Radian Corporation
8409 RESEARCH BLVD. • AUSTIN, TEXAS 78758 • TELEPHONE 512 - 454-9535
FINAL REPORT
VOLUME III
APCO Contract No. CPA 70-45
A STUDY OF THE LIMESTONE INJECTION
WET SCRUBBING PROCESS
CHEMICAL RESEARCH • SYSTEMS ANALYSIS • COMPUTER SCIENCE • CHEMICAL ENGINEERING
-------
Radian Corporation
8409 RESEARCH BLVD.
.
AUSTIN, TEXAS 78758
.
TELEPHONE 512 - 454-9535
FINAL REPORT
VOLUME III
APCO Contract No. CPA 70-45
A STUDY OF THE LIMESTONE INJECTION
WET SCRUBBING PROCESS
Presented to:
AIR POLLUTION CONTROL OFFICE
DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
411 West Chapel Hill Street
Durham, North Carolina 27701
1 November 1971
CHEMICAL RESEARCH. SYSTEMS ANALYSIS. COMPUTER SCIENCE. CHEMICAL ENGINEERING
-------
Radian Corporation
1.0
2.0
3.0
4.0
5.0
2.3
840'1 RESEARCH 8LVD. . P.O. BOX ~~48 . AUSTIN, TEXAS 787S8 . TELEPHONE 512 - 454.~535
TABLE OF CONTENTS
SYSTEM ORGANIZATION.
...............
SYSTEM DESCRIPTION. .
. . . .
.......
. . .
2.1
2.2
Executive Section
. . .
. . . .
. . .
. . . .
Process Equipment Routines. . . . . . . . . .
2.2.1 Function. . . . . . . . . . . . . . .
2.2.2 Coding Procedures. . . . . . . . . . .
S t r earn Ve c tor. . . . . . . . . . . . . . . .
OPERATING INSTRUCTIONS
. . . . .
.........
TECHNICAL NOTE 200-004-17 - A DESCRIPTION OF THE
RADIAN CHEMICAL EQUILIBRIUM PROGRAM USED IN THE
PROCESS MODEL SIMULATION SYSTEM. . . . . . . . . .
SAMPLE INPUT DECK AND PROGRAM LISTINGS
. . . . . .
Page
1
2
2
4
4
5
6
10
16
27
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 7875B . TELEPHONE 512 . 454.9535
1.0
SYSTEM ORGANIZATION
The group of computer programs written and used to
conduct the prototype process simulations are functionally
divided into three parts. Those routines in the executive
section provide control and information on the progress of a
simulation run. The equipment routines perform the calcula-
tions necessary to model the unit process operations. The
auxiliary section is a collection of routines that provides
special calculations for equipment routines, interface other
programs, and summarize the results of a run. This functional
division logically follows from the block oriented design of
the system.
The blocks are the equipment routines, which are
connected together by streams. A stream, or stream vector,
represents the flow of material from one unit operation to
another. Thus, the simulations very much resemble the engi-
neer's flow sheet for the system being simulated. This type
of simulation system is quite similar to many used in the
petrochemical industry.
The following pages contain a description of the
system, operating instructions, a technical note describing
the equilibrium program used by the system, a sample data input,
and program listings.
-------
Radian Corporation
840'1 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
2.0
SYSTEM DESCRIPTION
The simulation system was written almost entirely in
FORTRAN V as defined for a Univac 1108. The deviations from
this language are slight and were done to use particular fea-
tures of the machine available to us. Conceptually the system
could be converted to run on any manufacturer's computer. The
labor required to accomplish this depends on the machine and
configuration to which it is being adapted. The description
that follows is of the major elements of the system. In some
instances it will be necessary to use some of the FORTRAN
language.
2.1
Executive Section
The executive program,
program PROSIM first calls the
does the following:
or more correctly, the driving
card input routine READIN which
1)
reads and prints one card image containing
the run identification
2)
reads a variable number of cards giving the
external equipment number, name, and stream
array. For a card having equipme.nt No. I
(I~25), the six character name is stored in
the array location IDEQP(I), the input
streams are stored in the first five loca-
tions of ISTM(I,j), j=l,...,lO. The output
streams are stored in the last five loca-
tions of this array.
The stream information
-2-
-------
Radian Corporation
8409 RESEARCH 8LVD, . P,O, 80X n48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 - 4S4-9S35
can be input in any order; the output
streams are denoted by a preceding minus
sign. The information on the card is
then printed.
3)
Reads a card image containing the order
of process calculations. This is a
sequence of external equipment numbers
ordered from left to right indicating the
sequence of subroutine calls (equipment
calculations). The numbers are separated
by commas, or a subset may be enclosed in
parenthesis (1,4,7,8), to indicate a recycle
loop. Up to three such loops can be used.
They can be nested or separate. The list is
terminated by an asterisk.
4)
Reads a variable number of card images that
give the equipment number and up to eight
parameter values. For equipment I these
values are stored in PA(I,j), j = 1,8.
Upon furnishing these inputs the next call
is to the routine PRELD which utilizes
each equipment routine. This is where the
source equipment routines read their card
input if any. The next call is to PROCND
where all equipment parameters and inputs
for the simulation are printed in a
stylized fashion.
The routine PROLOG calls each equipment
routine specified in the calculation
sequence until all recycle loops are
-3-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 7B758 . TELEPHONE 512 . 454.9535
converged or satisfied, which occurs when
the flag L3, L2, Ll are all zero, and the
sequence is completed. After all calcu-
lations are complete, the routine PTSUM
is called to print the contents of the
stream vector for all streams used. The
last subroutine called, ARTWRK, prints
outputs generated by equipment subroutines.
2.2
Process Equipment Routines
The technical description of the equipment routines
have been given earlier in this report. The description that
follows concerns itself with how they are used in the system.
2.2.1
Function
These routines perform the calculations of the process
simulation. Normally they implement equations and algorithms
to model the particular process unit operations by converting
one or more input streams into one or more output streams in
a specified fashion. This function is more simply described
by the reaction y = f(x) where x is an input stream vector,
y the output stream vector, and f(.) the functional description.
In multiple inputs and outputs x and yare matrices. The loca-
tion and identity of x and yare supplied by the executive pro-
gram. In some instances, parameters that particularize the
operation of an equipment are necessary. These are read in
by the executive program and supplied to the routines when
they are needed. Thus the preceding relation is more formally
given by y = f(x;p), p being the parameter vector.
-4-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 994B . AUSTIN, TEXAS 7875B . TELEPHONE 512 - 454-9535
2.2.2
Coding Procedures
The calling sequence for each routine is CALL NAME(P,$)
where NAME is six characters long, and P is the parameter array.
The following lines of code are required in the
routine to interface with the executive program.
INCLUDE CMMN, LIST
LOCSL
LIS =
LOS =
= IDEQ(NL)
ISTM(LOCSL,l)
ISTM(LOCSL,6)
coding for process calculations
RETURN 2
END
LIS is the location of the first input stream.
LOS is the location of the first output stream.
Additional input streams if required are found in
ISTM(LOCSL,2-5), and additional outputs are in ISTM(LOCSL,7-l0).
-5-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9949 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
These routines are re-entrant which means that the same
routine may be used to compute another unit operation in the
process having different parameters.
2.3
Stream Vector
The stream vector is not a program, but a specified
array of storage that contains the information transferred
between equipment routines. The locations in the vector are
the same for all of them. In the following table these loca-
tions and what they designate are listed.
TABLE OF STREAM VECTOR LOCATIONS
Number of Element Item Units
1 Name
2 Flag
3 Flag
4 Flag
5 Temperature oK
6 Pressure Atm
7 Heat Content cal/sec
8-9 not used
Gas Phase
10 Gas Flow Rate g-moles/sec
11 S02 Content g-moles/sec
-6-
-------
1-
Radian Corporation
840'1 RESEARCH 8LVD. . P.O. 80X 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
TABLE OF STREAM VECTOR LOCATIONS
(Cont'd.)
Number of Element Item Units
12 CO2 g-moles/sec
13 NO g-moles/sec
14 NO:a g-moles/sec
15 0:a g-moles/sec
16 CO g-moles/sec
17 N:a g-moles/sec
18 HCl g-moles/sec
19 H:aO g-moles/sec
20-30 not used
Equilibrium Species
31 Moles total S02 g-moles/sec
32 Moles total COa g-moles/sec
33 Moles total S03 g-moles/sec
34 Moles total NaOs g-moles/sec
35 Moles total CaO g-moles/sec
36 Moles total MgO g-moles/sec
37 Moles total Na:aO g-moles/sec
38 Moles total HCl g-moles/sec
39 Moles total HaO g-moles/sec
40-47 Not used
Liquid Phase
48 Ionic strength
49 PH
-7-
-------
Radian Corporation
8409 RESEARCH 8LVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
TABLE OF STREAM VECTOR LOCATIONS (Cont'd.)
Number of Element
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Item
Liquid flow rate
Concentration of H+
Concentration of OH-
Concentration of HSO;
Concentration of SO;
Concentration of SO~
Concentration of HCO~
Concentration of CO;
Concentration of NO;
Concentration of HSO~
Concentration of H~S03(t)
Concentration of HaC03(t)
Concentration of Ca++
Concentration of CaOH+
Concentration of CaSOs(t)
Concentration of CaCOs(t)
+
Concentration of CaHCOs
Concentration of CaS04(t)
+
Concentration of CaNOs
Concentration of Mg++
Concentration MgOH+
Concentration MgS03(t)
Concentration of MgHCO;
-8-
Units
g-liquid HaO/sec
g-moles/kg HaO
g-moles/kg H20
g-moles/kg H~O
g-moles/kg HaO
g-moles/kg H20
g-moles/kg H20
g-moles/kg H20
g-moles/kg H~O
g-moles/kg H~O
g-moles/kg H~O
g-moles/kg H~O
g-moles/kg HaO
g-moles/kg HaO
g-moles/kg H~O
g-moles/kg H20
g-moles/kg H20
g-moles/kg H~O
g-moles/kg HaO
g-moles/kg H20
g-moles/kg HaO
g-moles/kg H20
g~moles/kg HaO
-------
[-
Radian Corporation
840'1 RESEARCH 8LVD. 0 P.O. 80X 9948 0 AUSTIN, TEXAS 78758 0 TELEPHONE 512 - 454-9535
TABLE OF STREAM VECTOR LOCATIONS (Cont'do)
Number of Element Item Units
73 Concentration of MgSO,,(t) g-moles/kg HaO
74 Concentration of MgCO s (1.) g-moles/kg HaO
75 Concentration of Na+ g-moles/kg H:ijO
76 Concentration of NaOH( t) g-moles/kg HaO
77 Concentration of NaCO; g-mo1es/kg H20
78 Concentration of NaHC0:3 (1.) g-moles/kg HaO
79 Concentration of NaSO~ g-moles/kg H20
80 Concentration NaNOs (t) g-mo1es/kg H20
81 Concentration of Cl- g-mo1es/kg HaO
82-99 not used
Solid Phase
100 Weight fraction solids g-solid/g total
101 Amount of CaO(s) g-mo1es/sec
102 Amount of Ca(OH)2(s) g-mo1es/sec
103 Amount of CaCOs(s) g-mo1es/sec
104 Amount of CaSOs (5) g-mo1es/sec
105 Amount of CaSOso~H20(s) g-mo1es/sec
106 Amount of CaS04(s) g-mo1es/sec
107 Amount of CaS0402H20(s) g-moles/sec
108 Amount of MgO(s) g-mo1es/sec
109 Amount of Mg(OH)2(S) g-moles/sec
110 Amount of MgCOs(s) g-mo1es/sec
III Amount of MgCOso3HaO(s) g-moles/sec
-9-
-------
1__...-
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX ff48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 4S4-9S35
TABLE OF STREAM VECTOR LOCATIONS (Cont'd.)
Number of Element Item Units
112 Amount of'MgCOs.5HaO(s) g-moles/sec
113 Amount of MgSOs(s) g-moles/sec
114 Amount of MgSOs.3HaO(s) g-moles/sec
115 Amount of MgSOs.6HaO(s) g-moles/sec
116 Amount of MgS04(s) g-moles/sec
117 Amount of Soluble NaaO g-moles/ sec
118 Amount of Insoluble Fly
Ash g-moles/sec
119 Amount of NaCl g-moles/sec
120 not used
3.0
OPERATING INSTRUCTIONS
Each simulation run is determined by data
The data sheets used for generating entries for the
simulations are given in the following table titled
CARD INPUT SEQUENCE.
card entry.
prototype
PROS 1M
First, an array describing the process matrix is
given. The number of the equipment subroutine is given in
columns 1-2. The name of the equipment subroutine is given
in columns 5-10. The numbers of the input and output
streams are given in columns 11-60. A plus sign is used to
denote an input stream and a minus is used for output streams.
These entries were fixed for the prototype simulations since
the process flow arrangement was not altered.
-10-
-------
PROS 1M C~~D INPUT SEQUENCE
Id
Column
Number
Run
tifi
ti
15
20
10
25
30
35
2
4
o
1
PROTOTYPE SIMULATION NO.
en ca on -
l
Eq. No. Equip. Name Stream Numbers
,
Process 1 FLUGAS -1 I I
I
Matrix 2 WTRMKP ~14 ! I
I
3 CLRHTR 1 i -2
4 SCRUBR -3 -6 2 15
5 CLRHTR 3 -4
6 DIVDER 7 -8 -9
7 CLRFYR 9 -10 -11
8 FILTER 11 -12 -13
9 EQMIXR 8 10 12 14 -15
10 OVALMB 2 14 -3 -13
11 FLTRBM 13
12 STKGAS 5
13 PMPFAN 4 -5
<
@ EOF
,
Process 1, 2, 3 (10, 8 (7, 6, 9, 4»"5, 11, 13, 12*
Sequence
,
NOTE:
The number of streams to be specified by each equipment subroutine is
fixed by that subroutine.
J
I-'
I-'
J
~ l 60
FORMAT
(13A6)
-
,
( 12 ,2 X, A6 , 101 5 )
,
(80R1)
,
~
-------
PROS 1M CARD INPUT SEQUENCE (Continued)
Column
Number 0
2
10
20
30
40
50
60
70
80
FORMAT
Equipment No. P1 P2 P3 P4 P5 P6 P7 P8 (12, E8.3, 7E10.3)
Parameters
(CLRHTR) TIGS ~PI
j
(SCRUBR) LSR LISF NSP XLH(CAO) XLH(MGO)
Ii 8.**
(CLRHTR) TISG ~PI
-
'1
(DIVDER) LISR
-
e
(CLRFYR) LSF LSR LFB LWM XSOC
l' 15.** 8.** 13.** 14.**
(FILTER) XWSFB XWSCB XSOF
g
(OVALMB) XA(S02) XA(C02) XA(NO) XA(N02) XO ~PI XLSU(CAO) XLSU(MGO)
- -
I 1d
i
i
, (PMPFAN) POSG XUW
-
11
@ EOF
*
Fixed entries for the Prototype Simulation.
subroutine that requires these input data.
Fixed entries for the Prototype Simulation. These
inputs for the SCRUBR and CLRFYR subroutines.
These numbers designate the equipment
I
t-'
N
I
**
stream numbers are required
-------
PROSIM CARD INPUT SEQUENC~ (Continled)
Column
Number
°
10
zo
30
40
50
60
70
80
Input
Stream
Quantities
FLUGAS VIFG TIFG PIFG !f8E10. 3)
1
YFG(SOZ) (COZ) (NO) (NOZ). ~ (CO) (NZ) (HCL)
- -
Z
YFG(HZO)
3
WILS
4
,
XWLS(CAO) (MGO) (CAC03) (MGC03) ( CAS03) (MGS03) (CAS04) (MGS04)
5
WIFA
6
(INS. FLY\
XWFA(NAZO) ASH . (NACL)
7
XLD(CA(OH)Z) XLD(CAC01) XLD(MG(OH)Z) XLD(MGC03) XLD(MGS04) XLD(NAZO) XLD(NACL)
8
XSD(CA(OH)Z) XSD(CAC03) XSD(MG(OH)Z) XSD(MGC03) XSD(MGS04) XSD(NAZO) XSD(NACL)
9
WTRMKP MIWM(S03) (C03) (S04) (NO.3) (CA -++) (MG-++) (NA+) (CL-)
1 ...
I
.....
W
I
~
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
Next, the sequence of process calculations is given.
This is an ordered list of equipment numbers denoting the desired
calculational sequence. The rationale for the order of calcu-
lations is given in Volume II, T.N. 200-014-19.
Last, an array of process equipment parameters is
listed in the PROS 1M CARD INPUT SEQUENCE. Some of these entries
were held constant for the prototype simulations. That is, the
equipment parameters LSR, LSF, LFB and LWM were fixed entries
for the prototype simulations. Here, LSR, LSF, LFB and LWM are
the stream numbers (8, 15, 13, 14) for the slurry recycle,
scrubber feed, filter bottoms, and water makeup streams, respec-
tively. The SCRUBR subroutine is programmed so that it requires
specification of LSR, whereas the CLRFYR subroutine requires
specification of LSF, LSR, LSB and LWM. Definitions for the
remaining program entry variables are given below:
TIGS
TISG
6PI
LISF
XLH(J)
LISR
XSOC
XSOF
XWSFB
XWSCB
XA(J)
XO
XLSU(J)
POSG
XUW
temperature of the flue gas stream (OF)
temperature of the stack gas stream (OF)
pressure drop (atm)
scrubber feed rate (gal/min)
fraction J hydrating in scrubber
initial value for slurry recycle rate (gHaO/sec)
clarifier efficiency
filter efficiency
weight fraction solids in
weight fraction solids in
fraction of J absorbed
fraction of SOa oxidized
fraction of J utilized in the system
pressure of the stack gas stream at the I.D. fan
outlet (psia)
fan efficiency
filter bottoms
clarifier bottoms
-14-
-------
Radian Corporation
VIFG
TIFG
PIFG
YFG(J)
WILS
XWLS(J)
WIFA
XWFA
XLD(J)
XSD(J)
MIWM(J)
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN. TEXAS 78758 . TELEPHONE 512 . 454-9535
velocity of the flue gas stream (acfm)
temperature of the flue gas stream (OF)
pressure of the flue gas stream (psia)
mole fraction of J
weight rate of limestone
weight fraction of J
weight rate of fly ash
weight fraction of J
fraction of J from LS
fraction of J from SF
concentration of J in
(lbm/min)
(lbm/min)
that dissolves.
that dissolves
water makeup (mg/t)
A sample input deck listing (for PSN #2B) is given in
the first part of Section 5.0. The equipment numbers, equipment
names, stream numbers, calculation sequence, and fixed parameters
correspond to those shown in the PROSIM CARD INPUT SEQUENCE
table. It should be noted that not all equipment subroutines
require input data. Thus, no equipment parameters for these
subroutines are indicated in the PROSIM CARD INPUT SEQUENCE
table. Specification of input stream quantities for the inlet
gas-solid stream (FLUGAS) and for the water makeup (WTRMKP) is
indicated on the last page of the PROSIM CARD INPUT SEQUENCE
table.
-15-
-------
Radian Corporation
8409 RESEARCH 8LVD. . P.O. 80X 9948 . AUSTIN, TEXAS 787S8 . TELEPHONE SI2 . 454.9535
4.0
TECHNICAL NOTE 200-004-17 A DESCRIPTION OF THE
RADIAN CHEMICAL EQUILIBRIUM PROGRAM USED IN THE
PROCESS MODEL SIMULATION SYSTEM
-16-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 994B . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
1.0
INTRODUCTION
The Prototype Process Model Simulation Program
required certain modifications be made to the Radian Chemical
Equilibrium program. These changes consisted of redefining
the inputs, computed quantities, and the addition of a few new
variables. The basic structure and operating characteristics
of the program was not markedly changed.
The following is a technical description of the
modified program.
2.0
PROGRAM INPUTS
The normal inputs to the program are the solution
temperature, the key species, and some option flags. The solution
temperature, in degrees Kelvin, is used to compute equilibrium con-
stants, number of moles of hydrated water per mole, and constants
associated with activity coefficients.
The key species are total moles of the following
neutral species: S02' CO2, S03' N20s, CaO, MgO, Na20, HC1,
and H20. These are the inputs for normal operation; the
optional inputs will be discussed in a later section.
3.0
PROGRAM FORMULATION
The program essentially solves sets of nonlinear
equations. The possible equations solved and variables solved for
are listed below:
Kw
=
aH+aOH-/
YH20
(1)
~aH2 S03
=
aH+aHSO;
(2)
-17-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX n48 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
K3aHSO- = aH-tBSO= (3)
3 3
~aHS04 = aH+BSO= (4)
'*
Ksa Ha C03 = aH+aHCO; (5)
Ks a HC03' = a H+a COa' (6)
~aCaOH+ = a Ca ++aOH- (7)
Kea CaS03 = SCa++BS03' (8)
KgaCaC03 = a Ca++ttO~ (9)
K10 aCaHCOt = aCa++aHC03' (10)
Kll aCa 504 = SCa ++ as 04' (11)
K1:aaCaNot = aCa++aN03' (12)
KspCCaC03 (S)J ~ aCa+taC03' (13)
KspC CaS04 (S) ] ~ h1 (14)
BCa++aSO.f YH:a 0
K CCaS03 (S)J k (15)
~ 2
sp aCa++aSO~ YHaO
Ks p [ Cs ( OH) 2 (S) ] ~ 2 (16)
aCa++aOH-
Kl? aMgOH+ = a Mg++BoH- (17)
K1S aMgS03 = a Mg++aSO~ (18)
K1SaMgHcot = aMg+taHCO; (19)
K;3 0 aMgS04 = a Mg+taSO:= (20)
-18-
-------
Radian Corporation
8409 RESEARCH 8LVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
~ 1 a MgC03 = aMg+;-aCO; (21)
Ks p [Mg (OH)2 (S) J :2 2 (22)
aMg-r+aOH-
Ksp [MgS03 (S)J :2 h:;a (23)
aMg+;-aSO~YH20
Ks p [MgC03 (S) J :2 h3 (24)
aMg+;-aC03'YH20
K24 aNaOH = a Na-raOH- (25)
K:a 6 aNa C03 = aNa+aC03' (26)
K2 6 aNaHC03 = aNa+aHC03 (27)
K27aNaSO; = aNa+aSO:' (28)
K:a e aNaN03 = aNa+aN03' (29)
Where: a. =
1.
y. =
1.
m. =
1.
h. =
1.
y.m. = activity of component i
1. 1.
activity coefficient of component i
molality (mo1es/KgmH:a0) of component i
number of moles hydrated water per mole
of component i
Letting LK be the amount of molecular water in kgms, then the
material balances are written
Tota lS02 ILK
=
mHS03' + mS03 + mH:aS03 + mCaS03
+ mCaS03(S) + mMgS03 + mMgS03(S)
(30)
-19-
-------
Radian Corporation
TotalCO:a /LK
Tota lS03 ILK
Tota 1N:a 06 ILK =
Tota 1CaO/LK
Tota 1MgO/LK
8409 RESEARCH 8LVD. . P.O. 80X 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454.9535
= IDHCO; + mC03 + mH:aC03 + mCaC03 + mCaHCOt
+ mCaC03(S) + mMgHCOt + mMgC03
+ mMgC03(S) + mNaCO; + mNaHC03
= mSO; + mHSO; + mCaS04 + mCaS04 (S)
+ mMgS04 + mNaSO~
(mNO; + mCaNOt + mNaN03)/2
= mCa++ + mCaOH+ + mCaS03 + mCaCOs
+ mCaHCOt + mCaS04 + mCaNOt + mCaC03(S)
+ mCaS04(S) + mCaSOs(S) + mCa(OH):a(S)
=
mMg++ + mMgOH+ + mMgS03 + mMgHCOt
+ mMgCOs + mMgS04, + mMg(OHh (S)
+ mMgC03(S) + mMgSOs(S)
-20-
(31)
(32)
(33)
(34 )
(35)
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 787S8 . TELEPHONE 512 . 454-9535
Tota lNaC! O/LK
(mNa+ + mNaOH + mNaCO;
+ mNaSO; + mNaN03)/2
+ mNa HCOa
=
Tota lHC1/LK
= mCl-
the electroneutrality equation
mH+ + 2mCa++ + mCaOH+ + mCaHCOt mCaNOt + mMg++
+ mMgHCOt + mNa+ - mOH- - mHSO; - 2mSO~ - 2mSO;
- mHCO; - 2mCO~ - mNO; - mHSO; - mNaCO; - mNaSO;
- mCl-
o
=
and finally the water balance equation:
Tota lH2 O/LK
55.50622 + ~(mH+ + mOH- + mHS03 + mHSO;
=
+ mHC03 + 2mH2SOa + 2mH2COa + mCaOH-
mCaHCO; + mMgOH+ + mMgHCOt + mNaOH
+ mNaHC03 - mCl-) + mCa(OH)a(S)
+ mMg(OH)2(S) + ~CaSOa(S) + h1mCaS04(S)
+ h2mMgS03(S) + h3mMgC02(S)
-21-
(36)
(37)
(38)
(39)
-------
Radian Corporation
8409 RESEARCH 8LVD. . P.O. 80X 9948 . AUSTIN. TEXAS 78758 . TELEPHONE 512 - 454-9535
The number of equations and unknowns that are solved
with this program depends upon the number of key species input.
If for example, S03 is zero, then all equations and unknowns
involving this input are omitted from the calculations. If all
of the input species are zero then only the trivial case
involving mOH- and mH+ is solved.
4.0
PROGRAM OPTIONS
A number of options have been incorporated into the
program that modify either the specifications of inputs or
unknown variables. These options are utilized in the process
simulation model and in the analysis of experimental data.
A.
Suppression of Solids Precipitation
This option simply deletes the seven solid species
and precipitation equations from the calculations.
B.
Partial Pressure of SOa
In the basic mode of operation the partial pressure
of S02 is computed after convergence by
P SO;
=
BHa S03 / YHa OKp SOa
where ~SOa is the partial pressure constant
However, there is an option where PSO; may be
specified as an input and the program computes mHaS03 and
NT SO;
-22-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 . 454-9535
C.
Partial Pressure of CO2
for CO2.
The same option as is discussed in (B) is available
These two may be used separately or together.
D.
Weight Percent Solids
The fraction of solids in an aqueous solution is
given by
Xs
=
W£ s + WN £ S
WN T + WN £ S
where
WES
WN E S
WNT
=
weight
weight
weight
equilibrium solids
nonequilibrium solids
total input species
=
=
For this option, the weight fraction of solids, Xs,
replaces NTH 0 as an input. The constant WNES is also input.
2
Since WE~ and the unknown NTH:aO are functions of the molecular
water LK, this option merely replaces equation (39) with the
one given above. After convergence the total moles of water
is printed.
E.
Specified pH
Normally the pH of the solution is computed and
printed after convergence; however, an option is provided to
specify the pH of the solution. Since this eliminates one
unknown, the e1ectroneutra1ity equation (38) is not used in
the calculations. It is computed after convergence to give
an error estimate o.f the size of unknown species that might
-23-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 994B . AUSTIN, TEXAS 7B75B . TELEPHONE 512 - 4S4-9S35
be present in the solutions.
in the analysis of test data.
5.0
This option is used primarily
OPERATING INSTRUCTIONS
A.
Calling Sequence
B.
Arguments
CM
CM(l)
CM(2)
CM(3)
CM(4)
CM (5 )
CM(6)
CM(7)
CM(8)
CM(9)
CM(10)
x
NS
CALL SOLNEQ (X, NS, CM, PP, TK, IOPT)
=
An array containing the initial guesses
for the molalities, when the routine
returns X contains the solution.
=
1, No solids are considered in the
solution.
0, Solids are computed.
=
=
An array containing the input moles.
Moles of S02
Moles of CO:a
Moles of S03
Moles of N:a05
Moles of CaO
Moles of MgO
Moles of Na:aO
Moles of HCI
Moles of H:aOor weight fraction of
solids (Xs)
Moles of WNES, or pH
=
=
=
=
=
-.
=
=
=
=
if CM(I) = 0, then variables and equations are
deleted from the solutions.
-24-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 - 454-9535
PP
PP ( 1 )
PP(2)
TK
IOPT
=
An array containing input partial pressure
pSO~ (atm)
pCO::! (atm)
Temperature (Kelvin)
o Use CM(l) and CM(2) as inputs, compute
PP(l) and PP(2).
1 Use PP(l) and CM(2) as inputs, compute
CM(l) and PP(2).
2 Use CM(l) and PP(2) as inputs, compute
PP(l) and CM(2).
3 Use PP(l) and PP(2) as inputs, compute
CM(l) and CM(2).
4 Use CM(9) = Xs and CM(lO) as inputs,
compute H~ O.
8 Use CM(lO) = pH as an input, compute
the error in the electroneutrality equation.
=
=
=
=
=
=
=
=
=
C.
Diagnostic Messages and Error Stops
If the number of equations does not match the
number of variables, the routine exits via CALL EXIT.
D.
External References
There are two routines subordinated to SOLNEQ:
6.0
REFERENCES
CTEMP
NOLIN
The description of the equilibrium program may be
found in Volume I, Section V of Radian Corporation Final Report
-25-
-------
Radian Corporation
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 78758 . TELEPHONE 512 - 454-9535
for Contract CPA 22-69-138, "A Theoretical Description of the
Limestone Wet Scrubbing Process", 9 June 1970. The equilibrium
constant and activity coefficient formulation is also given
there. Radian Technical Note 200-004-02 discusses the activity
of water.
-26-
-------
Radian Corporation
5.0
8409 RESEARCH BLVD. . P.O. BOX 9948 . AUSTIN, TEXAS 787S8 . TELEPHONE SI2 - 454-9535
SAMPLE INPUT DECK AND
PROGRAM LISTINGS
-27-
-------
-2
-b
-4
-l;
-10
-12
10
14
I
""
00
I
275.
.14~
SAMPLE INPUT DECK LISTING
2
1':'
al{>J xQT PROS I M
PROTOTypr SlMULftTIUN NU. 2-8
] FLUGAS -1
2 ~ HP~!'jb
4.5l-Q
5.E-5
1.45br-,1
.'1
.4
.55
.jS
.2
. u,
.5
.U~
.4
.je;
HE-MOTE SlOP
@~ **************************
.288
u.
.4
.35
.75
.7425
.4
.35
.75
o.
****************************
-------
(H FOR ARTW RK
SUBROUTINE ARTWRK
INCLUDE CMMN,L 1ST
DIMENSION LB(4)
o U A L B ( 1 ) I ' R E He: U . I L B C 2 ) I 'E R
'/L8(3)/'COCLER'/L~(4)/'
C
I
N
\0
I
WRITE(6,100)
C~lL D~TIME
WRITE(6,10U LABEL
WRITE«(;,20C)
WRITE(E,3GO)
WRITE(G.400) PRD(99),PROCIOO)
WRlTECG,500)
15=1
lRO=97
DO 1 I=lt2
W Q I T E ( 6, 6 a (I ) L B ( IS ) , l 3 CIS.. 1 ) , P PO ( I ~!) )
15=15+2
!QO=IRO+l
1 CON T I NU E
100 FORMATClHl)
101 FORMIHClH+,45Xtl3A[:,)
200 FORMAT(45X,' EQUI~~fNT OUTPUTS'/)
300 FORM4T(lOX.'I.D. FAN POWER qEQUIEMENTS:')
400 FORMAT(lOX,'HORSEPOWER =',lPElO.4,4X,'KILO~ATT~ ='tlPflO.4)
sac FORMAT (lOX. 'COOlEQ/R[HEATER:')
£) 00 FOR M H (l H ,2:" x tA 6, A 2.' H EAT au T Y =', r 1 (I. 2, . C 6. L / S [C q
R ET UR N
END
. /
-------
5USROUTINE ~ST~R(X.o~QTll
C [[[
c. THIS QOUTINEMUlTIPL!ES TYE OEqIV~TIVE MAT~1X 8Y ITS
c.. TR4NSPOSE A"W THEN ,O::;CAlE5 THE. PRODUCT
C ......................*............................................
COM~O~ IGRAD/POtSO,5QI,AS(SO,SOI,SQ(5Q)
CO~MON ILPtS/NF
OOU 9LE PRE CI5 ION SU ~
OOUalE PRECISION PD.4S,SG,X
DIMENSION X(I)
C
CALL PAP-TLU)
DO 1 I=ltNF
SUM=O.
00 2 K =It NF
SUM=SUM+PDtK,I).PO(K,IJ
2 CONTINUE
S Q( I )=SQRT (SUM)
IF"(SQ(I).LT.l.E-4) ,Q(!)=I.f:.:-4
A$(1,1)=I.
1 CONT INU E
c
I
W
o
I
NFl=NF-l
DO 3 I=l,NFl
JS = 1+1
00 4 J=JS,NF
SUM=O.
00 5 K=l,NF
SU~=5UM+PD(K,I).PO(K,J)
5 CONTINUE
-------
5\1 FOR CLRFYR
SUBROUTINE CL~FYR(P,S)
C .*...*.*.*..*.*.*.*.**.*..*.
C * THIS ROUTINE ACTS.
C * A SOLID-LIQUID.
C . SEPERATOR *
C *.*.*.*..*....*.......*.*...
I
(.,.)
I-'
I
I N C L U DEe M M N , L IS T
LOCSL=ISEQ(NU
LIS=ISTMCLOCSL,I)
LOS1=ISTM(lOCSl,6)
L 05 2 = 1ST ~ C l 0 CS l, 1)
LSF=P( 1)
LSR=P(Z)
LF8=P(3)
lWM.=P(4)
KEY 1 =SV (LOSl, 2)
IFCKEY1.NE.O) GO T0 1
PRO ( 28 ) = (1 .- P ( ~,) ) . 1. J o.
RETURN 2
1 CON T I NU t:
S V ( LOS 1, 5 ) =5 V ( L (' S 2, ~ )
'::; V ( LIS, 5 ) =s vel OS 2 t r: »
SV (LOS 1, 4'3)=S'J (LOS?, tI ~»
SVCllS,49)=5vclOS2,49)
SVflIS,48)=SVfLOS2,42)
SVflOSl,43J=SVflOS2,43)
r
'-
00 2 1=51, Bl
S V C l 0 S 1, I ) =5 V C l OS 2, I )
S V C lIS, I ) ='5 V C l OS2, 1 )
2 CONTINUE
c
SVCLI5,SO)=SVCLSF,50)+SVCLFg,SO)-SVfLWM,5C)-SVClSR,SG)
SVCL051,SO)=SVClIS ,5~)-SVflOS2,50)
c
XWS=SVfLOS2,100)
R 3=XWSI f l-XWS)
R 1 = C R 31 C 1.- PC 5 ) ) ) . C S V (L 052, ~ 0 ) 1 S V ( LIS, 50 ) )
R2=PCSJ.Rl.CSVflIS,50)/SVClOSl.50)J
XWSF=RI/Cl+PLJ
SVClIS,lOO)=XWSF
-------
I
W
N
I
XWS l=R2I (1+R2)
SV(lOSl.lOG) =XwSl
(
D05I=lGl.119
S V ( LO S 1. 1 ) = ( (X W S - X Wt) F ) / (X W SF - J( 1.01 S L J ) . (X W S l/ J( WS
SV (LIS, I) =SV (LOS 1.1) +5V (LO<;2. I)
5 CON T I NU E
c
C~ll TOEQSP(lIS)
C~ll TOEQSP(LOSIJ
PET!J~N 2
(NO
)*SV(LOS2.IJ
-------
iiJI FOR CLRHTP
SUBROUTINE CLRHTRCD.$)
C *..****.*.*.**...*.*..*..****.*..*
C * THIS ROUT INE S 1MULH':S ~ *
C * HEAT EXCHANGfR .
C ....*.***..*...****.****..........
INCLUDE CMMN,L 1ST
c
I
U)
U)
I
LOCSV=ISEQINU
LIS=!SHHLOCSVd)
LOS~ISTMCLOCSV.6)
KEY l=SV CLOS, 2)
IFCKEYI.NE.OI GO Tn 1
IRO=91
!USE=IUSE+l
!FC ruSE.NE.l) GO TO 3
PI?O(30)~PCU
PRD{f,2)=D{Z)
GO TO 4
3 PRD(3l)=PCl)
PROCE,4)=P(2)
4 CONTINUE
RETURN 2
1 CO "l T I Nt) E
SV(LOS,5)=(~(l)+459.b88)/l.3
SVCLOS,6)=SVtLIS,6)-DC2)/14.£9S
0021=10,120
S V t l 0 S , I ) = S v ( L IS , I )
Z CON T r NU E
C~LL OHGSCL1S,Hl)
C~LL DHGSCLOS,H2)
SVClOS,7)=H2
SVClIS,7)=Hl
Q = H 2- H 1
PROCI!~D)=Q
IRO~IqD+l
RETURN 2
END
-------
o)! FOR CONVCO
SUBROUTINE CONVCOeX,y,va,s.IL)
c
IFCIL.NE.O) GO TO
X O=X
V O=y
X =X 0+ (y a-v )/5
IFeX.LT.O.) x=o.
R ET UR N
1 CONTINUE
SL= (v-YO)I ex-xo)
x I=X
X=XQ+(yA.-YOJ/SL
Y o=v
x 0 =X 1
R £T UR N
END
I
v.J
~
I
1
-------
OI! FOP CO NV S 0
SUBROUTINE CONVSO(X,XMX.XMN.V.VMX.YMN.VO,IC)
C
I
l/..)
V1
I
DV::Y-YO
IFIIC.EQ.OJ XG=X
If(4BS(l-X/XOJ .LT.l.f-3)
X o=x
I f ( 0 Y J 1. 2. -3
1 IF(y.lT.VMNJ GO TO 4
V MN =Y
X MN =X
IN=IN+l
IP=O
GO TO 5
4 X=.'3*X
GO TO '2
? 1 f ( Y . GT . Y MY) GOT 0 S
V MX =Y
X M)( =X
IP=IP+]
IN=O
GO TO 5
€ X = 1 . 1 .X
GO TO 2
1 CON T I NU E
IfCIC.EQ.OJ GO TO C,
SL=IY 1-Y)1 ex I-XO J
8 CONTINUE
1C=1
X =X O-OY 15 L
IF ( 4 e S ( I .- XI X 0 J. 5T .1 .1:- 2 J
Y 1=Y
X1=XO
X O=X
GO 10 2
5 Sl=fYMX-YMN)1 (XMX-XMN)
X=(YO-YMN)/Sl+XMN
DX=X-XO
S l :: r y - YO) 1 r X 0- X )
lC=lC+l
If(LC.EO.4J IC=C
X 1 =X
GD TC 7
x=rX+XOJ/2.
-------
2 RETURN
END
I
VJ
0\
I
-------
SU8ROU' !NE C"fMp-oK)
CO~MON /PPPESS/PK(2I,LI,l2
COMMON/FUNC/ F( sa), C\( (50) ,CT ( 10 ~
COM MON/T E MP( P/ 4C, 3 C, CPK ( 2) ,N HY (5), W S (10)
OI~ENSION A( 31), B( 31" CC 31 It D( 31), l3 «(,2), (K2 5( 31)
DO~8LE PRECISION F,CK,CT
DATA (lB(!I,I=I,60J/'H20 ',I ','H2S03 ',' ','HS03 ','
I ','H504 ',' ','H2C03 ',' ','HCD3 ',' ','CAO
2H+ ',' ','CASO~ ',' ','C4C03 ',' ','CAHC03','+
3','C4504 ',' ','CANC3+',' ','C4C03(','5) "
4C4504(',''5) ','CAS03C','$) ','CtdOH)','2(S) ','MGCH+ ','
5 " 'M G S 03 ',' , , . M G HC 0 3 " '+ " ' M Ij S 0 4 ',' , , ' M G C 0 3
G',' ','MG(OH)'.'2(~) ','MSC03(','S) ','NAOH ',' ','
7NAC03-',' ','NAHC03',' ','NASO,+-',' ','NANO: ','
a ','PP(S02', 'I ','PPCCOZ', ') '/
OAT A (EK 25 CI It I= It 3 Q ) I .1 C 129 [- 1 3, .1 2 <3 5 7E - S I, .~..?:' G 7 [- r; "7,
.10396£-01, .44513£-06, .4b811f-10, .42229£-01. .393sq~-G~,
.6299;(-03, .55002£-01, .489G9f-C?, .484350 , .48so~E-08,
.24000E-04, .840014£-07, .56287[-0:;', .21;001£-02, .119Q7[-O?,
.110010 , .56f3EE-02, .39999(-03, .12552(-10, .21500[-04,
3.715140 , .5400ZE-Ol, 1.77830 \, .IQC?40 2.511QO,
1.21580 , .34215£-01/
OHA CI\CUtI=I,3C) I 4471.G , -843.67 ,
47'5.1~ , 3404.7 , 2902.~ . -273.00
.. -415.48 ,- 301.85 , 2572.1
4944.0 , .00080 , 765.60
.. -235.08 ,-lG57.Q -504.80
.00000 ,-303.41 .GOOOQ
. -1370.0 , -1015.0 /
DATA (BCI)tI=I,30) I .GOOOD .
.00000 , .aGoon , .00000
.00000 , .ODOOO , 23.15C
37.7145 , .OQQOIJ , 4.470£-7 ,
.00000 ,.oooes .00000
.00000 , .C8G10 . .00000
I
~
-...J
I
..
..
..
..
.
.
..
.
.
.
.
*
..
.
,
,
-12US.O
- 51 7. 99
,
,
- 48 f!. 85
- 24 1.00
.00000
,
.CCJCO
.0:;.:00
,
.
,
.0 co 00
.0 co 00
.CDJQO
. .00000 , .OGSGQ /
OAT ~ (C (! ),1=1,30) I . 1705[-81, .OGoea ,
. . 18222E-01. . 3278f,E-Ol, . 2 3 7'3 E - r; 1 , . eGG 00
. .00000 . .OOJG'J , .00000 , .00000
. .00000 , .08000 , .SI7124C; , .se.JOO
. .00000 , .OGoca , . DC 00 C , .0 [;008
.. .00000 , .coaoe , . ::8 co Q , .OCCC-Q
-633.~4 ,
- 504 . ~ C
-F,f,C.O
-432.50
-955.11+
,
.OGCC10
,
. ceooo t
, . 80!:f1 0
, .oocoo
.00(;80
.CO~'jO
.002SS
,
.OCOOO .
.00800
,
.OOG';O
.OIJ1CO
.oo~r;c
,
.DorO~)
.
,
,
,
,
,
,
,
,
,
,
,
,
,
,
-------
I
W
(»
I
.00000 . .oooer
DATA (OfIhI=1.30J 1
5.0435 , 14.B43
. -4.1954 , -2.212'J
105.36 . -1.0751 .
* -1.1410 . -5.7950 .
.5100G . -2.2352 ,
. -4.5100 . -4.8100 1
OAT A WS ( 1 J /74. 10/ WS (2 J /100 . >J 91 w S ( 3) / 12 (}. 141 W S ( 4)/ 1 2'J .14/W S ( r., )
*/58. 34/WS (1J/Btt. 33/
OA1A A(31)/802.2ID(31)/-l.~g3/Lt3(£1)/'MGS03( '/Le(62)/'S)
OUA EK25(31)/5.3212[-5/
.
1
G.DS7S ,
. s .4 98 a
03.&00
2.424
-5.091;)
. 2 5 00 C
,
-4.7171
-3.332C
-5.0<:>10
-13.P"~O
,
.
-
.
- 2-. zqao
-4.4"00
-4.~,223
,
,
,
-4.3715-
-7..3710
,
"
,
,
-J?314
,
- 1. :290
.40C~O
"
,
,
'/
C
100 FOR M H ( 1 HI J
101 FORMAT C9X. A6,A4, 6( 11'(10.4, ~'X J)
102 FORMATC9X, 'REACTANT KC25 o',sx,'xnEMP)', lCX,'~',14X,H~',lL.X,
.'C', 14X. '0'/)
103 FORMAT(44X, 'EQUILIBRIUM CONSTANTS')
104 FORMATfI/,2IX, 'THIS pqOGRAM DEVELOPED BV R&.DIAN COR? UND~P NAPCAI
.HEW SPONSORSHIP')
107 FORMATC3SX, 'TEMPERATURE',F10.3,' OfGRETS C'//J
108 FORMATfl17X, 'HYDRA.TES IF PPECIPITATEO ARE MGC03*',I1,'H20.MGS03-'
., II, 'H 2 O. CAS 0 3. ( 1/2 J H20' )
109 FORMAT(IH+,81X,',CAS04.2H20')
C
IFCTOLD.EQ.T~) RETUI?N
TC=TK-273.1f.
WPITE«(;,lOO)
WRITE( (,107) T C
WRITEC6,103J
WRITEC 6,102)
T C2=TC-TC
DC = 87. 74 Q- O. 4000 8*T C +9 . ~ 98 (- 1+ *T C 2- 1. t; 1 Sf - 6.r C2 -T C
&.C=1.8246E6/ COC*TK*SQRTCDC*TK»)
AC=2.3026*AC
8C=50. 29/SQPT C OC.TK J
C
DM=2.3025BS1
DO 11=1.28
CK(!J=OM*(-4CIJ/TK-gCIJ*ALOG10(TK)-CfI)*TK+OCI»)
IF C I . E Q. 14 . AND. T C . G T .4 {j. t r. K ( 1 1+) =D M - (- 70 1 . 811 T K- 1 . 72 E 8 E - (, . 1\ LOG 1 0 CT
.KJ-.0195S66*TK+3.7175J
IFCI.NE.23 ;0'0 3
-------
I
v.>
\0
I
CK(29,=mh(-n,«3U/TK+0(3l) J
1 F ( T C. G T . 38.) CK ( 2 q ) = I) M * ('35 5 .2/ T K- 7. 1'35 J
EK=£XP(CK(29J)
W R IT£: ( 6. 101) L P. ( € 1 ). L? (62) , F K 2 5 ,( 31 ) , r K . ~ ( 31) . -3 ( 31 ) , C ( 3 1 ) . D ( ~ 1 )
3 CONTINUE
EK=EXP(CK( I) J
15=2*1-1
W R 1 T [ ( 6, 1 01) L S ( IS ) , L ~ ( IS + 1 ) . E t< 2 5 ( I J , f K, A ( I ) t 8 ( I ) . C ( I ) , D ( r )
1 CONTINUE
c
0021=29,30
TE~P =D~*(-A(I)/TK-8(I).ALOSI0(TK)-C(I)*TK+D{I))
EK=EXPCTEMP)
J=I-28
CP!«JJ=EK
15=2*1-1
WRIT ( 6, 1 a 1) L 8 ( IS ). L 8 (IS + 1 ) ,E K 2 5 ( I) . E K, A ( I) . B ( I) , C' ( I) , D (I)
2 COt.JT INU E
N HY ( 1 ) = 2
1F(TC.6T.40.) NHY(l)=O
NHY(Z,=S
IF(TC.GT.25.) NHY(Z)=3
NHY(3)=6
IFfTC.GT.38.J NHY(3)=3
W5(S)=136.14+NHY(1)*18.01G
WS(8)=84.33+NHY(Z)*18.016
W5(3)=104.38+NHY(3)*18.015
WRITE(6,108) NHY(Z',NHY{3)
IF(NHY (1) .NE.OJ WRITF(6,109)
WR1TE(6,104)
TOLO=n<
RET URN
END
-------
iilN FOR DELTA
SUBROUTINE DELTACDFlT,XlJ
C **...**.**.*.*........*.....*.*..*.............*.*.*...............
C * THIS ROUTINE FINDS THE COQq[CTION VECTOR
C ............................*............*....*......*....«........
COMMON /GR40/PD(50.S0),ASC58,5Q).SO(:~J
COMMON /RESIO/ GS(51)
COMMON/FU NC/ F (SO). r.1< C SQ) ,(T CIS)
COMMON /LIMS/NF
DOU3LE PRECISION A.~.DETRM
D OU 9l E P R £: CIS 10 "'J PD. AS. S (j. FS .0 f L T
DOU3L£: PRECISION F.(~,CT
DIMENS!O"J A(50.50),3C5G.l),DELTCl)
c
I
~
o
I
AM=lO.
DO 1 I=ldiF
BfI.IJ=O.
B C I . 1 ) =GS C T)
00 2 J=ltNF
AfI,J)=O.
AfI,J)=ASCI.J)
2 CONTINUE
1 CONT! NU [
c
00 3 I=ltNF
AtI,It=ACI,!J+Xl
3 CONTINUE
c
(' &. L L M AT IN ( A ,N F, 8. It [! E T ? M )
c
AMAG=O.
DO q I=ltNF
DElT( IJ=3CI.1)/SQC!)
AMAG=AMA5+0ELTCIJ*DELTCI)
14 CON T I NU E
AMAG=SQRT C AMAG)
IFCAMAG.LT.AM) RETU~N
DO 7 I=ltNF
DELTCI)=AM*OELTC!)/AMAG
7 CON T I NU E
RETURN
END
.
-------
a! FOR DHTOT/S.DHTOT/S.DHTOT/R
SU8ROUTINE DHTOT(L.OH.IFLAG)
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
C
C
I r
~ "-
I-' C
I
C
C
C
C
r
"
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r
'-
....*.....*...*................*******...*............*.*.........
.
.
'::NT H b.L?Y .
THIS SUBROUTINE CAlCULft.TES THE t"NTH4.LPY OF 4. G/!'S-SOLIO-lIQUtO.
STREAM RELATIVE TO SOME REFER£NCE STATE. THE q..n:RENCE *
TEMPERATURE WIll ~r T4.KEN A,S 25 C (298.15)., AND THE *
REfERENCE OF El!:"MENTS 4ND H+ HAVING ZERO ENTH4.LPY WILL.
9E TAKEN. THE ('0MPOSITIONS AND AMOUNTS or EACH ?H~SE API:" *
TAKEN AS KNOWN. THE NECESSAIH THERMCCH[MTCAL DHe. ARE TAKEN.
FROM THE LIWS DUA BASf. THE SUBPOUTINE IS WRITT£N IN T;:::RMS .
Of THREE PARTS-ONE WHICH CALCULaTES THE ENTHALPY OF THf GAS.
PHASE. ONE WHICH CALCULATES THF ENTHALPY OF THE SOLIn- .
PHASE ,AND ONE WHICH CALCULATES THE ENTHALPy or LIGUlD PHASE..
.
*
.
.
.
.
.
*
*
.......*............*..*.*.*.**.****.*..***...*.**.**....*.**.*.*.
[ NT RY OHG(l.DH)
E NT RY DHL(l,DH)
E NT =ty DHS(L.QH)
E NT RY DHGS(L.DH)
E NT RY OHSL(l.OH)
E NT RY OHSLG(L.OH)
- T HIS £ NT Rye 0 M PUT E S [,4 SENT HAL P Y PH 4 S E ( 0 H )
CNLY,FOP L T~ STREAM (!FlAE=l )
-T~IS ENTRY CO~PUTES LIQUID ENTHALPY PHASE
{DH)CNLV,FOR L TH STPfAM (lFLAG=2 )
-THIS ENTRY COMPUTES ~OLID ENTH~LPY
(OH) CNLY.~OR L TH ST;~fAM (IfLD,G=3
PHIISE
)
- T i-iIS ( N P
-------
I
~
N
I
(
C
C
C
I FL 46
-IF 7NT~RED T~~GU3H 5T~NO~RQ ~NTRY,V~LU[
OF TFlA~ OfTfo~YNE5 CO~PUTE OPTION as
INDICATF':O A?CVf.
INCU.JDE LC~N,l 1ST
INCLUDE Cf'o1M~,lIST
c
c
REAL NGS,NW,MW,MI
c
,.
"
non INE
1
2
OOfF IN E
1
DEFINE
DOEF INE
1
2
on)
:: ~7.740 -.4GSC3*(T-273.1E)
+9.3~&£-4.(T-273.1f)..2
-1.410::-£..(1-273.16) .*~
:: -.QCOiJ8 + 1.g79t~-3*(T-.27;.lE)
-4.23€-& .. (T-213.1SJ*.2
:: DDT (T ) I D CT J + 1. GI T
:: +.9'39952f.?
+.4672E61~[-u ..
-.74105074r-~ .
+.41073583[-7 .
-.13370708f.-'3 ..
::- «+.46-72ffl~f-4)
+2..(-.7410S074f-S).fT-?73.1[)
+3..(+.41079S33~-7).(T-273.1G)..2
+4..(-.1J3701C8f-9).(T-213.1()..3)/~L(T)
:: (1..3246E+OF.). SQRT(OLtT)JI
5GRTUHTJ*T )..3
:: (1::.0. 2 0.) . S ~R T (DL ( T ) I /
SQRT( O(1)*T)
:: 'lrT(I).8(TJ*~GRT(CAPI)
DOT tT )
TAU (T )
DL ( T )
IT-;?'73.H)
(T-273.1G)..2
tT-713,.lG) "3
0-773.1(,) -*4
'3
4
CDEFINE
1
2
ALPHA(()
3
SOffrNE
1
CO~FINE
1
DEFINE
An)
en)
e.ET A (T, I )
c
c
c
c
...................................*..........*...........***.....
IF (IFL~G.LT.l.OP.IFL~G.GT.~) GO TO 3
GO TO 4
3 co"n I NU E
P R 1 NT 1 1 0, IF l So G
110 ~OPM~T(25X, .EPRO~ ~TOP IN ENTH~LPY ROUTIN~-ENTRY OH-!FlAE::.,IS/)
«;:TO~
c
,.
'-
-------
:- NT R Y D~ GCl.D.
C
I Fl AG = 1
GO TO 4
C
C
E NT RY DHLCl.OH)
C
IFl ~E=2
GO TO 4
C
C
ENTi'(Y DHSCL,OH)
,..
I...
IFL~G=3
GO TO 4
C
,..
....
E NT::
-------
I
+:--
+:--
I
c
c
c
c
c
.
.
PART THAT CO~PUTfS TH~ ENTHALPY O~ TH[ SAS
5T,:)EA~
.
..
..........*.*..........................**....*....*..................
TI>298.1I;
SUM=O.C
T GS =5 V I L. 5 )
DO 1 JG=lt:l
1=10 + JG
T ER 1'1 1 = 0 H F I J G )
N GS= 5 V ( L . I )
IF ( NG S . E Q. 0) GeT 0 1
OTERMZ=(TGS-T!).IACD(JG)
1 + ( (T GS .r ss
SUM=SUM + NGs.nEP1'!l +
1 CON T I NU E
DYG AS =S UM
C
C
6 CON T I NU E
IF ( ! F LAG. ST . 2 )
GO TO 8
7 CON T I NU E
GO T (' 7
c
c
c
c
c
c
c
C
c
+ CTC5+TIJ..S.SCP(JG)
+TGS.T1 + TI.TIJ/3.0}. CCPIJG»
TERM2)
.
.
.....*......................................*....................*.......
.
.
PART THH COMoUTES THE ENTHALPY OF TH:: SOLlOe:
IN THe STRfAI"'
..
.
...................*.................***..............*................
c
TI>29B.U;
T GS > 5 V ~ L. 5 I
SUM::O.O
D 0 2 JS:: 2 1 . 3 9
I =e a + JS
N GS =5 V ( L. I )
T £!Hll:: OHF I JS )
I F I NG S . E Q .0) S (\ TO?
OT E R 1'12 :: (T G S - T I ) .. ( A C P J S
..
..
+ TGS+T!)..5*BC) ..IS
-------
I
+:0-
Ut
I
.(1 (,"G$"'T :. OCP(JS
SUM=5UM + NGS.CTERMI + TERM2)
2 CON T ! NU E
OHS Dl =SUM
c
c
c
...
'-
8 CON T I NU E
IFCIFlAG.EQ.2.0R.IFlAG.GT.4)
60 TO 10
9 CONTINUE
GO TO 9
C
C
C
C
C
C
C
C
C
C
C
C
......"'.......*......"'.....*........."'...**...*...................
.
.
.
'"
P~RT
THAT COMPUTES THE ENTHALPY OF THf
lIGUrOS IN THE STREAM
.
.
.
.
..."'......................."'......................*...**..........
TI=298.1f-
~W= 55.50622
NW= SV(l,50)/18.GI6
SU1"I=O.C
T= SV(l,S)
R= 1.9872
00 11 Jl=50,81
T f;R M 1 = OH F ( Jl )
MDSV(l,JLI
IF(Jl.EG.5C) MI=MW
IF( MI.EQ.O) GO TO 11
OTf~M2=(T-TI).(ACP(JL)+ C T+Tl)..5 .BCPCJLJ
1 + C n . T + T .T I + T I.T !) 13' .0) '" C C? (JL ) )
SUM =SUM + MI .C TERMl + T~P.M2)
11 CONT r NU E
SUM= SUM. ( SVCl,5CJ/I000.C)
DWlIG= SUM
c
c
-------
I
.po
0'\
I
CAPI=O.C
00 12 1=51,81
IFC ZECl).EQ.O) GD TO 12
CAPI = CAP I + ZE(I)*ZECI)*~VCL,I)
12 CONTINUE
CAPDCAPI/2.0
SUM1=0.0
5UM2=0.0
00 13 1=51,81
SUM1=5UMI + SV(l,I)
IFCZECIt.EG.O) GO TO 14
8ET =BETACT, I)
Xl=3ET - 2.S*ALOGCl.a+8ET) + 3£T/C1.0+8ET)
X2= ACT)*ZECIJ*ZEnt.6LIT(!) +UCA?(I)
OT ER M = S V (L, I ) * ( C - ACT) *Z E C 1 ) . Z E CI ) *5 QR T C CAP I) 1'3 ET . .. 3 ) .X 1
1 + (C~PI/2.0)-X2)
GO TO 15
1 4 CON T I NU E
TERM= UCAPCI) -CAPI . SV(L,I)/2.~
15 CONTINUE
5UM2 = 5UM2 + TERM
1 3 CON T I NU E
ALOGAW)-(2.3025851*SUM2 ( SUM1' 1 MW
SUM =0.0
DO 20 1=51.81
OUM)TAUtTI.3.0(ALPH4tT'
BET =8ET A (T t I )
Xl> .5 *R * T . T *4{TI. 2[(II-Z£tI'*(2.30252511
xz> OUM*6lIT~1'.CAPI
OX3> -SQRTtCAP1I*tZ.I)*9ET.TAUtTI (DUMI/
1 (1.0 +8£T)*.2)
TERM = Xl * C X2 + X3 )
SUM = SUM + TERM * SV(L,I)
20 CONTINUE
SUM = SUM / MW
SUM1=O.O
SUM2=0.O
00 21 1)51,81
SUM1=SUMl + SVCL,I)*CUCAPCY).CAPI/2.C + .4342344& )
BET =BET ACT, I)
X1= SV(L.I).ZEfIt.Z£(!)/(9ET*SETt
X2 ) -6.0. ALOGtl.0( 8ET'/R[T
X!= C6.0 +9.0*B~T +2.0*8£T*9[T)1
.0 +~ET)"2)
-------
I
~
"
I
,-
SUM2 =SU~2 + Xl * (x2 +X3)
21 CONTINUE
Xl = R*T*r..5
X2> 3.0*TAUtTI < AlPHAtTt
X3= AlOGAW + (2.3025851 . SUMI )/ MW
X 4 = ( An) . (T AU n ) + Al PH A (T ) ) *S Q RT ( CAP I)
T ER M = ~ 1* ( X 2 . X 3 - X 4 )
DHlHnDHlIQ < tTERM < SUM ,. NW
* (2.3025851) . SUM2)/MW
c
C
IC CONTINUE
c
c
c
c
c
c
C
C
C
[[[
.
.
fOLLOWING PORTION TAKES INDIVIDUAL ENTHALPY COMPONENTS
CHANGES AND cn~PUTES TOTAL ENTHALPY CHANGE
.
.
-------
@! FCR DrVOER
S U 8 ~ 0 UTI 1'01 E 0 1'1 0 E IH 0 , '5 )
C *...**..*....**.......*.*.....**.
C . THIS ROUTINE :,E~VfS *
C . AS A STRE/HI! SPLrTTE!:{ .
C.................................
I
~
00
I
INCLUDE CMM~hL 1ST
LOCSL=I5EO(NL)
LIS::ISTM(LOCSL.l)
lOSl=ISTMCLOCSL.~)
LOS 2=!STMClOCSL, 7.
KEY1=SVClOS1.2)
IF(KEYl.NE.D) GO TO 1
SVCLOS1.2)::1
SV(LCS1, 50)::P( 1)
P.fiU~N 2
1 CONTINUE
!F(5V (LOS 1,5C) .NE.r::.) SV (L0~}.
SVClI5 .S)=SVCLOS2.S)
SVCLIS,49.::SVClOS2,4Q)
SVCLOS1,49)=SV(LCS?,Q3)
SVCLIS,48)::SV(lOS2,48)
SVCLOS1,48)::SVCL057,4S)
SVCL!S,SQ)=SV(LOS1.SQ)+3VCl0S2,SQ)
5,) =s ,; ( LaS 2,
5 )
c
DO 2 1=51.81
S V C LIS, I ) =5 V (L OS 2, I.
IFCSV (LOS I,SO) .EG.Ci.1
'; V C LOS 1. r . =5 V ( L 052. ! )
'2 C {) ~ T I NU £
GO T~) 2
C
DO 3 I=101rl13
SVCLIS ,IJ=(SVCLI5 ,s.::./SVClOS2.c;Q».SV(lOS2d.
s v C L 05 1. I . :: ( 5 V C L 05 1, :; 0) / S V (L OS 2, 5C I . . s v C l OS ? . I J
3 CNHINUE
(
00 41=31,39
S V C LOS 1. I J :: C S v C L 05 1. 50) / S V C LOS 2. S Q ) ) . s v ( L 0<; ? . 1: )
SVCLIS ,l)::(SVCLIS ,50)/SV(LCS2,::,J)).SV(lOS~,i'
4 CON T I NU E
1 ~ ( :; v ( L 05 1 , S::! . N E . S. J S V C L OS 1, 100) =s v ( LOS 2, 1 ro )
':V(LISrlOO)::';V .CiS2, aD
-------
RETURN 2
END
I
~
\0
I
-------
~I FOR ONTL~
SUBROUTINE ONTlA(L.XLH.XOLA.DNLA.WLA,TWLAJ
INCLUDE CfoIMN.lIST
DIM EN5 ION XL H ( lJ , X OL A ( 11 ,0 NL A( 1 J ,w L 4 Cl It T W l A (1 J , T l b, ( 9 J
c
DO 2 J=I.19
l=lOO+J
W LA ( J J =5 V C L, 1)
2 CONTINUE
CALL TOSOSP(WLA.TlA)
C
DO 1 J=1,19
I=ICO+J
ill l A (J) = C 1- X Ol A C J ) » *')V C L. I J
1 CONT I NU E
W l A ( 1 ) =s V ( L, 10 1 » '" C 1- X L S U (1 ) ) +5 V ( l, 1 C 1 ) *X l S U ( 1). ( 1- 'I. L H ( 1 » )
W lAC 8 ) =s V (l. 1 J 8 ) . C 1- X L S U (2 ) » + S V ( l, 1 C £\) '" X l S U ( ;;: ) . ( 1- XL H ( 2 ) )
WLA(Z)=SV(L.IOlJ*Xl5UCl,*XLH(l)*(l-X!)LA(2) )
WLI(9)=SVCl, lC8).XL~U(2).XLH(2)tCl-XDLA(9»)
,
c
I
VI
o
I
CALL TOSOSPCWlA,TWlA)
DO 4 J=l,9
o Nl A. C J ) = T l A. C J ) - T \oJ L A. ( J) ,
4 CON T I NU E
RETURN
END
-------
I
V1
I-'
I
Oil FOP DNTl40
SUBROUTINE ONTl4CCl,Xl,X2)
!NCLUDE CMMN.LIST
c
p ( 1 ) =p ( 1 )
S V ( L. 31 ) =5 V ( L ~ 104)" S v (L. 11 3 )
S V ( l. 32) =5 V C L ~ 103) .. s: v (L. 111)
S v ( l. 33) =5 V ( L.. lOt. ) .. 5 V C L, 116>
SVCL.34)=O.
S V C L. 35) = X 1 * S v (L . 1 G 1 ) +S V C L, 10:) ) + S V C L, 1 [-4 ) +5 V (L, 10 () )
S v C L. 36) =X 2 * S v C L . 1 D1 ) +5 V C L. 110) +'5 V ( L, 11 3) +S v C l , 116 )
S v ( L. 37) =5 V ( L. 11 1)" . 5 .S V C l. 11'3 )
SVCL. 38)=SV(l. 119)
SVCL,39)=-.S*SVCL.119)
R ET UR N
END
-------
I
lJ1
N
I
~ueROUTINE DNTSF(L.XOSF.ON~.w5F.TWSFJ
INClUOE CMMN.L1ST
DIM ENS ION D!I~ S ( 1 J . - S F ( 1 ) . T W 5 ~ ( 1) . X 05 r ( 1 )
c
001.1=1.19
1=100+.1
W SF (.1 ) = ( 1- X 05 F (.1 ) ) * S V (l. 1)
1 CON T 1 NU E
CALL TCSOSP(WSF.TWS~J
00 2 .1=1.9
1=30+.1
ONS (,J) =SV (L. !)-TW'SF (.1)
2 CON T I NU E
R ET UP N
END
-------
I
VI
l/.)
I
~! FOR [FHOLO
SUBROUT INE
RETURN 2
E NO
EFHOLO(PdiJ
-------
iH FOR EQMIXR
S U BROUT INE E QM IX IH p, t.
INCLUDE CMMN.LIST
OIfo1£NSION PP(Z'
C *.*...*..*.....**.......*...
C . THIS ROUTINE MODELS
C . THE PROCESS W~TER
C . HOL D TANK
C ..*......*.......*......*..*
I
VI
P
I
LOCSL=ISEQ{NU
lISl=1STM(LOCSL,11
l TS"Z=ISTM{LOCSL. 2.
L IS 3 = IS T M {L 0 CS L. 3.
lIS 4=I$TM {lOCSL, 4'
LOS=IST~(lOCSL,6»
KEY 1=SV (LOS. 2.
IF ( '< (Y 1. N E .0 . GO TO 1
IOPT=O
NS=D
W NES =0
RETURN 2
1 CON T I NU E
c
s V ( LOS. 5. =5 V (L. IS 4, 5.
T =5 V { LOS. 5.
00 2 1=31.39
S V ( l 0 s. r . = S v (l IS 1, r» + S V C LIS 2 , I 1 + S V (L r s 3. I. +<; v ( l r s 4 , r J
2 CONTINUE
1=50
S V ( L C S. I 1 = S v (l IS 1. !) +5 V ( lIS 2, I ) + S V (l IS 3, I) +5 V ( L I C; 't , ! )
S v ( L 05. 5 1 ) =<; v (L IS 3, 51 )
SVClOS.52)=SI/(LIS3,52)
00 14 J=1.29
I=S2+J
S V ( LOS. I) = (~V ( L IS 1. I) .$ v (L 15 ~, 50 ) +': V {L IS 2, J» .5 v ( L I5 ? , SO ) + SV ( LIS 3.
* I ) * SV (l IS 3,50) +5 V (L IS 4. ! ) .s v (L IS 4, !: r:; ) ) I S V (L 05. ~,C)
&+ CONTINUE
00 5 J=1.19
I=100+J
S V ( LOS. r) = s v (L IS 1. I 1 + S V ( l I ~ 2. I ) ... S v (L IS 3, I ) + S V ( LIS II , I )
5 CONT I NU E
NS=O
-------
I
VI
VI
I
SUM =S V C L IS 1, 100) +5 V C L IS2, 1 OS) +5 V C LIS :3, 1 G;j)
IFCSUM.EG.O.) NS=l
C
1 CONTINUE
S V C l (' S , 35) =5 V ( l 05 , 35 ) - S v C l OS ,Ie 1 )
S v C l 0 S , 36 ) =5 V C LOS, 3 I; ) - S v (L (' S ,Ie E )
CALL EGUILB(LO$,IOPT,T,PP,WNES,NS)
WRITEC6,20C)
ZOO FORMATC//42X,'PROCESS WAT£P HOLD TAN~')
SV(LOS,SO)=SV(lOSt~O).lOOO.
SVCL05,3S)=SVCLOS,35)+SVCLOS,lGl)
S V ( L 05, 3 E. ) =5 V C l 05 t ? f: ) +5 V (L OS tIC 8 )
RETURN 2
END
-------
iH FOR [OS
SUeROUTINE EOS(WJ
C ..................................*.............*.........
C. N FUNCTIONS Of THE N-VECTOR X ARE :UPPlIED H[RE *
C .*...............*.......................*................
CO~MON/FUNC/F(5QJ,CK(SO),CT(lOJ
COMMON IACOEF/GlN(5GJ,DSLN(SC),IZISGJ
COM~ON ILIt~5/NF
COMMON/TEMPER/AC,BC,COK(2J.NHY(SJ,WS(lGJ
COMMON IpoPESSIPK(2J,ll,L2,l3,l4,REN
COMMON INEWI IV (50), IE (50 " Cl,T HIll)
COMMON ITPAR/4TO(7)
DIMENSION WI l),X(S!:hE(HSO'
DOUBLE pqECISION F,CK,CT,W,X,EO
DOU3LE PRECISION FNfQ,TH
D OU 8l E PRE CIS ION AT P
N4MElIST/TEST/WS,CT,TH.XI
c
DEFINE Y(I,=EXP(X(IJ'
c
I
l.11
~
I
DO 3 I=lt 36
X I I ) =- 8'5.
3 CON T I NU E
X(38)=-85.
X{39.=O
DO 1 I=ltNF
NV=IV(I)
X(NV)=W(I)
1 CONTINUE
X ( 3 7 , = LOG ( Cll Y ( 3 9' .
C
T H.( 8» =Y ( 1) + 2. Y (} 2) +Y C1 3' +Y C1 [) +Y (1 Z) + 2 *Y (23' +Y (21+ ) +Y (26) +Y n 1)
T H ( 9) = Y ( 2 J +Y ( 3 ) + 2. y ( ~ ) + 2. Y (::. ) + Y ( b) + 2. Y C 1 » + y ( P,) +Y ( '3 ) + V ( 33 ) + v ( 35 )
.+Y(31)
EQ( 36)=lOGtTH(6J )-LOGnH(9JJ
REN=EQ( 36..)
IF(L4.NE.8' GO TO IJ
R EN =T H ( 8 ) - T H ( '3 )
EO ( 36 J = X ( 1 J + GL N ( 1 ) + r: Tel fJ )
10 CONTINUE
C
C4Ll GAMMA ex)
-------
I
VI
......
I
c
EQ lJ=GllI' l)+GLH Z +X ( 1 +X ( 2)-CK( 1 -G_N( ;.'3)
IF ( L 4. EQ . 8) E Q ( 1 ) = X ( 2 ) + G L N ( 2 ) - CT fiG) - C K ( I ) - G l N (39 )
IF(Ll.EG.l) 60 TO U
EQ( 2)=GLN( 1)+GLN( 3)+X ( l)+X ( 3)-GLN(lO)-X fIO)-CKI?)
T H ( 1 ) = Y ( 3) +Y ( 4 ) + Y ( 1 <] ) + y ( 14 ) .. Y ( 21 ).. Y ( 25 )
E Q ( 29) =CT ( 1) - L OG CT H« 1 ) } - X ( ~~ )
60 TO 5
4 E Q ( 2) = GL N ( 1 ) +6 L N ( 3) .. X ( 1 ) +X ( 3 ) - P K (1 ) - C K ( Z ) - E L N ( 3'3)
T H ( 1 ) = Y ( 3 ) + Y (4 ) + y ( 1 4 ) .. Y f 21 ) + Y ( 2 5 ) .. f. X p ( P K ( 1 ) - DL N ( 1 C ) .. G L N ( 3 9 ) )
E Q ( 29 ) =X ( 1 0) - LOG ( T H ( 1 ) ) - X ( '3 ~ )
~, CON T I NU E
EO( 3)=GlN( l)+GLN( 4)+X ( lJ+X ( 4)-GlN( 3)-)( 3)-CK( J)
EQ( 4)=GlN( l)+GlN( 5)+)(( U+X( 5)-GlN( 9)-)(f 9)-CK{4)
IF ( L 2. EG .2) 60 TOE,
EG( S}=GlN( l)+GlNf f,)+X( 1)+X( 6)-SLNCll)-XCllJ-CK( 5)
T H ( 2 ) = Y ( 6 ) + Y ( 7 ) + Y ( 11 ) .. Y ( 15 ) .. Y ( I£. ) + Y ( 1 '? ) + Y ( 2; ) .. y ( 2 B ) + Y ( 30 ) + '( ( 3 3 )
.+Y(34)
EG(30)=CT(2)-lOGCTH(2) )-X(39)
GO TO 7
E E Q ( 5) = Gl N ( 1) +G IN ( 6 ) +X ( 1 ) +X (r; ) - P K ( 2 ) - CK ( 13 ) - GL N ( :) 'H
T H f 2) = Y ( b) +Y (7 ) + Y ( 1 S) + Y ( 16 ) + y ( 19 ) + Y ( 2~. ) + Y ( 28 ) .. y ( 3 C ) + y ( 33 ) + V ( 34 )
*+[XPCPK(2)-GLN(11)+GLN(33»
EO ( 30) =X ( 11 ) -lOG ( T Hf 2 ) ) - X ( '3 '3 )
7 CONT I NUE
EQ( 6)=GLN( l)+GLN( 7)+X ( })+X ( 7)-GLN( S)-X f Ed-CK( f,)
EQ( 7J=GLN(12)+GlN( 2)+x (12)+X ( 2)-GL"!(13)-X Cl3)-CK( 7)
EQ( 8)=GlN(12)+GlNI 4)+X(12)+XI 4)-GlN(14)-X(14)-CK( 3)
EG( 9)=GlNflZJ+GlNf 7)+X(l2)+X( 7)-GlNf15)-Xfl5)-CK( 3)
EQClO)=GlNfI2)+GLN( ()+X 112)+)( ( !;)-GUHI6)-Xflf)-CKClO)
EG(11)=GLN(I2)+GLN( 5)+X(12)+)(( 5)-GLN(l7J-Xfl7)-CK(II)
EG( 12)=GLNf12)+GLNI 8)+)( 112)+X( 3)-GLNCl8)-)( (lB}-CKe I:?)
EQ(13)=SlN(lZ)+GlNI7)+X(12)+XI7)-CK(13)
ATP(lJ=EQ(13)
E Q fl 3) =F N E Q ( EG Cl 3) , X ( 1 q) )
EQ(14)=GLN(IZ)+GlNCS)+X(12)+X(S)-CK(14)+NHY(1)*GlNI39)
ATP(2)=~Q(14)
()( lit) =FNEQ( E9 (14), XC 20) )
[ 0 ( 15) =Gl N ( 1 2 ) + G l N 1 4 ) + X ( 12 ) +)C ( 4) - C K ( 15 ) + .5. G LN f 39)
AT P ( 3) =E Q ( 15 )
E Q ( 1 5 ) =F N E Q ( E G ( 1 = ) . )( ( 21 ) )
EQ(16)=GLN(12)+Z*GlN(Z)+X(12)+2*X(2)-C~(lb)
AT~(4)=EQ(IE)
-------
I
VI
00
I
fO(16)=FNEO(EO(1~),X(22"
EQ(}7)=GlN(23)+GlN( 2'+X(23)+X( 2'-GlN(24'-){(24'-CK(17)
E Q ( 18 . = G l N ( 2 3 . + G l N C 4. + X (2!' + X ( 4. - G UH2 5. - Y. (? 5 , - C K ( 1 8 )
E 0 ( 1 9) = G l N ( 2 3 . + G l N C 6 , + X C 2 3. + X ,( £;) - G l N ( 2 G ) - X (2 r; . - C K ( 13 .
EQ(2C.=GlN(23.+GLN( S)+X(23'+X( 5,-GlN(27)-X(21'-CK(20)
EQ(2lJ=GlN(23,+GLN( 7J +X (23'+X C 1)-GLN(28'-X PS)-CK(;?:1'.
EQ(22'=GlN(23'+2*GLN(2)+X(23'+2*X(Z,-CK(22)
ATP(S,=EOC22'
EQC22.=FNEQ(ECH22JtX(29J J
EO(38,=GlNC23J+GlN(4J+XC23J+XC4,-CKC29'+NHY(3J*GlNC}9'
AT p t 1) =E Q ( 38)
EO(38,=FNEQ(EQC3B"XC3A'J
EQ(23'=GLN(23)+GlN(1)+X(23'+X(1)-CK(23'+NHY(Z'*GlN(39.
ATPCGJ=EQ(23J
EO (23' =FNEG( EG (Z 3), X 00' J
EQC24,=GlN(31)+GlN( 2)+)( (31)+)( ( 2)-SLNC32)-X (32)-CK(24)
E Q C 2 5 ) = G l N C 31 J + G l N C 7) + X (3 1 ) + X C 7 ) - S l (II (3 3 . -)( (3 3 , -C K ( 2 5 J
EQCZE,,=GLN(3IJ+GLN( 6'+X(31'+X( 6,-GLNC34,-X(34'-CKt2f,J
E(H21,=GlN(3lJ+GLN( 5'+X C3l)+X ( S,-GlN(!5,-X US)-CKC21)
EGC28,=GlNC3l)+GlN( 8)+X (3l)+X ( 8J-f,lN(36)-X CH»)-CK(Z8)
TH(3'=Y(S'+Y(9)+Y(17)+Y(20)+Y(27J+Y{3S)
Eg(31'=CT~3)-lOGCTH{3')-X(39'
TH(4'=Y(S'+Y (18'+Y (36)
EQ( 32' =CT(4)-LOGCTH(4, ,-xc 3g'+.69315
T H ( 5 , = y ( 1 2 , + Y ( 1 3 , + Y ( 14 , + Y ( 1'5 . + Y ( 16 ) + Y ( 17 . + Y ( 18 ) + Y ( 1'3 ) + Y ( 20 ) + Y ( 2 1 .
* +Y ( 22 )
E Q C 33) = C T ( 5 . -lOG IT H ( 5 . ,- X ( 3'3 .
TH(G}=Y(23'+Y(24)+Y(2S'+Y(26)+Y(21J+Y(28)+Y(2Q'+Y(30'+Y(33)
E Q ( 34) =CT ( 6) -lOG CT H (6) )- X ( 39 )
T H C 7) = Y ( 31 ) + Y ( 32 . +Y ( 33 ) + Y ( 34 ) +Y ( 35 ) + y ( ~6 )
E Q ( 35. =CT ( 7) - LOG CT H ( 7) )- X ( 3~ . + .69315
H 25 03 = Y ( 1 0 )
H2C03=Y(11.
IF(L2.E0.21 H2C03=EXP(PK(2}-GlN( ll)+GlNC 39))
IFCL1.EO.l) H2S03=EXP(PKCl}-GlN(10)+GLNC39)}
T H ( 10. = 55. 50 E-2 2+ .5. fY ( 11 +Y (2) +Y C 3) +Y ( ; . + Y ( 9) + 2 * H 2<; (I 3 + 2 * H 2C 0 ~ +Y ( 1 3 )
.. + Y ( 16 ) + Y ( 24' + Y ( 26 . + Y ( 32 1 +Y (34 J - Y ( 3 7 J )
T H ( 10) =T H ( 10 ) + Y ( 22) +Y ( 2'3 ) + . s..y ( ~ l' + NHY (1 J.. Y C 2rJ 1 + NHY ( 2 ) ..y (3 G , +NHY ( 3
*}*Y(38) -
IF C L ~ . EO. 4) GO T 0 8
EO( 3'3) =CT ('«)}-LOGCTH( 101 ,-x (39)
GO TO 9
8 CON T I NU E
-------
I
VI
\0
I
THCI0)=18.016.THCIO)
T H ( 11 ) =CT ( 10 ) + y ( 39 ) . C W S ( 1 ) ..y ('22) +W S ( :?J .. Y ( 1 9) +\" S ( if ) .. Y (2 1 ) ..w 'S ( :; ) ..
.Y(20)+WS(6).Y(29)+WS (8).Y( 3~)+W5 (<3)*Y( 3P.»
IF (T H C 11) . LT .0.) T H ( 11 ) =T H f 11) - CT ( 1 G)
E Q ( 3 <3 ) =L 0 G fT H ( 11 ) ) - CT ( 9) - LOG fT H ( 10 ) ) - X ( ! g)
9 CON T I NU E
c
NF=NF
00 2 I=l.NF
NE."=IE(!)
NV=IVCI)
W II ) =X C NV )
FII)=ECHNE)
2 CONTINUE
RETUJ?N
END
-------
jI FOR EGUILB
SUBROUTINE EGU ILB(LSV, IOPT,T.PP,WNES,NS)
C......................................
C . THIS ROUTINE INTERFACES.
C . SOLNEQ WITH EQUIPMENT .
C . ROUTINES .
C......................................
INCLUDE CMMN,L 1ST
COM~ON ITRFR/TMW,WACT,PH.AZ
DIMENSION X(50).CM(11).PP(2)
C
P(lJ=P(l)
DO 1 1=31.3'3
IX=I-30
C M ( I X J =S V C l S V. 1)
1 CONTINUE
C
L4=4NO(10PT.4)
IFCL~.EQ.4) CM('3)=SVClSV,lOO)
IF(L~.EQ.4) CM(lO)=WNES
IF(L4.EQ.4J CM(lU=SVCLSV, 119)
I
0\
o
I
c
X(39J=SV(lSV.SOJ/IOOO.
C
00 2 I=51,f,8
IX=I-SO
X C IX J =S V (LSV , I )
2 CaNT I NU E
c
0031=6'3.74
IX=I-46
X(IXJ=SV(LSV,IJ
3 CON T I NU E
C
00 4 1=15,81
IX=I-4~
X (lXJ=SVCLSV,IJ
4 CONTINUE
c
X(1~J=SV(LSV.I03J/X(3qJ
IF (T . G E. 31 3. 1 E J X ( 20 J =5 V (L S V tl 0'; J / X ( 39 )
IF(T.LT.313.16) X(28J=SV(LSV,lC1J/XI3QJ
-------
I
0\
t-'
I
X(21)=SV(lSV,10S)/X(39)
X (22J=SV(lSVtl02)/X (39)
X(29)=SV(lSV,109)/X(39)
IF (T . G E. 373. 16) X ( 30) =s V C l S V , 110 ) / X ( 39 J
! F (T .l T . 373. 16.4 NO. T . G T .238. 16) X ( :3 ,:; J =- S V (l S V , 1 11 J / X ( 3'3 J
IF(T.lE.298.16J X{30)=-SV(lSV,112)/Xf39J
IF(T.GE.311.16) X{33)=SV(lSV,114)/X(39J
IFCT.lT.311.16J XC3~J=SVClSY,115)/Xf39J
c
C4ll SOlNEO(X,NS,CM,PP,T,IOPT)
c
4H20=W4CT
SVClSV,48)=AZ
S V ( LS V , 4 9 ) =-P H
S V ( lS V, 31 ) =C M ( U
S V ( LS V , 32) =C M C 2)
IFCL4.EG.4) SVCLSY,39)=TMw
00 3 1=1,50
IFCX(I).EQ.l.E-IC) X(I)=O.
8 CONTINUE
00 5 I=lt18
1X=I+50
SV(lSV,IX)=XfIJ
5 CON T I NU E
c
00 6 1=23,28
IX=1+46
S V ( LS V . IX ) =X C I J
E CON T I NU E
c
00 1 I=3lt 31
IX=1+44
S V (lS V, IX ) =X ( I)
7 CONTINUE
SV(LSV,8}) =CM( 8)/X (39)
c
s V ( LS V, 50) =X ( 39)
SVCLSV,103)=X(19J*X(39)
IFCT.GE.313.16) SV(LSV,106)=X(20)*X(39)
IFCT.LT.313.16) SV(LSV,101)=X(20)*X(39)
S V C LS V , 105 ) -:. X ( 21 ) * x ( 39 )
SVCLSV,102)-:.XC22)*X(3Q)
SVCLSV,109)-:.X(29)*X(39)
-------
I
0\
~
I
c
IF(T.GE.373.16) SV(LSV,lI0)=Xt30)*X(39)
If(T.LT.313.16.AND.T.GT.298.16) SV(LSV,lll)=X(30J*X(39J
IF (T . L E. 2 q 8. 16). S v (L S V , 1 12 ) = X ( 30 ) . X ( 3 <3 )
If(T.LT.311.16) 5V(LSV,llS)=X(~8)*X(39J
IF(T.GE.311.1€) SV(LSV,114)=X(38J*X(39)
RETU'RN
END
-------
iH FOR FI_':R
SUBROUTINE FlLTER(P,S)
C ....*.*.*******.*...*.....**.....
I
0'\
W
I
C * THIS ROUT INE ACTS AS .
C * A S () lID - L I au 10 *
C * SEPERATOq ONLY *
C *.************.**.*****..**.*.*.*
INCLUDE C~MN,LIST
lOC5l::ISEQ(Nl)
LIS::IST""(LOC~ld )
LOSl=ISTM(lOCSL.E)
lO~2::ISTM(LOCSl.71
K E'( 1 =5 V ( L 05 1 . 2 I
IF(KEY1.NE.O) G0 TO 1
PRC(291=10C*P(11
DRD(21)=100.P(2)
D,QO(51J::(I.-P(311.1CD.
SV(lCS2.100)::P(1)
SV(lIS.IOO) ::P(Z)
RETURN 2
1 CONTINUE
S V ( lO S 1 . 5 ) ::S V ( L 0$ 2. S I
SV(lIS .S)::o;V(LOS2.S)
SV(LOSl.48)=SV(LOS2.4~)
S V ( l I'S . 48 ) :: S V < L 05 2. Q 8 )
SV(LIS.49)::SV(LCS2.4Q)
SV
-------
I
0\
+:-
I
S v ( L 05 It I J = ( (P ( 1 J- P ( 2 J JI (P ( 2 J - X W 5 J J * IX WS I P (} ) J .5 V ( l 052. I J
S V (L IS, I J =5V (l 05 1. I J +S V (L 0$ 2, I )
5 CONTINUE
C
CALL TOEGSP(LIS)
CALL TOEQ5P(L051 J
RETURN 2
END
-------
I
0\
VI
I
iil! I="OR FLTR3~
SUBROUTINE
RET URN 2
[ND
FLTRBM(D.'b)
-------
I
0\
0\
I
~
iYI FOR FLUGAS
SUBROUTINE FLUGASCP,$)
INCLUDE CMMN,LIST
INCLUDE LCMN,L 1ST
DIMENSION YFG(9),XWLSf8),XWFAC3)
lOCSV=ISEQfNL)
LOS=IST~CLOCSV,6)
KEY=SVfLOS,2)
IFfKEY.NE.Q) RETURN 2
READfS,100) VIFG,TIFG,P!FG
P R DC 1 ) =V IF G
PRD(2)=TIFG
PRO(3)=PIFG
100 FORMATf8EIO.3)
VFG=f28.32/60.)*VI~G
TFG=fTIFG+459.~88)/l.8
PFG::PIFG/14.696
SVfLOS,S)=TFG
SVCLOS,6)=PFG
REAOfS.lOO) YFG
00 1 J=1,9
I=lC+J
K=33+J
PRDeK)=ICO*YFGeJ)
SVeLOS.IJ=12.187158*PFG*VFG*YFGfJ)/TFG
I CONTINUE
SVeLOS.IOJ=12.18715~*PFG*VFG/TFG
REAOeS,IOO) WILS
PRO C 8 J =W I L S
WlS=C4S3.6/60.)*WIL~
READCS.l00) XWLS
003 J=lt8
K=42+J
PROeKJ=IOO*XWLSCJ)
3 CONTINUE
SVCLOS,101)::XWLsel)*WLS/XMW(21)
SVeLOS.I08)::XWLSClJ*WLS/XMWC23)
SVCLOS,103)=XWLSC3)*wlS/XMW(23)
SVCLOS,110)::XWLSf4)*WLS/XMWf3G)
SVeLOS,104)=XWLSeS)*WLS/XMWf24)
SveLOS,113)=XWLSe6).WLS/XM~f33)
SVeLOS.I0E =XWLs(7)*", .S/XMW(25)
-------
I
0\
'-J
I
SVCLOS,116J=XWL$(3J*WlS/XMW(3fJ
REAO(S,100' wr~~
PRD(2S)=WIFA
WFA=(~53.b/60.).~IF~
QEAO(SdOO) Xlo,'FA
PRD(Sll=ICO*XWFA(I)
PRD(5ZJ=lOO*XWFAfZ)
PROfG31=lDC*XWFa(3)
SV(lOS,1111=XWFACl)*WFA/XMWf37)
SVILOS,1IB)=XWFACZI*WFA/XMW(38)
S V ( l () 5 , 1 1'3 , = X w FA ( 3 ) *~ F AI X MW ( 3 '3 I
REA!)CSdOO) ILO
REAOCS,100) XSO
c
002 J=ltS
K=12+J
L=15+J
PRDIKJ=XlOfJJ*IGO.
PROCLJ=XSO(J'*lGO.
2 CON T I NU E
PRDnO)=XlOf 1)*108.
PROC71J=XS!!C 7)*IGO.
T MS = S v ( LOS, 1 1 J +5 V (L !!S , 1'J 4 J +<; V (l OS, 11 :3) +'S V C l 0<:, }.J £; ) +5 V ( L ()~,' 11 b )
T MeA = s v ( l () S, 1 0 1 , + S V (l as, 1 a 3 J + S V ( l 0';, 1 C 4 ) + 5 V C L :) S, 1 0 f, )
T 101M G = 5 V ( l OS, 100' +S v (l OS , 11 Q) +S v C L 0'5, 11 3) +5 V C L O~ , 11 ~. )
PROCq,=lOO*(TMCA+TMMG'/TMS
PPOCIOJ=TM~G/CTMMG+T~CA)
PRD(2SJ=WFAI C32.06E*TM:::)
DRD(68)=100* ITMCA+TMMG-SV (U~S, lOU-SV (lOS, 103) II (TM,'~G+TMCA J
PErURN 2
END
-------
I
0'\
00
I
@J FOR fNE~
FUNCTION FN[Q(f.X)
OOUBL~ PH£SCISION FN£~.F.X
I F ( F . L r . (J . . A i-J [) . )C. . LT. - ~ U) G G
FNEQ=F
HETU~N
1 CONT .1t'~UE
X=X"l
IF(X.LT.-8~.) X=-8~.
Ff\!E:.tJ=O.
RE rUKflJ
£1\10
Tn 1
-------
~;1 FOR GA8SC
SUBqOUTINE GABSO(LI,LO,XO,DNA,ABN)
INCLUDE CMMN,LIST
DIMENSION DNA( 1)
P(l)=P(I)
00 1 .1=1,4
I =.1 ~ 1 C
5 V (LO, I) = ( 1- X ~ (.1 ) ) .~v (L I, I )
1 CON T I NU E
S V ( L 0, 15) =s V (l I, 15' - .s.X 0... (<; V (L I, 1 U - S V ( La, 1 I ) )- .7:: * (5 V ( U: t 1 3) - <:;V (
*LO, 13))-.2S*CSVCLI,14)-5V(lO,14))
SV(LO,18)~O.
c
I
0'\
\0
I
ABN=O.
00 2 .1=bS
1=10+.1
ON I!, ( .1 ) =5 V ( L I , I ,- s v «L 0, ! )
A8N=ABN+ONA(.1)
2 CON T I NU E
DNA(8)=5V(LI,18)
DN~(4)=.5*CON~C3)+DNA(4»)
ONA(3)=ONA(1)*XO
DNA(S)=O.
ONA(l)=DNA(l)*(l-XO)
DNA(6)=O.
DNA(7)=O.
RETURN
END
-------
OiN FOR GAMMA
$U8ROUTJNE G6MMAeX)
C ..............*.*.*...*........................*.......*......*....
C. THI': Rf)UT!NE CQMPUTF<; IN(G(l)J &,5 t. FUNCT!O~~ CF EXP(X(I»)
C .......*.*.....*..**.*......................*......*....*.....**...
CO~~ON/NEW/IV(50J, IE(50J,Cl
COMMON ITEMDER/AC,PC
CO~MON /L1MS/NF,NT
COr~ON /PPPESS/PK(?J,Ll,L2,L3,l4,PEN
CO~MON IACOEF/GLN(~O),~~LN(50),!Z(5CJ,~I
DOUBLE PRECISION X
o n\ ENS ION X ( 1) , A ( SO J , 9 e ~ (} hUe 5 D h NS ( ~ 0 J
QliT 4 (1l (I), 1= It 38)/1, 1, 1,4,4,1,4, It 1.0,0,4.1, C. 0.1. ::,1. c...." 0, D, 1.1,
11,8,1, O,~, 0, 0.1,0,1. Q, 1.0. 1,01
OAT to U ( 1 Q J I. 076/U ( 11 J I .c 76//J (14 J /. 07 UU ( 15)1 .0 7S/U (1 7) I. 07~ III (25) 1
1 . 076/ U (2 7 J I . :; 7 EI U ( 2~ ) I . '] 70 /u ( :5 2 J / . C.7 €I U ( 34 J / .. 'J 1 b 1 U ( :3 I; ) I . 'J 7f /
DATA (A(IhI=1,37) / 6.roooo t 3.C:JOC-O , 4.50080 t
. 4.50000 ,3.000CO 4.S0QrC, 4.SJGCO 2.GOrno
. 3.CDCOG . 3.0rOG~ , 3.GOOCO , 4.52000 , 3.00r~0
. 3.00000 , 3.COQOQ . 3.00000 3.0COOO 3.COOnO
. 3.00000 3.COOOO, 3.0000G , 3.C~QOO . 3.GcnnO
3.00000 . 3.0QO~S 3.80000, 3.00000 . 3.scrno
3.00000 3.00000 5.00000, 3.00000 ?GO~SO
3.00000 , 3.0COOO , 3.00000 . 4.00000 I
DATA (BCIJd::l,37) / .4COO::::O , .?COCOC .'-JS:';OCC,
.000000 , .oooco~ , .CODGOr . .GOOGce ,-.2rC~nG
.300000 , .30GCOn , .30000~ , .IOGGOD , .30C~8C
.300000 ,.300S00 .30COOC, .30:000 .300~nG
.300000 , .3c~aos , .:00000 , .3c~aoo , .~ooonG
.300000 , .300000 , .300000 ,.30QCCG .3CGr~O
.300000 , .300009 , .1COCSG . .300COO , .3CO~r,O
.300000 . .300~OO t .300000 , .GCGDOa I
[\ AT A (NS ( I ). I = 1. 38 ) 11 3 *1, 4. Q. .G. 1 , 2. C. 7.1, 01
I .
....
0 .
I *
.
.
.
.
.
.
.
c
DE ~ IN E Y ( I ) = :: X P,( X C r ) )
c
fI=O.
00 1 1=1, 3£
f I =F I + I Z ( I ) * Y ( It
1 CON T I NU E
X(37)=lOG( :.lY 3.9))
-I=F1+Y(37J
.
,
,
,
,
.
,
,
.
,
,
,
,
-------
I
"""
.....
I
F"I::FI/2. .
IF(LI4.EQ.8' F"I::FI..~BS(R£N)
SFI=S.')RT (Fl)
r
..
GUH33)=O.
DO 2 1=1,37
o NM :: 1 . .. B C * 4 ( r) *5 F" I
G l N ( ! . = 1\ C.. r z ( I . .. (- S F II [' ~~ M .. ~ ( I . .. Fl' + 2 . 3 (\ 2 b" U ( I ) .. F I
T £: M P::Y ( I . * (- 4 C .. I Z ( I ) * S F J .. ( (} .. 0 N M )/ Co N M- 2" lOG f DN M ) 1 ( 0 (>,/;~ - 1 . ) 1 (1) N M - 1 ) *
* .. 2" 2 . 3 0 2 b" U f I) .. F 11 2 + A C .. I Z ( I) .. A ( I ) .. F I 1 2 + NS ( I) )
GLNf3qJ=GlN(39)+TEMD
2 CON T I NU E
GlN(39)=- .C18t]15*GlNf3~1
RETURN
£: ~O
-------
I
.....
N
I
~ I F (: R GP A R S
SUBROUTINE GPARS(GD,A,rC,IO,lj,N[)
DO~3LE PRECISION S2,A,fDF
OI~ENSION GO(50,~.CJ
DATA ALFO./IO./
c
GO(NE,ICJ::-l.
GD(NE,IA)::-l.
IF ( A as ( A J . 5T . 500 . J G (! Tn 1
E PF :: 1 . - EX P (- A 3 S ( A) / d l F" to )
G[H NE, IS) =EPF"
R n UR N
1 EPF::l.
R ET UR N
END
-------
-- ~- ~'I
Or! FOR GSTltR
SUBROUTINE GSTltR(X,EOS)
C . ....................................
C . . T .
C . G 0:)=9 (X).F'()() .
C . ....................................
COMM.ON IRESIOI G5 (5r~)
COMMON IGRltD/PO(SO.50),AS(SO.50),SO(50)
COMMON/FUNC/F(50).C~(50).CT(lC)
COMMON IlIMS/NF
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
O!M::NSION X( 1J
SUM
P:), It S , <) Q. G'S
F,CK.CT.X
c
c
C
C
ASSUME THE p~::nIAL': HAVE PEEN ~VALUATED
I
.......
(.,.)
I
00 1 I=l.NF
SUM=O.
00 2 K=l,NF
SU~=SUM+PD(K.I)*F(~)
2 CONTINUE
GS(I)=SUM/SC(I)
1 CON T I NU E
RETURN
E NO
-------
~I FOR INTIT
SUBROUTINE INTITCl.!OOT,Xwt;,wN~5)
INCLUDE CMM~hl 15T
INCLUOE lC""N,lI5T
DIMENSION WTS(10)
DAT4 CWTS(I),I=1,9)/~~.C6G.4q.Oll,EG.O~6,la6.0IE,5F.Q8,qO.3?61.98
*2,36.4~S.18.01&/
c
DEFINE XCI)=SV(l,I)
,.
'-
I
......
~
I
IFCIOPT.NE.4) GO rr) 1
XSC40=X (35)- (X (31 )+Y. C 32) +X (33))
IFCX5CAO.lT.Q.J GO TO 2
X(SlJ=4.E-12
X(lGSI::X(31J
X (10(;) =X C 33)
X(ID3)=X'(321
XCI 09 ) =x ( 3 f )
X(lO?I::XSCAO
3 W ES =X MW C 25 J *)( t 105) +)( ~ W ( 20 ) . XCI 0 S ) + X ~Io: ( 2"3 J * )( C 1 G 3 J + X ~,,,. (Z;: I.X C! Q 2 J
*+XMWC29J*X(109J
WTM=O.
00 IS J=1.8
!=30+J
WTM=WTM+WTSCJJ*XCII
10 CON T I NU E
XCSOt=CWES+WNES)/XWS-WNES-WTM
~ FlK=X(501/10GC.
X(521=5.3E-14/X(51)
IF(X (35) .NE.O. 1 X (F?J=3.2E-;/X (52) **2
IF(XSCAO.lT.O.I XC~2)::lc.*xr521
IF C X ( 3 I 1 .N E . 0.) X C 5 4 ) = 5. 4 E - ~ / X ( 6 2 )
IF(X (32) .NE.G.) X(57)=1.8(-9/X (621
JFCXC361.NE.G.) X(61)=9.5£-12/X(52)..2
~ IFCXC33t.NE.O.I X(55)=3.4E-S/XC~2)
IFtXIS).GT.313.1S) GO TO 20
X (1 (7) =X (1 Of,)
X(1061=0.
2C C~NTINU[
X (58)::2*X C 341/FlK
~(75)=2.X(37)/.FlK
c
-------
I
'"
VI
I
x ( ~: 3) = X ( 5. '" X ( S~ J 1 4 . 3 F. - .,
X (f 0) =X (51 J *X (53) 17. 9£:- 3
X ( 5'3 ) = X ( 51 ) .x ( 55) 1 4 . 9E - 3
X(56)=X(51)*X(57J/~.7~-11
X ( £: 1 1 = X ( 51 ) . X ( Sf:. ) 1 c=, . 2£ - 7
X(C3)=X(62)*X(S21/!.6E-2
X(64)=X(02).X(541/3.0[-4
X(b51=X(621*X{571/~.8[-~
X(6f)=X(b21.X(56)/4.~E-2
X(f7)=X(62)*X(SSJ/3.6E-3
X ( f, g 1 = X ( 62 I . X ( 58 II? . 3 E - 1
X(70)=X(£9).X(52)/l.QE-}
X (7 1 ) = X ( f q ) .. X ( 5.4 ) / Q. 3 E: - 1.1
X (72) = 1 ( f 9) * X ( 56 ) 1 9.6 E - 2
X (73) =1 ((;q) *X (5S 1/3.1 ~-:)
X (741 = X ( 6- 91" X ( 57 ) 13. ~E - 4
X(7fl=X(7S)*X (521/3.7
X f7 1) = X ( 751 "X ( 5 7 ) 1 {j . Sf - 2
)( (731=)(75)*X (5061/1.8
)( ( 79 ) = X ( 15 ) *X ( 55 J/ 1 . 7 E - 1
)( ( £:0 ) = X ( 15 J . X ( 58 1/2. 5
PETURN
201=X(35)-Xf311
)((511=5.E-9
IF(Ol.LT.O.) GO TO 1+
)((105)=X(}1)
GO TO f.j
4 X ( 1 05 ) =X ( 3' 1 )
GO TO 7
5 02::DI-X (331
I~(02.LT.O.I GO TO q
X ( 106 ) =X (33')
X(103)::02
GO TO 7
8 X(18G)=Dl
!F(X(3(;).EQ.C.) C4LL ~xrr
x ( 1 09-1 ::"2 . .. 1 ( 3 E, )
7 GO TO :t
1 X(S'1I::3.E-4
X ( 52) =~'. 3 E - 1 4/ X ( 51 )
rU<=X(SC)/ICC.J.
IF(x(3G).LT.)(33» ';() TO IJ
X (7 .H=.7.X C33J/FLK
-------
GO TO 12
11 X(73)=.7.X(3Ed/FLK
1 2 ! F (X ( 3 f. ) . ~ ~ . 0) X ( 6 C:' ) =X 0 i") IF l io(. - X (7 :' )
IF()(35).~E.Q) X(6?)=.S*X(!S)/FU<.
! F ( X ( 33) . N E . C) X ( 5 q ) = . 7.4. 3f - .11 * X ( :3 1 ) /:= l ~ I X (S 1 )
PC02=XWS
IF(X (32) .NE.O)
IFtX (33) .NE.O)
IF(X(3S).NE.O)
GO TO <3
1 3 CON T I NU E
DC~O=X(35)/Fl~-Y.(62)
DS03=X(33)/Fl~-X(7!)
IF(DSO~.GT.DCAO) GO TO 14
X (lGf) =DS 03*FLK
GO TO 15
14 X (106)=DCAChFllI.
15 IF(x(E2).X (54) .GT.p.4C::-A)X flC:,)=l.[-tufLK
GO TO 9
E "10
XfS7)=;.!4€-19*PC02/XfSl)..Z
GO T ') l~.
GO T ~ 13
I
"'-J
0"1
I
-------
I
"
"
I
iH FOR 'MATCH
FUNCTION MATCHCNAM[)
DIMENSION ILAB(15)
D AT A C I L A 8 C I ) , 1= 1 , 13 J I 'flU GAS' , 'S T KG AS '. 'W T R ~ K P , , ' f L T REM'. . <; C RU g R '
., 'CLRHTR', 'FILTER', 'OIVOER', '[GMIXP', '[fHOLO', 'PMPFllt.P, 'CLRfYR',
. . OV A L M B . I
C
DO 1 1=1,13
IfCILA8CI).[G.NAME) GO TO 2
1 CONT I NUE
C
2 MATCH=1
RETURN
END
-------
I
"'-J
00
I
QlN FOR MATIN
SUBROUTINE MAT IN (A,N,8,~,D[TERM)
DOUBLE PREC.ISION A. ?,DET£RM,PIVOT, AMU,5wAP,T
DIM("JSION ]PIVOT(50),a(50,~,C),B(50, ),INOEX(SO,2),PIVOT(SO)
EQUIVALENCE: (H~O~hJ?O"'), (ICClUM,JCJLUMh (~MAX, T. SWAP)
r~ 02
C
C
C
INITIALIZATION
10 DETERM=I.0
15 00 20 J=I"'''
20 IPIVOT(J)=O
3D 00 550 I=l,N
C
C
C
SEARCH FOR PIVOT ELEMENT
40 AMAX=O.O
45 DO 105 .J=l.N
50 If tIPIVOT (J)- 1) 60,105,.60
60 00 100 K=I.N
70 IF fIPIVOTPO-l) 80,1S0,748
80 IF (A6S(AMAX)-A9S(A(J,I«»)) 85,100.10[:
85 IRCW=J
90 ICOLUM=K
95 AMAX=A(.J.K)
1 00 CON T I NU E
105 CONTINUE
106 IF (AaS(AMAX).LE.O.O' GO T0 739
110 !PIVOT(ICOLUM)=IPIVOT(ICOLUM)+I
c
c
c
!NTERCHANGE ROWS TC PUT PIVOT ELEMENT ON DIAGONAL
13Ci IF HROW-ICOLUM) 148.260.140
140 OETER~ = -OETERM
ISO CO 200 L=l.N
160 SWAP=A(IROW.L)
110 ACIROW.L):A(ICOlUM.L)
20G A(ICOlU~.LJ=~~AP
205 IF(M)260.260.210
210 DO 250 L=l.'"
220 SWAp=q(IROW,L)
230 8(!ROW.L)=8(ICOLUM.LJ
250 8 ICO.J~.. =SWAP
-------
I
.....
\0
I
260 ':~ID:X, . =:POW
270 INDEX(I.2J=ICOlUM
310 PIVOTCIJ=A(1COLUM,IC(\LU~)
32C OETERM=OETERM*PIVOT(IJ
c
c
c
OIVIOr.: DIVOT ROW 8Y PIVOT fLEMENT
330 ACICOlUM.ICOLU~)=l.O
)..0 00 350 L=lttIJ
350 ACICOLUM,lJ=AC ICOLUM,L)/PIVf)T(l)
355 IFCMJ380.380,360
360 00 370 L=l.M
370 EHlr.OLU~.L)=B.C ICOLUM.L J/PIVI1T (1)
c
c
c
REDUCE NON-DIVOT ROWS
330 00 550 Ll=l,N
390 IF(ll-ICOLUMJ 400,550,400
400 T=~CLl,ICOlU~)
42G ACLl,ICOlUM)=O.O
430 00 450 L=hN
450 ACll,LJ=~CLl,LJ-ACICOLU~,LJ.T
455 IF(M) 550,550,460
460 00 SOG L=l,M
5JO BCLl,LJ=BCll.lJ-BCICClUM,LJ*T
550 CONTINUE
c
c
C
INTERCHANGE COlUMN~
600 00 710 I=l,N
610 L=N+I-I
620 IF CINOEXCL,1)-INOfXCl,2»
630 JRC~=INDEXCl,lJ
640 JCOlUM=INOEX(l,2J
E. 50 00 7 0 5 K = 1 , N
660 SWAP=A(K.JROW)
610 ACK,JROW)=ACK,JCOLUM)
700 A(K,JCOlUM)=SWAo
705 CONTINUE
7 1 0 CON T I NU E
GO TO 740
739 OETERM=O.!J
740 RETURN
C;30,71O,63C
-------
Q1N FOP NOLIN
SUBROUTINE NOlINfX.N.EPS.EGS.PAPTl)
COMMON/LIMS/NF
COM~ON/FUNC/ff~O),C~(SO),CTflC)
COM M 0 N ;!J ~ A 0 I P D f 5 O. S rn , 4 S f ~,[;. 5 C ) . S Q f 5 iJ ) IRE S r [;1 GS ( 5 C)
COM!'!(!tI! INEw/IV(SC).![fSC),Cl.THfll)
DIMENSION XflhDELTfSQJ
DOUBLE: PRECISION F,CI<.CT.PO. AS,SQ,GS
DOUBLE PRECISION X.D~lT.PHr.PH1.PH2
NF=N
E PS = 1 . E - 5
Dl = 1. E - 8
PHl::PHI (X, EOS)
c
I
00
t-'
I
10 CONTINUE
PH2=PHI
CALL A,STAR
-------
I
00
U)
I
~I FOR OV~LMB
SUEROUTINE OVAL~8(P.$)
INCLuDE CMMN.lIST
DIMENSION PD(?)
C .......................,.............*.*...
c .
C .
THIS ROUT!NE PEP~nqM~ AN OVERALL
MATERIAL 9AlANCf A3CUT T~[ SYSTEM
..
..
c *........*****..............................
lOCSV=ISEQ(Nl)
lIS 1 :: IS H'I ( L 0 CS V. 1 )
lIS 2::ISTM(lOCSV. 21
lOSl=ISTM(LOCSV.6)
lOS2::15TM(lOCSV.7)
KEY 1::SVflOSZ.2)
IF(KEYl.NE.O) GO TO 1
INIT::O
I'SET::O
AH20::l.
PRO(4)::p(11*lOG.
PRO(S)::P(3)*lOO.
PR[i(7)::O(41.100.
PRD(£)::P(S)*lCO.
PRD(63)::P(6)
PRO(11)::P(7)*10C.
PQO(12)=P(S)*lGC.
X4(Z)::P(2)
RETURN '2
1 CON T I NU E
XA(lJ::P(lJ
XA(3)::P(3)
XA(4)::P(4)
SV(LQS1.6)=SV(LISl.~I-P(6)/14.f.96
P GO ::S V (l 05 1 . f )
XO::P(S)
X LS U C 11 =P ( 7)
XlSU(2)::P(8)
XFE'=SV(lOS2.10Q)
IFC 1S£T .E~.l) GO TO 5
CAll GABSO(LISltLO.;:ltXr. ONAT,A8N)
CALL _AVAP(LISl,A3N.PGO.TA~.WVJ
IF(PC2).EG.C.) XA(Z)::3.E-4
:- CON T I NU E
-------
I
00
.p-
I
V PL OG= 5.22681+- 1750.286/ n AS- 38.2)
YGS=(AH20/SV(LOS1.6))*10...VPLOG
.CALL GABSO(LIS1.LOS1,XO, ONAT,ABN)
W V = (S V (L IS 1, 10 )- S v (L I S I, 19) - ABN.) . '( GS / ( 1. - Y GS )- S v (L IS 1. 19 )
S v ( LOS 2, 1 a 11 = ( 1- P ( 1 ) ) . s v (L IS It 1 0 1 )
S V ( LOS Z. 108) = ( 1- P ( Ij ) ) .s V (L IS 1. 108)
S v ( LOS Z, 11 8) =5 V ( L IS 1. 1 18 )
CALL DNTLAO(LIS1,P(7).P(8))
If ( IS ET . E Q.l) GO TO 3
1SET=1
sW=SV (LIS 1.101 )+SV (LIS I. lOR)
WFB=5.5062Z.SW*(I-XFB)/XF9
W M = (W V +W fB +S W ) .1 8. rn 6
SV(LISZ,SO)=WM
CALL TOEQSP(LISZ)
3 CONTINUE
00 4 J=I.8
I=J+30
SV (LOS2, I) =DNAT (J) +SV (LIS 1. I) +SV (LIS 2, I)
4 CONTINUE
SV (LOS I, S) =T AS
S V ( LOS 2. 5 ) =T AS
S v ( LIS 2, 5 ) =T AS
WNES=S6.oa.SV(LOS2.1011+40.3Z*SV (LOS2,10B) +15. 80*SV(LOS2.118)
IF ( I NIT. N E .0) GO TO 8
I OPT =4
CALL INTIT(LOS2.IOPT,XFo,WNES)
IN!T=1
8 CON T 1 NU E
C
CALL EOUILB(LOS2,4,TAS,PP,WNES,O'
c
WRITE(6.200)
200 FORMAT( 4SX,'FIlTER aOTTO~S')
$V(LOS2. SO)=ICOO..SV (LOS2, 5~)
SV(LIS2,39)=SV(LOS2.39,+WV
SV(LIS2,5C)=19.016.SV(lIS2,39)
1F(ABS(SV(LrS2,50)-WM)/WM.LT..OS)
WM=SV (LISZ.S!J)
GO TO 3
E CALL TOEGSP(LIS2)
PP(I)=O.
PP(Z)=O.
GC TO€>
-------
I
00
VI
I
C~LL EQUILB(LIS2.C.TAS.?P,WNES,l)
WP.ITE(6,30G)
300 FOP,MAT(45X.'MAKEUP WHER')"
5V(LIS2,50)=lOOO..SV(LIS2, ~"O)
S v ( LOS I, 1 q ) = S V (L 1'5 1 . 1 '3 ) + W V
5 V ( L 0'5 1. 1 7) = S V (L IS 1 , 1 7 )
SV(LOSl.16)=SV(LISl,16)
S V ( LIS It 3 5 t = s V (L IS It 35 ) + 5 V (L 0 S 2, 10 1 )
S V ( L IS it 36) = S V (L IS 1, 3 b) +5 V (L 0 S 2, 108)
SV (LOS?, 3S)=SV (LOS:?" 35)+SV (LOS2, 101)
5VfLOS2, 36t=SV (LOS2, 3f»+SV (LOS2. 108)
SUM=C.
00 1 J=l,9
I=lD+J
SUM=SU~+SV (LOS 1, I)
1 CONTINUE
SV(LOSl.lC)=SU1"'
RETURN 2
E NO
-------
.
00
0\
.
ii)! FO~ P~RTL
C
C
C [[[
C. THE PARTIo.L OERIVI\TIVES ci~/O\X 4.R£ PLACI:O HERE ..
c. PO(!,JJ= -o)F( I)/@X rJ) .
c .........~..~.............................................
SUBRijUTINE Pb,PTL(WJ
COMMON/FUNC/F(50),C¥(SQ),CT(lOJ
C {) ~ ... 0 N I G R AD/ 0 0 ( 5 0, ') 0 ) , AS ( 5 ~ , 5 0) ,S Q ( 5 D ) / RES I n / 5S ( 5 0 )
COMMON 14CCEF/GLN(50),OGLN(SD),IZ(~O)
CCMMON/LI~S/NF,NT
COMMON /PPRESS/PK«2),Ll,L2,L3,L4,REN
COM M 0 N / NEW I IV ( 5 a J , I£:( 5 G ), r: L , T H ( 1 1 )
C.O M M 0 N / T E M P E PI A C , Be, c 0 K « 2) , N HY ( 5 ) , \oJ srI C )
OI~ENSION W(1),X(SO),GO(SO,50J
COMMON /TPAR/ATP«7J
OOU3LE PRECISION BR,TH
o ou B L E PRE CIS ION n p
DouaLE PRECISION F,CK,CT,W,X,GD
DOUBLE PRECISION PD,AS,SQ,G~
c
DEfINE Y(I)=EXP(X(I)J
c
C .........*............................*...........*.......
C ZERO UNUSED MOlA~ITIES ~ND CONVERT .
C [[[
DO 5 !=h40
DO 6 J=1,40
GDfI,JJ=O.
(; CON T I NU E
5 CONTINUE
-------
I
00
'-I
I
2CON"I~lE:
C
GD( 1, U=-1.0
IF(L4.EQ.8) GO(1,1)=~.
GO( It 2)=-1.0
Ga( 2, lJ=-1.C
GO( 2, 3'=-1.0
GO( 2.10)=+1.0
IF ( L 1. EQ . 1) GO ( 2. 1 c:') = 0 .
GD( 3, lJ=-1.0
GO( 3, Q)=-1.0
GD( 3, n=+1.0
GD( 4, 1)=-1.0
GD( 4, 5)=-1.0
GD( 4, (H=+1.0
GO( S, 11=-1.0
GO( 5, 6)=-1.0
GO( 5tl1J=+1.C
IF(L2.EG.2' 60(5,11)=0.
GO( 6, 1J=-1.C
GO( 6. 1l=-l.J
GO( 6, F)=+1.0
GO( 7,12) =-l.C
GD( 7,2)=-1.0
GO( 7tl3)=+1.O
GD( 8,12)=-1.0
GO( 8, u)=-l.O
GD( 8,1(0=+1.0
GO( 9,12)=-1.0
GO( 9, 7'=-1.0
GO( 9,15)=+1.0
GO( 10, 12) =-1.0
GOn!), 6)=-1.0
GO( 10, 16) =+1.0
GD(llt12)=-1.0
GO(11, 5'=-I.!J
GOfll,I1l=+l.O
GO(12,12)=-1.0
E'-)(12, 8)=-1.0
GDf12tl8)=+1.0
C4lL GPARS (GO. ATP(} It 12.
CALL GPARS(GO,ATP(7'lt12.
CALL GP4RS(SD, ATP(3)..12,
1.19,13)
5,~Q,14'
14,21,15)
-------
I
00
00
I
C~ll GPARS(GD,ATP(Q),12,
60(16, 2)=2.GOflF., 2)
G0(17,23)=-1.0
GO ( 17, 2) =- 1 .0
G0(17,2«0=+1.0
GO(18.23)=-1.0
60(18. 4)=-1.0
GO(18.25)=+1.0
GD( 19. 23) =-1.0
G0(19. (;)=-1.0
G0(19,26)=+1.0
GO(20,23)=-1.0
GO(20, 5)=-1.0
GO(20.21)=+1.0
GO( 21, 23) =-1.0
GO( 2It 7)=-1.0
GO(21.28)=+1.0
C~ll GPARS(GO,ATP(5),?3,
CAll GP~RS(GO. iHP((.).:?3.
CAll GPARS(GO,ATP(7).2!,
60 ( 22. 2) = 2. 60 ( 22. 2 )
(;O( 24,2) =-1.0
GO( 24,32) =+1.0
60(25,31)=-1.0
GO(2S. 7)=-1.0
60(25.33)=+1.0
GO(26,31'=-1.0
60(26, 6)=-1.0
60(26,34)=+1.0
GO( 27.31 J =-1.0
60(21, 5)=-1.0
60(27,35)=+1.0
60(28.31)=-1.0
60(28, 8)=-1.0
GO(28.36)=+1.0
BR=TH(I)
60(29, 3)=Y( 3)/BR
GO(29. 4)=Y( 4J1BR
GO (29, 1I.JJ =Y ( 10)1 BR
IFCll.EQ.l) 60(29,IC)=-1.
60 C 29. 1 ~ ) = V ( 14 ) 1 BR
GO(29,2lJ=V(2U/BP
GOC29.25)=Y(ZS IBR
2.22.16)
2-'29,22)
7 - 30, 23 )
IJ_38,33)
-------
I
00
\.0
I
GO( 79. 3
-------
I
\0
o
I
GO(34,241=Y(24)/BR
GO(]4,2SI=Y(2S.I£R
GOJ34.261=Y(26./BR
GO(]4.271=Y{27./BR
GO(34.281=Y(281/BR
GO(34.29)=Y(291/SR
GO.C3q. 30. =Y ( 30 II BR
GO( 34.381 =Y( 3al/eR
GO(34.391=1.
BR =T H ( 71
GO ( 35.311 =Y ( 31 II BR
GO ( 35. 321 = Y ( 3, I I BR
GO(35.331=Y(331/BR
GO (35. 34 I = Y ( 34 II 8 R
GO(35.3SI=V(3SI/BR
GO(35.361=Y(3oI/BR
GO( 35. 391=1.
IF(L4.EO.31 GO TO <3
BR=TH(8)
60(36. 11=- VC 1)/BR
GO( 36.12) =-2*V (12)/~P
GO ( 36, 1 3. = - V ( 1 3) I RR
60(36,16)=- V(16)/8R
GD(36,18)=- Y(181/3R
GO(36.231=-2.V(231/~R
GO(35,24)=- V(24)/SR
GD(36,26'=- Y(26)tRR
60(36,31)=- Y(31)/9R
BR=TH(9)
GO(36, 21= Y( 21tS?
GO(36, 3)= Y( 3)/BR
GO(36, 4)=2*Y( 4)/SR
6D(36, 5)=2*Y( 51/SR
60(36, €)= V( 6)/D,P
60(36, 7I=2*Y( 7)/SR
GO(36.. 8)= Y( 81/BI?
GO(36, 9)= Y( 9)/SR
GD(36,33)= Y(331/BR
50(36,35)= Y(351/3~
60(36, 391=-V (371/SR
60 TO 10
~ GO(36. 1)=-1.
10 CONT I NU E
-------
I
I.D
,....
I
ort=T-i .10
GD(39, U::.S*V( 1)/P'R
GD(3<3, 2)=.5.V( ZJ/eR
GO(3Y, U=.7\-'YC U/B?
GO(3~. '3)=.S-.V( 9J/~p
GOC .39, lC)::Y( 10J/8~
IF(l1.fQ.1I GD(33tlO)::C.
GOf 39.1U::Yf 11 J/BP
IFf L 2. E G . 2 J GO ( 39, 1 1 J :: o.
GO( 3'3.13)::.5-.Y (13J/3P
GO( 39.16J::.S*Y (15J/gD
GO( 39, 24J::.S"Y (?4J/R~
GO( 39, 26J::.S*Y (2G)/q~
GO ( 39. 32)::.5.Y (:3 2 J I gq
GO( 39, 3'4) ::~5.Y (34)/13;<
GO (39, 20 J :: NH Y ( 1 ) . Y ( ? G J 1 q!<
GD( 39.21 J:: .S*Y (21 )/'3;:;>
ED(39,2:?)::Y(2ZJ/BP
GO( 39. :!OJ=NHY(ZJ.Y (~CJl3P.
GO( 39. 29J=Y( 23J/8R
GD(33.38J=NHY(3J.Y(38J/SQ
GO( 39. 3<;1):: 1. +. s.v (37 I/RP
IF(L3.NE.4J GO TO ~.
BQ::THfllJ
GD( 39,19) = -\.is (2 hY ( 19 hv( 39 II 8R
GO ( 39. 2 OJ:: GO ( :! 9, 2 a J - W S (S ) .. Y ( 20 ) .. Y ( 3'3 ) I 8 R
G 1) ( 39. 21 J :: GO ( 3 9, 21 1 - W S (4 ) .. y ( 2 1 1 . Y ( ? q J I BR
G'J ( .3 9, 22J = GD ( 3' 9, 22 1 - iJ:: (1 ) . Y ( 22 ,. Y ( 39 II BR
r; 0 ( 3,?, 2'3 J = GO ( 3 9, 29 ) - \.i S (6 ) "Y ( 2 '3 ) .. Y ( 3' 3 ) I 8 R
GO ( ? '3, 3 C ) = GO ( 3 9, 3' 0 J - \.J~. (3 J . Y ( 3' C ) . Y ( ::; '9 J I BP.
G I) ( 13 . 3 8 J = GO ( :) 9. 3 a ) - w S (9 J -. Y ( 3 8 J . Y ( 3 9 ) I B R
G I) ( 3 9. :3 9 ) = GO ( 3 '3. 3 9 J + C T (1 C J I ~ P - 1
f! C0NTINUE
c
00 3 I=ltNF"
Nf=IE(!)
00 4 J=I,Nf
NV=IV (J)
PD(I.J)=GO(NE,NVJ
4 CONT! NUE
3 C I) N T I NU E
~ fT URN
END
-------
~IN POP POPElT.POPELT
Ct-IMN* FCOPY
COMMON ~ COMMON DATA FOR ALL SUBROUTINES
*SV(SO,120h ~ <;TREAM DATil
*!STM(25,10h Q} STREAM CONNECTION ARRAY
*IOEQP(2S), ~ EQUIPMENT NAME
*rSEQ(30), c» ORDER OF PROCESS CAl.
*P4(25,S), c» (QUIP. P~~AM[TERS
*LltL2,l3, ~ FLAGS FOP THE RECYCLE LOOPS
*NL. ~ CURRENT INDEX
*LSRU3hlERL(3h Ii) STA!:?r AND END OF RECYCLE LOOPS
*W V. Xl SU ( 2 ) . )C SO ( 7 ), XL 0 ( 7J ,ON A T ( g) , X A( ,.. ) . PR D ( 1 00 ) , l A BE l ( 1 3 ), I\H 2 0
DIMENSION pee)
END
lCMN* rcopy
CO~MON
1
2
END
PHYSO* FCOPY
00 AT A X MW ( 1) 1
1 )C HW ( 2 J 1
2 X Hili ( 3 J 1
3 X MW ( 4) 1
Lf X MW ( 5) 1
5 X MW ( £,) 1
6 X MW ( 1) 1
1 X MW ( 8) 1
8 X MW ( 9) 1
9 X MW ( 21 ) I
00 A T II X MW ( 2 2 J 1
1 X Mill ( 23 ) 1
2 X MW ( 24 ) 1
3 X MW ( 25 ) 1
4 X MW ( 26 ) 1
5 X MW ( 21) I
G X MW ( 2 e ) 1
1 X Miol ( 29) 1
g X MW ( 30 ) 1
9 X MW ( 31 ) 1
00 A T A X MW ( 32 ) 1
X MW 33 1
IDARRY/XMW(lOO) ,OHF(1QD) ,fNTO(108), ACP(lOC:) .8CP(lOG) ,
CCP(lCO) ,OCP(lOD) ,TMIN(lOO),TMAX(lCO).ZE(lOQI .
ALH( lOC),BLIT(lOO),UCAPflOO)
I
\.0
N
I
64.05f/.
44.0111,
30.008/,
4~ .008/,
37.000/,
28.011/.
28.01£1,
3E.465/,
18.GI6/.
55.080/.
74.100/.
100.090/.
120.140/,
129.140/,
13<:.1401,
112. 170/,
Lf 0 . 3 20/.
5 g . 340/,
84. :nO/,
1 3'! . :) ~ 01 .
114.410/,
jLf. 3~O/,
OHF( 1)/
O!-lF( 2)1
OH~( 3)/
OHF( 4)1
('YF( 5)/
UHF( 5)/
OHF( 7)/
DH~( 8)/
D!-IFf '3)1
QYF(21)1
(lHF(22)/
!JHF(23)1
DHF(24)1
('!HF(25)1
OHF(26)1
DHF(27JI
(JHF(28)1
OI..H~(23)1
f)HF(:!C)1
0'"1F(31)1
DYF(32)1
)\,f ~ 3 J I
-7G930./.ENTO( II/
-Q401C./.ENTO( 2)1
lIS90.I,ENTO( 3)1
79GO./.ENTO( 4)1
D.I,ENTO( >:;)1
-264I6.1.£NTO( ;)/
G.I,ENTO( 1)1
-22G63.I,fNTO( 8)1
-S777G.I,ENTO( 9)1
-1~1130.I.ENTO(21)1
-23SGOO.I.~NTO(22)/
-288110.I.ENTO(23)/
-215880.I,ENTO(24)1
-31£20G.I.[NTO(2S)1
-34013u.l.fNTO(2~)1
-~g24CO./,ENTO(27)1
-14363D.I.ENTO(22)1
-22100~./~(NTO(ZJ)1
-2;3?e.O./.~NTO(~O)1
-~73IGO.I.ENTO(31)1
!j .1 . E ~. T 0 ( 3 2 ) I
-24 OOG.I.ENTO(33 /
59.?10/,
51.f!3:J1t
50.!IOIt
57.290/,
48.g7CIt
41.~101t
45.17DIt
44.'F.ijSIt
45.G7QIe
9.4801
19.'320/,
22.190/,
24.?OO/.
Z'3.? I.
25.~90/.
4S.'! I,
;.~o I,
15.10 It
15.70 It
45.~ I
0.1 /.
22.5GOIt
S02
C02
NO
N02
02
CO
N2
4Cl
H20
CAD
CA(OH)2
(4C03
C4S03
C4S03* W
C4S01t
CAS04*2W
MGC
MG(OH)2
MSC03
MGC03*3W
MGCC3*SW
~GS03
-------
2
3
If
5
6
7
OOAT A
1
2
3
4
t"
5
7
8
I
\0
l.A)
I
9
0041 ~
1
2
3
4
5
t;
1
8
9
00 AT A
1
2
3
4
c
-'
~
1
0041 A
1
2
'3
4
-
oJ
r
C
7
8
X MW 34 / . 5 R . 4 301, Q H f ( 34 ,/ - 4 6 :3 3 (! 0 .1 , E ~I T C . ; 4 ) I
XMW(3S)/ 211.4801, D~F(!5)/ -r7E~CC.I,fNTG(3~)1
XMW(36)/ 12C.3AQ/, OHF(36)/ -305~GO./,E~TO(3G)/
X~W(37)/ ~1.?~8/, D4r(37)1 -102~70.1,[NTO(37)1
X MW ( 38 ) 1 7 ~ . !' 0 C I, '" H F ( 3 S ) / - 24 '254 7 .1 , :: I... T 0 ( 3; ) I
XMW(39)/ 58.448/, ~HF(3.':!)/ - ~f?c.;,O.I,[NTO(3'3)/
TMIN( 1)/ ?9R.I,TMaxt 1)/ lSCG./,ACP( 1)1
TMIN( 2)/ 298./,T~AX( 2)/ I~OO.I,4CP( 2)1
THIN( :n/ 233./,T¥!I)( 3)/ 15GO./dCP( 3)/
TMIN( 4)/ ?g~./,T~AX( ~)/ 1300.1,~CP( 4)1
TMIN( 5)1 ?93./,TM~X( 5)/ I~OG./,~CP( S'I
TMIN( £)/ 2?'3.I.TMAX( h)/ 15GO./.~CP( S)/
TMIN( 1)1 ?~8./,T~4X( 7)/ 150G./,ACP( 7)1
TMIN( 3)1 298.I,T~AX( 3)/ IS0J.I,~CP( 8)1
TMIN( fj)1 ?~~.I.TM4X( '3)1 150C./t4CP( 9)/
TMIN(21)/ ?73./,T~AX(21)1 1113.1,4CP(21)/
TMIN(22)1 ?98./,TMAX(22)1 913.I,AC?(22)1
TMIN(23)1 ?~e.I,T~AX(23)1 o.73.I.ACP(2}}1
TMIN(24}1 29q./,TM~X(24}/ 373./,ACP(24)1
TMTN(25}/ ?93./,T~;AX (25)/ 373./.ACPC2~;)/
TMIN(26)/ 298./,TMaX(26)/ 973.I.ACPC2()/
TMIN(21)1 :?':\3.I,TM!lX (27}1 313.1,4CP(27)/
TMIN(2B)1 2~8./,T~aX(2a}1 20GO.I,4CP(22}1
TMIN(29)/ 238.I.T~AX(23)/ 10GG./,ACP(2S)/
T~IN(3CJl 29~./,TMAX(30)/ 7C:).I,ACP<3C}1
TMIN(3lJ/ 2sa./,TfoI~X(3lJ/ 313./,ACP(3UI
TM!N(32)/ G./.TMAX(32)1 O./,ACP(32J/
TMIN(33)/ 298./,T~AX(33)/ ~73./,ACP(33)/
T~IN(34)/ 298./,TM~X(34)/ 373./,AC?(34)/
TMIN(3SH 298.I,TMIIX(35JI 373.I.ACP(3'S)/
TMIN(36)/ 793./,TMIIX (36)/ IlfOO./,ACPC3E:.t/
TM!N(37)/ 2~8./,TMAX(37}1 973.I,ACPC37JI
TMIN(38)/ 298.I,TMAX(33}1 800./.~CP(38)1
TMINf39t/ 2~8./,TMIIX«391/ 10ac./.ACP~331/
BCP( 1)/10.010E-3/,Cr.P( 1)/ -!.794E-6/,DC~( 1)/
BCP( 2J/I0.14~E-3/,CCP( 2)/ -J.415E-6/,DCP( 2)/
~CP( 3)1 2.0~9E-3/.CCP( 3)/ -.4206E-5/.0C?( 3)/
BCP( 4)/ 1.S10E-3/,Cr.P( 4)/ .1D8E-c:/,OCP( 4)1
BCP( 5)/ J.lf7[-3/,CCP( 5)/ -1.JQ5E-£/,DCP( 5)1
8CP( SJ/ 1.811E-3/,Cf.P( f)1 -.2575£-~/,OCPC ~)I
BCP( 7)1 1.383:-3/.CCP( 7)1 -Q.Of9E-E/.DCP( 7)1
BCP( 6)/ O.4!1~-3/,CCP( 8)/ .3~13E-(/,DCP( 8)/
BCP( ~n/ 2.6uS!:-3/,CCP( 9)/ .G4SQ[-6/,aCP( q)1
52.1 "
81.7 "
21.':)80"
1 E?. ~9'J"
11.:",40"
17.740/
h.~45/,
F..7~9/,
S .41+0"
6.~6'3"
:;.111"
f,.~:,J"
f..457"
;.134"
7.135"
IG.fJOO/
25.130"
24.~7CIt
13.770"
26.7 I.
17.220"
44.t:; "
10.170"
17.')26"
18.FIJ"
S1.t: /
c.o "
11.fJ90"
5G .1 "
83.0 "
16.S3;]"
1 S .f,' 90 "
14.Q28"
9.11796/
o.f') "
0.0 It
o.~ I,
C.n I,
0.0 I,
G.~ "
iJ.'; "
O.:j "
o .1." I.
MGS03*3W
M";S03*fW
MG504
NA20
FLY 6,SH
NACl
S02
C02
NO
N02
O?
ca
N2
HCL
H2C
CAO
~A(OH)2
t'AC03
CAS03
r.aSC3* W
r. A 504
CII.S04*2W
~~GO
Mi,(OH)2
MGC03
~S(03*3W
f>AGCC3*SW
MGS03
~SS.:J3*3W
MSS03*U,:
MGS04
NA20
~LY ASH
NACL
<;02
r02
NO
NO?
O?
CO
N2
HCL
H~C
-------
.
1..0
.p-
I
9
ooaT 4
1
2
3
4
5
G
7
.8
9
OD~T 4
1
2
3
4
5
6
7
GO H .Q
1
2
3
4
5
6
7
8
9
DO U .Q
1
2
3
4
5
ODAT A
1
2
3
4
5
6
7
BCP(21)1 4.840~-3/,CCP(21)1
BCP(22)1 2.880E-3/.CCP(22)1
BCP(23)1 S.24C[-3/.CCP(23)1
BCP(24)/IG.IBO[-3/.CCP(24)1
BCP(2S)1 0.I.CCP(2SSI
BCP (26 )/23 .370[- 3/. cr.p (26) 1
BCPC27JI O.I.CCP(27)/
BCP(28)/ 1.740E-3/.CCP(28)1
BCP (29)/14.522[- 3/.CCP (29)1
BCP ( 30 J /13.790[- 3/. C CP C 30) 1
BCP(31JI o./.CCP(3l)l
BCP(32)1 O.I,CCP(32)1
BCP(33)/16.840E-3/.CCPC33)1
BCP(34)1 0.I,CCP(34)1
BCP(3S)1 O.I,CCPC3S)1
BCP( 36J/21.800E-3/.CCP(3SJI
BCP(31)/5.400[-3/.CC1'(31J/
BCP(38)/1.QOOE-3/.CCPC38)/
eCP(39)/5.4183E-3/.CCP(39)1
AlIT(50J/O.O I.BlIT(50)/O.D
AlITtS11/6.0 I.RlIT~Sl'/C.4
AlIT(52)/3.0 /.8lITCS2)/0.]
AlIT(53)/4.5 I.BlIT(53)/D.O
AlIT(54)/4.5 I.BlIT(54)/O.0
AlIT(SS)/3.0 1.8LITCSS)/O.O
AlIT(56)/4.5 I.BlITCS6)/O.O
AlITCS7)/4.5 I.BlIT(57)/O.O
AlIT(58)/2.0 I,BlIT(58)/-.2
AlIT(59)/3.0 1.8LIT(5S)/O.3
ALIT(60)/0.0 I.PlIT(60)/O.0
ALIT(61)/0.O I,BlIT(61)/O.O
AlIT(E-2)J4.S I.BlIT(62)/O.l
AlIT(63)/3.0 l,glIT(63)/O.3
ALIT(64J/0.0 I.BLIT(64)/O.O
AlIT(65)/O.O 1.8lIT(SS)/0.O
ALIT(66)/3.0 I,BLIT(66)/G.3
AlIT(61J/G.O 1.~LIT(67)/0.O
4LIT(6B)/3.0 I,BlIT(68)/O.3
4LH (6'3)/3.0 I. BlIT «(,9)/:::1.:3
ALIT(70)/3.0 1.8lIT(70)/J.3
ALIT(71)/O.O I.BLIT(11)/0.O
A l IT ( 72 ) I 3. a It R lIT f7 2,) / a . 3
4lIT(13)/O.Q 1.6lIT(13)/C.O
0.I.OCP(21)1 1.OB~+51
O.I,DCP(22)1 4.51[+5/.
O.I.DCP(23)1 6.2C~+S/,
O.I.DCP(24)1 1.6fE+5/,
O.I.OCP(2S)1 0.0 I.
O.I.DCP(26)1 0.33£+5/,
0.I.DCP(21)1 0.0 I.
O.I,DCP(28)/ 1.48~+5/,
O.I,DCP(29)1 3.01ff
-------
8 A -IT . 74 I I J. a ItS_1T(74 10.S 1,2E 74)1 o. I. MGC03(L)
9 ALIT{7S)/5.G It 8LIT (75)/O.l 1.2[(75)>1+1. I NA+
OOAT A ALIT(Ud/O.(i I. RLIT f75»1C.C 1,2( 16)1 o. It N 4 OH (U
1 ALIT (77J/3.0 I, SLIT (17)/0.3 I.ZE(71}/-l. It NG.ClJ3-
2 ALIT(7B)/O.O /. P,L IT f7 8» I 0.0 I,ZE(18)1 s. It NAHC03(L
3 ALIT{7g)/3.0 /. P.L IT ( 7 q» Ie. 3 I,zE(7'})/+l. I. NAS04-
4 A L IT ( 80 ) I O. 0 1,6LIT(30)/O.O I.Z[(8(;)1 o. I. NAN03(LJ
5 ALIT (81 )/4.0 I,RLIT(,QlJ/O.O I,Z[(811/-1. I fl-
00 AT A U CAP ( 50) I O. G /.OHr(SC)/-fP317. I . X MW ( 50 ) I 18.f1U; I. H20(l!G)
1 UCAP(51)/O.O I.DHF(St)1 0.0 I , 'I. M\oi ( 5 1 ) I l.rCe I. H+
"') UCAP(52)/O.C I,DYF(52J/-54793. I,XMW(S2JI 17.0ri8 I. OH-
'-
3 UCAP(53)JG.O I.DHF(S3)/-14?'37~. 1 , )( MW ( S .) ) I 81.('7 I, HS03-
4 UCAP(54)/O.0 /,DHF(54)/-15227E. I,XMW{S4)1 80.aS I. 503--
5 UCAP(S5)/O.O /,DHF(55)/-21S900. I, X MW ( S 5 ) I 9E.Oc.. I, $04--
6 UCAP{S6)/O.C /.DHF(56)/-164729. I, X M~ ( 56 ) I Sl.D? I. HC03-
7 UCAP( 511/0.0 I,CHF(57)/-15212b. I , X MW ( 57 ) I 6(,.~1 I. C03--
a UCAP(58J/O.O I,04F(~3J/- 49372. I , Y. MW ( 58 J I 52'.!;1 I, N03--
9 UCAP(S9J/O.O I,OHF(59)/-211ffO. I. X MW ( 5 'j ) I 91.(17 I HS04-
01) AT A UCAP (60)1 O. 07F /,OHF(&C)/-14551G. I,XMW{rOJI 82.r~ I. 4?S03(L)
1 UCAP(f,l )/0.01£ I,OHF(Gl)/-1£697l. I, X MW ( ~ 1 J I 62.rn I, H2C03(L)
I 2 UCAP(62)/0.0 /,OHF(62J/-123770. I . X MW ( f 2 ) I 40.SQ It C4++
1.0 3 UCAP{E-3)/O.O I,OHF(63J/-183320. I , X MW ( E 3 ) I 57.CQ I. (AOH+
U\
I 4 UCAP (£4 J/0.07£. I.DYF(G4J/-273736. I,XMW(f4)/12C:.}4 It C4S03{l)
'5 UCAP(65)/O.07S I,DHF«(5)/-229720. I , X MW ( :; 5 J 11 0 c. r q It CAC03{L)
6 UCAP(;;:;)/C.O I.DHF(6SJ/-293118. I , X MW ( f:;' J 110 1 . 10 I, CAHC03+
7 UC4P(f;.7)/0.07F I.DHF(67)/-34~033. I,XMW(£7J/13E:.14 I, CAS04(LJ
8 UCAP(f,8)/O.O I.DHF(6B)/-173445. I,XMW{6E)/I02.C1Q It C4N03'"
'3 UCAP(£9)/O.O /.OHF(E9J/-1I0410. I,XMW(6~)1 24.~2 I MG++
OOAT A UC4.P(70)/O.O I,DHF(7Q)/-162S39. I , X Mw { 70 J I 41.7~ I, MGOH+
1 UC4P( 11 HO.Q7F 'tDHF{?lJ/-2(C7C7. I , X MW ( 71 ) 1104 . :3 '~, I, MGS03(LJ
2 UCAP(72J/O.O I.DHF(72J/-?740c3. I, X MW ( 72) I 85.34 It Mr;HC03+
3 UCAP(13)/0.07F I.OHF(73J/-3224~9. I , X MW ( 13 ) 11 20. ~,~ It MGS04(l)
4 UCAP(14)/C.07f I,OHF(74)/-270226. I, X MW ( 7 It ) I 8~."'!:' I, MGC03(l)
5 UCAP(75)/C.O ItOHF(7S)/- 57279. I , X MW ( 7 C; ) I 22.~~ I. NA+
; UCAP(16J/0.016 /.OHF(76J/-112078. I,XMW(7G)1 40.C':i I. NAOH(L)
7 UC4.P(77J/O.O I.DHF(17)/-2180l7. I, X MW ( 71 J I 83.01 It NAC03-
~ UCAP( 78)/0.076 I,OHF(78)/-222008. I, X MW ( 1 ~ J I 84.C? I. NAHC03(L
9 UCA?( 79)/0.0 I.DHF(79J/-273076. I, )( MW ( 7'3 JIll q. r!", I NIIS04-
OOAT 1\ U CAP ( 80 J 10.0 7f; /.OHF(gOJ/~106£51. I, X M\oI ( 8 G ) I 8.~,.rI I. N4N03(l)
1 UC4.P(811/0.0 It OH F ( 81 ) 1- 40C23. I , X MW ( E.l)/ 3S.uS I Cl-
OOAT 4. TMIN4:5CI/ '27"3.1. T MAX (501/ 373.1. A CPct5[11! l~.OLlI. H?O(LIGI
1 T~IN4:S11/ 298.1t T MAX 4: 5111 333.I,ACPctSlll 7~.OOIt H<
2 T~!Nt5211 '2 q E.I, T M ~x t 52 II 333.I.ACP(S2'1 - 41.COIt OH-
-------
3 TMINC5311 '2 98 .1 . T M AX ~ 5 3 II 333.1.4CP45311 - 16.00/. H503-
4 T M I N 4: 54 II 298."T'1AX(5411 333.I.ACP45411 -121.00/. 503--
5 TMINt5S11 Z98."T'1AXC5511 333.1.4CPtS5,'1 - 9'3.001. 504--
6 TMINC5611 298." T MAX $ 5 61/ 33J.I.ACPtSfll - ?7 .00 I. HCOJ-
1 TMINcf571/ 29 8 . 1 . T M AX t 5 1 t I 333.1.4CP(5111 -}37..00/. CO 3--
8 TMINC5811 298."TMAXt5811 333.1.4CPt5811 49.00" N03--
9 TMINC5911 298."TMAXt59tl 333.1.~CP(S911 - 11.00/ H504-
00 AT A TMINC6011 298.1. T M AX t 60 II 333.I.ACPt601/ 7.00/. H2S0:Hll
1 TMINc6111 2 <) e . " T M AX C 6 1 J/ 333.1 . A CP t 6111 91.00" H?C03tll
2 TMINt6211 2 9 8 . 1 . T M AX t 6 2 II 333.1,4CP(6211 45.00/. C4«
3 TMINt6JII 298." T M AX It (; 3 II 333.I,ACPt6311 7..00/, CAOH<
4 TMINC641/ 29 8./ , T M. AX t 6 4 II 333.1, ACPt64J I - 7S .OCh CAS03cli
5 TMINC65f/ 298 .1 , T M AX It b 5 1/ 333.1.4CPt651/ - IP .00 I. C4C03tll
6 TMINC6611 298.1. T MAX t 6 6 1/ 333.I.ACPt6611 IFl,.aCI. CA HCO 3<
7 TMINC6711 298." T MAX t 6111 333.1,4CP46711 .,.801. CAS04Cli
8 TMINCf811 298./, nux It 681/ 333.1,4CP46811 4.00/, CAN03(
3 TMINC:691/ 2 <3 8 . " T M AX H; 9 1 1 333./,4CP
-------
I
\0
-.....J
I
@I FOR 0HI
FUNCTION PH!(X,EGS)
DOUBLE PRECISION PHI,TEMP
DOUBLE PRECISION F,C~,CT,X
C .*.*..***.*....***.*...*..**................*.........*...*.*..*...
C. FORM THE SUM OF THE ~Q~R£~ OF THE N rUNC.
C ......*...*....*.**.........................*............**.......*
COM~ON/FUNCI Fe SO), Ct< (50) .CT (10)
COM/-10N ILIMS/NF
DIMENSION XC 1)
C 1\ L L E QS ex J
rn-1p=o.
DC 1 I=lt NF
TEMP=TEMP+F( 1).F C I)
1 CONTINUE
PHI=TEMP
R ET UR N
END
-------
I
\0
ex>
I
iH FOR PMPFAN
SUBROUTINE PMPF4N(P,$)
INCLUDE CMMN,lIST
lOCSV=ISE(HNl)
lIS=ISTM(LOCSV,I)
LOS=ISTM(lOCSV,6)
KEY I=SV (lOS, £I)
IF(KEYl.NE.O) GO TO 1
PRO(61J =P(l)
RETURN 2
1 CON T I NU E
p ( 1 ) = P ( 1 ) / 1 ~ . 6 96
S V ( LOS,S) = S V (l IS , 5 )
SV(lOS,6)=P( 1)
G = . 11384 2 3. S V (L IS, 1 0 ) . S V (l I~ , 5 ) 1 5 V (l IS, b )
OP=211E.22*(P(I)-SV(lIS,6»
OHP=( Q*OP/P( 2) )/330GO.
0031=10,119
SV(LOS,I)=SVCL!S,I)
3 CON T I NU E
OKW =OHP/I. 341
PRO(91:U=OHP
PRO ( 100) =OKW
RETURN 2
END
"
-------
@T FOR PRt:LD
SUBROUTINE PPf.LO
INCLUDE C~~~!tLIST
00 1 J=l,SO
I=IS[Q(JJ
NL=J
IFfI.EG.OJ GO TO 2
N4ME:=IOEOPfI J
IN=~~4TCH(NAME)
CALL PSULDfIN,1)
1 CON T I NU E
2 00 .3 J=1,50
SV(J,2)=l
3 C t) N T I NU E
R ET UR N
ENr
I
\0
\0
I
-------
(iI FOR PROCNO
SUBROUTINE PROCNO
INCLUDE CMMN.LIST
WRITE(6.10Q)
CALL OHIME
WRITE(E. 1) LABEL
WRITEC6. 2)
WRITE(f,. 3)
WRITEC6, 4)
WRITE(6, 5)
WRITEC6, 7)
WRITEC6, 8)
WRITE(6.8lJ
WRITE(6,99)
IF(PRD(75) .NE.O.) WRITEC6.98)
WRITE(f. 9)
WRITE(6.10)
WRITE(6,11) PRO(11),PRO(13),PRO(19)
WRITE(6,12) PRD(12),PRO(14),PRO(20)
WRITE(6,13) PRO(ISt,PRO(21)
WRITE(6,14) PRO(6S),PRO(16),PRD(22)
WRITE(6,IS) PRO(66},PRO(17),PRD(23)
WRITE(6,16) PR0(18),PROC21f)
WRITE(E,1611 PROnC),PRO(1})
WRITE(6,17) PRO(2S),PRO(26)
WRITE(E,lS)
WRITE(6,19) PRO(27},PRO(28J
WRITE(6,20)PRO(29).PPO(67)
WRITE(6,21) PROC30J.PRO(3IJ
WRITE(6,40) P~O(61)
WRITE(6,42)
WRITE(6,43) PRO(62J,PRO(63),PRO(64)
WRITE(6,23J
WRITE(6,24) PRO(32J,PRO(33)
WRITEC6,26)
WRITE(6.27)
WRITE(6,28)
WRITE(6,29)
W~ITE(6,30)
WRITEC E. 31)
WRITE(6.32)
IRITE(6,3]
.
I-'
o
o
I
PRO(1),PRO(2J,PRO(3)
PPO(4). PROfS)
PRO(6),PROt7)
PRO(S),PRI)(9)
PROCIO)
PROtE8)
PRO(34J,PRO(43),PRO(5IJ,PRO(53J
PRO(3SJ,PROC44),PRDC69),PRO(S4J
PRO(36),PRO(45),PRO(5S)
PRO(37J,PRO(46),PRD(52),PRO(56)
PRO(38J,PR) 41.,)W 57
-------
I
.....
o
.....
I
~R:T:6,34 PRO 39),PPO(48 ,:H?D53'
WRITEC6,35J PRD(40J,PRO(49J,PROC59J
WRITE(6,36J PRD(41),PRO(50J,PRO(60J
WRITE(6,37) PRO(42J
1 FORMAT (1 H+,T 36,13A5)
2 FORMAT(3SX,'PQOCESS CONDITIONS'J
3 FORMAT(SX,'FlU[ GAS RUE ='FIO.2,'ACFM AT TFG ='GIC.3,'OEG. F AND
.PFG ='610.3, 'PSIA')
4 FORMATClOX,'S02 ABSOR8ED =',GI0.3, '%',T45, 'NO ABSORBED =',r;lO.3,'
*t' )
5 FORMATClOX,'S02 OXIOIlED =',610.3, 't',T4S, 'N02 ABSO\"?B£D =',filG.3,'
.t' )
7 F'ORMATCI,TI4,'lIMESTONE RATE =',GI0.3,' lBS/MIN =',~lO.3,' ~ THEOR
.ETICAL'J
8 FORMAT(13X,'LIME5TONE COMPOSITION =',GI0.3,'MOlES (MG)/MOlr~(CA+MG
. J ' )
81 FORMATCl3X,'lIME REACTED IN SOllER =',GI0.3, '%'J
~ FORMAT(10X,'lIME HYOP4TEO',T45,'SOLIOS DISSOLVED IN SCRUB3ER')
10 FORMAT(13X,'IN SYSTE"",T58,'LA',T11, 'SF')
11 FOR M AT (2 OX , ' C A 0 =', G 1 0 . '3, '% ' , T 45, ' C A ( 01-\) 2 =', G 10 .3, ' % ' , 2X, G 1 O. 3, '%
. ' J
12 FORMAT(20X,'MGO =',GI0.3,'~',T45,'MG(OHJ2 =',GI0.3,'t,',2X,GIO.3,',
. ' )
13 FORMATC13X,'!N SCRUBSER',T45,'CAC03 =',GIC.3,'2;',2X,GIC.3, 't')
14 FORMAT(20X,'CAO =',GIO.3,'X',T45,'MGC03 =',GIO.3,'~',2X,GIO.3, 'X
. ' )
15 FORMAT(20X,'MGO =',GI0.3,'t',T45,'MGS04
* ' J
16 FORMAT(44X,'NA20
161 FORMAT(44X,'NACL
11 FOR M AT ( 1 3 X , ' FLY AS H
*LFUR IN COAL ')
1 8 FOR MAT ( 3 X , ' E QU I P M (N T PAR AM E T E R S; ')
19 FORMAT(SX,'SOLIOS IN CLARIFIER BOTTOMS =' ,GI0.3,' WT.%
.I(R EFFICIENCY =', GI0. 3, '% 'J
20 FORMAT(SX, 'SOLIDS IN fILTER
. EFFICIENCY =',GI0.3,'%')
21 FORtUT(5X, 'TEMP. OF COOLED G-S STREAM =',G10.3,'D£G F TEMP. or RE
*HEATED STACK GAS =',G10.3, 'OEG. f')
23 FORMAT( 3X,' INITIAL VALUES: 'J
24 FORMATClOX,'SCRUBBfR FEED RATE = ',GI0.3, 'GPM H20 SF11000 ACFM FG
.=',FIO.2,' G~M H20'J
2E. FORMAT(/3X,'INPUT STREAM COMPOSITIONS ;')
=' . 5 1 0 . 3, ' % ' , 2 X , r; 1 C. 3, '%
=',G10.3,'t',2X,GIG.3, '% ')
=',GI0.3,'%',2X,GUJ.3, 'X 'J
RATE =', Gl 0.3, 'lES/MIN =', Gl 0.3, ' LBS Fa IlR SU
ClARIF
BOTTOMS =',GI0.3,' \tiT.:t
~ILTfR
-------
,
......
o
N
I
27 FORMATC7X, 'FLUE GAS',T29,'LIMESTONE',T53,'FlY ASH',T74,,'WATER MAK
.EUP' )
28 FOIHUT(4X, 'COMP. ~OLE % 'T2G,'COMP.
*T.%',T74,'COMP. MG/l')
29 FORMAT(6X, 'S02 = ',610.3,T26, 'CAO
.,T75,'S03 =',GI0.3)
30 FORMAT(6X, 'C02 =',GI0.3,T26, 'MGO
.,T75,'C03 ='GI0.3)
31 FORMAT(6X,'NO =',GI0.3,T26, 'CAC03 =',GI0..StT47, 'INSOLU8U:',T15, 'S
.04 =',GI0.3)
32 FORMttT(6X, 'NOZ =',GI0.3,T26, 'MGC03 =''{310.3,T48, 'FLY ~SH =',GI0.3
*,T75,'N03 =',GI0.3)
33 FORMAT(6X, '02 =',610.3,T26, 'CAS03
3 4 FOR MAT ( 6 X, 'C 0 =', G 1 0 . 3, T 26, 'M G S 0 3
35 FORMAT(6X, 'N2 =',610.3,T2€, 'CA504
36 FORMAT(6X, 'HCL =','310.3,T26, 'MG504
37 FORMAT (6X, 'H20 =',610.3,)
140 FOIH1AT(5X,'1.D. FAN EXIT prf.SSURE =',GI0.3,' PSI")
42 FORMAT(SX,'UNIT PRESSURE l05SES,PSU')
143 FORMATf13X,'COOlER =',610.3,T37, 'SCRUBBER ='..GI0.3,T62, 'REHfATER =
.',GI0.3)
98 FORMAT (lH+,9X, 'NO')
99 FORMATfl3X,'PRECIPITATION ALLOWED IN SCRUBBER')
IOO FORMAT (1 H1)
R ET UR N
[NO
WT.% ',T48, 'COMP.
w
=',610.3,T48, 'NA20
=',GI0.3
=',GI0.3,T48, 'NACL
=',GIO.3
=',GI0.3,T7~, 'CA
= " G 10. 3, T 15, 'M G
=',GI0.3,T75, 'Nil
=',610.3, T15, 'CL
=',GIC.3)
=',GI0.3)
=',GI0.3)
=',GIO.3)
-------
c *
c .
c *
I
.....
a
-------
~1 FOR PROS I'"
C......................................
C . T HIS 1ST HE D R I V IN G PRO G Q AM" .
C ......................*...............
INCLUDE LCMN,LIST
INCLUDE PHYSD,lIST
CAlL READ IN
CALL PRELD
CALL PROCND
CALL PROLOG
CALL ?TSUM
CalL ARTWRK
END
I
.....
o
~
I
-------
ii)I FOR PSUlD
SU8ROUTINE PSUlOC!N.IXJ
INCLUDE CMMN.L 1ST
C
00 200 1=1,3
PCIJ=?IHIX.IJ
208 CONTINUE
c
I
I-'
o
V1
I
60 TO (l.2.3.4.'5,S,7.8,9elr.llel2e13h IN
1 CALL F"lUGAS(P.$100)
2 C4ll STKGA$(P.$ICO)
3 CAll WTP.MKD(P.$lCOJ
4 C4ll FlTRSM(?,$10GJ
5 CAll SCQUBR(P,SlOO)
6 CALL CLrHTQ(p,$ICOJ
7 C4lL FIlTEO(p.sIOOJ
8 CALL OIVDEPCP,5100J
9 CALL EQMIXR(P.$100J
10 CALL (FHOlD(P,$lOGJ
11 CALL PMPFAN(P.$lOC)
12 CALL CLRFYPCP,$100)
13 CALL OVAlM8(p,$10al
100 RETURN
END
-------
O! I FOR PT SU M
SUBROUTINE PTSUM
INCLUDE CMMN,LIST
INCLUDE LCMN,L 1ST
OIMENSION )TM(6J,TMG(&J,TML(6J,TMS(~J,WTC6J,WG(6J,Wl(6J,WS(SJ,0(6.
. HT ( 6 ), HG (6), Hl (6 J, HS (6). IPS V (6 )
c
I
,.....
o
0'\
I
OIMENSION IFRMT(606),IRRAY(9)
o ~ T ~ (I F R MT ( I) , I :: 1, 6 ) I 36 H (
DATA (IFRMT(I),I= 1, 12J/36H(
o AT A (I F R MT ( I J , I:: 1 3, 16 J I 36 H (
OATil. (IFRMT(I),I= 19, 24)/!6H(
DATA (IFRMTtI)'I:: 25, 3C)/3SH(
OHA (IFRMTCI),I:: 3lt 36)/3;H(
OAT A (I F R MT ( IJ , I:: 37, 42) I 35 H (
DATA (lFRMT(IhI:: 43, 48)/36H(
OATil. (I F R MT( I) , I:: 4 9, 54) I 35 H (
O~TA (IFRMT(IhI:: 55. EOJ/36H(
OAT A (I F R MT ( IJ , I = 6 It H~) I 36 H (
OAT ~ (I F q MT ( 1) , I:: 67. 12 J I 315 H (
DATA (lFRMT(J).I:: 73, 18J/36HC
OHA (IFRMT(IJtI:: 7'3. 84)/36H{
DATA (IFRMTtIhI:: 85, ~OJ/36H(
OAT~ (IFRMT(I).I=SgS,600J/36H(
o AT A (I F R HT ( I J , I:: <31. 95 J I 36 H(
OAT A (I F R MT ( I) , I:: 97. 1 02 ) I 36 H (
OHA (IFRMT(IhI:IOJ.108J/35H(
o AT A (I F R MT ( 1) . I :: 1 G '3, 114 ) I 3f; H (
DATA (IFRMT(IJ.I::115,120)/36H(
DATA (IFRMT(!).I::121,126J/36H(
DATA (IFRMT(IJ,I::127,132)/36H(
OAT A (I F R MT C I J , I :: 1 3 3. 1 38 J I 36 H (
OAT A (I F R MT ( 1 J . I:: 1 3 q, 11&4 ) I 36 H (
OAT A (IFRMT C IJ ,I =145,150 J/36H(
DATA (IFRMT(IJ,I::151.156)/36H(
DATA CIFRMT(I),I=157,162)/36H(
DATA (IFRMT(IJ.I::l;3,168J/36H(
OATil. (IFRMT(IJ.I::15'3,114J/36H(
DATA CIFRMT(I),I::17S,180JJ36H(
OAT A (1 F R MT ( 1) , I :: 1 ~ 1, 1 86 J I :3 6 H (
DATA (IFRHT(I),I=181.192)/36H(
DATA ~Rf. ),:: 93,198J/36i
4X, '
4X, '
4X, '
4X, '
4X. .
4X, .
4X, '
4X, '
4X, .
4X, .
4X, '
4X, .
4X, .
4X, .
4X, '
4X, .
4X, .
4X, '
4X, '
4X, '
4X, '
4X, .
4X, .
4X, '
4X, '
4X, '
4X, '
4X, .
4X, '
4X, '
4X, '
4X, '
4X, .
4X, '
FLOW RATE IG/SECJ' ',61/
(G-MOLE/SECJ ',61/
TEMPERATURE (DES. K) ',6(/
PRESSURE (ATM) .,611
ENT H AL PY (C AL /S EC ) " {; 1 I
SOL I OS ( W T ~) , , {; I I
FLOW RATE (G/SECJ ',6(/
(G-MOlE/SECJ ',6(/
(CAL/SEC) ',6(/
IG-MOLES/SECJ',6(/
',6(1
',6(/
',6(/
',6(/
',6(/
" 6( /
',6(/
',6(/
.,6(/
(G/SEC) .,6(/
IG-MCLES/S~C)',6(/
(Cl'll/SEC) .,6(/
(G-MOLES/Sf~)',6(/
',(:(/
.,6(/
',61/
.,6(/
.,6(/
',6(/
',6(/
',6(/
',GII
AT T) .,6(/
.,Ed/
ENTHALPY
COMP
502
C02
NO
NOZ
02
CO
N2
HCL
H20
FLOW RUE
ENTHALPY
COMP
S 02
C02
S 03
N205
CAD
MGO
NA20
HCl
H20
DE N S IT Y I G / ML
IONIC ST R:ENGn
-------
DATA (IFRM" II,: = ,9 ~, 2 J 4 ) I 36 H ( 4X,' PH ',tdl
DATA (IFRMT (1),1 =205,210 )/36H( 4 X, ' lIGI. H20 RAT E (KG/SfrJ ',5(1
OAT A (IFRMT( !),I=21lt216)/36H( 4X,' H+ ',1';(1
OAT A. (I F R HT ( I) , 1 = 21 7, 222 ) I 36 H ( 4 X, ' OH- ',f'(1
OAT A. (IFRMT ( 1), I =22 !,22g )/3EH ( 4X,' HS 03- "b(1
OAT A (I F R HT ( 1) , I = 2 2 ~ ,234 ) 1 36 H ( 4X,' S 03= ',6(1
DATA (I F R MT ( 1) , 1=23:;, 240 ) I :!f- H ( 4X,' S 04= ',!;(I
OAT A (IFRMT( U,I=241,246)/36H( 4X,' HC03- ',6(1
OAT A (IFRMT( n,I=247,252)/36H( 4X,' C03= ',5(1
DATA (IFRMT( I),I=25:!,258)/36H( 4 X, . N03- ',G(I
OAT A (IFRMT(I),I=259,264)/36H( 4X,' HS04- ',6(1
OAT A (IFRMT( 1),1=25:,,270)/36H( 4X,' H2S03(L) '.6(1
OAT A (I F R MT ( 1) , I = 2 71, 216 J I 36 H ( 4X,' H2C03(l) ',6(1
OHA (I F R MT ( IJ , 1=271, 282) I 36H ( 4X,' CA++ ',6(1
DHA (IFRMT( Ihr=283,288)/3f.;H( 4X,' CAOH+ ',6(1
DATA (IF'HH( !).r=2~3,294J/3f;H( 4X,' CAS03(l) ',6(1
DATA. (IFRMT( IJtI=2QS, 30!J)/:!f:,H( 4X,' CAC03(L) ',f(1
DUll. (IFRMT ( 1), I =3Q1, 3CG )/36H( 4X,' C A HC 03 ..) ',6(1
OAT A (IFRMT ( I), I =387,312 )/3';,H( 4X,' CAS04(l) ',(;(1
OAT A (r F R MT ( 1) , I = 31 3, 318 ) I 36 H ( I.fX,' CA NO 3+ ',6(1
I OAT A (I F R MT ( I) , I =3 1 '3, 324 ) I 36 H ( I.fX,' MG++ ',6(1
~
0 DATA (I F R MT ( I) , I = 3 ;? 5 ,n Q ) I 3(; H ( 4X,' MGOH+ ',6(/
"
I OAT A (IFRMT( !),I=J3lt33E)/36H( I.fX,' MGS03(l) ',6(1
OHA (IFRMT(!),I=337,342)/3fH( 4X,' MGHC03+ ',6(1
DATA. (IfRMT ( I), I =343,348 )/3:;H( 4X,' MGSOCf(l) ',6(1
OAT.\ (IFRMT( IhI=34'3,354)/~;H( 4 X, ' HGC03(L) ',6(1
OAT A" IIFRHT( rhl=3'55, 36D)/35H( 4X,' NI\+ ',6(1
OAT A (I f R HT ( I) , 1= 3 (, 1, 36£ ) I 36 H ( 4X.' NAOH(ll ',6(1
D4T A (I F R MT ( 1) , 1= 3 S 7, "372 ) I 36 H ( 4X,' Ni\C03- ',£(1
OAT II (I f R "1T ( 1) , I = 313, 378 ) 1 36 H ( 4X,' NAHC03(L) ',6(1
04TA (IfRMT ( IJ, I =379,384)1 !6HI 4X,' NAS04- ',6-(1
DUll. (IfRMT( IJ,I=3F5,390)/36H( 4X,' NANO 3- ',5(1
OAT It (IfRMT ( J), I =391,396 )/36H( 4X,' Cl- ',6(1
OAT ~ (!fRHT(I),I=3~7,4021/36H( 4X,' FLOW R tl.T E (GIS EC» ',6(1
CAT II (I F R MT ( 1) , I = 1.0 3, ,. C 8 ) I 36 H ( 4X,' (G-MOLES/S£f»',;(1
DATA (IfRMT( IJ,I=4IJ9,414J/3f;H( I.fX, ' (NTH I\L py ( CALI S:: c» '.G(I
OAT II (IFRMT ( 1), I =415,420 )/36H( 4X,' CAO ',6(1
04T4 (I F R MT ( 1) , 1=421, 4-26) I 36 H ( I.fX,' CA(OH»2 ',611
OAT A (IFRMT ( I), I =427, 432)/36H( 4X,' C A CO 3 ',6(1
DATA IIFRMT( IhI=433,438»/36H( 4X,' CASO:! ',6(1
OAT A (IfRMT( I),I=439,441f)/36H( I.fX,' C4S03.1/2H20 ',6(1
OAT A (IfRMT( u,r=445,450)/3;H( 4X,' CAS04 ',6(1
Oat A (I f Q HT ( IJ , I = If:: 1, '+ 56 ) I 36 H ( If X , ' CAS04*2H20 ',6(1
-------
I
.....
o
C\J)
I
OAT A
OAT A
OAT A
DATA
OAT A
OAT A
OUA
OAT A
OAT A
OAT A
OAT A
OAT A
OAT A
OAT A
OUA
OAT A
OAT A
OAT A
OAT A
OAT A
DATA
OAT A
OAT A
OAT A
OAT A
c
(IFRMT(IJ,I=451,462J/36H( 4X,'
(IFRMT(IJ.I=4f.3,lf68J/36H( cU,'
(IFRMT(IhI=4f9,414J/36H( 4X,'
(IFRMT(IJ,I=475,480J/3EH( '4X,'
(IFRMT(IJ,I=481,486J/36H( 4X,'
( IF R HT ( 1) , 1=4 B 7, 4 «32 J 1 :3 & H ( 4 X, '
(IFRMT(l),I=49J,4«38J/:!~H( 4X,'
(IFRMT( IJ.I=499,504J/:36H( 4X,'
( IF R MT ( 1) , 1= 5 C 5, 510 J 1 36 H ( 4 X, '
-------
I
......
o
\0
I
C
00 4 I=l,IC
SU~=O.
l5V=IPSVCI)
00 5 J=1,9
JG=10+J
5 SU~=SUM+5VClSV,JG).XMW(J)
WGCI)=5UM
CAll OHGCLSV,DH)
HGCI)=OH
T MG (l ) =5 V ( lS v, 10)
CALL TOlISP(LSV)
SUM=O.
DO 1 5 JT = 3 1, 39
15 SUM=SUM+SV(LSV,JTt
T Ml (I) =5U M
W l ( ! ) = S V C L S V , 3 1 ) * X M W ( 1 ) + 5 V (L S V , 3 2 ) ..)( MW (2 ) + S V (l S V , 3 3 ) * X M W (5 4 ) + 5 V ( L 5
* V , 34 ) * (X M W (5 8) + X MW ( 4 J ) +5 V ( L S V, 3.5 » * X M~' ( 21 J + S V (L S V , 3 E J .X ~. W (2 P J + 5 V (L S
*V,37J*XMW I 37>+SV (LSV, 38) *XMW (38) +SV (LSV, 39 }*XMW« 50)
CALL OHlClSV,OH)
HL(I)=DH
c
c
c
SUM=O
00 1 J=51,81
7 SUM=SU~+SVIL$V,J)*X~WfJJ
O(I)=OL(SVILSV,SJ)*(l.+SUM/IOOO.)
IF(SV(lSV,50J.EG.O.) 0(1)=0.
c
SUM=O.
SUMl=O.
00 8 J=ld9
JS=100+J
JW=20+J
SUM =5 U M +X MW « JW ) -5 V «L S V, JS )
SUMl=5UM1+5V«lSV,JS)
8 CON T I NU E
W5(I)=5UM
T MS ( I ) =5 U tot 1
WTCI)=WGCI)+WL(I)+W~(IJ
SV(lSV,lOOt=lpO.*WSfI)/WT(I)
T M ( I) =TMG( It +TML C I J +T MS ( I)
-------
I
......
......
o
I
CALL OHS(lSV.DH)
HS(I)=OH
HT(IJ=HG(IJ+Hl(I)+HS(I)
4 CON T I NU E
C
C
C
WRITE(f,.lOO)
100 FORMAT(IHlJ
CALL OATIME
WRITE(f,.lCIJ LABEL
101 FORMAT(IH+.45X.13A6J
WRITE(f"llGJ (IPSV(!J.r=l.rCJ
11 0 FOR M AT ( 4 X . . S T REAM N U M 9 E R " 1 8 X , 6 ( 12, 1 ex ) )
W R IT E C 6. 102 J
102 FORMAT(4)(,'TOTAL STREAM')
CALL MOVEC!)
WRITE(G,IRRAY) (WTCIJ,I=leICJ
CALL MOVE(7)
WRIT[CG,IRRAYJ CTM(IhI=hICJ
CUL PlINE(S,13)
CALL PlINE(€.19)
CALL MOVE(25)
W R IT E ( 6, I R R II Y J (HT ( r ) , 1= 1, r C J
CALL PLINE(lOO,31)
WRITE(f,.103)
103 FORMAT(/4X,'GAS PHASE')
CALL MOVE( 31 J
WRITE(6.IRRAY) (WG(IhI=l,IC)
CALL MOVE(43)
WP.ITE(6,IRRAY) (TMr,C!J,I=l,ICJ
CALL MOVE(49)
WRITE(G,IRRAY) CHG(IJ.I=l,ICJ
CALL MOVE(5S)
WRITE(f"IRRAY)
lES=6l
00 9 I=llelS
CAll PlINE(I,LESJ
9 lES =lES +6
CALL PlINE(16,595J
00 18 I=11el<3
C II L l P L IN E ( I . L ES J
8 .E5=.£S+f,
-------
I
I-'
I-'
I-'
I
\RITE(6, G4.
104 FORMAT(/4X,'LIQUID PH~SE')
CALL MOVE( 109)
WRITE(6,IRQAY) (WL(!).I=I,IC)
CALL MOVE(115)
WRITE(b,IRRAY) (TMl(I).I=I,IC)
CAll M(\VE( 121)
W R I T E ( (., 1 R RAY) (Hl ( I ) , T = 1, Ie)
CAll MOVE( 127)
WRIT(6,IRRAY)
LES=133
DO 10 I=3lt39
CALL PLINE(I,lES)
10 LES=lES+6
CAll MOV(181)
WRITE(6,IRRAY) (0(I),I=1,ICJ
CAll PLINE(48, 193.)
CALL PlINE(4<3,199J
CAll DATIME
WRITE(f~, 1011 lABEL
W P. I T E ( 1;, 110 J (IPS V (I It r = I, IC )
DO 11 I=ltE.
LSV =IPSV (I)
11 SV(lSV,SOJ=SV(LSV,50J/I0GJ.
CAll PlINE(SO.20S)
WRIT[(6,105)
105 FOIHHlT(4X,'
L ES= 21 1
00 12 1=51,81
CALL PlINE(I,LESJ
12 LES=LES+6
WRITE(E,106)
106 FORMAT(/4X,'SOlID PHASE')
CALL MOVE( 391)
WRIT(CE,IRRAY) (WS(J),I=I,IC)
CALL MOVE(403J
W R I T E ( 6, I R R II. Y J ( T MS ( I J , I = I , I C J
CALL MOV[(4C9)
W R r T E ( 6, I R RAY) (HS ( I ) , I = I, Ie)
WRITE(f., lOa)
CALL OATH~E
W R IT E ( 6, 101) L AA EL
WRIT[(6,110) (IPSV(!), 1=,1, rc)
COMP (G-MOLE~/KG H20)')
-------
1
t-'
t-'
N
I
WRIT[(f>,101)
107 FORMAT(4X,'
LES=415
00 131=101,119
CALL PLINE(I,LES)
13 lES=lES+6
WRITE(6,108)
106 FORMUU4X,'SUMMARY IN ENGINEERING UNITS')
00 14 1=1,6
W T ( I ) = CEU .WT (I )
W G ( I . = CEU -W G (1 .
WL(I)=CEU*Wl(I.
W S ( I ) = CEU -W S ( I )
T PH 1 ) = CEU -T M ( I )
TMG(I)=CEU*TMG(I)
T Ml ( I ) =C EU *T Ml (! )
T MS (! I =C EU *T MS ( I)
0(1)=8.34S-0(1.
l S V = I PS V C I )
14 S V (lS V, 50) =C EU *S V (L SV, SO,
CALL MOVE(529)
WRITE( 6. IRRAY) (WT (r), 1= 1, IC)
CALL MOVE(S3S)
WRITE(6,IQRAY) eTHeI), !=1, ICI
CAll MOVE(541)
WRITE(6,IRRAY) (WG(IhI=I,ICJ
CAll MOVE(547,
WRITE(6,IRRAY) (TMGC!),I=I,IC)
00 16 I=l,IC
16 TMG(I)=CTMG(!)/273.16)*(SV(r,S'/SV(I'bJJ*3S~.O
CALL MOVEC553J
WRITE(6,IRR~Y) (TMG(!),I=l,IC.
CAll MOVE(S59.
WRITE(6,IRRAY) (Wl(I),I=l,IC)
CALL MOVE(565)
WRITE(6.IRRAY) (THlCI),I=I,ICJ
CALL PLINECSQ.571)
DO 17 I=l,IC
lSV=IPSV(I)
17 SV(lSV,SO)=1000.*SV(lSV.50)/(8.3QS*Ol(5V(LSV.5J»)
CAll PlINE(SO,6Dl)
CALL MOVE(577)
PH': ;.IRRAYI (0(1),1= ,ICI
COMP (G-MOlES/SECJ ')
-------
C~ll ~OVE(58,3)
WRITE(E,I~RAY) (WS(I), 1=1. Ie)
CALL MOVE (589)
W tH T E ( 6, I R RAY) (T MS ( I ) , I = 1 , I C )
IF(IS.GE.26) RETURN
GO TO 2
c
SUBROUTINE PLINE(LOe.lf~)
c
I
.....
.....
(.r..)
I
DIMENSION TP(6)
Ll=IPSV(l)
L2=IPSV(2)
l3=IPSV(3)
L4=IPSV(4)
L5=IPSV(S)
L6=IPSV(6)
T P ( 1 J =S V (L 1, lO C)
TP(Z)=SV(L2,LOC)
TP( 3):SV(l3.LOC)
T P ( 4) =5 V ( lit, lO C)
T P ( 5 )=5 V ( L 5, L 0 C)
T P ( 6) =S V (L 6. LO C)
I!3GN:IFR+l
IENO=IFP.+5
WRITE(E,200) (IFRMT (!hI=re.SN, lENO), HP( IJtI=t.TC)
200 .FORMAT(4X,4A6. A2,6C2X,GIO.5J)
RETURN
c
SUBROUTINE MOV[(IFP)
c
00 30 N=1'6
L N E :: I F R + ( N- 1 )
30 IRRAY(N)=IFRMT(lNE)
. RETURN
C
END
-------
I
~
~
.p-
I
c
C............................
C . R('OS INPUT QATA .
C............................
SUBROUTINE READIN
INCLUDE CMMN,lIST
DIMENSION NS(10)
DIMENSION 100(80)
DIM~NSION PTEMP(81
C
P(I)=P(11
I OR 0 = 1
10 GO TO (1.2.3.4.5).
C...................
C . RU N I. 0 . .
c...................
1 READ(S.10C) LABEL
WRITE(G.2001
WQITE(6,201) LABEL
WRITE(6,202)
r OR D =2
GO TO 10
lORD
C............................
C . PROCESS ARRAY.
C............................
2 REA 0 ( 5. 1 C 1 , ERR = 1 5. E NO = 11) NU M , N 4 ME , N S
IDEQP(NUM)=NAME
CALL ORDER(NS,NI,NC)
00 7 I=ltlO
7 ISTM(NUM,I)=N$(II
r=NUM .
WRITE(6,203) I.IOEQ0(I), (ISTM(!,JhJ=I,NII
IF(NO.EQ.O) GO TO ~J
NOP=5+NO
!litH T E( 6, 2 0 4)( IS T M ( I, J I , J = 6. NO P )
GO TO 10
11 IORD=IORO+ 1
GO TO 10
c ......................*................
C . ORDER OF PROCESS CALCULATIONS.
C ......................~....*...........
-------
'.
- - - - --
v
I
I-A
I-A
U1
I
3 READ .5.102 100
IC=1
LW=O
LE=O
N LP:: 1
N RP = 1
L ER :: G
NSRLP=G
00 a 1=1.80
IF ( ! 00 ( I ) .l E . 3 78 )
!F(IOO(I).fG.513J
!F(IDO(IJ.EQ.4QBJ
IF(IDO(IJ.EQ.56BJ
IF(IOO(IJ.EO.5C9)
N5QLP=O
LW=LW+l
NC=~C+(IOO(IJ-60e)*lO**(2-LW)
GO TO 8
12 NC=NC/I0**(2-lW)
ISEQ(ICJ=NC
NC=O
LW=C
IC=1C+l
IF(LE.EO.l) GO TO 14
IF(LER.EQ.lJ GO TO 17
GO TO e
13 lE=O
GO TO 12
If, !F(NSlRo.EQ.U J~O TO 17
LER::1
NSLRP::1
GO TO 12
~ LSPUNLP)=IC+l
NLP::NLP+l
NSRP=O
GO TO 12
17 NRP=NLP-NRP-NSRP
lERUNRP)=IC-l
N S P P = NS R P + 1
N RP = 1
L£R::Q
8 CONTINUE
1 4 CON T 1 NU E
E" Te 8
GO TO 9
GO TO 15
50 TC 12
51) TO 13
@ NON NU ME PIC
Q\ (
~ )
Q) .
OJ ..
-------
"
.....
t-I
0\
I
WRIT[(6.20S) 100
DO 18 1=1,:3
18 = LS Rl ( I )
IE=LERl(IJ
IF(IB.GT.OJ WRITE(E,20f,) IS~G(I3J,ISErHlf)
1 8 CON T I NU E
IORO=IORD+l
GO TO 10
4 CON T I NU E
C *................................
C . EQUIPMENT PAR4MfT~qS .
C.................................
READ (S.103,[RR=15,fND=19)
DO 20 1=1,B
P A ( NU M, I ) = P T [M P ( 1)
2 0 CON T I NU E
GO TO 10
19 IORO=IORD+l
GO TO 10
5 CON T I NU E
NUM,PTEMP
c
R £T UR N
c............................
C $ FORMATS .
C............................
1 00 FOR MAT ( 1 :! A 6 )
101 FORMAT(I2,2X,At.1CI5J
102 FORMAT(80RlJ
103 FORMAT(IZ,F8.3,1FI0.3)
200 FORMAT(lHlJ
201 FORMAT(lSX,13A6)
202 FORMAT(4SX, 'PROCfSS OfSCC?IPTICN'// lX. 'EQUP. NO.',lOX,'[QUIP.
.NAME', lOX, 'INPUT STqEAMS OUTPUT STREAI"!S 'I)
203 FORMAT(4X,IS,17X,A6,2X,5IS)
201.1 FORMH(1H+,57X,SIS)
205 FORMATCI/40X,'OROER OF PROC!::SS CALCUL4TIONS'tl15XtiWR1)
20E FORMATc/20X, 'RECYCLE LOOP C"ROM',5)(,I5,5X,'TG',~.X,E)
15 R £T UR N
END
-------
iH FOR S CRU BR
SUBROUTINE SCPUBR(P,$)
INCLUDE CMMN.LIST
DIMENSION XDSF(lS),)~OLA( l'3),~SF( 13J.TW<;F('), PP(2)
*.DN5F(9),WLA(19).TWL~(9).XLH(2)
D!MENSION TEMP(19)
ODEfIN£ OL(T)
1
2
3
I
.....
.....
-...J
I
4
lOCSV=ISEQ(NL)
LISl=ISTM(lOCSV.1)
LIS2=ISTM(LOCSV.2)
LOSl=ISTM(lOCSV.t)
LOS 2=ISTM(lOCSV, 7)
KEY 1=SV (LOS2. 2)
IF(KEYl.NE.Q) GO TO 1
LSR=P(U
SF=P(2)
PRD(33)=5F
PRO(32)=lOOO*SF/PRD(1)
NS::P( 3)
PRD(7S)=NS
XLH(1)::P(4J
XLH(2)::P(SJ
PRD(£S)=lDO*XLH(l)
PRD(£6)=100*XLHC2)
SF::(453.6*B.27/60.J*SF
SVCLIS2,50)=SF
,SVCLOS2.50J=SF
IOPT=2
W NE S:: a
!NIT=O
Y MX =- 2.! 0 2
YMN=-20.
X MX :z 0 .
X MN =5 F
IC::1
IL=O
ISF=a
R f.T URN 2
= +.99935282
+.4672C61S[-4 *
-.74105074[-t:, *
+.41079583[-7 *
-.1337070af-~ .
. GNL A ( '-'! )
(1-213.1;)
(T-273.1;)"2
(T-213.1~,)..3
(T-273.1S)..4
-------
'I
.....
.....
ex>
I
1 CONTINUE
TAS=SV(LOS1,5)
5 V (LOS 2,5) =T AS
IFCISF.EQ.lJ GO 10 14
SF=(q53.6*8.345.DLCTA~)/60.'*PC2)
1 4 CON T I NU E
TE=2*SF-SV (L I52, 50)
TE=TE/SF
IF(ABSCl-T[).LT..DOS' (30 TO 2
SV(LIS2,SO)=SF*TE
RETURN 2
2 CON T I NU E
c
CALL XSOOISCNS,XSO,XD~F)
CALL ONTSF(L!S2,XOSF,ON~F ,WSF,TWSf)
CALL XSODIS(Ns.XLD,rDLA'
CALL DNTlA(LISl,XLH,XDL~,DNLA,WLA,TWlA J
c
DO 3 J=1,9
I=30+J
SV(LOS2,I.=DNSF(J,+DNLA(J,+DNAT(J'
3 CONTINUE
SVCLOS2,39)=SV(LOS?3Q)-WV
TC02=SVCLOS2,32.
PP(2)=(SVCLOSl,12J/SVClOSl,lOJ)*SV(lOSl,6.
PSO =CSVCLOS1,11J/SV(lOSl,lO»*SVClOSl.6)
PSOl=LOG(PSO)
DOl 2 JT = 1 , 1 9
JS=JT+IOO
SVClOS2,JS)=TEMP(JTt
12 CONTINUE
IFCINIT.NE.Ot GO TO 10
XW.s=PPC2,
CALL INTIT(lOS2.IOPT,XWS,WNf.S,
INIT=1
10 CONTINUE
C
CAll EQUILBClOS2.IOPT,T~S,PP,WNES,NS)
c
WRITE(6,200'
2UO FORMAT( 46X,'SCRU9BER '30TTOMS')
T[p=AaSCCPSO-PP(l)J/P~O)
~RIT[(6,1 )
-------
I
.....
.....
\0
I
40J :-ORM~"'Cl43X, 'CONV[QGfNC£ PARAHE"ERS'//
W R I T E ( 6,~ 01 J pc:; 0, x S R
401 FORMAT(ZOX, 'OESIt?ED P502 =',lPEI2.5, ICX, 'SQ/SF =',lP£12.S/J
WRITE(6,402J TC02,XA(2J
1402 FORMAT(20X, 'OESIRED TOT. C02 =', IPE12.5, lOX, 'XA(C02) =',lPE12.S)
IFfTEP.lT.l.E-3' GO TO 5
X S R =5 V ( l5 R, SO,
IF(XSR.EG.O. .ANO .PP C 1'.L T .P
-------
I
.....
~
o
I
c
s v ( L C 52. 11 8) =5 V ( l IS 1. 11 g ) +$ V (L IS 2. 11 8 )
00 1 J = It "3
I=30+J
S V ( L 0 5 2. I ) =5 V ( LOS 2. I J + T W S F (J ) . T W L A ( J J
7 CON T I NU E
CALL 5VDMP
CALL EXIT
RETURN 2
END
-------
iH FOR SOLNEO
SUB R 0 UTI N E S OL N E Q 0: , N S , C M, P P , T K, lOP T )
COMMON ILI~5/NF,NT
COMMON /TRFR/TMW,WACl,PH,A7
COMMON/TEMPER/ AC,8C, CDK (2) ,NHY (5 ),t..I:; (18)
COMMON 1 ACOEFI GLN( &:,01, DGLN (50),12 (S['), FI
COMMON/FUNC/F(50J,CK(SOJ,CTflOJ
COMMON /PPRESS/PK(2),L1,L2,L3,l4,REN
COMMON INEW/IV(50),IEC50),CL,TH(11)
EXTERNAL EQS,PARTL
DOUSLE PRECISION F,CK,CT,XlN,TH
DIM EN S ION X ( 1) ,C M ( 11 ) , L8 (I 00 " PP (2 ) , XL N( 50 ) , ,i T S ( 1 C )
C
I
t-+
I'.)
t-+
I
DATA ICMEI/03761775S7614/IC~VI/031773S1~1371/IC"E2/0375625~73141/
lICMV2/031S217316717/ICME3/03735767f~7731 ICMV 3I02775706T15S1/IC~E4/
203(.7377175 77 71 IC ~ V 4/0 1 7177 75776711 I C r-n=:: 51 03577777000371 Ie MV 0:: /0"37777
30001711/ I CME 6/ 03 317;0017 77 7/ ICMV 6/03740011777711 IC!V\[ 7/027701 777777
47/ I CMV 1/ 0003111717777/
DATA (l!HI),I=l,14J1'H..
1 ','S03-- ','
2-- ',' " 'N03-
3','H2C03 ',' "
, , '
" 'OH-
',' ','H';03- ','
" ')-IC03- ',' " 'C03
" 'H2S03 ','
',' ','C~OH" ','
"
, , ,
'504-- ','
" 'H S 04- ','
'CA++
8 '
4 C A. S 0 3 ',' , , , CAe 0 ~. ',' , , , C A HC 03 " '.. ' , ' CAS 0 4 ','
5 ','CAN03+',' ','CAC03(','S) ','CA<;04(','5) ','CA,S03(
C'.'5) ','CA(OH)','Z(S) " 'MG+. ',' ','MGOH+
6',' ','MGS03 ',' ','MGHCO}','" ','MGS04 ',' ','
1MGC03 ',' ','MG(OH)','Z(SJ ','MGC03(','S) t,
D 'N4+ ',' ','NA.OH '.' ','NAC03-','
8 ','NAHC03',' ','NASOu-',' ','NAN03 ',' ','CL-
9',' '/
o AT A (W T S ( I) , I = 1 , '3 ) /64 .066, 44. ell. fHJ. a 6 6, 10'3 .0 16,5 G. 08, 4 Q. 3"-,61.98
*2,36.465,18.0161
OAT A L!H 15) I : M GS 03 ( '/ L 8C 7 b JI 'S I
, '
:/
c
DEFINE
G( I) =EXP (GlIIJCI»
C
100 FORMAT(IHl)
101 FORMATCI/38X,'AQUE0US SOLUTION £GUIlISRIA 'I)
102 FORMATClSX, 'COMPONENT MOLALITY
1 , 'ACTIVITY COEr:FICIENT 'J
103 FORMATClSX,A6, A4,IPElS.3,IfX, IPE15.3, IPf:18 3)
~ r T I \I I TY
-------
I
......
"->
"->
I
104 FOP"'~T(lX,/15X,' PH:: ',FIO.3dOX,'IONIC STRC:NGTH :: ',IP(!('1.5,
110X,' RES. E.N.:: ',IPEI0.:H
1 as FOR MAT ( 42 X , ' IN PU T MOL [S ' / )
106 FORMU(4X, 'S03 ::', 1~ElfJ.5,4X, 'N205 ::',IPEIO.5,4X, 'CAG ::'elPEIC.5
1 , ~ x , ' M GO ::' , 1 P £ 10 .5/4 X, , ~ A 2 0 ::', 1 PEl C . S , 4 X ,
2 'HCL ::'dPEIO.5,4Y., 'H20 ::',l?EIO.S)
107 FORMAT(15X,'H20 ',34X,IPEIB.3)
108 FORMU(4X, 'S03 ::',lP£10.5,4X, 'N205 ::'elPEI0.~,4X, 'CAO ::',lP£1!J.5
1,4X, 'M60 ::',IP£lfJ.5/4)(, 'NA20 ::',lPElD.5,4X,
2 'HCL ::'t!PEI0.5)
109 FORMATflH+,70X,'TE~PEP.ATURE',FlO.3,'
111 FORMAT(4X, 'S02 =',IPEI0..5J
112 FORMAT(4X,'C02 ::',IPEI0.5)
113 FORMU(4X,'PS02 ::',lPEIO.5,2X,'UM.')
114 FORMAT (4X, 'PC02 ::',lP(lO.5,2X, 'lqM.')
lIS FORMI\TU 38x,'MOLECULAR ,lATER:: ',11"£18.5,' 1\::;5.')
liE FORMAT(1H+,44X,'% WT. SOlIr.~ = 'dPE'lCi.5,4X, 'WT. NE.:J 50 LIDS :: "
116.1PEI0.S)
117 FORMATf40X,'MOLE:S TOTAL woHER :: ',lP[ID.S)
118 FORMH(lH+,T8, 'SPECIFIEO')
ZOC FORMH(lX, 'NO. FUNCTIONS ',IS, lOX, 'NO. VARUBlES ',I~)
c.....................................
c. INITIALIZATION OF qOUTIN(
c.....................................
DE G. C')
.
EPS = 1. E- 4
Ll::4NO(IOPT,1)
L2=4NDfIOPT,2)
L3=AND(IOPT,4)
L4=ANDf!OPT,8)
IF (NS . EQ. 0 J GO TO 20
IEG=3717G3703771B
rVN= 37 47 70 3717 71 B
GO TO 21
20 CONTINUE
IEG=3177777177179
!VN=377177777771B
21 CONTINUE
CL=CM(8)
rxSO=l
IXMG=l
c *.....................*...............********.................
C . DETERMINE WHICH FUNCT!ONS AND V II. RID-tiLES ~RE NEEDED.
-------
I
I-'
N
U)
I
c
IF(CM(1).NE.O.O.OR
IEG::ANO(IEQ,ICME1)
!VN::ANO(lVN, ICMV l)
I XS 0:: 0
51 !F(CM(2).NE.O.O.OR
1EQ::ANDfIEQ,1(;ME2)
IVN=AND(IVN,1CMV2)
52 IF(CM(3).NE.O.) GO
IEQ::ANOH£Q, rCME})
IVN=AND( IVN, ICMV 3)
53 IF(CM(4).NE.O.) GO
1(Q::AND(lEQ,1CM(4)
1VN= ANOfIVN, !CMV 4)
54 IF(CM(S).NE.O.) GO
IEQ::~ND(lEO, ICMES)
IVN=AND(lV~, 1CMVS)
55 IF(CM(f).NE.G.) GO
IEC::AND(IEQ,1C"1E6)
IVN=AND(IVN,ICMV6)
IXMG::Q
5~ IF(CM(7).N(.O.1 GO
IEG::AND(IEQ,1CM[7)
IVN:: HJO (IV N, ICMV 1)
57 IF(CM(8).NE.C.) GO
CL::l.E-1E.
58 CONTINUE
c
. p 0 (1 ) . N( . 0 .0 I
.P?(2).NE.O.OI
TO 53
TO t;4
TC 55
TO 5;
Tn 157
TO 58
00 6 1=3,7
IF ( eM ( I ) . N E . 0.) CT ( I ) :: L () G ( eM ( I ) )
E CONTINUE
NF::1
NV:: 1
ICK::l
0059 1=2.3f;
45 Icr::ANO(ICK, IE.~)
IF(ICE.EQ.O) GO TO ;0
NF=NF+1
IE(NF)::I
50 ICV::ANDCICI(,1VN)
IF ( I CV . EO. 0) GOT 0 '5 ~
NV:: NV +1
1 V ( NV ) :: I
::;c TC 51
GO TO 52
-------
59 ICK=Z*ICK
IF « NF . Ea. NV )
WRITE(6,200)
CALL EXIT
61 IEf 1)=1
IV(1)=1
NF=NF+l
N V = NV + 1
IE(NF)=39
IVfNV)=39
GO TO 61
N F, NV
C
IPMS=O
IF(IXSO.Ea.O.OR.IXMG.EQ.OI
IF ( NS . NE .0 1 GO TO 62
NF=NF+l
NV=NV+l
IE(NF)=38
IV ( NV 1 = 3 8
IPMS=l
6 2 CON T I NU E
60 TO 62
I
~
~
~
I
C
C ..............*................................
C . COMPUTE TEMPERATURf DEPENDENT VARIABLES.
C ............................................*.*
C
CALL CTEMPfTKI
C
WRITE(6,lOO)
CALL 0 AT tME
TC=TK-213.16
WRITE(6,109) TC
WRITE(6,105)
IF(Ll.EQ.l) GO TO 8
WRITE(6,llU CM(1)
IF(CM(l).NE.O.I CT(11=106CCM(11)
GO TO 9
8 WRITE(6,1l3) PP(l)
X ( 1 0 ) = P P ( 1 1 . C P K C 1 1 +)( ( 3) ..x (If ) + X ( 1 If ) .. X ( 21 1 + X ( 25 1
PK(lt=lOG(PPfll.CPKtl»
9 IFfL2.EQ.2) 60 TO 10
WRITE(6,1l2) CMf21
IFfCH(2).NE.O.) CT(Z)=LOG(CM(Z)
60 TO
-------
I
.....
N
VI
I
,J,RITE(6".4 ?P(2
X ( 11 ) = P P ( 2 ) . C P K ( 2 ) + X ( £) +X (7) + X ( 15 ) + XCI 5 ) +)( ( 1'3 ) + X ( 20 ) + X ( 28 ) + X ( 3 a )
l+X (33) +x (34)
PK~2)=lOG(PP(2).CPK(2)
11 CONTINUE
IF(l3.NE.4) WRITEC6,10U (CM(!),I=3,~H
IF(CM(9J.NE.O.) CT(9)=lOGCCM(9))
IF(l3.NE.4) GO TO 30
WRITE(6,108) (CM(Ih 1=3, 8)
P CS l = 1 00.. CM (9)
W R I T E ( (;, 1 1 6) P CS l, eM ( 1 0 )
SUP1=O.
00 31 1= '>, 8
31 SUM=SUP1+WTS( I) .CM( IJ
SUM=SUM+WTS( 9)..5.CCM(~)-CMC 11)
CT(9)=lOG(CM(9)*WTS(9»)
CT (10) =C 1-CM(9)) .CM( 1aJ-CM (9hSUM
30 CONT INUE
IF(l4.EQ.8) CT(10)=CM(10)*LOG(10.)
C
00 1 I=1fNF
NV = IV ( I)
IF ( X ( NV J . E Q. o. I X ( N V J = 1 . E - 11
Xl N ( I ) =l 0 G (X (NV ) )
1 CONTINUE
C
C4ll NOlIN(XlN,NF,EPS,EQS,PARTLJ
c
00 2 I=ltNF
NV = IV ( I )
X(NV)=EXP(XLN( U J
2 CONTINUE
C
IF (L 1. EG.l )
IF(lZ.EG.Z)
IF(ll.EG.lJ
IF(lZ.EG.2)
CM(1 )=X( 10)
CM(2)=Xfll)
)t(10) =GC39J*PPCl)*CPt«l)/G(10)
X(11) =GC39,.PP(2).CPK(2'/GCll)
c
IS =1
WRITE(6, IOU
WRITE(6,102)
A=G C 39)
W 4 CT = A
-------
.
I-'
I'V
~
.
WRIT[(6,107) A
NFM 1 =NF- 1
IF(IPMS.EQ.l) NFM1::NFM1-l
DO 3 I=ltNFMl
NV=IV(l)
P G:: G ( NV )
A::XCNV).PG
IS = 2. NV - 1
WRITEUi,103) La( IS) ,LB ns. 1) ,x (NV), A, PC;
IF(NV. [0.29. AND. IP~~ .f9.1) !.nUTE C6, 103.
.PG
"! CONTINUE
IFCCM(SJ.EQ.O.' GO TO 4
PG::G(37)
CL=CL/X(33.
A::CL*PG
IS=73
W R IT E ('6, 103) l B ( IS ) , l B C! S . 11 , C l, A, P G
4 CONTINUE
c
IFCll.EG.l) GO TO I?
1F(CM(lJ.E9.0.J GO TO 13
PP( 1 J::X C 10hGC 10)/ (CPK (1"[;( 3~»
WRJTE(6,113) PP(})
GO TO 13
12 WRITEH~,11lJ CMf})
13 IFCL2.EQ.2J GO TO 14
IF(CMC2).EQ.G.) GO TO 15
PPC 2)::X (11 ).G( 11)/ (CPK (2).G( 39»
WRITE(6.114) PP(2)
GO TO 15
14 WRITE(6,112) CM(2)
15 CONT INU[
WRITE(E,,115) X(39)
IF(l3.EO.4) TMW=XC3g)*TH(lCJ
!F(l3.EG.4) WRITE(~,117) T~W
,..
.....
PH=- ALOGIOfX (1 )*G( 1) J
WRITE(6,104) PH. FI, REN
IF ( L4 . EQ . B J :.i q IT E ( t;, 11 8 J
AZ=FI
C
C
La (7:) ,LB ( 75 ), x ( 38), x ( 3 B),
-------
PETURN
END
I
r-'
N
.......
I
-------
.
H
to.)
00
.
iH FOR ST KGAS
SUBROUTINE
RETURN 2
END
END
STKGIS(P.S)
-------
iH FOR TO£GSP
SUe~OUT INE TOEGSPH)
INCLUDE CM.Mt-hLIST
c
D[FINE XCI)=SVCL,I)
c
P(1)=PCl)
1 CON T I NU E
XC 31) =X C 53) +X C 54 J +X (fO) +X (64) +X (11 )
X ( 32 I = X ( 56 ) + X ( 57 J + '1 (E 1 ) + X ( F 5 ) + X C 56 ) + X ( 72 ) + X ( 74 ) + X ( 71 ) + X ( 78 )
X (33) =X (55) +X C 59) +)( C 67) +X C 7!) +X ( 19)
Y. t 34) =.5* «X« 53) +X (~~) +X ( 80»
X C 3 5 ) = X ( & 2 ) + X ( 63 ) + X (5 4 ) ... X ( 6 c; ) + X ( Eo ) + X ( E 7 ) + X ( rJ 8 )
X (3S J =X (69) +X (10) +X «71) +X (72) +X (73) +X (74)
X C 37 ) = . 5. (X ( 75 ) + X ( 7 b) + X ( 17 ) + X ( 18 ) + X ( 7'3 ) + X ( 80 I )
X C 38) =X ( 81 )
X « 3 9 ) = 5 5 . 5 0; 2 2 + . 5. ()( ( 51 ) +X (52 ) +X ( 5:.t ) + X C 5 b) + X ( 5 S ) + 2 *X (60) + 2.)( (51 )
. + X ( € 3 ) + X ( 6 E ) + X ( 70 ) + X ( 72) +X (76 ) + X ( 7 8 ) - X ( 8 1) )
I
.....
N
\0
I
c
IF(IE.EG.1J GO TO 2
c
X ( 31 ) = X ( 31 ) . IX ( 5 a ) I 100 C. ) + ex ( 104 ) + X ( 1 C ~ ) + X ( 1 1 3 ) + X ( 11 4 ) + X ( 11 c; ) )
'I ( 3 2 ) = X ( :3 2 ) . (X ( :; 0) I 10 J Q. ) + ex ( 1 C 3 ) + X « 11 (\ I + X ( 1 11 ) + X ( 11 2 ) )
x ( 33) =X ( 33) . ex ( 5!J ) I H~ Q (}. ) + ()( C 1 G G) + X ( 1 a 7) + XCI lfd )
X(34)=X(34).CX(SO)/100Q.)
X ( 3 5 ) = x ( 35 ) * ex ( 50) I 1 a 0 O. ) + (X ( 102 I + X ( 10 :3) + XCI C4 ) + X ( 1 0 ~ ) + X (1 C' c: )
.+X(107)+X(101»)
X ( 36) = x ( 36) . C x ( 50) / 1 (I a O. ) + (X C 109) + X ( 11 0) + X ( 1 11 ) + X ( 11 2' ) + X C 1 1 :J: ) +)( ( 11
.iI)+XCllS)+X( 116)+X(103)
X ( 37) =X C 37) . (X ( 50) I 1 Q 0 O. ) + ex ( 117) + .5* X ( 11 9 J )
X(3B)=X(33).(X(SO,/IOOO.)+X(119)
X ( 3 '3 ) = x ( 39 ) * (X ( 50 ) I lOa o. J + C X ( 1 02 ) + . ~ * x ( 1 05 ) + ;: . X ( 1 Q 7 ) + X ( 1 0'3 ) + 3. x ( 11
.1) + 5* X (I12 J + 3*X ( 114) + 5 *X (115) - .5.X (119) )
c
R ET UR \IJ
c
E NT RY T OL IS P (L )
c
1[=1
GO TO 1
2 CON T I NU E
DO 3 I=3lt 39
-------
'If (!J:-X (I) $'1 {SGJ/luUQ.
:<: CON T:r NO E
I£=J
~E1 URN
END
I
~
UJ
o
I
-------
I
~
U)
~
I
OIl FOR TOS05P
SUBROUTINE TOSOSP(S.TI(S)
DIMENSION SCl),TK5Cl)
c
T KS ( 1 ) =5 C 4 ) + S C 5) + S ( 1 3 ) +5 «1 4) +5 ( 1 5 )
T :~S ( 2» =5 ( 3 ) + S ( 10 ) +5 ( 11 ) + S ( 12 )
T KS ( 3) =S ( b) +5 ( 1) +5 C 1 F; )
T 1<5 ( 4 ) = C .
T KS ( 5) =5 C 1 ) +5 C 2) +5 C 3) +5 ( 4) +5 ( 5 ) + $ ( f,) +$ C1 )
T KS (6) =5 ( 8) +$ ( 9) +$ ( 10) +5 ( 11 ) +5 C 12) +5 C 13) +5 (14) +5 (15) +5 (16)
T KS ( 1) =5 C 1 7) +. S"S ( 1 q)
T KS (8 ) =5 ( 1 9 )
T K S ( 9 ) =5 ( 2 ) + . S . S ( 5 ) + 2 "S ( 1) +5 (9 ) + 3" 5 ( 11 ) + 5" 5 ( 12 ) .. 3 ,,~ ( 1 ~ ) + 6 "S ( 1 5 )
.-.S"SCl9)
R ET UR N
END
-------
ci!I FOR WAVAP
SUBROUTINE WAVAP(L,48N,P,T,WV)
INCLUDE CMMN,L 1S1
c
.
t-I
(..r.)
N
I
T=328.
T N=SV CL, S)
CALL DHGS(L,Hl)
2 SV(Lr 5)::T
CAlL DHGS (L. H2)
CPM::(Hl-H2)1 CTN-T)
DH=13630.6-10.464.r
PE8=CPM.CTN-T)/OH
OPES=-CPM/OH+IO.464*P£B/DH
VPLOG::5.22684-1750.286/(T-~~.2)
o LOG V P :: 1 15 O. 28 61 (T - 3 ~ . 2 ) .. . 2
Y GS :: C 1 o. . . v P LOG )/ P
o Y G S :: 2 . 30 3. Y GS .0 LOG V p
PH B:: C S V t L , 10 ) - S V t L , 1 ~ ) - II BN ) . Y G SIll .- Y r, s ) - S V t L, 1'3)
[)PM3=(SVCL,lO)-Svtl, 19)-ABN).OYGSI (}.-YGS)".Z
TO::T
T=T-CPMB-PEB)/COPM8-DDEB)
IFCABSCl.-PER/PM8).GT..OOSJ GO TO 2
~ V ( Lr 5) ::T N
!.IV =CP~h n N-T )1 DH
RETURN
END
-------
i5) I FOR WT RMKP
SUBROUTINE WTqMKPIP,$)
INCLUDE CMMN,L 1ST
INCLUDE LCMN,LIST
DIMENSION WMIS)
C
OOEFINE
1
2
3
4
OL (T )
c
I
,..~
u.>
u.>
I
PIIJ=PIl)
LOCSV=ISEQINU
LOS=ISTMCLOCSV,f,)
KEV=SVILOS,2)
IFIKEY.NE.OJ RETURN 2
REAOIS.IOO) WM
100 fORMATI8EIO.3)
c
00 1 ..1=1,8
I=52+J
PRO I I ) =W M 1..1)
1 CON T I NU E
c
= +.99995282
+.46126616£-4 .
-.7InC5014E-~, .
+.111019583E-1 .
- . 1 337010:3 f. - 9 .
T=323.16
DW=1000.*OUT)
S V I LOS, 54) =W MIl) / I D~h X MW C 5 4) )
S v I LOS,S 7J =W 1'1 I 2) / lOW *X ~W C 5 7J )
SVCLOS,5S)=W1'1C3)/CD!lhXMW (55»
S v (LOS, 58) =W 1'1 (4) / C O\hX MW C 5 8) )
S v ( L C S , 62 ) =W M ( :, ) / ( D~h X T'fw (I) ?) )
S veL 0 S , 69 ) =W M I 6 ) / ( 0 W . X M W (6 9) )
S v ( L 05, 15) =W M C 1) / I 'OW. X HiM (15) )
S v ( LOS, 8 1 ) =W M ( 8) / ( D W * x ~ ~ (8 1 ) )
c
RETURN 2
END
(T-273.16)
(T-273.16)..2
(T-273.16)..3
(T-273.16)..4
-------
[ I
I ~
,.po
, I
0'1 FOR XSCDIS
SUBROUTINE XSODIS(N,XO$,XO'
DIMENSION XDCl),XDSCl'
c
X D ( l' =0.
X D ( 2' =X OS ( 1 ,
XDC 3J=XDS(Z,
XO( 4J=1-N
XD( S)=I-N
XD( 6)=I-N
XO( 7'=I-N
XO( 8)=0.
X 0 ( 9) =X OS ( 3 J
X 0 C 10) =X OS (Q J
X 0 ( 11 , =X OS (4 )
XOCIL"=XOSC4'
XOCl3J=1-N
XO(}4)=I-N
XO(1S,=I-N
X 0 ( 16) =X OS (5 ,
X 0 C 17) =X OS ( 6 J
X 0 ( 18 J =0.
X 0 ( 19 J =X OS (7,
R ET URN
END
~I FOq READIN
------- |