LABORATORY STUDIES AND MATHEMATICAL
MODELING OF NO* FORMATION IN COMBUSTION
               PROCESSES
          U.S. EHVIRONMENTAL PROTECTION AGENCY

-------
LABORATORY STUDIES
AND MATHEMATICAL MODELING
OF NOx FORMATION
IN COMBUSTIO'N PROCESSES
By
Willia m Bartok
Victor S. Engleman
Eduardo G. del Valle
Final Report
prepared under Contract CPA 70-90
for the
Office of Air Programs
U.S. ENVIRONMENTAL PROTECTION AGENCY
ESSO RESEARCH AND ENGINEERING COMPANY
Government Research La bo rato ry
Linden, New Jersey
GRU.3GNOS.71

-------
FOREWORD
This report summarizes the work performed on the basic laboratory
studies and NO mathematical model development portions of a "Systems Study
of Nitrogen Oxide Control Methods for Stationary Sources - Phase n". This
work was sponsored by the Environmental Protection Agency under Contract
No. CPA 70-90 at the Government Research laboratories of Esso Research ~nd
Engineering Company. Dr. William Bartok was the contractor's Project Director,
and Dr. Victor S. Engleman acted as the Principal Investigator for the basic
I
studies reported herein.
;,
The results of a field test program on the application of combustion
modification techniques to utility boiler operations for NOx emission
control, performed under the above contract, are summarized in a separate
companion report (No. GRU.4GNOS.71).
The skillful assistance of Mr. Terry Scheurman in the laboratory
portion of the program and the helpful advice of Dr. Robert Goldstein of
Esso Mathematics and Systems Inc. in the mathematical modeling are gratefully
acknowledged.
Mr. Stanley J. Bunas was the EPA Technical Project Officer
during the initial part of this program and Messrs. G. Blair Martin and
David W. Pershing were Technical Project Officers during the latter part.
iii

-------
TABLE OF CONTENTS
SU~y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '
1.
INTRODUCTION. .
References.
........
.......
.."......
. . . . . . . . . .8
.......
.......
. . . . . .
2.
LABORATORY COMBUSTION STUDIES OF NOx FORMATION.
..................
2.1
2.2
2.3
Apparatus......................." .
2.1.1
2.1.2
.. ............ .......... ...
The Jet-Stirred Combustor............
Features of the Multiburner......
. . . . . . . . . .
. . . . . .
...........
Gas Analysis...............
.......... ...... ,., ..... ....
Oxides of Nitrogen..
Sulfur Dioxide..........
...............
. . . . . . . . .
...........
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
Oxygen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
........
Gas Chromatography for Major Gas

Hydrogen. . . . . . . . . . . . . . . . . .

Water. . . .
Components. .
. . . . . . . .
......
. . . . . . .
. . . . . . . .
. . . . . . . . . .
Experimental Results...........
2.3.1
2.3.2
2.3.3
... .... ................ ......
Effect of Mixture Ratio on NOx Formation in
Jet-Stirred Combustor................................
Effect of Added Nitrogen Compounds on NOx Formation
in the Jet-Stirred Combustor.........................
Preliminary Observations and Results
with Mu1tiburner.....................................
Re fe rences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .
3.
................
MATHEMATICAL IDDEL OF NO FORMATION IN COMBUSTION PROCESSES.......
3.1
3.2
Features of the First-Generation NO Model...................
Extension of the Esso Mathematical Model.. . . . . . . . . . . . . . . . . . .
3.2.1
3.2.2
3.2.3
Additional Kinetics...............
Particle Combustion Model.........
"Macromixing" Model.....................
. . . . . .
.........
. . . . . .
.......
'References................... .
..........
.... ......... ..... ....
4.
CONCLUSIONS AND RECOMMENDATIONS..................................
4.1
4.2
Conclusions. . . . .
Recommendations.
...............
. . . . . .
. . . . . . . .
.........
. . . . . . . . . .
v
.Page
1
.1
3
7
9
10
10
14
14
16
18
18
19
20
20
20
21
33
48
53
54
54
56
56
60
61
66
67
67
69

-------
APPENDIX A.
APPENDIX B.
APPENDIX C.
APPENDIX D.
APPENDIX E.
Figure
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
I 2-:10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
Table of Contents (Continued)
~~e
EXPERIMENTAL RESULTS--JET-STIRRED COMBUSTOR. 71
COMPRESSED GAS COMPOSITIONS.. . .'. '. .'. .. 81
PRELIMINARY DATA--MULTIBURNER . . . . .. . . 82
MATHEMATICAL MODEL. . . . .'. ,~' '.. ~'o' o. 84
, D.1 Macromixing Ana1ysi s '.. . .;;' .'." ~ 0 . 0 84
DoLl Input Forms " ~ 0,0,' . . 0 ,0 ~.o 84
D.1. 2 Computer: Listing 0" 0 . . 0 0 0 0 100
D.2 Particle Combustion. . . . . 0 0 . 0 164
Do 2 0 1 ' Input' Forms' 0 0 .' 0 . 0 0 0 . . 0 0 164
D.202 Computer Listing. . . 0 . 0 0 0 0 181
D.3 Sample 'Output o. '. ~ 0.0. . o. o. .229
ILLUSTRATIVE PHOTOGRAPHS OF LABORATORY
COMBUSTION EQUIPNENT 0 . 0 . 0 . 0 . 0 0 0 . 237
LIST OF FIGURES
Title
Jet-Stirred Combustor. . 0 0 0 . . 0 0 0 . .
System Schematic. 0 . . . . 0 . . . . . . . .
,Multiburner Furnace 0 . . . 0 . . . . . . . .
NOx Emissions in Jet-Stirred Combustor,

Methane":Air . 0 . . . . 0 0 0 0 0 0 0 . 0 . .

NOx Emissions i!1Jet-Stirre,d Combustor,

Methane-Air. . . . . . . .', ... . . . . . . .
Temperature Vs. Mixture Ratio in Jet-Stirred

Combustor,. . .' . 0 0 . . .'. . . .. 0 .
Percent Oxygen Vs. Nixture Ratio, ,Jet-Stirred

'Combustor, Methane-Air. 0 0 . . . . 0 . . 0

NOx Emissions in Jet~Stirred Combustor,

Hydrogen-Air. .' 0 . . 0 0 . 0 .' 0 0 . 0 . 0

NOx Emissions in Jet-Stirred Combustor,

Carbon Monoxide-Air 0 . . . . . 0 . . . 0 . .

NOx Emissions in 'Jet-Stirred Combustor,

Propane-Air 0' . 0 . . . . 0 0 " 0 ., 0 0 . . .
Temperature Vs. Mixture Ratio in Jet-Stirred

Corn1:?u st or . . .0 . ... . . . . . .. . . . . . .
Retention of Added NO . . . . 0 . . 0 .

Addition of NO to Combustor. . 0 . . 0 0 . .

Conversion of N02 to NOx . 0 . 0 . . .

Addition of N02 to Combustor. ';'~. 0 0 . .
" ,I,
ConversiOn of NH3 to'NOx '. 0 0 . . . . . 0 .
Addition of NH3 to Combustor 0 . 0 . 0 0 0 0
Conversion of (CN)2 to NOx 0 0 0 . 0 0 0 . .
Addition of (CN)2 to Combustor. . . .
vi
pas..e
12
13
15
23
24
25
27
30
32
34
35
37
38
40
41
42
43
44
45

-------
List of Figures (Continued)
Fiqure
Title
.f.aqe
2-23
Conver sion of CH3NH2 to NOx . . . . . . . . . . 46
Addition of CH3NH2 to Combustor. . . . . .. 47
Preliminary Data, Production of NOx from
Air in Multiburner Wall Temperature 31500F . . 50
Preliminary Data, Effect of Mixture Ratio on
NOx Formation in Multiburner . . . . . . . . . 51
Effect of Wall Temperature on NOx Formation,
in Multiburner . . . . . . . . . . . . . . . . 52
Effect of Mixture Ratio on NO Model
2-20
2-21
2-22
2-24
3-1
Predictions. . . . . .. . . . . . . . . . . .
59
3-2
Model Prediction of NO Formation in Fuel Oil
Droplet Combustion. . . . . . . . . .
Parallel-Series "Macromixing" Model. . . .
Effect of Macromixing on NO Model Predictions
62
63
64
3-3
3-4
LIST OF TABLES
Table
Title
Page
2-1
2-2
Measured Exhaust Gas Distribution. . . . . . 26
Calculated Exhaust Gas Composition (Wet Basis) 29
vii

-------
SUMMARY
This report summarizes the findings of the laboratory, studies and
mathematical modeling portions of Phase II of a "Systems' study' of Nitrogen
Oxide Control Me,thods for Stationary Sources" (Contract CPA 70-90). Laboratory
studies were conducted to investigate .the basic factors affecting nitrogen
oxide formation in the combustion of fossil fuels. A jet-stirred combustor
and a multiburner (so-named becuase of its aqility to burn gas, oil or
pulverized coal fuels) were used in these studies. The first-generation model
of NO formation and decomposition in combustion processes was extended.
The jet stirred combustor was used to studyNOx
combustion under kinetically limit'ed conditions. The key
studies with the jet-stirred combu~tor are as follows:
format ion in
findings of these
.
At the very short residence times prevailing in the jet-stirred
combustor (on the order ot 2 msec), substant~al quantities of
NOx are formed in gaseous premixed hydrocarbon (methane or pro-
pane) - air combustion, under stoichiometric and excess air
firing conditions. (In fact, peak NOx concentrations have been
measured under slightly fuel rich conditions.) The NOx concen-
trations measured exceed those based on the Zeldovich mechanism
in many cases by more than an order of magnitude, indicating that
coupling occurs between NOx formation and combustion kinetics.
.
With carbon monoxide as the fuel, containing trace amounts of hydro-
gen, the NOx emissions from the jet-stirred combustor are very similar
to those obtained with methane fuel, at equivalent mixture ratios
and slightly higher temperatures.
.
With hydrogen as the fuel, the NOx emissions are reduced to much
lower levels at all mixture ratios compared with methane at the
same temperatures. Good circumstantial evidence for the coupling
between NOx and combustion kinetics has been obtained in experiments
in which methane or carbon monoxide was mixed with the hydrogen fuel.
In the presence of samll amounts of these gases, the NOx concentra-
tions measured increased when compared to the results for hydrogen
at the same mixture ratio.
.
Under fuel rich conditions, the amount of NOx drops off precipitously
in the jet-stirred combustor. This finding provides support for the
opti.nized design of the two-stage combustion technique for NOx
emission control from combustion sources.
o
All of the "bond-type" additives (NO, N02' NH3 and (CN) 2 and
CH3NH2) result in nearly equivalent NOx formation, operati~g
the jet-stirred combustor with excess air. The conversion
between additive input and NOx output is constant as the addi-
tive level is increased up to 3000 ppm equivalent NOx'
(Slight falloff was noted for (CN)2 above 3000 ppm.)

-------
- 2 -
.
The fraction of N-bond additives oxidized to NO is
sharply decreased on the fuel-rich side. This finding
is of practical significance, because of the potential
of fuel-rich combustion followed by second-stage air
injection to control NOx emissions resulting from both
atmospheric Nz-fixation and fuel nitrogen oxidation.
Preliminary experiments were performed with the multiburner
which indicated the influence of heat losses and residence time on NOx
emissions in the combustion of methane/air. The multiburner has also been used
as a rudimentary flow reactor to study the formation of nitrogen oxides in
air at high temperatures.
The mathematical model has been extended to allow calculations
of NO formation under fuel-rich conditions. Particle combustion capability
has been incorporated into the model and mixing effects can be handled with
the macro-mixing option. This latter feature allows consideration of such
combustion modifications as staged or'bff-stoichiometric" combustion. Test
cases have been run for the above options which indicate the correct order
of magnitude predictions and the correct directional effect of combustion
modifications on NOx emissions.

-------
- 3 -
1.
INTRODUCTION
In Phase I of a "Systems Study of Nitrogen Oxide' Control Methods
for Stationary Sources" (1-1), sponsored by NAPCA (now the Office.. of Air
Programs of the Environmental Protective Agency) under Contract No.
PH-22-68-55, Esso Research and Engineering Company characterized the sta-
tionary NO emission problem in the U.S., assessed existing and potential
control te~hnology on the basis of cost-effectiveness, and developed a
comprehensive set of five-year ROll plans for stationary NO emission con-
trol. In addition, a first-generation mathematical model 8f NOx formation
in gas-fired combustion processes was formulated, and knowledge gaps per-
tinent to the NO control problem were defined. This study identified the
need for additio~al information on the mechanistic and kinetic details of
NO formation in fossil fuel combustion processes.
The major portions of the stationary NO emission control prob-
x
lem studied during the present contractual period (Contract No. CPA-70-90)
concerned high priority R&D needs identified in the Phase I study. These
consisted of a systematic field investigation of modifying boiler combus-
tion operations for NOx emission control (the findings of the field study
are reported in. a separate companion report GRU.4GNOS.7l), basic laboratory
studies and extension of the kinetic model. The work performed on the labora-
tory studies and the kinetic model development is presented in this report.
Although studies of nitric oxides formation in combustion have
been performed for over sixty years, major questions about the mechanisms
and rates of formation still remain. Early experimental work in the field
was conducted by Haber (1-2) and Bone (1-3) ~nd tentative hypotheses in-
cluded such concepts as quenching of equilibrium NO, participation of
charged particles (ions and electrons), and nitrogen activation. However,
it remained for Zeldovich (1-4) to postulate a thermal chain reaction involv-
ing nitrogen and oxygen atoms. Zeldovich found nitrogen oxide formation
not to be dependent on the chemical nature of the fuel but only on its heat
of combustion. He found that nitric oxide was formed after the fuel was
completely burned. Even for fuel rich combustion of hydrogen, Zeldovich
found good agreement with his chain mechanism.
This decoupling of the combustion reactions from nitric oxide
formation has been used under selected conditions by Newhall (1-5), Lavoie,
et a1. (1-6) and Williams, et a1. (1-7). These investigators have used
additional reactions in the NO formation and decomposition, mechanism but
combustion species are assumed to be in equilibrium before NO formation
begins. .
At the inception of this study little information was available
about the NO emissions or mechanistic details under fuel rich conditions.
While ZeldovIch found his mechanism to give good predictions for fuel rich
combustion of hydrogen (1-3), he did not report fuel rich results for hydro-
carbon combustion. More recent work by Harris, et al. (1-8) has provided addi-
tional information on the effect of mixture ratios on NO formation in hydro-
carbon combustion in flat flame burners.

-------
- 4 -
Predictions of NO formation in hydrocarbon combustion under fuel
rich conditions are particularly difficult. It is under these conditions
that the interactions between combustion reactions and NO reactions are most
likely to occur. In the absence of excess oxygent decoupled kinetics can
significantly underpredict NO concentrations. For examplet the decoupled
kinetic model used by Heywood (1-6t l-9)t which includes the Zeldovich
mechanism as well as the N + OH = NO~H reactiont gave good agreement under
fuel lean conditions, but underpredicted observed NO emissions under fuel rich
conditionst in some cases by more than an order of magnitude.
The extent of these underpredictions of course depends on the
interaction of a number of factors. Among these factors are (1) the valid-
ity of the simplifying assumptions made for the purposes of the model and
(2) the accuracy of the available values for the key parameters of the
model (including rate constants). The closest agreement with predictions
has been obtained under fuel lean conditions in cases where post-flame NO
formation is dominant (e.g., utility boilers emitting high levels of NO ).
The greatest difficulty has been found under fuel-rich conditions in ca~es
where NO formation in the flame zone is important (e.g., a well-stirred
combustor) .
It has been established (1-1) that fuel nitrogen plays a role in
NOx form~tion. While ~uantit~tive d~ta were not a~ailable at the beginning
of this study on the rate of'c,smversion of fuel nitrogen to NOx' experi-
mental work and emission cor~elations with fuel types indicated beyond a
doubt the effect of fuel nitrogen on NO emissions. Flat flame experiments
on the addition of nitrogen compounds t3 carbon monixide in low temperature
combustion indicate conversions even under fuel rich conditions (1-10).
Elshout and Van Duren (1-11) analyzed results of NOx emissions from power
plant boilers burning fuel oil of differing nitrogen contents. This anaiysis
indicated a trend to higher NOx concentrations with increasing nitrogen con-
tent of the fuels. Martint et al. (1-12) studied the effect of nitrogen in
fuel additives in an oil-fired furnace and generally found 30-40% conversion
to NOx. At low additive levels (ca. 0.05% N)t howevert they observed 60-70%
conversions. The nitrogen compound type seemed to have little effect.
Similar results were observed by Turner t tl al. (1-:13) who also studied the
effect of flue gas recirculation on fuel nitrogen conversions in an oil-fired
package boiler.
The possible participation of nitrogen-containing species such as
CN and HCN aa intermediates in NO formation was postulated by Feni~ore
(1-14). Subsequent studies (1-15, 1-16) appear to indicate that the rapid
for~ation of.NO in the flame zone observed by Fenimore possibly can be ex-
?la~ned ~y h~gh concentrations of oxygen atoms without resort to nitrogenous
~ntermed~ates. Measu:ements have been made (1-17) which indicate that oxygen
~toms can b~ ~resent ~n substantial "superequilibrium" amounts (i.e., exceed-
~ng the equ~l~~rium corresponding to the dissociation of molecular oxygen)
~n the combust~on of hydrogen, carbon monoxide and hydrocarbons.

-------
- 5 -
In order to obtain further information on the factors influencing
NO formation in combustion at temperatures and pressures representative of
x
conditions in stationary combustion equipment~ an experimental study was
initiated at Esso as part of the present EPA-funded program (Contract No.
CPA 70-90). This laboratory study was designed to investigate NOx forma-
tion under well-defined conditions. To this end, the jet-stirred combustor
was used to study NO formation under conditions where combustion is not
x
limited by mixing. In addition, a new laborabory device was designed,
built and operated during this study. Called the "multiburner" because
of its ability to burn gas, oil or pulverized coal, this device is capable
of operating under conditions of controlled heat loss by maintaining the
combustor walls at a specified temperature.
Predictive calculations or nitric oxide formation rates in a wide variety
of combustion applications have"been attempted. Three areas which have re-
ceived attention in the published literature are the internal combustion en-
gine, the gas turbine combustor and utility boilers. Much of the literature
on the. internal combustion engine was reviewed in reference (1-9) while a
review on gas turbine modeling can be found in reference (1-18). Modeling
and calculations related to utility boilers contemporary with our first
generation model are reported in references (1-7) and (1-19). Williams, et a1.(1-7)
reported on a furnace model in which premixed fuel and air burned instantane-
ously on introduction to the furnace and cooled at a rate determined by ra-
diative losses to the wall while in plug flow. More recently Williams, et al.
(1-20) have reported on NOx formation calculations in a diffusion flame which
show promise for application to a utility boiler model. Calculations on
NO formation in utility boilers were reported by Bagwe14et al. (1-19) in
whIch a one-dimensional chemical kinetics program was used-;ith a rather
extensive set of chemical reactions. These calculations indicate peak NOx
formation at approximately five percent excess air with NO formation essen-
tially proportional to the characteristic. residence time at adiabatic com-
bustion temperature.
The Esso first-generation mathematical model of NO formation in
utility boilers (1-1) contained the following features:
1.
One-dimensional, homogeneous gas phase reaction
system.
2.
Specified flow velocity, pressure, and flow area
profiles.
3.
Heat transfer specified optionally by
a.
heat transfer rate profiles

heat transfer coefficients and wall tempera-
ture profiles
b.
c.
gas temperature profiles
quenching rate profiles.
d.

-------
- 6 -
4.
Heat generation described by two-step overall
kinetics of hydrocarbon oxidation to CO and
H20, followed by CO combustion to C02'

Zeldovich-type kinetics used to calculate NO
concentrations.
5.
6.
Multiple point injection of fuel,
gases for simulation of two-stage
or flue gas recirculation.
air or flue
combustion
The objectives of the second-generation development of the
mathematical model were to:
1.
Incorporate additional kinetics in the NO forma-
tion and decomposition reactions to allow use of
the model under fuel~rich conditions.
2.
Include analysis of particle combustion for use
with oil and pulverized coal fuels.
3.
Simulate the effect of mixing on a macroscopic
scale,
This report summarizes the results of our laboratory studies and
the development of our boiler-oriented mathematical model.

-------
1- 1
1- 2
1- 3
1- 4
" 1- 5
1- 6
1- 7
1- 8
1- 9
1-10
1-11
1-12
1-13
1-14
- 7 -
Bartok, W ~, A. R. Crawford"t A. "R;" Cunninghamt
E. H. Manny, and A. Skopp "Systems Study of
Control Methods for Stationary Sourc"es", Final
No. PH-22-68-55, PB-192789 (1969). "

,i '.
H. J. Hall t
Nitrogen 0?tide
Report, Contract
Habert F. and J. E. Coatest
Z. Physik. Chem. ~, 337 (1909).
Bonet W. A. D. M. Newitt, and D. T. A. Townend, Proc. Roy. Soc.'
(London), 108A, 393 (1925).
Ze1dovich, J., Acta Physicochimia U .R.S.S.t 11, 577 (194,6).
Newhall, H. K., Twelfth Symposium (Intern~tiona1) on Combustion,
p. 603 (1969).
L"avoie, G. A., J. B. Heywoodt and J. C. Keck,
Tech., 1, 313 (1970).
Combust. Sci.
Williams, G. C., H. C. Hottel, and A. F. Sarofim, ''Models of Nitric
Oxide Formation in Stationary Power Plants", Paper No. 2c, Third
Joint Meeting A.I.Ch.E/I.M.I.Q., Denver, August 1970.
Harris, M. E., V. R. Rowe, E. G. Cook, and J. Grumert "Reduction
of Air Pollutants from Gas Burner F1ames",Bureau of Mines Bulletin
653 (1970).
Heywood, J. B., S. M. Mathews t and B. Owen t "Predictions of Nitric
Oxide Concentrations in a Spark-Ignition Engine Compared with
Exhaust Measurements", SAE Paper No. 710011, Automotive Engineering
Congress, Detroit, Jauuary, 1971.
Shaw, J. T.~ and A. C. Thomas. "Oxides of Nitrogen in Relation to
the Combustion of Coal", 7th International Conference on Coal Science,
Prague, June 1968.
E1shout, A. J., and H. van Du~en," E1ektrotechniek, 46 (12), 251 (1968).
Martin, G. B., J. H. ~asser,. and R. ~. Hange~rauck,. "Status
Report on Study of Effects of Fuel Oil Additives on Emissions from
an Oil-Fired Test Furnace", Paper No. 70-150, APCA Annual Meeting,
St. Louis, 1970.
Turner, D. W., R. L. Andrewst and C. W. Siegmund, Esso Research and
Engineering Co. Memoranda, October 1969t April 1970t December 1970.
Information to be presented at A.I.Ch.E. Meeting, San Francisco,
December 1971.
Fenimore, C. P., Thirteenth Symposium (International) on Combustion,
p. 373 (1971).

-------
1-15
1-16
1-17
1-18
1-19
1-20
- 8 -
Marteney, P. J., Combust. Sci. Tech., 1,461 (1970).
Bowman, C. T., Combust. Sci. Tech. 1, 37 (1971).
Fenimore, C. P. and G. W. Jones, J. Phys. Chern., 62, 178 (1958).
Hammond, D. C. Jr., and A. M. Mellor, Combust. Sci. Tech. !, 67 (1970).
Bagwell, F. A., K. E. Rosenthal, B. P.Breen, N. B. de Vo1o, and
A. W. Bell, Proceedings American Power ~nference, ~, 683 (1970).
Williams, G. C., A. F. Sarofim, and D. H. Fine, "Nitric Oxide
Formation in Premixed and Diffusion Flames", Paper No. 37c, AIChE
70th National Meeting, Atlantic City, August 1971.

-------
- 9 -
z.
LABORATORY COMBUSTION STUDIES
OF NOx FORMATION
Basic laboratory studies were carried out as part of this contract
study, with the objectives of gaining a better understanding of the complex
phenomena involved in NOx formation in combustion processes, providing kir:e-
tic information relevant to the development of the NO formation model, and
x
uncovering potential leads which may be useful to applied NOx control tech-
nology.
Recent papers (}-l,l,l,~) have focused attention on the production
of nitrogen oxides in both flame and post-flame zones. Since combustion
conditions vary widely, it is conceivable that reactions that may be unim-
portant for NOx formation in the internal combustion engine (2-1) might be-
come important in gas turbine combustion (Z-Z,3); much of the~~cent contro-
versy has centered on the nature of NO formation in the flame zone itself
(Z-3 ,!t.) . x
To sort out the phenomena affecting NOx formation, idealized sys-
tems were used in the present study where the input conditions of fuel and
oxidizer, the configuration of the combustor, the residence time - temperature
history of the combustion gases were well defined. Also, because of the po-
tential role of nitrogen compounds in the fuel and as intermediates in NOx
formation, known quantities of model compounds were added to the mixed gaseous
fuel/air system. These studies provided useful information on the potential
role and fate of nitrogen compounds under varying stoichiometric combustion
conditions. Details of the experimental approach, the results obtained and
their interpretation are discussed in this section of the report.
A number of techniques were used in the laboratory scale inves-
tigation of NOx formation in combustion processes. A jet-stirred, premixed
combustor has been used for NO formation studies under kinetically controlled
combustion conditions, over a 6road range of fuel/air mixture ratios. The
effects of introducing nitrogen-bond type additives (NO, NOZ' NH3' CH3NHz
and CZNZ) have been investigated, to elucidate their potential role as
intermeaiates in NOx formation and provide information on the oxidation
of nitrogenous compounds to NO. In addition to the jet-stirred combustor,
x .
a "multiburner" was designed and constructed during the course of the
contractual period. Installation of this unit, which is capable of burning
gas, oil or coal fuels at controlled rates of heat loss varying from
adiabatic conditions to maximum cooling, has been completed and initial
results on premixed gas flames have been obtained.

-------
- 10 -
2.1
Apparatus
The jet-stirred combustor was the primary experimental tool
used in the laboratory program during the contract period. This com-.
bustor, which closely approximates a perfectly stirred flow system,
was developed by Longwell and Weiss (2-5) to study high temperature.
reaction rates in hydrocarbon combustion. Through the use of this device,
we have been able to study NOx formation in combustion under intensely
back-mixed conditions which eliminated diffusional limitations. Thus,
the reaction rates were limited by chemical kinetics and information
was obtained on the kinetic limitations on NOx formation in combustion.
The "multiburner" was designed to study the combustion of gas,
oil, or pulverized coal under conditions of controlled heat loss. It
is capable of operating at temperatures well in excess of 4000°F and
at a wide range of combustion zone heat loss conditions including adiabatic
operation.
Further description of the jet-stirred combustor and the multi-
burner is contained in the following sections.
2.1.1
The Jet-Stirred Combustor
The ideal perfectly-stirred flow system has a number of features
that make it desirable for performing kinetic studies in combustion reactions.
In such an ideal reactor, a homogeneous mixture of air and fuel enters the.
reactor and is mix~d instantaneously with burning combustion gases in the
reactor. The reactor contents, which are spatially uniform in temperature
and composition, exit from the reaction zone at the same mass flow rate at
which new reactants are being added. Ideally, the reactor is adiabatic
and has minimum surface-to-volume ratio.
A practical stirred combustor approaches the ideal design and
the jet-stirred combustor used in the current experimental program is a
modification of the original Longwell reactor ,(2-5).. The intense back-
mixing ann turbulence in this combustor make it-a-very good approximation
of the perfectly stirred flow system. It should be noted that because
of this intense backmixing of the reactants with the products, the
oxygen level is higher than it would be if the combustion reactions were
allowed to proceed to completion. Thus, the oxygen concentrations are
measurable even under fuel rich conditions. In fact, as the reactor
approaches the rich blowout limit the measured oxygen concentration
actually increases because the combustion is incomplete in the reaction
zone. The high surface-to-volume ratio necessitated by the practical
limits of gas flow rates results in some departure from adiabatic operation;
however, since the temperature of combustion is measured continuously
this departure from ideality results in a "well-stirred" system at a known,
lower temperature.

-------
- 11 -
The reactor (Figure 2-1) consists of an outer shell of fire
brick shaped as two halves of a sphere three inches in diameter. The.
upper hemisphere is solid with the exception of the hole through which
the reactants are brought to the injector. The lower hemisphere is
hollowed out to a reaction zone of one and a half inch diameter. The
insulating shell has twenty-five holes, 0.125 inch diameter, through
which the burned mixture exists.
Fuel and air are metered separately through calibrated
rotameters, preheated to the desired inlet temperature, and then mixed
before entering the combustor. The fuel-air mixture enters the reaction
zone through an Inconel injector which is a hemisphere into which are
drilled forty radial holes 0.021 inches diameter. The reactants enter
the reaction zone as small sopic jets which stir the reactor ~ontents and
produce a mixture of essentially uniform temperature and composition in
a characteristic time which is short compared with the average residence
time. The burned mixture exists through holes in the combustor shell,
spaced as evenly as possible. A schematic of the control systems and
the sampling train for the jet-stirred combustor is shown in Figure 2-2.
Gas temperatures were measured up to temperatures slightly in
excess of 3200°F with a 0.010 in. diameter Pt/Pt-lO% Rh thermocouple. The
thermocouple was movable so that traverses could be taken during a run.
It was found that the temperatures were quite uniform throughout the re-
action zone, although somewhat cooler in the immediate vicinity of the
injector sphere and in the immediate vicinity of the wall.
The combustion gases were sampled through a water-cooled stain-
less steel probe, 0.125 inches outside diameter and 0.033 inches inside
diameter placed through a hole in the shell of the combustor. The probe
was also movable and traverses were taken to assure uniformity of combustion
zone composition. While some non-uniformities were noted on the extremely
fuel-rich side, these occurred so close to blowoui that they did not appear to
affect the NO measurements. The quenched gases are pumped through a dia-
phragm pump to the combustion gas analyzers. An Envirometrics multigas
analyzer was used to measure total NOx and N02 (this instrument can also
meas\lre S02)' a Beckman paramagnetic analyzer was used to measure oxygen,
and a dual column gas chromatograph was used to separate N2' 02' CO, C02'
H2 and hydrocarbons. The water content of the gases was handled in one
of two ways. It could be calculated from an oxygen balance by comparing
input N/O ratio with output N/O ratio and attributing the difference in
oxygen to water, or it could be calculated from a hydrogen balance by
comparing the input C/H ratio with output C/H ratio and attributing
the difference in hydrogen to water. These two methods provided a good
cross-check on the mass balance and mixture ratio.

-------
Figure 2-1
JET-STIRRED COMBUSTOR
THERMOCOUPLE
EXHAUST PORT /'
PRE-MIXED AIR AND FUEL
INLET
I-'
N
FIRE-BRICK
INJECTOR
WATER-COOLED PROBE

-------
STEPLESS
CONTROLLER
Figure 2-2
v
FUEL
COMBUSTOR
AIR ~ DILUENT
OXYGEN
WATER
TRAP
ADDITIVE
I--'
W
---, r--- NITROGEN
I I
I I

I leo ~i~~~LER

--_...J
GAS CHROMATOGRAPH
OR
OXYGEN ANALYZER

-------
- 14 -
2.1.2
Features of the Multiburner
The multiburner, which is shown schematically in Figure 2-3, is
based on a zirconia furnace* capable of being fired to temperatures well
in excess of 4000°F. Through the center of. this furnace passes a zirconia
combustion tube which can be fired upward or downward with gas, oil or
pulverized coal. The walls of the combustion tube can be maintained at
the, adiabatic flame temperature or at any desired wall temperature within
the limits of the materials,. with control', provided by natural gas-oxygen
torches fired tangential~y into the furnace, external to the combustion tube.
The walls of the furnace ',are provided with two. burner ports for these
torches and two "sight holef? for measuring the wali temperature of the
combustion tube with an optical pyrometer.
. The top of the furnace is'designed in two pieces,. the lid and
the top plug. The lid serves primarily as a gas seal and holds the top
plug. The top plug is interchangeable with the bottom plug, and contains
ports for the furnace gas exhaust and the combustion inlet (when firing
doWnward) or outl~t (firing'upward). The bottom plug also ~ontains a
port for the combustion tube inlet or outlet.. .-
, ,
The torches that fire the furnace are water-cooled as are the
copper exhaust ducts of the furnace and. combustion tube. The exhaust from
the furna~e is mixed with large quantities of room air, passed through a
water spray and vented to the exhaust duct. in the furnac'e enclosure.
The gases are metered
and the combustor tube burner.
regulators and control valves.
both inside the combustion tube
with rotameters on both the furnace torches
. .. ,
Flows are contr:olled by the. use of pressure
This permits good control of the conditions
and at its walls. '
The multiburner can operate with the c'ombustion zone wall tempera-
ture at any desired level and at the extremes it can either be used to
remove a large amount of heat from the combust,ion zone or, if desired, can
be used to add heat to the combustion zone. Thus, ~he multiburner can
operate with all of the flexibility of ,a laboratory combustor without the
high heat loss generally found in small-scale devices. This permits the
use of the multiburner under combustion' conditions that would not be possible
with the typical small-scale combustor.' '
The combustion gases were sampled through water-cooled stainless
steel sampling probes** 0.250 inches in diameter with 0,040 inch sampling
orifices. One probe was 17 inches long and the .other was 25 inches long,
and they could be moved along the axis of the combustion tube by a mechani-
cal actuator. The actuation was designed ,to allow modification for radial
motion at a later time.
2.2
Gas Analysis
The techniques selected and developed f01 combustion gas analysis
for the laboratory program have performed satisfactorily and are described
below.
..
*
The zirconia refractory and assistance in the design of the furnace were
supplied by Zirconium Corporation of America, Solon, Ohio. The furnace
was fabricated to our specifications by C-M Inc., Bloomfield, New Jersey.

Supplied by Science Products, Dover, New Jersey.
**

-------
LID
n
I -..
I I I
I -_J
U

11
~ 1
I L_J
LJ
C.L. OF
BURNER
--
Figure 2-3
MUL TIBURNER FURNACE
C.L. OF
SIGHT PORT
.......
U1
C.L. OF
SIGHT PO.BT
PREFIRED
ZIRCO NIA
LINER
RAMMED
ZIRCONIA
INSULATION
STEEL
SHELL

-------
- 16 -
The NOx analyses were performed by use of the Envirometrics
multigas analyzers. Satisfactory cross-checks were made with the DuPont
photometric analyzer and the Beckman NDIR NO analyzer on combustion gases,
but the main tools were the Envirometrics units. Two Beckman paramagnetic
oxygen analyzers were used to measure oxygen concentration; one has a
range of 0-5% OZ' while the other could measure up to 100% OZ, A dual
column gas chromatographic separation technique was used for NZ' 0Z' CO,
COZ, HZ' and low molecular weight hydrocarbons. Hydrogen could also be
measured by utilizing the response of the NOZ Faristor to HZ' Water could
be calculated from both the C/H ratio and the N/O ratio in the outlet
compared with the inlet.
2.Z.l
Oxides of Nitrogen
The measurements for NO, NOZ, and 80Z were made with Envirometrics
Multigas Analyzers with Faristor plug-in sensors. These analyzers were
chosen because they promised'~Oz selectivity in the presence of nitrogen
oxides; NOZ se1ectiv.ity in the presence of 80Z or NO; non-responsive,to
other prime pollutants." The claims were not found to be uniformly supported
by our tests, since the 80Z Faristor was found to respond to NOZ' the NOZ
Faristor was found to respond to hydrogen and the NO Faristor was found to
respond to CO in the range of concentrations that could exist in some of
our experiments. Fortunately, with considerable effort and careful atten-
tion, these interferences could either be used to good advantage, corrected
for by cross-calculation or eliminated by special sampling techniques.
The NO/NOZ measurements are described in this section while SOZ measurements
are briefly discussed in the next section.
The NO/NOZ measurements were made with Envirometrics analyzers
equipped with Faristor detectors. The detectors used wer~ the N76HZ
which responded to NO, NOZ, and 80Z, and the N46HZ which responded to NOZ'
The N76H2 was found to have relative sensitivities of about
1.0:0.8:1.0 to NO, NOZ' and 80Z respectively. The detector could be used
easily from Z ppm NO to concentrations in excess of 3000 ppm. 8ince our
laboratory experiments did not involve sulfur compounds, the response of
the N76HZ to SOZ did not require correction in this case. However, when
the analyzer was used in power plant tests where 80Z was present, the
correction was made as required. The response time for the N76HZ to 90%
of the steady state value was found to be 5-10 seconds for NO and ZO-30
seconds for ~OZ. An interference from CO was found in our experiments
even though the relative response to CO is less than 10-3. In general,
this is not a problem in large boilers where the CO is not allowed to
go as high as 1000 ppm. However, in the case of fuel rich combustion, CO
levels can easily reach the 1-10% range. Since this is 10,000-100,000 ppm,
a 10-3 sensitivity will still result in'lO-lOO ppm equivalent NO. While the
sensitivity to CO is less than 10-3, nonetheless attempting to measure 10 ppm
or less of NO in the presence of up to 10% cO can present formidable problems.

-------
- 17 -
Forttmately, the .response time to CO is much lor,ger than that to NO. In
fact, the response to CO follows a complex response .curve which ultimately
reaches steady state. The sen~itivity to CO depends on the past exposure of
the detector to CO; after the initial response, the longer the exposure the
lower the sensitivity. Indeed, at early times in the hysteresis pattern the
response continues to increase for some time even when the cell is purged
with zero gas.

The slow response and slow recovery from CO exposure were used t~
advantage to separate the response to NOx from the response to CO. The. .
method developed involves the use of sample/purge cycle in which the baseline ~s
checked periodically and the NOx readings are referenced to this determined
baseline. The-validity of this method was checked over a wide variety of
conditions, with a conditioned Faristor against an NO detector which was
not affected by the presence of CO and it was found to be accurate even .
under conditions where there was only 25-30 ppm NO present at a CO concentrat~on
of 10% (100,000 ppm). Since there are unique characteristics of the sensor/
analyzer combinations to the presence of CO, each must be checked for
sensitivity and response times of possible interference gases.
The ~se of the Faristor to measure NOx was checked against the
Beckman NDIR in the Esso mobile van while testing a utility boiler and against
a DuPont 461 NOx analyzer in laboratory experiments. The agreement in compari-
son with the NDIR instrument was good,whether the S02 was scrubbed out or not.
In the case where S02 was not scrubbed, correction for its presence was
made by using the response of the 564H2 Faristor which measured S02'
There was no significant quantity of N02 present in these tests. The
agreement in comparison with the DuPont analyzer was also good and
validated the cyclic sampling technique to eliminate the CO interference.
The DuPont had the advantage of eliminating many of the interferences which
can affect the Envirometrics under fuel rich condition8 and permits continuous
analysis for N02 (and 502 if modified). However, it also has the dis-
advantage of a long cycle time for analysis of NO (greater than five
minutes for NO concentrations in the neighborhood of 100 ppm). At the
longer cycle times a peculiar gradual drop off in signal was observed
after peak concentrations were reached. This may have been caused by a
leak in one of the rotating valves in the system since the analysis
for NO is done at approximately five atmospheres pressure. However,
there was no way to check for this possibility on the instrument that
was used in this study. The drop-off in signal was not rapid enough to
cause a major error during the normal five minute cycle of the instrument
(perhaps 2 or 3%) .
Even with the limitations mentioned, the DuPont instrument per-
formed quite dependably and appeared to be a rugged instrument. Because of
the techniques used for analysis of NO, and the resulting long analysis
time, the instrument is more suited to industrial monitoring than it is for
laboratory investigations of NO formation. Since the instrument was designed
with the former purpose in mind, this is no way a fault. As mentioned
above, the instrument is quite useful for real time laboratory measurements
of N02 and with minor filter changes can be used for measuring 502'

-------
- 18 -
The NOZ measurements ,were made with the N46HZ Faristor which could
measure NOZ from about 2 ppm up. The manufacturer indicates the detect?r
can be used up to ZO,OOO ppm but these levels were never approached in our
tests. This Faristor was generally non-responsive to interference gases,
although some of the units developed a gradual negative response to S02
which could not be eliminated. However, two gases which were present
under fuel rich conditions were found to give a negative response. Hydrogen
gave a rapid negative response with a sensitivity of about 2 X 10-4 relative
to NOZ while CO gave a slow negative response of about 2 X 10-5 in one minute,
and about 8 X 10-5 in six minutes. The negative response to hydrogen allowed
an estimation of hydrogen content of combustion gases on the fuel rich side
(the accuracy of this estimate, however, would be only to the nearest
percent). Since NOZ is generally not found on the fuel rich side and
since HZ and CO are not present in significant quantities on the lean.
side, the NOZ measurements were not affected by the presence of HZ and CO.
.2.Z.Z
Sulfur Dioxide
For measurements of SOZ we have an S64HZ Faristor for use in the
Envirometrics analyzer. The detector responds to SOZ but also responds to.
NOZ in a negative manner by 100-150%. In most combustion applications the
NOZ emissions are small and thus would not present a serious problem, but
for cases where NOZ levels are high, a correction for the presence of NOZ
must be made. The S64HZ Faristor was not used in the laboratory for SOZ
measurements since sulfur was not included in our study, but it was used on
an emergency basis to measure NOZ when the N46HZ Faristor was out of service.
The S64H2 was used in connection with the boiler test program to measure
NOx in the presence of SOZ and the net NOx measurements were in good agreement
with NDIR measurements for NO.
2.Z.3
Oxygen
The oxygen analysis was made with a Beckman paramagentic oxygen
analyzer (described here) and by gas chromatography (described in the next
section). The Beckman oxygen analyzer measures the net magnetic effect
produced by the gas sample in the analysis cell. Oxygen is paramagnetic,
while most of the background gases are slightly diamagnetic. The major
exception is NO which is also paramagnetic and produce~ a positive inter-
ference equivalent to 44% of its concentration. Since the oxygen measure-
ments were made to the nearest 0.1% (1000 ppm) this correction is not
important ~t NO concentrations below 1000 ppm. The diamagnetic species
produce a negative response but' the major background gas present was
nitrogen and the calibrations were made with a nitrogen background gas so
corrections during a run did not become significant.

-------
- 19 -
The minor nature of the interferences other than nitric oxide is indica~ed
below:
Gas
Response produced by Pure Gas.
at One Atmosphere Pressure, %
N2
-0.36.
CO
-0.35
C02
H2
-0.63
-0.12
CH4
C2H6
-0.36
-0 . 82
°2
+100.00
Care was taken when using the paremagnetic oxygen analyzer to avoid water
condensation in the instrument, and measurements were taken with little or
no flow through the instrument to avoid adverse effects on the test
body and quartz fiber in the analyzer section. Most of the measurements
were made with the model C2 which measured 0-5% 02, but higher levels were
measured with the model E2 which was capable of measuring up to 100% 02.
2.2.4
Gas Chromatography for Major Gas Components
A dual-column chromatographic separation technique was used to
m~asure NZ, 0Z' CO, COZ and hydrogen and hydrocarbons when present. Al-
though the technique is capable of separating NO and NOZ as well, the con-
centrations of these species were generally not high enough to permit ac-
curate measurements.
The two chromatographic columns were placed in series, the first
column consisting of one-eighth inch stainless steel tubing packed with six
feet of Poropak Q followed by two inches of Poropak R, porous polyaromatic
polymer gel. The second column consisted of one-quarter inch stainless steel
tubing packed with six feet of 5A molecular sieve. Column 1 was used
primarily for COZ although it was also capable of separating CZH6 and NOZ'
while Column 2 was used primarily for 0Z, N2' CO, H2 and C~, and was also
capable of resolving NO. The compressed air used in our experiments was
quite low in argon content (typically 450 ppm) and therefore the presence
of this gas did not interfere with the chromatographic analysis for oxygen.

-------
- 20 -
2.2.5
Hydrogen
In addition to chromatographic separation~it was possible to
analyze for hydrogen using the Envirometrics Analyzers. It was found ~hat
the N46H2 Faristor would respond in a negative direction on the fuel rich
side when burning hydrocarbons or hydrogen as fuel. By checking possible
interference gases it was established that the major interfering gas was
hydrogen. Since N02 was not present on the fuel rich side, jt was possible
to use this interference to obtain an approximate hydrogen concentrati~n.
While the sensitivity was generally low (about 2 X 10-4 which is 2 ppm N02
equivalent for each percent hydrogen) the output of the N46H2 Faristor was
high enough and steady enough'when in good condition to give a reproducible
result on a strip chart recorder.
2.2.6
Water
Since we were using cooled sampling probes and since we also
cooled the sample gas to about a 40°F dew point, it was not possible to
continuously analyze for water content. However, the w~ter content could
be determined in one of two ways. Using an oxygen balance the nitrogen/
oxygen ratio in the input gas (from air) could be. compared with the nitrogen/
oxygen ratio in the output gas (nitrogen from molecular nitrogen and
oxygen from molecular oxygen, CO and C02; neglecting the contribution
of nitrogen oxides), and the difference could be attributed to water. A
second method involved a hydrogen balance comparing the carbon/hydrogen
ratio from the input gases (hydrocarbons) with the carbon/hydrogen ratio
in the output gases (carbon from carbon monoxide, carbon dioxide and
unburned hydrocarbons and hydrogen from molecular hydrogen and hydro-
carbons). The missing hydrogen in the output was attributed to water.
These two methods generally gave fairly good agreement (within 0.5% absolute
concentration) but were, of course, dependent on the accuracy of the measure-
ments for carbon, hydrogen, oxygen, and nitrogen.
2.3
Experimental Results*
The jet-stirred combustor, based on the original design of
Longwell and Weiss (2-5) has been used to determine the amount of NOx found
in hydrocarbon oxidation under intensely back-mixed and kinetically limited
conditions. B~cause of the intense back-mixing prevailing in the jet-
stirred combustor, mass, energy and momentum transport limitations are kept
at a minimum. Thus, this combustor permits the investigation of combustion
phenomena controlled by the chemical kinetics of the process.
*
Detailed data tabulations are presented in Appendix A.

-------
- 2J. -
Most of our work, in the jet-stirred combustor 1vas carried out with
methane as the fuel. Additio.nal' experiments were run with hydrogen, carbon
monoxid~, and propane fuels.* Concentrations of NOx and other combustion gas
species wer~ measured by direct probing of the combustor with water-cooled
probes, and combustion temperature measurements were made ~!ith thermocouples.
,A broad range of fuel/air mixture ratios were investigated, and NOx concen-
tration measurements were made using Envirometrics Faristors and validated
by comparison with measurements using a DuPont NO/N02 spectrophotometric
analyzer. Simple bond-type additives were introduced at known concentration
levels. and theNQ2 concentrations thus observed were, compared with base-line
data obtained in the absence of additives.
A "multiburner" unit, capable of burning gas, oil and coal on
a laboratory scale has been installed in our laboratories. In initial
experiments, the multiburner ,has been operated as a "slice" of a large
furnace by heating the walls of the combustion tube and firing a, ,
premixed methane air mixture into the tube. The effects of residence
time. mixture ratio. and wall temperature have been investigated.
The unit has proven its durability in successive cycles of testing. ,
2.3.1
Effect of Mixture Ratio on NOx
Formation in Jet-Stirred Combustor
The formation of NOx in combustion has been studied, in the
jet-stirred combustor for a variety of fuels over a wide range of mix-
'ture ratios. The,fuels used were methane, hydrogen, carbon monoxide
and propane~ The well-sti,rred nature of the jet-stirred combust~r
with nearly instantaneous mixing of reactants with prod~cts,pro:Ldes an
almost uniform, intense flame zone, with the resultant dLstrLbutLon ot re~
actants intermediates and products. NOx concentrations were considerably
higher ~han those predicted by application of Zeldovich kinetics assuming
oxygen atoms to be in equilibrium with dissociating molecular oxygen and
peak NOx emissions were found to occur on the fuel-rich side. This could
be caused by a combination of two factors:
(1)
Oxygen atom "overshoot" can occur in hydrocarbon flames
during the chain branching sequence and at least a portion
of the species in the reaction zone of the jet-stirr~d
combustor is undergoing this portion of reaction sequence,'
(2 )
Because of the intense backmixing {n the jet-stirred c0":lbus-
tor, the combustion zone always contains a certain fraction
of reactants, and therefore, molecular oxygen is present,
evern under fuel-rich conditions.
* Typical compositions of fuel gases are given in Appendix B.

-------
- 22 -
The NOx formation in the combustion of methane/air mixtures
at constant residence time are shown in Figure 2-4. The preheat
temperature was 375°F, but the substantial heat losses reduce the
reaction temperature below that for adiabatic combustion. The varia-
tion in mixture ratios was achieved by holding the air flow constant
and varying the fuel flow. Since, for methane, at stoichiometric
conditions the air flow on a volume basis is approximately ten times the
fuel flow, variation in mixture ratio from 70% to 200% stoichiometric air
results in a variation in total mass flow rate of only i 5%. Each air
flow rate used was characterized by a "nominal residence time" which
is calculated by dividing the reactor volume by the volumetric flow
rate at stoichiometric conditions taking measured temperature into
account.
The peak NOx emissions occur at approximately 90% stoichiometric
air, and the agreement between the measurements taken with the Envirometric
analyzer and those taken with a Dupont Model 461 photometric analyzer
show good agreement. The results are reported in volumetric parts
per'million,as measured. The measurements were taken with water
removed from the gas to a dew point of 40°F so that water would not
condense in the analyzers. A slight change in the appearance of the
curve would occur if the results were corrected to a given fuel flow
rate, but the curve is so steep that this change would not be major.
The variation in the NOx emissions with nominal residence
time is shown in Figure 2-5. Within experimental error it appears
that there is no significant different in measured NOx with residence
time. However, in Figure ~-~ it can be seen that there are substantial
differences in temperature~b~ith residence time caused by the higher
heat losses at longer residence times. If it is assumed that
residence time (within the range of experiment) has little effect on
the controlling species, calculations indicate that an activation energy
between 50 and 85 Kcal (average close to 75 Kcal) for the controlling
process would result in the observed relative behavior. If the con-
trolling p'rocess is indeed the reaction
o + N2 = NO + N
as might be expected, then the levels of NO produced in the jet-stirred
combustor could only be explained by "super-equilibrium" oxygen atom
concentrations(a). Calculations using equilibrium concentrations of oxy~en
atoms result in substantially lower NOx emissions than observed. However,
we note that the hypothesis of super-equilibrium oxygen atom concentra-
tions by no means eliminates other possibilities.
(a) Super-equilibrium oxygen atom concentration defined as greater than
that corresponding to the equilibrium 02 + M = 20 + M at the prevailing
O?- concentration.
(b) The temperatures indicated in Figure 2-6 are not gas phase temperatures
but reference temperatures taken in the vicinity of the wall. It is
likely-that this temperature varies in the same manner as the gas
phase temperature.

-------
Figure 2-4
NO EM ISSIONS I N JET -STIRRED COM BUSTOR
. x
METHANE-AIR
Nomi nal Residence Time 1 .8 msec
Preheat Temperature 375°F
 100  
..-..   
c   
w   
a:::   
=>   
V)   
oct   
w   
~   N
 ~ UJ
V)  
oct  
..   
E 50  
a.  
a.   
......   
x   
0   
:2  c9 
o ENVIROMETRICS ANALYZER
6 DuPONT ANALYZER
o
50
100 150
PERCENT STOICHIOMETRIC AIR
200

-------
Figure 2-5

NO EMISSIONS IN JET-STIRRED COMBUSTOR
x .
METHANE-AIR
    1.3 msec 
    ~.5 msec 
 100 ~1fRJ 1.8 msec 
.......  ~2.3 msec 
CI   
w  3.0 msec 
a:::   
:::>  0  Nominal Residence Time 
V>   
«  ~  N
W    .c-
~    
V>    
«  .~  
... 50   
E ~  
c..   
c..   
x   
a   
z    
  60  ~ 
 0    
 50  100 150 200
   PERCENT STOICHIOMETRIC AIR 

-------
Figure 2-6 .
TEMPERATURE VS. MIXTURE RATIO IN JET-STIRRED COMBUSTOR
3500
-
LL.
o
......
~ 3000
=>
t-
e::(
e:::
w
a.
:2
w
t-
2500
(Yt9:"O '0
6. ~
d' LB ,
-------
- 26 -
The molecular oxygen concentrations measured in the :~t-
stirred combustor under fuel-lean conditions fall quite close to the levels
expected for complete combustion. However, below stoichiometric air,
because of the intense backmixing, oxygen levels are still measurable.
While the absolute differences are small under fuel-rich conditions,
the relative rliffprpncp~ nn the fupl-rich sirlp rAn be suhsrRnriAl in
a back-mixed reactor when compared to a plug flow reactor where the
reaction can go to completion rapidly. The measured oxygen levels as
a function of mixture ratio are shown irt Figure 2-7.
The combustion gases were analyzed chromatographically for
carbon dioxide carbon monoxide, methane and hydrogen. It was deter-
mined after ~he data had been obtaine~ that a non-reproducible air leak
occurred at the sampling valve which prevented accurate chromatographic
determination of nitrogen and. oxygen. Therefore, the results for C02'
CO, CH4 and H2 are reported on a relative basis in Table 2-1. The
carbon containing species are reported on a mole fraction basis as the
Table 2-1
Measured Exhaust Gas Distribution
 Carbon Distribution Molecular  Molecular
Percent Carbon Carbon!  Hydrogen  Oxygen
Stoichiometric Dioxide Monoxide !Methane (Molar ratio to (Percent of Exhaust:,
Air Fraction Fraction j Fraction Total Carbon) Dry Basis)
145 0.991 0.009 -- --   7.1
127 0.982 0.018 -- --   5.5
112 0.946 0.054 -- --   2.6
101 0.855 0.145 -- --   1.0
92 0.741 0.259 -- --   0.4
84 0.644 0.356 -- 0.28  (:.3
77 0.519 0 . 48 1 -- 0.59  0.3
71.5 0.365 0.635 -- 0.74  0.2
66 0.259 0.534 0.207 0.38  3.9
fraction of total carbon. The hydrogen is reported as a molar ratio to the
total carbon in the sample. Thus,if one takes this information together
with the mixture ratio and oxygen measurements obtained independently the
total stable gas distribution can be calculated. The overall stoichiometry
of methane/air combustion is
.CH4 + 2X 02 + 7.52X N2
---7
(F)
C02 + (B) CO + (C) CH4 + (D) H2 +(E) 02 +
H20 + (G) N2
(2-1)
(A)
where X is the fraction of stoichiometric air in the feed gas and (A)
through (G) are the stoichiometric coefficients of the products.

-------
Figure 2-7
PERCENT OXYGEN VS. MIXTURE ,RATIO
JET-STIRRED COMBUSTOR - METHANE/AIR
Nominal Residence Time - 1.8 msec
Preheat Temperature - 375°F
\()~
~ -<;.
~'\5
CJ()~
~~~
~v .
v()~
 10 
I--  
V>  
::>  
«  
:I:  
x  
LLJ  
2:  
2:  
LLJ  
~  
>-  
x 5 Near
a
I--  Blowout
2:  0
LLJ 
U  
a:::  
LLJ  
a..  
o
0/
0,0
.~
N
......
o
50
100 150
PERCENT STOICHIOMETRIC AIR
200

-------
- 28 -
The carbon balance is as follows
(A) +. (B) + (C) = 1
( 2- 2 )
These quantities have been measured and are given in the required form
in Table 2-1.
The hydrogen balance ~s as follows
(C) + ill + ill = 1
2 2
(2-3)
The quantities (C) and (D) dm be found in Table 2-1 and the quantity
(F) can be calculated from equation 2-3.
The oxygen balance is as follows
(A) + ill + (E) + ill = 2X
2 2
(2 -4)
The quanti ties (A), (B) and X are in Table 2-1, and (E) can be cal-
culated from
and equation
(E)
(% 02 dry) = (A) + (B) + (C) + (D) + (E) + (G) (2-5)
(2-4) can be used as a cross-check of the value of' (F).
The nitrogen balance (neglecting the contribution of fixed
nitrogen) is
(G) = 7.52X
(2 - 6 )
When the coefficients (A)-(G) are determined the overall gas
composition can be obtained from
(M)
(A) + (B) + (C) + (D) + (E) + (F) + (G)
(2-7)
where (M) represents any of the coefficients (A) - (G).
calculations are shown in Table 2-2.
The results of these

-------
- 29 -
   TABLE 2-2    
 CALCULATED EXHAUST GAS COMPOSITION (WET BASIS)  
er Cent       
Stoichiometric Carbon Carbon Methane    Nitrogen
Air Dioxide Monoxide     
145 6.7 0.1 0.0 G.C 6.1 13.5 73.6
127 7.5 0.1 0.0 0.0 4.7 15.2 72.5
112 8.1 0.5 0.0 0.0 2.2 17.1 72.1
101 8.0 1.4 0.0 0.0 0.8 18.7 71.1
92 7.4 2.6 0.0 0.0 0.3 20.1 69.5
84 6.9 3.8 0.0 3.0 0.2 18.1 67.9
77 5.9 5.4 0.0 6.7 0.2 16.5 65.3
71.5 4.3 7.5 0.0 8.7 0.2 16.0 63.3
66 3.3 6.9 2.7 4.9 3.1 14.9 64.1
When hydrogen was used as the fuel in the jet-stirred combustor,
substantially higher temperatures were developed. In fact, the temperatures
were so high that the'fuel and air preheat had to be essentially eliminated
to prevent damage to the combustor. Even so, the temperatures for'
hydrogen-air combustion were about 300°F hotter than those for methane-
air combustion. Despite the higher temperatures,'the measured NOx
output was considerably lower than that for the methane-air case.
Peak emissions occurred under fuel-rich conditions and essentially
no NOx could be measured above 150% stoichiometric air. The results
are shown in Figure 2-8. It will be noted that the symbols between 75%
and 120% stoichiometric air are shown as broken symbols. Between these
mixture ratios, the temperatures in the jet-stirred combustor were
well above 330QoF, and therefore, the combustor could not be held
at thes~ conditions for a sufficient time to completely assure steady
.conditions. The combustor was run for as long as practical at these
conditions, and an estimate was made of the steady NOx value that
would be reached, based on previous experience with the combustor. The
broken symbols indicate the element of uncertainty for these points: about

-------
Figure 2-8
NO EMISSIONS IN JET-STIRRED COMBUSTOR
x
HYDROGEN-AIR
   6DENOTES  
 100  APPROXIMATE VALUES 
   (SEE TEXT)  
,-...      
0      
UJ      
D::      
:::J      
(/)      
«      w
UJ      0
:2  6    
(/)     
«      
... 50     
E 6    
a.     
0.     
x 6 6   
0   
2:     
 ogcP     
   0   
 0  150 0 I 0 200 
 50 100  
  PERCENT STOICHIOMETRIC AIR   

-------
- 31 -
20% for all such data points, except at 90% stoichiometric air where the
uncertainty is estimated at 40%. The lower NOx concentrations at higher
temperatures are unexpected if one assumes the same controlling reactions
for NOx formation in methane and hydrogen combustion.
Two possibilities may explain this phenomenon. One is that the
oxygen atom concentration may not be at equilibrium for hydrocarbon combus-
tion in the jet-stirred combustor. This is quite reasonable based
on previous observations and calculations on NOx formation in combus-
tion. Furthermore, as noted above, to calculate the observed NOx forma-
tion in methane combustion, assuming it is controlled by the reactions
N2 + 0 = NO + N
02 + N = NO + 0
substantial "super-equilibrium"concentrations of oxygen atoms would be re-
quired. The second possibility is that hydrocarbons or other carbonaceous
species may be participating in NOx formation. This could be a direct
participation between carbonaceous species and nitrogenous species
to produce other intermediates easily oxidized to NO, or it could be
an interaction between carbon-containing species and oxygen-containing
species to produce high oxygen atom concentrations. The latter
interaction actually combines both possibilities discussed by requiring
the participation of carbon-containing species in the production of
super-equilibrium oxygen atom concentrations. These inferences based on
experimental evidence require verification based on detailed calculations
and analysis of the elementary reactions involved. Good evidence has
been uncovered in this study for significant coupling between the hydro-
carbon combustion reactions and NO formation reactions in a backmixed
reactor. Further evidence results from our study of carbon monoxide
combustion.
Carbon monoxide was burned in the jet-stirred combustor with
air. Actually it was found that Technical Grade carbon monoxide could
be burned without special attention, but C.P. Grade required very small
additions of hydrogen to burn successfully. Thus, it is likely that the
Technical Grade CO itself contained small amounts of hydrogen. Consequently,
in all the CO runs, both hydrogen and carbon were present even though the
amount of hydrogen was quite small. The temperatures for CO combustion
were higher than those for methane (about 200°F), but lower than those for
hydrogen. The NOx emissions were higher in CO combustion than in either
methane or hydrogen combustion, as shown in Figure 2-9. Peak emissions are
found on the fuel-rich side. Once more, the levels attained cann0t be
explained by Zeldovich kinetics with "equilibrium" oxygen atom concentrations.
Several experiments were performed to attempt to further
determine the role of the fuel type in NOx formation in the jet-
stirred combustor. Small amounts of methane or carbon monoxide were
added to hydrogen in a number of the runs. Mixture ratios were selected
where the differences between the fuels were most definitive and the curves

-------
Figure 2-9
NO EMISSIONS IN JET -STIRRED COMBUSTOR
x '
CARBON MONOXIDE-AIR
100
,...
o
LLJ
0:::
=>
(/)
«
LLJ
2
(/)
«
x
o
z
o
50
g
o
o
o

o
o
VJ
N
o
100 150
PERCENT STOICHIOMETRIC AIR
200

-------
- 33 -
could be distinguished. Considerations was given to the uncertainty of
the data for hydrogen between 70 and 130% stoichiometric air. The
results were as follows: For hydrogen combustion with methane comprising
five mole percent of the fuel mixture (equivalent to 17% of fuel stoichiometry)
the NOx emissions were 45 ppm for the mixture, where they had been 61 ppm for
methane and 32 ppm for hydrogen; they were 30 ppm for the mixture, where they
had been 42 ppm for methane and 25 ppm for hydrogen. For a 50:50 carbon
monoxide-hydrogen mix the NOx emissions were 90 ppm (85% stoichiometric
air), where they were 50 ppm for hydrogen and 120 ppm for carbon monoxide.
For a mixture of primarily carbon monoxide with 10% hydrogen, the emis-
sions were 62 ppm (70% stoichiometric air), where they were 20 ppm for
hydrogen and they were 64 ppm for carbon monoxide; at 132% stoichiometric
air the emissions were 42 ppm for the mix, 15 ppm for hydrogen and 40 ppm
for carbon monoxide. The results for the mixtures indicate that the
input fuel does influence. the resulting NOx emissions in ~he jet-stirred
combustor. Small amounts of hydrogen do not dramatically reduce NOx emis-
sions in either hydrocarbon or carbon monoxide combustion. Small amounts
,of CO or methane do not dramtically increase the NOx emissions from hydrogen
combustion. However, there does appear to be an effect of fuel mixtures on
NOx emissions in the jet-stirred combustor. Thus, the coupling of NOx
formation with combustion does not appear to be a catalytic effect, but
rather, an overall effect governed by the concentrations of reactants,
wh~ch in turn govern the controlling intermediates.
The NOx emissions for propane-air combustion are shown in
Figure 2-10. The NOx levels are essentially indistinguishable from the
carbon monoxide results, even though the measured temperatures are
considerably lower. As was found with methane, hydrogen and carbon
monoxide, peak NOx emissions occur under slightly fuel-rich conditions.
The NOx emissions are higher than those predicted from the Zeldovich
mechanism with "equilibrium" oxygen atoms, and the NOx levels are slightly
higher than those for methane combustion, eV~~lthough the temperatur~s are
roughly comparable. Temperature measurements tor propane are shown ~n
Figure 2-11: .
2.3.2
Effect of Added Nitrogen Compounds on
NO pormation in the Jet-Stirred Combustor
---x
A number of experiments have been performed in which simple,
model nitrogen-containing compounds have been added to the reaction zone
of the jet-stirred combustor during the combustion of methane. The
compounds used represent either fuel nitrogen bond-types or potential
nitrogenous intermediates in the flame zone. These experiments were
not designed to be either an exhaustive study of fuel compounds or
of nitrogen bond-types themselves. The purpose of this set of experiments
was to investigate the nature and behavior of the nitric oxide formation
reactions involving nitrogen compounds differing substantially in bond
types. Compounds were chosen to illustrate the difference as simply
as possible. Nitrogen-oxygen, nitrogen-hydrogen and nitrogen-carbon
bonds were used in the study. The compounds selected were nitric oxide
(a)
These are reference temperatures as described for the case of
methane.
':'~(H(",

-------
Figure 2 -1 0
NO EMISSIONS IN JET -STIRRED COMBUSTOR
x
PROPANE-AIR
100
.......  
CI  
l.LJ  
a:::  
::>  
(/)  
<{  
l.LJ  
:2  
(/)  
<{  8
... 50
E
0.. 
0..  
X  
0  
Z  
Q
00
g
o
o
o
o
o
o
100 150
PERCENT STOICHIOMETRIC AIR
w
.p..
200

-------
Figure 2-11
TEMPERATURE VS. MIXTURE RATIO IN JET-STIRRED COMBUSTOR
3500
'"'
1.1..
o
-
I.LI 3000
a::
;:)
I-
«
a::
I.LI
a.
2
I.LI
I-
2500
o Propane
OO~
/og 0"'0
~g~
o~o
o
50
100 . 150
PERCENT STOICHIOM ETRIC AIR
UJ
VI
200

-------
- 36 -
and nitrogen dioxide for nitrogen-oxygen; ammonia for nitrogen-hydrogen;
cyanogen for nitrogen-carbon. Methylamine was used for a carbon-
nitrogen-hydrogen bond combination. The experimental results indicate
that the oxidation of bound nitrogen can be essentially quantitative
even at the short residence times (ca. 2 msec) in the jet-stirred.
combustor. Differences were found in the production of nitric oxide
from the various nitrogen bond types ranging from 60 to 100% conversion
under excess air conditions, but the general behavior of all the compounds
studied was quite similar as a function of mixture ratio. Under fuel
rich conditions the production of nitric oxide from nitrogen compounds
was considerably lower, approaching zero below 60% stoichiometric air.
The fate of the portion of the additive not resulting in NOx formation
was not determined in these experiments.
The retention of nitric oxide as a function of mixture ratio
in the jet-stirred combustor burning methane/air is shown in Figure 2-12.
There is essentially total retention on the fuel lean side,but the
retention drops off on the fuel rich side, approaching zero below 60%
stoichiometric air. The degree of retention is found to be independent
of additive level up to almost 3000 ppm equivalent addition. The change
in NOx output for the jet-stirred combustor as a function of additive
input is illustrated in Figure 2-13. The equivalent addition of NOx
has been corrected for the removal of water from the sampled stream;
the change in NOx output is based on as measured values with the gas
stream at a dew point of 40°F. The nitric oxide results can be regarded
as a baseline, since no change in the additive is required to yield the
output.
When N02 was added to the jet-stirred combustor, a slightly
different behavior was observed. The NOx emission levels were slightly
higher and, within a narrow range of mixture ratios, more NOx was
measured in the output than was added initially to the combustor.
The significant reactions to produce NO from N02 in the jet-stirred
combustor are likely to be
N02 + 0 = NO + 02
N02 + M = NO + ° + M
The latter reaction could be followed by
° + N2 = NO + N
N + 02 = NO + 0
The reaction of nitrogen dioxide with oxygen atoms has a very low
activation energy while the dissociation of N02 has a fairly high
activation energy. Within the range of temperature and concentrations
of our experiments it is possible that the dominant reaction for N02
shifts from the exchange reaction to the dissociation reaction. If
the exchange reaction
N02 + ° = NO + 02
were predominant the N02 would be converted to NO with the loss of an
oxygen atom. If the dissociation reaction
N02 + M = NO + 0 + M

-------
Figure 2 -12
RETENTION OF ADDED NO
a 100
2:
I--
::::>
Q.
2:
LJ..
a
2:
a
I--
2:
W
I--
W
c::
I--
2:
W
U
c::
W
Q.
50
o
50
q)
o
6
9
60
0200 ppm ADDITION NO
61300 ppm ADDITION NO
6
100 150
PERCENT STOICHIOMETRIC AIR
w
.....,
200. .

-------
Figure 2-13
ADDITION OF NO TO COMBUSTOR
x
o
2:
2: 1000
)J
-"""
"..., .
-"""
o \]/ ,/'
(J \\...:' ~
124cyo . S~ :-..C~"...,
STOICH"'}-\ 11~ qOlo?1& .
t.Y /bb..b?>' \]
, ~
/,/'
/
6
2000
""'
E
a.
a.
.......
.....
::J
a..
.....
::J
o
(...)
00
w
~
2:
«
:I:
U
o
o
1000 2000
EQUIVALENT ADDITION OF NO (ppm)
3000

-------
- 39 -
were predominant N02 would be converted to NO with the production of
an oxygen atom which itself might react to produce additional NO.
In our experiments . (Figure 2-14), it was found that under
fuel lean conditions the added N02 was quantitatively converted to NO
although for a narrow range of mixture ratios (around 110% stoichiometric
aiq slightly more than quantitative conversion was found. The excess
NOx' however, was small and is barely outside the limits of experimental
uncertainty. Under fuel rich conditions, the conversion drops off and
approaches zero below 60% stoichiometric air. Full conversion of
N02 to NO at 124% stoichiometric air is unaffected by additive levels
ranging from 100 to 800 ppm as shown in Figure 2-15.

Ammonia (Figure 2-16) gives slightly lower conversions than
rhe oxides of nitrogen themselves but the conversion is still fairly high
(~. 70% under fuel lean conditions). The conversion falls off on the
fuel rich side, approaching zero at about 60% stoichiometric air.
The general nature of the conversion curve is the same as that for
nitric oxide and indicates that conversion of fuel nitrogen to NOx is
reduced under fuel rich conditions much as the NDx emissions from
methane combustion. The conversion of ammonia to nitric oxide as a
function of additive level is shown in Figure 2-17 and indicates that
the percentage conversion is essentially independent of additive level
from 100 ppm up to almost 3000 ppm equivalent addition~
Cyanogen (Figure 2-18) gives the lowest conversion of any of
the model nitrogen compounds used in this study. The overall .appearance
of the conversion curve is quite similar to those for NO and NH3' With
excess air, conversion is essentially constant at about 60%. Under
fuel rich conditions the conversion drops off, approaching zero
between 60 and 70% stoichiometric air. The conversion of cyanogen to
nitric oX1de as a function of additive level is shown in Figure 2-19 and
again indicates that the percentage conversion is essentially independent
of additive level from 100 ppm up to 3000 ppm equivalent addition.
Data have been taken at 5000 ppm equivalent addition at 124%
stoichiometric air which indicate a slight drop-off in conversion.
Methylamine was also added to the jet-stirred combustor as
a model compound with carbon-nitrogen-hydrogen bonding. The percentage
conversions to NOx as a function of mixture ratio are shown in Figure 2-20.
The results are almost indistinguishable from those for ammonia except
that the conversion approaches zero at about 65% stoichiometric air. The
overall conversion under fuel lean conditions is approximately 70%.
'The conversion of methylamine to NOx as a function of additive level is
shown in Figure 2-21. There is essentially constant conversion at 112%
stoichiometric air from 200 to 1200 ppm equivalent addition.

-------
Figure 2 -14

CONVERSION OF N02 TO NOx
ON 100
z
I-
::>
a..
z
1.1..
o
z
o
(/)
c::::
I.JJ
>
Z
o
U
I-
Z
I.JJ
U
c::::
I.JJ
a..
50
o
50
o
o
o
o
o 300 ppm
ADDITION N02
o
100 150
PERCENT STOICHIOMETRIC AIR
+='-
a
I
200

-------
Figure 2-15
ADDITION OF N02 TO COMBUSTOR
 1000
,-... 
E 
a. 
a. 
...... 
I-- 
::> 
a.. 
I-- 
::> 
0 
x 
0 
:z: 
:z: 500
LLJ 
t.:) 
:z: 
oCt 
::I: 
U 
0°
o 124~o STOICH.
L5 112~o STOICH.

/D 77~o STOICH.

o \J 66~o STOICH.
o
o
500 . 1000
EQUIVALENT ADDITION OF NO (ppm)
~
t-'
1500

-------
Figure 2-16

CONVERSION OF NH3 TO NOx
r.rr\ 100
z
I-
:J
a.
z
I.i....
o
z
o
(f)
c::
w
>
z
o
(,)
I-
Z
W
U
c::
w
a.
50
o
50
9
01300 ppm ADDITION NH3
g
o
o
g
o
o
100 150
PERCENT STOICHIOMETRIC AIR
.c--
N
200

-------
Figure 2-17
ADDITION OF NH3 TO COMBUSTOR
2000
E
a.
a.
'-'
I-
::>
a..
I-
::>
a
x
a
z
z 1000
w
~
z
«
::r:
u
o
o
/
t5
~//

/ .
(Y'
6//
/
C{.... 112/'0 5TO IC H .
6//[S
124/'0 /,"
5TOICH. " /' 8",.
" /' ""
~/' S\Q\c,.,.'
/ 11°10/ :.,.;.'
/:,,1 ;,' "
/ ""
/6601 STO\CH. - -
::;:;;-" 10 --
--
-
\:)~
9
~
~~
CJ\:)
~"v
«'5
1000 2000
EQUIVALENT ADDITION OF NO (ppm)
I
.t:-
lJ.)
" 3000

-------
Figure 2-18
CONVERSION OF (CN)2 TO NOx
N
:2 100
u

I-
::>
a..
z
u..
o
z
o
V>
c::::
~ 50
z
o
U
I-
Z
W
U
c::::
w
a..
o
50
6
~o
8
0600 ppm ADDITION (CN)2
62700 ppm ADDITION (CN)2
6
o
.I::-
.I::-
100 150
PERCENT STOICHIOMETRIC AIR
200

-------
Figure 2-19
ADDITION OF (CN)2 TO COM~USTOR
2000
-
E
c..
c..
~
:::>
a..
~
:::>
o
x
o
z
z 1000
I.LI
<.:)
z
<{
:::I:
U
6'
,/ .
(Jo,(\. ,/
~ s~()"\. ./
~<::J ~\o'/
fv~ '\. 'V 1\'/
~ t;>-~~ ~
C, <::J '\. 'l" ,/
'V '\../.
.. ~'V /' . 0',
« ' ./ "
'/ ".'"
A", ~O\~:"
'U 11°10 s"
./ ~
", ',," ,
& ,,'" "
/",01-;." 66°10 STOICH.- - - ...;.. \l
..:,-U I' --
~ --
--
-
- '
1000 2000
EQUIVALENT ADDITION OF NO (ppm)
o
3000
6
.1
.po
VI

-------
"'- . ._._~-
: I . ~!~'.-
-. '"J r'.
.:. -,'. V
C~~!\I~j~Ł~~I':!\! ;~#.i
r::i ~ IV !-. -,
-' ,--
-- ~-_. -'- _._. ._-~-------
--------- ~----'.
---.-" " --~-----------_.
,..-...---.
 I     
U I     
~   
~ I     
:::'J     
0 I     
z r-  (, 
 I   ,'"'" j 
l.J.. 0- - 0
a r -........,, 0
z !   
0  ;-   .p..
  ,    ""
(,,"-  I    
Co:.: 0 ~- --   
L.o I    
,...."r  I    
'-'  ,-   
v  i 0  
.....  ' .   
;;2',  I    
W  I    
U  I    
e:::  ~   
w    
Co..    
 1\ " .LQL  
 -' ..-.   
 50   
~-------' ---'------~E-'-
fI""-' ..- ! - r . , !

I.. - -, I - 0 5 (, I) ppm
( -J I .'
-... i -
'.~ 1 ~ :t ~-
_L...

100
-L
~i~;~:EiJT
rCJ ;\]0
X
-.-----.--
,l\DDITION CH3 NH2
I
:.--L I
150
I .---:...L-.
200
~7n'C1h. 'vi:::TRIC ";H

-------
'Figure 2-21
ADDITION OF CH3NH2 TO COMBUSTOR
.-..
E
. c..
c..
-
~
::>
a..
~
::> H
a
x
a
2:
2:

L1.J
(.:J
2:
<
:I:
U
1000
500
/
6
, ~./
()~
c, -<\
~ 1,\0"/ ,
9() ",,""/
fv~ /\ /
~ LJ
v() /
~'v /
,«.-\S
/rf
/
/
/
o 7.20;0 STOICH.
o
o
500 1000
. EQUIVALENT ADDITION OF NO (ppm) ,
.c-
.....
150Q

-------
- 48 -
2.3.3
Preliminary Observations and Results with Multiburner
The multiburner is a zirconia furnace with a combustion
tube running through its center. The furnace is fired with ~atural
gas (or propane)/oxygen torches, and the materials of construction
allow operation of the furnace at temp0.ratures approaching 4500°F.
The tor~hes fire tangentially through ports in the insulation and the
pre fired fused zirconia monolithic liner.
Exploratory experiments have been run on the multiburner to
determine its durability and flexibility as an experimental tool.
The furnace itself was conditioned over numerous cycles to complete
the curing of the refractory lining and insulation. After conditioning
of the furnace, the combustion tube was put in place and the furnace was
fired.
The monolithic liner exhibited some cracking as a result of
the heating and cooling cycles but in general retained its integrity.
The combustion tube itself, however, fabricated of a thermal shock
resistant zirconia composition, exhibited no visible cracking as a
result of cyclic operations. .
Wall temperature measurements were made on the outer wall of
the combustion.tube with an optical pyrometer. No temperature measure-
ments were made inside the tube during these preliminary experiments.
The gases inside the combustion tube were sampled through the water-
cooled, stainless steel sampling probes described earlier. During
these initial experiments, only NOx was measured, although the sampling
train was also capable of measuring other combustion gas components.
The formation of NO was measured for air alone and for
methane/air combustion. Duri~g a given set of experiments the combustion
tube outer wall temperature was maintained constant and the combustion
gas composition and flow rates were varied. The reactor was probed
axially to measure the NO level at a given position.
x
It was found that because of the heated walls, combustion
could be maintained over a wider range of conditions than otherwise
possible. Of course, under extremely fuel rich conditions with wall
temperatures above the adiabatic flame temperature one can observe
pyrolysis reactions rather than combustion reactions. Excursions
were made into this rich region although no analytical measurements
were made. Excursions to 20% stoichiometric air at a wall temperature
of 2800°F resulted in the formation of large quanitities of soot and
second stage burning at the exhaust of the combustion tube.
. Experiments were performed in which air was passed into the
combustion tube with the outer wall maintained at 3150°F (20000K).
NO concentrations were measured along the axis of the tube to measure
th~ effect of residence time; further residence time information was
obtained by varying the flow rate. The results for NO formation under
x

-------
- 49 -
these conditions are shown in Figure 2-22. The line indicated on the
figure is a ''best fit" line. The results fall below those calculated
by using rate constants for the elementary reactions involved but this
is not surprising since in these experiments the gas temperature was
probably somewhat below the temperature of the outer wall of the combustion
tube. Gas temperature measurements were not made in these experiments
but will be performed in future st~dies. The results are presented
here primarily to illustrate the use of this equipment to establish'
experimental conditions under which significant quantities of NO can
be produced. In order to properly interpret the results of suchx
experiments a more complete characterization of the flow patterns,
temperature distribution and gas compositions must be obtained.
Further experiments were performed to illustrate the use of
the multi-burner to study NOx formation in methane/air combustion.
A premixed flame of methane/air was studied over a range of residence
times and mixture ratios. To vary mixture ratio, the methane flow was
held constant while the air flow was varied. This differs from the
procedure used in the jet-stirred combustor. Since the air flow rate
is much higher than the methane flow rate this procedure results in
residence times which vary with mixture ratio. To graph the resulting
data (which were taken at constant fuel rate) a "nominal" residence.
time was defined as the residence time under stoichiometric conditions
at the combustion tube wall temperature.
Under combustion conditions, peak NOx levels were found to be about
170 ppm. While for pure air under similar residence time and wall temperature
conditions the NOx formation was 30-50 ppm, it is likely that the gas
temperatures were different for the combustion cases and the non-
combustion cases. With good characterization of temperature and flow
conditions it may be possible to measure the contribution of combustion-
related reactions to NOxformation. Residence time seemed to have only
a minor effect on peak NOx formation as illustrated in Figure 2-23. Under
excess air conditions the residence time effect seemed to be greater, but
the data are not sufficiently extensive to draw firm conclusions on this
matter.
Wall temperature, however, was found to have an effect (Figure 2-24).
At 3l50°F, the NOx level at 100% stoichiometric air was found to be
l75ppm while at 2800°F the NO level was l20ppm. This is in directional
agreement with the difference~etween large boilers and laboratory-
scale experimental equipment regarding NOx levels measured. By use of
the multiburner the effect of heat losses on NOx formation can be
measured and further information can be obtained on the roles of thermal
conditions and chemical conditions in NOx formation.

-------
Figure 2-22
Preliminary Data
PRODUCTIO N OF NO FROM AIR
x
IN MUL TIBURNER WALL TEMPERATURE 3150°F
.200
......
E
a.
a.
.......
z
a
I-
«
:2:
~
a 100
lJ....
x
a
z
o
./
c8
. .
Residence Time Variation
o by flow rate
o by probe position
o
o
0.5 1.0
RESIDENCE TIM E (SECONDS)
V1
o
1.5

-------
F ;uurE: ::: -. ~;
Prelimirodry Data
Er-:FECT Of- MIXTURE RATIO ON
NO FORMATION IN M UL TIBURNER
x
200
,.....
E
a.
a.
......
(/)
z
a
(/)
(/)

a5 100
x
a
z
o
50
Firing at Constant Fuel Rate
Nominal Residence Time Calculated
at 100~o Stoich.
JIt,
o ~ \
M \ \
1 \ \
'l '6
9:0 ,
6 - 0.25 see
o - 0.12 see
0- 0.06 see
100 150
PERCENT STOICHIOMETRIC AIR
VI
.....
200

-------
Figure 2 -24
EFFECT OF WALL TEMPERATURE ON
NO FORMATION IN MULTIB,URNER
x
E
a.
a.
'-"
V')
2:
o
V)
V')
aJ 100
x
o
2:
200
o
50
Wall Temperature
p,
.. / \
/ p\\
/ 8]'8
/ kat 0
o ~"Lj
o 3150°F
o 2820°F
100 ,150
PERCENT STOICHIOMETRIC AIR
01
N
200

-------
- 53 -
REFERENCES
2-1
Lavoie, G.A., J.B. Heywood and J.C. Keck, Combust. Sci. Tech., 1,
313 (1970).
2-2
Marteney, P.J., Combust. Sci. Tech., 1,461 (1970).
2-3
Fenimore, C.P., Thirteenth Symposium (International) on Combustion,
p.373 (1971).
2-4
Bowman, C.T., Combust. Sci. Tech., 1, 37 (1971).
2-5
Longwell, J.P. and M.A. Weiss, Ind. Eng. Chern., ~, 1634 (1955).

-------
- 54 -
3.
MATHEMATICAL MODEL OF NO FORMATION IN COMBUSTION PROCESSES
In Phase I of Esso' s "Systems Study of Nitrogen Oxide. Control
M,=thods for Stationary Sources (3-1) an idealized "first-generation"
mathematical model of NO formation in combustion processes was formulated.
The description of this model, its scope and uses were presented in detail
in reference (3-1), and are briefly summarized in the following section.
of this report.
Because of the idealized nature of the first-generation mathematical
model, (premixed fuel/oxidizer, simplified kinetics restricted to fuel-lean
conditions, plug flow without transport effects) it was felt desirable to
extendth~ scope of this model. The flexible mathematical formulation of
the first-generation mathematical model permitted the stepwise incorporation
of additional kinetics, and the simulation of particle combustion and mixing
effects in combustion processes. Thus, the current version of our mathematical
"moder, utilizing as its base the first-generation model, is still oriented
toward the simulation of NO formation in large-scale combustion equipment.
The objectives of this model formulation are to simulate the directional
effects of known combustion modification techniques on NO emissions, and to
provide guidance for the development of other potential combustion modifica-
tion techniques. Further modeling work would be required to allow the use
of the model as a quantitative tool for guiding the design of improved com-
bustion equipment.
3.1
Features of the First-Generation NO Model
The formulation of a mathematical model capable of the quantita-
tive description of chemical kinetics, transport effects, and combustion
operating and design parameters is too complex to be used directly at present.
This is so because major pieces of information are still lacking on the.
detailed chemistry of NO formation in combustion reactions (particularly
under fuel-rich conditions) and the fluid dynamic and heat transport behavior
of flames and combustion gases.
Based on the above consideration, in the Phase I stationary NOx
study at Esso (3-1) a model was formulated based on premixed, gaseous
hydrocarbon fuel/air combustion. Methane was used to si~ate natural gas
combustion. The principal features of this model were the following:
(a)
One-dimensional, homogeneous gas phase reaction system. Plug
flow formulation consisting of series of stirred reactors.
(b)
Specified flow velocity, pressure and flow area profiles.
(c)
Specified heat transfer options
.

.
heat transfer rate profiles
heat transfer coefficients. and
gas temperature profiles
quenching rate profiles
wall temperature profiles
.
.

-------
- 55 -
(d)
Heat generation described by two-step overall kinetics of
hydrocarbon oxidation to 00, followed by CO combustion to C02'
(e)
Simplified, uncoupled Zeldovich chain kinetics used to cal-
culate NO concentrations under fuel lean conditions; Q-atoms
assumed to be in equilibrium with molecular 02'
(f)
Multiple point injection of fuel, air or flue gases, allowing
the simulation of two stage combustion and flue gas recirculation.
The mass and energy conservation equations were solved by an
implicit integration scheme using a Newton-Raphson iteration technique.
Compared with explicit integeration schemes, the implicit schemp offered
the advantages of not being subject to the "ignition problem", since the
resulting equations were equivalent to those for stirred reactors, and of
being much more stable than explicit integration schemes which may "fall
apart ". if the integration step is made too large.
This first-generation Esso model was used to predict the rates of
NO formation in large gas fired boilers, as a function of excess air, preheat
temperature, and rate of quenching of the combustion gases. Because of its
premixed mixture, the model predicted peak NO emissions at about five per
cent excess air, instead of a monotonic decrease of NO with decreasing excess
air as experienced in actual practice with diffusion flames. Below stoichiometric
air supply conditions, the model could not be used to predict NO concentrations,
as discussed above. However, in spite of its "idealized" nature, the model's
predictions of NO emissions from large gas fired boilers were of the right
order of magnitude under excess air combustion conditions. Also, the directional
effects of flue gas recirculation and two-stage combustion (operating the first
stage with stoichiometric air supply) were correctly simulated for NO emission,
reduction. Air preheat temperature was shown to be important, resulting in
sharply increasing NO concentrations with increasing air preheat temperatures.
NO formation rates were predicted to decrease with in.creasing quenching rates,
because of the shorter effective residence times at high temperatures. Below
about 2 300°F, the NO formed in the post-flame gases became frozen in all of
our computer simulation cases.

-------
- S6 -
3.2
Extension of the Esso Mathematical Model
The following were the principal objectives of the continuing
development of the Esso model of NO formation in combustion processes:
Incorporate additional kinetics on the chemistry of NO
formation and decomposition to allow its use under fuel-
rich combustion conditions.
.
.
Extend the model's capability to include the analysis of
particle (liquid or solid) combustion.
.
Simulate transport effects by mixing fuel-lean and fuel-
rich zones in the combustion process.
The major portions of the model development are discussed in this
section. Listings of the computer program, along with input forms and
typical printouts, are presented in the Appendix.
3.2.1
Additional Kinetics
As discusssed above, the basic mathematical structure of the
first-generation model has been retained. The total mass, individual
species, and energy conservation equations are solved by an implicit integra-
tion scheme using a Newton-Raphson iteration technique. This flexible
mathematical formulation yields a one-dimensional plug flow combustor, which
comprises a series of specified size stirred reactors.
geneous,
reaction
consists
In this model, the net generation of NO is described by a homo-
Ze1dovich-type gas phase reaction system (3-2). The thermal chain
scheme used for this model, not coupled with combustion kinetics,
of the following elementary steps:
02 + M
o + N21
N + 02 "'
N + OR 
 "
""
kl
k2
20 + M
(3-1), (3-2)
,
"
k3

k4

kS

k6

k7

kS
NO + R
(3-7), (3-8)
......
NO + N
(3-3), (3-4)
....
NO + 0
(3-5), (3-6)
"

-------
- 57 -
Steady-state treatment of the above scheme yields the net rate of NO formation:
d (NO)
dt
=
2 Ko(02)

k5(02) + k4(NO) + k4(OH)eq
k3k5 (N2) (02)
+ k3k7(N2) (OH)eq
2
k 4 k6 (NO)
(NO)2(H)
eq
k4 kS Jio (°2)
(3-9)
where K
o
= kl/k2
- . (0) 2
- (02) , and hydrogen atoms and hydroxyl
radicals are assumed to be present in equilibrium with other combustion species.
Neglecting the contribution of reactions (3-7) and (3-S), which have been
shown to be significant only under fuel-rich conditons (3-3,3-4) equation
(3-9) reduces to the steady state expression for the Zeldovich chain mechanism
of atomic exchange reactions.
The following values of the rate coefficients were used for model
calculations:
k3  1.36 x l014e-75400/RT   -1  -1
= cc. mole  sec 
k4  3.1 x 10l3e-334/RT   -1  -1
 cc. mole  sec 
k5  6.43 x 109Te-6250/RT   -1  -1
= cc. mole  sec 
k6  1. 55 x 109Te-3S640/RT   -1  -1
= cc. mole  sec 
k7  4.1 x l013e -SOO/RT   -1  -1
= cc. mole  sec 
kS  16.4 x 1013 -4S,600/RT   -1  -1
= e cc. mole sec
where the values of k3' k4' k5 and k6 were taken from the Leeds evaluation

(3-5), while k7 and kS are based on the data of Campbell and Thrush (3-6).
For comparison purposed lower values of k3 and k4 were a1so used based on
the evaluation of Bortner (3-7):
=
6.S x 10l3e-75,OOO/RT
1.5 x 1013
-1
cc. mole
-1
sec
k3
k4
=
-1
cc. mole
-1
sec

-------
- 58 -
Throughout the calculations~ oxygen atoms were assumed to be in equilibrium
with molecular 02~ according to reactions (3-1) and (3-2)." The equilibrium
K
o
=
kl -
k2 -
(0) 2 -
(02) -
25e -118~000/RT
(3-10)
was based on the data of the JANAF Thermochemical Tables (3-8) over the range
of temperatures of interest.
As in the first-generation NO model ~ the present formulation
requires the input of specified flow velocity ~ pressure and flow area pro-
files in addition to gas temperature profiles or quenching rate profiles. Heat
generation is described by two-step overall kinetics of hydrocarbon oxidation to
CO ~ .followed by CO oxidation to C02' The rate data used in the model for
the two-step hydrocarbon oxidation are those determined by Morgan for methane
combustion in a jet-mixed reactor under fuel-lean conditions (3-9):
-d(CIt)
dt
1.8 x 1010e-25~000/RT (X )(X )1/2()C )1/2(~)
CO 02 -li20 RT
(3-11)
where reaction rates are given in g. moles/l./sec.~ P is the absolute pressure
in atmospheres~ T is the absolute temperature in °K~ and X represents the mole
fraction of the species involved in equation (3-11). The use of these
overall rate expressions leads to predictions of very rapid fuel burn-out1
and consequently, to exhausting the available oxygen. This becomes
a significant factor especially under fuel rich or near stoichiometric
c~nditions~ and therefore~ a constraint is imposed in the model on the 02
concentration~ which is not allowed to decrease below its prevailing equilibrium
value.
Typical model predictions of the formation of NO in a natural
gas (methane) fired~ 500 MW utility boiler as a function of mixture ratio
~re presented in Figure 3-1. The rate data of reference (3-7) were used
1.n. th:se calculations. In agreement with the trend observed in actual boiler:
em1.ss1.ons~ NO c~ncentra;ion ~ev:ls increase with increasing air supply over
the rang: of 95% to 105% sto1.ch1.ometric air. As noted earlier~ because of
t~e prem1.xed nature of the model~ it predicts peak NO concentrations at about
f1.~e perc:n: excess air~ in contrast with the behavior of diffusion flames
wh1.ch exh1.b1.t peak NO conentrations at much higher levels of excess air The
a~tual levels of "frozen" NO concentrations predicted by our model are ~n the
r1.ght order of magnitude~ although they tend to be high. This is likely to
be due to the idealized (premixed one-dimensional) nature of the model to
the ~ncertainties.in the values of the kinetic rate coefficients, and ~o the
part1.cular quench1.ng rate assigned to these predicitions.

-------
Figure 3 - 1
EFFECT OF MIXTURE RATIO ON NO MODEL PREDICTIONS
 1600
 1500
 1400
 1300
 1200
 1100
 1000
:2 900
c.. 
c.. 800
.. 
0 700
z
 600
 500
 400
 300
 200
 100
 00
. 105';10 Stoichiometric Air
95';10 Stoichiometric Air
VI
\0
Stoichiometric Air Supply
Methane/Air Combustion. Nominal 500 MW Boiler
Preheat Temperature = 500°F.
Quench Rate
= dT = -6.79 x 10-11 T4, oK/sec.
dt
5
10
DIS TANCE FROM INLET, FT.
15
. .
20

-------
- 60 -
3.2.2
Particle Combustion Model
To model the process of particle combustion (fuel oil droplets and
coal particles) an analysis was made assuming the fuel in the. form of
shrinking spherical particleso Thus, by considering a differential element
~x of the combustor, the amount of fuel evaporated from a liquid droplet is:
EN A a~x
v p

where L is the flow rate of liquid fuel
L -L
o
=
(3-12 )
E is the rate of evaporation
N is the particle density
v
A is the surface area of the particles
p
a
is the cross-sectional area of flow
i
Having a weight distribution function of particle sizes f ,
w
at the limit as ~x ) 0, the above expression becomes
dLi =
dx
EifiAia
wp
(3-13)
For evaporating liquid droplets, the "shrinking" diameter is given
bYD2 = D2 - Kt
o .
where D
is the diameter at time t
and
D is the initial di.ameter
o
K is the evaporation rate constant
. Thus, knowing the density, the quantity of liquid evaporated can be cal-
culated from the above expression.

For the i-th droplet diameter, the fuel particle flow rate ~i
is given by
01
dN
=
3 W fuel
i dDi
w
7T (Di)3p
The total fuel vaporization (or gasification rate) is
i 0i r';) 3
E N P7T ~Do i) j- (Di)
6 .
m =
(3-14)

-------
- 61 -
The combustion of solid coal particles was analyzed and programmed
for the model in a similar manner. In contrast to the burning of liquid
sprays where the first step is the relatively slow evaporation of the
drops, and the second step is the rapid combustion of vaporized fuel,
in coal combustion surface reactions are important. In the present
model formulation, it was assumed that a pseudo-gasification step which is
mathematically equivalent to the evaporation of liquid drops could be used
for coal particles, followed by essentially instantaneous gas phase combustion.
Therefore, the evaporation rate becomes and empirical surface burning rate
for coal particles, and the modeling equations remain the same.
Model predicitions for the formation of NO in the combustion of
fuel oil droplets of uniform .size (15011 radius)" are presented in Figure 3-2.
Again, the computer calculations on which Figure 3-2 is based were carried
out for a nominal 500 MW boiler, fired with residual fuel oil having the
empirical composition C H .. The predicted level of NO emisssions shown
in Figure 3-2 is clear19 ~u~R too high for this hypothetical case. Further
model development work and testing is required for the assessment of the
utility of this approach.
3.2.3
"Macromixing" Model
To simulate the effects of mixing fuel-rich and fuel lean regions
in the combustion zone, a "macromixing" analysis was performed and programmed
for the model. While not equivalent to a rigorous description of the fluid
dynamics of flames, it was felt that based on present knowledge such a
macroscopic treatment can provide useful insight into mixing effects on NO
formation. "
The "macromixing" model, shown schematically in Figure 3-3 as
a combination of two parallel-series stirred tank reactor with transport
exchange is somewhat similar to the gas turbine model of Hammond and Mellor
(3-10). However, instead of using a pair of parallel stirred tank reactors
followed by a series of other stirred tank reactors as in the Hammond-Mellor
model, the Esso macromixing formulation is comprised of two series of parallel
stirred tank reactors, in which transport is allowed at each stage until the
concentrations become the identical.
In the macromixing model, one series of reactors represents the
fuel-rich region of combustion, while the other one represents the fuel-lean
region. Mixing is simulated by allowing transport exchanges to occur at
specified rates between each set of parallel reactors.
The number of parallel-series reactors is dependent on the rate
of transport exchange between the reactors. Once significant changes cease
to exist in the conditions of the two parallel streams (concentrations and
temperatures), the parallel-series arrangement is merged into a single train.
In Figure 3-4, a simulation of staged or "off-stoichiometric" firing
is presented for a 500MW, gas fired utility boiler using the macromixing model.
The model predictions on NO formation in mixing a fuel-rich zone (representing
,.

-------
Figure 3 - 2
MODEL PREDICTION OF NO FORMATION IN FUEL OIL DROPLET COMBUSTION
1400
1200
1000
E
Q.
Q.
800
..
o
:z: .
600
400
200
o
0.0
5
NOMINAL 500 MW BOILER
FUEL: C HI 7 FUEL OIL
n . n
UNIFORM DROPLET RADIUS
= 1501L
EVAPORATtON RATE
COEFFICIENT = 1.74 X 10-4 1L2/sec.'
QUENCH RATE
dT
dt = -1893 + 2.622T
-0 .001009T2 / oK/see.
10 15
DISTANCE fROM INLET/ft.
20
0-
N
25

-------
Figure 3 - 3
PARALLEL-SERIES "MACROMIXING" ,MODEL
Fuel Lean     Backmix 
   Backmix   .
   Reactor -  Reactor '
     4  
  (1)   (1)  
  C'\   C'\  
  c::   c::  
  ~   ~  
  ..t:   ..t:  
  U   U  
  x   x  
  W   W  
  .....   .....  
  ....   ....  
  0   0  
  c..   c..  
  I/)   I/)  
  c::   c::  
  ~   ~  
  ....   ....  
  t-   t-  
Fuel Rich  Backmix   Backmix 
     ,
   Reactor   Reactor 
, - Backmix  
 .. Reactor  
  (1)  
  C'\  
  C  
  ~  
  ..t:  
  U  
  ..... X  
  (1)w Backmix 
  2 ...
  ..... Reactor
  o ....
  28. 
  I/)  
  c  
  ~  
  ....  
  I-  
,  Backmix  
  Reactor  
Cj\
I.,...)
Single
Train

-------
Figure 3 - 4
EFFECT OF MACROMIXING ON NO MODEL PREDICTIONS
 1400    
 1300    
 1200    
 1100    
 1000    
 900    
2 800    
c..     
c.. 700    
..     
0     
z 600    
 500    
 400    
 300    
 200    
 100    
 0    
 0 5 10 15 20
   DIS TANCE F.ROM INLET I FT.  
NO MIXING
Methane/Air Combustion. Nominal 500 MW Boiler
Preheat Temperature = 500°F. Overall Stoichiometric
Air Supply .

Quench Rate

dT -11 4
= d't= -6.79 x 10 x .T I oK/sec.
0-
.po
Mixing Fuel Lean And Rich Zones

50~o of 105~o Stoichiometric
50~o of 95~o Stoichiometric
20~o Interzone Recycle

-------
- 65 -
50% of the furnace) initially at 95% stoichiometric air with a fuel-lean
zone initially at 105% stoichiometric air are compared with model predictions
of NO formation corresponding to conditions in the absence of mixing. As
shown in Figure 3-4, the macromixing model predicts about a 40% decrease in
NO, compared with the no mixing case. This finding is in directional
agreement with "off-stoichiometric" or staged firing experience in
utility boilers (3-11), (3-12). Thus, the use of this type of approach
with detailed parametric variations may lead to a better understanding of
the importance of mixing effects on NO formation in combustion processes.

-------
3- 1
3- 2
3- 3
3- 4
3- 5
3- 6
3- 7
3- 8
3- 9
3-10
3-11
3-12
- 66 -
REFERENCES
Bartok, W., A. R. Crawford, A. R. Cunningham, H. J. Hall,
E. H. Manny and A. Skopp, "Systems Study of Nitrogen Oxide Control
Methods for Stationary Sources", Esso Research and Engineering Company,
Final Report GR-2-NOS-69, Contract No. PH 22-68-55 (PB 192 789),
November 1969.
Zeldovich, Y. B., Acta Fhysicochimica U.R.S.S. 21,577 (1946).
Lavoie, G. A.,J. B. Heywopd and J. C. Keck, Comb. Sci.
313 (1970).
Williams, G.C., H. C. Hottel, and A. F. Sarofim, "Models of Ni.tric.'Oxide
-Formation in Stationary Power Plants", Paper No. 2c Third Joint
Meeting AIChE-IMIQ, Denver (August 1970).
Baulch, D.C., D. D. Drysdale, D. G. Home and A. C. Lloyd, High
Temperature Reaction Rate Data No.4, The University, Leeds (Nov. 1969).
Campbell, I.M. and B. A. Thrush, Trans. Faraday Soc., ~, 1265 (1968).
Bortner, M.H., General Electric Co.
R 63RD34 (1963), AD 418 311.
Stall, D. K., (Editor), "J ANAF The rmochemical Tables", Dow Chemical
Company, Midland, Michigan (1965).
Morgan, A. C., "The Combustion of Methane in a Jet-Mixed Reactor",
D.Sc. Thesis, M.LT. (1967).
Hammond, D.C. Jr., and A. M. Mellor, Comb. Sci. Tech. ~, 67 (1970).
Breen, B.P., A. W. Bell, N. Bayard de Volo, F. A. Bagwell and
K. Rosenthal, Thirteenth Symposium (International) on Combustion,
p. 391 (1971).
Bartok, W., A. R. Crawford and G. J. Piegari "Systematic Investigation
of Nitrogen Oxide Emissions and Combustion Control Methods for Power
Plant Boilers",. AIChE 70th National Meeting, Paper No. 38c
(August 1971). .

-------
4.1
- 67 -
4.
CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Basic factors influencing the formation of nitrogen oxides
in combustion were investigated experimentally and theoretically' in
this study. The combustion conditions were selected to be pertinent
to stationary sources such as furnaces and boilers with peak temperatures
ranging from 2500-3500°F. The following results were obtained:
(1)
(2)
NOx emission profiles were established for a jet-stirred com-
bustor in which the combustion was not limited by mixing. The
combustor was used with methane, propane, carbon monoxide, and
hydrogen as fuels with air as the oxidizer.
(a)
A strong dependence on mixture ratio was found with peak
emissions occurring under slightly fuel-rich conditions.
Because of the well-stirred nature of the combustor,
with reactants mixing very rapidly with products, there is
a measurable oxygen concentration in the reation zone even
under fuel-rich conditions.
(b)
As residence time in the reaction zone increased, the
temperature in the zone decreased because of heat losses.
The effect of increasing residence time and decreasing
temperature offset each other resulting in constant emissions
at constant preheat in our combustor. Changing preheat
;'I,ltered the emissions. Thus, both residence time and preheat
temperature (i.e., combustion temperature) influenced NO
. . x
em1SS1ons.
(c)
Peak NOx emiss~ons for methane/air burning at 3300°F at a
nominal residence time of 2 msec at 90% stoichiometric air
were found to be 100 ppm; emissions fell off at richer and
leaner mixtures, becoming less than 10 ppm below 60%
stoichiometric air and above 150% stoichiometric air.
(d)
Results for propane/air and carbon monoxide/air were
similar, although with slightly higher NDx emissions.
Hydrogen, even though burning at higher temperatures,
exhibited lower NDx emissions than any of the other fuels
used.
NO formation in the jet-stirred combustor (methane/air) exceeded
that predicted by the Zeldovich mechanism (based on the "equilibrium
oxygen atom" assumption), in some cases by an order of magnitude.
However, since the Zeldovich mechanism was developed for use in the
post-flame zone, and since the jet-stirred combustor is entirely
a flame zone reactor, the disagreement is not entirely unexpected.

-------
- 68 -
(3)
Evidence of coupling between combustion kinetics and NO forma-
tion kinetics was obtained when methane was added to hydrogen
combustion .and when CO was added to hydrogen combustion. The
resulting emissions were more than a simple additive effect.
The results were not inconsistent with the production of "super-
equilibrium" oxygen atoms in the combustion zone caused by the
presence of methane or carbon monoxide.
(4)
Nitrogen bond-type additives were used in methane-air combustion
to investigate the effect of N-O, N-H, and N-C bonds in the com-
bustion zone on NO~ emissions. The emissions were similar for
the above bond-types when they were added at the same concentrations.
Small differences were noted with retention or conversions for
NO>NH3>CH3NH2>(CN)2. The emissions for the addition of N02 were
similar to those for NO except that N02 exhibited a peak above NO at
about 110%stoichiometric air.
(5)
Nitrogen bond-type additive conversions to NOx exhibited a dependence
on mixture ratio on the fuel-rich side dropping off to nearly zero
. at approximately 60% stoichiometric air. Conversions were essen-
tially constant on the fuel lean side out to approximately 150%
stoichiometric air, dropping off slightly above 150%. The conversion
percentages in the jet-stirred combustor were essentially independent
of additive concentration up to about 3000 ppm.
~)
The multiburner (so-called because it can burn gas, oil, or
pulverized coal) was designed, constructed, and tested. The forma-
tion of NOx in heated air was found to be linear with residence
time. Flow rate of methane/air burning in the combustion zone
was found to have a small effect on NOx emissions. Wall temperature
of the combustion zone was found to have an effect on NOx emissions.
(7)
The mathematical model extension has been accomplished. The model
now can handle fuel-rich combustion, particle combustion, and
macroscopic mixing effects in combustion. Test cases have b.~~~
run. The model predicts the correct order of magnitude NOx emis-
sions for boilers. The directional trends for combustion modifica-
tions are simulated.
~)
The model predicts much lower NO emissions than found experimentally
in the jet-stirred combustor. The model is not formulated with
coupled combustion kinetics and NO formation kinetics. Coupled
kinet~cs are needed for calcuiations related to the jet-stirred
combustor.
(9)
For boilers emitting more than 300 ppm NOx emissions coupled chemical
kinetics appears to be of lesser importance. However, when
attempts are made to reach the range 100-200 ppm or less,
coupled kinetics may become more important. For large natural
gas boilers operating at high NOx levels, post-flame NOx formation
appears to dominate; however, fixation of atmospheric nitrogen in the
flame zone could become significant at low NOx levels. For fuels con-
taining nitrogen compounds, techniques to minimize conversion to NOx
may involve a competition between oxidation kinetics and dissociation/
recombination kinetics.

-------
- 69 -
4.2
Recommendations for Future Work
The results of this study indicate that under selected combustion
conditions significant quantities of NOx can be formed in the flame
zone. There is also good evidence for the coupling between nitrogen
oxide formation reactions and combustion reactions. Further study is
required to relate the kinetics and mechanisms of pollutant formation
reactions and those of other combustion reactions.
Future studies on such coupling effects
study of the flame zone and post-flame zone under
The following variables should be investigated:
should include the
well-defined conditions.
.
.
.
.

.
Fuel type
Flame configuration (premixed, diffusion)
Fuel/air mixture ratio
Combustion air preheat
Rate of heat removal from combustion zone
Fi-;:-ing rate
.
The multiburner can be used to study pollutant formation under
realistic combustion conditions with controlled heat losses from the
flame and post-flame zones. Temperature and species profiles should be
determined throughout the combustion zone to characterize the coupling
between combustion reactions and pollutant formation. The role of
combustion intermediates as well as the stable gas concentrations should
be investigated. The combustion of hydrogen, carbon monoxide, methane,
and propane, respectively with air should be investigated to determine
the coupling of kinetics effects under specific conditions.
The jet-stirred combustor should be used to support and aid
interpretation of the experiments performed with the multiburner. The
jet-stirred combustor allows the study of combustion under kinetically
limited conditions since transport phenomena are not limiting. Comparison
of experimental findings with theoretical calculations for a well-determined
combustion system such as hydrogen-air should validate the use of the
combustor as a kinetic tool. Calculations on a complex combustion system
such as hydrocarbon (e.g. methane or propane)-air could then be used to
validate combustion mechanisms for the conditions of the jet-stirred
combustor. Systems such as carbon monoxide-air could be used as a case
of intermediate complexity between the "simple" hydrogen-air system and
the "complex" hydrocarbon-air systems.
Kinetics calculations and mathematical modeling playa vital
role in the understanding of combustion phenomena. In addition to the
kinetics calculations required for interpretation and understanding of
the experimental work, further attention should be given to the modeling
of combustion processes occurring in large boilers. Further sophistication
in the chemical kinetics and fluid mechanics of such a model is desirable,
since even simplified models of combustion systems can provide insight
into the effect of various combustion parameters on pollutant formation.

-------
- 70 -
Mathematical techniques are currently available to provide extreme
sophistication in both chemical kinetics calculations and fluid.
mechanical representations and it is desirable to incorporate as much
sophistication as feasible from the standpoint of (1) our knowledge of
the reliability of input parameters for such sophisticated models and (2)
the computer technology available to perform such detailed calculations
(both from a systems and cost standpoint).
Basic research in both chemical kinetics and fluid mechanics is
the foundation upon which understanding of combustion and combustion
modeling rests. Without the clear knowledge of appropriate va111es of the
rate coefficients for the significant for a given system, the calculations
which lead to a detailed understanding of combustion processes cannot
achieve their ultimate potential. Research on the determination of
cannot. achieve their ultimate potential. Research on the determination of
rate constants for crucial reactions is therefore necessary. Furthermore,
appropriate fluid mechanic modeling and methods of calculating the required
mixing parameters must be coupled to the kinetics calculations for applica-
tion to the operation of combustion equipment. Detailed heat transfer
modeling ultimately must be coupled to the above components of combustion to
make the calculations more rigorous.
A research program as described above, with components extending
from the basic to the applied, will lead to an understanding of pollutant
formation and a detailed understanding of the factors which affect this
formation. The ultimate goal of such a research program is the development
of control technology applicable to full-scale combustion equipment.

-------
- 71 -
    APPENDIX A   
 EXPERIMENTAL RESULTS JET-STIRRED COMBUSTOR 
    TABLE A-I   
 Methane lAir, Effect of Mixture Ratio  
  Percent Gas NOx 
Fuel Flow Air Flow Stoichiometric Temperature Emission 02 Cone.
(l/sec). (l/sec.) Air   (OF) (pprn) (% Dry)
0.071 0.98 145   2810 7 
0.076 0.98 135   2950 14 
0.081 0.98 127   3110 25 4.6
0.086 0.98 120    44 3.2
0.092 0.98 112    64 2.2
o . 092 0.98 112    67 2.6
0.086 0.98 120    43 4..2
0.081 0.98 127   3000 28 
0.076 0.98 135   2850 15 
0.071 0.98 145   2710 8 
0.066 0.98 156   2580 5 
0.071 0.98 145   2835 8 
0.092 0.98 112    55 3.3
0.081 0.98 127   2910 22 
0.086 0.98 120   3000 35 
0.097 0.98 106    70 
0.104 0.98 99    q5 
0.140 0.98 74    60 
0.118 0.98 87    100 
0.108 0.98 95    90 
0.083 0.98 124    25 5.5
0.122 0.98 84    90 0.5
0.144 0.98 71    30 0.3
0.092 0.98 112    53 3.5
0.010 0.98 103    68 1.0
0.134 0.98 77    64 0.3
0.071 0.98 145    6 7.1
O. 092 0.98 112    44 2.6
0.155 0.98 66    24 3.9

-------
- 72 -
   TABLE A-2  
   . .  
 Methane lAir, Effect of Residence Time 
   Percent Gas NOx
Fuel Flow Air Flow Stoichiometric Temperature Emission
(1/ see) (l/sec.) Air (OF) (ppm)
0.092 1. 35 154 2'810 7
0.102 1.35 139 2950 14
0.112 1. 35 127 3190 23
0.122 1. 35 116  35
0.144 1. 35 98  95
0.190 '1.35 75  75
0.197 1. 35 72  40 .
0.208 1. 35 68  23
0.058 0.61 110 2910 42
0.074 0.795 113 2950 47
0'.092 0.98 112 3110 57
0.108 1.16 113  67
0.060 0.61 107 2950 60'
0.081 0.61 79 3030 90
0.110 0.795 76 3030 85
0.131 0.98 79 3140 90
0.098 0.61 65 2910 50
0.124 0.795 67 2950 43
0.177 1.16 . 69 2925 50
0.112 0.61 57 2800 23
0.049 0.61 131 2790 23
0.063 0.795 133 2800 15
0.079 0.98 130 2950 22
0.094 1.16 130 2990 20.
0.043 0.61 149 2350 4
0.056 0.795 149 2470 4
0.066 0.98 156 2580 5
0.082 1.16 149 2700 5
0.077 0.61 83 3110 100
0.098 0.795 85 3110 100
0.118 0.98 87  95
0.081 1.16 150  8
0.140 1.16 87  95 .
0.056 0.61 114  30
0.068 0.61 94 3110 95
0.068 0.98 151 2500 2
0.089 0.795 94  100
0.108 0.98 95  97
0.073 0.98 141  5

-------
- 73.-
  TABLE A-3  
  Propane/Air Combustion  
  Percent Gas NOx
Fuel Flow Air Flow Stoichiometric Temperature Emission
(1/ see) (l/sec.) Air (OF) .. (ppm)
0.0425 0.61 60  49
0.0495 0.61 52  ..1
0.026 0.61 99 2950 105
0.023 0.61 111 2910 70
0.0195 0.61 131 2800 40
0.0165 0.61 155 2530 8
0.0195 0.61 131 2650 29
0.023 0.61 111 2850 60
0'.026 0.61 99 :2950 .90
0.0295 0.61 87 2950 120
0.036 0.61 71 2990 .100
0.0425 0.61 60 2835 50
0.023 0.61 III 2.835 50
0.0295 0.61 87 2990 .110
0.033 0.61 78 3020 118
0.036 0.61 71 3020 102
0.033 0.61 78 3050 119
0.0425 0.61 60 2835 55
0.0165 0.61 155 2400 6

-------
- 74 -
  TABLE-A-4 
  Hydrogen/Air Combustion
  Percent NOx
Fuel Flow Air Flow Stiochiometric Emission
(1/sec) (l/sec.) Air ( ppm)
0.127 0.70 232 0
0.155 0.70 190 0
0.182 0.70 162 0
0.210 0.70 140 7
0.545 0.70 54 18
o . 45 0 0.70 65 .13
0.390 0.70 75 (25)
0.298 0.70 99 (45)
0.420 0.70 70 20
0.380 0.70 77 (35)
0.327 0;70 90 (60)
0.265 0.70 111 (40)
0.700 0.70 42 25
0.450 0.70 65 15
0.420 0.70 70 20

-------
- 75 -
   TABLE A-S 
 .' " ". 
 Ca rb on Monoxide/Air Combustion
  " ,  
 , .. Percent NOx
  . .
Fuel Flow . Air Flow Stoichiometric Emission
(l/sec) (l/sec.)  Air ( ppm)
0.216 0.61  118 80
0.259 0.61  98 97
0.300 0.61  87 120
0.341 0.61  76 110
0.175 0.61  146 20
0.300 0.61  87 118
0.341 0.61  76 80
0.389 0.61  67 65
0.509 0.61  50 30
0.436 0.61  59 50

-------
  - 76-   
  TABLE A-6.  
  Nitric Oxide Additition  
  Percent Equivalent Net NO Gas
Fuel Flow Air Flow Stoichiometric NO Addit. Increase ' Temperature
(1/ see) (l/sec.) Air (ppm) (ppm) (OF)
0.083 .0.98 124 100 80 3030
0.083 0.98 124 290 235 3050
0.083 0.98 124 504 450 2925
0.083 0.98 124 100 87 3020
0.071 0.98 145 293 208 
0.092. 0.98 112 288 235 
0.112 0.98 ~2 282 162 
0.089 0.98 116 102 96 
0.081 0.98 127 102 81 
0.081 0.98 127 291 225 
0-.081 0.98 127 497 425 
0.083 0.98 124 240 205 3170
0.112 0.98 9~ 234 200 
0.134 0.98 77 229 130 
0.144 0.98 71 227 135 
0.155 0.98 66 225 95 
0.071 0.98 145 1366 1160 2640
0.092 0.98 112 1340 1180 3155
0.112 0.98 92 1316 1080 
0.134 0.98 77 1291 785 
0.155 0.98 66 1267 430 
0.092 0.98 112 434 400 2800
o. 092 0.98 112 1165 1180 2800
0.092 0.98 112 1898 1820 2800
0.150 0.98 69 1804 840 2925
0.150 0.98 69 2774 1240 2865

-------
- 77 -
  TABLE A-7  
  Nitrogen Dioxide Addition  
  Percent Equivalent  Gas
Fuel Flow Air Flow Stoichiometric NO Addit. Increase Temperature
(l/sec) (l/sec.) Air (ppm) (ppm) (OF)
0.083 0.98 124 139 140 
0.083 0.98 124 380 375 
0.083 0.98 124 670 675 
0.830 0.98 124 720 725 
0.071 0.89 145 300 275 2580
0.092 0.98 112 298 310 3155
0.112 0.98 92 292 280 
0 . 134 0.98 77 286 210 
0.155 0.98 66 280 112 2880
0.083 0.98 124 300 300 3000

-------
- 78 -
  TABLE A-a  
  Ammonia Addition  
  Percent . Equivalent Net NO Gas
Fuel Flow Air Flow Stoichiometric NO Addit. Increase Temperature
(l/sec) (l/sec.)  (ppm) (ppm) I
Air (OF) :
0.085 0.98 121 100 75 3110
0.085 0.98 121 211 178 3080
0.085 0.98 121 504 455 3000
0.085 0.98 121 100 85 3080
0.083 0.98 124 504 415 3050
0.083 0.98 124 504 395 3020
0.071 0.98 145 1367 918 2650
o . 092 0.98 112 1341 850 3110
0.112 0.98 92 1316 724 
0.134 0.98 77 1291 600 
0.155 0.98 66 1268 165 
0.092 0.98 112 495 340 3110
o . 092 0.98 112 1045 840 3110
0.092 0.98 112 1633 1220 3110
0.092 0.98 112 2195 1625 3125
0.092 0.98 112 1924 1415 3125
0.092 0.98 112 2195 1675 3110
0.092 0.98 112 2775 1870 3185
0.071 0.98 145 1366 920 2790
0.092 0.98 112 1341 965 
0.112 0.98 92 1317 730 
0.134 0.98 77 1291 480 
0.155 0.98 66 1267 115 

-------
- 79 -
  TABLE A-9  
  Cyanogen Addition  
  Percent Equivalent Net NO Gas
Fuel Flow Air Flow Stoichiometric NO Addit. Increase Temperature
(l/sec) (1/ s ec .) Air (ppm) (ppm) (OF)
0.083 0.98 124 200 140 
0.083 0.98 124 650 412 
0.083 0.98 124 1008 700 
0.083 0.98 124 421 310 
0.083 0.98 124 200 130 
0.071 0.98 145 547 272 2400
0.092 0.98 112 536 350 3110
0.112 0.98 92 527 300 
0.134 0.98 77 516 220 
0.155 0.98 66 507 8 2950
0.144 0.98 71 512 80 3110
0.071 0.98 145 2733 1655 2640
0.092 0.98 112 2681 1780 3110
0.112 0.98 92 2633 1525 
0.134 0.98 77 2582 1010 
0.155 0.98 66 2535 230 
0.092 0.98 112 1000 725 2990
0.092 0.98 112 2089 1330 3000
0.092 0.98 112 3267 1900 3110
0.092 0.98 112 4360 2360 3050

-------
- 80 -
  TABLE A-IO  
  Methylamine Addition  
  Percent Equivalent Net NO Gas
Fuel Flow Air Flow Stoichiometric NO Addit. Increase Temperature
(l/sec) (l/sec.) Air (ppm) . (ppm) (OF)
0.071 0.98 145 547 380 2470
0.092 0.98 112 536 390 2910
0.112 0.98 92 527 345 2925
0.134 0.98 77 517 360 2950
0.144 0.98 71 512 175 2830
0.155 0.98 66 507 0 2710
0.092 0.98 112 200 150 2950
0.092 0.98 112 769 665 2940
0.092 0.98 112 1212 1010 2950
0.092 0.98 112 536 410 2950

-------
- 81 -
APPENDIX B
Compressed Gas Compositions
The methane was Matheson Technical Grade with a minimum
purity of 98.0%. A typical analysis from Matheson states the following
components:
Methane (Technical Grade)
Methane
Ethane
Nitrogen
Carbon Dioxide
Higher alkanes
99.2
3100 ppm
4460 ppm
350 ppm
200 ppm
. The hydrogen was Linde C.P. grade with 99.95 minimum purity and a
typical water content of 11 ppm.
The carbon monoxide was Matheson C.P. grade, 99.5% minimum
purity with the following typical analysis of impurities:
Carbon Monoxide (C.P. Grade)
Carbon dioxide
Oxygen
Nitrogen
Water
Hydrocarbon (as methane)
50 ppm
600 ppm
1500 ppm
8 ppm
40 ppm
The propane was Matheson C.P. grade, 99.0% minimum purity
with the following typical analysis of impurities:
Propane (C.P. Grad~
Ethane
Isobutane
Propylene
500 ppm
5000 ppm
500 ppm
The air used was Baker Dry Grade, manufactured by mixing
nitrogen and oxygen, with the following typical analysis:
Air (Dry Grade)
Nitrogen
Oxygen
Argon
Hydrocarbon
Water
Carbon Dioxide
79.0%
21.0%
450 ppm
3 ppm
3 ppm
1 ppm

-------
- 82 -
APPENDIX C
PRELIMINARY DATA - MULTIBURNER
TABLE C~l
NOx FORMATION FROM AIR
MULTIBURNER WALL TEMPERATURE 3150°F
 Distance from 
Air Flow Rate Injection Point NOx
(SCFM) (inches) (ppm)
2.06 15 55
1. 37 15 68
o . 6 85 15 185
3.43 15 33
2.74 15 42
0.685 13 170
o . 6 85 19 226
0.685 15 180
0.685 15 172

-------
- 83 -
TABLE C-2
NOx EMISSIONS METHANE/AIR COMBUSTION
Fuel Air Per Cent Wall Distance from 
Flow RatE: Flow Rate Stoichiometric Temperature Injection Point NOx
(SCFM) (SCFM) Air (oF) (inches) ~
0.430 3.90 95 2820 15 95.
0.430 3.43 83 2820 15 65
0.430 3.77 92 2820 15 80
0.430 4.11 100 2820 15 115
0.430 4.80 117 2820 15 85
0.430 5.14 125 2820 15 65
0.430 5.82 142 2820 15 35
0.430 5.82 142 2820 15 30
0.430 6.85 167 2820 15 20
0.430 3.43 83 2820 15 70
0.430 3.43 83 2820 15 60
0.215 1. 37 67 3150 15 60
0.215 2.06 100 3150 15 175
0.215 2.74 133 3150 15 75
0.215 2.74 133 3150 15 90
0.215 3.43 167 3150 15 45
0.215 2.06 100 3150 15 185
0.430 2.74 67 3150 15 45
0.430 4.11 100 3150 15 175
0.430 4.80 117 3150 15 100
0.645 4.80 78 3150 15 78
0.645 5.48 89 3150 15 89
0.645 6.85 111 3150 15 111
0.645 6.17 100 3150 15 100
0.645 6.03 98 3150 15 98
0.645 5.89 96 3150 15 96
0.645 6.17 100 3150 15 100
0.645 6.30 102 3150 15 102
0.645 6.51 106 3150 15 106

-------
- 84 -
APPENDIX D
-'
In this section the c~mput~F'program listing, the input forms
and a sample calculatlonoutput for the NO model developed in this study
are presented.
D.I
Macromixing' ~alysis
D.Ll
Input Forms for Macromixin~ Analysis
. ,

-------
CARD
COLUMN
1.10
11.10
11.30
31.40
4 \. ~O
51.60
61.&0
- 85 -
o
-
/, -rt- c
GeL::) ;::o..e
H;g c,e <:) !::!L7 K 7/1/ G
AVA,LV $..7 5
/.
J i ! I ~. I -I I L- .~._~--~-------_._-=--=.
i ; : I ' I I 'l'
'I -~'I' -)--:---;--r-I- -- -_.-------
. I' I , I

~r: ~-i-r-;-r-r-:-'~~ ===- -----==---==

. I.! I

.-t----;---1i-r~'-I--j--r- -- --- -------.--
,---r-r--,--_L-I -- r-'r- .------------------------------- -- -- ---- ----.-

. I, I - ---
---....,------ -- -----._-- .----

-------
CARD L
COLUMI/
6.10
11.15
16.20
:11.25
26.30
31.35
36../0
.(1.45
'(6.~1)
51.55
S6.~O
61.65
*'6.70
- 86 -
Qp7IOIj! GOES ';:-0,(2 i-IA c~OMI XI#G /!/lI,4/..I/S.rS
/
.'
1-5
~ ! 1 =
l 0::
YŁ5; I3J iJSE /<
/I/O;
** {o -= AlO
1:= (135,
~ = yeS I
f; 'f i.J oS E ,C.
,d/30H q;,.u3,1/CrI F2A7c CAL.Ct.lL- A "71"0/1/5
**~{ j:= YES
( 0= /110
NOTe:
/-hL. ::LTc HS 0/1/ ,/lIS CI"1I3 Ł)
;4#vs? 13Ł ,e.IGI-IT- Jus7.ZFJ"cO.
DillE ANŁ} OdJ.Y ONE 01=' THE FI;.."~.7 3 ',Sf7cC2 ;=7CA7JON
/' ,
OP7:Z O/,!/S /I4'A Y /Jl3 ,e xE,(! cJ ..5ED /" I. e. J 01'1/ 'l' OPE yes- ,ec.s/bA-lS.c:
~,III FII?Sr 3 OPr.zo;v$

-------
CARD,
COLUMN
1,.10
11.20
21.30
31.40
41.~
51.60
61.70
CARD 3. I
CQI.UMN
1.10
" .20
21.30
31.40
41.50
51.60
61.70
CARD 3..~
COLUMN
1.10
11.20
21.30
31.40
4 t .50
51.60
61.70
- 87 -
2
5'70 CHIOM~-reIC
Q (~CJl:'J.) -I b (0, )~~/('O) +(1(11<;0)
COE~FIC~{
FO I<.
I i furL GCi"i=/CICN T . a = ..,

~ .--t'--- -t.-.-tl--t-j--- \-_'_~o-~-_u__.__.~;-__:__bc

, ,j I

l:~;-l l_-T:ri--;--cL_~:-~-Q--=:-; ~ d---
, \ I I :-t:'

~-+-1'-\--+lt-l"'-- .. -,
./' -- t-L-it-t--- ,-----'
------~
,
- -------..
..--
---
4s.rCAL.
CoIv'D../.~ OF I!Al.i3L-,eICri .I/IILŁ7 GfiS fr/I.(TCIRC
-i---L - I I ,ht')/)/ ;?mc- ( G - M04.Ł~cCOt!!.L-2.)-_._--- .'~
I I' .~--+-+--;-+-+-+..... 7iMI'LE./?jJJ(jJ2C .L~j;)
U ---t+H1-LL-l__- .&.!f~sv~Ł__Cr~/I)
: i . I I I ! I

~ ' -1----i---.. -----'-

I I -U-------
I
-r-- ----------
----
--.. ! --- -
n/I/SICAL Co/llDT7IQNs 0;: ;::UEL-I:-Ł9d._~E7 GAS /
-------
CARD . 4./
. .
COLUMN
11.20
21.30
31.40
41.50
51.60
61.70.
CARD 4,;1
COtUMN
11.20
21.30
31.40
41.50
51.60
61.70
CARD 5"
COLUMN
11.20
21.30
31.40
.41.50.
51.60
61.70
- 88 -
IIVLc7 GAS COM 1'0 SI 7IO/l/ 0;= ./-vŁL I?I CH S7ŁEA it
1.10
I' ! .1 MO~E FR~rCTICW    --~
01= 02..   '
i I. I' .  C O-z.  -~
! ~-_.' --~  . . ' I
  -----,
  Fu EL.   I
    -
l: '-I--i-' ;; .. ,I .  (.0   
--r--r -, -f I --    
I I ; I '+~ ~~-~- . :: .  Hz;O   
 N2.   i
   -'----,
 /IID   
IAlLŁ7 bAS
CoM Po sr',Io/\/ C,;F "cv!3L LEAN' s 7,e6AM
1.10
   I  MOLE . FI3AC T .rON O~ 02. '
I  I -r-     '
 e--~t   ,. CO? 
r   I ----  
 -- ~-t, ' i  II ,SEL. 
I !  j   Co 
   ,I 
       ,
I  I    II 1120 
      .
  I     /1/2 ;
     II 
    .-  
      I' /I/O I
. fA
CD/I/ L:JZ7Zo,ll/ AIliD LDCA-r.z:OA/ ('),c -~NP-L!l.ey Id;:r.=C7.rDt/ G/?-S
1.10
,

Li.{).JM..:,e.4jtE 1...G- HOl-cS /.scC ) i
ze.k/..PERAZ!d.R,Ł (OJ<) . . !
TN'..rI3C7IoN POINT (rtEF FRDH I;t/LE7)~
-_. -
r
,
,
I
\-
.--
i
I
-----'
HOTES: *"
**"
.1' F AM I A/.::TE' C.7..roN' .PO.:z/1/7:ZS Ł/1/ COcJN7'El?cD CVI-IJ L-E ~.IK.III/G,
t/f.I xI AlG CAt... Cut-A 7.IOA/S w/I/ .s70~. --;;:{c rRO 6/2;'9# /I.s's(.JM€?.s
-r1l~7,.q, -rHE ..rN':=Te C'T.IOA/ ~O.IN7 ALL
MIx.l3o.
G,AScS ;'1Łc c.uL:'-~
:II= '/0/0 .:Lftl:J.ccr.:zD"v .IS ()sED 00 .NOr SUolL(17
T/I.IS
C AI<2 D

-------
CARD
.
COLUMN
'.10
11.~0
21.30
31.40
4\.50
51.60
61.10
- 89 -
G
fAl.::TcCTZD/!/ r;;/lS
'*
CON ;:'~:;:: r.IoA/'
I : i I =o=II I;;:;-;;;:~~~~O~ o~ ;;~_._----_._--=-~=
i! :1: i I I ! II GO
I :-r-+-. . -------\-+ ---._-_._.._,---._------_.._-'wu_~----_...__._-.._-------
DU-~II'=:--ll__~__-\-_1-_- '-- --_--___~/_- ______bf.Ł._.___---- ------..-
I ! I . C''''''''' :0:,.-
I . , " I.' II (.....0' -----
-----+--..-~-- -- ...._---------- ---.,-.-..
I ' I ' I I ' ~ . If
1. ----:_-\--~--;-t 1__:: - II - ?9_____.-.-----
fTH- f+(}l-tc-----::-~=~~o _m__~=
;(-
A M A x:I /0..{ U M
IN Jc C7IQ/l/ PO:Z /1/7.5
IF /I/o 2,v'J'EC.-rI C)I"J ;:'O:L/l/7S /1,€E .U.sŁŁ)
M At Be USc'D.

.i:1:::) /!/ 0 7 .s u e /'1 I 7
O"=- C? 0
CA/?OS
S- AItJ.D 6.
,Po 7 /1/75 ,H'v.s7 66 .suBNJ7-
:z N \/C C720/l./
tt3J:) -ZN OK,()Ł12
o~ ZdcR E"q 57,.V G
,!;).I 57 /lNCE
~-;eOH J/JL c?:
DSE ,4Ł).07 TIO/l/AL
(A'?O...5
.L;S /1/EfLJŁD Fo~ ~O,eE I/II.JCC7..7(yV
Po:rf\l75 .

-------
CARD
COL UMN -
1.10
11.10
11.30
31.40
41.S0
51.60
61.'0
.------ ..--
7
- 90 -
K't-J ETJ C. RATE c.O}}STAliTs Fof\
a.. (FVrL) of- b10) ~ c. (CO) + d.1.& ~
ICY' FA~r()R
. Ac..n.'iArlD/L_Ł..JJJ~.R~ Y
.--1-+-- -Q~-_€.x.P_otJFI/T r-~
~; LIj~L ,. ) /3
I -H 0 I' t
t+- ~ .~
) A (.~)
E:.-UAVJ,.'E5)~
J
THE 'K'N~1ic.. RATe !ŁXPRcSS IoN IS -
@. = A e- !. (OA)O( (FcJŁL)f3 (H;.O)~
~ - MOLE S/L ITer.. - oS H.. ;
WITH (0.1)1 (FVŁL) AIJP (H~O) IIJ vmT.s of
~ -I.'(}L::S//.IT~ ~
(f
AI/f) r IN
~ K.
-
(*) TillS IT!!!-, MAY BE EXPRESSEP AS MI EXPOtJCNTiAL I/V/.lf.::f\ I
t1. Xl.X.x t :!:
CARD
B
KINE-TIC PI...TŁ C,1)/JS7i-",/:s F~f{
COLUMN
1.10
11.10
11.30
31.40
41.S0
SI.60
61-10
CO +/~ 0;: -> CO~
-J- -- -E1tf..q_'{..D~~'LL,.~_C-ID_P-.,.A_{~)
i .t:.J:.IJ'2.tw_uJ Ł'I.:::'Ł,f....:./ E (co. 0 I-~ , ;:~ )
I " ..
.l ~~~b.l.J =. IJ T 1 0<
l -L{) ., . /(3
I _F::. 0 II : D
TIl~ KINE TIc RATE E)( Pf..E SSloN IS -
(f< = A e -/r (o;.)&« co)/3 (H~O) '(
'J - /1oLES / L./TŁt- SEe... ;
"nTH (O~) 1 (GO) I,ll/) (J{,.O) IN VIJITS of ~-I-IOLrS/L.ITC:R
AUf) T IIJ oK.

-------
- 91 -
C:'RD -3--_HL AT T/{AtJSFER
CO N 5 TA ILL $
COLUMN
1.10
COEr-FIG/flIT) A

II )_B-
11 >----"
11.'0
".30
31.40
41.50
51.60
61.70
THe. J.{.::AT FLVX To TilE 'v/ALL /5 EXPR~$5~9 AS -
/CV (f{cA L. / n":'" s '- c.) =
I>
A + B (T - Tw) + C (T lJ - ~v'f )
J
'I/;!ZR. E
T I
-------
- 92 -
CARD q. S-
QUE NcH
RATE
COtLSIANTs
COLUMN
1.10
 i ' I I 1  !      
   1= lf1c,T c..~ t:pFI [,/ =}.IT A 
     tJ -(    )  
: ! I   I sŁc.o/![)-- II )-8 
 '   i 
i ; I 1--UJ-J i   II -r-_C 
 rJi IRP --... 
 ! I     
" !  ; I I I  LEoRN!4-oE....Q.!J. ~J1 c-JLRAT.L-1z:~) 
    ... I ; 
 ! I i  "   .
'  I I  i i      
1 i i     I      
! I I     T      
11.20
21.30
31.40
41.50
51.60
61.70
M [~.~ :
qUADRATIC F()fV~
EXfOlJ=pT;AL FOR. Iv'
QUI; ()AA TIc, Fo/U..\ :
A+BT+cr2-
/T IN oK
\ C(Vl:/IC.11 RA TE IN
. K /$ Cc.)
EXI'OIJŁ/JT;A L FOf:./~i :
(A + B T) eY'
TillS GlP,D rs 7:0 BE. s'lt/luTi:;P OIJI-Y IP TilE GAS

.TE/llPEPATUf!.E 15 To B~ colt1f'lJfCD FRO/A. A QUE/./cH ~ATE
(A ';z" IIJ CO LU/:\IJ 10 011 cAR.D .1).

-------
- 93 -
CARD ..J 0
COMBusTOR
eJl!)J:JJJ 5
COLUMN
1.10
D/sT), /~!:. FPt;/,t UILEr (F::r)
~p.~SS...~..$ E..c DOll/.. L.__8 R: A_Cfr)-
_P e R / /;4, == T ER-...lE_:=- r2
..}NAL.L_r.~/!.:E~f.AT.YJ]_E (.lK)
GAS .- ,: J' i) ::"Ł 1:, -r /J p. - C 0 K )
---- - -_~J."l.I._"" ~ ~I.L.!....:.-:' -
. -- _H-~!1 LJ:.-':=-~6 (K C:MLu :-. ~f c
(-'k)
11.20
21.30
31.40
Ix. ...)
, ' 7'"
41.50
51.6:1
80
CARD -LO- .
COM BusTo R
PPOF, LES
COI.UMN
1.10
  !) : 5 7). L~~ F WfLL!.J.L.~ T -.1L:: CI) 
  C~(2$S -,$:-r"r, '1.. 'Ł, :.~ Fi ~) 
  . --' - -- .";'.J...I. fl./:'. J. -"'- . 
  p U}.11,l~_T;F.h(f.==.:;._u. . 
I  '~~!.J..J!'L,EhU.I.~.L" eK)---1 
  (~.~)
 J3.P.5-Lc/: ~f.. ~ p.l-...L!./Ł.3... ŁKl "...
 --
  1i~E.WJJ..~c;' L /Fi:- $'F.C- )~ 
 I (-;;)  
11.20
21.30
31.40
41.50
51.60
60
------..---- --..-... --------------
..- ---- ---.--. .-----.---.----
(7f)
~ .1

EIITEf.'.. A i 1/1 COLUJ.\IJ 80
IF iHIS 15 rilE FIliAL PJ!oFI!-;: c/\P.';
("* -'i) Ell rEF.
VAL vŁ S FOR TilE
I T E /1\
COP..R E 5PC/J !)/lJG TO TII Ł
_SPECIFIC-AT/oil cHose/J ON CAI~!/ ..1.
Ar L-E./\sT i~'JO C./IP-PS) 01/:3 FoP-" T;!f:. INLET ANI? OJ/Ł" F()f!. 'niE
OVTLŁT) I/,usi ALWAYS BE. $uel.~JTT:::' (1"/-.l.!l~~!J.' CF /DD CAP!?S),
USE ADPITlcl.'AL CAR~'~ AS /J~ŁP;:()
FoR. /.;O/?,E P/,CFILE'S.
Pf\OF JLf: CJ\P.DS /.\vST eE 5u3/,\'ITT[[) /II cP~':P-. of /fJCP,[/,s//JG
F(J..Q/.\ II J L [. T.
V J.5T/t Ii Co

-------
CARD jJ
COLUMN
1.10
\1.20
2.. 30
31."40
41.50
-51.60
'61.70
- 94 -
GOMBUSTQf'-lE1JGF.H', AND

. . . .
pPfqt (*~L-

j' j , I ",."

.1 - .~ ~
1
---r-
. (*) A IJW1SŁR.;N) 'f.IJTE.~:.P f/EfZE WIL..L CAUSE P.,E.SVLTs
To BE
PR}//TEV .. () vT EVERY N
J/V/..\BZP, SHOULD BEAT
'fI. ~-)
FŁET AL.ONG' TJ!~: yOI-18r;sTol\'.Th'!S
LEiST As LA f..G.Ł: AS 'THE //JTtGf.A7i~~jJ l!)T:f.'/t. :.
. '
. .. .~.

J:FLE"FT8LI\/JI( ,THE II)rEGR.I-.,i~/) 1..~T~f..'Ii\L' ~'IILL' 8Ł /s5UAiE5:-' TJ 8:::
T# ) , .. , " '
){is - OF TJ1Ł LENGTH OF A FLAIWE SEGME./IIT., ,.",'
, "

CARD . '1-X--.~-~ EA i ,OF
COLUMN
1.10
\1.20
21.30
31.40
41.50
51.60
61.70
- - - .-... -_.
, .
REA C i/I) tJ ,@ ? '1 S 0 K
" \  -1. .. I_~. .  "
  ,Ji~/~l._Qf_BJ!,..u..Lr,Y1L(K~.f, L )JI l'.. _p~/~.n:j LOILc;,~g.L.:J.
I-- ,- '-j---- - --
    1!.f.h. i OU~j:_r:n.t~r:fL~LF~U.~r.,~'J.TitLJ t~cl-'?!;~B
   .++1--- f--
   '! 'I
i     
     .. .
     " 
-~-  --- .-  
   J   
--"--..
.-...---..-.. --.-. ,"".h'__,
C.ONVŁ NTlot~ :' ,E-XOTHEFJ,\/C HEf\T Dr' !ZŁA('llor~' A\vsT' 8Ł
E IJIC~E [."") AS A
N;: GA TN=': IJ 1.///, t3 E fZ .

-------
CARD /3
COLUMN
13.16
17.20
21.24
2S.28
29.32
33.36
37.40
4\.44
45.48
49.52
53.56
57.60
61.64
65.68
69.72
- 95 -
-HEAT Ci>PAGITV D.ATA
FoLŁJLŁL ().98 oK =: T.::: 1700oK)
1.4
   ..,        
   JIvftf3.E R OF !:!J:AJ ClflcrT'( f) J. Tf. Po lilTs F~R rUE I (.:.\ 
   . I -
I        (/7S.~~ 5 T~ }., I"', .... "a:" 
       . ,,'../....1 :', 
I  !         
 I          
.1           
I           
I I I         
I 1 I         
I           
i I          
I I          
I          
i   I        
. I         
'          
I          
 -          
   -        
5.8
9.\2
NOTES:
~- .
AT LEIsT
t;; PATA POl/lTS) /1.'C-LIJ[)j/;G VALVCS AT ;<~~ ~X All';;
/;<00°:< /,1rjsT BE SUB/.:ITTEP. xT 15 REc-O/.~/.;~tJf)E[) TflAT
)
AT LEI\5T 10 POI/JTS 8= U5ED (//I..,'://.'.rJf\ jf .::'0).
(~') THis NU/.,e[p.. /-11)3T BE: P-IGJlT- ::JUST/FIEf),
._~-_._---- ---=----=--------::-----'--'----:'~'----'---=-4":-''''':"--===:::::-::::''':':.-== -

-------
- 96 -
\
CARD~..1!.E1J CAPAc,fy :;ATA PO!lJTs Fep- FUEL (;2.~tOK:!E T~ l?oo°i<.I
COLUMN
.5".-'4 '
'S-~4-
CARD / l~
COI.VMN
S -'4.
15"- .2 "f.
CARD -1~
COLUMN
$'- 14-
15"-~4
I i I ! ! I ' I. I'  ( OK) 
I  ~ TEl,' PERA TI./F,::" 
 :-H++-: i : ._-
I H"EAT Ct.PAC.1ITJ)E FU;~-C-<:~,-/,.,..e~c' 0;<'>--
 I ,I .' I
 : I I i Ii: i
 . I I .-:r-t---r  --  ..
 lit'    
 , : I'     
   I . . I I    
 i I ! I ! i ,. \   
 .1 , I    
 I I   I I i I   
 !  i I I   
  !  ~ T   - -I--   
 I  . I I I   
  .   
  I i I !   
..H.EAl: CAY/'CI7Y f)fTA P()IIJTSF~F FUEL (:Z.1&"°K :!::T:=. I~O().'<)
--E.J!1.E.f:.F.J.. TLf,~_E- CO K)..- ----
H~ALC;Al1tCclTY of EIJJ~I:..U;:''':',-~f~~0-
,
1/ T --. ( 0 T I\~""
EA (!\P/C./l'( PI-fA P(:l/lTs 'For.. FUEL LJt,l<.:!- ~ 1;:'(;-:.1 :'.)
     -
 r l-Ll- TE IJJ?../""" " .. T:r r. -1~) 
  - -.. -- -., ",,':.~_:_i=--~~;- ---..-.----
  ~-1~--  '
  JL:V, T 0.l.CLr;.JLLOL.L'.1. f3 L (!" J... ' b.:L'''' ,. - c.:< )
  -,~ -:';""::"-.1:.._..-
  I , I  
  I !  
I     
   I  --
-     
NOTES:
AT /..-EA5/ Si,x' VITA Cl:f!)5 /.H.lsT 6E 5l/[J.UrrEP) jpC.LLJ!?ING VI LVCS /;

.2?~CK I-p!J 1200°1<, f)ATA CAKD5 l..lusT BE SUe/"\,TlE!) II/. Cf![);f(
OF I/JCP Ł:./.5///G TElvi PERf; Tu/(E5.
USE AD:)/T!cpAL c./I~V5A5 IJEŁpc';' Fe!? /,'Cf.E. PA Tl1 PO/.IJT...s.
;:,::':..~...;~--;..:.;...'=:-_-

-------
CARD J5
COLUMN
13-16
11-14
15-2B
29-32
4.1-44
45-48
49.52
1.4
5.8
9.12
17.20
33-36
37.40
53.56
57.60
61.64
65.68
69-72
- 97 -
..HEAT CAPACITy DATA FoR. FUEL (T>/;1()OoK)
   1J~'I\le r..R of H :='P T C A P II C, / T 'i DA if. POIIJT.s FuP FI)~!.. ._~::.:::L
        7' C T> I:?06 0;<)
I             
             --
- I  I           
i I            
I             
I             ---
             .-
   I     
 I            
I             
             --
HOTES:
----
(-i). TidS
AT LEI-.sT ~ fJATI\ PC'/IlTS /.\U5T 8E 5UBF.lTTEP. Ir 1.5
~ECCI/,I/[IJ!)!3j} 17//\r AT LE/..3T 10 PO/l';!..5 BE usE.fJ (/~!I;,"'/f: ~II'~ ()F
V/'t...UE5 ABv'/E
3000 ~/\ ARŁ Usvt. '-L Y /..JoT NEŁPŁP.
/'JU/,',bC( 101 U5T GE
fUG.J-!T - ;Jus // F/SP,
~- ----. ='::::=---~:'~.:-'':':

-------
CARD I'
COLUMN
S-14.
IS-:li
CARD ~-
COI.UMN
~-I4-
tS--;,~.
CARD I ~
COLUMN
$'- 14-
15-;4
- 98 -
H fAT CAPA!dIY VA TA POINTS FM!- FUEL (T ~ /206 oK)
I. i i
! I
I
. I
+..
HEAT CAPAcITy PATA pO/tiTs F~~ FUEL (r >' I :zOO (,K)
I !   (oK)   
  ifU~Ef:fTUP E   
   }l.cALCf..t?/-~ j Ty of F()~L { (,:. L / J2.:lP-~ t . c; K '\
   " /
 I I     
 I     
 I I     
 -LL     
~
HtAT Cf\fACITY PAT/, PO/lJTS FcR FUE.L.. (T ... l;l O~ °it-()
   E~P_tff /: 71!JL~{~)  
   lL:A r Cl tlC./!'( ()f FlJ E_~ (c./.' I- O-I'~ Ie eK)
  ---r-  - -
-------
CARD 17- I
COLUMN
1.10
11.10
11.30
31.~0
41.~0
~1.6C
61.70
CAR D il.:..-L
COLUMN
1.10
11.10
11.30
31.40
4\ .~O
~1.60
61.70
CARD /8
COLUMN
1.10
11.10
11.30
31.40
41.50
51.60
61.70
- 99 -
o~v r=,PiI/ Lj;'oTLTAA:::'.Zt./;V/ dS7,(!ZC7:.70A-l5
;::012 FvŁ-'- R-rcrl oS 7RŁ/IH
OL..t:
;:J2/7 C"7.z 0/1/ ('),C' 02.. "*
----...
--_.
I
I .
r--, I
. :-i
j---1--
----_.
4C!HEA/ CpoZ L.:rIJR1Lh~
.~ *~
~.57/.?.LC-r.TO~S ~0-<2 rc.-l.cL LE.AaJ S??"E,-L)r?
 j.--U-L I     -
 MOLe FRI7CTIO,v 0;= o*" 
 ----Z- -
H=+~+g~i ~r-~     
: i ! I I     
I I I I     
       ..
I I      
I I' I     
I ' I     
i     
  I     !
IV( I x:IAI r;..
tl/l.eAI-IŁ7EPS
          -   
        .,.-     
   -- - -- - - t~t!l.C7~t;.Ł_E2M-'r-'&~~,)J!Łt-JCi.:)-o/-&t.;.L~~.!.
     ---+- -- ZŁ-1c 'U1:M!.. .J:!;: ,c
---~

-------
D.1.2
- 100 -
Computer Listing for M~cromixing Analysis

-------
FORTRAN IV G LEVEL
00<11
O(,OZ
0003
0004
0005
0006
0007
0008
0009
0010
0011
(JOIZ
,.u013
0014
0015
'OU16
,0017
0018
(j019
uOZO
00Z1
OOZZ
uOZ3
00Z4
00Z5
Uv26
.0027
\:;OZ8
,()CZ9
0030
0031
U03Z
0033
0034
0035
0036
ZO
MAIN
PAGE 0001
DIMENSION DABINVIZ),YOIZ),YIZ),YOlDIZ),GAM8IVI4,ZI,8IZ,ZJ,XlOI4J
DIMENSION GAHMAI4,Z),BINVIZ,Z) ,YOIZ),XlOLDI4)
DIMENSION DElALPIZ),CPCOEF(b,lOI, DGIDY(ZI,DXlDY(4,Z)
DIMENSION DCOFIZ,14J
DIMENSIC~ RIZ),DRDYIZ,Z),DRDXlIZ,4),DRDTIZ),CPI6),DCPDT(6)
DIMENSION DGCPDYIZ),DELH(Z),DHDTI2),LHINVI3),MHINVI31,XlI4)
DIMENSIO~ AJACOEI3,3),FUNI)
DIMENSION XPOINT(lO I,AREAI10 ),PERIMf10 ),TWALLI10)
DIMENSION QSPEC(10)
DIMENSION TSPEC(lO I,KODEI41
DIMENSION HT~(3), RCON(lO)
DIMENSION TXIZO),CPYIZOJ,CI4),FOI4),F(20,4),Af4,4)
,.~IMENSION XINJIZO),GINJI20),TINJIZOJ,YINJfZ,20),XlINJI4,ZO)
, DIMENSIOr; YNOINJIZO)
DIMENSION YZIZ)iXlZf41,CPAVGi~1
. DIMENSION QNCHRTl3') , TCOMBII201
DIMENSION ICODE(6)
CGMMON/BB/TIME
COMMON/EF/TEST1,KINJEC,KPASSS
COMMON / FLOOD/ MACR01
CGMMON/1NJECT/XfI~1
DATA CPCOEFI 7.316,
1 7.681, -4.383';
Z -5.146, 15.23
3 11.4Z , -14.Z6
4 -8.Z53," 4.429 ,
5 ..2.108,. 16.67
6 '10.01', -24.1Z
7 '-6.693, '49.93 .,
8" 15.06', '--50.14' '.
9, -18.80, 19.29
A . ' 13.405/
4.10Z,
. 22.07
- Z4. 55 ,
15.47 ,
-4.1 ,
15.«;6 ,
-4.295,
. 4.718,
'-5.741,
Z. 3Z1 ,
0.'0,
0.0,
0.0,
. O~O,
0.0,
0.0,
0.0,
, u.O, .
, 0:0,
0.0,
r~ 70S',
~5.611,
. 13.3Z ,
-10. Z2 ,
Z.144,
9.867,
-5.465,
.11.86 ,
-14.16 ,
6.559,
C
C
C*~*.***********.**.....*..**.***.*..*.*.......***
C* MACKOMIXING ANAlYSIS 'OF LEAN~RICH ZONES *
C*******.******.*.....*.**..*............*.*.*.*.*
C .
C
CALL ,RELOC
40 CONTINUE
IBOMB=O.
MACR01=O
-NOPT ,= 4
NINO': 2
.NDEP = 4
NDIM = 3 .
NCCMP = 6
SS=\).
T IME=U.
KPAS~S=O
KINJEC=O
NT=J
8.613,
-Z.632,
9.036,
-6.405,
1.688,
2Z.94 ,
-63.0Z ,
154.3
-181.7
18.85
~
o
~

-------
0031
fORTRAN IV G LEVEL
PAGE 0002
0038
0039
0040
0041
0042
0043
0044
0045
0046
0041
0048
0049
0050
0051
0052
0053
0054.
0055
OU56
0051
0058
0059
006.0
0061
. Q.062
0063
0064
20
MAIN
C
C
CALL
1
2
.3
4
5
TESTl==.3.*DELTAX
Cl==-GAMMA 11,11
CZ==-8C I, I'
C1= -GAMMAC2,2'
C2== -BCl,2J .
fORM THE ARRAY D~LALP WHOSE J'TH ELENENT CONTAINS THE NET
CHANGE IN MOLES fOR THE J'TH REACTION.
DO 1 4J== 1,NIND . .
DELALPCJJI= 0.
DO 2 II = I,NIND
Z DELALP(JJI = OELALPCJJI+ BCII,JJI
DO 1 II = I,NDEP
1 DELALPCJJI = DELALPtJJI+GAMMACII,JJI
CALCULATE THE INVERSE Of THE 'INDEPENDENT' STOICHIOMETRIC
MATRIX.
CALL BINVERCNIND,B,BINV'
PREMULTIPlY THE INVERSE Of B BY GAMMA, THE 'DEPENDENT'
STOICHIOMETRIC MATRIX.
CALL MPRDCGAMMA,BINV,GAMBIV,NDEP,NIND,O,O,NINDJ
PRIMULTIPLY THE INVERSE Of B BY DEL ALP .
DO .3 JJ = 1,NINO
DABINVCJJI = 0.
DO .3 II = 1,NIND
3 OABINVCJJI=DABINVCJJJ + DELALPCIIJ*BINVCII,JJI
I
.....
o
N
ADATACNIND,NDEP,NCOHP,B,GAMMA,VO,XZO,CPCOEf,OCOf,fNOO,
CP,DCPDT,DELH,DHDT,RCON,HTC,XPOINT,AREA,PfRIM,
TWALL,TSPEC,QSPEC,KODE,GO,P,TO,XO,XFINA~,DELTAX,
PINT,XINJ,GINJ,TINJ,VINJ,XZlhJ,YNOINJ,
NOPT,TX,CPY,C,fO,F,A,QNCHRT,QNCHTP,TCOMB,TCOMBI,
NSPRAY,ICODE,TB,MACROJ
C
C
C
C
C
C
C
C
C
C
C
C
fOR liQUID OR SOLID fUELS XlOCIJ IS READ IN AS ZERO.
THEREFORE, THE COMPUTATION Of THE ADIABATIC fLAME
TEMPERATURE MOST BE POSTPONED UNTIL SOME FUEL IS AL-
LOWED TO VAPORIZE.
CALL THERMOCTO,NIND,NCOMP,CPCOEF,DCOF,CP,DCPDT,DELH,DHDTJ
CALL TADBCNIND,NDEP,NCOMP,YO,XZO,y,XZ,OElK,OELAlP,B,GAMMA,
I CPCOEf,CPAVG,GO,G,TO,TADAB,HEATJ
IFCMACRO.EQ.ll G6 TO 5020
PRINT 500, TADA& .
If CMACRO .EQ. 01 GO TO 503
IFCNSPRAV.NE.OIGO TO 503 .
500 fORMAT (lHI, 58X, 'COMBUSTION/POllUTION MODEL' ,1/ 64X,
I , SUMMARY',/I 51X, 28C'.'I,//I/TZO, 'ADIABATIC
Z. 'TEMPERATURE FOR INLET GAS MIXTURE = " FIO.2,
5020 XFINl==XINJClJ
KINJ=O
502 CAll
1
2
.3
'OUTPUT',
FLAME "
, K',/J
HCRMIXCNIND,NDEP,NOIH,NCOMP,OABINV,YO,YOlO,V,GAMBIV,B,
GAMMA,YO,XZOLD,YNOO,YNO,G,T,TB,
XZO,DElALP,CPCOEF,OCOf,DGIDY,DXZDV,R,DROY,DRDXZ,
OROT,RCON,CP,OCPOT,DGCPDY,D€lH,OHOT,HTC,LMINV,

-------
FORTRAN IV G LEVEL
20
MAIN
PAGE 0003
4
5
6
7
MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,JWAll,
TSPEC,QSPEC,KOOE,GO,P,TO,XO,XFINAl,OElJAX,
PINT,NOPT,IBOMB,QNCHRT,QNCHTP,TCUMB,TAOA8,
NSPRAY,ICOOE,SS,NT,MACROI
C
\.;005
IFIIBOMB.E~.3IGO TO 35
C
C
IF IIBOMB .NE. ul GO TO 40
5030 I BOMB=O
KPOINT=1
IDBUG=O
YN2=XlOC41
Y02=YOC11
YNOEQ=O.
MACKOl =0
- X=XO
CALL CRSCTN(KPOINT,X,XPOINT,AREA,PERIM,A,SI
CAll SPfECIP,TO,GOlO,GO,YNOLO,DElTAX,A,YN2,Y02,YNOO,YNOEQ,
1 SS,MACRO,MACR01,YO,XlO,X,PRINJ,XFINAl,QNCHRT,QNCHTP,AREA,KPOINT,
2 )KO,NIND,NDEP,XPCINT,PERIM,XOLO,XO,NOPT,KOOE,PINT,IOBUG
IFCIBOMB.EQ.3)GO TO 35
IF(IBO~B.NE.OIGC TO 40
503 IF IKODEI41 .LE. 0) GO TO 50
XFIN = XI~J(1) - - .
CALL INTGRTCNIND,NOEP,NDIM,NCOMP,OABINV,YO,YOlO,Y,GAMBIV,B,
1 _GAMMA,~O,XlOlD,YNOO,YNO,G,T,TB, -
2 XlO,DElAlP,CPCOEF,DCOF,DGIDY,DXlUY,R,DROY,ORDXl,
3 DROT,RCON,CP,DCPDT,OGCPOy,OElH,OHOT,HTC,l~INV,
4 MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,TWAll,
5 TSPEC,QSPEC,KOOE,GO,P,TO,XO,XFIN,OELTAX,
o PINT,NOPT,IBOMB,QNCHRT,QNCHTP,JCOMB,TADAB,
7 NSPRAy,ICODE,S~,NT,MACROI
IFIIROMB.NE.CI GO TO 40
KINJ = 0
35 KIN J = K I NJ + 1
IFCKINJ .GT. KOOE(4)1 GO TO 40
Xu = XINJIKINJ)
TEST1=XO+3.*OElTAX
K JNJEC=l
KPASSS=l
-SS=XO
IFCKINJ .EQ. KOOE(4)) GO TO 30
XFJN =XI~JCKINJ +1)

XFIN1=XFIN
GO TO 31
30 XFIN = XFINAl
XFIN1=XFIN
31 CONTINUE
G2 =GINJCKINJ)
T2 =TINJ(KINJ)
00 32 KK = 1,NINO
32 Y2CKK) = YINJCKK,KINJ)
,...
o
....
1.0":'66
...-067
\..(:68
V 069
li \J 7li
(.1) 11
d;72
<"073
\...074
:(; C 75
(,076
(;077
0078
1.."79
0080
.-1J081
c. () 82
OC!!3
( \184
C085
0086
v(;87
C088
(JOB9
0090
(,091
0092
0093
(Ii) 94
OU95
0096
(;tl97
l-098
(,u99
U 10(;
0101

-------
FORTRAN IV G lEVEL
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112-
0113
0114
0115
0116
0117
0118
0119
0120
20
MAIN
PAGE 0004
00 33 KK= l,NOEP
33 XZZIKK. = XZINJIKK,KINJ)
YNOZ = YNOINJIKINJ)
TCOMB=TCOMBIIKINJ)
CAll MIX(G,Y,Xl,YNO,T,G2,YZ,Xl2,YN02,T2,GO,YO,XlO,YNOO,TO~
1 NINO,NOEP,NCOMP,CPAVG,CPCOEF,IBOMB)
IFI Xl" I U .LE.l.E-7 .ANO.I BOMB.EQ.3 )GO TO 5030
IFIIBOMB.EQ.3.IBOMB=0
IFIIBOMB.NE.O) GO TO 40
CAll THERMOCTO,NIND,NCOMP,CPCOEF,OCOF,CP,DCPDT,DELH,DHDT)
CAll TADBININD,NDEP,NCOMP,YO,XlO,Y,Xl,DElH,OElAlP,B,GAMMA,
1 CPCOEF,CPAVG,GO,G,TO,TADAB,HEAT.
PRINT 501, TADAB
501 FORMATI
2
CALL
1
Z
3
4
5
6
7
I F I I BOMB. NE.O.
GO TO 35
50 CONT I NUE
C.."... CALL THE SUBROUTINE' INTGRT' WHICH INTEGRATES THE MASS AND
C ENERGY BALANCE EQUATIONS DOWN THE REACTOR.
CALL INTGRTCNIND,NDEP,NOIM,NCOMP,OA8INV,YO,VOLD,Y,GAM8IV,B,
1 GAMMA,YO,XIOLD,YNOO,YNO,G,T,TB,
2 - XlO,DELALP,CPCOEF,DCOF,OGIDV,DXZOV,R,DRDY,DROXI,
, 3 ORDT,RCON,CP,DCPDT,DGCPDV,DElH,DHOT,HTC,LMINV,
4 MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,TWAlL,
5 TSPEC,QSPEC,KODE,GO,P,TO,XO,XFINAL,OElTAX,
6' PINT,NOPT,IBOMB,QNCHRT,QNCHTP,TCOMB,TAOAB,
7 - NS'PRAY,ICODE~SS,NT,MACROJ
GO TO 40
END
1111T20, 'ADIABATIC FLAME "
'TEMPERATURE FOR INLET GAS MIXTURE = " FI0.2, ' K',I.
INTGRTCNIND,NDEP,NOIM,NCOMP,OABINV,YO,VOlO,V,GAMBIV,B,
GAHMA,YO,XlOlD,YNOO,YNO,G,T,TB,
XlO,DElAlP,CPCOEF,DCOF,DGIOV,OXlDV,R,DROV,DRDXl,
DRDT,RCON,CP,DCPDT,DGCPDV,DElH,DHDT,HTC,lMINV,
MMINV,XI,AJACOB,FUN,XPOINT,AREA,PERIM,TWAll,
TSPEC,QSPEC,KOOE,GO,P,TO,XO,XFIN,OElTAX,
.PINT,NOPT,IBOH8,QNCHRT,QNCHTP,TCOMB,TADAB,
NSPRAV,ICODE,SS,NT,MACRO)
GO TO 40
t-
o
"'"

-------
0001
FORTRAN IV G lEVEL
PAGE 0001
OU02
0003
0004
0005
0006
0007
OG08
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018'
0019
0020
0021
U022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
20
ADATA
SUBROUTINE ADATAININD,NDEP,NCOHP,B,GAMHA,YO,XlO,CPCOEF,DCOF,YNOO,
1 CP,DCPDT,DElH,DHOT,RCON,HTC,XPOINT,AREA,PERIH,
2 TWAll,TSPEC,OSPEC,KODE,GO,P,TO,XO,XFINAl,DELTAX,
3 PINT,XINJ,GINJ,TINJ,YINJ,XlINJ,YNOINJ,
4 NOPT,TX,CPy,C,FO,F,A,QNCHRT,~NCHTP,TCOHB,TCOMBI,
5 NSPRAY,ICODE,TB,HACROJ
DIMENSION BININD,NINDI,GAHHAINDEP,NINDI,YOININDI,XlOINDEPJ
DIMENSION CPCOEF(NCOHP,10), DCOFININD,14J
DIMENSION CP(NCCHPJ,DCPDTINCOHP),DElHININDJ,DHDT(NINDI.
COHMON IMACROI/G01,T01,P1,TCOHB1,Y01(21,Xl01141,YN001,XPONT11101,
1 AREA1110 ),PERIH1110 I,TWAll1(lO ),TSPEC1110 J.
2 OSPEC1110 I,RECYCl,RECYCR,PART,Y02EQ1
CGMMON IAAI HVAP
DIMENSION PRINT(8J
DATA PRINTI
1 'FUEL',' OIL',' MOD','El "
2 'COAL',' DUS','T HO','DEl '1
DIMENSION XPOINT(10 I,AREA(10 I,PERIHI10 ),TWAllI10)
DIMENSION QSPEC(101
DIMENSION TSPEC(10 ),KODE(NOPTJ
DIMENSION HTCI31, RCON(10)
DIMENSION TXI20I,CPYI201,C(4I,FO(41,F(ZO,41,AI4,41
DIMENSION XINJI201,GINJ(201,TINJ(201,YINJ(NIND,20I,XlINJ(NDEP,20J
DIMENSION YNOINJI201
DIMENSION QNCHRTI31, TCOHBI(201
DIMENSION TITlE(20I,ICODEI6J
DIMENSION WRITES(4,5)
CGMMON/AB/RI10J,RHONV(10I,NGROUP,NFNCTN,RHOP,AVGHW,
1 VP, WDPII0),XNDPII01
CCMMON IEEI FUEL
COMMON/CD/Y02EQ
COMMON IIJI VAPf
DATA WRITESI 'NOT ','SPEC','IfIE','D ','SPEC','IFIE','D ','
1 " ' FUE','l EX','PONE','NT ',' CO ','EXPO','NENT','
2 " 'ceMP','UTED',' FRO','H OR' I
XO = .0
B (1 , 2 ) =-0 .5
B12,21= 1.0
GAMMA(1,2J= 0.0
GAMMAI2,21= -1.0
GAMMAI3,21= 0.0
GAHMAI4,21= O.C
READI5,5012,END=100J (TITlE(II,I=l,20)
5012 FORHAT 120A4)
PRINT 5013,ITITLE(I',I=l,201
5u13 FORMAT I1Hl,T10, 'COHBUSTION/POllUTION MODEl--- ',20A4 IIJ
READ(5,1013,END=100J KODE,NSPRAY,HACRO
1013 FORMATI16151
N1 = KODE U 1 + 1
N2 = KODE(21 + 1
If IN2.EQ.3) NZ=5
N3 = KODE (3) + 1
PRINT 3013, KODEl1', (WRITESCIX,N1),IX=l,41,
I:i
Uo
I

-------
FORTRAN IV G lEVEL
0042
0043
0044
0045
0046
0041
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
00S9
0060
0061
20
ADAT A
PAGE 0002
1 KODE(2). (WRITES(IX,N2),IX=1,4),
2 KODE(3). (WRITES(IX.N3).IX=1,4), KOOE(4)
3013 FORMAL (Tl9. 'DECK 3347'
1 I 1 Tlb. 'INPt,;T SUMMARY'. I TlO. 2b( '*'). 115X. 'CARD 1 "
2 ,- OPTIONS'. I 5X. lb('-').1113X. 12. ' WALL TEMPERATURE "
3 'PROFIlE '.4A4. 113X. 12,' GAS TEMPERATURE PROFILE " 4A4,}
4 l3X. 12, . HEAT FLUX PROFILE ., 4A4,/13X. 12. ' NO. OF SECON'.
5 'DARY INJECTION PTS.')
C****** READ THE STOICHIOMETRIC COEFFICIENTS FOR THE FIRST REACTION.
READC5.l000) GAMMAC1,!),BCl.!),GAMMAC2.l).GAMMAC3.l)
1000 FORMAT(7FlO.3)
. PRINT 3000. GAMMACl.!), BCl,l). GAMMAC2,l). GAMMA(3.l)
3000 FORMAT CI 5X, 'CARD 2 - STOICHIOMETRIC COEFFICIENTS CFUEL COMBUS'.
1 'TION)'.I 5X. 54C'-'). II 7X. F10.3, ' FUEL COEFFICIENT'. I
2 7X. FlO.3, , 02 COEFFICIENT '.1 7X. F10.3.' CO COEFFICIENT',
3 I 1X, F10.3,' H20 COEFFICIENT')
B(1,1) =-B(1.1)
BC2.1) = 0.0
GAMMA(l.!) = -GAMMAC1,1)
GAMMA(4.1) = O.
C**.*.* READ INITIAL MOLAR GAS VELOCITY. INITIAL TEMPERATURE AND
C PRESSURE.
IF (MACRO .EQ. 0) GO TO SOO
READC5.l000) GOI,TOI,PI.TCOMBI
READC5,1000) GO,TO.P.TCOHB
REAOC5.10001 YOl.XZOI,YNOOl
REACC5.1000) yQ. XlO, YNOO
PRINT 3510.GO.TO.P.TCOMB.GOl.TOl.Pl.TCOMBI
3510 FORMAT(/5X, 'CARD 3 - PHYSICAL CONDITIONS OF INLET GAS MIXTURE'.
I I 5X, 49('-'). 1 23X, '.. FUEL LEAN *.', 12bX. 9C'-'). II
2 1X, FIO.3.' FLO~ RATE (G-MOLES/SEC)'. I 7X, F10.3,' TEMPERATURE (
3K)', I 7X, FlO.3, ' PRESSURE(PSIA)''/ 1X, FlO.3, . ADIABATIC flAME
4 TEMPERATURE AT INLET (K)'. 1123X, ,*. FUEL RICH ..', I 26X, 9('-'
5),11
6 7X, FIO.3,' FLOW RATE (G-MOLES/SEC)'. I 7X, fI0.3,' TEMPERATURE (
7K)'. I 7X. FlO.3, . PRESSURE(PSIAJI.I 7X. FlO.3. . ADIABATIC FlAHE
8 TEHPERATURE AT INLET (K)')
PRINT 3520. YO. XlQ, YNOO, YO!. XlOl, YNOOI
3S20 FORMAT( 15X, 'CARD 4 - INLET GAS COMPOSITION'.I 5X, 30('-'),11
I 23X. '.* FUEL LEAN ..', I 26X. 9('-'), II
I 7X, FIO.3. ' MOLE FRACTION OF 02'.1 7X, FlO.3, 'HOLE FRACT'.
2 . . ION OF C02' ,I 7X, FlO.3, ' MOLE FRACTION OF FUEl' ,I 7X,
3 FIO.3,' MOLE FRACTION OF CO' ,I 7X, FIO.3, . MOLE FRACTION',
4 ' OF H20',I 7X, FIO.3. ' MOLE FRACTION OF N2 ',I 7X, FIO.3,
5 'HOLE FRACTION OF NO', II
6 23X, '.. FUEL RICH ..', 1 26X. 9('-'), II
7 7X. F10.3, ' HOLE FRACTION OF 02'.1 7X, F10.3. ' MOL~ FRACT',
8 'ION OF C02',1 7X, FIO.3. ' MOLE FRACTION OF FUEL'. 1 1X,
9 FIO.3,' MOLE FRACTION OF CO' ,I 7X, FIO.3, ' MOLE FRACTION',
A ' OF H20',1 7X, FIO.3, ' MOLE FRACTION OF N2 '.1 7X, FIO.3,
B ' HOLE FRACTION OF NO')
GO TO 600
500 REAO(S.IOCO) GO,TO.P,TCOMB
I-'
o
0-
:$7

-------
FORTRAN IV G lEVEL
0062
0063
0064
0065
0066
0061
0068
0069
0010
(;011
0012
0013
0014
0015
0016
0011
0018
0019
0080
0081
0082
OC83
0084
0085
0086

0081
0088
20
AOATA
PAGE 0003
PRINT 3010, GO, TO, P,TCOMB
3010 FORMAT (/5X, 'CARD 3 - PHYSICAL CONDITIONS OF INLET GAS MIXTURE',
1 I 5X, 49('-'1, 111X, FIO.3, ' flOW RATE (G-MOLES/SECI''/
2 1X, FIO.3,' TEMPERATURE (K)', I 1X, FIO.3,' PRESSURE(PSIA)',
311X,FIO.3,' ADIABATIC FLAME TEMPERATURE AT INLET IK)')
C....*. READ THE INITIAL GAS COMPOSITION.
READI5,1000) YO,XZ~,YNOO
PRINT 3020, IYO(IO), 10=1,21, (XZOIJDI, JD=I,41,YNOO
3020 FORMAT (I 5X, 'CARD 4 - INLET GAS COMPOSITION',I 5X, 30('-'1,1/
1 7X, FIO.3, ' MOLE FRACTION OF 02''/ 7X, flO.3, ' MOLE FRACT',
2 'ION Of C02',1 1X, FIO.3, ' MOLE FRACTION Of FUEl',1 7X,
3 FIO.3,' MOLE fRACTION OF CO' ,I 1X, FIO.3, ' MOLE FRACTION',
4 ' Of H20',1 1X, FIO.3, ' MOLE FRACTION OF N2 ',I 7X, flO.3,
5 'MOLE FRACTION OF NO')
6tO IF(KOOE(4).lE.0) GO TO 5
KKK K = KODE t 4)
00 6 IK = I,KKKK
READ(5,lOOO) GI~JIIKI,TINJIIKI,XINJIIKI,TCOMBIIIKI
PRINT 3030, GINJtIK), TINJIIK), XINJIIKI,TCOMBIIIK)
3030 FORMAT 1/5X, 'CARD 5 - CONDITION AND LOCATION OF SECONDARY INJEC',
1 'TIONGAS',/ 5X, 58I'-I),/11X, flO.3, , FLOW RATE (G-MOlES',
2 '/SECI ,,/ 7X, flO.3, ' TEMPERATUREtKI''/ 7X, FIO.3, ' INJEC',
3 'TION POINT IfT.I',
4/7X,FIO.3,' ADIABATIC FLAME TEMPERATURE AT INJECTION POINT IKI')
READ15,10001 IIYINJIKR,IK),KR=I,NIND),IXZINJIKR,IK),KR=I,NDEPI,
I YNOINJIIK)I
PRINT 3040, IYINJIKR,IK), KR=I,NIND), IXZINJIKR,IK), KR=I,NOEP),
1 YNGINJIIK)
3040 FORMAT 115X, 'CARD 6 - INJECTION GAS COMPOSITION' ,5X, 341'-' ),11
1 1X, FlO.3, , MClE fRACTION OF OZ',/ 1X, flO.3, ' MOLE FRACT',
2 'ION Of COZ',I 1X, FIO.3, ' MOLE fRACTION OF fUEl',1 7X,
3 FIO.3,' HOLE fRACTION Of CO''/ 7X, flO.3, ' MOLE FRACTION',
4 ' OF H20',1 7X, flO.3, ' HOLE"FRACTION OF N2',1 7X, FIO.3,
5 'HOLE FRACTION OF NO')
6 CONTINUE
C....*. READ IN THE CONST~NTS IN THE FIRST RATE EXPRESSION. THE
5 READI5,1002) RCON
100Z FORHATIEIO.2,4FIO.3)
PRINT 3002
3002 FORMAT 1/5X, 'CARD 7 - KINETIC RATE CONSTANTS FOR FUEL COMBUSTIO',
1 'N''/5X, 511'-"")
PRINT 3050, IRCONIIJ), IJ=I,4), IWRITESIIX,31, IX=I,41, RCON(5)
3050 FORHAT ( 1)(, ElO.2, ' FREQUENCY fACTOR',/ 1X, flO.3, ' ACTIVATlO',
1 'N ENERGY',I 7X, FIO.3,' OZ EXPONENT',I 7X," flO.3, 4A4,1 7X,
Z FIO.3,' HZO EXPONENT')
PRINT 4002
4002 FORHAT 1/5X, 'CARD 8 - KINETIC RATE CONSTANTS FOR CO COMBUSTION',
1 15X, 491 ,-, I,n
PRINT 3050, IReONIIJ), IJ=6,9), IWRITESIIX,4), IX=I,4), ReONIIO)
IFIKOOE(1) .lE. 0) GO TO 7
e..*.*. READ IN THE HEAT TRANSfER COEFFICIENTS.
REAOI5,IOOO) HTe
IF IKODEIl) .EQ. 1) PRINT 3060, IHTClIlI, IL=1,3)
~
o
"

-------
G089
FORTRAN IV G LEVEL
PAGE 0001t
0090
0091
0092
0093
0094
009S
0096
(J\) 97
0098
0099
0100
0101
0102
0103
0104

010S
0106
0107

0108
0109
0110
0111
0112
0113

0114
011S
0116
20
ACATA
3060 FORMAT IIS)(, 'CARD 9 - HEAT TRANSfER CONSTANTS',/S)(, 32( '-I),//7X.
1 F10.3.' CGtliSTANT COEFFICIENT',! 7X. flO.3. 'CONVECTION '.
2 'COEFfICIENT',/ 7X, F10.3. ' RADIATION COEFFICIENT')
7 IFIKODE(2).NE.2) GO TO 8
READ 1v(0. QNCHRT. QNCHTP
PRINT 4000.QNCHRT
4GOO FORMAT (/SX,'CARD 9.S - QUENCH RATE CONSTANTS',/5X.32('-').li7X.
1 F10.3,' FIRST COEFFICIENT' .17X,F10.3.' SECOND COEFFICIENT',I
2 7X,F10.3.' THIRD COEFFICIENT'I
IF(QNCHTP.EQ.O) PRINT 4001
4001 FORMAT(/7X,'QUACRATIC RATE TO BE USED')
IF(QNCHTP.EQ.11 PRINT 4003
4(!u3 FORMATI11X. 'EXPONENTIAL RATE TO BE USED')
8 CONTINUE
KK = 0
PRINT 1014
1014 FORMAT (/5X, 'CARD 10 - COMBUSTOR PROFILES',!5X. 2B( '-'1.11
1 10X,'DISTANCE CROSS-SECTIONAL AREA PERIMETER WALL TE
1MPERATURE GAS TEMPERATURE HEAT FLUX'./11X,'(FEET)',12X.
2' (FT2)' ,12X,' (FEET)' ,11X.I(K)' ,1SX, 'IK)' ,9X,' (KCAL/FT2-SEC) 'I
3 11 X, 6 ( ,- , ) ,12 X, 5 ( ,-, 1 ,12 X, 61 ,-, ) ,11 X, 3 ( ,- , ) . IS X, 3 ( '- , ) . 9X. 14 ( ,- , )
5/1)
20 KK ,. KK+1
IF (MACRO .EQ. 0) GO TO 700
READ(5,1012) XPONT1(KK),AREA1CKK),PERIM1(KK).TWALL1IKK).
1 TSPEC1IKK),QSPEC1(KK)
700 READ(5,1012)XPOINT(KK),AREA(KK).PERIMIKK),TWALL(KKI,TSPECCKK),
1QSPEC(KK),KCHECK
1012 FORMAT(6F10.3.l9X.Il)
PRINT 3012, XPOINT(KKI. AREA(KK), PERIM(KK), TWALl(KK), TSPECCKK),
1 QSPEC(KK)
3012 FORMAT(aX,FI0.3,8X,FI0.3,8X.FIO.3,5X,F10.3.8X,F10.3,9X,FIO.3)
IF(KCHECK.LE.O) GO TO 20
C****** READ IN REACTOR LENGTH AND PRINT INTERVAL.
REAOIS,1000) XFINAl.PINT,DELTAX
PRINT 3070, XFINAL, PINT.DELTAX
3070 FORMAT (/SX, 'CARD 11 - COMBUSTOR LENGTH AND PRINOUT INTERVAL',I
1 5X, 47('-'),/1 7X, F10.3, ' REACTOR LENGTH (FEET)',/ 1X,
2 . FlO.3, , PR INTOUT INTERVAL (FEET)',
3 .I7X,FIO.3,' INTEGRATION INTERVAL (FEET)')
TREF = 298.
READ THE HEATS OF REACTION AT THE REFERENCE TEMPERATURE.
REAC(5,1000) (DCOF(IR,ll),IR = I,NIND)
PRINT 3080, (DCOF(IR,II', IR= 1,NIND)
3080 FORMAT (/5X, 'CARD 12 - HEAT OF REACTION AT 298K',/ SX, 34C'-'),/1
1 1X, FI0.3, ' HEAT OF REACTION FOR FUEL COMBUSTION',I 1X,
2 F10.3,' HEAT OF REACTION FOR CO COMBUSTION" .
. C READ IN THE HEAT CAPACITY DATA FOR FUEL AND CURVE fIT IT.
C WRITE(6,1010)
CI0I0 fORMAT(lHI,'HEAT CAPACITY DATA FOR FUEL IS fITTED BY THE FD
C IlLDWING FUNCTIO~,'//,' FOR T .GE. 298K AND .lE. 1200K',I,' CP= Al
C 2+ A2*CT/1000.) + A3*CT/I000.1**2 + AIt*(T/1000.)**3 + AS*(T/1000.)*
C 3*4',//,' FOR T .GT. 1200K',/,' CP= A6 . A7/(T/1000.) + A8/CIT/1000
I
....
o
os
I
C****

-------
FURTRAN IV G LEVEL
0117
0118
0119
0120
0121
Cl22
0123
u124
\;125
0126
0127
('128
0129
0130
(J 131
0132-
0133
,,134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
20
ADA TA
PAGE 0005
4.)**2) .. A9/11T/1000.)**31 .. A10/11T/10liO.)**4P,lIln
KASE = 0
NCON = 4
RtADI5,200u)NPTS,TI,CPI
PRINT 3Ł.90, NPTS, TI, CPI
~9~ FORMAT 1/5X, 'CARD 13 - HEAT CAPACITY DATA FOR FUEL 1298K TO 1200K
1)', 1 5X, 531'-'1, II 13X, 12,' NO. OF HEAT CAPACITY DATA',
2 ' POINTS FOR FUEL 1298K TO 1200KI', II 5X, 'CARD 14 - HE',
3 'AT CAPACITY DATA POINTS FOR FUEL 1298K TO 1200KI', 1 5X,
4 60I'-'I'//7X, 'TEMPERATURE IKI', 4X, 'HEAT CAPACITY OF FU'
5 ,'EL ICALlG-f040LES, KI',/7X, 151'-'1, 4X, 371'-'I'//10X,
6 F10.3, 20X, F10.3)
NPTS = NPTS - 1
2~Ou FORMATI14,1,4X,2F10.3)
CALL CPFITI~PTS,NCON,TI,CPI,TX,CPy,CO,C,F0,F,A,KASE)
C WRITEI6,2002)CO,C
t2l~2 FORMATI1H ,'COEFFICIENTS IN THE HEAT CAPACITY EQUATION FOR T L.E.
C 11200K ARE,',11,8X,'Al',14X,'A2', 14X,'A3',14X,'A4',14X,'A5',/15E16
C 2.4)111111111)
CPCUEFI3,11 = CO
DU 18 KC = 1,4
KCC = KC + 1
18 CPCOEFI3,KCCI = CIKC)
KASE = 1
TI = 1200.
Tft = 1.
CP I = CO
DO 1 KK= 1,NCUN
TR = TR *1.2
1 CPI = CPI+ CIKK)*TR
RtAC15,lC011 NPTS
1liOl FOR"'ATI141
PRINT 3110, NPTS
3110 FORMAT 115X, 'CARD 15 - HEAT CAPACITY DATA FOR FUEL IT> 1200KI',
1 15X, 481'-'),II13X, 12, 'NO. OF HEAT CAPACITY DATA "
2 'POINTS FOR FUEL IT > 1200K) ''/1 5X, 'CARD. 16 - HEAT CAP',
3 'ACITY DATA PCINTS FOR FUEL IT > 1200K)',/5X,54I'-'I,117X,
4 'TEMPERATURE IK)', 4X, 'HEAT CAPACITY OF FUEL ICAL/G-MOLE',
5 'S,KP'/7X, 151'-'1, 4X, 311'-'1,/)
CALL CPFITINPTS,NCON,TI,CPI,TX,CPY,CO,C,FO,F,A,KASE)
CPCOEFI3,6) = CO
DO 19 KC = 1,4
KCC = KC .. 6
19 CPCOEFI3,KCC) = CIKC)
C WRITEI6,10U4)CO,C
C1004 FORMATllH ,'COEFFICIENTS IN THE HEAT CAPACITY EQUATION FOR T G.E.
C 11200K ARE,',11,8X,'A6',14X,'A7', 14X,'A8',14X,'A9',14X,'Al0',/15El
C 26.4))
C**** CALCULATE THE COEFFICIENTS IN THE DELTA CP EXPRESSION.
DO 10 IREAT = I,NINO
DO 10 IC = 1,10
OCOFIIREAT,IC) = O.
00 9 IR = 1,NIND
C
I-'
o
\D
I

-------
FORTRAN IV G LEVEL
0149
0150
0151
0152

0153
0154
0155
0156
u157
0158
0159
0160
~161
U162
0163
0164
(J165
(J166
0167
0168
0169
OUO
0171
a172
0173
0174
0175
0176
0177
0178
0179
0180
u181
0182
. 0183
0184
0185
0186
0187
0188
.0189
0190
0191
13192
0193
0194
0195
20
AOATA
PAGE 0006
9 OCOFIIREAT,IC) = OCCFIIREAT,IC) + BIIR,IREAT)*CPCOEFIIR,ICJ
00 10 IR=I, NOEP
NC = IR + NIND
10 OCOFI!REAT,IC) = DCOFIIREAT,IC) + GAMMAIIR,IREAT)*CPCOEFINC,[C)
C.*** CALCULATE THE ADDITIONAL CONSTANTS NEEDED
TR = TREF/I000.
Tl = 1.
DO 11 IR = I,NINO
11 OCOFIIR,13) = O.
DO 12 IC =1,5
AC = I C
Tl = Tl*TR
T2= Tl/AC
DO 12 IR =1,NINO
12 OCOFIIR,13) = OCOFIIR,13) + DCOFIIR,IC) *T2
00 13 IR=I,N.IND
13 OCOFIIR,141 = O.
DO 14 IR = I,NIND
14 OCOFIIR,14) = DCOFC[R,6)*1.2
T2 = ALOGIl.2)
DO 15 IR = I,NIND
15 OCOFIIR,14) = DCOFIIR,14) + DCOFIIR,7)*T2
T2 = 1.
Tl = 1.0
DO 16 IC = 8,10
AC = I C - 7
Tl= Tl/1.2
T2= Tl/AC
DO 16 IR = 1,NIND
16 OCOFIIR,14' = DCOFIIR,14) - DCOFCIR,IC)*T2
T1 = 1.2
T2 = Tl*1.2
T3 = T2*1.2
T4 = T3*1.2
15 = T4*1.2 .
DO 17 IR = 1,NIND .
11 DCOFIIR,12) = DCOFIIR,11) + IDCOFIIR,I)*TI + DCOFCIR,Z)*T21
12. + DCOFIIR,3)*T3/3. + DCOFIIR,4)*T4/4. . DCOFCIR,5)*T5/5. -
2DCOFIIR,13»
IF IMACRO .EQ. 0) GO TO 800
READ 90, YOZEQ1
800 READ 90,Y02EQ
90 FORMATI5EI0.4)
IFIY02EQ.LE.0.)GO TO 93
IF CMACRO .EQ. 0) GO TO 5090
PRINT 3091, Y02EQ, Y02EQI .
3091 FORMATCIIII 12X, 'THE EQUILIBRIUM MOLE FRACTION OF 02 IS ASSUMED T
10 BE = I, EI0.4, ' FOR FUEL LEAN', I 12X, ITHE EQUILIBRIUM MOLE FR
2ACTION OF 02 IS ASSUMED TO BE = I, EI0.4, ' FOR FUEL RICH')
GO TO 93
5090 PRINT 91,Y02EQ
91 FORMAT I II II 1ZX,'THE EQUILIBRIUM HOLE FRACTION OF 02 IS ASSUMED TO
1 BE=',ElO.4)
t:;
o
I

-------
FORTRA~ IV G LEVEL
20
AOATA
PAGE 0007
0207
93 IF (MACRO .EO. 0) GO TO 94
READ 90, PART,RECYCL.RECYCR
PRINT 559U,RECYCL,R~CVCR,PART
5590 FORMAT 11111 12X, 'FRACTION OF FUEL LEAN STREAM TRANSFERRED TO THE
1 RICH ZONE = " EIO.4, 1 12X, 'FRACTION OF FUEL RICH STREAM TRANSF
2ERRE:D TO THE LEAN ZONE = " ElO.4, 1 12X, 'FRACTION OF VOLUME IN F
3UEL LEAN ZONE = " EIO.4)
94 IF(NSPRAY.EQ.OI RETURN
READ 25,IICODEI II,I=l,NCOMPI,NFNCTN,NGROUP,RHOP,AVGMW,FUEL,Ta,
1 VAPF,HVAP
25 FORMAT(612,2I3,4FIO.l,2ElO.11
N=NSPRAY
IF (NSPRAY .EQ. 21 N=5
NIX = N + 3
PRINT 6C,UO,(PRINT(IX), IX = N, NIXI, NGROUP,AVGMW,RHOP,TB,VAPF,
1 HVAP
6000 FURMAT (/5X, 'CARD 18 - " 4A4, 1 5X, 25 ('-' I,
1 II 12X, 13, , PARTICLE SIZE DISTRIBUTION',
2 1 5X, fIC.I, ' MOLECULAR WEIGHT Of FUEL IN VAPOR STATE',
3 1 5X, FIO.I, ' DENSITY OF FUEL (IlL DROPLETS',
4 1 5X, FlC.l, ' BOILING POINT OF FUEL OIL (OKI',
5 1 5X, EIO.l, ' VAPORIZATION CONSTANT (FT**2/SECI',
6 1 5X, EIO.l, ' HEAT OF VAPORIZATION (CALlGM-MOLEI'I
DO 22 I=l,NGROUP
READ 21,R(I),WDP(I)
21 FORMATI2EIO.I)
22 CONTINUE
RETURN
100 STOP
END
~
....
~
0196
0197
0198
0199
0200
U2lJl
0202
U 2(; 3
J204
0205
0206
0208
0209
0210
0211
0212
0213
0214

-------
FORTRAN IV G lEVEL
20
MCRMIX
PAGE 0001
.0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
SUBROUTINE
1
Z
3
4
5
6
7
9990 CONTINUE
DIMENSION YR(ZI,XIR(4),Yl(Z),XZl(41
DIMENSION DABINV(NINDI,YO(NINOI,Y(NINDI,YOlD(NINDI,YO(NINO)
DIMENSION GAMBIV(NDEP,NINDI,XZOlD(NDEPI
DIMENSION B(NIND,NINDI,XZO(NDEPI,DElAlP(NINDI,CPCOEF(NCOMP,101
DIMENSION DCOF(NIND,141
DIMENSION DGIDY(NINOI,OXZDY(NOEP,NINOI,R(NINOI,ORDY(NIND,NINOI
DIMENSION DRDXZ(NIND,NDEPI,DROT(NINOI,CP(NCOMPI,OCPDT(NCOMPI
DIMENSION DGCPDY(NINDI,DElH(NINDI,DHDT(NINDI,lMINV(NDIMI
DIMENSION MMINV(NDIMI
DIMENSION XZ(NDEPI,AJACOB(NDIM,NDIMI,FUN(NDIMI
DIMENSION XPOINT(ll ,AREA(11 ,PERIM(11 ,TWAll(11
DIMENSION TSPEC(11 ,KOOE(NOPTI
DIMENSION QSPECt11
DIMENSION ONCHRT(31
DIMENSION GAHMA(NDEP,NINDI
DIMENSION HTC(31,RCON(101 .
DIMENSION XMOlE(61,ICODEt61,XZZ(41,YZ(21, CPAVG(61
DIMENSION YTEMPt21,XZTEMP(41,DUM1(ZI,DUM2(41
COMMON IHACROI/G01,T01,P1,TCOMB1,Y01(21,XZOl(41,YN001,XPONT1(101.
1 AREA1UO I,PERIM1UO I,TWAlllUO I,TSPEC1UO "
2 OSPEC1(10 I,RECYCl,RECYCR,PART,Y02EQ1
COMMON IFLOODI MACR01
COMMON IFLOODll A,S,KPOINT,X
COMMON IPOlMCR/ONODTT, VOLUME
COMMON ICDI Y02EQ
COMMON/PRNT/XPRINT
QCON=0.95 .
IDBUG=O
XPRINT=O.
KPASl = 0
KPASR '" 0
MACR01 = 0
Y02EQL=Y02EQ
Y02EQR=Y02E01
YNOl = YNOO
X=XO
XOlD=X
TADABL=TADAB
KQUENC"'O
SS ,. 0.0
YNOEO=O.
CALL OUTONE(NIND,NDEP,X,G,Y,XI,YNO,T,1,YNOEQI
PRINT 5
CALL OUTONE(NIND,NDEP,X,GO,YO,XZO,YNOO,TO,2,YNOEQI
MCRHIX(NIND,NOEP,NDIM,NCOHP,DABINV,YO,YNOlD,Y,GAMBIV,B,
GAHMA,YO,XIOlD,YNOO,YNO,G,T,TB,YOlD,
XIO,DElAlP,CPCOEF,DCOF,DGIOy,DXZDY,R,OROY,DROXZ,
DROT,RCON,CP,DCPDT,DGCPDY,DElH,DHDT,HTC,lMINV,
MMINV,XI,AJACOB,FUN,XPOINT,AREA,PERIM,TWALL~
TSPEC,QSPEC,KODE,GO,P,TO,XO,XFINAl,DElTAX,
PINT,NOPT,IBOHB,QNCHRT,QNCHTP,TCOMB,TADAB,
NSPRAY,ICODE,SS,NT,MACROI
....
....
N
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

-------
FORTRAN IV G LEVEL
0045
0046
0041
0048
0049
0050
0051
0052
0053
0054
0055
0056
0051
0058
0059
0060
0061
0062
0063
0064
0065
0066
0061
0068
0069
0010
0071
0012
0013
0014
0015
0016
0011
0018
0019
20
MCRMIX
PAGE 0002
PRINT 6
CALL OUTONE(NIND,NDEP,X,GOl,YOl,XlOl,YNOOl,T01,2,YNOEQI
5 FORMAT(115X,, COMPOSITION OF FUEL LEAN STREAM 'III
6 FORMAT(115X,' COMPOSITION OF FUEL RICH STREAM 'III
MR ICH = 0
MM = 0
TGUE Sl=O.
TGUE SR =0.
KPOINT = 1
C
C
C
C--------------INITIALIlATION
C
FIRST STEP IS TO COMPUTE THE COMPOSITION OF THE FUEL LEAN STREAM
C
C
C
1 CALL
AL=A*PAR T
AR==A*( I.-PAR T)
SL==S*PART
SR=S*( I.-PART)
00 20 I==I,NI NO
Y2(11 == YO(II
20 CONTINUE
00 25 1=I,NOEP
Xl2(II==XlO(11
25 CONTINUE
T2 = TO
G2 = GO
YN02 '" YNOO
A==AL
S==SL

COMPUTE FUEL LEAN FIRST
....
....
\.oJ
CRSCTN(KPOINT,X,XPOINT,AREA,PERIM,A,S)
INTGRT(NIND,NDEP,NDIM,NCOMP,DA8INV,YZ,YOLD,Y,GAM81V,8,
GAMMA,YO,XlOLD,YN02,YNO,G,T,T8,
Xl2,OELALP,CPCOEF,OCOF,DGIDY,OXlCY,R,DRDY,DRDXl,
DROT,RCON,CP,DCPOT,DGCPDY,OELH,DHDT,HTC,LHINV,
MHINV,Xl,AJAC08,FUN,XPONT1,AREA1,PERIH1,TWALL1,
TSPEC1,QSPEC1,KOOE,G2,Pl,T2,XO,XFINAL,DELTAX,
PINT,NOPT,180M8,QNCHRT,QNCHTP,TCOM8,TAOA8,
NSPRAY,ICOOE,SS,NT,MACROI
(1801'48 .NE. 0) RETURN
(MACRO .E Q. 3) MACROI "'1
(MRICH .EQ. II GO TO. 90
(M" .EQ. Ot GO TO 10
35 CALL
1
Z
3
4
5
6
7
IF
IF
IF
IF
C
C
C
CHECK CONVERGENCE
ADIST == O.
DO 40 1=I,NIND
YNOW = Y( [)
YPREV == YLlI)
YLI I I==YNOW

-------
20
MC R M I X
PAGE 0003
FORTRAN IV G LEVEL

,0080
0081
0082
,0083
0084
0085
0086
0081
0088
0089
0090
0091
0092
0093
0094,
0095
00'96
0091
0098
,0099
,0100
-O10l
0102
01:03
01.04
01.05
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
, 0116
0111
'.
HOLD =CABSCYNOW-YPREVII/YPREV
IF~CHOLD .GT. ADISTJ ADIST=HOLD
40 CONTINUE "
TNDW=T
. TPREV=TL
. HOLD=CABSCTNOW~TPREVIJ/TPREV
IFCHOLD.GT.ADISTJADIST=HOLD

STORE 'VAlUES.OF:COMPOSITION OF FUEL lEAN-RECYCLE STREAM
C
C
C
10 TL=T
GR El =G*R EC YC L
GL=G
G=GL-GREl
TGUESL=T
IFIIOBUG.EQ.OIGO TO 14
PRINT 5 " " ,
, CALL oUTONE( NI NO ,NOEP, X,G,Y,Xl ,YNO, T ,2 ,YNOEQ)
14 IFI~M.GE.ltGO TO 76 ' ", "
00 75 I = 1 , N I NO
YU.,I) .= Y( I) .
75 CONTINUE
76 00.77 1=I,NDEP
XlLl I) = Xli I)
77 CONTINUE. ,
IF IMM .EQ. 0) GO TO 18
JF IADIST .LT. .001) GO TO 180
18MRIC!'i=l
A=AR'
S=SR
.~, ~, ' .
, .
......
......
~
C
C
C
MIX FUEL RICH STREAM WITH FUEL lEAN RECYCLE
CALL M1X(GOl,Y01,XlOl,YNoOl,T01,GREL,Yl,Xll,YNoL,TL,G2,Y2,X~2,
1, ,YN02,T2,NIND,NDEP,NCOMP,CPAVG,CPCOEF,IBOMBJ
YNOR = YN02 ' ,
79 CALL JADB(NIND,NDEP,NCoMP,Y2,Xl2,DUM1,DUM1,DELH,DELALP,B,GAMMA,
1 CPCoEF,CPAVG,G2,OUM3,T2,TAOAB,HEATI' ,
C
C
C
GO TO 35 TQ CoM~UTEFUEl RICH STREAM WITH RECYCLED FUEL LEAN GAS
GO TO 35
C
C
C
C
ST,OR~ VALUES OF COMPOSITION, TEMPERATURE AND FlOWRATE OF FUEL RICH
RECYCLE STREAM

90 MRICH = 0
A=Al
S';'SL .. '
GRER=~.RECYCR
GR=G
G=GR-GRER
IFllbBUG.EQ~O)GO TO 91

-------
FORTRAN IV G LEVEL
20
MCRMIX
PAGE 0004
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127

0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
PRINT 6
CALL OUTONECNIND,NDEP,X,G,Y,XZ,YNO,T,2,YNOEQ)
91 TR==T
DO 150 I=1,NINO
YR C P = YC [)
150 CONTINUE
DO 1 55 I = 1 , N DE P
XZRII) == XZCI)
155 CONTINUE
CALL MIXCGO,YO,XZO,YNOO,TO,GRER,YR,XZR,YNOR,TR,G2,Y2,XZ2,YN02,
1 T2,NINO,NDEP,NCOMP,CPAVG,CPCOEF,180M8t" -
YNOL=YN02
14M = 1414+1
GO TO 79
C
C-------- GET READY TO TAKE ANOTHER INTEGRATION STEP
C
180 MRICH=O
ADIST=I.
14M = 0
GOlOl=GO+GRER
GOlOR=GO 1 +GR El
GO=Gl-GP El
G01=GR-GRER
YNOlDl = YNOl
YNOlDR = YNOR
MACR01 =0
C
C
C
COMPUTE THE NITROGEN OXIDE CONCENTRATION OF THE FUEL lEAN STREAM
.....
.....
VI
Y02l=YU 1)
IF CY02L .GT. Y02EQl .OR. KPASl .GT. 0) GO TO 188
KPASl '" 1
IF CY02EQl .EQ. 0) Y02EQl == Y02l
Y02l = Y02EQl
Y02EQl=0.
188 YN2l == XZl(4)
CAll POlUTCP,Tl,GOlDl,Gl,YNOlOl,DElTAX,Al,YN2l,Y02l,YNOl,YNOEQl,SS
1 ,MACRO)
REDUC = DNODTT * VOlUME/Gl/2.
Y02l '" Y02l - REDUC
YU 1) == Y02l
YN2l '" YN2l - REDUC
XZU 4) = YN2l
C
C
C
COMPUTE NO CONCENTRATION OF THE FUEL RICH STREAM
Y02R=YR(1)
IF CY02R .GT. Y02EQR .OR. KPASR .GT. 0) GO TO 205
KPASR == 1
IF CY02EQR .EQ. 0) Y02EQR =Y02R
Y02R = Y02EQR
Y02EQR==0.

-------
FORTRAN IV G lEVEL
20
MCRMIX
PAGE 0005
0160
0161
0162
0163
0164
0165
0166
0167
0168
01M
0170
017.1
0172
0173
0174
0175
0176
011'7
0178
0179
0180
0181
0182
0183
0184.
0185
0186
Ol87
0.188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
205 YN2R = XlRI41
CALL-POLUTIP,TR,GOLDR,GR,VNOlDR,DElTAX,AR,VN2R,V02R,VNOR,YNOEQR,
1 SS,MACROI - .
REDUC = ONoDTT . VOLUME I GRI 2.
Y02R = V02R-REOUC .
VR I !I=V02R
VN2R = YN2R-REOUC
XlRI41 '" YN2R
CAll NORMAIGl,Xll,Vl,YNOl,NIND,NDEPI
CAll ~ORMAIGR,XlR~VR,YNOR~NINO,NOEP)
C
C
C
GET READY TO TAKE ANOTHER INTEGRATION STEP

XO=SS
XOlO= XO .
SS=SS+OElTAX
X=SS
MACRO=2-
bo 400 1=1,NINO
VOfI )=YlfI)
YOHU-aYR( II
400 CONTINUE
00 410 I"1~NOEP
Xloe 1) =XlU I I
XlOlC I )=XlRI I)
410 CONTINUE
YNOO=YNOl
VNOOl=VNOR
IFeX.LT.XPRINT)GO TO 412
PRINT 5
CAll OUTONE(NIND~NDEP,X,GO,Vl,Xll~YNOl,Tl,2,YNOEQl)
PRINT 6 - .
CAll OUTONEININO,NOEP,X,G01,YR,XlR,VNOR,TR,2~YNOEQR)
412 I~eKQUENC.GT.OIGO TO 425
IF~T.lT.'eQCON.TADABlIIGO TO 449
,
...
...
0\
~,
c
C
C
C
'.';."
CHECK FOR QUENCHING
MACR01 = 0
KQUENC=1
KOOE(l)=O
KOOE(21=2
425 TCOMB=TL
MACR0=3
- C -
C
C
C
C
C
. .QUENCH:FUEL LEAN STREAM
CAll QUE~CH(TCOMB,X,XOlD,Gl,P,Al,QNCHRT,QNCHTP,TLI
QUENCH FUEL RICH STREAM

TCOMB=TR .
CAll QUENCHITCOMB,X,XOlO,GR,P,AR,QNCHRT,QNCHTP,TRI

-------
FORTRAN IV G LEVEL
20
MCRMIX
PAGE 0006
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
449 CONTINUE
TO=Tl
T01=TR
C
C-------- CHECK FOR COMPLETE MIXING
C
IF (YL(ll .GT. YR(lll GO TO 450
RATIO=YR(ll/YL(ll
GO TO 451
450 RATIO=Yl(ll/YR(ll
451 IF (RATIO .LT.1.01lGO TO 459
452 IF(SS.GT.XFINALIGO TO 999
C
C-----IF FUEL IS lESS THAN 1.E-7, THERE IS NO NEEO TO CONTINUE REACTING
C THE MIXTURE. THEREFORE, PROCEED TO BACMIX SUBROUTINE. BACMIX IS
C A TRIAL AND ERROR MIXING OF STREAM WITH NO CHEMICAL REACTIONS.
C
00 458 l=l,NOEP
II =1 +NINO
IF (ICODE( III .EO. 01 GO TO 458
IF (XlR(II .LT. 1.E-71 GO TO 600
458 CONT INUE
GO TO 7
C
C
C
FUEL RICH AND FUEL lEAN STREAMS ARE MERGED
459 PRINT 460
460 FORMAT(//// lOX, 'FUEL RICH AND FUEL LEAN STREAM HAVE MERGED IN MCR
1MIX'/I/IJ
GL=GO
GR=G01
X=SS .
CALL MIX(Gl,YL,Xll,YNOL,TL,GR,YR,XlR,YNOR,TR,GO,YO,XlO,YNOO,TO,
1 NINO,NOEP,NCOHP,CPAVG,CPCOEF,IBOHBI
CALL OUTONE(NIND,NOEP,X,GO,YO,XlO,YNOO,TO,2,YNOEQLI
PRINT 461 .
461 FORHATUHOI
MACRO=2
HACR01=1
IF(XlR(11.GT.1.E-4IRETURN
600 PRINT 601
601 FORMAT(//lX, 'FUEL IS EXHAUSTEO--PROCEEO TO MIX WITH NO COMBUSTION
1 REACTlONS'/lI
CAll BACMIX(TO,Tl,T01,TR,Yl,YO,Xll,XlO,YR,Y01,XlR,Xl01,
1 GO,G01,GR,Gl,RECYCR,RECYCL,YNOO,YNOL, YN001,YNOR, CPAVG,
2 CPCOEF,NIND,NDEP,NCOHP,XFINAL,P,GOLOR,GOLDL,DElTAX,AR,SS,
3 MACRO,Al,GRER,GREL,IBOMB,IDBUG,X,Y02EOL,Y02EOR,YNOEOl,XC,
4 KPOINT,XPOINT,AREA, PERIM,QNCHRT,QNCHTP,KO,PART,PINT,ICODE,
5 KODE,NOPT,XOLDI
IF (IBOHB .NE. 0 I RETURN
RETURN
999 CONTINUE
PRINT 1020
.....
.....
"

-------
FORTRAN IV G LEVEL
20
0233
0234
0235
0236
1020 FORMAT(lX,'THE
, 180MB=1
RETURN
END
MCRMIX
END Of THE REACTOR HAS BEEN REACHED WHILE MIXING' I
PAGE 0007
.....
.....
co
I

-------
0001
FORTRAN IV G lEVEL
PAGE 0001
0002
0003
0004
\)005
0006
0007
0008
0009
0010
0011
0012
(JOB
(,014
.,)() 15
tulb
0017
0018
0019
O(21)
0021
tJt'22
0023
0,,24
(.0(,25
OU26
\JCo 21
I.Li2a
20
BACH I X
SUBROUTINE BACHIXITO,Tl,T01,TR,YL,YO,XlL,XlO,YR,Y01,XlR,Xl01,
1 GO,G01,GR,GL,RECYCR,RECYCl,YNOO,YNOlOl,YN001,YNOlDR,CPAVG,
2 CPCOEF,NINO,NDEP,NCOHP,XFINAl,P,GOlDR,GOlDl,OElTAX,AR,55,
3 MACRO,AL,GRER,GREL,IBOMB,ID8UG,X,VOZEQl,Y02EQR,YNOEQl,X0,
4 KPOINT,XPOINT,AREA, PERIM,QNCHRT,QNCHTP,KO,PART,PINT,ICODE,
5 KODE,NOPT,XOlOJ .
C
C
::
OlMEN51CN VR(2),XlRC4),VlC2J,XllC4),VlPREVCZJ
DIMENSION YO(NINO),XlOCNDEP),Y01(Z),Xl01C4),CPAVG(6),
1 CPCOEF(NCGHP,10),KODEINOPT),QNCHRTC3),ICODEC6)
DIMENSION XPOINT(lJ ,AREA(1) ,PERIM(1) ,TWAlLC11
COMMON IPOl~CR/DNODTT, VOLUME
COMMON IFlOODI ~ACR01
COMMON/PRNT/XPRINT
COMMON/CD/V02EQ
C
C
C
C---
C
C
C
THIS SUBROUTINE BECOMES THE EXECUTIVE PROGRAN WHEN
CHEMICAL REACTIONS CEASE. THIS SUBROITINE MIXES THE STREAM AND
SETIS UP THE TRIAL AND ERROR.
IBUMB=O
9990 CONT INUE
IF C KOD E Cl J. EQ. 2 J
IFCKODE(ZI.EQ.21
2 CONTINUE
GO TO 1
GO TO 1
I
.....
.....
\C
C
C
C
THIS SPACE IS RESERVED FOR FUTURE INCORPORATICN OF OTHER OPTIONS
c
1 IF CKOOECll.EQ.~IKODEC21=2
IFIKODEIll.EO.Z)KODECII=O
1 M1=O
5 FORMATII15X,' C(MPOSITION OF FUEL LEAN STREAM 'III
6 FORMATII15X,' CCMPOSITIO~ OF FUEL RICH STREAM 'III
CALL CRSCTNCKPOINT,X,XPOINT,AREA,PERIM,A,S)
AL=A*PART
AR=A*I I.-PART I
PART=FRACTION OF STREAM THAT IS FUEL LEAN
x=SS
c
c
C
QUENCH FUEL LEAN STREAM
C
C
CALL QUENCHITO,X,XOLD,GL,P,AL,QNCHKT,QNCHTP,TLI
TO=Tl
QUENCH FUEL RICH STREAM
CALL QUENCHITOl,X,XOlO,GR,P,AR,QNCH~T,ONCHTP,TRI
T01=TR
8 uo q l=l,NINO
V LPkEV I II =YL( I I

-------
fORTRAN IV G LEVEL
0029
0030
0031
0032

0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0(;50

0051
0052
0053
0054
0055
0056
(;057
0058
0059
0<160
<;061
0062
20
BACH IX
PAGE 0002,
9 CONTINUE
AD'IST:l.
TlPREV=Tl
C
C
C
MIX FUEL LEAN STREAM WITH fUEL RICH RECYCLE
CALL MIXIGO,YO,XlO,YNOO,TO,GRER,YR,XlR,YNOLDR,TR,GL,YL,XlL,
1 YNOLDL,TL,NIND,NOEP,NCOMP,CPAVG,CPCOEf,IBOMBJ
IFIIBOMB.NE.OIRETURN
IFIM1.EQ.0IGO TO 70
ADIST = O.
DO 40 I:1,NIND
HOLD= ABSIYLIII-VLPREVIIIIJVLPREVIII
YlPREVIII:YlIII
IFIHOLD.GT.ADISTIADIST=HOLD
40 CONTINUE
HOLD=IABSITLPREV-TLII/TLPREV
IFIHOLO.GT.ADISTIAOIST=HOLD
C
C
C
C
STORE VALUES OF EXIT COMPOSITION OF FUEL LEAN STREAM
FOR THIS ITERATION.
C
70 TlPREV=Tl
GREL=GL*RECYCL
GREL=MOLES OF LEAN STREAM RECYCLED TO FUEL RICH STREAM
IFIIOBUG.EQ.OIGO TO. 80
PRINT 72,M1
72 FORMATI/IX,'FUEL LEAN STREAM',5X,I21
CALL OUTONEININO,NDEP,X,GL,YL,XlL,YNOLDL,TL,2,YNOEQLI
....
~
C
C
C
CHECK FOR CCNVERGENCE OF SUCCESIVE SUBSTITUTION
80 IfIADIST.LT..tOlIGO TO 180
C
C
C
MIX FUEl LEAN STREAM WITH FUEL LEAN RECYCLE
C
C
C
CALL MIXlGOl,YOl,XlOl,YNOOl,TOl,GREL,YL,XlL,YNOLOL,TL,GR,YR,XlR,
1 YNOLDR, TR,NIND,NDEP,NCOMP,CPAVGiCPCOEF,IBOMBI
IFIIBOMB.NE.OIRETURN
GRER=GR*RECYCR
GRER=MOLES OF FUEL RICH
RECYCL=FRACTION OF FUEL
RECYCR=FRACTION Of fUEL
IFIIDBUG.EQ.OIGO TO 85
PRINT 83,Ml
83 FORMATI/IX,'FUEL RICH STREAM',5X,I2/1
CALL OUTONEININD,NDEP,X,GR,YR,XlR,YNOLDR,TR,2,YNOEQRI
85 Ml=Ml+l
GO TO 8
180 Ml=O
ADIST=l.
GOLDL = GO + GRER
GOLUR = GOI + GkEL
STREAM RECYCLED TO FUEL LEAN STREAM
LEAN RECYCLED
RICH STREAM RECYCLED

-------
FORTRAN IV G lEVEL
(J063
0064
'':''l.:65
",066
C067
L,-68
CQb9
l (, -,~
t..71
UU72
(C13
l'07't
uJ75
1:.\i76
ll;77
0078
'u"; 79
0080
0081
~(')82
wC83
(;(;84
0,,85
0086
U087
uC/88
OC89
t09U
0(; 91
009Z
0093
"U94
0095
\.096
IJ097
0V98
'..;099
<)100
::'101
ul02
0103
Olu4
20
BACMIX
PAGE OiJ03
GOl=GR-GRER
G0=r,L-GREL
C
C
C
COMPUTE NITROGEN OXIDE CONCENTRATION FOR FUEL LEAN STREAM
YOZL=Yllll
IF IY02L .LT.Y02EQll Y02L=Y02EQl
YN2L = XlLI41 .
CALL PGLUTIP,TL,GOLOL,GL,YNOLOL,OELTAX,AL,YN2L,YOZl,YNOL,YNOEQL,SS
1 ,MACkJI
YNOLOL = YNCL
IF IYOZL .GT. Y02EQlI GO TO 200
Y02EQL=Y02EOL-DNCDTT*VDLUME/GL/2.
Y02L=Y02EQl
GO TO 210
2uU REOUC=ONOOTT*VGLUME/GL/2.
Y02L=Y 02 L-R fDUC
210 YLlll=Y02L
YN2L=YN2L-REDUC
XlLl41=YN2L
C
C
C
COMPUTE NO CONCENTRATION OF THE FUEL RICH STRfAM
Y02R=YRlll
IF IY02R .LT.YC2EORI Y02R=Y02EOR
YN2R=XlRI41
CALL POLUTIP,TR,GOLOR,GR,YNDlOR,DElTAX,AR,YN2R,Y02R,YNOR,YNDEQR,
1 SS,MACRCI
YNOLOR = YNCR
IFIY02R .GT. Y02EQRIGO TO 300
Y02EOR=Y02EQR-ONGOTT*VOLUME/GR/2.
Y02R=Y02EOR
GO TO 310
3uO RECUC=ONOOTT*VOLUME/GR/2.
YD2R=Y02R-REOUC
310 YRlll=Y02R
YN2 R=Y N2R-R EOUC
XlRI41=Y/I;2R
XOL[j=SS
Xu=SS
SS=SS+OEL TAX
X=SS
....
N
....
C
C
C
GET READY TO TAKE ANOTHER INTEGRATION STEP
MACRO=2
DO 400 I=l,NINO
YOIII=YLfII
'1'01111 =YR ( II
400 CONTINUE
DO 410 l=l,NDEP
XlOIII=XZLf II
XlOllll=XZRIII

-------
FORTRAN IV G LEVEL
20
BACMIX
PAGE 0004
(n05
0106
(;107
UI08
010Q
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
41(; CONTINUE
TO=TL
T01=TR
YNOO=YNOl
YN001=YNOR
IF IYLl11 .GT. YR(111 GO TO 450
RATIO=YRIII/YlI1J
GO TO 451
450 RATIO=Yl(11/YRll1
451 IFIRATIO .IT.1.01IGO TO 459
IFIX.lT.XPRINTIGO TO 452
PRINT 5
CAll OUTONEININD,NDEP,X,GO,YL,Xll,YNOL,Tl,2,YNOEQLI
PRINT 6
CALL OUTONEININO,NDEP,X,G01,VR,XlR,YNOR,TR,2,VNOEQRI
XPRINT=XPRINT+PINT
452 IFISS.GT.XFINALJGO TO 999
GO TO 7
C
C
C
FUEL RICH AND FUEL LEAN STREAMS ARE MERGED
0123
0124
0125
0126
0127

0128
0129
0130
459 PRINT 460
460 FORMATIIIII 10X,'FUEL RICH AND FUEL LEAN STREAM HAVE MERGED'IIIIJ
GL=GO
GR=G01 .
CALL MIXIGL,YL,XlL,YNOL,TL,GR,YR,XlR,YNOR,TR,Gc,YO,XlO,YNOO,TO,
1 NINO,NDEP,NCCMP,CPAVG,CPCOEF,IBOMBJ
CALL OUTONE(NIND,NDEP,X,GO,YO,XlO,YNOO,TO,2,YNOEQLI
A=AR.AL
CALL SPEED(P,TO,GOLD,GO,YNOlO,DELTAX,A,YNZ,Y02,VNOO,YNOEQ,
1 SS,MACRO,MACR01,YO,XlO,X,PRINT,XFINAL,QNCHRT,QNCHTP,AREA,KPOINT,
2 KO,NINO,NDEP,XPGINT,PERIH,XOlD,XO,NOPT,KOOE,PINT,IOBUGI
PRINT 461
461 FORMAT (lHOI
Y02EQ=Y02
MACRO=O
MACR01=3
1 BOMB=l
RETURN
999 CONTINUE
PRINT 1020
1020 FORMATIIX,'THE END OF THE REACTOR HAS BEEN REAC~EO WHILE MIXING')
IBOHB=1
RETURN
END
....
N
N
0131
0132
.0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143

-------
2"
CiCJl
FO~TRAN IV G LEVEL
\..002
0003
lJ\..l.4
l..:(...u5
ULUb
U(il'7
uuQ8
v009
lJulli
cell
1.1012
(;013
1.1014
0015
u010
Gul1
0018
0019
002U
v021
",022
v023
0024
0(...25
U02b
vU27
0028
0029
(,,030
0031
0032
0033
SPEED
PAGE 0001
SUBRJUTINE SPlECIP,TO,GOLD,Gv,YNULD,UELTAX,A,YN2,YU2,YNUu,YNOEQ,
1 SS,~ACRO,MACkG1,YO,XZO,X,PRINT,XFINAL,QNCHRT,ONCHTP,AREA,KPOINT,
2 )KO,NIND,NDEP,XPCINT,PERIM,XOLD,XO,NOPT,KODc,PINT,IDBUG
C
C
C
C
C
C
C
C
C
C
THE PUKPUSE OF THIS SUBROUTINE 15 TO SPEEC-UP THE COM-
PUTATIONS AFTER THE COMBUSTION REACTIONS ARE FROlEN.
THERFFORE, THIS SUBROUTINE INTEGRATES THE NOX EQUATIONS
ONLY. IN ADDTION, IT KEEPS TRACT OF THE OXYGEN DEPLE-
TIUN DUE TO NITROGEN OXIDE REACTION. THIS SU8ROUTINE
IS ACTIVATED AFTER ALL THE MIXING HAS CEASED.
DIMENSION KODEINOPTJ
DIMENSIUN Y\JININD),XZOINDEP),ONCHRTI3J,AREAIIJ,XPOINTIl),PERIMI1J
CC~MCN IPCLMCRI DNODTT,VOlUME
COM~CN/PRNT/XPRI~T
CCMMON/INJECT/XFINI
SS=X
XPRINT=X
XOLD=X
STEP=DEL TAX
DIF=DELTAX
SS= S5+DEL TAX
X=SS
XFIN2=XFI~AL
IFIKOUE(4).GT.OJ XFINAL=XFINI
YNOLD = YNOO
GOLD = G{)
MACRO = 2
Y02 = YOl1l
YN2 = XlO(4)
TCOt'1B = TO
5 CALL POLUTIP,TO,GOLD,GO,YNOLD,DELTAX,A,YN2,Y02,YNOO,YNOEQ,SS,
1 MACRO) .
YNOLD = YNOD
REDUC = DNODTT . VOlUME/GO/2.
Y02 = Y02 - REDUC
YN2 = YN2 - REDUC
I
.....
""
w
C
C
C
QUENCH

CAll 'QUENCH
TCOMB = TO
YOl1l = Y02
XZOl4J = YN2
XOlD = X
ITCCMB,X,XOlD,GO,P,A,QNCHRT,QNCHTP,TDJ
C
C----------CHECK FOR INJECTICN POINT OR END
C ADJUST STEP SIZE ACCORDINGLY.
C
OF REACTOR
IFIDIF.EQ.O.) GO TO 20
DIF=XF INAL-XOLD

-------
fORTRAN IV G lEVEL
20
SPEED
PAGE OQ02
0034
0035
0036
0031
0038
0039
0040
0041
0042
0043
0044
0045
0046
U041
0048
0049
IF(DIF.GT.DElTAX)GO TO 8
DElTAX=DIF
DIF=O.
8 S5=SS + DEL TAX
X = 55
CAll CRSCTNIKPOINT,X,XPOINT,AREA,PERIM,A,S)
IFIXOlD.lT.XPRINT)GO TO 5
CALL OUTGNEININO,NOEP,XOlO,GO,YO,XlO,YNOO,TO,2,YNOEQ)
XPRINT=XPRINT+PINT
GO TO 5
20 IFIKODE(4).GT.O)GO TO 40
21 CAll OUTONE(NIND,NDEP,XFINAl,GO,YO,XlO,YNOO,TO,2,YNOEQ)
PRINT 22
22 FORMATI!1X' THE END OF THE REACTOR HAS BEEN REACHED')
I BOMB=1
RETURN
C
C
C
DECIDE WHETHER CR NOT WE HAVE AN INJECTION POINT
0050
0051
0052
0053
0054
0055
0056
40 XFINAL=XFIN2
IF(XFIN1.GE.XFIN2)GO TO 21
I BOMB= 3
DEL TAX=STEP
CAll OUTONEININO,NOEP,XFIN1,GO,YO,XlO,YNOO,TO,2,YNOEQ)
PRINT 50
50 fORMATI!lX,' INJECTION POINT HAS BEEN ENCOUNTERED---EXECUTION IS R
lETURNED TO MAIN'!)
RETURN.
END
I
...
IV
~
0057
0058

-------
fORTRAN IV G lEVEL

0001
00\)2
OU03
2Ci
NORMA
PAGE 0001
SUBROUTINE NORMAIG,XI,Y,YNO,NINO,NOEPI
DIMENSION XZ(4),YI21
DOUdlE PRECISION XII(4),YYI2),GYI2),GXlI4),GG,SUM,GYNO,YYNO
C
C
C
THIS SUBROUTINE NORMALIZES THE CONCENTRATION OF THE FLOwiNG STREAM
0004
0005
0006
0(;07
0008
0009
(:010
0011
0012
ClOU
0014
0015
0016
0017
0018
v019
0020
0021
(;021
0023
0024
0025
0026
0027
0<128
0029
.0030
0031
0032
YYNO = YNO
DO 10 1=1 ,NIND
VYI II = vn 1
10 CONTINUE
00 20 I=1,NDEP
Xll I 11 = Xl I I )
2() CONTINUE
GG = G
SUM = O.
00 30 1=1,NINO
GYIII = GG . YYIII
SUM = SUM + GYII)
30 CONTINUE
DO 40 I=l,NDEP
GXlIII = GG . XLIII 1
SUM = SUM + GXlIl1
40 CONT INUE .
GYNO = GG . VYNC
SUM = SUM + GYNO
G = SUM
YNO = GYNO/SUM
00 50 l=l,N[NO
Y I I) = GY 1111 SUI'
50 CONTINUE
00 60 I=l,NDEP
XLIII = GXlIII/SUM
60 CONTINUE
RETURN
END
I
....
N
",.

-------
FORTRAN IV G lEVEL
20
CRSCTN
PAGE 0001
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
SUBROUTINE CRSCTNCKPQINT,X,XPOINT,AREA,PERIM,A,S)
DIMENSION XPOINT(1),AREAC1I,PERIMC1)
IFIKPOINT.GT.l)GO TO 10
9 KPOINT=KPOINT+1
K(=KPOINT-1
10 IFIX.GT.XPOINTIKPOINTJ)GO TO 9
THTA=IX-XPOINTCKOJI/CXPOINTCKPOINT)-XPOINTIKO))
A=AREAIKOI~THTA*CAREA(KPOINT)-AREACKOII
S=PERIMIKO)+THTA*CPERIMCKPOINT)-PERIMIKO))
RETURN
END
I
....
N
'"

-------
u~OL
fORTRAN IV G LEVEL
PAGE 0001
~(02
0003
OC04
~(v5
0006
O~07
Ol08
0009
0010
OU11
0012
0013
U014
0015
0016
0017
U018
0019
002u
0021
v022
0023
0024
0025
0026
0027
0028
0029
0030
0031
20
INTGRT
SUBROUTINE INTGRTININD,NDEP,NDIM,NCUMP,DABINV,Yu,YOLD,Y,GAMBIV,B,
1 GAMMA,YO,XlOLD,VNOO,YNO,G,T,TB,
2 XlO,DELAlP,CPCOEf,DCOf,DGIDY,DXlUV,R,DROY,ORDXl,
3 DROT,RCON,CP,OCPOT,OGCPOY,OElH,DHOT,HTC,lMINV,
4 MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,TWAll,
5 TSPEC,QSPEC,KDDE,GU,P,TO,XO,XFINAl,DELTAX,
6 PINT,NOPT,IBOMB,QNCHRT,QNCHTP,TCOMB,TADAB,
7 NSPRAY,ICODE,SS,NT,MACRO)
DIMENSION DABINV(NINO),YOININD),YININDI,YOlD(NIND),YOININD)
DIMENSION GAM~IVINDEP,NIND),XlOLDINDEP)
DIMENSION B(NIND,NINOI, XlO(NDEP),OELALP(NIND),CPCOEFINCOMP,lOI
DIMENSION DCOFININD,14)
DIMENSICN OGIDY(NIND),DXlDY(NDEP,NIND),RININD),DRDYININD,NIND)
DIMENSION DRDXlININD,NDEP),DRDTININD),CPINCOMP),DCPDTINCOMP)
DIMENSION DGCPDYININD),DELHININD),DHDTININD),LMINV(NDIM)
DIMENSION MMINV(NDIM)
DIMENSION Xl(NDEP),~JACOB(NDIM,NOIM),FUN(NDIM)
DIMENSION XPOINT(2) ,AREAI2) ,PERIM(2) ,TWALlIZ)
DIMENSION TSPEC(2) ,KODE(NOPT) .
DIMENSION QSPEC(2)
DIMENSION QNCHRT(31
DIMENSION GAMMA(NDEP,NIND)
DIMENSION HTC(3), RCON(10)
DIMENSION XMOLE( 6) ,ICODE( 6),XlZ(41,YZ(Z),CPAVG(6)
DIMENSION YTEMP(21, XlTEMP(4)
CCMMON IEEI FUEL
COMMON IFlOODI MACROI
COMMON IFlOUD11 A,S,KPOINT,X
I
~
N
~
C
C
C*************...*..**...*...******...*....*...*.**..*.*...*.***
C* *
C. THIS SUBROUTINE IS THE EXECUTIVE PROGRAM AFTER MIXING HAS CEASED.
C* FOR THE FIRST ORDER IMPLICIT INTEGRATION ROUTINE. IT IS MAINLY.
C* CONCERNED WITH SELECTING THE INITIAL CONDITIO~S FOR THE .
C. ITERATIVE SCHEME AND CHOOSING THE PROPER STEP SllE. .
C* .
C*****.*.*...***..**....**...*.*.*..*..*.*.**.*.*....*.*..***.*..
C
C
KPRINT=O
YNOEQ = O.
IF (MACRe .GE. 1) TW=O.
C
C
C
CAll OUTONE TO PRINT HEADINGS
IF(MACRO .GT.OIGO TO 138
IF(MACROl.GT.O)GO TO 138
IF(NSPRAY.NE.O)GO TO 138
CAll OUTONE(NIND,NDEP,X,G,Y,Xl,YNO,T,I,YNOEQ)
CALL uUTCNE(NIND,NDEP,X,GO,YO,XlO,YNOO,TO,2,YNOEQ)
138 ACCUR=1.E-4
IF (MACROI .GE. 1) XPRINT=XPRINT+2*DElTAX

-------
20
PAGE 0002
fORTRAN IV G LEVEL
.0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
,0044
0045
0046
0041
0048
0049
0050
0051
0052
0053
OQ54
0055
0056
9051
0058
0059
0060
0061

0062
0063
INTGRT
MAX I TR =50
KSTOP=O
XPRINT=XO
.STEP=DELTAX
IF (MACRO .GE. 1) GO TO 140
IF C MACROl . EQ. 1) GO TO 140
x=xo .
C
C*..*.WHEN FUEL IS LIQUID O~ SOLID WE MUST
C THE AMOUNT EVAPORATED OR GASIFIED.
. IF(NSPRAY.EQ.O)GO TO 140
IFCSS.NE.O.)GO TO 140
A=AREA (1)
COMPUTE
C
C*.*******SUBROUTINE SPRAY COMPUTES THE AMOUNT OF LIQUID
C OR SOLID FUEL VAPORIZED OR GASIFIED
C .
CALL SPRAY(A,STEP,RATES,NT,NSPRAY,TB,TO,P,GO)
C
C*********PROCEED TO CALCULATE A NEW COMPOSITION AND
C TEMPERATURE BY MIXING THE GAS STREAM WITH
C THE EVAPORATED FUEL.--THESE COMPUTATIONS
C ARE PERFORMED BY SUBROUTINE UPDATE.
C .
CALL UPDATECGO,TO,XZO,YNOO,YO,RATES,TB,G2,T2,XZ2,Y2,YN02,NIND,
1 NDEP,NCCMP,CPAVG,CPCOEF,NSPRAY,ICODE,SSJ
CALL THERHOCT2,NIND,NCOMP,CPCOEF,DCOF,CP,DCPDT,DELH,OHDT)
I
....
....
GD
I
C
C
C
CALCULATE ADIABATIC FLAME TEMPERATURE FOR ALL THE FUEL
G3=GO + FUEL
NTOTAL=NIND+NDEP
00 49 l=l,NTOTAL
IF ClCODEClJ .EQ. 1) GO TO 41
IF (I .GT. NINO) GO TO 46
YTEMPCI)=GO*YOCIJ/G3
GO TO 49
46 II = I-NINO
XZTEMPCIIJ=GO*XZOCII)/G3
GO TO 49
41 IF (I .GT. NINDJ GO TO 48
YTEMPC I J=FUEL/G3
GO TO 49
48 II = I-NINO
XZTEMPCIIJ = FUEL/G3
49 CONTINUE ,
CALL TAoBCNINo,NOEP,NCOMP,YTEMP,XITEMP,Y,XZ,oELH,oELALP,
1 B,GAMMA,CPCOEF,CPAVG,G3,G,T2,TAoAB,HEATJ
PRINT 499,TAOAB
499 FORMATC1H1,58X,'COMBUSTION/POLUTION MODEL',1164X,'OUTPUT',
1 ' SUMMARY',1151X,19('.'),IIIIT20,'ADIABATIC FLAME "
2 'TEMPERATURE OF VAPORIZED LIQUID/SOLID FUEL'= ',Fl0.2," K',
3 II

-------
fORTRAN IV G LEVEL

C
C
C
0064
0065
U066
0067
0008
0069
0070
0071
0072
0073
0074
0075
0076
()077
0078
0079
0080
0081
0082
0083
V084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
20
[NTGRT
PAGE 0003
CALL OUTONE TO PRINT HEACINGS
TO= T2
CALL OUTONEININD,NOEP,X,G,Y,Xl,YNO,T,I,YNOEQI
CALL OUTGNEININD,NDEP,X,GO,YO,XlO,YNOO,TO,2,YNOEOI
C
C
C---------RE-INITIAL[lE
C
C
'.
DO 118 1=I,NINO
118 YOII,=Y21[1
DO 119 [=1, NOEP
119 XlOI [)=Xl21 I I
YNOO=YN02
TO=T2
GO=G2
140 G=GO
T=TO
YNO=YNOO
YNOEQ=O.
DO 1 II = 1,NINO
YO III) = YO III I
YOLOIII'= YO III I
1 YIIII = YO (I II
DO 2 II = I,NOEP
XlOLOllII = XlOIIII
2 XllI11 = Xl 011 II
IFINSPRAY.NE.OIGO TO 142
IF IMACROI .GE. 11 GO TO 142
If IMACRO .NE. 01 GO TO 142
CALL OUTONEININC,NOEP,X,G,Y,Xl,YNO,T,2,YNOEQI
142 KOUNT=O
TOLD= TO
GOlD= GO
YNOLO= YNOO
KOOI<=O
IF IMACRO .NE. 3' GO TO 1421
STEP=DEL TAX
HTC III =0.
HTCI2'=0.
HTCI31=0.
QTRAN=O.
TS=TO
TCOM8 = TO
T = TO
1421 XOLD=XO
IF (MACRO .EO. 2' GO 10 62
IF IMACROI .EQ. 1) GO TO 5,
IFINSPRAY.NE.OIGO TO 311
. ,
I
...
'"
\0
C
C
IF SPRAY IS lIQUID OR SOLID GO TO 311

-------
FORTRAN IV G LEVEL
 C
 C
 C
 C****
 C
 C
 C
 C
 C
0107 
 C
 C
 C
 C
010B 
 C
 C
 C
 C
0109 
0110 
0111 
C
C
C
C
C
C
C
C
C
C
C
C
! C
C
C
0112
0113
C
C
C
C
C
C

C
C
C
C
C
0114
0115
C
20
INTGRT
TO CHECK FOR FUEL AVAILABILITY.
PAGE 0004
CHECK FOR OXYGEN AVAILABILITY
ASSUME,AS AN INITIAL GUESS IN THE NEWTON-RAPHSCN,
THAT 50 PERCENT OF OXYGEN REACTS WITH THE FUEL.
Y(1) = .5*YOll)
CALCULA,E THE NUMBER OF MOLES OF 02 CONSUMED,Y1R1,
IF All THE FUEL BURNS TO CO .
YIR1= IBC1,1'/GAMHAC1,l)'*XlOl1'

CHECK IF ENOUGH OXYGEN IS AVAILABLE TO BURN
All THE fUEL
IFCYOll'.GT.YIR1' GO TO 300
Y2ADD=-.OOOOI
GO TO 310
If THERE IS ENOUGH OXYGEN TO AT LEAST BURN
FUEL TO CO, CHECK HOW MUCH Of THE CO CAN BE
BURNED TO C02 WITH REMAINING OXYGEN.
Xl2R1=NUMBER OF MOLES OF CO PRODUCED PER MOLE OF FEED
XlOI2'=HOlE FRACTION OF CO .
GAMMAC2,l':STCCHICMETRIC COEFFICIENT Of CO IN REACTION 1.
GAMMAC1,1'=STOCHIOMETRIC COEFFICIENT OF FUEL IN REACTION 1.
XlOC1'=MOlE FRACTION OF GASEOUS FUEL IN THE FEED
8Cl,2'=STOCHIOMETRIC COEFFICIENT OF OXYGEN IN REACTION 2.
~
~
I
REACTION 1=
REACTION 2=
FUEL + OXYGEN= CO + H20
CO + OXYGEN: C02
300 Xl2Rl=XlOI2'-CGAMMAC2,1'/GAMMAll,II'*XlOlll

Xl2Rl=NUMBER OF HOLES CO AVAilABLE FROM REACTION 1
PLUS THAT INITIAllY PRESENT IN THE INLET GAS.
Y1R2=MOlES OF 02 CONSUMED 8Y OXIDATION OF CO.
YIR2=C8Cl,2'/GAMMAC2,2IJ.Xl2Rl
IF THE OXYGEN AVAILABLE IS NOT SUFFICIENT TO
BURN ALL THE CO TO C02,GO TO 320 AND COMPUTE
HOW MUCH C02 CAN BE PRODUCED WITH 02 THAT'S LEFT.
IFIYOIll.lT.CYlR1+YlR2" GO TO 320
Y2ADD=CGAMHAC2,1'/GAMHAC1,l')*XlOC1'

-------
FORTRAN IV G LEVEL
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
C
C
C
C
C
C
C
C
C
C
C
C
C**.*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
20
INTGRT
PAGE 0005
Y2ADD=MOLES OF CO THAT CAN BE OXIDIZED TO C02
IF THERE IS ENOUGH OXYGEN TO BURN ALL THE
FUEL TO C02.
GO TO 310
320 Y2ADD=(B(2,2)/B(I,2tt*(YO(I)-YIRlt
THE ABOVE CALCULATION REFLECTS THAT
ONLY A PORTION OF THE CO CAN BE BURNED
TO C02 FOR LACK OF OXYGEN.
310 Y(2)=YO(2t-0.49990*Y2ADD
GO TO 325
CHECK FOR GAS-FUEL AVAILABILITY IF FUEL IS
INJECTED IN THE LIQUID OR SOLID STATE.

COMPUTE THE AMOUNT OF CO THAT CAN BE PRODUCED.
WITH AVAILABLE GASEOUS FUEL.
311 YIR1=B(I,I)/GAMMAC1,1)*XZOClt
YIR1=AMOUNT OF OXYGEN CONSUMED BY OXIDATION
OF AVAILABLE FUEL TO CO.
I F THERE IS ENOUGH OXYGEN TO BURN TO CO,PROCEEL'
TO CALCULATE HOW MUCH CO CAN BE BURNED TO C02
IF(YO(I).GT.YIRl)GO TO 312
~
!.>
~
I
IF THERE IS NOT ENOUGH OXYGEN TO PRODUCE C02
I WANT AT LEAST TO PRODUCE A TINY FRACTION OF IT~
Y2ADO=-0.00001
GO TO 324
COMPUTE THE AMOUNT OF CO PRODUCED IF
REACTION 1 GOES. TO COMPLETION AND ADO
TO CO ENTERING WITH THE FUEL.
312 Xl2Rl=XlOC2J- GAMMAC2,IJ/GAMMAC1,IJ*XZOCIJ
YIR2=AMOUNT OF OXYGEN CONSUMED BY REACTION 2
YIR2=CBCl.2J/GAMMA(2,ZJ)*Xl2Rl
IFCYOCIJ.lT.CYIR1+YIR2JJGO TO 313
Y2ADD=GAMHAC2,l)/GAHHAC1,lJ*XlO(lJ
GO TO 324
313 Y2ADD=CBC2,2J/BCl,2JJ*CYOCIJ-YIRIJ
324 YCZJ=YO(2)-O.49990*Y2ADO
YCl)=YOClJ-O.5*CYIRl+YlR2J
YCl)=YOClJ*O.5

-------
fORTRAN IV G LEVEL
0133
0134
\1135
0136
0131
0138
0139
(.1140
0141
0142
0143
0144
0145
0146
0141
0148
0149
0150
0151
0152.
0153
0154
0155
0156
0157
0158

0159
0160
0161
.0162
0163
0164
0165
0166
0167
0168
0169
2U
INTGRT
PAGE 0006
325 KOOK=Q
IF IMACRO .EQ. 3) GO TO 326
T=TADA8.0.93
IFINSPRAV.GT.CIT=2000.
3Zb TTO = T
IF IMACRO .GE. II GO TO 52
51 IF IDELTAX.EQ.O.O) DELTAX = (XFINAl-XOI/128.
IFIPINT.LT.OELTAX) DELTAX=PINT
XPRINT = XPRINT + PINT
52 IF (KODE(2).NE.21
IF (MACRO .EQ. 31 GO TO 63
KODE U 1 :: 2
KODE(2)=O
OELTX = OELTAX
XPRINT =XO+OELTAX
00 65 11= 1,3
65 HTCCIII = 0.0
IF IMACRO .GE. 1) GO TO 62
GO TO 330
GO TO 330
C
C
c***.*..
C
C
CALCULATE THE NEXT PRINT POSITION.
9 IF((XFINAL-XPRINTI .GT. (PINT +DELTAX» GO TO 3
XPRINT = XflNAL
KSTOP = 1
GO TO 4
3 XPRINT = XPRINT + PINT
I
,....
W
N
C
C
C
C
C**..
C
C
C
GET READY TO TAKE ANOTHER INTEGRATION STEP
4 IfCNSPRAY.EQ.O)GO TO 44
CALL SPRAVCA,STEP,RATES,NT,NSPRAy,TB,T,P,G)
C
CALL UPOATECG,T,Xl,YNO,Y,RATES,TB,G2,T2,Xl2,Y2,YN02,NIND,
1 NDEP,NCOHP,CPAVG,CPCOEF,NSPRAY,ICODE,SS)
C
00 41 l=l,NIND
YOC I )=Y2( U
41 YOI I )=YZ( I)
00 42 1=I,NDEP
XIOCI)=XZ2CI)
42 Xli 1)=Xl2C1)
YNOO=YN02
YNO=YN02
TO=T2
T=T2

-------
FORTRAN IV G LEVEL
2~
INTGR T
PAGi: 01>1'-'
0170
0171
(il 72
0173
v174
(;175
0176
0177
u178
0179
0180
0181
1.1182
U183
018'+
v185
0186
0187
0188
0189
U190
0191
0192
0193
0194
u195
0196
0197
0:i.91:1
0199
0200
0201
0202
U203
0204
U205
0206
0207
0208
0209
0210
0211
G=G2
GO=G2
44 DO 5 11=1,NIND
YOLO III I = YO III I
5 Y I I I I = YOIIII
DO 22 II = 1,NDEP
22 XlOLDlll1 = XLIII)
23 XOLD = X
TOLD = T
GULD = G
YNULD = YNO
C******* CHOOSE THE NEXT INTEGRATION ~TEP LENGTH.
C
C
C
C
AT EVERY NEW INTEGRATION STEP MACR01=0 THE FIRST TIME THROUGH,
THEN IT REVERTS TO MACR01=1
330 IF IMACRO .GE. 1) GO TO 62
IFIIXPRINT-XOLO).GE. 12.*OELTAX)) GO TO 6
IFIIXPRINT-XOLD).LE.11.0u01*DELTAX II GO TO 7
STEP = .5*IXPRI~T - XOLD)
GO TO 8
6 STEP = DELTAX
GO TO 8
7 STEP = XPRINT - XOLD
KPRINT = 1
8 X = XOLD + STEP
KPOINT=l
GO TO 21
20 KPOINT = KPOINT + 1
KO = KPOINT-l
21 IFI X.GT.XPOINTIKPOINT)) GO TO 20
THTA=IX - XPOINTIKO))/IXPOINTIKPOINT) - XPOINTIKOI)
A = AREACKO)+ THTA*CAREAIKPOINT) - AREAIKO))
S = PERI~CKO)+ THTA*IPERIMCKPOINT) -PERIMCKO))
IFIKOOE(1) .LE. QI GO TO 60.
TW = TWAlLIKO) + THTA*ITWALLIKPOINT)-TWAllCKO))
GO TO 62
60 IFIKODE(2) .LE. 01 GO TO 61
IFIKOOE(2).EQ.21 GO TO 63
TS = TSPECCKO) + THTA*CTSPECCKPOINTI - TSPECCKOI)
GO TO 62
63 CALL QUENCHITCO~B,X,XOLO,GOLD,P,A,QNCHRT,QNCHTP,TS)
TCOMB = TS
GO TO 62
61 QTRAN = QSPECIKO) + THTA*IQSPECIKPOINTI - QSPECIKO))
62 CONTINUE
C******* CALL 'SOLVE' THE SUBROUTINE WHICH SOLVES ,VIA. A NEWTON -
C RAPHSON METHOD- THE SET OF NONLINEAR ALGEBRAIC EQUATIONS
C RESULTING FROM THE FIRST ORDER IMPLICIT FINITE DIFFERENCE
C SCHEME USED TO INTEGRATE THE DIFFERENTIAL EQUATIONS
CALL SOLVECNINO,NOEP,NOIM,NCOMP,OABINV,YO,YOLO,Y,GAMBIV,B,
1 YO,TTO,GAMMA,XlOLO,
2 XlO,DELAlP,CPCOEF,OCOF,OGIDY,OXlDY,R,DROY,ORDXl,
I-'
...,
...,

-------
FORTRAN IV G lEVEL
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226.
0227
0228
O?29
0230
0231
0232
0233
0234

0235
0236
0231
0238
0239
0240
0241
0242
20
INTGRT
PAGE 0008
3 DROT,RCON,CP,DCPOT,OGCPOy,DElH,DHOT,HTC,lMINV,
4 MMINV,XI,AJACOB,FUN,KODE,GO,G,P,T,TOLD,TW,TS,
5 QTRAN,A,S,STEP,ACCUR,YIHIN,HAXITR,KCESS,NOPT,
6 IBOHB.NSPRAYJ
IFCI80MB.NE.0' RETURN
IFCKCESS .LT. 01 GO TO 111
IF (MACRO .GE. 11 RETURN
CALL POlUTCP,T,GOLD,G,YNOLO,STEP,A,XZ(4J,YC1"YNO,YNOEQ,SS,MACRO'
SS=SS+,STEP
100 IFCKPRINT .GT. OJ GO TO 50
IFCKOOEC1J.NE.21 GO TO 4
IF(T.lT.(O.95*TAOABI.ANO.ABSCT-TOlOI.GT.O.11 GO TO 4
XPRINT=X .
GO TO 50
50 CAll OUTONE(NIND,NDEP,X,G,Y,XI,VNO,T,2,VNOEQI
IF(X.GE.XFINALJRETURN
IFCKSTOP .GT. OJ GO TO 500
KPRINT = 0
IF C KOOE(II.NE.21 GO TO 9
IF(T.lT.CO.95*TAOABJ.AND.ABSCT-TOlO).GT.0.l) GO TO 9
KODE U) = 0
KODE(2) = 2
DEL TAX = DELTX
TCOMS = T
GO TO 9
111 WRITEC 6,10011
1001 FORMAT(IHl,'THE NEWTON-RAPHSON ITERATION IN SOLVE HAS FAILED TO
lCONVERGE. CURRE~T VALUES OF INTEREST ARE AS fOlLOWS.'1
CALL our ONE C NINO,NOEP ,X,G, Y, Xl ,ANOx, T ,2, VNOEQ)
I BOHB=1
500 RETURN
1010 CONTINUE
1011 CONTINUE
1 BOMB= 1
RETURN
END
I
,...
""
~
I

-------
0001
FORTRAN IV G LEVEL
lq
JACOB
PAGE 0001
0002
000)
0004
0005
0016
0007
0008
OOOq
0010
0011
0012
0013
0014
0015
0016
0017
0018
001'1
0020
0021
0022
0023
0024
0025
0026
0027
0028
002'1
0030
JACOBI~IND,NDEP,NDIM,NCOMP,DA81NV,YO,y.GAMBIV,8,XZO,
YG,TTC,GAM~A,XlOLD,STEP,
UELALP,CPCOEF,DCOF,. DGIDY,DXlDY,R,DRDY,DRDXZ,
ORDT,RCCN,CP,OCPOT,CGCPDY.DELH,O~DT,HTC,XZ,
AJACOe,FUN,KOOE,GO,P,T,TW,TS,QTRAN,A,S,G,NOPT,
SUBROUTINE
1
2
3
4
5 IBCMB)
DIMENSION DABINV(NINO) ,YO(NIND) ,YININD) ,GAMeIV(NOEP,NIND)
DIMENSION BI~IND,NIND), XlOINOEP),DELALPININO),CPCOEF(NCOMP,10)
DIMENSICN DCOF(NIND,14),YOININO),GAMMAINDEP,NIND),XZOLCINDEP)
DIMENSION DGIDYININD),CXlOYINCEP,NIND),RININD),DRDY(NIND,NIND)
OIME~SION DROXZINI~O,NOEP).OROT(NINO),CPINCOMP),OCPOT(NCOMP)
DIMENSICN OGCFOYfNINO) .CELH(NIND) ,O~OT(NINC)
DIMENSICN XlINOEP) ,AJACOBINDIM,NOI~).FUNINDIM)
DIMENSIGN KOOE(~OPT)
DIMENSION HTCI3), RCCN(lO)
MAXTIM = lCO
MA X = 0
28M A X = MA X . 1
IFIMAX .GT. MAXTI~) GC TO 30
C
C ***
C
C
CALCULATE THE TOTAL MOLAR FLOW RATE OF GAS,G,AND THE OERIVATIVE
~.R.T. THE INDEPENOE~T CCMPOSITION VARIAeLES.
ANUM = 1.
OENCM=I.
00 1 KK =I,NI~O
ANUM= ANUM - [ABI~V(KK).YOIKK)
1 OENOM = OENO~ - GAaI~V(KK).Y(KK)
G = GO*ANU~/OE~GM
'"'
W
IJ1
C
C
C***.**** CALCULATE THE P~RTIAL
C PENDENT CO~PC~ENTS Y(I).
C
OF 1./G W.R.T. THE INOE-
THIS 1$ STORED IN DGIOY.
c
00 2 KK = 1,~INO
2 OGIDYIKK) = - OABINV(K~)/IGO*ANUM)
C
C***
C
C
CALCULATE THE OEPENDE~T CCMPCSITIONS ANO T~EIR DERIVATIVES W.R.T.
THE INDEPENDE~T COMPCSITIONS.
GOBYG = GO/G
00 4 KK = I,NOEF
Tl = O.
T2 = O.
C
C******** CALCULATE THE CONCENTRATICNS OF THE DEPENDENT COMPONENTS
C
00 ) JJ = 1,~I~D
Tl = T1 + GA~BIV(KK.JJ).YIJJ)
3 T2 = T2 + GA~BIV(K~.JJ).YO(JJ)
XlIKK) = GOBYG*IXlO(KKJ-T2) + T1
C

-------
19
P/\GE 0002
FORTRAN IV G LEVEL
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0010
0071
0072
0013
0014
0015
001.6
0071
0018
JACOB
C*.***.*. CALCULATE THE PARTIAL OF XI,DXZDY,W.R.T. Y .
C
DO 4 ll=l,MND
4 DXZDYIKK,ll)=DGIDYClL).GO*XlOIKK)+GAMBIVIKK,ll)- DGIDYCll)*GO*TZ
DO Z5 KK = 1,NDEP
C
C
C
CHECK FOR NEGATIVE VALUES OF XZCDEPENDENT COMPONENTS)
IFIXICKK).lE.O.C) GO Te 26
Z5 CONTINUE
GO TO 30
26 AMU = 0.5
DO Z7 KK = 1,~I~D
27 YIKK) = C1.-AMU)*YCIKK) + AMU.YCKK)
GO TO 28
30 IFIIXZ(l) .GT. .000lt .AND. IXIIZ) .GT. .0001)GO TO 31
A1= RCON(1)
E1= RCON(2)
Cl1=RCON(3)
C 1Z=Rco~(4)
C 13=Rco~e 5)
C10 = C11+e12+C13
CA= P/e14.7..C820S)
A1 = Al*28.32.ICA.*(10)
CA1= E Xpe-El/e I.S81*T11 .
C1= A1*CA1.Cl1./T)**C10)*lye11**C111*eXZI31*.C131
IFIXIOlD(1).lT.1.E-40) GO TO 33
IFeXl(1) .GT. .0001) GO TO 34
Xl1S=Xl(1) .
XLIII = -IIG.XIOlDel)I/IA*GAMMAl1,11*STEPII/Cl
IFIXle11.lE.1.E-9IXIC11=1.E-9
XlC11 = XlC11..C1./C1ZI
IFIXl1S.lT.Xll11.ANO.Xl1S.GT.0.01 XIII)=XZ1S
GO TO 34
33 XLIII = Xl OLD 11 I
34 IFIXIOlDIZ).lT.1.E-40.AND.XlOlDIZ).NE.0.01 GO TO 35
IFIXlCZI .GT. .00011 GO TO 31
AZ=RCOt.e 6)
EZ=RCONe 7)
CZ1=RCON(8)
CZ2=RCONI91
CZ3=RCOMIC)
CZO=CZ1+CZ2+C23
AZ =AZ*Z8.3z*eCA**CZOI
CAZ=Expe-EZ/C1.981.T)1
C2=AZ*CAZ*1 CI./T).*CZO)*lye11**C21)*exZe3)**CZ3)
R(1)= C1*IXlel).*C121
XZ2S=XleZI
xzezl =-CCG.XZCLDCZI)/CA*STEPI + GAMMACZ,11*Re111/eGAMMAeZ,ZI*CZI
xzez) = XZCZI*.e1./CZZ)
IFeXIZS.LT.XleZI.AND.XZZS.GT.O.O) xzeZ)=XZ2S
GO TO 31
35 Xzez) = XZClD(2)
"

I-'
....
0-
I

-------
FORTRAN IV G LEVEL
OOH
0080
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0039 
0090 
0091 
 C
 C
 C
 C
 C
 C
0092 
0093 
0094 
0095 
0096 
0091 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0101 
010a 
0109 
 C
19
JACOe
PAGE 0003
C********CALCULATE THE fUNCTIC~S ON THE RIGHT HANC SIDE OF THE NDIM
C DIFFERENTIAL EQUATIC~S AND ALSO THE JACOelAN MATRIX
C CORRESPCNDING TO THESE fU~CTIONS.
31 CONTINUE
C
C
C********
C
C
C
C
C
CALL SLB~GUTINE RATE TO CALCULATE DRDXl ANC DROT
WHICH ARE THE DERIVATIVES OF THE SPECIFIC ~EACTION
VELOCITY, CF EACH CF THE CO~BUSTION REACTIONS,
WITH RESPECT TC Xl AND T.
CALL
RATEI~I~D,NOEP,y,Xl,P,T,RCON,R,ORDY,CROXl,DRDT)
C
C******** CALCULATE DROY
e CIFIe REACTICN
e
WHICH IS T~E DERIVATIVE OF THE SPE-
VELOCITY wITH RESPECT TO Y.
DO 6 II = 1,~IND
00 6 JJ = 1,~I~D
Tl = o.
00 5 KK = 1,~OEP
5 Tl = Tl .DRDXlIII,KK).DXZDYIKK,JJ)
6 DRDYII I ,JJ I = DRDYI II ,JJj+Tl
DO 7 II = 1, ~D I ,.
00 1 JJ = I,NDI"
7 AJACOBIII,JJ) = o.
TO = O.
00 8 I I = 1, N I NC
....
w
...,
THE FOllO~ING STATEME~TS DOWN TO AND INCLUDING STATEMENT 12
CALCULATE THE FIRST NINO FUNCTIONS AND T~E PARTIAL DERIVATIVES
OF THESE FU~CTICNS w.R.T. THE INOEPENOE~T COMPOSITION VARIABLES
AND THE TEf'PERATURE.
8 TO = TO - OElAlPlllj*RIIlj
TO = A*TO/G
DO 12 Ll = 1,~I~0
Tl = o.
T2 = O.
DO 10 JJ = 1,NI~0
Cl = BILL,JJI - YIlll*OElAlPIJJI
Tl = Tl. C 1*'H JJ)
T2 = T2 . Cl*ORDTIJJI
DO 10 MM = 1,~I~O
10 AJACOBlll,MMI = AJACOBlll,MM) + Cl*OROYIJJ,MMI
DO 11 MM = I,NI~D
AJACOBllL,flM) = A*AJACOBIll,HH)/G + A*DGIDYIMMI*TI
IFIM~.EQ.lLI AJACOBIll,HMI = AJACOeILl,MH)+TO
11 CONTINUE
AJACOBllL,NDI'" = A*T2/G
12 FUNILll = A*lI/G
IFIKOOE(2) .GT. GjGO TC 21

-------
FORTRAN IV G LEVEL
0110
0111
0112
0113
0114
0115
0116
0111
0118
0119
0120
0121
0122
0123
0124
0125
0126
0121
0128
0129
0130
0131
0132
0133
0134
0135
0136
0131
0138
0139
0140

0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
19
PAGE 0004
JACC B
C********C~lCUlAtE 1HE FUNCTION CN T~E R.H.S. OF THE TE~P. O.E. AND
C THE PARTIAL DERIVATIVES OF THIS FUNCTION W.R.T. THE INDEPENDENT
C COMPOSITION ~~RIABlES AND TEMPERATURE.
C
CAll
990 CONTINUE
T 1=0.
T2=C.
T3=0.
DO 13 II = 1,NI~D
Tl = Tl . ~ClLI.CPILL'
13 T2 = T2 . V(LlI.OCPDTCll~
DO 14 II = 1, NOEP
LPNIND = II + ~INO
Tl = Tl+XZCLLI*CPllP~I~OI
14 T2 = T2+XZCLLI*OCPDTCLFNINDI
00 16 LL = I,NI~O
DGCPDYClll = CPCLL'
DO 15 KK=I,NDEP
KPNIND = KK + NINO
15 OGCPOYCLLI = tGCPDYClll + CPCKPNINOI*OXlCYCKK,LLI
16 DGCPDYIlLI = C-DGCPDYCLL'/IG*T11 + DGIDYClLJJ/TI
OGCPOT = - T2/CG.TI.TIJ
DO 11 JJ = 1, NINO
17 T3 = T3 -DELHCJJ'*RCJJ'
CALL HlCSSCT,Th,QTRAN,HTC,QlCSS,DQlOT,KODE,NOPTJ
T3 = A*T3-S.QLOSS
FUNINOIMI = T3/CG*TI'
DO 19 KK = 1,~I~D
AJACOBCNOI~,KKI = O.
DO 18 JJ = 1,NI~D
18 AJACOBCNDIM,KKI = AJACOBCNOIM,KKJ - OELHCJJI*OROYCJJ,KK)
19 AJACOBCNDIM,KKI = ~JACCBCNOIM,KKI * A/CG*T1) + OGCPDYCKK)*T3
DO 20 JJ = 1,NI~D
20 AJACOBINDI~,NOI~' = AJACOBCNOIM,NDIMI - DELHCJJI*ORDTCJJJ-OHDTCJJI
I*RCJJI
AJACOBCNOIM,NOI"=CAJACOBCNDIM,NDIMI*A - S*OQlOTI/IG*T11 + DGCPOT
1*T3
9990 CONTINUE
RE TURN
21 00 22 LL = 1,NOIM
22 AJACOBCNDI~,lLJ = O.
RETURN
1000 WRITEC6,10011
1001 FORMATCIH ,'A FEASIBLE SOLUTION CANNOT BE FOUND....JACOB'J
I BOM8=1
RETURN
END
THER~OCT,NIND,NCOMF,CPCOEF,DCOF,CP,DCPOT,OElH,OHOTI'
J
. I
.....
...,
00

-------
OC01
FORTRAN IV G LEVEL
20
0002
0003
OCi04
OliOS
0006
0007
C008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
e025
0026
0027
0028
SUBROUT I NE
1
2
3
4
5
6
D I MENS ION
DIM ENS ION
DIMENSION
DIMENSION
DIM E NS ION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
SOLVE
PAGE 0001
SOLVEININD,NDEP,NDIH,NCOMP,DABINV,YO,YOLD,Y,GAHBIV,B,
YO,TTO,GAHHA,XlOLD,
XlO,DELALP,CPCOEF,DCOF,DGIDY,DXlOY,R,DRDY,DRDXl,
DRDT,RCON,CP,DCPOT,DGCPDY,DELH,DHDT,HTC,LMINV,
MMINV,Xl,AJACOB,FUN,KODE,Gu,G,P,T,TOLD,TW,TS,
QTRAN,A,S,STEP,ACCUR,Y1MIN,MAXITR,KCESS,NOPT,
IBOHB,NSPRAYI
DABINVININOI,YOININDI,YININDI,YOLDININDI,YOININDI
GAMBIVINDEP,NINO),GAMMAINDEP,NINDI,XlOLDINDEPI
BININD,NINDI, XZOINDEP),DELALPININDI,CPCOEFINCOMP,101
DCOFININD,14)
DGIDYININD),DXlDYINDEP,NINDI,RINfND),DROYININD,NINDI
DRDXlININD,NDEPI,DRDTININDI,CPINCOMPI,DCPDTINCOMP)
DGCPDYININD),DELHININDI,DHDTININD),LMINVINDIMI
MMINVINOIM)
XZINDEP),AJACOBINDIH,NDIM),fUNINDIM)
HTCC)), RCON(10)
KODEINOPT)
YSAVE 12 I
C
C*..*...********.**..***.*.*.**..*.*.*.*.****.*..***.*.**..*****.*.
C. .
C. THIS SUBROUTINE SETS UP AND SOLVES BY NEWTON-RAPHSON THE *
C. EQUATIONS fOR THE FIRST ORDER IMPLICIT FINITE DIFFERENCE.
C* SCHEME. IT USES SUBROUTINE JACOB TO COMPUTE THE JACOBIAN. .
C. *
C*..*.***.....*..****...*..**....*.*.....**..*.*.....***.*..*.**.*.
C
C
IOBUG=l
I TER=O
C
C
C
C
I
t-'
...,
'"
If GAS TEMPERATURE PROFILE IS NOT SPECIFIED GO TO 3Q
IFIKODE(2).LE.0)GO TO 30
T=TS
TTO=T
30 CCNTINUE
100 ITER=ITER . 1
IFCITER.GT.HAXITR) GO TO 300
00 50 KK=l,NIND
50 YSAVEIKK)=YIKK)
CALL JACOBCNIND,NDEP,NDIH,NCOMP,DABINV,YO,Y,GAMBIV,B,XZO,
1 YO,TTO,GAMMA,XlOLD,STEP,
2 DELALP,CPCOEF,OCOF ,OGIDY,OXZDY,R,DRDY,ORDXZ,
3 DROT,RCON,CP,DCPOT,DGCPDY,DELH,DHDT,HTC,XZ,
4 AJACOB,FUN,KODE,GO,P,T,TW,TS,QTRAN,A,S,G,NOPT,
5 IBOMB)
IFIIBOMB.NE.O) RETURN
ICONV=O
00 51 KK=l,NIND
IFIYIKKI.EQ.YSAVEIKK).OR.ABSIIYCKKI-YOIKKI)/YOIKK»).GE..001.OR.

-------
fORTRAN IV G lEVEL
20
SOLVE
PAGE 0002
0029
0030
0031
0032
0033
0034
0035
0036
G\J31
0038
U039
0040
0041
0042
0043
0044
0045
0046
0041
0048
.0049
0050
0051
0052
(;053
0054
0055
005&
0057
0058
.0059
0060
0061
1 ITER.EO.ll GO TO 52
51 CONTINUE
I CONV= 1
52 CONTINUE
C
C-------- AS CONVERGENCE IS ACHIEVED FUNINDIMI APPROACHES ZERO
C
00 1 II=l,NIND
1 FUNIII'= Y(III-STEP.FUNIII'- YOlDlii.
If(KOOE(21 .GT. 01 GO TO 6
C
C------- IF KOOEI2. = 1, GAS TEMPERATURE PROFilE IS SPECIFIED.
C
FUNINDIHI= T -STEP*FUN(NDIM,-TOlD
GO TO 7
c
C
C
C
wHEN GAS TEMPERATURE PROFILE IS SPECIFIED,
fUN(NDIMI BECOMES ZERO SINCE T=TS.
6 FUN(NDIMI=T-TS
1 CONTINUE
C
C
C....****AFTER THE CALL TO JACOB, THE MATRIX AJACOB CONTAINS THE
C PARTIAL DERIVATIVES OF FUNW.R.T. THE INDEPENDENT COMPOSITION
C VARIA8lES. THE FOLLOWING STATEMENTS DOWN TO AND INCLUDING
CSTATEMENT 3 CALCULATE THE JACOBIAN CORRESPONDING TO THE FIRST
C ORDER IMPLICIT SCHEME USEO HERE.
C
C
I

i
00 3 II = 1,NDI"
00 3 JJ = 1,NOI"
AJACOBIII,JJ. = -STEP*AJACOB(II,JJI
IF(II.EO.JJ. AJACOB(II,JJI= 1. + AJACOB(II,JJI
3 CONTINUE
CALL MINVIAJACOB,NOI~,O,LMiNV,MMINV'
no = T
00 4 KK = 1,NINO
YO(KK) :: Y(KKI
IF(KK.EQ.2' GO TO 41
IF(YOLO(KKI.LT.1.E-40' GO TO 43
IF(Y(KK'.LT.l.0E-201 GO TO 4
GO TO 42
43 Y(KKI=YOlDIKKI
GO TO 4
41 IFIYOLDIKKI.GE.1.E-40.0R.YOLO(KKI.EQ.O.O' GO TO 42
GO TO 43
42 00 40 JJ=l,NOIM
40 YIKKI= YIKK)- AJACOBIKK,JJ)*FUN{JJ'
4 CONTINUE
12 00 5 JJ = 1,NOIM
5 T = T- AJACOBINOIM,JJ'*FUNIJJ)
130 IFIT.GT.TTOIGO TO 133

-------
fORTRAN IV G lEVEL
l062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0017
0078
0079 .
0080
0081
() 0 82
0083
G084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
20
SOL V E
PAGE 0003
C
C
C
C
RAT 10= T ITTO
CHECK=O.95
IfCRATIO.lT.CHECKtT=TTO*CHECK
GO TO 134
133 RATlO=T ITTO
CHECK=I.05
IfCRATIO.GT.CHECKt T=TTO*CHECK
134 IfCYC11.lE.0..OR.YC21.lE.0.t GO TO 15
ADIST = AB~CCT-TTOt/l00.t
DO 13 KK = I,NIND
HOLD =CABS CYCKKI - YOCKKltJ/YOCKKJ
IfCHOlD .GT. ADISTt ADIST = HOLD
13 CONTINUE
IfCADIST .IT. .001 J GO TO 200
ANORM = O.
DO 2 II = I,NDIM
2 ANORH = ANORM + fUNCIIJ*fUNCllt
ANORM = SQRTCANGRMJ
IfCANORM .IT. ACCURJ GO TO 200
IfCABSCCT-TTOJ/I00.J.GE..00IJ GO TO 15
IfCICONV.EQ.OJ GO TO 15
GO TO 200
15 MAX = 0
11 MAX = flAX + 1
IFCMAX .GT. 10J GO TO 20
IFCYC11.lE.0.0.OR.YC2J.lE.0.Ot GO TO 9
GO TO 14
9 AMU = .50
DO 10 KK = I,NIND
10 YCKKJ = Cl. - AMUJ*YOCKKJ + AMU*YCKKJ
GO TO 11
14 CONTINUE
GO TO 100
200 KCESS = +1
T : no
00 17 KK : I,NIND
17 YCKKt : YOCKKJ
GO TO 400
RETURN
300 KCESS = -1
400 RETURN
20 WRITEC6,1000J
IGOO fORMATCIHO,'A FEASIBLE SOLUTION CAN NOT BE fOUND .....SOLVE'J
I BOMB: 1
RETURN
END
I
.....
'"
.....
I

-------
0001
fORTRAN IV G LEVEL
PAGE 0001
0002
0003
0004
0005
0006
(.cO 7
0008
0009
(1010
0011
0012
0013
0014
0015
0016,
0017
0018'
0019
oozo
0021
. 0022
00Z3
0024,
0025
0026
0027
0028
0029,
0030
0031
0032
0033
0034,
0035
0036
0037
0038
0039
20
TADB
SUBROUTINE TAD~CNIND,NDEP,NCOMP,VO,XlO,V,Xl,DELH,oELALP,B,GAHMA,
1 CPCOEf,CPAVG,GO,G,TO,TADAB,HEATJ
DIMENSION YvCNINO),YCNINO),KlOCNOEP),KlCNDEPI,DELALPCNINO)
DIMENSION oELHCNINDJ,BININD,NINo),GAMMACNDEP,NINo)
DIMENSICN CPCOEfCNCOMP,10J,CPAVGINCOMPJ '
C 990 CONTINUE
IflYOC1J .GT. IBll,lJ/GAMMAI1,1)J*XlOClJJ GO TO 50
THERE IS LESS 02 THA~ REQUIRED TO CARRY THE fiRST REACTION TO
COMPLETION. CONSIDER THE FIRST RE~CT[ON COMPLETELY oOHINAT~S.
THE HEAT RELEASED IS lIT IS POSITIVEJ
HEAT =IGO*YOIIJ)* CDELHCIJ/BI1,1))
G = GO*11. - 10ELALPCl)/Bll,1)J.YOIIJ)
Yll) = O. .
VCZ) =IGO/GJ*IYOIZ) - BI2,1)1 Bll,lJ*VOllJ)
00 1 KK = 1,NDEP
1 XlIKKJ =IGO/GJ*IXlOIKKJ - GAMMAIKK,lJ/Bll,l)*YOllJJ
GO TO 100
50 CONTINUE
THeRE IS MORE THAN ENOUGH OXVGEN TO CARRY THE fiRST REACT[ON TO
COMPLETION.
G = GO.Il. - IDELALPCl)/GAHMAll,l)J*XlOll))
THE HEAT RELEASED B~ THE fIRST REACTION GOING TO COMPLETION IS,
HEAT.=IGC.XlOIlJ).DELHC1)/GAMMAC1,lJ
DO Z KK = 1,NIND
Z YIKKJ = IGO/GJ*CVOCKK) - BIKK,lJ/GAMMAC1,lJ . XZO(1))
DO 3 KK = 1,NDEP .
3 XZIKK)' = IGCiIGJ.CXlOCKKJ -GAMMAIKK,U/GAMMACl,U *XlOllJ)
IS THERE ENOUGH OZ TO COMPLETELY CONVERTE THE CO fORMED BY THE
FIRST REACTION. .
IFCYIIJ .GT. BI1,Z)/GAMMAIZ,2J*XICZJ) GO TO 75
THERE IS NOT ENOUGH, OZ TO TAKE THE SECOND REACT[ON TO COMPLET[ON.
THE HEAT RELEASED IS.. .
HEAT = HEAT. + G*YCU*oELHIZJlBCl,ZJ
Gl= G '"
G=Gl*ll. - DELALPfZ)/BI1,2) *YI1J)
Y(2)=IG1/G)*I~IZJ - BC2,ZJ/B~1,2J*Y(1))
00 4 KK = 1,NDEP
4 XZI~KJ =IG1/GJ*IXZIKK)- GAMMAIKK,ZJ/BI1,Z)*YI1J)
Yilt. '7 O.
GO TO 100
75 CONTINUE
THERE [S ENOUGH 02 TO CARRY SECOND REACTION TO COMPLET[ON.
THE HEAT RELEASED BY THE SECOND REACTION IS.
HEAT = HEAT + G*XZCZ)*DEtH(2)/GAHMAI2,2)
Gl= G
G =G1*11. - DELALPIZ)/GAMMAI2,2J*XIIZ))
00 5 KK = l,NINO
5 YCKK)=(Gl/G)*IYIKKJ - BIKK,2)/GAMMAI2,2) * XZIZ)J
00 6 KK = 1,NDEP
IFIKK.EQ. Z) GO TO 6
XIIKK) =IG1/G)*IXIIKK) - GAMMAIKK,2J/GAHMAI2,ZJ . XIIZJ)
6 CONTINUE
XZI2) = O.
C
C
C
c
C

C
, .
C
C
....
l:-
N
I
c
c
C
C

-------
fORTRAN IV G lEVEL
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
(;056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0013
0074
0075
0016
0071
0078
0079
0080
0081
,"082
0083
0084
0085
20
fADB
PAGE 0002
100 CONTINUE
Tl = TO
TH = 3000.
cL =-HEAT
CALL CAVGINCOMP,CPCOEf,CPAVG,TO,TH)
Al= O.
00 11 KK= 1,NINO
11 Al = A1.YIKK)*CPAVGIKKt
00 12 KK= 1,NOEP
KKP= KK.NWO
12 A1 = A1+XZIKKt*CPAVGIKKP)
FH = -HEAT. G*Al*ITH-TOt
IFIFH .LT. 0.) GO TO 5000
KOUNT = 0
TM=O.O
30 KOUNT =KOUNT +1
IFIKOUNT .GT.50) GO TO 5001
TM5=TM
TM =ITl*FH - TH*Fl)/tFH-Flt
CALL CAVGINCOMP,CPCOEF,CPAVG,TO,TM)
Al = O.
00 13 KK = 1,NIND
13 Al = A1 . YIKK)*CPAVGIKK)
DO 14 KK = 1,NDEP
KKP=KK.NIND
14 Al =A1 . XlIKK)*CPAVGIKKP)
FM = -HEAT. G*Al*ITH-TO)
IFIAB5ITH-TM5t.LT..01) GO TO 22
IFIFM .IT. 0.) GO TO 23
FH = FM
TH = TM
GO TO 30
23 FL =FM
TL =TM
GO TO 30
22 TADAB = TM
C9990 CONTINUE
RETURN
5000 WRITEI6,1111)
1111 FORMATI1HO,ITHE ADIABATIC FLAME TEMP. IS GT 3000.K')
TADAB=3100.
R ET U RN
5001 WRITEI6,1112)
1112 FORMATI1H ,'THE ADIABATIC FLAME TEMP. WAS NOT lOCATED. I)
TADA8=0.0
RETURN
DEBUG INIT , TRACE
AT 990
TRACE ON
AT 9990
TRACE OFF
END
I
1-0
",..
W
C
C
C
C
C

-------
fORTRAN IV G LEVEL
OC.01 
1)002 
0003 
 c***
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
('004 
0005 
C{Ob 
0007 
OGOa 
Ol.09 
0010 
0011 
001.2 
0013 
0014 
0015 
 C
 C
 C
0016 
CiOl1 
0018 
0019 
. 0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
20
RATE
PAGE 0001
SUBROUTINE RATECNINO,NOEP,y,Xl,P,T,RCON,R,DRDY,DRDXl,DRDT)
DIMENSION YCNIND),XlINDEP),RCONC10),DRDYCNIND,NINDI,RCNIND)
DIMENSION ORDXlCNIND,NDEP),DRDTCNINO)
RATE EXPRESSIONS SUPPLIED BY THE USER ARE OF THE FORM
A. FOR FUEL GOING TO CO AND H20
R(1)=- A1*EXPI-El/Cl.987*T))*CCOZ)**C11)*CCFUEL)**C12)*CCHZOt*'CI3)
B. FOR CO GOING TO C02.
RCZ)= A2*EXPC-EZ/C1.987*T))*CC02t**C21t*CCCO)..C22t*CCH20)*.(23)
THE UNITS HERE ARE,
R , MOlES/(~ITER-SEC.t
El,EZ, CAl./MOLE
T , CEGREE KELVIN
CCOMP.), MULES/LITER.
THE CONSTANTS Al,A2,....,C23 ARE IN THE ARRAY RCON
Al = RCONU t
El = RCCNIZ)
Cll= RCGNI3I
C1Z= RCON(4)
C13= RCONCS)
A2 = RCCNCb)
EZ = RCON(7)
C21= RCONIS)
C2Z= RCON(9)
CZ3= RCONCI0)
CI0 = C11+CIZ+CI3
CZO = C21+CZZ+CZ3
CONVERT THE RATE EXPRESSIONS TO THE UNITS OF MOlES/CCCUBIC FT.)*CSEC.))
BY MULTIPLYING BY 2S.3Z LITERS/CUBIC FOOT. AT THE SAME TIME CONVERT
TO MOLE FRACTIONS.
CA = P/C14.7*.OS2U5)
Al = Al*28.3Z*C(A**CI0)
A2 = A2*28.3Z*CCA**C20)
CAI = EXPC-EI/Cl.987*T))
CAZ = EXPI-EZ/C1.987*T)t
R(1) = Al*CA1*CC1./T)**CI0)*CYC1)**Cl1)*CXlC1)**CIZ)*CXlC3)**C13)
R(2) = AZ*CAZ*C(I./T)**C20)*CYC1)**CZ1)*CXZCZ)**CZZ)*CXZC3)**CZ3)
DROYC1,1) = Cl1*Al*CA1*ICl./T)**C10)*CY(I)**IC11-1.))*IXlCl)**CIZ)
1 *IXZ(3)**CI3)
DROY(1,ZI = O.
DROYCZ,I) = CZ1*AZ*CAZ*CC1./T)**C20)*CYC11**CCZ1-1.))*CXZCZ)**CZZ)
1 *CXlC31**CZ31
DRDYC2,Z) = O.
DRDXZC 1,11= C 12*A1*CAl* C Cl./0**CI0) *c YC 11**C 11) * C Xl C 1I**C CIZ-l.))
1 ,*CXZ(3)**C13)
DRDXZ Cl, Z )=0.
DRDXlCl,31= C13*Al*CAl*CC1./T)**ClO)*CYCl)**Cll)*CXZCl)**CIZ)
1 *CXZ(3)**CCI3-1.)) .
DRDXZ( I,It 1= O.
DRDXZC2,1) =0. .
DRDXlCZ,2)= CZ2*A2*CAZ*CCl./T)**C20)*CYC1)**CZ11*CXlCZ)**CCZZ-l.l)
1 *CXl(3).*C23)
DROXlCZ,3)= CZ3.AZ*CAZ*CCl./T).*C201*CYCl)._CZ1).IXZCZ)*.CZ2)
1 .CXZ(3).*CC23-1.1)
~
~
~
I

-------
FORTRAN IV G LEVEL
(;034
vu35
0036
0037
0038
20
RATE
DRDXlI2,4J= O.
DRDTIIJ = RIII*IE1/Il.981*T*TI
URDTI21 = RI21*IE2/11.981*T*TI
RETURN
END
PAGE 0002
- Clu/TI
- C20/TI
I
....
~
VI
I

-------
fORTRAN IV G lEVEL
0001.
0002
0003
0004
0005
0006
0007.
0008
0009
0010
0011
20
HlOSS
PAGE 0001
1
SUBROUTINE HlOSSCT,TW,QTRAN,HTC,QlOSS,DQlDT,KODE,NOPTJ
DIMENSION KODECNOPT)
DIMENSION HTtC31
IFCKODE(3).GT.OJ GO TO 1 .
QlOSS = HTt U) .. HTC (Z)*CT-nO .. HTCH )*CT*.1t - TW**41
DQlOT ~ HTCC21 .. 4.*HTtC3J*T**3
RETURN
QlOSS = OTRAN
OQlOT = o.
RETURN
END
I
...
~

-------
FORTRAN IV G LEVEL
20
OUTONE
PAGE 0001
0001
0002
0003
0004
0005
0006
0001
0008
SUBROUTINE OUTONECNIND,NDEP,X,G,Y,Xl, YNO,T,KASE,YNOEQ)
DIMENSION YININO),XlINDEP)
IFCKASE .LT. 2) GO TO 1
WRITEC6,10rO)X,G,T,Y,Xl,YNO,YNOEQ
1000 FORMAT 11HO,G11.4,10G12.4)
GO TO 10
1 WRITEC6,10<'1I
1001 FORMAT 1112X. '0 1ST ANCE' ,4X, 'F LOW RAT E ' ,1 X, ' T' , lOX, 'U2' ,1(1 X. 'C02' ,
1 8X,'FUEL',9X,'CO',1uX,'H20',9X,'N2',10X,'NO',8X,'NOIEQ)',/4X,
2 'I F TI ' ,4X, ' C G-MOlS I SEC) , ,5X, ' 1 K) , ,9 X,36 1 ,-, I , ' C MOL E FRAC T I ON I ' ,
3 311 ,- , ) I
10 RETURN
END
0009
001U
,.....
~
.....

-------
FORTRAN IV G LEVEL
20
CAVG
PAGe 0001
01:01
OU02
OV03
0(;04
0005
0006
G007
OC08
(..' 009
0010
0011
0012
(j013
0014
(;015
0016
0017
0018
0019
0020
(;021
0022
0023
0024
0025
0026
0027
0028 .
0029
0030

.0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
SUBROUTINE CAVGCNCOMP,CPCOEF,CPAVG,T1,T2)
DIMENSICN CPCOEFCNCOMP,10) , CPAVGCNCOMP)
DO 10 KK :1,NCC~P
10 CPAVGCKK) = O.
U1= Tl/1000.
H1: U1
lI2= T2I1000.
IFIU1.lT. 1.2) GO TO 1
H2 = U2
GO TO 50
1 IFCU2.LE. 1.2) GO TO 2
HZ= 1.2
GO TO 3
2 HZ = U2
3 CONTINUE
V1=1.
V2=1.
00 4 KK =1,5
A K= KK
\11= V1*H1
V2= VZ*HZ
00 5 KPN = 1,NCCMP
CPAVGIKPNJ= CPAVGCKPN)+CPCOEf(KPN,KK)*(VZ - V1)/AK
5 CONTINUE .
4 CONTINUE
IFCU2 .lE. 1.Z) GO TO 75
HZ= U2
HI = 1.2
50 00 b KPN =l,NCOMP .
CPAVG(KPN)= CPAVG(KPN)+CPCOEFCKPN,bJ*CHZ-Hl)+CPCOEF(KPN,7)*AlOG(H
121H1 )
6 CONTINUE
AK = 0..
VI = 1.
V2. = 1.
00 7 KK =8,10
AK= AK+l.
Vl= VI/HI
V2= V2IHZ
00 8 KPN =l,NCOMP
CPAVG(KPN) =CPAVG(KPN) -(1./AKJ*CPCOEFCKPN,KKJ*(V2 - Vl)
8 CONTINUE
7 CONTINUE
15 00 76 KPN = 1,NCOMP
16 CPAVG(KPN)=CPAVG(KPN)/IT2 - T1)
RETURN
ENO
I
'"'
~
co
I

-------
FORTRAN IV G lEVEL
20
CPFIT
PAGE 0001
COOl
0(02
OU03
Ot04
0005
0006
OlU7
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
(;036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
SUBROUTINE CPFIT(NPTS,NCON,TO,CPO,TX,CPY,CO,C,FO,F,A,KASE)
DIMENSION TX(NPTS),CPYINPTS),C(NCUN),FO(NCONI,FINPTS,NCON)
DIMENSION A(NCO~,NCCNI
DO 25 II = I,NPTS
READ(5,2UOOI TX(II),CPY(II)
PRINT 125, TX(III, CPY(III
125 FORMAT 11"X, FlO.3, 20X, FlO.3)
25 CONTINUE
2000 FORMAT(4X,2FI0.31
TO = TO/1000.
DO 100 II =1,NPTS
100 TXIIII= TXIIII/1000.
1 IFIKASE.GT.OI GO TO 2
Z= TO
GO TO 3
2 Z = 1./TO
3 FO (11 = Z
DO 4 11=2,NCON
IMI =11-1
4 FOIIII = FOIIM11*Z
00 5 II = I,NPTS
IFIKASE.GT.OI GC TO 6
Z = TXIIII
GO TO 7
6 Z= 1.ITXIIII
7 f(II,lI= Z
DO 8 KK= 2,NCON
KKMI = KK-l
8 FIII,KKI = FIII,KKM11*Z
DO 5 KK= I,NCON
5 f(lI,KK) = FIII,KKI-FOIKK)
DO 11 KK = I,NCCN
DO 11 II = I,NCCN
AIKK,I I) = O.
DO 11 JJ = I,NPTS
11 AIKK,II) = A(KK,II)+ FIJJ,KK)*FIJJ,III
DO 12 KK = I,NCCN
C(KKI=O.
DO 12 JJ= 1,NPTS
12 C(KK)= CIKKI+ FIJJ,KKI*(CPY(JJ)-CPO)
CALL SIMQ(A,C,NCON,KS)
If(KS.lT.l ) GO TO 15
WRI TEl 6,1000 I
1000 FORMAT(' A SINGULAR SET OF EQUATION HAS BEEN ENCOUNTERED')
GO TO 17
15 CO = CPO
DO 16 II = I,NCCN
16 CO = CO- CIII)*FO(II)
17 RETURN
END
....
..
\D

-------
U(01
fORTRAN IV G LEVEL
MIX
(;002
0(;03
0004
OCiC5
0006
0(;07
((j08
0C:09
0010
0011
GO.12
0013
0014
0015
OC1b
0017
0018
0019
0020
GC21
0022
C023
0024
0025
0026
"021
0028
0029
0030
0031
1.11.132
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
20
SUBROUTINE ,MIXIGl,Yl,Xll,YNOl,T1,G2,Y2,Xl2,VNOZ,T2,G3,V3,Xl3,VN03
1 T3,NIND,NDEP,NCOMP,CPAVG,CPCOEf,IBOMB'
DIMENSION V1(NIND),Xll(NOEPI,V2(NINDI,Xl2(NDEP),V3ININDJ,XZ)(NDfPI
DIMENSION CPCOEFINCOMP,IOJ,CPAVGINCOMPJ
C 990 CONTINUE
C 00 MATERIAL BALANCES
G3= Gl+G2
00 1 KK = 1,NINC
1 V31KKI = (G1*Y1IKK' + G2*VZIKKI)/G3
00 Z KK = I,NOEP
Z Xl3IKK) = IGl*Xll(KKI + G2*XlZIKKII/G3
VN03 = (GI*VNOI + Gl*VNOll I G3
00 ENERGY BALANCE .
THE REFERENCE TEMP. 15 Z98K
TR=Z98.
IFIT1.EQ.TZ) GO TO 25
CALL CAVGINCOMP,CPCOEF,CPAVG,TR,T11
Al = O.
81 = O.
00 3 KK=1,NINO
81 = B1 + Y3IKKI*CPAVGIKKI
3 A1 = Al + Yl(KKI*CPAVGIKK'
DO 4 KK=I,NOEP
KKP = KK + NINO
81 = B1 + Xl3IKKI*CPAVGIKKPI
4 Al = A1 + XlIIKK'*CPAVG(KKP)
HI = G1*A1*(T1-TRJ
CALL CAVGINCOMP,CPCOEF,CPAVG,TR,Tl'
A2 =0. .
82 =0.
00 5 KK=I,NIND
AZ =Al + Y2IKK)*CPAVG(KKI
5 82 = 8l + V3(KKJ*CPAVG(KKJ
00 6 KK=1,NDEP
KKP = KK+NINO . .
82 =Bl + Xl3IKKJ*CPAVGIKKPJ
6 A2 = A2 + Xl2IKKJ*CPAVGIKKPJ
H2 = Gz*A2*ITZ-TRJ
Fl = G3*81*(T1-TR'-HI-HZ
F 2 = G3*B2* IT 2-TR J-H1-H2
IFITI .GT. Tli GQ TO 7
Tl =T1
Fl =Fl
TH =T2
FH =Fl
GO TO 8
1 Tl=T2
FL=F2
TH=Tl
fH=FI
8 KOUNT =0
TM=O.O
99 KOUNT =KOUNT + 1-
C
C
?, ~ ..,;.. -
. ,.. ,J:': v ,-
PAGE 0001
t:
o
J
~.,;. -,..

-------
fORTRAN IV G LEVEL
0049
Ou5U
0051
0052
(;053
0054
(;055
005&
0051
0058
0059
0060
(,061
1.:062
0063
c;,064
0065
0066
0061
0068
0069
0010
0011
OC12
0013
0074
0075
0016
234
C9990
10UO
C
C
C
C
C
20
PAGE 0002
MIX
IFIKOUNT.GT.501 GO TO 234
TMS=TM
TM = ITL*FH - TH*fLI/IFH-fLI
AM = O.
CALL CAVGINCOMP,CPCOEF,CPAVG,TR,TMI
DO 9 KK = 1,NIND
9 AM = A~ + Y3IKK)*CPAVGIKK)
DO 10 KK =l,NDEP
KKP = KK+NIND
10 AM = AM + Xl3IKKI*CPAVGIKKPI
FM = G3*AM*ITM-TRI-H1-H2
IFIABSITM-TMS).LT..011 GO TO 100
IF IFM .LT. 0.) GO TO 11
FH = FM
TH = TM
GO TO 99
11 FL = FII.
TL = TM
GO TO 99
100 T3 = T M
RETURN
25 T3 = Tl
RETURN
WRlTEI6,10001
CONTINUE
FORMAT I , A SOLUTION CAN NOT BE fOUND......MIX')
I BOMB= 1
RETURN
DEBUG INIT,TRACE
AT 990
TRACE ON
AT 9990
TRACE OFf
END
.....
'"
.....

-------
fORTRAN IV G lEVEL
20
THERMO
PAGE 0001
OiH2

0013
OJ14
SUBROUTINE THERMOtT,NINO,NCOMP,CPCOEf,OCOF,CP,OCPDT,DELH,DHOT)
DIMENSICN CPCOEftNCOMP,10),OCOftNINO,l4),CPtNCOMP)
DIMENSION DCPDTINCOMPI,DElHtNIND),DHDTtNINOJ
TR = T/1000.
IFtT .GT. 1200.) GO TO 100
TR2 = TR *TR
TR3= TR2*TR
TR4= TR3*TR
TR5= TR4*TR
DO 1 II =1,NCOMP
CPtlll=tCPCOEFtll,l) + CPCOEFt((,21*TR + CPCOEft(I,3)*TR2
1 +CPCOEFtll,4J*TR3 + CPCOEFtII,S)*TR4)/1000.
1 DCPDTIIII=(CPCOEFI(I,Z)+2.*CPCOEFtII,3)*TR +3.*CPCOEFI(I,4)*TR2
1 +4.*CPCOEFtII,S)*TR31/(1000.*lOOO.)
00 2 II ~ 1,NIND
DHOT( II )=([)COFI 11.11 +DCOFI 11,2 )*TR + DCOF III ,3 )*TR2
1 +DCOFII1,4)*TR3 + DCOFtII,S)*TR4)/lOOO.
2 OElHtll) =DCOFtII,ll)+ tOCOFtll,l)*TR + OCOFtll,Z)*TR2/2.
1+ DCOFIII,3)*TR3/3. + DCOFIII,4)*TR4/4. + DCOFIll,S)*TRS/S.
Z- DCOFtII.l3»
RETURN
100 TRl = l./TR
TRZ = TR1/TR
TR3 ~ TRZ/TR
TR4 = TR3/TR
DO 4 II = I,NCOMP
CPtII) =tCPCOEFtII,6) + CPCOEF(II,7J*TRl + CPCOEFCII.S)*TR2
1 + CPCOEFC(I,Q)*TR3 + CPCOEFtll,lO)*TR4J/IOOO.
4 DCPOTtII) = -ICPCOEFtII,1) . 2.*CPCOEFIII,S)*TRl .3.*CPCOEFt(I,9J
1 *TR2 + 4.*CPCOEF(II,10)*TR3)/CI000.*1000.*TRZ)
DO S II = I,NIND .
OHDTtll) =IOCOFtll,6J + DCOFIII,1)*TRl + OCOFtll,S)*TR2
1 +OCOFIII,Q)*TR3 + DCOF(II,lO)*TR4J/IOOO.
S DElHIII.) = DCOFIII.12) + C OCOFIII,6)*TR + DCOFCII,1)*
1 AlOGtTR) - DCOftII,S)*TRI - OCOf tll,9)*TR2/2.
2 - OCGFClI,lO)*TR3/3. - OCOFtll,14J )
RETURN
END
.....
In
N
OlOl
0002
O()03
~U(i4
OOOS
<,)('06
(;007
(,OOS
;:)(,09
0010
0011
001S
0016
0017
001S
0019
0020
0021
0022

0023
(1024
002S

0026
0021
0028

-------
fORTRAN IV G LEVEL
(.olin
0002
Uu03
0004
0(,05
0(,06
0007
0(-08
0009
20
BINVER
PAGE 0001
SUBROUTINE BINVERININO,B,BINVI
DIMENSION BININD,NIND),BINVININO,NINOI
D = Bl1,11*BI2,21 - eI1,21*BI2,11
BINVI1,11= BI2,21/0
BINVI1,21= -Bl1,21/0
BINV(2,11= -BI2,l)/D
BINVIZ,Z)= Bl1,11/0
RETURN
END
,...
\.It
W

-------
'fURTRAN IV G lEVEL
20
QUENCH
PAGE 0001
uCul
('002
OLI03
001,)4
, "005
(lC06
OC01
OG08
vuu9
001.
I

-------
(J001
FORTRAN IV G LEVEL
PAGE 0001
uL-02
(,(;1.13
0(;04
""05
0006
0007
vl08
0(;09
0010
0011
0012
0013
0014
(;015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
2J
UPDATE
SUBROUTINE UPDATEIGO,YO,XZO,YNOO,TO,RATES,TB,G2,Y2,XlZ,YN02,TZ,
1 NIND,NDEP,NCOMP,CPAVG,CPCOEF,lBOMB,SS,TI)
C
C
C
C
C******************************....*................*....
C. THIS SUBRUUTINE MIXES THE GAS STREAM AND THE.
C* FUEL STRE~M TO CCMPUTE A NEW TEMPERATURE AND.
C* CCMPUSITIOh.--IN THE TEMPERATURE CALCULATION.
C* THE HEAT OF VAPORIZATION/GASIFICATION IS TAKEN.
C* INTU ACCCUNT. .
C*..********....***...................*...*...........*..
C
C
C
C
C
C
C
C
C
C
DIMENSION ICODEI 6),YOI 2),XIOI 4),Y2IZ),Xl214),CPCOEFINCOMP,10),
1 CPAVGINCOMP),XMOlEI6),YFUELC2),XFUELI4)
CUMMON/AA/HVAP .
CCMMON/BB/TIME
Yu~MOLE FRACTION OF INDEPENDENT COMPONENT AT THE BEGGINING
OF THE SLICE
XIJ=SIMILAR TO YO BUT FOR THE INDEPENDENT COMPONENTS
Y2~MOLE FRACTION OF IND. COMPo AT EXIT OF SLICE
XI2=MULE FRACTICN OF DEP. COMPo AT EXIT OF SLICE
<:199 CONTINUE
NTOTAl=NIND + NDEP
""'
VI
VI
C
C
YNOFL=O.
YFUELll) =0.
YFUELI 2) =0.
XFUELllJ=1.0
XFUEU 2 )=0.
XFUEU 3 )=0.
XFUEL(4)=0.
C
TR=298.
CALL MIXCGO,YO,XZO,YNOO,TO,RATES,YFUEl,XFUEL,YNOFL,TI,G2,Y2,XZ2,
1 YN02,T2,NINO,NOEP,NCOMP,CPAVG,CPCOEF,IBGMB)
HEAT=RATES*HVAP
IFISS .NE. 0.) GO TO 710
CAll CAVGINCOMP,CPCOEF,CPAVG,TR,TB)
XCP4=CPAVG(4)
SNSBl=RATES*CPAVG(4).CTB-TI)
TI=T8
HEAT=HEAT+SNSBl
710 CAll CAVGCNCOMP,CPCOEF,CPAVG,TR,TZ)
CPMIX2=0.
00 30 I=l,NTOTAl
IFII.GT. NINO) GO TO 29

-------
FORTRAN IV G lEVEL
20
UPDATE
PAGE 0002
0027
0028
0029
0030"
0031"
0032
0033
0034
0035
0036
0037
CPMIX2=CPMIX2+Y21IJ*CPAVGIIJ
.GO TO 30
29 II=I-NIND
CPMIX2=CPMI X2+XZ2U I J*CPAVGII J
30 CONT [NUe-
DElT=HfAT/IG2.CPMIX~t
n=T2-0El T" "
PRINT 90,T2,OELT
90 FORMATllflX.'TZ='.E14.6.'OElT='.E14.6ft
RETURN -
END
~
VI
0\

-------
FORTKAN IV G LEVEL
0001
0002
0003
0004
0005
00(;6
0007
Ol08
0009
0010
0011
0012
0013
0014
0015
C
C
C....
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C..**
C
C

C
C
C
20
SPRA Y
PAGE 0001
SUBROUTINE SPRAYIAREA,STEP,RATES,NT,NSPRAY,TB,T,P,GJ
DIMENSION AREAPOI10J,EVAPII01,BURNI10J,ERATEII0J
DIMENSION RFII0J,RFZ(10),RF3110)
OIMENSICN W(10)
DOUBLE PRECISION EERATE
THIS SUBROUTINE COMPUTES THE MOlES/SEC OF
GAS GENERATED BY EITHER THE BURNING OF A
LIQUID SPRAt OR A SOLID SPRAY
COMMON/AB/RI10J,RHONV(10),NGROUP,NFNCTN,RHOP,AVGMW,
1 VP, WDPII0),XNDPIIO)
COMMON IEEI FUEL
THE COMMON BLOCK /AB/ IS liNKED TO SUBROUTINE ADATA
REAL K
AVGMW=AVERAGE MOLECULAR WEIGHT OF GAS GIVEN OFF
AREA=CROSS SECTIONAL AREA OF FlOWIFT.*Z'
ERATE=EVAPORATION RATE OF LIQUID SPRAY,OR
GASIFICATION RATE OF SOliDSIMOlES/SECJ. ERATE IS
NSPRAY=l ISPRAY IS LIQUID)
NSPRAY=Z ISPRAY IS SOLID)
NT=COUNTER
RIIJ=PARTIClE RADIUS IMICRONS)
RHOP=PARTICLE DENSITY. ASSUMED TO BE
UNIFORMED FOR All PARTIClES(LBS/FT*.3)
VP=PARTICLE VELOCITYIFT/SECI
NGROUP=NO. OF DISCRETE PARTICLE SllES GROUPS
USED TO CHARACTERIZE THE DISTRIBUTION
OF THE SPRAY. IT CANNOT EXCEED 10.
.....
I.n
......
PI=3.1416
XSQR4P=SQRTI4.*PI)

NFNCTN=O VAPORIZATION/GASIFICATION RATE IS CONSTANT
NFNCTN=1 VAPORIZATION/GASIFICATION RATE IS NOT CONSTANT
FUEl=TOTAl MOLES OF LIQUID/SOLID FUEL FED TO BOILER
P=PRESSUREIPSIJ
I NIT I AL lZATJON
IFINT.NE.O'GO TO 3
FPI=4.*PI
FPI=IZ.S664
RR=1206.28
RR=1206.28(CM.*3-PSI/(GH-MOlE OK'
TFUEL=FUEL
SUHFUL=O.

-------
fORTRAN IV G lEVEL
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
20
SPRAY
PAGE 0002
C
C
C
WDP=WEIGHT DISTRIBUTION Of PARTICLES
XNOP=NUM8ER DISTRIBUTION OF PARTIClES/SEC
PI43RO=PI.4./3..RHOP
FAVGMW=fUEL*AVGMW
C
C...*....
C
C
C
'C
CALCULATE THE PARTICLES/SEC Of fUEL XNDPCI. fOR
EACH GROUP Of PARTICLES BEING FED INTO THE BURNER.
fORM THE CONTINUITY EQUATION WE KNOW THAT XDNPCII
1 S CONSTANT.
00 1 1=1 ,NGROUP
C
C------- CONVERT FROM MICRONS TO FEET
C
RFCIJ=RCIJ/30.48E4
Rf2111=RFlll*RFIIJ
RF3111:RFII'*RF2CI.
AREAPOCI,=FPI*Rf2CIJ
1 XNDPll'=WDPCIJ*fAYGMW/PI43RO/RF3CII/454.
C
C
C
C
C
C
C
C..**.***
C
C
C
C
1 MICRON: 1./30.4BE4 fEET
IF THE SPRAY IS A SOLID 8YPASS LIQUID SPRAY CALCULATION.
CALCULATE THE VELOCITY OF THE fUEL PARTICLES. IT
IS ASSUMED THAT THESE PARTICLE MOVE AT THE VELO-
CITY OF THE GAS STREAM ENTERING THE DIFfERENTIAL
ELEMENT.
....
VI
0>
I
3 VP=G*RR*T/P/28320./AREA
C
C
c-:"--- SUBltOUTI NEYAPOR CALCULATEs
C RATE,EYAP, PER UNIT AREA OF
C GROUP OF PARTICLES.
C .
THE EYAPORAT ION
LlQU 10 FOR EACH
CALL YAPORIRF,PI,VP,RHOP,STEP,NGROUP,..'
C
WW=o.
DO 27 I=liNGROUP
WW=WW + WCI'*XNCPCIJ
27 CONTINUE' .
WW=WW*454./AVGM"
RATES="'" .
EERATE:-WW
SUHFUL=SUMfUL-EERATE
IfISUHfUL.GE.TfUELJNSPRAY=O
IFCSUMFUL.GT.TFUEL'RATES=RATES-ISUHFUL-TFUEL'
DIYI=SUHFUl/TFUEL
IFCDIVI.GE.0.9999JNSPRAY=0

-------
FORTRAN IV G LEVEL
20
SPRAY
PAGE 00303
0042
0043
0044
0045
0046
0047
0048
NT=NT+1
IFIRATES.LT.1.)NSPRAY=0
PRINT 30
30 FORMATC/2X, 'PARTICLE RADIUS PARTICLE SURFACE EVAPORATION RATE DENS
11TY FUNCTION PARTICLE VELOCITY NO. OF GROUPS'/)
00 50 I=l,NGROUP
RCI)=RFII'*30.4SE4
PRINT 31,RCI),VP,WW,NGROUP
31 FORMATC1X,3E17.7,7X,I3)
50 CONTINUE
RETURN
END
0038
0039
OC40
0041
I
....
\11
\D

-------
0001
FORTRAN IV G LEVEL
SUBROUTINE VAPORCRF,PI,VP,RHOP,STEP,NGROUP,W)
0002
0003
0004
0005
0006

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020.
0021
0022,
0023
0024,
20
VAPOR
PAGE 0001
C
C
C
THIS SUBROUTINE CALCULATES THE VAPORIZATION OF FUEL OIL DROPLETS

COMMGN /IJ/ VAPf
DIMENSION DELTA(10),
COMMON/8B/TI ME
PRINT 50
50 FORMAT C2X, 'NGROUP',
1 'W', 12X, 'EVAP'J
400 CONTINUE
X1=VAPF
OELT=STEP/VP
TI ME=TI ME + DEL T
GROUP5=VAPF*TIME
DO 200 I = 1,NGROUP
o C I ) =R F C I ) * 2 .
OC101, DNEWCI0), RFI10), W(10)
SX, '0', lOX, 'ONEW', lOX, 'DELTA', lOX,
C
C
C
CALCULATE NEW DIAMETER
C
C
C
ARG = OCII**2 - GROUPS
IF IARG .LE. 0.0) ARG=1.E-40
ONEWII) = SQRTCARG)

CALCULATE CHANGES IN SURFACE
C
C
C

C
C
C
C
C
C
C
OELTACI)=PI*OCI)**2
CALCULATE TOTAL L8S EVAPORATED
...
0-
o
I
WII) = RHOP * IPI/6) * COCII**3 - ONEWIII**31
CALCULATE VAPORIZATION FLUX
EVAPCIJ=WCIJ/OELTACIJ/OELT
PRINT RESULTS
RFCIJ=ONEWCIJ/2.
PRINT 100,I,OCI),ONEWCIJ,OELTACIJ,WIII
100 FORMAT'C 4X, 12, SCIX, E12.5))
200' CO NT INUE '
RETURN'
END
" ...

-------
ceOl
FORTRAN IV G LEVEL
0002
0003
(,,004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
C
C****
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C****
C
C
C
C
C
20
POLUT
SUAROUTINE POLUTIP,T,GOLD,G,YNOLD,STEP,A,YN2,YOZ,YNO,YNOEQ,SS,
1 MACRO)
DOUBLE PRECISION ONE,TWO,FOUR,AAA,CCC,DELTAA,YYN01,YYN02,XXSQR
DOUBLE PRECISION VLUME,GG, AA4,AAZ,YY02,GGOLD,YYNOLD,AA3,AA1,
1 VYN2,XDSOZ,APRME,BPRME,CPRME,SSS
DOUBLE PRECISION GROUP1,GkDUP3,DNODT,YYNO,YYOZEQ
CGMMON IPCLMCR/ DNOOTT,VULUME
CCMMON/CD/YOZEQ
COMMuN/EF/TESTl,KINJEC,KPASSS
THIS SLBROUTINE COMPUTES THE MOLE FRACTION OF NITROGEN OXIDE .*.*
A=AREA OF fLOWIFT**21
A=AREA OF FLOW(FT..Z)
G=MCLAR fLOW RATE OF GASES (MOLES/SEC)
GOLD= MOLAR FLOW RATE Of GASES IN PREVIOUS SLICE
YNO=MOLE FRACTION OF NO
YNOEQ=EQUILIBRIUH MOLE FRACTION
YNOLD=MOLE FRACTION OF NO IN PREVIOUS STEP
Y02=HOLE FRACTION OF OXYGEN
YNZ=MDLE FRACTION OF NITROGEN
P=PRESSUREIPSIAI
T=TEMPERATURE(OK)
STEP=(NTEGRATION STEP SIlE(IN FEETI
SS=DISTANCE FROM THE INLETIFEETI
VLOCT=VELOCITY CF GASIFT/SECI
YD2EQ=EQUILIBRIUH HOLE FRACTION OF OXYGEN
XKO=EQUILIBRIUM OXYGEN DISSOCIATION CONSTANT

IF (MACRO .GT. 01 GO TO 1
IFIKPASSS.EQ.l)GO TO 1
IFIKINJEC.EQ.O.~ND.VDZ.LT.YOZEQ)YOZ=Y02EQ
1 RR=lZ06.28
RR=1206. Z81 CH**3-PS 1/ (OK-GM~HOLE) 1
R=1.987
R=1.987ICALDRIES/IGH-MOLE-oK))
PRT=P/(RR*T)
PRT25=PRT**Z.50C
COMPUTE THE HOLE FRACTION OF NO
GOLD*YNOLD - G.YNO +A*STEP*RATE OF NO = 0
THE ABOVE EXPRESSION IS THE DIFFERENTIAL
HASSBALANCE ON NO
XKO=Z5.*EXP(-118600./(R*TI)
RT=R*T
C
C-------- LEEDS DATA
C
XK3=1.36E14*EXP(-15400./(R*T))
PAGE 0001
I
,...
0\
,...
LEEDS

-------
FORTRAN IV G LEVEL
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
U028 
 C
 C
0029 
0030 
 C
 C
 C
0031
U032
0033
" 0034
"0035
0036
0031
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
20
POLUT
XK4=3.1E13*EXP(-334./(R*T))
XK5=6.43E9*T*EXP(-6250./(R*T))
XK6=1.55E9*T*EXP(-38640./(R*T))
A1=2.*SQRT(XKO)*XK3*XK5*PRT25
A2=2.*SQRTtXKO).XK4*XK6*PRT25
A3=XKS*PRT
A4=XK4*PRT
AA1=Al
AA2=A2
AA3=A3
AA4=A4 '
VOLUME=A*STEP*28320.
VlUME=VOlUME
THE FACTOR 28320. IS TO CONVERT FROM CM**3 TO FT..3.
GG=G "
YY02=Y02
GGOLO="GOlD
YYNOLO=YNOlD
YYN2=YN2
XDSOZ=DSQRT(YYOZ)
GROUP1=AA1*YYNZ*YYOZ*XOS02
GROUP3=AA3*YY02
APRME=-IGG*AA4 + VlUME*AA2*XDS02J
BPRHE=GGOlO*YYNOlO*AA4-GG*GROUP3
CPRME=GGOLO*YYNOlO*GROUP3 + VLUME*GROUPl
AAA'=APRHE/BPRME
CCC=CPRME/BPRME
VlOCT=G/PRT/28320./A
ONE=1.aOOOOoo
TWO=Z.OOOOOOO
FOUR=4~00COOOO
OElTAA=FOUR*AAA*CCC
XXSQR=OSQRTCONE-OELTAA)
YYN01=(-ONE+XXSQRJ'(TWO*AAAJ
YYN02=(-ONE-XXSQRJ/(TWO*AAA)
c
C
C---------fINO VAllO ROOT
C
I FC YYN01.GE.0..AND. YYN01. L T .1. )YYNO=YYNOl
IFCYYN02.GE.0..AND.YYNO~.lT.l.JYYNO=YYN02
YNO=YYNO
C
C---------CORRECT OXYGEN CONCENTRATION BY
C CONSUMED BY THE NITROGEN OXYGEN
C
C
C
C
SUBTRACTING AMOUNT.
REAC 11 ON.
ONOOT=GENERATION RATE OF NITROGEN OXtOE(GH-MOLES/CM**3-SECJ
PAGE 0002
lEEDS
UEDS
LEEDS
.-
0\
N

-------
FORTRAN IV G lEVEL
20
POlUT
PAGE 0003
C
\,
0055
0056
0057
0058
0059
0060
0061
0062
(,063
0064
0065
0066
0'067
0068
0069
0070
oen
0072
OC13
0074
0075
0076
0017
0078
0079
2 YNOE~= 4.6B*EXP(-21700./(R*TII*(YN2*.O.51*(Y02**0.5)
IFISS.EQ.O.)TIME=O.
DlTIME=STEP/VlOCT
TIME=TIME+DlTIME
DNDDT=IGROUP1-~A2*YYNC**2*XDS02)/(GRDUP3+AA4*YYNDI
DNiJOTT = DNDDT
IF(MACRO.GT.O)RETURN
IF(SS.lT.iESTl)RETURN
IF(KPASSS.EQ.O)GO TO 3
IF(KINJEC.EQ.IIY02EQ=Y02
IF(KINJEC.EQ.IIYY02Et=Y02EQ
IFIKINJEC.EQ.IIKINJEC=O
YYD2EQ=YY02EQ-D~ODT*VlUME/GG/2.
Y02EQ=YY02EQ
YC2=Y02EQ
RETURN
3 CONTINUE
IF(Y02EQ.EQ.O.IY02EQ=Y02
YY02=Y02EQ
YY02=YY02-0NODT*VlUME/GG/2.
IF(YY02.lT.O.JYY02=0.
Y02EQ=YY02
Y02=YY02
RETURN
END
....
01
""
I

-------
- 164 -
D.2Particle Combustion
D.2.l
Input Forms for Particle Combustion
.0'1;7

-------
CAI? 1."J
CoL v"" N:'
/- 80
o
- 165 -
PARnCLE COMBUSTION
---
I, ;L C
C,eD

-------
CARD ..1
COLUMN "...
- 166 -
OPTI91'1
COP~S
u.s
6.\0
I   T ~.s_YI.A..L,._'--I~MP.E.Rf:.I..V&.L PP.OFILE _.ro, e E._SEECJEIE P.
I   L -:J;S_,GI-.$_T.Ł/:tPE fl./... TtJ1{,Ł__.P'f{PfJL~~fJ Ł._$f'..E.C-LŁ) = P.
! I I i - +..:;"-I1ŁJ:.rJJJI.t.-l-::gv.f..J~Ł_.Io._J3~2f_E:.~.LF-IŁJ?_.L. (4). 
! 
 -   ..
~....... ....._..~-
n.1S
l_.. (.,~)
r (* ~)

. ~PT ~!W'le E.1LQE~_("_Q.Nl?J.-'..Y-'ll:U;kW1L1~l N J::S__(M.I1I!"YI'\.-~[. ;;)
f-i-L.J : . /,/Sri< A 1/ r/1(2~t4c 7J::t2 ~1f *"
I ! j t-H: i /
I 1 ~ I ! '. .--...---..
; i I ;
r-;--r- i I .
H-...i i i I
I . i-"! I i I
I ! i i I I
r:-r I

I i ~i I
I j I I I
I I , I I
16.20
21.2S
26.30
31.3S .
36.40
41.45
---"'--.- ---
46.50
SI.5S
56-60
.----.---
61-6S
E6.70
--C.--'
-----.----- .----
..._-_..
-.-----
M{~ ~ r::;BY VSER
ALL ITŁf.\S 0/1 TPIS cARP /., rJsT Be f?/GHT - :JusT/f/3P.
(~.~) f ~ :
NO
YES
YE 5
)
)
BY V5ŁR
FRD//\ Q U Ł- /I c H
R. A TE: (,/\ Leu L,.;T ICI.)$
OP/!.,A.jJ() OllL'( vi'J~; or TilE 3 sPfc-IFfC/T'Ct,j OpT/CllS I,~AY Sf

EX C R c.., oS C f) -.,t. of..} CU L- Y Of):;: " YC 5 's ~ r.. 5 POll $ c:. .

. f 0:: FeJl:/.. is A GAS
1t~ If S = pu45/. 1.5 t4 t-I'~II;)
;;! ~ ~u EL, .s ~ So i.l j;)
..~:.~.....~";:"f.f.:

> :: ~~ - '<;

-------
CARD
COLUMN
1.10
11.20
21.30
:n.40
~1.50
51.60
61.70
CARD 3
COI.UMN
1.10
11.20
21.30
31.40
41.50
51.60
61.70
CARD
COLUMN
1.10
11.20
21.30
31.40
41.50
51.60
61.70
- 167 -
2
Q. (FVFLL!:..b1QA) ~ t: (CD) + c:t(H~.C2L
STo lc.H 1()/1Ł"Tp. Ie,
C.OŁFJ:lc./ENTS FoR
I ~ I ! T 1 I I FIJ~L CO~FF/CIEN T) 0.,
I
 ! I   l-{ ! -.9.t p  b
   -f-'  )
 i  ~-~ .L co " }-c.
 :  
 I  -'.- 'U'-'- 
 .  I 1 . J./ ;1..-') ,\ )ol
I   . ' ;
 ; I    I   
 I     I i    
 i      i    
      ~    
 I      I    
PHYSICAL.
coN I)ITIDN S
OF /NlE:T GAS MIXTURŁ'"
I j 1  I 1= L Q..J-~~'fJ.J:._~_~..L5E~_w2.l
I  1  i r~~E""fA.~.I)B ~~-l
   --~.. L...:. .~ 
I  '  I  
 ~  I -ER E_UJL~~(Ls.LC, )
I  I ! ! -
 i  J~ ruA13AIL~-HAlllŁ T=PPŁPA TLlE!..=- P'.T-1}J/..E i (:~
i  I i  
ttttttttttJ
4-
c. () 11 Po SIn () ,"-J
INLET
G/~5
   1 ~ (LL.E F F 1-, c. TW.1'Y-Or _0;.. 
I   1+   co, 
   t'--r  \\ 
 I  1 I  \\ Cl..EL 
      -
   f-H-  " co 
 I   " H.o 
     \' N. 
  .    
     \\ N.O 
HOTES:
(?!) OFTloNI>L - r)S!:p 11'1 COIIJ"VNC.TION ~t/ITH QUENCH ,C'..ATE

-------
CARD S
COLUMN
a.oO
UI.20
21.30
31.<10
49.50
51.40
101.70 .
CARD_~
COlUMN
1.10
1I.:pO
:n.30
31.40
41.50
51.4Q
<11.70
- 168 -
CONDITloN-AllP LOCA~F SfCONMR.Y. INJ.~A.S
-, !
. L D Ł. (3'-I<\O!.ES /SS'C.)
~ rC-I!IBf.p.hT.(jF.Ł_~lS) .
b-.!-L -LN1E c. TL CJ N P (J l1LLLEELT-EE.~I1-1U-4f_T.)_-
I !. .P/ABltu.:.. FL /jJ:JLL;J1JE---_/J---11[;L~fT1jLLft;)j-
(!},l1/ '/!/a..-,!.... (u..11 >"",' --,:1";'//
I
, I
,
~EG7i(jN
COMPOSJUW
Gft,S
   I   /0\ () l~ c. 7101'1 DE 0"
   @:  
   I   \\  C,O~
   ~   
  I l  I \\  FUf.L
   I 
  I I  I ,\  CO
I  Po  
 I  I i I \\  11 ~..o.
 .  Ei    
t:tttttti+tJ
\\
Nt';
NO
\\
---.
(-*) OPTICI/AL - USr=p III c.oIJJuc,T;OIJ WITH QU=/JCH ,~ATŁ.
040V ES:
IA M A X 111 V M 0'= 2. 0
INJŁcTlo."l POI."JTS ''''I\Y BE USEP.
Iff IIQ INJ"ŁcTIOI'l POU-lTS ARE USED PO NoT 5UB/'i/T TUfSr:
) .
INJTcT10N ?ouITs l'\vsT BE 5'JEr~JTTEP IIi Cf;:t, Of IIICRE/-:5/IIG DIS7AJJC[
ct,,'?:J5
FPU' /;',':
USE Af)!>ITIQ,"U"l. C,iRPS AS IJŁ!!)~P P=f'. /.'.0(',,[ 1/JJ'ECTto."1 p()I/lT~.
--- -"a.
- -,,-~
-;

-------
- 169 -
CARD
-r
K. IN ETI (:. RATE COJ]sTi.../lTs Po(\
a. (FvrL~) ~ c. (CO) + d ( H.:~
COLUMN
41.50
i .1
, .1
(.~o
( CAL~~/ESL-
1.10
11.20
21.30
31.40
I'
-)
51.60
61.70
----..
THE KINE:lIC. RATe .=xPRES.5/oN IS -
(i< = A e- Ir (O~)D( (Fl/ŁL)f3 (H;.O)~
~-NlOLŁs/t.,ru.-.sŁc. ;
WITH (oJ} (Fllr.L) AlJp (J.I;:.O) IIJ I/II/TJ of '-/"f)LŁS/L/i.:t.
AnD T III
OK,'
---- -
-
(*) THIS /TF/\ /.1 A Y JJE ŁXPf:ES5Ef) AS !-II EXPtJ/J~/JTiAL I)U/M~r,f(
- - .,)
() , ,":.x..>< t E. = :,
B
CARD --
Ji1 tJ Ł. T/ c P I~. TF: C Q.LLS :1- 1I!.s F~ '"
CO +,,~ 0:. -> CO~
COLUMN
1.10
  I 1 1- -- I-E Rf-_QY.!I'_~\LLiJ,-ID_P..--,A.-(~)
I  !  .fLc T,,/I'. 'n v/LE;:L;.::""r...C-3.. E. (c.}~ l 0 ,.~ I !:~-: )
I I  1 i    '
  0;: ~.1J:;.IJT ~c<
I   1 i    .13
    C.Q "
     j {'
  I I   :...:~ 0 ,\ r;
  ~   
I  -      
11.20
21.30
31.40
41.50
51.60
61.70
TII~ KltJŁTlc RATŁ EXP{(ESSloN 15 -
~ = A e -/r (o;)C« co)/3 (H.lO) '(
cg-/10LES/ LITE/?- SEe.. ;
"",TN (o~)) (to) /,II{) (11,,0) IN v/JITs of
~ -I>'OL rS/L./Tf R
AUf) T IIJ oK.

-------
- 170 -
CARD
/J5([ R
cONsTAor~
COLUMN
U.IO
. I I I \ I 1   c,oEFFIC-/EJJT. A
\  c.oNc:.TAI.IT
I 
i '+H+'i I ~o H 'I E. c.: TJru!.. ,G J>--B-
! I 0 ' 
 i I I 1 I -f{f..J) J A._rl ();J II ~-
      0_...  
! ! ! ! Ii; I    
 i i I   ! I    
 I      
 i          
 I      I    
UU.20
21.30
31.<10
41.50
51-60
01.70
-.--
TlfE NEAT FLUX To THE 'WALL 15 EXPR=SSŁ9 AS -
1'(XCAL./Fr~SŁ'c.) =
A + B (T-Tw) + C (T_II-=:.T;) ~
'WJ!E.RE: T AUf) T;., t.1:X TFE GAS All!) 'I./ALL TE:I.lrC/~lT:J{!:.S (0,:<:'
THIS CAI, D I S To BE sV{!;/:ii TrEf) OIJL Y IF THE. '1//1 L L
1Ł1. °1 f ~(.I, TUt E
SPŁ(,IFt~ATI()/J OPT/OIl fiAs 8ŁŁ/) cx~Rc.!SE.~f)
ON CARD 1. (A" i" 1# COl-v/.,N S) 0

-------
- 171 -
CARD q. S"
Q UF:NcH-RATE
c () N.5.IA N /5
COLUMN
1.10
.cCO}J!) ) B
:HIRP -. II ) ~
ML!>.F Q v..E-1)cJL.P~IL-(~)
11.20
21.30
31.40
51.60
; i
I
.1.50
61.70
{ 0.0
(if.) I. 0
::
Q VA DRAT,c Fof
-------
- 172 -
(CARD ~ 0
(,()M_BusToR
~s.
~
--.-: ".1
>.'" .
~..J ",,',' ","'",
. . " . \- 1)' , .-r':"' .
. \ f.. \ ...
~ '" .," \.. ." ,.'. .

,..'~'.O ..: -\'
I "~- .....l. .
- .... .
COLUMN
31.60
DlsT) Iv"". FP~l,t' INLEr" ( FE"!=r)
C,((OSS~--SE..C..n()/lA.t._.~ R. = A__C~)
EefZll~~ Er~~=:.r)
A.L"L__r.~l~j e.~ RAT.JJ1..f (~K)
_GA.$--I"-~j~lf._~ŁI:.IJLE--f:~) ~ *-fr)
)1EAL_F'=-~X (K~MLu::.-~cc ).,1
(4t) .
1.10
I !
I .'
I I
t+h


" ,
I I
i
01.20
:11.30
lIl.50
51.60
8°
CARD -LO-
COMBUSToF~
PROFILES
COLUMN
1.\0
I  1   I): c;1jIlC.: F P.. Q./4-1l:LL.~ L.1L:; c.:r) 
  1   --':...~Q..$ S-=-.s;{;-'fJ.C'/J.6J...-1Jl. !";.. (FI.~) 
i  ! I , .E..r:-...t.ll," r:-""'= A1.EI:' ill   
     ~ u.._-'----.. - --.-  1 
  I  ! \VAlL T!:L!..l~B..A ,r.lr~':: e~ K~ 
  :..  
 I !   (J( ..)
 .   ~ - r;~5-IEŁf-tPJ:. LJ).Ł. :: -i t 1-<.  ''11:-:-
L...L--Ll...... j i IT~'U F L IJ x (i1fl'.JŁ.ll. '. s t; 0) J
-~) -
01.20
:n.30
31.60
.9\.50
51-60
~o
----.. --..-- ----- .--------- -----
. .
--..--------..
~)
~ 0'

EilTER. A J- III c.DL.VtIIJ 80 IF ;-1115 15 r;!F fINAL PP.oF/!..~ cl'..(:';J.
(**> ŁNTŁI< VALvE S FOR TilE ITEII\ CO(\~'::SPO/JPllJG TOT/IE:
SPEC/PleAT/oil C}/OSŁ:.;J OIJ GAl

eAP,PS). USŁ ADlnIICl!AL CARP.5 AS /JEŁpe? Fo~ /,;O~E PPCFILES. fA-OF /Lf: c,t-.P--DS !.\uST eE 5uC3,,.,/TTC[) If I C,fJ;E/-'I.. of //lCP,f/,$/IJG F(J..O/.\ IIILET. t/ 15T" IJ C. Ł" ...-


-------
- 173 -
CARD ..1J
GOMBu5TOR ~EIJGrJ/
AND
pf-.
11.20
21.30
51.60
I
I
T-
.1.50
61.10
- (~) A ~I/AS!R., N J EJJrE.~E.!) lIEIZE
WIl-L CAr.JSE:. p.. ESL/!..Ts
To BE
PRl1:TE9 cvT EveR.Y N Fc:~T ALOIJG TilE c.o/~8UsTof\. T.:fS
.J/VI,~BEP, SHOULD BE AT LEiST As LAf..GŁ A $ T/!E /I/TCGf.A7i:;/I !/JT:f'/~!.-

(:l*) ;J:F L::FT (!;L/\I/K THE II)rŁGR..f..T:~/) I!JT~f-'I,~L ~"I/LL BE3 /551J/,!;!) TJ B~:
T!J J
I/.::;: -..." "r- ...,-,'''' , r:7"r~-!1 "I:'" A r:, r!f.'::- c-Ct':.I.(T",,'
-/,,..,, V, 'Jl'- &-""""""""",,,,,,,,, "'-.'.'I~ ---...-",.
CARD ~L
JEAT
------
OF
P.. E A C... 1M t!
J::'I ...,o~ oK..
~ 1""... Ii> ,
COLUMN
1.'0
  j  .lL:::J.:T (IF R!7 n Tr.~LL(t<"'C:;'J. )J-:'tJ>J..!I:.~.TL:/L!2IlJ-.hL~
  ~i-f- r--
   11 E.J:. T'" nF F. EJ~ (:::"','1 (~~g:Jl.L.EL.Rf,Lf TiCII ~" Cl:~:> ;:..
I  I      
 -       
".20
21.30
31..0
.'.50
51.60
61.10
----...---...-- --_..
C.ONVŁ. N Tlof'l :
E.XOT}/EFJ,;/C HEAT OF IZŁAc... TJ'Dt~ /.i vsi 8~
-- Ł/JICt..Łi"/ f'.5 A NEGAr/V~ NCJI,'BER.

-------

-------
- 175 -
CARO-'ll:....- HEAT CAPAc(('1' ':}ATA PO!IJ~ep. FUEL
I
( ;1. ~ t oK :E T:5 1.; 00 ° ;C
COLUMN
$-'4
,$ ""4-
CARD 1 l~ .
CO'.UMN
$-'4-
'5"- ;l-f.
CARD /1-/.
COLUMN
. s- 14-
IS' -'-4-
I i I
I i
I
I
i
I
I
I
! ill I I
i , ~ I I
! i i I I
r-1TI: I
i ii, I
: I'

i I I I I
I I ! I !
--.-
r E J., r~ ERA Tv F.. :' (0 K )
H.6A T c.f..fACJrLl)LfV~_~-C.C:A.l./'J./"e.c' 0;<, t-
----
HEAT cAP-felT\( PATA PoulTs F~R.. F(}E-L (:<.'je°j<. := T..:. I~~CJ'J<)
 j I 1     ( (> 15.)... 
  i   ,. r: 1/1 PE I?A fUr:, s: --
   I   H.~ALc.A.fAk fTy OF EJJJ~U;:Ł}_~f~0-
I   I  i   
I  I I ! I     
I  ,     
   I I  - -- .--   
CtttftH-HJ
1It:J,-T C/;P/c.(,y PIT/-. PtJ/I/T$ FO,t{ FUEL (?9~ ~l\:5 T~
,
/;!. c':; ~ .:( ~
 [  ...IE/.JJ?f p. t' TU" C (0 ;<) 
 ..--  - .' _.:....-:_[=--~ - ,
 I I 1,J1.ŁL. T CAPA(:.'IY OF Fu ~ L (c.;. :..~:,-:_:.r . t:< i
 r---;-~- 
 I I     
I       
     .-. 
NOTES:
AJ-_J..EASJ 5i)<' DATA CAPOS J.,H)sT 8Ł Sv'lIU7IEP,I j/lC.LUPING VI LVCS l-:

../..9<;el< IJ.lV /J.oooK - PATA CAR.Ds 1.1usT eŁ S()e/.1/rr~[) /1/ Cf![)=p..
OF' IIlC.'; r-J.5//lG TE/o,1 PE/?/; TU/~E.~..
USE A[);/IT!::I/AL c:1t~D.5 AS lJŁrpEp Fef. /.~()f'..E.. PAT1\ POj/..ITS.
~. '. . ~.:=----=..:

-------
/:ltJooK)
u:.tJ
 iJUJ\IP. r.R of H=AT CA P,t.. r;, ,TY DAT;; PtJ/tJT..s   /
 FtP rU~L (-:I:)
  (T>/;?06°K)
I    
I    
5-0
9.U2
MOTU:
AT !-E.AST , DATA POINTS ftH).sT 8Ł su8/1.ITTEP. :rr /.s
"e CCj/,M EIJPŁP 17/Ar AT L ŁII.!;T It) POIJVI..5 BE 1.J.5Ł.P (/~J All;.: :/1-1 ,:F
V"LtJf~ AG~'/Ł 3000'}< ARE USVALL Y /JoTNEŁPŁ//.
(49 TIllS NVA~6r:.f.. "IU.sT 8Ł IVGHf- ;)USTlf/EPo
==

-------
CARD
COLUMN
$- 14.
IS- .?i
CARD ~
COlUMN
S' -/4-
IS" -)1'
CARD I "
COLUMN
.r-,~
IS -~4-
- 177 -
() J75 &ft F!JEI,.. (T '>' I~ 00 ok.)
I i I I I I I J r1=J;,p~t'.A TURE (OK)
1 I
 I '  I i  I U,EAL.J:...A fA~ln  'FIlC L(~~~/g~\P,L! - 00-
   I tF
    I
 I      i   
 i        
 !     !   '.
  J  I  I I   
  I      
       t   
HEAl CAPAc-ITY PATA POlllTs FtJP FUFL (T > I :2.0(') oK)
!  r~/.~ PEf:I-TUP. Ł ( 6K)  
  ~ALCI:..I?J~ i Ty of F()E:L (Cr L /:.=Ł t!! . o.K. ).
 I    .
I I    
IT1:I:i:HI:IT:J
HE.AT CAPACITY !)J~TI, PoulTs FeR FV!:.!- (/,. 1;100 o.K)
-- ~.J::UJ!.Ł1!..!11=-C!.fi, 2  
 U:Ar CI (1.[,1 J ':L2f.. rCI:. ~ ((,;. L/ O.,.~t.LE. .I:K)
 . J
NOTES:
'y'/,t-uCS
AT LEAST SIX pJ,rA CARDS 1\\I).sT BE SVB/.H7iEP FcA
ABoVE lJ.co.K. PI.T,A c.t.RPs ,llusT 8Ł $VeMIITŁP IN
INclJ..f3.As I,./G TE/.t PŁ/~". rURr.. z .
oRPf:P. OF
USE AJ}!JIT/O/IAL CAf
-------
- 178 -
C~IZD
17
o Xl J,G,./
Ejv/ j,'iA?,t/14
~G7.e'C7"ION
Cot v N AI
a => no
(
Ev,e,v ~,ff.eN NO te,t:$71f!IC7/()/'/~ AR.c t"MPOSED
/3e,.ANJ;. CJ"t/eD Mus7 !3~ /.I'.Jc.!..f,;IŁ)rD", Ł" FIŁ'J-D
. .

OS t:' ~E D. MtJS7 De /
-------
C,qI?O ~
Co~~~
,- ~
5- "
!)-,
, -;
8 -1
'i-tO
11- i ~
13 --IS
,,-~S
~,-3~
$' - LJ ~
ŁI' - ~!"
-If
- 179 -
M,u - t;,L}SR,v S /V~ L.
t,~AJ.IŁ 7F-t:!
CARŁ)
.If
Ic{>oe (j )
r4ocC~)
:Tefl OE CJ)
r Crloc C 1/ )
-r ~ DE (05' )
'1: C~/)E t()
NFAlC7N 4 ~

M, o,c ~12~1J I S of ~It. 71 ~ l. Ł" /~
1>Ł# $17"7 o,c. FvE '-
1140 '-EC. v t...A R w<;'11JJ T o~ Ł,t:; I
BO,f,hi ~'N7 O~ /V/!( 0;/
JIG A 7 OF VA-fORt ZA7~ON
IV HE-N :I C(lj)E ~ I
1#Ł
. .
sPec IŁ.
I~ No#- SA ~t:OeJS
~~
W/IE .,v
NFA/c.7N': "
':: ,
VA 10 Ł1 ~A 710AI f!A 715 i.s
VAf()~1 e:A iJCN ,(1.47t; 1$
DEPINŁ () 87 TIIG. ()~K
~.e.4r lJS7ci~
CO,f)!;?AAl 7
1'1 /=<.J".IC 7/0.

-------
- 180 -
~;et)
19 "
j'A It!. 71 C t...tS
D;!; .J ,(!1(,3 v .;, ~ b1
d~
n - 8 D
08 - ;e..o
4o/u.$ 0 tC ~.,<). 7' e ~ ~.s iN s,,'" 7 (1--11 u..'~I'"Is)
W.fJ'jH 7 c!,.s712/13u1'/O,-.) rc.l,!fJC 7'o~
f:?EPEA7 DcpeiVDII/)(-1 t:JN
vSŁD TO DE~C~/8i: A-
QFYN C1'I()M.
THt: NvH SEI? 0 F /'0/ #7..5
I'AIe 71-~ L-~ DI$7/2i PV 7J 0;./
. ---_. -

-------
D.2.2
'-
- 181 -
Computer Listing for Particle Combustion

-------
fORTRAN IV G LEVEL

0001
0002
0003
OOO~
0005
0006
0007
0008
0009
0010
OOH
0012
0013
OOH
0015
0016
oon
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
19
~A!N
. OoOv
000,
OoOv
0000
OoOv
OoOv
0000
0000
OoOv
OoOv
70705v
-50617v
13032 v
-11.0022 v
207~~0
90867v
-50465v
H 086 v
-14076 v
605590
C
C
C$**.*.$~$$$$$$$$$*...$.$$O$$$Q$$$$$.$~*$**$$$$o*~
co ~ODIfiED FOR BURNING Of SPRAY PARTiCLES 0
COOO$$$$O$ooooooooo~O~O~O~$$o.$OQ$O$O$OO.$oO$ooooo
C .
C
PAGE 0001
DI~ENSION DAeINV(2DvVOa2DvV(2DvVOLDC2),GAMBIVC~02DvB(202Dv~ZO(4)
DIMENSION GA~~A(492)vB!NV4202D vVO(2Dv~ZOlD(4D
DIMENSION DELALPC2D,CPCOEF(6v11.0Iv DGIDV(2)oD~ZDV(492D
DIMENSION OCOf(2014D
DIMENSION R«2)vDRDVa202DoDRD~ZI2v4DoDRDT(2),CP«6DoDCPDT46D
Di~ENSION DGCPDV(2D,DELH(2IvDHDi«2),L~INV(3DvMMINVI3Dv~Z(4)
DIMENSION AJACOB4303DvFUN(3)
DIMENSION ~~OINiaAOODoAREA(100)oPERIM(100D,T~ALLll00D
DIMENSION iSPEC«100Dv9SPECC100DoKODEI~)
OIMENSION HTCI3Do RCCNa10D
-DIMENSiON i~(20)vCPV420DoC(4DoFOI~DoF(2004)oA«4,4D
DIMENSiON ~INJ(20)oGINJ«20)oiINJ«20DvViNJ«2v20Do~ZINJ«~020D
DiMENSION VNCINJa20D
DiMENSION V2«2DoXl2a~DoCPAVG(6D
DIMENSION QNCHRTC3Do iCO~B!«20D
DIMENSION iCODeC6D
CQMMQN/BB/1R ~E
COMMON/EF/iESi10KI~JECoKPASSS
DATA CPCOEFI 703A6 0 40102v
1 . 706810 -403E3 0 22007 0
2 -50146v 15023 0 -24055 v
3 11.1042 v -11.4026 0 15047 0
4 -80253v 40429 0 -401 0
5 201080 16061 0 15096 v
6 10001 0 -24012 0 -40295v
7 -606930 49093 0 ~07180
8 15006 0 -5001~ D -507410
9 -18080 0 19029 0 203210
A 80~051
CALLRHOC
40 CONTiNUE
IBOM8=O
NOPi = 4
N I ND = 2
NDEP = 4
NDIM = 3
NCOMP .. 6
SS=Oo
TlME=O.
KPASSS"O
KINJEC"O
Nl=O
CALL
1
2
3
80613v
-206320
CJ10036v
-60405v
106880
22094 0
-63002 0
15403
-J!.811.07 v
78085 9
,...
CO
~
ADATA(NIND,NDEP,NCGHP,B,GAHMA,YO,XIO,CPCOEF,DCOF,YNOO,
CP,DCPDT,DELH,DHDT,RCON,HTC,XPOINT,AREA,PERIM,
TWALL,TSPEC,QSPEC,KODE,GO,P,Tp,XO,XFINAl,DELTAX,
PIN1,XINJ,GINJ,TINJ,YINJ,XIINJ,YNOINJ,

-------
FORTRAN IV G LEVEL
0034 
0035 
0036 
0037 
0038 
 C
 C
0039 
0040 
0041 
0042 
0043 
0044 
 C
 C
0045 
 C
 C
0046 
 C
0047 
0048 
0049 
0050 
 C
 C
 C
 C
 C
 C
 C
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059
0060
19
PAGE 0002
MAIN
NOPT,TX,CPY,C,FO,F,A,QNCHRT,QNCHTP,TCOMB,TCOMBI,
NSPRAY,ICODE,TB)
4
5
TESTl=3.*DEL TAX
C l=-GAMHAI I,ll
C2=-B(1,1I
Cl= -GAMMAI2,21
C2= -B(1,2)
FORM THE ARRAY OELALP WHOSE J'TH ELEMENT CONTAINS T~E NET
CHANGE I~ ~CLES fOR THE J'TH REACTION.
DO 1 JJ= 1, NI NO
OELALPIJJI= O.
DO 2 II = 1,NINO
2 DElAlPIJJI = DELALPeJJ)+ BeII,JJ)
DO 1 II .: l,t-
-------
19
PAGE 0003
fORTRAN I~ G LEVEL
0061
0062
0063
0064
0065
0066
0061
00'68
0069'
0070
oon
0072
0073
0074
0075
0076
0077
0078
. 0019
0080
0081

0082
0083
0084
'0085
0086
0087
0088
0089
0090
0091
0092
0093
f:4A!N
35 KINJ = KINJ~l
IFCKINJ oGT. KOOf«4.. GO TO 40
XO '" XlNJCKINJ)
~ESI1=XO+30.0ELT6X
KINJEC=l .
KPASSS=l
SS=)(O
IFCKINJ .Ee. KOOE(4)) GO TO 30
XFIN = XINJCKiNJ +1)
GO TO 31
30 XFiN :I XFINAl
31 CONTINUE
G2 =GINJCKINJt
T2 =TlNJCKINJ)
00 32 KK = 1,~INO .
32 YlCKK) '" YI~JCKK,KINJ'
DO 33 KK'" 1 ,NOE'P
33 X12(KK) '" Xll~JCKK,KINJ'
YN02 = YNOINJCKINJ)
TCO"B=TCOMBICKI~J.
CALL ~IXCG,y,XZ,VNO,T,G2,V2,XZ2,YN02,T2,GO,YO,XZO,YNOO,TO,
1 NI~D,~DEP,NCOMP,CPAVG,CPCOEF,IBOMB)
IFCIBOMB~NE.Ot GO TO 40
CALL THEAMOCTO,NINO,NCOMP,CPCOEF,OCOF,CP,DCPOT,DELH,DHDT)
CALL TADBCNINC,NOEP,NCCMP,YO,XIO,y,Xl,DELH,DElAlP,B,GAMMA,
1 CPCOfF,CPAVG,GO,G,TO,TADAB,HEAT'
PAINT 501, 1ADAB
501 FORMATe' /lilT 2o, 'ADIABATIC FLAME "
2 'TE~PERATURE FOR iNLET GAS MIXTURE. " FI0.l, ' K',/)
CALL INTGRTCNINO,NDEP,NDIM,NCOMP,OABIHV,VO,YOLD,Y,GAMBIV,B,
1 .' '. GAMMA,YO,XlOlD,VNOO,YNO,G,T,TB,
2 XlO,DElAlP,CPCOEF,DCOf,DGIDY,DXlDY,R,DRDY,DADXl,
30RDT,RCCN,CP,DCPOT,DGCPDV,DElH,OHDT,HTC,lMINV,
4 MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,TWAll,
5 TSPEC,QSPEC,KODE,GO,P,TO,XO,XFIN,DELTAX,
6 PINT,NOPT,IBC'B,CNCHRT,QNCHTP,TCOMB,TADAB,
7 NSPRAY,lCODe,SS,NTJ'
IFCIBOMB.NE.O) GO TO 40
GO 10 35
50 CONTINUE .
C....... CALL THE SUBROUTINE 'INTGRT' WHICH tNTEGRAt~s THE MASS AND
C ENERGY eAl.NCE EQUATIONS DOWN THE REACTOP.
CALL I NTGRTC NINO ,NDfP,NDIM,NCOMP, DAB INV, YO, YOLO, y, GAMB IV,B,
1 GAMMA,YO,XZOlD,YNOO,YNO,G,T,TB,
2 XlO,OELAlP,CPCOEF,DCOF,DGIDY,OXlDy,R,DRDY,DRDXl,
3 DROT,Rt~N,tP,DCPOT,DGtPDv,DElH,DHDT,HTt,lMINV,
4 MMINV,Xl,AJACCB,FUN,XPOINT,AREA,PERIM,TWAll,
5 TSPEC,QSPEC,KOOE,GO,P,TO,XO,XFINAl,DElTAX,
6 PINT,NOPT,180"B,QNCHRT,QNCHTP,TCOMB,TADAB,
7 NSPRAY,ICODE,SS,NT)
GO TO 40
END
I
.....
IX>
~

-------
FORTRAN IV G LEVEL
19
ADATA
PAGE 0001
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
SUBROUTINE AOATA(hIND,NDEP,NCCMP,B,GAMMA,YO,XZO,CPCOEF,DCOF,YNOO,
1 CP,DCPDT,DELH,DHDT,RCON,HTC,XPOINT,AREA,PERIM,
2 TWAlL,TSPEC,QSPEC,KODE,GO~P,TO,XO,XFINAL,DELTAX,
3 PINT,XINJ,GINJ,TINJ,YINJ,XZINJ,YNOINJ,
4 NCPT,TX,CPY,e,FO,F,A,QNCHRT,QNCHTP,TCOMB,TeOMBI,
5 NSPRAY,ICGDE,TBI
DIMENSION B(NIND,~INDI ,GA~HA(NDEP,NINDI,YOCNINDI,XZOINOEPI
OIMENSION CPCCEF(NCOMP,101, DCOFININD,141
DIMENSION CP(~CC~PI,OCPDTINCOHPI,OELHININDI,DhDT(NINDI
COMMON IAAI ~IIAP
COMMON/PI QCON
COMMON/KDATA/IABLE(10,31,MODEL,~MAXI
DIMENSION PRI~T(81
DATA PRINTI
1 'FUEL',' GIL',' MOO','El "
2 'COAL',' DlS','T "'(jI,'DEL 'I
DIMENSIO~ XPOINT(lOOI,AREA(lOOI,PERIM(lOOI,TWALL(lOOI
DIMENSION QSPEC(lOOJ
DIMENSION TSPECUOOJ ,KGDE(NOPlI
DIMENSION HTC(3J, RCeN(lOI
DIMENSION TX(201,CPY(201 ,C(41,FO(41,F(20,41,AI4,4)
DIMENSION XINJI20J,GINJ(20J,TINJ(20J,YINJININD,201,XZINJ(NDEP,20I
DIMENSION YNCINJ(20J
DIMENSION CNCHRT(3J, TCOMBI(201
DIMENSION TITLE(2CJ,ICODE(61
DIMENSION kRIIES(4,51
COMMON/AB/R(lOI,RHONII(lO),NGROUP,NFNCTN,RHOP,AVGHW,
1 liP, WDP(101,XNDP(101
ceHHON lEE I FUEL
COMMON/CD/Y02EQ
COMMON IIJI 'iAPF
DATA WRITESI 'NOT ','SPEC','IFIE','O ','SPEC','IFIE','D ','
1 " ' FUE','l EX','PONE','NT ',' CO ','EXPO','NENT','
2 " 'ceMP','UTED',' FRO','M QR'I
XO = .0
B 11 ,2) =-0. 5
B(2,2)= 1.0
GAMMA( 1,21= 0.0
G A M MA I 2 ,2 I = -1. 0
GAMHA(3,21= 0.0
GAMMAI4,2)= 0.0
REAOI5,5012,END=100J (TITLE(I),1=1,201
5012 FORMAT (20A4)
PRINT 5013,CTITlE(IJ,I=1,20J
5013 FORMAT 11H1,TI0, 'CCMBlSTICN/POLLUTION MOOEl--- ',2044 III
READI5,1013,END=100J KODE,NSPRAY,HGOEL
1013 FORMATI16I5)
Nl = KODElll + 1
N2 = KODEI21 + 1
IF IN2.EQ.3J ~2=5
N3 = KODEI3J + 1
PRINT 3013, KODEIIJ, IWRITESIIX,NIJ,IX=I,41,
1 KeDE(2J, CWRITESIIX,N21,IX=I,41,
,
,...
Q>
VI
I
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

-------
FORTRAN IV G LEVEL
19
AOATA
PAGE 0002
0943
0~4
0045
0046
0047
00~8
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
2 ~ODEd3~0 d~RITES(IXoN310IX=10410 ~ODEI4D
3013 FORMA! dT1~0 °DE'~ 33~1°
1 I I T160 °I~PU' SU~MARVoo I T100 26(000)0 115Xo °CARD 1 00
2 o~ OPTICNSoo I 5Xo 16(O_0)oII13Xo 120 0 WAll TEMPERATURE 00
3 °PROFllE °04A40 113Xo 1200 GAS TEMPERATURE PROFilE 00 ~A~ol
4 13Xo IZ, 0 HEAT flUX P~OFilE 00 4A4,/13Xo 120 0 NOo OF secorooo
. 5. . °DARY INJECTI~NPTSooJ
C~*~**o READ THE STOICHIC~E'R!C COEFFICIENTS FOR THE FIRST ~EACYKONo
READI5010001 GA~MA«10!1081101'oGAM~Ad201DoG~MMAd301D
1000 FOR~ATI7Fl003D . .
PRINT 30000 GA~~AalolDo 8d10110 GA~MAI201Do GAMMAd301D
3000 FORMAT dl 5Xo °CARD 2 - STOiCHIOMETRIC COEFFiCIENTS (FUEL COMBUSoo
1 oTIONDo,1 5Xo 5440_0)0 II 7Xo F10.30 0 FUEL COEFFRCUENTool
2 7Xo F10.30 ° 02 COEFFICIENT 001 7Xo FI00300 CO COEFFHCXENYoo
3 I 7X, FI00300 H20 COEFFICIENToD
811011 = -811011
6d2011 = 0.0
GAMMAlloll = -GA~MAdlolD
GAM~A(401) = Co
COooooo READ INITIAL ~OlAR Gas VElOCITVolNITIAl TEMPERATURE AND
C PRESSUREo
REAOISoI0CC) G00100PoTCOM8
PRINT 30100 GCo TOo PoTCGM8
3010 FORMAT d/5Xo °CARD 3 ~ PHYSICAL CONDITIONS QF INLET GAS MHXTUREoo
1 1 5Xo ~9Io_oDo II 7Xo FI0030 0 FlO~ RATE IG-MOlES/SECDool
2 7Xo FI003,o VE~fEPATURE «~n'o 1 7~v FI00300 PRESSURE4PSIAloo
317XoFl00300 AOIA8ATIC FlA~E TEMPERATURE AT HNlET I~DoD
COooooo READ THE INITI~l GAS COMPOSiTiONo
REAOISolOOCD ~Co~IOoYNOO
PRINT 30200 (VO«!DDo ID=102Do d~ZOdJDno JO=l04DoYNOO
3020 FOR~AT «I 5~0 'CARD 4 - INLET GAS CCMPOSITUON°ol 5~0 30«0-°)011
1 7~0 F10030 0 ~OLE FRACTION OF 02001 7~0 F10030 0 MOLE FRACToo
2 °ION OF C02001 7~0 F10030 0 MOLE FRACTION Of FUElool 7Xo
3 FIOo300 ~OLE fRACT!ON OF CO Dol 7Xo Fl0030 0 MOLE FRACTIONoo
4 0 OF H20'ol 7Xo flOo30 0 MOLE FRACTION OF N2 °01 7~9 FlOo3,
5 ° ~OlE ~~ACTIDN DF ~ooD .
IF(KODEI~DolEoO) GG TO 5
KK~K = ~OOE«41
00 6 I~ = 10~KK~
READIS,lOCOD Gl~J(IK)oIINJIIK)oXINJtIKlorO~MBIII~)
PRINT 30300 GINJ«!~lo TINJII~lo XINJ«IKDoTCOM8XdIKD
3030 FORMAT (/SXo °CARO 5 - CONDITION AND lOCATION OF SECONDARV INJEC'o
lOTION GAso,1 5Xo 58(0_OD,11 7~, F10030 0 FLOW RATE dG-MOlESoo
2 '/SEClo,1 7Xo FIOo30 ' TEMPERATUREIKD',I l~v FlOo30 0 INJECoo
3 °TION POiNT dfTo)Oo
411X,FIOo300 AOIA8ATIC FlA~E TEMPERATURE AT INJECTION POINT CKDoD
REAOIS,lOOO) IIYINJ4KR,IK»,KR=I,NINDI,I~ZINJ(KR,IK8,KR=l,NDEPD,
1 YNOINJC!KDI
PRINT 3040, eVINJdKR,IK)o KR=I,NINOD, C~IINJIKR,[KD, KR=l,NDEP)o
1 YNOINJI4KI .
3040 FORMAT 1/5X, 'CARD 6 - INJECTION GAS COMPOSITION1,/5X, 34(1-1)011
1 IX, FlO.3, . MOLE FRACTION OF 02',1 7X, FlO.3, ' MOLE FRACT',
2 cION OF COZ',I IX, F10.3, 0 MOLE FRACTION OF FUEl'vl 7X,
I
~
~
~

-------
FORTRAN IV G lEVEL
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
009Q
0091
0092
0093
0094
0095
0096

0097
0098
19
ADAT A
PAGE 0003
3 FI0.3,' "OlE fRACTHJN OF CO',I 7X, FlO.3, ' MOLE FRACTION',
4 ' OF H20',I 7X, flO.3, , MOLE fRACTION Of NZ',I 7X, FlO.3,
S ' ~OlE fRACTICN Cf NO'.
6 CONTINUE
C..*.** READ IN THE C(~STA~TS IN THE FIRST RATE EXPRESSION. THE
5 READ(S,1002. RCCN
1002 FORMAT(ElC.2,4F10.3.
PRINT 3002
3002 FORMAT (/SX, 'CARD 1 - KINETIC RATE CONSTANTS FOR FUEL COM8USTIO',
1 'N',/5X, S1('-'),I.
PRINT 30S0, (fCCCNUJ., IJ=l,4., (WRITES(IX,3., IX=l,,+t, RCON(S.
3050 FORMAT ( 7X, E10.2, , FREQUENCY FACTOR',I 7X, FI0.3, , ACTIVATIO',
I 'N ENERGY',I 1X, fl0.3,' OZ EXPONENT',I 7X, FIO.3, 4A4,1 7X,
2 FlO.3,' H20 EXPONENP)
PRINT 400Z
4002 FORMAT (/SX, 'CARD a - KINETIC RATE CONSTANTS FOR CO COMBUSTION',
1 15X, 49C'-').1)
PRINT 30S0, (PCCNflJ., IJ=6,9., (WRITES(IX,4., IX=l,4., RCONflO.
IFCKOOE(I. .LE. O. GO TO 7
C..**.* READ IN THE HEAT TRA~SfER COEFFICIENTS.
REAO(S,100C) HTC
IF (KODE(I) .EQ. 1) PRINT 3060, (HTCCIL., Il=I,3.
3060 FORMAT ClSX. 'CARD 9 - HEAT TRANSFER CONSTANTS',/5X. 32('-'.,/I7X,
1 FlO.3,' CChSJANT COEFFICIENT',I 7X, FlO.3, , CONVECTION "
2 'COEFFICIENT',I 7X, F10.3, , RADIATION COEFFICIENT')
7 IF(KODECZ..~E.2' GO TC 8
READ 1000, QNCHRT, QhCHTP
PRINT 4000,Q~CHRT
4000 FORMAT (/SX,'CARO 9.5 - QUENCH RATE CONSTANTS',/5X,3Z('-' ),117X,
1 FI0.3,' FIRST COEFFICIENT' ,/7X,FIO.3,' SECOND COEFFICIENT',I
2 7X,FlO.3,' THIRD COEFFICIENT')
IF(QNCHTP.EQ.O) PRINT 4001
4001 FORMAT(/7X,'QUADRATIC RATE TO BE USED'.
IF(QNCHTP.EQ.U PRINT 4003
4003 FORMATC/7X,'EXPCNENTIAl RATE TO BE USED'.
8 CONTINUE
KK = 0
PRINT 1014
1014 FORMAT C/SX, 'CARD 10 - COM8USTOR PROFIlES',/SX, 28(1-"',1/
1 10X,'DISTANCE CROSS-SECTIONAL AREA PERIMETER WALL TE
lMPERATURE GAS TEMPERATURE HEAT FLUX',/11X,'(FEET.',12X,
2' C F T2. ' ,12 X, 'c F EE n . ,lU . f( K. . , l5X " C K. ' ,9X, , CKCALI H2-SEC '-'1
3 11 X, 6 C .-, . ,12 X, 5 C '-') , 12X ,6 C .-. . , llX ,3 C ,-, ., lSX, 3 C ' -, . ,9X, 14 C ,- , .
51 I)
20 KK = KK+l
READ(5,1012)XPOINTCKK) ,AREACKK),PERIMCKK),fWALL(KK),TSPECCKK),
lQSPEC( KK', KCHECK
1012 FORMATC6FIC.3,19X,lll
PRINT 3012, XPOINTCKKI, AREACKKI, PERIMCKK), TWALLCKKt, TSPECCKKI,
1 Q SPEC C KK t
3012 FORMAT(aX,F10.3,ax,FI0.3,8X,FI0.3,SX,FI0.3,8X,F10.3,9X,F10.3)
IFCKCHECK.LE.Ot GO TO 20
C.....* READ IN REACTOR LE~GTH AND PRINT INTERVAL.
I-'
Q)
.....

-------
19
PAGE 0004
FORTRAN IV G lEVEL
ADA! A
0099
0100
0101
0102

0103
0104
0105
0106
0107
0!08
0109
OUO
0J!.11
0112
0113
0114
0115
0116
0111
0118
0119
0120
0121
0122
0123
0124
0125
0126
0121
0128
READf5,1000J XFINAl,PINT,DElTAX
PRINT 3010, XFlhAl, PINT,DElTAX
3070 FOR~AT f/5X, 'CARD 11 - COM8USTOR LENGT~ AND PRINOUT INTERVAL',/
1 5X. 41(G-'t,// 7X, F10.3, ' REACTOR LENGTH fFEET)',/ 1X,
2 FIC.3, ' PRINTCUT INTERVAL (FEET",
3 /7X,F10.3,'INTEGRATION INTERVAL (FEET") .
TREF = 298.
READ THE HEATS Of REACTION AT THE REFERENCE TEMPERATURE.
READ(5,1000' (DCOFfX~oll.,IR = l,NINDt
PRINT 30800 (DCCf(KR,ll» 0 IR= l,NINDD
3080 fOR~AT (/5X, °C~RD 12 - HEAT OF REACTION AT 298~9,/ sn, 34(0-'D,//
1 7Xo F10.3, ° HEAT OF REACrXON FOR ~UEl CO~BUSTION0o/ 7K,
2 . F 10.3, ° HEAT OIF ~EACnON fOR CO COMBUST1!ON'»
C READ IN THE HE~T CAPACI!~DArA ~OR FUEL AND CURVE FIT IYo
C ~RI'Ef6,IOI0»
C1010 FORMAYIIH100HEAT C~PACIYY DATA FOR FUEL IS FITTED BY THE FO
C ILLO~XNG FUNCTIO~,OlloO FOR T oGEo 298K AND oLEo 1200KO,/,O CP= AI
C 2+ A20fT/IOOOoD ~ A30aT/IOOO.D002 ~ A40IT/IOOOoDO$3 ~ ASOfT/1000oDO
C 3*4°,1/00 FOR T oGTo J!.200KO,/00 CP= ~6 0 A7/fT/(0000D 0 A8/fIT/IODO
C 400002» 0 A~/qfY/J!.OOOoJ003b ~ AIO/qfT/IDOOo'~04Doo////D
KASE = 0
NCON :: 4
READ(502000DNPYS,TX,C@1
PRINT 30QO, NPTSo T!v CP!
3090 ~ORMAT a'5~, °C~RD 1.3 - HEAT CAPACITY DATA FOR ~UEL «298K TO 1200~
iDeo / snv 53«0_oDo 1/ 13~01200 NOo Of HEAT CAPACITY DATA ° °
2 0 PCXNVS fOR fUEL (298~ 10 1200~Do, /1 5~9 °CARD 14 - HEov
3 OAT CAPACXTY DATA POINTS ~OR FUEL «298K TO 1200KOoo 1 5~o
4 ~0(9_0Do"7~0 0TEMPERATURE (K)oo ~~9 °HEAT CAPACITV OF FUo
S oOED.. (CIH.lG-~(jlESo ItOOv/7no 15(O_oD, 4~0 37(0_0901/iOX,
6 F10030 20~, fl003D
NPYS.:: NPTS - 1
2000 FORMAY«I4o/,4X,2F10030
CALL CPf!TdNPTSoNtON011,CPloTXoCPYoCOoC,~00FoAoKASEO
C WRITE«6020C2DCO,C
C2002 FORMA1dlH ,OCCEff!CKENTS IN THE HEAT CAPACITY EQUATION ~OR 1 LoEo
C 11200K AREoov/I,8~00Aloo14XooA2°0 14~voA38,14X,oA48,14XoQA590/15E16
C 2.49/1//11/1/»
CPCOEFf30U = CO
DO 18 KC :: 1. 04
KCC = KC + 1.
18 CPCOEFC3,I 12001<1',
C**.a.*
I
....
OD
OD
I

-------
FORTRAN IV G LEVEL
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
C142
0143
0144
0145
0146
0141
0148
0149
0150
0151
0152
0153
0154
0155
0156
0151
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0110
19
ADAr A
PAGE 0005
1 15X, 48('-'),1113X, 12, ' NO. OF HEAT CAPACITY DATA "
2 'PCIN1S FOR FUEL (T > 1200K)',11 5X, 'CARD 16 - HEAT CAP',
3 'ACI1~ DATA PCINTS FOR FUEL (T > 1200K)',/5X,54('-'I,111X,
4 'TEMPEfiATURE (KI', 4X, 'HEAT CAPACITY OF FUEL (CAL/G-MOLE',
5 'S,KI ',/7X, 15(1-'1, 4X, 31('-' 1,/)
CALL CPFIT(NPTS,~CON,TI,CPI,TX,CPy,CO,C,FO,F,A,KASEI
CPCOEF(3,61 = CO
00 19 KC = 1,4
KCC = KC + 6
19 CPCOEF (3,KCU = CC KCI
C WRITE(6,10C4)CO,C
CI004 FORMAT(IH ,'COEFFICIENTS IN THE HEAT CAPACITY EQUATION FOR T G.E.
C 11200K ARE,',11,8X,'A6',14X,'A1', 14X,'A8',14X,'A9',14X,'AI0',/15El
C 26.411
C**** CALCULATE THE COEFFICIENTS IN THE DELTA CP EXPRESSION.
DO 10 IREAT = 1,NINO
DO 10 IC = 1,10
DCOF(IREAT,IC) = o.
DO 9 I R = 1, NI NO
9 DCOFIIREAT,IC) = DCGFCIREAT,IC) + B(IR,IREATI*CPCOEFIIR,IC)
DO 10 IR=l,NDEP
NC = I R + ~ I ~O
10 DCOFIIREAT,IC) = DCOFIIREAT,IC) + GAHMAIIR,IREAT)*CPCOEFINC,IC)
C**** CALCULATE THE ADDITIONAL CCNSTANTS NEEDEO
TR = TREF/I0CO.
Tl = 1.
00 11 IR = 1,NINO
11 OCOFIIR,13) = O.
DO 12 IC =1,5
AC = I C
11 = 11*TR
T2= Tl/AC
DO 12 IR =1,~I~D
12 OCOFIIR,13) = DCOFIIR,13) + OCOFIIR,IC) *T2
00 13 IR=I,NIND
13 OCOFIIR,14) = o.
00 14 IR = 1,~I~D
14 DCOFIIR,14) = OCOFCIR,6)*1.2
T2 = ALOGll.21
00 15 IR = I,NI~D
15 DCOFIIR,14) = DCOFCIR,14) + OCOFIIR,1)*T2
T2 = 1.
Tl = 1.0
DO 16 IC = 8,10
AC = IC - 7
Tl= Tl/l.2
T2= Tl/AC
DO 16 IR = 1,NIND
16 OCOF(IR,14) = OCGF(IR,14) - OCOF(IR,IC)*T2
11 '" 1.2
T2 = 11*1.2
T3 = T2*1.2
T4 = n*1.2
I
I-'
ex>
'"

-------
FORTRAN IV G LEVEL
0171
0172
0173
0174
0175
0176
0177
C
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
19
AD/.ITA
PAGE 0006
T5 = T4$1.2
DO 17 [R = 1,NiND
11 DCOFCIR,lZI = DCOF(!~,ll) ~ CDeOfCIR,lt*Tl ~ DeOFtIR,zt*Y21
12. ~ DCOFCIR,;t*T3/3. ~ DCOFCIR,4'*Y4/4. ~ OCOFtIR,5.*T5/S. -
2 DCOFIIR,13U
READ 90,Y02EQ,QCDN
90 FORMATtSEIC.41
PRINT <;4,QCOI\
94 FORMATqII12~,oTHE QUENCH RATE IS iMPOSED AT o,F4.2,o OF THE ADiABA
ITle FLAME lE~FEPA1UREolllb
aCON-QUENCH CCNSVANT
IFeV02EQ.LE.0.tGO TO 93
PRINT 91,V02EQ .
91 FORMATCIIII 12X,oVHE EGUILIBRIUM ~OLE fRACTiON OF 02 is ASSUMED TO
1 BE-ooEI0.4.
93 IFCNSPRAV.EQ.OD RETURN
READ 25,CICODEaI30I=10~C~Pt,NFNCTN,NGROUP,RHOP,AVGMW,FUEL,T8,
1 VAPF,HVAP .
25 FOR~ATC612,2I304flO.l,2ElO.l)
N=NSPRAY
IF CNSPRAV .EO. 2D Ma5
NiX = N ... 3
PRINT 6000,CPRII\T(IXD, I~ = N, NIX), NGROUP,AVGMW,RHOP,TB,~APf,
1 . HVAP
6000 FORMAT C/SX, 'CARD 18 - 0, 4A4,.1 5Xo 25C8-'3,
1 II 12X, 130 ° PARTICLE SiZE DISTRIBUTION°,
2 I 5X, FIO.lo ° MOLECULAR WEiGHT OF FUEL IN VAPOR STATE',
3 1 5X, FIO.lo 8 DENSITV OF FUEL Oil DROPLET So ,
4 I SX, FIO.I, 0 BOILING POINT OF FUEL OIL (OKlO,
5 I 5X, ElO.I, e VAPORIZATION CONSTANT CfT**2/SECDo,
6 I 5X, EIO.I, e HEAT OF VAPORIZATION (CAL/GM-MOlEt'.
DO 22 l-l,NGPCUP
READ 2I,RCI),~DP(I)
21 FORMATC2EI0.l)
22 CONTINUE.
RETURN
100 STOP
END
I
....
\0
o
I

-------
19
PAGE 0001
0001
FORTRAN IV G LEVEL
INTGRT
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
SUBROUTINE INTG~TfNINO,NDEP,NDI~,NCCMP,CABINV,YO,YOLD,y,GAMBIV,B,
1 GA~MA,YO,XlOLD,YNOO,YNC,G,T,TB,
2 XlO,DELALP,CPCOEF,DCOF,DGIDY,DXlDY,R,DRDY,DROXl,
3 ORDT,RCCN,CP,DCPDT,DGCPDY,DELH,DHDT,HTC,LMINV,
4 MMINV,Xl,AJACOB,FUN,XPOINT,AREA,PERIM,TWALL, .
5 TSPEC,QSPEC,KODE,GO,P,TO,XO,XFINAL,DELTAX,
6 PINT,NOPT,IBQMB,CNCHRT,QNCHTP,TCOMB,TACAB,
7 ~SPRAy,ICODE,SS,NTt
DIMENSION DABINVfNINOt,VOfNINDt,YfNIND),YOLOfNINDt,YOfNIND)
DIMENSION GA~BIVfNDEP,NIND),XIOLDfNDEP)
DIMENSION BfNIND,NINDt, XlOfNCEPt,DELALPfNIND),CPCOEFfNCOMP,10t
DIMENSION DCOFfNIND,14)
DIMENSION DGIDYfNINDt,OXIDYfNDEP,NINDt,RfNINDt,DRDYfNIND,NtNDt
DIMENSION DRDXICNIND,NDEPI,DRDTfNINDt,CPfNCOMPI,DCPDTfNCOMPI
DIMENSION DGCPDYfNINOI ,CELHfNtNDI,D~DTfNINO),LMINVINDIM)
DIMENSION ~MINVfNDIMJ
DIMENSION XIINDEPI,AJACOBfNDIM,NDIMt,FUNINDIMI
DIMENSION XPOINTII001,AREAf100t,PERIMIIOOI,TWALLf1001
DIMENSION TSPECCI001,KODECNOPTI .
DIMENSION CSPECfl001
DIMENSION 'NCHRTf31
DIMENSION GA~MAfNDEP,NlhDI
DIMENSION HTC(3J, RCCNflOJ
DIMENSION XMOLEf 61,ICODEf 6J,XI214J,Y212J,CPAVGI6J
DIMENSION YTEMPCZI, XlTEMPf41 .
DIMENSION YFUELf2J,XfUELf41
COMMON /EE / H'El
COMMON/PI QCCN
J
.....
IQ
.....
,.
C
C
C.........................................."...................
C. .
C. THIS SUBROUTINE IS THE EXECUTIVE PROGRAM FOR THE FIRST.
C. ORDER IMPLICIT INTEGRATION ROUTINE. IT IS MAINLY CON- .
C. CERNED ~ITH SELECTING THE INITIAL CONDITIONS FOR THE.
C. ITERATIVE SCHEME AND CHOOSING THE PROPER STEP SllE. .
C. .
C[[[
C .
C
KPRINT=O
YNOEQ = O.
C
C
C
CALL OtTONE TO PRINT HEADINGS
IFfNSPRAY.NE.OIGO TO 138
CALL OUTQNECNEND,NDEP,X,G,V,Xl,YNO,T,l,YNOEQI

-------
FORTRAN IV G LEVEL
0032
0033
0034
0035
0036
0037 
0038 
0039 
0040 
0041 
 t
 t
 t
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
. 0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
 t
 t
 C
19
!NTGRT
PAGE 0002
C
COOOOOWHEN FUEL IS LIQUID OR SOLID ~E ~UST
t THE AMOUNT EV~PGRATED OR GASIFIED.
IFCNSPRAV.EQ.O&GO TO 140
IFCSS.NE.Oo)GO TO 140
A=AREA(1)
COMPUTE
C
C**o******SUBROUTINE SPRAY C(~PUTES THE AMOUNT Of LIQUID
C OR SOLID FUEL VAPORIZED OR GASIFIED.
C
CALL SPRAV(AoSTEPoRATESoNToNSPRAVoTB,TOoPoGOD
IFCNSPRAV.EQ.OD~SPRA~=3
C
COOOOOQOQOPROCEED TC CALCULATE A NE~ CO~POSITION AND
C TEMPERATURE B~ ~I~ING THE GAS STREAM ~KTH
C THE EVAPORATED fUElo-~THESE CCMPU1ATIONS
C ARE PERfORMED BV S~BROUTINE UPCATE.
C
VNOO=O.
VN02=O'.
TI=TO
CALL UPDATEqGOoVOo~ZOoVNOOvTOoR~TESoTBoG2oV2o~Z2vVN02vT2vNKNDo
1 NDEPvNCO~PoCPAVGoCPCOEF9IBO~BoSSoTID
CALL THERMO(T2oNI~Do~CC~PvCPCOEFoDCOFoCPoDCPDTvDELHoDHDTD
CALCULATE ADIABATIC FLA~E TE~PERATURE fOR ALL THE FUEL

G3=GO <> FUEL
NTOTAl=NI NDj>NDEP
DO 49 l=lvNTOTAl,
IF ClCODEC U .EQo U GO TO 47
. IF CI .GT. NINO) GO TO 46
YTEMPCID=GooVO(ID/G3
.GO TO 49
46 II = l-~lND .
XlTEMPCII)=GO$XlOCKIOIG3
.GO TO 49
47 IF (I jGT. NtND) GO Td 48
YTEMPC I )=FUEL/G3
GO TO 49
48 I I = i-MND'
XZTEMPIII) = FUEl/G3
49 CONTINUE .
CALL TADB(NI~C,NDEP,NCC"P,YTE~P,XZTEMP,y,XZ,OELH,DeLALP~
1 B,GAM~A,CFCQEF,CPAVG~G3,G,TZ,TACAB,HEAT)
PRINT 499,TADAB .. ' , . .
499 FO.RMATC 1H1 ,58)(, 'COMBUSH CN/POLUTION MODEL' ,1I64X, 'OUTPUT',
1 ' SUMMARY';1151X,19C'.'),IIIIT20,'ADIABATIC FLAME',.
2 'TEMPERATURE OF VAPORIZED lIQUID/SOLID FUEL = ',F10.2,' K',
3 /)
I
I-'
\D
'"
CALL OUTCNE TO PRI~T HEADINGS

-------
FORTRAN IV G LEVEL

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
19
IN1GRT
PAGE 000.
TO=12
CAll OUTCNECNINO,NOEP,X,G,V,Xl,YNO,T,1,VNOEQ)
CAll OUTCNEeNINO,NOEP,X,GO,VO,XlO,VNOO,TO,2,VNOEQ,
C
C
C---------RE-INITIAlIlE
C
C
00 118 1=1,NIP\O
" 118 voe I )=Y2C I'
DO 119 I=1,NOEP
119 XlOCI'=Xl2CI.
YNOO=VN02
TO=12
GO=G2
140 G=GO
T=TO
VNO=VNOO
YNOEQ=O.
DO 1 I I = 1,NIP\O
YOCII' = YOCII.
VOlOCII'= voeII.
I VCII. = voun
DO 2 II = 1,~OEP
XlOlOCII. = ~loell'
2 XleII) = XlOCII,
IFCNSPRAV.NE.O.GO TO 142
CAll OUTONEeP\IND,NDEP,X,G,V,Xl,VNO,T,2,VNOEQ,
142 KOUNT=O
XOlO= XO
TOlO= TO
GOlD= GO
VNOlO= VNOO
KOOK=O
IFCNSPRAV.~E,C'GO TO 311
f-'
\D
W
C
C
C
C
C
C....
C
C
C
C
C

C
C
C
C
IF SPRAY IS lIQ~10 OR SOLID GO TO 311
TO CHECK FOR FUEL AVAllABllITV.
CHECK FOR OXVGEh A~AllABllITV
ASSUME,AS AN INITIAL GUESS IN THE NEWTON-RAPHSON,
THAT 50 PERCENT Of OXYGEN REACTS WITH THE fUEL.
ye 1) . . 5.YO C 1)
CALCULATE THE NU~BER OF MOLES OF 02 CONSUMED,V1R1,
IF All THE fUEL BURNS TO CO . "
C
VIR1= eBC1,1./GAMMAC1,1...Xloe1.
".

-------
FORTRAN IV G lEVEL

C
C
C
0093
0094
0095
0096
0091
0098
0099
0100
0101
010Z
0103
C
C
C
C
C
C
C
C
C
C
C
C
C
C
- C

C
C
C
C
C.
C
c
C
C
C
C

C
C
C
C
C
C
c
C
C
C
C
c
C
19
!NIGRT

CHECK IF ENOUGH GX~GEN IS AV~llABLE TO BURN
All THE FUEL
PAGE 0004
IFI,OIII.GT.YIRI. GO TO 300
V2ADD=-.000Ol
GO 10 310
IF THERE 15 ENOijGH OXYGEN TO AT LEAST BURN
FUEL TO CO, CHECK HO~ '-UCH OF THE CO CAN BE
BURNED TO C02 ~ITH REMAINiNG OXYGEN.

XlZRl=NOMBER CF .MGLES CF CO PRODUCED PER MOLE OF FEED
XlOIZ)=MOLE F'ACTICN OF .CO
GAMMAI2,1)=STCCHICMETRIC COEFFICIENT OF CO IN REACTION I.
GAHMAIl,I)=5TCCHICMETRIC COEFFICIENT OF FUEL IN REACTION I.
~lOll)=MOLE FRACTION OF GASEOUS FUEL IN THE FEED
Bll,Z)=STOCHICMETRIC COEFFICIENT OF OXYGEN IN REACTION 2.
REACTION 1= FUEL. OXYGEN= CO + H20
REACTION 2= CC. OXYGEN= COZ

300 XZ2Rl=XZOIZJ-IGAMMACZ,lJ/GAHMAII,IJI*XlOII)
Xl2Rl=NUMBER CF MOLES CO AVAILABLE FROM REACTION 1
PLUS THAT INITIAllY PRESENT IN THE INLET GAS.

YIR2=HOlES .OF 02 CCNSU'-ED BY OXIDATION OF CO.
YIR2=IBC1,Z)/GAMMACZ,Z'.*XlZRl

IF THE OXYGEN A~AIlABlE IS NOT SUFFICIENT TO
BURN ALL THE CO TO CO2 ,GO TO 320 AND COMPUTE
HOW MUCH C02 CA~ BE FRCCUCED WITH 02 THAT'S LEFT.
,...
\0
~
I
IFIYOIll.lT.~YIRl+YlR2JJ GO TO 320

Y2ADD=IGAM'-AI2,lJ/GAMMA(l,lJI*XlOlll
YZADD=MOlES OF CO THAT CAN BE OXIDIZED TO COZ
IF THERE IS ENOUGH OXYGEN TO BURN ALL THE
FUEL TO C02.
GO TO 310
320 Y2AQD=IB~2,ZI/BCl,2'J*CYO(11-YIRll
THE ABCVE CAlCUlATIGN REFLECTS THAT
ONLY A PORTI tN OF THE CO CAN BE BURNED
TO C02 FOR lACK OF OXYGEN.

310 YIZJ=YOIZI-C.49990*YZAOO
GO TO 325

-------
FORTRAN IV G LEVEL
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0111
0118
0119
0120
0121
0122
0123
0124
0125
0126
0121
0128
0129
0130
0131
19
INTGRT
PAGE 0005
C....
C
C
C
C
C
CHECK FOR GAS-FUEL AVAILABILITY IF FUEL IS
INJECTED IN THE LIQUID OR SOLID STATE.
COMPUTE T~E A~CU~T OF CC THAT CAN BE PRODUCED.
WITH AVAILABLE GASEOUS FUEL.
C
C
C
C
C
C

C
C
C
C
311 Y1Rl=Bll,II/GAMMAI1.1J*XlOlll

Y1Rl=AMGUNT OF OXYGE~ CONSUMED BY OXIDATION
OF AVAILABLE FUEL TO CO.
IF THERE IS ENOUGH OXYGEN TO BURN TO CO. PROCEED
TO CALCULATE HO~ MUCH CO CAN BE BURNED TO C02
IFIYOIIJ.GT.Y1RIJGO TO 312
IF THERE IS NOT E~OUGH OXYGEN TO PRODUCE C02
I WANT AT LEAST TO PRODUCE A TINY FRACTION OF IT.
Y2ADD=-0. OCOO 1
GO TO 324
C
C
C
C
C
COMPUTE THE AMGU~T OF CO PRODUCED IF
REACTION 1 GOES TO COMPLETION AND ADD
TO CO ENTERING WITH THE FUEL.

312 Xl2Rl=XlOI2J- GAMMAI2.1J/GAM~AI1.1f.XlOI11
C
C
C
Y1R2=AMOUNT OF CXYGEN CC~SUMED ey REACTION 2
,...
\0
In
YIR2=IBll,2)/GA~MAIZ.Z'J*XI2R1
IFIYOII).LT.IY1Rl+Y1RZJIGO TO 313
Y2ADO=GAMHAI2,lJ/GAMMAll,1).XlOI1)
GO TO 324
313 Y2ADD=IBI2.Z)/BIl,2)J*IYOI11-YlRl)
324 Y(2)=YOI2)-O.49990*Y2ADD
YI1J=YOI11-0.5*IY1Rl+Y1R2.
YI 1I=YOI 11 *C. 5
325 KOOK=O
T=TAOAB*0.93
IFINSPRAY.GT.0)T=2000.
TTO = T
51 IF IDELTAX.EQ.O.O' DELTAX = IXFINAL-XO)/128.
IFIPINT.LT.DElTAX) DELTAX=PINT
XPRINT = XPRI~T + PINT
IFIKODEI2J.NE.2.0R.TCCMB.NE.0.) GO TO 330
KODE(1) = 2
KODEI2J=0
DELTX = DELTAX
XPRINT =XO+DElTAX
DO 65 11= 1,3
65 HTCI [I) = 0.0
GO TO 330
C

-------
FORTRAN IV G LEVEL
19
INtGRT
PAGE 0006
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
.0144
0145
0146.
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160

0161
0162
0163
0164
0165
0166
0167
0168
C
C~~*~*** CALCULATE
C
C
THE ~EXT PRINT POSITICNo
9 IF((XFINAL-XPRINTD oGio IPINT ~DELTAXID GO. TO 3
XPRINT = XFINAl .
KSTOP = 1
GO TO 4
3 XPRINT = XPftlNT ~ @INT
C
C
C
C
C~$**
C
C
C
GET REAOV 10 TA~E ANtT~ER INTEGRATION STEP
4 IFINSPRAVoEQoODGO TO 44
CAll SPRAVIAvSTEPvRATESvNTvNSPRAVvT8,T,P,GJ
CALL UPDATECG,VoXZoVNCoToRATESvT8vG2,V2,Xl2vVN02,T2oNiNDvNDEPv
1 NCO~PvCPAVGvCPCOEf,18n~8vSSvTI)
C
C
DO 41 1=lvNINO
VOCI)=V21IJ
41 VOl I )=V2fI b
. DO 42 1=I,NDEP
>tzor I&=XI21 I»
42 Xl( I )=Xl21 I»
YNOO=YN02
VNO=YIII02
TO=T2
T=T2
G=G2
GO=G2 .
44 DO 5 11=1,NIND
VOlDIll1 = VOIIl)
5 V(JIJ = YOUU
DO 22 II = 1,NDEP
"22 XZOlDIII) = XIIIID
XOlO = X
TOLD = T
GOLD = G
VNOLD = VNO
C****.** CHOOSE THE NEXT INTEGRATION STEP LENGTH.
330 IFIIXPRINT-XOlDa.GEo IZ.*OElTAXtl GO TO 6
IF(IXPRINT-XCLOa.lEoll.0001*DElTAX I) GO TO 7
STEP = .5*IXPRINT - XClD)
GO TO 8
6 STEP = DEL TAX
GO TO 8
7 STEP = XPRI~T - XOlD
KPRtNT = 1
...
\D
0\

-------
19
PAGE 0007
FORTRAN IV G LEVEL
0169
0170
0171
0172
0173
0174
0175
0176
0117
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202 .
0203
0204
0205
0206
0207
0208
0209
0210
0211
IN1GIH
B X = XOLO + STEP
KPOINT=l
GO TO 21
20 KPOINT = KFOI~1 + 1
KO = KPOIN1-1
21 IF( X.GT.XFCIt\T(KFCIHII GO TO 20
THTA=( X - XPCINT(KOII/(XPOINT(KPOINTI - XPOINT(KOII
A = AREA(K()+ THTA*(AREAIKPOINT) - AREAIKO»
S = PERIMIKO)+ 1HTA.(PERIM(KPOINT) -PERIM(KO)I
IF(KOOE(ll .LE. 01 GO TO 60
TW = ThALL(KOI + THTA*(TWAlL(KPOINTI-TWALL(KO)I
GO 10 62
60 IF(KODE(Z) .LE. 01 GO TO 61
IF(KODE(21.EQ.2. GO 10 63
TS = TSPEC(KCI + 1HTA*(1SPEC(KPOIN11 - TSPEC(KOII
GO TO 62
63 CALL QUENCH(TCO~B,X,XOlD,GGLO,P,A,QNCHRT,QNCHTP,TSI
TCO"B = TS
GO TO 62
61 QTRAN = OSPEC(KQI . THTA*(QSPEC(KPOINTI - QSPEC(KOII
62 CONTINUE
C.*.**** CALL 'SCLVE' THE SUBROUTINE WHICH SOLVES ,VIA. A NEWTON -
C RAPHSON METHOO- THE SET OF NONLINEAR ALGEBRAIC EQUATIONS
C RESULTING FROM THE fiRST ORDER IMPLICIT FINITE DIFFERENCE
C SCHEME USED 10 INTEGRATE THE DIffERENTIAL EQUATIONS
CALL S(LVE(~IND,NDEP,NOIM,NCCMP,DABINV,YO,YOLD,y,GAMBIV,B,
1 YC,TTC,GAM~A,X20LC,
2 XZO,DELAlP~CPCOEF,DCOF,DGICy,OXZOy,R,OROy,OROXZ,
3 ORDT,RCC~,CP,OCPOT,OGCPDy,D~"t'!OHDT,HTC,LMINV,
4 MMINV,XZ,AJACOB,FUN,KODE,GO,G.P,T,TOLO,TW,TS,
5 OTRAN,A,S,STEP,ACCUR,Y1MIN,HAXITR,KCESS,NOPT,
6 1BO~B,NSPRAY)
IF(IBOMB.NE.O) RETURN
IF(KCESS .LT. O. GO TO III
CALL POLUT(P,T,GGlD,G,YhCLD,STEP,A,XZ(4I,Y(11,YNO,YNOEQ,SSI
IF(NSPRAY.EQ.31~SPRAY=O
SS=SS+STEP
100 IF(KPRINT .GT. O. GO 10 50
IF(KODE(11.NE.2' GO TO 4
IF(T.LT.(OCON*TAOABI.AhO.ABS(T-TOlDI.GT.Ol)GO TO 4
XPRINT=X
GO TO 50
50 CALL OUTONE(NIND,NDEP,X,G,Y,XZ,YNO,T,2,YNOEQ)
IF(X.GE.XfINAl)REIURN
IF(KSTOP .GT. 0) GO 10 500
KPRINT = 0
IF f KODE(1).t\E.2) GO 10 9
IF(T.lT.(QCON*TACA8).At\D.ABSfT-TOlD).GT.01)GO TO 9
KODE(l) = 0
KODEI2. = 2
Del TAX = Del TX
TCOMB = 1
GO TO 9
I
I-'
-c
"

-------
FORTRAN IV G LEVEL
19
IN TG R T
PAGE 0008
0212
0213
111 ~RITE(601001)
1001 FORMAT(lHlo0THE NEbTC~-RAPHSON ITERATION 1~ SOLVE HAS FAILED TO
1CONVERGEo CURRENT VALUES OF INTEREST ARE AS FOLLOWSoO)
CAll OUICNE(~IND9NDEPoXoGoVoXZ9ANCX~To2oVNOEQ)
I BOMB= 1
500 RE TURN
1010 CONTINUE
1011 CONTINUE
IBOMB=1
RETURN
END
~~14
0215
0216
0217
0218
0219
0220
0221
":t;
,.. t.
"
'.<' ~
.', .'
I
.....
'"
00
,

-------
lq
t>ftGE nooi
G0J1
FCRTRAN IV G LEVEL
,IACOB
00')2
00::>3
00:)4
%J5
00 )6
ln07
0008
0009
JDI0
0011
0012
0013
0014
C015
0016
0017
0018
0019
002':;
0021
0022
0023
0024
,)"125
0026
0027
0020
0029
0030
JAC08C~IND,~DEP,NDIM,NCOMP,OAAINV,YO,Y,GA~BIV,B,XlO,
YC,TTC,GAM~A,XlOLD,STEP,
DELALP,CPCOEF,OCOF, OGIDY,OXlOY,R,DRDY,DRDXl,
DHDT,RCCN,CP,OCPDT,CGCPDy,OELH,D~DT,HTC,Xl,
AJACOe,FUN,KCDE,GO,P,T,TW,TS,OTRAN,A,S,G,NOPT,
:;UBROUTINE
1
2
3
4
5 I B C MB I
DIMENSION DABINI/(NINDI ,fO(NINDI.YCNINDI.GAM!!IVCNOEP.NINOI
DIMENSION BC~IND.NINDI, XlOCNDEP),DELALPCNIND),CPCOEF(NCOMP.I01
DIMENSICN DCOFCNIND,141,YOCNINDI,GA~MA(NDEP,NINDI,XlOLC(NDEPI
DIMENSION DGJDV(NINDI,CXlOV(NCEP,NINDI,R(NIND),DROY(NIND,NINDI
DIMENSION OROXl(NI"D,NDEP) ,DROTlNINDI,CP(NCOMP),DCPDTlNCOMPI
OIMENSICN OGCFDYCNINO) ,DELH(NINDI ,D!-DTININCI
DIMENSICN XlINDEPI,AJACOBINDIM,NOI"I,FUNCNDIMI
OIMENSIC~ KODEC"OPT)
DIMENSION HTC(3). RCCNIIOI
MAXT[M = lca
MA X = 0
28 MAX = MAX + 1
IF!MAX .GT. MAXTI") GC TO 30
c
C ***
C
C
CALCULATE THE TOTAL MOLAR FLOW RATE OF GAS,G,AND THE DERIVATIVE
~.R.T. THE INDEPENDE"T C(MPOSITION VARIA!!LES.
ANUM = 1.
DENCM=I.
00 1 KK =1,NI~D
ANUM= ANUM - [ABI"I/(KKI*YO(KKI
1 DENOM = OE"O" - DA8I""(KKI*V(KK)
G = GO*ANU"/DE"OM
......
'"
'"
c
c
c**~***** CALCULATE THE P~RTIAL
C PENDENT CO~PC"ENTS Y(I).
C
Of 1./G W.R.T. THE INDE-
THIS IS STORED IN DGIDV.
c
DO 2 KK = 1."IND
2 DGIDY(KKI = - DABINV(K~I/(GO*ANUM)
c
c***
c
c
CALCULATE THE DEPENOE"r C(MPOSITIONS AND T~EIR DERIVATIIiES ~.R.T.
THE INDEPENDE"T COMPCSITICNS.
GOB YG =
00 4 KK
11 = O.
T2 = o.
GO/G
= 1.NDEF
r
c******** CALCULATE THE CO~CENTRATICNS OF THE CEPENDENT COMPONENTS
.-
DO 3 JJ = 1,"I~D
fl ~ T1 + GA~BI~(KK,JJI.V(JJI
J T2 = T2 + GA~BIII(KK,JJ)*YO(JJ)
XllKKI = GOBYG*IXlO(KK,-T21 + Tl
c

-------
FORTRAN IV G LEVEL
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051.
0052
0053
0054
0055
0056
0057
00.58
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0014
0075
0016
0077
0078
19
JACOB
PAGE 0002
COOOOO*OO CALCULATE THE P~RTIAL OF ~lgD~lDy,~.R.T. Y .
C
DO It Ll=I,I\IND
4 DXlDYC~K,LL)-=DG!DV4LL)~Goo~lO(K~)~GAMBIVC~K,lL)- DGIDYCLL)oGOOT2
DD 25 KK .:: 19NDEP .
C
C
C
CHECK FOR NEGATIVE VALUES OF Xl4DEPENDENT COMPONENTS»
IFCXl4~K).LE.0.CD GO TC 26
25 CONTINUE
GO 10 30
26 AMU -= 0.5
DO 27 KK -= !gl\l~D
27 VCKK) -= (l.-A~U)O~O(KK) ~ AMUOY4KK)
GO TO 28
30 IFHXlU) .Gl. .oaou .ANO. (~l(2) .GT. .0001iDGO TO 31
Al= RCON(l)
E1-= RCON(2)
C ll=RCONC3 D
C 12.::RCOI\(4)
C13-=RCOI\(5)
C10 = C11+C12+C13
CA-= P/C14.1$.C820S)
Al -= A1*28.32$CCA*.C10D
CA1= E XP(-ElIU.~87.H)
Cl= Al*CA1$(Cl./T).*Cl0)$CY41DoOC11)04XlC3D$OC13D
IFCXlOLDCI).LT.1.E-40) GO TO 33
IFCXlC1J .GT. .0001J GO TO 34
XU S=Xl Cl J
XI(1) -= -IIG$XIOLDCIDD/(A*GAMMAI1,lJ*STEP)J/Cl
IFCXl(1).LE.l.E-9)Xl(lJ-=1.E-9
XlCII -= ~lCl)..(1./C12'
IFCXllS.LT.Xl(1).AND.XllS.GT.0.0) XlCIJ=XllS
GO TO 34 .
33 XZ(1) -= XlQLDI1J .
34 IFIXlOLD(2).LT.1.E-40.AND.XZOLDC2).NE.0.Ot GO TO 35
IFCXZ(2) .GT. .0001J GO TO 31
A2-=RCOI\(6)
E2=RCONC 7)
C21=RCOM8)
C22-=RCOM ~»
C 23-=RCOI\C 1 CJ
C20=C21+C22+C23
A2 =A2*28.32*CCA**(20)
CA2=EXPC-E2/ll.981*T)J
C2=A2*CA2*C C1./T)..C20)*CYC1).*C21)*CXIC3)..C23)
R(1)= Cl.CXlCl.*.C12.
Xl2S=XZ(2)
Xl12. -=-ICG*XICLD(2J)/(A*STEP) + GAMHAC2,lJ.R(1»)/CGAMHAI2,2J*C2.
XZC2. -= Xl(2)..(I./C22)
IFCXl2S.LT.Xl(2).AND.XI2S.GT.0.0' XlI2.-=XZ2S
GO TO 31
35 XZI21 -= XlCLDC2J
...
o
o
I

-------
FORTRAN IV G LEVEL
19
JACOe
PAGE 0003
0079
0080
0081
0082
0083
0084
0085
0086
C087
0088
00a9
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
C101
0102
0103
0104
0105
0106
0107
0108
0109
C********CALCULATE THE fUNCTICNS ON THE ~IGHT HAND SIDE OF THE NDIM
C OIFFERENTI~L EQUATICNS ~ND ALSO THE JACOel~N MATRIX
C CORRESPCNOING TO THESE fUNCTIONS.
31 CONTINUE
C
C
C********
C
C
C
C
C
CAll SUB~OUTINE RATE TO CALCULATE DRDXI AND ORDT
WH[CH ARE THE DERIVATIVES OF THE SPEC[FIC ~EACTION
VELOCITY, Cf EACH Cf THE CO~BUSTION ~EACTIONS,
WITH RESPECT TC Xl AND T.
CAll
RATE(NINO,NOEP,Y,XI,P,T,RCON,R,DROY,CRDXI,DRCT'
C
C******** CALCULATE O~OY
C C[FIC REACTICN
C
WHICH IS T~E DERIVATIVE OF THE SPE-
VELOCITY WITH RESPECT TO Y.
00 6 II = 1,~INO
00 6 JJ = 1,1\11\0
T1 = O.
00 5 KK = 1,I\OEP
5 T1 = T1 + DRDXZ(II,KK)*DXlOY(KK,JJ)
6 ORDY(II,JJ) = OROY(II,JJ)+T1
00 7 II = 1,1\01"
00 7 JJ = 1,NOI"
7 AJACOB( II,JJ) = O.
TO = O.
DO 8 I I = 1, N I NC
N
o
...
C
C
C
C
C
C
THE FOLLO~ING STATE~EhTS DOWN TO AND INCLUDING STATEMENT 12
CALCULATE THE FIRST NINO FUNCTIONS AND THE PARTIAL DERIVATIVES
OF THESE FUI\CTICNS W.R.T. THE INDEPENOEI\T COMPOSITION VARIABLES
AND THE TE~PERATURE.
8 TO = TO - OELALPCIIJ*R(IIJ
TO = A*TO/G
00 12 lL = 1,NII\D
T1 = O.
T2 = O.
00 10 JJ = 1,NINO
C1 = B(LL,JJI - Y(ll)*OElALP(JJJ
T1 = T1+ C1-R(JJJ
T2 = T2 + C1*OROT(JJJ
00 10 MM = 1,I\INO
10 AJACOB(ll,~MI = AJACOB(LL,MM) + C1*ORDY(JJ,MH)
00 11 MM = 1,NII\D
AJACOB(ll,~M) = A*AJACOB(ll,MH)/G + A*DGIOY(MM)*T1
IF(MM.EQ.ll) AJACOB(ll,MMI = AJACOe(ll,MM)+TO
11 CONTINUE
AJACOB(lL,NDI,.) = A*T2/G
12 FUN(lL) = A-T1/G
IF(KODE(2) .GT. CJGO TC 21
C

-------
FORTRAN IV G lEVEL
19
JACGB
PAGE 0004
01'10
0111.
0112
0113
0114
0115
0116
0117
0118
0-119
0120
012;1
0122.
0123
0124
0125
0126
0127
Q128
(H29
01.30.
01.31
0132
0133
0134
0135
0136
0137
0138
0139
0140

0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
C********CAlCULA1E 1HE fUNCTION CN T~E R.H.S. OF THE TEMP. DoEo AND
C THE PARTIAL DERIVATIVES OF THIS FUNCTION WoR.To THE INDEPENDENT
C CO~POSITION V~RIA8lES AND TE~PERATUREo
C
THER~DCT,NINOoNCOMP,CPCOEF,DCOF;CP,OCPOT,OELH90HOTt .
CAll
990 CONTINUE
T 1=0.
T2=00
T3=00 '.
DO 13 Ll = loNINO
T1 = T1 . ~Cllt.CPClLt
13 T2 = T2 . VCllJ*DCPDTCLL)
DO 14 Ll = I, NOEP
lPNI NO = Ll. NINO
Tl = Tl.XZCLl)*CPCLPNl~O)
14 T2 = T2+XZClL)*DCPDTClFNINDt
DO 16 LL =l,NIt\D
OGCPDYClLt = CPCLll
DO 15 KK=l,NDEP
KPNIND = KK + NINO .
15 OGCPDYCLlt = DGCPDY(Llt + CPCKPNINDt*OXZDY(KK,lLt
16 DGCPOY(lL) = C-DGCPDY(lU/(G*Tl) +DGIDYClltJlTl
DGCPOT = - T2/CG*Tl*Tll
DO 11 JJ = 1, NINO
17 13 = 13 -DELHCJJI*RCJJJ
. CAll HlCSSCT,T~,QTRAN9HTC,QlOSS90QlOT,KODE,NOPT!
T3 = A.13-S*QLOSS
FUNCNOIM) = 13JIG*Tl)
00 19 KK = 1,t\I~D
AJAC08CNDIM,KK) = o.
00 18.JJ = I,NINO
18 AJACOBINDIM,KK' = AJACOBCNDIM,KKt - OElHCJJ)*ORDYIJJ,KKt
19 AJACOBCNDIM,KK) = ~JACGBCNDIM,KKt . A/IG*TIJ + DGCPDYCKKt.T3
DO 20 JJ.= l,NIND
20 AJACOBINDIM,NDIMt = AJACOBCNDI~,NOIM) - DELHCJJJ*ORDTIJJJ-DHDTCJJ)
1*RCJJt .
. AJACOBCNDIM,NOIM)=CAJACOBCNDIM,NOIM!*A - S.DQlDT)/CG*T1) + DGCPOT
1.13
9990 CONTINUE
. RETURN
21 DO 22 II = 1,NOIM
22 AJACOBCNDIM,lL) = '0.
RETURN... . .
1000 WRITEC 6,1001) ,
1001 FORMAT IlH ,'A FEASIBLE SOLUTION CANNOT BE FOUND. ...JACOB'»
IBOMB=1
RETURN
END
I
N
o
N

-------
0001
FORTRAN IV G LEVEL
19
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0011
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
SUBROUTI NE
1
2
3
4
5
6
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSICN
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
SCLVE
PAGE 0001
SOLVEC~INO,~DEP,NDIM,NceMP,DABINV,VO,VOLO,V,GAMBIV,B,
Ye,TTC,GAH~A,XlOLD,
XlO,OELALP,CPCOEF,DCOF,DGIDV,DXlDV,R,DRDY,DRDXl,
DRDT,RCC~,CP,DCPDT,DGCPDY,DELH,DHDT,HTC,LMINV,
HMI~V,Xl,AJACOB,FUN,KODE,GO,G,P,T,TOLD,TW,TS,
'TRAN,A,S,STEP,ACCUR,V1MIN,MAXITR,KCESS,NOPT,
I BOHB, t;S PRAY)
DABINVC~INDJ,VOCNIND),YCNIND),YOLDCNIND),YOCNINDJ
GA~BIV(~DEP,NINOJ,GAMMACNDEP,NIND),XlOlD(NDEP)
B(NIND,NI~OJ, XZOCNOEP),DElAlPCNIND),CPCOEF(NCOMP,10)
OCCFC~I~O,14)
DGIDYCNINOJ,OXlDYCNDEP,NINDJ,RCNIND),DRDYCNIND,NINO)
ORDXlCNJ~O,NOEP),DRDTCNINO),CPCNCOMP),DCPOTCNCOMP)
DGCPDYCNINDJ ,CElH(NIND) ,DHDTCNINC), lMINVCNDIM)
~MU.V( NDI HJ
Xl(NDEP),AJACOBCNCI~,NDI~),FUNCNDIM)
HTC(3J, RCeN(10)
I
IF GAS TE~PERATURE PROFILE IS NOT SPECIFIED GO TO 30

IFCKODE(2).lE.0)GO TG 30
T=IS
TTO=T
30 CONTINUE
100 I TER=I TER + 1
IF( ITER.GT.MAXITRJ GO TO 300
DO 50 I
-------
FORTRAN IV G lEVEL
 0029
 0030
 0031
 0032
 0033
 0034
 OOJ5
 0036
 ~:' : . .
 0031
 ,0038
"'<;0.,. 
':!f;:~~, 
. 
 8039
 0040.
 0041
 . 0042
 0043
 0044
 0045
 0046
 0041
 0048
 0049
 0050,
 0051
 0052
 0053
 0054
 0055
 0056
 0057
 0058
 0059
 0060
 ,0061
19
SOlve
PAGE 0002
1 ITER.EO.l) GO TO 52
51 CONTINUe
, ,ICONV-I
52 CONTI Hue
C
C------- AS C[NVERGENCE rs ACHIEVED FUN:UfDIMI APPROACHES ZERO
C ';
DO 1 II.l,~I~D . .
. 1 FUNe 111- YUII-STEP.FUHClU- YOLDU It
JFCKODEC2 I '.GT. 0' GO TO 6 . .
C . ',' .
C------- IF KOOEeZ' - 1, GAS TEMPERATURE PROFILE IS SPECIFIED.
C . .
FUN(NDIMI- T -STe'*FUNCNDIMI-TOLD
GO TO 7
, ,
C
C
C
C.
WHEN GAS TEMPEAATUAE PROFILE IS SPECIFIED,
. FUN(NDIMI BECOMES ZERO SINCE T-TS.
6 FUNCNDlln-T-TS
7 CONtiNUE
C
C . .
C.."....AFTER THE CALL TC JAC08, THE MATRIX AJACQ8 CONTAINS THE
C" ." ',PARTIAL DERI VATIVES OF FUN "'.R. T. THE INDEPENDENT COMPOSITION
, C VARIABlES. THE FOllO".NG STATEMENTS OOIINTO AND INCLUDING
c,~ STATEMENT 3 CALCULAte THEJACOBUN CORRESPONDING TO THE FIRST
C, . ORDER' IMPLICIT SCHEME USED HERE.
C~ '-'. ( ..".
c
,
N
o
~
,
DO 311 - 19~DI'"
. DO 3 JJ - 1,NDI.. .
A JACOB C 11 ,Jj, ,.~' -SfEPUJACOeC II ,.1.1 I
IF( II.EO.J'" AJAC08(II,JJI. 1. . AJAC08CII,JJI
3 CONTINUE . '. .
CAll 'MINV(AJAC08,~DIM,0,lMINY,"MINVI
TTO . T .
00 4KK - 1,IUNO
YOC KKI . YUKI.
IFtKK.EO.21 GO TO 41
IFCYOLDeKKI.lT.1~E-401 GO TO 43
IFCYCKKI.LT.1.0E-201 GO TO 4
GO TO 42 . .
43 YCKKI-YOLOCKKI
&0 TO 4
41 IFCYOlDCKKI.GE.1.E-40.0R.YOLOCKKI.EO.0.01 GO TO 42
GO TO 43 .
42 00 40 JJ-l,NOIP'
40 YCKK)- YCKK)- AJAC08CKK,JJ)*FUNCJJ)
4 CONTINUE .
12 00 5 .1.1.= I~NDI"
5 T = T- AJACOBCNDJM,JJ)*FUHCJJ)
130 IFCT.GT .nO)GO -TOU3
-

-------
FORTRAN IV G LEVEL
19
SCLVE
PAGE 0003
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
1)075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
OJ88
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
C
C
C
C
RA TlO=T Ino
CHECK:::C.'<;S
IFIRATIG.L1.C~ECKJT=TTG*CHECK
GO TO 134
133 RA TlO=T IHO
CHECK=I.05
IFIRATIG.GT.C~ECKJ T=TTO*CHECK
134 IFIY(11.LE.0..GR.Y(21.lE.0.I GO TO 15
AOIST = ABS((1-1TOI/100.1
DO 13 KK = i,~I~D
HOLD =(ABS (Y(KKI - YC(KKJJI/YO(KKI
IF (HOLD .GT. ~OISTJ AOIST ::: HGLO
13 CONTINUE
IflADIST .LT. .C01 I GO TO 200
ANORM ::: O.
DO 2 [I = 1,1'\01"
2 ANORM = ANG~" + FUNIIII*FUN(I[I
ANORM ::: SQRT(~N(RMI
IFIA~ORM .LT. ACCURI GO TO 200
IF(A6SI(T-TTGI/100.I.GE..00ll GO TO 15
IF(ICOl';V.E(;.OI GO TO 15
GO 10 200
15 MAX::: C
11 MAX = MAX. 1
IF (MAX .G:. lCI G( TO 20
IFIYIII.LE.0.C.CR.Y(21.LE.0.01 GO TC 9
GO TO 14
9 AMU = .50
DO 10 KK = I,NlhO
10 YIKKI = (1. - A"UI*YO(KKI + AMU*Y(KKI
GO TO 11
14 CONTINUE
GO 10 100
200 KCESS = +1
T = no
00 17 KK = I,N[hO
17 YIKKI = YO(KKI
GO TO 400
RETURN
300 KCE S5 = -1
400 RETI'RN
20 WRITEC6,10001
1000 FORMATC1HO,'A FEASIBLE SOLUTION CAN NOT BE FOUNO .....SOLVE'I
[60MB=1
RETURN
END
'"
o
V1

-------
19
PAGE 0001
0001
FORTRAN IV G LEVEL
TAt8
0002
0003
0004
0005
0006
0001
0008
0009
0010
0011
OOlZ.
0013
0014'

0015
0016
0017 .
0018,. .
, 0019>
0020
0021
0022
0023'
0024 '
0025.
002.6
0027.
0028
0029
0030
0031
0032
0033
0034
0035
003.6
0037
0038
0039
SUBROUTINE TADB(NIND,NDEP,NCCMP,YO,XlO,Y,Xl,DELH,DELALP,B,GAMMA,
1 CPCOEf,CPAVG,GO,G,TO,TACAB,HEATI
DIMENSION YO(NINDJ,Y(NINDJ,XlO(NDEPI,Xl(NDEPI,DELALP(NINDJ
DIMENSION DELH(NINDJ,B(NIND,NINDI,GAMMA(NDEP,NINDI
DIMENSION CFCCEf(NCOMP,lOI,CPAVG(NCOMPI
C 990 CONTINUE
IF(VO(11 .GT. (B(l,lJ/GAHMA(l,l)J*XlO(lll GO TO 50
THERE IS LESS CZ THAN REQUIRED TO CARRY THE FIRST REACTION TO
COMPLETION. C(NSIeER T~E FIRST REACTION COMPLETELY DOMINATES.
THE HEAT REL~ASED IS (IT IS POSlilVEI
HEAT =(GO.VO(ll.. (DELH(1)/8(l,l)1
G = GO.(l. - (DELALP(I)/B(l,ll).YO(lJJ
Y( 1) = O.
Y(21 =(GO/GJ.(YO(2J - B(2,IJI B(l,II.YO(IJI
DO 1 ~K = 1,~DEP,
1 Xl(KKI =(GO/G.*(XZO(KKJ - GAMMA(KK,II/B(l,ll.YO(lIJ
GO. TO 100 .
50 CONTINUE
THERE IS MORE THA~ ENOUGH OXYGEN TO CARRY THE FIRST REACTION TO
C OMPlE TI ON.
G = GO.(l. - (DELALPIl./GAMMA(I,IIJ.XZO(IIJ
THE HEAT RELEASED BY THE FIRST REACTION GOING TO COMPLETION IS,
HEAT =(GO*XlO(l..*DElH(II/GAMMA(l,IJ
DO 2 KK =l,NIND .
2 Y(KK) = (GO/GJ.(YOIKK. - SIKK,I'/GAMMA(I,IJ . XZO(IJJ
. DO 3 KK = I,NOEP .
3 XZ(KKI = (GO/GI.(XZO(KK) -GAMMA(KK,IIIGAMMA(I,11 .XZOll.J
IS. THERE ENOUGH 02 TC COMPLETELY CONVERTETHE CO FORMED BY THE
FIRST REACTION. :
IF(Y(11 .GT. Bll,2)/GAMMAI2,2,*XZ(2)J GO TO 75
THERE IS NOT'ENOUGH'02 TO TAKE THE SECOND REACTION TO COMPLETION.
THE HEAT RELEASED'15.
HEAT = HEAT ..G*YIl,.DELHI2J/B(I,2J
Gl~ G .
G =Gl$(I.- DELALPl2t/EU,2) *Y(l)
Y(2.=(GI/GJ*(Y(2J - B(2,2J/B(I,2J*Y(II)
DO 4 KK = 1,f\DEP
4 XZ(KKI =(GI/GI*(XZIKK'- GAMMA(KK,2./B(I,21*Y(IIJ
Y( 11 ;= O.
GO TO 100
75 CONTINUE
THERE IS ENOUGH 02 TO CARRY SECOND REACTION TO COMPLETION.
THE HEAT RELEASED BY THE SECOND REACTION IS.
HEAT = HEAT. G*XZ(21*OELH(2)/GAMMA(2,2t
Gl= G
G =Gl$(I. - DElALP(21/GAMMA(2,2.*XZ(2)1
00 5 KK = I,NINO
5 Y(KKI =(G1/GI.(VIKKI - B(KK,21/GAMMA(2,2t . XZ(211
DO 6 KK = l,tiDEP
IF(KK.EQ. 2. GO TO 6
Xl(KKI =(GI/GI.(XZ(KK' - GAMMA(KK,21/GAMMA(2,2J * XZ(2IJ
6 CONTINUE'
Xl( 2) = o.
C
C
C
c
C
C
I
'N
i
c
C
C
C
C
C

-------
FORTRAN IV G LEVEL
19
TACB
PAGE 0002
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0016
0071
0078
0079
0080
0081
0082
0083
0084
0085
100 CON TI NUE
TL = TO
TH = 3000.
FL =-HEAT
CALL CAVGCNCC~P,CFCCEF,CPAVG,TO,THI
A 1= O.
DO 11 KK= 1,NII\0
11 Al = Al+YCI
-------
FORTRAN IV G lEVEL

0001
0002
0003
0004
0005
0006"
0007
0008
0009
0010
oOli
0012
0013
0014
0015
0016
0017
.0018
0019
0.020
0021
0022
0023
0024
0025

0026
0027
0028
0029

0030
0031
0032
0033
19
RATE
PAGE 0001
SUBROUTINE RATECNI~D,NDEP,y,XZ,P,T,RCON,R,ORDY,OROXZ,DROTI
DIMENSION YCNINDI,XZC~DEP,,~CONII0),DRDYININD,NtNDI,RCNINDI
DIMENSION oRDXZCNIND,NDEP"D~DTCNINDI '
C... RATE EXPRESSI~NS SUPPLIED BY T~E USER ARE OF THE FORM
C A. FOR FUEL G(ING TO CO AND H20
C Rlll= Al*EXPC-El/CI.987*TII*CC021.*Clll.IIFUELI..C121*CCH20,**CI31
C B. FOR CO GOI~G TO C02.
C R121= A2*EXPC-E2/CI.987*T'I*CI021**C211*CCCOI**C221*CIH201**C231
C THE UNITS HE~E ARE,
C R, MOLESIILITER-SEC.)
C El,E2, CAL./~ClE
C T , DEGREE KELVIN
C ICOMP.), MULES/LITER.
C THE CONSTA~TS Al,A2,....,C23 ARE IN THE ARRAY RCON
A I = RCCHC 11
E1 = RCONC 2.
C 11= RCONC 31
C12= RCCNCIt)
C13= RCCN(5)
A2 = RCONC61
E2 = RCCNI7I
C21= RCCNISI
C 22= RC CNC 9'
C23= RCCHC 10)
CI0 = C11+C12+C13
C20 = C21+C22+C23
CONVERT THE RATE EXPRESSIONS TO THE UNITS OF MOLES/CCCUBIC FT.I*CSEC.I.
BY MULTIPLYING BY 28.32 LITERS/CUBIC FOOT. AT THE SAME TIME CONVERT
TO MOLE FRACTIONS.-
CA = P/C14.7*.082051
Al = Al*28.32.ICA*.CI0)
A? = A2*28.32.ICA..C20'
CAl = EXPI-El/ll.981*Til
CA2 = EXPI-E2/Cl.~87*TI)
RCll = Al*CA1.ICI./TI*.CI01.CYC11**C111*CXZC11.*C121*CXZ(3.**C131
RC21 = A2*CA2*IC1./T)**CZO).IYll)**C211*CXZC2)**C221*IXZC3.**C23.
oROYC1,11 = Cl1*Al*CA1*CC1./TI*.C10.*CY(1).*CCll-1..)*CXZC1).*C121
1 *CXZ(3)**C131
oRoY(l,2) = C.
oRDYC2,1) = C21*A2*CA2*CC1./T).*C201*CYCll**CC21-1..I*CXZC21..C221
1 *CXZC31..C23)
DRoYC2,21 = C.
oRDXZC1,11= C12.Al*CA1.CC1./T).*C101.CYC11*.Cl11*CXZC11**CC12-1.11
1 .CXZI31..CI31 .
oRDXZCl,21=0.. . .
oRDXZII,3J= C13*Al*CAI*CCI./TI**C101.CYC11.*C111*CXZC11.*C121
1 .CXZ(3)*.ICI3-1.11
DRoXZC1,ltl= c.
oRoXZC 2,1) =0.
oRoXZC2,21= C22.A2*CA2*CCI./TI**C201*CYC11.*C211*CXZC21*.CC22-1.11
1 .CXZC31..(2)
oRoXZC2,3)= C23.AZ*CA2*CC1./TI**C201*CYC11..C211*CXZC2..*C2Z.
1 *CXZC31*.CC23-1.11
C
C
C
I
N
o
co
I

-------
FORTRAN IV G lEVEL

0034
0035
0036
0031
0038
19
RATE
DRDXZ(2,4J= C.
ORDT(IJ = R(11*(fl/(1.981*r*rJ
DRDT(2J = R(21*(E2/(1.981*T*TI
R E T UR N
END
PAGE 0002
- C10/TJ
- C20/TJ
N
(;)
\D

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
19
HlCSS
PAGE 0001
SUBROUTINE HLOSSCT,TW,QTRAN,HTC,QLOSS,DQlDT,KODE,NOPT)
DIMENSION KODEC~CPT)
DIMENSION HTC(3)
IFe KODE(3) .GT .0'
QLOSS .. HTCC1a +
DQlDT .. HTC(2) +
RE TURN
QlOSS .. QTRAN
DQLDT = O.
RETURN
END
1
GO TO 1
HTC(Za*CT-TW) + HTCC])*CT.*4 - TW**4)
4.*HTCI3,*T**3
"
IV
....
o
I

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0007
0008
19
CUTONE
PAGE 0001
0009
0010
SUBROUTINE OUTONECNIND,NDEP,X,G,Y,Xl, YNO,T,KASE,YNOEQI
DIMENSIO~ YCNI~OI,XlC~OEP)
IF(KASE .LT. 2) GO TO 1
WRITE(6,ICCC)X,G,T,Y,Xl,YNC,YNOEQ
1000 FORMAT (IHO,Gll.4,10G12.41
GO TO 10
1 WRITE({;,10ClI
1001 FORMATCI12X,'DISTANCE',4X,'FLOW RATE',7X,'T',10X,'02',10X,'C02',
1 8 X, 'F l;E L ' ,9 J( , , e C ' ,1 OX, , H20' , 9X, 'N2' ,10 X, , NO' ,8 X, , NO C E Q) , , 14X,
2 ' (F TI ' ,4 X, , C G- ~eLS I SEe I ' , 5X, , (I< I ' ,9X, 36 ( , -, I, , (MOL E FRACT ION 1 ' ,
337('-')1
10 RETURN
END
N
~
~

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0011
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
19
CA\1G
PAGE 0001
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
SUBROUTINE CAVGCNCCMPoCPCOEF,CPAVG,T1,T21
DIMENSION CPCCEF(NCO~PolO) , CPAVGCNCOMPI
DO 10 KK =1,NCCMP
10 CPAVGCKKI = c.
U 1= Tl/1000.
H1 = U1
U2= T2I1000.
IFCU1.LT. 1.2) GO TO 1
H2 = U2
GO TO 50
1 IFCU2.LE. 1021 GO TO 2
H2= 1.2
GO TO 3
2 H2 = U2
3 CONTINUE
V1=1.
V2=1. .
DO 4 KK =1,5
A K= KK
V1= V1*H1
V2= V2*H2
DO 5 KPN = l,NCC~P
CPAVGCKPNI= CPAVGCKP~)+CPCOEFCKPN,KKI*CV2 - V11/AK
5 CONTINUE
4 CONTINUE
IFCU2 .LE. 1.21 GC TO 75
H 2= U2
H1= 1.2
50 DO 6 KPN =l,NCC'P
CPAVGCKPNI= CPAVGCKPNJ+CPCOEFCKPN,61*CH2-H11+CPCOEF(KPN,71*AlOGCH
121HlJ
6 CONTINUE
AK = O.
VI = 1.
V2 = 1.
DO 7 KK =8,10
AK= AK+1.
V1= V1/H1
V2= V2/H2
DO 8 KPN =l,NCO'P
CPAVGCKPNI =CPAVGCKPNJ -C1./AKI*CPCOEFCKPN,KK)*CV2 - VII
8 CONTINUE
7 CONTINUE
75 DO 76KPN = 1,NCCMP
76 CPAVGCKPNI=CPAVGCKFNJ/CT2 - T11
RETURN
END
'"
....
'"

-------
FORTRAN I V G LEVEL

0001
0002
0003
0004
0005
0006
0007
OOO~
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
002~
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
19
CPflT
PAGE 0001
SUBROUTINE CFfIT(NPTS,NCON,TO,CPO,TX,CPY,CO,C,FO,F,A,KASEI
DIMENSICN TX(I\P1S) ,CPY(NPTSI,C(NCON),FO(NCOd,F(NPTS,NCONI
DIMENSION A(NCCI\,~CGNI
00 25 II = 1,NP1S
READI5,200CI 1X(II),CPYIIIJ
PRINT 125, TX(II), CFY(III
125 FORMAT (lOX, flO.3, 20X, flO.3)
25 CONTINUE
2000 FORMAT(4X,2FIC.3J
TO = TC/IOOO.
00 100 II =1,NP1S
100 TXI 11) = TXtlU 11000.
1 IF(KASE.GT.OI GO TO 2
Z= TO
GO 10 3
2 l = 1. ITa
3 F O( 11 = l
00 4 1I=2,NCCt.
11'41 =11-1
4 FOnD = FGtlMU*Z
DO 5 II = 1,NPTS
If(KASE.GT.OI GC TO 6
l = TX(Il)
GO 10 7
6 l= 1./TXIII)
7Fl11,1I=l
DO 8 KK= 2,NCCN
KKMI = KK-1
8 f( 1I,KKI = FIll ,KKMU.Z
DO 5 KK= 1,"CCN
5 F( II,KKI = Fill ,KKI-fOIKKI
DO 11 KK = 1,NCCN
DO 11 II = 1,N(CN
AIKK,1I1 = O.
DO 11 JJ = 1,I\PTS
11 AIKK,IIJ ,. AI~K,IIJ. fIJJ,KKI*f(JJ,IIJ
DO 12 KK = 1,I\CCN
CIKKI=O.
DO 12 JJ= 1,NFIS
12 C(KKI= C(KKI+ FIJJ,KKI*tCPY(JJI-CPOI
CAll SIMQIA,C,NCCI\,KSJ
IF(KS.LT.l I GO TO 15
WRITEe 6, 1000J
1000 FORMATe' A SING~LAR SET OF EQUATION HAS BEEN ENCOUNTERED'J
GO TO 17
15 CO = CPO
DO 16 11 = 1,NCCN
16 CO = CO- C tl(J.FoeIl J
17 RETURN
END
N
.....
...,

-------
0001
FORTRAN IV G LEVEL
19
MIX
PAGE 0001
0002
0003
Q004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
00.15
0016
0017
0018
001-9
00.20.
0021
0022.
.0021.
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044.
0045
0046
0047
0048
SUBROUTI HE MI X(Gl, Yl ,Xll, YNOl, T1 ,G2,Y2, )(12, YN02, T2,G3, Y3, X13, YN03,
1 . T3,NI~O,NDEP,NCC'P,CPAVG,CPCOEF,IBQM8J
DIMENSION Yl(NINDJ,XlICNOEPJ,Y2(NINDJ,X12CNOEPJ,Y3(NINDJ,X13CNOEPI
DIMENSION CPCCEfC~COMP,101,CPAVG(NCOMP)
C 990 CONTINUE .
C DO MATERIAL BALANCES
G3= G1+G2
DO 1 K~ = 1,~IND
1 Y3CKKI = CG1.~1(KKt + G2*Y2(KK»/G3
DO 2KK = 1,NOEP
2 XZ3(KKI = IG1.XIIIKK) + G2.X12IKK../G3
YHO) ... (Gl.YNOl + G2*YN02J I &3
DO .ENERGY BALANCE .
THE REFERENCE TEMP. IS 298K
TR-298. .
IFIT1.EO.T21 GO TO 25
CALL CAVG(NCC~P,CPCOEF,CPAVG,TR,Tll
Al = o.
81. = O.
DO 3 K~.l, ttI NO
81 = 81 . 'f3CKU*CPAVGIKKI
3 Al = At + YllkKJ*CPAVG(ut
DO 4 KK...l,NDEP .
KKP ... ~K . NINO
81 ... 81 . JCZ3(KKJ*CPAVG(KKPI
4 Al .. A1 + XZ1(~K)*CPAVGIKKP)
. HI = GI*Al.CTl-TRJ
CALL CAVGCNCO~P,CPCOEF,CPAVG,TR,T2J
A 2 :a0.
82 =0..
. DO 5 Klta1,NIHD .
A2 ... A2 + Y2CK~'*C'AVGCKK'
5 82 ... 82 + Y3( KU*CPAVGIKK)
DO 6 K~-l, NDEP
KKP = ~K+NIND .
82 =82 + X13IKKI*CPAVGCKKPI
6 A2 = A2 + XZ2(KKI.CPAVG(KKP'
H2 = G2*A2*CT2-TR)
Fl ... G3.81*CT1~TR)-HI-H2
F2 = G3.82.CT2-TR'-HI-H2
IFITl .GT. T2. GO TO 1
TL -n
FL aF1
TH .T2
FH =F2
GO TO 8
7 TL=T2
FL=F2
TH=T1
FH=F1
8 KOUNT =0
TM=O.O
99 KOUNT =KOUNT + 1
C
C
....
....
~
I

-------
rORTP. ~N ['I G LEVEl
0049
0030
0051
0052
0053
0054
0055
0056
0057
0058
0059
006:>
0061
0062
,)063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0014
0015
0016
234
C9990
1000
C
C
C
C
C
19
PAGE 0002
MIX
IFIKOUNT.GT.50) GC TO 234
H1S=TM
TM = CTL*FH - TH*fl)'CFH-fL)
AM = O.
CALL CAVGCNCC~P,CPCOEF,CPAVG,TR,TM)
00 9 KK = 1,t\IND
9 AM = AM + Y3IKK)*CPAVGCKK)
00 10 KI< =1,PlDEP
KKP = KK+NIPIO
10 AM = AM + ~l3CKK)*CfAVGCKKP)
FM = G3*AM.CT~-TR)-H1-H2
IFCA8SCTM-TMS).lT..01) GO TO 100
IF IFH .LT. C.) GO TO 11
FH = FM
TH = TM
GO TO C;9
11 FL = FM
TL = HI
GO TO C;9
100 T3 = HO!
RETURN
25 T3 = 11
R E T UR N
WR[TEC6,1000)
CONTINUE
FORMAT!' A SCLUTlCh CAN NOT BE FOUND...... ~ IX"
IBOMB=1
R E TliRN
DEBUG INIT,TRACE
AT 990
TRACE ON
AT 9990
TRACE OFF
END
N
......
I.n

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
19
THERMO
PAGE 0001
0027
0028
SUBROUTINE THERMOIT,NIND,NCOMP,CPCOEF,OCOF,CP,DCPDT,DELH,DHDTt
OIMENSICN CPCOEFINCOMP,10),DeOFININD,14),ePINeOHPt
DIMENSION OCPDTCNecHPt,oELHININDt,DHDTININOt
TR = T/I000.
IFIT .GT. 1200.' GO Tij 100
TR2 = TR *TR
TR3= TR2*TR
TR4= TR3*TR
TRSoo TR4HR
DO 1 II ool,NCCMP
CPIII)=ICPCOEFlll,ll + CPCOEFIII,2t*TR + CPCOEFIII,31*TR2
1 +CPCCEFIII,4t*TR3 +CPCOEfIII~5t*TR4)/IOOO.
1 OCPOTIII)ooICPCOEFIII,2.+2.*CPCOEFIII,3)*TR +3.*CPCOEFIII,4)*TR2
1 +4.*CPCCEFIII,5.*TR3t'IIOOO.*1000.)
DO 2 II = I,NIND
DHOTIII)ooIDCOFI11,11 +CCOfIII,2)*TR + DCOFIII,3t*TR2
1 +DCOFlll,41*TR3 + OCOFIII,S)*TR4t/1000.
2 DELHI II) ooDeOFlll,lll+ IDCOFIII.lt*TR + DCOFIII,2t*TR2/2.
1+ OCOFIII,3)*TR3/3. + DCOFIII,4t*TR4/4. + CCOFIII,St*TR5/5.
2- DCOF I I I ,13) )
RETURN
100 TRI = 1./TR
TR2 .. TRll1R
TR 3 = TR2ITR
TR4 .. TR3/TR
DO 4 II .. 1,~CCMP
CPI lit aICPCOEFIll,61 . CpeOEFIII,1t*TRI + epCOEFIII,8)*TR2
1 + CPCOEfUI,91*TR3 + CPCOEFIII,10)*TR4t/l000.
4 DC PDT I I It = -ICpeOEFIII,7) . 2.*CPCOEFIII,St*TRI + 3.*CPCOEFIII,9t
1 *TR2 + 4.*CPCOEFIJI,10)*TR3)/1l000.*lOOO.*TR2) ,
DO S II" I,NINO
OHDTCI.t ooCOCOFCII,6t + DCOFCII,1)*TRI + OCDFIII,8)*TR2
1 . +DCOFIIl,9)*TR3 + DCOFCII,10t*TR4)/I000.
5 DELHIIIJ .. DCOFCII,IZ1 + C DCOFIII,6)*TR + DeOFCII,rt*
1 ALOGITRI - DCOFIII,8J*TRI - DCOF 111,9t*TR2/2.
2 - DCijFIII,10)*TR3/3. - DCOFIII,14t )
RETURN
END
N
....
'"
I
0012
0013
0014
0015
0016
0017
0018 .
00,19
0020
0021
00~2

0023
0024
0025
0026

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0007
0008
0009
19
BINIJER
PAGE 0001
SUBROUTINE BINVER(NI~D,B,BINVI
DIMENSION B(NIND,NINDI,BINV(NIND,NIND)
D = B(1,1).B(2,21 - e(1,21*B(2,11
BINV(l,l)= 8(2,21/0
BINVll,2)= -B(1,21/D
BINVI2,1)= -e(2,11/D
BINVI2,2)= B11,11/0
RE TURN
END
""
.....
.....

-------
FORTRAN IV G lEVEL

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
19
QUENCH
PAGE 0001
SUBROUTINE QUENCH(TCOMB,X,XOlD,GClD,P,A,QNCHRT,QNCHTP,TSI
DIMENSION QNCHRT(3J
IF(QNCHTP.EQ.l.. GO TO 10
TRATE=QNCHRT(II+QNCHRT(2J*TCOMB+ONCHRT(31*TCOMB*TCOMB
GO TO 20
10 TRATE= (QNCHRT(1J+ 'NCHRT(2J*TCOM8J * EXP(ONCHRT(3J/TCOM81
20 DENS = P/(10.73*1.8/4S4.J * TCO"8J
TDROP = TRATE . DENS. A I GOLD
T S = TCCMB + TDROP * CX-XHDI
RE TURN
END
I
N
....
a>
I

-------
0001
FORTRAN IV G lEVEL
19
UPDATE
PAGE 0001
0002
0003
0004
0005
0006
0001
0008
0009
')010
0011
0012
0013
0014
0015
0016
0011
0018
0019
0020
0021
0022
0023
0024
0025
0026
SUBROUTINE UPDATE(GO,YO,XlO.YNOO,TO,RATES.TB,G2,Y2,Xl2,YN02,T2.
1 NI~D,NDEP.NCC~P,CPAVG,CPCOEF,IBOMB,SS.TI'
C
C
C
C
C.........................................****........*..
C* THIS SUBROUTINE ~I~ES THE GAS STREAM AND T~E .
C. FUEL STREA~ TC CC~PUTE A ~EW TEMPERATURE AND.
C. COMPOSITIO~.--IN T~E TEMPERATURE CAlCUlATICN .
C. THE HEAT OF V~PCRllATI(N/GASIFICATION IS TAKEN.
C. INTO ACCOUNT. .
C...*..........................*.............*.*......*.*
C
C
C
C
C
C
C
C
C
C
DIMENSICIli ICODE( (:),YO( 2),XlO( 4I,Y2(21.Xl2(41.CPCOEF(NCOMPtlO..
1 CPAVG(IIiCO~PI,XMOlE(6'.YFUEl(2.,XFUEl(4'
COMMON/AA/HVAF
COMMON/BB/TI"E
YO=MOlE FRACTICN OF INDEPEIliDENT COMPONENT AT THE BEGGINING
OF THE SlI CE
XlO=SIMllAR TO ~O BUT FOR THE INDEPENDENT CCMPONENTS
Y2=MOlE FRACTICN OF Ihe. ceMP. AT EXIT OF SLICE
Xl2=MOlE FRACTICN CF OEP. CCMP. AT EXIT OF SLICE
999 CONTINUE
NTOTAl=NIND + NDEP
'"
.....
\D
C
C
YNOFl=O.
YFUEU 11=0.
YFUEU2'=0.
XFUEU 11=1.0
XFUEU 2'=0.
XF UE U 3. =0.
XFUEU 4. =0.
C
TR=298.
CAll MIX(GO,YO.~lO,YhCO,TO,RATES,YFUEl,XFUEl,YNOFl.TI.G2,Y2,XZ2,
1 YNC2,T2,NINO,NDEP,NCO"P,CPAVG,CPCOEF,IBOMB' .
HEA T=RA TES.HVAP
IF(SS .NE. 0.) GO TO 110
CALL CAVG(NCC"P,CPCOEF,CPAVG,TR,TB'
XCP4=C PAVG (41
SNSBL=RATES.CPAVG(4,*(TB-TI.
TI=TB
HEA T=HEA 1+ SNSBl
110 CAll CAVG(NCO"P,CPCOEf,CPAVG,TR,T2'
CPMIX2=0.
00 30 1=1, NTCTAl
IF(I.GT. NINO' GO TO 29

-------
FORTRAN IV G lEVEL
19
UPtATE
PAGE 0002
002.7
0028.
0029
0030
0031:
00_3:2
0033
0034
0035
0036-
0037
CPMIX2=CPMIX2+Y2(IJ*CPAVG(IJ
GO TO 30
29 II=I-NIND
CPHIX2=CPMIX2+XI2(IIJ*CPAVGfll
30 CONTINUE. .
DElT=HEAT/fG2*CFMIX2J
T2=T2-DEl T
PRINT 90,T2,DElT
90 FORMATI/11X,'T2=',E14.6,'OElT=',E14.6/J
RETURN
END
N
N
o
I

-------
FORTRAN IV G LEVEL
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
C
C
C****
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
C
C****
C
C

C
C
C
19
PAGE 0001
SPRAY
SUBROUTINE SFRAY(AREA,STEP,RATES,NT,NSPRAy,TB,T,P,Gt
DIMENSIeN AIIE~PO(lO) ,EIIAP(l0),BURNUO),ERATE(10t
DIMENSION RF(10),RF2(10t,RF3(10t
DIMENSION "'( 10)
DOUBLE PRECISIC~ EERATE
THIS SUBROLTINE COMPUTES THE MOLES/SEC OF
GAS GENERATED BY EIT~ER THE BURNING OF A
LIQUID SPRAY GR A SCLID' SPRAY
COMMON/AB/R(10t,RHCNV(10t,NGROUP,NFNCTN,RHOP,AVGMW,
1 VP, WDF(10),XNDPll0t
COMMON lEE I FUel
THE COM~CN BLeCK IABI IS LINKED TC SUBROUTINE ADATA
REAL K

AVGMW=AVERAGE MOLECULAR WEIGHT OF GAS GIVEN OFF
AREA=CROSS SECTIONAL AREA OF FLOWIFT**2t
ERATE=EVAPCRATION RATE OF LIQUID SPRAY,OR
GASIFICATICN RATE OF SOLIDS(MOLES/SECt. ERATE IS
NSPRAY=1 (SPRAY IS lIQUIDt
NSPRAY=2 (SPRAY IS SCLID)
NT=C OUNTER
RIIt=PAR1ICLE RADIUS (MICRONSt
RHOP=PARTICLE DENSITY. ASSUMED 10 BE
UNIFCRMED FOR ALL PARTICLES(LBS/FT**3)
VP=PARTICLE VELDCITY(FT/SECt
NGROUP=NO. CF DISCRETE PARTICLE SIZES GROUPS
USED 10 CHARACTERIZE THE DISTRIBUTION
OF THE SPRAY. IT CANNOT EXCEED 10.
N
N
....
P 1=3.1416
XSQR4P=SQRl(4.*PI)

NFNCTN=O VAPORIZATICN/GASIFICATION RATE IS CONSTANT
NFNCTN=1 VAPORIZATION/GASIFICATION RATE IS NOT CONSTANT
FUEL=TOTAl 'OlES OF LIQUID/SOLID FUEL FED TO BOilER
P=PRESSURE(PSI)
INITIALIZATION
IFINT.NE.O)GO TO 3
FPI=4.*PI
FPI=12.5664
RR=1206.28
RR=1206.Z8(C'..3-PSl/tGM-MOlE OK)
TFUEl=FUEl
SUMFUL=O.

-------
19
PAGE 0002
FORTRAN IV G lEVEL

C
C
C
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
SPRAY
WDP=WEIGHT DISTRIB~rICN OF PARTICLES
XNOP=NUMBER DISTRIBUTICN OF PARTIClES/SEC
PI43RO=PI*4./3.*RHOP
FAVGMW=FUE LU \lGMW
C
C*.......
C
C
C
C
CALCULATE THE PARTICLES/SEC OF FUEL XNOP(II FOR
EACH GRCUP ~F PARTICLES BEING FED INTO THE BURNER.
FORM THE CONTINUITY EQUATION WE KNOW THAT XDNP(I)
[S CONSTANT. .
DO 1 l=l,NGROUP
C
C------- CONVERT FROM "ICRC~S TO FEET
C
RF(I)=R(I)/30.4SE4
RF2(1)=RF(II*RFCII
RF3([)=RF(I).RF2(11
AREAPO(II=FPI*RFZ(II
1 XNDP(I)=WDP(II*fAVGMW/PI43RO/RF3(IJ/454.

1 MICRON= 1./30.4EE4 fEET
C
C
C
C
C
C
C
C........ CALCULATE THE VELOCITY OF THE fUEL PARTICLES. [T
C IS ASSUMED THAT THESE PARTICLE MOVE AT THE VELO-
C CITY OF THE GAS STREAM ENTERING THE DIFFERENTIAL
C ELEMENT.
C
[F THE SPRAY IS A SOLID BYPASS LIQUIO SPRAY CALCULATION.
N
N
N
I
3 VP=G*RR.T/P/28320./AREA
C
C
C-------- SUBROUTINE VAPOR CALCULATES
C RATE,EVAP, PER UNIT AREA OF
C GROUP OF PARTICLES.
C
THE EVAPORATION
LI QU I D FOR EACH
CALL VAPORCRF,PI,VP,RHCP,STEP,NGROUP,WI
C
WW=o.
DO 27 1=I,NGRCUP
WW=WW + W([J*XNDPCII
27 CONTINUE
WW=WW.454./AVG~~
RA TES=WW .
EERATE=-WW
SUMFUl=SUMFUL-EfRATE
[F(SUMFUl.GE.1FUELINSPRAY=O
IF(SUMFUl.GT.TFUELJRATES=RATES-(SUHFUL-TFUELI
DIVI=SUMFUl/TFUfL
IF(OIV[.GE.O.qq~qINSPRAY=O

-------
FORTRAN IV G LEVEL

0038
0039
0040
0041
19
SPRAY
0042
0043
0044
0045
0046
0047
0048
NT=NT+1
IF(RATES.LT.1.)~SFRA~=0
PRINT 30
30 FORMAT(/2X,'PARTICLE RADIUS PARTICLE SURFACE EVAPORATION
1ITY FUNCTIu~ PARTICLE ~ELOCITY NO. OF GROUPS'/)
DO 50 I::1,~GRQUF
RII)=RF(IJ.30.4SE4
PRINT 31,R(I),VP,WW,~G~OUP
31 FORMAT(lX,3E17.7,7X,I3J
50 :ONTINUE
RE TURN
END
PAGE 0003
RATE DENS
I
N
N
W

-------
19
PAGE 0001
\loA fOR
FORTRAN tVG LEVEL
0001
0002
0003
0004
0005
0006

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
SUBROUTINE VAPOR(RfgPI,VP,RHOPoSTEP,NGROUP,Wa
C
C
C
THIS SUBROUTINE CALCULATES THE VAPORIZATION OF FUEL OIL DROPLETS

COM~ON /IJ/ ~~Pf
DIMENSION DElTA(lCa, Dd10Dg ONEW(lOa, RFdl0a, we loa
COMMON/BB/TIME
PRtNT 50
50 FOR~AT (2Xo 'NGROUpOg 5Jt, oDD, lOX, 'DNEW', 10)(, 'DELTA'o 10)(,
1 o~e, 12)(, 'EVAP'D
400 CONTINUE
X1=VAPF
DEL T=STEPI\IP
TIME=TIME .. DEL T
GROUP5=VAPFHUIE
DO 200 I = 1,NGRCUP
D(U=RF(II$2.
C
C
C
CALCULATE NEW DIAMETER

ARG = 0111..2 - GROUPS
IF CARG .LE. 0001 'RG=loE-~O
DNEWCII = SQRTC'RGJ
C
C
C
C
C
C
CALCULATE CHANGES IN SURfACE
DELTA(II=PI.D(II..2
. I
N
N
-l>-
CALCULATE TOTAL LBS EVAPORATED
W(II = RHCP . CFI/6) . CO(la..3 - DNEW(II..31
C
C
C
C
C
C
C
CALCULATE VAPORIZATICN fLUX
EVAPCII=W(IJ/OELTACII/OELT
PR INT RESULTS

RF( II=ONEWCI I 12.
PRINT 100, 1,0(1 I ,DNEW( II ,DELTA(II ,WCI I
100 FORMAT C 4X, 12, 5CIX, E12.5.J
200 CONTINUE
RETURN
END

-------
FORTRAN IV G LEVEL

0001
0002
0003
0004
0005
0006
0001
0008
0009
0010
0011
0012
0013
0014
a015
0016
0011
C
c****
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
(
C
C
C
C
C
c****
C
C
C
C
C
C
C
19
PCLUT
P4GE 0001
SUBROUTINE PClUTIP,T,GGLD,G,YNOlO,STEP,A,YN2,Y02,YNO,YNOEQ,SS)
DOUBLE PRECISIC~ GNE,T~G,FOUR,AAA,CCC,OELTAA,YYNOl,YYN02,XXSQR
DOUBLE PRECISICN VLUHE,GG, AA4,AA2,YY02,GGOlD,YYNOLD,AA3,AA1,
1 YYN2,XDSG2,APRHE,ePRME,CPRHE,SSS
DOUBLE PRECISICN G~OUP1,GROUP3,GROUP4,GROUP5,rNODT,YYNO,YY02EQ,
1 AA5,AA6,AA1,YYOH,YYH,GROUP6
CCMHON/CD/~C2EQ
COMHON/EF/IEST1,KI~JEC,KPASSS
CCMMON/KDATA/IABLE(10,3),~ODEl,NMAXl

THIS SUBROUTI~E (CMPUTES THE MOLE FRACTION OF NITROGEN OXICE ****
A=AREA OF FlC~IFT**2J
G=MGlAR FlO~ RATE OF GASES I~OlES/SEC)
GOlD= ~OlAR FlO~ RATE GF GASES IN PREVIOUS SLICE
YNO=MOLE FRACTI(~ o~ NG
YNOEQ=EQUILIBRIUM ~GlE FRACTION
YNOlO=MOlE FRACTICN (F NO IN PREVIOUS STEP
Y02=MOlE FRACTI(N OF OXYGEN
YN2=MOLE FRACTI(N OF ~ITROGEN
P=PRESSURE(PSIAJ
T=TEMPERATUREICK)
STEP=INTEGRATIO~ S1F.P SIZE(IN FEET)
SS=DISTANCE F~O~ THE l~lETIFEET)
VLOCT=VElOCIIY CF GAS(FT/SEC)
Y02EQ=EQUIlIBRIUH HClE FRACTION OF OXYGEN
XKO=EQUIlIBRIU~ OXYGE~ DISSOCIATION CONSTANT
IFIKPASSS.EQ.1)GO TO 1
IFIKINJEC.EQ.O.ANC.Y02.lT.Y02EQ)Y02=Y02EQ
1 RR=1206.28
~
~
~
RR=1206.28ICM.*3-PSI/(OK-GM-MOlE))
R=1.981
R=1.981(CAlORIES/(GM-MClE-OK))
PRT=P/(RR*T) .
PRT25=PRT*.2.500
COMPUTE THE ~CLE FRACTION OF NO
GOlD*YNOlD - G.YNO +A*STEP*RATE OF NO = 0
THE ABOVE EXPRESSICN IS ThE DIFFERENTIAL
MASS BALANCE CN NO
XKO=25.*EXP(-118600./(R*TJJ
RT=R*T
C
C-------- LEEDS DATA
C
XK3=1.36E14.EXP(-15400./IR*T))
XK4=3.1E13.EXPI-334./IR.TJJ

-------
FORTRAN IV G LEVEl
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0021 
 C
 C
 C
 C
 C
 C
0028 
0029 
 C
 C
 C
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0031 
0038 
0039 
0040 
 C
 C
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
 C
 C
 C
 C
 C
 C
 C
0049 
0050 
0051 
0052 
19
PCLUT
PAGE 0002
XK5=6Q43E9~T*EXP(-6250./(R.T3D
XK6=1.55E901*EXP(-38640./(R*TJ)
Al=2.*SQRT(XKO).X~3*XK5*PRTZ5
AZ=2.*SQRT(XKO)*XK4*XK6*PRT25
A 3=XK5*PR T
A4=XK4*PRT
AA 1=.\1
AAZ=A2
AA3';A3
AA4=A4

THE ABOVE CtNSTAN1S WERE TAKEN FROM THE THIRD
MONTHLY REPORT TO NAPCA---'SYSTEMS STUDY OF
NITROGEN OXIDE CtNTROL METHODS FOR STATIONARY
SOURCES--'PHASe II----CONTRACT CPA 10-QO,9/10/10.
VOLUME=A*STEP*28320.
VLUME::VOLUME
THE FACTOR 28320. IS TO CONVERT FROM CM**3 TO FT*.3.
GG=G
YY02=Y02
GGOLD=GOLD
YVNOLD=YNOLD
YYN2=YN2
XDSOZ=DSQRT(YY02)
GROUPl=AAl*YYN2*YY02*XDS02
GROUP3=AA3*'V'Y02 . .
APRME=- (GG*U4 + \lLUMe*AA2*XDS02)
. BPRME=GGOLD*YVNCiLD*AA4-GG*GROUP3
CPRME=GGOLO*YYNoLD*GROUP3 + VLUME*G~OUP1
N
N
0\
INCLUDED
WHEN HODEL=2 THE CH REACTION IS
IF(MODEL~NE.2)GO TO 10
A5=2.*SQRTIXKO)*XK3*XK1*PRT25
PRT3=PRT*PRT*PRT
A6=XK4*XK8*PPT3
A 7=XK7*PRT
AA5=A5
AA6=A6
AA7::A7

INTERPOLATE FOR MOLE FRACTION OF OH AND H.
TABLE(KPOINT,l)=TEMPERATURE VECTOR
TABLE(KPOI~T,2)=OH CGNCENTRATION VECTOR
TABLE(KPOI~T,3)=H CONCENTRATION VECTOR
CALLINTRPL(T,TABLE(1,1),TABLEI1,Z),NHAX1,YOH)
YYOH=YOH
CALL INTRPL(T,TABLE(1,1),TABLE(l,3),NMAXl,YH)
YYH=YH

-------
FORTRAN IV G lEVEL
0053
0054
0055
0056
0051
0058
0059
0060
0061
0062
0063
0064
0065
0066
0061
0068
0069
0010
0011
0072
0073
. 0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
19
PClUT
PAGE 0003
C
C
USE SUBROUTINE INTERPelATE
YYOH=YOH AND YYH=YH
GROUP4=VLUME*AA6*YYH
GROUP5= AA7*YYOH
GROUP6=VlUME*AA5*YYN2*YYOH*XDS02
APRME=APRME + GROUP4
BPRME=BPRME -GG*GROUP5
ePR~E=CPRME +GRCUP6 +GGOlO*YYNOlD*GROUP5
10 AAA=APRME/BFR~E
ecc =CPR ME / BP""E
VlOCT=G/PRT/2e320./A
ONE=1.0000000
TWO=2.000000C
FOUR=4.000COOO
DELTAA=FCUR*AAA*CCC
XXSQR=DSQRTCCNE-OElTAAJ
YYN01=C-CNE+XXSQRJ/CTWO*AAAJ
YYN02=C-CNE-XXSQRJ/CTkC*AAAI
C
C---------FIND VALID ~OOT
C
IFCYYN01.GE.C..AND.YYN01.LT.1.JYYNO=YYN01
IF(YYN02.GE.0..ANO.YYN02.LT.1.JYYNC=YYN02
YNO=YYNO
C
C
C---------CORRECT OXYGEN CCNCENTRATION BY
C CONSUMED BY ThE NITROGEN OXYGEN
C
C
C
C
SUBTRACTING AMOUNT
REACTION.
N
N
...
ONOOT=GENERATION RATE OF NITROGEN OXIOECGM-MOlES/CM*.3-SECJ
2 YNOEQ= 4.6S*EXPC-21100./CR*TJJ*CYN2.*0.5J*CY02**0.5J
IFCSS.EQ.O.JTIME=O.
DlTIME=STEP/VlCCT
TIME=TIME+DlTIME
IFCSS.LT.TEST1JRETURN
DNODT=CGROUP1-AA2*YYNO..Z*XDS02J/CGROUP3+AA4*VVNOJ
IFCKPASSS.EQ.OJGO TO 3
IFCKINJEC.EO.1JY02EQ=YC2
IFCKINJEC.EO.1JYY02EQ=Y02EQ
IFCKINJEC.EO.1JKINJEC=O
YY02EQ=YY02EO-DNODT*VLUME/GG/2.
Y02EQ=VY02EO
Y02=Y02EQ
RET~N
3 CONTINUE
IFCYOZEQ.EQ.C.JV02EQ=YC2
YY02=Y02EQ
YY02=YY02-DNODT*VLUHE/GG/2.
IFCYY02.LT.0.JYY02=0.
Y02EQ=YY02
Y02=YY02

-------
FORTRAN IV G LEVEL

0093
0094
19
POlUT
PAGE 0004
RET\.J~N
END
N
N
CD
I

-------
D.3
- 229 -
Sample Output

-------
COMBUSTION/POL LUTION MODEL-- I4G~6 Oo5$fU 105) oFR( 095) .RU .10 hRRt 010) 0
DECK 3347
INPUT SUMMARY
***.**.....*.*..**.*.....*
CARD 1 - OPTIONS
o WALL TEMPERATURE PROFILE NOT SPECIFIED
2 GAS TEMPERATURE' PROFILE COMPlTED FR~M OR
o HEAT FLUX PROFILE NOT SPECIFIED
o NO. OF SECONDARY INJECUON PIS.

CARD 2 - STOICHIOMETRIC COEFFICIENTS (fLEL COMBUSTIO~)
-----------~------
1.000
1.500
1.000
2.000
fUel COEfFICIEtH
02 COEfFICIENT
CO COEFFICIENT
H20 COEFFICIENT
CARD 3 - PHYSICAL CONDITIONS OF INLET GAS MIXTURE
-------------------------------------------------
*. FUEL LEAN ..
-----
5498.012 FLOW RATE (G-MOLES/SEC)
533.000 TEMPERATURE (K J
14.100 PRESSURE(PSIA)
0.0 ADIABATIC FLAME TEMPERATURE AT INLET (KJ
*. FUEL RICH ..
------
5021.se~ FLOW RATE CG-MOLES/SECJ
533.000 TEMPERATURE (KJ
14.100 PRESSURECPSIAJ .
0.0 ADIABATIC FLAME TE~PERATURE AT INLET CK)
CARO 4 - INLET GAS COMPOSITION
------------------------------
.. FUel LEAN ..
-------
0.191 MOLE
0.0 . MOLE
0.CS1 MOLE
0.0 MOLE
0.0 MOLE
0.118 MOLE
0.0 MOLE
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
OF 02
GF C02
OF FLEl
OF CO
OF H20
OF t\2
OF NO
.. FUEL RICH ..
------
0.189 MOLE FRACTION OF 02
0.0 MOLE FRACTION (F C02
LEEDS OAT A
N
W
o
I

-------
0.100 MO~E
C. ( /1OLE
0.0 MOLE
0.711 MOLE
0.0 MOLE
FRACTION CF FLtL
FRACTICN OF CO
FRACT ION OF H20
FRAC T ION OF t\2
FRACTION CF NO
CARD 7 - KINETIC RATE CCt\STANTS fUR fLEl CGMBLSTION
---------------------------------------------------
0.47E 16
56600.000
0.500
1.000
C.500
FREQUENCY FACTOR
ACTIVATION ENERGY
02 EXPONENT
FUEL EXPONENT
H20 E XPCNE N T
CARD 8 - KINETIC RATf CONSTANTS FOK CO CO~6LSTION
-------------------------------------------------
0.18E 11
25000.(00
0.500
1.000
0.5CC
FREQUENCY FACTCR
ACTIVATION ENERGY
02 EXPONENT
CO EXPCNENT
H20 EXPONENT
CARD 9.5 - QUENCH RATE CONSTANTS
--------------------------------
-1893.000 FIRST COEFFICIENT
2.622 SECOND COEffiCIENT
-0.001 THIRD COEFFICIENT
QUADRATIC RATE TO BE LSED
(ARD 10 - COMBLSTOR PROFILES
----------------------------
DISTANCE
(FEET I
CROSS-SECTICNAL AKtA
(FT 2)
PERIMETER
(HETI
-----
------
0.0
50.000
13~C.(CC
132(.(((
145.200
145.200
CARD 11 - COMBUSTOR LENGTH AND PRINCLI It\lERVAL
-----------------------------------------------
4C.020 REACTOR LENGTH (FEETI
0.200 PRINTOLI INTER\AL (FEEII
0.C20INTEG~ATION INTERvAL (fEEl).

CARD 12 - ~EAT OF REACTION AT 2~EK
----------------------------------
-124.118 hEAT OF REACTICN FCR fUEL CO~dLSTICN
-67.l36 HEAT OF KEACTICN FCR LG C(~BLSIICt\
CARD 13 - rEAT CAPACITY DATA fOR fLtl (298K TO 1200KI
-----------------------------------------------------
WAll TEMPERATURE
( KI
0.0
0.0
11 NO. Of HEAT CAPACITY CATA PCINIS FOR FUEL (298K TC IlOOK)
GAS TEMPERATURE
(K I
0.0
0.0
'"
w
...
H:AT flUX
(KCAL/FT2-SEC)
--------------
0.0
0.0

-------
CARD 14 - HEAT CAPACI1Y DATA POI~1S fOR fuEL (298K TC 1200KI
------------------------------------------------------------
TEMPERATURE (K)
HEAT CAPACI1V OF FIiEl (CAl/G-MOlES, K)
----------
---------------------
2S8.000
3GC.COO
400'0000
500.000
60G.000
7CO.000
80C.000
gee.000
100e.000
noo.ooo
12CO.000
8.518
8.538
9.680
11.076
12.483
13.8i3
15.041
16.157
17~1()0
18.052
18.842
CARD 15 - HEAT CAPACI1Y DATA FOR FUEL «r ) 1200KI
------------------------------------------------
18 NO. OF HEAT CAPACITY GATA PCINIS FOR FUEL (T > 1200KI
CARD 16 - hEAT CAPACI1Y DATA PCINTS f~R FLEl (T > 1200K)
.------------------------------------------------------
TEMPERATURE (K I
HEAT CAPACITY OF FlEl (CAL/G-~CLES,K)
-------
-------------------------------------
1300.000
HOG.OOO
1500.000
1600.000
170e.000.
18ce.ooo
1900.000
2000.000
2100.000
2200.000
2300.000
2400.000
2500.000.
2600.000
27((.000
28ce.coo
290C.000
300C.000
19.538
20.150
20.ba8
21.161
21.579
21.947
22.213
22.562
22.820
23.050
23.256
23.441
23.608
23.758
23.8<;14
24.018
24. 131
24.233
N
.....
N
I
FRACTION OF FUEL LEAN STREAM TRANSfERRED TG THE RICH ZONE = 0.1000E CO
FRACTION OF FUEL RICH STREAM TRANSfERRED TC THE LEAN ZONE = 0.100CE 00
FRACTION OF VOLUME IN FlEL LEAN ZONE = O.SOOOE 00

-------
COHBUSTION/POLLUTION MODEL
OUTPUT SUMMARY
............................
  ADIABATIC flAME lEMPERAT~RE FOR INLET GAS MIXTURE = 2416.81 K .     
DISTANCE fLOW RATE T G2 C02 FUel CO H20 N2 NO NOC EQ) 
1fT J' IG-MOLS/SEC J IK) ------------------------------------IMOLE FRACTION)--------------------------~--------- 
 COMPOS IT ION OF FUEL LEAN SlRE~M          
0.0 5498.  533.0 O.19C9 0.0 0.9089E-Ol 0.0 0.0 0.1182 0.0 0.0 
 COMPOSITION OF FUEL RICH STREAM          
0.0 !:022.  !:33.C 0.1891 0.0 0.9950E-Ol 0.0 0.0 0.1114 C.O 0.0 
                 N
                 \..)
 COMPOS IT ION OF FUEL LEAN SlRE~"          \..)
          I
0.2000 E-O 1 5485.  2321. O.UIOE-OI O.800lE-01 0.4418E-04 0.1l02E-01 0.1821 0.1131 0.1199E-0lt 0.4144E-D2 
 COMPOS IT lGN OF FUEL RICH STREA"          
0.2000E-Ol !:1l1.  2405. 0..2411E-C.2 0.1135E-Ol 0.1363E-04 0.2020E-Ol 0.1951 0.1048 0.1917E-04 0.2060E-D2 
 COMPOS IT ION OF FUEL LEAN STREA~          
0.4000E-Ol 5424.  2333. O.1229E-0.2 O.9021E-Ol 0.2114E-01 0.1846E-C2 o. 1841 0.1166 0.3239E-04 0.3121E-D2 
 COMPOSITION OF FUEL RICH STREAM          
O.4000E-Ol !: 13:?  23
-------
0.6000E-OI
5392.
23-310
o. 5~59E-02
0.9212E-OI
0.2002E-IO
0.5969E-03 001852
0071166
Oo~~llE-O~ 002738E-DZ
COMPOSITION OF FUEL RICH STREA~
O.6000E-OI
5155.
2389.
0.Z9Z3E-05
0.8669E-o 1
009676E-08
0.10l7E-Ol
0.1937
0.7094
0. 2089E-04
0.6980E-04
fUEL IS EXHAUSTED--PROCEEO 10 MIX WITH NO C~M8YSTIGN REACTIONS
COMPOSITION OF FUEL LEAN STREAM.         
0.8000 E-O 1 5370.. 23H. 0.'t916E-02 0.9165E-Ol 0.8627E-09 0.11t32E-02 0.1859 0.7159 0.5't6'tE-0't 0.2633E-D2 
COMPOSITION OF FUEL RICH STREAM         
0.8000 E-O 1 5177. 2383. O.5168E-03 0.8720E-Ol 0.8762E-08 0.9262E-02 0.1929. 0.7101 0. 2839E-Q't 0.9199E-D3 
COMPOSITION OF FUEL LEAN STREAM         N
        ~
             ,.
0.2200 5.Z97. Z354. O..3295E-02 0.9001E-Ol 0.3175E-08 0.1t~19E-02 0.1885 0.7138 O.1l91E-03 0.2194E-02 
COMPOSITION OF FUEL RICH STREA.M         
0.2200 5250. 2364. 0.2205E-CZ 0.8892E-Ol 0.57l'tE-08 0.621t0E-02 0.1902 0.7123 O. 1 034E- 03 0.1830E-02 
COMPOS IT ION 0 F FUEL lEAN STREA~         
0.4200 5277. 2354. 0.218ZE-OZ 0.8951tE-01 0.4610E-08 0.511t6E-02 0.1892 0.7131 0.1985E-03 0.2016E-D2 
COMPOS IT ION OF FUel RICH STREA~         
.0.4200 5210. 2355. O.2636E-C2 O.8939E-OI 0.1t872E-08 0.5406E-02 0.1895 0.71 29 O. 191t 1E- 03 0.1968E-02 
FUEL RICH AND FUel LEAN STREAM HAH MERGED

-------
0.6000 0.1055E 05 2~51. 0.2678E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7 130 0.2598E-03 0.1970E-02 
0.6200 0.1055E 05 2351. 0.2674E-02 0.8946 E-Ol 0.474lE-08 O. 5276E-0 2 0.1894 0.7130 0.2670E-03 0.196U-02 
0.8200 0.1055E 05 234f. C.2642E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7129 0.3319E-03 0.1934E-02 
1.020 0.1055E 05 2341. 0.2614E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1129 0.3869E-03 0 . 1901E-02 
1.220 (.1055E 05 2337. 0.2590E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7129 0.43it4E-03 0.1881E-02 
1.420 C.l055E 05 2332.' 0.257CE-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 O. 71 29 C.4759E-03 0.1856E-02 
1.620 0.1055E 05 2328. 0.2551E-02 0.8946E-Ol 0.4741E-08 0.5216E-02 0.1894 0.7128 0.5125E-03 0.1833E-02 
1.820 C.I055E 05 2323. C.2535E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7128 O.5451E-03 0.1810E-02 
2.020 C.l055E 05 2319. 0.2520E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1128 O.5742E-03 0.1789E-02 
2.220 0.105~E 05 23104. 0.25C7E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7128 (.6004E-03 0.1768E-02 
2.420 0.1055E 05 2~10. 0.2495E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7128 O.6240E-03 0.1748E-02 
2.620 0.1055E 05 2306. 0.2485E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7128 0.6454E-03 0.1729E-02 
2.820 0.1055E 05 2301. C.2415E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7128 0.6649E-03 0.1710E-02 
            N
3.020 0.1055E (5 22'H. 0.2466E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 O.6826E-03 0.1691E-02 ...
V1
3.220 0.105 5E 05 n93. 0.2458E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 C.6988E-03 0.1614E-02 
3.420 0.1055E C5 2288. 0.24SH-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7127 C.7137E-03 0.1656E-02 
3.620 0.1055E 05 22804. 0.2444E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 C.7272E-03 0.1639E-02 
3.820 O. 105 5E 05 228 O. O.2438E-Ol 0.8946E-01 0.474lE-08 0.5276E-02 0.1894 0.7127 0.7)97E-03 0.1623E-02 
4.020 0.1055E 05 2276. 0.2432E-02 0.8946E-Ol 0.474lE-08 0.5276E-02 0.1894 0.7127 C.7512E-03 0.1606E-02 
4.220 0.105~E 05 2211. 0.2427 E-02 0.8946E-Ol 0.474lE-08 0.5276E-02 0.1894 0.7127 C.7618E-03 0.1590E-02 
4.420 0.1055E 05 2267. 0.242ll:-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 C.7715E-03 0.1575E-02 
4.620 0.1055E 05 2263. C.2417E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 0.7805E-03 0.1560E-02 
4.820 C.l055E 05 2259. C.2413E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0 . 1 89'. 0.1127 C.7888E-03 0.1545E-02 
5.020 0.1055E 05 2255. 0.24C9E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.7127 C. 7965E-03 0.1530E-02 
5.220 0.105 5E 05 2251. 0.2406E-02 0.8946E-Ol 0.4741E-08 0.5276E-02 0.1894 0.1127 C.8036E-03 0.1515E-02 
5.420 0.1055E 05 2247. O.24C2E-02 0.8946E-Ol 0.4741E-08 0.5216E-02 0.1894 0.7127 C.8101E-03 0.1501E-02 
5.620 0.1055E 05 22~3. 0.2399E-02 0.8946E-Ol 0.474lE-08 0.5276E-02 0.1894 0.7127 0.8162E-03 0.1487E-02 
5.820 0.1055E 05 2239. o. 2.3'>13 E-02  0.8946E-Ol O.474lE-08 O. 5216E-02 0.1894 0.7127 C.8219E-03 0.1473E-02 
6.020 O.1055E 05 223~. 0.23C;4E-02 0.8946E-01 0.4741E-08 0.5276E-02 0.1894 0.7127 C.8271E-03 0.1460E-02 

-------
6.220 0.1055E 05 2231. O.2391E-02 0.8946E-Ol 0.4741E-08 0.S276E-02 0 .189~ 0.7127 008320E-03! 00 1!.~IE-OZ 
6.420 O. 1055E 05 2227. 0023 89E-.02 0.8946E-Ol 0.~7ItlE-08 00S216f-02 00 1894 007Jl21 00 831t05E-031 Ooll~3I3IIE-ol 
60620 0.1055E 05 2223. 002387E-02 008946E-01 00414lE-08 0.5276f-02 001894 007127 .00 8~O~E-031 00 Jl'!>201E-GZ 
6.820 C.I055E 05 2219. 002385E~0l 0.8946E-Ol 0.47411;-08 0.. 5276e-:-02 001894. 007127 00 844 5E- 03 O. 1407E-OZ 
7.020 O. 1055E 05 2215. 0.2383f-02 008946E-oi 0.4741E-08 0.5216e-:.02 . 0.1894 0..1127 0. 8'+81E-03 0.1395E-02 
102-20 C .1055E 05 2211. 002382E-02 008946E-01 0.471tiE-08 0.521~02 ,0.1894 0.1121 0.8515E-Q3 0.1382E-oZ 
1.420 C.U55E 05 2207. 002380E...,.02 0.8946E-Ol 0.4141E-08 0.5216E-02 0..i89.4 0.1121 0. 8546E-03 0.1370E-G2 
1.620 O.1055E 05 22C4. 0.23 79E-02 . 0.8946E-Ol 0.4141E-08 0.5?16E-02 0.1894 0.1121 O. 8515E-03 0.1358E-G2 
1.820 C.I055E 05 22000 0.2311E-02 0.8946E-Ol 0.4741E-08 0.5216E-02 0..1894 0.7127 C. 8602E-03 O.1346E-02 
8.020 O.1055E 05 2196. 0.2316E...,.02 008946E-01 0.4HlE-0~ 0.5216E-02 0.1894 007121 0.8621E-03 o.13ne-Gz 
8.220 0.1055E 05 21920 0.237SE-az 0.8946E-Ol 0.4i41E-08 0.5216e-;.02 0.1894 0.1126 0.8650E-03 O.1322E-02 
8.420 C .1055E 05 2188. 0.2314E-02 0.8946E-Ol 0.41UE-08 0.5216E-02 O. 1894 0.1126 0.8612E-03 O.13l1E-oZ 
8.620 0.1055E 05 2185. 0.23 73E-02 0.8946E,...01 0.4141E-08 0.5216E-02 0.1894 O~ 1126 0.8692E-03 0.1299E-G2 
8.820 o. 105 5E 05 2181. 0.2312E-02 0.8946E-Ol 0.4141E-08 0.5216E-02 0.1894 0.1126 0.81l0E-03 0.1288E-GZ 
9.020 G .1055E 05 2111. 0.2JllE-02 0.8946E-ol 0.474lE-08 0..5216E-02 0.1894 0.1126 0.8128E-03 0.1211E-02 N
    ..~
9.220 0.1055E 05 2114. O..i!:nOE~02 O.894.6E-Ol 0.4141E-08 0.5216E-02 O. 1894 0.1126 0.8144E-03 0..1266E-02 
9.420 (j .10 55E 05 2110. 0.2369E-02 0.8946 E-Ol 0.414lE-08 0.5216~02 0.1894 0.1l26 O. 8759E-03 0.1255E-G2 
9.620 (; .1055E 05 2166. 0.2369E-02 0.8946E-Ol 0.4141E-08 O. 5276E-02 0.1894 0.1126 0. 8112E-03 0.1245E-02 
9.820 c . 105 5E 05 2163. 0.2368E-02 0.8946E-Ol 0.414lE-08 0.S216~02 O. 1894 0.1l26 O.8185E-03 0.1234E-G2 
10.02 ().1055E 05 2159. 0.2J68E-02 0.8946E-01 0.4141E-08 0.5216E-02 0.1894 0.7126 O. 8191E-03 0.1223E-oZ 
. 10. Z 2 C.I055E 05 2156. 0.2361E-02 0.8946E-01 0.4141E-08 0.5216E-02 0.1894 0.1l26 C.8808E-03 O.1213E-02 
10.42 C.I055E C5 2152. O.2366E-02 O.8946E-Ol 0.4741E-08 0.5216E-02 0.1894 0.7126 O.8818E-03 0.1203E-02 
10.62 C .1055E 05 2149. 0.2366E-02 0.8946E-Ol 0.4141E-08 O. 5276E-02 0.1894 0.1126 O. 882 8E-03 0.1l93e;-o2 
10.82 C.I055E 05 2145. O.2366E-Ol 0.8946E-Ol 0.4141E-08 0.5216E-02 0.1894 0.1126 0.8837E-03 0.1183E-02 
11.02 (; .1055E 05 214~. 0.l365E-02 0.8946E-Ol 0.4141E-08 0.5216E-02 0.1894 0.1126 O. 8845E-03 0.1l73E-G2 
11.22 C. .1055E 05 2138. 0.2365E-02 0.8946E-Ol 0.4741E-08 O. 5216E-0 2 0.1894 0.1126 0.8852E-03 0.1l63E-G2 
11.42 (.1055E C5 2135. O.2364E-Ol 0.8946E-Ol 0.4141E-08 0.5276E-C2 O. 1894 0.1126 0.8859E-03 0.1l53E-02 
11.62 C. .1055E 05 21~ 1. O.2364E-02 0.8946E-Ol 0.414lE-08 0.5216E-02 0.1894 0.7126 C.8866E-03 0.1l44E-G2 
11.82 C..l055E 05 2128. O.2364E-OZ 0.8946E-Ol 0.4741E-08 0.5216E-02 0.1894 0.7126 0.8872E-03 0.1l34E-G2 
12.02 C.I055E C5 2124. 0..2364E-02 0.8946E-01 0.474lE-08 0.5276E-02 0.1894 0.1126 0. 8871E-03 0 .1l25E-02 
12.22 - .C.T055E C5 - - 2121. 0.. 23 63 E- 02 0.-S946E-Ol 0.4141E-08 0.5216E-02 0.1894 0.7126 O.8882E-03 O.I116E-02 

-------
- 237 -.
APPENDIX E
ILLUSTRATIVE PHOTOGRAPHS OF
LABORATORY COMBUSTION 'EQuipMENT 
,
.
," ,',

-------
I ~J
. I
~
N
W
00
I

-------
- 239 -
FIGURE E-2
THE MULTI BURNER
1
.
t
I
~

.
~~
,~
Jt
::r
'" \
I
~'.~~~- '
"'.' ,.....,,1o;~t1-.
"". .... ,',:;.
fK. '-'.'.'.""."/ '.
.~'-.. -.><
,- ~~~<.'..
tt,
.,
---<:1C';l..,;J!
--
--
-- -

-------
 Security Classification-This Pa\!e                    
         DOCUMENT CONTROL DATA - R & D         
 (Security c/...lfleetlon ot ""., body 01 _bal,ee, 8nd Ind..'n, "'"01.,/011 tnU8' IN ent.red ..It.n tit. 0""'." report I. c/...III.d) 
1. O"IGINATtNG ACTIVITY rColpo,.,. author)          a.. IIIIIEPOIIIIIT IKCU". TY CLA... ~IC A TIO... 
Esso Research and Engineering Company           Unclassified   
Government Research Laboratory          a". GROUP N/A     
Linden. New Jersey  07036                      
:t. AEPO"T TITLE                            
Laboratory Studies and Mathematical Modeling of NO Formation in Combustion Processes
            x           
                    /         
... oŁ,C".PTIVI: NOTEI (TYpe 01 tepoll end Inc/u.'v. det..)                  
Final ReDort. June 1 1970 to Jul v 31. 1971               
e. AU THO"I'» (PI,., ne...., mlddl. ,"",." ,.., n8m.)                    
William Bartok, Victor S. Engleman and Eduardo  G. del Valle        
o. AI[POIIIIT DATil              18. TOTAL NO. O~ PAGEl  1'''' NO. OF REF.  
December.31, 1971             147      
.... CONTRACT 0" GAANT NO.           N. ORIGINATOR" REPORT NU_E:R'"     
CPA 70-90               GRU.3GNOS.71         
". PROJEC T NO.                            
C.                8". OTHER REPORT NO(II (Any 0111.. n__.. 1II"lft8y ". ...,,,..d
                 1111. ..port)           
d.                              
10. OIIT".8UTION STATEMENT                         
   Approved for Public Re lease, Distribution Unlimited.       
It. IUPPLEMI[NT."Y NOTE'           12.-Sponsoring ActiVity     
                 Office of Air Programs of    
                 the Environmental Protection Agency 
13, A8,T"ACT                             
   This report summarizes the findings in the laboratory studies and   
mathematical modeling portions of Phase II  of a "Systems Study of Nitrogen Oxide 
Control Methods for  Stationary Sources" (Contract CPA 70-90). Laboratory  studies 
were conducted to investigate the basic factors aU ec ting nitrogen oxide formation in
the combustion of fossil fuels.  A j et-s.tirred  combustor and a multiburner (so-named
because of its ability to burn gas, oil or  pulverized coal fuels) were used in these
studies.  The first-generation model of NO  formation and decomposition in combustion
     extended.        x               
processes was                       
   The jet stirred combustor was used to study NO emissions from combustion
under kinetically limited conditions.  The  key findings ~f these studies with the 
jet-stirred combustor are as follows:                  
 " At the very  short residence times prevailing in the jet-stirred combustor (on
  the order of 2 msec), substantial quantities of NOx are formed with methane as
  the fuel, under stoichiometric and  excess air firing conditions.  (In fact,
  peak NO concentrations have been measured und er slightly fuel rich conditions.
     x                    
  The NOx concentrations measured exceed  those based on the Zeldovich mechanism
  in many cases by more than an order of magnitude, indicating that  coupling 
  occurs between NOx formation and combustion kinetics.        
                           (Continued) 
E3S0
-241-
Unclassified
(!ss~
1473

-------
-242-
ABSTRACT (Conti~ued)
~
With carbon monoxide as the fuel, the NO emissions from the jet-
.. x
stirred combustor are very similar to. those obtained with methane
fuel, at equivalent mixture ratios and slightly higher temperatures.
(9
With hydrogen as the fuel, the NO emissions are reduced to much
x
lower levels at all mixture ratios compared with methane at the
same temperatures. Good circumstantial evidence for the coupling
between NOx and combustion kinetics has been obtained in experiments ..
in which methane or carbon monoxide was mixed with the hydrogen fuel.
In the presence of small amounts of these gases, the NO concentra-
. x
tions measured ~ncreased when compared to the results for hydrogen
at the same mixture ratio.
"
Under fuel rich conditions, the amount of NOx drops off precipitiously
in the jet-stirred combustor. This finding provides support for the
optimized design of the two-stage combustion technique for NO
x
emission control from combustion sources.
.
All of the "bond-type" additives (NO, N02' NH~ and (CN)2 and
CH3NH2) result in nearly equivalent NOx emiss~ons, operating
the jet-stirred combustor with excess air. The conversion
between additive input and NOx output is constant as the addi-
tive level is increased up to 3000 ppm equivalent NO .
x
(Slight falloff was noted for (CN)2 above 3000 ppm.)
.
The fraction of N-bond additives oxidized to NO is
sharply decreased on the fuel-rich side. This finding
is of practical significance, because of the potential
of fuel-rich combustion followed by second-stage air
injection to conttol NO emissions from both atmospheric
N2-fixation and fuel ni~rogen oxidation.
Preliminary experiments were performed with the multiburner
which indicated the influence of heat losses and residence time on NOx .
emissions in combustion of methane/air. The multiburner has also been used
as a rudimentary flow reactor for the formation of nitrogen oxides in air
at high temperatures.
The mathematical model has been extended to allow calculations
of NO formation under fuel-rich conditions. Particle combustion capability
has been incorporated into the model and mixing effects can be handled with
the macro-mixing option. This latter feature allows consideration of such
combustion modifications as off-stoichiometric combustion. Test cases have
been run for the above options which indicate the correct order of magnitude
predictions and the correct directional effect of modifications.

-------