5460
Babcock&Wilcox
ADDITIVE INJECTION FOR
SULFUR DIOXIDE CONTROL
A PILOT PLANT STUDY
RESEARCH AND DEVELOPMENT DIVISION
RESEARCH CENTER ALLIANCE, OHIO
-------
ADDITIVE INJECTION FOR SULFUR DIOXIDE CONTROL
A PILOT.PLANr- STUDY
PROJECT SPONSORED. BY NATIONAL AIR POLLUTION .CONTROL ADMINISTRATION
DEPARTMENT OF HEALlli, EDUCATION, AND WELFARE
ORDER 4078-01
RESEARCH CENTER REPORT 5460
. BY: R. C. ATTIG
P. SEDOR
MARCH 27, 1970
CONTRACT PH86-67-127
. .
THE BABCOCK & WILCOX COMPANY
RESEARCH AND DEVE LOPMENT. DIVISION
RESEARCH CENTER
AL~IANCE, OHIO
COPY NO.
-------
, . ~ . .1 . .
THE BABCOCK & WILCOX CavtPANY
RESEARCH & D~LOPMENT DIVISION
RESEARCH CENTER
ALLIANCE, OHIO
ADDITIVE INJECTION FOR SULFUR DIOXIDE CONTROL
A PILOT PLANT STUDY
By: R. C. Attig
P. SEDOR
ABSTRACT
This report presents the results obtained from a research program sponsored
by the National Air Pollution Control Administration on a method for controlling
air pollution caused. by sulfur dioxide. A small pilot plant that burns pulver-
ized coal wCl?t.used to evaluate a dry limestone injection process for achieving
the. desired pollution control.. . .
More. than 400 tests were performed with over 100 different limestones or
dolomitic-type additives .to evaluate their effectiveness for reducing sulfur
dioxide emission under a variety of test conditions. Some of the major variables
studied include temperature at the point of additive injection, residence time
of the additive in the reactive zone, additive/sulfur ratio, additive surface
area .and chemical form of the additive. The effects of the additives on ash
deposition and fly ash resistivity were also studied. .
Average S02 desulfurization values of about 20% to 40% are obtained at
practical additlve injection rates of 100% to 200% of stoichiometric. There-
fore, the process is considered only as a stopgap measure when applied as
t~e sole means for removing S02 from flue gas. U~der certain cond~t~ons addi-
tlves.can produce or aggravate furnace-wall slagglllg and ash deposltlon prob- .
lems. Electrical resistivity of reacted additive-fly ash products is increased
to values above lOll ohm-em.. This will decrease performance of electrostatic
precipi tators and in order to maintain the same dust loading as that which.
exists without. additive injection, the size of the precipitator will have to be .
increased to. about 2.5 times.
Research Center Report 5460
Order 4078-01
March 27,1970
Additive Injection for Sulfur Dioxide Control
Project Sponsored by National Air Pollution
Control Administration
1
-------
, .> I~ ".."
, ' . .
, r . ",:': . .". '< '., i.'~"
THE BABCOCK & WILCOX COMPANY
Research & Development Division
Alliance, Ohio.
ADDITIVE .INJECTION FOR SULFUR DIOXIDE CONTROL
A PILOT PLANT SWDY.
By: R. C. Attig
P. Sedor'
SUMMARY,
. The National Air Pollution Control .Administration issponsori~g a variety
ofresearchprograms:to find or develop acceptable and. economic. methods for
controlling air pollution caused. by sulfur dioxide e~ssions. from the .stacks'
of fossil fu~l fired boilers. One ofthes~ metl:1ods.consists of injecting pub'
veri zed calcium or magnesium based addi ti ves, such as lime.stones or dolomites,
directly into the hot flu~ gases of the boiler furnace. The gaseous sulfur di-'
oxide reacts with the dispersed additive and forms a solid sulfur compound that
can be separated from the flue gases by the use of electrostatic precipitators
. .
or mechanical dust collectors.
This report presents the results obtained from 415 tests that were run on
a pilot plant firing pulverized coals. The test~ were run to determine the
extent of sulfur dioxide reduction that could be achieved. with .129 different
additives. Some of the major variables studied include temperature at the
pOInt of additive injection, residence time of the additiye in the reactive
zone, additive/sulfur ratio, additive surface area (particle size) and the chem-
ical form of the additiye (i.e., carbonate, oxide or hydrate). Seven coals were
tested to. evaluate . the effect of sulfur content. of coal and coal ash composition.
Other factors ,that were evaluated during this study include the effects of additive
injection on furnac~ slagging, tube fouling and. fly ash.resist:i,vity with regard
to electrostatic precipitator performance.
Marl; a kind of limestone, was the most effective type of additive tested
undermost conditions. For example, a MiChigan marl r~moved 44% of the S02.when
injected at 110% of stoichiometric into the furnace (~2700F) while firing coal'
at.a rate to give an overall flue gas residence time .in the pilot plant of 4.1
seconds. This same addItive ,removed 71% of the SQ2when injected at 380% .of
stoich:i,ometric .intofluegas temperatures 0; 2300F with shorter resideD:ce ti~es,
\
near 2 seconds.
11. .
-------
SUMMARY (Cont'd) ,
In general, raw limestones and dolomites were most effective when they
were injected into the pilot plant at points corresponding to mid- and
upper-furnace regions of full scale steam generaiors. This behavior appeared
in part to be an effect of gas temperature, but particle residence time was
probably , the most important factor. Feeding the raw additives with coal or
injecting it,upstream of the combustion zone resulted in very poor performance,
indicating that dead burning took place under these conditions.
Hydrated stones were slightly more effective than their parent raw.mate-
rial, particularly at lower (~1900F) injection temperatures, but not to the
extent. that it would justify the cost of processing the additives. Calcining
thestones~in most cases decreased. effectiveness of the additives. .
Increasing additive specific surface area tq qbout 2000 cm2/g, or slightly
. higher, . improved additive performance to a maxJJ;nWl},' LCj.rger surface areas gave
.nq further. improvement, and in'sqJ11e cases. the 9mgunt of 802 removal was actu-
ally decreased, probably due to agglomeration of very fine particles.
For the seven coals tested, additive perfo~qnce was. a function of sulfur
~ontent.ofthe,fuel,i.e., additive performance improved with higher 802 vapor
pressures. For instance, a dolomite removed 160 ppm (13%) of the 802 for a
low-sulfur (0.73%) lignite and 3500 ppm (35%) of the 802 for an extremely high
sulfur (13.2%) Missouri bituminous coal.
. Decreasing excess air reduced the ampuqt of 802 removed by the additives.
- For example, with 15% excess air, a limesto~e removed 15% of the 802' whereas
, it removed only 4% of the 802 when the excess ,combustion air was. 2%.
,: ",..' . . ,The report gives detail on these findin&s and discusses the effect of
,': . ... other less significant variables. The factors to be considered in extrapo-
~ .~~tingthese data to full scale equipment are also presented.
In the study of ash deposition, the results inqicate that general state-
ments concerning the effects of.additive on furnace wall slagging and tube
bank fouling would be misleading. The techniques used to evaluate the effect
of additives on deposition and other considerations indicated that several
factors are. important.
1. Co~l ash composition
2. Additive/ash ratio
3.. Method of,additive injection
iii
-------
.. .;.$UMMARY. (ConUd) ". .
4. Location of injection ports
5 . Degree of mixing of addi ti ve and ash
MJst.of our tests did indicate that mixing additives with coal ash.at
about one times stoichiometric for S02 control would reduce fusion temper- .
atures 'which might. result in plastic or liquid slag at lower gas temperatures..
At .t~o times stoichiometric, the fusion temperatures were usually higher, and
molten or plastic -slag would be confined to very high temperature regions of
the furnace,.
Tube -bankdeppsits will be more easily removed by normal soot blower
operation ~for' nearly all coal ashes when additives are injected, and in most
cases ,dolomites will be more. effective than limestones in reducing deposit
strength.
The larger dust loading will place a greater burden on, soot blowers and
may lead to rapid accumulation of ash on tube banks and the floors beneath.
them. The .limestones could result in relatively hard d~posits if they are
allowed to remain exposed to the flue gases for long periods, of time due to
formation :ofhigh'calcium sulfate levels in the deposits. If deposits are
allowed.to get wet~or damp during outages (some.materials in deposits will be
hygroscopic! plaster.,like material will form, even in the low temperature
regions, of the. boilers.,
It is, strongly urged that each coal-additive combination that is considered
for commercial application be .eva1uated before any full scale tests are made
and th~t'gas-sidesurfaces be carefully inspected before, during and following
these. tests.
Resistivity measurements*'were made both in situ.in the pilot plant and
in a Researc~-Cottre1l, Inc. laboratory resistivity test. chamber. . Of .the sev-
eral hundred measurements obtained by these methods, essentially all were high
resistivity (greater than 1010 ohm-em) in the 300F' to 400F flue gas temperature,
range. :
*This work was performed by Research-Cottrell, Inc. under Subcontract
No. 596-9477-45-99. The results are presented by R. F. Brown in a report titled,
"EJetermination .of.Bulk,Electrical Resistivity Characteristics of Boiler Flue
Gas Desulfurization Additives and Their Re.action Products," dated January 19,
1970~ .
iv
-------
SUMMARY (Cont'd) ,
, 11
Based on a dust resistivity value of 10 ohm-ern or. greater, it is estimated
that the performance of an electrostatic precipitator will decrease. from the
90-95% range to the 70-75% range when operating a dry ;limestone injection
system. In order to maintain a constant outlet dust loading the size ratio
of a precipitator with and without:additive.injection 'is estimated to be, about ,
2. 5 to 1.
Ayerage S02 desulfurizationvalues of 21% and 34% are obtained at additive
inJec~ion rates of 100% and 200% of stoichiometric, respectively, for both
limestones and dolomites at gas temperatures near 2700F. The dust burden would
be markedly increased and fly as~ resistivi~y would be substantially higher.
Therefore, the dry limestone-injection process has only limited prospects as,a
stopgap measure when used as the sole method for removing S02 from flue gas.
'!' ,
. ','
. '
v
-------
",];
, ' ,
",!. ." .'. '.,1:', .,7 \: ; :~ ,
"
"
T~LE' OF CONTENfS
ABSTRACT
. .. ,. . .' .':., .
- - - - - - - - ,- T - - - - - - - ,7" - - 7" - - - 7" - - - - :- - :- -: :- -, - - -: - .;. - -,- - - - - - - - -, - - - - - - - -
SUMMARY - - - - - - - -..; -:- - -'- '- - - - - - - - - - - -:- - - - -' -,- - - - - - - - -.;..;. - -'- -'-'-'-',- - - -"- - - - --
1.0
INTRODUCTION - -, u -' - _:. - -';'u - - 7" - - - ':"- - - - - u - _:....; - - - - -'-'-- _: -- - u --'--
, '
2.0 ' EQUIPMENT - u -., -..;.:. ':':u - - -~ -- -- -:-- - - --'-:" _.:.:"_- ':'-:u~-- - --- - - - -,..-_.:._.:.
2.1 Pilot Plant ..; ~ u u u:- _u u - - u - - u_"; u:' -',':' u:' u ~ -..; _u _.: _.:. -'-
2. 2 Additive Inj ection ,System - -: T:- u u':' -'-:u -:- u - u u ~ u": -,- -- u
Page'
1
11
1-1
2-1
, 2-1,
2-S
, 2.3 , Fly Ash Resistivity Apparatus--.,--_u:'uuu~_uuuu-"':"-,., 2-6
2.3~1 In ,Situ Equipment u_uu_---";_u_,-:"-:'u_uu__u_- 2-7
2.3.2' LaQpratory ,Resistivity Apparatus u - -- -,'- -'---u -..:':'u.2-8
3 ~ 0, PROCEDURES' 7':'~' - - - u - - - u - u., u/u u u - u - -' u -..; u - u -- - -- - - - --:.--:
3.1: Coal ,Preparation ~ :.._- u -T- - ~.,:- - - -- - --------_.::--:. _.:. - -- - -'':'_:
, ':' ',' I , ,
3.2' Ad~itiyePreparation ---.,-- ~;: - -.;. - - u - - --., -- - - -- ----- ------:-
, 3.2 .1'Calcining -.,-:- _:. - - - - .,.-- - ---- - - - - -:- - - ----,---- - - - - -: -- ,
3.2; 2 Hydrating' - -' -- - _.: - - _.:.:- -- - _.:. - u u -- - - -- -- - -- - --'- .;.:. -;. ,
3.2.3 Particle Size Distribution and Specific Surface ,- --
, '
3 ~ 3 Pilot Plant Opera tfon - :. -' - :- -- - -- - - - -~ - :- -- - - - -:- --- - - - ., -- -- - - ,
3 ~ 3.1: ' Additive Inj ection _.:. - - - - -- - - - - - -..; - - - - - - - - - - - _:. - - - _:'
, '
.. , 3. 4 Resistivity Measlirement Procedures -:- _.:.- - -- ~ -- -- - - - - - - -- --
3.4.1' In ,Situ Resis,tivi ty. Measurement - - -- -- - - -- - - -- -- - --
3. 4 ~2Labora:tory Resistivity: ~easuremerit u - -- - u- - _u u,..
: . l:.
,. 3. S Additive ,Coal, cihd Ash A1)a1yses -- - -' -'- -- -:-'- ~ ---~----- -:-- ---
. 4.0 ' DISCUSSION 'OF RESULTS --':'--'--':"----------:',-':'_u_-':'-----------':',--
4.1 Reduction of'SO Concentration -- - -'- - -- .:._--:._-- - - - - - -- ----
4 .1.1 Compa~'is3n of Additives, - Genera1- - - - - - - - - - -- - - - --
4.1.2 Injection Point (F1ue,GasTemperature)--.,---_':'----'
4.1.3 Stoichiometry ,- u -., - - - - - - - - -- ------ u u_- -,-- -., - ----
4~I"4 ,Residence Time --_':'_----u_':"---,-";--'-",,---'--':'--.-':'_'--:-
4.1. S Additive Particle Size -: - ~ u - -- ---: u ----------- - ---
4.1;6 Sulfur Content',of C6a1-.;.----.,-_:_~,:,':;"':::--:.._.:._---_:..:---
4.1.7 ' Additive Chemical Form, --""-.,-----':'--------------,--"
4 ~1. 8 Excess Air _:.- -'- -- --- - -- ----, - u - --':- -- -- -- --,'- - -- - ---
4.,1.9 : Other Factors: ---~--------'-_':'--------~--------.-----
'4.1.9.1: Catalysts - - ---- - - - - -- - - -., - _':'_'--<--,-'- -_.:.- --
4.1.9.2,' Recycled Additive-------'------_u_----_u
4.1.9.3 Additive Dead Burning ---:-----------:-------
4. L 9.4 Role of Magnesium------------ - - - ---- - - ---
: '3-1
;,
(..r~-l
"3-2
, 3-?
3-2
3-3
3-3
'3-4',
~.::S
3-S
3-,6,
3-6
4-1
.4-1
4-3"
4-3
4-S"
4-8', '
4-11
4':'lS'
4-16
4-17
4-18
, 4-18-
4-19
4-20
4-21
-------
TABLE OF CONTENTS (Cont'd)
4.1.10 Additive Reactivity ------------------------------
4.2 Ash Deposition -------------------------------------------
4.2.1 Background ---------------------------------------
4.2.2 Effect of Additive Fusion Characteristics.
and Viscosity ------------------------------------
4.2.3 Effect of Additives on Fly Ash Sintered Strength -
4.3 Fly Ash Resistivity --------------------------------------
4.4 Nitrogen Oxides -----------------------------------------~
5.0 CONCLUSIONS ---------------------------------------------------
5.1 Flue Gas'Desulfurization
---------------------------------
5.2 Effect on Ash Deposition
---------------------------------
5.3 Precipitator Performance
. 5.4 Evaluation of Process Potential --------------------------
---------------------------------
6.0 RECOMMENDATIONS
7.0 ACKNOWLEDGEMENT
-----------------------------------------------
. .
-----------------------------------------------
8.0 BIBLIOGRAPHY --------------------------------------------------
APPENDIX A -ANALYTICAL METHODS AND PROCEDURES ---------------------
A.l Infrared Gas Analyzer Procedures -------------------------
A.2 Lime Slaking Apparatus and Procedure ---------------------
A.3 Procedure for Measuring Degree of Dead Burn - - -- -- - - - - - ---
A.4 Slag Viscosity Measurement - - - - -- - - -- --.-- -- - - - -- -- - - - -- - --
A.5 Fly Ash Sintered Strength Measurement --------------------
APPENDIX B - Additive Chemical Analysis ----------------------------.
APPENDIX C- Coal Analysis -,------------------------------,----------
APPENDIX D - Fly Ash - Additive Analyses ---------~-----------------
APPENDIX E - Summary of Test Conditions and Results ----------------
APPENDIX F - Ash Fusion, Viscosity and Sintered Strength Data ------
APPENDIX G - Multiple Linear Regression Analysis --~----------------
Page
4-22
4-23
4-23
4-25
4-27
4-28
4-32
5-1
5-1.
5-2
5-3
5-4
6-1
7-1
8-1
A-I
A-2
A-5
A-6
A-7
A-9
B-1
C-l
D-l
E-l
F-l
G-l
-------
Table
F.4
F.5
G.l
G..2
G.3
.GA
Figure
2.1
2.2
2.3.
- ,":-'
2.4
2.5
2.6
2.7
2.8
2.9
TABLE OF CONTENTS '.(Cont'd)
Slag Viscosity Data
-----------------------------------------
Sintered Strength Da;ta --.-- -: - -- -- - -- - - -- -- -- -- -- -- - ~'-- - - - ----
Identification Numbers of Tests Used for Regression
Analysis. # I - - - - - - - - - -:- - - - - - - - - - - - - - - - -- - -'.,;.';' - - - - - -.;. - - - - - - - -:--
Identification Numbers of Tests Used for Regression
Anal ys is. # 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' - - - - - - - - - - .;. - - - - - - .:. -
Identification Numbers.of Tests Used for Last
Regression Analysis- -- - - - -- - -- -- - - -- - - -- -- - - -- -- -- -- -- -- - - - - .
Data Used for Calculating Parameter Values ------------------
List of Figures.
Coal Fired Pilot Plant --------~------~-~--------------------
Coal Fired Pilot Plant.--------------------------------------
Sulfur Dioxide Analytical System ----------------------------
Slurry Scrubber System for NOx Reduction- - ~ - - -- -- - -- - -- - - ---
Distribution of.Additive Leaving Injection Nozzle -----------
Location of Additiye Injection Ports------------------------.
In Situ Resistivity Apparatus:- - -- - - - - -- - - - - - -- -- -- -- -- -- ----
Point-Plane Resistivity Cell --------------------------------
II
Laboratory Resistivity Measuring Apparatus .-------~----------
\1J'
2.10 Schematic Diagram of Laboratory Resistivity. .
Measuring Apparatus -----------------------------------------
2.11 . Cross-Section Diagram of. Measuring Cell Used in
Laboratory Resistivity Apparatus ----------------------------
2.12 Schematic of Electric Circuit. for Laboratory
Resistivity Apparatus -~-------------------------------------
4.1
4.2
Effect of Injection Point on S02 Removal
Effect of .Additive Injection Rate on S02 Removal
.--------------------
------------
Page
F-20
F-24
.G-3 .
G~7
G-15
G-2l
2-2
2~3
2-4
2-4
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-9
4-4
4-5
-------
Table
TABLE OF CONTENTS (Cont'd) ,
List of Tables'
3,1 J~Origin of Coals Tested --------------------------------------
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
Effect of Additive Injection Rates on SOz Removal -----------
. .. . .
Comparison of SOZ Removed at Ports 1 and C ------------------
Effect of Residence Time, ~ort A.--~-------------------------
Effect of Additi~e Surface Area on SOZRemoval at Port No. 1-
Effect of Injection Point on Desulfurization by Hydrates ----
Compa,rison of Calcined and Raw Stones - -- - -- - - -- -- - -- - - -- - - - -
Eff~ct of Excess Air ----------------------------------------
Influence of Catalysts on Additive Effectiveness at
Port 1 (~Z300F) ---------------------------------------------
Influence of Catalysts on Additive Effectiveness, ------------
4.10 Results of Tests with Recycled Additives, Port 1, - ----- -- - --
4.11 Results of Slaking Tests ------------------------------------
4.12 Effect of Additives on Fly Ash Sintered Strength ------------
4.13
In Situ and Laboratory Resistivity Measurements of Pilot.
Plant Fly Ash Samples from Various Coals ---:-----------------
4.14 Possible Reasons for Difference in Resistivity Found Between
In Situ and Laboratory Tests - ----- -- -- -- ----- - - --- ---- -- ----
4.15 Effect of Additives on NO Concentration --------------------
iX' .
B.l
C.l
D.l
E.l
F.l
F.2
F.3
Additive Chemical Analyses ----------------------------------
'Coal Analyses - - -"" - - - - - - - - - - -'- - - - - - - - - - - - - - - - - - -' - -:- - -,- - - - '" - --
Fly Ash - Additive Analyses ~-----------~--------'"-~---------
Summary of Test Conditions and Results ----------------------
Ash Fusion Temperature Data
---------------------------------
Ash Fusion Temperature Data
---------------------------------
Ash Fusion Temperature Data
---------------------------------
,Page'
3-1
4-5
4-9
4-9
4-12
4-16
4-17
4-17
4-18
4-19
4-19
4-20
4-27
4-29
4-31
4-33
B-1
C-l
D-l
E-l
F-ll
F-12
F-:13
-------
Figure
4.3
4.4
4.5
4.6
4.7
4.8
4.9
TABLE OF CONfENf.S(Cont'd} .".
Comparison ofB&W Pilot ;PlantDataand Field Data
Reported by Others ------:----~--:-,..---------------------------
Residence:Time ,and Temperature Profiles for Pilot Plant'--,..--
Effect of Residence Time on S02,Removed,PortA~2700F
Comparison of 'a' and,Residence Time, Port A (~2700F)
Particle Size Distribution (Bahco) -hhh-h_-h__h__--_--- '
-------
-------
Effect of Additive Surface Area ,on S02 Removal,--------------
Sulfur Concentration in Various Size Fractions'of.Reacted
Additive - 'Fiy Ash Mixtures - -,..' - ~ - --- -- - ~ - -- ~- - -- - - - - --~ - -'---
4.,10 ' 250X Photograph of Reacted Additive - FLy Ash Mixture, -------
4.,11 Agglomeration ,Tendencies of :A~di tives, - - - - - - - - - - - - - - - - - - - - - - - ,
4.12, Effect'ofS02 Conce~tra~ion ,on Flue Gas Desulfu~ization-----
4.13 Effect of Excess Combustion Air.on S02,Removal'----~---------
4.14 . Differential The,rmal Analysi~ ------------------'----------,---
4.15 Ash Fusion Characteristics of'a Mixtureof,Coal.Ash and
, M-2l83l Marl - --.,. - - -- -------,----- ----- - - - - - - - -- - - --- -'- - --,- - --
4.16 Viscosity - Temperature Relationship ---.--------'-------------
4.17 . Effect of Additi~es on Fly Ash Strength of Orient #3 Coal ---
4.18 Effectof,Additive,on Fly Ash Strength of Little Joe 'Coal
- --
4.19 . Resistivity of Fly Ash Samples ,from Various Coals Fired
in Pilot ,Plant ----------.------------------------------------
4.20
4..21
4.22
In Situ and:LaboratoryResistivities for Reacted Additive-
Fly Ash Mixtures'--------~-----------------------------------
In Situ ~d Laboratory ,Resistivity for Reacted Additive -
Fly Ash Mixt~res :-..:----_u_----------------------------------
In Situ and Laboratory ResistivitJes Jor Reacted Additive-
Fly Ash Mixtures --------------------------------------------
4.23 Comparison of Resistiviti~s with Gas Humidity at 400F -
Laboratory Measurements' --, - -- - -- - -- u - - - - -- - -- - - - - -- - - - -- - u-
Page
4-7,
4-8
4-10
4-10
4-12
4-13
4-13
4-14
4-14
4-'15
4-18
4-22
4-25
4-26
4-27 ,
4-27
4-30
4-30
4-30
4-30
4-31 ,
-------
Figure
4.24
4.25
.5.1
A.l
A.2
A.3
A.4
A.5
A.6
A.7
. .
F.l
F.2
F.3
F.4
F.5
F.6
F.7
F.8
F.9
F.lO
TABLE OF CONTENTS (Cont'd)
Typical Performance Graph for Conventional Single -
Stage Precipitator -------------------------------~----------
Effect of Additive on NO Concentration ---------------------
x
Expected Precipitator Performance at Shawnee Station - 300 F.
With and Without Additives ----------------------------------
Application Engineering Data for Infrared Analyzer-----------
Typical. Recorder Charts from S02 and 02 Analyses
Instruments -------------~-----------------------------------
Infrared Calibration Curve, 0-6000 ppm S02
Infrared Calibration Curve, 0-2000 ppm-S02
------------------
------------------
Schematic of Lime Slaking Test Apparatus
Apparatus Used for Dead Burn Measurement
--------------------
--------------------
Slag Viscometer ---------------------------------------------
. . .
Ash Fusion Characteristics, B-2279l Coal Ash + M-2l83l,
B-2279l Coal Ash + M-2l9ll ----------------------------------
Ash Fusion Characteristics, B-22791 Coal Ash + M-21993,
C-13167 Coal Ash + M-22337 ----------------------------------
Ash Fusion Characteristics, C-13167 Coal Ash + M-22343,
C-13273 Coal Ash + M-22343 ----------------------------------
~h Fusion Characteristics, C-13273 Coal Ash + M-22426,
C~13274 Coal Ash + M-22343 ~----------------------~~---------
Ash Fusion Characteristics, C-13274 Coal Ash + M-22426,
C-13279.. Ceal Ash + M-22343 - - -- - - -- -- -.. - - -- - - - - - - !..:~ - - -- -- - - --
Ash Fusion Characteristics, C-13279 Coal Ash + M-22426,
C-13376 Coal Ash + M-22343 -----------------------------.-----
Ash Fusion Characteristics, C-13376 Coal Ash + M-22426,
C-13378 Coal Ash + M-22343 -----------------------------.-----
Ash Fusion Characteristics, C-13378 Coal Ash + M-22426
Slag Viscosity Characteristics for B-22791, M-2l962,
M-23491 & M-22176 -------------------------------------------
-.-----
Slag Viscosity Characteristics for M-22177, M-~3492,
M-23493 & M-23494 -------------------------------------------
Page
4-32
4-33
5-3
A-2
A-3
A-3
A-4
A-5
A-6
A-7
F-3
F-4
F-5
F-6
F-7
F-8
F-9
F-10
F-14
F-15
-------
TABLE OF CONTENTS (Cont'd)
Figure
F.ll Slag Viscosity Characteristics for M-23323, C-13273,
M-23322 & C-13274 -------------------------------------------
F.12 Slag Viscosity Characteristics for M-23345, M-23344,
C;13279 & M-23347 -;-----------------------------------------
F.13 Slag Viscosity Characteristics for M-23346, M-23413,
C-13378 & C-133l9 -------------------------------------------
F.14 Slag Viscosity Characteristics for M-23349 & M-23348 --------
Page
F~16
F-17
F-18
F-19
-------
1.0
INTRODUCTION
The National Air Pollution Control Administrat~on (NAPCA) of .the
. .
Departmen1:. of Health:, Education and 'We~fare is sponsQring a nurvber 'of -re,
search programs tq.seek or develqp efficient and'ecoIlomi~al.methods for.
preven~ing ,or .col1trolling air ;.pollutioI1 ca~ed by the:. emissionof'su:1.fur .
dioxide. (S02): from, the stac~ of fossil fuel. fired boilers. ' One 'of th~ .
'metho~, being cO:nsidered:involves ,the injection ,of ca~ciuTn qr'magnesium." .,
basec} additives, such as li~stoneor dolomite,. diryct,ly intq the',hot flu~.,
gases.,.of th~ boiler f~rnace. This control m~thod: is .called"The 'Dry L~mestone"7
Inje.ction Pro~ess." The gaseous S02 reacts chemica,lly with.:the dispersed: ad~
ditive and:is.later separated ,and . removed frqm the flue gases asa solid sulfur
cornpound'by.th~ use;of an~e~ectrostatic prec.ipitator or mechanica~ dus1:.col+ectqr.
E~rly:inve~tig~t~rsl* who conducted experiment~on:the'reaction of lim~stone
and, dolomites 'in ."a fixed bed witl?- S02 insynthet;ic flue gas, observed a wide va,F-ir- :,
ation in th,e'reactivity of .th~ materialstes.ted.. In order to deternq.ne if
similar differenqes e~iste.d in.a dispersed re~ctor, (The' ~abcock, & Wilcpx Cqrnpany
under NAPCA 'contract :.PH86-67 -127, .inves.tigated,the. reaction between 502 and:
calci~-magnesium based. additives. and studie4 the ,effect of ,these add~tives on:
laboratory tes,ts' that. are 'used to l eva14ate ;.furnace. wall, slagging aJ1d. asb fou~ing.J
A subcontract was rp.war~ed- to Res e,arcb:-Cottre +1 , Inc.. tq study the. effect of
addi,tives .on .the re$istivity of ,fly ash~
The approach used in,this .~nvestig~tiof!. was. to modifyan.existing coal-
firedipilotpl~t,to.permit'injection of a~d~tiv~s into the flue gases .at one
of seve.ral ;temperatures :and measure the. effect of the, additive ,injection on 502,
con.centrat~on., The pilotplant.allqwed:evaluations of different adqitives to,
be made ~der.~onditions simila~ to ~ose,that ~xist in fu~l-scale boilers,. with
respectto.time-temperature profil~, S02-concen1:rat~on profile, gas. temperature
at ir,lj'ect,ion 'point 'and : the presence of f~y,ash in the, flue gas. The v~riables
stud~ed incluqed' flue g~ t.emperatur~ at point.of additive injection, ,.additive!
. sulfur ratio, res iden~e timeoL the additive in the, "reacti ve zone", ~ddi t:i, ve
surfaGe 'area, chemical form of the,additive:(i.e.,,' carbonate, ,oxide or hydrate), ,
exces,s .combusti0n air, ,catalysts" additive impurities : and . others. Seven dif:-
ferent; coals 'wer.e tes.ted, t0evaluate . the effect. of sulfur content and coal ash
*The numbers 'in:superscript refer;to the Bibliogr:aphy at the end of the text.
1-1 .
-------
composition on additive performance. The effect on slagging and fouling
properties of the coal ,ashes was estimated for a few of the most effective
additives by determining coal ,ash viscosity and fly ash sintered strength
for the ash and ash-additive mixtures.
This report presents the results obtained from 415 pilot plant tests
made on 129 different additives while firing seven different pulverized coals,
in the pilot plant. The major findings are presented in the main body of the
report ' while detailed test data, chemical analyses, sintered strengths of ashes,
viscosities and minor results appear in attached appendices, A summary of the
results obtained from a subcontract to Research-Cottrell, Inc. on fly ash and
fly ash-additive resistivity measurements is also presented,
1-2
-------
2 ; 0 EQUIPMENT
2.1 PILOT PLANT
The pilot plant, shown,on Figures 2.1 and 2.2 is designed to burn
2 to 20 1b of pulverized coal per hour under, controlled conditions. These
conditions, which simulate those.that exist in a modern steam generator,
include excess air, combustion temperature and residence time. The Unit
consists of the.following major components: a coal feeding system, and exter-
nally heated combustion system, an additive feeding system, a water-cooled
pressurized boiler, a gas clean-up and analytical system and fly ash resis-
tivity measuring system. It .is equipped with control and monitoring equip-
ment to permit 'operation with the desired conditions and provide a record of
pertinent variables.
Referring to Figure 2.1, a Vibra Screw feeder ~ delivers pulverized
coal at a uniform. rate, to a stainless, steel loop 0 where it is mixed;. . ,
and circulated with cold priffiarycombustion air, then conveyed to the' coal
burner 0 . The coal' is 'ignited at the burner and a suff~cient qu~tit:y of
preheated (up to 700F) secondary air 0 assures complete combustion of' '.
the fuel'in a silicon' carbide cylinder 0';' 9 in: LD. x 4 ft long. 'This ~om-.
bustion 'chamber can be heated externally by an atixili'ary. furnace (}) that is""
fired' with natural gas 0 .' The combustion gas~s and entrained fly ash pass
irit~ a'~erticalhe'atexchanger 0 where they are.' cooled to about sOOF., '
The heat exchanger is a fire-tube boiler made 'of a single' '5 in. a .D. steeL
tube (0.180 in. mnimumwallthickness, ASTMA-l06 Gi; B) by 2l,ft-6 in'.long'and
placed inside a 10 in.' schedule 20 steel pipe' (ASTMA-s3 Gr. B) by 21 ft long.
Ine annulus formed'by the two pipes is filled with pressurized (50 psig) water,
which serves as the coolant. A water-cooled coil .(3 in. aD x' 2 ft long) can be
~-.serted in the cold end of the heat exchanger and is currently used to further
decrease flue gas temperature to 300F for resistivity measurements, when desired.
Hotwater is used in this coil to prevent condensation of water vapor from the
flue gases. The resistivity of the fly ash is then meaSured in a plem.nn by means
of a probe and control equipment supplied by Researcl1-Cottrell, Inc. A cyclone
dust c?llector ~ is used to remove ash 'particles for analysis and with the aid
2-1
-------
FIGURE 2.1.
COAL FIRED PILar PLANT
SECONDARY
AIR
3
~
~
PRIMARY
AIR
-
4
r
CD COAL FEEDER
0 COAL- PRIMARY AIR LOOP
o SECONDARY AIR HEATER
@ COAL BURNER 8
@ COMBUSTION CHAMBER
@ GAS BURNER
0 GAS FURNACE
@ HEAT EXCHANGER
@ CYCLONE COLLECTOR
@) FLY ASH BAG
@ ADDITIVE FEEDER
@ S02 SAMPLE CONNECTION
@
@
2-2
~
-------
FIGURE 2.2. COAL FIRED PILar PLANT
2-3
-------
of the equipment shown on Figure 2.3, provides a clean gas sample for sulfur
dioxide analysis @. A Beckman Model 315 infrared gas analyzer is used
continuously to monitor the 802 level in the flue gas. The unit is equipped
with a Bristol strip chart recorder to provide a permanent record of the
002 level.
FIClJRE 2.3. SULFUR DIOXIDE ANALYfICAL SYSTEM
,------------,
I I
I I
I
I
I
I
I
I
I
I
I
- - -..1
From
~bIi~g~or ~
I
I
I
I
I
I
I
L--/~----
Filter
Cold
Trap
Gas Clean-Up System
FlOWJreter
Pump
Recorder
Indicator
OJ
\\\\\I"II/~f.
\ \ I
Infrared
Anal/zer
and
Control
Equipment
-
-
~fanometer
All flue gas, except that used for gas analyses, can be passed through
a fly ash filter bag @ to assure collection of all fly ash. The finer
material, if any, collected at this point is combined with the cyclone-collected
dust before performing ash analyses. Use of the fly ash bag was not required
for the majority of our tests.
Provisions were also made to deter-
mine to what extent nitrogen oxides
(another air pollutant) could be removed
from the flue gases by scrubbing them with
a water slurry made of reacted additive-fly
ash mixtures. The slurry. scrubber system
that was used for these determinations is
shown on Figure 2.4. Part of the flue
2-4
FWJRE Z. 4. SWRRY SCRUBBER SYSTEM FOR NOx REDOCfION
NOx
Anal sis
Flue
Gas
In
SOz
-+ Analysis
Slurry
-------
gases discharged from the cyclone dust separator is passed through a fritted
stainless steel filter and can be directed either through or by-passed around
a beaker containing the slurry. This permits sampling of the gases for NO
x
level with or without slurry scrubbing. The beaker is fitted with a rubber
stopPer, thermometer, magnetic stirring bar and a gas dispersion tube. The
beaker containing the slurry is submerged in an electrically heated water
bath which is maintained at l20F.
The coal input rate to the pilot plant can be controlled between 2 and 20
lb per hour by varying the feeder screw speed. Primary and secondary au
flows, indicated by pressure drops across orifices installed in the lines, make
up approximately 15% and 85% of the combustion air, respectively. The oxygen
concentration in the flue gases is measured and recorded by a Bailey oxygen
analyzer-recorder and is controlled by manually adjusting air flrnvs. Flue gas,
water, and air temperatures are continuously recorded throughout the test period.
Flue gas temperature measurements are made continuously only at the furnace, heat
exchanger and cyclone dust collector outlets. However, gas temperature can also
be obtained at the additive injection ports that are described below. Air tem-
perature is measured at the outlet of the secondary air heater and temperature
of the cooling water for the heat exchanger is measured at the steam drum and
near the bottom of the heat exchanger.
2.2 ADDITIVE INJECTION SYSTEM
An additive injection system, associ-
ated injection equipment and a platform re-
quired for its support were designed and
constructed at the Research Center for this
contract to permit injection of pulverized
additives into the flue gases.
This system consists of three major
components: (1) a variable-speed Vibra
Screw Feeder with optional screw sizes to
deliver the additive to (2) an air-aspirator
which entrains the additive in a stream of
air and conveys it to (3) an injection probe
and nozzle designed to distribute the addi-
tive in the flue gas stream (see Figure 2.5).
2-5
FlOJRE 2.5. DlsrRlBUTION OF ADDITIVE
LEAVING INJECTION NOZZLE
-------
Port 4
Additive feed rate can be varied from
less than one pound to more than ten
pounds an hour, depending largely on the
bulk density of the feed material, by
varying the feeder, speed and changing
screw sizes. Air flow rate (16.8 lb/hr)
is adequate to cool the injection nozzle
and to prevent settling of the additive
in the conveying lines.
In this system, the additive is fed
by the screw feeder @ (see Figure 2.1)
into an air stream where it is aspirated
into the flue gases through one of five
ports (see Figure 2.6). Four of the ports
were installed in the pilot plant down-
stream from the silicon carbide tube. These
ports, identified throughout this report as
Nos. 1, 2, 3 and 4 normally correspond to
gas temperatures of about 2300F,1900F,
l700F and 1500 (HVr) * when burning coal at
approximately 8 lb/hr. At this firing rate
the flue gas velocity at Port No. 2 (~1900F)
is about 12.5 ft/sec. The injection probe is inserted through these ports at
right angles to the flue gas stream when testing additives. Another probe was
designed to be used in the fifth Port "A" (~2700F) located at the top of the
refractory furnace. This probe, which is water cooled, is used to inject addi-
tives into the furnace, at any position up to 26 in. downstream from the burner.
Gas temperature at the probe tip when fully inserted is approximately 2700F.
2.3 FLY ASH RESISTIVITY APPARATUS
The effect of the additives on electrical resistivity of some of the fly
ashes was measured both in situ in the pilot plant and in a laboratory test
chamber at Research-Cottrell, Inc. facilities.
FIClJRE 2.6. LOCATION OF ADDITIVE INJEcrION roRTS .
9" ID
4.640" ID
Port 2
Port 3
*HVT - Measured by High Velocity Thermocouple
2-6
-------
2.3.1 In Situ Equipment
The equipment used for the in situ measurements was supplied by Research-
Cottrell as part of a subcontract. This portable apparatus (see Figure 2.7)
is designed to measure the resistivity of a layer of dust precipitated from
flue gases under actual operating conditions. It consists of a small elec-
trostatic point-plane cell (see Figure 2.8) that has a dust collecting surface
(plane), a corona point electrode and a movable disc that can be lowered over
the plane and dust layer for measuri~g dust layer thickness. An iron-constantan
thermocouple is located near the plane for measuring flue gas temperature. The
FIClJRE 2.7. IN SITU RESISTIVITY APPARATUS apparatus also includes a plenum chamber
for accommodating the cell, a control
unit for supplying and measuring volt-
age and current, and the previously
Point.Plane Cell
~ ~
~ .~
P~er SUpply and r.'etering Uni t
2-7
FHlJRE 2.8. POINT-PLANE RESISTIVITY CELL
o
0~e Bt
r 1:) - ,+ l
~ 0 e :
~-----~
I I
I I
I I
I I
I I
I I
I I
t I
l
Disc
Flue Gas + I.X1st
FiePo\' Direction
.
Corona Point
Plane
-------
described copper coil heat exchanger for controlling flue gas temperature.
The plenum was installed between the outlet of the pilot plant and inlet to
the cyclone dust collector.
2.3.2 Laboratory Resistivity Apparatus
The laboratory resistivity measuring
and schematically in Figures 2.9 and 2.10
apparatus is shown photographically
respectively. The cell shown in
Figure 2.11 is mounted
in an electrically
heated and thermostati-
FI CJJRE 2.9. LAOORA11JRY RESISfIVITY MEASURING APPARA11JS
II..
FHlJRE 2.10 SQ{E/.tATlC DIAOWf OF LAIDRATORY
RESISfIVITY ~EASURI~; APPARA11JS
Sight Glass
Chamber
Water Reservoir
MaJ10rneter
PTes.sure
E_lizing Tube
Needle Valve
Conduct i vi ty Ce 11
Heaters
Ai r Heater D.Ict
~t Plate
~
t
2-8
cally controlled chamber
capable of reaching tem-
peratures in the range
of 650 to 700F. In ad-
di tion, humidity can be
controlled from bone dry
up to 30 or 40% by vol-
ume. (Higher humidities
are possible as long as
gas temperatures are held
above the dewpoint.) The
humidi ty is added by means
FlillRE 2.11. OOSS-SECTION DIAGRAM OF ~£ASURING
CELL USED IN LAOORA11JRY RESlSfIVITY
APPARA11JS
~asuring
Electrode
!\Jst
Layer
Sintered
f.'etal Disc
Air flow
With Controlled
tJoisture
High Voltage
Electrode
-------
of a calibrated water-dropping device which feeds the water to an electrically
heated hot plate located in the duct leading to the resistivity cell. The air
(gas) entering the duct is supplied from a compressed source through drying
and metering equipment. Sufficient air (gas) is supplied to allow for 8 to
10 changes per hour. The air (gas). in leaving the chamber must pass through
a sintered metal disc in the cell on which a layer of dust approximately 2 to
5 millimeters thick is manually deposited.
The schematic electrical circuitry used for measuring the dust resistivity
is shown in Figure 2.12. The current meter is an electrometer sensitive to
10-12 wh°ch 0
amps, 1 perID1ts measurement
f ° 0 0 ° ho h 1015 hID
o res1st1v1t1es as 19 as 0-
ern. Resistivity measurements are made
at voltages corresponding to electrical
field strengths of a few kv/in. in the
dust layer.
II-V
Recti fier +
0-15 kv
FIGJRE 2.12. SOIEI-IATIC OF ELECTRIC CIRCUIT
RJR LABORATORY RESISTIVITY
APPARATUS
Current tleter ~
A
v
"
Vol tJTeter
2-9
-------
3.0 PROCEDURE
The procedures used for conducting the tests in this program consisted
essentially of (1) preparing the coal and additive for firing in the pilot
plant, (2) placing the pilot plant in operation under the desired test
conditions, (3) obtaining panel data, fly ash samples, and flue gas analyses,
and (4) detennining the effect of the additive on 502 removal efficiency,
ash deposition and fly ash resistivity.
3.1 mAL PREPARATION
Six bituminous coals and one North Dakota lignite were used in the test
program. The origin and analyses of these fuels are shown on Table 3.1 and in
Appendix C, Page C-2, respec-
tively. The sulfur content of
the coals ranged from 1. 4% to
13.2%. Five of these coals were
TABLE 3.1. ORIGIN OF COALS TESTED
SuI fur
Sample Scam Content
No. ~ Coun ty ~ --L-
C-13273 Illinois Jefferson 6 1.4
C-13274 Ken tucky Hopkins 6 4.0
C-13279 Illinois Franklin 6 2.6
C-13319 Kentucky Hopkins 9, ll, 12 3.6
C-13376 North Dakota ~lercer & Bottan 0.7
Oliver Seam
C-13378 Missouri Henry h'cir 13.2
Pi ttsburgh
B-22791"1 ~ Hopkins 9 4.3
C-13167" > Kentucky t-Iuhlenberg ll, 12 4.2
C-1333l"j ... Ohio 9 4.2
supplied by the Tennessee Valley
Authority (TV A) and one of them,
which was shipped from the Colbert
Steam Plant, was used as our stan-
dard test coal. The other coal
(13.2% S) was supplied by the
Peabody Coal Company and came from
Western Missouri (Henry County). The sulfur content of the lignite was 0.7%.
The as -received bulk coal sample was air dried to removed surface moisture
thEm crushed to 1/4" using a laboratory jaw crusher. It was then thoroughly mixed
and representatively transferred into smaller containers for ease of future handling.
A representative sample of the coal was obtained for chemical analyses. This sample
was mixed and riffled to reduce its size according to ASTM Irethod D-492. It was
then treated according to ASTM Irethod D-27l for laboratory sampling and analysis
of coal and coke.
The coal to be fired in the pilot plant was prepared in 100- to ZOO-pound
batches. It was pulverized to pass 100% through a 60 -mesh screen us ing a Bantam
Mikro impact-type pulverizer and then air dried at 220F. Before starting a test,
30 to 40 pounds of the pulverized coal was placed iri the coal feeder hopper on
the pilot plant. Two representative samples of the coal were collected while
filling the hopper; one was submitted for total sulfur analysis and the other
was held in reserve.
It .. Standard Test Coals-Compos1ted frCfEI the Three SCW115
3-1
-------
3.2 ADDITIVE PREPARATION
The treatment of additives prior to testing depended to a great.extent.
on their form and condition when received. . 'For example, some stones required
crUshing befo~ebeing pulverized, while others were already pulverized and
required only s~reening. A,marl, which cont~ined about 20% moisture when
rec~ivei,,"'had'to be dried before. being pulverized. For some tests the additives,
required specific treatments such as calcining,c~talyst'additions or additional
I '. . .. ,
size reduction. In general, however, all additives were fed in. a drY condition
and, could pass 100% through a 60-mesh screen.
More specifical,ly, 'if,the additive showed signs "of ,moisture it was first,
, .
air dried at'220F, then thoroughly mixed and riffled to a quantity sufficient
for testing. It.was then crushed, and pulverized to pass the60-mesh screen
using the same equipment that was used for preparing the pulverized coal~ A
representative sample of the pulverized material was taken ~or chemical analyses
and surface area det~rmination.
Some tests ,were ,run with the-additive'mixed'with the pulverized fuel.
of the additive and coal was accomplished by spreading a weighed amount of
on a clean plastic sheet, thep-sprinkling the correct amount of additive
(depending on ,stoichiometry) over the coal, followed by tumbling the material
to alternate ,corners of the plastic sheet unt~l good mixing was achieved. The
degree of mixing was judged by eye and the tumbl'ing actlonwas continued until
the mixture appeared homogeneous, in cd lor . ,
3.2.1 ' Calcining
Wheria 'calcined ,additive was required,for testing, the raw stone was ,prepared ,
- .
as above then heated to l650F to constant weight' ('U 15 hrs) in a ceramic tray.
After cooling, the calcine was brushed through a,60-mesh screen and sealed in a
plastic -,container until r:eady fQr, testing. lli\Ting the early part of the test
program one additive sample was calcined at l475F but the calcination was not
complete and, therefore, t~e calcining temperature was increased to ~he higher
value just mentioned.
3.2.2 Hydrating
For some tests ,a mixture of fly ash and reacted additiye was hydrated and
used as an ,additive material. The treatment of this mixture consisted of the,
'following. . The fly ash-additive sample that was separated in the cyclone dust
collector from a ,normal test was first heated to 1650F for 'U 15 hours then
placed in a pyrex beaker which rested on a'support, over water, in an autoclave.
. '
The autoclave was he~ted to 340F at 100 psigand held at this condition for 'U 15
Mixing
coal
3-2
-------
hours. . After cooling, the material in the beaker was quite damp so it was air
dried to constant weight at 220F. The resulting cake was broken into small
pieces in a mortar and pestal then brushed through a 60-mesh screen. This
material was stored in a sealed plastic contaiher until ready for use. Thermo-
gravimetric analysis showed that these samples were completely hydrated.
3.2.3 Particle Size Distribution and Specific Surface
The partic~e size distribution data presented throughout
obtained using the Bacho Method. This procedure is described
American Society of ,Mechanical Engineers, Power Test Code 28.
Specific surface values in this report were measured using the Lea-Nurse
2
Air Permeability Method. Specific surface is defined as surface area per gram
of solid material, having the units square centimeters per gram (cm2/gm). . The
value obtained will depend on the .method of measurement. The Lea-Nurse Method
measures only outside surface, such as the surface of a sponge that would be.
contacted if the sponge were encased in a thin, flexible film of-plastic. On
3
the other hand, the BET Method (developed by S. Brunauer, P. H. Emmett and E.
Teller) measures thetotalsurfac~, 'such as the surface of the sponge that would
be contacted when submerged in a gas or low viscosity liquid.
3.3 PILOT PLANT OPERATION
The procedure normally used when operating the pilot plant during a base
test is briefly described as follows. The pilot plant is preheated overnight
by firing natural gas in the auxiliary furnace. The following morning natural
gas .is also fired in the coal combustion chamber until the desired furnace oper-
ating temperatures are reached. The gas nozzle is then removed and pulverized
coal;i~ fed to the burner at a steady rate that may fall between 8 to 10 Ib/hr,
depending on coal density, moisture, Btu content, etc. The coal is normally
burned with approximately 15% excess air (measured at heat exchanger outlet)
and a Bailey oxygen analyzer/recorder is used as an excess air monitor. The
coai feed rate is calculated from the weight of coal burned during the test and
the total time the test is in operation. The coal used is weighed to the nearest
0.01 lb and about 30 lb of ,coal is burned during a typical test.
Essentially, all of the fly ash is separated from the flue gas and collected
in a cyclone dust collector for later analyses and sintered strength measurements.
Part of the relatively.clean flue gas then passes through a fine filter and cold
trap where last traces of:dust and moisture are removed before the gases enter
the infrared gas analyzer. The analyzer is calibrated before starting a test and
this report was
in detail in the
3-3
-------
,th~, S02' concentra1;ion ;in ~e. flue gas .,.is 'c;ontim~oUsly r~corded' durj.ng the. ' entire
test peri0d~ ,'( See' Appendix A :for- details of the, calibration method and. procedure
used, for i':lterpretat~Qr of,t~e SQ2 r~cprder'c~arts.) -At'periodic intervals ,a
standard wet'i.~emical.method forSOZ analysis (KI03) is used: as a: check on the '
infrared 'instrument., '
, ., . '
Duri~g some tests;the flue gases,leaving t~e fine .fil~er.were alsoanaly.zed.
for total nitrogen . oxides :.using am('>dified versipn of. the 'Bur~au ,of Mines
. ' ,~ .,
Phenpldisulfonic Acid Methpd.' For, these, tests ;par~ 'o~0e flue .gaseswe.re"
scrubbed'.with '.a wa.ter slurry"of:reacted additive-fly ~sh:mixture to, determine
the ~ffecti v~ness ,of this me,thpd for removing NOx ~ ,'Th~' equipm1n~ 'shqwn on,
Figure 2.4 was,' c01V1ected-to . the .filter priortos~artinganadd!itiv:~ inj~ction
test. After adding 100 mlwater. to the slurry beaker;, the power to. the water
. \. ',- .'. ... ;' '.. .
bath and.magneticstirrer was "turned on and, bath te~eratur~;pr9ug~t.up, to'
l20F. ,. A 0.'45g s~ple pfrea<;:ted additive-fly ash was tlien removed .fromth~.,
. cyclone dust., collec;tor and t~ree . samples' of flue gas .were. obta~ned. for NOx.
analysi,swith the, slurry system bypassed. ~~:0.25gof:r~a~t~d ~dditive-fly as.~
was then placed in the 100 ml of wa;rm wCiter. and the flue 'gas dire<::ted to bubble
through :the slurry.~ Three s~lesof, .~e sc.rubbed flue gCiS were obtaine~' for
analysis' and, compari.son ,of' NOx level -with: the: bypass~d samples.'
~or. other ~ests; the hot ~500F) flue gCiSes leav6ing th~heat 'Ie~chang~r. 'w~re
sampledapd analyzed for ,S93 using ,~e' Goksc!>yer-Ross meth0d.~ " '
3~3~ ~ Additive Injectio~, .
The.proc~dures 'used for injectingaddi:t:ives into thepi~ot plant:inclu9.ed,
~e fo;llowing ,activities., Tht:! VibraScrew, Feederthatwas.:used for controlling
additive :injection rate was ..first. calibrated during the',p~riodw~en pilpt plant:.
test condition~ 'wer.e approa~'1ing, equilibrium" after light 6ff'with pulver~zed..
coal. Sele~tion of; .scre\y size: and. speed, ~as.governed, by.the st?i<:=hiometry .and
~oal firing r~te ,for(i particular ~est? The calibrati0nwas~ade by weighing
~~amount'of_addit~ve itO be,t~stedth~~-was discparged from the feeder,during.
a measur~d'length of.time,,;fora,giv~n-screw'size aIld screw' speed. 'Th:e us~ of
a single aqditive to obta:~n aql.libratibn that'co1.lld..py'us~dfor all additives
was \ not. possiple. because of differences in qulk dens,~ ti~s "among the, additives
~d: other factors such as.humidity,. parti~le' size distribution;. ,etc.. "
3-4
-------
~e:n feeder calibration was, complete, the ,additive injection probe 'was
inserted into the pilot plant ,flue gases at the desired port (temperature)
with the injection air turned on to, prevent overheating or burn-up of the probe
tip. The flue gasconditions,wer~ then allowed to reach equilibrium at the
new excess. air level and ~e S02 concentration recorded. A weighed amount 'of
additive was placed in t~e additive hopper and the feeder"screw was turned on,
to f~ed the additive to the injection probe, at the calibrated rate. The total.
time the feeder was 'in operation was, recorded and at the end of a.testthe
additive remaining in-~e injection system was carefully removed and-weighed
to the nearest gramQ About 300g of additive was 'used in a typical test.
These data permitted calculation of the actual additive feed rate during the
te;5 t .
3.4
RESISTIVITY MEASUREMENT PROCEDURES
The procedure used for measuring in situ fly ash resistivity in ,the pilot.
plant was different than that used for obtaining bulk resistivity in\the labora-
tory; although the principles involved are the same. for both methods.; Details,
of these procedures are described below.
3.4.1 In Situ Resistivity Measurement
During the warm-up period preceding the start.ofa test, ~e copper coil
heat exchanger, plenum chamber and cyclone dust. collector were installed at
the flue gas discharge end of the pilot plant just prior .to light-off with coal. .
After equilibrium.conditionswere established, the point-plane cell (see Figure 2.8)
was installed in, the plenum chamber:with ,the cell disc resting on,t~e dust
collecting surface (plane). Flue gas temperature at the plane was adjusted to
the .desired value using the copper coil heat exchanger and thermocouple located
near - the dust collecting surface. The cell disc :was then lifted off the plane
and fully retracted to expose the corona point. A potential of about 7000 volts
wasthe~applied for 20-30 minu~es, or until a sufficiently thick layer of dust
had precipitated on the plane to petmitmeasurement of dust, layer thickness and:
electrical resistivity. During the- collection period flue gas 'temperature,
voltage and. current were measured at about 'five minute intervals. '
Wheneno).lghdust-had deposited, the voltage was ~urned,off and the disc
gently lowered to the surface of the dust and a measurement of.the layer.thick-
ness was obtained. A potential was applied and voltage gradually increased until
breakdown, of the dust layer occurred. Several.voltage and microammeterreadings,
were recorded before this breakdown point was reac~edo
3-5
-------
The~edata, toge~e'!: wi~ t~e conlact area 'of :t1J.~ disc,. .were used to calcu-
late the elec~rical. resistivity of the ..dust: by ,.the. foll
-------
AS1M metPods ~ In ,addition, the chemici3.1 cpmposition of the coal ash was ",
determined by emission spectrograph and, flame 'photometer. The viscosity-
temperature relationship of molten mixtures of coal ash and additives was
determined by the method described in Appendix A.4, page A-12. Additional details
concerning techniques and. equipment used are. reported by.others.7,8 Sintered
strength measureme~tswere made as described in Appendix A.S, page A-14o A
sample, of coal was taken each test day for sulfur analyses and calculation of
stoichiometric rate. The sulfur fonns ,present in each of the seven coals tested
were also determined 0 These analyses 'are shown on Table Col in .Appendix C~ .
S~les of reacted additive-fly ash mixtures were collected during the
tests and measurements made of their sulfur, carbonate; calcium and. magnesium
content. The crystalline constituents in these. samples were determined by .X-ray
diffraction analyseso' The .results are. shown on Table Dolin Appendix Do
Differential thermal analyses 'were also made on a number of these mixtures,
chiefly to determine if this technique was capable of qualitatively detecting
magnesium sulfate.
Other methods of analyses were utilized as required to provide specific
informatipn. .
3-7
-------
4.0 D+SCUSSION OF RESULTS-
This, investigation was divided into three maj or categories: '1) the
effects' of, addi ti ve ,properties "and operating variables on the, S02content
of the f+ue gases, 2) the effects of:additives on ash deposition, extrapolated
from empirical laboratory(data,such as fusion, viscosity and sintered strength
I '
measurements, and 3) the effect ,of the, additives on fly ash resistivity.
Nitrogen,oxtde measurements were also made during several pilot plant tests
, '
to determine if additives had any effect-onNOx concentration. Analyses of
the additives, reacted additive-fly ash mixtures and the coals used through-
. , . .
out,this investigation are, summarized in Appendices,~, D ~qC respectively.
Appendix EL,t9ntaips a, sumID,aiy' ~of'.the; "p1lot plant test.\cqn<;li'tions, ahd.' [resul ts .
J.~.: t'~:;':"';':~"~ ,.j..; .,~ ;,',' -:'", ':1'> " I , . 'f';:' ;,,':i' i: ~~\
AllP9rt,t~~per~tur~s shoW:I1~~l1I:O,ugh.out ~ t~is report aret[lp~e ,obtaIned' when
~, .)' :>;,' . '\-' ", I- . I;" .. . .
firlng~, our,,: st,ahd~rd coal. ~tU3, l~/h~:and 1~5% toterl" air!~ ,: i , i ',':,
4 ~l ' ~DUCTJq~~F' s02CONC~AA'r1?W' ,,( " ' " " ,;' , .,;, ,
,. , S~Veral"~?G~ors w~r~( e~~ined' dUT,ing' this. in\Testig~t.1on.' For the ,raw
. : . . , ' ': .' .: . r .". . ~ ' i' .
addi t:Wes\.'::th~~~, factors inqi~aed/-: ',,' , ','"
a) Ad~i i~y~ properti~s":-' nufue~o~s 1 lines tones,~ 'dbldmi t~s ,and 'milghesi tes
. '( ;' ." '~.' ' \ : ' ~ .' t:" :',,~, ~~ ;~ ". ,~, J' -, .
from.; w,ides'pread spurqes aD:d,. w~th :Varying properti~~ werete~ted. '
, '< ~ ';' I , ' . :: ,": . . ; , .' ' .
St.piqh.~~metry ~ :sev~tal 'acid~:tives ,were ,inj~cted' flt various:',rat~s.
In3.ec~i0.n point:' :seiiecte~ ddclitives were,: i~jected~t amkber of
. ' ; . . '. :!. ' .
poi,h~S';~long the:flu~, gas' st~eain. , , , '
d), P~~t~i~e size : ,a,n~bef,: ~f.aci~itives weie si~edbydoub~e,screening
andiricreasing amoJrits of pulverization.
e) ~b2'cohdenttatioA'~ ,i~ ~dditioh; to the st~dardtekt coai ,f~om Colbert,
. , i . . " . "
StJ:tioh', two adcii tives ,.we:re,:,'tes ted wi tr six: cbaILs ,coritaining: various
ieY~ls;'of sulfur. ,:1 ".' ,',,' '
f) Flue' "ga~ oxYgen, le\r~l, -' coal/~i~ ratio wa~ changed by, varying combus-
,:',! . .' , '.' . f.
tion\ai~' flow during severa! t~sts. ,,' , \
,I )', .t: '," ,,' , ,,', ' ,
i) p~r~~c~~ '~esiden.c~ time, - , coa~, 'firing rates w~re cQntrol1'ecl kt vari-
o~s}eVels to vary" residente, time ~ ' ' '
h) C~taiI.yst,s:' - sever~lpotenti~~ 'Gat~lystswe~e added to the Jolornite
, :':. I: \'. ' .' '. ",
or Jj:i!1estone beforeinjection~ "
J,.. ,'. ,. - . .. .'
i) Recycling additives -,after the reacted ad,ditive-fly ash I)li:xture was"
.! ' :. (" '
collected, it ,was reinjected into the flue gases.' '
b)
c)
, '
4-~
-------
Calcined and hydrated additives were also injected to evaluate the
effect of pretreatment on additive effectiveness. In addition, specific
analyses were made to evaluate: 1) the degree of dead burning, .2) the role
of-magnesium in the reaction of the additive with S02' and 3) the extent
of reaction of calcium and magnesium with silica in the fly ash. .
Because the system is dynamic with rapidly cooling gases, the inter-
relationship of a number of variables is complex. Thus it is difficult to
isolate the effect of individual variables in the pilot plant tests. For
example, flue gas temperatures change from the combustion flame temperature
of.3000F or more to about SOOF in less than 3 seconds. Any change in coal.
input and/or coal/air ratio alters the temperature profile and residence
time and excess air level. Changes. in calorific value 9f the. coal also affect
temperatures, as 'dothe amount and characteristics of slag on the furnace
walls. However, it is also these aspects whtch closely simulate full-scale
equipment that should allow extrapolation with more confidence than for data
acquired on isothermal systems.
The original contract and subsequent modifications called for feeding
the additive with the coal as well as injection at temperatures below 2S00F,
which was estimated to be the flue 'gas temperature where Port 1 was installed.
Therefore, most of the comparisons are available at this port. As .data were.
accumulated, it appeared that injecting into a higher gas temperature might
improve results, particularly since this would also increase residence time.
Thus, later in the program Port A was added and a high velocity thermocouple
probe.was modified to inject additives through this port. Therefore, not
i all stones were tested at Port A nor were all variables examined.
Regression analyses were made on raw limestones and dolomites to deter-.
mine the effects of specific variable~ that were either observed or assumed
to be significant in removing S02' These analyses are described in detail
in Appendix G. Briefly, four different. types of mathematical functions,were
compared to evaluate the effects .of stoichiometry, coal firing rate, raw
additive surface area, port number, and level of impurities in the additive
onS02 content. It was. assumed that the amount of S02removed was a linear
combination of each of these variables and that the variables themselves.
were totally independent of one another. Some of these analyses were made
4-2
-------
individually for limestones and dolomites at both Ports A and 1. This per~ .
mitted comparison of the effects of these ' variables on limestones and dolomites
independently. Injection at Ports A and 1 'vas, significantly more effective
than'. at other ports, and comparisons to determine the effect of most of the
vatia15ies was, limited to these two ports. In addition to the regression
analyses, compari~ons.were,made on a number of selected additives, to evaluate
the effect of one , variable at a time. Although the additives. are variable,
we believe that trends observed in these tests are generally applicable.
4.1.1 Compari~on,of,Ad~itives.~ Ge~eral
The raw dolomites and limestones varied in their capability. for removing
S02 in ~he pilot plant with changing gas temperatures and S02concentration.
For example, when injected at approximately stoichiometric rates in the'direc-.
. ,
tion,of '.the flue gases at. approximately 2300F the S02 removed by limestones
pulverized to pass a.60-mesh screen varied between 2% for M,2l588* and 20%
for M-22337. Coal, firing rate was between.7.S and 10 lb/hr. Under the same
conditions,.the S02 removed by substantially fewer additives varied between,
13% for M-22340' and 31% for M-22333 when the limestones were injected at,.
Port,A. . Marls, an unconsolidated form of limestone, were more , effective
than the other limestones at both Ports A and 1. Specific comparisons will
be made later. '
The amount,of S02removed by dolomites v~ried from S% for M~22048 at
92% of stoichiometric (Test 68-9-13)** to ?O~ t~r M-2~33S at 124% of stoichio-
metric (Test.6~-2-13), when injected at Port 1:' Since only two dolomites
were injected through Port A at approximately stoichiometric rates, a state-
ment of the range'of.effectiveness for the dolomites would be meaningless.
4.1. 2 . Inj ection ~oint (Flue ~as Temp~rature).
Varyi:p.g the point of injection varied' both the fluegas.temperature and
the residence time, as will be. true in full-scale equipment. However, several
observations do. show a strong relationship between gas temperature and additive
.".
. ., ..
. . ,
* Appendix B shows the additive source and its ,chemical analysis that
corresponds' to the additive numbers used throughout this report.
** See.Appendix E for summary of pilot plant test conditions.
4-3
-------
effectiveness. First, the raw stones were ineffective when injected below the
decomposition temperatures of the carbonates. Differential thermal analyses
indicated decomposition b~gan in air at temperatures as low as l125F for limestones
and about 93sF for dolomites. In a boiler atmosphere with high levels of C02'
the dissociation temperature for CaC03 is above l400F. The air used to convey.
the additive reduced the flue gas temperature by about 400F. Thus the flue gas.:
air mixtures were below the dissociation temperature for CaC03 when the additive
was injected into Ports 3 and 4, where additives were not effective.
Second, the additives were not effective when they were fed with the coal,
although this procedure provided the maximum residence time for a given coal
firing rate. Additive particles must pass through a maximum combustion temper-
ature zone of about 3000F under these conditions. Dead burning appears to be
the major reason for low 802 removal when the additive is fed with the coal.
The subject of dead burning is discussed in greater detail in section 4.1.9.3.
Third, raw additives were found to be most effective when injected through
Port A. They were normally less effective at Port 1, although a few exceptions
were noted. Wi th the addi ti ve
FICJJRE 4.1. EFFEn OF INJEnION rolm ON SOz RHUVAL
'\.300UF*
Port 0
60 I
~1700F
Port 3
~Z700F
Port A
I
~Z300F
Port 1
01900F
POT.t 2
'015001'
Port 4
so
o ~1-2I831 ~larl '.100% Stoichiometric at ~6 Ib coal/hr
. M-21831 t-tarl .,,100\ StoichiOJretric at '\.8 Ib coal/hr
o M-Z1982 Dolomi tc '~,200\ Stoichiometric
\] ~1-21993 LilTCstone '\.100% Stoichiorretric
+ Average of 2 Dolomite Tests '\.100% Stoichiorretric
X Average of 9 Limestone Tests '\.100% Stoichiotretric
~ 40
'E
j
.s 30
-g
>
!1
~
ijSN ZO
10
o
o
lnjection Point Distance From Burner, ft
*A11 temperatures for 8 Ib coal/hr firing rate
4-4
12
injection rate near stoichiometrIc
and coal firing rate between 7.5
and 10 lb/hr, the average data for
a group of limestones and one of
dolomites are shown on Figure 4.1.
The average 802 removed by 13 TVA
limestones was 12% at Port 1 and
22% at Port A, although the range
of injection ratio was somewhat
broader than for the group of lime-
stones shown on Figure 4.1. One
of the TVA limestones, M-22337, was
equally effective at Ports A and 1.
Specific comparisons for a limestone,
M-2l993 and a dolomite, M-2l982
injected under similar conditions
are also shown on Figure 4.1.
-------
Finally, effect of changing the probe position while injecting marl through
Port A is shown on Figure 4.1. These results indicate that for this stone the
optimum injection point lies somewhere between Port A and Port 1. At the reduced
firing rate this point is estimated to, be about 2S00For,'slightly higher~' Further
discussion of empirical relationships between the $02 removed,and injection rate
at various ports wi~l be given lat~r an~ expande~ in~ppendix G. Borgwardt9 who
,. ' , '., . .:.'). . . ',.4'''" ", "
observed the dependence' on temperature in fixed bed 'isothermal tes~s',.coi1cluded
., . . . '. .' '.' " . . .
that the ,high sensitivity of'the rate to terilperature'suggests chemiCal reaction
. ., ~ . ;": . . . \ , . I . ~ . ' , .' . .' - ,', .' ' .' .' .' . . ". ;. . , ""
to be the p!edominant rate~controlling r~sistaricedl.iring the initial period of
,,' ,~;.~ , ";~':':"'.' ",',,.. :,:: ',:' '...:.' ~.~.. ';., ". ,,: '.
802 ?orytion by sma~l partic~e~. ' ;,~,; ", ,",'" " " " ,',', , '
other i~vest~gators, have ,alsbsh6Wri' strong dependeric~', 6~ ':i.nJ'ettich' teinp~ra-
, -. ", -" ":"'."" ", .;., . ::', .' .' ,- .: ," > . '-' "', '" . .
turesbut we wiii not show any' dlrect' coinparison at'specific 'conditions because
of differences in additives, equipment designs and operating conditions;.' ' "
4.1.3 Stoichiometry
TABLE 4,1, EFFECT OF ADDlTIVE INJECTION
RATES ON 502 RlMJVAL
Ntunber ' , ,Rmige ,of s02' R"';';'ved
of .. Inj'ection Rates
Additive No. Tests ' of Stoich, By 'Additive'
M- 21831 Marl }
~1-2209I Marl 9 76-594 15-72
,M- 21993 Limestone 5 108-264 10-22
M-21911 Dolomite '5! " 151-596 22-41 "
M-21982 Dolomite 5 146-826 16-47
FIQJRE 4.2. EFOO OF ADDITIVE INJECTION RATE ON SOz mOVAL
100
x - Marl M-21831. M-22091
. - Limestone M-21993
& - Dolomite M-21911
. - Dolomite M-21982
, 'Port i C"'23DOF) -8 Ib coal/hr
80
" '
>
'Z 60
~'
~,
.",
~ 40
& : ,
fif
.,,, """'" ..
20
, 0
o
, .
, 400
500 '
100
200
300
t,,' :. . .,'.,.
Injection' Rate;', of Stoichirnretric
4-5
Several additives were tested
over a'~omparatively wid~ ~ange'of
stoichiometry at Port i. Limited
'dita on sto'ichiometry at' other con-
,diti0I?-s w~ll be ~iscussedunder,the
appropriate sections in which other
variables are disc\lssed. A surmnary
of the results of the tests with
four additives is given below in
Table 4.1 and plotted on Figure 4.2.
, Severai approaches were used
,in attempting to correlate percent
, ,
S02 removed by the ad~itive with
, additive injection rate~ expressed
, ,
a~ percent .ot' stoichiomet~i~., One
, '
, ' ,
such' empirical approach showed
. ~ '. . .
, the ,aJ1l0u.nt 6f $02\raried with the
additive injection rate according
to the equation:
-------
R = Sa
where R = S02 removed by the
S = additive injection
a = a constant
additive, %
rate, % of stoichiometric
The constant "a" is dependent on the additive used, the injection tempera..,
ture, particle size and residence time (coal firing rate).
Another empirical approach was suggested by D. G. Thomas of Oak Rid~e
National Laboratory (TVA Report dated May ~6, 1969, "Test Program for Full-
Scale Limestone Injection Tests at Shawnee Unit 10") who used an integrated
form of the rate equations for a variety of reaction mechanisms. This equation
was expressed as
in (l-R) = KS
where
R = SO
2
K = the
S = the
removed by the additive, %
rate constant for the controlling mechanism
stoichiometric ratio
The constant K is a function of limestone particle size, temperature, and
contact time.
A comparison of the values of "a" and "K" for the raw stones listed in
Table 4.1 is given below.
I "a" "K"
Additive Number Range Average Range Average
M- 21831 Marl 0.63-0.77 0.68 0.18-0.43 0.25
M-2l993 Limestone 0.48-0.61 0.54 0.095-0.17 0.12
M- 21911 Dolomite 0.58-0.66 0.61 0.089-0.22 0.15
M-2l982 Dolomite I 0.52-0.65 0.57 0.077..,0.22 0.11
Based on an examination of all tests with raw limestones and dolomites
a t Port A and Port 1, values for" a" and "K" are given below.
4-6
-------
Port 1 Port A
Additive . II a" ilK" "a" ilK"
Type Avg Range Avg Range Avg Range Avg Range
All 0.16 -0.028 0.48 -0.095
Limestone* 0.48 to -0.10 to 0.66 to -0.23 to
Tests 0.69 -0.25 0.75 -0.39
All 0.36 -0.046 0.50 -'0.11
Dolomite 0.53 to -0.11 to 0.65 to -0.23 to
Tests 0.70 -0.2-8 0.74 -0.37
* Not including marls.
Again, it is stressed that the average values are shown for comparison only.
They do indicate that the limestones and dolomites were nearly equally effective'
at either Port A or 1. Furthermore, the dolomites tended to be less variable
than the limestones, in part because of fewer samples. The ranges reflect the
differences in additive reactivity and variations in operating conditions,
particularly coal firing rate.
FIGURE 4.3. aJ.IPARISGI OF B&W PIWf PLANT DATA
AND FIELD DATA REroRfED BY 01HERS
BO
Particle Gas
~ Source ~~:~~~~e ~~ T~~6F coa~
--~
- - M-21831 Marl 100\< 250" "'2300 Coal
o - M- 22796 Marl. 100\< 250" "'2700 Coal (low
o rate)
- M- 22343 Dolani te 100\< 250" "'2700 Coal (I""
rate)
. - Ishihara Limes tone 10-17" 2100 Oil
, - Zentgraf Limestone 95\< 90" 2410 Coal
~ Zentgraf Limes tone 95\< 90" 2100 Coal
- Peabody Limes tone Unknam "'2300 Coal
- TVA Dolomi te 100\< 71" >1645 Alr+S02
. - TVA Limestone 100\< 74" >1645 Air+S02
o
.~ 60
~
~
] 40
6IN
o
o
M- 21993
20
o
o
300
400
100
200
Injection Rate J , of Stoichioxretric
500
Data obtained by Ishihara lOon an
oil-fired steam generator (260 tons per
hour) and by Zentgrafll in a small coal~
fired boiler (110 tons per hour) are
shown on Figure 4.3. Ishihara's data
agreed well with his earlier pilot plant
(refractory lined) tests. This figure
also shows the calculated curves for
data from M-2l83l (marl) and M-2l993
(limestone) obtained during our pilot
plant tests and indicates relatively
good agreement between full scale and
pilot plant tests, although conditions
were not identical. On the other hand,
Kruel andJGntgen12 showed higher 502
removal in a gas-fired pilot plant with
relatively long residence times. Data
obtained by TVA investigators13 on a
4-7
-------
bench scale apparatus using 802 in aIr and by Whitten14 in a coal-fired stoker
boiler (no cooling surface downstream) are also shoWn on Figure 4.3.
4.1.4 Residence Time
The effect of residence time was isolated largely by changing the coal
firing rate. This changed the mass flow through the pilot plant, and the resi-
dence time was proportional to the coal firing rate, with the same excess air
levels. By altering the degree of preheating and auxiliary gas furnace firing
period, there were only minor changes in the temperature profile. The tempera-
ture undoubtedly had an effect on results, but we believe the effect under these
conditions to be minor compared to that due to residence time.
For a coal input to the furnace of 100,000 Btu/hr with 15% excess air,
the furnace temperature profile and calculated residence time within the pilot
plant are shown on Figure 4.4. Reducing the firing rate by 50% doubles the
residence time with a negligible change in outlet flue gas temperature.
F[(;URE 4.4. RESllJENCE TI~n: A:~D TEHPERATURE PROFILES FOR PILOT PLA:~T
Refractory
3.0 I" t
......
......
u 2.5 ........
~~
~
.0
1:16i 2.0
.....
E-Q)
U
8 @
~+-' 1.5
Q) tJ>
""...<
...<~
tJ>
Q) 0
o::+-' 1.0
tJ> '"'
oj Q)
~j:;
gj~ 0.5
......~
u..
0
0 2 4 6
Water-cooled Heat Exchanger
100,000 Btu Input
15% Excess Air
22
24
26
16
18
20
12
14
8
10
Distance from Burner, ft
.1' 3000
2500
u..
2000 ~
;:J
+-'
oj
'"'
1500 ~
Q)
E-
1000 ~
<..:i
x
Q)
500 ~
u..
o
28
Another technIque that was used to change the residence time was to change
the direction of the injection nozzle at Port 1 for a number of tests. The
nozzle was pointed downstream, in the direction of the flue gases, or upstream
countercurrent to the flue gases. For identification, the latter condition
4-8
-------
injection at Port A was
found to be more effective than at
Port 1, a number of tests were made
at low, intermediate, and normal
firing rates to evaluate the effect
results are summarized on Table 4.3, and
TABLE 4.2. o:M>ARIsa; OF S02 IIDfJVED AT PORTS 1 AND C
so Removed bv Addi ti ve ,
Port I (~2300) Port C
Additive No. Nozzle Down Nozzle Up
M-22333 Limestone 9 16
M- 22334 Limestone 7 13
M-22336 Limestone 11 16
M-22337 Limestone 20 21
M-22338 Limestone 12 14
M-22339 Limestone 4 8
M-22340 Limestone 11 14
M-22341 Limestone 11 16
M-22342 Limestone 12 16
M- 22343 Dolomite 13 17
M- 22344 Limestone 8 14
M-22345 Limestone 14 21
M- 22426 Limestone 13 22
Average for All Additives 11 16
of residence time at Port A.
These
is referred to as Port C.
This
obviously changed
well as residence
temperature as
time. The. results
of these tests are given in Table 4.2.
Coal firing rate and additive injec-
tion were approximately 8 lb per hour
and 100% of stoichiometric, respec-
tively.
After
TABLE 4.3. EFFECT OF RESIDE.~CE TI~lli. PORT A
Coal S02 Inj. Rate, Res idencc Value of Coal S02 Inj. Rate, Residence Value of
Sornp1e No. Fi ring Rate, Removed, , of Time Exponent Sample No. Firing Rate, Removed, , of Time Exponent
De~cription Tes ts Ib/hr -L- Stoich. ~ ~ Description Tests Ib/hr -L- Stoich. ~ 'n'
"-22091 2 4.6 49 117 1.8 0.82 ~1-22338 1 4.4 29 120 1.9 0.71
Mnrl 1 5.6 39 173 1.5 0.71 Limestone 1 4.6 38 208 1.8 0.68
"-22796 1 7.3 35 129 1.1 0.73 1 4.6 66 353 1.8 0,71
Marl 1 9.4 16 75 0.9 0.64 1 6.0 23 127 1.4 0.63
1 8.4 15 80 1.0 0.61
M-22333 1 4.6 31 107 1.8 0.74
Limestone 1 7.1 15 106 1.2 0.59 "-22339 1 7.0 23 99 1.2 0.67
1 7.7 10 101 1.1 0.51 Limes tone 1 8.6 13 109 1.0 0.55
1 8.0 31 122 1.0 0.71
~I- 22340 1 6.2 23 107 1.3 0.66
M-22334 1 7.3 18 103 1.1 0.63 Limestone 1 9.1 13 119 0.9 0.54
Limestone 1 8.1 13 110 1.0 0.55
~1-22341 1 6.2 29 121 1.3 0.71
~1-22335 1 4.5 30 174 1.9 0.65 Limestone 1 9.0 22 108 0.9 0.66
Dolomi te 1 4.5 48 262 1.9 0.70
1 5.1 29 158 1.6 0.66 ~1-22342 1 5.9 32 106 1.4 0.74
1 5.1 49 278 1.6 0.69 Limes tone 1 7.7 20 116 1.1 0.61
1 6.5 21 118 1.3 0.61
2 8.6 17 100 1.0 0.61 ~I- 22343 1 4.6 32 145 1.8 0.70
2 9.0 23 143 0.9 0.62 Dolomi te 1 4.6 55 253 1.8 0.73
1 4.6 74 380 1.8 0.73
~1-22336 1 6.6 24 115 1.3 0.68 1 5.8 27 102 1.4 0.72
Limes tone 1 8.6 18 117 1.0 0.60 1 7.9 19 106 1.1 0.62
1 9.6 10 89 0.9 0.51
"-22337 1 4.8 18 97 1.7 0.63
Limes tone 1 4.8 32 146 1.7 0.70 ~1-22344 1 5.9 31 96 1.4 0.74
1 4.8 50 211 1.7 0.72 Limes tone 1 7.7 25 137 1.1 0.61
1 6.6 24 94 1.3 0.71
1 8.4 14 110 1.0 0.55 ~1.22345 1 5.9 23 98 1.4 0.67
Limes tone 1 7.7 33 135 1.1 0(71'
~1-22426 1 6.3 26 117 1.3 0.69
Limes tonc 1 8.6 22 88 1.0 0.69
1 8.6 28 88 1.0 0.73
1 8.8 29 121 0.9 0.71
1 9.6 9 100 0.9 0.48
" From Port A to point where flue gas temperature =: 1400 F
wi th 00 air injection for .12 ~OOO Btu/lb coal.
4-9
-------
40
""
~
~ 30
&
rt
20
10
1.2
1.0
~
~
~
0.8
.. 0.4
oS
:..
0.2
FIaJRE 4.5. ~~c;: ~~7~~IDENCE TH!o ON S02 R!-}UVEn
60
50
.. - H-22338 LiIrestane
EI <:~:~~~~~>t-larl
<;;/ - ~!-22335 Dolomite
X - H- 22343 Dolomite
Coal Firing Rate Ih/hr 9.0
i .'j
b.O
5.1 4.5
Rcsidcm:c Tinc in Reactivc ZOIiC*. Sc(,Qlll.b
*Sce Table 4.3
FIaJRE 4.6. a»!PARISON OF 'a' AND RESIDENCE
TIHE. PORT A (~2700F)
o - H-22338.Linestone
. <~:g~~~> Marl
\1 - M-22335 Dolomite
X - M-22343 Dolomite
o - M-22333 LiIrestane
. - M-22337 Linestane
o - M-22426 LiIrestane
0.6
.
O-~.. ~ X . \1 . ~ 9
1\1\1
8~o\10 .-
.
6 0
10
Coal Firing Rate Ib/hr
0.0
o
Residence tine in Reactive Zonell J Seconds
"See Table 4.3
4-10
representative data are shown
on Figure 4.5. A comparison of
exponent "a" at various residence
times is shown on Figure 4.6 for
several additives.
At a coal firing rate
between 4.5 and 5.0 lb/hr, the
average value for exponent "a"
(R = Sa) for the three marls was
0.67 when they were injected
through Port A. On this basis,
calculated values for 802 removed
by the additives would be 55% and
74% with injection rates of 200%
and 300% of stoichiometric,
respectively. For comparison,
M-23330 marl ("a" value is better
than average) removed 65% of the
802 when injected at 193% of
of stoichiometric in Test
No. 69-12-14.
The regression analyses
indicated that coal firing rate
was significant at Port A for
both limestones and dolomites.
Almost no influence was observed
at Port 1. To evaluate the
effect of residence time,
Zentgrafll measured the degree
of flue gas desulfurizationby
sampling dust from 750C (1382F)
flue gas with probes of differing
lengths. The velocity was
maintained at a constant level
-------
for these tests, thereby changing the residence time the gas spent in the
probe. Using this technique he concluded that increasing the residence time
in the probe from 0.05 second to 0.25 second increased the amount of desul-
furization from 7.7% to.12.2%. These times are significantly shorter than
in the B&W pilot plant and suggest that residence time has a greater effect
.. 12
with very short residence time. Kruel and Juntgen showed a minor increase
in additive effectiveness (22% S02 removed to 30%) when the residence time
was increased from 2.2 seconds to about 4.7 seconds. Work by TVA investi-
.1"3
gators indicated that the S02 removed by a Columbia limestone increased
from about 12% to 24% when the residence time was increased from 0.8 to 1.8
seconds.
Ishihara, in a paper "Pilot Furnace Investigation for Removing Sulfur
Dioxide from Combustion Gases with Limestone Injection Method", found that
the reaction between S02 and limestone was 80% complete in 1 second after
14 .
additiv~ injection. Whitten indicated that the reaction was complete in
about 0.75 second. Both investigators used insulated pilot plant systems
with very slow gas cooling.
4.1.5 Additive Particle Size
10,11,12,15
A number of investigators have shown that decreasing the
additive particle size results in more effective flue gas desulfurjzation.
Many of these tests were made with screen size fractions up to 90% through
16
325 mesh. Battelle investigators working with additives in the range from
about 8 microns to more than 100 microns observed that-the rate of reaction
between 802 .and additive is not simply inversely proportional to particle.
size. They suggested that this type of dependence may be a limiting case.
for larger particle sizes (about 40 microns) but that with smaller sizes
there seems to be little or no dependence on size.
Because of the diverse techniques for measuring .particle size in the
subsieve range and frequent disagreement among methods, we standardize on
. 2
measuring specific surface using the Lea-Nurse technique. This provides
a measure of size distribution and a more direct measure of the additive
surface available for reaction. A number of comparisons of specific surface
and particle size distributions were made during our investigation. Data for
4-11
-------
three additives are plotted on
Figure 4.7. These additives were
pulverized to pass a 6(1~-mesh
screen, which normally produces
specific surfaces in the range
of 2000-6000 cm2 per gram, depend-
ing on the additive grindability
properties.
The effect of particle size
or specific surface was inves-
tigated in our tests. Several
additives were screened to varl0US
size fractions, and two of these
were pulverized progressively to
very high surface areas, in excess
of 11,000 cm2 per gram. Data for these two stones (dolomite M-2l911 and lime-
stone M-220S0) and for three size fractions of a third additive, dolomite
M-22074, are given in Table 4.4 and on Figure 4.8. All stones were injected
FIOJRE 4.7. PARTICLE SIZE DISTRIBlffIO:O; (BAlICIJ)
99.9
99.8
99.
98.
95.
~ 90.
U1
'" 80.
"
"
:3 70.
U1
~ 60.
.s 50.
~ 40.
~
j 30.
20.
10.
5.
1.
I I I II III
I I I I I I I
- C!I - M-22074 Dolomite, 3420 cm2;g
- . . 2
0 . ~I- 22050 Dolomite, 2810 em ;g
- . - M-22091 ~1ar1, 14,000 cm2;g
~.
l..?' ~,.
/? ./
,/
~ /"
./
Y / .,..1-'
,.... ../ ~ ....i:j
./ &
~
6 8 10
20
40
60 80 100
Equivalent Particle Diarreter - Microns
TABLE 4.4. EFFECT OF ADDITIVE SURFACE AREA
ON 502 REM:JVAL AT PORI' NO.1
Test Conditions
Firing Rate Stoichiometric Screen Specific Surface 502 Removed
Additive 1b coa1/hr Rate, % Size cm2/g %
M- 21911 9.0 255 +200 Mesh 290 12
Dolomite 9.0 284 -200, +325 Mesh 610 14
9.3 208 -325 Mesh 2,040 20
9.3 199 - 2,360 21
9.3 180 - 3,330 21
8.1 218 - 6,900 22
7.9 183 - 11,140 18
M-22050 8.6 143 -60, +100 Mesh 210 7
Limestone 8.6 III -100, +325 Mesh 600 14
8.9 105 -325 Mesh 2,800 15
8.3 150 - 11,440 14
M-22074 9.1 116 -60, +100 Mesh 460 11
Limestone 9.1 131 -100, +325 Mesh 840 14
9.1 112 -325 Mesh 3,420 27
4-12
-------
marls with surface areas of 9000
cm2 per gram or higher, which
appears to be the major difference
between these and other limes tones.
Furthermore, the hydrates which
have extremely high surface areas
are also v~ry effective.. These data agree qualitatively with results obtained
by Battelle Memorial Institute16 but, as opposed to the Battelle work, these
data were obtained ~der conditions where both 502 concentration and temperature
were. changing during the reaction; and fly ash was present in the flue gas.
Analyses of reacted additive-fly
ash fractions confirm that fine particles
. . . . "
are more reactive than the coars~ frac-
tions. For example, particles between
2 and 6 microns contained sulfur levels
,
of 8 to 12% (as 503)' whereas particles
larger than 30 microns had less than 4%
sulfur (as 503)' These data, plott~d'.in
, ,
Figure 4.9, indicate that very small
particles were more effective. Additive
content in the size fractions was rela-
tively uniform. Elec;tron microprobe
studies reported by R. W. Coutant17
indicated that the reaction of 502 (in
air) with limestone is confined to a
sharp boundary layer',(lO-:".~O microns)
neaI:.the surface of a particle., A l20-micron particle was used in their studies
. .
in which additive particles were exposed to a sulfur dioxide-air mixture for
periods up tO,an hour or more. These studies were made in a microbalance
FIGJRE 4.8. EFFECT OF ADDITIVE SURFACE AREA ON SOz REMJVAL
;''f,
50
" - '.I-ZI911 Dolomite 2-3X StoichioJT'Ctric
Q - ~I- ZZ050 LiJl"Cstone ....lX StoichiolTCtric
VJ - }!:.ZZ074 Dol ami te ""IX Stoichiorootric
:
,/ 1q
./ " G
...'" 7" "
..... ~ I'"
.'"
p/ ....
40
~
.::
.~ 30
~
$
-g zo
j
!if' 10
o
100
,1000
ZOOO
5000
10,000 ZO,OOO
zoo
500
Specific Surface, anZ/g
FllURI' '4.9. SULFUR CO:~LE:. 10
. i: .
" 8
.::
~
j
, .' "CI' 4
~
u
"
&1
.5
~
Z
~
1
I'
Z'
40
60 80 100
6 8 10
ZO
. Equivalent Particle Diarnctcr,.mcrons (Bahco)
at Port 1. These data indicate
that the maximum reactivity is
reached when the surface area
reaches approximately 2000 cm2
per gram or more. However,' two
of the most effective stones were
4-13
-------
designed to provide relatively high differential velocity between particle
(stationary) and gas. Their data suggest higher utilization of small particles,
which is supported by the analyses of the various size fractions of several
additiVes used in our investigation.
This contrasts, however, with results
of M-2l9ll and M-220S0, which were no more
FHlJRE 4,10, 125X PIUTOMICRJGRAPH OF REACTED
ADDITIVE-FLY ASH MIX11JRE
Fly Ash
Particles
~~ ~" '. ..... '!.'r"'~ .,.~....~
. . '..'w.~~" .,f,
'\:rf!"~," '~', ' '.' ~:: '< . ,
~!, ':;"'" ".~.:&' ..' t
. ~ ~ ...rd. ... "."..,., ,~
", ~~- ~ ~" .. ;}tJ '1,~~{;tl'~ ..:' '-~'£,t
, "b~' ' ~.' .~, "',,;I ~. ! Y',
',~ ~. '\' ~U.-
,.:--..,. #~ " ~ ' ,~":' ~
" \ . .
j'.; ".",1-, "",,':M;,
.~" .',', ,/0.",'. ,,' '"
I " .' .,: ,: ,i' < '., ,.
, .-", ~ '~.- I' .....:.-....~ "':':..... ',.
FWJRE 4. II. AGGLCMERATION TENDu~CIES OF ADDITIVES
,
.'. ' .
. ....t "\ '.
, ~,,-','!.~~'j'"
. ~"''';' .
..., .", ' .'';''
. JtP -\.-"
.,.,... ,',',
.. .. . ~:~/' ',e"" ..-
~,\' ~'~. ,.", I'
. '.'
~i-21993 Lirestonc, Raw
Specific Surface. 2,500 oo'/g
M-21992 Limestone, ttydrated
Specific Surface - 17,270 cm2Jg
1-1-21848 Dolomi te, r-mo-Hydrate
Specific Surface - 17,850 cm2/g
4-14
of very finely pulverized fractions
effective than those pulverized in
the usual manner. The
extensive ball milling
used to prepare the very
fine fractions (several
days) may have been one
factor that caused these
Agglorrerated
Additive Particles
fines to be less reactive
than expected. With these
exceptions, most of our
data indicate that small
particles were more effective than
very coarse particles. The higher
sulfur content of fine fractions
has already been described.
Furthermore, very fine addi ti ves
such as the Michigan and New York
marls and the hydrates were gener-
ally more effective, although 100%
utilization of the fine particles
was not realized.
This low utilization may have
been due to two factors. First,
as shown on Figure 4.10, the fine
particles tended to agglomerate
before injection and remained
agglomerated after exposure to the
flue gases. Photographs shown on
Figure 4.11 show this agglomeration
of high-surface hydrates. This
-------
agglomeration led to difficulties in feeding and uniformly dispersing the
adqitives, a factor also reported by Zentgraf.l1 Coutant16 repprted feeding
difficulties and erratic results with fine additives in the 5-10 micron range..
Zentgraf also suggested that a second possibility is the low relative velocity
between very fine particles and the flue gas which may be responsible for the
low utilizaiton of very fine particles. This could be an important factor in
the B&W pilot plant, where flue gas flow was in or near the laminar region for
coal input of 8 lb per hour. Reynolds number at this firing rate was approxi-
mately 2600 at the high-temperature portion of the heat exchanger.
4.1.6 Sulfur Content of Coal
limestone is strongly
related to the 502
partial pressure in the
flue gases. For example,
the M-22343 dolomite
removed 3500 ppm of the
502 while firing a
Missouri coal, C-13378,
with 13.2% sulfur and
only 100 ppm. 502 while
a North Dakota lignite,
C-13l67, with 0.73%
105 sulfur .was fired. Other
coals fell between these
extremes. The results
for coal from the Little Joe Mine, C-133l9, were somewhat low, which we attribute
to experimental error. No reaction product between the additive and silicon
in the coal ash could be identified by X-ray and microscopic techniques in the
fly ash-additive mixture from this coal.
F1illRE 4.12. EFFECf OF S)2 aJNCENI'RATION ON FLUE GAS DE9JLRJR12ATION
104
i>. - M-23343 Dolomite
0 '.M-22426 Limestone 0/
Vi>.
I
I
J
1"'\ /
J
~/
/
0/ c
f
i>."
V.
I
103
~
,5
j
~
r'.
6JN 102
10
102
103
104
&>2 in Flue Gases Before Additive Injection, ppm
4-15
Data plotted on
Figure 4.12 indicate
that the effectiveness
of both the M- 22343 .
dolomite and the M-22426
-------
The increasing effectiveness with higher 502 pressures is in conflict
with data obtained by Battelle investigators.16 They concluded from their
investigation that "it is clear there is little dependence on concentration,
except at very low 802 levels". However, they emphasize that this dependence
is indicative of the behavior early in the process and may not apply for longer
residence times (about 0.12 second @ 2000F). Earlier studies at Battelle and
by R. Borgwardt9 suggested a first-order dependence on 802 concentration.
Since residence time in our tests was more than 0.8 second between injection
point and l400F, and similar to full-scale boiler operation, it appears that
the first-order dependence applies for these pilot plant tests.
4.1.7 Additive Chemical Form
In addition to the raw carbonates, calcined and hydrated stones were also
tested. One of the characteristics of the hydrated stones was the extremely
high surface area, which should add to their reactivity. However, these fine
particles showed a definite tendency to agglomerate (see Figure 4.11), making
;miform feeding and distribution difficult. This problem led to erratir
results, as evidenced by rather large fiuctuations in 502 level while the
hydrates were being injected. The use of flow promoters did not result in
significant improvement in feeding. Even so, these materials appeared to be
relatively effective, particularly when injected into low-temperature flue
gases, as shown on Table 4.5. The reason for the high reactivity at the low
injection temperatures is not
clear, especially for the calcium-
based materials. Since carbonates,
oxides, and hydroxides are all
theoretically capafule of removing
502 at low temperatures, these
data suggest that reaction rates
for the hydrates are relatively
high at low temperatures. The
small particle size and lower
decomposition temperature may also be important factors. Calcined and hydrated
reacted additive-fly ash mixtures did not remove any S02 when injected into
the flue gases. This is discussed further in Section 4.1.9.2 on page 4-33.
TABLE 4.5. EFFECf OF INJECfION POINf ON
DESULRJRlZATION BY HYDRATES
502 Removed bv INdrates %
Port No.
Additive No. 1 2 3 4
M- 21848 13 - 22
Dolanite Monohydrate
M-21849 18 23 27
Dolanite Dihydrate
M- 21992 - - 22 22
Limestone HYdrate
M- 22278 13 - 20
Limestone Hydrate With Dispersant
4-16
-------
ness (except for M-23275 calcined
dolomite) due to precalcining,
which was expected to improve
additive effectiveness. The reason
for this is not apparent, and
further investigation is required
to clarify this apparent discrep-
ancy. Battelle Memorial Institute
is currently doing experimental work along these lines. One contributing factor
may be that the "shock" heating that occurs when a cold particle is injected
into hot flue gases produces a more reactive surface on smaller particles than
does the soft. calcin~ng. Coutant16 ranked the raw additive reactivity above
that of the calcined stone. He suggested that sintering may have been a factor
in the reduced reactivity of the calcine. No visible evidence of sintering was
apparent during our tests.
4.1.8 Excess Air
IshiharalO presented equilibrium calculations which show that sulfur
dioxide removal will decrease with decreasing 02 level in the combus~ion flue
gases., Reid18, who also presented equilibrium data, commented that "the effect
of the present trend toward low excess air will be to decrease the effectiveness
of limestone in capt1J.ring 8IJ2".
The pilot plant data in this
investigation support these
observations. For example, as
shown in Table 4.7, reducing
the excess combustion air from
15% (3.0% 02) to 1% (0.2% 02) .
decreased the amount of 502 removed
by a limestone from 14% to 2%.
TABLE 4.6. mlPARlSON OF CALCINED AND RAW STONES
502 Removed, ,
Calcined Raw
Port .No.1UII: Port No.**
~lcination .Additive Additive
Temp. F No. A C 1 No. A C 1
h M-21981 Limestone - 4 M-21993 Limestone - 14
-- M-22276 Limestone - 10' M-21993 Limestone - 14
1650 M-23298 Limestone 18 18 M-22426 Limestone 26 22
1650 M-23299 Marl 19 - M-21831 Marl 22
1650 M-22317 Dolanite - 6 M- 22050 Dolomite - 19
1650 M-23275 Dolomite - 15 ~t-21982 Do1anite - 12
1650 M-23297 DolanIte 12 - M- 22343 Dolomite - 23 -
1650 M- 23299 Marl - 19 M-22091 Marl 22
. Injected with 'Armok1ay dispersant.
U See Appendix E, Page E-l for port descriptions.
TABLE 4.7. EFFECT OF EXCESS AI R
Firing Injection Excess 502
Additive Rate, Injection Rate, Transport CombU5 tico Removed.
No. Ib/hr Port % of Stoich. Gas Oxyoen %' ,
M-21993 8.5 1 122 Air 3.0 14
Limes tonc 8.7 1 108 Air 1.0 10
8.7 1 108 Air 0.2 2
,1-21993 8.2 1 124 Ni trogen 3.1 13
Limes tonc 8.2 1 124 Nitrogen 1.1 4
M.22335 4.5 A 262 Air 2.9 48
Dolomi tc 4.5. A 262 Air 5.2 61
II Before additive injection.
4-17
The results of calcining
several limestones and dolomites
are shown on Table 4.6. These
data indicate decreased effective-
-------
~1-21993 Limestone
Port 1 (,,-2300F)
Figure 4.13, which shows this effect,
also illustrates that the additive
effectiveness was reduced when nitrogen
instead of air was used to transport
the additive. Increasing the excess
oxygen from 2.9% to 5.2% while firing
coal at a low rate increased the
FI(lJRE 4.13. EFFECf OF EXCESS OOMBUSIION AIR ON 502~
50
40
amotnlt of S02 removed by M-22335 from
48% to 61%. Injection rate during
these tests was 262% of stoichiometric.
4.1.9 Other Factors
. 4.1.9.1 Catalysts. Several
attempts were made to determine if
some type of catalyst would improve
the effectiveness of additives.
These included iron as Fe203 and Fe304 and vanadium as V205' Three samples
added as dry powders of limestone containing 2.4, 5.1, and 5.7% Fe203 were
also originally supplied by TVA for these tests. These latter materials were
significantly better than the raw M- 21993 limestone, but no relation between
S02 removed and Fe203 content of the additive was apparent. However, specific
surface of these additives was 10,500 to 13,900 cm2jg compared to about
2500 cm2jg for the raw pulverized limestone. Therefore it appears that the
improvement in the l:i.Iriestone was due to higher additive surface area, not the
iron oxide. Additional tests at the Research Center, in which iron oxide was
added to this limestone with
surface areas of 2520 cm2jg
showed no improvement in S02
removal. Tests with M-2l83l marl
"
,~
~
s
]
20
30
~N
10
o '
o
1.0
2.0
3.0
4.0
5.0
Oxygen in Combustion Flue Gases before Injection, %
TABLE 4.8.
INFLUENQ Or- CATALYSIS ON ADDITIVE
EFr-ECfIVENESS AT PORT I ("-2300r-)
-- --- -.-----, ----
Sp, Sf. Average Average
Additive No. of % 502
No. Tests Descrinti.on an2/0 Stoich. Removed %
1-1-21993 4 Raw Limestone 2,440 122 14
M-22080 2 Limestone + 5.1% FcZ03 10,480 140 21
M- 22088 2 Limestone + 2.4% FcZ03 11,740 149 20
M-22089 4 Limestone + 5.7% FcZ03 13,900 116 19
~1-22172 2 Limestone + U VZOS 2,520 116 7
~1-22173 2 Limestone + 3% VZOS 2,520 113 9
~I- 22274 2 Limestone + 5% fcZ03 2,440 106 10
01-22275 2 Limestone + 5% FC304 2,440 105 10
~1- 22360 2 ~Iarl . 2.4% Fe203 14,800 112 23
}I. 22361 1 Marl + 5.4% FcZ03 14,800 111 26
M- 21831 } Marl 11,180 I} }
~I- 22091 4 ~far1 14,800 107 22
01-22796 ~larl 14,900 j.
showed a very small improvement
as a result of adding iron oxide.
These results are summarized in
Table 4.8. Duplicate tests in
which two levels of vanadium were
added to M-2l993 limestone indi-
cated that this material ac~ually
decreased the additive effectiveness.
4-18
-------
In an attempt to more uniformly distribute the catalyst over the additive
surface, two additives, M-22343 and M-22796, were mixed with solutions of iron
and potassium (as iron nitrate and potassium carbonate). The resulting slurry
was then thermally dried, which resulted in a hard cake that had to be repu1-
verized before injecting into the pilot plant. Under these conditions, both
potassium and iron reduced the effectiveness of the additive, potassium having
the greatest effect.
Addition of catalysts in
solution reduced surface area,
indicating that porosity or
surface irregularities of both
additives was reduced when they
were processed in this way. We
believe this was a major factor
in reducing effectiveness.
These data are shown on Table 4.9.
4.1.9.2 Recycled Additive.
To determine if recycling the
additive offered any possibility
for improved additive utilization, two reacted additive-fly ash mixtures were
injected in the as-collected condition, and also after hydrating the mixture.
Stoichiometric quantities were calculated in the following manner.
1. Sulfur content of the reacted additive-fly ash mixture is determined.
2. This sulfur is assumed to be combined as CaS04'
3. The stoichiometric rates are based on the total calcium and magnesium
in the reacted additive-fly ash mixture minus the sulfated additive,
assumed to be calcium combined as CaS04'
With this procedure; the as-collected mixture when injected at Port No.1
TABLE 4.10. RESULTS OF TESfS InTH RECYCLED ADDITIVES, PORT 1 ('V2300F) removed 12% S02 with
M-22337 limestone and 7% S02
with M-22343 dolomite. The
hydrated fly ash-mixture did
not'remove any S02 when injected
at the same port. These data
are summarized on Table 4.10.
TABLE 4.9. INFLUENCE OF CATALYSTS ON ADDITIVE EFFECllVENESS
'Catalyst' in Additivclt, %
Specific Potassium
Surface, I ron as as S02 Removed,
Additive No. crnZ / g Fez03, \ KzO, \ \
~1-ZZ343 Dolomi te Z,570 0.4 O.Z ZZ
~1-ZZ831 Dolomi te 0.3 4.Z 1Z
~1-ZZ830 Dolomite 0.3 9.Z 9
M- ZZ83Z Dolomite BBO 4.0 O. Z 17
M- ZZ833 Dolomite 780 7.4 O.Z 11
M-ZZ796 Marl 14,900 0.5 O.Z 35
M-Z3039 ~lar1 l1,5Z0 0.4 4.7 7
M- Z3040 Marl 9,OZO 0.4 10.0 9
M- Z3041 Marl 10, B50 4.4 0.2 18
M-2304Z Marl 6,800 7.8 O.Z Zl
*Solutions of iron nitrate added to M-22832, 33 and M-23041, 42; and potassium'
carbonate added to ~1-ZZ830, 31 and M-Z3039, 40.
Injection Rate. SO RelOOved \
Additive No. \ of Stoich.
l-1-Z2343, Dolomite 116 13
K-Z0689, M-ZZ343 Dolomite - 103 7
Fly Ash Mixture
K-Z0763, Hydrated M-ZZ343 10Z / 0
Dolomite-Fly Ash mxture
~f-ZZ337, Litrestone 113 21
K-Z0676, ~1-ZZ337 Litrestone- 137 11
Fly Ash ~Iixture
K-Z0786, Hydrated ~1-ZZ337 117 0
Limestonc.Fly Ash Mixture
4-19
-------
Although we have no evidence that the method or conditions of hydration
affects the amount of 502 removed, this may be one factor to consider.
4.1.9.3 Additive Dead Burning. The term dead burning has been used in
varying contexts to identify the reactivity of a lime. According to Lougher19
"the degree of burn - or hardness - of a lime is an ill-defined concept for
which no yardstick exists ... . The final criterion of the degree of burn is
the behavior of the lime in its intended application".
Our findings concur with this conclusion. For instance, when mixed and
fired with the pulverized coal, all additives were relatively inactive as far
as the gas-solid reaction was concerned. This suggests that the additives
were partially dead burned when inj ected with the coal. However, when flue
gas was bubbled through a slurry made from this reacted additive-fly ash
mixture (see Appendix A.3 for procedure), the amount of S02 removed was higher
than for some mixtures collected while injecting additive through Ports A or 1.
No consistent relation between 502 absorbed by the slurry and point of additive
injection was observed. These results are based on reaction with availab~e
additive corrected for sulfate tied up in the dry phase reaction.
Another measure of the degree of dead burning used was based on an AS1M
test entitled Slaking Rate of Quicklime (in AS1M designation CllO-67). Briefly,
this procedure measures the temperature rise when a specified quantity of
quicklime is dropped into water. Our modified technique is described in detail
in Appendix A.2. As anticipated, significant differences in temperature rise
were observed for raw versus calcined additives. However, little or no dif-
ference was observed when comparing dolomites injected at Ports A and 1 and
TABLE 4.11. RESULTS OF SLAKING TESTS feeding with the coal.
Limestones injected at pro-
gressively higher temperatures
were correspondingly less
reactive with water. Since
the amount of additive used
in these tests was based on
an equivalent CaO content,
these tests suggest that some
dead burning did occur with
limestones. Results are
-_u.----
I Injection Temp. Rise,
Additive No. Description Test No. : Point I'
Raw Carbonate -- -- 0
t-1-22335 Dolomite Cal cine u -- 5.4
Add. - Fly Ash Mix. 69-10-9 Wi th Coal 1.3
Add. - Fly' Ash Mix. 69-3-8 A 0.9
Add. - Fly Ash ~Iix. 69-2-13 1 1.4
Raw Carbonate u -- 0
H- 22343 Dolomite Calcinc u -- 4.7
Add. -Fly Ash Mix. 69-10-11 With Coal 1.3
Add. -Fly Ash ~lix. 69-9-8 A 1.2
Add.-Fly Ash Mix. 69-11-21 & I 1.1
69-11-22
Raw Carbona tc u u 0
t-.1-22344 LilfCstonc Calc inc -- -- 6.3
Add. -Ply Ash Mix. 69-10-12 With Coal 0.9
Add. -Fly Ash Mix. 69-9-12 A 1.3
Add. -Fly Ash Mix. 69-12-1 & 1 2.2
69-12-2' I
Raw c.:uTIonatc -- -- 0
~I- 22426 LiJrestonc Calcine -- u 5.9
Add. -Fly Ash Mix. 69-10-10 Wi th Coal 0.9
Add. -Fly Ash Mix. 69-1-16 A 1.5
AJJ.-Fly Ash ~Iix. 69-1-14 & 1 3.1
69-1-15
4-20
shown on Table 4.11.
-------
In addition to dead burning of the additive itself, another possible
cause for lower reactivity is: the reaction between coal ash and additive. 'To
determine if this occurred, X-ray analyses were.made for most of the reacted-
addit~ve-fly ash'mixtures. This technique identified only calcium oxide, cal-,
cium carbonate, calcium sulfate; calcium-magnesium carbonate; iron oxide, and
Si02 as crystalline constituents. No calcium or magnesium silicates were
detected. A complete tabulation of these results.isgiven in Appendix,D.
Infrared analyses, using cesium iodide pellet techniques, were made on nine
samples collected with and w~thout additive, and no evidence of calcium silicate
was detected in the samples where additive was injected.
Tests were also made while firing natural gas doped with S02and H2S
(see Test Nos. 69-10-1, 2 & 3 and 69-11-4, 5 & 6). Additives. injected near
the burner had significantly lower effectiveness ,than when they were injected
downstream into the furnace. Since this trend was similar with and without
fly ash, it appears that reaction with fly ash was 'not a factor in reducing
additive effectiveness.
Experiments by E. Raask20 aid in providing an explanation for the evidence
that measurable quantities of calcium or magnesium silicates were not detected.
Heexamined'f1y ash collected at various points in the gas path'of a pulverized
coal boiler, and mineral .parti~les injected into high temperature air and mix-
turesof. nitrogen and. oxygen. Using optical and electron microscope. techniques
combined with a theoretical analysis; he concluded that agglomeration of par-
ticles in a hot gas,' stream is a rare occurrence, even when a large number of
particles exists in' a turbulent gas stream. He suggests that since, an effective
bond is not formed, either the collisions.are elastic in nature or there is a
repulsive force which prevents contact between the particles.'
4,1. 9.4 Role of Magnesium. There is considerable evidence that magnesium
is active in removing'S02. This is supported by three important. factors. First,
low calcium magnesites removed 10% of the S02 in the flue gases. Second, dolo-
mites are about. as effective as limestones at equivalent injec~ion rates assuming
both calcium and magnesium are reactive. Finally, although magnesium sulfate
, ' ,
was not' identified by X~ray diffraction techniques, it has been identified
in the reacted additive-fly ash mixture by differential thermal analysis. The
identification technique consists of holding the reacted additive-fly ash over
a water bath in a moist atmosphere for 16 hours, then running a differential
thermal'analysisof the product. The results for three reacted-additive-fly 'ash
4-21
-------
FIGJRE 4,14, DIFFERE~'fIAL llU,R/oIAL ANALYSIS
~IgSO 4,71120
u
.~
fj
o
jj
o c
mixtures and a hydrated magnesium
sulfate OMgS0487HZO) are shown on
Figure 4.14. High magnesium con-
tent additives produce a mixture
that exhibits an endothermic peak
at approximately lSOC in the same
region as both CaS048ZH20 and
MgS0487H20. A reacted dolomite-
fly ash mixture had a peak of
lower magnitude, whereas fly ash
mixtures collected when low mag-
nesium additives were injected
had no peak at this temperature.
Calcium sulfate hydrates to the
CaS0482H20 form slowly and, after
24 hours, the CaS04 had absorbed
only enough water to form the
hemihydrate whereas MgS04 hydrates
very rapidly. No quantitative
measurements were made to deter-
r
';:;
1
.~
fj
.g
.E
1sboF
mine if the magnesium sulfates
were fully sulfated in the
additive-fly ash mixtures. Thus the peaks shown on Figure 4.14 are qualitative
only 8 The calcium sulfate hemihydrate does not have an endothermic peak at
lSOC, which accounts for the lack of a peak for low magnesium additives.
4.1.10 Additive Reactivity
Much of this section of the report has dealt with the specific effects
of variables that influence the performance of additives in desulfurizing flue
gases. The results can be used to extrapolate to full scale trials but, as
is true with any pilot plant experiments, care should be exercised to assure
that as many factors as possible be considered before extrapolation. To aid
in extending these results to large steam generators, several factors that may
affect additive performance are given below. Quantitative assessment of these
factors is beyond the scope of this project - this information can only be
supplied by tests such as those being made at Shawnee Steam Plant of TVA.
100
. 500
1000
Furnace Temperature
4-22
-------
The pilot plant was originally designed and modified as required to pro-
duce fly ash with specific characteristics like those of fly ash from a utility
boiler. To accomplish this we found that combustion temperature, total flue
gas residence time, and excess air level had to be similar. However, other
factors which may differ between pilot plant and boilers and from one boiler
to another are also important in a study of the reaction between 802 and
injected additive.
Among these factors are: 1) additive distribution, 2) uniformity of coal
supply, 3) recirculation of additive within eddy currents, 4) reaction of 802
with deposited additive, 5) gas flow velocities, and 6) residence time in the
reactive temperature zone.
4.2 ASH DEPOSITION
4.2.1 Backgr~und
One of the major objectives of this program was to evaluate the effect of
selected additives on empirical laboratory tests that are used to evaluate ash
deposition on boiler surfaces. Ash deposition is a very complex phenomenon,
and its occurrence and severity depend largely on the quantity and composition
of the coal ash. However, it can be strongly influenced by the method of
firing, the design of boiler and companion soot blower equipment, as well as
on boiler operating conditions.
0)
fu mace
SlagRing
Zone
Bo~d
[)cpos i t
FoulinR
::one
4-23
As indicated on the adjacent
illustration, ash deposits can be
divided into three general types:
(1) fused-slag deposits which
form on furnace walls and other
surfaces exposed to predominately
radiant heat transfer, (2) high-
temperature bonded deposits which
form on convection heating sur-
faces, especially the superheaters,
and (3) deposits which occur on
low-temperature surfaces such as
the air heater and economizer.
Fused-slag deposits are
usually associated with the
-------
physical transport of molten or sticky ash particles by the flue gases. Selec-
tive deposition of ash constituents can also occur through condensation of
species vaporized or released during combustion. Condensation causes enrichment
of certain elements in the cooler portions of slag deposits making it difficult
to predict severity of slagging. In some cases, ash fusion temperatures indi-
cate potential slagging problems that might be encountered with a particular
coal. For example, coal ashes with high fusion temperatures will remain solid
and dry (i.e., no molten phases present) during combustion and little or no
ash will deposit on furnace walls. However, for coals with lower ash fusion
temperatures, other factors are needed to evaluate slagging potential. The
temperature range between incipient melting (initial deformation temperature)
and the fluid point is indicative of the plastic slag region and is a guide
for estimating the extent of slagging to be expected. However, measurement
of actual slag viscosity provides a better guide for this purpose.
The severity of high-temperature ash deposition varies greatly from coal
to coal, with method of firing, with changes in operating conditions, and with
the extent of furnace wall slagging. The 'ash content of the coal and firing
method'(slag tap vs dry ash) will determine the flue gas dust burden and
strongly influence the rate of ash deposition. Of course, high ash deposition
rates will require greater capability for in-service cleaning. Another impor-
tant factor concerning tube bank deposition is deposit hardness, which depends
on ash composition, temperature, and time of exposure. The-B&W Company has
developed a "Sintering Test" that measures the strength of gas-borne fly ash
collected from bituminous coal fired units (see Appendix A~5, page A-14 for
procedure). Experience on utility boilers and on coals tested in our pilot
plant shows a definite relation between fly ash strength and fouling history.
The third type of deposit is usually associated with the condensation
of sulfuric acid on surfaces at temperatures below the acid dew point. The
deposits are normally mixtures of corrosion products and fly ash.
The use of additives in boilers is not new. For example, moderate amounts
of calcium and magnesium compounds have been used with fair success as boiler
additives for low-temperature corrosion control. Limited success has also
been achieved in controlling high-temperature deposition on oil- and coal-
fired boilers. However, little information is available on the effect of
massive amounts of additives on furnace-wall slagging and deposition, and
results are varied. In addition, the larger dust loading will place a greater
4-24
-------
burden on soot blower and ash handling equipment. Also, if deposits are allowed
to get damp or wet during outages (due to hygroscopic substances) cement-like
material can form throughout the boiler. . . ;
In practice, data from tests such as sintering, fusion, and viscosity
characteristics do provide guidelines that are valuaqle in establishing boi~er
and cleaning equipment design parameters.21 However, utility coal is often
obtained from numerous mines and coal properties vary from hour to hour, and
from one .burner to another. It is also difficult and sometimes impractical
to monitor and control operating cond~tions at each burner to assure uniform
distribution of coal and air. Therefore, findings of this investigation should
be combined. with continuous measurements and observations of furnace operating
conditions, coal ash composition, and ash deposition during the full-scale tests.
4.2.2 Effect of Additives on Fusion Characteristics and Viscosity
Based on our laboratory
observations for the West Kentucky
coal used at Colbert Steam
Plant, additives would have
varying effects on the fusion
characteristics. Figure 4~15.
showed that addition of enough
.M-2l83l marl to react stoichio-
metrically with S02would reduce
the fusion temperatures for a
pulverized-coal-fired boiler,
Where most of the coal ash is
carried through the boiler.
Greater quantities of additive
1800 would increase the fusion
o 10 20 30 40 50 60 70 80 90 100 Additive.
100 90 80 70 60 50 40 30 20 10 0 Coal Ash d
temperatures, as would a ditions
of M-2l9ll, a dolomite. The
temperature range of plastic
slag (~500 poise to solid. slag) would be smaller with additions of both M-2l83l
marl and M-2l9ll dolomite as shown on Figure 4.16. This would indicate a
smaller zone of potentially severe slagging. Changes of fuel/air ratio" which
would alter the gas composition over the melt, would also have less effect on
FlCURE 4.15. A.91 RJSION OiARACfERISfICS OF A
MIX11JRE OF OOAL A.91 AND M-21831 MARL
3000
: I '.'
, ,,,' ~.
" '~- =
"
2900
2800.
2700
o
-((
2600
2500
u.
2400
2000 I~ ~:-
1900
Reducing
Atmosphere
Weight, ,
4-25
-------
FI illRE 4.16. VISCOSITY - TEMPERATURE RELATIONSHIP
.
10,000
o Coal ash + M-2l83l Marl (~200% Stoich. for S02)
x Coal ash + M-2l9ll Dolomite (~200% Stoich. for S02)
Reducing Atmosphere
5,000
2,000
1,000
C1)
'"
'M
o
p..
Coal Ash Only
Reducing Atmosphere
500
~
'M
'"
o
u
'"
'M
>
200
100
50
20
10
1900
2000
2100
2200
2300
2400
2500
2600
2700
Slag Temperature, F
the mixtures than on the coal ash slag alone. For cyclone furnaces, the ratio
of additive/ash would be several times higher than that for PC boilers because
about 70% or more of the coal ash is removed as liquid slag in the cyclone.
Thus the fusion temperatures would tend to be higher.
Detailed data on fusion and viscosity characteristics that were obtained
during this test program are shown in Appendix F, pages F-2 to F-23.
4-26
-------
Strength
. . .. ,
Jab~~ 4.12 shows. that
... . . .' . J' .'
additives significantly reduce
. ." ;'.) .,;. . p' .,'. ,. . . .
. the f'trength of sintered fl,~
ash for.most bi~uminous coals.
Threeof the coals produced
. .
fly ash with strengths above
2000:?si~ and additives !educed
the, strength of the fly ash
. from these !=o~l~~.y more, than.
.' . " ".' . 60%,in a~l cases. The fly ash
sample from Little Joe Mine had very low strength - 140 psi @ 1700F - and both
dolomi te and limestone increased this strength slightly. The reas.on for this
is not immediately;.: ~vident, .bu~ it probably is due in part to the lower calcium
content iI1the coal ash a1pne, r.esu1 ting in an overall lower calcium level
in the~Ll.y ash cgl1ected. f\dditiona1 sintered strength data is included in
, ' .
App~ndix F,. Table F.S, p~~e 1::-24: Typical plots are shown in Figures 4.17
and 4.~~. "
4.2.3
Effect of Additives on FlY,Ash Sintered
. . ~ "
TABLE 4.12. EFFECf OF ADDITIVES O~ FLY ,\91 SIYfERED STR"~(;fII
. .
Coal Fired Sintered Strength at 170DF, psi
~le No
~. mne Additive ~ ~t-22050 ~1-22343 M-22426
B-22791 East Dimoond 4340 36 30 u --
C-13273 Orient No. 3.' . . 6140. u u 1460 850
C-n274 Atkinson 1360 u -- 250 440
C'13279 'Old Ben No. 24 2070 -- u 260 780
C-13319 Litt'1c.Joc 140 -- u 480, . 1500
C-13378 Power 20 u -- l:J4 184
.. .
'''',
FtC-lIld, 4.17. EFFECf OP"AIII1ITIVE5 ON 1'1.1',\511 STRENG'1l1
OF OIHEN'I"!3 COAL
20 ., . .
+ !,Iv .\....;h from Orient Coal
GFoil'lin~Coal ','
B ~on-Folil in~ Coal. "
. Y.l Orient Fly ,\~h + ~1-22":;43 Dolomite
~ Orient Fly i\";~\ + ~~-2242h. LilI'Cstone
It.
v.
C.
'"
'"
8
,"'
:-: 12
:.
~
c..
'"
'"
~ ,-
x 12
'5
, '"
"
~
'"
'" 'x
~
~
,,'
:;:'
'J, .
'5
'"
"
~
v:
'" 8
~
2J
"
Vi
. .,'
.~. '.i
D
14DD
1000
1700 '
1800
1900
15DD
Temperature I F
4-27
nGURE 4.18. EFFECf OF ADDITIVES ON FLY ASII STREM3TH
OF LITTLE JOE COAL .
20 + 'Fl\' S r~ .ltt e De oa
CD Fouli ng Coal
, e Non.Fouling'Coal .
"" Little .Ioe . ~t-22343 Dolomite
.* Little Joe .'M-22426 Linestone
]6
1900
", .
".' .,1,.
o
1400
1800
1600
1700
1500 .
Temperature, F
-------
The sintering test has not yet been validated for lignites, but generally
the strengths are relatively low. Strength is usually developed at lower
temperatures, but seldom exceeds 2000 psi, compared to 20,000 psi for bitu-
minous coals. Recent evidence indicates that much of the deposition with
lignites can be attributed to slagging, at times even into the tube banks.
This is a result of very low fusion temperatures, which results in plastic
or liquid slag being carried into the cooler portion of the boiler. At
temperatures below the initial deformation temperature, the deposits tend
to be comparatively soft between normal soot blowing periods. However,
very long exposures of several weeks or more provide an opportunity to build
up hard, dense layers of sulfated deposits. These are more difficult to
remove.
4.3 FLY ASH RESISTIVITY
One of the objectives of this experimental program was to measure the
effect of a number of additives on the electrical resistivity of fly ash
produced from the combustion of several different coals. It was anticipated
that these measurements would provide a basis for prediction of the operation
of an electrostatic precipitator when used for the dry collection of reaction
products resulting from the application of the dry limestone injection pro-
cess.
Electrical resistivity data was obtained by two methods: 1) in situ on
the particulate material precipitated from the pilot plant flue gases under
actual operating conditions, and 2) in a laboratory test chamber on material
collected in a cyclone dust collector. The major results obtained from the
measurements that were made and their significance concerning the performance
of electrostatic precipitators is discussed below.
The critical electrical resistivity value for good precipitator operation
10 .
is consi~ered to be about 10 ohm-em at a flue gas temperature range of 300
to 400F. Of the several hundred in situ and laboratory measurements obtained
in this temperature range, essentially all were higher than the critical value.
In addition, tpe laboratory measurements were consistently one to three orders
of magnitude higher than the in situ measurements on samples from the same
4-28
-------
TABLE ,4 .13. IN SI111 AND LABORATORY RESISTIVITY MEASUREMENTS OF
PILaT PLANT FLY ASH SAMPLES FROM VARIOUS COALS
Laboratory Resis ti vi ty, ohm-an In Situ Resistivity"ohm-em
Test Coal:' , . At In Situ
Legend No. No. 300 F 600 F Temp Temp, F Resistivity
"
. ~7-;-1 B:22791 '3.2xl012 6.7xl0l0 - - -
',- 4.0xl012' '2:0xl0l0 9.0xl0l0 1. Oxl0l0'
68-4-1 505
68-7-10 1.8xl013 3. 9xl011 1. 8xl013 299 2.7xl0l0
68-4-11 - - - 460 1. 6xl0l0
68- 5- 2 - - - 425 4.3xl09
69- 2-11 '" - - - 300 1. 9xl011
0 6~J-4- 2 C-13167 2.5xl012 8.4xl09 1. Oxl012 270 1. 7xl0Il
: '69-4-4 ", : 3.4xl012 6.8xl09 2. 5xl012. 310 " l.6xl011 ,.
69-4-5 2.7xl013 6. 8xio11 2.7xl013 300 2.6xl0l0
', " 2 '. 7xl012 3.9xl010, '2. 5xl012 2.6xl0l0
69-4-6 305
: 69-4-8: " - - - 300 1.3xl011
.. -
A 69-4-13 C-13273 1. 2xl012 6. 8xl09 1. Oxl012 310 L lxH)ll -
69-4-15 - - - 310 1.8xl0l! I
.- - ..' 2.1xl012 4.5xl09 2.1xl012 3.4xl011
6. 69-4-19 C-13274 300
69-4-21 - - - 320 4.4xl0l0
. 69-4-25 C-13279 4.5xl011 6.8xl09 4. 0~1011 310 4.6xlOll .,
69-5-1 - - - 305 3.1xl011
69-5-5 - - - 355 7.2xl0l0
0 69-7-7 C-13319 ' 4. 5xl012 6.8xl09 4.0xl012 313 5<.7.Xl010
..
. 69-11-11 C-13376 1.5xl011 1. 4xl09 1. 3xl011 400 3. 2xl0l0
69-11-13 - - - 365 6.2xl09
0 69-12-5 C-13378 8.4xl012 5.4xl09 8.0xl012 295 1.4xl012
'tests (see'comparisons on Table 4.13 and Figures 4.19 thrOugh 4.22). Alsot
particle size of a composite reacted additive-fly ash mixture did not have a
.. - .
, ,
significant effect on resistivity of the material over a range of -325 mesh
to +200 mesh.
It was anticipated that the addition of alkali additives would remove
sulfur trioxide from the flue gas and thus bring the in situ and laboratory
measurements in much closer agreement. This obviously did not happen.
4-29
-------
1014 1014
....- Laboratory
"
~
1013 1013 ~
o 0
] ]
0 0
t' t'
.~ 1012 :E 1012
V> V>
& &
... ...
a a
lOll loll
-,
1010 1010
FlCURE 4.19. RESISTIVITY OF FLY ASH SAMPLES FRO~I
VARIOUS COALS FIRED IN PILOT PLA>IT
1015
1015
1014
Coal Sample No.
. - B-22791
o - C-13167
A - C-13273
/::,. - 'C-13274
. - C-13279
o - C-13319
. - C-13376
o - C-13378
1014
1013
o
]
0
.~ 1012
:g
V>
&
~
lOll
1010
1013
o
]
o
.~
:~
~
1012
...
a
lOll
1010
109
100
500
700
109 100
600
300
400
200
Gas Temperature. F
FIGJRE 4.21.
IN SIlU AND LABCRAJDRY RESISTIVITIES
FOR REAClED ADDITIVE-FLY ASI! mWRES
1015
1015
109
100
700
109
100
200
300
400
500
600
Gas Temperature. F
4-30
FIlVRE 4.Z0.
I~ SIlU AND I.ABORAlDRY Rl'SISTIVITIES
IUR REALTEU ADDITI\~:-FLY AS/I ~IIX1URES
~ ~ ~oo"wry
ASJ
zoo
400
700
500
600
300
Gas Temperature. F
FICURE 4.22. IN SllU AND LABORAJDRY RESISTIVITIES
FOR REACTED ADDITIVE-FLY ASH MlX1URES
200
400
500
700
600
300
Cas Temperature, I:
-------
in .resistivity results are shown on Table 4.14. Careful consideration of these
possibilities by Research-Cottrell, Inc., personnel lead to support the conten-
tion that residual amounts of sulfur trioxide in the pilot plant flue gas con-
ElaJR!: 4.23. COMPARIE& OF RESISTIVITIES WIl1I CM tributes heavily to the
IllR-nDITY AT 4001' , LABORATORY ~EA9JIIDIb'ITS
observed differences, par-
ticularly in the 300 to
400F range. Above this
temperature, leakage currents
in the in situ apparatus
may be limiting the instru-
ment.
The relative effect
of an additive on fly ash
resistivity at 400F and over
a range of humidities is
illustrated on Figure 4.23.
It can be seen that the
resistivity of the fly ash
plus additive-sulfur oxide
TABLE 4.14. POSSIBLE REASONS POR DIFFERENCE IN RESISTIVITY
FOUND BEI1IE1oN IN SIIU AND LABORAlURY IESIS
Reason 10 5i tu Laboratory
1. Dust Layer Thickness 1. 0.5 to 1.5 millimeters 1. 3 millimeters
Applied Electric Field in
2. Making f.leasurcment 2. 400 to 1600 volts/millimeter 2. 333 volts/millimeter
3. 'l-bisturc in Gas By Vol. 3. 8 to 10% 3. 6%
4. Method of Placing Sample In 4. Electrostatically Precipitated 4.
Measurim~ Cell Into Disc Manually placed on Disc
5. Caught .io High Efficiency
5. Method of Obtaining Sample 5. Precipitated From Gas Stream Cyclone
6. Particle Size of Sampl~ 6. Unknown 6. 80% Less Than 30 ~Iicrons
7. Chemical Cansti tuents ,. F~Y Ash 7. Fiy Ash
(Test No. 68-4-1) Si03 - Z7 CaD - 35.1\ Si02 - Z3% CaO - 38.5%
Al2 3 - 9% ~- 1.1\ Al203 - 10% MgO - 0.9%
FeZ03 - 9% 3 - 4.2% FeZ03 - In 503 - 3.61
8. Electrical Current Leakage 8. None at 6\ »Jisture, 200 to 8. Possible at Temperatures
In Equipment Other Than Thru 600 F. and 1000 Volts above 400 F.
Dos t Laye r
9. IIZSO 4 . (503) in Gas St.ream 9. 6 to 7 PPM for Addi tivcs 9. ° I'I'r>I
M- 22335. M- 2Z4Z6. and ~I- 2Z004
(13 PFN for 14 ~asurements
wi thout Addi ti ves)
.' 1014
Fly Ash Plus
Addi tive -Sulfur
Oxide Products
A
1013
IJ
.i!
o
j:;-
:g
&
10lZ
Additive
(M-Z2006 Limestone)
lOll
o
18
21
12
15
Gas lIumidi ty, % by Volume
4-31
In addition,
there appears
to be a
greater dif-
ference in
measurements
at the 400
to SOOF tem-
perature
range than
the 300 to
400F range.
Some of the
possible
reasons for
differences.
-------
products is slightly more than one order of magnitude higher than the fly ash
alone.
FWJRE 4.24. TYPICAL PERFORM<\NCE GRAPH RJR
aJNVENrIONAL SINGLE-STAGE PRECIPITATOR
On the basis of the in situ
measurements, which more nearly
represent the resistivity of the
dust that will result from dry
additive injection, it is clear
that all limestone and dolomite
1014
1013
0.1
0.2
0.3
0.4
0.5
0.6
type additives tested caused a
high resistivity situation. The
deleterious effect of increasing
dust resistivity above about 1010
ohm-em has been reported in the
literature (see Figure 4.24).
Thus, it is expected that the
performance of an electrostatic
precipitator will decrease when
dust resistivity exceeds 1011
ohm-em.
Details of the results
obtained from this subcontract
have been reported by R. F. Brown22
of Research-Cottrell, Inc.
1012
o
~
o
>-
:S lOll
.~
£
~
1010
109
108
Precipitation Rate (W). fps
4.4 NITROGEN OXIDES
Two series of tests were run to determine if limestone and dolomite type
addi ti ves are effective for reducing nitrogen oxides (NO ) concentration of
x
flue gases. One series of tests was run using M-22343 dolomite and the other
using M- 22426 limestone. In these tests, two different methods were used for
contacting the flue gas with the additive. One method consisted of mixing the
flue gas and additive in the normal manner by injecting the additive through
Port A ('V2700F). In the other method, the treated flue gases from above were
passed through a water slurry made of the reacted additive-fly ash mixture
collected in the cyclone dust collector.
4-32
-------
TABLE 4.15. EFFECT OF ADDITIVES ON NO CONCENfRATION
"
M-22343 OOLCMITE
Addi tive Tenp.. Avg. Tenp.. N
-------
5.0
CDNCLUSIONS
5.1
FLUE GAS DESULFURIZATION
This pilot plant investigation has shawn that several factors have a strong
influence on the extent of flue gas desulfurization that can be achieved by lime-
stone and dolomite additives.
1) Large differences were evident in the reactivity of both dolomites and
limestones, although on the average both types of stones were nearly
equally effective. No reason was fOlmd for the differences.
Z) The raw stones were rost effective when injected at a temperature of
approximately Z700F or slightly lower 0 With dense phase injection, this
temperature is expected to be about ZOO degrees or more lower. Feeding
additives with the coal was ineffective.
3) The rore effective additives appeared to react with SOZ according to an
empirical expression R = Sa where R = SOz removed, % and S = injection
rate, % of stoichiometric. Another expression suggested by TVA, In(l-R) =
k'S, gave a slightly poorer correlation.- For the first expression, the av-
erage value for the exponent 'a' was 0.66 and 0.65 at Port A (~Z700F flue
gas temperature) for limestones and dolomites respectively.
4) Residence time had a greater effect at Port A for both limestones and
dolomites than at Port 1. Regression analyses indicate that residence
time, as Treasured by coal firing rate, was more important for dolomites
than limestones. Correlation at Port A with coal firing rate was 0.50 for
limestones and 0.77 for dolomites.
5) Additive surface area also influenced additive effectiveness. Screened
additives with surface areas less than 1000 cmZjg were significantly less
effective than finer additives. Grinding to high surface areas above ap-
proximately 5000 cmZjg did not significantly increase effectiveness, how-
ever, two marls and several hydrates with very high surface areas (>9000
cmZjg) were more reactive than most raw limestones and dolomites.
6) For higher 802 concentrations, the amount of SOz removed by additives
increased with higher sulfur content of the coal, in a manner at least
as sensitive to the SOZ concentration of the flue gas as that indicated
by first order kinetics. Below about 2000 ppm the reaction rate appears
to be diffusion controlled.
5-1
-------
7) The' ameun,t .of S02 remeved was net significantly affected by qanges
in ;excess air in the nermal ranges .of eperatien. Hewever, at lew
excess air;leve+s, belewabeut 5%, ,additive effectiveness drepped .off
rnarkeqly.
8) ,Ne evidence, .of Teactien between fly, ash and addi ti ve was
the reasen ',fer low additive reactivity when fed with the
te be due ,te dead burning .of the ~dditiveitself.
9) In general, ether facters, such as external calcinatiQn, hydratien,
recycling and use .of 'catalysts w~re net sufficiently effective te war-
rant their use in full scale trials;
5.2 EFFECT ON ASH DEPOSITION
feund. Thus,
ceal appears
Several facters are apparent frem the fusien and viscesity dat~ taken te
evaluate: the effect .of addi ti ves ,en' furnace wall s lagging and tube bank feuling. '
Ina mixtur~ ,.of. up te30 .or 40% additive in a cealash-additive mixtur~, the
additive usually lewersthe fusien temperature .of. ash that is high in silica and
iren. Fer pulverized ceal firing, where most .of the ceal ash is carried threugh
the unit, an ash having this cempesitien ceuld depesit.on furnace walls when
steichiemetric.quantities ef,additive are injected fer 3 .or 4% sulfur ceal.
Mixing additives with the coal ,weuld incr:ease this pessibility, since this assures
mixing .of ceal ash, and, additive befere it depesits en the walls. Thus, additives
ceuld aggravate slagging under these cenditiens if they are inject~d inte the
lower .or midfurn~ceandmix with the ash te: give lower fusien temperatures:. At,
higher injectien rates,.orwith cyclene-furnace firing in which l11est .of the ash
isremeved as a liquid,slag, the. mixture weuld be richer in additive. This weuld,
tend.te raise fusien temperatures. The slag weuld tend te be plastic ever a
narrow temperature range, cenfining slagging te a relatively narrew zene.
Inrnost:cases,the additives significantly reduced fly ash sintered strength,
indicating thfit'sefter depesits weuld be fermed. ' Altheugh the strength was in-
creased with a ceal.frem.Little Jee Mine, C-I.3319, it .was still :relatively seft
and seet blowing sheuld easily centre I the depesitien. However, the, large
incr:ease in dust burden might require mere frequent eperatien .of. blowers. The
depesits weuld sulfate en superheater ,banks, and experience with lignites indi-,
cates. that calcium .sulfate can be a hard dense depesit. If ,the depesits are
allewed te beceme wet, during an.eutage'they weuld t~nd, te harden, just as plaster.
dees,.
5-2
-------
Since these data are based on empirical laboratory tests, and only
limited information is available from actual full scale operating experience,
we believe it is essential that careful observation be made of furnace oper-
ating conditions and the effect of the additive on wall slagging and ash deposi-
tion until more information is accumulated. In addition, analyses of the
fuel, ash and additive should be made at frequent intervals for correlation
with the observed conditions.
The deleterious effect of increasing dust electrical resistivity above
about 10-10 ohm-em (critical value) ha~ already been discussed in Section 4.3
FIClJRE 5,1. EXPECfED PRECIPITATOR PERFORM<\NCE AT SH<\WNEE and illustrated on Figure 4.23
STATION - 300F WIlli AND WIlHOlIT ADDITIVES
and it was shown that the perfor-
mance of an electrostatic precip-
itator will decrease when dust
resistivity exceeds 1011 ohm-em.
For example at the Shawnee Station
(Boiler No. 10) ,of TVA the expected
performance of the electrostatic
precipitator is about 90-94% at
rated conditions of 585,000 cfm
at 300F. Assuming the additive in-
jection rate will be about 200 lb/ton
of coal fired, which will raise the
. .. b b 1011
in situ reslstlvlty a ove a out
ohm-em, the expected performance
will drop to about 70-75%. Figure
5.1 is a graphic representation of
expected results.
Dust loadings to the mechanical
collector will increase from about
2.5 to 4.3 gr/acf*. Assuming a
constant mechanical collector
5.3
lOG
...
'"
~
.~
~
w
.~
t:
~
~
8
PREC,IPITATOR PERFORMANCE
95
90
85
80
75
70
65
60
55
50
200
Rated Volume
1
400 500 600 700
800
300
Gas Volwrc, ACR-1 in Thousands
*acf = actual cubic feet at location
conditions.
5-3
-------
effic~ency of 72% at rated conditipns, and that particle si~e of the entrain~d
dust will not ch~ge.significant~y. ~ith add~tive injection, tJ;l~ iI11~t 1Q~dings .
to theprec~pitator'wi11 increase from 0.7 to L2, .gr/acf. A,ccordiI1g1y,the .outlet
19ading Will increase from O~05~ to.0~3~g~/acf. If a pre~ipi~ator outlet
loading 9f 0~052 gr/acf.is desired with additive injection, this unit would,
\ ' ,. j \ '\ '. ',..."
h~ve; to be ,increased in s,ize by a factor, of about?; 5, The base: cost 0+ the
prec~pi~~tor should a1~0 increase roughly by the same,'ord~r..
From the above ,it 'is estimated that the size 'ratio of an electrostatic
\' " '-", ".
pre~ipi~ator with and wit~out~additive ,injection will be about:2~5 to 1 in
order to maintc;dn.a. constant, outlet 10~ding, . This. estimate 'is ,made . assuming
. ., . '
that a qOmbin~tionmechanica1-e1ectrostaticunit.has the inlet loading essentially
" '.' '., '
~oub1ed.with,a~ditive iinj~ction~ bu~ the mech~ica1 e+f~ciency,reIl)ains c~nstaJlt"
5,4 EVALUATION OF PROCESS, POTENTIAL
In s~r,y, ,the dry . limestq,ne-injection process ~has only very limit~d
. .'. .' I .' '
prospects as ~ stQpgap me~surefor app1icatiqn as an ind~pendent methpd for
remo,ving S02 from flue gase~; Average "502 <:lesu1furization .v~lu~s :of. 21% an4'
34% are i,obtained. at :practi<;:a1 addi t~ve in~ ection limits of: 100% and ~OO% ?f
~tQichiometric,re~pective1y, These ~esu1furizationva1ues ,apply for both'
limestone ~nd do10mitic-typ~ addi~~ves whe~ injected ~t flue ~~temperature~
in .t~e neighborhq9d of 2700F, Under c~r~ain conditions addt.tives :can pr9duce
or aggrava~e furnace~w~ll slagging and ash qepositi?n problems" i Therefore,
w4en applying ,this"'proc~ss to full- sc:a1e boilers we believe it is essential
that careful observations be made to monitor.the effect of the additive on.
'. ... - :. . .
these, potential prob1~ms " ~n ~ddition~ the ~ust burden wU1 .be markedly
inct:~ase~ and fl~ ash re~ist~vi ty is, expec.ted to be subst~ntially hig?er, ..
E:x:i~tin~ ash handling equipment may: not be. able to deal with thy increased dust
load,: How~v~r, we believe . the, results of this program. c~ be useful in se1ectif,lg ,
theparameters to optimize a dry injection syst~m that. is used. in conjunction
with a wetscrubber~ For example,. it may be~possib1e to improve over,q11.S02
removal efficiency, by. improving, the gas phaseS02 removal, or it may.be.,po~sib1~
to . dysign . for lower. eff~ciency', in, the s,cru?ber ~o re~uc~ scrubber pre~sure ~rop" '
5-4
'"
. ,
-------
600
RECOMMENDATIONS
The reasons ,for th~ generally higher reactivity of marls should be examined
more closely, Some possible reasons that have already been mentioned in
this report include high surface area, more reactive surface, nonagglomerating
property, ~tco If the property or combination of properties that are respon-
~ible for the better performance were known it might be possible to develop
processes that could improve the effectiveness of other type additives,
I~ is strongly recommended that each coal-additive combination which is
considered for commercial appli~ation be evaluated in the laboratory before
any full-scale tests are made and that gas-~ide surfaces be carefully
inspected before, during and following the full-scale tests,
Further experimental work should be carried out to determine why precalcination
of most of the additives tested adversely affects additive performances.
Increase~ knowledge in this area could lead to development of ~echniquys for
improving additive effectiveness.
L
2~
3.
6-1
-------
7.0 - ACKNOWLEDGEMENTS.
The authors-wish :to express their appreciation to Dr. W. J. Armento for
his - assistance in developing the computer programs used in this work and for
carrying out, -the reported multiple regress ion analyses. A1s 0, th~ help of.
Mr. J. M~ Kibler. is appreciated who- was responsible for carrying out the
pilot plant: testing and compiling much of the data on. which this report is
based: 'I'Qis work was sponsored by the NationaLAir Pollution-Control Adminis-
tratiQn.
nrlg
Submi tted by: R. C 0'f1
R. C. AttIg
u:~
P. Sedor
Approved by:
/'~J~
K. S; Vorres-
7-1
-------
8.0
BIBLIOGRAPHY.
1.
R. E. Harrington, R. H. Borgwardt, and A. E. Potter,NAPCA,Reactivity
of Selected Limestones and Dolomites With Sulfur Dioxide, American
Industrial Hygiene Conference, Chicago, Illinois, May 1-5, 1967.
F. M. Lea and R. W. Nurse, The Specific Surface of Fine Powders, Journal
of the Socie of Chemical Indust , Transactions and Communications,
epte er 939, pp. 277-283.
2.
3~
P. A. Faith and C. B~'Wi1lingham, The Assembly Calibration, and Opera-
tion of a Gas Adsorption Apparatus for the Measurement of Surface.
Area, Pore Volume Distribution, and Density of Finely Divided Solids,
September 1955, Mellon Institute of Industrial Research, De artment
of Research in P YSlcal C emlstry, itts urg, a.
4.
W. W. Scott, Sc.D., Standard Method of Chemical Analysis, Fifth Edition,
D. Van Nostrand Company, Inc., New York, 1939, Vol. 2, pp. 2399-2400.
R. L. Beatty, L. B. Berger, and H. H. Schrenk, Determination of,Oxides
of, Nitrogen by the Phenoldisulfonic Acid Method, Report of Investigation
3687, February 1943, United States Department of the Interior, Bureau
~ines. .
5.
6.
H. Goks~yr andK. Ross, The Determination of~Sulfur Trioxide in Flue
Gases,~ort.M. 211, October 1961, Shell Research, Ltd., Thornton
Resear Center, P.O. Box 1, Chester, U.K.
7.
P. Nicholls and W. 1. Reid, Viscosity of Coal-Ash Slags, ASME Transactions,
1940, Vol. No. 62, pp. 141-153. .
W. L. Sage and J. B. McIlroy, Relationship of Coal Ash Viscosity to
Chemical Composition, ASME Transactions, 1960, Vol. No. 82, pp. 145-155.
8.
9.
R. H. Borgwardt, Kinetics of the Reaction of S02With Calcined Limestone,
Environmental Science and Technology, January 1970, Vol. 4, No.1,
pp. 59-63.
10.
Y. Ishihara, Central Research Institute of Electric Power Industry,
Japan,Removal of Sulfur Dioxide From Flue Gas by Lime Injection Method,
Third Limestone Symposium, St, Petersburg, Florida, December 4-8, 1967.
K. M. Zentgraf, Steinkohlen - Elektrizitat, A. G., Present State of.the
Desulfurization of,Waste Gas by the Limestone-Dolomit~ Process in Coal
Dust. Fired Boilers in Germany, Meeting on Problems of Combatting Flue
Gas Emissions, Munich, Germany, October 15, 1967." .
11.
12.
M. Kurel and Jilntgen, Mining-Research Gmb-H, 'Research Inst. of . the
Bituminous Coal Mining Club, Essen-Kray, Reaction of $02 From Flue Gases
With Dispersed Solids of Carbonates and Oxides Under Definite Temperature
and Residence Time Conditions, Third Limestone Symposium, St. Petersburg,
Florida, December 4-8, 1967;
8-1
-------
8.0 BIBLIOGRAPHY - (Cont'd)
13.
14.
C. M. Whitten-and R. G. Hagstrom, Pilot Plant.,Moving Grate Furnace Study
of Limestone-Dolomite for Control of Sulfur Oxide in Combustion Flue Gas,
Contract PH-22-68-68, Final Project Report, May 27, 1969, Peabody Coal
Co., Chemcoke Division, Columbia, Tennessee. i:
K. Tanaka, Resources Research Ins ti tute. Kawaguchi -Sai tarna , Japan,
Desulpl1Urization by Lime, Third Limestone Symposium, St. Petersburg,
Florida, December 4- 8, 1967. - - -
15.
16.
- -
R. Coutant and others, Investigation of the Reactivity of Limestone
and Dolomite for Capturing S02 from Flue Gas ,..Summary Report -: Contract
No. PH 86-67-115, JW1e 27, 1969, Battelle Memorial Institute, Columbus
Laboratories, Columbus, Ohio/' ---,
17.
- - -
R. W. Coutant and others, Iny~stigation of the Reactivity of Limestone
and Dolomite for Capturing $0,2 from Flue Gas, Summary Report ,'",:August 30,
1968, Battelle Memorial Institute, Columbus Laboratories, Columbus, Ohio,
Sponsored by National Air poi1ution Control Administration.
, - -
18.
- -
W. 1. - Reid, Battelle Memorial Institute, Basic Factors in the Capture
of Sulfur Dioxide by Limestone and Dolomite, Joint ASME-IEEE Power
Generation Conference, Charlotte, N.C., September 21-25, 1969:; ASME
Paper 69-PWR-5. -
19.
E. H. Lougher, Identification of Test Methods, for Determining-the
Degree of Burning of Limes tones, Final Report, November 13, lQ,68 ,
Battelle Memorial Institute, :f0ltnnbus Laboratories, Columbus ,'.ohio.
E. Raask, Fusion of Silicate'Particles in Coal Flames, Fuel~ October
1969, Vol. XLVIII, pp. 366-374.
20.
21. - R. C. Attig and A., F. Duzy, Coal Ash Deposition Studies and Application
to Boiler Design, . Proceedings of the American Power ConferencE:, 1969
Vol. No. 31, pp. 290-300.
22.
R. F. Brown, Determination of , Bulk Electrical Resistivity Character-
istics of Boiler Flue Gas Desulfurization Additives and'Their Reaction
Products, Technical Memorandum CES 70--1, Subcontract No. 596-9477-45-99,
January 19, 1970, Research-Cottrell, Inc., Cottrell tnVlronrnental bysterns,
BOW1d Brook, N. J., Sponsored by National Air Pollution ContrQ,l Adminis-
tration. - -
8-2
-------
~
.'"0
~
H
><
>
APPENDIX A
ANALYTICAL METHODS AND PROCEDURES
-------
. . 0
APPENDIX A
ANALYTICAL METHODS AND PROCEDURES
A-I
-------
APPENDIX A
A.l
INFRARED GAS ANALYZER PROCEDURES
A Beckman M::>del 315 infrared analyzer was used to continuously monitor
the 002 level in the flue gases. This unit is equipped with a Bristol strip
chart recorder which provides a permanent record of the 502 values. These
charts were the primary source of 002 data for following the course of each
test~
The manufacturer's specification lists the accuracy of the instrument at
:tl% and sensitivity at 0.5% of full scale. In addition, the instrument does
not respond to 002 interference up to 16% m2 in the flue gas. (See Figure
A.I.) The checks made on 002 concentration, lLc;ing a wet chemical method,
FIaJRE A.!. APPLICATION ENGINEERING DATA showed that m2 did not inter-
FOR INFAARED ANALYZER
fere during any of the tests.
Other specifications for the
instrument are listed in Beckman's
manual titled Beckman Instruments
l307-D. The instrument has two
scales; one having a range of 0-2000
ppm 502' the other a range of 0-6000
ppm 002' The 0-2000 ppm scale was
used when 002 concentration fell
below 2000 ppm.
Calibration gases that were
used during the two and one-half
year test program included 100% N2
. for zero adjustment and mixtures
containing 502 concentrations ranging
between 800 ppm and 5800 ppm. The
502 concentrations were verified by
the KI03* wet chemical technique as well as by gravimetric analysis.
The procedures used for calibrating the analyzer are described as follows.
Power to .the analyzer heater:and electronic components is left on continuously to
avoid the long warm-up time (f\,4 hours) that is required to stabilize the instrument
Beckman - .
APPLICATION £NGIN[[RING DATA rOR INFRARED ANALYZERS r::-:~-~=.-'~_~~15- -~ -;
I po."; . - . . 61012
:-:!i:~::,.., ~~~~r~~~:',;..c-=:~;:~~;cbri:~~~~=
:o,::~-.": ~~;~:.~;_::~-~.' ') - --~~~_::";'~;::_~P::"-~~ .:- - ~~.~ ~..;:;--=~ L:=~;~~~~~:.-~l
.~~;.t--_.U/4':._...2.mP1lrtran-2_--1Vtton-J!.... -.... ...--..!--.-.. - ..-.-..;
;~~~"'~~~,=J-;=~~tr~-~+~:~'" ~~.;~~-- ~--=~-------I
IIE~~~.~N;:r -.. lO...!l.!';. .~ .JP.Dl,lrtl'an-2 .tvlton.:A _]flt>:!'.i!'~~~~
.::,~,:;~:c: ----1-; m~ ;~"~~2 - ~ .. --5~ -M~ 50--;- .t -No~;-- ~
~. SC.UAC£ VOl-U~~).9- vol~8':~~'.-:..-. ~-,,-~~ ....~ ,"~. 0 .. ---CX-'U.L£(. SC"'''<;!';S vn 0
.. Cf:TECTOA'I)~~.__.';)'" T.... ....,'..,....... ..__-.:...-~_3.5_. OP(!R.T..,,,_~_l!~_~.-
~. DE ft. ': rr.... .;:.. -"I.<' """I: "E.. ~ -"f' C... 7..,
[' - -- .~'--;~,--c-,.7.~H-~~~E- -. - - - "'J FTi-TER-Ci"LL ATT£HU'TIOH'OET-ECT6i-';OLT4Gifo~~fIN-AiQD TO-"I'
~ '" .. i CHUCE I P.P, FE METER TO 100.
.~¥.i.f~~~~; '.H .,-l~:~}¥; I. :Li"~~~~~
.~~:~T-":~'.l_~~::~t~~~~~gJ~~-;;~
903 to be removed by ml.t separator. Water to be removed by
refrigerated condenser. Quoted accuracy based on a low and
constant water vapor content in .tream. .
*See r.eference 4, page 8-1) in the text of this r~port.
A-2
-------
FIUJRE 1\.2.
TYPICAL RECOIUJER Clwns FROM
9]z AND Oz ,WALYSES lNSTRiMWrs
I I ~ .: I Trf
I
It-NO"j £:-~~ ,+-~-
o' . 151. I ; r-r;m- "
.Iil.j- .'.L!_L "'" .;i 'it
-.- 5-1 ~c -
. -1:1-;- - ilj-- -1-1 .--1-:
.-Ti-- -1-. .- --~
.,
.Aij-~ru ' 5' "
! I , ,
J£v~;- I !
. . " " '".
,
!
,
I ' : 1
, I :
I rlv. I I ' I
-
, ' I-r..
.' I . ' , ,, II.
I i ~ '7}~!.
, - i
i , . ,. ~
I S i I !
r I - I I 1 '.+!
I I f"" Ii
. I , !
ai r, . I' I :so
' .. I ' I
,
- ., T
i : ' " ; 1 ; .1:,
I I : i I I :
! , : ., I : I '
: ! , : : l'i
., . , \'01 I " , "
-~f " I i
6 -V -/ : i I I , : : I
. ~ i : !
,. I ,. : I : :
; ,
..... II. ~It I i
,11,1' i i , III I ; i ' : : I I
is adjuSted to the corresponding
va1u~! on ~e chart. Referring
to Figure A.Z, if the calibra-
tion gas. contains 3600 ppm SOz
the analyzer is switched to the
0-6000 ppm range and the record-
er pen is then set at about 14.6
divisions to correspond to the
value shown on the calibration
curve (Figure A. 3) .. The above
procedure is repeated several
times to assure proper ca1ibra-
. .
tion. If the calibration gas
contains less than ZOOO ppm SOZ'
the O-ZOOO ppm range on the
:! 14
>
is 1Z
g
';j 10
u
~
~
~
o
u
&
so that "drift" does not occur.
Power to the recorder is turned
. on to allow about one-half hour
"
warm-up time before starting the
calibration. During warmup, the
100% N Z gas and a calibration
gas containing SOz is connected
to the analyzer. The SOz level
in the calibration gas is com~
parable to that expected in the
pilot plant flue gas.
After balancing the elec-
tronic response of the analyzer
and recorder, the NZ gas is
passed through the analyzer at
a rate of one l/min and the
recorder pen is set at the zero
marking on the chart. The. cali -
bration gas containing SOz is
then passed through the analyzer
(one l/rnin) and the recorder pen
..
~
FIGJRE A.3. INFRARED CAlIBRATION aJRVE. 0-6000 PPM 9]z
20
18
16
1000
2000
3000
4000
5000
6000
ppm 9]2 by Vo1UJOO
A-3
-------
FIaJRE A.4. iNFRARED CALIBRATION OJRVE. 0-2000 PP~I S02
zo
18
16
:~ 14
>
is 12
6
"€ 10
~
~ 8
~ 6
o
& .
400
1200
2000
1600
800
ppm SOz by VoIUJIe
analyzer is used and the pen is
set accordingly to correspond
to the value on the calibration
curve shown on Figure A.4. A
KI03 wet chemical analysis is
made of the instrument effluent
gas to check the calibration.
When calibration has been
completed, the pilot plant flue
gases are then passed through
the instrument and the S02 con-
tent is recorded continuously.
The oxygen content of the flue
gases is also recorded (see
Figure A.l) to permit correction
alr. To further assure that the
gases are checked by the wet chemical
of the 502 values to a base of 115% total
recorded S02 values are correct, the flue
technique during each test.
An instrument calibration is performed at least once each test day and
also when a change in fuel is made that could result in a large change in 502.
concentration in the flue gas.
At the conclusion of a test, a straight line is drawn through the recorded
deflections to obtain an average value for the test during equilibrium con-
ditions. The S02 concentration is then obtained from the calibration curve
(Figure A.2 or A.3) to the nearest 50 ppm. This value is corrected to 115%
total air using an average 02 value that is obtained from the Bailey oxygen
analyzer--recorded for the same period of time. Comparison of the average
instrument 502 value with the S02 value obtained by the wet chemical technique
showed that they were wi thin the accuracy limits of the two methods.
A-4
-------
A.2 LIME SLAKING APPARATUS AND PROCEDURE
A schematic drawing of the apparatus that was used for determinin~ the
slaking rate of reacted addi ti ve- fly ash mixtures is shown on Figure A. 5..
. "
It is a modification of ~e ,apparat~ described in ASTM q.esignation C~10~67 .
for, slaking of quicklime. Jhe modified version c.:0nsists. of a:. Dewar fl;as~. wi1?..,
stirrer, chromel-alumel (CA) thermocouple, ice bath for a c~ld thermo~~)Up'le",
junction and a 0 to 2 mv recorder. The stirring rod was formed into a loop
to fit the contour of the flask. The thermocouple was positioned in the
flask at approximately the centerline of the 100 ml of water that was used
in the tes ts . The CA thermocouple leads were j lIDctioned with copper wire in
the 32F ice bath and the cold jlIDction output was connected to the milli vol t
recorder. An insulated lid was used
to cover the open top of the Dewar flask
and the ice bath was covered with a
rubber stopper.
Before starting a slaking test, the
100 ml of water, Dewar flask, thermo-
couple and stirring rod were equilibrated
to a temperature of about 77F. The heated
water was stirred at constant speed,until
a millivolt (temperature) base line was
recorded. A weighed amount of addi tive-
fly ash sample was then added to the water
and the maximum temperature deflection
noted. Fi ve gram samples were used in one
series ,of tests while a calculated weight equivalent to 2 grams of cao +; MgQ
(as CaO) was Used in another test series.
The main differences between the modified test and the standard ASTM ver,
sion lies in the amount of sample and water used and in the temperature of the
water at the start of a test.
FlCJJRE A.S. SClIBIATlC OF LIME SLAKING
TEST AFPARATIJS
Stirrer ~btDr
[IJ
Recorder
~:. :0.
(I: ,"
'.0.' 0° 0'"
',:',°0:
Ice Bath
Chromel-Alumel Thenrocoople
Dewar. Flask
, .
A-S
-------
A. 3 PROCEDURE FDR MEASURING DEGREE OF DEAD BURN
As a minor part of this research program, tests were made to provide a
measure of the degree of dead burning that occurred when feeding additives with
the coal and when injecting them into different flue gas temperature zones.
A schematic diagram of the apparatus that was used for obtaining these measure-
ments is shown on Figure A.6.
Synthetic
Flue Gas
FIClJRE A.6. APPARATUS USED fDR DEAD BUR~ ~n:ASURH1E.Vr
-
Cold
Trap
lIeated
Bath
Heater.
Control
Magnetic
Stirrer
Recorder
Indicator
Infrared
9JZ Analyzer
Flowrreter
Manmreter
Trap
The procedure cons is ted of bubbling a synthetic flue gas mixture containing
a known amount of SOz through a slurry made of 100 ml of distilled water and
o. ZS g of reacted additive - fly ash that was obtained from the cyclone dus t
collector during a pilot plant test. The SOz combines with the dead burned
additive contained in the slurry. The SOz free gas is then passed through a
cold trap (OF) to remoVe moisture before entering the infrared gas analyzer.
Flue gas flow rate through the system is controlled at about one l/min through-
out a test. Bubbling of the flue gas is continued until the dead burned addi-
tive is nearly all reacted and SOz breaks through the slurry and increases in
content to at least ZO% of the inlet concentration. The temperature of the
slurry was held at lZOF to simulate conditions that would be expected to exist
if wet scrubbing were used for SOz removal on full-scale boilers.
. No less than two runs were made with each reacted additive - fly ash
mixture that was selected for tes ting. The data obtained were plotted as curves
ofSOZ versus time for the different flue gas temperature zones and compared
with one another.
A-6
-------
A.4 SLAG VISCOSITY MEASUREMENT
'. ~. '.~ I" .:
The.. ash that is used for making slag viscosity detenninations is ..'obtained'
by..ashing off,. a sample of coal large enough to provide about. 150 grams of ash.
Details..o.f the ashing procedure .are given in AS1M designation DZ71-58. The. ash
product is passed through a ZOO-mesh screen to assure, good sampling of the ash .
for~chemical analyses and to aid in rapid. melting of the particles when heated
in the. viscometer. The.ashis'.loaded into the viscometer in 5to 15 gram.batches
depending on rate of melting and gas evolution. The mol ten mass .is stirred !wi th
a platinum probe to assist" release of 'any gases that are .formed~'
A diagram of the slag viscometer is shown on Figure A.7. The method used by.
the Research Center to measure viscos-
between impulses from light beams re-
flected from two mirrors attached to
the top and bottom of the wire.
The viscosity detennination for
wall slagging investigations is normally
conducted in an air atmosphere. Since
...'L..e oxidation level of the iron has a pronounced effect on the viscosity, it is
sometimes desirable to make a viscometer run in a reducing atmosphere. For this
purpose, a small gas nozzle is provided to introduce a mix~ure of hydrogen and
nitrogen in place of air over the melt. The procedure for determining the viscosity
is the same. When making slag viscosity determinations, the coal ash is first
FlillRE A. 7. SLAG VISro.tETER
GAS NOZZLE FOR
ATMOSPHERE CONTROL
GLOBAR TUBE
PLATINUM CRUCIBLE
WITH SAMPLE
PLATINUM BOB
THERMOCOUPLES
heated to the fluid point.
ity in the high-temperature range con-
sists of measuring the forces that
oppose the rotation of a bob submerged
in a molten mass. The bob is suspended
in the material by a calibrated wire
which is rotated by a motor drive. When
the bob is rotated at a constant speed,
the wire twists by an amount propor-
tiqnal to the force opposing its rota-
tion. The amount of twis t is measured
and recorded as the time .interval
The molten slag is then cooled at selected temperature
A-7
-------
increments and viscosity measurements are made after the slag has been held at
temperature for 30 minutes. The data are plotted as a graph of viscosity
versus temperature on semilogarithmic paper and a smooth curve is drawn through
the points. The viscosity characteristics of. the slag can then be compared
with those of known behavior.
In order to determine the oxidation level of
are obtained by inserting a small platinum probe,
which freezes on it.
Results of slag viscosity determinations that were made during this pro-
gram are shown in Appendix F, pages F-14 to F-23.
the iron, samples of the melt
and breaking off the slag
A-8
-------
A.5.
FLY ASH SINfERED STRENGTH MEASUREMENT
The fly ash samples or mixtures of fly ash and reacted additive collected
from the ashing furnace are passed through a 60 -mes~ u. S. 'Standard. screen
to remove essentially all particles of slag, and then ignited at. gOOF to remove
any carbon that might be present. The ignited material is then reduced to a
lOO-mesh size. and. cylindrical specimens (0.6 in. diameter by 0.75 in. long) are
formed in.a hand press at a pressure of 150 Ib/in.2. Six specimens are heated
at each of several t~mperature leve,ls for 15 hours. Thus, if the sintered
strength is desired for three different temperatures, a total of' 18 specimens
is required.
After the specimens have cooled slowly in the furnace, they are removed,
measured; then crushed in a standard metallurgical testing machine. The sin-
tered or compression strength is then computed from the applied force and cross-
sectional area of the.sintered specimen. The average strength of at- least six
specimens is used as the strength of the sinteredfly ash at a particular
sintering temperat~re.
Sintered-strength data obtained during the test program are tabulated in
Appendix F. pageF-24.
A-9
-------
.?e
~
<~
tj
H
><
OJ
APPENDIX B
TABLE B.1. ADDITIVE CHEMICAL ANALYSES
-------
APPENDIX B
TABLE B.l. ADDITIVE o-IEMICAL ANALYSES
SYMBOLS
---- = No Data
L = Limestone
D = Dolomite
M = Magnesite
R = Raw (Carbonate)
C = Calcined (Oxide)
H = Hydrate (Hydroxide)
LOI = L055 On Ignition
B-1
-------
TABLE B.1 .
SAMPLE NO. I IDENTIFICATION II - LOI.. I ; COMPOSITION - 0/0 . I
_-:_------t------I J J. 900 C I------~-------------..,.---------------~---.,. J
B&W J BCR I 1,. . ISIO AL 0 FE 0 MGO CAO ALKALI J
I I 1 J, I. 2 2 3 . 2 3 I
----- ----1------ t-- - ------ --- ---- -_.- ---- -- -:-l +,--------+-.--~-:-::-7'" - -- ----- -- -- -:-.,.~-- ----.---------- --- 1
I I 11 . I - 1
M-21571 I ---- I ALLIANCE LIMESTONE II 18.2 1 50.1' 6~0 4.0 1.0 20.7 000 I
I I A lli I A NC E 0 l . R I I I I
M-21588 J 1361 I PARADISE STEAM PLANT 11 39.2 I 4~1 1~3. 3.1 4~5 46.0 001 I
I I DRAK ESBORO KY l R II.. I - I
M-21589 I 1359 I GROVE lIME CO. J 1 - 43.6 I 0.5 0~2 0.1 0.6 55.0. 0.0 I
J I STEPHEN CITY- VA lR J 1 . I I
M-215901 1352 I MILLARD lIMESTONE CO J I 42.4:1 4.4 1.8 0.9 17.0 32.8 000 I
I , ANVILlE PA 0 R II I I
M-21591 I 13431 HOPPER-BROSQUARRIES 1'. 41.3 I 3.8 0.9 0.6 0.6 52.2 0.0 I
I I WEEPING WATER NEB lR 11 I . I
) I J , " , I
"1-21592 I 1351 I JEFFREY LIMESTONE CO II 49..8 1- 6..1 0.9 3.4 14.8 25.0 0.1 I
I J PARMA MICH D R I),. I 1
M-21593 I 1363 I CASEY STONE CO. J I 26.9 I 24.0 9.0 3.0 1.0 30.3 0.0'
I I CASEYILtlINOIS l R -) I J I
M-21594 I 1331 , MINPIGM METALS CPFIZER J I - 46.5 I 0.0 0.0 0.6 22.1 - 31.2 0..0)
I I' GIBSONBURG 0 D R II. I I
M-21595 ) 1342 I CONKLIN LIMESTONE CO I I 38.1 I 6~0 0.0 3.0 14.5 36.9 0.0 I
1 , L I NC OL N . R . 1- DR' I . J I
M- 2 1 596 I 13"53 I J E B A K E R . C 0 11 46 . 5 I 0.. 7 0 .0 0 . 2 19. 6 29.. 6 0 . 0 ,
I I YORK PAD R . J I I I
J III I . . )
M-21597 I 1355 I ELKINS LIMESTONE. II 32.6 I . 18.0 5.5 1..0 2.6 39.4 0.0 I
1 , ELK IN S' W VA l R -II - I I
M-21598 I 1360 I MONMOUTH STONE IJ .43.6 I 1.0 0.0' 0.0 5.5 46.8' 000 I
1 1 MONMOUTH ILL LR -II, , I f
M-21599 1 1362 I FERNVAlE lIMESTONE TVA J 1 33.8'1 14.0 3.0 12.0 1.9 39.2 0.0 1
I I NICKAJACK DAM' L R -II . . 1 I
M-21600 1 1372 1 SAMPLE B DEPT GEOL iIND U'II- 35.11 13.0 3.0 7.0, 1.0 40.4 - 0.0 I
I I' BLOOMINGTON INO l R J I 1- . 1
M-216011 1373 I SAMPLE C DEPT 'GEOL IINO U 1 f, 40.2' 2.5 0.0 5.0. 3.1 45.4 - 0.0 I
I I BLOOM INGTON INO LR - J I; I 1
PAGE B.2
-------
~AB_E h ,.:fCON'T)
SAMPLE NO. I 'IOENTIFIGATION II: : LOl " I:, COMPOSIT-ION - OtiO I 1
---------+------1 II, :90.0.;C,: 1-:-:~-':~~---:-~---;-:-~-:-,"-7':":-;"-7--:,-:-,':"7---:--~-""'-:'c--1 '
B&W 1 BCR' I' 11. 1 :S10' AlJO' FE 0 ,MGO. CAO. ALKALI,.I
I 1'11. I. 2 23 23 ' I
- -:---- ----i --- --- +-:.-- - ,- - -:-"-7 --- ----~~- ~- ~...,...~- -i-t;-:.-,c, -:--+-:-;- -: -~--:-:-.""'- -...,-:: --:-:-,-"""'- - -...., ~-- -:- -:' -; -- -----~-: I
. 1 I' I I ' , 1 'J
M-216o.2 1 1677 1 LONE STAR-MATlS .II. . 26'.4 ~1 .40..7. .0..3 '1.6 . 0..5 30..7, 0..0. I
I I AUSTIN TEXAS L'R..II.. ,I; I
M-216o.3 1 1378 I VERPlANKS COAl;& 'DOCK CO I 1.47-.11 2.5 0..0.; 0..8 20..3 29~9 \. 0..0.1
I , FETTYSBURG,MICH 0 R ..11. ; , . I : I
M-,216o.41 1380.1 ~ ROCKWELL !LIME COI I.; 47.'4.1 o.!!o.o...o. 3.5 2o.,~9 30..7, 0..0.'
1 I: MANITOWAC.WIS 0 RII,; I I
M,...216o.5 ! 1678 ( DOLOMITE PRODUCTS. 1 1.30.'-5 I: 27.0. 2.5: 1.5, 13.2, 20..7. 0..0. 1
J I ROCHESTER NEW YORK- DR.II: I. I
M-216o.6 'I 1681" COUNTY LINE STONE CO II,: 37.5,1.13.0., 0..0., 5.0., 0..9 42.8 0..0. I
1 I AKRON NEW YORK l;R I I, . I 1 .
I I I I. ; , , ; I
M-216o.7116821 CALIF ROCK & 'GRAVEL i 11:42.8.1. o.~7, 0.'.0.: 4.0.' 0..4: 53.8 0..0."1
I I SAN FRANCISCO CALIF'liR..il., I I
M-21831 I I' MICHIGAN,.MAR!;;.!!: 11; 42.0.,.1: 9~O 1.9' 0..6 2.1,.42.3 0..0. I
J I l ,R i I. ; 1 " 1
M-2r848 I----! CORSON'REGUlAR.HYDRATE II 20.'-0.,1 1.-8 0..0.. 0..8 31.3 46.0. 0..0. 1
lID H ) 1 . I ' 1
M-21'849 1 ---- 1 CORSON MIRACLE LIME II.: 26.8 I' 1.2 0..0. 0..7 28.6. 42.2 0..0. 1
I! OR.f 1 1 . 1
M-21911'1 1337 I MIN PIGMMETAl.:S C ,PFIZER' II 47~4,~I 0..7 0..0.. o.~O" 22.2. 30..8' o.~? I
1 1 G I B SON BURG 0 0 R .. I I. : .' I: I
I I I I - 1 . I
M-21912I 1337 I '.MIN PIGM METALS C ;PFIZER .11 47.41 0..7' 0..-0.; o.~o.. 22.2:.30..8 0..6 I
I I G I BSONBURG 0 0 R . I I 1 . I.
M-21913 I 1337 I :MIN PIGM METALSC;PFIZER.II:. 47.4.1 < 0..7; 0..0. 0..0. 22.2 30..8 0..61
I , GIBSONBURGO D R.l I: . 1 " I
M,""21949 J 1678 I' DOLOMITE PRODUCTS, . I J;; 29.6, I 30..0. 2.5 '. 2~0.: 13.8 19.9 1.3 I
I I . ROCHESTER -NEW YORK- 0 R - 11 . I 1
M-21981 I ---- I 'LONGVIEW CALC ilIMESTONE "11. 0..0..1 0..7 0..0. 0..0." 1~4: 97.;4' 0..6 I
I . I B IRM INGHAM ALA. L:C I i ~. , ' . ' 1
M-21982 I 13'53'1 . J :E BAKER-CO' II; ;.47.6 I; 0..3. 0..-0. 0 0..'8 20..'8 '31.4. 0..2 I
, I YORKP A 0 R..' I . I ; I
..
PAGEB.3.
_. - ~-'--'--'- _._._._-----~----~_.._-- -,' - _._.'~-"'-.'-" -'''--.---.-----.-.- .~.-----..____._A~~-...... ..---<~. .---- --...~_._.._._.~-~---.-,....~- -.-,----.._~.---.... --_.- .~. _..,._.~-. -. '"', .~.~,-._.-. -'. ,~.~~ ._-~. ,------ '~'- ....,.------ -.- _.-..-.'2':._~"._.
-------
TABLE B.1 (CON'T)
SAMPLE NOo I IDENTIFICATION II. LOI - I . COMPOSITION - 0/0. I
---------+------1 11 ~OO:C I-~----------------------------------------I
B&W I BCR I II: ISIO ALD. FED' MGO, CAOALKALI-I
I I It " I, 2 2 3. 2 3. 1
----- ---- t- --- -- +-- --- ---------- ---- -- ---- -44.-"-~.----4-.- -----....,.------------- -- ----- - - ----~------- 1
I I . I I I . I
M-21992 I ---- I LONGVIEW HYDRATE LIME f I ,26.6 I 0.4 0.0 0.0 1.2 76.2 0~3 I
1 I BIRMINGHAM ALA L'H '.11: ; I I
M-21993 1 ---- I LGNGVIEW RAW LIMESTONE If.. 43.0'1 0.7 0.0 0.0 0.8 55.1 . 005 I
I I BIRMINGHAM ALA L. R t I I t
M-22000 I 1348 I JE BAKER ,CO II 46.9 I 0.2 0.0 0..2 20.7 31.8 0..2 I
t I MILlERSVILLE 0 D R ..1 I ' I t
M-22001 1 1356 t VALLEY DOLOMITE II. 44.8 ); 1.7 0.1 3.3 17.6' 3101 004 1
I I BONNE TERRE MD 0 R II I . )
M-22002 ) 1374 I SAMPLE D OEPT GEOL INO U"),: 41.9 I 8.0 0.9 1.6 12.7, 35.9 0.3 I
I I BLOOM INGTON INO 0 R 'I I 1 I
I I 11 ' I ' 1
M-22003) 1375 I BASIC ;CHEM B. f t ,48.5 1. 2.2' 0.1 0.5' 41.3 6.8 0.2 1
I I CLEVELAND 0 M RI t . I I
M-22004 I 1376 J BASIC ,CHEM 0 II, ,49.4 I, 1.5' 0.0 0.5 42.4' 6.2 0.2 I
I I CLEVELAND 0 M R ..11, J I
M-22005116871 CALCIUM CARBONATE CO 11'.43.11 1.7. 0.0 0.1.. 1.1 54.0 0021
I I " QUINCY ILL; L R II I . )
M-22006 J 16'93 I PETE lIEN & 'SONS II ' 4r~61" 4.5 1.0 076" 0.7, 52.7 0.2 I
I ) RAP 10 C 1 T.Y S D L . R . f I ' I I
M-22007 I 1698 I MONMOUTH STONE II: , 43.3 .1 3.0. 0.0. 2...3 9.4 42.7 0.2 I
I I MONMOUTH I Lt: ; L R - II : I : I
I I t I . I 1
M-22008 I 1700 I HOPPER -BROS"QUARRIESII. 42.4.1. 2.4 0.0... 0.4 0.6 54.2 0.5 I
I I WEEPING WATER NEB l 'R .11 '. I I '
M-22046I 1336 I GEORGIA MARBLE col 1.42.2 I. 2.8 0.7 0.3 0.4 53.1.. 0.1 I
I I . TATE GA L iR - J I . 1 ' I
M-22047 J 1340 I NANTAHAlATAlC LIMESTONE 11' 45.5 I 2~3 0..1 . 1.5' 19.'8 30.3 0.1 f
I I LEXINGTONKY D R,il" I ' 1-
M-22048 I 1341 I NEW ENGLAND LIME CO 1;1,.46.3 I 0.8 0.0 0.2. 21.5 .31.7 - 0.1 I
I 1 ' CANAAN CONN' D R - t 1 I I
M-22049 I 1346 I MANKATO 'AGlIME & ROCK CO J I ' 38.6 I ; 11.0.2.2 2.2 16'.3' 25.6 1.8 I
I I' MANKATO MINN - 0 R 11 I f
) AG:; ~. 4 .
-~-_._.. -- '.-.- ---------..- ...- ~-- - -~- ,- - ~-..- - -----_. --- - ---.~_._--- -_._-- --_._-------. ---~._.-u_._----..,_.-.--_. --~~--- -
---_.. . ----_._._._-----~._.__.__.----_._--_._- -~ --- -'- ---- -'--.- --..-.- -- -,-
-------
. TABLE B.1..lCON'Tl:,
S AMPLE" NO. I I OENTI F I G--AT I ON . I'. , LOI -., j . COMPOSI T 10N- OAOj I
...,--------t------, : II; :90.0. .C'1- I ~.--~"':_--'7"7':'-~--~-7--------""7"'--:~~--:--:~--:----~ I :
B&W I BCR- 1 II'; ".SIO;--- AliO; FE'OMG'O, CAO ALKALI 1
. I I :. > . " 11- .: 1;'2 2 3 . 2 3. 1
-,--- ---- t~- -:- -~ +--:...: - -- -::--..,.-- '7-- -::-- -'-- - ~-~--~ -t:-,,--.-;-;.-:77'+~~ 7"' -:'7"'. -:-~-:-:-:~--:-::.-~--: ~- "":~--~--:"":- --.,...--:-~-- .,.-.." I
I 1 " II ;. . I;;. . 1 '
M.,...22o.5o. I 13541 MONTEVALLO ,LIMESTONE .CO '1 I, 45'.6.-1; 2.5 0..0.. 0..3 20.':2 30..9 0..3,1 '
1 ' ., MONTEVALtlO'AlA' D.R-TI:, .1: . .1
M-22o.51 I 1356 1 - VALLEY DOLOMITE 11. ,45.0.:1.. 1!6 0..0., 4~'.o.. 17.8 .31.4 - .0..4 1
1 1 BONNETERRE:MO' 0 'R.-j 1- ; .' 1 " J
M-220.52 I 1358 I HANNA .COALiCO; . J I.: 33.3 , : 19.0. 5.0.. 3.0.: 6;5 31-.4.. 1.4.1
I ). 'A DEN A ,0 . l :R - I I, ;, I . I
M-22o.53 I 1364 I GIANT,PORTLANO..CEMENT CO 11,; 30..6 1 19.0. 9.0., 2.5 2.6 34..4 ' 1.8 I
I I . EGYPTJLEHIGH CO 'PA, l iR 1:)., 1 :. I
M-22o.54 J 1365 I IUHNOIS F (1);. 40..9, ); 5.5. 1.4 . 9.0.' 13:.0.. 31.40..4 I
I J I l:U ; S TAT E G E 0 SUR V E Y, 0 R . 1 I; . I. I
I ) ,. . ) I : , I ; I
M- 2 2 0. 55 I 1366 r I bE I NO ISM 23 B f I. -, 41..2 ' I 6 .; 0. 0. . 8 5 . 5 9. 7. 37 . 9 a . 5 J .
1 ) Il:tiSTATE GEO SURVEY DR II;; . I : .. I
M-22o.56 J 1368 J IOEAIJ;CEMENT' ,11:.39.'3-). 6:.0.: 1.:0. 0..9 1.:3 .48.7' 0..7.)
) 1 KNOXVIU1E: TENN ' L -R 'J). : . I '.' I
M-22o.57 1 1369 )CHEMSTONE CORP' I): . 43:.3 ,; 0..3 0..0.: 0..:1 1.2 54.9 0..7 J
J I MENLO ,PARK- N J' L!R I I, - . I', I
M-22o.58 1 1371 1 'SAMf?lE A.DEPT GEOLHND -ull:. 36.3 1.13.0. 3.2' 1.2 7.8 35.6 0..8 1
1 I' BLOOM INGTON ' IND '. L R -11 ' ) : ' I
M--22o.59 1 1377 J . TVA :RUSSFIELD. ,I J, 26..9 I . 26.0., 9.5 ' 4.5 . 2.3. 29.2, 3.1 1
1 J NASHVILLE TENN lR-I)..: J ' I
1 I ; I 1 . I I
M-22o.6o. I 1381 I TEETER -STONE INC. . 1 '.:.43.0., ,: 1.8' 0..0.; 0..;32.3 -52.5 0..2'
J , GETTYSBURGH PA. " l iR -, 1. '. I - . 1
M-22o.61 J 1382 I HEMPHILL JBROS INC 11 ..43.21. 0..5 0..:0. . 0..'2 1.0.. 55.0, . 0.2 1
1 I SEA T Tl: E WAS H L " R-) I : . I : 1
M-22o.62) 1383' COLARUSSO £ SONS .11, :37.8'1: 9.'5: 2.0. 3.0.. '0..:9 .47.;0.. 0..7,1.
I J HUDSON NY t iR J I" ; , , ; 1
M-22o.63 I 1679 1 . INDUS, lIMESTONE, J 1-. 39.4~1, 10.'.0.. ,1.0., 0..;4: 1.4 . ,48'.6 0..2, 1 '
I I- IMMOKALEE .FlA L ,R ,-II,;, . 1 ' 1
M-22o.64 I ,1680. J JOHN.S lANE & SON. INC; '11: - 42-.0..,1 : 10..;,5, 0..0.' '0..6 . '17'.2 29..;9 . 0..5 I
1 r. MERIDENCONN' 0 R -II ; I:' I
"'0;'
, ,
PAGE ,B.5,
_-i..:!~~._--~-----_.~---....._------------.-.. ...- --- -_.-- -.0___, ----'--'-"~----'---"-'- --_._. .-.- ~--- _._--...~,----'------~--,_.-....-~. ._-_..--------.- _. .-. .-. .-~ -- - ,_. --- _.--.-_.- - -- --_.- -_. .~- -. - ~ -.. -.---"-" -- --'
-------
T A BL E B. 1 ,( CO N ' T )
SAMPLE NO.. I IDENTIFICATION t t LOI. t " COMPOSITION- 0/0, I
----~----t------I 11, ROO C '-~----------~--~---------~----------~-----I
B&W 'BCR I II '510 AL 0 FE O. MGO CAO ALKALI I
I 1 II 1.2 23 23 I
-- ------- t- -- - -- t----- ---- -- --- ---- - -- -"" --- -11--'--""--7 t-,- --:- -------------- ------ --7-- -- -----.-'- - -- 1
, , 11 , . I
M-22065I 1685 , RAID QUARRIES' I .43..5.1. 2.2 0.0 0.6 7.0 47.5 0.5 I
I I BURlINGTON IOWA L R ul , , ,
M-22066 I 1687 I CALCIUM CARBONATE CO 11 43.3 I 1.7 0.0 . G..,L 1.2 54.5 0.5 I
1 I QUINCY ILL LR 11 I I
M-22067 I 1689 I PARADISE STEAM PLANT 1139.3.1. 10.0 1.8 . 0.9' 2.0 47.2 . 006 I
I I' DRAKESBOROKY L 'R II 1 I
M~22068 1 1690 I MCCONVll-lE INC II 33.0 I 26.5 1.8 . 0.9 14.0. 23..6 101 I
, 1 OG DEN S B UR G NY DR.. 1 I I ; I
M-22069 I 1692 1 PARTIN LIMESTONE) PROD 11 43..11 0.7 0.0. 0.1 0.5 55.6 0.3 I
I 1 SAN BERNADINO CALIF L R 11 1 ' 1
I I 1 1 . 1 I
M-22070 1 1694 1 WILLINGHAM-LITTLE STN DV 11 39.4 I 13.0 1.4 0.7 Ii07, 35.3 0.4 I
I, I lOHITESTONE GA DR II. I 1
M-22071 I 1695 I WILLINGHAM-LITTLE STN DV .11 : 45.2 I; 0.9 0.0 .. 0.7 18.4, 33.3 0.2 I
1 IWHT;SIl:E10JASPERGADR.11 I I
M-22072 1 16961 JAMESRIVER-HYDSUPPlY 11~.46.6'1 3.0 0.3 0.6 20.9. 31.1~ 0.41
I I B UC HA N A H V A D R I I : 1 1
M-22073 I 1699 I GROVE lIME CO II 43.5' 0.3 0.0. 0.1. 0.7, 55.3' 0.0 I '
1 ' 1 STEPHEN, C I T Y VA, L R II , : ' I
M-22074 I 1701 I JEFFREY liMESTONE CO 11 42.3 I 6~0 0.0, 4.0 12.6 35.6 0.0 I
l' I PARMA M ICH 0 RII I I
I I If. I ' I
M-22075 I 1702 I MILtARO LIME & STONE CO J 1,44.5 I 3.5 0.0 0.5 15.6 35.6 0.0 I
I I ANNVIlllE PA 0 R J I, . I ,
M-22080 I ---- I PULV lIMESTONE 8%FE203 11. 40.8 I, 2.0 0.5 '5.1, 0.8 51.1 0.0 I
I I TV A MUSCLE SHOAL ALA l:R .11: , I ' I
M-22081 I ---- I PULV lIMESTONE ,FERNULA 11,32.9 I - 10.0 2.6 13.9 1~8 39.5, o~O 1
I ITVA MUSCLE SHOAL AlAl R -II . I 1
M-22088 1 ---- I PUlVlIMESTONE 2%FE203 11 42_4 I 1.2 0.0 2.4 0~8 52.8 0.0 I
1 I TVA MUSCLE SHOAl:AtAL 'RII . I . I
M-22089 I ---- 1 . PUlV LIMESTONE 5%FE203 II, 40'.6 I 2.5 0.5, 5.7.' 0.7. 50~3 0.0 I
I I TVA MUSCLE SHOAL ALA l'R-] I, I I
PAG: 8.6
------..-.- --'--"-----~-' --- --------
, '
.-. .. ... '-..------- -- -- ----~-.- -'. no. .- ._-,----,-_._-~._--_._-~-_._-_.-._-_.. -- --- - ----_. - ---'---'- _.'_.'___~__h.---'- - --. --. ..._. --- - ,- - - - ._~"--- - - .
-------
. . A 3 - E ! 3. . ; ( CON t.T) ~
SAMPlE'NO. I IDENT-IFICATION. II. lor- I, COMPOSI'FrON ~"O/:O\- I
---------t----_-: I. 1'), -900 .C ' I-.--~.,...,..---:,.,..--.,..-_-:'_-~----:~-:;-:-:-:,-:"-:-:-:-:-:-:--:-:-...;:;....-I
B&W J BCR- 1 ',," II l.slO Al:£O, FEO MGO~ .CAO,'ALKAlL.1
. 1 I II: I. 2 23. 23 1
---:-~----t-----~+-------.,..-~-------:----~-.,...,..~~~~----:-+~--~-:--:---------:-:-:~----.,..-----:~---~--:-:--:~--:I :
I I ' , ,I I . ' I " :, I
M-220901 1036 I ORIGIN ,UNIDENTIFIABLE J I, ..42.4,1. 4.0 0.7, 1'4..0. 12.6 35.6 0.0 1 :
I I D R -J' I. ~, . 1 ' , .' , I
M-22091 I ---:- I MICHIGAN :MARl; 'II. . 46.9 "I. 3~O,' 0.0 0.-4 - 1.8'.47,.0 0.0,1
I I : l ;R ' II ~ I 1
M-22172 1 ---- ,I lONG VIEW CORP' 1%V205 'I J. - 42...6 I. 2.5, 0.-0; A.-A 0.8 54.5 0~5 1
I I: BIRMINGHAM AliA ' l ~R .1) - I I
M-22173 I ---- I lONGVIEW CORP_.3%V205 I J ' 41..-7" I. 2.4 ' 0.-0 0.0', O.-B 53.4 " 0.-5 I
I I BIRMINGHAM:ALA', liR-II,- ,I ' 1
M-22253I I lONGVIEWlIMECORP2 11~,43.1'1; 2.5 0.-0: 0.0,: '0.8' 54.2 0.'51
I I BIRMINGHAM ALA l ~R-II ' I I
I I:. II. ' , 1 : I
M-22274 I ---- I LONGVIEW _CORP 5%FE203, II. - 40..9 I - 2.4; 0.0 5.0 0.-8, 52.3 0.5 I
I 1 BIRMINGHAM ALA. l ,R -11 . '. I I
M-22275 I ---:- I LONGVIEW CORP5%fE304 - i J, 40.'8 I. 2.4' 0.0: 5.2 0.852.3 0.5 I
I I, B IRM INGHAM: ALA, ,l iR ,-11- ..' ). ' I
M-22276 I ----: I LoNGVIEW,CAlC '2%ARMOKlAY I J . O~O. I: 1.7' A.-A. o~o : 1.4, 95.5. 0.6 I
1 I BIRMINGHAM 'ALA LC .11 ' ' I ' , I
M-22277.1 ---- I MARl:'!2' l%,ARMOKLAY 11-46.9 'I; 3.-0 0.0 0.4 1.8,,46.5 0.0 I
1 I l iR -;) I; : ' ' I I
M-22278 I ---- I lONGVIEW,HYD 2%ARMOKLAY, ,11.,26.6 I 0.4: 0'.0:. 0.0, 1.2 ,7L.,7, ,0.31
I I' BIRMINGHAM ,ALA' L:HII..' I I
I II I. : I I
M-22308 I 1683 'I UNION :CARBIOEC{)RP '11,,44.4:1. 0.5 0.-0. 0.0. 0.4' 52.9, 1,!11
I I NEW_YORK NY l iR ,II . : 1 ' I
M-22316 I ---~ I ,CORSON ,HYD2% .ARMOKlA II . 19.9 I 1.8 0.0 ,0.8' 30.8' 45.1 0.0 I
I I 0 'H ,II, . ' I . I
M-22317 113541 MONTEVALtlO CO:CALC800C' II-~ 0.-0:1 4.6 0.-0: 0.6 37.1: 56.80.7 I
I I '0 c .1 I. - " J 1
M-22326 1--,-- I' BASIN ElECT~FlYi'ASH 11.,.0.~31. 29.0, 10.0. 10.0. '7.1 27.7. 8~0 1
III iR '11., " ), I
M-22333 i 2057:1 KY STONE lIMESTONE II: .43.2 J :., 1.-0, 0.0:. 0.2, .0.-7" ,54"-.~7 o.~ I
'I I IRVINGTON'KY ,liR-I'. 1 I
PAGE.B.? ,
......._._----~--~~<_..--_.~ -------_._---~-------.-_._-----~------_._--_.----_._--------~--~--_._---_.--~.~-_._-----.- --- -- -----"--'~' -- "---.---- -- .._- -_._._- .,--_._.--~ -_.~- .-- --.-. _.
-------
TABLE B.1 ,{CON'T' .
SAMPLE NO. I IDENTIFIG.ATION 'I . LOI. I. COMPOSITION - 010 I
---------+------1 I'. 900CI------~---------------------------~-----~-1
B&W 1 BCR J 11' SIO AL 0 FE 0 MGO. CAD ALKAli-J
I I 11- ; I. 2. 23 2 3 ,
---------t------+-------------------------44-------4-----------~--------------;----------------,
. , I 1 I J ' . ,
M-22334 I 2058 J KY STONE LIMESTONE' 1- 43.0 1 1.8 0.0 0.3 3.4. 50.6 0.1 J
I 'RUSSELLVILlE KY LR 11 I . 1
M-22335 1 2059 I ROADMATERIAlINC II .43.7 I. 4.1 0.0 0.2 12.4 39.2 0.5 I
I I D R 1 I I -. 1
M-22336 , 2060 I FREDONIAVALLEY BLUE II 41.41 6.0 0.0 0.4 3.7 47..5 0.3 1
1 I l RII 1 I
M-22337 1 2061' FREDONIAVALtlEY WHITE' I .43.3 ,- 0.0 0.0 0.0. 1.1 54.2 0.1 1
I 1 lR . J 1 . I . I .
M-22338 1 2062 1 CEDAR -BLUFF 11.43.0 1 1.5 0.0 0.1 1.2 53.8 0.3 I
I 1 LR .11 , 1
I 1 J! , - 1
M-22339 J 2063 I NATIONAL GYPSUM II 43.0 I 0.9 0.0 0~2 1.0 53.8 0.1 I
1 I L R 11 I 1
M-22340 , 2064 1 ALABASTER- II 43.1.1 0.6 0.0 0.1 0.5. 54.7 0.0 I
III R II I 1
M-223411 20661 HOOVER 11 42.9 I. 1.8 0.0 0.3 0.6 54.1 0.0 I
I . I LR II I . ,
M-22342 J 2061 1 RIGSBY & BARNARD 'I 42.8 I. 2.9 0.0 0.3 0.5 54.0 0.0 I
I J LR J I I ,
M-223431 2069 , JAMES RIVER 11.46.3 I 1~5 0.0 0.4 21.0 30.5 0.2'
" DR. I J I I
I 1 I , - 1 I
M-22344 1 2071 J MARBLE CLIFF 1 J 43.1,1 1.5 0.0 0.1 1.8 52.9 0.3 1
I I lR . 1 J I I
M-22345 I 2072 I LAMBERT"& 'LAM8ERT 'I 42.8. I. 2.8 0.0. 0.3 1.3 52.9 0.2 I
1 I L 'R ., I , I
M-22356 I ---- I CALC IUM CARBONA TE J I 43.3 I 0.055.6 ---- I
I I - - II I I
M-22359 1 ---- I SMEl TER -EFFLUENT II ---- I 9.0 19.0. 32.0 2.0 7.8 4.0 I
I I - - 11 I I
M-22360 i ---- 1 MARl;2 2%FE203. 11- 46.0 ,. 2.2 0.0 2.4 1.8. 46.1 0.01
I I L:R - J I . I J
PAG: 8.8
----- -.-.----.-------.--.----.--.
~-- _..- -.._----_.,_.~-- -- ----------.-----
- --- ".- - --- --- - .---'- --- -- -- ~-- - -_. --- -_.-- -- ---- ._- ..---.- . - -_. - - ------- -- - -- - --.
. -- - - '-_.- .-
-------
q A B ~ E B. ..' ( GO N '; T) .
SAMPLE NO. I I DENT I FIC-A T ION ) I : lOI. 1 ; COMPOS IT- ION -0/0 I
--~-----+------I 1 190.oC, I-.-~----------------------~--:--~------------: 1
B&W 'BCR'I I]; ',I SIO AlO FE 0, MGO, CAD; ALKALI I
1 I II. I 2 2:3 23 I:
----~----~----~+-~--------:-------~--~-----ii~~--:--:-:-+-~--:------~-----:---:----~--~---:------:-------I
1 , II . I . I
M-22361 I ---- I tJlARLi2 5%FE203 "11,,,44,.6 I; 2.9 0.0, 5.4 1.7\ ,44.7, O~O I
I I LR ,,' I:. 'I I
M-22401 I ---- I 8 DOLOMITE, ,II; 46.5 I 21.'1. 30.9 -:---; 1
I I 0 R,II,' " I 1
M-22426 I 2070 I GREENVIUiE 11,:,41.0 I '. 5.0 0~9 0~7 1.0. 51~4: 0.1 I :
III \R .11: . I I
M-22796 1 ---- 1 MICHIGAN MARL '3' 11 46.4 I, 2.0, 0.-9. 0.5 1.7",45.9 0.3'
I I L;R II. ~ I - I
M-22830 I ---- I JAMES RIVER '9~K20, ] 1 ,44.9 1 1.-3 0.3 18~O" 26.1, 9.2 1
] I DR " 11; - ' I; , 1
1 I I I; J . 1 '
M-22831 I ---- I JAMES RIVER4%K20' 11..,49.3,1 1.-3. ---- 0.3. 18~2 26.4', ',4.2\
" DR .1 J - I ; I
M-,22832 1 ---- 1 JAMES RIVER.2%FE203 II. : 47.8 I 1.3' 4.0" 18.8 27".4 '0.2 I
III ;R .11 1 I
M-22833 I ---- I JAMES RIVER5%FE203, II 47..9 I 1.3 7.4' 17.5, 25'.4, 0.2 I
I 1 l:R II . 1 ' 1
M-23039 I ---- I MAR1.:t3 5%K20 i I 47-.5 I 1.-8 0.8" 0.4 ' 1.5" 41.0, 4.7 I
I I l,R- iI, I I
M-23040 1 I' MARt.:-.3 10%K20 II. 45.1,1 1.7 0.8 .0.4 1.4, ,37.6 10.0 I
I I L R -11- ' I. ' I.'
1 I II, I 1
M-23041 -I ---..., 1 MARL:,3. 4%FE203; J I:' 48.11 1~8' 0.8' 4.4' 1.5 ,40-~6 '0.3 'I
1 ' I . L rR "II' ; , I
M-23'042 1 ---- 1 MARt.:-:3. 8~FE203, II 51.-31 1.5, 0.7' 7.8 1..3- 35.0" 0.3 I
III :R '11 ; , I. 1
M- 2 3 2 7 5 1 1353 I J ; E B A K E R -,C ALe 900 C : I 1" 0 .- 0 . I 0 . 6 1 . 5 39. 7, 59. 9 - - - - I
I 1 YORK ,P A . 0 C 1 1 ' 1 . 1 '
M-23276 I ---- 1 lONGVI EW CORP' CAlC [,900C 'II. 0.0 ,I 1 ~ 2 1.-4 ~ 95.3 0.9 I
I I BIRMINGHAM AlA, L:C.II, I 'I
M-23297I 20691 JAMES RIVER-,CAU:;i900C 11-, 0.0 -, 2.8 ---- 0.7.< 39.1, 56.8 0.4 1
I I.' 0 C ' II: 1 ' J
PAGE B.9
---~-~.....~-~- -~---~~-----~.- ---. -.--- ~_,_,~--'~.'----~~-- -----.- _.-~_._--~~_._- --- --_.~-~- _. --~-_._---~. .----- -- --~--- -,._-~--'-:_.- --.-.- --.--, ,--- .--- ----.- .._----- ~-_. - - ---_. .:- ---
-------
TABLE B.1tCON'T)
SAMPLE' NO. I IDENTIFICATION 11 . LOI ~ I ' COMPOSITION - 0/0 I
--------+------111 .900 C. I-,--------------~------------------....,------I
B& w J BCR I II, I :S I 0 . ALi 0 FE O. MGO CAO . ALKALI .1
, I 11. I 2 23 23 1
---------t------+--------------------------~~-~-----+-~----------------------------------------J
I I I I I . 1
M-23298 I 2070 J GREENVILtE CALC 900C " 0.0 I B.5 1.5 1.2 1.7 87.1 002 I
I I LC II I I
M-23299 , ---- J MICH MARL ,3 CALC 900C II O~O I 3.7 1.7 0.9 302 85.6 006 I
1 I D R I J 1 . 1
M-23329 I 2080 I N E OHIO MAR~ II 42.9 I 1.5 0.3 0.3 52~7. 005 I
J I 0 STATE GEO SURVEY lR II I I
M-23330 J 2109 I NEW YORK MARL! JI 46.9 I 009 004 0.6 50.5 003 I
I 1 U S OEPT AGRICULTURE lR. II I I
M-23431 I ---- I SLWRRY ORfEO MICH MARL 311 46.9 I 3.0 0.0 0.4 1.8.47.0 0.0'
III 'R . J I 1 I
I I I I I I
K-20676 J ---- I FLY ASH FREDONIA WHITE I J. 10.6 I 23.0 10.0 13.0 1.2 39.9 0.1 I
I I PHS 69..,.1....,101112 13lR-11 I I
K-20689 I I FLY cASH JAMES RI-VER II 10.0 I - 22..0 10.0 11.0 }'-8~:2 28.2 0.1 I
I t PHS 69-1-: 1 7 2-1.2 3 0 R . II. I . I
I I J I I J
K~20763.1 ---- I CALC HYD FLY ASH K 20689 11 7.6 1 30.0 7.0 13..0 18.8 29.3 001 I
I 1 - - II 1 1
K-207861 ---- I CAlCHYO FLY ~SH K 20676 11 5.0 1 8.0 11.0. 1.3 44.0 ---~ 1
1 I - - 11 I I
PAGE B.I0.
-------
APPENDIX C
.'
TABLE C.1. COAL ANALYSES
i!i;
'"I:j
~
~
><
n
-------
Symbol
IT
SS
SH
FT (1/16")
FT (Flat)
APPENDIX C
TABLE C ~ 1. . COAL ANALYSES
SYMBOLS
ASTM FUSION TEMPERATURE DESIrnATIONS
Definition
Initial Deformation Temperature
Softening TEmperature - (Spherical)
Softening Temperature - (Hemispherical)
Fluid Temperature- Fused Mass '\,1/16"
B&W, Fluid Temperature - Fused Mass, Flat
on plaque
C-l
-------
TABLE C.1.
COAL ANALYSES
n
I
N
STANDARD TEST COALS TVA TEST COALS LIGNITE HIGH
COLBERI SfEAM PLANT COAL SUL FUR
COAL
-
B-22791 C-13167 C-13331 C-13273 C-13274 C-13279 C-13319 C-13376 C-1337B
1st Shipment 2nd Shipment 2nd Shipment Orient 113 Atkinson Old M~~~ 024 Little Joe Mine North Dakota Peabody Coal
1st Box 2nd Boy Mine Mine Li2nite Comoanv
Proximate Analysis % Dry
Volatile Matter 37.4 38.8 37.6 35.5 34.4 38.8 37.0 43.3 32.4
Fixed Carbon 47.4 48.2 47.9 49.8 46.7 50.2 46.9 48.0 35.0
Ash 15.2 13.0 14.5 14.7 18.9 11.0 16.1 8.7 32.6
BTU/ Ib Dry 12,150 12,560t -- 12,150 11,360 12, 760 11,980 11,020 9,330
Ultimate Analysis 'tOry
Carbon 67.5 68.7 -- u u -- -- 65.6 49.0
Hydrogen 4.6 4.9 -- -- -- -- -- 4.5 3.7
Nitrogen (Calculated) 1.3 1.4 -- -- -- -- u 1.4 1.0
Sulfur 4.3 4.2 -- -- -- -- -- 0.7 13.2
Ash 15.2 12. B -- u u u u 8.7 32.6
Oxygen (Difference) 7.1 8.0 -- -- -- -- -- 19.1 0.5
Sulfur Forms 1. Dry gas Sulfur
Pyritic 2.7 1.4 -- -O.B 2.6 1.3 1.9 0.1 10.9
Sulfate 0.1 0.9 -- <0.1 0.2 <0.1 0.1 <0.1 0.3
Organic (Difference) 1.5 1.9 -- 0.6 1.2 1.3 1.6 0.6 2.0
Total 4.3 4.2 4.2 1.4 4.0 2.6 3.6 0.7 13.2
Chlorine % Dry 0.02 0.07 -- -- u -- 0.03 -- --
ASh Composition %
~t~03 39. 36. -- 52. 42. 45. 51. 25. 30.
16. 13. -- 24. 17. 22. 24. 8. 18.
Fe203 27. 28. -- 9.0 18. 17. 18. 11. 45.
Ti02 0.5 0.4 -- 0.6 0.4 0.5 0.5 0.4 0.4
CaO 9.0 9.0 -- 6.0 13. 6.0 1.0 24. 1.0
MgO 0.3 0.5 -- 2.0 0.9 1.0 1.0 9.0 0.4
Na20 0.6 0.6 -- 1.4 0.6 1.3 0.5 3.0 0.3
K20 2.2 2.3 -- 1.9 1.6 1.7 2.4 0.4 1.3
503 (Gravimetric) 3.4 12.9 -- -- u -- -- -- --
ASh Fusion Temperature 0F*
Atmosphere Red. Oxid. Red. Oxid. Red. Odd. Red. Odd. Red. Oxid. Red. Oxld. Red. Odd. Red. Oxld. Red. Oxid.
IT 1940 2240 1950 2250 -- u 2070 2200 1950 2160 2070 2270 1990 2440 2270 2280 1990 2370
SS 1990 2300 2000 2340 -- -- 2270 2410 1990 2220 2140 2360 2170 2480 2350 2320 2070 2510
SH 2060 2340 2040 2380 -- -- 2330 2460 2020 2250 2180 2410 2240 2500 2380 2340 2110 2550
IT 1/16 2340 2460 2310 2500 -- u 2740 2670 2270 2440 2650 2670 2680 2710 2450 2370 2480 2570
IT (flat) 2370 2510 2390 2540 -- -- 2880 2860 2480 2540 2780 2750 2710 2800 2550 2430 2510 2580
tCale. Btu (DuLong)
*AS1M Designations
-------
APPENDIX D
TABLE -D.l. - FLY_ASH-ADDITIVE ANALYSES
~
"'tji
~I
H
><
t::1
-------
, APPENDIX D
TABLE D.l; FLY ASH - ADDITIVE ANALYSES
D-l
-------
t::j
I
N
TABLE D.l.
FLY ASH-ADDITIVE ANALYSES
Test Sample Wet C1lemical X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas Remarks
~'I-% as COz-% CaD-% MgO-% Major Medium Minor Trace
67-7-1 K-2028l 0.95 0.1 3.5 FeP4,Si02
67-9-3 K-20350 0.5 19.0
67-9-4 K-2035l 0.8 29.2
67-9-5 K-20352 0.8 32.7
67-9-6 K-203l9 1.9 2.2 19.6 Si02 CaO CaC03 Possible Fe304
67-9-7 K-20320 1.9 6.2 24.6 Si02 CaO,CaC03 Possible Fe304
67-9-8 K-2032l 6.2 7.6 27.4 CaO Si02,CaC03 CaS04 Possible MgO,Fe304
67-9-9 K-20322 5.0 8.7 27.4 CaO Si02,CaC03 CaS04 Possible MgO,Fe304
67-9-10 K-20323 5.7 9.3 31. 3 CaO Si02,GlC03 CaMg(C03)2' Possible MgO
CaS04
167-9-11 K-20324 2.8 4.9 24.7 CaO Si02,CaC03 CaMg(C03)2'
Ca~4
67-9-12 K-20325 7.5 7.2 22.9 Si02 CaO,CaC03' CaS04 Possible MgO
CaMg(C03)2
67-10-1 K-20328 6.9 7.4 29.1 CaD MgO ,CaC03'Si02 Possible CaS04
67-10-2 K-20329 6.1 7.7 27.7 CaO CaC03 Si0zMgO Possible CaS04
67-10-3 K-20330 6.5 11.5 28.7 CaO CaC03 MgO,Si02 Possible CaS04
67-10-4 K-2033l 3.6 10.7 32.7 CaO,CaC03 Si02 MgO Possible CaS04
67-10-5 K-20335 2.9 7.3 28.5 CaO CaC03 Si02 kgO,Ca~4'
Fe203,Fe304
-------
"AL~ D.l.
FLY ASH-A))I":VE .ANALYS~S :cm"'))
t:::I
I
~
Test Sample Wet O1emica1 X-ray Diffraction - Crystalline Constituents
No. . No. Sas Carbonate Ca as Mgas
SO,,-% as 0),-% CaD-% MgO-% Major Medium Minor Trace Remarks
67-10-6 K-20336 4.0 4.6 29.1 CaO CaC03,Si02 \1g0,Fe304
CaS04 Fe203
67-10-7 K-20337 2.9 9.0 24.1 CaC03 CaD Si02 Fe304,Fe203'
IfgO , caSo 4
67-10-8 K-20338 7.3 11.6 28.5 CaMgCC03)2' Si02,CaS04 IfgO, Fe203'
CaO Fe 304
67-10-9 K-20339 3.2 5.9 27.3 CaO Si02 CaC03 . \1gO,Fe203'
:::aS04,Fep4
67-10-10 K-20340 4.7 10.7 31. 8 Ca~,CaC03 Si02 ~aSO 4 ,MgO,
lFe203,Fe304
67-10-11 K-20341 3.5 2.9 28.5 CaO Si02' CaC03 ~aS°4,Fe203'
fe304
67-10-12 K-20342 2.9 7.4 29.1 CaO CaC03,Si02 ~aS04,Fe203'
Fe 304
67-10-13 K-20343 5.2 9.9 36.5 CaC03'CaO Si02 raS04 , Fez03'
Fe304
67-10-14 K-20344 - 6.4 7.7 35.1 CaO Si02 ,CaS04' Fe203,FeP4
CaC03
67-10-15 K-20345 3.6 51.8 CaO,CaC03 Si02 ez03'CaS04'
Fe304
67-10-16 K-20346 2.7 35.5 CaO,CaC03 Si02 e203,caS04'
FeP4
-------
t:1
I
.j:::>.
TABLE D.1.
FLY ASH-ADDITIVE ANALYSES (CONT'D)
Test Sample Wet Olemica1 X-ray Diffraction ~ Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas Remarks
SO~-% as C07-% CaD - % MgO-% Major Medium Minor Trace
67-11-1 K-Z0355 Z.8 7.3
67-11-Z-1 K-Z0356 5.8 6.7
67-11-Z-Z K-Z0357 8.1 6.4
67-11-3 K-Z0358 6.4
68-Z-3 K-Z0407 0.9 Z4.1 31.9 CaC03 SiaZ
68-Z-4 K-Z0408 0.8 Z7.5 35.4 CaC03 SiOz
68-Z-5 K-Z0409 8.6 8.4 40.9 CaO CaSO 4 ,CaC03
SiOZ
68-Z-9 K-Z0410 0.4 38.1 Z6.7 CaMg(C03)Z Siaz
68-Z-10 K-Z0411 0.4 39.0 Z7.6 CaMg(C03)Z
68-Z-1Z K-Z038Z Z.7 0.4Z 39.Z Z5.0 CaO MgO
68-Z-13 K-Z0383 Z.8 0.43 39.Z Z4.5 CaO MgO
68-Z-14 K-Z0412 4.6 Z3.8 36.0 CaMg(C03)Z CaC03
68-Z-15 K-Z0413 4.0 Z7.4 36.0 CaMg(C03)Z CaC03
68-3-1 K-Z0414 5.7 13.3 33.Z Poss. Poss. Weak Pattern
MgS04 CaS04
68-3-Z K - Z0415 6.0 1Z.8 33.17 CaC03 CaO,MgO Weak Pattern
68-3-3 K-Z0416 6.Z 8.8 Z3.4 SiOz CaO,MgO,CaS04'
CaC03
68-3-4 K-Z0417 5.7 Z1. Z 36.8 CaMg(C03)Z CaC03,MgO
68-3-5 K-Z0418 5.0 Z5.0 37.Z CaMg(C03)Z CaC03 MgO
68-3-6 K-Z0419 6.1 15.5 34.4 ZZ.l CaO CaMg(C03)Z Weak Pattern
MgO
-------
t;:j
I
U1
'~A3~~ D.:..
FLY ASH-ADDITIV ~ A IJALYS ~S (CON' ~'D)
Test Sample Wet Olemical X-ray, 'Dlffraction '.- Crystalline Constituents
No. No. Sas Carbonate Ca as Mg as.
S07;-% as CD?-% caO - %. MgO-% Major Mediwn Minor Trace Remarks
68-3-7 K-Z04Z0 Z.7 1.3 38.4 24.6 CaO MgO
68-3-8 K-Z0421 2.1 0.7 32.0 CaO SiOZ
68-3-9 K-Z0422 0.8 0.7 38.3 CaO SiOZ
68-3-10 K-Z0423 3.6 21. 7 48.4 1.0 CaC03 CaO SiOZ
68-3-11 K-Z04Z4 8.1 4.8 40.3 Ca(OH)2 CaC03,Si02
68-3-lZ K Z0425 10.0 4.9 47.Z Ca(OH)2 CaO SiOZ Weak Pattern ~
68-3-13 K-Z0426 3.9 23.8 29.1 C~(C03)Z CaC03,MgO,
SiOZ
68-3-14 K-Z04Z7 4.0 23.8 31.5 CaMg(C03)Z CaC03,MgO,
SiOZ
68-3-15 K-Z04Z8 6.4 13.7 35.5 CaO,CaCD3 MgO,SiOZ Very Weak Pattern
68-3-17 K-Z04Z9 7.1 17.7 49.4 CaC03 CaO CaS04'SiOZ
68-3-18 K-Z0430 3.6 0.3 40.0 1.1 CaO CaS04,SiOZ
68-4-1 K-Z0436 3.6 lZ.4 38.5 0.9 CaC03,CaO Si02
68-4-Z K-Z0438 5.0 12.Z 35.6 6.6 CaMg(C03)2 SiOZ,caS04
CaO,CaC03
68-4-3 K-20439 3.6 l1.Z 38.0 0.4 CaO,CaC03 Si02
68-4-4 K...Z0440 4.0 14.4 42.5 0.8 CaC03 ' CaO SiOZ
"
68-4-5 K-20441 4.3 5.1 8.2 Z2.1 MgC°3'MgO SiOz
68-4-6 K-Z0442 6.2 7.1 30.7 8.5 CaO . CaS04,CaC03'
SiOZ'MgO
68-4-7 K-Z0443 5.0 11.9 3Z.2 14.Z CaO MgO,cacoJ'
, .CaMg(C03 Z,SiO
68-4-8 K-20444 4.4 4.5 10.0 Z5.6 CaO,~ Si02
-------
t:1
I
0\
TABLE D.1.
FLY ASH-ADDITIVE ANALYSES (CONT'D)
Test Sample Wet Olemica1 X-ray Diffraction - Crystalline Constituents
No. No. S .as Carbonate Ca as Mgas Minor Trace Remarks
50,\-% asCO?-% caO-% MgO-% Major Mediwn
68-4-9 K-20445 6.4 8.3 29.3 8.3 CaO caS°4 ,MgO,
CaC03,Si02
68-4-10 K-20446 3.3 0.5 42.9 0.5 CaO Si02
68-4-11 K-20447 3.8 14.6 43.8 1.1 CaO,CaC03 Si02
68-4-12 K-20448 2.6 1.2 18.9 1.5 CaO Si02' Fe304
68-5-1 K:-20451 4.4 2.2 33.1 11.8 CaO MgO CaS04
68- 5- 2 K-20452 7.2 9.1 30.7 19.8 CaO,CaC03 CaS04' Poor Pattern
CaMg(C03)2
68-5-3 K-20453 4.0 1.3 31. 2 15.5 CaO MgO caS°4,Si02
68-5-4 K-20454 5.2 15.9 28.8 15.8 CaMg(C03)2
68-5-5 K-20455 5.3 10.7 26.3 16.0 CaO ,MgO, Si02' Very Weak Pattern
. CaS04,CaMg
(C03) 2
68-5-6 K-20456 5.8 8.2 26.3 13.3 CaO ,MgO, Si02'
CaS04,CaMg
(C03) 2
68-5-7 K-20457 4.4 16.4 40.1 8.6 CaC03 CaO, Si02
68- 5- 8 K-20458 2.9 9.3 25.7 2.2 CaC03,CaO Weak Pattern
.. .
Si02,MgO
68-5-9 K-20459 5.5 6.8 23.2 . 8.3 CaO,MgO,Si02' Very. Weak Pattern
caS04,CaMg(CO~
-------
TABLE ).:".
~"X ASH-ADDITIVE ANALYSES (OONT'D)
t::j
I
--.:J
~
Test Sample Wet Chemical X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas Remarks
SO't-% as m?-% caO-% MgO-% Major Mediwn Minor Trace
68-5-10 K-20460 3.9 13.4 30:6 1.3 CaC03 CaO,Sio2
-'
68-5-11 K-20461 4.5 11.2 23.2 12.7 CaO ,MgO, s'i02 ' Very Weak Pattern
CaMgCC03)2
68-6-1 K-20476 3.5 13.9 34.8 0.8 CaC03 Si02CaO
68-6-2 K-20477 6.9 8.2 40.6 0.7 CaO Si02CaC03 caSo 4
68-6-3 K-20478 3.9 8.6 29.7 1.3 CaO Si02CaC03 caS04
68-6-4 K-20479 3.6 9.8 34.0 0.4 CaO Si02CaC03
68-6-5 K-20480 2.8 9.4 26.0 1.3 CaO Si02CaC03 caSo 4
68-6-6 K-20481 5.6 3.8 34.2 1.1 CaO Si02 CaS04CaC03
68-6-7 K-20482 3.6 12.4 35.5 1.0 CaC03 Si02CaO
68-6-8 K-20483 3.8 16.2 40.8 1.0 CaC03 Si02CaO
68-6-9 K-20484 6.0 7.3 36.3 1.1 CaO Si02CaC03 caS04
68-6-10 K-20485 6.3 7.0 32.0 0.9 CaO Si02 CaS04CaC03
68- 6-11 K-20486 6.2 7.1 36.3 1.0 CaO Si02 CaS04CaC03
68-6-12 K-20487 5.9 8.9 35.2 1.1 CaO Si02 CaS04CaS03
8-6-13-1 K-20488 3.4 13.6 37.3 1.0 CaO,Cam3 Si02 caS04
~8-6-13-3 K-20489" 3.3 14.0 28.6 0.8 Cam3 Si02CaO
68-6-14 K-20490 4.8 8.3 25.0 15.0 CaO SiOZCaC03
-------
t:;j
I
ex>
TABLE D.1.
FLY ASH-ADDITIVE ANALYSES (CONT'D)
Test Sample Wet Olemica1 X-ray"Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas Remarks
SO~-% as CO?-% CaD - % MgO-% Major MedilUll Minor Trace
68-6-15 K-20491 4.6 10.4 21.4 12.1 CaMg(C03)2 Si02,CaO,CaC03
68-6-16-1 K-20492 3.4 15.8 43.6 1.0 CaO,CaC03 Si02
68-6-16-2 K-20493 2.7 15.3 37.5 1.0 Si02CaC03 caO
68-6-17 K-20494 4.5 10.6 23.9 14.2 Si02 CaC03CaO
68-6-18 K-20495 5.1 9.0 28.8 7.6 Si02 CaC03' CaO ,
caSo 4
68-6-19 K-20496 4.7 7.2 26.0 5.4 Si02 CaC03 ,CaO,
CaS04
68-6-20 K-20497 3.6 13.0 35.8 1.4 CaC03 Si02,CaC03
68-6-21 K-20498 4.0 15.1 38.9 1.2 CaC03,CaO Si02
68-7-1 K-20502 5.0 6.62 28.18 5.90 Si02 CaO,CaC03
68-7-2 K-20503 2.58 5.98 24.55 2.29 Si02 CaC03,CaO
68-7-3 K-20504 3.59 12.60 38.40 1.04 CaO CaC03,Si02
68-7-4 K-20505 3.55 12.88 37.08 1.01 CaC03,CaO,Si02
68-7-5 K-20506 7.40 4.94 27.96 0.72 CaC03,CaO,Si02 caSO 4 ,MgO
68-7-6 K-20507 3.97 10.40 31.38 2.31 CaC03,CaO,Si02 IMgO
68-7-7 K-20508 5.17 8.96 25.38 15.65 CaC03,CaO,Si02 CaMg(C03)2
68-7-8 K-20509 6.27 3.12 34.36 0.8 CaO CaS04,CaC03'
Si02
-------
t::;
I
I.D
':ALE )...
FLY ASH-ADDITIV: A~ALYS~S (CXJIf:'))
Test Sample Wet Olemica1 X-ray Diffraction - Crystalline Constituents
No: No. Sas . Carbonate Ca as Mg as.
00,\-% as CX)?-% CaQ-%; MgO-%! Major Meditnn Minor Trace Remarks
68-7-9 K-Z0510 5.50 1Z.50 30.31 18.47 CaC03,CaO, MgO
SiOz
68-7-10 K- Z0511 -3.88 19.68 50.81 0.95 CaO,CaC03 SiaZ
68-7-11 K-Z051Z Z.86 1Z.36 34.58 0.86 CaC03 CaO,SiOZ
68-7-1Z K-Z0513 4.56 1Z.4Z 34.37 1.72 CaC03 CaO,SiOZ
68-7-13 K-Z0514 4.67 10.64 40.99 0.80 CaO CaC03,SiOZ caS°4 ,MgO
68-7-14 K-Z0515 3.94 11.Z0 36.50 1. ZO CaC03,CaO SiOz caS°4
68-7-15 K-Z0516 4.05 11.80 38.00 1.36 CaC03'CaO SiOz caSo 4
68-7-16 K-Z0517 4.54 11.04 36.72 1.71 CaC03,CaO SiOz
68-7-17 K-Z0518 3.86 13.0Z 40.13 0.76 CaC03,CaO SiOz
68-7-18 K-Z0519 3.72 14.Z6 39.71 1. 79 CaC03,CaO SiaZ
68-7-19 K-Z05Z0 5.3Z 5.94 21.56 11.68 SiOz CaO,CaC03
68-7-Z0 K-Z0521 3.48 14.44 38.Z1 0.98 CaC03,CaO SiaZ
68-7-Z1 K-Z05ZZ 4.17 9.58 Z6.68 8.60 CaC03 CaO,SiOZ
68-7-ZZ K-Z05Z3 3.86 13.18 Z4.55 1Z.05 CaMg(C03)Z CaO,CaC03'
SiOz
68-7-Z3 K-Z05Z4 6.43 7.76 Z4.76 13.17 CaO,CaC03 SiOZ,caS04
68-7-Z4 K-Z05Z5 5.07 13.Z0 36.Z9 5.Z0 CaO,CaC03 SiaZ CaMg(C03)Z
68-7- Z5 K-Z05Z6 4.14 10.04 38.Z1 0.70 CaO CaC03,SiOZ
-------
t:::::1
I
I-'
o
TABLE D.1.
FLY ASH-ADDITIVE ANALYSES (CONT' D)
X-ray Diffraction - Crystalline Constituents '" ., - .-
Test Sample Wet Olemica1 \
No. No. Sas Carbonate Ca as Mgas "Minor Remarks
50,,-% as 0)7-% caO-% MgO-% Major Mediwn Trace
68-7-Z6 K-Z05Z7 6.81 7.68 Z9.50 10.Z5 CaO,CaC03' caS°4
SiOZ
68-8-1 K-Z0565 5.6 6.3 Z7.0 0.9Z CaO SiOZ CaC03 ' caSo 4
68-8-Z K-Z0566 4.6 10.7 Z6.0 10.68 Non- SiOZ ,CaC03 CaMg (C03) Z'
Crys tall in( CaO
68-8-3 K-Z0567 6.6 6.0 Z8.4 10.Z5 CaO SiOZ,CaC03' MgO
caS04
68-8-4 K-Z0568 5.3 7.8 Z3.0 11. 67 Non- CaC03CaO CaMg(C03)Z'
Crys tallin( caS°4
68-8-11 K-Z0569 7.9 4.0 34.0 1.6 CaO CaC03'CaS°4
SiOZ
68-8-13 K-Z0570 8.0 4.3 31. 8 1. 81 CaO SiOZ CaCO 3' caSO 4
68-8-14 K-Z0571 4.Z 15.5 44.9 1.03 CaC03,CaO SiOZ
68- 8-15 K-Z0572 3.6 1Z.3 34.9 0.9Z CaC03 SiOZ' CaO
68-8-16 K-Z0573 4.7 11.6 38.0 0.93 CaCO 3' CaO SiOZ caS04
68-9-1 K-Z0577 Z.3 1.3 61.6 1.Z CaO SiOZ
68-9-Z K-Z0578 3.8 14.5 41.Z 0.9 CaC03 CaO SiOZ
68-9-3 K-Z0579 6.0 5.0 43.4 1.0 CaO CaC03,SiOZ
68-9-4 K-Z0580 10.0 8.4 41.6 0.9 Ca(OH)Z CaO,SiOZ'
CaC03
68-9-5 K-Z0581 4.4 3.7 19.5 0.9 SiOZ CaO,CaC03
-------
r~AB~~ D.l.
FLY AS. -A)D:'::VE ANA JYS ~S eCXJ \':' ))
t:;
I
~
~
Test Sample' Wet Chemical X-ray .Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
507;-% as 0)7-% caO-% MgO-% Major Medium Minor Trace Remarks
68-9-6 K-Z058Z 4.4 1Z.4 39.6 1.0 CaO CaC03 SiOZ
68-9-7 K-Z0583 6.6 3.6 30.1 18.5 CaO MgO caS°4,SiOz
68-9-: 8 K-Z0584 6.8 6.5 Z9.0 7.4 CaO MgO Si02 ' caSO 4 Weak Pattern
68-9-9 K-Z0585 4.3 1.8 3Z.3 19.6 CaO MgO SiOZ
68-9-10 K-ZOS86 4.5 1Z.0 38.3 1.0 CaO MgO,CaC03
SiOz
68-9-11 K-Z0587 6.1 8.6 Z6.Z 10.1 CaO,CaC03' Weak Pattern
C~ (C03) ZMgO
68-9-12 K-ZOS88. 5.0 9.Z . Z4.4 1Z.3 CaO,CaMg(C03)2 Weak Pattern
MgO, SiOz
68-9-13 K-Z0589 3.8 15.1 Z3.6 14.1 CaMg(C03)Z CaO,CaC03'
SiOZ
68..,9-14 K-ZOS90 3.8 15.8 11.8 13.7 CaMg(C03)Z CaO,CaC03'SiOZ
68-9-15 K-Z0591. 4.7 13.3 30.0 1Z.7 CaO ,CaC03' Weak Pattern
C~(C03)2'
SiO .
Z
68-10-1 K-Z0609 4.9 11.3 Z6.0 1Z.5 CaO, CaMg SiOz,CaC03' Weak Pattern
(C03) Z MgO
68-10-Z K-Z0610 Z.8 13.1 Z7.8 10.Z Ca0)3 CaMg(COa)Z Weak Pattern
SioZ,Ca
:68-10-3 K-Z06ll 4.4 0.7 . ZO.8 5.0 Non- MgO,Fez03 SiOz,CaO Very Weak Pattern
Crystalline
-------
tj
I
I-'
N
TABLE D.l.
FLY ASH-ADDITIVE ANALYSES (CONf'D)
Test Sample Wet Olemica1 X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
&),,-% as 0)7-% CaD-% MgO-% Major Mediwn Minor Trace Remarks
68-10-4 K-20612 8.7 7.1 37.6 1.9 CaO CaC03,Si02 Ca&)4
68-10-11 K-20613 3.1 2.2 38.1 1.36 CaO ' CaC03,Si02
68-10-12 K-20614 9.9 6.6 63.8 2.5 CaD Ca&) 4' CaCO 3 Si02
68-10-13 K-20615 10.5 10.1 53.1 2.4 CaD Ca&) 4' CaCO 3 Sio2
68-10-14
and K-20616 9.5 3.5 40.1 2.1 CaO CaC03,CaSo4'
68-10-15 Si02
68-10-16 K-20617 9.9 5.3 43.0 2.0 CaO CaC03,CaS04'
Si02
68-10-17 K-20618 6.8 10.4 33.6 22.1 CaO CaC03 Si02,Ca&)4
CaMg(C03)2
68-11-1
and K-20637 6.1 6.4 36.7 2.6 CaO CaC03,Si02 CaS04
68-11-2
68-11-3 K-20638 5.6 9.0 30.9 9.4 CaO CaC03,Si02 caS04 ,MgO
68-11-4
and K-20639. 5.2 9.4 37.2 3.3 CaO CaC03'Si02 CaS04
68-11-5
68-11-6
and K-20640 6.9 8.9 42.8 1.2 CaO CaC03 Si02,Ca&)4
68-11-7
68-11-8
and K-20641 5.2 8.4 43.4 1.4 CaO CaC03 Sio2,CaS04
68-11-9
68-11-10 K-20642 7.2 8.4 30.0 18.6 CaO CaC03,Si02 caS04
-------
t::I
I
f-'
VI
TABLE). : . .
~ ~Y AS. -A) HTIVE ANA ~YS ~S :CDNf'))
Wet O1emica1 .. X-ray Diffraction - Crystalline Constituents
Test Sample
No. No. Sas Carbonate Ca as Mg as.
507;-% as 0)')-%. caO-% MgO-% Major Medilun Minor Trace Remarks
68-11-11
and K-20643 4.1 9.6 34.4 1.1 CaO Sid2,CaC03 CaSO 4
68-11-12
68-11-13
and K-20644 4.7 8.0 37.6 0.9 CaO CaC03,Si02
68-11-14
68-11-15
and K-20645 6.0 8.1 38.1 0.9 CaO CaC03,Si02 CaS04
68-11-16
68-11-17
and K-20646 5.4 10.2 33.4 0.8 CaO CaC03,Si02 CaS04
68-11~18
68-11-19
. and K-20647 5.2 10.3 37.7 0.7 CaO CaC03,Si02 CaS04
68-11-20
68-11-21
and K-20648 5.5 7.4 24.1 14.6 Non- CaC03,CaO Fe304,MgO Very Poor Pattern
68-11-22 Crysta11in€
68-12-1
and K-20654 3.6 11.8 39.0 1.6 CaO CaC03 Si02
68-12-2
68-12-3
and K-20655 4.9 9.0 34.6 1.2 CaO CaC03,Si02 caS°4
68-12-4
68-12-5 K-20653 1.1 <0.1 5.0 1.0 Si02 FeP4
68-12-6
and K-20656 6.0 9.9 26.9 17.2 Non- CaO MgO,Si02'
68-12-7 .Crys tall in€ CaS04
-------
t:::1
I
I-'
+::-
TABLE D.l.
FLY ASH-ADDITIVE ANALYSES (CDNT'D)
Test Sample Wet O1emica1 X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
50,-% as 0)1-% caO-% MgO-% Major Medium Minor Trace Remarks
68-12-8
and K-20657 5.9 10.7 41. 7 1.1 CaO CaC03 Si02 ,CaS04
68-12-9
68-12-10
and K-20658 11. 7 6.8 51.4 2.1 CaO CaC03,Si02
68-12-11 CaS04
68-12-12
and K-20659 9.3 12.6 57.9 2.2 CaO CaC03 Si02,CaS°4
68-12-13
68-12-14
and
68-12-15 K-20660 9.9 5.4 37.4 1.7 CaO Si02,CaS04'
CaC03
69-1-1 K-20678 12.4 3.0 40.4 0.9 CaO CaC03,Si02'
CaS04
69-1-2 K-20679 8.4 1.3 35.9 3.2 CaO Sio2,caS04
69-1-3 K-20680 9.9 1.1 33.7 11.1 CaO SiOZ,CaS04
69-1-4 K-20681 10.4 0.9 33.4 4.0 CaO SiOZ,CaS04
I 69-1-5 K-Z0682 8.5 1.5 38.6 1.3 CaO SiOZ ,caS04
69-1-6 K-20683 10.9 1.3 30.0 1.3 CaO SiOZ,caS04
69-1-7 K-Z0684 7.3 1.0 3Z.8 1.3 CaO SiOZ,caS04
69-1-8 K-Z0685 9.Z 2.2 40.4 0.8 CaO Si02 ,caS04
69-1-9 K-20686 13.6 0.4 38~8 1.8 CaO CaS04
-------
t::1
I
~
V1
nAB ~ ~ D .1.
FLY ASH-A)D:r:VE ANALYS ~S (CDN ~'D)
Test Sample Wet O1emica1 X-ray'Diffraction - .Crysta11ine Constituents
No. No. Sas Carbonate Ca as Mg as .
SO,-% as CD7-% CaD - % . MgO-%. Major Mediwn Minor Trace Remarks
69-1-10 10.6 (1)
through K-20676 5.7 39.9 1.2 CaO CaC03 Si02,CaS°4
69-1-13
69-1-14
and K-20687 6.8 7.8 40.4 1.1 CaO CaC03,Si02'
69-1-15 caSo 4
69~1-16 K-20688 14.6 0.8 40.6 1.1 CaO CaS04 Si02
69-1-17
69-2-1 10.0 (1)
through K-20689 8.0 28.2 10.3 Non- CaO,CaC03 caS04,Si02'
69-2-2 Crys tall im MgO
69-2-3
69-2-4 K- 20712 6.8 1.8 18.0 10.8 CaO Si02,CaS04 Fep 4 ,MgO
69-2-10 K- 20713 9.2 6.2 31.9 12.8 CaO sio3,caS04' Fe203,MgO
CaC 3
69-2-12 K- 20714 8.5 1.9 31. 5 1.1 CaO Si02,CaS04 Fe203,CaC03
69-2-13 K- 20715 8.2 4.9 33.4 10.4 CaO Si02,CaS04' Fe304,MgO
CaC03
69-2-14 K-20716 7.4 5.7 37.3 1.5 CaO Si02,CaS04' Fe304
CaC03
69-2-15 K-20717 10.5 0.8 31.4 0.9 CaD Sio2,CaS04 Fep3,Fe304
69-3-2 K-20727 13.3 0.3 28.7 2.9 CaO caS04 Si02 '
:(1) LOI @9000C.
-------
t:::J
I
I-'
0\
TABLE D.l.
FLY ASH-ADDITIVE ANALYSES (mNT'D)
Test Sample Wet Chemical X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas -
SO~-% as CD7.-% caO-% MgO-% Major Mediwn Minor Trace Remarks
69-3-3 K-Z0728 13.7 0.5 31.3 1.0 CaO caS°4 SiOz
69-3-6 K-zon9 7.4 Z.5 ZZ.3 13.6 CaO SiaZ ' caS°4 ,MgO
69-3-8 K-Z0730 14.1 0.6 27.8 8.9 CaO CaS04 SiaZ ,MgO
69-3-10 K-Z0731 17.6 O.Z 31.4 0.9 CaO,CaS04 SiOz
69-3-16 K-Z073Z 14.6 1.6 30.9 0.7 CaO caS04 SiOz
. 69-4-7 K-Z0741 1Z.5 1.Z Z3.7 5.0 caS°4 CaO,MgO SiOz
69-4-9 K-Z0743 13.4 0.7 Z4.4 8.9 caS°4 CaO,MgO Siaz
69-4-10 K-Z0744 13.8 0.6 30.9 1.6 CaO caS°4,SiaZ
69-4-13 K-Z0745 0.9 3.0 (1) 3.9 1.0 SiaZ Fe 304
69-4-14 K-Z0746 3.6 0.6 8.5 4.8 SiOZ Mgo
69-4-16 K-Z0747 4.6 0.9 15.8 1.1 SiOz CaO caS04
69-4-19 Z. 5 (1)
and K-Z0748 1.5 6.0 1.0 SiOZ Fe 304
69-4-Z1
69-4-Z0 K-Z0749 11.3 0.4 18.Z 8.7 caS04 SiaZ MgO
69-4-ZZ K-Z0750 16.1 0.3 30.7 1.1
69-4-Z3 K- Z0751 11.8
69-5-Z K-Z075Z Z.9 O.Z 7.0 0.9 SiOZ Fep3,Fe304
(1) LOI @ 9000C.
-------
t:;j
I
I-'
-....J
TAL~ ).1.
FLY .AS -I-ADDITIVE M A ~YS ~S :CDNT'):
Test Sample Wet Chemical X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mg.as Major Remarks
80,-% as CO?-% CaD - % . MgO-% Mediwn Minor Trace
.
69-5-3 K-20753 0.9 1. 8 (1) 2.5 1.0 Si02 Fe304
69-5-4 K-20810 9.0 0.6 14.3 9.7 CaS04,Si02 CaO,MgO
69-6-3 K-20789 6.2 0.3 19.2 10.1 CaS04,Fe304 Fe203,Si02
69-6-4 K-20790 1.1 0.1 7.1 1.4 SiOZ,Fe304
69-6-5 K-20791 1.1 0.1 6.4 1.4 Si02,Fe304
69-6-10 K-20792 19.7 0.8 35.4 2.1 caS°4 CaO Fe304,Si02
69-6-12 K-20793 4.1 0.8 17.9 10.6 CaO MgO caS°4,Si02
Fe 304
.69-6-13 K-20794 5.9 0.8 22.3 11.1 CaO MgO caS°4'SiOz
Fe 304
69- 6-14 K-20795 5.8 0.3 27.2 1.7 Poor Unident. CaS04,Si02
Pattern FeP4
69-7-1 K-20832 4.5 0.3 17.0 9.2 CaO,Si02 caS04,MgO,
FeP4
69-7- 2 K-20833 3.4 0.7 15.2 8.3 CaO,Si02 CaS04 ,MgO,
Fep3,Fe304
69-7-3 K-20834 7.7 0.4 30.7 1.6 CaO . Si02 CaS04,Fe304
69-7-4 K-20835 10.9 0.3 .3Z.9 1.6 CaO Si02,CaS04
(1) LOT @ 9000C.
. ~
..
-------
t:1
I
I-'
00
TABLE D.l.
FLY ASH-ADDITIVE ANALYSES (Q)NT'D)
Test Sample Wet Olemica1 X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
$0<;-% as 007-% CaO-% MgO-% Major Medium Minor Trace Rema-rks
69-7-5 K-20836 5.0 1.0 29.3 1.5 CaO caS°4,Si02
Fez03
69-7-6 K-20837 5.1 1.4 33.2 1.6 CaO caS°4,Si02
Fe203
69-7-7 K-20848 0.4 <.1 0.7 0.9 Si02 Fe 304
69-7-8 K-20838 4.0 0.4 12.3 8.8 CaO,Si02 MgO,FeP4
69-7-9 K-20839 4.8 0.4 26.4 1.2 CaO,Si02 Ca$04,Fep3
69-7-10 K-20840 4.2 0.4 28.2 1.1 CaO,Si02 CaS04
69-7-11 K-20841 4.5 0.6 17.0 10.9 CaO,Si02 CaS04,FeP4
69-8-4 K-20905 15.8 1.0 35.8 8.2 CaO,CaS04 Si02,MgO
69 - 8- 5 K-20906 14.2 0.5 32.3 10.2 CaO,CaS04 Si02,MgO Fe203
69-8-7 K-20907 13.8 1.5 28.2 1.1 CaO,CaS04 Fe203,Si02
69-8-8 K-20908 17.0 0.8 38.3 1.2 CaO,CaS04 Si02
69-8-9 K-20909 17.3 1.2 42.8 1.2 Cao,CaS04 Si02
69-9-1 K-20919 14.1 1.3 33.6 1.2 CaO caS04 Si02
69-9-2 K-20920 15.6 1.4 42.6 1.3 CaO CaS04 Si02
69-9-3 K-20921 16.0 1.9 51.6 1.4 CaO caS04 Si02
69-9-4 K-20922 1.9 6.0 0.9 Si02 '
20.1 Fe 3°4
69-9-5 K-20923 14.6 0.5 24.5 13.2 CaO , caS04 Si02,MgO
-------
t:;j
I
~
\D
TABLE).:..
~ ~Y ASH-ADDITIVE ANA ~YS ~S :CDN' :'D)
Wet Olemica1 ; X-ray Diffraction - Crystalline Constituents
Test Sample ,
No. No. Sas Carbonate Ca as Mgas
8J~-% as CD7-% caO-% MgO-% Major Mediwn Minor Trace Remarks
69-9-6 K-20924 15.6. 1.1 28.7 18.5 CaO MgO, Ca8J 4 Si02
69-9-7 K-20925 14.9 2.1 32.5 16.7 CaO MgO,CaS04 Si02
69-9-8 K-20926 9.8 0.8 23.7 14.5 CaO CaS04MgO
Si02
69-9-9 K-20927 16.2 0.6 36.5 1.7 CaO Ca8J4 Si02 Mgo
69-9-10 K-20928 13.5 1.1 37.6 0.8 CaO caS°4 Si02
69-9-11 K-20929 12.4 1.4 35..~ 0.8 CaO caS°4
69-9-12 K- 20930 13.5 0.8 37.2 1.7 CaO caS°4 Sio2
69-9-13 K-20931 13.3 1.0 33.4 1.3 CaO CaS04 Sio2
69-9-14 K-20932 16.0 0.5 29.8 0.9 CaO caS04 Sio2
69-10-2 K-20942 18.6 1.4 64.3 5.9 CaO caS04
69-10-3 K-20943 22.0 1.2 67.0 3.9 CaO caS04
69-10-4 K-20944 3.6 1.2 45.5 1.2 CaO CaSO 4
69-10-5 K-20945 6.9 0.4 27.3 10.3 CaO Mgo caS04 Si02
69-10-6 K-20946 3.0 0.4 23.7 13.2 CaO Mgo Si02
69-10-7 K-20947 4.9 1.0 45.0 1.3 CaO CaS04 Si02
69-10-8 K-20948 7.7 1.1 50.2 2.0 CaO caS04 Unident.
69-10-9 K-20949 3.8 0.8 30.9 9.7 CaO Mgo Si02
69-10-10 K-20950 3.2 1.0 37.2 1.2 CaO Si02
-------
t::::J
I
N
o
TABLE D.1.
FLY ASH-ADDITIVE ANALYSES (mNT'D)
Test Sample Wet Olemica1 X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
00,-% as 0)7-% c3O-% MgO-% Major Medium Minor Trace Remarks
69-10-11 K-Z0951 3.7 0.7 Z7.4 16.5 c30 ~O SiOz
69-10-1Z K-Z095Z 3.7 0.5 38.1 1.9 CaO caS04 SiOz
69-11-4 K-Z0953 20.9 0.7 72.9 Z.7 CaO caS04
69 -11- 7 K-Z0954 1Z.5 0.7 30.9 0.6 CaO caS04 SiOz
69-11-8 K-Z0955 13.8 0.5 31.6 0.8 CaO caS04 Siaz
69-11-11 K-Z0939 Z.l 0.3 36.5 9.8 CaO MgO FeP4
69-11-1Z K-Z0940 3.3 0.4 41.0 8.6 CaO MgO Fe304
69-11-14 K-Z0941 3.4 1.1 37.9 13.8 CaO ~O Unident.
69-11-15 K-Z0956 1.5 <0.1 6.0 0.8 SiOz Fe304
69-11-17
and K-20957 13.5 0.7 2Z.6 6.6 CaO CaS04 MgO SiOz
69-11-18
69-11-19
and K-Z0958 1.4 <0.1 6.0 1.0 Siaz Fe304 CaO
69-11-Z0
69-11-21
and K-20959 14.8 0.3 35.2 1.2 CaO caS04 Siaz
69-11-Z2
69-12-5 K-20960 0.7 <0.1 0.4 0.4 Si02 Fe304
69-12-6 K-Z0961 19.Z <0.1 30.Z 0.8 caS04 CaO Fe304
69-1Z-7 K-2096Z 13.0 0.1 19.5 13.2 CaS04 CaO MgO Si02
-------
t::I
I
N
......
TABLE L..
FLY ASH-A)) TIV 3 M ALYSES COONT'))
Test Sample Wet C11emica1 X-ray Diffraction - Crystalline Constituents
No. No. Sas Carbonate Ca as Mgas
SO~-% as CO?-% caO-% MgO-% Major Mediwn Minor Trace Remarks
69-12-13 K-20969 16.3 0.3 30.3 0.6 CaS04 CaO Si02
69-12-14 K-20970 25.3 0.7 38.1 0.6 CaS04 CaO Si02
69-12-15 K- 20971 15.2 0.2 29.4 1.4 CaS04 CaO Si02 ,FeP3
. .
69-12-16 K-20972 16.8 0.4 34.1 1.5 CaS04,CaO Si02
69-12-17 K-20973 19.8 0.2 31. 5 0.9 CaS04 CaO Si02,FeP3
-------
APPENDIX E
TABLE E.!. SUMMARY OF TEST mNDITIONS AND RESULTS
1
~
'"CJ
~
I~
-------
APPENDIX E
TABLE E.l.
SUMMARY OF TEST CDNDITIONS AND RESULTS
SYMBOLS, AND NOTES
1.
See Appendix' B for description and analys is of addi ti ves. .
Se~ Appendix C for description and analysis of coal. :
2.
3. - Double -asterisk in units. for "Additive Surface" indicates exponential
(i.e.an2/g) .
4.
Furnace . outlet temperature (Port. 1) - HVf gas temperature- is about 300F
higher~
s.
6.
Values-for 802 level corrected to 115% total air.
No dat~ indicated by dashes (----)
7.; Port designations-indicate additi~einjection conditions as-follows:
Port - Designation-.
Condition
o
A
Additive mixed with coal'
. .
Port A, 39" probe
B
Port' A, l2'~ probe.
1.
Port. 1, probe tip down
Port, 1, probe tip up"
C
2
Port 2; probe,tip dewn
Port 3, probe tip down
3.
4
Port 4, probe 'tip down
Port 4 ,probe tip up
D
E-l
-------
t I ADDItIVE INJECTION DATA' I . COAL FIRED I OUTLET 1502 LEVEL cI .REDUCTION I
TEST NO. II 8&W NO. PORT RATE % SURFACE I 8&W'NO. RATE I .TEMP, F t ' NO ADD. I., OF S02 I
II STOICH CM**2/G I ' #/HR 'I : I. PPM I. CONC, % t,
-----------++--------------------------------~-~-------------t--~-----+~----------+-----------+
. I I t I . I:' I . I '
67- 9- 1 II M-21600 2 108 4730 I 8-22791 - 10.8 I - 1960 I 3650, I 6 I
67- 9- 2 11 M-21599 2 97 3980 I 8-22791 10.8 I 2000 I 3650 I 10 I
67- 9- 3 II M-21602 2 121 5400 18~22791 8.7 I . 1895 I 3650, 1: 6 t
6 7 - 9 - 4 I I M- 2 1 590 2 1 8 1 3 190 I 8 - 2 2791 8. 7 1 1935 I 3650 I. 6 I
67- 9- 5 II M-21592 2 197, 32201 8-22791' 8.7 1 ,1960 I 3650 I 7 I
I 1 I I ,I I I
II M-21571 1 ' 116 1760 1 8-22791, 9.3 I . 1940 I 3500 "I, 10 1
II M-21602 1 1135400 I 8-22791 8.5 I 1915 I 3400' I 12 I
J I M-21590 1 167 31:90 18-22791 8.5 I . 1955, 1 3400 I: 23 I
II M~21592 1 180 3220 1 8-22791 8.5 1 1970 1 3400, I 16 I
II M-21603 1 250 2360 I 8-22791 8.1 ,I 1800 I 3200, I. 22 I
II I I I - I - 1
II M-21593 1 115 6740 1 8-22791 8.1 I ,1780 I 3300 I 8 1
11 M-21605 1 175 5730 I 8-22791 8.1 ,I ; 1830 I - 3900 I 31 I
J I M-21604 1 186 2400 I 8-22791. 10.3 I ,1920 I 3300, I 15 1
J I M-21594 , 1 151 2340 I 8-22791 10.3 I. 1960' I - 2950,' J 26 1
II M-21594 1 '. 175 2340 I 8-22791 8.9 I 1900 I. 3200 I, 26 1 -
1 1 I I I . I J
II M-21591 1 ' 91 3870 I 8-22791, 849 I 1910' I 3250 l' 8 I
II' M-21589 1 , 55 3320 I 8-22791: 10.0 1 1955. I 3300, I 8 I
II. M-21588 1 73 4890 1 8....,22791. 10.0 1. 2000 1 3200" 1; 2 t
11 M-21595 1 112 2110 I B-22791' 9.2 I - 1885 I, 3250, I 6 I
II M-21596 1 147 2340 I .8-22791 9.2 I . 1885 I 3400, I 25 ' I
I I I I - I . I - 1
11 M-21597 1 87 4450 I 8--22791' 9.0 I 1975 I' 3600, I 6 1 :
t 1 M-21598 1 101 2450' 8-22791 '9.0 1 . 1970 I 3600" I 13 J :
II M-21600, 1 - 94 ' 4730 IB--22791 943, I . 1965 1 3350 I 13 I
II M-21599 1 . 94 3980 I 8-22791 9.3 1 . 1995 1 3350 1 16 1 .
! I M-21601 1 101 2970. 18-22791 9.6 1 2040: I '. 3400 t 10 .. I
67~ 9- 6
67~ 9- 7
67- 9- 8
67- 9- 9
67-.9""""10
67-- 9-11
67- 9-12
67-,...10- 1
67-10- 2
67-10- 3
67~10- 4 .
. 67-10- 5
67-10- 6
67....,10- 7
67-10- 8
67-10- 9
67-10-10
67-10-11 .
67-10-12
67-10-13
I
TAB1.E E.l
I
PAGE E.2
-------
"ABLE E.. ; CON'." ;
II AOOIT.IVE INJECT ION DATA 1 COAL FIRED 1 .DUTtET II .$02 .LEVEL ,1 .REDUCTION I
TEST 'NO. II B&W NO. PORT: ,RATE %.. SURfACE I .B&W NO. RATEI:TEMP, F ' I NO ,ADO. , .. OFS02 I
II STOICH CM**2/G' 1 #/HR .1 I PPM 1 CONC,.%'; I
--~--------++--------~---------~---~~;~~~~-~~~~~~~-~~-7~----~~~~-~-~--+~~--~--~--~t-~~-~~-~---t
II 1 I t 1 1
67-10~14 II M- 2 183 1 1 79 . 11180 I 8-227.91;, 9.6 I 2030, I 3400, I 29 . 1
67-10-15 II M-21606 1 82 2250' I B-22791 9.0.1 2055, I 3300; I 11 . I
67-10-16 II M-21607 1 76 2010 I .B-22791 9~0.1 2080, I 3300 I 8 1
67~1l- 1 II M-21849 1 214. 27460 I 8-22791.. 9.1 I 2075. I 3150. I 18 I
67-11- 2-A 1 I, M-21848 2. 205 17850 1 ,B-22791; 9.3 I 19.90: I ' 3450. I 13. I
II I I I I J
,",. 67-11- 2-B II M-21848 4. 205 17850 I B"'22191 , 9.3 1 1990. I 3450. I 22 I
67-11": 3-A II M~2 F849. 2 188 27460 I B~22791 ~ 10.1: I 2080: I 3200, I 23 ' I
67"dl~ 3-8 II M~2I:S49. 4, 188 27460 I 8-22791 10.1 I 2080; I 3200 I 21 I
68- 2- 1 II M-21982 1 194 1560 I .B.., 22191 '. 10.0.: I 2045. I 3800. I 32 I
68- 2- 2 II M-21831., 2 84 11180 1 ,B-22191 10.0 I . 1910.. I 3500, I 5 I
II I I 1 1 I
68- 2- 3 II M-21831 3 84" 11180 I B~22791 - 10.-0,1 1910, I 3600. ' 5 I
68- 2....: 4 1 I M- 21 83 1 4 137 11180. I 8..,.22791 - 8.11 1935. I 3450 I 1 '. I
68- 2- 5 II M-21831 1 , 137 111 80. J B-227.91 ~ 8.1 I 1890' I 3550. I 22 I
. 68- 2- 6 II' M- 2 1.9 11 1 166 1630 I B:-:22791 8.3 . I 2060 I 3350 I 22 I
68- 2- 7 ) 1 M-21911 2 166 1630 1 B-227<11 . 8.3.1 ; 2060.. 1 3500. 1 O. 1
II I I I I I
. .~.~.. '68- II I 8.3.1 I 3500 I I
2- 8 M-21911 4 166 1630 B~22791 . 2060 O.
68~ 2- 9 II M-21982 4 206 1560 I .8-22791 9.;4.1 2040. I ; 3400. I 0 I
68.., 2-10 J I M-21982 2 206 1560, I ,B--22791, 9.4. I 2030;" 3400. I - '0 I
68- 2-11 II M-21982 1. 206 1560 I B..,22791:. 9..41 - 1985. I 3350, 1 16 I
68- 2-12 ) I. M-21982 0 214 1560 1 B-22791.; 10.2 I 2010 ,: I 3400, I 9 I
II I ' , 1 1
68- 2-13 1 I M-i1982 0, 421 1560 I .B-22791, 9.8 I 2010 I 3400. I 16 1
68- 2":14 II M-21911, 1 - 392 1630 J B-22791 9..0.1 19.60' I 3400 J 36 I
,. 68- 2-15 " M- 21911 1 597 1630 I B~22791, 9.0; 1 ~ 1960 I 3400. I 41. I
68- 3- 1 II M-21912 1 199 2360 I :B...,22791 < 9.3' I 2000 I 3400,: J 21 1
68- 3- 2 J I M-21913. 1 180 3330 I ,B:-22791 '. 9.3..1 2000.. I . 3400. 1 ,. 21 I
PAGE E.3'
-------
i I ADO IT IV,E INJEC T ION OAT A I COAL F IRED I ;DUTt.ET J :502 LEVEL oj ;REOUCT ION I
TEST ,NO. I J B&W NO. PORT RATE %. SURFACE I '8&W -NO. RATE I .TEMP,F I ; NO ADO. J; OF 502 J
II STorCH CM**2/G I . fl/HR -I . I. PPM 1 CONC,.% J.
---------++---...;----------------------~----t-,--------_.---:--+-.--~---.-+-:-~------_.t~;----~-~---t
II I . I '. I - I 1
i J M-2r949 1 156 4750 18-22791 903 I ~ 2000. I - 3400 I - 16 I
11 M-21982 1 543 1560 I B-22791 , 703 1 . 2030 I 3400. I 35 I
II M-21982 1. 827 1560 I 8"':'22791. 7.3 I . 2020. I 3400 I 41 I
II. M-21982 1 . 198 1560 IB-22791. 10,,0 I 2030 1. 3400. 1 19 I
II M-21982 0 241 1560 18-22791 11..1 I 2030 t 3400 J 2 I
I J 1 I - I I I
I J M-21981' 1 95 8570 18-22791 9001 2010 1 - 3150 I - .4 I .
IIM-2198! 2 95 8570 I B~22791 9.0 I . 2000 I 3150 I 4 . I
II M-21993 1. 134 2520 I B-22791. 7..8 1.2070 I 3200 1 15 I
i 1 M-21992 4 128 17270 1 8.-2.2791 8..7 I; 1980 I. 3150 , 22. I,
l1M-21992 3 128 17270 I ,8-22791. 8.. 7 I . 1960 J 3150. I 22 J
J I I' . I 1 - 1 . I
J I M-21911. 1 255 290 18-22791. 9,,0 I 1960 J 3400.' 12 I
11 M-21911. 1. 284 610 I B-22791 9.0 J . 1950 I. 3400 1 14 I
II M-21911. 1, 208 2040 18-22791 9.3 I 1920 t 3250 I 20 I
II M-22004 1 95 .2050 I 8-22791 9.3 I ,1910 I 3250. 1 0 I
II M-21993 1 . 130 2520 I 8.-22791 9.4 1 - 1940 I, 3350 I 20 I
J I I I : I I I -
II M-21993 0 . 114 2520 IB-22791 9..6 1 ' 1900.' I 3400 I: 3 . I
II'M- 22006 1 ' 103 2210 I .8-22791 9.. 7 I 2030. I 3600 I 7 I
J 1 M-22007 1 172 2220 1 8-22791: 8.4 I ,2030 J. 3700 I II. . 1
J I' M-22006 1 . 139 2210 I 8-22791. 8.4". 2030. I, 3700 J 14. I
II M-22008 1 113 2740 J B-22791. 903 I 1965 I - 3450 I 3 J
II I J I. I I
II M-22004 1 120 2050 I 8-22791. 9.1 ..1 . 1790. ,; 3450 I. 10 1
J I M-22002 1 106 3130 1 B-22791 8.9 I 1890 I 3450 I 12 J
J J M-21592 1 . 195 3220 I .B-22191. 8.9 I . 1890' 3450. I. 15 I
II M-22003 1 .' 128 2200 18-22791. 802 I . 1860; I. 3400 ~ I 10 I
I J M-22002 1 107 3130 18-22791' 8..2 I . 1840. I: 3400. I. 13 . 1 .
68- 3- 3
68- 3- 4
68- 3...: 5
6 8- 3 - 6
68- 3- 7
68- 3- 8
68- 3- 9
68- 3-10
68- 3-11
68- 3-12
68- 3-13
68- 3-14
68- 3-15
68- 3-16
68- 3-17
68- 3-18
68- 4- 1
68- 4- 2
68- 4- 3
68- 4- 4
68- 4- 5
'68- 4- 6
68- 4- 7
68- 4 - 8
68- 4- 9
TABLE E.l ,(CaN'T)
PAGE E.4.
-------
I J ADDITIVE INJECTION DATA, I '. COAL ,FIRED I OUTLET I .502 .LEVEl: I ~REDUCTION I
TEST NO. IIB&W NO. PORT RATE % SURFACE I B&W NO. RATE I TEMP, F ,I : NO ADO. I. OF S02 J
II STOICH CM**2/G'I. #/HR.I ~ I. PPM, I. CONC,.%, I
, -----------++------~-~--------------~-~~,~--~~-~~-~-~--~-'c.~~t-~------+-~~~~,---~-+~----------:-t
1 J '. I ' I . I . I' I
II M-21993 0 131 2880 I B..,,227,91, 9.0.1 1960.' I 3400 I, o. I
II M-21993 1 172 2880 I .B-22791. ,8~4 I 2020. I 3500 I 6, I
IIM-21993 O. 132 390 I .B-22791 B.3 J 2015 I 3550 I 3 I
II M-21982 O. 233 2570 IB..,,22791. 8;,;3 I : 1950. I 3900. 1 12 J
11 M"""'21982 1 182 2570 IB-:-22791' B.8 I 1950. I 3700, I 25 I
II. I" I I I I
II M-21982. 0 238 370 I 8-22791 8.5 I . 1990. I. 3900 I 10 I
II M-21982 1 170' 370 18-22791. 8...1.1; 1910.' 3750 1 171
11 M-22000 1 131 . 2100 I 8-22191 8.5 ,I 1945 I 3800 I 11 I
IIM-22001 1 137 . 296C> I B-22791. 8.1:'; 1890.' 3750 I 13 I
II M-22005 1 . 100 2350 I 8-22791. 9.3.1. 1885 1 3650 I. 11 I
1 I I I 1 ; I I
11 M-22053, 1. 110 4560 1 B~22791 7.7 ,I 1980 I: 4100, I; 4 )
11 M-22054' 1 107 3470 I 8-22791. 8.6 I 1995 I 4100. I 10 I
J 1 M-22046 1 96 1650 I B..,,22791 5,.2 I 1920 I 3500 I 4 I .
J I M-22047 1 . 124 2040 I .8-22791 ?:.O.I. 1955 I 3600 I 6 I
J I M-22046 1 . 89 1650 18-'22791 8,.,B'1 1910 1 3800 I 71
II I' I 1 1 1
11 M-22080. 1. 137 10480 1 8-22791 ~ &.6 'I 1880. I 3700 I 19 I
II M-22081. 1. 104 4360 IB-22791. .8.6 I ; 1870.. I 3600 I. 11 . I
11 M-219.93. 1 139. 2520 I 8-22791. .4.5 I 1885. I 3600 I: 8 I
11 M-22081 1, 100 436018-22791 8.4'1.1900' 3500 I 4 I
II M-22080. 1. 142 10480 I B-22791. 8,.,4' t - 1860. I. 3600 , 22 I
II I. I I I I
II. M-21993 1 . 115 2520 I B-22791 5.6 I 1970' I. 3450 I. 7 I
11. M-219~93 1 144 2520 I 8-22791 7.8 ) 1870 1 3650. 1 8 I
II' M-22088 1'. 143 11740 1 8-22791., 7.9.1 2065 ,. 3550. I. 23 ,
II M-22089 1, 109 13900 I B-227.91. 7..9' I . 2010' I 3500. I. 15 I
II. M..:.22089 1 . 125 13900 I B~22791' .7.2 I 2050.' 3800 ~ I 25 I
68- 4-::10
68- 4-11
68- 4.,..12
68- 5- 1
68- 5- 2
68.,.. 5- 3
68- 5- 4
68- 5- 5
68- 5- 6
68- 5-' 7
68- 5- 8
68- 5- 9
68- 5':"10
68- 5::'11
68- 6- i
68- 6- 2
68- 6- 3
68- 6:'" 4
68- 6:' 5
68- 6~ 6
68- 6- 7
68- 6.;:;' 8
68- 6':" 9
68- 6-10
68- 6-11 .
TAL:;E.l.(CON.": ~
PAGE E.S'
-------
II ADDIT-IVE INJECTION DATA I ' COAL FIRED 'OUTLET: IS02LEVEL \f ;REDUCTION I
TEST NO. I' B&.W NO. PORT . RAT E % SURFACE IB&.W' NO. RATE I .TEMP, F . I . NO ADO. I: OF S02 I
I 1ST 0 I GH C M * * 2 I G ' I # I H R I . ]. P P MI ; CON C , % I.
---------- -tt---- --- ----- '""-- -- --~---- ~---_.- -:-- -t- ------- ----- ~7'-,-,-t.-.- ~-----t-.-..,. -- ---- --t-.---- ---,---t
I I I . I . I I . . I
t I M-22088 1 . 154 11740 I 8-22791 7 "!2 I 1975. I 3450 I 15 I
'I M - 2 1993. 1 1 08 252 0 I 8 - 22 791 8. 7 I 2000 I 3 700 I 10 I
II M-21993 l' 108 2520 I B-,22791 8.7 I 1960 I 3100 I 11 1
II M-21993 l' 108 2520 I B-22791. 8.7 I 1960 1 ..3100 I 2 I
I I M-22048 1 . 118 3330 IB-22791 8"2 I . 1950 I 3250 I 8 I
I I I 1 I I I .
J I M-22049 1 118 2630 I 8-22791 8..2 I 1855 I 3300. I 13 I
II M-21993 1. 124 2520 I B-22791 8.2 I 1915 I 3550 I 13 I
II M-21993 1.. 124 2520 I .B-22791 8.2 I 1880 I 3550 I 4 I
II M-22050 1 115 3140 I 8-22791 7.9 I 1955 I 3350 I 17 I
II M-22055 1. 108' 3720 I B-22791 8~~ I 2030 I 3500 I 9 I
) I I . I I I I
II M-22052 1 113 4510 18-22791 8.2 I 1960 I 3500 I 10 I
II M-22056 1 125 2590 I 8-22791. 7.9 I 1870 I 3300 I 6 I
I! M-22057 1 '. 130 2200 I 8-22791 7.9 I 1830 I 3400. I 7 I
J I M-22058 ~ 97 3510 I B-22791 8;0 I 2010 I 3450 I 12 I
II M-22059 1 116 4250 I B-22791 8.0 I 2000 I 3550 I 10 I
I I I I I I I
11,M-22112 1. 108 2520 I .B-22791' 8.1.1 1950 I 3500 I 7 1
II M-22173 1 115 2520 I B-22191.' 8.1 I 1890' 3600 ,. 8 I
I I M- 2 1 590 1 16 1 31 90 I.B - 2 2791. 8 . 1 I 2030 I 3 500 I. 14 . 1
I' M-22060 1 94 2368' 8-22791 8.1. I 1960.' 3550' 1 I
II M-22050 1 . 180 3140 I 8-22791 8.7 I 2040 I ~550 , 21 I
II l' I I I
II M-22089 1 79 13900 I B-22791. 9.0 I 2040 I 3600 I 19 I
II M-22050 I 174 3140 I 8-22791 9.0 I 2010' I 3600 . I 19 j
, II M-21993 1 264 2520 I B-22791 8~6 1 1880 I 3600 I 22 1
J I M-22061. 1 112 1480 I 8-,22791. 8.4' I 1990. I 3550 I 7 I
J I M-22060 1 102 2360 I 8-22791 8;4 . I 1930. I 3550 I 8 I
68- 6-12
68- 6-13-A
68- 6-13-B
68- 6-13-C
68- 6-14
68- 6-:15
68- 6-167'" A
68- 6~16-:B
68- 6-17
68- 6-18
68.,.. 6-19
68- 6":'20
68- 6-21
68- 7- 1
68- 7- 2
68- 7- 3
68- 7- 4
68- 7- 5
68- 1- 6
68- 7- 7
68- 1- 8
. 68- 7...;;. 9
68.,.. 7-1'0
68- 1-11
68- 7-12
TABLE E.1 (CON'T)
PAGE E.6
-------
II ADDITIVE INJECTION DATA I . COAL fIRED I 'OUTLET. 1 ~502LEVEl, I REDUCTION I
TEST NO. II B&W NO. PORT RATE % SURFACE I B&W'NO. RATE 1 ~TEMP, F ,I NO ADO. 1 OF 5021
11 STOICH CM**2/G I . #/HR -I - I. PPM I CONC, % 1
----- ----- -tt--- -------- -- ---~------ ------: 7."'7--'-,----- ----,- ---- t-- ------ f-.----:.-:--: ---~ t-.-- ------,--t
II . I I I. I I
II M-22063 1 128 4220 I B-22791 8.5 I 2010 I, 3550. I 11 I
II M-22062 1 . 122 3800 I B-22791, 8~5' I 1970 1 3500 I 7. I
II M-22066 1 116 2430 I B-22791 8.1 ,I 2040 I 3450 I 9 . I
II M-22067 1 112 3700 I B-22791 8.1 I 1990 I 35,00 I 10 I
II M-22172 1 123 2520 I 8-22791 8.4.1 1960.. I. 3500 I 7 I
II 1 . I I I J
II M-22173 1 Ill. 2520 I B.,...22791. 8.4 I 1930. I. 3500 I 9 I
II M-22068 1 111. 2790 I B~22791. 7:.9 I 1980 I' 3550 1 9 I
II M-22069 1. 116 2410 I B-22791 7.9 I 1950' 3550 J 6 I
II M-22070 1 120 3000. I B-22791. 8.0 I 1990 I. 3600 I 6 I
II M-22071 1 126 . 2170 I B~22791 8.0 I 1960 1 3600, 1 6 I
1 t I' t I : 1 1
II M-22064 1 143 1960 1 8-22791, 7.8 I . 2000. I 3550. I 14 I
II M-22065 1 123 2350 I .B-22791. 7.8 I 1950' 3550.' I 15 I
II M-22073 1 109 2860 I 8-22791 .7.9 I 2040 I .3550 I 9 I
! I M-22074 1 113 3320' B-22791. .7..9 I 1990 I 3500. I 13 I
II M-22089 1 149 13900 1 B-22791 8.9 I 1920 I 3600 1 14 I
, I I. 1 I I f
II M-22075. 1 105 3220 1 B-:22791 8.9 1 - 1875 1 3550. 1 9 1
II M-22090 1 100 3390 1 B-22791 8.7 1 . 1930. 1 3600. I 11 I
JI'M-,-22064 1 76 1960 I B-22791 8.7 I 1910 I 3550. I 8 I
II M-21993 2 115 2520 I B-22791' 8.9 I . 1930 1 3500. 1 0 I
II M-21993 2 149 2520 IB.,...22791 7..9 I . 2010 I: 3450. I 0 I
II 1 I 1 - 1 I
II 1'1-21993 3 123 2520 1 B-22791 , 8.3 I 1980 1 3500 I 0 I
I J M-21993 4 123 2520 IB-22791. 8.3 I 1965 I 3450. J 0 I
II M-21911 3. 223 1630 J B-22791 8.1 I 1970 1 3500 I 0 ,
II M-21949 3 229 4750 I B-22791 8.1 J - 19.70 I 3600 I 0 I
I J M-22091. 1. 107 14800 I B-22791 8.2 I 1915 1 3600. 1 20 . I
68- 7-13
687' 7-14
68-:- 7-15
68"... 7-16
68- 7-17
68- 7""-"18.
68- 7~19
68- 7-20
68- 7-21
68- 7-22
68~ 7-23
, 68- 7-24
. 68- 7-25
68- 7~26
68- 8- 1
68- 8- 2
68- 8- 3
68- 8- 4
68- 8- 5
68- 8- 6
68- 8- 7
, 68- 8- B
68- 8- 9
68- 8"""10
6 8- 8 -:- 11 - A
T A 3 _: E. . ,: CON' H) ,-
PAGE E.7
-------
II ADDITIVE INJECTION DATA I . COAL FIRED I OUTLET , 502 LEVEL.' :REDUCTION I
TEST NO~ IIB&W NO. PORT, RATE % SURFACE I SSW NO. RATE I ~EMP,F I NO ADO. 1 OF S02 I
1 I STOIGH CM**2/G I #/HR I : f PPM I CONC, % 1
- ---- --- ---ff----- ------ -.-- -,.------_._-~~- - ---4------~--c~ ----:--4-.----- - -t------ - - --~ f- - -------:---+
II . 1 t . 1 . I" I .
II M-220
-------
II ADDITIVE INJECTION'DATA' I, COALfFIRED I .0UTLET;1 :502 .LEVEL,I :REDUCTION'I
TEST NO. II BgW NO. PORT RATE % SURFACE I .B&W'NO. RATE I TEMP,F' I .. NO .ADD. J; OF S02 J
J I SToIGH CM~*2/G I . #/HR-J. ' J. PPM J ' CoNC,.% . J
--------- - -f+- --- ------ - ----- -------- - --:--- ----f-.--..;.-;- -~_._...,.~--:- - +-,"C - -;-.-;-f-,...,.-"":- ---;--- +-,--- ---- -...,.--f "
I I ,. I' I . I J
J I M-22359 1 . 22 ----- I ..8...,.22791 8.2 ,I 1990 ~ I 3500. I 9 t
I J M-22359 . 4 ' 22 ----- I B-22791. 8.~ ,I 1980, I 3700' J 4 , J
II M-22359 1 . ,,41 . ----- J ,B-22791. 8.2.1 1965. J 3700 . 1 ~ 15 I
II M-22356 1 . 107 ' ----- IB..,22791: 8.,7 ,I 2015, J 3700 I 15 . I
II M-223S6' 1. 107 ----- IB-;22791' 8.'7 '.1 2040' t 3750 I 11 , I
t I I I I I I
I I M-22356 C 107 ----- I B..,22791: 8.7', 2040: I 3750 I 19 I
t I M-22253 B. 110 2440 J .8..,22791' 9el,' 2080. J: 3650, I 4 I
II M-22091 1 ' 186 14800 I .B-22791. . 9.4.: I . 2065, ,. 3450 I 39 J
11 M-22091 l' 380 14800 J ,B--22791' , 9.4 ~ I . 2090 I 3450: I 71 I
J I M-22361. l' III .- 14800 I ',B-22791: 8.9' I . 2035 I' 3500 I 26 !
II I' I:. I J I
J I; M-22361 C 1-11 . 14800 I :B...,.22791 8.9 I 2035: I; 3500 I 23 . I
II 1'4-22360 1 . 129 14800 IB-22791.. 8.9 I . 2030 I 3500. I 26 I
J I M-21911 l' 262 3920 I B...,.22791, 8.'2.1 2055, I 3450. I 30 I
J ,. M-22359 4 41 ----- 18-:22791. ,8.21. 2120. I 3450' I 3 I
II: M-22359 D .41 . -----' I B-22791. 8.2,1, 2120 '. I 3450. i 1 . I
I I I' J 'J I I
J I. M-22333 1 . . 98 3690 I B..,.22791, 9.5.1; 2050' I. 3400 I 9 I
II M-22333 C . 98 . 3690 I B-22791 , 9.5' J 2050:, I: 3400: ,. 13 I
J J M-22359 1 ; 23 7""""""'''''. IB-22791 . 9.5 I. 2050, I 3450, I 10 I
II M-22359 C . 23 ' ----- I ,B-22791 9.,.5: I ; 2050., I 3450, I 10 1
) IM~22334 '. l' 102 . 3610, I :B~22791. 9,.1.1 2060:' I. 3450, I 7 I
I I J - t ,I I I
II M-22334 C 102 3610 I B..,..22791: 9.1 ..1 . 2060. I 345,0.. I 13 I
II. ~4..;.22335 1 " 121 . 2830 18-22791' 9..;1. I : 2085. I; 3450. I 10 I
J I. M-:.22336 1 . 121 - 3820 I ,B-22791' 8.5 I 2000: I 3700. I 11 ,
II M-22336 C . 121 . 3820. I B..,22791. 8.5" 1970: I 3700. I 16 I
II M-22337. l' 120 . 4000 IB...,22791 c 8.4 'I 207.0' I. 3700' I 27 . I
68-10- 5
68-10- 6
68-::10';': 7
68-10- 8
68-10- 9
68-10-:-10
68,10-11
68...,10~12
68-10-13
68-10-:14
68-10-15
. 68-10-16
(, 8-:-10- 1 7
68-10-18
68-10-19
I ".'
68~10-720
68-10-:-21
68-'lq-22,
68~10-23
68- 11..,. 1
I .:
68-11- 2
68..,.11-:' 3
68-11-. 4
68-11--: 5
68-11-, 6
TAB _EE. . . CON".
PAGE E.9
-------
II ADDIT-IVE INJECTION DATA 1 COAL FIRED. I :OUTlET '.IS02lEVEl.1 .REDUCTION 1
TEST=NO. I I B&W NO. PORT RATE % SURFACE 1 E&W NO. RATE I ~EMP,F I NO ADO. I OF ,S02 I
II STOICH CM**21G I . #/HR I J PPM 1 CONC,% 1
----- ---- - -tt- -- ----- --- -------- ------- - -----f -,----- ----:----- -f- -_._-- - -f-~--"""" ----- t--- -------" -,...,t
II - I I J I I
II M-22337 C' 120 4000 . 1 B-22791 8.4'1 2130 I 3700 1 14 I
II M-22338 1 149 4260 IB-22791 - 8.1 1 2070 I 3650 I 12 I
II M-22338 C' 149 4260 I B-22791 8~'1 I . 2070 I 3650 1 14 I
11 M-21911 . 1 218 6900 IB-22791 8.~i I 2080 1 - 3650. I 22- I
J I M-22339 1 106 3000 I B...;22791 - 8~5 I 2020 I 3550 I 4 I
II I 1 1 1 I
II M-22339 C 106 3000 I B-22791 8.5 I ,20io I, 3550 J 8 I
J I M-22340 1 - 116 2940 I B-22791 7.8 1 ,1980 I 3700 I 11 I
11 M-22340 ( 116 2940 /8-22791 7.8 I 1980 I 3700 I 14 I
I I M-22341 1 . 84 4910 I 8-22791 9.2 J 2040 I 3750 I 11 1
II M-22341 C 84 4910 IB-22791 9.2 I - 1980 ) ~750 - I 16 I
) 1 1 J 1 1 I
J I M-22333 1 101 3690 - IB...,22791 9.2 J 2000 I 3750. 1 9 I
11 M-22333 C 101 3690 I B-22791 9.:2 1 1980 I 3750 I 16 I
II M-22342 1 115 3780 I -B-22791 8.6 I 1960 I 3750' I 12 1
II M-22342 C 115 3780 I 8.,..22791 8.6 - I 1930 I 3750 I 16 I
II M-22343 1. 109 2570 I B-22791 8.4 -I 1930 I 3800 - I 12 I
1 I I' ) 1 I I
II. "1-22343 C 109 2570' I 8-22191 8.4,1 1900 - J 3800 I - 17 I
II M-22344 1 129 3630 I 8-,22791 8.4 I ,1875 I 3650 I 8 I
11 M-22344 C 129 3630 18-22791 8.,4, I 1860 I 3650 I 14 I
II M-22345 1 113 3600 I B-22791 8.,1 I 1980 I 3650 1 14 - I
11 M-22345 C 113 3600 I 8-22791 8.,1 I 1920 I 3650 I. 21 I
II I I 1 I 1
11------- 0 0 I (-13167 8.3 I . 2065 I 3350 I 0 I
II "1'""'22401 1 118 2010 I C-13167 8.7 I - 2015 1 3250 1 11 I.
II M-'22401 C 118 2010 I C-13167 8.7 I 1970 I 3250 I 19 I
II "1-22337 l' 130 4000 1 C-13167 8.4' I 1990 I 3550 I 20 I
11 M-22337 C 130 4000 I (-13167 8.~ I - 1940 1 3550 - I 28 I
68-11- 7
68-11- 8
68-11 - 9
68-11-10
68.,..11-11
68-11-:-12
68-11':13
68-11-14
68-11-15
68-11-'-16
68-11"'"17
68-11'-::18
68-11-19
6 8- 11 - 20
68-11-21
68-11~2~
68-12-.1
68-12- 2
68-12- 3
68-12~ 4
68-12- 5
68-12- 6
68.,...12- '7
68-12- 8
68-12":' 9
TABLE E.IC(ON'T) .
)AGE E.O
-------
11 ADDIT-IVE INJECTION-DATA I . COAl.FIRED I ,OUTlET -..1 :S02lEVEL I -REDUCTION I
TEST NO. II B&W NO. PORT RATE % SURFACE I B&W,NO. RATE I TEMP, Fl. NO ADO. t. OF S02 I
II STOICH CM**21G I . #/HR -I . I. PPM. I CONC, -% I.
-----~-----++---- ------:--- --- ----------:---- --~-f----"'"-:---- ----:--t-.- ------f- --~~-- ----t- ----:- -----f
II I - : . I I I I
t I M-22091 1 - 231 14800 1 C-;13167 8.8 I 1990 1 - 3400 I 38 1
I I M- 2 2091 C 23 1 . 14800 I C"'" 1 3 1 6 7 8 .. 8' I 1980 - I 3400 I 501
11 M-22091 1 . 594 14800 I C~13167 8.8 I - 1960 I 3400 I. 69 .I
II M-:22091. C. 594 14800 1 C"'"13167 8~8 1 1960 I 3400 1 75 I
11 M-22091 - 1 135 14800 I C-:13167 5.9 I - 1930. I 3350 I, 27 I
11 I I I I 1
II M-22091 - C 135 14800 IC-13167 5.9 I 1900. I: 3350 I 34 I
II M-22333 A . 122 3690 1 C....,13167 - 8.0 I ; 1800 I: 3350. I 31 1
II M-223-34 - A 110 3610 IC--13167 8.1 I ; 1875 I 3450 I 13 1
J I M"'"22335 A 115 2830 I C-13167. 8.61: 1990 1 3400: I: 16 I
11 M-22336 A" 117 3820 I C-13H:i7, 8.61.19301 3400 1 18 I
II I I . I : I . I
1 I M- 22 33 1 A 110 400 0 I C -131 67 8 . 4 leI 965 I 3 300. I, 18 I
II M-22338 A 79 - 4260 I C--13167' 8.4 :1.1850 I 3300 - I. 15 ] -
I I: M- 2 2339 A-I 09 3000 I C - 13161. 8.. 6 I . 20 1 5 I. 3 500 - I - 1 3 I
11 M-22340A 119 2940 I C"'"13167 9.1 I 1945 I 3350. 1 13 I
II. M-22091 A 173 14800 I C--13161 ?6 I . 1910 1 3450 i. 39 I .
II I I I I I
IIM-22337 C 128 4000 IC-13161 7,.4 -I 2030 I 3300 I 20 1
II M--22337 C 111. 4000 J C-:-13167 8.3..1 2020. 1; 3300 I 23 I
11 M-22331 c 105 4000 I C-13167 8.6 I 1880 I 3350 I 20 I
II M-22337 c 96' 4000 I C"'"13167 8~7 I 2140. I 3350 I 15 I
J I M-22426 1 121 4220 1 C"""713161 8.8 I 2095 I 3350 I 13 I
1 I I I I I - I
II M-22426 C 121 4220 I C-13167 8.8 1 2040 I 3350 - I - 22 I
11 M-22426 A - 121 4220 I C--:13167 8.8 I 1980 I 3300 I 33 I
II M-22343 C 138 2510 I C-13161 8..7 -I . 2010. I 3300 I 29 I
11 M-22343 - 1 123 2570 I C--:13167 9.0 I - 2060 - I 3550 I 14 - I
II M-22343 c 129 2570 IC-13167 8.6 I 2120. 1 - ,3450 I 23 I
68"':12-:-10
68-12-11
68~12~12
68-:12-13
68-12"':14
68-,-12-15
69- 1':" 1
69- 1- 2
69- 1--'--' 3
69- 1- 4
69- 1- 5
69- 1- 6
-- 69- 1':"7
69- 1- 8
69- 1- 9
69- 1-10
69- 1-11
69- 1...,.12
69- 1"'"13
6 9- 1 - 14
69-::1-,15
69- 1--:16
69~ 1~17
69- 2- 1
69: 2- 2
T A ~ -:1 E. . CO ~ . ..) .~
PAGEE.-ll ,
-------
TABLE E.1 (CON'T)
) I ADDITIVE INJECTION DATA I . COAL.' FIRED J -OUTLET',' .502 lEVEL t REDUCTION 1
TEST NO. J I B&W NO. PORT. RATE % SURFACE ' B&W-NO. RATE I TEMP,F..I NO ADD. ) OF SO.2 I
" S TO I CH CM**2/G I #/HR t I PPM J CONC, % I
-----------++------------~------------~-~~---t--~------~--~--t--------t-~---------t-----------+
11 I I . 1 1 1
69- 2- 3 II M-22343 1 140 2200 I C~13161. 8.9 I 1990 I 3550 I 15 1
69- 2"': 4 II M-22050 1 143 210 I C-131-67 8.6 1 2030 I 3450 I 7 1
69- 2- 5 II M-22050 1 111 600 I C-13167 8.6 I . 2030 1 3500 I 14. . I
69- 2- 6 II M-22050 1 105 2810 I C-13167 8~9 I . 2070. I 3600 1 15 I
69- 2- 7 ) I M-22339 1 98 3000 I (-13167 8.9 I 1990 I 3550 I 15 1
II I 1 1 I 1
69- 2.-, 8 t I M-22074 1 116 460 1 C-13167 9.1 1 1930 1 3500, 1 11 1
69- 2- 9 II M-220-74 1 131 840 1 C-13167 9.1 1 1930. 1 3500 1 14 1
69- 2-10 11 M-22074 1 '. 112 3420 1 C-13167 9.1 1 1880 1 3500 1 27 I
69- 2"':11 II --.------ 0 Q I (-13167 9.0 I 2040 I 3600, I O. I
II " I 9~'0 1
69~ 2-12 K-20676 1 137 4800 C-13167 1940 I 3550 J 11 1
11 I '" 1 1 f 1
69~ 2-13 II M-22335 1 124 2830 I C-13167 8.2 1 1860 1 3500 I 20 I
69- 2 ":1 4 II M-22339 1 . 132 3000 1 C-13167 8.2 1 1860 1 3400. 1 16 1
69- 2-15 ) I M-22333 A 106 3690 I C~13167 7.1 I 1850 1 3500 I 26 I
69- 2-16 ) I M-22334 A 103 3610 I C-13167 7.3 1 1845 1 3400. I 18 I
69- 3- 1 J 1 M-22335 A 118 2830 1 C-13167 6.5 I 1820 I 3350 I 21 1
II I " I I J I
69- 3- 2 II M-:22336 A 120 3820 I C-13167, 6.6 I 1800 I 3300 I 24. I
69- 3"': 3 II M-22337 A 89 4000 I C-13167 6.6 I 1820 I 3300 1 24 I
69- 3- 4 II M-22338 A 125 4260 1 C-13167 6.01 1800 t 3300 1 23 t
69- 3- 5 If M'""'22335 A 84 2830 1 C-13167 8.-6 I ; 1860 1 3450 J 17 )
69- 3-:-: 6 II K-:-20689 1 . 133 4540 ) (-13167 8~8 1 1830 I 3650 J 7 1
, I I I 1 I ,
69- 3- 1 11 M-22335 A l43 2830 1 C-"13.167 9.0 I 1800 1 3800 1 22 I
69-:- 3- 8 1 t M-22335 A 143 2830' 1 C-13167. 9.0 J 1840 1 3850 I 23 1
69-: 3- 9 J I M-22426 A 88 4220 I C-13167 8.6 1 1760 I 3600 I 22 I
69- 3-10 1 I M-22426 A 88 4220 I C-13167 8.6 I 1860 I 3800 I 28 I
69- 3-11 11 M-22004. A 140 2050 I C-13167 8.4' I 1840 I 3450 I 7 I
PAGE E.l2
-------
J I- ADDITIVE INJECTION-DATA, J ; COAL FIRED - I OUTLET I ~S02 lEVEL :!REDUCT ION I '
TEST ,NO. J 1- 8&W NO. PORT RATE % SURFACE ,I 8&W:NO. RATE I TEMP,F ',I . NO ;ADO. J OPS02 I
J I' $TOIGH CM**2/G' I ; #/HR -) . I: PPM, 1 - CONC" %, I
, ----- ------, ++------------- -~ - ---; -;--;---,- ---; -:;--,--f-:---;--, --:---; -; "'7""7:71--,------ -f-,-, ~~, :;:-;---- +-::'---;---;~--'~'7f
1 1 I) 'I' I 1
J IM-22004 -- A 140 ' ,2050 1 C,13167 8.~-1 1840 I 36~O. I - 10 " ..I
II M-22339 A 95 3000 I C-13167, 7.p -I : 1880, 1 3500 1 23. I
II M-22340 A - 108 2940 IC-:13167 - 6.2 1 1760 I 3500, 1 23, I
11 M-22341 : A, 121 .4910 I C-.13167 -6~2 I 1140 1 ~450, I. 29 I
JI.M-22342 A 112 3780 I C-13167, 5.9'1 1780. I. 3550.1 32 I
J 1 I 1 1 I I
J I ------- 1 " 0 . 0 I C--'13i67 5.6 ,I 1840: I 3600 I 0 .1
11 ------- 1, '0 0 I.C-13167 - 5.4 I; 1930" I 3600: I: 01
II ------- 1 0 . 0 1 ,C-13167 -. 5..4 -.1 1800 J' 3550 I 0 1
11 ------- 1 , ' , 0 '0 ,IC-;13167 7.4 'I - ---- I 3450, I 0 1
II ------- 1,' ,0 - . Q IC~13167 .7.4 'I; 1920: I 3450 I 0 1
11 1 : I I I I
11------- A. . 0: O' I (-;13167 7~4 ~J 1800 - I 3400 -' J 0 I
IIM~22343 A' 274 2200 I C-.:13167 .7..4 J ' 1100. I 3400" I; 34 . I
J 1 ..,----;-:- 0 0 IC-'13167 . 8.0.1 1900 '. J 3650, I 0 ' I
II M-22343. A, 106 - 2200 IC-13167 5.8 1 1120' I 3550' I; 27 . I
IIM-22344' A 96,3630 1 (-13167 5.9 I : 1720 -- I 3400, I 31 . I
1 t I 1 I I I
J 1 M-22'345 A 95 3600 I C-,13167. 5.91 ~ 1110, 1 3450, 1 23 I
J I; M-22426 A. 123 ,4220 1 C-13167 6.;3 I : 1940 I 3500. I 26 I
J 1 ------- 0 ,: '0 I C':"'13213 8.61: 1960, I 1250: I 0 I
II M...,22343 A', 85 2200 I .C-13273 8.6 -I 1800' J: 1250 I: 12 1
11------- 0' 0 I C-13273 8.4,1 1940; I 1300 I 0 I
J I J J 1 1 I
J I -M-22426 A 128 .4220 I C-:13273. 8.4,1. 1800. I, 1300'- I. 19 I
i I'M-22426 A' 106 4220 i (-13273 8.1. i . 1780 i 1250, I 16 I
II: M'""22343 A 90 2200 I C-13273 8.1 ,I 17<70: I 1200' I: 8, I
II ------- . 0 0 1 (-13274' 7.9 I : 1930: I 3550. I 0 I
II:M--'22343 A ' : 78 2200 . 1 C~.13274. : 7.9 1 1730' I: 3300 I 18 I
69- 3-12
69- 3-13
697; 3-14
69- 3-=15
69- 3-16
69- 4-: 1
69- 4- 2
69~ 4- 3
69- 4- 4
69-:- 4- 5
69- 4-= 6
69- 4:'" 7
69- 4 - 8
69- 4:'" 9
69- 4-10
69- 4-11
69- 4-12
69- 4-13
69- 4-14
69~ 4-15
,:',.
'.--, 69- 4-.:16
" 69-4-17
69- 4-18
69- 4-19
69- 4-20
TAB - :: ,E..,:: 'cm I" .
PAGE. E.13
-------
II ADDITIVE INJECTION DATA I COAL fIRED I OUTLET JS02 LEVEL' I :R EDUCT ION I
TEST NO. J I B&W NO. PORT RATE % SURfACE I B&W NO. RATE I TEMP,F I - NO ADO. 1. OF 502 I
t I STOICH CM**2/G I #/HR I . t, PPM t .. CONC, % I
-----------++--------------------------------f---------------f--------f-----------+-----------+
II 1 1 - 1 I - 1
t I ------- 0 0 I C-13274 7.6 t ; 1920 I 3600 1 0 I
II M-22426 A 122 4220 I C-'13274' 7.6 J 1750. I 3350 I 33 I
J I M-22426 A 108 4220 I C-13274 7.9 I 1850 I 3450 I 17 I
II "1-22343 A 100 2200 I C-13274 7.91.1780 I 3400 I 15 1
11 ------- 0 0 I C-13279 7.8 1 2030 I 2350 I 0 I
I I I t - I . I 1
II M-22343 A 97' 2200 I C-13279 7.8 I 1880 I 2250 I 13 I
II M-22426 A 109 4220 IC~13279 8.2 I 1790 I 2300 I - 17 I
1 I -- -- - - - 0 0 I C - 1 3279 8. 5 I 19 2 5 I 2 2 50 I 0 I
11 M-22426 A 99 4220 I C-13279 8.5 I 1810 I 2150 I 21 I
II ------- 0 0 I C~13279 7.6 I . 1940 I 2500 I 0 I
II 1 III I
II M-22343 A 1282570 I C-13279 7.6 I - 1790 I 2400 I 23 I
II ------- 0 - 0 I (-13279 9.4 I 2030 I 2500 I 0 . J
II ------- 0 0 1 C-13167 8.0 I 2035 1 3600 I 0 I
11 -------- 1 0 0 IC-13167 8.0 I 2005 I 3600 I 0 1
I J K-20763 1. 132 3080 IC-13167 7.0 1 - 1900 I 3500 1 0 I
II I I - 1 1 1
II ------- 0 0 1 C-13167 7.6 1 2020 t 3500 I 0 J
II ------- 1 . 0 0 1 C-13167 7.6 1 1960 I 3350 I 0 I
J I M-22796 1 .76 14900 I C-:-13167 7.9 I 1910 I: 3350 I 15 I
II: M-22050 1. 150 11440 I (-'13167 8.3 I 1870 t. 3500 I 14. I
1 I M- 21911 1 183 11140 I C ~ 1 3167 7 . 9 1 1970 I 3350 I 18 I
1 I I I I I I
It M--22796 A 110 14900 I C-13167 4.5 1 1840. I 3400 I 44 1
II M---22796 A 124 14900 I C~13167 4. -, 1 1900 1 3550. I 54 1
II M-22796 0 89 14900 IC-13167 9.0 I . 1970 t 3700 I 4 I
II M-22830 A .94 ----- t C-13167. 9.0 I 1960 1 3750. I 9 I
J t M-22831 A 104 ----- I C-13167 9.0 I 1910 I 3700 1 12 1
69- 4-21
69- 4-22
69- 4-23
. 69- 4-24
69- 4-25
69- 4..:26
69- 4-27
69- 5- 1
69- 5- 2
69- 5- 3
69- 5- 4
69- 5- 5
69- 6- 1
69- 6- 2
69- 6- 3
69- 6- 4
69- 6- 5
69- 6- 6
69- 6 - 7
69- 6": 8
69--- 6- 9
69- 6-10
69-:- 6-11
69- 6-12
69...,. 6-13
TABLE E.lfCON'T) -
PAGE :.14
-------
J I ADDITIVE INJECTION DATA. I. COAL. FIRED . ..1 .OUTLET'I $O? LEVElil -REDUCTION I
TEST NO. I J B&W NO. PORT. RATE %. SURFACE I B&W NO~ RATE J TEMP.F J NO ADO. J OF S02 J
I J STO ICH CM**2/G, 1 #/HR-I.' J: PPM I - CONC,%" I
._---- ------+ t--- ------ -- -- ---- - --- ---- -- --.-,- - -- +....,,,---- "'7-----~- - +~'"'7 - -- --- +- -- -- -- --,-- +-.;- ---, ~-- --- +
. II I . 1 I ' J: . J
J 1 K-20786 1 1176180 I (-d3167'. 7.8 I . 2020: J 3650. I 0 ,
, J M- 22832 A 105 880 1 ("""" 13 167 7 . 7 . I ; 1900; I. . 3800. I 17 I
II M-22833 A 104' 780 I (-.131'67. 7~9 I 1980.. I 3?00 J 11 . I
11 M-23041:. A.. 102 10850 I (-13167. 8.0 I ; 1880. I 3400 I 18 ,
J I. M-23042 A 101 . 6800 I (-13167 8.;0.1, 1820. I 3400. I.. 21 I
I I. I' I I I I
II M-23039 A 87: 11520 J (-13167.. 8.2 I ; 1920 I. 3400. I - 7 I
II M-23040 A. 92 9020 1(-13167 .1.8,1 1960 I 3400'. I. 9 J
11 ------- 0 0 I C~13319 8.0 I 1980: 1 3700, J' 0 I
I I M- 2 2343 A. 83 2 57 0 I (-, 1 33 19 8 . 0 I 1 920 I 3600' I . 7 J
J I M~22426 A 121 ~ 4220 1(-13319 7.9 I - 1930 1 3550. I 8 J
II I I I I ,
I I M-22426 A 123 4220 I (~13319 7.8 I - 1955. I 3650 I 6 I
II.M-22343 A 117 2200 I (-'"13319 7.81 1905 I 3650 I .7. I
II M-22343. A 95 2200 I (-13167' 9.6 I . 1905 . I 3550. I - 10 I .
II. M-22426 A 100 .. 4220 I (-,13167.' 9.6 I . 1900' I 3550 - I 9 1
II. M-22333 A 91 " 3690' I (-13167 .7.7.1 1880 - J 3550; I 10. I
1 1 I' . J J I 1
II M-::-22796" A.. 60 14.900 I -(~13167 9.4 ; I 1920. I 3200. 1 16 1
11.M-22335 A 162 28301(-13167: 5.1,1;1890.1 3250.. I 29 I
II M-22335. A. 276 2830 1(-,13167, 5.1;1, 1800: I - 3200' I 49' 1
I I M722335 A 175 ----- I (-13167 4.;5 . I. 2380. I 3200 I 30 I
11 M-:-22335 A 262 . ----- I C-.13167. . 4.5 I . 2280 I 3100. I 48 I
I 1 I.. I I I I
II M-22335 A 262 ----- I C-13167, 4.5.1 2220. I 3100 I 61 1
II M-22337 A 97 5520 I C~13167. 4.8 I . 2420:! 3400, I 18 I
II M-22337 - A 146 . 5520 1(...;.13167, 4.8 I - 2300.' I - 3400', I 32 1
I J M-22337 A 210 . 5520. J C-13167 .4.8! 2210, J 3400 I 50. I
I J M-22338 A 123..4260 I (":'13331. ,4.4:1 1950 I 3800.' I, 29 I
69-6-14
69- 7-.1
69"':' 7- 2
69~ 7-' 3
69- 7- 4
69- 7~ 5
69; 7- 6
69- 7- 7
69- 7- 8
69- 7~ 9
69- 7-10
69-:- 7-11
69-:; 7-12
69- 7-13
69- 8 -:- 1
69- 8- 2
69- 8- 3
69- 8- 4
69- 8- 5
69- 8- 6-A
69- 8- 6-B
. 69- 8::- 7
69- 8- 8
69- 8- q
69- 9- l'
TAB _E .E. . :. CON '.T) :
PAGE E. 15 .'
-------
II ADD I T- IVE INJEC T ION DA TAl. COAL FIRED 1 OUTLET I ,502 LEVEL f :R EDUCT ION I
TEST NO. II 8&W NO. PORT RATE % SURFACE' BSW-NO.. RATE I .TEMP,F I. NO ADD. I OF 502 I
'I STOICH CM**2/G I . #/HR , J - PPM I CONC, % I
-----------tt--------------------------------t---------------+-~------t-----------+-----------+ ;
I 1. . I I I I I
II M-22338 A 202 4260 I C-13331 4.6 I 1940 I 3800 1 38. I
II M-22338 A 353 4260 I C-13331 4.6 I 1840 I 3800 I 66 I
11 ------- 0 0 I C-13331 7.6 I 2040 I 3850 I 0 1
II M-22343 A 145 2200 I C-13331 4.6 I 1890 I 3800 I 32 1
l' M-22343 A 253 2200' C-13331 4.6 1 1800. I 3800. I 55 ,
I I 1 I . I 1 I
II M-22343 A 380 2200 I C~13331 4.6 I 1760 I. 3800 I 74 I
II M-22343 A 126 2200 I C-'13331 7.9 I 1950 1 3950 I 19 I
11 M-22796 A 129 14900 I C-13331 7.3 1 1930. I 3850 I 35 I
11 M- 22341 A 126 491 0 t C ..,.133 3 1 9 . 0 I 19 60 I 3 650 I 22 I
II M-22342 l~, 135 3780 I C..,.13331 7.7 I 1980. I 3800 I 20 I
1 I I . I I I 1
11 M-22344 A 137 3630 I C-13331 7.7 1 1910 1 3800 I 251
l' M-22345 A 135 3600 I C-13331 7.7 I ; 1850. I 3800. I 33 1
'1 M-22333 A 115 3690 I C-13331 4.6 1 1880 I 3700 I 31 1
11 M-22796 A 131 14900 1 ------- N. GAS I 1890 I 3700 I 12 1
II M--22796 A 152 14900 I -------- N. GAS I 1880 I 3500 I 27 ,
I 1 I J I . I I
. II ~-22796 A 160 14900 I ------- N.. GAS' 1800 I 4300 I 20 I
11 M-23276 C' 121 6100 I C-13331. 7.5 I 1980. I 3800. I 19 I
11 M-23275 C 132 8220 I C-13331 8.1.1 1980' 3850 , 18 I
11 M-23297 C 143 8820 1 C-13331 7.4.1 1940 I 3850. I 12 I
II M--23298 C 120 . 8300 I C..,.13331 8.1 I 1950 I 3900 I 18 t
J I I 1 I 1 I
11 M-23299 C 138 12800 I C~13331 8.0 I 1930 I 3900 I, 19 1
11 M-22335 0 120----- I C-13331. 6.4 I . 1960 1 3950. 1 2 I
II M-22426 0 120 4220 I C-13331 7.2' 1970 I 4000 I .7 t
II M-22343 0 116 2200 I C-13331 7.0 I 1990 1 4150 1 6 !
11 M-22344 0 128 3630 I C--13331 6.5 I 1960 I 3850 I 7 I
69- 9- 2
69- 9- 3
69- 9- 4
69- 9- 5
69- 9- 6
69- 9",. 7
69- 9- 8
69- 9- 9
69- 9-10
69- 9-11
69- 9-12
69- 9-13
69- 9-14
69-10- 1
69-10- 2
69-10- 3
69-10- 4
69-10- 5
69-10- 6
69-10- 7
69-10- 8
69-10- 9
69~10-10
69-10-11
69-10-12
TABLE E.1 ~(GON'T)
PAGE :.16
-------
I J ADDITIVE INJECTION DATA. I COAL FIRED . I OUTLET ,I $02 LEVEL " REDUCTION I '
TEST NO. II B£W,NO. PORT RATE % SURFACE I B&WNO. RATE 1 TEMP,F..I NO ADD. J OF'S02 I
I I STOICH CM**2/G I ' #/HR.I . I. PP.M. J CONC, % I
-----------++--------------------------------4-~----~~------~+~--~---~t--------~~~t-~---~-----+
I I J . . I I J I
II M-23298 A 106 8300 1 C-13331 9.0 . I 1940. I 3600 I 18 . 1
II M-23275. A 139 8200. IC-;13331. 7.7 1 1950' I 3800 I. 20 I
II M-23276 C 118. 6100 I C-13331 7.7 I 1900' I 3800, 1 24 I
1 ,. M-22796 A 110 . 14900 1 .--\-~~- N. GAS I 1840 I 3450. I 18 I
tl M-22796 A .110 14900 1------- N. GAS' 1820 I 3450. I 18 I
" I' 1 , . 1
J 1 M-22796 A 110 . 14900 I ------- N. GAS I 1840 I 3450 , 13 I
II M-23329. A 122 3990 I (-13331. 8.1.1 1870 " 3800. 129 ,
l' M- 23330 A 95 981 O. t C - 13331. 7 .9 . , 1920 I 3800 , 24 I
II M'""23275 C 116 8200' IC-13331 7.9 I ; 1960 1 3750 I 12 1
. I I M~ 2 3 276 C 115 6100 1 C - 13331 . 7 . 9 1 1960 1 3700 I 9 I
J , I 1 J 1 I
J I. ------- o. 0 I C...,13376 9.5 I " 1920 1 875 1 0 . J
1 I M-22426 A 136 3710 I C-13376 9.5, I 1920. I 785 I, 8 I
II ------- 0 . . 0 IC-13376 9.5 I 1980 1 830, I 0 I
" M-22343 A 154' 2240 1 C-'13376 9.51 1940 I 755 I 13 t
II ------- . 0 0 I C,13331 8.3 I 2040. 1 3800. I 0 1
1 1 1 I 1 1 j
I" ------- A 0 . 0 1 C-13331 , 7.91 193Q I 3750' 1 0 . I
11M - 2 2343 A 11 1 . 224 0 IC - 1 333 1'. 7 .9 1 ' 1 840' I 3 650 I 23 I
II M-22343 AlII 2240 I C-13331. 7.9 1 1800 I 3650 I I
11 ------- 0 0 1 C-,13331-. .7.8 1 2020. 1 3850, 1 0.. 1
II ------- A. 0 0 1 C-13331- 7.8 I 1940 1 3700.. I Q' I
I'. I 1 I 1 I
11 M-22426' A. 144 3770 IC-13331 7.8 I 1900' I 3700 I 27 1
II M-22426 A. 144 3770 I C-13331 7.8 I < 1830 I 3700 I I
11 ------- 0 . .0 1 C-13331 8.0 I 2060 I 3800. I 0 1
I" ------- A 0 0 1 (-13331 8.0..1, 2000 I 3650. I 0 1
J I' M-22426 A . 114 . 3850 1 C..,.13'331 8.0.1. 2080 I 3650: I 221
69-:-11"':' 1
69-11- 2
69:: 11 ~ 3
69-, 11 - 4
69-11- 5
69-11..,. 6
69'd 1 - 7
69-11- 8
69-11- 9
69..,.11-10
6 9- 11- 1 1
69-11-12
6 9..,. 11 ~ 13
69-,11-14
69-11-15
69-11"';'16
69-11-17
69,...11-18
69-11-19
69-11-20
69'""'1l-21
69- 11- 2 2
69-12- 1
69-12- 2
69-12- 3
T A 3 - E E. 1 ; . CON I T)
PAGE E.l 7 <
-------
II ADDITIVE INJECTION DATA. . I COAL FIRED I OUTLET ,I 502 LEVELl REDUCTION I
TEST NO. I I B&W NO. PORT~ RATE % SURFACE J B&W NO. RATE 1 TEMP,F 1 NO ,ADD. 1 OF 502 1
II STOICH CM**2/G I " #/HR I ' I PPM 1 CONC,% I
----- - ----- t t--- - --- _._-- - - - - -- - ---- --- --- --- i-- --------- - ----i---- ----- i--.- -,.-- ------ t------- -- --i-
I1 I I I t I
I! M-22426 A. 114' 3850 I C-13331 8.0 1 1940 1 3650 I !
J I ------- 0 0 I C-13378 8.2 1 2320 I 15300 I 0 I
'I M-22426 A 103. 3850 I C-13378 8.2 I 2060 I 13350. I 35 I
I] M-22343 A 112 2240 I C-13378 7.6 I 2160 I 14500 ! 25 J
II M":"22426 A' 120 3850 J C-:13378 7.6 I 2030. I 14300 I 44 I
I I I I I , I
II ------- 0 0 I C~13331 6.7 I 2070. I 3850 I 0 1
J 1 ------- A 0' 0 I C-13331 6.7 I 2000, 1 3750 I 0 I
J I M- 2 234 3 A 130 2200 I C - 133 3 1 6. 7 I 1920 I 3750 I, 25 I
11 M-22343 A 130 2240 IC-13331 6.1 I 1850 I 3750 1 I
I I M-23329 A 123 3990 I C-13331 4.6 I 2230, I 3700 I 28 I
I I I' I,' , ,
I' M-23330 A 193 9810 I C-13331, 4.6 I 2100' 3600 J 65 1
II M--22361 A. 92 ----- I C-13331. 7.7 I 2110' 3600 I 25 I
II' M-23431 A 100 13300 I C-13331. 7.9 I 2130 I 3750 I 31 1
II M-23330 A ' 114 9810' (-13331' 4.8]: 2260. I 3650 I 37 . I
69-12-: 4
69-12- 5
69-12- 6
69-12- 7
69-12- 8
69-12- 9
69-12-10
697"12-11
69-12-12
69~12-13
69-12-:14
69-12-15
69-12-16
69-12-17
TABLE E.l (CON'T)
PAGEE.18
-------
~!
""01
~
H
:><
'Tj
o
APPENDIX F
ASH FUSION, VISCOSITY AND SINTERED STRENGTH DATA
-------
APPENDIX F
ASH FUSION, VISCOSITY AND SINTERED STRENGIH DATA
, I
Ash Fusion Temperature
The terms used to identify ash fusion temperatures are described below.
They refer to the melting characteristics of coal ash as determined in a gas
fired furnace and include the four points determined in the standard ASTM
designation: D1857-66 T. In addition to the ASTM temperatures, the Babcock
and Wilcox Company determines the point identified as FT (Flat).
Symbol'
Definition
ASTM Symbol
IT
Initial Deformation Temperature
IT
ST
Softening Temperature - (Spherical)
Softening Temperature - (Hemispherical)
ST
HI'
HI'
FT (1/16")
Fluid Temperature-fused mass '\,1/16"
on plaque
FT
FT (Flat)
Fluid Temperature-fused mass, flat
on plaque
A more complete description is given in the 1968 Book of ASTM Standards,
Part 19, Gaseous Fuels; Coal and Coke, American Society for Testing and Materials,
1916 Race St., Philadelphia, Pa., March 1968, p. 345. '
Viscosity Data
1.
Description of sample numbers shown at top of figures are given on Table
F.4.
F-1
-------
'Z.
Ferric percentage, shown on Table F.4, .is defined as the degree of
oxidation and, is expressed by the following equation:
Ferric percentage =
FeZ03
x 100
FeZ03 + 1.11 FeO + 1.43 Fe
F-Z
-------
FIGURE F.l.
ASH FUSION CHARACTERISTICS
B-22791 COAL ASH + M-21831
B-22791 COAL ASH + M-21911
8-ZZ791 Coal Ash + M-Z1831
8-ZZ791 Coal Ash + M-Z1911
0-IT
Vl - FT (Flat)
3000
2800
Vl-IT
8-Hf
co - FT (Flat)
3000
2800
OXIDIZING A1}IJSPHERE
2600 2600
~ ~ Z400
B 2400 ..
...
.. !
...
!
2200 2200
2000
2000
1800 1800
0 20 40 60 80 100 Addi ti ve 0 20 40 60 80 100 Additive
100 80 60 40 ZO 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, ,
8-22791 Coal Ash + M-21831
8-22791 Coal Ash + M-21911
0-IT
Vl - FT (Flat)
3000
3000
REWCING A1}DSPHERE
2800
2800
2600 2600
u. u.
~ .;
...
B 2400 B 2400
.. ..
... ...
~ i
,!! ....
2200 2Z00
2000
2000
o
1800
o
100
20
80
40
60
60
40
80
20
100 Additive
o Coal Ash
1800
0 20 40 60 80 100 Additive
100 80 60 40 ZO 0 Coal Ash
Weight, ,
Weight, ,
F-3
-------
2600
'"
.;
ii 2400
..
...
!
2200
FIGURE F.2.
ASH FUSION GlARACfERISTICS
B-22791 COAL ASH + M-21993
C-13167 COAL ASH + M-22337
B- 22791 Coal Ash + M- 21993
C-13167 Coal Ash + M-22337
3000
3000
O-ID
VI - I'I' (Flat)
OXIDI2ING ATIOSPHERE
0-IT
VI - I'I' (Flat)
OXIDI2ING ATIDSPlIERE, '
2800
2600
~ 2400
...
!
2200
2800
~
2000
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight. , Weight, ,
2600
'"
~
a
.. 2400
...
~
"
...
2200
B-22791 Coal Ash + M-21993
3000
C-13167 Coal Ash + M-22337
3000
.. - IT
VI- I'I' (Flat)
RELUCING ATIOSPIIERE
VI-IT
~-HI'
C!) - I'I' (Flat)
RELUCING A1MJSPHERE
2800
2600
'"
.; 2400
...
a
..
...
t
...
2200
2800
C!)
~
2000
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Addi ti ve
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, ,
F-4
-------
FIGURE F.3.
ASH' FUSION CHARACTERISTICS
C-13167 COAL ASH + M-22343
C~13273 COAL ASH + M-22343
C-13l67 Coal Ash + M-22343
C-13273 Coal Ash + M-22343
2600
3000
3000
O-IT
V- Ff (Flat)
V-IT
[J-f!]'
o - Ff (Flat)
OXIDIZING AThIJSPIIERE
2800
2800
2600
u.
M Z400
i
...
OXIDIZING AThIJSPHERE
~
i3
i
...
2400
Z300.
2200
2000
1800 1800
0 20 40 60 80 100 Additive 0 ZO 40 60 80 100 Additive
100 80 60 40 ZO 0 Coal Ash 100 80 60 40 20 0 Coal Ash
WeIght, , WeIght, ,
C-13l67 Coal Ash + M-ZZ343
C-13273 Coal Ash + ~1-22343
V - IT
[J-f!]'
o - Ff (Flat)
3000
3000
2800
V - IT
0-f!]'
[J - Ff Flat)
REDUCING ATMJSPIIERE
2800
2600 2600
~ i
i3 Z400 i3 Z400
'" '"
.. ..
~ i
~
Z200 Z200
2000
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 ZO 0 Coal Ash
Weight, , WeIght, ,
F-S
-------
ASH RJSION CHARACTERISTICS
C-13273 COAL ASH + M-22426
C-13274 COAL ASH + M-22343
FIGURE F.4.
C-13273 Coal Ash + M-22426
3000
w- IT
a-lIT
e - Ff (Flat)
OXIDI2ING A1MJSPHERE
2800
2600 2600
'"
e .;
a 2400 ~ 2400
C! ...
! t
....
2200 2200
2000
1800
o
100
20
80
60
40
80
20
100 Additive
o Coal Ash
40
60
Weight, ,
C-13273 Coal Ash + M-22426
3000
W-IT
(j] - lIT
e - Ff (Flat)
REDUCING A1MJSPHERE
2800
2600 2600
'"
~ ~
g 2400 a 2400
... C!
! ~
~
2200 2200
2000
3000
C-13274 Coal Ash + M-22343
W- IT
D-IIT
e - Ff (Flat)
2800
2000
1800
o
100
20
80
40
60
Weight, ,
OXIDIZING AThDSPHERE
60
40
80
20
100 Additive
o Coal Ash
3000
C-13274 Coal Ash + M-ZZ343
W-IT
0- lIT
.. - Ff (Flat)
2800
2000
REDUCING ATM::6PHERE
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight. ,
F-6
-------
ASH FUSION CHARACTERISTICS
C-13274 COAL ASH + M-22426
C-13279 COAL ASH + M-22343
FIGURE F.S.
C-13274 Coal Ash + M-22426
3000
'<;;J - IT
101 - lIT
.. - Ff (Flat)
OXIDI2ING ATI-OSPHERE
2800
2600 2600
u. u.
~ ~
g 2400 a 2400
k ~
! ~
~
2200 2200
2000
C-13279 Coal Ash + M-22343
3000
'<;;J-lT
Q-Hf
" - Ff (Flat)
OXIDI2iNG ATI-OSPHERE
2800
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight. ,
2600
u.
~
a 2400
"
k
~
~
2200
C-13274 Coal Ash + M-22426
3000
C-13279 Coal Ash + M-22343
3000
'<;;J-lT
101- Hf
.. -Ff(Flat)
REIIJCING ATI-OSPHERE
'<;;J-lT
Q-Hf
" - Ff (Flat)
REDUCING ATI-OSPIIERE
2800
"
2000
2600
u.
~
a 2400
"
k
~
~
....
2200
2800
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, %
F-7
-------
2600 2600
'"
1: ~
a 2400 2400
:! '"
..
! ~
I!)-I!) "
...
2200 2200
FIGURE F.6.
ASH FUSION o-IARACTERISTICS
C-13279 COAL ASH + M-22426
C-13376 COAL ASH + M-2234'3
C-13279 Coal Ash + M-22426
C-13376 Coal Ash + M-22343
3000
3000
2800
2800
OXlDIZING A1MJSPHERE
'V - IT
[;I-Hf
I!) - PT (Flat)
OXlDIZING A1MJSPHERE
2000
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, ,
C-13279 Coal Ash + M-22426
C-13376 Coal Ash + M-22343
3000
3000
2800
2800
REDUCING A1MJS?HERE
'V-IT
[;I-Hf
D - PT (Flat)
REIXJCING A1MJSPHERE
2600 2600
'" '"
1: ~
a 2400 2400
'" ~
..
t t
... ...
2200 2200
2000
2000
1800 1800
0 20 40 60 80 100 Additive 0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, ,
F-8
-------
FIGURE F. 7.
.ASH FUSION G-IARACTERISTICS
C-13376 COAL ASH + M-22426
C-13378 COAL ASH +M-22343
3000
C;13376 Coal Ash + M-22426
3000
2800
2600
...
~
iJ
C!
!
2200
2000
C-13378 Coal Ash + M-22343
Vl- IT
[J - HT
'i' - Ff (Fiat)
OXIDIZING ATMJSPfmRE
OXIDIZING ATMJSPIffiRE
2800
co
2600
"'
"
JJ 2400
'"
~
"
....
'5(l
2200
2000
1800 1800
0 ZO 40 60 80 100 Additive 0 20 40 60 80 100 Addi ti ve
100 80 60 40 20 0 Coal Ash 100 80 60 40 20. 0 Coal Ash
Weight, I Weight. I
C-13378 Coal Ash + M-22343
3000
C-13376 Coal Ash + M-Z2426
3000
2800
2600
"' 2400
~
i3
C!
! 2200
2000
REDUCING ATI-DSPlIERE
REDUCING ATMJSPIIERE
2800
2600
"'
~
iJ 2400
'"
~
!
2200
o
2000
1800 1800
0 20 40 60 80 100 Addi ti ve 0 20 40 60 80 100 Addi ti ve
100 80 60 40 20 0 Coal Ash 100 80 60 40 20 0 Coal Ash
Weight, , Weight, ,
F-9
-------
FIGURE F.8.
ASH FUSION GIARACTERISTICS
C-13378 COAL ASH + M-22426
C-13378 Coal Ash + M-22426
<;J-IT
0- fIT
co - FT (Flat)
3000
OXID121NG AlMlSPIlERE
2800
co
2600
'"
~ 2400
t
....
2200
o
<;J
2000
1800
0 20 40 60 80 100 Additive
100 80 60 40 20 0 Coal Ash
Weight. ,
C-13378 Coal Ash + M-22426
3000
<;J-IT
o - fIT
" - FT (Flat)
REOOCING AThOSPIlERE
2800
co
2600
'"
,j
...
a 2400'
"
...
~
,!!
2200
2000
1800
o
100
20
80
40
60
60
40
80
20
100 Additive
o Coal Ash
Weight. ,
F-IO
-------
'~ALE F...
AS:
~ , SIO \ ., ~ERA1URE )/\ 'A
'Tj
I
I--'
I--'
Mixture Coal Additive Fusion Temperature, FA
Sample Stoichiometric Reducing Atmosphere Oxidizing Atmosphere
No. Sample Wt Sample Wt % FT-1/16"
!II~ !J; No. % IT ST Hf FT-1/16" FT- FLATt IT ST Hf FT-FLATt
B- 22 791 B-22791 100 - - '0 - - 1940 1990 2060 2340 2370 2240 2300 2340 2460 2510
M-22174 B-22791 90 M-21993 10 22 1930 1960 1980 2120 2260 2110 2200 2220 2290 2380
M-22175 B- 22 791 ,75 M-21993 25 66 2120 2140 2160 2260 2360 2140 2160 2180 2260 2310
M- 22176 B-22791 62 M-21993 38 120 2340 2520 2550 2580 2600 2380 2430 2510 2570 2590
M-.22177 B-22791 45 M-21993 55 243 2630 2650 2670 2690 2720 2650 2670 2690 - - 2700
M-22178 - - 0 M-21993 100 - - 2730 -- - - - - 2730 2720 - - - - - - 2730
C-13167 C-13167 100 - - 0 - - 1950 2000 2040 2310 2390 2250 2340 2380 2500 2540
M-22629 C-13167 90 M-22337 10 28 1910 1960 2010 2330 2380 2070 2240 2280 2450 2560
M-22630 C-13167 75 M-22337 25 83 1950 2050 2070 2270 2380 2120 2140 2160 2230 2350
M-22631 C-13167 56 M-22337 44 200 2380 2510 2540 2610 2630 2400 2490 2600 2630 2650
M-22632 C-13167 50 M-22337 50 249 2600 2640 2660 2670 2680 2630 2660 2660 271Q 2710
M-22633 C-13167 25 M-22337 75 747 2700 2700 2700 2700 2730 2720 2720 2720 2720 2720
M-22634 - - 0 M-22337 100 - - 2700 2700 2700 2700 2720 2730 2730 2730 2730 2730
M-22635 C-13167 90 M-22343 10 31 2040 2070 2100 2450 2550 2180 2240 2290 2560 2630
M- 2263,6 C-13167 75 M-22343 25 94 2060 2080 2100 2300 2350 2210 2240 2260 2330 2380
M-22637 C-13167 59 M-22343 41 199 2370 2420 2450 2470 2490 2370 2410 2430 2510 2680
M-22638 C-13167 50 M- 22343 50 282 2450 2470 2490 2570 2620 2480 2510 2530 2580 2700
M-22639 C-13167 25 M-22343 75 846 2770+ 2780+ 2790+ 2810+ 2830+ 2800+ 2820+ 2820+ 2860+ 2900+
M-22640 - - 0 M-22343 100 -- 2900 2900 2900 2900 2900 2900 2900 2900 2900 2900
-- B-22791 70 M-21831 30 79 1940 1970 1940 2140 2230 2120 2150 2170 2240 2290
-- B-22791 45 M-21831 55 200 2140 2170 2200 2300 2330 2120 2190 2210 2250 2290
-- B- 22 791 29 M-21831 71 400 2390 2570 2590 2610 2630 2390 2470 2530 2580 2600
M-21831 - - 0 M-21831 100 - - 2730 2750 2760 2780 2800 . 2700 2720 2740 2760 2770
.
- - B-22791 42 M-21911 58 408 2440 2530 2650 2710 2730 2450 2470 2490 2580 2630
- - B- 22791 23 M- 21911 77 817 2650+ 2710+ 2730+ 2750+ 2770+ 2630+ 2670+ 2700+ 2750+ 2780+
M-21911 - - 0 M- 21911 100 -- 2900 2900 2900 2900 2900 2900 2900 2900 2900 2900
I fc AS'IM Designation
t B & W Designation
-------
TABLE F.2.
ASH FUSION TFMPERATURE DATA
'T:I
I
f-'
N
.
Mixture Coal Additive Fusion Temperature, F*
Sample StoichilWetric
No. Sample Wt Sample 'Wt % Reducing Atmosphere Oxidizing Atmosphere
No. % No. % IT ST HI FT-1/16" FT - FLATt IT ST HI FT-1/16" FT-FLATt
C-13273 C-13273 100 - - 0 -- 2070 2270 2330 2740 2880 2200 2410 2460 2670 2860
K-20811-A C-13273 90 M-22343 10 74 2050 2140 2160 2330 2480 2200 2230 2270 2370 2410
K-20811-B . C-13273 87 M-22343 13 100 2080 2120 2170 2360 2400 2150 2200 2230 2430 2450
K-20811-C C-13273 77 M-22343 23 199 2080 2100 2110 2250 2290 2120 2170 2180 2280 2320
K-20811-D C-13273 67 M-22343 33 329 2080 2160 2170 2200 2260 2180 2200 2210 2230 2290
K-20811-E C-13273 50 M-22343 50 667 2500 2510 2520 2560 2570 2500 2520 2550 2560 2570
K-20811-F C-13273 25 , M-22343 75 2000 -- -- - - Cones Retained Shape Until 2850-2860 - Then Reacted with Plaque --
K-20812-A C-13273 90 M-22426 10 60 2090 2160 2220 2330 2410 2230 2290 2320 2430 2580
K-20812-B C-13273 84 M-22426 16 101 2070 2120 2160 2260 2420 2150 2210 2260 2320 2460
K-20812-C C-13273 73 M-22426 27 199 2070 2100 2110 2200 2290 2120 2140 2160 2300 2580
K-20812-D C-13273 67 M-22426 33 270 2130 2150 2170 2250 2380 2170 2200 2230 2340 2430
K-20812-E C-13273 50 M-22426 50 537 2470 2500 2510 2580 2610 2460 2490 25HJ 2590 2600
K-20812-F C-13273 25 M-22426 75 1610 - - -- - - Unable to Test - Cones CTLm1b1e During Drying -- -- --
K- 20812-G - - 0 M-22426 100 -- . -- - - -- Cones Retained Shape Until 2720-2780 - Then Reacted with Plaque --
C-13274 C-13274 100 - - 0 -- 1950 1990 2020 2270 2480 2160 2220 2250 2440 2540
K-20813-A C-13274 90 M-22343 10 33 1950 1980 2000 2090 2210 2210 2240 2280 2310 2350
K-20813-B C-13274 75 M-22343 25 100 2190 2220 2240 2260 2300 2210 2240 2280 2310 2350
K-20813-C C-13274 60 M-22343 40 200 2370 2400 2410 2420 2450 2450 2470 2490 2500 2530
K-20813-D C-13274 50 M-22343 50 300 2500+ 2580 2610 2660 2720 2490 2530 2550 2660 2650
K-20813-E C-13274 25 M-22343 75 900 2900 -- -- - - - - -- Furnace Operating Problem --
K-20814-A C-13274 90 M-22426 10 27 1950 1960 1980 2070 2180 2140 2160 2190 2260 2280
K - 20814- B C-13274 75 M-22426 25 81 2090 2110 2130 2150 2180 2140 2160 2190 2260 2280
K-20814-C C-13274 70 M-22426 30 104 2150 2160 2180 2300 2340 2140 2160 2190 2260 2280
K-20814-D C-13274 55 M-22426 45 202 2380 2470 2540 2610 2640 2490 2520 2540 2590 2610
K-20814-E C-13274 50 M-22426 50 242 2470 2550 2570 2590 2600 2460 2490 2570 2720 2750
K-20814-F C-13274 25 M-22426 75 725 -- - - -- Cones Fell Over @ 2750 in Red. Atmosphere -- - - --
Cones Fell Over @ 2710 in Oxid. Atmosphere
~ ASTM Designation
t B & W Designation
-------
. ~ABLE F. 3.
ASH F. SION TFMPERA1. RE DATA
'T.1
I
......
CJ.I
Mixture Coal Additive Fusion Temperature, F*
Sample "toichianetric Reducing Atmosphere Oxidizing Atmosphere
No. Sample Wt Sample Wt %
No. % No. % IT ST ill FT-l/l6" FT-Flatt IT ST ill FT-1/16" FT-F1att
C-13279 C-13279 2070 2140 2180 2650 2780 2270 2360 2410 2670 2750 "
100 - - 0 - -
K-20815-A C-13279 90 M-22343 10 30 2050 2080 2120 2310 2330 2190 2240 2250 2390 2430
K-20815-B C-13279 73 M-22343 27 99 2080 2100 2120 2140 2230 2190 2230 2240 2250 2260
K-20815-C C-13279 57 M-22343 43 203 2330 2360 2390 2430 2440 2350 2360. 2370 2380 2390
K-20815-D C-13279 50 M-22343 50 269 2440 2445 2450 2460 2480 2430 2440 2450 2460 2470
K-2081S-E C-13279 25 M-22343 75 814 -- -- - - . -- Cones Fell OVer @ 2800° - - - - - -
K-20816-A C-13279 90 M-22426 10 24 2000 2070 2120 2360 2680 2250 2300 2350 2460 2520
K-20816-B C-13279 75 M-22426 25 72 Cone CTtD'IIb1ed -- -- -- 2110 2130 2140 2220 2300
K-20816-C C-13279' 68 M-22426 32 102 2070 2100 2110 2120 2200 2130 2140 2150 2220 2300
K-20816-D C-13279 52 M-22426 48 200 -- -- -- h Unable to Test - Cones CTtD'IIb1e During Drying - - - -
K-20816-E C-13279 50 M-22426 50 216 -- -- -- -- Unable to Test - Cones Crumble During Drying -- - -
K-20816-F C-13279 25 M-22426 7S 649 - - - - -- h Unable to Test - Cones Crumble Durin!1; .Drying -- - -
C-13376 C-13376 100 - - 0 - - 2270 2350 2380 2450 2550 2280 2320 2340 2370 2430
M-23413 C-13376 69 M-22426 31 200 2600 - - - - -- 2640 2510 2570 2580 2600 2630
M-23495 C-13376 82 M-22426 18 100 2450 2530 2550 2580 2600 2380 2410 2430 2460 2510
M-23496 C-13376 85 M-22343 15 100 2440 2580 2600 2620 2640 2420 2490 2510 2550 2570
M-23497 C-13376 69 M-23343 31 200 2700 2710 2720 2730 2740 2600 - - 2620 2650 2680
C-13378 C-13378 100 -- 0 - - 1990 2070 2110 2480 2510 2370 2510 2550 2570 2580
M- 23423 C-13378 39 M-22426 61 200 2510 2570 2600 2620 2640 2460 2510 2550 2600 -2630
M- 23498 C-13378 56 M-22426 44 100 2260 2440 2490 2550 2570 2280 2510 2550 2570 2590
M-23499 C-13378 61 M-22343 39 100 2340 2380 2470 2680 2720 2390 2510 2600 2680 2710
M-23500 C-13378 44 M-22343 56 200 2470 2640 2660 2680 2720 2420 2530 2590 2710 2760
* ASTM Designation
t B & W Designation
.i
.-"
..~
. :.'~
.~
-------
20 ,000
10,000
5,000
2,000
" 1,000
"~
f?
~ 500
"~
"~
> 200
100
50
20
20,000
10,000
5,000
2,000
"~ 1,000
f?
"~ 500
8
"~
>
200
100
50
20
FIGURE F.9.
SLAG VISCOSIIT CHARACTERISTICS FOR
B-22791, M-21962, M-23491 & M-22176
8-22791
I
,
\,
~
'"
~8 -
"---
8--
"~~
8 - Reducing A_sphere
Q - Oxidizing AtlIDsphere
I I
10
2,000
2,500
2,600
2,300
2,400
2,100
2,200
Slag TenveratureJ F
M- 23491
'~
\
~
8
\8
~
8\
'\
I 8\
I \
t 1\
~ 8 '\
"''-. D
I "'
" ~
"'-
I ~ i\.
8 - Reducing A_sphere '" D..
o - Oxidizing Atroosphere ~'" ~
I I I'\.
10
2,300
2,700
2,800
2,500
2,600
2,400
Slag TeJTq>erature I F
F-14
20,000
10,000
5,000
2,000
.~ 1,000
o
0.
"~ 500
8
"~
>
200
100
50
20
20 ,000
10,000
5,000
2,000
.~ 1,000
f?
.~ 500
o
.~
> 200
100
50
20
M-21962
I I
8 - Reducing AtIJJ)sphere
e - Oxidizing Atmosphere
I I
\ I
I
I ,
I I
'" ,
~ 8
,~
\~
ar\:
10
2,000
2,100
2,200
2,300
2,400
2,500
Slag Temperature J F
M-22176
I
I I
, I
, '
I
\ ,
'--I
\b
'"
0 - Reducing Atmosphere ~
Q - Oxidizing Atmosphere I
I I I '"
10
2,100
2,400
2 ,500
2,600
2,200
2,300
Slag Temperature, F
-------
20,000
10,000
5,000
2,000
" 1,000
.:!1
e.
.~ 500
"
8
.:!1
> 200
100
50
20
20,000
10,000
5,000
2,000
" 1,000
.:!1
e.
.~ 500
"
8
.:!1
>
200
100
50
20
FIGURE F.lO.
SLAG VISCOSITI CHARACTERISTICS FOR
M-22l77, M-23492, M-23493 & M-23494
M-22177
\ I
\ \
'--\ \
1----\ '" \
\
\ '
Q
'Q
'" 'Q
"
~ I"
, \.
"':0-....",
~ Q\
'" \
~ ~
Q - Reducing AtJoosphere .~
C!) - Oxidi:l.ing AtJoosphere
I I
10
2,300
2,400
2,500
2,600
2,700
2,800
2,900
Temperature, F
M-23493
1+1
I-f-I
1 f-:
I I
\ \
\-\
I~''''''''
..",
I
Q - Reducing Atmosphere
'" - Oxidizing AtJoosphere
I I
10
2,200
2,300
2,400
2,500
2,600
2,700
Slag Temperature, F
F-15
20,000
10,000
5,000
2,000
" 1,000
.:!1
e.
.~ 500
.~
>
200
100
50
20
20,000
10,000
5,000
2,000
" 1,000
.:!1
o
0.
.~ 500
"
.~
>
200
100
50
20
M- 23492
\
\
\
\
Q
\
Q
\Q
~
Q~
Q
: '-Q
I
I
I
Q - Reducing A_sphere I
e a Oxidi zing Atmosphere \
\
I I '"
10
2,200
2,400
2,500
2,600
2,700
2,300
Slag Temperature, F
M-23494
,
I
,
\
}
Q\
Q
~
I Q
I ~
\
\
\
'"
~ ~
Q
'f~ ::J
I
I
Q - Reducing A_sphere
0 - Oxidizing Atmosphere
I I
10
2,300
2,400
2,500
2,600
2,700
2,800
Slag Temperature, F
-------
20 ,000
10,000
5,000
2,000
.~ 1,000
f?
.~ 500
'"
8
'"
:; 200
100
50
20
20,000
10,000
5,000
2,000
~ 1,000
.~
f?
.~ 500
o
u
.~
> 200
100
50
20
10
FIGURE F .11.
SLAG VISCOSITY CHARACTERISTICS FOR
M-23323, C-13273, M-23322 & C-13274
M-23323
~
-\
-\
-\
-.~~
"
0,
0
~o
o~
~o
o~
8~
"8
.~a
. ::::s
~CI,
CI"1iI
,..."".
o - Reducing A_sphere
(!) ~ Oxidizing Atrr.osphere
I I
10
1,950
2,350
2,450
2,550
2,050
2,150
2,250
Slag Temperature, F
M-23322
I
I
I
I
\
III
~
0
'
III
"1IiI
'g
~~
""""':~'::::O-O
o:,-~ -0-0_[
o - Reducing A_sphere
0 - Oxidizing A.tIOOsphere
I I
2,050
2,150
2,250
2,350
2,450
2,550
2,650
Slag Temperature, F
F-16
20,000
10,000
5,000
2,000
.~ 1,000
o
p..
.~ 500
'"
.~
>
200
100
50
20
10
20,000
10,000
5,000
2,000
.~ 1,000
o
p..
.g 500
~
:;
200
100
50
20
10
C-13273
o I ~
-"l- -
0""'-
ol~
~o
°Ko
0,
0
o'a
"'-0
00;;;;;;;:
0",
o - Reducing Atmosphere
e - Oxidizing AtIoosphere
I I
2,000
2,100
2,300
2,400
2,500
2,600
2,200
Slag Te~rature, F
C-13274
\
\
\
0 ~
1\ \
\ '\
\ \
\ \
b\.
'0 ~
"0'-0 0
::--0
-8,
iii '-iii
-D~~[
o
0
I I
2,000
2,100
2,200
2,300
2,400
2,500
2,600
Slag Temperature, F
-------
20,000
10,000
5,000
2,000
1,000
"
'"
~ 500
,~
~
::: 200
100
50
20
20,000
10,000
FIGURE F.12.
SLAG VISCOSITY CHARACTERISTICS roR
M-23345, M-23344, C-13279 & M-23347
~!-23345
I I
I I
I I
\ \
\
° 8
\ \
8'-.
o~ 8
'8-
8 - Reducing Atmosphere
0 - Oxidi zing Atmosphere
I I
10
2,300
2,700
2,800
2,400
2,500
2,600
SIBil Temcerature. F
C-13279
5,000
8 0,
~'\J \.
[~-d '
8 \
8, \
"8 0.
~,
8~,
::s:~
:S:8~
-""':B.........
"""o~
8.........0.......
8.......
~ - Reducing Atmosphere
Q - Oxidizing Atmosphere
I I .
2,000
1,000
500
200
100
.50
20
10
2,100
2,300
2,500
2,600
2,700
2,200
2,400
Slag Temperature, F
r~17
20 ,000
10,000
5,000
2,000
" 1,000
'"
'0
P-
.~ 500
'"
,g
~
200
100
50
20
10
20,000
10,000
5,000
2,000
.~ 1,000
~
.€ 500
o
:;:
:;:
200
100
50
20
10
M-23344
I
I
I
I
I
0
~-i
-I
I
-!
\
o \
i'-Dt,-o
I
G - Reducing Atmosphere
<:) - Oxidizing Atmosphere
I I
2,300
2,400
2,500 .
i,600
2,700
2,800
Slag Temperature F
~!-23347
II
II
H
I I
~
-I
-~
... 0
\1\
°,0'8
o'o'o-r.
o - Reducing Atmosphere
0 - Oxidizing Atmosphere
I I
2,200
2,300
2,600
2,700
2,400
2,500
513& Tempernturc . F
-------
20,000
10,000
5,000
. 2,000
.
o
..
.i 1,000
~
~ 500
200
100
50
20
10
20,000
10.000
5,000
2,000
.~
/? 1,000
.i
8 500
.~
>
200
100
50
20
FIGURE F.13.
SLAG VISCOSITY CHARACTERISTICS FOR
M-23346, M-23413, C-13378 & C-13319
H-23346
I
,
,
,
,
I \
\-\
I 0
I
I
G - Reducing Atmosphere I
I
Oxidizing Atmosphere ~
I I
2,100
2,200
2,300
2,500
2,400
2,600
Slag Temperature. F
C-13378
\ ~
~ \
"
0 "\.
\J "
~ \
t-
O
"o_~ ,,-
''''9,
0.. ,-
"0 ,,-
'0 \-
~
~ "
\
o
G - Reducing Atmosphere
C!) - Oxidizing Atmosphere
I I
10
1,800
2,000
1,900
2,100
2,200
2,300
2,400
Slag Temperaturt:. F
F-18
2,500
.
.
/?
.€
~
~
.
.
o
..
.i
~
~
M-23413
20,000
\ \
\ \
-\- f..--O\
~ 0
\ \0
~t
~\"- 0\
-"" 0
\.. \
\.~~' 0
t
"~,
~O
"
10,000
5,000
2,000
1,000
500
200
100
50
20
(;] - Reducing Atmosphere
o - Oxidi zing Atmosphere
I I
10
2,500
2,600
2,700
2,800
3,000
2,900
Slag Temperature, F
C-13319
20,000
10,000
o
~ \
o '
~O \.
"0 \ -
'0.-4--\
"'0 "
'd~-
~~
13
~O.....-
"~O
".:::::
5,000
2,000
1,000
500
200
100
50
20
G - Reducing AtInasphere
CD - Oxidizing Atmosphere
I I
10
2,000
2,100
2,200
2,300
2,500
2,600
2,400
Slag Temperature. F
-------
FIGURE F.14.
SLAG VISCOSITY CHARACTERISTICS FOR
M-23349 & M-23348
20,000
10 ,000
5,000
2,000
.. 1,000
.:!1
o
'"
~ 500
:~
>
200
100
50
20
10
20 ,000
10,000
5,000
2,000 .
.~ 1,000
o
'"
.~ 500
~
;;
200
100
50
20
10
~I- 23349
I
,
\
\-\
o
~ ~~
~_O
o~
\ 0
0\ '\
D-
O - Reducing AtJnosphere
0 - Oxidizing Atmosphere
I I
2,000
2,100
2,200
2,300
2,400
2,500
Slag Temperature. F
M-23348
,
,
I
\
.~!
-I
-I
-,
\
o
o T
\1
o
Q - Reducing AtJnosnhere
0 - Oxidi7.ing AtmospheTe
I I
2,100
2,200
2,300
2,400
2,500
2,600
Slag Temperature, F
F-IQ
-------
TABLE F.4. SLAG VISCOSITY DATA
'Tj
I
N
a
Sample Stoichiometric, Oxidizing Atmosphere Reducing Atmosphere
Sample Description
No. % Temp, Viscosity Ferric) Temp) Viscosity Ferric)
F Poise 9< F Poise %
o
B-22791 Coal Ash, Colbert Station 0 2650 40 70.1 2600 46 38.3
2250 - 78.1 2000 1,230 10.5
M-21962 B-22791 Coal Ash + 122(1) 2500 5 79.7 2400 5 77.7
M- 21831 Marl 2225 130 93.3 2275 50 60.1
2200 645 33.9
2150 670 90.2 2300 21 13.7
2150 750 93.9 - - -
M-23491 B-22791 Coal Ash + 243 (1) 2750 8 92.0 2700 51 49.2
M-21831 Marl 2600 39 92.5 2550 348 50.4
2500 74 94.8 2500 1,594 32.1
- - - 2500 1,648 38.0
M-22176 B-22791 Coal Ash + 71 (1) 2500 - 91. 3 2400 - 36.3
M-21993 Longview Limestone - - - 2400 - 23.9
M-22177 B-22791 Coal Ash + 146(1) 2700 222 87.5 2900 164 68.2
M-21993 Longview Limestone 2600 329 87.5 2650 2)575 64.7
2650 2)178 81. 3
M-23492 B-22791 Coal Ash + . 226(1) - - - 2600 49 38.2
M-21911) BCR-1337 Dolomite - - - 2500 200 19.3
,
(1) Stoichiometric % based on 4.3% sulfur content coal assuming 15.2% ash and mixing with 100% of coal ash.
-------
TABLE F.4.
SLAG VISCOSITY DATA (Cont'd)
'"I1
I
N
......
Sample Stoichiometric, Oxidizing Atmosphere Reducing Atmosphere
No. Sample Description %
Temp, Viscosity Ferric, Temp, Viscosity Ferric,
F Poise % F Poise -%
M-23493 C-13167 Colbert Coal Ash + 146(2) 2450 - 90.6 2600 - 28.4
M-22343-A James River 2425 - 86.6 2400 78 20.9
Dolomite - - - 2350 - 21.4
M-23494 C-13167 Colbert Coal Ash + 152(2) 2550 50 93.7 2675 67 38.6
M~22337-A Fredonia Valley - - - 2575 667 19.8
Whi te Limestone
C-13273 Coal Ash, Orient # 3 Mine 0 2890 82 36.6 2900 107 15.4
2370 1,200 37.6 2450 646 12.5
2180 16,512 35.4 250.0 485 10.9
- - - 2370 958 4.2
- - - 2070 15,908 6.3
M-23323 C-13273 Coal Ash + 196(3) 2550 44 37.7 2550 46 9.4
M-23298 Greenvil1e Limestone, 2350 105 33.9 2075 776 9.4
Calcined 2350 113 50.0 2150 395 27.7
2100 788 50.8 1950 13,792 23.9
M-23322 C-13273toa1 Ash + 199 (3) 2500 53 41.5 2700 49 12.9
M-23297 James River Dolomite, 2500 52 64.6 2700 - 6.2
Calcined - - - 2400 84 18.8
- - - 2200 252 20.0
- - - 2150 647 13.4
(2) Stoichiometric % based on 4.2% sulfur content coal assuming 13.0% ~sh and mixing with 100% of coal ash.
(3) Stoichiometric % based on 1.43% sulfur content coal assuming 14.7% ash and mixing with 100% of coal ash.
-------
TABLE F.4.
SLAG VISCDSITY DATA (Cant' d)
'TJ
I
N
N
Sample Stoichiometric, Oxidizing Atmosphere Reducing Atmosphere
No. Sample Description % Temp, Viscosity Ferric, Temp, Viscosity Ferric,
F Poise % F Poise %
C-13274 C-13274 Coal Ash, 0 2600 - 67.9 2600 45 24.1
Atkinson Mine 2270 1,614 60.6 2500 61 17.5
- - - 2450 68 14.4
- - - 2100 2,100 9.2
- - - 2070 11,717 18.7
M-23345 C-13274 Coal Ash + 199(4) 2600 43 81. 7 2750 57 19.9
M-23298 Greenvi1le Limestone, 2600 50 89.5 2750 53 35.9
Calcined
M-23344 C-13274 Coal Ash + 200(4) 2450 - 61.8 2600 50 27.0
M-23297 James River Dolomite, 2550 - 80.6 2450 522 22.9
Calcined 2540 - 89.7 2450 - 61. 8
C-13279 C-13279 Coal Ash, 0 2850 86 34.6 2850 66 31. 7
Old Ben #24 Mine 2360 859 37.5 2350 735 18.7
2260 12,681 32.2 2140 11,005 16.9
M-23347 C-13279 Coal Ash + 199(5) 2550 57 81. 2 2600 48 14.0
M-23298 Greenvil1e Limestone, - - - 2460 - 15.4
Calcined
M-23346 C-13279 Coal Ash + 200(5) 2425 - 88.3 2600 - 37.5
M-23297 James River Dolomite, 2400 - 85.1 2450 - 35.1
Calcined - - - 2450 127 17.2
I .- - - 2450 - 11.0
(4) Stoichiometric % based on 4.00% sulfur content coal assuming 18.9% ash and mixing with 100% of coal ash.
(5) Stoichiometric % based on 2.63% Sulfur content coal assuming 11.0% ash and mixing with 100% of coal ash.
-------
SLAG VISCOSITY DATA (Cont I d)
TABLE F.4.
'Tj
,
tV
IN
Sample Stoichiometric, Oxidizing Atmosphere Reducing Atmosphere
Sample Description
No. % Temp, Viscosity Ferric, Temp, Viscosity Ferric,
F Poise % F Poise %
1'.1- 23413 C-13376 Coal Ash, Lignite + 200 (6) 2875 51 92.2 2850 296 62.6
M-23298 Greenvi11e Limestone, 2700 792 96.8 2750 1,245 50.5
Calcined - - - 2875 65 60.4
- - - 2775 1,187 46.2
C-13378 C-13378 Coal Ash, Peabody 0 2500 72 44.7 2300 83 8.4
High Sulfur Coal 2400 1,237 47.7 2075 685 8.0
C-13319 C-13319 Coal Ash, 0 2750 72 23.8 2750 73 11.9
Little Joe Mine 2400 610. 26.9 2300 655 6.0
- - - 2070 10,440 3.6
M- 23349 C-13319 Coal Ash + 199 (7) 2400 68 82.5 2450 51 11.9
M-23298 Greenvi11e Limestone, 2300 926 86.2 2500 57 8.8
Calcined
M-23348 C-13319 Coal Ash + 199 (7) 2400 80 59.5 2400 67 10.3
M-23297 James River Dolomite, 2335 - 68.0 2400 161 8.8
Calcined 2325 - 65.6 - - -
(6) Stoichiometric % based on 0.73% sulfur content coal assuming 8.7% ash and mixing with 1PO% of coal ash.
(7) Stoichiometric % based on 3.60% sulfur content coal assuming 16.1% ash and mixing with 100% of coal ash.
-------
TABLE F. 5 . SINTERED STRENGTH DATA
Fly Sintering Strength, psi (at)
Coal Test Ash Additive Stoichiometric
No. No. No. No. % 1600F 1700F 1800F
B-22791 67-7-1 K20281 None - - 84 4336 --
B-22791 68-3-17 K20429 M-21993 128 10 36 --
B-22791 68-6-17 K-20494 M- 22050 109 - - 30 48
B-22791 68-8-11 K-20569 M-22091 104 -- 16 45
C-13273 69-4-13 K-20745 None - - 1384 6140 --
., 69-4-16
C-13273 K-20843 M-22426 127 242 848 --
69-4-17
C-,13273 69-4-14 K-20842 M-22343-A 90 448 1456 --
69-4-18
C-13274 69-4-19 K-20748 None 148 1355
- - --
69-4-21
C-13274 69-4-22 K-20844 M-22426 112 199 436 --
69-4-23
C-13274 69-4-20 K-20845 M- 22343-A 87 206 250
--
69-4-24
C-13279 69-5-3 K-20753 None -- . 223 2069 --
C-13279 69-4-27 K-20847 M-22426 109 496 782 --
69-5-2
C-13279 69-4-26 K-20846 M-22343-A 116 155 264 --
69-5-4
C-13319 69-7-7 K-20848 None - - 23 140 --
C-13319 69-7-9 K-20850 M-22426-A 139 481 1497
--
69-7-10
C-13319 69-7-8 K-20849 M-22343-A 110 217 476
69-7-11 --
C-13378 69-12-5 K-20960 None -- 7 20 --
C-13378 69-12-6 K-20961 M-22426-B 103 256 184 --
C-13378 69-12-7 K-20962 M-23343-B 112 37 104 --
F-24
-------
.~
'"d
~
H
><
G')
APPENDIX G
MULTIPLE LINEAR REGRESSION ANALYSIS.
) . . .
-------
AP~ENDIX G
G.!.
MULTIPLp- LINEAR REGRESSION ANALYSIS
," ,
~ 'j:
A multiple linear regression analysis has been run on limited populations
of the test firing data. (See Appendix E: Sumrnaryof Test Conditions-and
Results) The regression analysis-is based on the linear association of vari-
abIes:
y = f (x.) x.) ...... Xk)
1 J -
in which the x values are independent variables and y is-the dependent-vari-
n -
able. In this case; y has been defined as-the percent of sulfur dioxide
removal in a test firing. The independent variables include such items as
probe 'position) temperature) residence time) stoichiometry) etc.
x
x
x
x
G.~.l The Analyses-
G.l.l.l The First Analysis
The equational form selected for
is given by:
The variables) x.)
1
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
the first linear regression analysis-
*
y = f (x,) x.x.)
1 1 J
selected were:
Probe-position in the furnace
Stoichiometry of the additive
Surface-area of the additive
Coal firing rate
Si02 content of the additive
A1203 content of the additive
Fe203 content of the additive
Ti02 content of the additive
Alkali (Na20 + K20) content of the
additive.
*
n
f (x.) x.x.) = L (x.) +
1 1 J i=l 1
n n
L L
i=l j=l
(x.x.)
1 J . J.'
Jrl
G-l
-------
The probe position in the furnace determines the flue gas temperature at which
the additive is injected, the particle residence time, and the temperature
profile as. the additive travels through the furnace. The stoichiometry, S,
is given as:
S = 100 x
A [ % MgO + % CaO J
mo 1. wt. mo 1. wt. dd' t .
a 1 lve
C (mo~.Swt.J 1
coa
where A and C are the additive and coal injection rates, respectively. The
coal firing rate (or coal injection rate) determines the transition (residence)
time of the additive and flue gas in the temperature profile. The fly ash
effects (and impurity levels) were neglected for two reasons: (1) there is
no particle - particle interaction (i.e., the additive will not react with
the fly ash), and (2) the S02 - fly ash reaction was assumed to be constant
throughout. all tests. (Note: The amount of reaction is-not assumed to be zero,
but rather the effects are constant and this will produce a value of zero, or
no correlation between the S02 reduction and any function involving the fly ash;)
The selected data was separated into two categories: raw limestones and
raw dolomites. No catalyst or different coal firings were included. Table G.l
shows the test identification numbers (See Appendix E) of the data run. The
*
correlations. follow:
Correlation Coefficients
Variable, x.
Cl
Limestones
Dolomites
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
-0.23
+0.67
+0.58
-0.16 ('VO)
-0.11 ('VO)
-0.15 ('VO)
-0.08 ('VO)
-0.09 ('VO)
-0.14 ('VO)
-0.19
+0.52
+0.17 ('VO)
-0.19 ('VO)
-0.12 ('VO)
-0.13 ('VO)
-0.20 ('VO)
-0.08 ('VO)
.-0.10 ('VO)
*'
The correlation coefficient is defined as the slope, a, of the equation:
y = az + b
where z = x. or x.x.
1 1 J
G-2
-------
. """"'-. ". "', '..,
:- . .., " ~ ~
TABLE G. 1.
IDENTIFICATION NOS. OF TESTS USED FOR REGRESSION ANALYSIS #1
Raw Limestones Raw Dolomites
67 9 1 68 6 2 68 7 24 68 11 11 69 1 15 67 9 4 68 4 6 68 10 1
67 9 2 68 6 3 68 7 25 68 11 12 69 1 16 67 9 5 68 4 7 68 10 2
67 9 3 68 6 4 68 8 1 68 11 13 69 2 7 67 9 8 68 4 9 68 10 17
67 9 6 68 6 5 68 8 5 68 11 14 69 2 12 67 9 9 68 5 1 68 11 3
67 9 7 68 6 6 68 8 6 68 11 15 69 2 14 67 9 10 68 5 2 68 11 10
67 9 11 68 6 7 68, 8 7 68 11 16 69 2 15 67 9 12 68 5' 3 68 11 21
67 10 4 68 6 8 68 8 8 68 11 17 69 2 16 67 10 1 68 5 4 68 11 22
67 10 5 68 6 9 68, 8 1lA 68 11 18 69 6 1 67 10 2 68 5 5 69 1 3
67 10 6 68 6 10 68 8 11B 68 11 19 69 6 9 67 10 3 68 5 6 69 1 17
67 10 9 68 6 11 68 8 13 68 11 20 69 6 10 67 10 7 68 5 ,9 69 2 1
67 10 10 68 6 12 68 8 14 68 12 1 69 6 11 67 10 8 68 5 11 69 2 2
67 10 11 68 6 13A 68 8 15 68 12 2 69 7 3 67 11 1 68 6 14 69 2 3
67 10 12 68 6 13B 68 8 16 68 12 3 69 7 4 67 11 3 68 6 15 69 2 13
67 10 13 68 6 '13C 68 9 2 68 12 4 69 7 5 68 2 1 68 6 17. 69 7 11
67 10 14 68 6 16A 68 9 5 68 12 8 69 7 6 68 2 2 68 6 18 69 10 8
67 10 15 68 6 16B 68 9 6 68 12 9 69 8 2 68 2 6 68 7 5
67 10 16 68 6 19 68 9 10 68 12 10 69 9 9 68 2 7 68 7 7
68 2 2 68 6 20 68 10 3 68 12 11 69 12 15 68 2 8 68 7 9
68 2 3 68 6 21 68 10 4 68 12 12 68 2 9 68 7 19
68 2 4 68 7 1 68 10 11 68 12 13 68 2 10 68 7 21
68 2 5 68 7 2 68 10 12 68 12 14 68 2 11 68 7 22
68 3 10 68 7 3 68 10 13 68 12 15 68 2 12 68 7 23
68 3 17 68 7 4 68 10 14 69 1 1 68 2 13 68 7 26
68 3 18 68 7 6 68 10 15 69 1 2 68 2 14 68 8 2
68 4 1 68 7 8 68 10 16 69 1 4 68 2 15 ,68 8 3
68 4 2 68 7 10 68 10 20 69 1 5 68 3 1 68 8 4
68 4 3 68 7 11 68 10 21 69 1 6 68 3 2 68 8 9
68 4,' 4 68 7 12 68, 11 1 69 1 7 68 3 3 68 8 10
68 4 10,. ?8 7 13 68 11 2 69 1 8 68 3 4 68 8 12
68 4 11 . 68 7 14 68 11 4 69 1 9 68 3 5 68' 9 8
68 4 12 68 7 15 68 11 5 69 1 10 68 3 6 68 9 11
68 S ' 7 .68 7 16 68 11 6 69 1 11 68 3 7 68 9 12
68 S 8 68 7 17 68 11 7 69 1 12 68 3 13 68 9 13
68 S 10 68 7 18 68 11 8 69 1 13 68 3 14 68 9 14
68 6 1 68 7 20 68 11 9 69 1 14 68 3 15 68 9 lS
G-3
-------
Nonzero Correlation Coefficients,
Variable, x.x.
1-J
Limestones
Dolomites
(1) , (2)
(1) , (3)
(2) , (3)
(2), (4)
(3),(4)
+0.41
+0.39
+0.80
+0.63
+0.54
+0.36,:
+0.50
For limestones, five steps in the iterative method resulted in the following
equation for the sulfur dioxide removal, RSO :
2
-6
RSO = 69.0 - 0.972 xl - 6.32 x4 + 0.0989 xl.x4 + 8.23010 x2ox3
2
- 0.0747 x4ox9
The regression constant, [R2]*, and the mean value of sulfur dioxide removal,
Rso ' are:
2
[R2] = 0.727
Rs02 = 14.5 i 6.7t percent.
of how well the data fit the curve; 1.0 is a perfect fit
[RZ] is:
2 L (Yo - ~ Z - L (Yo - y c) 2
[R ] =
Ley 0 - Yo) Z
where Yo are each of the individual values ofRs0Z based on the test conditions,
Yc are 'the values calculated from the equation and test conditions, and Yo is
the mean value of RSOZ (or Yo = Rs02).
tActually this standard deviation (cr) is the standard deviation on the calculated
,
value of RSO ' R SO :
2 2
* 2
[R ] is a measure
and 0.0 is no fit.
whereas
n
L Yc
R' = i=l
S02 n
n
I Yo
i=l
Rso =
Z
n
However,
~ '
SOz :t R SO
2
and therefore cr :t cr' .
G-4
-------
For dolomites (8 steps) the following results were found:.
-4
RSO = 100. - 1.34 xl - 8.57 x4 + 8.7Z.l0 xl.xZ + 0.116xl.x4
Z
-3 -5
- 6.64.10 xZ.x7 + 3.9Z.l0 x3.x4
(The order in which the terms appear for the dolomites is different fro~ the
limestones because a decreasing order of.appearance indicates a decreasing.
importance or. influence in tD-e terms; i. e., for dolomites the x 4. term '. is of. ,
less. :importance than the )(1 term and the xl.xZ term is of less importance than
the previous two, etc.) Also, we have,
[RZ] = 0.577
RSO = 14.9 1 .6.5 percent.
Z
c'-'
The standard deviation on the mean value of Rs0Z' Rs0Z' is about the same ~or
limestones and dolomites. There are two reasons why the regression constant,
[RZ], is lower for dolomites. First, the dolomite population contains fewer
samples, and second, the limestone population appears to have' a higher skewness
at higher values which lowers the relative error in relation to the absolute
error. . For example, Z.O 11.0 has a higher relative error (50%) than 100.0 1
1.0 (1%) although both. have the same absolute error.
~ere are definite correlations for limestones and dolomites between the
SOz removal and stoichiometry, the product of stoichiometry and probe. position,
an~.the product of stoichiometry and coal firing rate. In addition, limestones
show. correlation between SOZ removal and surface area, the product of surface
area and.probe position, the product of surface area and stoichiometry, and
the product. of surface area and coal firing rate ~ Thus, the importance can .
be summarized as follows:
I
LO
D 1
mportance lmestones 0 omltes
Major Probe Position Probe Position' .
Coal. Firing Rate Coal Firing Rate
Stoichiometry Stoichiometry
Surface Area
Minor or No Impurity Content Surface Area
of. the Additive Impurity Content
of . the Addi ti ve
G-5
-------
The equations.which have been found to not fit the data for dolomites. The
fit is fair for limestones.
x
x
x
x
G.l.l.2 The Second Analysis
Since probe position appeared to be of. importance, the population of data
was broken down into four groupings: 1) raw limestones injected into Port A,
2) raw limestones injected into Port 1, 3) raw dolomites injected into Port A,
and 4) raw dolomites injected into Port 1. Table G.2 lists the test identifi-
cation numbers for these samples. The equation form used was:
2
y = f. (x., x. , x.x.)
1 1 1 J
The independent variables used were:
(1)
(2)
(3)
(4)
(5)
Stoichiometry
Surface Area
Coal Firing Rate
Si02 Content of the Additive
Fe203 Content of the Additive.
'The. correlation coefficients follow:
Limestones Dolomites
Variable Port A Port 1 Port A Port 1
(1) +0.73 +0.80 +0.96 +0.78
(2) +0.41 +0.70 -0.24 ('VO) +0.03 ('VO)
(3) -0.66 +0.16 ('VO) -0.73 -0.03 ('VO)
'.
(4) -0.12 ('VO) -0.10 ('VO) -0.23 ('VO) -0.05 ('VO)
(5) +0.03 ('VO) -0.12 ('VO) +0.23 . ('VO) -0.21 ('VO)
(1) , (1) +0.67. +0.76 +0.95 +0.70
(1) , (2) +0.72 +0.90 +0.89
(1) , (3) +0.82 +0.66 +0.79
(1),(4) +0.38
.(1),(5) +0.90
(2) , (2) +0.37 +0.71
(2), (3) +0.73 -0.67
(3) , (3) -0.65 -0.71
(3), (4) -0.45
(3) , (5) -0.36
G-6
-------
"..' .t.:'" ','
TABLE G.2.
IDENTIFICATION NOS. OF TESTS USED FOR REGRESSION ANALYSIS #2
Limestones Dolomites
Port A Port 1 Port A Port 1
69 1 1 69 9 11 67 10 4 68 7 12 69 2 14 69 1 3 67 9 8 68 6 18
69 1 2 69 9 12 67 10 5 68 7 13 69 6 6 69 3 1 67 9 9 68 7 5
69 1 4 69 9 13 67 10 6 68 7 14 69 3 5 67 9 10 68 7 7
69 1 5 69 9 14 67 10 9 68 7 IS 69 3 7 67 9 12 68 7 9
69 1 6 69 11 7 67 10 10 68 7 16 69 3 8 67 10 1 68 7 19
69 1 7 69 11 8 67 10 11 68 7 20 69 4 9 67 10 2 68 7 21
69 1 8 69 11 21 67 10 12 68 7 24 69 7 12 67 10 3 68 7 22
69 .1 9 69 12 3 67. 10 13 68 7 25 69 8 3 67 10 7 68 7 23
69 1 16 69 12 13 67 10 14 68 8 11 69 8 4 67 10 8 68 7 26
69 2 16 69 12 14 67 10 IS 68 8 13 69 8 5 67 10 10 68 8 2
69 3 2 69 12 17 67 10 16 68 8 14 69 9 5 68 2 6 68 8 3
69 3 3 68 3 10 68 9 5 69 9 6 68 2 11 68 8 4
69 3 4 68 3 17 68 9 10 69 9 7 68 2 14 68 9 8
69 3 9 68 4 1 68 10 12 69 9 8 68 2 IS 68 9 11
69 3 10 68 4 2 68 10 13 69 11 17 68 3 1 68 9 13
69. 3 13 68 4 3 68 10 14 69 12 11 . 68 3 2 68 9 i4
69 3 14 68 4 4 68 10 16 68 3 3. 68 9 IS
69 3 IS 68 4 11 68 10 20 68 3 4 68 10 1
69 3 16 68 5 7 68 11 1 68 3 5 68 10 2
69 4 10 68 5 8 68 11 4 68 3 6 68 10 17
69 4 11 68 5 10 68 11 6 68 3 13 68 11 3
69 4 12 68 6 1 68 11 8 68 3 14 68 11 10
69 6 9 68 6 3 68 11 13 68 3 IS 68 11 21
69 6 10 68 6 4 68 11 IS 68 4 6 69 2 1
69 7 13 68 6 5 68 11 17 68 4 7 69 2 2
69 8 1 68 6 7 68 11 19 68 4 8 69 2 '3
69 8 2 68 6 8 68 12 1 68 5 2 69 2 4
69 8 7 68 6 19 68 12 3 68 5 4 69 2 5
69 .8 8 68 6 20 68 12 8 68 5 5 69 2 6
69 8 9 68 6 21 68 12 10 68 5 6 69 2 8
69 9 1 68 7 1 68 12 12 68 5 9 69 2 9
69 9 2 68 7 2 68 12 14 68 5 11 69 2 10
69 9 3 68 7 6 69 1 12 68 6 14 69 2 13
69 9 9 68 7 10 69 1 13 68 6 IS 69 6 7
69 9 10 68 7 11 69 1 14 68 6 17 69 6 8
G-7
-------
. "
~..1i
The equations are given also:
Limestones Port A:
RSO = 23.7 + 0.104 xl -
2
-4
- 2.07010 x2ox4
[R2] = 0.819
-5
2.78 x3 + 30.6 x5 + 1.17010 x1ox2
Rs02 = 27.9 f 5.7 percent
Limestones Port 1:
-4 2 -5
Rs02 = -00969 - 2.17010 xl + 1.00010 x1ox2 + 000115 x1ox3
[R2] = 0.865
Rs02 = 14.0 f 405 percent
Dolomites Port A:
-4
Rs02 =-6.51 + 0.171 xl + 9.87010 x1ox3
+ 000598 x2ox5 - 13.1 x3ox5
-3
3.36010 x1ox4
[R2] =0.984
RSO = 29.5 f 2.6 percent
2
Dolomites Port 1:
-3 -5
Rs02 = -75.0 - 2.97010 x2 + 1.11010 x1ox2 + 26.5 log10 xl
+ 10.9 log10 x2
[R2] = 0.705
RSO = 16.5 1 4.8 percent
2
In summary, it is observed that limestones and dolomites show the following
correlations:
G-8
-------
"!
I
L"
t
D I
"t
mportance lmes ones 0 oml es:
Major Stoichiometry Stoichiometry
Coal Firing Rate/ Coal Firing Ratej
Surface Area Surface Area'
Minor 0r No FeZ03 Content ;: FeZ03 Content
SiOz Content SiOZ Content
Even more important, however, is:
I
P
A
P
I
Lmp0rtance ort ort ,
Major Stoichiometry/ Stoichiometry/
Coal. Firing Rate Surface Area
y Minor Impurity Level/ . Coal Firing Rate
Surface Area
.i.
No Impurity Levels
The' choice of port is far more important in sulfur dioxide removal than is
the type of additive. For Port A, iron oxide is apparen:tly an advantage' while
silica is a definite disadvantage. This indicates that there may be a reaction
between silica and the additive at higher temperature. It also indicates that
iron oxide may be a slight. catalyst in a higher temperature form. The equa-
tions,allfit fairly well.
x
x
x.
x
G. 1. 1. 3 The Thi rd Analysis
A new'equation was found to fit some. data well:
.RSO = (Stoichiometry)a
Z
where "a" is a constant. The same four groups of data were used as p'reviously
with (0,0) points removed due to a discontinuity at this point. The ~quation
is solved by use of logarithms:
.'
'. ,\"
a =
loglO (RSO )
Z
loglO (Stoichiometry)
G-g
-------
,_~
The values of "a" are (the values are based on a logarithm solution):
Limestones Dolomites
Parameter Port A Port 1 Port A Port 1
"a" 0.678 0.511 0.657 0.534
[R2] 0.989 0.951 0.993 0.981
cr log 0.150 0.242 0.120 0.164
Rs02 28 :t "'12 14 :t "'10 30 :t "'10 17 :t "'8
The logarithm function shows a much better fit than a linear fit for five
reasons: 1) there is a discontinuity at the point (0,0), (RS02 = 0 and
Stoichiometry =0); 2) the logarithmic scale is from "'0.0 to "'3.0 whereas
the linear scale is from "'1.0 to "'800.0; 3) due to the reduced scale, there
is a special weight factor given to the low RS02 data points; 4) the high
RS02 data points are now clustered; and 5) the relative errors :.are all reduced
(e.g., 10 vs. 20 is 100% error but 1.0 vs. 1.3 is only 30% error). The value
of [R2] will change considerably if converted to a linear scale, and the fit
is not expected to be as good.
The indication again is that the port of injection is far more important
than the type of additive used. However, the equations are good only because
the high end of the curve is compressed and the errors at the low end, where
la,rge relative errors occur, are greatly suppressed.
x
x,
x
x
G.l.l.4 The Fourth Analysis
*
TVA has used a different equation of the form :
loglO (100 - RSO ) = k . Stoichiometry
2
where k is a constant. The same groupings of dolomites 'and limestones at
Ports A and 1 were used with discontinuous points removed. The results are:
*
See G.l.3, Note, at end of this appendix, page G-30.
G-IO
-------
~ " '~~: ,.'~~:,:,
, ". .
Limestones Dolomites
Parameter Port A Port 1 Port A Port 1
k 0.0130 0.0161 0.00844 0.00758
[R2] (log basis) 0.850 0.941 0.768 0.661
o(log basis) 0.734 0.479 0.901 1.127
ROO 24.9 :!: 135. 10.5:!: 31. 6 32.3:!: 257. 16.2 :!: 217.
2
I
R SO 1101. :!: 6350. 376.:!: 2320. 137.:!: 393. 26350. :!: 219000.
2
As can be seen, the fits of the equations to the data are very bad.
equation was tried:
A new
log10 (RSO ) = k . Stoichiometry
2
The results are:
Limestones Dolomites
Parameter Port A Port 1 Port A Port 1
k 0.00987 0.00821 0.00744 0.00499
[R2] (log basis) 0.918 0.933 0.913 0.769
o(log basis) 0.398 0.261 0.447 0.569
ROO 24.9 :!: 62.3 10.5:!: 19.1 32.3 :!: 90.4 16.2:!: 60.0
2
I
R SO 104. :!: 508. ILl:!: 17.0 65. :!: 147. 214.:!: 1600.
2
Again the fits of the equations to the data are very bad. If some points were
removed at the high stoichiometric ratios, the fits would be somewhat better.
This type of equation does not satisfy the data.
x
x
x
x.
G-11
-------
G.1.1.5 The Fifth Analysis
A new form of the equation of the Third Analysis was tried:
a
Rso = (k1 SfMG + k2 Sf CA)
2
(1)
where STMG and STCA are the stoichiometries based on magnesium and calcium
in the additive:
ST =
x
[% x OXide]
mol. wt.
A
100
C
( 9< S )
mol. wt.
where A and C are the additive and coal injection rates respectively. A new
form of the equations of the Fourth Analysis was also tried at the same time:
log (100 - RSO ) = k1 STMG + k2 STCA
2 .
(2)
and
log (RSO ) = k1 SfMG + k2 Sf CA
2
(3)
The same populations were used for all three equations. The results for
equati~n (1) which was run for Port A, dolomites only, are shown below:
Parameter
Dolomite - Port A
II a"
1. 010
0.170.
0.180
k1
k2
[R2] (log basis)
0.906
RSO
2
=
30 :t 6
The equation was very sensitive to the parameters "a" and k and did not truly
represent a usable form.
The instability of the euqation
constants to one decimal place drops
does ,not satisfy the data.
is so pronounced that round-off of the
[R2] to less than 0.8. This equation
G-12
-------
, : ~ .', , .' , ,
'.- ,.1
. " .: .'
The results for equation (2) are:
Limestones
Parameter Port A Port 1
k1 0.0281 0.0188
k2 0.0125 0.0160
[R2] (log) 0.854 0.941
a (log) 0.736 0.483
RSO 24.9 :!: 135! 10.5:!: 32.0
2
I
R SO 1003. :!: 5842. 367.:!: 2254.
2
The results for equation (3) are:
Limestones
Parameter Port A Port 1
k1 0.0146 0.00677
k 0.00973 0.000372
2
[R2] . 0.913 0.933
. (log) 0.410 0.263
a
. (log)
RSO 24.9 :!: 64.0 10.5:!: 19.2
2
I
R . 102. :!: 500. ILl:!: 17.4
802 -
Do1omi tes
Port A
0.00355
0.0107
0.772
0.921
32.3 :!: 270.
109. :!: 247.
Port 1
-0.0126
+0.0208
0.701
1. 066
16.2 :!: 190.
20950. :!: 177390.
Port A
Dolomites
Port 1
0.00530
0.00843
0.914
0.458
32.3:!: 93.
58.7 :!: 116.
Again the fits of the equations to the data are very bad.
equation does not satisfy the data.
x.
x
x
G.1.1.6 The Last Analysis
The equation form used was:
2
Y = f (x., x. , x. x . )
1 1 1 J
G-13
x
-0.00382
+0.0107
0.789
0.547
16.2 :!: 56.
192. :!: 1458.
This type of
-------
The independent variables, x., were:
1
(1) Stoichiometry (magnesia) }~ .
(2) Stoichiometry (calcia)
(3) Coal firing rate
(4) Surface area
(5) Si02 content of additive
(6) Fe203 content of additive
(7) A1203 content of additive
(8) Ti02 content of additive
(9) Alkali (Na20 + K20) content of ,additive
(10) Mn02 content of additive
The test identification numbers used for the population are shown in Table G.3.
The correlation coefficients are:
(11)
Sum is total stoichiometry
Limestones Dolomites
Variable Port A Port 1 Port A Port 1
1 a -. 03, ('Va) +.86 +.77
2 +.86 +.35 +.90 +.76
3 -.50 +.12 ('Va) -.77 -.05 ('Va)
" 4 +.47 +.09 ('Va) -.41 +.03 ('Va)
5 a -.11 ('Va) -.05 ('Va) -.08 ('Va)
6 -.12 ('Va) -.12 ('Va) -.05 ('Va) -.23 ('Va)
7 -.02 ('Va) -.21 ('VQ) a -.05 ('Va)
8 a -.19 ('Va) a +.05 ('Va)
9 +.06 ('Va) - .12 ('Va) -.06 ('Va) +.05 ('Va)
10 a -.25 a -.23
(11 +.86 +.34 +.96 +.78 )
G-14
-------
TABLE G. 3.
IDENTIFICATION NOS. OF TESTS USED FOR LAST REGRESSION ANALYSIS
Limestones Dolomites
Port A Port I Port A Port 1
69 1 1 69 11 21 67 9 6 68 7 10 69' I 3 67 9 8 68 7 5 69 6 7
69 1 2 69 12 3 67 9 7 68 7 n 69 3 1 67 9 9 68 7 7 69 6 8
69 1 4 67 9 11 68 7 12 69 3 5 67 9 10 68 7 9
69 1 5 67 10 4 68 7 13 69 3 7 67 9 12 68 7 19
69 1 6 67 10 5 68 7 14 69 3 8 67 10 1 68 7 21
69 1 7 67 10 6 68 7 15 69 4 9 67 10 2 68 7 22
69 1 8 67 10 9 68 7 16 69 7 12 67 10 3 68 7 23
69 1 16 67 10 10 68 7 20 69 8 3 67 10 7 68 7 26
69 2 16, 67 10 11 68 7 24 69 8 4 67 10 8 68 8 2
69 3 2 67 10 12 68 7 25 69 8 5 68 2 6 68 8 3
69 3 3 67 10 13 68 8 14 69 8 6A 68 2 11 68 8 4
69 3 4 67 10 15 68 9 5 69 8 6B 68 2 14 68 9 8
69 3 9 67 10 16 68 10 2 69 9 5 68 2 15 68 9 10
69 3 10 68 3 10 68 11 1 69 9 6 68 3 1 68 9 11
69 3 13 68 3 17 68 11 4 69 9 7 68 3 2 68 9 12
69 3 14 68 . 4 1 68 11 6 69 9 8 68 3 3 68, 9 13
69 3 IS 68 4 2 68 11 8 69 11 17 68 3 4 68 9 14
69 3 16 68 4 3 68 '11 13 69 12 11 68 3 5 68 9 15
69 4 10 68 4 4 68 11 15 68 3 6 68 10 1
69 4 11 68 4 11 68 11 17 68 3 13 68 10 2
69 4 12 68 5 7 68 11 19 68 3 14 68 10 17
69 7 1 68 5 8 68 12 I 68 3 15 68 11 3
69 7 13 68 5 10 68 12 3 68 4 6 68 11 10
69 8 1 68 6 1 68 12 8 68 4 7 68 11 21
69 8 7 68 6 3 69 1 12 68 4 8 68 12 6
69 8 8 68 6 4 69 1 13 68 5 2 69 2 1
69 8 9 68 6 5 69 1 14 68 5 4 69 2 2
69 9 1 68 6 7 69 2 7 68 5 5 69 2 3
69 9 2 68 6 8 69 2 14 68 '5 6 69 2 4
.69 9 3 68 6 19 68 5 9 69 2 5
69 9 10 68 6 20 68 5 11 69 2 6
69 9 11 68 6 21 68 6 14 69 2 8
69 9 12 68 7 1 '68 6 15 69 2 9
69 9 13 68 7 2 68 6 17 69 2 10
i 69 9 14 68 7 6 68 6 18 69 2 13
G-IS
-------
Limestones Dolomites
Variable Port A Port 1 Port A Port 1
1,1 +.79 +.70
2,2 +.81 +.35 +.91 +.69
3,3 -.48 -.74
4,4 +.45 -.42
1,2 +.45 +.91 +.70
2,3 +.53 +.42 +.54 +.77
1,3 +.57 +.78
3,4 -.66
2,4 +.86 +.31 +.27 +.49
1,4 +.33 +.46 +.52
4,5 -.38
3,5 -.42
2,5 +.49
1,5 +.80
3,6 -.47
2,6 +.89
1,6 +.67'
4,9 -.40
3,9 -.45
2,9 +.52 +.44
1,9 +.85 +.50
The data are:
Limestones Port A
2 -3
Rso2 = 9.70 + 0.179 x2 - 0.177 x3 + 2.34,10 x4'x6
[R2] = 0.824
Rs02 = 24.3 I 5.0 percent
Limestones Port 1
-3
Rs02 = -5.80 + 5.72,10 x4 - 48.6 xIO
2 -3
+ 84.3 xI0 + 7.09'10 x2'x3
-6 2
- 6.86,10 x4
G-16
-------
[R2] = 0.328
Rso = ,10.5 ~ 4.0 percent
2
Dolomites Port A
Rs02 =.2.89 ~ 0.242 xII - 0.0173 x2ox3
[It2] = 0.948
Rs02.= 32.3 ~ 4.3 percent
Dolomites Port 1
. -4 2 -7 2
.Rso = 3.16 - 1.84010 xl - 2.39,10 x4 + 0.0128 x2ox3
2
. -5 -3
+ 4.39,10 xl'x4 +1.070,10 x4ox6 - 0.494 x3°~
- 0.0465 xlox9
[R2] = 0.752
Rso = 16.2 ~ 405 percent
2
. .
'." The equations prov~de a better fit at Port A.
were observed:
The following correlations
for Overall
Limestones
Dolomites
Importance Port A Port 1 Port A Port 1
Major Stoichiometry Surface Area Stoichiometry Stoichiometry
Coal Firing Rate Mn02 Content Coal Firing Rate ,Surface Area
Coal Firing Rate
Minor or No Surface Area Stoichiometry Surface Area Impurity Levels
Impurity Levels Coal Firing Rate Impurity Levels
Impurity Levels
G-17
-------
by-Port
I
t
P t A
P t 1
mpor ance- or or
Major Stoichiometry Stoichiometry
Coa~ Firing Rate Surface Area
Coal Firing Rate
Minor or No Surface Area Impurity Levels
Impurity Levels
by Type of Additive
I
Lmportance Llmestones Dolomites
Major Stoichiometry Stoichiometry
Coal Firing Rate Coal Firing Rate
Minor Surface Area Surface Area
Impurity Levels Impurity Levels
The conclusions that can be drawn are: 1) Mn02 is probably unimportant in
limestones, 2) for Port 1 the curve fit is very bad, 3) the port is far more
important than the type of additive injected, 4) the coal,firing rate is very
important and 5) surface area is more important in limestones than dolomites.
x
x
x
x
G; 1. 2 Summary
For the purposes of the multiple linear regression analysis; the following
independent variables are 'considered to be important:
(1) Stoichiometry
(2) Surface area
(3) Coal firing rate
(4) Impurity levels in the additive
(5) Probe position
(6) Ratio of'calcia to magnesia in the additive.
G-18
-------
. ,"
,
.'. " '.'.,'.
All other factors are either unimportant or assumed constant throughout all
test. firings. The dependent variable is taken to be the sulfur dioxide removal.
The ratio of.calcia to magnesia in the additive is usually expressed by
dividing the additives into three groupings: limestones, dolomites, and mag-
nesites. This grouping does not appear to be important for limestones and
dolomites when used as additives. The only variable which doesn't appear to
corr~la!e i~entically with S02 removal for limestones and dolomites is surface
area. The noncorrelation of surface area is a minor effect only. Therefore,
the groupings of additives as dolomites or limestones and the calcia/magnesia
contents of,these additives do not produce correlations which are significant
in any of the regression analyses.
The impurity levels do not produce consistent correlations with the S02
removal in any of the regression analyses. In general, SiOZ does appear to
react with the additive at high temperature reducing SOZ absorption; and FeZ03
does appear to have a slight high temperature (~Z700F) catalytic effectinc~eas-
ing the SOZ adsorption. There is a small possibility that Mn0Z has a very
slight -'low temperature (~ZOOOF) catalytic effect.
The' stoichiometric ratio of additive' is the most important single variable.
This is demonstrated by the small change in the .value of the exponent "a" in
the G.l.l.3 Third Regression Analysis. The second most important variable
is probe position. This is demonstrated by the consistent differences in the'
analysis of Port A injections versus Port 1 injections. The coal firing rate
(or residence time) is next most important. The surface area is a marginal
variable, since, for example, it is not as important in dolomites nor important
(" . I. :
at all for Port 1 injections. ,
Thus, for~the limited data ~hich has been run in the previo~s regression
analyses 'it can be concluded that:
(1) Calcia/magnesia content is not an independent variable of
any consequence.
SiOZ content has
is detrimental.
(Z)
a slight temperature dependent' effect which
(3)
FeZ03 content has a slight temperature dependent effect
which is favorable.
Stoichiometry is the most important variable.
Probe position is the second most important variable.
The coal firing rate is third most important.
(4 )
(5)
(6)
G-19
-------
(7)
(8)
The surface area is of marginal importance.
The equation of best fit for S02 removal versus
is of. the form:
stoichiometry
R- = STa
-~02
x
x
x
x
In conclusion, it appears that the best empirical equation for the data
analyzed is:
Rs02 = sra
where Rso is the percent of sulfur dioxide removed or
2
initial - final S02 concentration,
Rs02 = x 100,
initial S02 concentration
Sf is the stoichiometry or
( % CaO
mol. wt.
ST =.100 x
+ %MgO J x
mo 1. wt. dd' t .
all ve
( 9
-------
TABLE. GA. DATA'USED'FOR~CALCU1ATING 'PARAMETER'vALUES
LIMESTONES --- PORT A
10 II S02 ST II A II K II FR S02 FR ST K
b9010101 II 31.00 122.43 '1'1 0.71429 II 0.015020 II 0.3100 1.2243 -0.'131627
b9010201 II 13.00 110.1f> 1'1 0.54551 '1'1 O:cil7bOb'I'1 0.130'0 I.I0lb -0.054903
69010401 II 11 0'.60730 1'1 'O~016404 :1'1 I
IR.OO 116.67 0.1800 1.1667 -0.073872
0.61514 1'1 '
69010501 II 18.00 ,109.81 II 0.017428 II 0.1800 1.0981 -0.078487
69010601' II " 0.024272 :0.150'0 -0.088792
15.00 79.49 II '0.61889 '11 II 0.7949
, , , ~'-', '
"69010701 1'1 13.00 [()9. 09 II 0.54b64' II 0.017779'11 0.1300 1.0909 -0.055441
6901080'1 II 13 .00 119.07 1'1 0.53663 II 0.016289 'II 0.1300 1.1907 ":"0.0507'1;
69011601 II 33.00 120.51 :11 "0.72970 'II 0;'015153 :1'1 0.3300 1.2051 -0.144324
69021 6elt' II 18.00 102.f>4 1'1 0.62410 'II '0~'o18b46 II 0.1800 1.0264 ~0.ci83q69
,', ' 0.015671 'II -0.099305
69030201 II 24.00 '120.02 II 0.66380 11 0.2400 1.2002
'69030301 II 24.00 88.9'1 II 0.70815 II 0;'021149' II 0.2400 0.8893 -O~ 134023
I "'o~ 6i5069 ; II 0.2300
69030401 'II 23.,00 125.19 II 0.64919 II 1.2519 -0.090670
69030901 II 22.00 87.74:11 0.69083 'II '0.021565 II 0.2200 0.8774 -0~122983
6<)031001 II 28.00 87.74 II 0.74473 II 0.021169 II 0.2800 0.8774 ':'0. 1626(}3
,..' ., 0; 68~69 'I'I -0.1190609
69031301'11 23.00 94.90 ) I 0.019879 II 0.2300 0.9490
b9031401 II 23.00 1,07.55 'II 0.67021 II 0;017541'11 0.2300 1.0755 ''':''0: 105541
b9031501 II 29.00 121.29 II 0.70179 1'1 0.0152b3 II 0.2900 1.2129 -0.122b33
'b903160 1 II 32.00 111.59 II 0.73507 II 0.016422 II 0.3200 1.1159 -0.150095
69041001 II 31.00 9'6.37'11 0~75172 II '0.019081 II 0.3100 0.9b37 -0.lb7221
"69041101 'II '23.00 95.1b 11 0.6882'8 II 0.019824 II 0.2300 0.9516 -0.119282
0.67722 " " 1.2285
69041201 II 26.00 122.85 II II 0.015216 II 0.2600 -0.10b445
69070101 J I 17.00 104.65 II 0.60921 II 0.018338 II 0.1700 1.04b5 -0.07732b
6'9071301 II 9.00 99.b9 1.1 0.47744 II :0.01'9651 II 0.0900 0.9969 -0.041086
69080101 II 10.00 YO.75 II 0.51077 II 0.021534 II 0.1000 0.9075 -0.050421'
" b9080701 II 18.00 97. 15. II 0.63160 II 0.019700 II 0" 1 800 0.9715 -0.088714
69080801 II 32.00 145.72 II 0.69570 II 0.012576 II 0~3200 .1.4572 -0"li4940
b9080901 II 50.00 210.48 J I 0.73130 II 0.00'8072 II 0.50'00 2.1048 -0.143021
69090101 II 29.00 123.06 II 0.69967 II 0.015044'11 O~2900 1.2306, -0.120869
G-21
-------
TABLE G.4.
DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
69090201 II 38.00 7.01.79 II 0.68540 II 0.00RS8? II 0.3800 2.017:!H>
690'10301 II 66.00 353.13 II 0.71413 II 0.004337 II 0.6600 3.5313 -0 . 1 3 ? (, 77
II II ' 1.2600
69039
690700 l.'.399 -0.094921
AVER V ALlJE = 0.65738 +1- O.06M,'j
AVFR V ALlJE = O. 0 163 8 +1- 0.00400
.AVFR V ALliE = -0.10405 +1- 0.03298
G-22
-------
:' .~ .< -
TABLE G.4.
DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
LIMESTONES --- PORT 1
10 II S02 ST II A II K II FR 502 FR Sf K
69120301 II 22.00 114.07 II, 0.65256 II 0.016587 II 0.2200 1.1.407 -0.094596
61090601 II 10.00 113.75 11 0.48639 II 0.011180 II 0.1000 1.1375 -0.040226
67090701 II 12.00 113.32 II 0.52533 II 0.017159 II 0.1.200 1.1332 -0.048992
67091101 II 8.00 114.58 II 0.4385R II 0.017139 II 0.0800 1.1458 -0.031604
67100401 II R.OO 91.41 II 0.4605~ II 0.0214A3 II 0.0800 0.9141 -0.039/,15
67100501 II 8.00 54.50 II 0.52009 II 0.036033 II 0.0800 0.5450 -0.066444
67100601 II 2.00 72.SR II 0.16162 II 0.027322 II 0.0200 0.72A8 -0.012039
67100901 II 6.00 81i .6.5 II 0.40157 II 0.022171 II 0.0600 0.8665 -0.031012
67101001 II 13.00 101.24 II 0.55549 II 0.019158 II 0.1300 1.0124 -0.059140
67101101 II 13.00 94.00 II 0.56456 II 0.020633 II 0.1300 0.9400 -0.064341
61101201 II 16.00 94.12 II 0.61009 II 0.rJ20445 II 0.1600 0.9412 -0.080451
61101301 II 10.00 101.10 II 0.49881 II 0.019330 II 0.1000 1.0110 -0.045260
61101501 II 11.00 Rl.91 II 0.54428 II 0.02.3799 II 0.1100 0.8191 -0.061181
61101601 II 8.00 15.80 II 0.48045 II 0.025907 II 0.0800 0.7580 -0.047173
68031001 II 14.90 133.92 II 0.55161 II 0.014411 II 0.1490 1.3392 -0.052323
68031701 II 19.80 130.25 II 0.61314 II 0.014619 II 0.1980 1.3025 -0.073570
68040101 II 7.00 102.82 II 0.42001 II 0.019145 II 0.0700 1.0282 -0.030653
68040201 II 11.00 171.15 II 0.46597 II 0.011350 II 0.11 00 1.11 75 -0.029461
68040301 II 14.00 139.18 II 0.53468 II 0.013899 II 0.1400 1.3918 -0.041062
68040401 II 3.00 112.78 II 0.23249 II 0.017616 II 0.0300 1.1278 -0.011129
68041101 II 6.00 172.18 II 0.34801 II 0.011460 II 0.0600 1.7218 -0.015601
68050701 II 11.00 99.92 II 0.52019 II 0.019510 II 0.1100 0..9992 ":0.050650
68050801 II 4.00 110.16 II 0.29483 II 0.017994 II 0.0400 . 1.1016 -0.016094
68051001 II 4.00 96.05 II 0.30369 II 0.020638 II 0.0400 0.9605 -0.018458
68060101 II 7.00 89.19 II 0.43331 II 0.022071 II 0.0100 0.8919 -0.035331
68060~01 II 11.00 103.91 II 0~51640 It 0.018160 II 0.1100 1.0391 -0.048706
68060401 II 8.00 139.36 II 0.42119 II 0.014091 II 0.0800 1.3936 -0.025985
68060501 J I 4.00 100.01 II 0.30098 II 0.019809 II 0.0400 1.0007 . -0.011116
G-23
-------
TABLE G.4. DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
68060701 II 7.00 114.79 II 0.41026 II 0.017149 J I 0.0700 1.1479 -0.027456
68060801 II 8.00 144.22 11 0.41829 II 0.013617 II 0.0800 1.4422 -0.025109
68061901 II 10.00 112.80 II 0.48726 II 0.017325 II 0.1000 1.1280 -0.040565
68062001 II 6.00 124.82 II 0.37121 II 0.015808 II 0.0600 1.2482 -0.021529
68062101 II 7.00 129.81 J I 0.39989 II 0.015164 I I 0.0700 1.2981 -0.024279
68070101 II 12.00 97.17 II 0.54298 II 0.020011 II 0.1200 0.9717 -0.057134
68070201 II 10.00 115.78 II 0.48458 II 0.016879 II 0.1000 1..1578 -0.039521
68070601 II 7.00 93.61 II 0.42870 II 0.021029 II 0.0700 0.9361 -0.033668
68071 00 1 II 22.00 264.34 II 0.55422 II 0.007158 II 0.2200 2.6434 -0.040821.
68071101 II 7.00 112.34 II 0.41214 II 0.017523 II 0.0700 L.1234 -0.028055
68071201 II 8.00 101.72 II 0.44988 II 0.019306 II 0.0800 1.0172 -0.035600
68071301 II 11.00 127.50 II 0.49460 II 0.015289 II 0.1100 1.2750 . -0.039694.
68071401 II 7.00 12 1.71 II 0.40526 II 0.016174 II 0.0700 1.2171 -0.025895
68071501 II 9.00 1 H.28 II 0.45050 II 0.014923 II 0.0900 1.3128 -0.031199
68011601 II 10.00 111.87 II 0.48811 II 0.017469 II 0.1000 1.1187 -0.040902
68072001 II 6.00 116.41 II 0.37665 II 0.016950 II 0.0600 1.1641 -0.023084
68072401 II 15.00 123.07 J I 0.56268 II 0.015677 II 0.1500 1.2307 -0.057350
68072501 II 9.00 109.27 II 0.46811 II 0.017928 II 0.0900 1.0927 -0.037484
68081401 " 10.00 115.16 II 0.48513 II 0.016970 II 0.1000 1.1516 -0.039734
68090501 II 9.00 92.73 II 0.48507 II 0.021126 II 0.0900 '0'.9273 -0.044170
68102001 II 9.00 98.07 II 0.47915 II 0.019976 II 0.0900 0.9807 -0.041765
68110101 II 7.00 101.75 II 0.42096 II 0.019346 II 0.0700 1.0175 -0.030975
68110401 II 11.00 120.92 II 0.50007.11 0.016121 II 0.1100 1.2092 -0.041854
68110601 II 27 . 00 120.28 II 0.68809 II 0.015492 II 0.2100 1.2028 -0.113632
68110801 II 12.00 149.16 II 0.49648 II 0.013036 II 0.1200 1.4.916 -0.037220
68111.301 II 11.00 116.02 II 0.50442 II 0.016802 II 0.1100 1.1602 -0.043622.
681-11501 II 11.00 84.18 II 0.54092 II 0.023157 II 0.1100 0.8418 -0.060121
.68111701 II 9.00 101.27 II 0.47582 II 0.019345 II 0.0900 1.0127 -0.040445
68111901 II 12.00 115.30 II 0.52341 II 0.016865 II 0.1200 1.1530 -0.048150
68120101 II 8.00 128.17 II 0.42804 II 0.015250 II 0.0800 1.2877 -0.028122
68120301 II 14.00 113 .03 II 0.55822 II 0.017115 II 0.1400 1.1303 -0.051951
68120801 II 20.00 129.17 II 0.61568 II 0.014665 II 0.2000 1.2977 -0.074678
69011201 II 20.00 104.50 J I 0.64436 II 0.018211 II 0.2000 1.0450 -0.092737
G-24
-------
TABLE G.4.
DATA USED FOR CALCULATING PARAMETER VALUES (Cant 'd)
69011301 II 15.00 96.38 II 0.59279 II 0.020019 II 0.1500 0.CJb38 -0.013.132
69011401 II 13.00 120.5111 0.53529 II 0.016094 II 0.1300 1.2051 -0.05.0181
69020101 'II 15.00 97.50 II 0.59130 II 0.019189 II 0.1500 0.9.'~O -0.012391
AvER V ALU E = 0.41856 +/- 0.09132
AVER VALUE = 0.01605 +/~ 0.00407
AVER VALUE = -0.04402 +/- 0.02061
G-25
-------
TABLE G.4. DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
DOLOMITES --- PORT A
10 II 502 ST II A II K II FR S02 FR ST K
69021401 11 16.00 131.65 J I 0.56814 II 0.014617 II 0.1600 1.3165 -0.057517
69010301 II 16.00 115.48 11 0.58381 11 0.016663 II 0.1600 1~1548 -0.065570
6'J030101 II 21.00 117.60 II 0.63863 II 0.016136 II 0.2100 1.1760 -0.087052
6'J030501 II 17.00 84.41+ II 0.63868 II 0.022727 II 0.1700 0.8444 -0.095834
69030701 II 22.00 1/+"3.45 II 0.62244 II 0.013190 II 0.2200 1.4345 -0.075222
69030801 II 23.00 14'1.45 II 0.631 H II 0.013151 II 0.2300 1.4345 -0.079128
69040901 II 27.00 105.66 II 0.70723 II 0.017635 11 0.2700 1.0566 -0.129356
69071201 II 10.00 95.42 II 0.50514 II 0.020480 II 0.1000 0.9542 -0.047954
69080301 II 29.00 162.27 II 0.66165 II 0.01140'J II 0.2900 1.6227 -0.091663
69080401 II 49.00 275.86 II 0.69251 II 0.0061'J0 II 0.4900 2.7586 -0.106007
69080501 II 30.00 174.'J4 II 0.65858 II 0.010547 II 0.3000 1 . 7494 -0.088546
69080601 11 48.00 262.4/) II 0.6950'1 II 0.006540 II 0.4800 2.6240 -0.108230
69080602 11 61 .00 262.40 II 0.7'1806 II 0.006064 II 0.6100 2.6240 -0.155844
69090501 II 32.00 14/+ .82 II 0.69656 II 0.012654 II 0.3200 1.4482 -0.U5655
69090601 II 55.00 253.44 II 0.72398 II 0.006523 II 0.5500 2.5344 -0.136832
69090701 II 74.00 380.16 II 0.72452 II 0.003722 II 0.7400 3.8016 -0.153890
69090801 II 19.00 126.49 J I 0.60833 II 0.015088 II 0.1900 1.264'J -0.072350
69111701 II 23.40 110.56 II 0.67000 Ii 0.017043 II 0.2340 1.1056 -0.104713
AVER VALUE = 0.65359 +/- 0.06116
AVER VALUE = 0.01280 +/- 0.00537
AVER VALUE = -0.09841 +/- 0.03112
G-26
-------
-_J
TABLE G.4. DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
. DOLOMITES --- PORT 1
10 II 502 5T II A II K II FR 502 FR 5T K
69121101 II 25.00 130.36 II 0.66092 II 0.014384 II 0.2500 1.3.036 -0~095841
67090801 II 23.00 166.70 II 0.61286 II 0.011317 II o~ 2 300 1.6670 -0.068092
67(190901 t I 16.00 179.51 II 0.53419 II 0.010720 II 0.1600 1.7951 -0.042182
67091001 II 22 .00 250.24 II 0.55973 II 0.007561 II 0.2200 2.5024 -0.043121
67091201 II 31.00 174.86 II 0.66499 II 0.010516 II 0.3100 1.7486 -0.092160
671 00 10 1 II 15.00 186.14 II 0.51814 II 0.010365 II 0.1500 1.8614 -0.037918
67100201 II 26.00 150.% II 0.64941 II 0,012382 II 0.2600 1.5096 -0.086624
67100301 II 26.00 174.71 II 0.63103 II 0.010699 II 0.2600 1.7471 -0.074849
67100701 II 6.00 112.46 II 0.37940 II 0.017545 II 0.0600 1.1246 -0.023895
67100801 II 25.00 146.'54 II 0.6',541 II 0.012796 II 0.2500 1.465', -0.085259
68020601 II 22.00 165.82 II 0.60479 II 0.011411 II 0.2200 1.6582 -0.065074
68021101 II 16.00 205.87 II 0.520/.5 II 0.009347.11 0.1600 2.0587 -0.036781
68021401 II 36.00 391 .86 II 0.60010 II 0.004609 II 0.3600 3.9186 -0.049462
68021501 II 41.00 597.13 II 0.58096 II 0.002966 II 0.4100 5.9713 -0.038375
68030101 II 21.00 199.09 II 0.57512 II 0.009532 II 0.2100 1.9909 -0.051420
'08030201 II 21.00 180.13 II 0.58620 II 0.010535 II 0.2100 1.8013 -0.056833
68030301 II 16.00 156.24 II 0.54888 II 0.012316 II 0.1600 1.5624 -0.048464
68030401 II 35.00 543.45 II 0.56',53 II 0.003336 II 0.3500 5.4345 -0.0344U
68030501 II 47.20 826.99 II 0.57376 II 0.002083 II 0.4720 8.2699 -0.03353'1
68030601 II 19.40 198.36 II 0.56053 II 0.009610 II 0.1940 1.9836 -0.047220
68031301 II 11.50 254.71 II 0.44085 II 0.007644 II 0.1150 2.5471 -0.020830
'68031401 II 14.20 284.10 II 0.46966 II 0.006806 J I 0.1420 2.8410 -0.023412
68031501 II 20.00 207.67 II .9.56142 II 0.009164 II 0.2000 2.0767 -0.046665
68040601 II 12.00 105.89 II 0.53297 II 0.018363 J I 0.1200 1.0589 -0.052429
68040701 II 15.00 195.25 II 0.51344 II 0.009882 II 0.1500 1.9525 -0.036149
68040801 II 10.00 128.01 II 0.47455 II 0.015266 II 0.1000 1.2801 -0.035745
68050201 II 25.00 181.67 II 0.(1875) I 0.010321 II 0.2500 1.8167 -0.068772
68050401 II 17.00 __.!7C.~6 II 0.55143 II 0.011265 II 0.1700 1.7036 -0.047501
G-27
-------
TABLE G.4. DATA USED FOR CALCULATING PARAMETER VALUES (Cont'd)
68050501 II 11.00 130.65 II 0.49213 II 0.014921 II 0.1100 1.3065 -0.038737
68050601 II 13.00 136.87 II 0.52143 " 0.014171 II O. 1300 1.3(,87 -0.044188
(,1)050901 II 10.00 106.92 II 0.49284 II 0.018278 II 0.1000 1.0(,92 -0.04279(,
6B051101 II 6.00 123.74 II 0.37187 II 0.015946 II 0.0600 1.2374 -0.021717
68061401 II 8.30 118.13 II 0.44349 II 0.016612 II 0.0830 1.1813 -0.031855
68061501 II 13.00 117.81 II 0.53783 II 0.016463 II 0.1300 1.1781 -0.051338
6>10617\11 II 17.30 11'.. 57 II 0.60126 II 0.016737 II O. 1730 1..1457 -0.072003
68061801 II 8.60 107.51 II 0.1.6002 II 0.018240 II 0.0860 1.0751 -0.036326
68070501 II 14.00 ]61.7.8 II 0.51918 II 0.011995 II 0.1400 1.6]28 -0.040614
68070701 II 21.00 179.69 II 0.58647 II 0.010561 II 0.2100 1.7969 -0.056972
68070901 II 19.00 173.70 II 0.57092 II 0.0]0987 II 0.1900 '1. 7370 -0.052686
&8071901 II 9.00 111.34 II 0.46625 " 0.017595 II 0.0900 1 . 11 34 -0.036787
1>80721:)1 II 6.10 119.80 II 0.37781. II 0.016466 II 0.0610 1.1980 -0.022817
08072201 II 5.60 1?6.7>1 II 0.35605 II 0.015040 II 0.0560 1.262R -0.019liI9
68072301 II 13.50 12 5.11 II 0.53895 II 0.015483 II 0.1350 1.2511 -0.050343
68072601 II 12.90 1 U.54 II 0.:>4141 II 0.0]7238 II 0~1290 1.1254 -0.053298
68080201 II 8.70 105.18 II 0.1.6466 II 0.018639 II 0.0870 1.0518 -0.037582
68080301 II 11.10 99.76 J I 0.52293 II 0.01'1536 II 0.1110 0.9976 -0.051221
68080401 II 8.00 75.80 II 0.4B045 II 0.025907 II O.OROO 0.7580 -0.047773
68090801 II 14.'10 135.37 II 0.5377C II 0.014290 II 0.1400 1.3537 -0.048387
630'11001 J I 11.00 96.01 II 0.52463 II 0.020178 II O. 11 00 0.9661 -0.052386
68091101 II 8.00 108.75 II 0.44347 II 0.018058 II 0.0800 1.0875 -0.033299
68091201 II 7.00 '15.19 II 0.42712 II 0.020680 II 0.0700 0.9519 -0.033110
68091301 II 5.00 92.17 II 0.35578 II 0.021457 II 0.0500 0.97.17 -0.024169
68091401 II 10.00 '18. CJ2 II o. 50118 II 0.019756 II 0.1000 0.9892 -0.046257
68091501 II 7.00 104.26 II 0.41876 II 0.018881 II 0.0700 1.0426 -0.0.30229
68100101 II 13.00 ] 19.88 II 0.53587 II 0.016179 II 0.1300 1.1988 -0.050451
68100201 II 6.00 116.00 II 0.37689 II 0.017001 II 0.0600 1.1606 -0.023154
68101701 II 3D.nO 262.25 II 0.61070 II 0.007036 II 0.3000 2.6225 -0.059067
68110301 II 10.00 121.11 II 0.48004 II 0.016136 II 0.1000 1.2111 -0.037782
68111001 II 22.00 217.70 II 0.571.21 II 0.008691 II 0.2200 2. 1770 -0.049566
68112101 II 12.00 109.05 II O. 52963 II 0.017831 II 0.1200 1.0905 -0.050910
68120601 II 11.00 117.?? II 0.50288 II 0.016560 II 0.1100 1.1772 -0.042992
G-28
-------
. ~~,,<'<"."f;"t;
. '... ;" .: ~.' '. .
TABLE G.4.
DATA USED FOR CALCULATING PARAMETER VALUES (Cent' d)
h90201D1 II 14.00 123.29 II O.54A14 II 0.015691 II 0.1400 1.2329 -0.05312R
09020201 II 23.00 129.07. II 0.64517 II 0.014622 II 0.2300 1.2902 -0.087978
69020301 II 15.00 140.35 II 0.54773 II 0.013747 II 0.1500 1.4035 -0.050289
69020401 II 7.00 142.63 II 0.39230 II 0.013801 II 0.0700 1. 42 fj3 -0.022097
69020501 II 14.00 IlO. 71 II 0.5606R II 0.017474 II 0.1400 1..1071 -0.059165
69020601 II 15.00 104.75 II O. 5H21 8 II 0.018419 II 0.1500 1.0475 -0.061380
69020801 II 11.00 115.57 II 0.50483 II 0.016868 II 0.1100 1.1557 -0.043792
69020901 II 14~00 131 .01 II 0.54131 II 0.014766 II 0.1400 1.3101 -0.0'.9997
69071001 II 27.00 111.'le II 0.69852 II 0.016640 II 0.2700 1. 11 91J -0.122055
69021301 II 20.00 124.30 II 0.62117 II 0.015310 II 0.2000 1.2430 -0.077965
69060701 II 14.30 150.29 II 0.53072 II 0.012862 II 0.1430. 1.5029 -0.044593
AVER V ALU E = O.52R77 +/- O.07R40
AVER VAL U E = 0.0\385 +/- 0.00464
AVER VALUE = -0.04878 +/- 0.01955
G-29
-------
"
and k =
[ RSOJ
log 1 - 1002.
(ST/lOO)
and the final composite values with the standard deviation where:
standard deviation (0) =
n
L (Z" - z.)2
i=l 1
n - 1
(3)
"
where z. is the individual value of "a", k, and k. (The second column labeled
1 "
"k" on the tables is k .)
In conclusion, it must be emphasized again that the equations presented
herein represent the fit to the test fired data for the B&W pilot plant.
G .1. 3 Note
The use of the equation
log (100 - RSO ) = kST
2
as opposed to
log [1 - :2J . k' [~~oJ
is mathematically consistent since
log [1 - :2J . log (100 -
= log (100 -
Rso)
2
RSO )
2
and
, k
k = 100
r
log [1 - ::2J . 2.0 + 1~0 sr
G-30
log 100 "
- 2.0
'..
-------
This form of equation was run as:
log [1 -:2] ..~. k" + l~O Sf
and. the results are:
Limestones
Dolomi tes
Parameter
Port A
Port 1
Port A
Port 1
"
k
k
[R2] (log basis)
10l.
-19.3
0.736
97.9
-5.59
0.116
106.
-20.9
0.922
95.5
-5.69
0.608
These equations were very unstable to small changes in. the values of k
and k". Simple round-off of the constants resulted in large change in [R2].
The equations could not be forced through the origin, thus indicating the data
did not fit the equation:
[ . R ]
S02 k
log 1 - 100 = 100 ST
The data does not fit.any of the above equations.
In addition, the data on Table G.4 and calculated standard deviations
"
on the. constants "a", k, and k from equations (1), (2), and (3) indicate
that "a" is the best value (Le., has the smallest relative error):
Limestones
Parameter
Port A
Port 1
k
"
k
0.66
0.016
-0.10
:!: 0.07 (10%)
:!: 0.004 (25%)
:!: 0.03 (30%)
0.48
0.018
-0.04
:!: 0.10 (20%)
:!: 0.004 (25%)
:!: 0.02 (50%)
" a"
Dolomites
Parameter
Port A
Port 1
k
"
k
0.65 :!: 0.06 (10%)
0.013 :!:'O.005 (30%)
-0.10 :!: 0.03 (30%)
0.53 :!: 0.08 (15%)
0.014 :!: 0.004 (25%)
-0.05 :!: 0.02 (50%)
" a"
G-3l
------- |