vvEPA
             United States
             Environmental Protection
             Agency
              Office of Radiation Programs
              P.O. Box 98517
              Las Vegas NV 89193-8517
EPA/520/6-89/022
Septer ,oer 19b9
              Radiation
Radiofrequency Radiation
Survey in the McFarland,
California Area

-------
 RADIOFREQUENCY RADIATION SURVEY IN
   THE McFARLAND, CALIFORNIA AREA
            NOVEMBER 1989
          Edwin D.  Mantiply
U.S. Environmental Protection Agency
    Office of Radiation Programs
        Las Vegas, NV  89193
          Norbert N.  Hankin
U.S. Environmental Protection Agency
    Office of Radiation Programs
        Washington,  DC  20460

-------
Table of Contents
Page
Abstract. . . .
List of Figures.
List of Tables.
. . . . . . . . . . . . . . . . . . . . . . . iii

. . . . . . . . . . . . . . . . . . . . . . . iv
. . .
. . . v
. . . . . . . . . . . . . . . . . .
1.
Introduction. . . .. .
. . .
. . . .1
. . . .
. . . . . . .
2.
Area Description.
. . . .
. . . . .3
. . . . . . .
. . . . .
3.
Approach. . . .
. . .
. . .7
. . . .
. . . . . . . . . . . .
4.
McFarland community Measurements. . . . . . . . . . . . . .7
4.1 Measurements at specific sites. . . . . . . . . . .8
4.2 Voice of America Antenna Pattern Measurement. . . 17
5.
Measurements Near the Perimeter of the Voice of

America site. . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Broadband Continuous Measurements. . . . . . . . . 21
5.2 Narrowband Field Measurements. . . . . . . . . . . 21
6.
Induced Body Current Measurement. . . . . . .
. . .
. . . 21
7.
Signal Stability and Amplitude Modulation. . . . . . . . . 25
7.1 Long-Term signal Stability. . . . . . . . . . . . 26
7.2 Low Frequency Amplitude Modulation. . . . . . . . 30
8.
Modeling of Voice of America Antennas. . . . . . . . . . . 34
8.1 Numerical Electromagnetics Code. . . . . . . . . . 34
8.2 Rhombic Antenna Model. . . . . . . . . . . . . . . 38


8 . 3 Resul ts . . . . . . . . . . . . . . . . . . . . . . 39

8.4 Discussion. . . . . . . . . . . . . . . . . . . . 44

8.5 Retrospective Analysis. . . . . . . . . . . . . . 46
9.
Conclusions. .
. . . .
. . 49
. . . . . . . . .
. . . .
. . .
Appendix A.
Appendix B.
Units of Measurement.
. . . . . .
. . .A-1
. . . . .
Numerical Electromagnetics Code Output for
Rhombic R-10. . . . . . . . . . . . . . . .
. . .B-1
Appendix c.
Appendix D.
Automated Measurement System.
. . . .
. . . . . . C-l
Detailed Narrowband Results. . . .
. . . .
. . . D-1
ii

-------
ABSTRACT
During March 6-16, 1989, the u.S. Environmental Protection
Agency's (EPA) Office of Radiation Programs measured
electromagnetic fields from radio frequency (RF) radiation sources
in the McFarland, California area. The measurements were made at'
the request of the State of California's Department of Health
Services which is investigating a childhood cancer cluster in
McFarland. The State asked EPA to conduct this study as part of
its investigation of all exposures to potentially harmful
physical and chemical agents. There was concern about exposures
from a major Voice of America (VOA) shortwave radio facility in
nearby Delano.
Examination of EPA's measurements shows that the source of the
strongest fields in the McFarland area is UHF television
transmission. The ranges of field values measured at six
locations in McFarland are:
Source
UHF Television Broadcast
Standard AM Radio Broadcast
VOA Shortwave Broadcast
FM Radio Broadcast
VHF Television Broadcast
*nanowatts per square
Power Density
lnW/cm2) *
3-19
2-8
0.2-1.3
0.001-0.006
none detected
centimeter
The median exposure level due to VHF, FM, and UHF broadcast
radiation in u.s. urban areas was determined in the late 1970's
to be 5 nw/cm2. About 20% of the u.s. population was exposed to
greater than 20 nw/cm2 [1]. For comparison, the exposure limit
recommended by the National Council on Radiation Protection and
Measurements is greater than or equal to 200,000 nw/cm2 and
depends on frequency [2]. Measurements were also made along the
boundary of the VOA facility, located about six miles from
McFarland. The highest off-site field value measured in the
survey was along this boundary (30,000 nw/cm2). Mobile radio
base stations were not included in the McFarland study chiefly
because of their intermittent operation and low power.

In addition to data on measured fields and their variation over
time, data were also collected on amplitude modulation and VOA
antenna radiation patterns. The results of the field survey were
compared with results of numerical computer models that were used
to predict the RF field levels due to the VOA transmitters in
Delano. A retrospective analysis using these models for a sample
of previously scheduled operations at VOA resulted in calculated
fields in McFarland which are not significantly different from
the fields measured. EPA uses predictive models to assess
exposure to different sources of RF radiation. By providing data
to verify the model for an untested shortwave radio source, this
study provided an opportunity for EPA to expand and improve its
capabilities for environmental radiation exposure assessment.
iii

-------
FIGURES
Number
Page
Area Overview. . . . . . . . . . . . . . . . . . .

Delano Relay Station. . . . . . . . . . . . . . .
Typical Rhombic Antenna. . . . . . . . . . . . . .
McFarland Measurement Sites. . . . . . . . . . . .
Delano Transmitter Program Schedule. . . . . . . .
Narrowband continuous Measurement system. . . . .
Continuous Measurement Versus NEC Model for

Rhombic R-10 . . . . . . . . . . . . . . . . . . . . . . .20

8 Broadband continuous Measurement System. . . . . . . . . .22
9 continuous Measurement along Melcher Ave. . . . . . . . .23
10 Body Current Measurement System. . . . . . . . . . . . . .24
11 Signal Stability Measurement System. . . . . . . . . . . .27
12 stability of 11.74 MHz Signal. . . . . . . . . . . . . . .28
13 Stability of 6.155 MHz Signal. . . . . . . . . . . . . . .29
14 stability of AM Radio Station at 1.180 MHz . . . . . . 0 .31
15 Amplitude Modulation Measurement System. . . . . . . . . .32
16 AM Spectrum Analysis of 9.815 MHz Signal. . . . . . . . .33
17 AM Spectrum Analysis of Amateur Sideband

Transmission. . . . . . . . . . . . . . . . . . . . . . .35
18 AM Spectrum Analysis of AM Radio station. . . . . . . . .36
19 AM Spectrum Analysis of UHF-TV Station. . . . . . . . . .37
20 Calculated Fields for Rhombic R-10 at 6.155 MHz. . . . . .40
21 Calculated Fields for Rhombic R-03 at 9.765 MHz. . . . . .41
22 Calculated Fields for Rhombic R-02 at 9.815 MHz. . . . . .42
23 Calculated Fields for Rhombic R-03 at 11.74 MHz. . . . . .43
24 Calculated Electric Field from a Rhombic Antenna

in Free Space. . . . . . . . . . . . . . . . . . . . . . .45
25 Calculated Electric Field for Rhombic R-10
1
2
3
4
5
6
7
. . . . 4

. . . . 5

. . . . 6

. . . . 9

. . . .11
. . . . 18
at 21.57 MHz . . . . . . . . . . . . . . .
26 Calculated Electric Field for Rhombic R-02
at 17.765 MHz. . . . . . . . . . . . . . .
. . .
. . .
. .48
. . . . . . . .48
iv

-------
Number
TABLES
Paqe
1
Magnetic Field Data at the Intersection of
Driver and Elmo. . . . . . . . . . . . . . . . . . . . . .13
Measured Exposures in McFarland. . . . . . . . . . . . . .15
Body Current Measurements. . . . . . . . . . . . . . . . .25
Model Results for Rhombic Antennas. . . . . . . . . . . .47
2
3
4
v

-------
1.
INTRODUCTION
The U.S. Environmental Protection Agency's (EPA) Office of
Radiation Programs has measured electromagnetic fields from
radiofrequency (RF) radiation sources in the McFarland,
California area. The main objective of this study was to
determine the RF fields to which the residents of McFarland,
California are exposed. The study was part of a larger State
investigation into a childhood cancer cluster found in McFarland.
A second objective was to learn more about RF exposures near
shortwave radio transmission systems in general.
The Epidemiological Studies section of California's Department of
Health Services (DHS) is conducting a study in an attempt to
identify causes of the cancer cluster. The DHS asked EPA to
conduct this RF study as part of its investigation of all
exposures to potentially harmful physical and chemical agents.
The DHS study was undertaken in response to a Kern county Board
of supervisors request for assistance in 1985.
Because of the proximity of the Voice of America (VOA) shortwave
radio broadcast facility in nearby Delano, there was a special
concern about RF exposure in McFarland due to VOA. Dr. Kenneth
H. Kizer, Director of California's Department of Health Services,
requested that EPA measure the electric and magnetic fields in
McFarland that result from operation of the VOA facility. In his
May 23, 1988, response to Dr. Kizer, Administrator Lee M. Thomas
expressed his concern about the suggested link between
electromagnetic fields and human cancer and agreed to provide
assistance by measuring environmental electromagnetic fields.

In addition, there was historically little information on ground
level fields near high power shortwave broadcast antennas. This
situation led to discussion between EPA and VOA on how to obtain
good estimates of the fields. When the State approached EPA, we
considered the request an opportunity to fully investigate by
theory and measurement fields near a shortwave broadcast system
and resolve uncertainties in this specialized area.
The State had also asked the National Institute for Occupational
Safety and Health (NIOSH) for measurement assistance. In May
1988, NIOSH made measurements at five locations surrounding and
in McFarland. But relatively insensitive RF survey meters were
used, and the fields were below the limits of detection of these
instruments. These limfts were 1300 nW/cm2 for the electric
field and 190,000 nW/cm for the magnetic field [3].
To discuss these measurements and plan for any future
measurements, the state formed an "Ad Hoc Advisory Committee on
the Voice of America at McFarland" which met in August 1988.
This committee included representatives of EPA and California and
researchers in antenna theory and bioelectromagnetics. There was
1

-------
concern about the need to measure the magnetic field with more
sensitive devices and the inability to theoretically confirm
measurements which could only be specified as below the limit of
detection of an instrument. Since VOA/s operating schedule and
equipment has changed over time, the only method of determining
the fields that existed in the past is by calculation. Any model
used for such calculations must be confirmed with measurements.
Concern was also expressed about the variation over time and low-
frequency amplitude modulation of the fields. EPA agreed to use
numerical methods to model the antennas at VOA and apply these
computer models to calculate ground level fields in McFarland. A
measurement plan that contained the results of these numerical
models would be submitted for review by the committee.
Measurements were to be made at locations which would include the
five sites selected by NIOSH. This plan was sent to California
and VOA in January 1989; comments were received in February and
measurements were made in March.
This study reports the results of measurements of RF field
intensities resulting from operation of the VOA facility as well
as other RF broadcast sources in the McFarland area. In
addition, numerical modeling of the VOA broadcast antennas was
done to estimate the value of both the electric and magnetic
fields near ground. The models were confirmed and used in a
retrospective analysis to calculate RF exposures during past
operations at VOA. Measurements were also made to determine the
highest exposure along the perimeter of the VOA facility.
Quality control checks were made on the variation over time of
measured fields and the amplitude modulation of the fields was
examined.
Some of the measurements were made in coordination with VOA. VOA
operated various transmitters and antennas to simulate normal
scheduled operation for short periods while EPA made
measurements. Examination of records of signal variations over
time as in section 6.1 showed no difference between these
simulations and normal operations.
Appendix A describes the various units of measurement and
physical quantities used in this study.
2

-------
2.
AREA DESCRIPTION
McFarland, California is a small agricultural community 25 miles
north of Bakersfield and six (6) miles south of Delano on Highway
99 in the San Joaquin Valley. The area is dry and flat. The
average annual precipitation is about six (6) inches per year,
and the land elevation drops typically 20 feet per mile when
moving to the northwest. Most of the land is used for
agriculture. An overview showing McFarland and the VOA site is
given in Figure 1.
The VOA Delano Relay Station (DRS) is located approximately 2.5
miles west of Delano about 6 miles north northwest of McFarland.
The site occupies about 1.25 square miles. The DRS is an
international shortwave broadcasting facility operating in the
frequency range of 6 to 22 MHz. One 100 kilowatt (kW) and five
250 kW amplitude-modulated transmitters and two 50 kW independent
sideband transmitters can be used to power a number of rhombic
and curtain antenna systems at the DRS site. Dashed Lines
extending from the antennas on Figures 1 and 2 indicate the
possible directions of transmission. Transmissions to the
northwest are intended to reflect off the ionosphere and reach
southeast Asia. Transmissions to the southeast are directed
toward the Caribbean and South America. Figure 3 shows an aerial
schematic view of a typical rhombic antenna at the DRS. The
antenna is constructed from horizontal wires in the form of a
rhombus. These wires are supported by vertical towers. The
transmitter is connected at one end and a load system is
connected to the opposite end of the antenna. The antenna
radiates toward the load at an angle of about 10 degrees above
the horizon. The curtain antennas consist of arrays of
horizontal wire dipole antennas in front of a vertical wire
screen. The curtain antennas radiate in the direction from the
screen and toward the dipoles. Four of the six rhombic antennas
can be switched by reversing the transmitter and load connections
to transmit to the southeast. Transmissions on these four
rhombics to the southeast may be expected to cause higher fields
in the McFarland area than other transmissions from the DRS. The
older curtain antennas (A, B, and C on Figure 2) transmit only to
the northwest. A new prototype steerable curtain antenna
transmits generally to the east. This antenna may cause fields
in McFarland comparable to those from the rhombics; however, it
has only been put in service during planning for this study and
was not been examined in detail.
There are several other broadcast transmitters that may generate
fields in McFarland comparable to those from the DRS. A number
of high power UHF television transmitters are located 30 to 40
miles to the southeast, and a 50 kilowatt (daytime) AM radio
station is located about 9 miles southwest of McFarland. Also,
several land-mobile base stations operate in the town. RF fields
3

-------
Cecil Ave.
   Schuster ROlld  
    '1:3 
 Qj I! ~ II 
~ > ~ J
~ ~ ~
~ t :0. ~ ~
:0. "S!
= .c: ~ :: 'i ~
J:! ~
~ ~ 0 ~
Pond ROlld cti
Peterson ROlld
Elmo Hwy.
~
Perkins Ave.
o 1/2 1 Mile
~

o ..s 1 Kilometer
Sherwood Ave.
Figure 1. Area Overview. Dashed lines extending from antennas on the VOA
site show directions of propagation.
4

-------
~
,
,
,
"
,
"
"
"
,
,
~,~ ,~ . "
~ ,-
~~, " ~',
" ~~~ ", ",
,~~ '"
,~~ ',',
',', ',', R.02
, " ,
, " ',R'01
" ,~ CIICs
, "
,
,
,
~~ ,
~~ CURTAIN' B.1
~~ ANTENNAS' B.3 "
~~ B.4' "
~...., B.2 "
~
" A.2",
, ..,..4
A.:-
A.1
'- ',-
-, -,
~ ..
" ........ R.04
,
" R.03
Garces Hw .
IL
qj
~
~
~
.!:!
'II
RHOMBIC ~
ANTENNAS
,
....
---
---
-------
-
-
... --
, --
., --
. , --
... --
~, ---

"

"

"

"
,
"
--
....
,
....~
........
Delano Relay Station
Transmitter Site
j
N
o 400 800 Feet
~
o .1 .2 Kilometer
Figure 2. Delano Relay Station. Voice of America site west of Delano.
Dashed lines extending from antennas indicate possible directions of
propagation.
5

-------
Main Beam
Direction
~
0'\
;/:'.:~.:.'/
load
System
%;:'::""~
Transmission
line from
Transmitter
Supporting
-:!-...0:~':. ;??"~ Tower

."~?_>...~..."
:l~f~ei/.:~..:..',;<
Figure 3. Typical Rhombic Antenna. The antenna is constructed from horizontal wires
supported by towers. The main beam is directed about 10° above the horizon to reflect off
of the ionosphere. For most of the rhombic antennas, the load and transmission line
connections can be reversed in order to reverse the direction of the main beam.

-------
from these base stations were not measured because of their
intermittent operation and low power.
3.
APPROACH
Both field measurements and theoretical models were used to
determine environmental exposures from RF transmitting systems.
Both methods were used to compensate for limits in each approach
that constrain the usefulness and quality of either method alone.
Measurements cannot be made at all locations and under all
conditions of interest, and numerical calculations necessarily
involve simplifying assumptions that influence the accuracy of
the calculations to come unknown degree. Also. since
measurements and numerical methods are independent, the agreement
of the results of both approaches indicates that each is likely
to be correct. A large disagreement between the two indicates
some error in one method or the other. Therefore, our approach
is to perform the measurements necessary to develop and validate
numerical models, which can then be applied to a variety of
situations. Measurements are more accurate at a specific
location than calculations and may be necessary when calculated
fields approach levels of regulatory concern; however, calculated
fields may better reflect the average exposure over an area,
while measurements at a single site only give the field at that
point.

The antennas of primary interest in this study are the rhombic
antennas at the DRS. This is because the older curtain antennas
transmit only to the northwest, away from McFarland. The rhombic
antennas have been modeled and the electric and magnetic fields
due to their operation were calculated. Measurements made in the
McFarland area were used to confirm the accuracy of these models.
4.
McFARLAND COMMUNITY MEASUREMENTS
RF electric and magnetic fields were measured at six specific
locations in McFarland. Fields generated by both routine
television and radio broadcast and operation of the VOA
transmitters at Delano were determined at each site. In
addition, measurements of the vertical electric field pattern due
to one of the VOA rhombic antennas were made continuously along a
road to the west of McFarland which intersects the path of
propagation between VOA and McFarland. This pattern measurement
was made to validate the results generated by a computer model of
the antenna.
7

-------
4.1
MEASUREMENTS AT SPECIFIC SITES
4.1.1
Measurement Locations
RF field measurements were made at six sites as shown by large
dots in Figure 4. Four of these locations were at road
intersections that form a rectangle which encompasses McFarland.
Two other sites were at the Kern and Browning schools. These
locations correspond to sites where NIOSH previously surveyed,
except that the Browning School site was added by EPA. sites are
referred to by the intersection or school.
4.1.2
Site and Measurement Codes
Individual measurements at a site are referred to by computer
filename. The computer-generated graphs and tables for these
measurements are given in Appendix D; the page number in Appendix
D is given with each filename. The automated measurement system
used to make these measurements is described in detail in
Appendix C. Appendix C gives information on the theory of
operation, system architecture, calibration and accuracy, and
sensitivity of the system.
4.1.3
Measurement Modes
The measurement system can be operated in either of two modes.
In snectral mode, the field is measured over a range of
frequencies. Spectral results are presented as a graph with
frequency along the horizontal axis and field strength along the
vertical axis. In discrete mode, the field is measured only at a
specified set of selected frequencies. Discrete results are
printed in tabular form. Discrete measurements are more accurate
and faster than spectral measurements, however, the frequencies
of the signals to be measured must be known.
4.1.4
Spectral Screening
Spectral measurements were used to screen for the frequencies of
RF sources which were the principal causes of exposure in the
McFarland environment. These frequencies were then entered into
the program that is used to operate the system in discrete mode.
This screening process of using spectral measurements to set up
the system in discrete mode required significant effort for the
McFarland study. Once the system was configured for discrete
measurements, data was obtained in this mode at each of the six
measurement sites.
4.1.5
Screeninq sites
All of the screening measurements could have been made at a
sinqle site taken as representative of the McFarland RF
environment. However, these measurements were spread out over
8

-------
McFarland
Elmo Hwy.
.
q)
::.
~
:.:::
C)
~
III
C)
@
~
C1I
C)
Q:
~
.~
~
.
Perkins Ave.
Browning
. School
~
III
~
...
Qj
.::.
i:::
C:1
Kern
School
Kern Ave.
#"*
Signal
Stability
Measurement
Location
Sherwood Ave.
.
~
N
O' .5 Mile
~~.~

o .5 1 Kilometer
Figure 4. McFarland Measurement Sites. Measurement locations are shown as
large dots. Signal variations over time were measured at the location shown
by a star.
9

-------
three sites to avoid overlooking a strong source that might be
exhibiting a minimum field at a single site. Because of this,
the screening measurements only partially overlap from site to
site: i. e., screening measurements at each site are unique and
the results are combined to decide which discrete measurements
should be made at every site.
4.1.6
VOA Schedule
A copy of the VOA transmitter program schedule which was in
effect during the measurements is given in Figure 5. The
schedule shows three columns labeled UTC for Universal Time
Coordinated on a 24 hour clock. For UTC 0000, local Pacific
Standard Time was 4:00 p.m., UTC 0200 is 6:00 p.m., etc. The
center three columns show the rhombic antennas operating to the
southeast using transmitters DL 6, DL 7, and DL 8 at 250 kWeach.
In particular, rhombic R-03 operated normally at 11.74 MHz
between 3:45 and 6:00 p.m. local time at a bearing of 126
degrees, and at 9.765 MHz between 6:00 and 8:15 p.m. Rhombic
R-10 operated at 6.155 MHz between 6:00 to 8:15 p.m. and rhombic
R-02 operated at 9.815 MHz between 3:45 and 6:30 p.m. The only
other antenna operating to the southeast was the new steerable
curtain TCI 10 using transmitter DL 4 (first column) at 9.465 MHz
between 4:00 and 8:00 p.m. The last two columns show the 50 kW
sideband transmitters DL 9 and DL 10 operating to the northwest,
away from McFarland. As discussed previously, it is important to
note that the rhombic antennas were operated for short periods at
the scheduled power, frequencies, and bearings at other than
scheduled times so that EPA would have sufficient time to make
measurements.
4.1.7
Measurement Antenna Position
Some measurements were made with the receiving antenna mounted on
above the measurement vehicle, while others were made with the
antenna above ground and remote from the vehicle. RF
electromagnetic waves at lower frequency and longer wavelengths
can be strongly affected by the presence of the vehicle. Thus,
fields due to regular AM, FM, and VOA broadcasts that are at
lower frequencies were measured at a location 1 meter above the
ground and at least 50 feet from the measurement vehicle. These
measurements were made using a fiber-optically isolated antenna
for the electric field and a loop antenna for the magnetic field
as described in Appendix C. The biconical antenna which was used
primarily for UHF-TV measurements was mounted approximately
1 meter above the vehicle. Because of the higher frequency and
shorter wavelength, UHF fields are not strongly affected above
the vehicle. In addition, in the tables in Appendix D that give
the results of discrete measurements, the power received for the
antenna axis oriented in three orthogonal directions x, y, and z
is given: these directions correspond to east-west, north-south,
and vertical respectively. At lower frequencies the principal
10

-------
~..
I (ot I UTCI
I .,00 P.". 100001 UU tct 10/U6
\ ~:~ \ :~\ . 1 0

:"~ 4\
1 9:00 "".101001
I:IS 1 I~I
I :10 1 101
;.~ t\
110:00 ',".102001
I:IS 1 ISI
I :10 "Ot
:"S .
111:00 ',".101001
I:U : UI
1 :10 1 101
!,.~ 1 '~I.
IU:oo roid 10'001
I:IS I I~I
I :10 1 101
I :'~ ! '~I
1 1:00 ',".IOSOOI
1 :I~ 1 ISI
I :10 I 101
I ,oS I '~I
I 1:00 ',".106001
I:IS I UI
I :10 1 101
I :'S I 'S!
1 1:00 A.". 107001
1 :IS 1 ISI
I :10 I lot
I :-S I .!.I
1 .,00 '.".10'001
I:U J ISI
1 :10 1 101
1 :'S I '~I
1 S:oo ',".10'001
1 :IS 1 IS!
1 :10 I 101
I :OC 1
I ISI
1 101
1 'SI
106001
I "I
I 101
I 'SI
101001
I al
I 101
I 'S!
10'001
1 ISI
I 101
H
10.001
I al
I 101
.SI
, 10001
n I~I
n 101
f! AS'
n 11001
niSI
n 101
n 'Sf
1112001
U ISI
n 701
II .~I
1117001
1 "I
I 101
, '~I
11'001
I ISI
1 101
! .SI
II!>OCI
1 ISI
1 101
, 'SI
I 16001
I al
1 701
I 'SI
1.17001
I "I
I 701
, "~I
I: 11001
I ISI
1 101
I &\1
1.ltOOl
1 1St
1 101
I 'SI
1:20001
I '"
I 101
I .!l1
1:21001
" '"
II 101
II 'S/
IIHOOI
II ISI
II 70'
II .~I
1121001
II IS)
II 101
II 'S I .11 ~ T1.WE U'
01. 7
01. .
J~
0£l1WO tlNlWnu 'IOC"'" IQCEOIIlE
III. ,
-
.!.',
. '-I,in "'/HI
. 33
1'1\1":;')
--
  1090
.Ia~ 1 1\11306
\12
 f' 
1  
1  
'S leT 
1  
J  
IS HOC! 
  I
  ,
  1
  .I.
  1"391
 \s~ I !IlJ)06
 \12
 1 
 I 
 / 
 rrv 
 1 
 I 
 1 
 I 
 I 
 1 
 I 
 1 
 I 
 1 
 1 
II)2S
Ol ,
O_ndMnt1 .. or $(' n. 19.. (OtOl: 11-
Dl ,
EFt":Zcnn 0C1'08DI 8 19aa
At 2O)u ure.
OLIO
O!lOICV
lUll 1uJ
-------
component of the electric field is generally vertical and the
magnetic field is horizontal.
4.1.8
screenina Measurements Narrative
The following paragraphs document in narrative detail RF
measurements made at specific or fixed locations in McFarland.
File names for the spectral measurements begin with a "c" and are
presented in Appendix D as plots; file names for the discrete
measurements begin with "ZO" and are presented in the appendix as
tables; the page number in the appendix is given with each file
name, for example (p. D-13) indicates page number D-13 or the
13th page of Appendix D. Spectral screening measurements were
began at the intersection of Garzoli and Sherwood at about
6:30 p.m. on March 6, 1989. The fiber-optic antenna was set up
and preliminary measurements were made in the standard broadcast
bands and at shortwave frequencies. File C06S42 (p. D-1) shows
that FM band signals were weak, the total band exposure is only
0.006 nW/cm2. Scans of the low and high VHF-TV bands are shown
as files C06S48 (p. D-1) and C06T17 (p. 0-2); any signals present
were below the system sensitivity of about 0.00007 nW/cm2 for
these bands. Local residents said that there was no local VHF
television coverage and channels from Los Angeles could only be
received with high gain antennas. Many UHF-TV channels were
observed to be on the air with the spectrum analyzer operated
manually. One UHF-TV channel spectral measurement was made using
the fiber-optic antenna at this location; the value for channel
26 was 1.8 nW/cYIf. (file C06T40, p. 0-2). This fiber-optic
antenna measurement was made at one meter above ground and is in
good agreement with the biconical antenna discrete measurement
made three days later with the antenna on top of the vehicle
(file ZOCINV, p. 0-3, 1.9 nW/cmZ for channel 26). Measurements
in the shortwave band between 6 and 26 MHz were recorded as files
C06S59 (p. D-4) and C06T06 (p. D-4); the strongest signals in
this band were on the VOA frequencies of 6.155 and 9.765 MHz; the
exposure measured was 0.25 nw/cm2. These signals were due to
operation of two rhombic antennas at VOA. It is important to
note that no comparable signal was seen due to operation of the
new steerable curtain antenna at VOA at 9.465 MHz. At the time
of this measurement, the curtain antenna was in operation to the
southeast toward McFarland according to the VOA schedule.
Spectral screening measurements were continued and data was
collected in order to set up the discrete measurements program
for the next two days at the intersection of Driver and Elmo. On
the afternoon of March 7, the biconical antenna was set up on top
of the vehicle for spectral measurements at frequencies between
490 MHz and 18 GHz (18000 MHz). The first spectrum was taken
between 490 and 1000 MHz (file C07059, p. 0-5); a series of UHF-
TV signals was seen between 490 and 750 MHz, weaker land mobile
signals were observed above 850 MHz. A detailed look at the
cellular telephone band between 855.5 and 866.5 MHz (file C07PIl,
12

-------
p. 0-5) resulted in a total average exposure of only 0.00051
nW/cm2. A wide range spectral measurement from 2 to 18 GHz
showed no signal above the sensitivity limit (file C07P25, p.
0-6). A scan from 1 to 2 GHz revealed two digital radio signals
at 1.09 and 1.125 GHz (file C07P59, p. 0-6); a detailed
examination of these two signals showed peak fields of 0.004 and
0.033 nw/cm2 respectively (file C07Q18 and C07Q37, p. 0-7). At
this time, it was apparent that the only important measurement to
be made at all sites using the biconical antenna would be at UHF
television frequencies. The discrete measurement program was set
up to measure all the UHF-TV stations which could be easily
detected. The first discrete measurement (file ZOCGSE, p. 0-8)
was made with the x direction north-south and yeast-west which
is reversed from the standard orientation defined earlier. The
total exposure at this location due to the UHF-TV stations was
2
2.6 nWjcm.
Measurements were continued at the intersection of Driver and
Elmo on March 8 by setting up the loop antenna one meter above
ground. The loop antenna detects the magnetic field over a
frequency range of 0.15 to 32 MHz. This range is divided into
eight (8) overlapping frequency bands, requiring eight separate
spectral program measurements to cover the entire range; the
results are given in Table 1. The dominant signals were due to
three local AM radio stations at 1.01 MHz in band 3, and at 1.18,
and 1.59 MHz in band 4 and two VOA signals at 9.815 and 11.74 MHz
which were on the air when the band 7 measurement was made.
Based on this information the discrete program was set up for
loop measurements at these three AM frequencies and at the four
frequencies at which VOA operated rhombic antennas to the ,
southeast (6.155, 9.765, 9.815, and 11.740 MHz). The discrete
program output for the three AM stations are given as files
ZOCHRi and ZOCHRI (p. D-9); the total was 3.6 nWjcm2.
TABLE 1.
MAGNETIC FIELD DATA AT THE INTERSECTION OF
DRIVER AND ELMO
   Equivalent Power   
Band Frequency Range (MHz) Densitv (nW/cm2) File Name 
1 0.150-0.305 0.000041 C08Q46 (p. 0-10)
2 0.290-0.590 0.014 C08Q55 (p. D-10 )
3 0.560-1.150 0.082 C08P05 (p. D-11 )
4 1.1-2.3  3.1 C08P36 (p. D-11 )
5 2.1-4.3  0.000052 C08R03 (p. D-12)
6 4.1-8.4  0.00083 C08P59 (p. D-12)
7 8.0-16.5  0.087 C08Q21 (p. 0-13)
8 15.5-32.0  0.0019 C08Q39 (p. 0-13)
The fiber-optic antenna was set up at Driver and Elmo for
scanning from 10 kHz to 500 MHz. Manual scans throughout this
frequency range with the fiber-optic and with an uncalibrated
13

-------
whip antenna revealed no significant signals other than those
already discussed. A spectral measurement was made with the
fiber-optic antenna for the FM broadcast band (file C08T12, p.
0-14) and gave a total for the band of 0.0029 nW/cm2. Even
though FM band exposures were much less than for other bands,
routine measurements were made at every site for the FM band
using the spectral program for comparison purposes. A spectral
measurement was made from 6 to 12 MHz (file C08T20, p. 0-14),
three VOA signals due to rhombic antennas were seen at 6.155,
9.765, and 11.74 MHz; the total band exposure was 0.056 nW/cm2.
Again, no strong signal due to the steerable curtain antenna at
VOA was seen at 9.465 MHz. Finally, a spectral measurement was
made with the fiber-optic antenna at frequencies below the AM
band in the frequency range of 10 kHz to 540 kHz at the
intersection of Oriver and Sherwood (file C09U18, p. 0-15); this
spectrum showed only weak fields from distant sources.
4.1.9
Routine Measurements
Based on the previous measurements, the following routine
measurements were made at every site. A manual scan using the
fiber-optic and biconical antennas was made throughout the RF
spectrum to determine if any strong signals were present which
would not be measured in the routine. The discrete program was
used to measure electric fields due to 16 UHF television audio
and video signals. Electric and magnetic fields due to 3 AM
radio stations were measured in discrete mode during the day
while the stations operated at maximum power. Electric and
magnetic fields were measured in discrete mode at 4 VOA
frequencies either during regularly scheduled programming or in
coordination with VOA. A spectral measurement of the electric
field was made in the FM broadcast band. Table 2 summarizes the
results at the six sites. Total equivalent power densities are
given for the regular broadcast bands and the VOA values are
shown for each frequency.
14

-------
TABLE 2.
site
Garzoli
&
Elmo
Garzoli
&
Sherwood
Driver
&
Elmo
MEASURED EXPOSURES IN MCFARLAND
Source. Field
UHF-TV, electric
Standard AM, magnetic
Standard AM, electric
VOA 6.155 MHz, magnetic
VOA 6.155 MHz, electric
VOA 9.765 MHz, magnetic
VOA 9.765 MHz, electric
VOA 9.815 MHz, magnetic
VOA 9.815 MHz, electric
VOA 11.74 MHz, magnetic
VOA 11.74 MHz, electric
FM band, electric
UHF-TV, electric
Standard AM, magnetic
Standard AM, electric
VOA 6.155 MHz, magnetic
VOA 6.155 MHz, electric
VOA 9.765 MHz, magnetic
VOA 9.765 MHz, electric
VOA 9.815 MHz, magnetic
VOA 9.815 MHz, electric
VOA 11.74 MHz, magnetic
VOA 11.74 MHz, electric
FM band, electric
UHF-TV, electric
Standard AM, magnetic

Standard AM, electric
VOA 6.155 MHz, magnetic
VOA 6.155 MHz, electric
VOA 9.765 MHz, magnetic
VOA 9.765 MHz, electric
VOA 9.815 MHz, magnetic
VOA 9.815 MHz, electric
VOA 11.74 MHz, magnetic
VOA 11.74 MHz, electric
FM band, electric
(table continued on next page)
15
Equivalent
Power Density
(nW/cm2)
19.2
5.60
2.65
1.00
1. 09
0.21
0.10
0.050
0.021
0.071
0.045
0.0041
13.0
7.50
2.99
0.46
0.19
0.081
0.051
0.080
0.043
0.0011
0.00065
0.0064
2.63
3.55
1.91
0.13
0.072
0.064
0.042
0.083
0.049
0.038
0.023
0.0014
File Name
ZOCIOI(p. D-16)
ZOCJNk; ZOCJNn
(p. 0-17)
ZOCJLr(p. D-17)
ZOCJNL(p. 0-18)
ZOCJME(p. D-18)
ZOCJNa(p. D-18)
ZOCJMg(p. D-19)
ZOCJNT(p. D-19)
ZOCJME(p. D-18)
ZOCJNT(p. D-19)
ZOCJME(p. D-18)
C10L28(p. D-19)

ZOCINV(p. D-3)
ZOCJPQ;ZOCJPS
(p. 0-20)
ZOCJOb(p. D-20)
ZOCJ09(p. D-21)
ZOCJOe(p. D-21)
ZOCJPL(p. D-21)
ZOCJOx(p. D-22)
ZOCJPD(p. D-22)
ZOCJOe (p. D-21)
ZOCJPD(p. D-22)
ZOCJOe (p. D-21)
C06S42(p. 0-22)
ZOCGSE(p. D-8)
ZOCHRi;ZOCHRl
(p. D-9)
ZOCKOu(p.
ZOCKPC(p.
ZOCKOy(p.
ZOCKPK(p.
ZOCK07(p.
ZOCKPH(p.
ZOCKOy(p.
ZOCKPH(p.
ZOCKOy(p.
Cll041(p.
D- 23 )
D-23)
D-23 )
D-24)
D-24)
D-24)
D- 23 )
D-24)
D-23)
0- 25 )

-------
TABLE 2. (continued)
Site
Source. Field
Driver
&
Sherwood
UHF-TV, electric
Standard AM, magnetic
Standard AM, electric
VOA 6.155 MHz, magnetic
VOA 6.155 MHz, electric
VOA 9.765 MHz, magnetic
VOA 9.765 MHz, electric
VOA 9.815 MHz, magnetic
VOA 9.815 MHz, electric
VOA 11.74 MHz, magnetic
VOA 11.74 MHz, electric
PM band, electric
Equivalent
Power Density
(nw/cm2)
18.9
no day
2.48
0.53
0.32
0.0075
0.0032
0.073
0.026
0.012
0.0044
0.0034
File Name
ZOCIPq(p.
measurement
ZOCIQS(p.
ZOCITu(p.
ZOCITj(p.
ZOCITy(p.
ZOCITj(p.
ZOCIQx(p.
ZOCIQS(p.
ZOCIQx(p.
ZOCIQS(p.
C09U11(p.
D-26)

D-27)
D-27)
D-27)
D-28)
D-27)
D-28)
D-27)
D-28)
D-27)
D-28)
Kern School UHF-TV, electric 3.04 ZOCINw(p. D-29)
  Standard AM, magnetic 5.59 ZOCJQ9 ; ZOCJRB
       (p. D-30) 
  Standard AM, electric 2.63 ZOCJQt(p. D-30)
  VOA 6.155 MHz, magnetic 0.81 ZOCJSv(p. D-31)
  VOA 6.155 MHz, electric 0.54 ZOCJS6(p. D-31)
  VOA 9.765 MHz, magnetic 0.15 ZOCJSq(p. D- 31)
  VOA 9.765 MHz, electric 0.049 ZOCJS6(p. D- 31)
  VOA 9.815 MHz, magnetic 0.046 ZOCJRD(p. D-32)
  VOA 9.815 MHz, electric 0.016 ZOCJRI(p. D-32)
  VOA 11.74 MHz, magnetic 0.069 ZOCJRD(p. D-32)
  VOA 11. 74 MHz, electric 0.059 ZOCJRI(p. D-32)
  PM band, electric 0.0021 C10Q40(p. D-32)
Browning UHF-TV, electric 8.64 ZOCIPF(p. D-33)
School Standard AM, magnetic 6.20 ZOCKOK;ZOCKOL
       (p. D-34) 
  Standard AM, electric 3.19 ZOCKNn(p. D-34)
  VOA 6.155 MHz, magnetic 0.25 ZOCKN2(p. D-35)
  VOA 6.155 MHz, electric 0.19 ZOCKNr(p. D-35)
  VOA 9.765 MHz, magnetic 0.016 ZOCKOH(p. D-35)
  VOA 9.765 MHz, electric 0.0066 ZOCKNx(p. D-36)
  VOA 9.815 MHz, magnetic 0.027 ZOCKN9(p. D-36)
  VOA 9.815 MHz, electric 0.013 ZOCKNr(p. D-35)
  VOA 11.74 MHz, magnetic 0.073 ZOCKN9(p. D-36)
  VOA 11.74 MHz, electric 0.058 ZOCKNr(p. D-35)
  FM band, electric 0.0035 C11N35(p. D-36)
  /       
4.1.10 Conclusions       
From this data, it is apparent that during measurements the
strongest fields in McFarland were due to UHF television
transmissions. The only television coverage in the area is via
16

-------
UHF television, no VHF-TV stations are used to cover McFarland.
The field strengths due to the UHF-TV stations are not unusual,
and correspond to values adequate for good television reception.
A single high power AM radio station is the principal source of
fields in the AM standard broadcast band. Simple theoretical
calculations show that the field strengths due to the UHF
stations and the AM station are reasonable. FM radio broadcast
fields are weaker than is typical of most urban areas, where the
dominant exposure is usually due to FM radio.
The strongest signals in the shortwave band (3 to 30 MHz) in
McFarland were due to operation of the VOA rhombic antennas to
the southeast toward McFarland. However, these fields were
weaker than those due to UHF-TV and AM radio. In units of
equivalent power density, the magnetic fields were generally
greater than the electric fields, especially at locations where
the fields were weaker. This observation as well as the absolute
values of the measured field strengths are consistent with the
theoretical predictions in the last section of this report.
Also, no significant field was seen due to operation of the
steerable curtain antenna at VOA to the southeast.
4.2
VOICE OF AMERICA ANTENNA PATTERN MEASUREMENT
Measurements at a few fixed sites are not adequate to validate or
critique the numerical antenna models developed for this study
and presented in the final section of this report. Local
perturbation of the fields by buildings, power lines, and other
structures can strongly affect the field value at any point.
Also, fields measured due to VOA oscillated or faded at times
possibly due to ionospheric propagation. This fading is
documented in the section on signal stability and amplitude
modulation. Evaluating and extending the antenna models requires
measurements of a stable signal made at many locations across a
significant portion of the antenna pattern. Garzoli Road
conveniently crosses the path of propagation between VOA and
McFarland so measurements along this road give a conservative
estimate of the fields in McFarland. For these reasons,
measurements of the vertical electric field due to rhombic
antenna R-10 operating at 6.155 MHz were made at approximately
600 distance intervals for five miles along Garzoli road from the
intersection of Pond to the intersection of Whistler. These
measurements are compared to the results of the numerical model
for rhombic R-10.
4.2.1
Eauicment
The equipment configuration for this measurement is shown in
Figure 6. The antenna was mounted on top of the measurement
vehicle. This antenna consists of a nine foot vertical rod, a
matching transformer, and a ground plate. The antenna
calibration data supplied by the manufacturer cannot be reliably
17

-------
Iif--
~ I DISfftU >
EATON 9 FOOT ROD
AN1'DNt
HDILETT-PACKARD
HODEL 98458
COHPUTER
HDLETT-PACKARD
HOIEL 8588A
SPECTRUM ANfL. VZER
VIIEO
OUT
t£N..ETT-PACKARD
HOIEL 58313R
fVD CONVERTER
HEHLETT-PACKRRD
HODEL 988348
lEEE-488
INTERFACE
HEHLETT-
PACKARD
HODEL 88835A
REf'- TIME
a..oa<
~
00
tR8NETS
ON tI£EL
HDLETT-PACKARD
HODEL 53188
OUCTER
HDLETT-PACKRRD
HODEL 9885H
FLEXIa.E DISK DRIVE
Figure 6. Narrowband Continuous Measurement System.
spaced intervals of distance.
This system allows for measurements at closely

-------
used with the antenna raised above ground. So, a comparison to
the fiber-optic measurement at Garzoli and Sherwood at one meter
above ground was used to estimate an effective antenna
calibration factor for the antenna and vehicle considered as a
system. One assumption here is that the field does not vary with
height near ground. The antenna model gives a field which
decreases with height by about 0.5% per meter from 0 to 4 meters
above ground; probing with a short experimental dipole showed no
significant variation up to 3 meters.
The spectrum analyzer was tuned to the single frequency of 6.155
MHz (zero span). The resolution bandwidth was set to 1 kHz and
the video bandwidth was set to 3 Hz. The distance traveled is
proportional to the number of pulses generated by magnets on the
vehicle wheel passing by a pick up coil mounted under the
vehicle. The spectrum analyzer output and pulse count are
sampled and processed by the computer to display field strength
versus distance. Since the vehicle speed varies the and the
sampling rate is constant, the distance between samples varies
accordingly. The average distance interval was 13.4 meters.
4.2.2
Results
The results of this measurement are shown in Figure 7. The
agreement between the measurements and the predicted electric
field (bold line) is good considering the number of
approximations which have to be made for the model. The
roughness of the measurement data shows the amount of local field
perturbation in an area where relatively few structures exist.
The plot horizontal scale is shown in miles because the road
intersections are at even one mile increments; mile two (2) is at
the intersection of Garzoli and Elmo and mile three (3) is at the
intersection of Garzoli and Sherwood. The three lobes measured
are the three strongest side lobes to the south of the main beam.
For this measurement the distance from the antenna is increasing
while sweeping across the pattern so the pattern differs from the
fixed distance calculation made before.
5.
MEASUREMENTS NEAR THE PERIMETER OF THE VOICE OF AMERICA SITE
In an effort to find the maximum RF field strength along the VOA
property boundary, a vehicle-mounted, continuous, broadband
electric field monitoring system was driven along accessible
areas of the site boundary. At one location where a relatively
high electric field was found, narrowband electric and magnetic
field measurements were made. Also, the amount of RF current
induced in a person due to the field at this location was
measured.
19

-------
110
 "'"      
 E      
 , lee     
 >      
 ~      
 -U      
 '-' 90     
 -U      
 -      
 (I)      
 ...- BeJ     
N LL      
0      
 0      
 ....      
 L 70     
 +J      
 0      
 Q)      
 -      
 W 60     
  e I 2 3 4 5
    Distance (mi les)  
Figure 7. Continuous Measurement Versus NEC Model for Rhombic R-I0. Units are in dB with
respect to one microvolt per meter. For example 80 dB~V/m = 0.01 VIm. A difference of 20 dB
is a difference of a factor of 100 in power density or a factor of 10 in field strength. The
smooth curve represents the modeled field strength while the rough line shows the measured
field strength.

-------
5.1
BROADBAND CONTINUOUS MEASUREMENTS
5.1.1
Eauipment
The broadband system was set up as shown in Figure 8. with this
arrangement, the computer can record field strength as a function
of distance travelled from a fixed starting point. The field
strength probe was mounted on a non-conductive boom extended
horizontally behind the vehicle 2 meters at a height of 2 meters
above ground. This system is similar to the narrowband system
used along Garzoli Road, except a broadband field strength meter
was used instead of the antenna and spectrum analyzer. The
broadband system has the advantage of detecting all frequencies
present, however it is less sensitive and can be interfered with
by electric fields from power lines. The meter indicates fields
greater than the actual fields because of a problem referred to
as potential sensitivity which affects many broadband meters at
low frequencies. Based on a single narrowband measurement a
correction factor of 0.37 (-8.6 dB) was applied to the broadband
field strengths recorded on the computer. Measurements made with
such a system are useful for screening purposes only: i.e., to
find locations of relatively high field strength where more
accurate measurements can be made.
5.1.2
Results
The system exhibited problems with detection of power line fields
as well as an expected inability to track sideband modulated
signals. Even so, useful data was obtained. The strongest
stable readings were found along Melcher Avenue between Garces
Highway and the main entrance to the site as shown in Figure 9.
This measurement was made by driving south on Melcher from a
starting point at the intersection of Garces and stopping at the
site boundary, one mile (1600 m) south of Garces (refer back to
site map, Figure 2).
5.2
NARROWBAND FIELD MEASUREMENTS
The west edge of Melcher Ave, was probed using broadband portable
meters until the peak field location found with the mobile system
was established. The fiber-optic and loop antennas were set up
at this location and discrete measurements were made (files
ZOCPKn and ZOCPK6, p. D-37). Most of the field was due to
Rhombic R-03 operating at 11.74 MHz. The maximum equivalent
power density was approximately 30 ~w/cm2.
6.
INDUCED BODY CURRENT MEASUREMENT
A system was configured for measuring the induced RF current
passing through the feet of an individual (adult male, height
1.73 m) standing on a grounded metal plate (Figure 10). This
system was set up at the same peak field location on Melcher Ave.
21

-------
N
N
HAGHETS
ON~
Figure 8.
EXTENSION
CAlLE
HOLADAY
HODEL HI-a.1
8IOADBAND
FIELD STRENGTH
ttETER RECORDER
OUT
J£N..ETT-PACKRRD
HODEL 5831aA
FVD CONVERTER
HDLETT-PACKARD
~d318B
Broadband Continuous Measurement System.
PROBE
EXTENDED BEHIND VEHIa.E
2 J1ETERS ABOVE GROtH)
HEIoLETT-PACKARD
HODEL 88834B
IEEE-488
INTERFACE
F
I
E
L
D
DISTANCE
HEHLETT-PACKARD
HODEL 9845B
COHPUTER
HEWLETT-PACKARD
HODEL 8885"
FLEXIBLE DISK DRIVE
HEHLETT-
PACKARD
HODEL 98835R
REfL TI/'tE
CLOCK

-------
Continuous Field M~~surcment along Mclcher
 10.0
r\ 
E 9.0
'\ 
> 8.0
'J 
 7.0
"U 
 6.0
Q) 
U. 5.0
o 4.0
L 3.~
+-' 
0 Z.0
Q) 
..- 1.ea
W 
 0.0
 o
400
800
1200
1600
,
Distance
em)
Figure 9.
Continuous Measurement along Melcher Ave.
23

-------
BODY
CURRENT
N
.po.
CAlLE
1 FT SQUARE
fLUHIHUH PLATE
HENLETT-PRCKARD
HODEL IS88R
SPECTRUH FIR.. VZER
Figure 10. Body Current Measurement System. The current probe is clamped around the
ground rod which is in series with ground and the body.

-------
where the previous narrowband measurements were made.
Measurements were made while the individual wore shoes and while
he was barefoot. The results are given in Table 3.
TABLE 3.
BODY CURRENT MEASUREMENTS
Frequency (MHz)
Electric Field (V/m)
Calculated Body Current (Barefoot) (mA)
Measured Body Current (Barefoot) (mA)
Measured Body Current (With Shoes) (mA)
9.815
3.63
11. 5
11.5
4.35
11. 74
7.85
29.8
30.2
11.0
Based on work by Gandhi and others [4] the induced body current
is proportional to the frequency, the vertical electric field,
and the square of the height of the individual. For a height of
1.73 m, this calculation gives a value of 0.323 mA per volt/meter
of field per MHz of frequency. The calculated values are in good
agreement with the measured body current for the barefoot tests.
The current was reduced by about a factor of 3 by wearing heavy
synthetic sole walking shoes.
7.
SIGNAL STABILITY AND AMPLITUDE MODULATION
The variation with time of the amplitude of RF fields can be due
to changes in the transmitter power, changes in the antenna, or
changes in the propagation paths. The transmitter power is
intentionally varied at audio or video frequencies during
amplitude modulation, the power may also be varied in the long-
term to conform to an operation schedule. For example, many AM
radio stations reduce power at night to avoid interference with
other stations. The VOA transmitters are not operated at reduced
power. In some cases, antennas may be rotated or redirected
electronically. Propagation paths typically vary due to changes
in the ionosphere or reflections from passing vehicles.
In order to measure these changes, two sets of equipment were
used depending on the time scale of the amplitude variations.
Using one set of equipment, the amplitude variation was measured
over time periods ranging from minutes to days with time
resolutions down to about one second. This variation, referred
to as signal stability, was measured using a calibrated receiver
and a chart recorder. variation from about one second to less
than a millisecond is referred to as amplitude modulation and was
measured using a low-frequency spectrum analyzer. Both systems
could detect "fading"; i. e., reqular oscillations in the field
strength, at frequencies near one hertz; these may be due to
ionospheric propagation. These systems do not measure absolute
field strength but only relative changes in field strength.
25

-------
7.1
LONG-TERM SIGNAL STABILITY
7.1.1
EauiDment
The system shown in Figure 11, consisting of a vertical whip
antenna connected to a fixed tuned receiver and recorder was used
to measure signal stability. The meter reading on the receiver
can be recorded for long time periods on a standard strip chart
recorder. Tests in the laboratory showed a long-term drift in
the receiver calibration of up to 2 dB. Each minor division on
the strip chart corresponds to approximately 0.80 dB of change in
signal level. The dynamic range without changing the receiver
input attenuation is 40 dB. This system can be left unattended
to record changes in the vertical component of the electric field
strength at the frequency to which it is tuned.
7.1.2
Procedure and Results
The equipment was set up in a house at 141 6th st. in McFarland.
The antenna was placed on top of the metal patio cover behind the
house and the antenna cable was routed inside to the receiver.
The receiver was adjusted to detect the carrier level with a
bandwidth of 5 kHz and an input attenuation of 60 dB for all
measurements. The frequencies examined included VOA signals at
11.74 and 6.155 MHz and the AM radio station at 1.180 MHz.
Figures 12 and 13, showing the results, are from sections of a
long strip chart where time increases to the left with a scale of
1 cm/hr; the signal level increases upward with a scale of 4 dB
per major division such that the bottom of the chart corresponds
to 40 dB~V and the top corresponds to 80 dB~V from the antenna.

Figure 12 shows the 11.74 MHz signal from the VOA rhombic antenna
R-03 coming on at 3:45 p.m. and going off at 6:00 p.m. on two
consecutive days as scheduled. The vertical width of the trace
of about 2 dB is due to the signal level fading or oscillating at
a rate on the order of one cycle per second. This fading is more
regular and sinusoidal than that due to distant ionospheric
propagation and may be due to the ground wave and the
ionospherically reflected wave going in and out of phase as the
height above ground of the reflecting layer of the ionosphere
changes. The maximum peak to peak variation seen at any carrier
frequency was about 8 dB and the fading frequency varied from
about 0.125 to 3 Hz (period from 8 sec to 0.33 see) depending on
carrier frequency and date of observation. The discrete
frequency measurement program used for community measurements had
to be modified to wait for a peak field observation because of
this fading. Figure 13 shows the 6.155 MHz signal from the VOA
rhombic antenna R-10 coming on at 6:00 p.m. and going off at 8:15
p.m. as scheduled on three different days. The peak field
remained essentially constant when compared for each day.
However, the fading varied from less than 1 dB to about 6 dB
during that time.
26

-------
ARA
N
'-J
ACTIVE         
MONOPOLE        
HOUNT        
       RACAL-DANA HODEL 9919 
      - FREQUENCY COUNTER  
COAX        
ANTENNA  FAIRCHILD  LOCAL    
POWER  HODEL EHC-25 OSCILLATOR OUT  
SUPPLY COAX INTERFERENCE     
  ANALYZER    DC OFFSET I CHART I
     PLOTTER  +0.61V I RECORDER
     OUT 
  +20V C -12V     
  POWER      
  SUPPLY      
Figure 11. Signal Stability Measurement System. This system can measure the variation
over time of RF electric fields for a ran~e of periods of less than one second to days.

-------
I --~-
--J-- - J...:-l-- 'J--'"
6:00
3:45pm
,.-: ~,.~ J--..'J
6:00pm ". ,,'3:45pm
I
. -,.-
~. . .
. . ~ ~',
,-
, , ,. ,.... ,.. ,"- I
. --: -"1'- !--'-r='
_t:':~-[,: :.' ~':-r-
; " : '.,I-.~-
f- .. ~ :" .1: :~.

.i.. .. ,.. '--. _.
. '"00. .
:: i.' .:...1= -r-

-- - - ,1-... ----
_.. --,-- ---:... ..~._.
I

:: : 31.118/7849M'H:~-
-. -. Z :.,
, I .
. I
:,:: I
3/7/89 ,: , '"
11.74 MHz "
_:i
'r ~Li-'~~=-~
! "I :.~ I~,'i;~~:
..~--_._-~_. -t~
I; .".' ! ...

'~"''L:: :. ,;~: .1f-~
-i -- -r-
...... !-... --1- _.
;.. i
t
I .'

Jkl..~..i. "".
tj.~~.:n:;.: 'j:

, ..:.-- - ,-1.. ;.q

q: :-:t.:.. :~:.~::F,':'.i=.
- -"r-' ,..:, , .:/'.::t.= '1
-- :-.. - I.. . h--
..-. . ... .,-..-
.. .._, _. --.t....
i"= -~f: :~_.-
.. .j,.. --;.., -.;.~--,
.. j-.. ...j..., -t-
.. I'''' --1.-. -
- ~- -j - ,..;. .
, ~ .. --1-- "':'E'
.. - -- t-- .-.. .-.J
. t ' .
':':.r:-. ::;::: =!
"
.i
..
-::.
~...
\
-------
.~-~"""""'.'---I-
8:15pm.. 6:00pm
..., .
-
'-'\.-.. ~:1
- '\- "1-' \0--" )...-
8: 15 m
6:00pm
-.!- '.- -. --.1
..-L-- .-.J~' ,-~_.. -j
-. ~._. _I -, --' - "".
-"-.+- -"I.' - ":-..' .. :
~...... .
I.: ..: r .:.....:' ~ ~ -1
0:f ~":':~', _:..~ ':=!
i.~::.'i':j-', '::'L.: 1 ::."',:! I"'~:
i~T1'"'ti "i I
~L ..T':' f _n'l~.,
i .'" I :. :. . I -
: . ..!! ; I. .:..
,- .J Ii i.. r' . .,. I
,_. . , " ' .
I..-- ,l~ ~~._-_.._,
:,..; ./ ..": . - ,', I
:~".:" : .: L:.'I: -: :. J.: :
-.L-..l
~"::t:- :':.~-.- .- _,
r- :-.' .-;.. --'.00 -,


:,:~':-i:~ r:?~'r-':t~. =J
.:.:.:.:.:! -.;-' -.,.. -"

. .

:~: '::tr, :!
:--;:j'/: I:

~-'." j:
!'::~!'- I~';: ',./',:: :: '- - !
._-:- --./ -'~-~.._' ,-~
=-frT"::' -:::!~: =:'_:~ ::"i
. I . .
'-
l::>}:: :~'j: :
~:~-:-~ ".:.':!' :
:~,,-j"', :: .::I:~
_. -~j

i:~~~~..~ :',~ ?~~:, ,,:.;
~::i~ ~ j~ :~!; ~l
--....
I
... !.. "
.'.. f'- .. ;"', ... i
:::J=' :'i~:. ~:~
-'
= - -::. t.:.. =c -::
:= ~. :....l. .-1
.::=r- -= =
o
.f
'1
Fi.gure 13. Stability of 6.155 MHz Signal. The signal level increases
upward with a scale of 4 dB per major division. Variations of about 6 dB
were seen on March 13.
29

-------
Figure 14 shows the signal of the AM radio station at 1.18 MHz
over a 24 hour period. The station goes to high power at
6:15 a.m. changes to low power night time operation at 6:00 p.m.
and goes off the air from midnight to 4:30 a.m., when it comes
back on the air at low power and finally goes to high power at
6:15 a.m. to complete a 24 hour cycle. The field appears to step
up and down by as much as 2 dB during high power operation. This
may be due to unstable transmitter operation.
7.2
LOW FREQUENCY AMPLITUDE MODULATION
An AM spectrum analysis is of interest because of laboratory
studies which appear to indicate that modulation may have
biological impact, even though the average power density of the
exposure is held constant. A National Council on Radiation
Protection and Measurement (NCRP) report, for example, urges
extra caution when high values of low frequency amplitude
modulation are present: "If the (amplitude of the) carrier
frequency is modulated at a depth of 50 percent or greater at
frequencies between 3 and 100 Hz, the exposure criteria for the
general population shall also apply to occupational exposures"
[2] .
7.2.1
EauiDment
The modulation measurements were made by detecting the RF field
or antenna output voltage with an RF spectrum analyzer (8566A)
and analyzing this voltage envelope (video out) in turn with a
low-frequency (3582A) spectrum analyzer, Figure 15. Using data
from both spectrum analyzers the computer was used to calculate
and plot modulation percentage as a function of frequency. The
basic formula for calculating the modulation percentage involves
the difference of the maximum and minimum envelope voltages
divided by the sum of these two voltages. The difference is
obtained from the low-frequency analyzer and the sum from the RF
analyzer. Finally, the root-sum-square percent of modulation for
the frequency range of 3 to 100 Hz was calculated.
7.2.2
Results
An AM spectrum analysis was made for the VOA signal at 9.815 MHz
at one location near Kern School in McFarland. The results for
the frequency range of 0 to 100 Hz and 0 to 10 Hz are given in
Figure 16. Three VOA signals were manually observed in time
domain on the RF spectrum analyzer. Of these, only the signal at
9.815 MHz exhibited any apparent fading at low frequencies. This
fading can be seen as the peak at 0.5 Hz in the 0 to 10.Hz plot.
The other two signals observed manually on the air at 6.155 and
9.765 MHz were not fading at the time of measurement and a
spectrum analysis of their modulation was not made.
30

-------
-5--!J-- 1 -' t--'"~ I--" 1--' J--' 1--' )--'1--' I-- 1--'1-- I-- ...- !--: "'-'1-- 1--' t--' t---ool
: 6:15am 4.30all 12:00am 6:00.P.gI
";1' ... ...."".,
:t
:t
:J
~
.
".:S'f.. ~
, 6: 15l1li
1J1.~~¥:
---~:
..
. .
. '.

3/i6is9
'-: or-H-'
- "\., .- -=C:f:= -
..---. - '-I--( - .- .
I
II .
I
~I'

I 5/89
.
..
.'"
.:
"
.'
'. ,
". .-.
,
.
w
.....
. 1.-1. '..... . -:';.t: I-
END --I- - .....~- -r- - . 1-, -- -- :- :- -'" . r- -', - -7- START
?t -:'::: ::I~ ,J-- ~..= :;..{~'t::!-:' ::t:: .~t :.J~: ,::1,: :E' ~:t:" ~r:! :',:L =:~*- --1:: ::1,: - :.; - .-j-'- ... ~.:'t= :::j.-- -, ',;.'. ".,,:,,::./,:
~F.. ,.. r ., " f ; .. .-- .. - - _. - -.... .. ....- --."" -.. ... . .~,
,.,_. '--1:-"." .....! ' ,- 0., ,....- .. '. -... _:.., .-- .. I '-P .. I ..: -.... .. ,-' "'" --- .. :.." . , - :-~ ".. ..: . ....1 " : I .",

1.:-1~:' ::~:~ ~~~':>::;:.:I::E ~:i~: .~..L -,~'.' ~'~:l:;~.f,'1 !,:,:::~ j,': I~:i,:~ :?I~r.', ..~: :t~::;=r::~-:- j. ~~~M',l'-:,: :.i:, ..,- ~'~j-:' '~';" i:' : ij':
...:-. _._-,..,:,-_.: ---'-,- .., d, ..._,-... : -"..; i...:1 .:. ...' I" 1'-;- ":-..1 :.t-.oO '''!' , -"'-,"1 "i,'
: 1 ..' ~; . "'.. 4---;-~W; .-":--L-_:::":':L..~_"': -., _... ". - . '--i - - .-:: -:..'~-
!~ ,:-"....... "'f'" . -:/,-' - . :..,. . . I , "'" I , I.: ! -. I :".: ",.,.' I -, ,. -. .1-" -I .. _I" " '- , I
~-.~~ ..~:. ,~":-, ::;.:,: ~': ,~_t~' : : ", 'J:d! I.~,:.: :. .. : ': i ,r-:: ,< "I!' . ~ . : .~:= :.!". i :.. ~:~ ".'",':' ,:~,~', ~ ::~:' ,.~ r
. .. ... ~, ,,,,:,,,,, : . I . ., '1" .: .. '" ..,."" ,.:. !: 'I" . , Ii' I .' , I' '
' I' . ~-T- -~._-=---~_:_..:~..~....,_J_""":''':':''-'i-:...J_. ~~t ' ", ... j '.: I
.' ;'~~ ',:::,' i, ,:_[,' I':'; :'1..':::-/ - ~I' ~.. ; ~ '/:.; il: ':',' ~:.. . .,; -Li ":. ~'-'.~!j1
.- . - .,:, ..:. .:. ,.!.. ..:. ,: ' .J ; " , , '.' , ;,;j . f. .. I" . ' " " , , , "''', . I "
:'~::j.::~i,,:::::::. ~":'.: ~-;...' i..:-, :':'.~: .11~~i'.I-i : i.;.:J1I!f -:j ..::-~II:.:';"~It"~I:-JI':" :: 't-~.- .',~.'.'fl~':' .. ~'.:,-, -,".>";':'~
'!&. '. i ' I'., . '''' '. , .. .",-- '".. .' . '"
'1" - ~r ::-~;.: :::f:' .;" ::' l.lo-' I '~"",';""'t ;:< .,~'.i..:liJ ',: ":, :.. .~'!:' ,:,!- .:: :.:;,.. ..::'! ..

Ii: =l ~~: ~!.~ ~ ~:!~: ~ !:c :::.: ;--y .:J:t ~ f~-;-;h: ;j- 'q~; :'~ =¥: ~t :: l~ ~::'~: {~; ;
=.J=: ,- -.,. -i '. !-: .-!... ~_. -. '-1''' 1-+.. '-:-.. ~~ -:i= --! ..-.. -' - . :-I-~ .. J- -.!- - -- -1-_~
~ ~ - - ':--~r=~-:'~=':i,'.:F =-:t '=r::= .: =t= =r .:: - ::-t--1~ ::!.:- -:t= =i.:.i-: =.:.~ =I--~ .:+ = " :
- - -,- , I-- ... r-;- , , ..,- -- -. --.' -;'J --! - I-~- .- -

- - ~ . - - -i' - . - .-J._. - - ..- -..i.. .-1-., l-. . ..; .. . u " @"-"I'I----'''-
'-- 1-1- .....t-.-.. - - 1-,- --!- ".1-- -- -j- -~ --t t -~ '''r-'''-o. '-,... .- -"-1-.- ~ - -
C L...':. --r-: .- !-'I- - - ~~ =t.-..=t: 1-+--- -::r.:: -./.. -r 1--1- -4- '''r- -j- -.;.-. - 1- -, -,-1-1'- -j- - -
r- .-- -~.. 1-- --r-' " -I---!--, - --'1- - !"cS:.i-I--!- ...: - ''''j''- r I- -'I 1--, -r- -- -
-
I
~
~
1
I
I
Figure 14.
to 6:00pm.
Stability of AM Radio Station at 1.180 MHz. The station operates at full power from 6:15am
The variation during this operation may be due to unstable transmitter performance.
-~ ...
1

-------
U)
N
 c:J   
 I I I   
HEHLETT-PACKARD   
HODEL 98458   
COMPUTER   
  HEWLETT-PACKARD  
  HODEL 988348  
  IEEE-488 INTERFACE HEWLETT-PACKARD
 -  HODEL 8566R
HEWLETT-PACKRRD  SPECTRUH RNALYZER
HODEL 98835R    VIDEO OUT
REAL TIHE CLOCK  \ 1/
   HEWLETT-PACKARD
   HODEL 3582A
   SPECTRUM ANALYZER
HEWLETT-PACKARD   
HODEL 9885H    
FLEXIBLE DISK DRIVE   
ANTENNR
Figure 15. Amplitude Modulation Measurement System. The 8566A Spectrum Analyzer is used as a
fixed tuned receiver in linear mode. The video output is proportional to the instantaneous
detected RF field strength. Data from the 3582A is used to determine the modulation spectrum.

-------
 -20
 -30
III -40
"'0
'-' 
C 
0 -50
+' 
" 
 -60
:J 
"'0 
0 
I: -70
'+- 
0 
I) -80
I) 
I.. 
C) -9~
I)
c:I 
 -112l1Z1
 8
Ie
1)
It)
.,
o
11
j
<+
3:
. 1 .0
!l.
C
~
<+
.131 0
::3
2~
58
('5
1131301211211
Frequency (Hz)
Root-sum-square percen~ modulation = 1.56
 -10     
 -20 18 
,..      1)
III      (J
"'0 -3115     .,
'-'      0
      l1
c      J
o -"115     <+
+'      3:
"     
 -5115     0
:J      !l.
"'0      C
o      
2: -6115 . 1 01
'+-      c+
o      
 -7115     0
o     ::3
o      
L.      
In -8115 .81 
0 
Q      
 -alZl 2.~ 5.8 7.5 10.8 
 .8 
Frequency
(Hz)
Figure 16.
AM Spectrum Analysis of 9.815 MHz Signal.
33

-------
The average modulation spectrum at audio frequencies for any VOA
standard double-sideband amplitude-modulated signal of the type
transmitted to the southwest toward McFarland depends only on the
programming and should be essentially the same for any carrier
frequency at any location. However, the amount of fading
apparently due to ionospheric propagation (discussed in the
previous section) varies and affects the apparent modulation
level at frequencies below a few hertz.

As can be seen in the VOA schedule (Figure 5), a number of dua1-
independent-sideband signals are transmitted to the northwest.
These signals have associated with them higher levels of low-
frequency modulation than standard AM signals. According to VOA
schedules back to 1975, no sideband transmissions have been
directed to the southeast toward McFarland. Also, relatively
strong signals at the frequencies of these transmissions were not
observed in McFarland. Therefore, no measurements were made of
the modulation characteristics. of these signals. However, a
subsequent laboratory measurement using a voice-modulated amateur
transmitter in single-sideband mode is presented in Figure 17.
For purposes of comparison, laboratory measurements were made of
the modulation spectra for a standard AM radio broadcast station
and for the video signal of a UHF-TV station and are presented in
Figures 18 and 19. The peak at approximately 60 Hz for the TV
signal is due to the vertical retrace rate for all television
signals; the exact frequency is 59.94 Hz. A weaker peak at 60 Hz
for the AM station is probably due to the 60 Hz modulation of the
transmitter because of imperfections in the transmitter power
supply.
The root-sum-square modulation percentage over the range of 3 to
100 Hz varies depending on the type of source. Standard double-
sideband AM signals such as those from VOA which are directed to
the southeast and regular AM broadcast have values of about 2%.
TV video signals vary from about 10 to 20% and single-sideband
amateur voice modulation is about 30%. Preliminary data not
shown here, indicate that FM radio broadcast modulation levels
are near 0.5% and amateur keyed-carrier (code) signals have
modulation levels near 100%.
8.
MODELING OF VOICE OF AMERICA ANTENNAS
8.1
NUMERICAL ELECTROMAGNETICS CODE
Calculated values of the electric and magnetic fields due to the
rhombic antennas at VOA were determined using the Numerical
Electromagnetics Code (NEC). NEC is a Fortran computer program
developed by Lawrence Livermore National Laboratory for the
Department of Defense which can be used to cal~ulate fields near
wire antennas of arbitrary shape. The code is readily available
34

-------
 -10     
 -20 la 
,-..      lJ
~      CD
1J -30     ..,
.....      0
      CD
c:      J
o -40 1 c+
-to>      
d      :I
 -50     0
~      Q..
1J      C
o     
~ -60 . 1 DI
<+      c+
o      
 -70     0
o      ~
o     
'-      
m -80 . a 1 
0 
0      
 -91Z1 25 5a 75 laa 
 a 
Frequency (Hz)
Root-sum-square percent modulation = 32.50
Figure 11. AM Spectru~ Analysis of Amateur Sideband Transmission
35

-------
 -30     
 -40  I 
"      -a
IJJ      lTl
"U -50     ~
'-'      n
      CD
c      J
o -60  . I
  V    ;l-
i->     
.,     :r
 -?0    0
:J     Q..
'"'0      C
o     
L -80  .81 QI
'+      ;I-
o      
 -90     0
u      ~
u     
'-      
m -U30  .13131 
u  
Q      
 -111Z1 25 513 75 lee 
 13 
Frequency (Hz)
Root-sum-square percen~ modula~ion =
3 . 15
Figure 18. AM Spectrum Analysis of AM Radio Station. .
36

-------
 -113     
 -213     
  10 
,"",      1)
~ -313     CD
1J     ..,
.....,      0
C      (\
o -413 1 -:J
<+
+'      
"      :I
 -50     0
:J      Q..
1J      C
o     
~ -60 . 1 
 III
<+      <+
o      
 -70     0
o      ~
o     
'-      
m -B0 .01 
0 
0      
 -91Z1 2S sa   
 B 75 laa 
Frequency (Hz)
Root-sum-square percent modulation =
10.67
Figure 19. AM Spectrum Analysis of UHF-TV Station.
37

-------
and represents the state-of-the-art in numerical modeling of wire
antennas [5].
Wire antennas are modeled in NEC as a set of segmented straight
wires in free space or above a ground plane. This ground plane
can model the electrical effects of earth beneath a real antenna.
Each wire is specified by three coordinates in space for each
wire end, a wire radius, and the number of segments into which
the wire is divided. Wire segment lengths are set to less than
0.1 wavelength in order to achieve an accurate solution.
Excitation voltages and load impedances can be applied across
specified segments. NEC then solves for the magnitude and phase
of the current on every segment. These currents are then used to
calculate the fields generated by the antenna.
8.2
RHOMBIC ANTENNA MODEL
The NEC program was used to model the rhombic antennas at the VOA
site in Delano, CA. A simple rhombic antenna consists of four
horizontal straight wires arranged to form a rhombus. The main
beam radiates at an angle of about 10 degrees above the horizon
and is directed in azimuth along the long axis of the rhombus
from the transmitter connection (excitation) and toward the
antenna load. The rhombic antennas at VOA are constructed using
four systems of three wires each (Figure 3): these four systems
were modeled as four individual wires having a radius of 1
centimeter in NEC. The geometry of the rhombic antennas at VOA
was determined from blueprints of the site and tabular data
supplied by VOA. The coordinates of the ends of each wire were
determined and the wires were broken into segments less than 0.1
wavelength long at the operating frequency. The transmitter and
load connections were modeled in NEC by applying an excitation
voltage across two segments symmetrically at the transmitter end
of the antenna and applying two 300 ohm load impedances similarly
across two segments at the opposite end of the antenna. The
excitation voltage was adjusted such that the power input to the
antenna was 250 kW. The ground was modeled as a plane having a
uniform conductivity and relative dielectric constant derived
from electrical measurements of the soil made at Delano by SRI
International [6]. A Sommerfeld Integral method was used to
calculate the effect of ground. This ground effect calculation
involves running a NEC accessory program called SOHNEC before
running NEC.
Some potential sources of error or simplifying assumptions in the
model include: (1) one wire rather than three is used to model
each side of the rhombus, (2) the perturbing effect of adjacent
antennas is not considered. (3) the effects of supporting towers
and guy wires are not considered, (4) the load impedance, loss in
transmission lines, and absolute power are not exactly known, and
(5) the ground is treated as uniform and flat when it is neither.
Also, the model does not take into account reflections from the
38

-------
ionosphere or local perturbations and reflections due to
buildings or other structures. As distance from the antenna
increases, ionospheric effects become more important. The
results in the section on VOA antenna pattern measurements show
that these errors are typically 5 dB, which is considered good
agreement.
8.3
RESULTS
The NEC models for the rhombic antennas were used to calculate
the electric and magnetic field and the ratio of these fields at
points one meter above ground at every one degree of bearing on a
horizontal circle centered on the antenna and having a radius of
10 km. This radius is approximately equal to the distance .
between the antennas and McFarland, the actual distance between
the rhombic antenna centers and measurement sites in McFarland
varies from 8.0 to 11.6 km. Neglecting ground losses, the field
varies as the inverse of distance, so the maximum error due to
setting the distance to 10 km is 20% or 1.6 dB. The four rhombic
antennas radiating to the southeast were modeled, the ground-
level electric and magnetic fields and field ratios at a distance
of 10 km are shown in Figures 20 to 23.

The large rhombic antenna (R-10) at the south end of the VOA site
generates the largest calculated fields (Figure 20). The NEC
program output for R-10 is given in Appendix B. The values
plotted for the fields are the square-root of the sum of the
squares of the three field components calculated by NEC. Also,
the NEC output values are multiplied by 0.707 to convert from
peak to root-mean-square (RMS) fields. The R-10 antenna is
reported by VOA to have a main beam gain of 23 dBi (dB with
respect to an isotropic radiator) at its operating frequency of
6.155 MHz. NEC gives a value for main beam gain of 18.9 dBi.
For an input power of 250 kW, the electric field calculated using
18.9 dBi for the main beam gain at a distance of 10 km is 2.4 Vim
in the main beam. Since this beam is directed 10 degrees above
the horizon, this location will be 1.7 km above ground. As can
be seen in Figure 20, the maximum electric field calculated at 10
km at 1 m above ground is approximately 0.070 VIm and is due to
four field maxima or lobes at 20 and 32 degrees on either side of
the main beam; there is a field minimum or null at ground beneath
the main beam. This ground-level maximum electric field is 31 dB
less than the main beam field at 1.7 km above ground. Since the
main beam bearing is 116 degrees, the lobes occur at bearings of
84, 96, 136, and 148 degrees. The bearing from the VOA site to
McFarland is about 135 to 150 degrees. So, for this antenna, two
of these lobes are directed toward McFarland and the maximum
calculated electric field at 10 km in the town due to this
antenna is 0.070 VIm which is equivalent to a power density value
of 1.3 nanowatts per square centimeter (nW/cm2). The maximum
magnetic field calculated is 0.019 milliamp/meter (mAIm) and is
also equivalent to 1.3 nW/cm2. The calculated ratio of the
39

-------
   DRS Rhombic R-1Q  
   Di.lolO(o 10000 1ft 'roquo.." 6.ISS IIHa 
 0.08       
 0.8,       
II' CI.OI       
I        
E CI.OI       
~        
! G.04       
~        
f OM       
..        
! OM       
 ...,       
 0       
  0 108 -  .. -
   Boorin9 (0 "0"'''' T...o -..)  
   DRS Rhombic R-10  
   Di.I_o 10000 1ft 'roq-, 1.1" IIHa 
 0.1       
 ....       
 .."       
 .."       
'" .."       
J ....       
"       
I ....       
...,       
0.11       
""       
0 ..,       
~ ...       
~ CI.OI       
f 0.8,       
...       
8M       
 ....       
 o.oa       
 0.81       
 0.0'       
 0       
  0 .. -  .. ..
   ....... (0 ........ True Nort,,)  
   DRS Rhombic R-10  
   Di-_o 10000 ... ,~, 1.1" lIMa 
 ..    
 -       
... ~       
. SI8       
I ..       
I ..       
III       
I ~       
..       
..       
I.       
..       
,..       
, I.       
i I.       
iii .       
 .       
 ..       
  0 .. ..  .. ..
   ....... (0 .,...... True HertII)  
Figure 20.
Calculated Fields for Rhombic R-IO at 6.155 MHz.
40

-------
   ORS Rhombic R-03  
   0;"0"<8 10000 m "oque"., 9.765 "Hz 
 O.OS       
 o.oo~       
 0.00       
VI        
J O.OJS       
It       
E O.OJ       
~       
.. o.on       
i        
;.:        
 0.02       
:S        
II 0.0"       
0       
,;;        
 0.01       
 0.-       
 0       
  0 100 -  ~ -
   eearin9 (0 *9'0" r.... Nortll)  
   ORS Rhombic R-03  
   0;.,0"'0 10000 m "00""'.' 9.765 11Hz 
 0.1~       
 0.12       
 0.11       
VI !I' I        
I       
E o.oe       
! 0.01       
0.07       
..        
i 0.01       
;.:        
.!I O.OS       
; 0...       
c       
"        
J ...,       
 0.01       
 0.01       
 0       
  0 100 100  ~ -
   Beorin9 (0 do.... True Nortll)  
   DRS Rhombic R-03  
   0iat0llC. 10000 '" 'reo-, 9.76$ "'" 
 JIO       
 JIO       
- JoIO       
.       
E »0       
~ JOG       
I 210       
;.:        
.1t 218       
I 2..       
2.       
-       
I '.       
.~ 110       
j "0       
w 120       
 100       
 .       
  0 100 -  JOG -
   Beorin9 (0 cle9rft8 True NottII)  
Figure 21.
Calculated Fields for Rhombic R-03 at 9.765 MHz.
41

-------
    DRS Rhombic R-02  
    Oiltoftc. 10000 m "equency 9.81$ MHz 
  0.04    
  CI.OJS       
 III O.o.s       
 :I        
 II:        
E 0.025       
~        
" 0.02       
i        
;;:        
 " 0.015       
:s        
"        
.        
W 0.01       
  0.005       
  0       
   0 100 200  JOG 000
    Bea,in9 (0 deg'... T'ue Nort,,>  
    DRS Rhombic R-02  
    0i81-e 10000 1ft ".quency 9.81 S 11Hz 
  0.11       
  0.1.       
  0.01       
III        
i 0.08       
E 0.07       
! 0.08       
" 0.05       
i       
;;:        
.'i 0.04       
;        
c  O.o.s       
0       
J         
  0.02       
  0.01       
  0       
   0 100 200  JOG 000
    Bea'in9 (0 deq'e.. T'ue Nor''')  
    DRS Rhombic R-02  
    0i8l-e 10000 1ft 'requency 9.81 S 11Hz 
  .J8O       
  .J8O       
... JoIO       
.       
! DO       
JOG       
"        
1 2ID       
I;       
I 2ID       
240       
DO       
I ..       
I; I.       
f 110       
J 140       
w 120       
  100       
  .       
   0 100 ..  JOG -
    """9 (0 degrwa T".. Nort,,>  
Figure 22.
Calculated Fields for Rhombic R-02 at 9.815 MHz
42

-------
  0.1'      
  0.12      
  0.11      
 III 0.1      
 2       
 IE 0.01      
 E 0.01      
! 0.07      
 " 0.01      
 .      
Ii:       
~ 0..      
 . G.04      
 c      
 GI       
J OM      
  G.02      
  0.01      
  0      
   0 100 aao  ~ -
    IIeoMt (0 "9,ee. Trua Noolh)  
    DRS Rhombic R-03  
    Dist_. 10000",   
  ao      
  ..      
...        
.  ,..      
E       
~  »0      
!  ..      
.        
Ii:  2.      
!  210      
,  240      
l no      
I  200      
!  I.      
"  110      
~        
'"  140      
  120      
  100      
   0 100 200  ~ -
O.G4S
III
l 0.0»
E
~
" 0.02S
.
Ii:
" 0.02
:s
¥ 0.015
W
0.01
0.005
Figure 23.
DRS Rhombic R-O.3
0.05
Di.tance 10000 m
F,aq""'C7 11.7. 11Hz
G.04
O~
o
o
100 200
Ihorint (0 d.ee. Trua Notth)
-
-
DRS Rhombic R-03
Di.I...ee 10000 "'
F,aq_" 11.7. 11Hz
Ihorint (0 1f89r... True North)
Calculated Fields for Rhombic R-03 at 11.74 MHz.
43

-------
electric to the magnetic field (wave impedance) is less than or
equal to the value for a free space wave (377 ohms). The ratio
varies from 55 to 377 ohms. Thus, the calculated equivalent
power density for the magnetic field is greater than for the
electric field by a factor of 1.0 to 47. However, the low values
of wave impedance occur only at nulls in the pattern. Most wave
impedance values are greater than 300 ohms and are equal to 377
ohms where both fields are a maximum. This implies that
calculating either the maximum electric or magnetic field is
adequate for determining the maximum exposure. Because of the
boundary conditions on the field vectors at the ground surface,
the dominant components of the fields on ground are vertical for
the electric field and horizontal for the magnetic field.
8.4
DISCUSSION
While the data generated by NEC for ground-level fields from the
rhombic antennas at VOA were confirmed by measurements, the
plausibility of the results is not obvious. For example, it may
not seem reasonable that: (1) the maximum fields on ground are
not found beneath the main beam and (2) the electric fields
generated near ground by an antenna constructed from horizontal
conductors are vertical. The purpose of this section is to make
the results more tenable. Understanding the data involves an
appreciation of the fact that the radiation pattern and field
components of the antenna in free space and the effects of ground
on these components are both complex. To gain this appreciation,
the problem of calculating the fields near ground due to the VOA
antennas can be broken into two parts: (1) the radiation pattern
and off-axis field components of the antenna in free space and
(2) the effect of ground on propagation of these components.
8.4.1
Rhombic Antenna in Free SDace
To show the radiation pattern and off-axis field components for a
rhombic antenna in free space, the R-10 rhombic antenna was
modeled with no ground effect entered into the NEC program. The
electric field at a distance of 10 km and 53 m below the plane of
the antenna (1 meter above ground if ground were present) was
calculated. The vertical and horizontal components of this field
are plotted in Figure 24. Here, the main beam direction is zero
degrees. The maximum horizontal component is 97 times (39.8 dB)
more intense than the maximum vertical component. Note the
similarity of the vertical pattern in free space and the total
pattern of R-10 near ground in Figure 20; the effect of ground is
to suppress the horizontal field component.
8.4.2
DiDole Antenna above Ground
To illustrate the effect of ground on propagation of the
horizontal and vertical electric field components, a simple 10
MHz half-wave dipole antenna was modeled (1) in a horizontal and
44

-------
Rhombic in Free Space
 1.5
 1.4
 1.3
 1.2
 1.1
\11 
:2 
II:: 
E o.g
~ 0.8
1:1 
ii 0.7
i;: 
u 0.6
"S 
u 0.5
CI
i;j 
 0.4
 0.3
 0.2
 0.1
 o
 o
E rIELD HORIZONTAL COMPONENT
100
200
300
400
Degr...
 0.016
 0.015
 0.014
 0.013
 0.012
\11 0.011
:J
II:: 
E 0.01
~ 0.009
1:1 0.008
ii 
i;: 0.007
u 
:s 0.006
u 
. 0.005
i;j
 0.004
 0.003
 0.002
 0.00'
 o
 o
E rIELD VERTICAL COMPONENT
_/
~
100
200
JOO
400
Degr...
Figure 24. Calculated Electric Field from a Rhombic Antenna in Free
Space. Essentially only the vertical component survives the presence
of ground.
45

-------
(2) in a vertical orientation above ground. The height of the
antenna center was 50 m above ground and the calculation point
was 1 m above ground and 10 km from the antenna. This point was
in the direction of main beam propagation where the electric
field is strictly horizontally polarized. The ground constants
were set based on the electrical properties of the soil at Delano
acquired by SRI International [6]. The power into the antenna
was set at 25 MW or 100 times greater than the 250 kW into the
VOA antennas to compensate for the lack of gain of the dipole
relative to a rhombic antenna. The electric field near ground
parallel to this imaginary vertical dipole was calculated to be
1.86 vim and the electric field parallel to the horizontal dipole
was 0.00876 Vim.
Here, the vertically polarized component propagates 212 times
(46.5 dB) more successfully as a ground wave. So, weak vertical
field components such as those slightly below the plane and off
to the side of horizontally oriented antennas can become dominant
near ground. It is interesting to note that rhombic antennas,
curtain antennas, as well as simple horizontal dipoles are
strictly horizontally polarized only in certain directions. For
the horizontal dipole, finite vertical components exist in
directions which are not in the horizontal plane of the antenna
and not in the vertical plane intersecting the main beam. This
is because the electric field vector is transverse or
perpendicular to the direction of propagation away from a
transmitting antenna, this transverse direction is only
horizontal at certain special directions of propagation for
horizontal antennas.
8.5
RETROSPECTIVE ANALYSIS
The operating schedule for the VOA facility at Delano changes
regularly. The frequency of operation of any antenna may be
changed to meet varying demands of programming, propagation
conditions, and frequency coordination. Therefore, the field
strengths measured during this field study are not the same as
those due to past or future operations at VOA. Copies of the
operating schedules back to 1975 for the Delano site were
supplied by VOA. Either measuring or modeling the fields for all
past operations at Delano could rigorously determine the fields
in McFarland in the past. Neither is feasible or necessary. A
reasonable approach is to examine the modeling results for trends
in the peak ground-level field strength as a function of known
antenna characteristics. Then, based on these trends,
selectively model past operations at Delano that are expected to
create relatively high fields.

Antenna characteristics which are most relevant for the rhombic
antennas are the frequency and the electrical length of one of
the four sides of the antenna. The electrical length is the
length measured in wavelengths. For example, at a frequency of
46

-------
10 MHz, the wavelength is 30 meters; if
meters then the electrical length would
Table 4 shows the frequency, electrical
level electric field at 10 km for seven
the side length were 120
be 4.00 wavelengths.
length, and peak ground-
rhombic antenna models.
TABLE 4. MODEL RESULTS FOR RHOMBIC ANTENNAS  
  Electrical Peak Ground
Rhombic Frequency Length Level E Field
Antenna (MHz) (wavelengths) at 10 km (mV/m)
R-10 6.155 6.07 72 
R-03 9.765 4.22 46 
R-02 9.815 3.39 40 
R-03 11. 74 5.07 47 
R-10 21. 57 21.3 50 
R-02 17.765 6.13 22 
R-10 11.8 11. 63 92 
The table entries at 6.155, 9.765, 9.815, and 11.74 MHz
correspond to the operation during the field measurements; the
results for these models were given in Figures 20 to 23. The
entries at 21.57 and 17.765 MHz correspond to the highest past
operating frequency and greatest electrical length for the R-10
and R-02 antennas. The results for these two models are given in
Figures 25 and 26. It is apparent that, up to some frequency the
peak field increases with electrical length, then begins to
decrease with frequency possibly due to ground losses which
increase with frequency or due to dividing the radiated power
into an increasing number of lobes.
An approach to finding the frequency at which the field is a
maximum is to examine the main beam gain of the antenna.
Calculated data on this gain was supplied by VOA. At frequencies
where the gain is a minimum, the lobes that cause the ground-
level fields may be stronger. A gain minimum occurs at 11.8 MHz
for rhombic R-10; the largest ground-level field of 0.092 VIm was
calculated for a model at this frequency. This frequency was not
used for scheduled operation of R-10 (so no graph is presented),
but may represent the worst-case possible operation of the VOA
site in terms of causing the highest field in McFarland. The
equivalent power density for this field is 2.2 nw/cm2. The
maximum measured power density was 1.3 nw/cm2. Thus, there is no
indication from these calculations that any operation of the
rhombic antennas could generate significantly higher fields in
McFarland than those already measured.
47

-------
DSR Rhombic R-l0
0.06
Distance 10000 m F'requency 21.570 "'Hz
 0.05
1/1 
2 0.04
II:
..... 
E 
~ 
...... 
~ 0.03
'i 
&: 
u 
~ 
u 0.02
.
W 
 0.01
o
o
100
200
300
400
Bearing (0 degree. True North)
Figure 25.
Calculated Electric Field fQr Rhombic R-10 at 21.57 MHz.
 0.022
 0.02
 0.018
1/1 0.016
2 
II: 0.014
......
E 
~ 0.012
......
" 
'i 0.01
Ii:
u 
"C 0.008
...
u 
. 
W 
 0.008
 0.004
 0.002
 o
 o
DSR Rhombic R-02
Di.tance 10000 m F'requency 17.765 "Hz
100
200
Bearing (0 deg/'ft' True North)
300
400
Figure 26.
Calculated Electric Field for Rhombic R-02 at 17.765 MHz.
48

-------
9.
(1)
(2)
(3)
(4)
(5)
CONCLUSIONS
Radiofrequency (RF) field measurements were made at six
locations in the McFarland area, about six miles from the
Voice of America (VOA) transmitter site in Delano. These
measurements were made in the standard broadcast bands as
well as at the frequencies used by VOA. The measurements
show that the strongest RF fields in the McFarland area were
from UHF television transmission. The field strengths are
similar to those found in most urban areas and, thus, do not
represent a departure from exposures commonly experienced by
most people.

The RF electric field near ground due to the largest rhombic
antenna on the VOA site was measured continuously (at many
intervals of distance) for five miles along a road between
VOA and McFarland. This measurement was compared to the
results of a numerical model for the antenna. Good
agreement was found between the model result and the
measurement; however, a difference of up to a factor of 10
in power density was not uncommon at any randomly chosen
location.
RF field measurements were made along the boundary of the
VOA facility. The highest off-site field value measured in
the survey was along this boundary (30 microwatts per square
centimeter) and was due to one of the smaller rhombic
antennas near the boundary. The induced RF current passing
through the feet of a well-grounded individual was measured
at this location. The measured RF current was in good
agreement with the predicted current derived using previous
research.
The variations in time of RF fields at one location in
McFarland were measured. The stability of fields from VOA
and a local AM radio station were examined. The maximum
field strength due to the VOA signals was stable; however,
these signals oscillated in strength at times probably due
to ionospheric reflections. The field strength due to the
AM radio station changed at times, possibly due to unstable
transmitter operation.

Low-frequency amplitude modulation may be an important
variable in evaluating the risk of RF exposure. This
variable was measured for several RF signals. Modulation is
dependent on the type of transmitter and does not in general
depend on the particulars of any installation. The amount
of modulation for one of the VOA signals was measured in
McFarland. Further measurements were made for various types
of signals after returning to the EPA laboratory. Of the
principal signals measured in McFarland, UHF television
stations as a class have the highest levels of modulation at
49

-------
(6)
low frequencies. Sideband modulated signals similar to
those transmitted by VOA, but in the direction away from
McFarland, had greater values of amplitude modulation at low
frequencies than the television signals.

Numerical modeling of the VOA rhombic antennas at Delano was
used to calculate the maximum power density in McFarland.
The predicted result due to the routine operation of one of
these antennas was 1.3 nanowatts per square centimeter.
This value was in good agreement with measurements. A
retrospective analysis using these models for previously
scheduled operations at VOA did not result in calculated
fields in McFarland greater than those generated by current
operations.
50

-------
6.
REFERENCES
1.
Tell, Richard A., Mantiply, Edwin D. Population Exposure to
VHF and UHF Broadcast Radiation in the United States.
proceedings of the IEEE, Vol. 68, No.1, January 1980, pp.
6-12.
2.
National Council on Radiation Protection and
Biological Effects and Exposure criteria for
Electromagnetic Fields. NCRP Report No. 86.
Publications, Bethesda, MD. April 1986.
Measurements.
Radiofrequency
NCRP
3.
Moss, Eugene C. Letter report on occupational
radio frequency measurements in McFarland, California to the
state of California. July 18, 1988, from the National.
Institute for Occupational Safety and Health, Industrial
Hygiene Section, Cincinnati, Ohio.

Gandhi, O.P., I. Chatterjee, D. Wu, and Y. Gu. Likelihood
of High Rates of Energy Deposition in the Human Legs at the
ANSI Recommended 3-30 MHz RF Safety Levels. Proceedings of
the IEEE, Vol. 73, No.6, June 1985, pp. 1145-1147.
4.
5.
NEC code available through Lawrence Livermore National
Laboratory, Engineering Research Division, P.O. Box 5504,
Livermore, California, 94550.
Hagn, G.H., Faulconer, J.H. HF Ground Constants at the
Voice of America (VOA) station at Delano, California. SRI
International, Arlington, VA. July 1985.
51

-------
APPENDIX A
UNITS OF MEASUREMENT
various units of measurement are used throughout this report.
This tutorial cannot substitute for a course in circuits and
electromagnetic theory, but should clarify some of the
conventions which have come to be standard practice in
electromagnetics measurements and are inevitably used throughout
a report of this type.
We hope that the analogy between physical quantities in
electrical circuits and in electromagnetic waves will help bridge
the gap between the two.
A.1
CIRCUITS
Three basic quantities are of common interest in electrical
circuits: (1) the electric potential difference or voltage
symbolized by V and measured in volts, (2) the current, I,
measured in units of amperes (amps), and (3) the power, P,
measured in watts. Electric charge is a basic property of
matter; electrons are the negatively charged particles, which
under the influence of an applied voltage, produce a current flow
in electric circuits. The current is the amount of charge
(number of electrons) per unit time passing through a conductor
in a circuit; the voltage (similar to pressure in hydraulics) is
the amount of work required to move a unit charge between two
terminals in a circuit; and finally, the power is the work per
unit time expended in a circuit and is the product of the current
and voltage. The impedance of a circuit is defined by the ratio
of the voltage to the current and is measured in ohms.

For the circuits of interest here the impedance is 50 ohms; the
power is equal to the voltage squared divided by 50 ohms or:
p(watts)=V(VoltS)2/50 ohms.
A.2
FIELDS
The distribution and motion of charge creates forces on other
charges which may be present. The amount of force per unit
charge at a point is called the field strength at that point. If
the force is due only to the static position of other charges,
the field is called the electric field. If the force is due only
to relative motion of the charges, then the field is called the
magnetic field. Since the voltage across a circuit is due to the
static distribution of charge in the circuit, the electric field
near a circuit is proportional to the voltage across the circuit.
The electric field E is measured in volts/meter (V/m). Since the
current in a circuit is due to the motion of charge in the
circuit, the magnetic field near a circuit is proportional to the
current in the circuit. The magnetic field H is measured in
amperes/meter (A/m).
A-l

-------
A.3
RADIATION
Electromagnetic radiation is possible because of the limited
speed of light. If a charge is placed at a point in space, its
presence or field cannot be detected at another point until the
time required for light to propagate between the two points has
passed. similarly, if the source charge is moved rapidly the
changes in the field due to the motion must move away from the
charge at the speed of light. These field changes can break away
from the charge and radiate to form an electromagnetic wave.
This wave consists of electric and magnetic fields which are
transverse to the direction of propagation and perpendicular to
each other.
A.4
FREQUENCY AND WAVELENGTH
If a source charge of an electromagnetic wave moves back and
forth regularly or oscillates in time, the wave propagating away
from the charge at the speed of light will oscillate at the same
rate as the source charge. This rate of oscillation in units of
cycles per second or hertz (Hz) is called the frequency. The
distance between crests in this wave is called the wavelength and
is given by the speed of light divided by the frequency. Most
frequencies are expressed in this report in units of megahertz
(MHz) or millions of cycles per second. The speed of light is
300,000,000 meters per second: this speed may be expressed as
300 MHz meters. So, for example the wavelength for a 300 MHz
wave is 1 meter, and the wavelength for a 10 MHz wave is 30
meters.
A.5
POWER DENSITY AND WAVE IMPEDANCE
A transmitting antenna is a designed to radiate efficiently and
control the directional propagation of this radiation. For a
wave far (many wavelengths) from the source in free space, the
electric and magnetic field directions are transverse to the
direction of propagation and the power passing through a unit
area is given by the product of the electric and magnetic field
and is called the power density S in watts/meter2 (w/m2). Under
these conditions, the ratio of the electric to the magnetic field
is called the "free space wave impedance" and has a value of 377
ohms. During environmental measurements the electric and
magnetic fields do not normally have a simple relationship, and
the value of the ratio is called the "wave impedance" and can be
far from 377 ohms. Either the electric or magnetic field is
measured, the true power density is neither measured nor desired.
However, in order to compare all measurements in a single unit
for both the electric and magnetic field, the fields are
converted to the power density which would exist in a free space
wave by assuming a wave impedance of 377 ohms. This is called
the "equivalent far field power density" or simply "power
density". The formulas for equivalent power density from the
electric or magnetic field are s(w/m2) = E(V/m)Z/377 ohms and
S(W/m2) = H(A/m)2(377 ohms). For similar reasons, magnetic field
A-2

-------
measurements in amps/meter are often converted to the electric
field which would exist in free space by multiplying the value in
amps/meter by 377 ohms to give the "equivalent" electric field in
vOlts/meter.
A.6
ANTENNA FACTORS
Receiving antennas are sensors that detect fields by allowing the
field to induce current or voltage in a circuit. Loop receiving
antennas generate a voltage proportional to the magnetic field
and linear antennas generate a voltage proportional to the
electric field. The constant of proportionality which allows the
field to be calculated from the voltage is the "antenna factor1t.
These antenna factors are a function of frequency and are
determined by calibration with the antenna connected to a 50 ohm
impedance circuit. The antenna fact9rs for the magnetic loop
antennas arp used to convert from voltage to "equivalent"
electric field assuming a 377 ohm wave impedance. The antenna
factor is in units of reciprocal meters (m"' or 1/m) and may be
considered the reciprocal of the effective length of the antenna.
The effective length is generally less than the physical length
of an antenna and is sometimes used instead of antenna factor.
A.7
METRIC SCALING
The size of a unit may be changed to avoid scientific notation.
A prefix is used to change the scale by factors of ten. The
prefixes used in this report are listed below.
Prefix (abbreviation)
Factor
giga (G)
mega (M)
kilo (k)
centi (c)
milli (m)
micro(~)
nano(n)
pico(p)
109
106
103
10.2
10.3
10"6
10.9
10.'2
Using these factors, one can see that for magnetic fields 1 mAIm
=0.001 A/m, and for power density 1 nw/cm2 = 10.6 mw/cm2 and
1 mw/cm2 = 10 w/m2.
A.S
LOGARITHMIC SCALING
(dB)
Electrical engineers use logarithmic scaling or decibel units to
show large ranges of electrical quantities on a single scale and
to avoid changing units. The decibel (dB) may indicate a ratio
only or may be defined with respect to any physical unit. The
ratio of two powers or power densities in dB is given by: 10
log,o of the ratio. In order to keep the same ratio in dB for
any electrical quantity in a given circuit; voltage, current, and
field ratios in dB are given by 20 10g,0 of the ratio. The
A-3

-------
factor of 20 instead of 10 is used because the power or power
density is proportional to the square of the voltage, current, or
field. For example, 20 dB indicates a power or power density
ratio of 100 and a voltage or field ratio of 10. If the ratio is
taken with respect to a fixed unit, for example, milliwatts (mW),
then a suffix is placed after the dB and the value, here in dBm
for dB with respect to a milliwatt indicates an absolute value of
power. The spectrum analyzer output is normally in units of
power in dBm which are defined by P(dBm) = 10log,oP(mW}. Field
(electric and magnetic) is often specified in dB with respect to
a #J.V/m or dB#J.V/m and is defined by E (dB#J.V/m) = 20log,oE (#J.V/m)
with the magnetic field converted to "equivalent" electric field
units. Antenna factor (AF) is generally specified as dB/m or
simply dB and may be added to the voltage (V) in dB#J.V to give the
field in dB#J.V/m. However, since the spectrum analyzer output is
power in dBm this can be converted using the 50 ohm impedance to
dB#J.V by adding 107 dB#J.V/mW.
A.9
SAMPLE CALCULATION
To show the calculations involved in going from a spectrum
analyzer reading of power in dBm to power density, given an
antenna factor, use:
E or H(dB#J.V/m)=AF(dB/m)+P(dBm)+107 dB#J.V/mW to obtain the field in
dB#J.V/m. Convert to Vim by usin~ E(V/m)=[10E(dB/&v/m>/2o]/106 and
convert to power density in W/m by using s(w/m2)=E(v/m)2/377
ohms. Note that 10 to a power is the inverse of the log
function. Common power densitl units in this report are nw/cm2,
to convert use S(nw/cm2)=S(w/m) (105).
A-4

-------
APPENDIX B
NUMERICAL ELECTROMAGNETICS CODE OUTPUT FOR RHOMBIC R-IO

-------
*_e....*.._-_..**._.*.e.._.*-__...e._._.__e.
NUMERICAL ElECTROMAGNETICS CoeE (NEC-3)
-..ee*.e_**.*_.**_.e*.e.........*._*----._-.
- - - - COMMENTS - . - .
RHOMBIC R10 AT VOA
CO-ORDINATES TAKEN FROM CENTER OF RHOMBIC
READING lEFT TO RIGHT AT 0 DEGREES
FREQUENCY 6.155 mHz AT 250 kW
****RHOMR10A****
. . . STRUCTURE SPECIFICATION - . -
COORDINATES MUST BE INPUT IN
METERS OR BE SCALED TO METERS
BEFORE STRUCTURE INPUT IS ENDED
WIRE
NO. X1 Y1 Z1 X2 Y2
1 -268.44000 0.00000 54.03000 0.00000 109.59500
2 0.00000 109.59500 54.03000 268.44000 0.00000
3 268.44000 0.00000 54.03000 0.00000 -109.59500
4 0.00000 -109.59500 54.03000 -268.44000 0.00000
THE STRUCTURE HAS BEEN MOVED, MOVE DATA CARD IS -
o 0 0.00000 0.00000 -26.00000 0.00000 0.00000
Z2
54.03000
54.03000
54.03000
54.03000
0.00000
TOTAL SEGMENTS USED- 240
NO. SEG. IN A SYMMETRIC CEll- 240
- MULTIPLE WIRE JUNCTIONS -
JUNCTION SEGMENTS (- FOR END 1, + FOR END 2)
NONE
. - - - SEGMENTATION DATA - - - -
COORDINATES IN METERS
1+ AND I- INDICATE THE SEGMENTS BEFORE AND AFTER I
SEG.
COORDINATES OF SEG. CENTER
SEG.
ORIENTATION ANGLES
8-1
RADIUS
0.01000
0.01000
0.01000
0.01000
0.00000
SYMMETRY FLAG- 0
NO. OF
SEG.
60
60
60
60
FIRST lAST
SEG. SEG.
1 60
61 120
121 180
181 240
WIRE
CONNECTION DATA
TAG
TAG
NO.
1
2
3
{,

-------
       -- -.--. -   --
   -        
NO. X Y Z LENGTH ALPHA BETA RADIUS I- I 1+ NO. 
1-238.86131 117.51658 54.03000 4.83250 0.00000 -3.79146 0.01000 240 1 2 1 
2-234.03938 117.19703 54.03000 4.83250 0.00000 -3.79146 0.01000 1 2 3 1 
3-229.21746 116.87747 54.03000 4.83250 0.00000 -3.79146 0.01000 2 3 4 1 
4-224.39553 116.55792 54.03000 4.83250 0.00000 -3.79146 0.01000 3 4 5 1 
5-219.57361 116.23837 54.03000 4.83250 0.00000 -3.79146 0.01000 4 5 6 1 
6-214.75168 115.91882 54.03000 4.83250 0.00000 -3.79146 0.01000 5 6 7 1
7-209.92975 115.59927 54.03000 4.83250 0.00000 -3.79146 0.01000 6 7 8 1
8-205.10783 115.27972 54.03000 4.83250 0.00000 -3.79146 0.01000 7 8 9 1
9-200.28590 114.96017 54.03000 4.83250 0.00000 -3.79146 0.01000 8 9 10 1
10-195.46398 114.64062 54.03000 4.83250 0.00000 '3.79146 0.01000 9 10 11  1
11-190.64205 114.32107 54.03000 4.83250 0.00000 -3.79146 0.01000 10 11 12  1
12-185.82012 114.00152 54.03000 4.83250 0.00000 -3.79146 0.01000 11 12 13  1
13-180.99820 113.68197 54.03000 4.83250 0.00000 '3.79146 0.0100Q 12 13 14  1
14-176.17627 113.36242 54.03000 4.83250 0.00000 -3.79146 0.01000 13 14 15  1
15-171.35435 113.04287 54.03000 4.83250 0.00000 '3.79146 0.01000 14 15 16  1
16-166.53242 112.72332 54.03000 4.83250 0.00000 -3.79146 0.01000 15 16 17  1
17-161.71049 112.40377 54.03000 4.83250 0.00000 '3.79146 0.01000 16 17 18  1
18-156.88857 112.08422 54.03000 4.83250 0.00000 '3.79146 0.01000 17 18 19  1
19-152.06664 111.76467 54.03000 4.83250 0.00000 -3.79146 0.01000 18 19 20  1
20-147.24472 111.44512 54.03000 4.83250 0.00000 -3.79146 0.01000 19 20 21  1
21-142.42279 111.12557 54.03000 4.83250 0.00000 -3.79146 0.01000 20 21 22  1
22-137.60086 110.80602 54.03000 4.83250 0.00000 '3.79146 0.01000 21 22 23  1
23-132.77894 110.48647 54.03000 4.83250 0.00000 -3.79146 0.01000 22 23 24  1
24,127.95701 110.16692 54.03000 4.83250 0.00000 -3.79146 0.01000 23 24 25  1
25-123.13509 109.84731 54.03000 4.83250 0.00000 -3.79146 0.01000 24 25 26  1
26-118.31316 109.52182 54.03000 4.83250 0.00000 -3.79146 0.01000 25 26 21  1
27-113.49123 109.20827 54.03000 4.83250 0.00000 -3.79146 0.01000 26 27 28  1
28-108.66931 108.88872 54.03000 4.83250 0.00000 '3.79146 0.01000 21 28 29  1
29-103.84738 108.56917 54.03000 4.83250 0.00000 -3.79146 0.01000 28 29 30  1
30 -99.02546 108.24962 54.03000 4.83250 0.00000 '3.79146 0.01000 29 30 31  1
31 -94.20353 101.93001 54.03000 4.83250 0.00000 -3.79146 0.01000 30 31 32  1
32 -89.38160 107.61052 54.03000 4.83250 0.00000 -3.79146 0.01000 31 32 33  1
33 '84.55968 101.29091 54.03000 4.83250 0.00000 '3.79146 0.01000 32 33 34  1
34 '79.73175 106.97142 54.03000 4.83250 0.00000 -3.79146 0.01000 33 34 35  1
35 '74.91583 106.65181 54.03000 4.83250 0.00000 -3.79146 0.01000 34 35 36  1
36 -70.09390 106.33232 54.03000 4.83250 0.00000 -3.79146 0.01000 35 36 37  1
37 -65.27198 106.01277 54.03000 4.83250 0.00000 -3.79146 0.01000 36 31 38  1
38 -60.45005 105.69321 54.03000 4.83250 0.00000 -3.79146 0.01000 37 38 39  1
39 -55.62812 105.31366 54.03000 4.83250 0.00000 -3.79146 0.01000 38 39 40  1
40 -50.80620 105.05411 54.03000 4.83250 0.00000 -3.79146 0.01000 39 40 41  1
41 -45.98421 104.73456 54.03000 4.83250 0.00000 -3.79146 0.01000 40 41 42  1
42 '41.16235 104.41501 54.03000 4.83250 0.00000 -3.79146 0.01000 41 42 43  1
43 '36.34042 104.09546 54.03000 4.83250 0.00000 '3.79146 0.01000 42 43 44  1
44 -31.51849 103.17591 54.03000 4.83250 0.00000 -3.79146 0.01000 43 44 45  1
45 -26.69651 103.45636 54.03000 4.83250 0.00000 -3.79146 0.01000 44 45 46  1
46 -21.81464 103.13681 54.03000 4.83250 0.00000 -3.79146 0.01000 45 46 41  1
47 -11.05212 102.81126 54.03000 4.83250 0.00000 -3.79146 0.01000 46 41 48  1
48 -12.23079 102.49771 54.03000 4.83250 0.00000 -3.79146 0.01000 47 48 49  1
49 -1.40886 102.11816 54.03000 4.83250 0.00000 -3.79146 0.01000 48 49 50  1
50 -2.58694 101.85861 54.03000 4.83250 0.00000 '3.79146 0.01000 49 50 51  1
51 2.23499 101.53906 54.03000 4.83250 0.00000 -3.79146 0.01000 50 51 52  1
52 7.05691 101.21951 54.03000 4.83250 0.00000 -3.79146 0.01000 51 52 53  1
53 11.87884 100.89996 54.03000 4.83250 0.00000 -3.79146 0.01000 52 53 54  1
54 16.70077 100.58041 54.03000 4.83250 0.00000 '3.79146 0.01000 53 54 55  1
55 21.52269 100.26086 54.03000 4.83250 0.00000 '3.79146 0.01000 54 55 56  1
56 26.34462 99.94131 54.03000 4.83250 0.00000 -3.79146 0.01000 55 56 57  1
51 31.16654 99.62116 54.03000 4.83250 0.00000 -3.79146 0.01000 56 51 58  1
58 35.98841 99.30221 54.03000 4.83250 0.00000 -3.79146 0.01000 51 58 59  1
59 40.81040 98.98266 54.03000 4.83250 0.00000 -3.79146 0.01000 58 59 60  1
     B-2      

-------
60 45.63232 98.66311 54.03000 4.83250 0.00000 -3.79146 0.01000 59 60 61 1
61 49.65353 96.701M 54.03000 4.83250 0.00000 -48.20854 0.01000 60 61 62 2
62 52.87401 93.09884 54.03000 4.83250 0.00000 -48.20854 0.01000 61 62 63 2
63 56.09449 89.49585 54.03000 4.83250 0.00000 '48.20854 0.01000 62 63 64 2
64 59.31498 85.89285 54.03000 4.83250 0.00000 -48.20854 0.01000 63 64 65 2
65 62.53546 82.28986 54.03000 4.83250 0.00000 -48.20854 0.01000 64 65 66 2
66 65.75594 78.68686 54.03000 4.83250 0.00000 -48.20854 0.01000 65 66 67 2
67 68.97643 75.08387 54.03000 4.83250 0.00000 -48.20854 0.01000 66 67 68 2
68 72.19691 71. 48087 .54.03000 4.83250 0.00000 -48.20854 0.01000 67 68 69 2
69 75.41739 67.87788 54.03000 4.83250 0.00000 -48.20854 0.01000 68 69 70 2
70 78.63788 64.27488 54.03000 4.83250 0.00000 -48.20854 0.01000 69 70 71 2
71 81.85836 60.67189 54.03000 4.83250 0.00000 -48.20854 0.01000 70 71 72 2
72 85.07884 57.06889 54.03000 4.83250 0.00000 -48.20854 0.01000 71 72 73 2
73 88.29932 53.46590 54.03000 4.83250 0.00000 -48.20854 0.01000 72 73 74 2
74 91.51981 49.86290 54.03000 4.83250 0.00000 -48.20854 0.01000 73 74 75 2
75 94.74029 46.25991 54.03000 4.83250 0.00000 -48.20854 0.01000 74 75 76 2
76 97.96077 42.65692 54.03000 4.83250 0.00000 -48.20854 0.01000 75 76 77 2
77 101.18126 39.05392 54.03000 4.83250 0.00000 -48.20854 0.01000 76 77 78 2
78 104.40174 35.45093 54.03000 4.83250 0.00000 -48.20854 0.01000 77 78 79 2
79 107.62222 31.84793 54.03000 4.83250 0.00000 -48.20854 0.01000 78 79 80 2
80 110.84271 28.24494 54.03000 4.83250 0.00000 -48.20854 0.01000 79 80 81 2
81 114.06319 24.64194 54.03000 4.83250 0.00000 -48.20854 0.01000 80 81 82 2
82 117.28367 21.03895 54.03000 4.83250 0.00000 -48.20854 0.01000 81 82 83 2
83 120.50416 17.43595 54.03000 4.83250 0.00000 -48.20854 0.01000 82 83 84 2
84 123.72464 13.83296 54.03000 4.83250 0.00000 -48.20854 0.01000 83 84 85 2
85 126.94512 10.22996 54.03000 4.83250 0.00000 -48.20854 0.01000 84 85 86 2
86 130.16561 6.62697 54.03000 4.83250 0.00000 -48.20854 0.01000 85 86 87 2
87 133.38609 3.02397 54.03000 4.83250 0.00000 '48.20854 0.01000 86 87 88 2
88 136.60657 -0.57902 54.03000 4.83250 0.00000 -48.20854 0.01000 87 88 89 2
89 139.82706 -4.18202 54.03000 4.83250 0.00000 -48.20854 0.01000 88 89 90 2
90 143.04754 -7.78501 54.03000 4.83250 0.00000 -48.20854 0.01000 89 90 91 2
91 146.26802 -11.38801 54.03000 4.83250 0.00000 -48.20854 0.01000 90 91 92 2
92 149.48850 -14.99100 54.03000 4.83250 0.00000 -48.20854 0.01000 91 92 93 2
93 152.70899 -18.59400 54.03000 4.83250 0.00000 -48.20854 0.01000 92 93 94 2
94 155.92947 -22.19699 54.03000 4.83250 0.00000 '48.20854 0.01000 93 94 95 2
95 159.14995 -25.79998 54.03000 4.83250 0.00000 -48.20854 0.01000 94 95 96 2
96 162.37044 -29.40298 54.03000 4.83250 0.00000 -48.20854 0.01000 95 96 97 2
97 165.59092 -33.00597 54.03000 4.83250 0.00000 -48.20854 0.01000 96 97 98 2
98 168.81140 -36.60897 54.03000 4.83250 0.00000 -48.20854 0.01000 97 98 99 2
99 172.03189 -40.21196 54.03000 4.83250 0.00000 -48.20854 0.01000 98 99 100 2
100 175.25237 -43.81496 54.03000 4.83250 0.00000 -48.20854 0.01000 99 100 101 2
101 178.47285 -47.41795 54.03000 4.83250 0.00000 -48.20854 0.01000 100 101 102 2
102 181.69334 '51.02095 54.03000 4.83250 0.00000 -48.20854 0.01000 101 102 103 2
103 184.91382 '54.62394 54.03000 4.83250 0.00000 -48.20854 0.01000 102 103 104 2
104 188.13430 -58.22694 54.03000 4.83250 0.00000 -48.20854 0.01000 103 104 105 2
105 191.35479 -61.82993 54.03000 4.83250 0.00000 -48.20854 0.01000 104 105 106 2
106 194.57527 -65.43293 54.03000 4.83250 0.00000 -48.20854 0.01000 105 106 107 2
107 197.79575 -69.03592 54.03000 4.83250 0.00000 -48.20854 0.01000 106 107 108 2
108 201.01623 -72.63892 54.03000 4.83250 0.00000 -48.20854 0.01000 107 108 109 2
109 204.23672 -76.24191 54.03000 4.83250 0.00000 -48.20854 0.01000 108 109 110 2
110 207.45720 -79.84491 54.03000 4.83250 0.00000 -48.20854 0.01000 109 110 111 2
111 210.67768 -83.44790 54.03000 4.83250 0.00000 -48.20854 0.01000 110 III 112 2
112 213.89817 -87.05090 54.03000 4.83250 0.00000 -48.20854 0.01000 111 112 113 2
113217.11865 '90.65389 54.03000 4.83250 0.00000 -48.20854 0.01000 112 113 114 2
114 220.33913 -94.25688 54.03000 4.83250 0.00000 -48.20854 0.01000 113 114 115 2
115 223.55962 -97.85988 54.03000 4.83250 0.00000 -48.20854 0.01000 114 115 116 2
116 226.78010-101.46287 54.03000 4.83250 0.00000 -48.20854 0.01000 115 116 117 2
117 230.00058-105.06587 54.03000 4.83250 0.00000 -48.20854 0.01000 116 117 118 2
118 233.22107-108.66886 54.03000 4.83250 0.00000 -48.20854 0.01000 117 118 119 2
119 236.44155-112.27186 54.03000 4.83250 0.00000 -48.20854 0.01000 118 119 120 2
     B-3      

-------
      --  
120 239.66203-115.87485 54.03000 4.83250 0.00000 -48.20854 0.01000 119 120 121 2 
121 238.86131-117.51658 54.03000 4.83250 0.00000 176.20854 0.01000 120 121 122 3 
122 234.03938-117.19703 54.03000 4.83250 0.00000 176.20854 0.01000 121 122 123 3
123 229.21746-116.87747 54.03000 4-83250 0.00000 176.20854 0.01000 122 123 124 3
124 224.39553-116.55792 54.03000 4.83250 0.00000 176.20854 0.01000 123 124 125 3
125 219.57361-116.23837 54.03000 4.83250 0.00000 176.20854 0.01000 124 125 126 3
126 214.75168-115.91882 54.03000 4.83250 0.00000 176.20854 0.01000 125 126 127 3
127 209.92975-115.59927 54.03000 4.83250 0.00000 176.20854 0.01000 126 127 128 3
128 205.10783-115.27972 54.03000 4.83250 0.00000 176.20854 0.01000 127 128 129 3
129 200.28590-114.96017 54.03000 4.83250 0.00000 176.20854 0-01000 128 129 130 3
130 195.46398-114.64062 54.03000 4.83250 0.00000 176.20854 0~01000 129 130 131 3
131 190.64205-114.32107 54.03000 4.83250 0.00000 176.20854 0.01000 130 131 132 3
132 185.82012-114.00152 54.03000 4.83250 0.00000 176.20854 0.01000 131 132 133 3
133 180.99820-113.68197 54.03000 4.83250 0.00000 176.20854 0.01QOO 132 133 134 3
134 176.17627-113.36242 54.03000 4.83250 0.00000 176.20854 0.01000 133 134 135 3
135 171.35435-113.04287 54.03000 4.83250 0.00000 176.20854 0.01000 134 135 136 3
136 166.53242-112.72332 54.03000 4.83250 0.00000 176.20854 0.01000 135 136 137 3
137 161.71049-112.40377 54.03000 4.83250 0.00000 176.20854 0.01000 136 137 138 3
138 156.88857-112.08422 54.03000 4.83250 0.00000 176.20854 0.01000 137 138 139 3
139 152.06664'111.76467 54.03000 4.83250 0.00000 176.20854 0.01000 138 139 140  3
140 147.24472-111.44512 54.03000 4.83250 0.00000 176.20854 0.01000 139 140 141  3
141 142.42279-111.12557 54.03000 4.83250 0.00000 176.20854 0.01000 140 141 142  3
142 137.60086-110.80602 54.03000 4.83250 0.00000 176.20854 0.01000 141 142 143  3
143 132.77894-110.48647 54.03000 4.83250 0.00000 176.20854 0.01000 142 143 144 3
144 127.95701-110.16692 54.03000 4.83250 0.00000 176.20854 0.01000 143 144 145 3
145 123.13509-109.84737 54.03000 4.83250 0.00000 176.20854 0.01000 144 145 146 3
146 118.31316'109.52782 54.03000 4.83250 0.00000 176.20854 0.01000 145 146 147 3
147 113.49123-109.20827 54.03000 4.83250 0.00000 176.20854 0.01000 146 147 148 3
148 108.66931-108.88872 54.03000 4.83250 0.00000 176.20854 0.01000 147 148 149  3
149 103.84738-108.56911 54.03000 4.83250 0.00000 116.20854 0.01000 148 149 150 3
150 99.02546-108.24962 54.03000 4.83250 0.00000 116.20854 0.01000 149 150 151 3
151 94.20353-101.93001 54.03000 4.83250 0.00000 116.20854 0.01000 150 151 152  3
152 89.38160-107.61052 54.03000 4.83250 0.00000 116.20854 0.01000 151 152 153  3
153 84.55968-107.29091 54.03000 4.83250 0.00000 176.20854 0.01000 152 153 154  3
154 79.73175-106.91142 54.03000 4.83250 0.00000 116.20854 0.01000 153 154 155  3
155 74.91583-106.65181 54.03000 4.83250 0-00000 116.20854 0.01000 154 155 156  3
156 10.09390-106.33232 54.03000 4.83250 0.00000 116.20854 0.01000 155 156 151  3
151 65.27198-106.01277 54.03000 4.83250 0.00000 116.20854 0.01000 156 157 158  3
158 60.45005-105.69321 54.03000 4.83250 0.00000 116.20854 0.01000 151 158 159  3
159 55.62812'105.37366 54.03000 4.83250 0.00000 116.20854 0.01000 158 159 160  3
160 50.80620-105.05411 54.03000 4.83250 0.00000 116.20854 0.01000 159 160 161  3
161 45.98421-104.13456 54.03000 4.83250 0.00000 176.20854 0.01000 160 161 162  3
162 41.16235'104.41501 54.03000 4.83250 0.00000 116.20854 0.01000 161 162 163  3
163 36.34042-104.09546 54.03000 4.83250 0.00000 116.20854 0.01000 162 163 164  3
164 31.51849-103.17591 54.03000 4.83250 0.00000 116.20854 0.01000 163 164 165  3
165 26.69651'103.45636 54.03000 4.83250 0.00000 116.20854 0.01000 164 165 166  3
166 21.81464-103.13681 54.03000 4.83250 0.00000 116.20854 0.01000 165 166 161  3
161 11.05212-102.81126 54.03000 4.83250 0.00000 116.20854 0.01000 166 161 168  3
168 12.23079-102.49771 54.03000 4.83250 0.00000 116.20854 0.01000 161 168 169  3
169 7.40886-102.17816 54.03000 4.83250 0.00000 116.20854 0.01000 168 169 110  3
110 2.58694-101.85861 54.03000 4.83250 0.00000 116.20854 0.01000 169 110 111  3
111 -2.23499-101.53906 54.03000 4.83250 0.00000 116.20854 0.01000 110 111 112  3
172 -1.05691-101.21951 54.03000 4.83250 0.00000 116.20854 0.01000 111 112 173  3
173 -11.81884-100.89996 54.03000 4.83250 0.00000 116.20854 0.01000 172 113 114  3
114 -16.10077-100.58041 54.03000 4.83250 0.00000 116.20854 0.01000 173 114 175  3
175 -21.52269-100.26086 54.03000 4.83250 0.00000 116.20854 0.01000 114 175 116  3
116 -26.34462 -99.94131 54.03000 4.83250 0.00000 116.20854 0.01000 115 116 177  3
177 -31.16654 -99.62116 54.03000 4.83250 0.00000 116.20854 0.01000 116 111 178  3
118 -35.98841 -99.30221 54.03000 4.83250 0.00000 116.20854 0.01000 111 178 179  3
179 -40.81040 -98.98266 54.03000 4.83250 0.00000 116.20854 0.01000 178 179 180  3
    8-4      

-------
180 -45.63232 -98.66311 54.03000 4.83250 0.00000 176.20854 0.01000 179 180 181 3
181 -49.65353 '96.70184 54.03000 4.83250 0.00000 131.79146 0.01000 180 181 182 4
182 -52.87401 -93.09884 54.03000 4.83250 0.00000 131.79146 0.01000 181 182 183 4
183 -56-09449 -89.49585 54.03000 4.83250 0.00000 131.79146 0.01000 182 183 184 4
184 -59.31498 -85.89285 54.03000 4.83250 0.00000 131.79146 0.01000 183 184 185 I,
185 '62.53546 -82.28986 51,.03000 1,.83250 0.00000 131.7911,6 0.01000 184 185 186 I,
186 '65.75591, '78.68686 51,.03000 4.83250 0.00000 131.7911,6 0.01000 185 186 187 I,
187 - 68.97643 - 75 . 08387 54.03000 4.83250 0.00000 131.79146 0.01000 186 187 188 I,
188 -72.19691 -71.48087 54.03000 1,.83250 0.00000 131.79146 0.01000 187 188 189 4
189 -75.41739 -67.87788 54.03000 1,.83250 0.00000 131.79146 0.01000 188 189 190 4
190 -78.63788 -64.27488 54.03000 4.83250 0.00000 131.79146 0.01000 189 190 191 4
191 -81.85836 -60.67189 54.03000 4.83250 0.00000 131.7911,6 0.01000 190 191 192 I,
192 -85.07884 -57.06889 54.03000 4.83250 0.00000 131.79146 0.01000 191 192 193 4
193 -88.29932 -53.46590 54.03000 4.83250 0.00000 131.7911,6 0.01.000 192 193 194 I,
191, -91.51981 -49.86290 54.03000 4.83250 0.00000 131.79146 0.01000 193 194 195 I,
195 -94.74029 -46.25991 54.03000 4.83250 0.00000 131.79146 0.01000 194 195 196 I,
196 -97.96077 -42.65692 54.03000 1,.83250 0.00000 131.7911,6 0.01000 195 196 197 I,
197-101.18126 -39.05392 54.03000 4.83250 0.00000 131.79146 0.01000 196 197 198 4
198-104.1,0174 -35.45093 54.03000 4.83250 0.00000 131.7911,6 0.01000 197 198 199 4
199-107.62222 '31.84793 51,.03000 1,.83250 0.00000 131.7911,6 0.01000 198 199 200 4
200-110.84271 -28.24494 54.03000 4.83250 0.00000 131.7911,6 0.01000 199 200 201 4
201-111,.06319 '24.64194 54.03000 4.83250 0.00000 131.79146 0.01000 200 201 202 4
202-117.28367 -21.03895 54.03000 1,.83250 0.00000 131.79146 0.01000 201 202 203 4
203-120.50416 -17.43595 54.03000 4.83250 0.00000 131.79146 0.01000 202 203 204 4
204- 123.72464 -13.83296 54.03000 4.83250 0.00000 131.79146 0.01000 203 204 205 4
205-126.94512 -10.22996 54.03000 4.83250 0.00000 131.79146 0.01000 204 205 206 4
206-130.16561 -6.62697 54.03000 4.83250 0.00000 131.79146 0.01000 205 206 207 4
207-133.38609 -3.02397 54.03000 4.83250 0.00000 131.79146 0.01000 206 207 208 4
208,136.60657 0.57902 54.03000 1,.83250 0.00000 131.79146 0.01000 207 208 209 4
209-139.82706 4.18202 54.03000 4.83250 0.00000 131.79146 0.01000 208 209 210 4
210-143.04754 7.78501 54.03000 4.83250 0.00000 131.79146 0.01000 209 210 211 4
211-146.26802 11.38801 54.03000 4.83250 0.00000 131.79146 0.01000 210 211 212 4
212-11,9.48850 14.99100 54.03000 4.83250 0.00000 131.79146 0.01000 211 212 213 4
213-152.70899 18.59400 54.03000 4.83250 0.00000 131.79146 0.01000 212 213 214 4
214-155.92947 22.19699 54.03000 4.83250 0.00000 131.79146 0.01000 213 214 215 4
215- 159. 14995 25.79998 54.03000 4.83250 0.00000 131.79146 0.01000 214 215 216 4
216-162.37044 29.40298 54.03000 4.83250 0.00000 131.79146 0.01000 215 216 217 4
217-165.59092 33.00597 54.03000 1,.83250 0.00000 131.7911,6 0.01000 216 217 218 4
218,168.81140 36.60897 54.03000 4.83250 0.00000 131.79146 0.01000 217 218 219 4
219-172.03189 40.21196 54.03000 4.83250 0.00000 131.79146 0.01000 218 219 220 4
220-175.25237 43.81496 54.03000 4.83250 0.00000 131.79146 0.01000 219 220 221 4
221-178.47285 47.41795 54.03000 4.83250 0.00000 131.79146 0.01000 220 221 222 4
222-181.69334 51.02095 54.03000 4.83250 0.00000 131.79146 0.01000 221 222 223 4
223-184.91382 54.62394 54.03000 4.83250 0.00000 131.79146 0.01000 222 223 224 4
224-188.131,30 58.22694 54.03000 4.83250 0.00000 131.79146 0.01000 223 224 225 4
225-191.35479 61.82993 54.03000 4.83250 0.00000 131.79146 0.01000 224 225 226 4
226-194.57527 65.43293 54.03000 4.83250 0.00000 131.79146 0.01000 225 226 227 4
227-197.79575 69.03592 54.03000 4.83250 0.00000 131.79146 0.01000 226 227 228 4
228,201.01623 72.63892 54.03000 4.83250 0.00000 131.79146 0.01000 227 228 229 4
229-204.23672 76.24191 54.03000 4.83250 0.00000 131.79146 0.01000 228 229 230 4
230-207.45720 79.84491 54.03000 4.83250 0.00000 131.79146 0.01000 229 230 231 I,
231,210.67768 83.44790 54.03000 4.83250 0.00000 131.79146 0.01000 230 231 232 4
232,213.89817 87.05090 54.03000 4.83250 0.00000 131.79146 0.01000 231 232 233 4
233-217.11865 90.65389 54.03000 4.83250 0.00000 131.79146 0.01000 232 233 234 4
234,220.33913 94.25688 54.03000 4.83250 0.00000 131.79146 0.01000 233 234 235 4
235,223.55962 97.85988 54.03000 4.83250 0.00000 131.79146 0.01000 234 235 236 4
236-226.78010 101.46287 54.03000 4.83250 0.00000 131.79146 0.01000 235 236 237 4
237-230.00058 105.06587 54.03000 4.83250 0.00000 131.79146 0.01000 236 237 238 4
238-233.22107 108.66886 54.03000 4.83250 0.00000 131.79146 0.01000 237 238 239 4
239-236.44155 112.27186 54.03000 4.83250 0.00000 131.79146 0.01000 238 239 240 4
    B-5     

-------
2'0-239.66203 115.87485 54.03000
4.83250
0.00000 131.79146
0.01000
239 240
4
.**** DATA CARD NO. 1 EX 0 1 1 0 9.32922E+03 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
....* DATA CARD NO. 2 EX 0 4 60 0 9.32922E+03 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.DOOOOE+OO O.OOOOOE+OO
..*.* DATA CARD NO. 3 FR 0 1 0 0 6.15500E+00 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
.*.** DATA CARD NO. 4 LD 4 2 60 0 3.00000E+02 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
.**** DATA CARD NO. 5 LD 4 3 1 0 3.00000E+02 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO'
.**** DATA CARD NO. 6 GN 2 0 0 0 3.27492E+02 4.71250E-01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
..*.* DATA CARD NO. 7 NE 1 1 360 1 1.00000E+04 O.OOOOOE+OO 8. 99942E+01  O.OOOOOE+OO 1. OOOOOE +00 O.OOOOOE+OO
- - . - - - FREQUENCY - - - - - .
FREQUENCY- 6.1550E+OO MHZ
WAVELENGTH- 4.8708E+01 METERS
- . - STRUCTURE IMPEDANCE LOADING - - -
LOCATION
ITAG FROM THRU
RESISTANCE
OHMS
INDUCTANCE CAPACITANCE
HENRYS FARADS
IMPEDANCE (OHMS)
REAL IMAGINARY
CONDUCTIVITY
MHOS/METER
TYPE
2
60
60
0.3000E+03
FIXED IMPEDANCE
3
0.3000E+03
FIXED IMPEDANCE
- . - ANTENNA ENVIRONMENT. - -
FIN ITE GROUND. SOMMER FELD SOLUTI ON
RELATIVE DIELECTRIC CONST.-327.492
CONDUCTIVITY- 4.713E-01 MHOS/METER
COMPLEX DIELECTRIC CONSTANT- 3.27492E+02-1.37627E+03
APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 48.708 METERS APART
. . - MATRIX TIMING - - -
FILL- 1823.070 SEC., FACTOR- 329.900 SEC.
- - - ANTENNA INPUT PARAMETERS - - .
TAG
SEG.
VOlTAGE (VOLTS)
CURRENT (AMPS)
IMPEDANCE (OHMS)
ADMITTANCE (MHOS)
POWER
8-6

-------
NO.
1
I,
NO. REAL lMAG. REAL lMAG. REAL lMAG. REAL IMAG. (\lATTS>
1 9.32922E+03 O.OOOOOE+OO 2.68Oi,6E+01-1.57160E+00 3.I,6853E+02 2.03365E+01 2.87319E-03-1.68460E-0l, 1.25033E+05
21,0 9.32922E+03 O.OOOOOE+OO 2.680l,6E+01-1.57160E+00 3.I,6853E+02 2.03365E+01 2.87319E-03-1.68l,60E-0l, 1.25033E+05
SEG. TAG
NO. NO.
1 1
2 1
3 1
I, 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
1,5 1
46 1
47 1
. . . CURRENTS AND LOCATION, - .
LENGTHS NORMALIZED BY \lAVELENGTH (OR 2.*PI/CABS(K»
COORD. OF SEG. CENTER
X Y Z
.4.9039 2.4127 1.1093
'4.8049 2.4061 1.1093
-4.7059 2.3995 1.1093
-4.6069 2.3930 1.1093
-4.5079 2.3864 1.1093
.4.1,089 2.3799 1.1093
'4.3099 2.3733 1.1093
-4.2109 2.3667 1.1093
'4.1119 2.3602 1.1093
-1,.0129 2.3536 1.1093
'3.9139 2.3471 1.1093
'3.8150 2.3405 1.1093
-3.7160 2.3339 1.1093
-3.6170 2.3274 1.1093
.3.5180 2.3208 1.1093
'3.4190 2.3142 1.1093
-3.3200 2.3077 1.1093
'3.2210 2.3011 1.1093
'3.1220 2.2946 1.1093
-3.0230 2.2880 1.1093
-2.9240 2.2814 1.1093
'2.8250 2.2749 1.1093
'2.7260 2.2683 1.1093
-2.6270 2.2618 1.1093
-2.5280 2.2552 1.1093
-2.4290 2.21,86 1.1093
-2.3300 2.2421 1.1093
-2.2310 2.2355 1.1093
-2.1320 2.2290 1.1093
-2.0330 2.2224 1.1093
-1.931,0 2.2158 1.1093
'1.8350 2.2093 1.1093
-1.7360 2.2027 1.1093
'1.6370 2.1962 1.1093
-1.5380 2.1896 1.1093
-1.4391 2.1830 1.1093
'1.3401 2.1765 1.1093
'1.2411 2.1699 1.1093
'1.1421 2.1634 1.1093
-1.0431 2.1568 1.1093
-0.9441 2.1502 1.1093
-0.8451 2.1437 1.1093
-0.7461 2.1371 1.1093
'0.6471 2.1306 1.1093
-0.5481 2.1240 1.1093
-0.4491 2.1174 1.1093
-0.3501 2.1109 1.1093
SEG.
LENGTH
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
0.09921
. - . CURRENT (AMPS) . . -
REAL lMAG. MAG. PHASE
2.6805E+01 -1.5716E+00 .2.6851E+01 -3.355
1.8255E+01 '1.4165E+01 2.3106E+01 -37.809
4.0693E+00 -2.2228E+01 2.2597E+01 '79.626
'1.0743E+01 -2.1568E+01 2.4095E+01 -116.478
-2.0951E+01 -1.2940E+01 2.4625E+01 -148.300
-2.3043E+01 2.4110E-01 2.3044E+01 179.1,01
'1.6497E+01 1.3021E+01 2.1016E+01 141.716
-3.9464E+00 2.0697E+01 2.1070E+01 100.795
9.8220E+00 2.0522E+01 2. 2752E+01 64.424
1. 9658E+01 1.2689E+01 2.3397E+01 32.842
2.1951E+01 2. 1803E-01 2.1952E+01 0.569
1.5952E+01 -1.2185E+01 2.0074E+01 '37.375
4.0152E+00 -1.9896£+01 2.0297E+01 -78.590
'9.3117E+00 -2.0083E+01 2.2136E+01 '114.876
-1.9006E+01 -1.2747E+01 2.2885E+01 -146.150
-2.1452E+01 '6.9779E-01 2.1463E+01 -118.137
-1.5182E+01 1.1523E+01 1.9540E+01 143.866
-4.1792E+00 1.9341E+01 1.9187E+01 102.193
8.9594E+00 1.9861E+01 2. 1788E+01 65.720
1.8688E+01 1.2937E+01 2.2729E+01 34.693
2. 1365E+01 1.2052E+00 2.1399£+01 3.229
1.6011£+01 -1.0912E+01 1.9381E+01 -34.267
4.6801£+00 -1.8875E+01 1.9447E+01 -76.072
'8.3672E+00 '1.9720E+01 2.1421E+01 -112.992
-1.8230E+01 -1.3162E+01 2.2485E+01 -144.171
-2.1221£+01 -1.6889E+00 2.1294E+01 -175.1,51
-1.6268E+01 1.0385E+01 1.9300E+01 11,7.449
'5.2528E+00 1.8538E+01 1.9268E+01 105.820
7.6601E+00 1.9736E+01 2.1171E+01 68.788
1.7618E+01 1.3559£+01 2.2232E+01 37.582
2.09OOE+01 2.3449E+00 2. 1 032E+0 1 6.1,01
1.6307E+01 '9.6942E+00 1.8971E+01 -30.731
5.5975E+00 -1.8058E+01 1.8905E+01 '72.777
'7.1799£+00 '1.9639£+01 2.0911E+01 '110.082
-1.7220E+01 -1.3885E+01 2.2120E+01 '141.120
-2.0765E+01 -2.9836£+00 2.0919£+01 -171.824
-1.6513E+01 8.9595E+00 1.8187E+01 151.518
'6.0946£+00 1.7471E+01 1.8504E+01 109.231
6.5513E+00 1.9383E+01 2.046OE+01 71.325
1.6664E+01 1.I,013E+01 2. 1773E+01 40.061
2.0455E+01 3.4074E+00 2.0737E+01 9.458
1.6525E+01 '8.4392E+00 1.8555E+01 '27.053
6.3832E+00 -1.7086E+01 1.8240E+01 -69.515
-6.1319£+00 '1.9314E+01 2.0264E+01 -107.614
-1.6304E+01 '1.4320E+01 2.1700E+01 '138.705
'2.0314E+01 '4.0133E+00 2.0707E+01 -168.824
. 1. 6675E+01 7.7205E+00 1.8376E+01 155.156
8-7

-------
       ---- -- 
---   - - --     
48 1 -0.2511  2.1043 1.1093 0.09921 -6.7831E+00 1.6479E+01 1.7821E+01 112.373
49 1 -0.1521  2.0978 1.1093 0.09921 5.6173E+00 1.8999E+01 1.9812E+01 73 . 529
50 1 -0.0531  2.0912 1.1093 0.09921 1.5848E+01 1.4369E+01 2. 1392E+01 42.197
51 1 0.0459  2.0846 1.1093 0.09921 2.0061E+01 4.3631E+00 2.0530E+01 12.270
52 1 0.1449  2.0781 1. 1093 0.09921 1.6682E+01 -7.2386E+00 1.8185E+01 -23.457
53 1 0.2439  2.0715 1. 1093 0.09921 7.0011E+00 -1.6077E+01 1. 7536E+01 -66.469
54 1 0.3429  2.0650 1.1093 0.09921 -5.3227E+00 -1.8852E+01 1.9589E+01 -105.767
55 1 0.4419  2.0584 1.1093 0.09921 -1.5642E+01 -1.4551E+01 2.1364E+01 -137.070
56 1 0.5409  2.0518 1.1093 0.09921 -2.0074E+01 -4.8210E+00 2.0645E+01 -166.496
57 1 0.6399  2.0453 1.1093 0.09921 - 1 .6957E+01 6. 6647E+00 1.8220E+01 158.544
58 1 0.7389  2.0387 1.1093 0.09921 -7.4763E+00 1 .5595E+01 1 . rn4E+01 115.613
59 1 0.8379  2.0321 1. 1093 0.09921 4. 7897E+00 1.8642E+01 1.9247E+01 75.591
60 1 0.9368  2.0256 1.1093 0.09921 1.5216E+01 1.4707E+01 2.1 162E+01 44.026
61 2 1.0194  1 .9853 1.1093 0.09921 1. 9913E+01 5.3197E+00 2.0611E+01 14.957
62 2 1.0855  1.9114 1.1093 0.09921 1.7366E+01 -5.9851E+00 1. 8369E+01  -19.016
63 2 1.1516  1.8374 1.1093 0.09921 8.5419E+00 -1.5103E+01 1.7351E+01 -60.508
64 2 1.2178  1 .7634 1.1093 0.09921 -3.3312E+00 -1.8741E+01 1.9035E+01 -100.079
65 2 1 .2839  1.6894 1.1093 0.09921 -1.3921E+01 -1.5604E+01 2.0911E+01 -131.737
66 2 1.3500  1.6155 L1093 0.09921 -1.9388E+01 -6.8692E+00 2.0569E+01 -160.491
67 2 1.4161  1.5415 1.1093 0.09921 -1.7793E+01 4. 2523E+00 1.8294E+01 166.559
68 2 1.4822  1.4675 1.1093 0.09921 -9. 7966E+00  1.3699£+01 1.6841E+01 125.570
69 2 1.5483  1. 3936 1.1093 0.09921 1.6016E+00 1.8049E+01 1.8120E+01 84.929
70 2 1.6145  1.3196 1.1093 0.09921 1.2187E+01 1.5mE+01 1. 9932E+01 52.307
71 2 1.6806  1. 2456 1.1093 0.09921 1.8092E+01 7.mIE+00 1 .9693E+01 23.261
72 2 1 .7467  1. 1716 1.1093 0.09921 1.7218E+01 -2.9451E+00 1. 7468E+01 -9.706
73 2 1.8128  1.0977 1. 1093 0.09921 9.9914E+00 -1.2434E+01 1.5951E+01 -51.217
74 2 1.8789  1.0237 1. 1093 0.09921 -8.2086E-01 -1.7230E+01 1 . 7249E+01  -92.728
75 2 1.9451  0.9497 1.1093 0.09921 -1.1161E+01 -1.5638E+01 1.9213E+01 -125.516
76 2 2.0112  0.8758 1.1093 0.09921 -1.7200E+01 -8.3411E+00 1.9116E+01 -154.129
77 2 2.0773  0.8018 1.1093 0.09921 -1.6754E+01 1.8833E+00 1.6860E+01 173.587
78 2 2.1434  0.7278 1.1093 0.09921 -1.0oa1E+Ot 1. 1208E+01 1.5074E+01 131.969
79 2 2.2095  0.6538 1.1093 0.09921 2.4588E-01 1.6187E+01 1.6188E+01 89.130
80 2 2.2756  0.57'99 1. 1 093 0.09921 1.0319£+01 1.5026E+01 1.8228E+01 55.523
81 2 2.3418  0.5059 1.1093 0.09921 1.6370E+01 8.2365E+00 1.8325E+01 26.709
82 2 2.4079  0.4319 1.1093 0.09921 1.6178E+01 -1.5863E+00 1.6256E+01 -5.600
83 2 2.4740  0.3580 1. 1093 0.09921 9.8833E+00 -1.0745E+01 1.4599£+01 -47.391
84 2 2.5401  0.2840 1.1093 0.09921 -8.8987E-02 -1.5829£+01 1.5829£+01 -90.322
85 2 2.6062  0.2100 1.1093 0.09921 -9.9570E+00 -1.4985E+01 1.7'991E+01 -123.603
86 2 2.6723  0.1361 1.1093 0.09921 -1.6014E+01 -8.5915E+00 1.8173E+01 -151.787
87 2 2.7385  0.0621 1.1093 0.09921 -1.6021E+01 9.0305E-01 1.6046E+01 176.774
88 2 2.8046 -0.0119 1.1093 0-09921 -1.0033E+01 9.9155E+00 1.4106E+01 135.336
89 2 2.8707 -0.0859 1.1093 0.09921 -3.6206£-01 1.5078E+01 1.5083E+01 91.376
90 2 2.9368 -0.1598 1.1093 0.09921 9.3082E+00 1.4498E+01 1.7229£+01 57.298
91 2 3.0029 -0.2338 1.1093 0.09921 1.5323E+01 8.4542E+00 1.7500E+01 28.887
92 2 3.0691 -0.3078 1.1093 0.09921 1.5430E+01 -7.2488E-01 1.5447E+01 -2.690
93 2 3.1352 -0.3817 1. 1093 0.09921 9.6242E+00 -9.5497E+OO 1.3558E+01 -44.m
94 2 3.2013 -0.4557 1.1093 0.09921 1.3369£-01 -1.4689£+01 1. 469OE+01 -89.479
95 2 3.2674 -0.5297 1.1093 0.09921 -9.4299£+00 .1.4220E+01 1.7063E+01 -123.550
96 2 3.3335 -0.6037 1.1093 0.09921 -1.5442E+01 -8.3426E+00 1.7551E+01 -151.619
97 2 3.3996 -0.6776 1.1093 0.09921 -I. 5632E +01 7.0860E-01 1. 5648E+01  177.405
98 2 3.4658 -0.7516 1.1093 0.09921 -9.9367E+00 9.5150E+00 1.3758E+01 136.242
99 2 3.5319 -0.8256 1.1093 0.09921 -5.1411E-01 1.4766E+01 1.4775E+01 91- 994
100 2 3.5980 -0.8995 1.1093 0.09921 9.0782E+00 1.4501E+01 1.7108E+01 57.951
101 2 3.6641 -0.9735 1.1093 0.09921 1.5231E+01 8.8410E+00 1.761 1E+01 30.133
102 2 3.7302 -1.0475 1.1093 0.09921 1.5646E+01 -6.6775E-02 1.5646E+01 -0.245
103 2 3.7963 -1.1214 1.1093 0.09921 1.0199£+01 -8.8691E+OO 1.3516E+01 -41.009
104 2 3.8625  .1.1954 1. 1093 0.09921 9.7950E-01 -1.4271E+01 1.4305E+01 -86.074
105 2 3.9286  -1.2694 1.1093 0.09921 -S.5074E+00 -1.4277E+01 1.6620E+01 -120.789
106 2 3.9947  -1.3434 1.1093 0.09921 -1.4669E+01 -S.9335E+00 1.7115E+01 -148.659
107 2 4.0608 -1.4173 1.1093 0.09921 -1.51aaE+01 -3.0067E-01 1.5191E+01 -178.866
       8-8   

-------
       ----- -- -~-- -- ---- --~
108 2 4.1269 -1.4913 1. 1 093 0.09921 -9.8941E+00 8.33271:+00 1.2936£+01 139.896 
109 2 4.1931 -1.5653 1.1093 0.09921 -8.2956e-01 1.3696E+01 1.3721E+01 93.466 
110 2 4.2592 -1.6392 1.1093 0.09921 8.5302E+00 1.3771E+01 1.6199E+01 58.225 
111 2 4.3253 -1.7132 1.1093 0.09921 1.4596E+01 8.5538E+00 1.6918£+01 30.372 
112 2 4.3914 -1 .787'2 1. 1 093 0.09921 1.5028E+01 4.8305E-02 1.5028£+01 0.184 
113 2 4.4575 -1.8612 1.1093 0.09921 9.63071:+00 -8.489OE+00 1.2838E+01 -41.395 
114 2 4.5236 -1.9351 1.1093 0.09921 4.3628E-01 '1.3783E+01 1.37'90E+01 -88.187 
115 2 4.5898 -2.0091 1.1093 0.09921 -9.0523E+00 -1.3776e+01 1.6484E+01 -123.308 
116 2 4.6559 -2.0831 1.1093 0.09921 -1.5174E+01 -8.4111E+00 1.7350E+01 -151.001 
117 2 4.7'220 -2.1570 1.1093 0.09921 -1.5484E+01 3.4442E-01 1.5488E+01 178.7'26 
118 2 4.7881 -2.2310 1.1093 0.09921 -9.6598E+00 9.2193E+00 1.3353E+01 136.337 
119 2 4.8542 -2.3050 1.1093 0.09921 4.3942E-01 1.4821E+01 1.48271:+01 88.302 
120 2 4.9203 -2.3790 1.1093 0.09921 1.0470E+01 1.5588E+01 1.8778E+01 56.113 
121 3 4.9039 -2.4127 1. 1 093 0.09921 1.0470E+01 1. 5588E+01 1.8778£+01 56.113 
122 3 4.8049 -2.4061 1.1093 0.09921 4.3942E-01 1.4821E+01 1.48271:+01 88.302 
123 3 4.7059 -2.3995 1.1093 0.09921 -9.6598E+00 9.2193E+00 1.3353E+01 136.337 
124 3 4.6069 -2.3930 1.1093 0.09921 -1.5484E+01 3.4442E-01 1.5488E+01 178.7'26 
125 3 4.5079 -2.3864 1.1093 0.09921 -1.5174E+01 -8.4111E+00 1. 7350E+01 - 151.001 
126 3 4.4089 -2.3799 1. 1 093 0.09921 -9.0523E+00 -1.3776e+01 1.6484E+01 -123.308 
127 3 4.3099 -2.3733 1.1093 0.09921 4.3628E-01 -1.3783E+01 1.37'90E+01 -88.187 
128 3 4.2109 -2.3667 1.1093 0.09921 9.63071:+00 -8.4890E+00 1.2838E+01 -41.395 
129 3 4.1119 -2.3602 1.1093 0.09921 1.5028E+01 4.8305E-02 1.5028E+01 0.184 
130 3 4.0129 -2.3536 1.1093 0.09921 1.4596E+01 8. 5538E+00 1.6918£+01 30.372 
131 3 3.9139 -2.3471 1.1093 0.09921 8.5302E+00 1.3771E+01 1.6199E+01 58.225 
132 3 3.8150 -2.3405 1.1093 0.09921 -8.2956E-01 1.3696e+01 1.3721E+01 93.466 
133 3 3.7160 -2.3339 1.1093 0.09921 -9.8941E+00 8.33271:+00 1.2936£+01 139.896 
134 3 3.6170 -2.3274 1.1093 0.09921 -1.5188E+01 -3.00671:-01 1.5191E+01 -178.866 
135 3 3.5180 -2.3208 1.1093 0.09921 -1.4669E+01 -8.9335E+00 1.7175E+01 -148.659 
136 3 3.4190 -2.3142 1.1093 0.09921 -8.5074E+00 .1.4277E+01 1.6620E+01 .120.789 
137 3 3.3200 -2.3077 1.1093 0.09921 9.7950E-01 -1.4271E+01 1.4305E+01 -86.074 
138 3 3.2210 -2.3011 1.1093 0.09921 1.0199E+01 -8.8691E+00 1.3516e+01 .41.009 
139 3 3.1220 -2.2946 1. 1093 0.09921 1.5646E+01 .6.6775E-02 1.5646E+01 -0.245 
140 3 3.0230 -2.2880 1.1093 0.09921 1.5231E+01 8.8410E+00 1.7611E+01 30.133 
141 3 2.9240 -2.2814 1.1093 0.09921 9.0782E+00 1.4501E+01 1. 71 08E+0 1  57.951 
142 3 2.8250 -2.2749 1.1093 0.09921 -5.1411E-01 1. 4766e+01  1.4775E+01 91. 994 
143 3 2.7'260 -2.2683 1.1093 0.09921 -9.93671:+00 9.5150E+00 1.3758E+01 136.242 
144 3 2.6270 -2.2618 1.1093 0.09921 -1.5632E+01 7.086OE.01 1.5648E+01 177.405 
145 3 2.5280 -2.2552 1. 1093 0.09921 -1.5442E+01 -8.3426E+00 1.7551E+01 -151.619 
146 3 2.4290 -2.2486 1. 1093 0.09921 -9.4299E+00 -1.4220E+01 1.7063E+01 -123.550 
147 3 2.3300 -2.2421 1.1093 0.09921 1.3369E.01 -1.4689E+01 1.469OE+01 -89.479 
148 3 2.2310 -2.2355 1. 1093 0.09921 9.6242E+00 -9.54971:+00 1.3558E+01 -44.777 
149 3 2.1320 -2.2290 1.1093 0.09921 1.5430E+01 -7.2488E-01 1.54471:+01 -2.690 
150 3 2.0330 -2.2224 1.1093 0.09921 1.5323E+01 8.4542£+00 1 .7500E+01 28.887 
151 3 1 .9340 -2.2158 1.1093 0.09921 9.3082E+00 1.4498£+01 1.7229E+01 57.298 
152 3 1.8350 -2.2093 1.1093 0.09921 -3.6206E-01 1.5078E+01 1.5083E+01 91.376 
153 3 1 . 7360 -2.2027 1.1093 0.09921 -1. 0033E +0 1 9.9155E+00 1.4106E+01 135.336 
154 3 1.6370 -2.1962 1.1093 0.09921 -1.6021E+01 9.0305E-01 1.6046E+01 176.774 
155 3 1.5380 -2.1896 1.1093 0.09921 -1.6014E+01 -8.5915E+00 1.8173E+01 -151.787 
156 3 1.4391 -2.1830 1.1093 0.09921 -9.9570E+00 -1.4985E+01 1.7991E+01 -123.603 
157 3 1.3401 -2.1765 1.1093 0.09921 -8.89871:-02 -1.5829E+01 1.5829E+01 -90.322 
158 3 1.2411 -2.1699 1.1093 0.09921 9.8833E+00 -1.0745E+01 1.4599E+01 -47.391 
159 3 1.1421 -2.1634 1.1093 0.09921 1.6178E+01 -1.5863E+00 1.6256E+01 -5.600 
160 3 1.0431 -2.1568 1.1093 0.09921 1.6370£+01 8.2365E+00 1.8325E+01 26.709 
161 3 0.9441 -2.1502 1. 1093 0.09921 1.0319£+01 1.5026E+01 1.8228E+01 55.523 
162 3 0.8451 -2.1437 1.1093 0.09921 2.4588E-01 1.6181£+01 1.6188E+01 89.130 
163 3 0.7461 -2.1371 1.1093 0.09921 -1.0081£+01 1.1208E+01 1.5074£+01 131.969 
164 3 0.6471 -2.1306 1.1093 0.09921 -1.6754£+01 1.8833E+00 1.686OE+01 173.587 
165 3 0.5481 -2.1240 1. 1093 0.09921 -1.7200E+01 -8.3411E+00 1.9116E+01 -154.129 
166 3 0.4491 -2.1174 1.1093 0.09921 -1.1161£+01 -1.5638£+01 1.9213£+01 -125.516 
167 3 0.3501 .2.1109 1.1093 0.09921 -8.2086E-01 -1.7230£+01 1.7249£+01 -92.728 
      8-9    

-------
          ._~-
1 -~-~--         
I 168 3 0.2511 -2.1043 1.1093 0.09921 9.9914E+00 -1.2434E+01 1.5951E+01 '51.217
 169 3 0.1521 -2.0978 1. 1093 0.09921 1.7218E+01 -2.9451E+00 1.7468£+01 -9.706
 170 3 0.0531 -2.0912 1. 1093 0.09921 1.8092E+01 7. m1E+OO 1.9693E+01 23.261
 171 3 -0.0459 '2.0846 1.1093 0.09921 1.2187E+01 1 .5 772E+01 1.9932E+01 52.307
 172 3 -0.1449 -2.0781 1.1093 0.09921 1.6016E+00 1.8049E+01 1.8120E+01 84 . 929
 173 3 '0.2439 -2.0715 1.1093 0.09921 '9.7966E+00 1.3699E+01 1.6841E+01 125.570
 174 3 -0.3429 '2.0650 1.1093 0.09921 -1 .7793E+01 4.2523E+00 1.8294E+01 166.559
 175 3 -0.4419 -2.0584 1. 1093 0.09921 -1.9388E+01 -6.8692E+00 2.0569E+01 -160.491
 176 3 -0.5409 -2.0518 1.1093 0.09921 -1.3921E+01 -1.5604E+01 2.0911E+01 -131.137
 177 3 -0.6399 -2.0453 1.1093 0.09921 -3.3312E+00 -1.8741E+01 1.9035E+01 -100.079
 178 3 -0.7389 -2.0387 1.1093 0.09921 8.5419E+00 -1.5103E+01 1.7351E+01 -60.508
 179 3 -0.8379 -2.0321 1.1093 0.09921 1.7366E+01 -5.9851E+00 1.8369E+01 -19.016
 180 3 -0.9368 -2.0256 1.1093 0.09921 1.9913E+01 5.3197E+00 2.0611E+01 14.957
 181 4 -1.0194 '1. 9853 1. 1093 0.09921 1.5216E+01 1.4707E+01 2.1162E+01 44.026
 182 4 -1.0855 '1.9114 1. 1093 0.09921 4. 7897E+00 1.8642E+01 1. 9247E+01 75.591
 183 4 -1.1516 -1.8374 1.1093 0.09921 '7.4763E+00 1.5595E+01 1 .7294E+01 115.613
 184 4 -1.2178 -1. 7634 1.1093 0.09921 -1.6957E+01 6.6647E+00 1.8220E+01 158.544
 185 4 -1. 2839 -1. 6894 1.1093 0.09921 -2.0074E+01 -4.8210E+00 2.0645E+01 -166.496
 186 4 -1.3500 -1.6155 1.1093 0.09921 -1.5642E+01 -1.4551E+01 2.1364E+01 -137.070
 187 4 -1.4161 -1.5415 1.1093 0.09921 -5.3227E+00 -1.8852E+01 1.9589E+01 -105.767
 188 4 -1.4822 -1.4675 1.1093 0.09921 7.0011E+00 -1.6077E+01 1.7536E+01 -66.469
 189 4 -1. 5483 '1.3936 1. 1093 0.09921 1.6682E+01 -7.2386E+00 1.8185E+01 -23.457
 190 4 -1.6145 -1.3196 1.1093 0.09921 2.0061E+01 4.3631E+00 2. 0530E+0 1  12.270
 191 4 -1. 6806 -1.2456 1.1093 0.09921 1.5848E+01 1. 4369E+01  2. 1392E+01  42.197
 192 4 -1. 7467 -1.1716 1.1093 0.09921 5.6173E+00 1.8999E+01 1.9812E+01 73.529
 193 4 -1.8128 -1.0977 1.1093 0.09921 -6.7831E+00 1.6479E+01 1.7821E+01 112.313
 194 4 -1.8789 -1.0237 1.1093 0.09921 -1.6675E+01 7.1205E+00 1.8376E+01 155.156
 195 4 -1.9451 -0.9497 1.1093 0.09921 -2.0314E+01 -4.0133E+00 2.0707E+01 -168.824
 196 4 -2.0112 -0.8758 1.1093 0.09921 '1.6304E+01 -1.4320E+01 2.1700E+01 -138.705
 197 4 -2.0713 -0.8018 1.1093 0.09921 -6.1319E+00 -1.9314E+01 2.0264E+01 -107.614
 198 4 -2.1434 -0.1278 1.1093 0.09921 6.3832E+00 '1.7086E+01 1.8240E+01 -69.515
 199 4 -2.2095 -0.6538 1.1093 0.09921 1.6525E+01 '8.4392E+00 1.8555E+01 -27.053
 200 4 -2.2756 -0.5799 1.1093 0.09921 2.0455E+01 3.4074E+00 2.0737E+01 9.458
 201 4 -2.3418 '0.5059 1.1093 0.09921 1.6664E+01 1.4013E+01 2. 1713E+01 40.061
 202 4 -2.4079 -0.4319 1. 1093 0.09921 6.5513E+00 1.9383E+01 2.0460E+01 71.325
 203 4 '2.4740 -0.3580 1.1093 0.09921 -6.0946E+00 1.7471E+01 1.8504E+01 109.231
 204 4 -2.5401 -0.2840 1.1093 0.09921 -1.6513E+01 8. 9595E+OO 1.8787E+01 151.518
 205 4 -2.6062 -0.2100 1.1093 0.09921 -2.0765E+01 '2.9836E+00 2.0979E+01 -171.824
 206 4 -2.6123 '0.1361 1.1093 0.09921 '1.1220E+01 -1.3885E+01 2.2120E+01 -141.120
 207 4 '2.7385 -0.0621 1.1093 0.09921 -7.1799E+00 -1.9639E+01 2.0911E+01 '110.082
 208 4 -2.8046 0.0119 1.1093 0.09921 5.5975E+00 -1.8058E+01 1.8905E+01 -12.m
 209 4 -2.8707 0.0859 1. 1093 0.09921 1.6307E+01 -9.6942E+00 1.8971E+01 -30.731
 210 4 -2.9368 0.1598 1. 1 093 0.09921 2.0900E+01 2.3449E+00 2.1032E+01 6.401
 211 4 '3.0029 0.2338 1.1093 0.09921 1. 7618E+01 1.3559E+01 2. 2232E+01 37.582
 212 4 '3.0691 0.3078 1.1093 0.09921 7.6601E+00 1.9136E+01 2.1171E+01 68.788
 213 4 -3.1352 0.3817 1.1093 0.09921 ,5. 2528E+00  1.8538E+01 1.9268E+01 105.820
 214 4 -3.2013 0.4557 1.1093 0.09921 -1.6268E+01 1.0385E+01 1.9300E+01 147.449
 215 4 -3.2674 0.5297 1.1093 0.09921 -2.1227E+01 -1.6889E+OO 2.1294E+01 -175.451
 216 4 -3.3335 0.6037 1.1093 0.09921 -1.8230E+01 -1.3162E+01 2.2485E+01 '144.171
 217 4 -3.3996 0.6776 1.1093 0.09921 '8.3612E+00 -1.9120E+01 2.1421E+01 -112.992
 218 4 -3.4658 0.7516 1.1093 0.09921 4.6807E+00 -1.8875E+01 1. 9447E+01  -76.072
 219 4 -3.5319 0.8256 1.1093 0.09921 1.6017E+01 -1.0912E+01 1.9381E+01 -34.267
 220 4 -3.5980 0.8995 1.1093 0.09921 2.1365E+01 1.2052E+00 2. 1399E+01  3.229
 221 4 -3.6641 0.9735 1.1093 0.09921 1. 8688E+01  1.2937E+01 2.2729E+01 34.693
 222 4 -3.7302 1.0475 1.1093 0.09921 8.9594E+OO 1. 9861E+01 2. 1788E+01 65.120
 223 4 -3.7963 1.1214 1.1093 0.09921 -4.1792E+00 1.9341E+01 1.9787E+01 102.193
 224 4 -3.8625 1.1954 1. 1 093 0.09921 -1.5782E+01 1. 1523E+01 1.9540E+01 143.866
 225 4 -3.9286 1. 2694 1.1093 0.09921 -2.1452E+01 -6.9779E-01 2.1463E+01 -178.137
 226 4 -3.9947 1.3434 1. 1093 0.09921 -1.9006E+01 -1.2747E+01 2.2885E+01 -146.150
 227 4 -4.0608 1.4173 1. 1093 0.09921 -9.3117E+00 -2.0083E+01 2.2136E+01 -114.876
       B-1O   

-------
        - -
228 4 -4_1269 1.4913 1.1093 0.09921 4.0152£+00 -1.9896£+01 2.0291£+01 -78.590
229 4 -4.1931 1.5653 1.1093 0.09921 1.5952£+01 -1.2185£+01 2.0074£+01 -37.375
230 4 -4.2592 1.6392 1.1093 0.09921 2.1951£+01 2.1803E-01 2.1952E+01 0.569
231 4 -4.3253 1.7132 1.1093 0.09921 1.9658£+01 1.2689E+01 2.3391£+01 32.842
232 4 -4.3914 1.78n 1. 1093 0.09921 9.8220£+00 2.0522E+01 2.2752E+01 64.424
233 4 -4.4575 1.8612 1.1093 0.09921 -3_9464£+00 2.0691£+01 2.1070£+01 100.795
234 4 -4.5236 1.9351 1.1093 0.09921 - 1 .6497£+01 1.3021E+01 2.1016£+01 141. 716
235 4 -4.5898 2.0091 1.1093 0.09921 -2.3043E+01 2.4109£'01 2.3044E+01 179.401
236 4 -4.6559 2.0831 1.1093 0.09921 -2.0951E+01 -1.2940E+01 2.4625E+01 -148.300
237 4 -4.n20 2.1570 1.1093 0.09921 -1.0743E+01 -2.1568£+01 2.4095E+01 -116.478
238 4 -4.7881 2.2310 1.1093 0.09921 4.0693E+00 -2.2228E+01 2.2591£+01 -79.626
239 4 -4.8542 2.3050 1. 1093 0.09921 1.8255£+01 -1.4165E+01 2.3106£+01 -37.809
240 4 -4.9203 2.3790 1. 1093 0.09921 2.6805E+01 -1.5716£+00 2.6851E+01 -3.355
- - - POWER BUDGET - - -
INPUT POWER - 2.5007£+05 WATTS
RADIATED POWER- 1.4429£+05 WATTS
STRUCTURE LOSS: 1.0578£+05 WATTS
NETWORK LOSS - O.OOOOE+OO WATTS
EFFICIENCY. 57.70 P£RCENT
   - - - NEAR ELECTRIC FIELDS - - -     
- LOCATION - - EX - - EY - - EZ -
X Y Z MAGNITUDE PHASE MAGN ITIJ)E PHASE MAGN ITUDE PHASE
METERS METERS METeRS VOLTS/M  DeGREEs. VOLTS 1M   DEGREES VOLTS/M  DEGREES
9999.9999 0.0000 1. 0076 3.9777£-04 -23.25 7.3888E-05 -36.21 1.5073E-02 -61.77
9998.4769 174.5241 1 .0076 4.8355E-04 73.62 5.958OE-05 -139.51 1.7997£-02 35.44
9993.9082 348.9950 1 .0076 1.0633E-03 95.12 2.0011E-04 -176.96 3.9828E-02 57.50
9986.2953 523.3596 1. 0076 1.6178E-03 101.13 3.9085E-04 174.68 6.0876e-02 63.85
9975 . 6405 697.5647 1 .0076 2.0712E.03 103.98 6.0027£-04 170.92 7.8295E-02 67.06
9961.9469 871.5574 1 .0076 2.3829E-03 105.74 8.0122E-04 168.82 9.0541E-02 69.24
9945.2189 1045.2846 1. 0076 2.5260e-03 107.07 9.6526E-04 167.58 9.6544E-02 71.03
9925.4615 1218.6934 1 .0076 2.48nE-03 108.30 1.0654E-03 166.95 9.5722e-02 72.78
9902.6806 1391. 7310 1 .0076 2.2691e-03 109.72 1.0793E-03 166.85 8.8052E-02 74.75
9876.8834 1564.3446 1 .0076 1. 8908E-03  111.73 9.9315E-04 167.41 7.4121E-02 77.37
9848.0775 1736.4818 1 .0076 1.3878E-03 115.37 8.0429£-04 169.13 5.5158e-02 81.58
9816.2718 1908.0899 1 .0076 8.1620e-04 124.44 5.2448£-04 174.02 3.3171E-02 90.89
9781.4760 2079.1169 1. 0076 3.2191e-04 168.11 1.9637£ -04 -160.54 1.3313E-02 131.19
9743.7006 2249.5105 1. 0076 5.3804E-04 -108.27 2.7124E-04 -45.93 2.0391E-02 -141.11
9702.9572 2419.2189 1 .0076 1.0065E-03 -91.97 6.4502E-04 -29.42 3.9371E-02 -122.45
9659.2582 2588.1904 1 .0076 1.3mE-03 -86.73 9.8487£-04 -24.83 5.4948E-02 -115.90
9612.6169 2756.3735 1. 0076 1. 5980E-03 -84.04 1.2393E-03 .22.26 6.4768e-02 -112.00
9563.0475 2923.7170 1 .0076 1.6537£-03 -82.13 1.3763E-03 -20.14 6.8017£-02 -108.85
9510.5651 3090.1699 1. 0076 1.5525E-03 -80.28 1.3801E -03 -17.86 6.4812E-02 -105.69
9455.1857 3255.6815 1.0076 1.3225e-03 - 77 . 93 1. 2542E -03 -14.93 5.6103e-02 -101.94
9396.9262 3420.2014 1.0076 1. 0073e. 03  - 74.19 1.0218£-03 -10.57 4.3539E-02 -96.71
9335.8042 3583.6795 1.0076 6.6116£-04 -66.88 7.2453E-04 -2.94 2.9309£-02 -87.89
9271.8385 3746.0659 1.0076 3.5026£-04 -48.02 4.2408E-04 14.09 1.6201E-02 -68.17
9205.0485 3907.3113 1 .0076 2.0177£-04 8.72 2.3870E -04 61.82 9.4084E-03 -14.54
9135.4545 4067.3664 1.0076 2.8176£-04 56.60 2.9769£-04 116.37 1.2385E-02 36.06
9063.0778 4226.1826 1 .0076 3.5641e-04 73.39 3.9616£-04 138.19 1.5792e-02 56.03
8987.9404 4383.7114 1.0076 3.5829£-04 83.26 4.1962E-04 150.53 1.6133E-02 68.16
8910.0652 4539.9050 1. 0076 3.0038£-04 93.69 3.6639£-04 162.64 1.3731E -02 80.35
8829.4759 4694.7156 1. 0076 2.1811E-04 110.02 2.n23E-04 -179.38 1.0034e-02 97.99
   8-11      

-------
     .~---_.  -- --- --..
    --~   
8746.1970 481t8. 0962 1 .0076 1.5562E-04 137.37 1.962BE-04 -148.49 7.0207E-03 127.20
8660.2540 5000.0000 1 .0076 1.3330E-04 166.81 1.7974E-04 -113.68 5.9405E-03 161.52
8571.6730 5150.3807 1. 0076 1.1448E-04 -179.34 1. 7392E - 04 -95.90 5.3095E-03 -178.40
8It80.4809 5299.1926 1 .0076 6.9675E-05 167.29 1. 2692E - 04 -100.13 3.4202E.03 -179.99
8386.7056 5446.3903 1 .0076 7.2339E-05 87.19 9.2132E-05 -159.76 2.2634E-03 102.64
8290.3757 5591 .9290 1. 0076 1. 7495E-04 60.05 2.1 "3E-04 156.85 6.4142E-03 65.02
8191.520' 5735.7643 1. 0076 2.8It95E-04 54.24 3.7129E-04 149.03 1.1192E-02 61.19
8090.1699 5877.8525 1. 0076 3.6701E-04 52.42 5.0175E-04 148.15 1.4825E-02 62.19
7986.3551 601S.1502 1.0076 4.0136E-04 52.15 5.6772E-04 149.69 1.6424E-02 64.91
7880.1075 6156.6147 1 .0076 3.81S0E-04 53.12 5.5523E-04 152.95 1.5715E-02 69.04
m1.4596 6293.2039 1 .0076 3.1645E-04 55.80 4.7296E-04 158.32 1.3059E-02 75.19
7660.4444 6427.8761 1. 0076 2.2546E-04 61.55 3.4955E-04 167.24 9.3479E-03 85.07
7547.0958 6560.5903 1 .0076 1.3563E-04 73.54 2.2544E.04 -177.21 5. 7592E.03  102.64
7431.4482 6691.3060 1 .0076 7.1541E-05 96.87 1.3750E-Q4 -152.15 3.3696E-03 133.10
7313.5370 6819.9836 1 .0076 3.5854E-05 122.56 8.6956E-05 -128.24 2.164BE-03 165.S5
7193.3980 6946.5837 1.0076 1.4273E-05 48.56 4. 1482E-05 -143.82 8.1821E.04 171.89
7071.0678 7071.0678 1 .0076 6.9Q99E-05 8.28 7.6501E-05 138.46 1.5034E-03 44.03
6946.5837 7193.3980 1. 0076 1.398OE-04 8.96 1.7041E-04 129.72 4.0235E-03 43.38
6819.9836 7313.5370 1 .0076 1. 9869E - 04 11.25 2.5076E-04 131.11 6.1161E-03 47.78
6691.3060 7431.4482 1. 0076 2.2497E-04 14.00 2.8747E-04 134.70 7.0757E-03 52.98
6560.5903 7547.0958 1 .0076 2.0828E-04 18.01 2.6769E-04 140.21 6.6015E-03 59.63
6427.8761 7660.4444 1 .0076 1.5320E-04 25.81 1.9910E-04 149.90 4.9031E-03 70.29
6293.2039 m1.4596 1 .0076 8.2083E-05 48.11 1. 1 191E-04 173.67 2. 7460E.03 95.21
6156.6147 7880.1075 1. 0076 5.5150E-05 118.40 7. 5902E-05 -122.57 1.8822E-03 160.81
6018.1502 7986.3551 1. 0076 8. 5860E-05 159.21 1.0775E-04 -80.00 2.7225E-03 -155.78
5877.8525 8090.1699 1. 0076 9. 1400E-05 174.30 1.1525E-04 -63.32 2.9835E-03 -137.59
5735.7643 8191.5204 1 .0076 5.7662E-05 -167.15 7.8451E-05 -48.42 2.2014E-03 -120.09
5591 .9290 8290.3757 1 .0076 3.3426E.05 -71.48 2.6209E-05 20.73 1.0397E-03 -68.00
5446.3903 8386.7056 1 .0076 9.5720E-05 - 27 . 17 7.8303E-05 102.82 1. 7880E -03 12.45
5299.1926 8480.4809 1 .0076 1.4743E-04 - 18. 10 1.3211E.04 115.28 2. 9891E-03 32.82
5150.3807 8571.6730 1.0076 1.5912E-04 -13.42 1.4730E-04 121.97 3.3680E-03 43.07
5000.0000 8660.2540 1. 0076 1.2353E-04 -8.81 1. 1871E-04 128.87 2.7558E-03 53.17
481t8.0962 8746.1970 1 .0076 5.1496E-05 3.76 5.8863E-05 144.14 1.4577E-03 74.07
4694.7156 8829.4759 1 .0076 4.1749E.05 146.12 2.9326E.05 -104.53 8.7319£-04 167.32
4539.9050 8910.0652 1 .0076 1. 1319E-04 162.39 8.2104E.05 -66.51 1.9656E-03 -149.42
4383.7114 8987.9404 1.0076 1.4783E.04 167.38 1.0973E.04 .57.10 2.5851E-03 -136.49
4226.1826 9063.0778 1.0076 1.3332E-04 172.40 1.0021E-04 -49.20 2.3742E-03 -126.11
4067.3664 9135.4545 1 .0076 7.6373E-05 -176.24 6.1122E-OS -34.93 1. 4926E -03 -109.00
3907.3113 9205.0485 1. 0076 2.B123E-OS -81.12 2.4668E-OS 36.29 6.9478E-04 -42.63
3746.06S9 9271.838S 1. 0076 9.2771E-05 -27.12 S.7228E-05 104.73 1. 3636E - 03 24.60
3583.6795 9335.8042 1. 0076 1.3983E-04 -17.77 8.5534E-05 119.66 2.0041E-03 1,2.81
3420.2011, 9396.9262 1 .0076 1.I,378E-04 - 1 1. 19 8.71,62E-OS 129.75 2.0473E-03 55.22
3255.6815 91,55.1857 1.0076 1.0638E-04 -1.21, 6.6029E.05 143.63 1.51,85E-03 71.79
3090. 1699 9510.5651 1 .0076 S.08S1E.OS 30.33 3. 739BE-05 177.27 9.0764E-04 109.73
2923.7170 9563.0475 1 .0076 5.1522E-OS 115.66 3.I,716E-05 -116.44 9.1794E-0l, 175.13
2756.3735 9612.6169 1.0076 8.5583E.05 142.11 4.8752E.OS -84.59 1.2783E-03 -152.90
2588.1904 96S9.2S82 1.0076 8. 5586E-OS 151.02 4.8824E-05 - 70. 16 1.2981E-03 -135.31
2419.2189 9702.9572 1.0076 4.3882E-05 158.03 3.126SE-OS -SS.S6 9.0739E-04 -114.25
2249.5105 9743.7006 1.0076 2.8It61E-OS -30.90 9.7132E.06 23.29 4.8596E-04 -51.03
2079.1169 9781.4760 1.0076 1.0812E-04 -22.6S 3.3223E.OS 100.13 9.1881E-04 17.26
1908.0899 9816.2718 1 .0076 1. 7124E.04 -19.10 5.6296E-OS 112.S1 1. 4808E-03 38.14
1736.4818 9848.0775 1.0076 1.9928E.04 -15.56 6.6282E.05 120.53 1. 7508E-03 51.07
1564.3446 9876.8834 1.0076 1.8611E-04 -10.89 6.2421E-OS 129.17 1. 6780E-03 63 . 8It
1391.7310 9902.6806 1 .0076 1.3993E.04 -3.01 4.8971E.OS 141.38 1.3574E-03 80.15
1218.6934 9925.461S 1. 0076 8.1944E-OS 14.78 3.3061E-OS 161.80 9.6570E-04 104.39
1045.281t6 994S.2189 1.0076 4.6685E-OS 60.90 2. 1968E.OS  -164.21 6.7931E-04 140.41
871.5574 996 1 .9469 1 .0076 4.771BE-OS 102.49 1.7431E-OS -124.48 S.4234E-04 -176.83
697.5647 9975 .640S 1. 0076 3.8215E.05 102.62 1.4063E-OS -88.05 4.6498E-04 -131.91
523.3596 9986.2953 1.0076 3.331SE-05 30.06 1. 1230E.OS .38.92 4.7021E-04 -80.84
348.9950 9993.9082 1 .0076 9.08S7E.OS -5.12 1.4686E-OS 11.73 6.20S5E-04 -39.21
   B-12    

-------
174.5241 9998.4769 1. 0076 1. 6130e -04 -10.40 2.1216E-05 35.53 8.0212e-04 -13.20
0.0000 9999 . 9999 1 - 0076 2.1738£-04 -10.58 2.532ge-05 106.52 8.9970e-04 5.63
-174.5241 9998.10769 1. 0076 2.4306e-04 -8.89 2.521SE-05 53.106 8.8222e -04 23.25
-348.9950 9993.9082 1.0076 2.3205e-04 -5.73 2. 13SOe-05 60.87 7.89105e-04 103.16
-523.3596 9986.2953 1 .0076 1.8871e-04 -0.39 1.58t.5e-05 73.81 6. 899Oe-04 65.95
-697.56t.7 9975 .6t.05 1.0076 1.2680e-04 9.86 1. 1623e-05 98.05 6.0719£-04 87.68
-871.5571, 9961.9469 1. 0076 6.8t.52e-05 35.310 1.03961:-05 125.110 I,.8909E-04 104.08
- 1045 .28t.6 99105.2189 1 .0076 4.80103e-05 92.38 9.21,72e-06 137.93 2.71,01e-04 115.1010
-1218.69310 9925.1,615 1.0076 5.S063e-05 128.1,6 I,.8t.21e-06 127.95 5.3763e-05 -78.06
-1391. 7310 9902.6806 1 .0076 5.3027E-05 "'0.81 5.9295e-06 3.35 1o.t.859£-04 -61.92
-156t..31ol,6 9876.883t. 1.0076 2.5115e-05 1100.80 1. 9276e -OS -110.62 8.10527E-04 -61.23
-1736.1,818 98t.8. 0775 1.0076 1.97107E-05 -7.98 3.10597E-05 -19.57 ,. 1600e-03 -62.98
-1908.0899 9816.2718 1. 0076 6.5309E-05 -16.08 I,.7818e-05 -22.85 1.3165e-03 -66.53
-2079.1169 9781.10760 1 .0076 1.0028E-04 -15.90 5.1ol,51e-05 -25.81 1.2552E-03 -72.01
-221,9.5105 97103.7006 1. 0076 1.1381E-04 -15.101 5.0409£-05 -29.26 9.4253E-04 -81.35
-21019.2189 9702.95 72 1 .0076 1.0071E-04 - 16.03 3.3'" 7E -05 -35.71 4.1713E-04 -112.51
-2588.1904 9659.2582 1 .0076 6.2277E-05 -21. 56 7.1483E-06 -107.18 6.31SOE-04 135.44
-2756.3735 9612.6169 1 .0076 1. 8693e - 05 -93.21 4.2611E-05 162.95 1.6453E-03 113.88
-2923.7170 9563.0475 1 .0076 7. 2537E-05 -165.77 9.2"'9E-05 156.53 2.8055e-03 105.74
-3090.1699 9510.5651 1. 0076 1.4008E-04 -171.03 1.4215e-04 153.87 3.9585e-03 100.40
-3255.6815 9455.1857 1 .0076 1.96761:-04 -171.07 1.8507E-04 152.21 4.9523E-03 96.22
- 3420.20'" 9396.9262 1. 0076 2.3393e-04 -169.61 2. 1395E-04 150.98 5.6344e-03 92.64
-3583.6795 9335.80102 1 .0076 2.4710E-04 -167.38 2.2345E-04 "'9.99 5.8725E-03 89.36
-3746.0659 9271.8385 1.0076 2.3577E-04 -164.60 2.1072E-04 1109.13 5.5755E-03 86.07
-3907.3113 9205.0485 1. 0076 2.0287E-04 -161.30 1. 7580E -04 "'8.35 4.7117E-03 82.21
-1,067.3664 9135.4545 1. 0076 1.5385E-04 -157.40 1.2155E-04 147.61 3.3229E-03 76. '"
-4226.1826 9063.0778 1 . 0076 9.5396E-05 -152.55 5.3236E-05 1106.77 1.5755e-03 58.12
-10383.7114 8987.91,04 1. 0076 3.43SOe-05 -143.91 2. 2276E-05 -32.78 1. 1237E-03 -48.49
-10539.9050 8910.0652 1 .0076 2.4145E-05 24.66 9. 7466E-05 -34.02 3.1689£-03 -80.01
-46910.7156 8829.4759 1.0076 7.4238E-05 36.31 1.6511E-04 -34.74 5.3025E-03 -87.03
- 48t.8. 0962 8746.1970 1 .0076 1. 1409£ - 04 42.97 2.1911E-04 -35.44 7. 1685e-03 -90.33
-5000.0000 8660.2540 1 .0076 1.4226E-04 49.27 2.5503e-04 -36.16 8.5791E-03 -92.42
-5150.3807 8571.6730 1. 0076 1. 5857E-04 55.56 2.7050E-04 -36.92 9.4031E-03 -93.97
-5299.1926 8t.8O. 4809 1. 0076 1.6354E-04 61.80 2.6521E-04 -37.73 9.5656E-03 -95.28
-5446.3903 8386.7056 1.0076 1.5802E-04 67.86 2.407IoE-04 -38.64 9.0509£-03 .96.52
-5591.9290 8290.3757 1. 0076 1.4296E-04 73.56 2.0021E-04 -39.68 7.8997E-03 -97.91
-5735.7643 8191.5204 1. 0076 1. 1939E-04 78.63 1.4777E -04 -40.95 6.2026E-03 -99.81
-5877.8525 8090.1699 1. 0076 8.8553E-05 82.56 8.8153E-05 -42.85 4.092SE-03 -103.36
-6018.1502 7986.3551 1 .0076 5.2036E-05 83.51 2.6Z67E-05 -49.23 1. 7632E-03 -115.89
-6156.6147 7880.1075 1.0076 1. 3609E-05  57.66 3.4141E-05 143.01 1.0642e-03 120.94
-6293.2039 m1.4596 1.0076 3.3522E-05 -63.08 8.8192E-05 138.20 3.3675E.03 95.08
-6t.27.8761 7660.4444 1.0076 7.5146E-05 -67.91 1.3354e-04 136.10 5. 5909E-03 90.1010
-6560.5903 7547.0958 1. 0076 1.142SE-04 -67.00 1.681 1E-04 134.33 7.4994E-03 88.46
-6691.3060 7431.4482 1. 0076 1.4820e-04 -65.19 1.9087E-04 132.60 8. 98t.7E .03 87.33
-6819.9836 7313.5370 1.0076 1. 7481E-04 -63.25 2.0166E-04 130.81 9.9784e-03 86.57
-6946.5837 7193.3980 1.0076 1.9251E-04 -61.41 2.0109£-04 128.91 1.0447E-02 85.99
-7071.0678 7071 .0678 1.0076 2.0031e-04 -59.76 1.9038E-04 126.87 1.0391e-02 85.51
-7193.3980 6946.5837 1 .0076 1. 9786e - 04 -58.35 1.71 1SE-04 124.67 9.8393E-03 85.05
-7313.5370 6819.9836 1. 0076 1.8547E-04 -57.25 1.45100E-04 122.28 8. 8t.87E - 03 8t. . 56
-7431.4482 6691.3060 1. 0076 1.6406E-04 -56.59 1.1506E-04 119.67 7.4955E-03 83.97
-7547.0958 6560.5903 1.0076 1.3511e-04 -56.61 8.2109£-05 116.86 5.8719E-03 83.13
-7660.4444 6427.8761 1.0076 1.005SE-04 -58.04 4. 8369E-05 113.93 4.0797E-03 81.63
-m1.4596 6293.2039 1. 0076 6.30Z9E-05 -63.35 1.5399E-05 111.92 2.2274E-03 77.84
-7880.1075 6156.6147 1.0076 2. 7634e-05 -88.08 1. 5607E-05 -76.69 4.9006E-04 46.44
- 7986.3551 6018.1502 1.0076 2. 7200e-05 -178.10 4. 3708E-05 -79.63 1.3521e-03 -81.16
-8090.1699 5877.8525 1.0076 5.8836E-05 157.73 6.8444e-OS -84.24 2.8143e-03 -88.23
-8191.5204 5735.7643 1 .0076 8.9173E-05 152.83 8. 9669E-05 -89.51 4.0072e-03 -90.27
-8290.3757 5591. 9290 1.0076 1.1381E-04 152.00 1 . 0756E -04 -95.33 4.869Oe-03 -91.23
-8386.7056 5446.3903 1.0076 1.3126E-04 152.89 1.2255e-04 -101.64 5.3661e-03 -91.78
-8t.8O.4809 5299.1926 1.0076 1.4085E-04 154.94 1.3511E-04 - 108.32 5.4861E-03 -92.13
    B-13    

-------
  ------- ~--     
-8571.6730 5150.3807 1. 0076 1.4256E-04 158.13 1.4600E-04 -115.24 5.239OE-03 -92.36
-8660.2540 5000.0000 1 .0076 1.3703E-04 162.75 1.5545E-04 -122.20 4-6509E-03 -92.52
-8746.1970 4848.0962 1.0076 1.2569E-04 169.41 1.6373E-04 -129.00 3.7675E-03 -92.63
-8829.4759 4694.7156 1. 0076 1.1093E-04 179.18 1.7076E-04 -135.48 2.6488E-03 -92.70
-8910.0652 4539.9050 1. 0076 9.6509E-05 -166.50 1. 7622E - 04 -141.49 1.3663E-03 -92.75
-8987.9404 4383.7114 1.0076 8.7592E-05 -146.93 1. 7959E-04 -146.93 2.4743E-10 130.29
-9063.0778 4226.1826 1 .0076 8.8645E-05 -125.03 1.8030E-04 -151.76 1.3663E-03 87.25
-9135.4545 4067.3664 1 .0076 9.9254E-05 -106.18 1. 7780E-04 -155.95 2.6488E-03 87.30
-9205.0485 3907.3113 1.0076 1.1459E-04 -92.57 1.7168E-04 -159.50 3.7675E-03 87.37
-9271.8385 3746.0659 1 .0076 1.295BE-04 -83.22 1.6171E-04 -162.37 4.6509E-03 87.48
-9335.8042 3583.6795 1 .0076 1.4054E-04 -76.67 1.4794E-04 -164.53 5.239OE-03 87.64
-9396.9262 3420.2014 1. 0076 1.4503E-04 -71.90 1.3Q68E-04 -165.83 5.4867E-03 87.87
-9455.1857 3255.6815 1. 0076 1.4149E.04 .68.24 1.105BE-04 -166.00 5.3661E-03 88.22
-9510.5651 3090.1699 1.0076 1.2912E-04 .65.28 8.86Q9E-05 . -164.40 4.869OE-03 88.77
-9563.0475 2923.7170 1 .0076 1.0775E-04 -62.68 6.6203E-05 -159.57 4.0072E-03 89.73
-9612.6169 2756.3735 1. 0076 7.7831E-05 -59.98 4.5701E-05 -147.80 2.8143E-03 91.77
-9659.2582 2588.1904 1.0076 4.0454E-05 -55.46 3. 1839E-05 -121.38 1.3521E-03 98.84
-9702.9572 2419.2189 1.0076 5.5194E-06 65.82 3. 1253E-05 -84.60 4.9006E-04 -133.56
-9743.7006 2249.5105 1 .0076 5.090BE-05 115.53 4.0227E-05 '62.23 2.2274E-03 -102.16
-9781.4760 2079.1169 1. 0076 9. 9809E. 05  118.90 4.9948E-05 -53.26 4.0797E-03 '98.37
'9816.2718 1908.0899 1 .0076 1.4765E-04 120.53 5.6539E-05 -50.78 5.8719E-03 -96.87
-9848.0775 1736.4818 1 .0076 1.9157E-04 121.65 5.878Oe-05 -52.08 7.4955e-03 -96.03
-9876.8834 1564 . 3446 1.0076 2.2876E-04 122.51 5.6640e-05 -56.51 8.8487E'03 '95.44
-9902.6806 1391.7310 1.0076 2.5662e-04 123.24 5.0975e-05 -64.60 9.8393E-03 -94.95
-9925.4615 1218.6934 1 .0076 2. 7289E-04 123.88 4.3575E-05 -77.86 1.0391E-02 -94.49
-9945.2189 1045.2846 1 .0076 2.7588E-04 124.50 3.7232E-05 -97.99 1.0447E-02 -94.01
-9961.9469 871.5574 1 .0076 2.646OE-04 125.14 3.4786E-05 -123.39 9.9784E-03 -93.43
-9975.6405 697.5647 1. 0076 2.3892E-04 125.90 3.6243E-05 -147.43 8.9847E-03 -92.67
-9986.2953 523.3596 1.0076 1. 9966E - 04 126.97 3.819OE-05 -166.58 7.4994E-03 -91.54
-9993.9082 348.9950 1.0076 1.4869E-04 128.82 3.7033e-05 176.69 5. 5909E-03 -89.56
-9998.4769 174.5241 1 .0076 8.9042e-05 133.38 3.1194E-05 156.11 3.3675E-03 -84.92
- 9999.9999 0.0000 1.0076 2.7523E-05 160.67 2.43581:-05 116.98 1.0642E-03 -59.06
-9998.4769 -174.5241 1.0076 4.8527E-05 -78.23 3.2293E-05 61.93 1.7632E-03 64.11
- 9993.9082 -348.9950 1.0076 1.1039E-04 -66.59 5.85W-05 33.47 4.0928E-03 76.64
- 9986.2953 -523.3596 1.0076 1.6557E-04 -63.66 9.3147E-05 20.49 6.2026E-03 80.19
-9975 .6405 -697.5647 1 .0076 2.0879E-04 -62.47 1.3010E-04 13.04 7. 8997E-03 82.09
-9961.9469 -871.5574 1 .0076 2.3651E-04 -61.87 1.6428E-04 7.97 9.0509E-03 83.48
-9945.2189 -1045.2846 1 .0076 2.4654e-04 -61.49 1.9052E-04 4.11 9. 5656E-03 84.72
-9925.4615 -1218.6934 1. 0076 2.3825e-04 -61.08 2.0385E-04 0.85 9.4031e-03 86.03
- 9902.6806 -1391.7310 1. 0076 2.1273e-04 -60.39 2.0007E-04 -2.20 8.5791e-03 87.58
-9876.8834 -1564.3446 1 .0076 1.7283E.04 -58.90 1.7650e-04 -5.51 7. 1685e-03 89.67
-9848.0775 -1736.4818 1.0076 1.2311e-04 .55.30 1.3274E-04 -10.11 5.3025E-03 92.97
-9816.2718 -1908.0899 1.0076 7.0234E-05 -44.44 7. 1761E-05 -20.93 3.1689£-03 99.99
-9781.4760 -2079.1169 1.0076 3.2000e-05 5.31 2. 5577E-05 -113.90 1. 1237E-03 131.51
-9743.7006 -2249.5105 1.0076 5.2883E-05 71.21 9.5592E-05 -169.94 1.5755E-Q3 -121.88
-9702.9572 -2419.2189 1.0076 8. 7948E-05 85.72 1.7523E-04 -177.87 3.3229E-03 -103.86
-9659.2582 -2588.1904 1 .0076 1.1273e-04 89.81 2.4362E-04 178.70 4.7117E-03 -97.79
-9612.6169 -2756.3735 1 .0076 1.2378E-04 91.20 2.9098E-04 176.60 5.5755e-03 -93.93
-9563.0475 -2923.7170 1.0076 1.2137E-04 91.89 3.1026E-04 175.14 5.8725E-03 -90.64
-9510.5651 -3090.1699 1.0076 1.07'90E-04 93.07 2.9808E-04 174.10 5.6344E-03 -87.36
-9455.1857 -3255.6815 1.0076 8. 7282e-05 96.15 2.5563E-04 173.47 4.9523E-03 -83.78
-9396.9262 -3420.2014 1.0076 6.4632e-05 103.77 1. 8882E - 04 173.52 3.9585e-03 -79.60
-9335.8042 '3583.6795 1.0076 4.6214e-05 120.31 1.0778E-04 175.46 2.8055e-03 -74.26
-9271.8385 -3746.0659 1.0076' 3.8011e-05 145.85 2. 6839E-05 -164.85 1.6453E-03 -66.12
-9205.0485 -3907.3113 1.0076 3.8326E-05 166.87 4.9605E-05 -26.63 6.318OE-04 '44.56
-9135.4545 -4067.3664 1 .0076 3.8426E-05 177.20 9.8811e-05 -20.02 4.1713e-04 67.49
-9063.0778 -4226.1826 1.0076 3.2905e-05 -178.62 1.2005e-04 -18.96 9.4253E-04 98.65
-8987.9404 -4383.7114 1 .0076 2.0825E-05 -175.12 1.1219£-04 -18.85 1.2552E-03 107.99
-8910.0652 -4539.9050 1.0076 5.2417E-06 -138.24 8.0774e-05 -18.54 1.3165E-03 113.47
-8829.4759 -4694.7156 1.0076 1.5546E-05 -28.61 3.6677E-05 -14.68 1.1600E-03 117.02
    8-14    

-------
-8746.1970 -4848.0962 1.0076 2.9949£'05 -27.02 1.0264E-05 112.06 8.4527E-04 118.77
-8660.2540 -5000.0000 1 .0076 3.6228E-05 - 34.19 3.9173E-05 137.20 4.4859£-04 118.08
-8571.6730 -5150.3807 1 .0076 3.1932E-05 -51.48 4.8735E-05 128.43 5.3763E-05 101.94
- 8480.4809 -5299.1926 1.0076 2.5022E-05 '99.62 4.2042E-05 97.93 2.7401E-04 -64.56
-8386.7056 -5446.3903 1. 0076 4.2904E-05 -155_67 5.4342E-05 42.10 4.8909£-04 - 75 .92
-8290.3757 -5591.9290 1 .0076 7.8313E-05 -176.85 1.0040E-04 13.94 6.071'}£-04 -92.32
-8191.5204 -5735.7643 1.0076 1.1342E-04 173.53 1.5165E-04 3.16 6.8990E-04 -114.05
-8090.1699 -5877.8525 1. 0076 1.3705E-04 167.79 1.8847E-04 -2.06 7.8945E-04 -136.84
-7986.3551 -6018.1502 1.0076 1.4152E-04 163.96 1.9921E-04 -4.93 8.8222E-04 -156.75
-7880.1075 -6156.6147 1.0076 1.2413E-04 161.66 1.8025E-04 -6.42 8.9970E-04 -174.37
-7771.4596 -6293.2039 1.0076 8. 8496E-05 161.80 1.3651E-04 -6.46 8.0212E-04 166.80
-7660.4444 -6427.8761 1.0076 4.4987E-05 170.60 8.0292E-05 -3.25 6.2055E-04 140.79
-7547.0958 -6560.5903 1.0076 1.9205E-05 -124.46 2.9448E-05 17.40 4.7021E-04 99.16
-7431.4482 -6691.3060 1.0076 3.4479E-05 -80.79 2.1665E-05 106.86 4-6498E-04 48.09
-7313.5370 -6819.9836 1 .0076 4.0034E-05 -92.04 3. 1278E-05 117.02 5.4234E-04 3.17
.7193.3980 -6946.5837 1 .0076 4.2756E-05 -135.77 2.8878E-05 80.28 6.7931E-04 -39.59
-7071.0678 -7071.0678 1.0076 7.3681E-05 -176.32 4.8774E-05 27.91 9.6570E-04 -75.61
-6946.5837 -7193.3980 1 .0076 1.1965E-04 166.17 8.7533E-05 8.56 1.3574E-03 -99.85
-6819.9836 -7313.5370 1.0076 1.5554E-04 157.40 1.1976E-04 1.00 1.6780E-03 -116.16
-6691.3060 -7431.4482 1.0076 1.6436E-04 151.71 1.3074E-04 -3.06 1.7508E-03 -128.93
-6560.5903 -7547.0958 1.0076 1.389OE-04 147.08 1.1488E-04 -6.06 1.4808E-03 -141.86
-6427.8761 -7660.4444 1.0076 8.3687E-05 142.10 7.6096E-05 -9.59 9.1881E-04 -162.74
-6293.2039 -7771.4596 1. 0076 1.4446E-05 123.66 2.6376E-05 -20.30 4.8596E-04 128.97
-6156.6147 -7880.1075 1.0076 4.9455E-05 -37.97 2.1386E-05 -172.10 9.0739E-04 65.75
-6018.1502 -7986.3551 1.0076 8.5488E-05 -46.22 4.8994E-05 174.84 1.2987E-03 44.69
-5877.8525 -8090.1699 1.0076 8.3834E-05 -57.37 5.1700E-05 167.11 1. 2783E - 03 27.10
-5735.7643 -8191.5204 1.0076 5.31Q9E-05 -88.32 3.2235E-05 147.21 9.1794E-04 -4.87
-5591.9290 -8290.3757 1.0076 5.8268E-05 '165.69 2.4277E-05 61.49 9.0764E-04 '70.27
-5446.3903 -8386.7056 1 .0076 1.1212E-04 163.27 5.5724E'05 23.58 1.5485E-03 '108.21
-5299.1926 -8480.4809 1.0076 1.4853E-04 151.81 7.9135E-05 14.20 2.0473E-03 -124.78
-5150.3807 -8571.6730 1.0076 1.4318E-04 143.66 7. 9790E-05 8.74 2.0047E-03 -137.19
'5000.0000 -8660.2540 I .0076 9.3451E-05 131.81 5.6111E'05 0.76 1.3636E -03 -155.40
-4848.0962 -8746.1970 1 .0076 3. 1424E'05 65.58 2.0296E-05 -39.49 6.9478E-04 137.37
'4694.7156 '8829.4759 1 .0076 8.9811E-05 -15.82 3.8765E-05 '138.87 1.4926E-03 71.00
-4539.9050 -8910.0652 1. 0076 1.506OE-04 -27.99 7.1746E'05 -152.77 2.3742E-03 53.89
-4383.7114 '8987.9404 1. 0076 1.6429E'04 -34.26 8.3095E-05 -157.89 2.5857E-03 43.51
-4226.1826 -9063.0778 1 .0076 1.2235E-04 '41.09 6.7701E-05 '163.37 1.9656E-03 30.58
-4067.3664 -9135.4545 1. 0076 3.9852E'05 -67.05 3.1855E-05 178.45 8. 7379E-04 -12.68
-3907.3113 -9205.0485 1 .0076 7.3636E-05 160.08 2.6351E-05 65.04 1.4577E-03 -105.93
-3746.0659 '9271.8385 1.0076 1.5829E-04 147.74 6.5548E'05 39.83 2.7558E-03 -126.83
-3583.6795 -9335.8042 1. 0076 1.9814E-04 142.29 8.8073E-05 32.89 3.3680E-03 -136.93
-3420.2014 -9396.9262 1.0076 1.7909E-04 136.90 8.4448E-05 26.34 2.9897E-03 -147.18
-3255.6815 -9455.1857 1.0076 1.0933E-04 127.21 5.7791E-05 12.55 1.7880E-03 -167.55
-3090.1699 -9510.5651 1. 0076 2.9715E'05 64.53 3.0352E-05 '39.40 1.0397E-03 112.00
-2923.7170 -9563.0475 1. 0076 8.4804E-05 -26.88 4.mOE-05 -104.83 2.2014E-03 59.91
-2756.3735 -9612.6169 1.0076 1.2996E-04 -41.87 6.8909E-05 -125.29 2.9835E-03 42.41
-2588.1904 '9659.2582 1 .0076 1.2083E-04 -57.92 6.6209E-05 -141.38 2.7225E-03 24.22
-2419.2189 -9702.9572 1 .0076 8. 1860E-05 -101.31 4.5843E-05 -178.56 1.8822E-03 - 19. 19
-2249.5105 -9743.7006 1 .0076 1.246OE-04 -167.06 6.1235E-05 114.43 2. 746OE-03 -84.79
-2079.1169 -9781.4760 1 .0076 2.2383E-04 170.33 1.1407E-04 88.68 4.9037E-03 -109.71
-1908.0899 -9816.2718 1.0076 2.9961E-04 161.44 1.5897E-04 79.32 6.6015E-03 -120.37
-1736.4818 -9848.0775 1 .0076 3.2022E-04 156.53 1. 7525E -04 74.26 7.0757E-03 -127.02
-1564.3446 -9876.8834 1.0076 2.7943E-04 153.42 1.5582E-04 70.48 6.1161E-03 -132.22
-1391. 7310 -9902.6806 1 .0076 1.9303E-04 152.25 1.0640E-04 66.88 4.0235E-03 -136.62
-1218.6934 -9925.4615 1 .0076 9.3561E-05 158.79 4.3284E-05 64.51 1.5034E-03 -135.97
-1045.2846 -9945.2189 1 .0076 4.1314E-05 -141.21 1.4752E-05 -153.23 8.1821E-04 -8.11
-871.5574 -9961.9469 1. 0076 7.8595E-05 -112.86 5.1669E-05 -159.34 2. 1648E-03 -14.15
-697.5647 '9975.6405 1 .0076 1.3076E-04 '133.82 8.3231E-05 168.62 3.3696E-03 -46.90
-523.3596 -9986.2953 1. 0076 2.1980E-04 -156.19 1.4459E-04 138.53 5.7592E-03 -77.36
'348.9950 -9993.9082 1.0076 3.4032E-04 -169.64 2.3917E-04 121.58 9.3479E-03 -94.93
   8-15    

-------
- 174 . 5241 -9998.4769 1. 0076 4.5643E-04 -177.06 3.3987E-04 112.57 1.305ge-02 -104.81
0.0000 - 9999 . 9999 1. 0076 5.3084E-04 178.82 4.1505E-04 107.31 1.5115E-02 '110.96
174.5241 '9998.4769 1. 0016 5.3812E-04 176.74 4.3952E-04 104.18 1.6424E-02 '115.09
348.9950 -9993.9082 1 .0076 4.7455E-04 176.42 4.0155E-04 102.31 1.4825E-02 -117.81
523.3596 -9986.2953 1. 0016 3.5350E-04 178.67 3.0675E-04 102.19 1.1192E-02 -118.81
697.5647 -9975.6405 1. 0076 2.0883E-04 -112.34 1.7804E-04 106.60 6.4142E-03 -114.98
871.5574 - 9961. 9469 1 .0076 9.8923E-05 -135.29 6.2733E-05 143.50 2.2634E-03 -77.36
1045.2846 -9945.2189 1. 0076 1.1059E-04 -77 .33 9.3456E-05 -136.07 3.4202E-03 0.01
1218.6934 -9925.4615 1. 0076 1.4678E-04 -67.41 1.4768E-04 -133.26 5.3095E-03 1.60
1391. 7310 -9902.6806 1. 0076 1.5021E-04 -81.19 1.6587E-04 -152.19 5.9405E-03 -18.48
1564.3446 -9876.8834 1. 0076 1.5812E-04 -112.84 1.9428E-04 174.12 7.0207E-03 -52.80
1736.4818 -9848.0775 1 .0076 2.1192E-04 -142.68 2.7708E-04 144 .81 1.0034E-02 -82.01
1908.0899 -9816.2718 1.0076 2.8140E-04 -159.54 3.8117E-04 127.22 1.3731E-02 -99.65
2079.1169 -9781.4760 1 .0076 3.1879E-04 -169.82 4.5036E-04 115.20 1.6133E-02 -111.84
2249.5105 -9743.7006 1. 0076 2.9542E-04 -179.58 4.4350E-04 103.23 1.5792E-02 -123.97
2419.2189 -9702.9512 1. 0076 2.1010E-04 161.88 3.5194E-04 83.34 1.2385E-02 -143.94
2588.1904 -9659.2582 1 .0076 1.5085E-04 103.02 2.7374E-04 34.15 9.4084E-03 165.46
2756.3735 -9612.6169 1.0076 3.0123E-04 53.33 4.6021E-04 -17.92 1.6201E-02 111.83
2923.7170 -9563.0475 1 .0076 5.3614E-04 40.06 8.2135E-04 -37.68 2.9309£-02 92.11
3090.1699 -9510.5651 1 .0076 7.6759E-04 35.80 1.2123E-03 -46.49 4.3539E-02 83.29
3255.6815 -9455.1857 1. 0076 9.5355E-04 34.62 1.5534E-03 -51.64 5.6103E-02 78.06
3420.2014 -9396.9262 1. 0076 1.0649E-03 34.86 1.7835E-03 -55.30 6.4812E-02 74.31
3583.6795 -9335.8042 1 .0076 1.0843E-03 35.86 1.8583E-03 -58.39 6.8017E-02 71.15
3746.0659 -9271.8385 1 .0076 1.0OME-03 37.21 1. 7541E-03 -61.50 6.476SE-02 68.00
3907.3113 -9205.0485 1 .0076 8.3746E-04 38.44 1.4716E-03 -65.41 5.4948E-02 64.10
4067.3664 -9135.4545 1.0076 5.9325E-04 38.54 1.0378E-03 -12.12 3.9371E-02 57.55
4226.1826 -9063.0778 1 .0076 2.9949E-04 32.52 5.2284E-04 -91.84 2.0391E-02 38.89
4383.7114 -8987.9404 1 .0076 1.0412E-04 -62.53 3.6242E-04 178.10 1.3313E-02 -48.81
4539.9050 -8910.0652 1. 0076 3.9242E-04 -108.86 8.8128E-04 140.52 3.3171E-02 -89.11
4694.7156 -8829.4759 1 .0076 7.0107E-04 -111.45 1.4427E-03 131.44 5.5158E-02 -98.42
4848.0962 -8746.1970 1. 0076 9.6959E.04 -110.07 1. 9030E. 03 127.12 7.4121E-02 -102.63
5000.0000 -8660.2540 1 .0076 1. 1770E-03 -107.65 2.2201E-03 124.28 8.8052E-02 -105.25
5150.3807 -8571.6730 1 .0076 1. 3083E - 03 -104.92 2.3685E-03 121.98 9.5122E-02 -107.22
5299.1926 -8480.4809 1 .0076 1.3537E-03 .102.21 2.3409£-03 119.84 9.6544E-02 -108.97
5446.3903 -8386.7056 1. 0076 1.3085E-03 -99.74 2.1467E-03 117.57 9.0541E-02 -110.76
5591.9290 -8290.3757 1 .0076 1. 1736E-03 -97.79 1.8091E.03 114.81 7.8295E-02 -112.94
5735.7643 -8191.5204 1 .0076 9.5557E-04 -96.88 1.3627E-03 110.88 6.0876E-02 -116.15
5877.8525 .8090.1699 1.0076 6.6779E-04 -98.53 8.5136E-04 103.44 3.9828E-02 .'22.50
6018.1502 -7986.3551 1.0076 3.3800E.04 -110.73 3.5090E-04 76.89 1. 7997E -02 -144.56
6156.6147 -7880.1075 1.0076 1. 8860E -04 160.73 3.5792E-04 -24.88 1.5073E-02 118.23
6293.2039 -ro1.4596 1.0076 5.2586E.04 120.98 8.0642E-04 -49.84 3.6081E-02 88.91
6427.8761 -7660.4444 1.0076 9.1305E-04 115.28 1.2177E-03 -57.54 5.1217E-02 81.68
6560.5903 -7547.0958 1.0076 1. 276SE.03 114.24 1.5404E-03 -62.16 7. 5348E-02 78.35
6691.3060 -7431.4482 1.0076 1.5908E-03 114.54 1. 7583E-03 -65.90 8.9321E-02 76.32
6819.9836 .7313.5370 1.0076 1.8351E-03 115.32 1.8612E-03 .69.47 9.847ge-02 74.85
6946.5837 -7193.3980 1 .0076 1.9946E.03 116.27 1.8714E-03 .73.19 1.0253E-01 73.64
7071.0678 .7071.0678 1.0076 2.0595E-03 117.24 1.7823E-03 -77.31 1.0150E-01 72.52
7193.3980 .6946.5837 1 .0076 2.0253E-03 118.14 1.6163E-03 -82.07 9.5703E-02 71.37
7313.5370 .6819.9836 1.0076 1. 8929E-03 118.86 1.3931E-03 .87.80 8.5710E-02 70.06
1431.4482 .6691.3060 1 .0016 1.6691E-03 119.24 1. 1340E-03 -95.00 1.2283E-02 68.36
7547.0958 -6560.5903 1.0076 1.3656E-03 118.99 8.6029E-04 -104.62 5.6349E-02 65.83
1660.4444 .6427.8761 1.0076 9.9945E.04 117.25 5.9346E-04 .118.94 3.8980E-02 61.25
ro1.4596 -6293.2039 1 .0076 5.9514E-04 110.77 3.6403E-04 -145.02 2. 1593E-02 49.65
7880.1075 .6156.6141 1.0016 2.2770E.04 12.86 2.57Q8E.04 161.19 9.0978E.03 -5.01
7986.3551 -6018.1502 1.0076 3.7985E-04 -16.69 3.6171E.04 109.34 1.7262E-02 -75.65
8090.1699 -5877.8525 1.0016 7.7877E-04 -31.37 5.5992E-04 82.75 3.0534E-02 -90.21
8191.5204 .5735.7643 1.0016 1.1588E-03 -34.44 7.8654E-04 65.85 4. 1782E-02 -95.34
8290.3757 -5591.9290 1.0076 1.4862E-03 .34.70 1.0335E-03 52.87 4.9932E-02 -97.91
8386 .1056 -5446.3903 1 .0076 1. 7435E -03 -33.69 1.3005E-03 42.20 5.4552E.02 -99.44
8480.4809 -5299.1926 1.0016 1.9202E-03 -31.85 1.5844E-03 33.27 5.549QE-02 -100.43
    8-16    

-------
         --
- ----        
 8571.6730 -5150.3807 1 .0076 2.0112e-03 -29.26 1.8771e-03 25.79 5.2812e-02 -101.12
 8660.2540 -5000.0000 1 .0076 2.0177E-03 -25.84 2. 1660e-03 19.52 4.6783e-02 -101.59
 8746.1970 -4848.0962 1.0076 1.9470e-03 -21.36 2.4363e-03 14.26 3.7844e-02 -101.92
 8829.4759 -4694.7156 1 .0076 1.81]6£-03 -15.45 2.6719£-03 9.84 2.6582e-02 -102.14
 8910.0652 -4539.9050 1 .0076 1.6392e-03 -7.57 2.8576e-03 6.12 1.3705E-02 -102.27
 8987.9404 -4383.7114 1. 0076 1.4536e-03 2.98 2.9803e-03 2.98 6.4513E-10 -55.62
 9063.0778 -4226.1826 1.0076 1.2936e-03 16.76 3.0298e-03 0.33 1.3705E -02 77.73
 9135.4545 -4067.3664 1.0076 1.1953e-03 33.36 2.9999£-03 -1.90 2.6582e-02 77.86
 9205.0485 -3907.3113 1 .0076 1.1751E-03 50.70 2.888ge-03 -3.76 3.7844e-02 78.08
 9271.8385 -3746.0659 1.0076 1.2151E-03 66.18 2.6993E-03 -5.26 4.6783E-02 78.41
 9335.8042 -3583.6795 1.0076 1.2739£-03 78.61 2.4384e-03 -6.40 5.2812E-02 78.88
 9396.9262 -3420.2014 1.0076 1.3095E-03 88.26 2.1173E-03 -7.15 5.549OE-02 79.57
 9455.1857 -3255.6815 1 .0076 1.2908E-03 95.96 1.7501£-03 -7.36 5.4552E.02 80.56
 9510.5651 -3090.1699 1 .0076 1.1981£-03 102.56 1.3564E-03 -6.75 4.9932e-02 82.09
 9563.0475 -2923.7170 1 .0076 1.0253E-03 109.06 9.5416£-04 -4.49 4. 1782E-02 84.66
 9612.6169 -2756.3735 1 .0076 7.7291£-04 117.23 5.6790E-04 2.27 3.0534E-02 89.79
 9659.2582 -2588.1904 1 .0076 4.6296E-04 133.45 2.4654E-04 30.25 1. 7262E - 02 104.35
 9702.9572 -2419.2189 1.0076 2.4298E-04 -163.59 2.4269E-04 113.54 9.0978£-03 174.93
 9743.7006 -2249.5105 1 .0076 5.1783E-04 -101. 71 4.6752E-04 138.46 2.1593E-02 -130.35
 9781.4760 -2079.1169 1 .0076 9.5781£-04 -86.68 6.5841£-04 144.71 3.8980E-02 -118.75
 9816.2718 -1908.0899 1.0076 1.4113E-03 -80.36 7.8302E-04 146.80 5.6349E.02 -114.17
 9848.0775 -1736.4818 1 .0076 1.8365E-03 -76.65 8.3616£-04 147.27 7. 2283E-02 -111.64
 9876.8834 -1564.3446 1 .0076 2.2023E-03 -74.07 8.2095E-04 146.81 8.5710E-02 -109.94
 9902.6806 -1391. 7310 1.0076 2.4814E-03 -72.08 7.4610E-04 145.58 9. 5703E-02 -108.63
 9925.4615 -1218.6934 1 .0076 2.6509E-03 -70.41 6.2498E-04 143.42 1.0150E-01 -107.48
 9945.2189 -1045.2846 1 .0076 2.6936£-03 -68.89 4.7470E-04 139.78 1.0253E-01 -106.36
 9961 .9469 -871.5574 1. 0076 2. 5989E-03 -67.39 3.1543E-04 133.02 9. 847ge-02 -105.15
 9975.6405 -697.5647 1.0076 2.3649£-03 .65.72 1.7125E-04 117.34 8.9321E-02 -103.68
 9986.2953 -523.3596 1. 0076 1. 999OE. 03 -63.57 8.4249E-05 69.32 7.5348E-02 -101.65
 9993.9082 -348.9950 1 .0076 1.5189E-03 -60.19 9. 6838E-05  10.72 5.7211£-02 -98.32
 9998.4769 .174.5241 1 .0076 9.5641£-04 -52.94 1.0955E-04 -12.76 3.6081E-02 -91.09
***** DATA CARD NO.8
X
METERS
9999.9999
9998.4769
9993.9082
9986.2953
9975 .6405
9961 .9469
9945.2189
9925.4615
9902.6806
9876.8834
9848.0775
9816.2718
9781.4760
9743.7006
- LOCATION -
Y
METERS
0.0000
174.5241
348.9950
523.3596
697.5641
871.5514
1045.2846
1218.6934
1391. 7310
1564.3446
1736.4818
1908.0899
2079.1169
2249.5105
NH
360
1 1.00oooE+04 O.OooOOE+OO 8.99942£+01 O.OOOOOE+OO 1.00000E+00 O.OOOOOE+(
- - - NEAR MAGNETIC FIELDS - - -
Z
METERS
1.0016
1.0016
1 .0016
1 .0016
1.0076
1. 0016
1. 0016
1.0016
1 .0076
1.0016
1.0016
1.0016
1.0076
1.0016
- HX -
MAGNITUDE PHASE
AMPS!M DEGREES
3.2541E-06 -167.28
3.2351E-06 150.03
7.0118£-06 103.96
1.4300E-05 90.02
2.3280E.05 85.08
3.2542E-05 82.94
4.0630E-OS 82.01
4.6111E-05 81.16
4.7731E-05 82.07
4.46Q8E-05 83.00
3.64Q8E-05 85.06
2.3518£-05 90.35
8.0195E-06 120.27
1.4436£-05 -123.95
B-17
. HY -
MAGNITUDE PHASE
AMPS!" DEGREES
4.0012E-05 118.31
4. 7874E-05 -144.69
1.0565E-04 -122.66
1.6114E-04 -116.32
2.0676£-04 -113.12
2.3843E-04 -110.96
2.5340E-04 -109.18
2.5030E-04 -107.44
2.2925E-04 -105.46
1.9204E-04 -102.81
1.4215E-04 -98.52
8.5063E-05 -88.93
3.4593E-05 -47.92
5.2588E-05 37.65
- HZ -
MAGNITUDE PHASE
AMPS!M DEGREES
2.4781£-07 -21.26
1.1056£-07 -119.46
4.649OE-07 -167.83
9.3641£-07 -174.02
1.4377E-06 -176.11
1.9068E-06 -176.97
2.2801£-06 -177.26
2.50Q8E-06 -177.16
2.5199£-06 -176.70
2.3096E-06 -175.76
1.8666E-06 -173.93
1.2178E-06 -169.59
4.4477E-07 -148.57
5.6933E-07 -23.41

-------
      -- 
 --       
9702.9572 2419.2189 1 .0076 3.3287E-05 -110.41 9.9727E-05 56.44 1.4292e-06 -7.92
9659.2582 2588.1904 1. 0076 5.0538e-05 -106.19 1.3me-04 63.07 2.2057E-06 -3.63
9612.6169 2756.3735 1 .0076 6.365ge-05 - 103.63 1.6082e-04 67.00 2.7893e-06 -I. 12
9563.0475 2923.7170 I .0076 7.0891E-05 -101.43 1.6728E-04 70.17 3.1090E-06 1.02
9510.5651 3090. 1699 1 .0076 7.1282E-05 -99.06 1.5783E-04 73.35 3.1293E-06 3.31
9455.1857 3255.6815 I .0076 6.4867E-05 -96.05 1.3521E-04 77.14 2.8562E-06 6.19
9396.9262 3420.2014 1 .0076 5.2744E-05 -91.65 1. 0380E - 04 82.46 2.3395E-06 10.34
9335.8042 3583.6795 1 .0076 3.7028E-05 -83.93 6.9116£-05 91.49 1. 6692E-06 17.39
9271.8385 3746.0659 1 .0076 2.0999E-05 -66.08 3.7'949E-05 111 .71 9.7681E-07 32.77
9205.0485 3907.3113 1 .0076 1.1711E-05 -12.08 2.2342E-05 165.13 5.0931E-07 78.61
9135.4545 4067.3664 1. 0076 1.6440E-05 42.28 2.8849£-05 -145.61 6.2219£-07 138.94
9063.0778 4226. 1826 1 .0076 2.2302E-05 61.92 3_5983E-05 -125.71 8.6129£-07 162_05
8987.9404 4383.7114 1 .0076 2.3737E-05 73.37 3.6153E-05 -113.47 9.3115E-07 174.59
8910.0652 4539.9050 1.0076 2.0827E-05 84.98 3.0354E-05 -101.11 8.2389£-07 -173.18
8829.4759 4694.7156 1. 0076 1.5537E-05 102.33 2. 1968E-05 -83.38 6.1995E-07 -155.04
8746.1970 4848.0962 1. 0076 1.1094E-05 132.32 1.5256E-05 -54.60 4.5520E-07 -124.22
8660.2540 5000.0000 1. 0076 9.8967E-06 167.47 1.259OE-05 -21.09 4.2327E-07 -90.31
8571.6730 5150.3807 1. 0076 - 9.4156£-06 -173.63 1.0811E-05 -0.82 4. 1320E-07 -73.76
8480.4809 5299.1926 1 .0076 6.6214e-06 -177.54 6.5057E-06 -1.33 3.1125E-07 -80.16
8386.7056 5446_3903 1.0076 4.8767E-06 115.44 4.0974E-06 -88.76 2.5541E-07 - 136.05
8290.3757 5591 .9290 1 .0076 1.2295e-05 75.48 1.2519E-05 -122.56 5.4334E-07 -175.61
8191.5204 5735.7643 1 .0076 2. 1687E-05 69.44 2.1400E-05 -125.00 9.3452E-07 175 . 94
8090. 1699 5877.8525 1 .0076 2.9329£-05 69.31 2. 7654E-05 -123.47 1.2620E-06 174 .59
7'986.3551 6018.1502 1.0076 3.3203E-05 71.29 2.9856E-05 -120.47 1.4357E-06 175.7'9
7880.1075 6156.6147 1 .0076 3.2454E-05 74.83 2. 7803E-05 -116.13 1.4159£-06 178.68
ml.4596 6293.2039 1 .0076 2.7545E-05 80.43 2.2452E-05 -109.73 1.218OE-06 -176.47
7660.4444 6427.8761 1 .0076 2.0140E-05 89.67 1. 5584E - 05 -99.40 9.0862E-07 -168.47
7547.0958 6560.5903 1 .0076 1. 2675E-05 106.29 9.2985E-06 -80.89 5.8646£-07 -154.66
7431.4482 6691 .3060 1. 0076 7.5299£-06 135.07 5.3037E-06 -48.57 3.4604E-07 -132.10
7313.5370 6819.9836 1.0076 4.8539£-06 165.22 3.3415E-06 -12.59 2.0423E-07 -110.31
7193.3980 6946.5837 1. 0076 1. 9964E -06 160.62. 1.1535E-06 13.13 1.0421E-07 -137.81
7071.0678 7071.0678 1 .0076 3.8939E-06 56.09 2.0798E-06 -162.00 2.4023E-07 161.90
6946.5837 7193.3980 1. 0076 9.8043E-06 51.19 5.5634E-06 -151.99 4.9859E-07 156.33
6819.9836 7313.5370 1.0076 1.4901E-05 54.13 8.1675E-06 -145.17 7.2325E-07 158.19
6691.3060 7431.4482 1 .0076 1. 7368E-05 58.52 9.0756£-06 -138.85 8.3021E-07 161.86
6560.5903 7547.0958 1 .0076 1.6351E-05 64.52 8.1111E-06 -131.29 7. 7830E-07 167.21
6427.8761 7660.4444 1 .0076 1.2240E-05 74.54 5.7806E-06 -119.21 5.8305E-07 176.38
6293.2039 m1.4596 1.0076 6.8496£-06 98.71 3.2121E-06 -91.51 3.2508E-07 -161. 19
6156.6147 7880.1075 1.0076 4.6536E-06 165.20 2.3410E-06 -29.81 2.0796E-07 -95.31
6018.1502 7986.3551 1 .0076 6.8958E-06 -151.39 3.0354E-06 10.51 3.0727E-07 -50.31
5877.8525 8090.1699 1. 0076 7-6048E-06 -133.99 3.1061E-06 30.87 3.316OE-07 -33.50
5735.7643 8191.5204 1 .0076 5.5201E-06 -117.45 2.3330E-06 53.48 2.1535E-07 -17.27
5591. 9290 8290.3757 1.0076 2.3790E-06 -61.03 1.5707E-06 99.77 8.4359£-08 76.94
5446.3903 8386.7056 1.0076 4.8523E-06 21.42 1.8970E-06 151.97 2.9475E-07 135 - 17
5299.1926 8480.4809 1. 0076 8.2483E-06 38.93 2.3913E-06 175.48 4.7712E-07 145. 15
5150.3807 8571.6730 1.0076 9.3283E-06 47.84 2.2753E-06 -170.72 5.2594E-07 150.75
5000.0000 8660.2540 1.0076 7.6336E-06 56.75 1.5847E-06 -153.76 4.1813E-07 156.27
4848.0962 8746.1970 1 .0076 3.9457E-06 75.77 8.8112E-07 -108.73 1. 8973E-07 168.49
4694.7156 8829.4759 1.0076 2.2580E-06 175.87 1.1173E-06 .47.88 1.1185E-07 -53.36
4539.9050 8910.0652 1.0076 5.5295E-06 -142.86 1.5430E-06 -28.20 3.3837E-07 -30.69
4383.7114 8987.9404 1.0076 7.3562E-06 -131.28 1.5309£-06 -20.80 4.5262E-07 -24.26
4226.1826 9063.0778 1.0076 6.7752E-06 -121.82 1.0811E-06 -13.74 4.1409£-07 -18.21
4067.3664 9135.4545 1.0076 4.2259£-06 -105.73 4.5854E-07 16.60 2.4429£-07 -6.31
3907.3113 9205.0485 1.0076 1.8751E-06 -37.29 5.8951E-07 104.71 8.4073E-08 80.13
3746.0659 9271.8385 1.0076 3.9439£-06 30.49 1. 0936E -06 119.20 2.6741E-07 143.26
3583.6795 9335.8042 1.0076 5.8616£-06 47.49 1.3223E-06 119.39 4.0960E-07 154.23
3420.2014 9396.9262 1. 0076 6.0073E-06 59.10 1.1946E-06 117.29 4. 2468E-07 161.83
3255.6815 9455.1857 1.0076 4.5433E-06 74.81 7.5534E-07 117.38 3. 181BE-07 172.60
3090.1699 9510.5651 1.0076 2.6200£-06 111.78 1.8562E-07 153.29 1.5784E-07 -156.52
2923.7170 9563.04 75 1 .0076 2.6146E-06 178.35 5.0335E-07 -98.07 1.4850E-07 -73.63
    8-18    

-------
        ------ -- -
---~--         
2756.3735 9612.6169 1. 0076 3.6833e-06 -149.83 8.4188E-07 -94.23 2.4410e-07 -44 .41  
2588.1904 9659_2582 1. 0076 3.7331e-06 -133.05 7.6514e-07 -96.84 2.4690e-07 -34.36  
2419.2189 9702.9572 1_0076 2.5410e-06 -113.11 2.3059£-07 -115.10 1.3253e-07 -26.92  
2249.5105 9743.7006 1.0076 1.2549£-06 -45.12 7.0153e-07 94.06 6.7852e-08 144.25  
2079.1169 9781.4760 1.0076 2.6828e-06 23.98 1.7172e-06 88.66 2. 889Oe-07 154.01  
1908.0899 9816.2718 1. 0076 4.3704e-06 42.69 2.5400e-06 87.27 4.6450e-07 158.06  
1736.4818 9848.0775 1. 0076 5.1523e-06 54.45 2.9085e-06 87.40 5.4352e-07 162.03  
1564 . 3446 9876_8834 1. 0076. 4.9053e.06 66.34 2.7086E-06 89.23 5.0934e-07 167.09  
1391.7310 9902.6806 1. 0076 3.9262e-06 81.90 2.0250e.06 94.44 3.8451e-07 175.29  
1218.6934 9925.4615 1. 0076 2.75Q6E.06 105.65 1.1469£.06 109.91 2.2681e-07 -166.87  
1045.2846 9945.2189 1 .0076 1. 9097E - 06 141.64 6.2249£'07 159.50 1.2892e'07 '121.51  
871.5574 9961 .9469 1 .0076 1.5170e-06 -176.06 7.055BE-07 -159.29 1.2992e'07 -79.25  
697.5647 9975 .6405 1.0076 1.2671e-06 -132.10 6.0156&-07 -167.25 1.0502e-07 - 77.74  
523.3596 9986.2953 1 .0076 1.2372e-06 -79.66 6.9167E-07 123.74 8.7613e-08 -148.15  
348.9950 9993.9082 1. 0076 1.6596E-06 -36.83 1.6994E-06 94.16 2.3856E-07 174.86  
174.5241 9998.4769 1. 0076 2.1723E-06 .11 .74 2.9192E-06 88.02 4.2640e-07 169.44  
0.0000 9999 . 9999 1.0076 2.4212E-06 5.57 3.904BE-06 87.02 5.7649£-07 169.31  
-174.5241 9998.4769 1. 0076 2.3183E-06 21.66 4.3688E'06 88.11 6.456Oe-07 171. 07  
-348.9950 9993.9082 1 .0076 1. 9908E - 06 40.75 4.1912E'06 91.04 6. 1671E-07 174.30  
-523.3596 9986.2953 1.0076 1.6707E-06 64.45 3.44Q9E-06 96.30 5.0135e-07 179.71  
-697.5647 9975.6405 1. 0076 1.4664E-06 87.85 2.3544e.06 106.46 3.3636E-07 -169.90  
-871 .5574 9961 .9469 1 .0076 1.2170E-06 104.07 1.3083E-06 130.53 1.8160E-07 -144.00  
-1045.2846 9945.2189 1 .0076 1.1481E-07 111.40 8.6616e-01 '174.93 1.2933e-07 -87.07  
-1218.6934 9925.4615 1 .0076 1. 1656E-07 '30.05 1.0129£-06 '133.24 1.5515E-07 -51.95  
-1391. 7310 9902 - 6806 1 .0076 1.1367E.06 -56.32 9.7855E-01 '113.25 1.3826&-07 -40.34  
-1564.3446 9876.8834 1.0076 2.2141E'06 -59.44 6.0762E-07 -92.11 5. 9063E - 08 -43.53  
-1736.4818 9848.0775 1 .0076 3.1249£-06 -63.29 3.0122e-07 -3.55 6.7655E-08 169_84  
-1908.0899 9816.2718 1 .0076 3.6582E-06 -68.27 8.2489£'07 52.64 1.9461E-07 163.06  
-2079.1169 9781.4760 1.0076 3_6279E-06 -74.68 1.3256e-06 66.31 2.9033E-07 162.90  
-2249_5105 9743.7006 1. 0076 2.901BE-06 -84.23 1.5694e-06 75.20 3.2373E-07 162.99  
-2419.2189 9702.95 72 1 .0076 1.516Oe-06 -109.34 1.5282e-06 84.15 2.7915E-07 161.98  
-2588.1904 9659.2582 1 .0076 1.5300E-06 144.94 1.2mE-06 95.46 1.5950E'07 155.57  
-2756.3735 9612.6169 1. 0076 4.2950E-06 114.83 9.5170E-07 110.92 5.3942E-08 49.57  
-2923.7170 9563.0475 1 .0076 7.6121E-06 105.62 6.6889£-07 129.21 2.4776&-07 4.40  
-3090.1699 9510.5651 1 .0076 1.0938E'05 100.26 4.3426E-01 138.80 4.5707E-07 0.67  
'3255.6815 9455.1851 1. 0016 1.3802E'05 96.38 2.66m-07 100.81 6.3202E-07 0.24  
-3420.2014 9396.9262 1 .0076 1.5749£-05 93.24 5.7173E-07 50.08 7.4574E-07 0.81  
-3583.6795 9335.8042 1.0076 1.6402E-05 90.48 1.1215E-06 40.61 7.8271E'07 1.90  
-3746.0659 9271.8385 1 .0076 1.5523E-05 87.82 1.6473E-06 37.08 7.3976E-07 3.42  
-3907.3113 9205.0485 1.0076 1.3059£.05 84.80 1.976OE-06 32.45 6.2522E-07 5.51  
-4067.3664 9135.4545 1 .0076 9.1617E-06 80.22 1. 9979E -06 22.90 4. 5663E'07  8.72  
-4226.1826 9063.0778 1 .0016 4.2488E-06 66.86 1.7921E'06 1.31 2.5794E-01 15.51  
-4383.1114 8987.9404 1.0076 2.434BE-06 -51.16 1.91m-06 '37.87 6.9986E-08 56.44  
-4539.9050 8910.0652 1 .0076 7.92m-06 -81.53 3.0023E-06 -69.86 1.5991E-07 166.16  
-4694.7156 8829.4759 1 .0076 1. 3390E - 05 -81.19 4.7601E-06 -85.13 3.1515E-07 177.95  
'4848.0962 8746.1970 1.0016 1. 7992E -05 -89.78 6.7510E-06 -92.51 4.2873E-01 '177.44  
-5000.0000 8660.2540 1.0016 2.1299£'05 '91.39 8.6403E-06 -96.72 4.9256&-01 '174.27  
'5150.3801 8571.6730 1.0016 2.3037E-05 -92.58 1.0142E-05 '99.34 5.0114E'01 -111.46  
-5299.1926 8480.4809 1.0016 2.3088E'05 -93.56 1.1016&-05 -101.23 4.7850E-01 -168.56  
- 5446.3903 8386.1056 1 .0016 2.1492E-05 -94.48 1.1091E-05 -102.88 4.1638E-01 '165.21  
-5591.9290 8290.3751 1.0016 1.8426&-05 '95.48 1.0273E-05 -104.66 3.326OE'01 -160.89  
'5735.1643 8191.5204 1.0016 1.4116E-05 '96.83 8.5629£'06 -101.20 2.3966£-07 -154.46  
-5877.8525 8090.1699 1.0076 9.1104E-06 -99.32 6.0609E-06 '112.16 1.5023E'07 '142.78  
'6018.1502 7986.3551 1.0076 3.66m-06 '108.44 3.0489£'06 -128.39 8.0780E-08 -114.45  
'6156.6141 7880.1075 1.0076 2.2011E-06 110.59 1.8939£'06 137.42 6.4374E'08 -56.10  
-6293.2039 m1.4596 1. 0076 7.2762E-06 92.79 5.2213E'06 99.20 9.0893E'08 -21.07  
'6427.8761 7660.4444 1.0076 1.1831E'05 89.69 8.9698E-06 91.64 1.1310E'07 '6.64  
'6560.5903 7547.0958 1 .0076 1.5522E-05 88.33 1.2465E'05 88.63 1. 1981E-07 1.89  
'6691.3060 7431.4482 1.0076 1.8180E-05 87.53 1.5430E'05 81.04 1.1168E-01 9.09  
'6819.9836 7313.5310 1.0076 1.91281'05 86.96 1.7662E-05 86.05 9.2231E-08 17.47  
   8-19      

-------
        --- - -- -
-6946.5837 7193.3980 1. 0076 2 .0167E ,05 86.52 1.9021E-05 85.36 6.716OE'08 30.72 
-7071.0678 7071.0678 1.0076 1.9566E-05 86.15 1.9426E-05 84.81 4.5320E-08 57.38 
-7193.3980 6946.5837 1. 0076 1.8053E '05 85.82 1.8862E'05 84.29 4.0WE-08 100.41 
-7313.5370 6819.9836 1 .0076 1.5798E-05 85.51 1.7374E'05 83.72 5.3587E-08 129.17 
-7431.4482 6691.3060 1.0076 1.2998E'05 85.21 1.5063E-05 82.98 6.7631E'08 140.14 
-7547.0958 6560.5903 1. 0076 9.8617E'06 84.92 1.2076E'05 81.84 7.5671E-08 141.91 
-7660.4444 6427.8761 1. 0076 6.5998E-06 84.68 8.6013E-06 79.67 7.6516£-08 136.70 
-7771.4596 6293.2039 1. 0076 3.4094E-06 84.68 4.8678E-06 74.03 7.3359E-08 123.18 
'7880.1075 6156.6147 1 .0076 4.6762E-07 90.01 1.3952E-06 36.19 7.5061E-08 100.43 
-7986.3551 6018.1502 1 .0076 2.0899E-06 '98.89 3.0333E-06 -72.36 9. 26Q9E-08 75.85 
-8090.1699 5877.8525 1 .0076 4.1423E-06 -98.89 6.3037E-06 -83.32 1.2787E-07 58.54 
-8191.5204 5735.7643 1. 0076 5.6229E'06 -99.63 9.1257E-06 -86.36 1.7537E'07 48.38 
-8290.3757 5591.9290 1. 0076 6. 4994E-06 -100.77 1. 1292E-05 -87.63 2.2972E-07 42.47 
-8386.7056 5446.3903 1.0076 6.7783E-06 '102.39 1.2685E-05 -88.20 2.8681E-07 38.89 
-8480.4809 5299.1926 1. 0076 6.5030E-06 -104.74 1.3239E-05 -88.36 3.4327E-07 36.65 
-8571.6730 5150.3807 1.0076 5.7516E-06 -108.36 1.2938E-05 -88.21 3.9620E-07 35.21 
-8660.2540 5000.0000 1.0076 4.6401E-06 -114.50 1.1814E-05 -87.72 4.4311E-07 34.28 
-8746.1970 4848.0962 1. 0076 3.3471E-06 -126.53 9.9485E-06 -86.72 4.8187E-07 33.68 
-8829.4759 4694.7156 1.0076 2.2438E-06 -154.09 7.4654E-06 -84.70 5.10m-07 33.31 
-8910.0652 4539.9050 1 .0076 2.1522E-06 158.71 4.5395E-06 -79.55 5.2865E-07 33.10 
-8987.9404 4383.7114 1. 0076 3.1581E-06 128.32 1. 5403E - 06 -51.68 5.3468E-07 33.04 
- 9063.0778 4226.1826 1 .0076 4.4203E-06 115.22 2.3875E-06 63.28 5.2865E-07 33.10 
-9135.4545 4067.3664 1 .0076 5.5493E-06 108.78 5.4746£-06 77.71 5.10m-07 33.31 
-9205.0485 3907.3113 1 .0076 6.3942E-06 105.18 8.3241E-06 81.57 4.8187E-07 33.68 
-9271.8385 3746.0659 1 .0076 6.8811E-06 103.06 1.0666£-05 83.39 4.4311E-07 34.28 
-9335.8042 3583.6795 1 .0076 6.9786E-06 101.86 1.2320E-05 84.51 3.9620E-07 35.21 
'9396.9262 3420.2014 1. 0076 6.6876£-06 101.36 1.3147E-05 85.33 3.4327E-07 36.65 
'9455.1857 3255.6815 1 .0076 6.0376£-06 101.56 1.3054E-05 86.05 2.8681E-07 38.89 
-9510.5651 3090.1699 1. 0076 5.0835E-06 102.67 1.1996E'05 86.80 2.2972E-07 42.47 
-9563.0475 2923.7170 1.0076 3.9033E-06 105.38 9.9829E-06 87.79 1.7537E-07 48.38 
-9612.6169 2756.3735 1. 0076 2.6022E-06 111.92 7.0798E-06 89.51 1. 2787E-07 58.54 
-9659.2582 2588.1904 1. 0076 1.3657E-06 132.52 3.4210E-06 95.22 9.26Q9E-08 75.85 
-9702.9572 2419.2189 1 .0076 9.58Q9E-07 -157.84 1.1169E-06 '128.36 7.5060E-08 100.43 
-9743.7006 2249.5105 1. 0076 1.8150E-06 -118.31 5.6591E-06 -100.93 7.3358E-08 123.18 
-9781.4760 2079.1169 1. 0076 2.7531E-06 -107.73 1.0486E-05 -97.84 7.6516E-08 136.70 
-9816.2718 1908.0899 1. 0076 3.4688E-06 -103.57 1.5200E-OS -96.59 7. 5670E-08 141.91 
-9848.0775 1736.4818 1 .0076 3.8860E-06 -101.60 1.9512E-05 -95.85 6.7630E-08 140.14 
-9876.8834 1564.3446 1 .0076 3.9809E-06 -100.64 2.3143E-05 -95.32 5.3586E-08 129.17 
-9902.6806 1391.7310 1 .0076 3.7643E-06 -100.23 2. 5836E'05 -94.81 4.0883E-08 100.41 
-9925.4615 1218.6934 1 .0076 3.2773E-06 -100.14 2.7376£-05 -94.44 4.5320E-08 57.38 
-9945.2189 1045.2846 1.0076 2.5875E-06 -100.22 2. 7600E-05 -93.97 6.716OE-08 30.72 
-9961.9469 871.5574 1.0076 1.7841E-06 -100.14 2.6419E'05 -93.41 9.2231E-08 17.47 
-9975 .6405 697.5641 1 .0076 9.7093E-01 -98.56 2.3825E'05 -92.61 1. 1168E-07 9.09 
-9986.2953 523.3596 1.0016 2.7097E-01 -80.70 1.9905E-05 -91.55 1.1987E-07 1.89 
-9993.9082 348.9950 1.0076 3.2617E'07 42.09 1. 4844E-05 '89.58 1.1310E-07 -6.64 
-9998.4769 174.5241 1.0076 6.0269E-07 43.23 8.9354E-06 -84.91 9.0893E-08 -21.07 
-9999.9999 0.0000 1 .0076 6.7401E-01 22.61 2.8249E-06 -58.68 6. 4374E-08 -56.10 
-9998.4769 -174.5241 1.0076 8. 1973E-07 -18.42 4.6984E-06 63.73 8.0780E-08 -114.45 
-9993.9082 -348.9950 1 .0076 1.4259E-06 -51.22 1.0849E-05 76.30 1.5023E-07 -142.77 
-9986.2953 -523.3596 1 .0076 2.4180E-06 -66.66 1.6384E-05 79.85 2.3966£-07 -154.46 
-9975.6405 -691.5641 1.0076 3.5926E-06 -14.41 2.0788E-05 81.74 3.3260E-07 -160.89 
-9961.9469 -811.5574 I .0076 4.1603E'06 -78.92 2.3712E-05 83." 4.1638E-07 -165.21 
-9945.2189 -1045.2846 I .0016 5.7300E-06 -81.88 2.4931E-05 84.36 4.1850E-07 -168.56 
-9925.4615 -1218.6934 I .0016 6.3172E-06 -84.01 2.4365E-05 85.70 5.0114E-01 -171.46 
-9902.6806 -1391.7310 1.0016 6.3654E-06 -85.10 2.2086E-05 81.33 4.9256£-01 -114.21 
-9816.8834 -1564.3446 I .0016 5.1692E-06 -81.21 1.8330E-OS 89.58 4.2873E-07 -177.44 
-9848.0775 -1736.4818 1.0076 4.4973E-06 -88.92 1.3481E-OS 93.26 3.1515E-01 177.95 
-9816.2718 -1908.0899 1.0076 2.6081E-06 -92.10 8.0660E-06 101.13 1.5991E-01 166.16 
'9781.4160 -2079.1169 1.0076 3.4856£-01 -136.49 3.0797E-06 133.90 6.9986£-08 56.44 
-9743.1006 -2249.5105 1.0016 2.4039E-06 99.19 3.9351E-06 -121.92 2.5794E-01 15.51 
    8-20     

-------
    -----   --
-970Z.9572 -Z419.Z189 1.0076 4.9704e-06 95.69 7.9514e-06 -107.Z6 4.5663E-07 8.72
-9659.Z582 -Z588.1904 1 .0076 7.1955e-06 94.67 1.1076E-05 -100_19 6.252ZE-07 5.51
-961Z.6169 -Z756.3735 1. 0076 8.7933e-06 94.38 1.2898E-05 -95 .67 7.3975E-07 3.42
-9563.0475 -2923.7170 1.0076 9.5525e-06 94.54 1.3380e-05 -91. 78 7.8271E-07 1.90
-9510.5651 -3090.1699 1 .0076 9.3727E-06 95.12 1.2670E-05 -87.85 7.4574E-07 0.81
-9455.1857 -3255.6815 1. 0076 8.2881e-06 96.27 1.1040E-05 -83.56 6.3202E-07 0.24
-9396.9262 -3420.2014 1 .0076 6.4703e-06 98_38 8.8303E-06 -78.66 4.5707E-07 0.67
-9335.8042 -3583.6795 1 .0076 4.2OS7E-06 102.74 6.3779E-06 -72.90 2.4776E-07 4.40
-9271.8385 -3746.0659 1 .0076 1.8967E-06 116.38 3.9692E-06 -65.74 5.3942E-OS 49.57
-9205.0485 -3907.3113 1. 0076 8.1750e-07 -145_69 1.8117E-06 -54.26 1.5950E-07 155.57
-9135.4545 -4067.3664 1.0076 2.1231E-06 -101. 73 3.5555E-07 32.55 2.7915E-07 161. 98
-9063.0778 -4226.1826 1. 0076 2.9763e-06 -92.63 1.4231E-06 109.57 3.2373E-07 162.99
-8987.9404 -4383.7114 1 .0076 3.1155E-06 -86.87 2.2831E-06 118.32 2.9033E-07 162.90
-8910.0652 -4539.9050 1. 0076 2.6455E-06 -80.44 2.6578E-06 121.17 1.9461E-07 163.06
-8829.4759 -4694.7156 1 .0076 1.815ge-06 -69_77 2.56Q9E-06 120.30 6.7654E-OS 169.84
-8746.1970 -4848.0962 1. 0076 9.9430E-07 -44.37 2.0695E-06 114.96 5.9063E-08 -43_53
-8660.2540 -5000.0000 1 .0076 7.0383E-07 10.33 1.3245E-06 101.28 1.3826E-07 -40.34
-8571.6730 -5150.3807 1 .0076 8.1757E-07 41.86 6.0926E-07 55.20 1.5515E-07 -51.95
-8480.4809 -5299.1926 1.0076 7.0047E-07 42.15 8. 7780E-07 -32.94 1.2933E-07 -87.07
-8386.7056 -5446.3903 1.0076 4.9096E-07 -6.65 1. 7180E-06 -63.87 1.816Oe-07 -144.00
-8290.3757 -5591.9290 1 .0076 1.0403e-06 -57.46 2.5713e-06 -81.78 3.3637E-07 -169.90
-8191.5204 -5735.7643 1. 0076 1.9162E-06 '67.25 3.3105e-06 -95.82 5.0135e-07 179_71
-8090.1699 -5877.8525 1. 0076 2.6903E-06 -68.44 3.7805e-06 -107.58 6_1671E-07 174.30
-7986.3551 -6018.1502 1. 0076 3. 1576e-06 -67.34 3.8066E-06 -117.94 6.4560E-07 171.07
-7880.1075 -6156_6147 1 .0076 3.2134E-06 -65_68 3.2838E-06 -128.05 5.7649E-07 169.31
-m1.4596 -6293.2039 1 .0076 2.8502e-06 -64.44 2.2621e-06 -140.21 4.2640e-07 169.44
-7660.4444 -6427.8761 1.0076 2.1523E-06 -64.84 1.0051e-06 -165.03 2.3856E-07 174_86
-7547_0958 -6560.5903 1 - 0076 1.2804e-06 -69.93 6.OS15E-07 84.19 8.7613e-08 -148_15
-7431.4482 -6691.3060 1 .0076 4.1802E-07 -97.29 1.3187E'06 38.59 1.0502E-07 -77.74
-7313.5370 -6819.9836 1 .0076 4.3245E-07 162.17 1.6162E'06 8.39 1.2992E-07 - 79 . 25
-7193.3980 -6946.5837 1 .0076 7.2464E-07 129.66" 1.8734E-06 -34.76 1.2892E-07 -121.51
-7071.0678 -7071.0678 1 .0076 7.9498E-07 100.80 2.8721E-06 -73.31 2.2681E-07 -166.87
-6946_5837 -7193.3980 1. 0076 9.2673e-07 59.95 4.3193e-06 -94.51 3.8451e-07 175.29
-6819.9836 -7313.5370 1.0076 1.3416E-06 28.10 5.4405e-06 -106.81 5.0934e-07 167.09
-6691.3060 - 7431. 4482 1 .0076 1.7645e-06 9.50 5.6473E-06 -115.62 5.4353e-07 162.03
-6560.5903 -7547.0958 1 .0076 1.8906E-06 -5.31 4.6881E-06 -123.77 4.6450e-07 158.06
-6427.8761 -7660.4444 1. 0076 1.6270e-06 -24.77 2.7384e-06 -135.60 2.889OE-07 154.01
-6293.2039 -ml.4596 1 .0076 1.2445E-06 -62.00 7.1971E'07 157.98 6.7852e-08 144.25
-6156.6147 -7880.1075 1 .0076 1.3828E-06 -112.85 2.1442e-06 66.76 1.3253e-07 -26.92
-6018.1502 -7986.3551 1 .0076 1.8466E-06 -144.17 3.3335E-06 51.74 2.469Oe-07 -34.36
-5877.8525 -8090.1699 1.0076 1.9704e-06 -165.96 3.2238e-06 37.79 2.4410e-07 -44.41
-5735.7643 -8191.5204 1.0076 1.6142E-06 164.22 2.1175e-06 6.71 1.4850e-07 -73.63
-5591.9290 -8290.3757 1 .0076 1.5066E-06 108.09 2.1515e-06 -66.21 1.5784e-07 -156.52
-541,6.3903 -8386.7056 1.0076 2.3929E-06 65.12 3.9353e-06 -100.61 3.1818E-07 172.60
-5299.1926 -8480.4809 1 .0076 3.3006E-06 1,5.08 5.1595E-06 -113.94 4.2468E-07 161.83
-5150.3807 -8571.6730 1.0076 3.4312e-06 30.71 4.9329E-06 -123_49 4.0960E-07 154.23
-5000.0000 -8660.2540 1.0076 2.5581E-06 10.81 3.1947E-06 -137.34 2.6741e-07 143.26
-4848.0962 -8746.1970 1.0076 1.5472E-06 -47.95 1.212I,e-06 153.33 8.4073E-OS 80.13
-1,691,.7156 -8829.4759 1.0076 2.8116E-06 -111.96 3.1881e-06 78.57 2.4429E-07 -6.31
-1,539.9050 -8910.0652 1 .0076 4.5OS9E-06 -132.17 5.1712e-06 65.20 4. 14Q9E-07 -18.21
-1,383.7114 - 8987.9404 1.0076 5.0784E-06 -144.14 5.5317E-06 57.89 4.5262e-07 -24.26
-4226.1826 -9063.0178 1.0076 4.0647E-06 -158.64 4.0540E-06 49.43 3.3837E-07 -30.69
-1,067.3664 -9135.4545 1. 0076 2.1157E'06 159.15 1.3679E-06 16.23 1.1185E-07 -53.36
-3907.3113 -9205.0485 1.0076 3.1219E-06 74.77 2.5688E-06 -103.28 1.8973E-07 168.49
-3746.0659 -9271.8385 1 .0076 5.8102E-06 50.49 5.1985E-06 -117.78 4.1813e-07 156.27
-3583.6795 -9335.8042 1 .0076 7.2320e-06 38.95 6.3160e-06 -124.22 5.2594E-07 150.75
-3420.2014 -9396.9262 1. 0076 6.5752E-06 27.56 5.5244e-06 -130.52 4.7712e-07 145.15
-3255.6815 -9455.1857 1. 0076 4. 1188E-06 5.41 3.1903E-06 -142.43 2.9475E-07 135. 17
-3090.1699 -9510.5651 1 .0076 2.6648E-06 -69_81 1.0128E-06 137.28 8.4359E-OS 76.94
-2923.7170 -9563.0475 1.0076 5.2220E-06 -120.63 2.9403E-06 66.96 2.1535E-07 -17.27
    B-21    

-------
     ---  --
  ---    
-2756.3735 -9612.6169 1. 0076 7_0736E-06 -139.18 4.1767E-06 52.87 3.316OE-07 -33.50
-2588.1904 -9659.2582 1. 0076 6.5613e-06 -157.89 3.7034E-06 37.62 3.0727E-07 -50.31
-2419.2189 -9702.9572 1. 0076 4.6713E-06 159.33 2.3054E-06 -5_49 2.07'96E-07 -95.31
-2249.5105 -9743.7006 1. 0076 6.7231e-06 94.88 3.4691E-06 -75.49 3.25oae-07 -161.19
-2079.1169 -9781.4760 1. 0076 1. 2009E - 05 69.37 6.2461e-06 -97.67 5.8305E-07 176.38
-1908.0899 -9816_2718 1. 0076 1.6309E-05 58.39 8.1934e-06 -105.92 7.7830e-07 167.21
-1736.4818 -9848.0775 1 .0076 1.764SE-05 51.57 8.5184e-06 -110.19 8.3021e-07 161.86
-1564.3446 -9876.8834 1 .0076 1.5396e-05 46.19 7.1907E-06 -112.51 7.2324e-07 158.19
-1391.7310 -9902.6806 1 .0076 1.0213e-05 41.46 4.7714e-06 -112.41 4.9859E-07 156.33
-1218.6934 -9925.4615 1 .0076 3.8232e-06 40.76 2.2070e-06 -102.93 2.4023e-07 161.90
-1045.2846 -9945.2189 1.0076 2.0545e-06 174.37 1.0464e-06 -40.78 1.0421e-07 -137.81
-871.5574 -9961.9469 1. 0076 5.6204e-06 166.25 1. 770ge - 06 -17.32 2.0423E-07 -110.31
-697.5647 - 9975 .6405 1. 0076 8.810SE-06 133.34 2.6830e-06 -40.51 3.4604E-07 -132.10
-523.3596 -9986.2953 1.0076 1.5101E-05 102.82 4.3675e-06 -64.27 5.8646E-07 -154.66
-348.9950 -9993.9082 1 .0076 2.4603e-05 85.16 6.5728E-06 -77 .02 9.0862E-07 -168.47
-174.5241 -9998.4769 1 .0076 3.4515e-05 75.24 8.4580e-06 -82.83 1.2180E-06 -176.47
0.0000 -9999.9999 1.0076 4. 1699E-05 69.10 9.3536E-06 -84.80 1.4158E-06 178.68
174.5241 -9998.4769 1 .0076 4.373SE-05 64.99 8.9882e-06 -84.06 1.4357E-06 175.79
348.9950 '9993.9082 1. 0076 3.9602e-05 62.32 7.5203e-06 -80.62 1.2620E-06 174.59
523.3596 -9986.2953 1.0076 2.9979E-05 61.38 5.4349E-06 -73.38 9.3452e-07 175.94
697.5647 -9975 .6405 1 .0076 1. 7223e - 05 65.26 3.3556e-06 -59.21 5.4334e-07 -175.61
871.5574 - 9961. 9469 1. 0076 6.092ge-06 102.89 1.8566E-06 -30.71 2.5540e-07 -136.05
1045.2846 -9945.2189 1. 0076 9.1981e-06 -179.65 1. 2495e - 06 14.68 3.1125e-07 -80.16
1218.6934 -9925.4615 1. 0076 1.4288E-05 -177.91 1.1662e-06 51.95 4.131ge-07 -73.76
1391.7310 -9902.6806 1.0076 1.5972e-05 162.17 1.1615e-06 70.85 4.2327E-07 -90.31
1564.3446 -9876.8834 1 .0076 1.8820E-05 127.90 1.2737E-06 69.51 4.5520e-07 -124.22
1736.4818 -9848.0775 1 .0076 2.6845e-05 98.65 1.8131e-06 54.39 6.1995e-07 -155.04
1908.0899 -9816.2718 1. 0076 3.6695e-05 81.01 2.9397E-06 42.56 8.2389E-07 -173.18
2079.1169 -9781.4760 1 .0076 4.3034e-05 68.85 4.3078E-06 35.37 9.3115e-07 174.59
2249.5105 -9743.7006 1. 0076 4.2003e-05 56.78 5.2784E-06 28.06 8.6129E-07 162.05
2419.2189 -9702.9572 1. 0076 3. 2788E-05 36.82 5.24Q6E-06 14.53 6.2219E-07 138.94
2588.1904 -9659.2582 1.0076 2.4809E-05 -14.06 4.5601e-06 -20.52 5.0931e-07 78.61
2756.3735 -9612.6169 1.0076 4.2825E-05 -67.62 6.8584e-06 -73.61 9. 7682E-07 32.77
2923.7170 -9563.0475 1. 0076 7.7210e-05 -87.16 1.3667E-05 -98.33 1.6692e-06 17.39
3090.1699 -9510.5651 1 .0076 1.1414e-04 -95.87 2. 2963e-05 -108.26 2.3395e-06 10.34
3255.6815 -9455.1857 1.0076 1_462SE-04 -101.01 3.3050e-05 -113.42 2.8562e-06 6.19
3420.2014 -9396.9262 1.0076 1.679SE-04 - 104.67 4.2152e-05 -116.78 3.1293e-06 3.31
3583.6795 -9335.8042 1.0076 1.7511e-04 -107.74 4.841SE-05 -119.52 3.1090e-Q6 1.02
3746.0659 -9271.8385 1. 0076 1.6552e-04 -110.7'9 5.0183e-05 -122.36 2. 7893e-06 -1. 12
3907.3113 -9205.0485 1.0076 1.3922e-04 -114.54 4.6270e-05 - 126.17 2.2057E-06 -3.63
4067.3664 -9135.4545 1.0076 9.8653e-05 -120.85 3.6349E-05 - 133.01 1.4292e.Q6 '7.92
4226.1826 -9063.0778 1.0076 4.9952e-05 -139.13 2.1879E-OS '151.80 5.6933e-07 -23.41
4383.7114 -8987.9404 1.0076 3.21Q9E-05 130.28 1.5168E-05 136.98 4.44m-07 -148.57
4539.9050 -8910.0652 1.0076 8. 15Q9E-05 90.94 3.3840e-05 91.46 1.2178E-Q6 -169.59
4694.7156 -8829.4759 1.0076 1.3439E-04 82.08 5.8909E-05 79.74 1.8666E-Q6 -173.93
4848.0962 -8746.1970 1. 0076 1.7867E-04 78.08 8.3339E-05 74.74 2.3096E-06 -175.76
5000.0000 -8660.2540 1 .0076 2.0982e-04 75.59 1.0397E-04 71.83 2.5199E-06 -176.70
5150.3807 -8571.6730 1.0076 2.2530e-04 73.72 1.1837E-04 69.75 2.50oae-Q6 -177.16
5299.1926 -8480 .4809 1.0076 2.242SE-04 72.06 1.2476E-04 67.97 2.2807E-06 - 177 .26
5446.3903 -8386.7056 1 .0076 2.0739E-04 70.37 1.2205e-04 66.15 1.9068E-Q6 '176.97
5591.9290 -8290.3757 1 .0076 1.7660e-04 68.33 1.1001e-04 63.90 1.437SE-06 -176.11
5735.7643 -8191.5204 1.0076 1.3493e-04 65.34 8.9251e-05 60.47 9.364SE-07 '174.02
5877.8525 -8090.1699 1. 0076 8. 6276E-05 59.43 6.1381e-OS 53.59 4.649OE-07 -167.83
6018.1502 -7'986.3551 1.0076 3.6937E-05 38.12 3.0628E-05 30.98 1.1056E-07 -119.46
6156.6147 -7880.1075 1.0076 3.1051e-OS -65.25 2.5443E-05 -56.12 2.4787E-07 .21.26
6293.2039 -m1.4596 1 .0076 7.5508E-OS -92.38 5.8915e'05 -89.01 3.8681e-07 - 1 1.47
6427.8761 - 7660.4444 1. 0076 1.1763e-04 -98.96 9.5998E-OS -97.41 3.8738E-07 -8.31
6560.5903 -7547.0958 1. 0076 1.5173e-04 -102.05 1.3019E-04 -101.16 2.5379E-07 -6.02
6691.3060 -7431.4482 1 .0076 1.7594e-04 -103.98 1.5879E'04 -103.36 1.3989E-08 53.15
6819.9836 -7313.5370 1. 0076 1.8948E-04 -105.43 1 . 7'996E - 04 -104.89 3.2107E-07 169.84
   8-22    

-------
       --- -  - -
      ----    
--- -- ---          
6946.5837 -7193.3980 1.0076 1.9239£-04 .106.67 1.9241E-0l. -106.10 6.8952E'07 170.96 
7071.0678 -7071.0678 1.0076 1.8541E-04 -107.84 1 . 9546E - Ol. -107.19 1.0556E-06 171.03 
7193.3980 -6946.5837 1. 0076 1.6981E-0l. -109.07 1.8904E-0l. -108.29 1.3753E-06 170.66 
7313.5370 -6819.9836 1.0076 1.4730E-0l. -110.47 1 . 7360E' Ol. -109.56 1.6081E'06 169.90 
7431.4482 -6691.3060 1 .0076 1.1985E-04 -112.27 1.5015E-0l. -111.20 1.7191E-06 168.63 
7547.0958 -6560.5903 1 .0076 8.9608E'05 '114.90 1.2017E-0l. -113.69 1.6822E'06 166.54 
7660.4444 -6427.8761 1 .0076 5.8758E-05 -119.58 8.5631E'05 -118.23 1.4832E-06 162.81 
m1.4596 -6293.2039 1.0076 2.9808E-05 -131.68 4.9447E'05 -129.58 1.1268E-06 154.90 
7880.1075 -6156.6147 1. 0076 1.1323E-05 161.48 2. 1880E-05 -179.83 6.7930E-07 131.45 
7986.3551 -6018.1502 1 .0076 2.5231E-05 95.07 3.8647E-05 108.45 6.0166E-07 62.07 
8090. 1699 -5877.8525 1 .0076 4. 1697E-05 82.71 7.0197E-05 92.56 1.2733E-06 25.36 
8191.5204 -5735.7643 1.0076 5.2950E-05 77.42 9.8718E-05 87.16 2.1954E-06 14.53 
8290.3757 -5591.9290 1.0076 5.8205E-05 73.76 1.2116E-0l. 84.60 3.2142E-06 9.84 
8386.7056 -5446.3903 1.0076 5.7529E-05 70.25 1.3607E-~ 83.22 4. 2675E-06 7.30 
8480.4809 '5299.1926 1.0076 5.1471E-05 65.88 1 . 4264E - Ol. 82.48 5 . 30l.4E - 06 5.74 
8571.6730 '5150.3807 1 .0076 4.1065E-05 58.98 1.4059E-04 82.18 6.2mE-06 4.n 
8660.2540 -5000.0000 1.0076 2.8174E-05 44.73 1.3016E-04 82.26 7.1421E-06 4.03 
8746.1970 '4848.0962 1 .0076 1. 7964E-05 6.67 1.1207E-0l. 82.80 7.8594E-06 3.57 
8829.4759 -4694.7156 1.0076 2.2445E-05 -48.29 8.7477E-05 84.08 8.3965E-06 3.27 
8910.0652 '4539.9050 1.0076 3.n63E-05 -71.85 5.7997E-05 87.20 8. n89E.06 3.10 
8987.9404 '4383.7114 1 .0076 5.3294E-05 .81.19 2.5993E'05 98.81 8.8415E-06 3.04 
9063.0778 '4226.1826 1 .0076 6. 7626E-05 '85.84 1.3373E-05 -144.53 8.7289£-06 3.10 
9135.4545 -4067.3664 1 .0076 7.8909E-05 -88.48 4.3925E'05 -113.22 8.3965E-06 3.27 
9205.0485 -3907.3113 1 .0076 8.6331E'05 '90.06 7.3684E-05 -107.95 7.8594E-06 3.57 
9271. 8385 -3746.0659 1 .0076 8.9441E-05 .90.96 9.8676E-05 -105.62 7.1421E'06 4.03 
9335.8042 -3583.6795 1.0076 8.8115E-05 -91.33 1.1700E-04 -104.08 6.2mE-06 4.n 
9396.9262 -3420.2014 1 .0076 8.2530E-05 '91.22 1.2n2E-04 -102.75 5 .3044E -06 5.74 
9455.1857 '3255.6815 1.0076 7.3142E-05 -90.54 1.2835E-04 -101.33 4.2675E-06 7.30 
9510.5651 -3090.1699 1 .0076 6.0655E-05 '89.02 1.1995E'04 '99.52 3.2142E-06 9.84 
9563.04 75 -2923.7170 1 .0076 4.5993E-05 -85.96 1.02"E-04 -96.80 2.1954E-06 14.53 
9612.6169 -2756.3735 1 .0076 3.0343E-05 -79.12 7.5800E-05 -91.70 1.2733E-06 25.36 
9659.2582 -2588.1904 1 .0076 1.5757E-05 '58.37 4.3381E-05 -77.64 6.0166E-07 62.07 
9702.9572 -2419.2189 1.0076 1.0870E-05 12.02 2.2108E-OS '7.26 6. 7930E-07 131 .45 
9743. 7006 -2249.5105 1 .0076 2.0637E-05 52.29 5.3923E-05 49.51 1.1268E-06 154.90 
9781.4760 -2079.1169 1.0076 3.1325E'05 63.33 9.9015E-OS 61.14 1.4832E-06 162.81 
9816.2718 -1908.0899 1 .0076 3.9555E'05 68.00 1.4459£'04 65.72 1.6822E-06 166.54 
9848.0775 '1736.4818 1.0076 4.4562E-05 70.57 1. 8688E'04 68.25 1.7191E-06 168.63 
9876.8834 '1564.3446 1 .0076 4.6145E-05 72.25 2. 2294E'04  69.97 1.6081E-06 169.90 
9902.6806 '1391. 7310 1.0076 4.4450E-05 73.53 2.5019E'04 71. 29 1.3753E'06 170.66 
9925.'615 -1218.6934 1 .0076 3.99Q8E'05 74.67 2.6644E-04 72.45 1.0555E'06 171.03 
9945.2189 '1045.2846 1 .0076 3.3197E-05 75.92 2.7006E'04 73.58 6.8951E-07 170.96 
9961 .9469 '871.5574 1.0076 2.5183E-05 77.63 2.6010E'04 74.80 3.2107E-07 169.84 
9975 .6405 -697.5647 1.0076 1.6860E-05 80.63 2.3640E-04 76.27 1.3989£-08 53.15 
9986.2953 -523.3596 1 .0076 9.2964E-06 87.75 1.9971E-04 78.31 2.5379E-07 -6.02 
9993.9082 -348.9950 1. 0076 3.7983E-06 113.61 1.5178E-04 81.64 3.8738E-07 -8.31 
9998.4769 '174.5241 1.0076 2.7381E'06 -179.41 9.5733E'05 88.89 3.8681E-07 -11.47 
***** DATA CARD NO.9

***** DATA CARD NO. 10
XQ
EN
o
o
o
o
o
o
o O.OOOOOE+OO O.OOOOOE+OO O.OOOOQE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+O
o O.OOOOOE+OO O.OOOOOE+OO O.OOOOQE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+O
RUN TIME. 19348.800
B-23

-------
APPENDIX C
AUTOMATED MEASUREMENT SYSTEM

THEORY OF OPERATION
C.1
An RF electric or magnetic field is a vector quantity which may
have components in three orthogonal directions. The approach
used is to always measure these three orthogonal components of
the field. The square root of the sum of the squares of the
components is the field strength. To achieve this measurement,
an antenna having an approximate short-dipole or cosine pattern
is rotated successively to three orthogonal directions, the three
powers detected by a spectrum analyzer for each orientation are
added together, and the summed power is converted to field
strength or power density by using the antenna calibration
factor. Since power is proportional to the square of the field,
this calculation is equivalent to taking the square root of the
sum of the squares of the field components.
C.2
SYSTEM DESCRIPTION
Measurements at fixed sites were made using the automated
spectrum-analyzer-based measurement system installed in a four-
wheel-drive vehicle and shown in Figure C-1. This system
consists of three antennas, cables, amplifier, spectrum analyzer,
antenna rotator system, and the controlling Hewlett Packard (HP)
9845B computer with peripherals and software.

A fiber-optically isolated spherical dipole antenna (FOISD) was
used for electric field measurements and covered the frequency
range of 10 kHz to 700 MHz. An omni-directional biconical
antenna was used for the frequency range of 0.49 to 18 GHz.
Magnetic fields in the frequency range of 0.15 to 32 MHz were
measured using a standard single turn shielded loop antenna. The
antenna calibration factors are corrected for cable loss and
amplifier gain as necessary.
The system can be operated in either of two modes depending on
the software used. In the first or spectral mode, measurements
are made by repeatedly scanning the spectrum analyzer over a
specified frequency band, taking the average or peak of these
scans, applying antenna factors, and displaying the results
graphically. The advantage of this mode is that all sources in a
specified band are measured and the data is displayed
graphically. In the second or discrete mode, the spectrum
analyzer is tuned to a pre-determined set of frequencies and the
results are printed in tabular form. This method has the
advantage of greater accuracy and speed of measurement. During
normal procedures, initial screening measurements in spectral
C-l

-------
~


. CRT
ERTON HODEL 92288-3
LOOP ANTENNA
8.15-32 11HZ
HRTKINS-J'OHNSON
HODEL HJ'8549

f~":;z ......-



15 F'T GORE-TEX
COAXIAL CABLE
188 F'T BELDEN 9318
COAXIFL CAlLE
NRNOF'RST HODEL EF'5-2
F'OISD ANTENNA IBI
-------
APPENDIX D
DETAILED NARROWBAND RESULTS

-------
-
.
..
o
.
1 Z
I ~

ILQ=}
II i
cHi ,
1~1i III
N .. ..
~ 5 ~
. i . N
-. I
~Q -
@wli.l
lai!ei~
ei~-.!3
~--;Jl
~'!I-cI
illi~i
88
FH Broadcast Band
1111
... .. . I. klta
I "',...,-8\,-
""'r...
~
~ 6111
~
...--..-----....-.----.' ... ~_._....., ...--... ---- -.-..-
58
48
I
I
!
+-1
II ~
I
!
I
!
I
!
I
IX
..
en
II
r"8quency U.fz)
   88   Low VHF TV Cch 2-6)  
           .... .. - 1. IrJI8 
           I ""v'-8\'- 
 -          ,..,.....  
 .           
 'ii            
 I            
 -            
II! ~           
lali  .           
. ..             
.. fJ             
-.III            
!~il~            
ei -,            
~ - -I]  51          
~iI!i  a " . " . ;:;: " . " . .
 ci i & D  i r:; ii & 
     ''''-' 0ItI)    
0-1

-------
   68  High VHF TV Cch 7-13)
          .... .. - I. kHl
          I "''''12.''-
 ...         Awl''''
 .        
 ..         
 0         
 .         
 -         
1 -;         
...         
.          
I ~         
jr ~        
iElli:  .        
"" ...          
E 8          
. I ""         
1~1i:1~         
~r.         
s e=         
~i i~        I I
!lId  58     I
 ~ .. .. . . .. .. .
 !i Ii i Ii ! i Ii
     ,~ (!18)  
-
.
I

-



]1~1
I i
;:.. I
"" i -
. .,
. I- Ii
~11i:!i -
i e ~
~i iJ~
ii!I!~
il~ !J
I.
Specific UHF TV Channels
.... .. . I. IINI
I ,.,.,...",-
IW 01_1 . .
..........
u
c
.
.
78
I
.
i
..
i
.
i
.. I .
i i
,~ (!18)
..
i
.
i
~
...
a
I .
D-2

-------
File Na~e. ZOCINV
Garzoli and Sherwood Loran 35 40.47
Biconical Antenna with AMplifer
TV Video MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH55
CH57
CH59
Frequency
(MHz)
489.25
495.26
513.25
525.24
531.25
543.26
561.25
567.26
621.24
657.25
669.25
681.25
706.25
717.25
729.25
741.25
*
Px
(dbM)
Py
(dBM)
pz
(dBM)
-15.79 -9.33 -12.b8
-27.35 -28.50 -27.53
-33.20 -50.95 -35.22
-24.13 -11.22 -15.94
-29.57 -30.27 -36.85
-10.35 -9.72 -19.b6
-30.94 -11.48 -19.20
-28.76 -34.36 -29.18
-56.81 -47.48 -54.51
-13.91 -8.28 -21.76
-25.50 -41.27 -39.b2
0.74 -6.46 -10.46
-40.89 -52.67 -54.18
-47.13 -41.82 -45.56
-33.25 -34.65 -50.83
-31.67 -40.88 -43.b9
119 14.46
Total
Power
(dB",)
-7.0b
-22.99
-31.04
-9.79
-26.48
-6.78
-10.76
-25.37
-46.29
-7.08
--25 . 23
1. 77
-40.42
-39.47
-30.84
-30.94
Antenna
Factor
(dB)
3.10
2.87
2.20
1. 79
1.59
1.21
.b9
.52
-.72
-1.34
-1.51
-1.b6
-1.92
-2.02
-2.11
-2.18
03/09/89
*
Electric
Field
(dBuV/,.,)
99.05
82.88
74.17
95.00
78.12
97.43
92.93
78.16
55.99
94.58
7b.27
103.11
bO.b5
b1.51
70.05
69.88
Total Video Power Density.
i ,21 PM
Power
Density
(nW/cMA2)
2.13056
.05143
.00692
.83821
.0l7i9
1.41>812
.52065
.01734
.00011
.76209
. 0 1123
5.42514
.00031
.00038
.00269
.00258
---------
4 dB ~ubtr.cted froM peak electric field to obtain RMS electric field
11 .25494
TV Audio MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH55
.CH57
CH59
F'r.,quency
(MHz)
493.75
499.76
517.75
529.74
535.75
541.16
565.15
511.16
625.14
661.15
613.75
685.15
709.75
721.75
733.75
745.75
Px
(db...)
-24.65
-36.20
-48.44
-35.83
-34.58
-20.85
-34.28
-36.69
-70.00
-21.65
-38.87
-18.62
-43.95
-57.59
-45.68
-39.21
Py
(dB",)
Pz
(dB,.,)
-20.56 -23.88
-42.20 -37.42
-48.02 -50.31
-20.31 -27.38
-42.04 -43.68
-18.44 -30.91
-18.50 -24.15
-49.63 -39.37
-61.15 -68.82
-19.35 -23.94
-47.29 -45.72
-24.60 -26.68
-52.09 -54.06
-49.33 -58.14
-47.02 -59.73
-60.31 -56.09
Total
Power
(dB,.,)
-17.88
-33.18
-44.04
-19.43
-33.43
-16.32
-17.36
-34.68
-60.01
-16.48
-37.57
-17.13
-42.98
-48.26
-43 . 19
-39.09
Antenna
Factor
(dB)
2.93
2.70
2. OS
1.64
1.45
1. 08
.56
.40
-.81
-1.40
-1.57
-1.72-
-1.95
-2.05
-2.14
-2.20
Electric
Field
(dBuV/I'I)
92.05
76.52
65.00
89.21
75.02
91.76
90.20
72.7:3
46.19
89.12
67.87
88.16
62.07
56.69
61.67
65.71
-Total Audio Power Density:
D-3
Power
Densi ty
(nW/cl"I"2)
. 42SS0
.01191
.00084
.22123
. 0 () 042
.39798
.27775
.00497
.00001
.2j.647
.00162
.17353
.00043
.00012
.00039
.00099
---------
1.74216

-------
-
.
..
o
.
1 .;!
i s
0.1=1
I ,
. ,
;1= ~
C8 S N
'al :.1
'w!c I
C'J -li';-
.~ ......
E 0:8-
ai ;!~
S - -!!IJ]
i8!1-
illis.i
98
Use~ Definable Band
IBM .. . I. kHI
I ""v'",,-
""'r...
88
78
.'-----.-----'-'''---0 a "'.---. ....-.......---
i
.
88
58
.8         
. . ., 8! .. . . .. . ~ !!I
 .. ... ... ..  .. !! !! - 
  - 
    ''''''''' ..lid    
...
i

-

1 :
ll~i
II i ~
I:ti I' .
. ...


!~!,~
e~~iJ;
~lIbj
18
User Deflnab1e Band
78
""..kHI
I ""v'..,,-
""'r...
II
18
58
..
..
.
!!
N
-
~
!!
!!
N
N
:;
rre.,.ncy nlll)
D-4

-------
  188    User Definable Band  
~J           .... .. - t IIta 
          I "'lvl..,,- 
 98         ,..,.~...  
.-             
=-             
.ii             
'1~!  88           
if 8-"              
:: I;!             
- ,.             
~ilj ~ 78           
,.;;.!. >            
@dl ... ~            
.            
13li~ " 68           
15.             
ici~18  58           
I..; !8             
i~lj~  48           
~i ...             
; 111;:1             
:Uli  38           
  I - N COt .. 1ft II .... . en I
  : en .. 81 " .. I ..
  .. 1ft C8 .... .... - en
      r...quency Ctltz)    
co
N8
N:i
-f
:-
if .ii
-'1~!
-......
cii:":
II '" ..
cftr"';~
~ilji

-'.
IUI;,.
i1i~!
i .Ii~=
i:~il5
~~;j5~
z-~ I.'"
i~~;j;
illljj
78
User Definable Band
&8
11M .. - 38 kHz
3 "'1.~lz."-
,..,.~...

Ext "'taft - -n.7 ..
58
~
~
G
48
-_... .. .e. .
38
28
..
Ii
. ...
i ii
.
i
- - -
. . .
iI I
r....-y 1l1li)
...
i
..
i
..
i
D-5

-------
...
"'.
. c
"'0
-,.
en -
=-
..
-::ti
18 .-
.-..
...a
!Sf lit!
"'a. ...

'IIi
~cII -' en
8 ...
.;;1
"'i~
II t.
..Ia ~ ~ ~
. IS:::
=':; i ~
!il~~#~
Ii ~ i ;
i~ II ~
=~ -' i &
~
~ 88
,
118
User Definable Band
188
98
78
68
58    I   I  I
... . ... . .. !! ~ ... . .. !!
 ..; .n .. ..  - ci i !! 
  - 
    F'...-, (CHI)    
..
"!!
NO
-,.
en-
=-
..
.. c
......0
I:;~
.. .
IftClIft&..C)I
,;; f "''; ~
'i I i ~
:dI ii!
II : i ~
j~ ~ i j I
!-;-i-
::8li fti iE
illtl!~:
!i!--!!I11
15 !I:c!
=1 ~ i j j
78
User Definable Band
"" .. . I. ....
3 PIIlarlu\t1lft8
I'll'"
58
48
-+-+---+- +- -f-_.. +--+--+-+--~

- N ~ .. ~ w ~ . ~ N
. -= ..: ..: ..: ..: -= ..: ..:
F...qu.ncy UiHz)
0-6

-------
...
N.
. C
NO
-u
I
"'-
::ID
z: ..
C1. "C
.......0
aI . .-
-11-"
- .... U
... .
u It> ..
.0 Pt-
"'.. "0
~C1.i-
... .~A
~5....
&leX .~
III;;
It>"'~
! 1!5 Ii
! .~1!!
....Qi~~
~w;j~5
%':i~;
t:;~ :=
z..... Z~
~
~Ibta~
i--!J
1I!~!lcJ
~i~ :
Q~"" &
.
"-
>
::I
CD
'a
88
User Definable Band
118. III - 3 -
3 Pal..lz.\ton.
","ok
78
68
58
48
38
-+..-+-.+---+..+-..+-+-+'.+.--1
Cen\er . 1.89 Qiz (2 Itiz/DIV)
co
~I
-f
::iIi
f"ll~i
...... .-
CIt......
-.... ..
... .
.g:g~
eft.. "II
~~ij
~Ii~
iii eX .~
;r;
Ili~
i II~
cii'irl
jwd18
~':;i.!
~!n:l~
i1bt;:
lI!i!IJ
~I~ij
.
"-
~ 68
CD
"D
98
User Definable Band
AN .. - 3 ....
3 Pal..lz.\ton.
"'"-

Ex' ""... - -21." If.
88
78
58
48
38
+.+-+-.+-..+..+-+-+-1
Center. 1.125 GHz (1 Itiz/DIV)
D-7

-------
File NaMe. ZaCCSE
McFarland a1 El"o .nd Driver Loran 35 41.33
8iconical Antenna with A"'plifer
TV Video He.sure",ents
Cdl
Sign
CH17
CH18
CH21
CH23
CH2~
CH26
CH29
CH30
CH39
CH"S
CH~7
CH~9
CH53
CH55
CH57
CH59
Frequenc~
(MHz)
489.25
49S.26
513.25
52S.24
531.25
543.26
561.25
567.26
621. 2..
657.25
669.25
681.25
706.25
111.25
729.25
7~1.25
Px
(db",)
-17.22
-37.46
-45.90
-20.16
-39.84
-15.64
-39.64
-38. 17
-49.64
-14.56
-39.52
-17.27
-58.00
-45.&2
-46.83
-"4.18
P~
(dEl",)
-16.96
-28.50
-3".24
-31.16
-31. 25
-13.54
-21.16
-28. &8
-50.76
-36.11
-28.54
-6.69
-48.32
-&2.&7
-43.18
-34.85
pz
(d8",)
-24.48
-36."2
-44 . 11
-21.48
-41.14
-30.21
-30.57
-34.96
-56.21
-20.97
-43.51
-22.05
-61.41
-60.83
-55.36
-49.87
119 12.26 x n-s. y e-w. z vert.
6.04 PM
Total
Power
(dB",)
-13.10
-27.40
-33.56
-11.12
-30.36
-11 .40
-21.16
-21.38
-46.64
-13.64
-28.08
-6.21
-47.69
-45.41
-41.44
-34.25
Antenna
Factor
(dB)
3.10
2.87
2.20
1.19
1.59
1. 21
.69
.52
-.72
-1.34
-1.51
-1. 66
-1.92
-2.02
-2.11
-2.18
03/01189
*
Elec tdc
Field
(dBuV/",)
92.40
78.47
71.65
81:08
74.23
92.82
82.53
76.14
55.63
88.02
73.~1
95.13
53.39
S5.5?
59.45
66.51
Total Video Power Densit~1
Power
Density
(nW/cl'I"'2)
.46148
.01865
.00387
. 13526
.00703
.50151
. 04747
.01091
.00010
. 16820
.00582
. 86<445
.00006
.00010
.00023
.00120
---------
*
4 dB subtr.ct.d fro", pe.k electric field 10 obt.in RHS electric field
2.23233
TV Audio H..sureMents
C.ll
Sign
CH11
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH..5
CH47
CH..9
.CH53
CH55
CH57
CHS9
Fr.qu.nc~
(HHz)
493.75
~99.76
517.75
529.14
535.15
541.76
565.15
511.76
625.14
661.75
673.75
685.75
709.15
721.75
733.75
145.15
Px
(db",)
P~
(dB",)
-29.45 -22.33
-49.72 -40.10
-56.31 -42.99
-33."4 -32.36
-45.98 -31.14
-32.48 -27.24
-27.06 -29.39
-58.68 -40.09
-59.18 -67.44
-31.05 -25.85
-51.18 -36.99
-34.38 -21.64
-61.03 -48.86
-57.11 -62.12
-57 . 10 -64. 92
-1313.16 -44.213
pz
(dB",)
-29.113
-46.12
-51.59
-35.93
-45.78
-38.42
-34.68
-47.00
-66.44
-34.813
-49.99
-46.46
-62.71
-75.71
-65.15
-60.48
Total
Power
(dB",)
-20.86
-39.32
-42.25
-28.90
-36. 11
-25.86
-24.61
-39.24
-58.36
-24.30
-36.62
-26.16
-48.44
-55.81
-55.96
-43.82
Antenn.
F.ctor
(dB)
2.93
2.70
2.05
1.64
1.45
1. 08
.56
.40
-.81
-1.40
-1.57
-1.11
-1.95
-2.05
-2.14
-2.20
Electric
Field
(dBuV/",)
89.07
70.38
66.19
19.14
12.34
82.22
82.95
68.17
47.83
81.29
68.82
78.53
56.61
49.07
48.91
60.98
Total Audio Power Density.
D-8
Power
D.nsH y
(nW/c","'2)
.21389
.00290
.00127
.02501
.00454
.044213
. 05231
.0017"
.00002
. 0357..
.00202
.01891
.00012
.00002
.00002
.00033
---------
.40315

-------
El",o and Driller
Loran 35 41.34
119 12.26
Loop antenna band setting
4
03/08/89
AM Radiofrequency Measure",ents Using Loop with AMp
     Total
Call Frequency Px Py pz P ower
Sign (kHz) (db",) (dB",) (dB",) (dBM)
KERI 1180 -28.52 -32.01 -46.83 -26.87
KXEH 1590 -38.25 -38.41 -SS.29 -35.28
Antenna
Factor
(dB)
Magnetic:
Field
(dBuV/M)
20.63
19.09
100.76
90.81
Total Power Density:
Total Magnetic Field (MAl",):
File Na,.,e: ZOCHRi
5 ';54 PM
Power
Densi ty
(nW/cl'I"2)
3 . 1 5948
.31966
---------
3.47914
9.60824
E 1,.,0 and Dr iller
Loran 35 41.34
119 12.26
Loop antenna band setting
3
03/08/89
AM Radiofr.quency Measurel'lents Using Loop with AMp  
       Total Antenna Magnetic:
Cdl Frequency Px Py pz  Power Factor Field.
Sign (kHz) (db",) (dB",) (dBI'I) (dB",) (dEl) (dBuV/I'I)
KCHJ 1010 -48.60 -49.58 -86.20 -46.05 23.06 84.01
Total Power Density:
Total Magnetic Field (",AI",):
File Nal'le: ZOCHRI
D-9
S :37 PM
Power
Den sit y
(nW/cM"2)
.06671
---------
.06671
1.3304S

-------
f
III
...
....
CD
N
...
~i
... .
."'.
. --
. .IJ
.",8
ff::;
!:CL .... C;;
-. 1ft en
"':5":..
,JI ~ .
. ~I
~48 -
!;Ion I~

...J .
~
'I
::I ca....
I!jQ ~ .3 ~
I~ i 1 ~
.~ e"'.!
e~ ~ .. -
... -II.
~i ~ Q :
. III ...
-- -5 ~
II ! I c3
~I ~ i i
59
User Definable Band
R.. III . I kHz
3 Po'a~lza\lo"a
Ave~ag.
£x~ R\~." . e dB
49         
! .. !! .. ~ ~ ... 1ft .. .. I
! ! .. ! .... .;
N .... N N
  1:1   II 
    f''''-J' (kill)    
  B8    User Deflnab1e Band   
f          Rae .. . 1 kHz
..          3 PoI.rl..".... 
...          Aver...  
....           
18  78        Ex' '" . 8 II 
~1             
... .             
.N.             
i:i             
I: =;  68           
II~ -            
~... .            
-. '" at            
iJ;~ ~            
:»            
:R :c=!! ID            
'W            
11  58           
i~ mIl             
IWI]  48           
t~ I .!            
! ..-             
-II.             
~i ~ ;:1             
iUI!  38           
  I . II . !! . . ! . . 91
  I¥ .. ~ .... I"t ~
  N I"t . . . on on In
~ ~ &       rrequency (kHz)    
       D-lO      

-------
  9B          
f            
III            
,.            
""            
..  SB          
N            
,.            
::;5            
,..            
a:.NG            
.--  7B          
. ...           
IS .... .           
.. - °            
-c>- 1:            
..... 11\            
~ -            
. ..lit U            
~j:::~ ~ 6B          
~cH.'" :0          
.           
1iI1D~~! ...           
~I at            
~.            
"N            
~ ...18..  5B          
""f            
j:~~j-            
;wi1i[1!            
~ - c: G -            
>-i""~.!  48          
...I~ .....-           
ii~~!~            
--~1i  38          
I~lil"'.           
il~ ~j  . !!! 5 ... II I .. E ! ! !
 .. I:! ... ;;
     '.....-Y 1kHz)    
User Definable Band
118. .. . 3 kHz
3 lartza~lon8
Av 88-

Ex "'~8n - II dB
...-...._--
  118           
f             
...  188           
..            
""             
..             
N             
..  98           
::;1             
...             
a:.N.             
.--  88           
:11:"''1            
-8:°1             
..... III             
~ -             
. ....  78           
'r'!"'~ ~           
-":8            
~cH.'"            
1iI11Q!~ II 68           
I~:!:             
t i~  58           
j:a;J-1             
5lwi I  48           
~~IJE.!            
...15 --!-  38           
ii~i ~            
""]1  28           
I1I1 ~   - =! "! ~ =! :: ~ 1i . ~ ..
i ~ !j   N
  - -   - N N 
      '''''-' Ilia)    
User Definable Band
111M IN - 3 kHz
3 Pa'arln".8
Avera,-

Ex' "'un - , dl
-------...
D-11

-------
!  
CD  
...  
""  
cD  
...  
...  
~i  
...  
.....  
.--  
:..."  
fU-u  
0-  
.. III  
laD. -  
-. ~I:C ! 
ioi ,,: " "8
fIe~! ~ 
I~  
~.  
iQ ~ JI  
IW i.t::8  
. ~ -  
t~ I"'.!  
,r ...-  
... -...  
~i ~ ;;  
ft.. ~  
18 ! I cZ  
~I~ i  
58
User Definable Band
Roo. at - 18 kHz
3 Pal.rlz \Ian.
Awr...

Ex' Au." - 8 dl
38          .-4
- I¥ ~ Ie I ... ... : I ~ ...
..; .. . .;
..; aU aU aU .. .. .. .
    r~ (Iftr)    
!             
III             
...             
""             
=:             
f ~1  58           
.. .             
... .....             
.,.--             
.;;:..."             
u- 0             
.0- 1:             
...t III             
il~~i ~ ..8           
8''''''           
I.!! .            
i ~i~             
1 ~ I J il  38           
*. 1i -             
~I" .             
~,r "i~             
~i~i~J             
1-.]1  28           
II!I &   - 13 I I: I Ie I - :: ~ .
~I~ !i    ..
  .. .; .; wi wi .. .. ~ ... ~ 
      r....-, (Iftr)    
68
User Deftnable Band
11M .. - 18 kHz
3 '.rl.."DfI.
n88
-----
0-12

-------
CD
N
...
f ~ i
... .
- eN.
"'.--
~:...i
.. - ..
.0- I}I
cn~ «D)f
~IL..;;;..
.."!"'~
'<:' i_.. "
lacS"'"
~I'
III -W

::t"'I::~
is ..J8CD
....-
IQ;~",~
a."'i1i~8
e - C8-
>-e""".
~~~...~=
........ -01.1-
~i~a33
III......
!i!--S5r
i~!IIIIc!
~~~ ~i
..J5..J ...a
f
III
...
"
98
User Definable Band
B8
1188 III . 38 kHz
3 "" 1.~tz."Dft8
Rv8~"8

E.~ ""8n . 8 de
78
.......--..-
-.---.....-."'---"''''-
~
II
68
S8
48
38         
. ~ .. .. ~ II  II ~ .. ..
 .; .. :i .. ~
 .  !!!  !!i :i =: ~
    r....-or (lib)    
-
.
.
..
.
....-
N-
... ."
.N'"
. -
. .
3~~
fo -
.~ ..!
-. CWI-
.i..:..

;:i:


..J8

i~ ~ JI

ew I!i 1i
e. c-
t~ 1:=
~i ~ i ~
:Ulj
78
User Definable Band
118. III . 38 kHz
3 ""1.~lz."on.
Rvo~.8.
68
58
~
:>
"
II
48
38
28       I  I -j
.. !!! . ..  .. ~ 8 ... II: :=
~ !! . ::; ... ,e
 = ..; lit ..: iii
!::  ... ... ...  
    r....-,. (l1li)    
D-13

-------
   78  FH Broadcast Band
       11M IN . ,. kHz
       a 110,.,.1.."-
 .!      AYe,....
 .      
 ..      
 .      
on-      
N-      
"D o~      
ION'"      
0-   68    
!:!II.~     
'::8=>      
.. -t      
OIL '-      
!I~ ~ .     
~     
ell"  ~     
on" .     
i=j ~ 'WI     
 58    
u      
.. . N      
S~ ~ Ii      
e~.I!r;      
,II! 0 ~ -      
>...;'" i~      
-I'" -.:13      
1-~;]1  48    
.5 II cI     
I..   . .. CD !
fi g ! i   . GII GII
    r,.equency nlu)
  98  User Definable Band  
    ... .. . 18 IIHa 
    I """'1..,,- 
-    AYe,....  
0      
..  88    
0     
.     
Ia=      
11N~      
.-      
~I~~      
.. - i  11    
eeL ::     
!I~ t ~     
cI. ,   --------- ..----.-.  
I     
ill!  61    
ia ~ ~ !      
iii 18  58    
r!~I!I r;     
!5;e I::      
i~ ~; J ;  48    
'111-.   . ~ !:!I
 . . !!
  .. - 
f g jj   - 
   ""'-' c.-)  
D-14

-------
15
....
~
--
.
cri.
"'..
. .
~-
......"
.-...
.-
. .
. .....
..on:>
0..
.. .-
ILCD-
..
f h:
~cX!
CD CD!
"'-'
... .

i.1 ~
IirCii :)
... fit8
~>i...;
~;~=
... ...
....
>-''''-0
~..~~i
~~I!I~
~ ~ ..
-' -' &
.
.....
>
~
l1l:I
'a
B8
User Definable Band
78
68
58
48
+-.+-+-+-+-.+
Ut en N on CD
- CoO N "" N
- - N '" tI'I
!!
..,
Ut
r,.equency (kHz)
D-15
Ra. IN . 3 kHz
3 PGlartu\lono
Av.....
-
CD
...
..
...
..
-I-- -. -I
151
..
In
"
CD
..

-------
File NaMe: ZOCIOI
Garzoli and ElMO
Loran 35 41.32
119 14.46
Biconical Antenna with AMplifer
TV Video MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH55
CH57
CH59
Frequency
(MHz)
489.25
495.26
513.25
525.24
531.25
543.26
561.25
567.26
621. 24
657.25
669.25
681.25
706.25
717.25
729.25
141.25
*
Px
(dbM)
-8.81
-24.51
-51.73
-11 .63
-26.47
-12.81
-7.80
-30.46
-38.78
-4.34
-51.00
-15.74
-57.50
-36.64
-31.86
-40.91
Py
(dEeM)
-10.83
-30.52
-47.98
-2.90
-27.81
-16.48
-7.41
-24.74
-33.21
-5.70
-46.70
-21.25
-59.42
-32.30
-41.11
-51.71
pz
(dB,.,)
-15.43
-30.43
-52.87
-15.42
-40.68
-22.58
-12.39
-34.80
-46.66
-21.76
-49.16
-31.20
-64.43
-54.81
-48.78
-52.61
Total
Power
(dBM)
-6.15
-22.73
-45.56
-2.14
-23.98
-10.95
-3.92
-23.38
-32.00
-1.91
-43.82
-14.57
-54.84
-30.92
-35.95
-40.30
Antenna
Factor
(dB)
3.10
2.87
2.20
1.79
1. S9
1.21
.69
.52
-.72
-1.34
-1.51
-1.66
-1.92
-2.02
-2.11
-2.18
03/09/89
*
Electric
Field
(dBuV/,.,)
99.96
83.14
59.65
102.65
80.61
93.27
99.77
80.14
70.28
99.75
57.67
86.77
46.24
70.06
64.95
60.52
Total Video Power Density:
2: 08 PM
Power
Density
(nW/cMA2)
2.6Z~56:l
.05465
.00024
4.87916
.03052
.56260
2.51295
.02740
.00283
2.50502
.00016
.12618
.00001
.00269
.00083
.00030
---------
4 dB subtracted froM peak electric field to obtain RMS electric field
13.33114
TV Audio MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH55
.CH51
CH59
Frequency
(MHz)

493.15
499.16
517.15
529.14
535.15
541.16
565.15
511.16
625.14
661.15
613.15
685.15
109.75
121.75
733.75
145.15
Px
(db",)
-11.31
-35.43
-60.35
-19.11
-35.03
-21.85
-16.93
-48.85
-51.83
-16.89
-55.18
-34.73
-53.89
-48.81
-51.05
-48.23
Py
(dBM)
pz
(dBM)
-17.92 -21.73
-44. 13 -42.45
-60.35 -60.84
-12.44 -32.72
-52.04 -50.45
-28.18 -36.33
-8.66 -18.44
-57.12 -55.50
-51. 96 -61. 46
-12.55 -36.49
-56.06 -54.54
-43.11 -43.43
-61.68 -63.74
-44.80 -67.58
-53.93 -68.04
-56.15 -56.81
Total
Power
(dBM)
-13.83
-34.18
-55.74
-11.57
-34.82
-24.69
-7.68
-47.56
-48.65
-11 . 18
-50.44
-33.73
-53.30
-43.35
-4'i' .19
-41.09
Antenna
Factor
(dB)
2.'i'3
2.70
2.05
1. 64
1. 45
1. 08
.56
.40
-.81
-1.40
-1.57
-1.71
-1.'i'5
-2.05
-2.14
-2.20
Electric
Field
(dBuVht)
96.10
75.52
53.31
'i'7.07
73.62
83.39
99.89
59.84
51.54
94.42
54.99
71.56
51.74
61. 60
55.68
57.71
Total Audio Power Density:
0-16
Power
Den sit y
(nW/c/'lA2)
1.08095
.00945
.00006
1.35171
.00611
.05783
2.58519
.00026
.00015
.73420
.00008
.00380
.00004
.00038
.00010
.00016
---------
5.83047

-------
Garzoli and ElMO, Loran 35 41.32
119 14.41
Loop antenna band setting
3
03/10/89
1.36 PH
AM Radio~requency MeasureMents Using Loop with AMp    
         Total Antenna MaQnet1c Power
Call Frequency Px  Py pz Power F='actor Field »ensi ty
Sign (kHz) (dbM) (dBM) (dBM) (dBM) (dB) (dBuV/",) (nW/c","2>
KCHJ  1010 -4'7.01 -49.36 -6'7.66 -44.99 23.06 85.06 .08510
              ---------
        Total Power Density:  .08510
        ToUI Magnetic Field <"AI",) I 1.50272
File N.Me. ZOCJNk            
Garzoli and EIMOt Loran 35 41.32 119 14.4'7     
Loop antenna band setting
4
03/10/89
1.39 PH
AM R.diofrequency HeasureMents Using Loop with AMp   
       Total Antenna MaQnetic Po w.r
Call Frequency Px Py pz Power Factor Field »ensi t)'
Sign (kHz) (dbM) (dBM) (dBM) 
KERI 1180 -25.50 -33.65 -45.'76 -24.85 20.63 102.18 5.03422
KXEH 1590 -33.81 -45.81 -5'7. 48 -33.58 19.09 92.50 .4'7199
           ---------
      Total Power Dens1ty.  5.50621
      Total Magnetic F1eld <"AI,,). 12.08'7<44
File Na,... ZOCJNn         
File NaMe. ZOCJLr         
Garzoli and ElMO Loran 35 41.32 119 12.4'7    
FOISD          03/10/89 11 .43 AM
     Total Antenna Electric P ower
Call Frequency Px Py pz Pow.,. Factor Field 0.n5i ty
Sign (kHz> (db",> (dBM) (dB",) (dB",>  (nW/c","2)
KCHJ 1010 -61.'74 -50. 1 '7 -31.16 -3'7.50 10.10 80.20 . 02'71'7
K E;,R I 1180 -41.88 -33.54 -18.21 -18.0'7 10.10 99.63 2.43'788
KXEt1 1590 -48.91 -42.56 -29.50 -29.24 10.'70 88.46 . 18592
        ---------
     Tot.l Pow.,. oensity. 2.6515'7
D-17

-------
Garzoli and El~o, Loran 35 41.32
119 14.47
Loop antenna band setting
3
03/10/89
1,11 PH
AM Radiofrequency l'1easure~ents Using Loop with A~p
       Total 
Call Frequency Px Py pz  Power 
5ign (kHz> (db~) (dB~) ( d B~) (dB~) 
R-10 6155 -28.27 -29.51 -48.66 -25.81 
Antenna
Factor
(dB)
Mallnetic
Field
. (dBuV/~)
Power
Density
(nW/c~"2)
14.56
95.75
.99589
---------
Total Power Density.
.99589
File Na~e: ZOCJN~
Total l'1allnet1c Field (~A/~).
5.14059
File Na~e. ZOCJME
Garzoli and El~o, Loran 35 41.32
119 14.47
FOI5D
03/10/89
12.04 PH
     Total Antenna Electric Power
Call Frequency Px Py pz Power Factor Field Dens i t Y
8ign (kHz) (db~) (dB~) (dB~) (dB~) (dB) (dBuV/..> (nW/c~"2)
R-10 6155 -44.59 -33.56 -21.88 -21. 57 10.70 96.13 1.08735
R-02 9915 -59.91 -49.48 -39. 16 -38.74 10.70 78.96 .02087
R-03 11740 -62.26 -46.99 -35.74 -35.42 10.70 92.28 .04497
        ---------
     Total Power Density. 1.15310
G.rzoli and El~o. Loran 35 41.32
119 14.47
Loop antenna band .ettinll
3
03/10/89
1.26 PH
AM Radiofrequency Hea.ure..enttl Using Loop with A~p  
      Total Antenna HavneUc
Call Frequency Px Py pz Power Factor Field
5ign (kHz) (db..) (dB..) (dB..> (dB..> (dB> (dBuV/..>
R-03 9765 -34.96 -33.34 -60.12 -31.06 13. OJ 88.91
Power
Densi t y
(nW/c.."2)
.20941
---------
Total Power Density.
.20941
2.35723
File Na.... ZOCJNa
Total ".9netic Field (..A/..).
0-18

-------
File N.~e, ZOCJM9
C.rzoll .nd El~o. Lor.n 35 ~1.32
FOI5D
119 1".~7
03/10/89
12 . 32 PH
     Toul Antenn. Electr1c Power
C.ll Frequency Px Py PI Power F.ctor Field Density
5i9n (kHz) (db,.) (dB",) (dB,.) (dB",) (dB) (dBuV/,,) (nW/c,,"2)
R-03 9765 -53.09 -43.26 -32.15 -31.79 10.70 85.91 .10334
         ---------
     1otl1 Power D.n.1t,. .1033~
C.rzoli .nd El,.o, Lor.n 35 41.32 119 14.~7  
Loop .ntenn. b.nd lu.ttin9 4    
AM R.diorrequency "eulure",ent. Usin9 Lo op with A",p  
       Toul Antenn. "",n.Uc:
t.ll Frequency Px Py pz Power F .c tor Field
5i9n (kHz) (db,.) (dB",) (dB",) (dB..) (dB) (dBuV/,,)
R-02 9815 -40.84 -39.74 -&&.68 -37.24 13. OJ 82.79
R-03 11740 -37.96 -39.2'7 -64.39 -35.49 12.17 84.28
Fil. H.",.. 2DCJHT
03/10/89
1. i 9 PH
Power
Den. i t Y
(nW/c","2)
.05041
.07104
---------
Tot.l Power Densit"
Tot.l ""netic Fi.ld ("A/..),
.12145
1.79516
fM Broadcast Band
...
.
..
o
.
'"
.. -
"..~
.-...
:.~
i=>
0.:=1
I; ~
'II ,
r:1 I
i ! ...
I: ... II:
.:c=il -.
-. p-
W 1£",
.~EI!i:
~Eeo:t-
ii~;!~
I-!!I~]
fillii
18
11M .. . 18 "HI
I ~,...I.."-
........
78
~
~
...
..
88
------ --.. ..-.. --....-- --....
58
41
I
I
..
en
:I
.
en
::c
rr."U8ncy Ultz)
0-19

-------
Garzoli and Sherwood Loran 35 40.49
119 14.45
Loop antenna band setting
3
03/10/89
3.16 PH
AM Radiofrequency "easure~ents Using Loop with A~p .
Call
Sign
Frequency
(kHz)
PI
(dbI'!)
Py
(dB~)
pz
(dBI'!)
Total
Power
(dBI'!)
Antenna
Factor
(dB)
Magnetic
Field
(dBuV/I'!)
Power
Oen sit y
(nW/cl'!"2)
I(CHJ
1010
-46.49 -50.39 -83.53
-45.01
23.06
95. OS
.08488
---------
Total Power O.n.ity.
.08488
Total Magnetic Field ("AI").
1.50079
File Na~e' ZOCJPQ
Garzoli and Sherwood Loran 35 40.48
119 14.45
Loop antenna band setting
4
03/10/89
J .18 PH
AM Radiofrequency "easure~ents Using Loop with A~p   
       Total Antenna Magnetic Power
Call Frequency PI Py pz P ower Facto,. Field Oensit y
Si9" (kHz) (dbI'!) (dBI'!) (dBI'!) (dBI'!) (dB) (dBuV/f'I) (nW/c","2)
I(ERr 1180 -24.89 -31.40 -43.58 -23.97 20.63 103.66 6.16390
I(XEI1 1590 -33.54 -32. 15 -39.46 -29.34 19.09 96.15 1.25514
           ---------
      Total Pow.,. »en51ty.  1.41903
      Total Magnetic Field (",AI",). 14.03077
File Na",.' ZOCJPS         
File Naf'le' ZOCJOb
Carzoli and Sherwood Loran J5 40.48
119 14.45
FOISD
03/10/89
2 121 PH
     Total Ant.nna Electric Power
Call Frequency PI Py Pz Power Facto,. Field Densi t y
5ign (kHz) (db",) (dB",) (dB",) (dB",) (dB) (dBuV/",) (nW/c","2)
I(CIoIJ 1010 -78.75 -64.22 -37.12 -31. 11 10 .10 19.99 .02646
KERI 1180 -50.22 -39.45 -18.34 -18.30 10.10 99.40 2.30828
I(XEH 1590 -49.59 -43.54 -23.81 -23.75 10.70 93.95 .65825
         ---------
     Toul P ow.,. O.nsit,. 2.99299
0-20

-------
Garzoli and Sherwood Loran 35 40.48
119 14.45
Loop anTenna band SeTTing
3
03/10/89
2:59 PH
AM Radiofrequency Measure~enTs Using Loop wiTh A~p
      TOTal AnTenna Magnetic: Power
Call Frequency Px Py Pz Power FacTor Field Densi T}I
Sign  (kHz) (db~) (dB~) (dB~) (dB~) (dEl) (dBuV/M) (nW/c:~A2)
R-10  6155 -30.15 -36.01 -56.94 -29. 14 14.56 92.42 .46281
           ---------
     TOTal Power DensiTy:  .46281
     To"tal Magnetic Field (~A/,.,): 3.50435
File Nal'le: ZOCJ09         
File Nal'le: ZOCJOe
Garzo1i and Sherwood Loran 35 40.48
119 14.45
FOISD
03/10/89
2.30 PH
     Total Antenna E18c:tric: Power
Call Frequency Px Py Pz Power FacTor Field DIPn SiT Y
Sign (kHz) (db,.,) (dB,.,) (dBI'I) (dBM) (dB) (dBuV/,.,) (nW/cMA2)
R-10 6155 -54.27 -52.80 -29.15 -29.12 10.70 88.58 .19136
R-02 9815 -58.41 -52.77 -35.74 -35.63 10.70 82.07 .04270
R-03 11 740 -68.77 -73.99 -54.01 -53.83 10.70 63.87 .00065
         ---------
     Total Power Density. .23471
Garzo1i and Sherwood Loran 35 40.48
119 14.45
Loop antenna band setting
3
03/10/89
3.11 PH
AM Radiofrequency Measure",ents Using Loop with A",p 
       Total Antenna Magnetic:
Call Frequency Px Py pz  Power Factor Field
Sign (kHz) (db",) ( d 8M) (dBM) (dB,.,) (dB) (dBuV/",)
R-03 9765 -36.45 -41.31 -55.22 -35.18 13.03 84.85
Power
Densi Ty
(nW/cM"2)
. 08109
---------
TOTal Power Density:
.08109
File Nal'le: ZOCJPL
Total Magnetic: Field (MAl",):
1.46687
0-21

-------
File N."e. ZOCJOx
C.rzoli .nd Sherwood Lor.n 35 40.48
119 14.45
FOISD
03/10/89
2.49 PH
     ToUl Antenn. Electric
C.ll Frequency Px Py pz Power F.cto,. Field
S19n (kHz) (db") (d8") (d8") (dB",) (dB) (dBuV/..)
R-03 9765 -57.48 -55.80 -34.88 -34.82 10.70 82.88
Power
D,nsitl'
(nW/c""'2)
.05147
---------
Tot.l Powe,. D8ns1t"
. 05147
C.rzoli .nd Sherwood Lor.n 35 40.48
119 14.45
Loop .ntenn. b.nd settino
4
03/10/89
3.03 PH
AM R.diofrequency H8..ure"'8nt. Usinv Loop with A..p   
       Totd Antenn. H.vnet1c Power
Cdl Frequencl' Px Py pz Power F.cto,. Field Den Ii i t I'
51vn (kHz) (db") (dB",) (d8",) (dB",) (dB) (d8uV/..) (nW/c","'2)
R-02 9815 -36.54 -41.19 -57.46 -35.23 13.03 84.79 .08000
R-OJ 11740 -56.52 -56.73 -68.52 -53.48 12.77 66.30 .00113
           ---------
      ToUl Power Dendtl/ I  .08113
      Totd H8Ionet1c Fi8ld (..AI..) I 1.46727
File N...81 ZOCJPD         
   II  f"M Broadcast Band
       AM .. . ,. IIHI
       I P81"..,..,,-
 -      ........
 .     
 ii      
 I      
   71    
... ~      
. ~      
11~i ~     
I ~   .-........-.......-..-. -.--- 
> 61    
cB , ~    
~., ¥ ~     
.. ..      
,; ..      
'a ~I  SI    
J~li:lf:     
~d;J;      
jl!I!~  4'    
  -   
i I !i   .   
   Frequency Ultz) 
0-22

-------
File Na~e: ZDCKOu
El~o and Driver, Loran 35 41.35
119 12.25
ForSD
03/11/89
2:46 PH
     Total Antenna Electric Power
Call Frequency Pj( Py pz Power Factor Field Density
Sign (kHz) (db~) (dB~) (dB,,) (d B~) (dEl) (d8uV/~) (nW/c,,"2)
KCHJ 1010 -57.59 -57.78 -32.47 -32.44 10.70 85.26 .08897
KERI 1180 -50.60 -52.95 -19.97 -19.96 10.10 97.14 1.57490
KXEH 1590 -60.34 -63.09 -27.98 -27.98 10.10 89.72 .24891
         ---------
     Total Pow~r Density. 1.91278
El~o and Driver, Lor.n 35 41.35
119 12.25
Loop antenna band setting
3
03/11/89
:5.02 Pt'I
AH R.diofrequency He.sure~ents Using Loop wi th A,.,p  
      Toul An18nna MavneHc
Call Frequency Px Py pz Power Factor Field
5ign (kHz) (db,.,) (dIt,.,) (dB,.,) (d &,.,) (dB) (dBuV/",)
R-I0 6155 -37.71 -37.60 -67.12 -34.64 14.56 86.92
Power
Dens! t y
(nW/c",'''2)
.13041
---------
Tot.l Power Density.
.13041
Tot.l Magnetic Field (",AI",).
1.86023
File Na~el ZOCKPC
File N.,.,8' ZDCKOy
El,.,o and Driuer, Lor.n 35 41.35
119 12.25
FOIsn
03/11/89
2.50 PH
     Toul Antenn. Electric Power
C.ll Frequency Px Py pz Power F.ctor Fhld Density
5i9n (kHz) (db,.,) (dB,,) (dB",) (dB",) (dB) (dBuV/I'I) (nW/c,,"2)
R-I0 6155 -58.33 -53.10 -33.42 -33.36 10.70 84.34 .01206
R-02 9815 -55.62 -53. 09 -35.12 -35 . 01 10.10 82.69 .04924
R-03 11740 -60.16 -55.90 -38.45 -38.34 10 .70 79.36 .02287
         ---------
     Totd Power Density. .14417
0-23

-------
El~o and Driver, Loran 35 41.35
11 9 12. 25
Loop antenna band setting
3
03/11/89
AM Radiofrequency t1easu,.e~ents Using Loop with A~p  
       Total Antenna 11'0netic
Call Frequency Px Py Pz  P ower Factor Field
Sign (kHz) (db~) (dEe~) (dEe",) (dB",) (dB) (dBuV/",)
R-03 9765 -39.47 -38.99 -67. 17 -36.21 13.03 83.82
Total Power Density.
File Na",e. ZOCKPK
Total l1aonetic Field (I'IA/",).
3, 1 0 PH
Power
Den sit y
(nW/c","2)
. 06397
---------
.06397
i.30282
File Na",e. ZOCK07
El~o .nd Driver, Lor.n 35 41.35
119 12.25
FOISD
03/11/89
2 . 57 PM
     Total Antenn. Electric Power
Call Frequency Px PI' pz P ower .F.ctor Field Den sit y
5ion (kHz) (db",) (dB",) (dB",) (dB",) (dB) (dBuV/",) (nW/c","2)
R-03 9765 -58.65 -54. 09 -35.84 -35.75 10.70 81. 95 .04153
         ---------
     Tot.l Power Density. .04153
El",o .nd Driver, Lor.n 35 41.35
119 12. 25
Loop .ntenn. b.nd settino
...
03/11/89
AM Radiof,.equency "..sure~ents UsinO Loop with A",p  
      ToUl Antenn. ",onetic
Call Frequency Px Py pz Power F.ctor Field
5ion (kHz) (db",) (dB",) (dB~) (dSI'I) (dB) (dBuV/I'I)
R-02 9815 -37.75 -38.51 -65.3i -35.10 13.03 84.93
R-03 11740 -41.18 -41.22 -61.55 -3B. 17 12.77 81. 60
Tot.l Powe,. Density.
File N.",e. ZOCKPH
Tot.l ".onetic Field (",A/",).
0-24
J.07 PH
Power
o.n sit I'
(nW/c","2)
. 08253
.03835
---------
.12088
1.79094

-------
on
N
... .
.N
..-
..
....
co-
o-
..
IL
on
.....
5..:
cX"
on
~i
f ..J
- .-
~ 9 ~ -~
NW &u
..;-Ifitr-
~~;ei=
~iifi!~
--!9i1
~llljj
  68
t  
co . 
~ " 
> 
2 
" III 
.., ." 
...  
on  
"!  
  58
(
78
FM Broadcast Band
R.. .. . lee kHz
3 I'D '''''z.''on8
five....

Ex~ A\~8n . -39 dB
48
CD
CD
III
en
N
en
..
...
"'
...
CD
en
!!
aI
l»
!!
I
rrequency (Itiz)
D-25

-------
File NaMe: ZOCl?q
Driver and Sherwood
Loran 35 40.46
Biconical Antenna with A~plifer
TV Video He.sureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH55
CH57
CH59
Frequency
(MHz)
489.25
495.26
513.25
525.24
531.25
543.26
561.25
567.26
621.24
657.25
669.25
681.25
706.25
717.25
729.25
741.25
*
Px
(dbM)
-15.54
-30.91
-40.12
-29 . 17
-31.96
-9.44
-19.37
-28.25
-41.52
-10.79
-29.43
-3.01
-45.99
-43.12
-35.46
-32.90
Py
(dBM)
pz
(dBM)
119 i2.29
Total
Power
(dBM)
-5.28
-25.54
-37.87
-4.40
-26.76
-6.06
-3.65
-23.3B
-33.36
-3.69
-28.62
-1.87
-44.97
-35.92
-33.37
-32.67
Antenna
F.~cTor
(dIn
3. iO
2.87
2.20
1. 79
1. 59
1.2:1
.69
.52
'-.72
-1.34
-1.51
-1.66
-1.92
-2.02
-2.11
-2.18
03/09/89
*
Electric
Field
(dBuV/M)
100.82
8\1.33
67.3:3
100.39
77.83
98.16
100.04
80.15
68.91
97.97
72.87
99.48
S6.10
65.06
67.53
68.15
Total Video Power Density:
3:42 PM
Power
D en~; i 1" Y
(nW/cMA2)
3.20491
. 0;~.862
. 0/11 44
2.90465
.01.609
1.73480
2.67418
.0;:'.745
.00207
1.66373
.00514
2.3~-:;058
.000:1.1
.00085
.00150
.00173
---------
4 dB subtracted froM peak electric field to obtain RMS electric field
14.61784
TV Audio MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CHS5
CH57
CHS9
Frequency
(MHz)
493.75
499.16
517.75
529.74
535.75
5"??b
565.75
511.76
625.7"
661.75
613.15
695.15
109.15
121.75
733.75
745.75
Px
(dbM)
-6.16 -15.80
-28,81 -31. 76
-49.24 -42.67
-5.08 -12.87
-29.99 -33.30
-9.07 -19.92
-3.95 -17.72
-25.94 -32.57
-34.46 -44.90
-4.66 -26.31
-46.46 -36.78
-8 . 70 -18. 04
-56.67 -53.49
-31. 19 -47.95
-37.58 -58.39
-49.89 -47.60
Py
(dBM)
pz
(dB",)
-21.73 -14.81 -24.88
-40.54 -49.77 -45.16
-46.58 -58.08 -52.57
-32.19 -13.61 -22.53
-31.43 -52.42 -44.67
-20.83 -21.67 -36.34
-23.22 -10.52 -24.43
-39.40 -58.84 -44.73
-59.37 -50.66 -62.22
-19.91 -16.25 -34.87
-38.20 -54.83 -44.77
-20.91 -25.63 -38.66
-46.16 -60.51 -54.70
-52.97 -48.30 -61.77
-48.11 -51.42 -70.76
-43.33 -51.84 -53.86
Total
Power
(dBM)
-13.67
-38.88
-45.37
-13. OJ
-36.56
-18.15
-10.13
-38.25
-49.85
-14.65
-37.26
-19.59
-45.45
-46.88
-46.43
-42.82
Antenna
Factor
(dB)
2.93
2.70
2.05
1.64
1.45
1. 08
.56
.40
-.R1
-1.40
-1.57
-1.7:1.
-1.95
-2.05
-2.14
-2.20
Elec'tric
Field
(dBuV/",)
96.26
70.82
63.68
95.61
71.88
89.93
97.44
69.16
56.34
90.94
68.18
85.70
59.59
58.07
58.43
61.97
Total Audio Power Densi'ty,
D-26
Power
Densi t y
(nW/cM"2)
1.12W1
.00320
.00062
.96524
.00409
.26072
1.46995
.00219
.00011
.32965
.00174
.09845
.00024
.00017
.0001.8
.00042
---------
4 .25879

-------
File Na"'lt.
ZOCIQ5
Driver and Sherwood
Loran
35 40.46
119 12.29
FOISD
03/09/89
4: 18 PM
     Total Antenna Electric Power
Call Frequency Px Py pz Power Factor Field Densi t y
Sign (kHz) (db",) (d8",) (dB",) (dEl",) (d8) (dBuV/",) (nW/cl'I"2)
KCHJ 1010 -65.07 -58.36 -35.61 -35.58 10.70 82.12 .04320
K ERJ 1180 -49.20 -52.88 -18.96 -18.95 10.70 98.75 1.98722
KXEI'1 1590 -55.30 -50.22 -25.35 -25.33 10.70 92.37 .45762
R-02 9815 -64.22 -54.85 -37.86 -37.76 10.70 79.94 .02614
R-03 11740 -92.04 -57.67 -45.82 -45.55 10.70 72.15 .00436
         ---------
     ToUl Power Density, 2.51853
Driver and Sherwood, Loran 35 40.47
119 12.28
1 "eter
Loop antenna band slitting
3
03/09/89
1.46 PH
AM Radiofrequency l1ea.ure",ents Using Loop with Al'lp  
      Totd Antenn. H'9netic
Call Frequency Px Py pz Power F.ctor Field
5ig" (kHz) (db",) (d8",) (dB",) (dB",) (dB) (dBuVIf.)
R-10 6155 -31. 63 -31. 67 -47.50 -28.58 14.56 92.91
Power
Dens it y
(nW/c","2)
. 52620
---------
File Nal'lll' ZDCITu
Total Power Densit~,
Total "'gnetic Field (I'IA/",),
.52620
3.73661
File Na"'e. ZQCITj
Driver and Sherwood, Loran 35 40.47
119 12.28
1 ,.utter
FOISD
03/09/89
7.35 PH
     Total Antenn. Electric Powe;.
Call Frl.'quency Px Py Pz Power .Factor Field Dens i t Y
Sign (kHz) (db",) (dB",) (dB",) (dB",) (dB) (dBuV/",) (nW/c","2)
KCHJ 1010 -72.62 -54.17 -34.58 -34.53 10.70 83.17 .05501
KERI 1180 -83.50 -69.28 -44.57 -44.55 10.70 73.15 .00547
KXEI'1 1590 -56.72 -49.34 -25.66 -25.64 10.70 92.06 .42644
R-02 6155 -51.69 -43.67 -26.97 -26.86 10.70 90.84 .32157
R-03 9105 -67.67 -62.31 -47.06 -46.90 10.70 70.80 .00319
         ---------
     Tot.l Powe,. Dens1ty. .81169
0-27

-------
Driver and Sherwood, Lor.n 3S 40.47
119 i2.28
1 ,..eter
Loop antenna band .etting
3
03/09/89
7.50 PH
AH Radio~requencv Hea.ure",ents Using Loop with A",p
Cdl
5i9n
Frequencv
(kHz)
PIC
(db",)
Py
(dB",)
Pz
(dB",)
ToUl
Power
(dB,..)
Antenna
Factor
(dB)

13.03
H.gnet ic
Field
(dBuV/,,)
Power
Density
(nW/c,.."2)
R-03
9765
-47.36 -50.31 -66.39
-45.54
74.49
.00746
---------
Tot.l Power Density.
.00746
. 44485
File Na"el ZOCITy
Tot.l Magnetic Field ("AI,,),
Driver and Sherwood, 1 " above ground on tripod
Loop antenna band setting
4
03/09/89
4.49 PH
AH Radi,'reqvencv Hea.ure"ent. Using Loop with A"p
      Total Antenna Hagnetic Power
Call Frequency PIC Pv pz Power Factor Field Dens i t V
Sign (kHz) (db,,) (dB",) (dB,..) (dB",) (dB) (dBuV/,,) (nW/c,,"2)
R-02 9815 -37.38 -40."9 -65.16 -35.65 13.03 84.38' .07274
R-03 11740 -45.48 -47.64 -61.09 -43.34 12.17 76.43 .01165
          ---------
        .  
     Total Powe,. Den81t"  . 08439
     Toul "agn.tic Field (,,11/,,>, 1.4"44
'11. Ha"e. ZOCIQI.        
  II   f"H Broadcast Band
S        .... .. . .. ~
       I l1li1......,,-
--        1h8...
.       
ii        
. .        
~-  7.      
....       
.-...        
I:!        
--;-1        
.......        
.; ~ ~ II      
:~ ~ :II      
II       
f f ~        
. -        
~~ il  s.      
i~l!i;        
s;e i~        
8Ii;.:I:        
~iiil~]  41      
  . N .. C8 . 
~Ig ij   . .. .. .. 
     rrlq""oy nib)
D-28

-------
File NaMe: ZQCINw             
Kern School, Kern and 5 th, Loran 35 40.&9 119 14.00   
Biconical Antenna with Al1plifer      03/09/89 1:48 PM
TV Video MeasureMents            
               *  
            Total Antenna Electric Power 
C",il Frequency Px Py Pz Power Factor Field Density
SU;jn  (MHz) (dbM) (dB",) (dB",) (dB",) (dB) (dBuV/",) (nW/c","2)
CHi7  489.25 -14. j.O -'17.26 -19.04 -11.54 3.10 94.57 .75893
CHI.8  495.26 -26.00 -36.29 -40.59 -25.48 2.87 80.39 .02904
CH21  513.25 -35.68 --44. '78 -44.EJ6 -34.73 2.20 70.47 .00296
CH23  525.24 -25.59 -15.13 -jt.72 -1.4.&7 1.79 90.12 .27282
CH24  531.25 -25.57 -35.02 -37.07 -24.84 1. 59 79.76 .02509
CH26  543.26 -16.71 -19.99 -27.28 -14.79 1.21 89.43 .23257
CH29  561.25 -25.55 -11.16 -:i2. 84 -10.98 .69 92.71 ..4(7532
CH30  567.26 -30.37 -35.32 -46.35 -29.08 .52 74.44 .00738
CH39  621. 24 -45.40 -45.31 -52.63 -41.96 -.72 60.32 .00029
CH4S  657.25 -18.75 -14.70 -26.53 -13.06 -1.34 88.60 .19234
CH47  669.25 -35.39 -43.67 -45. 4~7 -34.43 -1.51 67.06 .00135
CH49  681.25 -11.96 -15.22 -31.10 -10.24 -1..66 91.10 .34147
CH53  706.25 -44.45 -57.53 -62.21 -44. 17 -1.92 56.90 .00013
CHS5  71.7.25 -45.39 -49.18 -57.50 -43.&9 -2.02 57.29 .00014
CH57  729.25 -38.47 -47.40 -54.29 -37.85 -2.11 63.05 .000 S3
CHS9  741.25 -35.68 -46.24 -48.77 -35.12 -2.18 65.70 .00098
                ---------
Total Video Power Density:
*
4 dB subtracted frOM peak electric field to obtain RHS electric field
2.36133
TV Audio MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CHS5
CH57
CH59
Frequency
(MHz)
493.75
499.76
517.75
529.74
535.75
547.76
565.75
571. 76
625.74
661.75
673.75
685.15
709.15
721.15
733.75
745.75
Px
(db,.,)
Py
(dB",)
Pz
(dB",)
-24.03 -26.54 -28.60
-35.59 -56.6D -43.01
-44.44 -52.32 -56.23
-46.77 -24.38 -40.92
-34.01 -46.57 -43.60
-22.71 -45.27 -33.84
-35.33 -18.83 -33.09
-40.64 -57.91 -63.77
-59.25 -65.09 -67.93
-27.38 -24.71 -30.03
-38.99 -59.77 -51.37
-28.23 -34.32 -46.28
-49.46 -63.99 -66.30
-55.97 -58.75 -68.17
-53.43 -58.56 -69.82
-43.70 -53.45 -61.77
Total
Power
(dBM)
-21.22
-34.84
-43.54
-24.26
-33.35
-22.37
-18.58
-40.54
-57.130
-22.07
-38.71
-27.22
-49.22
-53.96
-52 . t 9
-43.20
Antenna
Factor
(dB)
2.93
2.70
2.05
1.64
1. 45
1. 08
.56
.40
-.81
-1.40
-1.57
-1.11
-1.95
-2.05
-2.14
-2.20
Electric
Field
(dBuV/,.,)
98.71
14.86
65.50
84.38
75.10
85.71
98.99
66.87
48.39
83.52
66.72
78.07
55.82
50.98
52.67
61. 59
Total Audio Power Density:
D-29
Power
Den s i 't Y
(nW/cM"2)
.19702
. 0 0812
. 00094
. 07276
. 0 0859
. 09885
.21009
. 00129
. 0 0 0 02
. 05969
. 0 0 125
.01700
.00010
.00003
. 00005
. 00038
---------
.61619

-------
Kern School, Kern and 5 th, Loran 35.40.69
119 14.00
Loop antenna band serting
3
03/10/89
AM Radiofrequency Heasurel"!enrs Using Loop wirh Al"!p  
      Toral Anorenna HaljJner ic
Call Frequency Px Py pz Power Factor Field
Sign (kHz) (dbl"!) (dBI"!) (dB",) (dBI"!) (dB) (dBuV/",)
KCHJ 1010 -46.85 -50.61 -68.36 -45.30 23.06 84.15
Total Power Density.
File Na",e: ZOCJQ9
Total Magnetic Field (",AI",),
4.59 PH
Power
Densi t y
(nW/c",A2)
. 01925
---------
.07925
Kern School, Kern and 5 th, Loran 35.40.69
119 14.00
1.45015
Loop antenna band .etting
4
03/10/89
AM Radiofrequency Heasure",ents Using Loop wi th A",p  
      Total Antenna HaljJne1ic
Call Frequency Px Py pz P owe,. Factor Field
Sign (kHz) (dbl"!) (dBI'!) (dBI'!) (dBI"!) (dB) (dBuV/",)
KERr 1180 -27.42 -29.14 -50.22 -25.17 20.63 102.46
KXEH 1590 -35.41 -33.24 -48.20 -31. 10 19.09 94.99
Total Power Density.
File Ha",e: ZOCJRB
Total MaljJnetic Field (",AI",).
5. 01 PH
Power
Densi t y
(nW/c",A2)
4.61061
.83698
---------
5.50765
12.08902
File Na",e. ZOCJQt
Kern School, Kern and 5 th, Lo,.an 35.40.69
119 14.00
ForSD
03/10/89
4.45 PH
     Total Antenna Electric Power
Call Frequency Px Py pz Power Factor Field Den5i t y
Sign (kHz) (db",) (dB",) (dB",) (dBI"!) (dB) (dBuV/",) (nW/c",A2)
KCHJ 1010 -64.35 -62.26 -38.79 -38.76 10.10 18.94 .02019
KERr 1180 -43.77 -45.09 -18.35 -18.33 10.70 99.37 2.29520
KXEH 1590 -53.05 -59.66 -26.96 -26.95 10.10 90.15 .31541
        ---------
     Toul Power Density. 2.63i46
.0-30

-------
Kern School, Kern a~d 5 th, Loran 35 40.69
119 13.99
Loop antenna band setting
3
03/10/89
6.47 PH
AM Radiofrequency Heasurel'!ents Using Loop with Al'!p 
      Total An'tenn. H.9netic
Call Frequency Px Py pz Power Facto,. Field
5i9n (kHz) (db,.,) (dB,.,) (dBI'!) (dBI'!) (dB) (dBuV/..)
R-10 6155 -28.62 -31. S1 -42.31 -26.70 14.56 94.86
Power
Density
(nW/c.."2)
.81235
---------
Total Powe,. Density.
.81235
File Na",.. ZOCJSy
Total Ha9netic Field (",AI",).
4.64219
File Na..e. ZOCJ56
Kern School, Kern and 5 th, Loran 35 40.69
119 14.00
FOISD
03/10/89
6 . 56 PH
     Total Antenna Electric Powe,.
Call Frequency Px Py pz Power Factor Field Densi t y
Sign (kHz) (db",) (dBI'!) (dBI'!) (dB..) (dB) (dBuV/..) (nW/c.."2)
R-10 6155 -41.45 -39.10 -24.88 -24.63 10.10 93.07 .53816
R-03 9765 -51.10 -44.88 -35.63 -35.03 10.70 82.67 .04901
         ---------
     Total Power DenS1ty. .58717
Kern School, Kern and 5 th, Loran 35 40.69
119 13.99
Loop antenna band ..ttin9
3
03/10/89
6.42 P'"
AH Radio'requ.ncy Hea.ure...nts Using Loop wi th A..p  
      Total Antenna "'a9netic
Cdl Frequency Px Py pz Powe,. F'actor Field
Si9n (kHz) (db",) (dB..) (dB..) (dBI'!) (dB) (dBuV/..)
R-03 9765 -33.51 -39. 1 J -59.65 -32.45 13.03 87.5B
Power
Den sit II
(nW/c","2)
.15204
---------
Total Power Den8ity.
.15204
2.00B57
File N..... ZOCJSq
Total Ha9netic Field (",AI..).
0-31

-------
Kern School. Kern and S th. Loran 35.40.&9
119 14.00
Loop antenna band setting
4
03/10/89
S.03 PH
AM Radiofrequency t1ea'5UreMent5 Using Loop with AMp  
      Total Antenna Hac;jneUc
Call Frequency Px Py pz Power Factor Field
Sign (kHz) (dbM) (dBM) (dBM) (dBM) (dB) (dBuV/f'I)
R-D2 9815 -39.10 -43.16 -65.68 -37.65 13.03 82.31
R-03 11740 -36.91 -41.93 -52.78 -35.64 12.77 84.13
Power
Den sit y
(nW/cM"'2)
. 04582
.06871
---------
Total Power Density.
.11453
1.74328
File Na",e, ZOCJRD
Total t1a9netic rie1d (",AI",).
File Na",e. ZOCJRI
Kern School. Kern and 5 th. Loran 35.40.&9
119 14.00
FOISI)
03/10/89
5.08 PM
     Total Antenna Electric Pow.r
Call Frequency Px Py pz Power Factor Field I)ensi ty
Sign (kHz) (db",) (dB",) (dB",) (dB",) (dB) (dBuV/",) (nW/c","'2)
R-02 9815 -51.77 -48.55 -40.85 -39.98 10.10 17.82 .01606
R-03 11740 -51.11 -4&.32 -34.56 -34.20 10.10 83.50 .05936
         ---------
     Toul Power Density. .07542
  71    f"M Broadcast Band   
~          11M .. . I. kHI 
.          I PIIhrt..,,- 
--          IIwr..  
-           
8-             
-.             
-:             
1=             
.. . -             
-....             
...  .1           
IIIJ~            
~~=l       --....-- ..--..--...  
S            
dli. ~            
'=            
11" I            
I .             
f ...  58           
~DI :'1            
. .. I-             
WI U             
!~ Ii;             
5 e-:             
- I'"             
811;.:1:             
I-i~]  .8           
~igl!j   . . N . == . ! ! ! ! !
  - ., en .. en
      rrequency (Jtiz)    
0-32

-------
File NaMe: ZOCIPF
Browning School
Loran 35 40.93
Biconical Antenna with AMplifer
TV Video MeasureMents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH49
CH53
CH5S
CH57
CHS9
Frequency
(MHz)
489.25
495.26
513.25
525.24
531.25
543.26
561.25
567.26
621. 24
657.25
669.25
681.25
706.25
717.25
729.25
741.25
Px
(db",)
-17.24
-22.61
-31.54
-15.40
-24. 15
-14.59
-12.01
-25.34
-46.47
-15.30
-33.06
-1.09
-41.46
-49.78
-27.97
-30.72
Py
(dB",)
-19.03
-32.61
-39.08
-11. 51
-30.39
-7.18
-12.70
-32.98
-39.30
-17.21
-37.82
-10.32
-54. 15
-47.86
-51. 81
-46.38
119 13.27
pz
(dB",)
-26.87
-33.49
-40.91
-17.61
-36.62
-19.85
-29.50
-47.69
-53.60
-28.21
-43.44
-20.24
-,56.77
-53.50
-51.06
-57.98
Total
Power
(dBI'!)
-14.76
-21. 89
-30.43
-9.33
-23.03
-6.26
-9.29
-24.63
-38.40
-13.01
-31.S2
-.55
-41 . 11
-45.04
-27.93
-30.60
Antenna
Factor
(dB)
3.10
2.87
2.20
1. 79
1.59
1.21
.69
.52
-.72
-1.34
-1. 51
-1.66
-1.92
-2.02
-2.11
-2.18
03/09/89
*
Electric
Field
(dBuV/",)
91.35
83.98
74.78
95.47
81. 56
97.95
94.40
78.90
63.87
88.66
69.97
100.79
59.96
55.95
72.96
70.22
Total Video Power Density:
3 : 05 PM
Power
Densi t y
(nW/c","2)
.36165
. 0 6639
. 0 0 797
.93390
. 03802
1.65572
.73044
.02057
. 0 0 065
. 19463
.00264
3.18065
.00026
.00010
.00525
.00279
---------
*
4 dB subtracted fro", peak electric field to obtain RMS electric field
7.20163
TV Audio Measure",ents
Call
Sign
CH17
CH18
CH21
CH23
CH24
CH26
CH29
CH30
CH39
CH45
CH47
CH4'9
CH53
CH55
CH57
CH59
Frequency
(11Hz)
493.75
499.76
517.75
529.74
535.75
547.76
565.75
571.76
625.74
661 . 75
673.75
685.75
709.75
721.75
733.75
745.75
Px
(dbM)
-24.99
-30.65
-42.33
-23.20
-32. 11
-17.65
-20.21
-36.39
-61.33
-32.99
-38.38
-21 . 63
-43.27
-65.41
-46.50
-41. SO
Py
(dB,..)
-22.68
-43 . 19
-53.66
-18.92
-43.09
-22.06
-21.15
-44.56
-55.35
-30.06
-43.75
-26.26
-55.20
-57.16
-52.20
-52. 11
pz
(dBM)
-34.56
-36.87
-45.27
-27.63
-48 . 19
-30.54
-38.56
-57.62
-70.24
-33.89
-52.82
-31.27
-65.20
-65.38
-59.89
-64.24
Toul
Power
(dB,..)
-20.50
-29.53
-40.34
-17.14
-31.68
-16.15
-17.61
-35.75
-54.26
-27.22
-37.15
-20.01
-42.97
-56.02
-45.31
-41.12
Antenna
Factor
(dB)
2.93
2.10
2.05
1. 64
1.45
1. 08
.56
.40
-.81
-1. 40
-1.57
-1.71
-1.95
-2.05
-2.14
-2.20
Electric
Field
(dBuV/",)
89.43
80.17
68.71
91.51
76.77
91. 93
89.96
71. 66
51.93
78.3B
68.28
85.28
62.01
48.93
59.55
63.68
Total Audio Power Density.
0-33
Power
Den sit y
(nW/c","2)
.23256
.02758
. 0 0 1 97
.37521
.01261
. 4'.383
.26255
.00389
.00004
.01826
.00179
. 08950
. 0 0 043
.00002
.00024
.00062
---------
1.44108

-------
NE of Browning Schooll Loran 35 41.03
119 13. 23
Loop antenna band setting
3
03/11/89
AM Radiofrequency Measure"ent. Using Loop with A"p .
Call
Sign
    Total An'tenna
Frequency Px Py pz Power Facto,.
(kHz> (db"> (d8"> (dB"> (dB"> (dB>
1010 -40.e8 -41.52 -66. 15 -38.11 23.06
91. 89
Hegnetic
Field
(dBuV/">
KCHJ
Total Powe,. Density.
File Na"e. ZOCKOK
Total Magnetic Field (..AI..>.
2 I 10 PH
Power
Densit y
(nW/c""2>
.40950
---------
.40950
3.29634
NE of Browning Schooll Loran 35 41.03
119 13.23
Loop antenna band setting
4
03/11/89
AH Radiof,.equency Measure".nt. Using Loop with A..p  
      ToUl Antenna HeQneUc
Call Frequency Px Py pz Power Factor Field
Sign (kHz> (db"> (dB"> (dB"> (dB"> (dB> (dBuV/">
KERI 1180 -25.82 -33.93 -47.28 -25. 1 '7 20.63 102.46
KXEH 1590 -33.14 -34.38 -3'7.30 -29.85 19.09 96.24
Totel Powe,. Density.
Fil. Na"e. ZOCKOL
Totel Magnetic Field ("AI..>.
2.11 PH
Powe,.
Densi t y
(nW/c""2>
4.6131'7
1 . 11608
---------
5.18925
12.39421
File He"e. ZOCKNn
NE of B,.owning Schooll Loran 35 41.03
119 13.23
FOISD
03/11/89
1.39 P"
     Total Antenne Elect,.ic Powe,.
Call Frequency Px Py Pr P owe,. Facto,. Field Dens i t Y
5191') (kHr> (db..> (dB"> (dB",> (dB,,> (dB> (dBuVh,> (nW/c,,"2>
KCHJ 1010 -51.28 -53.1'7 -30.70 -30.6'7 10.'70 8'7. 03 .13389
KERI 1180 -43.04 -4'7.96 -1'7.57 -1'7.55 10.'70 100.15 2.'7433'7
KXEI1 1590 -54.41 -56.'76 -26.9'7 -26.96 10.70 90.14 .31410
        ---------
     Totel Powe,. Densi ty. 3.19196
0-34

-------
NE of Browning School, Loran 35 41.03
119 13. 23
Loop antenna band setting
3
03/11/89
1:52 PH
AM RadiofrequencV Heasure",ents Using Loop with A",p   
        Total  An tenna Hagn.tic Power
Call Frequencl' PIC PI' pz  Power  Factor Field Densi t I'
Sign (kHz) (db",) (dB,..) (dB,..) (dB",)  (dB) (dBuV/,..) (nW/c","2)
R-10 6155 -35.30 -34.35 -53.55 -31.76  14.56 89.80 . 25323
             ------~--
       ToUI Power Density.,  .25323
       Total Haonetic: Field 
03/11/89
1,43 PH
     Total Antenna Ehctr1c Power
Call Frequl'ncv PIC Py Pz Pow.r Factor Field Dens i t V
Sign (kHz) (db,,) (dB,,) (dB,,) (dB,,) (dB) (dBuV/,,) (nW/c,,"2)
R-10 6155 -51.14 -47.46 -29.13 -29.04 10.70 88.66 .19484
R-02 9815 -55.20 -54.93 -41.12 -40.78 10.10 16.92 . 01304
R-03 11740 -54.76 -50.68 -34.42 -34.28 10.70 83.42 .05831
         ---------
     Total Power Density. .26619
NE of Browning SChool, Loran 35 41.03
119 13.23
Loop antenna band setting
3
03/11/89
2.07 PH
AM Radiofr.quency H.a.ure",.nts UsinO Loop with A",p    
       Total Antenna Hagnetic Power
Call Frequency PIC Py pz Power Factor Field Densitv
Sign (kHz) (db...) (dB,,) (dB,,) (dB,,) (dB) (dBuV/,,) (nW/c,,"2)
R-OJ 9765 -43.90 -47. 25 -77.77 -42.25 13.03 71.18 .01593
            ---------
      Total Power D.nsity.  . 01593
      Totd Magnetic Field (Io,AIr,). .65006
File Na"., ZOCKOH          
D-35

-------
--
I
File Ha"e. ZOCKHx
HE of Browning School, Loran 3S 41.03
119 13.23
FOISD
03/11/89
1.49 PM
     Total Antenna Electric Power
Call Fr.quency Px Py pz Powe,. Factor Fi.ld Densi 1'y
Sign (kHz) (db,..) (dB,..) (dB") (dB,..) (dB) (dBuV/...) (nW/c",A2)
R-03 9765 -64.48 -57.79 -43.98 -43.77 10.70 73.93 .00656
         ---------
     Total Power Density I .00656
HE of Browning School, Loran 3S 41.03
119 13.23
Loop antenna band setting
4
03/11/89
1a 59 PM
AM Radiofrequency Heasure"ents Using Loop with A...p  
      Total Antenna Havn.tic
Call Fr.quency Px Py pz Pow.,. Facto,. Field
Sign (kHz) (db",) (dB...) (dB...> (dEl,..) (dB) (dBuV/...)
R-02 9815 -41.96 -44.39 -63.42 -39.98 13.03 80.05
R-03 11740 -37.86 -39.03 -59.52 -35.38 12.'77 84.39
Powe,.
Densi t y
(nW/c",A2)
. 02684
.07292
---------
File Ha...e. ZOCKN9
Total Power Density,
Total Magn.tic Field <...A/...),
.09976
1.62700
u
rH Broadcast Band
=:!
. .
:!I
.. .. . ,. IIHI
J ...,......,,-
..,....
.-
1=;e
j-I!!
.::1
III i
.~ .,
II.. ..
f I ~
lIay ':'1
::.= 1=
WI U
Ii.: !i-
~e: O::t~
ai:;!;
-j!lJ]
II~I.-
if ! !:i
7.
S
::t
.
51
----.-".--l£JJ
of.
a
I
f--+-- !
::I :; I
I
==
- I
~
I
!
+-~
! ! !
Frequency (flu)
D-36

-------