.659-13
\.'/~7-UI
\.~'I9-01
5.636-15
5.203-03
2.366-0'1
"\.137-U2
'I.8'l0-0\
RUN 112
INPUT HOLES
CAO
H20
-0.00000
=5.57'1'18+01
H.HPERATURE
I1GO -0.00000
N203 86.380g0-02
ACTiViTY COEffiCIENT
9.93'1-01
8.3u7-U\
7.'1'17-0\
6'3'18-01
7.558-0\
\.036+00
\.036+1;10
1.036+00
6.3'18-01
1'°36+00
1.29'1
MOLECULAR WATER. 9.993'1'1-01 KGS.
IONIC STRENGTH. 2.00375-01
RES. [.N. .
-6.106S-IO
N205 -1.00000-01
HCL -0.00000
MOLALITY
6.\1'7-02
2.65,/-13
1.9'17-01
1.'1'19-01
5.636-1&
5.20'1-03
2.366-0'1
1.137-02
'1.890-0\
AQUEOUS SOLUTION EQUIll8RIA
ACTIVITY
.
5.°01-02
\.91,10-\3
1.236-01
\.095-01
S.1I37-\!;
5.3(19-03
2.'I!;0-O'l
7.215-03
!;.Ot.'I-OI
RUN 113
INPUT MOLES
CAO
H20
"'0.00000
85.57392+0\
TEMPERATURE
MGO -0.00000
1>1203 ,,5.82500-02
ACTiviTy COEFFICIENT
9.93'1-01
8.)(17-01
7.'1'17-01
6.3'18-01
7.5&8-01
1.036+00
\,U36+00
\.036+00
6.3'18-0\
\.036+00
1.29'1
MOLECULAR WATE~ . 9.992'1'1-01 KGS.
AQUEOUS SOLUTION EQUILI8RIA
ACT\V\TY
5.0al-02
1.980-13
\.236-0\
\.0'/5-0\
5.837-15
5.3'10-03
2.'150-0'1
7.2\5-03
5.065-0\
IONIC STRENGTH" 2.0039'1-0\
25.000
OEG, C
25.000
aEG, C
RES. E,N, .
-\,700-10

-------
29 '"'UN 71
I
~
\0
I
29 ,",UN 71
IPII:5",132
S02
C02
S03
NA20
-0'00000
-0'00000
-0,00000
-3,95000-02
COMPONENT
H20
H+
OH-
NOJ-
NA+
NAOH
NAN03
HN03
NOZ.-
HN02
PH -
11:11:55,0'16
S02 -0'00000
C02 -0,00000
S03 ,,0,00000
NA20 -3,95000-02
I
N
o
I
N205 -1,00000-01
HCL -0,00000
MOLAL I TY
1,26'1-01
1,2/)7-13
1,972-01
7,6'10,.02
1.'139-15
2.780-03
",952-0'1
5,5', J-03
",956-01
RUN 105
INPUT /'IOLES
CAO
H20
"0,00000
-5.56898+01
TEMPERATURE
25,000
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITY
1.050-01
9,5117-1"
1,2!:>2-01
5,775-02
1.'190-15
2,879-03
5,128-0'1
3.5,,0-03
50132-01
MCoO ..0,00000
N203 -","3000-02
ACTIVITY COEFFICIENT
9,93'1-01
8.3u7-01
7,'1'18-01
6.3!>1-01
',559-01
1,036+UO
1,036+00
1,036+00
6,351-01
1'036+00
,979
MOLECULAR WATER.. 9,97713-01 KGS,
RES, E'N, -
N205 -1,00000-01
HCL. -0.00000
COMPONENT
H20
H+
OH-
NO.1-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH -
IONIC STRENGTH. 1,99970-01
RUN 103
INPUT MOLES
CAO
H20
-0,00000
-S.561)70+01
TEMPERATURE
25,000
/'IGO -0,00000
N203 -'1,15000-02
MOLALITY
AQUEOUS SOLUTION EQUiliBRIA
1,21>'1-01
10287-13
1,972-01
7.6'10-02
1,'139-15
2,780-03
'1.952-0'1
5.513-03
'1,956-01
ACTIVITY
1,0<;0-01
9.586-1'1
1,252-01
5,775-02
1,'IY()-15
2,879-03
5,128-0'1
3,5~0-03
5,132-01
ACTIVITy COEFfiCIENT
9,93'1-01
8,307-01
7,,,,,8-C)1
6,351-01
7.559,.01
1,036+00
1,036+00
1,036+00
6,351-.(JI
1.036+00
,979
MOLECULAR WATER.. 9,971>63-01 KGS,
RES. E,N, -
IONIC STRENGTH - 1,99980-01
OEG. C
"3.505-11
OEG, C
-3.61""11

-------
03 AUG 71
11:0'3:ln.205
SO~ =0.00000
C02 =0.00000
503 =0.00000
NA20 =3.'35000-02
N205 =1.00000-01
HCL =0.00000
I
N
I-'
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
11:09:~8.63~
S02 =0.00000
C02 =0.00000
503 =0.00000
NA20 =9.80000-02
I
N
N
I
CO"IPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
MOLALITY
1.26~-01
1.287-13
1.97:!-01
7.641-02
1.439-15
2.781-03
~.953-04
5.574-03
1+.956-0].
RUN 102
INPUT MOloES
CAO
H20
=0.00000
=5.56827+01
TEMPERATURE
/oliGO =0.00000
N203 =3.72000-02
ACTIVITY COEFFICIENT
9.934-01
8.307-01
7.448-01
6.351-01
7.559-01
1.036+00
1.036+00
1.036+00
6.351-01
1. U36+l'U
.979
MOloECULAR WATER = 9.97585-01 KGS.
N205 =1.00000-01
HCL =0.00000
1.631
MOLALITY
2.811-02
5.791-13
1.933-01
1.094-01
1.590-14
6.703-03
1.071+-04
2.421-02
~.761-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
1.050-01
9.585-111
1.252-01
5. 776-0:~
1.1190-15
2.880-03
5.129-01+
3.540-03
5.133-01
IONIC STRENGTH = 1.99995-01
RUN 107
INPUT MOLES
CAo
H20
=0.00000
=5.57228+01
25.000
DEG. C
AQUEOUS SOloUTION EQUILIBRIA
ACTIVITy
2.336-02
4.306-13
1.221-01
1.429-01
1.657-14
6.91+8-03
1.113-04
1.529-02
4.935-01
RES. E.N. =
-1.506-09
TEI'iPERATURE
/oliGO =0.00000
N203 =1.88000-02
ACTIVITY CnEFFICIENT
9.932-01
8.312-01
7.1+37-01
6.316-01
7.51+6-01
1.037+00
1.037+00
1. 037+00
6.316-01
1.037+00
MOloECULAR WATER = 9.99362-01 KGS.
IONIC STRENGTH = 2.05425-01
25.000
DEG. C
RES. E.N. =
2.666-11

-------
03 AUG 71
11:0'3:49.517
SO~ =0.00000
CO~ =0.00000
S03 =0.00000
NA~O =9.80000-02
I
N
c..>
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
1'102-
HN02
PH =
03 AUG 71
11:09:49.886
SO~ =0.00000
CO~ =0.00000
S03 =0.00000
NA~O =1.40000-02
N205 =1.00000-01
HCL =0.00000
1.631
MOLALI TY

2.811-02
5.791-13
1.933-01
1.89Lf-Ol
1.598-14
6.703-03
1.0H-04
2.421-02
11.761-01
RUN 106
INPUT MOLES
CAn
H2o
=0.00000
=5.57207+01
TEMPFRATURE
MGO =0.00000
N20~ =1.67000-02
ACTIVITY COEFFICIENT
9.932-01
8.312-01
7.437-(;1
6.316-01
7.5Lf6-01
1.037+00
1.0:H+OO
1.037+00
6.316-01
1.037+00
MOLECULAR wATER = 9.99324-01 KGS.
IONIC STRENGTH = 2.05432-01
",,205 =1.00000-01
HCL =0.00000
I
N
~
I
COMPONENT
H20
H+
OH-
1'103-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
MOLALITY
1.763-01
9.229-14
1.994-01
2.716-02
3.663-16
9.972-04
6.975-04
4.027-03
4.'387-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy

2.336-02
11.306-13
1.221-01
1.429-01
1.657-111
6.949-03
1.113-011
1.529-02
11.936-01
RUN 109
INPUT MOLES
CAn
H2o
=0.00000
=5.55382+01
25.000
DEG. C
RES. E.N. = --1.034-11
TEMPFRATURE
MGO =0.00000
N203 =1.81500-02
ACTIVITY COEFFICIENT
9.933-01
8.300-01
7.11115-01
6.342-01
7.556-01
1.036+00
1.036+00
1.036+00
6.3112-01
1.036+00
.8311
MOLECULAR wATER = 9.911523-01 KGS.
IONIc STRENGTH = 2.011121-01
RES. E.N. =
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy

1.465-01
6.870-14
1.265-01
2.0:;2-02
3.794-16
1.033-03
7.225-04
2.5511-03
5.166-01
25.000
DEG. C
-1.1111-09

-------
03 AUG 71
11:09:50.861
502 =0.00000
C02 =0.00000
503 =0.00000
NA20 =1.40000..02
I
N
VI
I
COMPONENT
H20
H+
011-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
11:09:51.230
502 =0.00000
C02 =0.00000
503' =0.00000
NA20 =0.00000
COMPONENT
H20
H+
OH-
N03-
HN03
N02-
HN02
I
N
0'\
I
PH =
N205 =1.00000-01
HCL =0.00000
'~OLALITY
1.763-01
9.228-14
1.994-01
2.716-02
3.663-16
9.972-04
6.975-04
4.027-03
4.9IH-01
RUN 108
INPUT MOLES
CAn
H2o
=0.00000
=5.55364+01
TEMPERATURE
MGO =0,00000
N203 =1,63500-02
ACTIVITY COEFFICIENT
9.933-01
8.308-01
7.1145-01
6.342-01
7.556-01
1.036+00
1.036+00
1.0;%+00
6.342-01
1.036+00
.834
MOLECULAR WATER = 9.94490-01 K&S.
N205 =3.17500-01
HCL =0.00000
MOLALI TY
6.322-01
2.267-14
6.308-01
6.074-03
1.466-03
5.000-01
AQUEOUS ~OLUTION EQUILIBRIA
ACTIVIT~
1.465-01
6.870-14
1.265-01
2.052-02
3.794-16
1.033-03
7.225-011
2.554-03
5.166-01
IONIC STRENGTH = 2.01427-01
RUN 12
INPUT MOLES
CAD
H20
=0.00000
=5.59128+01
25,000
DEG. C
AQUEOUS SOLUTION EQUILIBRIA
IIC T I V IT Y
5.914-01
1.E.77-14
2.940-01
6.784-03
6.835-04
5.584-01
RES. E.N. =
-1.263-11
TEMPERATURE
MGO =0.00000
N203 =8.92500-02
ACTIVITY COEFFICIENT
9.793-01
9.354-01
7.399-01
4.662-01
1.117+00
4.662-01
1.117+00
.228
MOLECULAR WATER = 9.97101-01 KGS.
IONIC STRENGTH = 6.31507-01
25.000
DEG. C
RES. E.N. =
-4.155-12

-------
03 AUG 71
11:09:51.86ij
S02 =0.00000
CO~ =0.00000
S03 =0.00000
NA20 =0.00000
COMPONENT
H20
H+
OH~
N03-
HN03
N02-
HN02
I
f',)
-..J
I
PH =
03 AUG 71
11:09:52.177
S02 =0.00000
C02 =0.00000
SO:l =0.00000
NA20 =0.00000
COMPONENT
H20
H+
OH-
N03-
HN03
N02-
HN02
I
f',)
00
I
PH =
N205 =3.17500~01
HCL =0.00000
r~OLALI TY
6.323-01
2.~67-14
6.308-01
6.075-03
1.46b~03
5.000-01
RUN 13
INPUT MOLES
CAn
H20
=0.00000
=5.59083+01
TEMPfRA TL1RE
MGO =0.00000
N203 =8.48000-02
ACTIVITy COEFFICIENT
9.793~01
9.354~01
7.399~01
11.662-01
1.117+00
4.662~01
1.117+00
.228
MOLECULAR WATER = 9.97020-01 KGS.
IONIC STRENGTH = 6.3155B~01
RES. i:.N. =
N205 =3.17500-01
HCL =O.ouoOO
MOLAL! TY
6.323-01
2.267-14
6.308-01
6.076-03
1.466~03
5.000~01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITY

5.915-01
1.677~14
2.941-01
6.785~03
6.835~04
5.585-01
RUN 11
INPUT MOLES
CAD
H2o
=0.00000
=5.59065+01
TEMPERATURE
MGO =0.00000
N203 =8.30000-02
ACTIVITY COEFFICIENT
9.793-01
9.::I5ij-(11
7.399-01
11.661-01
1.117+00
4.661-01
1.117+00
.228
MOLECULAR WATER = 9.96987-01 KGS.
~QUEOUS ~OLUTION EQUILIBRIA
~CTIvITy
5.915~01
1.677-14
2.941-0l
6.7IJ6-03
6.035-04
5.585~01
IONIC STRENGTH = 6.31578-01
25.000
25.000
RES. L.N. =
DEG. C
-1.293-11
OEG. C
~3.ij04-12

-------
. .
03 AUG 71
11:09:52.q90
RUN 14
INPUT MOLES
TEMPERATURE
25.000
DEG. C
S02 .=0.00000
C02 =0.00000
S03 =0.00000
NA20 =0.00000
N205 =3.17500-01
HCL =0.00000
CAn
H2n
=0.00000
=5.59035+01
MGO =0.00000
N203 =8.00000-02
AQUEOUS SOLUTION EQUILIBRIA
COMPONENT
H20
H+
OH-
N03-
HN03
N02..
HN02
MOLALITY
ACTIvITy
ACTIVITY COEFFICIENT
9.793-01
9.35q-01
7.399-01
4.661-01
1.117+00
4.661-01
1.117+00
6.323-01
2.267-1Q
6.309-01
6.076-03
1.466-03
5.001-01
5.915-01
1.677-1Q
2.9Q1-01
6.766-03
6.835-011
5.585-01
I
N
\0
I
PH =
.228
MOLEcuLAR WATEP = 9.96933-01 KGS.
IONIC STRENGTH = 6.31612-01
RES. E.N. =
-6.961-12
03 AUG 71
11:09:52.803
RUN 92
INPUT MOLES
TEMPERATURE
25.000
DEG. C
SO, =0.00000
C02 =0.00000
503 =0.00000
NA20 =2.00000-01
N205 =3.50000-01
HCL =0.00000
CAD
H20
=0.00000
=5.6204Q+01
MGO =0.00000
N203 =1.48400-01
AQUEOUS SOLUTION EQUILIBRIA
I
IN
o
I
COMPONENT MOLAL ITY  ACTIVITy ACTIVITY COEFFICIENT   
H20    9.7811-01    
H+ 2.905-01  2.028-01 9.1173-01    
OH- 4.716-14  3.505-14 7.431-01    
N03- 6.6Q7-Cll  3.040-01 4.574-01    
NA+ 3.693-01  2.650-01 7.1.76-01    
NAOH 2.225-15  2.500-15 1.124+CO    
NAN03 2.655-02  3.206-02 1.12Q+OO    
HN03 2.965-03  3.354-03 1.12'++00    
N02- 3.108-03  1.Q22-03 4.574-01    
HN02 Q.91J,2-01  5.553-01 1.12Q+OO    
 MOLECULAR WATER = 1.00537+00 KGS.    
PH = .5Q9 IONIc STRENGTH = 6.66283-01 RES. E.N. = 3.293-11

-------
RUN 93
03 AUG 71
11:0':1:53.778
INPUT MOLES
S02 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =1.25000-01
CAn
H2o
=0.00000
=5.60':131+01
N205 =3.50000-01
HCL =0.00000
AQUEOUS ~OLUTION EQUILIBRIA
TEMPERATURE
25.000
OEG. C
MGO =0.00000
N203 =1.12150-01
COMPONENT MOLAL ITY  ACTIvITy ACTIVITY COEFFICIENT   
H20    ':1.780-01    
H+ 11.1167-01  11.2118-01 ':1.510-01    
OH- 3.1311-14  2.332-14 7.442-01    
N03- 6.760-01  3.074-01 11.547-01    
NA+ 2.314-01  1.661-01 7.175-01    
~JAOH ':1.259-16  1.042-15 1.126+00    
NIIN03 1.1:105-02  2.032-02 1.126+00    
HN03 4.525-03  5.094-03 1.12&+00    
N02- 2.097-03  9.533-011 4.547-01    
HN02 4.969-01  5.5':14-01 1.126+00    
 MOLECULAR WATER = 1.00202+00 KGS.    
PH = .372 IONIC STRENGTH = &.77065-01 RES. E.N. = 1.5311-09
I
W
t-'
I
RUN 94
03 AUG 71
11:09:511.59':1
INPUT MOLES
S02 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =1.25000-01
N205 =3.50000-01
HCL =0.00000
CAn
H20
=0.00000
=5.60892+01
AQUEOUS SOLUTION EQUILIBRIA
I
W
N
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
ACTlv! Ty
MOLAL! TY
11.1167-01
3.133-14
6.7'61-01
2.315-01
9.259-16
1.805-02
4.525-03
2.097-03
4.':169-01
11.248-01
2.332-111
~.074-01
1.661-01
1.0112-15
2.033-02
5.095-03
9.533-04
5.594-01
TEMPERATURE
25.000
OEG. C
MGO =0.00000
N203 =1.08250-01
ACTIVITY COEFFICIENT
':1.780-01
9.510-01
7.442-(11
4.5117-01
7.175-01
1.126+00
1.126+00
1.126+00
4.547-01
1.126+00
PH =
.372
MOLECULAR WATER = 1.00195+00 KGS.
IONIc STRENGTH = 6.77110-01
-1.3':12-11
RES. E.N. =

-------
1-
03 AUG 71
11:09:55.472
SO~ =0.00000
CO=-, =0.00000
SO~ =0.00000
NA~O =7.30000-02
I
I",J
I",J
I
COMPONENT
H20
H+
Ot!-
N03-
tJA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
11:09:51'..203
S02 =0.00000
C02 =0.00000
503 =0.00000
NA20 =7.30000-02
I
I",J
.p-
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAND3
HN03
N02-
HN02
PH =
N205 =3.50000-01
HCL =0.00000
MOLALITY
5.50~-01
2.532-111
6.8~1-1'1.
1.35~-01
~.377-16
1.01'.3-02
5.627-03
1.712-03
4.985-01
RUN 78
INPUT MOLES
CAn
H2n
=0.00000
=5.60051+01
TEMPERATURE
MGO =0.00000
N203 =7.61000-02
ACTIVITY COEFFICIENT
9.776-01
9.538-01
7.45U-01
11.528-01
7.175-01
1.127+00
1.127+00
1.127+00
4.528-01
1.127+00
.280
MOLECULAR WATER = 9.99493-01 KGS.
N205 =3.50000-01
HCL =0.00000
MOLAL ITY
5.504-01
2.532-14
6.8~1-01
1.354-01
~.377-16
1.063-02
5.627-03
1.712-03
4.986-01
AQUEOUS SOLUTION EQUILIBRIA
AcTIVITy
5.2~9-01
1.807-14
3.098-01
9.718-02
4.934-]6
1.198-02
6.3~3-03
7.751-0~
5.620-01
25.000
DEG. C
IONIC STRENGTH = 6.84956-01
RES. E.N. =
-4.438-12
RUN 80
INPUT MOLES
CAn
H20
=0.00000
=5.60035+01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
5.249-01
1.886-1~
3.098-01
9.7HI-02
4.934-16
1.198-02
6.3~~-03
7.751-011
5.620-01
TEMPERATURE
MGO =0.00000
N20! =7.45500-02
ACTIVITy COEFFICIENT
9.776-01
9.538-01
7.450-01
4.528-01
7.175-01
1.127+00
1.127+00
1.127+00
~.528-01
1.127+00
.280
MOLECULAR WATER = 9.99~65-01 KGS.
RES. E.N.
TONIC STRENGTH = 6.8~974001
25.000
OEG. C
=
-3.697-12

-------
03 AUG 71
11:09:56.572
502 =0.00000
C02 =0.00000
503 =0.00000
NA20 =7.30000-02
I
(.oJ
I.n
I
COMPONENT
H20
H+
011-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
11:09:56.847
502 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =2.30000-01
N205 =3.50000-01
HCL =0.00000
MOLALITY
5.504-01
2,532-14
6.841-01
1.354-01
4.377-16
1.063-02
5.627-03
1.712-03
4.986-01
RUN 81
INPUT MOLES
CAn
H2o
=0.00000
=5.60034+01
TEMPERATURE
25.000
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
5.249-01
1.886-14
3.098-01
9.718-02
4.934-16
1.198-02
6.344-03
7.751-04
5.620-01
MGO =0.00000
N203 =7.44000-02
ACTIVITy COEFFICIENT
9.776-01
9.536-01
7.450-01
4.528;'01
7.175-01
1.127+00
1.127+00
1.127+00
4.526-01
1.127+00
.280
MOLECULAR WATER = 9.99463-01 KGS.
RES. E.N. =
N205 =3.50000-01
HCl =0.00000
I
(.oJ
0\
I
COMPONENT
H20
H+
OH-
N03..
I'IA+
NAOH
NAN03
HN03
N02-
HN02
I)H =
MOlALI TY
2.403-01
5.868-14
6.615-01
4.250-01
3.167-15
3.276-02
2.394-03
3.854-03
4.938-01
IONIC STRENGTH = 6.84976-01
-
RUN 68
INPUT MOLES
CAn
H2o
=0.00000
=5.61430+01
TEMPERATURE
25.000
AQUEOUS SOLUTION EQUILIBRIA
ACTIvITy
2.274-01
4.359-14
3.030-01
3.050-01
3.579-15
3.680-02
2.683-03
1.765-03
5.545-01
MGO =0.00000
N203 =5.70500-02
ACTIVITY COEFFICIENT
9.786-01
9.463-01
7.428-01
4.581-01
7.177-01
1.123+00
1.123+00
1.123+00
4.581-01
1.12.1+0u
.643
MOLECULAR WATER = 1.00481+00 KGS.
RES. E.N. =.
IONIC STRENGTH = 6.63423-01
DEG. C
-2.878-13
DEG. C
-1.033-11

-------
03 AUG 71
11:09:57.822
502 =0.00000
C02 =0.00000
503 =0.00000
NA20 =2.30000-01
I
W
...,
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
11:09:58.099
502 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =2.30000-01
I
W
00
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
N205 =3.50000-01
HCL =O.UUUOO
MOLAL ITY
2.'103-1)1
5.866-11+
6.615-01
tI.250-01
3.107-15
3.276-02
2.39t1-05
3.854-03
4.93.8-01
RUN 66
INPUT MOLES
CAO
H20
=0.00000
=5.61428+01
TEMPICRATURE
MGO =0.00000
N203 =5.68000-02
ACTIVITy COEFFICIENT
9.786-01
9.463-01
7.'120-01
4.501-01
7.177-111
1.123+00
1.123+00
1.123+00
4.561-01
1.123+00
.643
MOLECULAR WATER = 1.00480+00 KGS.
N205 =3.50000-01
HCL =0.00000
MOLALITY
2.403-01
5.867-14
6.615-01
tI.251-01
3.166-15
3.277-0?
2.394-03
3.85'+-03
'1.938-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy

2.27t1-01
4.359-14
3.030-01
3.U50-01
3.579-15
3.680-02
2.688-03
1.765-03
5.545-01
IONIC STRENGTH = 6.63425-01
RUN 69
INPUT MOLES
CAO
H2o
=0.00000
=5.61309+01
25.000
DEG. C
AQUEOUS ~OLUTION EQUILIBRIA
ACTIvITy
2.27t1-01
4.359-14
3.030-01
3.U51-01
3.579-15
3.680-02
2.689-03
1.765-03
5.546-u1
RES. E.N. =
-1.022-12
TEMPf:RATURE
MGO =0.00000
N203 =5.2r::500-Q~'
ACTIVITY COEFFICIENT
9.706-01
9.1163-01
7.428-01
4.581-01
7.177-01
1.123+00
1.123+00
1.123+00
11.581-01
1.123+00
.643
MOLECULAR WATER = 1.00473+00 KGS.
RES. E.N.
IONIC STRENGTH = 6.63469-01
25.000
OEG. C
=
-2.509-11

-------
03 /lUG 71
11:09:58.1167
S02 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =3.07500-01
I
W
\0
I
COMPONENT
H20
H+
Of!-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 /lUG 71
11:09:59.352
S02 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =3.110000-01
N205 =3.50000-01
HCL =0.00000
MOLALITY
9.323-02
1.519-]3
6.508-01
5.673-01
1.101"'111
11.327-02
9.160-011
9.763-03
11.866-01
RUNS 87 and 88
INPUT MOLES
CAD
H2o
=0.00000
=5.62034+01
TEMPERATURE
25.000
AQUEOUS ~OLUTION EQUILIBRIA
ACTIVITy
8.797-02
1.127-13
2.994-01
4.072-01
1.235-111
4.853-02
1.027-03
4.491-03
5.450-01
MGO =o.ooono
N203 =3.99500-02
ACTIVITY COEFFICIENT
9.789-01
9.436-01
7.421-01
4.600-01
7.178-01
1.122'+00
1.122+00
1.122+00
11.600-01
1.122+00
1.056
MOLECULAR WATER = 1.00729+00 KGS.
RES. E.N. =
N205 =3.50000-01
HCL =0.00000
I
.p-
o
I
COMPONENT
H20
H+
OH-
N03-
"'1\+
NAOH
NAN03
HN03
N02-
HN02
PH =
MOLALITY
4.105-02
3.447-13
6.464-01
6.269-01
2.7(,2-14
4.74'f-02
4.004-04
2.162-02
4.742-01
IONIC STRENGTH = 6.55635-01
RUNS 97 and 98
INPUT MOLES
CAD
H2o
=0.00000
=5.62300+01
TEMPERATURE
25.000
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
3.876-02
2.558-13
2.971-01
4.500-01
3.098-14
5.322-02
4.492-04
9.937-03
5.320-01
MGO =0.00000
N203 =3.40000-02
ACTIVITY COEFFICIENT
9.789-01
9.441-01
7.422-01
4.596-01
7.177-01
1.122+00
1.122+00
1.122+00
4.596-01
1.122+00
1.412
MOLECULAR WATER = 1.00836+00 KGS.
RES. E.N. =
IONIC STRENGTH = 6.57173-01
DEG. C
-1.0118-11
OEG. C
1.3711-10

-------
03 AUG 71
11:10: 00 .173
S02 =0.00000
C02 =0.00000
S03 =0.00000
NA20 =2.78500-01
N205 =3.50000-01
HCl =0.00000
I
.r:-
COl
-------
(13 AUG 71
11:10:03.003
502 =0.00000
C02 =0.00000
503 =0.00000
/-IA20 =1.00000-01
I
.j::-
W
I
COMPONENT
H20
H+
OH-
r~03-
IIJA+
NAOH
NAN03
HN03
N02-
HN02
PH =
03 AUG 71
l1:l0:03.62~
502 =0.00000
C02 =0.00000
503 =0.00000
NA20 =1.00000-01
I
.j::-
.j::-
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
N205 =6.25000-01
HCL =0.00000
MOLAL! TY
1.033+00
9.685-15
1.214+00
1.815-01
2.296-16
1.027-02
1.650-02
1.036-03
4.985-01
RUNS 120 and 121
INPUT MOLES
CAO
H2n
=0.00000
=5.63370+01
TEMPF."RATURE
MGO =0.00000
N203 =1.06000-01
ACTIVITY COEFFICIENT
9.599-01
1.178+00
8.249-01
3.541-01
7.274-01
1.23-'+00
1.237+00
1.237+00
3.5C+l-n1
1.237+00
-.OR"
MOLECULAR WAT[R = 1.00100+00 KGS.
N205 =4.47000-01
HCL =0.00000
MOLALITY
6.066-01
1.02!::-14
0.688-01
1.8:37-01
4.272-16
1.617-02
6.~39-03
1.449-03
~.982-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
1.217+00
7.989-15
4.298-01
1.320-01
2.839-16
2.
-------
03 AUG 71
11:10:04.64(,
S02 =0,00000
C02 =0.00000
SO;3 =0.00000
r~A20 =5.68000-01
I
.l:-
V.
I
COMPONENT
H20
H+
OH~
N03~
NA+
NAOH
NAN03
HN03
N02~
HN02
PH =
03 AUG 71
11:10:05.826
S02 =0.00000
CO, =0.00000
S03 =0.00000
NA20 =2.00000-02
I
.I:-
0'1
I
COMPONENT
H20
H+
OH-
N03-
NA+
NAOH
NAN03
HN03
N02-
HN02
PH =
N~05 =6.25000~01
HCL =0.00000
,",OLALITY
1.189-01
8.913-14
1.12b+00
1.010+00
1.175-14
9.95~-02
1.790-03
8.596-03
4.831~01
RUNS 122 and 123
INPUT MOLES
CAn
H2o
=0.00000
=5.67476+01
TEMPERATURE
MGO =0.00000
N203 =4.86000-02
ACTIVITY COEFFICIENT
9.643-01
1.138+00
8.097-01
:'1.665-01
7.246-01
1.219+(10
1.219+00
1.219+110
3.665-(1'
1.219+00
.869
MOLECULAR WATER = 1.01683+00 KGS.
N205 =5.82500-01
HCL =0.00000
~WLALITY
1.113+()0
9.401-15
1.148+00
3.653-02
4.456-17
3.605-03
1.701-02
9.551-011
5.008-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
1.353-01
7.217-14
4.134-01
7.374-01
1.432-14
1.214-01
2.103-03
3.151-U3
5.890-01
IONIC STRENGTH = 1.13227+00
RUNS 61 and 62
INPUT MOLES
CAO
H2o
=0.00000
=5.61284+01
25.000
DEG. C
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITy
1.275+00
7.641-15
4.180-01
2.b49-02
5.448-17
4.400-03
2.079-02
3.476-04
6.123-01
RES. E.N. =
-5.555-n
TnIPE'RA TURE
MGO =0.00000
N203 =1.99500-02
ACTIVITY COEFFICIENT
9.619-01
1.146+1)0
8.127-n1
3.639-01
7.251-01
1.223+00
1.2.23+00
1.223+110
3.63')-01
1.223+00
-.10"
MOLECULAR wATER = 9.96572~01 KGS.
RES. E.N.
IONIC STRENGTH = 1.14888+00
25.000
DEG. C
=
-7.929-12

-------
Radian Corporation
asoo SHOAL CREEK BLVD. . P. O. SOX 9948 . AUSTIN, TEXAS 79757 . TElEPHONE 512. ..s.t.9S3S
Radian Corporation
esoo SHOAL CREEK BlVD. . P. O. sox 99-48 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 454-9535
The va~or phase data were reported in units of
atmospheres of N 3. The equilibrium constant for reaction (21)
was calculated from standard state thermodynamic properties at
25°C and is given in equation (29).
PHNOs
;
K25°C =
P P
N 110 3 H;O
= .6466
(29)
  TABLE VII 
Calculated Values of PHNOII and Kcorr from the
 Date of Abel and Neusser (AB-006) 
   Kcorr
 Pmeas PHNO; =aW~O;
Run No. PHNO;
(from AB-006) (atm) (atm)
112 .00462 .00344 .107
113 .00439 .00331 .111
105 .00316 .00253 .147
103 .00319 .00255 .146
102 .00284 .00231 .161
107 .00175 .00152 .235
106 .00189 .00163 .219
109 .00154 .00135 .276
108 .00141 .00125 .298
12 .00528 .00382 .106
13 .00590 .00417 .097
11 .00608 .00427 .095
14 .00552 .00396 .102
92 .01113 .00669 .060
93 .00721 .00486 .083
94 .00767 .00509 .079
78 .00495 .00364 .112
80 .00450 .00337 .121
81 .00506 .00370 .110
68 .00360 .00281 .143
69 .00366 .00285 .141
66 .00370 .00288 .139
87 .00268 .00220 .180
The vapor pressure of water at 25°C is 23.756 rom or .0313 atm.
Substituting in (29) gives (30)
PH OK250C
II
;
= PHNOII

P
N;03
= .0202
(30)
The total measured pressure is the sum of pressures of HNO; and
NII03 as shown in (31)
P
meas
= P HNO
II
+ 2P N °
II 3
(31)
Substituting (30) in (31)
Pmeas = PHNO +
;
gives (32).
II
2P HNOII
.0202
(32)
Equation (32) can be solved using the quadratic formula and the
measured values of P as in (33).
-.0202 +
.000408 + .1616 P
meas
4
(33)
PHNO =
II
The results ~re given in Table VII along with the corrected
value of K which was calculated using the activities in Table VI.
-47-
-48-

-------
ladian Corpc 'c ( I
B500 SHOAL CREEK BLVD. . P. O. BOX 99-i8 . AUSTIN, TEXAS 78751 . TElEPHONE 512. -454-9535
la ian ~o .oration
B500 SHOAL CREEK BLVD. . P. O. BOX '1948 . AUSTIN, TEXAS 78757 . TELEPHONE 512. 4S4.'iS3$
TABLE VII (Continued)   
    K 
    corr 
Run No. P PHN02 =~~Oa
meas PHN02 
(from AB-006) (atm) (atm) 
88 .00272 .00223 .177 
97 .00221 .00187 .207 
98 .00205 .00174 .221 
99 .00118 .00107 .374 
124 .00921 .00584 .076 
120 .00818 .00535 .083 
121 .00815 .00533 .084 
129 .00700 .00476 .088 
130 .00702 .00477 .088 
122 .00408 .00312 .137 
123 .00414 .00315 .135 
61 .00116 .00105 .422 
62 .00120 .00108 .409 
   avg. Kcorr = 0.160 :I: .09
Kdiss
~Oa
a
HNO 2 (I,)
(35)
K
K = --f.Q!E =
Kdiss
a
HN02( t)
P
HN02(g)
~
a
HNO 2 ( t)
a
HN02(g)
(36)
-4-
Using the value of Kdiss,250C = 7.24 x 10 given in Section
3.2, Table IV, K is calculated to be 2.155 x 102.
3.3
Vapor-Liquid Equilibrium Constant for Nitric Acid
Vapor pressure measurements for HN03 have been
conducted by numerous workers. However, the nitric acid solu-
tions for which values of PHNO are high enough to be measurable
3
are in the concentration range 24 to 70 weight % (5. to 36.
molal). This means the back pressure of HN03 over dilute
solutions is essentially zero.
K
corr
a~O;
PHNO
2
(34)
The data of Prosek (PR-009), McKeown and Belles
(MC-035), Burdick and Freed (BU-014), Flatt and Benguerel (FL-
013), Sproesser and Taylor (SP-006) and Davis and deBruin
(DA-012) were considered. Only the data of Davis and deBruin
were applicable, since the other values were measured over
solutions of high ionic strength (1)5). Davis and deBruin
measured the molality of NO~ and PHNO' Using the equilibrium
3
model, activities of H+, NO~ and HN03(t) were calculated from
their molality data. The vapor-liquid equilibrium constant was
then calculated using the six data points taken at ionic
strengths of 6.7 and below. The results are given in Tables
VIII and IX.
The slope of a graph of ln PHNO vs. ln~~. - gave
2 tt. NO D

essentially the same value for K as the average value K = 0.160.
The vapor-liquid equilibrium constant, K = ~... I
uttN02( t)
~02(g) can be calculated from Kcorr as shown in equations

(34) through (36).
-49-
-50-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE SI2 - 454-9535
TABLE VIII
Results Obtained Using Radian's
Aqueous Equilibrium Program to Calculate
Activity of Nitric Acid
-51-

-------
29 JUN 71
I
VI
N
I
29 JUN 71
I
VI
W
I
11111:SS.'I36
S02
C02
S03
NAZO
-0.00000
-0.00000
-0.00000
-0.00000
COtlPONENT
H2o
14+
014-
N03-
MN03
PH .
II: II: S6. 109
502 .0.00000
C02 -0.00000
S03 -0.00000
NA20 110.00000
COMPONENT
H20
14+
014-
N03-
HN03
PH -
H20S .101'12'1'1.00
HCL -0.00000
INPUT MOLES
CAO
H20
-0.00000
-!;.66.,87'01
TEMPERATURE
MGO .0.00000
N203 -0.00000
MOLAl.ITY
AQUEOUS SOLUTION EQUILlijRIA
2.226+00
2012A-I~
2.22"'00
S.8'12-02
ACtiVITY
".071+00
2.297-1;
5.'130-01
R.626-02
ACTiViTY COEffiCIENT
9.231-01
1.829+00
1.079+00
2.'139-01
1.'176+00
-.610
MOLECUl.AR WATER. I.OoOOOtOO KGS.
N20!> -1.62616+00
HCL -0.00000
IONIC STHENGTH . 2.226'16+00
INPUT MOLES
CAO
H20
-0.00000
-5.7132'1'01
25.000
RES. E.N. -
TEMPERATURE
MGO -0.00000
N203 .0.00000
MOLALITY
A~UEOUS SOLUTION EQUILIBHIA
301"1+00
7.305-16
3.1'11+00
1.117 -0 I
ACTIVITY
R.672+00
..0,37-15
5.720-01
1.9~5-0.
ACTIVITY COEffiCIENT
8.880-01
2.761+00
1.'120+00
1.821-01
!.733'00
-.938
MOLECULAR WATER - 1.00000'00 KGS.
IONIC STHENGTH . 3.1~06'1+00
25.000
RES. E.N. .
aEG. C
8,82'1-11
OEG. C
-2.696-11

-------
29 JUN 71
I
\.I,
+:-
,
I
VI
VI
I
S02
C02
SOJ
NA20
29 JUN 71
II: II: &6.657
..u.UOOOO
-0.00000
"0.00000
-0.00000
COMPONENT
H20
H+
OH-
NOJ-

HN03
PH -
11:11:57.090
S02
C02
S03
NA20
-0.00000
..0.00000
-0.00000
"0.00000
COMPONENT
H20
Ii+
Oli-
N03"
liN03
PH -
N20& -1.6'117J+00
HCL -0.00000
~10LAL I TY
3.170+1]0
7.069-18
3.170+00

1.137-01
INPUT MOLES
CAO
H20
"0.00000
-5.71'180+01
Tt:MPERATURE
2S.000
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITY
8.869+00
1.013-15
50721-01
1.geO-o!
~IGO -u. oUOOO
N20J ..0.00000
ACTiviTy COEffiCIENT
8.868-UI
2.798+00
..'133+00
1.1105-01
1.7'11+00
-.9'1H
MOLECULAR WATER.. 1.00000+00 KGS.
RES. E.N. -
IONIC STRENGTH.. 3.16979+00
N20& -1.79207+00
HCL -0.00000
MOLAL I TV
3.'1&0+00
&.170-16
3.'150+00
1.339..01
INPUT MOLES
CAD
H20
-0.00000
-5.72983+01
TEMPERATURE
25.000
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITY
1.0\17+01
8.0115-16
5'-'21-01
2.'1'18-01
MGO -0.00000
N203 -o.ooogo
ACTIVITY COEffiCIENT
8.7s7-01
3.1110+00
1.56'1+UO
1.6511-01
1.82'1+UO
..1.0'10
MOLECULAR WATER - 1.00000+00 KGS.
RES. E.N. -
IONIC STRENGTH.. 3.'IS028+00
DEG. C
-2.277-10
Dt-G. C
"S.811-12

-------
29 JUIII II
I
V1
0-
I
29 JUt-! 71
I
V1
'"
I
11:11:!>7.567
S02
(02
so,)
HAlO
-0.00000
-0.00000
-0.00000
.0.00000
COHPONENT
H20
H+
OM-
NO,)-
HNO,)
PH .
II; II ; f»8 .0'1,)
S02 -0.00000
C02 -0.00000
50,) :00.00000
II/A20 -0.00000
COMPONENT
H20
H+
OH-
104°3-
HN03
PH -
N20S -2.f»5'1IJ+OO
HCL -0.00000
MOLALITY
'1.8'16+00
1.1!']-16
'1.8'16+00
2.62'1-01
INPUT HOLES
CAO
H20
-0.000°0
-5.90(,0"+01
TLMPI:.HA TUliE
MGO -0.00000
11/203 -O.UOUOO
ACTIVITY COEffiCIENT
0.18U-OI
6.037+00
2.'1'16+00
1.106-01
Z.,),)5+g0
-'.'166
HOLECULAR ~ATER - 1.00000tOO K~S.
N205 8,).58056+00
HCL -0.00000
MOLALITY
6.666+00
1.787-17
6.66"+00
f».111-01
AQUEOUS SOLUTION EQUILIBRIA
ACTIVITY
2.97.6+01
2.S37.-16
f».3"Q-OI
60128-01
IONIC STRENGTH. 'I.9'1S82+00
INPUT MOLES
CAO
H20
-0.00000
=\i.9Qq'lS+01
25.000
RES. E.N. ..
TE"PERATURE
HGO .O.OOOUO
111203 .0.00000
ACTIVITY COEf'ICIENT
7.389-0'
1,'10"+01
".'I7f»+QO
"'7"'1-02
3.2,'+00
.., .971
HOLECULAR WATER a 1.00000tOO KGS.
IONIC STRENGTH. 6.66605+00
RES. E.N, .
A~UEOUS SOLUTION EQUILIBR'A
ACTIVITY
9.357+01
7.999-17
'1.'196-01
1.6~1+00
25.000
OEG. C
-9.07'1-12
OEG. C
1,065-,0

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9'9<48 . AUSTIN, TexAS 18751 . TELEPHONE 512. ..s.t.953S
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<18 . AUSTIN, TEXAS 18751 . TELEPHONE 512. <15-4-9535
TABLE IX
K = ~03
calc PHNO
3
7
= .156 x 10
(39)
Nitric Acid Vapor-Liquid Equilibrium
Constant Calculated from the Data of
K ~ aHNO.(J,)
P
HNO 3.(g)
Kcalc
=~
diss
5.8 x 104
(40)
Davis and deBruin (DA-012)
3.4
Vapor-Liquid Equilibrium Constant for Nitric Oxide
Calculated Measured   aH~O~ 
   P K  _7
aH+  aNO; HNO 3 7 calc-  PHNO x 10 
(See Table VIII) (atm x 10 1   3 
4.071  0.543 10.4   0.221  
8.672  0.5720 29.0   0.171  
8.869  0.5721 31.0   0.164  
10.97  0.5721 51.0   0.123  
29.26  0.5369 108.0   0.145  
93.57  0.4496 386.0  0.109  
       7 
    avg Kcalc = .156 x 10 
The data of Winkler (WI-029) for the Bunsen
coefficient of NO in water were used to calculate the
brium constant for reaction (41).
absorption

equili-
NO (g)
~ NO ( 1,)
(41)
The equilibrium constant is defined in equation (42) where the
activity of NO(t) is in units of moles NO/kg HaO, assuming

YNO(t) = 1, and the activity of NO(g) is in units of atmospheres
of nitric oxide.
A plot of ln a~NO- vs. ln PHNO had a slope of
7 3 3 7
.151 x 10 , while the average value of Kcalc was .156 x 10 .
K = ~O<'t)
~O(g)
(42)
The vapor liquid equilibrium constant for reaction

(la), K = aHNO /~O ,can be calculated from the
3( t) 3(g)

dissociation constant, Kdiss' and the constant in Table IX as

shown below.
Winkler's data were reported in units of cc dissolved NO per
cc water. He also reported the total measured pressure of
nitric oxide over the solution in rom Hg. The number of moles
of dissolved NO was calculated by multiplying Winkler's values
of cc NO by (1~:3 t)(~~~~t)' The results of all the calculations
are given in Table X. The data for each temperature are an
average of three measurements.
Kdiss
a~03
a
HN03( t)
26.9
(38)
-58-
-59-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9'1-48 . AUSTIN, TEXAS 7B757 . TELEPHONE 512. "54-%35
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - -45-4-'1535
4.0
SUMMARY
   TABLE X  
  Results of Calculation of Vapor-Liquid 
  Equilibrium Constant for Nitric Oxide from 
   the Data of Winkler (WI-029) 
 _3  CCH O(10-3kg)   PNO(~rOmm) 
 CC (10 moleS) moles NO a
 NO 22.4 cc a cc kg H:aO NO( .1,)
     p
 = moles NO = kgH:aO !!it aNO ( .1,) !!it aNO =~O (g)
TOC    (g)
0.07 .00371 1.90505 .001947 .592 .00329
10.02 .00310 1. 90532 .001626 .639 .00255
20.02 .00273 1.90813 .001495 .681 .00210
30.01 .00246 1. 91292 .001289 .720 .00179
39.96 .00228 1.91946 .001188 .758 .00157
50.04 .00216 1. 92762 .001124 .799 .00141
59.94 .00214 1.93700 .001104 .838 .00132
70.05 .00215 1. 94784 .001102 .879 .00125
79.85 .00217 1. 95963 .001107 .919 .00120
This Technical Note has described the selection of
activity coefficients and equilibrium constants for use in an
aqueous equilibrium model. The activity coefficients are
correlated as a function of ionic strength. Correlation
parameters for each ion or uncharged species were chosen on
the basis of published graphs of activity coefficients as a
function of ionic strength.
Equilibrium constants were selected from numerous
different published references. In some cases the data were
recalculated to obtain constants in a consistent form. The
selected constants are listed in Table XI.
-60-
-61-

-------
Reaction
HN03(t) ~ H+ + NO;
 HN03(g) ~ HN03(t)
I  
0\  
N  
I  ~ H+ + NO~
 HNO a (J,)
HNOa(g) ~ HNOa(.t)
NO ( g) ~ NO ( t)
Selected Values for Equilibrium Constants
TABLE XI
Form of
Constant
K = aw-~O;
a
HN03( .t)
a
K = HN03 ( ,.)
p
HN03(g)
K = ~+aNO:
a
HNO a ( t)
K = aHNO IJ ( t)
p
HNOa(g)
K = aNO(!)
P NO ( g)
Selected Values
K250C = 26.9
log K = 6.557 . 32~.88. .01359T
4 .1
K250C = 5.80 x 10 atm
K250C = 7.24 x 10.4
3
log K = 34.558 . 5.85~4 x 10
_3
- 60.571 x 10 T
K25°C
2.155 x lOa atm-1
=
.3
K200c = 2.10 x 10
_1
atm
Reference
HE-001
DA-012
W-005
W-007
AB-006
WI-029

-------
Radian Corporation
AB-006
BA-050
BU-014
CH-04l
DA-OOI
DA-012
FL-013
8500 SHOAL CREEK BlVD. . P. O. BOX 9fi<4a . AUSTIN, TEXAS 78757 . TELEPHONE 512. <4504-9535
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 99<48 . AUSTIN. TEXAS 787S7 . TELEPHONE 512 - 4(54.9535
BIBLIOGRAPHY
GA-003
Abel, E. and E. Neusser, "Concerning the Vapor
Pressure of Nit;rous Acid", Monatsh. fUr Chemie 54,
855-73 (1929).
HE-OOI
Barnes, H. L., H. C. Helgeson, and A. J. Ellis,
"Ionization Constants in Aqueous Solutions", in
Handbook of Physical Constants - Revised Edition,
Geol. Soc. Am. Mem. No. 97, 1966, pp. 401-13.
HO-014
Burdick, C. L. and E. S. Freed, "The Equilibrium
Between Nitric Oxide, Nitrogen Peroxide, and Aqueous
Solutions of HN03", 1. Am. Chern. Soc. 43, 518 (1921).
HO-015
Chekhunova, N. P., andP. 1. Protsenko, "Activity
Coefficients of the Nitrites of Sodium, Potassium,
and Magnesium", Ru. 1. Phys. Chern. 41 (9), 1220-21
(1967) .
HO-038
KL-OOI
Davies, Cecil W., Ion Association, Washington, D.C.,
Butterworth, 1962.
KL-007
Davis, W. Jr. and H. J. deBruin, "New Activity
Coefficients of 0-100 Percent Aqueous Nitric Acid",
1. Inorg. Nucl. Chern. 26, 1069-83 (1964).
KR-012
Flatt, R. and F. Benguerel, "Liquid-Vapor Equilibrium
of the Binary System HN03-HaO at 25°", Helv. Chim.
Acta 45, 1765-72 (1962).
LO-007
-63-
Garrels, R. M. and C. L. Christ, Solutions, Minerals,
and Equilibria, New York, Harper and Row, 1965.
Helgeson, H. R., "Thermodynamics of Complex Dissocia-
. d ..
tion in Aqueous Solut1on at Elevate Temperatures,

1. Phys. Chern. 71, 3121-36 (1967).
Hood, G. C. and C. A. Reilly, "Ionization of Strong
Electrolytes. VIII. Temperature Coefficient of
Dissociation of Strong Acids by Proton Magnetic
Resonance", 1. Chern. Phys. 32(1), 127-30 (1960).
Hogfeldt, E., "The Complex Formation between Water
and Strong Acids", Acta Chern. Scand. Q, 785-96 (1963).
Hood, G. C., C. A. Reilly, and o. Redlich, 1. Chern.
Physics 22, 2067 (1954) (cited in BA-050).
Klotz, I. M., Chemical Thermodynamics, New York,
Benjamin, 1964.
Klemenc, A., and E. Hayek, "The Dissociation Constant
of Nitrous Acid", Monatsh. fUr Chemie 53/54,407 (1929).
Krawetz, A., Thesis, University of Chicago, 1955 (cited
in HE-OOI and HO-015).
Lowell, P. S. et al., ~ Theoretical Description of the
Limestone In;ection - Wet Scrubbing Process, Vol. 1,
Final Report for NAPCA Contract No. CPA-22-69-l38,
Austin, Texas, Radian Corp., 1970.
-64-

-------
Radian Corporation
LU-005
MC-035
NO-Oll
PR-009
RA-026
SC-015
SI-OOl
SP-006
8500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 01501-9535
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - "1501-9535
Lumme, Paavo and Jouni Tummavuori, "Potentiometric
Determination of the Ionization Constant of Nitrous
Acid in Aqueous Sodium Perchlorate Solutions at 25°C",
Acta Chern. Scand. 12(3), 617-21 (1965).
W-007
McKeown, A. B. and F. E. Belles, "Nitric Acid-Nitrogen
Dioxide-Water System. Vapor Pressures and Related
Properties", Ind. Eng. Chern. 47(12), 2540-3 (1955).
VA-Oll
Noyes, A. A., Carnegie Inst. Publ. No. 63(1907)

(cited in HE-001) .
WA-015
Prosek, J., "Equilibrium between the Liquid and the
Gaseous Phase in Systems Containing Nitric Acid",
Collect. Czech. Chern. Commun. 32(7): 2397-404 (1967).
WI-029
Ray, James D. and Richard A. Ogg,
Entropy of Potassium Nitrite", ::[.
1599-1600 (1956).
Jr., "The Anomalous
Phys. Chern. 60,
YO-007
Schmid, Hermann and Peter Krenmayr, liThe Activity
Coefficient of Nitrous Acid and the Equilibrium Constant
of Dinitrogen Trioxide Formation", Monatsh. fUr Chern.
98(2),417-22 (1967).
Sillen, L. G., Stability Constants of Metal-Ion
Complexes, Section 1: Inorganic Ligands, Special
Publication No. 17, London, The Chemical Society,
Burlington House, 1964.
Sproesser, William C. and Guy B. Taylor,
Pressures of Aqueous Solutions of Nitric
Chern. Soc. 43, 1782-7 (1921).
"Vapor
Acid", .:!. Am.
-65-
Tummavuori, Jouni and Paavo Lumme, "Proto lysis of
Nitrous Acid in Aqueous Sodium Nitrate and Sodium
Nitrite Solutions at Different Temperatures", Acta
Chern. Scand. 1l(6), 2003-11 (1968).
Vassian, E. G. and W. H. Eberhardt, "The Spectrophoto-
metric Determination of the Dissociation Constant of a
Cadmium-Nitrite Complex", .:!. Phys. Chern. 62, 84-7
(1958) .
Waldorf, D. M., Reactions and
Nitrogen Oxides-Water System,
Univ. of Washington, 1962.
Equilibria in the
Ph.D. Dissertation,
Winkler, L. W., "The Solubility of Gases in Water",

Ber. 34, 1408-14 (1901).
Young, J. F., L.
The Structure of
W. J. Hamer, New
F. Maranville, and H. M~ Smith,
Electrolytic Solutions edited by
York, Wiley, 1959 (cited in HE-001).
-66-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512/454-9535
TECHNICAL NOTE 200-007-12
VAPOR FILM MASS TRANSFER COEFFICIENTS
FOR HNOa AND HN03 IN A PACKED TOWER
1 November 1971
Prepared by:
Philip S. Lowell
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8SOO SHOAL CREEK BLVD. . P. Q. BOX 99-i8 . AUSTIN. TEXAS 18757 . TElEPHONE 512. -iS4-9535
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 99"8 . AUSTIN, TEXAS 78757 . TELEPHONE 512. <451.9535
1.0
INTRODUCTION
The sorption of nitrogen oxides in aqueous alkaline
sorbents is the basis of a potential NOx removal process. EPA
has performed bench scale tests of the sorption of nitrogen
oxides in their Cincinnati laboratories. In this technical note
some of the experimental data are analyzed to extract mass
transfer coefficients.
Ac
~
b,.Z
t
In support of the EPA program, Radian has made some
theoretical calculations that indicate that HNOg and HN03 are
the significant molecular species involved in the mass transfer
step. The analysis presented is based on the assumption that
mass transfer is vapor film limited. Not enough experimental
data were taken to prove or disprove this assumption. The con-
clusions must therefore be treated as tentative.
FIGURE 2-1 - DIFFERENTIAL HEIGHT OF PACKING
The number of moles,
Equation 2-1.
nx,
of HNOx (x
2 or 3) is given in
2.0
THEORY
-dnx
kxaAcP(Yx-y~)dz
(2-1)
The general mass transfer theories apply to this
problem. The major difference between standard computational
schemes and what is presented here is that the species
involved in the mass transfer process, i.e., HNOg and HN03 are
not conserved species. For example, when HNOg is removed from
the gas phase, more HNOg is formed as a result of the vapor
phase reaction among the various nitrogen oxides and water.
For our column we assume that the equilibrium partial pressure
over the liquid is zero. As a result of this assumption Equa-

tion 2-1 may be simplified.
-dnx
k.aAcPy.dz
(2-2)
A material balance may be made across a differential
height of packing, b,.Z, as shown in Figure 2-1.
The moles of HNOg or HN03 transferred must be related
to the NO and NOg removed from the gas. Radian's gas phase
equilibrium model calculates Y. when given inputs of "chemical
NO" and "chemical NOg", CNO and CNO' From the reaction of NO
g
and NOg to form HNOg and HN03 these relationships may be calculated.
-2-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TeXAS 78757 . TELEPHONE 512. 454.IiS]S
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TeXAS 78757 . TELEPHONE 512.451-9535
~ 0 + NO + NO~
2HNO~
(2-3a)
The quantities that can be measured experimentally
are total NO, CNO' and total N~, CNO' The quantities
~
required in making mass transfer calculations are the mole
fractions of HNO~ and HN03. Values for both of these quanti-
ties are computed. Therefore, any error in the equilibrium
constants that are used to compute YHNO and YHNO from the
~ 3
measured quantities CNO and CNO will show up as errors in kga
~
values computed from experimental data. Thus, even if the
mechanism has been correctly identified and the analytical
chemistry measurements correctly made, the computed kga values
may be incorrect in an absolute sense. Their use is justified
so long as the same equilibrium constants used in calculating
kga's are used in making mass transfer calculations with these
kga's.
H~O + 2NO~
HNO; + HN03
(2-3b)
dCNO = ~(dnHNOa - dnHN03)
(2-4a)
dCNOa = ~(dnHNOa + 3dnHN03)
(2-4b)
If Equations 2-4a and b are combined with Equation 2-2.
Equations 2-5a through 2-6b result, describing the decrease
in total chemical NO and NO; as a function of the mass trans-
fer of the molecular species HNO~ and HN03.
3.0
NUMERICAL CALCULATION SCHEME
-dCNO
~(~lYHNO - a~YHNO )dz
~ 3
(2-5a)
-dCNO
~
~(alYHNO + 3a~YHNO )dz
~ 3
(2-5b)
Equation 2-5 may be integrated to give the amount
removed in a packed column of height H.
-[CNOJout+ [CNoJin
H
~ I (alYHNO~ - a~YHN03)dz
(3-1a)
al
~O aPAc
;
(2-6a)
a;
~N03aPAc
(2-6b)
-[ cro"lout + [CNOs ln
H
~ I (alYHNOa+ 3aaYHN03)dZ
(3-lb)
Since YHNO and YHNO are complicated functions of
a 3
CNO and CNO the equations must be integrated numerically.
;
Values of al and as are assumed. The right hand
side of Equation 3-1 is numerically integrated. The error, ~,
between the removal determined experimentally, rem, and that
calculated is given in Equation 3-2.
-3-
-4-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99-49 . AUSTIN. TEXAS 7fffi7 . TELEPHONE 512.15-4-9535
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99-18 . AUSTIN, TEXAS 78157 . TElEPHONE 512 -1s.4-953S
~1
remNO - (cin- Cout)NO
(3-2a)
Ingas = Outgas + Outliquid
(3-4)
~"
rem - (c - c )
NO" \ in out NO
"
(3-2b)
The inlet and outlet gas concentrations were
calculated as follows:
The initial values for a1 and a" will not yield the
desired values of ~1 = ~" = O. A Newton-Raphson technique was
used. This requires a knowledge of the derivatives of Equa-
tion 3-2.
In
avg
Ingas + Out + Outl' .d
- gas ~qu~
2
(3- 5)
Out = In - Outl' .d
avg gas avg ~qu~
(3-6)
 H 
.2.h. 1: r d
oa1 2 . YHNO z
~ "
 H 
lli -~ J YHN03dz
oa"
 H 
.2..k ~ J YHNO" dz
00.1
 H 
.2..k ~ 
0/" ~ YHNO dz
oa2 3
(3-3a)
This procedure maximized the accuracy of the
difference between composition of gasin and gasout by making it
equal to the accurately known liquid measurement. The original
material balances are given in Table 3-1. The corrected gas
compositions are given in Table 3-2.
(3-3b)
4.0
RESULTS
(3-3c)
(3-3d)
Values of k a's for HNO"
g
from the equations given in Sections
Table 3-1. The results are given in
and HN03 were calculated
2 and 3 and the data in
Table 4-1.
The experimental data
T.N. 200-007-09. The data were
account for the amount removed.
used were those reported in
recalculated to more accurately
The actual amount of NOx
with liquid phase chemical
The three points in Table 4-1 are plotted on log-log
paper in Figure 4-1 for HNO" and Figure 4-2 for HN03. A slope of
0.8 was arbitrarily chosen for the vapor rate dependence. Since
the data were all at one liquid rate, no correlation could be made.
The liquid rate dependence was assumed to be 0.39 as reported by
Brown* for NHa. The following correlation is suggested for use
within the constraints discussed above.
After the correct values of 0.1 and a." have been chosen, the
kga's may be calculated from Equation 2-6.
removed was accurately measured
analyses. This is shown below.
*
Brown, G. G., Unit Operations, p. 530, John Wiley &
Sons, New York, (1950).
-5-
-6-

-------
   TABLE 3-1    
   MATERIAL BALANCE SUMMARY    
   from TN 200-007-09    
     Scrubber  Liquid  
  Gas In 6 Gas Out of + Li;Uid Out 6 + Condensed  
  (mo1e/min x 10 ) Condenser (mole min x 10 )    
 Run 1 NO 102.76 97.54 + 2 1. 14 + ?  118.68
 N02 101. 03 52.84 + 60.08 + ?  112.92
 Run 2 NO 135.6 134.05 + 21.72 + (-3.2)  152.57
I N02 130.8 68.79 + 62.95 ... 9  140.74
-..j 
I        
 Run 3 NO 172.8 185.12 + 23.61 + ? - 208.73
 N02 162.0 85.95 + 70.56 + ?  156.51
TABLE 3-2
CORRECTED MATERIAL BALANCE
   Gas In Gas Out
   (mo1e/min x 106) (mo1e/min x 106)
 Run 1 NO 110. 72 89.58
I 
00  NOe 106.97 46.89
I 
 Run 2 NO 144.10 122.38
  NOe 135.75 72.80
 Run 3 NO 190.75 167.14
  NOe 159.25 88.69

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TElEPHONE 512.454-9535
TABLE 4-1
RESULTS OF MASS TRANSFER COEFFICIENT CALCULATIONS
 Vapor Flow Rate Liquid Rate KgSHN02 KgBHN03
Run [normal W] ~~:J [ ~m mole J [ ~m mole]
No.  hour (hr) cm3 )(stm) (hr) cm3 )(stm)
1 0.728 710 0.277 0.972
2 0.948 710 0.275 0.962
3 1.18 710 0.302 1.22
-9-

-------
I
....
o
I
I
....
....
I
KgaHNO& [gm-moles!(HrXcm3)(atm)]
o
o
o
o
o
o
o
o
o
"J
t-I
C')
~
.p-
I
....
o
.p-
. ~ , ,. i : J !,.
i. . -I ~. J . :;
. j-'
o
VI
~ t-<
'- 0
if
......
J
,-
; 1-J- .
, .
, I I ""-T..-
K,aHNO Lgm-moles!(hr)(cm3)(atm)]
g 3
o

VI
o
C7'
o
00
....
b
   o
  o ~
  .... 
  .p- 
  0 
  VI 
  0 
  0\ 
;4  0 
 ~ 
C')  ! 
~   
t>:I   
.p- .......  
Z 0 --
I 0
N a \0 
 II> I""' 
 ""0 
 a  
 ..  
 '-  
 ::r-  
 t1  
 ......  
  .... 
  ~ 
o
o

\D
....
....
'1;11
\,0)
o
N
b

-------
Radian Corporation
BSOO SHOAL CREEK BlVD. . P. Q. BOX 9'HB . AUSTIN, TEXAS 7'J757 . TELEPHONE 512.454.9535
Radian Corporation
kg~o"
(V)" '8(L)O .39
0.795 A A
c c
6.0 NOMENCLATURE
 a
 Ac
 CNO' CNO
 :!
 H
 k
 L
 n
 p
 rem
 V
 y
 y*
 ~Z
 Subscripts
 x
 1
 2
(4-la)
kgaHN03
IV'I" '8(L)O .39
2.96\At A
c c
(4-lb)
5.0
CONCLUSIONS
A mechanism has been proposed to explain mass
transfer of NO and NO" from flue gases into aqueous alkaline
solutions. It is based on gas film limited transfer of HNO"
and HN03. Mass transfer coefficients have been calculated on
the basis of this mechanism. These ar~ given in Equations 4-1.
These equations and this mechanism must be considered
as being tentative. The ratio of kgaHNO /kg~NO is 0.27 and
" 3
not 1.04 as predicted by film theory. This might be due to in-
accurate equilibrium constants used in calculating YHNO or
. "
YHN03' Not enough experimental data nor a large enough range
of data were used in the correlation to give too much confidence
in the results. On the other hand, these are the only data
applicable to testing this specific hypothesis.
-12-
-I
8SOO SHOAL CREEK BlVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512. 4s-t.95J5
surface area of packing per volume of
column (cm"/cm3)
crossectional area of column (em")
chemical NO, chemical NO" (gmoles/min)
height of column (em)
mass transfer coefficient (gmoles/hr em" atm)
liquid rate (cm3/min)
number of moles per hour
total pressure (atm)
measured amount of HNO~ or HN03 removal
(gmoles/hr)
vapor rate (normal M3/hr)
mole fraction in bulk gas
mole fraction in gas in equilibrium with
liquid
differential height of packing (em)
x = 2 for HNO", x = 3 for HN03
HNO"
HN03
-13-

-------
Radian Corporation
Greek
~
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512.454.9535
difference between measured and cal-
culated amount of HN02 or HN03
removed (gmoles/hr)
-14-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512/454-9535
TECHNICAL NOTE 200-007-14
RESULTS OF LITERATURE SEARCH
ON AQUEOUS SORPTION OF
NITROGEN OXIDES
1 November 1971
Prepared by:
Terry B. Parsons
Engineer/Scientist
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
BSOO SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 7B757 . TELEPHONE SI2 - 4S4-9SJ5
Radian Corporation
B500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512.4')4.9535
The object of the early data collection task was to
define the problem by surveying all available literature on
aqueous sorption of nitrogen oxides and associated subjects.
There were four sources for acquisition of pertinent literature.
A file of abstracts from the four sources described
above was assembled. As the program continued and new avenues
of interest became evident, more literature was added to the
data base. The abstracts were read and filed in the categories
discussed below. A few references are listed in more than one
category.
The first source was the bibliography in the final
report, "Systems Study of Nitrogen Oxide Control Methods for
Stationary Sources" prepared for NAPCA under Contract No.
PH 22-68-55. Section 5.5.1 dealt with aqueous absorption of
NOx and the bibliography for that section gave thirteen perti-
nent references from which several other references of interest
were found. In addition, the supplementary bibliography of
750 references was searched and nearly 100 titles were selected
as applicable.
1.
Mechanism of Absorption of Nitrogen Oxides by Aqueous
Solutions and Chemistry of NO,-HaO Systems
The second source of information was the Air Pollution
Technical Information Center. NAPCA Publication AP-12, Nitrogen
Oxides: An Annotated Bibliography was used. In addition the
output from an APTIC computer search for information on nitrogen
oxides and absorption was furnished by Tom Kitt1eman. About
fifty abstracts of articles of interest were found. Some were
duplicates of those from the first literature source.
The literature concerning NOx-HaO system chemistry and
the mechanism of the reactions involved was reviewed in detail.
It was used in preparing the problem definition for aqueous
sorption (see Technical Note 200-007-01). Much of this litera-
ture is discussed in the review in Technical Note 200-007-02.
Many interesting but not directly applicable references were
not mentioned in the technical notes, although some were con-
sidered in detail. They are listed in part 1 of the supplementary
bibliography at the end of this note.
Descriptions of and Operating Data for Aqueous SorPtion
Processes
2.
The third source of information was the technical
files at Radian. Some twenty references of interest were avail-
able through this source.
The abstracts in this category
in detail. They are listed in part 2 of
bibliography.
were not investigated
the supplementary
The fourth source of information was Chemical Abstracts.
Cumulative indices from 1947 to 1966 were used as well as semi-
annual indices for the period from 1967 to June, 1969. The
biweekly issues from June, 1969, until October, 1970, were
searched using the keyword index at the end of each issue.
Abstracts which seemed useful were copied.
3.
NO~-NO-H~O Gas Phase Reactions and Kinetics Studies
References on homogeneous reaction equilibria in the
gas phase were used in the problem definition for a computer
-2-

-------
Radian Corporation
QSOO SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512.454-95]5
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 511.45".95]5
program which calculates gas phase compositions in the
NO-NOa-HaO system. Additional references were used to verify
resulting calculated equilibrium compositions. These are
discussed in Technical Note 200-007-03a. Other references,
including kinetic studies of both vapor phase and aqueous
phase reactions have not been mentioned previously. These,
and some of the ones used in the problem definition, are listed
in part 3 of the supplemental bibliography.
5.
Measured and Estimated Standard State Thermodvnamic
Properties of Solid Nitrates, Nitrites, Nitrides,
and Hydroxides
These data are discussed in detail in Technical Note
200-007-04a and Technical Note 200-007-3a.
Thermal Analysis and Decomposition of Solid Nitrates
and Nitrites
6.
4.
Physical Properties
Gaseous, Solid, and
Oxides or Oxyacids
and Thermodvnamic Properties of
Aqueous Systems Containing Nitrogen
These references are given detailed consideration
in Technical Note 200-007-06.
This is a large, general category in which many
abstracts were found. Some were useful for contract EHSD 71-5.
Others were not pertinent then, but will be very useful for
later work. Some of the abstracts in this category were further
separated into more specific categories. These categories
were:
Thermodynamics of Electrolyte Solutions
Solubility Data for Hydroxides, Nitrates

and Nitrites
Complex or Ion-Pair Formation Involving
Nitrites, Nitrates, or Hydroxides
Activity Coefficients and Equilibrium
Constants.
These references are listed in part 4 of the supplemental
bibliography.
-3-
-4-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99~8 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - "5-4-9535
1.0
NOx-HaO System Chemistry, Absorption Mechanism,
and General Interest
1.
Anbar, Michael and Henry Taube, "Oxygen Tracer Experiments
on the Reaction of NOa with Water", 1. Am. Chern. Soc. fl,
2993-4 (1955).
2.
Auchapt, Jacqueline M., "Properties and Recent Applications
of Nitrogen Oxides, NO and NOa" (literature survey from
1950 to 1968), Commis. Energ. At., Servo Doc. Ser.
"Bibliogr. ", CEA-BIB-172, 70 p;- (1969). - , -
3.
and Jack Sutton, "Flash
of Azide and Nitrate Ions",
Barat, Francois, Bernard Hickel
Photolysis of Aqueous Solutions
Chern. Commun. 1, 125-6 (1969).
4.
Barat, Francois, L. Gilles, Bernard Hickel, and Jack
Sutton, "Flash Photolysis of the Nitrate Ion in Aqueous
Solution: Excitation at 200 nm", 1. Chern. Soc. ~ 11,
1982-6 (1970).
5.
Bartha, Lajos and Zolt~n G. Szab~
,
Dinitrogen Tetroxide", Magyar K~.
(1957) .
"Hydrolysis of
I
Folyoirat 62, 294-6
6.
Bunton, C. A. and G. Stedman, "Ab,sorption Spectra of Nitrous
Acid in Aqueous Perchloric Acid", 1. Chern. Soc., 2440-4 (1958).
7.
Bunton, C. A., "Exchange of Oxygen Between Nitric Acid
and Water, and Its Relation to the Phenomena of Nitration
and Nitrosation", MJm. Services Chim. ~tat 38 417-25
---'
(1953).
-5-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<18 . AUSTIN, TEXAS 78757 . TELEPHONE 512. "S<4-9535
8.
Bunton, C. A., D. R. Llewellyn, and G. Stedman, "Oxygen
Exchange Between Nitrous Acid and Water", 1. Chern. Soc.,
568-573 (1959).
9.
Bursa, Stanislaw and Jerzy Strasfko, "Preliminary Study
of the Preparation of Chlorine and Ammonium and Sodium
Nitrates from Ammonium and Sodium Chlorides and Nitric
Acid", Przemysl Chern. 38, 225-31 (1959).
10.
C1usius, Klaus and Max Vecchi, "Reactions with Nitrogen16.
VII. Proof of the Nitrate Ion in Liquid Nitrogen Tetroxide",
Helv. Chim. Acta 36, 930-3 (1953).
11.
Daniels, Malcolm and Eric E. Wigg, "Radiation Chemistry
of the Aqueous Nitrate System. I. y-Radiolysis of Dilute
Solutions", 1. Phys. Chern. 71(4), 1024-33 (1967).
12.
Daniels, Malcolm, R. V. Meyers, and E. V. Belardo, "Photo-
chemistry of the Aqueous Nitrate System. I. Excitation in
the 300-mlJ band", 1. Phys. Chern. 11(2), 389-99 (1968).
13.
Ershov, B. G., A. K. Pikaev, G. G. Ryabch1kova, and V. I.
Spitsyn, "Mechanism for the Radiolysis of Dilute Aqueous
Solutions of Nitrates", Dok1. Akad. Nauk SSSR 159(6),
1357-60 (1964).
14.
Franck, H. Heinrich and Wolfgang Schirmer, "Investigation
of the Kinetics of the Oxidation of Nitrogen Tetroxide to
Nitric Acid", 1;. Elektrochem. 54, 254-63 (1950).
15.
K. Ingold, and D. J. Millen, "The
One-Electron Transfer", Nature
Goulden, J. D. S., C.
Ion Na03+: Binding by
165, 565 (1950).
-6-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512. -454.953$
16.
Goulden, J. D. S. and D. J. Millen, "VI. Raman-Spectral
Evidence of the Ionization of Dinitrogen Tetroxide in
Nitric Acid - Nitrosonium Ion, NO+, and Nitrosonium-Nitrogen
Dioxide Ion, NaO/", 1. Chem. Soc., 2620-7 (1950).
17.
Graetzel, M., S. Taniguchi, and A. Henglein, "Pulse
Radiolytic Study of NO-Oxidation and of the Equilibrium
Na03 Yields NO Plus NOa and Its Reverse in Aqueous Solution",
Ber. Bunsenges. Physik. Chern. 74(5), 488-492 (1970).
18.
Gray, P. and A. D. Yoffe, "IX. The Reactions of Dinitrogen
Tetroxide", Chern. Rev. 22., 1069 (1955).
19.
Hughes, Martin N. and H. G. Nicklin, "Action of Dinitrogen
Tetroxide on Sodium Hyponitrite", Chern. Commun. 1,80 (1969).
20.
Klemenc, Alfons, "Nitric Acid.
Chern. 28, 100-9 (1955).
XI.", ~. anorg. allgem.
21.
Lang, Francois Michel, Therese Magdalena, and Jean Claude
Montaigne, "Mechanism of the Formation of Nitrous Acid.
from Nitric Acid and Nitrogen Dioxide", Compt. rend. 237,
714-15 (1953).
22.
Lang, F. M., G. Aunis, and G. Cochin, "The Speed of
Evolution of Nitrous Acid from Aqueous Solutions. I.
Evolution with Air", Bull. 2.££. chim. France, 135-8 (1951).
23.
Lang, F. M., G. Aunis, and G. Cochin, "The Speed of Evolu-
tion of Nitrous Acid from Aqueous Solutions. II. Evolution
in Different Gaseous Atmospheres", Bull. 2.££. chim. France,
398-401 (1951).
-7-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512. <45-4-9535
24.
Lang, F. M. and G. Aunis, "The Rate of Evolution of Nitrous
Acid in Aqueous Solution. III. Evolution in a Hermetically
Sealed Vessel", Bull. soc. chim. France, 481-2 (1952).
25.
Lunge, G. and E. Berl, "Nitrogen Oxides and the Lead Chamber
Process. II. Behavior of a Mixture of Gases, Presumably
NO + NOa, in Concentrated Sulfuric Acid and Sodium Hydroxide
1/5 N", ~. Angew. Chern. 19(19), 857-869 (1906).
26.
Lynn, Scott, D. M. Mason, and W. H. Corcoran, "Ionization
in Solutions of Nitrogen Dioxide in Nitric Acid from Optical-
Absorbance Measurements", 1. Phys. Chern. ~, 238-40 (1955).
27.
Millen, D. J., "III. Raman-Spectral Evidence of the
Ionization of Dinitrogen Trioxide, Dinitrogen Tetroxide,
and Dinitrogen Pentoxide by Sulfuric Acid", ,:!. Chern. Soc.,
2600-6 (1950).
28.
Millen, D. J. and D. Watson, "The Ionization of Dinitrogen
Tetroxide in Nitric Acid. Evidence from Measurements of
Infrared Spectra and Magnetic Susceptibilities", ,:!. Chern.
Soc., 1369-72 (1957).
29.
Pan, L. C., "Sodium Nitrate", Kirk-Othmer Encycl. Chern.
Technol., 2nd Ed. 18, 486-98 (1969).
30.
Pan, L. C., "Sodium Nitrite", Kirk-Othmer EnCycl. Chern.

Technol., 2nd Ed. 18, 498-502 (1969).
31.
Schmid, Hermann and Peter Krenmayr, "Determination of the
Nitrous Acid Equilibrium by a Chemical Method by using
Nitrite Acidium Ion", Monatsh. Chern. 98(2), 423-30 (1967).
32.
Seddos, W. A. and H. C. Sutton, "Radiation Chemistry of
Nitric Oxide Solutions", Trans. Faraday Soc. 59(490), 2323-33
(1963).
-8-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99~8 . AUSTIN, TEXAS 78757 . TELEPHONE 512. 4~.9S35
33.
See1, F., "The Kinetics of Nitrous Acid. I", ~. E1ektrochem.
60, 741-5 (1956).
34.
Stern, Marvin J., Lois Nash Kauder, and W. Spindel,
"Temperature Dependence of the Isotopic Fractionation
of Nitrogen in the NO-N03 -System", ,::!. Chern. Phys. 34,
333-4 (1961).
35.
Suzawa, Toshiro, Mashahiro Honda, Osamu Manabe, and
Hachiro Hiyama, "Decomposition of Nitrous Acid in Aqueous
Solution", ,::!. Chern. Soc. Japan. 58, 744-6 (1955).
36.
Suzawa, Toshiro, "Decomposition of Nitrous Acid in Aqueous
, ,
Solution", Kagaku to !2.&Y2 31, 55-60 (1957).
37.
Tada, Osamu, "Nitric Oxide", Rodo Kagaku 40(5), 185-91
(1964).
38.
Waldorf, Daniel Manning, "Reactions and Equilibriums in the
Nitrogen Oxides-Water System", Univ. Microfilms, Order No.
62-6640, 238 pp.; Dissertation Abstr. 23, 3279-80 (1963).
39.
Waldorf, D. M. and A. L. Babb, '~bsorption Spectrum at
357 m~ in the Nitrogen Oxides-Water System", ,::!. Chern. Phys.
40(6), 1476-7 (1964).
-9-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9'i48 . AUSTIN, TEXAS 78757 . TELEPHONE 512. 45<'.9S)S
2.0
Descriptions of and Operating Data for Aqueous
Absorption Processes
1.
F. Johnstone, "Gas Absorption and
Media", ~. Inst. Chern. Eng. J.. 1,
Andersen, L. B. and H.
Oxidation in Dispersed
135-41 (1955).
2.
At sukawa , Masumi, Yoshihiko Nishimoto and Naoyuki Takahashi,
"Removal of Nitrogen Oxides from Effluent Stack Gases",
Tech. ~., Mitsubishi Heavy Indl(2), 129-35 (1968).
3.
Atroshchenko, V. I. and B. N. Gushchin, "Kinetics of
Absorption of Nitrogen Oxides by Ammonium Carbonate Solu-
tions" , Zh. Prik1. Khim. 39(12), 2627-33 (1966).
4.
Atroshchenko, V. 1. and E. G. Sedashova, "Rate of
of Nitrogen Oxides by Alkali and by Nitric Ac id" ,
Khim. £2, 1143-50 (1952).
Absorption
Zh. Prikl.
5.
Atroshchenko, V. 1. and E. G. Sedashova, "The Rate of
Absorption of Nitrogen Oxides by Alkali and by Nitric
J.. ~. Chern. U.S.S.R. £2, 1207-12 (1952).
Acid",
6.
Atroshchenko, V. I., "Kinetics

Oxides by Alkaline Solutions",
167-80 (1939).
of Absorption of Nitrogen

J.. ~. Chern. U.S.S.R. 12,
7.
Atroshchenko, V. 1. and 1. 1. Litvinenko, "Kinetics of
Solution of Nitrogen Oxides in Aqueous Solutions of Nitric
Acid", Izvest. Vysshykh Ucheb. Zavedenii, Khim. i Khim.
Tekhnol.!i, 71-6 (1958).
-10-

-------
Radian Corporation
BSOO SHOAL CREEK BLVD. . P. O. BOX 99.ca . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 4S04-~5
8.
Baranov, A. V. and A. F. Il'chenko, "Purifying Gases by
Removal of Nitrogen Oxides", U.S.S.R. Patent No. 226,568
(1968).
9.
and T. B. Mal'chikova,
Exhaust Gases", U.S.S.R.
Baranov, A. V., V. L. Pogrebnaya
"Removal of Nitrogen Oxides from
Patent No. 267,603 (1970).
10.
Baranov, A. V. and T. A. Krechetova, "Comparative Evalua-
tion of Methods for Preparation of Nitric Acid from
Nitrogen Oxides. 1. Kinetics of Bubble Cap Absorption",
Trudy Dnepropetrovsk. Khim.-Technol. Inst. ~, 99-109 (1958).
11.
Bartholome, E. and H. Gerstacker, "The Penetration Theory
and its Application in Kinetic Research on the Physical
and Chemical Absorption of a Gas in Liquids", Scuola Azione
1(7), 61-117 (1963-64).
12.
Becker, H. G., "Mechanism of Absorption of Moderately
Soluble Gases in Water", Ind. Eng. Chem. 16(12), 1220-
1224 (1924).
13.
Bol'shakov, A. G., M. A. Miniovich, A. I. Gansh, and
N. E. Mos'pan, "Lowering of the Concentration of Nitrogen
Oxides in Waste Gases of Nitric Acid Systems Functioning
at Atmospheric Pressure", Khim. Prom. 44(8), 630 (1968).
14.
Borok, M. T., "Dependence of the Degree of Absorption of
Nitrogen Dioxide by Water on its Concentration in Gaseous
Mixtures", Zh. Prik1. Khim. 33, 1761-6 (1960).
15,
Brcic, Branko S., Danilo Dobcnik and Ljubo Golic,
Reaction Kinetics of Nitrogen Oxides with Calcium
Monatsh. Chem. 94(6), 1145-1153 (1963).
"The
Oxide" ,
-11-
Radian Corporation
SSOO SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 45<4-9535
16.
Chatfield, Harry E. and Ray M. Ingels, "Gas Absorption
Equipment", Air Pollution Engineering Manual, PHS-Pub-
999-AP-40, 210-232 (1967).
17.
Ento, Akira, Takeshige Shimizu, Masakatsu Murada
Mima, "Elimination of Nitrogen Oxides", Japanese
No. 70 11,202 (1970).
and Kozo
Patent
18.
Fukui, Syoze, "Hygienic Chemical Studies on Public Nuisance
by Injurious Gases. XI. Fundamental Studies on Removal
of Nitrogen Oxides from Gases by the Treatment with
Ammonia (No.2). On the Mechanism of Reaction between
Nitrogen Oxides and Ammonia", l.. !!1g. Chem. 13(1), 22-28
(1967) .
19.
Fukui, Syozo, "Examples of Gas Injury by Hydrofluroic Acid
and Nitrogen Dioxide, and Removal of the Gases from Waste
Gas", l.. Pollution Control ,£(7), 481-486 (1966).
20.
Ganz, S. N. and 1. E. Kuznetsov, "The Design of
Flow Towers with Centrifugal Sprayers", Intern.
2(4),653-656 (1965).
Open Equal-

Chem. Eng.
21.
Ganz, S. N., A. M. Vashkevich and L. 1. Leikin, "Absorption
of NOa by Caustic Solutions under Highly Turbulent Condi-
tions", Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim.
Tekhnol ~(3), 434-7 (1966).
22.
Ganz, S. N., R. I. Braginskaya, N. I. Gogodetskiy and
M. A. Lokshin, "Absorption of Nitrogen Oxides with Milk
of Lime in Mechanical Absorbers of Pilot Installations",
Izv. Vysshikh Uchebn. Zavedenii Khim. i Khim. Tekhnol.
2(1), 155-159 (1962).
-12-

-------
Radian Corporation
6500 SHOAL CREEK BLVD. . P. O. BOX 99"8 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - "51.9535
23.
Ganz, S. N. and M. A. Lokshin, "Study of the Rate of Absorp-
tion in Horizontal Mechanical Absorbers by the Method of
Similitude", Zh. Prikl. Khim. 32, 1477-83 (1959).
24.
Ganz, S. N., "Intensification of the Process of Oxidation
of Nitric Oxide in a Highly Turbulent Condition", Zh. Prikl.
!h!!!l. 30, 689-97 (1957).
25.
Ganz, S. N., A.!. Luk'yanitsa and L. A. Bel 'china, "Combined
Production of Iron-Nitrogen Fertilizers and Purification of
Gases from Nitrogen Oxides", Zh. Prikl. Khim. 12(1), 1609-
11 (1964).
26.
Ganz, S. N. and S. 1. Kapturova, "Kinetics of Nitric Acid
Formation in a Rapidly Revolving Mechanical Absorber",
Zh. Prikl. Khim. ~, 585-96 (1955).
27.
Ganz, S. N., M. A. Lokshin and S. 1. Kapturova, "Kinetics
of Nitric Acid Formation in Rapidly Revolving Mechanical
Absorbers. II. Coefficients of Absorption of Nitrogen
Oxides by Nitric Acid in Mechanical Absorbers", Zh. Prikl.
Khim. 28, 831-40 (1955).
28.
Ganz, S. N., "Increased Removal of Nitrogen Oxides from
Exit Gases by Alkaline Absorption", Izv. Vysshikh Uchebn.
Zavedenii, Khim. i Khim. TekhnoL~, 998-1002 (1961).
29.
Ganz, S. N., "Effect of Hydrodynamic Condition on the Rate
of Absorption of Nitrogen Oxides by Solutions of Calcium
Hydroxide in a Mechanical Absorber on a Semiplant Scale.
Zh. Prikl. Khim. 30, 1311-20 (1957).
I "
. ,
-13-
Radian Corporation
8SOOSHOAl tREEK BLVD. . P. O. BOX 99"8 . AUSTIN, TEXAS 18157 . TelEPHONE 512 - "S04.953S
30.
Ganz, S. N. and M. A. Lokshin, "Effect of Basic Physio-
chemical Factors on the Rate of Absorption of Nitrogen
Oxides by Solutions of Ca(OH)a in a Rapidly Revolving
Absorber. 11.", Zh. Prikl. Khim. 30, 1525-35 (1957).
31.
E. Kuznetsov, "Alkaline Absorption of
in a Hollow Equiflow Tower with a
Sprayer. II.", Tr. Dnepropetr. Khim.-
17-26 (1963).
Ganz, S. N. and I.
Oxides of Nitrogen
Centrifugal Volume
Tekhnol. Inst. ]&,
32.
E. Kuznetsov, "Rate of Absorption of
Hollow Columns Provided with a Centri-
Prikl. Khim. 36(8), 1686-92 (1963).
Ganz, S. N. and I.
Nitrogen Oxides in
fugal Sprayer", Zh.
33.
Ghosh and D. Roy, "Nitrogen Oxides
of Packed Towers", Technology 1(3),
Ghosh, S. R., S. C.
Absorption. Design
149-59 (1965).
34.
Gorfunkel, V. E. and ¥a. I. Kil'man, "Preparation of
Solutions of Calcium Nitrite-Nitrate by Absorption of
Nitrogen Oxides from Nitrose Gas Tailing with Milk of
Lime. 11.", Trudy Gosudarst. Nauch.-Issledovatel. i
Proekt. Inst. Azot. Prom. 1,261-82 (1956).
35.
Gushchin, B. N. and V. 1. Stroshchenko, "Relative Reaction
Rates for Nitrogen Oxide with Ammonium Carbonate Compounds
in Solution and in the Gaseous Phase.", Izv. Vyssh. Uchebn.
Zavedenii, Khim. i Khim. Tekhnol. 10(3),314-18 (1967).
36.
Hardison, Leslie C., "Nitric Acid", U.S. Patent No.

3,473,893 (1969).
-14-

-------
Radian Corporation
8500 SHOAL CREEK 8lVD. . P.O.BOX9948 . AUSTIN, TEXA578757 . TElEPHOHE512-45-4-953S
37.
Janiczek, Witold, Henryk Ryszawy, "Absorption of Dilute Hot
Nitrogen Oxides", Pol. Patent No. 55,125 (1968).
38.
Kabarukhina, A. A.,
and Ammonia Water",
na-Donu Gos. Univ.,
"Absorption of Waste Gases by Ammonia
Mater. Nauch. Konf. Aspir., Rostov.-
7th 8th, 221-4 (1967).
39.
Kadlas, Pravdomil and Stanislav Vesely, "A Sieve-Plate
Column used in the Absorption of Nitrogen Dioxide", Chern.
prumysl 10, No. 11, 565-71 (1960).
40.
Kenkyu, Taiki Osen, "Reaction of
Ammonia and Ammonium Hydroxide,"
lution 1(1), 98-100 (1967).
Nitrogen Oxides with

:!.. Japan Soc. Air Pol-
41.
King, R. W. and J. C. Fielding, "Graphical
for Nitric Acid Absorption Towers", Trans.
Engrs. 38, No.2, 71-83 (1960).
Design Method
Inst. Chern.
42.
Kishinevskii,

of the Height

by a Chemical
M. Kh. and L. A. Mochalova, "Determination
of Packing in an Absorption Process Accompanied
Reaction", Zh. Prikl. Khim. 30, 1386-90 (1957).
43.
Kishirievskii, M. Kh., "Contemporary Theoretical Studies of
Absorption Complicated by Chemical Reactions", Teor. Osn.
Khim. Tekhnol. 1(6), 759-75 (1967).
44.
Kopita, R. and T. G. Gleason, '~et Scrubbing of Boiler Flue

Gas", Chern. Eng. Progr. 64(1), 74-8 (1968).
45.
Krustev, 1. and L. Boyadjiev, "Inversion of Sodium Nitrite
by Nitric Acid in a Vibrating Layer", Compt. Rend. Acad.
Bulgare Sci. 16(4),381-4 (1963).
-15-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AU~TlN, TEXAS 78757 . TElEPHONE 512. "5-4.'1535
46.
Kuz'minykh, I. N., E. P. Aigina and M.
"Absorption of Nitrogen Oxides by Soda
Khim. Prom. ~, 26-7 (1953).
D. Babushkina,
and Lime Solutions",
47.
Kuz'minykh, I. N., A. I. Rodionov and Yu. S. Mishchenko,
"Absorption of Nitric Oxide from Nitrogenous Exhaust Gases
in Large-Scale Plate Columns", Tr. Mosk. Khim.-Tekhnol.
Inst. 33, 43-7 (1961).
48.
Manakin, G. A., "Comparison of Experimental Data on Absorp-
tion of Nitrogen Oxides by Water and Acids in Various Types
of Apparatus. II. ", Nauchn. Zap. Odessk. Politekhn. Inst.
40, 56-61 (1962).
49.
Manvelyan, M. G., G. O. Grigoryan, S. A. Gazaryan, G. S.
Papyan and R. L. Mirumyan, "Simultaneous Collection of
Low-Concentration Sulfur Dioxide and Nitrogen Oxide Gases
with Alkalies and Carbonates. Part III. Obtaining Gypsum
in a Large-Scale Laboratory Arrangement", Izv. Akad. Nauk
Arm. SSR Khim. Nauk 11(5), 313-323 (1959).
50.
Miniovich, M. A., "Obtaining Sodium Nitrite from Soda and
Dilute and Concentrated Nitric Oxide Gases", :!.. Chern. Ind.
14, 108-12 (1937).
51.
Mirev, D., L. Boyadzhiev and Khr. Balarev, "Absorption in
a Vibrating Layer. I. Absorption of CO2 in Solutions of
KOH and K2C03", Izv. Inst. Obshcha Neorg. Khim., Org.
Khim., Bulgar Akad. Nauk~, 47-60 (1961).
52.
Mirev, D., C. Balarew, L. Bojadziev and D. Lambiev,"III, Absorp-
tion of Nitrogen Oxides in the Vibrating Layer of Sodium
Carbonate Solutions", Compo Rend. Acad. Bulgare ScL 14(4),
345-348 (1961).
-16-

-------
Radian Corporation
6500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 7B1S1 . TELEPHONE 512. 4S04.9SJS
53.
Mitsubishi Heavy Industries, Ltd. and Ube Industries,
"Removal of Nitrogen Oxides from Waste Gases", French
No. 1,578,561 (1969).
Ltd. ,
Patent
54.
Mukhlenov, I. P., "Kinetics of Heat and Mass Transfer in a
Foam Layer. 1.", Zh. Prik1. Khim. 31, 1342-8 (1958).
55.
Nakai, Hideichi, Kazuo Nishiwaki and Toru Daguchi, "Refin-
ing Nitrous Oxide Containing Nitrogen Dioxide, Nitrogen
Tetroxide, and Carbon Dioxide", Japanese Patent No. 70
13,446 (1970).
56.
Nysing, R. A. T. O. and H. Kramers, "Absorption of Carbon
Dioxide in Carbonate-Bicarbonate Buffer So]utions in a
Wetted-Wall Column", Chern. Reaction Eng., Meeting Europ.
Federation Chern. Eng., 12th, Amsterdam, 81-9 (1957).
57.
Pauling, Harry, "Method for the Complete Removal of Nitrogen
Oxides", Dutch Patent No. 6,606,577 (1966).
58.
Pauling, Harry, "Removal of Nitrogen Oxides", Italian
Patent No. 683,704 (1965).
59.
Pawlikowski, Stefan, Stanislaw Aniol and Stanislaw Bistron,
"Experiments of NH3 Absorption of N Oxides in the Nozzle
Systems on Semitechnical Scale. II. Absorption by a
Mixture of Ammonium Carbonate and Bicarbonate Solutions",
Przemysl Chern. 43(2), 80-3 (1964).
60.
Pawlikowski, Stefan, ~canislaw Aniol and Stanislaw
"Ammonia Sorption of Nitrogen Oxides", Zesz. Nauk.
Slask., Chern. 29, 41-53 (1966).
Bistron,
Politech.
-17-
Radian Corporation
BSOOSHOAL CREEK BLVD. . P. Q. BOX 9IH8 . AUSTIN, TEXAS 78757 . TELEPHONE 5.2.45-4-95)5
61.
Peters, Max S., Absorption of Nitrogen Oxides fram Waste
Gases, U. S. Atamic Energy Corom. TID-7513 (Pt. 1),
pp. 306-15., 1956.
62.
Pozin, M. E., B. A. Kopy1ev and G. V. Be1'chenko, "Absorp-
tion of Nitrogen Oxides by Milk of Lime during Bubbling
and Foaming Conditions", Izv. Vyssh. Uchebn. Zavedenii,
Khim. i Khim. Tekhnol. ~, No.1, 102-7 (1961).
63.
Pozin, M. E., B. A. Kopy1ev and G. V. Bel'chenko, "The
Absorption of Nitrogen Oxides in Soda Solutions in the
Penn Apparatus for the Production of Sodium Nitrate",
Trudy Leningrad. Tekno1. Inst. im. Lensoveta 36, 120-32
(1956).
64.
Pozin, M. E., B. A. Kopy1ev, G. V. Be1'chenko and
L. Ya. Tereshchenko, "Rate and Mechanism of Nitric Acid
Formation in the Foam Process", Nauch. Doklady Vysshei
Shko1y, Khim. i Khim. Tekhno1., 794-8 (1958).
65.
Pozin, M. E., G. V. Bel 'chenko
"Absorption of Nitrogen Oxides
stituted Ammonium Phosphate",
Khirn. Tekhno1. ~, 174 (1969).
and N. N. Treushchenko,
by Solutions of Disub-
Massoobmennye ProtseSSY
66.
Pozin, M. E., G. V. Bel'chenko and N. N. Treushchenko,
"Absorption of Nitrogen Oxides by Ammonium Nitrate Solu-
tions. III", Massoobrnennye Protsessy Khim. Tekhno1. ~,
174-6 (1969).
67.
"Theory of Chemical Absorption. I. The
Kinetics of Chemical Absorption at High
Reaction", :!.. ~. Chern. U.S.S.R. 19,
Pozin, M. E.,
Mechanism and
Velocities of
1201-13 (1946).
-18-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99-i8 . AUSTIN, TEXAS 78157 . TELEPHONE 512. oi54.9535
68.
Quanquin, Bernard and Honore Trimbach, "Recovery of Nitrogen
Oxides", French Patent No. 1,391,087 (1965).
69.
Radhakrishna, G. N., ~ Study of the
Oxides from Air Polluting Exhausts,
University, Indiana, 1961, 205 pp.
Removal of Nitrogen
Ph.D. Thesis, Purdue
70.
Rodionov, A. I., Yu. S. Mishchenko, A. P. Klimov and
E. A. Bogdanov, "Absorption of Nitrogen Oxides with a
Suspension of Limestone", Tr. Mosk. Khim. -Tekhno1. Inst.
40, 74-7 (1963).
71.
Rodionov, A.!., "Absorption of Nitrogen Oxides by Water
in Sieve-Plate Columns", Izv. Vyssh. Uchebn. Zavedenii,
Khim. i Khim. Tekhnol. ~, 806-10 (1961).
72.
Rudorfer, Hermann and Karl Kremser, "Rec lamat ion of Nitrogen
in Nitric Acid Manufacture", Austrian Patent No. 184,922
(1956).
73.
Schmitt, Karl, Wilhelm Ester, Hans Heumann and Harry Pauling,
"Nitrogen Oxide Conversion", U. S. Patent No. 3,453,071
(1969).
74.
Sikora, Henryk, "Achievements of the P. Finder Nitrogen
Works in the Field of Alkaline Absorption during the
Production of Nitric Acid", Chemik 23(1), 10 (1970).
75.
Skriv~nek, Jaroslav, "Absorption of Nitrogen Oxide Gases
by Sodium Carbonate Solution with Simultaneous Oxidation
by Oxygen Gas", Chern. primysl 1, 113-18 (1957).
-19-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512. "'5".95]5
76.
Straschill, Max, "The Reprocessing of Nitrogen Oxide-Con-
taining Waste Gases in Pickling Plants", Metall-Reinigung
Vorbehandlung 12(11), 210-11 (1963).
77.
Tereshchenko, L. Ya, V. P. Panov, M. E. Pozin and V. V. Zubov,
"Analytical Method for Calculating the Interaction of Nitrogen
Oxides with Nitric Acid Solutions", Zh. Prik1. Khim. (Leningrad)
41(10,2109-13 (1968).
78.
Tereshchenko, L. Ya, M. B. Pozina and N. N. Bashlacheva,
"Reaction of Nitrogen Oxides with Ammonium Nitrate Solutions",
Zh. Prikl. Khim. (Leningrad) 42(12), 2678-83 (1969).
79.
Tereshchenko, L. Ya, A. N. Serov, V. V. Zubov and I. I.
Obrekhov, "Equilibrium Between Nitrogen Oxides and Solutions
of Nitric and Phosphoric Acids", Zh. Prik1. Khim. (Lenin-
grad) 42(2), 246-51 (1969).
80.
Teske, W., "Emissions and Abatement of Oxides of Nitrogen
in Nitric Acid Manufacture", Chern. Eng. 221,263-266 (1968).
81.
Theobald, H., "Nitric Acid-Nitrous Gases Equilibrium",
Chem.-lgg.-Tech. 40(15), 763-5 (1968).
82.
Tseitlin, A. N. and Yu. V. Lender, "Absorption of Nitric
Oxides on a Sieve Plate", Ukr. Khim. Zh. 33(3), 324-7 (1967).
83.
Van Slyke, W. J., Comparison of Two Condenser-Absorber
Designs for Nitrogen Oxide Recovery, U. S. Atomic Energy
Corom. BNWL-53, 1965, 10 pp.
-20-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX""8 . AUSTIN, TEXAS 79751 . TELEPHONE Sil. 4S4.~J5
84.
Varlamov, M. L., G. A. Manakin, L. S. Zbrozhek and Ya. I.
Starosel'skii, "Study of the Ammonia Method for the Removal
of Nitrogen Oxides from Waste Gases from the Towers of the
Nitroso-Sulfuric Acid System", Zh. Prik1. Khim. 36(11),
2335-43 (1963).
85.
Varlamov, M. L. and 1. V. Kordon, "Optimization of the
Process of Trapping Low Concentrations of Nitrogen Oxides
by the Ammonia Method in a Foam (Absorption) Column",
Zavodsk. Lab. 32(3), 342-6 (1966).
86.
Varlamov, M. L. and O. M. Drobysheva, "Absorption of
Nitrogen Oxides in Low Concentrations by Sodium Carbonate
Solutions in an Apparatus of the Venturi-Tube Type",
Izv. Vyssh. Uchebn. Zavedenii, Khim. i Khim. Tekhno1 2,
No.1, 146-50 (1960).
87.
Varlamov, M. L. and 1. V. Kordon, "Study of the Ammonia
Method for Purifying Exhaust Gases of Nitrogen Oxides by
Using Multifactorial Experiment Planning", Dok1., Vses.
Soveshch. Plan. Eksp., 1st, Moscow, 251-60 (1964).
88.
Var, lamov M. L., G. A. Manakin, Ya. I. Starosel'skiy and
L. S. Zbrozhek, "Investigation of the Ammonia Method of
Removing Nitrogen Oxides from the Exhaust Gases of a
Nitrogen-Oxide Nitric-Acid Tower System. I", Nauchn.
Zap. Odessk. Politekhn. Inst. 40, 24-33 (1962).
89.
Vetrocoke Societ~ per azioni, "Absorption of Nitrogen
Oxides from the Vent Gas from Nitric Acid-Plant Absorption
Systems", Italian Patent No. 513,953 (1955).
-21-
Radian Corporation
SSOO SHOAL CREEK BLVD. . P. O. BOX 99<1:8 . AUSTIN, TEXAS 7!7S7 . TELEPHONE 512 - 4S4.9S3S
90.
A. P. Zasorin, V. N. By1inkin, V. 1. Atroshchenko, "Kinetics
of Absorption of Concentrated Nitrogen Oxides by Nitric
Acid Solutions", Vestn. Khar'kov. Politekh. Inst. (13),
7-12 (1966).
91.
Zasorin, A. P., V. N. By1inkin and V. I. Atroshchenko,
"Kinetics of the Absorption of Concentrated Nitrogen
Oxides under Pressure", Massoobmennye Protessy Khim.
Tekhnol~, 178-80 (1969).
92.
Zhavoronkov, N. M., S. I. Babkov, Yu. M. Martynov and
G. N. Chernykh, "The Study of Absorption of Nitrogen
Oxides by Alkaline Solutions in Columns with Filler
Bodies", Khim. Prom., 419-23 (1954).
93.
Zhdanov, V. V., "Calculation of the Percentage Absorption
of Oxides of Nitrogen from Data Obtained in Chemico-
Analytical Control of Production", :!. Chern. Ind. 12.,
No. 10, 35-8 (1938).
-22-

-------
Radian Corporation
S500 SHOAL CREEK BLVD. . P. O. BOX -1948 . AUSTIN, TEXAS 18757 . TELEPHONE 512. 4S4-9S1S
3.0
NO-NOa-HaO Gas Phase Reactions and Kinetic Studies
1.
Abel, E., "The Probable Mechanism of the Oxidation of
Nitrous Gases in Aqueous Systems by Oxygen", Monatsh. 83,
933-8 (1952).
2.
Abel E. and J. Prois1, "The Equilibrium between Nitrogen
Monoxide, Dioxide and Trioxide", 1;. E1ektrochem. 35, 712-5
(1929).
3.
Abel,
Acid.
Oxide
and S. Babad, "Kinetics of Nitrous
of the Nitrous Acid-Nitric Acid-Nitric
Physik. Chern. 136, 419-29 (1928).
E., H. Schmid
V. Kinetics
Reaction", 1;.
4.
Ashmore, P. G. and B. J. Tyler, "The Formation and Thermo-
dynamic Properties of Nitrous Acid Vapour",.J. Chern. Soc. 61,
1017-21 (1961).
5.
Asperger, K., "Calculation of Nitrogen Oxide Absorption
Plants. Theoretical Bases for the Calculation of the Rate
of NO Oxidation and NaO. AbsoFption", Chern. Tech. 14(10),
582-4 (1962).
6.
Asquith, P. L. and Brian J. Tyler, "Stability of Gaseous
Nitrous Acid",.J. Chern. Soc.] (12),744-5 (1970).
7.
Atroshchenko, V. 1., A. V. Shapka, A. N. Tseit1in, "Oxida-
tion of Nitric Oxide by Oxygen in Nitric Acid Solutions",
Massoobmennye Protsessy Khim. Tekhno1. ~, 180-2 (1969).
8.
Beattie, 1. R. and S. W'. Bell, "Dinitrogen Trioxide. 1.
Stability in the Gaseous Phase", .J. Chern. Soc., 1681-6
(1957) .
-23-
Radian Corporation
6SOO SHOAL CREEK BlVD. . P. O. BOX 9'l-iB . AUSTIN, TEXAS -,p;pj1 . TELEPHONE 512.45-4-9535
9.
R. and A. J. Vosper, "Dinitrogen Trioxide. IV.
of the Vapor in Equilibrium with Liquid Mixtures
Dioxide and Nitric Oxide", .:1.. Chern. Soc., 2106-9
Beattie, 1.
Composition
of Nitrogen
(1961).
10.
Blend, Harvey, Ultrasonic Investigation of the Dissociation
Kinetics of Dinitrogen Tetroxide, U. S. Dept. Com., Office
Tech. Serv., AD 283,964,149 pp. (1962).
11.
Cathala, Joseph and Guy Weinreich, "Direct Formation of
Nitric Acid in the Vapor Phase", Compt. rend. 244, 1502-5
(1957) .
12.
Constantin, Anisoara, "Design of a Column for the Production
of Dilute Nitric Acid", Rev. chim. 1, 327-36 (1956).
13.
Coon, E. D., William E. Streib, Joseph R. Siefker, and
Cortes L. Perry, Dissociation of Nitrogen Tetroxide and
Nitrogen Dioxide, U. S. Dept. Com., Office Tech. Serv.,
AD 220,479, 9 pp. (1959).
14.
Corcoran, W. H., "Mechanism in the Oxidation of Parts-Per-
Million Quantities of Nitric Oxide", Ind. Eng. Chern., Fundam.
1(1), 184 (1968).
15.
Ellis, W. R. and R. C. Murray, "The Thermal Decomposition of
Anhydrous Nitric Acid Vapor", J.. AJ:1!1.1. Chern. ;1, 318-22 (1953).
16.
Frejacques, Claude, "Kinetics of the Vapor-Phase Decomposi-
tion of Nitric Acid", Compt. rend. 232, 2206-7 (1951).
17.
Goyer, Guy G., "The Formation of Nitric Acid Mists", .:1..
Colloid Sci. 18(7),616-24 (1963).
-24-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. Q. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 454-9535
18.
Guggenheim, E. A., "Dimerization of Gaseous Nitric Oxide",
Mol. Phys. 11(4),403 (1966).
19.
Harris, L. and K. L. Churney, "Evaluation of the Equilibrium
Constant for the Na04(g)=2N02(g) Reaction at 298.16 K. from
Light-Transmission Measurements", 1. Chem. Phys. 47 (5),
1703-09 (1967).
20.
Hisatsune, I. C., "Estimation of the Isomerization Rate of
Nitrous Acid", 1. Phys. Chem. ll(l), 269-71 (1968).
21.
Ishida, Takanobu and William Spindel, "Chemical and Isotopic
Equilibriums Involving Liquid and Gaseous Nitrogen Oxides",
1. Chem. Eng. Data }2(1), 107-14 (1970).
22.
Ivanov, V. N., "Kinetics of Nitric Oxide Dissociation Studied
by Absorption Spectroscopy", Izv. Akad. Nauk SSSR, Ser. Fiz.,
11(1), 35-37 (1963).
23.
Johnston, Harold S., "Photoelectric Methods for Following
Fast Gas-Phase Reactions", Discussions Faraday Soc. 17,
14-21 (1954).
24.
Johnston, Harold S., Louise Foering, and R. J. Thompson,
"Kinetics of the Thermal Decomposition of Nitric Acid Vapor.
II. Mechanism", d. Phys. Chem. 2.1, 390-5 (1953).
25.
Johnston, Harold S., Louise Foering, Yu-Sheng Tao, and G. H.
Messerly, "The Kinetics of the Thermal Decomposition of
Nitric Acid Vapor", d. Am. Chem. Soc. 73, 2319-21 (1951).
26.
Karavev, M. M. and I. P. Kirillov, "Synthesis of
Acid in the Vapor Phase", Nauch. Dokladv Vvsshei
Khim. i Khim. Technol. 1, 197-201 (1959).
Nitric
Shkoly,
-25-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - <154.9535
27.
Karavaev, M. M. and G. A. Skvortsov, "Equilibrium in the
Formation of Nitrous Acid in the Gaseous Phase", Zh. Fiz.
Khim. 36, 1072-4 (1962).
28.
Klemenc, A., "Zur Kenntnis der Salpetersaure X.", Monatash.
Chem. 83, 334-345 (1952).
29.
Mayer, S. E., "Estimation of Activation Energies for Nitrous
Oxide, Carbon Dioxide, Nitric Oxide, Oxygen, and Nitrogen
Reactions by a Bond-Energy Method", d. Phys. Chem. 11(11),
3941-6 (1969).
30.
Melvin, Eugene H. and Oliver R. Wulf, " A Spectrophotometric
Study of the Equilibria in the Gaseous System: Nitric Oxide,
Nitrogen Dioxide and Water", Proc. of the Fifth Summer
Conference (at MIT) on Spectroscopy and Applications,
John Wiley and Sons, Inc., N. Y., 1938.
31.
Mishina, L. V., G. Z. Serebryanyi, and S. A. Shalygin,
"Calculation of the Equilibrium Constant for the Reaction
of N204 ~ 2N02 Based on the Molecular Constants of the
Components", Vestsi Akad. Navuk Belarus. SSR, Ser. Fiz.-
Tekh. Navuk~, 23-8 (1967).
32.
Morecroft,. M. J. and J. H. Thomas, "The Reaction between
Nitric Oxide and Oxygen", 1. Phys. Chem. 21(5), 1543-4 (1967).
33.
Mucskai, Laszlo, "The Process of Oxidation of Nitrogen
Oxides in the Presence of Equimolecular NO and N02 Absorp-
tion in the Dilute Tail Gases of Nitric-Acid Plants",
~. Kem. Fo1yoirat &](11),488-490 (1961).
-26-

-------
Radian Corporation
asoo SHOAL CREEK BLVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - -4s-t.95JS
:A.
Nesterenko, V. B. and B. E. Tverkovkin, "Kinetic Equations
of Chemical Reactions in Flow of the NaO. ;t 2NOa;t 2NO+O~ System",
Vestsi Akad. Navuk Be1arusk. SSR, Ser. Fiz. -Tekhn. Navuk 1
34-42 (1966).
":5.
Nesterenko, V. B. and B. E. Tverkovkin, "Kinetics of Chemical
Reactions of the System NaO. i! 2NOa i! 2NO + Oa in Flow",
Vestsi Akad. Navuk Be1arusk. SSR, Ser. Fiz.-Tekhn. Navuk 1,
12-19 (1966).
:,6.
Nesterenko, V. B., B. E. Tverkovkin, and A. B. Verzhinskaya,
"Heat Transfer in the Chemically Reacting 2NOa ;t 2NO +
Oa System with Consideration for the Kinetics of the Chemical
Reaction", Vestsi Akad. Navuk Belarus. SSR, Ser. Fiz.-Tekhn.
Navuk 1, 50-5 (1967).
':7 .
Petrov, Yu. I. and M. M. Karavaev, "Equilibrium in the Vapor-
Phase Synthesis of Nitric Acid", Izvest. Vysshikh Ucheb.
Zavedenii, Khim. i Khim. Tekhno1. 1, 119-22 (1958).
:,8.
Petrov, Yu. 1. and 1. P. Kiri11ov, "Equilibrium in the
Reaction of Oxides of Nitrogen with Steam", Izv. Vysshikh
Uchebn. Zavedenii, Khim. i Khim. Tekhno1. ~(2), 265-74 (1965).
J9.
Petrov, Yu. I. and I. P. Kiri11ov, "Reaction Rate of Nitrogen
Oxides with Water Vapor", Izv. Vysshikh Ucheb. Zaved., Khim.
Khim. Tekhno1. 10(4),428-33 (1967).
,\1) .
Schmid, Gerhard and Guenter Baehr, "Velocity of Formation of
Nitrous Acid from Nitric Oxide and Nitric Acid at Higher
Acid Concentration", Z. Physik. Chern. 41(1/2), 8-25 (1964).
-27-
Radian Corporation
esoo SHOAL CREEK BLVD. . P. O. BOX 9'i-49 . AUSTIN, TEXAS 7'1157 . TELEPHONE 512 - "~-95]S
41.
Seshadri, D. N., Dabir S. Viswanath, and Narasing R. Ku1oor,
"Thermodynamic Properties of the System NaO. ;t 2NOa i! 2NO
+ Oa", Am. Inst. Chern. Eng. .:!. 16(3), 420-5 (1970).
42.
Sharma, H. D., R. E. Jervis,
change Reactions in Nitrogen
923-33 (1970).
and K. Y. Wong, "Isotopic Ex-
Oxides", .:!. Phys. Chern. 74(4),
43.
Sheind1in, A. E., N. I. Gorbunova,
"Enthalpy of the Chemical Reacting
Oa", Dokl. Akad. Nauk SSSR 186(4),
and Yu. A. Sarumov,
System NaO. ;t 2NOa
817-19 (1969).
;t 2NO +
44.
Sole, M. and V. Pour, "Thermodynamic Stability of NaOs in
the Gas Phase", Collect. Czech. Chern. Commun. 32(8), 3031-4
1967.
45.
Svehla, Roger A. and Richard S. Brokaw, Thermodynamic and
Transport Properties for the ~ ~ 2NOn ~ 2NO + O~ System,
NASA Accession No. N66-18171, Rept. No. NASA-TN-D-3327,
58 pp. (1966).
46. Treacy,
 tion of
 20 Mm",
47. Vosper,
 the Gas
J. C. and F. Daniels, "Kinetic Study of the Oxida-
Nitric Oxide with Oxygen in the Pressure Range 1 to
1. Chern. Soc. (Amer.) lZ(8), 2033-36 (1955).
Alan J., "Dissociation of Dinitrogen Tetroxide in
Phase", 1. Chern. Soc. h.~, 625-7 (1970).
48.
Waldorf, D. M. and A. L. Babb, "Vapor-Phase Equilibrium of
NO, NOe, HaO, and HNOa", 1. Chern. Phys. 39(2),432-5 (1963).
49.
Waldorf, D.M. and A. L. Babb, "Vapor-Phase Equilibrium of NO,
NOa, HaO, and HNOa" , 1. Chern. Phys. 40(4), 1165 (1964).
-28-

-------
Radian Corporation
8500 SHOAL CREEK 8LVD. . P. O. BOX 9'i~e . AUSTIN. TEXAS 78757 . TELEPHONE 512. ..S4.9S35
50.
Wayne, Lowell G. and Don M. Yost, "Kinetics of the Rapid
Gas-Phase Reaction between NO, N02, and H20", 1. Chem. Phys.
19, 41-7 (1951).
51.
Wayne, Lowell G. and Don M. Yost, "Rate of the Rapid Gas-
Phase Reaction between Nitric Oxide, Nitrogen Dioxide, and
Water", 1:.:.. Chem. Phys. 18, 767-8 (1950).
52.
Westenberg, Arthur A. and Newman DeHaas, "Atom-Molecule
Kinetics using E.S.R. Detection. V. Results for Atomic
Oxygen-Carbonyl Sulfide, Atomic Oxygen-Carbon Disulfide,
Atomic Oxygen-Nitrogen Dioxide, and Atomic Hydrogen-Ethylene",
1. Chem. Phys. 50(2), 707-19 (1969).
53.
Wyatt, P. A. H., "Vapor-Phase Reactions and the Duhem-
Margules Equation (with some reference to nitric acid)",
Trans. Faraday Soc. 50, 352-7 (1954).
54.
Yasumichi, Oishi, "The Oxidation Reaction by Nitric Acid.
V. Influence of Chloride Ion on the Decomposition Velocity
of Nitrous Acid", 1. Chem. Soc. Japan, 54, 749-50 (1951).
55.
Zafonte, Leo, "Kinetic Study of Some Third-Order Reactions
Involving Nitric Oxide", Univ. Microfilms, Order No. 69-5596,
171 pp.; Dissertation Abstr. ], 29(10), 3667-8 (1969).
-29-
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78751 . TELEPHONE 512. <154.9535
4.0
Physical Properties and Thermodynamic Properties of
Gaseous. Solid and Aqueous Systems Involving N Oxides
or Oxyacids
1.
C. C. and D. Sutton, "Ultraviolet Spectra of
Metal Nitrates", :!.. Chem. Soc., ~ 11, 1524-8
Addison,
Anhydrous
(1966).
2.
Addison, C. C., B. J. Hathaway and N. Logan, "Volatile
Copper Nitrate, an Unusual Coordination Complex", :!.. Inorg.
~ Nuclear Chem. ~, 569-71 (1958).
3.
Addison, C. C., B. J. Hathaway and N.
of Anhydrous Nitrato-Iron Complexes",
51-2 (1958).
Logan, "Volatility
Proc. Chem. Soc.,
4.
Addison, C. C. and J. Lewis, "Reactions of Sodium Carbonate
and Sodium Hydroxide with Dinitrogen Tetroxide", :!.. Chem.
Soc., 1319-20 (1953).
5.
Altshuller, A. P., "Entropies of Hydration of Gaseous
Oxy-Anions", :!.. Chern. Phys. 24, 642-3 (1956).
6.
Atroshchenko, V. I., I. V. Sukharevskii and E. I. Kordysh,
"Calculation of the Equilibrium State of Nitrogen Oxides
over Nitric Acid", Trudy Khar'kov. Politekh. Inst. im
y. 1. Lenina 26, Ser. Khim. Tekhnol. £, 35-40 (1959).
7.
Atroshchenko, V. I., V. S. Bagdasaryan and E. I. Perlov,
"Simplified Method for Calculating the Equilibrium Composi-
tion of Nitrogen Oxides over Nitric Acid Solutions",
Arm. Khim. Zh. 11(2), 107-13 (1970).
-30-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512.45<1.9535
8.
Atroshchenko, V. I., V. S. Bagdasaryan and E. I. Perlov,
"Calculation of the Equilibrium Composition of Nitrogen
Oxides over Nitric Acid Solutions", Khim. Prom. (Moscow)
46(6),440-2 (1970).
9.
Audinos, Remy, "Liquid-Vapor Equilibriums in Nitrogen
Dioxide-Nitric Acid-Water Mixtures", .!!. Bo. Acad. Sci.,
Paris, Ser. .!! 22£(15), 1117-20 (1968).
10.
Beattie, 1. R., S. W. Bell and A. J. Vosper, "Dinitrogen
Trioxide. II. Freezing-Point Data in the System Nitrogen
Dioxide-Dinitrogen Trioxide. The Freezing Point of Pure
Dinitrogen Trioxide", .J.. Chern. Soc., 4796-9 (1960).
11.
Bose, Monisha, Nikhilesh Chatterjee and Nemai Das, "Nuclear
Magnetic Resonance in Paramagnetic Nitrates", Proc. Nucl.
Phys. Solid State Phys. ~. Chandigarh, India, Part ].,
432-8 (1964).
12.
Burdick, Charles L. and E. Stanley Freed, "The Equilibrium
between NO, N204, and Aqueous Solutions of HN03", .J.. Am.
Chern. Soc. 43, 518 (1921).
13.
Ch~din, Jean and Robert Vandoni, "Interaction between
Acid and the Nitrate Ion. The (HN03)2.N03-Complex",
~. rend. 227, 1232-4 (1948).
Nitric
14.
Ch~din, Jean
Dissolved in
Compt. rend.
and Suzanne F~n~ant, "Spectra of Nitrates
Nitric Acid. The (HN03) 2 .N03 -Complex"
228, 242-4 (1949).
15.
Ch~din, Jean and Suzanne F~n~ant, "The State of Nitric
Acid when Pure or in Aqueous Solutions", M~m. services
chim. Jtat 33, 117-25 (1947).
-31-
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 4~+9S)5
16.
Ch~din, Jean, Suzanne F~n~ant and Robert Van doni, "Nitric
Acid. I. The Quantitative Composition of Aqueous Solu-
tions of Nitric Acid", M~m. services chim. ~ 34, 289-94
(1948).
17.
Ch~din, Jean and Jean Dhers, "The True Particle Composi-
tion of HN03-HaO Mixtures and its Relation to Some Thermo-
chemical Data", M~m. services chim. etat 38, 381-7 (1953).
18.
Ch4din, Jean, "Thermodynamic Results Concerning HN03-H20
Mixtures", M4m. services chim. etat 38, 389-90 (1953).
19.
Chernyshev, A. K., "Diagrams for the Determination of the
Physical Properties of Nitric Acid", Vestn. Tekhn. 1. Ekon.
Inform. Nauchn.-Issled. Tekhn.-Ekon. Issled. Gos. Kom.
Khim. 1. Neft. Prom. pri Gosplane SSSR~, 13-15 (1963).
20.
Coon, E. D., "The Heat of Vaporization and of
of Nitrogen Tetroxide", Proc. ~. Dakota Acad.
46-8 (1953).
Dissociation
Sci. L
21.
Efimov, A. N., M. 1. Zhikharev and Yu. P. Zhirnov, "Effect
of Nitrates on the Composition of the Vapor Phase over
Aqueous Nitric Acid Solutions", Treat. Storage High-Level
Radioactive Wastes, Proc. ~., Vienna, 133-9 (1962).
22.
Ermene, E. D., "Design Data for Oxides of Nitrogen", Chern.

Eng. .2&., No.4, 139-42 (1959).
23.
Fan, Stephen S. T. and David M. Mason, "Properties of the
System N204 i! 2N02 i! 2NO + O2'', .J.. Chern. Eng. Data L,
No.2, 183-6 (1962).
-32-

-------
Radian Corporation
asoo SHOAL CREEK BlVD. . P. Q. BOX 99048 . AUSTIN, TEXAS 78757 . TELEPHONE ~12. 45-4.95]5
24.
Filippov, V. K., Chih T'i and M.
the Vapor in a Nitric Acid-Water
(Leningrad) 42(4), 937-9 (1969).
A. Yakimov, "Ideality of

System", Zh. Prik1. Khim.
25.
K., Chi T'i and M. A. Yakimov, "Heterogeneous
of Monovalent Metal Nitrate-Nitric Acid-Water
Neorg. Khim. 11(10),2355-60 (1966).
Filippov, V.
Equilibriums
System", Zh.
26.
Flatt, R. and F. Benguerel, "Liquid-Vapor Equilibriums of
the Binary System HN03-H20", Helv. Chim. Acta 45, 1765-72
(1962).
27.
Giauque, W. F. et al., "The Entropies of Nitrogen Tetroxide
and Nitrogen Dioxide", :!. Phys. Chern. ,£, 40-52 (1938).
28.
Giona, A. R. and G. Liuzzo, "Evaluation of Liquid-Vapor
Equilibriums from Solubility Data", Chim. Ind. 48(6),
576-80 (1966).
29.
Grajower, Raphael and Joshua Jortner, "Absorption Spectra
of Nitric Oxide in Solutions", :!. Am. Chern. Soc. 85,
512-16 (1963).
30.
Hogfeldt, E., "The Complex Formation between Water and
Strong Acids", Acta. Chern. Scand. 11.,785-96 (1963).
31.
Holmberg,
Potassium
Stockholm
Karl E., "Phase Diagrams of Some
Salts in Light and Heavy Water",
(~.), AE-340, 11 pp. (1968).
Sod ium and
A. B. Atomenergi,
32.
Hood, C. G. and C. A. Reilly, "Ionization of Strong Electro-
lytes. VIII. Temperature Coefficient of Dissocation of
Strong Acids by Proton Magnetic Resonance", :!. Chern. Phys.
32,127 (1960).
-33-
Radian Corporation
8SOO SHOAL CREEK BLVD. . P. o. BOX 99-48 . AUSTIN, TEXAS 18751 . TELEPHONE 512 - ..~.95]5
33.
Janiczek, Witold and Eugeniusz Biasiak, "New Method of
Manufacturing very Concentrated Nitric Acid", Chim. Ind.
94(5),478-89 (1965).
34.
Kaganskii, I. M.,

T. V. Lyubchenko,

over Concentrated
1087-92 (1961).
M. M. Karavaev, B. P. Sukachev and
"Vapor Pressure of Saturated Vapors
Nitrooleum", Zh. Prikl. Khim. 34,
35.
Karavaev, M. M. and V. A. Yarkovaya, "Saturated Vapor
Pressure over Nitrogen Oxide Solutions in Nitric Acid of
Variously Increased Concentration", Zh. Prik1. Khim. 40(11),
2439-43 (1967).
36.
Karavaev, M. M. and A. 1. Bessmertnaya, "Saturated Vapor
Pressure over a Nitric Acid-Nitrogen Tetroxide-Water
System", Khim. Prom. (Moscow) 45(7), 515-18 (1969).
37.
Kay, Webster B. and Manoj D. Sanghvi, "Phase Relations in
the HN03-N02-H20 System at Physiochemical Equilibrium",
:!. Chern. Eng. Data~, 22-32 (1959).
38.
Khrenova, T. L. and E. I. Akhumov, "Thermochemistry of
Supersaturated Solutions. II. Integral Heats of Potassium
Nitrate Dissolution in Water at 18 and 25° in a Metastable
Zone of Concentrations", Zh. Prik1. Khim. (Leningrad) 42 (11) ,
2597-600 (1969).
39.
Klemenc, A. and E. Hayek, "Dissoziationskonstante der
salpetrigen Saure", Monatsh. 53/.21t., 407 (1929).
-34-

-------
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 99"8 . AUSTIN, TEXAS 19757 . TELEPHONE 512 - 45-4.9535
40.
Krestov, G. A. and V. K. Abrosimov, "Thermodynamics of the
Dissolving of Alkali and Alkaline Earth Metal Halides and
Nitrates with Water at Various Temperatures", Izv. Vvssh.
Ucheb. Zaved., Khim. Khim. Tekhnol. 10(9), 1005-9 (1967).
41.
Krishnamurthi, M. and M. Suryanarayana, "Ultrasonic Studies
in Chemically Active Liquid Media. I. Aqueous Solution of
N20" ", J.. Phvs. Soc. Japan 15, 2318-23 (1960).
42.
Kuleshov, G. G., "Thermodynamic Properties of Dissociating
Nitrogen Tetroxide. I. Vapor Pressure Curve", Vestsi
Akad. Navuk Belarus. SSR, Ser. Fiz.-Tekh. Navuk 1, 53-9,
(1967) .
43.
Liska, Miroslav, Blahoslav Stehlik and Alexander Tk~c,
"Hydration of Anions", Chern. Zvesti ,2., 31-40 (1951).
44.
Lloyd, L. and P. A. H. Wyatt, "The Vapor Pressures of
Nitric Acid Solutions. I. New Azeotropes in the Water-
Dinitrogen Pent oxide System", J.. Chern. Soc., 2248-52
(1955).
45.
McKeown, Anderson B. and Frank E. Belles, "Nitric Acid-
Nitrogen Dioxide-Water System. Vapor Pressures and Related
Properties", Ind. Eng. Chern. 47, 2540-3 (1955).
46.
Mishchenko, K. P. and L. P. Shpigel, "Thermochemistry of
Electrolyte Solutions. VII. KN03 and NaN03 Aqueous
Solutions at Various Temperatures", Zh. Obshch. Khim.
37(10), 2145-50 (1967).
-35-
Radian Corporation
asoo SHOAL CREEK BLVD. . P. Q. BOX ~4B . AUSTIN, TEXAS 18757 . TELEPHONE 512. "'54-9535
47.
Myasnikova, V. F., S. I. Drakin, M. Kh. Karapet'yants and
L. V. Lantukhova, "Heat Capacities of Aqueous Solutions
of Salts Containing Trivalent Ions", Zh. Fiz. Khim. 42(8),
2055-7 (1968).
48.
Potier, Antoine, "Total and Partial Vapor Pressures of
Nitric Acid-Water Solutions Between 0° and 20°. Densities
of Concentrated Solutions at 25°", Bull. .2..2£. chim. France,
47-9 (1956).
49.
Potier, Antoine, "Vapor Pressures and Thermodynamic
Properties of Nitric Acid-Water Solutions Between 0° and
20°", M~m. services chim. hat 38, 391-404 (1953).
50.
Potier, Antoine, "Molar Volumes, Vapor Pressures, and
Particle Composition of Nitric Acid-Water Solutions",
M~m. services chim. ~tat 38, 405-16 (1953).
51.
Prosek, J., "Equilibrium Between the Liquid and the
Gaseous Phase in Systems Containing Nitric Acid", Collect.
Czech. Chern. Commun. ]1(7),2397-404 (1967).
52.
Richter, Dieter and Helmut Ullmann, "Solutions of Constant
Nitric Acid Activity in the Sodium Nitrate-Nitric Acid-
Water and Lithium Nitrate-Nitric Acid-Water Systems at 25°",
~. Phvs. Chern. 236 (5-6), 314-25 (1967).
53.
Sage, B. H., Some Properties of Nitric Acid, Nitrogen
Dioxide, Nitric Oxide, Water, and Their Mixtures, U. S.
Dept. Com., Office Tech. Serv., PB Rept. 143,889, 145 pp.
(1957) .
-36-

-------
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX "is. AUSTIN, TEXAS 78757 . TELEPHONE 512. <454.9535
54.
See 1 , F. and R. Winkler, "The Equilibrium Between HN03-NO:a-
Cation in the System HgS04-H:aO", £. Phys. Chern. 25, 217
(1960).
55.
Sproesser, William C. and Guy B. Taylor, "Vapor Pressures
of Aqueous Solutions of Nitric Acid", :!. Am. Chern. Soc. 43,
1782 (1921).
56.
Tereshchenko, L. Ya., V. P. Panov and M. E. Pozin, "Equilib-
rium Between Nitrogen Oxides and Nitric Acid Solutions",
Zh. Prikl. Khim. 41(3), 478-92 (1968).
57.
Tereshchenko, L. Ya., M. E.
for Calculating Equilibrium
Nitrogen Oxides with Nitric
Khirn. 41(4), 702-9 (1968).
Pozin and V. P. Panov, "Method
Conditions and the Reaction of
Acid Solutions", Zh. Prik1.
58.
Thakker, M. T., C. W. Chi, R. E. Peck and D. T. Wasan,
"Vapor Pressure Measurements of Hygroscopic Salts", :!.
Chern. Eng. ~ 13(4), 553-8 (1968).
59.
Tripp, Terrance B. and Jerry Braunstein, "Vapor Pressures
of Aqueous Melts. Lithium Nitrate-Potassium Nitrate-Water
at 119-150°", :!. Phys. Chern. 73(6), 1984-90 (1969).
60.
Vandoni, R. and M. Laudy, "Measurement of the Partial Vapor
Pressures of Nitric Acid-Water Systems and Verification of
the Margules-Duhem Equation. I. Measurement of the Partial
Vapor Pressures of Nitric Acid-Water Systems at 20°", :!.
chim. ~. 49, 99-102 (1952).
61.
Vasil'ev, V. P. and L. A. Kochergina, "Heat of Ionization of
Ammonium Hydroxide in Sodium Nitrate Solutions at Various
Temperatures", Zh. Fiz. Khim. 42(2), 373-9 (1968).
-37-
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TEXAS 7S7S7 . TELEPHONE 512. "5-4-95JS
62.
Vetter, Klaus, "The Equilibrium Between Nitrogen Peroxide
and Nitrous Acid in Nitric Acid", £. anorg. Chern. 260,
242-8 (1949).
63.
"Dinitrogen Trioxide. V. A Spectropho-
of Liquid Mixtures of Nitrogen Dioxide and
The Stability of Liquid Dinitrogen Trioxide",
~ 12, 1759-62 (1966).
Vosper, A. J.,
tornetric Study
Nitric Oxide:
:!. Chern. Soc.,
64.
Walters, John Philip, "Partial Molar Heat Capacities of
Some Aqueous Rare Earth Chlorides, Nitrates, and Perchlorates
from Tenth Molal to Saturation at 25°", Univ. Microfilms,
Order No. 68-14,829, 98 pp.; Dissertation Abstr. ~ 29(4),
1327 (1968).
65.
Whittaker, A. G., R. W. Sprague, S. Skolnik and G. B. L.
Smith, "Vapor Pressures and Freezing Points of the System
Nitrogen Tetroxide-Nitric Oxide", :!. Am. Chern. Soc. 74,
4794-7 (1952).
66.
Wise, Donald Lee and Gerald Houghton, "Diffusion Coefficients
of Neon, Krypton, Xenon, Carbon Monoxide, and Nitric Oxide
in Water at 10-60°", Chern. Eng. ScL 23(10), 1211-16 (1968).
67.
Wolf, Friedrich and Karl Heinz Schier, "Effect of Metal
Salts on the Liquid-Vapor Equilibrium of Aqueous Nitric
Acid", Chern. Tech. 19(6), 339-43 (1967).
68.
Yakimov, M. A. and V. Ya. Mishin, "Heterogeneous Equilib-
riums in Ternary Systems of the Metal (I) Nitrate-Nitric
Acid-Water Type", Zh. Neorg. Khim. 12(4), 1054-63 (1967).
-38-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512 - 'Is-i-953S
69.
Yakimov, M. A. and V. Ya. Mishin, "Heterogenous
in the Ternary System UOa(N03)a-HN03- HaD' II.
Vapor Equilibrium in the Binary System HN03-HaO
and 50°", Radiokhimiva &.(5), 543-8 (1964).
Equilibrium
Solution-
at 25, 35,
70.
Zaslavskii, 1. 1., "Volume Contraction in the Solution of
Acids and Alcohols in Water and the Contraction Anomaly in
the System Nitric Acid-Water", Zhur. Obshchei Khim. 19,
995-1001 (1949).
-39-

-------
Radian Corporation
asoo SHOAL CREEK BLVD. . P. O. BOX ~"B . AUSTIN, TEXAS 79757 . TELEPHONE 512. "~.9S35
4.1
Thermodynamics of Electrolyte Solutions
1.
Bury, Raymond, Marie C. Justice, and Jean C. Justice, "Cor-
relations between Fundamental Parameters of Conductivity
Theories and Activity Coefficients of Dilute Electrolytes",
~. ~. Acad. Sci., Paris, Ser. ~ 268(8),670-3 (1969).
2.
Drakin, S. I., L. V. Lantuzhova, and M. Kh. Karapet'yants,
"Specific Heats of Monoatomic Cations in Aqueous Solutions",
Zh. Fiz. Khim. 41(1), 98-103 (1967).
3.
Kapustinskii, A. F., B.M. Yakushevskii, and S. I. Drakin,
Capacity of Ions in Aqueous Solutions in Relation to
Electrostatic Characteristics", Zhur. Fiz. Khim. 27,
(1953).
''Heat

Their
793-8
4.
Karapet'yants, M. Kh., K. K. Vlasenko, and S. G. Solov'eva,
"Thermodynamic Properties of Mixed Solutions of Electrolytes.
VIII. Influence of the Nature of Ion Hydration on the Sign
of the Heat of Mixing for Aqueous Electrolyte Solutions",
Zh. Fiz. Khim. 44(2), 541 (1970).
5.
Krestov, G. A. and 1. V. Egorova, "Thermochemical Study of
Potassium and Calcium Nitrates in Water-Glycerol Solvents at
20-40°", Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 10
(10), 1115-19 (1967).
6.
Krestov, G. A., "Changes of Heat Capacity during the Dissolu-
tion of Compounds formed by Monatomic and Multiatomic Ions",
Izv. Vysshikh Uchebn. Zavedenii, Khim. i. Khim. Tekhno1. ~(3),
408-15 (1963).
7.
Lietze, M. H., R. W. Stoughton, and R. M. Fuoss, "A Two-
Structure Model for Electrolytic Solutions", Proc. Nat. Acad.
Sci. U.S. 59(1), 39-45 (1968).
-40-
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 18751 . TELEPHONE 512. <15-4-9535
8.
Miku1in, G. I. and 1. E. Voznesenskaya, "Theory of Mixed
Solutions of Electrolytes Conforming to Zdanovskii's Law.
III. Quaternary Aqueous Reciprocal Systems", Vop. Fiz.
Khim. Rastvorov. E1ektro1it., 346-60 (1968).
9.
Mikulin, G. 1., "Some Methods for Calculating the Density and
and Heat Capacity of Mixed Electrolyte Solutions", Vop. Fiz.
Khim. Rastvorov Elektrolit., 401-16 (1968).
10.
K. P. and A. M. Ponomareva, "Heat Capacities of
Ions in Aqueous Solutions at Infinite Dilution",
Khim. 26, 998-1006 (1952).
Mischenko,
Individual
Zhur. Fiz.
11.
Shchukarev, S. A., L. S. Lilich, and V. 1. Timofeev, "The
Alteration of the Gibbs Function in the Solution of Salts in
Water", Termodinam. .1. Stroenie Rastvorov, Akad. Nauk SSSR,
Otdel. Khim. Nauk.1. Khim. Fak. Moskov. Gosudarst. Univ.,
Trudy Soveschchaniya, Moscow, 167-71 (1958).
12.
Vdovenko, V. M. and M. A. Ryazanov, "Thermodynamics of Electro-
lyte Solutions", Zh. Fiz. Khim. 42(8), 19.36-41 (1968).
13.
Wood, R. H. and R. W. Smith,. "Heats of Mixing of Aqueous
Electrolytes. I. Concentration Dependence of 1-1 Electro-
1ytes", .d. Phys. Chern. 69(9), 2974-9 (1965).
14.
Yatsimirskii, K. B., "Thermochemical Radii and Heats of
Hydration of Ions", Izvest. Akad. NaukSSSR, Otde1. Khim.
Nauk, 398-405 (1948).
-41-

-------
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 99~8 . AUSTIN, TEXAS 7B7S7 . TELEPHONE 512. 
-------
Radian Corporation
8500 SHOAL CReEK BLVD. . P. Q. BOX 9948 . AUSTIN, TEXAS 18757 . TELEPHONE 512 - "~-953S
17.
Kovalenko, P. N. and K. N. Bagdasarov, "Photocolorimetric
Determination of the Beginning of Solution of Hafnium
Hydroxide and the Calculation of its Activity Product",
Zh. Neorgan. Khim. I, 1765-8 (1962).
18.
Kovalenko, P. N. and K. N. Bagdasarov, "Determination of
the Solubility of Zirconium Hydroxide", Zh. Neorgan. Khim.
£,534-8 (1961).
19.
Kovalenko, P. N., "Determination of Activity Product of
Strontium Hydroxide by Polarographic Method", Fiz.-Khim.
Metodv Analiza i Kontrolva Proizv. Sb., 80-5 (1961).
20.
Kovalenko, P. N. and K. N. Bagdasarov, "Solubility Product
(SP) of Lanthanum Hydroxide", Zh. Neorgan. Khim. ,2.(1),
534-7 (1964).
21.
Kudryashov, S. F., S. 1. Frolova and A. V. Ushkova, "Solu-
bility in the Cerium Nitrate-Beryllium Nitrate-Water
System", Zh. Neorgan. Khim. 12(9), 2494-6 (1967).
22.
Martre, Anne Marie and Paulette Pouillen, "HaO-M(N03)a
Binary Systems where M is Ni, Zn, Mg, Cu, or Mn Below
Usual Temperatures", Compt. Rend., Ser. .£ 263(5), 337-9
(1966).
23.
Mironov, K. E. and A. P. Popov, "Solubility Polytherms
and Hydrate Forms of the Nitrates of Lanthanum, Cerium
(III), and Praseodymium", Rev. Roum. Chim. 11(12), 1373-81
(1966).
-44-
Radian Corporation
8500 SHOAL CReEK BlVD. . P. O. BOX "<18 . AUSTIN, TEXAS 79757 . TELEPHONE 512 - "54-95]5
24.
Mironov, N. N. and L. M. Trofimova, "Solubility Product
of Hydroxides and Some Basic Salts of La, Ce, and Elements
Accompanying Them", Tr. 1!2. Khim. i Khim. Tekhnol. £, 235-7,
(1963).
25.
Nagayama, Masaichi, Katsumi Goto and Takao Yotsuyanagi, "
"The Mechanism of Hydrolysis of Polyvalent Metal Ions. II.
Hydrolytic Equilibrium in Aluminum Salt Solutions", Asahi
Garasu Kogvo Giiutsu Shorei-kai Kenkvu Hokoku 12, 403-15
(1966).
26.
Pavlov-Verevkin, B. S., "Deactivation of Radioactive Wastes

from Iron-55 Production", At. Energ. 28(1), 69-70 (1970).
27.
Platford, R. F., "Activity Product of Fe(OH)3 by Turbidimetry",
Can. ~. Chern. ~(l), 181-3 (1964).
28.
Prokopeikas, A., "Physicochemical Properties of Ni(OH)3 and
Ni(OH)4'" Lietuvos TSR Mokslu Akad. Darbai, Ser. ~. £, 31-6
(1962).
29.
Protsenko, P. 1. and E. F. Balashova, "Beryllium Nitrate-
Zinc Nitrate-Water System", Zh. Neorgan. Khim. 12(9),
2542-4 (1970).
30.
Raupach, M., "Solubility of Simple Aluminum Compounds
Expected in Soils. I. Hydroxides and Oxyhydroxides",
Australian~. Soil Res. 1(1),28-35 (1963).
31.
Reznik, L. B., "Polarographic Determination of the pH at
which Dissolution Begins and of the Activity Product of
Vanadic Acid", Peredovve Metodv Khim. Tekhnol. i Kontrolva
Proizv. Sb., 141-6 (1964).
-45-

-------
Radian Corporation
8SOOSHOAl CREEK BlVD. . P. O. BOX 9'H8 . AUSTIN. TEXAS 78757 . TELEPHONE 512. -iSoi.9S3S
32.
Rotinyan, A. L., V. L. Kheifets and S. A. Nikolaeva,
"Solubility Product of Co(OH)3 and the Standard Oxida-
tion-Reduction Potential of Co+++/Co++", Zh. Neorgan.
Khim. ~, No.1, 21-6 (1961).
33.
Schindler, P., "Determination of Solubility Constants of

Metal Oxides and Hydroxides", Chimia 17(10), 313-31 (1963).
34.
Schindler, P., "Solubility and Free Energy of ZnO and
Different Modifications of Zn(OH)2", Gazz. Chim. Ital.
93, 168-72 (1963).
35.
Schindler, P., W. Michaelis and W. Feitknecht, "Solubility
Products of Metal Oxides and Hydroxides. VIII. The Solu-
bility of Aged Iron (III) Hydroxide Precipitates", He lv.
Chim. Acta 46,444-9 (1963).
36.
Sobol, S. 1., "Values of the Isobaric-Isothermal Potential
and of the Product of Ionic Activities of Ni(OH)4", Zh.
Obshchei Khim. 31, 372-4 (1961).
37.
Spitsyn, Vikt. 1., R. N. Bernovskaya, N. 1. Popov, "Hydrolytic
Properties of Ultra-Trace Amounts of Cerium-144", Dokl. Akad.
Nauk SSSR 182(4), 855-8 (1968).
38.
Spivakovskii, V. B. and G. V. Makovskaya, "Basic Chloride,
Hydroxides, and Hydroxy Complexes of Copper (II). A New
Variation of the Three-Variable Method", Zh. Neorgan. Khim.
13(6), 1555-61 (1968).
39.
Suzuki, Shin and Toshikazu Mitsuji, "Behavior of Cerous
Ions in Very Low Concentration", Nippon Kagaku Zasshi
90 (7), 677-9 (1969).
-46-
- ---- - r
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 9948 . AUSTIN, TpcAS 78757 . TElEPHONE 512 - 45-4.9535
40.
Tatarinov, V., "Physicochemical Analysis of a Potassium
Nitrate-Chromium Nitrate-Water Ternary System at 25°",
Uch. Zap., Yaroslav. Gos. Pedagog. Inst. ~, 157-61 (1969).
41.
Tsimmergakl, V. A. and G. V. Lavrova, "Hydrolytic Precipi-
tation of Gallium from Sulfate Solutions", Ukr. Khim. Zh.
29(3),258-62 (1963).
42.
Vetter, K. J. and N. Jaeger, "Potential Formation on the
Manganese Dioxide Electrode as Oxide Electrode with Non-
stoichiometric Oxide", Electrochim. Acta l!.(4) , 401-19
(1966).
43.
Zavodnov, S. S. and N. G. Fesenko, "The Values of the
First Hydrolytic Constant of Mn2+ Ion and of the Solu-
bility Product of Mn(OH)2", Gidrokhim. Materialy 36,
148-55 (1964).
-47-

-------
Radian Corporation
8SOO SHOAL CREEK BLVD. . P. O. BOX 'i9<48 . AUSTIN, TEXAS 78757 . TELEPHONE 512. 45
-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX ~9~8 . AUSTIN, TeXAS 78757 . TELEPHONE 512. ~S
-------
Radian Corporation
SSOO SHOAL CREEK BLVD. . P. O. BOX 99-48 . AUSTIN, TEXAS 1B757 . TELEPHONE 512. "'S4-TS35
35.
Plake, Ewald, "Heat of Dilution of Solutions of Strong
Electrolytes", ~. Phys. Chern. 162 b:., 257-80 (1932).
36.
Prytz, Milda, "Potentiometric Titrations in linc Chloride
Solutions", ~. Anorg. 200, 133-43 (1931).
37.
Robinson, Robert A., "Osmotic and Activity Coefficient Data
from Vapor Pressure Measurements", 1. Am. Chern. Soc. 59,
84-90 (1937).
38.
Robinson, R. A. et al., "The Activity Coefficients of Some
Bivalent Metal Nitrates in Aqueous Solution at 25° from
Isopiestic Vapor Pressure Measurements", 1. Am. Chern. Soc.
64, 1469-71 (1942).
39.
Robinson, Robert A., 1. Am. Chern. Soc. 21, 1165-72 (1935).
40.
Ryazantseva, L. A., 'P. G. Antonov, and V. E. Mironov,
"Behavior of Cadrnium Ions in Water-Salt Solutions", lh.
Khim. 14(12), 3211-14 (1969).
Neorg.
41.
Schindler, P. et a1., "Solubility Product of Metal Oxides
and Hydroxides", Chimia 16, 42-44 (1962).
42.
Scholle, S. et a1., "Enthalpy-Concentration
Solutions. III. The Calcium-Nitrate Water
Prumysl 18(10), 533-8 (1968).
Diagrams of
System", Chern.
43.
Smith, Herbert J., 1. Am. Chern. Soc. 40, 883-5 (1918).
44.
Solovkin, A. S., "Absence of Complexing between Uranium (IV)
Ion and Nitrate Ion in Aqueous Solutions", lh. Neorg. Khim.
14(4), 1124-6 (1969).
-52.
Radian Corporation
ssm SHOAL CREEK BlVD. . P. O. BOX 99.cB . AUSTIN, TEXAS 18757 . TELEPHONE sr2. <454.9535
45.
P. Moisa, "Basic Bromides and
Neorgan. Khim. ~(10), 2287-94
Spivakovskii, V. B. and L.

Hydroxide of Cadmium", lh.
(1964).
46.
Stepanov, A. V. and V. P. Shvedov, "Hydrolysis of Ce(IlI)
in Nitrate Solutions Studied by the Electrical Migration
Method", .Zh. Neorgan. Khim. 10(4),1000-2 (1965).
47.
Swinehart, D. F. and A. B. Garrett, "The Equilibria of Two
Basic Bismuth Nitrates in Dilute Nitric Acid at 25°", 1. Am.
Chern. Soc. 73, 507-10 (1951).
48.
Vasil'ev, V. P. and N. K. Grechina, "Solubility of BiOCl and
BiON03 in Aqueous Solutions of Nitric and Perchloric Acids",
Zh. Neorg. Khim. 12(5), 1372-80 (1967).
49.
Vasil'ev, V. P., "State of Cadrnium Nitrate in Aqueous
Solution", Izv. Vysshikh Uchebn. lavedenii, Khim. .! Khim.
Tekhnol. ~, 936-40 (1961).
50.
Vassian. E. G. and W. H. Eberhardt, "The Spectrophotometric
Determination of the Dissociation Constant of a Cadrnium-
Nitrite Complex", 1. Phys. Chern. 62, 84 (1958).
51.
Yakimov, M. A., V. K. Filippov, and Chih T'i, "Solution-
Vapor Equilibrium in Alkali Metal Nitrate-Nitric Acid
Binary Systems at 25°", lh. Neorg. Khim. 14(2), 551-7 (1969).
52.
Yakimov, M. A., N. F. Nosova, and T'i Chih, "Electric
Conductivity in Ternary Systems of the Type Alkali Metal
Nitrate-Nitric Acid-Water at 25°", lh. Neorg. Khim. 11(5),
1360-4 (1967).
-53-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99~8 . AUSTIN, TEXAS 78757 . TElEPHONE 512. oC~.9SJ5
53.
Yanat'eva, O. K. and I. S. Rassonskaya, Ru. 1. Inorganic
Chern. ,Q, 730-3 (1961).
-54-
Radian Corporation
S500 SHOAL CREEK BLVD. . P. O. BOX 99.cS . AUSTIN, TEXAS 18757 . TELEPHONE S12. ..~.95)5
4.4
Activitv Coefficients. EQuilibrium Constants
1.
Amdur, S., J. 1. Pad ova and A. M. Schwartz, "Isopiestic
Study of the System Potassium Chloride-Potassium Nitrate-
Water at 25°", :1... Chern. Eng. ~ 12(3), 417-18 (1970).
2.
Argersinger, Wm. J., Jr., "Activity Coefficients of Electro-
lytes in Mixed Aqueous Solution from Electromotive Force
Data", :1... Phvs. Chern. 58, 792-5 (1954).
3.
Bezboruah, C. P., Arthur K. Covington and Robert Anthony
Robinson, "Excess Gibbs Energies of Aqueous Mixtures of
Alkali Metal Chlorides and Nitrates", :1... Chern. Thermodvn.
2(3),431-7 (1970).
4.
Chekhunova, N. P. "Determination of the Vapor Pressure of
Aqueous Solutions of Some Nitrites by a Static Method",
Mater. Nauch. Konf. Aspir., Roslov.-M-Donu. Gos. Univ.,
7th 8th, 195-7 (1968).
5.
Chekhunova, N. P. and P. 1. Protsenko, "Activity Coefficients
of the Nitrites of Sodium, Potassium, and Magnesium", Ru. :1...
Phvs. Chern. 41(9), 1220-21 (1967).
6.
Chekhunova, N. P., P. I. Protsenko and L. N. Venerovskaya
"Activity Coefficients and Osmotic Coefficients of Solu-
tions of Nitrites of Alkali Metals, Alkaline-Earth Metals,
and Cadmium", Zh. Fiz. Khim. 43(8), 2070-5 (1969).
7.
Covington, A. K. and J. E. Prue, "Activity Coefficients
of Nitric and Perchloric Acids in Dilute Aqueous Solution
from E.M.F. and Transport-Number Measurements", :1... Chern.
Soc., 1567-72 (1957).
-55-

-------
Radian Corporation
8500 SHOAL CREEK BlVD. . P. O. BOX 99~8 . AUSTIN, TEXAS 78757 . TELEPHONE 512. '154-9535
8.
DeBruin, "New Activity Coefficients
Nitric Acid", .J.. Inorg. Nuc1. Chern.
Davis, W., Jr. and H. J.
of 0-100 Percent Aqueous
26(6), 1069-83 (1964).
9.
Graetzel, M., S. Taniguchi and A. Henglein, "Pulse Radio-
lytic Study of NO-Oxidation and of the Equilibrium N203
Yields NO Plus NOa and its Reverse in Aqueous Solution",
Ber Bunsenges Physik. Chern. 74(5),488-492 (1970).
10.
Haase, R., K. H. Duecker and H. A. Kueppers, "Activity
Coefficients and Dissociation Constants of Aqueous Nitric
Acid and Perchloric Acid Solutions", Ber. Bunsenges.
Physik. Chern. &i(2), 97-109 (1965).
11.
Harned, Herbert S. and Joseph A. Shropshire, "The Activity
Coefficients of Alkali Metal Nitrates and Perchlorates in
Dilute Aqueous Solutions at 25° from Diffusion Coefficients",
:I.. Am. Chern. Soc. 80, 2967-8 (1958).
12.
Helgeson, H. C. and A. J. Ellis, "Handbook of Physical
Constants. Ionization Constants in Aqueous Solutions",
Geo1. Soc. Am., Mem. 22, 401-13 (1966).
13.
Kirgintsev, A. N. and A. V. Luk'yanov, "Thermodynamic
Characteristics of Saturated Aqueous Salt Solutions",
Zh. Neorgan. Khim. 12(8),2032-5 (1967).
14.
Ladd, M. F. C. and W. H. Lee,- "Thermodynamic Studies of
Ammonium Halides and Some Univalent Nitrates", :I.. Inorg. ~
Nuclear Chern. 13, 218-24 (1960).
-56-
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 99-48 . AUSTIN. TEXAS 78757 . TElEPHONE 512 - <{5".9535
15.
Leskovsek, D., "Activity Coefficients of Uni-Univalent
Electrolytes in Aqueous Solutions. I. Application of the
Debye-Hueckel Equation for 'Associated' Electrolytes",
Vesln. Slov. Kern. Drus. 13(1-4), 25-31 (1966).
16.
Leskovsek, D., "Activity Coefficients of Uni-Univalent
Electrolytes in Aqueous Solutions. II. Application of
Bjerrum Theory for Unassociated Electrolytes", Vesln. Slov.
Drus. 13(1-4), 33-8 (1966).
17.
Lumme, Paavo and Jouni Tummavuori, "Potentiometric Deter-
mination of the Ionization Constant of Nitrous Acid in
Aqueous Sodium Perchlorate Solutions at 25°C", Acta Chemica
Scand. 19(3), 617-21 (1965).
18.
Martin, H., G. Fuchs and L. Wartini, "Reaction of Chlorine
Dioxide with Nitrosylchloride in Trifluorotrichloroethane",
Ber. Bunsenges. Physik. Chern. &L(9), 984-7 (1963).
19.
McKay, H. A. C., "Activity Coefficient of Nitric Acid, a
Partially Ionized l,l-Electrolyte", Trans. Faraday Soc. .21.,
1568-73 (1956).
20.
Mikulin, G. 1. and 1. E. Voznesenskaya, "Calculation of the
Activity Coefficients for Mixed Solutions of Two Electro-
lytes with a Common Ion from Isopiestic Measurements", VoP.
Fiz. Khim. Rastvorov Elektro1it., 256-76 (1968).
21.
Motornaya, G. A., E. Ya. Ben'yash and B. S. Khristoforov,
"Lead Nitrate-Zinc Nitrate-Water and Lead Nitrate-Cadmium
Nitrate-Water Systems Studied at 25° by an Isopiestic
Method", Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk
(5), 7-12 (1969).
-57-

-------
Radian Corporation
8SOO SHOAL CREEK BlVD. . P. O. BOX 99<48 . AUSTIN, TEXAS 1B7S7 . TELEPHONE 512. ~~.9S35
22.
Pozin, M. E., V. V. Zubov, L. Ya. Tereshchenko, E. Ya. Tarat
and Yu. L. Ponomarev, "Solubility of NO in Aqueous Solutions
of Various Salts", Izv. Vyssh. Uchebn. Zaved., Khim. .iKhim.
Tekhnol. Q(4), 608-16 (1963).
23.
Ray, James

Entropy of
(1956).
D. and Richard A. Ogg, Jr., "The Anomalous
Potassium Nitrite", J,. Phys. Chern. 60, 1599-1600
24.
Redlich, 0., W. E. Gargrave and W. D. Krostek, "Thermo-
dynamics of Solutions. XII. Consistency of Sparse Data.
Activities of Nitric and Perchloric Acids", Ind. Eng.
Chern., Fundam. 2(2), 211-14 (1968).
25.
Reznik, F. Ya. and L. N. VitOeeva, "Osmotic Coefficients and
Activity Coefficients for Mixed Potassium Nitrate and
Sodium Nitrate Aqueous Solutions at 25°", VOP. Fiz. Khim.
Rastvorov. Elektrolit., 277-88 (1968).
26.
Robinson, R. A. and R. H. Stokes, "Tables of Osmotic and
Activity Coefficients of Electrolytes in Aqueous Solution
at 25°", Trans. Faraday Soc. 45, 612-24 (1949).
27.
Schmid, Hermann and Peter Krenmayr, "The Activity Coefficient
of Nitrous Acid and the Equilibrium Constant of Dinitrogen
Trioxide Formation", Monatsh. Chern. 98(2), 417-22 (1967).
28.
Shigeru, Francis and B. A. Rasnick, "Bicarbonate Complexes
of Barium and Strontium", J,. Inorg. Nucl. Chern. 31(11),
3491-4 (1969).
-58-
Radian Corporation
85Q) SHOAL CREEK BlVD. . P. O. SOX 99048 . AUSTIN, TEXAS 7a7S7 . TElEPHONE 512 - 04504.9535
29.
Shpigel, L. P. and K. P. Mishchenko, "Activities and
Effective Water Activity Coefficients in Solutions of
Potassium and Sodium Nitrates at 1, 25, 50, and 75°
within a Wide Concentration Range", Zh. Prikl. Khim.
40(3), 680-2 (1967).
30.
Shpigel, L. P. and K. P. Mishchenko, "Saturated Vapor
Pressure over Aqueous Potassium Nitrate and Sodium Nitrate
Solutions at 1, 25, 50, and 75° in a Wide Range of Concen-
trations", Tr. Leningrad. Tekhnol. Inst. Tsellyul.-Bum.
Prom. 21, 249-52 (1968).
31.
Skabichevskii, P. A., "Osmotic Coefficients and Activity
Coefficients of Lithium Bromide, Lithium Nitrate, and
Lithium Perchlorate Solutions in Acetone at 20°", Zh.
Fiz. Khim. 44(5), 1321-3 (1970).
32.
Tummavuori, Jouni and Paavo Lumme, "Proto1ysis of Nitrous
Acid in Aqueous Sodium Nitrate and Sodium Nitrite Solutions
at Different Temperatures", Acta Chern. Scand. 22(6), 2003-11
(1968).
33.
Turney, T. A. and G. A. Wright, "HN02 Equilibriums in

HC104", J,. Chern. Soc., 2415-18 (1958).
34.
Vetter, Von Klaus, "Das G1eichgewicht zwischen Stickstoffdioxyd
und salpetriger Saure in Sa1petersaure", ~. Anorg. Chern. 260,
242-8 (1949).
35.
Vi1cu, Rodica and F. Irinei, "Cryometry of Some Binary
Systems. Coefficients of Thermodynamic Activity in the
Ternary Lithium Nitrate-Sodium Nitrate-Water System and
in the Associated Binary Systems", Bull. Soc. Chim. Be1g.
~(1-2), 3-10 (1970).
-59-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512. <15-4-9535
36.
Vosper, A. J., "The Dissociation of Dinitrogen Tetroxide in
the Liquid Phase", I. Chern. Soc. 11, 2191-3 (1970).
37.
Wu, Yung Chi and Walter J. Hamer, Osmotic Coefficients and
Mean Activity Coefficients of ~ Series of Un i-Univalent 
Electrolytes in Aqueous Solutions at 25°. 11. Electro-
chemical Data, NASA Contract Rep., NASA-CR-106045, 54 pp.
(1969).
38.
Yakimov, M. A., E. I. Guzhavina and M.. S. Lazeeva, "Solution-
Vapor Equilibrium in Calcium (Cadmium) Nitrate-Alkali Metal
Nitrate-Water Systems", Zh. Neorg. Khim. 14(7), 1927-32
(1969).
39.
Yeatts, LeRoy B. and William L. Marshall, "Aqueous Systems
at High Temperature. XVIII. Activity Coefficient Behavior
of Calcium Hydroxide in Aqueous Sodium Nitrate to the
Critical Temperature of Water", I. Phys. Chern. 11(8),
2641-50 (1967).
40.
Yeatts, LeRoy B. and William L. Marshall, "Aqueous Systems
at High Temperature. XXI. Apparent Invariance of Activity
Coefficients of Calcium Sulfate at Constant Ionic Strength
and Temperature in the System Calcium Sulfate-Sodium Sulfate-
Sodium Nitrate-Water to the Critical Temperature of Water.
Association Equilibriums", I. Phys. Chern. L!(l), 81-90
(1969).
-60-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 512/45+9535
TECHNICAL NOTE 200-007-15
CALCULATION OF DECOMPOSITION PRESSURES
OVER METAL NITRATES AND NITRITES
9 December 1971
Prepared by:
Terry B. Parsons
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
B500 SHOAL CREEK BLVD. . P. Q. 80X ""8 . AUSTIN, TEXAS 781S1 . TELEPHONE 512. "~.9S)5
Radian Corporation
esoo SHOAL CREEK BLVD. . P. O. BOX "48 . AUSTIN, TEXAS 78751 . TELEPHONE 512.64-9535
Literature on the thermal stability of metal nitrites
and nitrates has been reviewed in Technical Note 200-007-06.
The data show that the salts decompose at relatively low
temperatures, usually well below 700°C. The mechanism of the
decompositions is quite complicated since the gaseous decom-
position products and the melt interact.
Me(N03) 2 + CO2
~ MeC03 + N 206
(3)
Me (NO a) :2 + CO2
i! MeC03 + N 203
(4)
Thermal decomposition of solid metal nitrates and
nitrites was selected as a possible method of regenerating
metal oxide sorbents for NOx removal processes. In order to
evaluate the effectiveness of several metal oxide sorbents,
the relative free energies of the corresponding nitrate and
nitrite thermal decomposition steps were investigated (see
Technical Note 200-007-13).
The results were calculated for the temperature range
from 2S to 700°C. The changes in entropy and enthalpy and
the logarithm of the equilibrium constant for the reactions
were plotted versus temperature for reactions involving the
metal nitrates and nitrites shown in Table I. The compounds
which are marked by an asterisk are those for which calculations
for reactions such as (3) and (4) were done. The results are
given in the graphs and computer output on the following pages.
The equilibrium constants and free energy changes
for reactions such as (1) and (2), where Me stands for a
metal, were calculated using standard state thermodynamic
properties and heat capacities of products and reactants.
Me(N03) 2
4t MeO + N 205
(1)
Me(N02) 2
1! MeO + Ng03
(2)
Thermodynamic data for reactions such as (3) and (4) were also
investigated in order to describe decomposition in the presence
of CO 2'
-1-
-2-

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN, TEXAS 78757 . TELEPHONE 51? - 4S<4.9535
TABLE I
AgNOII* KNOll * 
AgNOa* KNOa*
Al(NO.)a LiNOII*
Ba:(NOII)1I * LiNOa*
Ba(NOa).* Mg(NOII)1I
Be (NOli )11 Mg (NOa ) II *
Be(NOa)1I Mn(NOII)1I
Bi(NOa)a Mn(NOa)1I *
Ca(NOII).* Mn(NO.)a
Ca(NOa ).* NaNOII*
Cd(NOII) NaNOa*
Cd (NOa ) II * Ni(NOII).
Ce(NOa)40 Ni(NOa)1I
Co(NOa). Pb(NO.). *
Co (NOa )11 Pb(NOa)a*
CuNOg Sn(NOa)40
CuNOa Sr(NOII). *
Cu(NO. ) I Sr(NOa)lI*
Cu(NOa). Zn(NOg)1I
Fe (NOli ). Zn(NOa)1I
Fe (NOa )11 Zr(NOa)40 *
Fe(NOa). 
-3-

-------
SEPT. 1971 2AGN02 = N203 + AG20  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 3.1+039+01+  1+.1101++01 -1.5835+01
 5.0000+01 3.1+061++01+  1+.1783+01 -1.3905+01
 1.0000+02 3.1+127+01+  1+.1966+01 -1.0815+01
 1.5000+02 3.1+169+01+  1+.2072+01 -8.1+521+00
 2.0000+02 3.1+158+01+  1+.201+7+01 -6.5871++00
 !.5000+02 3.1+073+01+  1+.1879+01 -5.0811+00
 1.0000+02 3.3901++01+  1+.1571+01 -3.81+22+00
 .5000+02 3.361+0+01+  1+.1132+01 -2.8086+00
 .0000+02 3.3277+01+  1+.0572+01 -1.9368+00
 .5000+02 3.2810+0"  3.9903+01 -1.191+7+00
 .0000+02 3.2235+01+  3.9136+01 -5.588"-01
 .5000+02 3.1551+01+  3.8279+01 -1.098"-02
 .0000+02 3.0755+04  3.7340+01 4.6288-01
 .5000+02 2.98"5+01+  3.6328+01 8.7386-01
 .-0000+02 2.8821+0"  3.5248+01 1.23U9+00
 .5000+02 2.7682+01+  3."108+01 1.5411+00
HR PLOT COMPLETEO     
SR PLOT COMPLETEO     
'~~ K PLOT COMPLETEO    
~
z
a:
~
(f)
Z
o
w
z:t:5
:::>'-'
- ('I')
a:O
[DN
- Z
...J
- lL.
:::>0
C3
UJUJ
...J
,.... 0
02:
....
.....a:
~UJ
o 0...
...J
09 SEP 71
2AGN02
=
N203 + AG20
5
o
-s
-10
-15
-ZD
D
800
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT. 1971  2AGN02 + C02 I N2031G) + A!:i2CO"  
  TE,"1P(t
-------
10 AUG. 1971  2AGtJ03 = N205 +AG20  
  TF."MPERATURE ENTHALPY  ENTROPY LOG K
  OEG. C CALoIGMOLE  CAL./GMOLE/OEG.K  
  :?5000+01 5.4859+04  4.4514+01 -3.0482+01
  !'.0000+01 6.8220+04  8.8253+01 -2.68411+01
  1.0000+02 6.7727+04  8.6835+01 -2.0687+01
  1.5000+02 6.715':1+04  8.540'.1+01 ,.1.601'::l+U1
  ,.0000+02 6.5154+04  8.0835+01 -1.242"1+01
  ,.5000+02 5.8BdO+04  6.7894+01 -9.7584+00
  3.0000+02 5. bllHJ+U4  6.6629+01 -7.6?5~+00
  ~.5COr.+02 5.7::51+04  6.5563+01 -5.8546+00
  4.0000+02 5.6%1+04  6.4653+01 -4.36~1+00
  4.5000+02 5.6414+U4  6.:;868+01 -3.09U6+00
  5.0COO+02 5.5,0:;+U4  6.~1!J5+01 -1.,993u+00
  5.5000+02 5.5427+04  6.::588+01 -1.037i:'+00
  F..0000+02 5.4983+04  6.2064+01 -1.97'Jb-01
  6.5000+0;> 5.456e+04  6.1602+01 5.4'1~';j-01
  7.0000+02 5.4181+04  6.1193+01 1.206U+UO
  7.5000+02 5.3821+04  6.0833+01 1.798b+00
......
z
ex:
......
(f)
Z
o
u
~G
:::J~
...... Ln
a:0
(DC'\J
...... Z
....J
...... IJ..
:::JO
C3
W W
....J
~O
O~
......
~a:
(.!)W
o a....
....J
10 RUG 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
2RGN03
N20S +RG20
=
o
800
-5
-10
-15
-20
-25
o
TEMPERRTURE - DEGREES CENTIGRRDE

-------
8 OCT. 1971  2AGN03 + C02 I N205(G) + AG2C03  
  TENIPEKATUKE ENTHALPY   ENTROPY LUG I<
  DEG. C CAI../GMOLE  CAL./GMOLf./DEG.K  
  2.51.100+01 3.5286+0~   5.6871-01 -2.~739+01
  5.01.100+1.11 4.8710+04   4.4511+01 -2..1213+01
  1..0000+02 4.8565+0~   4.3511+01 .1.118.14+01
  l.5UOO+C2 '.796!'i+04   '1.251.3+01 .1.:'481+01
  2.0UOO+02 4.6157+0~   5.8378+01 -.1.0!'::I.12+01
  2.5UOU+U2 4.01116+04   2.5885+01 -1.1U97+U1
  3.0GOC+02 5.9665+04   2.o;078+G1 -9.b'l.32+00
  3.5UOO+02 .3.9307+04   2.'1479+01 -8.'+.352+00
  4.0UOO+02 3.9025+1.14   2.4043+01 -7.'+1~1+00
  4.51.101.1+1.12 5.6815+04   2..3741+01 -6.:''I1~+OU
  5.0lJOu+02 3.8672+04   2.35'1')+01 -5.'8'1'1+00
  5.5UOU+U2 3.859.3+04   2.3451.1+01 -5.1212+00
  6.0UOO+U2 3.8578+04   2.3'132+01 -'1.:'3'+7+00
  6.5uOU+U2 .3.8&2'1+04   2.3'18.1+01 -'1.1.1115+00
  7.01.100+02 .1.87.32+04   2.359&+01 -.3.:'411+00
  7.5UOO+U2 3.8t\99+04   2.37&'++01 -3.1152+00
I-  
z:  
a:  
I-  ;)
en  
z:  
a  
u  
z:: ~ 
::J - 
..... lJ") LO
a:: 0
aJ N 
- c:.. 
-.J  
..... IJ.... 
::J ~ 
C3  
I.u u.. 15
 -.J
 a 
a z:: 
.....  
- a:: 
~ UJ 
a a... 
-.J  20
08 OCT 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT CUMPI.~TED
2AGN03 + C02 - N20S(G) + AG2C03
..:
-25
o
TEMPERATURE - DEGREES CENTIGRADE
BOD

-------
9 SEPT. 1971 2AL(N0313 = 3N205 + AL203  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 2.8901+0~  5.1523+01 -9.9233+00
 5.0000+01 ~.2339+0~  9.5511+01 -7.7593+00
 1.0000+02 ~.2010+0~  9.~565+01 -3.9369+00
 1.5000+02 ~.166~+0~  9.3695+01 -1.0~12+00
 2.0000+02 ~.1293+0~  9.2867+01 1.2230+00
 2.5000+02 ~.0893+0~  9.2063+01 3.037~+00
 3.0000+02 ~.0~60+0~  9.127~+01 ~.5200+00
 3.5000+02 3.999~+04  9.0~95+01 5.7510+00
 ~.0000+02 3.9492+0~  8.9720+01 6.7865+00
 ~.5000+02 3.8953+04  8.89~9+01 7.6671+00
 5.0000+02 3.8378+04  8.8179+01 8.4229+00
 5.5000+02 3. 776~+0~  8. 7~11+01 9.0768+00
 6.0000+02 3.7112+04  8.66~2+01 9.6461+00
 6.5000+02 3.6~22+04  8.587~+01 1.01~5+01
 7.0000+02 3.5693+0,+  8.5105+01 1.0583+01
 7.5000+02 3.4924+04  8.'+335+01 1.0971+01
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
.....
z
a:
.....
(f)
Z
o
u
%:5
=>"""'
- Lf)
OCO
£DN
- Z
....J
- u..
=> 0
C!I
UJ UJ
....J
...... 0
o %:
-
"""'cc
~UJ
o a..
....J
09 SEP 71
2AUN03J 3
=
3N20S + AL203
15
10
BOD
5
o
-s
-10
o
TEMPERATURE - DEGREES CENTIGRADE

-------
'3 SEPT. 1971 BAIN02)2 = N2031G) + BAO  
 TEMPrRATURE ENTHALPY   ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 7.1327+04   4.7005+01 -4.2007+01
 5.0000+01 7.1351+04   4.7083+01 -3.7962+01
 1.0000+02 7.1415+04   4.7267+01 -3.1494+01
 1.5000+02 7.1456+04   4.7372+01 -2.6551+01
 2.0'000+02 7.1445+04   4.7348+01 -2.2651+01
 2.5000+02 7.1361+04   4.7180+01 -1.9499+01
 3.0000+02 7.1191+04   4.6871+01 -1.6901+01
 3.5000+02 7.0928+04   4.6432+01 -1.4727+01
 4.0000+02 7.0565+04   4.5872+01 -1.2884+01
 4.5000+02 7.0097+04   4.5204+01 -1.1305+01
 5.0000+02 6.9523+04   4.4436+01 -9.9401+00
 5.5000+02 6.8838+04   4.3579+01 -8.7520+00
 6.0000+02 6.8042+04   4.2640+01 -7.711.3+00
 6.5000+02 6.7133+04   4.1628+01 -6.7949+00
 7.0000+02 6.6109+04   4.0549+01 -5.984'++00
 7.5000+02 6.4970+04   3.9408+01 -5.2649+00
HR PLOT COMPLETED      
SR PLOT COMPLETED      
LOG K PLOT COMPLETED     
BA(N02)2
N203(G) + BAO
=
o
I-
~
I-
en
:z
o
u
%:(3
:J"'"
-(T')
a:0
QJN
- Z
-.J
- LL
:JO
a
ILl ILl
-.J
,... 0
O%:
-- /
.....a:
(,!)LIJ
00-
-.J
-5
-10
-15
-20
-25
o
. TEMPERRTURE - DEGREES CENTIGRADE
09 SEP 71
BOD

-------
8 OCT. 1971  BA(N0212 + C02 N203(GI + BAC03  
  TE"'PERATURE ENTHALPY ENTROPY LOG K
  OEG. C CAL./GMOLE CAL./GMOLE/DEG.K  
  2.5000+01 1.0252+04 2.1514+00 -7.0439+00
  5.0000+01 1.C1251J+04 2.1711HOO _6.'+626+00
  1.0UOO+02 1.0521+04 2.3510+00 -5.:)3U7+00
  1..5UOO+02 1.0398+04 2.5~~6+00 -4.11159+00
  2.0UOO+02 1.0'+50+0~ 2.6607+00 ..'+.2~"9+00
  2.5UOO+02 1.0'+52+04 2.6665+00 -5.'8~'++00
  3.0UOO+02 1.0.390+04 2.55.31+00 -~.'+U~'++OO
  3.5uOO+02 1.0252+04 2.3251+00 -3.U87~+00
  4.0UOO+02 1.0055+04 1.9876+00 -2.112C!9+00
  4.5UOO+02 9.7273+03 1.5'+98+00 . -2.&Ou9+uU
  5.0UOO+02 9.3310+03 1.0206+00 -2.'+1'+'++00
  5.5UOO+U2 8.1\'+20+03 4.0856-01 -2.C!5t12+00
  6.0uOO+02 11.25115+03 -2.7925-01 -2.12110+00
  6.5UOU+02 7.579.3+03 -1.0352+00 -2.U2U5+0U
  7.000U+02 6.8056+05 -1.85.30+0n -1.':1.328+00
  7.5UOO+02 5.9.308+03 -2.7272+00 -1.tS6C!8+00
   HR PLOT COMPLETED     
   SR PLOT COMPLETED     
   LOG K PLOT COMPLETED    
BA(N02J2 + C02
N203(GJ + BAC03
10
I-  
z:  
a:  5
I- 
en  
z:  
a  
u  
 - 
z:: a 
::J ~ 
...... (T') 0
a: a
CD ("\J 
...... z: 
....J  
...... I..i... 
::J a 
C?J  
w w -5
 ....J
- a 
a z:: 
~ a: 
a w 
a a.... 
....J  
  -10
-15
o
BOO
TEMPERATURE - DEGREES CENTIGRADE
08 OCT 71

-------
10 AUG. 1971 BA(N03)2 = N205(G) + BAO  
  Tf."~PERATURE ENTHALPY   ENTROPY LOG K
  O[G. C CAL./GMOLE  CAL./G~OLE/OEG.K  
  2.5000+01 1.0771++05   11.61+95+01 -6.836'H01
  !I.0000+01 1.2120+05   9.2567+01 -6.17.3'1+01
  1.0000+02 1.2099+05   9.191+7+01 -5.0761+01
  1.5000+02 1.2060+05   9.11+73+01 -1+.239::>+01
  ~.OOOO+02 1.2060+05   9.103'1+01 -3.5808+01
  2.5000+02 1.2037+05   9.0578+01 -3.0118'H01
  3.0000+02 1.2u10+05   9.U082+01 -2.610"'+01
  3.5000+02 2..1978+05   8.9537+01 -2.21131+01
  1+.0000+02 1.19.59+05   8.89110+01 -1.93U+01
  11.5000+02 1.11:.91++05   8.8292+01 -1.66117+01
  !I.OOr.O+u2 1....u41+05   8.759.1+01 -1.432b+01
  !I.5000...02 1.1782+05   8.68118+01 -1.2300+01
  6.0000+02 1.1115+05   7.91116+01 -1.05U+01
  6.5000+£:2 1.1040+05   7.IJ31lJ+01 -9.0201+00
  7.00r,O+02 1.09511+05   7.H5,o+01 -7.6821+,00
  7.5000+02 1.0B6/H05   7.6547+01 -6.1+8111++00
HR PLOT CO~PlETED      
SR PLOT CO~PLETED      
LOG K PLOT COMPLETED     
o
~
z
a:
~
en
z
a
u
:E:G
~--
- If)
a:o
IDN
-z
...J
-lL.
~o
C3
W W
...J
o~
--'
--a:
t!>w
a Q..
...J
-5
-10
-15
-20
-25
o
10 AUG 71
BA(N03J2
=
N20S(GJ + BAO
800
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT. 1971  OAIN03)2 + C02 N205 + BAC03  
  Tf."'PEHATUR~ ENTHALPY  ENTROPY LUG K
  OEG. C CAL./G/IIOLE  C AI. ./GMOUJOEG. K  
  2.5UOU+U1 1+.6662+01+  3.6111'++00 .3.~1+05+01
  5.0UOU+U1 6.0109+01+  1+.7656+01 .~.U2~1++01
  l,OUOO+U2 5.91.195+04  1+.7U31+01 -2.'H98+01
  1.5uOO+U2 5.'.nqO+Oq  Q.66Q5+01 -2.U656+01
  2,OUOO+02 5.9606+01+  1+.65Q7+01 "1..,1+02+01
  2.5uOO+02 5.91+6.5+04  1+,60(,5+01 -1.'+714+01
  3.0UOU+U2 5.9j01+04  4,5764+01 -1.~609+U1
  !I.5UUU+U2 5.'3101+04  4.51+30+0] -1.U7~8+01
  4.0UOO+U2 5.81\58+04  4.5U55+01 -9.~616+00
  4.5\JOU+02 5.85F.6+04  4.4638+01 -7.':IQ35+UU
  5.0UOU+U2 5.8221+04  4.Q17B+01 -6.tlU22+UU
  5.5uOu+02 5.7822+04  1+.5677+01 -5.tlO:>8+00
  6.0UOO+U2 5.1365+01+  3.6228+01 -4,':1381\+00
  6.5UOU+U2 5.0850+01+  3.565'++U1 -4.~1+58+UU
  7,OUOO+U2 5,0275+04  3.5048+01 -3,&3U7+0U
  7,5UOO+U2 4,9640+01+  3.1+1+12+01 -3.U824+00
o
I-  
z:  
ex:  
I-  -5
(Jl  
z:  
a  
u  
%: t5 
=> ...... 
-. In -10
a: a
CD C'\I 
-. z: 
-.I  
-. LL.. 
=> a 
C3  
IJJ IJJ -15
 -.I
- a 
a %: 
......  
...... a: 
~ IJJ 
a a... 
-.I  
  -20
-25
o
08 OCT 71
HR PLOT COMPLETED
SH PLOT COMPLETlU
LOG K PLor CO~PLETED
BA(N03J2 1- C02
N20S 1- BAC03
800
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 BEIN02)2 = N2031G) + BEO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 1.5421+04  4.2978+01 -1.9102+00
 5.0000+01 1.5445+04  4.3051+01 -1.0352+00
 1.0000+02 1.5509+04  4;3240+01 3.6709-01
 1.5000+02 1.5550+04  4.3346+01 1.4419+00
 2.0000+02 1.5539+04  4.3321+01 2.2905+00
 2.5000+02 1.5454+04  4.3153+01 2.9749+00
 3.0000+02 1.5285+04  4.2845+01 3.535"+00
 3.5000+02 1.5021+04  4.2405+01 3.9993+00
 4.0000+02 1.4658+04  4.1846+01 4.3862+00
 4.5000+02 1.4191+04  4.1171+01 4.7103+00
 5.0000+02 1.3616+04  4.0409+01 4.9823+00
 5.5000+02 1.2932+04  3.9552+01 5.2105+00
 6.0000+02 1.2135+04  3.8614+01 5.4013+00
 6.5000+02 1.1226+04  3.1601+01 5.5599+00
 7.0000+02 1.0202+04  3.6522+01 5.690"+00
 7.5000+02 9.0630+03  3.5381+01 5.1963+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
......
z
a::
......
en
z
o
u
2:5
::J"""
....(T')
a:0
CON
.... Z
-.-J
.... u..
::JO
C!I
UJUJ
-.-J
,.... 0
02:
-
...... a:
C>UJ
o Q..
-.-J
09 SEP 71
BE(N02)2
N203(GJ + BEO
=
10
5
o
-5
-10
-15
o
BDO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 BE(N0312 = N205(GI +6EO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 3.1381+0'+  '+.6568+01 -1.282"+01
 5.0000+01 '+.'+819+0'+  9.0551+01 -1.051~+01
 1.0000+02 '+.'+'+90+04  8.9612+01 -6.IH1~+00
 1.5000+02 4.'+144+04  8.8741+01 -3.4046+00
 2.0000+02 4.3113+04  8.7913+01 -1.0051+00
 2.5000+02 4.3373+04  8.7110+01 9.1875-01
 3.0000+02 4.2941+04  8.6321+01 2.4918+00
 3.5000+02 4.2'+75+04  8.55'+2+01 3.7986+00
 4.0000+02 4.1913+04  8.'+768+01 4.8987+00
 4.5000+02 4.1434+04  8.3996+01 5.8350+00
 5.0000+02 4.0859+04  8.3221+01 6.63~"+00
 5.5000+02 4.0245+04  8.2458+01 1.3358+00
 6.0000+02 3. 959'HO,+  8.1690+01 7.9'+28+00
 6.5000+02 3.8903+04  8.0922+01 8.4750+00
 7.0000+02 3.8174+04  8.0153+01 8.~438+00
 1.5000+02 3~1406+04  1.9383+01 9.3586+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
....
z
a:
....
en
z
o
u
%:5
:=) ~
...... If')
a:o
CDN
...... Z
--'
...... u..
:=)0
CI
UJUJ
--'
'""' 0
o %:
-
~a:
(!)UJ
00-
--'
09 SEP 71
BE(N03J2
=
N20S(GJ +BEO
10
5
o
-5
-10
-15
o
BOO
TEMPERRTURE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971 2611N03)3 = 3N2051G) + 61203  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 11.51179+011  5.1111111+01 -2.11137+01
 5.0000+01 5.8917+011  9.81129+01 -1.8333+01
 1.0000+02 5.8588+011  9.71183+01 -1.3008+01
 1.5000+02 5.82112+011  9.&612+01 -8.965i1!+00
 2.0000+02 5.7871+011  9.57811+01 -5.7963+00
 2.5000+02 5.71171+011  9.11980+01 -3.2502+00
 3.0000+02 5.7038+011  9.11192+01 -1.16311+00
 3.5000+02 5.6572+011  9.31112+01 5.71171-01
 11.0000+02 5.6070+011  9.2637+01 2.0Ilil!O+00
 11.5000+02 5.5531+011  9.1866+01 3.29117+00
 5.0000+02 5.11955+011  9.10%+01 1I.37"b+OO
 5.5000+02 5.113112+011  9.0327+01 5.313U+00
 6.0000+02 5.3690+011  8.9559+01 6.13113+00
 6.5000+02 5.2999+011  8.8790+01 6.857&+00
 7.0000+02 5.2270+011  8.8021+01 7.11979+00
 7.5000+02 5.1502+011  8.7251+01 8.0&711+00
HR PLOT COMPLETED      
SR PLOT COMPLETED      
LOG K PLOT COMPLETED     
10
....
z
a:
....
(()
Z
o
u
z:G
::J-
- U')
0=0
mN
-z
-8
-u..
::JO
C!J
UJ UJ
...J
-0
Oz:
-
-0=
CJUJ
OQ..
...J
5
o
-5
-10
-15
o
09 SEP 71
261 (N03)3
=
3N20S(G) + 61203
BOD
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  CAIN0212 = N203 + CAO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 ".5275+0"  .....091++01 -2.35"8+01
 5.0000+01 ".5299+0"  "."173+01 -2.0980+01
 1.0000+02 ".5363+0"  ".1+356+01 -1.6873+01
 1.5000+02 ...5..01++0..  "."'+62+01 -1.3732+01
 2.0000+02 ".5393+0'+  ...,+..37+01 -1.125'++01
 2.5000+02 '+.5309+0'+  '+.'+270+01 -9.2521+00
 3.0000+02 ".5139+0,+  ...3961+01 -7.6031+00
 3.5000+02 '+."876+0'+  ".3522+01 -6.226'++00
 '+.0000+02 '+.1+513+0'+  ...2962+01 -5.0619+00
 ,+.5000+02 '+."0'+5+0"  ".229"+01 -'+.0671+00
 5.0000+02 ".3'+71+0"  ,+.1526+01 -3.2122+00
 5.5000+02 '+.2786+0"  ".0669+01 -2.'+71'++00
 6.0000+02 '+.1990+0"  3.9731+01 -1.8268+00
 6.5000+02 '+.1081+0"  3.8719+01 -1.2635+00
 7.0000+02 ...0057+0,+  3.7639+01 -7.6981-01
 7.5000+02 3.8918+0"  3.6'+98+01 -3.3625-01
  HR PLOT COMPLETED     
  SR PLOT COMPLETED     
  LOG K PLOT COMPLETED    
CA(N02J2
=
N203 + CAO
o
I-
Z
a:
I-
en
z
o
u
z:t5
::J"'"
- (T)
a:o
aJC\I
- Z
...J
- LL
::J 0
C3
UJ UJ
...J
-- 0
oz:
-
..... a:
(!)UJ
o a..
...J
-5
-10
-15
-20
-25
o
800
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71

-------
8 OCT. 1971  CA(N0212 + C02 I N203(GI + CAC03  
  TEMPf:RATURE ENTHALPY   E.NTROPY LOG K
  DEG. C CIIL./GMOLE   CAL./GMOLEIDEG.K  
  2.5UOO+01 2.8961+03   1.96~b+00 -1.b9~~+00
  5.0UOO+01 2.93~8+03   2.085;J+00 .1.:)283+00
  1.0000+02 3.0651+03   2.~613+00 -1.:.!571+00
  1.5000+U2 3.2113+03   2.8293+00 -1.U~U1+0U
  2.0000+02 3.3277+03   3.0903+00 -8.&1&3.01
  2.5000"+02 3.3870+03   3.2106+00 -7.1322-01
  3.0UOO+U2 3.3716+03   3.183~+00 -5.11983-01
  3.5UOO+02 3.2696+03   3.0139+00 -4.8797-01
  ~.0000+02 3.07.)1+03   2.7116+00 -~.0509-01
  4.5000+02 2.7764+03   2.2873+00 -3..)917-01
  5.0uOU+02 2.3755+03   1.7520+00 -2.118:)7-01
  5.5000+02 1.8675+03   1.1160+00 -2.::1191-01
  6.0UOO+02 1.2504+03   3.8884-01 -2.:.!798-01
  6.5000+02 5.2265+02   -4.2107-01 -2.1575-01
  7.0000+02 -3.1674+02   -1.3061+00 -2.1430-01
  7.5000+02 -1.2665+03   -2.259.3+00 -2.:.!281-01
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT CUMPLETED
CA(N02J2 + C02
~ N203(GJ + CAC03
10
I-  
z:  
a::  5
I- 
(f)  
z:  
0  
u  
~ ~ 
::J "- 
..... (T) 0
a: 0
CD N 
..... z: -
-.-J  
..... IJ... 
::J 0 
C3  
LLJ LLJ -5
 ....J
- 0 
0 ~ 
.....  
~ a: 
LLJ 
0 a.... 
....J  -10
-15
o
800
TEMPERATURE - DEGREES CENTIGRADE
08 OCT 71

-------
10 ,~I)G. 1971  CAIN03)2 = N205 + CAO  
  TFMPERATURE ENTHALPY    ENTROPY LOG K
  OEG. C CAL./GMOLE   CAL./GMOLE/DEG.K  
  2.5000+01 7.525~+01l    11.6084+01 -11.5087+01
  5.0000+01 11.1:1718+011    9.0152+01 -11.029'++01
  ~ .0000+02 8.0493+04    8.9502+01 -3.2266+01
  ~.5000+C2 8.8207+011    8.8986+01 -2.614'i+01
  ,.0000+02 8.8(;68+011    8.811%+01 --2.1336+01
  :>.5000+('2 8.7b13+04    8.7984+01 -1.7,+~'++01
  3.0000+02 8.7~09+011    8.71131+U1 -1.112~'H01
  3.5000+02 8.71118+011    8.6827+01 -1.1587+01
  4.000<:'+02 8.6721+011    0.616'.1+01 -9.322:>+00
  4.50nCt+C2 8.6;:;26+011    5.~'I5'1+01 -7.381~+00
  5.0000+02 8.51:>57+04    8.4700+01 -5.7u1'++00
  5.500<:'+02 8.5013+011    8.3893+C1 -4.236U+00
  6.0unO+02 7 .Y~01tOIl    7.6940+01 -3.008t!+00
  (,.5000+02 7.1:11101+011    7.6049+01 -1.94UU+00
  7.0000+02 7.752U+04    7.5120+01 -9.916:>-01
  7.~000+02 7.6557+011    7.11156+01 -1.1160:>-01
I-
Z
a:
I-
en
Z
o
u
~G
::J ~
...... lJ')
cr:O
(DC\!
...... Z
...J
...... 1L..
::J 0
C3
UJ UJ
...J
~ 0
o ~
-
~ cr:
c.!)UJ
o 0-
...J
HR PLOT COMPLETED
SR PLOT CO~PLETED
LOG K PLOT CO~PLETED
CA(N03)2
=
N205 + CAO
o
BOO
-5
-10
-15
-20
-25
o
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT. 1971  CA(N03)2 + C02 N205(G) + CAC03  
  TEMPEHATUHE ENTHALPY  ENTROPY LOG J(
  OEG. C CAL./GMOLE  CAL./GII.OLE/DEG.K  
  2.5UOO+01 3.11876+0'+  3.95'+6+00 -?~2.53+01
  5.0UOO+01 '+.6352+0'+  ,+.1\06,++U1 -2.U842+01
  1.0UOO+02 '+.b195+0,+  '+.7607+01 -1.&650+01
  1.5UOU+U2 4.609'++0'+  '+.7353+01 ..1.~4:>7+01
  2.0UOO+U2 '+.f-U02+0,+  '+.71'+8+01 -1.U9'+.3+01
  2.5UOU+02 11.5891+0'+  1I.692~+01 -8.':1151+00
  3.UUOU+U2 4,57'+2+04  '+.665.H01 -7.iI!4:J.3+00
  3.5UOO+02 4,5541+04  '+.6.Sl8+01 -5.tI'+1!7+00
  4.0UOU+02 '+.5201+0'+  '+.5';118+01 -4.b656+00
  '+.5UOO+U2 4.11,)0;6+0'+  '+.540;.3+01 .3.b526+00
  5.0UOO+U2 '+.11562+04  4.49<'~+01 ..2.1777+00
  5.5UOO+02 4.'+09'1+0'+  4.'+.3'+0+01 -2.U11:>5+00
  6.0UOU+U2 .5.8'+61+011  3.7591)+01 -1.'+U96+UO
  6.5UOO+02 3.7842+0'+  3.6909+01 -R.':I229-01
  7.CUOO+02 .s.7146+0'+  3.6175+01 -4.,)6.10-01
  7.5UOO+U2 3.6.370+0'+  3.5398+01 -3.41577-041
I-  
Z  
a:  -5
I- 
en  
z  
a  
u  
:z::: ~ 
::J '-' 
..... If) -10
a:: a
CD C'\I 
..... Z 
.-J  
..... I.L. 
::J a 
C?J  
UJ UJ -15
 .-J
- a 
o :z::: 
......  
~ a:: 
~ UJ 
a a.... 
.-J  
  -20
08 OCT 71
HH PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
CA(N03J2 + C02
..
N20S(G) + CAC03
C!
-25
o
800
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 CDIN0212 = N203 + COO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K.
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 2.9388+0..  .....102+01 -1.1902+01
 5.0000+01 2.9..12+0..  "."180+01 -1.0235+01
 1.0000+02 2.9476+0"  4.4363+01 -7.5672+00
 1.5000+02 2.9517+04  4.4469+01 -5.5259+00
 2.0000+02 2.9506+04  4.4444+01 -3.9150+00'
 2.5000+02 2.9421+04  4.4276+01 -2.6141+00
 3.0000+02 2.9252+04  4.3968+01 -1.5441+00
 3.5000+02 2.8988+04  4.3528+01 -6.5344-01
 4.0000+02 2.8625+04  4.2969+01 9.7280-02
 4.5000+02 2.8158+04  4.2300+01 7.348'J-01
 5.0000+02 2.7583+0"  4.1532+01 1.2799+00
 5.5000+02 2.6899+04  4.0675+01 1.7"78+00
 6.0000+02 2.6102+04  3.9737+01 2.1510+00
 6.5000+02 2.5193+0"  3.8724+01 2."989+00
 7.0000+02 2.4169+04  3.7645+01 2.7993+00
 7.5000+02 2.3030+04  3.6504+01 3.0585+00
HR PLOT COMPLETED     
SR pLOT COMPLETED     
LOG K PLOT COMPLETED    
....
z:
a:
....
en
z:
o
u
z:G
::)~
..... ('\')
a:O
(DC'\!
..... z:
...J
.....u..
::)0
C!J
UJ UJ
...J
- 0
o z:
--
~ a:
(!)UJ
o a...
...J
09 SEP 71
CDCN02)2
N203 + COO
=
10
5
o
-5
-10
-15
o
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 CDIN0312 = N205 + COO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 5.0578+01+  1+.7692+01 -2.661+':1+01
 5.0000+01 6.1+01&+01+  9.1680+01 -2.325&+01
 1.0000+02 6.3687+011  ':1.07311+01 -1.746'3+01
 1.5000+02 6.3341+011  8.986'1+01 -1.j07j+Ol
 2.0000+02 6.2':170+01+  8.':1036+01 -9.626HOO
 2.5000+02 6.2570+01+  8.8232+01 -6.8551+00
 3.0000+02 6.2137+01+  8.711113+01 -1+.582~+00
 3.5000+02 6.1671+01+  8.666'+"'01 -2.688'++00
 11.0000+02 5.6821+01+  7.9022+01 -1.177'++00
 11.5000+02 5.6283"'011  7.8251+01 9.2212-02
 5.0000+02 5.5707+0'+  7.7'+81+01 1.186/+00
 5.5000+02 5.509'++01+  7.6713+01 2.1381+00
 6.0000+02 5.1+111+2+01+  7.5911'++01 2.97U8+00
 6.5000...02 5.3751+01+  7.5176+01 3.70113+00
 7.0000+02 5.3022+011  7.1+1+07+01 11.3537+00
 7.5000+02 5.22511+0'+  7.3637+01 1+.931~+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
 LOG K PLOT COMPLETED    
CD(N03)2
=
N20S + COO
5
~
z
a:
~
en
z
o
u
z:G
::;).....
...... In
a:O
C:CN
"""Z
...J
......IJ...
;:)0
C!J
LLJLLJ
...J
--0
02:
.....
.....a:
(!)LLJ
on..
...J
o
-5
-10
-15
-20
o
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71
BOD

-------
8 OCT. 1971  CO(No312 + C02 I N2Q5(GI + COC03  
  TEMPERATURE ENTHALPY    ENTROPY LUG K
  DEG. C CAL./GMOLE   CAL ./GrJ,OLUOEG. K  
  2.5UOO+Ol 2.7511+04    4.94,U8+00 -1.119~8+01
  5.0000+01 4.0743+04    4.1190&+01 -1.&8&5+01
  1.0UOO+02 4.0457+04    4.1\0~4+01 -1.~18b+Ol
  1.5UOO+02 4.C206+04    4.74<;6+01 -1.U394+01
  2.0UOO+02 3.9970+04    4.6924+01 -8.~0&.HUO
  2.5UOO+02 3.9728+04    4.6438+01 -6.'+471+00
  3.0UOO+02 3.9474+04    4.5974+01 -5 .'UU56+ UU
  3.5UOO+02 3.9200+04    4.551&+01 -3.IIOU2+00
  4.0UOO+02 3.4554+04    3.619U+01 -2.117~0+00
  4.5UOO+02 ~.42~1+04    3.7727+01 -2.U9':18+UO
  5.0.UOO+02 3.3679+04    3.7257+01 -1.'+3'+2+00
  5.5000+02 3.3498+04    3.6779+01 -6.:>5&4-01
  6.0000+02 3.3087+04    3.629'++01 -3.'+940-01
  6.5UOO+U2 3.2644+04    3.5802+01 9.1>216-02
  7.0UOO+02 3.2171+04    3.5303+01 '+.':I0'+7-Ul
  7.5000+02 3.1&66+04    3.4797+01 1I.40113-U1
~  
z  
a:  
~  0
en  
z  
a  
u  
 - 
~ (.!) 
:;:) ~ 
..... Ln -5
a: a
CD C"\I 
..... Z 
-.J  
..... I.L.. 
:;:) a 
C3  
w w -10
 -.J
 a 
a ~ 
-  
~ a:: 
(.!) w 
a a.. 
-.J  
  -15
08 OCT 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
CDIN03J2 + C02 ~ N20SIGJ + CDC03
5
-20
o
BOO
TEMPERRTURE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971 CEIN03)" = 2N205 + CE02  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CALelGMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 5.2530+0..  5.53..5+01 -2.6..07+01
 5.0000+01 6.5968+0"  9.9333+01 -2.2903+01
 1.0000+02 6.56..0+0..  9.8387+01 -1.69..0+01
 1.5000+02 6.5293+0"  9.7517+01 -1.2"09+01
 2.0000+02 6...922+0..  9.6689+01 -8.8555+00
 2.5000+02 6."522+0"  9.5885+01 -5.9981+00
 3.0000+02 6."090+0"  9.5096+01 -3.65""+00
 3.5000+02 6.3623+0"  9...316+01 -1.7005+00
 ".0000+02 6.3121+0"  9.35..2+01 -".9553-02
 ".5000+02 6.2583+0"  9.2770+01 1.3615+00
 5.0000+02 6.2007+0..  9.2001+01 2.5791+00
 5.5000+02 6.1393+0"  9.1232+01 3.6386+00
 6.0000+02 6.0H1+0"  9.0"63+01 ".5671+00
 6.5000+02 6.0051+0..  8.969"+01 5.3860+00
 7.0000+02 5.9321+0"  8.8925+01 6 .1120+00
 7.5000+02 5.8553+0"  8.8155+01 6.7589+00
HR PLOT CO~PLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
5
~
Z,
II
~
en
z
o
u
:z:G
::J"""
- l/')
a:0
CDN
-:z
.....J
-IJ..
::JO
C3
UJ UJ
.....J
,.....0
O:z:
....
--a:
(!)UJ
o (l..
.....J
o
-5
-10
-15
-20
o
09 SEP 71
CE(N03Jl!
=
2N20S + CE02
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 COtN0212 = N203 + COO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOL.E/DEG.K  
 2.5000+01 2.6127+01+  1+.5965+01 -9.101+8+00
 5.0000+01 2.6151+01+  1+.601+3+01 -7.6228+00
 1.0000+02 2.6215+01+  1+.6226+01 -5.2501++00
 1.5000+02 2.6257+01+  1+.6332+01 -3.1+31+7+00
 2.0000+02 2.621+5+01+  1+.6308+01 -2.0018+00
 2.5000+02 2.6161+01+  1+.611+0+01 -8.1+1+77-01
 3.0000+02 2.5991+01+  1+.5831+01 1.0583-01
 3.5000+02 2.5728+01+  1+.5392+01 8.9731-01
 1+.0000+02 2.5365+01+  1+.1+833+01 1.5631+00
 1+.5000+02 2.1+897+01+  1+.1+161++01 2.1275+00
 5.0000+02 2.1+323+01+  1+.3396+01 2.6068+00
 5.5000+02 2.3638+01+  1+.2539+01 3.02U8+00
 6.0000+02 2.261+2+01+  4.1601+01 3.371+4+00
 6.5000+02 2.1933+01+  1+.0569+01 3.6761+00
 7.0000+02 2.0909+01+  3.9509+01 3.9389+00
 7.5000+02 1.9770+01+  3.8368+01 1+.162~+00
HR PLOT COMPLETED     
SR pLOT COMPLETED     
LOG K PLOT COMPLETED    
I-
Z
a:
I-
(f)
Z
o
u
%:G
::)......
-(T)
a:O
Q:)C\I
- Z
~
- u..
::)0
C3
UJ UJ
~
- 0
o %:
....
...... a:
(!)UJ
On..
...J
09 SEP 71
CO(N02J2
N203 + COO
=
10
5
o
-5
-10
-15
o
BOD
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  CO(N0312 = N205 + COO  
 TEMPERATURE ENTHALPY  ENTROPY lOG K
 DEG. C CAl./GMOlE  CAl./GMOlE/DEG.K  
 2.5000+01 4.6127+04  4.9555+01 -2.2979+01
 5.0000+01 5.9565+04  9.3543+01 -1.983':1+01
 1.0000+02 5.9236+04  9.2597+01 -1.445:>+01
 1.5000+02 5.8890+04  9.1727+01 -1.03611+01
 2.0000+02 5.8519+04  9.0899+01 -7.1634+00
 2.5000+02 5.8119+04  9.0095+01 -4.5887+00
 3.0£.100+£.12 5.7E>87+04  8.9306+01 -2.478~+00
 3.5000+02 5.7220+04  8.8527+01 -7.2034-01
 4.0000+02 5.6719+04  8.7752+01 7.6387-01
 4.5000+02 5.6180+04  8.6981+01 2.0312+00
 5.0000+0<, 5.5605+04  8.6212+01 3.1237+00
 5.5000+02 5.4991+04  8.5443+01 4.0732+00
 6.0000+02 5.1+339+04  8.4675+01 1+.901+1++00
 6.5000+02 5.3649+04  8.3907+01 5.6365+00
 7.0000+02 5.2920+04  8.3138+01 6.281+7+00
 7.5000+02 5.2152+04  8.2368+01 6.8611++00
~
z
a:
~
en
z
o
u
:z:G
::>......
-Ln
a:: 0
aJN
-z
-'
-LL.
::>0
c::!I
LLILLI
-'
.....0
O:z:
-
"""a::
(!)LLI
00-
-'
-5
-10
-15
-20
o
09 SEP 71
HR plOT COMPLETED
SR PLOT COMPLETED
lOG K PLOT COMPLETED
CO(N03J2
N20S + COO
=
5
BOO
o
TEMPEARTUAE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971 2CUN02 = N203 + CU20  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL oIGMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 1.2700+04  3.9151+01 -7.5237-01
 5.0000+01 1.2724+04  3.9230+01 -3.1640-02
 1.0000+02 1.2788+04  3.9413+01 1.1241+00
 1.5000+02 1.2830+04  3.9519+01 2.0106+00
 2.0000+02 1.2818+04  3.9494+01 2.7107+00
 2.5000+0, 1.2733+04  3.9326+01 3.2750+00
 3.0000+02 1.2564+04  3.9017+01 3.7363+00
 3.5000+02 1.2300+04  3.8578+01 4.1170+00
 4.0000+02 1.1937+04  3.8018+01 4.4330+00
 4.5000+02 1.1470+04  3.7349+01 4.6961+00
 5.0000+02 1.0895+04  3.6581+01 4.914':1+00
 5.5000+02 1.0211+04  3.5724+01 5.0964+00
 6.0000+02 9.4142+03  3.4786+01 5.24~8+00
 6.5000+02 8.5047-+03  3.3773+01 5.3675+00
 7.0000+02 7.4809+03  3.2694+01 5.4649+00
 7.5000+02 6.3417+03  3.1553+01 5.541U+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
 2CUN02 = N203 + CU20
 10  
I-   
Z   
ex: 5  
I-  
(j)   
Z   
0   
u   
,;:<3   
=:)'-'   
....... C'1 0  
CCo  
CDN   
....... Z   
....J   
....... l1...   
=:)0   
Q   
WW -5  
....J  
~o   
0';:   
.......   
"""'0:   
DW   
0 Cl.   
-J -10  
09 5EP 71
-15
o
BOO
TEMPERATURE - DEGREES CENT1GRADE

-------
9 SEPT. 1971 2CUN03 = N205 +CU20  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 2.7600+0~  ~.0761+01 -1.1322+01
 5.0000+01 ~.1038+0&+  8.~749+01 -9.231&++00
 1.0000+02 &+.0709+0~  8.3803+01 -5.5269+00
 1.5000+02 ~.0363+0&+  8.2932+01 -2.7212+00
 2.0000+02 3.9992+0&+  8.210~+01 -5.2809-01
 2.5000+02 3.9591+0&+  8.1300+Cl 1.2288+00
 3.0000+02 3.9159+0~  8.0511+01 2.66~0+00
 3.5000+02 3.8692+0~  7.9730+01 3.8551+00
 &+.0000+02 3.8190+0&+  7.8956+01 ~.8567+00
 ~.5000+02 3.7651+0~  7.818~+01 5.7081+00
 5.0000+02 3.7075+0&+  7.Hl~+01 6.~385+00
 5.5000+02 3.6~61+0&+  7.66~5+01 7.0699+00
 6.0000+02 3.5809+0~  7.5876+01 7.619~+00
 6.5000+02 3.5118+04  7.5107+01 8.1003+00
 7.0000+02 3.'+389+04  7.&+337+01 8.5231+00
 7.5000+02 3.3620+04  7.3567+01 8.896'++00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
  2CUN03 = N205 +CU20
  15  
I-    
Z    
a:  10  
I-   
(J1    
Z    
0    
u    
~L?   
::),-,   
.....l[) 5  
a:o  
(DN   
.....z   
-.J    
..... IJ....   
::) 0   
0    
W W 0  
 -.J  
~o   
0 ~   
.....    
'-'a:   
L?W   
OCL   
-'  -5  
-10
o
09 SEP 71
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 CU(N0212 = N203 + CUO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 1.9250+0~  ~.3300+01 -~.6~67+00
 5.0000+01 1.'3275+0~  ~.3379+01 -3.55~6+00
 1.0000+02 1.9338+0~  ~.3562+01 -1.8053+00
 1.5000+02 1.9380+0~  ~.3668+01 -~.655'1-01
 2.0000+02 1.9368+0'1  'I.36~3+01 5.'3201)-01
 2.5000+02 1.928~+0~  ~.3~75+01 1.~~5~+00
 3.0000+02 1.91l~+0~  ~.3167+01 2.1~55+00
 3.5000+02 1.8651+0~  ~.2727+01 2.7266+00
 4.0000+02 1.8~88+0~  ~. 2168+0.1 3.2133+00
 ~.5000+02 1.8021+0~  ~.1499+01 3.6233+00
 5.0000+02 1.H~6+0~  4.0731+01 3.'37U2+00
 5.500C+02 1.6761+0~  3.9874+01 ~.26'11+00
 6.0000+02 1.5965+0~  3.8936+01 ~.5132+00
 6.5000+02 1.5056+0~  3.792~+01 ~.7237+00
 7.0000+02 1.4032+04  3.6844+01 4.9001HOO
 7.5000+02 1.2893+0~  3.5703+01 5.0~67+00
HR PLOT COMPLETED     
SR pLOT COMPLETED     
LOG K PLOT COMPLETED    
CU(N02J2
=
N203 + CUO
10
I-
Z
a:
I-
(f)
Z
o
u
%:5
::>-
......(\')
a:o
(DN
...... Z
...J
...... I.L.
::> 0
C!J
W W
...J
....... 0
O%:
...
- a:
t!)w
OCL
...J
5
o
-5
-10
-15
o
BOO
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71

-------
9 SEPT. 1971 CU(N0312 = N205 + CUO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 3.7850+01+  1+.6890+01 -1.71+95+01
 5.0000+01 5.1289+01+  9.0878+01 -1.1+821++01
 1.0000+02 5.0960+01+  8.9933+01 -1.0190+01
 1.5000+02 5.0613+01+  8.9062+01 -6.6755+00
 2.0000+02 5.021+2+01+  8.8231++01 -3.9229+00
 2.5000+02 1+.981+2+01+  8.71+31+01 -1.7135+00
 3.0000+02 1+.9«+10+01+  8.661+2+01 9.5252-02
 3.5000+02 1+.891+1++01+  8.5863+01 1.6000+00
 «+.0000+02 1+.8«+1+2+01+  8.5088+01 2.868&+00
 1+.5000+02 «+.790«++01+  8.1+317+01 3.9501+00
 5.0000+02 1+.7328+01+  8.35«+8+01 «+.8809+00
 5.5000+02 1+.6715+01+  8.2779+01 5.6881++00
 6.0000+02 1+.6063+0«+  8.2011+01 6.3938+00
 6.5000+02 1+.5373+04  8.1242+01 7.013&+00
 7.0000+02 «+.4643+04  8.0«+73+01 7.5612+00
 7.5000+02 «+.3875+04  7.970«++01 8.0470+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
~
z
a:
~
en
z
a
u
%:(3
~-
...... If)
a:o
(DC'll
...... Z
.-J
...... l.L..
~ a
o
w w
.-J
,.... a
a %:
-
-a:
t!Jw
a a..
.-J
-5
-10
-15
o
09 SEP 71
CU(N03J2
=
N20S of- CUD
10
5
800
o
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  FE(N0212 = N203 + FEU  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 2.6398+011  11.7101+01 -8.923!:1+00
 5.0000+01 2.6422+011  11.7779+01 -7.1126~+00
 1.0000+02 2.6486+011  11.7962+01 -5.029&+00
 1.5000+02 2.6527+011  4.~068+01 -3.1950!+00
 2.0000+02 2.6516+011  4.804,3+01 -1.747:>+00
 2.5000+02 2.6431+011  4.7875+01 -5. .'8~'+-01
 3.0000+02 2.&262+04  4.7567+01 3.8192-01
 3.5000+02 2.5998+04  11.7127+01 1.1817+00
 4.0000+02 2.5&35+04  11.&568+01 1.8511:>+00
 4.5000+02 2.51&8+011  4.5899+01 2.11250+00
 5.0000+02 2.4593+011  11.5131+01 2.9115+00
 5.5000+02 2.3909+04  4.11274+01 3.3282+00
 6.0000+02 2.3112+04  11.3336+01 3.685'3+00
 6.5000+02 2.2203+04  4.23211+01 3.993~+00
 7.0000+02 2.1179+04  11.121111+01 1I.257~+OO
 7.5000+02 2.0040+04  4.0103+01 11.11837+00
I-
Z
a:
I-
(f)
Z
o
u
:z:C3
::J -
- (T)
a:0
(DC\!
- Z
..J
- lL.
::JO
C3
lJJ lJJ
..J
,.... 0
OX:
.....
-a:
~lJJ
o a....
..J
09 SEP 71
HR PLOT COMPLETED
SR pLOT COMPLETED
LOG K PLOT COMPLETED
FE(N02J2
N203 + FEO
=
10
5
o
-5
-10
-15
o
800
TEMPERATURE- DEGREES CENTIGRADE

-------
9 SEPT. 1971  FE(N0312 = N205 + FEO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL ./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 1+.6168+01+  5.1291+01 -2.2630+01
 5.0000+01 5.9b06+01+  9.5279+01 -1.91+81+01
 1.0000+02 5.9271+01+  9.1+333+01 -1.l+l0U+Ol
 1.5000+0:;> 5.6931+04  9.346.)+01 -1.000'7+01
 2.0000+02 5.8560+01+  9.2635+01 -6.8028+00
 2.5000+02 5.8160+01+  9.1832+01 -1+.226.3+00
 3.0000+02 5.1728+01+  9.101+3+01 -2.1144+00
 3.5000+02 5. '1~61+01+  9.U26.:l+Ol -3.551':1-01
 1+.0000+02 5.6759+01+  8.91+89+01 1.1301+00
 1+.5000+02 5.6221+01+  8.8718+01 2.3983+00
 5.0000+02 5.561+5+01+  8.7949+01 3.1+916+00
 5.5000+0.2 5.5032+01+  8.7180+01 1+.1+1+1':1+00
 6.0000+02 5.1+380+01+  8.61+12+01 5.2731+00
 6.5000+02 5.3690+01+  8.561+3+01 6.0061++00
 7.0000+02 5.2961+01+  8.1+871++01 6.6551+00
 7.5000+02 5.2193+01+  .8.1+105+01 7.23U+00
  HR PLOT COMPLETED     
  SR pLOT COMPLETED     
  LOG KPLOT COMPLETED    
FE(N03J2
=
N205 + FEO
5
.....
z
a:
.....
en
z
o
u
:z:G
::)"-
..... IJ')
a:0
aJN
..... Z
...J
..... u...
::;)0
(3
W W
...J
,..... 0
ox
.....
-a:
(!)W
O/l..
...J
o
-5
-10
-15
-20
o
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71
800

-------
..
9 SEPT. 1971  2FE(N0313 = 3N205 + FE203  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 2.8565+04  5.2827+01 -9.3927+00
 5.0000+01 4.2028+04  9.6892+01 -7.2469+00
 1.0000+02 4.1711+04  9.5981+01 -3.4520+00
 1.5000+02 4.1348+04  9.5071+01 -5.774u-01
 2.0000+.02 4.0948+04  9.4179+01 1.6688+00
 2.5000+02 4.0517+04  9.3312+01 3.4673+00
 3.0000+02 4.0056+04  9.2471+01 4.9357+00
 3.5000+02 3.9568+04  9.1656+01 6.153'.:1+00
 4.0000+02 3.9056+04  9.0865+01 7.1782+00
 4.5000+02 3.8520+04  9.0097+01 8.0490+00
 5.0000+02 3.7960+04  8.9349+01 8.7965+00
 5.5000+02 3.7378+04  8.8619+01 9.4434+00
 6.0000+02 3.6774+04  8.7907+01 1.0007+U1
 6.5000+02 3.6148+04  8.7210+01 1.0502+01
 7.0000+02 3.5516+04  8.6544+01 1.09311+01
 7.5000+02 3.4753+04  8.5779+01 1.1323+01
  HR PLOT COMPLETED     
  SR PLOT COMPLETlD     
  LOG K PLOT CO~PLETED    
I-
Z
a:
I-
(f)
Z
o
U
~(b
=> ~
...... Lf)
rr.o
(DC\!
...... Z
-1
...... lJ....
=> a
C3
w W
--I
~ a
a ~
......
~rr.
~w
OCL
-1
D9 ~EP 71
2FE(ND3)3
=
3N2D5 + FE2D3
15
10
BOO
5
o
-5
-10
o
TEMPERRTURE - DEGREES CENTIGRRDE

-------
9 SEPT. 1~71  2KN02 = N203 + K20  
 TEMPERATURE ENTHALPY ENTROPY LOG K
 OEG. C CAL./GMOLE  CAL./GMOLf./OEG.K  
 2.5000+01 1.1040+05 4.3314+01 -7.1451+01
 5.0000+01 1.1002+05 4.2150+01 -6.5193+01
 1.0000+02 1.1009+05 4.2333+01 -5.5221+01
 1.5000+02 1.1013+05 4.2439+01 -4.7601+01
 2.0000+02 1.1012+05 4.2414+01 -4.1591+01
 2.5000+02 1.1003+05 4.2246+01 -3.6732+01
 3.0000+02 1.0986+05 4.1938+01 -3.2725+01
 3.5000+02 1.0960+05 4.1499+01 -2.9367+01
 4.000(1+02 1.0924+05 4.0939+01 -2.6517+01
 4.5000+02 1.0877+05 4.0271+01 -2.407U+01
 5.0000+02 1.0820+05 3.9503+01 -2.1949+01
 5.5000+02 1.0751+05 3.8&4b+01 -2.0097+01
 6.0000+02 1.0672+05 3.7708+01 -1.8469+01
 6.5000+02 1.0581+05 3.6696+01 -1.702!!+01
 7.0000+02 1.0478+05 3.5616+01 -1.5747+01
 7.5000+02 1.0364+05 3.4475+01 -1.4603+01
-10
I-
Z
a:
I-
(f)
Z
o
u
E(3
:::>~
...... ('I')
ceo
CD(\J
...... Z
...J
...... lL.
:::> 0
a
w w
...J
~ 0
OE
......
~ce
~w
o a....
...J
-15
-20
-25
-30
-35
o
09 SEP 71
HR PLOT COMPLETEO
SR PLOT COMPLETEO
LOG K PLOT COMPLETEO
2KN02
=
N203 + K2D
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT. 1971  2KN02 + C02 N2031G) + K2C03  
  TEIiIPERATURE ENTHALPY   ENTROPY LOG K
  OEG. C CAL./GMOLE CAL./GMOLE/OEG.K  
  ~.5000+01 1.1\901+04  1.0646+00 -1.~621+01
  5.0UOU+U1 1.8521+04  -1.22,s,s-01 -1.i!5~2+01
  1.0UOO+U2 1.e628+04  1./1405-01 -1.U869+01
  1.5UOU+U2 1.87f,7+04  ~.32~4-01 -9.~7~7+00
  :>.OUOU+lI2 1.8b/18+04  8.0432-01 -8.:J41S2+UO
  :1.5UOO+02 1.8'3,6.h04  9.5468-01 -7.1126+00
  3.UUOU+U2 1.8911+04  9.7U69-U1 -7.U212+00
  3.5UUU+U2 1.8900+04  6.5,s.39-01 -(,."..17+00
  II.OUOO+U2 1.S7"2+04  6.0977-U1 -5.':1512+00
  4.5UOO+U:> 1./111/19+04  2.1~9(15-01 -5.:J.331+00
  5.0iJOU+U2 1.8139+04  -2.1899-01 -5.1749+00
  '5.5..100+U2 1.761\7+04  -7.8111\9-U1 -4.U672+0U
  ';.OUOO+02 t.7131+04  -1.4.~q8+00 -4.6U2.3+00
  6.5UOU+U2 1.1i470+04  -;:>.1757+00 -4.37".3+00
  7.0UOO+U2 1.5702+04  -2.9/352+00 -4.171:15+00
  7.5UOO+U:1 1.4827+04  -3.1\618+00 -4.U1U8+0U
I-  
Z  
a:  C
I- 
en  
z  
a  
u  
, D 
:::) ~ 
........ ('I") 5
a: a
CD ("\J 
........ z: 
-I  
........ lL. 
:::) a 
Q  
lJ..J lJ..J -10
 -I
~ a 
a L 
- a: 
D lJ..J 
a Q... 
-I  
  -15
08 OCT 71
HR PLOT COMPLETED
S~ PLOT COMP~ETlD
LOG K PLOT CU~PLETEO
2KN02 + C02
N203(GJ + K2C03
5
-20
o
600
TEMPERATURE - DEGREES CENTIGRADE

-------
19 ',UG. 1971  2KI.J03 = ~J205 +K20  
  TE~lprRA runE [IHHALPY   ENTROPY LOG K
  DEG. C CAL./G~;CLE   CAL dG/I,OLE/DEG. K  
  2.5(100+01 l.:H 74+05   4.~76't+01 :-1.0181+02
  5.UOCU+tJ 1.6~J.~+05   8.6607+01 .-9.2746+01
  1.0000+02 1.b1i96+u5   a.6137+01 -7.77t\'t+01
  1.'JCCU+O;: 1.b~1'J+u5   7.924£+01 -6.6441+01
  2.0,,( ';+1.;2 l.612.U+U5   7.&.1Eo+01 -5.7606+01
  2.5f)C.a+c", ~..o15lJ+05   7.776~+01 -5.0471+01
  3.0000+0£ 1.6126+05   7.735£+01 -4.45B~+01
  ? . 5 (, n; + ~ ~~ 1.:jtA9+'.)!i   6.~470+G1 -3.970U+01
  4.\,()(jQ+G.. 1.~jU2+05   6.':11)4+01 -.3.562b+01
  1f.~f!c!U+O; 1.!.i<.1'::i+05   6.9U07+01 -.3.211':1+01
  5. '" (' ( () + C 2 1.~)t.1U+05   6.bH9J.+Ol -2.906/+01
  ~.~'O(~o.v~) 1.:JL(,~+05   6.68.32+01 -2.636IH01
  f..(..(jCO+()::> 1.5"O'i+(;5   6.1:.021+0l -2.4U1~+U1
  (.sc~o+(;;, 1.:",,;)07+05   6.f..o51+L;1 -2.190U+01
  7. ocr;u+c,;,~ 1.'j,,).1+u~   6.(,91:5+U1 -2.0U01+U1
  7.5CGU+U;o 1. ~r.J2:')+u5   6.-;;009+01 -1.1\£1\(+01
 2KN03 = N20S +K20
 -15  
....   
Z   
a: -20  
....  
en   
z   
0   
u   
xG   
:J-   
-In -25  
0:0  
CDN   
- Z   
...J   
- u..   
:JO   
OJ   
UJ UJ -30  
...J  
.... 0   
ox   
-   
-0:   
(!)UJ   
O(l..   
...J -35  
BOO
TEMPERATURE - DEGREES CENTIGRADE
10 AUG 71

-------
8 OCT. 1971  2KN03 + C02 N2051G) + K2C03  
  TE:~PEt(ATUKE ENTHALPY  ENTKOPY L.UG K
  OEG. C CAL../GMOL.E CAL../GMOLE/DEG.K  
  2.5UOO+01 6.02141+014  5.1464-01 -14.'+0'+2+01
  5.0UOU+U1 7.3&90+04  4.14535+01 -1I.U101+01
  1.0UOO+U2 7.3502+04  4.39011+01 -3..)4.)3+01
  1.5UOO+02 7.0832+04  3.7336+01 -2.1!14i!2+01
  ~.OUOU+U2 1.05(4+04  3.6756+01 -2.'+563+01
  2.5UOO+U2 7.0433+04  3.6473+01 -2.1'451+01
  3.0UOO+02 7.G31J5+04  3.6384+01 -1.1181\6+01
  3.5UOO+02 6.5793+04  i!.A625+01 -1.b774+!)1
  4.0UOU+U2 6.51119+04  2.P.81'.4+01 -1.~0f,0+U1
  4.5UOO+02 6.5904+04  2.89A5+01 -1..)582+01
  5.0UOU+02 6.60'+1+04  2.Q168+0t -t.i!295+01
  5.5UOO+U2 6.6227+04  2.9401+01 -1.1151+01
  6.0UOO+02 6.6'1'i8+04  2.9674+01 -1.Ul'19+01
  1'..5UOO+02 6.6733+04  2.9979+01 -9.i!4bO+00
  7.0UOO+U2 6.7U50+04  3.0313+01 -a."~25+00
  7.5UOU+02 6.71107+04  3.0611+01 -7.b948+00
-5
I-  
z:  
a:  
I-  -10
r.n  
z:  
a  
u  
~ C) 
~ ~ 
...... In -15
a: a
CD ("\J 
...... Z 
--.J  
...... l1... 
~ a 
c  
w w -20
 --.J
 a 
a ~ 
......  
~ a: 
C) w 
a a... 
--.J  
  -25
-30
o
08 OCT 71
HR PLOT COMPLETED
SR PLOT COMPL.ETEO
LOG K PLOT COMPLETED
2KN03 + C02
N20S(GJ + K2C03
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 2LIN02 = N203 + LI20  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 7.0496+04  4.0282+01 -4.2866+01
 5.0000+01 7.0521+04  ,+.0361+01 -3.8870+01
 1.0000+02 7.058'++0'+  '+.0543+01 -3.2'+77+01
 1.5000+02 7.0626+04  4.0649+01 -2.7591+01
 2.0000+02 7.061'++0'+  4.0624+01 -2.3737+01
 2.5000+02 7.0530+0'+  4.0'+56+01 -2.0621+01
 3.0000+02 7.0360+0'+  '+.0148+01 -1.8054+01
 3.5000+02 7.0097+0,+  3.9708+01 -1.5905+01
 4.0000+02 6.9734+0'+  3.91'+8+01 -1.'+083+01
 ,+.5000+02 6.9266+04  3.8'+79+01 -1.2525+01
 5.0000+02 6.8691+0'+  3.7712+01 -1.1175+01
 5.5000+02 6.8007+04  3.6854+01 -1.0001+01
 6.0000+02 6.7211+0'+  3.5916+01 -8.9726+00
 6.5000+02 6.6301+0'+  3.'+903+01 -8.0676+00
 7.0000+02 6.5277+0'+  3.382'++01 -7.261C!+00
 7.5000+02 6.'+138+0'+  3.2683+01 -6.5569+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
2LIN02
=
N203 + LI 20
o
I-
Z
a:
I-
(f)
Z
o
u
EG
::)~
'-' ('r')
ceo
CDN
'-'Z
-I
'-' l.L-
=>0
C3
W W
-I
~ 0
o ::E
.....
~ a::
CJW
o CL
~
-5
-10
200
400
800
-15
-20
-25
o
]00
TEMPERATURE - OEGREES CENTIGRAOE
09 SEP 71

-------
8 (1CT. 1971  2UN02 + C02 N203(G) + LI2C03  
  TE"1PEKATUKE ENTHALPY   ENTROPY LOG K
  OEG. C CAL./GMOLE  CAL./GMOLE/OE:G.K  
  2.5UUO+01 1. f, 7I+6+0Q  -2.0270+00 -1.i!717+01
  !'i.OUOO+01 1.679IHO~  -1.873!;+00 -1.1766+01
  1.0UOO+02 1.6907+0Q  -1.548!;+00 -1.U2'10+01
  1.5UOO+02 1.1l12G+04  -1.2434+00 -9.U£.:19+00
  2.00!J0+02 1.11'16+04  -9.1922-01 --6.1.5"5+00
  2.5UOO+02 \.1~55+0~  -1.f>146-01 -1."1'1~+00
  3.0UOU+02 1.13'19+04  -5."92/:1-01 -6.'431+00
  3.!'iIlOU+02 1.1426+04  -'1.59'14-01 -6.i!111J+00
  'I.OUOO+1I2 1.14116+04  -3.679'1-01 -5.(571+00
  ~.::iUOO+02 1.7259+04  -6.903&-U1 -5."£.&4+00
  !'i.UUUu+U2 1.6933+04  -1.12118+UO -5.U322+UU
  5.5UOO+02 1.£.515+011  -1.514'1+00 -4.(4'111+00
  ".000U+02 \.f.1A1+011  -2.0,'\82+00 -4.'1953+00
  6.5UOU+1I2 1.~153+011  -2.5153+00 -'I.27U8+00
  1.UUUU+U2 1.52/J9+0'l  -~.OU'Ib+UO -4.UB99+UU
  1.5UOu+C2 1.'I7RY+01I  -3.50'lY+()0 -3.'12'18+00
I-  
Z  
a:  
I-  C
(f)  
z  
C)  
U  
::E: t:J 
:J ~ 
...... ('f) 5
a: C)
CD N 
...... Z 
-I  
...... IJ... 
:J C) 
C!I  
W w -10
 -I
 C) 
C) ::E: 
c.!J a: 
w 
C) a.. 
-I  
  -15
08 OCT 71
HK PLOT COMP~tTED
SH PLOT COMPLETED
LOG K PLOT COMPLETED
2LIN02 + C02
N203(GJ + LI2C03
:J
-20
o
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
19 ALG. 1971  2LltJ03 = N205 + LI20  
  TEt~PERATlIf+01
  4.~G('0+(;,- g.';1~O~'+0/+    5.E491+0\ -1.43/\1:0+01
  ~.(JaO(;+u2 0.91:07+U4    5.63&4+01 -1.26.1U+U1
  5.5000+G~ 8.9748+04    5.8290+01 -1.108/H01
  c.GOC(;+U2 b.~721-t04    5.0«56+01 -9.724~-t00
  6.500u+(;;! /'..';1"/<::4+04    5.ti2Gl+01 -8.50I:lU+00
  7.0000+0:, 1I.'.1754+t.J4    5.(j~93+01 -7.111f.:J+OO
  7. 5ClC Q+c." 8.9b11+U4    5.ti35D+01 -6.43U+00
D
I-
Z
CI:
I-
en
z:
o
u
z:G
:=I""'"
- In
ceo
!DC'll
- z:
-l
- u..
:=10
(3
I.L.II.L.I
-l
-0
oz:
-
...... a:
(!)I.L.I
o a..
-l
-5
-lD
-15
-2D
-25
D
10 RUG 71
2LIN03
N20S + LI 20
=
TEMPERATURE - DEGREES CENTIGRADE
BDD

-------
8 OCT. 1971  2LIN03 + C02 N2051GI + L12C03  
  TE"'PI::KATlIKE ENTHALPY   ENTHOPY LUG K
  DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
  2.5000+01 3.68~6+0~  -~.'70.5-01 -2.7098+01
  5.0UOO+01 5.0<'38+0~   ~.3~::>1+01 -2.'+~85+01
  1.0UOO+1I2 ~.993~+0~   ~.2542+01 -1.':I9~7+01
  t.5UOU+U2 ~.9736+0~   ~.::>U~1+U1 -'.b~9R+01
  2.0UOO+02 ~.9611+0~   ~.1761+01 "-1..17t1/1+01
  ".5uUU+U2 4.9540+0~   ~.]611J+U1 -1.15':19+01
  ~.OUOOt02 ~.7~~4+04   1.861U+01 -\.U211&+U1
  3.5uOU+U2 3.7~4~+0~   1.fl792+01 -':1.0'5':17+00
  ~.OU()O+C::> 3.771\8+04   1.91&7+01 -R.07911+no
  ~.5UOO+U2 3.7b')~+04   1.9321+01 -7.l292+00
  5.0000+(12 3.1\0~9+0~   1.9527+01 -6.'+H75+00
  5.5UOO+02 3.1\~16+0~   1.9/161+01 -5.1132U+OU
  6.0UOO+U2 3./;691+04   ".030.1+01 -5.l461HOO
  6.5uOU+U2 3.917~+04   2.0B~2+Ui -~.(1':12+00
  7.0UOO+0;:> 3.97f,f,+0~   2.1~64+01 -4.2393+00
  7.5UOO+U2 4.0463+04   2.2162+U1 -3.(9':13+00
I-  
z:  
a:  
I-  -5
U1  
z:  
a  
u  
:E G 
=> ~ 
-- lJ'") -10
a: a
cc ("\J 
-- z: 
-I  
-- lL.. 
=> a 
0  
w w -15
 -I
~ a 
a :E 
.-  
~ a: 
~ w 
a Q.. 
-I  
  -20
-25
o
08 OCT 71
HR PLOT CUMPLETED
SR PLOT COMPLETED
LOG K rLOT CUMPLETEO
2LIN03 + C02
N20S(GJ + LI2C03
o
BOD
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  MGIN0212 = N203 + MGO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 OEG. C CAL./GMOLE  CAL./GMOLE/OEG.K  
 2.5000+01 2.9803+04  4.2713+01 -1.2510+01
 5.0000+01 2.9828+04  4.2791+01 -1.0820+01
 1.0000.02 2.9891+0'1  '1.2974+01 -8.1l4~+OO
 1.5000+02 2.9933+04  4.3080+01 -6.0442+00
 2.0000+02 2.9921+04  4.3055+01 -4.410&+00
 2.5000+02 2.9831+04  4.2881+01 -3.0913+00
 3.0000+02 2.9&&1+04  4.2518+01 -2.00&6+00
 3.5000+02 2.9404+U4  4.2139+01 -1.1026+00
 11.0000+02 2.90111+04  4.1519+01 -3.4128-01
 4.5000+02 2.8513+04  4.0911+01 3.05&5-01
 5.0000+02 2.7999+04  4.0143+01 8.587::)-01
 5.5000+02 2.7314+04  3.9286+01 1.3339+00
 6.0000+02 2.6518+04  3.8347+01 1.7433+00
 6.5000+02 2.5&08+04  3.7335+01 2.0969+00
 7.0000+02 2.4585+04  3.0255+01 2.4U2j+OO
 1.5000+02 2.3446+04  3.5114+01 2.6661+00
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
MG(N02J2
=
N203 + MGO
5
I-
Z
a:
I-
(f)
Z
o
u
:£:<:5
:::;''''''''
....... (Y)
a:a
CD(\!
....... Z
-I
....... LL
:;:)0
C3
W W
..J
~o
o ~
......
.......a:
QW
o a..
-I
o
-5
-10
-15
-20
o
BOO
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71

-------
19 J\L:G. 1971  r4GIN0312 = N20~ + MGO  
  TEMPERJ\TI..KE nITt iJ\LP Y    ENTi\IJPY LOG K
  OE6. C CALoIGJtiOLE  CAL./GMOLt.:DEG.K  
  2.5000+01 4.e(,4~+04    5.000~+01 -2.428&+01
  5.000;)+IJl (,.1521+,)'1    9.'11b+01 -2.103b..01
  1.u(10U+O;.> (, .l:~.~ 1 +(;4    9.~540+01 -1.547U+01
  1.50(,0+02 6.111.S+04    9.3017+01 -1.123'1+01
  ~.OOOO+O;? 6.ub'l4+04    9.241'::1+01 -7.90~U+UO
  2.5CCU+u;J h.u'Iu:1+04    9.1£>9/+01 -5.22b~+00
  3.00GU+u2 c..uCJu+""    9.0ti34+u1 -3.030:>+00
  3.50(oO+Ii;~ 5.')'+10+0'.    B.':ib31+01 -1.2031+00
  4.()00U+lI.? 5.bb7~+0'l    8.u69'++Ii: 3.35.14-01
  1I.5lj(;(,+0;< ~.. 7"/':;1+04    8.743':+01 1.6'12';>+00
  5.0000+02 5.b75'.HU4    8.b05'1+01 2.n,U+00
  5.500CJ+u; 'S.5:-J7~+:.J4    /1.457,)+01 3.7<,7:>+00
  6.0000+0;:> 5.423::>+11'1    6.:::98'1+01 4.562b+00
  t:..5CiCO+C.~ 5.2732+04    B.U1t1+G1 5.21.;8U+00
  7.000U+CJ:? !i.1U71+0'l    7.9566+01 5.919b+OO
  7 . 5 Ii I' U + U 2 1j.':I~lth+i,;'    7.7'13<;1+01 b.470~+00
~
z
a:
~
(f)
Z
o
u
z:G
::;)-
...... Lf)
a:O
CON
......z
.J
...... u..
::;)0
(3
UJ UJ
.J
....0
OX:
-
-a:
t.!)UJ
On..
.J
19 AUG 71
HR PLOT CO~rlET~D
8M pLOT LO~PLlTED
LOG K PLUT CC~PLET[D
MG(N03)2
=
N20S + MGO
5
8DD
o
-s
-10
-15
-20
o
TEMPERATURE - DEGREES CENTIGRAOE

-------
8 OCT. 1971  MGIN0312 + C02 I N205(GI + MGC03  
  Tr~P£t(ATUt(E ENTHALPY    ENTROPY . I.OG K
  OEG. C CAL./G~OLE   CAl./G~OLE/DEG.K  
  2.5UOU+U1 2.1695"'0~    ~.~565+00 -1.'+928+01
  5~OUOU+U1 3.5178"'04    4.8589+01 -1. .)171+01
  1.UUUU",U2 3.5U27"'U4    ,+.81~1+U1 -9.':I9U7"'OU
  1.5UOU+U2 3.4906+04    '+.7846+01 .7. :)7U8"'OU
  2.0UOlJ+U2 3.'+755"'04    4.7511"'01 --5.6696+00
  ?5UOU...02 3.11539"'011    4.7078",U1 -~.13':17+00
  3.0UUU+U2 3.423'++011    4.6521+u1 -".1I862+UU
  3.5UOU"'U2 3.3d?3+0'+    '+.5f!36+01 -1.11'+47+00
  4.0UOO+U2 3.:'\297"'04    4.~0?~+01 -9./UU7-U1
  ,+.:JUOO+02 3.26'+H04    ~.('09'+"'U1 -2.~9:J&-01
  5.0UOU",U2 3.1068+04    4.3U5'++U1 II.U123-01
  5.5UOU...U2 3.0956"'0'+    '+.1912+U1 9."U':I0-U1
  f,.OuOU-+U2 2.9(:H)8+U~    '+.0676+01 1."U~9+UO
  6.5UOU+U? 2.8721+0,+    3.9356+01 1.IIU1&+UO
  7.0UOO"'U2 2.7395+04    3.795H01 2.1431+00
  7.5UOU+U2 2.592!J+U~    3.&4P.IH01 2.'+360+0U
I-
z:
a:
I-
en
z:
o
u

z::eJ
::>~
- If)
0:::0
CI)C"\J
-2:
--.J
-LL
::>0
C3
W W
--.J
~ 0
OL
.-
-0::
eJW
o CL
--.J
08 OCT 71
HH PLOT COMPLETED
SR PLOT CU~PLET£D
LOG K PlUT CU~PLETED
MG(N03J2 + C02 - N20S(GJ + MGC03
5
Q
-5
-LO
-L5
-2Q
[!
BOO
TFMPEARTUAE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971  MN(N0212 = N2Q3 + MNO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 3.1881+04  4.7875+01 -1.2905+01
 5.0000+01 3.1906+04  4.7953+01 -1.1097+01
 1.0000+02 3.1969+04  4.8137+01 -8.203U+00
 1.5000+02 3.2011+04  4.8242+01 -5.9892+00
 2.0000+02 3.1999+04  4.8218+01 -4.2422+00
 2.5000+02 3.1915+04  4.8050+01 -2.8312+00
 3.0000+U2 3.1746+04  4.7741+01 -1.67U';l+00
 3.5000+02 3.1482+U4  4.7302+01 -7.033~-01
 4.0000+02 3.1119+04  4.6742+01 1.1235-01
 4.5000+02 3.0652+04  4.607,++01 8.0594-01
 5.0000+02 3.0U77+04  4.5306+01 1.39';17+00
 5.5000+02 2.9393+04  4.1i1i49+01 1.9105+00
 6.0000+02 2.8596+04  4.3511+01 2.3515+00
 6.5000+02 2.7687+04  4.2498+01 2.7332+00
 7.0000+02 2.&663+04  <;.1419+01 3.0640+00
 7.5000+02 2.5524+04  4.0278+01 3.35U&+00
I-
Z
a:
I-
en
z
a
u
z:C3
::> -
-- (I")
a:: a
!DC'll
-- Z
....J
-- IJ..
::> C)
a
UJ UJ
....J
,..... a
C) z:
......
- a::
(!)UJ
C) a..
....J
09 SEP 71
HR PLOT COMPLETED
SR pLOT COMPLETED
LOG K PLOT COMPLETED
MNCN02)2
=
N203 + MNO
5
a
-5
-10
-15
-20
a
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  MN(N0312 = N205 + MNO  
 TEMPERATURE ENTHALPY  ElliTROPY LOG K
 OEG. C CAL./GMOLE  CAL./GMOLEIDEG.K  
 2.5000+01 4.8501+04  5.1465+01 -2.4302+01
 5.0000+01 6.1940+04  9.5'+53+01 -2.1027+01
 1.0000+02 6.1611+04  9.4508+01 -1.542';1+01
 1.5000+02 6.1265+04  9.3637+01 -1.1177+01
 2.0000+02 6.0894+04  9.280';1+01 -7.8427+00
 2.50CO+()2 6.0494+04  9.200&+01 -5.1631+00
 3.0000+02 6.0061+04  9.121"'+01 -2.9b&'=!+00
 3.5000+02 5.9595+04  9.0438+01 -1.135~+00
 4.0000+02 5.9093+04  8.9663+01 4.1053-01
 4.5000+0,=! 5.8::'5::'+04  H.U892+01 1.7311+00
 5.0000+02 5.7979+04  8.8123+01 2.6701+00
 5.5000+02 5.7366+04  8.7354+01 3.8604+00
 6.0000+02 5.6714+04  8.6586+01 4.7277+00
 f>.!:>uGU+02 ~.b024+04  £.5818+C1 5.4920+00
 7.0000+02 5.52'J5+04  8.5049+01 6.1691+00
 7.5000+02 5.4527+04  8.4279+01 6.7718+00
~
:z:
a:
~
en
:z:
a
u
x:C3
::::)"-
...... If)
a:o
(I)(\J
...... :z:
...J
...... I.L
::::)0
C!I
LLJ LLJ
...J
,....0
a x:
......
......a:
~LLJ
OIL
...J
-5
-10
-15
-20
o
09 SEP 71
HR PLOT COMPLETED
SR PLQT CO~PLET£D
LOG ~ PLOT COMPLETED
MN(N03)2
N20S + MNO
=
5
BOD
o
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT, 1971  IJIN(N0.312 + C02 N205(GI + MNC03  
  T[~P£t{ATUt{E ENTHALPY  ENTROPY LOG K
  OEG, C CAL,/G"10LE  CAL,/GMOLE/DEG,K  
  2,5000+01 2,0696+011  2,83115+00 -1,'+550+01
  5,OUOO+U1 ~,lllj6+011  1I,f.827+01 -1,,01.1(10+1.12 3,33]9+011  11,4742+01 -S,b112+00
  2,:'UOO..02 3, 304.6+UII  11,11193+01 -'+,1462+00
  3,OUOO+tl2 3,2756"011  11,36&5+01 -2,':1'+'0+00
  3,5UOU+U2 3,;>4'16+04  11,314"1+01 -1,':1QY4+UO
  4,OUOO+02 3,2112+011  11,26.31+01 -1,101:15+UO
  1I,5UOU+02 3,1753+011  11.2116+01 -3,':11:'5-U1
  5,OUOU+U2 3,1.3f>6+011  1I.160U+01 2,2534-01
  5.5UOO+U2 3,1;951 +04  1I.10RO+0] 7,b042-U1
  6.0uOU"U2 05.0509+011  1I,0558+U1 1.
-------
9 SEPT. 1971  2MNIN03)3 = 3N20~ + MN203  
 TEMPERATURE ENTHALPY    ENTROPY LOG K
 UEG. C CAL./GMOLE  CAL./GMOL£lOEG.K  
 2.5000+01 3.4645+04    5.4733+01 -1.3432+01
 5.0000+01 4.6084-+04    9.6721+01 -1.094<:+01
 1.0000+02 4. n5~+04    9.7"17&+U1 -6.59':/~+OU
 1.~000+02 4.740':I+U4    9.b':l0&+01 -3.3063+00
 2.0000+02 4.7038+04    9.6078+01 -7.285':/-01
 2.5000+02 4.6637+~4    9.527'++01 1.3393+00
 3.0000+02 4.620~-+04    9.448&+01 3.03U+OU
 3.5000+0;2 4.5739+'01\    9.3706+01 4.'+380+00
 4.0000+02 4.5237+04    9.2931+01 5.&232+00
 4.5000+02 4.4698+04    9.2160+01 6.1>327+00
 5.0()(,u+u2 11.4123+04    9.139U+01 7.'5(JUb+OO
 5.5000+02 4.3~09+U4    9.U&22+U1 11.2533+00
 6.0000+02 4.2857+04    8.91153+01 8.9099+00
 &.5000+02 4.21&7+04    8.90811+01 9.11863+00
 7.UOUO+02 4.1,+37+U4    11.8315+01 9.9949+00
 7.5COU+02 4.U069+04    8. n4~+Cl 1.044&+(J1
I-
Z
a:
I-
en
Z
o
u
z:G
::> -
..... Ln
a:O
!DC\!
..... Z
....J
..... u..
::>0
(3
UJ UJ
....J
,.-, 0
o z:
.....
-a:
(!)UJ
o a..
....J
09 SEP 71
HR PLOT COMPLETED
SR PLOT COMPLETEU
LOG K PLOT COMPLETED
2MN(N03J3
3N205 ... MN203
=
10
BOO
5
o
-5
-10
-15
o
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  2NAN02 = N203 + NA20  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOL£./DEG.K  
 2.5000+01 8.8.370+04  4.021&+01 -5.598.3+01
 5.0000+01 8.8394+04  4~0292+01 -5.0971+01
 1.0000+02 8.8456+04  4.0472+01 -4.2959+01
 1.5000+02 8.8497+04  4.0575+01 -3.6836+01
 2.0000+U2 8.7886+U4  3.9174+01 -j.20j1+{J1
 2.5000+02 8.7601+U4  3.9004+01 -2.815j+01
 .5.0000+02 8.2661+04  2.9726+01 -2.5021+01
 3.5000+02 8.2.39&+04  2.9285+01 -2.2~9b+Ol
 4.0000+02 8~2031+04  2.672.3+01 -2.0354+01
 4.500C+02 8.1562+04  2.8li52+01 -1.851B+01
 5.0000+02 8.0986+04  2.7282+01 -1.6929+01
 5.5000+02 8.0299+04  2.&422+01 -1.554'++01
 6.0000+02 7.9501+04  2.5481+01 -1.4329+01
 6.500U+02 7.B589+U4  2.4467+01 -1.325B+01
 7.0000+02 7.7563+04  2.3385+01 -1.2308+01
 7.5000+02 7.6421+04  2.2241+01 -1.1463+01
-5
I-
z:
a:
I-
en
z:
o
u
2:G
~ ~
...... (T')
a:O
CDC\I
...... z:
...J
...... LL.
~O
(3
UJ UJ
...J
~ 0
o 2:
-
~a:
(!)UJ
o a..
...J
-10
-15
-20
-25
-30
o
09 SEP 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
2NAN02
N203 + NA20
=
800
TEMPERATURE - DEGREES CENTIGRADE

-------
8 ('ICT. 1971  2NAf.lOc + C02 N2031GI + NA2C03  
  Tf.M.P£.HATURE ENTHALPY  ENTROPY LUG I<
  OEG. C CAL./G"iOLE CAL./GMOLE/OEG.K  
  2.5uOO+01 1.5531+04  6.6114-01 -1,1191+01
  5.0000+01 1.556.3+04  9.813.3-01 -1,0310+01
  1.0000+02 1.5664+04  1.2720+00 _11.11957+00
  1.5UOO+02 1.5803+04  1.6152+00 -7.110/4+00
  2.0000+02 1.5.36~+04  5.9667-01 --6.';1651+00
  2.5uOO+02 1.5537+04  9.4711-01 -6.i!8.32+00
  3.0UOO+U2 1.0753+04 -7.6822+00 -5./7118+00
  11.5000+02 1.0945+04 -7.360.3+00 -5,4470+00
  4.000U+02 1.1143+04 -7.0544+00 -5,159.4+no
  4.5001>.02 1.1346+04 -6,7641+00 -4.';1070+00
  5.0UOO+02 1.1.Hl+04 -6.724/+00 -4.b6.36+00
2NAN02 + C02
N203(GJ + NA2C03
10
~  
z:  
a:  
~  5
en  
z  
a  
u  
~ '-' 
::J """ 
-- (Y') 0
a: CJ
CI) C\J 
-- Z 
-.J  
-- lJ... 
::J CJ 
C3  
W w -5
 -.J
~ CJ 
CJ ~ 
...... a: 
l!) w 
CJ a... 
-.J  
  -10
-15
o
800
TEMPERATURE - DEGREES CENTIGRRDE
08 OCT 71

-------
1-
19 !lUG. 1971  2NAN03 = N205 +NA20  
  TlMP(RATl,RE ENTHALPY   ENTROPY LOG K
  DEG. C tAL./G~iOLE  CAL ./G~WLE./DEG. K  
  2.5000+0] 1.~?53+05   4.4166+01 -8.0Atl6+01
  5.0UOO+1,,1 1.j~93+iJ5   8.&061+01 _-7.3357+01
  1.00UO+I:;;- 1.3':'49+05   8.6794+01 -6.091>11+01
  1.50CU+02 1.:55905+05   6.5385+01 -5.154U+01
  2.lIOOl:+C" 1..:>521+05   8.3774+01 . -4.4140+01
  2.50(;()+r~2 1.343U+05   d.194';3+01 -3.8191+01
  3.0000+(,~ 1.;::U97+05   7.507~+01 -3.335:J+01
  3.5000+0.' 1.2<:39+iJ5   6.1128+01 -2.956~+01
  4.C[}(\IHL2 1.;':12.h05   5.<;;33:'+01 -2.63B';i+01
  4.500C+I)~' 1..'lilIJ+J5   5.7721+01 -2.:56t'U+01
  5.0000i02 1.191.)1+05   5.6261+01 -2.1344+01
  5.5000+1.;> 1.:&./<';5i;)5   5.4':130+U1 -1.9309+01
  6.0COl;+O:? 1.1L~1+f)5   5.3710+01 -1.752'++01
  f..SUrOi!;.' 1.1~:;0+U5   5.~586+01 -1.5941>+01
  7.000UiU.. 1.1<,9';'+05   5.1547+01 -1.454~+01
  7.50t.:U+O;; 1.:i..:.'j6+:J5   5.05&jiU1 -1.3281>+01
-lD
I-
Z
a:
I-
en
z
o
u
~
~c.!>
:::::>-
...... II)
a:o
a:lN
...... Z
...J
...... LL-
:::::>0
o
W W
...J
~ 0
o ~
....
-a:
c.!>w
o a..
...J
-15
-2D
-25
-3D
-35
D
19 AUG 71
2NAN03
=
N20S +NA20
BDD
TEMPERATURE - DEGREES CENTIGRADE

-------
8 OCT. 1971  2NI\I~03 + C02 N2051GI + NA2C03  
  TE"IPEHATUHE ENTHALPY  ENTROPY LOG K
  OEG. C CAL./GMOLE CAL./GMOLl/DEG.K  
  2.5UOO+01 5.0691+04  4.8511+00 -3.bU95+Ul
  5.OUOO+01 6.4102+04  4.8750+01 -3.l696+01
  1.0UOO+U2 6,3700+011  11.75911+01 -2.b90,..01
  1.5UOO+02 6.3234+011  4.61125+01 -2.l511+01
  2.0UOO+U2 6.26A3+04  4.5197+01 "1.~0711+01
  2.5UOU+02 n.2U33+,01l  4.309i:!+01 -1.b.32l+01
  3.0UOU+U;> 5.9U62+04  3.8470+01 -1.'+1.L2+01
  3.5UOO+02 5.0939+04  2.4118.3+01 -1.l5.L.3+01
  4.0UOO+U2 5. 03.~9+04  2.3556+01 -1.11911+U1
  4.5000+02 11.9885+04  2.290~+01 -1.UUIO+U1
  5.0UOO+02 4.9395+011  2.225'++01 -9.U9MII+00
  5.5UOO+02 4,B5112+04  2.118::)+ (j 1 -6.l5f1+00
  6.0UOO+U2 4,7710+04  2.027.h01 -7.~255+00
  6.5UOO+02 4.7076+04  1,9500+01 -f,.~827+00
  7.0UOU+0;> 4,6459+04  1.1\6119+U1 -6..)139+00
  7.5UOU+U2 4.5919+04  1,830lH01 -5.~U70+UO
o
I-  
z:  
cr:  
I-  -5
en  
z:  
a  
u  
~ t.:) 
::::> ~ 
...... Ln -10
a: C)
00 C\J 
...... Z 
-1  
...... lL.. 
::J a 
a  
w w -15
 -1
~ a 
a L: 
.....  
~ II: 
t.:) W 
a a... 
-1  
  -20
-25
o
08 OCT 71
HR PLOT COMPLETED
SR PLOT COMPLEfED
LOG K PLOT COMPLETED
2NAN03 + C02
N20S(GJ + NA2C03
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  NIIN02)2 = N203 + NIO  
 TEMPERATURE ENTHALPY   ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 2.3936+011   11.21181$+01 -8.2585+00
 5.0000+01 2.3936+011   11.21190+01 -6.901'H00
 1.0000+02 2.3967+04   4.2577+01 -4.73111+00
 1.5000+02 2.4017+011   11.2702+01 -3.071~+00
 2.0000+02 2.11071+011   1I.2tJ23+01 -1.759~+00
 2.5LJGG+02 2dl1'HCt\   II .2920+:n -6.955:'-01
 3.0000+02 2.3926+04   4.2568+01 1.80211-01
 3.5000+02 2.3638+011   1I.2088+Ql 9.0817-01
 11.0:'00+02 2.j..'jl+IJII   11.1492+0::' 1.519~+00
 4.5000+02 2.2762+04   4.0791+01 2.0360+00
 5.0000+02 2.2166+04   3.9996+01 2.1175.3+00
 5.5000+02 2.11\62+011   .3.9115+01 2.85Ul+00
 6.0000+02 2.0b49+011   3.8156+01 3.1705+00
 6.5000+02 1.9725+04   3.7121$+01 3.114111\+00
 7.0000+02 1.8689+011   3.6035+01 3.6782+00
 7.5000+02 1.7541+04   3.4885+01 3.8772+00
f-
Z
a:
I-
If)
Z
o
U
L: <.b
=:> ~
...... ('I"')
ceo
CON
...... Z
--.J
...... I..L
=:>0
C3
W W
--.J
~o
o L
......
~ce
<.bw
o a...
--.J
09 SEP 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT COMPLETED
NI (N02J 2
N203 + NIO
=
10
5
o
-5
-10
-15
o
BOO
600
100
TEMPERRTURE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971  NI(N0312 = N205 + NIO  
 TEMPERATURE ENTHALPY   ENTROPY LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/OEG.K  
 2.5000+01 4.4636+04   4.6078+01 -2.2646+01
 5.0000+01 5.8050+04   8.9989+01 -1.9591+01
 1.0000...02 5.76813+04   8.8947+01 -1.4340+01
 1.5000+02 5.7350+04   8.8095+01 -1.0360+01
 2.0000+02 5.7044+04   1\.7411+01 -7.2442+00
 I'.50UO+U2 5.(,776+04   B.6673+01 -4.732U+00
 3.0000+02 5.6320+04   8.6040+01 -2.6710+00
 3.5000+02 5.5ij29+04   ij.5219+01 -9.5517-01
 4.0QOO+Oc: 5.5303+04   8.4406+01 4.9250-01
 4.5000+02 5.4742+04   8.3604+01 1.727ij+OO
 5.0000+02 5.4145+04   fJ. ~
...... If)
a: a
CON
"""Z
....J
...... l.L
=>0
a
W W
-J
~o
o ~
......
~a:
CJW
00..
-.J
-5
-10
-15
-20
o
09 5EP 71
HR pLOT COMPLETEO
SR PLOT CO~PLETEO
LOG K PLOT COMPLETED
NI (N03J2
=
N205 + NIO
5
BOO
o
TEMPERATURE - DEGREES CENTIGRADE

-------
L
9 SEPT. 1971  PtHN02)2 = N203 + Pf30  
  TEMPERATURE ENTHALPY    ENTf{OPY LOG K
  DEG. C CIIL./GMOLE  CAL ./G";OLEIDEG. K  
  2.5000+01 3.3533+0'1    '1.4010+01 -1.4960+01
  5.000C+()1 3.j~5!H04    II. 'I U89+0 1 -1.305IH01
  1.0000+02 3.3&21+0u    4.u272+::1 -1. 001::'+Ul
  1.5000+02 3.3663+04    4.4378+01 -7.68f.8+00
  2.000v+02 3.3b51+u4    4.4353+Gl -5.849/+00
  2.5P"J+02 3.~~.;7+J~    4."l!.<5+01 -'I.365b+iJO
  3.0000+02 3.3398+0'1    4.3877+01 -3.145~+00
  3.5000+02 3.3134+04    4.3437+01 -2.1272+00
  '1.0000+02 3.~771+v'l    4.1::87h+01 -1.2MJ5+00
  '1.5000+02 3.2304+0'1    4.2209+01 -5.3781:1-01
  5.0000+02 3.1729+J4    4.1441+C1 8.012'1-02
  5.5000+02 3.1044+04    4.058'1+01 6.2721:1-01
  6.0000+02 3.02'16+0'1    3.9646+01 1.093'1+00
  6.5000+02 2.9339+04    3.0634+01 1.4976+00
  7.0000+02 2.6.:;1:5+()l).    3.755,++01 1.8'1t!'++CO
  7.5000+02 2.7176+04    3.6413+01 2.1531+00
HR PLOT COMPLETED
SR pLOT CUMPLETED
LOG K PLOT COMPLETED
PB(N02)2
=
N203 + PBO
5
I-
:z
a:
I-
If)
:z
o
u
x::G
:::> ~
~ (r)
ceo
CDN
..... Z
--.J
~ lJ....
:::> 0
C3
W W
--.J
- 0
o E
....
o
-5
-10
~ce
t-'W
o a...
--.J
-15
-20
o
800
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71

-------
11 CCT. 1971  PB I r~02 ) 2 + C02 N2031G) + PBC03  
  TP"PEHA TURE ENTHALPY  ENTROPY L.OG K
  DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
  ~.5000+01 1.?6f\O+0~  ~.8~28+00 -8.i!353+00
  '5.0000+01 1.2697+0~  ~.e9A8+00 -7.:i160+00
  1.0000+02 1.281'4+04  5.2050+00 -6..)613+00
  1.5000t02 1.2943+0~  5.5533+00 ..5.'f7U7+00
  2.0UOO+02 1.306lftO~  5.8250+00 --If. 1610+00
  ?5000t02 1.3139+04  5.9752+00 -4.16?5+00
  3.1'000+02 1.3147+0'"  5.9911+00 -3."0')~+00
  :'1.5000+02 1.3076+011  5.87:16+00 -.3.,)020+00
  4.0u00+C,2 1.~'j17+0~  5.6299tOO -2.~632+00
  ~.5000t02 1.2£.65+04  5.2691tOO -2.6759+00
  !';.OUOO+02 1.2314+04  4.8009+00 -2.4316+00
  !'.5UOOt(i2 1.1!'F.2+011  4.2349+00 -2.223e+00
  6.0000tU2 1.1306+04  3.5799+00 -2.0475+00
  6.5UOOt02 1.0645+04  2.1J439+0n -1.11985+00
  7.0UOu+02 9.8171+0~~  2.03~3+00 -1.1735+00
  7.5000+02 9.0016+03  1.1576+00 .1.6697+00
IIR PLOT COMPLETED
SR PLnT COMPLETED
LOr. K PLOT COMPLETED
PB(N02J2 + C02
N203(GJ + PBC03
10
I-  
z:  
a:  5
I- 
en  
z:  
a  
t.J  
::E ~ 
::) -- 
....... (T') a
a: a
co C"\J 
....... Z 
.....J  
....... LL 
::) a 
C3  
UJ UJ -5
 .....J
~ a 
a ::E 
.-  
-- a: 
~ IJ..J 
a a.... 
.....J  
  -10
-15
o
BOO
TEMPERRTURE - DEGREES CENTIGRRDE
08 OCT 71

-------
9 SEPT. 1971 PB(N0312 = N205 + PBO  
 TEMPERATURE ENTHALPY  ENTROPY ,LOG K
 DEG. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 5.8333+04  4.7600+01 -3.2353+01
 5.0000+01 7.1772+04  9.1589+01 -2.8520+01
 1.0000+02 7.1443+04  9.0643+01 -2.2031+01
 1.5000+02 7.1097+04  8.9173+01 -1.7099+01
 2.0000+02 7.0726+04  8.8944+01 -1.3228+01
 2.5000+02 7.0325+04  8.8141+01 -1.0115+01
 3.0000+02 6.9893+04  8.7352+01 -7.5595+00
 3.5000+02 6.9427+04  .8.6573+01 -5.4281+00
 4.0000+02 6.8925+04  8.5798+01 -3.6259+00
 4.5000+02 6.8386+04  8.5027+01 -2.0847+00
 5.0000+02 6.7811+04  8.4258+01 -7.5360-01
 5.5000+02 6.7197+04  8.3489+01 4.0555-01
 6.0000+02 6.6546+04  8.2721+01 1.'+223+00
 6.5000+02 6.5855+04  8.1952+01 2.3199+00
 7.0000+02 6.5126+04  8.1183+01 3.1165+00
 1.5000+02 6.'+358+04  8.041'++01 3.8271+00
HR PLOT COMPLETED     
SR PLOT COMPLETED     
LOG K PLOT COMPLETED    
5
I-
Z
a:
I-
(f)
Z
o
u
rG
~ ~
...... In
CCO
CD(\)
...... Z
-1
...... lJ...
~o
C3
W W
-.J
~ 0
o r
.....
(58]
OeL
-1
o
-5
-10
-15
-20
o
09 SEP 71
PS(N03)2
=
N205 + PSO
BOD
TEMPERATURE - DEGREES CENTIGRADE

-------
11 nCT, 1971  PBCN0312. + C02 I N205CGI + PBC03  
  TE ',PEHA TURE ENTHALPY    ENTROPY LOG K
  0[(,;. C CAL./G~OLE   CAL,/G~OLE/OEG,K  
  ?5000.U1 3.74/10+04    8,43?8+00 .2,~628+01
  Ii. OOI)O+U 1. 5,0':111+04    5.23':18+01 -2.C!978+01
  l,OUOU+U2 5.06?6+04    5,1576+01 -1,1:1377+01
  l,5uOG+02 5.0376+04    5.0948+01 -1.'*883+01
  2.0iJOO+02 5.(1138+04    5,0416+01 -1.C!140+01
  2.5lioo+n2 4.C)!~CJ7+04    4,9931+01 -9,':1315+00
  :I.0I.I00.U2 4,9642+04    4,9467+01 -8.1176+00
  ='.51.1I)U.02 4.93&F.+04    4,9U09+01 -6,bU?9+UO
  'I.OLon+02 4,9071+04    4.'1550+01 -5.~2U7+0U
  4.5uGO+O;:? 4. F.74U+04    4,130137+01 -4.C!2?7+UO
  5.0UOU+02 4,1\39&+04    4,7617+01 -3,C!7~:I+OO
  ~,5UOO+02 4,6U15+04    4,7140+01 -2."4~5+00
  F..,OGOO+02 4,7(,(14+04    4,6655+01 -1,/11;\6+00
  ",,~U(lG+G2 4,711';2+0'1    4,61~3+01 -1,U7F.2+00
  7,OUOU+U2 4,6(,/)8+ 0'1    4,5"'6'++01 -5,U535-01
  7.5UOO+02 4, 6184+0'~    4,';]511+01 4,~202-03
~  
z:  
a:  
~  -5
en  
z:  
0  
U  
L ~ 
::J - 
...... If) -10
cc 0
CD ("\J 
...... z: 
.-J  
...... lL. 
::J 0 
C3  
W w -t5
 .-J
~ 0 
0 L 
.....  
- cc 
~ w 
0 CL 
.-J  
  -20
08 OCT 71
HR PLOT COMPLETED
SR PLOT COMPLETED
LOG K PLOT CO~PLET£D
PB(N03J2 + C02 - N20S(GJ + PBC03
o
BOO
-25
o
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971  SNIN0314 = 2N205 + SN02  
 TEMPERATURE ENTHALPY   ENTROPY LOG K
 OEG. C CALoiGMOLE  , CAL ./GMOLE/DEG. K  
 2.~000+01 1.6953+04   5.4502+01 -5.1536-01
 5.0000+01 3.0392+04   9.8490+01 9.7123-01
 1.0000..02 3.006~+04   9.7544+1;1 3.711U+00
 1.5000+02 2.9717+U4   9.6674+01 5.780U+00
 2.0000+0:,> 2.9340+04   S'.5846+,)1 7.~921+00
 2.5000+02 2.8945+04   9.5042+01 8.6791+00
 3.0000+02 2.b513+04   S'.4253+01 9.7264+00
 3.5000+02 2.8046+04   9.3473+01 1.0592+01
 4.0000+02 2.7544+04   9.2699+01 1.131&+01
 4.5000+02 2.7233+04   9.2260+01 1.193~+01
 5.0000+02 2.bb~)7+04   9.149U+01 1.24~'::I+01
 5.5000+02 2.6043+04   9.0721+01 1.291~+01
 6.0000+02 2.5392+04   8.9953+01 1.330~+01
 6.5000+02 2.4701+011   8.':1184+01 1.364~+01
 7.0000+02 2.3';172+04   8.£>415+01 1.393':H01
 7.5000+02 2.3203+04   8.7645+01 1.41911+01
I-
Z
a:
I-
c.n
z
o
u
~ C)
=> ~
~ Lf)
a::. 0
CON
"""Z
--.J
...... LL
:::::>0
C3
WW
--.J
~ 0
o ~
....
~a::.
c)w
o a...
--.J
09 3EP 71
HR PLOT COMPLETED
SR pLOT COMPLET£D
LOG K PLOT COMPLETED
SN(N03J4
2N205 + SN02
=
L5
to
5
o
-5
-to
o
BOD
TEMPERRTURE - DEGREES CENTIGRRDE

-------
9 SEPT. 1971  SK(N02)2 = N203 + SRO  
 TEMPERATURE ENTHALPY    ENfROPY LOG K
 DE.G. C CAL./GMOLE  CAL./GMOLE/DEG.K  
 2.5000+01 6.126'1+04    '1.'1900+01 -3.5090+01
 5.0000+01 6.1<189+04    '1.'1985+01 -3.161&+01
 1.0000+02 6.1352+0'1    '1.5168+01 -2.60&U+01
 1.5000+02 6.1;'9'1+0'1    '1.521'1+01 -2.1812+01
 2.0CCtJ+C';:> ~.l;::;~~+OlJ    Lt.::249+;)1 -1.846;2+01
 2.5000+02 6.1298+04    4.5081+01 -1.575'1+01
 3.0000+02 6.1129+0'1    4.'1773+01 -1.3523+01
 3.5000+02 6.0865+04    4.4334+01 -1.165&+01
 '1.0000+02 6.0502+04    4.371'1+01 -1.0U75+01
 '.5000+U2 1',.:1035+04    4.:nU&+;)1 -8.7223+00
 5.0000+02 5.9'160+04    4.2338+01 -7.55'13+00
 5.5000+02 5.8716+04    '1.1481+01 -6.539U+00
 0.0000+02 5.7':J80+04    4.1.1543+01 -5.6!)1~+OO
 6.5000+02 5.7070+04    3.9531+01 -'1.8712+00
 7.0000+02 5.6047+04    3.8451+01 -4.1831+00
 7.5000+02 5.'1906+04    3.7310+01 -3.5741+00
HR PLOT CO~PLETED
SR PLOT COMPLETED
LOG K PLDT COMPLETED
  SA(N02J2 = N203 + SAO
  o   
I-     
:z     
cr:  -5   
I-    
(f)     
Z     
a     
u     
~ G    
::) ~    
1-0 (I") -10   
a: a   
CO(\J    
1-0 Z    
~     
1-0 LL    
::;) a    
a     
UJ UJ -l5   
 ~   
~ a    
a ~    
~ a:    
CJ UJ    
a CL    
~  -20   
-25
o
09 SEP 71
BOD
TEMPERRTURE - DEGREES CENTIGRRDE

-------
11 r.CT. 1971  SRIN0212 + C02 I N2031GI + SRC03  
  TEI.1PERATUR( ENTHIIl.PY     ENTROPY LOG K
  DEG. C CAL ./GMOl.E    CAL./GMOLE/DEG.K  
  2.'5000+01 5.0293+03     2.4404-01 -3.63~0+00
  5.0000+01 5.0682+03     3.6874-01 -3,~"68+0D
  1.01.100+02 5,1771+0:'1     6.8153-01 -2,11830+00
  1.51J00+02 5.n01l+03     9.4186-01 -2.~212+0U
  2.000U+O? 5.34:'3+03     1.0813+00 --2, .'5UOO+t'?' 5.341.2+03     1.00U3+00 -1.'1951+00
  3.000U+02 5.2652+03     9.3902-01 -1.IIUI6+UO
  :'I.5UOU+02 5.0990+03     6.6537-01 -1,6428+00
  11.0000+02 4.84;:>3+03     2.7009-01 -1.:1130+00
  4.5000+02 4.11888+03    -2.3568-01 -1,'+1.1110+00
  5.0000+1.12 4,030:;4+03    -8.4126-01 -1.~245+00
  5.5000+02 3,4791:1+0:!    -1,5368+00 -1, ~ 
- (Y") 0
cc a
CD ('.J 
- Z 
....J  
- I.J.... ------
=> a
(3 
w w -5
 ....J
~ a 
O ::E: 
~ cc 
~ w 
a CL 
....J  
  -10
-15
o
BOO
TEMPERATURE - DEGREES CENTIGRADE
08 OCT 71

-------
19 AUG. 1.971  SI{IN03)2 = N205 +SRO  
  TE.~;PERATURE ENTHALPY   ENTROPY LOG K
  DEG. C CI\L./G~'OLf  CAL./G~OLE.lDEG.K  
  2.5000+01 9.576'++04   4.9296+01 -5.9418+01
  5.0000+01 1.U923+05   9.3382+01 -5.3'+62+01
  1.LOOO+02 :t.U~02+U5   9.2772+01 -'+.357'++01
  1.~OGC+02 1.U[~8~+;)5   9.~:2n+01 -3.bU36+01
  2.0000+02 1.0662+05   9.1829+01 -3.010~+01
  2.5000+0<, 1.U63b+05   9.1337+01 -2.5312+01
  ~.(j()(:U+1I2 1.0bOb+u5   9.1J793+01 -2 .13£:t!+ 0 1
  3.5000+02 1.U712+05   9.U19(;+01 -1.806b+U1
  '1.0000+(;2 1.CJ729+U5   8.95210+01 -1.52f>t.+01
  4.5000+02 1.Ub1b+U5   f..eeC.)+01 -1.286.6+01
  5.0000+02 1.0t.>20+05   8.u023+01 -1.07E11+01
  5.500U+0;2 1.0553+u5   8.7191+01 *8.963b+OO
  6.0000+02 1.0'179+05   8.6309+01 -7.36'1£>+00
  6.:'000+02 9.329,)+U4   7.3777+01 -5.963~+00
  7.0000+u;> 9.2j79+U4   7.21;08+01 -4.8340+00
  7.5000+0;> 9.1373+04   7.119'ir+01 -3.825~+00
o
.....
z
a:
.....
en
'Z
o
u
rG
::I"""
.... U')
a:o
IDN
....z
....J
.... I.L
::10
(3
ILJ ILJ
....J
....0
or
-
...... a:
t!)UJ
o a..
....J
-5
-10
-15
-20
-25
o
19 AUG 11
SR(N03)2
=
N20S +SRO
BOD
TEMPERATURE - DEGREES CENTIGRADE

-------
11 neT. 1971  SR(N03)2 + C02 , N205(G) + SRC03  
  Tr.~P(RATURE ENTHALPY    ENTROPY LOG t<
  DEG. C CAL./G"'OLE   CAL./GMOLE/DEG.K  
  ~.5000+01 3.9529+04    4.6340+00 -2.1961+01
  ~.00(lO+01 5.3013+04    4.8166+01 -2.5193+01
  1.~uQO+02 5.21\46+04    4.8206+01 -2.U397+01
  '.500(j+O~ 5.:?711+01~    4.1959+01 -1.0144+01
  ::>.0000+02 5.251\3+04    4.1661+01 -1.~811+01
  ::>.5000+02 5.2421+04    4,7336+01 -1,1553+01
  3.0UOC+02 5.2214+04    4.6':159+01 -9.0463+00
  3.5000+0::> 5.1952+04    4.65::>2+01 -8.0526+00
  4.0(100+02 5.1628+04    4.6022+01 -6.fO,s3+UO
  4.51i!)O)+l1::> 5.1237+04    4.'1462+01 -5.:)486+00
  5.0UOIl+02 5.0174+011    4.11844+01 -4.::1515+00
  5.5000+02 5.0239+04    4.4113+01 -3,0842+00
  6.0000+02 4.962e+01l    4,3453+01 -2.':1249+00
  f>.5000+G2 3.821'5+011    3.1083+01 -2.21UII+OU
  7.0UOO+0::! 3.7521+04    3.0277+01 -1.1:I092+uO
  1.5uOO+u2 3.f>b18+04    2.943,s+01 -1.4019+UO
~  
z:  
a:  
~  -5
en  
z:  
a  
u  
L ~ 
:::1 ~ 
--. If) -10
a: C)
CI) N 
--. z: 
-1  
--. u.. 
:::1 a 
Q)  
w w -15
 -1
~ a 
C) L 
~ a: 
~ w 
a CL 
-1  
  -20
-25
a
08 OCT 71
tfR PLOT COMPLETED
SR PLOr COMPLETED
LOG K PLOT COMPLETED
SR(N03J2 + C02 - N205(GJ + SRC03
a
BOO
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 ZN(N0212 = N203 + ZNO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL oIGMOLE  CAL./GMOLElOEG.K  
 2.5000+01 2.000'H0~  ~.3~02+01 -5.1770+00
 5.UOOO+01 2.0028+0~  ~.3~81+01 -~.0421+00
 1.UOOO+02 2.U092+0~  ~..366~+01 -2.22~~+00
 1.5000+02 2.0134+0~  ~.3169+01 -8.3251:1-01
 2.0000+02 2.0122+0~  ~.37~5+01 2.6617-01
 2.5000+02 2.0031+04  4.3516+01 1.152':1+00
 3.0000+U2 1.91:161:1+0~  ~.3261:1+U1 1.88U'H00
 3.5000+02 1. 960~+0~  4.2828+01 2.~8~5+00
 ~.0000+02 1.92~1+0~  ~.2269+01 2.9906+00
 ~.5000+02 1.8174+0~  4.1600+01 3.4178+00
 5.0000+02 1.8199+0~  ~.0832+01 .3.179~+00
 5.5000+02 1.1515+04  3.9915+01 ~.0862+00
 6.0000+02 1.6718+0~  3.9031+01 ~.3~67+00
 6.5000+02 1.5809+0~  3.U02~+01 ~.56H+00
 1.0000+02 1.~11!5+0..  3.69~5+01 4.7537+00
 1.5000+02 1.36~6+0~  3.5804+01 ~. 909';1+0 0
 HR PLOT COMPLETED     
 SR PLOT COMPLET[D     
 LOG K PLOT COMPLETEO    
ZNCN02J2
=
N203 + lNO
LO
~
z:
ex:
~
en
z:
a
u
:rG
::>~
.....(1")
a:a
(DC\!
..... z:
-.J
.....lL.
::>0
C!J
W W
-.J
...... a
a x:
......
5
o
-5
~a:
CJW
a a....
-.J
-LO
-L5
o
800
TEMPEHRTlJAE - DEGREES CENTIGRRDE
09 SEP 71

-------
1__-
9 SEPT. 1971  ZNIN0312 = N205 + ZNO  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 U[G. C CAL./GMOLE  CAL./GMOLUDEG.K  
 2.5000+01 3.4924+04  4.6992+01 -1.5328+01
 5.0000+01 4.6362+04  9.0981+01 -1.282~+01
 1.0000+02 4.80.3'++04  9.003!J+01 -8.454!J+00
 1.!JuOO+02 4.7087+04  8.916~+01 -5.1420+00
 2.0000+02 4.1317+04  8.8337+01 -2.5491+00
 2.5000+02 4.6Y16+04  8.7~34+01 -4.688~-01
 3.0000+02 4.6484+04  8.6145+01 1.233.3+00
 3.5000+02 4.6018+04  8.5965+01 2.6480+00
 4.0000+02 4.5516+04  8.5191+01 3.8410+00
 4.5000+02 4.4978+04  8.4420+01 4.8568+00
 5.0000+02 4.4402+04  8.3650+01 5.13U4+00
 5.5000+02 If. 3-/~8+04  8.2882+01 6.4876+00
 6.0000+02 4.3137+04  8.2113+01 7.148!J+00
 6.5000+02 4.21+46+04  8.1345+01 7.7287+00
 7.000o+U2 4.1717+04  8.U~7b+01 8.2407+0U
 7.5000+02 4.0949+04  7.9800+01 8.69'1'1+00
I-
Z
a:
I-
en
:z
o
u
~G
::J ~
..... Lf)
a:O
(DC\I
.....Z
.....J
..... u..
::J 0
QI
W W
.....J
~ 0
o ~
......
~ a:
c.!:Jw
OeL
.....J
09 SEP 71
HR pLOT COMPLETED
SR PLOT COMPLETlD
LOG K PLOT COMP~ET[D
ZN(N03J2
N205 + lNO
:::
10
5
BOO
o
-5
-10
-15
o
TEMPERATURE - DEGREES CENTIGRADE

-------
9 SEPT. 1971 ZRIN0314 = 2N205 + ZR02  
 TEMPERATURE ENTHALPY  ENTROPY LOG K
 DEG. C CAL../GMOLE  CAL../GMOL.E/OEG.K  
 2.5000+01 5.7052+04  5.4761+01 -2.9849+01
 5.0000+01 7.0490+04  9.8749+01 -2.608~+01
 1.0000+02 7.0161+04  '3.7803+01 -1.9716+01
 1.5000+02 6.9815+04  9.6933+01 -1.4872+01
 2.0000+02 6.';:1444+04  9.6104+01 .-1.1072+01
 2.5000+02 6.9044+04  9.5301+01 -8.0146+00
 3.0000+02 6.8611+04  9.4512+01 -5.5061+00
 3.5000+02 6.8145+04  9.3732+U1 -3.4140+00
 4.UOOO+U2 6.7643+04  9.2~51+01 -1.6452+00
 4.5000+02 6.7104+04  9.2186+01 -1.3268-01
 5.0000+02 6.6528+04  9.1416+01 1.173.HOO
 5.5000+02 6.5915+04  9.U647+01 2.3104+00
 6.0ClOO+02 6.5263+04  8.';:1879+01 3.307/+00
 6.5000+02 6.4572+04  8.9110+01 4.187':1+00
 7.0000+02 6.3843+04  8.8341+01 4.%8~+00
 7.5000+02 6.3074+04  8.7571+01 5.6654+00
HR PL.OT COMPLETED     
SR pLOT COMPLETED     
 LOG K PLOT COMPLETED    
ZRCN03)l!
=
2N205 + ZR02
5
I-
z:
cr:
I-
en
z:
o
u
o
-
~c.!)
::J-
- I.f)
CI:O
IDN
- z:
-J
-I.L.
::J <:)
C3
W W
-J
- <:)
DL:
......
~ a::
c.!)w
o Q....
-J
-5
-10
-15
-20
o
TEMPERATURE - DEGREES CENTIGRADE
09 SEP 71
800

-------
, 1 ('\CT. 1971  ZR (N03)1+ + 2C02 ' 2N205 + ZR(C0312  
  TF.'\~PERATIJRE ENTH/ILPY     ENTROPY LOG K
  OEG. C CAL./GMOLE    CAL./Ga.,OLElDEG.K  
  2.5000+01 3.0'+55+0'+     1.0161+01 -2.0087+U1
  5~f)OOO+U1 '+.3/j('6+0'+     5.'+126+01 -1.18~6+01
  1.000':>+U2 '+.351\1+0'+     5.3305+01 -1.~1\1'++01
  1.5UO"+02 4.3331+0/+     5.2675+01 -1.u867+01
  ?OUOG+0;> 4.~(;93+0/,     5.2143+01 '-8.~U!!1+UO
  ;>.500U+1\2 4. 2e~1+ 0'+     5.1658+01 -6.6110+00
  3.00 I) 0 +l~ 2 4.2597+04     5.11~3+01 -5.U539+00
  3.SUOO+02 '+.23;>3+04     5.07~5+01 -3.'541+00
  '+.COOO+02 '+.2U25+04     5.021fi+01 -;>.&560+00
  4.5QOO+02 '+.1702+04     '+.'J!!13+01 -1. (162+00
  'i.OOOO+O;> '+.1350+0'+     '+.93113+01 -9.U452-01
  "'.500J+lJ2 4.(\'0'69+0,+     4.81365+(,1 -1.'171'+-C1
  G.0000+02 '+.0557+04     4.A380+01 4.~2U7-01
  6.5UOO+U2 4 . r 11.5 + 0 4     4.781\7+01 9.&'1'16-01
  1.0000+1)2 3.9641+04     4.731'.8+01 1.4541+00
  7.5uOO+02 3.9136+(14     4.651'2+01 1.tlIJ64+00
~  
z:  
a:  0
~ 
en  
z:  
C)  
U  
2: G 
::J ~ 
....... lJ") -5
II: a
CD ("\I 
....... z: 
-!  
....... u.. 
::J a 
aI  
w w -10
 -!
--- C) 
C) ~ 
.....  
~ II: 
~ W 
a CL 
-!  -15
-20
o
08 OCT 71
HR PLOT COMPLETED
SR PLOT CO~PLC1ED
LOG K PLOT COMPLETED
ZR(N03Jij + 2C02 -
2N205 + ZR(C03J2
5
800
TEMPERATURE - DEGREES CENTIGRADE

-------
Radian Corporation
8500 SHOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN. TEXAS 78757 . TELEPHONE 512/454.9535
TECHNICAL NOTE 200-007-16
LISTING OF SUBROUTINES FOR
THE GAS PHASE EQUILIBRIUM MODEL
13 January 1972
Prepared by:
Terry B. Parsons
T. I. Strange
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING

-------
Radian Corporation
8500 5HOAL CREEK BLVD. . P. O. BOX 9948 . AUSTIN. TEXAS 78757 . TELEPHONE 512 - 454-9535
The following pages are listings of the subroutines
GASEQS, INIT, GPEQS, GPARTL, and GTEMP. These subroutines
were written to calculate the concentrations of NO, N02, N203,
N204, N20s, H20, HNOa and HN03 present at equilibrium under
specified conditions of total pressure, temperature, and
number of moles of chemical NO, NOa, and HaO. The detailed
problem definition and a description of the method of solution
are given in Technical Note 200-007-03a.
GASEQS calls the subroutine NOLIN which calls some
additional subroutines. NOLIN and the additional subroutines
needed for using the gas phase equilibrium model have already
been published in a Radian report entitled "A Theoretical
Description of the Limestone Injection - Wet Scrubbing Process."
Volume II, Final Report to NAPCA, Contract No. CPA-22-69-l38
9 June 1970. The report is available through the National
Technical Information Service, Operations Division, U. S.
Department of Commerce, Springfield, Virginia, 22151. The
order number is PB 193-030.

-------
00011
00021
00031
00041
00051
00061
00071
00081
1\"091
1)0101
0011 1
O':ll::!'
00131
001'+1
00151
(1(1161
00171
001111
(10191
00201
00~11
00221
:10231
00241
00251
0"261
00271
002111
00291
00301
00311
00321
01133.
00341
00351
(1)361
00371
0128'
OP91
01301
01311
01321
013.31
01:HI
111351
013':' 1
11371
n1381
!", 39 I
01,+0'
"1411
111112.
01'13'
01'1'~ I
('11"51
01'H.'
01'171
0]'1 (I'
01'191
nlS0'
01.511
01';?'
015.31
01 !:>'+ 1
::15'3'
0156.
0157'
(1151\1
r115Q,
nlF-OI
01(,]1
Clf,:?'
Og3.
Subroutine INIT
@1 FOR PHT
SUdROUTINE INITIX,C~,P)
CO~~ON/rUNC/FI50I,CKI~0I,CTI101
DIMENS10N XI1I,CMl11
C
OEFIN~ GTEMP(1)=EXPICKII»
C
IFICM(1).Ll.0.01 GO TO 2
ESTMUL = CMI11+~MI~)+Xlli
XI21 = CMI1)/ESfMOL
X(.3) = CM(2)/ESTMOL
X(101=1./P*IXI~I/IGTEMPI61.XI2111**2
4 CONTINUE
XI'+) = X(21*X(3)*P*GTEMPI2)
XI~I = XI31*XI3,*p*GrEMP(1)
X(6) = CMlj)/ESTMOL
X(7) = S~HT(XI41*xI6)*GTEMPI4»
XIBI = X(S)*XI61*GTEMPI31/)17)
X(~I = XI51*XI31/GTEMPISI/X(2)
00 1 1=2,10
IrIX(II.LE.O.) XII)=1.E-.37
1 CONTINUE
HEIUHN
2 CONTINUE
RIIT=CMI21/CMI11
, IFIRAT.GT.-.3.0) GOTO 3
XI31=(~M(2)+CM(11)/ESTMnL
X(10)=-CM(11/(2.0*ESTMOLI
XI21=S~RT(P*XI1UII/XI31/GTEMP(61
60TO 4.
3 CONT !NUE
p~ fN r 10 n .IVI T
100 FOHMATI/15X,'HATIO OF Cr!02 TO CNO GREATER
*CALLY IMPOSSIBLE, RATIO = ',El0.~I/1
CIILL EXIT
K( ruHN
DIU
THAN -3.0 WHICH IS PHYSI
Subroutine GPEQS
aI! FOR c;t"E!JS
SU3HQUTINE GPlQSlwl
CO~MON IF uNCI FI50l'CKI50l,CTII01
C0~~DN IGAS/ PLN.FUCFCS':II,THCI01
CO~~UN/LI~S/NF.~L
OI~ENSION W(1).X(50I,[!J(501
UOJOLl PRECISIUN F,CK,CT,W.X,EQ,PLN,FuCr,TH
C
DEFI~l YIJI=EXPIXIIII
c
00 1 I=l.NF
.;=1+1
XI.;)=..IJ)
1 CONTINUE
IFIN~.EQ.AI XIIOI=-88.
IF(XI1UI.Gf.O.OI XI1UI=O.O
C
'[P(1)=CK(11+PLN+2*FUCFI3)-r~CFI51+2*XI31-XI51
[Q(2)=~K(21~PLN+FUCFI21+FUCF(31-FUCFI41+XI21+XI31-XI41
EQ(31=CKI3)+FUCF(5)+FUCFC61-FUCrI71-rUCFI81+XI51+X(61-XIJ)-X(8)
E~(4)=CKI4)+FUCF(4)+FUCF(61-~*FUCF(71+XI41+X(61-2*XI71
EQ(8)=tK(51+FUCF(2)+FUCr(9)-FUCFI51-FUCF(~I+X(2)+XI9)-X151-X131
E~C 9)=C~(6)+FuCIC?I+.5.FUCT(]nl-rUcrl~I+XI21+.5*XII01-XI31~,5.PLN
TH(1)=Y(4)+Y(~I+.~.YI7)+.5.Y(H)+1.+YI91-YIIUI
TII(21=Y(3)+2., (~)+YC4)+.5*Y(7)+1.5*YC8)+3*Y(91+.5*YI1n)
EQ (5) =C T ( 1 HLOG ( 'If C 1 ) ) -LOG ( 1 H (2 I I
TIf ( :3 I = Y C<~ ) + y ( .3 ) + '" or ( '+ ) + 2. Y ( ~ ) . Y I 71 + YI U I +2. Y 191
(Q (6 I =C T I 21 +LOG (TI/ (1) I-LOG ( f tf (.311
TH(4)=Y(.3)+2*YC~)+Y(4)+YI6)+Y(71+2.YI81+.3*Y(9)+.5*YII0I
EQI7 )=CT( 31 +L.Dt; I TH( 1)) -LOGI TII14 I I
C
un 2 J=] ,~'F
FIII=((,I(J)
2 cl1rn !NuE
HEIlIIW
£"u
NO
N02
N203
N204
H20
HN02
HN03
~20S

-------
~O'3AI
1'10391
00"01
~n41'
01'l4?1
001131

00441
00451
Oo,!ed
001111
004(11
00..91
00501
0051 I
01)521
00531
00'541
00551
0056'
n0511
(\0')81
1'1(\5')1
1'10601
n0611
1'106;>1
0063'
/'1('641
00(,51
00661
00f'>11
OO~R'
O%'?'
01'1701
non'
1'1.1721
on7~'
11(!14'
00151
" C 7t"
".1'1111
1)')791
01'1191
11,';\0 I
001311
1)01321
001.'31
n('(,4 ,
_I'IOqSI
1'10861
nl1011

onaol
001)91
00'101
nn'l11
01)921
on~I
1)1241
1'1\251
o 1? Cd
1'11;>71
Subroutine GASEQS
&)1 FOf{.l~ASL(,JS
SUBKOUTINE GASE(,JS(X,CM,P,TK,IOPTI
cn~MON IFUNC/f(50I,C~15nl,ClI101
cn,\1r-WN If,AS/PLN,FUCF (~O I, Ttlll0 I
cn~K0N/LTwS/NF,NL
EXlfRNAL GPfUS,GPARTL

UI~[NSlnN XC1I,CMlll,LBI601,
*xLNC::.U)
OOUULL PRECTSIUN F,CK'CT'Pl~'FUCF,TH,XLN
LJAIA (lUCII'I=l09I1'IIIERTS','NO ','N02
*'H20 ','Hr.j02 ','ttNO.5 ','rJ205 'I
OATA LU(101/'02 'I
OATA FUCF/50*U.1
','N2005
','N20..
, ,
C
r~F=n
IFIIOPT,rIE.OI fJf=9
E:P5=1.E-'I
C
CALL GTEMPITKI
C
CALL INIT(X,CM,PI
PLN=LOG(PI
SCJ=CMI]I+C~(21+CMI31
CTI11=LOG(CMI21/CXI11+SCJII
CT(2)=LCGICCMI])+CM(211/CXC]I+SCJII
CTC.5)=LOGCCCHI21+CMC~II/(XI11+SCJII
c
NM=r~f'-l
NL=rJF+1
00 1 I=],NM
J=I+l
XL~CII=lOGCX(JII
1 Cn~ITINUE:
"RlT£16,]OOI
C~LL O/\TIM£
rc=TK-27.5,16
,:QJTElb,10n TC
,IRITECh,l0.51
~RITElb,10'l1 IC~III'I=1,3I,P
,!RlTt:16,]OSI
.,fUTLlbolOC)
] 00 FOK"IAl (lHl)
]01 FOK~Al(L5X,A6,6X,lPE12,~,5X,IPE12.5,1X,lP[12.5,1X'lP(12.51
C
C
102 FOK~AT(115X,'TOTAL MOLES = ',lPE12.5,20X,'RESIOUAL (RROH =',lP(12.
*51
103 FORMATI'I2X,'INPUT MOLLS'/I
104 FORMAT(\OX,'NO = ',]P£11.5,5X,'N02 = ',lPEll.5,5X,'H20 = ',1P£11,5
*,~x,'p"rSRURE = ',lPE:l1,5,' AT~,'IIII
105 rOKIlfATI40X,'GAS PtIAS£ [rJUILHiRIA'11I
106 FGKIlfAii4~X' 'MOLE:',T67,'PARTIAl',T86,'FUGACITY'/15X,'COMPONENf',

* T32"~OLES',I'!~"FR~CTJON',1~7"PR(SSUR(',TH6"COEFFIE:N
*T'/)
101 FDRMATC1H+,70X,'TEMPLHATURE',FIO,3,' O£G C.'I
108 FO~IIfATC27X"NOKMALIZEO MATERIAL BALANCE ERROR =',lPE12.51

CALL NOLINIXLN,NF,t:PS,GPEQS,GPARTL)
C
DO 2 I=2,Nl
J=I-1
XCII=(XPCXLNCJII
2 CONTINUE
T~=IXI11+SCJl/11.+XI")+X(bl+.~*XI11+.5*Xlij)+X(91.XI101I

FU=EXP (FUCF 11»
F"=X C 111TIII
pp=n,*p
wR~TE(6,1011 LBC1I,X(1I,FM,PP,FU
c
C
00 5 I=2,NL
X"=X(II*TIIf
/>P=Xll1*P
FU=t:xP(FUCF(III
NRITE(b,10ll L6(II'XM,X(I),PP,FU
5 CONTlt~Ur.
Sl"'=O,
DO 4 I=1,}JF
SU\1=SUM+Fll)*FIII
'I cnNTINur
R[=SU,'1
WRIT£C6,102) TM.RE
SUIIf=FM
Of) :3 I=2,Nl
SU\1=sur~+x (1)
3 CO'lTlNU[
EM6:::ICM(1)+CMI21-TM*IX(21+xIo51+2.*xlljl+2.*XI51+X(7)+X(81+2.*X(9111
*/CClllI11+C''(21)
wRITLCb,10UI EMe
HElUKN
t.;;1[)

-------
016111
fl1651
r.1661
01671
(\1681
1116'31
r.1701
r1711
(\1721
01731
1117111
/11751
01761
01771
01781
017'31
01801
01/311
0.1 fl2 1
r.1831
018111
011)51
011\6'
~1 'HI
o HH3I
018'31
01'10'
01 '311
01.'321
1')193.
019'+1
01951
/1191>1
01971
01 ')8 I
111991
r.;>nol
"::>0.11
02[121
~2~3'
O:!OIlI
0;>051
(1;>06'
"2071
0208'
(\209'
02101
0;>111
(\:>121
0:!131
0:>1111
0:?151
n;>161
02171
0:>11\1
0219'

(\2201
0?211
(';>221
02231
11:>2'+ ,
0??51
O?261
0227'
n:?281
0::>291
(\;>301
02311
0;>321
/123:'\'
"23111
0;>3~1
02,~61
0237,
023/J1
0::>391
0;>'10 I
0241.1
0;>'+21
024:'\1
fl211'11
0?'I51
02'161
S\.brou tine GPARTL
0)1 F'OR GPARTL
SU~ROUTINE GPAHTLlwl
CO~~ON /FUNC/FI501,CKI5f1I,CTI'01
cn~MON/GRAU/POI50,5UI'A~15U,501'SQI501
CO"MON /GAS/PLN, FUCF 1 SU I, Tit 1 III 1
C(l~MON/LIMS/NF,NL
DI~ENSJON ~lll,XI~OI,GUI50,501
OO~AL~ PR~C1SION F,CK,CT,PD,AS,SQ,PLN,FUCF.TH.W.X.GD.BR
C
OEFIN~ YII'=EXPCXlll'
C
IF I rJF ,l(), II 1
00 1 1=1,/.)1"
00 2 ..1=1,,'11"
GOll,..II=O.
2 CONTINUE
..1=1+1
xIJI=WCI'
1 COIlJT1 NUE
XC 10'1=-b8.
C
GOll,31=-2,
G0(1,51= 1,
GOI2,21=-I,
GOI2,jl=-I,
GOI2,'+'= 1.
GDI3'5'=-I,
GOlj,E.I=-l.
GO(3,7)= 1.
GOI3,81= 1.
GOIII,II'=-I,
GOI'+,61=-I,
GOIII.7I= 2,
G['\18,2)=-I,
GOI8,9)=-I.
GOlfl,SI= 1,
GC.c8,31= 1.
G['\I 90101=-.5
GOI :/,3)=+1.
GOC 9,21=-1.
C
fjl(=THIlI
00 3 1=5.7
GOC1.III=-Y(III/OR
Gn(1,S)=-YI5)/OH
GOCI.7)=-.~*Y(71/BR
GOII,8)=-.5*Y(B'/BR
GOII,IUI=Y(10)/tlR
GOCI,~I=-YI~I/8R
3 Cf1NTINUf.
BR=rlj(cl
G[)(~,j)=YCj'/UH
GnC~,III=GDC5,'+I+YIHI/BR
GDC5,~I=Gnl~,5)+2.*YI51/0R
GD(5,71=G015,71+,~*YI71/fjR
GnC5,e)=G)(~,~I+l.~*YI")/OR
GOI5,9)=G1C5,9)+3*'(~I/B~

GOI5.1u'=GUI5,lO,+.5*Tll0./BR
F;R=rltl.))
GO(b,2)=YI21/f3H
GOII>,3)=T(3/1UR
GOC6,III=GOCb,II)+2,*YC~1/8R
GOf&,51=r.O(6,5'+2,*TISI/BR
GOI6,71=G~C6.71+YI71/uN
Gn(6,/J)=G~C6,61+rI8)/UR
GC(6,9)=G~(6,9)+2*Tf9)/~R
uR=Td(,+1
GOC7,3)=Yl31/tm
GOC1,41=GOI7,II)+YCIII/uN
GOI7,5)=GOI7,5)+2.*YI51/0R
GPI7,~I=T(61/UH
GOI1,7J=r.OC7.11+Ylll/UN
GO(7,tl)=G017,tll+2.*YIH)/OR
GO(1,9)=GO(7,9)+3*TC9'/UR
~D(7,lUI=GUC1,101+,5*T(lOI/BR
C
00 II 1=I,NF
00 5 ..I=I,f
-------
02411
02481
02491
02501
02511
02521
n253'
0254'
0255.
02561
020;7'
020;61
02591
02601
02611
02621
02631

02641
02651
('2661
r:o?~1'
0::>68,
0;:>69'
0::>10'
02711
02721
02131
02141
0;>751
02761
01'771
0:>'781
02791
I):>.~O'
0281.
o 2MI
02831
O?~41
02851
0286'
02871
0288,
028'H
Subroutine GTEMP
@I FOR GI£i'lP
SUL\thJulIr;( GTEMI-'( TK)
CC~MUN/FuNC/FC5U).CK(5U).CT(10)
DOUOL~ PR~CISIUN F.CK.CT
DI~ENSION A(lO).B(lO);CCI0).DCl0).£(10).G(10)
UIMENSI0N LHC6.4).EK(6)
UftiA (LACl.JJ.J=I.4)/24H 2*N~2=N204 1
DATA CLUC2.JI.J=1.4)/24H N0+N02=~20~ 1
U.IA (LRC3.J).J=1.4)/24H N204+~20=HNU2+HN031
D~TA (LOC4.J).J=1.4)/24H ~~03+H20='*HN02 1
DATA CLOCS.J).J=1.4)/24H NOtU2U5=N2U4+N02/
DArA CLBC6.J).J=1.4)/24H NO+l/2.02=~O~ 1
DATA(£KCI).I=I.6)/6.82U~6,.507022.5.732A4£-3..644635.5.24517E9,
*1.51920[+61
DATA (ACI),I=I,6)/-81.527,-56.918.66.013,4.109,31.199,-18.122/
DATA (U(T)'I=I.6)/~.57.3.21.-8.9.-.78,-4.92.-.035/ .
DATA (CCI).I=I.b)/-2.365E5.-1.695£5.2.373l5.-.29[5.1.99£5.-.735E51

uftrA (UCJ).J=1.5)/lb.~31E3.11.724(3,-~.6blE3,-.2~39£3,l.151~~E4/
OftTA O(b)/l.413H2E4/
DftTA (L(I),I=I,5)/-6.8E-4,-4.55E-4,27.25E-4.4.5£-4,.001525/
OftTA E(6)/4.5E-~/
DATA (GCI).J=I,b)/O.,O., 7.667£-8. 7.667£-8,0.,3.0£-8/
IFCTOLU.EQ.TK) HE TURN
R=1.98726
TKS=I"*TK
wR1T(C6.101)
TC=TK-273.16
~vRITt:Cbo102) TC
"RIT[Cb,103)
wRlTt:(6.104)
100 FOKMATC20X,4A6.2C5x.1P£12.5)/)
101 FORMATC1HlI
102 FOKMATC41X,'TEMPERATUKE ',FI0.3,' O£G, C'/)
103 FORMATC45x,'£QUILIBRIUM CONSTANTS'/)
104 FOR~AT(31X, 'REACTION"T53,'K(TEMP.)',T70,'K(25 C.)'/)
DO 1 1=1,6
CK(I)=(A(I)+O(l)*LOG(TK)+C(I)/TKS +D(l)/TK +£(I)*TK+G(I)*TKS)/R
X=£XP(CK(I))
wRIT[(6,100) (L~(I,J),J=l'4I,X,EK(I)
1 CONT !NU£
TOLD=TK
RETUKIJ
£ND
..

-------