United States
Environmental Protection
Agency
Office of
Radiation Programs
Washington DC 20460
EPA-520/5-80 002
December 1982
Radiation
x>EPA
Environmental Pathway
Models for Estimating
Population Health Effects
from Disposal of
High-Level
Waste in Geologic
Repositories
Draft Report
-------
EPA 520/5-80-002
ENVIRONMENTAL PATHWAY MODELS FOR
ESTIMATING POPULATION HEALTH EFFECTS FROM
DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTE IN
GEOLOGIC REPOSITORIES
J. Michael Smith*
Ted W. Fowler*
Abraham S. Goldin+
Draft Report
December 1982
* U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Radiation Programs
Eastern Environmental Radiation Facility
P.O. Box 3009
Montgomery, Alabama 36193
+ U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Radiation programs (ANR-461)
Surveillance and Emergency Planning Division
401 M Street, S.W.
Washington, D.C. 20460
-------
FOREWORD
Tne Agency has recently published environmental standards addressing
disposal of hign-level radioactive wastes (40 CFR Part 191) for public
review and comment (47 FR 581~6). An important part of this effort is the
evaluation of how effective mined geologic repositories are for isolating
tnese wastes from tne environment for many thousands of years. EPAls
assessments indicate that carefully designed repositories at good sites
can keep long-term risks below those that would exist if (on a generic
basis) the uranium ore used to create the wastes had not been mined to
begin with. Accordingly, the Agency has proposed environmental standards
that would restrict projected releases from high-level waste disposal
systems--for 10,000 years after disposal--to levels that should keep
tne risks to future generations less than the risks they would have been
exposed to from the unmined ore if these wastes had not been created.
This tecnnical report presents the methodology used to assess the
long-term population risks from projected releases of waste from a geologic
repository. It describes the models that the Agency developed specifically
for tnis project and reviews the various assumptions made. The Agency
expects tnat population distributions, food chains, and living habits may
cnange dramatically over 10,000 years. Rather than attempt to predict such
cnanges, this methodology uses very general models of environmental
pathways that consider present values for the various parameters used in
the models.
~ecau~e mucn of this methodology is new, and because these risk
assessments are a key part of our rulemaking, the Agency is publishing
this as a draft report. During tne public comment period on 40 CFR 191,
a Subcornnittee of the Agency's Science Advisory Board will conduct an
independent technical review of our risk assessments (48 FR 509). All
meetings of this Subcommittee will be announced in the Federal Register
and will be open to the public.
In addition, I encourage users of this report to submit any comments
or suggestions they mignt have. Such comments would be most helpful
if received by May 2, 1983, and they should be sent to: Central Docket
Section (A-130); Environmental Protection Agency; Attn: Docket No. R-82-3;
Washington, D.C. 20460. For additional information, please contact
Mike Smith at (205) 272-3403; Office of Radiation Programs; Eastern
Environmental Radiation Facility; Environmental Protection Agency;
P.O. Box 3009; Montgomery, Alabama 36193.
~s~~
Director
Office of Radiation Programs
-------
SU/v1MARY
TABLE OF CONTENTS
..........
. . . .
............
. . . .
S.l The Methodology
S.1.1
S.1.2
S.1.3
$.1.4
S.2 Results
1.
INTRODUCTION
.....
.....
.......
. . . .
Releases to a River (Surface Water) .......
Releases to an Ocean. . . . . . . . . . . . . . .
Releases Directly to Land Surface. . . . . . . .
Releases Due to a Volcanic Eruption or Meteorite
Impac t . . . . . . . . . . . . . . . . . . . . .
. . . .
........
........
.....
........
.....
. . . .
........
1.1 Background Information. . . . . . . . . . . . . . . . . .
1.2 Pathways Considered. . . . . . . . . . . . . . . . . . .
1.3 Approach to Calculations. . . . . . . . . . . . . . . . .
2.
SOURCE TERM S
.....
. . . .
...........
.....
2.1 River Source Terms. . . . . . . . . . . . . . . . . . . .
2.2 Ocean Source Terms. . . . . . . . . . . . . . . . . . . .
2.3 Land Surface Source Terms. . . . . . . . . . . . . . . .
2.4 Volcano/Meteorite Interaction Source Terms. . . . . . . .
3.
ENVIRONMENTAL TRANSPORT AND DOSIMETRY MODELS
.........
3.1 Releases to a River
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
.............
......
General Considerations. . . . . . . . . . . . . .
Drinking Water Ingestion. . . . . . . . . . . . .
Fresh Water Fish Ingestion. . . . . . . . . . . .
Food Ingestion. . . . . . . . . . . . . . . . . .
Inhalation of Resuspended Material. . . . . . . .
External Dose - Ground Contamination. . . . . . .
External Dose - Air Submersion. . . . . . . . . .
3.2 Releases to an Ocean. . . . . . . . .
..........
3.2.1 General Considerations. . . . . . . . . . . . . .
3.2.2 Two - Compartment Ocean Model. . . . . . . . . .
3.2.3 Seafood Ingestion. . . . . . . . . . . . . . . .
i i i
Page
1
2
3
5
6
7
7
10
10
12
14
15
15
20
20
21
22
24
24
24
26
27
30
34
35
36
36
39
41
-------
TABLE OF CONTENTS (continued)
3.3 Releases to Land Surface. . . . . . . . . .
.......
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
General Considerations. . . . . . . . . . . . . .
Food Ingestion. . . . . . . . . . . . . . . . . .
Inhalation of Resuspended Material. . . . . . . .
External Dose - Ground Contamination. . . . . . .
External Dose - Air Submersion. . . . . . . . . .
3.4 Releases Due to Volcano/Meteorite Interaction
3.4.1
3.4.2
......
General Considerations. . . . . .
Releases Directly to Land Surface
........
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.2.5
........
General Considerations. . . . . . . . . .
Food Ingestion. . . . . . . . . . . . . .
Inhalation of Resuspended Material. . . .
External Dose - Ground Contamination. . .
External Dose - Air Submersion. . . . . .
3.4.3 Releases to Air Over Land
3.4.3.1
3.4.3.2
3.4.3.3
3.4.3.4
3.4.3.5
3.4.3.6
. . . .
........
General Considerations. . . . . . . . . .
Air-Above-Land Two Compartment Model
Food Ingestion. . . . . . . . . . . . . .
Inhalation of Dispersed and
Resuspended Material. . . . . . . . . . .
External Dose - Ground Contamination
External Dose - Air Submersion. . . . . .
3.4.4 Releases to Air Over Ocean
.....
.......
3.4.4.1 General Considerations. . . . . . . . . .
3.4.4.2 Air-Above-Water Three Compartment Model. .
3.4.4.3 Seafood Ingestion. . . . . . . . . . . . .
3.5 Special Considerations for C-14 EDC
.....
. . . . . .
4.
DOSIMETRY AND HEALTH EFFECTS CONVERSION FACTORS.
.......
4.1 Analytical Treatment of Daughter Product Buildup During
Environmental Transport. . . . . . . . . . . . . .
4.2 Dose Commitment Factors and Dose Rate Factors. . . . . .
4.3 Health Effects Conversion Factors. . . . . . . . . . . .
4.4 Revised Dosimetry and Risk Methodology. . . . . . . . . .
iv
P d 9!:.
42
42
43
46
49
49
50
50
51
51
51
52
52
52
52
52
53
56
59
59
60
60
60
61
64
65
74
74
75
78
79
-------
5.
TABLE OF CONTENTS (continued)
DISCUSSION OF VALUES FOR PARAMETERS
REFEKENCES
NOMENCLATURE
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
. . . .
. . . .
......
.......
. . . . .
.....
.........
.....
.......
......
.......
Metnod for Consideration of Daughter
Product Ingrowtn . . . . . . . . . . .
. . . .
Dosimetry Factors
. . . .
........
. . . .
Sample Derivation of an Environmental
Patnway Equation and Calculation of
Population Healtn Effects. . . . . . . . . .
Health Effect per Curie Release Parameters. . . .
FORTRAN Listing of Computer Program. . .
. . . .
Sample Output of Computer Program. . . .
. . . .
v
Page
81
97
102
109
113
119
131
136
151
-------
S-l
1.2-1
3.5-1
4.3-1
5-1
5-2
5-3
5-4
5-5
B-1
B-2
C-1
0-1
0-2
0-3
0-4
LIST OF TABLES
Fatal Cancers per curie released for different release
mo des. . . . . . . . . . . . . . . . . . . . . . . .
Release modes and environmental pathways
.......
Carbon-14 intergrated intake per unit deposition on
the soil surface and the total body.infinite
environmental dose commitment per curie released
to the river for the crop ingestion pathways. . . .
Health effects conversion factors
...........
Radionuclide decay constants
.............
Bioaccumulation factors for freshwater fish and seafood
Radionuclide intake factors
......
........
Leacning coefficients for radionuclides in soil.
Distribution coefficients for radionuclides on sediment
Dosimetry factors. . . .
.............
Source of dosimetry factors. .
............
Environmental dose commitment and fatal cancer
calculations. . . . . . . . . . . . . . . .
. . . .
Fatal cancers per curie released for different
release modes. . . . . . . . . . . .. .....
Fatal cancers per curie released for releases to
a river. . . . . . . . . . . . . . . . . . . . . .
Fatal cancers per curie released for releases to an
oeea n . . . . . . . . . . . . . . . . . . . .
Fatal cancers per curie released for releases to a
land surface. . . . . . . . . . . . . . . . .
vi
Page
9
13
71
80
84
87
88
92
94
114
117
130
132
133
134
135
-------
2.1-1
2.1-2
3.2.1-1
3.3.3-1
3.4.3.1-1
3.4.4.1-1
C-1
LIST OF FIGURES
Schematic diagram for transport of radionuclides
from repository to river. . . . . . . . . . . .
Release rate to river as a function of time after
placement of radioactive waste in repository
Compartment model for the ocean release mode
Activity (mass) balance for soil element away
from source. . . . . . . . . . . . . . . . . . .
COlnpartment model for air over land-volcano/
meteorite release mode. . . . . . . . . . . . .
Compartment model for air-over-ocean-volcano/
meteorite release mode. . . . . . . . . . . . . .
Radionuclide travel from repository to river
vii
Page
17
19
38
46
54
62
124
-------
ACknowledgements
The authors gratefully acknowledge the contributions of C. B. Nelson,
w. H. Ellett, A. C. B. Richardson and D. J. Egan.
A. C. B. Richardson and
W. H. Ellett participated in the development of the conceptual approach of
this report, particularly that for the river pathway models.
C. B. Nelson
provided substantial assistance in developing many of the ideas and basic
equations contained in the manuscript.
D. J. Egan made many helpful
suggestions regarding the format and technical content of the manuscript.
viii
-------
SUMMARY
As part of its program to develop environmental standards for
disposal of high-1evel radioactive wastes, the Environmental Protection
Agency estimated population health risks for 10,000 years after disposal
in mined geologic repositories (SmC82).
This report describes the
mathematical models we formulated to calculate the environmental dose
commitments (EDC's) and popu1ation health effects (fatal cancers and first
generation genetic defects) that could occur as a result of releases from
sucn repositories.
The report also identifies the data we chose to use in
these models and presents our estimates of the premature fatal cancers
caused per unit of radionuclide released to the environment.
These
estimates were used in selecting the containment requirements in the
Agency's proposed disposal standards (47 FR 58196).
In performing these long-term assessments of population health
effects, we recognize that it is pointless to try to make precise
projections of the actual risks from repositories.
Population
distributions, food chains, living habits, and technological capabilities
will undoubtedly change in major ways over 10,000 years.
Unlike
geologica1 processes, they can be realistically predicted only for
relatively short times.
Accordingly, we formulated very general models of
environmental pathways, and we assumed population sizes and
characteristics similar to those of today.
In particu1ar, we usually
avoided the detailed analytical techniques that would be appropriate for
near-term environmental assessments of specific facilities.
1
-------
The models described in this report consider risks to populations, as
opposed to risKs to individuals.
Therefore, individual doses caused by
potential releases from a repository cannot be determined from these
analyses.
However, a companion report (Go82) describes analyses that
assess individual doses from several types of releases.
5.1
The Methodology
The Agency's performance assessments of geologic repositories (5mC82)
identified four ways that radionuclides might be released to environmental
pathways: to surface water (e.g., a river) through groundwater; to an
ocean through surface water; to a land surface directly; or to multiple
pathways after the very unlikely possibility of disruption by a volcano or
a meteorite.
For each of these four release modes, we modeled the ways
tnat radionuclides can move through the geosphere and the biosphere to the
population, and we estimated the intake by the population through each of
tnese environmental pathways.
We then calculated the [DC's per unit of
each radionuclide released to the environment--for both internal and
external dose pathways--using organ-specific dose commitment factors for
bone, red marrow, lung, liver, GI-LLI, thyroid, kidney, ovaries, testes,
and other soft tissue.
(The "other soft t i ssuelo EDC's were used to
approximate all soft tissue EDC's not specifically listed.)
Finally, we
applied health effects conversion factors to the EDC's to estimate fatal
cancers and first generation genetic effects per curie released to the
enVlronrnent.
2
-------
Following the procedures for computing environmental dose
co~nitments, we calculated the total nealtn effects for the entire
population exposed to the releases from a repository, rather than
terminate tne calculation at some arbitrary distance from the repository.
A time integration was performed to sum tne health effects from the time
tne repository is sealed (lldisposalll) until a specified time in the future
(usually 10,000 years after disposal)-
The following sections summarize
tne procedures we used to calculate the population intake of
radioactivity--or population EDC.s for external exposures--for each of the
four release modes.
The population intakes of radioactivity for the
internal pathways are converted to population EDC.s by sequentially
applying a dose conversion factor and a dose-to-risk conversion factor.
Keleases to a River (Surface Water)
S.l.l
In the surface water release model, the repository containment is
breached--after some initial period--and groundwater circulates through
tne repository into tne surrounding geologic media and eventually to an
aquifer.
The aquifer then flows underground until it intersects a river.
To determine the total release to the river, we developed and integrated
an equation describing the release rate.
The integrated form of the
release equation was tnen used to compute integrated river water
concentrations for use in the following environmental pathway models:
Drinking Water.
We assumed that the population of interest receives
drinking water from the river with no reduction in radionuclide
concentrations due to water treatment.
The intake rate for drinking water
3
-------
by an individual is combined with the ratio of the population drinking
water to the river flow rate to obtain an estimate of the total intake of
tne radionuclide by the population per curie of the radionuclide released
to the river.
Ingestion of Fish.
We assume that fish caught in the river take up
radioactivity from the water.
By calculating the concentration of
radionuclides in tne fish and by multiplying by estimated fish ingestion
rates by the population, we determined the total population intake, due to
comsumption of fish, of the radionuclides released from the repository.
Ingestion of Food Raised on Irrigated Land.
We assume that river
water containing radionuclides from the repository is used to spray
irrigate farm land by direct deposition onto the crops and the land
surface below the crops.
Furthermore, we assume that irrigated plants
that have incorporated radionuclides through their leaves and root systems
are consumed by humans as food--or are consumed by either dairy or beef
cattle that transfer radionuclides to milk and meat.
Ingestion rates of
these various food products are used to estimate the total radionuclide
intake by the population due to using river water for irrigation.
Inhalation of Resuspended Material.
Some of the radionuclides
deposited on the soil by irrigation are resuspended into the air.
Using a
resuspension factor and the integrated soil surface concentration, we
estimated the resulting integrated concentration of radionuclides.
calculated the population intake of radionuclides using a standard
We
innalation rate and the size of the population.
4
-------
External Exposure from Air Submersion.
The radionuclides resuspended
into tne air can cause submersion exposures to the population.
These
EDC's are estimated, for each organ, from the integrated air
concentration, the population density, an external dose factor, and a
snielding and occupancy factor.
External Exposure from Ground Contamination.
The radioactive
material deposited on the ground during irrigation can also cause external
exposures to persons in the area.
Throughout the irrigation period,
radionuclides continue to build up on the ground until either irrigation
stops or equilibrium with losses through the soil is reached.
The methods
for estimating EDC's from this exposure are similar to those applied for
the external exposure due to air submersion.
5.1.2
Releases to an Ocean
We assume that releases to a river system subsequently discharge into
the ocean.
Since we do not consider radionuclide decay during travel in
tne river or depletion of the radionuclide inventory due to river water
use or sedimentation, the radionuclide releases to the ocean are identical
to the releases to a river.
Our model of the ocean pathway has two
compartments: a shallow upper layer in which it is assumed that all edible
seafood is grown and a lower layer that includes the remainder of the
ocean.
We developed coupled differential equations whose solutions
express the quantities of radionuclides in these two compartments.
The
equation for the upper compartment inventory was divided by the volume of
tne compartment to determine the time-dependent concentation of radionuclides
5
-------
in the upper layer.
This concentration was then used to estimate the
amount of radioactivity taken up by the ocean fish and shellfish consumed
oy the population.
S.1.3
Releases Directly to Land Surface
For the land surface pathway models, we assume that some of the
radioactive waste from the repository is brought to the surface after an
event such as inadvertant intrusion while drilling for resources.
Such
releases to the surface are assumed to be over a small area and a short
period of time--so that tney can be modeled as instantaneous point
sources.
The mecnanisms distributing the material to humans are
resuspension and subsequent dispersion in the atmosphere.
When the
initial release to the land surface is determined, a time-dependent
release rate to the air is estimated using a simple exponential model that
depletes the land surface source to account for resuspension and
radioactive decay.
This release rate is applied in conjunction with an
atmospheric dispersion equation to predict air concentrations as a
function of time and distance from the source; these air concentrations
are then used to estimate ground surface concentrations as a function of
time and distance.
Once ground surface concentrations are determined, the
techniques used to calculate population intake are similar to those
descrioed for tne river release mode.
The pathways considered for
releases to land surface are:
(1) ingestion of food raised on land
contaminated with radionuclides, including food crops, milk, and meat;
(2) inhalation of resuspended radionuclides; (3) external exposure due to
alr suomersion; and (4) external exposure due to ground contamination.
6
-------
5.1.4
Releases Due to a Volcanic Eruption or Meteorite Impact
Releases caused by the extremely unlikely events of disruption by
volcanoes or meteorites can be to the land surface and directly to the
air.
For tne material released to the land surface, we used the
methodology described for the land surface release mode.
For the material
released to the air, we assume that the radioactivity would be quickly
dispersed in such a manner that it would eventually be distributed
uniformly within the troposphere.
The airborne material is divided into
the fraction over land and the fraction over water--using the ratio of
earth land surface and earth water surface.
We then used compartment
models, with their systems of coupled differential equations, to estimate
the quantity of radionuclides reaching the land surface or ocean.
Finally. we estimated the amount of radioactivity or radiation exposure
reaching people through the same pathways described for the land surface
or the ocean, respectively.
5.2 Results
The specific equations used for each of the steps in the methodology
discussed above, and the parameters used in our current application of
this methodology, are presented in the body of this report.
Appendix D of
the report describes the detailed results of our assessment, indicating
the population health effects estimated--per curie released to the
environment--for each of the environmental pathways considered under each
release mode (a total of 30 pathways).
The following table displays the
total health effect (fatal cancer) per curie released values calculated
7
-------
for eaCh of the four release modes.
The most stringent of these sets of
values--that for surface water--was used in calculating the release limits
for the containment requirements of the Agency's proposed disposal
standards (EPA82).
8
-------
TAI3LE S-l:
Fatal cancers per curie released for different release modes
Nuclide
Releases to
a River
(Surface Water)
Releases to
an Ocean
Releases to
Land Surface
Releases due
to Violent
1nteractions*
C-14 4.58 E- 2 1.12 E- 7 2.58 E- 5 7.65 E- 2
N i -5 9 6.80 E- 4 6.74 E- 5 1.10 E- 5 1.23 E- 4
Sr-90 1.21 E- 1 1.91 E- 6 9.75 E- 4 1.63 E- 2
Zr-93 6.94 E- 2 5.74 E- 6 1.82 E- 1 1.55 E- 1
Tc-99 2.85 E- 4 1.04 E- 6 6.03 E- 8 3.67 E- 5
Sn-126 1.20 E- 1 7.86 E- 6 4.13 E- 2 1.12 E- 1
1-129 1.08 E- 2 9.62 E- 5 2.31 E- 5 1.38 E- 3
Cs-135 3.81 E- 3 1.58 E- 5 4.01 E- 4 7.36 E- 4
Cs-137 1.98 E- 2 1.60 E- 5 5.62 E- 4 6.91 E- 3
Sm-151 1.17 E- 4 1.38 E- 6 2.89 E- 6 1.64 E- 5
Ra-22b 3.16 1.49 E- 2 8.42 E- 2 4.87 E- 1
U-234 1.33 1.38 E- 3 5.70 E- 1 6.13 E- 1
Np-237 5.96 E- 1 2.44 E- 3 3.22 E- 3 8.03 E- 2
Pu-238 2.29 E- 2 2.38 E- 5 3.21 E- 3 1.47 E- 2
Pu-239 6.92 E- 2 1.31 E- 4 5.55 E- 2 5.18 E- 2
Pu-240 6.53 E- 2 1.15 E- 4 4 . 94 E - 2 4.76 E- 2
Am-241 7.19.E-1 1.19 E- 2 8.98 E- 2 1.59 E- 1
Pu-242 6.76 E- 2 1.30 E- 4 5.63 E- 2 5.13 E- 2
Am-243 2.68 8.81 E- 2 1.03 1.14
*For example, interaction of a meteorite or a volcano with a
repository.
9
-------
S ec t ion 1 :
INTRODUCTION
1.1 Background Information
This report describes the methodology used to estimate future health
effects to populations due to radionuclides that escape to the environment
from a waste repository.* Mathematical models for estimating these health
effects are proposed.
An estimate of the fatal cancers per curi e release
for several radionuclides is needed for use in setting curie release
limits in EPA's high-level waste standard and these estimates are given in
Appendi x D.
We obtained population health effects estimates by calculating the
population environmental dose** commitment (EDC) and then multiplying it
by a health effect conversion factor.
Since the EDC is needed to estimate
popul ati 0 n health effects, mos t of the equati on sin thi s repo rt expres s
environmental dose commitment to the population.
Th e c onversi on from E DC
to population health effects is a very simple calculation and is discussed
in more detail in Section 4.
The EDC is identical to collective dose commitment, S. as used in ICRP
Publication 26, IIRecommendations of the International Commission on
Radiological Protectionll (ICRP77) and the report entitled II Sources and
Effects of Ionizing Radiationll (UN77).
In this report, S denotes the
nop
*Unless we state otherwise, we are estimating lIexcessli health
effects, i.e., those caused by elevating radiation level s and in addition
to those from other causes.
**For simplicity, the term "dosell will be used to denote II dose
equivalent."
10
-------
EDC, where the subscripts indicate that S is a function of nuclide, organ,
and environmental pathway.*
Mathematically, the EDC is expressed as
S =jOOlOOD'(t) N(D' t) dD'dt
nop ,
o 0
(1.1-1)
where D'(t) is the dose commitment rate as a function of time and r~(D',t)
is the number of peopl e exposed to dose commitment rate D' (t) at time t.
The incomplete collective dose commitment, Snop(t), is defined as
follows:
Snop(t) JtIOOO'(t)N(O' ,t) dO'dt
o 0
(1.1-2)
The term II dose comnitment ratell as used here means the SO-year dose
commitment to individual s due to intake for one year in the case of
internal emitters, or, in the case of external exposure, simply the annual
dose.
In this assessment, the population of interest is the world
population, which is assumed to be constant over the time period, t.
Specifically, we assume that
00
1 N(O' .t)dO' " N(t) " 1010
persons (UN77).
(1.1-3)
*The variables used in the equations in this report are defined in
the nomenclature, p. 102 ff.
11
-------
Two EPA reports, besides this one, discuss dosimetry and health risk
analysis for the EPA high-level waste standard.
These reports cover
individual dose assessment (Go82) and population risk assessments for
setting high-level waste disposal standards (SmC82).
The draft
environmental impact statement (EPA82) and the individual dose assessment
report (Go82) discuss individual dose rates.
The population risk
assessment report (SmC82) discusses risk assessments used to determine
repository release limits for inclusion in the EPA standard.
1.2
Pathways Considered
These analyses consider four general modes of radionuclide releases
from a waste repository:
releases to a river, to an ocean, to a land
surface, and from a volcanic or meteorite interaction with a waste
repository.
The releases to a river, an ocean, or a land surface can be
caused by any number of events.
For example, drilling a mining borehole
through a repository could allow groundwater to leach radionuclides from
the radioactive waste.
The radionuclides could be transported to a river
and subsequently to an ocean. A variation of this scenario would be
radionuclide releases directly to the land surface by a drilling event.
Volcanic eruption or meteorite impact have a lower probability of
occurrence than those events discussed above.
This class of events
generally results in violent release of radioactive material directly to
the land surface and to the air.
These four release modes are subdivided
into a total of 30 pathways, as listed in Table 1.2-1.
12
-------
TABLE 1. 2-1
Release modes and environmental pathways
Release Mode
Pathways Included in this Release Mode
Pathway
Number
Releases to River
Drinking Water Ingestion
Freshwater Fish Ingestion
Food Crops Ingestion
Milk Ingestion
Beef Ingestion
Inhalation of Resuspended Material
External Dose-Ground Contamination
External Dose-Air Submersion
1
2
3
4
5
6
7
8
9
10
Releases to Ocean
Ocean Fish Ingestion
Ocean Shellfish Ingestion
Food Crops Ingestion
Milk Ingestion
Beef Ingestion
Inhalation of Resuspended Material
External Dose-Ground Contamination
External Dose-Air Submersion
13
14
15
12
16
11
Releases Directly
to Land Surface
Releases Due to Volcano/
Meteorite Interaction
Releases
Di rectly to Land
Food Crops Ingestion
Milk Ingestion
Beef Ingestion
Inhalation of Resuspended Material
External Dose-Ground Contamination
External Dose-Air Submersion
25
26
27
24
28
23
19
20
21
Releases to Air
Over Land
Food Crops Ingestion
Milk Ingestion
Beef Ingestion
Inhalation of Dispersed and
Resuspended Material
External Dose-Ground Contamination
External Dose-Air Submersion
17
22
18
29
30
Releases to Air
Over Ocean
Ocean Fish Ingestion
Ocean Shellfish Ingestion
13
-------
1.3 Approach to Calculations
The goal of the analysis for each specific pathway is to estimate the
EDC to specific organs per unit nuclide released to the accessible
environment (normalized EDC's) in order to determine population health
effects.
The organs for which EDC's are calculated are bone, red marrow,
*
lung, liver, GI-LLI, thyroid, kidney; other soft tissue,
ovaries, and
testes.
After the normalized values are determined as a function of nuclide,
organ, and pathway, a summation over pathways may be performed.
The
result is normalized EDC's, for a release mode, which are a function of
nuclide and organ.
With this approach, these normalized EDC's can be used
to predict the total EDC for various scenarios which lead to releases to
the biosphere from a repository; wi thout a "reanalysi sOl for each new event.
Developing pathway computation models involves applying the
mechanisms for leakage of radionuclides from a repository and predicting
the processes which cause these radionuclides to disperse in the
envi ronment.
These models and methods are discussed in more detail in
Sections 2 and 3.
In general, the pathway equations integrate the doses
over all persons exposed from the time the material is placed in the
repository until time, t, in the future to yield the incomplete
environmental dose commitment.
*Total body dosimetry factors are applied for other soft tissue
since dosimetry factors for muscle (the standard factors applied for other
soft tissue) were not available in many of the references we consulted.
14
-------
Section 2:
SOURCE TERMS
We use simpl e transport model s to estimate the movement of
radionuclides from the repository into the accessible environment.
Different scenarios are applied in developing the source term models for
the four release modes.
For some of the release modes, sevejAal different
mathematical models for determining releases to the environment are
possible.
In this report, only one release model has been addressed for
each release mode.
The environmental pathway calculations for other
release models \'Jould be treated in a manner similar to the methods
discussed in this report.
A more complete discussion of source terms is
included in the population risk assessment report (SrrC82).
2.1
River Source Terms
For the river pathway, we assume t"e radionuclides remain in the
repository for the initial delay period, ter' following placement.*
Afte r thi s time, we assume tha t the repository is breache d an d that
radionuclides can be removed from the repository and eventually be
transported to a river.
There are several different mechanisms which
determine the rate of removal of radionuclides from arepository such as
their susceptibility to leaching, water flow through the repository,
solubility of the chemical compound containing the radionuclides, waste
heat from the buried waste, and type of event causing the release.
The
*The variables used in this report are defined in the nomenclature,
p. 102 ff.
15
-------
methods for obtaining the specific releases for a release scenario are
discussed in the population risk assessment report (SmC82).
In this
report, we use a radionuc1ide removal model limited by the rate of
leaching to illustrate typical river environmental transport equations.
Several other release models are plausible, but this Ileaching-1imited"
model has been chosen because it is reasonably simple and leads to
closed-form environmental pathway equations.
The total human intake for each river pathway is taken to be
proportional to the total quantity (i.e., the integrated concentration) of
the radionuclide in the river.
Therefore, the time-dependent rate of
entry of radionuclides to the river must be developed so that it can be
integrated.
We assume that the repository is breached and ground water
circulates through the repository and leaches radionuc1ides into the
surrounding area and eventually to an aquifer after passage of additional
time, tran"
The radionuclide-specific source term equation that
describes the time-dependent rate of entry of each radionuclide (n) into
the aquifer, Q1anp(t), is expressed as (see Fig. 2.1-1)
Q1anp(t) = ALn fL Qon exp [-ADnt - ALn (t-ter-tran)]
for t>t + t
er ran
and
(2.1-1)
Q I a np ( t ) = 0
for t
-------
REPOSI TORY
Travel time from
repos itory to
aquifer = tran
AQUIFER
Initial Inventory = Qon
Time between repository sealing
and entry of groundwater = ter
Leaching coefficient = ALn
Travel time in aquifer
to river = tarn
RIVER
(Note: trn = ter + tran + tarn = time between sealing of
repository and entry of radionuclides into the river.)
Fig. 2.1-1.
Schematic diagram for transport of radionuclides from
repository to river
17
-------
source term for radioactivity entering the aquifer (equation 2.1-1)
corrected to account for the additional time (t ) required to
arn
transport each radionuclide from the point of entry into the aquifer to
the river.
Thus, the river source term Q1np(t) is the rate of entry to
the river of radionuclide n, in curies per year, as a function of time.
The equation for QI (t) for the leaching-limited case is as follows:
np
QI np(t) = ALn fL Qon exp[-Aont-ALn(t-ter-tran-tarn)]
(2.1-2)
and
for t>ter + tran + tarn
QI np(t) = 0
for t~ter + tran + tarn.
Fig. 2.1-2 shows the exponential shape of the release rate to the river.
In later calculations, we will need the total (integrated) amount,
Qnp(t), of radionuclide n that has entered the river up to time t.
quantity can be determined using the equation
This
Qnp(t) ~t Q'np(t) dt.
o
(2.1-3)
Substituting equation 2.1-2 into equation 2.1-3 and integrating, we obtain:
fLALnQon
Qnp(t) = ADn+ALn
[ exp[-ADntRnJ ]
-exp[ALntRn -(AOn+ALn)t]
for t>tRn
(2.1-4)
and
(tRn = ter + tran + tarn)
Qnp(t) = 0
for t~tRn .
Once the source term to the river is determined, we can calculate radionuclide
concentrations in the river.
These calculations are discussed in Section 3.1
18
-------
~
QJ
>
.,....
~
0
.jJ
.....
'-D QJ
.jJ
(\j
~ deer
QJ
U1 ease
(\j
QJ
QJ
~
C>
o
trn
time after placement
Figure 2.1-2.
Release rate to river as a function of time after placement of
radioactive waste in repository
-------
2.2
Ocean Source Terms
For the ocean pathway models, we assume that radionuclides from a
waste disposal facility reach the ocean only by transport through a river
system.
We also assume that
travel time in the river to the ocean is so small that radionuclide
decay may be neglected; and
it is acceptable to neglect depletion of radionuclides in the river
due to removal by irrigation and sedimentation (this assumption leads
to a conservative estimate of the quantity of radionuclides reaching
the ocean since irrigation and sedimentation will remove a portion of
the radionuclides in the river).
In light of these assumptions, the source terms for the ocean and
river releases are the same.
The release rate and total integrated
release for the ocean release mode for the leaching-limited case are given
by equations 2.1-2 and 2.1-4, respectively.
The computation of
radionuclide concentrations in the ocean is discussed in Section 3.2.
2.3
Land Surface Source Terms
For the river and ocean release mode, the source term model employed
predicts a continuous long-term release of radionuclides to the biosphere
after leakage begins at a waste repository.
The events hypothesized for
the land surface release mode are those which could cause radionuclides
20
-------
from the repository to be brought directly to the earth's surface, in a
short time period, such as drilling a well into or through a waste
repository.
We assume that these events result in an instantaneous
release of some fraction, fLS' of the contents of the repository to the
land surface at a time, tL' after emplacement of waste in a repository.
The release is assumed to be to a small area of land, which can be
considered as a point source for calculation of the resuspension from
ground to air and the subsequent redistribution in the environs.
The EDC
pathway analyses for the land surface release mode are discussed in
Section 3.3.
2.4
Volcano/Meteorite Interaction Source Terms
We assume that a violent volcanic eruption or a meteorite impact
liberates materials from the repository in a short time.
A fraction,
fLL' of this material goes directly to the land surface and the rest is
released directly to the air. That released to the land surface is
conservatively assumed to be distributed in a small area, and the
mechanisms for treating the redistribution of this material in the
environment are the same as those used for the land surface release.
We
assume that the material released to the air is dispersed in such a manner
that it is, eventually, distributed uniformly in the troposphere.
The
airborne material is
divided into the fraction over land, fAL' and the
fAW' using the ratio of earth land surface area to
earth water surface area to total earth area.
fraction over water,
total earth area and
The methodology used to predict distribution of radionuclides in the
environment and to analyze the EDC pathways for the volcano/meteorite
release mode are discussed in Section 3.4.
21
-------
Section 3:
ENVIRONtvENTAL TRANSPORT AND DOSIMETRY MODELS
This section contains the specific mathematical models used to
calculate environmental dose commitment (EDC) and possible health effects
for each pathway and a discussion of the rationale for each model.* The
sources of the data used in applying the models are discussed in
Sections 4 and 5.
The models used in these analyses are simple but we believe they are
appropriate for setting generally applicable environmental standards.
There is a 1 arge amount of uncertainty in some of the parameters.
For
this reason, it would not be appropriate to apply more sophisticated
model s.
When possible, the end results of existing, more detailed model
evaluations are used.
The definition of terms for the equations in the sections to follow
are given in the "Nomenclature" except where a term is used only locally
in a secti on.
In those instances, the terms may be defined in the
sections where they are used.
In the following sections, the equations which are discussed are
for the normalized population environmental dose commitment (EDC) per
unit of radionuclide release to the accessible environment for the
30 pathways.
For all pathways, we calculate the possible fatal cancers
*The variables used in the equations in this report are defined in
the nomenclature, p. 102 ff.
22
-------
and first generation genetic effects* per unit of radioactivity release.
This is done by multiplying each normalized organ specific EDC,
Snop/Qnp, by the appropriate organ specific fatal cancer or genetic
health effects conversion factor, HECON .
o
The organs used to compute
fatal cancers are bone, red marrow, lung, liver, GI-LLI, thyroid, kidney,
and other soft tissue.
The organs used to compute first generation
genetic effects are ovaries and testes.
Once either fatal cancers or
genetic effects are determined for the applicable organs, the health
effects for the various organs may be summed to obtain health effects as a
function of nuclide and pathway.
Finally, the health effects for the
various pathways within a release mode may be summed to obtain health
effects per unit release of each specific radionuclide by that pathway.
The mathematical formulation for this process can be written for fatal
cancers as
FHE
Q=
n
8
~ ~ s~~~
(HECON )
o
(3.1-1)
and for first-generation genetic effects as
GE
Q =
n
10
L
0=9
\ Snop
L Qnp
p
(HECON )
o
(3.1-2)
where the summation over pathways (p) extends over the number of pathways
considered in a release mode.
*First generation genetic effects are the genetic effects to the
children of the generation exposed to the radiation.
23
-------
2.1
Releases to a River
3.1.1
General Considerations
The methods for determining the release of radionuclides from the
repository to the river are discussed in Section 2.1.
Using these
releases, the radionuclide concentrations in the river are computed by
dividing the average yearly radionuclide source terms by the average river
flow rate.
Radionuclides from the river expose the local population
through drinking water, ingestion of freshwater fish, irrigation pathways
(including ingestion of food crops, milk, and beef) inhalation of
resuspended radioactivity, and direct radiation dose from ground surfaces
and from air.
These specific pathways are discussed below.
Drinking Water Ingestion [pathway number (p) = 1J
3.1.2
The annual dose to an individual is given by the product of the
amount of water he drinks (Iw)' the radionuclide concentration
(Q'np/R), and the dose conversion factor (D ) in the equation:
nop
DI'nop =
QI I D
np w nop
R
(3.1.2-1)
The annual population dose can be expressed as the annual individual dose
multiplied by the number of persons drinking the water, or
Sinop = DI~op PR =
QI np Iw Dnop PR
R
(3.1.2-2)
24
-------
By integrating the above expression over time we obtain
S
nop
Qnp Iw Dnop P R
R
J\, (t) dt = S
o nop nop
( 3.1. 2-3)
where
(3. 1. 2-4) )
and
t
J Q I (t) dt = Q
o np np .
( 3.1. 2-5 )
Upon dividing both sides of equation 3.1.2-3 by the integrated
release to the river, Qnp' we obtain
Snop PR IW Dnop
Qnp = R
(3.1.2-6)
This equation applies to drinking water obtained from rivers.
In
practice, drinking water could come from rivers, lakes, and wells, and the
population EDC could result from leaching of radionuclides into all of
these sources.
However, we assume that repositories are sited far enough
away from ground water supplies to preclude the contamination of drinking
water for significant populations.
For the long time periods chosen for
this analysis, lake and river water concentrations will become equal.
Thus, we believe that restricting our analysis to river water will be a
completely adequate basis for our calculations.
After obtaining values for the parameters, equation 3.1.2-6 can be
used to calculate the normalized EDC to the local population from the
ingestion of river water.
Parameter values are discussed in Sections 4
and 5.
25
-------
The analysis does not include removing radionuclides by water
treatment and by sedimentation from the river.
Also, we assumed that the
entire river is contaminated so that all persons obtaining drinking water
from the river consume contaminated water.
These are conservative
assumptions.
3.1.3 Freshwater Fish Ingestion (p=2)
The annual dose to an individual. is given by the amount of fish he
eats (If)'
I
(Qnp/R), a
the radionuclide concentration in the river water
concentration factor expressing the concentration of
radionuclides in fish compared to the concentration in water (CF ), and
np
the dose conversion factor (Dnop):
Q I CF I D
D I ' - np np f n op
nop - R
(3.1.3-1)
The annual population dose can be expressed as the annual individual dose
multiplied by the number of persons eating fish:
S' nop = DI'nop PFF =
Q' np CF np If Dnop PFF
R
(3.1.3-2)
By integrating this expression over time we obtain
S
nop
=
Qnp CF np If Dnop PFF
R
(3.1.3-3)
where the method for obtaining Snop and Qnp is given in equations
3.1.2-4 and 3.1.2-5. Upon dividing both sides of equation 3.1.3-3 by the
integrated release to the river, Qnp' we obtain
26
-------
Snop
Qnp =
CFnp PFF If Dnop
R
( 3 . 1. 3-4 )
This equation is for freshwater fish from rivers, since we assume
that all freshwater fish eaten by the population come from rivers.
Similar to the drinking water pathway, this assumption allows us to ignore
additional pathways for fish consumption associated with lakes.
Using
the data discussed in Sections 4 and 5, equation 3.1.3-4 can be used to
calculate the EDC to the local population from ingestion of freshwater
fish.
3.1.4
Food Ingestion
Food crops (p=3)
Mi lk (p=4)
Beef (p=5)
The annual dose to an individual from consuming foods raised on
irrigated land is a product of the concentration of radionuclides in the
river water (QI /R), the irrigation rate (W), a conversion factor to
np
express the radionuclide intake by an individual per unit deposition to
the ground surface (RInp)' and the dose conversion factor (Dnop):
01'
nop
=
Q1np W RInp Dnop
R
(3.1. 4-1 )
The annual population dose can be expressed as the annual individual dose
multiplied by the number of persons being fed a particular food crop
raised on irrigated land.
The size of the population eating irrigated
food crops can be determined by multiplying the number of persons who can
be fed by raising the food crop on a unit area of land (CP ), the area
p
of the irrigated land (A), and a weighting factor that expresses the
fraction of irrigated land used for a particular crop (fp):
27
-------
PFp = CPp A fp .
( 3 . 1. 4-2 )
Then the annual population dose is
QI np W Rlnp Dnop CPp A fp
Slnop = DI'nop PFP = R
( 3 . 1. 4-3 )
By integrating this expression over time we obtain
Qnp W Rlnp Dnop CPp A fp
Snop = R
( 3 . 1. 4-4 )
The ratio (W/R) is needed for each food pathway.
We can write the
relationship
WA = fRR
( 3 .1. 4-5 )
where A is the area of land irrigated (m2).
Rearranging, we have
W fR
1< = A
( 3 . 1. 4-6 )
which can be substituted into equation 3.1.4-4.
As mentioned previously, RI is the intake of radionuclide n by
np
standard man for crop p for an acute deposition to the surface (Ci intake
per Ci/m2 deposited on the soil surface). Values for Rlnp are listed
in Section 5 and the equation used to determine values for Rlnp for food
crops is discussed in detail in Appendix C. The equations for the milk
and meat pathway are similar to the equation for the food crops.
The
values were determined using the AIRDOS-EPA computer code (M079).
Us i ng
this code, values of the human intake rate of radionuclides (Ci/yr) due to
ingestion of produce and leafy vegetables, ingestion of milk, and
28
-------
ingestion of meat can be calculated. Also, the total deposition rate of
these nuclides (Ci/m2_yr) to the soil can be calculated. Thus, this
output from AIRDOS-EPA was used to determine the values of RInp for
produce and leafy vegetables, milk, and meat by dividing the human intake
rate by the total ground deposition rate.
Ci/m2_yr deposited to the soil surface.
This yielded Ci/yr intake per
The code was run for a long
period of deposition to the soil surface so that equilibrium values of
RI were obtained. It can be shown that the ratio of the equilibrium
np
intake rate to a continuous deposition rate (Ci/day per Ci/m2-day) is
numerically equal to the ratio of the total integrated intake to the acute
surface deposition (Ci per Ci/m2). Thus, the values of RI
np
determined using AIRDOS-EPA can be applied to determine the total intake
of radionuclides by humans per Ci/m2 deposited to the ground surface.
The mathematical models incorporated in AIRDOS-EPA are similar to
those used by the U.S. Nuclear Regulatory Commission (NRC77).
One
significant change was made to these mathematical models before using the
code to determine values for RInp.
The loss of radionuc1ides from the
soil root zone was taken into account in computing uptake of radionuc1ides
into plants through plant root systems.
This loss mechanism from the soil
was not addressed in either Regulatory Guide 1.109 (NRC77) or AIRDOS-EPA
(M079) and can be important for long-lived radionuclides.
The values of RInp are based on an air deposition rate; therefore,
the results are appropriate only to spray irrigation. Doses associated
with ditch irrigation will be overestimated since deposition to crop
surfaces will be included.
The only actual transfer mechanism for ditch
irrigation is uptake by the crops from the soil.
Most of the data used in
29
-------
AIROOS-EPA to calculate the values for RInp are discussed in the code
documentation (M079).
substituting (fR/A) for (W/R) in equation 3.1.4-4, the irrigation
area, A, cancels out and we obtain the following expression for the EOC to
the local population due to the ingestion of crops:
Snop - f f RI CP 0
Qnp - R P np P nop.
(3.1.4-7)
As for the other river pathways, we assume that the entire river is
contaminated so that all the irrigation water obtained from the river is
also contaminated.
This is a conservative assumption.
3.1.5
Inhalation of Resuspended Material
(p=6 )
The annual dose to an individual from inhalation occurs due to
material being deposited on the ground surface by irrigation and
subsequently resuspending from the ground surface into the air.
This
annual dose is the product of the air concentration (XRn)' the
inhalation rate of an individual (IS)' and the dose conversion factor
(Onop):
OI'nop = XRn IS 0nop .
(3.1.5-1)
The annual population dose is the annual individual dose multiplied by the
number of persons inhaling air containing radionuclides:
S I = 01 I PA
nop nop p
(3.1. 5-2)
38
-------
The number of persons subject to inhalation can be determined by
multiplying the population density for the irrigation area by the size of
the area:
PAn = POp A
(3.1.5-3)
Since the exposed population was confined to persons within the irrigation
area, the implicit assumption for equation 3.1.5-3 is that the radioactive
material deposited during irrigation remains on the ground or in the air
above the irrigated ground.
Although, in practice, radioactive material
resuspended into air would be diluted and distributed over a wider area,
our approach should yield approximately the same numerical population dose
as the more exact and more complicated method of accounting for dispersion
of radionuclides in the air beyond the irrigation area.
Combining
equations 3.1.5-1, 3.1.5-2 and 3.1.5-3 yields
Sinop = XRn IB 0nop POp A .
( 3 . 1. 5-4 )
The air concentration, XRn(t), at the center of a uniformly
contami nated area having a surface concentration, ~n(t), due to
resuspension of radionuclides from the ground surface is shown by Ne 1 son
(Ne78) to be :
XRn(t) = RF
~n(t)
( 3 . 1. 5-5 )
where
RF = XRn(t)/~ (t) = AR/v
n gn .
( 3 .1. 5-6 )
RF is the ratio of air concentration to soil surface concentration.
Equation 3.1.5-6 holds if the radius of the ground surface source
term is large compared to the depletion distance for material resuspended
31
-------
to the air (i.e., this approximation is only valid for large, uniformly
contaminated areas).
We assume that redistribution of materials by
resuspension in the contaminated area is inconsequential, which is
equivalent to saying that the resuspended air concentration at a point in
the contaminated area only depends on the soil surface concentration at
the point of interest.
Substituting equation 3.1.5-5 into equation 3.1.5-4 yields
5' = RF ~ (t) IB 0 PO A
nop n nop p .
(3.1.5-7)
By integrating equation 3.1.5-7 over time, we obtain the following
expression for the inhalation pathway environmental dose commitment:
Snop = R{f~tn(t') dt'] IS 0nop POp A .
( 3 . 1. 5-8 )
The soil surface radionuclide concentration as a function of time,
~ (t), is calculated by solving the differential equation
W
~ ~ (t) = - ( A On + A Sn) ~ n ( t) + - Q' (t)
R np
(3.1. 5-9 )
where ~~(t) is the rate of change with time of the soil surface
concentration for radionuclide n; Asn is the removal constant from the
soil surface to the soil sink; and the other terms have been previously
defined.
The term -(AOn + Asn) ~n(t) represents the rate of removal of
radionuclide n from the ground surface, and the term (W/R) Q' (t)
np
represents the rate of deposition of radionuclide n to the ground surface
by i rri gat ion.
32
-------
The basic assumption in the expression ~I (t) is that
n
removal of radionuclides from the ground surface by resuspension,
AR ~n(t), is offset by deposition to the ground surface of the
resuspended material, XR (t) v . Thus these terms do not appear in
n gn
equation 3.1.5-9. This assumption should be adequate for a large
distributed source.
Substituting fR/A for W/R as before, we can solve
the differential equation 3.1.5-9 to obtain the expression for the soil
surface concentration, which is
ALnf L Qonf R
~ (t)
n = A(ALn-ASn)
[exp [ASntRn - (AOn+ASn)tJ ]
-exp [ALntRn - (AOn+ALn)tJ
for t > tRn
and
(3.1.5-10)
~n (t) = 0
for t :£. tRn
where, again: tRn = ter + tran + tarn.
.
As discussed in Section 2.1, this equation is based on a leach-rate
limited release model, which is only one of several release models
considered by EPA.
The method used to address resuspension is based on
Nelson's (Ne78) assumptions; however, resuspension is addressed in a
direct manner rather than using Nelson's method.
The results of both
methods should be identical.
Substituting equation 3.1.5-10 into
equation 3.1.5-8 and integrating, the resulting equation can be used to
calculate the EOC to the local population due to inhalation of resuspended
material from the ground surface.
If one factors out the integrated
source term, Q , expressed in equation 2.1-4, the resulting equation
np
for EOC per unit release to the river for inhalation of resuspended
material becomes
33
-------
Snop = RF POpIBOnopfR (AOn + \n) [e-AontRn [ASntRn - (Aon+ ASn)tJ ]
e
-1
Qnp (ALn - ASn) (AOn + ASn) [ e -Aon tRn [\ntRn - (AOn + \n)tJ ]
e
for t > tRn (3.1. 5-11)
and
S
n op - 0
Qnp -
for t <
tRn .
Note that the irrigation area cancels out of equation 3.1.5-11.
3.1.6
External Dose - Ground Contamination
( p= 7)
The derivation of an expression for environmental dose commitment for
material deposited on the ground surface is similar to the derivation for the
inhalation pathway.
The equation is
Snop= [POp' AJft t>n (t I )dt I . [Onop . SOn
o
( 3 . 1. 6-1 )
where 0nop is the external dose conversion factor for ground surface
contamination in rem/yr per Ci/m2; SOF is a shielding factor that
accounts for the reduction in external dose due to household shielding and
occupancy; and the other terms have been previously defined or appear in
the IINomenc 1 ature" sect ion.
Using equation 3.1.5-10, the integrated
ground concentration is given by
34
-------
t
J ~n(t')dt'=
o
\nfLQo/R
(\n-ASn)A
exp[-AontRnJ - exp[ASntRn-(AOn+ASn)tJ
AOn + ASn
exp[ALntRn - (AOn+ALn)tJ
+
AOn + \n
- exp[-AOntRnJ
for t > tRn .
(3.1. 6-2)
Substituting the above equation into equation 3.1.6-1, and
normalizing by the integrated source term to time t using equation 2.1-4,
one obtains the following expression for the EOC to a local population due
to direct exposure from radionuclide n deposited on the ground surface:
Snop fR POp 0nop SOF
Qnp = (\n- ASn)
(AOn +\n)
[ -AOntRn
e -
[ -AOntRn
e -
e[AsntRn-(Aon+Asn)t~
el'LntRn-('on+'Ln)tJ] - 1
(AOn+ASn)
for t > tRn
and
Snop
~=
o
for t 2. tRn .
( 3 .1. 6-3 )
3.1.7
External Oose - Air Submersion
(p=8 )
The procedure for developing an equation to predict EOC from external
dose due to air submersion follows a rationale very similar to that for
the EOC for external dose due to ground contamination.
The variation from
the procedure described in Section 3.1.6 is that a resuspension factor,
RF, is added to equation 3.1.6-1 to predict integrated air concentration
due to resuspension, based on the concentration of radionuclides on the
ground, and the dose factor takes units of remjyr per Cijm3, i.e.:
35
-------
S = [RF PD A] Jt D (t')dt' [D Son.
nop p 0 n nop
(3.1.7-1)
After substituting equation 3.1.6-2 for the integral in equation 3.1.7-1
and normalizing by the integrated source term, one obtains the following
expression for the EDC to a local population due to direct exposure from
radionuclide n in the air:
( AD n + AS n )
[-AD n ~ n
e -
[ -ADntRn
e -
for t > tRn
e [ASn ~n - bDn +ASn) tJ]
.c ALn~n- ( AD;ALn)t~-
(3.1.7-2)
Snop = RF fRPDpDnopSOF
Qnp (ALn- ASn)
(ADn+ALn)
and
S
nop = a
Qnp
for t ~ tRn.
*
3.2 Releases to an Ocean
3.2.1 General Considerations
This section describes the calculation of partial environmental dose
commitments to a given organ, 0, es the result of exposure to high-level
waste radionuclides in the ocean, specifically for the case of a
leaching-rate-limited source term where radionuclides from a geological
* The variables used in the equations in this section are defined in
the IINomenclaturell section, p. 102 ff.
36
-------
repository reach the ocean through rivers.
The model employed for these
ocean pathway calculations is illustrated in Fig. 3.2.1-1.
The model
includes two compartments.
Compartment 1 is the upper mixed layer of the
ocean and compartment 2 is the lower layer (the remainder) of the ocean.
Radionuclide n enters the upper layer from the river and leaves this layer
by transport to the lower layer (Yl)' by radioactive decay (Aon) and
by sedimentation (SF In). Radionuclide n is returned to the upper layer
by back-transport from the lower layer (Y2).
Radionuclide n enters the
lower layer by transport from the upper layer (Yl) and by sediment
passing from the upper to lower layer (SF In) and is removed by
decay (AOn)' by back-transport to the upper layer (Y2)' and by
sedimentation (SF2n).
Several basic assumptions are made in deriving this model. First, the
input to the ocean is taken to be of the form Alexp(wnt), which is
assumed to equal the input into the river (equation 2.1-2) from a
repository with no reductions of input by decay during travel, by
irrigation, or by sedimentation.
The reason these assumptions were made
was to allow releases directly to an ocean to be evaluated without
considering the effects of various removal mechanisms in a river system.
Second, the two compartment model used is a simplification since the
actual transport from the upper mixed layer to the lower layer is
diffusion controlled.
In this model, we assume that both layers are fully
mixed.
This will lead to a discontinuity in concentration at the boundary
between the two layers.
Third, fish and shellfish ingestion are
considered to be the only non-negligible routes of radiation uptake and
exposure to humans via the ocean pathway.
Fourth, all edible fish and
shellfish are assumed to be taken from the upper compartment.
37
-------
Input from River
A1exp[wnt]
Radioactive
Decay
Upper Layer (compartment 1)
q1n = quantity of material
in upper 1 ayer
Y2
transf er to
upper layer
Lower Layer (compartment 2)
q2n = quantity of material in
lower 1 ayer
sedimentation
Fig. 3.2.1-1.
SF2n
Sedimentation
Compartment model for the ocean release mode
38
-------
The steps involved in computing the environmental dose equivalent
commitment from each nuclide to an organ are outlined below:
( a)
Calculate the quantity of radionuclide n in the upper (mixed)
layer of the ocean, qln' as a function of time, and the concentration in
ocean water as a function of time.
(b)
Calculate the concentration of radionuclide n in the edible fish
and shellfish in the upper layer as a function of time.
(c)
Apply the appropriate ingestion rates by the population for fish
and shellfish to obtain the total ingestion radionuclide intake rate.
(d)
Apply the appropriate ingestion dose commitment factors to
determine the dose commitment rate by organ to the population from fish
and shellfish consumption.
(e)
Integrate the population dose commitment rate from time of
arrival of radionuclides in the ocean to the desired time, t, to get the
environmental dose-equivalent commitment.
Ocean Two-Compartment Model
3.2.2
To calculate the concentration of radionuclide n in the upper
compartment, the quantity of n in the upper compartment, qln' must be
predicted as a function of time and divided by the volume, VI' of the
upper compartment.
To obtain Qln' we must write a system of two coupled
differential equations based on the nuclide balance in each compartment as
depicted in Fig. 3.2.1-1.
These equations are
dqln
crt =
wnt
Al e + Y2 Q2n - (AOn + Yl + SFln) qln
(3.2.2-1)
39
-------
and
dq2n = (SFln + Yl) qln -(SF2n + AOn + Y2) q2n
err-
(3.2.2-2)
with the associated initial conditions of
qln = q2n=O at t=tRn'
After transforming variables, these coupled differential equations
may be solved by methods such as successive elimination to yield qln and
q2n'
Since q2n' the radioactivity in the lower compartment, is not
used in the analysis for the ocean pathway, the analytical expression is
not presented.
Then
A
qln = 2n
(M2n- Mln)
(aln - M2n)
( W - Ml )
n n
Mln(t-tRn)
e
(aln- Mln)
- (w - M2 )
n n
M2n(t-tRn)
e
(M2n - Mln) (wn - b2n)
+
(wn - M2n) (wn - Mln)
W (t-tR )
n n
e
where
(3.2.2-3)
A f -A t
2n = ALn L Qon e On Rn
aln = -(AOn + SFln + Yl)
b2n = -(AOn + SF2n + Y2)
Wn = -(AOn + ALn)
B3n = -(aln + b2n)
40
-------
C3n = (aln.b2n) - [Yl Y2 + Y2 SF1nJ
Mln =
- B3n ~B~n - 4C3n
2
and
M2n =
- B3n ~B~n - 4C3n
2
Equation 3.2.2-3 can be used to predict the quanity of a
radionuclide, n, which is uniformly mixed within the upper compartment of
the ocean at any time, t, after placement of radionuclides in a waste
repos i tory.
If equation 3.2.2-3 is divided by VI' an equation to
express the average concentration of nuclide n in the upper compartment of
the ocean is obtained.
Seafood Ingestion
Ocean Fish (p=9)
Ocean Shellfish (p=10)
3.2.3
The equation used to calculate EOC for these pathways is
S
nop
CFnp Ip Pp 0nop
VI
jt qln dt
tRn
(3.2.3-1)
where qln is described in equation 3.2.2-3.
Equation 3.2.3-1 is
integrated between the limits of tRn and t since no dose is incurred
prior to time t=tRn'
After integration and normalization by the
integrated source term (equation 2.1-4), the following expression for the
EOC to an exposed population due to consumption of seafood is obtained:
S
nop
~=
o CF I P
nop np p p
VI
[ AOn + ALn ]
- ( A + A ) (t- t )
1 - e On Ln Rn
(COMn)
(3.2.3-2)
41
-------
where
COM =
n
( M2) Mln )
(aln - M2n) [eXP[M1n (t-tRn)]
( wn - M1n) ( M1n)
- (a1n- M1n) [ exp[M2n (t-tRn)] -1]
(wn - M2n) ( ~n)
+ (~n- M1n) (wn - b2n) [exP[wn{t-tRn)]
( wn - M2 n) ( W n - M 1 n) ( wn)
-1J
-1 ]
(3.2 .3- 3)
*
3.3 Releases to the Land Surface
3.3.1
General Considerations
As discussed in Section 2, we assume that radioactive material is
placed in a repository at time t=O and that the material is brought to the
surface of the earth at t=1i. by some event such as exploratory drilling
for resources.
The release to the surface of the earth is assumed to be
over a small area and over a short period of time so that the source to
the 1 and surface can be modeled as an instantaneous point source to the
ea rt h.
This is conservative since some of the released material would
probably be covered and less available than we have assumed.
Once the
initial source deposition to the land surface is determined, calculations
can be made to estimate the resuspension of radioactive material at this
*Tl1e variables used in the equations in this section are defined in
the "Nomenclature" section, p. 102 ff.
42
-------
source and to predict how this material disperses in the environment.
The
resuspended material results in exposure to the population due to
consumption of contaminated food crops, inhalation of the resuspended
material, and external exposure due to ground contamination and air
submers ion.
3.3.2
Food Ingestion
Food crops (p=13)
Mi lk (p=14)
Beef ( p=15 )
We used the output from the AIRDOS-EPA computer code to compute the
EDC due to food ingestion, which requires that the deposition to the
ground surface be calculated so that the RI factors (see Section
np
3.1.4) can be applied. (Derivation of the equation for Rlnp for food
crops is discussed in detail in Appendix C.) In calculating air
concentration as a function of distance and time, we assume Nelson's (Ne
78) isotropic dispersion, which was based on annual-average atmospheric
dispersion factor data for ground-level releases at 17 nuclear power
reactor sites as presented in Appendix I to 10 CFR 50 (AEC73).
The
equation is
X. (r,t') =
ln
(~,L QI(t')
n
( ~ J- Z
(3.3.2-1)
where
Xin(r.t')
=
air concentration at point r and time tl
(Ci/m3),
atmospheric dispersion factor at the known point r
(sec/m3), n
(X/QI )r =
n
Q I (t I)
=
source term from ground to air at time t' (Ci/yr)
43
-------
z
=
"fitting" exponent to adjust shape of X(r,tl) curve to
agree with empirical data, and
= time after material in repository reaches ground
tl
surf ace (yr).
An equation that describes QI(t') in terms of the material initially
present at the ground surface is
QI(t') = AR Qnp exp [- (AR + AOn + ASn) tl ] .
(3.3.2-2)
But this equation is not corrected for plume depletion during travel.
A
correction factor which makes a downward adjustment of the source term,
QI(tl), to correct for plume depletion can be expressed as
Q6(tl) (r )(2-Z)
Q I (t I) = exp [ - Yd ]
(3.3.2-3)
rd =
[ (2-z) r -z J
21TVgn(X/~' )rn
1
2-z
where
(3.3.2-4)
Combining equations 3.3.2-2 and 3.3.2-3, we have
(2-z)
Q6(tl) = AR Qnp exp[-(AR+AOn+ASn)tll exp[-(fd) ] ;
(3.3.2-5)
and the equation for air concentration at a point r and at time t' due to
dispersion of material resuspended from the point source is (substituting
Qo(tl) for QI (t') in equation 3.3.2-1)
Xin(r,t') =( ~, Jrn ( ~n)-Z AR Qnp eXP[-(AR+ADn+Asn)t'-(~dJ(2-Z)] .
(3.3.2-6)
44
-------
We next estimate the deposition to the ground surface at distances
away from the resuspension point by multiplying equation 3.3.2-6 by the
dry deposition velocity.
An equation that expresses the total deposition
to the ground surface over all area and to time t' is obtained from
equation 3.3.2-6 as follows:
00 27f tl
DEP(oo,t')= J J J X. (r,t')v dt'
1 n gn
r=o g=o t'=o
(rdgdr)
(3.3.2-7)
Performing these integrations yields an expression for the total
deposition to the ground surface to time t':
DEP(oo,t') = DEP(t') =
AR Qnp
AR+ADn+ASn
[ 1 - exp[-(AR+AD +AS )t']] .
n n (3.3.2-8)
To obtain the EDC for anyone of the food pathways, we use a method
similar to that described in section 3.1.4.
The equation is
Snop = [DE~~tl)] fp Rlnp (CPp Ar) Dnop
(3.3.2-9)
where Ar is land area on which resuspended material is deposited,
and the other terms have been previously defined or are listed in the
"Nomenclature" section.
Upon cancelling the area terms, substituting equation 3.3.2-8 for
DEP(t'), normalizing by the quantity of radionuclides initially released
to the ground surface, Qnp' and redefining t'=t-tL' equation 3.3.2-9
becomes
45
-------
Snop
Qnp =
[ - (AR
f RI P A-
P np C p Dnop R 1 e
AR + ADn + ASn
+ ADn + ASn) (t - tL)]
(3.3.2-10)
3.3.3
Inhalation of Resuspended Material (p=12)
The calculation of the EDC due to inhalation of radioactive nuclides
for the land surface pathway must consider the initial resuspension at the
poi nt source.
In addition, deposition to the ground surface and
resuspension from the ground surface away from the source must be
modeled.
An activity (mass) balance around a segment of ground away from
the source can be depicted as shown in Fig. 3.3.3-1.
The soil surface concentration as a function of time and location is
estimated so that a resuspension factor can be applied to obtain the air
concentration as a function of time and location.
Resuspension
AR~n
Deposition
(i nit i alp 1 ume)
XinVgn
Deposition
(resuspended material)
XRnVgn
/
/
/
/
/
/
/
/
/
/
/
/
Ground
ADn~n
Radioactive
decay
Loss to soil subsurface
1 ayers
Fig. 3. 3 . 3-1.
Activity (mass) balance for soil element
away from source
46
-------
A differential equation which addresses the activity balance depicted in
Fig. 3. 3 . 3-1 i s
d~n = XinVgn + XRnVgn - AR~n - AOn~n - ASn~n
(ffT
(3.3.3-1)
where Xin is the air concentration of radionuclide n due to resuspension
from the initial point source and subsequent dispersion and XRn is the
air concentration of radionuclide n due to resuspension from the ground
surface at the location of interest.
The other terms have been previously
defined.
If the assumption is made that there is no redistribution of
radioactive material due to continual deposition to and resuspension from
the ground surface after equilibrium is reached, we may equate the terms
XRnVgn and AR~n in equation 3.3.3-1 and write
dQn = Xin Vgn - (AOn + ASn) ~n .
(ffT
(3.3.3-2)
An expression for Xin was discussed in Section 3.3.2
(equation 3.3.2-6).
If this expression for Xin is applied in
equation 3.3.3-2 and the integration factor exp(AOn+ASn)tl is used,
the equation is solved to yield an expression for the total soil surface
concentration as a function of distance and time:
~ n ( r. t ,) = v gn . Q np' (~ ' k (~ n r
(/ )(2-Z)
- r rd
e .
[ -(AOn+ASn)tl -(AR+Aon+Asn)t']
e -e
(3.3.3-3)
47
-------
Assuming, as discussed in Section 3.1.5, that the air concentration due to
resuspension can be calculated by applying a resuspension factor to the
soil surface concentration, we have
XRn = RF ~n(r,t')
(3.3.3-4)
Then the total air concentration at a particular location and time is
Xn(r.t') = Xin(r,t') + XRn(r,t')
(3.3.3-5)
and using equations 3.3.2-6, 3.3.3-3, and 3.3.3-4 we have
Xn(r,t')
= Qnp (~,k(~J2
[-(r/rd)(2-Z)-ATnt'J
e
[At I ]
A + RF'v (e R -1)
R gn
where
ATn = AR + AOn + ASn .
(3.3.3-6)
Equation 3.3.3-6 yields an expression for air concentration to use in
computing the EOC due to inhalation of resuspended material.
relationship to apply for calculating EOC is
The
Snop =
I t' lA
Xn(r,tl) IS 0nop POp dAr dt
(3.3.3-7)
This equation is similar to the one derived for the inhalation pathway
in Section 3.1.5.
Using the expression for Xn(r,t') from
equation 3.3.3-6, the relationship dA =rdGdr, performing the area
r
integration from r=O to r=oo and 9=0 to G=2~ (integrating over all area
where people are exposed), and normalizing the result by the quantity of
radionuclides released to the ground surface, Qnp' we have
48
-------
Snop POp AR 1S Dnop -(AD + ASn)tl
[1 - en]
Qnp = Vgn(ADn + ASn)
(3.3.3-8)
Redefining t' as t-tL and using the relationship RF = AR/Vgn'
the equation for EDC can be written
Snop
Qnp =
PDp RF IS Dnop [1 - <::n:,::n)(t-tL)]
(3.3.3-9)
3.3.4 External Dose-Ground Contamination (p=16)
The equation to apply in calculating EDC is
J t' J A
Snop = ~n(r,t') Dnop SOF PDp dA dt
o 0
(3.3.4-1)
Using the expression for ~n(r,t') developed in Section 3.3.3
(equation 3.3.3-3), the relationship dAr=rdGdr with the integration
1 imits O
-------
S
nop
= L t'[ A
x (r, t ') D S OF P D cj,A. d t' .
n nop p
(3.3.5-1)
Using the expression for X (r,t') developed in Section 3.3.3
n
(equation 3.3.3-6), the relationship dA=rdt>dr with the integration 1 imits
O
-------
respective surface areas of the oceans and the land surface of the earth.
This division of the airborne material is for calculational convenience in
developing the mathematical equations for the environmental dose
commitment analyses.
Each curie of radionuclide which is released is
divided between that quantity released directly to the land surface
(fLL)' that released to air above land (fAL) and that released to air
above oceans (fAW). We assume that airborne material above land remains
over land and that airborne material above water remains over water.
3.4.2
Releases Directly to Land Surface
3.4.2.1
General Considerations
The radionuclides released directly to the land surface are
conservatively assumed to be distributed in a small area around the
release point.
The methods used to determine the resuspension at the
source, dispersion in the environment, and resulting EDC to the affected
population are the same as those devised for the land surface pathway
(Section 3.3).
The equations used for releases directly to the land
surface will be listed, for the sake of completeness, in the following
sections.
Food Ingestion
Food Crops (p=25)
Milk (p=26)
Beef (p=27)
3.4.2.2
Snop
~ = fp RInp CPp Dnop fLL AR
np
- AT (t-t )
[ 1 - e n v J
ATn
(3.4.2.2-1)
51
-------
where fLL is the fraction of the radionuclides released to the
environment which go directly to land and t is the time after placement
v
of radioactive mat~rial in the repository that material is released to the
envi ronment.
3.4.2.3 Inhalation of Resuspended Material (p=24)
Snop [ 1 - e- (AOn + ASn) (t-tv)]
Qnp = POp RF IB °nop fLL A + A
On Sn .
(3.4.2.3-1)
3.4.2.4 External Dose - Ground Contamination (p=28)
S [ - (AOn + ASn)(t-tv)
nop 1 - e
~ = POp 0nop SOF fLL A + A
np On Sn
- ATn(t-tv) ]
+ e -1
ATn .
(3.4.2.4-1)
3.4.2.5 External Dose - Air Submersion (p=23)
S [ -(AOn + Asn)(t_tv)]
nop 1 - e
~ = POp 0nop RF SOF fLL A + A
np On Sn .
(3.4.2.5-1)
3.4.3 Releases to Air-Over-Land
3.4.3.1 General Considerations
The radionuclides released to the air over land surfaces are assumed
to be distributed uniformly in a volume determined by multiplying the land
surface area of the earth by the average height of the troposphere.
the material distributed in this manner a two compartment model is
With
52
-------
established, as depicted in Fig. 3.4.3.1-1, to predict radionuclide
movement between the air and the soil for use in computing the EOC for the
various pathways.
The upper compartment in Fig. 3.4.3.1-1 is the
tropospheric volume above the earth's land surface and the lower
compartment is the available land layer, i.e., the layer of land
containing the soil surface as an upper boundary and including the root
zone or plow layer of soil.
It is assumed that radionuclides enter the
upper compartment at the instant a volcano or meteorite interaction
releases radioactivity from the repository.
No further radionuclides are
introduced into the system after the initial input at t'= O.
Radionuclides leave the upper compartment by radioactive decay (AOn)
and by transfer from air to soil (Vgn.AL/VL) and they reenter the
upper compartment due to resuspension (AR). Radionuclides enter the
lower compartment by deposition from air (Vgn.AL/VL) and are removed
from the lower compartment by transfer to the unavailable soil
layer (ASn)' radioactive decay (Aon)' and resuspension from the soil
layer to air (AR).
The radionuclide balance equations which can be
written for this two compartment system are discussed in the next section.
3.4.3.2
Air-Above-Land:
Two Compartment Model
To obtain the concentration of radionuclide n in the upper (air)
compartment, the quantity of n in the upper compartment, QLn(t'), must
be predicted as a function of time and divided by the volume, VL' of the
upper air compartment.
Similarly, to obtain the concentration of
radionuclide n on the ground surface represented by the lower compartment,
53
-------
Radioactive
Decay
ADnQLn(t' )
Rad i oact i ve
Decay
ADnQSn (t' )
Initial Input
To Air
fAL.Qnp (Initial Condition)
Tropospheric
Air Over Land
(Volume VL)
QLn(t') = quantity of material
in upper compartment, Ci
Transfer to soil
QLn(t' ).Vgn.AL
VL
Available Land Layer
ARQSn(t' )
resuspension
to air
QSn(t') = quantity of material
in lower compartment, Ci
ASnQSn(t' )
Remova 1 from
available soi 1
Fig. 3.4.3.1-1.
Compartment model for air over land
-- volcano/meteorite release mode
54
-------
the quantity of n in the lower com~~rtment, QSn(t') must be predicted as
a function of time and divided by the surface area, AL' for the lower
compartment.
To obtain QLn(t') and QSn(tl), a system of two coupled
differential equations based on the nuclide balance shown in Fig.
3.4.3.1-1 is written and solved.
These equations are:
dQLn v A
dt = - AOn QLn - gnvLL QLn + AR QSn
(3.4.3.2-1)
and
dQSn Vgn AL
dt = V QLn - AOn QSn - ASn QSn - AR QSn ,
L
(3.4.3.2-2)
and the initial conditions for our model are
QLn(O) = f AL Qnp
and
QSn(O) = 0
at t 1 = 0 .
After a transformation of variables, these coupled differential equations
may be solved to yield QLn and QSn as follows:
[ MSnt' M6nt']
(M6n- aSn) e + (aSn- MSn) e
fAL. Q
Q ( t I) = np
Ln M6n- MSn
(3.4.3.2-3)
fAL Qnp (MSn- aSn)(M6n- aSn)
QSn(t') = AR (M6n- MSn)
[ MSn t 1 M6n t I]
e - e
(3.4.3.2-4)
where
aSn =
v
- (A + gn)
On ~
b6n = - (AOn + ASn + AR)
B4n = - (aSn + b6n)
55
-------
C4n =
Vgn
a5n b6n - ~ AR
- B4n + '-JB~n - 4C4n
2
- B4n -'-JB~n - 4C4n
2
M5n =
M6n =
Now, using equations 3.4.3.2-3 and 3.4.3.2-4, the air and ground
concentrations of radionuclides as a function of time can be calculated.
To compute the air concentration in the upper compartment as a
function of time, equation 3.4.3.2-3 is divided by the volume of the upper
compartment, which is VL = AL.hA' to yield
fAL . Qnp
Xn(t') = AL. hA (M6n- M5n)
[(M6n- aSn)
M t'
5n
e
+ (a5n - M5n)
M t'J
6n
e
.
(3.4.3.2-5)
The ground concentration for the lower compartment as a function of
time is obtained by dividing equation 3.4.3.2-4 by the surface area, AL'
of the lower compartment to yield
fAL.Qnp(M5n- a5n)(M6n- a5n) [ M5nt' M6nt']
~n(t') = AR(M6n - M5n) AL e - e
(3.4.3.2-6)
The equations generated above are used for the EDC pathway models
discussed below.
3.4.3.3.
Food Ingestion
Food crops (p=19)
Milk ( p= 20 )
Beef (p=21)
The output of the AIRDOS-EPA computer code (Mo79) will again be
employed in computing the EDC due to food ingestion.
The method for
56
-------
deriving the equation for RI for food crops is discussed in detail in
np
Appendix C. The deposition to the ground surface due to the radioactive
material originally distributed in the air above the land surface
(neglecting resuspension) is calculated and applied in conjunction with
the values of Rlnp computed using AIRDOS-EPA. Since the factors were
determined without considering resuspension, we must compute the
radionuclide flux to ground as a function of time for the radionuclides
originally dispersed into the air at tl=O.
Referring to Fig. 3.4.3.1-1,
the flux of nuclide n to ground as a function of time, F'n(t'), can be
ca lcu 1 ated as
QLn(t') . Vgn
F'n(t') =
VL
(3.4.3.3-1)
where, for these three subpathways, QLn(t') is determined using
equation 3.4.3.2-3 with AR set equal to O. Setting AR=O will yield
QLn(t') based only on material originally dispersed in the air and
neglects resuspension altogether.
To obtain Fn(t'), the quantity of
radionuclide n deposited per unit area from the time material was
originally dispersed into the air (tl=O) to time t', we integrate as
f 0 11 ow s :
tit I
F (t' )=( F' (t' )dt'=( fAL . Qnp [(M - a )
n j n J (M6n- M5n) 6n 5n
o 0
M t I M t I] V
e 5n +(a - M ) e 6n gn dt'
5n 5n ~.
(3.4.3.3-2)
After integrating, the result is
57
-------
fAL.Q .v [(M6n-asn) MSt' (as-MS) M6nt' ~
F (t I )- np gn M (e n - 1) + n n (e - 1)
n - (M6n- MSn) . VL Sn M6n
(3.4.3.3-3)
which has units of Ci deposited per m2. The EDC for these pathways is
derived in a manner similar to the methods applied in Section 3.1.4 and
may be computed using the following equation:
S -F(t') f
nop- n p
Rlnp Dnop CPp AL
(3.4.3.3-4)
After substituting equation 3.4.3.3-3 for Fn(t'), normalizing by the
original total release Qnp' substituting VL=AL.hA' and making the
substitution tl=t-tv' we have
Snop fAL Vgn Dnop Rlnp fp CPp
--0-; = hA
(M6n- aSn) [ MSn(t-tv) ]
MSn(M6n- MSn) e - 1
+ (aSn- MSn) [ M6n(t-tv) ]
e - 1
M6n(M6n- MSn)
(3.4.3.3-S)
or, defining COML as:
n
(M6n-aSn) [ MSn(t-tv) ]
COMLn= M (M -M ) e - 1
Sn 6n Sn
(aSn-MSn) [ M6n(t-tv) ]
+ e - 1
M6n(M6n-MSn)
(3.4.3.3-6)
Snop - fAL Vgn Dnop Rlnp fp CPp COMLn
Qnp - hA
(3.4.3.3-7)
Again, it is important to note that, for these three pathways
(p=19, 20, 21). COMLn is evaluated with AR=O.
S8
-------
Inhalation of Dispersed and Resuspended Material (p=17)
3.4.3.4
In considering the EDC due to inhalation of dispersed and resuspended
material an equation similar to the one derived in Section 3.1.5 was used,
which is
S
nop
=[f'::;t,) dtJ
t 1=0
IB Dnop POp AL
(3.4.3.4-1)
Since the equation for X (t') has already been described in
n
equation 3.4.3.2-5, it can be substituted into equation 3.4.3.4-1.
Af ter
performing the indicated integration, normalizing by the release of
radionuclide n at t'=O and replacing t' by t-tv' we have
Snop
q;;-=
fAL I B 0 PO
nop p
hA
COMLn
(3.4.3.4-2)
3.4.3.5
External Dose-Ground Contamination
(p=22)
The equation to use in deriving an expression for the EDC for
contaminated ground is
Snap = [J t '=t' ~n(t') dt] Dnap
tl=O
POp AL
(3.4.3.5-1)
Equation 3.4.3.2-6 is used to express ~n(tl).
After the equation for
Snop is integrated and normalized by the initial release from the
repository, Qnp' and t' is redefined as t-tv' the EDC equation becomes
59
-------
Snop
----Q = fAL 0 SOF PO
nop p
np
(M5n-a5n) (M6n-a5n)
AR(M6n-M5n)
[ M5 (t-t) M6 (t-tv) ]
[e n v -lJ [e n -lJ
M5n - M6n
(3.4.3.5-2)
3.4.3.6 External Dose-Air Submersion (p=18)
For air submersion external doses, the EDC equation is written as
[ tl-t' ]
Snop = J X~(t') dt
tl=O
Dnop POp AL
(3.4.3.6-1)
Equation 3.4.3.2-5 can be substituted for Xn(tl).
After the
equation for Snop is integrated and normalized by the initial release
from the repository. Qnp' and t' is redefined as t-tv' the EDC
equation becomes
Snop fAL Dnop POp COMLn
cr;; = hA
(3.4.3.6-2)
3.4.4 Releases to Air-Over-Oceans
3.4.4.1 General Considerations
The radionuclides released to the air over the oceans are assumed to be
distributed uniformly in a volume determined by multiplying the earth's ocean
area by the average height of the troposphere.
With the material distributed
in this manner a three compartment model is established, as shown in Fig.
3.4.4.1-1, to describe radionuclide movement between the air and the two ocean
60
-------
compartments.
Using this model, concentrations of radionuclides can be
determined as a function of time in the air and in each of the two ocean
compartments.
These concentrations can be used in estimating the EOC for the
pathways considered in this section.
The upper compartment (Compartment 1) in Fig. 3.4.4.1-1 is the
tropospheric volume above the earth's oceans.
The middle compartment
(Compartment 2) is the top compartment of the ocean and the lower compartment
(Compartment 3) is the bottom compartment of the ocean.
We assume that radionuclides enter the air (Compartment 1) at the instant
a volcano or meteorite interaction releases radioactivity from the repository
and that no additional radioactivity is injected into the system after that.
Radionuclides leave the air compartment by radioactive decay (AOn) and by
deposition into the ocean (VgnAw/VAW)' Radionuclides enter Compartment
2 by deposition from the air (VgnAw/VAW) and by transfer from
Compartment 3 (Y2)' Radionuclides leave Compartment 2 by radioactive decay
(AOn) and by diffusion transfer (Yl) and sedimentation transfer (SF In)
to Compartment 3. Radionuclides enter Compartment 3 by diffusion transfer
(y ) and sedimentation transfer (SF In) from the upper ocean compartment
and leave this compartment by radioactive decay (AOn)' sedimentation to the
ocean floor (SF2n)' and transfer to the upper ocean compartment (Y2)' The
differential equations which can be solved for radionuclide inventory in this
three compartment system are discussed in the next section.
3.4.4.2 Air-Above Water:
Three Compartment Model
The EDC pathways considered for air-over-oceans are consumption of ocean
fish and shellfish.
Since the assumption is made that all edible fish and
61
-------
Initial Input
to Air
fAW.Qnp (Initial Conditions)
Radioactive Decay
ADn.Q2n(t')
Compartment I
Air
Volume = VAW
Radioactive
Decay
ADnQAn(t I)
QAn(t') = quantity of radionuclides
in Compartment I (Ci)
Compartment 3
Ocean
(Lower compartment)
Volume = V2
Q2n(t') = quantity of radionuclides
in Compartment 3 (Ci)
Y2.Q2n(t')
Transfer to upper
1 ayer
Sedimentat ion
from upper layer
SFIn.QIn(t')
Transfer to Ocean
QAn(t').vwn.Aw
VAW
Surf ace Area AW
Radioactive
Decay
ADn.QIn(t')
Compartment 2
Ocean
(Upper compartment)
Volume = VI
QIn(t') = quantity of radionuclide
in Compartment 2 (Ci)
Transf er to
Lower Layer
Y1.Q1n(t')
SF2n.Q2n(t')
Sedimentation from lower layer
Fig. 3.4.4.1-1.
Compartment model for air-over-ocean,
volcano/meteorite release mode
62
-------
shellfish are harvested in the upper ocean layer, it will be necessary to
obtain the quantity of each nuclide, Qln(t'), in the middle compartment
(upper ocean layer). This quantity can be divided by the volume of the
middle compartment, VI' to yield the concentration in the zone where
edible fish and shellfish are produced.
The differential equations which
describe the transfer of radionuclides between compartments in Fig.
3.4.4.1-1 and which are used to obtain the quantitites of radionuclides in
the three compartments are
dQAn -( A + vwn Aw QAn
arr = )
On VAW
dQln v A
Y2 Q2n + wn w QAn - (SFln + AOn + Yl) Qln
CJTT = VAW
and
dQ2n (Y1 + SF1n) Q1n -(AOn + SF2n + Y2) Q2n
arr =
(3.4.4.2-1)
(3.4.4.2-2)
(3.4.4.2-3)
The initial conditions for this model are
QAn = f AW Qnp
and
Q1n = Q2n= 0
at t" = 0
The procedure used to solve these differential equations is to integrate
equation 3.4.4.2-1 directly and then use the resulting equation for QAn
in the solution of equations 3.4.4.2-2 and 3.4.4.2-3, which are coupled
differential equations.
The resulting equations for QAn and Q1n are
-( A + A ) t'
QAn(t') = fAW Qnp e On wn
(3.4.4.2-4)
63
-------
A2n raln-M2n) MInt' (aln-Mln)
Qln(t')= (M2n-Mln) L (wn-Mln)e - (wn-M2n)
M2nt' (M2n-Mln) (wn-b2n) wntJ
e + (w -M2 )(w -Ml) e
n n n n
(3.4.4.2-5)
where
A2n =
vwn f AW Qnp
hA
- (ADn+ Awn)
w =
n
and aln' b2n' B3n' C3n' Mln and M2n are as defined in Section
3.2.2.
Q2n(t') is not needed in this analysis, so the equation for
Q2n(t.) is not presented.
The concentration of radionculides in the upper compartment of the
ocean as a function of time can be computed by dividing equation 3.4.4.2-5
by VI' the volume of the upper ocean compartment, which yields
A2n
Xln(t')= (M2n-Mln)Vl
[(aln- M2n)
(wn-Mln)
M tl
In
e
(aln-Mln) M2nt'+(M2n-Mln)(wn-b2n)
- (wn-M2n) e (wn-M2n) (wn-Mln)
e wn t ]
(3.4.4.2-6)
3.4.4.3
Seafood Ingestion
Ocean Fish (p=29)
Ocean Shellfish (p=30)
The equation used to calculate EDC fo\ these pathways is:
CF np Ip P P Dnop
Snop = VI
Jtl=t,
Q dt'
In
tl=O
(3.4.4.3-1)
where Qln is described by equation 3.4.4.2-5.
After performing the
integration, normalizing by the total release, Qnp' and making the
substitution tl=t-tv' we have
64
-------
Snop
Gnp =
CFnp Ip Pp Dnop vwn fAW
hA V 1
COMOn
(3.4.4.3-2)
where
COMO =
n M2n-M1n
M1n(t-tv)
(a1n-M2n)[ e -1J
(wsn-M1n)M1n
M2n(t-t )
(a1n-M1n)[ e v -1J
(w -M )M
sn 2n 2n
(3.4.4.3-3)
1
Wsn(t-tv)
+ (M2n-M1n) (wsn-b2n)[ e -1J
(wsn-M2n) (wsn-M1n)wsn
3.5 Special Calculations for C-14 Environmental Dose Commitment
The pathway models described in Sections 3.1 through 3.4 are used for
all pathway EDC calculations for all nuclides except carbon-14.
Atmo-
spheric releases of carbon-14 as carbon dioxide can be evaluated using a
diffusion-type model of the carbon cycle developed by Killough (Ki77),
but, to our knowledge, models are not available to explicitly treat C-14
released to the water or C-14 released to the air in a chemical form other
than carbon dioxide.
We used the Killough model in the evaluation of C-14
releases from the volcano/meteorite release mode since carbon is expected
to be released as carbon dioxide.
Since C-14 releases to a river, an
ocean, or directly to a land surface are expected to be in a chemical form
other than carbon dioxide, the standard pathway models described in
Section 3 are also applied for C-14 releases except for the pathways
involving ingestion of food crops, milk, or beef.
65
-------
Special treatment was given C-14 in calculating the parameter Rlnp
because we believe that the terrestrial food chain model used in the
calculation of this parameter for the other radionuclides would
overestimate the calculated parameter for C-14.
Transport processes
within soil~ plants~ cattle~ and man that apply to trace quantities of
radionuclides do not necessarily apply to cases where the corresponding
stable elements are present in such quantities that saturation effects are
significant (M079).
Stable carbon constitutes a significant fraction of
the elemental composition of the human body and man's food and drink.
We
believe that the overestimate will still result if the terrestrial food
chain model (NRC77) includes additional removal terms to account for
removal of C-14 from the agricultural system by harvesting and removal of
C-14 from the soil by leaching to the soil sink (e.g.~ removal of C-14 to
soil beneath the root zone).
A specific activity model was used to provide a conservative estimate
of the C-14 environmental dose commitment from ingestion of food crops for
the river irrigation pathway:
Snop
Qnp =
f f CP A I D
cp P P c nop
Cc R
(3.5-1)
where
fCp = fraction of the standard man organ C-14 specific activity
that is maintained by food intake pathway p
C =
c
concentration of stable carbon in freshwater~ (gm C/liter)~
I =
c
total dietary intake rate of carbon by standard man (gm C/yr)~
irrigated area (m2)~
A
and the other terms are def i ned in the IINomenc 1 ature" section.
66
-------
The conservative assumption was made that the integrated specific
activity of C-14 [Qnp/CcR (Ci yr/gm C)J in the river water and in man
are the same. The specific activity method is based on the assumption of
instantaneous equilibrium, thereby providing an upper limit to the
estimated dose equivalent rate.
In equation 3.5-1, the parameter product
IcDnop represents the specific activity dose equivalent rate
conversion factor having units of rem/yr per Ci C-14/gm C.
Therefore,
values of Dnop must be obtained using a steady-state model of carbon
specific activity in various organs of the body rather than a dynamic
retention model for carbon. Our values of Dnop for carbon-14 were taken
from dose conversion factors presented by Killough (Ki78). Equation 3.5-1
can be simplified by rewriting the ratio A/R as fR/W where fR is the
fraction of the river flow used for irrigation and W is the irrigation
rate (liters/m2_yr):
Snop fcp fp fR CPp Ic Dnop
~ = WCc
(3.5-2)
The parameters in equation 3.5-2 can be used to calculate the integrated
intake by standard man per unit deposition of C-14 to the soil surface
(RI in Ci intake per Ci/m2 deposited on the soil surface):
np
RI =
np
Ic fcp
W Cc
(3.5-3)
Substituting the expression for RI into equation 3.5-2, the following
np
equation can be used to calculate the environmental dose commitment from
C-14 releases to the river due to ingestion of food crops, milk and beef
(pathways 3,4, and 5):
67
-------
Snop
Qnp = fR fp RInp CPp Dnop .
(3.5-4)
Note that equation 3.5-4 is identical to equation 3.1.4-7 when WA is
substituted for fRR.
A specific activity model was used to calculate
the parameter RI for C-14; whereas~ the AIRDOS-EPA computer code
np
(Mo79) was used to calculate RInp for the other evaluated radionuclides.
Values for the parameters used in calculations for carbon-14 are
contained in the following discussion.
Most of the parameters were used
only for the C-14 calculations; however, a few were also used in
calculations for other radionuclides.
The values for parameters used for
radionuclides other than C-14 are discussed in Section 5 of this report.
Adult man ingests 1.095 E+5 gm C/yr (Ic) in food and fluids~ which
is based on the ICRP recommended (ICRP75) dietary intake of 300 gm C/day.
The fraction of the standard man organ specific activity (fcp)
maintained by each of the food intake pathways was calculated using
Moore1s (Mo79) equations for estimating carbon intakes for meat~ milk~ and
vegetables.
Ingestion rates needed to calculate carbon intakes were also
taken from Moore (Mo79) as follows: 18 kg/yr of leafy vegetables; 176
kg/yr of other fresh produce; 94 kg/yr of meat (excluding fish); and 112
liters/yr of milk.
Carbon weight fractions were calculated using the
conservative assumption that the entire 300 gm C/day intake is from the
food pathways. The resulting carbon food crop weight fractions (f )
cp
were 0.3567 for food crops~ 0.4659 for beef, and 0.177 for milk.
We selected a Cc value of 6 E-2 gm C/liter, which is consistent
with carbon concentrations reported for public water supplies of 100
cities (CRC73).
The concentration of stable carbon in freshwater (C )
c
68
-------
ranges over several orders of magnitude.
Wetzel and Rich (We73) stated
that a typical range for inorganic carbon (the dominant chemical form in
freshwater) is 50 micromoles to 10 millimoles per liter.
The mean
concentration for the range is 5 E-3 mole C02 per liter, and this
corresponds with a concentration of stable carbon of 6 E-2 gm C/liter
water, which was chosen for this analysis.
The concentration of
bicarbonate, HC03' in natural water is commonly less than 500 mg/liter,
but it may exceed 1,000 mg/liter in water highly charged with carbon
dioxide.
The maximum reported concentration in the public water supplies
of 100 cities was 380 mg HC03/liter (CRC73), which corresponds to a
stable carbon concentration of 7.5 E-2 gm C/liter.
The irrigation rate (W) of 2 E+3 liters/m2_yr was chosen based on
the upper basin irrigation rate, or 0.23 liters/m2-hr (Li77C). This
irrigation rate was based on data typical of the Colorado River mainstream.
The fraction of the river flow used for irrigation (fR) was set
equal to 0.5.
Fractions representative of irrigation water use by
17 western states were estimated to test the reasonableness of the
assumption of fR equal to 0.5.
Using presented (CRC73) rates of use for
irrigation water in 1970 and river flow rate, a value of 0.51 was
calculated for fRo
calculated for 1956.
From 1956 use rate data, a factor of 0.36 was
Extrapolating the increased rate of use from 1970 to
1980, a fR value of 0.69 is estimated for 1980.
The internal dose conversion factors D (rem/Ci ingested) were
nop
taken from Killough (Ki78). Values for the amount of standard man
quantity of crop p that is produced annually per square meter of land were
1.0 E-3 man/m2 (Ki76) for food crops, 1.5 E-3 man/m2 (Du77) for milk,
69
-------
and 2.1 E-4 man/m2 (Du77) for beef.
Fractions of irrigated land used
for each food crop (f ) as assumed for this analysis were 0.5 for food
p
crops, 0.25 for grazing milk cows, and 0.25 for grazing beef cows.
These
values of fp are upper limits since a portion of the irrigated land will
be used for non-food crops.
The parameters as previously discussed were substituted into the
specific activity model equations and representative results are presented
in Table 3.5-1. Values for the ratio Snop/Qnp with fR=0.5 were used
in this analysis; however, values of the ratio with fR=1.0 are also
presented so that the upper bound of C-14 man-rem/Ci released to the river
value could be shown.
With fR=1.0, the infinite total body
environmental dose commitment per curie released to the river for the crop
ingestion pathways was 471 man-rems/Ci of C-14 released to the river.
This value of 471 is essentially the total man-rems/Ci of C-14 released to
the river since C-14 Snop/Qnp values for the drinking water and
freshwater fish ingestion pathways are .39 man-rems/Ci and 2.9 man-rems/Ci
respectively with the total body as the target organ.
The infinite total
body environmental dose commitment per Ci of C-14 released to the river
can be compared with an infinite total body environmental dose commitment
of 537 man-rem per curie of C-14 released to the atmosphere as
14C02(Ki77).
We believe that the impact per curie of C-14 release to
the atmosphere as carbon dioxide should be regarded as an upper limit of
the impact of C-14 released to the biosphere.
The calculated value of the
infinite environmental dose commitment per curie released was lower for a
curie released to the river than for a curie released to the air, so we
believe that the calculated carbon-14 values for the river pathways are
reasonable and probably conservative.
70
-------
Since the release of C-14 to the land surface is expected to be at
low temperature, RI 's from Table 3.5-1 were applied for the ingestion
np
pathways 13-15 using equations described in Section 3.3.2. In a case
where C-14 is resuspended from the land surface to the air as C02' then
methods similar to the ones which will be discussed for the
volcano/meteorite release mode could be applied for the land surface
release mode.
However, these methods have not been applied for the land
surface release mode in our analysis.
TABLE 3.5-1:
Carbon-14 integrated intake per unit deposition on the soil surface and
the total body infinite environmental dose commitment per curie released
to the river for the crop ingestions pathways
Ingestion Pathway ( C~
C i /m
RInp
intake )
deposited
Snop
Qnp
(man-rerns/ Ci)
f R=O . 5
f R=l. 0
Food Crops
Beef
Milk
325
424
161
156
21
58
312
43
116
71
-------
For the volcano/meteorite release mode, (subpathways 17-30),
environmental dose commitments to the world population were calculated
Ki llough (Kill).
using a diffusion-type model of the global carbon cycle developed by
For the volcano/meteorite release mode, we assume that
the release will be at high temperature and that the C-14 would oxidize to
C02 and become a part of the world carbon cycle.
Values of'the total
body environmental dose commitment per curie of C-14 released to the
(Kill).
atmosphere have been calculated by Fowler (Fo79) using the Killough model
It is estimated that the ingestion pathway contributes 99 percent
of the carbon-14 specific activity dose equivalent rate (Fo76).
For
estimating EOC, a cubic spline was fit to Fowler's curve of worldwide EDC
to the total body per curie versus time after release.
This cubic spline
time after C-14 placement in a repository:
procedure yields the following equations for worldwide total body EOC vs
for 10d-t
- v
dOO yr:
[1.920 + 0.651[ln(t-t ) - 2.303J
-O.04485[ln(t-t ) - 2~303J2 + 0.01109[ln(t-t )
v v
OTB14 = exp
for 100~t-tv <1,000 yr:
[ 3.316 + 0.6208[ln(t-t ) - 4.605J
OTB = exp v
14 +0.03172[ln(t-t ) - 4.605J2 - 0.01056[ln(t-t )
v v
for 1,000~t-tv <7,000 yr:
[ 4.785 + 0.5988[ln(t-t ) - 6.908J
OTB = exp v
14 -O.04126[ln(t-t ) - 6.908J2 + 0.004198[ln(t-t )
v v
72
- 20303]3]
(3.5-5)
- 40605]3]
(3.5-6)
- 6 0 908 ] ~
(3.5-7)
-------
for 7,000~t-tv <10,000 yr:
[ 5.825 + 0.4859[ln(t-t ) - 8.85371
v
OTB = exp
14 -0.01675[ln(t-tv) - 8.8537J2- 0.1544[ln(t-tv)
for 10,000~t-tv <40,000 yr:
[ 5.989 + 0.4153[ln(t-t ) - 9.2103J
OTB = exp v
14 -0.1817[ln(t-tv) - 9.2103J2+ 0.02385[ln(t-tv)
for 40,000~t-tv <100,000 yr:
[ 6.279 + 0.04890[ln(t-t ) - 10.5971
OTB = exp v
14 -0.08246[ln(t-t ) - 10.597J2+ 0.04059[ln(t-t )
v v
for t-tv ~ 100,000 yr:
OTB14 = 537.0
- 8.8537]~
(3.5-8)
- 9.2103]~
(3.5-9)
- 10.597] 3J
(3.5-10)
(3.5-11)
The organ specific EOC for C-14 releases is estimated by multiplying
the total body EOC (OTB14 as obtained from equations 3.5-5 through
3.5-11) in man-rems per curie released by the ratio of organ dose
commitment factor to total body dose commitment factor for ingestion
(OC-14, 0, ingestion/OC-14, total body, ingestion). The equation is
Sno(17-30) °C-14, 0, ingestion OTB
Q(17-30) = °C-14, total body. ingestion 14
(3.5-12)
Equation 3.5-12 can be multiplied by fLL' fAL' and fAW to estimate
the C-14 EOC for the volcano/meteorite releases for releases directly to
land, releases to air over land, and releases to air over water.
73
-------
Secti on 4.0:
DOSIMETRY AND HEALTH EFFECTS CONVERSION FACTORS
Dose commitment factors (DCF), or dose rate factors, and fatal or
genetic health effects conversion factors are applied with each of the
pathway equations discussed in Section 3.
The sources of these factors
will be discussed in this section.
4.1 Analytical Treatment of Daughter Product Buildup During
Environmental Transport
Daughter product buildup during environmental transport was not
addressed rigorously in the 30 pathway equations discussed in Section 3.
An examination of the decay schemes for the nuclides revealed tflat, in
general, the nuclides either (a) had stable daughters, (b) had daughters
that were very sllort-l ived compared to the parent, or (c) had a very
long-lived first or second daughter.
The following techniques were
applied as an approximate method of handling daughter product ingrowth
during environmental transport.
For case (a), no action to account for
daughter product buil dup was requi red.
In case (b), we assumed that the
daughter was in secular equilibrium with the parent and that an equal
quantity of daughter was present with the parent at all locations of the
parent in the environment.
Obviously this is a simplifying assumption,
since daughter products may behave differently than the parents in the
environment.
The dose factors for daughters were added to the dose
factors for the parent in cases where the daughters were dosimetrically
significant.
In case (c), calculations indicated that a significant
buildup of the long-l ived daughters {and, therefore, the daughters beyond
74
-------
the first long-lived daughters) would not occur during the residence time
of the parent in the available environment.
The available environment is
that portion of the environment where the material would be available to
man.
For example, radionuclides present within the root zone of the soil
would be in the available environment, but radionuclides that have moved
below the root zone would have left the available environment.
Thus, the
dose factors for long-lived daughters (and daughters in the decay chain
beyond a long-lived daughter) were not added to the dose factors for the
parent.
Any short-lived daughters in the decay chain between the parent
and the first long-lived daughter are handled as described for case (b)
above.
The specific treatment of daughter products for each parent
nuclide in this analysis is specified in Appendix A.
4.2
Dose Commitment Factors and Dose Rate Factors
For each of the 30 pathways, either internal doses occur due to
inhalation or ingestion of radionuclides or external doses are delivered
due to ground contamination or air submersion.
Thus, for each
radionuclide considered in this analysis, dose commitment factors for
inhalation (solubility classes Y and W) and ingestion are needed.
These
factors express the 50-year dose commitment for the intake via inhalation
or ingestion of a unit quantity of radionuclides.
External dose rate
factors are needed for each nuclide for exposure to a contaminated ground
surface and for submersion in air.
These factors express the dose rate
per unit radionuclide activity on the ground or in the air.
The dosimetry
factors are needed for each organ considered in these calculations.
In
75
-------
many cases, the dosimetry factors were also needed for daughter products
so that these factors could be added to those for the parent as discussed
in Section 4.1.
The symbol for the dosimetry factors (both the dose commitment
factors and the external dose rate factors) is Dnop. The subscripts
signify that the dosimetry factors are functions of radionuclide (n),
organ (0). and pathway (p).
For internal dose commitment calculations, the primary reference for
the dosimetry factors is NUREG/CR-0150, Vol. 1 (Ki78), and the draft of
Vol. 2 (ORNL78).
Internal dosimetry factors for radionuclides not
included in NUREG/CR-0150 are taken from other references as listed in
Appendix B.
For the inhalation dosimetry factors taken from
NUREG/CR-0150, the tables for AMAD=1 micron were applied.
For the
volcano/meteorite and land surface release modes, the insoluble Class Y
inhalation dosimetry factors (labeled Inhalation 1) were used.
For the
river release mode, the Class W dosimetry factors, for more soluble
compounds (labeled Inhalation 2), were used.
Class Y dosimetry factors
were listed in the Inhalation 1 category for all nuclides where they were
available, and Class W dosimetry factors were listed in the Inhalation 2
category where they were available.
However, for some radionuclides only
Class 0 or Class 0 and Class W inhalation dosimetry factors were listed in
NUREG/CR-0150.
In these cases, the factors for the lowest solubility
class available were applied.
For example, if inhalation dosimetry
factors were available for Class 0 and Class W but not for Class Y, the
Class W factors were listed in both the Inhalation 1 and the Inhalation 2
categori es.
76
-------
References other than NUREG/CR-0150 as listed in Appendix B did not
list inhalation dosimetry factors as a function of solubility classes Y,
W, a nd D .
However, in some cases, factors were listed for IIsolublell and
IIi nsol ubl ell categories.
When this was the case, the lIinsolublell dosimetry
factors were listed in the Inhalation 1 category and IIsolublell dosimetry
factors were listed in the Inhalation 2 category.
Where only a single
factor was listed, it was applied for both the Inhalation 1 and the
Inhalation 2 categories.
NUREG/CR-0150 does not contain any dosimetry factors for external
dose due to ground contamination or for external air submersion.
The
primary reference used for these dose rate factors was ORNL-4992 (Ki76).
ORNL-4104 (C067) was used for two or three radionuclides that were not
included in ORNL-4992.
In some of the references used, dosimetry factors were not given for
all organs considered in the analysis.
This occurs for both the internal
and the external dose pathways.
In these cases, the whole body dosimetry
factors were applied for these organs.
This method results in an
approximation to the organ dose, but we prefer using this approximation to
neglecting these organ doses.
Included in Appendix B is a tabulation of all the dosimetry factors
used in our analysi s and the references for those dosimetry factors.
Neptunium-237 is a nuclide which deserves special mention in this
document. In ICRP Report 30 (ICRP80) the value for absorption through the
gut (f1) is 10-2. This is a 100-fold increase over the previous value
of 10-4 recommended by ICRP in ICRP Report 2 (ICRP60). According to
Cohen, this increase in f1 plus the high cancer risk factor for the
77
-------
1 iver quoted in BEIR I II have caused Np-237 to become a principal nuclide
I
of concern in various assessments of the health effects from disposing of
high-l evel radioactive waste (C082). In ICRP30. it is mentioned that f
value for f1 of 10-3 may be more appropriate for trace quantities of
the element or for neptunium incorporated in food. Information published
subsequent to the publication of ICRP30 (Th82a, Th82b) suggests that
10-3 is probably the most appropriate value for f1 for neptunium for
low environmental levels. The internal dose conversion factors for Np-237
-3
util i zed by EPA in thi s report are based on an f 1 of 10 and EPA
believes, based on current infonnation, that thi s is the best value to use
in these calculations.
EPA is aware that ICRP COf!ll1ittee 2 has established
a task group to recommend the most appropriate values of f1' s for
actinides and that the NCRP has recently established a task group on
neptunium.
EPA will consider the recommendations, when they become
available, of both of these committees in future analyses concerning the
disposal of high-level radioactive waste.
4.3 Health Effects Conversion Factors
In this report fatal cancers and first generation genetic effects
have been estimated from the environmental dose commitments calculated for
the 30 pathways.
These are the health effects committed to the population
at risk during the initial 10,000 years following emplacement of
high-l evel radioactive waste in a repository.
To estimate these health
effects, the EDC's, which are a function of nuclide, organ, and pathway,
are multiplied by the health effects conversion factors, which are a
functi on of organ.
This yields health effects as a function of nuclide,
78
-------
organ, and pathway, and these health effects may be summed over organs and
over the pathways within a release mode to yield the estimated health
effects (fatal cancers or first generation genetic effects*) for each
nuclide and each EDC release mode.
The organs included in calculating
fatal cancers are bone, red marrow, lung, liver, GI-LLI, thyroid, kidney,
and other soft tissue.
Those included in estimating first generation
genetic effects are ovaries and testes.
The health effects conversion
factors applied in this analysis were specified by our Bioeffects Analysis
Branch and are listed in Table 4.3-1 below.
4.4 Revised Dosimetry and Risk Methodology
Since the technical analyses described in this report were performed,
EPA has worked with the staff of the Oak Ridge National Laboratory to
develop a revised methodology for evaluating dose-equivalents and risk for
individuals and populations exposed to radiation.
Technical reports
summarizing this work are available for those persons interested in the
details of EPAls revised methodology (Du80, Be81, Su81).
In general, the
revised methodology is not expected to significantly alter the health
effects per Ci release information presented in Tables 0-1 through 0-4.
If further evaluation of the effects of EPAls new methodology shows that
revisions to Tables 0-1 through 0-4 are needed, these revisions will be
included in the final report.
*First-generation genetic effects are the genetic effects to the
children of the generation exposed to the radiation.
79
-------
TABLE 4.3-1:
Health effects conversion factors
Organ
Fata 1 Ca nc ers
(HE/person- rem)
First Generation
Genetic Effects
(HE/person-rem)
Bone 1 E-5
Red Marrow 4 E-5
Lung 4 E-5
Liver 1 E-5
GI-LLI wall 2 E-5
Thyro i d 1 E-6
Kidney 1 E-5
A 11 Other Soft
Tissue 7 E-5
Ova ri es 2 E-5
Testes 2 E-5
80
-------
Secti on 5 \:
DISCUSSION OF VALUES FOR PARAMETERS*
Some of the parameters used in these calculations appear in several
of the 30 pathway equations.
For thi s reason, it was decided that
representative values for parameters would be discussed in this separate
section rather than including the discussion in the sections describing
the pathway EDC equations.
It should be emphasized that, for many
parameters, a range of values will be found in the 1 iterature.
Where
specific numbers are discussed in this section, these are the values that
were used for the health effects calculations summarized in Appendix D and
discussed in more detail in EPA's analysis of the population risks from
geologic repositories (SmC82).
In some cases, a wide range of values for
a particular parameter was examined as part of the EPA analysi s; these
instances are identified belO\'J.
The values used for these parameters and
a summary of our health effects calculations are included in Appendix D.
ALn is the rate at \'/hich radionuclides are leached from the waste
into the g round water i n the reposi tory and i s assumed to bet he same for
all nuclides. A range of values from 1.0 E-2 yr-1 to 1.0 E-6 yr-1 was
examined in the EPA analysis (SmC82) based on information furnished by the
Arthu rD. L ittl e Company (L i 77b) .
*The variables used in this section are defined in the II Nomenclature"
section, p. 102 ff.
81
-------
t is the time after Placement in a repository that leaching from
er
the repository begins and usually corresponds to failure of the waste
canister.
Canister lifetimes ranging between 100 and 5000 years were
considered in EPA's analysis of geologic repositories (SmC82).
ter is the same for all radionuclides.
We assume
tran is the time required for radionuclides to travel from the
repository to an aquifer.
This time varies depending upon the situation
being addressed in EPA's analysis of geologic repositories, but the time
is usually on the order of a few years.
ta is the time required for material to travel from the aquifer
rn
to the river.
The value chosen for tarn is 760 Rn yr where Rn is
the retardation factor for the nuclide being considered. R varies
n
between 1 and 10,000 depending on the radionuclide and the situation being
considered. Values for Rn are discussed in the A. D. Little report
(Li77c) and in EPAls population risk assessment report (SmC82).
fL is the fraction of the repository contents subject to leaching.
This value can vary from a very small number (10-3 or less) to one,
depending on the release mechanism being considered in EPAls analysis
(SmC82).
Qon is the initial activity of nuclide n in the repository at
time t=O.
The value for Qon remains constant for various scenarios and
will be discussed in the populatiun risk assessment report (SmC82).
82
-------
ADn is the radioactive decay constant for nuclide n.
The values
for ADn are calculated using half-life information from Lederer (Le67)
(see Table 5-1).
t is the sum of t ,t > and tarn and would be calculated
rn er ran
by adding these three terms.
fLL' fAL' and fAW are the fractions of the total release for a
volcano/meteorite event which are released to the land surface, the
air-above-land, and the air-above-water, respectively.
Values for these
parameters change with various scenarios and will be addressed in the
population risk assessment report (SmC82).
PR is the number of people who drink water from the river and R is
the river flow rate.
The ratio PR/R is needed in several equations, and
it can be determined for the purpose of this generic evaluation without
obtaining site specific data.
Utilizing data from Annex 0 of the
1977 UNSCEAR Report (UN77), the annual flow rate of the rivers of the
world is 3 E+16 liters/yr- If one assumes a constant world population of
1010 persons,* the ratio PR/R is 3.3 E-7 person-yr/liter. This
* The current world population is about 3.8 E9. However, an estimate
of average world D8pulation during the time period involved in this
calculation is 101 people (UN77).
83
-------
TABLE 5-1:
Radionuclide decay constants
Nuclide
n
ADn(yr-1}
C-14
Ni-59
$r-90
Zr-93
Tc-99
$n-126
1-129
Cs-135
Cs-137
$m-151
Ra-226
U-234
Np-237
Pu-238
Pu-239
Pu-240
Am-241
Pu-242
Am-243
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1. 21 E-4
8.66 E-6
2.47 E-2
4.62 E-7
3.27 E-6
6.93 E-6
4.08 E-8
2.31 E-7
2.31 E-2
7.97 E-3
4.33 E-4
2.81 E-6
3.24 E-7
8.06 E-3
2.84 E-5
1. 05 E-4
1. 51 E-3
1.83 E-6
8.72 E-5
84
-------
value for the ratio PR/R is midrange of values found for various river
basins in the United States. These values ranged from a high for PR/R
of 7.08 £-7 for the Hudson-Delaware River area to a low of 2.82 £-8 for
the Columbia River basin.
Iw is the per capita annual comsumption of drinking water and
water-based drinks.
The reference adult man drinking rate of water and
water-based drinks is 1.65 liters/d (ICRP75), which yields a value of Iw
of 603 liters/yr.
Note that the fraction of the global flowing water
drunk by the world population is approximately 2 £-4.
PFF is the population eating freshwater fish from the river and
If is the per capita freshwater fish annual consumption rate.
The ratio
of the population fish consumption rate (PFF If) to the river flow
rate (R) is needed for the calculation.
The current freshwater fish
consumption rate for the world is 3.8 £9 man-kg/yr (UN77).
We assume that
fish consumption will increase proportionately as the population increases
from the present level of 3.8 £9 people. For an eventual world population
of 1010 people, this yields an annual freshwater fish consumption rate
of 1010 man-kg/yr. Considering the average flow rate of the rivers of
the world, the ratio of the population freshwater fish consumption rate to
the river flow rate is 1010/3 £16 = 3.3 £-7 man-kg/liter.
CFnp is the bioaccumulation factor for fish or shellfish for
nuclide n and pathway p. The reference used for CFnp for freshwater
fish, ocean fish, and ocean shellfish is ORNL-4992 (Ki76). which is based
85
-------
on values listed by Thompson (Th72).
For nuclides not listed in
ORNL-4992, the reference was UCRL-50564, Rev.1 (Th72).
The values of the
bioaccumulation factors are listed in Table 5-2.
RI , as discussed in Section 3, is the symbol for the terrestrial
np
food pathway factors generated using the AIRDOS-EPA computer code (M079).
The values used for these factors are listed in Table 5-3.
The fraction of land used for various food crops is f. For the
p
river pathway, irrigation water provides the source of radionuclides to
land, so irrigated farmland is the only land of concern.
We assume that
50 percent of the irrigated land is used for growing food crops; 25
percent for grazing milk cows; and 25 percent for grazing beef cows.
For
the non-river release modes, radionuclides reach the land surface via
dispersion in air so that the values for the fraction, f , must include
p
the portion of U.S. land surface used for farming.
It was found that 45
percent of the U.S. land surface was used for farming in 1974 (W079).
To
obtain a value for f for the non-river release modes, 45 percent of the
p
value of fp applied for the river release mode was used. Thus, for the
non-river release mode, it was assumed that 23 percent of the land is used
for growing food crops; 11 percent for grazing milk cows; and 11 percent
for grazing beef cows. The values selected for f are upper limits
p
since for all release modes, part of the agricultural land will be used
for non-food crops (e.g., cotton, etc.).
86
-------
TABLE 5-2:
Bioaccumulation factors for freshwater fish and seafood
CFnp (Ci/kg per Ci/liter)
Nuclide n Freshwater Ocean Ocean
Fish Fish Shellfish
C-14 1 4.55E+3 1. OOE +0 1. OOE +0
Ni -59 2 1. OOE +2 5.00E+2 1. OOE +2
Sr-90 3 5.00E+0 1. OOE +0 1. OOE +0
Zr-93 4 3.33E+0 3 . OOE + 1 1. OOE +2
Tc-99 5 1. 50E+1 1. OOE +1 1. OOE +2
Sn-126 6 3. OOE +3 3.00E+0 3.00E+0
1-129 7 1. 50E+1 2.00E+1 1. OOE +2
Cs-135 8 4.00E+2 3 . OOE + 1 5. OOE + 1
Cs-137 9 4.00E+2 3.00E+1 5.00E+1
Sm-151 10 2.50E+1 2 . 50E + 1 1. OOE +3
Ra-226 11 5.00E+1 5.00E+1 1. OOE +2
U-234 12 1. 00E+1 1.00E+1 1. OOE + 1
Np-237 13 1. OOE +1 1.00E+1 1. OOE +1
Pu-238 14 3.50E+2 3.50E+0 1. OOE +2
Pu-239 15 3.50E+2 3.50E+0 1. OOE +2
Pu-240 16 3.50E+2 3 . 50E +0 1. OOE +2
Am-241 17 2.50E+1 2. 50E + 1 1. OOE +3
Pu-242 18 3. 50E +2 3. 50E +0 1. OOE +2
Am-243 19 2.50E+1 2.50E+1 1.00E+3
87
-------
TABLE 5-3:
Radionuclide intake factors
R1np
(Ci intake per Ci/m2 deposited)
Nuclide
Food Crops
Milk
r~eat
C-14 3.25E+2 1. 61E+2 4.24E+2
Ni -59 3. 95E +0 1. 28E +0 7 . 72E +0
Sr-90 1.06E+1 1. 04E +0 9.89E-2
Zr-93 3. 11E+O 1. 29E +1 4.17E +0
Tc-99 6.37E+0 2. 77E +0 1. 84E +0
Sn-126 3 . 80E +0 2.24E-1 1. 13E + 1
1-129 3 . 18E +0 1. 61E +0 8 . 6 7E -1
Cs-135 6.70E+0 4. 20E +0 7.95E+0
Cs-137 3.13E+0 1. 11E +0 2 . 11E +0
Sm-151 3.02E+0 7.91E-4 6 . OOE -1
Ra-226 8. 19E +0 1. 33E -1 8.50E-2
U-234 1. 36E +1 8.90E-2 7 . 7 3E -4
Np-237 2. 85E +0 7.60£-4 2.30£-2
Pu-238 2 . 91£ +0 8. 29£ -6 2.26£-6
Pu-239 4.68£+0 1. 34£-5 3.65£-6
Pu-240 4.42£+0 1. 28£ -5 3.49£-6
Am-241 3.42£ +0 6.76£-3 2.27£-4
Pu-242 4.77£+0 1.16£ -5 8.00£-5
Am-243 5.06£+0 1. 04£-2 3.52£-4
88
-------
The fraction of the river flow used for irrigation, fR' was set
equal to 0.5.
Fractions representative of irrigation water use in
17 western states were 0.36 for 1956 and 0.51 for 1970 (CRC73).
By
performing a linear extrapolation of this data to 1980, a value of fR of
0.69 was obtained. However, we decided to use fR = 0.50 (essentially,
the 1970 value), since performing the linear extrapolation with only two
data points seemed rather tenuous.
CPp is the number of standard men that can be fed by raising crop p
on a unit area of land. The quantity is obtained by dividing the
agricultural productivity (kg/m2_y) of land on which crops are raised by
the annual consumption rate of an individual consuming the crop
(kg/y-person). Values for CPp can be obtained from information in two
references (Ki76, Dun). In this analysis the value of CP for food
p
crops is 10-3 man/m2; for milk, 1.5 £-3 man/m2; and for beef, 2.1
£-4 man/m2.
POp is the population density for pathway p. The value used for
PO is 6.67 £-5 person/m2, which is the world average population
p
density and was obtained by dividing the assumed world population of
1010 persons by the land surface area of the earth of 1.5 £14 m2
(Wo79) .
This value was mid-range of population densities for various
regi ons of the U. S. (Wo79).
89
-------
RF is the resuspension factor for material resuspending from the
ground surface to the air.
It is defined as the ratio of air
concentration to ground concentration, Xn(tl )/~n(tl), which is equal
to AR/Vgn where AR is a rate constant for resuspension of
radionuclides from ground to air and v is the deposition velocity from
gn
air to land surface. The value of AR chosen for this analysis is
10-11 see-I, which should be representative of weathered material
(Ne78); and the value used for v to scope this problem is 10-2
gn
m/sec. The resulting value of RF is 10-9 m-l. Actually, AR and RF
are functions of time, but the time dependent relationships were not known
and constant values were used to represent the average values over the
calculation interval.
The value selected for AR is appropriate to dry
land resuspension, so the dose due to resuspension from wet irrigated land
will be conservatively high.
IB is the standard man breathing rate. Based on information
contained in ICRP 23 (ICRP75), a value of 8400 m3/yr has been chosen for
this parameter.
SOF is a factor that accounts for the reduction in external dose due
to household shielding and occupancy.
A conservative value of 1.0 has
been chosen for this analysis for all release modes except the river
release mode.
For the river release mode, the area where external dose
could be received is irrigated farm land.
After considering the fraction
of time a person might spend around irrigated land, we decided to assign a
value of 0.33 to SOF for the river release mode.
90
-------
The rate constant for transfer of nuclides from available
to unavailable soil is ASn" The value for ASn is nuclide dependent
and is determined by a method described by Baes (Ba79) using data supplied
by Baes and by the Arthur D. Little Co. (Li77c).
The values from the
Arthur D. Little report are believed to be conservative.
The values used
for ASn in this analysis are given in Table 5-4.
Baes's model does not
consider erosion of soil (and radionuclides) as a removal mechanism from
the available layer of soil.
For long time periods, erosion may be a
significant removal mechanism which would make the Baes model conservative
for this application.
An additional consideration for external exposure
from material deposited to ground is that the movement of radionuclides
below the ground surface will reduce external exposure to persons due to
the shielding of the earth.
The transfer rate coefficients used in the ocean model are Y1 and
That for movement of water from the lower to the upper ocean
~.
compartment is Y2 and the value of it used for this analysis is 6.25 E-4
yr-1(Ma73). For movement of water from the upper to the lower ocean
compartment, the transfer rate coefficient is Y1, and the value applied
for this analysis is 3.3 E-2 yr-1, which is derived from the expression
Yl = Y2 (3925/75) where 3925 m is the assumed depth of the ocean lower
compartment and 75 m is the assumed depth of the ocean upper compartment.
The relationship between Y1 and Y2 is derived by assuming that
interchange of water between the upper and lower layers of the ocean
results in no net transfer from one layer to the other, i.e., the mass of
each layer remains the same.
If we further assume that the density of
91
-------
TABLE 5-4:
Leaching coefficients for radionuclides in soil
Element
Leaching Coefficient
(yr-l)
C .5
Ni .015
Sr .00955
Zr .0005
Tc 1.27
Sn .0045
I .12
Cs .0021
Sm (Rare Earth) .002
Ra .01
Th .0001
U .00035
Np .05
Pu .0005
Am .0005
water in the upper and lower layer is equal close to the boundary between
the layers, we can derive a value for Yl using the value for Y2 and
using conservation of mass.* The volume of water transport upward per
year is equal to Y2V2 = (6.25 E-4) (3925) (3.61 E14) = 8.9 E14
m3/yr, where 3.61 E14 m2 is the area of the oceans (CRC75).
* For equal densities close to the boundaries of the two ocean
layers, conservation of mass will also result in conservation of volume.
92
-------
Similarly, the volume of water transported downward per year is
equal to
Y1V1 = (3.3 E-2) (75) (3.61 E14) = 8.9 E14 m3/yr.
Y1V1 = Y2V2' then Y1 (75) (3.61 E14) =
Y2 (3925) (3.61 E14) and Y1 = Y2 (3925/75).
Si nee
SF1n and SF2n are the sedimentation coefficients from the upper
layer and the lower layer of the ocean, respectively, for nuclide n.
The
treatment of sedimentation is taken from a report of the working group of
the International Nuclear Fuel Cycle Evaluation (INFCE78), which states
that the sedimentation coefficients are given by
Ko v
SF = n s
n hc
where
K = distribution coefficient of the radionuc1ide on the
On sediment (dimensionless).
Vs = sedimentation velocity (m/y), given a value of 10-5, and
hc = average depth of the water column (m)
Nuclide specific values of SF1n and SF2n are then
SF1n = (10-5/75) KOn and SF2n = (10-5/3925) KOn' or
SF1n = 1.33 E-7 KOn and SF2n = 2.54 E-9 KOn"
The KOn values that we used are more conservative than those in
INFCE78 to allow for expected competition for adsorption sites by the sea
water ions, especially Mg and Ca.
In the absence of detailed experimental
work on sorption, anionic ions were assigned KOn values of zero; major
sea water ions were given KOn values of 1; and neptunium was also given
a KOn of 1.
The effect of the sea water ions on divalent ions and on
cesium was approximated by reducing the desert soil KOn values given by
93
-------
Arthur O. Little (Li77c) by a factor of 10.
Since the monovalent and
divalent sea water cations would be expected to have a smaller effect on
the adsorption of polyvalent cations, the Arthur o. Little KOn values
were reduced by a factor of 2 for trivalent ions and unchanged for
tetravalent ions.
The values of KOn used in this report are listed in
Tabl e 5-5.
TABLE 5-5:
Oistribution coefficients for radionuclides on sediment
Element
KOn{milliliters/g)
c 0
Ni 8
Sr 2
Zr 2000
Tc 0
Sn 0
I 0
Cs 20
Sm (Ra re E a rt h ) 300
Ra 10
U 300
Np 1
Pu 2000
Am 1000
94
-------
The ratio of the population seafood consumption rate (Pp Ip) to
the ocean upper compartment volume (VI) is needed in these
calculations. Pp is the population eating seafood and Ip is the per
capita seafood annual consumpion rate for pathway p (p = 9 for fish
ingestion and p = 10 for shellfish ingestion).
VI is the volume of the
upper compartment of the ocean where it is assumed that the edible fish
are harvested.
For this generic analysis, average values for the world
are used. For ocean fish, the projected average population consumption
rate is 6 kg/yr.l0l0 persons = 6 EI0 kg-persons/yr and for ocean
shellfish it is 1 kg/yr.l0l0 persons = 1 EI0 kg-persons/yr (UN77).
The volume of the upper compartment of the ocean is obtained by
multiplying the world ocean surface area of 3.6 E14 m2 (CRC75) by the
assumed depth of the upper compartment of the ocean of 75 m. The
resulting volume is 2.7 E16 m3 or 2.7 E19 1 iters. Thus the ratio
Pp.lp/Vl is 2.2 E-9 kg-people/liter-yr for ocean fish and
3.7 E-I0 kg-people/liter-yr for ocean shellfish.
The terms tL and tv represent the times after placement in a
repository that radioactive material is transmitted to the land surface or
into air for the land surface and the volcano/meteorite pathways,
respectively.
The values for tL and tv change with various
scenari os.
Discussion of these parameters will be included in the
population risk assessment report (SmC82).
95
-------
The average height of the troposphere is hA. Tropospheric height
ranges from 25000 ft (7600 m) to 60,000 ft (18,000 m) (Wo79). An average
value of 13,000 m was selected for these calculations.
The deposition velocity from air to oceans is v .
wn
In this
analysis, a value of 2 em/see was used for all nuclides, which was derived
from general deposition velocity information contained in Meteorology and
Atomic Energy, 1968 (AEC68).
equal to v /hA.
wn
-1
48.7 yr .
The rate constant for deposition from air to ocean is A , which is
wn
Thus, the value calculated for this analysis is
96
-------
AEC68
AEC73
Ba79
Be81
Bo71
C067
C082
CRC73
CRC75
RE FERE NCES
U.S. Atomic Energy Commision, 1968, Meteorology and Atomic
T~er~Y'f~9~~ (Edited by D. H. Slade), USAEC Rep. TID-24190,
p rl ng 1 e , VA: NTI S ) .
u.S. Atomic Energy Commission, 1973, "Draft Environmental
Statement Concerni ng Proposed Rule Maki ng Action: Numerical
Guides for Design Objectives and Limiting Conditions for
Operation to Meet the Criterion 'As-Low-As-Practicable' for
Radioactive Material in Light-Water-Cooled Nuclear Power Reactor
Effluents", (Springfield, VA: NTIS).
Begovich C.L., Eckerman K.F., Schlatter E.C., Ohr S.Y. and
Chester R.O., 1981, "DARTAB: A Program to Combine Airborne
Radionuclide Environmental Exposure Data with Dosimetric and
Health Effects Data to Generate Tabulations of Predicted Health
Impacts", USDOE Rep. ORNL-5692, Oak Ridge National Laboratory,
(Springfield, VA: NTIS).
Booth R.S., Kaye S.V. and Rohwer P.S., 1971, "A Systems Analysis
Methodology for Predicting Dose to Man from a Radioactively
Contaminated Terrestrial Environment" in: Proceedings of the
Third National Symposium on Radioecolog~. (Edited by D.J.
Nelson) Oak Ridge, TN, 10-12 May 1971, USAEC Rep. CONF -
710501-P2, pp. 877-893, USAEC (Springfield, VA: NTIS).
Cowser K.E., Kaye S. V., Rohwer P.S., Snyder W.S. and Struxness
E.G., 1967, "Dose-Estimation Studies Related to Proposed
Construction of an Atlantic-Pacific Interoceanic Canal with
Nuclear Explosives: Phase I", USAEC Rep. ORNL-4101, Oak Ridge
National Laboratory. (Springfield, VA: NTIS).
Cohen B.L., 1982, "Effects of ICRP Publication 30 and the 1980
BE IR Report on Hazard Assessments of Hi gh-Level Waste", Health
Physics, Vol. 42, No.2, February 1982" pp. 133-143.
The Chemical Rubber Company, 1973, CRC Handbook of Environmental
Control (Edited by R.G. Bond and C.P. Straub), (Cleveland, OH:
CRC Press).
The Chemical Rubber Company, 1975, Handbook of Chemistry and
Physics (Edited by R.C. Weast), (Cleveland, OH: CRC Press).
97
-------
Du77
Du80
EPA82
F076
F079
G082
Ho77
H080
H082
ICRP60
Dura V. P., Simmons G.L., Julian S.K. and Meyer S.P., 1977,
IICosts and Effectiveness of Protective Actions for Six Generic
Land Types Contaminated with a Radionuclide Deposition, II Report
for USEPA Contract 68-01-3549, Science Applications, Inc. Rep.
SAI-77-539-LJ/F, (LaJolla, CA).
Dunning D.E., Leggett R.W. and Yalcintas M.G., 1980, IIA Combined
Methodology for Estimating Dose Rates and Health Effects from
Exposure to Radi oacti ve Poll utants II, USDOE Rep. ORNL/TM-7105,
Oak Ridge National Laboratory, (Springfield, VA: NTIS).
U.S. Environmental Protection Agency. 1982, IIDraft Environmental
Impact Statement for Environmental Radiation Protection
Standards for Management and Disposal of Spent Nuclear Fuel,
High-Level, and Transuranic Radioactive Wastesll, USEPA Rep. EPA
520/1-82-025, (Washi ngton, DC: U SEPA) .
Fowler T.W., Clark R.L., Gruhlke J.M. and Russell J.L., 1976,
IIpublic Health Considerations of Carbon-14 Discharges from the
Light-Water-Cooled Nuclear Power Reactor Industryll, USEPA
Technical Note ORP/TAD-76-3, (Washington, DC: USEPA).
Fowler T.W. and Nelson C.B., 1979, IIHealth Impact Assessment of
Carbon-14 Emissions from Normal Operations of Uranium Fuel Cycle
Facilitiesll, USEPA Rep. EPA 520/5-80-004, (Montgomery, AL:
USEPA).
Goldin A.S., Serini B.L., Struckmeyer R.K., Hung C.Y. and Smith
C.B., 1982, IIPotential Individual Doses from Disposal of
Hi gh-Leve 1 Radi oacti ve Wastes in Geol ogi c Repositori esll, USEPA
Rep. EPA 520/1-82-026, (Washington, DC: USEPA).
Hoenes G.R. and Soldat J.K., 1977, IIAge-Specific Radiation Dose
Commitment Factors for a One-Year Chronic Intakell, USNRC Rep.
NUREG-0172, Battelle Pacific Northwest Laboratories,
(Springfield, VA: NTIS).
Hoffman F.O., Huckabee J.W., Lucas D.M., Garten C.T. Jr., Scott
LG., Walker R.L., Gouge P.S. and Holmes C.V., 1980, IISampling
of Technetium-99 in Vegetation and Soils in the Vicinity of
Operati ng Gaseous Diffusion Facil itiesll, ORNL/TM-7386, Oak Ridge
National Laboratory, (Oak Ridge, TN: USEPA).
Hoffman F.O., Garten C.T. Jr., Huckabee J.W., and Lucas D.M.,
1982, IIInterception and Retention of Technetium by Vegetation
and Soil II, Journal of Environmental Quality, Vol. 11, no. 1,
January-March 1982, pp. 134-141.
International Commission on Radiological Protection, 1960, ICRP
Publication 2, Report of Committee lIon Permissible Dose for
Internal Radiation (1959), (Elmsford, NY: Pergamon Press).
98
-------
ICRP75
I CRP 77
ICRP80
INFCE78
Ki76
Ki77
Ki78
Le67
Li 77a
L i 77b
L i 77c
International Commission on Radiological Protection, 1975, ICRP
Publication 23: Report of the Task Group on Reference Man,
(Elmsford, NY: Pergamon Press).
International Commission on Radiological Protection, 1977, ICRP
Publication 26: Recommendations of the International Commision
on Radiological Protection, (Elmsford, NY: Pergamon Press).
International Commission on Radiological Protection, 1980, ICRP
Publication 30 (with supplements), Limits for Intakes of
Radionuclides by Workers, (Elmsford, NY: Pergamon Press).
International Nuclear Fuel Cycle Evaluation, February 13, 1978,
"Collective Dose Commitments from the Disposal of High-Level
Radioactive Wastes," INFCE/WG.7/7, Section 35.
Killough G.G. and McKay L.R., 1976, "A Methodology for
Calculating Radiation Doses from Radioactivity Released to the
Envi ronment", USERDA Rep. ORNL-4992, Oak Ri dge Nati ona 1
Laboratory, (Springfield, VA: NTIS).
Killough G.G., 1977, "A Diffusion - Type Model of the Global
Carbon Cycle for the Estimation of Dose to the World Population
from Releases of Carbon-14 to the Atmosphere, II USERDA Rep.
ORNL-5269, Oak Ridge National Laboratory, (Springfield, VA:
NTIS).
Killough G.G., Dunning D.E. Jr., Bernard S.R. and Pleasant J.C.,
1978, "Estimates of Internal Dose Equival ent to 22 Target Organs
for Radionuclides Occurring in Routine Releases from Nuclear
Fuel-Cycle Facilities", USAEC Rep. NUREG/CR-0150,
ORNL/NUREG/TM-190, (Springfield, VA: NTIS).
Lederer C.M., Hollander J.M. and Perlman I., 1967, Table of
Isotopes, (New York, NY: John Wil ey and Sons, I nc. ).
Little A.D. Inc., 1977, "Technical Support of Standards for
High-Level Radioactive Waste Management: Volume A-Source Term
Characteri zati on", USEPA Rep. EPA 520/4-79-007A, (Washi ngton,
DC: USEPA).
Little A.D. Inc., 1977, "Technical Support of Standards for
High-Level Radioactive Waste Management: Volume B-Engineering
Controls", USEPA Rep. EPA 520/4-79-007B, (Washington, DC:
USEPA).
Little A.D. Inc., 1977, "Technical Support of Standards for
High-Level Radioactive Waste Management: Volume C-Migration
Pa thways", USEPA Rep. EPA 520/4-79-007C, (Washi ngton, DC:
USEPA) .
99
-------
Li80
Ma73
Mo79
Ne78
"Qcn
ORNL78
SmC82
Su81
Th72
Th82a
Little A.D. Inc., 1980, "Technical Support of Standards for
High-Level Radioactive Waste Management: Volume D-Release
Mechanisms", USEPA Rep. EPA 520/4-79-007D, (Washington, DC:
USEPA) .
Machta L., 1973, "Prediction of C02 in the Atmosphere", in
Carbon and the Biosphere (Edited by G.M. Woodwell and E.V.
Pecan) Upton, NY, 16-18 May 1972, USAEC Rep. CONF-720510, pp.
21-31, (Springfield, VA: NTIS).
Moore R.E., Baes C.F. III, McDowell-Boyer L.M., Watson A.P.,
Hoffman F.O., Pleasant J.C. and Miller C.W., 1979, "AIRDOS -
EPA: A Computerized Methodology for Estimating Environmental
Concentrations and Dose to Man from Airborne Releases of
Radionuclides", USEPA Rep. EPA 520/1-79-009, Oak Ridge National
Laboratory, (Washi ngton, DC: USEPA).
Nelson C.B., Davis R. and Fowler T.W., 1978, "A Model to Assess
Population Inhalation Exposure from a Transuranium Element
Contami nated Land Area", in: Selected Topics: Transurani urn
Elements in the General Environment", USEPA Technical Note
ORP/CSD-78-1, pp. 213-280, (Washington, DC: USEPA).
U.S. Nuclear Regulatory Commission, 1977, "Calculation of Annual
Doses to Man from Routine Releases of Reactor Effluents for the
Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix
I", USNRC Regulatory Guide 1.109, revision 1, (Washington, DC:
USNRC).
Personal Communication, G.G. Killough - Oak Ridge National
Laboratory to C.B. Nelson - U.S. Environmental Protection
Agency, November 1978.
Smith C.B., Egan D.J., Williams W.A., Gruhlke J.M., Hung C.Y.
and Serini B.L., 1982, "Population Risks from Cisposal of
High-Level Radioactive Wastes in Geologic Repositories", USEPA
Rep. EPA 520/3-80-006, (Washington, DC: USEPA).
Sullivan R.E., Nelson N.S., Ellett W.H., Dunning D.E., Jr.,
Leggett R.W., Yalcintas M.G. and Eckerman K.F., 1981, "Estimates
of Health Risk from Exposure to Radioactive Pollutants", USDOE
Rep. ORNL/TM-7745, Oak Ridge National Laboratory, (Springfield,
V A : NTI S) .
Thompson S.E., Burton C.A., Quinn D.J. and Ng Y.C., 1972,
"Concentrati on Factors of Chemical El ements in Edi bl e Aquatic
Organisms", USAEC Rep. UCRL-50564/Rev. 1, Lawrence Livermore
Laboratory. (Sp ri ngfi e 1 d, VA: NTIS).
Thompson R.C., 1982, "Neptunium - The Neglected Actinide:
Review of the Biological and Environmental Literature",
Radiation Research, Vol. 90, No.1, April 1982, pp. 1-32.
A
100
-------
Th82b
UN77
We73
Wo79
Thompson R.C., 1982, IINeptunium - The Neglected Actinide:
Corrections and Extensions, II Radiation Research, Vol. 92,
December 1982, pp. 620-621.
United Nations, 1977, Sources and Effects of Ionizing
Radiation: UNSCEAR 1977 Report, United Nations Publication
Sales No. E./I.IX.I, United Natfons Scientific Committee on the
Effects of Atomic Radiation, (New York, NY: United Nations).
Wetzel R.G. and Rich P.H., 1973, IICarbon in Freshwater Systems II ,
~~~an~aG~~~n~n~y~h~6~~~s~9~~~i~~2E~YR~P~.c~~~d~ej~0~~~,Ep~:
241-263, (Springfield, VA: NTIS).
Newspaper Enterprise Association, Inc., 1978, The World Almanac
and Book of Facts 1979, (New York, NY).
101
-------
NOMENCLATURE
SUBSCRIPTS:
Unless specifically stated otherwise, these subscripts refer to the
following:
a
aquifer
ar
aquifer-to-river
A
AL
air
air-over-land
AW
B
a i r-over-water
breathing
c, 14, and C-14
radionuclide C-14
o
radioactive decay
er"
repository breaching event
f and FF
freshwater fish
g
L
air to ground
leaching (except refers to land surface
pathway when used with variable t)
LL
LS
directly to land
1 and surf ace
n
nuc 1 ide
o
org an
p
pathway
ra
repository-to-aquifer
river (except refers to resuspension when
used with variable A)
R
s
so i 1
v
volcano/meteorite event
w
water or ocean
W
water
102
-------
SUBSCRIPTS (continued):
o
1
2
SYMBOLS:
A
AL
Ar
Aw
Al
Cc
CFnp
CPp
0' (t)
°C-14'
tota 1 body,
ingestion
0C-14' 0,
lngestion
°nop
OI'nop
OWB14
initial condition
upper ocean compartment
lower ocean compartment
area of land irrigated (m2)
land surface area for earth (m2)
land area on which resuspended material is
deposited (m2)
ocean surface area for earth (m2)
initial release rate of radionuclides into the ocean from
the river (Ci/y)
concentration of stable carbon in freshwater (gm C/liter)
bioaccumulation factor for fish or shellfish for
nuclide n and pathway p (Ci/kg per Ci/liter)
the number of persons (standard men) who can be fed from
the quantity of crops (pathway p) raised annually on a
unit area of land (man fed/m2)
dose commitment rate as a function of time (rem/yr)
C-14 ingestion dose commitment factor with the total body
as the target organ (rem per Ci ingested)
C-14 ingestion dose commitment factor for target organ 0
(rem per Ci ingested)
dosimetry factor for nuclide n, organ 0, and pathway p:
for inhalation and ingestion (rem/Ci intake); for
external air submersion (rem/yr per Ci/m3); for
external ground contamination (rem/yr per Ci/m2)
annual dose to an individual for nuclide n, organ 0, and
pathway p (rem/yr).
total body EOC as a function of integration time for C-14
released for the volcano/meteorite pathway (man rem/Ci
released)
103
-------
SYMBOLS (continued):
fAL
fraction of total release for the volcano/meteorite
release mode which goes into air (dimensionless)
fraction of total release which goes to air over land
(dimensionless)
fA
f AW
fraction of total release which goes to air over water
(dimensionless)
fraction of the standard man organ C-14 specific activity
that is maintained by food intake pathway p
(dimensionless)
fcp
fL
fraction of repository which is being leached
(dimensionless)
fLL
fraction of total release which goes directly onto land
(dimensionless)
fLS
fraction of the repository contents which is released to
the land surface (dimensionless)
fp
fraction of land used for various food crops for
pathway p (dimensionless)
fraction of river flow used for irrigation (dimensionless)
fR
Fn(t')
quantity of radionuclide n deposited to ground per unit
area integrated to time t I (Ci /m2)
flux of nuclide n to ground as a function of time
(Ci/m2_yr)
F'n(t)
FHE
fatal cancers for nuclide n for the release mode under
consideration (fatal cancers)
GE
first generation genetic effects for nucliae n, for the
release mode under consideration (genetic effects)
hA
HECONo
height of troposphere (m)
IB
Ic
health effects conversion factor for organ 0
(health effects/rem)
standard man breathing rate (m3/yr)
total dietary intake rate of carbon by standard man
(gm C/yr)
If
Ip
freshwater fish annual consumption rate (kg/yr-person)
seafood annual consumption rate for pathway p (kg/yr)
104
-------
SYMBOLS (continued):
IW
N(O',t)
annual individual water ingestion rate (liters/yr-person)
size of the population exposed to dose commitment rate
01 (t) at time t (persons)
PAp
population subjected to inhalation of radionuclides for
pathway p (persons)
PFF
PFP
Pp
PR
POp
population eating freshwater fish from the river (persons)
population eating food included in pathway p (persons)
population eating seafood for pathway p (persons)
population drinking water from river (persons)
population density for pathway p (man/m2)
qln
quantity of radionuclide n in the upper compartment of
the ocean for releases to ocean from rivers (Ci)
q2n
quantity of radionuclide n in the lower compartment of
the ocean for releases to ocean from rivers (Ci)
source term from ground to air at time t' (Ci/yr)
Q I (t 1 )
QAn
quantity of radionuclide n in the air-over-ocean
compartment (Ci)
Q1anp
rate of entry of radionuclide n to an aquifer for
pathway p (Ci/yr)
Q10(tl)
source term from ground to air at time tl corrected for
depletion (Ci/yr)
QLn
quantity of radionuclide n in the air-over-land
compartment (Ci)
Qnp
total release of radionuclide n to environment into
pathway p (Ci). For the land surface and air pathway,
the release is instantaneous; for the river and ocean
pathway, the release is integrated from time of placement
in the repository out to time t.
Qn
total release of radionuclide n to the environment for
the release mode under consideration (Ci) Note: Qn =
Qnp since the releases considered for the different
pathways within a release mode are all equal.
Q1np
rate of entry of radionuclide n into the river or ocean
(Ci/y)
Qon
initial inventory of radionuclide n in the repository (Ci)
105
-------
SYMBOLS (continued):
Qp
total release of C-14 to the land surface for pathway p
(Ci)
Qsn
Q1n
quantity of radionuclide n in the soil root zone (Ci)
quantity of radionuclide n in the upper compartment of
the ocean for releases to ocean from air (Ci)
Q2n
quantity of radionuclide n in the lower compartment of
the ocean for releases to ocean from air (Ci)
r
radial distance from source of radionuclide to point of
interest (m)
rd
an empirical expression which is given in equation 3.3.2-4
R
river flow rate (liters/yr)
resuspension factor (m-1)
intake of nuclide n by an individual (standard man) for
the crop represented by pathway p and for a unit acute
deposition to the surface (Ci intake per Ci/m2
deposited on soil surface)
RF
Rlnp
Snop
environmental dose commitment to the population for
nuclide n, organ 0, and pathway p, integrated to time t
(man-rem)
Sinop
dose commitment rate to the population for nuclide n,
organ 0, and pathway p (man-rem/yr)
SF1n
sedimentation coefficient from upper layer of ocean for
radionuclide n (yr- )
SF2n
sedimentation coefficient from lower layer of ocean for
radionuclide n (yr-1)
SOF
household shielding and occupancy factor (dimensionless)
time after placement in repository at which EDC is
calculated (yr)
t
t'
time after release of radionuclides to the environment at
which EDC is calculated (yr)
tarn
time for radionuclide n to travel from aquifer to river
(yr)
ter
time after placement in repository that radioactive
material leaves the repository (yr)
106
-------
SYMBOLS (continued):
tL
time after placement in repository that the material
comes to the surface for the land surface release mode
(yr)
tran
time for radionuclide n to travel from repository to
aquifer (yr)
tRn
tv
time after placement in repository that radionuclide n
enters the river or ocean (yr)
time after placement in the repository that the material
enters into the land and air environment as the result of
a volcano or meteorite (yr)
VAW
volume of tropospheric air-over-water (m3)
deposition velocity from air to land surface (m/yr)
Vgn
VL
vwn
volume of tropospheric air over land (m3)
deposition velocity from air to ocean (m/yr)
VI
volume of compartment 1 (upper compartment) of ocean
(1 iters)
irrigation rate (liters/m2_yr)
W
XIn
concentration of radionuclide n in the upper compartment
of the ocean for releases to the ocean from air (Ci/liter)
Xin(r,t')
air concentration at point r and time tl due to
resuspension at initial source (Ci/m3)
Xn
air concentration of radionuclide n due to resuspension
from the ground surface at the location of interest and
due to resuspension at the initial source and subsequent
dispersion to the location of interest (Ci/m3)
(X/QI )r
n
atmospheric dispersion factor at the reference
distance rn (sec/m3)
XRn
air concentration of radionuclide n at the center of a
uniformly contaminated area having a surface
concentration ~n(t) due to resuspension of
radionuclides from the ground surface (Ci/m3)
z
"fitting" exponent in empirical equation for Xin (r,t')
transfer rate coefficient from upper to lower ocean
(yr-l)
Yl
Y2
transfer rate coefficient from lower to upper ocean
(yr-l)
107
-------
SYMBOLS (continued):
radioactive decay constant for nuclide n (yr-l)
ADn
Agn
ALn
rate constant for deposition from air to ground (yr-l)
leaching rate constant from repository (yr-l)
AR
rate constant for resuspension of nuclides from soil to
air (yr-l)
ASn
rate constant for transfer of nucli~es from available to
unavailable soil for nuclide n (yr- )
ATn
AR + ADn + ASn
rate constant for deposition from air to ocean (yr-l)
Awn
~'n
rate of change with time of ground surface concentration
for radionuclide n (Ci/m2_y)
~n
ground surface concentration of radionuclide n as a
function of time (Ci/m2')
108
-------
APPENDIX A:
METHODS FOR CONSIDERATION OF DAUGHTER PRODUCT INGROWTH
For each parent radionuclide discussed in this report, the method for
considering daughter product ingrowth is given in this Appendix (also see
the discussion in section 4.1)-
Radionuclide
Method for Consideration of Daughter Product Ingrowth
stable daughter - no action required
C-14
(T1/2 = 5730 yr)
Ni-59
(T1/2 = 8 E4 yr)
stable daughter - no action required
Sr-90
(T1/2 = 28.1 yr)
assume V-90 (T1/2 = 64 hr) is in secular
equilibrium and add V-90 dose factors to those for
Sr-90.
Zr-93
(T1/2= 1.5 E6 yr)
Nb-93m is produced in 95 percent of the decays.
Nb-93m (T1/2 = 13.6 yr) is an intermediate
half-life aaughter. There would not be significant
buildup of Nb-93m for air inhalation and for air
submersion. Thus, for these dose media, Nb-93m
dose factors were not added to those for Zr-93.
However, for the ground surface-external dose
pathway, and the ingestion pathway, it is believed
that significant buildup of Nb-93m could occur.
For these dose media, Nb-93m was assumed to be in
secular equilibrium and 95 percent of the dose
factors for Nb-93m was added to the factors for
Zr-93.
Tc-99
(T1/2 = 2.1 E5 yr)
stable daughter - no action required.
Sn-126
(T1/2 = 1 E5 yr)
assume Sb-126 (T1/2 = 12.5 d) daughter is in
secular equilibrium in the environment with Sn-126
and add Sb-126 dose factors to those for Sn-126.
1-129
(T1/2 = 1.7 E7 yr)
stable daughter - no action required.
Cs-135
(T1/2 = 3 E6 yr)
stable daughter - no action required.
109
-------
Radionuclide
Method for Consideration of Daughter Product Ingrowth
Cs-137
(T1/2 = 30 yr)
decays to Ba-137m 93.5 percent of the time. Assume
that Ba-137m (T1/2 = 2.55 min) is in secular
equilibrium with Cs-137 and add 93.5 percent of
dose factors for Ba-137m to the dose factors for
Cs-137.
Ra-226
(T1/2 = 1602 yr)
Very short-lived daughters of Ra-226 are
Rn-222 (T1/2 = 3.8 d), Po-218 (T1/2 = 3 min),
Pb-214 (T1/2 = 27 min), Bi-214 (T1/2 = 20 min),
and Po-214 (T1/2 = 164 ~s). Assume these
nuclides are in secular equilibrium with Ra-226 and
add dose factors for these nuclides to those for
Ra-226.
Next daughter is Pb-210 (T1/2 = 21 yr) which is
an intermediate half-life daughter. There would
not be a significant buildup of Pb-210 for air
inhalation and for air submersion. Thus, for these
dose media Pb-210 dose factors were not added to
the Ra-226 factors. Also the dose factors for the
two short-lived daughters of Pb-210
[Bi-210 (T1/2 = 5 d) and Po-210 (T1/2 = 138 d)]
were not added to those for Ra-226 for air
inhalation and air submersion.
For the ground surface-external dose pathway and
the ingestion pathway, it is believed that, in
addition to the short-lived daughters, significant
buildup of Pb-210 and the short-lived daughters
Bi-210 and Po-210 could occur. For these dose
media, these three daughters were assumed to be in
secular equilibrium with Ra-226 and the dose
factors for these daughters were added to the
factors for Ra-226.
We realize that treating Rn-222 in the manner
described leads to approximate results. However,
we believe that it is better to analyze all
daughter products in a simplified manner rather
than to entirely exclude daughters from the
analysis.
Sm-151
(T1/2 = 87 yr)
Stable daught~r - no action required.
110
-------
Radionuclide
Method for Consideration of Daughter Product Ingrowth
U-234
(T1/2 = 2.5E5 yr)
First daughter is Th-230 (T1/2 = 8 E4 yr). It is
believed that the lifetime of the U-234 in the
available environment (the portion of the
environment where the material would be available
to man) will be short compared to the half-life of
Th-230. Thus, no significant levels of Th-230
should build up before the U-234 disappears from
the available environment. No modifications are
required to the U-234 dose factors.
Np-237
(T1/2= 2.14 E6 yr)
Assume Pa-233 (T1/2 = 27 d) is in secular
equilibrium and aad Pa-233 dose factors to those
for Np-237. U-233 (T1f2 = 1.62 E5 yr) (and
daughters beyond U-233) levels in available
environment should be negligible (see discussion
for U-234) and no further action required on Np-237
dose factors.
Pu-238
(T1/2 = 86 y)
First daughter is U-234 (T1/2 = 2.5 E5 yr).
U-234 (and daughters) levels in available
environment should be negligible (see discussion
for U-234) and no action required on Pu-238 dose
factors.
Pu-239
(T1/2 = 2.4 E4 yr)
First daughter is U-235 (T1/2 = 7.1 E8 yr).
U-235 (and daughter) levels in available
environment should be negligible (see discussion
for U-234) and no action required on Pu-239 dose
factors.
Pu-240
(Tl/2 = 6580 yr)
First daughter is U-236 (T1/2 = 2.4 E7 yr).
U-236 (and daughters) levels in available
environment should be negligible (see discussion
for U-234) and no action required on Pu-240 dose
factors.
Am-241
(Tl/2 = 458 yr) ,
First daughter is Np-237 (Tl/2 = 2.1 E6 yr).
Np-237 (and daughters) levels in available
environment should be negligible (see discussion
for U-234) and no action required on Am-241 dose
factors.
111
-------
Radionuclide
Method for Consideration of Daughter Product Ingrowth
Pu-242
(T1/2 = 3.8 E5 yr)
First daughter is U-238 (T1/2 = 4.5 E9 yr).
U-238 (and daughters) levels in available
environment should be negligible (see discussion
for U-234) and no action required on Pu-242 dose
factors.
Am-243
(T1/2 = 7950 yr)
Assume Np-239 (T1/2 = 2.3 d) is in secular
equilibrium and add Np-239 dose factors to those
for Am-243. Pu-239 (Tl/2 = 2.4 E4 yr)
(and daughters) levels in available environment
should be negligible (see discussion for U-234) and
no further action required on Am-243 dose factors.
112
-------
APPENDIX B:
DOSIMETRY FACTORS
The dosimetry factors which were applied in these analyses are listed
in Table B-1 and again in the sample computer program output shown in
Appendix F.
B-2.
The references for the dosimetry factors are given in Table
The references identified in Table B-2 are as follows:
NUREG/CR-0150
NUREG-Ol72
ORNL-4992
ORNL-4101
ORNL-Draft
Killough G.G., Dunning D.E. Jr., Bernard S.R. and
Pleasant J.C., 1978, IIEstimates of Internal Dose
Equivalent to 22 Target Organs for Radionuclides
Occurring in Routine Releases from Nuclear Fuel-Cycle
F aci 1 it i esll USAEC Rep. NUREG/CR-0150, ORNL!NUREG/TM-190,
Oak Ridge National Laboratory, (Springfield, VA: NTIS).
Hoenes G.R. and Soldat J.K., 1977, IIAge-Specific
Radiation Dose Commitment Factors 'for a One-Year
Intakell, USNRC Rep. NUREG-Ol72, Battelle Pacific
Northwest Laboratories, Springfield, VA: NTIS).
Chronic
Killough G.G. and McKay L.R., 1976, IIA Methodology for
Calculating Radiation Doses from Radioactivity Released
to the Environmentll, USERDA Rep. ORNL-4992, Oak Ridge
National Laboratory, (Springfield, VA: NTIS).
Cowser K.E., Kaye S.V., Rohwer P.S., Snyder W.S. and
Struxness E.G., 1967, IIDose Estimation Studies Related to
Proposed Construction of an Atlantic-Pacific Interoceanic
Canal with Nuclear Explosives: Phase I", USAEC Rep.
ORNL-4101, Oak Ridge National Laboratory, (Springfield,
VA: NTIS).
Personal Communication, G.G. Killough, Oak Ridge National
Laboratory, to C.B. Nelson, U.S. Environmental Protection
Agency, November 1978.
113
-------
TABLE 1:$-1:
Uosimetry factors
EXT GND=REM/Y PER CI/M**2)
lINHALI ~ 2 ANU INGE~r=RE~/CI INTAKE
EXT AIk=REM/Y PER CI/M**3
ORGAN
NUCLIUE PATHWAY
C-14
IH-59
~k-90
I--'
I--'
.+:>
ZR-93
TC-99
SN-126
1-129
IN HALl
II~HAL2
INGE~T
EXT AIR
EXT GI~iJ
INHALI
INHAL2
INGEST
EXT A I k
EXT GNLJ
I I~HAL 1
II~HAL2
INGEST
EXT AIR
I:.XT lil~lJ
I NHA L 1
INHAL2
I I~GEST
EXT AIk
EXT GNLJ
IlmALl
I NHAL2
II%EST
EXT AIR
EXT GNlJ
I NHAL 1
INHAL2
II~GEST
tXT AIk
EXT GND
INHALI
INHAL2
II~GEST
EXT AIR
EXT GI~D
t30NE
kEU
IVIARROW
OTHER
ORGAN
OVARIES
TESTES
Ll VER
GI-LLl
THYROID KIDNEY
LUNG
8.46E+00 2.42E+Ol 6. 18E+00 8.88E+00 7.22E+00 6.48E+00 7.92E+00 1.41E+01 5.29E+00 5.42E+00
8.46E+00 2.42E+01 6.18E+00 8.88E+00 7.22E+00 6.48E+00 7.92E+00 1.41E+01 5.29E+00 5.42E+00
1. 17E+03 3.38E+03 8.49E+02 1.23E+03 1.46E+03 8.89E+02 1.06E+03 1.92E+03 7.36E+02 7.23E+02
0.00E-01 0.00E-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol
0.00E-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01
1.29E+04 2.15E+03 8.47E+03 4.98E+03 7.12E+02 2.15E+03 2.15E+03 2.15E+03 2.15E+03 2.15E+03
1.29E+04 2. 15E+03 8.47E+03 4.98E+03 3.56E+02 2.15E+03 2.15E+03 2.15E+03 2.15E+03 2.15E+03
9.67E+03 1.61E+03 1.61E+03 3.32E+03 9.70E+02 1.61E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03
0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01
O.OOE-Ol 0.00E-01 0.00E-01 O.OOE-Ol 0.00E-01 0.00E-01 O.OOE-Ol 0.00E-01 0.00E-01 0.00E-01
3.21E+05 1.21E+05 8.54E+06 1.93E+04 9.31E+05 3.74E+03 3.74E+03 1.51E+05 3.74E+03 3.73E+03
3.00E+06 1.10E+06 4.92E+04 1.49E+04 5.50E+04 1.54E+04 1.54E+04 2.41E+05 1.54E+04 1.54E+04
1.20E+06 4.30E+05 1.57E-02 5.71E+03 1.98E+05 5.99E+03 5.99E+03 9.50E+04 5.99E+03 5.99E+03
O.OOE-Ol 0.00E-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01 O.OOE-Ol 0.00E-01 0.00E-01
O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01 O.OOE-Ol 0.00E-01 O.OOE-Ol O.OOE-Ol 0.00E-01
1.47E+03 1.75E+03 5.85E+04 2.93E+03 7.16E+03 1.60E+03 1.36E+03 2.50E+03 1.04E+03 1.47E+02
4.12E+03 2.46E+03 3.08E+04 2. llE+03 6.98E+03 1.32E+03 1.32E+03 2.13E+03 1.46E+03 4.95E+02
1.97E+02 3.34E+02 3.90E+Ol 1.43E+02 1.75E+04 1.69E+01 1.99E+02 2.47E+02 1.36E+03 1.34E+02
O.OOE-Ol O.OOE-Ol 0.00E-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01 0.00E-01 0.00E-01
1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04 1.78E+04
2.42E+02 2.15E+02 5.22E+04 4.21E+02 1.66E+03 9.46E+03 3.07E+02 8.87E+02 2.12E+02 2.12E+02
2.42E+02 2.15E+02 5.22E+04 4.21E+02 1.66E+03 9.46E+03 3.07E+02 8.87E+02 2.12E+02 2.12E+02
3.01E+02 3.22E+02 0.00E-01 6.28E+02 3.20E+03 1.41E+04 4.58E+02 2.14E+02 3.17E+02 3.17E+02
0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01
0.00E-01 0.00E-01 0.00E-01 O.OOE-Ol 0.00E-01 0.00E-01 0.00E-01 0.00E-01 O.OOE-Ol O.OOE-Ol
1.58E+05 1.58E+05 1.27E+06 4.19E+03 7.60E+04 1.23E+03 6.16E+03 6.16E+03 6.16E+03 6.16E+03
1.58E+05 1.58E+05 1.27E+06 4.19E+03 7.60E+04 1.23E+03 6.16E+03 6.16E+03 6.16E+03 6.16E+03
8.57E+04 8.57E+04 3.11E+03 1.69E+03 1.18E+05 4.99E+02 2.83E+03 2.82E+03 2.82E+03 2.82E+03
1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07 1.15E+07
2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05 2.09E+05
5.79E+02 6.05E+02 7.88E+02 4.66E+02 4.28E+Ol 5.00E+06 4.49E+02 2.05E+03 3.78E+02 3.57E+02
5.79E+02 6.05E+02 7.88E+02 4.66E+02 4.28E+01 5.00E+06 4.49E+02 2.05E+03 3.78E+02 3.57E+02
9.02E+02 9.42E+02 1.79E+02 7.24E+02 6.70E+Ol 7.80E+06 7.02E+02 3.18E+03 5.92E+02 5.58E+02
1.45E+05 1.31E+05 4.85E+04 3.60E+04 1.15E+04 1.0IE+05 5.38E+04 9.54E+04 3.40E+04 1.31E+05
8.73E+03 7.87E+03 2.91E+03 2.16E+03 6.90E+02 6.04E+03 3.23E+03 5.73E+03 2.04E+03 7.88E+03
-------
TABLE B-1 (continued):
Dosimetry factors
NUCLIUE PATHWAY
ORGAN
CS-135 INHAL 1
INHAL2
INGEST
EXT AIR
EXT GND
CS-137 INHAL1
INHAL2
INGEST
EXT AIR
EXT G@
SM-151 INHAL 1
INHAL2
...... INGEST
...... EXT AIR
U1 EXT GND
RA-22ti I I~HAL 1
INHAL2
INGEST
EXT AIR
EXT GND
U-234
INHAL 1
INHAL2
INGEST
EXT AIR
EXT GND
NP-237
I NHAL 1
I NHAL2
INGEST
EXT AIR
EXT GNO
PU-238
INHAL 1
INHAL2
INGEST
EXT AIR
EXT GND
BONE
RED
MARRUW
TESTES
OTHER
ORGAN
LUNG
LIVER
GI -LLI
THYROID KHJNEY
OVARIES
7.47E+03 7.47E+03 6.40E+02 7.47E+03 8.51E+01 7.48E+03 7.47E+03 4.40E+03 7.47E+03 7.47E+03
7.47£+03 7.47E+03 6.40E+02 7.47E+03 8.51E+01 7.48E+03 7.47E+03 4.40E+03 7.47E+03 7.47E+03
1.12E+04 1.12E+04 0.00E-01 1.12E+04 5.35E+02 1.13E+04 1.12E+04 6.61E+03 1.12E+04 1.12E+04
0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01
0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01
4.54E+04 4.91E+04 1.62E+04 5.23E+04 1.60E+04 4.47E+04 5.13E+04 3.26E+04 5.00E+04 4.44E+04
4.54E+04 4.91E+04 1.62E+04 5.23E+04 1.60E+04 4.47E+04 5.13E+04 3.26E+04 5.00E+04 4.44E+04
6.82E+04 7.38E+04 1.99E+04 7.87E+04 2.59E+04 6.72E+04 7.73E+04 4.91E+04 7.54E+04 6.68E+04
4.66E+06 4.45E+06 3.60E+06 3.18E+06 2.75E+06 4.02E+06 3.38E+06 3.81E+06 1.39E+06 4.24E+06
8.29E+04 7.92E+04 6.40E+04 5.65E+04 4.90E+04 7.15E+04 6.03E+04 6.79E+04 2.49E+04 7.55E+04
5.10E+02 2.09E+02 6.78E+04 1.90E+03 3.04E+03 1.92E+01 5.54E+02 1.09E+03 1.47E+01 1.07E+01
4.91E+03 1.94E+03 1.59£+04 1.89E+04 2.81E+03 1.04E+02 5.38E+03 1.19E+03 1.09E+02 1.03E+02
4.91E+00 3.20E+00 1.05E-01 1.73E+01 5.85E+03 1.03E-01 5.52E+00 2.34E+01 5.66E+00 5.36E-01
2.44E+01 2.13E+01 4.24E+00 2.35E+00 2.92E+00 9.06E+00 7.02E+00 3.07E+01 3.92E+00 3.88E+01
4.59E+00 4.00E+00 7.96E-01 4.41E-01 5.48E-01 1.70E+00 1.32E+00 5.78E+00 7.36E-01 7.30E+00
1.10E+07 9.80E+05 2.81E+07 3.40E+05 1.00E+05 3.40E+05 3.49E+05 4.60E+06 3.40E+05 3.40E+05
1.10E+07 9.80E+05 2.81E+07 3.40E+05 1.00E+05 3.40E+05 3.49E+05 4.60E+06 3.40E+05 3.40E+05
6.32E+07 2.14E+06 2.71E+02 1.87E+06 8.16E+05 8.01E+05 5.79E+06 7.79E+06 8.06E+05 8.01E+05
1.50E+07 1.39E+07 1.27E+07 1.12E+07 1,03E+07 1.28E+07 1.06E+07 1.18E+07 9.90E+06 1.13E+07
2.52E+05 2.34E+05 2.07E+05 1.85E+05 1.69E+05 2.12E+05 1.75E+05 2.21E+05 1.63E+05 1.89E+05
2.00E+07 8.10E+05 2.73E+08
5.90E+07 2.40E+06 2.80E+07
2.00E+07 8.00E+05 8.23E+02
2.94E+03 2.64E+03 1.03E+03
5.63E+02 5.05E+02 1.97E+02
5.90E+05 5.48E+04 5.90E+05 8.70E+05 9.80E+06 5.90E+05 5.90E+05
1.70E+06 4.79E+04 1.70E+06 2.50E+06 5.50E+06 1.70E+06 1.70E+06
5.80E+05 8.86E+04 5.80E+05 8.50E+05 1.70E+06 5.80E+05 5.80E+05
7.64E+02 8.56E+02 1.28E+03 8.13E+02 2.49E+03 6.64E+02 2.09E+03
1.46E+02 1.64E+02 2.46E+02 1.56E+02 4.78E+02 1.27E+02 4.00E+02
9.04E+08 3.01E+08 2.90E+08 4.02E+08 1.38E+05 3.00E+06 5.20E+07 8.50E+07 1.80E+06 5.80E+06
2.24E+09 7.47E+08 3.00E+07 9.91E+08 1.26E+05 7.40E+06 1.28E+08 1.90E+08 4.60E+06 1.40E+07
1.90E+07 6.20E+06 8.87E+02 8.20E+06 1.46E+05 6.08E+04 1.10E+06 1.60E+06 3.90E+04 1.20E+05
3.27E+06 3.03E+06 1.79E+06 1.56E+06 1.13E+06 2.15E+06 1.50E+06 2.05E+06 1.02E+06 2.41E+06
7.25E+04 6.72E+04 3.97E+04 3.46E+04 2.50E+04 4.47E+04 3.34E+04 4.57E+04 2.27E+04 5.35E+04
7.91E+08 2.64E+08 3.09E+08 3.55E+08 6.20E+04 2.60E+06 4.60E+07 7.60E+07 1.60E+06 5.00E+06
2.03E+09 6.77E+08 3.20E+07 9.07E+08 5.51E+04 6.60E+06 1.17E+08 1.73E+08 4.10E+06 1.30E+07
5.00E+05 1.70E+05 7.89E-02 2.20E+05 1.10E+05 1.64E+03 2.91E+04 4.32E+04 1.03E+03 3.20E+03
1.26E+03 1.09E+03 3.02E+02 1.33E+02 4.45E+02 2.46E+02 1.77E+02 1.66E+03 1.86E+02 1.32E+03
2.47E+02 2.14E+02 5.92E+01 2.60E+01 8.71E+01 4.81E+01 3.46E+01 3.25E+02 3.64E+01 2.58E+02
-------
TABLE l)-1 (continued):
Dosimetry factors
NUCLIUE PATHWAY
ORGAN
PU-239 INHALl
INHAL2
INGEST
EXT AIR
EXT GNO
PU-240 II~HAL 1
INHAL2
INGEST
EXT AIR
EXT GNU
AM-241 INHALl
t-' INHAL2
t-'
Q) INGEST
EXT AIR
EXT GNO
PU-242 INHAL1
INHAL2
II~GEST
EXT AIR
EXT GND
AM-243 INHALl
INHAL2
INGEST
EXT AIR
EXT GNU
BONE
RED
MARROW
OTHER
ORGAN
OVARIES
TESTES
Ll VER
GI-LLl
THYROID KIDNEY
LUNG
9.12E+08 3.04E+08 2.94E+08 4.04E+08 5.78E+04 3.00E+06
2.28E+09 7.61E+08 3.00E+07 1.00E+09 5.13E+04 7.40E+06
5.70E+05 1.90E+05 6.09E-02 2.50E+05 9.86E+04 1.85E+03
6.41E+02 5.61E+02 1.71E+02 9.38E+01 1.90E+02 1.89E+02
1.22E+02 1.07E+02 3.24E+01 1. 78E+01 3.60E+01 3.59E+01
5.20E+07 8.60E+07 1.80E+06 5.80E+06
1.30E+08 1.92E+08 4.60E+06 1.50E+07
3.22E+04 4.82E+04 1.15E+03 3.60E+03
1.23E+02 7.22E+02 1.17E+02 6.11E+02
2.33E+01 1.37E+02 2.21E+01 1.16E+02
9.13E+08 3.04E+08 2.95E+08 4.05E+08 5.82E+04 3.00E+06 5.20E+07 8.60E+07 1.80E+06 5.80E+06
2.28E+09 7.60E+08 3.10E+07 1.01E+09 5.17E+04 7.40E+06 1.30E+08 1.94E+08 4.60E+06 1.50E+07
5.70E+05 1.90E+05 8.32E-02 2.50E+05 9.93E+04 1.84E+03 3.22E+04 4.83E+04 1.15E+03 3.60E+03
1.16E+03 1.00E+03 2.89E+02 1.40E+02 3.99E+02 2.53E+02 1.78E+02 1.46E+03 1.80E+02 1.17E+03
2.25E+02 1.96E+02 5.64E+01 2.72E+01 7.79E+01 4.93E+01 3.47E+01 2.85E+02 3.52E+01 2.28E+02
9.43E+08 3.14E+08 3.13E+08 4.19E+08 6.52E+04 3.10E+06 5.40E+07 8.90E+07 1.90E+06 6.00E+06
2.35E+09 7.83E+08 3.20E+07 1.04E+09 6.11E+04 7.70E+06 1.34E+08 1.99E+08 4.80E+06 1.50E+07
1.90E+07 6.40E+06 1.27E+02 8.50E+06 1.10E+05 6.32E+04 1.10E+06 1.60E+06 3.94E+04 1.20E+05
2.72~+O5 2.48E+05 1.01E+05 8.30E+04 5.68E+04 1.38E+05 8.80E+04 1.44E+05 8.51E+04 1.26E+05
1.42E+04 1.30E+04 5.30E+03 4.33E+03 2.96E+03 7.21E+03 4.59E+03 7.50E+03 4.44E+03 6.57E+03
8.69E+08 2.89E+08 2.80E+08 3.85E+08 5.51E+04 2.80E+06 5.00E+07 8.20E+07 1.80E+06 5.50E+06
2.17E+09 7.22E+08 2.90E+07 9.56E+08 4.90E+04 7.10E+06 1.23E+08 1.84E+08 4.40E+06 1.40E+07
5.40E+05 1.80E+05 1.60E-01 2.40E+05 9.40E+04 1.76E+03 3.06E+04 4.60E+04 1.09E+03 3.42E+03
1.04E+03 8.93E+02 2.36E+02 9.37E+01 3.65E+02 1.77E+02 1.32E+02 1.39E+03 1.51E+02 1.10E+03
2.03E+02 1.75E+02 4.63E+01 1.84E+01 7.16E+01 3.47E+01 2.59E+01 2.72E+02 2.97E+01 2.17E+02
9.43E+08 1.56E+09 3.03E+08 4.21E+08 3.22E+05 3.10E+06 5.40E+07 8.90E+07 1.90E+06 6.00E+06
2.34E+09 3.87E+09 3.10E+07 1.04E+09 1.50E+05 7.70E+06 1.34E+08 1.99E+08 4.80E+06 1.50E+07
1.90E+07 3.20E+07 9.64E+02 8.50E+06 1.49E+05 6.34E+04 1.10E+06 1.60E+06 4.07E+04 1.20E+05
2.17E+06 2.01E+06 1.06E+06 9.14E+05 6.49E+05 1.33E+06 8.97E+05 1.29E+06 6.76E+05 1.41E+06
5.29E+04 4.88E+04 2.63E+04 2.26E+04 1.61E+04 3.26E+04 2.21E+04 3.15E+04 1.65E+04 3.48E+o4
NOT~: THE lJOSIMETRY FACTORS IN THE "OTHER ORGAN" COLUlvlN ARE FOR WHOLE BODY. THE WHOLE BODY DOSIMETRY FACTORS
WERE USEU BECAUSE MUSCLE OR OTHER SOFT TISSUE FACTORS WERE NOT AVAILABLE IN MANY CASES. THESE WHOLE BODY
UU~IMETKY FACTURS AKE THE SAME AS OR HIGHER THAN FACTORS FOR MUSCLE OR OTHER SOFT TISSUE. THIS ADDS
CONSERVATISM TO THE OVERALL ANALYSIS.
-------
TABLE B-2:
Source of dosimetry factors
Nucl ide
DOSE FACTOR CATEGORY
Inhalation
Cl ass Y (1)
Inhalation
Class W (2)
Ingestion
External
Ai r Su bmers i on
Ex terna 1
Ground Contamination
C-14
NUREG/CR-0150*
no class given
NUREG/CR-0150
ORNL-4992
ORNL-4992
NUREG/CR-0150*
no cl ass given
Ni-59
ORNL-4992
no class given
ORNL-4992
no class given
ORNL-4992
Assumed 0
Pu re B
Assumed 0
Pure B
Sr-90
NUREG/CR-0150
Sr-90 is Y, Y-90 is W
NUREG/CR-0150
Sr-90 is D, Y-90 is W
NUREG/CR-0150
F1 = 0.2
ORNL-4992
ORNL-4992
Zr-93
I-'
I-'
'-I
NUREG/CR-O 150
Class Y
NUREG/CR-0150
Class W
Zr-93 NUREG/CR-0150
Nb-93m ORNL-4992
Zr-93 Pure B
Nb-93m ORNL-4101
Zr-93 Pure B
Nb-93m ORNL-4101
NUREG/CR-0150
Class W
NUREG/CR-0150
Class W
NUREG/CR-0150
ORNL-4992
ORNL-4992
Tc-99
Sn-126
NUREG-Ol72
no class given
NUREG-Ol72
ORNL-4101
ORNL-4101
NUREG-Ol72
no class given
1-129
NUREG/CR-0150
Class 0
NUREG/CR-0150
Class D
NUREG/CR-0150
ORNL-4992
ORNL-4992
Cs-135
NUREG/CR-0150
Class D
NUREG/CR-0150
Class D
NUREG/CR-0150
ORNL-4992
ORNL-4992
Cs-137
NUREG/CR-0150
Class D
NUREG/CR-0150
Class D
NUREG/CR-0150
ORNL-4992
ORNL-4992
Sm-151
NUREG/CR-0150
Class Y
NUREG/CR-0150
Class W
NUREG/CR-0150
ORNL-4992
ORNL-4992
* Factors taken from page 88 since an error was found for C-14 in the summary tables.
-------
TABLE B-2 (conti nued):
Source of dosimetry factors
DOSE FACTOR CATEGORY
Nuclide Inhalation Inhalation Ingestion External Externa 1
Class Y Class W Air Submersion Ground Contamination
Ra-226 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
C1 ass W Class \.J
U-234 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
C1 ass Y Class W
Np-237 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
Class Y C1 ass \.J
~
~
OJ
Pu-238 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
C1 as s Y Class W
Pu-239 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
C1 as s Y Class W
Pu-240 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
Class Y Class W
Am-241 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
Cl as s Y Class W
Pu-242 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
Cl ass Y Class W
Am-243 ORNL - Draft ORNL - Draft ORNL - Draft ORNL-4992 ORNL-4992
Cl as s Y Cl ass W
-------
APPENDIX C:
SAMPLE DERIVATION OF AN ENVIRONMENTAL PATHWAY EQUATION AND
CALCULATION OF POPULATION HEALTH EFFECTS
A derivation of an environmental dose commitment equation and the
application of representative data in the equation to compute population
health effects for an environmental pathway will serve to illustrate the
application of the methodology described in this report.
The
environmental pathway chosen for demonstration is ingestion of food crops
for radionuclide releases to a river (pathway number 3).
Terms that are
explained in the "Nomenclature" section are not defined again in this
Appendix.
An expression for environmental dose commitment must be derived for
use in obtaining population health risk estimates.
The procedure for
generating an equation for environmental dose commitment is the same as is
described in section 3.1.4.
The starting point is the annual dose to an
individual.
The annual dose is given by the concentration of radionuclides in the
river water (Q'np/R), the irrigation rate (W), a conversion factor to
express the radionuclide intake by an individual per unit deposition to
the ground surface (RInp)' and the dose conversion factor (Onop) as
01 I = QI np W RInp Dnop
nop R
(C-1)
The annual population dose can be expressed as the individual dose
multiplied by the number of persons being fed a particular food crop
raised on irrigated land.
The number of persons fed can be determined
using an estimate of the number of persons who can be fed by raising the
food crop on a unit area of land (CP ), the area of land irrigated (A),
p
119
-------
and a weighting factor to express the fraction of irrigated land used for
a particular crop (f ) as
p
PFP = CPp A fp
(C-2)
Then the annual population dose is
QI np W RInp Dnop CPp A fp
Sinop = DI'nop PFp = R
(C-3)
By integrating this expression over time, we obtain an equation for
environmental dose commitment as
S
nop
=
Qnp W RInp Dnop CPp A fp
R
(C-4)
Some rearrangement of terms is desirable in equation C-4 since it is
to be used for generic rather than site specific analyses.
We can write
the relationship
W A = fR R
(C-5)
which yields
W fR
R=A
(C-6)
If equation C-6 is substituted into equation C-4, we obtain
S = Q f f RI CP 0
nop np R p np p nop
( C-7)
Implicit in equation C-7 is the assumption that all river water used
for irrigation contains radionuclides and, consequently, that all land
irrigated by river water receives radionuclides released from the waste
repository.
The methods for obtaining several of th£ terms included in
equation C-7 are discussed below.
120
-------
Values of Rlnp were determined using the AIROOS-EPA computer code
(M079). Using the nomenclature of the AIROOS-EPA document, we can
express Rlnp using the rate of consumption of vegetation by a
human (U ), the concentration of radionuc1ides in the vegetation (Cv),
v n
and the deposition rate of radionuclides to the ground (d ) as
n
Rlnp
UV CV
n
d
n
(C-8)
where
UV = quantity of vegetation consumed by a human receptor per unit
time (kg/yr),
C~ = concentration of nuclide n in and on vegetation (Ci/kg),
d = the deposition rate of nuclide n onto the ground (Ci/m2_yr).
n
Note that the dimensions for RI from equation C-8 are
np
Ci intake/yr per Ci deposited/m2_yr whereas the dimensions we desire are
Ci intake over all time per Ci deposited (tota1)/m2.
It can be shown
that the ratio of the equilibrium intake rate to a continuous deposition
rate (Ci intake/yr per Ci deposited/m2_yr) is numerically equal to the
ratio of the total integrated intake to the acute surface deposition
(Ci intake per Ci deposited/m2). Thus, if we apply equation C-8 for
equilibrium conditions (long buildup times), it is appropriate to use the
equation to compute values of Rlnp for our analysis.
The expression for
CV is basically the same expression as given in equation 49, page 40, of
n
AIROOS-EPA (M079) modified to account for removal of radionuc1ides from the
plant root zone to a soil sink.
The equation is
[001 f c
CV = d
n n
[ 1 - e-AEntev ]
Yv AEn
Biv [ 1
+
P
-(Aon+ASn)tb J
e ]
(AOn + ASn)
-Aonthv
e
121
(C-9)
-------
where
DOl
fc
AEn =
t
ev
y =
v
B. =
lV
ASn =
tb =
P
thv
fraction of nuclide retained on plant foliage which
remains after washing (dimensionless),
fraction of deposited nuclide retained on edible
portions of crops (dimensionless).
the effective removal rate constant for nuclide n from
crops (yr-1),
time period that crops are exposed to contamination
during growing season (yr),
agricultural productivity (yield) of the edible portion
of vegatation (kg/square meter).
the concentration factor for uptake of radionuclide i
from soil by edible parts of crops
(Ci/kg plant per Ci/kg dry soil).
removal rate constant for transfer of nuclide n from
the root zone to the soil below the root zone (yr-1),
period of long-term buildup of activity in soil (yr).
effective density of the root zone (top 15 cm of soil)
(kg dry soil/square meter), and
a holdup time that represents the time interval between
harvest and consumption of the vegetation (yr).
An implicit assumption in equation C-9 is that irrigation water deposits
radionuclides on the ground surface continuously.
This is a conservative
full year.
assumption since irrigation would actually take place for less than the
As mentioned above, a significant change was made in equation C-9 that
is not included in the models in AlRDOS-EPA.
The loss of radionuclides
from the soil root zone due to leaching of radionuclides to the soil below
the root zone was accounted for by adding the ASn term to the equation.
This loss mechanism can be important for long-lived radionuclides and this
is the reason for including the modification in eqation C-9.
The addition
of this loss mechanism causes the majority of the total intake of
122
-------
radionuclides from deposition on crop land to occur over a shorter time
period after deposition of radioactivity in the environment than would be
the case if radioactive decay were the only mechanism for removal from the
soil root zone.
Substituting equation C-9 into C-8 yields
RI = UV
np
[ 001 f c
-A t
[ 1 - e En ev ]
Yv AEn
+
B. [
lV
-(AD +AS )tb
1 - e n n ] ]
p (A On + AS n)
-A th
On v
e
(C-10)
A value is needed for the parameter CP for use in equation C-7.
p
CPp is merely the annual agricultural productivity divided by the annual
individual consumption rate of food crops:
CP = Y / UV
p v .
(C-11 )
A leaching-rate-limited source-term equation will be used for this
illustrative calculation.
Figure C-1 shows the predicted travel of
radionuclides from the waste repository to the river.
An expression for
the rate of entry of radionuclide n to the river can be developed after
examination of Figure C-1.
The inventory of material at time, ter' when
leaching begins is
-Aonter
Qrnp(ter) = Qon e
(C-12)
where
Qrnp(ter) = inventory of radionuclide n in the repository at the
time leaching begins (Ci) .
123
-------
REPOSI TORY
Initial Inventory=Qon
Time between placement
of nuclides and initi-
ation of leaching=ter
t=o at time radioactive
material is placed in
repository
Fig. C-1.
AQUIFER
Travel time in
aquifer to
river = tarn
Radionuclide travel from repository to river
Travel time from
repository to
aqu if er=tran
ALn = leaching coeff.
from repository
RIVER
124
-------
At any time tl (tl~ter) the rate of exit of radionuclide n from
the repository is
-(AOn+ALn)(tl-ter)
Q'rnp(tl) = ALn Qrnp(ter) e
(C-13 )
where
Q'rnp(tl) = rate of exit of radionuclide n from the repository at
time tl (where tl ~ ter) (Ci/yr) .
Now, assuming that radioactive decay is the only mechanism of loss of
radionuclide n during travel from the repository to the aquifer (tran)
and travel from the aquifer to the river (tarn) the equation for release
rate to the river at any time t is
QI np(t) = Q'rnp(tl)
-A (t +t )
On ran arn
e
(C-14)
for t > ter + tran + tarn
and
Q1np(t) = 0
for t ~ ter + tran + tarn.
The relationship between t and tl is
t = tl + tran + tarn
tl = t - tran - tarn.
or
(C-15)
(C-16)
Substituting equations C-ll and C-12 into equation C-13 yields
-Aonter -(AOn+ALn) (tl-ter)
Q1np(t) = ALn Qon e e
-A (t +t )
On ran arn
e
( C-l7)
or
-A (t +t +t )
QI (t) = A Q On er ran arn
np Ln on e
-(AOn+ALn)(t1-ter)
e
(C-18)
and substituting equation C-16 into C-18 gives
125
-------
-AOn(ter+tran+tarn)
Q1np(t) = ALn Qon e
-(AOn+ALn) (t-tran-tarn-ter)
e
(C-19)
or
-A t
Q1np(t) = ALn Qon e On
-A (t-t -t -t )
Ln er ran arn
e .
(C-20)
Now, assuming that only a fraction, fL' of the contents of the
repository are subject to leaching, we can write the final expression for
the release rate of radionuclide n to the river as
-Aont
Q1np(t) = ALn fL Qon e
-ALn(t-ter-tran-tarn)
e
for t > ter+ tran+ tarn
and
(C-21)
Q I np ( t) = 0
for t ~ ter+ tran+ tarn.
To obtain the total (integrated) amount of radionuclide n that has
entered the river up to time t, we integrate equation C-21 and get
Q np (t) =
It=t
t=~1 np(t)dt
(C-22)
Using equation C-21 and the relationship
tRn = ter + tran + tarn
(C-23)
we obtain
Qon f L \n
Q (t) =
np (AOn+ALn)
[e-ADntRn - eALntRn e-(ADn+ALn)t]
for t > tRn .
and
(C-24)
Qnp(t) = 0
for t ~ tRn .
126
-------
Equations C-10, C-11, and C-24 may be used in conjunction with
equation C-7 to work out a sample calculation for the environmental dose
commitment for human consumption of food crops.
Parameter values from
sections 4 and 5 will be used in the sample calculations.
For variables
not discussed in sections 4 and 5, representative values for parameters
will be used.
The calculations will be done for Tc-99.
To determine the total release of Tc-99 we will use the following
data:
Qon = 1000 curies of Tc-99
fL = 0.01
-1
ALn = 1.45 E-4 yr
3.27 E-6 Yr-1
AOn =
ter = 100 yrs
tran = 1 yr
t = 760 Rn yrs, where Rn = 1 (Li77c), therefore:
Mn
tarn = 760 (1) = 760 yrs.
Now, from equation C-23
t - t + t + t = 100 + 1 + 760 = 861 yrs.
Rn - er ran arn
Let the time, t, for computation of the health effects commitment be
t = 10,000 yrs.
Then, using equation
C-24 we have
ALntRn -(AOn+ALn) t]
e e
Q (t) = ALn f~ Qon [e-AontRn-
np AOn ALn
and
- (3.27E-6)(861) 1
Q(10000)= (~3:~~E~~~~(~~l~~~~~) e [(1.45E-4)(861)-(3.27E-6+1.45E-4)(10,000)J
- e
Q(10,000) = (9.779) (0.997 - 0.257)
Q(10,000) = 7.24 curies of Tc-99 released over 10,000 yrs.
127
-------
To compute a value for Rl > we need the following data.
np
noted, the reference for this data is AlRDOS-EPA (M079).
Except as
UV = 194 kg/yr
DDl = 1.0
f
c
= 0.2
A = AD + A = 3.26 E-6 yr-1 + 18.41 yr-1 = 18.41 yr-1, where
En n VI
A = time constant for loss
w
-1
from vegatation due to weathering, yr .
Y = 0.716 kg/m2
v
t = 0.164 yrs
ev
B = 5 Ci/kg crop
iv Ci/kg dry soil
A = 3.26 E-6 y-1
Dn
tb = 1 E15 yrs*
( H 080 )
-1
ASn = 1.26 yr (Ho80, Ho82)
P = 215 kg dry soil/m2
thv = 3.83 E-2 yr.
Using these values, the value of Rlnp can be computed as
(1)(0.2)[1-exp[(-18.41)(0.164)JJ
(.716)(18.41)
Rl = 194
np
exp[(-3.26 E-6)(3.83 E-2)J
+ (5)[1-exp[(-3.26 E-6 -1.26)(lE15)JJ
(215)(3.26 E-6 +1.26)
Rl = 194 [ (1.443 E-2) + (1.846 E-2) J 1.0
np
Ci intake
Rlnp = 6.38 Ci/m2 deposited
The remaining parameter values for use in equation C-7 to compute
environmental dose commitment are
fR = 0.5
f = 0.5
P
CP = 1 E-3 man/m2 .
p
*The large value of tb is used to assure that an equilibrium value for
Rlnp is computed.
128
-------
The expression for computation of environmental dose commitment is
equation C-7, i.e.
Snop = Qnp fR fp Rlnp CPp Dnop .
(C-7)
Substituting the parameter values discussed above into equation C-7 yields
Snop = (7.24)(0.5)(0.5)(6.38)(0.001) 0 = 1.155 E-2 0
nop nop.
The estimated fatal cancers are computed using the calculated
environmental dose commitments (S ) and fatal cancer conversion
nop
factors as
FHE
np
8
O~l Snop HECONo
(C-25)
where
FHE = the estimated fatal cancers in the population for
np nuclide n and pathway p.
Since the environmental dose commitments must be computed for eight organs
the remaining computations will be tabulated in table C-1.
The genetic effects
are computed in a similar manner from calculated environmental dose commitments
to the gonads; however, this calculation is not included in this appendix.
129
-------
TABLE C-1:
Environmental dose commitment and fatal cancer calculations
Dose Environmental Fatal Fatal
Commitment Dose Cancer Cancers
Factor, Commitment, Conversion Committed,
Dnop Snop Factor,
Organ (rem/Ci (person rem) HE CO No FHEnp
intake) (HE/person rem)
Bone 3.61 E+2 4.17 1 E-5 4 . 1 7 E-5
Red Marrow 3.22 E+2 3.72 4 E-5 1. 49 E-4
Lung 0 0 4 E-5 0
Liver 6.28 E+2 7.25 1 E-5 7.25 E-5
G I-LLI Wa 11 3.20 E+3 37.0 2 E-5 7.39 E-4
Thyroid 1.41 E+4 162.9 1 E-6 1. 63 E-4
Kidney 4.58 E+2 5.29 1 E-5 5.29 E-5
Other
Soft Tissue 2.14 E+2 2.47 7 E-5 1. 73 E-4
~
TOT A L 1. 39 E-3 Fata 1
Cancers
Thus, for 7.24 Ci of Tc-99 released to the river, the number of fatal
cancers in 10,000 yrs to the affected population from consumption of food
crops irrigated by contaminated river water is estimated to be 0.00139.
The fatal cancers per curie released for this sample calculation are
0.0014/7.24 = 1.92 E-4.
The fatal cancers per curie release for the other
nuclides and pathways discussed in this report are determined in a similar
manner and are presented in Appendix D.
130
-------
APPENDIX D:
HEALTH EFFECTS PER CURIE RELEASE PARAMETERS
This Appendix displays the various parameters for fatal cancers per
curie release that have been calculated using this methodology.
These
parameters have been used to develop the radionuclide release limits in
EPA's proposed environmental standards for high-level and transuranic
radioactive waste disposal (EPA82).
Parameters for each of the four
release modes, for each radionuclide, are shown in Table D-1.
Tables D-2, D-3, and D-4 show the contributions of the various
environmental pathways to the fatal cancers per curie parameters for the
river, ocean, and land surface release modes.
All of these parameters
were calculated using the input data discussed in Sections 4 and 5 of this
report and specific values for the following parameters:
ALn = 10-4 yr-1
tRn = ter + tran + tarn = 0*
t = 10,000 yr
fLL = 0.50
fAL = 0.15
fAW = 0.35
Specifically note that a period of 10,000 years was used for the
integration time. A value of 10-4 parts per year was used for the waste
leach rate (ALn)' although these fatal cancers per curie parameters have
only a very slight dependence on the value chosen for ALn'
*Setting tRN equal to zero is permissible for these calculations
since we are computing the health effects per curie released to the
environment. Appropriate non-zero values for ter' tran' and tarn
must be selected when computing the total release quantity of
radionuclides from a repository.
131
-------
TABLE 0-1:
Fatal cancers per curie released for different release modes
Nuclide
Releases to
a River
Releases to
an Ocean
Releases to
Land Surface
Releases due
to Violent
Interactions*
C-14 4.58 E - 2 1. 12 E- 7 2.58 E- 5 7.65 E- 2
Ni-59 6.80 E- 4 6.74 E- 5 1.10 E- 5 1.23 E- 4
Sr-90 1.21 E- 1 1. 91 E- 6 9.75 E- 4 1.63 E- 2
Zr-93 6.94 E- 2 5.74 E- 6 1.82 E- 1 1.55 E- 1
Tc-99 2.85 E- 4 1. 04 E - 6 6.03 E- 8 3.67 E- 5
Sn-126 1. 20 E - 1 7.86 E- 6 4.13 E- 2 1.12 E- 1
1-129 1. 08 E - 2 9.62 E- 5 2.31 E- 5 1. 38 E - 3
Cs-135 3.81 E- 3 1.58 E- 5 4.01 E- 4 7.36 E- 4
Cs-137 1.98 E- 2 1.60 E- 5 5.62 E- 4 6.91 E- 3
Sm-151 1.17 E- 4 1.38 E- 6 2.89 E- 6 1.64 E- 5
Ra-226 3.16 1.49 E- 2 8.42 E- 2 4.87 E- 1
U-234 1. 33 1.38 E- 3 5.70 E- 1 6.13 E- 1
Np-237 5.96 E- 1 2.44 E- 3 3.22 E- 3 8.03 E- 2
Pu-238 2.29 E- 2 2.38 E- 5 3.21 E- 3 1.47 E- 2
Pu-239 6.92 E- 2 1.31 E- 4 5.55 E- 2 5.18 E- 2
Pu-240 6.53 E- 2 1.15 E- 4 4.94 E- 2 4.76 E- 2
Am-241 7.19 E- 1 1.19 E- 2 8.98 E- 2 1.59 E- 1
Pu-242 6.76 E- 2 1. 30 E - 4 5.63 E- 2 5.13 E- 2
Am-243 2.68 E 0 8.81 E- 2 1.03 E 0 1. 14 E 0
*For example, interaction of a meteorite or a volcanic eruption with a
repos i tory. 132
-------
TABLE D-2:
Fatal cancers per curie released for releases to a river
Above Inhalation Ex terna 1 External
Dri nki ng Freshwater Surface of Dose - Dose -
Water Fish Crops Milk Beef Resuspended Ground Air
Nuclide TOTAL I ngesti on Ingestion Ingestion Ingestion Ingestion Mated al Contam. Submersion
(p = 1) (p = 2) (p = 3) (p = 4) (p = 5) (p = 6) (p = 7) (p = 8)
C-14 4.58 E- 2 7.40 E- 5 5.59 E- 4 2.99 E- 2 1.11E-2 4.10 E- 3 1.46 E-12 0.0 0.0
Ni-59 6.80 E- 4 8.21 E- 5 1.36 E- 5 4.03 E- 4 9.80 E- 5 8.28 E- 5 1. 46 E - 8 0.0 0.0
Sr-90 1.21 E- 1 8.03 E- 3 6.66 E- 5 1. 05 E - 1 7.79 E- 3 1. 04 E - 4 7.87 E- 7 0.0 0.0
Zr-93 6. 94 E - 2 7.79E-5 4.30 E- 7 3.01 E- 4 9.39 E- 4 4.24 E- 5 8.15 E- 7 6.81 E- 2 0.0
Tc-99 2.85 E- 4 2.42 E- 5 6.02 E- 7 1.92 E- 4 6.25 E- 5 5.82 E- 6 4.92 E-10 0.0 0.0
I-' Sn-126 1. 20 E - 1 1.41 E- 3 7.01 E- 3 6.66 E- 3 2.95 E- 4 2.09 E- 3 3.71 E- 6 1. 02 E - 1 5.61 E- 9
w
w
1-129 1.08 E- 2 1.63 E- 3 4.05 E- 5 6.43 E- 3 2.44 E- 3 1. 84 E - 4 1.22 E- 8 9.19 E- 5 1. 54 E-12
Cs-135 3.81 E- 3 2.55 E- 4 1.69 E- 4 2.13 E- 3 9.99 E- 4 2.65 E- 4 1.12 E- 7 0.0 0.0
Cs-137 1.98 E- 2 2.01 E- 3 1.33 E- 3 7.83 E- 3 2.08 E- 3 5.55 E- 4 7.51 E- 8 5.96 E- 3 3.35 E-10
Sm-151 1.17 E- 4 2.39 E- 5 9.92 E- 7 8.99 E- 5 1. 77 E- 8 1.87 E- 6 3.22 E- 8 7.50 E- 7 3.98 E-15
Ra-226 3.16 2.73 E- 1 2.26 E- 2 2.78 3.38 E- 2 3.03 E- 3 4.31 E- 5 4.56 E- 2 2.63 E- 9
U-234 1.33 7.39 E- 2 1.23 E- 3 1. 25 6.14 E- 3 7.46 E- 6 1.40 E- 3 1. 83 E - 3 9.54 E-12
Np-237 5.96 E- 1 1.30 E- 1 2.15 E- 3 4.60 E- 1 9.21 E- 5 3.90 E- 4 4.36 E- 4 2.09 E- 3 9.39 E-11
Pu-238 2.29 E- 2 3.92 E- 3 2.28 E- 3 1.42 E- 2 3.03 E- 8 1.16E-9 2.40 E- 3 5.16 E- 5 2.63 E-13
Pu-239 6.92 E- 2 4.32 E- 3 2.50 E- 3 2.51 E- 2 5.39 E- 8 2.06 E- 9 3.69 E- 2 3.24 E- 4 1. 71 E-12
Pu-240 6.53 E- 2 4.32 E- 3 2.51 E- 3 2.37 E- 2 5.16 E- 8 1.97 E- 9 3.41 E- 2 5.86 E- 4 3.00 E-12
Am-241 7.19 E- 1 1.32 E- 1 5.47 E- 3 5.61 E- 1 8.32 E- 4 3.91 E- 6 1.14E-2 8.61 E- 3 1. 64 E-10
Pu-242 6.76 E- 2 4.10 E- 3 2.38 E- 3 2.43 E- 2 4.44 E- 8 4.29 E- 8 3.62 E- 2 6.07 E- 4 3.10 E-12
Am-243 2.68 E 0 3.38 E- 1 1.40 E- 2 2.13 E 0 3.28 E- 3 1.55 E- 5 8.93 E- 2 1.13E-1 4.61 E- 9
-------
TABLE 0-3:
Fatal cancers per curie released for releases to an ocean
Nuc 1 ide
TOTAL
Oc ea n
Fish
1 ngesti on
(p = 9)
Ocean
Shellfi sh
1 ng est ion
(p = 10)
C-14 1.12E-7 9.60 E- 8 1. 60 E - 8
Ni-59 6.74 E- 5 6.52 E- 5 2.17 E- 6
Sr-90 1.91 E- 6 1.64 E- 6 2.73 E- 7
Zr-93 5.74 E- 6 3.68 E- 6 2.06 E- 6
Tc-99 1. 04 E - 6 3.90 E- 7 6.50 E- 7
Sn-126 7.86 E- 6 6.74 E- 6 1.12 E- 6
1-129 9.62 E- 5 5.25 E- 5 4.37 E- 5
Cs-135 1.58 E- 5 1.24 E- 5 3.43 E- 6
Cs-137 1.60 E- 5 1.25 E- 5 3.47 E- 6
Sm-151 1.38 E- 6 1. 80 E - 7 1.20 E- 6
Ra-226 1.49 E- 2 1.12 E- 2 3.72 E- 3
U - 2 34 1.38 E- 3 1.18 E- 3 1.97 E- 4
Np-237 2.44 E- 3 2.09 E- 3 3.47 E- 4
Pu-238 2.38 E- 5 4.13 E- 6 1.97 E- 5
Pu-239 1.31 E- 4 2.27 E- 5 1. 08 E - 4
Pu-240 1.15 E- 4 1.99 E- 5 9.51 E- 5
Am-241 1.19 E- 2 1.55 E- 3 1.03 E- 2
Pu-242 1. 30 E - 4 2.26 E- 5 1. 04 E - 4
Am-243 8.81 E- 2 1.15 E- 2 7.66 E- 2
134
-------
TABLE D-4:
Fatal cancers per curie released for releases to a 1 and surface
Above Inhalation External External
Surface of Dose - Dose -
Crops Mil k Beef Resuspended Ground Air
Nuclide TOTAL Ingest i on Ingestion Ingest ion Materi al Contam. Submersion
(p = 13) (p = 14) (p = 15) (p = 12) (p = 16) (p = 11)
C-14 2.58 E- 5 1. 74 E- 5 6.17 E- 6 2.28 E- 6 2.92 E-12 0.0 0.0
Ni -59 1.10 E- 5 7.63 E- 6 1.77 E- 6 1. 50 E - 6 2.96 E- 8 0.0 0.0
Sr-90 9.75 E- 4 9.04 E- 4 6.39 E- 5 8.50 E- 7 6.33 E- 6 0.0 0.0
Zr-93 1.82 E- 1 1.07 E- 4 3.19 E- 4 1. 44 E - 5 3.10 E- 6 1.81 E- 1 0.0
Tc-99 6.03 E- 8 4.42 E- 8 1. 38 E - 8 1.29 E- 9 9.83 E,..lO 0.0 0.0
I-'
W Sn-126 4.13 E- 2 4.02 E- 4 1.70 E- 5 1.21 E- 4 7.56 E- 6 4.07 E- 2 3.42 E- 8
(J1
1-129 2.31 E- 5 1.55 E- 5 5.64 E- 6 4.25 E- 7 2.44 E- 8 1.45 E- 6 9.19 E-12
Cs-135 4.01 E- 4 2.56 E- 4 1.15 E- 4 3.04 E- 5 2.31 E- 7 0.0 0.0
Cs-137 5.62 E- 4 8.93 E- 5 2.27 E- 5 6.04 E- 6 1.50 E- 7 4.43 E- 4 2.01 E- 9
Sm-151 2.89 E- 6 2.54 E- 6 4.76 E-I0 5.07 E- 8 1. 62 E - 7 1. 38 E - 7 2.39 E-14
Ra-226 8.42 E- 2 7.51 E- 2 8.75 E- 4 2.81 E- 5 8.62 E- 5 8.05 E- 3 1. 58 E - 8
U-234 5.70 E- 1 5.43 E- 1 2.55 E- 3 3.10 E- 6 1. 83 E - 2 6.19 E- 3 7. 08 E-11
Np-237 3.22 E- 3 2.66 E- 3 5.09 E- 7 2.15 E- 6 4.84 E- 4 7.89 E- 5 5.66 E-I0
Pu-238 3.21 E- 3 4.80 E- 4 9.78 E-lO 3.74 E-11 2.72 E- 3 1.14 E- 5 1. 58 E-12
Pu-239 5.55 E- 2 8.65 E- 3 1.78 E- 8 6.78 E-I0 4.60 E- 2 8.18 E- 4 1.16 E-ll
Pu-240 4.94 E- 2 7.52 E- 3 1.57 E- 8 5.97 E-lO 4.05 E- 2 1.31 E- 3 1. 95 E-ll
Am-241 8.98 E- 2 7.00 E- 2 9.93 E- 5 4.67 E- 7 1.27 E- 2 6.99 E- 3 9.86 E-I0
Pu-242 5.63 E- 2 8.65 E- 3 1.51 E- 8 1. 46 E - 8 4.61 E- 2 1.61 E- 3 2.14 E-ll
Am-243 1 . 03 E 0 6.82 E- 1 1. 00 E - 3 4.77 E- 6 8.98 E- 2 2.55 E- 1 3.00 E- 8
-------
APPENDIX E: FORTRAN LISTING OF
PROGRAM WESPDOSE: WESP POPULATION ENVIRONMENTAL DOSE COMMITMENT CODE
C
C J. M. SMI TH
C EPA!EERF
C P. O. BOX 3009
C MONTGOMERY,AL 36193
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
COMMON/BLK1/HEAD1(2,10),HEAD2(2,12),HEAD3(2),HEAD4(2,5),
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,10),RI(3),CF(3),WATER(30),
1POP(30),USEFR(30),GENVAR(30),PD(30),INTAKE(30).
2F(30),CP(30),FRCARB(30),DOSSUM(10),HEFSUM(12),
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
C
MAXP = 30
MAXN = 19
MAXO = 10
MAXSUM = 12
MAXP1 = 5
MAXP2 = 3
MAXP3 = 3
READ(5,903)IPRINT,(XLABEL(J),J=1,15)
READ(5, 906 )NN,NCARB, (HECON(O) ,0=1, MAXO), (WATER(P) ,POP(P) ,
1USEFR(P),GENVAR(P),PD(P),SOF(P),P=1,MAXP)
C
C
C WRITE OUT APPROPRIATE INPUT DATA AND HEADINGS.1
C
WRITE(6,909)IPRINT,IW,IB,NN,MAXO,MAXP,MAXSUM,NWLBOD,
1NCARB,OVARIE,TESTES,(P,WATER(P),POP(P),USEFR(P),GENVAR(P),PD(P),
2INTAKE(P) ,F(P) ,CP(P) ,FRCARB(P) ,SOF(P) ,IP1(P) ,IP2(P) ,IP3(P) ,P,
3P=1,MAXP),((HEAD1(IDUM,0),IDUM=1,2),0=1,MAXO),(HECON(0),0=1,MAXO)
C
WRITE(6,912)((HEAD1(IDUM,0),IDUM=1,2),0=1,MAXO)
WRITE(10,915)(JDUM,JDUM=1,MAXP2),(JDUM,JDUM=1,MAXP3)
WRI TE(l!, 918)( (HEAD1(IDUM, 0) ,IDUM= 1, 2) ,0=1, MAXO)
WRITE(12,921)
WRITE(12, 927) ((HEAD2 (IDUM,PDUM) ,IDUM=1, 2) ,PDUM= 1, MAXSUM)
WRITE (13,924)
WRITE(13,927)((HEAD2(IDUM,PDUM),IDUM=1,2),PDUM=1,MAXSUM)
WRITE(15,928) (XLABEL(J),J=1,19)
WRITE(16,928)(XLABEL(J),J=1,19)
IF(IPRINT.EQ.2)WRITE(14,930)((HEAD1(IDUM,0),IDUM=1,2),0=1,MAXO)
C
136
-------
C INITIATE LOOP TO CYCLE THROUGH NUCLIDES
DO 100 N=l,NN
PDUM=l
READ(5,940)(HEAD3(IDUM),IDUM=1,2),DIALNU,(CF(J),J=1,MAXP2),
1(RI(J),J=1,MAXP3),VG,VW,«D(J,0),0=1,MAXO),J=1,MAXPl)
C
C
WRITE(6,942)(HEAD3(IDUM),IDUM=1,2),«HEAD4(IDUM,J),IDUM=1,2),
l(D(J,O),O=l,MAXO),J=l,MAXPl)
WRITE(10,944)(HEAD3(IDUM),IDUM=1,2),DIALNU,N,(CF(J),J=1,MAXP2),
1(RI(J),J=1,MAXP3),VG,VW
C
C
C
INITIATE LOOP TO CYCLE THROUGH PATHWAYS
DO 70 P=l,MAXP
C
C INITIATE LOOP TO CYCLE THROUGH ORGANS
C
HE TOT = O.
DO 50 O=l,MAXO
C
DOS=DOSN(N,P,O)
IF(0.EQ.OVARIE.OR.0.EQ.TESTES)DOS=DOS/2.
HE(O)=DOS*HECON(O)
IF ( a .LE. MAXO-2 ) HETOT=HETOT+HE(O)
C
50
DOSSUM(O)=DOSSUM(O)+DOS
IF(0.LE.8)HEFSUM(PDUM)=HEFSUM(PDUM)+HE(0)
IF(0.GT.8)HEGSUM(PDUM)=HEGSUM(PDUM)+HE(0)
CONTINUE
IF(IPRINT.EQ.2)WRITE(14,950)(HEAD3(IDUM),IDUM=1,2),P,HETOT,
l(HE(O),O=l,MAXO)
C
IF(P.NE.5.AND.P.NE.8.AND.P.NE.10.AND.P.NE.12.AND.P.NE.15.AND.P
1.NE.16.AND.P.NE.2l.AND.P.NE.22.AND.P.NE.24.AND.P.NE.27.AND.P.NE.
228.AND.P.NE.30)GO TO 63
C
60
WRITE(11,953)(HEAD3(IDUM),IDUM=1,2),(HEAD2(IDUM,PDUM),IDUM=1,2),
l(DOSSUM(O),O=l,MAXO)
DO 60 O=l,MAXO
DOSSUM(O)=O.
PDUM=PDUM+1
CONTINUE
CONTINUE
63
70
C
WRITE(12,956)(HEAD3(IDUM),IDUM=1,2),(HEFSUM(PDUM),PDUM=1,MAXSUM)
WRITE(15,959)DIALNU,(HEFSUM(PDUM),PDUM=1,MAXSUM)
WRITE(13,956)(HEAD3(IDUM),IDUM=1,2),(HEGSUM(PDUM),PDUM=1,MAXSUM)
WRITE(16,959)DIALNU,(HEGSUM(PDUM),PDUM=1,MAXSUM)
WRITE(11,963)
IF(IPRINT.EQ.2)WRITE(14,963)
C
137
-------
FORMAT(I3,lSA4)
FORMAT(I3,2X,I3/10EI0.3/(6EI0.3»
FORMAT(36X, 'vlliSP ENVIRONMENTAL DOSE COMMITMENT ESTlMATES'///
lSSX, 'INPUT DATA'///2X, 'CALCULATION OPTION(IPRINT)=' ,I2//2X, 'IW=',
31PEI0.3,' L/Y IB=' ,lPEI0.3,' M**3/Y NN=' ,I3,4X, 'MAXO=',
413,3X, 'MAXP=' ,I3,3X, 'MAXSUM=' ,I3//2X, 'NWLBOD=' ,I3,SX, 'NCARB=',
413,SX, 'OVARIE=' ,I3,SX, 'TESTES=',
SI3///S2X, 'PATHWAY DEPENDENT INPUT DATA'//2X, 'p WATER(P) POP(P)',
63X, 'USEFR(P) GENVAR(P) PD(P) INTAKE(P) F(P) CP(P)',
73X, 'FRCARB(P) SOF(P) IPI IP2 IP3 P'/
776X, 'PERSONS'/4X, 'L/Y OR L' ,4X,
8'MAN' ,17X, 'l/M MAN/M**2 KG/Y' ,14X, 'FED/M**2 '/30(lX,I2,
910(lPEI0.3),3(lX,I3,lx),lX,I3/)///37X, 'HEALTH EFFECTS CONVERSION',
l' FACTORS, HEALTH EFFECTS/MAN REM'/lX, '(FATAL CANCERS FOR ALL "
2'ORGANS EXCEPT OVARIES AND TESTES. GENETIC EFFECTS TO FIRST',
3' GENERATION FOR OVARIES AND' ,
4' TESTES)'//lx,10(lx,2AS,lX)//10(lx,lPEI0.3,lX)///)
FORMAT(S2X, 'NUCLIDE DEPENDENT INPUT DATA'//2X, 'NUCLIDE PATHWAY',
128X, 'DOSE COMMITMENT FACTORS' /lx, '(INHALATION AND INGESTION=' ,
2'REM/CI INTAKE AIR SUBMERSION=REM/Y PER CI/M**3 GROUND',
3' CONTAMINATION=REM/Y PER CI/M**2)'//SSX'ORGAN'//21X,10(2AS»
FORMAT(//27X, '**********CF(N,IP2)********** *********RI(N,IP3), ,
l'**********'/34X, 'CI/KG PER CI/L CI INTAKE PER CI/M**2',
2' DEPOSITED VG(N) VW(N) '/29X, 'IP2=' ,I2,4X, 'IP2=' ,I2,4X,
3'IP2=' ,I2,4X, 'IP3=' ,I2,4X, 'IP3=' ,I2,4X, 'IP3=' ,I2,6X, 'M/Y' ,6X,
4'M/Y'/2X, 'NUCLIDE DIALNU(N) N'//)
FORMAT(/26X, 'SMITH FACTORS FOR POPULATION DOSE AS A FUNCTION OF',
l' NUCLIDE AND ORGAN'//14X, 'SUB' ,46X, 'ORGAN'/2X, 'NUCLIDE' ,2X,
2'PATHWAYS'/12X, 'SUMMED' ,8(lX,2AS),3X,2(lX,2AS)/)
FORMAT(/33X, 'SMITH FACTORS FOR POPULATION FATAL CANCERS',
l' AS A FUNCTION OF NUCLIDE'/)
FORMAT (22X, 'SMITH FACTORS FOR POPULATION GENETIC EFFECTS TO "
l'FIRST GENERATION AS A FUNCTION OF NUCLIDE'/)
FORMAT(/2X, 'NUCLIDE ********************',
l'*********************************SUBPATHWAYS SU1lliED**********',
2'***************************************'/9X,12(4x,2A3»
FORMAT(lH ,30A4)
FORMAT(17X, 'SMITH FACTORS FOR POPULATION HEALTH EFFECTS AS A',
l' FUNCTION OF NUCLIDE, SUBPATHWAY, AND ORGAN'//13X, 'SUB' ,47X,
2 'ORGAN' ,4SX, 'FIRST GENERATION'/2X, 'NUCLIDE PATHWAY********',
3'***********************' ,
4'FATAL CANCERS*******************************************
S'***GENETIC EFFECTS***'/17x,8(lX,2AS),3X,2(lX,2AS)/)
90
C
100
C
903
906
909
DO 90 PDU1f=l, MAXSUM
HEFSUM(PDUM) =0.
HEGSUM(PDUM)=O.
CONTINUE
912
91S
918
921
924
927
928
930
138
,
,
-------
940
942
FORMAT(A4,A3,2X,F8.3,3X,8(EIO.3)/
l(lOEIO .3))
FORMAT(j2X,A4,A3,2X,2A4,lX,lO(lPEIO.3)/(11X,2A4,lX,
1l0(lPEIO.3)) )
FORMAT(2X,A4,A3,3x,F8.3,2X,I2,2X,8(lPEIO.3))
FORMAT(2X,A4,A3,4X,I3,lX,9(lX,lPE9.2),3X,2(lX,lPE9.2))
FORMAT(2X,A4,A3,2X,2A3,lX,8(lX,lPEIO.3),3X,2(lX,lPEIO.3))
FORMAT(2X,A4,A3,2X,12(lPEIO.3))
FORMAT(lH ,F8.3,6(lPEIO.3)/lH ,6(lPEIO.3))
FORMAT(/)
STOP
END
944
950
953
956
959
963
c
139
-------
C
C
C
C
C
BLOCK DATA
THIS SUBPROGRAM CONTAINS ALL DATA STATEMENTS
DATA STATEMENTS
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
COMMON/BLK1/HEAD1(2,10) ,HEAD2(2,12) ,HEAD3(2) ,HEAD4(2,5) ,
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/ BLK2 /D (5,10) ,RI (3) ,CF (3) ,WATER(30) ,
1POP(30) ,USEFR(30) ,GENVAR(30) ,PD(30) ,INTAKE (30) ,
2F(30),CP(30),FRCARB(30),DOSSUM(10),HEFSUM(12),
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
DATA HEAD1/' BO', 'NE', 'RED M', 'ARROlJ',' LU', 'NG',' LIV', 'ER',
l' GI-', 'LLI',' THY', 'ROID',' KID', 'NEY', 'OTHER', 'ORGAN',
2' OVAR', 'IES',' TES', 'TES'/
DATA HEAD2/' 1', '-5',' 6', '-8',' 9-', '10',' 11', '-12',' 13',
1'-15',' 1','6',' 17','-21',' 2','2',' 23','-24',' 25','-27',
2' 2','8','29','-30'/
DATAHEAD4/' INH','AL1',' INH','AL2',' ING','EST','EXT ','AIR',
l'EXT " 'GND' /
DATA DOSSUM/10*0./
DATA HEFSUM/12*0./
DATA HEGSUM/12*0./
DATA IP1/3,3,3,3,3,2,5,4,3,3,4,1,3,3,3,5,l,4,3,3,3,5,4,l,3,3,3,
15,3,3/
DATA IP2/0,1,0,0,0,O,O,O,2,3,0,0,0,0,0,O,O,0,0,O,O,0,0,O,O,0,0,
10,2,3/
DATA IP3/0,O,l,2,3,O,O,O,O,0,O,O,l,2,3,0,0,O,l,2,3,0,0,0,1,2,3,
10,0,0/
DATA FRCARB/O. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0.,
1.01,0., .99,0. ,0. ,0. ,0., .01, .99,0. ,0. ,0.,1. ,0./
DATA NWLBOD,OVARIE,TESTES/8,9,10/
DATA IW,IB/603.,8401./
DATA F/O. ,0., .50, .25, .25,0. ,0. ,0. ,0. ,0. ,0. ,0., .23, .11, .11,0. ,0.,
10., .23, .11, .11,0. ,0. ,0., .23, .11, .11,0. ,0. ,0./
DATA CP/O. ,0., .001, .0015, .00021,0. ,0. ,0. ,0. ,0. ,0. ,0., .001, .0015,
1.00021,0. ,0. ,0., .001, .0015, .00021,0. ,0. ,0., .001, .0015, .00021,0.,
20. ,0./
DA TAl NT AKE /0. , 1. , O. ,0 . , 0 . ,0. ,0. ,0. ,6 . , 1. ,0. , O. ,0. ,0. ,0. ,0. , O. ,
10. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,6.,1./
C
END
C
140
-------
FUNCTION DOSN(N,P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
COMMON/BLK1/HEAD1(2,10),HEAD2(2,12) ,HEAD3(2) ,HEAD4(2,5),
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,10),RI(3),CF(3),WATER(30),
1POP(30),USEFR(30) ,GENVAR(30) ,PD(30) ,INTAKE(30),
2F(30),CP(30), ,FRCARB(30),DOSSUM(10),HEFSUM(12)
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
C
C THIS
C DOSE
C
FUNCTION SUBPROGRAM SELECTS THE PROPER FUNCTION FOR CALCULATING
FOR SUBPATHWAY P.
30
IF(N.NE.NCARB)GO TO 30
IF(P.GE.17)GO TO 9
GO TO (1,2,3,3,3,4,5,6,2,2,6,4,3,3,3,5,4,6,7,7,7,5,6,4,3,
13,3,5,8,8),P
C
1
DOSN=DOSNA(P,O)
GO TO 40
DOSN=DOSNB(P,O)
GO TO 40
DOSN=DOSNC(P,O)
GO TO 40
DOSN=DOSND(P,O)
GO TO 40
DOSN=DOSNE(P,O)
GO TO 40
DOSN=DOSNF(P,O)
GO TO 40
DOSN=DOSNG(P,O)
GO TO 40
DOSN=DOSNH(P,O)
GO TO 40
DOSN=DOSNI(P,O)
RETURN
END
*************************
2
3
4
5
6
7
8
9
40
C
C
141
-------
FUNCTION DOSNA(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADI
C
COMMON/BLKl/HEADl(2,lO),HEAD2(2,12),HEAD3(2),HEAD4(2,5),
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,lO),RI(3),CF(3),WATER(30),
IPOP(30),USEFR(30),GENVAR(30),PD(30),INTAKE(30),
2F(30),CP(30),FRCARB(30),DOSSUM(lO),HEFSUM(12),
3HEGSUM(12),IPl(30),IP2(30),IP3(30),HECON(lO),HE(lO),
4VG,VW,SOF(30),IW,IB
C
C DRINKING WATER SUBPATHWAY.
C
C
P=l
DOSNA=POP(P)*IW*D(IPl(P),O)/WATER(P)
C
RE TURN
END
C ********************
C
142
-------
FUNCTION DOSNB(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADI
C
COMMON/BLKl/HEADl(2,lO),HEAD2(2,12),HEAD3(2),HEAD4(2,S),
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(S,lO),RI(3),CF(3),WATER(30),
IPOP(30),USEFR(30),GENVAR(30),PD(30),INTAKE(30),
2F(30),CP(30),FRCARB(30),DOSSUM(lO),HEFSUM(12),
3HEGSUM(12),IPl(30),IP2(30),IP3(30),HECON(lO),HE(lO),
4VG,VW,SOF(30),IW,IB
C
C
C
C
FISH AND SHELLFISH INGESTION.
P=2,9,lO
DOSNB=CF(IP2(P»*POP(P)*INTAKE(P)*D(IPl(P),O)/WATER(P)
C
C
C
RETURN
END
********************
143
-------
FUNCTION DOSNC(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADl
C
COMMON/BLK1/HEAD1(2,lO),HEAD2(2,12),HEAD3(2),HEAD4(2,S).
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(S,lO),RI(3),CF(3),WATER(30),
IPOP(30),USEFR(30),GENVAR(30),PD(30),INTAKE(30),
2F(30),CP(30),FRCARB(30),DOSSUM(lO),HEFSUM(12),
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(lO),HE(lO),
4VG,VW,SOF(30),IW,IB
C
C ABOVE SURFACE CROPS ,MILK, BEEF
C
C
INGESTION.
P=3,4,S,13,14,lS,2S,26,27
DOSNC=USEFR(P)*F(P)*RI(IP3(P»*CP(P)*D(IP1(P),O)
C
RE TURN
END
********************
C
C
H4
-------
FUNCTION DOSND(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADI
C
CO~fMON/BLKl/HEADl(2,lO),HEAD2(2,12),HEAD3(2),HEAD4(2,5),
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
CO~ON/BLK2/D(5,10),RI(3),CF(3),WATER(30),
IPOP(30) ,USEFR(30) ,GENVAR(30),PD(30) ,INTAKE (30) ,
2F(30),CP(30) ,FRCARB(30) ,DOSSUM(lO) ,HEFSUM(12) ,
3HEGSUM(12),IPl(30) ,IP2(30),IP3(30),HECON(10) ,HE(lO),
4VG,VW,SOF(30),IW,IB
C
C INHALATION OF RESUSPENDED MATERIAL.
C
C
P=6,12,17,24
DOSND=GENVAR(P)*PD(P)*IB*D(IPl(P),O)*USEFR(P)
C
RETURN
END
C ********************C
145
-------
FUNCTION DOSNE(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
COMMON/BLK1/HEAD1(2, 10) ,HEAD2 (2,12) ,HEAD3 (2) ,HEAD4 (2,5) .
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,10),RI(3),CF(3),WATER(30),
1POP(30) ,USEFR(30) ,GENVAR(30) ,PD(30) ,INTAKE (30) ,
2F(30) ,CP(30) ,FRCARB(30) ,DOSSUM(10) ,HEFSUM(12) ,
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
C
C
C
EXTERNAL DOSE--GROUND CONTAMINATION.
P=7,16,22,28
DOSNE=USEFR(P)*PD(P)*D(IP1(P),0)*SOF(P)
C
C
C
RE TURN
END
********************
146
-------
FUNCTION DOSNF(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
COMMON/BLK1/HEAD1(2,10) ,HEAD2(2,12) ,HEAD3(2) ,HEAD4(2,S) ,
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(S,10),RI(3) ,CF(3) ,WATER(30) ,
1POP(30) ,USEFR(30) ,GENVAR(30) ,PD(30) ,INTAKE (30) ,
2F(30) ,CP(30) ,FRCARB(30) ,DOSSill1(10) ,HEFSUM(12),
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
C
C
C
EXTERNAL DOSE--AIR SUBMERSION.
P=8, 11,18,23
DOSNF=GENVAR(P)*PD(P)*USEFR(P)*D(IP1(P),O)*SOF(P)
C
C
C
RE TURN
END
********************
147
-------
FUNCTION DOSNG(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADI
C
COMMON/BLKl/HEADl(2,lO),HEAD2(2,12),HEAD3(2),HEAD4(2,5),
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,lO),RI(3),CF(3), ,WATER(30)
IPOP(30) ,USEFR(30) ,GENVAR(30) ,PD(30) ,INTAKE(30).
2F(30),CP(30),FRCARB(30),DOSSUM(lO), ,HEFSUM(12)
3HEGSUM(12) ,IPl(30) ,IP2(30) ,IP3(30),HECON(lO) ,HE(lO),
4VG,VW,SOF(30),IW,IB
C
C ABOVE SURFACE CROPS ,MILK, BEEF
C
C
INGESTION.
P=19,20,21
DOSNG=VG*D(IPl(P),O)*RI(IP3(P))*F(P)*CP(P)*GENVAR(P)
C
RE TURN
END
C ********************
C
148
-------
FUNCTION DOSNH(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEADI
C
COMMON/BLKl/HEADl(2,10) ,HEAD2(2,12) ,HEAD3(2) ,HEAD4(2,5) ,
IDIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
COMMON/BLK2/D(5,lO),RI(3),CF(3),WATER(30),
IPOP(30) ,USEFR(30) ,GENVAR(30),PD(30) ,INTAKE (30) ,
2F(30),CP(30),FRCARB(30),DOSSUM(lO) ,HEFSUM(12) ,
3HEGSUM(12),IPl(30) ,IP2(30) ,IP3(30),HECON(lO) ,HE(lO),
4VG,VW,SOF(30),IW,IB
C
C
C
C
OCEAN FISH AND SHELLFISH INGESTION.
P=29,30
DOSNH=CF(IP2(P))*INTAKE(P)*POP(P)*D(IPl(P),0)*VW*
IGENVAR(P)/WATER(P)
C
C
C
RETURN
END
********************
149
-------
FUNCTION DOSNI(P,O)
C
C
INTEGER*2 P,O,PDUM,OVARIE,TESTES
REAL*4 IW,INTAKE,IB
REAL*8 HEAD1
C
CO~fMON/BLK1/HEAD1(2,10),HEAD2(2,12),HEAD3(2),HEAD4(2,5),
1DIALNU,NN,NWLBOD,NCARB,IPRINT,OVARIE,TESTES,XLABEL(30)
C
CO~ON/BLK2/D(5,10),RI(3),CF(3),WATER(30),
1POP(30),USEFR(30),GENVAR(30),PD(30),INTAKE(30),
2F(30),CP(30),FRCARB(30),DOSSUM(10),HEFSUM(12),
3HEGSUM(12),IP1(30),IP2(30),IP3(30),HECON(10),HE(10),
4VG,VW,SOF(30),IW,IB
C
C HANDLES ALL DOSE CALCULATIONS FOR C-14
C PATHWAYS, P=17 THROUGH 30.
C
FOR VOLCANO/METEORITE
20
40
965
IF(D(IP1(P) ,NWLBOD) .EQ .0. .AND.D(IP1(P) ,0) .NE.O. )GO TO 20
IF(D(IP1(P),NWLBOD).EQ.0..AND.D(IP1(P),0).EQ.0.)GO TO 40
DOSNI=FRCARB(P)*D(IP1(P),0)/D(IP1(P),NWLBOD)
GO TO 60
WRITE(6, 965)
DOSNI=O.
FORMAT(/2X, 'YOU IDIOT--YOU HAVE SET WHOLE BODY DOSE',
l' FACTOR FOR CARBON TO ZERO vITTHOUT SETTING' /2X, 'OTHER' ,
2' DOSE FACTORS TO ZERO'/)
C
60
RE TURN
END
150
-------
APPENDIX F
SAMPLE RUN OF WESP
ENVIRONMENTAL DOSE COMMITMENT ESTIMATES
151
-------
INPUT DATA
CALCULATION OPTION(IPRINT)= 2
IW= 6.030E+02 L/Y
IB= 8.401E+03 M**3/Y
NWLBOD= 8
OVARIE= 9
NN= 19
TESTES= 10
MAXO= 10
MAXP= 30
MAXSUM= 12
NCARB= 1
PATHWAY DEPENDENT INPUT DATA
P WATER(P)
POP(P)
USEFR(P) GENVAR(P)' PD(P)
INTAKE(P)
......
U'1
W
CP(P) FRCARB(P) SOF(P)
PERSONS
L/Y OR L MAN 11M MAN/M**2 KG/Y FED/M**2
1 3.000E+16 1.000E+10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3.000E+16 1.000E+10 0.0 0.0 0.0 1.000E+OO 0.0 0.0 0.0 0.0
3 0.0 0.0 5.000E-01 0.0 0.0 0.0 5.000E-01 1.000E-03 0.0 0.0
4 0.0 0.0 5.000E-01 0.0 0.0 0.0 2.500E-01 1.500E-03 0.0 0.0
5 0.0 0.0 5.000E-01 0.0 0.0 0.0 2.500E-01 2.100E-04 0.0 0.0
6 0.0 0.0 5.000E-01 1.000E-09 6.670E-05 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 5.000E-01 0.0 6.670E-05 0.0 0.0 0.0 0.0 3.330E-01
8 0.0 0.0 5.000E-01 1.000E-09 6.670E-05 0.0 0.0 0.0 0.0 3.330E-01
9 2.700E+19 1.000E+10 0.0 0.0 0.0 6.000E+OO 0.0 0.0 0.0 0.0
10 2.700E+19 1.000E+10 0.0 0.0 0.0 1.000E+OO 0.0 0.0 0.0 0.0
11 0.0 0.0 1.000E+OO 1.000E-09 6.670E-05 0.0 0.0 0.0 0.0 1.000E+00
12 0.0 0.0 1.000E+OO 1.000E-09 6.670E-05 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 1.000E+OO 0.0 0.0 0.0 2.300E-01 1.000E-03 0.0 0.0
14 0.0 0.0 1.000E+OO 0.0 0.0 0.0 1.100E-01 1.500E-03 0.0 0.0
15 0.0 0.0 1.000E+OO 0.0 0.0 0.0 1.100E-01 2.100E-04 0.0 0.0
16 0.0 0.0 1.000E+OO 0.0 6.670E-050.0 0.0 0.0 0.0 1.000E+OO
17 0.0 0.0 1.000E+OO 7.720E-05 6.670E-05 0.0 0.0 0.0 1.000E-020.0
18 0.0 0.0 1.000E+OO 7.720E-05 6.670E-05 0.0 0.0 0.0 0.0 1.000E+OO
19 0.0 0.0 0.0 7.720E-05 0.0 0.0 2.300E-01 1.000E-03 9.900E-01 0.0
200.0 0.0 0.0 '7.720E-050.0 0.0 1.100E-01 1.500E-03 0.0 0.0
21 0.0 0.0 0.0 7.720E-050.0 0.0 1.100E-01 2.100E-04 0.0 0.0
22 0.0 0.0 1.000E+OO 0.0 6.670E-050.0 0.0 0.0 0.0 1.000E+OO
230.0 0.0 1.000E+OO 1.000E-09 6.670E-05 0.0 0.0 0.0 0.0 1.090E+OO
24 0.0 0.0 1.000E+OO 1.000E-09 6.670E-05 0.0 0.0 0.0 1.000E-02 0.0 i
250.0 0.0 1.000E+OO 0.0 0.0 0.0 2.300E-01 1.000E-03 9.900E-01 0.0'
26 0.0 0.0 1.000E+OO 0.0 0.0 0.0 1.100E-01 1.500E-03 0.0 0.0
270.0 0.0 1.0ooE+OO 0.0 0.0 0.0 1.100E-01 2.100E-04 0.0 0.0
28 0.0 0.0 1.000E+OO 0.0 6.670E-050.0 0.0 0.0 0.0 1.000E+OO
29 2.700E+19 1.000E+10 0.0 7.720E-050.0 6.000E+OO 0.0 0.0 1.000E+OO 0.0
30 2.700E+19 1.000E+10 0.0 7.720E-050.0 1.000E+OO 0.0 0.0 0.0 0.0
F(P)
IP1 IP2 IP3
3
3
3
3
3
2
5
4
3
3
4
1
3
3
3
5
1
4
3
3
3
5
4
1
3
3
3
5
3
3
a
1
o
o
o
o
a
o
2
3
o
o
a
o
o
o
o
o
o
o
o
o
o
o
a
o
o
o
2
3
o
o
1
2
3
a
a
o
o
o
o
o
1
2
3
o
o
o
1
2
3
o
o
o
1
2
3
o
o
a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
-------
HEALTH EFFECTS CONVERSION FACTORS, HEALTH EFFECTS/MAN REM
(FATAL CANCERS FOR ALL ORGANS EXCEPT OVARIES AND TESTES. GENETIC EFFECTS TO FIRST GENERATION FOR OVARIES AND TESTES)
1.000E-05
BONE
RED MARROW
OVARIES
TESTES
LUNGS
KIDNEYS
OTHERORGAN
LIVER
GI -LLI
WALL
2.000E-05
THYROID
2.000E-05
2.000E-05
4.000E-05
4.000E-05
1 . OOOE -06
1. OOOE -05
7.000E-05
1.000E-05
NUCLIDE DEPENDENT INPUT DATA
DOSE C();,UTMENT FACTORS
AIR SUBMERSION=REM/Y PER CI/M**3
NUCLIDE PATHWAY
(INHALATION AND INGESTION=REM/CI INTAKE
C-14
I-'
(Jl
.po
NI -59
SR-90
ZR-93
TC-99
INHALl
INHAL2
INGEST
EXT AIR
EXT GND
INHAL1
INHAL2
INGEST
EXT AIR
EXT GND
INHALl
INHAL2
INGEST
EXT AIR
EXT GND
I NHALl
INHAL2
INGEST
EXT AIR
EXT GND
I NHALl
INHAL2
INGEST
EXT AIR
EXT GND
GROUND CONTAMINATION=REM/Y PER CI/M**2)
BONE
ORGAN
LIVER
TESTES
KIDNEYS OTHER ORGAN OVARIES
GI-LLI
WALL
8.460E+OO 2.420E+01 6.180E+OO 8.880E+OO 7.220E+OO 6.480E+OO 7.920E+OO 1.410E+01 5.290E+OO 5.420E+OO
8.460E+OO 2.420E+01 6.180E+OO 8.880E+OO 7.220E+OO 6.480E+OO 7.920E+OO 1.410E+01 5.290E+00 5.420E+OO
1.170E+03 3.380E+03 8.490E+02 1.230E+03 1.460E+03 8.890E+02 1.060E+03 1.920E+03 7.360E+02 7.230E+02
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RED MARROW
LUNGS
THYROID
1.290E+04 2.150E+03 8.470E+03 4.983E+03 7.120E+02 2.150E+03 2.150E+03 2.150E+03 2.150E+03 2.150E+03
1.290E+04 2.150E+03 8.470E+03 4.980E+03 3.560E+02 2.150£+03 2.150E+03 2.150E+03 2.150E+03 2.150E+03
9.670E+03 1.610E+03 1.610E+03 3.320E+03 9.700E+02 1.610E+03 1.610E+03 1.610E+03 1.610E+03 1.610E+03
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.210E+05 1.210E+05 8.540E+06 1.930E+04 9.310E+05 3.740E+03 3.740E+03 1.510E+05 3.740E+03 3.730£+03
3.000E+06 1.100E+06 4.920E+04 1.490E+04 5.500E+04 1.540E+04 1.540E+04 2.410E+05 1.540E+04 1.540E+04
1.200E+06 4.300E+05 1.570E-02 5.710E+03 1.980£+05 5.990E+03 5.990£+03 9.500E+04 5.990E+03 5.990E+03
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.470E+03 1.750E+03 5.850E+04 2.930E+03 7.160E+03 1.600E+03 1.360E+03 2.500E+03 1.040E+03 1.470E+02
4.120E+03 2.460E+03 3.080E+04 2.110£+03 6.980E+03 1.320E+03 1.320E+03 2.130E+03 1.460£+03 4.950E+02
1.970E+02 3.340E+02 3.900E+01 1.430£+02 1.750E+04 1.69OE+01 1.990E+02 2.470E+02 1.360E+03 1.340E+02
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04 1.780E+04
2.420E+02 2.150E+02 5.220E+04 4.210E+02 1.660E+03 9.460E+03 3.070E+02 8.870E+02 2.120E+02 2.120E+02
2.420E+02 2.150E+02 5.220£+04 4.210E+02 1.660E+03 9.460E+03 3.070E+02 8.870E+02 2.120E+02 2.120E+02
3.610£+02 3.220E+02 0.0 6.280E+02 3.200E+03 1.410£+04 4.580E+02 2.140E+02 3.170E+02 3.170E+02
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-------
SN-126 INHALl
I NHAL2
INGEST
EXT AIR
EXT GND
1-129 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
CS-135 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
CS-137 INHALl
I--' INHAL2
U1
U1 INGEST
EXT AIR
EXT GND
SM- 1 51 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
RA-226 INHALl
INHAL2
INGEST
EXT AIR
EX T GND
U-234 I NHALl
INHAL2
INGEST
EXT AIR
EXT GND
NP-237 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
BONE
ORGAN
LIVER
TESTES
LUNGS
RED MARROW
GI-LLI
WALL
1.580E+05 1.580E+05 1.270E+06 4.190£+03 7.600£+04 1.230£+03 6.160E+03 6.160E+03 6.160£+03 6.160E+03
1.580E+05 1.580E+05 1.270E+06 4.190E+03 7.600E+04 1.230E+03 6.160E+03 6.160E+03 6.160E+03 6.160E+03
8.570E+04 8.570E+04 3.110E+03 1.690E+03 1.180£+05 4.990E+02 2.83OE+03 2.820E+03 2.820£+03 2.820£+03
1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07 1.150E+07
2.090E+05 2.090E+05 2.090E+05 2.090E+05 2.090E+05 2.090E+05 2.090E+05 2.090E+05 2.090£+05 2.090E+05
THYROID
KIDNEYS OTHER ORGAN OVARIES
5.790E+02 6.050E+02 7.880E+02 4.660E+02 4.280E+01 5.000E+06 4.490E+02 2.050E+03 3.78OE+02 3.570E+02
5.790E+02 6.050E+02 7.880E+02 4.660E+02 4.280E+01 5.ooOE+06 4.490E+02 2.050E+03 3.780£+02 3.570£+02
9.020E+02 9.420E+02 1.790E+02 7.240E+02 6.700£+01 7.800E+06 7.020E+02 3.180E+03 5.920E+02 5.580E+02
1.450E+05 1.310£+05 4.850E+04 3.600E+04 1.150E+04 1.010£+05 5.380E+04 9.540E+04 3.400E+04 1.310E+05
8.730E+03 7.870E+03 2.910E+03 2.160E+03 6.900E+02 6.040E+03 3.230E+03 5.730E+03 2.040E+03 7.880E+03
7.470E+03 7.470E+03 6.400E+02 7.470£+03 8.510£+01 7.480£+03 7.470E+03 4.400E+03 7.470E+03 7.470£+03
7.470E+03 7.470E+03 6.400E+02 7.470E+03 8.510£+01 7.480E+03 7.470E+03 4.400£+03 7.470E+03 7.470E+03
1.120E+04 1.120E+04 0.0 1.120£+04 5.350E+02 1.130E+04 1.120E+04 6.610E+03 1.120E+04 1.120E+04
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.540£+04 4.910E+04 1.620E+04 5.230£+04 1.600E+04 4.470£+04 5.130E+04 3.260E+04 5.000E+04 4.440£+04
4.540£+04 4. 910E+04 1.620£+04 5.230£+04 1.600£+04 4.470E+04 5.130E+04 3.260£+04 5.000E+04 4.440£+04
6.820E+04 7.380E+04 1.990E+04 7.870£+04 2.590£+04 6.720E+04 7.730E+04 4.910E+04 7.540£+04 6.680E+04
4.660£+064.450£+06 3.600E+06 3.180E+06 2.750E+06 4.020E+06 3.380E+06 3.810E+06 1.390E+06 4.240£+06
8.29OE+04 7.920E+04 6.400£+04 5.650£+04 4.9OOE+04 7.150E+04 6.030E+04 6.790E+04 2.490E+04 7.550£+04
5.100E+02 2.090E+02 6.780E+04 1.900E+03 3.040£+03 1.920£+01 5.540E+02 1.090E+03 1.470E+01 1.070£+01
4.910E+03 1.940E+03 1.590£+04 1.890E+04 2.810E+03 1.040E+02 5.380E+03 1.190E+03 1.09OE+02 1.030E+02
4.910E+OO 3.200£+00 1.050E-01 1.730£+01 5.850E+03 1.030E-01 5.520E+OO 2.340E+01 5.660£+00 5.360E-01
2.440E+01 2.130£+01 4.240E+OO 2.350£+00 2.920E+OO 9.060E+OO 7.020E+OO 3.070£+01 3.920E+OO 3.880E+01
4.590E+OO 4.000£+00 7.960E-01 4.410£-01 5.480£-01 1.700£+00 1.320£+00 5.780E+OO 7.360E-01 7.300£+00
1.100E+07 9.800E+05 2.810E+07 3.400E+05 1.000E+05 3.400E+05 3.490E+05 4.600E+06 3.400£+05 3.4ooE+05
1.100E+07 9.800£+05 2.810E+07 3.400£+05 1.000£+05 3.400E+05 3.490£+05 4.600E+06 3.400E+05 3.400£+05
6.320E+07 2.140£+06 2.710E+02 1.870£+06 8.160E+05 8.010E+05 5.790£+06 7.790E+06 8.060E+05 8.010E+05
1.500E+07 1.390£+07 1.270£+07 1.120E+07 1.030E+07 1.280£+07 1.060E+07 1.180E+07 9.900E+06 1.130£+07
2,520E+05 2.340E+05 2.070E+05 1.850E+05 1.690E+05 2.120E+05 1.750E+05 2.210E+05 1.630E+05 1.890E+05
2.000E+07 8.100£+05 2.730E+08 5.900£+05 5.480£+04 5.900E+05 8.700E+05 9.800£+06 5.900E+05 5.900E+05
5.9OOE+07 2.400E+06 2.800£+07 1.700£+06 4.79OE+04 1.700E+06 2.500£+06 5.500E+06 1.7ooE+06 1.700E+06
2.000£+07 8.000E+05 8.230E+02 5.800E+05 8.860£+04 5.800£+05 8.500£+05 1.700£+06 5.800E+05 5.800E+05
2.940E+03 2.640E+03 1.030E+03 7.640E+02 8.560E+02 1.280E+03 8.130E+02 2.490E+03 6.640E+02 2.090E+03
5.630£+02 5.050E+02 1.970E+02 1.460£+02 1.640E+02 2.460£+02 1.560E+02 4.780E+02 1.270E+02 4.000£+02
9.0~0£+O8 3.010E+08 2.900E+08 4.020E+08 1.380E+05 3.000£+06 5.200£+07 8.500E+07 1.800E+06 5.800£+06
2.240E+09 7.470E+08 3.000E+07 9.910E+08 1.260E+05 7.400E+06 1.280E+08 1.900E+08 4.600E+06 1.400E+07
1. 900£ +07 6. 200E +06 8.87OE +02 8. 200E +06 1. 460E +05 6.080E +04 1.100E +06 1. 600E+06 3. 900E+04 1. 200£+05
3.270£+06 3.030E+06 1.790E+06 1.560E+06 1.130£+06 2.150E+06 1.500E+06 2.050E+06 1.020E+06 2.410£+06
7.250E+04 6.720E+04 3.970E+04 3.460E+04 2.500£+04 4.470£+04 3.340E+04 4.570E+04 2.270E+04 5.350E+04
-------
PU-238 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
PU-239 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
PU-240 INHALl
INHAL2
~ INGEST
tJ1
CY> EXT AIR
EXT GND
AM-241 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
PU-242 I NHALl
INHAL2
INGEST
EXT AIR
EXT GND
AM-243 INHALl
INHAL2
INGEST
EXT AIR
EXT GND
BONE
lUNGS
ORGAN
LIVER
TESTES
RED MARROW
GI-LLI
WALL
7.910E+08 2.640E+08 3.090E+08 3.550E+08 6.200E+04 2.600E+06 4.600E+07 7.600E+07 1.600E+06 5.000E+06
2.030E+09 6.770E+08 3.200E+07 9.070E+08 5.510E+04 6.600E+06 1.170E+08 1.730E+08 4.100E+06 1.300E+07
5.000E+05 1.700E+05 7.890E-02 2.200E+05 1.100E+05 1.640E+03 2.910E+04 4.320E+04 1.030E+03 3.200E+03
1.260E+03 1.090E+03 3.020E+02 1.330E+02 4.450~+O2 2.460E+02 1.770E+02 1.660E+03 1.860E+02 1.320E+03
2.470E+02 2.140E+02 5.920E+01 2.600E+01 8.710E+01 4.810E+01 3.460E+01 3.250E+02 3.640E+01 2.580E+02
THYROID
KIDNEYS OTHERORGAN OVARIES
9.120E+08 3.040E+08 2.940E+08 4.040E+08 5.780E+04 3.000E+06 5.200E+07 8.600E+07 1.8ooE+06 5.800E+06
2.280E+09 7.610E+08 3.000E+07 1.000E+09 5.130E+04 7.400E+06 1.300E+08 1.920E+08 4.600E+06 1.500E+07
5.7ooE+05 1.900E+05 6.090E-02 2.500E+05 9.860E+04 1.850E+03 3.220E+04 4.820E+04 1.150E+03 3.600E+03
6.410E+02 5.610E+02 1.710E+02 9.380E+01 1.900E+02 1.890E+02 1.230E+02 7.220E+02 1.170E+02 6.110E+02
1.220E+02 1.070E+02 3.240E+01 1.780E+01 3.600E+01 3.590E+01 2.330E+01 1.370E+02 2.210E+01 1.160E+02
9.130E+08 3.040E+08 2.950E+08 4.050E+08 5.820E+04 3.000E+06 5.200E+07 8.600E+07 1.800E+06 5.800E+06
2.280E+09 7.600E+08 3.100E+07 1.010E+09 5.170E+04 7.400E+06 1.300E+08 1.940E+08 4.600E+06 1.500E+07
5.700E+05 1.900E+05 8.320E-02 2.500E+05 9.930E+04 1.840E+03 3.220E+04 4.830E+04 1.150E+03 3.600E+03
1.160E+03 1.000E+03 2.890E+02 1.400E+02 3.990E+02 2.530E+02 1.780E+02 1.460E+03 1.800E+02 1.170E+03
2.250E+02 1.960E+02 5.640E+01 2.720E+01 7.790E+01 4.930E+01 3.470E+01 2.850E+02 3.520E+01 2.280E+02
9.430E+08 3.140E+08 3.130E+08 4.190E+08 6.520E+04 3.100E+06 5.400E+07 8.900E+07 1.900E+06 6.000E+06
2.350E+09 7.830E+08 3.200E+07 1.040E+09 6.110E+04 7.700E+06 1.340E+08 1.990E+08 4.800E+06 1.500E+07
1.900E+07 6.400E+06 1.270E+02 8.500E+06 1.100E+05 6.320E+04 1.100E+06 1.600E+06 3.940E+04 1.200E+05
2.720E+05 2.480E+05 1.010E+05 8.300E+04 5.680E+04 1.380E+05 8.800E+04 1.440E+05 8.510E+04 1.260E+05
1 420E+04 1.300E+04 5.300E+03 4.330E+03 2.960E+03 7.210E+03 4.590E+03 7.500E+03 4.440E+03 6.570E+03
8.690E+08 2.890E+08 2.800E+08 3.850E+08 5. 510E+04 2.800E+06 5.000E+07 8.200E+07 1.800E+06 5.500E+06
2.170E+09 7.220E+08 2.900E+07 9.560E+08 4.900E+04 7.100E+06 1.230E+08 1.840E+08 4.400E+06 1.4ooE+07
5.400E+05 1.800E+05 1.600E-01 2.400E+05 9.400E+04 1.760E+03 3.060E+04 4.600E+04 1.090E+03 3.420E+03
1.040E+03 8.930E+02 2.360E+02 9.370E+01 3.650E+02 1.770E+02 1.320E+02 1.390E+03 1.51cE+02 1.100E+03
2.030E+02 1.750E+02 4.630E+01 1.840E+01 7.160E+01 3.470E+01 2.590E+01 2.720E+02 2.970E+01 2.170E+02
9.430E+08 1.560E+09 3.030E+08 4.210E+08 3.220E+05 3.100E+06 5.400E+07 8.900E+07 1.900E+06 6.000E+06
2.340E+09 3.870E+09 3.100E+07 1.040E+09 1.500E+05 7.700£+06 1.340E+08 1.990E+08 4.800E+06 1.500E+07
1.900E+07 3.200E+07 9.640E+02 8.500E+06 1.490E+05 6.340E+04 1.100E+06 1.600E+06 4.070E+04 1.200E+05
2.170E+06 2.010E+06 1.060E+06 9.140E+05 6.490E+05 1.330E+06 8.970E+05 1.290E+06 6.760E+05 1.410E+06
5. 290E+04 4.880E+04 2.630E+04 2.260E+04 1.610E+04 3.260E+04 2.210E+04 3.150E+04 1.650E+04 3.480E+04
-------
NUCL IDE DIALNU(N) N
C-14 6.014 1
NI-59 28.059 2
SR-90 38.090 3
ZR-93 40.093 4
TC-99 43.099 5
- SN-126 50.126 6
U'1 1-129 53.129" 7
"'-J CS-135 55.135 8
CS-137 55.137 9
SM- 1 51 62.151 10
RA-226 88.226 11
U-234 92.234 12
NP-237 93.237 13
PU-238 94.238 14
PU-239 94.239 15
PU-240 94.240 16
AM-241 95.241 17
PU-242 94.242 18
AM-243 95.243 19
**********Cf(N,IP2)********** *********RI(N,IP3)**********
CI/KG PER CI/L CI INTAKE PER CI/M**2 DEPOSITED
IP2= 1 IP2= 2 IP2= 3 IP3= 1 IP3= 2 IP3= 3
VG(N)
M/Y
VW(N)
M/Y
4.550E+03 1.000E+OO 1.000E+OO 3.250E+02 1.610E+02 4.240E+02 3.160E+05 6.310E+05
1.000E+02 5.000E+02 1.000E+02 3.950E+OO 1.280E+OO 7.720E+OO 3.160E+05 6.310E+05
5.000E+OO 1.000E+OO 1.000E+OO 1.056E+01 1.040E+OO 9.890E-02 3.160E+05 6.310E+05
3.330E+OO 3.000E+01 1.000E+02 3.110E+OO 1.292E+01 4.170E+00 3.160E+05 6.310E+05
1.500E+01 1.000E+01 1.000E+02 6.370E+OO 2.770E+OO 1.840E+OO 3.160E+05 6.310E+05
3.000E+03 3.oo0E+OO 3.000E+OO 3.800E+OO 2.240E-01 1.134E+01 3.160E+05 6.310E+05
1.500E+01 2.000E+01 1.000E+02 3.180E+OO 1.610E+OO 8.670E-01 3.160E+05 6.310E+05
4.000E+02 3.000E+01 5.000E+01 6.700E+OO 4.200E+OO 7.950E+00 3.160E+05 6.310E+05
4.0ooE+02 3.000E+01 5.000E+01 3.130E+OO 1.110E+OO 2.110E+OO 3.160E+05 6.310E+05
2.500E+01 2.500E+01 1.ooOE+03 3.020E+OO 7.910E-04 6.000E-01 3.160E+05 6.310E+05
5.000E+01 5.000E+01 1.000E+02 8.190E+OO 1.330E-01 8;5OOE-02 3.160E+05 6.310E+05
1.000E+01 1.000E+01 1.000E+01 1.360E+01 8.900E-02 7.730E-04 3.160E+05 6.310E+05
1.000E+01 1.000E+01 1.000E+01 2.850E+OO 7.600E-04 2.300E-02 3.160E+05 6.310E+05
13. 500E +02 3. 500E +00 1. OOOE +02 2. 91 OE +00 8. 290E -06 2. 260E -06 3. 160E +05 6.31 OE +05
3.500E+02 3.500E+OO 1.000E+02 4.680E+OO 1.340E-05 3.650E-06 3.160E+05 6.310E+05
3.500E+02 3.500E+OO 1.000E+02 4.420E+OO 1.280£-05 3.490E-06 3.160E+05 6.310E+05
2.500E+01 2.500E+01 1.000E+03 3.420E+OO 6.760E-03 2.270E-04 3.160E+05 6.310E+05
3.500E+02 3.500E+OO 1.000E+02 4.770E+OO 1.160E-05 8.000E-05 3.160E+05 6.310E+05
2.500E+01 2.500E+01 1.000E+03 5.060E+OO 1.040E-02 3.520E-04 3.160E+05 6.310E+05
-------
INTERIM FACTORS FOR POPULATION DOSE AS A FUNCTION OF NUCLIDE AND ORGAN
ORGAN
NUCL IDE PATHWAYS
SUM/IE D BONE RE D MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHER ORGAN OVARIES TESTES
WALL
C-14 1-5 1.454E-+Q2 4. 201 E-+Q2 1.055E-+Q2 1 .52 9E -+Q2 1 . 81 5E -+Q2 1.105E+02 1. 317E -+Q2 2. 386E-+Q2 4. 574E+01 4. 493E +01
C-14 6-8 2.370E"{)9 6.780E"{)9 1. 731 E..{)9 2. 488E-09 2.023E"{)9 1.816E-09 2.219E-09 3. 950E..{)9 7.411E-10 7.593E-10
C-14 9-10 3.033E"{)6 8.763E..{)6 2.20lE"{)6 3.189E"{)6 3.785E-Q6 2.305E-06 2.748E-06 4.97BE-06 9.541E-07 9.372E-07
C-14 11-12 4.741E"{)9 1.356E"{)8 3.463E-09 4.976E"{)9 4.046E-09 3.631E-09 4.438E-09 7.901E-09 1.482E-09 1.519E-09
C-14 13- 15 1 . 300E -+Q2 3. 755E -+Q2 9. 433E -+Q1 1.367E-+Q2 1.622E-+Q2 9. 878E+01 1. 178E -+Q2 2. 133E -+Q2 4.089E+01 4.017E+0l
C-14 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 17 - 21 6.093E-0l 1. 760E -+QO 4.421E-0l 6.40SE-Ol 7. 579E-01 4.630E-01 5.522E-0l 1.000E+OO 1.916E-0l 1.883E-01
C-14 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 23-24 6.000E"{)3 1. 716E-02 4. 383E..{)3 6.298E-03 5.121E-03 4.596E-03 5.617E-03 1.000E-02 1. 876E-03 1. 922E-03
C-14 25-27 6.033E"{)1 1. 743E +00 4.378E-01 6.342E-01 7. 528E -01 4. 584E..{)1 5.466E-01 9.900E-01 1. 897E -01 1. 864E -01
C-14 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 29 -30 6.094E"{)1 1 . 760E -+QO 4. 422E..{) 1 6.406E-01 7.604E"{)1 4.630E-01 5.52lE-01 1 . OOOE -+QO 1.917E-01 1. 883E-01
~ NI -59 1-5 1. 61 OE -+Q1 2.680E-+Q0 2.680E-+Q0 5.52 6E -+QO 1. 615E -+QO 2 . 68 OE -+QO 2.680E-+Q0 2.680E-+Q0 1.340E-+Q0 1 . 340E +00
U"1 NI -59 6-8 3.614E-06 6.024E"{)7 2.373E"{)6 1.395E-06 9.974E"{)8 6.024E-07 6.024E-07 6.024E-07 3.012E-07 3.0l2E-07
OJ NI-59 9-10 1.110E..{)2 1. 849E..{)3 1.849E"{)3 3.812E"{)3 1.114E-03 1.849E-03 1. 849E-03 1.849E-03 9.243E-04 9.243E-04
NI -59 11-12 7. 228E -06 1. 205E-06 4.746E-06 2.792E"{)6 3. 990E..{) 7 1.205E-06 1. 205E-06 1 . 205E -06 6.024E-07 6.024E-07
NI-59 13-15 1.255E-+Q1 2.090E-+Q0 2 . 09 OE -+Q(I 4.309E-+Q0 1.259E-+Q0 2.090E-+Q0 2.090E-+Q0 2.090E-+Q0 1 . 045E -+QO 1. 045E +00
NI -59 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 17 -21 3.068E -+Q2 5. 107E -+Q1 5. 135E-+Q1 1. 053E -+Q2 3.075E -+Q1 5.107E+01 5.107E+01 5.107E+01 2. 554E +01 2. 554E +01
NI -59 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 23-24 7.228E"{)6 1.205E"{)6 4.746E..{)6 2.792E-06 3.990E-07 1.205E-06 1.205E-06 1.205E-06 6.024E-07 6.024E-07
NI -5 9 25-27 1.2551': -+Q1 2. 090E -+QO 2. 090E -+QO 4.309E-+Q0 1. 259E -+QO 2.090E-+Q0 2.090E-+Q0 2.090E-+Q0 1 . 045E -+QO 1 . 045E -+QO
NI-59 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI -59 29 -30 5.408E"{)1 9.005E-02 9.005E"{)2 1.857E-Q1 5.425E-02 9.005E-02 9.005E-02 9.005E-02 4.502E-02 4.502E-02
SR-90 1-5 3. 648E -+Q3 1.307E-+Q3 4.773E..{)5 1 . 73 6E -+Q1 6.020E-+Q2 1.821E+01 1. 821 E +01 2.888E+02 9.1 06E -+QO 9.106E-+Q0
SR-90 6-8 8.405E"{)4 3.082E"{)4 1. 378E..{)5 4.175E-06 1.541 E-05 4.315E-06 4.315E-06 6.752E-05 2.157E-06 2.157E-06
SR-90 9-10 3.111E"{)3 1.115E-Q3 4.070E-11 1. 480E-05 5.133E-04 1. 553E-05 1.553E-05 2.463E-04 7. 765E-06 7. 765E-06
SR-90 11-12 1.799E-Q4 6.780E..{)5 4.785E"{)3 1.081 E-05 5.217E-04 2.096E-06 2.096E-06 8.461E-05 1 . 048E -06 1.045E-06
SR-90 13-15 3. 123E -+Q3 1. 11 9E -+Q3 4.086E"{)5 1 . 486E +01 5.153E-+Q2 1. 559E +01 1. 559E+01 2.473E+02 7.795E+OO 7. 795E +00
SR-90 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 17-21 7.621E-+Q4 2.731E-+Q4 3. 694E -+Q2 3. 634E-+Q2 1. 261 E +04 3.80 5E -+Q2 3.805E+02 6.038E+03 1 . 902E -+Q2 1. 902E +02
SR-90 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 23-24 1.799E"{)4 6.780E-Q5 4.785E-Q3 1.081 E-05 5.217E-04 2.096E-06 2.096E-06 8.461E-05 1. 048E -06 1. 04 5E -06
SR-90 25-27 3.123E-+Q3 1.119E+03 4.086E"{)5 1 . 486E -+Q 1 5.153E+02 1. 559E -+Q1 1 . 559E +01 2.473E+02 7.795E-+Q0 7.795E-+Q0
SR-90 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 29 -30 1.516E-01 5.431 E..{)2 1. 983E..{)9 7. 211E-04 2. 501 E-02 7. 565E-04 7.565E-04 1.200E-02 3.782E-04 3.7B2E-04
-------
ORGAN
NUCLIDE PATHWAYS
SUMfoE D BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHER ORGAN OVARIES TESTES
WALL
ZR-93 1-5 6.918E-01 1. 17 3E +00 1. 370E-01 5.022E-01 6.145E+01 5.935E-02 6. 988E -01 8.674E-01 2. 388E+OO 2. 353E-01
ZR-93 6-8 1.977E-01 1.977E-01 1.977E-01 1.977E-01 1.977E-01 1. 977E-01 1.977E-01 1. 977E-01 9.884E-02 9.884E-02
ZR-93 9-10 2.043E-05 3.464E-05 4.044E-06 1.483E-05 1.815E-03 1. 753E-06 2.064E-05 2.561E-05 7.052E-05 6.948E-06
ZR-93 11-12 8.237E-07 9.806E-07 3.278E-05 1 . 642E -06 4.012E-06 8.966E-07 7.621E-07 1. 401 E -06 2.914E-07 4.119E-08
ZR-93 13- 15 5.799E-01 9.831E-01 1 . 148E -01 4.209E-01 5.151 E +01 4.974E-02 5.857E-01 7.270E-01 2.002E+OO 1.972E-01
ZR-93 16 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 5. 936E-01 5.936E-01
ZR-93 17 -21 1.421E+01 2.406E+01 5.331E+OO 1.039E+01 1.257E+03 1.283E+00 1. 435E+01 1 . 784E +01 4. 885E +01 4.814E+00
ZR-93 22 1. 187E +00 1.187E+OO 1. 187E +00 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 5.936E-01 5.936E-01
ZR-93 23-24 8.237E-07 9.806E-07 3.278E-05 1.642E-06 4.012E-06 8.966E-07 7.621E-07 1.401E-06 2.914E-07 4.119E-08
ZR-93 25-27 5.799E-01 9.831E-01 1.148E-01 4.209E-01 5.151E+01 4.974E-02 5.857E-01 7. 270E-01 2. 002E +00 1.972E-01
ZR-93 28 1.187E+OO 1.187E +00 1. 187E+OO 1. 187E +00 1.187E+OO 1.187E+OO 1.187E+OO 1.187E+OO 5.936E-01 5. 936E -01
ZR-93 29 -30 9. 952E...{)4 1 . 687E -03 1.970E-04 7. 224E-04 8.841E-02 8.537E-05 1 . 005E -03 1.248E-03 3.435E-03 3.385E-04
TC-99 1-5 8.542E-01 7. 619E-01 0.0 1. 486E+OO 7.572E+OO 3. 336E +01 1. 084E +00 5.064E-01 3.750E-01 3.750E-01
TC-99 6-8 6.780E-08 6.024E-08 1. 463E-05 1.180E-07 4.651 E-07 2.650E-06 8.601E-08 2.485E-07 2.970E-08 2.970E-08
~ TC-99 9-10 2.139E-05 1.908E-05 0.0 3.721E-05 1. 896E -04 8.356E-04 2.714E-05 1.268E-05 9.393E-06 9.393E-06
U1
~ TC-99 11-12 1.356E-07 1.205E-07 2.925E-05 2.359E-07 9.302E-07 5.301E-06 1.720E-07 4. 970E-07 5.940E-08 5.940E-08
TC-99 13- 15 7.092E-01 6.326E-01 0.0 1.234E+OO 6.287E+OO 2. 770E +01 8.998E-01 4. 204E -01 3.114E-01 3.114E-01
TC-99 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 17 -21 1. 731 E +01 1. 544E +01 2.258E+OO 3. 012E +01 1. 534E +02 6. 762E+02 2.196E+01 1. 029E +01 7.601E+00 7.601E+00
TC-99 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 23-24 1.356E-07 1.205E-07 2.925E-05 2.359E-07 9.302E-07 5.301E-06 1.720E-07 4.970E-07 5.940E-08 5.940E-08
TC-99 25-27 7. 092E-01 6. 326E-01 0.0 1 . 234E +00 6.287E+00 2.770E+01 8.998E-01 4.204E-01 3.114E-01 3.114E-01
TC-99 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC -9 9 29 -30 1.042E-03 9. 295E -04 0.0 1. 813E -03 9.237E-03 4.070E-02 1.322E-03 6.178E-04 4.575E-04 4.575E-04
SN-126 1-5 2.135£+02 2.135E+02 7. 746E +00 4. 209E +00 2.939E+02 1. 243E +00 7.049E+OO 7.024E+OO 3.512E+00 3.512E+00
SN-126 6-8 2.321E+OO 2.321 E +00 2.321 E+OO 2.321 E+OO 2.321 E+OO 2. 321E +00 2.32lE+00 2.321E+00 1.161E+00 1.161 E +00
SN-126 9-10 6.666E-04 6.666E"'{)4 2.419E-05 1.314E-05 9.178E-04 3.881E-06 2.201E-05 2.193E-05 1.097E-05 1.097E-05
SN-126 11-12 8.930E-05 8.930E-05 7.124E-04 3.115E-06 4.335E-05 1 . 456E -06 4.219E-06 4.219E-06 2.1 09E -06 2.109E-06
SN-126 13- 15 1.oo5E+02 1.005E+02 3. 648E +00 1. 982E +00 1.384E+02 5.853E-01 3.319E+OO 3.308E+00 1 . 654E +00 1.654E+00
SN-126 16 1. 394E +01 1. 394E +01 1. 394E +01 1.394E+01 1 . 394E +01 1. 394E +01 1. 394E +01 1 . 394E +01 6.970E+00 6.970E+OO
SN-126 17 -21 2.459E+03 2 .459E +03 1. 440E+02 4. 860E +01 3. 380E+03 1. 439E+01 8.130E+01 8.102E+01 4.051 E +01 4.051E+01
SN-126 22 1. 394E +01 1. 394E +01 1. 394E +01 1. 394E +01 1. 394E+01 1. 394E+01 1. 394E +01 1.394E+01 6.970E+00 6.970E+OO
SN-126 23-24 8.930E-05 8.930E-05 7.124E-04 3.115E-06 4.335E-05 1.456E-06 4.219E-06 4.219E-06 2. 109E-06 2.109E-06
SN-126 25-27 1. 005E +02 1 . 005E +02 3.648E+OO 1. 982E +00 1.384E+02 5.853E-01 3.319E+OO 3.308E+OO 1.654E+00 1.654E+00
SN-126 28 1.394E+01 1 . 394E +01 1 . 394E +01 1.394E+01 1.394E+01 1.394E+01 1. 394E+01 1 . 394E +01 6.970E+00 6.970E+00
SN-126 29 -30 3. 247E-02 3. 247E-02 1. 178E-03 6.403E-04 4.471 E-02 1.891 E-04 1.072E-03 1.068E-03 5. 342E -04 5.342E-04
-------
ORGAN
NUCLIDE PATHWA Y5
5UMMED BONE RED MARROW LUNGS LI VER GI-LLI THYROID KIDNEY5 OTHERORGAN OVARIE5 TE5TE5
WALL
1-129 1-5 1.196E+OO 1.249E+OO 2.373E-01 9.598£-01 8.882E-02 1. 034E +04 9.306E-01 4.216E+00 3.924E-01 3. 699E -01
1-129 6-8 9.695E-02 8.740E-02 3.232E-02 2.399E-02 7.663E-03 6.848E-02 3.587E-02 6.364E-02 1.133E-02 4.376E-02
1-129 9-10 7.350E-05 7.676E-05 1.459E-05 5.899E-05 5.459E-06 6.356E-01 5.720E-05 2.591 E-04 2.412E-05 2.273E-05
1-129 11-12 3.341 E-07 3.477E-07 4.448E-07 2.635E-07 2.475E-08 2.802E-03 2.552E-07 1.155E-06 1.070E-07 1.044E-07
1-129 13- 15 9.174E-01 9.581E-01 1.821E-01 7. 364E -01 6.814E-02 7. 933E+03 7.140E-01 3. 234E +00 3.011 E-01 2.838E-01
1-129 16 5.823E-01 5. 249E-01 1.94lE-01 1.441 E-01 4.602E-02 4.029E-01 2.154E-01 3.822E-01 6.803E-02 2.628E-01
1-129 17 -21 2.241 E +01 2. 340E +01 4.476E+OO 1. 798E +01 1. 664E +00 1. 937E +05 1. 744E +01 7. 899E +01 7.353E+OO 6.931E+00
1-129 22 5. 823E -01 5. 249E-01 1.941 E-01 1. 441 E-01 4.602E-02 4.029E-01 2.154E-01 3. 822E-01 6.803E-02 2.628E-01
1-129 23-24 3.341E-07 3.477E-07 4.448E-07 2.635E-07 2.475E-08 2.802E-03 2.552E-07 1. 155E-06 1.070E-07 1.044E-07
1-129 25-27 9.174E-01 9.581 E-01 1.821 E-01 7. 364E-01 6.814E-02 7. 933E+03 7.140E-01 3. 234E+00 3.011 E-01 2.838E-01
1-129 28 5.823E-01 5.249E-01 1. 941 E-01 1.441 E-01 4.602E-02 4.029E-01 2.154E-01 3. 822E -01 6.803E-02 2.628E-01
1-129 29' -30 3.580E-03 3.739E-03 7.105E-04 2.874E-03 2.659E-04 3.096E+01 2. 786E-03 1.262E-02 1. 175E-03 1.107E-03
C5-135 1-5 3.366E+01 3. 366E +01 0.0 3. 366E +01 1 . 608E +00 3. 396E +01 3. 366E +01 1. 987E +01 1 . 683E +01 1 . 683E +01
........ C5-135 6-8 2.093E-06 2. 093E -06 1.793E-07 2.093E-06 2.384E-08 2.096E-06 2.093E-06 1.233E-06 1 . 046E -06 1 . 046E -06
0'\ C5-135 9-10 9.541E-04 9.541E-04 0.0 9.541 E-04 4.557E-05 9.626E-04 9.541E-04 5.631E-04 4.770E-04 4.770E-04
a C5-135 11-12 4.186E-06 4.186E-06 3. 586E-07 4.186E-06 4.769E-08 4.191 E-06 4.186E-06 2. 466E-06 2.093E-06 2.093E-06
C5-135 13-15 2. 708E +01 2. 708E +01 0.0 2. 708E+01 1.293E+OO 2.732E+01 2.708E+01 1 . 598E +01 1 . 354E +01 1.354E+01
C5-135 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C5-135 17 -21 6.609E+02 6. 609E +02 2.769E-02 6.609E+02 3 .156E +01 6.668E+02 6.609E+02 3.900E+02 3.304E+02 3. 304E +02
C5-135 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C5-135 23-24 4.186E-06 4.186E-06 3.586E-07 4.186E-06 4.769E-08 4.191E-06 4.186E-06 2.466E-06 2.093E-06 2.093E-06
C5-135 25-27 2.708E+01 2. 708E +01 0.0 2.708£+01 1. 293E +00 2.732E+01 2.708E+01 1. 5 98E +01 1. 354E +01 1. 354E +01
C5-135 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C5-135 29 -30 4.648£-02 4. 648E-02 0.0 4.648E-02 2. 220E -03 4. 689E-02 4.648E-02 2. 743E-02 2.324E-02 2.324E-02
C5-137 1-5 9. 414E+01 1. 019E +02 2.747E+01 1 . 086E +02 3. 575E+01 9.276E+01 1.067E+02 6. 777E +01 5. 204E +01 4.610E+01
C5- 13 7 6-8 9.207E-01 8.796E-01 7.108E-01 6. 275E-01 5. 442E-01 7.941 E-01 6.697E-01 7.541 E-01 1. 383E -01 4.192E-01
C5-137 9-10 5.81 OE-03 6.287E-03 1.695E-03 6.704E-03 2.206E-03 5. 724E-03 6.585E-03 4.183E-03 3. 211E-03 2.845E-03
C5-137 11-12 2.575E-05 2.781 E-05 9.318E-06 2.952E-05 9.149E-06 2.532E-05 2.897E-05 1.852E-05 1.406E-05 1.258E-05
C5-13} 13-15 6.491E+01 7.024E+01 1.894E +01 7.491E+01 2. 465E +01 6. 396E +01 7.357E+01 4.673E+01 3. 588E +01 3.179E+01
C5-137 16 5. 529E +00 5.283E+OO 4. 269E +00 3. 769E +00 3. 268E +00 4.769E+OO 4.022E+OO 4.529E+OO 8.304E-01 2.518E+OO
C5-137 17 -21 1. 586E +03 1.716E+03 4.628E+02 1. 830E +03 6.021E+02 1.562E+03 1.797E+03 1.141E+03 8.764E+02 7. 765E+02
C5-137 22 5.529E+OO 5.283E+OO 4.269E+OO 3. 769E +00 3.268E+OO 4.769E+OO 4.022E+OO 4. 529E +00 8.304E-01 2. 518E+OO
C5-137 23-24 2.575E-05 2.781E-05 9.318E-06 2.952E-05 9.149E-06 2.532E-05 2.897E-05 1.852E-05 1.406E-05 1.258E-05
C5-137 25-27 6.491E+01 7.024E+01 1.894E+01 7. 49lE +01 2. 465E+01 6. 396E+01 7. 357E +01 4.673E+01 3. 588E +01 3 .179E +01
C5-137 28 5. 529E +00 5.283E+OO 4.269E+OO 3.769E+OO 3.268E+OO 4.769E+OO 4.022E+OO 4.529E+OO 8.304E-01 2. 518E+OO
C5-137 29 -30 2. 830E-01 3.062E-01 8.258£-02 3.266E-01 1.075E-01 2.789E-01 3.208E-01 2.037E-01 1. 564E-01 1.386E-01
-------
ORGAN
NUCL IDE PATHWAYS
SUMME D BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHER ORGAN OVARIES TESTES
WALL
SM- 1 51 1-5 4. 813E-03 . 3.137E-03 1. 029E -04 1.696E-02 5.734E+OO 1.01 OE-04 5.411E-03 2.294E-02 2.774E-03 2.627E-04
SM-151 6-8 5.235E-05 4. 497E-05 1.329E-05 1.019E-05 6.873E-06 1.891 E-05 1.617E-05 6.452E-05 4.102E-06 4.055E-05
SM-151 9-10 2.091E-06 1. 36 3E -06 4.472E-08 7.369E-06 2.492E-03 4.387E-08 2.351E-06 9.967E-06 1.205E-06 1.141E-07
SM-151 11-12 2.858E-07 1.171E-07 3.799E-05 1 . 065E -06 1.703E-06 1.076E-08 3.104E-07 6.108E-07 4.119E-09 2.999E-09
SM- 1 51 13- 15 3.479E-03 2.267E-03 7.440E-05 1.226E-02 4.145£+00 7.298E-05 3. 911E-03 1. 658E -02 2.oo5E-03 1. 899E -04
SM-151 16 3.062E-04 2. 668E -04 5.309E-05 2.941E-05 3.655E-05 1.134E-04 8.804E-05 3.855E-04 2.455E-05 2.435E-04
SM-151 17 -21 1.069E-01 6.436E-02 2.935E+OO 3.812E-01 1 . 013E +02 2.611 E-03 1.194E-Ol 4.516E-Ol 4.924E-02 4.864E-03
SM-151 22 3.062E-04 2.66BE-04 5.309E-05 2.941E-05 3.655E-05 1.134E-04 8.804E-05 3.855E-04 2.455E-05 2.435E-04
SM-151. 23-24 2.85SE-07 1. 171E-07 3.799E-05 1.065E-06 1.703E-06 1.076E-08 3.104E-07 6.10BE-07 4.119E-09 2.999E-09
SM-151 25-27 3.479E-03 2.267E-03 7. 440E -05 1.226E-02 4.145E+OO 7. 298E-05 3.911 E-03 1.658E-02 2.005E-03 1. 899E-04
SM- 151 28 3.062E-04 2. 66BE -04 5. 309E -05 2.941E-05 3.655E-05 1.134E-04 8.804E-05 3.855E-04 2.455E-05 2.435E-04
SM-151 29 -30 1.019E-04 6.639E-05 2.179E-06 3.589E-04 1.214E-Ol 2.137E-06 1.145E-04 4.855E-04 5.872E-05 5.561E-06
RA-226 1-5 1. 449E+05 4.906E+03 6.212E-01 4. 287E+03 1.871E+03 1. 836E+03 1.327E+04 1.786E+04 9. 238E+02 9.181E+02
I-' RA-226 6-8 2.802E+OO 2. 599E +00 2. 307E +00 2.055E+OO 1 . 877E +00 2.354E+OO 1.944E+00 2.456E+OO 9.051E-Ol 1 . 050E +00
0'\ RA-226 9-10 9.363E+OO 3.170E-01 4.015E-05 2.770E-Ol 1.209E-01 1.187E-Ol 8.578E-01 1.154E+OO 5.970E-02 5.933E-02
I-' RA-226 11-12 6.165E-03 5.501 E-04 1. 575E -02 1. 913E-04 5.672E-05 1.914E-04 1. 963E -04 2. 578E-03 9.559E-05 9. 564E-05
RA-226 1 3- 15 1. 206E +05 4.082E+03 5. 170E-Ol 3. 567E +03 1.557E+03 1.528E+03 1.105E+04 1 . 486E +04 7.688E+02 7. 640E+02
RA-226 16 1.681 E+Ol 1. 561E+Ol 1.381E+01 1.234E+Ol 1. 127E +01 1.414E+Ol 1. 167E+Ol 1.474E+01 5. 436E +00 6.303E+OO
RA-226 17 -21 2. 942E +06 9. 963E+04 1 . 228E +03 8. 704E +04 3.798E+04 3. 729E+04 2.695E+05 3.627E+05 1.876E+04 1.865E+04
RA-226 22 1. 681E +01 1. 561 E +01 1. 381E +01 1 . 234E +01 1.127E+Ol 1.414E+01 1.167E+01 1. 474E+01 5.436E+00 6.303E+OO
RA-226 23-24 6.165E-03 5.501E-04 1.575E-02 1. 913E-04 5.672E-05 1.914E-04 1.963E-04 2.578E-03 9.559E-05 9.564E-05
RA-226 25-27 1. 206E +05 4.082E+03 5.170E-Ol 3.567E+03 1.557E+03 1.528E+03 1. 1 05E +04 1 . 486E +04 7. 688E+02 7. 640E+02
RA-226 28 1. 681 E +01 1. 561 E +01 1.381 E +01 1.234E+01 1.127E+01 1.414E+Ol 1.167E+Ol 1.474E+Ol 5.436E+OO 6.303E+OO
RA-226 29 -30 4.561E+02 1. 544E +01 1.956E-03 1. 350E +01 5. 889E+OO 5.781E+OO 4. 179E+Ol 5. 622E+01 2.908E+OO 2. 890E +00
U-234 1-5 7.242E+04 2.897E+03 2. 980E+OO 2. 100E +03 3.208E+02 2.100E+03 3.078E+03 6.156E+03 1.050E+03 1 . 050E +03
U-234 6-8 2.278E-02 6.281E-03 1.003E-02 2.098E-03 1.835E-03 3.208E-03 2.433E-03 6.849E-03 9. 433E -04 2.459E-03
U-234 9-10 5. 185E -01 2.074E-02 2.134E-05 1.504E-02 2.297E-03 1.504E-02 2.204E-02 4.407E-02 7.519E-03 7. 519E-03
U-234 11-12 1.12~ E-02 4.539E-04 1. 530E -01 3. 306E -04 3.071E-05 3.306E-04 4.875E-04 5.491E-03 1 . 653E -04 1.653E-04
U-234 1 3- 15 6.285E+04 2.514E+03 2.586E+OO 1.823E+03 2.784E+02 1. 823E +03 2.671E+03 5.343E+03 9.114E+02 9. 114E +02
U-234 16 3.755E-02 3.368E-02 1. 314E-02 9.738E-03 1. 094E-02 1.641 E-02 1.041 E-02 3.188E-02 4.235E-03 1.334E-02
U-234 17 -21 1 . 534E +06 6.137E+04 1.187E+04 4.449E+04 6.795E+03 4.449E+04 6.520E+04 1 . 308E +05 2.225E+04 2.225E+04
U-234 22 3.755E-02 3. 368E-02 1.314E-02 9.738E-03 1.094E-02 1.641E-02 1.041 E-02 3.188E-02 4.235E-03 1.334E-02
U-234 23-24 1.121E-02 4.539E-04 1.530E-Ol 3.306E-04 3.071E-05 3.306E-04 4.875E-04 5.491E-03 1. 653E-04 1.653E-04
U-234 25-27 6. 285E +04 2. 514E +03 2. 586E +00 1 . 823E +03 2. 784E+02 1.823E+03 2.671 E+03 5. 343E+03 9.114E+02 9. 114E+02
U-234 28 3.755E-02 3.368E-02 1. 314E -02 9.738E-03 1.094E-02 1.641E-02 1.041E-02 3.188E-02 4.235E-03 1.334E-02
U-234 29 -30 2.526E+Ol 1.010E+OO 1.039E-03 7. 325E-Ol 1.119E-01 7.325E-Ol 1.073E+OO 2.147E+00 3.663E-01 3.663E-01
-------
ORGAN
NUCL IDE PATHWAYS
SUMr-E 0 BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
NP-237 1-5 1. 743E+04 5.689E+03 8.139E-01 7. 524E +03 1.340E+02 5.579E+Ol 1 . 009E +03 1.468E +03 1 . 789E +01 5. 505E +01
NP-237 6-8 1 . 433E +00 9. 556E -01 4.493E-Ol 6.619E-Ol 2.777E-Ol 4. 985E-Ol 4.068E-Ol 5.608E-Ol 1. 267E -01 2. 990E -01
NP -23 7 9-10 4.926E-Ol 1. 60 7E -01 2. 300E -05 2.126E-Ol 3.785E-03 1.576E-03 2.852E-02 4.148E-02 5.056E-04 1. 556E-03
NP-237 11-12 5.066E-Ol 1 . 687E -01 1.625E-Ol 2.253E-Ol 7. 740E-05 1.681 E-03 2.914E-02 4.763E-02 5.043E-04 1.625E-03
NP-237 13-15 1.24 7E +04 4.068E+03 5. 820E -01 5.380E+03 9. 580E +01 3. 989E +01 7.218E+02 1 . 050E +03 1 . 280E +01 3. 937E +01
NP-237 16 4.836E+OO 4. 482E +00 2.648E+OO 2.308E+OO 1. 667E +00 2. 98lE +00 2.228E+OO 3.048E+00 7. 570E-Ol 1.784E+OO
NP-237 17 -21 3.432E+05 1.123E+05 1.256E+04 1.486E+05 2.343E+03 1.103E+03 1.986E+04 2. 929E+04 3. 511E+02 1.086E+03
NP-237 22 4. 836E +00 4.482E+OO 2. 64BE +00 2. 30BE +00 1. 667E +00 2.981E+00 2.228E+00 3.048E+OO 7. 570E-Ol 1. 784E +00
NP-237 23-24 5.066E-01 1.687E-01 1.625E-Ol 2.253E-Ol 7.740E-05 1.681E-03 2.914E-02 4.763E-02 5.043E-04 1.625E-03
NP-237 25-27 1.247E+04 4. 068E +03 5.820E-Ol 5. 380E +03 9. 580E +01 3. 989E+Ol 7. 218E +02 1. 050E +03 1 . 280E +01 3. 937E+01
NP-237 28 4.836E +00 4. 482E +00 2. 648E +00 2 .308E +00 1.667E+OO 2.981E+OO 2.228E+OO 3.048E+00 7. 570E-Ol 1.784E+OO
NP-237 29 -30 2.400E+Ol 7. 830E +00 1.120E-03 1. 036E +01 1. 844E-Ol 7.679E-02 1 . 389E +00 2.021E+00 2.463E-02 7.578E-02
PU-238 1-5 5.226E+02 1. 77 7E +02 8.246E-05 2.299E+02 1. 150E +02 1.714E+OO 3.041E+Ol 4.51 5E +01 5 . 383E -01 1. 672E+OO
~ PU-238 6-8 5.715E-Ol 1. 92lE-Ol 9.623E-03 2.544E-Ol 9.827E-04 2.383E-03 3.316E-02 5.208E-02 7.765E-04 3.254E-03
0'1 PU-238 9-10 2.241E-02 7.619E-03 3.536E-09 9.859E-03 4.930E-03 7.350E-05 1.304E-03 1. 936E-03 2.308E-05 7. 170E-05
N PU-238 11-12 4.432E-Ol 1.479E-Ol 1.731 E-Ol 1. 989E-Ol 3.474E-05 1.457E-03 2.578E-02 4.259E-02 4.483E-04 1. 401 E-03
PU-238 1 3- 15 3.347E+02 1. 138E +02 5.281 E-05 1.472E+02 7.362E+Ol 1 . 098E +00 1 . 948E +01 2.891E+Ol 3.447E-01 1.071E+OO
PU-238 16 1.647E-02 1.427E-02 3.949E-03 1.734E-03 5.810E-03 3.208E-03 2.308E-03 2.168E-02 1.214E-03 8.604E-03
PU-238 17-21 4.238E+04 1. 42 OE +04 1.337E+04 1. 89 5E +04 1.799E+03 1.393E+02 2.465E+03 3.993E+03 4. 302E +01 1.343E+02
PU-238 22 1.647E-02 1.427E-02 3.949E-03 1.734E-03 5.810E-03 3.208E-03 2.308E-03 2.168E-02 1.214E-03 8.604E-03
PU-238 23-24 4.432E-Ol 1. 479E -01 1.731 E-01 1 . 989E -01 3.474E-05 1.457E-03 2.578E-02 4.259E-02 4.483E-04 1.401E-03
PU-238 25-27 3.347E+02 1.138E +02 5.281E-05 1.472E+02 7.362E+Ol 1 . 098E +00 1 . 948E +01 2.891E+Ol 3.447E-01 1.07lE+OO
PU-238 28 1.647E-02 1.427E-02 3.949E-03 1.734E-03 5.810E-03 3.208E-03 2.308E-03 2.168E-02 1.214E-03 8.604E-03
PU-238 29 -30 1. 092E +00 3.711E-Ol 1. 722E-07 4.803E-Ol 2.401E-Ol 3. 580E-03 6.353E-02 9.431E-02 1.124E-03 3. 493E-03
PU-239 1-5 8.480E+02 2.827E+02 9.060E-05 3.719E+02 1.467E+02 2.752E+OO 4.790E+01 7.171 E +01 8.554E-01 2.678E+OO
PU-239 6-8 6.401E-01 2.144E-Ol 8.765E-03 2.804E-01 4.142E-04 2.472E-03 3.668E-02 5.531 E-02 7. 67lE-04 2. 745E-03
PU-239 9-10 2.554E-02 8.515E-03 2.729E-09 1.120E-02 4.419E-03 8.291E-05 1.443E-03 2. 160E-03 2.577E-05 8.067E-05
PU-239 11-12 5.11OE-01 1.703E-01 1.647E-Ol 2.264E-01 3. 239E-05 1. 681 E-03 2.914E-02 4.819E-02 5.043E-04 1.625E-03
PU-239 13- 15 6.135E+02 2.045E+02 6.555E-05 2.691E+02 1. 061 E +02 1. 991 E +00 3.466E+Ol 5. 188E +01 6.189E-01 1.938E+OO
PU-239 16 8.137&::-03 7.137E-03 2.161E-03 1.187E-03 2.401 E-03 2.395E-03 1.554E-03 9.138E-03 7.370E-04 3.869E-03
PU-239 17-21 5.442E+04 1. 814E +04 1. 272E +04 2. 404E +04 2,592E+03 1.784E+02 3.095E+03 4.986E+03 5. 403E +01 1.727E+02
PU-239 22 8.137E-03 7.137E-03 2.161E-03 1.187E-03 2.401E-03 2.395E-03 1.554E-03 9. 138E-03 7.370E-04 3.869E-03
PU-239 23-24 5.110E-01 1. 703E -01 1.647E-Ol 2.264E-Ol 3.239E-05 1.681E-03 2.914E-02 4.819E-02 5. 043E-04 1.625E-03
PU-239 25-27 6.135E+02 2.045E+02 6.555E-05 2.691 E+02 1. 061 E+02 1.991 E+OO 3.466E+01 5.188E+01 6.189E-01 1.93BE+OO
PU-239 28 8.137E-03 7.137E-03 2. 161 E -03 1.187E-03 2.401E-03 2.395E-03 1.554E-03 9.138E-03 7.370E-04 3.869E-03
PU-239 29 -30 1. 244E +00 4.148E-01 1. 329E-07 5.458E-01 2.153E-Ol 4.039E-03 7.029E-02 1. 052E-Ol 1. 255E -03 3.930E-03
-------
ORGAN
NUCL ID£ PATHWAYS
SUMM£D BON£ R£D MARROW LUNGS LIV£R GI-LLI THYROID KIDNEYS OTH£RORGAN OVARIES T£ST£S
WALL
PU-240 1-5 8.109£ +02 2.703£+02 1.184£-04 3.557£+02 1.413£+02 2.618£+00 4.581 £+01 6.871£+01 8.180£-01 2.561£+00
PU-240 6-8 6.413£-01 2.151E-Ol 9.312£-03 2.833£-01 8.796£-04 2. 621E-03 3.681E-02 5.752£-02 8.399£-04 3.367£-03
PU-240 9-10 2.554£-02 8.515£-03 3.729£-09 1. 1 2 O£ -(}.~ 4.450£-03 8.246£-05 1.443£-03 2.165£-03 2.577£-05 8.067£-05
PU-240 11-12 5.116£-01 1.703£-01 1.653£-01 2.269£-01 3.261£-05 1.681£-03 2.914£-02 4.819£-02 5.043£-04 1.625£-03
PU-240 13- 15 5.795£+02 1. 932£ +02 8.458£-05 2.542£+02 1.009£+02 1.871£+00 3.273£+01 4.910£+01 5.845£-01 1.830£+00
PU-240 16 1.501£-02 1.307£-02 3.762£-03 1.814£-03 5.196£-03 3.288£-03 2.314£-03 1.901 £-02 1.174£-03 7.604£-03
PU-240 17 -21 5.363£+04 1.786£+04 1.276£+04 2 .372E +04 2.465£+03 1.754£+02 3.048£+03 4.918£+03 5.319£+01 1.701£+02
PU-240 22 1.501£-02 1.307£-02 3.762£-03 1.814£-03 5.196£-03 3. 288E-03 2.314£-03 1. 901 £-02 1.174£-03 7.604£-03
PU-240 23-24 5.116£ -01 1.703£-01 1.653£-01 2.269£-01 3.261£-05 1.681£-03 2.914£-02 4.819E-02 5.043£-04 1.625£-03
PU-240 25-27 5.795£+02 1.932£+02 8.458E-05 2.542£+02 1 . 009E +02 1.871 £+00 3.273£+01 4.910£+01 5.845£-01 1 . 830£ +00
PU-240 28 1.501£-02 1.307£-02 3.762£-03 1.814E-03 5.196£-03 3.288£-03 2.314£-03 1.901£-02 1.174£-03 7.604£-03
PU-240 29 -30 1. 244£ +00 4.148£-01 1.816£-07 5.458£-01 2.168£-01 4.017£-03 7.029£-02 1.054£-01 1.255£-03 3.930£-03
AM-241 1-5 2.025£ +04 6.820£+03 1.353£-01 9.058£+03 1. 172E +02 6.735£+01 1.172£+03 1.705£+03 2.099£ +01 6.394£+01
........ AM-241 6-8 8.161 £-01 3.637£-01 6.782£-02 3.395£-01 3.289£-02 8.223£-02 8.852£-02 1.390£-01 2.533£-02 3.858£-02
0-. AM-241 9-10 8.093£ +00 2.726£+00 5.409£-05 3.620£+00 4.685£-02 2.692£-02 4.685£-01 6.815£-01 8.391£-03 2.556£-02
w AM-241 11-12 5.284£ -01 1. 759£-01 1.754£-01 2. 348E-Ol 3.654£-05 1.737£-03 3.026£-02 4.987£-02 5.323£-04 1. 681E-03
AM-241 13- 15 1.497£+04 5.041 £ +03 1.ooOE-01 6.696£+03 8.665£+01 4.-978£ +01 8.665£+02 1 .260£ +03 1.552£+01 4.726£+01
AM-241 16 9.471 £-01 8.671 £-01 3.535£-01 2. 888E-01 1.974£-01 4.809£-01 3.062£-01 5.002£-01 1. 481E-01 2.191£-01
AM-241 17 -21 4.059£ +05 1 .366£ +05 L354£ +04 1. 81 5£ +05 2 . 11 7£ +03 1.349£+03 2.347£+04 3.460£+04 4.197£+02 1.283£+03
AM-241 22 9.471£-01 8.671£-01 3.535£-01 2. 888E-Ol 1.974£-01 4.809£-01 3.062£-01 5.002£-01 1.481 £-01 2.191 £-01
AM-241 23-24 5 . 284£ -01 1.759£-01 1.754£-01 2.348£-01 3.654E-05 1.737£-03 3.026£-02 4.987£-02 5.323£-04 1.681£-03
AM-241 25-27 1.497£ +04 5.041£+03 1.000E-Ol 6.696£+03 8. 665E+01 4. 978E +01 8.665£+02 1.260£+03 1 . 552£ +01 4.726£+01
AM-241 28 9.471£-01 8.671£-01 3.535£-01 2.888£ -01 1.974£-01 4.809£-01 3.062£-01 5.002£-01 1.481£-01 2.191£-01
AM-241 29 -30 3.942£+02 1. 328£ +02 2.635£-03 1.764£+02 2.282£+00 1.311E+OO 2.282£+01 3.320£+01 4.087£-01 1 .245£ +00
PU-242 1-5 8.155£+02 2.718£+02 2.416£ -04 3.624£+02 1.420£+02 2.658£+00 4.621£+01 6.947£ +01 8.230£-01 2.582£+00
PU-242 6-8 6.102£-01 2.042£-01 8.639£-03 2.680£-01 8.089£-04 2.375£-03 3.475£-02 5.457£-02 7.813£-04 3.166£-03
PU-242 9-10 2.420E-02 8.067£-03 7.170£-09 1.076£-02 4.213£-03 7.887£-05 1.371 £-03 2.061£-03 2.442£-05 7.663£-05
PU-242 11-12 4.869£-01 1.619£-01 1.569£-01 2.157£-01 3.088E-05 1. 569E -03 2.802£-02 4.595£-02 5.043£-04 1. 541 £-03
PU-242 13- 15 5.924£+02 1.975£+02 1.755£-04 2.633£+02 1.031£+02 1.931£+00 3.357£+01 5.047£+01 5.979£-01 1.876£+00
PU-242 16 1. 354£-02 1.167£-02 3.088£-03 1.227£-03 4.776£-03 2.314£-03 1.728£-03 1.814£-02 9.905£-04 7.237£-03
PU-242 17 -21 5.204£ +04 1.732£+04 1.211£+04 2.308£ +04 2.518£+03 1.682E+02 2.982£+03 4.778£+03 5.352£+01 1. 647£ +02
PU-242 22 1.35';£-02 1.167£-02 3.088E-03 1.227£-03 4.776£-03 2.314£-03 1. 728E-03 1.814£-02 9.905£-04 7.237£ -03
PU-242 23-24 4.869£-01 1. 619£-01 1.569£-01 2.157£-01 3.088£-05 1.569£-03 2.802£-02 4.595£-02 5.043£-04 1.541£-03
PU-242 25-27 5.924£ +02 1.975E+02 1.755£-04 2.633£+02 1. 031 £+02 1.931 £+00 3.357£+01 5.047£+01 5.979£-01 1.876£+00
PU-242 28 1.354£-02 1.167£-02 3.088£-03 1.227£-03 4.776£-03 2.314£-03 1.728£-03 1.814£-02 9.905£-04 7.237£-03
PU-242 29 -30 1.179£+00 3.930£-01 3.493£-07 5.239£-01 2.052£-01 3.842£-03 6.680£-02 1.004£-01 1. 190£ -03 3.733£-03
-------
ORGAN
NUCLIDE PATHWAYS
SUMr-ED BONE RED MARROW LUNGS LI VER G I-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
-
AM-243 1-5 2.805E+04 4. 724E+04 1.423E+OO 1. 255E+04 2.200£+02 9.360E+01 1.624E+03 2. 362E+03 3. 004E +01 8. 858E+01
AM-243 6-8 1. 243E +00 1.626E+OO 3.00BE-01 5.424E-01 1. 788E-01 3.642E-01 2.830E-01 4.056E-01 9.229E-02 1.953E-01
AM-243 9-10 8.093E+OO 1.363E+01 4.106E-04 3.620£+00 6.346E-02 2. 700£ -02 4.685E-01 6.815E-01 8.668E-03 2.556E-02
AM-243 11-12 5. 284E-01 8.741 E-01 1.698E-01 2.359E-01 1.805E-04 1.737E-03 3.026E-02 4.987E-02 5.324E-04 1.681 E-03
~ AM-243 13-15 2.214E+04 3.730£+04 1.124E+OO 9.907E+03 1.737E+02 7. 389E +01 1. 282E +03 1. 865E +03 2.372E+01 6. 993E +01
0'\
.+::> AM-243 16 3.52BE+OO 3. 255E +00 1. 754E +00 1 . 507E +00 1.074E+OO 2.174E+OO 1. 474E +00 2.10lE+00 5.503E-01 1.161 E+OO
AM-243 17 -21 5.810£ +05 9.773E+05 1.313E+04 2.599E+05 4.250£ +03 1. 937E +03 3.361E+04 4.934E+04 6.197E+02 1.836E+03
AM-243 22 3. 528E +00 3. 255E +00 1. 754E +00 1. 507E +00 1. 074E +00 2.174E+OO 1.474E+OO 2.101 E+OO 5.503E-01 1.161 E+OO
AM-243 23-24 5. 284E -01 8.741E-01 1.698E-01 2.359E-01 1.805E-04 1.737E-03 3.026E-02 4.987E-02 5.324E-04 1.681 E-03
AM-243 25-27 2. 214E +04 3.730£+04 1.124E +00 9.907E+03 1.737E+02 7. 389E +01 1. 282E +03 1. 865E +03 2. 372E+01 6.993E+01
AM-243 28 3. 528E +00 3.255E+OO 1. 754E +00 1. 507E +00 1.074E+OO 2.174E+OO 1.474E +00 2.101 E +00 5. 503E-01 1.161E+00
AM-243 29 -30 3. 942E +02 6.639E+02 2.000E-02 1.764E+02 3.091E+OO 1 . 315E +00 2. 282E+01 3. 320E +01 4.222E-01 1 . 245E +00
-------
I-'
0"\
U1
NOCLIDE
C-14
NI-59
SR-90
ZR-93
TC-99
SN-126
1-129
CS-135
CS-137
SM- 151
RA -2 26
U-234
NP-237
PU-238
PU-239
PU-240
AM-241
PU-242
AM-243
INTERIM FACTORS FOR POPULATION FATAL CANCERS AS A FUNCTION OF NUCLIDE
********************************************************PATHWAYS SUMMED*************************************************
1-5 6-8 9-10 11-12 13-15 16 17-21 22 23-24 25-27 28 29 -30
4.577E-02 7.300E-13 9.547E-10 1.460£-12 4.092E-02 0.0 1.917E-040.0 1.848E-06 1.899E-04 0.0 1.918E-04
6.800£-04 2.199E-10 4.690E-07 4.438E-10 5.303E-04 0.0 1.297E-020.0 4.438E-10 5.303E-04 0.0 2.285E-05
1.214E-01 2.641E-08 1.035E-07 2.124E-07 1.039£-01 0.0 2.552E+OO 0.0 2.124E-07 1.039£-01 0.0 5.043E-06
1.361E-03 3.973E-05 4.020£-08 1.562E-09 1.141E-03 2.386E-04 2.795E-02 2.386E-04 1.562E-09 1.141E-03 2.386E-04 1.958E-06
2.850E-04 6.195E-10 7.137E-09 1.239£-09 2.366E-04 0.0 5.868E-030.0 1.239E-09 2.366E-04 0.0 3.476E-07
1.747E-02 4.665E-04 5.454E-08 3.420E-08 8.225E-03 2.802E-03 2.033E-01 2.802E-03 3.420E-08 8.225E-03 2.802E-03 2.657E-06
1.073E-02 1.103E-05 6.594E-07 2.923E-09 8.230£-03 6.626E-05 2.010E-01 6.626E-05 2.923E-09 8.230E-03 6.626E-05 3.212E-05
3.813E-03 2.425E-10 1.081E-07 4.851E-10 3.067E-03 0.0 7.486E-02 0.0 4.851E-10 3.067E-03 0.0 5.265E-06
1.382E-02 1.503E-04 8.529E-07 3.832E-09 9.529E-03 9.024E-04 2.328E-01 9.024E-04 3.832E-09 9.529E-03 9.024E-04 4.155E-05
'.167E-04 7.791E-09 5.071E-08 1.618E-09 8.436E-05 4.486E-08 2.183E-03 4.486E-08 1.618E-09 8.436E-05 4.486E-08 2.470E-06
3.110E+OO 4.760E-04 2.010E-04 8.992E-07 2.588E+OO 2.856E-03 6.320E+01 2.856E-03 8.992E-07 2.588E+00 2.856E-03 9.790E-03
1.331E+OO 1.445E-06 9.533E-06 6.643E-06 1.156E+OO 4.917E-06 2.870E+01 4.917E-06 6.643E-06 1.156E+00 4.917E-06 4.644E-04
5.928E-01 1.265E-04 1.675E-05 2.419E-05 4.239£-01 6.286E-04 1.221E+01 6.286E-04 2.419E-05 4.239E-01 6.286E-04 8.159E-04
2.040£-02 2.033E-05 8.746E-07 2.251E-05 1.306E-02 2.571E-06 2.056E+OO 2.571E-06 2.251E-05 1.306E-02 2.571E-06 4.261E-05
3.194E-02 2.238E-05 9.622E-07 2.444E-05 2.311E-02 1.171E-06 2.451E+OO 1.171E-06 2.444E-05 2.311E-02 1.171E-06 4.687E-05
3.057E-02 2.264E-05 9.631E-07 2.448E-05 2.185E-02 2.303E-06 2.423E+OO 2.303E-06 2.448E-05 2.185E-02 2.303E-06 4.692E-05
6.993E-01 4.018E-05 2.795E-04 2.548E-05 5.170£-01 1.037E-04 1.458£+01 1.037E-04 2.548E-05 5.170E-01 1.037E-04 1.362E-02
3.082E-02 2.148E-05 9.146E-07 2.328E-05 2.239E-02 2.123E-06 2.343E+OO 2.123E-06 2.328E-05 2.239E-02 2.123E-06 4.455E-05
2.482E+OO 1.301E-04 7.160E-04 5.320E-05 1.959E+OO 4.362E-04 5.191E+01 4.362E-04 5.320E-05 1.959E+OO 4.362E-04 3.488E-02
-------
~
~
~
NUCLIDE
C~4
NI-S9
SR-90
ZR-93
TC-99
SN-126
1-129
CS-13S
CS-137
SM-1S1
RA-226
U-234
NP-237
PU-238
PU-239
PU-240
~~~
PU-242
~-243
INTERIM FACTORS FOR POPULATION GENETIC EFFECTS TO FIRST GENERATION AS A FUNCTION OF NUCLIDE
********************~***********************************PATHWAY$ SUMMED*************************************************
l-S 6-8 9-10 11-12 13-1S 16 17-21 22 23-24 2S-27 28 29 -30
1.813E-03 3.001E-14 3.783E-11 6.001E-14 1.621E-03 0.0 7.S99E-060.0 7.S96E-08 7.S23E-06 0.0 7.S99E-06
S.360E-OS 1.20SE-11 3.697E-08 2.409E-11 4.180E-OS 0.0 1.021E-030.0 2.409E-11 4.180E-OS 0.0 1.801E-06
3.642E-04 8.629E-11 3.106E-10 4.186E-11 3.118E-04 0.0 7.610E-030.0 4.186E-11 3.118E-04 0.0 1.S13E-08
S.246E-OS 3.9S4E-06 1.S49E-09 6.6S1E-12 4.397E-OS 2.37SE-OS 1.073E-03 2.37SE-OS 6.6S1E-12 4.397E-OS 2.37SE-OS 7.S47E-08
1.SOOE-OS 1.188E-12 3.7S7E-10 2.376E-12 1.246E-OS 0.0 3.040E-040.0 2.376E-12 1.246E-OS 0.0 1.830E-08
1.40SE-04 4.642E-OS 4.387E-10 8.438E-11 6.61SE-OS 2.788E-04 1.620£-03 2.788E-04 8.438E-11 6.61SE-OS 2.788E-04 2.137E-08
1.S24E-OS 1.102E-06 9.370£-10 4.229E-12 1.170E-OS 6.617E-06 2.8S7E-04 6.617E-06 4.229E-12 1.170E-OS 6.617E-06 4.S6SE-08
6.732E-04 4.186E-11 1.90BE-08 8.372E-11 S.416E-04 0.0 1.322E-020.0 8.372E-11 S.416E-04 0.0 9.29SE-07
1.963E-03 1.11SE-OS 1.211E-07 S.327E-l0 1.3S3E-03 6.697E-OS 3.306E-02 6.697E-OS S.327E-10 1.3S3E-03 6.697E-OS S.901E-06
6.073E-08 8.930E-l0 2.639E-ll 1.424E-13 4.390£-08 S.360E-09 1.082E-06 S.360E-09 1.424E-13 4.390£-08 S.360E-09 1.286E-09
3.684E-02 3.909E-OS 2.381E-06 3.824E-09 3.066E-02 2.348E-04 7.481E-01 2.348E-04 3.824E-09 3.066E-02 2.34BE-04 1.160E-04
4.200E-02 6.80SE-08 3.007E-07 6.612E-09 3.646E-02 3.S1SE-07 8.898E-Ol 3.S1SE-07 6.612E-09 3.646E-02 3.S1SE-07 1.46SE-OS
1.4S9E-03 8.S1SE-06 4.1 22E-08 4.2S9E-08 1.043E-03 S.083E-OS 2.874E-02 S.083E-OS 4.2S9E-08 1.043E-03 S.083E-OS 2.008E-06
4.421E-OS 8.060£-08 1.896E-09 3.698E-08 2.831E-OS 1.964E-07 3.S46E-03 1.964E-07 3.698E-08 2.831E-OS 1.964E-07 9.234E-08
7.066E-OS 7.02SE-08 2.129E-09 4.2S9E-08 S.113E-OS 9.211E-08 4.S3SE-03 9.211E-08 4.2S9E-08 S.113E-OS 9.211E-08 1.037E-07
6.7S8E-OS 8.414E-08 2.129E-09 4.2S9E-08 4.829E-OS 1.7S6E-07 4.466E-03 1.7S6E-07 4.2S9E-08 4.829E-OS 1.7S6E-07 1.037E-07
1.699E-03 1.278E-06 6.789E-07 4.427E-08 1.2S6E-03 7.344E-06 3.40SE-02 7.344E-06 4.427E-08 1.2S6E-03 7.344E-06 3.307E-OS
6.811E-OS 7.89SE-08 2.021E-09 4.091E-08 4.948E-OS 1.64SE-07 4.36SE-03 1.64SE-07 4.091E-08 4.948E-OS 1.64SE-07 9.846E-08
2.372E-03 S.7S3E-06 6.84SE-07 4.427E-08 1.873E-03 3.422E-OS 4.911E-02 3.422E~05 4.427E-08 1.873E-03 3.422E-OS 3.334E-OS
-------
INTERIM FACTORS FOR POPULATION HEALTH EFFECTS AS A FUNCTION OF NUCLIDE. PATHWAY, AND ORGAN
ORGAN FIRST GENERATION
NUCL IDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
C-14 1 7.40E-Q5 2.35E-Q6 2.72E-Q5 6.83E-06 2.47E-06 5.87E-06 1.79E-07 2. 13E -06 2.70E-05 1. 48E-06 1.45E-06
C-14 2 5.59E-04 1.77E-05 2.05E-Q4 5.15E-05 1.87E-Q5 4.43E-05 1.35E-06 1.61 E-05 2.04E-04 1.12E-05 1.10E-05
C-14 3 2.99E-Q2 9.51E-Q4 1.10E-02 2.76E-03 9.99E-04 2.37E-03 7.22E-05 8.61E-04 1.09E-02 5.98E-04 5.87E-04
C-14 4 1.11E-02 3.53E-Q4 4.08E-03 1.03E-03 3.71 E-04 8.81 E-04 2.68E-05 3.20E-04 4.06E-03 2.22E-04 2.18E-04
C-14 5 4.10E-Q3 1.30E-Q4 1.50E-03 3.78E-04 1.37E-04 3.25E-04 9.89E-06 1.18E-04 1.50E-03 8.19E-05 8.05E-05
C-14 6 7.30E-13 2.37E-14 2.71E-13 6.93E-14 2.49E-14 4.05E-14 1.82E-15 2.22E-14 2.77E-13 1. 48E - 14 1.52E-14
C-14 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 9 8.1BE-10 2.60E-11 3.00E-10 7.55E-11 2.73E-11 6.49E-11 1.98E-12 2.36E-11 2.99E-10 1.64E-11 1.61E-11
C-14 10 1.36E-10 4.33E-12 5.01E-11 1. 26E-11 4.56E-12 1. 08E-11 3.29E-13 3.93E-12 4.98E-11 2.73E-12 2.68E-12
C-14 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I-' C-14 12 1.46E-12 4.74E-14 5.42E-13 1.39E-13 4.98E-14 8.09E-14 3.63E-15 4.44E-14 5. 53E...13 2.96E-14 3.04E-14
0"\
~ C-14 13 2.75E-02 8.7 5E-Q4 1. 01 E-02 2.54E-03 9.19E-04 2.18E-03 6.65E-05 7. 92E-04 1.00E-02 5.50E-04 5. 40E-04
C-14 14 9.78E-03 3.11E-04 3.59E-03 9.02E-Q4 3.27E-04 7.76E-04 2.36E-05 2.82E-04 3.57E-03 1.96E-04 1.92E-04
C-14 15 3.61 E-Q3 1. 1 5E -04 1.32E-03 3.33E-04 1.20E-04 2.86E-04 8.71E-06 1. 04E -04 1.32E-03 7.21E-05 7.08E-05
C-14 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 17 1.85E-Q6 6.00E-08 6.87E-07 1.75E-Q7 6.30E-08 1.0ZE-07 4.60E-09 5.62E-08 7.00E-07 3.75E-08 3.84E-08
C-14 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 19 1.90E-04 6.03E-06 6.97E-05 1. 75E-Q5 6.34E-06 1.51E-05 4. 58E-07 5.47E-06 6.93E-05 3.80E-06 3.73E-06
C-14 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0;0 0.0
C-14 24 1.85E-06 6.00E-Q8 6.87E-Q7 1.75E-Q7 6.30E-08 1.02E-07 4.60E-Q9 5.62E-08 7.00E-07 3.75E-08 3.84E-08
C-14 25 1. 90E-Q4 6.03E-06 6.97E-05 1.75E-05 6.34E-06 1. 51 E-05 4.58E-07 5.47E-06 6.93E-05 3.80E-06 3.73E-06
C-14 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-14 29 1.92E-Q4 6.09E-06 7.04E-Q5 1.77E-05 6.41E-06 1. 5ZE-05 4.63E-07 5.52E-06 7.00E-05 3.83E-06 3. 77E-06
C-14 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-------
ORGAN FIRST GENERATION
NlCLlDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID kIDNEYS OTHERORGAN OVARIES TESTES
WALL
NI-59 1 8.21E-05 1.94E-05 1.29E-05 1. 29E -05 6.67E-06 3.90£-06 3. 24E-07 3.24E-06 2.27E-05 3.24E-06 3.24E-06
NI -59 2 1. 36E-05 3.22E-06 2.15E-06 2.15E-06 1.11 E-06 6.47E-07 5.37E-08 5.37E-07 3.76E-06 5.37E-07 5.37E-07
NI -59 3 4.03E-04 9.55E-05 6.36E-05 6.36E-05 3.28E-05 1. 92E-05 1.59E-06 1.59E-05 1.11E-04 1.59E-05 1. 59E-05
NI -59 4 9.80E-05 2.32E-05 1. 55E-05 1. 55E-05 7. 97E-06 4.66E-06 3.86E-07 3.86E-06 2.70E-05 3.86E-06 3.86E-06
NI-59 5 8.2&-05 1.96E-05 1. 31 E-05 1.31E-05 6.73E-06 3.93E-06 3.26E-07 3.26E-06 2.28E-05 3.26E-06 3. 26E-06
NI -59 6 2.20E-10 3.61 E-11 2.41E-11 9.49E-11 1. 40E-11 1.99E-12 6.02E-13 6.02E-12 4.22E-11 6.02E-12 6.02E-12
NI-59 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI -59 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 9 4.54E-07 1.07E-07 7.16E-08 7.16E-08 3.69E-08 2.16E-08 1.79E-09 1.79E-08 1.25E-07 1.79[-08 1.79E-08
NI -59 10 1. 51 E-08 3.58E-09 2.39E-09 2.39E-09 1.23E-09 7.19E-10 5.96E-11 5.96E-10 4.17E-09 5.96E-10 5.96E-10
NI-59 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
t-" NI -59 12 4.44E-1O 7. 23E -11 4.82E-11 1.90E-10 2.79E-11 7.98E-12 1. 20£ -12 1 . 20E -11 8.43E-11 1 . 20E -11 1.20£-11
0'\ NI-59 13 3.71 E-04 8.79E-05 5.85E-05 5.85E-05 3.02E-05 1.76E-05 1. 46E-06 1.46E-05 1.02E-04 1.46E-05 1.46E-05
():)
N I -59 14 8.63E-05 2.04E-05 1.36E-05 1.36E-05 7.01 E-06 4.10E-06 3.40E-07 3.40E-06 2.38E-05 3.40E-06 3.40£-06
NI-59 15 7.29E-05 1.72E-05 1 . 15E -05 1.15E-05 5.92E-06 3.46E-06 2.87E-07 2.87E-06 2.01E-05 2.87E-06 2.87E-06
N I -59 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 17 3.43E-05 5.58E-06 3.72E-06 1.47E-05 2.16E-06 6.16E-07 9.30£-08 9.30E-07 6.51E-06 9.30E-07 9.30E-07
NI -59 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 19 9.05E-03 2.14E-03 1. 43E-03 1.43E-03 7.36E-04 4.30E-04 3.57E-05 3.57E-04 2.50E-03 3.57E-04 3.57E-04
NI -59 20 2.lOE-03 4.98E-04 3.32E-04 3.32E-04 1.71 E-04 1.ooE-04 8.30E-06 8.30E-05 5. 81E-04 8.30E-05 8.30E-05
NI-59 21 1. 78E-03 4.21E-o.4 2.80E-04 2.80£-04 1.44E-04 8.44E-05 7.00E-06 7.00E-05 4.90£-04 7.00E-05 7.00E-05
NI -5 9 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI -59 24 4.44E-10 7. 23E-11 4.82E-11 1.90E-10 2.79E-11 7.98E-12 1.20E-12 1.20E-11 8.43E-11 1 . 20E -11 1.20E-11
NI-59 25 3.71E-04 8.79E-05 5.85E-05 5.85E-05 3.02E-05 1.76E-05 1.46E-06 1.46E-05 1.02E-04 1.46E-05 1.46E-05
NI -59 26 8.63E-05 2.04E-05 1.36E-05 1. 36E-05 7.01 E-06 4.10E-06 3.40E-07 3.40E-06 2.38E-05 3.40E-06 3.40E-06
NI-59 27 7. 29E-05 1. 72E-05 1.15E-05 1.15E-05 5.92E-06 3.46E-06 2.87E-07 2.87E-06 2.01E-05 2.87E-06 2.87E-06
NI-59 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NI-59 29 2.21 E-05 5.23E-06 3.49E-06 3.49E-06 1.80E-06 1.0SE-06 8.71E-08 8.71E-07 6.10E-06 8.71E-07 8.71E-07
NI -59 30 7. 37E-07 1.74E-07 1.16E-07 1.16E-07 5.99E-08 3.50E-08 2.90E-09 2.90E-08 2.03E-07 2.9OE-08 2.90E-08
-------
ORGAN FIRST GENERATION
NOCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS Ll VER GI-LLl THYROID KIDNEYS OTHERORGAN DVARIES TESTES
WALL
SR-90 1 8.03E-03 2.41E-03 3.46E-03 1.26E-10 1.15E-05 7.96E-04 1.20E-06 1.20E-05 1. 34E-03 1.20E-05 1.20E-05
SR-90 2 6.66E-05 2.00E-05 2.87E-05 1.05E-12 9.52E-08 6.60E-06 9.98E-09 9.98E-08 loll E-05 9.98E-08 9.98E-08
SR-90 3 1.05E-01 3.17E-02 4.54E-02 1.66E-09 1. 51 E-04 1.05E-02 1. 58E-05 1.58E-04 1.76E-02 1.58E-04 1. 58E-04
SR-90 4 7. 79E-03 2.34E-03 3.35E-03 1.22E-10 1.1lE-05 7.72E-04 1.17E-06 1 . 17E -05 1.30E-03 1.17E-05 1.17E-05
SR-90 5 1.04E-04 3.12E-05 4.47E-05 1.63E-12 1.48E-07 1.03E-05 1. 56E-08 1.56E-07 1.73E-05 1.56E-07 1.56E-07
SR-90 6 2.64E-08 8.41E-09 1. 23E-08 5.51E-10 4.17E-11 3.08E-10 4.31 E-12 4.3lE-ll 4.73E-09 4.31 E-ll 4.3lE-ll
SR-90 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 9 8.87E-08 2.67E-08 3.82E-08 1.40E-15 1.27E-10 8.80E-09 1. 33E-11 1.33E-10 1. 48E -08 1.33E-10 1.33E-10
SR-90 10 1.48E-08 4.44E-09 6.37E-09 2.33E-16 2.11E-11 1.47E-09 2.22E-12 2.22E-11 2.46E-09 2.22E-11 2.22E-ll
SR-90 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
~ SR-90 12 2.12E-07 1. 80E -09 2.71 E-09 1.91 E-07 1. 08E-1O 1.04E-08 2.10E-12 2.lOE-ll 5.92E-09 2.10E-ll 2.09E-11
0'1 SR-90 13 9.70E-02 2.91E-02 4.18E-02 1. 53E-09 1.39E-04 9.62E-03 1.45E-05 1.45E-04 1.62E-02 1.45E-04 1.45E-04
1.0 SR-90 14 6.85E-03 2.06E-03 2.95E-03 1. 08E-10 9.80E-06 6.80E-04 1. 03E-06 1.03E-05 1.14E-03 1.03E-05 1. 03E-05
SR-90 15 9.12E-05 2.74E-05 3.93E-05 1.43E-12 1.30E-07 9.05E-06 1. 37E-08 1.37E-07 1.52E-05 1. 37E-07 1. 37E-07
SR-90 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 17 1. 64E-02 1. 39E-04 2.09E-04 1. 48E-02 8.35E-06 8.05E-04 1.62E-07 1.62E-06 4.57E-04 1.62E-06 1 . 61 E -06
SR-90 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 19 2 . 3 7E -+<>0 7.11E-01 1. 02E -+<>0 3.72E-08 3.38E-03 2.35E-01 3.55E-04 3.55E-03 3.94E-01 3.55E-03 3.55E-03
SR-90 20 1.67E-01 5.02E-02 7. 20E-02 2.63E-09 2.39E-04 1.66E-02 2.5lE-05 2.51E-04 2. 78E-02 2.51E-04 2.5lE-04
SR-90 21 2. 23E-03 6.69E-04 9.59E-04 3.50E-ll 3.18E-06 2.21E-04 3.34E-07 3.34E-06 3.71E-04 3.34E-06 3.34E-06
SR-90 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 24 2.12E-07 1.80E-09 2.71 E-09 1. 9lE-07 1.08E-10 1.04E-08 2.10E-12 2. lOE -11 5.92E-09 2.lOE-ll 2.09E-11
SR-90 25 9.70E-02 2.91E-02 4.18E-02 1.53E-09 1.39E-04 9.62E-03 1. 45E-05 1.45E-04 1.62E-02 1.45E-04 1. 45E-04
SR-90 26 6.85E-03 2.06E-03 2.95E-03 1. 08E-10 9.80E-06 6.80E-04 1.03E-06 1.03E-05 1.14E-03 1.03E-05 1.03E-05
SR-90 27 9.12E-Q5 2.74E-05 3.93E-05 1.43E-12 1.30E-07 9.05E-06 1. 37E-08 1.37E-07 1. 52E-05 1.37E-07 1.37E-07
SR-90 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR-90 29 4.32E-06 1.30E-06 1.86E-06 6.80E-14 6.18E-09 4.29E-07 6.48E-10 6.48E-09 7.20E-07 6.48E-09 6.4BE-09
SR-90 30 7.20E-07 2.17E-07 3.10E-07 1.13E-14 1.03E-09 7.14E-08 1.08E-10 1. 08E-09 1. 20E-07 1. 08E -09 1.0BE-09
-------
ORGAN FIRST GENERATION
NI£LIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
ZR-93 1 7. 79E-05 3.96E-07 2.69E-06 3.14E-07 2.87E-07 7.03E-05 3.40E-09 4.00E-D7 3.48E-06 2. 73E-06 2.69E-07
ZR-93 2 4.30E-07 2.19E-09 1.48E-08 1.73E-09 1.59E-09 3.88E-07 1. 88E-11 2.2lE-09 1. 92E-08 1. 5lE-08 1.49E-09
ZR-93 3 3.01 E-04 1. 53E-06 1.04E-05 1.21E-06 1.11 E-06 2.7ZE-04 1.31E-08 1. 55E-06 1.34E-05 1.06E-05 1.04E-06
ZR-93 4 9.39E-04 4.77E-06 3.24E-05 3.78E-06 3.46E-06 8.48E-04 4.09E-08 4.82E-06 4.19E-05 3.29E-05 3.25E-06
ZR-93 5 4.24E-05 2. 16E -07 1.46E-06 1. 71 E-07 1. 57E-07 3.83E-05 1.85E-09 2.18E-07 1.89E-06 1.49E-06 1.47E-07
ZR-93 6 4.75E-1O 1.15E-11 2.76E-11 3.45E-10 5.91 E-12 3.91 E-11 3.70E-13 3.70E-12 4.18E-11 4.09E-12 1.39E-12
ZR-93 7 3. 97E-05 1. 98E -06 7. 91 E-06 7.91E-06 1.98E-06 3.95E-06 1. 98E-07 1.98E-06 1.38E-05 1.98E-06 1.98E-06
ZR-93 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ZR-93 9 2.58E-08 1.31E-10 8.91E-10 1.04E-10 9.53E-11 2.33E-08 1.13E-12 1.33E-10 1.15E-09 9.07E-10 8.93E-11
ZR-93 10 1. 44E-08 7. 30E -11 4.95E-1O 5.78E-11 5.30E-11 1. 30E-08 6.26E-13 7.37E-11 6.40E-10 5.04E-10 4.96E-11
ZR-93 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
f-' ZR-93 12 1.56E-09 8.24E-12 3.92E-11 1 . 31 E -09 1. 64E -11 8.02E-11 8.97E-13 7.62E-12 9.81E-11 5.83E-12 8.24E-13
~ ZR-93 13 2.77E-04 1.41E-06 9.56E-06 1.12E-06 1.0ZE-06 2.50E-04 1. 21 E-08 1.42E-06 1.24E-05 9.73E-06 9.59E-07
o ZR-93 14 8.26E-04 4.20E-06 2.85E-05 3.33E-06 3.05E-06 7.46E-04 3.60E-08 4.24E-06 3.69E-05 2.90E-05 2.86E-06
ZR-93 15 3.73E-05 1.90E-07 1.29E-06 1.50E-07 1.38E-07 3.37E-05 1. 63E-09 1. 92E-07 1.67E-06 1.31E-06 1.29E-07
ZR-93 16 2.39E-04 1. 19E-05 4.75E-05 4.75E-05 1. 19E-05 2.37E-05 1 . 19E -06 1.19E-05 8.31 E-05 1.19E-05 1 . 19E -05
ZR-93 17 1.21 E-04 6.36E-07 3.03E-06 1 . 01 E -04 1.27E-06 6.19E-06 6.92E-08 5.88E-07 7.57E-06 4.50E-07 6.36E-08
ZR-93 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ZR-93 19 6.76E-03 3.44E-05 2.33E-04 2. 72E-05 2.50E-05 6.l1E-03 2.95E-07 3.47E-05 3.02E-04 2.37E-04 2. 34E-05
ZR-93 20 2.02E-02 1.02E-04 6.95E-04 8.11E-05 7.44E-05 1.82E-02 8.79E-07 1. 03E-04 8.99E-04 7.07E-04 6.97E-05
ZR-93 21 9.11E-04 4.63E-06 3.14E-05 ,3.67E-06 3.36E-06 8.2ZE-04 3.97E-08 4.68E-06 4.06E-05 3.20E-05 3.15E-06
ZR-93 22 2.39E-04 1. 19E-05 4.75E-05 4.75E-05 1.19E-05 2.37E-05 1.19E-06 1.19E-05 8.31E-05 1 . 19E -05 1.19E-05
ZR-93 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ZR-93 24 1.56E-09 8.24E-12 3.92E-11 1 .31 E -09 1. 64E-11 B.02E-11 8.97E-13 7.62E-12 9.8lE-11 5.83E-12 8.24E-13
ZR-93 25 2.77E-04 1.41E-06 9.561:-06 1 .1 2E -06 1.0ZE-06 2.50E-04 1. 21 E-08 1.42E-06 1. 24E-05 9.73E-06 9.59E-07
ZR-93 26 8.26E-04 4.20E-06 2.85E-05 3.33E-06 3.05E-06 7.46E-04 3.60E-08 4.24E-06 3.69E-05 2.90E-05 2.86E-06
ZR-93 27 3.73E-05 1. 90E -07 1. 29E-06 1. 50E-07 1.38E-07 3.37E-05 1 .63E-09 1. 92E-07 1. 67E-06 1. 31 E-06 1. 29E-07
ZR-93 28 2.39E-04 1.19E-05 4.75E-05 4.75E-05 1. 19E-05 2.37E-05 1.19E-06 1.19E-05 8.31E-05 1.19E-05 1 . 19E -05
ZR-93 29 1. 26E-06 6.40E-09 4.34E-08 5.07E-09 4.64E-09 1.14E-06 5.49E-11 6.46E-09 5.62E-08 4.42E-08 4.35E-09
ZR-93 30 6.99E-07 3.55E-09 2.41E-08 2.81E-09 2. 58E-09 6.3lE-07 3.05E-11 3.59E-09 3.12£-08 2.45£-08 2.42£-09
-------
ORGAN FIRST GENERATION
NOCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
TC-99 1 2.42E-05 7.26E-07 2.59E-06 0.0 1.26E-06 1. 29E-05 2.83E-06 9.21E-07 3. 01 E-06 6.37E-07 6.37E-07
TC-99 2 6.02E-07 1.80E-08 6.44E-08 0.0 3.14E-08 3.20E-07 7.05E-08 2.29E-08 7.49E-08 1. 58E -08 1.58E-08
TC-99 3 1.92E-04 5.75E-06 2.05E-05 0.0 1.0DE-05 1.02E-04 2.25E-05 7.29E-06 2.39E-05 5.05E-06 5.05E-06
TC-99 4 6.25E-05 1.87E-06 6.69E-06 0.0 3.26E-Q6 3.32E-05 7. 32E-06 2.38E-06 7.78E-06 1.65E-06 1.65E-06
TC-99 5 5.82E-06 1.74E-07 6.22E-07 0.0 3.03E-07 3.09E-06 6.81E-07 2.21E-07 7.24E-07 1.53E-07 1.53E-07
TC-99 6 6.19E-l0 6.78E-13 2.41E-12 5.85E-l0 1.18E-12 9.30E-12 2.65E-12 8.60E-13 1.74E-11 5.94E-13 5.94E-13
TC-99 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 9 2.68E-09 8.02E-11 2.86E-l0 0.0 1.40E-l0 1.42E-09 3.13E-l0 1.02E-l0 3.33E-l0 7.04E-11 7.04E-11
TC-99 10 4.46E-09 1. 34E-l0 4.77E-l0 0.0 2.33E-l0 2.37E-09 5.22E-l0 1.70E-l0 5.55E-l0 1.17E-l0 1.17E-l0
TC-99 11. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
~ TC-99 12 1.24E-09 1.36E-12 4.82E-12 1.17E-09 2.36E-12 1.86E-ll 5.30E-12 1. 72E-12 3.48E-ll 1.19E-12 1. 19E -12
...... TC-99 13 1.76E-04 5.29E-06 1.89E-05 0.0 9.20E-06 9.38E-05 2.07E-05 6.71E-06 2.19E-05 4.64E-06 4. 64E-06
~
TC-99 14 5.50E-05 1. 65E-06 5.89E-06 0.0 2.87E-06 2.93E-05 6.44E-06 2.09E-06 6.85E-06 1.45E-06 1.45E-06
TC-99 15 5.12E-06 1.53E-07 5.47E-07 0.0 2.67E-07 2. 72E-06 5.99E-07 1. 95E-07 6.37E-07 1.35E-07 1.35E-07
TC-99 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 17 9.56E-05 1.05E-07 3.72E-07 9.03E-05 1.82E-07 1.44E-06 4.09E-07 1. 33E-07 2.69E-06 9.17E-08 9.17E-08
TC-99 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 19 4.30E-03 1.29E-04 4.60E-04 0.0 2.24E-04 2.29E-03 5.04E-04 1.64E-04 5.35E-04 1 . 13E -04 1. 13E-04
TC-99 20 1. 34E-03 4.03E-05 1.44E-04 0.0 7.00E-05 7.14E-04 1.57E-04 5.11 E-05 1.67E-04 3.53E-05 3.53E-05
TC-99 21 1.25E-04 3.74E-06 1. 34E-05 0.0 6.51E-06 6.64E-05 1.46E-05 4.75E-06 1. 55E-05 3.29E-06 3.29E-06
TC-99 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 24 1. 24E-09 1. 36E-12 4.82E-12 1.17E-09 2.36E-12 1. 86E-11 5.30E-12 1. 72E-12 3.48E-11 1.19E-12 1.19E-12
TC-99 25 1.76E-04 5. 29E-06 1.89E-05 0.0 9.20E-06 9.38E-05 2.07E-05 6.71 E-06 2.19E-05 4.64E-06 4.64E-06
TC-99 26 5.50E-05 1.65E-06 5.89E-06 0.0 2.87E-06 2.93E-05 6.44E-06 2.09E-06 6.85E-06 1.45E-06 1.45E-06
TC-99 27 5.12E-06 1. 53E-07 5.47E-07 0.0 2.67E-07 2.72E-06 5.99E-07 1. 95E-07 6.37E-07 1.35E-07 1.35E-07
TC-99 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TC-99 29 1.30E-07 3.91E-09 1.39E-08 0.0 6.80E-09 6.93E-08 1.53E-08 4.96E-09 1. 62E-08 3.43E-09 3.43E-09
TC-99 30 2.17E-07 6.51E-09 2.32E-08 0.0 1.13E-08 1.15E-07 2.54E-08 8.26E-09 2.70E-08 5. 72E-09 5.72E-09
-------
ORGAN FIRST GENERATION
NOCLIOE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
SN-126 1 1. 41E-03 1. 72E-04 6.89E-04 2.50E-05 3.40E-06 4.74E-04 1.00E-07 5.69E-06 3.97E-05 5.67E-06 5.67E-06
SN-126 2 7.01E-03 8.57E-04 3.43E-03 1.24E-04 1.69E-05 2. 36E-03 4.99E-07 2.83E-05 1. 97E-04 2.82E-05 2.82E-05
SN-126 3 6.66E-03 8. 14E -04 3.26E-03 1.18E-04 1.61E-05 2.24E-03 4.74E-07 2.69E-05 1. 88E -04 2.68E-05 2.68E-05
SN-126 4 2.95E-04 3.60E-05 1.44E-04 5.22E-06 7.10E-07 9.91 E-05 2.lOE-08 1.19E-06 8.29E-06 1. 18E-06 1.18E-06
SN-126 5 2.09E-03 2.55E-04 1.02E-03 3.70E-05 5.03E-06 7.03E-04 1.49E-07 8.42E-06 5.88E-05 8.39E-06 8.39E-06
SN-126 6 1.70E-08 4.43E-l0 1.77E-09 1.42E-08 1.17E-ll 4.26E-l0 3.45E-13 1. 73E-11 1.21E-l0 1. 73E-11 1. 73E-11
SN-126 7 4.67E-04 2.32E-05 9.28E-05 9.28E-05 2.32E-05 4.64E-05 2.32E-06 2.32E-05 1.62E-04 2.32E-05 2.32E-05
SN-126 8 2.57E-11 1. 28E-12 5.11E-12 5.11E-12 1. 28E-12 2.55E-12 1 . 28E -13 1. 28E - 12 8.94E-12 1. 28E-12 1. 28E-12
SN-126 9 4.67E-08 5.71E-09 2.29E-08 8.29E-l0 1.13E-l0 1. 57E-08 3.33E-12 1.89E-l0 1.32E-09 1.88E-l0 1.88E-l0
SN-126 10 7. 79E-09 9.52E-1O 3.81E-09 1. 38E-l0 1.88E-ll 2.62E-09 5.54E-13 3.14E-11 2.19E-l0 3.13E-11 3.13E-11
SN-126 11 1.54E-l0 7.67E-12 3.07E-11 3.07E-11 7.67E-12 1.53E-11 7.67E-13 7.67E-12 5.37E-11 7.67E-12 7.67E-12
I---' SN-126 12 3.40E-08 8.85E-l0 3.54E-09 2.85E-08 2.35E-11 8.52E-l0 6.89E-13 3.45E-11 2.42E-l0 3.45E-11 3.45E-11
'-J SN-126 13 6.13E-03 7.49E-04 3.00E-03 1.09E-04 1.48E-05 2.06E-03 4.36E-07 2.47E-05 1.73E-04 2.46E-05 2.46E-05
N SN-126 14 2.59E-04 3.17E-05 1.27E-04 4.60E-06 6.25E-07 8.72E-05 1.84E-08 1. 05E -06 7.30E-06 1 . 04E -06 1.04E-06
SN-126 15 1.84E-03 2.24E-04 8.98E-04 3.26E-05 4.43E-06 6.18E-04 1.31E-07 7.41E-06 5.17E-05 7.39E-06 7.39E-06
SN-126 16 2.80E-03 1.39E-04 5.58E-04 5.58E-04 1.39E-04 2.79E-04 1. 39E-05 1. 39E -04 9.76E-04 1.39E-04 1.39E-04
SN-126 17 2.63E-03 6.83E-05 2. 73E-04 2.20E-03 1 .81 E -06 6.58E-05 5.32E-08 2.66E-06 1.87E-05 2. 66E-06 2.66E-06
SN-126 18 1.19E-05 5.92E-07 2.37E-06 2.37E-06 5.92E-07 1 . 18E -06 5.92E-08 5.92E-07 4.15E-06 5.92E-07 5.92E-07
SN-126 19 1.50E-01 1.83E-02 7.31E-02 2.65E-03 3.60E-04 5.03E-02 1.06E-05 6.03E-04 4.21E-03 6.01E-04 6 . 01 E -04
SN-126 20 6.32E-03 7.73E-04 3.09E-03 1.12E-04 1.52E-05 2.13E-03 4.50E-07 2.55E-05 1. 78E -04 2.54E-05 2.54E-05
SN-126 21 4.48E-02 5.48E-03 2.19E-02 7.95E-04 1.08E-04 1.51E-02 3.19E-06 1.81E-04 1. 26E -03 1.80E-04 1. 80E-04
SN-126 22 2.80E-03 1.39E-04 5.58E-04 5.58E-04 1.39E-04 2.79E-04 1.39E-05 1. 39E -04 9.76E-04 1.39E-04 1.39E-04
SN-126 23 1.54E-l0 7.67E-12 3.07E-11 3.07E-11 7.67E-12 1.53E-11 7.67E-13 7.67E-12 5.37E-11 7.67E-12 7.67E-12
SN-126 24 3.40E-08 8.85E-l0 3.54E-09 2.85E-08 2.35E-11 8.52E-10 6.89E-13 3.45E-11 2.42E-l0 3.45E-11 3.45E-11
SN-126 25 6.13E-03 7.49E-04 3.00E-03 1.09E-04 1. 48E-05 2.06E-03 4.36E-07 2.47E-05 1.73E-04 2.46E-05 2.46E-05
SN-126 26 2.59E-04 3.17E-05 1. 27E-04 4.60E-06 6.25E-07 8.72E-05 1.84E-08 1.05E-06 7.30E-06 1.04E-06 1.04E-06
SN-126 27 1.84E-03 2.24E-04 8.98E-04 3.26E-05 4.43E-06 6.18E-04 1.31E-07 7.41E-06 5. 17E -05 7.39E-06 7.39E-06
SN-126 28 2.80E-03 1.39E-04 5.58E-04 5.58E-04 1.39E-04 2.79E-04 1.39E-05 1.39E-04 9.76E-04 1.39E-04 1. 39E-04
SN-126 29 2. 28E-06 2.78E-07 1.11 E-06 4.04E-08 5.49E-09 7.66E-07 1.62E-1O 9.19E-09 6.41E-08 9.16E-09 9.16E-09
SN-126 30 3.80E-07 4.64E-08 1. 86E-07 6.73E-09 9.15E-10 1.28E-07 2.70E-11 1.53E-09 1.07E-08 1. 53E-09 1.53E-09
-------
ORGAN FIRST GENERATION
NIHIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
1-129 1 1.63E-03 1. 81 E-06 7.57E-06 1.44E-06 1.46E-06 2.69E-07 1.57E-03 1.41E-06 4.47E-05 1 . 19E -06 1 . 1 2E -06
1-129 2 4.05E-05 4.51 E-08 1.88E-07 3.58E-08 3.62E-08 6.70E-09 3.90E-05 3.5lE-08 1.11E-06 2.96E-08 2.79E-08
1-129 3 6.43E-03 7. 1 7E -06 3.00E-05 5.69E-06 5.76E-06 1.07E-06 6.20E-03 5.58E-06 1. nE-04 4.71 E-06 4.44E-06
1-129 4 2. 44E-03 2.72E-06 1.14E-05 2.16E-06 2.19E-06 4.05E-07 2.35E-03 2.12E-06 6.72E-05 1.79E-06 1.68E-06
1-129 5 1.84E-04 2.05E-07 8.58E-07 1.63E-07 1.65E-07 3.05E-08 1. 78E-04 1.60E-07 5.07E-06 1.35E-07 1.27E-07
1-129 6 1.46E-09 1.62E-12 6.78E-12 8.83E-12 1.31E-12 2.40E-13 1.40E-09 1.26E-12 4.02E-l1 1.06E-12 1. OOE - 12
1-129 7 1. lOE-05 9.70E-07 3.50E-06 1.29E-06 2.40E-07 1.53E-07 6.71 E-08 3.59E-07 4.45E-06 2.27E-07 8.75E-07
1-129 8 1.84E-13 1.61E-14 5.82E-14 2.15E-14 4.00E-15 2.55E-15 1.12E-15 5.97E-15 7.42E-14 3.78E-15 1. 45E-14
1-129 9 3.60E-07 4.01E-l0 1.67E-09 3.18E-l0 3.22E-l0 5.96E-11 3.47E-07 3.1 2E -10 9.89E-09 2.63E-10 2.48E-10
1-129 10 3.00E-07 3.34E-l0 1.40E-09 2.65E-10 2.68E-l0 4.96E-ll 2.89E-07 2.60E-l0 8.24E-09 2.19E-10 2.07E-10
1-129 11 1.10E-12 9.67E-14 3.50E-13 1.29E-13 2.40E-14 1.53E-14 6.74E-15 3.59E-14 4.45E-13 2.27E-14 8.74E-14
I-' 1-129 12 2.92E-09 3.24E-12 1. 36E-11 1. nE-11 2.61 E-12 4.80E-13 2.80E-09 2.52E-12 8.04E-ll 2.12E-12 2.00E-12
'-.I 1-129 13 5.92E-03 6.60E-06 2.76E-05 5.24E-06 5.30E-06 9.80E-07 5.70E-03 5.13E-06 1. 63E-04 4.33E-06 4.08E-06
w 1-129 14 2.15E-03 2.40E-06 1.00E-05 1. 90E -06 1.92E-06 3.56E-07 2.07E-03 1.86E-06 5.91E-05 1. 57E-06 1.48E-06
1-129 15 1.62E-04 1. 81E-07 7.55E-07 1. 43E-07 1.45E-07 2.68E-08 1.56E-04 1.41E-07 4.46E-06 1. 19E-07 1.12E-07
1-129 16 6.63E-05 5.82E-06 2. lOE-05 7. 76E-06 1. 44E-06 9.20E-07 4.03E-07 2.15E-06 2.68E-05 1.36E-06 5.26E-06
1-129 17 2.26E-04 2.50E-07 1.05E-06 1.36E-06 2.02E-07 3.70E-08 2.16E-04 1. 94E-07 6.21E-06 1.64E-07 1. 54E-07
1-129 18 8.52E-08 7. 47E-09 2.70E-08 9.99E-09 1.85E-09 1.18E-09 5.20E-10 2.nE-09 3.44E-08 1. 75E-09 6.75E-09
1-129 19 1.44E-0l 1. 61 E-04 6.72E-04 1.28E-04 1. 29E-04 2.39E-05 1.39E-Ol 1.25E-04 3.97E-03 1.06E-04 9.96E-05
1-129 20 5.24E-02 5.85E-05 2.44E-04 4.64E-05 4.69E-05 8. 68E-06 5.05E-02 4.55E-05 1. 44E-03 3.84E-05 3.62E-05
1-129 21 3.95E-03 4.41E-06 1.84E-05 3.50E-06 3.54E-06 6.55E-07 3.81E-03 3.43E-06 1.09E-04 2.89E-06 2.73E-06
1-129 22 6.63E-05 5.82E-06 2. lOE-05 7.76E-06 1.44E-06 9.20E-07 4.03E-07 2.15E-06 2.68E-05 1.36E-06 5.26E-06
1-129 23 1.10E-12 9.67E-14 3.50E-13 1.29E-13 2.40E-14 1.53E-14 6.74E-15 3.59E-14 4.45E-13 2.27E-14 8.74E-14
1-129 24 2.92E-09 3.24E-12 1 . 36E -11 1. nE-11 2.6lE-12 4.80E-13 2.80E-09 2.52E-12 8.04E-11 2.12E-12 2.00E-12
1-129 25 5.92E-03 6.60E-06 2.76E-05 5.24E-06 5.30E-06 9.81:1:-07 5.70E-03 5.13E-06 1. 63E-04 4.33E-06 4.0SE-06
1-129 26 2.15E-03 2.40E-06 1.00E-05 1.90E-06 1. 92E -06 3.56E-07 2.07E-03 1. 86E-06 5.9lE-05 1.57E-06 1.48E-06
1-129 27 1.62E-04 1.81E-07 7.55E-07 1.43E-07 1.45E-07 2.68E-08 1. 56E-04 1.41E-07 4.46E-06 1. 19E-07 1.12E-07
1-129 28 6.63E-05 5.82E-06 2.lOE-05 7.76E-06 1.44E-06 9.20E-07 4.03E-07 2.15E-06 2.68E-05 1.36E-06 5.26E-06
1-129 29 1.75E-05 1.95E-08 8.16E-08 1. 55E-08 1.57E-08 2.90E-09 1.69E-05 1. 52E-08 4.82E-07 1.28E-08 1. 21E-08
1-129 30 1. 46E-05 1.63E-08 6.80E-08 1.29E-08 1. 31 E-08 2.42E-09 1.41 E-05 1.27E-08 4.02E-07 1.07E-08 1.01 E-08
-------
ORGAN FIRST GENERATION
N~LIDE PATHWAY*********~*********************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LI VER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
CS- 13 5 1 2. 55E-04 2.25E-05 9.00E-05 0.0 2.25E-05 2.15E-06 2.27E-06 2.25E-05 9.30E-05 2.25E-05 2.25E-05
CS-135 2 1.69E-04 1. 49E-05 5.97E-05 0.0 1.49E-05 1.43E-06 1 . 51 E -06 1.49E-05 6.17E-05 1.49E-05 1.49E-05
CS-135 3 2.13E-03 1.88E-04 7.50E-04 0.0 1.88E-04 1. 79E-05 1. 89E-05 1.88E-04 7.75E-04 1.88E-04 1.88E-04
CS-135 4 9.99E-04 8.82E-05 3.53E-04 0.0 8.82E-05 8.43E-06 8.90E-06 8.82E-05 3.64E-04 8.82E-05 8.82E-05
CS-135 5 2.65E-04 2.34E-05 9.35E-05 0.0 2.34E-05 2.23E-06 2.36E-06 2.34E-05 9.66E-05 2.34E-05 2.34E-05
CS-135 6 2.43E-10 2.09E-11 8.37E-11 7.17E-12 2.09E-11 4.77E-13 2.lOE-12 2.09E-11 8.63E-11 2.09E-11 2.09E-11
CS-135 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 9 8.46E-08 7.47E-09 2.99E-08 0.0 7.4 7E-09 7.13E-10 7.53E-10 7.47E-09 3.08E-08 7.47E-09 7.47E-09
CS-135 10 2.35E-08 2.07E-09 8.30E-09 0.0 2.07E-09 1. 98E-1O 2.09E-10 2.07E-09 8.57E-09 2.07E-09 2.07E-09
CS-135 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I--' CS-135 12 4.85E-10 4.19E-11 1.67E-10 1.43E-11 4.19E-11 9.54E-13 4.19E-12 4.19E-11 1.73E-10 4.19E-11 4.19E-11
'" CS-135 13 1.96E-03 1. 73E-04 6.90E-04 0.0 1.73E-04 1.65E-05 1.74E-05 1.73E-04 7.13E-04 1.73E-04 1.73E-04
~ CS-135 14 8.79E-04 7. 76E-05 3.1 OE-04 0.0 7.76E-05 7.42E-06 7.83E-06 7.76E-05 3.21E-04 7.76E-05 7. 76E-05
CS-135 15 2.33E-04 2.06E-05 8.23E-05 0.0 2.06E-05 1. 97E-06 2.08E-06 2.06E-05 8.50E-05 2.06E-05 2.06E-05
CS-135 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 17 3.74E-05 3.23E-06 1.29E-05 1.11E-06 3.23E-06 7.36E-08 3.24E-07 3.23E-06 1.33E-05 3.23E-06 3.23E-06
CS-135 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 19 4.77E-02 4.21E-03 1.68E-02 0.0 4.21 E-03 4.02E-04 4.25E-04 4.21E-03 1.74E-02 4.21E-03 4.21E-03
CS-135 20 2.14E-02 1. 89E-03 7.57E-03 0.0 1.89E-03 1. 8lE-04 1.91 E-04 1.89E-03 7.82E-03 1.89E-03 1.89E-03
CS-135 21 5.68E-03 5.02E-04 2.01 E-03 0.0 5.02E-04 4.79E-05 5.06E-05 5.02E-04 2.07E-03 5.02E-04 5.02£-04
CS-135 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS- 13 5 24 4.85E-1O 4.19E-11 1. 67E-10 1. 43E-11 4.19E-11 9.54E-13 4.19E-12 4.19E-11 1. 73E-10 4.19E-11 4.19E-11
CS-135 25 1.96E-03 1.73E-04 6.90E-04 0.0 1. 73E-04 1. 65E-05 1.74E-05 1.73E-04 7. 1 3E -04 1.73E-04 1.73E-04
CS-135 26 8.79E-04 7. 76E-05 3.10E-04 0.0 7. 76E-05 7. 42E-06 7.83E-06 7.76E-05 3.21E-04 7. 76E-05 7.76E-05
CS-135 27 2.33E-04 2.06E-05 8.23E-05 0.0 2.06E-05 1.97E-06 2.08E-06 2.06E-05 8.50E-05 2.06E-05 2.06E-05
CS-135 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS-135 29 4.12E-06 3.64E-07 1.45E-06 0.0 3.64E-07 3.47E-08 3.67E-08 3.64E-07 1.50E-06 3.64E-07 3.64E-07
CS-135 30 1.14E-06 1.01 E-07 4.04E-07 0.0 1.01 E-07 9.65E-09 1.02E-08 1.01E-07 4.17E-07 1.01 E-07 1.01 E-07
-------
ORGAN FIRST GENERATION
NLUIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
CS-137 1 2.01E-03 1.37E-04 5.93E-04 1.60E-04 1. 58E-04 1.04E-04 1.35E-05 1.55E-04 6.91E-04 1.52E-04 1. 34E-04
CS-137 2 1. 33E-03 9.09E-05 3.94E-04 1.06E-04 1.05E-04 6.9lE-05 8.96E-06 1.03E-04 4.58E-04 1. 01 E-04 8.91 E-05
CS-137 3 7. 83E-03 5.34E-04 2.31E-03 6. 23E-04 6. 16E -04 4.05E-04 5. 26E-05 6.05E-04 2.69E-03 5.90E-04 5.23E-04
CS-137 4 2.0BE-03 1.42E-04 6.14E-04 1.66E-04 1.64E-04 1. 08E -04 1.40E-05 1.61 E-04 7.15E-04 1. 57E-04 1.39E-04
CS-137 5 5.55E-04 3.78E-05 1.64E-04 4.41E-05 4.36E-05 2.87E-05 3.72E-06 4.28E-05 1.90E-04 4.18E-05 3.70E-05
CS-13 7 6 1.89E-09 1. 27E -1 0 5.50E-10 1.82E-10 1.47E-10 8.97E-11 1. 25E-11 1.44E-10 6.39E-10 1. 40E-1O 1.24E-10
CS-137 7 ] .50E-04 9.21E-06 3.52E-05 2.84E-05 6.27E-06 1.09E-05 7.94E-07 6.70E-06 5.28E-05 2.77E-06 8.3BE-06
CS-137 8 8.44E-12 5.18E-13 1. 98E-12 1. 60E-12 3.53E-13 6.11E-13 4.46E-14 3.75E-13 2.96E-12 1. 54E - 13 4.71 E-13
CS-137 9 6.67E-07 4.55E-08 1.97E-07 5.31E-08 5.25E-08 3.45E-08 4.48E-09 5.15E-08 2.29E-07 5.03E-08 4.45E-08
CS - 13 7 10 1.85E-07 1. 26E-08 5.47E-08 1.47E-08 1.46E-08 9.59E-09 1. 24E-09 1.43E-08 6. 36E -08 1.40E-08 1.24E-08
C$-137 11 5.07E-11 3.11E-12 1.19E-11 9.60E-12 2.12E-12 3.67E-12 2.68E-13 2.25E-12 1. 78E-11 9.2 7E - 13 2.83E-12
I--' C$-137 12 3.78E-09 2.54E-10 1.10E-09 3.63E-10 2.93E-10 1.79E-10 2.50E-11 2.87E-10 1.28E-09 2.80E-10 2.49E-10
-....J C$-137 13 7.21 E -03 4.91 E-04 2 . 1 3E -03 5.73E-04 5.67E-04 3.73E-04 4.84E-05 5.56E-04 2.4 7E -03 5.43E-04 4.81E-04
<.n C$-13 7 14 1.83E-03 1.25E-04 5.4lE-04 1. 46E -04 1.44E-04 9.49E-05 1. 23E-05 1.42E-04 6.29E-04 1. 3BE -04 1. 22E-04
C$-137 15 4.88E-04 3.32E-05 1.44E-04 3.88E-05 3.84E-05 2.52E-05 3.28E-06 3.77E-05 1. 68E-04 3.6BE-05 3.26E-05
C$-13 7 16 9.02E-04 5.53E-05 2. 11 E -04 1.71 E-04 3.77E-05 6.54E-05 4.77E-06 4.02E-05 3.17E-04 1.66E-05 5.04E-05
C$-137 17 2.92E-04 1. 96E-05 8.50E-05 2.80E-05 2.26E-05 1. 38E-05 1.93E-06 2.22E-05 9.87E-05 2.16E-05 1.92E-05
C$-137 18 3.9lE-06 2.40E-07 9.17E-07 7.4lE-07 1. 64E-07 2.83E-07 2.07E-08 1.74E-07 1. 37E-06 7.16E-08 2.18E-07
C$-137 19 1. 76E-01 1.20E-02 5.18E-02 1.40E-02 1.38E-02 9.lOE-03 1.18E-03 1.36E-02 6.04E-02 1. 32E-02 1.17E-02
C$-137 20 4.47E-02 3.05E-03 1. 32E-02 3.56E-03 3. 52E-03 2. 31 E-03 3.ooE-04 3.45E-03 1.54E-02 3.37E-03 2. 98E-03
C$-137 21 1.19E-02 8.11E-04 3.51 E-03 9.46E-04 9.36E-04 6.16E-04 7.99E-05 9.19E-04 4.09E-03 8.97E-04 7. 94E-04
C$-137 22 9.02E-04 5.53E-05 2.11E-04 1. 71 E-04 3.77E-05 6.54E-05 4.77E-06 4.02E-05 3.17E-04 1.66E-05 5.04E-05
C$-137 23 5.07E-11 3.11E-12 1. 19E-11 9.60E-12 2.12E-12 3.67E-12 2.68E-13 2.25E-12 1. 78E-11 9.27E-13 2.83E-12
C$-137 24 3.78E-09 2.54E-10 1.10E-09 3.63E-10 2.93E-10 1.79E-10 2.50E-11 2.87E-10 1.28E-09 2.80E-10 2.49E-10
C$-137 25 7.21 E -03 4.91E-04 2.13E-03 5.73E-04 5.67E-04 3.73E-04 4.84E-05 5.56E-04 2.47E-03 5.43E-04 4.81E-04
C$-137 26 1.83E-03 1. 25E-04 5.41E-04 1.46E-04 1.44E-04 9.49E-05 1. 23E-05 1.42E-04 6.29E-04 1.38E-04 1. 22E-04
C $- 13 7 27 4.88E-04 3.32E-05 1. 44E-04 3.88E-05 3.84E-05 2.52E-05 3.28E-06 3.77E-05 1.68E-04 3.68E-05 3.26E-05
C$-137 28 9.02E-04 5.53E-05 2.11 E-04 1. 7lE-04 3.77E-05 6.54E-05 4.77E-06 4.02E-05 3.17E-04 1.66E-05 5.04E-05
C$-137 29 3.25E-05 2.21E-06 9.59E-06 2.59E-06 2.56E-06 1.68E-06 2.18E-07 2.51E-06 1.12E-05 2.45E-06 2.17E-06
C$-137 30 9.03E-06 6.15E-07 2.66E-06 7.18E-07 7.10E-07 4.67E-07 6.06E-08 6.97E-07 3.10E-06 6.80E-07 6.03E-07
-------
ORGAN FIRST GENERATION
NL(LlDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
SM-151 1 2.39E-05 9.!J7E-09 2.57E-08 8.44E-10 3.48E-08 2.35E-05 2.0lE-11 1.11 E-08 3.29E-07 1.14E-08 1. OBE-09
SM- 151 2 9.92E-07 4.09E-10 1.07E-09 3.50E-11 1.44E-09 9.75E-07 8.58E-13 4.60E-10 1.36E-08 4.72E-10 4.47E-11
SM-151 3 8.99E-05 3.71 E-08 9.66E-08 3. 17E -09 1. 31 E-07 8.83E-05 7.78E-11 4.17E-08 1. 24E-06 4.27E-08 4.05E-09
SM- 151 4 1. 77E-08 7.28E-12 1. 90E - 11 6.23E-13 2.57E-11 1.74E-08 1.53E-14 8.19E-12 2.43E-10 8.39E-12 7.95E-13
SM- 1 51 5 1.87E-06 7.73E-1O 2.02E-09 6.61E-11 2.72E-09 1.84E-06 1.62E-12 8.69E-10 2.58E-08 8.91E-10 8.44E-11
SM-151 6 3.21E-10 1. 38E-11 2.17E-11 1.78E-10 5.30E-11 1. 57E-11 2.91E-14 1. 5lE-11 2.33E-1.1 3.05E-13 2.89E-13
SM-151 7 7.47E-09 5.lOE-1O 1.78E-09 3.54E-10 4.90E-11 1.22E-10 1.89E-11 1.47E-10 4.49E-09 8.17E-11 8.l1E-10
SM-151 8 3.97E-17 2.71E-18 9.46E-18 1. 88E -18 2.61 E-19 6.49E-19 1.0lE-19 7.80E-19 2.39E-17 4.35E-19 4.31E-18
SM-151 9 6.61E-09 2.73E-12 7.11E-12 2.33E-13 9.61E-12 6.50E-09 5.72E-15 3.07E-12 9. lOE -11 3.14E-12 2.98E-13
SM- 151 10 4.41 E-08 1. 82E-11 4.74E-11 1. 56E-12 6.41E-11 4.33E-08 3.8lE-14 2.04E-11 6.0lE-10 2.lOE-11 1. 99E-12
SM- 1 51 11 2.39E-16 1.63E-17 5.68E-17 1.13E-17 1.5lE-18 3.90E-18 6.04E-19 4.68E-18 1.43E-16 2.61E-18 2.59E-17
~ Sr~-151 12 1. 62E-09 2.86E-12 4.68E-12 1. 52E-09 1.06E-11 3.4lE-11 1. 08E-14 3.lOE-12 4.28E-11 8.24E-14 6.00E-14
-.....J SM- 1 51 13 8.27E-05 3.41 E-08 8.89E-08 2.92E-09 1.20E-07 8.13E-05 7.15E-11 3.83E-08 1 . 14E -06 3.93E-08 3. 72E-09
0'> SM-151 14 1. 55E-08 6.41E-12 1. 67E-11 5.48E-13 2.26E-11 1.53E-08 1 . 34E - 14 7.20E-12 2.14E-10 7.39E-12 7.00E-13
SM- 1 51 15 1. 65E-06 6.81E-1O 1.77E-09 5.82E-11 2.40E-09 1. 62E-06 1.43E-12 7.65E-10 2.27E-08 7.84E-10 7.43E-11
SM-151 16 4.49E-08 3.06E-09 1.07E-08 2.12E-09 2.94E-10 7.31E-10 1.13F.-10 8.80E-10 2.70E-08 4.9lE-10 4.87E-09
SM- 1 51 17 1.25E-04 2.21E-07 3.62E-07 1. 17E-04 8.22E-07 2.63E-06 8.31E-10 2.40E-07 3.30E-06 6.36E-09 4.63E-09
SM-151 18 1. 84E-11 1.26E-12 4.39E-12 8.73E-13 1.21E-13 3.01E-13 4.67E-14 3.61E-13 1.11E-11 2.02E-13 2.00E-12
SM- 1 51 19 2.02E-03 8.32E-07 2.17E-06 7. 12E-08 2.93E-06 1.98E-03 1. 75E-09 9.35E-07 2. 78E-05 9.S9E-07 9.08E-08
SM-151 20 3.79E-07 1. 56E -1 0 4.08E-10 1. 34E-11 5.51E-10 3.73E-07 3.28E-13 1.76E-10 5.22E-09 1. 80E-10 1.71E-11
SM- 1 51 21 4.03E-05 1.66E-08 4.33E-08 1.42E-09 5.85E-08 3.96E-05 3.48E-11 1.87E-08 5.54E-07 1.91E-08 1.81E-09
SM-151 22 4.49E-08 3.06E-09 1.07E-08 2.12E-09 2.94E-1O 7.3lE-10 1.13E-10 8.80E-10 2.70E-08 4.91E-10 4.87E-09
SM-151 23 2.39E-16 1. 63E-17 5.68E-17 1. 1 3E - 17 1.57E-18 3.90E-18 6.04E-19 4.68E-18 1.43E-16 2.61E-18 2.59E-17
SM- 151 24 1.62E-09 2.86E-12 4.68E-12 1.52E-09 1.06E-11 3.41E-11 1.08E-14 3.lOE-12 4.28E-11 8.24E-14 6.00E-14
SM-151 25 8.27E-05 3.41 E-08 8.89E-08 2.92E-09 1.20E-07 8.13E-05 7.15E-11 3.83E-08 1 . 14E -06 3.93E-08 3.72E-09
SM- 151 26 1. 55E-08 6.4lE-12 1. 67E-11 5.48E-13 2.26E-11 1.53E-08 1.34E-14 7.20E-12 2.14E-10 7.39E-12 7.00E-13
SM- 151 27 1.65E-06 6.81E-10 1.77E-09 5.82E-11 2.40E-09 1.62E-06 1.43E-12 7.65E-10 2.27E-08 7.84E-10 7.43E-11
SM-151 28 4.49E-08 3.06E-09 1.07E-08 2.12E-09 2.94E-10 7.31E-10 1.13E-10 8.80E-10 2.70E-08 4.91E-10 4.87E-09
SM- 151 29 3.22E-07 1. 33E-1O 3.46E-10 1.14E-11. 4.68E-10 3.17E-07 2.79E-13 1.49E-10 4.43E-09 1.53E-10 1.45E-11
SM-151 30 2.15E-06 8.86E-10 2.31E-09 7.58E-11 3.12E-09 2.1lE-06 1.86E-12 9.96E-10 2.96E-08 1.02E-09 9.67E-11
-------
ORGAN FIRST GENERATION
NOCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
RA-226 1 2.73E-01 1.27£-01 1.72E-02 2.18E-06 3.76E-03 3.28E-03 1.61E-04 1. 16E -02 1.10E-01 1. 62E-03 1.61E-03
RA-226 2 2.26E-02 1.05E-02 1. 43E-03 1.81 E-07 3.12E-04 2.72E-04 1.33E-05 9.65E-04 9.09E-03 1.34E-04 1.33E-04
RA-226 3 2. 78E +()O 1. 29E +()O 1.75E-01 2.22E-05 3.83E-02 3.34E-02 1. 64E -03 1 . 19E -01 1 . 12E +00 1.65E-02 1. 64E-02
RA-226 4 3.38E-02 1. 58E-02 2.13E-03 2.70E-07 4.66E-04 4.07E-04 2.ooE-05 1.44E-03 1.36E-02 2.01E-04 2.00E-04
RA-226 5 3.03E-03 1.41E-03 1.91E-04 2.42E-08 4.17E-05 3.64E-05 1.79E-06 1. 29E-04 1.22E-03 1.8DE-05 1.79E-05
RA-226 6 4.50E-07 3.08E-08 1. 1 OE-08 3.15E-07 9.53E-10 5.60E-10 9.53E-11 9.78E-10 9.02E-08 9.53E-10 9.53E-1O
RA-226 7 4.76E-04 2.80E-05 1. 04E -04 9.20E-05 2.05E-05 3.75E-05 2.35E-06 1. 94E-05 1.72E-04 1.81E-05 2.10E-05
RA-226 8 2.75E-11 1.67E-12 6.17E-12 5.64E-12 1. 24E-12 2.29E-12 1.42E-13 1.18E-12 9.17E-12 1.10E-12 1. 25E-12
RA-226 9 1. 51 E-04 7.02E-05 9.51E-06 1.20E-09 2.08E-06 1. 81 E-06 8.9DE-08 6.43E-06 6.06E-05 8.96E-07 8.90E-07
RA-226 10 5.02E-05 2.34E-05 3.17E-06 4.0lE-10 6.93E-07 6.04E-07 2.97E-08 2.14E-06 2.02E-05 2.99E-07 2.97E-07
RA-226 11 1.65E-10 1.00E-11 3.71E-11 3.39E-11 7.47E-12 1.37E-11 8.54E-13 7.07E-12 5.51E-l1 6.60E-12 7.54E-12
t-' RA-226 12 8.99E-07 6.16E-08 2.20E-08 6.30E-07 1. 91 E-09 1.12E-09 1. 91 E-lO 1.96E-09 1.80E-07 1 .91 E -09 1 .91 E -09
'-.J RA-226 13 2. 56E +()O 1. 1 9E +()O 1.61E-01 2.04E-05 3. 52E-02 3.07E-02 1. 51 E-03 1.09E-Ol 1.03E+00 1. 52E-02 1 . 51 E -02
'-.J
RA-226 14 2.98E-02 1.39E-02 1.88E-03 2.38E-07 4.10E-04 3.58E-04 1. 76E-05 1.27E-03 1.20E-02 1. 77E -04 1.76E-04
RA-226 15 2.66E-03 1.24E-03 1.68E-04 2.13E-08 3.67E-05 3.2DE-05 1. 57E-06 1 . 1 4E -04 1.07E-03 1.58E-05 1. 57E-05
RA-226 16 2.86E-03 1. 68E-04 6.24E-04 5.52E-04 1. 23E-04 2.25E-04 1.41E-05 1.17E-04 1.03E-03 1. 09E-04 1. 26E-04
RA-226 17 6.94E-02 4.76E-03 1.70E-03 4.86E-02 1.47E-04 8.65E-05 1.47E-05 1. 51 E-04 1.39E-02 1.47E-04 1. 4 7E -04
RA-226 18 1.28E-05 7. 72E-07 2.86E-06 2.62E-06 5.77E-07 1. 06£-06 6.59E-08 5.46E-07 4.25E-06 5.lOE-07 5.82E-07
RA-226 19 6.23E+01 2.90E+01 3 . 9 3E +00 4.98E-04 8.59E-01 7. 50E-01 3.68E-02 2.66E+()0 2.51E+01 3. 70E-01 3.68E-01
RA-226 20 7. 26E-01 3.38E-01 4.58E-02 5.80E-06 1.00E-02 "8.74E-03 4.29E-04 3.10E-02 2.92E-01 4.3lE-03 4.29E-03
RA-226 21 6.50E-02 3.03E-02 4.10E-03 5. 19E -07 8.96E-04 7.82E-04 3.84E-05 2.77E-03 2.61£-02 3.86E-04 3.84£-04
RA-226 22 2.86E-03 1.68E-04 6.24E-04 5.52E-04 1. 23E -04 2.25E-04 1. 41E-05 1. 17E-04 1. 03E-03 1.09E-04 1. 26E-04
RA-226 23 1.65E-10 1.00E-11 3.71E-11 3.39E-11 7.47E-12 1.37E-11 8.54E-13 7.0 7E -1 2 5.51E-11 6.60E-12 7.54E-12
RA-226 24 8.99E-07 6.16E-08 2.20E-08 6.30E-07 1.91 E -09 1.12E-09 1. 91£-10 1. 96E -09 1. 80E-07 1 . 91 E -09 1. 91 E -09
RA-226 25 2. 56E +00 1. 1 9E +00 1. 61 E-01 2.04E-05 3.52E-02 3.07E-02 1. 51 E-03 1.09E-01 1.03E+00 1.52E-02 1. 51 E-02
RA-226 26 2.98E-02 1.39E-02 1. 88E-03 2.38E-07 4.10E-04 3.58E-04 1.76E-05 1.27E-03 1.20E-02 1.77E-04 1.76E-04
RA-226 27 2.66E-03 1. 24E-03 1.68E-04 2.13E-08 3.67E-05 3.20E-05 1. 57E-06 1. 14E-04 1.07E-03 1.58E-05 1. 57E-05
RA-226 28 2.86E-03 1.68E-04 6.24E-04 5.52E-04 1. 23E-04 2.25E-04 1. 41 E-05 1.17E-04 1.03E-03 1.09E-04 1.26E-04
RA-226 29 7.34E-03 3.42E-03 4.63E-04 5.87E-08 1.01E-04 8.83E-05 4.34E-06 3.13E-04 2.95E-03 4.36E-05 4.34E-05
RA-226 30 2.45E-03 1.14E-03 1. 54E-04 1.96E-08 3.37E-05 2.94E-05 1.45E-06 1.04E-04 9.84E-04 1.45E-05 1.45E-05
-------
ORGAN FIRST GENERATION
NIHIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
U-234 1 7.39E-02 4.02E-02 6.43E-03 6.62E-06 1.17E-03 3.56E-04 1.17E-04 1.71E-03 2.39E-02 1.17E-03 1 . 17E -03
U-234 2 1.23E-03 6.67E-04 1.07E-04 1.10E-07 1.93E-05 5.91E-06 1.93E-06 2.83E-05 3.97E-04 1.93E-05 1.93E-05
U-234 3 1.25E+OO 6.80E-01 1.09E-01 1.12E-04 1.97E-02 6.02E-03 1. 97E-03 2.89E-02 4.05E-01 1.97E-02 1. 97E-02
U-234 4 6.14E-03 3.34E-03 5.34E-04 5.49E-07 9. 68E-05 2. 96E-05 9.68E-06 1.42E-04 1.99E-03 9.68E-05 9.68E-05
U-234 5 7.46E-06 4.06E-06 6.49E-07 6.68E-10 1.18E-07 3.60E-08 1.18E-08 1.72E-07 2.41E-06 1.1&-07 1.18E-07
U-234 6 6.26E-07 1. 65E-07 2.69E-08 3.14E-07 4.76E-09 2.68E-10 4.76E-10 7.00E-09 1.08E-07 4.76E-09 4.76E-09
U-234 7 8.19E-07 6.25E-08 2.24E-07 8.75E-08 1.62E-08 3.64E-08 2.73E-09 1.73E-08 3.72E-07 1.41E-08 4.44E-08
U-234 8 4.27E-15 3.27E-16 1. 17E-15 4.58E-16 8.48E-17 1.90E-16 1. 42E-17 , 9.03E-17 1. 94E-15 7.37E-17 2.32E-16
U-234 9 8.17E-06 4.44E-06 7.11E-07 7.32E-10 1.29E-07 3.94E-08 1. 29E-08 1.89E-07 2.64E-06 1.29E-07 1.29E-07
U-234 10 1.36E-06 7.41E-07 1.19E-07 1. 22E-10 2.15E-08 6.56E-09 2.15E-09 3.15E-08 4.41E-07 2.15E-08 2.15E-08
U-234 11 2.57E-14 1.96E-15 7.04E-15 2.75E-15 5.10E-16 1.14E-15 8.54E-17 5.42E-16 1.16E-14 4.43E-16 1.39E-15
I-' U-234 12 6.64E-06 1.12E-07 1.82E-08 6.12E-06 3.31E-09 6.14E-10 3.31E-10 4.88E-09 3.84E-07 3.31E-09 3.31E-09
-...J U-234 13 1 . 15E +00 6.26E-01 1.00E-01 1.03E-04 1. 81 E-02 5.54E-03 1.81E-03 2.66E-02 3.72E-01 1. 81 E-02 1.81E-02
co U-234 14 5. 40E-03 2. 94E-03 4.70E-04 4.83E-07 8.52E-05 2.60E-05 8.52E-06 1.25E-04 1.75E-03 8.52E-05 8.52E-05
U-234 15 6.57E-06 3.57E-06 5.71E-07 5.88E-10 1.04E-07 3.16E-08 1. 04E -08 1.52E-07 2.12E-06 1.04E-07 1.04E-07
U-234 16 4.92E-06 3.76E-07 1.35E-06 5.26E-07 9.74E-08 2.19E-07 1.64E-08 1.04E-07 2.23E-06 8.47E-08 2.67E-07
U-234 17 5. 13E -01 8.65E-03 1.40E-03 4.72E-01 2.55E-04 4.74E-05 2.55E-05 3.76E-04 2.97E-02 2.55E-04 2.55E-04
U-234 18 1. 98E-09 1.51E-10 5.44E-10 2.12E-10 3.93E-11 8.82E-11 6.59E-12 4.19E-11 8.98E-10 3.42E-11 1.08E-1O
U-234 19 2.81E+01 1.53E+01 2.44E+OO 2.51 E-03 4.43E-01 1.35E-01 4.43E-02 6. 49E-01 9.08E+00 4.4~E-01 4.43E-01
U-234 20 1. 32E-01 7.16E-02 1.15E-02 1.18E-05 2.08E-03 6.35E-04 2.08E-04 3.05E-03 4.26E-02 2.08E-03 2.0SE-03
U-234 21 1.60E-04 8.71E-05 1.39E-05 1.43E-08 2.53E-06 7. 72E-07 2.53E-07 3.70E-06 5.1SE-05 2.53E-06 2.53E-06
U-234 22 4.92E-06 3.76E-07 1.35E-06 5.26E-07 9.74E-08 2.19E-07 1.64E-08 1.04E-07 2.23E-06 8.47E-08 2.67E-07
U-234 23 2.57E-14 1.96E-15 7.04E-15 2.75E-15 5.10E-16 1.14E-15 8.54E-17 5.42E-16 1.16E-14 4.43E-16 1.39E-15
U-234 24 6.64E-06 1.12E-07 1.82E-08 6.12E-06 3.31E-09 6.14E-10 3.31E-10 4.88E-09 3.84E-07 3.31E-09 3.31E-09
U-234 25 1. 15E +00 6.26E-01 1.00E-01 1.03E-04 1. 81 E-02 5.54E-03 1.81E-03 2.66E-02 3.72E-01 1.81E-02 1. 81 E-02
U-234 26 5.40E-03 2. 94E-03 4.70E-04 4.83E-07 8.52E-05 2.60E-05 8.52E-06 1.25E-04 1.75E-03 8.52E-05 8.52E-05
U-234 27 6.57E-06 3.57E-06 5.71E-07 5.88E-10 1.04E-07 3.16E-08 1.04E-08 1.52E-07 2.12E-06 1.04E-07 1.04E-07
U-234 28 4.92E-06 3.76E-07 1. 35E-06 5.26E-07 9.74E-08 2.19E-07 1. 64E -08 1.04E-07 2.23E-06 8.47E-08 2.67E-07
U-234 29 3.98E-04 2.17E-04 3.46E-05 3.56E-08 6.28E-06 1.92E-06 6.28E-07 9.20E-06 1.29E-04 6.28E-06 6.28E-06
U-234 30 6.63E-05 3.61E-05 5. 77E-06 5.94E-09 1.05E-06 3.20E-07 1.05E-07 1.53E-06 2.15E-05 1.05E-06 1.05E-06
-------
ORGAN FIRST GENERATION
NlHIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
NP -23 7 1 1.30E-01 3.82E-02 4.98E-02 7. 13E-06 1.65E-02 5.87E-04 1.22E-05 2.21E-03 2.25E-02 7.84E-05 2.41E-04
NP-237 2 2.15E-03 6.33E-04 8.27E-04 1.18E-07 2.73E-04 9.73E-06 2.03E-07 3.67E-05 3.73E-04 1. 30E-06 4.00E-06
NP-237 3 4. 60E-01 1.35E-01 1. 77E-01 2.53E-05 5.B4E-02 2.08E-03 4.33E-05 7.84E-03 7.98E-02 2.78E-04 8. 55E-04
NP-237 4 9.21 E-05 2.71E-05 3.53E-05 5.06E-09 1.17E-05 4.16E-07 8.66E-09 1.57E-06 1.60E-05 5.56E-08 1. 71 E-07
NP-237 5 3.90E-04 1. 15E-04 1. 50E-04 2.14E-08 4.95E-05 1.76E-06 3.67E-08 6.64E-06 6.76E-05 2.35E-07 7. 25E-07
NP-237 6 2.18E-05 6.28E-06 8.37E-06 3.36E-07 2.78E-06 7.06E-10 2.07E-09 3.59E-07 3.73E-06 1.29E-08 3.92E-08
NP-237 7 1.05E-04 8.05E-06 2. 99E-05 1.76E-05 3.84E-06 5.55E-06 4.96E-07 3.71E-06 3.55E-05 2.52E-06 5. 94E-06
NP-237 8 4.71E-12 3.63E-13 1.35E-12 7.95E-13 1.73E-13 2.51E-13 2.39E-14 1.67E-13 1.59E-12 1.13E-13 2.68E-13
NP-237 9 1.44E-05 4.22E-06 5.51 E-06 7.88E-10 1.82E-06 6.49E-08 1.35E-09 2.44E-07 2.49E-06 8.67E-09 2.67E-08
NP-237 10 2.39E-06 7.04E-07 9.19E-07 1.31E-10 3.04E-07 1.08E-08 2.25E-1O 4.07E-08 4.15E-07 1.44E-09 4.44E-09
NP-237 11 2.83E-11 2.18E-12 8.08E-12 4.78E-12 1. 04E -12 1.51E-12 1.43E-13 1.00E-12 9.57E-12 6.80E-13 1.61E-12
~ NP-237 12 2.42E-05 5.07E-06 6.75E-06 6.50E-06 2. 25E-06 1. 55E-09 1. 68E -09 2.91E-07 3.33E-06 1.01 E-08 3.25E-08
'-l NP-237 13 4.23E-01 1. 25E-01 1.63E-01 2.33E-05 5.38E-02 1. 91 E-03 3.99E-05 7.21E-03 7.34E-02 2.56E-04 7.87E-04
I..D NP-237 14 8.lOE-05 2.38E-05 3.11E-05 4.45E-09 1. 03E-05 3.66E-07 7.62E-09 1.38E-06 1.40E-05 4.89E-08 1. 50E-07
NP-237 15 3.43E-04 1. 01 E-04 1.32E-04 1.89E-08 4.36E-05 1.55E-06 3.23E-08 5., 84E -06 5.95E-05 2.07E-07 6.38E-07
NP-237 16 6.29E-04 4.84E-05 1.79E-04 1.06E-04 2.3lE-05 3.33E-05 2. 98E-06 2.23E-05 2.13E-04 1 .51 E-05 3.57E-05
NP-237 17 1.87E +00 3.91E-01 5.21 E-01 5.02E-01 1. 74E-01 1.19E-04 1.30E-04 2.25E-02 2. 5 7E -01 7. 79E-04 2.51E-03
NP-237 18 2.19E-06 1. 68E-07 6.24E-07 3.69E-07 8.03E-08 1.16E-07 1.11E-08 7. 72E-08 7.39E-07 5.25E-08 1.24E-07
NP-237 19 1.03E+01 3. 04E +00 3.97E+OO 5.67E-04 1. 31 E +00 4.67E-02 9.72E-04 1. 76E-01 1. 7 9E +00 6.24E-03 1. 92E-02
NP-237 20 1. 98E-03 5.81E-04 7. 59E-04 1.09E-07 2.5lE-04 8.93E-06 1. B6E-07 3.37E-05 3.43E-04 1 . 1 9E -06 3.67E-06
NP-237 21 8.37E-03 2.46E-03 3.21E-03 4.60E-07 1.06E-03 3.78E-05 7.88E-07 1.43E-04 1. 45E-03 5.05E-06 1.56E-05
NP-237 22 6.29E-04 4.84E-05 1.79E-04 1.06E-04 2.3lE-05 3.33E-05 2.98E-06 2.23E-05 2.13E-04 1 . 51 E -05 3.57E-05
NP-237 23 2.83E-11 2.18E-12 8.08E-12 4.78E-12 1.04E-12 1.51E-12 1 . 43E - 13 1.00E-12 9.57E-12 6.80E-13 1.61E-12
NP-237 24 2.42E-05 5.07E-06 6.75E-06 6.50E-06 2.25E-06 1.55E-09 1.68E-09 2.91 E-07 ~.33E-06 1. 01 E-08 3.25E-08
NP-237 25 4.23E-01 1.25E-01 1.63E-01 2.33E-05 5.38E-02 1. 91 E-03 3.99E-05 7.21E-03 7.34E-02 2.56E-04 7.87E-04
NP-237 26 8.lOE-05 2.38E-05 3.11E-05 4.45E-09 1.03E-05 3.66E-07 7.62E-09 1.38E-06 1.40E-05 4.89E-08 1. 50E-07
NP-237 27 3.43E-04 1.01E-04 1. 32E-04 1.89E-08 4.36E-05 1.55E-06 3.23E-08 5.84E-06 5.95E-05 2.07E-07 6.38E-07
NP-237 28 6.29E-04 4.84E-05 1. 79E-04 1.06E-04 2.3lE-05 3.33E-05 2.98E-06 2.23E-05 2.13E-04 1. 51 E-05 3.57E-05
NP-237 29 6.99E-04 2.06E-04 2.68E-04 3.84E-08 8.88E-05 3.16E-06 6.58E-08 1.19E-05 1. 21 E-04 4.22E-07 1.30E-06
NP-237 30 1.17E-04 3.43E-05 4.47E-05 6.40E-09 1. 48E-05 5.27E-07 1.10E-08 1.98E-06 2.02E-05 7.04E-08 2.17E-07
-------
ORGAN FIRST GENERATION
NLCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
PU-238 1 3. 92E-03 1.00E-03 1. 37E-03 6.34E-10 4.42E-04 4.42E-04 3.30E-07 5.85E-05 6.08E-04 2. 07E-06 6.43E-06
PU-238 2 2.28E-03 5.83E-04 7. 93E-04 3.68E-10 2.57E-04 2.57E-04 1. 91£-07 3.39E-05 3. 53E-04 1.20E-06 3.73E-06
PU-238 3 1.42E-02 3.64E-03 4.95E-03 2.30E-09 1.60E-03 1.60E-03 1. 19E-06 2.12E-04 2.20E-03 7.49E-06 2.33E-05
PU-238 4 3.03E-08 7. 77E-09 1.06E-08 4.91E-15 3.42E-09 3.42E-09 2.55E-12 4.52E-10 4.70E-09 1. 60E -11 4.97E-11
PU-238 5 1. 16E-09 2.97E-10 4.03E-10 1.87E-16 1.31E-10 1.31E-1O 9.73E-14 1. 73E-11 1. 79E-1O 6.11E-13 1.90E-12
PU-238 6 1.99E-05 5.69E-06 7. 59E-06 3.59E-07 2.54E-06 3.09E-10 1. 85E-09 3.28E-07 3.39E-06 1.15E-08 3.64E-08
PU-238 7 4.28E-07 2.74E-08 9.51E-08 2.63E-08 2.89E-09 1. 93E-08 5.34E-10 3.84E-09 2.53E-07 4.04E-09 2.87E-08
PU-238 8 2.18E-15 1.40E-16 4.84E-16 1 . 34E -16 1.48E-17 9.88E-17 2.73E-18 1. 97E-17 1. 29E-15 2.07E-17 1. 47E-16
PU-238 9 1.52E-07 3.89E-08 5.29E-08 2.45E-14 1. 71 E-08 1. 71 E-08 1.28E-11 2.26E-09 2. 35E-08 8.01 E-11 2.49E-10
PU-238 10 7.23E-07 1.85E-07 2.52E-07 1.17E-13 8.15E-08 8.15E-08 6.07E-11 1.08E-08 1.12E-07 3.81 E-10 1.19E-09
PU-238 11 1.31E-14 8.40E-16 2.91E-15 8.06E-16 8.87E-17 5.94E-16 1. 64E-17 1.18E-16 7.75E-15 1.24E-16 8.80£-16
~ PU-238 12 2.25E-05 4.43E-06 5.92E-06 6.93E-06 1.99E-06 6.95E-10 1.46E-09 2.58E-07 2.98E-06 8.97E-09 2.80E-08
0:> PU-238 13 1. 31 E-02 3.35E-03 4.55E-03 2.11E-09 1.47E-03 1.47E-03 1.10E-06 1.95E-04 2.02E-03 6.89E-06 2.14E-05
o PU-238 14 2.67E-08 6.84E-09 9.30E-09 4.32E-15 3.01E-09 3.01E-09. 2.24E-12 3.98E-10 4.14E-09 1.41 E-11 4.38E-11
PU-238 15 1.02E-09 2.61E-1O 3.55E-10 1.65E-16 1.15E-10 1.15E-10 8.56E-14 1. 52E-11 1. 58E-1 0 5.38E-13 1.67E-12
PU-238 16 2.57E-06 1.65E-07 5.71 E-07 1. 58E-07 1.73E-08 1. 16E-07 3.21£-09 2.31 E-08 1.52E-06 2.43E-08 1.72E-07
PU-238 17 1. 74E +00 3.42E-01 4.57E-01 5.35E-01 1.54E-01 5.36E-05 1.12E-04 1.99E-02 2.30E-01 6.92E-04 2.16E-03
PU-238 18 1.01E-09 6.49E-11 2.25E-10 6.22E-11 6.85E-12 4. 58E -11 1. 27E-12 9.11E-12 5.98E-10 9.58E-12 6.80E-11
PU-238 19 3.19E-01 8.16E-02 1.11E-01 5. 1 5E -08 3.59E-02 3.59E-02 2.68E-05 4.75E-03 4.94E-02 1. 68E-04 5.22E-04
PU-238. 20 6.51£-07 1.67E-07 2.27E-07 1. 05E-13 7.34E-08 7.34E-08 5.47E-11 9.71£-09 1.01 E-07 3.44E-10 1.07E-09
PU-238 21 2.49E-08 6.37E-09 8.66E-09 4.02E-15 2.80£-09 2.80£-09 2.09E-12 3.71E-10 3.85E-09 1.31E-11 4.08E-11
PU-238 22 2.57E-06 1.65E-07 5.71 E-07 1.58E-07 1.73E-08 1.16E-07 3.21 E-09 2.31E-08 1. 52E-06 2.43E-08 1.72E-07
PU-238 23 1.31E-14 8.40E-16 2.91E-15 8.06E-16 8.87E-17 5.94E-16 1. 64E-17 1.18E-16 7.75E-15 1.24E-16 8.80E-16
PU-238 24 2.25E-05 4.43E-06 5.92E-06 6.93E-06 1.99E-06 6.95E-10 1.46E-09 2. 58E-07 2.98E-06 8.97E-09 2.80E-08
PU-238 25 1.31E-02 3.35E-03 4.55E-03 2.11E-09 1.47E-03 1.47E-03 1.10E-06 1. 95E-04 2.02E-03 6.89E-06 2.14E-05
PU-238 26 2.67E-08 6.84E-09 9.30E-09 4.32E-15 3.01 E-09 3.01E-09 2.24E-12 3.98E-10 4.14E-09 1.41£-11 4. 38E-11
PU-238 27 1.02E-09 2.61E-10 3.55E-10 1.65E-16 1.15E-10 1.15E-10 8.56E-14 1.52E-11 1.58E-10 5.38E-13 1.67E-12
PU-238 28 2.57E-06 1.65E-07 5.71 E-07 1. 58E-07 1.73E-08 1.16E-07 3.21£-09 2.31E-08 1.52E-06 2.43E-08 1.72E-07
PU-238 29 7.39E-:06 1.89E-06 2.58E-06 1.20E-12 8.34E-07 8.34E-07 6.21E-10 1.10E-07 1.15E-06 3.90£-09 1.21E-08
PU-238 30 3.52E-05 9.02E-06 1.23E-05 5.69E-12 3.97E-06 3.97E-06 2.96E-09 5.25E-07 5. 46E-06 1.86E-08 5.77E-08
-------
ORGAN FIRST GENERATION
NOCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
,BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
PU-239 1 4.32E-03 1. 15E-03 1.53E-03 4.90E-10 5.02E-04 3.96E-04 3. 72E-07 6.47E-05 6.78E-04 2.31E-06 7.24E-06
PU-239 2 2.50E-03 6.65E-04 8.87E-04 2.84E-10 2.92E-04 2.30E-04 2.16E-07 3.76E-05 3.94E-04 1.34E-06 4.20E-06
PU-239 3 2.51E-D2 6.67E-03 8.89E-03 2.85E-09 2.92E-03 2.31E-03 2.16E-06 3.77E-04 3.95E-03 1.35E-05 4.21E-05
PU-239 4 5.39E-08 1. 43E-08 1. 91 E-08 6.12E-1S 6.28E-09 4.9SE-09 4.6SE-12 8.09E-10 8.48E-09 2.89E-11 9.0SE-11
PU-239 S 2.06E-D9 S.46E-10 7.28E-10 2.33E-16 2.40E-1O 1.89E-10 1. 77E-13 3.09E-11 3.23E-1O 1.10E-12 3.4SE-12
PU-239 6 2.22E-DS 6.39E-06 8.S3E-06 3.36E-07 2.80E-06 2.87E-10 2.07E-09 3.64E-07 3.77E-06 1.29E-08 4.20E-08
PU-239 7 1.95E-07 1.3SE-08 4.7SE-08 1.44E-08 1. 98E-09 8.00E-09 3.99E-10 2.S9E-09 1.07E-07 2.4SE-09 1.29E-08
PU-239 8 1. 03E-1S 7.12E-17 2.49E-16 7 . 60E -17 1. 04E-17 4.22E-17 2.10E-18 1.37E-17 S.61E-16 1.30E-17 6.79E-17
PU-239 9 1. 67E-07 4.43E-08 S . 91 E -08 1.89E-14 1.94E-08 1.S3E-08 1.44E-11 2.S0E-09 2.62E-08 8.94E-11 2.80E-10
PU-239 10 7. 9SE-07 2.11E-07 2.81E-07 9.02E-14 9.26E-08 7.30E-08 6.8SE-11 1 . 19E -08 1.2SE-07 4.26E-10 1.33E-09
PU-239 11 6.16E-1S 4.28E-16 1. 50E-15 4.S6E-16 6.26E-17 2.S3E-16 1.26E-17 8.20E-17 3.37E-1S 7.80E-17 4.08E-16
~ PU-239 12 2.44E-DS S.llE-06 6.81E-06 6.S9E-06 2.26E-06 6.48E-10 1.68E-09 2.91E-07 3.37E-06 1. 01 E-08 3.2SE-08
Q:) PU-239 13 2.31E-02 6.14E-03 8.18E-03 2.62E-09 2.69E-03 2.12E-03 1.99E-06 3.47E-04 3.63E-03 1.24E-OS 3.88E-OS
~ PU-239 14 4.7SE-08 1.26E-08 1.68E-08 S.39E-1S S.S3E-09 4.36E-09 4.09E-12 7.12E-10 7.46E-09 2. 54E -11 7. 96E-11
PU-239 15 1 .81 E -09 4.81E-10 6.41E-l0 2.0SE-16 2.11E-l0 1.66E-10 1.S6E-13 2.71E-11 2.84E-10 9.70E-13 3.04E-12
PU-239 16 1. 17E-06 8.14E-08 2.8SE-07 8.64E-08 1.19E-08 4.80E-08 2.39E-09 1. SSE-08 6.40E-07 1.47E-08 7.74E-08
PU-239 17 1. 89E T{)O Q.9SE-Ol S.26E-Ol S.09E-Ol 1.7SE-Ol S.OOE-OS 1.30E-04 2.2SE-02 2.60E-01 7.79E-04 2.S1E-03
PU-239 18 4.76E-1O 3.30E-11 1.16E-10 3.52E-11 4.83E-12 1 . 96E -11 9.73E-13 6.33E-12 2.60E-10 6.02E-12 3.1SE-ll
PU-239 19 S.64E-Ol 1.50E-Ol 2.00E-Ol 6.40E-08 6.S6E-02 S.18E-02 4.86E-OS 8.46E-03 8.86E-02 3.02E-04 9.4SE-04
PU-239 20 1.16E-06 3.07E-07 4.lOE-07 1.31E-13 1. 35E-07 1.06E-07 9.98E-11 1.74E-08 1.82E-07 6.20E-1O 1.94E-09
PU-239 21 4.42E-D8 1.17E-08 1.56E-08 5.01E-1S S.14E-09 4.06E-09 3.81E-12 6.62E-10 6.94E-09 2.37E-11 7.40E-11
PU-239 22 1.17E-06 8.14E-08 2.8SE-07 8.64E-08 1.19E-08 4.80E-08 2.39E-09 1.5SE-08 6.40E-07 1. 47E-08 7.74E-08
PU-239 23 6.16E-1S 4.28E-16 1. SOE -lS 4.S6E-16 6.26E-17 2.S3E-16 1. 26E-17 8.20E-17 3.37E-1S 7.80E-17 4.08E-16
PU-239 24 2.44E-OS 5.11E-06 6.81E-06 6. S9E-06 2. 26E-06 6.48E-10 1.68E-09 2.91E-07 3.37E-06 1.OlE-08 3.2SE-08
PU-239 25 2.31E-02 6.14E-03 8.181:-03 2.62E-09 2.69E-03 2.12E-03 1.99E-06 3.47E-04 3.63E-03 1.24E-OS 3.88E-OS
PU-239 26 4.75E-08 1.26E-08 1.68E-08 S.39E-1S S.S3E-09 4.36E-09 4.09E-12 7.12E-l0 7.46E-09 2. S4E-ll 7.96E-ll
PU-239 27 1.81E-09 4.81E-1O 6.41E-10 2.0SE-16 2.11E-10 1.66E-1O 1.S6E-13 2.71E-ll 2.84E-1O 9.70E-13 3.04E-12
PU-239 28 1. 17E -06 8.14E-08 2.8SE-07 8.64E-08 1 . 19E -08 4.80E-08 2.39E-09 1. 5SE-08 6.40E-07 1. 47E-08 7.74E-08
PU-239 29 8.13E-06 2. 16E -06 2.88E-06 9.23E-13 9.47E-07 7.47E-07 7.01E-10 1.22E-07 1. 28E-06 4.36E-09 1.36E-08
PU-239 30 3.87E-OS 1.03E-05 1. 37E-OS 4.40E-12 4. Sl E-06 3.S6E-06 3.34E-09 S.81 E-D7 6.09E-06 2.07E-08 6.SOE-08
-------
ORGAN FIRST GENERATION
NOCLIOE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
PU-240 1 4.32E-03 1.15E.03 1.53E-03 6.69E-10 5.02E-04 3.99E-04 3.70E-07 6.47E-05 6.80E-04 2.31E-06 7.24E-06
PU-240 2 2.51 E-03 6.65E-04 8.87E-04 3.88E-10 2.92E-04 2.32E-04 2.15E-07 3.76E-05 3.94E-04 1.34E-06 4.20E-06
PU-240 3 2.37E-02 6.30E-03 8.40E-03 3.68E-09 2.76E-03 2.19E-03 2.03E-06 3.56E-04 3.74E-03 1.27E-05 3.98E-05
PU-240 4 5.16E-08 1.37E-08 1. 82E -08 7.99E-15 6.00E-09 4.77E-09 4.42E-12 7.73E-10 8.11 E-09 2.76E-11 8.64E-11
PU-240 5 1. 97E-09 5.22E-10 6.96E-10 3.05E-16 2.29E-10 1.82E-10 1.69E-13 2.95E-11 3.10E-10 1.05E-12 3.30E-12
PU-240 6 2.23E-05 6.39E-06 8.52E-06 3.47E-07 2.83E-06 2.9OE-10 2.07E-09 3.64E-07 3.80E-06 1. 29E -08 4.20E-08
PU-240 7 3.83E-07 2.50E-08 8.71E-08 2.51E-08 3.02E-09 1. 73E-08 5.48E-10 3.85E-09 2.22E-07 3.91E-09 2.53E-08
PU-240 8 1.96E-15 1.29E-16 4.44E-16 1.2BE-16 1. 55E-17 8.86E-17 2.81E-18 1.98E-17 1.13E-15 2.00E-17 1.30E-16
PU-240 9 1.67E-07 4.43E-08 5.91 E-08 2.59E-14 1.94E-08 1.54E-08 1.43E-11 2.50E-09 2.63E-08 8.94E-11 2.80E-10
PU-240 10 7. 96E-07 2.11E-07 2.81 E-07 1. 23E -13 9.26E-08 7.36E-08 6.81E-11 1.19E-08 1. 25E-07 4.26E-10 1.33E-09
PU-240 11 1. 18E-14 7.74E-16 2.67E-15 7.71E-16 9.34E-17 5.32E-16 1.69E-17 1.19E-16 6.82E-15 1. 20E-16 7.80E-16
I-' PU-240 12 2.45E-05 5.12E-06 6.81E-06 6.61E-06 2.27E-06 6.52E-10 1. 68E -09 2.91E-07 3.37E-06 1. 01 E-08 3.25E-08
0:> PU-240 13 2.18E-02 5.79E-03 7.73E-03 3.38E-09 2.54E-03 2.02E-03 1.87E-06 3.27E-04 3.44E-03 1. 17E-05 3.66E-05
N PU-240 14 4.54E-08 1. 20E-08 1.61E-08 7.03E-15 5.2BE-09 4.19E-09 3.89E-12 6.80E-1O 7.14E-09 2.43E-11 7.60E-11
PU-240 15 1. 73E-09 4.60E-10 6. 13E -10 2.68E-16 2.02E-10 1.60E-10 1.48E-13 2.60E-11 2.73E-10 9.27E-13 2.90E-12
PU-240 16 2.30E-06 1. 50E-07 5.23E-07 1.50E-07 1. 81 E-08 1.04E-07 3.29E-09 2.31E-08 1. 33E-06 2.35E-08 1.52E-07
PU-240 17 1.89E~0 3.95E-01 5.26E-01 5.10E-01 1. 75E-01 5.04E-05 1.30E-04 2.25E-02 2.60E-01 7.79E-04 2.51E-03
PU-240 18 9.lOE-10 5.97E-11 2.06E-10 5. 95E -11 7.21E-12 4.11E-11 1. 30E-12 9.17E-12 5.26E-10 9.27E-12 6.02E-11
PU-240 19 5.33E-01 1.41 E-01 1. 88E-01 8.25E-08 6.20E-02 4.93E-02 4.56E-05 7.99E-03 8.38E-02 2.85E-04 8.93E-04
PU-240 20 1. 11 E-06 2.94E-07 3.92E-07 1. 71E-13 1.29E-07 1.02E-07 9.48E-11 1.66E-08 1.74E-07 5.93E-10 1. 85E-09
PU-240 21 4.23E-08 1 . 12E -08 1.49E-08 6.55E-15 4.92E-09 3.91 E-09 3.62E-12 6.33E-10 6.65E-09 2.26E-11 7.0BE-11
PU-240 22 2.30E-06 1.50E-07 5.23E-07 1.50E-07 1. 81 E-08 1.04E-07 3.29E-09 2.31E-08 1.33E-06 2.35E-08 1.52E-07
PU-240 23 1.18E-14 7.74E-16 2.67E-15 7.71E-16 9.34E-17 5.32E-16 1.69E-17 1. 19E-16 6.82E-15 1.20E-16 7. 80E - 16
PU-240 24 2.45E-05 5.12E-06 6.81 E-06 6.61E-06 2.27E-06 6.52E-10 1.68E-09 2.91E-07 3.37E-06 1.01 E-08 3.25E-08
PU-240 25 2.18E-02 5.79E-03 7.73E-03 3.38E-09 2.54E-03 2.02E-03 1.87E-06 3.27E-04 3.44E-03 1.17E-05 3.66E-05
PU-240 26 4.54E-08 1.20E-08 1 .61 E -08 7.03E-15 5.28E-09 4.19E-09 3.89E-12 6.80E-10 7.14E-09 2.43E-11 7.60E-11
PU-240 27 1.73E-09 4.60E-10 6.13E-10 2.68E-16 2.02E-10 1.60E-10 1.48E-13 2.60E-11 2.73E-10 9.27E-13 2.90E-12
PU-240 28 2.30E-06 1. 50E-07 5.23E-07 1. 50E-07 1.81 E-08 1. 04E-07 3.29E-09 2.31E-08 1.33E-06 2.35E-08 1.52E-07
PU-240 29 8.14E-06 2. 16E -06 2.88E-06 1.26E-12 9.47E-07 7.52E-07 6.97E-10 1.22E-07 1.28E-06 4.36E-09 1. 36E-08
PU-240 30 3.88E-05 1.03E-05 1. 37E-05 6.00E-12 4.51E-06 3.58E-06 3.32E-09 5.81 E-07 6.10E-06 2.07E-08 6.50E-08
-------
ORGAN FIRST GENERATION
NOCLIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHER ORGAN OVARIES TESTES
WALL
AM-241 1 1.32E-01 3.82E-02 5. 15E -02 1.02E-06 1.71E-02 4.42E-04 1.27E-05 2.21E-03 2.25E-02 7.92E-05 2.41E-04
AM-241 2 5.47E-03 1.58E-03 2.13E-03 4.23E-08 7.08E-04 1.83E-05 5.27E-07 9.17E-05 9.33E-04 3. 28E-06 1. OOE -05
AM-241 3 5.61 E-01 1.62E-01 2.19E-01 4.34E-06 7.27E-02 1.88E-03 5.40E-05 9.40E-03 9.58E-02 3.37E-04 1. 03E-03
AM-241 4 8.32E-04 2.41 E-04 3.24E-04 6.44E-09 1.08E-04 2.79E-06 8.01E-08 1. 39E-05 1.42E-04 4.99E-07 1.52E-06
AM-241 5 3.91E-06 1 . 13E -06 1.53E-06 3.03E-11 5.06E-07 1.31E-08 3.77E-1O 6.55E-08 6.67E-07 2. 35E-09 7. 15E -09
AM-241 6 2.29E-05 6.58E-06 8.78E-06 3.59E-07 2. 91 E -06 3.42E-10 2.16E-09 3.75E-07 3.90E-06 1. 34E-08 4.20E-08
AM-241 7 1.73E-05 1.58E-06 5.77E-06 2.35E-06 4.81E-07 6.57E-07 8.01E-08 5.10E-07 5.83E-06 4.93E-07 7.30E-07
AM-241 8 3.30E-13 3.02E-14 1.1 OE-13 4.49E-14 9.22E-15 1. 26E - 14 1.53E-15 9.77E-15 1.12E-13 9.45E-15 1. 40E-14
AM-241 9 3.65E-05 1.06E-05 1.42E-05 2.82E-10 4.72E-06 1.22E-07 3.51E-09 6.11E-07 6.22E-06 2.19E-08 6.67E-08
AM-241 10 2.43E-04 7.04E-05 9.48E-05 1. 88E-09 3.15E-05 8.15E-07 2.34E-08 4.07E-06 4.15E-05 1.46E-07 4.44E-07
'AM-241 11 1.98E-12 1.81E-13 6.62E-13 2.69E-13 5.54E-14 7.58E-14 9.20E-15 5.87E-14 6.72E-13 5.68E-14 8.40E-14
I--' AM-241 12 2.55E-05 5.28E-06 7.04E-06 7.02E-06 2.35E-06 7.3lE-10 1.74E-09 3.03E-07 3.49E-06 1.06E-08 3.36E-08
():) AM-241 13 5. 1 6E -01 1.49E-01 2.01E-01 4.00E-06 6.69E-02 1.73E-03 4.97E-05 8.65E-03 8.81E-02 3.10E-04 9.44E-04
w AM-241 14 7. 32E-04 2.12E-04 2.86E-04 5.67E-09 9.48E-05 2.45E-06 7.05E-08 1.23E-05 1.25E-04 4.39E-07 1.34E-06
AM-241 15 3.44E-06 9.96E-07 1. 34E-06 2.66E-11 4.46E-07 1.15E-08 3.31E-10 5.77E-08 5.87E-07 2.07E-09 6.29E-09
AM-241 16 1.04E-04 9.47E-06 3.47E-05 1. 4lE-05 2.89E-06 3.95E-06 4.8lE-07 3.06E-06 3.50E-05 2.96E-06 4.38E-06
AM-241 17 1. 9 7E -+{)O 4.08E-01 5.43E-01 5.42E-01 1. 81 E-01 5.64E-05 1. 34E-04 2.34E-02 2.70E-01 8.22E-04 2.60E-03
AM-241 18 1.53E-07 1.40E-08 5. 11 E -08 2.08E-08 4.27E-09 5.85E-09 7.11E-10 4.53E-09 5.19E-08 4.38E-09 6.49E-09
AM-241 19 1.26E+01 3. 65E -+{)O 4.91E-+{)0 9.75E-05 1. 63E -+{)O 4.22E-02 1. 21 E-03 2.11E-01 2. 1 5E +00 7.56E-03 2.30E-02
AM-241 20 1.79E-02 5.17E-03 6.97E-03 1.38E-07 2.3lE-03 5.99E-05 1.72E-06 2.99E-04 3.05E-03 1.07E-05 3.27E-05
AM-241 21 8.40E-05 2.43E-05 3.27E-05 6.50E-10 1.09E-05 2.81E-07 8.08E-09 1.41E-06 1.43E-05 5.04E-08 1.54E-07
AM-241 22 1.04E-04 9.47E-06 3.47E-05 1.41E-05 2.89E-06 3.95E-06 4.81E-07 3.06E-06 3.50E-05 2.96E-06 4.38E-06
AM-241 23 1.98E-12 1.81E-13 6.62E-13 2.69E-13 5.54E-14 7.58E-14 9.20E-15 5.87E-14 6.72E-13 5.68E-14 8.40E-14
AM-241 24 2.55E-05 5.28E-06 7.04E-06 7.02E-06 2.35E-06 7.3lE-10 1.74E-09 3.03E-07 3.49E-06 1.06E-08 3.36E-08
AM-241 25 5. 16E -01 1.49E-01 2.01 E-01 4.00E-06 6.69E-02 1.73E-03 4.97E-05 8.65E-03 8.81E-02 3.10E-04 9.44E-04
AM-241 26 7. 32E-04 2.12E-04 2.86E-04 5.67E-09 9.48E-05 2.45E-06 7.05E-08 1.23E-05 1.25E-04 4.39E-07 1.34E-06
AM-241 27 3.44E-06 9.96E-07 1.34E-06 2.66E-11 4.46E-07 1.15E-08 3.31E-10 5.77E-08 5.87E-07 2.07E-09 6.29E-09
AM-241 28 1.04E-04 9.47E-06 3.47E-05 1. 4lE-05 2.89E-06 3.95E-06 4.81E-07 3.06E-06 3.50E-05 2.96E-06 4. 38E-06
AM-241 29 1. 78E-03 5.14E-04 6.93E-04 1.37E-08 2.30E-04 5. 95E-06 1.71E-07 2.98E-05 3.03E-04 1.07E-06 3.25E-06
AM-241 30 1.18E-02 3.43E-03 4.62E-03 9.17E-08 1.53E-03 3.97E-05 1.14E-06 1.98E-04 2.02E-03 7.11E-06 2.17E-05
-------
ORGAN FIRST GENERATION
NIX:LIDE PATHWAY*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI-LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
PU-242 1 4.lOE-03 1.09E-03 1. 45E-03 1.29E-09 4.82E-04 3.78E-04 3.54E-07 6.15E-05 6.47E-04 2. 19E -06 6.87E-06
PU-242 2 2.38E-03 6.30E-04 8.40E-04 7.47E-10 2.80E-04 2.19E-04 2.05E-07 3.57E-05 3.76E-04 1.27E-06 3.99E-06
PU-242 3 2.43E-02 6.44E-03 8.59E-03 7.63E-09 2.86E-03 2.24E-03 2.10E-06 3.65E-04 3.84E-03 1.30E-05 4.08E-05
PU-242 4 4.44E-08 1 . 17E -08 1.57E-08 1.39E-14 5.22E-09 4.09E-09 3.83E-12 6.66E-10 7.00E-09 2.37E-11 7. 44E - 11
PU-242 5 4.29E-08 1 . 1 3E -08 1.51E-08 1.34E-14 5.04E-09 3.95E-09 3.70E-12 6.43E-10 6.76E-09 2.29E-11 7.18E-11
PU-242 6 2.11E-05 6.08E-06 8.09E-06 3.25E-07 2.68E-06 2.75E-10 1.99E-09 3.45E-07 3.61E-06 1.23E-08 3.92E-08
PU-242 7 3.54E-07 2.25E-08 7. 77E-08 2.06E-08 2.04E-09 1.59E-08 3.85E-10 2.88E-09 2.11E-07 3.30E-09 2.41E-08
PU-242 8 1.81E-15 1.15E-16 3.97E-16 1.05E-16 1.04E-17 8.l1E-17 1. 97E -18 1.47E-17 1 . 08E - 15 1. 68E - 17 1.22E-16
PU-242 9 1.59E-07 4.20E-08 5.60E-08 4.98E-14 1.87E-08 1.46E-08 1.37E-11 2.38E-09 2.50E-08 8.48E-11 2.66E-10
PU-242 10 7. 56E-07 2.00E-07 2.67E-07 2.37E-13 8.89E-08 6.96E-08 6.52E-11 1. 13E-08 1.19E-07 4.04E-10 1. 27E-09
PU-242 11 1.08E-14 6.94E-16 2.38E-15 6.30E-16 6.25E-17 4.87E-16 1.18E-17 8.80E-17 6.49E-15 1.01E-16 7.34E-16
......... PU-242 12 2.33E-05 4.87E-06 6.48E-06 6.28E-06 2.16E-06 6. 18E -10 1.57E-09 2.80E-07 3.22E-06 1. OlE-08 3.08E-08
co PU-242 13 2.24E-02 5.92E-03 7.90E-03 7.02E-09 2.63E-03 2.06E-03 1.93E-06 3.36E-04 3.53E-03 1. 20E-05 3.75E-05
4'> PU-242 14 3.91E-08 1.03E-08 1.38E-08 1. 22E-14 4.59E-09 3.60E-09 3.37E-12 5.86E-10 6.16E-09 2.09E-11 6.55E-11
PU-242 15 3.77E-08 9.98E-09 1.33E-08 1.18E-14 4.44E-09 3.47E-09 3.25E-12 5.65E-10 5.95E-09 2.01E-11 6.32E-11
PU-242 16 2.12E-06 1. 35E-07 4.67E-07 1.24E-07 1.23E-08 9.55E-08 2.3lE-09 1.73E-08 1.27E-06 1.98E-08 1.45E-07
PU-242 17 1 . 80E -+00 3.76E-01 5.00E-01 4.84E-01 1.67E-01 4.77E-05 1.21E-04 2.16E-02 2.48E-01 7. 79E-04 2. 38E-03
PU-242 18 8.37E-10 5.36E-11 1.84E-10 4.86E-11 4.82E-12 3.76E-11 9.11E-13 6.80E-12 5.01E-10 7.78E-12 5.66E-11
PU-242 19 5.46E-01 1.45E-01 1.93E-01 1.71E-07 6.42E-02 5.03E-02 4.71 E-05 8.19E-03 8.62E-02 2.92E-04 9.15E-04
PU-242 20 9.53E-07 2.52E-07 3.36E-07 2.99E-13 1.12E-07 8.78E-08 8.22E-11 1.43E-08 1.50E-07 5.09E-10 1.60E-09
PU-242 21 9.20E-07 2.43E-07 3.25E-07 2.89E-13 1.08E-07 8.48E-08 7.93E-11 1.38E-08 1.45E-07 4.91E-10 1.54E-09
PU-242 22 2.12E-06 1.35E-07 4.67E-07 1.24E-07 1. 23E-08 9.55E-08 2.31E-09 .1.73E-08 1.27E-06' 1. 98E-08 1.45E-07
PU-242 23 1.08E-14 6.94E-16 2.38E-15 6.30E-16 6.25E-17 4.87E-16 1.18E-17 8.80E-17 6.49E-15 1.01E-16 7.34E-16
PU-242 24 2.33E-05 4.87E-06 6.48E-06 6.28E-06 2.16E-06 6.18E-10 1.57E-09 2.80E-07 3.22E-06 1. 01 E-08 3.08E-08
PU-242 25 2.24E-02 5.92E-03 7.90E-03 7.02E-09 2.63E-03 2.06E-03 1. 93E-06 3.36E-04 3.53E-03 1.20E-05 3.75E-05
PU-242 26 3.91 E-08 1.03E-08 1.38E-08 1. 22E-14 4.59E-09 3.60E-09 3.37E-12 5.86E-10 6.16E-09 2.09E-11 6.55E-11
PU-242 27 3.77E-08 9.98E-09 1.33E-08 1.18E-14 4.44E-09 3.47E-09 3.25E-12 5.65E-10 5.95E-09 2.01E-11 6.32E-11
PU-242 28 2.12E-06 1. 35E-07 4.67E-07 1.24E-07 1.23E-08 9.55E-08 2.31E-09 1. 73E-08 1. 27E-06 1. 98E -08 1.45E-07
PU-242 29 7. 73E-06 2.05E-06 2.73E-06 2.42E-12 9.09E-07 7.12E-07 6.67E-10 1.16E-07 1. 22E-06 4. 13E-09 1. 30E-08
PU-242 30 3.68E-05 9.74E-06 1. 30E-05 1.15E-11 4.33E-06 3.39E-06 3.18E-09 5.52E-07 5.8lE-06 1. 97E-08 6.17E-08
-------
ORGAN FIRST GENERATION
NUCL IDE PATHWAy*******************************FATAL CANCERS******************************************* ***GENETIC EFFECTS***
BONE RED MARROW LUNGS LIVER GI -LLI THYROID KIDNEYS OTHERORGAN OVARIES TESTES
WALL
AM-243 1 3.3BE-01 3.82E-02 2.57E-01 7.75E-06 1. 71E-02 5.99E-04 1. 27E -05 2.21E-03 2.25E-02 8.1BE -05 2.41E-04
AM-243 2 1.40E-02 1.5BE-03 1.07E-02 3. 21E -07 7. 08E-04 2.48E-05 5.28E-07 9.17E-05 9.33E-04 3.39E-06 1.00E-05
AM-243 3 2.13E+00 2.40E-01 1. 62E +00 4.88E-05 1.0BE-01 3.77E-03 8.02E-05 1. 39E-02 1. 42E -01 5.15E-04 1. 52E-03
AM-243 4 3.2BE-03 3.70E-04 2.50E-03 7. 52E-08 1. 66E -04 5.81E-06 1. 24E -07 2. 14E-05 2.1BE-04 7. 94E-07 2.34E-06
AM-243 5 1. 55E -05 1. 76E-06 1.18E-05 3.56E-10 7.85E-07 2.75E-08 5.86E-10 1.02E-07 1.03E-06 3. 76E-09 1. 11E -08
AM-243 6 5.75E-05 6.56E-06 4.34E-05 3.47E-07 2.91E-06 8.41E-10 2. 16E-09 3.75E-07 3.90E-06 1. 34E -08 4.20E-08
AM-243 7 7. 26E -05 5.87E-06 2.17E-05 1. 17E-05 2.51E-06 3.5BE-06 3.62E-07 2.45E-06 2.45E-05 1.83E-06 3.86E-06
AM-243 8 2.97E-12 2.41E-13 8.93E-13 4.71E-13 1.02E-13 1. 44E-13 1. 4BE-14 9.96E-14 1.00E-12 J. 51E-14 1. 57E-13
AM-243 9 9.34E-05 1.06E-05 7.11E-05 2.14E-09 4.72E-06 1. 66E-07 3.52E-09 6.11E-07 6.22E-06 2.26E-08 6.67E-08
AM-243 10 6.23E-04 7. 04E-05 4.74E-04 1.43E-08 3.15E-05 1. 10E -06 2.35::-08 4.07E-06 4. 15E-05 1. 51E-07 4.44E-07
AM-243 11 1.7BE-11 1. 45E -12 5.36E-12 2.83E-12 6.10E-13 8.66E-13 8.87E-14 5.9&-13 6.02E-12 4.51E-13 9.40E-13
~ AM-243 12 5.32E-05 5.28E-06 3.50E-05 6.79E-06 2.36E-06 3.61E-09 1. 74E-09 3.03E-07 3.49E-06 1. 06E -08 3.36E-08
CXi AM-243 13 1. 96E +00 2.21E-01 1. 49E +00 4.49E-05 9.89E-02 3.47E-03 7. 38E-05 1. 28E -02 1. 30E-Ol 4.74E-04 1.40E-03
(J1 AM-243 14 2.8BE-03 3.26E-04 2.20E-03 6.62E-08 1.46E-04 5. 11E-06 1.09E-07 1. 89E -05 1. 92E-04 6.9BE-07 2.06E-06
AM-243 15 1. 37E -05 1. 54E -06 1.04E-05 3.14E-I0 6.91E-07 2.42E-08 5.16E-1O 8.94E-08 9. 11E-07 3.31E-09 9.76E-09
AM-243 16 4.36E-04 3.53E-05 1. 30E -04 7.02E-05 1.51E-05 2.15E-05 2.17E-06 1.47E-05 1. 47E-04 1.lOE-05 2. 32E-05
AM-243 17 4. 11E +00 4.0BE-Ol 2.70E+00 5.24E-Ol 1. 82E -01 2.79E-04 1. 34E-04 2.34E-02 2.70E-Ol 8.22E-04 2.60E-03
AM-243 18 1. 3& -06 1. 12E-07 4. 14E-07 2.1BE-07 4.71E-08 6.6BE-08 6.85E-09 4.62E-08 4.65E-07 3.48E-08 7.26E-08
AM-243 19 4. 77E +01 5.39E+00 3.63E+Ol 1.09E-03 2.41E+OO 8.46E-02 1.80E-03 3.12E-Ol 3.1&+00 1. 16E -02 3.41E-02
AM-243 20 7.04E-02 7.95E-03 5.36E-02 1. 61E-06 3.56E-03 1. 25E-04 2.65E-06 4.60E-04 4.69E-03 1. 70E-05 5.02E-05
AM-243 21 3.33E-04 3.77E-05 2.54E-04 7.65E-09 1. 69E-05 5.91E-07 1. 26E-08 2.18E-06 2.22E-05 8.07E-08 2.3&-07
AM-243 22 4. 36E -04 3.53E-05 1. 30E -04 7.02E-05 1. 51E-05 2. 15E-05 2.17E-06 1. 47E-05 1. 47E-04 1.10E-05 2.32E-05
AM-243 23 1.7BE-11 1.45E-12 5.36E-12 2.83E-12 6.10E-13 8.66E-13 8.87E-14 5.9BE-13 6.02E-12 4.51E-13 9.40E-13
AM-243 24 5.32E-05 5.2BE-06 3.50E-05 6.79E-06 2.36E-06 3.61E-09 1. 74E -09 3.03E-07 3.49E-06 1. 06E -08 3.36E-08
AM-243 25 1. 96E +00 2.21E-Ol 1. 49E +00 4.49E-05 9.89E-02 3.47E-03 7.38E-05 1.28E-02 1. 30E-Ol 4.74E-04 1. 40E-03
AM-243 26 2.88E-03 3.26E-04 2.20E-03 6.62E-08 1.46E-04 5.11E-06 1. 09E-07 1. 89E-05 1. 92E-04 6.98E-07 2.06E-06
AM-243 27 1. 37E-05 1. 54E -06 1.04E-05 3.14E-I0 6.91E-07 2.42E-08 5.16E-1O 8.94E-08 9. 11E-07 3.31E-09 9.76E-09
AM-243 28 4. 36E-04 3.53E-05 1.30E-04 7. 02E-05 1. 51E-05 2.15E-05 2.17E-06 1. 47E-05 1. 47E-04 1.10E-05 2.32E-05
AM-243 29 4.55E-03 5.14E-04 3.46E-03 1.04E-07 2.30E-04 8.06E-06 1. 72E -07 2.98E-05 3.03E-04 1.10E-06 3.25E-06
AM-243 30 3. 03E -02 3. 43E -03 2.31E-02 6.96E-07 1. 53E-03 5.3&-05 1. 14E-06 1. 9& -04 2.02E-03 7. 34E-06 2. 17E-05
-------
Ur"teci Slates
Envl! OnrT1ento! Protec Llvn
Agency
~--.;cc
Official Business
Per1alt\ tor Prl\,at2 Use
$300
Washington DC 20460
------- |