JULY   131,   1972               LME
    FLYWHEEL   IDRII/E    5Y5TEME

                           ETLUY
                     EINRL   REPORT
         EONTRPET   NO.   63-0^
                                TQ
ENI/IRONMENTPL   PROTECTION   PGENEY

                HFFICE  HF  RIR  PRQERRM5

       RI]l/RNCEH  RUTHMQTI^E  P0NER  5Y5TEM5
                 IEI/ELQPMENT  UII/I5I0N

                                 foY
           R .  R .  GILBERT, G .  E . HEUER, E .  H .  JRC0&5EN,
            E .  fc .  KLJHN5,  L .  d . LRW5QN RNID W . T .  WRIR


               ER0UNH   ^EHIELEB  5Y5TEM5
  L0EKHEEH] MI55ILE5  RNH  5PREE E0MPRNY,  INC .
                     vJNYl/RLE,  ERLIF0RNIR

-------
L.JULY
3l,
1972
LM5C-::D2Y-6393
FLYWHEEL
JJRIVE
SYSTEMS
STUJJY
FINRL
REP~RT
C~NTRRCT
N~.
68-DY--DDY-8
T~
ENVIR~NMENTRL
PR~TECTI~N
RGENCY
~FFICE ~F RIR PR~5RRMS
R~VRNCE~ RUT~M~TIVE P~WER SYSTEMS
~EVEL~PMENT ~IVISI~N
I!:.y
R. R. 6ILI!:.ERT, 6.
E. HEUER, E. H. L..JACI!II!:.SEN,
E. I!:.. KUHNS, L. L..J. LAINSI!IN AN:D IN. T INA:DA
L~CKHEE~
5R~UN~ VEHICLES SYSTEMS
MISSILES RN~ SPRCE C~MPRNY, INC
SUN N Y V R L E IC R L I F ~ R N I R

-------
Section
1
2
3
CONTENTS
ILLUSTRA TIONS
TABLES
SUMMARY
INTRODUCTION
Background
Flywheel Feasibility Study and Demonstration
Flywheel Drive Systems Study
Study Objectives
DRIVE SYSTEM REQUIREMENTS
Engine Characteristics
Reference Conventional Transmission
Flywheel Transmission Performance Specification
Flywheel Characteristics
System Control
FLYWHEEL BURST DYNAMICS STUDY AND CONTAIN-
MENT TESTING
Analysis of Burst Dynamics
Kinetic Energy Distribution
Radial Clearance Requirements
Containment Ring Design Criteria
Flywheel Containment Tests
Test Technique
Test Materials
Test Results
Conclusions
Hi
~~
Page
vii
xi
xiii
1-1

1-1
1-1

1-2
1-4

2-1

2-1
2-1
2-1
2-7
2-10
3-1
3-1
3-1
3-2
3-2
3-3

3-3
3-4
3-6
3-12

-------
~~
Section
4
5
6
7
8
SAFETY ANALYSIS
Fault Tree Analysis
Developing the Fault Tree
Possibility of Achieving Acceptable Safety
Relative Safety of Alternative Designs
Page
4-1
4-1
4-3
4-8
4-14
5-1
5-1
5-11
5-16
5-23
5-24
5-38
5-38
5-38
5-38
6-1
6-1
6-5
6-6
6-6
6-7
6-8
6-15
6-23
6-23
7-1
7-1
7-1
7-2
7-3
7-3
7-4
7-4
8-1
FLYWHEEL ANCILLARY EQUIPMENT DESIGN STUDY

Bearings
Seals
Vacuum Pump
Preliminary Flywheel Designs
Baseline Design
Flywheel Drive Size, Weight, and Cost
Flywheel Drive Size
Flywheel Drive Weight
Flywheel Drive Cost
COMPUTER-AIDED EMISSION ANALYSIS
BSFC Analysis
Analysis of PRC Emission Data
Analysis Objectives
EPA 1976 Emission Limits
General Examination of Data
Determination of Preferred Operating Points
Engine Emissions Over Dyno Driving Cycle
Conclus ions
Recommendations
TECHNOLOGY APPLICATION
Computer-Aided Emission Analysis
Engine Emission Analysis
Simulated Federal Driving Cycle Operation
Safety Analysis
High Speed Seals and Bearings
Burst Containment
Engine Flywheels
CONCLUSIONS AND RECOMMENDATIONS
iv

-------
~~d
Section  Page
9 FUTURE PROGRAM PLANS 9-1
 Flywheel Drive Emission Study Program 9-1
 Objective 9-1
 Method 9-1
 Duration 9-2
 Tasks 9-2
10 REFERENCES 10-1
Appendixes  
A VEHICLE DESIGN GOALS A-1
B CHARACTERISTICS OF CONVENTIONAL AUTOMATIC 
 TRANSMISSIONS B-1
C COMPUTER PROGRAM DESCRIPTIONS C-1
D FLYWHEEL KINETIC ENERGY DISTRmUTION AFTER 
 BURST D-1
E CONTAINMENT RING DESIGN E-1
F FLYWHEEL CONTAINMENT TESTS F-1
G CALCULA TIONS FOR MOUNTING THE FL YWHEEL/ 
 SHAFT G-1
H FLYWHEEL SUPPORT BEARING ANALYSIS H-1
I SEAL LEAKAGE CALCULATIONS 1-1
J FACE SEAL TEST REPORT J-1
K VACUUM PUMP CALCULATIONS K-1
L VACUUM PUMP TEST RESULTS L-1
M LMSC COMPUTER FORMATTING OF ENGINE TEST 
 DATA AS RECEIVED FROM U.S. BUREAU OF MINES 
 PETROLEUM RESEARCH CENTER M-1
N ENGINE TEST DATA - RATIOS OF EMISSIONS TO 
 SPECIFIC FUEL CONSUMPTION 
0 ENGINE TEST DATA - EMISSIONS VS. 4ffi-;FUEL RATIO 0-1
P ENGINE TEST DATA - COMPUTER SORT BY SPEED, 
 PERCENT POWER, AND TOTAL WEIGHTED EMISSIONS P-1
Q EMISSIONS VS. SPEED FOR MINIMUM TWE AT FOUR 
 VALUES OF PERCENT POWER Q-1
 v 

-------
Figure
1-1

1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2

3-3a
3-3b

3-3c
4-1
4-2
4-3
4-4
4-5
4-6
~
ILLUSTRATION 5
Page
Series-Type Flywheel Drive System

Drivetrain Arrangement for Engine-Mounted Flywheel!
Transmission

Drivetrain Arrangement for Transaxle Flywheel!
Transmission
1-2
1-3
1-3
Brake Specific Fuel Consumption Map - ~edium-Size V-8
Engine

Accessory Loads for Typical Medium-Size V-8 Engine

Minimum Tractive Effort Vs. Speed Requirements for
Flywheel Drive System (First Quadrant Only)

Tractive Effort Vs. Velocity Requirements for Flywheel
Drive System

Velocity Vs. Tractive Effort - Revised Dyno Cycle,
November 10, 1970

Velocity Vs. Tractive Effort - Original Dyno Cycle,
July 15, 1970
2-2
2-3
2-4
2-6
2-8
2-9
Momentum Transfer Between Flywheel and Ring,
Strain Lines at Apex of Notches in Bore
Burst Containment by Steel Ring
View Upon Opening Test Pit
View After Removal of Small Fragments
View After Removal of Flywheel Fragments
Safety Analyses
Fault Tree Symbols
Fault Tree - Total Vehicle
Engine System Fault Matrix
Suggested Flywheel Safety Goal
Relative Concern About Failure Modes
Showing
3-7
3-8
3-9
3-10
3-11
4-2
4-4
4-7
4-9
4-10
4-11
vii

-------
~~
Figure
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
6-1
6-2
6-3
6-4
6-5
Page
Degree of Reliability Required
hnmediate Area of Interest
Relative Safety Evaluation Methodology
Collision hnpact
Collision Vulnerability Analysis
Design Safety Criteria
Flywheel Configuration Evaluation
Candidate Merit Appraisal
Suggested Design Requirements
Vehicle Instability Through Momentum Transfer
Flywheel Imbalance Displacement Vs. Engine Speed
Relationship of Bearing Speed Capacity to Ball Diameter
T AC Experience Chart
Pump Size Vs. Leakage Rate
Windage Loss Vs. Pressure for an 0.5 kW-hr Car Flywheel
Types of Vacuum Pumps
Gerotor-Type Mechanical Pump - Cross Section
Operating Cycle of Gerotor Pump
Recording Data - Pumpdown-Rate Curve
Preliminary Flywheel Design 1
Preliminary Flywheel Design 2
Preliminary Flywheel Design 3 (Family Car)
Baseline Flywheel
Specific Fuel Consumption (SFC) Vs. CO Emissions -
Engine A
Specific Fuel Consumption (SFC) Vs. CO Emissions -
Engine B ,
Specific Fuel Consumption (SFC) Vs. HC Emissions -
Engine A
Specific Fuel Consumption (SFC) Vs. HC Emissions-
Engine B
Specific Fuel Consumption (SFC) Vs. NOx Emissions -
Engine A
4-12
4-15
4-16
4-17
4-18
4-20
4-21
4-22
4-24
4-25
5-5
5-10
5-10
5-12
5-17
5-18
5-20
5-20
5-23
5-25
5-26
5-27
5-34
6-9
6-10
6-11
6-12
6-13
viii

-------
Figure
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
~~
Page
Specific Fuel Consumption (SCF) Vs. NO Emissions-
x
Engine B
HC Contour - Engine A
CO Contour - Engine A
NO Contour - Engine A
x
TWE Contour - Engine A
HC Contour - Engine B
CO Contour - Engine B
NO Contour - Engine B
x
TWE Contour - Engine B
CO Emission Contour, Engine A - Interpplation Perspective
HC Emission Contour, Engine A - Interpolation Perspective
NO Emission Contour, Engine A - Interpolation Perspective
x
Total Weighted Emissions Contour, Engine A - Interpolation
Perspective
6-14
6-16
6-16
6-17
6-17
6-18
6-18
6-19
6-19
6-20
6-20
6-21
6-21
ix

-------
Table
5-1
5-2

5-3

5-4

5-5
5-6
5-7
5-8

5-9
5-10

6-1
6-2
~~
TAB L ES
Summary of Speed and Load Data
Characteristics of Rolling and Sliding Bearings
Materials for Sleeve Bearings
Materials for Oil-Film Journal Bearings
Speed Limits for Ball and Roller Bearings
Seal Characteristics
Flywheel Assembly Data - Preliminary Flywheel Design 1
Flywheel Assembly Data - Preliminary Flywheel Design 2
Flywheel Assembly Data - Preliminary Flywheel Design 3
Flywheel Assembly Data - Baseline Design
Dyno Cycle Fuel Economy of Various Drive
Configurations
Effects of Transmission Variations on Dyno Cycle Fuel
Economy
5-3
5-4
5-7
5-7
5-8
5-14
5-28
5-30
5-32
5-36
6-2
6-3
xi

-------
~~
SUMMARY
The Flywheel Drive Systems Study effort has been directed toward the verification and
refinement of the conclusions reached in the Flywheel Feasibility Study and Demonstra-
tion (Contract No. EHS 70-104). This previous study indicated that the flywheel hybrid
drive concept might be a technically feasible way to power a full size automobile. The
present study make!:! use of more detailed input information on engine emissions sup-
plied by the U. S. Bureau of Mines, Petroleum Research Center, and on transmission
characteristics supplied by transmission contractorS. These data are augmented by
detailed flywheel technology studies and test results to provide the background for more
precise conclusions regarding the flywheel drive concept.
RESULTS AND CONCLUSIONS
The flywheel hybrid drive concept is a technically feasible propulsion system for a full
size automobile.
A theoretical computer analysis of predicted emissions from the flywheel drive sys-
tem, contrasted with emissions theoretically predicted for a conventional three-speed
automatic transmission drive, indicates some theoretical emission reduction. This
comparison was made with a flywheel hybrid drive assumed to have an oxidation cata-
lyst and exhaust gas recirculation (a NO catalyst was not assumed). The conventional
x
system was assumed to have the same emission controls. The cold start effect was
not included. The emission predictions indicated that the emission levels attainable
by the flywheel hybrid system were not low enough to comply with the 1976 require-
ments.
The projected production cost of complete family car flywheel assemblies is $100, plus
or minus $15, depending on flywheel configuration; this is within previous estimates
(Ref. 1).
xiii

-------
~~
Additional engine emission data are required to permit an accurate evaluation of the
flywheel drive as a cost-effective means of emission reduction for the family car.
Plastic growth of steel flywheels can provide a lightweight means of overs peed failure
control.
Flywheel burst containment can be achieved through use of relatively heavy, homo-
geneous metal rings or composite (filamentary) containment structures.
The flywheel drive may provide safe family car propulsion if care is taken in systems
and component design.
All elements of a practical family car flywheel assembly are now available without
further technology development.
The cost of ownership, size, and weight of a family car flywheel drive fall within the
established EPA/OAP Vehicle Design Goals.
RECOMMENDATIONS
Further engine emission measurements should be made with dynamometer simulation
of engine loads over the dynamometer driving cycle for a conventional automatic trans-
mission and for various configurations of the flywheel transmission so as to provide
an accurate determination of emission reductions.
Additional design and testing should be conducted to effect further improvement of fly-
wheel burst-containment structures.
Development of flywheel drive transmissions should be postponed until more definitive
results of the emission reduction potentials of the flywheel drive are obtained.
xiv

-------
~
Section 1
INTRODUCTION
BACKGROUND
The Advanced Automotive Power Systems (AAPS) program being conducted by the
Environmental Protection Agency/Office of Air Programs (EPA/OAP) has the stated
goal of producing an. automobile with an unconventional propulsion system with emis-
sions meeting the standards of the Clean Air Act of 1970 while remaining competitive
with conventional vehicle power systems. The candidate propulsion systems consid-
ered in this program include heat engine systems, electric systems, and hybrid sys-
tems in which category the flywheel drive was classified. The flywheel drive as con-
sidered in the AAPS program could be incorporated in a configuration in which a heat
engine operated in a restrained mode provides the average level of energy required for
vehicle operation while a relatively small flywheel supplies the power peaks for accel-
eration. One basic configuration considered for such a heat-engine/flywheel drive is
shown in Fig. 1-1. This flywheel drive configuration with a bilateral transmission
reduces engine emissions by permitting recuperation of vehicle kinetic energy when
braking or decelerating as well as by reducing engine transients during vehicle opera-
tions. In addition, the use of the flywheel for the provision of vehicle acceleration
power can reduce the installed engine horsepower to less than that now required for
the desired performance of a full-size family car, as specified by the EPA Vehicle
Design Goals. (See Appendix A.)
FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION
The general feasibility of the flywheel drive for reduced emission vehicles was indi-
cated in the Flywheel Feasibility Study and Demonstration (Contract No. EHS 70-104)
conducted for EPA/OAP by Lockheed Missiles & Space Company, Inc. (LMSC), as
reported in Ref. 1-1. Although the results of this study showed the pure flywheel
configuration to be a possible candidate for intra-city buses, the only possible con-
1-1

-------
~~
ENGINE
(40% NORMAL
HP RATING)
v
CLUTCH OR
RANSMISSION
TRANSMISSION
TO DIFFERENTIAL
AND WHEELS
FLYWHEEL
ASSEMBL Y
Fig. 1-1 Series-Type Flywheel Drive System
figuration for family cars is the combination heat engine-flywheel system. Concep-
tuallayouts of the flywheel drive installed in a family car are shown in Fig. 1-2 (con-
ventionally mounted flywheel and transmission) and in Fig. 1-3 (transaxle-mounted
flywheel and transmission).
The following recommendations were made to EPA IOAP by LMSC at the completion
of the Flywheel Feas ibility Study and Demonstration:
. Development activities on flywheel drive vehicles should be continued.
. Emission sampling tests should be conducted on candidate heat engines
operated under steady-state conditions.
. Transmission and control system studies should be initiated.
. Flywheel technology development and testing should be continued in the
areas of failure control, ancillary selection, and configuration tradeoffs.
FLYWHEEL DRIVE SYSTEMS STUDY
The conclusions and recommendations of the prior Flywheel Feasibility Study were
utilized by EPA IOAP to structure a comprehensive program aimed at future study of
the flywheel drive when specifically applied to the family car.
1-2

-------
~~d
Fig. 1-2 Drivetrain Arrangement for Engine-Mounted Flywheel/
Transmission
FLYWHEEL
TRANSAXlE
Fig. 1-3 Drivetrain Arrangement for Transaxle Flywheel/Transmission
1-3

-------
~~
The present EPAIOAP Program combines the efforts of four organizations, under
coordination by that agency to accomplish a-highly objective, quantitative assess-
ment of the practicality of a flywheel drive system for a full-size, full-performance,
family car. The task of emission mapping of spark-ignition gasoline engines was
assigned to the U. S. Bureau of Mines Petroleum Research Center (PRC) (Bartles-
ville, Oklahoma). Two parallel contracts for the analysis of transmission feasibility,
controls, performance, and cost were awarded to Mechanical Technology, Inc. (MTI)
and Sundstrand Aviation, division of Sundstrand Corporation. The fourth contract
was awarded to LMSC to conduct the Flywheel Drive System Study (EPA Contract
No. 68-04-0048).
STUDY OBJECTIVES
The Flywheel Drive Systems Study program was structured under the direction of
E P A IOAP to accomplish the following overall goals:
. Advance the development of flywheel systems technology, including the
development of final designs on conformal housings, bearings, seals, and
evacuation systems.
. Demonstrate positive flywheel energy containment in burst tests of flywheels.
. Formulate safety analyses, using fault-tree and gross-hazard methodologies.
. Produce engine-mapping project data received from PRC to permit calcula-
tion of engine emission data resulting from flywheel drive vehicle operations
over the Urban Dynamometer Driving Schedule (dyno cycle). This is the so-
called LA-4 schedule used in the 1972 Federal Test Procedure.
. Provide to MTI and Sundstrand systems coordination in the areas of flywheel
assembly designs, interfaces, configuration tradeoffs, speed selections,
cost, and predicted dyno cycle performance.
1-4

-------
~~
Section 2
DRIVE SYSTEM REQUIREMENTS
In order to provide a realistic and common basis for design to the transmission contrac-
tors, drive system requirements were established early in the program.
ENGINE CHARACTERISTICS
Because of a lack of data on engine emissions, the EP A directed that minimization of
brake specific fuel consumption (bsfc) be used as a substitute criterion. A bsfc map for
a medium-size V-8 engine (Fig. 2-1) was supplied by EPA to be used as a standard
reference. Accessory loads for this engine were stipulated by the EPA, as shown in
Fig. 2-2.
REFERENCE CONVENTIONAL TRANSMISSION
The EPA provided characteristic data in graphic form (see Appendix B) for a conven-
tional automatic transmission to be used as a comparative reference for candidate fly-
wheel transmission designs.
FLYWHEEL TRANSMISSION PERFORMANCE SPECIFICATION
A transmission performance specification was prepared in order to translate the vehicle
performance requirements of the vehicle design goals (Appendix A), stipulated by the
EPA as a design basis, into transmission performance requirements. Average values
of vehicle weight were assumed, namely, a test weight Wt = 4,300 lb and a gross
weight Wg = 5,000 lb.
The various performance requirements presented in Appendix A are shown in Fig. 2-3.
Paragraph 8f of Appendix A stipulates a 3D-percent grade as the maximum on which the
2-1

-------
  170   
  160   
  150   
  140   
  130   
 0< 120   
 LU   
 ~    
 0 110   
 <>.   
 LU    
 V')    
 0< 100   
 0   
 J:    
 LU    
 :><: 90   
 ~   
 '"    
1.\:1 c 80   
I LU    
1.\:1 >    
 0< 70   
 LU   
 V')   
 '"    
 0 60   
  50   
  40   
  30   
  20   
  10   
  1 ,000 1,200 1,400 1 ,600
~
/
/
",
...-
...-
...-
",
/
I

'- ----
/
/
/
/
I
{ 0.58
\
"-
-
0.56
- - 0.54

)0.520
/
.0.53
.,...
--
0.54
0.56

0.58
0.60
0.64

0.68
0.72
0.76
0.80
0.85
0.90
0.95
1.0
CONSTANT SPECIFIC FUEL
CONSUMPTION LINES (lB/HP-HR)
ENGINE SPEED (RPM)
Fig. 2-1 Brake Specific Fuel Consumption Map - Medium-Size V-8 Engine

-------
  ..
  rI
 A 
 diN
 ..JrI
 I 
 I- 
 L.. 
 Va
  rI
t\:) W
I :J 
c:,., 0 
 Irll
 EJ 
 I- 
  .a
a
N
II
rI
.a
rI
..
N
a
a
1.aaa
2aaa
...aaa
:Jaaa
R.
P.
M.
AIR CONDITIONING
600 ::5 X ::5 4,200
Y = AXB
A 106.633601
B = -0.275741
GENERATOR

490 ::5 X ::5 2 200
Y = F+AX+BX2+CX3+DX4+EX5
F = -12.322974
A = 6.6444128E-2
B = -7. 0475694E-5
C = 3.2954301 E-8
D = -7.1021053E-12
E = 5.6619139E-16
2 200 ~ X ::; 4 900
, 1 '
Y = A+BX
A = 0.038335
B = 0.000053
ENGINE FAN

Y = AXB
A = 10.9199E-7
B = 18.8149E-1
The above equations were determined by computer curve-
fitting data supplied by the EPA. (X = rpm and Y = torque
in ft-Ib.) The curves to the left are computer plots of
these equations.
saaa
Fig. 2-2 Accessory Loads for Typical Medium-Size V -8 Engine

-------
~~
2,000
 1,000
 800
.......... 700
.D 600
........-
I- 500
0::
o 400
u..
u..
w 
w 300
>
I- 
U 
~ 200
I-
100

80
70
60
50
40
1
2, 150 LB
o TO 15 MPH ON 30% GRADE IN 6 SEC
1,523 LB
15 MPH ON 30% GRADE
o TO 60 MPH IN 13.5 SEC '
DOT HIGH SPEED PASS MANEUVER
70 MPH ON 5% GRADE
85 MPH ON LEVEL
CRUISE 5,000 LB
CRUISE - 4",300 LB
2
3
78 10
SPEED (MPH)
Fig. 2-3 Minimum Tractive Effort Vs. Speed Requirements for
Flywheel Drive System (First Quadrant Only)
2-4

-------
~~
vehicle is required to operate, so the tractive effort of 1, 523 lb for operation on a
30-percent grade at 15 mph could be used as the maximum tractive effort required.
The acceleration from 25 to 70 mph in 15 sec (para. 8d of Appendix A), when run at
constant horsepower, requires 107 hp from 26 to 70 mph (25 to 26 mph being at the
tractive effort limit of 1, 523 lb previously established).
The requirement for 0 to 60 mph in 13. 5 sec (para. 8c of Appendix A) requires
106 hp at constant horsepower, with the tractive effort limit of 1,523 lb to 26 mph,
and thus just misses being a determining factor. The high speed pass maneuver
of the U. S. Department of Transportation (DOT) (para. 8e of Appendix,A) and the
70-mph, 5-percent grade requirements (para. 8f of ,Appendix A) fall farther below
the 107-hp line. The maximum speed of 85 mph on the level requires a tractive effort
of 312 lb.
Between speeds of 70 and 85 mph, a linear interpolation was employed so that the
power available for acceleration fades gradually to zero as the maximum cruise speed
of 85 mph is approached.
The vehicle performance requirements of Appendix A are thus met by a tractive ef~?\~~
of 1,523 lb from 0 to 26 mph, a constant power of 107 hp from 26 to 70 mph, and a
linear taper in power from 107 hp at 70 mph to a tractive effort of 312 lb at 85 mph.
In order to stay in keeping with current automotive practice, however, the low speed
tractive effort requirement was increased to one-half the test weight or 2, 150 lb.
This level of tractive effort provides a capability for acceleration from 0 to 15 mph
on a 30 -percent grade in 6 sec.
The final specification for transmission performance in all four quadrants is shown in
Fig. 2-4. Performance requirements for the second~ third, and fourth quadrants
were established in conjunction with the EP A and the transmission contractors. The
second and third quadrant requirements are dictated largely by safety considerations.
2-5

-------
~~
   2,500 LB        
  2,400          
    2,150 LB        
  2,000          
   -         
   co       FORWARD 
  1,600 ...J       
  -       DRIVING  
   I-        
REVERSE  0=:         
 0         
DRIVING 1 ,200 u.         
u.         
  w         
   w         
   >         
  800 i=         
  u         
::I: ::I:  ~         
 I-         
~ ~ 400          ::I:
~ ~          ~
o Lt')           ~
N .-           Lt')
I I           00
  -10  10 20 30 40 50 60 70 80 
      VELOCITY (MPH)    
REVERSE
BRAKING
-1 ,600
FORWARD
BRAKING
-1754 LB
-2,000
-2,400
-2,500 LB
Fig. 2-4 Tractive Effort Vs. Velocity Requirements for Flywheel Drive System
2-6

-------
~~
The fourth quadrant requirements roughly mirror the first quadrant characteristics
with lower requirements for tractive effort based on the reduced traction of the driven
(rear) wheels under braking conditions. Discussions with the transmission contrac-
tors of the EPA/OAP Program indicated that these fourth-quadrant requirements would
not penalize transmission design since this "mirror image" capability is inherent in
the type of transmission under consideration.
In order to ensure that the transmission performance as specified is sufficient to cover
all operating points in the dyno cycle, a plot was made of vehicle velocity versus trac-
tive effort over the full dyno cycle. This plot is given in Fig. 2-5. If constant accel-
eration within each second of the cycle is assumed, each line of constant velocity
represents an instantaneous change in tractive effort, and each line of constant trac-
tive effort represents a change in velocity over a I-sec interval. The actual plotting
occurs in a generally counterclockwise direction because the velocity is roughly pro-
portional to the time integral of tractive effort.
A comparison of Figs. 2-4 and 2-5 shows that all of the dyno cycle operation lies well
within the specified tractive-effort/speed requirements.
Since the dyno cycle revision of November 10, 1970 employs artificial acceleration
limits to facilitate dynamometer testing, a similar plot (Fig. 2-6) was also made for
the more realistic original dyno cycle (July 15, 1970). Again, all the original dyno
cycle operating points lie within the specified transmission requirements.
FL YWH EEL CHARACTERISTICS
As a starting point, the transmission contractors had available the information on fly-
wheel characteristics contained in the final report of the Flywheel Feasibility Study
and Demonstration (Ref. 1-1). Based on that previous study, certain other guidelines
stipulated by EP A are as follows:
. Baseline maximum flywheel speed - 24, 000 rpm
. Flywheel speed range - 1. 5 to 1 minimum, 3 to 1 maximum
2-7

-------
~~
o
-rJ I
I

I
!
FAMILY CAR CHARACTERISTICS
PER VEHICLE DESIGN GOALS
(SEE APPENDIX A)
o
lit
WT = 4,300 LB
A
I ~
D-
2:
v
>- 0
I- rr1
H
U
~
.-1 0
W N
~
o
ri
o
-17SD
-12SD
-7SD
-2SD
2SD
7SD
12SD
17SD
TRRCTIVE
EFF0RT

Fig. 2-5 Velocity Vs. Tractive Effort - Revised Dyno Cycle, November 10, 1970
2-8

-------
~~
o
-0
FAMILY CAR CHARACTERISTICS
PER VEHICLE DESIGN GOALS
(SEE APPENDIX A)
o
l11
WT = 4,300 LB
A
I ~
[L
L
v
>- 0
~ ~
H
U
~
-.J 0
W N
~
o
rI
o
-175:0
-125:0
-75:0
-25:0
25:0
75:0
125:0
175:0
TRRCTIVE
EFF~RT

Fig. 2-6 Velocity Vs. Tractive Effort - Original Dyno Cycle, July 15, 1970
2-9

-------
~
. Flywheel energy (usable) - Approximately equal to that of the specified
vehicle (per Appendix A) at the maximum speed of 85 mph, i. e., approxi-
mately 0.5 hp-hr (0.373 kw-hr).
Detailed information concerning flywheel system losses and space requirements, in
the form of layouts, was transmitted to the transmission contractors as they became
available from the LMSC studies described in Sections 3 and 5 of this report.
SYSTEM CONTROL
The basic initial system control philosophy stipulated was that of maintaining a con-
stant total kinetic energy (TKE) for the system. In other words, the heat engine out-
put is controlled so as to hold, at a constant value, the sum of the kinetic energies
of the flywheel and the vehicle. The TKE approach is described in greater detail in
Ref. 1-1.
By direction of the EPA, a conventional front-engine, rear-wheel-drive configuration
was to be used. Under heavy braking conditions, the rear wheels are lightly loaded,
and the percentage of vehicle kinetic energy that can be recuperated into the flywheel
is therefore rather small. The resultant loss in TKE could cause an immediately
subsequent heavy acceleration to be degraded because of insufficient flywheel energy.
This so-called "history dependence" is obviously objectionable and potentially danger-
ous. In order to assess the seriousness of this problem, an analysis of a full-stop,
full-go maneuver was made, using the computer program /5.0 MANEUVER/ contained
in Appendix C. Computer runs were made of the following maneuver: decelerate
from the maximum vehicle speed of 85 mph with a braking force of 0.8 Wt to 0 mph
and immediately re-accelerate to 85 mph. Efficiencies between flywheel and road,
between engine and flywheel, and between engine and road were assumed to be 80 per-
cent. The first computer run showed that the flywheel became exhausted during re-
acceleration, resulting in a sudden loss in acceleration performance. In order to
avoid the suddenness of this performance loss, an anticipatory control scheme was
devised; the power normally available for acceleration was multiplied by the ratio of
actual TKE to rated TKE. Thus, the low TKE condition which occurs upon re-accel-
2-10

-------
~~
eration causes the available flywheel power to be reduced such that the flywheel does
not become depleted. Although this control scheme is probably not optimal, it is suf-
ficient and represents a condition which can easily be approximated by the control sys-
tem. The engine horsepower was 92.9, a value required to satisfy the Vehicle Design
Goals (Appendix A) for maintaining 70 mph on a 5-percent grade for 100 sec. The 0-
to-60-mph acceleration times are as follows:
3rd
Elapsed Time
o to 60 mph
(sec)

12.34

19.21

19.21
Maneuver
1st
2nd
The advantage of an intermittent engine rating (referred to the road) approaching the
maximum road power is obvious; in the limiting case, where the engine power (referred
to the road) is equal to or greater than the maximum required road horsepower, there
are no history-dependence effects on performance.
2-11

-------
~~
Section 3
FLYWHEEL BURST DYNAMICS STUDY AND CONTAINMENT TESTING
Provision for personnel safety in the event of flywheel disintegration is of primary
importance in the design of any system involving high energy flywheels. The probabil-
ity of such disintegration can be made very small by proper flywheel design, material,
and manufacturing techniques but it cannot be eliminated completely because of the
possibility of external damage, material variability, and the indeterminate effect of
the individual operating history upon the fatigue life of the flywheel. Accordingly, a
significant portion of the total Flywheel Driye Systems Study program involved analysis
of the dynamics of a bursting flywheel and the testing of a number of containment de-
vices of different configurations.
ANALYSIS OF BURST DYNAM ICS
KINETIC ENERGY DISTRIBUTION
The total kinetic energy of a flywheel after burst is distributed among the fragments
as a combination of rotational and translational kinetic energy. Each fragment rotates
about its center of gravity with an angular velocity w equal to that of the flywheel at
burst, while its center of gravity moves in a tangential direction with the velocity wr,
where r is the radial distance from the flywheel axis of rotation to the c. g. of the
fragment.
Of particular interest, from the standpoint of burst containment, is the radial compo-
nent of the translational energy because this portion of the total energy must be ab-
sorbed in deformation upon contact of the fragments with the containment ring: Analysis
has shown this impact energy to be a function of the radial clearance between the con-
tainment ring and the flywheel at burst, as well as of the number, size, and shape of
3-1

-------
~~
the burst fragments (See Appendix D). The fraction of total flywheel kinetic energy
which appears as translational energy of the fragments increases with the number of
fragments. The radial component of the translational energy is minimized by keeping
the clearance between ring and flywheel at burst as small as possible.
RADIAL CLEARANCE REQUIREMENTS
Two principal factors are to be considered in determining the minimum practical radial
clearance at speed between flywheel and ring. The first is the variation in the gap at
operating speed due to the differential radial thermal expansion of flywheel and ring;
this factor is minimized by evacuating the flywheel chamber to a low pressure so as to
limit aerodynamic heating. In an operational system, the second factor affecting gap
requirement is the tolerance build-up in the assembly, including deviation from concen-
tricity between ring and flywheel. The design gap at rest is determined by adding the
required gap at speed to the radial elongation resulting from maximum speed; the latter
being readily determined from the flywheel geometry and material.
CONTAINMENT RING DESIGN CRITERIA
The containment ring was designed to supply the centripetal force necessary to main-
tain rotation of the flywheel fragments within the ring. Initial rough estimates of ring
dimensions were determined by setting a value for the cross-sectional area of the ring
multiplied by the tensile stress of the ring material equal to the total tangential force
over a half-section of the flywheel at burst.
The validity of this approach is reduced as the radial thickness of the ring increases.
An attempt was made to account for the non-uniformity in tangential stress over the
ring in the radial direction by treating the ring as a pressure vessel. This condition
is approximated by a flywheel burst which results in a large number of small pieces,
with a small radial gap. For a ring of given dimensions, this approach results in a
higher tangential stress in the inner portion of the ring than that resulting from the
3-2

-------
~
assumption of uniform stress. Conversely, if the inner fiber design stress is held to
the same value as that computed on the basis of force divided by area F / A, the ring
dimensions increase. Typical calculations of containment ring dimensions are shown
in Appendix E.
Further improvement in analytical determination of containment ring performance was
afforded by a theoretical ring analysis method developed under a Lockheed-funded
Independent Development Program. This analysis was initially based on the assump-
tion of a Bernoulli-Euler ring subjected to circumferentially moving forces, repre-
sentative of those imposed by the flywheel fragments after burst. Subsequently, the
method was refined to account for bending stresses and to permit application to rings
with non-isotropic characteristics, such as the glass,-filament/resin composites.
Through programming for computer operation with a Tymshare terminal and peripheral
plotter, quick generation was possible of curves showing the time variation (over
any desired portion of the ring) of radial and circumferential strain, shear strain,
longitudinal strain, and radial and circumferential displacements.
FLYWHEEL CONTAINMENT TESTS
Although the analytical work described previously provided a basis for the initial de-
sign of the containment rings, verification of the design was accomplished by spin
tests at energy levels representative of those required for the family car.
TEST TECHNIQUE
Spin tests were conducted in an evacuated spin pit. The flywheel was suspended from
a vertical spindle and driven to speed by an air turbine. The containment ring was
suspended from the upper plate of the pit by three equally spaced hangers, and was
positioned with adjusting screws to be concentric with the flywheel.
The initial gap between ring and flywheel is listed in Table F-l of Appendix F. Deter-
mination of the gap required for each test accounted not only for the factors discussed
3-3

-------
~~
earlier under Analysis of Burst Dynamics but also for the gyrodynamic behavior of the
flywheel in this particular test configuration. At speeds below the critical speed of
the system, the flywheel tends to rotate about the centerline of the drive shaft. This
axis can be accurately located in relation to the inside diameter of the containment
ring. However, as rotational speed exceeds the critical speed, the center of rotation
of the flywheel shifts to its center of mass. Precise balancing techniques make the
flywheel eccentricity, per se, very small, Le., on the order of 20ilin., but it was
not feasible to balance the entire flywheel-hub-spindle assembly as a unit.
To determine the actual assembly radial eccentricity resulting from this effect, a
series of spin tests was conducted. The flywheel was driven through the critical speed
range while measurements of radial displacement were taken at three points equally
spaced about the periphery. The average radial displacement for several runs was
0.037 in. This displacement represents the radial clearance which must be added to
the radial elongation of the flywheel in order to prevent the flywheel from touching the
ring during spin up.
TEST MATERIALS
It was desirable to use a test flywheel capable of operating at an energy level of approxi-
mately 1 hp-hr, or approximately 50 percent greater than requirements of the family
car. This test flywheel design was approximately the same energy as the family car
flywheel at burst, but was of a geometry more suitable for burst testing.
Flywheel design tradeoff analysis and burst tests previously conducted under a Lock-
heed-funded Independent Development Program had shown that the problems of burst
containment were aggravated by using relatively thin flywheels, e. g. , pierced disc
flywheels 15 in. in diameter and 0.7 in. thick. In containment rings fabricated from
a composite of glass filaments and resin, the forces from the burst flywheel tended
to cause shear failure of the resin matrix. As a result, there was a tendency for
annular segments of the ring to be thrown off intact from upper and lower surfaces.
In axially thin rings, this essentially ineffective material accounted for an appreciable
3-4

-------
~~
fraction of the total material in the ring. In axially thicker (and radially thinner) rings,
the loss of strength from this effect was less significant.
Another factor in sizing the flywheel was the constraint on the overall diameter of the
flywheel/containment ring, as imposed by the requirement for fitting the flywheel into
a family-type car. Accordingly, an outside diameter of 13 in. was chosen for the fly-
wheel. For convenience, an inside diameter of 3 in. and a nominal burst speed of
24, 000 rpm were chosen. .A thickness of 3.5 in. provided the desired kinetic energy
of approximately 1 hp-hr.
Kinetic energy of the flywheel at burst was controlled by cutting radial notches in the
inside diameter. The tangential stress at burst is r~lated to notch depth 1. by the
following equation:
2 ( R3 - R? )
~ 0 1
0" abs = 3g R 0 - Ri - 1.
(Ref. 3-1)
The notches were located so as to cause the flywheel to burst into three sectorial frag-
ments, one of 90 deg and two of 135 deg. It was considered that this configuration
would approximate the most severe condition from the standpoint of containment.
Initial calculations of required notch length were based on the assumption that absolute
bursting stress 0" b was equal to the tensile yield stress of the material multiplied
a s
by a factor of 1. 06 to account for the biaxial stress field existing in the flywheel. Fol-
lowing each test, 0" b was revised to reflect the results of the test in order to im-
a s
prove the accuracy of subsequent calculations.
Two basic containment ring configurations were tested - rings made of a homogeneous,
isotropic material (e. g., steel), and rings fabricated from a composite of glass fiber
and resin matrix wound on a steel liner . Design details of the various test rings are
presented in Appendix F.
3-5

-------
~~
TEST RESULTS
The tests demonstrated the following mechanisms through which the kinetic energy of
the flywheel was dissipated without external damage:
. Transfer of momentum to the surrounding ring before flywheel disintegration
. Containment of the burst fragments after flywheel disintegration
Two cases of momentum transfer occurred in which the flywheel elongated radially
under load to fill the gap between the flywheel and the ring. When contact occurred,
the ring acquired angular velocity while the flywheel decelerated rapidly. The ring
and flywheel then spun to a stop with only minor scuffing from contact with the sides
and bottom of the pit. The highest flywheel speed at which this occurred was 23,840
rpm, corresponding to an energy level of 0.94 hp-hr, with a radial gap (initial) of
0.075 in. Examination of the flywheel following this test revealed pronounced strain
lines emanating from the apex of each of the three 0.08-in. deep V-grooves cut into
the bore, indicating plastic deformation of the flywheel. This result is shown in
Fig. 3-1.
Two tests resulted in flywheel bursts with complete containment of the fragments
within the ring. In the first test, a 20. 3-in. diameter, 192-lb containment ring of
SAE-4340 steel with an ultimate tensile strength Ft of 150,000 psi was used. Burst
occurred at an energy level of 0.86 hp-hr (22,820 r't>m). The result is shown in Fig.
3-2. The weight of the steel ring was 1. 5 times the flywheel weight. The second test
was performed with a containment ring consisting of an O. 5-in. ~thick liner of SAE-
4340 steel (Ftu = 125, 000 psi) wound to a radial thickness of 7 in. with I 'E I I glass tape
in a polyester resin matrix. Burst occurred at 16,750 rpm with an energy level of
0.46 hp-hr (significantly below the 1 hp-hr level). The results of this test are shown
in Fig. 3-3. Rotation was in the clockwise direction. Figure 3-3a shows the untouched
results of the test. For clarity, the small pieces of debris were removed with a
vacuum cleaner; the result of this action is presented in Fig. 3-3b. The flywheel
pieces were then removed to show the failure of the steel liner ; this is illustrated in
Fig. 3-3c. The glass ring, including liner, weighed 167 lb; again, the weight of the
flywheel was 125 lb.
3-6

-------
CA:I
I
-::]
I.
(F-
Fig. 3-1 Momentum Transfer Between Flywheel and Ring, Showing Strain Lines
at Apex of Notches in Bore

-------
.., ..-(, ~'
t~.'
fJ(;, \

~' "~'~,
~ .
'11 .
r.' ~. ,
$1 "
(~ ,~I.
,,'" ~,~
~
ck
,/
../
- '(
"
,I
\
\,'\' ~
. ......:.: {"
"" --.
.~." .
'~:... ~'"
.
t .
....
'..
,
....-
.
Fig. 3-2 Burst Containment by Steel Ring

-------
Co:)
I
c.o
Fig. 3-3a View Upon Opening Test Pit

-------
C/.:)
I
......
o
Fig. 3-3b View Mter Removal of Small Fragments

-------
I:J,:)
I
I-'
I-'
--
~
Fig. 3-3c View After Removal of Flywheel Fragments

-------
~~
Three tests resulted in flywheel bursts in which the containment ring failed. The
rings were fabricated of "E" glass/epoxy on a steel liner . The first of these rings
tested (Type B, Appendix E) was wound with glass filament in an epoxy matrix. There
was evidence that annular sections had been thrown out in a virtually intact condition
from the upper and lower surfaces of the ring with consequent reduction in the effec-
tive strength of the ring. This failure was caused by shear failure of the matrix. To
improve the axial tensile properties, subsequently fabricated rings used woven glass
fabric or tape. Although the woven construction resulted in some reduction in filament
strength because of the overlap, the axially oriented filaments provided considerably
higher strength in the axial direction of the ring, and eliminated the loss of material
as previously noted.
A complete chronology of the testing program is presented in Appendix F.
CONCL US IONS
A series of tests included two cases of successful momentum transfer (where the fly-
wheel did not burst, but grew until it engaged the containment ring) and two cases of
successful burst containment. In both tests where burst containment was affected,
however, the containment energy density (i. e., the ratio of flywheel energy at burst to
the weight of the containment ring) was unsatisfactory. Until such time that lightweight
containment rings become available, the conventional automotive practice of low stress
flywheels appears to be the more effective approach to safety.
3-12

-------
~
Section 4
SAFETY ANALYSIS
FAULT TREE ANALYSIS
The purpose of fault tree analysis is to identify, evaluate, and eliminate or control
potential hazards as early in the life cycle as possible. Fault tree analysis involves
detailed examination of the particular design to evaluate failure effects, man-machine
relationships, and all aspects of system development and operation. The distinction
between fault tree and gross hazard safety analysis is shown in Fig. 4-1. A fault tree
is a graphical representation of the relationship between certain specific events and an
ultimate undesired event. In measuring the level of safety of an operational product,
the initial step is a definition of the particular undesirable event or events involved.
Each fault tree, because it is single-event oriented, must be constructed to include
only one most undesired event. There are several other events leading to this "top"
event which are analyzed in relationship to such occurrence. This situati()n makes it
mandatory to establish terminology for the top event that will encompass the lesser
events, individually or collectively. One objective is to determine how the system,
including the personnel involved with system operation and maintenance, could fail so
as to cause the undesired series of happenings.
A fault tree is constructed by properly relating all possible sequences of events that,
upon occurrence, lead to the undesired result. Beginning at the top, the fault tree
graphically depicts the paths that lead to each event from various lower level events.
This does not imply that higher level events have a higher probability of occurrence
than lower level events. In fact, the opposite may be the case.
The causal relationships between events are described by logic gates. Three basic
logic gates are used: AND, OR, and INIDBIT. The AND and OR gates represent the
4-1

-------
GROSS HAZARD. FAULT TREE
~
J
I:\:)
PEFINITIV£ . f)IAGRAMMATIC
D£SCRIPTIVE T£RMINOLOGY . GRAPHIC LOGIC SYMBOLS
CRITICAL AREAS. CRITICAL PATHS
USUALLY CAU~E TO EFFECT. ALWAYS EFFECT TO C»AlJgF
CONCEPTS. SPECIFIc]' €VENTS
INHERENT HAZARDS. l/NDESIRED EVENT
SYSTEM SAfETY. SYSTEM ORIENTED ULTIMATE UN/)ESIR£DEV€NT
COMPREHENg/VE . 3/NGLE EVENT ORIENTED
HUMAN ERRORS. HUMAN ERRORS AS EVENTS
QUALITATIVE ONLY. CAN 8E Q()AN7/TA7/V£
POSSIBILITY 1# CAN (lSE NUMERICAL PROBABIL.ITY
INITIAL INVESTIBAT/ON . ITERATIVE PROCESS
E~A8lISHINB- f)ESIBN CRITERIA. EXAMININB- t:>ESISNS
Fig. 4-1 Safety Analyses

-------
~
fundamental Boolean functions that form the basis for all logic analysis. If an event
is sufficient but not necessary to cause the next higher event to occur, an OR gate is
used. If an event is necessary but not sufficient to cause the next higher event to take
place, an AND gate is used. The INIllBIT gate is a variation of the AND gate and ap-
plies conditional probabilities to a fault sequence. The logic symbols used in fault
tree analysis are shown in Fig. 4-2.
The fault tree can be directed to answer various questions by properly defining the
ultimate undesired event for each case. The ultimate undesired event has been de-
fined in the following ways for this safety analysis:
. Loss of human life or health caused by the automobile
. Event causing death or injury, vehicle loss, or major system damage or
requiring immediate action for survival
. Fatality resulting from a traffic accident
. Fatality due to flywheel failure caused by impact
Cause and effect can be established between traffic accidents and death and injury. It
is much more difficult, however, to establish a correlation between air pollution and
deterioration of human health on a nationwide basis. As a result, an increase in traffic
injuries and fatalities cannot be justified as a price to pay for a decrease in the detri-
mental effects of air pollution.
DEVELOPING THE FAULT TREE
The fault tree for the total vehicle (Fig. 4-3) provides a comprehensive assessment of
the safety hazards inherent in flywheel hybrid vehicles. The top undesired event for
this diagram is "causing death or injury, vehicle loss, or major system damage, or
requiring immediate action for survival. "
In developing the fault tree shown in Fig. 4-3, the following areas involving possible
contribution to occurrence of the top undesired event were considered:
. Operational, collision, and maintenance safety
. Fail-safe design
4-3

-------
  "AND P GATE 6 EVENT NORA1ALL Y
  EXPECTED TO
   OCCUR
   <> EVENT-
  .OR" GATE TERMINATING-
   FAtlL7 SE~VENCE
 o .. INHIBIT" GATE --0 CONDITION
~   
I   
~   
 I  ~. TRANSFER -
 I 
 -0- PARTICVLAR
 FUNCTION AND
 EVENT
 N()A1£RIC!4L VALUE
 ,  
 0 EVENT - B4SIC. V TRANSFER -
 COMPONeNT OR FUNCTION ONL Y
 PART FAILORE  
Fig. 4-2 Fault Tree Symbols

-------
~hd
. Human error analysis
. Prevention of inadvertent actuation of critical controls
. Resistance to shock damage
. Compatibility of materials
. Fire ignition propagation sources,
and protection
Furthermore, potential hazards were identified which could lead to the undesired
event. They include the following:
. Flywheel disintegration
. Dislodged flywheel, flywheel assembly, or engine flywheel installation
. Flywheel kinetic energy transferred into heat
. Torque transferred from flywheel into' vehicle
. No energy stored in flywheel when required
. Misleading control feedback to driver
. Loss of power boost to brakes and steering
. No braking or insufficient braking when required
. Insufficient, uneven, interrupted, or excessive torque to wheels
Moving down to the lower levels of this tree, losses of component functions which
affect the hybrid system drive operation can be identified. Included are signals from
the speedometer and engine and flywheel tachometers; commands from the PRNDL
setting, accelerator, and brake; electric power; hydraulic fluid; and brake fluid, lining,
and adjustment.
Safe operation of the hybrid system can also be affected, by rotation malfunction of
various power shafts, attached to the engine or flywheel, within the transmission or
delivering power to the road. These malfunctions can include any of the following:
. Lack of rotation
. Abrupt stop
. Gradual stop
. RPM too slow
4-5

-------
~~
4-6

-------
~
Fig. 4-3
Fault Tree - Total Vehicle
4-7

-------
~~
. No rpm change
. Erratic rpm
. Control lag
. Disconnection
. Oscillations
Inadequate functioning of power shafts and minor parts can form safety hazards by pro-
ducing drive modes which are incompatible with the operational situation.
The engine is the system component for which the most certain and detailed knowledge
is available. Figure 4-4 represents a fault tree approach to detail problems, simpli-
fied and presented in matrix form. From this figure, a fault path leading to engine
shaft malfunctions and then to undesired events within the hybrid system can be readily
traced. As transmission subsystems and details are selected, similar fault analysis
can be made.
POSSIBILITY OF ACHIEVING ACCEPTABLE SAFETY
During the time frame under consideration, an average of 100 million highway vehicles
will accumulate a trillion vehicle-miles per year within the United States. At present,
there are approximately 50,000 fatalities per year, or one fatality every 20 million
vehicle-miles. For sake of discussion, it may be assumed that all vehicles will be
flywheel hybrids in the not too distant future. Thus, using a didactic, but reasonable,
goal of limiting flywheel-caused fatalities to 10 or less per year, the resulting allow-
able incidence of fatalities attributable solely to flyWheels would be approximately once
every 100 billion vehicle miles. (See Fig. 4-5.)
As indicated in Fig. 4-6, the 10 or less annual fatal events related to the flywheel may
occur in several modes. The type of failure judged to be most significant was the un-
contained flywheel disintegration which, in turn, became the basis of estimating the
degree of reliability required for the system components. (See Fig. 4-7.)
4-8

-------
I/ND£SIRED
EVENTS IN
FORM OF
SIIAFT
R07AT/~N
MALFUNCTIONS
~
~
I
to
NO ROTAT/()N
ABR()PT 370P
GRAJ>VAL S7()P
RPM TO() SLOW
RPIH T()() FAST
NO RPM C/IANGE
EHRAT/C RPM
t()m~J. '.At:.
O~ClllA T/tWG
/)/s~NN£CTEf)
IItfM()B/I./IE/) eRAN~SHAF7
LOSS ()t: CI)MPI<£~SIt)N
NO /GNff/()N (ENGINe)
NO IGNm/)N (CYi./NDER)
NO FUE/. W ENGINE
INSUFFICIENT FUEL
IMPROPER FUEL -AIR M/ITURE
FUEl.. CMT/?OI. JfAVUNCT/ON
IMPR.OPER rlAIINt;.
IMPROPER 1N~()mE tPMMAND
INSUffiCIENT COPLANT
NP FAN tJR C/RCUlA TI()N
NO TEMPERATURE CONTROL
Oil OR. PRESSURE lOSS
/f;; OIL DETERIORA TlON
':1// EZECTRIt'AL MIILFUNt'TItW
Fig. 4-4 Engine System Fault Matrix
 J......  
~ ~A Lu~ ~
~IJJ ~~ ~Q)
~~ 
-------
FATALITIES RESULTING
FROM TRAFFIC ACCIDENTS
50,OOO/YEAR
(1 FATALITY/20 MILLION MilES)
M:>-
I
I-'
o
- FATAL EVENTS
RELATED TO FLYWHEEL
10/YEAR
(1 FATALITY/100 BilLION/MILES)
Fig. 4-5 Suggested Flywheel Safety Goal

-------
FATAL EVENTS
RELATED TO
FLYWHEEL
la/YEAR
~
I
......
......
FATAL UNCONTAINED
IN-PLANE FLYWHEEL
DISINTEGRATION
3.0/YEAR
Fig. 4-6 Relative Concern About Failure Modes

-------
PERSON
IN FATALLY CRITICAL
LOCATION 1.0
.;:..
I
I-'
~
FATAL UNCONTAINED IN-PLANE
FLYWHEEL DISINTEGRATION
3.0/YEAR
FLYWHEEL DISINTEGRATION
UNCONTAINED IN-PLANE
3.0/YEAR 333 BILLION MMBF
FLVWHEEL DISINTEGRATES
3000/YEAR
333 MILLION MMBF
FLYWHEEL OVERSPEEDS '
IOOO/YEAR
I BILLION MMBF
SIGNAL GIVE.N FOR OVERSPEED
1 MI LLiON/VE.AR
1 MILLION MMBF
Fig. 4-7 Degree of Reliability Required
MMBF:: MEAN MILES
BETWEEN FAILURES
EXPE.RIENCED BY
ONE OUT OF TEN CARS
DURI NG LIFE

-------
~
It will be assumed that a flywheel disintegration not contained in-plane will result in
one fatality on the average. The containment ring in failing will absorb a large per-
centage of the energy stored in the flywheel. Furthermore, the plane of disintegration
may not be aligned with potential victims. Even in the plane of disintegration, lethal
fragments will separate with distance, thus allowing space in which people can
survive.
Non-fatal injuries are not considered in this aspect of the evaluation. However, the
possibility of multiple fatalities including fatalities in adjacent vehicles must be con-
sidered. Thus, one fatality per flywheel disintegration which is not contained in-plane
is assumed.
The containment ring serves as a safety device in two modes - burst containment and
burst prevention - since a normal flywheel will yield and grow into the ring before
fracturing. The chances of the flywheel bursting can be held to 1 in 1,000 and, if
the flywheel does fracture, the chances of it not being contained can again be held
to 1 in 1,000. Once a containment design is established, this type of reliability is
to be expected. The probabilities derived in detail in Figs. 4-6 and 4-7 show that
conditions for flywheel overspeed could be allowed to occur in the United States one
million times each year within the rigorous safety goal established. This, in turn,
represents 1 million MMBF. * In other words, conditions for flywheel failure could
happen to lout of every 10 cars at some time during the expected lifetime of the
car. This requirement is not too difficult. Uncontained flywheel disintegration is,
of course, only one single vertical probe in the fault tree. It was chosen because
the problem is a familiar one which has been emphasized in the study.
*Mean miles between failures.
4-13

-------
~~
RELATIVE SAFETY OF ALTERNATIVE DESIGNS
It has been necessary to confine the detailed examination of fault tree paths to an im-
mediate area of interest. This area pertains directly to the flywheel and excludes
internal analyses of other new components peculiar to the hybrid system, whether or
not they affect the safe operation of the flywheel. Although the system controls and
the transmission can cause malfunction of the flywheel, sufficient details were not
available to extend the fault tree downward into these areas. Vehicle safety not re-
lated to the hybrid system was ignored in the analyses. (See Fig. 4-8.)
The use of the fault tree provides a method of quantifying the relative safety of two or
more design candidates, as shown in Fig. 4-9. An arbitrary hazard index number can
be assigned to one of the candidate configurations and distributed downward within a
pertinent portion of the fault tree as in the case of the vertical probe previously men-
tioned. E~ch assigned number can then be appraised in relation to characteristics
exhibited by competing configurations and a relative value assigned. With these new
values, the fault tree can be quantified for other configurations, building upward to
produce a top hazard index number for the top undesired event which can then be com-
pared to the top hazard index number assigned to the first candidate. In this manner,
it is possible in initial design phases to use the fault tree to establish the relative
safety of alternative designs. This information can then be compared with cost,
weight, and performance estimates to form tradeoff studies. An illustration of how
this safety determination could be accomplished involves the case of fatalities due to
flywheel failure caused by impact. (See Fig. 4-10.)
The occurrence of such fatalities is dependent upon several factors. The first is the
alignment of the flywheel plane of lethality with potential victims. (See Fig. 4-11.)
The mode of collision is to be considered in respect to direction and severity of im-
pact, and the probability of occurrence. The penetrability of the installation location
must be evaluated. The flywheel configuration will present differing target areas and
impact strength in differing orientations. These combinations can be described by the
fault tree.
4-14

-------
.po.
I
....
C1
VEHICLE
SAFETY
NOT RELATED
TO HYBRID
SYSTEM
HYBRID
SYSTEM
COMPONENTS
AFFECTING
SAFETY OF
FLYWHEEL
HYBRID
SYSTEM
SAFETY
NOT DIRECTLY
RELATED
TO FLYWHEEL
TO EVALUATE THE RELATIVE SAFETY OF
COMPETING CANDIDATE FLYWHEEL CONFIGURATIONS
Fig. 4-8 Immediate Area of Interest

-------
H=>-
I
....
C)
  INDEX  RELATIVE
  1.00  HAZARD
HAZARD  FAULT TREE MERIT FAULT TREE
 -   
ANALYSIS  CON F. IIA II APPRAISAL CONF. II B"
Fig. 4-9 Relative Safety Evaluation Methodology
i\

-------
                   A FATALITY DUE    
                   TO FlYWHEEL    
                   FAILURE CAUSED    
                   BY IMPACT     
A:: B)I. [(D x E )I. F J( G x H) +(J x K)( L xM)( N) + (Px Q)(R x 5)( T) + (V x W x X xY xZ)1  ~     
             B PERSON           
             IN PLANE OF    1r ~     
             DISINTEGRATION       
                   1  
        I FLYWHEEL            N FLYWHEEL  
        DISINTEGRATION            DiSiNTEGRATION  
        IN REAR END            IN BOTTOMING  
        COLLISION            COLLISION  
        6            6  
     I       I      r        I
   J IMPACT K IMPACT L IMPACT OF     V IMPACT   W IMPACT X IMPACT OF
   PENETRATES ON  SUFFICIENT     PENETRATES   ON SUFFICIENT
   TO FLYWHEEL FLYWHEEL MAGNITUDE     TO FLYWHEEL  FLYWHEEL MAGNITUDE
 C FLYWHEEL  M FlVWHEEL  N REAR END  0 FLYWHEEL    Y FLYWHEEL  Z BOTTOMING 
 DISINTEGRATION  INADEQUATE   DISINTEGRATION    INADEQUATE  
 IN HEAD-ON  IN PLANE  COLLISION  IN BROADSIDE    IN PLANEOF  COLLISION 
 COLLISION  OF IMPACT  OCCURS   COLLISION    IMPACT   OCCURS 
 ~            ~           
D IMPACT  E IMPACT     P IMPACT Q IMPACT        
PENETRATES    ON       PENETRATES  ON         
TO FLYWHEEL FLVWHEEL     TO FLYWHEEL FLYWHEEL        
F IMPACT OF G FLYWHEEL  1-1 HEAD ON   R IMPACT OF S FLYWHEEL   T BROADSIDE     
SUFFICIENT INADEQUATE  COLLISION   SUFFICIENT INADEQUATE   COLLISION      
MAGNITUDE IN PLANE OF  OCCURS   MAGNITUDE IN PLANE OF    OCCURS      
IMPACT     IMPACT         
H:>-
I
I-'
-::J
Fig. 4-10 Collision Impact

-------
 HEAD-ON REAR-END BROADSIDE
 CONF. 210/  
   ~.~
 BOTTOMING  
 CONF. 2101  
 j))~  :t.~
t+»   
I   
I-'   
00 @ t CONF. 2/02 
 ~
 fj)) ~ 
~~~
Fig. 4-11 Collision Vulnerability Analysis

-------
~
It is of interest that, using the total kinetic energy approach, high vehicle velocities
are obtained only when flywheel stored energy is low. This phenomenon is of signifi-
cance in both the case of single~ar collisions and the case of head-on collisions between
two speeding cars.
There is a point at which all persons in or around the subject vehicle (or vehicles) are
presumed not to be able to survive. The criteria used in Federal safety car programs
indicate that this might be around the area of head-on closure speeds in excess of
70 mph or hitting brick walls at speeds in excess of 50 mph (Fig. 4-12). If a collision
is so severe, for example, that the occupants of all c ars involved (and proximate
bystanders) are killed, the flywheel does not present an additional hazard. It is to
be assumed, in such a collision, that a large portion pf the energy stored in the flywheel
will be dissipated even if the containment ring were to burst, thus rendering remote
secondary effects unlikely. As flywheel installations are buried deeper into the vehicle,
the collision impact must be more and more severe to penetrate all the way to the
flywheel with sufficient energy remaining to cause flywheel disintegration. In the case
of a speeding car, the flywheel is probably at low energy.
The durability of the flywheel when hit is dependent upon its axial orientation, and
different flywheel configurations offer varying susceptibility to impact damage (See Fig.
4-13). The characteristics of flywheels which affect safety include maximum stress
level, diameter-to-width ratio, peripheral speed, maximum g loading, section under-
cutting, heat-sink mass, cantilever, target area, and rim width.
A matrix (Fig. 4-14) has been established to evaluate various combinations of orienta-
tion, location, and configuration. The candidate arrangements designated as I and II
are seen to be superior in terms of relative hazard, but involve severe space problems.
During the course of the study, consideration was given to candidate arrangements III,
IV, V, and X. The lowest hazard rating of these is that of candidate IV. Although
oriented in the most lethal plane, it has the lowest vulnerability of all. Candidates III
and V have the least dangerous orientations, but are more vulnerable. Candidate X is
the most hazardous of those seriously considered; it is most vulnerable to bottoming.
4-19

-------
~
I
t.:)
o
/4-/N.-D/A. 4000-LB POLE VE lCLF @ G, V. W
OR 4000-LB FLAT ':"CJ 'PECIAL
8ARRIER @ SO MPH. --" (~{.:.. tJlPMENT

~ ~;":'cRtlS'JI:"::':
r., MATERIAL :"
UNDER COLLISION CON/)ITlONS /5"0 I,..,.... '. .. ""
NO DISLODGEMENT OR ~ ~
DISINTEGRATION OF f"LYWHEEL. ~
NO VEf/ICLE OJlERTURN OR fiRE
[JUE TO FLYWHEEL
Fig, 4-12 Design Safety Criteria
4000-LB YEHICLE ~ ?!;' MPH
/4-/N-/)/A. 4()~-LB POLE @) IS' AtPH

-------
a-;~~- 1bCI
a ~eJUb
--r ~d ~~
~--~~
2102
~~
,~3l
~-r
2101
~
,
~
I-'
a - IN-PLANE IMPACT VULNERABILITY
HOUSING RADIUS/WIDTH; FLYWHEEL RADIUS/RIM WIDTH (~MIN. WIDTH)
UNDERCUT ANGLE; CANTILEVER; PERIPHERAL SPEED
b-OUT-Of-PLANE IMPACT VULNERABILITY
HOUSING RADIUS/WIDTH; FLYWHEEL RADIUS/ROOT WIDTH (tMIN. WIDTH)
PERIPHERAL SPEED; CANTILEVER
c - IN -PLANE CONTAINMENT
PERIPHERAL SPEED; RIM WIDTH; RING WEIGHT
d - OUT -OF-PLANE CONTAINMENT
FLYWHEEL RADIUS/RIM WIDTH; UNDERCUT ANGLE PERIPHERAL SPEED;
SIDEWALL WEIGHT
e - FRICTION HEATING
PERIPHERAL SPEED j RIM WIDTH i UNDERCUT ANGLE
Fig. 4-13 Flywheel Configuration Evaluation
~
~

-------
H:>-
I
I.\:)
I.\:)
I 2101FL
n 2101 FV
m 2101 RL
IS[ 2101 RV
V 2102FL
'2I 2102FV
1ZII 2102RL
1lIIl 2102RV
:IX. 2103FL
X 2103FV
XI 2103RL
m 2103RV
A= Bx[(DxExFxGxH)+(JxKxL~MxN)+(PxQxRxSxT) +(v "WxXxYx Z)]
uJ >-
~o I-
o ~ 1&.1 ::i
O-
I-
::i
iii
4
0:
w
Z
~
;:)
>
HEAD-ON
,.. Z
'=4 2
=&&.1 >-~
caa:>(Ja::
4wZ
LtJ~LaJa:O
~.-(/)u.u
C DEFGH
270 3 3 5 2 '3
80 4 2 5 2 1
180 2 3 5 2 3
20 12521
480 34524
24043522
320 2 -4 S 2 4
60 1 3 5 2 2
750 3 5 5 2 5
360 4 3 5 2 3
5000 2 5 5 2 5
90 1 3 5 2 3
REAR-END
BROADSIDE
~
BOTTOMING
>- >- z
!:: 1-4 52
..J:JUI I-
~ -a::>->-4
4: ~41-~O::
0: a:l-zwG
..... t-&&.I--~-
Z I&J"WO~
-' ZO::>L&.IZ
;::) w«w«o
> ~t-c.na.(J
>-
I-
~
a5
c:C
eX
u.J
Z
~
;:)
>
>- Z >-
!::c( g!::
-'uJ >-!;i ..J
U)~>-~o: ;;
4-t- ;:) 4:
a:....«~£! a:
t-uJ....Ou. W
i&J(.t:>wz 3
ffi~wa:o =
~ t- (III.... u >
>- z
1-« 0
-1.11 ,..-
=O! uti
~«>-za:
o::t-I-LtJ~
~UJ~~C)
wS=!wOi:i:
z->wz
u.q~~ 1.11 a: ()
~..--
-------
~
A low hazard rating alone cannot select the "optimum" candidate; cost, weight, and
performance tradeoffs must be considered.
The above analyses have been concerned with structural failure of the flywheel due to
overspeed and accident impact. As indicated in Fig. 4-15, several other problems
are of concern. One of these problems is that of momentum transfer from the flywheel
into the vehicle with resulting hazards of instability, loss of control, and dislodgement,
as shown in Fig. 4-16. In the course of the study, remedies have been suggested for
each set of problems and hazards. These in turn can be used in establishing safety
design requirements.
4-23

-------
HAZARDS
-ROTATING RING
MOME.NTUM -DISLODGED ASSY
TRANSFER -CONTROL INSTABILITY -BREAKAWAY
-OVERTURN BE.ARINGS
-QUALITY CONTROL
- FACTORY SEALED
CONTROL -FLYWHEEL OVERSPEED -PERIODIC CHECK
SYSTEM -HISTORY WARNING
-~PM GOVERN I NG
-REDUNDANCY
-SYSTEM INTERLOCK
PROBLEMS
REMEDIES
-GUARD
H:>-
I
t-:)
H:>-
-BURST FLYWHEEL
-PROPELLED F~GMENTS CONTAINMENT
ACCIDENT -EJECTED FLYWHEEL RING FUNCTIONS
IMPACT -VEHICLE OVERTURN AS IMPACT
-CONTROLINSTABILITY SHIELDING
-FIRE
-NOTCHED (OCCLUSIONS) -MECHANIC TRAINING
-UNBALANCED -PRECISION TOOUNG
-LOW HEAT TREAT -PROCEDURES
MANUFACTURING -UNPROTECTED -SUPERVISION
-OUT OF ADJUSTMENT -INSPECTION
-CONTAMINATED -PACKAGING
PROBLEMS
-IN-PLANE DISINTEGRATION -CONTAINMENT RING
STRUCTURAL -OUY-oF-PLANE MOVEMENT -CLOSE ClEARANCES
-GROWTH INTO RING }
FAILURE -MOMENTUM TRANSFER BREAKAWAV
-HEATING BEARINGS
-NOTCHING
-SPALLING
MAINTENANCE -ANNEALING
-CORROSION
. - ABRASION
-FATIGUING
-CHEMICAL EXPLOSION
FRICTION IGNITES -WEAT SINK
OIL MIST. AIR
DRAWN INTO CHAMBER -BLOWOUT PATCH
FRAGMENTING
HOUSING
-FLYWHEEL DETERIO~TION
WI'TH SEAL LEAK -NON-CORROSIVE
MOISTURE CORRODES, FINISH
ABRASIVES SANDBLAST -CHECK VALVES
$ AIR OVERHEATS
FLVWH EEL
-UNIT REPLACEMENT
-"TINKER PROOFING"
VACUUM
SEAL
-HEAT SINK
Fig. 4-15 Suggested Design Requirements

-------
SPIN INSTABILITY
VERTICAL AXIS FLYWHEEL
ROLL INSTABILITY
LONG k AXIS FLYWHEEL
~
I
N
01
ROLLING DISLODGED ASSEMBLY
ENGINE MOUNTED FLYWHEEL
Fig. 4-16 Vehicle Instability Through Momentum Transfer

-------
~
Section 5
FLYWHEEL ANC ILLARY EQU IPMENT DESIGN STU DY
Design studies of ancillary equipment essential for efficient high speed flywheel per-
formance were conducted. The major components for study include bearings, rotary
seals, and vacuum pumps. Component requirements and availability were established
to optimize component selection and the overall design of the flywheel system.
Since the flywheel system must couple with a power transmission drive system in an
automobile for the general public, certain goals were maintained throughout the
studies. These included the following:
. Low cost
. Reliability
. Safety
. Maintainability
BEARINGS
The specific requirements established for the flywheel support bearings are as
follows:
. Bearing Size
- Shaft diameter 30 mm (min.)
- Outer diameter Open
- Width Open
. Life Requirement - 2, 500 hr (L10 life)* min. ,
in Table 5-1
. Dynamic Drag Torque - 0.28 in. lb, max. at 24,000 rpm
. Load and Speed Capacities - per Table 5-1
operation per load schedule
*L10 bearing life is defined by AFBMA as the number of hours (at some given constant
speed) that 90 percent of a group of bearings will complete or exceed before the first
evidence of fatigue develops.
5-1

-------
~
. Operating Environment - Automotive Transmission
- Operating temperature 1800 to 300°F
- Soak temperatures -250 to 130°F
. Lubrication
- Type of oil
- Method of application
- Flow rate
- Oil inlet temperature
SAE 10-30 or Type A transmission
Oil jet
To be specified
1800 :f: 200 F
Supporting calculation,s for the loads shown in Table 5-1 are given in Appendix G.
There are two basic types of bearings - sliding and r~lling. The sliding bearings are
usually a cylindrical journal type or flat thrust types with either boundary or full film
lubrication. The crankshaft bearing used on most automobile engines is of this type.
The second type is the rolling element bearing where the load is carried by balls,
rollers, needle rollers, or tapered rollers.
Front wheel bearings of an automobile are of the rolling element type. Table 5-2 is
a brief summary of characteristics of the two main types of bearings. Advantages and
disadvantages are tabulated as applied to the flywheel support bearings.
The bearing shaft diameter specified in the requirements is based principally on the
minimum diameter shaft that can be used and still maintain the critical speed of the
flywheel above its rotational speed.
Operation above critical speed changes the spin axis from the bearing axis to the cen-
ter of gravity of the flywheel. For example, a flywheel with an imbalance of O. 001-in.
displacement, will have its center of mass 0.001 in. from the bearing axis. At speeds
below critical, the flywheel center of mass will orbit around the bearing spin axis
causing a rotating centrifugal force on the bearings.
5-2

-------
~
Table 5-1
SUMMARY OF SPEED AND LOAD DATA
Type of Period of Time Speed Bearing Loads
Load (%) (rpm) (lb)(a)(b)
Radial 2 24,000 262
Loads 3 24,000 262
 5 22,000 220
 15 20,000 186
 35 18 ,000 147
 20 14,000 89
 10 12,000 65
 10 8,000 30
 100  
Type of Rate of Application Duration of Loads on
Load of Load (cyc /hr) Loads (sec) Bearing (lb)(c)
Gyroscopically 0.001 2.0 1,800
Induced 0.0015 2.0 1,400
Bearing Loads
 0.002 1.5 1,000
 0.003 1.5 800
 0.005 1.0 600
 30.0 2.0 300
 100.0 2.5 200
 500.0 0.2 100
 12,000.0 0.1 40
(a) All loads in this table are radial rotating loads with inner race rotating and outer
race stationary; loads are applied at center of bearings; and inner and outer races
are all to be clamped.
(b) Additional radial loads are steady 45 lb downward loads at all times (one-half fly-
wheel weight).
(c) Radial loads to be superimposed on steady loads above; loads applied at random
with respect to shaft speeds.
5-3

-------
~
Table 5-2
CHARACTERISTICS OF ROLLING AND SLIDING BEARINGS(a)
Characteristic
Rolling
Life
Limited by fatigue properties of
bearing metal
{Cyclic
Starting
Load Imbalance
Shock

Emergency
Good

Excellent
Excellent
Good
Fair
Speed limited by:
Centrifugal loading

Material surface speeds

Ball control

Ball skidding
Starting friction
Good
Cost
Low for automotive mass pro-
duction quantities
Misalignment tolerance
Good - radial ball-bearing
tolerates small tracking error
Noise
Good for preloaded bearings
Good - preloaded bearings
Damping
Low-temperature. starting
Good
Type of lubricant
Oil or grease
Lubrication, quantity required
Very small, except where large
amounts of heat must be removed
Type of failure
Limited operation may continue
after fatigue failure but not after
lubricant failure
Ease of replacement
Function of type of installation.
Usually shaft need not be replaced
Drag torque
Good to excellent
(a) Amended to specific flywheel application from Ref. 5-1.
5-4
Sliding
Unlimited, except for cyclic
loading
Good
Poor
Good
Fair
Fair
Turbulence
Temperature rise
Poor
Very low in simple types or
in mass production
Fair
Quiet
Good
Poor
Oil, water, other liquids.
grease. dry lubricants, air,
or gas
Large, except in low-speed
boundary-lubrication types
Often permits limited emer-
gency operation after failure
Function of design and
installation
Split bearings used in large
machines
Good to poor, limited by
Turbulence
Temperature rise

-------
~
The formula for centrifugal force is:
where
2
CF = mrw
CF = centrifugal force (lb)
m = mass (lb-sec2/in.)
r = displacement of CG from spin axis (in.)
w = rotational speed (radj sec)
This centrifugal force is the major load on the bearings.
Figure 5-1 illustrates the imbalance plotted against rotational speeds generally ap-
plied to rotating components common to industry. An imbalance of O. 0002-in. dis-
placement for the flywheel assembly is considered the practical limit for high speed
mass production balancing equipment. The centrifugal force created by this imbalance
is the steady rotating force imposed upon the bearings. (See Table 5-1. )
N 1. 380
o
,
.
Z
:::=.
w
U
Z
~
~
~, 0.687
-'
w
w
J:
~
>-
ii 0.275
cc
TO. 138
-0
ex>
10
8
AUTOMOTIVE
FL YWHEEL
.q-
I
o
""'6
><
I-
Z
w
~4
u
~
c..
~2
Q
-----
AUTOMOTIVE
CRANKSHAFT
MOTOR ARMATURE (3,600 RPM)
(INTEGRAL HORSEPOWER)
AIRCRAFT
SUPERCHARGER
0.000025 IN.
o
o
6,000
12,000 18,000
SPEED (RPM)
24,000
Fig. 5-1 Flywheel Imbalance Displacement Vs. Engine Speed
5-5

-------
~
Tables 5-3 and 5-4 give various materials used for sliding bearings. Table 5-3 in-
cludes those materials used with "dry" bearings or, at least, where boundary lubrica-
tion exists. Table 5-4 is for full-film lubrication.
Boundary-lubricated bearing speed limits are commonly expressed in PV terms, that
is, load on the projected area of the bearing in psi multiplied by the surface velocity
in ft/min. Thus:
PV = P . a . v
where
p = material pressure limit (psi) (Table 5-3)
a = projected area (in. 2)
v = surface velocity (ft/min)
Using the limits for porous bronze, which has the highest listed PV value,
p
= 4,000 psi
= 1. 182 (ratio of diameter to length = 1)
a
v = (1. 18/12) . 24,000 = 7,380 ft/min
PV = 4, 000 x 1. 182 x 7,380 = 4, 120 x 104
This value for porous bronze far exceeds the 5 x 104 maximum limit expressed in the
Table 5-3. For this application, boundary-lubrication sliding bearings may have ade-
quate load capacity but fall far short in terms of speed requirement.
The bearing selection is thus between the full-film sliding bearing and the rolling ele-
ment bearing. Although speed limits on these two bearing types are imposed by differ.
ent mechanisms (Table 5-2) both have very high and approximately the same effective
upper speed limits. Full-film sliding bearings have turbulence and temperature
5-6

-------
~
Table 5-3
MATERIALS FOR SLEEVE BEARINGS(a)
 Maximum Maximum PV Maximum Cost(b)
 Operating
Material Load Speed Limit Temp. ($)
 (psi) (ft/min) (psi, ft/min) CF) 
Porous Bronze 4,000 1,500 50,000 150 0.11
Porous Iron 8,000 800 50,000 150 0.09
Teflon Fabric 60,000 50 25,000 500 0.04
Phenolic 6,000 2,500 15,000 200 0.05
Wood 6,000 2,000 15,000 150 0.40
Carbon Graphite 600 2,500 10,000 750 0.39
Reinforced Teflon 2,500 2,500 10,000 500 0.45
Nylon 1,000 1,000 3,000 200 0.04
Delrin 1,000 1,000 ,3,000 180 0.03
Lexan 1,000 1,000 3,000 220 0.05
Teflon 500 100 1,000 500 1. 00
(a) See Ref. 5-l.
(b) Cost figures are for a 1-in. sleeve bearing ordered in quantity.
Table 5-4
MATERIALS FOR OIL-FILM JOURNAL BEARINGS(a)
  Maxi-    
 Load- mum  Conform - Cor- 
Material Carrying Oper- Compat- ability and rosion Fatigue
Capacity ating ibility(b) Embedda- Resist- Strength (b)
 (psi) Temp.  bility(b) ance(b) 
  (0 F)    
Tin-Base Babbitt 800 to 1, 500 300 1 1 1 5
Lead-Base Babbitt 800to 1, 200 300 1 1 3 5
Alkali -Hardened Lead 1, 200 to 1, 500 500 2 1 5 5
Cadmium Base 1 ,500 to 2 , 000 500 1 2 5 4
Copper-Lead 1 , 500 to 2 500 350 2 2 5 3
Tin Bronze 4,000 500+ 5 5 2 1
Lead Bronze 3,000 to4, 000 450 3 4 4 2
Aluminum Alloy 4,000 250 4 3 1 2
Silver (Overplated) 4,000 500 2 3 1 1
Three-Component  225 to    
Bearings 2,000 to 4,000 300 1 2 2 2
(Babbitt Surfaced)     
(a) See Ref. 5-l.
(b) Numbers indicate material suitability, ranging from 1 (most) to 5 (least).
5-7

-------
~
limits which hold the surface speeds to about 20, 000 ft/min, and rolling element bear-
ings have centrifugal loads, ball control, and ball skidding limits which limit DN values
to under 1,500,000. DN is a speed factor used to gauge the suitability of rolling ele-
ment bearings to high speed applications; it is the bore diameter D in millimeters,
multiplied by the shaft rotational speed N in revolutions per minute. The DN num-
bers are thus surface speed values and are affected by bearing design characteristics,
which include surface finishes, retainer strength, friction properties, and internal
clearances. Each "standard" bearing could therefore be assigned a DN value which
establishes its upper speed limit. Table 5-5 lists general DN limits for ball and
roller bearings.
Table 5-5
SPEED LIMITS FOR BALL AND ROLLER BEARINGS(a)
Lubrication DN Limit
(mm x rpm)
OIL  
Conventional bearing designs 300, 000 to 350,000
Special finishes and separators 1,000, 000 to 1, 500, 000
GREASE  
Conventional bearing designs 250, 000 to 300,000
Silicone grease 150,000 to 200,000
Special finishes and separators  
High-speed greases 500,000 to 600,000
(a) See Ref. 5-1.
Another empirical formula used to define bearing speed limits is the T AC method de-
veloped by the engineers at the Marlin-Rockwell Division (MRC) of TRW, Inc. The
formula is as follows:
D' ~d3
TAC factor = 3
cos B
5-8

-------
~
where
D'
= bearing pitch, diameter (mm)
= bearing speed (rps)
= ball diameter (in.)
initial contact angle (deg)
N
d

B
This formula was derived from analysis of thousands of high-speed bearing applications
in aircraft engines and machine tools. It makes up for much of the shortcomings in the
DN factor system because it uses the bearing pitch diameter instead of the bore diame-
ter and, further, includes the ball size and contact angle as influencing factors. A TAC
factor as high as 31 x 108 is sometimes suggested for use in the absence of empirical
data. Figure 5-2 charts speeds obtained by using this limit. This figure is based on the
calculations contained in Appendix H. The figure also shows lower speeds based on a
lower TAC value chosen from an "experience chart" (Fig. 5-3). This experience chart
indicates that 7 x 108 is a more realistic value for the T AC value. The speed obtained
using 7 x 108 is the shorter of each pair of bars in Fig. 5-3. Each of these speed selec-
tion parameters has shortcomings, but each may be used for safely establishing an
approximate size.
The selection of a rolling bearing to support the flywheel shaft was based on detailed
evaluation of the characteristics summarized in Table 5-2, the speed limits, and the
following additional considerations:
. The rolling bearing is superior to the sliding bearings in producing minimum
drag at the flywheel operating speed.
. Although the transmission will have a pressure oil system to lubricate vital
parts, the complexity of the system to supply the large quantities of oil neces-
sary for a sliding bearing will add cost and weight. Sliding bearings are
poorest at start-up, especially at low temperatures.
. Rolling element bearings will tolerate a wider range of operating temperature
and are especially reliable for low-temperature start-up since they have low
breakaway torques.
5-9

-------
~~
-- 140
~
x 120
~
~
~ 100
>-
I-
U
~
4:
U
c
w
w
~
V)
C> 20
Z
~ 0
W
1:0
80
60'
40
SPEED AT DIN = 1.5 x 106
SPEED AT DN = 1.5 x 106
SPEED AT DN = 1 x 106
FLYWHEEL SPEED
13/64
9/32 5/16 7/16
BALL DIAMETER (IN.)
106 206
BEARING SERIES
406
11/16
1906
306
Fig. 5-2 Relationship of Bearing Speed Capacity to Ball Diameter
- TAC FACTOR x 104
IIIU DN VALUE x 104
25 MM BORE, 0.250 IN. BALL, 36 MM PITCH DIA.
210 MM BORE, 1.5625 IN. BALL, 285 MM PITCH D
40 MM BORE, 0.2760 IN. BALL, 54 MM PITCH DIA
25 MM BORE, 0.1969IN. BALL, 33.5 MM PITCH D
45 MM BORE, 0.250 IN. BALL, 56.7 MM PITCH DIA
75 MM BORE, 0.687 IN. BALL, 102 MM PITCH DIA
365 MM BORE, 0.7087 IN. BALL, 398 MM PITCH D
235 MM BORE, 0.9055 IN. BALL, 272.5 MM PITCH
190 MM BORE, 1.125 IN. BALL, 239 MM PITCH DIA
IA.    
.     
IA.    
 .    
.     
IA.    
  I   
 DIA.    
  I   
 .    
  I I I IlIIJ I 1111" I I 111111 111111 I 111111
10
100
1,000 10,000 100,000
TAC VALUE
Fig. 5-3 TAC Experience Chart
5-10

-------
~
Application of the AFBMA* life analysis methods (Appendix H) resulted in the size selec-
tion of a medium series Conrad type ball bearing with a nominal LIO life of 3,154 hr.
The basic bearing dimensions are as follows:
. Width
. Outer diameter
30 mm
16 mm
. Bore
. Ball Bearing
62 mm

5/16 in.
The prevailing higher-than-normal speeds necessitate the use of bearings manufactured
to better than ABEC-1 ** tolerances (See Ref. 5-2). However, instead of selecting a
standard super-precision bearing that would be costly, the manufacturing tolerances
are tailored to the application by specifying tight concentricity and roundness limits
only as necessary. In this way, bore, OD, and width tolerances will remain open, but
roundness of the diametral dimensions, race-to-face squareness, and conforming race-
way concentricities will provide running characteristics comparable to ABEC-5
bearings
SEALS
The rotary seal around the flywheel support shaft must minimize oil and air leakage
into the flywheel vacuum chamber to maximize flywheel efficiency and to permit the use
of reasonably small vacuum pump. The leakage rate is the primary factor in deter-
mining the pump size.
The importance of low leakage is illustrated in Fig. 5-4 which shows that only a 0.4 cfm
pump is required for pumping down the small volume and the added capacity require-
ment is proportional to air leakage. In other words, the smaller the leak, the smaller
the pump.
*Anti-Friction Bearing Manufacturers' Association, Inc.
** Annular Bearing Engineers' Committee
5-11

-------
~~
8
-
~
u..
U
-

>-
I-
o
~
<{
U
Q..
~
::>
Q..
~
::>
::>
u
~ 0.4
010
6
4
I
o
110 20 30 , 40
LEAKAGE LOAD (TORR-CFM)

I I I I I . I I
1. 32 2. 63 5. 26 7. 80
LEAKAGE ~TE (CFM -x 10-3)
Fig. 5-4 Pump Size Vs. Leakage Rate
Specific seal design requirements are as follows:
. Size Requirement.
- Shaft size = 1. 44 in. diam.
- Axial length = 0.75 in. max.
- Other diam. = as required
. OperatinJ:!: Requirements. Following are the governing operating conditions:
- Speed. Shaft rotation speed spectrum per the following:
% Time Speed (rpm)
5 24,000
5 22,000
15 20,000
35 18,000
20 14,000
10 12,000
10 8,000
5-12

-------
~~
. Temperatures.
- Ambient temperatures -250 F to 1150 F
- Operating temperature 2200 F (nom)
. Lubrication. (Not shown on drawings. )
- Splash from oil jets lubricating adjacent bearings
- Type of oils: SAE 10-30 or automatic transmission fluid
. Sealing Requirements.
- Pressure difference across seal = 15 psi
- Oil leakage rate
(1) 10 drops/day (maximum allowable)
(2) 5 drops/day (desired maximum)
- Allowable air leakage rate
(1) 0.1 cu ft/min (maximum allowable)
(2) 0.01 cu ft/min (desired maximum)
. Dimensional.
- Shaft end play: none (preloaded bearings)
- Shaft/housing runout: estimated at 0.002 in. TIR (maximum)
- Axial tolerance stackup: design for shimming within 0.001 in.
. Cooling Provision. None, other than recirculating oil used for bearing lubri-
cation and cooling
. Drag Torque.
- Static 0.24 lb-in. (max.) per seal
- Dynamic torque per seal
(1) O. 24 lb-in. (max.) at 24,000 rpm (required)
(2) 0.12 lb-in. (max.) at 24,000 rpm (desired)
. Life Requirements. 3,500 hr of operation per schedule shown above.
Available seal designs for rotating shafts fall into two major categories - contacting
and noncontacting seals. The noncontacting types are represented by the labyrinth seal
usually associated with fixed turbine installations. A brief evaluation of the labryrinth
5-13

-------
~~
seal revealed leakage to be excessive (see Appendix I) with respect to sealing the fly-
wheel housing vacuum chamber, and only contacting seals were therefore considered.
In the contacting category, a second major breakdown divides the contact type seals into
two types. The first is the lip seal with its sealing action provided by an interference
fit between a smooth rotating shaft surface and a flexible sealing element. The sealing
element is usually made of leather. or synthetic elastomers and the interference fit is
usually augmented by spring pressure provided by a garter type or finger type spring.
The second contact type seal is the "face seal" which creates dynamic sealing in a
plane vertical to the shaft axis. This type of seal has two parts - the seal cartridge,
consisting of the housing, end face (nose) element, and spring assembly; and the rubbing
ring, which is the mating element that provides a smooth flat sealing surface. For high
speeds, the end face is normally made of carbon and treated to reduce friction, and the
mating ring is made of close-grained cast iron or steel. Table 5-6 is a brief summary
of characteristics of the two groups of contact seals.
Table 5-6
SEAL CHARACTERISTICS
Parameter Lip Seals Face Seals
Nominal Speed Rating 0 to 3, 000 fpm 0 to 50,000 fpm
Life Good  Good to excellent
Dynamic Friction Good to poor Good to excellent
Cost Low  High
Ease of Replacement Good  Normal
Misalignment Excellent for axial Excellent for radial
Tolerances runout; good for runout; good for axial
 radial runout runout
Fluid Leakage 12 to 48 drops/day 2 to 3 drops/day
Gas Leakage   0.005 cfm
5-14

-------
~~d
In addition to the high-speed performance required of the seal, low air-leakage rates
and low horsepower absorption are necessary for maximum system efficiency. Dis-
cussions with seal manufacturers revealed that these parameters were considered
relatively unimportant for most applications, and that users rarely if ever specified
low drag or low gas-leakage rates in specifications.
Preliminary figures for power loss were obtained using the coefficient of friction of
carbon bearings and applying it to the following formula:
hp = p. J.I. . r. N
63,025
where
P =
J.I.
axial force (lb)
coefficient of friction
r
mean radius of seal nose (in.)
shaft speed (rpm)
N =
Values thus obtained (Appendix I) were used for all the preliminary flywheel seal losses.
Information on face seal air-leakage rates was also scarce. An estimate of o. 1 cfm
was made after discussions with several seal manufacturers. The paucity of informa-
tion prompted a seal test program aimed at determining true rates of seal leakage and
horsepower loss. The test results are presented in Appendix J and summarized in the
following paragraphs.
The seal used for the test program was a Cartriseal face seal (Part No. 1-1875-2).
The basic design characteristics for this seal are as follows:
. Outer diameter (in. )
. Inner diameter (in.)
. Overall length (in. )
2.505 ::I: 0.001

1. 795

0.739-0.734 installed
5-15

-------
~~
. Pressure side
. Nose load
Outer diameter
15 lb nom
. Nose material
. Rubbing ring material
. Rubbing ring flatness
. Spring force
Carbon

Steel
3 lightband He

5lb
Anticipated conditions were simulated by mounting the rubbing ring on a high-speed
spindle shaft and the cartridge into a cylindrical housing (as shown in Appendix J, Fig.
J -2) which was in turn mounted to a torque sensor unit. Flywheel housing volume was
simulated with a tank connected by ,laboratory vacuum hose to the cylindrical cartridge
housing. Test results showed the preliminary estim,ates of horsepower loss to be too
high. Leakage rates were also lower than estimated, resulting in the possible ultimate
use of a smaller vacuum pump. Tabulations of calculated leakage rates based on test
data, as a function of speed and nose loading, are given in Appendix J.
From the tests, it was concluded that a maximum leak rate. of 0.010 cfm is possible
with a standard face seal and that the drag loss will be approximately O. 5 hp per pair
of seals at 24,000 rpm.
These values are used in calculating seal losses and determining vacuum pump size
and power for the final baseline flywheel configuration.
VACUUM PUMP
A vacuum pump is required to maintain a low level of air pressure in the flywheel
housing to minimize flywheel power losses caused by air friction. This windage loss
is plotted for the baseline flywheel, as shown in Fig. 5-5, which illustrates that a
vacuum level of 0.01 atm (7.6 mm Hg) or better will keep windage losses below 0.5 hp.
A review of vacuum technology and available equipment shows that much has been done
in the low and high vacuum areas. Unfortunately, technology for the medium-vacuum,
5-16

-------
~
2
~ 1.5
J:
'-'"
V)
V)
o
...J
W
~
«
c
z
3: 0.5
o
o
10
20
30
PRESSURE (mm Hg)
Fig. 5-5 Windage Loss Vs. Pressure for an 0.5 kW-hr Car Flywheel
low-flow requirement of the flywheel falls in a limited use zone where few suitable
pumps are available.
The vacuum levels can be classed as follows:
. Low vacuum
. Medium vacuum
760 to 25 mm Hg
-3
25 to 10 mm Hg
-3
10 mm Hg and up
. High to ultrahigh vacuum
Commonly used vacuum systems fall into the low vacuum levels associated with the
needs of the processing or materiel-handling industries or into the high to ultrahigh
vacuum utilized in the laboratories to simulate space conditions.
The vacuum level required for the flywheel chamber ranges from 30 mm Hg down to
under 5 mm Hg, depending on flywheel and flywheel housing design. Industrial pumps
5-17

-------
t11
I
....
00
EXHAUST
INTAKE
VANE
-5 TO 50 CFM
760 TO 28 MM HG
ROTARY VANE
MECI1ANICAL PUMP
EXHAUST TO
ATMOSPHERE
INTAKE FROM
DIFFUSION OR
ROOTS PUMP
SYNCHRONIZED
COUNTERROTATING
LO BES
INLET FROM
VACUUM
CRAh\BER
DRIVE
SHAFT
OUTLET TO
FOREPUMP
ROTARY-PISTON
ECCENTRIC
FOLLOWER
CLOSE
CLEARANCE,
NO CONTACT I
NO OIL FILM
10 TO 1,200 CFM
760 MM HG TO 50fJ
80 TO 30,000 CFM
15 MM HG TO If!
ROTARY-PISTON
MECHAN ICAL PUMP
ROOTS-TYPE PUMP
Fig. 5-6 Types of Vacuum Pumps
INLET FROM
VACUUM CHAMBER
QJ~CHA~GE 1
TO FOREPUMP
OIL
60 TO 200,000 CFM
200 TO 10f!
OIL DIFFUSION PUMP

-------
~
are usually of the vane or piston types and the vacuum pressure level is limited to
about 28 to 29 in. of Hg, with shaft speeds seldom exceeding 3,500 rpm. Figure 5-6
shows the basic types of vacuum pumps that are commercially available. Pumps are
arranged from left-to-right in ascending order with respect to vacuum level capability.
The flywheel/transmission environment requires a simple, low-cost, maintenance-
free pump. Of those depicted in Fig. 5-6, the rotary vane comes closest to these
requirements. However, its lowest vacuum levels only approach the upper limits of
air pressure that can be tolerated within the flywheel housing. The others have the
necessary vacuum capability but are too complex, expensive, and heavy for effective
use on the transmission.
The final selection is the gerotor type mechanical pump shown in Fig. 5-7. It is a
lightweight, simple, mechanically-driven pump used successfully for many years as
a fluid pump for transmissions and hydraulic systems.
The operation of the pump is illustrated in Fig. 5-8. The pumping mechanism consists
of two elements, an inner rotor and outer rotor. The inner element always has one
less tooth than the outer.
The volume of the "missing tooth" multiplied by the number of driver teeth determines
the volume of fluid pumped at each revolution (cubic displacement per revolution). The
number of teeth may vary, depending on such design considerations as volume to be
pumped, speed, and available pump envelope, but the inner element always has one
less tooth than the outer.
As the toothed elements, mounted on fixed centers but eccentric to each other, turn,
the chamber between the teeth of the inner and outer elements gradually increases in
size through approximately 180 deg of each revolution until it reaches its maximum
size - equivalent to the full volume of the "missing t?oth." During this initial half of
the cycle, the gradually enlarging chamber is exposed to the suction port creating a
partial vacuum into which the liquid flows. During the subsequent 180 deg of the
5-19

-------
~~
INPUT
DRIVE
SPLINE
..
INLET PORT
Fig. 5-7 Gerotor Type Mechanical Pump - Cross Section
..
5-20
Fig. 5-8 Operating Cycle of Gerotor Pump

-------
~
revolution, the chamber gradually decreases in size as the teeth mesh and the fluid is
forced out the discharge port.
The pump configuration, consisting of an internal gear and mating rotor, provides
inherent advantages suited to the higher speeds associated with the flywheel transmis-
sion. Both elements revolve in the same direction and the relative speed between
them is proportional to the tooth ratio; thus, high shaft speeds result in low relative
pump element speeds. Rotor speeds of 7,000 to 8,000 rpm on medium-sized pumps
(Z-in. diam.) are common, and speeds approaching 60,000 rpm have been run suc-
cessfully on smaller units.
The basic sizing formula for the vacuum pump is
where
c
P
.6.T =

V =

PI

Pz =

Qo =

QZ =
c = Z. 3 (V) log (P I ) + Qo + Qz
p.6.T Pz P2
pump load capacity (cfm)
pumpdown time (min)
free volume in flywheel housing (ft3)
initial pressure (mm Hg, abs)
final or working vacuum pressure (mm Hg, abs)
outgassing load (Torr-cfm)
leakage load (Torr-cfm)
The baseline pump size using the formula is 3.54 cfm. Detailed pump claculations are
given in Appendix K.
The first term of the formula is governed primarily by the volume and pumpdown time.
It represents the pump size required if outgassing an<~ leakage are assumed to be zero.
The second part represents the pump size requirement due to outgassing and leakage.
The small outgassing surface areas involved and the type of materials used for the
5-21

-------
~~
flywheel and housing contribute to a negligible outgassing load, conservatively estimated
as O. 5 Torr-cfm. The leakage rate QL is the most important factor in sizing a pump
for a flywheel housing. A plot of pump size versus leakage rate is shown in Fig. 5-4.
Since the primary use of a gerotor type pump is for positive pressure, there was little
information available for its use as a vacuum pump. Discussions with engineering per-
sonnel representing the W. H. Nichols Company (Waltham, Mass.) provided the neces-
sary impetus for further investigation. Tests were conducted on a two-element pump
assembly at the Nichols Company and at the LMSC Ground Vehicle Test Facilities in
Sunnyvale, California (Ref. 5-3). The important parameters under test were as follows:
. Maximum vacuum level atta.ined
. Pumpdown time
. Driving power requirements
The tests simulated the conditions that a vacuum pump would encounter in a flywheel
transmission. The conclusion drawn from the test results is that the pump provides
the performance requirements necessary to make it acceptable for use as the vacuum
pump in the flywheel transmission. Test results are summarized in the following
paragraphs.
The pump sustains low air-pressure levels consistently under 5.0 mm Hg, and the
pumpdown time to 10 mm Hg never exceeded 25 sec, even at the lowest test run speed
of 5,200 rpm. Figure 5-9 shows a typical pumpdown time plot from the test recorder.
It should be noted that the pump used was not designed specifically for the application -
it was designed for use as a scavenger pump in a gas turbine. The only adaptation
made for pump operation was to provide approximately a 10-in. head of oil in a stand-
pipe on the discharge port. This ensured continuous lubrication for the rotors and
provided "oil sealing" between parts.
A special pump designed for the application would incorporate anti-friction bearings
on the shaft and positive lubrication of the rotor. In normal use of the gerotor-type
5-22

-------
..-. 760
CI
J:
E
..s
w
~ 460
VI
VI
W
0.:
D-
o.:
< 160
10
00
~
10
30
20
TIME (SEe)
Fig. 5-9 Recorder Data - Pumpdown-Rate Curve
pump (in a pressure or scavenging application), there is no need for these special
features because the fluid flow through the pump is sufficient to lubricate and to disperse
heat. However, as a vacuum pump, it does not have the oil flow necessary for lubri-
cation and cooling. A second set of pump elements, adjacent to the vacuum elements
and driven by the same shaft, could provide the necessary cooling for the vacuum
pumping elements. This second set of elements would be used as a low-pressure
lubrication pump or as a scavenge pump for the flywheel system and/or transmission.
PRELIMINARY FLYWHEEL DESIGNS
In order to assist the transmission contractors in the- task of integrating the flywheel
system into the overall transmission, preliminary designs were made of several
configurations.
5-23

-------
~~
The design of high energy density flywheels is covered in Ref. 1-1. The incorporation
of burst containment structures dictated a reduction in flywheel diameter in order to
comply with automotive space requirements. These space constraints vary with fly-
wheel location and orientation as shown in Figs. 5-10, 5-11, and 5-12.
Preliminary Flywheel Design 1, shown in Fig. 5-10, was configured for a horizontal
longitudinal axis at the back of a rear wheel drive transaxle. The relatively small
diameter is dictated by the road clearance angle of departure.
Figure 5-11 shows Preliminary Flywheel Design 2 which was configured for mounting
between the engine and the transmission with a through-hole for the engine driveshaft.
Preliminary Flywheel Design 3, shown in Fig. 5-12, is configured for mounting over a
rear transaxle. This flywheel design is the same as that of the flywheels built and tested
by LMSC under a previous EPA contract (Ref. 1-1).
Weight, power loss, and cost estimates for Preliminary Flywheel Designs 1, 2,
are given in Tables 5-7, 5-8, and 5-9, respectively. Calculations for flywheel
windage losses and pumping requirements are contained in Appendix G.
and 3
BASELIN E DESIGN
Mter completion of the studies and tests on flywheel ancillaries, a final baseline de-
sign was defined. Figure 5-13 shows a cross-sectional layout of the baseline flywheel
installation. The spin axis is horizontal and the power takeoff spline is on one end.
The flywheel is straddle-mounted between a pair of single-row, deep-groove, Conrad-
type ball bearings. The bearing mounting arrangement fixes the inner and outer races
of the bearing located to the right. The left bearing inner race is fixed to the shaft and
the outer race is spring-loaded to effect a face-to-f~ce duplex mounting arrangement.
This arrangement fixes the flywheel shaft while maintaining sufficient preload on the
5-24

-------
.' CONTAINMENT RING
~ FLYWHEEL
r--- HOUS ING
/
i
/
/
i
- BEARING B
i SEAL
/
/
/
I
. - ------------ - ---
--+
I
I
--- - -------
" ~SEAL

\ BEARING A
Fig. 5-10 Preliminary Flywheel Design 1
~
5-25

-------
~~
CONTAINMENT RING -. -
HOUSING --------
-~ ~--....
FLYWHEEL-
+
Fig. 5-11 Preliminary Flywheel Design 2
5-26
SEAL
BEARING B

-------
r CONTAINMENT RING

HOUSING
f FLYWHEEL
c.n
I
~
-1
- BEARING A
I BEARING B
------t-

~ SEAL
Fig. 5-12 Preliminary Flywheel Design 3 (Family Car)
-------
--

-------
~~
Table 5-7

FLYWHEEL ASSEMBLY DATA
PRELIMINARY FLYWHEEL DESIGN 1
(Based on Available Information Nov. 2, 1971)
1.
CONFIGURA TION
Flywheel 10.00 dial per LMSC Dwg. No. SK 20.2101
II. WEIGHT BREAKDOWN 
 Flywheel 161. 0 1b
 Contaimnent ring 30.15
 Bearing set "A" 0.90
 Bearing "B" 0.45
 Seal (2) 0.24
 Housing 26.9
 Housing covers 45.4
 Bearing Ret. Nut 0.21
 Vac pump element 0.46
 Misc 2.82
 Total 268.53 lb
III. POWER LOSS 
 28000 24000 Speed RPM  
 18000 12000 8000
Windage 1.722 1. 118 0.500 O. 161 0.052
Bearing 0.301 0.190 0.080 0.024 0.007
Seal (2) 0.224 0.192 0.144 0.096 0.064
Lube pump 0.016 0.016 0.016 0.016 0.016
Vac Pump 0.09 0.09 0.09 0.09 0.09
Total Loss (hp) 2.353 1 . 606 0.830 0.387 0.229
Conditions:
(1) 30 mm Hg press in housing
(2) Face type rotary seal
(3) Sea1leakage rate O. 1 cfm
(4) Vac pump capacity 3 cfm
5-28

-------
~
Table 5-7 (Cont.)
IV.
ESTIMATED UNIT COST
Flywheel 10.00" diameter per LMSC drawing no. SK-20-2l0l
Description
Flywheel
Containment ring
Bearing Set "A"
Bearing'IB"
Seal (2)
Housing
Housing covers
Bearing Retainment Nut
Vacuum Pump Element
Studs, Nuts, Washers, etc.
Assembly
Total Unit Cost
Production Quantities at:
100,000/year l,OOO,OOO/year
$ 43.51
11.44
8.00
4.00
7.70
10.90
19.00
.91
4.75
1. 91
1. 98
$114. 10
$ 42.30
10. 51
7.14
3.57
6.86
10.41
18.04
.82
4.23
1. 84
1. 50
$107.22
Initial Cost of Required
Machinery & Equipment $1,956,000.00
$10,580,000.00
Note: Above unit cost does not include profit.
5-29

-------
~
Table 5-8

FLYWHEEL ASSEMBLY DATA
PRELIMINARY FLYWHEEL DESIGN 2
(Based on Available Information Nov. 2, 1971)
1.
CONFIGURATION
Flywheel 13.06 dia per LMSC Dwg. No. SK 20-2102
II.
WEIGHT BREAKDOWN
Seal (2)
Housing ring
Housing cover (2)
Bearing nut
Vac pump element
Misc
86.161b
33.45
0.90
0.45
0.24
21. 67
40.50
0.21
0.46
2.82
186.86lb
Flywheel
Containment Ring
Bearing set "A"
Bearing "B"
In.
POWER LOSS
    Speed RPM  
  28000 24000 18000 12000 8000
Windage  3.112 2.021 0.903 0.290 0.093
Bearing  0.162 0.102 0.043 0.013 0.004
Seal (2)  0.224 0.192 0.144 o. 096 0.064
Lube pump  0.016 0.016 0.016 0.016 0.016
Vac pump  o. 09 0 o. 090 0.090 0.090 o. 090
Total Loss (hp) 3.604 2.421 1. 196 0.505 0.267
Conditions: (1) 30 mm Hg pressure in housing.  
 (2) Face type rotary seal.   
 (3) Sea1leakage rate O. 1 cfm   
 (4) Vac pump capacity 3 cfm   
   5-30   

-------
~/kd
Table 5-8 (Cont.)
IV.
ESTIMATED UNIT COST
Flywheel 13.06" diameter per LMSC Drawing No. SK-20-2102
De s c ri ption
Flywheel
Containment Ring
Bearing Set A
Bearing B
Seal (2)
Housing Ring
Housing Cover
Vacuum Pump Element

"
Bearing Retainment Nut
Studs, Nuts, Washers, etc.
Assembly
Total Unit Cost
Production Quantities at:
100,000/year 1, 000, OOO/year 
$25.60 $24.37
13.00 12.06
8.00 7.14
4.00 3.57
7.70 6.86
9.15 8.68
17.40 16.43
4.75 4.23
.91 .82
1. 51 1. 46
1.98 1.50
$94.00
$87.12
Initial cost of required
Machinery & Equipment $1,956,000.00
$10,580,000.00
Note: Above unit cost does not include profit
5-31

-------
~~
Table 5-9

FLYWHEEL ASSEMBLY DATA
PRELIMINARY FLYWHEEL DESIGN 3
(Based on Information Available on Nov. 2, 1971)
I.
CONFIGURA TION
Flywheel, 20.44 diameter per LMSC Drawing No. SK 20-2103
II. WEIGHT BREAKDOWN 
 Flywheel 44. 11 1b
 Containment ring 33.45
 Bearing set "A" 0.56
 Bearing" B" 0.28
 Seal (1) 0.12
 Housing 74.54
 Housing cover 71. 90
 Spacers 0.83
 Vac pump element 1. 84
 Bearing ret. nut .21
 Mise 2.00
 Total 229.84 1b
III. POWER LOSSES 
  Z8000 Speed RPM  
  Z4000 18000 1Z000 8000
Windage  3.201 2.076 0.922 0.296 0.095
Bearing  O. 112 0.071 0.030 o. 090 0.003
Seal (1)  0.113 0.096 0.072 0.048 0.032
Lube pump  0.016 0.016 0.016 0.016 0.016
Vac pump  0.247 0.247 0.247 0.247 0.247
Total Loss (hp) 3.689 2.506 1. 287 0.697 0.393
Conditions: (1) 5 mm Hg press in housing   
 (2) Face type rotary seal   
 (3) Seal leakage rate 0.1 cfm   
 (4) Vac pump capacity 13.0 cfm  
  5-32   

-------
~/4~
Table 5-9 (Cont.)
IV.
ESTIMATED UNIT COST
Flywheel 20.44" diameter per LMSC drawing no. SK-20-2103
Description
Fl ywhee1
Containment ring
Bearing set" A"
Bearing "B"
Seal (1)
Housing
Housing cover
Spacers
Bearing retainment nut
Vacuum pump element
Studs, nuts, washers, etc.
Assembly
Total Unit Cost
Initial cost of required
Machinery & Equipment
Production Quantities at:
100,OOO/year l,OOO,OOO/year
$ 15.50 $ 14.29
14.39 13.4S
8.00 7.14
4.00 3.57
3.85 3.43
26.61 26.13
27.74 26.79
.10 .10
.91 . 82
3.00 2.6K
1.71 1.63
1.98 1,50
$107.79 $101.53
$1,956,000.00
$10,580,000.00
Note: Above unit cost does not include profit.
5-33

-------
~~
  - 
  Q,) 
\  t
\ 
\ - 
 ~ 
  ~
  .....
  -
  Q,)
  UJ
  cd
  ~
  M
  ~
   I
  11:)
\  .
 bI)
~
5-34

-------
~
bearing so that the balls are in contact with the raceways eliminating the possibility of
ball skidding. Bearing tolerances are nominally ABEC 1 except for specified concen-
tricity and roundness limits. Outer diameter and width tolerances are loose but the
roundness, face-to-race squareness, and conforming raceway concentricity will pro-
vide the necessary high-speed running characteristics comparable to precision
ABEC 5 bearings. The ball retainer is a one-piece, outer-race-riding type particu-
larly suited for high speeds. Nominal LI0 life for each bearing is 3,157 hr based
on the use of 52100 vacuum degassed steels.
Vacuum sealing of the flywheel chamber at the shaft penetrations is accomplished by
the two carbon face seals.
Oil for lubricating and cooling the bearings and seals is taken from the transmission
lubrication system, and the vacuum pump (not shown on layout) is designed to be pad-
mounted and driven by the transmission or engine accessory drive system. One oil
jet per bearing is normally sufficient but two per bearing is used to provide redundancy
as insurance against oil starvation in case of a clogged oil jet. The oil jet orifice is
0.030 in. in diameter as a result of experience which establishes this as the smallest
practical jet diameter normally able to pass foreign materials, e. g., lint, metal par-
ticles, and products of wear commonly found in transmission oil systems.
The violent oil misting action created when the oil jet impinges the rotating bearing
race and balls supplies the seal lubrication. A very important feature of the flywheel
installation is the large drain passages provided to ensure thorough draining and scav-
enging of the "used oil" from the space surrounding the bearings and seals. This will
ensure against unwanted heat and absorption of power due to churning pockets of oil.
Weight, power loss, and cost data for the baseline flywheel system design are given in
Table 5-10.
5-35

-------
~
Table 5-10
FLYWHEEL ASSEMBLY DATA
BASELINE DESIGN
I.
CONFIGURA TION
Flywheel 13. 06 diameter per LMSC Drawing No. SK 20-2102
II. WEIGHT BREAKDOWN 
 Flywheel 86.00 lb
 Containment Ring 33.45
 Bearing "A" 0.50
 Bearing "B" 0.50
 Seal (2) 0.24
 Housing Ring 21. 67
 Housing Cover (2) 40.50
 Bearing Nut 0.21
 Vac Pump Element 0.46
 Miscellaneous 2.82
 Total 186.86 lb
III. POWER LOSS 
Item   Speed (rpm)  
 28,000 24,000 20,000 18,000 12,000 8,000
Windage 0.75 0.48 0.30 0.16 0.07 0.023
Bearing 0.074 0.052 0.036 0.024 0.014 0.001
Seals 0.520 0.46 0.400 0.34 0.28 0.22
Lubricating Pump 0.008 0.008 0.008 0.008 0.008 0.008
Vacuum Pump 0.323 0.323 0.323 0.323 0.323 0.323
Total Loss (hp) 1. 675 1. 323 1. 067 0.855 0.695 0.575
Conditions:
(1) Vacuum pressure = 5 mm Hg
(2) Pumpdown time = 30 sec
(3) Vacuum pump capacity = 3.54 cfm
(4) Seal leakage rate = 0.010 cfm/seal
5-36

-------
~4d
Table 5-10 (Cont.)
IV. ESTIMATED UNIT COST    
Flywheel 13. 06 in. diameter    
   Production Quantities at: 
 Description 100,000jyear 1,000,000jyear
 Flywheel $ 25.60 $ 24.37
 Containment Ring  13.00  12.06
 Bearing Set  8.00  7.14
 Seal (2)  7.70  6.86
 Housing Ring  9.15  8.68
 Housing Cover  17.40  16.43
 Vacuum Pump Element  4.75  4.23
 Bearing Retainment Nut  .91  .82
 Studs, Nuts, Washers, etc.  1. 51  1.46
 Assembly  1. 98  1. 50
 Total Unit Cost $ 90.00 $ 83.55
 Initial cost of required    
 Machinery & Equipment $1,956,000.00 $10,580,000.00
Note: Above unit cost does not include profit
5-37

-------
~
FLYWHEEL DRIVE SIZE, WEIGHT, AND COST
FLYWHEEL DRIVE SIZE
The preferred flywheel location is at the rear axle in the form of a transaxle arrange-
ment. Studies by the transmission contractors were in agreement with conclusions
reached earlier by LMSC (Ref. 1-1) that the propulsion system volume requirements
of the EPA Vehicle Design Goals (Appendix A) can be met with this approach.
FLYWHEEL DRIVE WEIGHT
By similarity, the estimated weight of the baseline flywheel assembly is approximately
that of preliminary flywheel assembly design No.2; i. e., 187 lb. The estimated
weight of the heavier Sundstrand transmission configuration (8C) is 238 lb. Assuming
a weight of 150 lb for a typical conventional three-speed automatic transmission, the
net weight increase of incorporating a flywheel drive system is 275 lb. This weight
increase is within the requirements of the EPA Vehicle Design Goal (Appendix A).
FLYWHEEL DRIVE COST
The estimated additional cost of the Sundstrand flywheel transmission over the con-
ventional three-speed automatic transmission is $84. The estimated cost of the fly-
wheel system is $100 plus or minus $15 depending on flywheel configuration. The net
additional cost of the flywheel drive over the conventional transmission is therefore
under $200. Other costs of ownership (maintenance, etc.) should be approximately
the same as for a conventional transmission. On this basis, the net cost of ownership
should be within the EPA Vehicle Design Goals (Appendix A).
5-38

-------
~
Section 6
COMPUTER-AIDED EMISSION ANALYSIS
One of the main objectives of the Flywheel Drive Study Program was to quantify, as
nearly as possible, the reduction in engine emissions that could be obtained through
use of the flywheel drive. Since insufficient engine emissions data were available, the
EPA assigned the task of obtaining this data to the U. S. Bureau of Mines Petroleum
Research Center (PRC), (Bartlesville, Oklahoma). The EPA also stipulated that mini-
mization of brake specific fuel consumption (bsfc) over the 1972 Federal Test Proce-
dure dyno cycle be used as an interim criterion.
8SFC ANALYSIS
A number of computer runs over the dyno cycle were made to determine bsfc for
various drive configurations. Input data on transmission efficiency were supplied by
Sundstrand Aviation. A list of the runs is presented in Table 6-1. From this list,
the effects of various drive system variations may be determined, as shown in
Table 6-2.
The torque-speed path followed by the engine is most critical; improvements in trans-
mission efficiency have much less effect on fuel economy. The incorporation of
energy storage into idealized (lossless) transmissions shows only a slight improve-
ment in fuel economy. If, however, the effects of engine transients on conventional
drives were taken into account, the actual improvement might be much more. The air
conditioning load has little effect on fuel economy. since bsfc drops with load.
The conventional transmission is shown as having a slightly better fuel economy than
the flywheel transmission. This is an important result, not only from the standpoint
of fuel economy per se but also because fuel economy'was used as an interim criterion
for emissions. There are, however, two engine phenomena which, because of a lack
of data, were not taken into account, namely, transient effects and torque-speed
requirements.
6-1

-------
Table 6-1
DYNO CYCLE FUEL ECONOMY OF VARIOUS DRIVE CONFIGURATIONS
~
I
l\:)
      ,
Computer Transmission Efficiency Flywheel Losses Accessories (a) Engine Speed MPGA
Run No. (hp at 24,000 rpm)
106 8A 1 2.746 B Curve X 8.86
107 8A 1 2.746 B Min. BSFC 13:48
108 8A 1 0 B Min. BSFC 14.45
108-1 8A 1 0 B w/o A/c Min. BSFC 16.10
109 8A Curve A 2.746 B Curve X 7.31
110 8A Curve A 2.746 B Curve Y 1059 8.12
111 8A Curve A 2.746 B Curve Z 800 9.24
112 8A Curve A 2.746 B w/o A/c Curve Y 8.74
114 8A 1 2.746 B Curve Y 10.73
113 8C Curve B 2.746 B(a) w/o A/c Curve Z 10.03
115 8C 1 2.746 B Curve Z 13.74
118 HMT Curve C N/A B(a)'w/o A/c Min. BSFC  10.58
119 HMT 1 N/A B(a) w/o A/c Min.BSFC 13.91
120 Automatic, Curve D N/A B(a) w/o A/c Curve W 11.14
 3-speed     
121 Automatic, 1 N/A B(a) w/o A/c Curve W 11.99
 3-speed     
(a) Per EP A Typical B Car.

-------
Table 6-2
EFFECTS OF TRANSMISSION VARIATIONS ON DYNO CYCLE FUEL ECONOMY
0)
I
\:.I:j
     Percent
    Difference Difference
   Computer in Average in Average
Variation From To Run No. (a) (mpg) (mpg)
Engine Operation Curve X Min. bsfc 106, 107 4.6 52.1
Transmission Efficiency Curve A 100% 106, 109 1.5 21. 2
Energy Storage Without With 119, 108-1 2.2 15.7
Air Conditioning With Without 108, 108-1 1.6 11. 4
Basic Type Conventional Flywheel 120, 113 -1.1 10.0
Flywheel Losses 2.746 hp at 24,000 rpm 0 107, 108 1.0 7.6
(a) See Table 6-1.

-------
~
In the first case, in stop-and-go driving, as in the dyno cycle, engine transient effects
degrade fuel economy under conventional transmission operation. These effects can be
essentially eliminated with the flywheel transmission by means of sufficient lag in
throttle operation. From the standpoint of emissions, a report by Minicars, Inc.
(Ref. 6-1), states that
"The most important design configuration during this hybrid investigation
is the concept of delaying the throttle in the carburetor of the ICE during
transient operation."
The report concludes,
"The hybrid power train does lower exhaust emissions. When carburetor
throttle is delayed during transient accelerations and deceleration, there
is a further reduction."
The second engine phenomenon not taken into account was the potential for emission
reduction with the flywheel drive which results from its lower peak power requirement
and its ability to function along a single line in the torque-speed plot. If the engine
were designed to operate only in this restrained manner, the design compromises
required for operation over a wide torque-speed area would be relieved, and it is
expected that bsfc (or emissions) might be further reduced, although there is no experi-
mental data to verify this.
Referring again to Table 6-2, the conventional transmission fuel economy is shown by
the fuel consumption being only 1.1 mpg higher than that of the flywheel transmission.
Considering the possible effects of the engine phenomena just discussed, it might be
concluded that the dyno cycle fuel economy of the flywheel transmission could be
expected to be roughly equivalent to that of the conventional transmission. Thus,
from the standpoint of fuel economy per se, the flywheel transmission might be con-
sidered competitive with the conventional transmission. From the standpoint of
emissions, using bsfc as an emissions criterion,' it would appear that the flywheel
transmission offers little or no potential for emission reduction in comparison with
the conventional transmission. Analysis of the first batch of actual engine emission
data from PRC, however, showed little correlation between bsfc and emissions. It
was therefore evident that valid conclusions regarding the emission reduction potential
of the flywheel drive will have to be based on actual engine emission data.
6-4

-------
~~
ANALYSIS OF PRC EMISSION DATA
Emissions analysis was performed on gasoline engine data submitted by the U. S.
Bureau of Mines, Petroleum Research Center (PRC), located in Bartlesville, Oklahoma.
These data were obtained by testing two Chevrolet, 350-CID engines, designated as
engines A and B. The emissions were measured at various values of engine speed,
percent power, air-fuel ratio, spark advance, and exhaust recirculation rate. They
were measured both upstream and downstream of an Engelhard catalyst. All data were
for steady-state operation of a warmed-up engine. The data, as received from PRC
and computer-formatted by LMSC, are presented in Appendix M.
The analysis was made on the basis of data transmitted to LMSC by the Bureau of
Mines Petroleum Research Center. (See Refs. 6-1 through 6-3.) The data thus pro-
vided may be summarized as follows:
. Ref. 6-1. Obtained through operation of engines A and B at 2,400 rpm and
at 10, 25, and 50 percent of maximum power (with and without Engelhard
catalyst effects), and with exhaust recirculation rates of 0, 50, and 100 per-
cent of maximum. A range of air-fuel ratios was investigated at spark-
advance values of 10, 20, and 30 deg BTC.
. Ref. 6-2. Obtained through operation of engines A and B at 1,600 rpm. and
at 10, 25, 50, and 90 percent of maximum power (with and without Engelhard
catalyst effects), and with exhaust recirculation rates of 0, 50, and 100 per-
cent of maximum. A range of air-fuel ratios was investigated at spark-advance
values of 10, 20, and 30 deg BTC.
. Ref. 6-3. Obtained through operation of engines A and Bat 1,200 rpm and
at 10, 25, 50, and 90 percent of maximum power (with and without Engelhard
catalyst effects), and with exhaust recirculation rates of 0, 50, and 100 per-
cent of maximum. A range of air-fuel ratios was investigated at spark-advance
values of 10, 20, and 30 deg BTC. Included in this material were data for
engine B operation at an idling speeed of 800 rpm, and knock-limited power
data for engines A and B over the range of the aforementioned operating
variables.
6-5

-------
~
ANALYSIS OBJECTIVES
The objectives of the emissions analysis were as follows:

. Determine the rates of HC, CO, and NO emissions in the test engine steady-
x
state operation
. Evaluate the ability of the engine to function at a single operating point in a
hybrid-heat-engine/flywheel vehicle so that emissions are minimized
. Examine, by means of computerized sorting and plotting techniques, the sen-
sitivity of engine emissions to the several operating variables, and determine
preferred operating areas
. Identify areas for further engine emission testing which offer a potential for
values of emissions lower than those already obtained.
EPA 1976 EMISSION LIMITS
The EPA-established emission limits for 1976 are as follows:
. CO
. HC
. NO
x
3.4 g/mi
0.41 g/mi
0.4 g/mi
These emission limits are based on operation over the dyno driving cycle and must
be maintained at or below these levels for 50,000 miles. (See Ref. 6-5.) In order to
facilitate a comparison of the PRC emissions data with these emission limits, the
latter were converted from g/mi into g/hp-hr. To this end, a ~omputer-simulated
run was made of a median weight (4,300 lb) family car in accordance with the estab-
lished vehicle design goals (Appendix A). The vehicle was considered as being equipped
with a hydrostatic power-splitting flywheel transmission (Sundstrand version 8C). The
simulation was over the dyno driving cycle. The average energy output from the en-
gine was 0.816 hp-hr/mi. Thus the 1976 emission limits, expressed in g/mi, were
divided by 0.816 hp-hr /mi, and thereby translated into g /hp-hr as shown below:
6-6

-------
~
. co
. HC
. NO
x
4. 16 g/hp-hr
0.503 g/hp-hr
0.49 g/hp-hr
These conversions are only valid for steady-state engine operation and do not include
any cold start effects, and therefore should be used with caution.
GENERAL EXAMINATION OF DATA
Examination of the entire mass of data reveals a number of points at which the CO
and HC values are simultaneously below the converted 1976 emission levels. Only
two points exist (in engine B data) at which the NO is equal to or below the converted
x
1976 levels; but at these points, the CO and HC are many times higher than their
respective converted levels. Therefore, the data do not offer any point at which
the converted emissions levels are met simultaneously by the three pollutants.
The concentrations of CO, HC, and NO do not respond in similar ways to changes
x
in spark advance or air-fuel ratio.
The data for engines A and B indicate a very significant difference between their
respective emissions characteristics. In general, engine A emissions are lower
than those of engine B, except at 90 percent power where the reverse occurs. An
examination of engine A data, both untreated and with catalyst, and with 100 percent
recirculation, indicates the following trends of emissions:
. As speed decreases; CO decreases, HC increases, and NO
x
decreases.

. As power decreases; CO decreases, HC decreases, and NO
x
decreases.
Computer sorts and plots were made to determine wp.ether correlation exists in gen-
eral between emission rates and specific fuel consumption (SFC). The results are
6-7

-------
~
shown in the plots of Figs. 6-1 through 6-6, for engines A and B, for CO, HC, and NO ,
x
respectively. In Figs. 6-5 and 6-6, the specific emission is plotted against the inverse

of the SFC. The following indications are apparent:
. Emission rates are not much related to SFC.
. The use of a catalyst results in a very significant reduction in CO emission.
. The use of a catalyst results in a reduction in HC emission, but to a less
significant degree than that which occurs in the case of CO.
. The use of a catalyst appears to result in slightly higher NO emissions.
x
This observation is more readily seen by inspection of the raw data.
Examination of the data mass shows significant reduction in NO emission with the
x
introduction of exhaust recirculation, but a corresponding increase in CO and HC

emissions.
Appendix N shows computer-calculated values at an engine sJ:eed of 2,400 rpm, of the
ratio of specific emission to SFC for all data points transmitted in Ref. 6-1. Appen-
dix M shows the engine data used in these calculations. The wide variation in the
values of this ratio demonstrates the poor correlation between specific emissions and
SFC. Because of this poor correlation, further calculations of this nature were not
made for the data from Refs. 6-2 and 6-3.
A computerized sort was made to examine the correlation of CO, HC, NO , and SFC
x
to the measured air-fuel ratio. This sort is shown in Appendix O. Although some
general trends for CO, HC, and NO are seen to occur with increasing air-fuel ratio,
x
they are not similar for the three types of emission, nor are they dependent upon air-
fuel ratio to the exclusion of other engine operating variables. The pronounced dif-
ference in emissions between engines A and B under identical operating conditions may
be seen in this sort.
DETERMINATION OF PREFERRED OPERATING POINTS
As mentioned previously, there are no points at which values of the emissions si-

multaneously fell within the converted 1976 emission levels. Furthermore the
,
minima or near minima for the three emissions are not coincident. In an attempt to
6-8

-------
               + With Catalyst   
               0 Without Catalyst  
  ~    +        0     
  .                 
  N   ..  0      0      
 A    +    0          
    +t- 0    0        
 £r    ++0          0 0 
    + +     0    
 Ie   -t.:'F~  0           
   ++        0 0     
 I .          0     
 N   +  0            
 Il.    +        0      
    i"it-   0  0    0     
 I    it: 0  0 0  0         
 'Id   +       0       
   .tIt  0 0  CtJ         
 Ulri   +: DO           
   +           
 dJ    +    0          
 ..J  . + 0             
~ V    l~dJD 8J           
I 0      B       
I;D             
  .. ;t::I0CtJ 0  0    0     
 u"   ~ 0 0           
 lJ.. . i ~ 0 0           
  jjJ~ 0    0        
 Ul..,  ~ [:tlW [] 0 DO           
  .                 
   .               
  0                 
             . . . .   
   C    20     ...0 60 i!50 100 120 ~
        C:~  (5MS/HP-HR> EN5-R 
      Fig. 6-1 Specific Fuel Consumption (SFC) Vs. CO Emissions - Engine A 
       ~

-------
     +   0    + With Catalyst
   .           0 Without Catalyst
          o    
  lJI   +       0 
  ..  +   0    
  N   + 0      
 A    +      O
n:  .  ++ 0     0 
    ~+Orn    0  
 I c   0   ~ 0
 I .  IE -:It-         0
 N   ++   0    0 0
 .0...   'if. 0 0     
 I   * 0  0    
   + 0      
 "-lJI  +  0 0     0 
 Ul rf. t  0 0 0      
 T       
 ~   +        0  
   ~  lED      
 ~   .:#=O   0 0 0   
C) V   t* 0 0   bI  
I C  @  
I--'       
0  .. ~,O 0 0   
 Uri     
  I 0 0      
 u...   i tJ DO  0    
 Ul 1/1   ~ B 0  DO 0   
  . .           
C
.
.
.
.
.
.
.
C
2C
'+-C
6C
SC
J.CC
J.2C
C~
<5M5/HP-HR)
EN5-~
Fig. 6-2 Specific Fuel Consumption (SFC) Vs. CO Emissions - Engine B

-------
            + With Catalyst 
            0 Without Catalyst 
  III          +
  .           
  N  +  0   +    
 A      +     O
n:  + 0      +  
  ijJ        0 +
      +    
 I  iEI .tJ +   D      
 0     +    
 I .      +    +
 N  +  0       
 [l        +    
  .1-0   +    D  + 
 I  +-£]0 +  +  0   
 "         +   
 III + ++0 0  0    
   +     
 Ln .   g        
 ~ ++        
 dJ  +         
~ -1            
I            
...... V 0    +-P 0+    0  
......        0 
  .      ++ +    
  ~     !DJ  0   
 U          
 lJ...            
 Ln      0 0   0 
 111          
o
.
o
:1.
:2
:3
It-
~
6
7
IS
9
:1.0
He
<5M5/HP-HR)
EN5-R
Fig. 6-3 Specific Fuel Consumption (SFC) Vs. HC Emissions - Engine A

-------
          + With Catalyst  
          0 Without Catalyst  .,.
  IJI         -I-  
  .    -I-      
  N     0    
    -I-   0    
 A            
 Er  .  +  0    
       -I- 
 I   .J. 0  0 -I-    0
 C   rn       .1.
 I .          
 N      -I-   + 0 
 0...   "  'r.b   B   
 I    '1:  0 -I-   
         0   
 " 1JI     'b    dJ  
 lJl '   -I-     0   
 M    -I- 0 0    
 dJ     "    0   
 -I   .f-.j- 0  .~    
0')        + +
I   .! 0   
J-& V   -I-  0 +1-    i
t\:) C      0
   .~ 0 .   
  '. .. 0   +  
  r-I  .,'- i- 0 rn  
 U   :ltf*!fJ!o 0    
     +. ICJ   
 U.  . _0       
  '- QJ      
    = -I-  0
 lJl   '. :.~ ~ d£!jJ 0+00 0
 Lit    
o
.
.
.
.
.
.
.
D
J.
:2
:5
If-
~
6
7
'5
9
J.O
HC
<5M5/HP-HR)
EN5-EJ
Fig. 6-4 Specific Fuel Consumption (SFC) Vs. HC Emissions - Engine B

-------
[J
N
A
dJli!
..JM
"
Er
I
I
[l~
In
v
~
I
I-'
I:A:)
U
LL
UlIJI
"-
rI
.EJ

rn 0

D&? [i-
S-Of' O' []t-
O-+- 01-

O~-
s-rn
rn

rn
g. -+- 0
+0
+ 0
+ With Catalyst
o Without Catalyst
+
+0
.EJ
-to
,8
.tIEJ rn 0
-+- 0
-+- 0
o
-+-
ill '+0
iffim
-+-
~-f:F rn . Of-.!j
o~rril-- o EjJQ1-
-UCft]
-+- 0
0+
+
.tq, rn [1J 0
~ .t-'S-+- d!t. B
'tJ m.
'Hg]-~£?" m-+-ctto+ ill
5'"' ~ ffi
+
o
rn
o
o
.
.
.
.
o
s:
10
N[21~
<5M5/HP-HR)
ENG-R
15'
20
Fig. 6-5 Specific Fuel Consumption (SFC) Vs. NO Emissions - Engine A
x
~
~

-------
o
.
N
          & IE -i£J
 A     D+ 0+ IE    
 dJ LI!.   0+        
    ~tt-   IE     
   0   [3-     
 ..JM      [3-       
 "    DI-     DH-O  
         IE    
 Er      G-      
 .            tJ~o
 I          -to +
     H3 %- -EI IE    
 I       +0    
 [it!  0 -+- 0 -+- 08+  ffi      
 IM  b1 +~ .p+ 0+-        
 V   a+++  0+        
0')     Of- IE        
I U '        + 0  
I-'        +0    
.;:.     IE      
 u..    +0+£1] + 0+ + do+-    
 UlU1   0        
   W ~ 0+0 +    
 " .. EJ 1-++ $+8b +       
 H   0+ 0 mO        
o
.
+ With Catalyst
OWithout Catalyst
G-
G-
20
.
.
.
o
s:
10
N~x
(GMS/HP-HR)
IE+O
--.-
.
1S:
ENG-~
Fig. 6-6 Specific Fuel Consumption (SFC) Vs. NO Emissions - Engine B
x
.

-------
~~
gauge the total emissions, the concept of total weighted emissions (TWE) comparison
was employed. In this concept, the value of each emission rate at a given test point
was divided by its respective converted 1976 emission level, and the sum of the
resultant three quotients was defined as the TWE for that test point. A comparison
of the TWE was then made for all the test points.
Appendix P is a computer sort by percent power and speed in increasing order of TWE
for the test points. Since the primary function of this sort was to identify the preferred
operating points, upper limits were placed on the TWE values to be printed out. There-
fore, only TWE values below 19 at 1,200 rpm flywheel speed, 12 at 1,600 rpm, and
17 at 2,400 rpm are shown. This makes possible the identification of preferred opera-
ting points for the engines, based on minimum TWE.
Contours of minimum TWE and contours of CO, HC, and NO at minimum TWE versus
x
engine speed and power are shown for engine A in Figs. 6-7 through 6-10, and for
engine B in Figs. 6-11 through 6-14. Each of these contours is based on only 12 data
points; speeds of 1200, 1600, and 2400 rpm; and percent power values of 10, 25, 50,
and 90 percent. The method of interpolation (and extrapolation to 800 rpm) involved,
first, the use of a perfect fit binomial to interpolate (and extrapolate) specific emis-
sions as a function of speed. Computer plots of these interpolation curves are given
in Appendix Q.
A linear interpolation then was used between these curve values of emissions to yield
emissions at the desired value of percent power. This interpolation method is illus-
trated graphically in Figs. 6-15 through 6-18; these are perspective views of the con-
tours of Figs. 6-7 through 6-10, respectively.
ENGINE EMISSIONS OVER DYNO DRIVING CYCLE*
Minimum TWE values were used as a criterion to determine the proximity of approach
to the converted 1976 emissions levels. For this purpose, the line of minimum TWE
versus power for engine A over the power-speed-emissions plot shown in Fig. 6-10
was determined. The corresponding values of CO, HC, and NO for each power-speed
x
*Cold start effects are not included.
6-15

-------
~~
~ 
~ HC
~
~ 
~.. 
~ 
~ 
~ z
~ 
~ I
~
~ 
~ 
/200 /600
SPEED, RPM
2400
Fig. 6-7 HC Contour - Engine A
~  
~ CO ~t~
~  
-------
~
~
'S.
~ /6
~..
~
~
~
~
~
~
~
8
Fig. 6-9 NO Contour - Engine A
x
~
~
~
~ 4
'G
~
~
~ 2
~
roTAL
WGI8KTED
EMISSIONS
......

~
"
1200 1600 2400
SPEED. RPM
Fig. 6-10 TWE Contour - Engine A
6-17
~d

-------
~
~
g.,
14
~
~
~
~
~ 2
~
~
~
~
~
~
~ It
~
~
~ 8
t}
I
'Q
~ 4-
~
~
~
HC
/200 /600
SPEED, ~PM
2400
Fig. 6 -11 HC Contour - Engine B
CO ~t"
+f'
/200 "00
SP££I), RPM
2400
Fig. 6 -12 CO Contour - Engine B
6-18

-------
~
~
~
<5
~
~
~ 8
~
~ 4
~
~
~
~
~
~ /'1,
~
~ 8
~
~
~ 4-
.....
~
~
~
NOx
1/'
/
/
1200 /600
SPEED, RPM
2400
Fig. 6-13 NO Contour - Engine B
x
/200 1600
SPEED, RPM
Fig. 6-14 TWE Contour - Engine B
6-19

-------
~~
t SPECIFIC EMISSION
SPEED (RPM)
Fig. 6-15 CO Emission Contour, Engine A - Interpolation Perspective
SPECIFIC EMISSION
800-
1,200--
1,600--

SPEED (RPM)
..........

~ ~ ~80
'---- ~ 60
'---- ~ ~40
2,400-- ~ ~20
PERCENT POWER
Fig. 6-16 HC Emission Contour, Engine A- Interpolation Perspective
6-20

-------
800 --

1,200 --

1,600 --
~d'
SPECIFIC EMISSION
SPEED (RPM)
-----
~ -"""""""60
---- ---- 40
2,400 --............. ---- 20
PERCENT POWER
Fig. 6-17 NO Emission Contour, Engine A .:.- Interpolation Perspective
x
SPECIFIC EMISSION
SPEED (RPM)
~
-------- -------- 80
-------- ~60
---- ~40
2,400--............... -"""""""20 PERCENT POWER
Fig. 6-18 Total Weighted Emissions Contour, Engine A - Interpolation Perspective
6-21

-------
~
combination were then determined. The cumulative weight (g) of each emission con-
stituent over the driving cycle was divided by driving-cycle total mileage, and then
divided by the converted 1976 emission levels (g /mi) to obtain the ratio of each emis-
sion constituent of engine A to its respective 1976 level. A cumulative index of proxi-
mity to the standard was obtained by summing the individual constituent ratios and
dividing by the number of constituents. Thus, if each of the three constituents (CO,
HC, and NO ) is exactly equal to its respective level, a value of 1. 0 is obtained for the
x
cumulative index, thus indicating equivalency to the 1976 levels. The higher the cumu-
lative index value is above 1. 0, the greater the cumulative emissions excess over the
converted 1976 levels.
This procedure was followed for a 4, 300-lb family c,ar (see Appendix A) employing
(1) a Sundstrand version 8C flywheel transmission, and (2) a conventional three-speed
automatic transmission. In both cases there was an oxidation catalyst and exhaust
gas recirculation, but no NO catalyst. The emission values over the driving cycle
x
are as follows:
  Constituent Concentration (g/mi) * 
Drive CO HC NO
   x
Conventional, Three-Speed, 0.95 0.393 3.98
Automatic Transmission   
Flywheel Transmission 1.12 0.378 1. 21
When these values are divided by the 1976 levels (see p. 6-6), the resulting constituent
ratios and cumulative index values are as follows:
 Constituent Ratio (g /mi) /(1976 level g/mi) Cumulative
Drive   
 CO HC NO Index
   x 
Conventional, Three-Speed, 0.28 0.96 9.94 3.73
Automatic Transmission    
Flywheel Transmission 0.33 0.92 3.03 1.43
*No cold start.
6-22

-------
~
The emission characteristics of the flywheel drive vehicle are seen in the lower NO
x
and cumulative index values.
Because of lack of data, the following were neglected:
. Effects of engine transients inherent in conventional transmission operation
. Cold-start effects
CONCLUSIONS
The following conclusions have been reached as a result of the engine data analyses:
. There is little correlation between specific emissions and SFC.
. Between two engines of the same model there can be, under controlled test
conditions, very significant differences in emission rates and trends.
. All minimum TWE points occur with the use of the Engelhard catalyst and at
either 50 percent or 100 percent of maximum exhaust recirculation rate.
. Over the range of test conditions, with either engine, minimum TWE gener-
ally occurs at air-fuel ratios in the vicinity of stoichiometric.
. No single test condition resulted in emissions rates that satisfied the 1976
requirements.
. When using the hybrid drive system over the dyno driving cycle, theoretical
emissions characteristics are significantly lower than such theoretical
characteristics when the conventional three-speed automatic transmission
is employed.
. Engine data with better resolution might well reveal areas of emissions.
(The data interpolation hither-to employed is believed to be conservative.)
RECOMMENDA TlONS
A survey of the points of minimum TWE and of "second-best" points, as revealed by
Appendix P, and a review of the raw data corresponding to these points, suggests
further investigation at other speeds and power levels near the estimated points of
minimum TWE. For these points, it is recommended that the range of exhaust gas
recirculation rates of 0, 25, 50, 75, and 100 percent of maximum be investigated.
6-23

-------
~~
Investigation of air-fuel ratios below stoichiometric would seem to be indicated, but
communication with PRC reveals that lower air-fuel ratios would be incompatible with
the capabilities and the limits of the Engelhard catalyst.
6-24

-------
~
Sectio n 7
TECHNOLOGY APPLICATION
Many techniques directly usable in activities utilizing a wide range of advanced auto-
motive drive systems have been developed, demonstrated, and evaluated in the Fly-
wheel Hybrid Drive Systems Study. These techniques may be applicable to other
activities in the AAPS Program. These technologies (described in detail in preced-
ing sections) are examined from the standpoint of continuing usefulness to EPA /OAP
(and to other U. S. Government agencies) in areas other than the kinetic energy sys-
tems for which they were developed.
COMPUTER-AIDED EMISSION ANALYSIS
The methodologies and computer programs, as developed by LMSC in the preceding
EPA/OAP contract (Ref. 1-1), augmented by the work described in Section 6 of this
report are immediately applicable to a broad spectrum of automotive emission con-
trol programs. The existing techniques have proved their usefulness in engine emis-
sion analysis and mapping as well as in the simulated operation of various automotive
drive configurations over the dyno cycle.
ENGINE EMISSION ANALYSIS
The meaningful redirection and analysis of the large mass of raw data from engine
emission mapping tests (such as those performed by LMSC for the tests conducted by
the U. S. Bureau of Mines, Petroleum Research Center, as described in Section 6)
were useful in this study and may be useful in the study of any type of engine under
consideration by EPA/OAP.
These existing techniques and programs can be used for rapid focusing of an emis-
sion analysis program on the most promising engine operating conditions for improve-
ment in any particular emission as well as in total weighted emissions.
7-1

-------
~~
The interactive use of the LMSC methodology in a mapping program thus reduces the
required number of measured engine operating points but provides, at the same time,
a more precise map of the most desirable engine operating regions. In addition, the
LMSC program can be used to obtain two- or three-dimensional plots of individual
emissions or of weighted combinations of emissions. The computer-aided techniques
are applicable to emissions analysis of any engine type (e.g., Otto, Diesel, Rankine,
Brayton, or other types).
SIMULATED FEDERAL DRIVING CYCLE OPERATION
The computer programs which are now available at LMSC can be used to calculate
the specific and weighted emissions resulting from the operation of any conventional
or unconventional automotive propulsion system over the dyno cycle. The program
is in such a form that the loading into the computer of engine emission maps, together
with transmission and vehicle characteristics, will permit direct calculations of
specific emissions (in terms of g /mi) and specific fuel consumption (SFC) for dyno
operations. This program, however, would need modification to include the 1975
Federal Test Procedure (hot/cold weighting) and to estimate cold start effects.
Comparative and sensitivity studies can be readily conducted using this program to
assess the operational benefits resulting from the following propulsion system varia-
tions and their many combinations and permutations:
. Engine types
. Engine operating conditions
. Exhaust conditioning
. Transmission characteristics
. Vehicle weight, rolling resistance, and drag
. Vehicle accessories
. Fuel types
7-2

-------
~~
The LMSC program can also provide specific emission and fuel consumption calcula-
tions for driving cycles and conditions other than those represented by the dyno cycle.
SAFETY ANALYSIS
The safety analysis methodology developed in the Flywheel Drive Systems Study in-
volves the use of fault tree and gross hazard analysis (see Section 4). These tech-
niques can be applied to any conventional or unconventional propulsion system. Ex-
tensive use of these techniques in automotive systems has been made by the U. S.
Department of Transportation, National Highway Traffic Safety Administration
(NHTSA). The application of fault tree and gross hazard analysis methodologies
will eventually be required for all new vehicle systems which fall under NHTSA cog-
nizance. On this basis, the methodologies and analysis techniques developed by LMSC
for EPA/OAP can be applied directly to safety analysis for any unconventional auto-
motive propulsion system. In addition, the technique of relative safety evaluation
described in Section 4 is particularly useful in determination of the relative hazards
associated with the modification of automotive systems by change to unconventional
means of propulsion.
HIGH SPEED SEALS AND BEARINGS
The design studies and testing conducted on seals and bearings suitable for high -speed
flywheels (described in Section 5) are directly applicable to unconventional propulsion
systems in which high speed rotating equipment is utilized. The bearing and seal
requirements of gas and steam turbines are similar to those analyzed for high energy
density flywheels. In addition, the seal and bearing test techniques and testing fixtures
developed by LMSC for the Flywheel Drive Systems Study are now available for quanti-
tative performance evaluation and comparison of various types of seals and bearings.
This test capability provides a means for conducting rotational tests up to 36,000 rpm
with controllable side loading and precise torque, speed, and temperature measurement.
7-3

-------
~~
BURST CONTAINMENT
The flywheel burst dynamics analysis and containment testing described in Section 3
has resulted in new insights and techniques for the positive containment of high speed
rotating machinery. The applicability of these technologies to, for example, the
Brayton and Rankine cycle turbine elements, is clear.
ENGINE FLYWHEELS
,
The computer-aided flywheel design methodology developed as part of the EPA/OAP
flywheel programs appears to be useful in the design and optimization of torsional
stabilizing flywheels for various unconventional engine systems. The use of the
existing computer program for design of such flywheels can result in significant
improvement in engine weight and performance by fully utilizing the flywheel material.
7-4

-------
~~
Section 8
CONCLUSIONS AND RECOMMENDATIONS
The overall conclusion of the Flywheel Drive Systems Study is that the flywheel drive
continues to appear to be a technically feasible means of emission reduction for the
family car. Computer-aided emissions analysis did not indicate that the flywheel
drive system could meet future stringent requirements. On the basis of certain assump.
tions, NO emissions with the flywheel drive were less than one-third of those produced
x
with the conventional automatic transmission. Nevertheless, the available data on
engine emissions were not sufficient to permit an accurate evaluation of the flywheel
drive as a cost-effective means of emission reduction. Additional engine emission
measurements should be made with dynamometer simulation of engine load over the
dyno cycle for a conventional automatic transmission and for various configurations of
the flywheel transmission so as to provide an accurate determination of emission reduc-
tions. Development of flywheel drive transmissions should be postponed until more
definitive results of the emission reduction potentials of the flywheel drive are obtained.
Specific conclusions and recommendations arising from this study are as follows:
(1) A comparative analysis of engine emissions with a flywheel drive, as con-
trasted with a conventional three-speed automatic transmission, shows that
some emission reductions occur on a total emissions basis, but future emis-
sion levels were not met using these particular data.
(2) Fuel economy over the dyno cycle for the flywheel transmission should be
roughly equivalent to that of a conventional transmission.
(3) The estimated cost of ownership, size, and weight of a family car flywheel
drive fall within the established EPA/OAP Vehicle Design Goals.
(4) The projected production cost of complete family car flywheel assemblies
is $100, plus or minus $15 depending on flywheel configuration; this is within
previous estimates (Ref. 1).
(5) All the elements of a practical family car flywheel assembly are now avail-
able without further technology development.
8-1

-------
~
(6) Early estimates of flywheel system losses as provided to the transmission
contractors have been proved by hardware testing to be highly conservative.
Flywheel windage, bearing, seal, and vacuum pump losses are substantially
lower than earlier predictions.
(7) Prevention of flywheel burst due to overspeed can be obtained by allowing
the flywheel to grow plastically into the containment ring. Total contain-
ment of a flywheel burst at energy levels representative of what might be
the case for a full size vehicle were not successfully demonstrated with
lightweight, low cost materials. Containment of a burst at 0.86 hp-hr was
demonstrated with a 192-lb steel ring and at 0.46 hp-hr with a 167-lb com-
posite ring.
(8) The flywheel drive can provide safe family: car propulsion if enough care is
taken in systems and component design.
(9) Additional engine emission measurements should be made with dynamometer
simulation of engine load over the dyno driving cycle for both a conventional
automatic transmission and for various configurations of the flywheel trans-
mission so as to provide an accurate determination of emission reductions.
(10) Development of flywheel drive transmissions should be postponed until more
definitive results of the emission reduction potentials of the flywheel drive
are obtained.
8-2

-------
~eaC
Section 9
FUTURE PROGRAM PLANS
The results of the Flywheel Drive Systems Study show that the flywheel drive continues
to be a technically feasible means of obtaining some emission reduction for the family
car. However, sufficient engine emission data were not available to allow an accurate
quantitative assessment of the reduction in engine emissions brought about by the
employment of a flywheel drive. In order to judge whether further development of
flywheel drives is justified, it is essential to gather and evaluate definitive data on
engine emissions. Engine emission measurements should be made with dynamometer
simulation of engine load over the dyno cycle for various configurations of a flywheel
transmission and for a reference conventional automatic transmission. Following is
a plan for a program to provide a valid determination as to the merit of continued
development of the flywheel drive as a means of emission reduction for the family
car.
FLYWHEEL DRIVE EMISSION STUDY PROGRAM
OBJECTIVE
The purpose of the program is to provide a sufficiently realistic and accurate quan-
titative assessment of the reduction in engine emission brought about by the employ-
ment of a flywheel drive so as to permit a valid determination regarding the merit of
its continued development as a means of emission reduction for the family car.
METHOD
Measurement would be made of engine emissions using dynamometer-simulated dyno
driving cycle loads. This approach will assure that such effects as cold start, tran-
sients, etc. , will be taken into account.
9-1

-------
~~
DURA TION
The program, as planned, would require an approximate 10-montheffort.
TASKS
The following tasks would be undertaken:
(1) Conduct engine emission testing in conjunction with a computer-aided
search for the best (lowest emission) engine steady-state operating points
for three types of transmission - flywheel transmission, infinite ratio (no
energy storage) transmission, and conventional automatic transmission.
Conduct tests with and without one or more catalytic and/or thermal
reactors
(2) Design, build, and test engine control system to regulate air-fuel ratio,
spark timing, exhaust gas recirculation, and other (e. g., throttle delay)
engine parameters
(3) Measure engine emissions over the dyno cycle with dynamometer-
simulated loads for the conventional transmission without and with the
control system developed under Task (2)
(4) Measure engine emissions over the dyno cycle with dynamometer-
simulated loads for the flywheel transmission with various throttle delay
time constants, and for the infinite ratio transmission using the control
system developed under Task (2)
(5) Evaluate results of emission measurements to determine relative advan-
tages of flywheel transmission, infinite ratio transmission, engine control
system, and one or more exhaust reactors employed in various combinations.
9-2

-------
1-1
3-1
~d
Section 10
REFERENCES
Lockheed Missiles & Space Company, Inc., Flywheel Feasibility Study and
Demonstration, Final Report (Contract EHS 70-104, LMSC-D007915, Sunnyvale,
California, April 30, 1971
Harold A. Liebowitz, A Treatise on Fracture, Academy Printing, 1968
5-1
E. R. Bower, "Rolling Vs. Sliding Bearings," Prod. Eng., April 27, 1969

U. S. A. Standards Institute, U. S. A. Standard Tolerances for Ball and Roller
Bearings, No. B3.5-1960, New York
5-2
5-3
Letter from W. H. Nichols Company to Lockheed Missiles & Space Company,
Inc., December 8, 1971, Waltham, Massachusetts
6-1
Environmental Protection Agency, Air Pollution Control Office, Emission
Optimization of Heat Engine/Electric Vehicle, by J. Andon and I. R. Barpal,
(APCO Project EHS-70-107), Ann Arbor, Michigan, January 28, 1971
6-2
Letter (and attachments thereto) from R. D. Fleming, Bureau of Mines Petroleum
Research Center, Bartlesville, Oklahoma, to J. Salibi, Environmental Protection
Agency, Office of Air Programs, Ann Arbor, Michigan, October 22, 1971
6-3
Letter (and attachments thereto) from R. D. Fleming, Bureau of Mines Petroleum
Research Center, Bartlesville, Oklahoma, to J. Salibi, Environmental Protection
Agency, Office of Air Programs, Ann Arbor, Michigan, November 16, 1971
6-4
Letter (and attachments thereto) from R. D. Fleming, Bureau of Mines Petroleum
Research Center, Bartlesville, Oklahoma, to J. Salihi, Environmental. Protection
Agency, Office of Air' Programs, Ann Arbor, Michigan, November 24, 1971

Federal Register, Vol. 35, 219, Part II, November 10, 1970
6-5
10-1

-------
~~
APPENDIXES

-------
~~~
Appendix A
VEHICLE DESIGN GOALS
This appendix contains the Vehicle Design Goals - Six-Passenger Automobile, Rev. C.
May 28, 1971, of the Advanced Automotive Power Systems Program of the Air Pollution
Control Office, Environmental Protection Agency.
A-I

-------
~
AIR POLLUTION CONTROL OFFICE
ADVANCED AUTOMOTIVE POWER SYSTEMS PROGRAM
"Vehicle Design Goals - Six Passenger Automobile"
(Revision C - May 28, 1971 - 11 Pages)
The design goals presented below are intended to provide:
A common objective for prospective contractors.
Criteria 'for evaluating proposals and selecting a contractor.
Criteria for, evaluating competitive power systems fo~ entering
first generation sys~em hardware.
Advisory criteria in such areas as rolling resistance, vehicle air
drag etc. are included to assist the contractor.
The derived criteria are based on typical characteristics of the class of
?asse~ger automobiles with the largest market volume produced in the U. S.
during the model years 1969 and 1970. It is noted that emissions, vol~e
and ~ost weight characteristics ,presented are maximum values while the
perfo~ance characteristics are intended as minimum values. ContrQ'ctors
and prospective contractors who take exceptions must justify these exceptions
and relate these exceptions to the technical goals presented herein.
1.
Vehicle weight without propulsion system - Woo
Wo is the weight of the vehicle without the propulsion system and
includes, but is not limited to: body, frame, glass and trim,
suspension, service brakes, seats, upholstery, sound absorbing materials,
insulation, wheels (rims and tires), accessory ducting, dashboard
instruments a~d accessory wiring, battery, passenger compartment
heating and cooling dev~ces and all other components not included in
the propulsion system. It also includes accessories such as, the air
conditioner compressor, th. power ,steering pump, and the p'ower
brakes actuating devic~.
Wo is fixed at 2700 lbs.
2.
Propulsion system weight - Wp.

W~ includes the energy storage unit (including fuel and containment), .
p~wer converter (including both functional components and controls)
and power transmitting components to the driven wheels. It also
i~cludes the exhaust system, pumps, motors, fans and fluids necessary
for operation of the'propulsion system, and any propulsion system
heating or cooling devices.
A-2

-------
~
The maximum allowable propulsion system weight, W m' is 1600 1bs.
However, light weight propulsion systems are high~y desired.
(Equivalent 1970 propulsion system weight with a spark ignition
engine is 1300 1bs.)
3.
Vehicle curb weight - Wc
Wc = Wo + Wp

The ~aximum allowable vehicle curb weight, Wcm, is 4300 lbs.
(2700 + 1600 max. - 4300)
4.
Vehicle test weight - Wt.
Wt = We + 300 lbs. Wt is the vehicle weight at which-all accelerative
maneuvers, fuel economy and emissions are to be calculated. (Items 8c,
8D. 8e).
The maximum allowable test weight, Wtm' is 4600 lbs.
max. + 300 = 4600).
(2700 + 1600
5.
Gross vehicle weight - Wg

Wa = Wc + 1000 Ibs. Wg is the gross vehicle weight a~ which sustained
c~utse grade velocity capability is to be calculated.. (Item 8f). The
1000 Ibs. load simulates a full load of passengers and baggage.
The maximum allowable gross vehicle weight, Wgm, is 5300 lbs.
1600 max. + 1000 = 5300).
(2700 +
6.
Propulsion system volume -.Vp
Vp includes all items identified under item 2. Vp shall be packagable
in such a way that the volume encroachment on either the passenger or
- ~'I::=...:,;e compartment is not significantly different than today' s (1970)
standard full size family car. The propulsion system shall not violate
the vehicle ground clearance lines as established by the manufacturer of
the vehicle used for propulsion system/vehicle packaging. Additionally,
the propulsion system shall not violate the space allocated for wheel
jounce motions and vehicle steering. Necessary external appearance
(styling) changes will be minor in nature. Vp shall also be packagable
ia such a way that the handling characteristics of the vehicle do not
depart significantly from a 1970 full size family car.
The maximum allowable volume assignable to the propulsion syste~ .
v_-. is 35 ft.3.
IJiI..
A-3

-------
~~
7.
Emission Goals
The vehicle when t~sted f~r emissions in accordance with the procedure
outlined in the November 10, 1970 Federal Register shall have a
weight of Wt. The emission goals for the vehicle are:
Hydrocarbons*
Carbon monoxide
Oxides of nitrogen**
Particulates
0.14 grams/mile maximum
4.7 grams/mile maximum
0.4 grams/mile maximum
0.03 grams/mile maximum
*Total hydrocarbons (using 1972 measurement procedures)
plus total oxygenates. Total oxygenates including
aldehydes will not be more than 10 percent by ~eight
of the hydrocarbons or 0.014 grams/mile, whichever is
greater.
**measured or computed as N02'
8.
Start up, Acceleration, and Grade Velocity Performance.
a.
Start up:
The vehicle must be capable of being tested in accordance with
the procedure outlined in the November 10, 1970 Federal Register
wit~out special driver startup/warmup procedures.
The maximum time from: key on to reach 65 percent full power
is 45 sec. Ambient conditions are 14.7 psia pressure, 60°F
temperature.
Powerplant starting techniques in low ambient temperatures shall
be equivalent to or better than the typical automobile spark-
ignition engine. Conventional spark-ignition engines are deemed
satisfactory if after a 24 hour soak at -20°F the engine achieves
a self-sustaining idle condition without further driver input
within 25 seconds. No starting aids external to the normal vehicle
system shall be needed for -20°F starts or higher temperatures.
A-4

-------
~
b.
Idle operation conditions:
The fuel consumption rate at idle operating condition will not
exceed 14 percent of the fuel consumption rate at the maximum design
power condition. Recharging of energy storage systems is
exempted from this requirement. Air conditioning is off, the
power steering pump and power brake actuating device, if
directly engine driven, are being driven but are unloaded.
The torque at transmission output during idle operation (idle
creep torque) shall not exceed 40 foot-pounds, assuming conventional
rear axle ratios and tire sizes. This idle creep torque should
result in level road operation in high gear which does not exceed
18 mph.
c.
Acceleration from a standing start:
The minimum distance to be covered in 10.0 sec. is 440 ft.
The maximum time to reach a velocity of 60 mph is 13.5 sec.
Ambient conditions are 14.7 psia, 85° F. Vehicle weight is Wt.
Acceleration is on a level grade and initiated with the engine
at the normal idle condition.
d.
Acceleration in merging traffic:
The maximum time to accelerate from a constant velocity
of 25 mph to a velocity of 70 mph is 15.0 sec. Time starts
when the throttle is depressed. Ambient conditions are 14.7
psia, 85° F. Vehicle weight is Wt, and acceleration is on
level grade.
e.
Acceleration, DOT High Speed Pass Maneuver:
The maximum time and maximum distance to go from an initial
velocity of 50 mph with the front of the automobile (18 foot
length assumed) 100 feet behind the back of a 55 foot truck
traveling at a constant 50 mph to a position where the back
of the automobile is 100 feet in front of the front of the 55
foot truck is, 15 sec. and 1400 ft. The entire maneuver takes
place in a traffic lane adjacent to the lane in which the truck
is operated. Vehicle will be accelerated until the maneuver is
completed or until a maximum speed of 80 mph is attained, which-
ever occurs first. Vehicle acceleration ceases when a speed of
80 mph is attained, the maneuver then being completed at a
constant 80 mph. (This does not imply a design requirement
limiting the maximum vehicle speed to 80 mph.) Time starts when
the throttle is depressed. Ambient conditions are 14.7 psia,
85° F. Vehicle weight is Wt, and acceleration is on level grade.
A-5

-------
~~
f.
Grade velocity:
The vehicle must be capable of starting from rest on a 30
percent grade and accelerating to 15 mph and sustaining it.
This is the steepest grade on which the vehicle is required
to operate in either the forward or reverse direction.
The minimum cruise velocity that can be continuously maintained
on a 5 percent grade with an accessory load of 4 hp shall be
not less than 60 mph.
The vehicle must be capable of achieving a velocity of 65 mph
up a 5 percent grade and maintaining this velocity for a
period of 180 seconds when preceded and followed by continuous
operation at 60 mph on the same grade (as above).
The vehicle must be capable of achieving a velocity of 70 mph
up a 5 percent grade and maintaining this velocity for a
period of 100 seconds when preceded and followed by continuous
operation at 60 mph on the same grade (as above).
The minimum cruise velocity that can be continuously maintained
on a level road (zero grade) with an accessory load of 4 hp
shall be not less than 85 mph with a vehicle weight of Wt.
Am~ient conditions for all grade specifications are 14.7 psia
85° F. Vehicle weight is. Wg for all grade specifications
except the zero grade specification.
The vehicle must be capable of providing performance (Paragraphs
8c, 8d, 8e 8f)w1thhn5.percent of the stated 850 F values, when
operated at. ambient temperatures from -200 T to 1050 F.
A-6

-------
~
9.
Minimum vehicle range:
Minimum vehicle range without supp1ement1ng.~the:eneraY storage
will be 200 miles. The minimum range shall be calculated for,
and applied to each of the two following modes: 1) A city-
suburban mode, and 2) a cruise mode.
Mode 1:
Is the driving cycle which appears in the
November 10, 1970 Federal Register. For
vehicles whose performance does not depend
on the state of energy storage, the range
may be calculated for one cycle and ratioed
to 200 miles. For vehicles whose perfo.rmance
does depend on the state of energy storage
the Federal driving cycle must be repeated
until 200 miles have been completed.
Mode 2:
Is a constant 70 mph cruise on a level road for
200 miles.
The vehicle weight for both modes shall be, initially, Wt. The
ambient conditions shall be a pressure of 14.7 psia, and temperatures
of 600 F, 850 F and 1050 F. The vehicle minimum range shall not
decrease by more than 5 percent at an ambient temperature of -200 F.
For hybrid vehicles, the energy level in the power augmenting device
at the completion of operation will be equivalent to the energy level
at the 'beginning of operation.
A-7

-------
~
10.
System thermal efficiency:
System thermal efficiency will be calculated by two methods:
A.
A "fuel economy" figure based on 1) miles per gallon
(fuel type being specified) and 2) the number of Btu
per mile required to drive the vehicle over the 1972
Federal driving cycle which appears in the November
10, 1970 Federal Register. Fuel economy is based on
the fuel or other forma of energy delivered at the
vehicle. Vehicle weight is Wt.
B.
A "fuel economy" figure based on 1) miles per gallon
(fuel. type being specified) and 2) the number ~f Btu
per mile required to drive the vehicle at constant
speed, in still air, on level road, at speeds of 20,
30, 40, 50, 60, 70, and 80 mph. Fuel economy is based
on the fuel or other forma of energy delivered at the
vehicle. Vehicle weight is Wt.
In both cases, the system thermal efficiency shall be calculated
with sufficient electrical, power steering and power brake loads
in service to permit safe operation ~f the automobile. Calculations
shall be made with and without air conditioning operating. The
ambient conditions are 14.7 psia and temperatures of 60° F, 85° F
and 105° F. Calculations shall be made with heater operating at
ambient conditions of 14.7 psia and 30° F (18,000 Btu/hr).
11.
Air Drag Calculation:
The product of the drag coefficient, Cd, and the frontal area~ Af'
is to be used in air drag calculations. The product CdAf has a
value of 12 ft2. The air density used in computations shall
correspond to the applicable ambient air temperature.
12.
Rolling Resistance:
Rolling resistance, R, is expressed in the equation
R = W/65 [1 + (1.4 x 10-3v) + (1.2 10-5V2)] lbs. V is the vehicle
velocity in ft/sec. W is the vehicle weight in lbs.
A-8

-------
~~
13.
Accessory power requirements:
The accessories are defined as subsystems for driver assistance
and passenger convenience, not essential to sustaining the
engine operation and include: the air conditioning compressor,
the power steering pump, the alternator (except where required
to sustain operation), and the power brakes actuating device.
The accessories also include a device for heating the passenger
compartment if the heating demand is not supplied by waste heat.
Auxiliaries are defined as those subsystems necessary for the
sustained operation of the engine, and include condensor fanes),
combustor fanes), fuel pumps, lube pumps, cooling fluid pumps,
working fluid pumps and the alternator when necessary for driving
electric motor driven fans or pumps.
The maximum intermittent accessory load, Paim' is 10 hp (plus the
heating load, if applicable). The maximum continuous accessory
load, Pacm' is 7.5 hp (plus the heating load if applicable). The
average accessory load, Paa' is 4 hp.
If accessories are driven at variable
apply. If the accessories are driven
Pacm will be reduced by 3 hp.
speeds, the above values
at constant speed, Paim and
A-9

-------
~
14.
Passenger comfort requirements:
Heating and air conditioning of the passenger compartment shall be
at a rate equivalent to that provided in the present, (1910) standard
full size family car.

Present pr~ctice for maximum passenger compartment,heating ~ate is
approximately 30,000 Btu/hr. For an air conditioning system at 1100 F
ambient, 800 F and 40% relative humidity air to the evaporator, the
rate is approximately 13,000 Btu/hr.
15.
'Propulsion system operating temperature range:
The propulsion system shall be operable within an expected ambient
temperature range of -400 to 1250 F. '
16.
Operational life:
The mean operational life of the propulsion system should be
approximately equal to that of the present spark-ignition engine.
The mean operational life should be based on a mean vehicle life of
105,000 miles or ten years, whicheve~ comes first.
The design lifetime of the propulsion system in normal operation will
be 3500 hours. Normal maintenance may include replacement of
accessable minor parts of the propulsion system via a usual maintenance
procedure, but the major parts of the system shall be designed for a
3500 hour minimum operation life.
The operational life of an engine shall be determined by structural or
functionai failure causing repair and replacement costs exceeding the
cost of a new or rebuilt ~ngine. (Functional failure is defined as
power degradation exceeding 25 percent or top vehicle speed degradation
exceeding 9 percent).
A-IO

-------
~~
17.
Noise standards:
(Air conditioner not operating)
a.
Maximum noise test:
The maximum noise generated by the vehicle shall not
exceed 77 dbA when measured in accordance with SAE J986a.
Note that the noise level is 77 dbA whereas in the SAE
J986a the level is 86 dbA.
b.
Low speed noise test:
The maximum noise generated by the vehicle shall not exceed
63 dbA when measured in accordance with SAE J986a except
that a constant vehicle velocity of 30 mph is used on the
pass-by, the vehicle being in high gear or the highest gear
in which it can be operated at that speed.
c.
Idle noise test:
The maximum noise generated by the vehicle shall not exceed
62 dbA when measured in accordance with SAE J986a except that
the engine is idling (clutch disengaged or in neutral gear)
and the vehicle passes by at a speed of less than 10 mph.
the microphone will be placed at 10 feet from the centerline
of the vehicle pass line.
18.
Safety standards:.
The vehicle shall comply with all current Department of Transportation
Federal Motor Vehicle Safety Standards. Reference DOT/HS 820 083.
A-ll

-------
~
19.
Reliability and maintainability:
The reliability and maintainability of the vehicle shall equal or
exceed that of the spark-ignition automobile. The mean-time-between
failure should be maximized to reduce the number of unscheduled
service trips. All failure modes should not represent a serious
safety hazard during vehicle operation and servicing. Failure
propagation should be minimized. The power plant should be designed
for ease of maintenance and repairs to minimize costs, maintenance
personnel education, and downtime. Parts requiring frequent servicing
shall be easily accessable.
20.
Cost of ownership:
The net cost of ownership of the vehicle snaIl be minimized for
ten years and 105,000 miles of operation. The net cost of ownership
includes initial purchase price (less scrap value). other fixed costs,
operating and maintenance costs. A target goal should be to not
exceed 110 percent of the average net cost of ownership of the present
standard size automobile with spark-ignition engine as determied by
the U.S. Department of Commerce 1969-70 statistics on such ownership.
A-12

-------
~~
Appendix B
CHARACTERISTICS OF CONVENTIONAL AUTOMATIC TRANSMISSIONS
The EPA supplied characteristic curves for a conventional automatic transmission to
be used as a comparative reference for candidate flywheel transmission designs. These
original curves were reduced to equations by LMSC using computer curve-setting
techniques and, from these equations, computer-plotted curves were made. These
computer plotted curves, shown in Figs. B-1 through B-10, wer~ then checked for
accuracy against the original curves. The equations were used in the LMSC and trans-
mis~ion contractor computer programs.
A computer run was made for a 4, 300-lb family car per the EPA "Vehicle Design
Goals - Six Passenger Automobile" - Revision C over the DHEW Driving Cycle
(Federal Register, Vol. 35, 219, Part II, November 10, 1970) using this reference
conventional automatic transmission. The following average values were obtained:
Road Power = 14.12 hp
Transmission Input Power = 18. 19 hp
Accessory Power = 3. 23 hp
Engine Power = 21. 42 hp
Fro~ these values, which represent the 808 seconds in the DHEW cycle during which
positive (non-zero) horsepower is delivered to the road, the following efficiencies
were calculated:
Average Efficiency of Transmission = 77.622927 percent
Average Efficiency from Engine to Road = 65.931863 percent
B-1

-------
  C
  C
  rl
  C
  II'
  C
  10
  C
  ....
 >- 
 u C
 Z -lI
 W 
 H C
 U III
b:I H
I LL C
I:\:) LL:to
 W 
  C
  1'1
  C
  N
  C
  rl
  C
      ~ -
     ---- 
   V -   
  I     
  /     
  /     
 /      
 I      
 I      
 I      
I      
I       
I       
11
2CCC
2S:CC
3CCC
1CCC
1S:CC
3S:CC
't-CCC
't-S:CC
S:CC
S:CCC
R.
P.
M.
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
'IB CAR"
EFFICIENCY (Y) VS OUTPUT RPM (X)
EQUATIONS:
o ,,;; X ~ 1760
Y = D + AX + BX2 + CX3
D = -.056175873
A =
. 1553398
B = -.00008819296
C =
.000000016201761
1760 ~ X ,,;; 4500
Y = A+~
A =
105.551
B = -28798.4
Fig. B-1 Typical Torque Converter Characteristic for B Car-
Efficiency Vs. Output RPM

-------
  o
  o
  rl
  o
  IJ"
  o
  10
  o
  t-
 >- 
 U 0
 Z .lJ
 W 
 H 0
b:I U 1I1
I H 
Co:) 
 LL 0
 LL :f-
 W 
  0
  1'1
  o
  N
  o
  rl
  o
        7
      ~ v- 
     ./  
     /   
    /    
    1/    
   /     
   /     
  7      
  v      
 /       
 /       
/        
/        
.0
.3
~.O
.It
.~
.'2
.s:
.6
.7
.8
.9
5PEE]]
RRTI~
Fig. B-2 Typical Torque Converter Characteristic for B Car-
Efficiency Vs. Output RPM
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
'.B CAR'I
EFFICIENCY (Y) VS SPEED RATIO (X)
EQUA TIONS:
. 05 ;f X ,s. 885
Y = C + AX + BX2
A =
221.44329
B = -132.73064
C =
-3.20222103
. 885 = X ~. 99
Y = AeBX
A = 34.318
B =
1. 07122

-------
  o
  o
  IJ'
  .-I
  o
  o
  III
  .-I
 o 0
 o g
 o .-I
 rl g
  .0
  .-I
 X 0
  o
  III
 A .-I
 Z 0
 H 0
IJj V ~
~ r- 0
 " 0
 A ~
 r- 0
 ::J 0
 ~ ~
 v 
 r- 0
 o
  .-I
  .-I
  o
  o
  o
  .-I
  o
  o
  IJ'
""        
 ~       
  ~      
   ~     
   "     
    ~   
    '" """   
     '"   
      ~  
      ~  
       ""- 
       ~ 
        i'..
        ~
.0
.2
.It
1.D
.S
.6
.7
.3
.15
.9
.1
5PEEJJ
RRTIB
Fig. B-3 Typical Torque Converter Characteristic for B Car-
(Torque Out/Torque In) Vs. Speed Ratio
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
liB CARli
TORQUE OUT (Y) VS SPEED RATIO (X)
TORQUE IN
EQUA TIONS:
. 05 ~ X ~. 885
Y = A + BX
A =
2035.17
B = -1139.98
.885 -::: X ~ .99
Y = 1000

-------
  o
  o
  M
  1'1
  o
  o
  II'
  N
  o
  o
  l"-
  N
 o 
 0 0
 o
 rl III
 N
 X 0
  o
 Ul 1'1
 N
tJ:J Ul 
I ~ 
C11 0
 ~ 0
 M
  N
 ~ 
  0
  o
  II'
  M
  o
  o
  I"-
  M
~ ~        
  ~ ~      
   ~     
    ~ ~    
     ~   
       ~ ~ 
        \ 
         \
         \
         \
.         
o
C
III
M .D
.3
. It-
.5
.1.
.2
.6
.7
.1!5
.9
1..0
5PEEII
RRTI~
Figure B-4 Typical Torque Converter Characteristic for B Car-
Q Loss Vs. Speed Ratio
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
liB CAR"
Q LOSS (Y) VS SPEED RATIO (X)
EQUA TIONS:
. 05 e. X ~ . 885
Y = A + BX
A = 3076.81
B = -832.612
. 885 1!. X ~ .99
Y = A + BX
A =
8437.99
B = -6969.62

-------
  c
  c
  ,.
  1'1
  o
  C
  C
  1'1
 IY 
 rl c
 c
 D' ~
 f\J 
b:I rl c
I II ~
0)
 A N
 H 
 v 
 Z c
  C
  10
  M
  o
  o
  ,.
  M
        I
        7
        1/
       .- /
      v- ----- 
     ----  
    L.----   
   ----    
 L---- ~      
-       
o
c
o
M .0
.1
.2
.3
.'+
.5
,7
.6
.15
.9
1.0
5PEEJ]
RRTI0
Fig. B-5 Typical Torque Converter Characteristic for B Car -
Input RPM = 12.91 K
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
"B CARli
INPUT RPM (Y)
= 12.91 It (X)
EQUA TIONS:
. 05 ~ X ~. 885
Y = A ~ BX
A = . 000807206
B = -.000325531
. 885 ~ X ~. ~9
1
Y = A+BX
A = . 00274992
B = -.00252082

-------
t:d
I
4,
a
a
A a
L :t-
II
£r a
v: ~,
" 1'].
R
LLJ a
W g
II rn
lSI
a
a.
f-- ~
....,.
~\
[l.
a
Z [J
H ~
a
a
a
IJ1
        /
I       V 
      /' 
  I    V  
     /,  
     /   
    /,   
    /    
   /     
   V     
   /     
:   V/     
  /     
~      
------ v       
      .  
a
a
IJ1
:t-
a
a
1/1
n
, ,
a
a
a
rf a
J..sac
saa
J..aaa
:2eee
:2see
3eee
3see
'l-eee
'l-see
seee
R.
P.
M.
Fig. B-6 Typical Torque Converter Characteristic for B Car-
Input Speed Vs. Output RPM
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
liB CAR"
INPUT SPEED (Y) VS OUTPUT RPM (X)
EQUATIONS:
o ~ X -!c. 1760
Y = A; BX
A =
.000771ZZZ
B = -.000000152506
1760 ,;; X ;;;. 4500 '
Y = A+BX
A = Z95. Z9Z
B =
. 94699Z

-------
  a
  a
  1/1
  N
  a
  1/1
  N
  N
 o a
 o a
 o ~
 rI 
  a
 X ~
  ri
 ~ 
 H a
 r ~
b:I IT: ri
I rr 
IX) 
  a
  1/1
 W ~
 :J 
 ~ a
 rr a
 ~ ~
 r 
  a
  1/1
  I"-
  a
  a
  1/1
\   
\   
 1\  
 ~  
  "\. 
  "'" 
   "
TYPICAL TORQUE CONVERTER
CHARACTERISTIC
liB CARli
TORQUE RATIO (Y) VS OUTPUT RPM (X)
EQUATIONS:
o ~ X ~ 1760
Y = AeBX
A = ZOll.IZ
B =
-.0003950Z
1760 ~ X 
-------
[J
[J
III
o N
rI
td
I
co
x [J
[J
M
A N
~
[[
d]
V [J
[J
y: I"-
M
[J
[J
1'1
1'1
[J
[J
II'
N
TYPICAL TORQUE CONVERTER
CHARACTE;RISTIC
I'B CA~"
K (Y) VS SPEED RATIO (Y)
WHERE:
[J
[J
1'1
M
INPUT RPM 5/2
K ; (INPUT TORQUE) 1/2 (DIAMETER)

(DIAMETER)5/2 ; 0.948 FT
EQUA TrONS:
. 05 ~ X ~. 885
Y ;
----L-
A +BX
A ;
.00103678
B " -.000412205
. 885 "- XC. 99
Y ;
-L-
A + BX
A ; . D0371352
B ; -.00343458
[J
[J
II'
.2
.It
.&
.15
J.. [J,
.[J
5PEEJJ
RRTI~
Fig. B-8 Typical Torque Converter Characteristic for B Car-
K Vs. Speed Ratio

-------
A. a
dJ 1'1
-.J
I
r- III
M
LL
v
b:j
I
~
o
Wc
::JM
~
[t:
~III
I-
III
1'1
1 ST GEAR
y = A + Bx
A = 0
B = 23.3/3,200,
o ~ x ~ 3,200 -
I
2ND GEAR
y = A + Bx
A = 0
B = 6.2/3,600
o :s x :s 3,600
c
3RD GEAR
PLOTTED FROM
DATA POINTS
c
2000
3COO
1.000
R.
P.
M.
GEAR
1ST
2ND
3RD
RATIO
2.5
1.5
1.0
TORQUE
EFFICIENCY*
.95.6%
94
100
I
*SPIN LOSS IS ADDI-
TIONAL TO TORQUE
LOSS.
2ND
GEAR
~OOC
. s:ooo
Fig. B-9 Transmission Spin Loss, Torque Vs. Propeller Shaft
RPM - Typical B Car

-------
AI4
dJ...i
-.J
I
.....
u...
vI:!
~
t:J:j
I
f-'
f-'
W
:J
~
£r
~"!
.....
D
.
N
D
.
D
:Leee
2eee
3eee
R.
P.
M.
DATA POINTS

X Y

500 0.8
1,000 0.92
1,500 1.07
2,000 1.2
2,500 1.37
3,000 1.52
3,500 1.65
...eee
Fig. B-IO Axle Spin Loss Vs. Propeller Shaft RPM, Axle Torque
Efficiency = 96 Percent above 25 mph - Typical B Car
seee

-------
~~
Appendix C
COMPUTER PROGRAM DESCRIPTIONS
In the course of the Flywheel Drive Systems Study for the EPA, a number of computer
programs were written, and several of the more significant of these programs are
described in this appendix. They are written in BASIC for use with a time-sharing
computer setup. In addition to these programs, standard programs for statistical
analysis, data sorting, curve plotting, and curve fitting were also employed.
C-l

-------
~~
PROGRAM NAME: /5.0 MANEUVER/
SIZE
Approximately 10, 000 Characters
DATA INPUTS
Constant Data
(See Fig. C-1.)
Profile
. Acceleration braking or cruise indicator

. Percent of maximum acceleration or braking potential

. Time to continue in this mode (sec); or velocity to be achieved in this
mode (mph); or distance to be covered in this mode (ft)

. Grade (%)

. Increment for program execution (mph except for cruise which is sec)

. Increment for printing of program outputs

. Pause after each increment indicator
PROGRAM FUNCTIONS AND OUTPUTS
Computes incremental acceleration, velocity, tractive effort, road horsepower,
engine horsepower, cumulative distance traveled, and flywheel energy.
COMMENTS
This program may be run in single or multiple increments from a terminal or
it may be run automatically from a profile data file. In either case, it may be
intprrupted and continued with changes. Program validation procedures have
been included to check for inconsistencies (e. g., actual deceleration of the vehicle
such as might result from climbing a steep grade with insufficient power input
when acceleration is specified). Provisions are also made to allow a vehicle to
"accelerate" while braking such as would occur on a downhill run with light braking
pressure, and for slowdown while applying low power inputs.
The outputs of this program are sufficient to provide data as desired (e. g. , fuel
consumption, specific emissions).
C-2

-------
~~
Inputs Required
Constants
F
= initial FW contents
F 1 = maximum FW contents
F 2 = minimum FW contents
Constants or Equations
H3 = engine output
E = trans. (A) efficiency
El = trans.; (B) efficiency out
E2 = trans. (C) efficiency out
E3 = trans. (B) efficiency in
E4 = trans. ,(C) efficiency in
(Normally only two transmissions are used,
Variables that equations can be a function of:
ROAD
Units
kWh
kWh
kWh
inst. hp
%/100
%/100
%/100
%/100
E = 1 for the other. )
HI = instanteous horsepower at road ft/ sec
V4 = average velocity of vehicle ft/ sec2
Al = average acceleration lb
Rl = rolling resistance lb
Dl = aerodynamic drag lb
Gl = grade %
H2 = maximum engine output inst. hp
F = flywheel contents kWh
PI = percent of maximum road horse- 
 power requested %/100
H = maximum road horsepower inst. hp
Fig. C -1 Maneuver Program
C-3

-------
~~
PROGRAM NAME: /7.0 TRANTEST /
SIZE
5376 Characters (plus merged program which is typically 5 to 7,000
additional characters)
DATA INPUTS
Variable
Weight
Frontal Area
Drag Coefficient
Fuel Density
FILE INPUTS
Unit
lb
ft2
lb/gal
Profile
A sequential file containing elapsed time, acceleration, acceleration type
(constant horsepower or constant acceleration), and grade for trip profile
Specific Fuel Consumption
A random access file containing SFC as a function of rpm and horsepower
/7. 0 Tran xxxi
A program file merged with the BA VE program before the run; contains the

following:
Instruction
No. Range

700 to 999
6000 to 6999
7000 to 7999
8000 to 8990
Contents

Constants to define efficiency
and curves

Efficiency and "horsepower-into-
transmission" calculation

Engine rpm calculation

Accessory and flywheel loss
calculations
C-4

-------
PROGRAM FUNCTIONS
Develops incremental and cumulative SFC, milesl gallon of fuel
PROGRAM OUTPUTS
Output for each second
. Time (see)
. Acceleration (mph/sec)
. Velocity (mph)
. Distance traveled (ft)
. Road horsepower
. Transmission efficiency (%)
. Engine horsepower
. Engine speed (rpm)
. :SFC (lb/hp-hr)
. Cumulative fuel (lb)
. Instantaneous consumption (mil gal)
. Cumulative consumption (mi/gal)
C-5
~~

-------
~
PROGRAM NAME: /7. 1 EMISSION/
SIZE
1521 Characters
FILE INPUTS
Profile
Program /7. 0 TRANTEST / was modified to produce a data file containing
the following:
. Time (see)
. Distance (ft)
. Percent of max. power
. Engine rpm
This data file was used to provide this program with incremental data over
the DHEW cycle.
Coefficients
Coefficients for a series of binomials which describe the surfaces of the
four emission maps were stored in file /3. OA COEFF /. The coefficients
were for Engine A and the four maps were as follows:
. Total weighted emissions
. CO
. HC
. NO
x
PROGRAM FUNCTION
Computes total weighted emissions over the cycle (e. g., DHEW cycle)
PROGRAM OUTPUTS
Summary:
. Total Weighted Emissions (g/std. g)
. Total Carbon Monoxide (g/ std -g)
. Total Hydrocarbons (g/std-g)
. Total Oxides of Nitrogen (g/std-g)
C-6

-------
~~
Table C-l
PROGRAM - 7. 0 TRANTEST
100 W=43oo
11 0 F=24
120 D=. 5
130 I:2=5.75 !DENSITY OT FUEL
140 ! P;-{C,CRAM /7.0 THANTEST/ SfPTE."1BER 1971
150 HEAL A,A1,A2,D1,G,H,H1,H2~H;,I
160 ?EAL M,H1 ,H2, N1 ,P,P1 , P2, P),I'4,P5,R1 ,S,S1, T1 , V, V1 ,S2, V3, \';1, W2, W3, ~oJ4
170 HEAl, X1 ,X2,X3,X4,Y1 ,Y2
180 I NTEGEH N
1 90 C1Hn:C 2 2$ A$
200 Z$="42 4~.D' 42.D 7Z 5-.D 2(42.D) 52 ZZ.3D 3Z.3D 2(3Z.2D)/"
210 PRnT FOR 1=1 TO 5
220 PRHT "RUN 1':0.":
230 INPUT 2
235 A;'=Z
236 2="/7.0 FILE "+Z+"/"
240 OPE~r Z,OU1~UT,1
?45 nUNT ON 1: "RUN NUMfER-" :A$
250 mIl:T "'l'HANS Ii":
260 :::NPUT Z
270 2="17.0 TRAN "+2+"/"
2BO PRI1;T on 1 :"TRAN DATA FROM ":Z:"
2S0 PRHT ON 1
300 LOAD 2
400 PHH:T FOR 1=1 TO 2 ! THIS l-!UST BE INSTJ! 400
4'10 OPE;; /PHOFILE/, I NPU'l,2
l'r20 m: UiD:FILE (2) GO TO 1030
430 IKrUT FRCr-! 2:2
440 OPEl'; /7.0 SFC/,RANDC~1(6)INPUT,3
f20 GOSU~ 1200 .
q 60 G\')SUJ3 1400
470 PHUT ON 1 FOR 1=1 1"0 2
400 PRItT ON 1 FOR 1=1 10 2
4 go PRIrT FeR 1=1 TO 3
500 Fim:T Oi"; 1:
"TIn~ ACCEr, VELOC DIST
K:m:-"
510 rRIl\T ON 1:
"U)C)(rIIH/S)(MPH) (FT) (ROAD) (%) (ENG) RPM(#/H-H)(/fCUM)(MPGI)(MP
8; :G/I)"
520 PRUT on,:
DATE: ":DATE
HP
EFF.
HP
ENG SFC -FUEL CONSUl~PTI
11_- -- ----
-----
--
&:-11
530 N,F2,S,S1,S3,V,V1=0
10CC InUT FRON 2:T,A,T1,G
1010 IE A=O THEr.; 2000
1020 CO 'IO 2500
1030 CLOSE 1,2,3
1040 STOP
1200 Pi/IUT ON
1210 PRINT ON
1220 PRINT ON
1 : "\vEICHT. .." :W:" LBS"
1 : "E.AREA..." :F:" SQ FT"
1:"D.COEF...":D
C-7

-------
~
Table C-l (Cont.)
1230 PRINT ON 1: "FUEL DEN.": D2: II LB/GAL"
1240 PRINT ON 1 FOR 1=1 TO 2
1250 PRINT ON 1:Z
1260 PRINT ON 1
1270 RETURN
1400 P.:tINT
1410 PRINT "HEIGHT...":~.':" LBS"
1420 FinNT "F .AREA..." :}':" SQ.FT."
1430 PRINT "D.COEF...":r
1440 PRINT "FUEL DEN.":f2:" LB/GAL"
1450 PRINT FOR 1=1 TO 3
1460 RETURN
2COO FOi-: 1$=1 TO T
2010 I:=r:+1
2020 GO~UB 3000
2030 NEXT 1$
2040 GO TO 1 000
2500 FOR 1$=1 TO T
2510 N=N+1
2520 COSUB 3000
25:30 HEXT 1$
2540 GO TO 1000
3000 V=V+A/2
3010 S2=V/36OO !MILES 1RAVELED IN THIS SECOND
3020 A1=A*528/360
3030 V1=V1+A1/2
3040 S=S+V/36oo
;.050 S1=S1+V1
;060 GOt;UB 5000
3070 IF V<=O THF1I 3080 ELSE 3100
3080 H,E1,H2,S3,V,V1=0
3090 GO TO 3170
3100 IF V>50 THEN 3130
3105 IF V>25 THEN 3120
3110 H1=(27S0.46-76.5936*V+.810714*VA2)*V1/550
3i~6 ~=t?3~~~91+14.042S*V-.471429*VA2)*V1/550
3125 GO TO 3140
3130 H1=(652.350+12.285~V-.1675*VA2)*V1/550
3140 P1=lHN(1 AES(H)/H1)
3150 IF AES(I-d/H1>1 THEil: PRINT N:" HP(R) EXCEEDS LIMIT"
3155 IF H25 AND V1 THEN P2=1
9100 IF P2<. 1 THEN P2=. 101
9110 N2=0
9120 FOR 1=.1,.2,.3,.4,.5, .55, .6, .65, .7,.75,. 8,.85,.9,.95,1
9130 IF I .45 THEN P4=I3+.05 ELSE P4=P3+.1
9220 P5=(P2-P3)/(P4-P3) .
9230 Y1=(X2-X1)*P5+X1
9240 Y2=(X4-X3)*~+X3
9250 P5=(N1-(J+3)*200)/200
9260 S3=(Y2-Y1)*F5+Y1 !SFC
9270 IF S3<0 THEN PRINT "SPC NEG" ELSE 9290
9200 STOP
C-9

-------
~
Table C-l (Cont.)
SQ90 F1=s3*P2*M/3600 !LES USED
9300 F2=F2+F1 !tUM LES"
9310 RETURN
9320 DATA 36.5J47.3160.5,73,84.~,96.1,106.9,118,129.4,139.2,147.4,
. 155, 102 , 16~, 17~
9500 ! DECELERATION SFC
9510 S3=5.12727+1.09090SE-03*N1*.9
9520 E1, H2=O
9525 F1=S3n6OO
9530 GO TO 9300
C-10

-------
~
Table C-2

THREE-SPEED TRANSMISSION
1 ! THAll 121. (3-SPEED AUTOMATIC)
700 DIM QlO:15,2)
701 Q 0,1 = .800000E+03
702 Q 0,2 = .000000£+00
703 Q 1,1 = .220500£+03
704 Q 1,2 = .411667£+02
705 Q 2,1 = .16£574E+03
706 Q 2,2 = .320147E+02
707 Q 3,1 = .8oo0ooE+03
708 8 3,2 = .000000E+OO
709 4,1 = .136170E+03
710 Q(4,2)= .851064E+02
711 Q(5,1)= .364286£+03
712 Q~5'2~~ .428571E+02
71) Q 6,1 = .556618£+03
714 Q 6,2 = .227273£+02
115 Q!7,1 = .203431E+03
716 Q 7,2 = .343137E+02
717 Q 8,1 = .800000£+03
718 Q 8,2 = .505475£+02
719 Q 9,1 = .793182E+03
720 Q~9'2 = .318182E+02
721 Q 10,1)= .969767£+03
722 Q 10,2)= .1E6047£+02
723 Q( 11 ,1)=.153968£+0;
724 Q(11,2)= .349206£+0~
725 Q(12,1)= .122500£+04
726 Qf12'2~= .325000£+02
727 Q 13,1 = .10142SE+04
728 Q 13,2~= .535714£+02
729 Q~14'1~= .119756£+04
730 Q 14,2 = .292683E+0~
731 Q 15,1 = .12023EE+04
732 Q(15,2}= .190476£+02
735 DIN Q${6,7)
736 Q$!1,1j=-.149381E+OO
7)' Q 2,1 = .106590E+02
73~ Q! 3,1 =-.48852eE+OC
739 Q", 4,1 = .779330£-02
740 Q$~5,1~= .000000E+00
741 Q$ 6,1 = .00OOooE+OC
742 Q$ 1,2 = .616558£+00
743 Q$(2,2)= .131513E+02
744 Qi(3,2)=-.966406E+00
745 C$(4,2)= .38816P£~01
746 Q$ 5,2 =-.67301~E-03
747 Q$ 6,2 = .00OOOOE+OC
748 Q$ 1,3 = .413589E+OC
749 Q$ 2,3 = .162190E+02
750 Q$ 3,3 =-.134284E+01
751 Q$ 4,3 = .535828E-01
752 Q$!5,3 =-.852284&-03
753 Q$ 6,3 = . OOOOOO£+OC
754 Q$ 1,4 = .518534&-01
755 Q$ 2,4 = .226111E+02
C-ll

-------
~
Table C -2 (Cont.)
756 Q$ 3,4 ~.261546E+01
757 Q$ 4,4 = .136373E+OC
758 C$ 5,4 ~.260674E-02
759 Q$ 6,4 = .000000E+OC
760 Q$ 1,5 = .477920E-03
761 Q$ 2,5 = .403666E+0~
762 Q$ 3,5 ~.8B9114E+01
763 Q$(4,5)= .943754E+OC
764 Q${5,5)~.467433E-01
765 Q$~6'5~= .861255E-03
766 Q$ 1,6 = .63086BE-0;
767 Q$ 2,6 = .455041E+02
768 Q$ 3,6 =-.1095 33E+02
769 Q$ 4,6 = .121983E+01
770 Q$ 5,6 =-.620797E-01
771 Q$ 6,6 = .116251E-0~
772 G$ 1,7 = .967080E-0;
773 (.;$ 2,7 = .575872E+02
774 Q$ 3,7 ~.155893E+02
775 Q$ 4,7 = .163167E+01
776 C$ 5,7 =-.957511E-01
777 Q$ 6,7 = .1819ooE-02
6000 ! El:G HP
6010 IF V<20 THEN 6230
6020 IF P1<.025 TP~N 62CO
6030 IF P1<.05 THEN 6160
6040 IF PH.1 THEN 6120
6050 IF P1<.25 THEN 6080
6060 E1=78+.1*V
6070 GO TO 6500
6080 E(I~=78+.1*V
6090 E{2 =78
6100 E1= P1-.1)*(E(1)-E(2»/.15+E(2)
6110 GO TO 6500
6120 E(1)=78
6130 E(2)=77.55-.1425*V
6140 E1=(P1-.05)*(E(1)-E(2»/.Q5+E(2)
6150 CO TO 6500
6160 E(1)=77.55-.1425*V
6170 E(2)=78.5-.425*V
6180 E1=(P1-.025)*(E(1)-E(2»/.025+E(2)
6190 GO '1'0 6500
6200 E(1)=78.5-.425*V
6210 E1=P1*E(1)/.025
6220 GO TO 6500
6230 ! VEL <20 NPH
6240 E(1)=9t(1,1)+Q${2,1)*V+Q$(3,1)*VA2+Q${4,1)*VA3+Q$(5,1)*V-4
+Q$\6,1)*V"'5
6250 -E(2)=9$(1,2)+Q$(2,2)*V+Q${3,2)*V"'2+Q${4,2)*VA3+Q${5~2)*V4
+Q$\6,2)*V"'5
6260 E(3)=Q$(1~3)+Q$(2,;)*V+Q$(3,3)*V-2+Q$(4,3)*V"'3+Q$(5,3)*VA4
+Q$(6,3)*V-5
6270 "'E(4)=Q$(1~4)+Q${2,4)*V+Q$(;,4)*V"'2+Q$(4,4)*V"'3+Q$(5,4)*V4
+Q$(6,4)*V"'5
6280 E(5)=Q$(1~5)+Q$(2,5)*V+Q$(3,5)*V"'2+Q$(4,5)*VA3+Q$(5,5)*VA4
+Q$(6 5)*V"'S
6290 E(6)=Q$(1,6)+Q$(2,6)*V+Q$(3,6)*VA2+Q$(4,6)*VA3+Q$(5ro)*V"'4
+Q$(6,6)*V"'5
'.
C-12

-------
~
Table C -2 (Cant.)
6300 E(7)=Q$(1,7)+Q$(2,7)*V+Q$(3,7)*VA2+Q$(4,7)*VA3+Q$(5,7)*VA4
+Q$l6, 7 J*trs.
6310 IF P1<.025 THEN 64~0
6320 IF P1<.05 THEN 6470
6330 IF P1<.1 TP£N 6450
6340 IF P1<.25 THEN 643C
6350 IF P1<.5 THEN 6410
6360 IF P1<.75 THEN 6390
6370 E1=(P1-.75)*(E(1)-E(2»/.25+E(2)
6380 CO TO 6500
6390 E1=(P1-.5)*(E(2)-E(3»/.25+E(3)
6400 CO TO 6500
6410 E1=(P1-.25)*(E(3)-E(4»/.25+E(4)
6420 CO TO 6500
6430 E1=(P1-.1)*(E(4)-E(5»/.15+E(5)
6440 CO TO 6500
6450 E1=(P1-.05)*(E(5)-E(6»/.Q5+E(6)
6460 CO TO 6500
6470 E1=(P1-.025)*(E(6)-E(7»/.025+E(7)
6400 CO TO 6500 -
6490 E1=P1*E(7)/.025
6500 E1=E11100 !CALCUI.ATE HP
6510 IF H>O THEN H2=H/E1
6520 RE1URN
7000 !ENG RPM
7005 IF V <=0 TIffiN N1 =8OC ELSE 7010
7006 RE1URN
7010 IF P1<.025 THEN 7810
7020 IF P1<.1 THEN 7560
7030 IF P1 <.25 THEN 7290
7040 ! 50% BAND
7050 IF V<10 THEN 7230
7060 IF V<24 THEN 7180
7070 IF V<44.5 THEN 7130
7000 !5~h.
7090 1=15
7100 IF V<50 THEN J=10 ELSE J=11
7110 COSUB 7880
7120 CO TD 7260
71 30 ! 50''';
7140 1=14
7150 IF V<28.5 THEN J=9 ELSE J=10
7160 COSUB 7880
7170 GO TO 7260
7180 !50%
7190 1=13
7200 IF V<17.5 THEN J=8 ELSE J=9
7210 GOSUB 7880 .
7220 GO TO 7260
7230 ! 50%
7240 I=12,J=8
7250 COSUB 7880 .
7260 N1=(P1-.25)*(E(2)-E(1»/.25+E(1)
7270 CO TO 7920
7280 ! END OF 50%
7290 !25% BAND
7300 IF V<17.5 THEN 7470
7310 IF V<28.5 THEN 7430
C-13

-------
~~
Table C-2 (Cont.)
7~20 Ii V<50 THEN 7370
7)30 !25~
7340I=11,J=7
7350 GOSUB 7880
7360 GO TO 7530
7370 !25%
73EO 1=10
7390 IF V<30.5 THEn J=6 ELSE J=7
'/400 GOSUB 7880
7410 GO TO 7530
7420 !25%
7430 1=5
71.40 IF V<19.5 TPEN J=5 ELSE J=6
,<;50 Go~un 7880
7460 co m 7530
7470 !25~:
74m 1=0
74 ~O J=5
7S0G I}' V<12.5 THEN J=4
7510 IF V<7.5 THEN J=3
7520 GOSUB 7eBO
7530 N1=( Pi-.1 )*(E(2)-E( 1)) /.15+E( 1)
/540 GO TO 7920
,S5C !b:D OF 25~ BAlm
7560 ! 1 a1> BMiD
7570 IF V<12.5 THEN 7760
7580 IF V<19.5 TPEN 7710
75S~ IF V<30.5 THEN 766C
7 GOC !; c;:.;
7610 1=7
7620 J=2
7630 GO~UB 7880
7640 GO TO 7790
7650 ! 1 Cf!;
7[.60 1=6
7670 J=2
76m GO~;UB 7880
76S'-O GO TO 7790
7700 ! 1 016
7710 1=5
7720 IF V<15 THEN J=1 ElSE J=2
7730 GOSUB 7380
7740 GO TO 7790
7750 ! 1 G%
776C IF V<7.5 7EEN 1=3 ELSE 1=4
7770 IF V<8 THEn J=O EL[E J=1
770C cm::UB 7880
7790 N1=(P1-.025)*(E(2)-E(1»)/.C75+E(1)
7800 GO TO 7920
7810 !2.5% BAlm
78ZC IF V<8 Ti!EX 1=0 ELm 7840
7'-';0 GO TO 7850
7340 IE V<15 TEEN 1=1 ElSE 1=2
735C GCSUB 7900
7c'co r:1 =Fi *E( 2) /.025
7870 GO TO 7920
7820 !SliBROUT1NE
7890 E(1)=Q(J,1)+Q(J,2)*V
C-14

-------
~~
Table C -2 (Cont.)
7900 E(2)=Q(I,1)+Q(I,2)*V
7910 RE'l'URN
7920 IF ~!1 <800 THEN N1::e00
7930 RETURN
8000 !ACCESSORY AND FLn:HEEL LOSSES
8010 ! NO AIR CONDITIONING
8020 H2=H2+(10.9199F~07*N1A18.8149E-01)*N1/5252 !ENGINE FAN
8030 IF N1<2200 THEN 8040 ELSE 8060 .
8040 H2=H2+(-12.322SQ4+6.644412EE-02*N1-7.0475694E-05*N1A2+
3.2954301E-08*N1 A3-7.1021053E-12*N1A4+5. 6619139E-16*N1A5)*N1/ 5252
!GENERATOR <2200 RIM
8050 GO TO aJ70
8060 H2=H2+( 1 {( .038335+.0000) 53*N1 ) )*N1L5252 ! GENERATOR >2200 1m!
0070 N3=4800*\24*l1~(V/85 .2)+1;-.5 !FW RPM
8000 ! 1~0 FLYWHEEL LOSS
8090 H2=H2+3.1*N1/5252 !roWER STEERING LOSS
8100 RETURN
GO TO 400
C-15

-------
~eed
Appendix D
FLYWHEEL KINETIC ENERGY DISTRIBUTION AFTER BURST
This appendix presents an analysis indicating the relationship of energy distribution
after burst to the number of resulting flywheel pieces. The flywheel is assumed to
break into N equal-size sectors, the centers of gravity of which are at radius r.
(R3 - R3)
r = 2N sin (7T/N) 0 i
37T R2 - R~
o 1
ICG =
p t N [97T2 (R4 - R~)
18 7T g N2 0 1
(R3 - R3)2 ]
8 sin2 (7T /N ) ~ i2
R - R.
o 1
Total kinetic energy KE = N (0.5 mv2 + 0.5 ICG (c)2 )
m = ~; (R~ - R; )
v = w F =
(R3
2Nw . 0
37T"'"" sm (7T /N) R~
- R~)
R~
1
Translational kinetic energy:
2 2
N (0.5 mv2) = 4~8~tgW [sin2 (7T/N)]
(R~ - R~)
R2 - R~
o 1
D-l

-------
~~
Rotational kinetic energy:
( 2) - ~ptw2
N O.5ICGw - 1871' g
2 _2 ( 4 4) . 2
(971' /2~) Ro - Ri - 4 sm (71'/N)
(R~ - R:t
R2 - R~
o 1
2
71'ptw
KETotal = KETransl + KERotation = 4g
(R: - R;)
Figure D-1 shows the distribution of kinetic energy versus the number of burst frag-
ments, assuming them to be equal sectorial pieces.
D-2

-------
100
90
80
.- 70
>R
~
e-
...J
~(fJ
o
I-
W
~
"-
2 50
o
I-
:5
VI
240
~
I-
LU
~
30
20
10
R = 6.5 IN.
o
R. = 1. 5 IN.
I
~~
2
4
6
16
8
10
NUMBER OF PIECES
Fig. D-l Flywheel Burst Energy Distribution
D-3
12
14

-------
~~
Appendix E
CONTAINMENT RING DESIGN
This appendix describes two methods employed in the Flywheel Drive Systems Study
effort for the design of containment rings.
Method 1
This method is based on the assumption of uniform stress F / A over a cross section
of the containment ring.
F = centrifugal force over a radial section of the flywheel
=
pt w2
3g
(R~ - R~ )
where
p = flywhee 1 density = O. 283 lb/in. 3
t = flywheel thickness = 3.5 in.
w = flywheel angular velocity = 2,513
R = flywheel outer radius = 6.5 in.
o
R. = flywheel inner radius = 1. 5 in.
1
rad/sec (24,000 rpm)
Then
F = 1,465,000 lb
E-l

-------
~~
a. Ring Material: SAE-4340 steel, F t
u
= 250, 000 psi
Ring axial length = 3. 5 in.
Cross-section area =: A
Inside radius a = 6. 5 in.
Assume O"t = F/A = 200,000 psi
A = 1,465,000 = 7.32 in.2
200,000
Radial thickness
= 7.32/3.5 = 2.09 in.
Outside radius b = 6.5 + 2.09 = 8.59 in.
b.
Ring Material: "E" glass-filament/resin wound on steel liner
0.5 in.
Steel liner
Glass-fiber/resin
a = 6.5 + 0.5 in. = 7 in.
E-2

-------
~;::;d
Assume F/A = 155,000 psi
A = 1,465,000 = 9.44 in.2
155,000
Radial thickness = 9.44/3.5 = 2.70 in.
Outside radius b = 7 + 2. 7
9.7 in.
Method 2
This method is based on the assumption of uniform internal pressure P. acting over
1
the inside diameter of the containment ring.
For a thick-walled pressure vessel, the tangential and radial stresses in the walls are,
respectively:
a =
t
2
a P.
1
b2 - a2
(1 + ::)
2
a P.
1
a =
r b2 - a2
(1 - :: )
where
a = inside radius
b = outside radius
The maximum tangential stress occurs at the inside radius,
r = a:
Maximum at = Pi (b: + a:)
b - a
E-3

-------
~~
The pressure P. is found from the flywheel force F of Method 1. The radius of the
1
flywheel is assumed equal to the inside radius ofthe ring so that contact occurs over the

entire semicircular periphery. Thus:
7r/2
2f = J P.tcosO (RdO)
-7r/2 1
= 2 t R P.
1
2F
P. = F (tR)
1
2 (R 3 - R ~)
P = ~ 0 1
i 3g R
o
= 64,354 psi
Then
64 354 (b2 + a2)
Maximum. O"t =, 2 2
b - a
a.
Ring Material: SAE-4340 steel, Ft
u
= 250, 000 psi
Assume O"t
max
= 200,000 psi
a = 6. 40 in.
b2 + 42.25 - 200,000
- = 3.11
b2 - 42.25 - 64,354
E-4

-------
~~
b2 = 4.11 (42.25) = 82.3
2.11
b = 9.07 in.
Radial thickness = 9.07 - 6.50 = 2. 57 in.
b.
Ring Material: "E" glass-filament/resin wound on steel liner
a = 6.5+ 0.5 = 7 in.
Assume O"t
max
= 155,000 psi
b2 + 49.0
b2_49.0
155,000 = 2.41
64,354
b2 = 3.41 (49) = 118. 5
1. 41
b = 10.89 in.
Radial thickness = 10.89 - 7 = 3.89 in.
Detailed design calculations are presented for ring C, which is a solid steel ring of
rectangular cross section.
Ring Material: SAE-4340, Ft
u
= 150, 000 psi
1.
Desired energy of flywheel at burst = 0.9 hp-hr
This corresponds to a burst speed of
E-5

-------
~~
2
w
::::
33,000 (12) (60) (2) (KE)
I
:::: 4.752 x 107 (0.90):::: 5,964,000
7.17
W :::: 2,440 rad/sec (23,300 rpm)
Flywheel F t :::: 125,000 psi
u
Assume (J' b
a s
:::: F
t
Y
:::: 103,000 psi
(J' ::::
abs
103,000 :::: ~ ( R~ - R~ )
3g Ro - Ri - a
= 0.0662663 (5 ~:)
5 - a :::: 0.0662663 (2, 440)2
103,000
:::: 3.83
Notch length I. :::: 5. 0 - 3. 8 :::: 1. 2 in.
2. Allow 0.08 in. static radial clearance
Ring inside radius:::: 6.50 + 0.08 :::: 6.58 in.
3. For a burst speed of 23,300 rpm, the equivalent internal pressure P. on
1
the ring is
2 (R3 - R~)
P :::: ~ 0 1
i 3g R
o
:::: 60,717 psi
E-6

-------
Maximum tangential stress in the ring,
O't
max
Letting 0' t
max
::= Ft
u
b2 + 43. 3
b2 - 43.3
Ring outside radius b
Ring radial thickness
= (b2 + a2)
Pi 2 2
b - a
( 2 -2)
= 60 717 b + 6. 58
, b2 - 6.582
= 150,000 psi
=
150.000 = 2.47
60,717
b2 = 3.47 (43. 3) = 102.21
1.47
= 10.11 in.
::= 10.11-6.58 = 3.53 in.
Actual ring outside diameter = 20.30 in.
Ring weight
~~
::= 187.75lb
::= (0.283) (3.5) (3.60) (21T) (f$.58 + 1.80)
E-7

-------
~
Appendix F
FLYWHEEL CONTAINMENT TESTS
All flywheel containment tests utilized a flywheel with the following characteristics:
. Material
. Outside Diameter
Steel (SAE-4130 or SAE-4340)

13 in.
3 in.
. Inside Diameter
. Thickness
. Weight
3.5 in.

125 lb
Burst speed was controlled by cutting radial notches in the bore to a depth J., deter-
mined from the equation:
2
(J = E..!:!d...-
abs 3g
R3 - R?
a 1
R - R. - I.
a 1
The following sketch shows the location of the notches:
i.
Moment of inertia:
I - JL.e.i R4 - R~
p - 2g 0 1
= 7.17 jin. -lb-sec2
F-1

-------
~~
Kinetic energy at 24,000 rpm (2,513 rad/sec):
KE = (Iw2 )/2 = 22.64 x 106 in. -lb
= 0.95 hp-hr
Figure F-l shows the types of containment ring utilized in the flywheel containment
tests, and Table F-2 presents a chronology of the test program.
F-2

-------
~~
TYPE
A
3.55 £1 lW~~:-:3~~OS~~~L

I ~~- 13.08 IN.~

~20.30 IN. ..
B
-.
41N.
L
r~~
, I
I ,
I I
~J I
I ~ 13 .09 IN.
1 IN.
23.40 IN.
SAE-4340 STEEL
F t == 250 KSI
I u
~IIEII GLASS FILAMENT/
EPOXY
C
SAME AS TYPE A EXCEPT F t = 150 KSI
u
13 IN.
28 IN.
SAE-4340 STEEL
~Ft = 125KSI

--- ~ - "E""GLASS TAPE
-I ..I EPOXY MATRIX
D

3.5£1 ii
I ~.5 IN. --j I,.
E
SAME AS TYPE D EXCEPT WITHOUT MATRIX; TAPE
WIDTH 3 IN.
F
SAME AS TYPE D EXCEPT WITH POLYESTER MATRIX; TAPE
WIDTH 4 IN.
Fig. F-l Types of Containment Ring Used in Flywheel Containment Tests
F-3

-------
Table F-1
SUMMARY OF CONTAINMENT TESTS
~
~
Test F lywhee I Notch Containment Radial Maximum Kinetic  
Date  U.T.S. Depth Ring Type(a)  Gap Speed Energy Remarks
 Material (psi) (in.) (in.) (rpm) (hp-hr)  
11-5-71 4130 Normalized 0.08 A 0.040 20,420 0.69 Momentum transfer
        No burst 
11-12-71 4130 Normalized 0.08 B 0.075 23,840 0.94 Momentum transfer
        No burst 
11-23-71 4340 125,000 0.08 B 0.100 31,900 1. 68 Exceeded design limits
        of ring. Test terminated
11-24 -71 4340 125,000 1.6 B 0.115 19,540 0.63 Flywheel burst
        Ring held
12-8-71 4340 125,000 1.2 C 0.078 22,820 0.86 Flywheel burst
        Ring held
12-17-71 4340 125,000 1.2 D 0.078 24,310 0.98 Flywheel burst
        Ring failed
1-5-72 4340 125,000 1.2 E 0.078 24,525 0.99 Flywheel burst
        Ring failed
1-14-72 4340 125,000 2.9 F 0.063 16,750 0.46 Flywheel burst
        Ring held
(a) See p. F-3

-------
~~
Table F-2
CHRONOLOGY - FLYWHEEL CONTAINMENT TESTS
Date  Test Conditions and Results  
Oct 18, 1971 Flywheel: SAE-4130; normalized; notch depth. 0.08 in.; ring type A; radial gap 0.044 in. Test
  configuration included small support bearing on drive spindle approximately 1 in. above
  flywheel       
  Could not exceed 5,700 rpm because of flywheel "chattering" around inside of ring
Oct 21, 1971 Same conditions as Lest of 18 Oct 1971    
  Could not exceed 5, 000 rpm due to chattering of flywheel in ring  
Oct 25, 1971 Same conditions as test of 21 Oct 1971; radial gap increased to 0.083 in. 
  Chattering prevented exceeding speed of 4,600 rpm  
Nov 2, 1971 Same conditions as test of 25 Oct 1971; new flywheel, hub, and spindle machined as a unit to
  maintain concentricity      
  Chattering prevented exceeding speed of 4,600 rpm  
Nov 2 to 4, 1971 Designed and fabricated bearing and support assembly to locate lower surface of flywheel and
  fix axis of rotation; retained original bearing on spimslle above flywheel  
Nov 5, 1971 Same conditions as test of 2 Nav 1971j radial gap, 0.040 in.  
  Flywheel seized ring at 20: 420 rpm, effecting momentum transfer; spindle sheared; ring and
  flywheel intact      
Nov 12, 1971 Flywheel: SAE-4130, normalized; notch depth, 0.08 in. ; ring type B. Same upper and lower
  support bearings as teat of 5 Nov 1971; rsdial gap, 0.075 in.  
  Flywheel seized ring at 23, 840 rpm, effecting momentum transfer; spindle sheared; flywheel
  and ring intact      
Nov 16, 1971 Flywheel: SAE-4340; 125 ksi; notch depth, 0.08 in. ; ring type B; radial gap, 0.100 in. ; aame
  bearing configuration as test of 5 Nov 1971    
  Spindle broke at 15,700 rpm; no evidence of flywheel In cnntact with ring 
Nov 19, 1971 Same condtitions as previous test of 16 Nov 1971; radial gap, 0.115 in.  
  Spindle broke at 12,600 rpm; no evidence of flywheel in contact with ring 
Nov 23, 1971 Same flywheel and ring as test of 19 Nov 1971; upper and lower bearings removed, leaving
  spindle supported only by turbine rotor; radial gap, O. 100 in.  
  Flywheel attained 31,900 rpm without difficulty; air shufoff to avoid.damage to test equipment
Nov 24, 1971 Flywheel: SAE-4340, 125 kai; notch depth, 1. 6 in.; ring type B; radial gap, O. 115 in.
  Same bearing configuration as test of 23 Nov 1971  
  Flywheel burst at 19, 540 rpm; ring failed; turbine damaged by shock  
Nov 25 to Turbine lower housing replaced; turbine reassembled and run in  
Dee 7, 1971        
Dec 8, 1971 Flywheel: SAE-4340. 125 ksi; notch depth, 1. 2 in.; ring type C; radial gap, 0.078 in.
  Flywheel burst at 22,820 rpm; ring held; turbine damaged by ahock  
Dec 9 to 15, 1971 Turbine drive bushing and lower housing replaced. Turbine reassembled and run in
Dec 17, 1971 Flywheel: SAE-4340, 125 ksi; notch depth, 1.2 in. ; ring type D; radial gap, 0.078 in.
  Additional 4-in. steel plate added to spin pit to increase volume of cavity 
  Flywheel burst at 24. 310 rpm; ring failed    
Jan 4, 1972 Flywheel: SAE-4340. 125 ksi; notch depth, 1. 2 in., ring type E; radial gap, 0.078 in.
  Air shut off at 4,500 rpm because of excessive vibration in the pit structure 
Jan 5, 1972 Same conditions as test of 4 Jan 1972; flywheel rebalanced  
  Flywheel burst at 24.525 rpm; ring failed    
Jan 14, 1972 Flywheel: SAE-4340. 125 ksi; notch depth. 2.9 in. ; ring type F; radial gap, 0.063 in.
  Flywheel burst at 16.750 rpm; ring held; turbine damaged by shock  
F-5

-------
~c/
Appendix G
CALCULATIONS FOR MOUNTING THE FLYWHEEL/SHAFT
The more pertinent calculations used in determining the flywheel! shaft mounting
arrangement and other needs relative to the bearings, seals, and vacuum pumps are
presented in this appendix.
The following equations are oil jet calculations used to determine flow and power
requirements for oil flow through a 0.030 orifice:
q = C A ~2g hL
= CA V 2g ~144)
x VD.P
per Crane Technical Paper no. 410
where
C = flow coefficient for nozzle
do 0.030 orifice dia. 0.167
dI = 0.180 pipe ill -
C = 985 for nozzle
C = O. 6 for square-edged orifice
- (0.030)2
A = area of orifice - - 4 -

= 0.000785 = 78.5 x 105 in. 2
= 0.545 x 10-5 ft2
Assume
D.P = 25 psi, 40, 60, and 80
yD.P = 5, 6.32, 7.74 and 8.94
G-1

-------
~~
p = lb/ft3 of oil = 0.02963 lb/ft3 (petroleum oils)
q = (0.6) (5.45) (10-6)
2 x 32.2 (144)
0.02963
x "6.P
-3 - r;;:p
q = 1. 82 x 10 V 6.P
   3  hp
Lube Oil Pressure Disc Pressure P ft / see gpm
25 + atm atm 25 0.009 0.067 0.00098
40 + atm atm 40 0.015 0.086 0.00200
60 + atm atm 60 0.141 0.105 0.00367
80 + atm atm 80 0.163 0.122 0.00568
Assume 1 jet of oil. Minimum number of jets should be 2 per bearing, 3 preferred.
 hp
Pressure (psi) 4 Jets 6 Jets
25 0.00392 0.00588
40 0.00800 0.01200
60 0.01470 0.02200
80 0.0270 0.03410
Using 4 jets (2 per bearing) as minimum and 40 psia oil pressure:
Flow = 0.086x4 = 0.344 gpm
hp  O. 344 x 40   0.008 hp
=   =
 1714 x 0.85 
G-2

-------
~
Centrifugal Force due to flywheel rotation:
cg Displacement = 0.0002 in.
CF = 3.41X10-4W/RN2
where
W = weight (lb)
R = displacement ( ft )
N = speed (rpm)
  Centrifugal Force (psi) 
Speed Baseline 1 2 3
(rpm) 86lb 160 lb 86lb 42lb
28,000 384 714 384 186
24,000 282 440 282 115
20,000 196 363 196 95
16,000 125 232 125 61
12,000 71 131 72 34
8,000 31 58 31 15
Critical Speed Analysis:
Baseline Flywheel
i
Data
6 in. centers between bearings
Shaft, 30 mm = 1.18 dia.
I = 9.45 x 10-2
Flywheel weight = 86 lb
f. = 1. 5 in.
( cantilevered
section of shaft)
6 -2
k = 3EI = 3 x 30 x 10 x 9.45 x 10
f.3 (1.5)3

= 25 x 105 lb/in.
G-3

-------
~
Total spring rate, shaft on both sides acting as springs:
k
T
= 50 x 105 Ib/ in.
cun
=~
=
50 x 105
86/386
= 4730 rad/ sec
60
= 4730 x 2k = 45,100 cpm
This exceeds nominal operating speeds by 187%.
G-4

-------
Table G-1

WINDAGE LOSS, COMPUTER RUN
BASELINE FLYWHEEL DESIGN
R(O) = 6.53
T = 3.5
N = 24000
T = 519.4
U '= 4.31E-02
Flywheel radius (in.)
Tip thickness (in.)
Speed (rpm)
Temperature (OR)
Air Viscosity (lb/hr-ft)
mm Hg
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1'6
17
18
19 .
20,
21
22
23
24
25
26
27
28
29
30
psi
hp Loss
o 0
1.9342105E-02 .13301009
3.8684211E-02 ' .23158402
5.8026316E~02 .32031819
7.7368421E-02 .4032112
9.6710526E-02 .48201505
;11605263 .55770636'
.1353~474 .63090363'
;15473684 .70203148
..1 7407895 . 7P/13981 PI
.19342105 .83923695
.21276316 .90572998
.23210526 .97102317
.25144737 1.0352358
.27078947 1.098467
.29013158 1.1608005
.30947368 1.2223078
432881579 1.28~050~
.34815789 1.3430822
. .3675 1.4024503
.3b684211 1.4611964
.40618421 1.5193577
.48552632 1.5769675
.44486842 1.6340557
.46421053 1.6906495
.48355263 1.7467735
.50289474 1.8024502
.52223684 1.8577001
.54157895 1.9125422
.56092105 1.9669938
.5b026316 2.0210711
G-5
~~

-------
~~
Table G- 2
WINDAGE LOSS, COMPUTER RUN
FLYWHEEL NO.2 (PRELIMINARY)
R{O) = 6.53
T = 3.5
N = 24000
T = 519.4
U = 4.31E-02
Flywheel Tip radius (in~)
Tip thickness (in.)
Speed (rpm)
Temperature (8R)
Air Viscosity (lb/hr-ft)
mm Hg

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27,
28
29
30
psi
hp Loss
o 0
1.9342105E-02 .13301009
'3.8684211E-02 .23158402
S.S026316E-02 ' .32031819
7.7368421E~02 .4032112
9.6710526E-02 .48201505
.11605263 .55770636
.1353Y414 .63090363
.15473684 .70203148
.17407895' . 7713981 ~I
.19342105 .63923695
.21276316 . .90572998
.23210526 .97102317
.25144737 1.0352358
.2707~947 1.098467
.29013158 1.1608005
.30947368 1.222~078
~32881579 1.2830504
.34815789 1.3430822
.3675 1.4024503
.3~6B4211 1.4611964
.40618421 1.5193577
.42b52632 1.5769675
.44486842 1.6340557
.46421053 1.6906495
.48355263 1.7467735
.50289474. 1.8024502
.52223684 1.8577001
.5~157"95 1.9125422
.b60~210~ 1.9669~~~
.$~026316 2.0210711
G-6

-------
~
Table G-3
WINDAGE LOSS COMPUTER RUN
FLYWHEEL NO.1 (PRELIMINARY)
R(O) = 5
T = 7
N = 24000
T = 519.4
U = 4.31E-02
Tip Radius (in.)
Tip Thickness (in.)
Speed (rpm)
Temperature (8 R)
Air Viscosity (lb/hr-ft)
mm Hg

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
hp Loss
~

o 0
1.934210SE-02 7.3623098E-02
3.868421.1E-02 .12818526
5.a026316E-02 ;17730096
7.7368421E-02 .2231835
9.6710526E-02 .26680262
.1160S263 .30869691
.13539474 .3492147
.15473684 .38858504
.17407895 .42698055
-19342105 .46453035
.21276316 .50133525
.23210526 .53747601
.25144737 .57301867
.27078947 .60801811
,
.29013158 .64252066
-30947368 .67656585
.32881579 .71018783
.34815789 .74341632
.3675 .77627745
.38684211 .80879431
.40618421 .84098747
.42552632 .87287536
.44486842 .90447456
.46421053 1.93580009
.46355263 .96686557
.50289474 .99768345
.52223684 1.0282651
.54157895 1.058621
.56092105 1.0887608
.58026~16 1.1186934
G-7

-------
~~
Table G-4
WINDAGE LOSS COMPUTER RUN
FL YWHEEL NO.3
R(O) = 10.22
T = 1
N = 24000
T = 519.4
U = 4.31E-02
Tip Radius (in.)
Tip Thickness (in.)
Speed (rpm)
Temperature (8 R)
Air Viscosity (lb/hr-ft)
mmHg

o
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
psi
hp Loss
-0 0
1.9342105E-02 .57288463
3.H684211~-02 .99745008
5.fi026316E-02 1.3796349
7.7368421E-02 1.7366615
9.6710526E-02 e.0.760.P/57
.11605263 2.4020839
.13539474 2.7173502
.1~473684 3.0237032
.1 '0107895 3.3224'709
.19342105 3.6146577
.21276316 3.9010482
.23210526 4.1~2271
.25144737 4.458U396
.27078947 4.7311814
.29013158 4.9996566
.30947368 5.2645731
.32081579 5.5261963
.34~157B9 5.7847578
.3675 6.0404606
.3~6~4211 6.2934845
.40618421 6.5439897
.42552632 6.7921195
.444U6842 7.0380029
.46421053 7.2817567
.48355263 7.5234871
.~0289474 7.7632~07
.52223684 8.0012~63
.54151895 8.23746~3
.56092105 8.471~927
.58026316 6.704~078
G-8

-------
~~
Appendix H
FLYWHEEL SUPPORT BEARINGS ANALYSIS
An analysis of the bearings that support the flywheel shaft is given in this appendix.
Included are calculations for determination of bearing speed limits, life, and drag
torques.
SPEED LIMIT ESTIMATES USING DN LIMITS AND TAC LIMITS FOR 30-MM-BORE
BEARINGS
D' N3 d3
T AC = 3
cos B
where
D = bearing bore, (mm)
D' = bearing pitch diameter, (mm)
N = speed (rps)
d = ball diameter (in.)
B = initial contact angle (de g) = 12
Bearing O.D. 1. D. D' d d3 D'd3
No. (mm) (mm) (rom) (in.) (in. 3)  (mm in. 3)
1096 47 30 38.5 0.2031 0.0084. 0.322
106 55 30 42.5 0.2813 0.0222 0.9435
206 62 30 46.0 0.3125 0.0305 1. 4030
306 72 30 51. 0 0.4375 0.0834 4.2534
406 90 30 60.0 0.6875 0.3250 19.5000
H-1

-------
~~
When TAC = 31 x 108
3
N3 = T AC cos B
D'd3
=
29 x 108
D'd3
 N3 N N
 (rps) (rpm)
9.0 x 109 2080 124,000
3.07 x 109 1453 87,200
2.06 x 109 1313 78,700
0.68 x109 880 52,700
0.149 x 109 530 31,800
When TAC = 7 x 108
8
N3 = 6.55 x 10
D'd3
N3 N N
(rps) (rpm)
2.035 x 109 1260 75,600
0.695 x 109 886 53,000
0.467 x 109 776 46,500
0.154 x 109 536 32,000
0.034 X 109 323 19,400
Speed N when D' N = 1 X 106 and D' N = 1. 5 X 106 :
N 1 x 106 N
When D' N = When D' N = 1. 5 x 106
26,000  39,000
24,000  37,000
21,700  32,500
19,600  29,400
16,680  25,000
H-2

-------
~
BASELINE FLYWHEEL ASSEMBLY BEARING LIFE ANALYSIS
The life expectancy of a ball bearing for 90 percent reliability is called an LIO rating.
The L10 rating for the 206K bearing is calculated as follows:
50,000 (CB)3
L10 = N RE
where
N=rpm
CB = basic radial load rating at 33-1/3 rpm
RE = equivalent radial load
LIO = life (hr)
The equivalent LIO life of a bearing subject to varying speeds for varying times can be
determined by the formula
L =
PI P2
- + -. .
L1 L2
1
PN
. +-
LN
where
L = equivalent hours of LIO life

PI = portions of time expressed as a decimal fraction of time that load and
speed are in effect

L1 = calculated life of each bearing at each load and speed
H-3

-------
~~
The L10 calculations are tabulated below.
Percent Normal Gyro- Total Operating Theoretical
of Loading, Induced Loads, Life L10
Time Radial Loads Radial Speed (hr)
2.5 282 600 882 24,000 138
2.5 282  282 24,000 4210
2.5 237 300 537 22,000 667
2.5 237  237 22,000 7768.75
17 196 200 396 20,000 1831
8 196  196 20,000 15,106
35 159 100 259 18,000 7248
20 96 40 136 14,000 64,591
10 70.5 - 70.5 12,000 540,946
10 31 - 31 8,000 9.5x106
Combined L10 bearing life for complete duty cycle: 3154 hr.
TYPICAL CALCULATIONS FOR DETERMINING BEARING DRAG LOSSES
Brg 206 (30 x 62 X 15), O! = 12 deg, speed
= 8000 rpm
Friction Torque:
0.083 f1 PBdm + 1.183 x 10-6 fo (yN)2/3 d~
where
il = {~:r

= 0.00094 (0.138)0.46

PB = 31
dm = 1. 811
d3 = 5.94
m
= O. 00011
y
N
(yN)2 /3
= 28 cts
= 8,000
= 1,280
H-4

-------
T = (0.083) (1.17 X 10-4) (31) (1.811) + (1.183 X 106) (1280)
(5.94) = 0.00956 in. -lb

hp = (0. 0~~~~0~8000) = 0.00122 hp/brg
Speed Horsepower Loss
(rpm) (hp/brg)
8,000 0.0012
12,000 0.0068
16,000 0.012
2'0, 000 0.018
24,000 0.025
28,000 O. 036 ,
H-5
~~

-------
~
Appendix I
SEAL LEAKAGE CALCULATIONS
Seal leakage calculations are presented in this appendix.
LABYRINTH SEALS
Preliminary gas flow loss estimates, based on steam turbine work:
W = 25 KA /P 1
V1
[1 - ~~r]/ [N - m::]
W = flow (lb/hr)

K = coefficient (experimental)

= 50 for interlocking labyrinth; varies from 100 to 60 for noninterlocking
seals, based on radial clearance to spacing ratio of 5 to 50; uses 100 non.
interlocking short spacings
For O.OOl-rad clearance,

A = area = 1Td (0.001) in. 2
P1 = initial pressure = 14.7 psia
V 1 = initial specific volume = 13.28 ft3 lIb
P2 = final pressure = 5 mm = 0.097 psia
N = number of throttlings; assume 3 per side
W = 25 (100) A
[ (0.097)21
1 - 14.7
In 0.097]
14.7
W = A (2.67 x 103) lblhr
1-1

-------
~~
For 1.5d:
W = (4.71 x 10-3) (2.67 x 103) = 12.6 lb/hr = 0.0035 lb/sec (278 CFM)
For 2. Od:
W = (6.29 x 10-3) (2.67 x 103) = 16.8Ib/hr = 0.0047Ib/sec (374 CFM)
With larger radial clearances:
 Loss  Loss 
 1. 5-in. Diameter 2. O-in. Diameter
Clearance    
 lb/sec CFM lb/sec CFM
0.001 0.0035 278 ,0.0047 374
0.003 0.0105 835 0.0141 1120
0.006 0.0210 1670 0.0282 2240
0.009 0.0315 2500 0.0423 3380
1-2

-------
~~
Appendix J
FACE SEAL TEST REPORT
The test results of the high-speed rotary face seal tests are presented in this
Appendix.
The test objective was to determine the friction drag torque and vacuum sealing abil-
ity of a face-type shaft seal at high rotary speeds for use on high-speed flywheel
applications. The test setup for this test is shown by Fig. J-1 (seal test setup),
Fig. J-2 (drawing of seal arrangement), and Fig. J-3 (details of seal).
TEST PROCEDURE
The seal was tested with three different nose loadings at the following revolutions per
minute:
6,000
8,000

12,000
16,000

20,000
The first test was run to determine drag torque values with a maximum of 5.0 mm Hg
air pressure in the seal cavity. The second test was run to determine vacuum leak-
age rate at speeds noted.
TEST RESULTS
Test results are shown in Tables J-1 and J-2 and the drag torque and horsepower
curve il!! shown in Fig. J -4.
J-l

-------
~
The results indicate that in the speed range of 20, 000 rpm and up - which is optimum
flywheel operational speed - the face seal with an installed length of 0.770 will dissi-
pate approximately 0.2 hp with a maximum seal leakage loss of 0.010 cfm per seal.
Total nose loading on this seal is 12.75 lb due to spring preload plus atmospheric
pressure against the back of the seal. This load results in a coefficient of friction of
0.045 versus the 0.02 value used in preliminary calculations.
J-2

-------
~
I
CoO
CD
CD Varidrive Unit

o
@
(3)
@
@
o
Waldron Coupling
(Grease lubricated)

Strobe-Tachometer

Speed Increaser Gearbox
(Recirculating oil lube)

Splined Coupling
(Grease lubricated)

Specimen Seal Holder
(See details, Fig. J-2)

High-Speed Spindle Shaft
(Air-oil mist lubrication)
@
o
@
@
o
Vacuum Chamber

Torque Sensor, Lebow Model 110.2-10.0.
(0. to 20.0. In. -oz. Capacity) Calibrate
With Dead Weights

Mounting Base

Temperature Recorder (Monitors
seal and critical brg temps)

Daytronic 770. Strain Indicator

Vacuum Gage

Vacuum Pump
@
@
@
@
@
Fig. J-l Seal Test Setup
~
@

-------
OIL JET LUBRICATION
IN THIS RUBBING
INTERFACE ZONE
~
I
~
ROTATING
SPINDLE
Fig. J-2 Face Seal Test
RUN 1 - 0.770
INSTL. RUN 2 - 0.742
LENGTH RUN 3 - 0.715
MEASURE ACTUAL
LG. PRIOR TO ASSEMBLY
TO RQ UE
SENSOR
TH IS SEAL FACE
TO BE.l TO SPIN
AXIS WITHIN 0.0005
VACUUM
HOSE
NON-ROTATING

-------
~
I
en
2.250
MAX. DIA
1.830
1.810
. DIA.
1 . 5780
1 . 5770
DIA.

L
~[ }=-~: ~~~
\:..Y FREE OF
SEAL SCRATCHES &
NOSE F3 @ CHIPS PER
SPEC M2-2
33
64
0.739
0.734
~

.,,--- A I R
- ~ PRESSURE-EQUIVALENT
~ 10 IN. H20 DIFFERENTIAL

~
y
6300
RPM
@2. 506
2.504
O. D.
1.795
MIN.I.D.
.020
MAX.
Fig. J-3 Details of Seal
DETAIL A
(NO SCALE)
~
,

-------
~
Table J-1
FACE SEAL TEST DATA
Friction Drag Test
Date
1/22/72
Recorder
M. Helvey
Witness
R. Ruth
Ambient Pressure
29.92 psi
Ambient Temperature
68°F
Lubrication:
Type of Oil
SAE-20 W
Method of Applying Oil
Oil-Jet
Oil Flow Rate
Oil Temperature
Speed  Seal Installed Length (in. ) 
(rpm) 0.770 0.742 0.71$
o (a)    
6,000 14.96 in. -oz 17.50 in. -oz 32.8 in. -oz
 0.089 hp O. 105 hp O. 195 hp
8,000 14. 0 in. -oz  25.5 in. -OZ
 O. 11 hp  0.20 hp
12,000 11. 75 in. -oz 13.78 in. -oz 21. 6 in. -oz
 O. 14 hp 0.164 hp 0.25 hp
16,000 10. 8 in. -oz  19.6 in. -oz
 O. 17 hp  0.31 hp
20,000 10. 0 in. -oz 13.0 in. -oz 18.8 in. -oz
 0.20 hp O. 26 hp O. 37 hp
(a)Breakaway torque.
J-6

-------
Table J-2

SEAL LEAKAGE TEST
c:....
I
...;J
 Installed    -6    
Speed P2 PI Weight x 10 b. Time b.W It 
(rpm) Length   W (min) (lb/min) cfm
(in. ) (mm Hg) (mm Hg) .w wI  
 2    
6,000 0.715 30 4.2 185 28 157 2.5 62.8 x 10-6 0.0084
6,000 0.742 40 4.5 257 30 227 3.5 65.0 0.0086
6,000 0.770 30 4.5 185 30 155 2.5 62.0 0.0083
12,000 0.715 30 4.4 185 29 156 2.5 62.5 0.0084
12,000 0.742 30 4.1 185 25 160 3.0 53.5 0.0072
12,000 0.770 30 4.6 185 26 159 2.8 58.0 0.0078
20,000 0.715 30 8.5 185 52 133 1.5 88.5 0.012
20,000 . 0.742 30 4.3 185 25 160 2.0 80.0 0.010
20,000 0.770 30 4.6 185 25 159 2.7 58 0.008

-------
~
0.30
CII:
W
~
Q.. 0.20
w
c.n
CII:
o
:I:
0.10
-
N
o
I
.
C
::.
w
::>
~20
o
....
o
30
&. SEAL LOAD - 12.75 Ib
&. SEAL LOAD - 14.95 Ib ,/
& SEAL LOAD - 15.:;.("/

/' ~~.
.,// /' Th
.,//' ;.
.,/ ~~
~~
1
10
TORQUE
- - HORSEPOWER
6,000
12,000 16,000
SPEED (rpm)
20,000
8,000
Fig. J -4 Drag Torque and Horsepower Relationships
J-8
24,000

-------
~~
Appendix K
VACUUM PUMP CALCULATIONS
Vacuum pump calculations for pump sizing and power absorption are presented in this
appendix.
Pump calculations using seal leak rate and pump vacuum pressure levels achieved the
following test results as performed by LMSC
DATA
V
= O. 04 ft3
P 2 = 5 mm Hg
PI = 760mmHg
AT = O. 5 min
Q = 0.5 Torr (cfm)
o
Q = 0.02 cfm = 15.2 Torr-cfm (2 seals)
c
C
= 1, 000
Then, for pump capacity

cfm (load) = 2.3 V Ig(Pl) + Qo + Qc
AT P2 P2
= ~:~ (0.04) 19 C~O) + 0.5 ~ 15.2
= 0.4 + 3.14 = 3.54cfm
K-l

-------
~
1 - 1 + 1
cfm - cfm (load) Conductance
Since C = 1,000 (see Fig. K-1)
1
C
is negligible
Pump capacity required = 3. 54 cfm
Pump power requirements are shown in Fig. K-2 where the power consumption = 0.17
W-hr/ft3
3.54 cfm x 60 = 212 cfh
3
212:!L x 0.17 W-hr x 1.34 x 10-3 hp/W = 0.0484 hp
hr ft3
Assuming 15% efficiency for the pump because of low pressure, then
hp = 0.0484 = 0.323
0.15
An outgassing rate comparison is given in Fig. K-3.
K-2

-------
'w
~~
0:"-
~@
«'"
!::!~
;5« 100
Z:;:
:::to
>-",
uw~
LLt:ii
O~::::-
ffi~
t:i0 10
~w
«C>
C;~
ww
9~
v>'"
~O
1
1011
u
w
~
:Q
w
I-
2.
109
108
w
~w
~~ 107
«"-
uo
Q2~
Ow 6
Z"- 10
:J~
. >- '"
Uo
O~ 105
.w!:!::!
U"'"
Z!:
~ ~ 104
~~ .
OW
ZI.iI
02. 103
U
~
9
LL
'"
:.(
LL
o
R
101
NOTE:
THE TABULATED CONDUCTANCE
MULTIPLIERS RELATE TO THE
TAPERED PIPE SHAPE OF A RIGHT
CIRCULAR FRUSTRUM OF A CONE.
~~
TAPERED PIPE CONDUCTANCE
DIAMETER
RATIO*
MIN./AVERAGE
CYLIN. PIPE
CONDUCTANCE
MULTIPLIER
0.050
0.075
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.01
0.02
0.04
0.13
0.19
0.26
0.41
0.56
0.70
0.82
0.92
0.98
1.00
*AVERAGE DIAMETER IS
(DMIN. + DMAXY2
Fig. K-l Improved Method for Determining Vacuum Pipe Flow Conductance
K-3

-------
0.020
~
~~
~ ~ 0.015

-
\ '
, '
, ,
,. ,
OIL EJECTOR PUMP~ \ ! I

\ . I I
\ I
Oil-SUBMERGED ROTARY
PUMP \ I
, I
\ / /
'\-"';DIFFUSION PUMP J

\"" ffOOTS-TYPE BOOSTER V, //
~UMP "-. -"

-- --8 ~ -


100 10-1 10-2 10-3
PUMP SUCTION PRESSURE (TORR)

POWER CONSUMPTION IS BASED UPON PUMPING
CAPACITY OF THE PUMP, IN lITERS, AT THE
SUCTION PRESSURE CONCERNED.
~
~
..
Z
o
I:i:
~ 0.010
en
Z
o
u
~
W
~ 0.005
0..
o
102
101
*NOTE:
Fig. K-2 Power Consumption of Various Pump Types Relative to the Working Pressure
-
0.60~
u..
~
::>
o
::I:
I
~
0.45 w
I-
«
~
X
o
~
0..
0..
0.30 «
I
Z
o
I-
0..
~
::>
O. 15 VI
Z
o
u
~
w
~
2
o
10-4

-------
21200
2120
-0
'0
)(
z
~
I
N
l-
LL.
M'
t::
I
CI
J:
~ 21.2
2.12
G
w
VI
I
N
l-
LL.
,
212 ffi 10-1
I-
::J
I
Z
o
01:
~
~
~
Z
VI
VI
«
8 10-2
::>
o
LL.
o
W
I-
~
10-3
.212
10-4
0.1
~~
101
10
100
TIME (HR)
Fig. K-3 Outgassing Rate Comparison
K-5

-------
~
Appendix L
VACUUM PUMP TEST RESULTS
The results of the vacuum pump tests conducted at LMSC are presented in this
appendix.
TEST PROCEDURE
The pump was tested in three different configurations to determine its best arrange-
ment for use as a vacuum pump. The configurations are as follows:
. Test 1 consisted of using one element as a vacuum pump and the second ele-
ment as a scavenge pump.
. Test 2 consisted of using both elements as a vacuum pump and lubricating
the pump with an oil reservoir which was attached to the discharge port.
. Test 3 consisted of using one element as a vacuum pump and removing the
other element. Lubrication was accomplished in the same. way as in
Te st 2.
The test obj~ctive was to determine the suitability of a gerotor-type oil pump for use
as a vacuum pump on high-speed flywheel applications. The test setup for this test
is shown by Fig. L-l (pump test setup).
TEST RESULTS
Test results are shown in Tables L-l, L-2, and L-3, and the pump flow curve is
shown in Fig. L-2.
L-l

-------
CD
t"'4
I
t-.:)
@
CD Varidrive Unit

o
@
o
0)
@)
Waldron Coupling
(grease Lubricated)

Strobe-Tachometer

Speed Increaser Gearbox
(Recirculating oil lube)

Splined Coupling
(Grease lubricated)

Torque Sensor, Lebow Model
11 02-200 (0 - 200 In. -Oz Cap).
Dead Weight Calibrated and
Air-Oil Mist Lubricated

o Coupling (Grease lubed)
cv
-1
@I
~ @ I
@ Test Vacuum Pump

CV Base
@)
@
@
@
~
@
@
Plumbing - Parallel System From
Vacuum Chamber to Inlets of Dual
Elemet Pump

Standpipe - Outlet Port of Pump;
Minimum Oil Height = 12.0 In.

Vacuum Chamber

Vacuum Shutoff Va Ive

Vacuum Gage

Daytronic Model 770 Strain Indicator

Temperature Recorder (Moni tors
pump & bearing temps)
Fig. L-l Pump Test Setup

-------
~
Table L-1
VACUUM PUMP TEST 1
Date
1/20/72
Recorder
M. Helvey
Witness
R. Ruth
Type of Pump
Gerotor Scavenge Pump
Pump Identification
GC 436 M
Pump Configuration
1 Element Oil Pump
Vacuum Chamber Volume
1 Element Vacuum Pump
108 in.3
Ambient Pressure
29.92 psi
Am bient Temperature
68°F
  Pump Speed (rpm) 
Item 5,200 6,000 7,000 8,000
Pumpdown    
Time 35 40 40 30
(see)    
Minimum    
Pressure 1.9 2.8 2.9 5.1
Attained
(mm Hg)    
Pump    
Housing 100 175 175 215
Temperature
(OF)    
Torque Off Scale;   
(in. -oz) Test Setup Records only up to 100.00 in. -oz 
I 'I 
L-3

-------
~
Table L-2
VACUUM PUMP TEST 2
Date
1/20/72
Recorder
M. Helvey
Witness
R. Ruth
Type of Pump
Gerotor Scaven~e Pump
Pump Identification
PIN GC 436 M
Pump Configuration
Vacuum Chamber Volume
Both Elements Vacuum Pump
108 in. 3
Ambient Pressure
29.92 psi
Am bient Temperature
68°F
  Pump Speed (rpm) 
Item 5,200 6,000 7,000 8,000
Pumpdown    
Time 37 32 20 17.5
(see)    
Minimum    
Pressure 17.9 21. 0  
Attained 95.0 100.0
(mm Hg)    
Pump    
Housing 148 180 210 210
Temperature
(OF)    
Torque 93.02 79.02 66.70 57.40
(in. -oz)
Horsepower (0.48) (0.47) 0.464 0.455
L-4

-------
~~
Table L-3
VACUUM PUMP 'f~ST 3
Date
1/20/72
Recorder .
Witness
M. Helvey
R. Ruth
Type of Pump
Gerotor Scavene:e Pump
Pump Identification
PiN GC 436 M
Pump Configuration
1 Element Vacuum Pump
Vacuum Chamber Volume
1 Element Remove4
108 in. 3
Ambient Pressure
29.92 psi
Ambient Temperature
68°F
  Pump Speed (rplp) 
Item 5,200 6,000 7,000 8,000
Pumpdown    
Time 31 25 20 30
(see)    
Minimum    
Pressure 9.5 34 39 30
Attained
(mm Hg)    
Pump    
Housing 140 156 160 210
Temperature
(OF)    
Torque 46.0 41. 7 40,5 31.7
(in. -oz)
Horsepower (0.237) (0.248) 0.281 (0.252)
L-5

-------
763
610
C)
~ 458
E
-
~
I
en
w
a:::
::>
V)
~300
a:::
0..
50
148
10
20
TIME (SEe)
30
40
Fig. L-2 Pump Down-Time - Gerotor Pump

-------
~~
CONCLUSIONS
Test results show the pump to be suited to the flywheel system for the following
reasons:
. Pump downtime to a useful vacuum level never exceeded 25 sec. A typical
pump downtime curve is plotted in Fig. L-2.
. The pump is capable of pumping down and holding air pressure levels below
5 mm Hg.
. Configuration 1 provides the highest vacuum producing capability.
. Temperature stabilized at acceptable levels for all configurations.
L-7

-------
~
Appendix M

LMSC COMPUTER-FORMATTING OF ENGINE TEST DATA AS RECEIVED
FROM U.S. BUREAU OF MINES PETROLEUM RESEARCH CENTER
This appendix contains an LMSC computer-formatted version of engine test data as
received from the U. S. Bureau of Mines Petroleum Research Center. Following
are definitions of pertinent abbreviations and column headings:
ST
MAFR
CAFR
IAR
PO
ER
ET
MP
SFC
CO
HC
NOX
Spark timing (0 BTC)
Measured air-fuel ratio
Calculated air-fuel ratio
Intake air rate (lb/hr)
Power output (bhp)
Exhaust recycle (%)
Exhaust temperature (0 F)
Manifold pressure (mm/Hg)
Specific fuel consumption (lb/bhp-hr)
Carbon monoxide (g/bhp-hr)
Hydrocarbons (g/bhp-hr)
NOx measured as NOz (g/bhp-hr)
M-l

-------
Table M-l

LMSC COMPUTER-FORMATTED VERSION OF U. S.
BUREAU OF MINES ENGINE TEST DATA
1
I'AGt. 1
DATE: 11110 9:02
DATA eASE: 13.0 EMMXI
Ht.I'UHI ~UHM: I~.O t.MHll
ST MAFR CAFR
JAR
ER
co
NO
E1
SFC
HC
MP
PO
.," ErlGJNE: A
.., CATALYST: 0
~1t.1f.
, PCT. POWER: 10,
a::
I
l\:I
30 14.7 1~.~ ~Ul.l
30 18.4 1101 261.1
30 16.4 16.4 239.2
-'.-;'U'-'1'T......,.,.-,r,"1 ,",UII,l
20 14.7 14.7 224.~
~o 16.8 16.7 284.5
-"?1)--rt;1r-17-;o-- .. 11
20 20.9 19.6 380.9
10 14.9 14.7 265.3
- .ttrTfi-;3--r60f.I'3'1'1 . tI
10 19.3 18.7 404.5
1') 21.3 19.6 48/,.9
- "------ - ---. --- - -----
, PCT. POWER: 25'
U       
"1."':1 " Idir H.' I. ,)tI ~~'--r-;n r 1.1-:"
9.9 0 1279 9." 1.43 14.56 I. I 2 9.35
9.9, II 13n'3 9.11 1.47 12.1)2 1.11 7."2
"4.'1 I) l~MI4 .1.:> ].~q. C'tj,:->q 11.h'" ~~-
9.9 11 1343 9.2 1.5"> 27.59 .8.3 6..32
9.9 0 1393 1'.1 1.71 9.75 .63 5.48
'!.Y u IY'~ III. 1 ).~f1 l~.~q I .I~ 5.83
9.9 0 1352 14 1.88 .3f>.92 16.12 .. 78
9.9 0 1459 10.6 1.8 27.89 .3 5.52
":1,"1 u 1'f"1b I,) C!.Jl tt.'l~ .ql. ~.~q
9.9 II 1472 1.3.5 2012 15.66 1.87 2.48
9.9 0 1441 17.6 2.31 .30.72 13.51 2.<'4
-"3lJ'Tli';lI11i';T""Z73~q.q U 1~19 11.2 .76 21).4~ 1.112 7.mr--
.311 16.4 16.2 29f>.9 25.1 0 1304 11.9 .72 6.3~ .37 7.?3
.31! 18..3 18.3 .351.') 2').5 (I 1.306 13.2 .75 7.4f> .39 4.09
'-';m-20-;7~Tr;"!r/ITCJ;~q;-4 U 13T917.2 .9~ 19:-2~9f-;R~
2u 14.8 14.7 31U.2 25.4 0 1.387 12 .82 19.f>9 .59, 5.59
2u 16.2 16 356..3 24.8 0 1.380 12.9 .8.3 5.&1 .,' 4.97
- --err-Tl)";5'"""'Tf".-q-tJj"T;"n ~:>. ~ I' J'" If"! 1:). ~ . t1~ fl. ,~~ .16 ".. ."'8
2" 21.2 20.3 56').3 25.4 0 1393 19.9 l.n5 17.83 6.118 1.111
111 14.4 14.~ .341.8 24.7 0 1495 1.3.2 .96 52.07 .7.3 3.75
H'I 16.6"10.3 Qf1l-;'o ",.,.n 'I I~ rq lb.,) .-gf-"5;0.,----;IT&--Yj';"'--
10 17.9 17./ 4.39.7 25.2 0 145~ 16 .9~ 4.94 .Ib 4.52
I~ 19.8 18.4 523.02').2 II 14f>2 IA 1.115 6.8' .')2 ?,)7
---- -~ .--------------'------r--
, PC T. PO\~ER: 5''1
,3fJ 15 14.7 382.7 48.1' ,u'-O"'1323"111.7 '.53 21).33 '1.1'111 4.,,9
3') 16.4 16.1 42:>.5 !>II.I II 1274 15.5 .51 !':>..'4 .7,1(,.0;1
3'1 19.8 18./ 49".9 49.1 0 13(13 17.;!' .51 5.',\ .-,. b.f,5
"31) <,1'1 ~7 "21').1 '5(,9. r1l<;r~T'- -O,313-2IT;Yj' -;SfJ-r;r9 -".. -.7°" ;??8 .....--
2u I:'.:? 1".7 loll 48.6 0 1382 15.A .5f> ,:?'< .78 6.71
2tl It;,.f\ 10.1 4t,2.4 t&.u.~ Ii 1314 'b.t' .~)t., 1t.C)h ...,? 1::0.114
21' 11\.1< li\.""t,~1.';"ijQ;I--rj"i,'\7I\' "';>;'''''-:<;H'''ii.'I',' -"';i4"-~.,'?
<'II <1'1.6 18./1 5'.'1'.0 47.3 0 13I1Q <'1 .b !,..3 .:?h 2.40
IL' I!> 14.t' ~ 1,.1 41\.' 0 14fl~ 'H.? .n.. 311._~', .-~4 h.~"
10 17 16.1 5r;1.34q;'3u-'.1-14!\3"lq~9" ;6f~"-- 3.1:> .IT~" ().Th"---u,
III IU.2 17.7 6'1'1.7 51101 0 145(1 22.8 .67 .3.511 .I!> .3.92
--...____"_0 --- ..--.- .-...--
.. REC'(CLE RATE 'H -SIT'-'
. PCT. POWER: 10
~."J
"J."J 1.)~6' IIJ.b
l.b
... 21i--:Z';'7~
.. ''"3I]'-I'!).:rTIi-;'l <1'11..:1
17. 77
Table M-l (Cont.)
..... PIIGE' ?n7!" ,--- --,- --- "'-,-----'
ST MAFR CAFR
ER
ET
IAR
PO
-._-_. -
....-. --...--. -.----.
-. -- -. .-.
MP
C,FC '
NO
HC
CO
3~ 17.4 16.8 294.6
3" 16.9 I&.!> 281'>.7
. 31) 19~5'I!r.!>:IT7.9
20 15.4 14.11 265.2
211 16.6 16.6 321.4
II!II II." Jf.':) -'J:hY'
10 15.4 14.11 319.7
lU 17 16.7 371.')
9. q 1 ~.I\ 1261 12.5 1.7 I 28. 1'1 12.9" 4 . 7 '7
9.'1 fl. 1 13f>J II.A 1.72 lu.311 4.0" 3.1
y.Y~-;5""r:?9J -I :?'.rl-;'6~j'- .-bii'-- 15'.41---? ;U~-'
9.'1 9.1 1~112 11.11.74 I!,.!i', .1\3 3.117
9.  .44 4.~1
, PCT. POwER: 25
31) 1:>.11 .'4.D
3') 1&.7 1&.1
311 18.6 18.2
-'~1'r?tr.e-"?"'. 7
2" 15.4 14.1'
20 16 16
~f1""? toT-'?'~ 1
1'/ 15.2 14.7
111 17.2 Ib.4
~"D.,J C':>...
321.1 24.8
379.& 26.4
::PHj. J ~~..
.338.3 25.4
3!:.4.7 2~.4
~1!1.!> t!4./\
401J.3 25.4
451.3 25.3
be'" J.J.)fj I",.b
701 1:?9'1 1..3.4
5.3 13~4 14.7
c:' .t'J l~Y' J t1.'
6.'1 141111 13.~
4.9 1408 13.9
".t! 14,,9 t!".'
b.!'> 15"3 16.3
4.8,1507 17.H
.18 llt.b~ .~ q.11t
.79 7.17 .3& 2.11:;>
.77 '1.115 .~o 1.53
. ~ r <'f ., ~ J.~ . 11"---;~
.87 1?6? .31 ?9~
.87 ~.47 .If> 2.A9
1.""TJq;'!'i'-~~i-;TTD'-
1."632.8f1 ..H 2.?7
1.'/4 5.'>b .112 :?Rb
, PCT. POWER: 5U
3b 15.~ 14.11 396.!> .11.3 ~.!\ 1356 1~.~
311 16.9 16.2 429.7 !>Ool 9 1279 17.2
.3') 1805 IR.2 5"4." 51.3 .3.6 13"'1 18.7
- 3ft' ?'h.'>I .~~
.~4 6.~5 .34
'-. 5-y---g .'1IT'---" ;"'1
.59 17.27 .">9
.57 ~.? .29
:1. In
4.3,-
3.!>9
I. I
3.78
If.q4
~. I.:J
.~f
&t.~,
. I
31) 14.9 13.9 323.9 9.Q 25 12q'l 15.7 2.2 1111.'57 5!,.8b 1.5
-~J~.~-~~~ l~nl lc.:>-r.ln ~t!.lfj "".1'" If.J~
.3~ 16.~ 16./ 33~.2 9.9 1{).9 1376 15..3 2.117 4f>~QI 24..3R I.A3
3V 19.4 18.6 342.4 9.'! 7.4 1280 13.9 1.78 4B.P~ 31.b 1.84
,- '211 "15. fr11J .fi-~.1t--. "9 1.3. .'5 .1\(, 3. ..'14
10 17.2,16.8 4?0 9.9 5.4 1~44 16.2 2.46 12.Hl 1.46 3.A'.1
I" 19.1 111.6 4'179.9 ,-- "IJ' 145Q-n;? <'7.5D"'7:5~"'77---r;q8-r.-TJn-
lU 21.9 19.3 5~3.5 9.9 3.0 140f> "" 2.5f> ~R.? "11..3 1.91

'---'--PC'T'.'~-~--"-------'- ,-----.
3u 15.9 1".8 384.9 26.1
'3D T60,I£'-;7-:39:J.'r'Z'5. 1
3U 19 18.5 4611.2 2!J."
3U 20.8 2~.7 521.2 24."
. -~ ID 1~.a ~~~ ~3.b
15.8 1385 '16.4 .93 13.97 I.A6 1.57
I II . q I -, 7T"T."I--;tI~ ?';-trI'! -T:' A r--;J;..-
1201 1312 (9.3 .97 '27 16.8 .63
5.21272 19.f> 1.'/2 32.5', 24.11 .72
l~ l~~q l/.h ~U~ 11.1~ .b~ 1.36

-------
Table M-l (Cont.)
--p~:rn-rtu
-.--< ------ --
~ T MAFR CAFR
JAR
20 1& 1&.2
20 18.7 17.9
-~!T;7j., i!1f.tS
484.4 25.4
5113.1 26.1
:J",IJ.tS ~~.~
5,,2.9 25.2
----r-Pt:r;- PUW~H: ~U
PO
ER
ET
MP
!>FC
CO
HC
NO
11.41"15717.3.6 511d ,J.~ 1..52 "'''d- " ,"b.:>
~
I
t.:)
...
-----. .
.
CATALVSI: 1
"fC,CU. MTE ~.
PC T. PO4.4
20 16.8 16.6 284.5
- ----zrJTT;1r1"T. b 2 , 1
2U 2U.9 19.6 366.9
10 14.9 14.7 265.3
--rlJ-ro;lf-rt);r;-"31iT .Ii
10 19.2 18.7 4G2.3
10 21.3 19.6 46P.9
.59
2.72
1.92
5.b5
.2~
.92
.31
.t!c
.12
.15
2db
1.8U
1.87
1.15
2.38
2.26
1.9<:>
"i!,::''''
3.45
~). ~!l
1If,(!(!
.1..)
o
9.~
9.9
9.9
':1,':1
9.9
0.9-
11 I'?bl) t1., 1.~tI .J..) .r-~
o 1289 9.6 1.43 4.53 .5b 9.35
o 131.18 9.8 1.47 3..1\9
o 1.391 lid 1.71 4.67 .'16 4.83
') 1~29 111.7 1.58 4.19 .63 5.83
II 1343 14 1.8/J &.33 4.12 1.34
o 19~8 11).6 1.8 4.11 .18 'i.1>3
II 1483 13.1 2.1 b.26 .4 5.~4
U 1452 13.6 2.12 n.57 .&5 2.77
o 1436 17.6 2.31 7.96 5.18 2.43
     --
U.Y
9.9
9.9
9.4
9.9
9.9
. PC T. POwER: 25
--- .---
.51.1 111.8 111_.7 21.5.9 2.....
.3/) 16,b 16.1 3'/1.4 25.1
3n 18.3- 18.4 351.5 25.5
''3rr-?,r;q--7'T-;g-~~ f1:J.'J
2u 14.8 14.8 310.2 25.4
2U 1&.5 16.1 340.1 24.8
<'!J -18"S----n~-1ITT.tI O!:>...
2" 21.2 2/).3 565.3 25.6
In 14.4 14.7 341.8 24.7
10 16.8 16.4 414.6 25.6
10 17.9 17.2 439.7 25.2
10 19.8 18.5 ':>23.9 25.2
- ... -_.----
U 1.31' II .~ . 7D "!.II~ ."'1 f.::Jf
o 1.311& 11.9 .12 2.01 .IIb 6.7
U 13')6 13.2 .15 2.1 .11 4.'19
11 J.:>2T"T7;Z---;Qr- -7.a:r--;6a--Y-;:3Q--
o 1387 12 .82 2.27 .11 5.41
o 1384 1.3.1 .83 <'. 11 . "'" ':>.113
U 1""':1 I:>.t! .ti~ co;r3- .(1.) "'~-~
11 1uOfl 19." 1./14 3.j~ 2.11 1.~)8
o 1461 13.2 .91> 2.57 .17 4.1.11
o 1472 16.3 .Q7 -"3.09 --."1 ~.5:?-
o 1457 16 .98 2.75 .13 4.3Q
o 1463 18 1.115 .3.17 .26 3
...-.-----
- ------
--------.
PAGE 4 1T1W---
~T MAFR CAFR
-.------
Table M-l (Cont.)
. PCT. powER: 50
JAR
--- -------.-- ---- ._---' -- .---. .1.
------- ---
PO
.
ER
MP
SFC
CO
HC
NO
ET
----------
31) -15.JtI-~~82-;' "1:1.1 U 1~2" 1'\.7----;"5"Y-T;1i1j-----";?-- \T).~--
3~ 16.4 16.1 42~.5 50.1 0 1274 15.5 .51 1.45 .23 15,87
3/' 19.8 1P..3 49"." 49.1 f) 13n5 17.2 .51 1.5', .117 6.18
-~,,~ HI <' 1.1 . ~t5 I .1I~;"fj- -- y;tiS-
2112n.6111.958'\.447"..3 UI38'\ <'I .6 1.78 .112.64
10 15 14.8 47701 48." 0 1487 18.2 .~.' 1.1 ."8 5.28
--1 U--- -17 10-,,--:;,,1--.-:5'1"9"..:> ., J 1IlJ:>T9.....----;or;-r;s-y--;mr-t>-; n;--
lU 19.2 17.7 64u.7 50.1 0 1453 22.8 .67 2.f)9 .14 3.92
-.""I--R~AI~ ,:
. PC T. POWE R : 1 u
If,JY . 1:> ~
4.7 .3."9 4.71
4.71 1.3-\ 3.1
h.19 .. .'H~ ~.41
...11 ..'.1 3."7
~.8" .b7 3.47
:")..,,:) l.nl ".'in
4.05 . If. 4.31
6.91 .4(1 4.8
1 . I.. ,II 3.1
2 .118 2.811
2.58 .3 1.83
-.5.1 "',:11 1."'''
2.48 .1.16 :?M
:>.I'i .07 3
~.!J4 1.-'." 1.41
3.36 .1'1 2.58
3.4 .111 3.1.3
1,&+'1' . l' ~-:w-
1.48 .19 4.21"0
1.5 .119 .3.59
J .19 ..3~ 1.01>
1.37 .12 3.Q5
1.6" .11 4.87
1.tH ,I)-' .,-;wr
~
.~
!JrJ
~~-.-3--Y!) rt:'+l..,) ~.~ '.t1 l:)&+tt 111.' l.h
30 17.4 16.8 294.b 9.9 10.8 1322 12.5 1.71
30 16.& 1".5 286.7 9.9 6 1364 11.9 1.73
~'"9"~~~........-:r.-ri 12Y" I?~ I.b~
2'115.414.1 265.? 9." 9.1139411.11.74
'2ft 16.b 16.1 321.4 .4 14.1 31Y.7 9..4 150-' 12.7 2."9
10 17.1 16.7 371.~ 9.9 2.1 151':> 14 2.23
. PCT. POWER: 25
3!! 1:>." 111.1
3ft 16.1 16.1
3') 18.8 1/;.3
-3tt~;~.8
20 15.4 14.8
20 16 16.2
~01 21.7 ~o
10 15.2 14.1
III 17.2 16.4
3107.5 :/5."
32?7 2'1.8
379.6 2'1.2
5f1/1.t :/11.8
3:9.5 25.4
356.1 25.4
~dD.:'I ~It .0
4"8..3 25.4
451.3 25.3
6.2 1.5.55 13.n
7.1 1336 13.4
5.2 1339 14.7
:/.7 1270 11'1.7
6.8 14'13 13.4
4.9 141/7 14.1
". I (I."D j!1I. ':I' I. I"
6.2 1504 lb.3 1.116
4.8 15'14 17.8 1.'14
.78
.81
.8
.~o
.61
.87
. PC I. powER: 50
-:¥t1"!1.2 1".8
3u 16.9 16.2
30 1£>.3 IH.2
""J1J?Tr,-g-:m ;"3
20 1':>.1 14.9
2'J 17.1 16.1
-ZO-YS-,.9 10. i!
3'16.5 118.3
429.7 5Ud
~(l4.~ ~t.3
~b~., ~B.~
430 48.2
484.6 49.5
~"J.) :>I,."l
.. RECvCLl RA IE. 11'-: 11"1
. PCT. POIYEk. ,,!
311 14.9 14.8 323.9
30 15.6 15il j.o/
~.:> l.J~D ,I :),"1
9 1280 17.2
3.6 1326 18.7
lIb 1-'2J ;?l.]
4.6 1395 17.1
6.9 13-~1) 18.11
co,:,> I.)Y:J f!IJ.,)
9.9 2:>.2 1.3"3 15.7
~.":J cl.f
lit {It J be:> i!. 111
.:11"
.'11
.54
.~1
.59
.57
.~1
2.2
7.04
III.bf1

-------
Table M-l (Cont.)
---- --
m PAGE -5 TI n 1)----- - ------ - -----,- ,--, ---
.. --_._-_..~--- -_.-. -
Sf MAFR CAFR
IAR
PO
ER
Ef
MP
SFC
CO
HC
_.. ------.---..
30 16.5 16 338.2 9.9 16.4 1351 15,3 2.07 5.89 4.33 1.81
3~ 19.4 18.5 342.4 9.9 7 1263 13.9 1.78 5.59 7.1 I 2.63
- --1!r-15-;b1'1I;7-:33"7;'s-9..3<
, ---'---PCT;I"OWE"R"i~
==
I
.p.
3~ 15.9 14.7 384.5 25.8 15.6 1364 16.4 .94 2.83 .38 1.7
- - 3D -tf,;7 1& ..1-"""39"3'09"-"Ij-;1J-ltr-;Z-T37!)'6-.B--~9!)---?5r---;~-1--;41)""""
3', 19 18.4 471) 25..3 1101 1314 1'1.3 ."8 3..35 2.38 .0"
311 211.8 211.6 521.2 24'.6 4.8 1270 19.1'> 1.')2 3.61 4.2 l.i2
----?tr'--lE>-"tIf. g---q?1 ~..-c---t7,(j 1'1 7u 1 7 OD1-;IJ3-~';fr.) .1 Y I.t>"
2U 16 16.2 437.9 24.6 11.3 1466 17.9, 1.1 2.79 .14 1.82
2U 16.7 1~.9 459.2 24.8 4.8 14~7 17.3 .9~ 3.~4 .3 1.07
'..0 2'l.:rr8.954 7.B ""?1i-;-e--6' 'r,,-rT"""2fi";tr S;fi"9- -- 3.3b-,-;qij""J:W-
III 15.7 1407 4114.'1 25.'-1 1').6 15',4 20.6 1.2" .3.54 .11 2."'-1
10 17 16.'-1 5(J.301 2601 8.1 1535 ?n 1.13 .3.67 .11'-1 2.35
"--1U--1"8-"c..~a-2'D.i! :).1 J~')~ ':letS L.I' ').~f! .111 q.~
10 19.5 16..3 5',2.9 25.2 3.5 1'-113 :?U.'-I 1.12 3..34 .5? ;>.3'1
'------r-pc-r;--PUWEtt; :JII        
3'.. 1(..2 14.8 '-It.4 '-1'1.2 12.2 1364 19.3 .56 1.71 .Jj 2..37
-~'rto;-r,--15.~ 't'.:~.6 !')".1 J~u~' J('Oli t'11."1 .:')';1 I.f"'f .f"l'1 1.l.Ih
~I) 19.6 111.3 567.3 511.8 7.'-1 13'-1" 21.<' .57 1.61 .35 :?21
3U 211.B «OJ.:? 1'>1'1.2 46.:? '-1.1 1311 23.2 .(,1 2.n:? 1.tn 1 .~4
-~rr-l !1".£r1"1;";.34
2') 19.2 18.3 607.5 '-111.6 1>.6 1'-118 n.5 .I'>!; 2.1111 . nil  2.~3
--. ~1T-I~TB-;V""l5ll.t . ~ 4' .tj l.~ I Q11l :.!f.t1 .0'1 I. ~UI .IIU ';,!.1~
10 15.9 1'-1.8 5:?9 '-18.8 '-1.6 1517 211.2 .M 1.71> .05 .3.~2
10 17 16 5:'3.~ 49.5 1.2 1'-185 19.1 .bt~ 5.73 .IIH ~.??
--'------ro--nr.7,T;f,T::>,). h ~1I.l J .~ III::> I~--;{ ---Z-;TZ-----;-I ~' --'-I;"'~
. I /I fI-JGIIJ~: B
-----rr. LAIALT~I. II
II RECYCLE RATE ~:
, PC I . ' PO.'iER: J 0
---
I'
30 114.3
3" 16.3
--:5"1JTT;B
~lI 21.9
:?u 114.7
2u 16.5
20 18.3
20 21.8
11) 1~
1'-1.6 212.8 111.9
16.2 2'-17.1 10.'-1
I leY 281',.1 )0.0
21.5 '-191.5 10.9
1'-1.5 245.2 10.'-1
lb. rn28f. r'-l
18 3':'9..3 10.9
2t'.7 5'-13.2 11 .2
1"'''' t!"I':I,1 lU.q
t' 13014 9.5 1.36 '-12.9" 2.37 7.73
o 132? 10.5 1.45 12.1 .98 7.:?3
U l,H9 11.9 1.~3 16.1)1 2.25 4~
U 1271 18 2.05 71.3Y 73.5 .h~
o 1.385 111.'-1 1.& 6:?92 .3.2'-1 6.:?7
o 141i>'TT;7 T~5'r-11 ;'fRu--'Plf -'h.S1J'-
o 1387 1.3.5 1.69 1~.23 2.13 3.9
o 1345 19.2 :?23 64.84 '-18.61> 1.'-17
U L4Y2 l"'.,~-'-;"9lOI"2";l).--t~IJ":;;~
Table M-l (Cont.)
-.--------.--.. _..----- ..----. --
PAGE 6 IT7 rf! ---
NO
ST "'A~R CAFR
SFC
NO
CO
He
IAR
ER
£1
MP
PO
.0'__-"'--
- ---.----------.------ -- .--.-
10 Ib.14 16 3.~9.2 II 0 1493 13..!> 1.67 10.7.3 .7
10 18.8 18 426.7 lU.5 0 1'-197 16.2 2.17 1'-1.15 1.23
10 2".8 19;b---5grF';B------O-'1li9~'-~l;ij--2;-bj;-~6i ,- 14.'11
~.c;:tq
4.03
2.5f"
I PC T. POwER: 25
-- -----.-- - -----_._- u
"___h_____-- _. --- -----------
3'! 14.5 14.6 :?94.:? 25.:? 0 1'-1"7 12.:;> .Al 17'(.'1 :?15111.49
3U 16.3 16 321.:? :?'-I.1 0 l31J5 13.:? .62 11.113 1.110 111.93
30 18.1-I7;9-37'5";071i';II'-Ij--12Dr---' 15" '.85 1'1.'-11 .811 !J.74-
311 21.9 :?1.! 5"2.8 25.2 U 1:?67 111.9 .9" 18.71 16.11'> .1\1
21) 1'-1.'1 1'-1.1 32",'-1 2'-1.0 ~J 1.37/ 1.3 .8/\ 2-,'."b 1.'-10 7.25
2U 16.6 1(, 3"Q.1 ?,,~g--orl'3"'i T3-."'---';""R' ---, 7 ;'f,' --, '-'?; 11-'n ;:;..q ---
2'J 18.!> 17.11 14'.'J.2 ~'-I.9 I) 1.377 17.2 .9/J U.41 2.11;:> 3.49
211 21.3 ?II.!> f-na.l' :?'-I.'-I 0 1.371 2::>.5 1017 2Y.IJ,> 13.6j 1..32
- ' 1 I' 14.9 111.6 -372 ;S-''''''c------U-hlll7S--'- "P.}T";T1T-:3"o. 95--'--r.~5-''';'t>;;---
1" 19.3 17./j 51>7.3 2'-1.9 U I'-IY!; 21.1 1.18 7.'-19 .42 .3.111
. f'f" i- t>0Wf~~U--
"-------_..~-_.."-
3u 15.1 14.'-1 '-151.6 50.~ 0 13j'-l 17.'-1 .59 35.'-1..
311' 1"..9 -16-, t-'''IJ:+o7---"""!>rr---;rr.nrta',"9-- .56'" 6 ~614'
30 'll;.7 17.9 5',1).6 5'J n 1291\ 2".6 .59 7.13
3u 211.7 19649.8 50 ~13n4 23.6 .63 11.5
- ---2fTJ-5r.3 1~.~ 47'.:'1 ::>11 IJ I.,':''' It,.'! .o'! C''!.b''l
2'J 17 16 5;>7.2 50 " 1391 2" .62 6.~.3
..0 19.2 18 0'-1".2 50 U 138'-1 23.j .67 6.43
--11Jl!J,:t-"t"1r.6-"!>3".~~ 'J I'll!" ;!".Y .71-...q.~
10 17.2 16 bu7.1 5U 0 11485 2.3.1 .71 ~.8
2.Ih Ijol2
---..,7- lq .qq----
.71 9.37
3..'1\ '-1..,6
1.""61 III. f' ".
.51 11.44
.411 b.n7
.'1-' ,.8~
.31 8.54
tl Rf.C,CLf. RATE ~.
t f'CT. POWE.H: 10
50
-'~r-l!>.'1
30 1 b.l
30 17.6
-----?tr15 . 3
2U 16.:?
20 18.4
_..', HI 15.3
10 16.5
1'4.7 lo3.1 ! I.:>
16.1 273 10.4
17.5 328.3 10.7
I.D J~~f ll.~ l.~~
7.5 135~ 12.1 1.62
8.:? 13143 14.'-1 1.7'-1
~.~ !~~a 1.;).1 J.6N
6.7 1~25 13.5 1.74
~ 1411) 15. 1 1. '-15
.. . II!'> I I J.3. (1 i<'. "h
4.1 1518 1'-1.9 2.15
IY.b~ 1 .~ f ".(1)
17.u3 .3..'4 .3.7
28.'-16 11.14 2.1
If.:) J ."J~ ....6:'2
1~.61 1.1\1 .3.2,~
2;>.1)3 ".92 ~.IA
If.l . .Jit.J q. ~I f
11.07 ."1 '-1.15
J~.o 31111.e JU.1t
16 310.4 11
I 7 .8 36.,.\ 10 . 2
14.11 3~O 10...
If> .366.8 lU.3
. PC T. f'6..U~. !::.
3') 15.9 1'1.8 3'-1u.l :?5.:? 10.2 1351J ''-1.& .85 9.10 1.27 3.'-1
Jb  Ib 16 3JO oJ ~5.1 3.~ Bu.. 1.;).1 ...,? a.~:J 1. lib  D.lI..
jO 16.2 17.9 397.6 :?'-I.6 -3.7 131J6 15.9 .69 11.72 .85 3.93
30 2'1.7 2~.3 552.4 ~"'.4 4 1245 2?6 1.1 38.56 45.37 .6
'~58"?"1't.o ""'':f.D '!!'f.n D.&t 1"'1' I",' .'j'..3 J~ .'1") ..:t.:u,
29 16.4 16 3."1.8 24.4 5.8 1328 14.5 .85 8.~ 1.17 14.65
20 18.9 17.6 1458.9 2'-1.9 2.3 131\9 17.5 .91\ <'/.81 .bl' 3.11,8
I 'J 1':'>.:> 1'4.tj ~ 1/.f) i!~.h ::> 1 ~)rJ4 J 1.~ I. I ;.111.7r---:11? .). 7~
 . PCT. POWER: ~')        

-------
Table M-l (Cont.)
-_.---
Sf MAFR CAFR
IAR
1:0
--"PJtGt f
11'11J
PO
ET
SFC
He
tilO
ER
MP
3U 15 14.5 4!'>9.2 5U.6
30 16.8 16 504.6 ~~
'"'" -H!;-cr---nr:;Bo;~r :>u
2u 15.4 14. 7 511~.2 50
20 17.1 16 542.7 50
.. RECYCLE RATE ~: 10',
I PCT. POwER: 10
6.b 1336 18.8 .6 31~33 1.96 7;11
2.3 1326 20.~ .6. 7.18- .93 8.29
,) ;-a-I3T5-V-;"!)-; 6<'- ----a ;q--c;A3 -:; ; a,1" --
5.5 1404 2u.5 .6!"J <'''.~ 1.2 6.119
3.6 1395 21.5 .63 5.~6 .45 7.38
.--.-- . ------
30 15 14.3 341.4 11.6 <'U.8 1370 15.9 1.'16 6".92 26.35 1.~7
30 15.8 15.6 341.4 lU.4 18.5 1360 16.1 <'.07 601.')4 3".91 1.75
- --:50- - -- -IrI6;T-39 1-. 5 -.-r1,;V-nT '11(;; -:r;lJ9-t)Tf;rr~;rr-T;5,-
30 21.6 21.3 518.5 11.3 3.6 1<'18 19.2 <'.13 83.11 128..34 .69
20 16 14.4 421.4 1').4 19.2 1437 211 2.53 57.3:, 2!"J.'I? 1.!'>4
20 16.3 15.4 381.'1 11 13.6 14~8 17.~ 2.1227.23 7.h~ 1.~~
2U 18.2 17.6 438.1 11 11.2 14U5 18.8 2.19 41.6 22.77 1.36
2[1211.7 19.7 !':>4~.4 11.4 5.6 134" 212.31 64.-'''> "'2.32 1.4r;
- - 10 15-.9-14;a--4TI--rrr;T---"""Sr,g-1T.S-7.IIg---21-;uq--l-;Rl-3;1,,-
11) 16.5 16 424.6 trl.7 8.4 15'-6 17.7 2-.41 13.81' 1.33 3.6!'>
lU 18.7 17.4 431.1 111..3 .6 15111 16.5 2.?3 14.47 1.4.3 .3.8
10 19.7 -19 572.4 10.2- 3.9--1502 22.2 2.83 el2.27 17.62 -- 2;'n-
~
I
CJ1
I PC T. POWE R: 25
---. ---- --- ._- -------
30 15.4 14.4 412.4 24.9
.30 16.4 16 351.8 24.6
JO-18.4-t"-.r?7;-1 2'.5 1.21 .36.'1"> 2.3. H 1.1f.
'I.'! 1~',2 ;-f,.,-
2.9 1512 23.4 1.26 1".82 1./\ .3.~"
    ------
13.Y 137.3 2?5 .64 16.4.3 1.35 ;?54
111.9 13~0 2.3..3 .011 C?1..9 1.3 .3.011
7.1 1.32.3 24 .6h 1l1.Q7 1.41 .3.57
3.7 13"6 25.6 .07 '1->.34 6.23 2.49
Il.1 J14-'~- ~",.tJ . l~ 1~.';.1] ./12 J. :~q
7..3 1414 23.9 .67 6.5 .57 4.118
1.6 13Y5 ~4.5 .60 7.23 -54 4.65
14,1 j:JU~ tt.:J.q. .lh lq.. J q. .:> ~. ~). ~
2..3 1498 24.7 .75 4.5', .36 6.87
.... I.AIALT~I; I
.. RECYCLE RATE ~:
. PCT. POWER: III
o
30 14.3 14.7 212.8 10.9
30 16.1 16.2 244.8 111.4
.'-- "'J J 1.6 1'.':1 t!tP'.J tU.tI
U 1304 9.5 1.3b
o 1321 10.4 1.45
fJ l~J':1 11.':1 l.~~
3.35
3.<'7
.3. 78
.5
.22
.37
6.9C?
6.81
~,jq
Table M-l (Cont.)
---
---.
--- I-'II(,E 8 TT7TiJ ------
----------.-.------
s r ~'AFR CAFR
PO
EI
CO
HC
NO
ER
loll'
SfC
lAR
----.---..--
. --------
.3r.' 21.9 21 ..91.') 1'!.Y 111256 18'(I.n5 8.116 2,'.48 1.7
20 14.7 14.6 24~.2 10.4 U 1377 10.4 1.6 3.6 .76 5.02
20 - 1 C .5' 11';" -7Bn-~lr-----u-T3"3--rTOrT;-S..---Y.77-- u-~-2'" - --(, ;;q--
211 18.3 17.9 .339.3 In.9 U 1389 13.5 1.6Y 4.74 .47 4.3~
211 21.B 2'J.6 54.3.211.2 013441'1.22.23 R.72 18.">0 1.65
tlr---1~ -t",,-"'''''''''-1'''-.'' 'I 1:>",-.-?;:5"-r,-qr~Y---."":3"-S;o;lf"-
In 10.4 11'0.1 3 0.2 I~ n 1491 1.3.5 1.87 4.43 .23 h.~11
10 18.8 17.9 426.7 10.5 U 15111 16.2 2.17 14.15 .2~ 4.34
tu clY .8;" .~~7-T'TOtt--.rt511'r7T01t7;65--g;~~- n~lI:5-7;qr-
I PC r. POwE R : 25
---.----.---
--------_...--
30 14.7 14.6 2Y8.R 25.2 0 1.322 12.2 .81 1.82 .74 9.74
.30 16.2 Ib .3211.2 2.3.8 0 1.3111 1.3.4 .83 I.Y4 .2<' 1I'.hl!
.30 1801 17.9 37~,." 24.4 n 129" iij;tl---;-8"i~h4--;j')---">:-7i,--
30 22.1 <'101 54".7 <'5.2 IJ 1276 20.1 .Y7 .3.65 3.32 1.54
20 14.8 14.7 .3211.4 24.6 I) 1.381 13 .8-", 2018 .3 o.Q~
21) 16." 10.1 3-:1.1 24.9 --0 1319 13.2 .8 1.92 - ."'2---'-11.4Z------
2') 1!J.7 17.Y 4'1~.,,> 24.Y II 1.374 17.1 .9~ <'.!lI' ..37 3.78
211 <'101 211.56"4..3 24.4 I) 1.364 2:>.3 101/1 4.22 3.b' 1.97
11] 111.7 Ttr;r -3611. 2711;D------n--[lf75----P,T;11Y ---~ ;57-- ~7'---:>-;-7--
10 19.') 17.9 5h9.5 24.9 I) 1492 2101 1.17 3.49 .16 4.'19
-.. PC I. - P{)wfR-:--~:HI---------"- --..------ - --
-_..._---.---
.3'! E...l 14.b 4~1.6 50 II 1337 17.4 .59 1.64 .4:;> 13.24
.311- -.. 17 II> .1-ilQ3 .~---50---1t-t~15 - tll .n--- .';8 "-1.01 -..-- .7l!i.n,---
30 18.5 17.9 548.5 50 ~ 1298 2u.7 .59 1.67 .24 9.21
..31) 2".6 19.2 64Y.8 511 0 13117 23.6 .t>3 1.98 1.7/1 4.82
- 
21J 19.2 18 641&.2 5'1 I) 1311" 23._' .67 1.8') .IR 11.21
iO 15.3--1"-. 7 -5-3~.6 ~".5 b 1~~71"--~.-t1----.n--rr.1-
It! 17.<' 15.46"701 50 0 1484 23.1 .71 1.8t> .1 8.26
-----...r~~~ItitT:"
I PCI. POwF..R: 10
--------.-.-
5u
-"30 -15 .tr-r'r.-S-<163~TT;S--r.lf1-357-Tr;S- r;4"8------;5;92 -- --- ~51i----Ii-'-'" r -
.31) 16.2 16.1 27.3 10.4 7.5 1.36U 12.1 1.61 3.65 I.U2 3.8
30 17.6 17.5 328..3 10.7 8.1 1.334 14.4 1.74 4.7 2.46 2.Y2
- '.21]-t'!r;3-~TyTr"A 1'1.:'+ ~.If 1"4"':1 1"3;,., 1.11~ '4.111 .n::r--7~
20 16.2 16 310.4 11 6.6 1438 1.3.5 1.74 4.116 .4"> 3.5~
:?U Ib.4 17.8 .361-.1 11).2 5 1414 1501 1.9') 5./1 1.2.3 2.1\0
- lO"-rs-;~.S--~-rrr;14 q..l J~2'J 1".8 ',l.Ob 14.1 ..3h 11.57
III 16.5 16 36h.8 10.3 3.6-1518 14.92.15 5.1:;> .2 5.16
" t""(J.
r-UWtK. t:.:J
3u 15.8 H.b
- 3l'"------n;---t!). "
.311 18.1 17.4
3fJ 2'1.9 19.8
- Z'J 1~..? J't .1
.339.2 :?5.2
.,)..1.4 .(4.'-1
397.1'> :?4.f>
5~4.7 :>4."
.:JI.t"'.1j ~LJ..b
9.9 1.348 14.9 .85
J.-! J-'III:\ I.).' .H.:J
.3.6 1312 14.11 .119
3.5 124'1 2?7 I.U9
h." 11'"'1 1'+. I .':1",
1.94 .4<' .3.~Q
I.Mo . .~ ,. "\14
:>. 71-> .16 4.0')
4.1)9 11.4 1.llel
it.", .16 ".~ 1

-------
Table M-l (Cont.)
-P1\GE. ',I II/IU
-----
SI MAFR CAFR
lAR
PO
ER
ET
MP
5FC
CO
HC
110
10 Ih.4 16 339.8 24.4
20 18.9 17.5 456.6 24.9
---IU I~.~ TII.7 417.6 24.6
lU 19.4 17.8 612.6 24.9
5.8 1324
2.3 13A9
4.',1 15'1'1
2.Y 1512
14.5' ~B5 2.01 .39 4.58
17.6 .97. 2.97 .23 3.42
17.? 1.~9r---;J5---.~;u!'i---
23.4 1.26 IQ.A2 1.8 3.5~
, t"l. I. t"uwt. H. ~u
3u 15 14.6 459.2 5u.7 6.3 13J9 18.8 .6 1.56 .37 7.2
~rr1'().~--.-tD51rq'.o-~..J l..)~f ~IJ.?"""---;o-,-;r;q--- If! tj."""?c--
3u 18.e 18 584.2 50 3.7 1313 22.5 .6? 1.7A .23 6.21
2u 15.~ 14.7 507.2 51).5 5.4 14q7 2".5 .65 1.1\2 .24 6."6
~7.1 10 :)tf~.J :J'J .JIb l:J"'Jf t!1.;) .b",~;n7--;T~~ff-
.. RECYCLE RATE ~: 1(1)
--" PC'T.-PO~u
---------- ._--_.
----
a::
I
0)
30 15 14.6 341.4 11.6 19.7 1371 16.5 1.96 6.83 4.36 1.8
-'3{1"16;1-'1'S,1r31rD.1 10... If... 1.)1::>1) 100l 2;Uf,-~.7Y-o.B1!-----Z;0Y--
3D 17 16.6 3Yl.5 11 16 1309 17.7 2.09 5.94 11.76 1.9
3D 21.6 20.6 518.5 11.3 3 12~5 19.2 2.13 8.45 45.98 1.39
20 15.9 14.6 419.7 2.7 18.6 1443 19.9 2.53---a~IO-~;~2--1~~-
20 16.3 16 381.9 II 13.4 1460 17.5 2.12 5.32 1.67 2.38
20 18.2 l7.5 438.1 II 10.7 1405 18.9 2.19 6.4Q 5."1 2.12
- 20 20.7 -19 .5- ~'5.4-1T ;-II---S~ rT34 T ----21' '2-; 3'1---- B. m"'-7I1 ;-gIi""'T. IH-
lU 15.9 14.7 413 1";4 9 157n 17.5 2.48 5.68 .54 3.61
1" 16.5 16 424.6 IU.7 8.4 15~~ 17.7 2.41 5.74 .4 3.95
10 W. 7 -n. 9 "31.1 -T1J;Y-~n''511rr'15;'5' '2;23 - 6 .5£;"----;4', ".12 --
10 19.7 19 572.4 10.2 3.9 1498 22.2 2.83 9.5:' 1.(,., 2.<,17
---~"'PC1-,-pOWER. l~
- . --.--------- ---
3U 15.6 14.5 41b.9 24.9 19.2 1367 211.1 1.07 2.72 1.69 1.92
311 IS,I! -16;1 ~5r..-a -?1r-;5' -a-;tl~29-lS-.rr----.8fi- ":;>.07 -- - .2" 3.85 ----
o 3U 18.4 17.9 427.9 24.4 6.6 1328 ~7.7 .96 3."1 .3 2.67
30 20.2 19.6 545.9 24.4 6.3 1256 22.6 1.11 4.02 7.65 1.19
--21)- 15-.6--1". r-q-U8-.'2--2~11J1I~T7-;T"T-.Iflf°-----Z-;7J---;?? 'i!. -'5
2'.1 1&.6 15.6 436.4 ?4.7 17 1371 20 1.1'6 3.21 1.79 1.3!>
20 18 17.3 53,.5 24.Y 9.7 14U2 22.8 1.2 3.69 1.78 2.13
-'20-<'1.2- -20 .Ln2!);T-?lI, 4 -' 1 :3'611"73. 1 I. 'i! 1 ----q; 3B-:;-;-I,-i-'-I-. 0;<;'-
lU 16.5 14.7 ~15.2 £4.4 9.9 1551 21.3 1.28 3.63 .16 2.8?
10 19.6 17.8.612.6 24.9 2.9 1516 "3.1 1.2f> 3.9" .31 3.<;~
. PCT. POWfR: 50
.)1) 1~.1 14.7 516.6 ~Iol 1-'.6
3U 17 16.1 56~.5 50 10.9
3u 18.6 17.9 615.1 50 7
.-3'tI2'J.':' l~." 'I)~.B !:Ill "'.b
2U 16 14.7 5~8.1 48.6 11.7
21' 17.5 16.1 587.1 5f) 7.3
- '-20' T9".o-'--Te-b~--SU-~O
10 15.8 14.7 595.5 49.5 4.1
10 17.7 16.1 653.5 49.5 2.3
1374 2~.5 .b4 1.74 .3~2:~
135~ 23.2 .67 1.84 .26 4.113
1327 24.3 .6(' 1.9" .45 4.112
l31U 25.8 .67 2.28 1.9~"-2-
1437 23.8 .72 2.08 .21 3.5
141~ 23.9 .67 1.8 .16 4.17
1-'',1<1 2ij-;q--.b9---V;-I-g---.~ -- '1!-'-~
1506 23.4 .76 2.07 .13 5.69
150U 24.7 .75 2.03 .1 6.87

-------
Appendix N
ENGINE TEST DATA -RATIOS OF EMISSIONS TO
SPECIFIC FUEL CONSUMPTION
~~
This appendix contains a. series of tables presenting data showing the relationship be-
tween emissions and specific fuel consumption. Following are definitions of pertinent
abbreviations and column headings:
SPK TIM
MEAS A-F
CO-SFC
HC/SFC
NOX/SFC
E
C
RR
PP
~park timing (OBTC)
Measured air -fuel ratio
Carbon dioxide(g)/lb fuel'
Hydrocarbons(g)/lb fuel
Oxides of nitrogen(g)/lb fuel
Engine
Catalyst
Exhaust recirculation rate
Percent power
N-l

-------
Table N-l

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND SPECIFIC FUEL
CONSUMPTION
. PAGE I
- bATU fI71217:21
DATA BA~E: 13.0 EMMXI
REPORT FORM: IRI
___M_- --. ---.
!>PK
TIM
MEAS
A-F
~
-*
-----
...t E: A
." C: 0
..-.--- .... I RR,-.-1J------.
. PP: 10
Table N-l (Cont.)
PAGE 2 11/1:;>
~
~
-S;=C
----.-----..,;---
~-
30 15.3 11.1063 1.110"" 1.71137
3u 17.11 16.4854 7.~965 2.7895
.3U-- J6.g--1T;267~91Jf2-'-;8'T23-
30 19.5 19.7616 9.3~911 1.7756
20 15.11 8.9366 .11770. 1.7611'
C'U-r6-;O:--O;6"93g-; 7M2---'--; 7Til11
20 17.6 11.7263 2.6983 2.57bll
10 15.4 4.3062 .0861 1.6H52
lU--'7..-o--1r,"i<'Ub ol':lb'i C'.;1TI"..
~PK
TIM
.MEAS
A.F
~
. PP: 25
~
t>:I
----30----111;r--t7i2911 . I I::'''
3U 18.4 lU.1818 .7832
30 16.4 8.1769 .7959
--- .30--1 'J ."1--,.a.~3Z5----r.!i5T'1
2Q 14.7 17.811"U .5355
20 16.8 5.7016 .3664
~-----?'J j 1 .-q-----a-;Yb~~ . , J ~'!
20 211.9 19.6383 6.574b
10 14.9 15.4944 .1667
~lU---T~ 4.C'::'~':I .20B5
10 19.3 7.3868 .8821
10 21.3 13.2987 5.8485
::..bl::'':1
6.5385
11.775'>
~.IJ':IIJ';I
11.07711
3.2U47
.).btSY~
.91166
3.0667
2.6256
1.1696
. .9697
30 15.4 18.8333 .6410 5.3077
3U 16.7 9.0759 .1I5!,7 3.5696
3U---I8OD---n.75~07ff52---r.-987u
30 20.8 27.9897 14.2268 .7113
20 15.11 14.b057 .3563 3.39U6
-20---.16.,-0---6.21:17.. .16~-3."C'ltl
20 21.7 18.3271 11.9065 .9907
10 15.2 31."0"" .31191 2.1415
---w-----t...,.o?~~"z .0192, 2.~tr-
_.
. PP: bU
. PP: 25
--..
--. 30----'."-.-a--70.1J8l b
3U 16.4 8.7917
30 18.3 9.91167
30 ZV.7 za.lOll
20 14.8 211.0122
2u 16.2 6.759U
-~O---II!.~ 7011111
20 21.2 16.9810
10 14.11 511.2396
10 1~.B ~.l~bl
lU 17.9 5.0408
10 19.8 6.11952
1."421
.5139
.52011
~.IDI:I"
. 7195
.2651
.t:'Ji!~
5.7905
.76011
.64 U!
.1633
.4952
IU."btl4
10.1111\7
5.11533
,"'J,JDO
6.8171
5.981")
30
30
3b
3')
20
-20
20
10 ..6f!6 7
6.491)2
DeCltfh
2.9825
6.11068
t\.bl,h'
11.7895
15.2
16.9
18.3
21).9
15.1
17.1
18.9
25.6852
10.6039
11.ll'.H
15.6316
29.2712
'1,l>'''''C
7 .6,,67
1.4259
1.0784
.aZ9"
2.1754
1.1)0(111
.:)IIt3U
.1754
.J. f~ftj
.96\9
3.9\162
4.tJ~rj8
1I.612?
2.4'176
.... RR. lUI,
. PP: II}
30  1'+.":1 :).J.t1'1:J:J ~:J..)"1U\.;l .btlltl
30  15.6 112.281111 36.7844 1.9174
30  16.5 22.6/,18 11.7,778 .8H41
3u  1":1,,+ 27."D'JI ),./::t~1'j 1. u.)."
20  \5.6 15.11908 4.3165 .7156
20  16.9 16.053\ 7.5878 . 7 75~,
2')  11.0 It'.1Jb IV ':I.l:S(,~1 ...113911
20  20.7 25.31133 15.0~46 .7065
lu  18.2 5.8297 . 37!,;'>  1.1I!>8~
-~-T"'.Z ~.Z073 .~<)3!1 1.~IIi~
10  19.1 10.U72') 3.1&95 .8729
10  21.9 18.8281 11.05117 .7461
. PP: 25   
,,",u  1':1,':* J:>.II4!l~ ~.UIJ'JlI l.btltl2
3U  16.7 13.8191 1.925~ .5745
30  19.0 27.8351 17.3196 .&1195
. PP: 50
-~tt---1:'..tr~!ti~tI~ottJ 77
~o lb.1I 10.4706 1.3725
30 19.8 10.8~39 .5882
311 ZtJ.7 13.9107 l.~l'"
2U 15.2 39.2857 1.3929
20 16.8 8.8571 .5714
20 18.e 7.tJTZ~ '~"I~
211 20.6 8.83J3 .1I33j
10 15.0 "b.Y5115 .5152
10 17.0 ".''''~ .IJI~tI
10 19.2 5.31133 .2388
.. "ft. ::JU
. PP: 10
tl01r717
32.3725
13.0392
't,U! 1'+
11.9821
2;>.3<)29
~>. , (:If 1
4.101111
9.8333
"I, J.')~''i..'
5.8~07

-------
 Table N-l (Cant.) 
. PAGE 4 11/12'   
SPK MEAS ~ ~ ~
TIM A-F
111 17.9 2.8061 .I 327 4.4796
10 19.8 3.0190 .2476 2.8571
Table N-l (Cant.)
PAGE 3 J 1112
SPK
TIM
MEAS
A-F
~
"FC
!S-
:oFC
NQ}.-
-gc
,30 .20.8 31.9116 23.6373 .7059
20 16.0 111.7961 .6214 1.3398
~u Ib.U., l,tJU"J;L .:>':1U':l 1.~'="J':I
20 18.7 8.8990 .8384 1.9899
20 20.2 17.0183 1.7431 1.0734
--10 ---'"5 ;"'----;;11751+--;319'--02;38')2
lU 11.0 5.4690 .1593 2.0796
10 18.0 4.6752 .1709 3.22??
----- JO----19~~-!r.tr,~u 1.3411Z 1.'9375
. PP: 5U
..:JU .l:).u
30 16.11
30 19.8
-~u t!.u.,
20 15.2
20 16.11
~u Ithtl
20 20.6
10 15.11
-~o--IT.u
10 19.2
. PP: 50
------._---
Z
I
C.:I
30 16.2 11.2241 1.0172 3.7241
30 16.5 18.2712 4.61112 3.1864
--;m-J9.!)---Y8;"If9~-:r.:365'+~;18Ti 1
30 2U.8 23.623U 9.2623 1.8~52
20 15.6 10.65118 .3492 3.7778
---Zo-----'n i'I-1Z.757o-Te:393rr--3' ;1124 l
20 19.2 8.5385 .4169 3.0615
20 1~.9 8.5312 .3437 3.9531
-'11t---r.r.9 10.9..12 .1'0:> .:>.U73:>
10 17.U 13.3485 .2273 8.2424
10 18.7 5.1857 .1857 6.0286
"Kt(, scr--
. PP: 10
30 1~.3 ~.0IB7 ...:>o~ 1.D~:>0------
30 17.4 2.7485 2.1519 2.7895
30 16.8 2.7225 .7686 1.7919
-----'30---" 9.5 --3; 1115<'~933:f--~;06j','--
20 15.4 2.3621 .1897 1.7644
2U 16.6 3.0154 .3436 1.7795
2u 11.8 ~.OlIJJ ."'1"'1" i!. '1:>1'"
10 15.4 2.3684 .0766, 2.06~2
10 17.1 3.0987 .1973 2.1525
---..- +_._~.. .----
... C: 1
.1 RR: 0
1 PP. 16
30  14.1 2.3913 .2114 4.94211
-~~.4 3.1678 .3910 00!i38:>
30  16.4 2.6735 .4898 3.2653
30  19.7 3.0909 2.2468 2.1)91)9
211  14.7 f.36'J17 .!!I1}4 3./111""
20  16.8 2.7310 .3275 2.8246
20  17.4 2.6519 .3987 3.nB9"
--?ff--?I1t9- 3.J610 2.191~ . 7T?o
10  14.9 '2.2833 .111'10 3.1278
10  16.4 2.'1810 .1905 2.6381
10  19.~ .:J.1J'1~1 ..3uo1- 1,"'UDh
10  21.3 3.4459 2.2424 1.0519
. PP. 25   
it!.II/U
2.8431
3.0392
~ol....q-
2.3036
2.8750
.:).t!~lf.l
2.9b&7
2.5758
1~.i!":>3
'31,\ 176
12.1116
.. . .:1750------
11.5893
22.1964
:>.~483
4.41100
8.'Jf"Jflf)
~.3.'J3
5.8507
.",'f"
.4510
.1373
.:>, 1"
.2619
. .2143
'i!.';ltjfY
3,\ 194
,IV..)1f.
.1833
.1212
,Ubf}{)
.2'190
. PP: 25   
3o-~.4 2.Z3v8 .141v 4. 7..30
30  16.1 2'.4fi91 .0988 3.5556
30  18.8 3.2250 .3750 2.2875
3v  ~U.D .),UJ,;).J C!.:>blC! l.~b~"
20  15.4 2.8506 .0690 3.2874
20  16.0 2.4713 .0805 3.4483
~U  ~)., ",..3U~" 1.i!430 1.3178
10  15.2 3.1698 .1415 2.43110
10  17.2 3.26\12 .011'16 3.0'196
. PP: 5U   
.:IV  1:>.C! ~, 1:)'1.3 .31'111 ~.~IH~
30  16.9 2.9(12'1 .3725 8.352<:1
30  18.3 2.7118 .1667 6.6481
.:10  IitJ,~ ",.Iq.U~ .5bl<; 3.4:'186
20  15.1 2.32?0 .2034 6.6949
20  17.1 2.9649 .193U 8.543<:1
~u  JO,,,, ,;),11:J" .U:J~b :>.UIUi!
.. RR: 100   
30 111.8 2.7501.1 .27n3 9.6974
36 111.6 2.1'11 7 .fllI33 g."o~o
30 18.3 2.8011') "467 5.4533
30 20.4 3.1099 .7473 t ."725
~() 14.8 ~.761\3 ,1';)&+1 0.:)'::1(0
20 16.5 2.5422 .1084 6.rJb1J2
20 18.5 2.3933 .0337 3.7978
~v 1!1,~ .J.C'o!lC' -e.. Uic!tU' 1.:Jl~4!
10 14.4 2.6171 .1771 4.1771
10 16.8 3.1856 .0103 4.&598

-------
Table N-l (Cont.)
. PAGE 5 11112
   Table N-l (Cont.) 
- PAGE & 11112    
S.PK   ME. AS  ~ ~ ..;r-
TIM   A-F FC FC - C
20   1~.7 J9.J25'1 2.025') 3.9187
2'1   1&.5 7.1)314 .&792 II .14'17
c:u   It'..) 'J.UJltt l.ll>U4 l."JTT"/1
20   21.8 2':1.U1&2 21.82U& .f>!)Q2
lU   15.U 22.3089 1.I!Jf>6 2.8U&3
I'J   Jb.~. :>.I.)BU ..) 14"3- .).21J.)2
10   18.8 &.52U7 .5&1>8 1.6571
I')   20.8 11 .5U75 5.2&b9 .9,.J&
t PP: 2!:>    
.J1I   1".:> t!1.CUC':J t::.b:J't.) l~ .~:>'.Ib
30   1&.3 10.7683 1 .29?7 13.329J
JU   18.1 12.2~71 1.0353 &.7529
~IJ   ~1.':1 i!~.U1Jl.I" lo,.)t!,:rf! .~1t1~
20   1,..8 25.0682 1.6932 8.23/1&
20   1&.& 9.5125 2.f-375 111.'15'111
~u   10.::> ~.tj'JII! 1 i!.I'JI4i! .).1'>,):>"
20   21.3 24.8291 11 .61190 1.1282
lU   1".9 36.58~2 1.237& 5.60,.0
111   HI.3 "h 34 7~ .3~!)9 3.~le"
SPK
TIM
s-
-SFC
MEAS
A-F
~
-SFC
NQ"-
~
t PP: lU
"'u lit .~
30 15. &
30 1&.5
.)~.,.
20 15. &
21) 1&.9
~O-r7.0!1
20 21).7
10 18.2
---""1o----r7-;?",
10 19.1
10 21.9
".bU~l q'~~'3
1I.6A99 7.91104
2.8454 2.U918
.).11I~;gLi1i"4
2.5459 .8991
2.9102 1.7510
2.e~D~ I.~D~:J
3.4328 3.9b02
2.79U4 .1485 .
2.9b~" .~3:>~
3.0932 .761\1
3.7266 3.2891
.:>b8l
1.&789
.80"1
'I.,.rrs--
.8J49
.7755
~.I.ua't
.94113
1.11585
J .:t, ff!
1.01&9
.9102
t PP: 25
-~5';9 "'.UI'.lf:) .~U(J'" 1.f'\U~~
30 16.7 2.&,.21 .21U5 1.5368
3U 19.0 3.11184 2.428& 1.01"2-
---30-"2o-;-8~'j:39i' ...lllb I.IJ"'~II
20 16.0 2.9612 .18115 1.5825
20 Ib.O 2.53611 .1273 1.6545
-----.- 20 -.. '18.7'"-----3.3737 ----0303T,-'-."""9"8'1Y
2'1 21).3 3.'1626 1.33911 1.4!>87
10 15.7 2.9016 .U902 1.&721
-lIr--U.IJ 3.247& .03~.. ~.1J1..6
- 10 18.0 2.9231 .1197 3.572&
10 19.5 2.9821 .116113 2.'J893
~
~
------
to PP: 5U
, PP: 50
30
30
J\J
3U
20
---20-- .
20
10
---,."
1501 bO."618
16.9 11.4"83
IlI.7 12.0b..7
20.7 18.25110
15.3 117.8811
--17.0-----90T?58--
19.2 9.5970
15.3 111.8169
17.2 b"bUb
-------
~16;~i94/j3
3U 1&.6 3.0339
31) 19.& 3.1154
--~---20-..B-~tI5
2u 15.& 2.2381
20 17.2 2.9&91
-~~;2 3.Z0d"
20 19.9 2.8750
10 15.9 2.5882
---IIt--n-.O t'I.bbl/\
lU 18.7 3.028&
. 2:>" t---'-4- ."1I8t!?--
1.1525 3.32<'0
.&1110 3.8712
1.9ft~;5211~
01210 3.9048
.378e 3.545~
..1231 3'''''"0
.1406 4.2&56
.0735 5.17&5
. lie! I ~
.1714
tt RR: 50
--- '--WrJU---
, .Y1J~1
&.0286
30 15.4 13.2568
3~ Ib.1 lO.:>J~.)
30 17.& 16.3563
20 15.3 9.3u85
~u------16.2 7.6216
20 18.4 11.2974
10 15.3 1.9~'3
-------11t---1tr~m81\
....., f. e
"t C: 0
tt RI<: 0
" t"'t". lu
30
--:\u
30
30
1,..3
tOt.,:)
17.8
21.9
1.7112&
.O'::J~
1.1I71J&
35.8537
31.&103
0..,)"''+0
10.4&41
37.7512
t Pi>: 25
3.&t>11)
1.t>724
l.o!uj..
5.3&51
2.5968
.~~?b
.65&7
1.3()99
.q')bb
22.2373
25. 758&
.i:h6rH't
7.2&98
17.3710
J 8 .1f5"1 0--
9.0597
11.11563
l~.[JC't'I~
1.0&')8 2.7095
~.ubrr----?;1gqu-----
&.5517 1.21)&9
1.0532 1.51bO
1.U..Ili! l.a56~
2.52J! 1.1179
.1748 2.21811
.2037 l.l093
5.&838
...':.'tlbC'.
3.1111
.3317
30 15.9 10.77&5 1.11941 4.000')
30 1&.0 10.1)&IU 1.2927 9.80"9
.JU 11:"-" l"'.lbtt::t .'J::J:Jl 4.41:>/
30 20.7 35.U545 41.21155 .51155
20 15.2 12.9032 1.0215 3.8495

-------
Table N-l (Cont.)
Table N-l (Cont.)
PAGE 7 11/12   
SPK   MEAS ~ ~ ~
TIf>I   A-F FC _Fe
-------      .------
2u   16... 10.0'l101t 1. .3"7/;5 5...1..6
20   18.9 10.0 11!2 .69.39 .3.f..;?9
IV   l::h:J Ja~t\C!I.:J .'If~~ ".QUYI
. PI-': 50   
------.   
30   15.0 52.2161 3.26,,7 11.85011
3rJ   16.8 11.9661 1.5500 13.8167
",)'   It1.Y' 1".~"8" 1 . "c~81 9...839
21)   15... 31.5.3b5 1.8"62 9.36'12
- 21!   1 7.1 8.625" .11".3 11.71"3
. PAGE 8 11/12
----
MEAS
A-F
~
~
~F::
SPK
11M
---.---.
... e: 1
.. RR: 0
----.... t""t"". 19
3u 1"..3
--3tt J.O.J
30 17.6
31) 21.9
-~IT 1'-.1
20 16.5
2" 1/1.3
---?~r.1>
lu 15.U
10 16."
IT) Ilj.tj
JtJ 21J.t
2...632
~~~)t!.
2."71)6
.3.9317
2'~!!'J"
2.3711
2.£\""1
.J.Ylll,J
2.1623
2..3691)
.. RH: 1')11
. PI>: 10
b.:>i:::"IJ(
3.16'12
1.1053
Z
I
01
30 15.1) 34.1429 13."439
3U 1~.8 29.1.J"46 1".9.32"
-- -3IT----T7; U--c!f;73011~3Ii9
30 21.6 39.018A 60.2535
20 16." 2;>.6"'JI 9.8"93
-------t"T--1tJ~~""""~!)'J,,5
20 16.2 16.9°54 10..3'173
2U 2".7 27.6571 22.6..94
--- ---1-ft-u-15';q---r:!~"'J . 7291>
10 16.5 5.7593 .5~19
10 18.1 6."6!!1\ .6..13
---it! 1'1.7 1I.IIIJ28 6.U61
.b:?ll1
. h2 7 1
1 ,e" ,~'!
1.~1"5
1.7114IJ
1 . (1iJ<1!r---
.8"1',
.1\4-~4
. i'>T~-----
.32.39
.6111\1
-- r;>r>: '"?!>
31) 1".1 2.2"69
3rr----y~-7; ".' I"
.3U 18.1 3.1059
.3u 22.1 3.7629
- ,1(1--- I[r;-!f-----~.477"
2" 16.6 2.4'1""
20 18.7 3.0.316
Z" ZI.1 3.~,,,3
It) 1".1 2.54"6
lu 19.5 2.9829
.C'(-!'n
. PI': 25
03676
. 1511
.2..18
10.9659
.If~'~
.11124
.:?1fsl
t:h.J)h~
.27/5
.1231)
.llylj
6.5'..26
~
--. -.- ---
5.1.391
, If.b~htJ
3.52<'9
.829.3
~.1375
".2104
2. ~)B~'B
. (.,)"11...1
2.9215
3.5181
2.!J11I111
.9156 12.1)2..1
.i!tJ':)J I C'.t1bf:J
.1165 6.152'1
.3.42~7 1.5876
. .~"Tjg--'-;Ii~7T----
1 . 150" 1 3 .1'25'1
.31195 3.<1789
oJ. I VI , I. tJ(I"-:f:J
.2118 5.6"36
.1.368 .5.4951
- ------ --.
------.--
30 15.4 26.1963
30 16.~ 10.8506
- ~t1----tH i't-----1tr,trt1> 7
.5U 2".2 .54.69.37
20 1~.h 1.3.2308
20- --"1!').Ou-~5.~
20 16.U 20.1563
2U 21.2 29.19.3"
-10 -- H,,---,"1J06<15'Y
10 19.5 8.5873
. PI': 5U
8.9"01 1."206
1.2674 4.o3911B
2 .11 1"t11f--"?orTR~Y--
40.1.551 .~4U5
.071;> - 1.971;>
11.!:>7'", I .21-rrr--
9.9326 1.235.3
19.2h~~ .95111
.:Jc!,,1t 7811711-'
1."286 2.8115
--~---r.;.l ~.1'''1
3U 17.0 2.1759
31) 18.5 2.ro3fJ5
----'~t.r ~'I.t) .J.II4~'-J
2U 15..5 2.63111
211 11.u 2."516
---- --,m--1';r;Z---z;761 'l
1" 15.3 2.9718
10 11.2 2.h191
~ Pf': - 5U --- -----_uu- -------- --------
--<-----
.5U 15.7 25.6119 2.1094- .5.9661
--- - - .311---- u- t 7 rt - ---i4 . o3fflfr--r.°O",--'!I;'1 r~'a------
30 18.8 lb.~21? 2.136" 5.~001
30 20.8 24..5881 9.2985 .5.1164
-2t1-------16.,-"uU, .9583----1.'-38'1---4 .63/19 -
2U 17.5 9.1015 .8507 6.0896
20 19.8 10.4183 .85~,1 6.7.391
-~!t----1"!r.t!---r!t;'f;1'J!!3 .o~7.. 1.~U~b
10 11.7 6.Ubf,1 .4811'1 9.16"'''
. t R.': 51)
. PI>: 10
.711";1 Lt"."'IUf
..5448 25.982/1
.4'168 15.1>1112
~.t1~~1J '.b~flti
.5464 11.31\11
.2258 11.9.55'>
,~'r.:?687--
.2958 11.4"85
.1408 11.1>3.'8
.-----------------
.50
o3'J
30
2U
20
u- -?cr-
10
10
1-5.4 2.6"86
16.2 2.;>611
17.6 2.7011---
15.3 201211
16.2 ;>.35;';
- ----nr.-q----7;'17II-"
15.03 1.9"03
16.5 2..5814
.3649 2.11105
.603.~5 2..5,,112
-1.4138---"'0 1.6762 ---
.o33jj 1.5079
.2586 2.U4"2
.b"'JII---'-'-1J6r,7 - u_-
.11..8 2.216"
.0930 2.4U""

-------
Table N-l (Cont.)
Table N-l (Cont.)
PAGE. 9 11112
PAGE. I'} 11112
- - -- - ----..
_____m___-
He:...-
"5FC
"!Q>-
~C
o;,pl<.
TIM
MEAS
A-F
~
~
'>.FC
NTr-
2U 17.5 2.686" .238U 6.2:,'.39
20 19.& .3.17.39 .289° .6.92'5
- -1~' 5"'-~ '-T2~-----;-1 n-r---r.486TI---
10 17.7 2.70&7 .1.3.3.3 9.1&0"
, PP: 25
, PP: 51)
 -~tt 1~.() 2.6u"'1 .DI0' II!.U"""
 .30 If,,9 2.733.3 .3 '~3 1.3.111&7
 .30 18.1:1 2.6710 .371U 1 ').lIlbl
 20- '-.s-;s- tI.IjU'PI .')b':l2 Y..3<,jl
 211 17.1 2.&51)8 .19115 11.7143
 -~r.--ro,.   
~ ' PP: 10   
-----3U- --1""5 .1' ~.I.fc,+, ~.i!""'LI::> .\.flfi~
0) 31)  1601 3.7524 3.3396 .'185"
 .31) 17.11 2.84<'1 5.621-9 .91tQt
 31)  21.0 :1.;1071 t!l.!»OD'1 .n:JI!D
 20  15.9 2.4.3"8 1.78&1, .727.3
 21i  16..3 2.5094 .7871 1.] 2;"(,
 21'1  1/1.2 2.""00 ~.~t'" ( . '-1t)a,,---
 20  21J.7 .3.811\2 9.0b49 .78.35
 10  15.9 2.<'9');3 .2177 1.45",&
 16  16.5 2.3611 11th u 1. r,,..,u--
 IIJ  18.7 2.9417 .1973 1.1347,
 10  19.7 3.374& 2.7067 1 .114 9h
 t PP: 25   
 -.3'1  15.6 2.51121 1.57'.111 .1.1"!1'+LI
 .30  Ib.4 2.3523 .25I1l' 4.375')
 .30  18.4 3.1354 .3125 2.781<'
 .3f!  2'1.2 .3.0216 D.C1"11~ J . '1ft! I
 21)  15.6 2.61158 .2115 2.2596
 20  1&.6 .3.0283 1.6887 1.27.36
 26  16.6 3.u150 1.118.3.3 1.175tT--
 20  21.2 3.&IYB 4.495'l 1.2!!IU
 10  1&.5 2.635'l .1250 2.<'031
 1 'J  1"1..0 .,;)" Ibt.f .C!I.JblJ ~.tH 1'::1
 t PP: 5u   
 30  15.7 2.7187 .515& 4..3'l')&
 .3U  17.0 2.74&.3 .381\\ 6.0149

-------
~~
Appendix 0
ENGINE TEST DATA -EMISSIONS VS. AIR-FUEL RATIO
. .
This appendix contains a series of tables showing the relationship between emissions
and air-fuel ratio. Following are definitions of pertinent abbreviations and column
headings:
E
'c
RR
PP
ST
MEAS AFR
CO
HC
NOX
RANK NO.
Engine
Catalyst
Exhaust recirculation rate
Percent power
Advance (OBTC)

Measured air-fuel ratio

CO emission (g/bhp-hr)

HC emission (g/bhp-hr)

NOx emission (g/bhp-hr)

Total weighted emissions (CO/3. 4) + (HC/O .41) + (NO /0.40)
(g /bhp-hr) /(g /mi) x
0-1

-------
Table 0-1 (Cont.)
Table 0-1

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Am-FUEL RATIO-
1,200 RPM, ENGINE A
P'4GE 1
~e.: - 1'2'6 IT:--rr----
41A AA~E: /3.ry e.12U~/
REPORI FORM: /3.Q RPr21
MEAS
4FR
------_._._._~
"It I E: 4
fit. e: 0
---nT"RP':--lT---
.. PP: 10
f 51: 10
PAGE  2 12/6    
MEAS      NO --
~R   eo He NOX RANK
14.6  51 .05 1.47 4.61 30.1251
15.2  16.78 1.10 2.38 13.5682
---HI.:!  7.03 .7~ ~.66 1!1."~
17.6  7.10 1.04 5.53 18.4498
---.' ~I. C:IJ    
14.6  41 .98 2.10 6.52 33.7690
16.4  6.lI! 1..... . .f ,10' e".".ID:Jl
17.9  5.64 1.18 5.20 17. !'J369
19.7  i2.30 11017 5.66 45.0115
 f 51: 30    
~.S----52.27 2...4 II. 71 "~'1 . """1 ,
16.4  4.94 1.91 11.35 34.1\865
18.1  5.14 1.68 7.86 25.2593
---- 20.2 -----9~ 7,) J U. If' ~.1~ 111.11343
.. PP: 90    
-- . SH--10    
14.5  53.90 1.41 8.92 41.5920
-15.7-----23.80 1.111 7.6~~.~~q3----
16.3  9.35 .93 8.M' 26.5683
 f Sf! 29    
14.7  66.63 1.93 8.58 45.7544
-t5.bfJ
16.2  23.86 9.26 1.54 33.45:'\0
17.4  29.17 19.82 2.31 62.6959
1~.O  39.111' 32.H I. ,., 1J>'.An>....
  f Sf: 20    
15.3  19.11 Ih24 1.32 19.2621
1&.0  23.10 8.18 1.29 29.9703
---t'1-.3  fS.76 31.0r) - 1.37 IIlI.to III
18.6  31.48 38.17 1.14 1'15.2064
------_.-
He
NOX
RANK NO
eo
--..-..
1If .1
15.8
--- -17.5
18.9
62.76
13.61
"16;00-----
28.77
2.94 2.53 31.9546
1.22 2.25 12.6036
-.. 3.29 -- -1 . 74---TT;IJB'J"3---
17.41 1.211 53.9252
--- --I --STi'?U'--------
o
I
I.\:)
111.4 38.27 3.91 2.41 26.8175
------15.8 - ---15.'1-6 ----2;-:5r-..-;3S--r6;I1BI1f;-
17.2 18.34 5.17 1.38 21.4539
19.2 31.45 25.93 .89 74.7189
-----"_..._------ _.~
I Sf: 30
--- ---14.9----11 T; 50-----0;0,)
16.3 16.17 4.37
17.9 19.58 9.69
---19.S---- 29.r;q-~"9.6tJ
----
c:.tJfj ,)5~11~--
3.'10 23.9144
1.99 3'1.3680
1.1f3'"" 1.3.').&+ttn
.. PP: 25
- ---- ,- '5TitO
14.5 46.53
-!~...q---!u. 111
16.7 8.48
19.1 14.29
f Sf: 20
----'-1i~-a-.~~
16.2 7.18
17.3 8.81
-----.....rr-n .bll
f 51: 30
1.79
.81
6.02
J.~1
1.21
1.5'1
B.b'"
.'10
3.~8- 26.2511
",~3'_''''t''j
2.87 11.6'1'17
1.16 21.7859
,).bi 1".<'~lY
3.30 1:3.3DO
3.25 14.472:3
1.~-.!J-6l~
14.'1
16.0
11. ::J
19.6
24.90
-6.95
tj,t1&+
13.74
2.76
1.84
fl.~lj
14.70
5.58
5.03-
;!..)~
1.28
2B.OQ52
19.1069
l~.fl,jbO
43.09'.8
..... ..-..... :JU
. Sf: 10

-------
Table 0-1 (Cont.)
o
I
t.:I
PAGE 3 12/6    
 MEAC,     
 AFR  CO HC NOX RANK NO
 . 51: 30    
-----rs-;-I  ",3019 1.1f1! J.,+<:I '!l1.Dq..))
 16.3  17.80 6.73 1.87 26.32149
 17.14  26.85 26.014 3.03 78.98143
--'90~9;uJ ItS-be!' 1.~t5 <,IJT .1/Yo-
 .. PP: 25    
 . ST. II)    
 15.0  29.69 1.99 1.6b 17.7360
-."5. 7  9.00 1....6 I,LtC JU,II:)tPI
 16.5  9.149 1.147 1.95 11.2515
 . ::'1. 2')    
 114.6  13.25 1.55 1.91 12.14525
--rt.-;u--, .ut> l.'!b ~.(J" l'J.[J6~Y
 17.6  11.142 2.72 2.37 15.9180
-- 19.1)  16.33 13.86 .92 141).91)78
---.--.- -.-..    
 . st: 30    
.- "-114.3-'211";,,<, f!,'+':1 ~.11 IH.!:>IJrr--
 16.2  8.61 2.31 2.141 1".1915
 17.3  12.1)0 6.93 1.31 23.7069
- - 19.6 "., -- H..ll> 32.~Z .1n i!5.97"q-
 .. PP: 50    
_.__--H "SH-'10-    
 13.9  81.145 1.89 1.99 :B.51406
----i5.~2~.2B 101'+ 1.116 H.';IS""
 . Sf: 20    
-- -------    
 15.1  15.70 1.66 3.75 18.0141"
 15.9  5.88 1."5 2.9~ 12.5910
------.  
 . 51: 30    
---1"'..&---2-1-.1:6
15.6 16.93
16.9 16.20
-----19.~1~oTl
PAGE 14 12/6
Table 0-1
(Cont. )
MEA5
AFR
co
HC
NOX
RANK NO
. 51: 10
--.'+.~
114.7
16.2
ID,f!"
..0016
182.60
53.81)
&+I.I-,lf
. Sf: 20
.L~..:J~
8".68
61)...0
.)t:!,:)(1
1,1::» ",9.b!"'''
1.87 2614.9175
1.72 167....1406
1.11 y!:>.i?2Yb
1".5
114.8
11.0'
18.7
41.11
78.25
36.36,
149.1)4
3".16
51.41
IIl.H
11),1.42
1.36 98.98"7
1...6 152.05149'
I.Z~ ll~,')hl'l
1.26 2614.939..
. !ST. 36

14.3 79,.95
--~'.q'-119'~'J
15.6 5~~'+1
17.'+ 39.67
35.74
,. . '1'1
137.83
95.09
1.17 113.6104
J,OI ~l~hltj''':f
3.16 36/).3678
1.13 246!lf195
.. PP: 25
. 51:"10
1".9
15.2
16.3
18.'+
21.16
28.61)
14.l"
26.18
5.27
14.15
"."4
16.30
1:33
1.03
1.6..
1.08
22.""<'2
"5''',9°0
""..3.51"
50.1561
---r~?O
14.8 23."0 14.81)
-----.t6..t"--13.3~. 66
17.0 16.75 10.11
19.1 20.82 30.u,+
.78
1. \I~
2.26
1.1)0
21).5397
14.H40
35.<'350
81.8918
-----"
. Sf: 30
".~'.!:>Y'I"
6.33 21.56""
".61 19.0719
.. PP: 51)
. 5T: -11}-
--'5.0'-- ""33".~~.<,'
16.2 ".67 1.79
18.1 5.84 2.39
., pp: 90
. 5 r: 30
1".9
----J5.0
16.1
17.4
38.51)
:lB.n
8.10
6.68
------
1!>.3
15."
'+1.63
'+2.146
2.11
2.09
8.53 38.7155
7.76 36.9858
&016
13.51
26.00'
51.9]
1.2"
1.6i!
.87
1.30
.';15 ;/1.1661
1.23 ..1.0056
.93 71).50..3
.87 ]1I11.y;'9
Z;~llO!"
4.01 1...5293
5.70 19.385'+
. 51: 20
.. t RR: 101)
It PP: 10

-------
co
HC NO): RANK NO
2.63 1.16 18.0'110
5.61 1.06 23./)38/\
.-I..... ~./~ If.Dl:JC!'
1.37 5.'16 34.9962
2.87 1.69 15.9719
i!,"::'l ~IIII~ lb.:..:)}'"
1.96 3.02 1'1.56!>8
16.67 5.63 57.1/)71
.----...-- ,. .~_._..- .-.---
    Table 0-1 (Cont.)  
'PAGE 6 1216     
MEA~       
AFR    CO HC NClX RANK NO
-. ----- ---     --..---
.,  PP: 25     
.  ST: II)     
1'1.5  1.99 .39 2.18 8.'1865
15.9  1.9'1 "'10 2.98 8.9<162
--j6;r--r...2 .t':> ~.bY '!I.O'lb~
19.1  2.91 1.53 1.74 8.9376
.  51. 20     
14.1  1.84 .52 3.')2 9.3595
16..?  1109 ,.Ji" ~oll ~.JD'Jii!
17.3  2.'10 .12 3.14 8.8486
19.'1  2.11 2.31) 1.53 10.23\8
.  ST: 30     
jlt...  1.10 .bU .... tY 1~.95bl
16.1)  2.02 .'16 4.16 13.616\
17.5  2.18 .55 2.15 7.3516
19.8  2.63 2."" 1.~1I IJ,~"IJI
.,  PP: 50     
I  5T: 18     
1'1.6  1.53 .3'1 '1.61 \2.8/)'13
1~.e  1.~'1 .3e f.fS I). 81196
16.2  1.66 .19 5.2'1 \'1./)516
17.6  1.13 .3'1 5.27 14.5131
.  Sf: 20     
14.6  1.3~ ...::. 6015 16.11661
16.4  1.'15 .34 7.31 19.5307
17.9  1.47 .27 '1.82 13.\'109
--1..,-""--1.86 1.54 c.ll 19.n"~.?
.  Sf: 30     
1'1.8  1.38 .46 8.71 23.3/)1'8
16.'1  1.33 .41 10.82 28.'1'112
-111'.'- J,ltO ..~.) ,. O!'IJ 1"1.~&lf)~
20.2  1.80 1.76 4.98 17.2721
44  prl 911     
.  Sf: 10     
JI4 .5  10'46 .
MEAS
AFR
-.--.
15.1
15.6
~1.e
19.6
29.69
22.80
0,10
I] .46
, ~I. -"}
15.1 16.16
--'6I7-b
18.0 1.61'
20.'1 10.1]
It PP: 90
, Sf: 11)
---
15.2 '11.03
15.'1 19.93
-t!i.-
-------
   Table 0-1 (Cont.)     Table 0-1 (Cont.)
 PAGE 7 12/6     PAGE 8 1216   
 _...--._-       
 MEAS       MEAS     
 AFR   eo  He NOX RANK NO AFR   eo He NOX RANK NO
 ----     -----  .--.------  ._---- -------
 14.7  1.54  .42 8.59 22.9523" . I  PP: 59   
 15.-9  1.65  ..43 8.95 23.9091 .  sr: lU   
 ~6..8  l.~.:>  .,).:> 11) ,:):J 2/.bi!''1'1       
         13.7  1.47 .29 1.99 6.1147
 I  sr: 30     15.0  1.6') .31 1.28 4.4267
         ---.      
 14.9  1.37  .51 12.74 33.4968 .  sr: 20   
 15.1  1.44  .51 12.32 32.4674       
         15..1  1.~0 .39 3..!3 9...3&"
 1.1  RR: 50     15.9  1.47 .33 2.76 8.1372
 I'  PP: 10           
 --r;;T~     -~ST. 36   
 IfJ.8  3.58 .3.22 .71 11).6816 15.0  1.26 .47 3.43 II1.UCJ\9
 ---r~.9  ...03  .'+9 I,D:) D.:)IJ.~" 16.1?---t..3" .3" S.86 If" 1:!3~
 16.2  5..30 3.08 1.79 1.3.5460 18.1  1.52 .45 4.19 12.nlCJ6
 H.4  1.21 4.17 2.8CJ \9.5163       
         ----'r"~   
 t  Sf: 20     I  sr: 30   
 HI.1  ....!.3 1.'+1 1. 13 f ,:1vnl --is.''  -1."3 .118 8.5~ :!~.~413
o 16.0  4.46 2.40 1.29 10.39114 15.4  1.36 .44 7.31 19.7482
17.3  5.15 6.19 1.6:) 20.612j       
I ~t!.b  :>,ItU b.tlf 1.1.. i!'] .10,143 ~......-~It-:--t 1'jrt--   
en         . I  PP: 1 r) ------.. 
 I  Sf: 30     .  sr: 19   
 15.1  3.75 2.25 1.49 11).3157 10.3  3.7.3 4.56 .72 \4.I1\CJn
 16.3  3.63 2.37 1.87 11.5231 14.5  5;14 1.6<' 1.54 9.3\3f1
 ---t-T i 4  ~.3/\ !I./\T J,'+D ~~.tfD'~ 1~.7  Z5.II!\ 18.e3 1.'+1 :JI.1Jn.JD
 19.6  5.46 15.10 1.85 43.fl6'J2 16.2  6.49 T.CJ3 1.88 25.9503
 f I  PPI I?S     ,  :;,r: 26   
 .  sr: 10           
         14.4  5.11 6.61 1.36 21.fl249
 15.0  2.28  .90 I,D:J o.~L}!Jl --1".8  6.B3 16.1.. 1. ] ., ~fJ.~I!J'J!'J
 15.7  2.22  .41 1.511 5.6029 11.0  5.62 6.98 1.5r, 2<,.4:;>13
 16.5  2.52  .31 1.95 6.3723 18.7  6.33 18.5.3 1.:;>6 5f1.2069
 I  Sf: 20     I  sr: .3n   
 ---,11. (,  l."j~  .e+-, l.~" ::>.q"t:S:> ---t~ /\.15 6..3.. I. I 7 I"':J ,01'''=''1
 16.0  2.rH  .29 1.85 5.9411 15.4  5.3') 19.90 1.20 5.3.1)954
 17.5  2.61  .62 2.53 8.6225 15.6  5.CJ3 22.22 .3.<'9 64.164<'
 19.0  Z.6/\ 2. 77 1,10 lU.'t~ 17."  S.19 1:) .86 1.63 /\4.UI4/\
              ..-...-..... .--- - -..-
 I Sr: 30     . I  PP: 25   
         --r-S"ft-10   
 14.3  1.73  .56 1.79 6.3497       
 16.2  2.21  .56 .2.36 7.9159 14.9  2.75 2.40 1.3.3 9.9875
 17.~  ~...u 1,:JO 1.ltC' O.IU~:J --'5.2  3.58 Z. 12 10 18 ':t. 1 f.:J I
 19.8  2.71 6.78 1.02 19.8836 16.3  2.83 .74 1.64 6.7372
         18.4  3.11 2.79 1.39 11.1946

-------
Table 0-1 (Cont.)
~AGE 9 12/6

ME.AS
AFR
co
He
NOIC
RANK NO
. &U 20
2.36
2.29
2.99
.3.<11
.63 ..~O'J1I3~
.55 1.25 5.11100
1.87 2.26 11.09011
~ .mr--Y-;J1I""I'r;9I1OS-
-,-q-.B
16.1
17.0
--rcr.1
t ~ r: 30
o
I
en
111.8  2.03 .86 .86 11.811116
15.6  2.53 1.93 1.23 8.52611
-"J6",'1  1!.:JtI ..,bit 1.11 1&+. '1Y~fJ
19.11  3.29 12.12 1.17 3.3.115.36
-"-TrPP. ~,)   
t Sf: 10   
--rcI.9  1.6~ .0:') 1..,)1 If..q.bft>
15.0  1.95 .116 2.11 6.9705
16.1  1.71 016 3.85 10.5182
---1-7.'1  1.7" .:31 :>...'t~~
t Sf: 20   
-------     
15.1  1.55 .116 1.31 4.8528
15.6  1.91 .84 1.27 5.7855
--t-t. "  1.76 ./')2 2.73 &.!I~..n
19.6  2.01 1.28 5.74 18.0631
--~--:m-   
15.1  1.411 .51 1.65 5.7924
16.~  .1...... .1ot::J c:'. 1~ O..JC'JI
18.0  1.60 .96 3.03 10.3871
20.4  1.85 2.22 5.86 20.6088
,. PP: 90   
. Sf: 10   
15.2  1.59 .39 7.46 20.0689
15.11  1.57 .24 7.11 18.8221
15.~  ~.'9 .~It , ,"::fU ~U.BblB
. SI: 20   
15.7  1.47 .35 5.49 15.0110
16.1  1.52 .38 8.38 22.3239
il,J.  1.:>:) ,.)(!: tStUtS 1!1."")bIJ
. st: 30   
15.8  1.43 .47 6.13 16.8919
15.8  1.40 .43 6.33 17.2855

-------
Table 0-2

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Am-FUEL RATIO_-
1,200 RPM, ENGINE B
PAGE 10 1216
Table 0-2 (Cont.)
MEAS
AFR
RANI< NO
PAGE 11 1216   
"'EAS    
AFR eo He NOX RANI< NO
19.0 8.91 1.19 1.'01 9.:?!"7
----
eo
He
NOX
+40+' E: B
4011 e: 0
---1'" RP. 0
+ t PP: If!
, sr: 10
----."-- --
. 5T. 20
--
---.-..---..--
111.3 23.81
--r~S-----S,/j"
17.8 7.21
19.5 11.19
111.11 119.62 3.82 2.88 31.1100
16.11 20.11 3.25 2.112 19.-9092
--18 .~-- .--:H ; e.,--,<] ;5~ -r.:;1Jt;U-;"91J99-
20.0 63.111 13.30 1.112 200.9981
---,.~------
2.28
1. trll
1.411
11.72
5.80
::»./'10
2.60
.911
21.0639
-I g,-Q85Z--
12.15UII
11 015311
, Sf: 30
111.1 15.93 9.16 2.83 51.11188
-16'''---2.3.04-~on~~6;-IT79S--
18.6 33.80 33.95 1.21 95.9~11
2U.9 1>'1.21 105.68 1.116 218011119
-111-..5 ---6
~.~I Ilo'T';/e-r--
1.115 8.9293
1.06 19.81811
3....", "...51')'<
2.55 111.3620
l.b3 19.11363
.7'< If J . 'J,J 1,)
.3.911 26.5128
3.00 11.0274
1./1/1 3.3.6~n
.911 1.3.2.378
111.6 11.-53
-1-r>.~......4
11.5 5.211
18.11 5.88
111.6 56.211
---t6-.?---trt,-,32
11..3 10.82
19.7 17.90
+ sr: 20
2.60
1.0~
.81
4.86
--1..-.tr--.3~.-trT~'!7
16.11 9.99 2.01
11.9 1.3.11 11.11
'-0.3 21.8~ 13.115
+ sr: .30
------------
+ sr: 30
14.7 'iI.a
16.0 3.67
1 7.6 3.85
-79;--:5'--'''-. 19
2.05
J . 'J.3
1.113
.1.12
2.66
1.83
1.52
1.57
1').17
35..3162
It:. I n---3'5";'1..,.J I
1.~9 211.0"11"
.3.25 12.5861
1.3.66 1\1.9"5:'>
18..31 51.3118
11.04 .32.11391
~. :n--n"fTfi:n--
+. t RR: 50
IT,'PiTI,
, Sf: 10
--.
14.11
16.6
18.~,
20.6
25.39
9.92
_13.15
21.76
3.71
2.71
11\.26
26.114
-11J-;r---:51 ;55""
16.11 211.31
18;6 112.48
~":f.9 e 1.'t'!:'
---t-r PI". :>0
, sr: 10
. s r: :?o
1~.6
J5.9
11.;'
11 1. <)6
6.16
6.93
21.1S3CJ
14.;'947
10.9175
1.111
.69
.75
4.44
1I.;'b
2.82
15.0
16.8
18.1}
20.3
22.51
26.58
..0.03..
61.1b
".~b
8.113
IIn.J7
J')').D":1
11.01
11).')8
~6.l!6
122.92
2 '-us-'.?3-;81i8~
1.89 3:?4361)
1.20 113.11697
1.::)' .J:>c.t:.Jl1,J
:??5 2;>.17211
1.94 .37.253U
1,16 l::J.J'''~D''
1.29 ;'22.7828

-------
PAGE 12 1216

MEAS
AFR
Table 0-2
co
(Cont. )
PAGE. 1.3 1216
Table 0-2 (Cont.)
--'~-----
He
NOX
RANK NO
"E.Ar:,
AFR
HC
NO)(
RIINK NO
CO
- - - --------------------.----.- ..._.-. - - - ---,-
. S T: .30
14.5
15.~
17.u
e.ult
::10...3":':)"
. ST: .31)
-----------------------
14.7 ..9. HI 
16.2 27.911
17..3 112.47
'-Ig;r--~,)y
1'.....
2.3.04
69.75
124.0,)
2.14 69.7628
1.9.3 187.4.381
l.tH j21.71j,
14.7
16.1
J.' .~
9.64
.3;6"
&+ .C"J
----------_._~_.-
15.0
'----1-6. -2
17..3
19.6
.. PP: 25
. ST. III
14.29
10.72
12.09
26.65
1.26
1. '} J
1. .31
2.3.1.3
11.94
"..30
!'}...3
1.71
1..32
, .I~
2.10
1.7.3
1.q."
1.56
1.7~
1.211
.86
11.1761
9.9"1..
9.8510
66.111)29
... PP: If)"
'.. PtJ: fil-.~~.-~:"" t.:.. -

. ST: II!
--T'f."""--"5T~ ;! j. ,;!
16.4 45.91 25.2.3
18.2 46.01 42.15
-1"';"--8T;~jj.!lY
. Sf: 20
15..3 IIj.2'rr-----2~..
16.5 11.b5 2.64
18.1 15.96 6.59
.-.---- 19.8.--28.-t-Y--~7.25
o
I
00
,-- - ------
, ST: .3')
1".9 41.12 21.f>5 1.511 MI. 74qll
15.9 5.3.63 5.3.211 2.1.3 15~.9;22
18.2' ---- 56 .-n---g'l";rry--,-; T~.;729r--'---
21).4 77.27 181.8~ 1.3; "69.5161
14.8
16.3
-18.7
12.b8
12.62
16.ijl
.3 .111
6.17
12 .13
1.6~1I.251i-r--
1.8.3 14.4405
.98 2.3.217.3
.7e 76.6"e1
II PP: 50
----~ff-l0n
2.55
1."2
1.61
17.7629
22.311)5
,e.'..?1
15.2 8.01
-'.1-5-.9 - - ---6. 5tr-
. S T: 20
.------....--
1.06
.6(,
2.77 11 .86f>2
2 it> r-ttto2ti1~
13.5
15.1
16.1
19.0
. S 1: 20
5,"4 21.2825
5.83 19."592
...!I'q---y-r. ,nl..)
6.26 2.3.61)72
9.01 27.803.'
h.II'I 7r.1!963-
'... ... ._-
.. ., .--.-.. --.-
.--- ---
1 . 'I 1rIf),7t :>'1
1.51 - 78.96115
1.2:> lI1 ,)"h.?~--
" PP: 25
. S 1: 10
,-- S1 ~ --20
18.0958
1.3.9822
11\ . 5351\
15.2 21.36
-. 16."--2f}otI5
17.8 22.8"
19." 29.64
, S 1: .30
11.1'J
5.90
7.J8
tt PP: 90
. S1. 10
17.06
5.T!)
. S 1: 20
, Sf: 30-
----~-
176.98 69.~U 1."8 ~:>4.04;6
56.85 - .-. 72.9r - ----7; 02,9".746'2------ ----
5~.~~ 11)4.64 1.74 275.7"60
5".76 1..3.08 1....3 368.6~65
. S1: .3',
It,. {II
2.3.0"
20.86
..---
14.4
16.7
18."
._-~--- .---.-.-- ------- ...-.---
~- - - - - .
. -.-.'''-''-'
----
111.9 6.31 1.70 1.95 10.877~
15.7 6.?.3 1.4" 2.66 12.11945
-- -110... t+- -----~-.-tr'1-_.---i.'---?oJIj
1.47
.e~
...39
t!lo Ou
19.5780
1&. 1D"~
-~
15.7
18.7
l.~'it!
.92
1.25

-------
PAr,E IU 1;:'/0
totEAC,
AFR
--.------
20.0
Table 0- 2
(Cont. )
PAGE 15 PUb
. ----- -------"-"---_.---------_._--
Table 0-2 (Cont.)
co
RANK NO
MFA5
---~~ --~-----~~-~~~-~~~~
---------.-.-
20.1)  8015 16.50 1.'12 '1601910
-.----sT"i D I I. 1-'1 it!.:J'"I lf1r.l)fiTTS--
II PP: 2~   
------- - - T ST:-TIT   
HC
NOX
25.28
'19.91
1.00 131.6670
.. ..t". 5"
. ST: 10
~:>.,  o..)u ,0'1 l.~~ 7./j"69
16.4  7.42 .78 1.59 8.0598
17.5  7.72 .75 1.96 8.QCloC}
---.e.9  8.9') J. 11 l.'flt O.':ft!:JIJ
I sr: 20   
1'1.7  15.99 7.61 8.75 45.1389
15.9  10.01 2.75 1.07 12.3<'64
--rt~  14.67 D,,,," .~~ f!b.~11.f f
19.6  1'1.56 10.8? .51> .32.rI1?f>
--------. - S1'-:-:\o-   
15.')  8.08 3.21 1.0<' 12.9n<'1
----16,1)---11.47 '1.35 1.111 ~~.3..P
18.'1  11.15 9.'19 1.13 ?9.1I?12
20.'1  13018 20.70 .69 51>.0893
  - -. -._------  ..--.-----
  --_._.~_. . - -. 
" PP: 'If)   
. sr: 10   
o
I
(.0
.--- ----------
1'1.6 2.1~ .7'1 2.33 8.'1<'110
-----n,-,-?-- - z-.-111-;:5"----;?-;~f.73:'5'1 ---
17.5 3.25 .31 I.IIU 5.JI?0
19.1 3.93 .95 1.26 6.n<':3"
- ..----. ---.------
----14;"6
16.11
11.9
------- 2".3-----
15.2 8.119 1018 2.65 12.0''''1
15.9 5.211 .811 3.'13 12.1650
--17.1f --- 5...8--------.5..----q..,
I U ."':?lInT--
11.5l98
13.25
5.96
1>.511
b.II3
1::'.31171
11.77111
-n .~7T1-----
1<'010'19
14.11 1.90
16.n 2.35
--- f8i~--<,.!>2
2".n 3.15
1.78
2.611
---- <'i??-
2.611
1.611
1.114
- --1.68
1.118
I ,>r: 31.1-----
11.211 1.79 1.98 10.5629
lI.lS---- r.69-----:3~"9R-15~<'9:>5 ---_u..
5.28 1.69 3.96 15.57'19
5.15 2.09 2.60 13.78A7
111.6
15.9
17.3
19.0
. . . .
III
'-1 ,....
.
-!-"."
16.11
18.5
---------
C: 1-
RP: 0
pp : 1')
sr: If)
1'1.3
15.8
17.8
19.5
:>.19
5.74
7.31
l.b1
1.46
3.52
'019
2.16
1.51J
II.lint>
10.6492
14.11854
to -pp-:--srr--
I 51: In
---
1.711
1.85
2.n8
2.<6
.39 3.96 11.:551<'
.17 3.95 In.R3~8
.22 2.59 1.6<'JII
---;111---- ---1.5"9 - 5.6456
. 5r: 2U
1.57 . lib 5."11 14.1837
1.6~ .32 5.02 13.8187
- --r.1:1Z------;Y;--- 2";117---,~-5934
2.10 .91 1.25 5.9622

-------
     Table 0-2 (Cont.)    Table 0-2 (Cont.)  
 PAGE Ib 1216      -PAGE 17 1216    
   . --- ..--------.----.-------.--..-- ----- ---       
 "'fA')         ME AS      RANK 
 AFR    CO HC NOX RANK NO AFR  CO HC NOX NO
 . 51: 30      14.9  2.94 .45 1.31 5.3673
          16./)  3.03 .30 1.68 5.8229
 --111-;-1< 1...7 .!Io;j 6.<~ l'.It'!ll4 --n.:3  ~...9 .,,4::' J . t!'t 5.15',,,,
 16.2   1.61 .'12 7.01 19.1)2;'<1 19.6  4.33 7011 1.25 21.7400
 lB.!>   1.60 .411 2.69 6.7664       
 ---. -20.6.---2;T1O ----'-;"[11---1.110 b.!!Hb'l . ~I. ~u    
 fI pp: 9/J      15.3  2.57 .62 1.47 5.<1431
 . Sf. 1"      -----. 6 . 5  2;75 .ee- 10 71 D.:>96u
          18.1  3016 1.22 1,12 6.705/J
 1'1.1   1.16 .35 7.36 19.5946 19.6  3.92 5.71 1./)4 17.8261
 -ttJ.3   l.l6 .ll 8./)1 ;!...'9,,18       
 17.5   1.63 .16 11.53 1 2 . 194 1 ' Sr: 30    
 I SlI ..0      -11\.8  2.05 - .n 2,04 7...3..D
          16.3  2.50 1.30 1.37 7.3310
 14.b   1.26 .'I/J 11).11 26.b211 16.7  2.16 2.26 1.54 10.1796
 -1 tr; 1" 1.31 .~ 1 II.tJl ",1'.IIt1h~       
 17.5   1.37 .54 1.59 20.6950 ,. PP: 50    
 18.4   1.51 .23 3.22 9.11121 . Sf: 10    
 I Sf: 3'J      15.2  1.69 .26 2.43 1.265/)
          15.9  1.98 .17 2.98 6.4410
 -t~.1   1015 .1\3 Il.!\n J .,.5.J1'1       
0 Ib.n   1.27 .311 17.41 44.6176 ' S1: 20    
I 17.7   1.26 .2B <1.69 25.176~       
.... --!<,I-,-3--TiIti1 .Jr} ~ .r,J. 11.1435 111.'11  1.6'11 .36 1.&... 5.9751
o          15.7  1.70 .29 2.67 7.61\23
 , .. RP: 5f)      20.0  2.311 .47 1.52 5.63116
 ._0M" -1"i-'--; f}            
 . Sf: 10      . ST: 30    
 --i~ 1   5.61 1.~'J 1.~1I '11.1::'8:> 14.11  1."1 ...'11 3.311 9.8775
 16.4   6.39 2.19 1.60 11.2?09 16.7  1.78 .42 2.67 6.2:>;>9
 16.b   1.50 5.67 1.21) 19.n352 16.4  1.71 .54 2.39 7.1950
 -;9.<;1   9.:>8 23.18 1.51 M.1ST3       
          .. PP: 91)    
 . Sf: 20      . Sf: 1/J    
 15.0   4.53 L.63 1.60 5!~h       
 20.1   7.85 25.26 1.66 6601114 ' Sf: 20    
 . STI 3IJ      III.=>  I.IJ8 .3" ...81 1301119
          15.9  1.28 .25 5.12 15.2862
 111.1   4.1111 4.26 1.72 15.9
-------
    Table 0-2 (Cant.)  
 P-AGE 18 1'216    
 -~~._.       
 f-1EAS       
 A-FR   CO HC NOX RANK NO
  ----.----------------- ..-.-..----.
 ... RR: 10')    
 . I PP: 10    
 ---.'--5fr1'O.  ------
 14.9   7.40 3.56 1.97 15.7844
 --'-0.11-, ;80 , f,. £11':'
 18.2   7.88 5.59 1.58 19.9018
 19.9   9.58 25.18 1.57 68.1573
 I sr: 20    
 ---I'I.'iI   5,41 5.03 1.54 17.7211
 15.9   7.43 11.02 2.44 35.1633
 18.2   6.54 13.23 1.47 37./lhh8
 20.2   8.13 3".11., I..)D DM'~''-Jtj
 . Sr: 30    
 13.5   5.56 11.89 1.48 34.3353
 15.1   6.15 15.22 2.1)2 43.9afla
 --if,. 1   6.89 26. If! :1 .')3 Sb. P5'i1
 19.0   7.15 33.47 1.91 811.5121
o ---~~-~!Y    
I . sr: 10    
I-'        
I-' 1'1.9   A.&7 .7e 1."7 C.616:>
 16.2   3.52 .48 1.22 5.(561)
 16.8   4.04 5.51 .81 16.6523
 -;-7. ~   4.-HI 1.21 1815 1.11?6
 . ST: 20    
 15.2   3.04 1.38 .95 6.6350
 16.0   3.17 1.27 1.13 6.8549
 ---t-1 . 8   3.1>1 2./:\1 .91. J I). ~7 1'":1
 19.1}   3.83 8.18 1.02 23.h277
 . ~T. ,3r.    
 14.9   2.~1J 1.31 1.26 7.0216
 ~.7   2.119 2.M leU:) '"'j.t:)h~~
 18.7   3.13 3.32 1.54 12.8681
 20.0   3.37 7.57 1.34 22.81146
 II PP: 50    
 . ST: 10    
 15.7   2.32 .25 1.115 4.9171
 16.4   2.23 .18 1.58 5.04'19
 17.:>   2.32 .21 1.96 b.091>:>
 19.0   2.31 .36 1.61 5.5825
PAGE 19 12/6
f-1EAS
AFR
-------.-- ----.
. Sf: 20
~cr,-r----z;:n
15.9 2.01
17.5 2.42
-'':1.0 i!.:.er-
. 51: 30
---~
14.9 1.77
16.0 2.07
~8.1I--'c.u..
20.4 2_.44
CO
HC
NOX
RANK NO
1. 1"-----' vr- 5OR!\-~
.51 1.25 '1.9601
1.14 1.05 '6.1173
1.,:>':1 .':I~831-n--
.64
1.21
1.3J
4.14
1.02 4.6316
1.25 6.6850
1 . 3s---7.293or-
1.03 13.3902
--...-w. 9u
. ST: 10
~S;2--'.'':I
15.9 1.40
17.4 1.66
. 51: 20
-.1JOs--1.3::>
15.9 1.58
17.1 1 .53
18.8 1.65
. Sf: 30
14.8
15.9
17.8
19.0
1.28
1.36
1.:)6
1.53
.~Y .. . ,r-r;'1Ifsn-
.19 3.'13 9.4502
.14 4.16 11.2297
."'~ J . Itl ~.tJ~
.25 2.67 7.7495
.39 2.29 7.1262
.21 ~.D" 7.7,+,.J0
.38 1.93 6.1283
.29 3.86 11).7573
.29 3.96 11.""83
.39 :J!.73 8.2<'62

-------
Table 0-3 (Cont.)
Table 0-3

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Ant-FUEL RATIO-
1,600 RPM, ENGINE A
'PAGE 2 1216
---
fo'E-As 
AFR CO
15.5 15.28
16.5 7.111
11.3 S.93
'PAGE 1
-on-rr.- Ji/:'" J I.<+t;
~5E: '5.0 E16001
REPORT FORMI /3.0 RPT21

ME AS
AFR
NOX
RANK NO
t ST: 20
CO
He
111.8 19.1111
16.5 6.66
---18rl-r. 78
19.11 1;!.92
...., E: A
.t.t c: 0
.---t t t- R~~- ()
tI PP: 10
. STI 10
He
NOX
RANK NO
1.20
.57
...1
2.35
1.26
.65
3.67
6.55 23.1959
11.73 15.2770
" . :>9 --t.-!3 f>S.se 3.IJ9 t&t.-f!08&--
t S TI 30
-- . --- --_._-- ------.----..---..-
.' PP: 25
-- ---+ - S-Tt---ll}-
.-.--
--111-.9
1&.11
17.3
35.11
10.75
5.13
15.51
21.36
19.&1
5".1~~1I
60.4&112
53.9728
13.& 29.80
---H,..Er--- h&3
1&.9 8.05
17.8 9.80
1.13
.39 .
.51
1.96
3.10 19.2108
7.-3-8--t+~i?5&--
2.65 10.3829
1.95 1:?5378
t ., RR: 50
.. PP: 10
, 51'-:-t 0
---~.._----------- --
t Sf: 20
1,99
1,&0
1.111
111.8 21.9& 1.15 - 3.32 19.3;!811
---lb.2'" - ---- 1 1 iIl1--?"i~1~ ;"~'?I)-; 11315-
17.6 22.12 8.87 2.&2 3".8&~5
-HT7-~9.19 1-079 3.~f. 21.2?-ffr-
16,2  8.53 .89 11,05 14.8046
18.&  12.&1', 2.50 1.&& 13.9711
---e-!: .-1--!'h-l II f3.3A .73 7?-.-39'ffl--
. ST: 30   
--.--.     
13.7  30.87 2."9 3.8') 25.26511
\1.4  9.91 1,43 3,11 14.3275
-----29-.-8-- -I-It-; 93 3.16 2.16 1~-
t, p.,: 50   
, sn 16   
14.1  30.1111 1.78 4.82 25.3411tj
---- ~H--fl
15.4 2l'.&1
-1-tr.~18'. H
17.8 311.19
I S r: 3D
111.1
27.95
2.112 2.75 18.8569
5.1"o---?~t~~
24.&& 1.76 74.&022
8.&11
2.23
31t.8688

-------
Table 0-3 (Cont.)
.PIIGE 3 12/6

MEIIS
AFR
.PIIGE " i2/6
Table 0-3 (Cont.)
co
RANK NO
MEIIS
IIFR
NO)(
RIINI< NO
HC-
NO)(
C:O
15.9 21.00
18.3 '11.87
------t90~-----51.81
7.9'1
'15.18
82.68
2.&'1 32.1'123
1.70 12&.1598
;}.~" ,n.B"'bB
--15.2
16.2
17 .1
19.6
4 0 PP: 25
4 sr. 16
1'1.1  20.&8 .18 1.95 12.8598
1::'.'"  8.84 .34 3.~6 11.51"'3
o Sf: 20   
1'1.&  11.'10 1.19 1.25 9..381)'1
1&.&  9.'1& .88 2.51 11..35.31
18.::;  14.87 3.63 1.15 1".ln;o~
15.1
1&.1
18.1
19.0
t sr: 10
~'!I.105
2&.9.3
2'1.95
1111.112
4 Sf: 20
6.11.3
8.88
20.21
:56.6",
HC
Z.II1--?9.510111
2.46 35.1291
2.'11 6~.8r)59
1....3 1')!I.q~6!1
o
I
....
CI:I
t Sf: 30   
--.----    
1'1.8  12.'11 3.0'1 1.33 14.31)97
18.8  15.04 '1.96 2.06 21.6111
--i9.~f.18 21.68 1.111 lI1 .1J266
to PP: 50   
~-+~t;{)   
15.'1  1'1.22 1013 2.51 13.2135
15.5  12.22 .85 '1.98 15.8613
t Sf: 20   
15.3  9.23 1.51 2.11 13..319r)
16.2  6.9'1 1011 5.39 18.3&98
---------   
. Sf: 30   
---15. £' --_n_-7-~-£'.65- f.bS 13.8~
1&.3  &.'11 1.18 4.4& 17.31&8
17.1  8.40 2.29 3010 15.8060
.. PP: 91)   
t Sf: 20   
-+--s-H--?O
1.3.4
~.'!I
16.8
18.5
31.77
3.3.89
116-; I I!!
5&.62
. sr: 311
251.2:?
31.fI;}
53.43
49.8&
10.40
20.55
::;2.16
&8.:?1
9:?.39
~ I.PI}
15.14
82.:?2
1.19 39.1850
2018 65.5396
1.36 1106.15~
1011 18&.09'11
1.88 305.6944
1.71:j~-n--
4.02 21)9.03.30
.3.61 ~2'1..31h3
14.9
11.1)
~Hrl
18.0
.. PP: 25
t Sf: 10
24.93
IfJ.72
12.36
11.88
5.35
2.05
I.III!!
2.79
1.1.3
1.55
2.13-
I.M
2.3.20&1
12.1)219
1~.641011
14.7991)
1'1.4 29.93
--l&i-3---j h-11
18.2 22.&1
19.6 .34.;.3
10.64
2."4
11.68
39..31)
.88 .36.9542
1.3.' 12.52(",
.9.3 31.4805
.9.3 108..3934
. sr: .30
--1 ~-.i!---t""lh-5-1-- -2fT;-tr 1
16.5 2.3..32 22.3.3
16.1 31.8.3 69.12
. -----.---.,--
. ~t~-i"8"ffl---
.96 &3.7~2:?
.96 180.3411
15..3
1&.4
15.26
5.21
1.32
.95
8.'19
12.65
28.9.321
.35.'11'1'1
---_.._------~--_.- .._--
t Sf: 30
to PP: 50
. Sf: 10
--15...-1--£'h9<'
16.5 '1.86
16.9 4.71
31.::;M
-------
    Table 0-3 (Cont.)       Table 0-3 (Cont.)  
 'PAGE 5 12/6     'PAGE 6 12/6    
 ----_._._-~  ----------         
 MElle;        MEA5      
 AFR   CO He NOX RANK NO  AFR   CO He NOX RANK NO
 16.4  7.82 1.33 2.50 11.7939  ..  PP: 25    
 - 18.0  9.37 1.58 2.28 12.3095 .  5T: 10    
 -1'1,"2-"1"2.1}1 ".5'11 1~ 1"1to1I025 -~-_.   ------
          13.7  2.51) .30 2.78 8.4170
 .  ~f: 30      15.6  2.42 .12 3.13 8.8294'
 ---        --ttr..13 16.<,I'!n         
 16.1  8.17 .40 6.36 19.278f> .  S1: 30    
 .  Sri 29      13.1  1.81 .58 3.1\1 10.1\7,,0
          17.4  2.4J .36 2.94 8.9369
 15.6  9.75 1.09 4.82 11.5762  20.8  3.14 .97 2.23 8.8644
 16.8  5.6',' .88 7.85 li'3.4449  29.9  3."8 5.'1" 1.27 11.4668
o 11.4  5.00 .81 6.12 20.2462         
         ..  PP: 50    
I ---+- STI 39     ,  511 16    
,...         
*"     1.70            
 15.f>  7.94 6.06 21.6316  14.7  1.57 .44 4.45 12.6599
 16.'1  ".85 1.45 8.81i' fi'S.6131  15.!iI  2.11 .39 f..a5 16.4113
 17.1  4.80 1.20 6.37 20.2/;>:'16 '. 16.5  1.13 .J3 4.30 11 .5759
         17.3  1.73 .17 4.18 11.3735
 ---+OO-++-€-I-l              
 . . t  RR: 0     .  S1: 20    
 ..  PP: 10             
 .  S TI-i~      14.8  1.:'.5 .6'1 6.42 18.111116
          16.5  1.69 .24 8.29 21.8074
 14.8  4.69 .56 4.44 J3.8453  18.1  1.87 .20 4.43 12.1128
 --to-.~.86 .0,6 3.62 11.6'!1
-------
'PAGE 7 12/6

MEAt;
AFR
--------
16.1
17.'1
---.----
Table 0-3 (Cont.)
Table 0-3 (Cont.)
1.10
1.31
co
. PAGE 8 lU6
HC
MUS
AFR
HC
NO)'
RANK NO
NO\(
RANK NO
CO
.25
.20
36.1333
29.4231
15.5
2.23
. -----------------
.22
3.97
11 . 11 75
--~-- -- ~.-
- ------_._--,~---_..
14.08
11.'12
--------. ST. 20
15.2 1.57
----t6 i ?----t . 76
. Sf: 30
------15.0- --1;31
16.3 1.22
17.5 1.21
.41-----t~.~~.~J5J
.29 20.31 51.8411
.31 18.13 46.4370
. Sf: 30
. II RR: 5')
.. PI-': 10
---t---~-ff--HJ
15.2
16.3
--------H. 7-
1.49
1.56
1.(,11
14.9
Ib.ij
17.6
15...
--l-f,,'J
17.8
o
I
.....
t1l
---"---5-H--38
14.7
Hi.'}
18.3
19.4
5.13
:,>,t3
7.17
.46
.76
2.86
3.06 10.281)8
2.~7.,75
2.62 15.6.34"
.. PP: 90
---t--S-H--2:".1
2.34 24."'11'1
2.02 13.3303
2.~8 IS. AIM 
2.55 31.85';8
4.58 '17.1181)3
. s r : 30
15.1 1.14
16.5 1.26
--17.0-1.14
.47
.1!'1)
2.51 7.8831
It. 9~--tJ .-:5805""--
----
.59
.33
.'12
2.31 7.6523
4.24 11.8637
3 i-HJ---90 25b 7
tI. RR: IOU
-"+-1>+'-1--18
. Sf: 11)

--15.-~-6 . 19--h-ft---?t't'r-11t09468
16.2 5.98 1.78 2.62 12.6503
17.1 7.15 '1.'17 2.83 20.2569
19.e 8.Be 1.11 1.61 23.7371
.. PP: 25
. sr: 10
14.6  2.93 .33 2.26 7.3666
15.9  3.00 .11 3.60 10.15116
. Sf: 20   
1".&  e.61 .36 1.2~ 4.7767
16.6  2.66 '.2'1 2.57 7.7966
16.5  3.1)6 .95 J."'I 6.6171
. sr: 30   
1'1.8  .29 .97 1.33 5.71197
18.9  2.95 .87 2.63 9.56'16
19.2  3.2'1 5.47 1.56 18.2'1'1'1
---28.7  3.69 12.116 1."4 34.1831
tt PP: 50   
. :>TI 19   
15.5  1.69 .30 2.'13 7.3626
     ._--~----
. Sf: 20
----     
15.0  501'1 2.31 2.05 12.271)9
16.2  4.98 3.29 2.59 15.9641
-1-8-.1  6.67 1 ".19 2.1'9 3!'.!'9f111
19.1)  7.31 12.05 1.67 35.7152
--...~r. 36   
13.5  17.22 16.23 1.62 48.71)111
--1506  ".94 6.66 1. ';17 21' .6fi-8--
16.8  6.29 13.49 4.(1) '16.252'1
, 18.5  6.61 11.14 4.41) 40.1148
tt PP: 25   
. sr: 10   
1'1.9
17.0
4.14
3.59
7.0725
6.8464
1.15
.42
1.22
1.93

-------
Table 0-3 (Cont.)
.PAGE 9 1216    
MEAt;    
AFR  eo He NOX RANK NO
--_._-    
11.2" 3.63 .30 2.49 8.0244
16.0 4.0U .99 1.61 8.2661
, 5tf: 20
_m--'-14.3 - ..-",.";'-0.--1.71
16.3 2.91 .48
18.2 3.49 2.34
-19,-tr----.8-2.-21
16.2 2.54
16.5 1.81
-1-7.4---+.6<;1
+ Sf: 20
.!;!i
.31
.16
.13
1.16 '1.91191
2.03 6.5162
2..34 6.7126
.3 . 2 'J----<)-;1)9M
15.2
16.4
.-------18.~
19.2
2.01
1.64
1.91
2.29
+ S TI 39
14.6 2014
-----t6.&-~.14
11.4 1.91
21).1 2.09
1.44
.25
.35
.13
3.42
.511
1.35
1.1)3
.87
2.1(,
hilS
1.93
6.2960
1.9009
1.Y.Bt--
1.H9IJ
.63
1.1!!
1.52
2.01
10.5459
6.1!!88
1.6544
6.1519
.. PP: ':10
+ 51: I')
15.4
16.1
1.46
1.56
. Sf: 20
15.7
16.8
11.3
1.111
1.22
1.32
. Sf: 30
.16 5.33 14.1441
,10 6.16 16.1027
.1!9 ~.e,9 U!.26T6
.19 7.51; 19.7972
.20 6.24 16.4760

-------
Table 0-4 (Cant.)
Table 0-4

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Am-FUEL RATIO-
1,600 RPM, ENGINE B
.PAGE 10.1216
--------'
MEAS
/lH!
----- - -- --_._~-----------
15.6 1.~2
16.3 1.20
--lh-1---J.~
co
. PAGE 11 12/6
HC
RANK NO
MF.AS
AFR
NOX
RANK NO
NOX
--------
.38 6.12 16.5657
.29 7.58 20.011)3
.jlJ~.1!31J1!
1".8 21.21
16.3 5.0fJ
-t1o~'.S7
i 'i tiE: 8
.--- r, , ,-- C:--o---
1 I t RR: U
if P": 10
--~-t!l
------..
. Sf: 20
14.5 26.29
16.5 5.96
-1-1--.8-----6.'J6
19.1 9.:33
14.1 66.44 2.52 3.03 39.1449
--- 16.2 ----1!;-iM"-------3.09"-~613
I S T+-31'}-
14.6
--16-.9-
19.2
20.3
16.13
6.'17
1.56
11.12
~ ~.._.- -. ----------------
2.20
1."'''
1.23
4.116
9.23
9.09
3.54
1.45
33.7132
!1.534 ,
14.117;3!>
If>.7Y6n
.. PP: 90
1ST: 10
o
I
~
-.1
------14.4---- 51. 1~-~-.04---?-.e3-3001!1"?
16.1 17.36 2.99 2.46 16.5966
19.1 41).55 29.61 .63 65.1210
---21.5.- ----81.38--1-3'tT96 .96 355.60"8-
- - .-- - .--
o 5 T: 30
-_._~._._- --
14.0 66.93
16.6 16.61
----18.9 -----34. ~6
23.1 69.44
4.32
4.06
2170:>1
121.69
15.1 21.64
16.5 4.68
----- 16.6-"" - ".49-
3.10 36.5601
2.99 22.9:'>14
1.16 61!.6S71!
.14 319.56f>2
1 sr: 20
1.46 1.33 26.2507
.55 9.05 25.4018
. "1----fJ~_ht9 .6f>e<;tf-
1.65
.95
.69
.71
9.63 33.97:'>9
13.71 36.0165
'J.-7-~-"'."638-
5.11 16.2361
14.6 30.51 2.14 10.97 41.6160
____n 16.6----"'. 13 -h-6f}----i-t..i-1---4-5,-TH!&-
18.1 5.41 1.11 9.60 26.2965
19.6 6.66 1.34 4.3" 16.1)630
14.9 25.89
11.1 8.55
-tB~----11.15
22.5 30.06
1.86
.9"
1.94
17.11
-.--.
3.95
3.25
1.4'
.49
I" R": 50
II P": 10
--+-gH-tIJ
22.0:'>63
1:'>.93:'>4
11.8626
51.1919
1".8 26.33
16.e-i-&-o-23
17,1 21.46
--+--'IJH-3(1
. :>11 IU'
14.6
----J -1. 6
18.6
20.6
2-8.18
"'.34
14.03
24.34
2.38
1.46
3.97
21.98
4.38
3.15
1.38
.71
25.1)431
13.6830
1"1.2594
62.5436
14.7 23.69
16.~1.E.7
19.2 64.39
It PI': 50
. ST: 10
1.32
2.(13
5.31
2.15
5.9&
72.8..
5.02
2.2:>
2.1)9
23.5136
1~r-
~4."939
1.84 16.8115
1.8:> 2S.5JSl
1.08 199.2968

-------
Table 0-4 (Cant.)
PAGE 12 12.0'6

MEAS
AFR
. Sf: 31)
---14.1
16.\
16.6
~0;I.::'0;I
29.64
45.11
... RR: 100-
., PP: 1 a -
. !!of. 16
.. PP: 25
. Sf: 10
co
HC
Table 0-4 (Cant.)
PAGE 13 12.0'6
NOX
RANK NO
ME AS
AFR
. sr: 30
1.64
19.67
55.14
1 . 1~ .3Z 01 14':1
1.65 61.3649
1.1)" 151.9131)
111.6
16..3
16.6
HI.!!':I
5.01
5.66
14.9
16.1
----!-h6
12.07
6.04
9.5"
1.61 9.4165
1.99 6.5346
1 . 6fT-"&o-711
1.3.9
15.3
19.2
21).7
.- -_._~ ----
.. PP: 50
. Sf:,10
15.1
16.2
6.0a
5.55
. Sf: 21)
50.15
66.69
97.93
173019
1.53 166.7525
1.59 164.6390
.77 251.249f
1.21 446.3132
2.34
3.13
" fTI 25
. Sf: 10
------~---
9.4712
llJ.2866
--15.2'---8.51t------!TO"
16.6 6.35 .65
17.8 7.02 .66
~-I'ht--t'" 7" 7.11j
I Sf: 30
.52
.34
1;~~9.~1~
2.65 10.5780
2.39 9.5745
1 .., 2---t>4 ,-452""""--
-Hh-2------!6-r 7& 1 . 11
16.3 12.28 1.79
17.8 13.81 2.\4
-t 9 .4--1 6. f!5--3 .trl!
. ST: 20
1.29 9.8978
1.19 10.9526
1.07 11.9739
1 .-2It-----ttritI" 0;19
3.16
3.13
1.38
.72
15.2060
13.4394
12 .-Tfli'-B--
26.3518
15.U 20.31
16.3 28.14
-t8..o---2'h27
20.3 41.46
--~.~~----
. ST' 39
15.0 9.17
16.1 6.65
-'-'18.tt--9~69
19.9 13.32
1.67
1.50
2.1:.(,
.9.26
6.41
14.66
19.17
6.96
-,.-;>,,"~
. Sf: 20
14.9 28.09 12.42
-tf>-.~9iOEr--H;'.36
16.2 29.20 30.21
19.8 31.81 48.31)
-""15.0
16.1
17 .2
ZOO 1.. 
4.76
4.96
l.gl
.60
.67
5.3.3
6.42
.7,06
.65 23.7327
1.1)7 47.1954
rl~..~390;1
.31) 29.9197
.90 41).61)44
1 . Ot --ffo1lItJ8---
.71 84.1)462
.60 126.6(,06
Z...OIl35
19.41)71
21).7430
.. PP: 50
. Sf: 10
~
~

-------
    Table 0-4 (Cant.)     Table 0-4 (Cant.)  
 PAGE 14 1216      PAGE 15 1216'     
 "EAS       MEAS      
 AFR   CO He NOX' RANK NO AFR  CO  HC NOX RANK NO
 --_._--~.__._-------           --- ----
 '15.3 9.55 .81 1.25 7.~094 16.7  5.1;5 .90 2.98 11.1"539
 16.7   6.36 .52 2.13 8.4639 19.1  6.76 4.11 1.90 16.7626
 ---t-r"r- I). 71 .:'~ i! . i! r---0 1.'n~'.ffit>r--
 18.5   9.88 1.63 1.68 11.0815        
          I Sf: 30     
 . ;,T. 20      ------ - --  ---.  
          14./J  4.')9 1.01 2.48 9.8664
 15.2   2;>.15 5.54 .91 22.4184 16.6  4.42 1.16 2.18 11.0793
 16.6   ~.i!2 1.3~ 1.44 'j.7"20 -H1-t9  t:..'IB ".7:> 2.111 lB.62Jb
 18.3   11.1.3 2.02 1~42 11.1504 23.1  8.30 19.96 1.84 5~. 1241
 1901   14.14 1.10 1.12 24.4524        
          ,. PI". 2:>     
 i Sf: 30      . Sf: 10     
 ---1"50 1"--12 . 44 5.06 .115 1601741 1".6  2.:>~ .28 2.65 6.06ljl
 16.6   13.64 8.10 .94 ;>6.1119 16.4  3.1;> .14 2.89 8.484\
 17.8. 13.15 10.~5 1019 31.5313 17.1  3.47 .16 2.1/J 6.6608
 ---t"'t.----"-.-73 .::;1 1.~1 ~o't1iH-- ---t6,-5---3Tl4 .16 1./12 1.3!i6"
I 16.7   4./~5 .47 6.3;> 18.;>552 22.5  4.65 3.19 1.;>7 12.3231
I-A   
1:.0                 
 . STI i1~      --t---5-J-;. ~ 9     
 15.;>   8.42 2.08 2.91 14.8246 14.6  2.12 .60 3.67 11.2619
 ---tt>.- {}-~-5.- 36 .86 2.66 10.-356- --H.9  ~8 .1;3 3.3(0 .18."'''';>1---
 17.1   5.55 .71 4.28 14.1)641 18.8  2.97 1.23 1.85 8.4985
 1801   5.93 .68 4.38 14.3521 20.6  3.58 4.89 1.59 16.9548
 I ST: 31)      '0 PP: 50     
          . ST: 10     
 --..- 15,-3 ------10. 6 'r----r.--r 6  2 .-o~19;---        
 16.2   6.01 1.81 2.38 1<' 01323 14.8  1.85 .26 4.51 12.4533
 18.4   6.42 1.29 3.66 14.\846 16.3  1.96 .08 4.74 12.6216
 ---- '19.t>----t;oIl1 1.60 3.~ 14.1/.)u --1'1.3-~dB .11 3.35 ~.28":>
          18.6  2.48 .31 2,'49 7.711J5
 ..t. e: 1             
 i 0' RR: 0 --------- -----. .-.--- 0 Sf! i!1J     
 . 0 PP: 1 I)             
 . Sf: 10      14.5  1.59 .40 5.58 15.3933
 --.---_. --_._-- -----.     --H>..5--t-. 7 7 .17 &.1i1 16.i135~
 14.7   5.24 .63 2.91 10.3528 19.1  2.02 .41 1.56 5.4'?41
 16.2   - 6.07 1.80 2.85 13.31)1)5 24.6  1.82 .24 3.74 10.4707
 -----t7 .-tr-- -b.-56 2.23 2.46 13.518-        
 19.3   8.89 11).70 2.37 34.6373 . ST: 30     
 -- ---.- -s--t-:--2fJ      --14-..7  1."8 ...~ 8.26 1!1 .9362
          16.9  1.65 .27 8.36 22.f1438
 14.4   4.80 1.31 2.22 10.1569 19.2  1.88 .25 3.75 10.5371

-------
    Table 0-4 (Cont.)      Table 0-4 (Cont.)  
 P4GE 16 1216      P4GE 17 1216    
  .----_..--- - ---. --~----------.----.-..-.-       -- ----
 MEA5         MEA'>       
 A~R   CO HC NOX RANK NO AFR   CO HC NOX RANK NO
 -'-..--,-       ------       
 20.1   2.f)(), .61 1.89 6.8010 16.1   3.10 .46 1.81 6.5587
          18.4   3.56 1.11 1.38 7.3507
 ---.~ -pp,'-9{t      --t9.5   3.90 2.11 1 .1 !r;'1)o1~
 t srI 10             
          t Sf: 30    
 ---t!n'(t-1~6 ,43 6i91'--t!t; 7605-- -- ._---------    
 16.5   1.56 .13 8.62 22.3259 15.1   2.41 .50 1.61 5.9533
 16.8   1.58 .12 7.10 18.5074 16.2   2.87 1.')5 1.61 7.4301
          -18.-6'-70 Jl 2.211 1.:'>0 10.18f)9--
 t sr: 20      20.11   3.85 9.27 1.16 26.6421
 -1~i9   1.'28 .J6 9 .1tT-~?9!T- II PI'I :>6    
 15.9   1.28 .27 12.40 32.0350 t srI 10    
 16.6   1.31 .16 9.85 25.41)05        
 -----t&o.T---''h:'>8 .17 ::'.J2 1...17~ 15.1   1.911 .11$ 2.69 6016111
          16.2   2.13 .09 3.13 8.6710
 . srI 30             
          -+-sri 26    
 111.6   1.41 .49 10.76 28.5098        
 16.8   1.32 .46 15.112 40.'16'12 15.2   1.78 .211 1.89 5.8339
 --J,8. 7   1 . ~') .27 8.89 23.*1'&-- 16ri   1.86 .HI 2.85 8..1'1379
 19.6   1.62 .28 4.66 12.8094 17.8   1.91 .17 2.21 6.6514
 --'t- Rf~-!:I~      --'-Si-f-3f,-    
0 II PPI 1 I)             
I t sr: 10      14.9   1.119 .40 2.79 8.3B!~1I
~          1&.1   1.79 .27 3.13 8.9831$
o 14.8   5.80 .42 2.06 7.80U3 18.6   1.95 .55 1.78 6.3651)
 16.0   5.81 1.10 2.67 11 .061>8        
 --:"-i"'i'rl--6. 8J 1.93 f.2:5 a.Jllll t. PI'I '31'1    
          t Sf: 20    
 t sr: 20             
          Hi.1I   1.39 .55 , 11.98 1~.29A3
 14.8   5.47 1.1 1 1.84 8.9161 ,16.1   1.30 .23 6.21 16.4683
 16.9   5.62 1.27 2.11 10.11255 17.2   1.32 .14 6.811 17.8297
 1 'J.2   8.14 15.1'11 1.63 113.a78~ --       
          I sr: 30    
 t Sf: 30             
          1'1.8   1.35 .II~ 5.C,! 15.S~rtr--
 14.7   11.76 2.61 1.74 12.1159 16.3   1.38 .33 7.01 18.7358
 t6.1   5.02 3.111 1.89 14.5185 18.6   1.51 .211 6.39 17 .01'45
 ---tt!.~.4? 'J.1& 1.11 30.016~        
          t I I RRI 10')    
 .. PP: 25      .. PP: 10    
 . SI. 11.1      . liiT: 111    
 111.9   3.00 .21 1.62 5.41145 16.1   8.03 1.83 2.14' 12..1752
 16.1   j.2'J .11 1 . 99 --0-0:5:> I " ~('.2   7.38 2.118 2.112 13.f936
 17.5   3.66 .17 1.98 6.4411 17.7   8.35 5.05 2.29 20...980
          19.1   9.89 9.26 2.20 30.9942
 . STI 217             
          . sr: 20    
 14.9   2.48 .33 1.65 5.6593        

-------
Table 0-4 (Cont.)
Table 0-4 (Cont.)
PAGE 18 1216
MEAe;
AFR
. PAGE 19 1216
co
HC
NOX
RANK NO
MEAe;    
AFR CO HC NOX RANK NO
--- - ._~ --   
17.8 2.21 1.67 1.43 8.2982
19.1 2.25 1.10 1..34 8.1581
-----------. ----
14.8 6.60 2.85 1.61 1.3.ij614
16.9 6.55 3.98 1.84 16.2.3.38
-~..i'-'--9-.-i"!/--2'8'dcr-~r'--15o-2~, 111
21.1 9.42 41.8.3 1.59 lij8.7100
.. PP: 90
t Sf: 10
----- .t..S-Y-:-~O-----"-------- -. -
------
13.9 6.06 8.54
-15..-.3--!J~&---1-~S
18.7 7.36 19.60
2Q.7 8.60 4.3.65
1.5.3 26.4.366
1.7t~f}1-?-
1.40 5.3.4696
1.6.3 11.3.0676
1~.1 1.52 .92 4.29 13.4160
16.2 1.51 .12 7.58 19.6868
--- -16.1 "--"--1..6-...i-~-6-03~-Err.;'15-
t Sf: 20
15.0 1.39
16.0 1.42
--- -1-1.1'--1-.-41
18.1 1.59
.64
.25
.17
.16
2.94 9.3198
2.84 8.1274
4 d9-th8220---
4.59 12..3.329
tt PI-': 25
t Sf: 10
o
I
l\:)
....
15.2  3.72 .34 1.37 5..3484
16.2  .3.92 .3.3 1..36 5..3516
-11.7---4-rtt .38 1.~otI6"tr-
19.4  4.30 .86 1.53 70187.3
--- -+--s-+:-2-fI   
15.0  3..31 .94 1.14 6.1339
--1-&.-3  3.91 11.:8 1.31 IIJ.t511~
16.1)  3.98 3.53 1.1 7 12.7053
20.3  4.93 9.63 .89 27.1628
. Sf: 30   
-+4-.-'r------2. '36 11.i?1 1.63 a.fBM
16.0  3.43 4.69 1.23 15.5228
18.2  3.72 6.52 1.25 20.1216
19.8  4.19 H?47 1. i'1 3'1.6'1S:'
., PP: 50   
, Sf: 1"   
15.3  2.37 .21 1.50 4.9593
16.7  2.33 dO! ~.3.3' 6.11..119
11.1  2.38 .14 2.37 6.9665
18.5  2.64 .47 1.80 6.4228
. Sf: 20   
15.11  11.'IS 1.£7 1.81 6.3'131
16.6  2.<22 .28 1.68 5.5359
18.3  2.23 .52 1.78 6.3142
13.8  £.33 1.23 1.111 7. 1FJ6.. 1 
t Sf: 30   
15.1  1.92 .82 1.11 5.3397
1t..6  2.07 1.62 1.17 7.4850
.-     
-.-S-H-3f}
15.2 1.46
-16.-2---+'45
18.4 1.64
19.5 1.66
.45
.'13
.31
.33
2010
2.66
3.76
3.81)
6.7770
8.1t'S3
10.6385
11).7931

-------
Table 0-5

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Am-FUEL RATIO-,
2,400 RPM, ENGINE A
~GEl
\~
~
---BI~Q~L£9RM: 13.0 RP121
MEAS
-- A.FFL__-
"tft E: A
ttft e: 0
--- ii',.'RRf--iJ
tt PP: 10
_,L!;1-:,-1L-
eo
Table 0-5 (Cant.)
~GE 2 1216      
I'!EAc;        
AFR    eo HC NCX RANK NO 
15.0  30.33 .3" 6.49 25.97..9 
17.0   3.12 .05 6016 16.4396 
-19;2   3.58 .16 :'.92 1 [;;?ij32  
t  51: 20     
15.2  22.00 .78 6.71 2.5.1..80 
. 16.8  _".96 .32 12.. 5.. 33.5893 
-'8.8   4...5 .1" 3.32 9.9503 
20.6   5.30 .26 2.46 8.3"30 
.  Sf: 30     -.--
15.0  20.33 1.08 .....9 19.8386 
~""6;""ij   5.3" .70 H>.51 4".5529 
19.8   5.51 .30 6.65 18.9773 
20.7  ,. 7.79 .79 2.?8 9.91.80 
..  PP: KL     
.  Sf: 20     
         ,
         ...
15.1  12.92 .96 10.04 31.2415 
16.8   ".15 .29 11.30 31101779 
-'-n.5-~.17 .35 8.2:? 2:?51:?5 
. 51: 30     
--------      
15.1   ".92 1.64 12.i!0 36.""71 
16.6   5.59 .46 16.2', 43.3161 
--'18.3'-'!r.rii--.3~i~54--:5i ;2280 
- 18.6 4.77 .38 16.19 42.8048 
'ie
NOli
~NO
14.9 27.89
16.3 8.98
--19..;r~5.66
21.3 30.72
.30
.4"
1.87
13.51
5.52 22.7346
5.54 17.5643
2 .ij.g--l~.36f-.9
2.:?4 47.5865
. s IT-mJ
o
I
l\:)
l\:)
14.7 27.59 .83 6.32 :?5.9391
--.- . 16.8 ---9; 75"---;6r-5-.ij8t8~ii42-
17.4 12.94 1.13 5.83 21.1370
20.9 36.92 16.12 1.78 54.6259
. sr: 30
----... 14.7' --, 23.87"---1"";07 7 '-'5-'29;ifi;53
16.4 12.02 1.17 7.02 23.9390
18.4 14.56 1.12 9.35 30.3891
---19 .'--'28-;51i----Tr;ey---;r;~~I OlY
to PP: 25
---'-.-srrl0
1".4 52.07 .73 3.75 26.4702
----]'6 ;!f'---'S-;U5-.-o~-----.r;5rt 2;RM<.>
17.9 4.94 .lb 4.52 13.1432
19.8 6.82 .52 2.57 9.699:?
..-.----- - .~
. Sf: 20
----r..-.,r--r'1.b'1
16.2 5.61
18.5 6.32
i!l.i! 1'.11')
. 51: 30
.!)9
.22
.18
b.08
. .''- 'RR': "'51)
.. PP: 10
__!.5f: LO
15.4 9.00
_-.!2..~-~~J2
018
.44
3.94
4.'51
12.93(,1
15.2!'>58
!). !)9'2'1~1Y52
4.97. 14.6116
3.38 10.7478
1.01 22.59,1'4
t S1: 20

----YS.Ii ---15;55'---;-8~;or-fil-;-i7;?9
16.6 13.12 1."9 3~"7 16.1680
------!~~~~~.99 4.83 4.61 29.4790
14.8
16."
., 18.3
20.7
20.43
6.33
7...6
19.21
1.02
.37
.39
4.91
7.88
7.23
...09
.89
. S1: 30
28.1966
20.8392
13.3703
19.8506
-----I~~7.77
16.9 19.38
17." 28.19
19.5 32.64
2.2..
4.99
12.99
15.41
2.79
3.10
".77
2.93
17.6"49
25.6207
51.89<11
5...510..
't PP: 50
. Sf: 10
.. PP: 25
4

-------
Table 0-5 (Cant.)
Table 0-5 (Cant.)
----EM?~ 3 12/6

MEAS
-~~
. Sf: 10
1~.2
17 .2
32.66
5.56
. 5 r: 20
15."
-16;0
21.7
12.62
5.47
19.61
. 5 J: 30
15."
16.7
16.6
20.8
1".69
7.17
9.05
27.15
co
HC NOX RANK NO
.37 ~f"l1);21121
.02 2.86 8.83111
.31 2.95 11.81129
.16 ~.89 9.22111
5.25 1.06 21.2?:?5
.50 II .111 15.8901
.36 2.8:i! 1/).0369
.59 1.53 7.9258
13.80 .69 113..31i88
PAGE .. lU6   
MEAS     
AFR  CO HC NOX RANK NO
15.6  33.77 9."1 1.56 36.7836
16.9  39.33 18.59 '.9/) 61.659'
17.8  38.30 19.9" II.'" 70.2"89
20.7  5U.9.. 3'1.32 1."2 92.11836
. sr: 3/)   
111.9  118.57 55.86 1.50 17 Ii .86711
15.6  92.18 8/).19 11018 23:'1.11171,
i6.5  "6.91 2".38 1.83, 77.8355
19."  '+8.86 31.60 1.811 96.0..96
.. PP: 25   
. Sf: 10   
15.7  9.12 .39 2.91 10.9086
17.0  6.18 .18 2.35' 8.1317
18.(1  5...7 .20 3.71 11.5216
19.5  9.9" 1.51 2.17 12./)315
. sf: 20   
16.0  8..n .65 i.75 8...221
-r6.0  11 012 .611 1.38 8.2816
18.7  8.81 .83 1.97 9.5"06
20.2  18.55 1.9/) 1.17 13.0150
. Sf: 30   
1~.'i  13.97 1.66 1.57 12.57(1"
16.7  '12.99 1.81 .511, 9.5852
19./)  27.00 16.8(1 .63 5/).11918
f!1-'.tS--:J2";~~ 2...11 ./2 70. 1 76..
. I PP: 50   
.--sTIl u   
.. PP: 50
. 5 r: 2(1
-.------
o
I
to.:)
c,.,
1501 17.27
17.1 5.20
-,g;'9~..},
. 5 r: 30
15.2 13.87
.. , 16.9 5.51
---, 8; :0----0 .l':>
20.9 8.91
---"~L
. Sf: 20
-16.6-----3';80
t'Sf: 3/)
---- n____---
15.1
16.6
2...83
5."3
--- ._--------
... RR: 10(1
.. PP: 10
. ::'1. IV
17.2 12.81
----..IJ;-:1---1.>.'35
19.1 23.77
21.9 "8.20
.59 3.78 15.968"
.29 11.9" 111.581i7
,10 2.73 8.35"2
.77 5.7" 20.3575
.55 '+.33 13.7871
."'.. ".~'1 11.~B37
1.2" 1.70 9.8950
.23 7.60 20.6963
l.u 9."11 31101103
.39 7.87 22.2233
15.9
17.0
18.7
11.52
8.81
3.63
3.115
5.""
1I.2~
.12
.15
.13
12.3059
16.5570
11.93117
----- - t -S'f:-'20-
1."6 3.88 17./)286
.60-3;~..~37../)
7."8 2.05 3/).3851
28.30 1.91 87.9759
15.6 6.71 .22 2.38 8.1161)1
-17 ;f--1I-;Ocr--;;92~~~2"133
19.2 5.55 ,.31 1.99 7.3635
-_,-!~~~,!6 .22 2.53 8.11675

. Sf: 30
. Sr: 20
16.2
16.5
-- -_!.~! 6
9.99
10.78
10.511
2.16
1.88
1.87
9.7773
1...50..7
12."579
.59
2.72
1.92

-------
    Table 0-5 (Cant.)    Table 0-5 (Cant.) 
 PAGE 5 1216    PAGE 6 lU6 ----------.-. -.
    ---- .
  MEAS      ME AS      
  AFR  eo HC NOX RANK NO AFR  CO He "!.C!.X RANK NO
 -    
  2').8  111.'11 5.65 1.1'; 20.8937 21.2  3.35 2.11 1.58 11).0816
  .. PP: KL    . Sf: 30   
 . Sf: 20         
        111.8  2.09 .21 7.37 19.5519
 ~!)~2---rr;97 .70 5.79 19.7029 16;6  2.01 '-06-6,"7017 ;4675
  16.7  11.511 .29 5.19 1:;.0176 18.3  2.10 .11 11.09 Ii. 11 09
  17.6  3.93 .31 5.87 16.5870 20.11  2.83 .68 1.311 5.81109
 . Sf: 30    .. PP: 50   
        . 51: 10   
 ----'"11; 6  211.110 1.011 5.116 23.31131 ----     
  16.!!  7.86 .86 2.87 11.58113 15.1)  1.70 .08 5.28 13.8951
  16.3  11.78 .311 11.85 31.86n2 17.0  1.51 .011 6.16 15.91117
  1 \;I, 'J  ~.611 ..36 10.70 29.2869 19.2  2.09 .111 3.92 10.7562
 . f " C: 1    . Sf: 20   
 --...--ORR: U    ----     
  ., PP: 10    15.2  1.29 .15 6.119 16.9703
  . 51: 10    16.8  1.61 .12 12.113 31.81112
        la.a  l,a, ,fib ;t.I.J~ '1.-'21-'
  111.9  11.11 .18 5.63 15.7228 2U.6  1.713 .11 2.611 7.3918
  16.11  6.26 .110 5.511 16.6668      
0  19~  6.57 .65 2.77 I') .111127 . SJ: 30   
 21.3  7.96 5.18 2.113 21.05'13      
I        15.0  1.1111 .20 10.20 26.11113
~        
H:..  . ~I; 20    Ib,q  1.'I~ .2-' 1~.87 'I0.6f,211
        19.8  1.55 .1)7 6.18 16.0766
  111.7  3.58 .311 5.8c 16.6072 20.7  1.76 .32 2.115 7.11231
  16.8  11.67 .56 1I.!\3 14.811111      
  17.11  11.19 .63 5.83 17.31139 .. PP: KL   
  20.9  6.33 11.12 1.311 15.2605 . SJ: 20   
  . Sf: 30    15.1  1.911 .68 10.29 27.95111
        16.8  1.113 .22 11.16 28.8572
  14-. f  .J,"'U ..)u b.82 16.7:>23 17.5  1.49 .31 8.07 21.3693
  16.11  3.93 .72 11.80 111.9120      
  18.11  11.53 .56 9.35 26.0732 . 5J: 30   
  1"1,1  It, fb .).&tob .3.2~ 17.8690      
      _-J  15.1  2.33 .118 t 1.89 31.5810
  .. PP: 25    16.6  1.39 .21 15.59 39.!!96U
  .--sr.- 1 0    -18;-3" 1.59 .15 12 .-r;4~2 .11335
        18.6  1.118 .17 16.116 111.9999
  111.11  2.57 .17 11.01 11 . 1955      
  Ib,a  ,,).U~ . 'J 1 'I.~? 12.2-'-''' -.....--mt;-~O   
  17.9  2.75 .13 11.39 12.10u9 .. PP: 10   
  19.8  3.17 .26 3.00 9.0665 . 51: "10   
  . Sf: 20    15.11  11.95 .16 11.31 12.6211
        17.1  6.91 . .1111 11.80 15.1055
 -111~8  2.27 .11 5.111 111.11609    
 16.5  2.11 .09 5.03 13.11151 . Sf: 20   
 18.5  2.13 .03 3.-38 9.11196      

-------
Table 0-5 (Cant.)
Table 0-5 (Cant.)
. -----P-.I\\7LJ 1216 '

MEA5
------- AFR- ------ --C;Q.___ttL___,,!Q1L-Il~NK I~Q---_-
__~!lGLI;I_JV6

MEAS
AFR
HC
15.4 4.11 .33 3.07 9.6887
16.6 5.88 .67 3.47 12.0386
- -17". 8 ------s-;, oy"---------r;7:i ~ ~-g1l11;S562
f.' Rn: ton
.. pp~ 10
. 5.Ti 1£)--
.. -...." -.-----.- ---
C_O
--
NO)( _RANK NO
..- ".. ".._-~-
15.3 4.19
16.8 4.71
-n;I,I---.r;70
19.5 5.19
.73
1.33
- 3.69
4.84
~.5128
12.3792
22.3074
21.8563
17.2 1.29 .58 3.8R 13.25ee
----- --18.2 ---- 6.39- m__- -- .34 -----, 3.34 -1.1.115117
19.1 7.30 1.86 2.40 12.6836
21.9____~.?~__~~~2____?.-3.3 __29.1f,7~___-

. Sf: 20
" Sf: 30
...~ ----'-----.'
---
2.60
3.10
4.77
3.41
-------.i-pp: 25
. Sf: 10
-- --15~-D---5;5S----r;-96
16.9 7.13 4.29
17.8 5.8R 3.9Q
--- - - 20.7 ----- -6-.90---7.96
o
I
'-"
en
15.2  3.36 .15 2.58 7.M41
17.2  3.40 .01 3.13 8.6494
----. SI: 20   
15.4  2.46 .06 2.86 8.11258
-1-6-; rr--2"~ 15 .07 3.0U 8.3031
21.7  3.54 1.33 1.41 7.8101
--- . 51: .}o   
15.4  1.74 .11 3.70 10.1)301
,Ic.a  C:.U1J ,I}O it .tSt, '.'Jti~~
18.8  2.56 .30 1.83 6.065~
20.8  3.10 2.51 1.24 10.1337
. Sf: 3U
14.9
15.6
--T6;~
19.4
7.94
10.66
~.H9
5;~9
1.821ir;l,/6~8-
1.90 17.3105
4.28 22.1611
1.89 26.1b90-
9.74
17.31
16.33
7.11
1.<'5
3.66
1.8'}
2.63
29.2164
54.5048
16. 8MI.}
25.56116
- --u- --. t- - pT':-25--
. S T: 10
..~~. ..- ".'---''''-
--.---
-'5~f-~.511 .11 2.011 6.11095
17.U 3.67 .U4 2.35 7.1)52~
18.1) .}.1I2 .111 4.18 11.7973
19.5-~---3;Jii---- -~52-~.34----ti.ii)~ --
.. PP: 50
. S T: 20
. 51: 20
3.95 10.5706
11.87 - 12.91104
2.89 7.83!}5
15.1 1.37 .12
17.1 1.69 .11
---re-;V--T.
-------
Table 0-6 (Cont.)
Table 0-6

ENGINE TEST DATA, SHOWING RELATIONSHIP
BETWEEN EMISSIONS AND Ant-FUEL RATIO -
2,400 RPM, ENGINE B
(...--_P~~~--_'LJ"~-

,..EII5,
IIFR
PAGE 11) 12'6   
MEAS    
AFR  CO HC NOX RIINK_NO-
14.9 36.95 1.25 5.66 28.061'-4
19.3 1.49 .42 3.81 12.7~23
. Sf: 20   
14.8 2:?06 1.49 1.25 211 .24 74
16.6 7.61 2.11 11.24 3~.4846
18.5 9-.41 2.02 3.49 16.4195
~r.-r- 29.05 13.63 1.32 45.0880-
----~-
-~O_-" !:iC - f\!OX__RM-IK NO --
15.6 1.41 .08 2.46 6.1~98
11.2 1.96 .25 2.34 7.0362
-------19.2"-- --2;"8-~08-2~2~;3Bfcj--
19.9 1.84 .09 2.13 7.5857
16.2
16.6
19.6
2'),8
. Sf: 30 ---_P"-
1.71 .13 2.37 6.~45"
1.79""------ .68 ----T;96~~65o-
1.81 .35 2.21 ~.9110
2 '."?"__"-.!'_'~- ""__"__'_.~....____7 ._27_3....-
--_! 5!..!_}0
14.5 11.66 2.15 10.49 36.6630
16.3 8.83 1.06 10.93 32.5074
- ---18.1 -----10~"Y--~8ll-5";7....--r9.5581
21.9 28.11 16.16 .81 49.8838
"-"-~_.--"--'-"---
o
I
N
CI)
15.2
16.7
17.5
14.8
16.6
18.3
19.'"
to PP: KL
. 5 r: 20
1.80
1.60
- 1.54- -
. sr: 30
2.17
1.60
1.49 -
1.14
>-. ._--_.~.- -- -- ---.
--.. --Pt'"! "50-
. sr: 10
.51 5.79 16.2483
.27 5.19 14.1"41
- "--"~26- P_---~''-;f,8-15.:?871"
----':5";3 - 29.69 .'1,,) , .6::> "3u";li?SO-
17.2  4.8,., .31 8.54 23.5179
. -~n-1!-tJ   
15.3  29.69 1.61 10.77 39.58'12
----n,-O-6. 03 .51 11.44 "3[-;6174---
19.2  6.43 .44 6.01 18.1393
. sn--3ir"   
1501  35.44 2.16 13.12 48.4918
--r~--;-;64 .97 14.94 41.6fi88
18.7  7.13 .71 9.37 27.2538
20.1  11 .50 3.38 4.58 23.07&3
t. PP: KL   
t sr: 20   
15.5  31.25 1.48 12.40 43.8009
16.9  4.60 .3.3 11 .42 3Q.!.l!1.!!!..-
-i7~iJ  "4.32 .26 10-.09 27.1297
18.6  4.50 .28 7.12 19.8065
t Sf: 3fJ   
15.5  29.90 2.03 12.49 44.9703
17.4  5.49 .63 16.69 44.876.3
18.2  5.61 .54 14.27 .38.6421
19.4  5.95 .49 10.19 29.9201
. ,. RR: 50   
t__!_..~!_, 1!1___-   . ------
..-------------
.39 5.54 15.4395
.27 3.03 8.7"41
- ---; 14---1"1."511"-29. 729i ----
.14 10.40 :?6.85.3P
--, fT.'-Fi"---
Hit C: 0
... RR: 0
on - . -. pp~ TIJ--
. sr: 10
---r.;-;"T]"---q 2.-or----,-,.m--- ::>. 31'>
16.4 In.13 .7" 5.9Q
18.8 14.15 1.23 4.03
~O;-a--"31T;Ol 1'1.'11 2.~1
. 5 T: 20
3IJ-;76H,---
19.8.3112
11.2368
''..'48~
14.7
16.5
-------, 6 . 3
21.8
62.92
11.18
1~.23
6'1.8'1
3.24
1.08
2.-13
48.6fi
6.27; ':?0833
6.59 22.3974
3.90 1~~45
1.47 141.42115
14.3
" 16.3
17.8
21.9
, ~,; .)1'
42.99
12.-111
16.01
77.39
.. PP: 25
. 51: 10
2.37
.98
2.25
7.3.50
7.73 37.7496
7.23- 24.0241
4.76 22.0966
.68 2')3.731) I

-------
Table 0-6 (Cont.)
Table 0-6 (Cont.)
"[AS  
AFR CO He
111.8 3.111 1.89
17.1 5.70- .511
18.;1 5.77 .117
PAGE 11 12/6    
MEAS       
AFR   co He NOX RANK NO
. Sf: 10    
1:>.,)   ".10 .36 11.57 13.5089
16.5   it.07 .61 11.75 16.6187
, Sf: 20    
15.3   17.50 1.98 ;1.85 17.1013
Ib.2   13.61 1.81 3.23 16.11926
18.11   22.03 11.92 2'018 23.92911
. Sf: 30    
15.4   19.62 1.57 4.01 19.6249
lb. 1    17.03 3.311 3.70 22.405;1
17.6   28.116 11.110 2.10 111.11255
., pp! 25    
. Sf! 10    
---'-5",5-----21r. 11 .82 ~.15 17.11662
~.!>~- ,~LJ2I6-
.. it RR: 1011
" PP: 10
. Sf: 10
NUX RA,~I<. NO
6.09- 20.7583
8.35 23.8685
9.73 2701684
 ~
3016 18.517b
3.65 16.11513
3.80 17 .2'437
2.91 59.8918
15.9 21.09
16.5 13.88
18.7 111.47
--I9~T--"32;27
. Sf: 20
1.81
1.33
1.43
1'.b2
16.0 57.33
16.3 27.23
~18;2-4r-;bO
20.7 64.35
25.02
7.65
22.77
52.32
1.54 81.7362
1.85 31.29211
1.3671.i719
1.45 150.1612
, Sf: 30
1.57 87.8756
1 . 1597-;-42-41
1.57 160.9312-
.69 339.1935
o
I
tI:)
-.:J
3.58
4.65
.,),UtS
14.7965
16.971\.7
12.2"36
15.0 66.92 26.35
--15.8 --60.,j~-.3fj~91
17.0 60.06 57.13
21.6 83.11 128.34
_... .
. Sf: 20
-- ------ u_----.
15.2
16.11
---HI'; 9
12.0('
8.50
9.01
.95
1.17
,btS
. Sf: 30
.. PP: 25
. Sf: 10
---- -.- ---- ------
--
-------.
15.9 9016
16.0 8.25
--.8;Z--..-r;77
21).7 38.56
16.4
19.5
13.69
10.82
1.27
1.06
,tS:::»
45.37
3.40 111.2917
8.04 25.1118
,).~,) - YS;""31i:>2
.60 123.11997
----
. Sf: 20
---r5";o-l Y;76
16.6 27.53
18.0 2".70
-~2i -; 2 ---:5'6 ;05
-.-rwr-s!r
. Sf: 20
1:J,1t  2!J.5U 1.20 b.O, 24-;1812
17.1  5.56 .45 1.38 21.1829
. Sf: ,)0   
15.0  31.33 1.96 7.11 31.7702
Ith"  1.10 ,':I,,) .,.Z~ 2:>.10:>1
18.9  8.110 .83 5.88 19.1959
,. '"'to"; KL   
. Sf: 20   
lb.."  ",b6 .,:,~ ".Ul .....ilOb3
. !if: 30   
14.14
4.55
~-9.2533
19.3913
---' ,~~_3!:J

15." 28.03
16." 9.411
---- -rB;~5.16
20.2 38.51
.67
1.80
2.65
3.5f>
12.2856
16.41176
1.01 2.05 11.6355
12.27 1.29 41.2489
11.82 1.47 - 39.7691)
23.:5C---r:t67iW5b~-
1.52 35.5975
3.82 15.0582
2;00 14.3426
.60 121.4850
" PP: 5u
. Sf: 10
9.62
1012
1.93
44.55
.50
.36
5.55
6.87
15.8
17.7

-------
     Table 0-6 (Cont.)     Table 0-6 (Cont.) 
 -.f!JZE 13 121'6     PAGE III 12/6    
 MEAS       MEAS       
 AFR    CO He NOX RANk. NO AFR    CO He NOX RANk. NO
 I sr: 20     . sr: 10    
 16.1   12.21 .82 3.311 13.9"12 111.7   2.57 .22 5.70 15.5425
 17.5   6,50 .57 4.08 13.502U 19.5   3.119 .16 4.09 11 .61117
 -_1?.!.~!~3 .59 4.65 1 !it 1 925        
         . sr: 20    
 . sr: 30            
         111.8   2.18 i~30 6.95 18.71179
 15.7   16.43 1.35 2.54 111.11750 16.6   1.92 .92 10.112 28.8586
 17.1   9.119 1.30 3.68 15.1619 18.7   2.88 .37 3.78 11.1995
 18.8   10.97 1.111 3.57 15.59115 21.1   11.22 3.66 1.97 15.0930
 -~1J.B   16.311 6.23 2.119 26.2;>60        
         . ST: 30    
 II PP: k.L            
 . ~J: 2U     111.7   1.82 .74 9. 74 26.69112
         16.2   1.911 .22 10.68 27.8072
 15.5   37.30 1.311 7.91 311.0139 18.1   2.611 .15 5.7" 15.11923
 ~D-;tr  II.6U .33 5.18 15.1078 22.1   3.65 3.32 1.511 13.0211
 17.3   11.119 .27 5.67 16.t5111        
 18.5   11.76 .25 6.90 19.~598 It PP: 5U    
 -------------      . ~I i I'J    
0 I sr: 30            
        15.3   2.11 .21 8.10 21.38;>8
I - 15.11 -~'1.97 1.119   I' .2   I.B6 .10 B.~6 21.11"10
1.\:1 2.99 16.9827  
co 17.3   6.111 .72 11.211 1".211111'        
 18.2   6.25 .65 5.77 17.81186 . Sf: 20    
 -nr.s-~'II2 .62 . 9.21 26.57511        
         15.3   1.76 .311 10.77 28.2719
 i I . I c: 1      17.0   1.52 .111 11.12 28.58115
 -In-RIU u     19.2   1.85 .18 6.21 16.5081
 II PP: 10            
 . sr: 10     I ST: 30    
 15.0   .. .13 .53 5.58 16.45711 15.1   1.611 ...2 i3.~11 34.6067
 16.4   ".113 .23 6.58 18.3139 17.0   1.61 .20 15.07 38.6363
 --'---18.8 ----. 14815'-'2"6 ". 31f1"5~61159- -18.5   1.67 .211 9.21 24.1015
 20.8   8.43 17.43 2.94 52.3416 20.6   1.98 1.78 4.82 1&.9738
 -r~     . I PP: KL    
         I Sf: 20    
 111.7   3.60 .78 5.02 15.5113        
 ----y o.-S---Y. , , -;29 6.1911'-7911 15.5--- '2 . 'CJ9--.-49------r2;50--S:S. 059a-
 18.3   4.74 .47 4.37 13.4655 16.9   1.51 .11 11 .13 28.537..
 21.8   8.72 18.59 1.65 52.0312 17.0   1.48 .09 9.52 2"."5"8
         -'18.6--1~'67 .14 7.12 18.6326
 . sr: 30            
         . ST: 30    
 ---n-;y--'3"~ .50 6.99 19.6798 .-       
 16.1   3.27 .22 6.81 18.5~3" 15.5   1.85 .63 12.77 3...01)57
 17.8   3.78 .37 5.39 15."892 17."   1.57 .17 ,16.69 "2.601"
 ---:--~-2T. 9   8.06 22.48 1.70 51.41199 ~8.2   1.51 .19 1"."3 36.9825
         19.6   1.65 .19 10.87 28.1237
 .. PP: 25            

-------
     Table 0-6 (Cant.)    Table 0-6 (Cant.) 
 PAGE 1~ 12/6    _!,,~?~_I~"B!~ _____k- 
  MEAS       MEAS      
 ""AE~-   CO HC NOX RANK NO _~L"__- CO HC NOX RI\NK ~O
  .If RR: 50    16.9  1.45 .11 -8.01 20.7198
  .t PP: 10          
 -------".-~r:-l~    -. sr: 30    
  15.3   4.10 .36 4.57 13.5089 14.8  2.18 .54 6.30 P. 7082
 --n,,~~"12 .20 5.16 14.8937 -I..-r--l.62 .16 8.56 22.2667
         18.2  1.71 .15 9.73 2!i.1938
 . SI: 20          
 -----.     ~  --"""'-i RH: 10('    
  15.3   4.01 .63 2.85 9.8410 .. PP: 10    
  16.2   4.06 .45 3.55 11.16&7 . Sf: 10    
  18.4-5.60 1.23 2.86 11.85~9       
         15.9  5.68 .54 3.61 12.f1127
 . sr: 30    16.5  5.74 .40 3.95 12.5388
         18.'--6.~6 .~.... 4.12 13.3(126
  15.4   3.92 .54 4.01 12.4951) 19.7  9.55 7.66 2.97 28.9168
  16.2   3.65 1.02 3.80 13.0613       
  17.6   4.70 2.46 2.92 1...6624 -----.- Sr:2"0    
  .t PP: 25    15.9  6.16 4.52 1.84 17.4362
 . ~I; If)    16..3  ~..32 1.67 ;<'.36 11.567':/
o         18.2  6.44 5.01 2.12 19.4136
I  15.5   2.91 .15 3.95 11.0967 21).7  8.82 20.94 1.81 58.1923
~  1':1.4   10.82 1.80 3.55 !f..4476       
CoO         t Sf: 30    
 . sr: 20          
         l:J.U  6.8.3 4.36 1.80 1701430
  15.2   2.37 .16 3.57 1'1.1)123 16.1  . 7.73 6.88 2.1)3 24.1290
  16.4   2.01 .39 4.58 12.9924 ' 17.0  '5.94 11.76 1.90 35.18'JO
 '--,1t~-o1.91 .c:'" ,,).lte! ":I. ":IH&J:J  --'~r.6  8.4~ 45.98 1.39 116 ;riJlifj-
 . sr: 30    t. PP: 25    
         . ~J: lU    
  15.8   1.94 .42 3.39' 10.071)"       
  16.0   1.86 .20 7.84 20.6349 16.5  3.63 .16 2.82 8.51)79'
 -1"BOT-~76 .lb 4.05 11.3271) -1':1.6  3.99 .31 3.5~ 10.8"46
  20.9   4.09 1.1.41) 1.03 31.5828       
         . Sf: 20    
  . t PP: ~o          
 . SI: 20    15.6  2.71 .22 2.35 7.2086
         16.6  3.21 1.79 1.35 8.6850
  15.5   1.82 .24 6.06 16.2707 ~8.0  3.69 1.78 2.13 10.7518
  17.1   1.67 .12 7.38 19.2339 21.2  4.38 5.44 1.55 18.4315
 . ~Ii o')U    --.~o    
  15.0   1.56 .37 7.20 19.3613 15.6  2.72 1.69 1.92 9.7220
 --. lb.'='   l.b.. .20 6.29 21.6':152 --"r6.4  2.07 .22 3.85 10.771)4
  18.8   1.78 .23 6.21 16.6095 18.4  3.01 .30 2.67 8.2920
         20.2  4.02 7.65 1019 22.8159
 - -- -_.ft PPi"KL          
 . Sf: 20    .. PP: 50    
         . Sf: 10    

-------
   Table 0-6 (Cont.) 
 PAGE 11 1216   
 MEAS     
 __~FR -_.-f.C!_J::Ic: NQX RAN1L~Q-
 15.8  2.1)1 .13 5.69 15.1509
 17.7  2.03 .10 6.87 18.1)\60
 . Sf: 20   
 ---16. if~;08 .21 3.50 9.87110
 17.5  1.80 .16 11.17 11.'31111 1
 19!6  2.19 .20 11.18 13.0819
 . Sf: 30   
 --r5";7  1. 711 .33 2.81 8.31116
 17.1)  1.811 .26 11.03 11 . ?503
 18.6  1.99 .115 11.02 11.7329
 2U.9  2.211 1.96 3.52 111.?511
 .. PP: KL   
 . 5T:"""20   
 1!>.6  2.41 .112 8.30 22.11832
 Ib;B-- I.bl flU 0..:111 14.01'>111
 17.3  1.58 .09 5.88 15.38112
o 18.5  1.11 .11 6.90 18.0212
I      
1;.:1 . Sf: 30   
0      
 1:,...  1.9.:1 .00 3.09 9.5122
 11.3  1.19 .20 4.110 12.01113
 18.2  1.80 .21 5.97 15.966&
 19.0  1.1'>11 .21 9.03 23.5813

-------
~~
Appendix P

ENGINE TEST DATA - COMPUTER SORT BY SPEED, PERCENT
POWER, AND TOTAL WEIGHTED EMISSIONS
This appendix contains a series of tables presenting computer-sorted speed, percent
power, and total weight emission data. Following are definitions of pertinent abbrevia.
tions and column headings:
SCR
E
C
RR
PP
ST
MAFR
SFC
CO.
HC
NO
Total weighted emission = (CO/3. 4) + (HC/0.41) + (0.40)
Engine
Catalyst
Exhaust recirculation rate
Percent power
Spark timing (OBTC)
Measuring air-fuel ratio
Specific fuel consumption
CO emission (g/bhp-hr)
HC emission (g/bhp-hr)
NOx emission (g/bhp-hr)
P-l

-------
~
Table P-l

COMPUTER-SORTED SPEED, PERCENT POWER, AND TOTAL WEIGHTED
EMISSION DATA -1,200 RPM, ENGINES A AND B (PRINTED FOR SCR < 19)
~--:'"-
. .--------
E. C
RR PP Sf MAFR CAFR
iAR
PO
ER
ET
MP
SFC
CO
HC
NO
SCR
--1\ -1-~5U-+~f}-i-409-1~.-6- 13...2 .. .-9---4.-5--l-i'M-+h8 1.82 .It-~ .149 1.(,5 -6t5fJ54tTtr--
A 1 Ollf) 10 10 11'1.7 19.0 111.2 4.9 .0 1191 15.2, 2..10 3.~2. 1.74 .E?~, 6.920373.
A 1 """-11) 11:117.5 17.4 161.2 4.9 .0 1193-12.8 1..86 4.98 .86' 1.14-9 7.287267-
Al (,JSI1 111 21:1 15.11'1.8 12::'.1:1 '1.9 7.1116911.8 1.6" 4.e3 1.41 1.13 7.-5081":;>
A 1 0"" In In 15.8 16.1 12B.~ 4.9 .0 1151 11.4 1.64 4.34 .47 2.38 B.37~81~
A 1 0'/11111 In 14.1 14.6 121.5 4.9 .0 1158 lU.2 1.74 3.77 .96 ~.06 8.61111287
---A-!-~(I 1'1 ef.l 14.14 14-.8 I1J4.rJ 1109--.01nBl B.1t l.ltS 3.61 1.16 2.01 0.916n33
B 1 05ij 1(1 1" 14.7 14.7 131.2 3.9 5.2 1250 12.1 2.28 5.61 1.~1) 1.54 9.158537
A 1 1"0 10 1') 14.5 14.6 165.7 4.9 14.5 i231 16.n 2.31) 5.14 1.62 L.54 9.312984
A 1- Of I" l[}--i1-'l 1~.B 1(,.2 l?I.B It.') .6 1111" 1'1.6 1.~(, 3.A9 .AS ~.1t5 9.31t2~Bf\
8 1 (150 10 211 15.f) 14.7 115.7 3.9 4.8 1217 10.4 1.97 4.53 1.63 1.80 9.807963
A 1011'11" 20 17.2 i7.6 138.n 4.9 .0 1110 10.9 1.62 4.52 2.11 1.38 9.9257~3
----A-1~5n 1() 3') 1501 114.B 1~1.1 11.9 'J.B 1133 1t.~ 1.61 3.15 :!.'-5 1.~1j 16.3151~o
A 1 05') 10 20 16.11 16.1} 139.5 4.9 9.5 1162 13.0 1.76 4.46 2.40 1.29 1/).39(1423
RIO"" 10 If) 16.4 16.5 138.0 3.9 .0 1~19 11.6 2.15 5.74 1.46 2.16 10.6492JI
--A 1 U~'I 11) 10 1".8 If1.B 11(..2 14.9 3.1 1177 16.2 ~.18 3,f}fI 3.22 .11 16.fi"flt~
B 111'1'11" 111 14.4 14.7 llA.l 3.9 ..0 1197 In.4 2.10 5,19 1.67 2.19 11.n74641
B 1 (15') 10 If) 16.4 16.5 149.3 ~.9 4.5 1246 12.9 2.33 6.3Q 2019 1.60 11.220875
--'+-~~tt-Ht-3~-1i'1.3 10.5~f, 4.1j ~.It IlIA:? 11.6 1.50 3.63 t:..,1 l.tH 1I.:Jt:.:'JI.:'J:J
A 1 ("!II In 31'1 16.3 16.6 116.1 4.9 .0 1'141 IfI.4 1.43 3.93 1.47 2.87 11.91f,248
" IJ fl'1I1 11) 111 15.8 16.1 1?8.? 4.9 .n 1152 11.4 1.n4 13.61 1 .~~ 2.~5 1~.nfl35')1
--A--B-4\.!i).l1 11.1 1 !", H. 5 2. '-5 'J.1t 1 5.1)3 1 .54 11,121116
A 1 011" If) 2') 19.2 19.'1 If.~t!:f--!!'.Q----_J..{L.1.U~__..1"..!_~_.L,.1Y~~_~~2L~.'L-1.1_~7 17,7111fi'=-fl.-
1\ 1 111" 2~ 3(1 14.8 14.7 1:'4.3 1'-.4 15.0 1127 15.1 .84 '-.113 .86 .,86 4,84462n
-"A--l'-Htt+--2~}--tIt.i3-~~-1~~~ 1181 ItroT-o~~.36 .~3 .M 4.'E1It:3!).)B
-.A 1 ]1111 252ft 1601 ]5.9 ]84.11 12.4 11.1 1165 16..'5 .9::' 2.<'9 .55 1.25 5.139993
13 1 1151) 25 11) 17.3 17.3 2011.4 9:8 3.9 1242 16.5 1.18 3.49 .42 1.245.15fJ861
----e-J--Ht~s-i-(t-1tro2'-t~'i~;~ ~.~ 1;;>03 11.~ 1..?~ 3.~:? ~,+A 1.~.? !5.2!16',2C-
B 1 nil,! 25 ]0 17.5 17.6 186.8 9.8 .n 1'-19 15.5 1.n9 3.~5 .:'51 1.44 5.3119AI)
B \ 0511 '-5 10 14.9 14.h 168.2 9.8 5.9 1~48 14.8 1.15 2.94 .45 1.37 5.387267
-- 1\ - 1"'J50. ~5 ;?fr-lihfr--t4. 7 1 :flt. AI:? 4 ~. 3 H-5i'-tJ. 2 .86 1 . 'i!2 .43 1 .:13 - ::;.It 31'141'16
A 1 11')0 2:' 11) 15.7 15.9 196.9 12.4 7.3 l'-fJl 17.3 1.01'. ~.~? .41 1.5f1 5.n02941
B 1 1)')1.1 2~ 11) 16.0 16.!) 17.3.11 9.8 4.fI 1?34 15.0 1.1n 3.n., .311 1.68 5.8<'::'8/114
---.A 1..f}~u. 25. 2f~--16.~~--16.H-1-57.-1:-t.~~-ltoT--H?Ir+~oTr- . 79 ~. r!7 .29 t .85--5.'Jltt 1 1t1
B 1 05n 25 20 15.3 14.6 151.2 9.8 7.8 1170 13.3 1.01 ~.57 .62 1.47 5.943n77
B 1 10'.1 25 I'} 14.9 14.9 204.6 9.8 12.n 1299 18.7 1.39 3.67 .72 1.::'7 6.rJln509
--.- A-. 1- tl511-25-3')-l-4-r3-14 . 7 13t.f> P. 4 5. (, 1062 1 ~. 4--.-1-'t----+-. 73 .5(, 1.79 (, .314 ')677
A 1 (J~I.I 25 10 lb.5 17.1 J97.7 1'-.4 3.7 1182 17.3 .97, 2.52 .31 1.95 6.37'-274
B 1 n5~ 25 20 16.5 16.2 157.0 9.8 4.9 1149 13.4 .97 2.75 .62 1.71 6.596019
--~B-I--UH.u..-25--l11-14.1 IB,'} 2.32.8 ').8 ,0 U?27-;-B-o&-t~ 3.93 .95 1.26 6.Gl::'9:'.6
B 1 1011 '-5 20 15.2 14.6 173.8 9.8 16.3 1210 17.0 1.16 3.04 1.38 ,95 6.634971
B 1 n51) 25 21) 18.117.8 18.2 9.8 4.5 1152 15.3 1.0'? ~,16 1.22. 1.12 6..705022
P-2

-------
A 11,,,,;(5 111 It:'." Ib.7 't<'l.'-I 1'!.'~
o 1 rOil 25 <.'0 16.ll 16.f/ 181'.3 9.8
A 1 05(1 25 11/ 15.n 14.6 17R.8 12.4
-8--1---1 O(T-2~!H-tr~'J1r.6 1 ~ 7. 5 ~. B
B 1 Ion 25 10 17.3 17.2 ~?7.8 9.8
f3 1 fJIII! 25 10 16.2 16.1 161.6 9.8
~~J5~ 2~ JU Ib.J Ib.2~~.6 ~.B
A 1 1)110 25 30 17.5 18.1 166.6 12.4
B I 050 2b 3n 14.8 14.7 131.7 9.8
----8--1~~') ~5 2.S 9.S
B 1 100 25 20 17.8 17.7 195.6 9.8-
'B 1 01l!1 25 30 14.4 14.6 118.0 9.8
---A-1-.--O.!HI ri/5 20 19.0 19.Q 21'1.7 12.'1
A 0 u50 25 20 16.0 16.0 157.1 12.4
A 1 lOr) 25 20 17.'J 16.9 209.7 12.4
~-4J.-fJ.~~25 10 15.0 1'1.8 168.2 9.8
A 1 lOll 25 10 18.4 18.6 252.2 12.4
:"A n U50 25 10 16.5 17.1) 197.7 12:4
-e:::e--+-flL1+1----2 5 :3 (I :? f) . (, :? U .4 204.:3 9 ,A
,A II Ol1l1 25 I') 16.7 17.2 190.2 12.4
-'-B il 011') 25 10 16.2 16.1 161.6 9.8
--A-Jj '/f)n 25 20 l'l.e l'I.J lfi'l.a 12."
B .1 1'JII 25 3fJ 18.7 18.4 190.6 9.8
8 0 lUfi 25 111 16.2 16.1 195.8 9.8
---A-4t !l'1~1 25 21+-16.2 1 G. (I IS£'. (, H!. 4
A I) fI'Jil 25 10 15.9 16.0 172.0 12.4
A 1 000 25 30 16.0 16.3 145~5 12.4
~5 30 111.4 14.7 13,~.9 1~.~
A 001111 25 30 17.5 18.1 166.6 12.4
A I) 050 25 30 16.2 16.1 158.9 12.4
-2.-8 1J-.1150-:?-5--2D -Hi,J 14-,8--t51.2 ').8
A 0 lOll 25 211 16.1 15.9 184.0 12.4
-B 0 oun 25 20 16.4 16.3 142.8 9.8
Table P-l (Cant.)
f.f l~Uf IB.~ 1.1~
12.8 1188 16.7 1.15
5.7 1201 14.9 .96
12.B 1161) 1~.~-r-;-o-t
9.0 1267 19.4 1.34
.0 1206 13.4 1.02
1.~ 11 15 1~.~ .fJl
.0 1067 13.3 .77
5.0 1094 11.6 .90
.0 111~ 11.~ .88
.0 1131 14.0 .96
6,3 1102 13.3 .79
.0 lIto 15.1 .9~
6.2 11)76 14.8 .83
.n 110'1 11.1 .89
- .0 11')" 12.e 1.05
.0 1182 12.9 .90
15.3 1122 16.6 .94
".4 112.. IG.6 .86
.0 1105 13.9 .81
.0 1075 11.5 .84
.n 1~~1 15.~ 1.10
.0 1178 18.0 1.00
.0 1168 14.1 .87
.8 1101 12.9 .76
13.5 1247 20.8 1.26
.0 110~ 10.7 .77-
.~ 1045 15.6 .8l
.0 1131 16.3 1.04
4.0 1244 16.5 1.18
1(,.5 I1f8 16.7 1.1A
11.5 1252 18.3 1.16
4.1 1232 14.9 1.09
7,3 12e" 17.3 1.91
3.0 1086 14.2 .95
.0 1104 16.2 .86
,a la72 13.3 .69.,
8.8 1147,-17.3 1.12
.0 IfJ46 lU.7 .83
J.~ IlL! 1"..2 .91
4.7 1129 13.7 .79
9.6 1146 17.5 .99
5.9 1247 14.7 1.1~
4.5 1173 21.0 1.11
3.7 1174 17.3 .97
.0 1062 1[,.9 1.01
.0 1164 15.1 .92
.0 1206 13.5 1.02
5.2 11S~ 13.2 .BG
6.3 1098 15.8 1.0~
9.8 1272 17.5 1.23
.6 1107 1~.8 .16
.0 1167 14.1 .67
.0 11)50 12.0 .74
-.6 10~B 10.9 .13
.f) 1062 1.3.3 .77,
6.3 11111 13.3 .79
7.B 1174 13.3 1.A1
11~3 1175 16.4 .92
. 0 1 11 1 11.9 .88
P-3
?Ii"
3.17
2.28
2."u
4.08
2.91
~.~I')
2.18
2.05
~.43
2.86
2.21
F."?
2.40
2.25
2. 7FJ
1.99
2.53
~.61
2.4fJ
2.35
1110 5?
2.91
1.94
1.89
3.58
1.84
l.M
3.40
12.09
~.B9
~. 75
10.72
: 9.G8
2.78
2.71
:/ .52"
3.41
1.90
r?6~
7.86
2.99
1~.e9
3.11
9.49
3.15
8.48
10.32
13.25
3013
14.54-
101B
10.14
2.112
1.76
8.84
8.61
114.29
13.31)
~.q9
~
.74
1.27
.90
1."1
1.27
.36
1.30
.55
.71
.51
1.26
.56
.!i'~
1.58
.69
.74
.39
1.9;3
.6~
.12
.65
.87
1.53
.40
.3"
2.12
.52
l.04
2.60
1 .31
~.61!
2.40.
1 .1) 1
, 1.4(,
2.26
2.30
1.97 -
2.87
-.87
- -12.77
1.26
1.87
1'.~6
2.79
1.47
lo/98
.81
1.02
1.55
3.32
2.29
1.'-1
.96
.46
2.26
2.31
~.1414
3.1)8
'- .07'
.6fJ
1 .64
1.13
1.65
1.:?b
1.15
2.20
1. ~7.
2.15
2.04
2.~~
1.56
2.36
~.69
1.42
2.40
2.33
2.78
1.23
'-.53
3.14
2.63
1.45
1.74
2.98
3.11
1,18
3.02
1.48
.96
1.24
1.6[,
1.33
1.75
1~4(,
1.54
1.53
1.8B
.91
3.12
1.1 B
2.04
2.26
1.~6
1.39
1.95
1 . 33
2.87
2.51
1.91
1.54
1.22
3.30
3.23
4.76
4.1~
2.35
2.41
1 . 6..
1.14
:?5!'!
b. 737?.-H
6.854914
6.9t)(1710
7 ,'J:?159Y-
7.172561
7.233931
1 . ~ :"i1""'~
7,357640
7.434648
1.6SIt~
7.814347
7.915854
8.fJ~+-
A.109541
8.344092
A.Ij!i'3906
8.486514
8.526435
B.6'-2~t\9
8.848565
8.851542
8.929:5u'+
8.937590
8.996198
~.16(1J~JI
9 . 1 73673
9.359469
~.~lIEjl~E:I
9.74141'>3
9.8510114
'J.86::if414
9.987,482
9. 9LJ ~56
IfJ.fl51i1314
11).1 791J42
10.2311115
10.2'16'J!35
10.277.941
10.480775
HJ,48co6B
10.4814935
11.09U.387
11.17Ml~
11 .19458-4
11.251542
11.S19163
11.64"727
11.7gefl99
12.~5~~~7
12.868149
12.911836
1~.~1~9B4
13.398/316
13.616069
13. EJ5$.t!()l
14.03!)976
14.\191.:499
1".2:'''161
14.273960
14.362016

-------
~~
Table P-l (Cant.)
--B-IT-I}5" Z~ ~(I 1('.~ 16.3 -t'j7.~ ~.8 3.3 1 15~1 IJ.~ .I;JT 11.65 ~.f'J4 I.A3 14.4t.n4fj5
A II IJOl") 252ft 17.3 17.5 173.n 12.4 .0 l1U9 13.9 .81 8.81 1.54 3.25 14.472:;174
B 0 1!)(1 25 lu 14.9 14.8 2f14.6 9.8 12.5 1304 18.6 1.39 15.15 2.86 1.27 14.606492
- ft,-l--tUH- ~5--3tt-tu.-9--n.1---tB9ort~.~.ItiIJt)~. ~6 II. tJ4 1 ~ 1 7--ttr.~~5f)Jtr-
A 0 "50 25 20 17.6 17.3 lRR.l 12.4 4.5 113'1 15.6 .86 11.42 2.72 2.37 15.917970
B 1 10'1 25 1'1 16.8 17.8 231.9 9.8 8.8 1197 21.7 1.40 4.04 5.51 .81 16.652260
--e--I.t-{H~~ 3n ](..(, H'.(J 13801 9.8 .~ 11l1f, ".f] .84 9.~:i! :II.ll 3.111'1' t1.fJ:Il74f)~
A II U511 25 10 1~.n 14.6 178.£1 1.1 ~6 4,5 1121 16,0 1.16 3.92 0.71 1. (,4 17 .a26~
A 1 Ion 25 20 19.1 19.0 232.8 12.4 6.5 1083 19.1) .99 3.21 5,80 1.14 17.940459
A n [l5'1...2.5-..3r.Ll't..3_.1~~6. J31.6 12,4 - 50'8 1064 12..4..,_...74._- 24..32.._2..Q9.-2....11_18...50.1.U2-
-A----1-f}';;O ~IJ 11.1-1':'>.1) 1::J,4 236.3 24.7 ':J,7 118fJ 19,2 ,64 1.60. .31 1.2R 4,1:I:!6/i66
A 1 lUO 50 10 14.9 14.6 26b.l 2/~.7 8,9 1210 2;>.7 .72 1.65 .29 1.31 4.467611
B 1 1011 5(1 3" 14.9 14.6 21)?7 19.7 15.1 1155 19.1 .69 1.77 .64 1,02 4.631564
A 1 1'10 5') 2~ 15.1-411.6 235.8 24.7 12.5 115~.U .63 1,5~, ,4& 1,31 4,8521334
H 1 1111' 50 11) 15.7 1-4.6 266.3 19,7 10.6 1288 2301 .86 2.32 .25 1.45 4.917109
B 1 10lj 5u 20 15,9 16.1) 229.9 19.7 11.5 1193 21.0 .74 2.01 .51 1.25 4.960079
R 1 100 50 In 16.4 16.2 254.9 1~.7 7.5 1rl1 21.:'> .79 £.23 .18 I.S8 5.044907
B 1 100 50 1'1 19,0 18.7 298,6 19,7 .7 1232 2?4 .80 2,31 .36 1.61 5.582461
.B 1(51) 50 2') 2fl.0 17.7 261.8 19.7 4.5 1143 19,7 .67 2.34 .47 1.52 5.634577
--':~l-~lltu--l}jt--F,,-+chO 15.5 -i'94.f) 19.7 .f) l?::JB ~9.7 .r'} ~.lR .~1 1.5~ 5.M!)!.:t'ltr-
Al 11)11 50 21) 15.6 15.8273.9 '4.713.4117323.2 .71 1.91 .84 1.27 5.785545
"A,'1 1"1) 50 30 1501 14.6 218.9 24.7 1.3.4 1115 19.4 .59 1.44 .51 1.65 5.7924.32
~ 19" e'l 20 1'1.7 1'1.6 250.~ 19.7 tC'"~ IP.37 23.~ .8(, ~.31 1.14 .97 ~"fHl4(1)1)
B lOP!! 5U 20 19.5 19.0 271.2 19.7 .fJ 1134 21.7 .71. 2.111 .91 1.25 !i.962159
B 1 0511 511 2" PI.9 14.6 193.5 19.7 9.0 1157 17.9 .66 1.69 .36 1.84 5.9751n8
--e--:l:--+f.I+.I--5~17.5 17.1 U,(.3 19.1 4.FI l~l7 ~l.J .17 l,.3~ .:Ill 1.f)6 6.~
A 1 050 bl) 111 1.3.7 14.6 210.6 24.7 4.4 11.30 18.0 ,62 i.47 .29 1.99 6.114670
~B 1 100 50 20 17.5 17.5 270.9 19.7 10.1) 1178 23.2 .79 2.42 1.14 1.05 6,117253
B t )'1." [,1:1 3') 11',,1' 1(..1 e'?'J,') 19.7114.7 1141 21.1:1 .73 2.07 1.~1 1,2J 6'(J8Gr1~3
A. 1 0'1" 50 11) 15.2 15.4 2?7.5 24.7 .0 1172 17.6 .61 1.54 .30' 2.25 6.81)9648
"B 1 1011 51) 211 19.6 19.fJ 291./3 1'1.7 2.5 1144 23.4 .76 2.39 1.59 .90 6.8.31)9QO
~-1-'ont, 51}--3fj-e".G 2"'.5 S?~)q.8 19.7 .f} lfl71l ~f1.3 '(J~ ?R(, 1014 1.4'" 6.8136.371)
'A 1 1110 511 10 15.0 15.4 273.9 24.7 9.9 1222 2.3.2 .74 1.95 .46 2.11 6.970481
'~'l'05(1 501015.214.6216.219.7 6.012:;1318.1 .72 1.89 ..26 2.43 7.265029
~.t Ion !;'J 31) 18.4 18.11 25~,.3 19.7 8,3 1111 ~3.3 .71 2.64 1.33 1..38 7.29J"'fJ~
B 1 00'.1 50 20 17.8 17.8 2?1).8 19.7 .11 111')9 17.8 .6.3 1.92 .35' 2.47 7.59.3:',64
B 1 (II'" 51.11" 17.3 17..3 239." 19.7 .n 118R 10.3 .70 2.08 .22 2.59 7.62.3350
R 1 05~ 5n ~9 IB,~ 18.1 2~1.1 19.7 3.~ lAB4 18.2 .61 1.71 .514 ~.39 7.7950114
B 0 ,1011 50 10 15,7 14.8 26h..3 19.7 11).8 1289 2.3.1 .86 8.30 ,89 1.29 7,836908
B 1 05U 5fJ 20 15.7 15.8 193.5 19.7 3.9 1130 17.1 .63 1.70 .29 2.67 7.882.317
\~ n tq~ Sf! 10 16.4 lC.l 25~.') 19.7 7.5 1S?::J~ ~1.~ .79 7.142 .78 1.~~ ~.~G9792
A I 05U 50 20 15,9 16.0 223.1 24~7 7.0 1118 19.0 .57 1.47 .33 2.76 8.1.372.31
F3 1 051) 51) 3'J 16.7 16.5 19.3.5 19.7 6.6 1081) 17.2 .59 1.78 .42 2.67 '8.2229?II
--A-l---l-LIP-!'j') 3016.216.2 <'31.5 S?1j,7 1"'.14 In91') 211.(1 .:-,8 1.44 'J4~ 2.7S? 8.3210"'''
B 1 050 50 10 15.9 1~.7 2?5.3 19.7 3.9 1211 18.7 .72 1.98 .17 2.98 8.446987
B 1 I)UO 50 30 18,5 18.4 214.3 19.7 .1) 1069 17.4 .59 1.66 .44 2.89 8.78641)6
----A---:I:-HI+.-!;rt 211 17.817.8269.:', 24.7 ~.~ 1119 2~.2 .6L 1.76 . .62 2.73- 8.8::'4842
B !J II)U 50 10 18.9 18.7 298.6 19.7 .7 1233 22.3 .8f) 8.90 1.11 1.44 8.924964
B I) Ino 50 10 17.5 17.0 266.3 19.7 4.1 1229 21.3 .77 7.72 .75 1.96 8.999857
-e-.i}-.{I'WI ~II 10 19.1) 18.8 294.0 19.7 .n. 1260 ~:.7 .19 a.f)1 1.11j 1.41 CJ.~156T~
A 1 050 51) 20 15.1 14.6 213.3 24.7 5.4 1112 17.8 .57 1.40 .39 3.23 9.437984
B 1 050 50 30 14.4 14.6 168~6 19.7 5.8 1103 14.8 .59 1.47 .49 3.30 9.877475
A 1 !:J~r)~!1 31.1 IG.I) 114.6 191.6 2~.7 6.11054 17./j .52 1.20 .41 3.~3 10.!11j193tl
B U U51) 50 10 15.9 16,0 225.3 19.7 3.9 1216 18,7 .7~ 6.56 .66 2,67 10.214168
, A 1 1011 511 311 18.') 17.9 259.1 24.7 8.0 1074 21.9 .58 1.61) ,96 3.03 10.387052
--A--t--tOIJ::'O If) 16.116.1 25EJ.5 211.1 J,t. 1184 21." .65 1,11 .16 3.85 10.~lele5
B 10')1' 51J 10 15.9 16.1211.7 19.7 .0 1184 17.4 .68 1.85 .17. 3.95 10.833752
B 0 "50 50 20 14.9 14,8 193.5 19.1 9,1 1157 17.9 .66 ~.31 1.70 1.95 10.877224
P-4

-------
~
Table P-l (Cant.)
---
B 0 OliO 50 11') 17.3 17.3 2.39.0 19.7 .0
B 0 050 SO 21) 20.11 17.8 ;?61.8 19.7 4.6
-&--i---\tff't-!rlH (I 1 4 . 6 1 4 .-6--1-6&. 9 1 9 . 7 . f}
B 0 05n 50 10 15.2 14.6 216~2 19.7 6.0
A 1 050 50 31') 18.1 18.1 245.9 24.7 4.2
--8-9-f}tjlt-5'I7-?.e-H-.--8--H-r~{h-8-~1-907 . 0
B I) 1UO 50 20 15.9 16.U 229.9 19.7'11.7
B 0 050 50 20 15.7 15.8 19.3.5 19.7 3.9
-A-f:r-t}5tt-5'r21:t-1 r, . (j 16~~4. 1 1 . I
A 1 onl) 50 1014.6 14.6 2211.2 24.7 .0
B 0 In'l 50 .30 15.0 14.8 202.7 19. 7 15~4
--A-' O--fJ59--5'u-+r.t-+5.-ft- 1 ~. 3 236.3 21+.7 S. 8
A 1 0"1) 50 20 17.9 17.9 245.2 24.7 .0
B 1 1"0 Sf) 3n 20.4 20.3 298.6 19.7 4.3
--A--.o-.r.HH~'~r-i-5-.2 15.4 ~'l7."j 21+.7 .f}
B I 000 50 2" 15.8 16.0 184.4 19.7 .0
B 0 050 5f) 30 16.7 16.5 193.5 19.7 6.7
--A--l-9{H~ 5(.11016.2 16.5 24G.2 24.7 .13
B lOon 50 20 14.3 14.6 170.7 19.7 .0
fI 0 IJ n 'J 51) 1 0 15.9 16. 1 211. 7 19.7 . n
--A- -t-.:..-P 1).0 -aj:I--1-4--+1.... 6 1 7 . 3 28'1.5 24. 7 . fJ
A 0 11111 51) 11) 16.1 16.2 259.5 24.7 3.7
'B U 050 50 30 18.4 18.2 221.1 19.7 4.0
-A-J).:......utp 5" 3') 18.4-18.2 259.1 2'1.7 8.1
B f)"uno 50 311 18.5 18.5 214.3 19.7 .0
A 1 100 5U If) 17.4 17.1 280.5 24.7 .2
-A-+-Q.~~-~~~-l EI. 9 2'1.7 f3. 0
A 0 100 50 30 15.1 15.0 218.9 24.7 13.7
~~'" 1')(.1 50 311 16.2 16.2 231.5 <'4.7 10.6
--A,.:-4-'QI1j1 50 2'1 111.~ 111.e 2W?9 2'1.7 .f)
H () (IIi') 5'.1 20 19.5 19.0 271.2 19.7 .0
~A " 1;11) 50 In 14.9 14.7 266.124.7 9.5
"';'~""(J+U,I 5[/ 30 2(1.2 le.~ 29fJ.7 24.7 .a
:tJ1 i" (1)" 51') ,31) 14.4 14.6 168.6 19.7 .0
"'A'!I~tll.lf) 50 20 17.9 17.8 245.2 24.7 .0
--A--{I--IU" 50 2'.1 17.8 17.8 26C).S 2'1.7 5.7
A (I 1)5') 50 2U 15.1 15.n 213.3 24.7 5.7
A (I 1)11\1 5" 10 16.2 16.5 246.2 24.7 .0
A' ~ 11":' 'JU 20 lE1.1 1'1.8 :(3~.8 :(4.7 13.1
A 1 lQU 50 20 19.6 19.4 307.7 24.7 .4
8 0 1150 50 30 14.4 14.8 168.6 19.7 6.0
A ~.1~U 50 1U 15.9 15.3 ~~.O 24.7 lft~
-A 0 ')("1-21) lO.Jl.!.~_!J_t.~L2.8.Q.,~ ?/f.;7..._. ...0
8 1 10') 90 20 ]4.8 14.7 293.8 35.3 12.9
~-WU--9P 30 1'1.A 1'1.8 2€-1.9 35.3 114.8
B 1 IOU 90 20 17.1 17.2 33].8 35.3 8.4
8 l' 10fO 90 20 18.8 19.0 350.8 35.3 1.3
-B-J._IIIII 01) ?'I 15,Q 1~.B 323.4 3<;,} 9.S
B 1 IOu 90 10 15.2 14.7 322.5 .35.3 9.1
B 1 InfO 90 30 19.0 19.2 3?5.7 35.3 4.4
~ (Jill' 90 ~I) 1(1.'1 H!.7 3A2.8 39.3 .9
B 1 lIHI 91.1 11) 15.9 16.0 32::>.5 35.3 6.3
8 U IOu 911 30 14.8 14.9 261.9 35.3 15.0
--e.::-4-----H1(1 9U 3') 1(;.') 15.8 f!77.? 35.3 1~.5
B 1 lUll 90 30 17.8 17.7 316.6 35.3 6.6
B 1 01J'1 9fO .3'1 19.3 19.2 305.2 35.3 .0
~l-Hj(J ')") 10 17." 17.4 3~6.8 3S.3 1.1
8 1 050 90 21.1 17.0 17.1 300.0 35.3 4.2
'8 0 100 90 20 17.1 17.1 331.8 35.3 8.4
1188
1145
1186
1227
1062
09(.9
1193
1133
11\ ~
1160
1157
1179
10911
1 liB
1173
1112
1')81
1157
1118
1186
1 10(,
1181
11186
1'")73
1071
1179
lU69
1119 .
1089
1106
1135
1207
1043
1087
1093
11\ 7
1119
1159
1151'1
109Y
110.3
122::-
1183
. i :?03
114<:'
1180
1040
1193
1263
1092
IB7
1243
1139
112£1
11 05
1£164
],-'1
1137
1179
19.3 .70 6.93 .75 2~82 10.917504
19.7 .67 9.67. 1.98 1.42 11.223386
1~.9 .66 1.10 .JIj---jo~tt".0551-??ft--
18.1 .72 8.01 1.06 2.77 11.8611248
20.0 .55 1.52 ,45 4.19 12.019620
17.6 .6J 7.27 1.41+ '-.6ij 12.1501+JfI
21.0 .74 10.01 2.75 1.07 12.326435
17.1 .63 6.23 1.44 2.86 12.494548
1~.~ .51 5.68 1.45 ~.~~ 12.5~~
17.2 .63 1.53 .34 4.61 12.804268
19.1 .69 8.08 3.27 1.02 12.902U80
1~.'- .64 ~~.,~ 1.\4 1.4ft 1~.~~9qnn
18.8 .55 1.47 .27 4.82 13.1111)890
23.4 .74 2.44 4.14 1.03 13.~9f)2n8
17.6 .61 16.18 1.10 2.38~
15.3 .59 1.66 .32 5.02 13.818723
17.2 .59 5.90 2.10 2.85 13.982?45
19.2 .61 1.6~ .1~ 5.24 14.ry51650
14.3 .60 1.57 .46 5.04 14.183716
17.4 .68 6.16 .69 4.36 14.394692
~I). 7 .64 1. 7J .34 "j.~7 II+.SH6'J2--
21.0 .65 8.10 .87 4.01 14.529304
18.2 .61 ,7.38 2.62 2.39 14.535832
22.0 .58 7.6R 1.96 3.02 14.565782
17.3 .59' 6.29 2.09 3.06 14.597561
20.6 .65 1.74 .31 5.49 14.9Y2862
17.9 .511 1.34 .34 S.BIJ 15.H'338fr-
19.5 .59 16.16 2.87 1.69 15.977941
20.1 .58 8.36 2.91 2.79 16.5~1385
IG.I) .5G 1.34 .45 G.15 IG.BGGG79
21.6 .71 11.19 4.72' .94 17.153372
22.7 .72 38.50 1.24 1.15 17.2c292n
~£.1 .58 1.80 1.76 4.98 17.~7~09~
13.6 .59 1.47 .59 6.22 17.421377
18.8 .55 5.64 1.18 5.20 17.536872
22.2 .&1 8.1G 3.4~ ~.73 17.61~~
17.7 .57 15.7U . 1.66 3.75 18.041428
1~.2 .61 7.Q3 .75 5.6h 18.046915
el.1 .&3 £9.&9 f.63 1.16 18.646Y87
23.1 .63 2.01 1.28 5.74 18.063128
14.8 .59 11.10 2.36 3.63 18.~958(13
203..2 .7~ 26.2.7 .L6B. _2..2'" 16.112.2.61
.20. !'j..... 6~____7. 1 Q---1.. !J1t._5..5:3_t8.. 4l19821-
25.9 .56 1.35 .32 1.78 5.627547
<:'4.3.5A I.PS .'381.93 6,1Z'Q3f)f1
27.0 .55 1.53 .39 2~29 7.126220
26.3 .53 1.65 .27 2.64 7.743831
28.5 ,5a 1.5& .25 2.e7 7.7'19'le2
26.3 .60 1.49 .29 2.72 7.945552
26.1 .48 1.53 .39 2.73. 8.22622~
25.3 .51 1.57 .e3 3.2? ~.172740
26.2 .58 1.40 .19 3.43 9.450179
24.2 .50 4.24 1.79 1.98 10.562912
~3.~ ."jF). 1.36 .lI,) 3.86 ifJ.7S7317
2?~ .50 1.50 .29 3.96 11.048494
24.3 .45 1.40 .31) 4.'Hi 11.i43472
~6.J .51 1.~6 .14 ~.16 11.Z~~6~~
24.0 .50 1.311 .28' 4.15 11.440280
<'7.0 .55 ~.54 1."8 2.?2 11.571090
---.-
P-5

-------
~
Table P-l (Cont.)
--8-!+-i'"'' I ')11 £'0 1:-..9 1~.6 323.'. ;3:'.3 ~.~ 11 '13 l6.!:. .5R 5.~" 1 . ~[t ~.I'IO 1.1 . '7'11 Ill.,
8 1 (151') 90 10 14.9 14.7 281.6 35.3 4.6 1221 2.3.3 .54 1.30 .31 4.26 11.78(\451
8 0 10" 911 10 15.2 14.8 322.5 35.3 9.2 127.3 26.3 .60 8,&19 1.18 :;'.65 12.1)'''11118
, - :-€'I..-9-t+I~-eo---t-6-T8--Hto-e--35(1 . 8 ,3::' .3 1.3 HI ~ 1 i'6.~ .S3 6.113 1.118 l.M 1 ~.-t1 ttt ') .33
8 0 11)0 YI') 10 15.9 16.0 322.5 35.3 6.4 1244 26.2 .58 5.24 .84 3.43 12.164957
8 1 0')1) 90' III 17.5 17.5 343.9 35..3 .r. 1215 26.0 .56 1.63 .16 4.5,3 12.194656
-8-9--1 C}I..I.....-Q(I~'1 1'1.8 1'1.7 2<),3.8 35.3 13.2 12(:)3 2!;.7 .56 13. ('5 1. f,4 1. 78 12..347115-9-
B f) Oil" 90 21) 18.4 18.7'332.6 .35..3 .0 11.39 25.1 .51 5.88 I.U? 3.25 12.586119
8 1 tl51.1 9U 20 14.5 14.7 264.2 35..3 6.1 1167 22.2 .52 1.08 .34 4.81 13.171915
--F-9-1 ~q-9{f .39 1 9 rt-t9-0+--3f5 . 7 35.3 4.:J le~2 Z'6. 1 .48 !j.75 2.13~ 2 .-Sf!, 13.18ffi~
'8 0 IOU ":IU If! 1 7.4 17.4 350.8 35.3 1.1 1221 26.3 .57 5.48 .55 4.39 13.928228
'Ef 1 05U 90 30 14.7 14.8 239.2 35.3 1.1 1110 20.6 .46 1.17 .44 5.31 14.692286
--":"R- ij-I 1-1:»+-91:1-11/ 1 7.5 17.4 .343-. ') .35..3 .0 H?I!) ~5.0 .:::;6 S.47 . ':.,7 4. 71 1 II . 77 4 Il6-1--
A 1 101/ 90 20 15.7 14.8 320.2 39.6 4.2 1124 25.2 .52 1.41 .35 5.49 15.011011
8 1 IJbO 9£1 20 15.9 15.8 268.8 35.3 4.1 1138 22.4 .48 1.28 .25 5.72 15.2862<'7
--&-fJ-l &/1 91.1 y, 15 .-') --1 S . 9 271.9 3:::;.3 13.1 111~ 23.4 .51'1 4.15 1.6~ 3.~B 15-.2<,n~'5-3cr--
8 1 1.151) YU 10 16.5 15.9 3] 1.1 35 ..~ 3.1 1215 23.3 .53 1.36 .20 5.80 15..381805
'8 U 100 YU 3') 17.8 17.6 316.6 35.3 6.6 1 tr)8 22.0 .50 5.28 1.69 3.96 15.574892
~I}--%fl 9U 2U 1 1 .H-+-1. 1 ,3f1n.n 35.3 4.3 1138 £'4.8 . Sf) ::'.13 1.1 '3 4.[,4 1:J.761Z'63
8 I) (Ifill 90 3'/ 19.3 19.2 305.2 35.3 .0 HI22 24.4 .45 4.79 1.51 4.33 16.0631192
'8 1 051/ 90 3', 17.5 11.4 277.9 35.3 .3.2 11171 22.4 .45 1.31 .28 6.27 16.743221
--'''A ~'1- -}-i}1i- -9ft--~o-1-5-. 8 14.~ 31tJ.G 3~.6 B.'!) H'~~ ~5.3 .41) 1.43 .4'7 6.13 16.A~1930
A 1 160 91J 31J 15.8 15.0 .3U6.1 39.6 8.3 HI89 24.9 .49 1.40 .43 6.3.~ 17.285545
8 0 r)5U 90 10 16.5 16.0 311.1 .35.3 3.2 122.7 23.3 .53 5.75 .85 6.0n 18.764347
--*- --I---HJ 'I 9H Ie 15.4 15.5 34.3.9 39.6 I.S 1191 2S:7 .S6 I.S1 .1'4 1.11 18.82U31
~~61 RECORDS            
P-6

-------
~
Table P- 2

COMPUTER-SORTED SPEED, PERCENT POWER, AND TOTAL WEIGHTED
EMISSION DATA-1, 600 RPM, ENGINES A AND B (PRINTED FOR SCR < 12)
--E-€
RR PP ST-MAFR-CAFR
lA~PO
ER
ET
MP
SFC
co
HC
1<10
SCIr-
8 1 05n 10 10 14.8 14.6 183.5 5.4 6.0 1329 12.4 2.28 5.80 .42 2.06 7.8RD273
--- 8-1-- 05f:1-11)- 29-i-4r,fl--14t-.-1--1U4-.2 ::'.4 6.0 126::' 11.!J 2 .1t4~"i' 1.11 1.84----B~t6-t-trt-
A 1 050 10 20 15.4 14.9 160.1 5.3 5.9 1280 18.8 1.95 4.33 .90 2.?9 9.193651
B 1- f)fll) 10 30 14.0 14.6 126.0 5.4 .0 1120 8.6 1.65 4.09 1.01 2.48 9.860356
---8-1-h05.)--11}--20-16-.9--16.-9-18t\-.-1-~i4 3.8 1231J 11.1,} ~.1}4 5.62 1.27 '-.11 If.j.'l25!Tft~
8 lOll!) 10 20 14.4 14.7 143.9 5.4 .0 1215 9.5 1.84 4.80 1.31 2.:;>2 }r).J568l\7
A 1 u50 11) 10 14.9 14.8 177.9 5.3 5:1 1354 11.4 2.24 5.13 .46 3.06 10.28U775
-"B-l--1}OI;l--Hr--Ht--14ti-7- -14t6-1650~::'.4.-f}--t-287 1 U.6 2. fJB !J. ~4 .~.~1---HI~tJ?-
. A 1 0''') 10 30 14.4 14.8 125.11 5.3 .0 1138 8.6 1.64 3.49 .97 2.87 10.567324
-A 1 050 10 10 16.0 16.0 195.2 5.3 4.8 1348 12.6 2.29 5.13 .76 2.95 10.737482
--A--l--1 01+ -1(:1--1 If-_nl ~i~-"14-.8---211+.7----5-03 11.1 !-3YI-:l-4-,-l-hti3 6.-t9---1.-il+--2-.4'1--!-f.h9468Ufl-
A 1 05" 10 2') 16.9 16.5 168.6 5.3 4.8 1260 11.1 1.88 4.57 1.46 2.42 IfJ.955093
A 1 0(1) 10 20 16.5 16.5 160.1 5.3 .11 1240 10.2 1.82 4.20 .69 3.22 10.968221
---~--1--051~-J-O-!I)--1-n. L).-t-6-d---19t,J-r1--5. II 3. II 1322 13.1 2.39 5.31 1.1 f) e. (, 7 1 h-06tr1!?ft-
B 1 'JI1I1 In 30 16.6 16.9 152.4 5.4 .0 1160 9.71.69 4.42 1.16 2.78 11.079268
f\ 10(1(1 1') 20 16.7 17.0 176.9 5.4 .0 1230 11.2 1.95 5.13 .90 2.98 110153945
-- A 1- P!,'_~!..:jl!_.::J~t.-;-}t>'c::16-il)-+f:Hli-H-::-5-.3 - - .!} _:.".-318-11.2 p.n9----it-,8f\ .!J8 3.(,2 11.8CJ'l'>jffi--
A 1 0511 25 2fJ 14.6 14.7 ~111.2 13.4 9.8 131")0 14.1 1.07 2.61 .36 1.25 4.770696
8 1 10~ 25 1" 15.2 14.7 287.4 13.6 11.9 1357 lQ.3 1.39 3.72 .34 1.37 5.348386
~~ -l-HHI- 0?5--+4- 16,2 16Tf'-3112. ~ 1306- 11}. 3 1356 ~i .36 :3. q!2 .3-3-+t3f, S. 3:",781-e;1-
13 i fJ!j11 25 II) 14.9 14.7 231.7 1~:0 !'I.I) 1272 14.9 1.14 3.nn .21 1.6:? !i.4'PI!i4A
:'-~:-I 050 25 2n 14.9 14.7 19/i.7 13./i 6.5 1230 13.3 .97 2.48 ..B 1.65 5.0592QIl
-:"e~;I-:+l1i+-:?5--1-ft-l--h-r-t'r.6-;~-tit.B-t3.6 t..f'J 1~:?n." 1.~.I'- .3A I.!!"'- ~.nA1!59q--
A l 050 25 3" 14.8 14.6 195.0 13.4 12.0 1255 13.4 .98 .20 .97 1.33 5.749677
B j o!jn 25 30 15.1 14.6 191.6 13.6 9.0 1196 12.7 .93 2.41 .50 1.61 5.953336
---A--+----H/'+--~5-M--t603-t6o3-Z'-~-;7~:; un:? 1::'.() t. 06 2 .~1 .4B. 1.M 6. O~6tJ14
A 1 IOU 25 3U 16.4 16.7 236.4 13.2 15.0 1188 15.9 1.09 2.99 .82 1.29 6.104412
B 1 Ion 25 20 15.0 14.7 253.6 13.6 15.9 1269 17.8 1.24 3.37 .94 1.14 6.133859
--~1r-1--05H--z.s---l'+--t('.1 lCrt ~::'3.3 13.(r-5-.:-J 1:?7~ 16.3 1.15 3.~1J .17 1.EjI!' 6.:'\5T28"t"-
B I Q5" 25 tv 17.5 17.4 283.4 13.6 3.0 1271 16.9 1.19 3.66 .17 1.98 6.441105
"R L 05P 25 20 16.7 16.4 239.3 13.6 7.6 1245 15.4 1.05 3.10 .46 1.81 6,558716
--.!!.13~t-!.{/4-.>--~5-Ht-i7.7 17.(, ~(,c.q 13.(J .fJ H''-.'4 16,1'1 1.1~ 3.47 ,16 ~,10 6.6(,r:JB32
. A- '1"05(,25 20 18.5 18,3 2511.4 13.2 3.7 1239 14.5 1.02 3.fJ6 .95 1.44 6.817073
-''':r 100 2~) tu 17.11 16.8 272.1 13.4 5.4 1325 16.3 1.19 3.39 .42 I.Q3 6.846449
---A--}.~.{j~~-2-P--HI,6 18.3 :?141,7 13.2 .1' 1S?35 IIt.S? .98 3.F)4 .61 1.n 6.fI:-,3~64
A 1 101125 10 14.9 14.7306.6 13.4 14.9 141)820.5 1.53 4.14 1.15 1.22 7.072525
R 1 IOU 25 111 19.4 18.9 343.5- 13.6 2.4 1316 2".7 1.30 4.:W .A6 1 .53 7.i87~/i7
-'8105') 2!'3 r.n IB.14 18.1 :?C'J.f) 13.(, 'j.s? 1S?QQ lC.6 1.A7 3.~,(, 1.11 1.3R 1.3Sn111
B 1 01)1) 25 2U 18.5 18.4 251.3 13.-6 .0 1215 14.5 1.(1) 3.24 - .7f. 1.827.356(,(111
A 1 n5f1 25 10 14.8 14.7 229.2 13.4 7.3 1349 14.5 1.15 2.93' 'i33 2.28 7.366643
~-~~~~:;> lC.(, 2~'1.4 13.(, 13.9 1lfW 14.7 t.AR :?87 1.11::; 1.61 1.43'31)93
A 1 10!' 25 21) 14.3 111.6257.8 13.4 17.7 1350 18.6 1.34 3.30 1.77 .95 7.6(,2661
B 100" 25 10 19.7 19.2 348.0 13.6 .0 131119.2 1.30 4.,~0 .82 1.78 7.732353
~~--f)~ 20 1(,.(. lC.I+ 21Z?0 13.S? 4.4 126F} D.S? .97 2.68 .24 'i.:;7 7.798(,01
A 1 10'.1 25 10 17.2 15.7 287.4 13.2 9.7 131J2 16.6 1.26 3.63 .30 2.49 8.024354
'-B'~ (11)<125 10 14.8 14.7 205.8 13.6 ,0 1289 13.3 1.02 2.59 .28 2.65 8.1')69092
--It--1':"tll~1 25 10 IBoO 1(;.3 298.4 13.~ 1.4 1349 1{',.1J 1.~5 /:f. 01) .EJ9 l.tH B.Und')!)
A 1 PDU 25 10 16.9 16.8 241.6 13.2 .0 1295 14.3 1.08 3.05 .35 2.65 &.375717
"'1\ 1 UIII] 25 HI 13.7 14.6 195.8 13.4 .0 1329 12.1 1.fJ6 2.50 .30 2.78 8.41701)1
~-I):',I) 2:} 10- 17.6 17.4 Z'83.4 13.6 3.0 1267 16.8 1.18, 1J.54 .6~ 1.66 8.4680TT-
B 1 Ulln 25 10 16.4 16.22.34.213.0 .0126713.9 1.05 3.12 .14 2.89 8.4B4110
, B lor_III 25 30 18.E\ 18.1i 236.8 13.6 .0 1145 14.1 .92 2.97 1.23 1.85 8.498529
--e-ft--tJ!;.') Z'~ 1U 1601 16.1 ~~-'3.3 !J.t! 5.5 1301) 16.3 1.15 B.I'j/:f ./:f':J 1.c;l} e.53~l\Z~
B 0 11,,(1 25 10 17.7 17.6 268.9 13.6 .0 1226 16.r) 1.12 a.50 .38' 2.10 8.676829
'A 10011252013.714.7174.013,4 ,') 125911.1 .94 2'.17 .41 2.87 8.813235
P-7

-------
~~
Table P-2(Cont.)
B 1 100 25 30 14.9 14.6 2?9.9 13.6 18.1 1221 16.1 1.13 2.90 2.21 1.03
A 1 OUo 2!> 10 15.6 15.8 209.2 13.2 .0 13(16 12.5 1.01 2.42 .12 3.13
-*-;---{}!Irl P.5 3~ft06-t6ofr~43.S! 1302 .f! 1171 U..-ft-t6B 3.14 .~1 2.~.3
A ] 1)00.' 25 10 17.9 18.1 284./J ]3.2 .0 13:<'6 17.1 1.20 3.57 1.13 2.04
A 1 OU0 25 30 17.4 17.6 196.7 13.2 .0 1164 12.8 .85 2.41 .36 2.9~
-8----0 101) E'5 JrJ 15.2 IIt.9 287.4 U.E> 11.7 1354 19.3 1.3'J 16.16 1.11 1.2'"
A 0 05U 25 2Q 14.6 14.8 210.2 13.4 9.8 1317 14.1 1.07 11.401.19 1.25
8 II (l5U 25 10 14.9 14.9 231.713.6 5.11272 14.9 1.14 12.07 .55 1.81
--A-1--10f~f'.r"1~6.1 Z74.4 1~.4 7.1 12.3~ 16.:5 1.12 :5.'+9 ~.34 1.u9
A 1 O!>O 25 30 18.9 17.4 240.4 13.2 6,8 1203 13.9 .96 2.95 .87 2.63
.~ ] 0110 25 20 17.1 16.5 207.2 1.3.6 .0 1184 12.6 .89 2.76 .35 3.25
~'-A'1-'O!>0-25-HI 1!:J.'J 1:'.8231..1 1.1.2 4.8 1.323 14.3 1.10 .3."" .11 .3.61/
B 1 050 25 30 18.6 18.4 256.7 13.6 5.2 1150 16.5 1.01 3.31 2.:<'4 1.50
B 1101) 2521) 16.3 15.8293.013.6 15.11272 19.4 1.32 3.91 2.38 1.32
-8:'1--01/0- ~5-2(.-l-1f'.9-l4rl--i'e{j...-9-t-3-.E> ." 1199 11.2 .89 '-.4" .50 :5.~tr
A (I OI1IJ 25 111 16.9 1.6.8 241.6 13.2 .0 1299 14.3 1.1)8 8.05 .57 2.65
8 1 un" 25 3U 17.U 16.7 197.1 13.6 .0 1144 1].9 .85 2.48 .53 3.36
-A--1--UU4--;.!~tt-1-h7 14.6 153.8 13.4 .1'1 11 BO lA.:' .83 I.Rl .58 3.41
8 0 U50 25 2~ 16.7 16.4 239.3 13.6 7.7 1296 15.4 1.05 1].2' 1.33 1.68
B 0 Don 25 ]0 J6.4 16.2 234.2 13.6 .0 1269 13.9 1.05 7.36 .36 3.09
--~1--0IW--fl5--2.f)-4-~~o4t-t'A. 4 13. Z' .1} 12"36 11.7 .92 2.5/'1 .26.3 .16
8 1 050 25 20 19.5 19.4 295.7 13.6 2.9 1202 17.3 1.12 3.90 2.77 1.15
B D 100 25 10 16.3 16.1 302.2 13.6 10.3 1355 19.5 1.36 ]2.28 1.79 1.19
--a.-CLIJ5(!~-f)~.Q-t.-4--9 1'1.8 l..ge~~ e.9 12Aq J3.A .97 ]e.e!) l.fl9 1.')3
8 ] noq 2!> 30 14.6 14.6 168.0 13.6 .0 1149 10.6 .84 2.12 .60 3.67
'A Q 050 2~ 20 16.6 16.4 212.0 13.2 4.5 1265 13.2 .97 9.46 .88 2.57
'-":A-.O-,Q.llu--2e-ln-.-l~9..-1-299..2 13.2 .f.} 131C le.5 1.(11 7.C3 .313 3.38
A 0 1150 25 lU 15.9 15.8 231.3 13.2 4.8 1328 14.3 1.10 8.84 .34 3.26
8005') 2!> 30 15.114.8 191.6 13.6' 9.11198 12.7 .93 11.29 1.68 1.72
-B-Q--tlOO 28 21,1 18.5 18.'1 261.3 13.6 .8 H'14 14.5 1.81) 11.75 1.94 1.1+7
8 U 1[11] 25 10 17.8 17.5 318.8 13.6 6.6 1316 20.(1 1.31 13.87 2.14' 1.1)7
Ai17jiI1ulo-i5.B-T4-~8 35cj~-I)- 27 .'"2-T2':'S'-i3bi- 23;~"-';83-- 2.27 ..,,,. .5!; 1.16
--6-1--1~.t}---tW--1.(I-45.~ 111.9 357.8 27.3 113.9 t.357 23.1 .3(, 2.37 .Z'1 1.:'13
.~ 1'100 50 30 15.1 14.6 304.7 27.3 17.4 1212 24.0 .74 1.92 .82 1~11
~8'1 0111) !>O 20 1901 19.0 351.8 27.3 .1') 1204 22.3 .67 2.02 .41 1.56
-!a-l~ I)g 21,/ 19.9 1&.2 ~'12.1 27.3 10.7 12!;9 21.3 .75 e.!?2 .28 1.68
8 J 05U 50 20 15.2 14.6 275.6 27.3 9.9 1193 18.3 .661.78 .24 1.89
A 1 101) 50 30 16.0 16.1 290.7 27.2 12.7 1204 18.6 .67 1.74.54 1.72
-9--1--4.<)11 50 I') 15.1 1'1.7 29C).7 27.3 5.5 129') 16.9 .73 .1.94 .IS 2.69
A 1 IOU 50 20 15.2 14.9 327.5 27.2 16.5 1297 22.5 .79 2.07 i.44 .87
8 1 lUO 50 20 15.2 14.6 342.3 27.3 17.5 1286 23.7 .82 2.45 1.27 1.01
--B--1-.--{/50 50 31:1 18.6 18.1 310.7 27.3 6.3 UZ'3 19.4 .61 . 1.1:)5 .5~ 1.1B,
~ 1 tr.11I 50 20 18.3 17.5 364.2 27.! 7.'1 1237 21.5 .73 2.23 .52 1.78

-U ~g:~ ~~: ~g ~~:~ ~~:~ j~i:~ ~J:~ ~:~ ~;~~ ~~:~ 1:~~ ~.:~~', :~i ~:~g

8 11150 50 211 17.8 17.4 31.3.2 27.3 3.6 1175 19.1 .64 1.91 .17 2.27
A 1 1011 50 lU 16.5 16.5 340.8 27.2 5.3 1315 20.4 .76 1.81 .16 2.34
~ (}rill "II "3n ?O,1 co.n 3u9.(1 2LJ .0 1106 19.6 .9'1 2.CJI) .81 1.89
A 1 100 50 10 16.7 16.0 362.9 27.3 6.9 1322 2?4 .79 2.35 .12 2.33
8 1 100 5U 10 17.1 17.0 368.9 27.3 4.6 1303 22.6 .79 2.38 .14 2.37
r- 1 11."' 50 ~g 19.2 UL9 35h.'1 26.5 2.3 1<'13 19.7 .7(,) 2.:?,) .73 1.')3
A 1 050 50 10 15.5 14.8 298.5 27.2 5.9 1305 18.5 .71 1.89 .302.43
'8 1 IOU 50 3n 16.6 15.8 319.6 27.3 15.6 1192 21.6 .70 2.07 1.62 1.17
" 1 11)(1 I)y 2P. 18.CJ 17.0 ~9'I.l 2e.'1 1I..e H'l(' 17.(, .(,4. 1.97 .35 2.1+5
A 1 050 5U 30 15.2 15.1 248.9 27.2 11.5 1216 16.3 .61) 1.49 .59 2.31
.'A 1 10'1 50 3n 17.4 17.3 319.9 27.2 10.1 1181 19.6 .68 1.91' 1.35 1.52
'8 1 (j')'1 5~' 1'1 t6.C'> ]8.4 41')6.6 ~7.3 .f! I~B5 ~~.6 .6" l.4B .~1 '-.~~
.A 1 05lJ 50 20 15.2 15.1 262.9 27.2 7.8 1246 17.1 .64 1\,"57 .47.2.51
A 1 IOU 50 2U 16.4 16.n 286.6 26.8 8.5 1231 18.4 .65 1.84 .~5 2.70
8.Hlf1185
B.82941.18
8.-oti4~~
8.906098
8.936872
~.f\"'1'1)23
9.380380
9.416463
9 .'+5871.111
9.564598
9.790423
1".151)046
10.186944
11).254878
1 rl.e! 153~5
10.382891
10.4~2095
1 " . 411 ~6 7
10.758608
10.767755
10. 1691fq-ft--
1 0 . 77 81 56
10.952618
11 .8305-9-[,,-
11. 261 944
11.353694
11.42~B2-5--
11.579268
'11.718149
11.06~ft-
.Jl,973924..,
4.91.19110
14.'J['9~
5.339706
5.494118
S.:'35868
5.833895
6.1281138
6. HJ1442
6.296019
6.3"43149
6. 361fl:)Eo!3 
6.374175
6.422812
6. 57B 1-5-fr-
6.651399
6.772597
5.8919'111
6.8rJBB59
6.966463
7.~79'H7
7,362590
7.485043.
7.5::;01310
..7.652:<'60
7.F!54448
T. 11'J~!}~
7.883106
7. 90 r)93.~
P-8

-------
Table P-2 (Cont.)
f} t:J !flll:'t:J 111 1:'.3 1~.8 357.8 27.3 11.113512301 .86
B 1 100 50 20 19.0 18.8 382.4 27.3 4.0 1188 2~.9 .74
B 1 050 50 20 16.6 16.3 286.6 27.3 5.5 1182 18.3 .63
----A-.l ("H' 50 .30 eo.1 lQ.(, .3:.:'.S? 27.S? .6 11~1 18.9 .61
A 1 100 50 30 211.1 19.3 35:2.6 27.2 1.8 1/61 19.3 .64
B 1 100 50 3U 19.7 19.7 370.9 27.3 3.3 1120 21.5 .69
fj 1 19''1 ~t) 3" 17.8 17.'1 A'll.S 27.3 11.3 12.35 22.1 .7Q
A 1 (JIJ[l 5~) 211 19.4 19.2 35~.4 26.5 .0 1206 19.8 .69
B 1 050 50 3u 14.9 14.6 249.5 27.3 7.1 1139 16.4 .61
--&-~~5U 10 16.7 15.') 3(,2.') 27.3 7.0 132f/ 1l2.4 .79
8 1 050 50 10 16.2 16.0 329.5 27.3 4.2 1278 20.1 .74
B 1 V5U 50 3U 16.1"15.8 268.5 27.3 9;1 1151 17.1 .61
~} lOti 50 IV 1-101 16.') 368.') 27.3 4.(, 129" .l2.(, .79
A 1 IOU 50 10 17.4 1701 335.~ 27.2 1.0 131)6 19.3 .71
A 1 050 50 30 17.7 11.8 291.8 27.2 4.8 1160 17.6 .61
---e-r-eijB-59-t0 17.3 17.e 337.8 27.3 .8 12~9 19.8 .71
B 0 050 ~" 10 15.1 14.8 299.7 27.3 5.5 1301 18.9 .73
;"8 0 051.1 ~I) 20 17.8 17.5 31.3.2 27.3 3.6 1185 19.1 .64
A 0 10&-50 It:! 1605-;(,.4 3110.B S?7.2 ~.3 1317 26.5 .16
B 0 UUfJ 50 20 1901 19.1 351.8 27.3 .0 1201 22.3 .67
8 I) 10'} ~o 20 16.6 16.2 342.1 27.3 10.9 1:257 21.3 .75
--,,,,8, 0" 050 5r.. 20 --1 !'7e~-14. '1-- 275 .'6--? 1.~' 1 n. U 11 r:J1 1 e. ~ . 66
B 0 U5U' 50 1U 16.2 16.0 329.5 27.3 4.2 1292 20.1 .74
B 1 Don 50 20 24.8 17.5 315.4 27.3 .0 1193 17.7 .47
--B---l.....(lllf~30--'}G--4-~Hh2-e-99T~3-----I"9--t+~'J 16. -7 .57
.~ 1 100 50 30 14.6 14.9 320.3 27.2 22.U 1241 22.9 .81'
":S' IJ 1J5U bO 211 16.6 16.2 286.6 27.3 5.5 1208 18.3 .63
...--'::A.. 0--1f1U--51}-..1 rJ-l~ .-1--i-5-0f.l----359 .O~2 1 S? 7 1-3frJ-----2--3--0~R4
B I) Oll" 50 111 17.3 17.0 337.8 27.3 .0 1255 19.8 .71
"8 0 10D 50 10 18.5 18.5 432.3 27.3 2.3 1318 24.6 .85
-----A----J' Q5f1 5lL-1-U----:1-~~-QB.2 21.8 '1.0 1297 17.13 .89
A 1 oorJ 50 10 17.3 17.2 328.0 27.2 .0 1298 10.9 .70
"A 1 UIII) 50 10 16.5 16.4 305.8 27.2 .0 1282 18.3 .68
-A-'-il----lQ-j~O--l-U-t-+-.-4---4h-1 .335.5 27 .::' h-4-~').3 .71
A (110') 5U 10 16.2 15.6361.421.8 9.1134221.51.02
-:n u'10r.l 50 20 18.3 17.5 364.2 27.3 7.1 1234 21.~ .73
~t~'.~1JJJ~~e.8 B.e 1236 18.14 .65
A 1 050 50 31) 16.3 16.4 260.3 27.2 6.2 1168 16.5 .59
-S-Y-"i(lij'91131J 15.2 14.7 386.rJ 49.2 14.4 119825.7 .52
--8-i:"'H}rJ-9&-"'~(.I 16.2 16.0 !HIP-.l 4').2 1S?3 1189 e:'.~ .:;fJ
B i'100 90 20 16.0 15.9 407.0 49.2 10.5 1218 25.8 .52
.~ 1 100 90 20 15.0 14.4 386.7 49.2 10.2 \236 25.1 .52
13 0 1011 'JO 20 Ib.t:! 15.8 4rJ7.1') 49.2 16.6 1217 2:;.8 .52
B 1 1011 90 3fJ 18.4 17.9 446.6 49.12 5.9 1157 26.3 .49
B 1 100 90 30 19.5 19.3 479.5 49.2 2.1 1133 26.4 .50
---e-1~~U ~e 26 17.1 16.1 4~5.5 4~.~ 6.4 1~~n ~5.~ .~3
160 RECORDS
~.5~
2.33
1.86.
2.1F1
2.fJ9
2.25
2.21
2.29
1.49
6. 3()
2.13
1.70
6. 71
1.89
1.64
2.18
8.00
7.02
8.64
9.33
9.22
e.!'\4
5.55
1.82
1.80
2.14
6.35
'J.~3
5.57
9.81'3
2.2-3
1.73
1.73
6.07
11.26
11.13
7.Be
1.56
1.46
1. II~
1.42
1.39
5.30
1.64
1.61i
1'.41 .
~
.Al 1.~5 1.1:}',~43J
1.25 1.70 7.984075
.15 2.85 8.037912
.84 2.13 8.fj~1~2B
1.03 2.01 8.151901
1.70 1.34 8.158106
1.67 1.143 R.2~8171
.73 2..34 8.31)41117
.40 2.79 8.38U845
.Sf 2.13 8.11638111
.09 3.13 8.670983
.27 3.13 8.983537
.~'J 2.27 'J.1.'Cl7~:A
.13 3.29 9.097956
.42 3.10 9.256743
.11 3.35 ~.2B~46~
.52 2.34 9.471234
.61i 2.36 9.574462
.72 ~.~o ~.b2~--
1.44 1.37 9.681313
1.39 1.4'~ 9.702')09
1.04 l.e~ ~.77~~50
.34 3.13 10.286621
.24 3.74 10.47Q6hO
. e 5 ;3. 7:) 1 (h-5-3-~69-1-
3.42 .63 10.545875
.65 2.85 10.578013
~ .1-?--h-f)1) 1 fJ . 7~ 1-3-20-
.32 3.35 10.793723
1.63 1.68 11.081492
.2? ~.-97 11.117'168-
.17. 4.18 11.373458
.13 4.30 11.575897
.40 3.~7 11.G059~~
1.37 2.U3 11.728228
2.02 1.42 11.750359
1.33 2.50 11.7'J39~
.33 4.24.._.P ~8q~7.P.L
.45 2.10 6.776973
.43 ~.6G 8.12~2~1
.25 2.84 8.127403
.64 2.94 9.319799
.86 2.6B 16.35b38S
.31 3.76 10.638451
.~3 3.80 10.793113
.17 4.31:} 11.e21~e7
P-9

-------
~~
Table P-3

COMPUTER-SORTED SPEED, PERCENT POWER, AND TOTAL WEIGHTED
EMISSION DATA- 2,400 RPM, ENGINES A AND B (PRINTED FOR SCR < 17)
E C
, .
MP
5FC
NO
SCR
-..\-1 050 1~ 36 15.3 1~lt-l.3 9.9 9.8 134~ 10.7 1.61}
A 1 050 10 20 15.4 14.7 265.2 9.9 9.1 1394 11.1 1.74
B 1 05U 10 2U 15.3 14.7 30n.8 lU.4 9.4 1449 13.3 1.89
~l-~g 1,:) 19.2 18.7 '102.3 9.9 .0 1...52 13.6 2.12
A I 1011 10 20 15.6 14.7 .~37.8 9.9 17.9 1415 15.1 2.18
A 1 IOU 1~ 10 18.2 14.1 412.7 9.9 11.3 1554 16.7 2.29
-S-l n~o 1~4--i-6.2 lC.t) 3111.11 11.t) 6.(, 11138 13.5 1. 74
B 1101) 1U 20 16.3 16.0 381.9 11.0 13.4 1460 11.52.12
B 1 050 10 20 18.4 17.8 366.1 10.2 5:0 1414 15.1 1.95
--8-1-~W-+II 15.9 1'+0+-'+13.1'1 11.1.4 'J.B IS7A 17.~ f.48
A 1 U50 1U 20 16.6 16.7 321.4 9.9 6.4 1442 13.0 1.95
~A l' U5n 10 30 16.8 ~6.5 286.1 9.9 8.0 1364 11.9 1.73
--8-1---4}!tH-}4-;¥r-15.4 111.13 l>63.1 11.S 7.8 13:'7 11.~ 1.48
B 1 1/J1I 10 In 16.5 16.0 424.6 10.7 8.4 1555 17.7 2.41
'A 1 fl5') 10 10 15.4 14.7319.7 9.9 5.4 150n 12.7 2.U9
---A-r--f1)+J--Ht-lt;J 19.1 t8.7 447.0--'?t9 !4.f'J 14~J 11.6 ~.36
A 0 05n 10 10 15.4 14.8 319.7 9.9 5.5 1495 12.7 2.09
B 1 050 10 30 16.2 16.1 273.0 10.4 7.5 1360 12.1 1.61
-A--t--jf)It--t-tt-l-tt-1-To-?-1-fr~O." 9.1;1 !5.4 1~?3 16.1 ?46
B 1 In!) 10 10 18.7 17.9 431.1 In.3 .6 15nl) 16.5 2.23
"A'1 01111 1(1 20 18.3 17.93.'\9.3 In.9 .n 1389 13.' 1.6Q
-:~-1-0~~~-l .
"R I) '.150 10 10 15.3 14.8 :'131,.1) 1n.4 401 1517 p.e 2~nf"
'. A I) "511 '1 'I 2~1 15.4 14.8 265.2 9.9 9.1 1402 11.1 1; 74
. -A- 4}-..1 tH !--Ht-1-4-+&. . .. . .. ..
~B 1 U511 1~ 3'.! 17.6 17.5328.3 10.7 8.11334 4.4 1.'74 4.7~
'A I nOli 1" 2f1 16.8 16.6 284.5 9.9 .0 1391 1.1 1.71 1i.£.1
_~3--~-tJ.5fLl-1L 10 16.5 -l-9-.-tL36».B 11).:3 J.e 1518 1'1.9 2 .1~ .12
A ] (l'lt) 10 .311 16.4 16.5 239.2 9.9 .0 1308 9.8 1.47 3.93
A t 05n IV 10 17.1 16.7 :'177.5 9.9 2.7 1515 14.0 2.23 6.91
.. _: A.- .t --fl01'-11J...?CJ--2IJ-.. 9-19-. b---38~ . 9. '} . 9 134:3 14.0 1. 8A (:,. :33
It. " 050 In 10 17.0 16.7377.5 9.9 2.71510 J4.0 2.2~ 9.92
-A 11 Olin I') II) 19.3 18.7 404.5 9.9 .0 1472 J3.5 2.12 15.66
--- B-I-OOII-IU--3!.l-l1-.8 17.9 288-n-i..q.6 .1=1 131-9-11.'J 1.53 3.78
B 1 o~u In 20 14.7 14.6 245.2 10.4 .0 1377 10.4 1.60 3.60
:8 10')0 lU 10 18.8 11.9426.7 10.5 .0 1501 16.~ 2.17 14.15
-."f.\~-1 (HJ'~--I-j}---ltJ-l-4.t9---t~...-'1--2ffi.J '3.'1 of't--1%fi-1-fJotr-toi'ft- 4..]
A'o 05U 102016.6 16.6321.4 9.9 6.414411 12.9 1.96 13.12
B U 100 10 10 16.5 16.n 4~4.6 111.7 8.4 1556 17.7 2.41 13.88
-!. ft-i--(tttj+-"-1-0- ! e-..-t5..-f)-tiftT-2~1-t"tr;~rr---1"5('j l' 1 ~ ..3 1.9 r-:----4-. i 3
B 0 058 10 2~ 16.2 16.U 31~.4 11~n 6.7 1425 13.5 1.74 J3.61
A 1 onrJ 11) 20 14.7 14.7 2<>4.4 9.9 .0 1341 9.2 1.55 3.58 I
--B..-{t-~5ft-lf}---t-O-~16. A 3/irT";8-t1r;:'I II. 1 1""5"ttrl"4~.t5 1 i . n7
A 1 0,"111 I') ll! 16.4 16.6 341.8 9.9 .0 1483 13.1 2.10 6.26
-A I' Ino lU 311 16.5 16.n 338.2 9.9 16.4 1351 15.3 2.07 5.89
--.:A=i ~ 1 f}fJ-- 2 5--.39-1-6 ~'16-.1--39 3o-9--2-4.&-t~-9--t-3-1 f\ 16. e .9S- .? .,S 1
A 1 IUU 25 20 16.0 14.8 421." 25.6 1~.8 1418 17.6 1.03 3.n5
A 1 Fill 25 20 16.0 16.2 437.9 24.8 11.3 1468 17.9 1.10 12.,79
.....c..A...l-'--fH I H"" 2 f>-M'...~. 4--fl1) r9-4 7~5. " .0 1'*'"1 1 7 . ~ . q 1 !? . A:3
A 1'100 25 31) 15.9 14.7 384.5 2~.8 15.6 1384 16..4 .94 2.83
A 1 U~U 25 30 18.8 18.3 .379.6 25.2 5.2 1339 14.7 .80 ,2.58
--A--1--+O:H~-5--!I}-...t,",'j.7 1'1.1 'IE4.'1 25.4 10.6 ~-24.6 1.22 3.5"
A] lOP 2~ 20 18.1 17.9 459.~ 24.8 4.8 14n7 17.3 .99' 3.'34
. A 1 Ion 25 10 17.(1 16.4 503.1 26.1 8.1 1535 20.0 1.13 3,,67
~t-4rtA-25 2u 15.6 14.7 "08.2 2~.2 11.8 11111'J 17.7 1."'4 2.71
A 1 050 25 10 15.2 14.7 4U8.3 25.4 6.2 1504 16~3 1.06 ~~~6
A 1 050 25 20 21.7 20.0 578.5 24.8 3.1 1406 20.9 1.07 j.~4
RR PP 5T MAFR CAFR
IAR
PO
ER
ET
--------
P-10
11.1'3
4.11
4.01
6.57
5.55
6.39
4.06
5.32
5.80
S.68
5.88
4.71
J.~:Z
5.74
4.95
1.30
9.0U
3.65
7.~9
6~56
4.74
.

1 :~?
CO
.73
.33
.63
.65
1.96
.34
.4~
1.67
1.23
.54
.67
1. .33
.5!1.
.40
016
1.66
, .18
1.02
.511
.44
.47
He
~ . 6 fj 'Jt51-2"B~l-
3.07 9.688702
2.85 9.840997
2.77 HI.'+"2719
1.82 10.962A41
3.34 1]. 05HfJAO
3. ~~, 11 . H,fJ+rt9-
2.3811.587877
2.86 11.8558f\2
3.61 1:!.flI2661
.3.47 12.0385!18
3010 12.379197
4.61 12.4~56i~
3.95 12.538845
4.31 12.621126
2 .4(1 12 . ts-6~t!tttr-
3.94 12.936083
3.8n 13.061334
".mr--I3.25875;?
4.12 13.302582
4.37 13.465459'
4.57
.~.n7

2:46 ~:9~
.56 4.83
.2Q 6.16
.72. 4. Ao
.44 ~.80
14.12 1..311
.~4 4.51
1.87 2.48
.~7 ~.39
.78 5.n?
.26 't.:.'!4
. 1 B---5". 6~
1.~9 3.47
1.~3 ~'Q5

1:~~ ~:g~

,.134 5.89
.'61 ~;7!)
.4n ~.54
4..33 1.83
.20 i~(,
.19 1.63
.14 1.82
.68 1.3!1.
..38 ~.70
.31) 1.83
.11 ~.IJ'+
.30 1.97
.04 ~.35
.22 2.33
.15' ~.58
1.33 1.41
13.51)8':131
h.27:?Q21J
~7ttfJ-5-2-
14.682353
i 4 .8,1 4383
i'I.893~87
i4.91IQaO
15.105524
t 5 .l>6(J5'+~
15.265R18
15.366858
1-50-4-8'J-2-~
15.511263
15.645911
~ 5.n~84-B-
J6.167970
16~q.51255
~6~4573a9
16.492575
16.6')72119
1 n . n 1'~68-r-
16.666786
16~A6R329
, ,-
II . B-'76'f;lItft-
5.435473
, 5.112fJ5?
S.-B4ftt1~f'l-
6..0119182
6.065!'131
i 6 - ~9't69-
I ..
6 r 6.3CHJ6f1
7+051973
7 ~ 213 BCA"'t--
I 7.804089
I 7.81do79

-------
~~
        Table P-3 (Cant.)      
-tr 0 II!>!) .?~ ,3" 1l~.0 .16.2 .J("1.0 i!b.'+ :J..J 1,),),+ 1'+.' . "  ':I.O~  .:>~ 1.~" 7.92:>78~
A 1 050 25 30 16.1 16.1 32?7 24.8 7.1 1 336 13.4 .81 .. 2.00  .OB 2.M 7 .983:~~7
A 1 050 25 20 15.4 14.8 339.5 25.4 6.8 1403 13.4 .87  2.48  .06 2.86 8.025753
-tr-r--t1r., 25 Ifl 19.5 IS~!i2.9 .?5.~ ~.!J J,+7~ i!1}.,+ I.Ii!  .3.,),+  .:1i! i!..J'+ 1:1.1 (jIJb46
A 0 too 25 10 17.0 16.4 5f)3.1 26.1 8.1 1535 20.0 1.13  6.18  d8 2.35 8.131671
A 0 1 (JO 25 :?o 16.0 14.8 421.0 25.6 13.0 1454 17.6 1.03 11.12  .64 1.38 8.281564
EI 1 16fJ 2:' J6 18.4 17.'.1 4:n .'J 1'4.4 b.6 1328 11.1 .lJb  3~nl  . 3 I'!  2.61 e.2~<'fJIJ 1
A 1 050 25 20 16.1:1 16.2 356.1 25.4 4.9 1407 14.1 .87  2.15  . f)7. 3.00 8.303085
A f) 100 25 20 16.0 16.2 437.9 24.8 i 1.4 1457 17.9 1.10  8.37  .65 1.75 8.42<'131
-6-1 11:1" 2:> 16 16.::; 114.7 :'1~.l 2~.4 'J.'J 13!jl 21.3 1.28  3.63  .16 2.82 6.501891
A 1 100 25 20 20.3 18.9 547.8 24.8 6.0 1411 20.9 1.n9  3.36  1.46 1.59 8.524:?11
B 1 1 nr.1 25 20 16.6 15.6 43f1.4 24.7 17.0 1371 2f).0 1.06  3.21  1.79 1.35 8.684971
A (j f;)!3f1 25 11) 17 .2 16.~ ~51.3 "5.3 ~.B 15"7 17.8 1.f!14  ::-,. :'(J  .1'19 ?R6 B.fl3~n7::;
A 1 050 25 lU 17.2 16.4 451.3 25.3 4.8 lf1n4 1 7.8' 1 . f}4  3.4n  .01 3.1.3 8.849390
A 1 000 25 11') 19.8 18.5 523.9 :?5.2 .0 1463 18.0 1.05  3.17  .:?n 3."0 9.n66499
A 1 IHI" 25 (?t:J 18.5 18.0 417.8 ~5.~ .1) 137') 15.~ .R'J  2.13  .fJ3 3.38 'Jol49(J41
A 0 U50 25 20 16.0 16.0 354.7 25.4 4.9 1408 13.9 .87  5.47  .16 2.89 9.224067
A 1 10" 25 30 19. " 18.4 47f).O 25.3 11.1 1314 19.3 .98  3.35  2.38 .99 9.265172
~8 1 LI" ~5--9.-0 1/3.7 17. 9 459.2 ~4.B 14.8 141)3 17 .3 .Ijj~  8.fl1  .83 1.1J1 ~.5~0561
A 0 10~1 25 31J 16.7 16.:? 393.9 25.1 14.4 1:571 17.1 .94 12.99  1.81 .54 9.58!i2:??
A 0 0110 25 10 19.8 18.4 523.9 25.2 .0 14M! lA.O 1.05  6.82  .52 2.57 9.699175
--8--T-+&f~-M--f-50tr-t4 . ~ 416.'J 24.'.1 IIJ.2 1361 21:1 .1 1. '"  2.12  1.69 1.9C! 9.721951
8 1 050 25 20 18.9 17.5 4~6.6 24.9 2.3 1389 17.6 .97  2.97  .23 3.42 9.984505
B 1 050 25 20 15.2 14.7 349.8 ?4.n 6.3 1409 14.7 .93'  2.37  .16 3.57 10.012303
4--\--l}~~~ 1!;. 4 14.7 307.~ 1!5.'+ 6.1! 1333 13.6 .78  1.74  . 1 1 3.1A lB.IIYIf!51
A 0 050 25 311 16.7 16.I 327.1 24.8 7.1 1299 13.4 .79  7.17  .36 2.82 10.1)36872
. B 1 050 25 311 15.8 14.6 3,"39.2 25.:? 9.9 1348 14.9 .85  1.94  .42 3.39 10.'169978
-~ -A-+"ft'H~-T5---rft--2' 1 .~ ~O.3 !:I(J!"J. J '-5.6 ." 14"'" IIJ." 1.1'!~  ~.~~  '-.11 1.5e 10. OIH 636
A 1 050 25 30 20.8 20.8 50B.1 24.8 2.7 1276 18.7 .98  3.10  2.51 1.24 10.133716
A U '-"10 25 20 18.5 17.9 417.8 25.4 .f) 1376 15.2 .89  6.32  .18 3.38 10.747848
-S-1 lun 2a:- 2 9 18.H 17.3 535.5 2'\ .9 9.7 I~A2 22.8 1.1!!!  3.69 .1.78 e.13 16.7517::'8
Bl 100 25 3') 16.4 16.1 351.8 24.5 8.1 1329 15.4 .813  :?07  .:?2' 3.85 10. 77n409
'B 1 10025 10 19.6 17.8 612.6 24.9 2.9 1516 23.1 1.26  3.99  .31 3.5~ 10.8046
-------
~~
~ r~ t~~ 3" IB.tt IB.tJ 421.~ ~~.4
A 1 onn ~~ 20 14.8 14.8 31U.2 25.4
A 0 onll 25 20 16.2 16.0 336.3 24.8
~ 050 f~ f6 1~.2 14.8 34~.8 ~4.6
B 0 1011 2~ 30 16.4 16.0 351.8 24.6
B 1 Don 25 20 21.1 20.5 6"4.3 24.4
'0 0 ~50 25 3u 18.2 17.9 3Y7.& 24.6
B 1 Ol1" 2~ 30 18.1 17.9 375.6 24.4
B 1 Ofl'l 25 10 14.7 14.7 368.2 24.6
A 0 nSq 2S 3~ 1~.4 14.8 366.3 2S.4
A 0 (1511 25 10 15.2 14.7 408.3 25.4
B IJ UP!) 25 20 18.5 17.8 440.2 24.9
--B-t-~SU 2S 1& 1?4 17.B 6Jf.6 f4.~
B U JO" 25 10 19.5 17.8 612.7 24.9
-fi-9.__f'?1,! 25 20 16.4 16.0 339.8 24.4
A 1 ','aP a~J 30 2".9 '-'fl.! 56<).7 'IB.e
A 1 IOU 5U 20 19.2 18.3 607.5 48.6
A 1 IOU 50 30 16.2 14.8 464.0 49.2
1\ 1 14Jl 511 2Q Hi.a 1'1.9 '185.'1 '19.7
A 1 10fJ 50 311 19.6 18.3 567.3 5n.8
-A 1100 50 2U 17.2 16.1562.0 49.5
.....:."~1-1-4H--Q." !O 1".6 15.') 1,')3.6 51'1.1
A 1 100 50 30 2~.8 20.2 614.~ 48.2
'A 0 IOU 50 2n 19.2 18.2 607.5 48.6
---A--+- g"'! f1Q 29 29.& J8.9 68B.'1 '17.!
A 1 01111 50 3[1 2n.7 20.2 569.7 49.1
-:'A 1 HIU 50 20 19.9 18.9 614.5 47.8
"A I' l'j-!"7f) So 21) 18.9 18.~ ::/)3.6 GfI.~
B 1 lun ~o 30 15.7 14.7 516.6 51.1
'A 0 r)ll!I 50 20 20.6 18.8 590.6 47.3
A e 115" 50 2') 18.') 18.2 5~,3.13 ~e.9
A 0 lUu 50 2U 15.6 14.9 485.4 49.7
A 0 160 50 20 19.9 18.8 614.5 47.8
--4-!- (II)':.' ~q 2r) -HI.a J8.11 ~37 .6 4~.1
'A 1 100 50 10 15.9 14.8 529.0 48.8
'A 1 0511 50 30 18.3 10.2 504.5 51.3
~&--1~-5(j!0 16.2 14.') 4614.fJ 49.S?
B 1 101) 50 20 J6.11 14.7 5t>8ol 48.6
'A 0 115') 50 30 20.9 20.3 569.7 48.2
--A--O-~~2'J. 7 2').1 !369.7 4r) .1
A 0 (11,11) 50 20 18.8 J8.2 537.6 49.1
'A 0 Ion 5U 2U 17.1 16.1 562.0 49.5
~~g-&P-'9U-~~'e-. 1 1',. <} II 3fJ. H '18. e
A 1 onp 50 JO 19.2 17.7 644.7 50.1'
A 0 (lftf) 50 1 ro 19.2 17.7 641J. 7 50.1
--&-1--t9'O--!ftfJ-----.!U-i-?,--l-! 16.1 Sf,C,. S ~I). n
8 1 10" 50 20 17.5 16.1 587.1 50.n
'A 1 Jnl) 5tl 10 18.7 l7.6 653.6 50.1
--A -1--f;!f}{J-,sfl--39--1-&-r9-l6-.e' 4~").7 ~A.l
A 0 115'.1 50 30 18.3 18.2 504.5 51..3
13 1 101) 50 30 18.6 17.9 615.1 50.0
--=-A---(l-l"l1 50-1-1)-Hh7---17 io-b530ti-5f} .1
A 0 1Ilfl 5rJ 10 15.9 14.8 530.9 48.R
A U'10U 50 30 19.6 J8.4 567.3 5Q.8
-- '4-1-' -I35-';t--5-tt-~--1--h+-tb-rt--4-e II . 6 4 ~ . !J
A 1 100 50 2U 19.6 18.0 677.5 50.n
B 0 1tW 50 20 17.5 16.0 58701 50.1)
'--A--ft-~~~16.'J 16.2 ~2EJ.1 5fj.1
A 1 000 50 10 15.0 14.8 477.1 48.2
B 0 100 50 20 16.1 14.8 560.2 48.6
-----
Table P-3 (Cont.)
6.1 J.3e6 17.6 .fJ6
.0 1387 1?.r. .82
.0 1~8U 12.9 .83
6.~ 1~"1 1~.1 .EJ~
8.2 1331 15.4 .87
.Q 1364 22.3 1.18
3.7 13fl6 15.'J .6~
.0 12911 14.9 .85
.0 1475 15.0 1.n1
6.3 1338 13.6 .76
6.5 1503 16.3 1.06
. O' 1 37 7 1 7 . 2 . 96
f.9 1~lf ~J.4 l.f6
2.9 1512 23.4 1.~6
5.8 1328 14.5 .85,
1.6 l!el el.1 .57
6.6 1418 22.5 .65
12.~ 1364 19.3 .58
8.~ 1'30 19.6 .63
7.4 1340.21.9 .57
12.7 1373 22.5 .66
15.~ 198e FA.~ .S~
4.1 1311 ~3.2 .61
6.6 1420 2~;5 .65
.ij 1388 21.9 .~e
.0 1313 2U.4 .56
1.2 1401 21.8 .64
2.5 13~5 20.J .51
13.6 1374 22.5 .64
.0 1389 ~1.0 .60
f.~ 1393 FB.3 .~7
9.0 1426 19.6 .63
1.2 1401 21.8 .64
.6 1378 f~." .56
4.6 1517 20.2 .68
3.6 1.326 18.7 .54
1F.~ 13611 19.3 .~a
11.7 14.37 23.8 .72
1.6 1303 21.1 .57
.0 1313 ~e.4 .S6
.0 1378 20.0 .58
12.9 1376 ~~.5 .66
4.6 1395 17.1 .S9
.0 1453 22.8 .67,
.0 1,.5f) 22.8 .67
In.~ 135~ 23.2 .67
7.3 1415 '23.9 .67
1.2 1451 24.1 .70
?O 1200 17.2 .~1
3.6 1329 L8.7 .54
7.0 1327 24.3 .6h
1 . ~ -14-5-2-240 1 . 7 fJ
4.6 1517 20.4 .68
7.6 1338 ~1.9 .57
6.~~.8 .51
1.6 1392 ~4.4 .69
7.3 1414 23.9 .67
EJ.~ 1e1E) 11.e .51
.0 1487 18.2 .66
11.7 1~35 23.8 .72
1~.76 t.~.3 1"1',14.342611
2.27 .11 5.41 14.460940
J.61 .22 4.97 14.611585
1~.O"' .~~ 3.56 14.1EJ~~
9.44 1.12 3.82 15.058178
4.22 3.66 1.97 15.n9.3006
ll.n .f'5 .3.EJ3 15..3~5:!.3ft-
2.64 .15 5.74 15.4923?4
2.57 .22 5.70 15.542468
14.6EJ .5~ ~.1~ 15.6~~~
32.A6 .37 2.27 16.242145
9.41 2.02 3.49 16.419476
16.6l 1.66 J.5!J 16.~47!JEJ1
10.82 1.80 3.5~ 16.447597
,8.50.-_...1.l.L--!hf>5._.1,6.2I8659
1.79 .3F 1.96 6.2~6?58
2.08 .08 2.23 6.3818B7
1.71 .13 2.37 6.745014
1.41 .AS ~.4G 6.7590~8
1.81 .35 2.21 6.911011
1.96 .25 2.34 7.0.36227
1. n .61\ 1. ~6 7.08!JOttT-
2.02 1.16 1.54 7.273386
.5.55 .31. 1.99 7.363451
1.78 .1J 2.G4 7.3?1022
1.76 ..3~ 2.45 7.423135
1.84 .09 2.73 7.585689
1.61 .~3 2.BfJ 7.B30~~4
1.74 .33 2.81 8.341643
5.30 .26 2.46 8.34~970
4.37 .16 l.1J 6.3!J4~
6.71 .22 2.38 8.460115
5.46 .22 2.53 8.4,67468
1.81 .66 ~.45 EJ.321341
1.76 .05 3.52 9.439598
1.50 .09 3.59 9.635689
9.93 .:S~ ~ol6 ,~.1712bt1--
2.08 . .21 .3.50 . 9.873960
8.91 1.24 1.70 9,B94978
7.79 .79 2.~8 9.918~~6
4.45 .14 3.32 9.950287
8.~9 .9~ 2.26 10.27331~
1.37 .12 3.9~ le.~70G24
'2.09 .14.3.92 10.75616.9
3.58 I .1fiJ .3.92 11.243185
1.811 .26 4.~3 11.~G0323
1.8~ .16 4.17 11.344656
2.12 .12 4.2~ 11.466212
, 1.118 .19 ~.f6 11.~~A7~~
6.05 .34 3.59 11.5836B~
1.99 .45 4.02 11.732855
3.6~ .1~ ~.~2 11.~.3tt12~
11.52 .12 3.45 12.305918
10.54 1.9:? 1.87 12.457927.
1.69 .11 4.87 12.EJ4tl352
2.19 .20 4.78 13.081923
6.50 .57 4.08 13.502009
5.~1 .55 4.33 13.7e70~2
l'lO .08 ~~28 i3.895122
12.21 .82 3.3~ 13.941176
-----~-------._.__.-
P-12

-------
~~
Table P-3 (Cant.)
8 1 lOti 5') 31) 20.9 19.3 705.8 50.'1 3.6 1310 25.8 .67 2.28 1.96 3.52 14.251076
A 1 050 50 30 15.2 14.8 396.5 48.3 5.5 1328 15.9 .54 1.49 .17 5.39 14.327869
~ e lUU sa 3A 15.7 1~.7 51&.6 51.1 1!.~ 1313 !~.3 .64 16.43 1.33 ~.54 14.475"36
A 0 100 50 30 16.5 15.9 493.6 50.1 15.6 1304 20.9 .59 10.78 2.72 1.88 14.51)4735
A 0 U5Q 50 20 17.1 16.1 484.6 49.5 7.0 1336 18.8 .57 5.20 .29 4.94 14.586729
A 1 HJIJ :'>9 HI 17.A 16.f:t-553.::' 49.~ 1.2 148~ 1'S1.1 .66 5.13 .08 5.~~ 14.f}3f}~16
8 1 IOU 50 lU 15.8 14.7 595.~ 49.5 4.1 1506 23.4 .76 2.07 .13 5.69 15.150A97
S 0 11)0 50 3U 17.1 16.1 566.5 50.0 (U.9 1356 23.3 .66 9.49 1.30 3.68. 15.161908
B 6 tfHJ ::>', llJ l~.B IB.O bl~.8 5"." 1.6 13E15 2/1.5 .69 7.23 .59 1t.65 15.JC1'},+9~
8 0 IOU 50 30 18.8 17.9 617.6 50.0 7.1 1323 24.0 .66 10.97 1.41 3.57 15.590495
A 1 OUO 50 10 17.0 16.1 551.3 49.3 .0 1483 19.9 .66 1.51 .04 6.16 15.941679
---:':"~JSf:l sa ~'" 15.114.8430.1) 48.l' 4.71461} 11.1 .5~ 11.~1 .5EJ 3.7B 15.96B436
A 1 Oil" 50 30 19.8 18.3 499.9 49.1 .0 1305 17.2 .51 1.55 .07 6.t8 16.076f.14
"B 1 050 50 20 15.5 14.7 51)7.2 50.5 5.4 1407 20.5 .65 1.82 .24 6.06 16.27U6hO
"'A 1:1 e"'1 513 1":1 17.1'1 16.1 S~,1.3 4EJ.3 ." 1~B3 IIJ.~ .ft" 3.12 .,,5 6016 l/'l.43959S
'.'8 1 0110 50 20 19.2 18.0 644.2 51).0 .0 U8!) 23.3 .67 1.85 .18 6.21 16.508142
. A .on 5n lU 17.0 16.0 553.5 49.5 1.2 1485 19.1 .66 8.81 .15 5.44 16.5!'171130
--B- JSfJ Sf! 31) 18.13 la.e 584.2 ::.e.A 3.7 1313 2~.S .62 1.18 .23 b.B 16.6d~5tt5--
A 1 onu 5u 20 15.2 l~.q 409.5 48.6 .0 1382 15.8 .56 1.29 .15 6.49 16.970265
-_~~J...J!.oIL~.'}-..3~!..2.') .~_19..~. ,.9':!'I.1;L5JJ,..JL__..Q_13f)L2_3...6--8_63~..._1 L 98---1.76- 4.62.__,1 9,.I.,Ill,;l.6Jfi..-
--A-4-!-U1 KL 3fJ 16.(, 1(,.1 S8a.? 6~.4 12.4 134623.1 .!'i6 1.6!'1 .21 3.,,3 B.1d~1~5
B 1 lUU KL 30 15.4 14.7 5b2.7 69.1 12.2 1342 23.7 .52 1.93 .50 3.09 9.512159
"1\ 0 100 KL. 3.0 16.,8 16.1 585.3 62.4 12.6 1345 23.7 .56 7.86 .86 2.87 11.584326
--S 1 10" III }(I 17.} lfi 'I fiJe.6 7J.ij 9.8 1317 2&.7 .flg 1.79 .2a '1.119 12.01[1275
'e' 1 IOU KL 2U 16.8 16.5 629.171.0 5.6 1363 25.2 .53' 1.61 .10 5.34' 14.D67432
'1\ 1 lUO KL 20 16.7 16.3 614.7 62.4 6.4 1407 22.7 .59 1.60 .27 5.19 14.104125
-.a CI lYfJ I<.b. Jq 17.~ le,'l €Ide,S 73.0 19.'1 1318 25.7 .50 6.~1 .7~ ~.e~ 1~\2"139~ -
A 0 100 KL 20 16.7 16.3 614.7 62.4 6.4 1408 22.7 .59 4.54 .29 5.19 15.017611
B 0 11)'1 KL 20 16.9 16.5 633.5 71.0 5.6 1365 25.2 .53 4.60 .33 5.18 15.107819
~A 1 10rl I.97 13.96"-,(,137
A 0 lilt} KL 21) 17.3 17.0 645.4 72.0 3.5 1356 25.0 .52 4.49 .27' 5.67 16.154125
'A 1 100 KL 20 15.2 14.9 607.1 72.0 4.9 1426 22.6 .55 1.80 .51 5.79 16.248314
~'g'I"'.' I(L ~g 17.8 17,1 e9S,
-------
~
Appendix Q
EMISSIONS VERSUS SPEED FOR MINIMUM TWE AT FOUR
VALUES OF PERCENT POWER
From the engine emissions data supplied by PRC, the points of minimum total weighted
emissions were determined. These points were at 10, 25, 50, and 90 percent power
at speeds of 1,200, 1,600, and 2,400 rpm. The first step in constructing emissions
contours (i. e., emissions versus percent power and speed) for each of the constituents
HC, CO, and NO - and for total weighted emissions for the case of minimum total
x
weighted emissions, was to construct curves of emissions versus speed for each per-
cent power. Each curve was established by computer-aided curve fitting to give the
perfect-fit binomial. These curves are as shown on the following pages.
Q-1

-------
a: 10
:r:
J
a.
:r:
--
:s
(;) j-
z
9
II)
II)
~
W 1\1
u
....
~
u
W
a.
II)
~
e
sce
1:aee
:aeee
:a:ace
:a'tDO
1ecc
1'tCC
J..6ec
J..SCC
SPEED, RPM
Fig. Q-l CO Vs. RPM at lO-Percent Power for Minimum TWE - Engine A
.a
a:
:r:
I
p..
:r:
~
(;)~
z
9
II)
II)
~
WN
u
....
~
u
W
p..
II)c
SCC
1CCC
1:ace
J..'tCC
J..6ce
J..SCC
:accc
:a:acc
2'tC[]
SPEED, RPM
Fig. Q-2 CO Vs. RPM at 25-Percent Power for Minimum TWE - Engine A
a: .a
:r:
I
p..
:r:
--
:s
(;) ~
z
9
II)
II)
~
W 1\1
u
~
U
W
p..
II)
C
i!5CC
J..CC[]
2'tCC
J..2CC
J..'tC[]
J..6C[]
J..i!5CC
:aCCC
22CC
SPEED, RPM
Fig. Q-3 CO Vs. RPM at 50-Percent Power for Minimum TWE - Engine A
Q-2

-------
.0
12:
:I:
,
P.
:I:
~
O~
Z
o
....
UJ
UJ
SJ
riI N
u
r;:
....
U
riI
P.
UJo
. NOTE: 90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
~~
IIDD
1DDD
1200
1...00 16DD
SPEED, RPM
111DD
2DDD
22DD
2...00
Fig. Q-4 CO VS. RPM at 90-Percent Power for Minimum TWE - Engine A
Ln
12: ..;
:I:
I
P.
:I:
~
Or!
i
9
UJ
UJ
SJ Ln
riI .
U 0
....
fzt
....
U
riI
P.
UJ
o
I5DD
11100
20DO
220D
2...00
10DO
1200
1...0D
1600
'Fig. Q-5 HC Vs. RPM at lO-Percent Power for Minimum TWE - Engine A
Ln
12: ..;
:I:
I
P.
:I:
.......

~r!
Z
9
UJ
UJ
SJ Ln
riI .
U 0
....
fzt
....
U
riI
P.
UJo
SPEED, RPM
I5DD
1200
1...0D 160D
SPEED, RPM
2DDD
22DD
2...00
115DD
1DDD
Fig. Q-6 HC Vs. RPM at 25-Percent Power for Minimum TWE - Engine A
Q-3

-------
~~
Il'I
ex:"':
:z:
I
p.,
:z:
.....
::e
0,..
i
9
en
en
:i Il'I
101 .
U 0
5
u
101
p.,
enO
ex: .a
:z:
I
p.,
:z:
~
o ;to
i
o
~
:i
101 N
u
....
~
....
U
101
p.,
en C
i!!IiCC
,1CpC
1i!!1iCC
Zlt-CC
2CCC
,22CC
1lt-CD 16DD
S,PEED, RPM:

Fig. Q-7 HC VS. ,RPM at 50-Per~ent Power for Minimum TWE - Engine A
12DD
Il'I
ex: ...:
:z:
I
p.,
:z:
~
o ,..
i
9
en
en
:i Il'I
101 .
U 0
....
~
....
U
101
p.,
en C
NOTE:
90% POWER POINT EMISSION AT Z400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
IIDC
. -1DDC
2lt-CD
1lt-CD 16DD
SPEED, RPM
1i!!1iDD
2CDD
22DC
12DD
Fig.. Q-8 HCVs~ RPM at 90...Percent Power for Minimum TWE- Engine A
i!!IiDD
.1CDD
2...CD
12DD
1lt-DD 16DD
SPEED, RPM
1i!!1iDC
2DDD
22CD
Fig.Q-9 NOx VS. RPM at lO-Percent Power for Minimum TWE - Engine A
Q-4

-------
~~
-D'
~ .
:z: .
I
a.
:z:
~
Or
:i
9
~
~
Jz1N
u
....
~
....
U
Jz1
a.
UJc
!iCC
1CCC
1!iCC
2CCC
~2CC
12CC
2...CC
1...CC
.16CC
SPEED, RPM
Fig.Q-IO NO Vs. RPM at 25-Percent Power for Minimum TWE - Engine A
x
~ -D
:z:
I
a.
:z:
~
o :t
:i
o
U;
UJ
~
Jz1 N
u
f;;
t)
Jz1
a.
UJ C
!iCC
1CCC
12CC
1...CC 16CC
SPEED, RPM
1!iCC
22CC
2...0C
2CCC
Fig. Q-llNO Vs. RPM at 50-Percent Power for Minimum TWE - Engine A
x
-D
~
:z:
I
a.
:z:
~:t
:i
o
~
~
Jz1N
u
....
~
....
U
Jz1
a.
UJc
NOTE:
90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
!iCC
1CCC
1!iCC
2...0C
2CCC
22CC
1...CO 1600
SPEED, RPM
Fig. Q-12 NO Vs. RPM at 90-Percent Power for Minimum TWE - Engine A
x
1200
Q-5

-------
~~
.g
III:
:z:
I
p..
:z:
.....
~;f-
:i
9
~
~N
l)
.....
(.,
.....
l)
101
p..
enC
III:
:z:
I
p..
:z:
~
~ ;f-
:i
9
en
en
51 .
101 N
l).
.....
(.,
.....
l)
101
p..
en C
IICC
1...CC
1faCC
1CCC
12CC
SPEED, RPM
111CC
2CCC
22CC
2...CC
Fig. Q-13 CO VS. RPM at lO-Percent Power for Minimum TWE - Engine B
.g
IICC
1CCC
1...CC
16CC
120C
SPEED, RPM
111CC
2CCC
22CC
2...00
Fig. Q-14 CO Vs. RPM at 25-Percent Power for Minimum TWE - Engine B
III: .g
:z:
I
p..
:z:
~
~ ;f-
:i
o
~
51
101 N
l)
.....
(.,
.....
l)
101
p..
en C
lice
1eee
1...ee 16ee
SPEED, RPM
12ee
111ce
2cee
22ee
2...ee
Fig. Q-15 CO Vs. RPM at 50-Percent Power for Minimum TWE - Engine B
Q-6

-------
~
:x:
I
p.
:x:
:i
0.-4
Z
o
....
UJ
UJ
:i
iii
'u
....
r..
....
U
iii
P.
UJc
.a
~
:x:
d.
:x:
:i
0;1-
z
9
UJ
UJ
:i
IiIN
U
....
r..
....
U
iii
P.
UJc
I>:
:I:
rI.
:I:
i
OM
:i
9
'"
.",
~
f,1
l)
r;:
G
f,1
~
'" C
~~
NOTE: 90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
IICC
1CCC
22CC
2...CC
12CC
1...CC 16CC
SPEED, RPM
111CC
2CCC
Fig. Q-16 CO VS. RPM at 90-PercentPower for Minimum TWE - Engine B
IICC
1CCC
12CC
1...CC
16CC
11!SCC
2CCC
2...CC
22CC
SPEED, RPM
Fig. Q-17 HC Vs. RPM at lO-Percent Power for Minimum TWE - Engine B
lice
1CCC
12CC
1~CC
16CC
111CC
2...CC
2CCC
22CC
SPEED, RPM
Fig. Q-18 HC Vs. RPM at 25-Percent Power for Minimum TWE - Engine B
Q-7

-------
~~
=
:I:
I
Po.
:I:
-.
~
an
:i
9
U)
ga
~
fiI
U
....
fzt
U
fiI
Po.
U)
C
IICC
1CCC
1~CC 16CC
SPEED, RPM
111CC
2CCC
22CC
2~CC
12CC
Fig. Q-19 HC Vs. RPM at 50-Percent Power for Minimum TWE - Engine B
=
:I:
I
Po.
:I:
~
an
:i
o
....
U)
~
fiI
U
....
fzt
....
U
fiI
Po.
U) C
NOTE:
90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
IICC
1CCC
12CD
1~CC
16DC
111CC
2CCC
22CC
2~CC
SPEED, RPM
Fig. Q-20 HC Vs. RPM at 90-Percent Power for Minimum TWE - Engine B
= .0
:I:
I
Po.
:z:
~
a :I-
:i
o
~
~
fiI N
u
....
fzt
....
U
fiI
Po.
U) I;]
IIDC
1CCC
2~CC
12DC
1~CC
16CC
1!iCC
2CCC
22CC
SPEED, RPM
Fig. Q-21 NOx Vs. RPM at lO-Percent Power for Minimum TWE - Engine B
Q-8

-------
~~
~
!:I:
:I:
,
Ilo
:I:
~
l:J:f-
i
9
{I)
{I)
~N
u
....
r..
....
u
101
Ilo
{I) C
I!!ICD
1CCC
12CC
1...CC
16CC
11!!1CC
2CCC
22CC
2...CC
SPEED, RPM
Fig. Q-22 NOx VS. RPM at 25-Percent Power for Minimum TWE - Engine B
!:I:~
:I:
I
Ilo
:I:
......
;:g
l:J:f-
i
o
....
{I)
{I)
~
lOIN
u
i;;
....
U
101
Ilo
{I)
C
I!!ICC
1CCC
12CC
1...CC
16CC
11!!1CC
2CCC
22CC
2...CC
SPEED, RPM
Fig. Q-23 NO Vs. RPM at 50-Percent Power for Minimum TWE - Engine B
x
!:I: ~
:I:
,
Ilo
:I:
......
;:g
l:J :f-
i
o
~
~
101 N
u
....
r..
....
u
101
Ilo
{I),
NOTE:
90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
C
I!!ICC
1CCC
12CC
1...CC
160C
11!!1CC
2CCC
22CC
2...CC
SPEED, RPM
Fig., Q-24 NO Vs. RPM at 90-Percent Power for Minimum TWE - Engine B
x
Q-9

-------
~
,p
U)
z
9
U)
U)
~:t-
tiI
i:1
tiI
E-<
~
I;1N
~
~
E-<
o
E-
-------
~~
-II
rn
Z.
o
UJI
~I;f-
!zI'
Q:
~I
61
wN
~
~.
fool
o
foo D
BDD
1DDD
12DD
1BDD
20DD
ji!2DD
2"'OD
1"'DD 16DD
SPEED, RPM
Fig. Q-27 TWE Va. RPM at 50-Percent Power for Minimum TWE - Engine A
.0
ri
;I-
M
N
M
[J
M
!@
9
gj
SII
t.:I
Q
t.:I
Eo<
13
&iolJ
~
~
Eo<
~
;I-
NOTE:
90"/. POWER POINT EMISSION AT Z400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
N
[J
IIDD
1DDD
1200
1...DO 16DD
SPEED, RPM
111DD
2DDD
22DO
2"'00
Fig. Q-28 TWE Va. RPM at 90-Percent Power for Minimum TWE - Engine A
Q-ll

-------
~
1£
9
1
Q
1>1
f-<
5
j;i ,:I-,
~
~
f-<
o
f-< Pol
Pol
ri
1.DD
2DDD
22DD
2...DD
D
ri
II
c
BDD
1DDD
12DD
J,.IfoOD 160D
SPEED, RPM
Fig. Q-29 TWE VS. RPM at lO-Percent Power for Minimum TWE - Engine B
:2/
~.o
~
iii
o
~:I-
G
....
iii
~
~
Eo<,N ,
o
Eo<
II
C
I5CC
1PCC
;1.2CC
1'tCC, 16CO
SPEED, RPM
1,15DC
2CDC
2!2CD
2'tDD
Fig,. Q-30 TWE Vs. R;PM at 25-Percent Power for Minimum TWE - Engine B
Q-12

-------
en
z.
o ,g
~
~
~ \1 :f- .
G
.....
fz1
;;=
~iN
Eo<
o
Eo<
~
II
EJ
BDD
1.DDO
1.200
1....00 1.600
SPEED, RPM
1.IIDD
2DDD
220D
2"'DD
Fig. Q-31 TWE VS. RPM at 50-Percent Power for Minimum TWE - Engine B
o
"
NOTE: 90% POWER POINT EMISSION AT 2400 RPM OBTAINED
BY EXTRAPOLATION FROM KNOCK-LIMITED POWER
POINT.
II
en
Z
o
.....
en
en
~
fz1 ,g
o
fz1
Eo<
G
.....
fz1
;;= :f-
~
E-
-------