United States Environmental Protection Agency Municipal Environmental Research Laboratory Cincinnati OH 45268 EPA-600/2-79 182 December 1579 Research and Development Performance Evaluation of Existing Aerated I Lagoon System at Consolidated Koshkonong Sanitary District, Edgerton, Wisconsin ------- RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad cate- gories were established to facilitate further deve10pment and application of en- vironmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are: 1. 2. 3. 4. 5. 6. 7 8. 9. Environmental Health Effects Research Environmental Protection Technology Ecological Research Environmental Monitoring Socioeconomic Environmental Studies Scientific and Technical Assessment Reports (STAR) Interagency Energy-Environment Research and Development "Special" Reports Miscellaneous Reports This report has been assigned to the ENVIRONMENTAL PROTECTION TECH- NOLOGY series. This series describes research performed to develop and dem- onstrate instrumentation, equipment, and methodology to repair or prevent en- vironmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards. This document is available to the public through the National Technicallnforma- tion Service, Springfield, Virginia 22161. ------- EPA-600/2-79-182 December 1979 PERFORMANCE EVALUATION OF EXISTING AERATED LAGOON SYSTEM AT CONSOLIDATED KOSHKONONG SANITARY DISTRICT, EDGERTON, WISCONSIN by Lawrence B. Polkowski Department of Civil and Environmental Engineering University of Wisconsin-Madison Madison, Wisconsin 53706 Grant No. R803930 Project Officer Ronald F. Lewis Wastewater Research Division Municipal Environmental Research Laboratory Cincinnati, Ohio 45268 MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 ------- DISCLAIMER This report has been reviewed by the Municipal Environ- mental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. 11 ------- FOREWORD The Environmental Protection Agency was created because of increasing public and government concern about the dangers of pollution to the health and welfare of the American people. The complexity of the environment and the interplay between its com- ponents require a concentrated and integrated attack on the prob- lem. Research and development is that necessary first step in problem solution and it involves defining the problem, measuring its impact, and searching for solutions. The Municipal Environ- mental Research Laboratory develops new and improved technology and systems for the prevention, treatment, and management of wastewater and solid and hazardous waste pollutant discharges from municipal and community sources, for the preservation and treatment of public drinking water supplies, and to minimize the adverse economic, social, health, and aesthetic effects of pollu- tion. This publication is one of the products of that research; a most vital communications link between the researcher and the user community. As part of these activities, this case history report was prepared to make available to the sanitary engineering community a full year of operating and measured performance data for a three-celled, aerated wastewater treatment lagoon system. Francis T. Mayo, Director Municipal Environmental Research Laboratory iii ------- ABSTRACT Aerated treatment lagoons are used extensively throughout the United States to provide secondary treatment of municipal wastewaters. The data available to assess the performance of these systems are lacking partially as a result of the infrequent sampling and rather limited types of analyses performed routinely. This report presents the evaluation of the performance of a well designed, three cell aerated lagoon system over a twelve month period. The Consolidated Koshkonong Sanitary District's treat- ment system is located in Wisconsin and is subject to a climate with large seasonal variations. The treatment system performed well in removing BODS and total suspended solids as well as pro- ducing an effluent with acceptable pH and coliform counts. Mass balances indicated no removal of phosphorus over the twelve month period. The system was unable to achieve 85 percent removal of BODS and TSS at all times as a result of low influent concentra- tions during the spring. Phytoplankton concentrations in the effluent during the warm seasons also affected the removal re- sults. Changes in pH and alkalinity in the latter cells indi- cated that the bicarbonate ion served as a C02 source for the phytoplankton growth. Tracer studies showed the mean cell resi- dence time in the primary cell as being 28 percent lower than that calculated by pond volume and flow rate. Phytoplankton pop- ulations and decomposition of bottom deposits in the primary pond affected the determination of first order removal rate constants. The treatment system can meet the Federal secondary treatment guidelines as currently defined. This report was submitted in fulfillment of Grant No. R803930 by the University of Wisconsin-Madison in Madison under the sponsorship offue U.S. Environmental Protection Agency- This final report covers the period of July 20, 1975 to June 30, 1977. iv ------- CONTENTS Disclaimer. . . . . . . . . . . . . . . . . Foreword. . . . . . . . . . . . . . . . . . Abstract. . . . . . Figures. . . . . . . . . . . . . . . Tables. . . . . . . . . . . . . . . . . . . . . . Abbreviations and Symbols. . . . . . . . . Acknowledgements. . . . . . . . . . . . . . l. 2. 3. 4. 5. 6. Introduction. . . . . . . . . . . Conclusions. . . . . . . . . Recommendations. . . . . . . . . . Description of the Wastewater Collection. . . . . . . . . . . . . . . Sampling and Analyses Procedures. . . . Results and Discussion. . . . . . . . . Operating conditions and loading. . . . . . . . . . . Aerated pond performance relative to secondary treatment standard. . BOD removal rate constants for Pond No.1. . . . . . . . . . Results of physical and and chemical measure- ments . . . . . . . . Physical measurements and D.O. . . . . Alkalinity and pH . . . . . . . Organics. . . . . . . . Nutrients. . . . . . . . . . . Algal identification. . Algal assay of Rock River and Koshkonong Pond No.3 effluent. . . . . . . . . . . . . References . . . . . . . . . Appendices A. Evaluation of Pond Sampling Using Chlorophyll a . . . . . . . . . B. Summary of Daily Analyses for Measured Parameters. . . . . . . C. Algal Identification Data. . . . . . 7. 8. v ii iii iv vi ix x xi 1 2 4 5 21 30 30 35 38 44 45 45 49 53 57 58 61 63 66 110 ------- Number FIGURES 1 Consolidated Koshkonong Sanitary Dis trict . . .. .. .. .. . .. 2 3 Treatment plant layout . .. .. .. .. .. . .. Preliminary treatment and control building. . . . . . . . . . . .. .. .. . .. . 4 5 Treatment control panel. .. .. . . .. .. .. . . . Wastewater influent chamber .. . . . 6 Comminutor bypass arrangement. . . .. . . .. 7 Parshall flume flow measurement. .. . .. .. 8 Comminutor setting .. .. .. .. .. .. .. .. . .. . .. .. .. 9 10 Aeration pond system . . .. .. .. .. .. .. .. .. . . .. .. Chlorine contact tank. .. .. .. . . . .. .. .. .. .. .. .. .. 11 Stage level recorder for effluent flow measurements. . . . . . . .. . . .. .. . 12 13 Chlorine house and sampling structure .. .. .. .. Chlorine feed supply .. .. .. .. .. .. .. . .. .. .. .. .. 14 15 Blower building. . .. .. .. .. .. .. .. .. .. . .. .. .. Dual air compressor arrangement. .. .. .. .. . . .. .. .. 16 17 Rotary positive displacement blower. . .. .. .. Six ductile iron aeration laterals .. .. .. .. 18 Aeration tube arrangement .. .. .. .. .. .. .. .. .. .. .. .. .. (continued) vi Page 6 7 8 8 9 9 10 10 12 13 13 15 15 16 16 17 17 18 ------- Number 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 FIGURES (continued) Sampling structure for Pond No.2 effluent. . . . . . . . . . . . . . Sampling equipment arrangement. . . Sample timer for time composited sampling. . . . . . . . . . . .. .. . .. .. . .. .. . .. . . . . .. . .. . .. Sampling manhole and refrigerated sample storage. . . . . .. .. .. .. Pond No.1 water surface .. .. .. . .. . .. .. .. Waterline of Pond No.1 . . .. . . .. .. .. .. Pond No.2 water surface. . .. .. .. . .. .. .. . . .. .. . .. .. . . Waterline of Pond No.2 Pond No.2 outlet structure and sampling point. . . . Pond No.3 water surface. . . . . BOD concentrations vs. time for all sampling points. . . . . .. .. .. .. .. .. .. .. .. .. . .. . .. .. .. . .. .. .. .. .. .. .. . . .. . .. .. . . . .. . .. TSS concentrations vs. time for all sampling points. . . . . pH values vs. time for all sampling points. . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Fecal coliform and Fecal streptococci counts for two sampling points with respect to time . . . . . . Air temperature vs. time .. .. .. .. Influent flow vs. time. . . Water temperature vs. time for all sampling points .. .. .. .. .. .. .. vii .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. (continued) Page 22 22 23 23 31 31 32 33 33 33 39 40 41 42 100 100 101 ------- Number 36 37 38 39 40 41 42 43 44 FIGURES (concluded) Dissolved oxygen vs. time for sampling points 2-5 . . . . . . . . . . . . . . . Alkalinity vs. time for all sampling points. . . . . . . Chemical oxygen demand vs. time for all sampling points. . . Filtered chemical oxygen demand vs. time for all sampling points Volatile suspended solids vs. time for all sam~ling points. Total Kjeldahl nitrogen vs. time for all sampling points. Nitrite nitrogen vs. time for all sampling points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrate nitrogen vs. time for all sampling points. . . . . . . . . . . . . . . Total phosphorus vs. time for all sampling points. . . . . . . . . . . . . . . viii Page 102 103 104 105 106 107 108 109 110 ------- Number 13 14 15 16 17 18 19 20 21 TABLES Page 1 2 3 4 5 6 7 8 19 24 25 26 27 28 34 11 Treatment Plant Sizing. . . . . . . . Sampling Schedule. . . . . . . . . . Daily Analyses and Locations. . . . . . . . . . . Analytical Procedures. . . . . . . . . . . . . . COD Reproducibility. . . . . . . . . . . . . . . DO and BOD Reproducibility. . . . . . . . . . . . Summary of Treatment System Loading During Test Period. . . . . . . . . . Treatment Performance Relative to the 1977 Secondary Treatment Standards. . . . . . . . . . . . . . . . . . BOD Removal Relationship for Primary Pond. . . . . . . . . . . . . Mean Results for Each Sampling and Each Sampling Point (Water Tem- perature, pH, Alkalinity, and D.O.) . . . . . Mean Results and Performance for Each Sampling Period and Each Sampling Point (BOD5, COD. Filtered COD, TSS and VSS) . . . . . . . . . . . . . . . . Mean Results and Peformance for Each Sampling Point (TKN, NH3-N, Total P, N02-N and N03-N) ...... . . . . . . . . Algal Assay Results. . . . . . . . . . . . . . . Daily Results for Water Temperature, Air Temperature and Flow . . . . Daily Results for pH and Alkalinity . . . . Daily Results for BOD and COD. . . . . . . . . . Daily Results for TSS and VSS . . . . . . . . . . Daily Results for TKN and Ammonia Ni trogen . . . . . . . . . . . . . . . . . . Daily Results for Nitrite Nitrogen and Nitrate Nitrogen. . . . . . . . . Daily Results for Total Phosphorus and Filtered COD. . . . . . . . . . . . . . Daily Results for DO and Fecal Coli and Fecal Streptococci. . . . . . . . 92 96 9 10 37 43 46 50 12 54 59 68 72 76 80 84 88 ix ------- ABBREVIATIONS AND SYMBOLS ABBREVIATIONS BODS cfm cm COD °C DI DO gpcd gpm ha kg lcd LF m mgd MH psig TDH TSS VSS SYMBOLS CaC03 C02 Fe ke klO N NH3 P --five day 20°C biochemical --cubic feet per minute --centimeter --chemical oxygen demand --degree Celsius --ductile iron --dissolved oxygen --gallons per capita day --gallons per minute --hectare --kilogram --liters capita day --lineal feet --meters --million gallons day --manhole --pounds square inch gage --total discharge head --total suspended solids --volatile suspended solids oxygen demand --calcium carbonate --carbon dioxide --iron --first order rate constant to base e --first order rate constant to base 10 --nitrogen --ammonia --phosphorus x ------- ACKNOWLEDGEMENTS The author gratefully acknowledges the assistance of those during the conduct of the survey: 1. Mr. Eugene N. Ionescu for the coordination of the field work. 2. Mrs. Selma L. Faust for the chemical analyses performed in the Sanitary Engineering Lab- oratories. 3. Dr. George P. Fitzgerald, consultant for the con- duct of and interpretation of the algal studies. 4. Mr. Jerry Miles, superintendent of the wastewater treatment facilities. 5. Mr. Chuck Anderson, treatment system design engineer with Strand Associates, Inc. 6. Mr. Jeff A. Busse, graduate student for the determination of the mean cell residence time. The fol- lowing students for their assistance in the 1abpratory and in the field: Roger Cooley John S. Lee Nancy Mohr Vivienne Richardson Mark Tus1er xi ------- SECTION 1 INTRODUCTION The use of aerated lagoon systems represents a low cost method of treatment for many smaller communities where land avail. ability is not of major consequence. The systems have low main- tenance requirements and are easy to operate. Also, the systems have the ability to even out the variations in influent quality to a significant degree because of the long detention times and apparently provide relatively high removals of BOD. The data available to assess the performance of these systems is lacking partially due to the infrequent sampling of such systems and the rather limited types of analyses performed which makes it diffi- cult to evaluate the effectiveness of these systems and the fac- tors related thereto. The purpose of the study reported herein was to determine the performance over a l2-month period on a well-designed, well- operated three-cell aerated lagoon system treating municipal wastewater. In addition, the treatment facilities of the Con- solidated Koshkonong Sanitary District located in the upper mid- west, represented a facility which would be subject to a climate with large seasonal variations. The performance over the 12- month period would permit the determination of whether or not such a system could meet Federal secondary treatment standards. 1 ------- SECTION 2 CONCLUSIONS Based on the results of the 12-month survey of the Consoli- dated Koshkonong Sanitary District's aerated pond treatment sys- tem and associated studies therewith, the following conclusions are made: 1. 2. 3. 4. 5. 6. The wastewater treatment facilities ric and organic loadings well below flows ranging from 36 to 50 percent BODS loadings varying from 13 to 21 on seasonal means. were receiving volumet- the design values with of design capacity and percent of design based The treated effluent from the pond system met the secondary treatment standards of 30-day and 7-day average values of 30 mg/l and 45 mg/l, respectively, for BODS' The standards of 200/ml and 400/ml for 30-day and 7-day geometric means, respectively, for fecal coliform, as originally set out in the Federal Register of August 17, 1973, were met in both the unchlorinated and chlorinated pond effluents. The effluent pH was within the range of 6-9 for all observations. The T88 concentrations in the effluent met the secondary standards as originally set out in the Federal Register of August 17, 1973 for the 4 30-day sampling periods and met the 7-day standards in all but one 7 consecutive day sam- pling period in May at a time when the algal populations were high. The treatment system did not meet the 85 percent removal requirements in 2 of the 4 30-day sampling periods for BODS and T88. Failure to do so occurred during the months of April and July when the strength of the influent wastewater was low. The mass balances for phosphorus indicated that the treat- ment system was unable to reduce the total phosphorus from influent to effluent in the l2-month period. The only re- duction that could be affected would be by the retention of insoluble phosphorus forms which did not occur. The first order removal kinetics which were based on waste- water influent and effluent BOD for the primary cell of the 2 ------- 10. 11. 12. three-cell system resulted in reaction rate constants which did not increase with an increase in water temperature. The phytoplankton populations which exert a BOD and the accel- erated decomposition of accumulated bottom deposits during the warmer seasons were contributing factors. 7. The reduction of alkalinity coincidental with the increase in pH for the last two ponds indicated that the bicarbonate ion likely served as the carbon source for the phytoplankton growths. 8. The mean cell residence or detention time for Pond No.1 as determined by tracer studies was 28 percent lower than the detention time calculated on the basis of inflow and total volume. Pond No.1 received 60 percent of the air flow delivered to the three-pond system. The air supply to the last two cells of the 3-cell system had limited value as a source of oxygen in that oxygen levels were frequently in excess of saturation for the cor- responding water temperature. 9. The removal of organics expressed as BODS, COD, T88, and V88 occurred almost entirely in Pond No.1 which is likely related to the underloaded condition of the treatment system. The ammonia nitrogen concentrations in the effluent of Pond No.1 were always higher than the ammonia nitrogen concen- trations in the influent as a result of the anaerobic decom- position of accumulated settleable solids in the bottom of the pond. Based on the algal assay studies. the discharge of the effluent to the Rock River in excess of 0.5 percent of the river flow would be required before the nutrients in the effluent would likely have a measureable effect on the algal growth in the river. 3 ------- SECTION 3 RECOMMENDATIONS The use of the measurement of suspended solids. represent- ing the non-filterable residue, is not adequate to assess the property of a wastewater effluent because of the non-specific nature of the materials measured. It is well known that sus- pended solids representing phytoplankton is different than the suspended solids in raw sewage or activated sludge effluents. This understanding was supported by EPA in their revision of the effluent limitations as they pertain to aerated lagoon treatment systems. There remains the need to assess the influence of phytoplankton forms, relative to other secondary effluent sus- pended forms such as activated sludge, on the receiving environ- ment. The high D.O. levels in the pond systems make the application of air wasteful of energy for much of the time. The design of the air delivery system should provide for flexibility through the use of several sizes of blowers. 4 ------- SECTION 4 DESCRIPTION OF THE WASTEWATER COLLECTION AND TREATMENT SYSTEM The wastewater treatment system provides biological treat- ment for wastewaters of the Consolidated Koshkonong Sanitary District and was constructed in 1972 and 1973. The boundaries of the District are outlined in Figure 1 wherein the wastewaters are collected from the residences at the western end of Lake Kosh- konong and along the Rock River which served as the outlet to Lake Koshkonong. Some dwelling units are occupied on a year around basis whereas others serve for weekend and summer seasonal occupancy. The collection system consists of 18 wastewater pumping sta- tions and l5850m (52,000 feet) of sewer pipe with sizes ranging from 20.3 to 61 cm (8-24 inch). Most of the sewers are of vitri- fied clay pipe with reinforced concrete pipe and ductile iron pipe used to a lesser extent where extra strength and protection of private water supply systems was necessary. The Control Building contains the preliminary treatment facilities and pump station discharge to the aerated pond system. The wastewater is pumped to the three pond, series flow, aerated lagoon systems, thence through chlorination facilities with ulti- mate discharge to a drainage ditch leading to the Rock River (Figure 2). The Control building (Figure 3) houses the comminutor, flow measuring device and wastewater pumping station in addition to providing an office, laboratory, meeting rooms, garage and con- trol instrumentation (Figure 4). The wastewater enters the build. ing through a 61 cm (24 inch) gravity sewer passing directly to a comminutor or during times when the comminutor is inoperative the wastewater is directed to a manually cleaned bar screen centrally located as shown in Figures 5 and 6. The right channel is provided for the installation of an additional comminutor in the future (Figure 5). The comminutor, a Worthington Model l2-H-5, is designed to run continuously to cut larger suspended solids to a size that will pass through 0.79 cm (5/16 inch) slots in the comminutor screen (Figure 7). Should the comminutor be- come clogged or inoperative, the wastewater passes over a short stpp baffle directly through the bar rack and into the wetwell without passing through the flow measuring device. 5 ------- \st"S o ~ 't- \J ~ 4 '- J ';~, (_I '... , ), Fig. 1. Consolidated Koshkonong Sanitary District. 6 ------- r DRAINAGE TO ROCK \ \ DITCH RIVER 1370 L.r. - I ( \ COMMINUTOR a PUMPING STATION 1--3000 L..F. - 12"FORCE WAIN ?------.;.---, ,- POND NO. I I I BY-PASS I I I POND NO. I I I < 6 I I l POND NO.2 > POND NO.3 P BY- PASS I I \ 2" OUTFALL I POND NO.3 , Qr ~ < CHLORINATION --:sJ FACILITIES 1 inch = 25.4 rom 1 L.F. = 0.3048 m Fig. 2. Treatment plant layout. 7 ------- ~ /';1 :~.. :~~~ir~~; ;<. -""'- ~.- Fig. 3. Preliminary treatment and control building. ;::. . Fig. 4. Treatment control panel. 8 ------- Fig. 5. Wastewater influent chamber. .- . . .'. ). - ... I Fig. 6. Comminutor bypass arrangement. 9 ------- ~ o Fig. 7. Parshall flume flow measurement. 'i{ , .' Fig. 8. Cornrninutor setting. .. ------- After comminution, the wastewater passed through a 22.9 cm (9 inch) throat Parshall flume equipped with a float and trans- mitter located in the flume chamber (Figure 8). The transmitter sends a signal to the flow indicator-recorder-totalizer located in the control panel (Figure 4). The wastewater after passing through the Parshall flume is discharged directly to the wetwell for subsequent pumping through a 30.5 cm (12 inch) 915 m (3000 feet) force main to a valve manhole for direction of the flow into Pond No.1 or through a bypass for discharge directly into Pond No.2 (Figure 9). Under normal operating conditions the three ponds would operate in series with flow discharged directly to Pond No.1 passing through Pond Control Manhole No.1 into Pond No.2 and thence out through Pond Control Manhole No.2 directly into Pond No.3 following by flow through the chlorine contact tank (Fig- ure 9). Several bypass arrangements have been provided wherein the comminuted wastewater could pass directly into Pond No.2 to permit dewatering of Pond No.1 or to bypass the effluent from Pond No.2 directly to the chlorine contact tank and thereby bypass Pond No.3 for purposes of dewatering. No provision was made which would permit a minimum operation of 2 ponds in series with Pond No.2 out of service. A 6.35 cm (2.5 inch) plastic recirculation suction pipe connected to an airlift pump 7.62 cm (3 inch) for recirculating the contents of Pond No.2 back to Pond No.1 was provided in the design but was not used during the course of this investigation (Figure 9). The pond dikes were constructed of native soil materials with the inside surface sealed with a 30.5 cm (12 inch) layer of compacted clay. A rip-rap band 20.3 cm (8 inch) thick of 7.62 cm (3 inch) rock extended from 30.5 cm (12 inch) below to 45.7 cm (18 inch) above the normal operating water level to protect the dikes from wave action. The inlet structure for each pond consisted of an upturned elbow which extended to the bottom of the pond and had an inlet opening 0.61 by 0.91 m (2 by 3 feet). The outlet for each pond consisted of an upturned elbow which extended 1.52 m (5 feet) above the pond bottom. The normal water depth in the ponds was 3.05 m (10 feet) which was maintained in Ponds No.1 and No.2 by an upturned elbow and flare riser located in the pond control manholes No.1 and No.2. The weir located in the chlorine con- tact tank served as the control to maintain a normal water depth of approximately 3.05 m (10 feet) for Pond No.3. The inlet and outlet structures were so provided which prevented the backflow of the contents from one pond to the preceding or upstream pond. The chlorine contact tank has an around-the-end flow baf- fled arrangement which provides a detention time of 15.4 minutes at 125 percent of the average design flow (Figure 10). The water depth is 2.38 m (7.8 feet) and the discharge end is equipped with 11 ------- r--~---- I Pond N~ Bypass I Valve Manhole From Pumping Station POND NO.1 3" Airlift ~ POND NO.2 ~ H" Plastic Recircula- t ion Suct io jJ PI P' (Blower Bu 11 ding ond Control Manhole No. I Pond No.3 Bypass Pond Control Manhole No.2 Chlorine Contact Tank i> POND NO.3 LEGEND 12" D.I. Sewage Pi ping 12" D. I. Bypass Piping ~ Pond Inlet Structure --0) Pond Outlet Structure 1 inch = 25.4 mm Fig. 9. Aeration pond system. 12 ------- Fig. 10. Chlorine contact tank. ~ Fig. 11. Stage level recorder for effluent flow measurements. 13 ------- 0.61 m (2 feet) weir plate capable of providing flow measure- ments with the aid of a stage level re~order (Figure 11). Waste- water enters the head end of the chlorine contact tank through a 30.5 cm (12 inch) ductile iron (D. I.) line from Pond No.3. The tank can be drained by a 15.2 cm (6 inch) gate valve located at the bottom of the tank. The chlorination building contains the chlorinator and effluent sampling equipment (Figure 12). The chlorinator, a wall mounted solution feed Advance Gas Chlorinator Model 201, is capa- ble of delivering a maximum of 45.4 kg (100 pounds) of chlorine per 24 hours. The chlorination system consists of an ejector pump, ejector, chlorine cylinders, chlorinator and diffuser. A portion of the system is shown in Figure 13. A manifold assembly, capable of servicing two 68.1 kg (150 pound) chlorine cylinders, is equipped with a 25 watt silicone rubber heater attached to the bottom leg of the manifold to provide heat of vaporization. A scale capable of handling 2 cylinders is used to determine the amount of remaining chlorine gas. The entire gas system, from cylinder to ejector, operates under a vacuum with provisions for stopping the flow of chlorine if the water supply to the ejectors is stopped. The air supply to the aerated ponds is provided by two iden- tical rotary positive displacement blowers located in a blower building adjacent to the aeration ponds (Figures 9, 14 and 15). Each blower with a rated capacity of 19.1 m3/min. (674 cfm) of air at a discharge pressure of 0.633 kg/cm2 (9 psig) and a blower speed of 930 RPM, is capable of supplying the entire air require- ment for the treatment facilities. Each manually operated blower has an inlet filter and snubber, flexible couplings for both inlet and outlet piping, thermometer, pressure relief valve, check valve and butterfly valves (Figures 14. 15 and 16). A single common discharge pressure manometer was provided. The blowers discharge into a common air header (Figure 17) from which seven individually valved D.I. air lines lead from the air header to the ponds. Two 10.2 cm (4 inch) laterals lead to Pond No.1, two 7.62 cm (3 inch) laterals lead to each of Pond No.s 2 and 3, and a single 2.54 cm (1 inch) lateral at the end of the air header leads to the air lift in Pond No.1. The air lift pump with the recirculation feature was not used during the course of the study. The air diffusion piping to each of the ponds is shown in Figure 18 wherein the D.I. air lines leading to each pond are buried below the frost line and extend into each pond approxi- mately 0.76 m (2.5 feet) below the normal water level in each pond. The D.I. lines are connected to plastic feeder pipes lo- cated along the sides of the pond approximately 1.22 m (4 feet) below the normal water level and anchored to the pond slope by posts placed 3.05 m (10 feet) on center. The air passes ~rom the plastic feeder pipe which serves as a header to weighted 14 ------- Fig. 12. Chlorine house and sampling structure. , Fig. 13. Chlorine feed supply. 15 ------- 1 Fig. 14. Blower building. "I"" , . ,.. Fig. 15. Dual air compressor arrangement. 16 ------- Fig. 16. Rotary positive displacement blower. > -, Fig. 17. Six ductile iron aeration laterals. 17 ------- (~~:~~:~atlon C' Chlorine/ Contract Tank LEGEND Feeder Pipe D. I. Pip i n9 A I r Aqua Tube Feeder Tube Fig. 18. POND NO. I 79 Air-Aqua Tubes Feeder Tube to AI rll ft - '" I I POND NO.2 32 A ir-Aqua Tubes .J / POND NO.3 18 Air-Aqua Tubes Plastic Ball Valve Aeration tube arrangement. 18 ------- feeder tubes, about 5.5m (18 feet) long laid on the pond slope extending to the bottom of each pond and there attached to Hinde weighted air-aqua tubes. The air-aqua tubes are approximately 52 m (170 feet) long laid along the bottom of each pond. The number and spacing of the air-aqua tubing for each pond is tabu- lated below and shown in Figure 18. No. of Air- Approximate Percent Air-Aqua Pond Aqua Lines No. of Meters of Total Spacing, m. No. 1 79 4100 61 0.61, 152 and 3.05 No. 2 32 1660 25 3.05 and 6.10 No. 3 18 945 14 6.10 129 6705 100 The air-aqua aeration tubing is preweighted with a lead keel to position the air inlet orifices at the top of the tubing. The orifices are located on 3.81 cm (1.5 inch) spacings and each orifice has a check valve so as to release about 20 bubbles per second under normal operating conditions. The delivery of air to the ponds is assumed to be proportional to the length of air- aqua tubing with associated air inlet orifices when subject to the same depth of submersion. Control of air can be exercised to a limited extent by the use of valving from the air discharge header pipe in the blower building. Two 5.08 cm (2 inch) plastic ball valves are provided in the feeder pipes along the sides of Pond No.3 located at midlength. Should the D.O. levels be sufficient, the air supply to the last half of Pond No.3 could be cut off to allow settling to take place to facilitate suspended solids removal. This feature was not used during the course of this study- A summary of the design criteria for the treatment system follows: TABLE 1. TREATMENT PLANT SIZING Design Loadings Design population - 6000 population Average daily design flow - 378.5 lcd (100 gpcd) 2271 m3/D (0.6 mgd) Design BODS - 77.2 g/person-day (0.17 Lb/person-day) 463 kg/d (1020 Lb/d) Comminutor - maximum flow 7570 m3/d (2.0 mgd) Parshall flume - throat width 23.1 cm (9 inch) Raw sewage pumps - (3 + 1 future) Each capacity 2.0 m3/min. (525 gpm) , 12.8 m (42 TDH feet) (continued) 19 ------- TABLE 1 (continued) Aerated Ponds (3), values given for each identical pond. Side slopes 3:1 Freeboard 0.91 m (3 feet) Water depth 3.05 m (10 feet) Bottom area/pond 51.82 x 112.8 = (170 x 370 feet = Surface area/pond 2 70.1 x 131.1 = 9190 m 2 (230 x 430 feet = 98,900 feet) Volume/pond 2290 m3 (6.05 Mg) Detention time/pond 10 days at average daily flow Aeration Tubing (Hinde) Pond No.1 Pond No.2 Pond No.3 5845 m2 62,900 feet2) 79 air-aqua tubes 32 air-aqua tubes ~ air-aqua tubes 129 air-aqua tubes, 6705 m length Air Blowers Rated capacity - 19.1 m3/min at 0.633 kg/cm2 (674 cfm/blower at 9.0 psig) Air Supply 59.3 m3/kg of influent BODS (950 ft3/lb of influent BODS) Chlorine Contact Tank Length 5.18 m (17 feet), width 3.96 m (13 feet), water depth 2.38 m (7.8 feet) Effective volume - 30.4 m3 (8026 gallons) Detention time - 15.4 minutes at 125 percent of average daily design flow Chlorinator Maximum capacity 45.4 kg/24 hr (100 lbs/24 hr.) Maximum chlorine dosage - 16 mg/l at 125 percent of average daily design flow 20 ------- SECTION 5 SAMPLING AND ANALYSES PROCEDURES / Samples were collected at five designated samplir.g points during the study period as follows: 1. Influent to Pond No. 1 2. Effluent from Pond No. 1 3. Effluent from Pond No. 2 4. Effluent from Pond No. 3 5. Effluent from Chlorine Contact Tank The raw wastewater was sampled in the Control Building just upstream from the throat of the Parshall flume and the samples were composited in proportion to the raw wastewater flow rate. The sampler used was part of the equipment provided for routine sampling with the sample aliquots deposited into a container under refrigeration. The samples collected representing the effluent from Pond No.1 and the effluent from Pond No.2 were time composited using an N-con Surveyor II Composite sampler with housing and arrange- ments as shown in Figures 19 through 22. A sampling structure was located over the pond control manhole between the adjacent ponds serving as effluent from one pond and as influent to the next pond. The structures were equipped with electrical power for operating the samplers, refrigerators, space heaters and electrical tapes to protect the sample lines from freezing during cold weather periods. The sample line was placed in the upflow leg of the pond outflow piping and the samples were time com- posited with the representative sample aliquots store~ in a con- tainer placed in the refrigeration unit. The sample unit would purge the lines before a sample aliquot was taken. The sampler for the effluent from Pond No.3 before chlori- nation was an N-Con system time composited sampler located in the chlorination building. The samples were refrigerated in similar units. The chlorinated effluent representing sample point No.5 was obtained with a sampling system. provided with the treatment facil- ities. The sample was taken near the overflow weir of the chlo- rine contact tank, time composited and stored under refrigeration. , 21 ------- Fig. 19. Sampling structure for Pond No.2 effluent. .. " ., .~ ~ " .. , ~ '1 j ,; Fig. 20. Sampling equipment arrangement. 22 ------- N W Fig. 21. Sample timer for time composited sampling. ~ ((1 r t j 'oj ,.! '/'.J ", '"" . .'~~"" . ...110<,. ... Fig. 22. Sampling manhole and refrigerated sample storage. ------- The samplers were started each morning at 8:00 AM at the start of a 24-hour sampling period to obtain samples for the var- i~us chemical analyses. Certain measurements were performed in Sltu such as pH, temperature and dissolved oxygen. Also, grab samples were used for the bacteriological analyses of the efflu- ent from Pond No.3 and the effluent from the chlorine contact tank. The 24-hour composited samples were divided into two por- tions. one received a phenol-mecuric-acetate treatment to prevent alterations for the total Kjeld~hl nitrogen (TKN), ammonia nitro- gen (NH3-N), nitrite nitrogen (N02-N), nitrate nitrogen (N03-N) and total phosphorus determinations all of which were performed by the University of Wisconsin Soils Laboratory and the other por- tion was preserved by refrigeration. All samples were transported to the respective laboratories in ice chests within 3 hours of the termination of the 24-hour sample period. The sampling schedule used in this study is presented in Table 2. Each season, i.e., winter, spring, summer and fall, had TABLE 2. SAMPLING SCHEDULE Dates Sampling Period Season Year Month 1975 1976 1976 1976 1976 1976 December 13-19 7 day} January 3-2/1 30 day February 16-22 7 day March 13-19 7 day} April 1-30 30 day May 8-14 7 day June 21-27 7 day } July 1-30 30 day August 11-17 7 day September 18-24 7 day } October 1-30 30 day November 24-30 7 day Winter Spring 1976 1976 1976 1976 1976 1975 Summer Fall two 7-day and one 30-day sampling periods which were used in the seasonal averages. All times were consecutive for each month. The values for the 7-day sampling in November 1975 were included with the fall 1976 sampling periods of 7 days for September and 30 days for October to determine the seasonal mean and standard deviations representing the fall. The analytical, physical, and biological observations made with the respective sampling points are presented in Table 3 and the corresponding procedures as well as where and by whom the analyses were performed are presented in Table 4. 24 ------- TABLE 3. DAILY ANALYSES AND LOCATIONS I 2 3 4 5 Effluent Chlorine Influent Effluent Effluent Effluent Contact Analysis Pond No. Pond No. Pond No. Pond No. Tank I I 2 3 Water temperature x x x x x pH x x x x x Alkalinity x x x x x BODS x x x x x COD x x x x x Total suspended solids x x x x x Volatile suspended solids x x x x x Total Kjeldahl nitrogen x x x x x Ammonia nitrogen x x x x x Nitrite nitrogen x x x x x Total phosphorus x x x x x Filtered COD x x x x x Dissolved oxygen x x x x Fecal coliform x x Fecal streptococci x x Algal cell counts'\- x x x * counts were performed during representative seasonal Cell periods. 25 ------- TABLE 4. ANALYTICAL PROCEDURES Analysis Water temperature pH Alkalinity BOD5 COD Total suspended solids Volatile suspended solids Total Kjeldahl nitrogen Ammonia nitrogen Nitrite nitrogen Nitrate nitrogen Total phosphorus Filtered COD Dissolved oxygen Fecal coliform Fecal streptococci Algal cell counts Procedure Thermometer pH meter SM(2) 102,P.52 SM 2l9,P.489 SM 220,P.495 SM 224C,P.537 SM 224C,P.537 SLP (3) SLP SLP SLP SM 223C,P.524 SM 220, P.495 Y. S. 1. D.O. probe SM 470C,P.669 SM Performed by in situ by SEL(l) in situ by SEL in lab by SEL in lab by SEL in lab by SEL in lab by SEL in lab by SEL in lab by SL(4) in lab by SL in lab by SL in lab by SL in lab by SL in lab by SEL in situ by SEL in lab by SEL in lab by SEL in lab by G.P.F. (5) (l)SEL, sanitary engineering laboratory, UW-Madison. (2)SM , Wastewater, Standard Methods for the Examination of Water and 13th Edition. (3)SLP, Soils laboratory procedure, Soils laboratory, UW-Madison (Bremmer (1965»). (4)SL, Soils laboratory, UW-Madison. (5)G.P.F., all algal analyses performed by G.P. Fitzgerald, Project consultant. 26 ------- Several of the procedures used were evaluated by the sani- t~r¥ engineering laboratory personnel to determine the reproduci- b~l~ty of the results. Table 5 presents the analytical results TABLE 5. COD REPRODUCIBILITY Replicates Standards Blanks *Influent "~Effluent 11/6/75 No. 3 Date 11/4/75 Performed 11/10/75 11/11/75 11/11/75 11/11/75 1 24.40 23.20 20.60 22.70 2 24.20 23.25 20.90 22.50 3 24.25 23.30 20.45 22.55 4 24.40 23.30 20.40 22.40 5 24.10 23.20 20.75 22.50 6 24.20 23.25 20.30 22.50 7 24.20 23.20 20.80 22.60 8 24.15 23.25 20.60 22.30 Mean 24.24 23.24 20.60 22.51 Std. dev. 0.11 0.042 0.21 0.12 Percent of mean 0.45 0.18 1. 02 0.53 *Aliquot size 20 mI. for the COD determination on standards, blanks, influent and Pond No.3 effluent samples. The precision of the analyses of stan- dards and blanks in the COD determination (0.18 to 0.45 percent of mean) indicated a relatively high reproducibility. Slightly greater variability (0.53 to 1.02 percent of the mean) was encoun- tered when analyses were made of samples of Pond No.1 influent and Pond No.3 effluent. For this project the reported COD and filtered COD values can be relied upon to have one percent or less variability from the mean. Comparisons were made of the Winkler DO analyses with that of the D.O. probe the results of which are presented in Table 6. The precision for the Winkler method was 0.7 and 1.3 percent for the two series of analyses performed whereas the D.O. by the probe had a value of 0.04 percent of the mean. The measurement of D.O. is a relatively accurate measurement. However, by contrast the measurement of BOD as determined by the difference between the initial D.O. and D.O. after incubation had an 8.3 to 13 percent variability for the~wastewater influent and Pond No.3 effluent, respectively. The results are shown in Table 6. Consequently, as a result of the high variability of this measurement the re- ported values can be relied upon on to this degree of accuracy. 27 ------- TABLE 6. DO AND BOD REPRODUCIBILITY tV co Dissolved Oxygen (Blank) ,"BOD 5 (DO Difference) I Replicates Winkler Titration D.O. Probe Influent 11/11/75 Effluent No. 3 11/11/75 Date 11/6/75 11/10/75 11/10/75 11/11 and 11/16 11/11 and 11/16 1 8.60 8.95 8.70 6.40 5.15 2 8.70 8.90 8.75 5.05 4.80 3 8.75 8.90 8.75 5.90 4.50 4 8.65 8.90 8.80 5.70 4.60 5 8.70 8.80 8.80 6.15 5.85 6 8.70 8.85 8.75 6.75 4.35 7 8.50 8.75 8.70 6.05 4.25 8 8.90 8.85 8.75 6.10 5.85 Mean 8.69 8.86 8.75 6.01 4.92 Standard 0.116 0.064 0.0038 0.50 0.638 deviation Percent of 1. 33 0.72 0.04 8.32 13.0 mean .,'( Reported values represent the DO difference between initial and final DO after 5 days using the DO probe. The influent sample was diluted 20 m1/300 m1 whereas the effluent was not diluted. ------- An evaluation was performed to determine the relationship between chlorophyll ~ as measured by an Arninco Fluorometer by optical density on acetone extracts of the pond's contents. On two different occasions, 5/27/76 and 9/28/76, extensive sampling of the pond's contents at the surface, the effluent at the outlet points and various locations within the pond were made to provide correlations between algal cell counts, suspended solids and determinations of chlorophyll a. The results of these analytical evaluations are presented in Appendix A. The ratio of fluoro- metric units to the total suspended solids varied from 9.0 mg/l per fluorometric unit to 15.7 mg/l per unit. The data demon- strate how the ratio of in vivo fluorometry for chlorophyll a to suspended solids vary with the different species of algae. 29 ------- SECTION 6 RESULTS AND DISCUSSION OPERATING CONDITIONS AND LOADINGS The general condition of the aerated pond treatment system during the study for warm weather periods is shown in Figures 23 through 28. Pond No. 1 usually would have a partial covering of foam as shown in Figure 23 with light accumulations of floatable organics such as fats and greases along the waterline of the pond (Figure 24). Light amounts of surface foam were usually evident in Pond No.2 and the water was clear along the waterline with attached phytoplankton growths and free swimming zooplankton (Figures 25, 26 and 27). The water surface of Pond No.3 was free of foam and surface accumulations but was subject to infes- tations of muskrats (Figure 28). During the period of study, problems were encountered with airline breaks as a result of muskrat infestation of the pond areas. The animals would chew through the plastic air tubing resulting in breaks and loss of uniform distribution of the air supplied to the pond. Pond No.3 was out of service as early as September 1975 before commencing the study for an l8-day period when a broken air line was repaired. From November 6 through the 16th 1975 Pond No.3 was taken out of service when an air line was repaired. The sampling program commenced on November 24, 1975 and again from June 4 through June 9, Pond No.3 was out of service for air line repairs. The 7-day sampling period in June started on June 21, some 12 days after Pond No.3 was returned to service. During the period for repairs the water level of Pond No.3 was lowered several feet before flow to the pond was resumed. The water levels or displacement through Pond Nos. 1 and 2 were unaffected by these brief interruptions. The loadings to the treatment system are summarized in Table 7 the values reported represent the mean values of the , . four seasons of the year. BOD loadlngs based on volume and sur- face area, and hydraulic detention times in days, are presented for the primary Pond No. 1 and for the total capacity of the three-pond system. Detention times in Pond No.1 ranged from 20 to 28 days assuming the completely mixed flow regime with all portions of the pond serving as active volume. The flow to the treatment system during the study as a percent of design flow for the seasonal averages ranged from 49.5 to 36.2 percent 30 ------- ~ » '--",.......... .. . ....~... ---... <::: .-;- .. .- -. 14\: ',;:-, ., ~~. Fig. 23. Pond No. 1 water surface. .. #, \ "\ ) '-'\ ~'. /' . . " ~.)" . - . - "'. ..~. . ( f''''' ,.,f .. . ,~;, r , " .., ...... Fig. 24. Waterline of Pond No. 1. 31 ------- Fig. 25. Pond No. 2 water surface. Fig. 26. Waterline of Pond No. 2. 32 ------- Fig. 27. Pond No. 2 outlet structure and sampling point. Fig. 28. Pond No. 3 water surface. 33 ------- TABLE 7. SUMMARY OF TREATMENT SYSTEM LOADING DURING TEST PERIOD w ~ I . Parameter Winter Spring Summer Fall a"k b'"k'"k a b a b a b 3 821. 3 0.217 1124. 0.297 1003. 0.265 874.3 0.231 Flow m D, mgd ~OD, mg/l 91.1 54.7 95.5 101. 2 ~OD, kg/d, lb/d 74.9 165. 61. 3 135. 95.8 211. 88.5 195. BOD Loading, Volume kg/1000 m3,lb/1000ft3 Primary Cell 3.27 0.204 2.68 0.167 4.18 0.261 3.86 0.241 Total Volume 1. 09 0.068 0.892 0.056 1. 39 0.087 1. 29 0.080 IEOD Loading, Surface Ikg/ha-d, lb/acre-d Primary Cell ' 81. 5 72.7 66.7 59.5 104.2 93.0 96.3 85.9 r Total Surface I 27.2 24.2 22.2 19.8 34.8 31. 0 32.1 28.6 etention, d Primary Cell 27.9 20.4 22.8 26.2 I Total Volume 83.7 61. 2 68.4 78.6 flow percent design 36.2 49.5 44.2 38.5 , - BOD, percent design 16.2 13.2 20.7 19.1 -,- "Metric units. "ki'< English units. ------- whereas the BOD loading which was experienced as a percent of design loading ranged only from 13.2 to 20.7 percent. The BOD strength of the wastewater ranged only from 55 to 101 mg/1, con- siderably lower strength than was projected for the design BOD loading. The low strength wastewater coincided with the high flow during the spring. Although the entire collection system was newly constructed, it was apparent that infiltration-inflow had a significant effect on the volume and strength of the waste- water. At the same time the loadings, well below design values, should give the expectation for high treatment performaace. AERATED POND PERFORMANCE RELATIVE TO SECONDARY TREATMENT STANDARDS The following standards were established by EPA for second- ary level of treatment for publicly owned facilities to be achieved by July 1977. The aerated pond treatment system repre- sents secondary treatment and one of the objectives of the study was to determine whether these standards could be met on an annu- al basis particularly for aerated pond systems subject to large seasonal variations of temperature. The standards which were applied to secondary treatment by EPA follow: a) The 5-day, 20°C biochemical oxygen demand (BOD5) and total suspended solids (TSS) shall not exceed a mean of 30 mg/l nor 45 mg/1 for effluent samples collected over 30 and 7 consecutive day periods, respectively. b) The mean of effluent BOD5 and TSS values for samples collected over a 30-day consecutive period shall not exceed 15 percent of the mean of influent BOD5 and TSS values for samples collected over approximately the same 30 consecutive day period. The geometric mean of fecal coliform bacteria in the effluent shall not exceed 200 per 100 ml or 4GO per 100 ml for samples collected during a consecutive peri- od of 30 and 7 days, respectively. c) d) The effluent pH value shall be within the limits of 6.0 to 9.0. Subsequent to the publication of these effluent require- ments in the Federal Register on August 17, 1973, the definition of secondary treatment effluent requirements has undergone some modifications. The Federal Register, Vol. 41, No. 144. Monday, July 26. 1976, pp. 30786-30789, contains amendments pertaining to effluent values for pH and deletion of fecal coliform bacte- ria limitations from the definition of secondary treatment. The Federal Register, Vol. 42, No. 195, Friday, October 7, 1977, pp. 54664-54666, contains changes in the suspended solids 35 ------- requirements for small municipal lagoon systems, i.e.. two million gallons per day or less, serving as the sole process tor second- ary treatment of wastewaters. The treatment works would have to conform to the suspended solids concentrations achievable with "best stabilization pond technology" which means a suspended solids value as determined by the Regional Administration, or State Authority subject to approval, which is equal to the efflu- ent concentration achieved 90 percent of the time which in turn would permit achieving the levels of effluent quality established for BOD and not cause water quality standards to be violated. The performance of the Consolidated Koshkonong Sanitary District treatment system during the study period is compared with the elucidated standards representing the secondary treat- ment definitions for 1977 as originally set out in the Federal Register of August 17, 1973. The summary of the results are presented in Table 8 wherein the following observations are made: a) The effluent BODS met the 30 and 7 consecutive day BOD values of 30 and 45 mg/l, respectively, throughout the test period. The 7 consecutive day period includes all possible combinations during the 30-day period as well as during months when only 7-day sampling was conducted. b) The effluent TSS met the 30 consecutive day standard of 30 mg/l for the four sampling periods but exceeded the 7-day value of 45 mg/l for one 7-day period during the month of May with a value of 55.0 mg/l. c) The fecal coliform counts in the effluent easily met the standard for all 30-day and 7-day consecutive periods. The standards were easily met even with the effluent from Pond No.3 (sample point 4) without the benefit of chlorination. d) The pH values were well within the range of 6-9 with a minimum recorded value of 7.3 and a maximum value of 8.0. e) The overall removal of BODS and TSS from influent to effluent did not meet the standard 50 percent of the time, i.e., 2 of the 4 30-day sampling periods for April and July, a removal of 85 percent of the BODS and TSS was not achieved. In April the incoming wastewater was weak (only about 25 .percent of the expected design BODS and TSS) consequently, the system being principally a biological system was unable to reduce the BOD and TSS to 8 and 9 mg/l, respectively. During the month of July the incoming wastewater was stronger but it was not pos- sible to achieve BOD and TSS concentrations below 20 mg/1. 36 ------- ~- TABLE 8. TREATMENT PERFORMANCE RELATIVE TO THE 1977 SECONDARY TREATMENT STANDARDS Study Weriod 75-76 Mo. Day 11/24-30 12/13-19 1/3-2/1 2/16-22 LV -...,J 3/13-19 ~/1-30 5/8-14 6/21-27 7/1-30 8/11-17 9/18-24 10/1-30 Total BODC), Mean Percent 30 day Removal 30 mg / 1 85 Total Suspended Solids, Mean Percent 7 day 30 day Removal 7 day 45 mg/1 30 mg/1 85 45 mg/1 10.1 10.0 , i I , 19.5 17.0 89.5 81.8'''' 78.9';';- 85.0 3.9 8.0 all 2.8 97.6 4.7 10.9 all 21. 8 65.7* 12.7 10.7 all 82. 7';~ 22.9 19.0 17.0 all 8.3 92.7 Note: ';~ Values exceed standards. 5.3 4.4 all 2.1 26.3 all 55. O';'~ 19.0 all 16.1 21. 0 all Fecal Coliform Geometric Mean 30 day 7 day 200/100 m1 400/100 13.5 10.0 4.2 all pH Range 6-9 m1 mir.-: -max. I 17.5 I i '7.5 '7.4 7.3 '7.5 17.6 I 8.0 ,7.8 :7.7 I :7.6 7.5 7.4 All, each 7-day consecutive period within 30-day sampling period met the requirement. 7.4 42.7 4.2 all 2.4 2.0 2.8 all 2.8 4.3 2.3 all 7.6 7.6 7.6 7.4 7.6 7.8 8.2 7.8 7.8 7.7 7.7 7.6 ------- The results of the analyses for BODS, TSS and pH are pre- sented in Figures 29 through 31 for each of the 5 sampling points for the 7-day and 30-day consecutive survey periods. The results of the fecal coliform and fecal streptococci for sampling points 4 and 5 representing Pond No.3 effluent and chlorine contact tank effluent are presented in Figure 32. With regard to BODS concentration and pH, it is apparent that the standards could be achieved even with the single aerated pond as represented by sample point 2, the effluent from Pond No.1 (Figures 29 and 31). The TSS in the effluent for Pond No.1 (sample point 2) as seen in Figure 30 would meet the concentration standard throughout the survey period. However, the TSS concentrations in the effluents from Pond Nos. 2 and 3 for the 7-day period in the month of May exceeded the 45 mg/l standard. BOD REMOVAL RATE CONSTANTS FOR POND NO.1 The removal of BOD for a complete mixed biological reactor has been modeled as a first-order reaction as follows: 1 S/So = 1 + kt where: S = So = t = k = BOD of the effluent, mg/l BOD of the influent, mg/l detention time for aerated lagoon in days first-order reaction rate constant in days-l The results of the determination of the reaction rate con- stants for Pond No.1 utilizing the mean BOD of the influent and the effluent for each month of the survey are presented in Table 9. The percent removals are noted ranging from 62.6 to 87.4 per- cent with detention periods ranging from 18.8 to 48.8 days. The ke values range from 0.098 to 0.263 and appear not to be corre- lated with the water temperature in Pond No.1. One would expect a higher ke value for the higher temperatures but this was not evident in this survey. The values of ke are somewhat on the low side and in that the removals are based on total BOD, the con- stant ke accounts for removal resulting from settling as well as from biological stabilization. Also, the effects of reduced rates of decomposition or solubilization of the settled partic- ulate matter during the winter months with increased activity during the warmer spring months and high flows of weaker waste- water could cause the ke values to decrease with an increase in temperature. Also, the phytoplankton populations are higher during the warmer water temperatures and they in turn exert a BOD which would result in a higher BOD in the effluent and thus a lower rate constant. In addition, the detention time in Pond No.1 may be less than the nominal detention time because the 38 ------- B (j 05 (M G / L) VS TIME . 0 0 N .-; . 00 r 0 0.-. IT) . 0 . I ~v~ NO ..q- 0 C':J CO v . 0 . 0 ..q- (Y) ~ . 00 M C':JN CD . 0 ~ O~ o CD L[) . 00 N o CD Fig. 29. . - o 30 day ave. 30 mg/l - ~ BOD vs. time for all sampling points. 39 ------- ,.---i - . o (j)O C.fJ 0J r- N . o (f).q- (j) r- (I) . o (j)Lf) (j) r- ~ . o (j) L'J (j) r- lJJ . o (j)Lf) (j) ;- Fig. 30. TSS (MG/L) VS TIME o o o o o TSS vs. time for all sampling points. 40 ------- r-io Ill) ~ PH vs TIME C) - ~ -v- ~~ - - - - - - - - - - - - - , t , I Ii I' No I L:'") ~ C) (Y)o Ill) ~ ~o ::r:: L "") ~ Lf) a ::r::~ ~ C) - -: ~ .-~' , ~~ - - I = -= - - - - - - - - I I , , a - r--"'''"''- -: I~~ I - - - - - - - = - = I - - I , I I I ~pH 6.0-9.0 all values '--v ~ C) NDJFMAMJJASO Fig. 31. pH vs. time for all sampling points. 41 ------- ..q- -~ - w - L.,. f-----< r-. ~ o w U) . ~8 -1 C-J . ;=:J u -.:;:j- o (L 0 - W r:-J 0:::::: t- ,f) " " ---i o u') CL ~ Wlf) 0:::::: t- tJ:) " o o C..:J o F [(JLI F STREP (N/IOOMLJ + Geo. mean 400/ml 7 d Y Geo. mean 200/ml 30 day 1 11 l' ~~ . r~ ~ I ~\ U r.....r-..J.A I _A I J4,,~'1 f\ I Fig. 32. Fecal Coliform and Fecal Streptococci vs. time for sampling points 4 and 5. 42 ------- TABLE 9. BOD REMOVAL RELATIONSHIP FOR PRIMARY POND Influent Effluent Removal '''"Detention k k10 Temperature e Month mg/1 mg/1 percent days day -1 day -1 °c Nov. 87.3 17.0 80.5 48.8 0.085 0.196 6.7 Dec. 88.7 11. 4 87.1 26.2 0.259 0.596 3.7 Jan. 95.9 12.1 87.4 28.9 0.240 0.552 1.4 Feb. 72.9 9.6 86.8 25.1 0.263 0.605 1.0 Mar. 37.4 14.0 62.6 18.8 0.089 0.205 4.4 ~ LV Apr. 54.9 11. 8 78.5 20.3 0.180 0.414 11. 0 May 71. 0 17.7 75.1 22.4 0.134 0.308 12.0 June 85.6 14.1 83.5 22.7 0.224 0.515 20.9 July 92.6 23.1 75.1 22.8 0.132 0.304 23.3 Aug. 117.9 25.4 78.5 22.7 0.160 0.368 22.3 Sept. 113.3 34.4 69.6 23.4 0.098 0.225 23.4 Oct. 101.6 25.1 75.3 24.2 0.126 0.290 12.0 ,,," Detention time based on Pond No. 1 volume divided by the average influent flow rate. ------- pon~ contents are not completely mixed. Using a shorter than nomlnal detention time would result in higher k values. It should be noted that adequate DO levels were maintained in the Pond throughout the survey. As part of the study, an evaluation of the mean residence time for Pond No.1 was conducted by the use of a continuous dose of a chloride tracer. The results showed a mean pond resi- dence time of 21.8 days for a period when the calculated resi- dence time based on inflow and pond volume was 30.3 days. This represents a 28 percent reduction of the detention time calcu- lated on the basis of inflow and total volume. If the detention times were reduced by 28 percent, the rate constants would increase by 39 percent or range from 0.118 to 0.366. Intensive sampling at 1m (3 feet) depths at 18 equally spaced locations in the horizontal plane within the pond showed no significant difference between the concentration of chloride from one point to the others. If "dead" spaces were present, one may expect to find zones of lower concentrations, or if channeling was occurring, higher concentrations would likely be associated with this phenomena. In that Pond No.1 received the greatest amount of air (61%), it is likely that Pond No.1 had the better opportunity for establishing a mixed flow regime as compared to Pond Nos. 2 and 3 with only 25 percent and 14 per- cent of the air supplied, respectively. RESULTS OF PHYSICAL AND CHEMICAL MEASUREMENTS The results of the analyses performed are presented in their entirety in Appendix B, wherein each 7-day or 30-day sam- pling period for each of the sampling points is summarized by means and standard deviations in addition to the daily values. Also, the two 7-day and one 30-day sampling periods representing the four seasons are summarized by means and standard deviations. Results of the algal identifications are presented in Appendix C. Graphical representations which show the variation in the param- eter measured with respect to time are shown for BOD, TSS, pH Fecal Coliform and Fecal Streptococci in Figures 29 through 32. Graphics are also presented for the remaining parameters in a similar manner in Appendix B in Figures 33 through 44. In addi- tion, the results have been summarized in Tables 10, 11 and 12 for each 7-day and 30-day sampling period showing the percent remaining as compared to the influent during the same period for certain parameters for each of the ponds and chlorine contact tank effluents. All values presented in these tables (10, 11 and 12) represent means for the sampling periods at the various loca- tions. The sample points numbered 1 through 5 correspond to the raw wastewater influent (1), effluent Pond No.1 (2), effluent Pond No.2 (3), effluent Pond No.3 (4), and final effluent from 44 ------- the chlorine contact tank (5), accordingly. Physical Measurements and D.O. The flow to the treatment system was less than 50 percent of the design flow for all but one of the sampling periods. The highest flows were experienced during the spring runoff in March and April (Figure 34, Appendix B), which corresponded to the periods when the incoming wastewater was at its lowest strength as measured by BOD and TSS concentrations. The temperature of the wastewater in the ponds closely par- alleled the average air temperatures with the lowest pond tem- peratures of 1.0°C occurring during the February sampling period and the highest pond temperatures occurring in July ranging from 23.3 to 24.8°C (Figures 33 and 34, Appendix B). The D.O. in Ponds 2 and 3 were influenced both by the sat- uration level of D.O. in water with respect to water temperature and by algal blooms with D.O. levels exceeding the saturation levels for the given temperature such as can be seen for the month of May in Table 10. The D.O. level in Pond No.1 was also influenced by the water temperature saturation values and the ability of the air delivery system to transfer additional oxygen to meet the oxygen demands exerted by the incoming BOD. The organic loading to the system was low and in most instances only Pond No. 1 showed the influence of the organic loading on the resulting D.O. concentrations. The D.O. in Pond No.1 ranged from a high of 12.8 mg/l in February (water temperature 1°C) to a low of 2.0 mg/l experienced during August (water temperature 22.3°C) (Figure 36, Appendix B). One may conclude that when the D.O. level was above satura- tion for the associated water temperature that the algal popula- tions were the contributing factor. Also. the air supply to the last two ponds during the period of blooms could be discontinued at least during the daylight hours were it not for the need for the mixing action that the air supply provides. In any event, the use of compressed air during periods of high D.O. concentra- tions is of marginal benefit and is wasteful of energy. At the same time the blower sizes would have to be selected so that the supply could be reduced without valving back or venting. Alkalinity and pH The wastewater treated in this pond system is a hard water with very high bicarbonate alkalinity. The mean values of alkalinity in the influent range from 373 to 424 mg/l with a pH of 7.2 to 7.35. Perhaps the most interesting relationship to be observed is the changes that occur in pH and alkalinity from Pond No.1 to Pond No.3 wherein during periods of maximum algal mass (Appendix C), April, May and June, the pH increased through 45 ------- TABLE 10. MEAN RESULTS FOR EACH SAMPLING PERIOD AND EACH SAMPLING POINT FOR WATER TEMPERATURE, pH, ALKALINITY AND D.O. Sample Sample Percent Water Air Alkalinity DO Period Location Flow Design Temp. Temp. date days M3/D MGD Flow 0C 0C pH mg/1 mg/1 11/24-30 7 Inf1. 1 469 0.124 20.7 11. 9 -5.9 7.31 424.0 Pond 1 2 6.7 7.40 430.7 8.57 Pond 2 3 6.3 7.50 417.3 11. 54 Pond 3 4 5.3 7.54 395.3 12.41 Final E 5 5.1 7.56 398.4 12.37 12/13-19 7 Inf1. 1 874 0.231 38.5 11. 6 -5.0 7.31 419.0 ~ Pond 1 2 3.7 7.50 423.6 10.56 0'\ Pond 2 3 2.7 7.50 404.0 12.69 Pond 3 4 2.4 7.54 379.4 14.09 Final E 5 2.4 7.56 379.0 14.09 1/3-2/1 30 Inf1. 1 791 0.209 34.8 9.9 -11.4 7.35 420.3 Pond 1 2 1.4 7.47 440.3 12.42 Pond 2 3 1.2 7.50 444.6 14.14 Pond 3 L~ 1.3 7.51 443.6 14.56 Final E 5 1.2 7.46 440.7 14.56 2/16-22 7 Inf1. 1 912 0.241 40.2 9.0 -2.6 7.31 384.3 Pond 1 2 1.0 7.40 402.6 12.80 Pond 2 3 1.0 7.40 392.9 14.94 Pond 3 4 1.0 7.40 392.7 15.06 Final E 5 1.0 7.36 399.4 15.06 (continued) ------- TABLE 10 (continued) Sample Sample Percent Water Air Alkalinity DO Period Location Flow Design Temp. Temp. date days M3/D MGD Flow 0C 0C pH mg/1 mg/1 3/13-19 7 Inf1. 1 1215 0.321 53.5 8.1 1. 33 7.33 390.7 Pond 1 2 4.4 7.50 393.4 11. 71 Pond 2 3 3.4 7.57 386.3 13.80 Pond 3 4 3.1 7.60 369.7 15.01 Final E 5 3.1 7.57 370.4 15.01 4/1-30 30 Inf1. 1 1128 0.298 49.7 10.2 7.78 7.23 387.2 +-- Pond 1 2 11. 0 7.50 402.5 8.53 -...J Pond 2 3 11. 4 7.62 381.6 10.08 Pond 3 4 11. 6 7.66 344.9 10.44 Final E 5 11. 6 7.75 368.2 10.44 5/8-14 7 Inf1. 1 1022 0.270 45.0 11. 0 9.78 7.20 394.0 Pond 1 2 12.0 7.60 402.7 10.23 Pond 2 3 12.7 7.77 351.6 14.06 Pond 3 4 14.0 7.93 332.7 15.33 Final E 5 14.7 8.03 334.6 15.33 6/21-27 7 Inf1. 1 1011 0.267 44.5 13.7 18.28 7.29 411. 7 Pond 1 2 20.9 7.60 431.6 6.29 Pond 2 3 22.6 7.70 433.0 6.70 Pond 3 4 22.7 7.80 402.7 7.57 Final E 5 22.7 7.80 407.4 7.57 (continued) ------- TABLE 10 (concluded) Sample Sample Percent Water Air Alkalinity DO Period Location Flow Design Temp. Temp. date days M3/D MGD Flow 0C 0C pH mg/1 mg/1 7/1-30 30 Inf1. 1 1003 0.265 4Lf. 2 14.9 20.06 7.30 401.0 Pond 1 2 23.3 7.61 438.8 4.46 Pond 2 3 24.7 7.70 432.9 6.77 Pond 3 4 24.8 7.75 386.2 8.02 Final E 5 24.8 7.75 409.1 8.02 8/11-17 7 Inf1 1 1007 0.266 44.3 16.0 17.28 7.27 375.1 ~ Pond 1 2 22.3 7.50 444.3 1. 97 00 Pond 2 3 23.3 7.57 433.7 8.29 Pond 3 4 23.3 7.67 368.0 9.30 Final E 5 23.3 7.67 392.3 9.30 9/18-24 7 Inf1. 1 980 0.259 43.2 15.9 8.39 7.20 376.3 Pond 1 2 16.4 7.47 426 9 5.60 Pond 2 3 16.6 7.50 425.3 7.00 Pond 3 4 16.6 7.60 384.7 8.67 Final E 5 16.6 7.61 398.0 8.67 10/1-30 30 Inf1 1 946 0.250 41. 7 14.6 3.39 7.25 373.0 Pond 1 2 12.0 7.50 429.0 5.86 Pond 2 3 11. 6 7.50 419.2 7.95 Pond 3 4 11. 6 7.49 375.9 8.96 Final E 5 11. 7 7.49 397.6 8.96 ------- the pond system and the alkalinity decreases (Figure 31 and Figure 37, Appendix B). With the present loadings on the treat- ment system, C02 would likely be produced in Pond No.1 as a result of the bacterial utilization of the organic matter, how- ever, the source of C02 for Ponds 2 and 3 appear to come from the bicarbonate alkalinity similar to that in lakes as reported by Nichols (1973). Nichols concluded that in lake waters high in nitrogen and phosphorus that the C02 may be the limiting fac- tor for algal growths, but in waters of high bicarbonate alkalinity that this ion species serves as a C02 source with the resultant reduction in alkalinity concomitant with an increase in pH. The pH levels in Pond No.3 effluent reached a high level of 8.0 in May during a period when maximum algal activity was evident and at a time when the minimum alkalinity was about 30S mg/l (Appendix B). The results of this survey support the concepts presented by Nichols. Organics The performance of the aerated pond system as it relates to BODS and TSS has been discussed in an earlier portion of this section. There are some observations relative to COD, filtered COD (soluble COD) and VSS as well as some interrelationships between the various measured parameters previously discussed which may be of interest. The results are presented in Table 11 and the daily results for each sampling point plotted in Figures 29 and 30 for BOD and TSS and in Figures 38, 39 and 40, Appendix B for COD, filtered COD and VSS. In reviewing the summary data, representing mean values for a given 7-day or 30-day test period for concentrations and per- cent remaining through the treatment system, several observa- tions may be noted. The removal of organics, expressed as BODS COD. TSS and VSS. occurs to a great extent in Pond No.1 with only small improvement in removals noted for Pond Nos. 2 and 3. This is related to fue fact that the treatment system was under- loaded relative to the design as noted previously. The pond system performed quite well for the first 4 months (winter) of the survey program through February, thereafter several factors influenced the poorer performance. In March, the removal percentages were considerably lower partially due to the lower strength of influent, but a major factor was the effect of higher water temperatures which brought about the accelerated decomposition of deposits in the ponds which accu- mulated during the winter months. The suspended and volatile suspended solids concentrations infue pond effluents increased considerably and had some effect on the other measured param- eters of BOD and COD but to a less significant degree. The high levels of solids continued through May when the major increases were associated with the increase in algal populations in April and May. Thereafter, a marked improvement in solids concentra- 49 ------- TABLE 11. MEAN RESULTS AND PERFORMANCE FOR EACH SAMPLING PERIOD AND EACH SAMPLING POINT FOR BODS' COD, FILTERED COD, TSS AND VSS Sample Sample BODe COD Filtered COD TSS \'SS Period Location J '0 '0 % % " date days mg/1 Remain mg/1 Remain mg/1 Remain mg/1 Remain mg/1 Remain 11/24-30 Infl. 1 87.3 168.1 37.9 116.1 95.3 Pond 1 2 17.0 19.5 32.4 19.3 269 71. 0 6.3 5.4 4.6 4.8 Pond 2 3 6.0 6.9 25.3 15.1 16.9 44 6 4.7 4.0 3.3 3.4 Pond 3 4 24 2.7 20 6 12.3 15.9 42.0 7.0 6.0 4.3 4.5 Final E 5 3.9 4.5 21.6 12.8 15.7 41.4 5.3 4.6 4.4 4.6 12/13-19 Infl. 1 88.7 208.9 34.0 129.0 103.9 Pond 1 2 11.4 12 9 33.9 16.2 22.1 65.0 6.9 5.3 5.7 5.5 Pond 2 3 6.6 7.4 23.1 11 1 18.6 54.7 5.3 4.1 4.1 3.9 Pond 3 4 5.9 6.7 20.9 10.0 15.7 46.2 6.0 4.7 4.7 4.5 Final [ 5 8.0 9 0 25.0 12.0 16.6 48.8 4.4 3.4 4.0 3.8 VI --------~~ a 1/3-2/1 30 Infl. 1 95.9 228.1 45.6 114.9 92.8 Pond 1 2 12 1 12.6 51. 2 22.4 44.2 96 9 5.0 4.4 4.4 4.7 Pond 2 3 9.5 9.9 42.2 18.5 37.8 82.9 3.8 3.3 3.1 3.3 Pond 3 4 7.1 7.4 39.9 17.5 35.5 77.9 3.3 2.9 2 9 3. 1 Final E 5 10.1 10.5 40.9 17.9 36.8 80.7 2.8 2.4 2.5 2.7 2/16-22 Infl. 1 72.9 251.6 42.3 123.0 83.3 Pond 1 2 9.6 13.2 45.6 18.1 35.6 84.2 7.1 5.8 5.6 6.7 Pond 2 3 9.7 13.3 38.3 15.2 30.6 72.3 4.4 36 2 4 2 9 Pond 3 4 6.3 8.6 31. 7 12.6 28.6 67 6 3.4 2.8 2 0 2.4 Final E 5 4.7 6 4 30.3 12.0 28.1 66.4 2.1 1.7 1.6 1 9 3/13-19 Infl. 1 37.4 115.7 29.0 47.9 35.7 Pond 1 2 14.0 37.4 52.3 45.2 30.1 103.8 22.0 45.9 20.1 56.3 Pond 2 3 14.6 39.0 54.0 46.7 32.4 111.7 28.9 60.3 18.9 52.9 Pond 3 4 14.0 37.4 52.3 45.2 29.0 100.0 26.6 55.5 20.0 56.0 Final E 5 10.9 29.1 52.3 45.2 34.7 119.7 26.3 54.9 16.7 46.6 4/1- 30 30 Infl. 1 54.9 126.6 30.9 63.5 50.6 Pond 1 2 11.8 21. 5 484 38.2 28.0 90.6 16.2 25.5 15.0 29.6 Pond 2 3 15.5 28.2 50.1 39.6 27.9 90.3 22.7 35.7 16.5 32.6 Pond 3 4 17.7 32.2 56.9 44.9 24.5 79.3 24.2 38.1 20.2 39.9 Final E 5 10.0 18.2 53.2 42 0 30.8 99.7 21. 8 34.3 18.2 36.0 (continued) ------- TABLE 11 (concluded) Sample Sample BOD5 COD Filtered COD TSS VSS Period Location i. i. i~ '7. i. date days mgll Remain mg/l Remain mg/l Remain mgll Remain mgll Remain 5/8-14 7 Infl. 1 71.0 160.4 26.0 63.6 52.1 Pond 1 2 17.7 24.9 54.1 33.7 24.1 92.7 19.3 30.3 18.1 34.7 Pond 2 3 21. 4 30.1 88.7 55.3 24.4 93.8 52.4 82.4 38.0 72.9 Pond 3 4 17.4 24.5 79.9 49.8 21. 0 80.8 57.0 89.6 37.3 71.6 Final E 5 12.7 17.9 74.3 46.3 29.9 115.0 55.0 86.5 31. 0 59.5 6/21-27 7 Infl. 1 85.6 186.1 36.9 99.9 81. 7 Pond 1 2 14.1 16.5 55.9 30.0 29.3 79.4 20.4 20.4 18.7 22.9 Pond 2 3 17.7 20.7 46.0 24.7 27.3 74.0 15.4 15 4 10.3 12.6 Pond 3 4 9.7 11. 3 43.1 23.2 22.3 60.4 17.1 17.1 12.4 15.2 Final E 5 10.7 12.5 41.1 22.1 26.9 72.9 19.0 19.0 12.4 15.2 7/1-30 30 Infl. 1 92.6 228.9 34.0 132.6 100.3 V1 Pond 1 2 23.1 24.9 74.1 32.4 36.0 105.9 29.8 22.5 27.1 27.0 t--' Pond 2 3 16.1 17.4 55.5 24.2 35.7 105.0 13.9 10.5 10.9 10.9 Pond 3 4 16.8 18.1 64.0 28.0 32.5 95.6 26.7 20.1 20.6 20.5 Final E 5 19.5 21.1 60.3 26.3 38.2 112.4 22.9 17.3 16.1 16.1 8/11-17 7 Infl. 1 117.9 299.3 17.9 183.0 131.1 Pond 1 2 25.4 21. 5 44.0 14.7 24.7 138.0 11.6 6.3 10.0 7.6 Pond 2 3 19.0 16.1 44.1 14.7 22.9 127.9 21.1 11.5 16.1 12.3 Pond 3 4 17.1 14.5 43.6 14.6 18.3 102.2 24.7 13.5 20.0 15.3 Final E 5 19.0 16.1 38.3 12.8 19.1 106.7 16.1 8.9 12.7 9.7 9/18-24 7 Infl. 1 113.3 194.0 20.6 126.4 93.3 Pond 1 2 34.4 30.4 48.0 24.7 26.1 126.7 19.7 15.6 13.4 14.4 Pond 2 3 22.6 19.9 44.7 23.0 17.3 84.0 27.9 22.1 14.4 15.4 Pond 3 4 30.7 27.1 47.4 24.4 17.7 85.9 32.9 26.0 23.0 24.7 Final E 5 17.0 15.0 41.6 21. 4 21. 7 105.3 21.0 16.6 13.9 14.9 1011-30 30 Infl. 1 101. 6 199.9 18.4 114.0 87.5 Pond 1 2 25.1 24.7 35.7 17.9 20.7 112.5 6.1 5.4 4.9 5.6 Pond 2 3 22.0 21. 7 39.9 20.0 20.0 108.7 15.3 13.4 9.6 11.0 Pond 3 4 19.6 19.3 32.3 16.2 17.9 97.3 11. 1 9.7 7.1 8.1 Final E 5 11.3 11.1 31. 3 15.7 16.9 91. 8 8.3 7.3 6.0 6.9 ------- tions and percent removals associated therewith occurred. The C?D values were the highest during the May survey period and the hlghest values were found in the effluents from Pond Nos. 2 and 3 where the algal blooms were most pronounced. The highest filtered COD occurred in July with generally higher filtered CODs infue pond effluents and in the wastewater influent to the system in July and August. Essentially no removal of filtered COD occurred through the treatment system through September and October. It would appear that filtered COD would have limited value relative to pond performance in that significant removals of BOD were accomplished during the same period. Using the results from the survey, several relationships were calculated for the wastewater influent (sample point 1) and Pond No.3 effluent (sample point 4) which were of some interest. As one would expect, the COD to BODS ratio for the influent was lower 2.32 than for the effluent with a value of 3.23. The volatile solids in the effluent contribute less to the BODS than the volatile solids in the influent in that the effluent vola- tile solids are made up of refractory soluble organics and vola- tile suspended solids such as bacterial floc and/or algae all of which contrihute less BODS per unit mass than the raw wastewater volatile solids. By subtracting the filtered COD from the total COD and correlating the difference with the volatile suspended solids revealed that a ratio of COD:VSS in the influent was 1.98 whereas the ratio COD:VSS in the effluent was 1.45. This indi- cates that the higher COD:BODS ratio in the effluent is not the result of readily oxidized (chemical) volatile solids in the effluent. The organic matter present in the effluent does not contribute as much to the COD per unit mass as in the wastewater influent. The correlation coefficient for the 12 values of COD-filtered COD vs. VSS in the effluent was 0.979. The ratio of filtered COD:BODS of the influent was 0.37, whereas the filtered COD:BODS ratio for Pond No.3 effluent was 1.7. The relatively low ratio in the influent is likely related to the large proportion of BODS exerted by the volatile sus- pended solids not measured by the filtered COD test, whereas the BODS in the effluent can be considered to be more nearly related to the remaining soluble organic fraction. If filtered BOD measurements were made of the influent and effluents, a more definitive relationship between dissolved and suspended BOD and COD could be made. It is imDortant to make the distinction of the basic differences between influent and effluent suspended solids but more importantly the effect of the residual phyto- plankton populations in. the fi~al efflu~nt ~n the :eceiving environment. The volatlle sollds fractlon In the lnfluent sus- pended solids was 0.767 as compared ~o 0.727 in the effluent suspended solids which for all practlcal purposes is not sig- nificantly different. 52 ------- Nutrients The results of the nitrogen and phosphorus determinations have been summarized in Table 12 and presented graphically on a day-to-day basis in Figures 41 through 44 in Appendix B. Calcu- lations for percent remaining as related to the influent is pre- sented for T~~, ammonia nitrogen and total phosphorus, whereas for nitrite nitrogen and nitrate nitrogen, mean concentration values for the various sampling points are presented. Limited value should be given to the idea of nitrogen removal oecause of the conversions of nitrogen from organic to inorganic to organic and combinations thereof in addition to possible inter- changes with the atmosphere. Several interesting results were obtained where the ammonia nitrogen concentration in the effluent from Pond No.1 was higher than the influent levels in all 12 of the test periods (Table 12) with values up to 300 percent higher than in the influent (October). This is attributed to the fact that although the pond contents were mixed by the introduction of air, the level of turbulence is not sufficient to prevent the deposition of solids on the pond bottom and thereafter be subjected to anaerobic fermentation in the accumulated deposits. The net effect is the deamination of organic matter with the resultant increase in ammonia nitrogen levels. The ammonia nitrogen levels in Pond No.3 effluent were generally higher during the colder months than during the warmer periods. This is attributed in part to the conversion of ammonia nitrogen to nitrite and nitrate nitro- gen as well as the assimulation of the nitrogen into organic nitrogen as part of the living organisms. By subtracting the ammonia nitrogen from total Kjeldahl nitrogen, the difference represents organic nitrogen. Generally the levels of organic nitrogen in the effluent from Pond No.3 was higher during the warmer periods May through September as compared to the remain- ing colder months. The higher organic nitrogen levels can be related to the higher concentrations of phytop1ankto~ and biological solids during the warmer months. The nitrate nitro- gen levels dropped in the effluent from the chlorine contact tank from the levels in Pond No.3 effluent in 10 of the 12 report periods. The nitrite nitrogen levels were slightly higher during the warmer months than during the colder months. The total phosphorus levels in the effluent of Pond No.1 were essentially the same as the influent wastewater as was the effluent from Pond No.3. Tn that phosphorus is a conservative substance, a mass balance was made wherein the concentrations were multiplied by the influent flow and the days per month to arrive at annual amounts for the raw wastewater influent, Pond No.1 effluent and Pond No.3 effluent of 1996 kg (4401 1bs.), 1962 kg (4235 1bs.) and 2003 kg (4417 1bs.), respectively, indicating no reduction in total phosphorus. If reductions do occur, it can only be attributed to the solids retained in the 53 ------- TABLE 12. MEAN RESULTS AND PERFORMANCE FOR EACH SAMPLING PERIOD AND EACH SAMPLING POINT FOR TKN, NH3-N, TOTAL P, N02-N, AND N03-N Sample Sample TKN NH -N NO -N NO -N Total P Period Location 3 2 3 /0 % % date days mg/1 Remain mg/1 Remain mg/1 mg/1 mg/1 Remain 11/24-30 7 Inf1. 1 20.8 15.1 0.07 0.51 9.1 Pond 1 2 18.3 88.0 16.4 108.6 0.10 0.27 6.7 73.4 Pond 2 3 13.2 63.5 11. 7 77.5 0.14 3.26 7.1 77.9 Pond 3 4 8.6 41. 3 7.5 49.7 0.17 3.86 5.7 63.3 Final E 5 8.6 41. 3 7.4 49.0 0.16 3.94 6.8 75.4 12/13-19 7 Inf1. 1 17.9 13.7 0.03 1. 31 4.9 Pond 1 2 17.2 96.1 16.0 116.8 0.06 0.44 6.6 134.5 Pond 2 3 14.0 78.2 12.8 93.4 0.04 2.50 9.9 202.7 V1 Pond 3 4 10.2 57.0 9.2 I 67.2 0.03 3.39 8.9 182.2 +:-- Final E 5 10.4 58.1 9.0 65.7 0.14 3.40 6.2 125.9 1/3-2/1 30 Inf1. 1 21. 3 16.1 0.03 0.18 8.5 Pond 1 2 18.1 85.0 16.4 101.9 0.41 1. 95 8.4 98.5 Pond 2 3 14.7 69.0 13.7 85.1 0.07 3.85 9.2 107.8 Pond 3 4 13.4 62.9 12.1 75.2 0.06 3.68 9.1 107.1 Final E 5 15.2 71. 4 13.2 82.0 0.08 2.69 8.0 93.5 2/16-22 7 Inf1. 1 17.6 12.5 0.02 0.37 5.0 Pond 1 2 19.1 108.5 17.1 136.8 0.07 0.51 6.1 120.7 Pond 2 3 13.9 79.0 10.6 84.8 0.08 6.26 4.6 92.0 Pond 3 4 14.9 84.7 12.4 99.2 0.04 3.80 4.8 96.2 Final E 5 16.4 93.2 14.8 118.4 0.06 1. 50 6.0 119.5 (continued) ------- TABLE 12 (continued) Sample Sample TKN NH -N NO -N NO -N Total P Period Location 3 2 3 % "; % ,0 date days mg/1 Remain mg/1 Remain mg/1 mg/1 mg/1 Remain 3/13-19 7 Inf1. 1 6.4 4.7 0.14 3.43 3.4 Pond 1 2 7.3 114.1 6.4 136.2 0.08 5.46 3.9 113.5 Pond 2 3 6.8 106.2 5.4 114.9 0.18 7.33 4.6 135.3 Pond 3 4 5.2 81. 2 3.6 76.6 0.11 9.13 5.3 157.1 Final E 5 13.9 217.2 11. 5 244.7 0.16 1.10 5.3 155.9 4/1-30 30 Inf1. 1 11. 3 7.7 0.11 1.11 6.9 Pond 1 2 10.3 91. 2 8.3 107.8 0.22 0.99 6.5 94.1 Pond 2 3 7.1 62.8 5.1 66.2 0.36 2.15 6.3 90.9 VI Pond 3 4 3.4 30.1 1.6 20.8 0.26 4.35 6.9 99.3 VI Final E 5 7.3 64.6 4.5 58.4 0.31 1. 52 6.4 93.2 5/8-14 7 Inf1. 1 12.3 7.6 0.05 1. 27 5.1 Pond 1 2 11. 9 96.7 7.8 102.6 0.27 1. 33 5.5 106.2 Pond 2 3 7.7 62.6 2.9 38.2 0.49 2.40 4.9 94.6 Pond 3 4 5.1 41. 5 0.7 9.2 0.20 2.31 5.7 111.1 Final E 5 5.7 46.3 0.7 9.2 0.35 1. 79 3.7 72.2 6/21-27 7 Inf1. 1 17.1 12.0 0.07 0.30 9.4 Pond 1 2 18.9 110.5 15.7 130.8 0.33 0.69 6.7 70.7 Pond 2 3 13.0 76.0 10.5 87.5 0.70 1.10 8.4 88.6 Pond 3 4 7.5 43.9 5.1 42.5 0.54 1.14 6.9 72.7 Final E 5 7.6 44.4 4.6 38.3 0.38 0.81 6.1 64.5 (continued) ------- TABLE 12 (concluded) Sample Sample TKN NH -N NO -N NO -N Total P Period Location 3 2 3 % % % date days mg/1 Remain mg/1 Remain mg/1 mg/1 mg/1 Remain 7/1-30 30 Inf1. 1 18.1 11. 8 0.12 1. 53 6.1 Pond 1 2 18.7 103.3 14.4 122.0 0.49 1. 60 6.3 104.1 Pond 2 3 14.1 77.9 11. 0 93.2 0.79 2.15 7.1 116.1 Pond 3 4 5.9 32.6 2.5 21.2 0.83 3.97 5.9 97.4 Final E 5 7.6 42.0 4.3 36.4 1. 78 2.18 4.6 75.9 8/11-17 7 Inf1. 1 15.0 7.0 0.17 1. 93 4.8 Pond 1 2 21.2 141.3 17.1 244.3 0.31 2.09 4.7 99.2 Pond 2 3 14.6 97.3 10.8 154.3 0.70 2.29 4.6 97.3 V1 Pond 3 4 4.7 31. 3 1.4 20.0 1. 05 5.57 3.1 65.8 0'\ Final E 5 6.0 40.0 2.9 41. 4 1. 75 3.14 3.0 63.5 9/18-24 7 Inf1. 1 15.7 7.3 0.04 2.26 4.2 Pond 1 2 19.1 121.7 15.4 211.0 0.10 1. 89 4.3 103.1 Pond 2 3 16.1 102.5 12.8 175.3 0.17 1. 33 4.8 113.3 Pond 3 4 8.2 52.2 4.9 67.1 0.61 3.50 3.6 85.5 Final E 5 8.4 53.5 5.1 69.9 0.88 2.84 3.6 85.3 10/1-30 30 Inf1. 1 9.8 4.4 0.05 5.78 4.3 Pond 1 2 16.1 164.3 13.1 297.7 0.19 3.23 4.0 92.6 Pond 2 3 14.0 142.9 11.1 252.3 0.42 3.18 4.0 92.1 Pond 3 4 5.5 56.1 3.4 77.3 0.44 6.36 4.0 93.1 Final E 5 8.5 86.7 5.9 134.1 0.64 3.22 4.0 92.8 ------- pond system. In this instance for the period of study, no reduc- tion of phosphorus occurred in the treatment. ALGAL IDENTIFICATION The algal populations of the ponds were determined as to species and numbers throughout the survey period. The results of the determinations are presented in Appendix C for the vari- ous sampling periods and for the three ponds. The results are presented as cells per ml with the exception of the species of Pediastrum and Scenedesmus which are expressed in colonies per ml. During the first phase of the study, November 75 through February 76, Ponds 1 and 2 had no significant amounts of algae until the February 16 sampling date at which time some Chlamydomonas sp. could be detected in 20x concentrations of Pond No.2. Pond No.3 had a variety of diatoms and Chlamydomonas sp. during this period but the concentration levels present were so low as to not be measured as total sus- pended solids. In the period March through May, Pond No.1 had only the green Chlorella sp. present until the last sample of April (4/23) when Chlamydomonas and Gonium sp. appeared. Pond No.2 also had only the Chlorella sp. present early in this period but the diatom Nitzschia sp. appeared by April 9 and there was a large variety of algae present by April 23 (Chlorella, Scenedesmus, Pediastrum and Nitzchia). Additional varieties were found in May of Protococcus, Navicula and Microactinium sp. Pond No.3 had a varied flora throughout this period. During the period of maximum bloom of algae in all ponds (May samples), a variety of species appeared: Chlorella, Scenedesmus, Micro- actinium, Protococcus, Euglena and Navicula. During the mid-summer period, June through August, a light bloom of a mixture of algae appeared in all ponds. The green algae, Coelestrum sp., Oocystis and Closterium sp. as well as the blue-green Microcystis sp. were among the varieties that appeared during this period. The blue-green alga was readily visible in fue pond and in samples because of its buoyancy; how- ever, it did not make up the majority of the total suspended solids present. The fall period, represented by September and October, experienced a varied population of green algae and the blue- green Microcystis sp. with the exception of Pond No.1 which only had Chlamydomonas sp. in the September 21 sample and essentially nothing after that. The algae in the other ponds also decreased in October until there were essentially none present on the October 21 samples. 57 ------- In general, when the greatest mass of algae was present in the ponds, it was made up of a mixture of algae much the same as was reported from earlier pond studies in Wisconsin (Kaneshige, et al. 1957 and Fitzgerald, 1960) and in California (Silva and Papenfuss, 1953). The variety of algae found in the final efflu- ent samples representing Pond No.3 was similar to the variety found by sampling in the pond including Microcystis sp. which has a tendency to float. ALGAL ASSAY OF ROCK RIVER AND KOSHKONONG POND NO.3 EFFLUENT The purpose of the algal assay was to determine what nutri- ent limits the growth of algae in the Rock River near the point of discharge of the effluent from the aerated pond treatment system to assess the potential effect of the pond effluent on the growth of algae in the Rock River. The test organism was the green alga selected by EPA for such bioassays, Selenestrum capricornutum (AAP). Three media were used for the algal assay: 1) Gorham's medium, 2) Pond No.3 effluent 11/3/76, TSS = 5 mg/l, 3) Rock River water collected at Highway Wisconsin 59, TSS = 48 mg/l. The media, after autoclaving, were innoculated with 1000 Selenestrum/ml from a pond effluent culture and harvested after 14 days incubation of triplicate cultures. Arninco Fluoro- metric readings and calculated concentrations of chlorophyll a in mg/l were the response variables. The three nutrients P, N and Fe which have been shown to limit the growth of algae in mid- western lake waters were varied with the three cultures and mix- tures thereof. Table 13 shows the culture medium conditions and the re- sponse after the l4-day incubation period. Control cultures using Gorham's medium were used to demonstrate that the inoculum of Selenestrum capricornutum (AAP) would not grow in the medium lacking P, N or Fe. The tests indicated that less than 1 per- cent of the growth in the complete Gorham medium was obtained in cultures lacking P, N or Fe indicating that the inoculum used in the test was sensitive to these nutrients. When P, N or Fe were added to samples of the pond effluent, there was no stimulation of growth over the growth in the pond effluent alone. Therefore a combination of these nutrients was probably limiting the growth and from the initial stimulation caused by spikes of iron followed by a loss of green color indicated that iron and then nitrogen were probably the limiting factors for the pond effluent. The algal cells of the pond cultures also had the exaggerated twisting "ram's horns" config- uration to be expected in nitrogen deficient cultures ot Selenestrum. 58 ------- TABLE 13. ALGAL ASSAY RESULTS Medium Aminco Fluorometer Ave. Reading Calculated Chlorophyll ~ mg/l Controls 1. Gorham's Medium 430 19 2. Gorham's Medium (-P) 0.15 0.007 3. Gorham's Medium + 10% Gorham P 420 19 4. Gorham's (-N) 1.5 0.07 5. Gorham's Medium + 10% Gorham N 110 5.0 6. Gorham's (-Fe) 1.6 0.072 7. Gorham's Medium + 10% Gorham Fe 440 20 Pond No. 3 Effluent 1. Pond only 34 1.5 V1 2. Pond + 10% Gorham P 26 1.2 \0 3. Pond + 10% Gorham N 32 1.4 4. Pond + 10% Gorham Fe 29 1.3 Rock River Samples 1. River only 3.1 0.14 2. River + 2 mg/1 N03-N 10 0.45 3. River + 8 mg/1 N03-N 14 0.63 4. River + 0.18 mg/1 P04-P 3.6 0.16 5. River + 0.72 mg/l P04-P 2.6 0.12 6. River + 0.025 mg/1 Fe 3.3 0.15 7. River + 0.10 mg/1 Fe 2.9 0.13 8. River + 0.25 % Pond 3.0 0.14 9. River + 0.50 % Pond 3.7 0.17 10. River + 1.0% Pond 4.9 0.22 11. River + 2.5% Pond 4.3 0.19 12. River + 5.0% Pond 4.7 0.21 13. River only 3.1 0.14 ------- The algae growing in samples of Rock River water were found t? be stimulated by the addition of nitrogen but not by the addi- tlon of phosphorus or iron. There was a slight stimulation due to the addition of the pond effluent, but the amount of effluent 0.5 percent or more was required to bring about a stimulation which was far in excess of the percentage of effluent that enters the Rock River. More detailed studies could have been conducted to further assess the nutrients limiting the growth of algae in the Rock River at that time of the year (November), but this fertile river had sufficient nutrients already present such that the addition of 0.5 percent or more of its flow would have to come from the Koshkonong ponds before any effect would be made on algal growth in the river. During Feburary of 1976 when there was little algal activ- ity in the ponds, comparisons of analyses of the Rock River and the pond effluent were made to determine the influence that the pond effluent may have on the river during a period of supposedly lowest effectiveness of the pond system. Samples were compared for February 16. 18 and 20. The BOD of the Rock River (3-5 mg/l) was in the same range as Pond No.3 effluent (2-7 mg/l), but the COD of the pond effluent samples (25-40 mg/l) were slightly lower than the Rock River (29-48 mg/l) whether comparing unfiltered or filtered samples. During this period of low algal activity in the ponds, the total and volatile suspended solids (2-3 mg/l) were much less than the Rock River (20-53 mg/l). A detailed analysis of the plankton of the Rock River was not made but there was a remarkable similarity between the dominant species recorded for the river (Mackenthum, et al., 1960) and what was found in the ponds. At times, diatoms were predominant and the green algae Coelestrum,Closterium and Scenedesmus were found to be frequent in both the river and the pond. 60 ------- 10. SECTION 7 REFERENCES 1. Boulier, G.A. and T.J. Atchison. Practical Design and Ap- plication of the Aerated-Facultative Lagoon Process. Second Edition. Hinde Engineering Company, Highland Park, Illinois (1975) . 2. Bremner, J.M. and D.R. Keeney. Steam Distillation Methods for Determination of Ammonium, Nitrate and Nitrite. Analy- tica Chimica Acta, 32, 485-595 (1965). 3. Busse, J.A. Evaluation of Mean Residence Time for an Aerated Lagoon. Unpublished Report for M.S., University of Wisconsin (1976). 4. Fitzgerald, G.P. Stripping Effluents of Nutrients by Biological Means. Transactions of Seminar on Algae and Metropolitan Wastes, U.S.P.H.S. Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio. 136-139 (1960). Fitzgerald, G.P. The Effect of Algae on BOD Measurements. Journal Water Pollution Control Federation, 36, 1524-1542 (1964). 5. 6. Kaneshige, H.M., G.P. Fitzgerald and G.A. Rohlich. Stabil- ization Pond Studies. University of Wisconsin, Engineering Experiment Station Report, Madison, Wisconsin (1957). 7. Koshkonong Consolidated Sanitary District's Operation and Maintenance Manual for Wastewater Collection and Treatment Facility, (1973). 8. Mackenthun, K.M., L.A. Lueschow and C.D. McNabb. A Study of the Effects of Diverting the Effluent from Sewage Treat- ment Upon the Receiving Stream. Wisconsin Academy of Sciences, Arts and Letters, 49, 51-72 (1960). 9. Wastewater Engineering. McGraw-Hill Metcalf and Eddy, Inc. Book Company. Nichols, M. Starr. Major Cause of Algae and Weeds in Lake Mendota. Wisconsin Academy of Sciences, Arts and Letters, 61, 229-234 (1973). 61 ------- 11. 12. Silva, P.C. and G.F. Papenfuss. Systematic Study of the Algae of Sewage Oxidation Ponds, State Water Pollution Con- trol Board Publication No.7, Sacramento, California (1953). Standard Methods for the Examination of Water and Wastewater, 13th Edition. American Public Health Association, New York, New York, (1971). 62 ------- APPENDIX A EVALUATION OF POND SAMPLING USING CHLOROPHYLL a 1. Sampling Evaluation No.1 5/27/76 A. Replicate Pond Samples (Pond Surface) Measurements made on acetone extracts with Aminco Fluorometer, 665~ were 1 fluorometer unit = 0.045 mg chlorophyll ~/l Fluorometric Units Pond No. 1 Pond No. 2 Pond No. 3 1. 0.95 6. 1.10 11. 3.9 16. 5.2 21. 0.58 26. 0.5 2. 0.94 7. 0.90 12. 4.7 17. 5.1 22. 0.58 27. 0.6 3. 0.92 8. 0.92 13. 4.6 18. 4.9 23. 0.56 28. 0.4 4. 1.10 9. 0.90 14. 4.8 19. 5.1 24. 0.72 29. 0.4 5. 1. 05 10. 0.80 15. 4.6 20. 5.2 25. 0.50 30. 0.4 mean = 0.96 mean = 4.8 mean = 0.55 s = 0.096 s = 0.40 s = 0.078 2 2 8 8 7 B. Effluent Samples from Pond No.3. depth) (Sample from mid- Fluorometric Units Pond No.3 1. 0.55 6. 0.48 2. 0.58 7. 0.50 3. 0.51 8. 0.49 4. 0.52 9. 0.49 Pond No. 3 Surface 5. 0.52 10. 0.55 (see A) mean = 0.52 mean = 0.55 = 0.032 vs. 0.078 s s = 63 ------- C. Replicates Analyses of a Single Sample from Pond No.2 Surface Fluorometric Units l. 2. 3. 4. 5. 4.9 4.9 4.8 4.7 4.8 mean = s = 6. 7. 8. 9. 10. 4.8 0.082 4.7 4.8 4.7 4.7 4.7 D. Conversion Factors 1. One fluorometer unit = 0.045 mg chlorophyll a/l based on triplicate analyses of optical density at 665 (1 em) with Aminco Fluorometer on acetone extracts. 2. Non-filterable residue dry weights (surface samples). Net Sample Weight Concentration Pond Volume, m1 mg mg/l 1 150 2.1 14.0 1 150 1.8 12.0 mean = 13.6 mg/1 1 150 2.0 13.3 s = 1.4 1 150 2.3 15.3 2 100 4.1 41. 2 100 4.4 44. mean = 43 mg/1 2 100 4.4 44. s = 1.4 2 100 4.3 43. 3 200 1.5 7.5 3 200 1.1 5.5 mean = 7.0 3 200 1.6 8.0 s = 1. 08 3 200 1.4 7.0 3. Algal cell counts/ml Pond No.1 Protococcus sp. Count 1 16,000 Count 2 26,000 Count 3 32,000 3,760,000 Scenedesmus sp. 3,240,000 Pond No.2 2,960,000 Pond No.3 Protococcus sp. 48.000 24,000 48.000 64 ------- 4. Summary Pond No.1: Pond No.3: 3 x 106 ce11s/m1 = 43 mg wt./1 = J.22 mg chlorophyll ~/l 1 Aminco fluor. unit = 9.0 mg TSS 1 Aminco fluor. unit = 14.2 mg TSS 1 Aminco fluor. unit = 1.27 mg TSS Pond No.2: II. Sampling Evaluation No.2 Microcystis in Pond No.3) 9/28/76 (Light surface bloom of Aminco Fluorometer Readings Total Suspended Solids mg/l Pond Pond Pond Pond Pond Pond No. 1 No. 2 No. 3 No. 3 No. 3 No. 3 Sur- Sur- Sur- Efflu- Sur- Efflu- face face face ent face ent 1. 0.28 1.1 1.1 0.7 1. 17 9 2. 0.28 1.0 1.1 0.6 2. 17 11 3. 0.28 1.2 1.0 0.7 3. 14 10 4. 0.27 1.3 1.1 0.7 4. 14 11 5. 0.29 1.1 1.2 0.6 5. 17 9 6. 0.27 1.0 1.1 0.7 6. 15 13 7. 0.28 1.2 1.0 0.7 8. 0.28 1.2 1.1 0.6 9. 0.27 1.1 1.0 0.7 10. 0.27 1.3 1.2 0.7 Range 0.27- 1. 0- 1. 0- 0.6- 14-17 9-13 0.29 1.3 1.2 0.7 Mean 0.28 1.15 1. 09 0.67 15.7 lU. 5 s 0.007 0.11 0.074 0.048 1.5 1.5 Ratios: 1.09 Fluorometer units = 15.7 mg TSS/l Pond No.3 Surface or 14.4 mg TSS/1 per one fluorometric unit 0.67 Fluorometer units = 10.5 mg TSS/l Pond No.3 Effluent or 15.7 mg TSS/l per one fluorometric unit 0.045 mg chlorophyll ~/l = one fluorometric unit. 65 ------- APPENDIX B SUMMARY OF DAILY ANALYSES FOR MEASURED PARAMETERS Nomenclature Sea mean = seasonal mean Sea Std Dev = seasonal standard deviation ( ) = estimated value < = less than stated amount Sampling points, Nos. 1-5 No. 1. Influent to Pond No. 1 No. 2. Effluent from Pond No. 1 No. 3. Effluent from Pond No. 2 No. 4. Effluent from Pond No. 3 No. 5. Effluent from chlorine contact tank Air temperature °C = (OF-32) 5/9 1 MGD = 3785 m3/d + pH = -log[H ] mg/l = milligrams per liter ml = milliliter Alkalinity = expressed as mg/l CaC03 TKN = total Kjeldahl nitrogen TSS = total suspended solids VSS = volatile suspended solids BODS = 5 day, 20°C biochemical oxygen demand COD = chemical oxygen demand mgd = million gallons per day NH3-N = ammonia nitrogen N02 or N02-N = nitrite nitrogen N03 or N03-N = nitrate nitrogen Fec Coli = Fecal coliforms Fec Strep = Fecal streptococci 66 ------- TABLE 14. DAILY RESULTS FOR WATER TEMPERATURE, AIR TEMPERATURE AND FLOW INDICATOR WATF.:R TEMP It) Alto! (Coy) fLOW IMGD SAMPLING 2 3 'I 5 TEMP MO DY 12 13 12 "I 3 :.! 2 39 .2"10 12 1 "I 12 "I 3 2 2 52 .230 12 Ie; 12 'I 3 3 'I 2"1 .2'10 12 16 12 "I 3 3 3 22 .230 12 i 7 II 'I 3 3 2 2 .7.30 12 18 II 3 2 2 2 2 .230 12 19 II 3 2 2 2 20 .220 MEAN 1 1 .0 3.7 2.7 2." 2.'1 23.0 .231 STD DEV .5 .5 .5 .5 .8 18.2 .0:J7 1 3 10 3 2 2 2 20 .210 1 "I 10 2 2 2 2 9 .210 1 5 10 2 2 2 2 1 1 .210 1 6 11 2 2 2 2 20 .210 1 7 9 2 2 2 2 10 .210 1 8 10 2 2 2 2 -9 .210 1 9 1 Q 2 2 2 2 a .210 1 I!) 10 2 1 2 1 0 .210 1 1 1 10 2 1 1 1 18 .210 I 12 10 2 1 1 1 ~o .200 'I 13 10 1 1 1 1 12 .200 I 1 "I 10 1 1 1 1 12 .210 1 IS 11 1 1 1 1 18 .210 1 16 10 1 1 1 1 18 .220 1 17 10 1 1 1 1 10 .220 1 18 10 1 1 1 1 10 .210 1 19 10 1 1 1 1 13 .210 i 20 10 1 1 1 1 9 .210 1 21 9 1 1 1 1 16 .200 1 22 10 1 1 1 1 8 .210 1 23 10 1 1 1 1 20 .220 1 2"1 10 1 1 1 1 l5 .210 1 25 10 1 1 1 1 15 .210 1 2b 10 1 1 1 1 -10 .210 1 27 9 1 1 1 1 16 .200 1 23 10 1 1 1 1 1 'I . 19 a I 29 10 1 1 1 1 18 .230 1 30 , 9 1 1 1 1 -12 .220 1 31 9 1 1 1 1 22 .190 2 1 9 1 1 1 1 10 . 190 MEAN 9.9 1 . 'I 1 .2 1 .3 1 .2 1 1 . 'I .209 STO OEV .5 .5 .'1 .'4 .'1 8.'1 .008 2 16 9 1 1 1 1 32 .2"10 2 17 9 1 1 1 1 32 .260 2 1a 9 1 1 1 1 30 .220 2 19 9 1 1 1 1 30 .2'10 2 20 9 1 1 1 1 35 .260 2 21 9 1 I I 1 18 .230 2 22 9 1 1 1 1 IS .2'10 MEAN 9.0 1 .0 1.0 1 .0 1.0 27."1 .2'11 STD DEV .0 .0 .0 .0 ,0 2.9 .005 SEA MEAN 10.0 1 . 7 1 . "I 1 . "I 1 . "I IS.8 .217 SEA STO CEV .9 1,0 ,7 .6 .7 12.5 ,016 67 (continued) ------- TABLE 14 (continued) INDICATOR WATER TEMP (OC) A J R ("'F) fL.0W (MGD I SAMPL.ING 2 3 Ii S TEMP /'10 DY 3 13 8 Ii 3 2 2 28 .370 3 1'+ 8 Ii 3 2 2 23 .336 3 15 8 " 3 3 3 32 .326 3 16 A 'i 3 3 3 20 ,307 3 17 8 't 3 3 3 36 .297 3 1 A 8 5 'I Ii '+ '12 .299 3 19 9 6 5 5 5 60 .315 I'1EAN 8. 1 "." 3.1i 3. 1 3. 1 3'1.'1 .321 STD DEV .'1 .8 .R 1 . 1 1 . 1 13.5 .026 'I 1 9 8 8 6 8 33 .323 'I 2 9 8 8 $ 8 3S .3'10 'I 3 9 8 8 8 8 '10 .369 'I 'I 9 8 8 9 9 38 .291 'I 5 9 9 9 9 9 '10 .293 'I 6 10 10 10 10 10 '12 .276 'I 7 1 P 11 11 II 11 'Iii .270 'i 8 10 10 10 10 10 38 .270 'I 9 10 11 11 1 1 11 '10 .270 'I 10 10 10 10 10 10 52 .308 'I II 10 10 10 10 10 '18 .270 'I 12 10 10 10 10 10 3'1 .270 .. i 3 10 10 10 10 10 '12 .270 'I I'. 1 n II 12 12 12 SO .270 'i 15 II 13 13 13 13 62 .270 'I 16 11 1'1 IS 1 S IS 63 .278 'I 17 II 15 16 16 1 b 63 .270 .. 18 1 1 1 b 17 17 17 65 .270 'i lq 1 (I 15 15 15 15 'II, .270 'I 20 1 I] \ 'I 15 1 S 15 52 .27'1 'I Z 1 10 I" 1 Ii 15 15 58 .306 .. 22 II 12 13 13 13 56 .297 'I 23 II 12 13 13 13 'i8 .313 'I 2'1 10 II 12 12 12 '10 .'130 'I lS 1 1 9 10 11 11 39 .33'1 'i 26 11 8 9 9 9 31i .333 'I 27 11 8 9 9 9 36 .318 .. 28 II II 12 12 12 '13 .300 'I 29 II II 12 13 13 '16 .293 'I 30 1 1 12 13 13 13 5" .293 MEAN 10.2 1 I . (1 1 1 ... 1 1 .6 1 1 .6 '16.0 .29d STD DEV .7 2. 1 2.3 2.3 2.3 8.6 .033 5 8 II 1:£ 12 13 13 37 .270 5 9 II 12 12 13 1'1 56 .270 5 10 II 12 13 1'+ 15 51 ,270 S 1 1 1 1 12 13 1 't 1'1 '18 .270 5 1 Z II 12 13 1'1 1 S "'I .270 5 13 1 1 12 13 15 16 56 .270 S \'1 II 12 13 IS 16 5S .270 MEAN 11 .0 12.0 12.7 1'1.0 lit.7 '19.6 .270 STD OEV ,0 .0 .2 .3 . 'I 2.7 .000 SEA MEAN 10.0 10.1 10. 'I 10.6 10.7 '1'1.7 .297 SEA STD DEV 1 . 1 3.2 3.7 '1.0 'i . 1 10.8 .035 68 (continued) ------- TABLE 14 (continued) INDICATOR WATER TEMP (OC) AIR (OF) fLOW IMGDI 3AMPLING 2 3 "I 5 TEMP 10 D'f 6 21 1 "I 21 23 23 23 6"1 .270 6 2? 1 Ii 21 23 23 23 66 .260 6 23 1'+ 21 22 23 23 66 .270 "I l"l 1 "I 21 ~2 22 22 61 .260 6 2~ 13 20 22 22 22 59 ,270 6 26 13 21 23 23 Z3 68 .270 6 27 1 "I 21 23 23 23 70 .270 '~EAN 13.7 20.9 22'0 22.7 Z2.7 6'1.9 .267 ,)TD OEV .5 . 4.1 .K; .5 .5 3.8 .005 7 I 1'" 22 23 23 23 58 .260 7 2 1 'i 22 23 23 23 59 .270 7 3 1 "I 23 2"1 2"1 2"1 59 .270 7 "I 1/~ 23 2"1 ?"I 2"1 58 ,270 7 5 1 5 23 1'+ 2'1 25 68 .270 7 6 1 5 23 25 25 25 70 .270 'I 7 15 23 25 25 2'1 70 .260 7 R 15 23 25 25 25 70 .270 7 9 15 23 25 25 25 72 .260 7 10 15 2'1 25 2S 25 78 .270 7 II 15 2'~ 25 15 25 80 ,270 7 12 15 -2"1 25 25 25 58 .260 7 13 15 2"1 25 25 25 68 .250 7 1 "I 15 25 26 26 26 76 .260 ~ 15 IS 25 26 26 27 70 .260 7 16 15 2 '. 25 2S 2'5 69 .260 7 17 15 2"1 25 25 25 66 .270 7 18 15 2"1 25 25 15 60 .270 7 1 q 15 2"1 25 2» 25 70 .260 7 2U 15 22 2"1 2"1 1"1 71 .270 7 21 15 22 2"1 2'1 2'1 66 .260 7 22 15 22 2"1 2"1 2"1 71 .260 7 23 15 23 25 J.5 25 72 .270 7 2'1 15 2"1 25 25 25 70 .270 7 25 15 2"1 25 26 26 70 .270 7 26 15 22 2"1 2"1 2'1 72 .260 7 27 15 22 2"1 2"1 2"1 70 .260 7 28 15 2'1 25 26 26 67 .270 7 29 15 2.1 25 /.6 2b 68 .260 7 JO 15 23 2S 26 26 67 .260 MEAN 1"1.9 2303 2'1.7 2'1,8 2'1.8 68,1 .265 STD DEV ,3 .8 .6 .8 .9 5.1 .005 8 11 16 23 Z'i 2"1 2'1 70 .260 8 12 16 23 2"1 2'1 2'1 70 .270 8 13 16 23 2'1 2'1 2'1 68 .270 8 1'1 16 7.3 2'1 2'1 2'1 60 .270 8 15 16 22 23 2;' 23 58 .270 8 16 16 21 22 22 27. 56 .260 8 17 16 21 21. 22 22 60 .260 MEAN 16.0 2203 23,3 23.3 23.3 63.1 .266 :)TD DE v .0 . 'I . 'I . 't . "I 2.2 .002 '5EA ME A,~ 1 '1.9 22.7 2'1.1 2'1.2 2'1.2 66.8 .265 SEA SrD DEli .7 1.2 1 . I 1 .2 1.2 5.7 .005 69 (continued) ------- TABLE 14 (cone 1 uded) INDICATOR "'ATER TEMP (DC) AIR (.D,!") fLOW (MGD) SAMPL I tJG 2 3 "f 5 TEMP :10 DY 9 18 16 17 17 17 11 '19 .270 9 19 16 17 17 17 17 62 .270 9 20 11, 17 17 17 17 52 .260 9 21 16 16 17 17 17 'Ia .260 9 22 16 16 11, 16 1 b 38 .250 9 23 1 b 1 I> 16 16 16 '16 .250 9 2'1 15 16 16 16 11, 35 .250 ~EAN 15.9 16. "f 16.6 1 6.6 16.6 '17. 1 .259 STD DEV . '1 .5 .5 .5 .5 9.0 .009 10 1 15 IS 16 16 16 'Ia .250 10 2 15 15 16 16 16 5'1 .260 10 3 15 IS 16 17 17 50 .260 10 'I IS IS 16 16 17 60 .250 \ 0 5 IS IS 16 16 16 '17 .260 10 6 15 IS 15 IS 15 35 .250 \ 0 7 15 1'1 1'1 1 'I 1 'I '10 .250 10 8 1 r; IS 1'1 1 'i 1 'I 30 .250 1 (1 9 IS 15 15 IS 15 36 .250 10 10 1 r; 1 S 15 15 1 S 3b .250 10 1\ IS 1<; IS 1 S 15 '11 .250 10 12 1 r; IS IS 1 ':I 15 5'1 .230 10 13 15 1'1 1'1 \ '1 1 'I 50 .2'10 10 1 'I 1 r; 1 '1 1'1 1 "f 1 'i '12 .2'10 10 1 Ii IS 1'1 \'1 1'1 1 "f '1'1 .2'10 \ 0 16 1 5 1'1 1 3 13 1 3 '10 .2S0 \ 0 17 IS 12 11 11 11 2'1 .250 10 18 1'1 12 10 10 10 26 .2'10 to 19 1'1 11 10 10 10 3'1 .2'10 10 20 1 'I 11 9 9 9 28 .230 10 21 1'1 1 iJ 1 , 9 32 .230 10 22 \'1 9 7 7 1 22 .2'10 10 23 1'1 8 7 7 7 36 .260 10 2'1 1'1 8 7 7 7 39 .260 10 25 1 'I 8 B 8 8 36 .260 10 26 1'1 ~ 7 7 7 32 .260 10 27 1'1 8 1 7 7 2'1 .250 10 28 1'1 7 6 . 6 26 .260 10 29 1 'I 7 6 6 6 3'1 .260 10 30 1 'I 7 6 6 6 '12 .270 MEAN 1'1. b 1 2 . (1 \ 1 ." 1 1 . 6 1 1 . 7 3 8.1 .250 STD DE'! .5 2.8 3.'1 3.'1 3.5 a.8 .009 11 2'1 13 9 8 8 7 30 . 1 1 'I 11 25 13 7 6 5 5 16 . 1 18 11 26 12 6 6 5 5 18 ,115 11 27 12 6 6 'I 'I 2'1 . 1 13 11 28 11 7 6 'I 'I 2'1 .135 11 29 11 6 6 5 5 26 ,137 11 30 11 6 6 6 6 12 .133 /'lEAN 1 I .9 6.7 6.3 5.3 S. I 21 . 'I , 12 'I STD DEV .3 . 'I .3 .5 . 'I 2,'1 .00'1 SEA MEAN 1'1.3 1 1 .9 1 I .5 1 I . 'I I 1 . 'I 36.9 .231 SEA STD DEV 1 .3 3.8 '1.3 '1.6 '1.6 11 .8 ,0'18 70 ------- TABLE 15. DAILY RESULTS FOR pH AND ALKALINITY INDICATOR p H .A l K A LI N IT Y (MG/U SAMPLING 1 2 3 4 5 1 2 3 4 5 1'10 DY 12 13 7.3 7.5 7.5 7.6 7.6 414 418 390 389 368 12 14 7.3 7.5 7.5 7.6 7.5 420 440 392 380 380 12 15 7.3 7.5 7.5 7.5 7.5 404 416 396 370 366 12 16 7.3 7.5 7.5 7.5 7.6 440 416 404 3RI:! 384 12 17 7.3 7.5 7.5 7.5 7.6 408 424 412 370 388 12 18 7.3 7.5 7.5 7.5 7.5 428 428 430 3eO 388 12 19 7.4 7.5 7.5 7.6 7.6 419 423 404 379 379 MEAN 7.31 7.50 7.50 7.54 7.56 419.0 423.6 404.0 379.4 379.u srD DEV .04 .uO .00 .05 .05 12.2 8.5 13.8 7.6 8.<'/ 1 3 7.4 7.5 7.5 7.5 7.5 420 409 416 410 408 1 4 7.3 7.5 7.5 7.5 7.6 435 424 1018 1010 416 1 5 7.3 7.':J 7.5 7.5 7.5 4100 1036 438 432 1014 1 6 7.4 7.5 7.4 7.5 7.5 424 424 432 436 432 1 7 7.5 7.5 7.5 7.4 7.6 1022 428 1032 1024 420 1 8 7.5 7.5 7.5 7.5 "7. 5 416 444 430 424 420 1 9 7.5 7.5 7.5 7.5 7.6 1076 452 440 428 430 1 10 7.10 7.5 7.4 7.5 7.5 412 448 452 476 428 1 11 7.4 7.5 7.5 7.5 7.5 428 442 1,1.6 444 448 1 12 7.4 7.4 7.5 7.5 7.5 1044 448 4108 444 1036 1 13 7.3 7.4 7.4 7.5 7.4 436 454 446 438 444 1 14 7.3 7.5 7.5 7.5 7.10 380 444 448 432 436 1 15 7.3 7.5 7.5 7.5 7.4 422 446 438 430 420 1 16 7.3 7.4 7.5 7.5 7.4 416 448 436 444 436 1 17 7.4 7.5 7.5 7.5 7.4' 428 434 444 442 442 1 18 7.3 7.4 7..5 7.5 7.4 1014 444 444 440 440 1 19 7.3 7.4 7.5 7.6 7.5 428 450 452 456 456 1 20 7.3 7.5 7.5 7.5 7.4 424 448 454 458 458 1 21 7.4 7.5 7.6 7.5 7.4 423 446 454 463 450 1 22 7.3 7.4 7.5 7.6 7.5 404 440 449 440 443 1 23 7.2 7.4 7.5 7.5 7.4 418 448 449 454 453 1 24 7.3 7.5 i' . 5 7.5 7.4 419 446 457 455 459 1 25 7.3 7.5 7.5 7.5 7.5 1014 443 446 450 454 1 26 7.3 7.4 7.5 7.6 7.5 421 445 458 454 455 1 27 7.3 7.5 7.6 7.6 7.5 368 434 457 460 448 1 28 7.4 7.5 7.5 7.5 7.4 412 441 455 455 452 1 29 7.4 7.':J 7.5 7.5 7.4 408 437 449 455 453 1 30 7.3 7.4 7.5 7.5 7.'4 425 434 452 452 453 1 31 7.4 7.5 7.5 7.5 7.5 422 433 446 451 461 2 1 7.4 7.5 7.5 7.5 7.4 410 440 451 445 447 MEAN 7.35 7.47 7.50 7.51 7.46 420.3 440.3 444.6 44 3.6 440.7 srD DEV .07 .U4 .04 .04 .06 16.6 8.7 9.6 13.6 13.3 2 16 703 7.4 7.4 7.4 7.3 402 410 395 400 408 2 17 7.3 7.4 7.4 7.4 7.3 381 403 402 380 403 2 18 7.3 7.4 7.4 7..4 7.3 377 401 388 390 398 2 19 7.3 7.4 7.4 7.4 7.4 367 405 397 399 402 2 20 7.3 7.4 7.4 7.4 7.4 374 402 3e9 392 396 2 21 7.4 7.4 7.4 7.4 7.4 393 400 392 396 388 2 22 7.3 7.4 7.4 7.4 7.4 396 397 387 392 401 MEAN 7.31 7.40 7.40 7.40 7.36 384.3 402.6 392.9 392.7 399.4 srD DEV .01 .00 .00 .00 .02 4.8 1 .5 2.0 2.5 2.4 SEA "'EAN 7.34 7.46 7.48 7.50 7.46 414.4 431.7 429.9 425.3 424.3 SE.A srD DE V .07 .05 .05 .06 . CA 21.2 16.7 24.3 "!O.3 28.0 (continued) 71 ------- TABLE 15 (continued) It-4DICATOR P H ALKALINITY (I'IG/L) SAMPLING 1 2 3 4 5 1 2 "t 4 5 1"10 DY 3 13 7.3 7.4 7.5 7.6 7.5 388 380 368 360 362 3 14 7.4 7.4 7.5 7.6 7.5 362 378 364 356 356 3 15 7.3 7.5 7.6 7.6 7.6 390 391 387 388 374 3 16 7.3 7.5 7.6 7.6 7.6 394 403 393 371 ~74 3 17 7.3 7.6 7.6 7.6 7.6 397 400 3Q6 372 377 3 18 7.3 7.6 7.6 7.6 7.6 404 400 397 372 373 3 19 7.4 7.5 7.6 7.6 7.6 400 402 399 369 377 MEAN 7. 33 7.50 7.57 7.60 7.57 390.7 393.4 386.3 369.7 370.4 STD DEV .05 .08 .05 .00 .05 13.8 10.6 14.4 10.2 8.1 4 1 7.2 7.5 7.7 7.8 7.8 382 3b8 371 333 366 4 2 7.2 7.5 7.7 7.7 7.7 384 392 390 350 346 4 3 7.3 7.5 7.7 7.7 7.7 386 399 367 360 366 4 4 7.3 7.5 7.7 7.7 7.6 384 397 380 359 369 4 5 7.2 7.6 7.7 7.7 7.8 394 400 371 350 369 4 6 7.2 7.6 7.7 7.7 7.8 391 391 376 350 378 4 7 7.2 7.6 7.7 7.7 7.8 403 405 382 357 36C1 4 8 7.2 7.6 7.7 7.7 7.8 398 402 378 347 362 4 9 7.2 7.5 7.6 7.7 7.b 399 396 379 350 368 4 10 7.3 7.0 7.7 7.8 7.8 393 405 3~1 341 366 4 11 7.3 7.5 7.6 7.6 7.7 398 405 384 345 365 4 12 7.2 7.5 7.6 7.7 7.8 398 405 385 346 372 4 13 7.2 7.5 7.6 7.7 7.b 398 407 387 344 366 4 14 7.2 7.5 7.6 7.7 7.8 396 405 389 345 370 4 15 7.2 7.5 7.6 7.7 7.0 394 404 3~9 331 370 4 16 7.2 7.5 7.6 7.7 7.B 383 4CJ3 383 324 377 4 17 7.3 7.5 7.6 7.6 7.7 ~86 412 382 342 369 4 18 7.3 7.5 7.6 7.6 7.1 380 411 379 3:3 2 372 4 19 7.2 7.5 7..6 7.7 7.7 401 409 3Q8 350 383 4 20 7.2 7.5 7.6 7.7 7.7 392 406 388 346 378 4 21 7.2 7.5 7.6 7.7 7. 7 386 406 3~6 348 379 4 22 7.2 7.5 7.6 7.7 7.7 380 403 376 3"" 7 368 4 23 7.2 7.5 7.6 7.6 7.7 405 402 390 343 364 4 24 7.3 7.4 7.5 7.6 7.7 374 399 3'"0 345 363 4 25 7.3 7.4 7.5 7.6 7.7 324 404 31'0 340 369 4 26 7.2 7.4 7.5 7.6 7.7 387 397 380 342 348 4 27 7.2 7.4 7.5 7.6 7.8 358 406 399 336 365 4 28 7.2 7.4 7.6 7.7 7.8 379 401 372 347 372 4 29 7.2 7.5 7.6 7.7 7.8 3Q - 410 377 340 376 ,(. 4 30 7.2 7.5 1.6 7.7 7.8 391 406 3..eO 344 369 MEAN 7.23 7.50 7.62 7.6i:, 7.75 387.2 402.5 3/'11.6 344.9 360.2 STD DEV .04 .u5 .06 . C 5 .05 13.8 5.2 6. 1 7.7 7. , 5 8 7.2 7.0 7.8 7.9 b.O 392 400 361 356 343 5 9 7.2 7.6 7.8 7.9 c.O 381 402 362 338 338 5 10 7.2 7.6 7.7 7.9 t:.0 402 402 361 341 345 5 11 7.2 7.0 7.8 8.0 CI.O 397 405 364 345 344 5 12 7.2 7.e 7.7 ~ .0 8.0 399 402 349 320 345 5 13 7.2 7.6 7.8 7.9 8.0 390 406 328 305 313 5 14 7.2 7.6 7.8 7.9 c. 2 397 402 336 324 314 MEAN 7.20 7.60 7.77 7.93 8.03 394.0 402.7 351.6 332.7 334.6 STD DEV .00 .CJO .02 .02 .O"t 2.6 .8 5.4 6.5 5.5 SEA "'EAN 7.24 7.52 7.63 7.71 7.77 388.8 4G1.1 377.6 346.9 363.2 StCA STD DEV .00 .1.;7 .09 .11 . 14 14.2 7.1 14.9 15.0 15.5 (continued) 72 ------- TbBL~ 15 (continued) INDICATOR p H ALOLINlTY (MG/U SAMPLING 2 : 4 5 1 2 3 4 5 MO DY 6 21 7.2 7.6 7.7 7.8 7.8 426 442 436 309 395 6 22 7.3 7.e 7.7 7.8 7.8 427 453 435 4n3 416 6 23 7.3 7.6 7.7 7.8 7.8 408 443 428 397 404 6 24 7.3 7.e 7.7 7.8 7.8 407 441 424 4C'2 408 6 25 7.3 7.6 7.7 7.8 7.8 403 435 435 415 408 6 26 7.3 7.0 7.7 7.8 7.8 407 434 431 398 ,,07 6 27 7.3 7.6 7.7 7.P: 7.8 404 429 442 405 4H MEAN 7.29 7. 60 7.7C 7.80 7. tr' 411.7 439.6 433.0 402.7 407.4 STD DEV .04 .GO .OC .00 .00 10.3 7.8 5.9 6.1 6.9 7 1 7.3 7.0 7.7 7.8 7.8 374 444 410 399 409 7 2 7.3 7.e 7.7 7.8 7. 8 "'.97 412 417 428 405 7 3 7.3 7.0 7.7 7.E 7.& 400 420 4~3 393 419 7 4 7.3 7.7 7.7 7.8 7.8 424 4"'.9 435 391 416 7 5 7.3 7.7 7.7 7.8 7.8 439 437 "24 387 422 7 6 7.3 7.e 7.7 7.8 7.8 441 433 419 373 425 7 7 7.4 7.6 7.7 7.8 7.'0 "22 434 419 3P7 407 7 8 7.2 7.6 7.7 7.7 7.7 404 "25 415 "01 400 7 9 7.3 7.6 7.7 7.7 7.7 400 "20 425 397 400 7 10 7.3 7.0 7.7 7.7 7.7 399 "27 442 3?2 "02 7 1 1 7.3 7.(;) 7.7 7.7 7.7 393 440 446 393 405 7 12 7.3 7.0 7.7 7.7 7.7 "!97 431 430 3112 "03 7 13 7.3 7.6 7.7 7.8 7.t 402 439 440 385 408 7 14 7.3 7.e 7.7 7.8 7.8 401 448 4:4 375 400 7 15 7.3 7.(;) 7.7 7.8 7.8 404 "49 425 375 405 7 1 6 7.3 7.6 7.7 7.8 7.8 398 "37 422 37t. 401 7 17 7.3 7.e 7.7 7.8 7.8 399 437 427 373 389 7 18 7.3 7.6 7.7 7.8 7.8 400 4" 5 "25 377 391 7 19 7.3 7.6 7.7 7.8 7. f:. 420 4"8 424 374 411 7 20 7.3 7.0 7.7 7.7 7.7 401 447 427 3114 416 7 21 7.3 7.6 7.7 7.7 7. 7 392 444 431 3~7 402 7 22 7.3 7.(;) 7.7 7.7 7.7 3e 7 433 434 386 404 7 23 7.3 7.(;) 7.6 7.7 7.7 387 436 444 3n 409 7 24 7.3 7.6 7.7 7.7 7.7 392 1039 451 383 416 7 25 7.3 7.0 7.7 7.7 7.7 400 443 455 31\9 414 7 26 7.3 7.6 7.7 7.8 7.8 393 442 453 382 415 7 27 7.3 7.0 7.7 7.7 7.7 396 455 441 399 413 7 n 7.3 7.6 7.7 7.7 7.7 385 451 445 30 422 7 29 7.3 7.6 7.7 7.7 7.7 394 453 446 383 417 7 30 7.3 7.6 7.7 7.7 7 - 7 388 455 449 380 420 MEAN 7.30 7.61 7.7C 7.75 7.75 401.0 438.8 432.9 386.2 409.1 STC DEV .02 . U 2 .02 .05 .05 13.3 9.5 11.0 10.1 7.9 1:\ 11 7.2 7.5 7.6 7.7 7.7 346 477 431 374 389 1:\ 12 7.3 7.5 7.6 7.7 7.7 385 439 41. 0 375 393 '6 13 7.2 7.5 7.6 7.7 7.7 383 438 1.37 368 391 b 14 7.3 7.5 7.6 7.7 7.7 380 438 1.32 362 390 '6 15 7.3 7.5 7.6 7.7 7.7 381 433 431 365 397 8 16 7.3 7.5 7.5 7.6 7.6 384 442 1.33 361 393 8 17 7.3 7.5 7.5 7.6 7.6 367 443 432 371 39.3 MEAN 7.27 7.50 7.57 7.67 7.67 375.1 41. 4.3 433.7 368.U 3n.3 STC DEV .02 .00 .02 . ° 2 .02 5.3 5.5 1 .3 2.1 1 .0 SEA MEAN 7.29 7.59 7.68 7.75 7.75 398.6 439.8 4~3.1 3F5.9 406.2 SEA STC CEil .03 .04 .05 .06 .06 17.7 10.9 10.4 13.<1 9.9 73 (continued) ------- TABLE 15 (conc,luded) INDICATOR P H AlKALINITY (/0\ G I L> SAMPLING 2 ~ 4 ~ 1 (: 3 4 5 MO DY 9 18 7.2 7.4 7.5 7.7 7.7 36!:i 410 434 3!13 392 9 19 7.2 7.4 7.5 7.7 7.7 373 427 429 393 400 9 20 7.2 7.5 7.5 7.6 7.7 396 419 430 3°0 410 9 21 7.2 7.5 7.5 7.6 7.6 388 424 412 3~ 2 397 9 22 7.2 7.5 7.5 7.6 7.6 368 429 423 379 392 9 23 7.2 7.5 7.5 7.5 7.5 369 448 431 3/37 394 9 2" 7.2 7.5 7.5 7.5 7.5 372 431 418 379 393 !'lEAN 7.20 7.47 7.50 7.60 7.61 376.3 426.9 425.3 3~4.7 398.C STD DEV .00 .05 .00 .08 .09 11 . 1 1 1 .7 8.0 5.4 9.3 10 1 7.3 7.5 7.5 7.5 7.5 372 431 420 393 395 10 2 7.3 7.5 7.5 7.5 7. 5 ~70 417 426 3n 393 10 3 7.3 7.5 7.5 7.5 7.5 370 451 422 379 396 10 4 7.2 7.5 7.5 7.4 7.4 376 445 434 3/37 396 10 5 7.3 7.5 7.5 7.5 7.5 383 447 427 388 410 10 6 7.2 7.5 7.5 7.5 7.5 362 446 428 378 409 10 7 7.2 7.5 7.5 7.6 7. t 377 443 426 385 399 10 8 7.2 7.5 7.5 7.5 7. 5 376 433 413 3111 398 10 9 7.2 7.5 7.5 7.5 7.5 379 443 415 373 405 10 10 7.2 7.5 7.5 7.5 7.5 373 434 416 393 394 10 11 7.2 7.5 7.5 7.5 7.5 375 414 413 3Q1 393 10 12 7.2 7.5 7.5 7.5 7.5 375 429 404 373 396 10 13 7.2 7.5 7.5 7.5 7.5 361 432 416 3Q2 374 10 14 7.3 7.5 7.5 7.4 7.4 362 44 1 429 379 393 10 15 7.2 7.5 7.5 7.4 7.4 375 421 418 363 39~ 10 16 7.2 7.5 7.5 7.5 7. 5 421 431 430 373 393 10 17 7.2 7.5 7.5 7.5 7.5 383 435 423 375 393 10 18 7.2 7.5 7.5 7.5 7. 5 396 I, 17 417 375 392 10 19 7.3 7.5 7.5 7.5 7.5 369 416 414 365 395 10 20 7.2 7.5 7.5 7.5 7.5 370 419 418 367 396 10 21 7.2 7.5 7.5 7.5 7.4 366 424 419 374 393 10 22 7.2 7.5 7.5 7.5 7.5 365 417 423 363 400 10 23 7.3 7.5 7.5 7.5 7.5 365 423 419 369 403 10 24 7.3 7.5 7.5 7.5 7.5 373 421 414 371 407 10 25 7.3 7.5 7.5 7.5 7.5 372 425 416 373 407 10 26 7.2 7..5 7.5 7.4 7.4 353 428 Ion 396 405 10 27 7.2 7.5 7.5 7.5 7.5 371 434 423 359 406 10 28 7.3 7.5 7.5 7.5 7.5 363 422 423 357 398 10 29 7.3 7.5 7.5 7.5 7.5 373 417 413 371 396 10 30 7.5 7.5 7.5 7.5 7. 5 363 414 405 371 397 !'lEAN 7.25 7.50 7. 50 7.49 7.49 373.0 429.0 419.2 375.9 397.6 STD DEV .06 . LO .00 .04 .04 11.0 9.9 6.3 tI.9 6.3 11 24 7.4 7.4 7.5 7.5 7.6 408 436 408 386 395 11 25 7.4 7.4 7.5 7.6 7.6 404 399 430 394 406 11 26 7.2 7.4 7.5 7.5 7. 5 427 41 1 "19 377 3f'7 11 27 7.3 7.4 7.5 7.5 7.5 439 436 409 394 404 1 1 28 7.2 7.4 7.5 7.6 7.5 441 450 412 401 402 11 29 7.3 7.4 7.5 7.6 7.0 443 445 432 407 399 1 1 30 7.4 7.4 7.5 7.5 7.6 406 438 411 408 396 M E,A N 7.31 7.40 7.50 7.54 7.56 424.0 430.7 417.3 395.3 398.4 srD DEV .03 .00 .00 .02 .02 6.6 7.0 3.7 4.2 2.4 SEA I"EAN 7.25 7.48 7.50 7.52 7.52 381.6 428.9 419.9 3 ~ 0.4 397.tI SEA STD DEV .07 .04 .00 .06 . (: 7 22.6 12.3 7.9 11 .9 7.2 74 ------- TABLE 16. DAILY RESULTS FOR BOD AND COD I~OICATOR t)OOSOIG/U COO (IIIG/L> SAillPLI NG 1 231, 5 2 3 4 5 "'0 Oy 12 13 97 7 I" 5 8 11,,0 26 16 12 1f\ 12 11" 91, 23 5 4 9 1 91, 42 18 HI '-9 12 15 99 16 7 8 9 281, 32 16 14 16 12 16 83 8 6 6 7 188 40 40 3P 38 12 17 51" 7 8 5 7 180 30 28 28 36 12 18 101 8 6 8 8 200 28 12 10 10 12 19 93 11 10 5 8 276 39 32 26 28 M~A~ 88.711... 6.6 5.9 8.0 208.9 33.9 23.1 20.9 25.0 STD DEV 16.1, 6" 2.0 1 . b .8 52.1, 6.4 10.3 10.2 10.6 .v 1 3 95 20 5 4 7 214 39 27 31 23 1 I, 96 10 6 4 I, 316 51" 1,6 36 36 1 5 107 10 7 5 7 321, 51, 4l, 38 40 1 6 85 10 10 5 8 226 48 36 36 1,0 1 7 138 10 9 6 9 291, 74 41, 36 30 1 8 85 12 10 6 9 146 36 38 26 30 1 9 95 10 6 6 7 218 52 42 I,p 38 1 10 81 9 7 b 8 196 46 1,2 4e 1,,0 1 11 98 9 7 7 9 176 1,6 52 5" 44 1 12 101" 14 6 7 11 232 60 49 I.'! 43 1 13 71 9 8 8 10 191, 50 43 38 43 1 14 85 9 7 7 11 209 49 68 3~ 40 1 15 81, 7 7 8 12 223 54 45 3~ 45 1 16 100 8 11" 7 11 212 32 28 2P 32 1 17 98 (12) 13 8 11 153 58 32 40 32 l' 18 119 14 9 9 9 311 l,3 35 35 43 1 19 107 12 6 8 10 307 48 35 P 43 1 20 81 10 7 7 14 191, 45 53 49 49 1 21 81 12 10 8 14 288 65 41 53 61 1 22 109 12 1 ~ 10 15 191 49 45 3'5 51 1 23 69 12 16 11 10 153 41 31 39 39 1 24 74 14 14 6 1l, 164 42 38 34 .38 1 25 103 14 16 7 15 206 42 38 31, 29 1 26 103 18 10 7 14 248 67 46 42 48 1 27 97 15 12 II 11 206 48 37 46 52 1 28 115 13 11 8 7 222 59 46 3~ 42 1 29 91 19 13 8 9 249 64 42 37 35 1 30 118 13 8 7 9 332 61 59 61 64 1 31 101 12 6 6 9 246 70 57 44 52 2 1 87 15 10 7 9 194 40 27 29 26 MEAN 95.9 12.1 9.5 7.1 10.1 228.1 51 .2 42.2 39.9 40.9 STD OEV 13.8 2.b 3.0 1.4 2.4 47.9 9.3 8.5 7.1. 8.5 2 16 96 11 17 11 7 303 55 40 5C 39 2 17 92 9 7 6 6 213 46 43 30 35 2 18 79 12 9 7 6 284 57 48 35 33 2 19 77 11 8 5 " 219 36 31 18 19 2 20 38 7 5 5 2 122 1,,4 38 29 25 2 21 79 8 16 5 3 377 49 40 33 34 2 22 49 9 6 5 '5 243 32 28 27 27 "'EAN 72.9 9.6 9.7 6.3 4.7 251.6 45.6 38.3 31.7 30.~ STO OEV 8.0 .7 1 .8 .8 .7 30.1 3.4 2.6 3.6 2.6 SEA IIIEAN 91 .1 11.6 9.1 6.7 8.9 228.b 47.5 38.5 35.6 36.7 SEA STD DE V 18.3 3.0 3.5 1.7 3.1 57.9 11 .4 11 .4 11.2 11 .2 (continued) 75 ------- TABLE 16 (continued) INDICATOR fjODS(MG/L> COD (fIiIG/L> SA"'PLlNG 1 2 3 I. 5 2 3 I. 5 M DY 3 13 1.9 18 19 1 2 11 167 52 58 5P 54 3 11. 30 9 17 11. 9 105 38 I. 1 4:a: 3" 3 15 55 11. 17 12 10 132 52 107 107 47 3 16 32 18 11. 1 2 11 95 60 55 49 44 3 17 39 15 16 16 12 135 58 67 60 69 3 18 30 1 5 12 17 13 62 59 57 62 62 3 19 27 9 7 1 5 10 114 47 53 47 56 ,..EAN 37.4 1I..u 14.6 14.0 10.9 115.7 52.3 54.0 52.3 52.3 STD DEV 10.8 3.7 4.0 2.1 , .3 33.4 7.8 8.3 7.5 11 .7 4 1 77 23 28 31 14 124 69 69 76 ~(' 4 2 32 13 14 25 10 95 68 63 64 69 4 :3 48 18 36 24 10 172 56 72 64 58 4 4 32 H 18 23 9 H5 55 47 67 46 4 5 52 16 34 31 16 155 63 99 71 96 4 6 83 12 21 28 1/. 250 61 60 74 68 4 7 44 1 1 18 20 1~ 93 64 71 76 75 4 ~ 83 9 22 28 P 208 48 64 6(' 79 4 9 62 37 1 5 23 p 136 90 69 69 67 4 10 42 8 6 6 8 154 56 48 58 50 4 1 1 47 13 12 10 6 126 51 51 131 42 4 12 52 9 15 23 1? 156 55 59 69 63 4 13 41. 14 1 5 1 5 10 99 55 52 47 51 4 14 29 8 13 17 10 69 50 32 U 32 4 15 32 18 9 1 5 14 86 66 45 30 35 4 16 56 5 5 10 6 97 43 26 38 38 4 17 62 8 8 10 6 150 37 40 35 37 4 18 53 ~ 11 1 2 2 144 62 78 47 71 4 19 58 1 2 17 13 12 111 52 53 H 58 4 2C 57 10 1 5 1(.J 6 78 24 31 51 35 4 21 68 7 13 14 7 137 27 24 31 31 4 22 73 6 11 18 7 98 31 31 21 40 4 23 63 7 14 1 5 10 110 35 31 35 40 4 24 46 5 12 16 1/. 118 33 45 4~ 4:a: 4 25 94 7 1 1 14 6 221 30 24 45 37 I. 26 61 10 10 9 6 97 31 37 1110 35 4 27 59 10 13 16 11 63 30 24 4(1 40 4 28 49 1 1 13 16 " 78 37 45 51 58 4 29 34 1 2 16 1 5 9 76 39 44 47 53 4 30 56 13 19 17 14 1 52 33 68 69 70 "'EAN 54.9 11.~ 15.5 17.7 10.0 126.6 48.4 50.1 56.9 53.2 STD DEV 14.6 5.0 6.4 5.9 ~.3 40.7 14.2 16.8 21.2 15.~ 5 8 58 32 20 6 14 157 43 71 4~ 49 5 9 91 19 30 14 11 206 47 65 84 80 5 10 112 13 31 22 17 226 47 80 99 78 5 11 65 12 19 20 12 145 S3 88 92 70 S 12 65 18 21 21 15 145 60 97 52 80 5 13 57 1 S 14 16 9 100 64 116 7F 83 S 14 49 1 5 15 23 11 144 65 104 109 80 "'EAN 71.0 17.7 21.4 17.4 12.7 160.4 54.' 88.7 79.9 74."t STD DEV 8.4 2.5 2.5 2.2 1.0 15.8 3.3 6.8 ".9 4.4 SEA "'EAN 54.7 13.1 16.3 17.1 10.5 130.2 49.9 56.8 59.8 56.4 SEA STO OEV 18.9 6.:> 6.9 6.1 ~.4 44.6 13.9 22.1 2:!.3 17.4 (continued) 76 ------- TABLE 16 (continued) IND ICA TOR BODS(MG/L> COD (filG/L> SAPIIPLING 1 2 3 4 5 1 2 3 4 5 MO DY 6 21 127 17 25 11 8 263 45 49 61 39 6 22 90 14 14 6 15 181 34 29 22 18 6 23 70 13 16 5 8 144 72 52 49 49 6 24 55 13 110 6 8 159 60 49 47 47 6 25 73 12 16 11 8 162 46 41 35 39 6 26 82 14 15 12 10 217 65 58 55 60 6 27 102 16 24 17 18 177 69 44 33 36 MEAN 85.6 14.1 17.7 9.7 10.7 186.1 55.9 46.0 43.1 41.1 STD DEli 23.6 1.~ 4.7 4.3 1,.1 41.0 14.3 9.3 13.7 1'3.1 7 1 77 22 27 14 19 162 68 61 84 84 7 2 77 15 15 8 11, 165 80 40 39 55 7 3 93 31 29 20 13 271, 100 63 55 51 7 4 122 21 14 17 8 165 84 48 48 40 7 5 139 23 26 23 15 319 101 52 46 65 7 6 131 25 24 9 9 312 111 54 57 54 7 7 118 21, 10 21 15 348 96 61 69 72 7 8 80 21 14 32 15 246 94 63 92 85 7 9 93 20 16 23 23 147 72 56 88 51, 7 10 84 20 11 21 11 223 78 65 56 51, 7 11 105 17 10 20 18 229 69 51 77 81 7 12 109 23 13 23 25 288 72 48 72 58 7 13 73 15 9 16 22 330 78 78 61, 60 7 14 70 14 10 17 21 175 57 45 69 55 7 15 72 31 13 18 16 182 77 61 85 69 7 16 63 24 14 15 17 144 49 61, 71 53 7 17 87 17 11 12 15 200 66 68 H 51 7 18 74 15 11 14 15 334 64 58 6~ 60 7 19 118 23 22 19 35 269 65 58 57 83 7 20 75 21 12 10 20 241 54 41 53 46 7 21 67 23 15 23 18 345 51, 1,5 66 60 7 22 84 48 15 15 17 169 73 56 65 58 7 23 92 40 12 10 21 181, 75 49 56 52 7 24 105 30 20 17 26 163 78 47 55 56 7 25 116 28 18 17 29 296 83 56 60 64 7 26 101 35 23 16 34 166 71. 64 80 79 7 27 101 24 20 17 30 200 60 48 65 44 7 28 91 22 19 19 30 188 61 50 51 73 7 29 87 13 19 12 24 164 64 57 58 48 7 30 75 9 11 7 9 240 66 58 56 46 MEAN 92.6 23.1 16.1 16./S 19.5 228.9 74.1 55.5 64.0 60.3 STD DEli 18.0 7.3 5.0 4.9 6.5 59.9 13.4 7.7 11.6 11 .3 8 11 183 23 29 27 23 347 71 72 58 56 8 12 113 26 9 12 16 339 46 24 38 32 8 13 91 26 23 18 18 294 49 63 49 47 8 14 106 26 21 17 17 296 38 52 54 42 8 15 113 21 17 16 18 418 28 29 36 22 8 16 131 30 17 13 25 244 40 34 34 36 8 17 88 26 17 17 16 157 36 35 36 33 MEAN 117.9 25.4 19.0 17.1 19.0 299.3 44.0 1,4.1 43.6 38.3 STD DEli 12.0 1 .1 2.3 1.8 1.3 31 .0 5.1 6.8 3.7 4.2 SEA "'EAN 95.5 22.1 16.1' 15.7 18.0 233.3 66.4 52.2 57.4 53.8 SEA STD DEli 24.5 7.7 5.6 5.7 7.0 72.7 18.6 11.5 15.7 15.6 77 (continued) ------- TABLE 16 {concluded} INDICATOR bODS (MG/L> COD (MG/U SAMPLING 2 3 4 5 2 3 4 5 "'0 DY 9 18 104 35 22 35 13 194 41 48 47 22 9 19 124 48 21 34 16 232 61 60 56 56 9 20 142 48 22 34 28 299 7t. 41 6('1 55 9 21 106 ':;0 20 31 17 178 55 53 H 51 9 22 99 23 28 25 14 143 36 44 4«; 38 9 23 111 29 25 27 14 163 43 43 47 4~ 9 24 107 28 20 29 17 149 26 24 3('1 26 "'EAN 113.3 34.,> 22.6 30.7 17.0 194.0 48.0 44.7 47.4 41.6 STD DEV 14.9 9.9 2.9 3.9 5.1 55.2 16.3 11.3 0.5 13.6 10 1 149 31 30 28 17 298 31 41 49 51 10 2 108 47 22 19 15 12:! 37 52 41 44 10 3 119 t.8 24 26 13 208 35 39 31 37 10 4 125 24 29 27 12 211 31 52 31 ;:9 10 5 100 28 22 25 12 14P 32 34 27 ~9 10 6 96 34 23 26 14 154 45 41 43 32 10 7 103 34 29 2B 23 117 39 43 3~ 34 10 8 72 29 18 25 13 161 61 49 49 45 10 9 67 21 19 16 12 182 40 22 3(1 28 10 10 94 26 18 17 7 170 18 54 30 28 10 11 115 16 23 22 9 234 30 34 36 34 10 12 128 21 30 24 6 236 24 34 34 24 10 13 122 31 30 23 15 176 26 28 21 24 10 14 131 31 20 22 P 255 32 38 22 2R 10 15 88 19 17 16 12 331 40 59 37 40 10 16 147 22 21 20 16 252 36 29 30 49 10 17 94 49 31 20 11 296 97 75 34 27 10 18 141 49 26 23 12 214 38 34 2~ 20 10 19 97 24 19 18 11 191 32 36 34 25 10 20 81 18 15 14 7 161 39 38 44 33 10 21 81 19 24 16 9 112 31 39 27 39 10 22 93 13 15 13 6 169 35 31 27 ':0 10 23 77 10 14 14 6 116 41 37 23 26 10 24 85 11 17 1 5 7 241 25 44 21 25 10 25 98 14 21 17 9 183 31 23 20 37 10 26 84 17 25 13 9 177 33 35 33 31 10 27 92 15 21 14 18 153 31 43 29 27 10 28 76 20 20 17 8 251 34 40 42 20 10 29 87 17 21 15 10 265 27 39 27 33 10 30 98 1 5 16 16 8 212 19 33 14 20 IHAN 101.6 25.1 22.0 19.6 11.3 1 99 .9 35.7 39.9 32.3 31.3 STD DEV 20.0 10., 4.5 4.4 3.6 51 .2 12.7 9.7 7.5 7.6 11 24 82 22 9 1 6 88 40 30 26 11 11 25 51 13 5 1 2 132 42 30 31 31 11 26 85 12 6 3 3 162 34 32 30 32 11 27 98 13 6 2 :3 170 27 28 15 32 11 28 85 12 4 3 4 199 16 17 18 15 11 29 105 9 4 3 3 168 44 26 18 22 11 30 105 38 8 4 6 258 24 14 6 8 "'EAN 87.3 17.0 6.0 2.4 3.9 168.1 32.4 25.3 20.6 21.6 STD DE V 7.0 3.0 .7 .4 .6 19.8 3.9 2.6 3.4 3.9 SEA MEAN 101.2 25.3 19.5 1B.7 11.0 193.9 37.1 38.3 32.9 31.4 SEA S10 DEV 21.7 11.0 7.3 9.2 5.4 56.1 14.5 11 .8 11.4 11.0 78 ------- TABLE 17. DAILY RESULTS FOR TSS AND VSS I~!)ICATCR TSS (MG/U VSS (~G/L1 SAMPLI~G 2 ~ 4 5 2 3 4 5 MO DV 12 13 120 Q ") 1 1 9 1 t 0 9 4 Q Q 12 1 4 132 12 ") 7 7 122 7 4 5 6 t~ t'3 tb6 7 ~ 7 4 107 5 4 Q 3 12 16 1 t 5 C; ~ 4 2 en 5 , Q 2 12 17 133 6 " £I 2 Q7 6 6 3 2 12 HI 1 t) A ? Q 3 , Q4 2 £I 3 2 t2 Iq (129) -(7} (5) (6) (£II (104) '6) (£I) (5) (4) MEAN 129..0 6.q 5.3 6.0 4.4 103.Q 5.7 4,. 1 Q.. 7 4..0 !Tn f'fV 113.. ~ ~. , 1 . ~ 2.7 2.b 10. '5 2. 1 .q 2. 1 2.6 1 3 106 C; 3 4 2 100 r; 3 4 2 1 4 132 /J 4 4 2 106 £I 4 '5 2 1 5 136 3 3 5 2 1 1 0 3 3 :5 2 1 b 1 t 0 5 , 4 7 Q4 4 '5 l 7 1 '7 210 " 8 b b lbb 4 1I :5 1I 1 8 qll 6 5 1I 3 78 5 Q Q , t q 106 '5 3 6 2 A8 5 3 6 2 1 10 Fl6 4 '5 £I '5 '70 £I 3 3 3 1 11 q/3 1I 3 2 , 80 '5 2 1 ? 1 12 t 1 t) 6 ~ £I ? q(\ 6 3 Q 2 1 n ~o /J 4 '5 2 78 Q 3 3 2 1 1 Q 1110 5 2 , '5 tOS '5 1 2 2 1 15 A/J '5 2 3 2 b8 2 2 3 2 1 16 An '5 1 1 2 71 '5 1 1 2 1 17 118 (5) 2 2 2 Q8 (4) 1 1 2 1 18 120 6 II l '5 102 4 2 3 2 t 1~ 132 4 '5 2 '5 110 4 ? 2 2 1 20 q, 5 3 Q '5 H 5 '5 4 '5 1 21 104 loI 4 4 4 84 6 :5 Q 3 1 22 127 6 2 2 4 10q b 2 2 3 1 23 112 '5 7 4 '5 QO 3 7 4 '5 1 24 83 7 3 3 2 65 7 '5 l 2 1 2~ Q1 'I 4 2 '5 76 4 3 2 3 1 26 62 6 3 2 3 58 5 ? 2 '5 1 27 1110 /J b 4 1I 122 3 4 l '5 1 28 146 4 6 2 2 112 4 4 2 2 1 2Q q2 I, b '5 2 75 4 4 2 2 t 30 18£1 7 6 3 2 1 t 5 b 5 '5 2 t 31 1'5~ '" tI tI 2 q7 5 1.1 '5 1 2 1 10Q 7 Q 3 1 88 7 4 '5 1 MEA~ 114. q 5.0 3.8 3.3 2.8 q2.8 4.. 4 3. 1 21'Q 2~S STD ~FV 28.4 1 .2 1 . r; 1 . 1 1 . t lq.4 1 . 1 t . 1 1 .0 t .0 2 tb 17Q q 7 4 2 ql 6 '5 2 1 l 11 137 Q b " 2 86 '5 2 2 2 2 18 135 1 n r; :5 3 88 7 3 2 2 2 tq 122 b 4 2 2 q2 6 '5 2 2 2 20 SQ 5 2 2 2 47 S ? 2 1 2 21 134 C; 3 2 2 10q Q t 1 1 2 22 QS " £I 3 2 70 " '5 '5 2 MEAN 123.0 ., . 1 4,.4 3.4 2.1 83.3 '5..6 2..4 2,.0 t I' 6 STO DEv 1 £I . 0 . A .6 .8 . 1 7.3 .4 .3 .2 .2 SEA MEAN 11B.5 5.7 /J . I 3." 3.0 cn.o 4..8 '5. 1 3..0 2..6 SEA STO OFv 30.Q ,?n 1 . 7 1 . q 1 .6 20.5 1 .5 I .2 1 .4 1 .5 79 (continued) ------- TABLE 17 (continued) P.JDICAT(')R TS~ C"r;/L) VS5 C""C;/L) SAt-1PLING ? :3 4 '; 2 3 " 5 ~Q DV 3 13 A3 1 q ?4 30 311 1.11.1 15 13 17 16 3 11.1 1.11 1 Q 2C1 25 17 B 11.1 15 1 ~ 10 3 1 '5 5'5 2'5 un 'B 32 1.15 21.1 lQ 22 20 3 16 '52 30 :.\lJ 2/J 2b 42 28 25 22 18 , 17 Jq 2/J 31 ?7 2 to. B 2/J 25 23 20 J 1 ~ /JO 21 26 lI'S 2U 37 21 2(1 20 15 J 1 CI 25 ,,., 1 p n 21 21 15 1 '5 1 A 1 A r-'EAN 1.17.CI 22.11 28.CI 26.ft 26.3 3';.7 20..1 IA.CI 20~0 16..7 STD Df"V 18.' lJ.7 7. 1 3.~ b.Q 8.6 5.5 1.1.8 2.1.1 3.5 4 1 6lJ ?f::. 311 36 35 41 25 27 2q 2/J U 2 /J~ n 311 sn 32 37 20 32 "I) 23 /J 3 63 21) lJl) J/J ?7 51 22 In 27 20 1.1 lJ 65 1 CI 2? 3n 20 5u 1 e. 1 CI 26 17 4 5 56 1 ~ V; 31, H lJ5 1 e. 2'; 27 ?u 1.1 6 120 23 B 1.111 32 /I/J ?3 21.1 J7 2~ /J 7 I.IJ 1/J 31 211 /J2 Jq IlJ 25 27 31.1 1.1 8 Cl7 (1'5 /J2 33 /J6 78 20 3n 2Q 36 1.1 q 51 5Q H 3q 27 lJJ uS 25 30 21.1 1.1 1 n SA 21 26 21') H SO <'I 21 20 31.1 1.1 1 1 60 1 ~ <'2 2(1 flO !tiO 1 !' 1 e. 22 2(1 u 12 72 211 31 24 21 5q 1 CI lQ 20 15 u 13 51 26 2f.. 1~ '2 41.1 26 lQ 15 21.1 1.1 14 '50 ?~ 2') 1 f.. 18 /JJ 2E; 1 Cj 15 17 1.1 15 65 31 '''' 20 1 1 S6 25 q 13 I 1 u 16 lJ2 7 q q q J7 7 7 B 13 (j 11 ~ I 13 I ~ 11 ~ 6'" tJ 10 10 B U HI '5A 11 I ~ CI 7 ';2 10 1\ 8 '5 " 1 CI 6q I II 17 12 11.1 SCI 1 ,1\ 10 1 1 1 1 1.1 20 56 I Ii 1 I 12 In 'Sn 1/J 8 1 1 10 /J 21 70 A 1 11 n q /JA 6 7 1 n 6 u 22 62 6 12 21 10 lJCj b 10 18 q (j ~3 61 1\ 1/J !7 q /J7 Ii B 11 ~ " 2/J 'SA :.\ 1 n 1 7 17 /J/J 2 7 13 13 /J 25 1 1 1 '5 11 I 7 I to. b7 3 CI 1 1 1'5 1.1 26 bli '5 15 2'5 21 '50 5 1 1 20 1C1 1.1 27 /JO ' 13 1 CI 17 3b 3 12 16 16 1.1 2A 62 6 23 3n 21 50 f.. 1,1\ 27 I q 4 2q 4t! 6 2n 2Q 22 3 If) 6 17 26 20 4 30 6 to. " 1 7 B 32 '55 6 " 1 6 30 27 MFAN 63.5 16.2 ;>2.7 2/J.2 21.A 50.6 15,.0 16.5 20,.2 18~.? STD nfV U'.6 In.6 q.6 CI.8 CI.8 1 0 . '5 CI.O 7. 1 8.0 7.6 5 A 67 15 3q :3q 53 5q 15 3'; 2Q 32 ~ CI Au 1/J 36 41'\ U/J 7n 1 4 '56 3(1 32 '; 1 n 7'5 1 ~ 1J7 5n 3C/ 63 \1.1 36 H 27 5 1 1 6'5 2'1 'J q t.,3 /Jto. '5~ 20 IJI 'II) J2 S 12 152 21 '52 57 III) t!3 20 3Q B 32 5 13 /J'; 22 70 An bS 3/J 211 ~2 1.10 3 t 5 1 /J r;7 2/\ 70 8n 51\ /J3 2/J 47 50 31 MFAN b3." 1 q.:3 52.u 57.11 '5';.0 S2. 1 1 ~ . 1 31\.0 37~3 :5 1 ~ t') STn Df v 15.11 1. q 5.4 ~.£J 5.3 U.8 1 . 1.1 1 . /\ 2.7 .7 ~EA "fA"J 6 1 . n 17.6 2f'1./J 2C1.A 27.8 1.18.5 16.3 20.J n.CI 20..n SEA 5TD nFv 1 II. ~ ! n. 3 1 <;.? lb. 1.1 I to.. 1 12.r; B.~ 10.5 1 C . 1 8.7 80 (continued) ------- TABLE 17 (continued) ~ INDICATO~ TSS (MG/U VSS (MG/L) SAMPLI NG 1 2 3 4 5 2 3 4 '5 M~ DV ft 21 114 ~ 13 1 q 13 q4 f\ q 13 q b 22 104 1~ 17 16 34 8& 16 11 15 1& e ~ ~ ~ t~ 1'5 13 en 24 13 11 q I> 24 112 29 20 18 17 90 23 10 11 11 b 25 81 1B 13 17 14 6q 17 1 1 13 10 I> 26 7f:J 23 12 1'7 11 156 19 ~ 10 1 I> 21 106 24 17 1 ~ 31 86 24 10 14 25 M!UI 9q~9 20.4 15..4 17.1 19.0 81t' 18~7 10..3 12..4 12~4 ~ Oft -U.-~ .~. 0 2.9 1.3 q.1.I 13.9 5.8 1.& 1.8 &.2 7 1 H 31 14 21 34 64 31 14 11 22 .,. 2 84 35 11 13 11 &8 35 11 13 13 1 3 115 S~ 21 11 1& 91 51 11 1& 11 7 4 1'5& 41 3 10 9 113 3F\ 2 & 9 .,. ~ tn ~tII t2 1b 11 131 44 1 14 9 1 6 204 52 6 16 10 152 1.15 6 13 1 1 1 180 50 8 26 22 120 43 ~ 11 11 .,. 8 125 31 8 6& 21 92 31 8 29 16 '1 q 132 30 11 3q B 106 30 9 2& 21 '1 10 11 ~ 34 14 49 11.1 AS 32 11 2~ 10 .,. t1 ttlti 31 11 110 41 116 31 11 H 21 1 12 160 Jl5 1 £I 31.1 :U 120 32 12 2S 22 1 13 118 36 n 34 30 85 zq 12 29 24 .,. 14 12" 27 14 215 23 106 23 10 23 11 1 15 102 39 13 27 14 86 33 11 21 12 7 16 82 19 8 21 13 74 1q 8 21 13 .,. ti m ?1 .q 21 11.1 78 21 7 15 9 7 18 122 1 1 q 19 10 84 1 1 8 11 10 1 19 158 12 1 1 25 30 11 S 1 1 11 1& .,. 20 82 q b 14 13 63 5 4 1 1 12 1 21 121 q 7 22 1 1 H q 6 18 q 7 22 162 29 12 27 15 130 26 9 lq 10 '1 2"3 t"!1i ?tI 11.1 215 29 11.10 20 13 21 1& '1 24 110 22 16 28 31.1 75 21 14 21 21 1 25 140 33 23 2& 31 11 1 32 15 23 20 7 26 154 B 21 32 1.11 110 31 lq 30 34 1 21 159 2S 32 33 27 1H 23 21 25 21 1 28 111 30 28 29 44 8b 29 11 2C; 31 t ff t01 2~ 2b 2~ 27 ~'5 17 19 19 15 1 30 141 1& 22 20 22 un 14 12 13 13 MEAN 132..& 29.8 13.9 26.7 22.9 100.3 27~1 10..Q 20~b 1&..1 STO OEV 21.9 11.3 &.3 10.2 9.3 21.5 10.2 1.1.2 6.2 &.2 8 11 334 17 27 JI) 11.1 234 11 25 24 13 e tC 139 11 21 21'\ 13 120 1 1 18 18 11 8 13 1 /) 1 1 1 30 19 14 70 Q 20 19 14 8 14 118 & 15 2& 14 131 & 13 22 14 8 15 1f:J3 9 15 22 14 146 9 14 20 12 8 16 188 16 19 2b 23 131 10 10 11 12 8 11 148 11 21 30 21 8& 8 13 20 13 MfkN PH'.O 11.& 21.1 24.1 1&.1 131.1 10.0 1&..1 20~O 12~1 STD DEV 27.0 1 .4 2.1 t.7 1 .5 19.7 1 .3 1.9 .9 .£1 SEA MEAN 135..4 25.4 15..3 21.1.~ 21.2 11'2.3 23..0 11.." tC~.. 2 15~O SEA STI) DfV a5.0 12.8 b.1 10.1 Q.1 31.8 11.1 a.8 &.5 &.4 (continued) 81 ------- TABLE 17 {conclucpc) INDICATOR TSS (MG/L) VSS (MG/U SAMPLING 2 J £I 5 2 J 1.1 15 104(') DV q 18 13£1 25 3Q 411 2Q QI 10 1& 20 1"3 Q I Q 157 21) iJ2 38 23 IOQ 13 21 20 13 q 20 178 S? ZIS 42 ?b 12Q 27 10 2Q 16 Q 21 1 1 £I P, 20 27 12 /HI a 13 25 12 Q 22 1 0 1 10 21 25 21 At Q 12 lQ 16 Q 23 Qa 12 2q 27 lQ 1q 10 11 18 1& Q 211 103 1 1 1Q 27 17 81.1 1 1 12 21.1 11 MEAN 12&.lI lQ.7 27.q 32.q 21.0 'n.3 13,4 11.1.1.1 23,0 11, q srI' "P'II 31 . 1 1~.'5 ~.3 ~.2 ~.7 lA.q b.b 3.8 1.1 . 1 2.1 10 1 10& 4 15 20 11 13& 4 q 11 7 10 2 lOll 7 1 B ?2 7 81 & a ~ & 10 3 122 7 25 1b 1 1 q5 5 1 iJ 12 q 10 II 1~8 1 1 7£1 31 20 II.1Q 10 31.1 18 18 10 5 '0 7 2& ?~ 11) 8b 7 17 10 12 10 0 77 7 23 1Q 21 05 7 13 llJ 1~ 10 7 70 S 23 III 15 511 II 11.1 1 1 Q 10 ~ 71 Q n 13 14 5b 8 8 Q 1 (I 10 q ql 2 1 1 12 h 72 1 0 7 S 10 10 121 2 1 1 1 1 h A3 2 8 7 " 1 (I 11 112 2 10 q B 103 2 b '5 1.1 10 12 qO '2 1 1 7 0 73 1 " 1.1 3 1 (I 13 102 :5 11) 10 b 83 2 b b ') 1 (I 1 II l'5q S 1 1 A 0 122 :5 IJ :5 2 10 1 S H. 3 Q 13 5 &3 3 b IJ 3 10 10 120 2 q Q Q q2 2 A 8 7 1 (I 17 1'51 3B 21 ~ 0 q:5 27 111 3 3 10 113 Il1q 7 q 8 II 105 5 b 1.1 1 10 lQ 13q 7 14 10 R qlJ '5 8 & & 1 (I 20 q3 12 1 II 1 1 q he q 1 1 1\ 7 1 (I 21 1 17 7 13 1 1 10 87 0 1 1 8 7 1 (I 2? Q1 II 13 5 5 n IJ 7 3 1.1 10 2~ b~ £I 7 11 2 '50 :5 0 :5 2 10 21J 1 11 1 1 1 S '5 Ql 1 q 3 5 11'\ 25 nA £I q 7 '; 11 0 " 8 b 5 1 (I 26 116 ? 7 '; £I 102 2 7 I) IJ 10 27 105 ? Po 1 1 '; &q 2 & 8 /.I 10 2A A2 " ?O 0 £I 57 1.1 13 3 2 1 (I zq 1 Z 1 "j 1/J 0 7 88 1.1 q 0 S 10 30 103 '; b b 4 121J " & 5 4 MEAN 11/J, 0 0.1 15.3 1 t . 1 8..3 87.5 I.I..Q Q.& 7,1 0,0 STD I)EV 2a.A 0.0 11.2 5.7 £1.8 21 . A 1.1.3 5.0 3.& 3.7 1 1 21.1 Qo 1 t 10 1 II Q 7b 0 IJ 8 0 t 1 ~'5 q2 2 2 3 3 A2 " 2 2 3 t 1 20 10/J /J ') 7 IJ 80 1.1 IJ S 4 11 27 1 to II 3 1.1 3 QI.I IJ 3 3 3 1 1 28 114 J 2 2 4 Q" 2 1 1 4 11 2Q 140 q S 7 7 12Q 8 4 15 5 11 30 145 11 6 12 7 112 0 5 0 & o.4FAN 11 b, t b.3 4..7 7.0 5,3 q5.3 1.1..0 '.3 1J,3 ",1.1 STD f)FV R.2 1 . S t . 1 1.7 .Q 7.2 .8 .5 .Q .5 SEA MEAN 1 10.3 R.3 15..& 13.q q.Q aQ.o 0..2 Q.4 Q.2 7~(I Sf A STD DfV 30.3 Q.'5 12.7 10.5 1.0 22.6 5.7 5.8 7.2 1.1.7 82 ------- TABLE 18. DAILY RESUltTS .fOR TKN AND AMMONIA NITROGEN INDICATOR T K ~ (HG/U NH3-N (MGI U SAMPLING 1 2 3 II 5 1 2 3 ,. 5 HO DY 12 13 19.1 17.! 13.- 9.2 9.8 13.6 16.11 13.0 6.~ 8.~ 12 I" 20.2 lEi. '3 13.'3 10.5 10.3 111.6 16.0 12.9 9.5 9.0 12 15 16.6 15.1 1,..2 9.! 10.2 1,. .7 15.0 12.8 5.5 ~.1 12 16 18.2 17.7 13.0 10.3 10.11 13.6 16.1f 12.5 9.3 ~.2 12 17 8.C 18.1 IIf.l 5.6 10.11 7.7 16.11 13.11 9.3 !).!i 12 18 23.2 17. '7 13.5 11.9 10.3 15.2 16.6 11 .8 a.2 8.0 12 IS 19.9 16.8 15.7 10.2 11.11 16.2 15.5 13.2 5.6 '9. G MEAN 17.9 17.2 111.0 10.2 10.1f 13.7 16.0 12.8 '3.2 <;.C STt On '1.8 1.0 .9 .8 .5 2.8 .6 .5 .5 .5 1 3 2".0 16.8 15.7 111.9 13.1 1 6.1f 16.2 1".5 11.3 11.5 1 Cj 25.5 18.5 .0 12.6 11.1 19.1 17.3 114.5 11.1f 11.5 1 5 28.0 lie a 15.7 12.8 13.0 20.6 17.6 13.2 11." 1C.5 1 6 19.7 19.0 15.1 12.7 12.7 13.8 17.8 111.8 11.6 12.8 1 7 2".9 19.0 15.'3 13.2 12.7 15." 1 7 . 8 13." 11.6 11. '3 1 a 21.2 18.9 10.2 12.3 12.7 17.6 17.7 9.6 12.0 12.: 1 9 26.1f 1'3.3 16." 12.'3 12.7 22.2 18.2 15.C 12.2 11 .5 1 Ie 19.9 19.5 15.7 12.8 13.5 15.6 18.2 15.1 11.11 12.3 1 11 21.6 20.11 15.6 13." 111.0 16.'3 17.6 15.5 12." 1 2.7 1 12 23.2 18.8 16.6 13.2 22.1 18.11 17.9 16.0 12.6 12.7 1 13 19.6 1'3.1 15.8 13.6 111.2 111.6 18.0 111.2 12.1f 12.3 1 111 18.5 211.B 111.8 13.5 111.2 111.7 17.8 15.0 12.8 12.5 1 15 21.'3 17.1 1'3.8 13.0 111.3 16.2 15.8 17.8 13.0 12.6 1 16 19.2 19.3 16.0 13.5 111.6 1".5 17.8 15.11 12.7 12.6 1 17 21.1f 18.2 21.2 1".6 lIt.1I 15.0 18.0 19.8 13.2 11.3 1 18 23.1 26.1 17.3 16.7 18.2 15.1 18.0 16.11 13.3 13.6 1 1'3 27.5 17.2 3.0 12.6 16.2 1'3.11 15.6 2.6 11.'3 13.6 1 20 2C.2 15.2 li.5 11.2 16.2 15.11 17.3 16.5 10.6 13.G 1 21 20.7 1'3.'3 11.'3 15." 15.7 15.5 17.6 11.8 13.5 13.'3 1 22 19.3 15.3 13.2 13.8 16.2 16.1 111.7 12.6 12.11 13.S 1 23 21.6 17.2 17." 12.8 16.9 18.8 16.3 12.2 12.. 2 111 .5 1 211 19.11 16.9 1 5.11 1".2 16.11 15.1 15.7 13.7 12.5 IIf .Ii 1 25 15.0 1&.1 12.1 13.'3 16.8 13.2 15.3 11.1 12.3 111 . 7 1 26 20.1 15.8 15.6 15.2 15.5 17.6 15.5 111.9 111.1 13.~ 1 27 13.8 17.'3 16.6 1'1.6 16.1 11.9 16.0 111.7 12.9 IIf.') 1 28 18.5 17.3 16.5 15.3 16.1 13.7 16.2 111.8 1'1.0 1'1.11 1 2'3 17.9 17.5 16.0 15.3 15.'1 1'1.0 16.7 15." 1".8 114.7 1 3C 23.11 17.5 18.2 1 S.2 16.2 15.11 16.8 13.C 1".3 Iii .G 1 31 22.9 10.2 10." 15.1 17.3 15.3 ".9 5..9 11.3 15.2 2 1 21.3 12.C 10.3 .2 16.0 15.5 11.9 10.2 .1 1.. .5 MEAN 21.3 19.1 1'1.7 13.11 15.2 16.1 16." 13.7 12.1 13.2 STt CEV 2.5 2.6 '1.0 Z.S 1.9 2.0 2.3 3.0 2.2 1.1 2 16 21.8 19.& 3.8 13.1 16.11 15.8 17.3 .1 7.1 1".8 2 17 18.8 19.2 16.! 15.1 17.0 12.7 17.8 15.0 12.2 Iii .5 2 18 1&.7 19.. 7 17.'3 15.3 16.7 12.1 17.6 16.0 13.6 111.7 .. 19 15.0 18.5 18.0 15.3 16.9 10.8 17.0 16.0 111.0 15.C "- 2 20 114.0 IS.7 18.0 1...9 118.6 10..2 16.6 15.7 13.0 1".5 2 21 18.3 19.1 5.9 15.3 16.S 12.3 16.11 .3 13." 1" .2 2 22 li.3 18.7 1&.5 15.6 16..7 13.5 16.8 11." 13.6 111.5 HEAN 17.6 19.1 13.5 111.9 16.11 12.5 17.1 10.6 12." 1" .£ STC DEV 1 .0 .2 2.3 .3 .3 .7 .2 2.7 ..'3 .1 SEA HEU 20.2 18.1 111.- 13.1 1'1.6 15.1 16.5 13.0 11.1 12.7 SEA STD GEV 3.8 2.5 'I." 2.7 2.G 2.7 2.2 '1.0 2.5 2.G (continued) 83 ------- TABLE 18 (continued) IN[;JCATOR T K N «H G IL » NH3-r..; OIG/L J SAMPLING 1 2 J It S 1 2 3 'I 5 HO DY 3 13 10.7 111.5 1".~ 13.0 15.8 6./1 11.6 10.3 8.5 1 2.1 3 1'1 11.C 13.9 1'1.8 111.0 1/1.7 7.8 11.'1 11.2 10.8 1 I .~ 3 15 3.5 1.8 1.3 1.0 1'1.1 3." 1.7 .1 .1 12.1 3 16 3.3 1.1 3.5 1.3 12.1 3.2 .7 3.11 .1 11.S 3 17 s.a 5.0 5.8 11.1 13.6 '1.'3 II.~ 5.7 11.0 11.2 3 18 7.3 6.6 3.1 1.3 13.'1 7.2 6.5 3.0 .1 11.1 3 19 3.8 8.1 3.'3 1.7 13.6 .1 8.0 3.8 1.6 10.'3 MEAN 6.11 7.3 6.8 5.2 13.9 11.7 6.11 5.11 3.6 11.5 STD D(V 3.3 S.3 5.7 5.8 1.2 2.7 '1.3 '1.0 q.1i .5 II 1 11.2 a.~ 5.6 11.3 11.5 7.2 7.8 5.5 '1.2 7.'1 II 2 3.6 7.1 6.8 3.0 10.5 .1 11.8 11.3 .1 6.6 II 3 10.5 9.5 '3.~ 9.1 10.0 8.2 8.2 6.3 S.S 6.11 'I 'I 11.11 10.3 9.9 6.1 9.8 8." 8.0 6.'1 '1.6 £;. B II 5 12.3 10.2 5.7 3.8 8.9 9.3 a.8 5.6 3.7 7.8 .. 6 12.2 10./1 6.8 2./1 9.S 7.a S.6 6.1 1.9 £;.8 'I 7 10./1 10.0 7.2 3.8 7.9 7.8 8.5 7.1 3.7 6.2 II 8 10.5 10.2 9.1 2.5 7." 8.3 8.2 £;.11 2.8 5.8 If ~ 10.6 &.1 7.8 2.7 8.0 8.2 6.0 6.C 1.2 5.3 II lC lC.l 10.1 8.11 11.5 8.3 7.2 7.7 5.8 2.7 ".5 II 11 12.3 10.11 &.'3 ".8 7.2 8.6 8.1 5.3 1 . 7 lI.a .. 12 1'1.5 10.3 7.7 '1.0 7.2 '.8 7.9 5.8 1.6 II.S If 13 12.0 10.2 7.2 2.8 7.11 7.2 7 . '3 5." 1.1 Ii.G .. 1'1 9.6 10.0 7.2 3.0 7.0 7.11 7.8 5.2 1.2 3.7 'I 15 11.0 11.2 7.6 2.6 6.3 8.1f 9.0 5.0 .3 ".If II 16 10.8 !h5 6.8 2.3 6.6 7.8 8.2 5.1 .6 '1.1 II 17 1 II.1f 9.8 6.8 2.6 6.0 ~.1 8.2 'I. a 1.0 3.8 II 18 11.7 10.3 7.0 2.S 5.7 !! .3 8.0 11.6 1.0 3.7 II 19 1 &.3 11.'3 6.7 2.9 6.5 1 a... 9.2 ..... .6 3.11 II 20 12.8 11.0 6.2 1.6 5.5 8.11 8.9 1I.1f .3 3.3 II 21 13.0 11.1 &.2 2.2 6.1 8.2 9.2 II.Z .3 2.'3 'I 22 11.3 11.1 6.11 11.2 5.7 6.9 8.8 11.'1 1.9 3.1 'I 23 13.8 11.0 6.11 2.a 6.2 12.0 8.9 Ii.S .8 3.1 II 211 10.11 10.8 6.1 2.11 5.8 7.5 8.6 '1.2 ... 3.2 II 25 15.3 10.'3 6.3 2.'3 5.7 8.3 '3.1 II . 1 .6 3.2 II 26 11.0 11.3 6.7 2.7 6.3 7.0 8.!! II .5 .11 3.11 II 27 7.2 11.3 6.7 2.8 6.6 5.0 8.1 Ii. 1 .11 3.3 II 28 9.5 11.3 6.7 3.0 6.9 £;.0 8.7 ".3 .11 2.8 II 2'3 8.2 11.1 6.5 3.0 6.5 5.6 8.7 3.6 .Ii 2.a II 30 10.~ 10.7 6.11 3.11 11.8 6.7 8.6 5.2 .5 2.'1 MEAN 11.3 10.3 7.1 3.11 7.3 7.7 8.3 5.1 1.6 11.5 STC Dn 2.2 1.1 1.0 1.3 1.5 1.8 .8 .8 1.3 1." 5 8 13.3 11.7 8.7 5.2 7.3 7.6 8.3 3.8 1.3 1.1 5 9 12.1 11.6 6.9 5.3 5.1 7.9 8.8 3.2 .9 .9 5 10 15.2 11.3 a.o 5.3 5.6 '3.6 8.3 3.0 .7 .a 5 11 12.3 11.11 7.8 11.1 5.3 7.1 8.1 2.8 .'1 .6 5 12 11.'3 1&.0 7.5 ".7 5.1 7.3 7.If 2.6 .If .s 5 13 10.0 11.0 1.7 5.2 5.0 6.6 7.0 2.3 .5 .11 5 111 11. Ii 10.2 7.11 5.3 6.1 7.3 7.0 2.5 .If .6 HEAN 12.3 11.9 7.7 5.1 5.7 7.6 7.8 2.9 .7 .7 STc DEV .6 .7 .2 .1 .3 ./1 .3 .2 .1 .1 SEA PlEAt. 1C.7 10.0 7.1 3.9 8.1 7.2 7.9 11.8 1.7 5.e SEA STO DEV 3.1 2.7 2.3 2.6 3.0 2.3 1 . '3 1.'3 2.2 3." (continued) 84 ------- TABLE 18 (continued) rNt!CATCR T K N (MG/L J NH3-N (MG/ L J SA HPLING 1 2 3 II 5 1 2 3 I! 5 MO QY 6 21 23.9 19.5 13.0 7.6 6.9 16.6 16.5 lC.6 11.6 1!.2 G 22 20.1 15." 13.0 6.6 7.2 13.5 16.2 10.5 ..... .. .2 6 23 10.2 19.0 13.2 7.0 7.2 10.1 16.6 10.5 ".7 11.6 6 211 16.g 15.11 12.7 7.1 7.1 11 .1 16.1 10.6 ".7 11.0 6 25 111.2 li.7 13.2 <).8 7.9 9.11 15.7 10.8 7.3 1f.9 6 26 lq. 7 18.5 13.0 7.6 8.1 10.3 15.0 10.11 5.0 5.2 6 27 19.7 17.6 12.7 7.1 8.5 12.8 IIf.l 9.8 II .7 5.1 MEAN 17.1 18.9 13.0 7.5 7.6 12.0 15.7 10.5 5.1 11.6 STD DE'J ...5 .7 .2 1.1 .0 2.6 q .3 1.0 .5 7 1 10.6 19.1 13.2 8.5 !3 .7 7.3 13.7 10.0 11.7 5.3 7 2 15.2 13.2 13.2 7.5 9.3 9.8 13.0 10.1f 1f.3 5.0 7 3 16.8 18.5 13.11 6.8 8.7 16.2 11 .6 5.6 3.11 £i .0 7 .. 2" .5 17." 12.9 7.1 6.7 16.1 11.5 9.2 3.11 ".3 7 5 33." 17.7 13.1 6.2 7 .!3 23.6 12.2 5.7 3.0 11.8 7 6 3".1 17.3 12.3 5.3 7.6 21.8 11.9 9." 2.11 5.0 7 7 25.0 18.8 12.3 ".7 8 ... 1 B.1 13.1 9.2 2.0 5.1i 7 a 16.8 Ia.9 12.9 9.8 9.1 11.0 13." 10.0 5.6 5.a 7 5 1".5 17.2 11.6 6.5 '3.0 10.0 12.8 9.e 3.3 5.2 7 10 16.11 11..8 13.2 7.2 8.2 9.11 11.5 10.2 3.2 5.3 7 11 18.2 19.5 13.1 6." 8." 10.5 111.6 10.2 2.6 II." 7 12 22." la.2 12.7 5.3 7.6 1".1 13.a 10." 1.8 11.6 7 13 15.11 18.1 13.11 ".5 1.2 9.8 13.9 lC.6 1.3 3.6 7 1.. la.6 IS.3 13.2 ".7 7.3 11.8 13.8 10.3 1 ... 3.9 7 15 1".2 1 7.5 12.8 ".8 5.8 8.2 12.9 9.8 1.2 3.C 7 16 13.8 17.2 12.0 ".6 6.0 7.8 13.8 10.2 .9 2.a 7 17 18.9 18.6 15.8 1i.8 5.6 11 .7 I" .3 III .!; 1." I.S 7 18 18.7 18.2 1".1 11.7 5.3 13.8 1".8 10.8 1 ." 2.3 7 19 25.9 1 a." 1".6 ".6 8." 16.5 1".11 11.1 1." 3.9 ., 20 17.3 19.5 1,..11 7.8 6.0 11 .8 15.5 11.0 ".8 2.11 7 21 1".8 18.8 111.5 6.1 6.5 5." 15.3 11.3 2.2 3.3 7 22 1".0 17.8 1". II 5.9 6.5 10." 1".5 11.0 2.3 3.6 7 23 13.9 18.7 111.8 5.7 8.1 8.6 15.1 11.7 2." 5.C 7 2.. 12.1 21.7 16.5 5.7 7.2 7.3 18.C 13.2 2.2 ".0 7 2!; 21.6 zz.o 16.8 5.7 7.2 13.3 17.6 13.6 1.6 ".1 7 26 20.5 20.2 15.6 5.7 8.5 13.2 16.8 12.6 2.1 11.7 7 27 17.3 20.9 16.11 5.6 8.0 10." 17.1 12.6 2.3 11.11 7 28 13.1 21.7 15.9 5.1 9." 7.9 1 7 . 7 12.5 2.1 5.0 7 2'3 11.9 21.3 16.5 5.2 7.11 6.8 17.5 13.0 2.3 11.3 7 30 11.9 20.9 15.9 5.3 7.9 6.8 16.5 13.0 2.11 II.I! MEAN 18.1 18.7 111.1 5.5 7.6 .Ll .8 1".11 11.0 2.5 q.3 STD DE V 5.2 1.6 1." 1.1 1.1 3.8 1.7 1.3 1.0 .~ B 11 16.5 23.2 16.0 6.0 6.2 3.6 1 S.1 11.3 2.2 3.3 8 12 15.8 20.6 111. 9 5.2 5.6 8.1 16.8 11.5 1.9 2.6 8 13 13.6 20.8 1".0 II." 6 .2 7.1 16.S lC." 1.6 2.7 8 Jq 11.2 19.8 111.'1 ".2 5.8 6.5 IS~8 11.'1 1.2 2.7 8 15 17.11 20.'1 111.3 q.2 6.1 '.3 16.1 11.0 1.2 3.2 8 16 20.6 21." 1".5 1!.2 6.2 9.6 17.0 10.0 .8 2.8 8 17 10.1 22.0 1".2 ".11 5.9 5.0 18.1 10.2 .8 2.7 MEAN 15.0 21.2 1".6 ".7 6.0 7.0 17.1 10.8 1 . If 2.9 S'T C DEV 1.11 .11 .3 .3 .1 .8 .11 ..2 .2 .1 SEA HEAN 17.1f 19.2 1".0 6.0 7.If 11.1 15.1 10.9 2.7 It .1 SEA S'TD D[V 5." 1.8 1.11 1.11 1.2 11.1 2.0 1.3 1.5 1.0 (continued) 85 ------- TABLE 18 (concluded) INDICATOR T K N I HG IU NH3-N C HGI U SAMPLING 1 2 3 II 5 1 2 3 .. 5 110 XIV 9 16 13.8 18.3 16.2 5.0 8.11 6.8 15." 12.8 5.11 5.1 '3 19 111.6 19... 16.6 11.7 8.5 9.2 lit." 13.0 ".7 4.6 9 20 23.2 15.5 16.0 8.0 8.1 12." 1".2 12.8 5.0 5.2 9 21 15.8 19.1 15.3 8.5 8.8 11.5 15.6 12.2 5.0 5.3 5 22 13.C 18.!t 16." 7.7 8.1 5.0 111." 12.7 5.2 S.II 9 23 12.2 19.3 16.0 8.0 8." 6.6 17.1 13.7 5.1 5.11 9 2C1 13.0 19.0 16.11 1.6 8.0 6.9 16.5 12.6 ".2 5.0 HEAN 15.7 19.1 16.1 8.2 8." 7.3 15." 12.8 11.9 5.1 STC DEV 11.0 .5 .11 .5 .3 2.7 1.1 .5 .11 .3 10 1 23.0 19.6 16.0 9.0 8.3 15.2 17.1 1ft. 1 5.G 5.7 lC 2 13.2 17.8 Hi.1 8.0 8.6 5." 15.0 13.3 5.6 5.8 10 3 1".2 19.6 15.2 7.9 8.5 7.2 15.7 12.8 5.0 5.8 10 .. 15.7 18.7 16.7 7.2 !!.2 8.8 16.1 13.2 5.0 6.3 10 5 10.5 19.2 15.Q 6.6 8.5 5." lIt.8 11.2 3.2 5.2 10 6 10." IS.!! 15.0 1.6 8.1 5.!! 15.9 12.6 ".5 5.6 10 7 7.8 17.<3 15.2 6.3 11.2 5.0 15.5 12.6 3.8 6.0 Ie 8 9.5 18.3 13.8 6.11 8." 5.0 1".8 11.1 CI.8 5.1 10 9 11.6 li.3 13.6 5.7 7.7 6.2 16.3 11.8 3." 5.5 10 10 7.5 15." 1".2 5.2 1.1 .5 12.5 11.7 3.5 6.0 10 11 1.9 16.1 1".6 5." 9." 8.9 13." 11.7 3.11 7.3 lC 12 11.3 15.5 13." 5." 8 .11 11.11 12.9 lC.2 3.2 3.11 10 13 6.3 1.0 1.2 1.3 1.6 1.2 .1 .1 .1 .1 10 111 8.11 16.8 111.2 5." 1.6 2.7 13.6 10.1 2.6 II .1 10 15 5.0 12.2 111.7 ".2 8.1 1.6 9.5 11.8 2.0 5.7 10 16 10.1 17.2 111.8 5.2 8.1 II .5 13.8 11.2 3.1 5.2 10 17 1"." 19.2 17.6 5.2 7.8 6.9 1 3.6 1 3.8 3.1 6.'3 10 18 12.0 15.8 111.0 5.1 8.5 ".3 13.2 II.!! 3.0 6.1 10 19 .. . It 15.9 1'1.1 11.9 8.3 ... 13." 11.3 3.0 5.3 10 20 8.6 16." 15.11 ".7 8.1 2.0 12.8 10." 2.8 5.2 10 21 7.1 16.6 111.0 ...8 9.8 3.6 1"." 12." 3.11 7.5 10 22 ".9 16.2 1".5 11.8 8.8 .6 111.2 11.6 3.0 6." 10 23 ".11 16.2 1'1.2 ".9 8.8 .1 12.8 11.5 3.1 7.0 10 211 7.5 15.5 13.8 11.6 9.11 2.6 12.8 11.6 3.1 6.8 10 25 11.3 15.& 111.7 5.0 9.0 5.6 12.8 11.6 2.6 6.'3 lC 26 5.8 15." 11.0 ".8 9." 5.2 13.3 8.2 3.1 7.6 10 27 8.9 15.9 1'1.2 5.3 9.6 ..... 12.11 11.1 3.1 6.3 10 28 10." 15.0 1,..2 II .!I !!.1 11.2 11.5 10.7 3.11 6.2 10 29 '3.6 1".5 12.0 5.5 9.5 3.7 10.9 9.0 3.0 6.3 lC 3C 5.0 13.2 13.5 5.0 9.2 .1 8.0 7.7 2.6 1.7 HEAN '3.8 16.1 1".0 5.5 &.5 II ... 13.1 11.1 3." 5.'3 STD DEV 3.5 3.0 2.11 1.2 1.11 2.8 2.8 2.3 1.0 1.3 11 211 20.6 18.7 12.8 8.5 8.3 1".5 17.11 11. & 7.2 7." 11 25 17.8 18.3 12.7 8.5 8.3 12.0 16." 11.8 7.3 7.2 11 26 21.0 la.l 13.3 &.3 8.2 1".0 16.8 11.& 1.11 7.2 11 27 23.1 11.7 13.1 8.2 8.11 22.0 16.3 11.9 7.5 7.2 11 28 17.7 18.3 111.11 9.0 8.6 III .1 15.9 11.11 7.5 1.11 11 29 25.5 18.3 13.0 8.7 9.1 16.3 16.2 11.2 7.7 7.S 11 30 15.6 IS.!! 12.8 8.1 9.1 12.!! 15.7 11.8 7.6 7.9 I1E A N 20.8 111.3 13.2 8.6 8.6 15.1 16.11 11.7 7.5 7." S1D DEV 1.1 .1 .2 .1 .1 1.2 .2 .1 .1 .1 SEA I1EAN 12." 1&.'3 lfI.2 6.11 8.5 6.6 1'1.0 11.5 ".3 6.0 SEA STD DEV 5.6 3.0 2.11 1.8 1.3 5.0 2.!I 2.2 1.8 1.11 86 ------- TABLE 19. DAILY RESULTS FOR NITRITE NITROGEN AND NITRATE NITROGEN It-oDlCAT0R NITRlTE (N 0 2 -N) r~G/L NITRATE (N03-/i) IIG/L SAMPLING .., 3 4 5 2 3 4 5 L. 1'10 DY 1 , . 13. .04 .03 .04 .01 .12 <.1 .4 2.4 3.1 3... 1 Z . 14. .01 .02 .01 <.01 .13 .4 <..1 2.3 3.2 2.9 1 2 . 1 S. .C5 .05 .02 .01 .18 1 .0 1 . 1 2.3 3.4 3.4 12. 16. .02 .05 .02 .01 .13 <:..1 <:..1 2.4 3.2 3.4 12. 17. .o£: .U4 .02 . U 3 .13 6.7 .3 2.4 3.7 3.) 12. H. .01 .13 .1 3 .1 5 .16 .8 .3 3.0 3.b 3.0 12. 19. .05 . 10 . C3 .02 .12 <..1 .8 2.7 3.3 3.4 1", E /I r. .C29 .06(; .039 .034 .139 1.31 .44 2.50 3.30 3.4(1 STO.DEV. .018 .C4G .041 .052 .02"! 2.40 .37 .26 .27 .~6 1 . 3. <'.01 .13 .(16 .07 .10 <..1 1 .5 1 .6 2.7 3.2 1 . 4. <..01 .21 .03 .08 .10 <:... 1 .3 1 . b 2.8 3.u 1 . 5 . <.. 0 1 .27 <.C 1 .07 .10 <..1 .1 1 .7 2.E 2.0 1 . 6. <.01 . 1 2 .U .10 .10 . 1 .1 1 .9 ,.b ,.9 1 . 7. .01 .17 .10 .0 't .10 <.1 . 1 2. 5 3.3 3.u 1 . 8. .13 .09 . C 3 .0 t .10 .6 .2 6.5 2.9 2.0 1 . 9. .01 .18 .J6 .02 .8E <.. 1 .3 1.4 3.0 3.u 1 . 10. . (1 G . 11 . (1 9 .Ot .10 <.1 .5 1 .9 2.9 2.b 1 . 11 . . C, .C17 .06 .14 .09 .2 .3 1 .4 2.9 3.0 1 . 12 . .0 L. .24 .C7 .11 .08 <.1 .4 1 .6 2.8 3.0 1 . 13. . C 4 . 1 2 .13 .10 .09 <.. 1 .3 2.8 2.8 2.0 1 . 14. . C 5 .13 .09 .02 .08 . 1 .3 1.6 2.8 2.'1 1 . 1 5. .03 .13 .13 .1 U .09 .4 1 .9 .2 2.3 2.0 1 . 16. . C 1 .19 .05 . 11 .08 <.. 1 .6 1 .5 2.6 ,.7 1 . 17. .05 .33 . C' 6 .13 .[18 .5 .4 1 .6 2.8 2.b 1. 18. . C 3 . 13 .03 .10 .08 <.. 1 .3 1 .6 2.6 2.6 1 . 19. .08 . C 4 .13 .05 .09 .2 3.2 15.8 4.6 2.7 1 . 20. .r:: 4 .36 .02 .09 .08 . 1 1 .7 1 .6 6.0 2.6 1 . 21 . <.. C 1 .06 .06 . W 3 .07 <.1 2.0 6.7 3.0 2.4 1 . 22. .01 .81 . C' 0 .04 .08 <.1 4.0 5.6 3.9 2.6 1 . 23. .01 1. 92 .0 r- .06 .06 . 1 2.9 6.9 4.7 2.6 1 . 24. . C::. 1. 23 .07 . u:3 .08 <"1 3.3 4.6 3.8 2.9 1 . 2' 5. . (1;' 1. 1 8 .07 . C 5 .08 . 5 3.9 7.3 4.4 2.7 1. '26. . 1 i: .71 .04 .01 .07 .3 3.6 3.0 2.<: 2.4 1. 27. .CJ. 1 . 10 .04 .02 .06 ., 2.2 3.1 3.1 2.( 1. Z8. .03 .56 . ['it .01 .C7 ~.1 2 .8 2.9 2.7 2.3 1. ('9. <'.0 1 1. 1 5 .03 .C2 .('0 ~. 1 1 .9 2.9 2.2 2.3 1. 30. <.01 .50 .CP. .02 .r17 <.1 1 . I. 5.2 2.7 2.~ 1 . 31 . .0'1' .05 .07 .10 .08 .3 12.6 11. I. 5.8 2.4 2. 1. <.01 .05 . G 9 .02 .08 .3 5.1. 6.~ 15.7 2.2 ~,I::: Ar-. .032 .41Z .C68 .Ot-I. .08" .1'1 1 .95 3.tlC. 3.68 2.oQ STO.OEV. .030 .422 .032 .035 .010 .13 2.21. 3.05 <:: .21 .i5 2. 16. .01 .07 .1 9 .01. .05 <.1 .5 16.~ 9.5 1 .6 .:. . 17. .02 .D6 . C' 7 .05 .('6 <.. 1 .5 2.0 3.6 1 .6 2. 18. <.01 .06 . ('2 .02 .05 "t .3 1 . e 3.2 1 .7 . ..; 2. 19. .0 <:: .06 .03 .1 2 .05 . Z .5 .9 <:.2 1 . .. 2. 20. .01 .05 .04 . G 1 .06 1 .6 .6 1 .1 3.0 1 .7 2. 21. .03 .08 . C 9 .04 . ("If: . c 1 .0 16.1 (.0 1 . <: ,. 22. <. (11 .10 .15 .03 .09 <.1 .2 5 . 1 2.1 1 .3 MEAN .010 .069 .064 .044 .D6:! .37 .51 6.2" 3.80 1.51:' STO.DEV. .003 .000 .024 .013 .006 .20 .10 2.65 .98 .U7 SEA MEAt,! .0<:9 .301 .:J6t . G 5 6 .089 .39 1.H 4.02 3.05 2.01 S t:A STO DEli .CZ:9 .1.20 .043 .C1.1 .027 1 . C 1 2.17 4. ')0 2.25 .61 87 (continued) ------- TA3L~ 19 (continued) . SEA SEA l~DlCATOR SAMPLII.,JG MU DY 3. n. 3. 14. 3. 15. 3. 16. 3. 17. 3. H. 3. 19. MEA~ STD.DEV. 4. 4. 4 . 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 1 . 2 . 3. 4. 5 . 6. 7 . 8. 9. 10. 11 . 1 2 . 13 . 14. 15. 16. 17. 18. 19. 20. .. . 4. 4. 4. 4. 4. 4. 4. 4. 4. 4 . 2 1 . 22. 2~. 24. 25. 26. 27. <: E, . 29. ~O. MEAN STD.DEV. 5 . 13 . 5. 9. 5. 10. 5. 11. 5. 12. 5. 13. 5. 14. MEAf"4 STD.DEV. .34 . 7 li .n .OE .[,5 n 1 .v- .05 .14"3 .1 ,: E .04 <..01 .1 ':; .25 . 1 L .07 .1 5 .25 .24 .25 .1 5 .29 .22 <.. 0 1 <..01 .01 <.01 .0" <.. C 1 .01 .01 .01 .01 . 1 <: <..01 .61 .01 .02 ~EA'" .107 STD DE'" .129 NITRlTE 2 "3 . 1 2 . 1 2 .08 .08 .04 . 0 ~ .08 .07':1 .035 .C2 .04 .01 .03 . 11 . 1 0 .03 .09 .35 .10 .09 .08 .Zc .08 .Ob <.. 0 1 . 1 5 . 21 .29 <.01 . 2 e .37 .43 .47 . 5 1 .44 .40 . 41 .38 .46 .41 .215 .01 .11 2 .124 .157 .22 .04 .02 .CJ1 .02 .02 .03 .051 .028 .02 .32 .36 .36 .39 .38 .04 .267 .061 .201 .167 . 1 1 .1[' .01 .1 6 .2 j 029 . 2 ~ . 1 7 t .1 E .05 .01 .05 .1 4 .03 .10 .13 .06 . 11 .25 .27 .27 .3 CI .0 S .34 .54 .74 .75 .7F' . ~ 2 .7t .73 .6 c .61 .45 .42 .42 . C 6 .3 E .35 .357 .245 .4(:; .58 .59 .50 .45 .4 1 .41 .486 .02 E .3H .246 , (NC2-N'r1G/I.. 4 ') .22 .1 t <.01 <..0 1 . 1 2 <.. [. 1 .24 .11 0 .1 C 1 .0':1 <..01 7 ~ . - "- . G 3 .09 . 1 1 .5<: .0 b .10 .4(:; .77 .7 1 .n .56 .09 .1 .3 .46 .47 .05 .2t . 1 9 .22 .40 . 1 9 .1 3 .13 . G 7 . 1 1 .07 .09 .256 .205 .32 .32 .22 .16 .20 .1 7 . C 4 .2G4 .036 .225 .202 . O~ .C19 .14 .45 .10 .13 . 11 .1 57 .131 .20 .22 .20 .2C .25 .(3 .30 .24 .23 .23 .24 .28 .27 .28 .n .26 .24 .27 .7,4 .36 .46 .l.7 .1.1:. .1.9 .42 .41 .44 .~2 .":12 .34 .709 .on .32 .37 .~6 .36 . ~ 1 .35 .40 .353 .011 ~ 292 .109 88 "I T RAT E (N 0 7, -: J ) rlG/L 23.. 1.5 1.6 3. E 4. .3 3. 7 . 1 9,J 3.43 2.E9 . 4 7.7 <.1 . ~ . 9 1 . 1 1 . :: . (:; .9 1. E 2. 1 . 9 .7 . 1 .4 . .3 <'.1 . 2 . 2 <.. 1 1 . 4 2.4 .3.5 2.4 1 . 11 1. 35 1 . 4 2. C . 1 1 . 1 .8 2.8 .7 1.27 .34 1 .50 1 . 8 e .5 1.5 .6 1.~ .5 1.9 .6 2.1 .8 2.1 .5 2.5 .5 (: .3 .5 2.1 .7 2.3 .7 2.2 .7 2.3 1.0 2.4 1.0 2.5 1.1 2.5 1.0 2.c 1.0 2.7 1.2,- 3.G .99 2.15 1.17 .66 .9 . 5 1 C .4 11 .4 6.7 4.8 3.5 5 .46 .. .30 . 2 . 3 1.2 3.9 .4 .4 .8, . 5 .4 .4 .4 7.0 .6 .5 .3 .4 . ~ 7 .4 1 .5 .8 .8 1 .4 1 .5 1 . 5 1 .8 1 .33 .14 1 .75 2.53 2. E 1 .6 13. C 1 C . 1 7.0 E .9 7.9 7.33 4.JO 3.0 5 .~ 1 .4 1 . 4 2 . 1 1 . 7 1 .9 1 .4 1 . E 1 .4 1 . .. 1 . 5 1 . 4 1 . 6 2.3 L . b (: .7 2.3 2.6 2 .5 2...0 . 11 3.01 2.50 (continued) 5. .: 2.3 1.3 .2 1 2 .6 t;.6 1 (: .2 9.tJ 9.1 .3 4.10 4.6 0.9 2.2 7 ~ -'.~ 4 .4 5.e. .3.C 4.2 5. .3 4.1 1 .5 < , .J . u 5.(; 4 .7 4 . '1 ) .3 4.7 4.7 4.6 4.3 4.4 2.c 3.'1 3.5 4.4 4.1 4.5 4 .4 4. (: 4 . i:. 4.35 1 .1 2 '::.0 1 .0 2.0 2.7 2.6 2.4 2.7 2.31 .24 4.79 i:..77 :, 1 . 1 . c.; 1.2 1 ... .0 1.1 1 . .:: 1 . 1 n . £: n 1 . 1 1 . .. 1 . "- 1 ." 1 . .s 1 ... 1 .!:! 1.2 1 . .. 1 . ) 4.0 1 .4 1.5 1 .6 1 . t; 1 .4 1 ... 1 .4 1 . .3 1 . 7 1.3 1 ..3 1 .4 1.5 1 . .3 1 .) 1 .4 1.2 1.5 1 . :) 1. 5 2 .57 1 .0 1.7 1 .0 1 . c.; 1 .0 1.7 1 .0 1 .70 .()~ 1. 50 .57 ------- TABLE 19 (continued) INDICATOR NITRITE (N 0 2-N) l-1G/L NITRATE (N 0 3-tJ) HG/L SAMPLING 2 3 4 5 1 2 3 4 5 fIIO DY 6. 21. <.01 .22 .28 .36 .31 <'.1 .9 .7 2.4 1 .0 6. 22. .01 .29 .40 .37 .34 . 1 .7 .7 .6 .7 6. 23. .09 .29 .52 .40 .34 .7 .7 .9 1 .0 .6 6. 24. .08 .31 .66 .43 .39 .2 .5 1 . 1 .8 .0 6. 25. .09 .31 .76 .41 .43 .2 .7 1 . 1 .6 .7 6. 26. .17 .41 1. 0 1 .67 .42 .7 .6 1 .6 1.0 1 .1 6. 27. <.01 .48 1 .28 1 .1 2 .46 <.1 .7 1.6 1 .4 .0 MEA~ .066 .330 .701 .537 .384 .30 .69 1.10 1.14 .01 STD.DEV. .060 .087 .350 .278 .n56 .28 .12 .3P .61 .18 7. 1. .01 .45 1 .05 1 .08 .59 4.7 .8 1 . 7 1 .3 1 . U 7. 2. .03 .65 .97 1 . 2 ~ .1'>5 .9 1 .2 1 .4 1 .7 .0 7. 3. .19 .73 1 .1 " 1 ." 1 .73 . 1 1 . 5 2.2 2.7 1 . 0 7. 4. .03 .75 1.17 1.52 1 .04 . ~ 1 .3 2 .2 3.0 1 .0 7- 5. .01 .70 1 .06 1.36 1 .06 .3 1 .7 2.6 3.9 1 .:) 7. 6. .03 .60 1 . (\ 3 1 .41 1 .38 . :3 1 .6 2.6 4.8 1 .9 7. 7. .16 .58 1.08 1 .18 .95 .7 1 .3 2.4 4.6 1 .3 7. 8. .19 .42 1 .04 .76 1 .04 2.4 1 .2 2.4 1 .6 1 .4 7. 9. .09 .63 1 .07 1.30 1.25 .7 1 .9 2.8 3.6 1 . () 7. 10. .33 .99 .96 1 .30 1.23 2.0 2.2 2.2 4.1 1 .7 7. 11 . .2 b .13 .88 1.27 2.09 .9 .3 2.1 4.0 2.6 7. 12. .06 .36 1.07 1.31 1 .87 <.1 .9 2.2 4.2 2.2 7. 13. .5.. .45 .78 .94 2.60 1.2 1 .2 2.2 4.8 2.8 7. 14. .75 .42 .82 .85 2.09 1.6 1 .3 2.1 4.b 2.4 7. 15. .22 .93 1.02 .64 3.12 .2 2.8 2.5 4.8 2.7 7. 16. .28 .40 1 .10 .67 2.86 .4 1 .2 6.5 4.7 2.2 7. 17. .03 .40 .64 .53 2.96 .5 1 .0 1.7 5.0 3.3 7- 18. .02 .42 .60 .51 2.64 1.5 1 .6 1.7 3.8 2.6 7. 19. .03 .40 .44 .37 2.18 <. 1 1 .5 2.0 4.4 2.5 7. 20. .04 .50 .40 .89 2.65 .6 1 .8 1 .6 .5 3.0 7. 21 . .03 .61 .55 .50 2.38 1.6 2.7 1 .7 4.1 2.9 7. 22. .04 .04 .58 .52 2.16 2.5 4.0 2.4 4.2 2.5 7. 23. .02 .91 .52 .45 1 .31 2.0 3.4 2.4 4.4 1 .8 7. 24. .02 .13 .30 .43 1.79 6.0 .2 .4 4.5 2.4 7. 25. .02 .02 .:3 2 .46 1.74 . 1 1 .4 .6 4.6 3.1 7. 26. .02 .03 .70 .46 1.88 1.3 2.6 2.6 5.1 2.7 7. 27. .02 .83 .65 .42 1.97 1.2 1 .4 1 .9 4.8 2.2 7. 28. .01 .02 .67 .43 1 .82 1.9 1 .4 1 .9 4.9 2.0 7. 29. .02 .55 .58 .37 1.76 5. 1 1 .0 1 .8 5.1 2.5 7. 30. .02 .59 .59 .41 1 .76 4.6 1 .5 1.7 5.0 2.6 MEAN .118 .488 .793 .834 1.785 1.5:! 1.60 2.15 3.97 2.111 STD.DEV. .156 .246 .241 .360 .635 1.44 .74 .88 1 .10 .60 8. 11 . .01 .12 .62 1.38 1.53 .5 .8 1 .8 5.4 2.6 8. 12. .02 .38 .67 1 .40 1.63 2.0 1.6 1 .6 5.5 2.7 8. 13. .02 .37 .81 1 .42 1.71 .7 1 .6 2.7 5.3 3.1 8. 14. .03 .37 .74 1 .00 1.94 3.2 1 .5 2.3 5.6 3.5 8. 15. .0 <: .36 .63 .98 1.69 2.2 1 .4 2.4 5.6 :3.1 8. 16. .15 .31 .69 .74 1.90 .2 1 .3 2.6 5.1S 3.4 8. 17. .93 .24 .73 .44 1.88 4.7 6.4 2.6 5.d 3.4 MEAN .169 .307 .699 1.051 1.754 1.93 2.09 2.29 5.57 3.14 STD.DEV. .127 .036 .025 .140 .058 .61 .72 .16 .07 .12 HA MEAN .118 .434 .763 .8 Z2 1.557 1.40 1 .53 2.00 3.77 2.12 HA STD DE V .194 .243 .261 .401 .779 1.54 1 .07 .93 1 .66 .OR (continued) 89 ------- TABLE 19 (concluded) INDICATOR NITRITE (N02-N) I1G/L NITRATE (N03-N) r1G/L SAM PLl NG 2 3 4 C; 2 3 4 5 MO DY 9. 18. .0 b .29 .02 .57 .62 3.7 2.0 1 . 1 3.5 2.4 9. 19. .03 .03 .02 .61 .82 . 1 1 .9 1 . 1 3.1 2.0 9. 29. .02 .03 .35 .66 .91 0;;. 1 2.4 1 .3 3.0 2.7 9. 21 . .0 Is .02 .03 .55 .94 1.8 1 .7 1 .4 3.4 2.9 9. 22. .02 .01 .74 .02 .85 4.9 1 .8 .9 3.b 3.LJ 9. 23. .02 .16 .01 .91 .99 .8 1 .8 1 .7 3.7 3.0 9. 24. .01 .18 .01 .93 1. as 4.4 1 .6 1 .8 4.2 3.3 MEAN .037 .103 .169 .607 .88"2; 2.26 1.89 1.33 3.50 2.!S4 STD.DEV. .030 .10 t .2el .3'02 .140 2.05 .26 .33 .40 .30 10. 1 . .01 .06 .28 .57 .77 1.3 .3 1 .0 4.0 3.0 10. 2. .03 .17 .62 .58 .64 4.5 2.9 1.7 3.8 3.0 10. 3. .04 .12 .02 .64 .62 1 .8 1 .8 2.1 4.1 3.0 10. 4. .01 .14 .73 .70 .50 <.1 1 .7 2.2 4.6 2.0 10. 5. .02 .12 .78 .65 .51 3.2 1 .7 2.1 5.0 3.1 10. 6. .01 . 11 .79 .48 .58 6.5 1 .7 1.8 4.7 2.4 10. 7. .01 .10 .75 .4 G .59 6.8 1 .6 2.7 5.3 '-.9 10. 8. .03 .11 .62 .36 .53 6.8 1 .0 2.4 5.1 3.0 10. 9. .65 . 11 .61 .33 .67 7.2 1 . 1 2.3 5..8 3.(, 10. 10. <..01 .25 .44 .34 .55 7.8 3.4 2.2 6.0 3.0 10. 11. .01 .26 .52 .40 .50 .4 2.5 2.8 6.4 2.7 10. 12. <.01 .36 .55 .48 .49 1.7 3.5 6.3 3.0 2.9 10. 13. .01 <.01 <.01 <.01 <.01 10.7 17.8 15.3 11.,.5 9.4 10. 14. <.01 <:.01 .39 .44 1 . ,3 2.7 2.3 2.8 6.5 3.5 10. 15. .01 .02 <:.01 .44 .79 10.9 7.2 2.7 7.b 3.2 10. 16. .04 .31 .03 .42 .79 8.6 1 .9 2.0 6.6 3., 10. 17. .02 .01 <..01 .40 .34 1 . 5 4.6 2.1 6.3 2.8 10. 18. .02 .45 .04 .37 .57 6.9 3.1 2.4 6.2 2.6 10. 19. .01 .68 .02 .39 .76 11.6 3.3 2.5 6.7 3.1 1 u. 20. .21 . 12 .18 .40 .60 8.8 2.5 2.3 6.9 2.6 10. 21. .06 .23 .1 5 .4 1 .28 8.8 2.4 2.4 7.2 2.b 10. 22. .01 .10 .10 .39 .67 10.2 2.4 2.6 7.3 3.lJ 10. 23. .02 .26 .02 .41 .75 6. 1 2.7 2.9 7.6 3.'- 10. 24. .01 .19 .16 .39 .5t 7.0 2.9 2.8 7.7 3.1 1 c. 25. .01 .14 .10 .40 .75 5.0 3.1 2.8 7.6 3., 13. 26. .01 .16 2. 7b .47 .63 2.2 3.4 6.7 7.8 3.0 10. 27. .Oi . 1 5 .10 .:3 5 .92 5.6 3.0 2.b 7.6 3.3 1 c. 28. .01 . 11 .10 .45 1 .04 4.5 3.1. 2..:> 7.5 3.5 10. 29. .03 .27 1.32 .5 1 .78 7.6 3.2 4.5 7.b 3.~ 10. 30. .03 .69 .30 .51 .79 6.5 4.6 3.3 7.8 3.2 MEAN .046 .194 .4H .436 .641 5. 7e 3.23 3.H 6.36 3.22 5TD.DEV. .108 .15 c .498 . 111 .,02 2.94 2.73 2.31 1.1.3 1.G7 11 . 24 . .03 .08 .1 2 .1 7 .16 <.1 .3 3.4 5.7 4.0 11. 25. .04 .08 .1 2 .15 .15 .3 .2 3.5 1 . b 3.9 11. ,6. .03 .08 .16 .21 .15 <.1 .3 3.2 4.1 3.9 11. 27. .06 .10 .1 5 .16 .17 .8 .2 3.2 3.8 4.0 .1. 28. .28 .10 .15 .17 .16 1.3 .3 3.2 3.8 4.0 11. 29. <.01 .09 .14 .16 .16 <..1 .3 3.1 4.0 3.0 11. 30. .04 .20 .1 4 .16 .16 .9 .3 3.2 3.8 4.U MEAN .070 .104 .140 .169 .159 .51 .27 3.26 3.86 3.94 STD.DEV. .035 .016 .00t .007 .oo:! .18 .02 .05 .42 .03 SEA MEAN .048 .165 .334 .421 .603 4.38 2.55 2.90 5.51 3.27 SEA STD DEV .106 .152 .484 .198 .2811 3.52 2.73 2.23 1.08 1.04 90 ------- TABLE 20. DAILY RESULTS FOR TOTAL PHOSPHORUS AND FILTERED COD INOICATOR TOTAl P (11G/l) FILTERED CiJD (M~/LI SAMPLI"JG 2 j '1 5 1 7. 3 ~ 5 MO !)Y 12 13 t.). I 2.5 3.!) i). 1 10.5 26 20 6 6 10 12 1 'I 7.., '1.'1 '+.9 /, ,8 3.5 38 2'1 12 12 12 12 IS S. 1 -1.9 9.2 5.2 3.8 30 2,+ 16 8 12 12 16 J.., -I . 1 5. 1 :1.3 '1.5 '+'1 '+ 38 ,"46 32 12 17 7.0 '>.0 '12.3 fJ . 7 17.0 30 30 2'1 ~If 21f 1 Z 18 2.'i '> . 1 3.2 l ..3 2.6 32 2'+ 13 2 0 12 19 .3..3 21).1 1 .3 3' . 1 1 .3 38 29 26 22 26 ME ;\N '1.9n b.5? 9.93 R.?3 6. 17 3'1.0 22.1 18.6 15.7 16.6 STn DEV 1 . '1" (, .03 1'+. 'I B 11).92 5.60 6.2 8.7 1 1 . '+ 12. 1 1 1 . 1 1 J 7.7 ".7 1107 12. A 5.5 3s 29 27 27 23 1 '+ 6.7 3.7 7.0 1 J. J 8.6 '+0 38 36 ,,2 "0 f 5 3.9 5.9 1 S..3 '1.5 16. 1 62 56 ,,'I 36 J6 1 6 18. '+ S. I S. I 5.8 I 3. If '+0 ~8 36 30 26 1 7 9.6 62.5 9.J 6.6 5.6 '+6 38 38 26 J6 1 R 1 S. 3 5.5 7.9 .3.1 7.6 '+6 28 30 28 22 j ? 15.0 6.3 17.8 '1.0 16.9 5" "6 "2 38 "3 1 If) 9.7 5." ".0 'I . 1 6.7 5'1 If" 38 36 30 1 II 5.3 7.3 7.0 5.3 6.,+ '+'1 '+8 "6 ",+ 8 1 - 1 '- 5.6 5,+ III 8.5 7.,+ 13.5 5.0 '+9 1f6 36 1 13 8.0 1 I . I '+.3 6.7 8.5 50 "I 38 3" 36 1 I" 9.0 5.2 5.0 5.3 5.5 5'1 '+0 31 26 31 1 1 5 8.U 3.9 7.9 6.8 7.1 '+0 "9 35 35 '+5 I 16 7.'1 5.3 6.8 12.6 9.3 32 28 28 28 1~ I 17 5.7 5.8 '+.8 a.3 3.6 37 19 32 28 '+ I I 1 A 5.3 5.3 7. 1 . '+ 5.3 5.0 '+3 39 30 30 30 I 19 8.0 7.3 8.5 7.3 5, I 30 '+3 "3 1f3 35 1 20 5.'+ ,+.7 7.0 4.5 '+ . 1 '+5 1)7 '+ 1 '+5 57 1 21 8.,+ 'if 2 5... 5.3 '+.2 53 1f9 '+5 53 1f5 1 22 2.8 5." 6.6 5.3 '+ . I "3 5 I 35 '+3 "7 1 23 .7 ').1 8.0 '+.7 3.6 39 "5 31 '+ I 39 1 2'+ '+.'+ 2.8 '+.7 3.b '+.'+ 3,+ 3,+ 25 21 29 1 25 ,+,7 S.5 5. I 6.6 8.8 3'+ 38 3" 29 3" 1 26 ".9 5.6 5.,+ I 1 . 1 15.3 52 '+8 "6 "0 "0 1 7.7 18.3 I" 03 27'6 52.8 1 503 ",+ '+8 37 "2 50 1 28 16.7 12.8 26.'+ 1 b. j 1,+,2 51 59 37 ,p "0 1 29 16.7 10.9 9.3 1'1. J 8.2 '+0 6,+ "2 33 '+2 I 30 12.5 6.' 9.0 7.6 8.2 70 70 61 51 62 i 31 6... 'j . '1 5.3 6.'1 5.2 70 35 52 35 "6 2 \ ".8 6.7 '+ . I '1.0 6.6 31 "'+ 29 26 2'+ ME.\N 8.51 8.38 9.17 9. 1 1 7,96 "5.6 '+'+.2 37.8 35,5 36,8 STI) DEV '1.30 9''17 5.6'" 'i.f)7 3,6'1 9.'+ 9,9 7.2 7, I 10.2 2 16 " . 6 6.9 '+.9 " . I 6.9 5S 3,+ 3~ '15 '+0 2 17 6.2 5.8 '+.9 '1.9 7.8 51 3S 35 28 2'+ 2 18 5.2 6'5 6.'5 3.5 ,+.9 '+9 'i 8 37 32 32 2 19 3.9 7.9 '+.5 .'1. Z 6,2 28 23 22 17 17 2 20 3.8 5.8 3. I .3.9 5.2 3" 39 27 22 26 2 21 2.9 '1.0 '+.2 '1.9 6.8 52 38 35 32 32 2 22 5.6 5.6 '+.3 h... '1,3 27 29 2'+ 2" 26 HI:: AI~ 5.01 e)'07 '+. ~d 'i.8" 6.01 '+2.3 35.6 30.6 28.t:. 28. I STn DEV .60 ...5 .3R . 'i I .'+7 '1.5 3,0 2.3 3.'+ 1..7 SEA M[AN 7.38 7.71 8.57 ~.'O 7.36 '+3.2 39..3 33.6 31 .2 32.2 SEA STD DE V ".38 9.02 7.69 8.59 '+.06 10.8 12.9 10,8 1103 13,0 (continued) 91 ------- TABLE 20 (continued) I ,~') ( C H T 'J P TOTAL P (MG/L) FILTERED COD (MG/L) 5 A 11 P L (~ ; 7 ! 5 I 2 3 .. 5 '11) I) v '] 13 7. I h. 3 7.6 I} '2 'i.9 ) I )2 3 'i 39 35 ) 1'1 ).5 ,... 5... I. 'I '1.0 22 23 n 23 25 ) l'i ;> . 7 !. 2 7.7 ,i. 9 2.9 28 12 25 18 18 ) I h ;'.8 3.6 ). 'I ).9 5. I 2) 25 27 26 J '. ) J7 ...) 2.3 '1.2 '-,. '. 8.0 )6 )6 -'6 36 "5 '] iR s... 'I . 7 ) . i:! J. M R... 39 3.. 38 37 ..7 J : 9 ).U 3.i") 5. I J. J ).8 2.. 29 35 2" 39 MEAN .1.'1n 3. j (, '1.6'1 r; . 1 'I S.30 29.0 10. I 32." 29.0 3'i.7 srI) DI: v I . I ;> I , ) 9 J. 67 J . ') 5 '} . I 1 6.6 "I . 1 13.3 8.L IlJ . .. .. ~ . I <;.5 '1'1. 3.9 5.5 ) I '12 32 3 I '12 'I ;> . 1 ,'. '3 7 . 1 7 . 1 R.9 29 16 35 '12 "I '. .1 2.6 J. 1 3 d] 3.1J 5.5 "1:1 31 30 26 "2 'i 4 2.7 2.6 c,. 2 '1.1 6.7 ) I 10 27 2" 29 4 5 'I. 'I f, . 2 C;. 3 '1.2 ) . 3 )'1 'IS )9 29 39 .. 6 , . 9 7. .'~ 3.8 'I . 'I ...2 28 28 21. 25 37 t.j 7 ] . ) I~ . i 2.9 '1.2 5.5 ).. 73 "0 2" '15 .. R 2.7 'i . '1 ).u a.D ...4 2.. 27 25 26 )-. 4 9 ).0 ... ,J ).8 S.A 2.7 29 1\ 31 27 35 'I In 2. Q 5. '] ),8 1. H 3.6 2'1 15 18 15 18 .. 11 3.8 J. 'i ".0 2.2 'i. 6 )5 21 -'0 17 32 'I l2 3.6 2.13 2.., 2. H 2.8 28 3.. ) 1 1-' 32 .. 13 1.2 2.) 2.0 'i . (, 3.0 3) ).. 36 36 "6 'I 1'1 9... A.O 6.9 6,3 ...0 )5 30 2'1 9 15 'I 15 2. 1 1.5 7, I t,. 3 7.7 25 2.. 29 37 2'1 4 16 ? I 3.7 8.0 2. h ).9 22 2'1 26 20 )0 'i 17 2.3 3.2 I. 'I 1.1l 6.7 "0 22 23 20 29 4 1 R 1 7. . 9 1 . 1 7.6 2.3 7.7 "9 37 '15 31 19 'i j 9 8.0 ~). 1 '1.9 9.5 1'1.5 3 I '11 3'1 ..0 50 'i 20 7.8 ~ . 'of 5.8 ~. 7 'I.. 35 2n 20 12 16 'I 'n 7.0 '-'.5 6.9 ! . 7 12.0 1!3 ! 2 16 16 20 'I 22 >}. 7 tJ ,3 ! '}. 9 1 1 . [) I.f. 7 ) I 23 23 75 27 .. 23 ,) ... S.2 ...0 1;>. S 8. I 2) 35 15 27 35 'I 2'1 I 3. 7 1 J . II 9. 'I II." 1 6 . 'I 25 21 29 28 29 ~ 2<; ! (.,... 7.5 12.5 9. J 11.j.9 26 20 20 20 20 .. 26 l '}. 1 1 1.6 6.6 16.5 ...2 16 25 17 21 22 '~ 27 9. 7 j 'I. ') 10.7 15. L) 12.9 21 2'i 2.. 18 2~ ~ I.A 1.l.S 1 j. 9 10.) 1 J. I 2.8 29 31 35 29 35 4 29 1 I . Lj '1. 1 7.5 ILl) 2.9 29 28 29 27 31 4 jO 1 J . 5 , . 3 1'1.7 12.0 .. . 4 60 25 21 19 27 HE~N b. 9 I I) . 5 () 6.28 t, . 136 ". Ii.. 3U.9 28.0 ,27.9 2".5 )0.8 STLJ DE V 3.9'1 J. 18 J. or, 1.77 ).52 8." 7.U " .0 7.2 8.~ ') 8 7.9 'f . 1 .. . 1 [J. 1 S.. 23 2) 20 19 25 ') 9 1 1 . 1 ' . 2 I'} . 9 1 f] . " 2.9 25 ? I~ 21 20 29 S !O '1.5 ~~ . 6 2. 'I 7 . f) 5. 1 29 29 20 16 31 5 11 7.6 '>.9 2.9 'I, f) ...0 29 12 n 19 27 5 ! 2 ? . 1 I. 2 'I... 3. d 1 . 2 22 27 3 'i 20 29 5 . ) ~ . I I. b 4.9 'I. j .. . 2 29 29 2'3 27 39 5 ," 't. ') .!. . h 1.3 l. . 2 3.0 2:, 25 26 26 29 r1EAN S. 1 If :.J. '16 .. .8:, S. 7 1 3.7 1 26.0 2.. . I 2'1.'1 21 . a 29.9 STO DO I. 'I 'I . ~ 3 1 . 'I 1 1.10 .56 1 . I 2.2 2.0 I .5 1 .7 Sr.A MEAN b.07 '; . 9 1 <" 7 'I (j.'1 J 5.8:? 29.8 27.7 28. 1 2".7 31. J SEA STO D£V ... 1" J.22 ).27 3.91 3.5 I 8.) 7.2 7.7 7.8 9.0 (continued) 92 ------- TABLE 20 (continued) INOICI\TO~ TOTAL P IMG/L) FILTERED COD IMG/LI SAMPLING 2 :1 'I 5 1 2 3 14 S MO DY 6 21 12. /) :J . '. 1" . 3 1 1 . 0 9.3 '15 3'1 32 38 32 6 22 9.8 1-..3 1 0.3 Q.8 6.3 28 I'. 13 8 l:l 6 V 18.6 11'0 12. 1 10.9 8.' 80 37 37 23 2S 6 2'1 6.7 3.2 3.9 1 .9 3. 1 27 33 31 33 '11 6 25 6.7 '~. 3 5.0 ~d 6.7 20 18 23 21 22 6 Zb S.U 3.9 7.8 '1.0 S. 1 2t:. 'Ir) 39 29 '12 6 27 6.7 7.6 7. 1 3.9 3.2 32 32 16 'I 1 'I MEAN 9.'1'1 6.67 8.31. 6.R6 b.09 3t:..9 29.3 27.3 22.3 26.9 ST!) DEV '1.77 :':032 3.33 3.B3 2.'18 20.5 9.7 1 Q. 1 12.6 12.0 7 I 1 A . 'I 17.9 29.7 2'. . '. 10. 'I 3S 39 37 33 62 7 2 S.6 9.9 10.7 2.7 1'1.3 22 25 27 2'1 31 7 3 32. 1 25.7 29.1 2'1.3 6.9 26 '10 '10 '12 IfO 7 'I 7.6 lo.n 1 1 . 'I 23.7 17. 1 26 26 3R 33 32 7 5 8.6 I 2. 1 12. I 12.9 13 oJ '18 148 '16 26 50 7 " 9.9 1 (J . 7 I 1 . 'I 21J.O 5.9 53 36 33 '10 '10 7 7 "1.8 J.S 3.9 ;!.'I 2.8 50 So '11 5'1 5'1 7 8 3.8 3.9 '1.3 3.0 3.0 33 '12 51 If I H 7 9 3.8 /j. 0 '1.0 3. I 3.0 21 30 26 2 i 24 7 10 3.5 3.9 3.9 2.3 2.7 37 38 '12 35 '10 7 11 3.8 '1.2 '1.'1 J.2 2.8 27 '10 39 30 ~8 7 12 '1.5 3.8 'I.!> 2.8 2.6 33 3 I 35 21 37 7 13 3.'1 'I . I '1.6 2.'1 3.2 33 37 If 'I 3'1 '12 7 1 'I '. . 2 '1.'1 '1.0 2.6 2.6 25 27 27 20 31 7 15 3.8 '1.'1 '1.'1 2.'1 2.0 30 35 '13 37 39 7 I" 3.9 '1.0 '1.5 2.'1 2.6 25 29 30 33 38 7 1 7 5.1 '~. 3 3.9 2.6 2.8 3'1 3'1 '1'1 30 33 7 1 B 5. 1 '1.0 3.9 7.. 'I 2.2 '10 36 31 '10 'I.. 7 19 S.'I <;.9 5.0 2.6 2.7 'Iu 39 29 'II 1f7 7 20 '1.3 '1.7 '1.3 2. 'I 2,8 31 16 3'1 '10 30 7 21 '1.3 '1.7 '1.'1 J.U 3. I 3'1 28 33 31 31 7 22 '1.3 '. . 7 '1.'1 3.0 2.9 33 36 35 29 35 7 7.3 3.9 '1.3 5. 1 2.q 3.0 '10 '1'1 31f 29 27 7 2'1 3.6 '. . 'I '1.9 3.'1 3.'1 '1'1 '10 33 36 36 7 25 5.3 '1.6 s.o 3.~ 3.6 '.0 'Is '10 26 '1'1 7 26 '1.6 '1.7 5.3 :.I.!;' 3.1 'IU "1'1 '16 '12 '15 7 27 'I . I '1.8 S.;l J. 7 3., 2'1 30 26 21 28 7 28 \ . 8 '1.6 '1.8 3. 'I 3.'1 28 38 30 28 '10 7 29 3.'1 3.':; '1.5 3.14 3. 1 '10 36 28 28 32 7 JO 3.8 '1.6 '1.6 J.'I 3. 1 27 '10 28 31 36 MEAN 6.09 6.3'1 7.07 S.93 '1.62 3'1.0 36.0 35.7 32.s 38.2 STD D(V s. 13 '1.30 5.8" h.'O 3.'18 7.5 6.7 6.2 7. I 7.1f 8 II " . 1 '-t.a '1.9 3. 1 3. 1 32 '12 3'1 26 IfO 8 12 '-t.5 '. . 2 ".'1 .1.2 3.2 12 15 12 10 16 8 13 '. . oj .. . q 14.'1 ).7. 3. 1 2'1 30 39 27 2'1 8 1 'I '1.5 '. . 7 '1.7 :1.0 2.8 1 b 28 26 28 18 R 15 '1.6 'I . 7 '1.7 .3.2 3.0 8 12 I 'I I 'I 12 A 16 5.2 '1.9 "1.9 .3.\ 2.8 1 'I 22 18 10 12 A 17 'I . 1 'I. q '1.5 ].2 3.2 19 2'1 17 13 12 MEAN '1.77 'I. 7 :\ II. b" 3. 1 'I 3.03 17.9 2'1.7 22.9 1803 19. I STD DfV .2e; .1)9 .OR .[J3 .06 3.0 3.7 .3.9 3. 1 3.8 SEA MEAN 6. '11 b. 1 'I 6.89 5.63 '1.60 31 .9 33. 1 3203 28.i, 33.3 SEA STD DEV 5.27. 'I. 15 s. b 1 h'\'1 3.113 12. "I 'hi 9.'1 10.'1 11 .7 (continued) 93 ------- TABLE 20 (concluded) INr)ICATOR TOTAL p (HC/L) FILTERED COO IHG/LI SAHPLING 2 3 '1 5 1 2 3 'I 5 MO lI'f 9 I~ 3.9 'i.s 5. 1 3.5 3.'1 6 I B 16 12 1'1 q 19 '1.7 "I .', 'I.'i ).5 3.7 29 37 23 21 27 9 ~o 5.5 't. 5 'I.b 3.S 3.5 23 21 23 32 23 q 71 '1.3 '1.3 'I.~ ,1.7 3.7 37 33 22 18 31 9 72 3.8 "1.2 '1.8 J. 7 3.7 12 27 10 17 2'1 q 23 3.7 '1'3 '1.6 3.6 3.6 23 27 12 16 17 9 2'1 3.6 '1.2 '1.7 3.7 3.5 12 70 9 8 16 HEAN '1.21 '1. 3'1 '1.77 ].60 ].5q 2U.6 26. 1 17.3 17.7 2 I .7 STO DEV .60 . 13 .2n . 10 012 10.5 7.0 5.6 7.6 6.3 10 1 503 -i . 1 'I . 1 4.(1 3.q 27 2'1 27 31 2q 10 '} ".9 'I . 1 'I . 1 3.9 'I ~ 1 16 21 17 17 21 10 3 'I.q '1.5 '1.5 ".2 4.0 23 21 17 1'1 12 10 'I ... . 7 '1.0 'I.b '1.0 'I . 1 19 21 17 12 12 10 5 '1.0 ',. ~ '1.2 "1.2 'I . 1 13 15 13 16 12 10 b 3.8 ".2 'I . I "I. I '1.0 q I q 1 'i 17 17 10 7 3.7 '1.3 '1.5 '1.1 4.2 II 23 22 1 'I 6 10 A 3.7 'I . 1 'I . 1 '1.2 ".2 31 37 29 18 2'1 10 q " . I '1.2 3.'1 3.7 3.7 20 2'1 12 6 6 10 Ie '1.5 3.9 3.9 3.9 3.9 22 1'1 12 1'1 1'1 10 II '1.5 3.9 'I. (' J.q '1.0 2; 19 20 12 1'+ 10 12 3.9 3.9 3.9 3.5 3.9 6 10 2'1 18 12 10 13 3.8 3.8 3.8 .... 'I '1.0 20 '0 9 18 12 10 1'1 5.2 ".3 '1.2 ,~ . 2 3.9 2'1 10 12 17 1'1 10 IS 5.... 'I . 1 'I . 1 ".:2 .. . 1 2q 35 35 27 2'1 10 10 '1.2 ].9 3.9 '1.2 3.9 2u 11 18 33 29 10 17 5.2 '1.2 3.9 "'.2 '1.2 36 25 29 2S 20 10 18 5.'1 4.2 3.9 '1.3 ... . 1 20 2S 18 1'1 18 10 19 3.8 3.8 3.8 3.5 3.' 18 19 18 20 20 10 2C 3.8 3.9 3.8 'I . 1 3.8 18 27 31 27 23 10 21 3.5 J.b 3.7 3.9 3.8 10 1 e 18 6 11 10 22 3.5 J.(\ '1.0 4. I 'I . 1 13 17 22 12 9 1 U 23 '1.2 ',. 1 '1.(1 " . I ... . 1 11 22 23 18 22 1 C 2'1 '1.6 3.9 3.8 .. . 1 'I . 1 b J 9 15 10 1 'I 1 [1 25 'I . 1 '1.0 '1.0 ., . 1 '1.0 12 J 5 10 18 16 1 U 2b '1.5 3.8 3.6 3.8 'I . 1 21 29 25 17 15 10 27 'I . I 3.8 3.7 "'.0 '1.3 19 29 2" 2'+ 18 10 78 3.5 3.8 3. e '1.0 '1.0 16 2(1 17 29 17 10 29 .. . 1 3.7 3.8 J.8 3.8 16 77 20 20 29 10 30 '1.6 3.9 3.7 ': .0 " . 1 23 16 21 1'1 16 "'EAt, '1.32 "'.00 3.98 ".02 4.0 I 16." 2(1.7 20.(1 1 7 . c, 10.9 srD DEV .5] . 1 q .22 . 1 q . 13 6." 5.8 5.5 6. 1 5.6 1 1 2'1 9.8 5.2 7.7 ~.2 3.8 30 26 8 2Q 17 11 ;>5 9.7 B.O 6.., to.'I \(1.5 '12 38 3:2 27 36 i I 26 9.'1 'i.(1 9.'1 ).8 1(1.3 2'1 28 22 28 22 11 27 10.5 I I .8 9.'1 f\ . 1 9." S5 J 9 17 8 'I 11 28 ~.7 1 I .3 6.,+ 'i. 2 '1.5 34 29 17 10 II II 2~ e.o 0.9 5.3 3.2 3.2 66 2e 16 16 16 11 30 1 I . 'I' 6.'1 5. 1 5.3 6.2 1'1 20 0 2 'I ,.,EAN 9.07 b.66 7.07 0::.7" 6.8'1 37.~ 26.9 16 . ~ 1 S. ~ 15.7 STD P(V .8'1 .90 .6~ .85 I . 18 6.7 2.'1 3.2 3.7 '1.2 SEA "'EA" 5.00 '1.80 'I.6(] ".23 ~.,,(] 21 . ~ 22.6 19. I 17.6 17.5 SE. STO DE V 2.02 1 .93 1.37 1 . 10 I .61 12.0 7.0 o.s 7.3 7.3 94 ------- TABLE 21. DAILY RESULTS FOR DO AND FECAL COLI A...'-;D FECAL STREPTOCOCCI INDICATO« D 0 (MG/L) FEC COLI fLC STREf' SAMPLING 2 3 4 5 '1 c; '1 5 MO DY (NUMAER/IOOMLI 12 13 10.2 1 ? . b 1 'it 2 1'1.2 10 10 10 1 U 12 1 ~ 10.6 1 2 . ~ 12.13 12.8 '10 10 10 10 12 15 1 n. '1 12.2 12. '1 12 . ~ SO 10 '10 10 12 16 1 n. 2 1 2.8 1'1.6 1 ~ . b 50 10 20 10 12 17 10.3 12.6 I 'it B 1'1.8 90 10 20 1 'J 12 1 A 1 1 .0 1 3.0 1 It. A 1 If . F< 20 10 '10 1 U 12 19 1 1 .2 1 3.2 15.') Is.n '.0 10 20 10 MEAN 10.56 12.69 1'1. ') 9 1'1.09 (,F 0 M 35.6 10.0 20.0 10.0 STD DEV .'10 . 3 'i 1. DS 1 .11 S 1 3 10.8 13.0 1 3. 11 13.0 67n '1 300 10 I '1 10. '1 1 3.0 13.2 1 3.2 280 3 100 10 1 5 10.6 I 3.2 13.6 1 3.6 '100 3 1'10 10 1 6 1 1 .8 13.6 1'1.2 1'1.2 220 3 90 10 1 7 12.0 1 3.8 1 'i. 2 1'1.2 190 3 150 1 I) 1 8 1 2.2 13.8 1 It . '1 1 '1 . '1 200 3 120 1 U i 9 12.2 1 '1. n 1.., .2 1'1.2 190 3 70 10 1 10 12. '1 1'1.2 1 '1 . '1 1 '1 . '1 183 7 89 11 1 11 I 2.2 1'1.2 1'1.6 1'1.6 130 93 90 I U 1 12 I 2. '1 14.6 1 .., . '1 1 If . '1 180 3 60 10 I 13 I 2. If 1 ... . 8 1 If. 2 1'1.2 210 3 '10 10 1 1 'i 12.'" 1 S. 2 1 .., . If 1 '1 . '1 180 3 '10 10 1 IS 12.6 1 S. 0 1 If. A 1'1. A 150 3 100 10 I 16 I 3.2 1 S. 2 1.., . 8 1'1.8 150 10 30 J 1 17 12.8 15.0 15.2 15.2 1 '10 3 '10 10 I 1 B 12.8 1 S. 2 15.2 15.2 100 3 10 10 1 19 1 3.0 15.0 15.0 15.0 1 '10 '1 70 1 U I 20 12.8 15.0 15.2 15.2 100 3 10 60 1 21 13.0 1'1.0 1'1.5 1'1.5 70 IS 80 10 1 22 12.6 1 3.8 1 '1 . '1 1 ~ . '1 183 3 80 10 1 23 12.8 1'1.0 1 'i. 8 1 'i. 8 120 3 160 10 1 2'" 13.0 1'1.0 1'1.6 1'" . 6 183 7 89 11 1 25 1 2.8 1 '1.0 1'1.8 1'1. A 120 3 10 1 U 1 26 12.6 13.8 15.0 Is.n 100 '" Su 1 U 1 27 13.0 13.6 15.0 15.0 170 3 80 10 1 28 13.0 13.8 1 'i .8 1'1.8 1'10 '" 70 1 0 1 29 1 2.6 13.6 15.2 15.2 ISO 7 120 10 1 30 12.8 1'1.0 15.0 15.0 160 3 130 10 1 31 1 2.6 1" . 0 1 '1.8 1 'i .8 170 3 120 10 2 1 12.8 13. A 15.0 15.0 170 3 1'10 10 MEAN 12. '12 1 '1 . 1 'i 1'1.56 1'1.56 GEO M 166.5 '+.2 69.8 10.3 STD DEV .63 .58 .'19 .'19 2 16 1 2.8 1 '1.8 15.2 15.2 20 3 10 1 U 2 17 12.6 15.0 1 S. 0 15. n 10 3 10 1 U 2 18 12.8 15.0 15.2 15.2 '10 9 30 10 2 19 12.8 1'1.8 1'1.8 1'" . B 10 3 30 10 2 20 13.0 15.0 15.0 15.0 10 2'10 30 10 2 21 12.8 15.0 15.2 15.2 10 7 2U 10 2 22 12.8 15.0 15.0 15.0 50 3 10 3 MEAN Il.8n 1'1.9'1 15.06 15.06 GEO 14: 16.9 7.'1 1 7 . 7 8.'1 STD DE V .0'1 .0'1 .06 .06 SU MEAN 1201 A 1"'.0'1 1'1.57 1'1.57 GEO M 90.5 5.3 '16.U 9.9 SEA STD DEV .9'1 .A6 .66 .66 95 (continued) ------- TABLE 21 (continued) INOICATOR D 0 (M '4' L) FEC CoLI FEC STREP SAMPLING 2 3 5 '1 5 '1 5 MO DY (NUMBER/100MLJ 3 13 10.'1 12.6 1 3.9 13.9 300 230 110 20 3 1 't I 1 .6 1 3.6 1'1.8 1'1.8 170 "3 30 50 3 15 1 1 . 8 1 3 . 6 1 4... 1 '1.4 '10 290 90 10 3 16 1 J . 'I I 3. 'I 1 'I . 't 14.4 1100 10 50 10 J 17 1 2.2 1 4.6 IS. 't 15. 'I 80 1 '1 50 10 3 18 12.2 14.2 16.0 1 6 . () 120 15 70 10 3 19 12. 'I 1'1.6 16.2 16.2 20 '13 30 20 MEAN 1 1 . 7 I 13.80 15.01 15.01 GE a /1 123.2 '12.7 55.2 15.3 STD DE V .68 .72 .87 .87 'I 1 9.2 9.6 10.6 10.6 1 '18 6 6 2 '1 2 1 1 .0 1 I .7 1 1 . 4 1 1 . 't 1 '18 6 6 2 't 3 10.2 I 1 .2 I I .7 1 1 .. 7 1 '18 6 6 2 '1 't 10.6 12.3 12.6 12.6 130 5 '1 2 '1 5 10.2 1 2.2 12011 12.8 170 8 8 8 '1 6 9.8 1 I .8 12. '! 12.4 170 2 8 ~ '1 7 10.0 1 1 .2 12.8 12.8 920 13 b 6 '1 8 8.6 10. a 12.0 12.0 350 9 7 't 't 9 9.'t 10.6 12.2 12.2 79 8 '1 2 '1 10 8.9 10.3 1 1 .2 1 1 .2 S'10 2 6 1 '1 11 9.5 10. A 11.0 1 1 .0 70 13 :3 I 4 17 10.0 10.8 1 1 .0 1 I .0 :£40 5 13 L '1 13 10.2 1 1 .0 1 1 .2 1 1 .2 110 13 7 3 'I 1 '1 10.6 11.2 1 1 . '1 1 1 . '1 5 2 1 0 'I 15 9.0 9.5 9.5 9.5 49 2 9 L 't 16 8.0 "i. 'I 8.8 8.8 '19 2 7 0 '1 1 7 6.0 7 . 2 7 . '1 7.'t 13 2 S 1 'I 18 6.1 7.7 B. 1 8.1 8 5 2 U '1 19 7.0 8.2 8. 1 8. 1 11 2 3 2 4 20 6.2 8.3 9.0 9.rJ 13 2 3 0 'I 2 I 6.7 8.6 9. 't 9.'1 8 2 13 0 '1 27 6.9 8.6 9.2 9.2 33 2 4 0 't 23 6.8 9.4 9.2 9.7 23 2 2 1 '1 2'1 6.7 9.4 9.3 9.3 17 8 7 5 'I 25 7. 't 10.2 9'6 9.6 '19 23 19 15 't 26 8.2 10.6 10.2 10.7 33 8 3 3 '1 27 8.6 10. '1 Ill' 4 10.4 33 2 1 U 'I 28 7.9 10.0 1 J. 4 10. 'I 79 5 2 0 'I 29 8.0 10.2 10.2 10.2 3'1 2 1 1 4 30 8. 1 10.2 Ic.o 10. rJ 22 t' 3 U MEAN 8.53 10.08 10' '1'. 10. ''t G E 0 M 55.2 't.2 '1.'1 1 .8 STD DE V 1036 1 . 19 1032 1.32 5 8 10.2 1'1.0 15.4 15. 'I '19 2 1 0 5 9 10. U 1 '1.2 15.0 15.0 33 8 '1 0 5 10 10. '1 14.0 15.2 15.7 23 2 't 0 5 11 10.2 14.2 15. '1 IS. '1 17 2 6 0 5 12 10. I 1 't . 2 15.6 15.6 8 2 3 0 5 13 10.3 13.8 15. 't 15. '1 33 2 7 1 5 1 'I 10. '1 1 '1.0 1 S. 3 IS. 3 130 2 5 2 MEAN 10.23 1 '1.06 15033 15.33 GEO M 30.0 2.'1 3.7 1 . 1 STD DE V .06 .06 .07 .07 SEA. MEAN 9.30 1 1 .30 1 1 .9'1 1 1 .9 '! GEQ f1 56.9 5.5 6.'! 2.'1 SEA STO DEV I .77 2. 1 '1 2.56 2.56 96 (continued) ------- TABLE 21 (continued) INDICATOR D 0 (MG/L) HC COLI FlC STREP SAMPLING 2 3 4 5 'I 5 'I 5 MO DY (NUMBER/100MLI 6 21 5.6 5.8 6.'1 6.1! 8 2 8 3 6 22 5.2 5.'1 5.8 5.8 8 2 I! 1 6 23 5.'1 5.8 6.2 6.2 2 2 3 2 6 2'1 5.8 6.'1 7.9 7.9 2 2 3 1 6 25 6.7 7.6 8.6 8.6 2 2 2 1 6 2b 7.7 8.0 9.0 9.0 33 2 't 2 6 27 7.6 7.9 9. 1 9.1 2 2 2 0 MEAN 6.29 6.70 7.57 7.57 GEO ~1 '4.'1 2.0 3.3 1 . 'I STD DEV 1 .05 1 . 1 1 1 . 'I 1 1 . 'I 1 7 1 9.8 8.8 8.8 8.8 2 2 6 0 7 2 12.2 9.7 10.0 10.0 5 2 1 a 7 3 10.2 8.3 8.9 8.9 13 5 ~ 1 7 " 9.2 8.0 8.6 8.6 13 8 'I 2 7 5 8.0 7.3 7.6 7.6 13 11 1 2 7 6 6.3 7.0 7.'4 7.11 8 2 '4 3 7 7 II . 1 5.8 7.2 7.2 13 2 5 2 7 8 '1.0 6.0 7.3 7.3 33 5 2 a 7 9 '1.2 5.6 6.9 6.9 2 2 3 1 7 1 (') 5.1 5.9 7.5 7.S 8 2 8 6 7 II '+. 1 6. 1 8.8 8.8 11 2 5 I 7 12 2. 1 6.7 9.6 9.6 3 2 7 .. 7 13 1 ... 7.5 1 I .2 I I .2 23 2 6 3 7 1'1 I .3 7... 1103 11 .3 23 8 5 1 7 15 1 .0 7. I 10.5 10.5 33 2 7 I 7 16 1 .2 7.2 10.6 10.6 23 2 II 6 7 17 1 .9 6.9 7.9 7.9 8 5 8 I 7 18 2. 1 6.5 7... 7.'4 8 2 2 0 7 19 2.9 5.8 6.6 6.6 22 2 5 3 7 20 3.6 6.2 6.7 6.7 5 2 13 'I 7 21 3.2 6.3 6.8 6.8 7 2 10 3 7 22 3.11 6.1 7.0 7.0 7 2 .. 8 7 23 3.7 6.3 7. I 7. 1 8 2 11 II 7 2't 3.8 6.8 7.6 7.6 33 22 5 .. 7 25 't.0 6.7 7.9 7.9 33 2 6 5 7 2b ...5 7.5 7.8 7.8 11 2 7 5 7 27 '1.2 6.8 7.6 7.6 8 2 9 't 7 28 3.9 6.2 6.8 6.8 't9 5 6 8 7 29 't . 1 5.7 5.9 5.9 11 2 5 I 7 30 11.2 5.0 5.3 5.3 11 2 5 6 MEAN '.'t6 6.77 8.02 8.02 GEO M 1 I . 1 2.8 '1.9 2.'t STD DEV 2.52 .91 1036 1.36 8 1 I 1.6 8.0 9. I 9. I 8 2 12 6 8 12 1 . 'I 8.3 9.2 9.2 5 2 32 5 8 13 I .2 8.5 9.3 9.3 11 2 19 9 8 l't 1 .9 8. I 9.0 9.0 130 2 I"'t 55 8 15 2.2 8.3 9... 9.'t 27 8 5 7 8 16 2.8 8.5 9.6 9.6 33 5 6 a 8 17 2.7 8.3 9.5 9.5 I I 2 8 5 MEAN 1 .97 8.29 9.30 9.30 GEO M 17.8 2.8 15.9 6.6 STD DE V .23 .07 .08 .08 SEA MEAN '+.35 7.00 8.15 8. 15 GEO '" 10.'1 2.7 S.5 2.6 SEA STD DE V 2.66 I .09 1.'t6 I . II 6 97 (continued) ------- TABLE 21 (concluded) INDICATOR D 0 IMGtLI FEC COLI FEC STREP SAMPLING 2 3 4 5 'I 5 'I 5 MO DY INUMBERtlOOMLI 9 18 5.6 7.3 9.0 9.0 79 2 5 'I 9 19 5.3 7. I 8.9 8.9 33 17 7 13 9 20 5.3 6.8 8.3 8.3 130 '19 61 8'1 9 21 5. 1 6.7 8. I 8. I 79 2 1 'I I 9 22 5.6 6.9 8.7 8.7 '19 2 9 13 9 23 6.2 7.2 8.9 8.9 32 2 3 0 9 2'1 6. I 7.0 8.8 8.8 79 2 90 I MEAN 5.60 7.00 8.67 8.67 GEe ,., 61.5 '+.3 13.3 '1.8 STD DE V .'12 .22 .3'1 .3'1 10 I 5.2 6.9 8.3 8.3 33 2 53 I 10 2 5. I 7.0 8.5 8.5 79 2 19 0 i 0 3 5. I 6.8 8.2 8.2 '16 2 55 0 10 'I 5.2 6.9 8.,+ 8.'+ 110 2 3'1 0 10 5 5.'1 7.3 8.7 8.7 33 2 30 2 10 6 5.0 7.2 8.6 8.6 '13 2 27 0 10 7 '1.8 7.0 8.3 8.3 17 2 7 0 10 8 5. I 7. 1 8.5 8.5 22 2 I 1 0 10 9 '1.9 7.2 8.6 8.6 '19 2 'I 0 10 10 5.0 7.0 8.7 8.7 '19 2 1 0 10 1 I 5.2 7.2 8.6 8.6 33 2 9 1 10 12 5. 1 7.'1 8.7 8.7 31 2 8 a 10 13 5.0 7.7 8.5 8.5 '19 2 'I 2 10 lit 6. I 8.0 8.6 8.6 17 2 6 1 10 15 6.2 7.9 8.7 8.7 17 3 1 I 0 10 16 6.5 8.2 8.7 8.7 17 2 lit 0 10 17 6.6 8.5 8.9 8.9 17 2 II I 10 18 6.3 8.6 9.0 9.0 17 2 0 0 10 19 6.2 8.1t 8.9 8.8 21 2 2 0 10 20 6.1t 8.5 9.2 9.2 26 2 2 'I 10 21 6.3 8.6 9. 1 9.1 130 2 2 0 10 22 6.1t 8.7 9.3 9.3 33 2 1 1 10 23 6.2 8.'1 9.2 9.2 22 17 3 1 10 2'1 6. I 8.5 9.5 9.5 23 17 5 1 10 25 6.3 8.2 9.'1 9.'1 lit 2 5 I 10 2b 6.2 8.9 9.7 9.7 1t9 2 'I 0 10 27 6.5 8.8 9.6 9.6 17 2 2 0 10 2B 6.1t 8.9 10.2 10.2 17 2 2 0 10 29 7.6 9.'1 1003 10.3 17 2 3 0 10 30 7.5 9.2 9.9 9.9 17 2 7 0 MEAN 5.86 7.95 8.96 8.96 GEe "1 29.1 2.3 6.0 1 . I STD DEV .69 .72 .50 .5 I 1 I 21t 8.'1 11 .2 12.3 12.2 10 10 10 10 11 25 B.S I I . 'I 12.'1 12.1t / 10 10 10 10 11 2b 8.6 1 I .6 12. 'I 12. 'I 10 10 10 10 1 I 27 B.5 I 1..6 12.5 12... 10 10 10 10 1 I 28 8.,+ 11 .6 12. It 12.'1 20 10 10 10 11 29 8.6 11.6 12. It 12.'1 20 10 10 10 1 i 30 9.0 1 I 08 12.5 12. 'I 90 80 i 0 10 MEAN B.57 11.5 'I 12. 'I I 12.37 GEO M 16.7 13.5 10.0 10.0 STD DO .OB .07 .03 .03 SEA MEAN 6.25 8037 9.'16 9.1t5 GEO M 30.0 3.1t 7.'1 2.0 SEA STD DEV 1.22 1.58 1.39 1037 98 ------- PIR TEMP (F) VS TIME ~)-3 ~ J ,~ Cl , ,-, 1 I '.-' LUJ uJ I e- ~ II cycnJ ! i I---i C''.i -.J ! I I I \, iT -4 I I - ~ I '-l ! I DI l , -'~Fig. 33. ~ ~ J~ I~ I f~~ V , [ul!f ~ I ! /~, [1 I I I I I I I Air temperature vs. time. F'LOW lMGD) VS TIME C"'~r ~ ~~ I I=:) ~ --.-1 c '.! LL J I I Fig. 34. Influent flow vs. time. 99 1\ ~ ! ! ------- ,--, CL' LO .-t lJ.J ~ 3: . a N. a CLN L W ~ 3: . a (I) . CLa LN w ~ ::3': . o ~ . CLa L N W ~ ::3': . a lD . CLa :EN w ~ ::3': . a Fig. 35. WRTER l C J TEMP vs TIME Water temperature vs. time for all sampling points 100 VI! " ------- N . o 0.-1 o o DG (MG/L) vs TIME (I)" o .--1 o A o 0 ~ . o o..-i o o Lf) . o o .-i o o NDJFMAMJJASO Fig. 36. Dissolved oxygen vs. time for sampling points 2-5. 101 ------- R Lf~ lMG/LJ VS TIME 0 ilry \,. "-;0 ~ f1 ~(l ~ :::s:::: -1 IT I 0 0- I r- No (l -.;;j :::s:::: -1 IT 0 (l)g -.;;j ~ -1 IT ~g -.;;j ~ -1 IT LDg ~ ~ _J IT o rv ,.r-J~-~ n i" r-Y'.~' - / r--~ - r. - I - - I I I I r~l I I r' rl I-~ , i I I I I I ' r ",v...... o o - If' ./'oJo'/"-..-'i (I. "'Y-i .r: ~~~, ---.,;- - - - - - L I I '. . NDJFMAMJJASO Fig. 37. Alkalinity vs. time for all sampling points. 102 ------- ,.......; 00 o ON U D o NT""' (:) . o 01..0 U o (1)0 o C) U . ""TO o 0,--1 C) U L") . 00 OlD U o o "'t o . o .-1 o o . o o ..-. o Fig. 38. CBD (MG/LJ vs TIME Chemical oxygen demand vs. time for all sampling points. 103 ------- ..--\ . Do OLD U LL . o N 00 OLD U L1- . o (Y) 00 O~ U L1- 7 00 O~ U L1- . o LJ) . 00 o~ u L1- . o F CBO (MG/LJ ~ o ~ Fig. 39. vs TIME Filtered chemical oxygen demand vs. time for all sampling points. 104 ------- o ..----10 N CD CD > N . o CD7 CD > (1)0 7 CD CD > '1""0 7 CD CD > o o 7 L0 CDO CDN > vss (MG/L) vs TIME o o o -- o Fig. 40. Volatile suspended solids vs. time for all sampling points. 105 ------- TKN (MG/LJ vs TIME ....--i o ~ ZO N ~ f- N . 0 ZN ~ t- 0 0 (l)N . r Zo ~~ t- 0 ~ o Z,.-; ~ t- o o Lf) N Z' ~~ f- o time for all 106 ------- ~o . N,---; (0 Z 0 " (Y) ~ l.f) NN (0 . - z: ~-; ( o o o . ,---; o NW; ~ :z o .:) . o NN NC: O~i :z o (Y) (I), N N o . z: ~~ . - o Fig. 42. N02 ( MG/L)' VS TIME -, . - . Nitrite nitrogen vs. time for all sampling points. 107 ------- ~o .......-i (1) . OLD Z o o N N (1)0 0'-< Z (1) o (1).-< o Z o o NCJ3 (MG/LJ vs TIME ~ . o (1).-< o Z 0 "- o . o ........ L.J') (Y)C: OLfJ Z 0 . Nitrate nitrogen vs. time for all sampling points. 108 ------- .,.-, '---1 0...-... r~ - r- o ~".J " o CL~- ~ o w (0 ~ - . LL- G - r- r:~ o ~ . - o ~ - CL r- o Lf) 0...-...0 .-i r- o Fig. 44. TP (MG/L) vs TIME . - Total phosphorus vs. time for all sampling points. 109 ------- APPENDIX C ALGAL IDENTIFICATION DATA Date Pond No. 1 Pond No. 2 Pond No. 3 2/16/76 > 500 5,000 Chlamydomonas 3,500 Chlamydomonas 3/14 150,000 Chlorella 75,000 Chlorella 50,000 Chlorella 1,000 Pediastrum 500 Scenedesmus 4/2 450,000 Chlorella 450",~0 Chlorella 700,000 Chlorella 4/9 700,000 Chlorella 560,000 Chlorella 1,000,000 Chlorella 1,000 Pediastrum 4/16 440,000 Chlorella 10,000 Chlorella 10,000 Chlorella 1,000 Nitzchia t---' 4/23 500 Chlamydomonas 2,500 Scenedesmus 6,000 Scenedesmus t-' 0 500 Gonium 600 Chlorella 2,500 Chlorella 200 Pediastrum 500 Nitzschia 5/8 21,000 Chlorella 600,000 Scenedesmus 26,000 Scenedesmus 30,000 Protococcus 1,500 Navicula 2,000 Navicula 24,000 Microactinium 24,000 Microactinium 5/ 200,000 Microactinium 170,000 Scenedesmus 50,000 Scenedesmus 23,000 Proto coccus 500 Pediastrum 500 Pediastrum 2,000 Euglena 32,000 Protococcus 90,000 Protococcus 50,000 Microactinium 500 Navicula 6/22 32,000 Protococcus 500 Pediastrum 500 Pediastrum 500 Closterium Note: All values shown in the above summary are expressed in cells/ml except for the ~. of Pediastrum and Scenedesmus which are expressed as colonies/ml. (continued) ------- ALGAL IDENTIFICATION DATA (concluded) Date Pond No.1 Pond No.2 Pond No.3 7/5 100,000 Chlorella 10,000,000 Coelastrum 7/10 12,000 Chlorella 500,000 Coelastrum 7/18 20,000 Chlamydomonas 7/25 30,000 Chlamydomonas t--' t--' t--' 8/14 500 Chlamydomonas 9/21 500 Chlamydomonas 9/28 > 500 10/2 > 500 10/9 > 500 10/21 > 500 10,000 1,000 500 500 1,000 500 2,000 500 500 10,000 2,000 4,500 Closteridium 2,000 Pediastrum Chlorella Closteridium Pediastrum Chlorella 5,000 1,000 7,000 500 500 1,500 500 Closteridium Pediastrum Microcystis Chlamydomonas Pediastrum Scenedesmus Pediastrum 1,500 500 2,000 1,500 6,000 250,000 2,000 2,000 200,000 1,500 2,000 4,000 100,000 500 1,500 500 > 500 2,000 Pediastrum 2,000 Pediastrum 2,500 Scenedesmus 1,500 Pediastrum 2,000 Scenedesmus 1,500 Pediastrum 500 Scenedesmus > 500 Closteridium Pediastrum Scenedesmus Closteridium Pediastrum Scenedesmus Pediastrum Pediastrum Closteridium Oocystis Pediastrum Closteridium Microcystis Pediastrum Closteridium Microcystis Scenedesmus Pediastrum Closteridium Microcystis Scenedesmus Pediastrum Closteridium ------- TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing) 1. REPORT NO. \2. 3. RECIPIENT'S ACCESSION NO. EPA-600/2-79-l82 4. TITLE AND SUBTITLE 5. REPORT DATE PERFORMANCE EVALUATION OF EXISTING AERATED LAGOON December 1979 SYSTEM AT CONSOLIDATED KOSHKONONG SANITARY DISTRICT, 6. PERFORMING ORGANIZATION CODE EDGERTON. WISCONSIN 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Lawrence B. Polkowski 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT NO. University of Wisconsin-Madison lBC822, SOS 113, Task D-l/26 11. CONTRACT/GRANT NO. Madison, Wisconsin 53706 Grant No. R-803930 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED Municipal Environmental Research Laboratory--Cin.,OH Final - 7/20/75 to 6/30/77 Office of Research and Development 14. SPONSORING AGENCY CODE U.S. Environmental Protection Agency EPA/600/l4 Cincinnati, Ohio 45268 15. SUPPLEMENTARY NOTES Project Officer: Ronald F. Lewis (513) 684-7644 16. ABSTRACT Aerated treatment lagoons are used extensively throughout the United States to provide secondary treatment of municipal wastewaters. The data available to assess the per- formance of these systems are lacking partially as a result of the infrequent sampling and rather limited types of analyses performed routinely. This report presents the evaluation of the performance of a well designed, three cell aerated lagoon system over a twelve month period. The Consolidated Koshkonong Sanitary District's treatment sys- tem is located in Wisconsin and is subject to a climate with large seasonal variations. The,treatment system performed well in removing BOD5 and total suspended solids as well as producing an effluent with acceptable pH and coliform counts. Mass balances indi- cated no removal of phosphorus over the twelve month period. The system was unable to achieve 85 percent removal of BOD5 and TSS at all times as a result of low influent concentrations during the spring. Phytoplankton concentrations in the effluent during the warm seasons also affected the removal results. Changes in pH and alkalinity in the latter cells indicated that the bicarbonate ion served as a C02 &ource for the phytoplankton growth. Tracer studies showed the mean cell residence time in the primary cell as being 28 percent lower than that calculated by pond volume and flow rate. Phy- toplankton populations and decomposition of bottom deposits in the primary pond affected the determination of first .order removal rate constants. The treatment system can meet the Federal secondary treatment guidelines as currently defined. ~ 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS b.IDENTIFIERS/OPEN ENDED TERMS c. COSATI Field/Group Waste treatment Aerated 13B *Lagoons (ponds) *Performance evaluation *Design criteria Chemical~analysis Physical tests 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS (This Report) 21. N0. OF PAGES Unclassified 124 Release to Public 20. SECURITY CLASS (Thi.! page) 22. PRICE Unclassified EPA Form 2220-1 (Rev. 4-77) 112 1'( u.s. GOVERNMENT PRINTING OFFICE: 1980 -657-146/5623 ------- Cincinnati OH 45268 Environmental Protection Agency IFA-335 Official Business Penalty for Private Use, 8300 Special Fourth-Class Rate Book Please make all necessary changes on the above label. detach or copy, and return to the address in the upper left-hand corner If you do not wish to receive these reports CHECK HERE D. detach, or copy this cover, and return to the address in the upper left-hand corner EPA-600/2-79-182 ------- |