PB85-242667
Development of Statistical  Distributions or Ranges of Standard
Factors Used in Exposure  Assessments
GCA Corporation
Chapel Hill,  North Carolina
Aug 85
                     U.S. DEPARTMENT  OF COMMERCE
                  National Technical Information Service

-------
                                          EPA/600/8-85/010
                                          August 1985
   DEVELOPMENT OF STATISTICAL DISTRIBUTIONS
    OR RANGES OF STANDARD FACTORS USED IN
             EXPOSURE ASSESSMENTS
                 Final Report


                      by
     E. Anderson, N. Browne, S. Duletsky,
            J. Ramig, and T. Warn
           GCA/Technology Division
               GCA Corporation
      Chapel Hill, North Carolina  27514
           Contract No. 68-01-6775
         Work Assignment Noe. 3 and 8
           Contract No. 68-02-3997
            Work Assignment No. 2
               Project Officer

               James W.  Falco
         Exposure Assessment Group
Office of Health and Environmental Assessment
           Washington, D.C.  20460
OFFICE OF HEALTH AND ENVIRONMENTAL ASSESSMENT
      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S. ENVIRONMENTAL PROTECTION AGENCY
           WASHINGTON, D.C.  20460

-------
                                   TECHNICAL REPORT DATA
                            i Plcsse read Instructions on the re\ene before completing;
          .
   EPA/600/8-85/010
                                                          3. RECIPIENT'S ACCESSION NO.

                                                            .  ,- •       .       ;   • '»*»•
i. TiTi_= AND SUBTITLE
 Development of Statistical  Distributions or Ranges of
 Standard Factors Used  in  Exposure Assessments
                                                           S. REPORT DATE

                                                              Aueust 1985
                                                           6. PERFORMING ORGANIZATION CODE
                                                           8. PERFORMING ORGANIZATION REPORT NO.
  E. Anderson, N. Browne,  S.  Duletsky, J. Ramig, and
  T. Warn	,	
9 PERFORMING ORGANIZATION NAME AND ADDRESS
  GCA/Technology Division
  GCA Corporation
  Chapel Hill, North Carolina   27514
                                                           10. PROGRAM ELEMENT NO.
                                                          11. CONTRACT/GRANT NO.

                                                           No.  68-01-6775
                                                           No.  68-02-3997
 12. SPONSORING AGENCY NAME AND ADDRESS
                                                           13. TYPE OF REPORT AND PERIOD COVERED
  Exposure Assessment Group  (RD-689)
  Office of Health & Environmental  Assessment
  U.S. Environmental Protection Agency
  Washington. D.C.  20460	
                                                          14. SPONSORING AGENCY CODE

                                                             EPA/600/21
 15. SUPPLEMENTARY NOTES
 16. ABSTRACT
       This document is intended  to  support EPA's Exposure Assessment Guidelines by
  providing data and information  on  standard factors that are used  to calculate human
  exposure to toxic substances.   Statistical distributions or ranges  of values were
  developed for body weight, skin surface area, and ventilation  rates.
       Percentile distributions of body weight were computed from the Second National
  Health and Nutrition Examination Survey (NHANES II) data base  using a computer
  program that performs variance  estimation of multistage sample data using the Jack-
  knife Repeated Replicate approach.   Distributions of skin surface areas were
  similarly calculated from NHANES height and weight data by applying regression
  equations that were either located in the literature or were developed by multi-
  variate analysis of available measurements.
       Insufficient data precluded the development of distributions of ventilation
  rates.  Minimum, maximum, and mean values of minute ventilation at  three activity
  levels were calculated from available measurements.  Activity  pattern information is
  presented to permit the calculation of time-weighted average ventilation rates.
                                KEY WORDS ANO DOCUMENT ANALYSIS
                  DESCRIPTORS
                                             b.IDENTIFIERS/OPEN ENDED TERMS  C.  COSATI Field Croup
  ;iaTBlBUT:ON STATEMENT


   Release to Public
                                            I 19. SECURITY CLASS , This Ktpom
                                               Unclassified
21. NO. OF PAGES
     182
                                              20. SECURITY CLASS Tins pagei

                                                Unclassified
                                                                        22. PRICE
EPA Form 2220-1 (»-73)

-------
              NOTICE

THIS DOCUM.ENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY.  ALTHOUGH-IT
IS RECOGNIZED  THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE  INTE'REST OF MAKING AVAILABLE
AS  MUCH INFORMATION AS POSSIBLE.
                  l-d

-------
                                   DISCLAIMER
     The information in this report has been funded wholly or in part by the
United States Environmental Protection Agency under contract Nos. 68-01-6775
and 68-01-3997 to GCA Corporation.  It has been subject of the Agency's peer
and administrative review, and it has been approved for publication as an EPA
document*  Mention of trade names or commercial products does not constitute
endorsement or recommendation for use.
                                       ii

-------

                                    FORWARD
    The Exposure Assessment Group (EAG) of EPA's Office of Research and
Development has three main functionsi  1) to conduct exposure assessments,
2) to review assessments and related documents, and 3) to develop guidelines
for Agency exposure assessments.  The activities under each of these three
functions are supported by and respond to the needs of the various EPA program
offices.  As part of the third function, EAG conducts projects for the purpose
of developing or refining techniques used in exposure assessment.  This
documentBis the product of such a project and serves as a support document to
EPA's Exposure Assessment Guidelines, providing data and information on
standard factors that are needed to calculate exposure.  Statistical
distributions or ranges of values are presented for body weight, skin surface
area, and ventilation rates.
                                       James  W.  Falco
                                       Director
                                       Exposure  Assessment Group
                                     ill

-------
                                    ABSTRACT
    This document is intended to support EPA'a Exposure Assessment Guidelines
by providing data and information on standard factors that are used to
calculate human exposure to toxic substances.  Statistical distributions or
ranges of values were developed for body weight, skin surface area, and
ventilation rates.
    Fercentile distributions of body weight were computed from the Second
National Health and Nutrition Examination Survey (NHANES II) data base using a
computer program that performs variance estimation of multistage sample data
using the Jackknife Repeated Replicate approach.  Distributions of skin
•urface areas were similarly calculated from NHANES height and weight data by
applying regression equations that were either located in the literature or
were developed by multivariate analysis of available measurements.
    Insufficient data precluded the development of distributions of
ventilation rates.  Minimum, maximum, and mean values of minute ventilation at
three activity levels were calculated from available measurements.  Activity
pattern information is presented to permit the calculation of time-weighted
average ventilation rates.
    This report was submitted in fulfillment of Contract Nos. 68-01-6775 and
68-02-3997 by GCA Corporation under the sponsorship of the U.S. Environmental
Protection Agency.  This report covers a period from March 1, 1984 to
January 31, 1985, and work was completed as of January 11, 1985.
                                      iv

-------
                               CONTENTS
Tables	    vi
Acknowledgements	viii

     1.  Introduction	     1
     2.  Body  Weight	     2
     3.  Surface Area of  the  Human Body	     9
     4.  Ventilation Rates 	    32

Appendix A	   A-l
Appendix B . .  .	   B-l
Appendix C 	  .....   C-l
Appendix D	   D-l

-------
                                 TABLES


Number                                                             Page

 2-1      Body Weight of Male Adults in Kilograms	   4

 2-2      Body Weight of Female Adults in Kilograms	   5

 2-3      Body Weight of Male Children in Kilograms	   6

 2-4      Body Weight of Female Children in Kilograms. ......   7

 3-1      Estimated Parameter Values for Different Age
             Intervals	12

 3-2      Summary of Surface Area Prediction Formulae
             for the DuBois and DuBois Model	  14

 3-3      Percentage of Total Body Surface Area of Parts
             by Age and Sex of Japanese Subjects	16

 3-4      Popendorf's Comparison of his Anatomic Model
             With Three Earlier Methods for Estimating
             the Percentage of Skin Area (with Assumption
             of 1.9 m2 Total Area)	18

 3-5      Summary of Equations for Calculating Adult
             Body Surface Area	21

 3-6      Surface Area of Adult Males in Square Meters 	  22

 3-7      Surface Area of Adult Females in Square Meters	23

 3-8      Surface Area by Body Part for Adults in Square Meters. .  24

 3-9      Percentage of Total Body Surface Area by Part
             for Adults	25

 3-10     Total Body Surface Area of Male
             Children in Square Meters 	  27

 3-11     Total Body Surface Area of Female
             Children in Square Meters 	  28

 3-12     Percentage of Total Body Surface Area by
             Part for Children	29
                                    vi

-------
Number                                                             Page

 4-1      Formulae for Predicting Basal Pulmonary Ventilation
             Rates in Humans	33

 4-2      Oronasal Distribution of Inspired Air.	35

 4-3      Estimated Minute Ventilation Associated
             With Activity Level for Average
             Male Adult	36

 4-4      Activity Level Categories by Age and Sex	37

 4-5      Minute Ventilation Ranges by Age,
             Sex, and Activity Level	39

 4-6      Activity Pattern Data Aggregated for Three
             Microenvironments 	  40

 B-l      Data Used in Total Surface Area Regression	B-l

 B-2      Data Used in Adult Body Parts Surface Area
             Regressions	B-7

 B-3      Surface Area Observations for Ages 0-18	B-9

 B-4      Data and Statistical Summaries for Regressions
             on Body Parts	B-10

 C-l      Tabulation of Minute Ventilation Data	C-l
                                   vii

-------
                            ACKNOWLEDGEMENTS
     The authors would like to acknowledge the assistance of Dr. James
Knoke and Rotna Thomas of the Department of  Biostatistics, University of
North Carolina, who provided statistical support.  Appreciation is also
extended to Robert Murphy and Dale Hitchcock of the National Center for
Health Statistics for providing the body measurements  data tape from the
Second National Health and Nutrition Examination Survey,  and to
Dr. William Kalsbeek for providing the QNTLS program.
                                  viii

-------
                               SECTION 1

                              INTRODUCTION
     The purpose of using standard  factors  in exposure  assessments  is  to
promote consistency among the various exposure assessment activities in
which the Environmental Protection Agency (EPA)  is involved.   Consis-
tency with respect  to common physical, chemical, and biological  factors,
with respect to assumptions about typical exposure situations, and  with
respect to the presentation of  the  possible ranges of  estimates,
enhances the comparability of results and encourages gains  in state-of-
the-art exposure assessment techniques  through the sharing  of common
data.

     Current practice  for estimating human exposures typically involves
the assumption of average values for such factors  as body weight, liquid
consumption, and respiration rates.  This report presents statistical
distributions or ranges of values for the following factors:
     •    weight of adult males,

     •    weight of adult females,

     •    weight of children by age and sex,

     •    skin surface area, and

     •    respiration rate.


     Where sufficient data were available, percentile distributions were
developed.  Where insufficient data precluded the development of statis-
tical distributions, ranges of values were compiled from measurements
reported in the literature.  In a few instances,  unpublished data
obtained through correspondence with researchers  have been used to
develop ranges or distributions.  All data, including these unpublished
data, are presented in Appendices B, C, and D of this report.  A
glossary of terms  is  presented  at  the end  of the body of the report.

-------
                               SECTION 2

                              BODY WEIGHT
DATA

     Published percent!le distributions for body weight for men and
women 1 and male and female children? are based primarily on data
gathered in the first National Health and Nutrition Examination Survey
during 1970 to 1974.   The source of data used  in this  study if  the more
recent, second National Health and Nutrition Examination Survey,
NHANES II, for which published percentiles are not  yet available.

     NHANES II was conducted on a nationwide probability sample of
approximately 28,000 persons, aged 6 months to 74 years, from the
civilian,  noninstitutionalized  population of  the United States.  The
survey started in February 1976 and was completed  in  February  1980.   The
sample was selected  so that  certain population groups thought to be  at
high risk of  malnutrition (persons  with  low incomes, preschool  children
and the elderly) were over samp led.  Adjusted sampling weights we~e  then
computed for 76 age,  sex, and race categories  in order to reflect the
estimated civilian noninstitutionalized U.S. population aged 6 months to
74 years at the midpoint of the survey  (March 1, 1978).3

     NHANES II provides  information on  20,322 interviewed and examined
individuals.  Selected sample persons for whom appointments could be
made were brought into examination centers.  There, examinees changed
from their street clothing into disposable paper examination uniforms
and foam rubber slippers designed to facilitate and standardize various
elements of  the examination.  Body measurements, including height and
weight, were made at various times of the day and in different seasons
of the year;  thus diurnal and seasonal  variations in body measurements
were not  standardized.   One's weight may vary between winter and summer
and may fluctuate with recency of food  and water intake and other daily
activities.^

     Weight was measured with a Toledo  self-balancing scale that
mechanically prints weight to quarter-pound intervals directly onto the
permanent  record.  Direct printing was  used to minimize observer and
recording  errors.  The scale was calibrated with a set of known weights,
and any necessary fine adjustments were made at the beginning of each
new examination location.3

-------
METHODS

     NHANES II uses a multistage sample designed to represent the
civilian noninstitutionalized population of the United States, 6
months to 74 years of age.  Since the sample is not a simple random one,
it is necessary to incorporate the person's  sample  weight  for proper
analysis of the data.  The sample weight is a composite of the
individual selection probability, adjustments for nonresponse, and
poststratification adjustments.3

     The current methodologies appropriate for the analysis of data from
complex surveys such as NHANES II have not been made readily  available
in the standard statistical  software packages.^  In this study,
percentiles (and their standards errors) of  the distribution of body
weight have been computed from the NHANES II data using the computer
program QNTLS.  QNTLS is a SAS macro written in PROC MATRIX that per-
forms variance estimation of multistage sample survey data using the
Jackknife Repeated Replicate Approach.^  A more detailed discussion of
this program is presented in a paper by its authors located in Appen-
dix A.  Weighted mean body weights have been determined from the
NHANES II data using the  SAS procedure ONIVARIATE.5
RESULTS

     Mean and percentile body weights and their standard errors are
presented in Table 2-1 for adult males,  in Table 2-2 for adult females,
in Table 2-3 for male children, and in Table 2-4 for female children.

-------
                                          TABI.F. 2-1.  BODY WEIGHT OF MALE  ADULTS IN KILOGRAMS


Age
18 < 25
25 < 35
35 < 45
45 < 55
55 < 65
65 < 75

18 < 35
15 < 55
55 < 75
18 < 75

Mean
(«.e.)
73.7 (0.0035)
78.7 (0.0034)
80.8 (0.0040)
81.0 (0.0041)
78.8 (0.0041)
74.8 (0.0051)

76.4 (0.0025)
80.9 (0.0028)
77.2 (0.0032)
78.1 (0.0016)
Percentile (i.e.) !


S
55.5 (0.66)
58.4 (0.35)
58.8 (1.00)
59.7 (1.74)
59.0 (0.84)
53.5 (0.79)

57.4 (0.31)
59.3 (1.34)
56.5 (0.81)
57.7 (0.32)


10
59.3 (0.48)
61.9 (0.69)
63.9 (0.80)
64.4 (0.94)
63.0 (0.92)
57.8 (0.58)

60.2 (0.37)
64.2 (0.63)
60.4 (0.63)
61.2 (0.23)


15
60.9 (0.41)
64.6 (0.31)
66.6 (0.70)
66.3 (0.44)
65.4 (0.30)
60.4 (0.80)

62.3 (0.45)
66.4 (0.41)
63.7 (0.68)
64.0 (0.30)


25
63.8 (0.47)
68.4 (0.43)
71.2 (0.62)
™.9 (0.88)
69.4 (0.31)
65.2 (0.66)

66.1 (0.31)
71.0 (0.45)
67.5 (0.58)
67.8 (0.30)


50
70.9 (0.56)
76.7 (0.50)
78.9 (0.58)
78.1 (0.50)
76.8 (0.57)
73.2 (0.50)

73.8 (0.42)
78.5 (0.32)
75.6 (0.40)
75.9 (0.24)


75
79.1 (0.65)
84.6 (0.53)
87.3 (0.91)
88.7 (0.56)
84.8 (0.44)
81.7 (0.56)

82.6 (0.52)
88.0 (0.53)
83.8 (0.50)
84.6 (0.28)


8)
83.9 (1.17)
90.2 (1.00)
93.6 (0.52)
94.0 (0.97)
89.8 (0.47)
86.9 (0.66)

87.9 (0.63)
93.8 (0.42)
88.9 (0.42)
90.4 (0.38)
1 ;
1 i
90 I 95
89.4 (0.98)
94.2 (0.90)
97.7 (1.04)
98.3 (0.78)
93.7 (0.77)
90.5 (0.81)
98.3 (1.85)
i
10! .' "\on>
103.5 (1.04)
104.3 (1.20)
101.4 (0.69)
96.0 (1.14) '
i i
92.6 (0.54)
1C'.. 6 (1 .14)
98.0 (0.66) j 101.8 (1.00)
92.4 (0.58)
94.7 (0.54)
99.4 (1.17)
101.7 (0.56)
§.«.:   itandird error

-------
                                                          TABLE 2-2.   BODY WEIGHT OF FEMALE ADULTS IN KILOGRAMS
Age
IB < 25
25 < 35
35 < 45
45 < 55
55 < 65
65 < 75
18 < 35
35 < 55
55 < 75
IB < 75
Mean
(i.e.)
60.6 (0.0032)
64.2 (0.0037)
67.1 (0.0043)
67.9 (0.0044)
67.9 (0.0045)
66.6 (0.0048)
62.6 (0.0025)
67.5 (0.0031)
67.3 (0.0033)
65.4 (0.0017)
Fercentile (t.e.)
5
45.6 (0.62)
46.4 (0.55)
48.4 (0.66)
47.3 (0.62)
47.6 (0.87)
46.2 (0.84)
46.1 (0.34)
47. B (0.69)
47.1 (0.69)
46.8 (0.33)
10
48.1 (0.33)
48.7 (0.35)
51.0 (0.53)
50.2 (0.60)
50.2 (0.79)
49.8 (0.59)
48.4 (0.23)
50.6 (0.39)
50.0 (0.44)
49.3 (0.20)
15
49.6 (0.35)
50.2 (0.40)
52.3 (0.66)
52.5 (O.M)
53.3 (0.39)
52.3 (0.52)
49.9 (0.27)
52.4 (0.36)
52.9 (0.49)
51.2 (0.20)
25
52.2 (0.29)
53.2 (0.47)
55.9 (0.53)
56.2 (0.73)
56.5 (0.59)
56.3 (0.50)
52.7 (0.24)
56.0 (0.31)
56.4 (0.39)
54.4 (0.20)
50
57.1 (0.48)
59.9 (0.32)
62.4 (0.45)
64.4 (0.80)
64.4 (0.47)
63.8 (0.50)
58.7 (0.23)
63.3 (0.44)
64.2 (0.30)
61.5 (0.23)
75
64.1 (0.54)
68.7 (1.00)
72.9 (0.87)
74.8 (0.91)
74.5 (0.62)
72.8 (0.99)
66.6 (0.64)
73.8 (0.59)
73.8 (0.43)
71.1 (0.48)
85
69.6 (0.83)
77.3 (1.57)
80.8 (1.00)
81. 5 (0.99)
81.3 (0.51)
79.1 (0.94)
73.6 (1.07)
81.1 (0.85)
80.5 (0.63)
78.3 (0.53)
90
74.2 (0.76)
83.2 (1.31)
86.7 (1.12)
86.5 (1.64)
86.4 (0.71)
83.6 (0.53)
78.9 (1.07)
86.6 (1.01)
85.1 (0.94)
B3.4 (0.55)
95
82.1 (1.39)
92.7 (2.17)
97.8 (1.94)
95.0 (2.78)
94.1 (2.53)
90.) (0.90)
88.0 (1.32)
96.7 (1.78)
91.9 (1.83)
92.3 (1.23)
(Jl
                 ».e.:  itandard error

-------
                                        TABLE  2-3.   BODY WEIGHT OP HALE CHILDREN  IN KILOGRAMS
1
1
1
i
Age
< 1

1 < 2
2 < 3
3 < 4
4 < 5
5<6
! 6 < 7
7 < 8
8 < 9
9 < 10
10 < 11
11 < 12
12 < 13
13 < 14
14 < 15
15 < 16
16 < 17
17 < 18
< 3
3 < 6
6 < 9
9 < 12
12 < 15
15 < 18

Hcan
(..t.)
9.3 (0.0015)

11.7 (0.0015)
13.4 (0.0014)
15.5 (0.0016)
17.6 (0.0020)
19.7 (0.0023)
22.8 (0.0030)
24.9 (0.0030)
28.0 (0.0046)
30.7 (0.0048)
36.2 (0.0056)
39.7 (0.0073)
44.1 (0.0078)
49.5 (0.0090)
56.4 (0.0071)
61.2 (0.0078)
66.5 (0.0084)
66.7 (0.0077)
11.9 (0.0016)
17.6 (0.0014)
25.3 (0.0023)
35.7 (0.0038)
50.5 (0.0051)
64.9 (0.0047)

Percent 11* (•.*.)
5
7.3 (0.35)

9.4 (0.08)
10.9 (0.06)
12.7 (0.15)
14.0 (0.23)
16.0 (0.28)
17.8 (0.68)
19.2 (0.18)
20.4 (0.77)
23.5 (1.30)
26.9 (0.88)
26.8 (0.84)
30.5 (0.69)
34.4 (0.70)
39.9 (1.95)
46.0 (1.02)
52.2 (2.33)
50.4 (0.43)
8.4 (0.21)
13.5 (0.08)
18.8 (0.21)
25.6 (0.33)
34.0 (0.52)
48.9 (0.50)

10
7.6 (0.05)

9.8 (0.13)
11.3 (0.07)
13.3 (0.13)
14.9 (0.22)
16.7 (0.09)
18.9 (0.47)
20.3 (0.89)
22.6 (0.48)
25.3 (0.77)
27.9 (0.31)
28.8 (0.73)
32.1 (0.97)
36.2 (0.40)
43.1 (2.35)
48.7 (0.54)
53.9 (0.40)
53.1 (0.80)
9.1 (0.19)
14.2 (0.12)
20.0 (0.29)
26.4 (0.15)
36.6 (0.65)
51.4 (0.32)

1)
7.9 (0.25)

10.0 (0.09)
11.6 (0.13)
13.6 (0.13)
15.3 (0.07)
17.0 (0.10)
19.6 (0.52)
21.1 (0.12)
23.4 (0.68)
25.7 (0.48)
29.4 (0.27)
31.5 (0.57)
35.4 (1.94)
37.7 (0.57)
46.3 (1.79)
50.3 (1.39)
55.0 (0.39)
54.6 (1.78)
9.6 (0.17)
14.6 (0.08)
20.5 (0.26)
27.7 (0.18)
38.3 (0.43)
53.9 (0.77)

25
8.4 (0.27)

10.6 (0.09)
12.3 (0.42)
14.3 (0.09)
15.9 (0.12)
17.7 (0.08)
20.2 (0.19)
22.0 (0.46)
24.3 (0.67)
26.6 (0.74)
31.3 (0.84)
33.2 (0.25)
37.3 (1.33)
39.3 (1.00)
49.3 (0.80)
54.3 (0.60)
57.8 (0.53)
58.8 (0.71)
10.3 (0.15)
15.4 (0.08)
21.8 (0.27)
29.5 (0.58)
40.8 (0.99)
57.0 (0.62)

SO
9.2 (0.16)

11.5 (0.12)
13.4 (0.07)
15.3 (0.10)
17.4 (0.10)
19.3 (0.12)
21.9 (0.10)
24.4 (0.30)
27.3 (0.69)
29.7 (0.88)
34.5 (0.44)
36.4 (1.42)
42.1 (1.44)
47.7 (1.07)
55.5 (0.99)
60.2 (0.80)
63.6 (0.58)
65.7 (0.67)
11.8 (0.10)
17.2 (0.16)
24.3 (0.23)
33.5 (0.35)
49.1 (0.41)
63.1 (0.85)

75
10.0 (0.09)

12.4 (0.10)
14.3 (0.08)
16.5 (0.34)
18.8 (0.07)
21.1 (0.15)
24.0 (0.06)
26.5 (0.68)
29.6 (0.36)
32.6 (0.64)
39.1 (1.46)
45.2 (1.99)
48.8 (0.86)
56.4 (1.63)
62.7 (1.47)
65.4 (1.10)
71.7 (3.37)
72.2 (0.67)
13.3 (0.05)
19.2 (0.07)
27.7 (0.57)
39.2 (1.02)
57.7 (1.31)
70.2 (1.30)

as
10.3 (0.21)

12.9 (0.22)
14.9 (0.22)
17.1 (0.15)
19.7 (0.24)
22.2 (0.16)
26.2 (2.02)
27.9 (0.29)
32.8 (1.87)
34.1 (2.57)
43.2 (1.48)
50.3 (2.18)
52.2 (3.47)
59.6 (1.50)
64.7 (1.10)
68.6 (0.68)
77.7 (2.33)
76.5 (4.02)
14.1 (0.13)
20.4 (0.14)
29.4 (0.70)
43.8 (1.36)
62.9 (1.24)
74.8 (0.55)

90
10.8 (0.14)

13.4 (0.25)
15.4 (0.38)
17.7 (0.31)
20.3 (0.40)
23.4 (0.19)
27.8 (1.85)
29.5 (1.94)
35.4 (1.84)
38.3 (1.38)
45.8 (1.97)
54.4 (3.91)
56.5 (5.28)
64.1 (4.45)
68.7 (1.72)
71.8 (3.69)
81.2 (3.68)
82.3 (1.22)
14.4 (0.11)
21.3 (0.22)
31.3 (1.40)
47.2 (2.58)
65.8 (2.18)
80.3 (1.33)

93
11.3 (0.13)

14.3 (0.16)
16.2 (0.24)
18.8 (0.60)
21.6 (0.68)
24.7 (0.32)
30.0 (2.18)
33.4 (1.46)
38.0 (2.31)
42.2 (1.63)
52.7 (4.35)
59.7 (2.62)
67.3 (2.48)
70.9 (3.09)
71.9 (3.33)
80.3 (6.70)
91.1 (7.27)
87.9 (1.31)
15.2 (0.12)
23.0 (0.40)
34.7 (0.78)
54.5 (1.97)
70.9 (2.27)
88.0 (2.53)

•.».:   standard error

-------
                                       TABLE 2-4.  BOOT WEIGHT OF FEMALE CHILDREN IK KILOGRAMS
Age
< >
1 < 2
2 < 3
3 < 4
4 < 5
5 < 6
6 < 7
7 < 8
8 < 9
9 < 10
10 < 11
11 < 12
12 < 13
13 < 14
14 < 15
15 < 16
16 < 17
17 < 18
< 3
3 < 6
6 < 9
9 < 12
12 < 15
15 < 18
Mean
(..e.)
8.6 (0.0015)
10.7 (0.0011)
12.8 (0.0013)
14.8 (0.0017)
16.8 (0.0020)
19.4 (0.0026)
21.9 (0.0031)
24.6 (0.0039)
27.5 (0.0045)
31.7 (0.0059)
35.7 (0.0062)
41.4 (0.0078)
46.1 (0.0078)
50.9 (0.0091)
54.3 (0.0076)
55.0 (0.0065)
57.8 (0.0068)
59.6 (0.0082)
11.2 (0.0011)
17.1 (0.0015)
24.6 (0.0024)
36.2 (0.0043)
50.7 (0.0049)
57.4 (0.0042)
Percentile (i.e.)
5
6.5 (0.20)
8.7 (0.09)
10.4 (0.24)
11.6 (0.07)
13.6 (0.08)
15.1 (0.12)
16*.8 (0.48)
18.8 (0.87)
21.1 (0.56)
22.8 (0.31)
25.6 (0.26)
29.5 (1.80)
31.2 (1.06)
35.3 (1.37)
39.9 (0.48)
43.2 (1.26)
44.1 (2.98)
45.3 (2.43)
7.7 (0.09)
12.6 (0.13)
17.7 (0.19)
25.1 (0.35)
34.9 (0.54)
44.1 (0.46)
10
7.0 (0.24)
9.0 (0.13)
10.9 (0.15)
12.0 (0.35)
14.2 (0.11)
15.9 (0.27)
17.5 (0.17)
19.4 (0.20)
22.3 (0.62)
24.9 (0.61)
27.0 (2.34)
30.3 (0.26)
34.3 (1.32)
37.5 (2.63)
41.7 (1.95)
44.9 (0.55)
47.2 (1.25)
48.8 (1.36)
8.5 (0.12)
13.4 (0.12)
18.9 (0.29)
26.1 (0.17)
37.4 (0.94)
46.6 (0.42)
15
7.3 (0.08)
9.2 (0.07)
11.4 (0.39)
12.7 (0.18)
14.4 (0.13)
16.6 (0.31)
18.3 (0.43)
19.7 (0.18)
23.1 (0.48)
25.6 (0.36)
28.9 (0.37)
31.3 (0.42)
36.3 (1.00)
39.8 (0.87)
43.6 (0.67)
46.4 (0.45)
48.6 (0.96)
50.3 (1.03)
8.9 (0.09)
14.0 (0.25)
19.4 (0.14)
27.5 (0.62)
39.5 (0.36)
48.0 (0.29)
25
7.7 (0.13)
9.7 (0.25)
II. 8 (0.10)
13.3 (0.10)
15.1 (0.08)
17.1 (0.12)
19.0 (0.27)
21.3 (0.10)
24.1 (0.54)
26.9 (0.39)
30.3 (1.44)
33.7 (1.29)
38.7 (0.73)
43.8 (0.81)
46.8 (1.46)
48.1 (0.27)
51.1 (0.62)
51.9 (1.44)
9.6 (0.22)
14.8 (0.30)
20.9 (0.66)
29.4 (0.33)
43.0 (0.17)
50.8 (0.52)
SO
8.5 (0.09)
10. 5 (0.08)
12.6 (0.03)
14.6 (0.15)
16.4 (0.27)
18.8 (0.17)
21.0 (0.83)
23.5 (0.43)
27.3 (0.81)
29.6 (0.45)
34.3 (0.80)
40.0 (1.74)
45.2 (2.01)
48.6 (0.96)
52.8 (0.51)
53.9 (0.77)
55.3 (0.51)
58.3 (1.08)
11.1 (0.08)
16.6 (0.11)
23.7 (0.15)
33.7 (0.58)
49.3 (0.58)
55.5 (0.58)
75
9.2 (0.12)
11.5 (0.17)
13.7 (0.07)
16.0 (0.15)
18.3 (0.18)
20.7 (0.81)
23.7 (0.34)
26.4 (0.53)
29.6 (1.11)
33.2 (0.54)
39.2 (0.80)
45.3 (0.42)
51.6 (2.20)
55.6 (1.19)
60.1 (0.89)
59.5 (0.63)
61.1 (3.39)
63.6 (1.60)
12.6 (0.05)
18.8 (0.15)
27.5 (0.37)
41.4 (1.59)
56.4 (1.40)
61.6 (0.87)
85
9.6 (0.29)
12.1 (0.18)
14.3 (0.12)
16.9 (0.25)
19.2 (0.10)
22.5 (0.66)
26.0 (1.22)
28.7 (0.97)
30.8 (0.86)
37.0 (3.34)
43.6 (0.44)
50.8 (1.57)
57.7 (3.46)
61.9 (2.41)
64.4 (2.85)
62.0 (0.89)
67.4 (2.39)
69.2 (2.35)
13.4 (0.07)
20.1 (0.16)
29.1 (0.52)
45.3 (0.37)
60.8 (1.79)
66.3 (1.54)
90
9.9 (0.27)
12.5 (0.16)
14.7 (0.12)
17.4 (0.20)
19.9 (0.73)
24.2 (1.21)
27.7 (0.89)
30.0 (0.76)
32.5 (0.83)
43.1 (2.93)
45.4 (1.01)
53.0 (2.94)
60.2 (1.78)
66.3 (3.62)
67.4 (0.33)
64.8 (2.26)
73.2 (2.03)
71.5 (1.13)
13.7 (0.09)
21.0 (0.24)
30.3 (0.23)
48.6 (1.48)
65.9 (2.69)
70.3 (1.66)
95
10.4 (0.23)
13.3 (0.26)
15.5 (0.27)
18.1 (0.32)
21.1 (0.17)
26.1 (1.19)
29.2 (0.56)
33.5 (2.07)
36.1 (1.89) 1
47.9 (3.91)
48.8 (1.17)
59.9 (0.35) i
63.4 (2.67)
73.6 (8.71)
73.8 (3.13)
71.6 (2.91)
77.7 (6.85)
79.7 (5.28)
14.5 (0.12)
23.0 (0.98)
33.1 (1.36)
56.0 (5.61)
70.9 (4.50)
76.4 (1.57)
*.*.:  itindaid error

-------
REFERENCES FOR SECTION 2
1.   Abraham, S., C.L.  Johnson, and M.F.  Najjar.   National  Center for
     Health  Statistics, Weight and Height of Adults 18-74 Years of Age:
     United  States, 1971-74.  Vital and Health Statistics.  Series 11 -
     No. 211.  DREW Pub. No. (FHS)  79-1659.  Public Health Service.
     U.S. Government Printing Office, Washington, DC, May 1979.

2.   Hamill, P.V.V.,  et al.   Physical  Growth:  National  Center for Health
     Statistics Percentiles.  American Journal of Clinical Nutrition,
     32: 607-629, 1979.

3.   National Center for Health Statistics.  Public Use Data Tape
     Documentation, Anthropometric, National Health and Examination
     Survey, 1976-1980, Hyattsville, Maryland, undated.

4.   Rochon, J., and W.D. Kalsbeek.  Variance  Estimation from Multi-Stage
     Sample  Survey  Data:  The  Jackknife  Repeated  Replicate Approach.
     Presented at 1983 SAS  Users Group International Conference, New
     Orleans, Louisiana, January 1983.

5.   SAS Institute,  Inc.  SAS  Users Guide:   Basics.  1982  Edition.
     Gary, North Carolina,  1982.

-------
                               SECTION 3

                       SURFACE AREA OF THE HUMAN BODY
BACKGROUND

     This section provides a review of the available literature on the
determination of surface area (SA)  of  the  human  body.   Measurement
techniques are discussed and predictive formulae for the estimation of
total SA reviewed.  This is fol lowed by a discussion of the SA of
different parts of the body.

Measurement Techniques

     Two approaches can be used to determine SA of the body:  direct
measurement of the skin area or estimating the SA by geometrical
approximation.

Direct Measurements-

     Several  direct measurement techniques  have been used  to measure  SA.
Boyd, in a comprehensive 1935 study, reviewed all methods for measuring
or estimating SA and considered only direct coating, triangulation, and
surface integration as direct measurements.^

     The coating methods consist of coating either the whole body or
specific regions with a substance of known or measured area.  In some
instances the pieces of coating were placed on  cross-section paper and
the area measured by counting the squares covered.  In others, the areas
of the pieces of coating were calculated  by weighing the coating or
weighing duplicates cut fror. a substance of uniform thickness.1

     Abernathy, in 1793, was the first to use the coating method when he
measured the area of the head, hand, and  foot with pieces of cut  paper.
Other work in measuring SA by coating methods has been done by Meeh
(1870);  Lissauer (1903);  Kastner (1912);  DuBois and  DuBois  (1915);
Sawyer, Stone,  and  DuBois  (1916); Warner  (1923); Boyd (1928);  Stevenson
(1928); and Takeya (1929). 1

     Triangulation  consists of marking the area of the body into
geometric figures then calculating the figure areas from their linear
dimensions.  The first reliable determination of SA by this method was
made in 1881 by Fuhini and Ronchi.  They marked off the main anatomical
regions of the bod/, subdivided them into regular geometric figures, and
measured the dimensions with a silk thread and  tape measure.1

-------
     Surface integration is performed by running a planimeter over the
body in parallel strips of equal width.   The SA is  calculated by adding
the areas of all the strips measured.  Roussy and Bordier developed
planiaeters for use in measuring body SA.  Bordier by himself in 1901,
and with Fabre and Nogier in 1903,  measured the SA of newborn infants
and adult men.1   Other  important work by this method has  been reported
by Lassat liere (1910),  Frontali (1927),  Careddu  (1929 and 1930),
Bartalini (1933), and Bradfield (1927).

     Directly measuring body SA by any method described above is a
difficult,  time-consuming  task  that  is not done much anymore.  Gehan
and George, in a 1970 article,  cite only 3 studies since 1935 where SA
was directly measured.^  Consequently, existing direct measurement data
are limited and somewhat old.

Geometric Approximations—

     Body SA is estimated using geometric methods by assuming the parts
of the body resemble geometric  solids, then calculating the surface area
of the solids based on a few measurements of  length and circumference.
For example, Michel  and  Ferret  (1906  and 1907) estimated the SA of the
trunk by measuring the length from the groove of the neck to the tip of
the coccyx and taking circumferences  just under the arms, at  the level
of the umbilicus, and at the level of the  pubis.   Other measurements
were made for the rest of  the body.l

     A linear method has been proposed by DuBois  and DuBois in which
estimates are made on the principle  that the  surface area of the parts
of the body are proportional, rather  than equal, to the surface area of
the solids  they resemble,  so that estimates of SA made from lengths and
circumferences need to be  corrected  by constants obtained from  direct
measurements of SA.   They developed a table with definitions of linear
dimensions  and constants for each body part (derived from direct
measurement). *

     Recently,  Popendorf (1976)3 and Haycock, et.  al. (1978)4 used their
own geometric methods for  estimating  body SA.  Both methods assumed body
parts  correspond to geometric solids such  as  the sphere and  cylinder.
Haycock, et. al. calculated  SA  from  34  body measurements.

Formulae for Total Body  Surface Area

     Several  formulae have been proposed for estimating body SA from
measurements of other major  body dimensions.  Generally, the formulae
are based  on  the principles  that body density and shape are roughly the
same and that the relation of SA to  any  dimension  may be represented by
the curve  of central tendency of their plotted values or by the
algebraic  expression for the curve.*  Most formulae for estimating SA
relate height to weight.   The first  such equation  was derived by Meeh
and can  be expressed by:

                              SA - KW2/3


                                     10'

-------
where SA is surface area in square meters,  W is weight in kilograms,  and
K is a constant.^   While the Heeh equation has been criticized because
the specific gravities of human bodies are not equal and because the
surface area per unit  volume differs for  individuals with different body
builds, it gives a reasonably good estimate of SA.

     A formula that has found wide acceptance and use even to the
present is that of DuBois and DuBois published in 1916.5  Their model
can be written:

                                     a   a
                            SA - a0 H 1 W 2

where SA is surface area in square meters, H is height  in centimeters,
and V is weight in kilograms.   The values of  ao (0.007182),  a} (0.725),
and 82 (0.425) were estimated from a sample of  only  9 individuals for
which SA was directly measured.  Boyd stated in her comprehensive 1935
study that the DuBois and DuBois formula was used more extensively than
any other for estimating surface area.*   The  two  following examples
indicate that Boyd's 1935 statement probably is still  true today.
Firstly, nomograms for determining SA from height and mass presented in
Volume I of Geizy  Scientific Tables  (1981) are based on the DuBois and
DuBois formula."   In addition, a computerized literature search con-
ducted for this report identified several articles written in the last
10 years in which  the DuBois and DuBois formula was used to estimate
body SA.

     Boyd developed new  constants  for  the DuBois and DuBois model based
on 231 direct measurements of body SA she found in  her review of the
literature.  These data were limited to measurements of SA by coating
methods (122 cases), surface integration (93 cases), and triangulation
(16 cases)  made of Caucasians of normal body build for whom data on
weight, height, and age  (except for exact age of adults) were  complete.
Her values  for the constants in the  DuBois and DuBois model are:  ao -
0.01787;  ai  - 0.500; and  &2  " 0.4838.*  Boyd also developed  a formula
based on weight alone, but this is inferior to the one based on height
and weight.  Her formulae have  not been  cited  often  in  recent  papers,
probably because of the  popularity of the DuBois and DuBois model.

     In 1970 Gehan and George proposed another set of constants for the
basic DuBois and DuBois  model.  For their work, they used all  the post-
natal subjects listed in Boyd's book for which direct measurements of
surface area, height,  and weight were given,  a total of 401  observa-
tions.  Included were data for some Japanese and Chinese individuals,
and some individuals  with unusual body types.  The  methods used to
measure these subjects were:  coating (163 cases),  surface integration
(222 cases), and  triangulation  (16  cases).2

     A least-squares method was used to identify the values of the
constants.  The value of the constants chosen are those which minimize
the sum of the squared percentage errors of the predicted values  of  SA.
This approach, rather than minimizing the sum of squared absolute  error,
was used because  the  importance of an error of 0.1  square meter depends

                                     11

-------
on the SA of the individual.  Using the least-squares method on the 401
observations summarized in Boyd,  they obtained the following estimates
of the constants:   a0  •  0.02350, ai * 0.42246,  and &2 " 0.51456.   Hence,
their equation for predicting SA is:

                     SA - 0.02350 H0.42246 yO.51456

or in logarithmic form:

            In SA - -3.75080 + 0.42246  In H + 0.51456 In W

where height is in centimeters, weight  is in kg,  and surface area is in
square meters.   This prediction explains more than 99 percent of the
variation in SA among the 401 individuals measured.2

     When the natural  logarithms of the measured surface areas are
plotted against the natural logarithms of the surface predicted by the
equation, the observed surface areas are symmetrically distributed
around a line of perfect fit with only  a few large percentage
deviations.  Only 5 individuals differed from the measured value by 25
percent or more, and because each of the 5 weighed less than 13 pounds
the amount of difference was small.  Eighteen estimates differed from
measurements by 15-24 percent.  Of these, 12 weighed less than 15
pounds, one was overweight  (5 feet 7 inches, 172 pounds),  one was very
thin (4 feet 11 inches, 78 pounds),  and  4 were of  average build.  Since
the same observer measured  SA for these 4 individuals, the possibility
of some bias in measured values  cannot  be discounted.^

     Gehan and George  considered separate constants for different age
groups:  less than 5 years old, 5 years old to less than 20 years old,
and greater than 20 years old.  The different values  for the constants
are presented in Table 3-1  below.


TABLE 3-1.  ESTIMATED  PARAMETER VALUES FOR DIFFERENT AGE INTERVALS.3
Age
group
All ages
< 5 years old
>. 5 - < 20 years old
2. 20 years old
Number
of persons
401
229
42
130
ao
0.02350
0.02667
0.03050
0.01545
*1
0.42246
0.38217
0.35129
0.54468
a2
0.51456
0.53937
0.54375
0.46336
      The surface areas  estimated by the values for all  ages were
 compared to  surface areas estimated by the values for each age group for

                                     12

-------
individuals at the third, fiftieth,  and ninety-seventh percentiles of
weight and height.  Nearly  all differences  in  SA  estimates were  less
than 0.01 square meter,  and the largest difference was 0.03  m?  for an
18-year-old at the 97th percentile.   The authors  concluded that  there  is
no advantage in using separate values  of aQ,  a} and &2 by age interval.^

     In 1978,  Haycock,  Schwartz, and Visotsky, without knowledge  of the
work by Gehan and George, developed their own  values for the parameters
«0» al> a°d a2 £°r the DuBois and  DuBois model.   Their interest  in
making the DuBois and DuBois model more accurate arose from their work
in pediatrics  and the fact  that DuBois  and  DuBois  included only  one
child  in their study group, a severely undernourished girl who weighed
only 13.8 pounds at age 21  months.5  Haycock,  et.  al.  used  their  own
geometric method for estimating SA from 34 body  measurements for 81
individuals.  Their study  included  newborn infants (10 cases),  infants
(12 cases),  children (40 cases), and adult  members of the medical and
secretarial staffs of 2 hospitals (19 cases).  The subjects  all  had
grossly normal body structure but  the sample included individuals of
widely varying physique  ranging from thin  to  obese.  Black, Hispanic,
and Caucasian children were included in their sample.^

     The values of the  model parameters were solved for the  relationship
between SA and height and weight by multiple regression analysis.  The
least squares  best fit  for  this equation yielded the  following values
for the  three coefficients:   ag • 0.024265, &\ - 0.3964,  and &2 *
0.5378.  The result is  this equation for estimating surface area:

                     SA - 0.024265 H°.3964 wO.5378

expressed logarithmically as:

            In SA - In 0.024265 +  0.3964 In H  +  0.5378 In W.

The coefficients for this equation agree remarkably with those  obtained
by Gehan and George for 401 measurements.

     Gehan and George and Haycock, et.  al.  agree  that,  based on their
respective studies of previous work, a more complex model than the
DuBois and DuBois model  for estimating SA  is unnecessary.^   Based on
samples  of direct measurements (Boyd; Gehan and George) and geometric
estimates (Haycock, et.  al.)  larger  than DuBois and DuBois  used,  these
authors have obtained parameters for the DuBois and DuBois model which
are different  than those originally postulated by  DuBois and DuBois.
The DuBois and DuBois model can be written

                   In SA • In 3Q + aj In H + &^  1° w«

The values  for  BQ,  a},  and &2 obtained by  the various authors discussed
above are presented in Table 3-2:
                                    13

-------
        TABLE 3-2.   SUMMARY OF SURFACE AREA PREDICTION FORMULAE
                    FOR THE DDBOIS AND DUBOIS MODEL
Author
(year)
Number of
persons ao
ai &2
DuBoia and
  DuBois (1916)

Boyd (1935)

Gehan and
  George (1970)

Haycock, et. al,
  (1978)
231

401


 81
              0.007184     0.725
0.024265     0.3964
                         0.425
0.01787      0.500       0.4838

0.02350      0.42246     0.51456
0.5378
     The agreement betveen the model parameters estimated by Gehan and
George and Haycock, et.  al.  is remarkable in view of the fact that, not
only vere Haycock, et. al. unaware of the others' work,  they used an
entirely different set of subjects and used geometric estimates of SA
rather than direct measurements.   Because the Gehan and  George formula
if based on the largest number of direct measurements (401),  theirs
should be the one of choice for estimating SA.

Noraograms

     Sendroy and Cecchini (1954)  proposed a graphical method whereby SA
could be read from a diagram relating height and weight  to surface
area.8  However,  they do not give an explicit model for calculating SA.
The graph was developed empirically based on 252 cases,  127 of which
were from the 401 direct measurements reported by Boyd.   In the other
125 cases the SA was estimated using the linear method of DuBois and
DuBois.  Because the Sendroy and Cecchini method is graphical, it is
inherently 'less precise and less accurate than the formulae of other
authors, particularly Gehan and George  and Haycock, et. al.

Surface Area of Body Parts

     Several  investigator*  who have worked in determining body surface
area have reported* their  results  in terms of  surface  areas (SA) of
different parts of the body as well as  total  surface  area.  The
literature contains SA of body parts both as direct measurements and as
estimates.  Data on body part SA have been reported for both sexes, for
several  ethnic groups, and  for ages ranging from newborn to elderly.
                                   14

-------
Direct Measurements—

     Boyd summarized direct measurements of SA made by  various
investigators who reported results in varying degrees of detail.   Boyd
and Meeh reported measurements for the greatest number of body parts,
including the head, trunk, upper arms, forearms,  hands,  thighs,  legs,
and feet.   Boyd measured  a female child at three different ages,  and
another female child at five different ages over a period of eight
months.  The result is a record of the growth of the surface area of the
body and the change in the percentage of total body SA associated with
each part.   Meeh in 1879  measured the SA of 16 Caucasian males ranging
in age from 6 days to 66  years.*

     In 1903 Lissauer reported the body SA of 12 infants ranging  in age
from 17 days to 15 months.  His measurements of body parts were not
broken down into as much detail as Meeh and Boyd, recording SA in terms
of only head, trunk, upper extremities, and lower extremities.*

     DuBois and DuBois reported the SA of various body parts for  four
adult males and one adult female.  Sawyer, Stone, and DuBois reported
body part SA for a 29-month female, a 12-year, 10-month male, an 18-year
male, a 21-year, 6-month male, and a 26-year female.  Both research
teams measured  SA for head, trunk, arms, hand, thighs,  legs,  and  feet.*

     Stevenson, in 1928,  measured the SA of the same body parts listed
above  for 10 adult Chinese men.  Takeya also measured the same body
parts for 22 adult Japanese males and females  in 1929.

     Bradfield, in 1927, measured the SA of the trunk, arms,  fingers,
legs, and toes of 47 Caucasian women, and estimated the SA of their
heads by the DuBois linear method discussed below.*
                          ^
     A study by Fujimoto  and Watanabe in 1969 presented the results of
direct measurements of 201 Japanese of both sexes ranging in age  from
less than one year to 76 years.  The subjects were pre-screened by an
obesity index so that all individuals had a  "standard Japanese physique
by sex and age," or were  categorized  as  slender or obese after adoles-
cence.   The authors reported  the average percentage of total body SA for
a large number of different body regions,  including the area covered by
head hair, the  forehead,  face, ear, neck, upper front trunk, lower front
trunk, upper back trunk,  lower back trunk, hip, upper arm, lower  arm,
hand,  thigh, leg,  and foot.  These figures are presented  in Table 3-3.
The authors, upon analyzing the data according to sex and age, noted the
following;9

     •    the percentage of total SA of the head, face, and neck
          decreases with  increasing age;

     •    the percentage of total SA of the  lower extremities, such as
          thighs, increases with age; and
                                    15

-------
         TABLE 3-3.  PERCENTAGE OF TOTAL BODY SURFACE AREA OF PARTS BY SEX AND ACE OF JAPANESE SUBJECTS
^\^^ Age
^^^^ Sex
Part ^^-^n

Hair
2 Forehead
3 Face
t> Ear
5 Neck
6 Upper Front Trunk
7 Lower Front Trunk
8 Upper Back Trunk
9 Lower Back Trunk
10 Hip
.1 Upper Am
3H--.J
U Thigh
15 Leg
16 Foot

0
H/F
12

1.4
3.9
1.0
8.2
6.5
8.8
3.6
9.5
6.9
57
57
n.l
9.5
6.6

1
H/F
18
9 A
1.3
3.7
1.0
14.0

11.6

7.9
6.9
50
61
11.8
10.3
7.5

2
H/F
13
8*
1.2
3.5
0.9
14.6

12.2

8.2
7.5
Sf.
*•»
5 A
12.0
10.8
6.7

3
H/F
12
a A
0.9
3.4
0.8
6.6
6.4
8.8
3.1
8.2
7.4

12.8
11.7
7.4

4-5
H/F
12
7C
0.9
2.9
0.7
12.7

11.6

9.3
7.2
5C
12.6
12.5
7.6

6-9
H/F
12
6C
0.7
3.8

10.9

13.1

8.9
7.7

14.2
13.6
7.6

10-11
H/F
14
50
0.7
3.3

11.3

11.4

8.7
7.7

14.9
14.6
8.0

12-14
H
9
4 a
0.8
2.3
0.5
11.0

10.7

10.1
^7.7

14.6
14.6
8.4

F
10
4 a
0.7
2.2
0.5
12.1

10.3

10.3
7.6

16.6
13.4
7.9

1J-17
M
10

0.6
2.2
0.5
11.4

11.8

10.2
8.0

14.8
13.9
7.8

F
10

0.6
2.0
0.4
11.9

11.1

9.9
8.1

18.3
12.8
7.0

18-20
H
9

0.6
2.0
0.5
7.8
5.7
9.4
2.8
7.9
8.1

15.6
13.7
7.6

F
9

0.6
2.1
0.6
7.6
5.0
8.7
2.5
9.1
8.1

17.9
13.1
6.8

20-40
H
16

0.7
2.0
O.S
6.2
6.6
9.8
2.8
9.8
8.4

14.6
13.4
7.3

F
12
4C
0.7
2.2
0.5
7.4
5.1
8.5
3.4
9.6
7.9

17.1
12.8
7.1

i 50
H
11
4 A
0.6
2.1
0.6
13.5

12.5

8.8
7.9

15.2
12.7
7.4
F
12
4t
0.6
2.1
0.6
13.6

12.2

8.9
8.0

15.7
13.0
7.2
i
n:  number of subjects

-------
     •    the differences in percentages of different  body  regions
          between sexes become significant  after adolescence,  the  thigh
          having a higher percentage in the female.

While there are differences in the regional percentages between Japanese
and Americans that might limit the applicability of the data from this
study to the U.S.  population,  this  study  presents the  largest  single
group of direct measurements made by any SA investigator,  presents  a
balanced sample of individuals according to sex and age group,  and
compares the results of the Japanese measurements with Germans (measured
by Meeh) and Americans (measured  by DuBois).  However,  only  averages for
each age group and sex are presented,  which limits the usefulness of the
data for determining ranges of percentages  for each body part or region.

Linear and Geometric Methods-

     Two methods have been used extensively to estimate the surface area
of body parts:  linear methods and geometric methods.   Linear methods
are based on actual measurement data, and generally involve multiplying
a linear dimension of a body part (length,  circumference,  etc.) by  a
constant which is derived from previous  direct measurements.  Geometric
methods divide the body into parts which are assigned  a simple geometric
shape, e.g.,  a  forearm  is  treated  like  a cylinder,  the head like a
sphere, etc.  The dimensions of the body parts are  measured, then the
surface area is computed from the formula for the particular geometric
solid.  Because both of these are methods for estimating,  not  directly
measuring,  surface area, they are discussed only briefly below.

     Linear methods that appear to be most  well known for  estimating the
SA of body  parts  are those of DuBois and DuBois, Worner, and Roussy.
Boyd stated in 1935 that the DuBois linear  formula was considered a
reasonably  adequate substitute for measuring SA.  While the method gives
a reasonably good approximation for total SA, data show that for
individual  parts,  especially hands,  errors can  be quite large.*

     One recent study proposed a  human  skin surface model  based on a
geometric method  of estimating SA.  Various body dimensions for a "50th
percentile man" were used with a  mensuration formula for geometric
so!ids to calculate the SA of the geometric solid most closely related
to the body part.  The results were reported as a percentage of total SA
associated with each body part and are presented in Table 3-4, which
sh )ws the author's comparison of  his model  with three  earlier published
methods.^
METHODS

     Available direct  measurement data were analyzed using the
Statistical Processing System (SPS)IO software package to generate
equations that calculate  SA as  a function  of  height and weight.  These
equations were then used to calculate SA distributions  of  the U.S.
population with NHANES II height and weight data using the computer
program QNTLS.H  (See Appendix A for a description of  this  program.)

                                    17

-------
TABLE 3-4.  POPENDORF'S COMPARISON OF HIS ANATOMIC MODEL WITH THREE
            EARLIER METHODS FOR ESTIMATING THE PERCENTAGE OF SKIN
            AREA (WITH ASSUMPTION OF 1.9 m  TOTAL AREA)3
Body Part
Read
Heck
Upper Arm*
Forearm*
Hand*
Finger*
Shoulder
Cheat
Back
Hip*
Thigh*
Calve*
Peet
Wiedenfeld
(1902)*
4.8
2.1
10
7.1
4.2
27
25
12.5
7.1
Berkow
(1931)12
6
13.5
4.5
38<
17
12.7
6.3
Cylinder
model (1973)13
9.7b
1.1
7.0
9 8e

3.3
30.8
20.9
17 .4C
Popendorf ' s
Anatomic
model (1976)3
5.7
1.2
9.7
6.7
6.9
6.8
8.0
8.0
9.1
18.0
13.5
6.4
4 Aa referenced in Berkow (1931). 12
* Cylinder model of Parker et al. (1973) aeiumes a cylindrical head. 13
c Apparently, hand* vere included in forearms and feet were included in
calve*.
The relative proportion* of the Berkov model compare favorably vith other
models if the percentage attributed to the trunk is reduced by one-half.
                                  18

-------
Total Body Surface Area

     Review of the literature identified the equation proposed by Gehan
and George^ as the best choice for estimating SA.   However,  their paper
gave insufficient information to estimate the standard error about the
regression.  Therefore,  the 401  direct measurements of  children and
adults used by Gehan and George were reanalyzed using SFS to obtain this
standard error.   These data are  presented in Appendix B in Table B-l.

     The model uses weight and height as independent variables to
predict total body surface area, and can be written as:
or in logarithmic form:

              In (SA)^ * In ao + a].ln Wi + a2ln Hi + In ei

where SA is surface area in meters squared, V is weight in kilograms, H
is height in centimeters, ao, ai ,  &i are parameters to be estimated and
In e^ is a random error  term with mean zero and constant variance.  For
tests of hypotheses, it was assumed that In e^ is normally distributed.
The random errors were assumed to be independent among individuals.

     Using the least squares procedure,  the following parameter
estimates (and their standard errors) were obtained:

       a0 - -3.73 (0.18), ai - 0.517 (0.022), 33 - 0.417 (0.054).

The model is then:

                          0.0239 H0.517 H0.417

or in logarithmic form:

                In SA - -3.73 + 0.517 In W * 0.417 In H

with a standard error about the regression of 0.00374.   This  model ex-
plains more  than 99 percent of  the total  variation in  surface area among
the observations and is identical to two significant figures with the
model developed by  Gehan and George.

Body Part Surface Area

     Because of the rapid changes in the proportions of body parts in
childhood, * the SA of body parts were analyzed separately for children
(<18 years) and adults  (>18 years).  Direct measurements of SA of
various body parts assembled by Boyd^ and Van Graan^  are presented in
Appendix B.  (Table B-2 tabulates measurements of adults and Table B-3
presents children's data.)  The  data  for adults  were used  to  develop
equations for  estimating body part  SA from height  and  weight.

                                       19

-------
Insufficient data for  children, however, precluded the development of
equations to estimate  their body part SA.

     For adults, regression equations relating weight and height to  the
surface area of the body part were developed using SPS for:  head,
trunk, upper extremities and lover extremities.   Upper  extremities are
comprised of arms and  hands; arms  are further  divided into upper arms
and forearms.  Lower extremities include  legs  and feet, with  legs
further divided into thighs and lower legs.  The  trunk  includes  the
neck.  Only data reflecting similar  demarcation between parts were used
in the analyses.

     The same model used to estimate total body surface area with the
independent variables height and weight was  used for the  surface area of
body  parts  (SAP):
                             SAP -
                                         a
                                          2
Three regressions were run on each body part for which there were data
available:  observations on females; observations on males; and the
pooled observations.  For each body part an F-test was conducted to test
whether two different regression models (male and female) were
necessary.  When indicated by  the F-test, we rejected  the null
hypothesis that there was no difference between the two regressions
(i.e. , that  the  data  should be  pooled),  and have listed the two equa-
tions.  The equations are summarized in Table 3-5, with the number of
observations  upon which they are  based  (n), the coefficient of determi-
nation (R^), the standard error about the  regression  (s.e),  and the p-
v<>lue for the hypothesis  that  R?  - 0.  The Revalues for both male and
female heads and female hands are low.   This indicates that a low
proportion of the variation in  these surface areas is explained by
height and weight; consequently, these equations should be considered
poor  predictors of the SA of that body part.  The data and statistical
summaries are presented in Appendix  B,  Tables B-4.1  to B-4.17.
 RESULTS

 Adults

      Percentile estimates  of  tctal  SA and SA of body parts calculated
 with  regression equations  and NHANES II height and weight data using
 QNTLS are presented in Table 3-6 for adult males and Table 3-7 for adult
 females.  Percentile estimates presented in these tables that exceed the
 minimum  or  maximum SA measurements  upon which the regression equations
 were  based  are  marked with asterisks.  These minimum and maximum values
 are presented in Table 3-8 along with the mean values.  Table 3-9
 summarizes  these measurements as  percentages.

      The standard errors of the percentile  estimates  are the standard
 errors about  the regressions; it has been assumed that error associated
 with  height and weight is  negligible.  (As can be seen in Tables 2-1 and

                                     20

-------
TABLE 3-5.  SUMMARY OF EQUATIONS FOR CALCULATING
            ADULT BODY SURFACE AREA

BODY PART
Bead
Female
Male
Trunk
Female
Male
Upper Extremities
Female
Male
Arms
Female
Male
Upper Arms
Male
Forearms
Male
Hands
Female
Male
Lower Extremities*-
Legs
Thighs
Lower Legs
Feet
EQUATION FOR, SURFACE AREA
(m2)

0.0256 V0-124 H°-189
0.0492 W°'339 H-°-0950

0.188 W°'647 H-°-304
0.0240 V0-808 H-°'0131

0.0288 V0-341 H°'175
0.00329 W°'466 H°-524 ~

0.00223 V0'201 H°'748
0.00111 W°'616 H°-561

8.70 W°'741 H'1-40

0.326 W°'858 a'0'895

0.0131 W°'412 H°-0274
0.0257 V0-573 IT0-218
0.00286 W°'458 H°'696
0.00240 W°'542 H°'626
0.00352 W°'"9 H°'379
0.000276 W°'416 H°'973
0.000618 W°-372 H°'7"

P

0.01
0.01

0.001
0.001

0.001
0.001

0.01
0.001

0.25

0.05

0.1
0.001
0.001
0.001
0.001
0.001
0.001

*

0.302
0.222

0.877
0.894

0.526
0.821

0.731
0.892

0.576

0.897

0.447
0.575
0.802
0.780
0.739
0.727
0.651

s.e.

0.00678
0.0202

0.00567
0.0118

0.00833
0.0101

0.00996
0.0177

0.0387

0.0207

0.0172
0.0187
0.00633
0.0130
0.0149
0.0149
0.0147

n

57
32

57
32

57
48

13
32

6

6

12«/
32
105
45
45
45
45
V: weight in kilograms
H: height in centimeters
5: level of significance
_ : coefficient of determination
a.e.: standard error about the regression
a: number of observations
•*• One observation for a female whose body weight exceeded the 95 percentile was
not used.
" Although two separate regressions were marginally indicated by the F test,
pooling was done for consistency with individual components of lower extremities.
                    21

-------
                                             TABLE 3-6.   SURFACE AREA OF ADULT MALES IN SQUARE HETERS
KJ
to
(tody Part
Total
Head
Trunk4'
Upper
Extremities
Anna
Forearmi
Handa
Lower
Extremitiea
Leg*
Thigha
Lower Lega
Feet
Pcrcentila
5
1.66
0.119
0.591
0.321
0.241
0.106
0.085
0.653
0.539
0.318
0.218
0.114
10
1.72
0.121
0.622
0.332
0.252
0.111
0.088
0.676
0.561
0.331
0.226
0.118
15
1.76
0.123
0.643
0.340
0.259
0.115
0.090
0.692
0.576
0.341
0.232
0.120
25
1.82
0.125
0.674
0.350
0.270
0.121
0.093
0.715
0.597
0.354
0.240
0.124
50
1.94
0.130
0.739
0.372
0.291
0.131
0.099
0.761
0.640
0.382
0.256
0.131
75
2.07
0.135
0.807
0.395
0.314*
0.144*
0.105
0.810
0.686*
0.411*
0.272
0.138
R5
2.14
0.138
0.851
0.408
0.328*
0.151*
0.109
0.838
0.714*
0.429*
0.282
0.142
90
2.20
0.140
0.883
0.418
0.339*
0.157*
0.112
0.858
0.734*
0.443*
0.288
0.145
95
2.28
0.143
0.935*
0.432*
0.354*
0.166*
0.117*
0.888*
0.762*
0.463*
0.299*
0.149

a. a.
0.00374
0.0202
0.0118
0.00101
0.00387
0.0207
0.0187
0.00633
0.0130
0.0149
0.0149
0.0147
                —^  Trunk  includea neck.


                B.C.:   atandard error  for the 5-95 percentile of each body part


                   *:   Theae percentile estimates exceed the maximum measured valuea upon
                       which the equationa are baaed.
                                                                                                                                                    J

-------
                                                        TABLE 3-7.  SURFACE AREA OF ADULT FEMALES IN SQUARE METERS
             KJ
             OJ
Body P»rt
Total
Head
Trunk5^
Upper
Extremities
Arms
Handi
Lower
Extremitiea
Leg a
Thigh*
Lower Lega
Feet
Percentile
5
1.4}
0.106
0.490
0.260
0.210
0.0730
0.564
0.460
0.271
0.166
0.100
10
1.49
0.107
0.507
0.765
0.214
0.0746
0.582
0.477
0.281
0.192
0.103
IS
1.53
0.108
0.518
0.269
0.217
0.0757
0.595
0.488
0.289
0.197
0.105
25
1.58
0.109
0.538
0.274
0.221
0.0777
0.615
0.507
0.300
0.204
0.108
50
1.69
0.111
0.579
0.287
0.230
0.0817
0.657
0.546
0.326
0.218
0.114
75
1.82
0.113
0.636
0.301
0.238*
0.868*
0.704
0.592
0.357
0.233
0.121
85
1.91
0.114
0.677
0.311
0.243*
0.0903*
0.736
0.623
0.379
0.243
0.126
90
1.98
0.115
0.704
0.318
0.247*
0.0927*
0.757
0.645
0.394
0.249
0.129
95
2.09
0.117
0.752
0.329
0.253*
0.0966*
0.796
0.683*
0.421*
0.261
0.134

a.e.
0.00374
0.00678
0.00567
0.00833
0.00996
0.0172
0.00633
0.0130
0.0149
0.0149
0.0147
                            y Trunk  include! neck.

                            a.e.:   atandard error for the 5-95 percentile of each body part

                               *:   Theae percentile eatinatea exceed the maximum meaaured valuea upon
                                    which the equationa are baaed.
L

-------
         TABLE 3-8.   SURFACE AREA BY BODY PART FOR ADULTS IN SQUARE METERS
Body Part
Head
Trunk
tipper
Extrnxitie*
Ana
Upper Ana
Forearaa
Hand*
Lover
Extremiciti
1*S«
Thigh*
Lover Leg*
Feet
Male*
Mean
0.118
0.569
0.319
0.228
0.143
0.114
0 .0840

0.636
0.505
0.198
0.207
0.112
(«.d.)
(0.0160)
(0.104)
(0.0461)
(0.0374)
(0.0143)
(0.0127)
(0.0127)

(0.0994)
(0.0885)
(0.147)
(0.0379)
(0.0177)
Kin
0.090
0.306
0.169
0.109
0.122
0.094S
0.0596

0.283
0.221
0.128
0.093
0.0611
- Max
- 0.161
- 0.893
- 0.429
- 0.292
• 0.1S6
- 0.136
- 0.113

. 0.868
- 0.656
- 0.403
- 0.296
- 0.156
n
32
32
48
32
6
«
32

48
32
32
32
32
Females

0
0
0
0

0

0
o
0
0
0
Mean
.110 (0
.542 (0
.276 (0
.210 (0
~
(s.d.)
.00625)
.0712)
.0241)
.0129)

.0746 (0.00310)

.626 (0
.488 (0
.295 (0
.194 (0

.0675)
.0515)
.0333)
.0240)
.0975 (0.00903)
Min
0.0953
0.437
0.215
0.193

0.0639

0.49:
0.423
0.258
0.165
0.0834
- Max
- 0.127
- 0.867
- 0.333
- 0.235
~
- 0.0824

- 0.809
- 0.585
- 0.360
- 0.229
- 0.115
n
57
57
57
13
—
12

57
13
13
13
13
a.d.:   standard deviation



   n:   nuaber of observations
                                          24

-------
      TABLE 3-9.  PERCENTAGE OF TOTAL BODY SURFACE AREA BY PART FOR ADULTS
Body Part
                            Males
Mean (i.d.)   Mia - Max
                                          Females
Mean (s.d.)   Min - Max
Read

Trunk

Tipper
Extremities

  Arms

    Upper Arms

    Forearms

  Hands

Lover
Extremities

  Legs

    Thighs


    Lover Legs


  Feet
 7.8 (1.0)    6.1 - 10.6   32

35.9 (2.1)   30.5 - 41.4   32


18.8 (1.1)   16.4 - 21.0   48

14.1 (0.9)   12.5 - 15.5   32

 7.4 (0.5)    6.7 - 8.1     6

 5.9 (0.3)    5.4 - 6.3     6

 5.2 (0.5)    4.6 - 7.0    32


37.5 (1.9)   33.3 - 41.2   48

31.2 (1.6)   26.1 - 33.4   32

18.4 (1.2)   15.2 - 20.2   32


12.8 (1.0)   11.0 - 15.8   32


 7.0 (0.5)    6.0 - 7.9    32
 7.1 (0.6)    5.6 - 8.1    57

34.8 (1.9)   32.8 - 41.7   57


17.9 (0.9)   15.6 - 19.9   57

14.0 (0.6)   12.4 - 14.8   13
 5.1 (0.3)    4.4 - 5.4
12
40.3 (1.6)   36.0 - 43.2   57

32.4 (1.6)   29.8 - 35.3   13

19.5 (1.1)   18.0 - 21.7   13


12.8 (1.0)   11.4 - 14.9   13


 6.5 (0.3)    6.0 - 7.0    13
     s.d.:  standard deviation

        n:  number of observations
                                       25

-------
2-2 in Section 2, the standard errors  of  the percentiles of adult male
and female body weights are typically  less than one percent of the
value.)                          '        f

Children

     Percentile estimates of total SA  of  children calculated with the
total SA regression equation and NHANES II height and weight data using
QNTLS are presented in Table 3-10 for  males and Table 3-11 for  females.
Estimates are not presented for  children  less than two years old because
there are no NHANES height data for this  age group.  For children, the
error associated with height and weight cannot  be assumed  to be zero
because of their relatively small sample sizes.  Therefore, the standard
errors of the percentile estimates cannot be estimated because it cannot
be assumed that the errors associated  with the  exogenous variables
(height and weight) are independent  of  that associated with the model;
there are insufficient data to determine  the relationship  between these
errors.

     Available measurements of  children's body part SA are summarized as
percentage of total SA in Table 3-12.
                                     26

-------
                   TABLE 3-10.   TOTAL  BODY  SURFACE AREA OF HALE CHILDREN IN SQUARE METERS
Age (yr..)*/
2 < 3
3 < 4
4 < 5
5 < 6
6 < 7
7 < 8
8 < 9
9 < 10
10 < 11
11 < 12
12 < 13
13 < 14
14 < '.5
15 < 16
16 < 17
17 < 18
3 < 6
6 < 9
9 < 12
12 < 15
15 < 18
Percentile
5
0.527
0.585
0.633
0.692
0.757
0.794
0.836
0.932
1.01
1.00
1.11
1.20
1.33
1.45
1.55
1.54
0.616
0.787
0.972
1.19
1.50
10
0.544
0.606
0.658
0.721
0.788
0.832
0.897
0.966
1.04
1.06
1.13
1.24
1.39
1.49
1.59
1.56
0.636
0.814
1.00
1.24
1.55
15
0.552
0.620
0.673
0.732
0.809
0.848
0.914
0.988
1.06
1.12
1.20
1.27
1.45
1.52
1.61
1.62
0.649
0.834
1.02
1.27
1.59
25
0.569
0.636
0.689
0.746
0.821
0.877
0.932
1.00
1.10
1.16
1.25
1.30
1.51
1.60
1.66
1.69
0.673
0.866
1.07
1.32
1.65
50
0.603
0.664
0.731
0.793
0.866
0.936
1.00
1.07
1.18
1.23
1.34
1.47
1.61
1.70
1.76
1.80
0.728
0.931
1.16
1.49
1.75
75
0.629
0.700
0.771
0.840
0.915
0.993
1.06
1.13
1.28
1.40
1.47
1.62
1.73
1.79
1.87
1.91
0.785
1.01
1.28
1.64
1.86
85
0.643
0.719
0.796
0.864
0.957
1.01
1.12
1.16
1.35
1.47
1.52
1.67
1.78
1.84
1.98
1.96
0.817
1.05
1.36
1.73
1.94
90
0.661
0.729
0.809
0.895
1.01
1.06
1.17
1.25
1.40
1.53
1.62
1.75
1.84
1.90
2.03
2.03
0.842
1.09
1.42
1.77
2.01
95
0.682
0.764
0.845
0.918
1.06
1.11
1.24
1.29
1.48
1.60
1.76
1.81
1.91
2.02
2.16
2.09
0.876
1.14
1.52
1.85
2.11
     •*•  Lack of height neatureaenti  for  children < 2 years  in NHAHES II precluded calculation of »urf«ce
mreai for this  age  group.
                                                 27

-------
                              TABLE 3-11.  TOTAL BODY SURFACE AREA OF FEMALE CHILDREN IN SQUARE METERS
Age (yr«.)^
2 < 3
3 < <•
4 < 5
5 < 6
6 < 7
7 < 8
8 < 9
9 < 10
10 < 11
11 < 12
12 < 13
13 < 14
14 < 15
15 < 16
16 < 17
17 < 18
3 < 6
6 < 9
9 < 12
12 < 15
15 < 18
Percentile
5
0.516
0.555
10
0.532
0.570
0.627 ; 0.639
0.675
0.723
0.792
0.863
0.897
0.981
1.06
1.13
1.21
1.31
1.38
1.40
1.42
0.585
0.754
0.957
1.21
1.40
0.700
0.748
0.808
0.888
0.948
1.01
1.09
1.19
1.28
1.34
1.42
1.46
1.49
0.610
0.790
0.990
1.27
1.44
15
0.544
0.589
0.649
0.714
0.770
0.819
0.913
0.969
1.05
1.12
1.24
1.32
1.39
1.43
1.48
1.51
0.630
0.804
1.03
1.30
1.47
25
0.557
0.607
0.666
0.735
0.791
0.854
0.932
1.01
1.10
1.16
1.27
1.38
1.45
1.47
1.53
1.56
0.654
0.845
1.06
1.37
1.51
50
0.579
0.649
0.706
0.779
0.843
0.917
1.00
1.06
1.17
1.30
1.40
1.48
1.55
1.57
1.60
1.63
0.711
0.919
1.16
1.48
1.60
75
0.610
0.688
0.758
0.830
0.914
0.977
1.05
1.14
1.29
1.40
1.51
1.59
1.66
1.67
1.69
1.73
0.770
1.00
1.31
1.61
1.70
85
0.623
0.707
0.777
0.870
0.961
1.02
1.08
1.22
1.34
1.50
1.62
1.67
1.74
1.72
1.79
1.80
0.308
1.04
1.38
1.68
1.76
90
0.637
0.721
0.794
0.902
0.989
1.06
1.11
1.31
1.37
1.56
1.64
1.75
1.76
1.76
1.84
1.84
0.831
1.07
1.43
1.74
1.82
95
0.653
0.737
0.820
0.952
1.03
1.13
1.18
1.41
1.43
1.62
1.70
1.86
1.88
1.83
1.91
1.94
0.879
1.13
1.56
1.82
1.92
                 — Lack of heighc measureoents for children < 2 years in HHANES II precluded calculation of  surface
             areas  for this age group.
                                                              28
L

-------
                                              TABLE 3-12.  PERCENTAGE OF TOTAL BODY SURFACE AREA BY PART FOR CHILDREN
Age
< 1
1 < 2
2 < 3
3 < 4
4 < 5
5 < 6
6 < 7
7 < 8
8 < 9
9 < 10
10 < 11
11 < 12
12 < 13
13 < 14
14 < 15
1) < 16
16 < 17
17 < 18
n
H:F
2:0
1:1
1:0
0:5
1:3

1:0


0:2


1:0
1:0


1:0
1:0
Percent of Total
He«d
Mean Mio - Max
18.2 18.2 - 18.3
16.5 16.5 - 16.5
14.2
13.6 13.3 - 14.0
13.8 12.1 - 15.3

13.1


12.0 11.6 - 12.5


8.74
9.97


7.96
7.58
Trunk
Mean Hin - Max
35.7 34.8 - 36.6
35.5 34.5 - 36.6
38.5
31.9 29.9 - 32."
31.5 30.5 - 32.4

35.1


34.2 33.4 - 34.9


34.7
32.7


32.7
31.7
Ami
Mean Hin - Max
13.7 12.4 - 15.1
13.0 12.8 - 13.1
11.8
14.4 14.2 - 14.7
14.0 13.0 - 15.5

13.1


12.3 11.7 - 12.8


13.7
12.1


13.1
17.5
Handa
Mean Min - Max
5.3 5.21 - 5.39
5.68 5.57 - 5.78
5.30
6.07 5.83 - 6.32
5.70 5.15 - 6.62

4.71


5.30 5.15 - 5.44


5.39
5.11


5.68
5.13
Lega
Mean Hin - Max
20.6 18.2 - 22.9
23.1 22.1 - 24.0
23.2
26.8 26.0 - 28.6
27.8 26.0 - 29.3

27.1


28.7 28.5 - 28.8


30.5
32.0


33.6
30.8
Feet
Mean Min - Max
6.54 6.49 - 6.59
6.27 5.84 - 6.70
7.07
7.21 6.80 - 7.88
7.29 6.91 - 8.10

6.90


7.58 7.38 - 7.77


7.03
8.02


6.93
7.28
K)
VO
                  n:   number  of  aubjecta

-------
REFERENCES FOR SECTION 3
 1.  Boyd, E.  The Growth  of  the Surface Area  of the Human Body.
     University of Minnesota  Press,  Minneapolis, Minnesota, 1935.

 2.  Gehan,  E.A.,  and S.L.  George.  Estimation of Human Body Surface
     Area from Height and Weight.  Cancer  Chemotherapy  Reports,
     54(4):225-235, August 1970.

 3.  Popendorf, W.J. , and J.T.  Leffinwell.  Regulating OP  Pesticide
     Residues for Farmworker Protection.   In:  Residue  Review  82.
     Springer-Verlag New York,  Inc., New York, New York,  1982.  pp. 125-
     201.

 4.  Haycock,  G.B.,  G.J.  Schwartz, and  D.H. Wisotsky.  Geometric Method
     for Measuring Body Surface  Area:  A Height-Weight Formula Validated
     in Infants, Children,  and Adults.   The Journal  of  Pediatrics,
     93(l):62-66, July 1978.

 5.  DuBois, D.,  and E.F.  DuBois.  A  Formula to  Estimate the Approximate
     Surface Area if Height and  Weight  Be Known.  Archives  of  Internal
     Medicine, 17:863-871,  1916.

 6.  Geigy Scientific Tables.  Nomograms for Determination of  Body
     Surface Area from  Height and Mass.   Lentner, C.   (ed.).   CIBA-Geigy
     Corporation, West  Caldwel 1,  New Jersey,  1981.   pp. 226-227.

 7.  Letters from Stephen  L. George  and Edmund A. Gehan, and frotr
     George  B. Haycock and  George J.  Schwartz  to the editor.   The
     Journal of Pediatrics, 94(2):342-342, February  1979.

 8.  Sendroy,  J. , and L.P. Cecchini.   Determination  of  Human Body  Surface
     Area  from Height and Weight.  Journal of  Applied Physiology,
     7(1):3-12, July 1954.

 9.  Fujimoto, S. , and T. Watanabe.  Studies on  the  Body Surface Area of
     Japanese.  Acta Med.   Nagasaki, Japan,  13:1-13, 1969.

 10.  Buhyoff, G.J.,  H.M. Rauscher, R.B. Hull, K. Killeen,  R.C. Kirk.
     User's  Manual  for  Statistical  Processing System (version 3C.1).
     Southeast Technical Associates, Inc., 1982.

 11.  Rochon,  J. and W.D.  Kalsbeek.  Variance Estimation from Multi-Stage
     Sample Survey Data:  The Jackknife Repeated Replicate Approach.
     Presented at 1983  SAS Users Group  Conference,  New Orleans,
     Louisiana, January  1983.

 12.  Berkcw,  S.G.   Value of Surface-Area Proportions in the Prognosis of
     Cutai eous Burns and Scalds.  American Journal of Surgery,  11:315,
      1931.
                                     30

-------
12.  Parker,  J.F. ,  and V.R.  West.   Bioastronautics Data Book.   NASA SP-
     3006,  National Aeronautics and Space Administration, Washington,
     DC, 1973.

14.  Van Graan, C.H.   The Determination of Body Surface Area.
     Supplement to the South African Journal  of Laboratory and Clinical
     Medicine,  August 2, 1969.
                                    31

-------
                               SECTION 4

                           VENTILATION RATES
     This section presents pulmonary ventilation data and activity
pattern data to permit the calculation of time-weighted average
ventilation rates.
PULMONARY VENTILATION

Background

     Pulmonary ventilation is tie mass movement of gas in anc'  out of the
lungs.1  The  volumes  of  inhaled  >nd exhaled air usually are not exactly
equal; the volume of inspired o:ygen  is  typically larger  than the volume
of expired carbon dioxide.  Pultonary ventilation  is generally repre-
sented by the minute  volume ($e>,  the volume  of gas expired in liters
per minute at BTPS (gas volume at normal body temperature  and ambient
barometric pressure,  saturated with water vapor).  Minute volume is the
product of tidal  volume (the  volume of gas moved  during each respiratory
cycle) and respiratory frequency.2

     Minute volume is usually measured accurately with a water-filled
spirometer.  The  spirometer uses one-way valves to funnel  expired air
into a collection system such as a Douglas Bag; alternatively, the
expired air may be collected directly in the spirometer.2  These types
of spirometric measurements of $e have been reported by various clinical
studies since the early 1930's.  Today,  the accuracy of this instrumen-
tation is considered  to be very good, and experts in the  field of
pulmonary science still regard the results of these early studies to be
valid  determinations of lung volume measurements.

     There have been  several formulae proposed in the  literature to
calculate  minute  ventilation of humans  at rest from anthropometric data.
Many of these equations are  summarized in Table 4-1.   Most of  these
formulae are based upon measurements  of  relatively small  sample  sizes;
all of them are applicable only to the estimation of minute ventilation
at rest.

     Resting ventilation is directly related to the resting metabolic
rate.  With exercise, minute  volume increases in  response  to the
increase  in metabolic demand.^  There is an  abrupt increase  in
ventilation  with  the onset of exercise,  followed  by a  further, more
gradual  increase.  With moderate exercise, the increase is due primarily
to an  increase in tidal  volume;  this  is  accompanied by an increase  in
respiratory frequency when the exercise becomes more strenuous.  When

                                    32

-------
          TABLE 4-1.   FORMULAE FOR PREDICTING BASAL PULMONARY
                      VENTILATION RATES IN HUMANS
Subject
Age
(yrs)
Adults













5-7
8-13
9-15
9-15
9-15
9-15
13-15
16-19
16-34

20-29
32-38
35-49

41-48
48-57
50-69
50-79
59-71
73-76
Infants
Number
& Sex
100M
44M
22M
19M
16M
16M
10M
10M
93F
93F
5 OF
50F
13F
10F
8M
10M
40M
40M
40M
40M
11M
12M
17M
17F
11M
10M
15M
10F
10M
9M
19M
13F
8M
3M
17M/F
Formula for Calculating
Minute Volume (1/min)
3.66S (s.d. • 0.52S)
-4.378 + 0.2363W - 0.037A (s.d. - 1.37)
2.94S (range: 2.56S - 3.98S)
3.71S (s.d. - 1.065)
-0.37 + 4.02S (s.d. - 1.35)
7.96 + 0.011W (s.d. - 1.47)
4.54S (s.d. « 1.07)
3.5S (s.d. - 0.5S)
3.40 + 1.83S (s.d. - 1.08)
4.88 + 0.021W (s.d. - 0.97)
4.3S (s.d. - 1.5)
3.67 + 0.094W - 0.02A (s.d. - 1.52)
2.E3S (range: 2.09S - 3.98S)
3.4S (s.d. - 0.35)
8.12S (range: 6.25S - 8.75S)
6.68S (range: 5.40S - 8.12S)
-48.3 + 0.73A (r - 0.75)
-80.6 + 0.87H (r - 0.-643)
15.6 + 0.84W (r - 0.614)
-9.5 + 45. 7S (r - 0.635)
4.51S (range: 3.35S - 5.33S)
3.97S (range: 3.16S - 4.89S)
3.6S (r - 0.3S)
3.2S (r - 0.4S)
3.54S (range: 2.51S - 4.55S)
3.83S (range: 3.11S - 4.55S)
3. IS (s.d. - 0.5S)
3.2S (s.d. - 0.45)
4.21S (range: 3.57S - 4.72S)
4.04S (range: 2.95S - 5. OSS)
3.9S (s.d. - 0.45S)
3.4S (s.d. - 0.4S)
3.77S (range: 3.43S - 4. 70S)
3.98S (range: 3.39S - 4.82S)
-0.1531 + 0.3W (r - 0.84)
Reference
Number
36
15
15
25
51
51
32
15
51
51
31
15
15
15
42
42
27*
27*
27*
27*
42
42
18
18
42
42
18
18
42
42
18
18
42
42
38
*Ve for maximal values; A - age in months

s.d.:  standard deviation
   S:  surface area (m )
   W:  weight (k|)
   H:  height (m)
   A:  age (yrs)
   r:  correlation coefficient
                                   33

-------
exercise ceases,  there is  an abrupt decrease in ventilation, followed by
a more gradual  decline to  pre-exercise  values.^

     The ventilatory response to a given intensity of work is usually
reported at steady-state,  which  is assumed to have been reached when the
body has been allowed four or five minutes to adapt to the new level of
metabolism and respiratory variables show only minor changes over  the
preceding minute.  At  moderate work  loads, there is a linear relation-
ship between minute  volume and the oxygen cost of a given activity.5  As
the intensity of effort increases above sixty percent  of  a person's
maximal work capacity, a disproportionate hyperventilation  develops.^
This parallels and probably reflects the accumulation  of  anaerobic
metabolites  in the blood.5

     With increasing age,  the resting metabolic  rate,  and thus resting
ventilation, tend to decrease slightly.  Minute  volume in older indi-
viduals  responds to the increasing metabolic demands of exercise  in a
manner similar to younger  persons; however,  the  older  person has  a
higher ventilatory response at £ given submaximal metabolic demand, an
earlier onset of anaerobic metabolism with associated earlier hyperventi-
lation, and a reduction in maximal ventilation.  In addition, both the
time required to reach a steady-state level  of minute ventilation at the
onset of exercise and the  time to return to resting levels  fol lowing a
period of moderate to severe exercise increase with age.3

     Ventilation is also  influenced by physical conditioning.  At rest,
athletes often have a slower and deeper pattern  of  respiration  than more
sedentary persons.   In exercise,  the trained individual  demonstrates a
lower minute volume required for a giver, work load,  indicating  an
improvement  ir. the efficiency of ventilation,  and a higher  maximal
minute ventilation that can be achieved during  strenuous exertion.'

     The majority of  the population  typically breathes through the nose,
shifting to oronasal breathing during conversation, singing, illness
with nasal congestion, or  exercise.   With exercise, most  individuals
shift from nasil breathing to oronasal  breathing at ventilation  rates
greater  than 30 to 35 liters per minute. At this ventilation rate,
about 43 percent of inspired air bypasses the nose.  Approximately
15  percent of  the population  are habitual oronasal  or "mouth" breathers.
Table 4-2 summarizes ventilation patterns observed in "mouth" breathers
and normal  subjects."

Methods

      Review  of  the  literature failed to identify equations that would
enable  the development of statistical distributions  of minute ventila-
 tion  at  all  activity  levels for male and female children and adults.
Therefore, ranges of measured values were compiled from the available
data, which  are tabulated  in Appendix C.  Many of these measurements  are
from  early studies.   In more recent  investigations, minute  ventilation
tends  to be  measured  more  as background information than as a research

-------
           TABLE 4-2.   ORONASAL  DISTRIBUTION OF INSPIRED AIR8
                       Normal  Breathers
"Mouth" Breathers
Ventilation
rate (1/min)
5
10
15
20
30
35*
40
45
50
60
80
90
Nasal
volume
(1/min)
5
10
15
20
30
20
21
22.5
23
28
32
36.5
Mouth
volume
(1/min)
0
0
0
0
0
15
19
22.5
27
32
48
53.5
Nasal
volume
(1/min)
4
6
8
9
12
13
14
15
17
18
23
-
Mouth
volume
(1/min)
1
4
7
11
18
22
26
30
33
42
57
.
*Point at which normal  breathers  switch from nasal only  breathing  to
 oronasal breathing.
objective itself, making current measurements  difficult to  locate  in  the
literature.  In addition,  those  recent measurements  that have  been
located are frequently of specific subpopulations such  as obese
asthmatics or marathon runners.

     Measurements of minute ventilation  at various activity levels were
compiled for each age-sex group.  The activity levels at which the
measurements were taken were categorized as  light, moderate, or heavy
according to Criteria recently developed by  the Environmental  Criteria
and Assessment Office for the ozone criteria document.   These  criteria
(in watts and in kilogram-meters per minute) were developed for a
reference male adult with  a body weight of 70 kilograms and are sum-
marized in Table 4-3, along with associated  minute ventilation esti-
mates.^  Activity level categories  for  the other age-sex groups were
extrapolated from the criteria for male  adults on the basis of body
veightlO by multiplying the work level  by the ratio of  the  mean body
weight for the age group (from Section 2 of  this  report) to 70 kilo-
grams.  The resulting work  level  ranges (in kilogram-meters per minute)
for each age-sex group are  listed in Table 4-4.
                                    35

-------
          TABLE 4-3.  ESTIMATED MINUTE VENTILATION ASSOCIATED WITH ACTIVITY LEVEL FOR AVERAGE MALE ADULT9
LO
Level of work
Light
Light
Light
Moderate
Moderate
Moderate
Heavy
Heavy
Very heavy
Very heavy
Severe
watts
25
50
75
100
125
150
175
200
225
250
300
kg-m/icina
150
300
450
600
750
900
1050
1200
1350
1500
1800
1/min
13
19
25
30
35
40
55
63
72
85
100+
Representative activities
Level walking at 2 mph; washing clothes
Level walking at 3 mph; bowling; scrubbing floors
Dancing; pushing wheelbarrow with 15-kg load;
simple construction; stacking firewood
Easy cycling; pushing wheelbarrow with 7 5 -kg
load; using sledgehammer
Climbing stairs; playing tennis; digging with
spade
Cycling at 13 mph; walking on snow; digging
trenches
Cross-country skiing; rock climbing; stair
climbing with load; playing squash and handball;
chopping with axe
Level running at 10 mph; competitive cycling
Competitive long distance running; cross-country
skiing
    kg-m/min » work performed each minute  to move a mass of  1  kg through  a  vertical distance of 1 m against the
    force of gravity.
                                                                                                                      j

-------
TABLE 4.4.  ACTIVITY 1'ATTERN  CATEGORIES  BY AGE AND SEX
AGE
(yrs)
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Adults
Adults
SEX
F
M
F
M
F
M
F
H
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
H
F
M
F
M
F
M
F
M
F
M
F
M
WEIGHT
(kg)
11.80
12.34
14.10
14.62
15.96
16.69
17.66
18.67
19.52
20.69
23.26
22.85
26.58
25.30
30.45
28.13
32.55
31.44
36.95
35.30
41.53
39.78
46.10
44.95
50.28
50.77
53.68
56.71
55.89
62.10
56.69
66.31
56.62
68.88
64.12
70.75
ACTIVITY RANGES
(kg-Wmin)
LIGHT
< 50
< 52
< 60
< 62
< 68
< 71
< 75
< 79
< 83
< 88
< 99
< 97
< 113
< 107
< 129
< 119
< 138
< 133 •
< 157
< 150
< 176
< 169
< 195
< 191
< 213
< 215
< 228
< 240
< 237
< 263
< 240
< 281
< 240
< 292
< 272
< 300
MODERATE
50
52
60
62
68
71
75
79
83
88
99
97
113
107
129
119
138
133
157
150
176
169
195
191
213
215
228
240
237
263
240
281
240
292
272
300
- 100
- 105
- 120
- 124
- 135
- 142
- 150
- 158
- 166
- 175
- 197
- 194
- 225
- 215
- 258
- 239
- 276
- 267
- 313
- 299
- 352
- 337
- 391
- 381
- 426
- 431
- 455
- 481
- 474
- 527
- 481
- 562
- 480
- 584
- 544
- 600
HEAVY
> 100
> 105
> 120
> 124
> 135
> U2
> 150
> 158
> 166
> 175
> 197
> 194
> 225
> 215
> 258
> 239
> 276
> 267
> 313
> 299
> 352
> 337
> 391
> 381
> 426
> 431
> 455
> 481
> 474
> 527
> 481
> 562
> 480
> 584
> 544
> 600
                             37

-------
     Most of the available minute ventilation measurements are frots
studies expressing the associated activity levels  in terms of kilogram-
meters per minute and were straightforwardly categorized  according to
the criteria in Table 4-4.  In other studies, the activity level was
given qualitatively by  the type  of  activity (e.g., walking at 3 miles
per hour);  the associated breathing  rates were  categorized based on the
representative activities listed in Table 4-3.  In other  instances, the
studies' qualitative categorizations (e.g.,  moderate) were directly
used.  One study gave activity level in terms of oxygen uptake; oxygen
uptake was converted to  kilogram-meters per  minute2  and the associated
breathing rates categorized accordingly.

     For each age-sex-activity level category for which data were
available,  mil imum, maximum,  and mean minute volumes were determined.
These values were derived from both  individual measurements and reported
mean values,  for  which  the raw data were not presented.  Weighted means
were calculated by assigning each individual measurement  a weight of one
and each mean value  a weight corresponding to the number  of subjects the
mean represented; the weighted data  were then summed and  divided by the
total number  of subjects.  The standard deviations for  the  age-sex-
activity level  groups were not calculated because many of the mean
values  used w< re  reported without any measure of distribution variance.
In addition, many groups had  very few data  points, making standard
statistical sunmaries difficult  to  interpret.  In some cases, means were
presented without the minimum and maximum values of  the original data
sets; therefore, the minima and maxima  for some age-sex-activity level
groups are representative only of the available individual measurements.
For a few groups, the means reported by some authors fall below  the
minimum or above the maximum  of the  individual measurements available.
These means are presented as  minima or maxima but  are marked  as means  so
the reader will know that the true minimum  or maximum for the group lies
outside the value given.

Results

     Table  4-5 presents mean, minimum,  and maximum values of available
minute ventilation  data by age and sex  for  light,  moderate, and heavy
activity  levels.  Alt-hough measurements taken at rest were included in
the light activity level  category, resting  ventilation rates  are also
presented separately to illustrate  population variability at a specific
activity  level.  It should be  noted that, in most cases,  the reported  $e
values are not  representative  of the entire activity level range; all  of
the measurements in the  heavy activity  level category are maximal minute
volumes.

     As can be  seen from Table 4-3,  very few data  are available for
preschool-aged children.  This is due to the difficulty of conducting
clinical studies with this age group.  For many of  the children's
age-sex groups, the sample numbers  are very  small.   In addition,  for
most groups, very few measurements at  light  and moderate  activity levels
are avallable.
                                   38

-------
                                          TABLE 4.5.  MINUTE VENTILATION  RANGES  BY ACE, SEX, AND ACTIVITY LEVEL
Af.K SEX
(yr.)
Infants H/F

2 F
H
3 F
H
4 F
H
5 F
H
6 F
«
7 r
M
8 F
H
9 F
H
10 F
M
11 F
H
12 F
M
13 F
H
14 F
H
15 F
H
16 F
H
17 F
M
16 F
H
Adult* F

Adult* H


VKNTM.AT10N RANGES
( liters/minute)
	 _ 	 _____ 	 - 	 - - 	 	 	 	 	 	 	 — --- 	 	 	 	
RESTING
n nin aax mean
316 0.2) - 2.09 0.64










8 5.0 - 7.0 6.)







10 5.2 - 8.3 7.1


54 4.1 - 16.1* IS. 4
56 7.2 - 16.3* 15.4
5 7.2 - 15.4 9.9
16 3.1 - 15.4 8.9
53 3.1 - 15.6* 14.9
77 3.1 - 27.8 14.2
J 6.2
8 3.1 - 26.8 11.1
50 15.2
50 15.6

12 5.8 - 9.0 7.3


595 4.20* - 11.66 5.7

454 2.3 - 18.8* 12.2


LIGHT
n min max mean











16 5.0 - 32 13.9







20 5.2 - 35 17.2

20 20.3



30 3.1 - 24.9* 16.4



_






786 4.20* - 29.4 8.1

535 2.3 - 27.6* 13.8


MODERATE
n win nax mean
	 	 	 	 	 	











4 28.0 - 43 33.3







9 41-68 53.4

20 33.1
4 19.6 - 46.3 26.5
6 18.5 - 46.3 34.1
5 18.5 - 46.3 30.3
29 14.4 - 48.4 32.8
3 21.6 - 37.1 28.1
24 24.7 - 55 39.7
1 26.8
7 27.8 - 46.3 39.3



12 40 - 63 46.6


106 20.7* - 34.2* 26.5

102 14.4 - 78.0 40.9


HEAVY
n min nix Bean






2 32.0 - 32.5 32.3
4 39.3 - 43.3 41.2
3 31.0 - 35.0 32.8
3 30.9 - 42.6 37.5
2 35.9 - 38.9 37.4
3 35.5 - 43.5 40.3
3 48.2 - 51.4 49.6
2 44.1 - 55.8 50.0
4 51.2 - 67.6 57.6
3 59.3 - 62.2 60.7
27 55.8 - 63.4 50.9
7 59.5 - 75.2 65.7
21 46.2 - 71.1 60.4
6 63.9 - 74.6 70.5
7 49.7 - 80.9 63.5
9 47.6* - 77.5 65.5
31 65.5 - 79.9* 71.8
9 58.1 - 84.7 67.7
7 67.6 - 102.6 87.7
38 27.8 - 105.0 57.9
5 80.7 - 100.7 88.9
16 42.2 - 121 86.9
6 68.4 - 97.1 67.1
6 48.4 - 140.3 110.5
8 73.6 - 119.1 93.9
3 79.6 - 132.2 102.5
2 91.9 - 95.3 93.6
3 89.4 - 139.3 107.7

9 99.7 - 143 120.9
REFERENCE
14,19.20.
22,28,38.47




16
16
16
16
16
16,42
16
16
16
16
16,52
16
16.52
16,42
16
16
16.44,52
16,44
16,44
16.44
16,44
16.42.44
16,44
16,44
16
16
16
16,42

16,42
211 23.4* - 114.8 47.9 11.16,16,23,
130,33,34,401
267 34.6 - 183.4 80.0 1 16,18,25. 1
126,29.30,451
146,48.49,501
CO
                    n: number of  observations
                    *: mean, value

-------
ACTIVm PATTERNS

     Activity pattern data may be used in conjunction with minute volume
data to estimate ventilation rates.   In  addition  to  providing
information on exercise  levels, available activity pattern studies  also
describe the amount of time spent in different microenvironments.   Such
de-ailed information is desirable if  the arobient concentration of  a
po  lutant differs significantly from one microenvironment to another,  as
ma\ happen with particulate filtration  from the outdoor to the indoor
microenvironment.il

     Table 4-6 presents the average number of hours and the percent of
time spent in three microenvironments (indoors, outdoors,  and in
vehicles) at  three activity  levels (low, medium, and high).  These
values were derived from data  contained in the activity pattern data
files  developed by SRI  for EPA's Office of Air Quality  Planning and
Standards and represent  averages for both sexes and all age  groups.11
The three activity levels  are  roughly equivalent to the activity
categorization used for minute ventilation.
         TABLE 4-6.  ACTIVITY PATTERN DATA AGGREGATED FOR THREE
                     MICROENVIRONMENTS BY ACTIVITY LEVEL11
Microenv ironment
 Indoors
 Outdoors
 In
 transportation
 vehicle
 All
 Microenvironment s
Activity
 level
Low
Medium
High
  Total

Low
Medium
High
  Total

Low
Medium
High
  Total

Low
Medium
High
  Total
Average percent of
   t ime in each
 microenvironment
     at each
  activity level
      81.85
       2.95
        .41
      85.21

       4.21
       2.69
        .48
       7.38

       7.16
        .19
        .0050
       7.36

      93.2
       5.8
       0.9
     "100
 Average hours
    in each
microenv ironment
    at each
 activity level
    19.64
      .71
      .098
    20.4

     1.01
      .65
      .12
     1.77

     1.72
      .05
      .0012
     1.77

    22.4
     1.4
     0.22
    -24
                                    40

-------
     More detailed activity pattern data are available in Appendix D,
which presents in its  entirety  a  document  describing activity patterns
for 56 population subgroups.12  This  document  is a supplement to  a
report on the application of  the  NAAQS (National Ambient Air Quality
Standard) Exposure Model to carbon monoxide. 13  Hourly  assignments to
locations, microenvironments, and activity levels are presented for each
population subgroup.12
                                   41

-------
REFERENCES FOR SECTION 4
 1.  Astrand, I.  Aerobic Work  Capacity  in Men and Women With Special
     Reference to Age.   Acta Physiologica Scandinavica, Vol. 49,  Supple-
     ment 169, 1960.

 2.  Astrand, P.O., and  K.  Rodahl.  Textbook  of  Work Physiology.   McGraw-
     Hill, New York, New York,  1977.

 3.  Smith,  E.L.  anc  R.C. Serf ass.   Exercise  and Aging.   Enslow
     Publishers,  Hillside,  New Jersey, 1981.   pp. 98-101.

 4.  Ganoog,  W.F.  Review of Medical Physiology.  Lange Medical
     Publishers,  Los Altos, California, 1979.

 5.  Shephard, R.J.   Physiology and Biochemistry of Exercise.  Praeger
     Publishing,  New York,  New York, 1982.  pp. 138-140.

 6.  Wasserman, K.   Breathing During Exercise.   New England Journal of
     Medicine, 298(14):780, 1978.

 7.  Morehouse,  L.E.  and A.T. Miller.   Physiology of Exercise.  Seventh
     Edition.  C.V. Mosby  Company,  St.  Louis, Missouri,  1976.  pp. 100-
     101.

 8.  Niinimaa, V., P. Cole, S.  Mintz, and R.J. Shephard.  Oral Nasal
     Distribution of Respiratory Airflow.  Respiration Physiology,
     43:69-75, 1981.

 9.  U.S.  Environmental Protection Agency.  Air Quality Criteria for
     Ozone and Other Photochemical Oxidants.   Draft Final Report.   U.S.
     Environmental Protection  Agency, Research Triangle  Park, North
     Carolina, June 1984,  pp. 1-133.

10.  American  Industrial Hygiene Association.   Ergonomics  Guides:
     Ergonomics Guide to Assessment of Metabolic and Cardiac  Costs of
     Physical  Work.  American Industrial  Hygiene Association  Journal,
     August  1971, pp. 560-564.

11.  Freed,  R.J., T.  Chambers,  W.N. Christie and C.E. Carpenter.
     Methods for Assessing  Exposure to Chemical  Substances.   Volume  2:
     Methods for Assessing Exposure  to Chemical Substances in the
     Ambient Environment.   EPA 560/5-83-015,  U.S. Environmental
     Protection  Agency, Washington,  D.C.,  September 1983.   pp.  55-63.

12.  Johnson, T.   Activity Patterns for NEM Analysis of Carbon Monoxide
     Exposure.  Prepared by PEDCO  Environmental,  Inc.  for  Office of Air
     Quality Planning  and  Standards,  U.S. Environmental  Protection
     Agency, Research Triangle Park, North Carolina, October  1982.
                                     42

-------
13.  Johnson,  T.  and R.A. Paul.  The  NAAQS  Exposure Model (NEM) Applied
     to Carbon Monoxide.  EPA-450/5-83-003, U.S.  Environmental
     Protection Agency,  Research Triangle Park, North Carolina, December
     1983.

14.  Ah1strom, H.  Studies  of Pulmonary Mechanics in Normal Subjects.
     Acta Paediatrica Scandinavica Supplement, 244:10, 1973.

15.  Altman,  P.L. , and D.S.  Dittmer.   Respiration and Circulation.   Third
     Edition,  Federation of American Society for Experimental Biology,
     Betbesda, Maryland, 1971.

16.  Astrand,  P.a   Experimental Studies of Physical  Working Capacity in
     Relation to Sex and Age.  Ejnar Munksgaard,  Copenhagen,  Denmark, 1952.

17.  Astrand,  P.O.,  and  B.  Saltin.   Oxygen  Uptake during the First
     Minutes of Heavy Muscular  Exercise.  Journal of Applied Physiology,
     16(6):971-976, 1961.

18.  Baldwin,  E.  deF.,  et al.  Pulmonary Insufficiency.   Medicine
     (Baltimore), 27:243-278, 1941.

19.  Bruns, W.T., et al.  Respiratory  Rate,  Tidal Volume and
     Ventilation of Newborn Infants  in  the Prone and Supine  Positions.
     Pediatrics,  28:388-393, 1961.

20.  Cook, C.D.,  et al.   Studies of Respiration Physiology in the
     Newborn Infant.  L.  Observations on Normal, Premature and Full-
     Term Infants.  Journal of Clinical Investigation, 34:975-982, 1955.

21.  Cotes, J.E.  Lung Function  Assessment  and Application in Medicine.
     Blackwell Scientific Publications, Oxford, England, December 19, 1979.

22.  Cross, K.W., et al.  The Gaseous  Metabolism  of  the  Newborn Infant.
     Acta Paediatrica, 46:268-273, 1957.

23.  Cugell,  D.W.,  et  al.  Pulmonary Function  in  Pregnancy.  American
     Review of Tuberculosis, 67:568-597, 1953.

24.  Drorbaugh, J.E., et  al.  A  Barometric  Method for Measuring
     Ventilation in Newborn  Infants.  Pediatrics, 16:81-87, 1955.

25.  Filley,  G.F.,  F.  Gregoire,  and G.W. Wright.  Alveolar and Arterial
     Oxygen Tensions and the Significance of the Alveolar-Arterial
     Oxygen Tension Difference in Normal Men.  Journal of Clinical
     Investigation, 33:517-529, 1954.

26.  Fowler,  W.S.,  et  al.  Lung Functions Studies.  VII.  Analysis of
     Alveolar Ventilation by Pulmonary N2  Clearence  Curves.  Journal of
     Clinical Investigation, 31:40-50, 1952.
                                  43

-------
27.  Gadhoke,  S. , and N.L. Jones.  The Response to Exercise  in  Boys  Aged
     9-15 Years.   Clinical Science,  37:789-801,  1969.

28.  Goddard,  R.F.,  and  U.C. Luft.  Pulmonary  Function  Tests for  Infants
     and Children.  Lovelace Foundation for Medical Education and
     Research, Albuquerque, New Mexico,  1969.

29.  Hanson, £.,  B.O. Eriksson, and B.  Bake.  Lung Volumes and  Pulmonary
     Gas Exchange After Coarctectomy.   Acta Paediatrica Scandinavia,
     69:467-470, 1980.

30.  Higgs, B.E.,  et al.   Respiration  end Circulation  in Exercise.
     Clinical Science, 32:329-337, 1967.

31.  Hurtado, A., W.W. Fray, N.I. Raltreider,  and V.D. Brooks.  Studies
     of Total Pulmonary Capacity and its Subdivisions.   V.   Normal
     Values in Female Subjects.  Journal of Clinical Investigation,
     13:169-191, 1934.

32.  Butt,  B.K., S.M. Horvath, and G.B. Spurr.  Influence of Varying
     Degrees of Passive Limb Movements on Respiration and Oxygen
     Consumption of Man.  Journal of Applied  Physiology,  12(2)-.297-300,
     1958.

33.  Jones, N.L.,  et al.   Clinical Exercise Testing.   W.B.  Saunders
     Company, Philadelphia,  Pennsylvania, pp. 250-251,  1982.

34.  Rrumholz, R.A.,  et  al.   Pulmonary Diffusing  Capacity,  Capillary
     Blood  Volume,  Lung Volumes, and Mechanics of Ventilation in Early
—   and Late Pregnancy.  Journal of Laboratory  Clinical Medicine,
     64(4):648-655, 1964.

35.  Larson,  L.A.,  editor.   Fitness,  Health, and Work  Capacity:
     International  Standards for Assessment.   MacMil Ian Publishing
     Company, Inc., New York, New York, 1974.

36.  Matheson,  H.W., and J.S.  Gray.   Ventilatory  Function  Tests.  III.
     Resting  Ventilation,  Metabolism, and Derived Measures.  Journal of
     Clinical Investigation, 29:688-692,  1950.

37.  Morrow,  P.E., et al.  Pneumotochographic Studies in Man and Dog
     Incorporating  a Portable Wireless Transducer.  Journal of Applied
     Physiology,  5:348-360, 1953.

38.  Nelson,  N.M., et al.  Pulmonary Function in the Newborn
     Infant.  IL>  Perfusion— Estimation by Analysis of the Arterial-
     Alveolar Carbon Dioxide Difference.  Pediatrics, 30:975-989, 1962.

39.  Olafsson,  S.,  and R.E.  Hyatt.  Ventilatory  Mechanics and Expiratory
     Flow Limitation During Exercise in Normal Subjects.  The Journal of
     Clinical Investigation, 48:564-573,  1969.

-------
40.  Plass, E.D., et al.  Respiration and Pulmonary  Ventilation in
     Normal Nonpregnant, Pregnant, and Puerperal Women.   American
     Journal of Obstetrics and Gynecology,  35:441-452, 1938.

41.  Polgar, G.,  et al.   Pulmonary Function Testing in Children:
     Techniques and Standards.  W.B.  Saunders  Company,  Philadelphia,
     Pennsylvania,  146-147, 1971.

42.  Robinson,  S.   Experimental  Studies  of  Physical  Fitness in Relation
     to Age.  Arbeitsphysiologie, 10:251-323, 1938.

43.  Saxton, C.  Effects of Severe Heat Stress on Respiration and
     Metabolic Rate in Resting Man.  Aviation, Space,  and  Environmental
     Medicine,  52(5):281-286, 1981.

44.  Hackney, J.   Unpublished Data from 1983  Summer Trailer  Study.
     Letter and enclosures from D.A.  Shamoo,  Medical Safety Officer,
     Rancho Los Amigos Hospital to T. Warn, GCA Corporation, April 17,
     1984.

45.  Shock, N.W., et al.  Average  Values for Basal Respiratory
     Functions  in Adolescents and Adults.  Journal of Nutrition, 18:143-
     153, 1939.

46.  Shock, N.W., et al.  Age  and Basal Respiratory Measurements.
     Journal of Gerontology, 10:33, 1955.

47.  Svyer, P.R., et al.  Ventilation and Ventilatory Mechanics in the
     Newborn.  Journal of Pediatrics, 56(5):612-622, 1960.

48.  Taylor, C.  Studies in Exercise Physiology.  American Journal of
     Physiology, 135:29, 1941.

49.  Thoden, J.S.,  et  al.   Ventilatory Work During Steady-State Response
     to Exercise.  Federation Proceedings,  28(3):1316-1321,  1969.

50.  Wells,  J.G., et al.   Lactic Acid Accumulation During Work.  A
     Suggested Standardization of Work Classification.  Journal of
     Applied Physiology, 10(l):51-55, 1957.

51.  White,  R.I., Jr.  and J.K. Alexander.   Body  Oxygen Consumption and
     Pulmonary Ventilation in Obese Subjects.  Journal of Applied
     Physiology, 20(2):197-201, 1965.

52.  Wilmore,  J.E., et al.   Physical Work Capacity of Young Girls, 7-13
     Years  of  Age.  Journal  of  Applied Physiology, 22(5):923-928,  1967.
                                    45

-------
GLOSSARY


correlation analysis - shows the degree to which variables are
     related:

     r - the sample correlation  coefficient, it measures the strength
        of the relationship between two variables; r always  falls
        between -1 and +1.  A value of +1 indicates  a  perfect positive
        correlation, -1 indicates a perfect negative correlation.
        When r is close to 0, there is no linear  relationship.

     R? - the coefficient of determination, measures how the
        dependent variable  is related to all of the independent
        variables at once,  in other words, it measures the proportion
        of the variation  in  the dependent variable "explained" by
        variation in the independent variables.  R?  ranges from 0
        to 1, with 0 indicating no correlation, and  1  perfect
        correlation.
F statistic - this is calculated  to  test the strength of the
     statistical relationship Between the dependent and independent
     variables,  and  is equal to the ratio of the explained variance to
     the unexplained variance.  When F is  large a strong statistical
     relationship  is expected.  The F statistic is used in concert
     with the F distribution to determine significance.  More general-
     ly, the F distribution is used to do  tests involving the equality
     of  two variances.

macro -  al lows  programmer  to name and store  a  segment  of a SAS pro-
     gram, then substitute that name for the program segment wherever
     the segment is  to appear later  in  the job.  The stored segment is
     called a macro  and can be part of a SAS statement, a complete
     statement, or several statements.

percentile - the value below which that percent of the values in the
     sample fall.  For example, the 50th percentile is the value below
     which  502 of  the values in that  sample fall.

PROC MATRIX -  a  SAS  procedure that implements  an interpretive
     programming language  in which data elements arc matrices of
     values and  operations  are performed on entire matrices of values.

FROG UHIVARIATE -  a  SAS procedure  that produces sample descriptive
      statistics  (including  quantiles) for numeric values.

QNTLS  -  a SAS macro written in FROG MATRIX that performs variance
      estimation  of multistage  sample survey  data using the Jackknife
      Repeated  Replicate Approach.

 regression  analysis  - demonstrates how variables are related by
      providing an  equation that calculates values  of  y (the dependent
     variable)  for given values of x  (the independent  variable).

                                   46

-------
SAS - Statistical  Analysis  System,  a statistical  software package.

standard deviation (s.d.) - the positive  square root  of  the variance.
     The variance  of a sample is a measure of the spread of the data
     about the mean.  Associated with individuals.

standard error (s.e.) -
     of estimated  coefficients:   provides a measure of the despersion
          of the estimates  about their means.  Associated with
          samples.
     of the regression:   measures the dispersion  of the  error term
          associated with the line.

stratification - the segregation of heterogeneous population into
     homogeneous subgroups,  allowing random sampling of each subgroup.
     This process  results in a stratified sample.  In a  stratified
     random sample,  the opportunity for inclusion of  each observation
     in the sample is constant for each stratum of  the population but
     may vary from stratum to stratum.  Foststratification adjustments
     are changes made to stratified subgroups.
                                  47

-------
APPENDIX A

-------
                       VARIANCE ESTIKATION FROM MULTI-STAGE SAMPLE STOVE? DATAi
                              THE JACKKNIFE REPEATED  REPLICATE APPROACH
                                 Junes Rochon and Uilllaa D. Kaltbeek
                                    Univertity of North Carolina
                1.  xmoDDcnoB

   Practitioner! have generally been ware  of  the
need to provide measure*  of precision  to qualify
estimate* forthcoming from multi-stage aaaple
survey data.  While the methodology hat been knovn
for tone tin«,  it it only within  the latt  ten
year* that  toftvare hat become available to per-
form thete  computation*.  The  expressions  for
descriptive meaiuret, such a* mean*, distribu-
tion* ,  and totala  are  relatively straightforward;
yet, it is  a curious fact that none  of  the 'major"
statistical software vendors (e.g., SAS,   BMDP,
SPSS,  etc.)  support  routine* to  perform  these
calculation*.  The expression* for complex non-
linear statistics, such a* covariance* and  corre-
lations,  take on  an added dimension of mathemati-
cal and computational difficulty.   A* a result,
there i» a chronic need for computer software to
provide meacure*  of preciiion for both linear  and
non-linear  statistics.
   In thii paper,  we describe a collection  of  SAS
macros, written in PROC MATRIX, to perform  vari-
ance estimation using  the Jackkaife Repeated Rep-
licate approach  (Frankel,  1971).  Jackknife  Re-
peated Replicate  (JR&)  is  a particular application
of the  familiar "jackknifing" method of variance
estimation.   It is considered here  in the special
case where there  are  two (and only  two) primary
sampling units (PStTs) per primary  stratum.  This
approach  capitalises on variation observed between
the two PStT* in every stratum, across  al 1  strsta
in the design.  This variability is used to  impute
the variance of any population statistic of  inter-
est.  A more formal discussion of  the method is
provided below.
   Software had been written to calculate esti-
mate* for nine different sample survey  statiatics,
plus their  standard errors.  These include  not
only linesr  statiatics,  such as  means, distribu-
tions, and  totals,  but  also more complex non-
linear meaanre* including covariance*, correla-
tions, and the slope snd intercept from a simple
(weighted) linear  regression.  A* well, two func-
tion* related to the cumulative distribution func-
tion can be  estimated using  this  software package.
A  deacription of the macros and  an  example of
their use are provided in thia discussion.
                 2.
   Theoretically,  at least, several techniques are
available to estimate standard errors from multi-
stage sample surveys.  Following naturally  from
classical experimental design consideration*, per-
hap* the most straightforward of these is to in-
corporate replication directly into the design of
the  survey.  The central idea  is  to select  a
reaaonably  large  number of subsamples,
independently of each other, and to form an esti-
mate of the population  statistic of interest  from
each  subsample.  An  unbilled  eitimate of  the
population statistic is then the  simple average of
the replicate-specific  estimate*; the variance i*
a function of the squared deviation* of the repli-
cate—*pecific estimates from the overall estimate.
However, a* described in Kish  • Frsnkel  (1970),  s
large number of replicates may be impractical for
multi-stage sample surveys.
   Cochran (1977,  ch. 11) offers three alternative
strategies for  calculating variances,  especially
for non-linear measures.  In  the Taylor series
expansion,  the  parameter to be estimated may be
expressed as a  function of the  population totals
of certain variables.  The Taylor series  expansion
of the parameter i*  conaidered, retaining only the
linear components.  This technique ha* been widely
applied, and seversl software  packages are avail-
able using this approach.   Most familiar to SAS
user*,  perhaps, is  PROC  SESDDAAH (Shah. 1981).
Estimate* of meana, distribution*,  and total*,
both for the entire population and within domain*
may be requeued.
   While the linearised Taylor icriet expantion
may be perfectly aatisfactory for these population
statistics,  one encounters crippling mathematical
difficulties for more complex statiatics.  In
particular, derivation  of  the  first-order partial
derivative* prove* mathematically intractable for
some non-linear  measures, such as partial correla-
tion  and multiple  correlation coefficients.
Balanced Repeated Replicate (BRJO offers  an alter-
native approach for these situations.   A "half-
sample" is formed  by  selecting one  of the two
PStT* in each stratum, aero** all  strata in the
design.  From thia half sample, an estimate of the
statistic of interest may be calculated.  McCarthy
(1966)  had  shown that it ia possible to select, in
a rigidly prescribed manner, a  subset of all pos-
sible  half-samples whose  elements are orthogonal
with respect to  the strata.
   The major shortcoming  of this approach is the
construction of  the  balanced half-samples them-
selves.  Depending upon the number of strata, the
balance property of  the replicates may be in  jeop-
ardy.   Possibly for these reasons,  software to
implement this  strategy is rsther scarse, although
two years ago,  a set of  macros was  presented
before this forum (Lago,  1981) for  the caae of
linear and non-linear measure*.
   The third alternative is called the  Jackknife
Repeated Replicate (JRR) approach (Frankel,  1971).
It was  motivated by Jackknife estimation  pro-
cedures and the  BU  technique described above.  In
the general Jackknife procedure, a sample of  inde-
pendent observations is partitioned into a number
of subgroups.   Bach subgroup is systematically
deleted,  and  the  behavior of the resulting
parameter  estimate is  considered.   In  this
particular application,  it  is the  stratum-FSB
cells which form  a natural  partition of the
sample.  The technique  is  more  formally  described
below.
   Frankel (1971)  and Xish  i Frankel  (1974)
present empirical  evidence concerning  the behavior
of these three variance  estimation techniques.
Overall, all three methods gave reasonable remit*
                                               A-l

-------
for  several  statistics,  for example,   means,
regression  coefficients,  and correlation  co-
efficients.   There  vere  relatively small  biases,
and the "studentized" estimates of various  popula-
tion measures conformed reasonably veil with per-
centage points of the appropriate t-distribution.
When judged  against  several  criteria, none of the
•ethods was  felt to be  consistently better  or
worse.  Kish t Frankel  (1974) conclude that "...
TAILOR methods may  be best  for tuple statistics
like  ratio  means,  and  BRR  and  JRR for complex
•tatistics  like coefficients  in multiple  regres-
sions".
   While the other  two  methods  provide useful
techniques,  there are those who would argue that
this is somewhat  offset by difficulties encounter-
ed in implementing the strategy.  The Jackknifc
Repeated Replicate approach  avoids many  of these
pitfalls, while producing satisfactory variance
estimates.
             3.  STATISTICAL THBOIT

   The Jackkaife  Repeated Replicate technique was
originally described in Prankel (1971).  He sup-
pose that we have an epsem,  multi-stage sample
survey design where the population has been parti-
tioned into B primary strata.  Within each strat-
BB, two (and only two) primary sampling units have
been selected with equal probability.   This does
not preclude those designs with  more than two
PSD's per stratum, however,  those PSD's would need
to be  collapsed and combined into two opposing
groups ia an unbiased manner.
   We let S denote the entire sample, and  let S(Z)
denote an estimate of the population statiatic, Z,
of interest from the entire sample.  The  jack-
knifed replicate arising from the h-th stratum,
JB, is that replicate  formed by removing from S
those observations  in PSD  #1  is  the b-th  stratum,
and,  by way of compensation,  including twice  those
observations in PSD  02 of  the  stratum,  for
b-1,2 ..... B.  This  is  equivalent  to setting to
sero sample weights  corresponding to those obser-
vations in the  first PSD, and doubling the weights
of those observations  in the  second PSD;  the
weights of observations in the  remaining strata
are not disturbed.  The estimate  of  the population
statistic derived from this replicate is denoted
by JD(Z).  Similarly, the complementary jackknifed
replicate, CB,  in the h-th stratum is  formed by
reversing the  roles of  the two  PStTs  in that
stratum - weights corresponding to observations in
the second PSD  are set to sero, while those  ia the
first PSD are doubled.   The estimate arising from
the complementary jackknifed  replicate ia denoted
by CB(Z),  for  h-l,2,...,H.   This pair of repli-
cated  samples  is formed for each stratum in the
design.  The Jackknifed Repeated Replicate vari-
ance estimate ia  defined as:
VarlS(Z)] - (0.5)
                             -     '2    }
                            Ch(Z)-S(Z)l2}
where  the finite population correction factor has
been  ignored.   [This corresponds to  equation
(4.26) ia Prankcl  (1971).)
                                                     By way of illustration,  consider the example of
                                                   estimating  the  total  of  some characteristic, say
                                                   Z,  of the  populstion,  for example,  the total
                                                   expenditure on hospitalization in the State of
                                                   North Carolina.  Letting  the subscript k represent
                                                   a composite of all subsequent stages in the design
                                                   beyond the  stratum-PSD  level, we  use xj,»k to
                                                   represent the value of Z realized from the k-th
                                                   observational  unit in the h-th stratum and the a-
                                                   th PSU.  Corresponding to this  sample unit  is the
                                                   usual sample weight, wB(fc, i.e., the inverse of
                                                   the probability of selection for  that sample unit.
                                                   We define the notation.
     ha
                                                                    "hak  *hak
                                                                                              (3.2)
                                                   that  is,  the  sum of  the  weighted x-values
                                                   aggregated to the (h.a)-th stratum-PSD  level.   The
                                                   overall estimate of the population total is given
                                                   by:
     S(Z) • (wx)..  -
                                                                               (ws)ha
                                                                                              <3.3)
                                                   which is the fsmiliar Borvitz-Thompson unbiased
                                                   estimate,  and where aa ususl  the dot notation
                                                   indicatea summation  over the corresponding
                                                   subscript.
                                                      Prom the above description, the  estimate of the
                                                   population  total ariaing from  the jackknifed
                                                   replicate  in the h-th stratum ia  computed as:
              t>h  a   »

   or, JB(Z)  - (wx).. » I
   or, Jn(X)  - (wx).. + [
                                                                                )m * 2(wx)a2

                                                                                  - <«)hl 1
                                                                                              (3.4)
                                                   where (ix)h  represents  the difference  in the
                                                   weighted sum of Z, aggregated to the stratum-PSD
                                                   level, between the two PStTs  in the b-th stratum,
                                                   for h-1, 2 ,...,&.   It  can similarly be shown that
                                                   for the  complementary  jackknifed replicate  in the
                                                   h-th stratum,
                                                       Ch(Z) - (wx).. - (ax)B
                                           (3.5)
                                                   for h~l,2,...,H.  Thus, the JRR variance estimate
                                                   of the population  total would  be found by an
                                                   application  of  (3.3),  (3.4),   and  (3.5)  in
                                                   expression (3.1).
                                                      Expanding the example, we let the variable, I,
                                                   denote the total  lengths of  stay  ia hospitals in
                                                   Borth Carolina, and suppose  that we  are interested
                                                   in the  ratio,   R,  of  total expenditure on
                                                   hospitalization to total length of atay,  La., the
                                                   average per diem  coat  of hospitalization.  The
                                                   population estimate of  this measure  is seen to be:
                                                       S(R) • (wx).. / (wy)..
                                           (3.6)
where the interpretation of (wy)..  follows in an
analogous  manner  to that  of (wx)..  above.   A
little reflection will reveal that
                                                   and,
     JB(R)  -  I  (wx).. * (Ax)b 1
               /  I (wy).. * (6y)h ]         (3.7)

     Ch(R)  -  [  (wx).. - (Ax)h J
               /  I (wy).. - (ay)n ]          (3.8)
                                               A-2

-------
 Again, tbe JRR estimate of the variance of R if
 found by an application of (3.6), (3.7), and (3.8)
 in expression (3.1).
    More formally,  let the population statistic of
 interest,  Z,  be expressed  as a function of r
 population totals, i.e., Z • g(Zj ,22,...,Zr).  We
 let S(Z) •  glS(Zi),S(Z2),....S(Zt)]  be a consis-
 tent estiaator  of  tbe population parameter, where
 S(Zk)  • (vzfc)..  is an unbiased estiaate of  the k-
 tb population  total, for k-1,2 ..... r.  The esti-
 mated total for the k-th component arising froa
 the jackknifed replicate in tbe  b-th stratus is
 given  by Jo(Zk) •  (w»B).. * (Az^h where  (vzk)..
 •nd (AZfc)h  *rt  d*fi»ed in an analogous fashion to
 (3.3)  and (3.4).  The corresponding estiaate of
 the population statistic is  JD(Z)  • g[J0(Zi),
 Jh(Z2)....,Jb(2r>l-   Siailariy.  the estimated
 total  for  Che k-th  coaponent arising froa the
 complementary  replicate in the h-th stratua is
 defined  by Ch(Zk)  • (WZK)..-  Uzk)b, with the
 corresponding estimate of  tbe population statistic
 coaputed as CB(Z) • g[Co(Zi),  CD(Z2),..., CD(Zr)l.
 This pair of estimated paraaeters is calculated
-for each stratum in tbe desigp,  and tbe expression
 (3.1) is used to calculate the overall estimate of
 the variance.
    As  a final  example, we  consider a more coaplcx
 non-linear statiatic:   tbe slope from a simple
 (weighted)  linear  regreasion.  Letting tbe vari-
 able, T, denote tbe dependent variable, and tbe
 variable, X. denote the independent  variable, it
 can be shown that the slope is a  function  of r-5
 population totals: S(Zj) • (wx.. , SCZj) • (wx2)
 .. , 8(Z3)  • (wy).. ,  S(Z*) - (wxy)..,  and S(Z5) -
 (w)..  .   Finally,  tbe function  relating these
 population  totala  to  tbe paraaeter of interest is
 given by:
..... S(Z5)1 -
     - S(Zi) S(Z3)
                                 S(Z5)
               8(Z2) - [S(Z1))Z / S(Z5)
          4.0 DKSCRimOH OF TEB SOFNAU
 4.1
    Twelve different components  have been written
 to provide estimates, and their standard errora,
 for a variety of sample survey statiatics using
 tbe JRR approach.  The  reader  is referred  to
 Table 1 for  a  euaaary of  these  coaponents  and
 their respective ases.
    Considering the  linear statistics, first, there
 are three aacroa  available to  provide  simple
 descriptive statiatics. namely, the estiaated
 means  (.HEARS),  distributions  (_DISTRBH),  and
 totals  (_TOTALS) of one of more  specified
 variables.   These macros estiaate  overall
 population aeaaures; however, a complementary  set
 of three macros  is  also available to compile  the
 corresponding statiatica within tbe levels of  one
 or more subpopulations  (e.g.. Sex,  Race,  Religion,
 etc.).  These are  labelled _SUBMEAH, _SUBDIST,  and
                                       _SUBTOTS respectively.  In addition, the aacro
                                       _RATIO is available to calculate an estiaste of
                                       the  generalized  ratio  of  two specified variables
                                       within  one or more domain variables.   Thus,  there
                                       are  aeven aacros to calculate estimates of  siaple
                                       linear  statistics.
   ROOTIHE           PARAMETER

_MEAHS    ...  Tbe means of one or
              more variables.

_DISTUN  ...  The distributions of
              one or more variables.

.TOTALS   ...  The totals of one or
              acre variables.

_SUBKEAN  ...  Tbe aeans of one or
              acre variables within
              one or more doaains.

_SUBDIST  ...  The distributions of
              one or acre variables
              within one or acre
              domains.

_SOBTOTS  ...  The totals of one or
              more variables within
              one or more domains.

_RATIO    ...  Tbe ratio of two variables
              within one or more domains.

_CORR£IH  ...  The lower triangle of tbe
              correlation aatrix among
              two or more variables.

_COVMAT   ...  The lower triangle of tbe
              covariance matrix among
              one or aore variables.

_L1NREC   ...  The slope and intercept froa
              a simple linear regression.

_QNTLS    ...  The quantilcs of tbe dis-
              tribution of a variable.

_CBF      ...  The values of tbe CDF
              function of a variable.
                                             1:  Listing of tbe JRR Routines and the
                                                 Parameters They Estimate
                                           For  the non-linear measures,  the  following
                                        statistics  plus their standard  errors may  be
                                        computed uaing  this software.  Given a set  of
                                        variables,  either  the  correlation  matrix
                                        (_CORRE1H) or the covariance matrix (_COVMAT) may
                                        be computed.   In  the latter  case,  tbe lower
                                        triangle  plus the diagonal elements of  the matrix
                                        are calculated and  reported, while for tbe former
                                        aeasure,  only the lower triangle of the aatrix  ia
                                        computed.  Both matrices are printed one column  at
                                        a time.   A macro  ia also available to estimate tbe
                                                 A-3

-------
tlope  and intercept  from •  simple (weighted)
linear regression (_LINREG) of  m dependent
variable on an independent variable.
   The laat  two  macro* are related to cumulative
distribution function of  a specified  variable, say
X. Given  a value, p, for 0 < p < 1, the quantile,
Q, is  that value of X such that Pr[X £ Q] • p;
this   term  interchangeably  with  the   term
"percentile".  Thus the macro (JQRTLS) takes a set
of p's aad estimates the  corresponding quantiles
and their standard errors  of the distribution of
X.  For example, it may be  of interest to estimate
the 95Z "percentile" of  cholesterol   levels among
•dult male* over the age  of 45.
   The macro  _CDF  performs the complementary
operation.  That ia,  given a set of X-valuea, thia
•aero estimates the corresponding values of the
cumulative  distribution  function and  their
standard  errors.   For  example,  it may  be  of
interest  to estimate at what percentiles in the
distribution of a standardised  test certain  scores
fall.  It is perhaps these last two macros which
draw  into focus  the wide  range  of  applications
open to the JRR approach.
4.2
   All statiatical computation is performed using
PROC  MATRIX  code.   Some preliminary results,
preparatory to  the actual  calculations,  are
performed using PROC FREQ.  The results themselves
are OUTPUT  to a dataaet, aad are reported using
PROC PRINT,   while this  datacet is DELETEd as the
final  step  in each macro to conserve core, this
could  easily be modified in order to save, aad  to
use ia subsequent steps, the results of these
calculations.
   As ha* become  standard procedure for SAS '79
macros,  information is passed to the programs  by
specifying a series  of "parameter" macros prior  to
invoking the desired routine.   Each of the twelve
macros have  parameters which  are peculiar  to
themselves,  however,  there are four "global"
macros which must be pro-specified for all twelve
components.  These  declare the _DATASET wherein
the data reside; aa well aa tboae  variables on the
dataset which identify  the primary _STKATOH and
primary sampling unit (_PSU) within stratum, and
the sample weight  (JWGT) for any  observation.
   Vith  regard to missing values, the philosophy
of these macro* is to uae as  much information  as
possible.   Thus,  for example, the mining value
pattern* for oae variable will not  interfere with
the computation* for any other variable for simple
descriptive statistics.   This ia similar  to  PROC
HEARS.  Covariaaces and correlations use"pair-
wise" deletion for missing values, similar to the
default  for PXOC CORR.   Zf the user desires "case-
wise" deletion,  this should be done explicitly  in
Che data step beforehand.
   •o  attempt is made to compeaaate for missing
values  in  the  computationa.    Chapman (1976)
discusses several  techniques for controlling not
only for missing sample units, but also for item
non-response.    Cox  (1980)  describes,  aad
 Zacchionae  (1982)  iaplemeats a strategy to perform
one  such imputation procedure.  The practitioner
may wish  to make these changes prior to  performing
any data  analysis.
   Finally, very little error-checking has been
incorporated into the routines  themselves.  Since
the method is  dependent upon observations being
available for both  FSB's in any  strstum,  each
macro prints a warning message  if one of the PSlTs
is empty  for  any stratum.  However,  parameter
macros describing the numbers of  levels, their
values, and their labels for domain  variables, for
example,  are aot  verified.   Errors  in these
parameters may cause misleadiag, or evea entirely
erroneous results, or lesve the user at the mercy
of PROC MATRIX error messages.
4.3
   Xa this  section, aa example of the JER variance
estimation  routines is presented.  To motivate the
discussion,  we consider data  arising from the
Rational Assessment of  Educational Progress
(RAEP).   RAEP is  an on-going research  effort
•ponsored by the  D.S.  Office  of Education,
designed  to   chart  the progress of successive
cohorts of students  in a wide range of academic
•abject*.   The educational attainment*  of  9-year-
old*,  13-year-olds, aod  17-year-olds  ia ten
different  learning areas ranging from reading,
writing aad mathematics, to art, literature and
citixeaship  arc evaluated.  Different areas are
aasessed  every year;  however,  all  areas are
periodically re-evaluated to gauge changes in
educational achievement.  In thia discussion, we
consider a aubset of that data arising from the
1976 assessment  of  mathematical skills  among 17-
year-old students  (Jones,  et al.  1982).  Since the
goal at this  stage is to  simply demonstrate the
macros,  aad aot to provide definitive reaalts from
this study, aome of these  findings may differ from
other published material.
   There are four  questions which attempted to
measure  the studeat's underlying attitudes  towards
mathematics (HATBATTA — HATHAXTD).   For example,
one questioa  suggest* that:  "I would like  to be
called oo in Math class  more oftea".   Each
•tatement  is  rated  on a 1-5 scale, where a higher
value indicates stronger agreement with the issue.
Ia this  analysis,  the mean values of these scales
are generated within the levels of two domain
variables,  namely, SEX aad RACE.
   Figure  1  depicts the code to  derive these
results.   Xa  addition to the four "global" macros
described  above,  other parameter macros are
defined to pass information to the  routine.  The
number of variablea and the  names of  the variables
whose meaaa are desired are specified ia _RVARS
aad _7ARS respectively.   The variables whose
levels define the subpopulatioaa are specified in
.DOMAINS.  For each domain variable. .DLEVELS
indicate*  how maay  values (i.e.,  "levels") it
assumes, while the distinct  values thaselves are
detailed  in  _DVALDCS; optionally, _DLABELS is
available to  provide a  descriptive label for each
subpopul ation.   There must  be  an obvious
correspondence in  the information provided across
these four  macros.
                                               A-4

-------
                                                                     5.  DISCDSSIOB
SET SASDS.KABPIKEEP-BATHATTA HiTHiTTB
BATHATTC BATHAT1D STB.1D  PSUIIIT
BAEPBGTP) ;
 BACBO    DATASET  OEBO
 BACBO   ~STBAIUB  STB ID
 BACBO   IPSU       PSOliT
 BACBO   >6T       BAEA-iGIF
                                             X
                                             X
                                             *
     BACBO    BVABS           «              X
     B1CBO   ~VABS   BiTHATTA —  BATHATTD  X

     BACBO   DOBAINS   BACX  SIX           »
     BACBO  "DLEVEiS     22             X
     BACBO   DVALUES    1512           X
     BACBO  ~DLABCLS  *IUITE*  'BLACK*
                       •SAJ.2* •rSHALX*      X
   SOBBEAB
 FICTJRE i.:  Sop It Program to Generate
           Means Withis Domains
    Tbt rttultt  of  these calculations (for SEX
 only)  are preaented  in Figure  2.  For  ««ch
 •Ctitudt question within each subpopulation, tbe
 folloving  information is provided.  First, the
 (unweighted) cample  statistics:   tbe observed
 ••mpl« size (DH_WTD_H) and tb«  (aiaplt) sample
 ••an  (UHtf_MEAH);  next,  tbe  corresponding
 population  statistics:  the  estimated sice of tbe
 aubpopulation as  reflected by tbe  sample weights
 (VGTDJO.   and  tbe (weigbted) scan  (WCT.KEAR).
 Tbesc are  followed by tbe JM  estiaate~of tbe
 •tandard error (STO_EU).  tbe  coefficient  of
 variation (COEF_VAR),  and tbe  design effect
 (D_E7F).  Thus,  for ezaaple,  tbe estiaated aean
 response for  MATHATTA is  3.94  (s.e.-0.02)  for
 fenales, and 3.72 (s.e.H).03) for males.
                                               The strengths and weaknesses of the Jackknife
                                             Bepeated Beplicate variance estimation approach,
                                             and this  particular  software package,  are
                                             presented in Table 2.  Tbe nost striking feature
                                             of this technique  is tbe  simplicity  of the
                                             underlying  strategy.   Provided  that  one can
                                             represent a requested statistic as a function of
                                             certain population totals, and unbiased estimates
                                             of these totals derived free tbe data, tbe JBR
                                             approach  may  be  successfully  applied.
                                             Difficulties  encountered in  deriving  partial
                                             derivatives  or balancing  half-samples  are neatly
                                             sidestepped using this approach.
                                               As  a  result,  there  is  a  wide  range  of
                                             applications for this  technique,  lot  only are the
                                             standard descriptive measures arising from sample
                                             survey analysis amenable to this type of analysis,
                                             but  complex non-linear  statistics  may also be
                                             estimated along with their standard errors.  The
                                             quantiles  and tbe CDF  values of a particular
                                             distribution illustrate, we believe,  one of the
                                             directions where routines  may be easily written.
                                               These particular macros are moderately easy to
                                             use.  Tbe  example  of  tbe  _8UBMEAN  routine
                                             illustrates  that a fair amount  of  detail  must, in
                                             some instances, be supplied in  preparation for tbe
                                             calculations - certainly more than required for
                                             most mainstream SAS procedurea.  However,  users
                                             familiar with  FBOC SCSUDAAN might  well  agree that
                                             only marginally more  effort is required for  these
                                             macros.   Both routines  must  be provided with
                                             essentially the same  information to charge op the
                                             analysis calculations; unfortunately, variable
                                             labels  and PBOC FORMAT labels must  be  made
                                             explicit to these macros.
            n t
                         o r
                                                   I  s » »
                                                   I  s I i
                                                       StTHlTT* MtTIUTTI BITMTTC SiTHtTTO
                                                        se>
UI.VCT.I: oastMto unrtt site
       Ltutl
       ft DILI
       MIC
               »«LUt
                        1. )
                              KliTO.S:   CSTHUTID POPVUTIOI Site
                              • uT.Htll:  ICUNTtU "tin
                                    >StS   f»IUilt»»lTIUTT» -

                                       ICTD.I      »CT_HtA»

                                    1.«27.«2*.1*    1.4192*
                                 J.«J«J»
                                                               sro.ttt:  jicidirto sTiiotio emit
                                                               cotr  >**: cocrricitiT or ttmtrto*
                                                               o.crr:    DCSICI irrtcr
                                                                1TD.MI

                                                               0.0222M3
                                                               O.OJ07ISI
           COtf.Ml

            0.0047
            O.OOtl
         O.tff


         2! 1*40
       UUtl
       ftnite
       «»!.£
           .......................... DOM IMS II  filll*ll»ll*TS»TTI —~~.~..~——	..——.—«.

            I4LOt   0*.«TO_k   *«..:ttl      WTO.I      HtfT.Ktil    STO.IM    COtr.TK   O.tff

                             2.74000    1.114.211.07    2.7««42    0.01140*7
                    2.1*2
                    2.170
                                    1.115.2U.OJ
                                    2.Ml. 110. 47
           •e.o«2«
            0.0125
                                                                                        2. 2*4*
Uktl

rtn«it
                T4LVK
                       SI.ITO.II
                        2.148
                            ..... DOItll'StI   flH»it»»ll«IHTTC

                             Bli.itil      S«TO_S      •C'
                                 l.«*644
                                 J.iiUO
                                        ).124.*<*.12
                                                  l.«*OSS
                                                  1.S)S«i
 STD.tSI

O.OI2«411
0.021404S
                                                                              cser tit
0.004*
0.0047
O.fff

2. 11*0
0.1M2
       UOCL
       rt»»it
       OIL I
                fiLUt   OI.HTD.I
                    2.142
                    2. 170
                              oontiosei

                                      SCTO.B

                                    1.120.010.01
                                                     Dcr.ntti

                                                     1.11424
                                                                   sto.em
                                 1.71704

                              FIGURE 2_: Sample Output f roa _SUBMEAN Macro
                                                            0.01201
                                                            0.0124S1
          eotf_»i«

           0.0047
           0.0000
         o.err

         1.40*0
                                                 A-5

-------
                   STRENGTHS


   * Conceptually Straightforward

   * Hide Range of Application*

   * Moderately Easy to Die



                   WEAKNESSES

   * Fairly  Expensive to 0»e

   • Little  Error Checking

     TABLE 1:  Strengths and Weaknesses
              of the JRR Algorithm
   A More  serious  drawback is  the expense of
running  these routines.   This is  due ia  some
measure to  the nature of the JRR algorithm, and to
a larger extent  to  the nature of PKOC MATRIX. The
1982 SAS Statistics manual says that there is
"...high  overhead  involved in  executing  each
instruction;  however  vitbin the instructions,
MATRIX run very efficiently" (p.553).  Preliminary
results  suggest that these macros require on the
order  of 2-3  times as  much CFU-time as  FROC
8ESDDAAN; however, they do become more competitive
•s the  size of the problem increases.
   Finally, an area where the greatest improvement
would be felt concerns verifying the information
entered into the programs.   These  macros  naively
•ssume that the information entered through the
"parameter" macros is accurate.   Little  effort had
been incorporated to verify  this information, and
depending upon  the  miscue, one may be left to the
mercy of FROC MATRIX error messages.

           6.  SQXMAZT AD COKL9SIOIS

   An  attempt has  been made   to  describe the
Jackknife Repeated  Replicate approach to variance
estimation  from  complex  sample  surveys.  Provided
that one can express a population statistic as  a
function  of  certain  population  totals, and
unbiased estimates of these totals can be derived,
this technique provides wholly acceptable results.
Under most  circumstances, JRR offers  an  attractive
alternative to either  the Taylor series expansion
or the  BRR algorithms.
   A set of  SAS macros have  been written to
exploit this technique.   It is found  that there  is
vide range of  applications.   Written in  FROC
MATRIX,  these macros  are  only moderately  more
involved to uae than other available software, but
are aignificantly more  expensive.  This can be
traced to the JRR algorithm itaelf, as well as the
nature of PROC MATRIX vis-a-vis  a SAS procedure.
Acknowledgments

Ve would like to express our appreciation to Dr.
James D. Hoiking for  his many helpful  commenti and
suggestions.

Contact  Author

For  further  information,  please  contact Dr.
William Kalsbeek, Department of Bioststistics,
University of North Carolina, Chapel Bill, B.C.,
27 514.
Chapman,  David V.  (1976).    "A Survey  of
   Bonresponse Imputation Procedures",  Proceedings
   of the Social Sciences  Section,  American
   Statisticsl Association, 1976, 245-251.
Cochran,  Villiam C. (1977), Stapling Techniaues.
   3rd ed., Rev Tork, Wiley.
Cox, Brands C. (1980). "The Weighted  Sequential
   Hot Deck  Imputation Procedure",  Proceedings of
   the  Section  on  Survey  Research Methods,
   American Statistical Asaociation, Houston,  Aug.
   11-14, 1980, 721-726.
Frankel, Martin R.C1971). Inference fron  Sample
   Surveys.  Ann  Arbor, Institute for  Social
   Research, University of Michigan.
lannacchione,   Vincent C.(1982),  "Weighted
   Sequential Hot Deck Imputation Macros",
   Proceedings  of  the Seventh  Annual  SDCI
   Conference, San Francisco,  Feb. 14-17, 1982,
   759-763.
Jones, Lyle V., Burton,  Fancy W., and Davenport,
   Ernest C. Jr.(1982). "Mathematics Achievement
   Levels of Black and White Youth", Chapel Bill,
   B.C.,  The  L.L.  Tburstone  Psychometric
   Laboratory, University of Rortb Carolina.
Kiah.  L. t.  Frankel.   M.R.Q970),  "Balanced
   repeated replication for standard errors", J.
   of Amer. Statit. Assoc., 41,  1071-1094.
Xisb.  Leslie i Frankel, Martin Riehard(1974),
   "Inference from Complex Samples", J. of  Roy.
   Statist. Soc., Ser.  B, 3>. 1-37.
Lego,  Josephina  A.(1981), "Variance  Estimation
   from Complex Survey Data:   the Balanced Balf-
   Sample Replication Procedure", Proceedings of
   the Sixth Annual SUCI  Conference, Orlando,  Feb.
   8-11, 1981. 228-232.
McCarthy, P.J., Replication:   An approach to  the
   analysis of  data from  complex surveys",
   Waahington, D.C., Rational Center for  Bealth
   Statistics, Series 2,  14.
Shah,  B.7.(1981),  "SESUDAAB:    Standard  Errors
   Program for Computing of  Standardised Rates
   from  Sample Survey Data",  Research  Triangle
   Park,  K.C.,  Research Triangle Institute, Report
   Ho. RTI/S250/00-1S.
                                                A-6

-------
TABLE B-l.   DATA  USED  IN TOTAL  SURFACE  AREA  REGRESSION


 No.    Age,     Sex     Body    Body   Surface     In      In      In
       itr.tr.s          UeijRt,  Height,    Area     Body     Body  Surface
                         kg      ci  ieters»*2  Heignt   Height    Area
IBS'
991
983
993
995
1000
129
126
123
127
13
131
132
125
980
130
216
124
128
1002
1004
1006
989
14
996
1001
15
1007
994
987
16
997
1003
992
17
18
1005
IOCS
998
19
21
20
22
999
23
133
24
25
134
217
26
1013
135
1010
1012
218
1014
136
1016
27
1009
1015
29
23
137
1017
30
138
141
219
140
31
1020
•"37017-
0.024
0.024
0.025
0.025
0.028
0.033
0.033
0.033
0.033
0.033
0.033
0.033
0.033
0.033
0.033
0.033
0.033
O.C33
0.036
0.042-
0.05
0.1
0.1
0.1
0.13
0.13
0.17
0.17
0.17
0.197
0.2
0.23
0.23
0.25
0.25
01"
../
0.27
0.27
0.37
0.5
0.5
0.5
0.57
0.6
0.73
0.6
0.9
0.93
1
1
1.25
1.5
1.5
1.5
1.5
2
2
2
2
2
2
2
2.25
2.25
2.5
2.5
1.5
2.67
3
3
3
3
3
fl
F
F
R
F
F




F


R




F
— R
H
F
F
F
F
F
H
R
fl
R
F
F
F
F
F
fl
R
F
R
H
R
R
F
H
F
H
F
N

F

H
F
F


F
F

fl

R
H
H


H
F

H


— 27S 	
3.2
3.2
2.75
3.17
2.85
3.4
3.35
2.04
3.46
2.097
3.97
4.08
3.35
2.9
3.33
3.25
1.95
3.2
2.575
2.9
2.925
2.9
1.77
3.06
2.65
1.505
3
2.725
2.55
3.02
3.15
2.55
3.25
2.38
2.55
j
3
4
3.25
2.512
2.74
2.98
1.73
3.46
1.26
3.305
2.22
3.83
4.05
4
2.04
4
4.!3
5.4
3.7
4.7
2.2
5.14
4.78
1.75
4.97
4.4
2.3
2
4.9
3.7
3.39
5.305
5.105
5.35
4.99
2.62
5
— IT
51
49
48
48
SO
50
47
43
48
45
53
56
45
51
52
50
44
50
47
49
51
49
44
48
50
41
52
49
47
50
49
47
51
46.8
46.5
51
54
50
47
43
52
48
51
44
50
49.5
54
53. 3
54
46.3
54
54
56
53
57
47
57
58
44
60
56
S3
50
56
53
57
57
SB
iO
56
56
57
— 07212?'
0.2316
0.2337
0.2018
0.2264
0.2124
0.1994
0.2009
0.135
0.1998
0.1476
0.215
0.2335
0.2141
0.20853
0.21-44
0.23
0.1275
0.2201
0.2C18
0.1911
0.2284
0.2284
0.1219
0.2294
0.2294
0.12664
0.2284
0.2018
0.2124
0.2504
0.2339
0.2013
0.2316
0.1799
0.1638
0.2209
0.2337
0.2656
0.2337
0.1858
0.2041
0.2129
0.1462
0.2337
0.1462
0.206
0.1768
0.2184
0.2482
0.265
0.1598
0.2815
0.2541
0.3134
0.2602
0.295
0.1912
0.3004
0.3134
0.1857
0.3134
0.2868
0.1888
0.1638
0.2897
0.2656
0.2513
0.3378
0.31
0.32
0.2602
0.2245
0.308
0«
1.
1.
1.
1.
1.
1.
1.
0.
1.
0.
1.
1.
1.
f.
1.
0.
1.
0.
1.
1.
1.
0.
1.
0.
0.
1.
1.
0.
1.
1.
0.
1.
0.
0.
I.
1.
1.
0.
4 •
1.
0.
.
1.
0.
1.
0.
1.
1.
1.
0.
1.
1.
1.
1.
1.
0.
1.
1.
0.
1.
1.
0.
0.
1.
1.
1.
1.
1.
1.
1.
0.
1.
?IS2"u'
163150
163150
011600
153731
047318
223775
208960
712949
241268
740507
378766
406096
206960
064710
202972
178654
667629
163150
945349
064710
073294
064710
570979
113414
974559
4-87?''
095612
002466
9:6093
105256
147402
936093
178654
56: Ivy
936C93
098612
386294
178654
921079
007957
091923
548121
241263
246560
195436
797507
342364
398716
386294
712949
386294
415277
686398
308332
547562
756457
637053
564440
559615
603419
481604
932909
693147
589235
308332
217875
663649
630220
677096
605429
94! 174
609437
"3"
3.
j.
3.
•9
•J.
535H7'
931825
871520
871201
871201
3.912023
3.
3.
3.
3.
3.
3.
4.
^
W*
3*.
T
J.
3.
j.
3.
3.
3.
3.
3.
3.
3.
^
3.
T
i
j.
3.
*
Ji
•
g*
3.
J,
J*
i!
«
j.
t
j.
3.
^
j.
3.
f
j.
^
j.
3.
3.
T
•J.
T
J*
3.
*
J.
3.
j.
3.
4.
3.
4.
912023
850147
761200
871201
806662
970291
025351
806662
931625
951243
912023
784189
912023
850147
691620
931625
891620
784189
871201
912C23
7i:5?:
951143
391S20
850147
912023
'-I
-1
-1
-I
-1
-1
-1
-1
-2
-I
-1
-I
-1
-I
-1
-1
-1
-2
-1
-1
-1
-I
-1
-2
-1
-1
1
i
-1
-1
™ 4
-1
891820_.-1
650147
931825
S4!ssj
681563
931525
963934
912023
850147
761200
951243
571101
93151;
784189
912023
901972
986984
979631
985934
877431
953154
985954
025351
970291
043051
3.850147
4.
4.
3.
4.
4.
3.
•i
4!
J
j*
4.
4.
4.
4.
4.
j
4.
043051
060443
784189
094344
025351
970291
912023
025351
970291
043051
043051
060443
094344
025351
••->trc-
043051
-1
-1
• *
-I
-1
-1
-1
-1
-1
-1
-1
-I
-I
-I
-1
-I
-I
-1
-1
-1
-1
-J

-1
-I
.
-
.
.
.
.
-1
-1
-I
-I
-1
-I
-1
-j
" J
-1
75??23'
.46274
.45371
.60047
.47665
.54926
.61244
.60494
.00248
.61043
.91324
.53711
.45457
.54131
.56767
.53991
.46967
.05963
.51367
.60047
.65495
.47665
.47665
.10455
.476i5
.47665
.06640
.47665
.40047
.549:3
.38469
.45286
.60047
•i^Z!
.715. j
.69390
.45371
*^C7i
• J4J/0
.45371
.68303
.58914
.54693
.90919
.45371
.92277
.57987
.73273
.52142
.39352
.32302
.83353
.26762
.37002
.16027
.34630
.22077
.65443
.20264
.16027
.66362
.16027
.24397
.66706
.77904
.23890
.32576
.38110
.06530
.17113
.13943
1TI1*
. l/*u
.4;:;?
.17765
                              B-l

-------
TASLE Erl.  (continued)
No.

"32-
1019
33
139
34
991
36
1018
35
37
38
1027
220
142
1023
1021
1022
1026
143
1024
982
39
144
40
42
1040
1036
1038
221
41
1029
1041
145
1047
222
44
43
1043
1048
984
146
46
1044
45
1042
47
983
1051
1049
48
1054
1050
1*7
223
1053
1030
50
49
1055
• 52
1057
51
1031
224
53
1062
1060
1058
1028
1059
225
1061
985
1056
Age,
icnths
	 3—
3
3
3
3.25
3.5
3.5
3.5
3.5
3.67
3.75
4
4
4

4
4
4
4
4
4.33
4.5
4.5
4.5
5
5
5
r
5
5
5
5.5
5.5








6
6
6
6.5
6.5
6.5
7
7
7
7
7
7
7
7
7
7.5
7.5
8
8
8
8
8
8
8.5
9
9
9
9
9
9
9
9.5
10
Sex

""R —

F
F
R
R
H

F
n
F


R




n
F
R

fl
n



n


F
H
H
R

R
fl

R
n
F
fl
F
R
H
•I
R
F
R
F


r

F
F
R
fl

H
F

F


H
F





H

Body
Height,
kg
— 3:S2-
4.2
3.B35
4.455
2.5
5.76
3.27
3.7
1.96
6.18
3.37
4.4
5.95
4.45
3.9
2.75
3
4.27
6
4
5.77
3.09
5.15
3.67
4.8
5.2
4.3
4.5
6.5
2.36
4
6.6
5.755
5.34
7
5.139
4.64
3.18
6
5.37
6.1
5.8
3.94
5.167
6.6
6.766
6.6
5.3
3.75
2.9
7.88
4.7
5.795
7.45
6.1
4
3.81
3.1
4.3
4.76
4.8
3.56
4.6
7.85
3.97
8.5
5.8
3.73
7.08
4.8
8.2
7.4
6.3"
4.5
Body
Height,
Cl
	 55'
60
56
54.5
51
63.5
56
56
48.5
64
54.5
56
62
56.5
54
52
56
57
63
55
64
57
62
56.5
62
60
56
56.5
63
SO
60
65
60
62
64
63
62.7
51
62
61.5
62
63.7
58
61
65
66
67
57
57
SB
67
60
63
65
64
60
61
54
61
63.8
61
63.5
60
66
63.5
68
62
56
66
57
67
67
64
62
Surface In In In
Area Body Body Surface
•eters*»2 Height Height Area
"0"2"79rr5S3l5uTiJC7333":r?7*57"
0.2974 f.435034 4i094344 -K21267
0.22655 1.344169 4.025351 -1.45479
0.2619 1.494027 3.996200 -1.33979
0.1866 0.91629C 3.931825 -1.47S78
0.2*25 1.750937 4.151039 -1.33750
0.242 1.184789 4.025351 -1.41881
0.27 1.308332 4.025351 -1.30933
0.161 0.672944 3.381563 -1.82635
0.347 1.821318 4.158883 -1.05843
0.223 1.214912 3.998200 -1.50053
0.2868 .481604 4.025351 -1.24897
0.345 .783391 4.127134 -1.06421
0.2732 .492904 4.C34240 -1.29755
0.2018 .360976 3.988984 -1.60047
0.2337 .011600 3.951243 -1.45371
0.2221 .098612 4.025351 -1.5C462
0.308 1.451613 4.043051 -1.17765
0.3403 1.791759 4.143134 -1.07792
0.2762 1.386294 4.007333 -1.29663
0.319 1.752672 4.153653 -1.14256
0.2237 1.128171 4.043051 -1.497"
0.3083 1.638996 4.127134 -1.176:3
0.2484 1.300191 4.034240 -1.39271
0.3453 1.568615 4.127134 -1.06334
0.3187 1.648659 4.094344 -1.14350
0.309 1.458615 4.025351 -1.17765
0.3134 1.504077 4.034240 -1.16027
0.365 .67130: *. 143134 -l.CO'S:
0.2002 0.553661 3.912023 -1.40543
0.2921 1.386294 4.094344 -1.23065
0.393 1.887069 4.174367 -G. 53394
0.3391 1.750069 4.094344 -1.08146
0.3452 1.675225 4.127134 -I. 06363
0.385 1.945910 4.153683 -0.95451
0.2961 1.636663 4.143134 -1.21705
0.2932 1.534714 4.138361 -1.22690
0.2443 1.156381 3.931825 -1.40935
0.3452 1.791759 4.127134 -1.06363
0.2477 1.6SC827 4.119037 -1.39553
0.3449 1.BOB2B3 4.127134 -1.06450
0.326 1.757357 4.154134 -1.120S5
0.2762 1.371160 4.060443 -l.:SS6!
0.31429 1.642292 4.110873 -1.15743
0.3771 1.387069 4.174387 -0.97524
0.4222 1.911910 4.18965* -':.2i::7
0.369 1.837069 4.204692 -C. 99655
0.308 .667706 4.043051 -1.17765
0.287 1.321755 4.043051 -:.:4cI7
0.2092 1.064710 4.060443 -1. 56446
0.4302 2.064327 4.2C4052 -0.84350
0.3187 1.547562 4.094344 -1.14350
0.3446 1.756995 4.143134 -1.0653?
0.4 2.008214 4.174387 -0.9162?
0.3505 1.803238 4.159883 -1.049*9
0.2921 1.386294 4.094344 -1.23065
0.252 1.337629 4.110873 -1.37332
0.2116 1.131402 3.9389E4 -1 "'••*
0.2709 1.458615 4.110873 -1.30600
0.2911 1.560247 4.155753 -1.23408
0.3293 1.568615 4.110873 -1.11078
0.2996 1.269760 4.151039 -1.20533
0.308 1.526056 4.094344 -1.17765
0.412 2.060513 4.189654 -0.83673
0.3456 1.373766 4.151039 -1.06147
0.4249 2.140066 4.219507 -0.85590
0.3399 1.757857 4.127134 -1.07910
0.2863 1.316408 4.025351 -1.24357
0.4037 1.957273 4.189654 -0.90708
0.3134 1.563615 4.043051 -1.16027
0.428 2.104134 4.204692 -0.84363
0.409 2.001480 4.204692 -0.89404
0.329 1.354734 4.158533 -1.11169
0.2369 i. 504077 4.127134 -1.24397
            B-2

-------
TABLE B-l.  (continued)
No.
IB7C'"
226
1072
1071
149
148
1064
1037
1073
1074
227
150
228
1075
54
1032
151
55
1033
1034
1063
1077
1045
1076
56
1081
57
152
1035
229
1080
1079
1025
1084
10B2
1033
1065
1069
1085
1052
1039
1046
1066
1078
1093
58
1067
1068
1011
1069
1094
153 -
59
1090
154
1086
230
61
60
155
156
1091
1067
1095
1092
1088
157
158
62
63
64
65
66
67
Age,
icmths
	 15...
10
10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
12
12.5
13
14
14
14
14
14.5
15
15
15
15
15
15
15
15
16
16 •
16
17
17
17
17
18
18
18
18
13
18.5
19
19
19
20
20
20
21
21
23
23
24
24
24
24
24
24
25
25
26
27
29
30
33
39
40
41
42
46
Sex




H
R


H
F

F


H
F
H
H
F
F
H
H
F

H
F
H
R
F

H

F






F
H
F



H


F


H
F

F


H
H
R
F





F
F
H
F
F
F
F
F
Body
Weight,
	 57I~
8.5
6.9
5.7
7.2
7
4
6.8
8.15
6.4
8.75
6.66
8.95
5
7.845
5.2
8.325
9.095
5.2
5.3
7.7
3.8
4.6
7.5
9.514
4.6
5.23
9.63
5.7
9.3
4.7
8
5.7
7.5
5
6.3
5
5.2
4.7
7.2
6.6
5.5
5.3
7.8
10
5.04
5.3
5.3
5.6
5.4
6.7
9
6.27
6.5
10.2
6.1
11.2
11.55
10.37
11.3
12.06
5.5
5.9
4.6
5.7
6
7.8
10.65
13.594
15.63
15.76
16.2
16.55
16.9
Body Surface
Height, Area
ci ieterjt*2
.....


66
64






70

61













72


62



66



61





78
73





74
73
56

64



85

64
64

65

76
83

100
100
101
102
104
53"
68
65
.5
.5
65
59
64
68
70
69
.5
70
.5
70
62
70
71
63
63
73
65
62
65
74
69
67
.5
64
72
.5
77
63
71
.5
66
64
66
.5
69
65
65
64
75
.5
.5
64
64
73
65
72
.5
.2
.5
85
.5
80
83
84
.3
86
.5
.5
67
.5
66
.6
.5
62
.3
.2
.5
.9
.6
"5~2337"
0.438
0.3824
0.2496
0.3505
0.3461
0.2177
0.393
0.4462
0.4249
0.445
0.3613
0.455
0.308
0.415
0.308
0.4119
0.48
0.308
0.308
0.4302
0.2974
0.2974
0.393
0.5345
0.3452
0.3292
0.4597
0.3399
0.464
0.3134
0.4355
0.3246
0.4037
0.3399
0.2655
0.308
0.297
0.207
0.4143
0.3984
0.3399
0.308
0.393
0.4993
0.31
0.3134
0.3134
0.3824
0.314
0.3399
0.4728
0.3699
0.3293
0.5004
0.35
0.526
0.5306
0.5312
0.5313
0.5164
0.3612
0.35
0.308
0.3399
0.3505
0.3856
0.5172
0.6279
0.6306
0.681
0.6928
0.6979
0.6956
T
2*.
1.
1.
1.
1.
1.
1.
2.
In In
Body Body
Weight Height
6"2"2?in:U3TgT
140066 4'. 219507
931521
740466
974081
945910
366294
916922
098017
2.128231
2.
1.
2.
1.
2.
1.
2.
2.
1.
1.
2.
1.
1.
2.
2.
1.
1.
2.
1.
2.
1.
2.
1.
2.
i.
1.
1.
1.
1.
1.
1.
1.
4
t •
2.
2.
1.
1.
1.
1.
1.
1.
2.
1.
1.
2.
1.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2.
2.
169053
896119
191653
609437
059876
648658
119263
207724
648658
667706
041220
335001
526054
014903
252764
568615
654411
235433
740466
230014
547562
079441
740466
014903
609437
840549
609437
643653
547562
974C81
887069
704743
667706
054123
30S5B5
617406
667706
667706
757357
686398
902107
197224
835776
871802
322387
B082BB
415913
446685
338917
424802
439394
704748
774952
526056
740466
791759
054123
365559
609628
749192
757475
.174387
.197201
.166665
.174387
.077537
.158383
.219507
.248495
.234106
.255612
.248495
.119037
.243495
.127134
.248495
.262679
.143134
.143134
.290459
.174387
.127134
.174387
.304065
.234106
.204692
.263586
.158863
.276666
.135166
.343605
.143134
.262679
.197201
. 169654
.158=83
.169&S4
.119037
.234106
.174387
.174387
.153333
.317433
.363093
.297235
.153833
.153833
.290459
.174387
.276666
.310799
.293195
.069026
.442651
.166665
.332026
.413840
.430816
.446174
.454347
.166665
. 166665
.204692
.182050
.169654
.336597
.424846
.406719
.608165
.607168
735011 4.620058
806336 4.633757
627313 4.652053
in
Surface
Area
>:r
-o!
-0.
-t.
-1.
•I.
-t.
-0.
-0.
-0.
-0.
-I.
-0.
-I.
-0.
-t.
-0.
-0.
-I.
•1.
-0.
-1.
-1.
-0.
-0.
-1.
-I.
-0.
-1.
-0.
-I.
-0.
-t.
-0.
-t.
-1.
•1.
-I.
-I.
-0.
-0.
-1.
-1.
-0.
-0.
-1.
-1.
-I.
-0.
-1.
-1.
-0.
-0.
-t.
-0.
-t.
-0.
-0.
-0.
4"!37T
82553
96123
38739
04839
06102
52463
93394
80696
85590
80963
01304
78745
17765
87947
17765
83697
73396
17765
17765
84350
21267
21267
93394
62642
06363
11103
77718
07910
76787
16027
83126
12516
90708
07910
32614
17765
21402
57503
88116
92029
07910
17765
93394
69454
17118
16027
16027
96123
15836
07910
74903
99452
11078
69234
04982
64245
63374
63261
-0.63242
-0.
-I.
•I.
-t.
-1.
-I.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
66087
01832
04932
17765
07910
04839
95295
65932
46537
38473
38419
36701
35967
36293
           B- 3
                                                         _

-------
TABLE B-l.  (continued)
No.


-ISO—
159
69
68
70
71
72
73
74
75
161
232
77
76
78
162
80
79
163
81
164
82
83
84
85
86
Io5
87
B3
B9
90
91
831
92
93
166
168
167
94
95
832
170
169
172
96
171
175
174
173
833
176
178
180
834
179
177
97
856
1112
1101
214
1110
B72
1100
870
869
868
1099
666
865
664
1098
662
861
Age,
tonttis

— n~~
46
48
48
52
57
56
39
60
60
66
72
72
72
80.5
64
96
96
102
109.B
114
114
118
120
120
132
144
144
154
157.5
168
168
160
180
189.67
192
204
204
204
213
216
216
216
216
216
216
228
228
228
226
240
240
240
240
240
240
240
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
Sex


— H"
F
R
F
F
F
F
H
F

F
F
H
F
H
F
H
H
F
H
R

H
H
H
R
F
R
n
R


H
H
R
F
F
F

n
F
F
F
F
R
F
F
F
F
H
F
F
F
F
F
F

H
N
R
H
R
H
H
H
H
H
H
H
H
H
H
H
H
Body
Height,
f '
	 I2755-
12.05
14.565
10.015
15.75
16.69
16.4
17.2
14.961
21.6
15.2
26.3
16.065
15.12
17.5
17.075
18.71
17.302
17.2
18.75
28.2
28.4
19.313
19
21.695
21.827
25
21.782
32.74
26.3
31.5
37.1
29.5
30.135
35.375
55.25
69.25
'55.57
42.3
55.75
46.1
74.77
61.36
54.1
45.25
96
43.66
62.7
52.05
52.7
47.05
40.5
44.75
45
41.25
50
62.5
49.5
67.5
66.5
70
65.7
57
61.5
53
51.3
30.7
60
47.7
46.9
41.7
61
55.9
55.6
Body
Height,
Cl
— 85T
90
92
85
101.7
104.1
105.2
111.5
104
110.3
98.6
109
115
101
102
100.3
116
114
106
112
134
130.5
114.5
125
138
131
121.5
• 135
141.5
137.5
140.5
145.7
132.4
141
152
165
170
168.7
154.5
169
147.9
165
164
177.3
171.6
163
150
166.3
161
155.7
162.5
156.5
159
146.3
156
160
166
160.15
170
170
166
170
167
160
172.8
166.6
171.4
159
167.6
162.4
158.5
160
161.5
163
Surface In <• In In
Area Body Body Surface
ieters**2 Weight Height Area
1"57SI7r2-?89i3-r?r?!5852-:07J5797"
0%.5623 2*. 439064 4*. 499809 -o! 5757 1
0.6408 2.678621 4.521738 -0.44503
0.5043 2.304033 4.442651 -0.68458
0.6539 2.756840 4.622027 -0.42480
0.7354 2.814309 4.643351 -0.30734
0.736 2.7972B1 4.655863 -0.30652
' 0.7421 2.644909 4.714024 -0.29827
0.6722 2.705446 4.644390 -0.39719
0.8439 3.081909 4.705015 -0.16972
0.625 2.721295 4.591071 -0.47000
1.0453 3.277144 4.691347 0.044782
0.733 2.776642 4.744932 -0.31060
0.673 2.716018 4.615120 -0.39600
0.8016 2.662200 4.624972 -0.22089
0.7118 2.837615 4.610137 -0.33995
0.7686 2.929058 4.753590 -0.26318
0.7539 2.850822 4.736198 -0.23249
0.7157 2.644909 4.682131 -0.33449
0.6547 2.931193 4.718498 -0.15700
1.0022 3.339321 4.897839 0.002197
0.9947 3.346389 4.871373 -0.00531
0.8853 2.960778 4.740574 -0.12160
0.8038 2.944438 4.823313 -0.21840
0.9166 3.077081 4.927253 -0.087C8
0.8025 3.083147 4.875197 -0.22002
0.8075 3.218B75 4.799914 -0.21381
0.8961 3.0.31083 4.905274 -0.10970
1.1871 3.48S397 4.952299 0.171513
1.1883 3.342361 4.923623 0.172523
1.1015 3.449987 4.945207 0.096672
1.2534 3.613616 4.981549 0.229841
1.1057 3.364390 4.335827 0.100478
1.1402 3.405667 4.948759 0.131203
1.419 3.566005 5.023680 0.349952
.6035 4.011668 5.103943 0.472188
.8535 4.237723 3.135798 0.617075
.6154 4.017643 5.123121 0.479532
.3333 3.744787 5.040194 0.287637
.9206 4.C2C877 5.129893 0.6526:7
.4318 3.830812 4.956536 0.353932
.8574 4.314416 5.105943 0.619177
.6551 4.116753 5.099866 0.503561
1.5904 3.990834 5.176970 0.463985
1.4901 3.612202 5.146331 0.396843
2.1276 4.584967 3.093730 0.754994
1.2383 3.781002 5.010635 0.253323
1.7161 4.136361 5.113793 0.540054
1.5418 3.952204 5.C81404 0.432950
1.5696 3.964615 5.047931 0.450620
1.4498 3.851210 5.090678 0.371425
.2422 3.701301 5.065754 0.216384
.3976 3.801091 3.068904 0.334756
.4105 3.806662 4.967025 0.343944
.3224 3.719651 5.049356 0.279448
.4614 3.912023 5.075173 0.379394
.8406 4.135166 5.111987 0.610091
.4964 3.901972 5.076110 0.403062
1.799 4.212127 5.135798 0.587230
.8072 4.197201 3.135798 0.591778
.7067 4.248495 5.111987 0.534561
1.7492 4.183098 5.135798 0.559158
1.5765 4.043051 5.117993 0.453207
1.7583 4.119037 3.075173 0.564347
1.5016 3.970291 5.132134 0.406531
1.4711 3.937690 5.115595 0.386010
1.5092 3.923925 5.144000 0.411579
1.5623 4.094344 5.063904 0.446159
1.4553 3.864931 5.121580 0.373212
1.393 3.848017 3.090062 0.332694
1.3227 3.730501 5.065754 0.279675
1.7164 4.110873 5.075173 0.541393
1.5621 4.023564 5.C8*.SC5 0.4460*1
1.601 4.013183 5.093750 0.470628

-------
TABLE B-l.  (continued)
No.
"855"
1097
858
857
122
1096
854
853
1114
1113
1109
120
1121
1107
871
235
117
1105
3s3
213
lie
1103
855
1108
119
1106
867
1104
121
236
1102
215
859
98
835
100
187
162
184
183
188
99
186
181
185
101
189
191
190
102
836
192
193
837
194
196
197
838
195
103
198
233
199
104
105
839
106
231
840
200
201
841
202
204
Age,
•onths
-HB7T-
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
'40.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
240.1
2*0.1
240.1
240.1
240.1
240.1
240.1
240.1
247
252
252
252
252
252
252
252
252
252
252
252
258
264
264
264
264
264
276
276
276
276
288
286
288
288
300
300
300
300
312
312
312
315.5
324
324
324
336
348
346
348
Sex
Body Body Surface In In In
Heignt, Heignt, Area Body Body Surface
kg ci ieters«»2 Height Heignt Area
'~H 	 8172 — 15572"' T75?2S'3793S739'573SII3r07K3W
«
H
N
F
N
n
n
N
H
N
N
n
N
N
F

n
N
N

n
n
H

n
M
H


N
N
n
n
F

F
F
F
F
F
n
F
F
F
n
F
F
F
N
n
F
F
n
F
F
F
F
F
F
F
F
F
F

F
H
N
H
F
F
N
F
F
58
50.8
50.1
93
73
46.3
37.3
73.5
69
68
67.82
66.5
61
53.3
62.2
50
57.8
32.4
60
56.9
50.1
48
61.5
64.3
60.8
50.6
53.3
69
92.6
70
80
51
59.5
59.3
66.5
58.25
62
51.75
57.5
55.1
64
57.5
48.25
57
63
49.5
49
57.5
64.08
50.5
43.2
63.6
56
52.5
50.34
58.6
49.4
64.25
58.7
56.25
66.1
55.45
57.62
60
44.9
62.25
50
53.6
56.75
59
41.2
57
51
163
161.9
151.8
149.7
162
156.5
149.6
180
170
160
159.8
170
160
170.6
156
152.3
155
140
.6244 4.060443 5.093750 0.485133
.5304 3.927896 5.086978 0.425529
.4647 3.914021 5.022563 0.381650
.8592 4.532599 5.006633 0.620146
1.765 4.290459 5.067596 0.568150
.4593 3.835141 5.053056 0.377956
.2793 3.618993 5.007965 0.246313
.9445 4.297285 5.192956 0.665004
.8814 4.234106 5.135796 0.632016
.8204 4.219507 5.075173 0.599056
.6206 4.216857 5.073923 0.482796
.8072 4.197201 5.135798 0.591778
1.71 4.110873 5.075173 0.536493
1.55 3.975936 5.139321 0.438254
.5041 4.130354 5.062595 0.408194
1.444 3.912023 5.025852 0.367417
.6246 4.056988 5.043425 0.485261
.0934 3.473158 4.941642 0.093854
165 1.6717 4.094344 5.105945 0.513641
168.2 1.583 4.041295 5.125153 0.459321
155 1.487 3.914021 5.043425 0.396760
162.6 1.4913 3.871201 5.091293 0.397648
160 1.75 4.119037 5.075173 0.559615
153
160
170.5
155
169
169
174
175
169.6
170
156.9
177
161.3
158.5
161
165
160
164.3
166.8
163.5
166
184.2
157.5
156
.5157 4.163559 5.030437 0.415877
.6814 4.107589 5.075173 0.519626
.5S1S 3.923951 5.138735 0.*5S!63
.5992 3.975936 5.043425 0.469503
1.642 4.234106 5.129898 0.495915
.9353 4.526289 5.129898 0.660262
.9344 4.248495 5.159055 0.659797
.9445 4.362026 5.164785 0.665004
.5923 3.931825 5.133442 0.465179
.8696 4.085976 5.135798 0.625724
.6571 4.062609 S.0556CB 0.505069
.8179 4.197201 5.176149 0.597681
.5969 4.0e4744 5.06:245 0.469*15
.5709 4.127134 5.065754 0.451643
.4853 3.946424 5.081404 0.395616
.6096 4.C51734 5.1C5945 0.475-35
.6205 4.009149 5.075173 0.482734
1.672 4.15856: 5.101694 0.514020
.6005 4.051764 5.116795 0.470316
.5017 3.876395 5.096612 0.406597
.5539 4.043051 5.111987 0.440767
.7981 4.143134 5.216022 0.586730
.5107 3.901972 5.059425 0.412573
.4416 3.691620 5.049356 0.365753
166 1.5679 4.0517S4 5.111987 0.449737
178 1.B375 4.160132 5.161783 0.608405
158 1.5159 3.921973 5.062595 0.416009
163 1.3647 3.765640 5.093750 0.310934
161 1.62 4.152613 5.061404 0.482426
160.5 1.6254 4.025*51 5.076293 0.485753
158.5 1.5399 3.960813 5.065754 0.431717
165.5 1.5283 3.918799 5.108971 0.424156
167.5 1.5769 4.070734 5.120983 0.456729
148.4 1.4653 3.899950 4.999911 0.382059
170.5 1.694 4.162781 5.138735 0.527092
155.5 1.5863 4.072439 5.046645 0.461404
163 1.574 4.02980i 5.093750 0.453620
155.5 1.653 4.191168 5.046645 0.502591
161 1.5238 4.015481 5.081404 0.421207
164.8 1.6451 4.053869 5.104732 0.497801
164 1.4985 4.094344 5.099666 0.404464
147.3 1.393 3.804437 4.992471 0.331459
162 1.9205 4.131158 5.087596 0.652585
162 1.606683 3.912023 5.087596 0.474171
165.5 1.6093 3.981549 5.109971 0.475799
160 1.5895 4.038655 5.075173 0.463419
169 1.596 4.077537 5.129898 0.467500
150 1.3621 3.718438 5.010635 0.309027
169 1.5665 4.043051 5.129B9B 0.448343
155.5 1.4871 3.931825 5.046645 0.396627
          B-5

-------
TABLE B-l.  (continued)
No.
'20J
842
205
844
843
845
846
208
209
207
206
107
210
211
234
848
847
108
109
212
849
850
851
110
852
111
112
113
114
115
116
Age,
tenths
335
360
372
372
372
372
384
384
384
384
384
384
396
420
432
432
432
432
435.67
456
456
456
456
456
468
516
547.5
564
600
690
794
Sex
F" "
F
F
n
n
F
N
F
F
F
F
n
F
F
n
F
F
n
H
F
n
F
F

H
n
n


H
n
Body Body Surface In In In
Wei ant, Height, Area Body Body Surface
kg ci ieters*»2 Height Height Area
"~ *S2.CS
43.5
74.7
62.6
52.8
47.9
52.5
56
71
64.75
60.34
74.05
53.5
50.75
24.2
58.6
49.4
78.25
50
71.3
73.1
42.7
46.7
64.5
66
63.65
51.75
54
66.1
56.2
65.5
161
155
163
159.6
160.7
146.5
162.8
157.4
155.5
171
169.5
179.2
164
158.5
110.3 (
147.4
150
171 !
158
170
157.4
147.7
152.8
182
164
168
160
155.5
163.5
170
172

.3848 3.772760 5.043425 0.325555
.8079 4.313480 5.093750 0.592165
.6761 4.136765 5.072670 0.516469
.6034 3.966511 5.079539 0.472126
1.4468 3.869115 4.987025 0.369354
1.571 3.960813 5.092522 0.451712
.5674 4.025351 5.058790 0.449418
1.634 4.262679 5.046645 0.491030
1.6992 4.170533 5.141663 0.530L57
.6513 4.099995 5.132852 0.501562
1.9 4.304740 5.186502 0.641353
.5727 3.979631 5.095366 0.452793
.4742 3.926911 5.065754 0.388115
i.8473 3.186352 4.703203 -0.16570
1.575 4.070734 4.993149 0.454255
.4967 3.899950 5.010635 0.403262
2.2435 4.359908 5.141663 0.808037
1.7414 3.912023 5.062595 0.5546S9
L.7907 4.266896 5.135793 0.582606
.7771 4.291828 5.058790 0.574982
.3508 3.754198 4.995183 0.300697
.4892 3.843744 5.029129 0.393239
.8702 4.166665 5.204006 0.626045
.7708 4.189654 5.099866 0.571431
.4079 4.153399 5.123963 0.342099
1.8158 3.946424 5.075173 0.55i52i
1.5174 3.983934 5.046645 0.416993
1.6498 4.191168 5.096312 0.500654
1.8198 4.028916 5.135798 0.59S726
2.0171 4.182050 5.147494 0.701660
            B-6

-------
                        TABLE B-2.   DATA USED IN ADULT BODY PARTS SURFACE AREA REGRESSIONS
w
fc. MI, Wi IKI Mi
Ifiri ittilit,
	 riiiii 	 r 	 7 	 n"
It Milt
20 Milt
21 Milt
22 Milt
21 Milt
74 Milt
71 Milt
74 Mult
7? Milt
71 Milt
7t Milt
10 Milt
II Milt
12 Mill
11 Milt
14 II
11 20.4
ft 21
III 21.1
102 22
104 24
104 24.1
107 11
IM 14
IM 14.1
111 44.4
114 44.2
122 Milt
141 II
170 II
171 II
172 II
171 It
174 It
171 It
174 20
177 20
171 20
171 20
IN 20
III 21
112 21
111 21
114 21
in 21
184 21
IB? 21
188 21
181 22
110 22
Itl 22
112 21
111 21
114 21
111 24
114 24
It? 74
Itl 71
lit 21
200 27
201 71
202 21
20! 21
204 21
201 11
204 12
207 12
2M 12
201 12
210 11
211 11
41.4
74.4
71.4
41.12
41.2
H.7
41.1
42.)
124.4
42.4
1 it-I
7 47. 1
7 41.1
7 41.1
7 U.)
ClMMiM 41.21
ClMMiM 11.1
CMCIMM 44
ClUCMiM 14. M
CMCMIM 44.01
CMCMIM 17.42
CMCM!M 42.21
CMCMiM 74.01
CMCMiM 71.21
CMCMIM M
CMCMIM 11.71
ClMMiM 41.1
CMCMIM tl
ClMMiM 41. H
ClMMiM 74.77
CMCMiM 11
CIUCMIM 14.1
Ciuciiiii 12.01
CMCMiM 42.7
ClUCMiM 41.14
CMCMiM 47.01
CIUCMIM M
CiMMiM 40.1
CiucitiM 41.21
CIUCMIM 44.71
ClMMJM 41.71
CMCMiM 42
ClMMiM 17.1
CMCMiM 11.71
CIMMJM 17
ClMMiM 17.1
CMCMIM U.21
ClUCMiM U.l
CMCMIM 41.
ClMMiM 17.
CMC Mi M 4
CIMMIM 41.
CMCMIM 41.
CiuciiiM 17.
CiMMiM 44.21
CMCMIM 54.14
CMCMIM U.4
ClMMiM 14.21
CiuCMiM 11.41
CIUCMIM 14.71
ClMMiM 51
ClMMiM 1?
CIUCMIM 12.0}
ClMMiM 11
CiuciiiM 74.7
CIUCMIM 4t.)4
CIUCMIM 44.71
CiMiiiii 14
CIUCMIM 71
CIUCMIM 11.1
CIMMIM 50. /I
Mi
ct
177,. 1 §.15171
174 1. 11111
III. 4 0.1121
174 1.14)1?
171. 1.14)11
147. 1.11*01
171. 0.14194
I/O. 0.14101
111. 0.158)1
171. (.11111
141. (.11)51
141. 0.1471
111. (.10411
17). 0.14121
142. 4.11411
1)0. (.14104
171. (.011
1? O.I4J8
144. 0.101
114. 4.1248
171 1.1171
144.1 0.10)1
147 (.1114
1/1.2 (.1154
171 (.1401
IU 1.14
140 MM?
177 0.1414
141.7 0.101
144 «.IIU
141 1.1144
141 (.1114
177.1 0.1091
141 0.1041
144.1 0.1154
IM 1.1022
142.1 0.1151
141 0.1011
IU.1 0.095)
114 0.097
lit 0.1042
141.1 4.1154
IU.1 1.1745
141 (.1154
141 (.1141
144 (.117
144.1 1.1081
141.1 O.I 10!
140 O.IOU
117.1 0.101
144 (.1054
114 0.1108
14) 0.109]
141 O.IIOI
IU.1 0.101
170.1 0.1141
141.1 0.114
147.1 0.1221
14) 0.17/4
141 0.1054
140 0.107
141 (.1041
141 0.104
141 0.1017
111.1 (.1014
14) (.11)1
141.1 (.11)1
171 (.1054
117.4 (.1057
111.1 0.104?
144 (.1122
IU.1 (.101
Irni
9MT FiriirM ATM
KM















(.2112
1.121 0.11 0.211
•.2114
•.2771
1.2124
•.2212
(.1147 1.1217 (.2744
(.2774
•.1141 (.III? (.212
(.1222 (.0141 0.2117
(.1411 (.1011 1.21
•.1154 (.1141 (.2722
(.2711











































•/• fii|




























(.2441
(.2741
•.711
0.7411
0.744!
0.7142
I.IMt
1.2717
•.7114
•.1114
•.111
•.7114
•.7712
•.7747
(.7117
(.2212
(.2441
(.2112
(.2112
(.2411
1.211?
1.7411
1.7011
0.7141
0.2411
0.77)7
0.7511
0.7)17
0.7))?
1.7)47
•.7212
•.24)1
0.2)17
0.77)7
0.7112
0.2111
0.211
•.2144
0.241
0.2)12

•'.244!
|«.271?
IMM















.08/1
.01)1
I.H
.0141
.491*
.0104
.0114
.M74
.1*7?
.0174
.0111
.111)
.0471











































HM*r, U»ir Ikitki lM«r
llUM llM
§• JJM7
•.14171
(.17411
(.17111
(.11161
1.17104
1.78044
0.1141]
(.11141
•.47(71
(.10017
('25/42
*'. 1)511
( )4I21
(.11742
(.1071 .1002 (.1174
1.1211 .1217 l.ltll
(.1714 .1072 (.2
O.J111 .1111 (.2414
(.1412 .1712 (.2114
O.J05I .1124 0.22**
0.1/51 .1714 1.221
•.1457 0.112 1.2472
(.111? .4(21 (.21)1
(.1011 .1477 (.2204
0.1411 .1214 1.2122
(.1851 (.144 0.7/58
(.2174 (.11 (.2114
(.(411 0.11
0.04 (.1141
(.0414 (.1124
(.0414 0.2(17
(.0111 0.7117
0.0414 l.llll
1.0144 1.2151
0.0111 0.211
•.•lit (.7581
(.041 (.7171
(.(U? 1.2217
0.4158 (.2414
(.0427 0.2111
0.0144 (.2/04
(.0414 (.2101
(.0112 (.2514
(.0444 (.7107
•.0)72 0.2114
0.04 1.2712
0.0)54 •.Tilt
•.040) 0.2/1
•.0114 (.717?
0.0115 4.2491
0.01/1 0.25)2
0.0744 (.7117
(.0101 (.7111
(.0141 0.1054
0.01)1 0.741
1.0411 0.7741
0.044) 0.7171
1.0)41 0.754
0.04)2 0.217
1.0)74 (.7414
(.045? (.7414
(.0417 0.71/1
0.0)57 0.751)
0.014? 0.115?
(.0181 0.2952
0.04? 0.101
0.0115 0.2447
0.0401 (.2744
0.0182 0.2841
(.0)7 l.24g?
IMI CitrN flit
III II tt/l lOM















.4171
.4242
.5022
.5/M
.1111
.1412
.1414
.4212
.4141
.141!
.1714
.4111
.1414















1.1*42
•.1)17
(.111
(.1211
(.IIU
(.10*4
(.1124
(.11!
(.lilt
1.1121
(.1144
(.1141
•.1124
(.4411






















O./l)
.7141
.4114
.4211
.4714
.417?
0.51)
.40)2
.4711
.4711
.1171
•.141
.11)1
.41)1
.1811
.5811
.421!
.401?
.4411
.1701
.4411
0.171
(.170!
(.4017
0.4IU
(.4711
1.42)1
(.4111
0.5841
1.411)
0.4401

1.4414
(.4214
(.1454
0.51)1
0.70)1
1.44)4
(.4784

1.4022
(.405?


•.401?
•.5111
IM* iMtr litll
film
t 4W/I !•

•.41121 1.85/1
•.78044 .44817
4.71 .128)1
1.441)1 .12141
1.47111 .11771
(.47012 .71411
1.72411 .11701
•.4111? .1211?
•.11104 .12014
0.4)121 .77)11
vm m
•.44411 .15114
0.15511 .11)22
1.44117 .10411
0.512
•.7171
•.4177
0./04
•.7244
•.4414
1.7281
1.7422
•.7102
(.7004
•.7082
0./159
0.1/1
•.0211 (.4144
0.0241 (.7171
1.0211 (.1014
•.0211 0.1517
0.0211 0.1141
1.027 1.7004
•.(III l.llll
(.0711 0.54/1
1.0271 1.474
0.01/1 0.4927
•.Oil 0.5081
•.071 1.5581
(.074 0.58?
(.074? (.4171
(.071 (.4711
1.071 0.1041
•.0712 0.1081
•.0271 (.4454
•.0711 •.ITU
(.0111 (.4441
(.0244 (.1141
(.024 (.4711
(.0254 (.1114
(.0114 0.1)17
(.0471 (.4481
0.021? (.4411
(.021? (.4411
(.077) 0.4451
•.0201 0.4)41
0.0211 0.4162
0.0211 ».4144
0.4212 «.441I
•.0214 0.41
(.0271 (.4557
(.024 (.1414
0.024 0.4011
(.0717 1.7121
(.0201 (.4114
(.0711 (.7071
(.0771 (.4241
(.(217 0.1294
•••724 0.1281
•.(222 (.4011
.4101
.1414
1.472
.7111
.1)71
.4411
.1201
l.t
.2411
.7414
.IIU
.0171
.1512
.4111
.1174
.1274
.5404
.1411
.7141
.211!
.4411
.4414
.2422
.1224
.1174
.5017
.1701
.4014
.415]
.5511
.4001
.1111
.4701
.110?
.S4?t
.4414
.144?
1.47
.1111
1.414
.1211
.1711
1.174
.1711
.5895
1.514
.5441
.4412
.48/1
.8071
.4511
.4112
.5474
1.414
.572?
.4742

-------
                                                 TABLE B-2.   (continued)
                                                                            fcrftct toti,
W
I
oo
*. «M, ft
•ju 	 u i
214 14
112 II
111 It
IM 21
111 21
114 22
117 21
111 24
1)1 24
140 27
141 21
142 10
141 11
144 11
141 11
144 12
147 14
141 14
141 11
IM . U
111 11
112 11
14) Milt
144 Milt
141 Mult
144 Milt
147 Mult
148 Mill
141 Mult
170 Mult
171 Mult
172 Milt
M I«CI Ml
hitlt
M
F" CiuciiTu 71*
CMCMIU 24.
Jtfittw 44.
JiputM 12.
Jlf**tM 4
JlpUMt St.
JlpMMI M.
JlpMtf* 1
JuUMt It.
JtplMtt 14.
Jtpuiu SI.
JtpUHt (1.
JlptMM 41.
jtptMtt 12.
JtpMitt 42.
JtpiMtt 47.
JtplMtt 12.
Jipinttt 41.
Jo4MW Ui
jlpMHf 71.
lip"*'* '2.
J«p«MM U.
JiputM 4
CtlIMM 12.
CkiMM 41.
CkiMM 41.
CkiMM 47.
CkiMM SO.
Ckiwu SO.
Ckiuu SI.
CkiMM 5
CMMM si.:
CkiMM SI
Ktiftt
ct
... -17
III.
147.
111.
144.
111.
ISI
140.
141.
147.
US.
IK
IS.
IM.
ISt.
144.
142.
ISt
147.
IS7.
147.
IS2.
14
14
ISI.
142.
117.
170.
171.
IU.
177.
171.1
U
i
1































»
N»l Irwit Ikjptr FWIVM
WH
inn'"i:nir 	
I.Ot 1.104
.1012 1.4701
.1011 1.1707
.11)7 1.4177
.1704 1.1224
.1007 1.1212
.1041 1.1412
.1074 1.1241
.1071 1.4112
.1111 1.1411
0.101 0.441
.1041 1.4414
.1141 0.58)
.1111 1.4172
.1041 1.11)2
.1112 1.1171
.1077 1.1)24
.1114 l.llll
1.121 1.441
.1021 1.4424
.1011 1.411
.1141 1.4711
.1104 1.1)11
.1014 1.44)1
.1121 1.104
.1171 0.5222
.1101 1.1711
.1111 0.1241
I.I07 1.1471
.1144 l.llll
.1114 1.1)41
.1211 1.1471
UNIT
I'M liltii lUUi Fintrl Upiir
•/• FU| Iitrtt
l.?il i.ll3i 1.3131
1.1012 0.0514 I. UN
1.202 0.1711 1.2771
>.7)44 0.0851 1.1211
0.111 0.0(51 1.2741
1.7141 1.0714 I.II4I
0.704 1.0727 1.2717
.747) 1.011 l.llll
.7071 1.0711 0.2112
.1117 0.0711 1.2701
.2411 1.0112 1.1177
.7071 1.0111 1.2777
0.111 0.0414 1.2424
.2044 0.0121 1.2181
.2404 0.0814 I.I2II
.2041 1.04)1 1.2417
.2204 1.0141 1.1011
0.207 1.0)14 1.2114
.2011 0.0824 0.211
.7171 1.0101 1.1414
.1111 1.0771 1.2412
.2204 1.0714 0.2111
0.241 1.0101 1.1111
.1174 1.0424 1.1111
.1101 1.04)4 1.2411
.2021 1.0711 1.7741
.70)4 1.0474 1.2712
.2444 1.0114 I.Utt
.2241 0.0811 1.1014
.2112 1.071 1.2172
.2017 1.0414 1.7771
.2122 0.0741 1.107
.2201 1.07)4 1.2144
LtMT
feiffct l«wr IMS film 1
lift (till •/• Itn
	 	 i:n»~
.1214 0.011 1.2214
.2141 1.1141 1.4112
.2171 I.207S 1.1011
.2147 1.1107 1.4441
.1111 I.22S4 1.5152
.2121 1.2121 I.S044
.1171 1.2017 0.5215
.2171 0.171 0.4581
.2111 1.1744 1.4127
.1011 1.2024 1.5084
.2511 1.1441 1.4241
1.217 1.17 0.41)
.1011 1.1114 1.4171
.1111 1.2011 1.1117
.2444 1.1412 1.4114
.1101 1.2011 0.1114
.2411 1.2041 I.47II
.1111 0.1112 0.1101
.1)07 0.211 1.1412
1.211 1.1444 1.4224
.2747 1.2712 1.4111
.1142 1.2041 1.121
.21)4 1.1441 0.1102
.2)71 1.11)7 1.4211
.2221 0.1104 1.4011
.2517 1.1884 1.4471
0.771 1.1142 1.4412
.2771 0.1)51 1.41)4
.7174 0.1101 0.4111
.2111 1.2002 1.414
.2441 1.2111 1.4144
.mi 0.1111 1.4104
Fnt I«M 1
1
	 I:KH~
.1411
.01M
.1111
.0114
I.IIS
.1011
.list
.0121
.0114
.1102
.0111
.0111
.1201
.1014
.0881
I.IIS
.0144
I.I
.1211
.0141
.1142
.lilt
.0121
.1011
.01U
.01)1
.0141
1.102
.1001
.1002
.1107
.0111
OUtr
lift*
mil™
.2121
O.SI
.4114
.1441
.7002
.1011
.4474
.1117
.1111
.1114
.1144
.1411
.4174
.4211
.1201
.4284
.5(02
.4101
.144)
.1171
.1101
.4421
.4121
.1211
.501)
.1444
.5441
.1114
.1111
.1142
.1111
.1817
liUI
:ntr
.1471
.4111
.Mil
.4101
.4171
.1111
.1214
.4111
i.m
.4011
.1421
.1141
.4014
.4741
.4441
1.5)1
.4147
1.5)1
.7771
.IKM
.4112
.7701
.0114
.1727
I.IIS
.4111
.sen
.1012
.4711
.SOU
I.SS
.1)41

-------
                                TABLE B-3.  SURFACE AREA OBSERVATIONS FOR AGES  0-18
                                                                krlici fell, •*•!
W



vd
te MI In Bo4v Io4v Uiiif LftMT
•Mitt *l|lt, NtloM, HtU IrMl UM* Forum Im dim Null FU|iri UUK Tkltki IMT lilt IitrM FMt TIM IOMT Util
l| ci irii •/• Fli| film Itft dill •/• TMI Citm
""""*"tt""""l"If7"""""i" """3~W""""**"5l""*irM58T"-'
IT l.S
31 11.3
51 21
11 11
41 It
11 40
13 41
41 42
17 41
70 32
71 37
n si
71 31
71 N.3
II IOt.1
11 III
N 154
It IS7.S
111 IN
11 111.17
111 112
117 204
141 204
13 111
1.711 11 1.0771
t.SII 74 I.NI
1.27 71.2 1.041
11.514 12
15.41 IN.
13.71 IN.
11.2 101.
14.55 102.
14.1 104.
13.73 III.
14.41 104.
14.4 103.
17.2 III.
17.3 10
11.75 II
11.311 114.
17.71 141.
21.1 117.
71.3 112.















15.373 152
55.23 143
35.37 111.7
11.23 171
33.73 111
KMl 14.14111 111.41
till 17.05111 H.7I172 1.
Rill 1.02 SO
Mil 11.23 170
.0114
.0117
0.012
.0111
.0131
.0171
.0714
.101)
.112)
.10)1
.1047
.1044
.1021
.10)7
.III)
.0151
0.111
.111)
.11)1
.1111
.1451
.0111 Mill MISS
.1417 M2N 0.0 J34
.11)1 1.0)41 1.0)41
.1135
.2411 0.0311 MM
.2111
.2112
.2274
.2241
.2011
.2014
.2271
.231)
.2245
.2111 1.0537 1.0412
.215) 1.0513 0.031
.3014 0.0371 0.0443
.4111
.3811 M71t 0.044)
.3533
.4444 0.0171 I.ON1
III77 MI1V MSH M2I1 Mlir M4SI M1IS — KOMI
.0322 0.022
.0413 I.02H
.0414 1.0211
.0711 1.0111
.0143 0.041
0.011 0.0421
.1011 0.0404
.1004 0.0441
.om t.0401
.1014 0.01)7
.1004 0.0)71
.0114 1.0417
.101) 0.04)5
.1041 0.0)71
.1013 0.044
.10)1 0.0412
0.142 0.044
.1442 1.0407
.1351 1.0415
.113) 0.0004
.5421 1.2111 0.04)3
.5)54 I.24N 0.0441
.4415 0.241 1.0441
.4011 1. 1122 0.1514 0.1)54 I.OH1
.0742 0.051 1.0111
.Otll 1.07)1 1.0347
0.07 1.0471 1.0)4
.1071 o.om i.oisi
.1)73
.1401
.147)
.1443
.1407
.1134
.1184
.1441
.1441
.1427 1.1217 .OtN
.15)3 1.1427 .10)3
.1321 O.IS2 .1004
0.221 1.2141 .1454
.2041 1.2221 .1311
.2211 1.11 .1504
.2431 0.27)1 1.204
.Nil 0.0274 0.121
.1213 1.0151
.Nil 1.0211
.1451 1.0414
0.171 1.05)1
.1121 1.0411
.1121 1.0417
.1117 0.041
.1117 0.0501
.1141 1.0432
.2131 1.0323
.1113 1.0311
.2011 0.0401
.2173 0.0551
.2412 0.04)1
.2524 I.04N
.1422 0.0034
.114)
.10)4
O.It
.2)11
.2211
.2)12
.2)07
.2415
0.21
.2171
.2411
.2111
.2721
.101)
.1212
.4451
.3107 1.0151 0.471
.1404 1.0141 0.4)5
.4771 O.HI4 O.S757
.2747 0.1)14 0.0212 0.1111
.21)1 1.1413 1.0241 0.1721
.3101 0.734 1.021 0.71)
.4)42 1.1441 0.2451 1.3*21 0.1111 0.712
"1501
.4222
.3)43
.3411
.4274
.4101
O.ill
.1121
.1171
.1131
.13)1
.7)34
0.7)1
.7421
.1011
.1547
.1155
.1171
.1(1)

1.411
.10)5
.1154
.15)5
.1201
,0m 1.103112 1.021212 1.022111 O.OW72 0.1143 1.01174 0.003211 0.173154 0.071132 I.034S24 0.20)471 1.310213 1.032011 0.001232 I.M04S2 0.111212
11412 0.147117 1.042753 1.0)1441 0.017001 1.101)71 1.02)111 1.111142 1.0155)0 0.1004)3 0.0722N 0.140401 1.2110)7 1.0)2472 O.NU)7 I.I1M14 1.444441
.0435 0.0111 1 1 0 1 0 0 0.0512 000000 0.0121 0.2504
.1451 0.1413 0.1122 0.1314 1.1134 1.211 Mill 1.0441 0.4142 O.M4I 1.1431 0.3121 0.734 O.I 111 0.021 0.711 1.1201

-------
      TABLE B-4.1.  DATA AND STATISTICAL SUMMARY FOR FEMALE HEADS
FILE =  B:FHEADS    Y =  LNSA
COEFFICIENTS FOR MODEL  ( 54 DEGREES OF FREEDOM FOR t-TESTS )
b Q =
B 1 »
B 2 *
-3.6645
 . 1244
 . 1886
STAND. ERROR

 a 1 = LNWT
S.E. =
S.E. =
S.E. =
.7789
. 0408
. 1626
         .0512

         a 2 « LNHT
t = -4.7048
t =  3.0451
t =  1.1594
SOURCE
                             ANOVA
             SS
               DF
                     MS
REGRESSION
ERROR
TOTAL SS
            . 0404
            . 1414
            .1817
                2
                54
                56
                   . 0202
                   . 0026
F = 7.7108
R>= .2221440643129884
ADJ. R-SQUARED =  .2080012295665115
DURBIN WATSON STAT.=  1.312054210035026
SUM OF RESIDUALS  =-5.5511151231257830-17
SUM OF SQUARED RESIDUALS • .1413514623375186
                                 B- 10

-------
TABLE B-4.1.  (continued)
No.
"IW
122
169
170
171
172
173
174
175
176
177
17B
179
1BO
161
182
183
184
185
186
187
IBS
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
832
834
835
838
839
842
845
847
848
850
851




Age,
years
Sex
Race Body
Height,
£9
~2S r Caucasian
24.5
18
18
18
18
19
19
19
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
23
23
23
24
24
24
25
25
27
28
29
29
29
31
32
32
32
32
33
35
38
IB
20
21
24
26
30
31
36
36
38
38




F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F




Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
HEAN: 55
STD: 11
BIN:
MI:
Body
Height,
Ci
Head Total
Head as
Percent
of
Total
57762 I647B — 071079 1.6451 5.558871
93
61.36
74.77
98
54.1
52.05
62.7
43.86
47.05
50
40.5
41.25
44.75
48.25
62
57.5
51.75
57
57.5
SB. 25
55.1
49.5
57.5
49
43.2
63.6
52.5
64.25
50.34
58.6
56.25
55.45
56.75
59
57
52.05
51
74.7
60.34
64.75
56
71
53.5
50.75
71.3
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
.79280
.00847
40.5
•8
149.7
164
165
163
177.5
161
166.3
150
162.5
160
158.5
156
159
163.5
158.5
165
161
166
166.8
161.3
160
157.5
166
156
163
161
158.5
170.5
165.5
167.5
163
161
160
169
169
161
155.5
163
169.5
171
157.4
155.5
164
158.5
170
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
159.9771
7. 139266
144.5
177.5
0.109
0.1158
0.1146
.8592
1.6551
.8574
0.1186 2.1276
0.1091
0.1081
0.1156
0.1022
0.1159
0.1069
0.0953
0.097
0.1042
0.1154
0.1245
0.1156
0.1141
0.117
0.1085
0.1101
0.1038
0.109
0.1056
0.1108
0.1093
0.1101
0.101
0.1161
0.116
0.1221
0.1274
0.1056
0.107
0.1045
0.106
0.1062
0.1064
0.1138
0.1138
0.1056
0.1052
0.1067
0.1122
0.108
0.112 1
0.1032
0.1137
0.1204
0.1076
0.1071
0.1045
0.1048
0.1077
0.1156
0.1025
0.1083
.5904
.5418
.7161
.2883
.4498
.4614
.2422
.3224
.3976
.5017
.5709
.6096
.4853
.5539
.6005
.5989
.6205
.5107
.5679
.4416
.3647
1.62
.5399
1.694
.5283
.5789
1.574
.5238
.5895
1.596
.5665
1.4412
.4871
1.8079
.6513
1.6992
.5674
1.634
.5727
.4742
.7907
.4318
.4105
.6571
.4653
1.393
.3848
.4468
.4967
1.575
.3508
.4892
0.109912 1.554705
0.006252 0.149649
0.0953
.2422
0.1274 2.1276
5.862736
6.996556
6.169914
5.574356
6.859909
7.011285
6.736204
7.932934
7.994206
7.314903
7.671872
7.335148
7.455638
7.684624
7.925393
7.181908
7.681949
7.529442
6.779131
6.885984
6.405430
7.215198
6.735123
7.685904
8.009086
6.796296
6.S5BB67
6.853600
7.590132
7.733231
8.094027
6.930043
6.731676
6.547619
6.766677
7.368859
7.154865
6; 294595
6.891539
6.214689
6.711751
6.529987
7.134227
7.326007
6.254537
7.207710
8.060971
7.265705
7.343206
7.688442
7.546216
7.243572
7.195830
7.339682
7.588095
7.272360
7.112784
0.564071
5.574356
8.094027
            B- 11

-------
       TABLE B-4.2. DATA AND STATISTICAL SUMMARY FOR MALE HEADS
MOD
                    (L~(LS
DEGREES OF FREEDOM FOR  t-TESTS )
B a -
B 1 =
B 2 -
STAND.
a 1 =
-3.0124
.3391
-.095
ERROR =
LNWT
S.E. =
S.E. =
S.E. =
. 1143
a 2 = LNHT
1 . 4677
.138
.3629


t
t
t


= -2.0525
= 2.457
= -.2617


                             ANOVA
SOURCE
   SS
          DF
REGRESSION
ERROR
TOTAL SS
   , 1639
   3788
   ,5428
           29
           31
.082
.0131
F = 6.2743
RJ= .3020223783401514
ADJ. R-SQUARED =  .2737564590049134
DURBIN WATSON STAT.=  1.614853269000631
SUM OF RESIDUALS  =  2.109423746787797D-15
SUM OF SQUARED RESIDUALS » .3788292038891499
                                 B- 12

-------
TABLE B-4.2.  (continued)
No. Age,
years
9S 18
98 20.6
99 21
101 21.5
102 22
106 26.3
107 32
108 36
109 36.3
112 46.6
116 66.2
234 36
833 19
836 22
837 23
840 27
841 29
843 31
844 31
846 32
849 38
852 39
863 Adult
864 Adult
865 Adult
866 Adult
867 Adult
868 Adult
869 Adult
870 Adult
871 Adult
872 Adult




Sex
A
N
n
H
H
N
H
N
H
H
n
H
n
H
H
n
N
N
N
N
n
H
H
H
n
n
N
H
H
N
n
n




Race Body
Height,
'9
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
KAN: 54
STD: 11
HIM:
MI:
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
42.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
.64093
.19840
24.2
78.25
Body
Height,
Cl
"~17I.B
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
150
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
163.2
12.76028
110.3
184.2
Head as
Percent
Head Total of
Total
v« w 1 3
T4901 o . 3/5411
0.1438 1.8696 7.691484
0.103 1.672 6.160287
0.1208 1.7981 6.718202
0.1173 1.8375 6.383673
0.1396 1.9205 7.268940
0.1154 1.9 6.073684
0.1608 2.2435 7.167372
0.14 1.7414 8.039508
0.1507 1.8158 8.299372
0.1464 2.0171 7.257944
0.09 0.8473 10.62197
0.1088
0.1007
0.1065
0.1115
0.101
0.1145
0.1118
0.1182
0.121
0.1168
0.1106
0.1094
0.1125
0.1173
0.1108
0.1183
0.107
0.1146
.5696 6.931702
.5159 6.642918
.6254 6.552233
.6093 6.928478
.3621 7.415020
.6034 7.141075
.6761 6.670246
1.571 7.523870
.7771 6.808845
.7/08 6.595888
.0984 10.06919
.3227 8.270960
1.395 8.064516
.4553 8.060193
.5818 7.004678
.5092 7.838589
.4711 7.273468
.5016 7.631859
0.1116 1.55 7.2
0.1251 1.5765 7.935299
0.117837 1.615475 7.394277
0.016027 0.259430 0.975771
0.09 0.8473 6.073684
0.1608 2.2435 10.62197
            B- 13

-------
    TABLE B-4.3.  DATA AND STATISTICAL SUMMARY FOR FEMALE TRUNKS
FILE «  B'.FTRUNK     Y  =  LNSA
COEFFICIENTS FOR MODEL ( 54 DEGREES OF FREEDOM FOR t-TESTS  >
•V ^ ^» ^» ^ MM 00 ^» 1W^» ^ •• ^•^••M •"* OB^B ^B «»«V ^ ••» ^ ^m ^B^B «WM^ ^»^» ^B ^B ^ •• «V^W^B ^B «^ ^•••V •• ^B ^B ^B^B ^V « •• ^B •• ^ ^ ^ ^ ^ ^ ^B ^B .
80.=  -1.6724         S.E. =  .6515        t - -2.5669
B 1 =   .647           S.E. =  .0342        t -  18.9413
B 2 =  -.3036          S.E. =  .136         t = -2.231

STAND. ERROR «  .0428

 a 1 = LNWT     a 2  »  LNHT
                             ANOVA
SOURCE               SS                DF            MS

REGRESSION          .7074               2           .3537
ERROR               .O989               54          .0018
TOTAL SS            .8063               56
F = 193.1208
fi}- . B77340099O933068
ADJ. R-SQUARED =  .87510991914744
DURBIN WATSON STAT.=  1.607535050868951
SUM OF RESIDUALS  =  4.475586568020162D-15
SUM OF SQUARED RESIDUALS » 9.B90242350973892D-02
                                 B-14

-------
TABLE B-4.3.  (continued)
0.
TOT"
122
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
19°
200
201
202
203
204
205
206
207
208
209
210
211
212
832
834
835
838
839
842
8*5
847
848
850
851




Age,
years
	 55—
24.5
18
18
18
18
19
19
19
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
23
23
23
24
24
24
25
25
27
28
29
29
29
31
32
32
32
32
33
35
38
18
20
21
24
26
30
31
36
36
38
38




Sex
~p~
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F




Race
"Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
' Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
MEAN:
STD:
11 IN:
HAX:
Body
Height,
"-57762'
93
61.36
74.77
98
54.1
52.05
62.7
43.86
47.05
50
40.5
41.25
44.75
48.25
62
57.5
51.75
57
57.5
58.25
55.1
49.5
57.5
49
43.2
63.6
52.5
64.25
50.34
58.6
56.25
55.45
56.75
59
57
52.05
51
74.7
60.34
64.75
56
71
53.5
50.75
71.3
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
53.79230
11.00847
40.5
98
Body
Height,
ca
— isrr
149! 7
164
165
163
177.5
161
166.3
150
162.5
160
158.5
156
159
163.5
158.5
165
161
166
166.8
161.3
160
157.5
166
156
163
161
158.5
170.5
165.5
167.5
163
161
160
169
169
161
155.5
163
169.5
171
157.4
155.5
164
158.5
170
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
159.9771
7.139266
146.3
177.5
Trunk as
Percent
Trunk Total oi
Total
"575SIB — I76l5r347l4"vfcV
o!?746 L8592 41.' 66308
0.3429
0.6384
0.867 '
0.5379
0.5027
0.5881
0.455
0.4851
0.47
0.4372
0.4876
0.4851
0.5354
0.5579
0.5354
0.5027
0.5379
0.578
0.5881
0.563
0.5278
0.5027
.6551 32.80164
.8574 34.37062
.1276 40.75014
.5904 33.82168
.5418 32.60474
.7161 34.2695o
.2863 35.317S6
.4498 33.45978
.4614 32.16094
.2422 35.19562
.3224 36.87235
.3976 34.70950
.5017 35.65292
.5709 35.51467
.6096 33.26292
.4853 33.84501
.5539 34.61612
.6005 36.11371
.5989 36.78153
.6205 35.05091
.5107 34.937*4
.5679 32.06199
0.4826 1.4416 33.47669
0.4625 1.3647 33.89023
0.5932 1.62 36.61728
0.5329 1.5399 34.60614
0.573 1.694 33.8252i
0.4977 1.5283 32.5655'
0.5479 1.5789 34.70137
0.5479 1.574 34.80940
0.5273 1.5238 34.6370'
0.5304 1.5395 33.36898
0.5329 1.596 33.38972
0.5354 1.5665 34.17810
V0.5077 .4412 35.22758
0.5203 .4871 34.98755
0.6459 .8079 35.72633
0.5579 .6513 33.76530
0.5831 .69«2 34.31614
0.573 .5674 36.53733
0.6233 1.634 33.145a3
0.5479 .5727 34.83S17
0.5002 .4742 33.93026
0.6233 .7907 34.80761
0.4708 .4318 32.88163
0.4577 .4105 32.44948
0.5224 .6571 31.52493
0.5248 .4653 33.81519
0.4992 1.393 33.83632
0.4694 1.3848 33.8965?
0.5532 1.4468 38.23610
0.5324 1.4967 35.57159
0.5581 1.575 35.434<»2
0.4626 1.3508 34.24637
0.499 1.4392 33.50792
0.54146S 1.554705 34.7679a
0.071198 0.149649 1.832949
0.4372 1.2422 31.52495
0.867 2.1276 41.66308
            B- 15

-------
          TABLE B-4.4.  DATA AND STATISTICAL SUMMARY FOR MALE TRUNKS
rikPFIClllN!TSRFOR MODEL=(L29ADEGREES OF FREEDOM FOR t-TESTS )
B 0 =  -3.7312
B 1 =   .8083
B 2 =  -.0131

STAND. ERROR =

 a 1 = LNWT
S.E. =
S.E. =
S.E. =
                 . 0667

                 a  2  =  LNHT
                                . 0805
                                .2117
                         t = -4.3579
                         t =   10.0399
                         t = -.0614
SOURCE
 SS
                             ANOVA
                                       DF
                              MS
REGRESSION
ERROR
TOTAL S3
1.0887
. 1289
1.2176
                                        29
                                        31
                            .5444
                            . 0044
F « 122.4629
R>= .8941318875996077
ADJ. R-SQUARED  =  .8906029507299356
DURBIN WATSON STAT.=  1.563754365869733
SUM OF RESIDUALS  =-4.461708780212348D-15
SUM OF SQUARED  RESIDUALS = .128909377831138'
                                B-16

-------
TABLE B-4.4.  (continued)

No. Age,
years

«5 	 IB
98 20.6
99 21
101 21.5
102 22
106 26.3
107 32
108 36
109 36.3
112 46.6
116 66.2
234 36
833 19
836 22
837 23
840 27
841 29
843 31
844 31
846 32
849 38
852 39
863 Adult
864 Adult
865 Adult
866 Adult
867 Adult
868 Adult
869 Adult
870 Adult
871 Adult
872 Adult





Sex


T
N
H
H
fl
H
H
H
R
H
H
H
H
H
H
R
R
H
H
H
R
H
H
H
H
H
fl
R
R
H
H
H





Race Body
Height,
Eg

Body
Height,
Cl
Trunk as
Percent
Trunk Total of
Total
Caucasian "13725 I7I7B" 075053 "I.WT'33757492'
Caucasian 59.5
Caucasian 64
Caucasian 64.08
Caucasian 64.08
Caucasian 62.25
Caucasian 74.05
Caucasian 78.25
Caucasian 50
Caucasian 51.75
Caucasian 65.5
Caucasian 24.2
Japanese 52.7
Japanese 50.5
Japanese 56
Japanese 53.6
Japanese 41.2
Japanese 52.8
Japanese 62.6
Japanese 52.5
Japanese 73.1
Japanese 66
Chinese 32.4
Chinese 41.7
Chinese 46.9
Chinese 47.7
Chinese 50.6
Chinese 50.7
Chinese 51.3
Chinese S3
Chinese 53.3
Chinese 57
REAM: 54.64093
STO: 11.19840
RIN: 24.2
HAI: 78.25
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
ISO
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
163.2
12.76028
110.3
184.2
0.6398 1.8696 34.22122
0.6304 1.672 37.70334
0.6064
0.6444
' 0.6763
0.6S72
0.8928
0.5917
0.6088
0.6893
0.306
0.5207
0.5282
0.5452
0.5415
0.469
0.583
0.6172
0.5173
0.641
0.6718
0.3355
0.4439
0.504
0.5222
0.5751
0.5269
0.5478
0.5555
.7981 33.72448
.8375 35.06938
.9205 35.21478
1.9 34.58947
.2435 39.79496
.7414 33.97840
.8158 33.52792
.0171 34.17282
.8473 36.11471
.5696 33.17405
.5159 34.84398
.6254 33.54251
.6093 33.64817
.3621 34.43212
.6034 36.36023
.6761 36.82357
1.571 32.92807
.7771 36.07000
.7708 37.93765
.0984 30.54442
.3227 33.56014
1.395 36.12903
.4553 35.88263
.5818 36.35731
.5092 34.91253
.4711 37.23744
.5016 36.99387
0.5363 1.55 34.6
0.5673 1.5765 35.98477
0.568525 1.615475 35.11403
0.104106 0.259430 1.788166
0.306 0.8473 30.54442
0.8928 2.2435 39.79496
                   B-17

-------
    TABLE B-4.5.  DATA AND STATISTICAL SUMMARY FOR FEMALE UPPER EXTREMITIES
FILE =  B:FUPEX     Y - SA
COEFFICIENTS FOR  MODEL <  54 DEGREES OF FREEDOM FOR  t-TESTS >
ri
B
B
0
1
2
*
*
«
-3
•
•
.546
3419
1745
S.
S.
S.
E.
E.
E.
8
S
SS
.9 SB
. 0502
m 2
t
t
t
=
s»
B
-3.7014
6.8062
.8726
STAND. ERROR

 a 1 » WT
.0629

a 2 = HT
SOURCE
                     SS
                             ANOVA
                       DF
MS
REGRESSION
ERROR-
TOTAL SS
.2373
.2138
.4512
2
54
56
.1187
. 004
:=»=—======—


=====
F - 29.9659
R>* .5260325501308182
ADJ. R-SQUARED  *> . 5174149604O6O724
DURBIN WATSON STAT.= 1.62389244862O4O3
SUM OF RESIDUALS =-1.942890293O94024D-16
SUM OF SQUARED  RESIDUALS = .2138464643113389
                                B-18

-------
TABLE B-4.5.  (continued)
No. Aqe, Sex Race
years
Body
Height,
"IW IB F Caucasian 51736""
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
832
834
104
122
835
838
839
842
845
847
848
850
851
•



18 F Caucasian
18 F Caucasian
18 F Caucasian
19 F Caucasian
19 F Caucasian
19 F
Caucasian
20 F Caucasian
20 F Caucasian
20 F Caucasian
20 F Caucasian
20 F Caucasian
21 1
Caucasian
21 F Caucasian
21
21
21
21
21
21
22
22
22
23
23
23
24
24
24
25
25
27
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasi an
Caucasian
Caucasi an
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
28 F Caucasian
29 F Caucasian
29
: Caucasian
29 F Caucasian
31
* Caucasian
32 F Caucasian
32 F Caucasian
32 F Caucasian
32 F Caucasian
33
: Caucasian
35 F Caucasian
38
: Caucasian
18 F Japanese
20
: Japanese
26 F Caucasian
24.5 F Caucasian
21 F Japanese
24
'• Japanese
26 F Japanese
30
31
36
36
38
38




F Japanese
F Japanese
F Japanese
F Japanese
F Japanese
F Japanese
REAM:
STD:
BIN:
MX:
74.77
98
54.1
52.05
62.7
43.86
47.05
SO
40.5
41.25
44.75
48.25
62
57.5
51.75
57
57.5
58.25
55.1
49.5
57.5
49
43.2
63.6
52.5
64.25
50.34
58.6
56.25
55.43
56.75
59
57
52.05
51
74.7
60.34
64.75
56
71
53.5
50.75
71.3
46.1
45
57.62
93
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
55.79280
11.00847
40.5
98
Body
Height,
— isr
16S
163
177.5
161
166.3
ISO
162.5
160
I5B.S
156
159
163.5
158.5
165
161
166
166.8
161.3
160
157.5
166
156
163
161
158.5
170.5
165.5
167.5
163
161
160
169
169
161
155.5
163
169.5
171
157.4
155.5
164
158.5
170
147.9
146.5
164.8
149.7
156.9
148.4
147.3
155
146.5
ISO
147.4
147.7
152.8
159.9771
7.139266
146.5
177.5
Upper
Eitrei
Total
UpEx as
Percent
of
Total
— OITMSTIETWr
0.3165
0.3326
0.2867
0.2862
0.3118
0.2153
0.261
0.2585
0.2175
0.2297
0.2494
0.2639
0.2706
0.2801
0.2594
0.2907
0.2684
0.2712
0.2819
0.279
0.2877
0.2496
0.2532
0.2682
0.2645
0.3054
0.269
0.2748
0.2825
0.256
0.287
0.2686
0.2694
0.2579
0.2513
0.3157
0.2952
0.308
0.2647
0.2746
0.2845
0.2607
0.3036
0.2278
0.2748
0.3058
0.2976
0.3141
0.2812
0.2706
0.2626
0.2687
0.2864
0.291
0.2682
0.2918
0.276019
0.024093
0.2153
0.3326
1.8574
2.1276
1.5904
1.5418
1.7161
1.2883
1.4498
1.4614
1.2422
1.3224
1.3976
1.5017
1.5709
1.6096
1.4853
1.5539
1.6005
1.5989
1.6205
1.5107
1.5679
1.4416
1.3647
1.62
1.5399
1.694
1.5283
1.5789
1.574
1.5238
1.5895
1.596
1.5665
1.4412
1.4871
1.8079
1.6513
1.6992
1.5674
1.634
1.5727
1.4742
1.7907
1.4318
1.4105
1.6451
1.8592
1.6571
1.4653
1.393
1.3848
1.4468
1.4967
1.575
1.3508
1.4892
1.554705
0.149649
1.2422
2.1276
17.03994
15.63263
18.02691
18.56271
18.16910
16.71194
18.00248
17.68851
17.50925
17.36993
17.84487
17.57341
17.22579
17.40183
17.46448
18.70776
16.76975
16.96166
17.39586
18.46825
18.34938
17.31409
18.55352
16.55555
17.17644
18.02833
17.60125
17.40452
17.94790
16.80010
18.05599
16.82957
17. 19757
17.89480
16.89866
17.46224
17.87682
18.12617
16.88783
16.80538
18.08990
17.68416
16.95426
15.91004
19.48245
18.58853
16.00688
18.95480
19. 19060
19.42569
18.96302
18.57202
19.13543
18.47619
19.85490
19.59441
17.78783
0.931012
15.63263
19.85490
            B-  19

-------
     TABLE B-4.6.  DATA AND STATISTICAL SUMMARY FOR MALE UPPER EXTREMITIES
FILE =  B:MUPEX     Y  -  SA
COEFFICIENTS FOR  MODEL  (  45 DEGREES OF FREEDOM FOR t-TESTS  )
b O »
B 1 -
B 2 •
STAND.
a 1 B
-5.7169
.4662
. 5237
ERROR «
WT
S.E. =
S.E. -
S.E. «
.07
a 2 - HT
. 8078
.0604
.1894


t «=
t «
t -


-7.0775
7.7127
2.7652


SOURCE
 SS
                             ANOVA
DF
  MS
REGRESSION
ERROR-
TOTAL SS
I.0069
. 2202
1.2272
 2
 45
 47
. 5035
. OO49
F = 102.8706
R>= .8205320724236627
ADJ. R-SQUARED  = .8166305956645499
DURBIN WATSON STAT.a 1.373470606560744
SUM OF RESIDUALS =-7.160938508832260-15
SUM OF SQUARED  RESIDUALS » .2202369338348201
                                  B-20

-------
TABLE B-4.6.  (continued)

40.



Age,
years


Sex



Race


TA35H B ?
19
20
21
22
23
74
75
76
77
78
79
80
81
82
83
96
98
99
101
102
106
107
108
109
112
116
234
833
136
J37
840
841
843
844
846
849
852
863
864
865
866
867
868
869
870
871
872




Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
IB
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult




N
N
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
R
H
H
H
H
H
H
H
H
H
R
H
H
H
H
H
R
H
R
H
H
H
H




7
7
7
7
7
?
7
?
?
7
?
7
?
i
7
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Ckiaese
REAM:
STD:
(UN:
MI:

Bod)
Height,
*g
— 59-
63.6
74.4
70.4
63.32
69.2
58.7
69.9
62.7
126.4
62.6
69.5
47.5
63.8
68.5
58.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
59.09854
14.55999
24.2
126.4

Body
Height,
u
— I727T"
174
181.6
174
172.7
167.6
172.7
170.2
169.5
175.3
163.8
163.6
152.4
173.2
162.6
170.3
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
ISO
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
165.375
11.49027
110.3
184.2
Surface A

Upper Total
Extrei
"0733M7""I779597"
0.34B71 1.8571
0.37419 2.04837
0.32935 .92838
0.31968 .82548
0.32806 .91773
0.28064 .71483
0.35613 .93709
0.33968 .82387
0.42871 .52096
0.30032 .72355
0.34484 .81323
0.25742 1.4529
0.33581 .85516
0.34129 .84322
0.31742 .80419
0.3028 1.4901
0.3281 1.8696
0.3214 1.672
0.3669
0.3492
0.3758
0.3652
0.3997
0.3091
0.3481
0.3855
0.1688
0.3215
0.2787
0.3313
0.3377
0.2777
0.2885
0.3218
0.3069
0.3484
0.3393
0.1998
0.2439
0.2768
0.2712
0.3298
0.3084
0.2972
0.2773
.7981
.8375
.9205
1.9
.2435
.7414
.8158
.0171
.8473
.5696
.5159
.6254
.6093
.3621
.6034
.6761
1.571
.7771
.7708
.0984
.3227
1.395
.4553
.5818
.5092
.4711
.5016
0.307 1.55
0.2944 1.5765
0.318987 1.699004
0.046058 0.271091
0.1688 0.8473
0.42871 2.52096
UpEi as
Percent
of
Total
187*7992'
18.77712
18.26769
17.07910
17.51210
17.10668
16.36547
18.38479
18.62413
17.00582
17.42450
19.01799
17.71766
18.10140
18.51596
17.59349
20.32078
17.54920
19.22248
20.40487
19.00408
19.56782
19.22105
17.81591
17.75008
19.17061
19.11159
19.92210
20.48292
18.38511
20.38267
20.98427
20.38763
17.99301
19.19933
19.53532
19.60497
19.16083
18.19009
18.43955
19.84229
18.63533
20.84966
20.43466
20.20256
18.46696
19.80645
18.67427
18.84776
1.115974
16.36547
20.98427
           B-21

-------
         TABLE B-4.7.  DATA AND STATISTICAL SUMMARY FOR FEMALE ARMS
FILE =  B:FARMS    Y  »  SA
COEFFICIENTS FOR MODEL  <  10 DEGREES OF FREEDOM FOR t-TESTS >
B 0 =
B 1 -
d 2 -
-6. 1068
.2009
.7479
S.E. -
S.E. »
S.E. =•
1.5113
. 0504
.3073
t =
t =
t =
-4 . 0408
3.9837
2.4342
STAND. ERROR »   .0359

 a 1 - WT        a  2  = HT
                             ANOVA
SOURCE
 SS
DF
  MS
REGRESSION
ERROR
TOTAL SS
.O349
.0129
. O478
 2
 10
 12
.0175
. 0013
F - 13.5773          «,<.?>
RJ= .7308549867994047
ADJ. R-SQUARED  =  .7063872575974282
DURBIN WATSON STAT.=  1.90218735464177
SUM OF RESIDUALS  • 5.551115123125783D-16
SUM OF SQUARED  RESIDUALS - 1.286458050479112D-OS
                                B- 22

-------
TABLE B-4.7.  (continued)

No.


~B32~
834
104
122
83S
838
839
842
845
847
848
850
851





*)',
years

18
20
26
24.5
21
24
26
30
31
36
36
38
38





Sex


r~
F
F
F
F
F
F
F










Rice


Japanese
Japanese
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
MEAN:
STD:
HIM:
HAI:

Body
Height,
*g
W.Y
45
57.62
93
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
52.62461
12.87735
42.7
93

Body
Height,
»
T17TT
146.5
164.8
149.7
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
150.8384
5.123481
146.5
164.8


Ares Total

Arts as
Percent
o<
Total
OT202 IH3I8~I47IOBII
0.199
0.2252
0.2298
0.2345
0.2079
0.1987
0.193
0.2048
0.207
.4105
.6451
.8592
.6571
.4653
1.393
.3848
.4468
.4967
0.2086 1.575
0.1959 1.3508
0.2204 1.4892
0.209753 1.5081
0.012930 0.136814
0.193 1.3508
0.2345 1.8592
14.10847
13.68913
12.36015
14.15122
14.16822
14.26417
13.93703
14.15537
13.83042
13.24444
14.50251
14.79989
13.94916
0.583343
12.36015
14.79989
           B-23

-------
          TABLE B-4.8.  DATA AND STATISTICAL SUMMARY FOR MALE ARMS
•ILE «  B;HARMS    Y = SA
:OEFFICIENTS FOR MODEL  < 29  DEGREES OF FREEDOM FOR t-TESTS )
B 0
? !
b 2.
.
s
«
-6.801
.6162
.5607
2


S
S
s
.E.
.E.
.E.
B
s
=
. 8523
.0801
.2107
t
t
t
=
**
B
-7.
7.
2.
9799
6889
6611
STAND. ERROR

 a 1 = WT
.0664

a 2 - HT
SOURCE
    SS
                             ANOVA
DF
  MS
REGRESSION
ERROR
TOTAL SS
   1.0555
   . 1277
   1.1832
 2
 29
 31
.5277
. 0044
F - 119.8114
RJ- .8920418874204655
ADJ. R-SQUARED  -  .8884432838823079
DURBIN WATSON STAT.= 1.933621039918482
SUM OF RESIDUALS  —5.551115123125783D-17
SUM OF SQUARED  RESIDUALS  - .1277373598227881
                                B-24

-------
TABLE B-4.8.   (continued)



~n~
98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
841
843
844
846
849
852
863
864
865
866
867
868
869
870
71
472





Age,
years
18
20.6
21
21.5
22
26.3
32
36
34.3
44.4
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult -
Adult
Adult





Sex

-pr
H
H
H
H
H
H
H
H
N
H
H
H
n
H
H
N
H
n
R
H
N
N
H
H
n
n
H
N
~ N
n
H





Race

"Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasi an
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
HEAN:
STD:
KIN:
Ml:

Body
Height,

Body
Height,
Ci


Ares Total
Ares as
Percent
of
Total
•"•«T25 — I7ITB""5:2T52 — HWrnTHTW
59.5
64
64.08
64.08
62.25
74.05
78.25
SO
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
54.64093
11.19840
24.2
78.25
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
ISO
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
163.2
12.76028
110.3
184.2
0.235 1.8696
0.2314 1.672
0.2778
0.2524
0.2764
0.2776
0.292
0.2167
0.25
0.2722
0.1092
0.2364
0.206
0.2423
0.2415
0.2078
0.2064
0.2404
0.2204
0.2578
0.249
0.1374
0. 1803
0.2029
0.2036
0.2444
0.2265
0.2192
0.2087
.7981
.8375
.9205
1.9
.2435
.7414
.8158
.0171
.8473
.5696
.5159
.6254
.6093
.3621
.6034
.6761
1.571
.7771
.7708
.0984
.3227
1.395
.4553
.5818
.5092
.4711
.5016
0.2322 1.55
0.2208 1.5765
0.227809 1.615475
0.037388 0.259430
0.1092 0.8473
0.292 2.2435
12.56953
13.83971
15.44964
13.73605
14.39208
14.61052
13.01537
12.44401
13.74803
13.49442
12.88799
15.04116
13.58928
14.90709
15.00652
15.25585
12.87264
14.34281
14.02928
14.50678
14.06144
12.50910
13.63120
14.54480
13.99024
15.45075
15.00795
14.90041
13.89850
14.98064
14.00570
14.10005
0.856914
12.44401
15.45075
             B-25

-------
       TABLE B-4.9.  DATA AND STATISTICAL SUMMARY FOR MALE UPPER ARMS
'ILE »   B:MUPARM    Y = SA
:OEFF1CIENTS FOR MODEL < 3 DEGREES OF  FREEDOM FOR t-TESTS )
i 0
1 1
• 2 -
2. 1631
.7409
-1.4009
S.E.
S.E.
S.E.
m
m
m
6.2592
.4296
1.8791
t
t
t
.
s
*
.2619
1.7247
-.7456
IT AND.  ERROR

a  1  -  WT
.0947

a 2 - HT
                            ANOVA
50URCE
    SS
DF
  MS
lEGRESSIQN
:RROR
OTAL SS
   .O366
   .0269
   . O635
 2
 3
 5
.0183
.009
  «  2.0402
:>=  .576293569449516
•DO.  R-SQUARED - .4703669618118951
•URBIN WATSON STAT.» 1.507038638286816
:UM  OF RESIDUALS - 1.942890293094024D-16
;UM  OF SQUARED RESIDUALS = 2.6B9698858436577D-0:
                                 B- 26

-------
              TABLE B-4.9.   (continued)
                                                                                   1
                                                     UpAri as
104
108
109
112
116
Age,
years

—35: 6" "
26.3
36
36.3
46.6
66.2




Sex

.. jj,
H
N
H
H
H




Race Body
Height,
k«
Caucasian 59.5*
Caucasian 62.25
Caucasian 78.25
Caucasian 50
Caucasian 31.75
Caucasian 65.5
MEAN: 61.20833
STD: 9.380183
HIM: SO
MI: 78.25
Body
Heiqht, Upper
H aris
175 57125'
162 0.1547
171 0.1563
158 0.1222
160 0.1419
172 0.1354
165.5 0.142583
5.649483 0.014284
158 0.1222
172 0.1563
Percent
Total of
Total
K9205 B! 0551 93
2.2435 6.966792
1.7414 7.017342
1.8158 7.814737
2.0171 7.704129
1.93465 7.374019
0.162321 0.505591
1.7414 6.685922
2.2435 8.055193
                          B- 27

-------
        TABLE B-4.10.  DATA AND STATISTICAL SUMMARY FOR MALE FOREARMS
FILE -  B:MFARMS     Y  =  SA
COEFFICIENTS FOR MODEL <  3 DEGREES OF FREEDOM FOR t-TESTS  >
B
B
F-
0 =
1 =
2 -
-1.1212
.8579
-.8952
S.
S.
S.
E.
E.
E.
m
S
=
4
•
1
.4129
2295
.004
t
t
t
—
B
=
~ •
3
* •
2541
.7378
8917
STAND. ERROR -   .0506

 a 1 - WT        a  2  -  HT
                             ANOVA
SOURCE               SS                DF            MS

REGRESSION          .0668               2           .0334
ERROR               .0077               3           .0026
TOTAL SS            .0745               5
==as*==ss=s«a======================5====================n==i
F « 13.0516
R>= .8969185600321849
ADJ. R-SQUARED  «  .8711482000402312
DURBIN WATSON STAT.= 2.777962538461813
SUM OF RESIDUALS  —5.273559366969494D-16
SUM OF SQUARED  RESIDUALS « 7.678604464312059D-03
                                B-28

-------
TABLE B-4.10.    (continued)
 No.      Age,     Sex     Race     Body     Body
        years                     Heioht,  Height,  Forearis  Total
                                    kg       ci

"~9fl     2071     «    Caucasian    3975      170     OF
  106     26.3     H    Caucasian   62.25      162   0.1217
  108       36     H    Caucasian   78.25      171   0.1357
  109     36.3     H    Caucasian     50      158   0.0945
  112     46.6     H    Caucasian   31.75      160   0.1081
  116     66.2     H    Caucasian    65.5      172   0.1168
                                                 FrAri as
                                                 Percent
                                                   of
                                                  Total
                                         1.9205 6.336891
                                         2.2435 6.048584
                                         1.7414 5.426668
                                         1.8158 5.953298
                                         2.0171 5.790491
     HEAN:
      STDi

      MM:
      MAI t
                                61.20833    165.5 0.114466  1.93465 5.906591
                                9.380183 5.649483 0.012700 0.162321 0.274419
                                     SO
                                   78.25
15!
0.0945
0.1357
1.7414  5.426668
2.2435  6.336891
                 B-  29

-------
        TABLE B-4.11.  DATA AND STATISTICAL SUMMARY FOR FEMALE HANDS
FILE »  BsFHANDS    Y = SA
COEFFICIENTS  FOR MODEL  ( 9 DEGREES  OF FREEDOM FOR t-TESTS  >

B 0 =  -4.3371          S.E. =   2.616S       t =• -1.6575
B 1 =   .4118          S.E. =   .178         t =  2.3141
E '.2     .0274          S.E. =   .5767        t =  .0476

STAND. ERROR  =   .0596

 a 1 = WT
                             ANOVA
SOURCE               SS                 DF            MS

REGRESSION          .0259                2           .0129
ERROR               .032                 9           .0036
TOTAL SS            .0573                11

F = 3.6419
R>= .447TOi27D177C03i
ADJ. P-SQUARES = .3^2031*051719702
DUr-TJlN WATSON  STAT.-  2. •:^^COCT-r^ 3 07 1 r'
-------
             TABLE B-4.11.   (continued)
No.
 832
 834
 835
 838
 839
 842
 845
 847
 848
 850
 851
ftge,
years
	 25™
IB
20
21
24
26
. 30
31
36
36
38
38




Sex
— F"
F
F
F
F
F
F
F
F
F
F
F




Race Body
Heiaht
K(J
""Caucasian 577
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
HEAD:
STB: 5.1
niK:
HA!:
46
i
Body
Heiant,
c»
Hands
Total
52 — I5JT8 — 07OTOS — 1
•
1
45
59
49
44
43
47
49
58
42
46
49.
1,988
42
59
.3
t
•
t
,
t

,
•
i
A
5

,
4
9
5
9
4
6
7
7
6
'•>
T
t
^
J
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
150.9333
5.321706
146.5
164.8
0.0758
0.0758
0.0796
0.0733
0.0719
0.0696
0.0639
0.0794
0.0824
0.0723
0.0714
0.074666
0.005096
0.0639
0.0824
1
I
1
1

1
1
1

1
1
:wr
.4318
.4105
.6571
.4653
1.393
.3848
.4465
.4967
1.575
.3508
.4892
1.478841
0.095651
I
1
.3506
.6571
Hands as
Percent
Total
'V.
5.
5.
4.
5.
5.
5.
4.
5.
5.
5.
4.
5.
0.
4.
r
B9?39B"
294035
373980
803572
002388
161521
025996
41664!
305004
231746
352383
794520
C^iW
276706
416643
373920
                            B-31

-------
        TABLE B-4.12.  DATA AND STATISTICAL SUMMARY FOR MALE HANDS


 ILfc  «   B:MHANDS    Y » SA
:OEFFICIENTS FOR MODEL  < 29 DEGREES  OF FREEDOM FOR t-TESTS )
: 0 -
i 1 -
: 2 -
-3.6566
.5731
-.2184
S.E. =
S.E. =
S.E. -
1.3601
. 1279
. 3363
t =
t »
t •
-2.6884
4.4811
-.6492
iTAND.  ERROR -  .1059

 a  1  -  WT       a 2 = HT
                            ANOVA
iOURCE              SS                 DF            MS
:EGRESSION
RROR
OTAL SS
. 4409
. 3253
.7662
2
29
31
. 2205
.0112




  - 19.6526
:j= .5754347210966371
•DJ.  R-SQUARED - .5612825459767271
•URBIN WATSON STAT.= 1.186765908957754
;UM OF RESIDUALS • 4.107825191113079D-15
:UM OF SQUARED RESIDUALS -  .3253109749445921
                                B- 32

-------
TABLE B-A.12.  (continued)

io.


98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
841
843
844
846
849
852
863
864
865
866
867
868
869
870
871
872

Age,
years


Sex


	 IB" r~
20.6 H
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
H
H
H
H
H
H
H
H
N
H
N
H
H
N
H
N
N
H
N
H
H
N
N
n
ft
N
N
H
ft
H

Race


Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese

Body
Height,
kg
— 15T2r
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
KEAN: 54.64093









STD:
NIN:
MAX:
11.19840
24.2
78.25

Body
Height,
M
I7I78"
no
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
150
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
163.2
12.76028
110.3
184.2


Hands Total

~87I)B7S ITWr
0.0931 1.8696
0.09 1.672
0.0891
0.0968
0.0994
0.0876
0.1077
0.0924
0.0981
0.1133
0.0596
0.0851
0.0727
0.089
0.0962
0.0699
0.0821
0.0814
0.0865
0.0906
0.0903
0.0624
0.0636
0.0739
0.0676
0.0854
0.0819
0.078
0.0686
.7981
.8375
.9205
1.9
.2435
.7414
.8158
.0171
.8473
.5696
.5159
.6254
.6093
.3621
.6034
.6761
1.571
.7771
.7708
.0984
.3227
1.395
.4553
.5818
.5092
.4711
.5016
0.0748 1.55
0.0736 1.5765
0.084009 1.615475
0.012728 0.259430
0.0596 0.8473
0.1133 2.2435
Hands as
Percent
of
Total
S78788&T
4.979674
5.382775
4.955230
5.268027
5.175735
4.610526
4.800534
5.306075
5.402577
5.616974
7.034108
5.421763
4.795830
5.475575
5.977754
5.131781
5.120369
4.856512
5.506047
5.098193
5.099390
5.680990
4.808346
5.297491
4.645090
5.398912
5.426716
5.302154
4.568460
4.825806
4.668569
5.234899
0.481773
4.568460
7.034108
             B- 33

-------
      TABLE B-4.13.  DATA AND STATISTICAL SUMMARY FOR LOWER EXTREMITIES


FTi.E -  B:ALWEX     Y = SA
C   -FICIENTS FOR  MODEL (  102 DEGREES OF FREEDOM FOR t-TESTS )
B 0 - -5.8572
B 1 = .4581
B 2 = .6961
STAND. ERROR =
a 1 = WT

SOURCE
REGRESSION
ERROR-
TOTAL S3
SSBSSSS — — — — — 5- — — — — =
S.E. = .5558 t
S.E. = .0376 t
S.E. = .1247 t
.0648
a 2 - HT
ANOVA
SS DF
1 . 7394 2
.4283 102
2. 1678 104
________________________________
= -10.5379
- 12. 1767
= 5.5834



MS
.8697
. 0042

F - 207.1079
R>= .8024082027803801
ADJ. R-SQUARED = .8004893357992166
DURBIN WATSON  STAT.= 1.226448620555049
SUM OF RESIDUALS = 6.203371150093062D-15
SUM OF SQUARED RESIDUALS = .428331967305567
                                 B-34

-------
TABLE B-4.13.   (continued)


No. Age, Sex Race
years

— m 	 25 — i
122 24.5 !
169 18 1
170 IB 1
171 18 1
172 18 1


" Caucasian'
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
173 19 F Caucasian
174 19 F Caucasian
175 19 F Caucasian
176 20 F Caucasian
177 20 F Caucasian
178 20 F Caucasian
179 20 F Caucasian
180 20 1
Caucasian
181 21 F Caucasian
182 21
183 21
184 21
185 21
186 21
187 21
188 21
189 22
190 22
191 22
192 23
193 23
194 23
195 24
196 24
197 24
198 25
199 25
200 27
201 28
202 29
203 29
204 29 1
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasi an
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
205 31 F Caucasian
206 32 1
207 32 1
208 32 1
Caucasian
Caucasian
Caucasian
209 32 F Caucasian
210 33 F Caucasian
211 35 1
Caucasian
212 38 F Caucasian
832 18 1
834 20
835 21 1
838 24 1
'• Japanese
: Japanese
Japanese
; Japanese
839 26 F Japanese
842 30 1
: Japanese
845 31 F Japanese
B47 36 1
B4B 36 1
B50 38
851 38 1
Japanese
: Japanese
; Japanese
F Japanese
1 Adult H ?
19 Adult H ?
20 Adult H ?
21 Adult N ?
22 Adult
1 ?
23 Adult It ?
74 Adult N ?
75 Adult H ?
76 Adult H ?
77 Adult H ?
78 Adult N ?
79 Adult N ?
BO Adult H ?
Bl Adult H ?
B2 Adult N ?

Body
Height,
'9
~57TH~
93
61.36
74.77
98
54.1
52.05
62.7
43.86
47.05
50
40.5
41.25
44.75
48.25
62
57.5
51.75
57
57.5
58.25
55.1
49.5
57.5
49
43.2
63.6
52.5
64.25
50.34
58.6
56.25
55.45
56.75
59
57
52.05
51
74.7
60.34
64.75
56
71
53.5
. 50.75
71.3
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
59
63.6
74.4
70.4
63.32
69.2
58.7
69.9
62.7
126.4
62.6
69.5
47.5
63.8
68.5

Body
Height,
Cl
— rrj-*-
149!?
164
165
163
177.5
161
166.3
150
162.5
160
158.5
156
159
163.5
158.5
165
161
166
166.8
161.3
160
157.5
166
156
163
161
158.5
170.5
165.5
167.5
163
161
160
169
169
161
155.5
163
169.5
171
157.4
155.5
164
158.5
170
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
172.1
174
181.6
174
172.7
167.6
172.7
170.2
169.5
175.3
163.8
163.6
152.4
173.2
162.6


ALoMEx as
Percent
Lo»er Total ol
Ex tret
"5TJ595 — ]
0.678
0.6864
0.7879
0.8094 I
0.6567
0.6448
0.7006
0.5158
0.5878
0.626
0.4922
0.5081
0.5589
0.587
0.6179
0.6785
0.6091
0.6083
0.6456
0.6295
0.6668
0.5949
0.6719
0.5986
0.5397
0.6485
0.6415
0.6995
0.6456
0.6341
0.6162
0.6344
0.6651
0.69
0.6557
0.5694
0.6091
0.7325
0.6844
0.7025
0.6245
0.6294
0.6281
0.6053
0.7518
0.58
0.5643
0.7002
0.5517
0.5161
0.5483
0.5201
0.5702
0.6103
0.5175
0.5901
Total
rHSrWTWbT
.8592 36)46729
.6551 41.47181
.8574 42.41951
2.1276 38.04286
.5904 41.29149
.5418 41.82124
.7161 40.82512
.2883 40.03725
.4498 40.54352
.4614 42.83563
.2422 39.62324
.3224 38.42256
.3976 39.98998
.5017 39.08903
.5709 39.33413
.6096 42.15333
.4853 41.00855
.5539 39.14666
.6005 40.33739
.5989 39.37081
.6205 41.14779
.5107 39.37909
.5679 42.85349
.4416 41.52330
.3647 39.54715
1.62 40.03086
1.5399 41.65854
1.694 41.29279
1.5283 42.24301
1.5789 40.16087
1.574 39.14866
1.5238 41.63276
1.5895 41.84334
1.596 43.23308
1.5665 41.85764
1.4412 39.50874
1.4871 40.95891
1.8079 40.51662
1.6513 41.44613
1.6992 41.34298
1.5674 39.84305
1.634 38.51897
1.5727 39.93768
1.4742 41.05955
1.7907 41.98358
1.4318 40.50845
1.4105 40.00708
1.6571 42.25454
1.4653 37.65099
1.393 37.04953
1.3848 39.59416
1.4468 35.94829
1.4967 38.09714
1.575 38.74920
1.3508 38.31063
1.4892 39.62530
0.63871 1.79097 35.66279
0.65129
1.8571 35.07027
0.78064 2.04837 38.11030
0.71 .92838 36.81846
0.64935 .82546 35.57146
0.67935
91773 35.42469
0.67032 .71483 39.08958
0.72451 .93709 37.40197
0.63387
82387 34.75412
0.86806 2.52096 34.43370
0.63129 1
0.65484 1
0.50322
0.66613 1
0.65516 1
.72355 36.62730
.81323 36.11455
1.4529 34.63555
.85516 35.90687
84322 35.54431
            B- 35

-------
TABLE B-4.13.  (continued)
83
9i
98
99
101
102
106
107
108
109
112
114
234
833
834
837
840
841
843
844
846
849
852
863
864
865
Bee
867
668
869
870
871
872




Adult
18
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult




H
H
H
H
H
N
R
H
n
N
N
H
H
H
N
n
n
H
n
N
n
N
n
N
N
N
n
N
n
H
n
H
R




?
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
REAM:
STD:
niN:
RAX:
58.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
,53.3
57
57.304
12.86119
24.2
126.4
170.3
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
ISO
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
162. 4M?
9.759839
110.3
184.2
0.64387
0.592
0.7579
0.6172
0.704
0.7266
0.72B8
0.7622
0.7902
0.7006
0.7082
0.7959
0.2825
0.6186
0.6083
0.6424
0.6186
0.5144
0.6174
0.6253
0.6286
0.6667
0.6429
0.4525
0.5255
0.5017
0.5446
0.5661
0.5556
0.5191
0.5542
0.5951
0.5897
0.630670
0.083742
0.2825
0.86806
1.80419
1.4901
1.8696
1.672
1.7981
1.8375
1.9205
1.9
2.2435
1.7414
1.8158
2.0171
0.8473
1.5696
1.5159
1.6254
1.6093
1.3621
1.6034
1.6761
1.571
1.7771
1.7708
1.0984
1.3227
1.395
1.4553
1.5818
1.5092
1.4711
1.5016
1.55
1.5765
1.620670
0.225655
0.8473
2.52096
35.68748
39.72887
40.53808
36.91387
39.15243
39.54285
37.94845
40.11578
35.22175
40.23199
39.00209
39.45763
33.34120
39.41131
40. 12797
39.52257
38.43907
37.76521
38.50567
37.30684
40.01273
37.51617
36.30562
41.19628
39.72934
35.96415
37.42183
35.78834
36.81420
35.28652
36.90729
38.39354
37.40564
38.98349
2.244111
33.34120
43.23308
             B-36

-------
             TABLE B-4.14.  DATA AND STATISTICAL SUMMARY FOR LEGS
FILE =  B:ALEGS     Y = SA
COEFFICIENTS FOR  MODEL (  42 DEGREES OF FREEDOM FOR  t-TESTS )
B 0 »
B 1 =
F 2 -
-6.0332
.5421
.6264
S.E. =
S.E. =
S.E. =
.8768
. 0768
.2055
t =
t =
t =
-6.8811
7.0566
3.0481
STAND. ERROR

 a 1 « WT
                 . 0875

                 a  2 = HT
SOURCE
                     SS
                             ANOVA
DF
MS
REGRESSION
ERROR-
TOTAL SS
1. 1398
.3216
1.4614
^
4.
42
44
.5699
. 0077




R;= .7799503324599738
ADJ. R-SQUARED  =  .774832898350205
DLIRBIN WATSON STAT.=  1.295577546438115
SUM OF RESIDUALS  =-9.9226182825873370-15
SUM OF SQUARED RESIDUALS
                              215828892052123
                                B-37

-------
TABLE B-4.14.  (continued)

No.

"IH"
122
B32
834
835
B3B
B39
842
845
847
848
850
851

98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
841
843
8*4
846
849
852
863
864
865
866
867
868
869
870
871
872





Age,
years
	 25"-
24.5
IB
20
21
24
26
30
31
36
36
38
38
IB
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult





Sex

»••••
F
F
F
F
F
F
F
F
F
F
F
F
n
H
n
H
n
H
H
N
n
n
N
n
n
n
R
N
n
H
n
n
N
n
n
H
N
n
n
n
H
N
n
R





Race

""Caucasian"
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
MEAN:
STD:
HIM:
HAI:

Body
Height,
—37-52-
*93
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.B
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
54.05844
11.74380
24.2
93

Body
Height,
Cl
— rarr
149.7
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
ISO
16C.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
159.6288
12.44032
110.3
184.2


Legs
(all)
"-5T5JI2'
o!5456
0.4892
0.4649
0.5852
0.4588
0.4327
0.457
0.4316
0.4738
0.5103
0.4226
0.4959
0.4878
0.6242
0.5022
0.5789
0.6108
0.5964
0.6292
0.6563
0.5683
0.5736
0.6398
0.2214
0.5053
0.5044
0.5265
0.5084
0.4248
0.4973
0.5197
0.5136
0.5452
0.523
0.3602
0.4216
0.4031
0.4471
0.4692
0.4536
0.4183
0.454
0.4844
0.4904
0.500173
0.079956
0.2214
0.6563


Total
Twr
1.8592
1.4318
1.4105
1.6571
1.4653
1.393
1.3848
1.4468
1,4967
1.575
1.3508
1.4892
1.4901
1.8696
1.672
1.7981
1.8375
1.9205
1.9
2.2435
1.7414
1.8158
2.0171
0.8473
1.5696
1.5159
1.6254
1.6093
1.3621
1.6034
1.6761
1.571
1.7771
1.7708
1.0984
1.3227
1.395
1.4553
1.5818
1.5092
1.4711
1.5016
1.55
1.5765
1.584455
0.235874
0.8473
2.2435
ALegs as
Percent
of
Total
34"7IT34T
30'.42168
34.16678
32.95994
35.31470
31.31099
31.06245
33.00115
29.83135
31.65631
32.4
31.28516
33.29975
32.73605
33.38682
30.03588
32.19509
33.24081
31.05441
33.11578
29.25339
32.63466
31.58938
31.71880
26.13006
32.19291
33.27396
32.39202
31.59137
31.18713
31.01534
31.00650
32.69255
30.67919
29.53467
32.79315
31.87419
28.89605
30.72218
29.66240
30.05565
28.43450
30.23441
31.25161
31.10683
31.52248
1.678444
26.13006
35.31470
             B-38

-------
            TABLE B-4.15.  DATA AND STATISTICAL SUMMARY FOR THIGHS
FILE =  B-.ATHIGH     Y  = LNSA
COEFFICIENTS FOR MODEL ( 42 DEGREES OF FREEDOM FOR t-TESTS  )
i
B
B
0
1
2
_
=s
S
-5.6501
.6293
.3794
S
S
S
.E.
.E.
.E.
-
=B
S
.999
. 0875
. 2342
t
t
t
=
=
=
-5.
7.
1.
6557
1898
6201
STAND. ERROR =   .0997

 a 1 « LNWT      a 2  = LNHT
                             ANOVA
SOURCE
SS
DF
F = 59.4376
R>= .73892B1748756243
ADJ. R-SQUARED =  .732856737104652
DURBIN WATSON STAT.=  1.251266264607495
SUM OF RESIDUALS  =-4.468647674116255D-15
SUM OF SQUARED RESIDUALS = .4175007402604074
MS
REGRESSION
ERROR
TOTAL S3
1. 1817
.4175
1.5992
2
42
44
. 5908
. 0099



======
                                B-39

-------
TABLE B-4.15.  (continued)

No.


nor
122
832
834
835
838
839
842
845
847
848
850
851
96
98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
841
843
844
846
849
852
863
864
865
866
867
868
869
870
871
872





Age,
years

- -"25" '
24.5
18
20
21
24
26
30
31
36
36
38
38
18
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult





Sex


^
F
F
F
F
F
F
F
F
F
F
F
F
H
R
H
H
R
H
R
R
H
H
H
H
H
R
H
H
H
H
R
H
H
R
H
H
H
H
H
H
H
H
R
H





Race


Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
MEAN:
STO:
HIN:
HAI:

Body
Height,
k?
""57712"
93
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
54.05844
11.74380
24.2
93

Body
Height,
CB
rea, i»t2

Thighs

~~~IH7B"~073324~
149.7
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
150
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
159.6288
12.44032
110.3
184.2
0.35
0.2949
0.2742
0.3598
0.2878
0.2583
0.287
0.2664
0.2689
0.3191
0.258
0.2747
0.3002
0.3287
0.3022
0.3155
0.3712
0.3754
0.382
0.4025
0.3477
0.3214
0.364
0.1284
0.2978
0.2923
0.3178
0.3058
0.2599
0.3019
0.3159
0.3103'
0.3302
0.3162
0.2134
0.2379
0.2225
0.2587
0.275
0.2778
0.2374
0.2538
0.2645
0.2953
0.29678
0.049594
0.1284
0.4025


Total

AThigh as
Percent
of
Total
~"17S«r20720545-
.8592
.4318
.4105
.6571
.4653
1.393
.3848
.4468
1.4967
1.575
1.3508
1.4892
1.4901
1.8696
1.672
1.7981
1.8375
1.9205
1.9
2.2435
1.7414
1.8158
2.0171
0.8473
1.5696
1.5159
1.6254
1.6093
1.3621
1.6034
1.6761
1.571
1.7771
1.7708
1.0984
1.3227
1.395
1.4553
1.5818
1.5092
1.4711
1.5016
1.55
1.5765
1.584455
0.235874
0.8473
2.2435
18.82530
20.59645
19.43991
21.71263
19.64102
18.54271
20.72501
18.41304
17.96619
20.26031
19.09979
18.44614
20.14629
17.58130
18.07416
17.54629
20.20136
19.54699
20.10526
17.94071
19.96669
17.70018
18.04570
15.15401
18.97298
19.28227
19.55211
19.00205
19.06083
18.82873
18.84732
19.75175
18.58083
17.85633
19.42825
17.98593
15.94982
17.77640
17.38525
18.40710
16.13758
16.90197
17.06451
18.73136
18.69792
1.307920
15.15401
21.71263
            B- 40

-------
          TABLE B-4.16.  DATA AND STATISTICAL SUMMARY FOR LOWER LEGS
FILE =  B:ALWLEG     Y  =  SA
COEFFICIENTS FOR  MODEL (  42 DEGREES OF FREEDOM FOR t-TESTS  )
B 0
B 1
E 2
s
ss
=
-B. 1939
.4162
. 9733
S.
S.
s.
E.
E.
E.
s
=
=
1 . 000
. 0877
.2345
5


t
t
t
s
s
=
-B.
4.
4.
19
7486
1506
STAND. ERROR =   .0998

 a 1 = WT        a 2  = HT
                             ANOVA
SOURCE               SS                DF            MS
REGRESSION
ERROR
TOTAL SS
============
1. 1144
.4187
1 . 5332
2
42
44
.5572
.01

F * 55.893
R>= .7268932585995541
ADJ. R-SQUARED =  .720541939O557624
DURBIN WATSON STAT.=  1.827741131523513
SUM OF RESIDUALS  =-1.2739809207573670-14
SUM OF SQUARED RESIDUALS  =  .4187172654312121
                                B-41

-------
TABLE B-4.16.   (continued)

No.


"TOT
122
832
834
835
838
839
842
845
847
848
850
851
96
98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
841
843
B44
846
849
852
863
864
865
866
867
86B
869
870
871
872





Age,
years


Sex



Race


25 F Caucasian
24.5
18
20
21
24
26
30
31
36
36
38
38
18
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult




F
F
F
F
F
F
F
F
F
F
F
F
H
n
H
N
n
n
H
N
H
n
n
n
N
n
H
n
N
N
n
H
n
H
N
H
n
n
n
n
H
n
n
n




Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
HEAN:
STD:
HIM:
(Ml:

Body
Height,
kg
~ 3775T
93
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
54.05844
11.74380
24.2
93

Body
Height,
Cl
— IWTB"
149i7
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.5
165.5
150
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
159.6288
12.44032
110.3
1B4.2


Lover Total
legs
"572288 — I7H5I~
0'.2156
0.1943
0.1907
0.2254
0.171
0.1744
0.17
0.1652
0.2049
0.1912
0.1646
0.2212
0.1876
0.2955
0.2
0.2634
0.2396
0.221
0.2472
0.2538
0.2206
0.2522
0.2758
0.093
0.2075
0.2121
0.2087
0.2026
0.1649
0.1954
0.2038
0.2033
0.215
0.2068
0.1468
0.1837
.8592
.4318
.4105
.6571
.4653
1.393
.3848
.4468
.4967
1.575
.3508
.4892
.4901
.8696
1.672
.7981
.8375
.9205
1.9
.2435
.7414
.8158
.0171
.8473
.5696
.5159
.6254
.6093
.3621
.6034
.6761
1.571
.7771
.7708
.0984
.3227
0.1806 1.395
0.1884 1.4553
0.1942 1.5818
0.1758 1.5092
0.1809 1.4711
0.2002 1.5016
0.2199 1.55
0.1951 1.5765
0.203393 1.584455
0.034751 0.235874
0.093 0.8473
0.2955 2.2435
ALuLns as
Percent
of
Total
1TW7W
11.59638
13.57033
13.52002
13.60207
11.66996
12.51974
12.27614
11.41830
13.69011
12.13968
12. 18537
14.85361
12.58975
15.80551
11.96172
14.64879
13.03945
11.50741
13.01052
11.31268
12.66796
13.88919
13.67309
10.97604
13.21992
13.99168
12.83991
12.58932
12.10630
12.18660
12.15917
12.94080
12.09836
11.67833
13.36489
13.88825
12.94623
12.94578
12.27715
11.64855
12.29692
13.33244
14.18709
12.37551
12.82456
1.018813
10.97604
15.80551
            B-42

-------
             TABLE B-4.17.  DATA AND STATISTICAL SUMMARY FOR FEET

FILE =  B:AFEET     Y  = SA
COEFFICIENTS FOR  MODEL < 42 DEGREES OF FREEDOM FOR t-TESTS  )
B 0 = -7.3891
B 1 = .3716
F 2 - .7253
STAND. ERROR =
a 1 « WT
SOURCE
REGRESS I ON
ERROR
TOTAL SS
S.E. = .9878
S.E. = .0865
S.E. - .2315
. 0986
a 2 = HT
ANOVA
SS DF
.7599 2
. 4082 42
1.1681 44
t = -7.4803
t = 4.2941
t = 3.1327


MS
.3799
. 0097
F = 39.0951
R>= .6505539951426556
ADJ. R-SOUARED =  .6424273438971775
DURBIN WATSON STAT.=  1.065072658931813
SUM OF RESIDUALS  =-1.6098233857064770-14
SUM OF SQUARED RESIDUALS  = .4081810393746795
                                B-43

-------
TABLE B-4.17.  (continued)

No.


— TOT
122
832
834
835
838
839
842
845
847
848
850
851
96
98
99
101
102
106
107
108
109
112
116
234
833
836
837
840
— 841
843
844
846
849
852
863
864
865
866
867
868
869
870
871
872





Age,
years


Sex



Race



Body
Height ,
kg

Body
Height,
Cl


Feet Total

AFeet as
Percent
o<
Total
-——•25 ""r""""CaucasTan"""57Ti2~"""lJ?TB"""5mJ8^"""lT5?5r5T58925S"
24.5
18
20
21
24
26
30
31
36
36
38
38
18
20.6
21
21.5
22
26.3
32
36
36.3
46.6
66.2
36
19
22
23
27
29
31
31
32
38
39
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult




F
F
F
F
F
F
F
F
F
F
F
F
n
N
H
N
N
H
n
H
R
R
H
H
n
H
H
N
H
N
H
H
H
H
R
H
R
H
H
R
H
H
R
fl




Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Caucasian
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Japanese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
MEAN:
STD:
RIN:
HAI:
93
46.1
45
59.3
49.4
44.9
43.5
47.9
49.4
58.6
42.7
46.7
45.25
59.5
64
64.08
64.08
62.25
74.05
78.25
50
51.75
65.5
24.2
52.7
50.5
56
53.6
41.2
52.8
62.6
52.5
73.1
66
32.4
41.7
46.9
47.7
50.6
50.7
51.3
53
53.3
57
54.05844
11.74380
24.2
93
149.7
147.9
146.5
156.9
148.4
147.3
155
146.5
150
147.4
147.7
152.8
171.8
170
164.3
184.2
178
162
179.2
171
158
160
172
110.3
155.7
158
160.. 5
165.5
150
160.7
159.6
162.8
157.4
164
140
158.5
162.4
167.6
170.5
171.4
166.6
172.8
170.6
167
159.6288
12.44032
110.3
184.2
0.1124 1.8592
0.0908 1.4318
0.0994
0.115
0.0929
0.0834
0.0913
0.0885
0.0964
0.1
0.0949
0.0942
0.1042
0.1337
0.115
0.1251
0.1158
0.1324
0.133
0. 1339
0.1323
0.1346
0.1561
0.0611
0.1133
0.1039
0.1159
0.1102
0.0896
0.1201
0.1056
0.115
0.1215
0.1199
0.0923
0. 1039
0.0986
0.0975
0.0969
0.102
0.1008
0.1002
.4105
.6571
.4653
1.393
.3848
.4468
.4967
1.575
.3508
.4892
.4901
.8696
1.672
.7981
.8375
.9205
1.9
.2435
.7414
.8158
.0171
.8473
.5696
.5159
.6254
.6093
.3621
.6034
.6761
1.571
.7771
.7708
.0984
.3227
1.395
.4553
.5818
.5092
.4711
.5016
0.1107 1.55
0.0993 1.5765
0.108044 1.584455
0.017038 0.235874
0.0611 0.8473
0.1561 2.2435
6.045611
6.341667
7.047146
6.939834
6.339998
5.987078
6.593009
6.116947
6.440836
6.349206
7.025466
6.325543
6.992819
7.151262
6.877990
6.957343
6.302040
6.894038
7
5.968353
7.597335
7.412710
7.738832
7.211141
7.218399
6.854014
7.130552
6.847697
6.578077
7.490333
6.300340
7.320178
6.836981
6.770950
8.403131
7.855144
7.068100
6.699649
6.125932
6.758547
6.852015
6.672882
7.141935
6.298763
6.832646
0.517126
5.968353
8.403131
          B- 44

-------
APPENDIX C

-------
TABLE C-l.  TABULATION OF MINUTE VENTILATION DATA
AUTHOR lvnr> KUR6ER of SPECIAL ACTIVITY ACTIVITY
SUtJCCTS CIRC'JKSTAXCES («;»/iinl TYPE*
;n:,;rci, H. (19731 26 Indnt,
Attrin:. 1. HVtOI 8 tttn »?l r»nqt 300
i:
t
it
a
12
a
u
a
12
a
it
4
7
7
7
Attrmd, M.il9i:
























300
40-4? 300
30-65 300
20-2' 450
30-39 450
450
455
too
too
too
too
730
730
730
750

























ft
R
R
R
R
R
R
II
R
R
R
R
R
R
R
ft
R
R
R
R
ft
R
*
R
ft
S
ft
R
t
R
k
R
R
f.
R
R
n
R
R
R
R
R
R
|
I
I
1
1
I
1
1
1
|
1
I
I
I
r
i
i
i
i
t
i
i
i
i
i
i
i
i
i
i
i
i
i
IS/FI
F
f
f
f
r
f
F
r
F
F
f
r
f
r
r
f
R
^
R
F
R
F
F
F
R
R
II
F
R
F
R
R
F
F
R
F
F
R
R
F
F
AGE lEISHT Ht!6H-
lyrl 11;. Ill
Bsa vt vi i
(tq.il il/nnl Run'
0.40 O.iS
0.41 0.72
0.42 0.76
0.43 0.80
0.44 0.84
0.4! 0.68
0.46 0.97
0.47 0.96
0.48 1.00
0.49 1.04
0.50 1.08
0.31 1.12
0.32 1.16
0.33 1.20
0.34 1.24
0.55 1.28
0.56 1.32
0.37 1.34
0.58 1.40
0.!9 1.44
0.60 1.18
o.ti !.«.;
0.42 1.56
0.63 l.ti
0.44 1.6!
0.65 1.49
0.64 1.73
0.47 1.77
o.to ;.-;
t.T; i!f'
0.7; i.«:
0.72 1.97
0.73 2.01
0.74 2.03
o.;; 2.0?
35
14
54
2«
35
44
'i
25

li
'a
25
33
44
34
I
4
4
4
4
t
f
3
3
3
5
5
t
6
t
4
4
7
7
7
7
7
a
a
a
23.3
22.0
24.1
29.4
34.2
29.2
TT «
33 0
40.9
It.?
43.5
48.:
48.:
50.0
53.7
39.3
41. a
43.3
32.3
40.4
32
32.3
31
30.9
42.6
38.9
33
41.9
33.9
43.3
33.5
38.9
49.2
44.1
51.4
48.2
33.3
59.3
31.2
36.7
t
r
y
1
>
y
»
y
y
r
t
y
y
i
y

























                        C-l

-------
                                       TABLE  C-l.    (continued)
 AUTHOt
                SUBJECTS
    , I9J2
Scout.)
 SCI
 (H/F)

  R
  II
  F
  F
  F
  F
  II
 F
 R
 F
 R
 F
 R
 F
 R
 R
 R
 F
 F
 R
 R
 R
 F
 R
 F
 ft
 F
 F
 F
R
*
                                                                                            PSA
                                                                                           ll«.I)
                                                        K
                                                        B
                                                        F
                                                        f
                                                        F
                                                        R
                                                        R
                                                        R
                                                        R
                                                        R
                                                       F
                                                       R
                                                       F
                                                       R
                                                       F
                                                                     10
                                                                     10
                                                                     10
                                                                     10
                                                                     10
                                                                     10
                                                                     10
                                                                     10
                                                                    I';
                                                                    10
                                                                    10
                                                                    16
                                                                    II
                                                                    I!
                                                                    11
                                                                    II
                                                                   II
                                                                   II
                                                                   ii
                                                                   II
                                                                   ;:
                                                                   i:
                                                                   12
                                                                   12

                                                                   12
                                                                   12
                                                                   12
                                                                   !2
         12
         12
         12
         12
         13
         13
        13
        13
        13
        13
        13
        13
        13
        i;
        i:
        13
        13
        13
        13
        13
        13
       14
       14
       ;<
       14
      V|
    (1/11(1)

      62.2
      60.7
      34.8
      67.6
        61
      63.4
      59.7
        62
      75.2
      55.8
      59.!
      a.s
      66.2
      62.6
      67.7
      68.9
      62.4
       60
     «6.2
     72.5
     74.4
     69.1
     71.1
     63.9
     62.9
     70.9
     54.:
                                          71.9
                                           10
                                          65.9
                                          70.«
                                          62.1
                                          69.2
                                          56.4
                                          75.:
                                         8i.9
                                         49.7
                                         18.:
                                         76.!
                                           75
                                         77.:
                                           'I
                                         65.!
                                         90.5
                                         56.1
Run'
   79.3
   IS. 7
   61.5
   41.4
   84.7
   64.9
   72.9
   72.5
   66.}
   58.1
    73
 102.3
   105
  73.5
  71.9
  11.4
  67.6
  72.1
 91.5
   84
 86.9
 92.9
100.6
   70
 80.8
 73.5
102.6
   83
119.6
 '7.1
82.9
                                               C-2

-------
TABLE C-l.  (continued)
AUTHOR Uttri KURBER ot SPECIAL ACTIVITY ACTIVITY SEl
SUBJECTS CIRCURSTAKeS (kpi/r.nl TW« (R/Fi
Aitrinc, 1952
(cant. 1













































































R
F
R
H
R
f
R
R
R
F
F
R
F
F
R
F
F
F
F
F
F
R
R
F
F
R
F
F
R
n
R
F
F
R
R
1
R
F
F
F
C
F
R
R
f
F
F
F
F
F
F
F
F
F
F
F
F
F
R
R
R
F
F
F
F
F
F
F
F
F
F
F
R
R
F
F
F
F
F
Ait IE16H1 KEI6.S!
lyr)  III
14
14
14
14
14
14
15
1!
15
15
15
15
15
1!
15
15
15
16
16
16
It
It
16
16
16
I!
16
;t
i'
i -
i?
17
17
13
IE
18
?r;
20
2*
rc
20
1C
41
t>
i. ',
21
2:
* •
21
2l
1 1
jl
?1
21
2)
*!
; ;
1 J
22
22
2:
22
22
27
22
22
22
22

22
22
22
23
23
23
23
23
*3
23
EISA vi vi i
(»?.ii ll/linl Run*
94
100.7
120.2
96.5
84.5
80.7
97.5
114.1
131.7
79.9
'J.I
110.8
88.9
66.4
140.3
97.1
93.4
98.1
102.9
86.:
90.S
79.6
91.8
119.1
73.6
132.2
82.7
95.=
8=.4
139.3
94.3
91.9
95.:
139.2
9?.:
123.7
12'. 4
84.;
Si. 6
ice.:
94.:
1C'.. 5
124.4
;U -
8=
'3.:
SI.'
14. 1
86.2
78.7
39.9
^7 7
96.''
'.07 '.
»2.9
104. 1
114. j
I M. *
129]:
100.'
153
77.2
83.7
73.1
84.8
88.7
94.1
91.2
98.6
91.2
97.6
104.1
111.3
113.7
91.8
83.7
85.6
77
106.2
         03

-------
TABLE C-l.  (continued)
AUTHOR If fir I WJR8E8 Ot
SUBJECTS
hiring1, 19*2
(cent.)









































l\
jl
21
2;
21
A»tr«ii4, P. 0.11961)




jjij.,, c utt; i?
i:
19
17
:c
i:
17
13
19
17
10
1!
Brunt, t.T. 11961- 7










SPECIAL ACTIVITY ACTIVITY SEI
CIRCURSTAMCES dpi/nut TYPE* 
gront 1
tugint R R
pront R
tug i At R
Mgini R R
ASE HEIGHT HE1SHT B5A Vt Vt i
(yr) Ikq) III (tg.ii ll/tinl R«
-------
TABLE C-l.  (continued)
AUTHOR lyeirl
Burnt, 1961
Icont.)










Ccov* C.O. '195j


































Croii, l.i. cl95J





























HUftBW of SPECIAL ACT1VIT»
SUBJECTS CIRCUftSIA«ES (ipi/tiM
pront
tupme
upint
pront
lupint
pront
lupine
pront
tupint
pront
upir-t
pront
i 35 tn'inti


































'I 56 lufjnti
42 full -ten




























ACTIVITY
TYPE*
R
ft
R
R
R
ft
R
R
R
R
R
R
R
R
£
R
ft
R
R
R
R
R
R
R
R
R
R
ft
R
R
ft
R
ft
R
R
R
ft
R
ft
R
R
ft
R
ft
ft
R
R
ft
R
R
R
R
ft
R
R
R
ft
R
ft
R
ft
ft
ft
R
ft
ft
ft
R
R
R
R
R
R
R
R
R
«
SE1
Irl/FI


ft


f



f





































ft
ft
ft

n
F
*
P
A,
ft
F
p
(
C
f
p
F
n
r
C
F
F
c
ft
ft
ft
F
ft

H
AEE
(rrl


0.096


0.011



0.038


0.009
0.001
0.001
0.001
C.003
0.001
0.001
O.COI
c.oo;
0.001
0.411
0.001
o.oo:
0.011
0.003
0.001
0.001
0.019
0.008
0.001
0.002
0.001
0.002
0.007
o.oo:
0.002
0.002
0.002
0.002
0.001
o.oo:
0.001
0.002
u.002
O.C.05
0.020
O.C'll
0.011
O.C22
0. ' * 1
0.005
0.030
(>.'••'.'
0.0' 3
O.i'il
0.01!
0.0'jS
0.405
0.0:4
O.Ola
0.024
O.l'O*
0.007
0.001
0.007
0.022
0.016
0.013
O.u09
0.001
0.004
0.022
0.001
0.001
o.jo;
«I3HI HEISHT
IkO.) ill


3.490


I'. 750



2.935


2.42
2.71
4.06
2.51
2.66
2.31
2.75
I. SB
3,06
2.62
2 29
2.96
2.8!
2.28
2.42
2.25
2.85
3.06
2. '3
2.50
2.90
2.49
2.29
2.65
2.82
3.75
3.61
1.76
3.32
2.63
2.35
2.53
3.09
1.94
2.04
3.01
:!o6
3 12
:.:c
2. '2
j. *6
T. 13
".Ct
:-.'j.
2.M
T 06
:'.i:
3.40
" 97
3.26
3. 37
t.33
7 72
3.80
3 '''3
7.86
3.32
3.60
2.90
3.91
3.8!
3.23
3.80
3.30
2.64
9SA Vt Vt i
(tq.i) ll/iin) Bun'
0.536
0.503
0.8S;
0.733
0.84i
0.5?0
0.586
0.564
0.599
0.780
0.766
0.714
0.454
0.47;
0.770
C.330
0.552
0.520
0.515
0.290
0.46!
0.584
0.405
0.569
0.458
0.420
0.463
0.533
0.4o«
0.610
0.564
0.402
0.746
0.345
0.421

o'.sso
0.579
0.579
0.333
0.48!
0.60''
0.4!5
0.453
0.564
0.480
..HI
i.352
o'.609
0.459
0.54"
6.4:9
J.4I5
'.383
"/.'*;
i.564
0.39:
'.66'
i. I'.'l
0.426
.\«33
'.'.478
•'.5Ci
0.679
0.504
0.515
0.497
0.404
0.127
0.5::
0.516
0.467
0.434
0.457
0.50S
0.511
0.364
           C-5

-------
TABLE C-l.  (continued)
JUTHC* lyii'i 1UK9ER e« SPECIAL HCT1VI!'
SUBJECTS CIRCUnSTMCES ikpi/m
C'OH l'5~
Icor.t.l















II pmittirt



















Cuqill. 0. il?5' 19 prtfnmt ntt-3 10
* t If i
•iik-: ic
• tin
ritt-3 ic
• » |r |
wit-: 10
• t»fi
rut-; •:
1 tert
•ilt-3 10
• tifi
rnt-j 10
• ttri
•ilk-3 1C
' ',!'•
rut-: •:
* '.t't
•ill'? tc
• t(f 1
rut-? ic
' '.irt
•i!>-3 ic
1 tin
fllt-J II
1 '.»'•
•ilk -3 •:
• t»ri
rtlt-3 1C
• : ir •
Mlk-3 10
• tff»
rtit-3 10
• tin
•ilk-3 to

rtit-3 to
• ttri
•iU-3 to
' lt'»
g ACT iv • *^
H! IiPEi
I!
R
R
II
fc
R
R
R
R
P
(
R
R
R
fl
R
R
R
R
R
R
F
It
R
R
R
*
R
P
R
R
i,
k
e
9
P
&
•
R
R
L
•fc
p
F.
L
L
C
1*
L
I
R
R
L
I
R
a
L
L
;
R
L
I
ft
R
^
L
R
9
L
W
R
R
L
L
R
R
!.
L
SEI
n


it
K
n
K
F
n
F
F
F

V
f
F
H
r
F

P
H
N
F

It
H
F
•


It
c

•

c
F
F
F
r
c
F
F
F
F
^
F
F
f
F
c
F
C
I
f
r
f
I
F
*
f
F
F
F
;
;
c
F
r
C
C
F
F
F
F
•
A8[ V
If.
O.M1
O.OC4
O.OC4
o.c:;
0.020
6.0: i
0.005
o.on
0.013
0.005
O.C'iO
0.0:1
0.03C
0.01?
0.0:2
u.Oll
0.015
0.003
O.C!4
0.001
0.007
0.015
0.0:i
0.003
0.0;4
ii.03?
5.00:
0.032
C.C08
0.014
0.020
0.034
0.028
o.o:;
('i.QTe
o.oi«
0.02!
o.c::
27
22
2:
2*
2;
~*
25
25
;<
*;
;4
24
* *
^*

i.
2'
" ?
* 1
"
^l
2i
2 1
^
;9
!'
1?
19
-e
2*
•^
2!
2;
21
21
21
17
17
1?
;"
EISHT NE1SHT
(k?l (,;
3.4?
3.37
* 4<>
3.0?
3.01
2.5:
3.37
3.2?
3.77

4'. 14
3.54
3.80
3.32
3.37
3.77
2.4?
2.04
1 ?0
2.04
1.7?
1.80
1.6!
1.64
Lit
l.?6
1.47
2.0^
;.si
1.6"
i.'i
2.0C
1.3"
',.??
1.8:
:.ci
:.ii








































PSf Vt v» i
ltq.i> li/iini Bun1
0.117
0.51?
o.s::
0.541
0.528
0.456
0.480
0.627
0.507
O.J3!
0.463
o.:?:
0.54;
0.633
0.4?7
0.476
0.32?
0.335
0.364
0.3i7
0.32:
0.251
0.245
0.375
0.399
0.317
0.45t
0.322
'•.2-3
C.336
J.374
0.334
0.427
0.277
0.413
0.343
0.280
0.37E
7.0C
9 f^
14.50
te.io
7.84
14.74
16. OC
24.20
'.'"
? "o
17 '.30
1? '-0
t,.a:
9, 1;
2l'.00
29 . 4i>
6 C?
Me
1 4. C ,
25 1 '
e!»7
? 53
uiac
17.00
7 ?:
12! v.'
14.SC.
l?.50
'.'9
11. In
14.70
1?.00
9.10
10.10
15.80
15.20
6.?i
10.90
13. '0
20.40
          C-6

-------
TABLE C-l.  (continued)
Ml HOT Ivttrl NUtttR fl< SPECIAL ACTIVITY ACTIVITY SEI AGE HEI6HT HEISHT ISA Vt Vt 1
SUBJECTS CIRCUMSTANCES (kot/tin) TYPE* ("'Fl 
•
4-9 to
"
Fillt?, 5. ".954) 53 19 «t



rut f
Mlk L
f 20 15.10

F .62 8.70
f .42 14.50
rut R F .43 9.13
Mlk L
rtit i
F .43 14.90
F .45 10.00
Mlk L F .45 15.20
rttt
Mlk 1
F .«7 i.::
f ,s7 14.20
rut R F .70 15.33
Mlk L f .'0 17.10
rtit f
f .72 11.02
Mlk t. F .72 19.70
rttt 1
Mlk I
F .73 11.02
F .73 20.30
rut R F .4! 9.48
Mlk I
rtit 1
F .45 IE. 10
F 1.4'. 7.43
Mlk L F 1.6: 15.00
rttt


(ill Vt 1 37 Cl















34 f 3.5tph/l















llariflt
» 3.5«hMO '•
? 3.5t?r
-------
TABLE C-l.  (continued)
AUTWJ& lylirl WRfEfi s» SPECIAL ACT1V1T* HCT1V1T1
SUBJECTS CIKUNSTAKES Ikpi/nnl TYPE*
Fillty, 1«S4
Icwt.)


























j'.Sipft/IO
S.Uph/ 8
i.Sipli'10
3.5*5^/10
:.5iph/l2
).Siph/10
3. Sipli / B
3.5*ph/ 8
3.5wh/IO
3.5ipf>M2
S.Stc^i/ 12
3.5§pli/10
3.5iph/tO
j'.jiph/ 8
3.5apft/ 8
3.5tpl>/!2
3.SipAH2
3iSiph/l2
3.S•(^' 8
J« ^f ph/ 10
J.jBph/ 8
j,3§ph/ g
3.*Kft/ 8
:!jipn/l2

3 liph/ 9
:!uoh/ e


























I.'.ior,/ B
Fo.lf, «. 11951.' 35 17 hfilth>
















ASTHRA ii Id
11 Id
Mdtrttt
MVtri
Iff iy.H. lodiriti
»t»fr»
5f»«r«
ttotre
»»»»'»
CCR6E5TJVE liftiu:
HEAdT «oae'4t»
FAILURE tt««ri
' ie»»rr
' Jlvlfl
8ROHCHIECTASIS
SAP.COIO C*ST
PUROMRt F1BSOSIS
POST-PREURONECTOR1
• •
oidhokf. S. ll<»* :<> aq> f»n«i 9.5-12
20
^
14 iqt rinqt 12-14.5
20
M
5

14 556 1.05-1.19
14

;
N
R
R
R
R
R
N
R






R
R
R

R
R
R
N
R
R
R

















fi
R
R
K
R
R
R
ft
R
R
R
ft
R
R
ft
R
e
R
1)
R
R
*
h,- i.
4./: L
6'Jb R
200 L
400 R
o\>0 I
800 1
100; i
:<•* L
40? R
2''"'.' L
40; fl
SE1
IR;F!
R
R
H
R
R
R
R
R
R
R
II
R
R
R
R
K
R
R
R
K
R
R
n
R
R
R
fl
n
R













R
II
R
R
F
F
R
H
R
H
n
n
n
R
n
F
F
R
F
F
R
R
R
n
fl
R
N
«
R
H
R
R
R
R
R
A6V K1SHT HEIGHT BSA
Ur) Ikql III I50.il I
23
35
f«
WJ
32
37
40
44
44
45
46
49
50
5>
J4
re
59
34
31
^»
4*'
:a
38
5^
4;
50
45
32
s:
53
32
!<0
26
34
30
27
30
35
28
22
22
5:
56
61
65
65
61
81
34
JJ
16
41
70
58
59
60
66
4"
39
39
36
56
22
26
34
65
54
11.1 36.7 .4', 1.28
11.1 36.7 .43 1.26
11. 1 :6.7 .43 .
-------
TABLE C-l.  (continued)
AUTHOR  R
439 R R
0 » F
45? R F
j t •
lyr)










0.007
0.034
n
13
13
13
13
13
n
j*
n
13
14
14
i;
i;
14
14
12
12
15
15
15
i:
12
12
13
13
15
13
13
13
14
14
14
14
i;
12
12
12
14
14
12
12
15
15
15
15
12
12
14
14
12
12
13
13
13
j*
14
14
13
i:
15
15
13
i;
14
KISMT HEIEHT
(to.) HI










3.1
2.1
59.0 1.77
59,0 1.77
48.
48.
44.
44.
34.
j6.
C4.
44.
61.
61.
41.
43.
71.
71.
47.
47.
77.
77.
3^.
55.
44.
44.
49.
49.
65.
43.
33.
55.
33.
53.
51.
51.
1.60
1.60
1.49
1 49
1.50
1.50
l.BC
1.80
1.79
1.79
1.60
1.60
1.79
1.79
1.45
1.45
1.89
1.89
1.56
1.54
1.37
1.37
1.45
1.65
1.73
1.73
1.60
1.60
1.57
1.37
1.68
1.68
:2.7 1.50
32.7 i.SO
49.0 1.63
49.0 1.43
45.4 1.52
45.4 1.52
49.4 1.57
49.4 1.57
63.5 1.68
63.5 1.43
89.8 1.77
if. a 1.77
58.5 1.32
38.5 1.32
61.2 1.71
41.2 1.71
54.0 i.:a
34. C 1.38
51.2 1.69
51.2 1.69
50.: 1.69
50.5 1.68
63.5 1.77
63.5 1.77
43.! 1.60
43.5 1.60
54.4 1.64
54.4 1.64
59.0 1.73
•'.(• 1.75
72. e 1.83
Uq.H
1.26
1.43
.43
.43
.43
.70
.70
.70
.70
.70



































































Vi
(I/tin)
48.5
25.0
3J.2
31.5
4t.9
27.5
J4.4
45.8
t5.8
68.1
1.21
1.54
11.5
28.8
15.4
38.1
5.1
29. <•
J. .
14.4
11.4
18.5
23.7
49.4
ti. :
21. e
10.3
40.1
6.2
19.6
14.4
48.4
14.4
23.7
7.2
37.1
13.4
J7.1
!3.4
42.2
11.:
27.8

5l!9
3.1
4;.:
4.1
19.6
7.:
30. 9
10.3
51.9
7.2
20.4
9.3
44.3
9.3
27.8
7.2
18.3
12.4
42.2
11.3
25.7
12.4
48.4
8.2
34.0
27.6
39.;
9.5
44.:
24.6
52.9
7.2
!-.''. 9
U.3
Vl 1
Run1
Y
Y
Y
Y

Y
Y
Y
Y
Y



































































         C-9

-------
TABLE C-l.  (continued)
AUTHOR lytiri K!WK ol SPECIAL ACTIVITY ACTIVITY
SUBJECTS C1RCURSTARCES (kpi/iinl TYPE*
H»ckr,iv, 1983 S3)
(COP*..) 0
459
0
439
0
612
0
367
0
439

&73
0
»73
j
el2
^ 0

' 0
>73
tj
.59
tt
"e"
0
3c7
0
til

j!2
g
551
C
'67
' 0
439
0
351
0
673
0
SSI
0
•59
0
673
C
673
0
919
0
761
mnior , -. il9»v .19 lot rinnt 0
19 116-25.' 305
1 5 o \ (•
19 911
H item •«.: 1200
"ijas, g. ii9o7 T «qe < 40 3uO
9 600
5 ICO
9 iqt > 43 30C
9 600
9 900
'  40 300
9 600
9 9-jy
T «qt , 4; }CO
) 6UC
9 !•}!.
.urtulc. .. :":• i, U41 aqi
Jt'.n. f. . :'-il. •;« r.r.ti ::.-»v :';C
o?
kr.r.
:
fl
R
R
R
R
R
I
R
R
1)
R
ft
I
R
1
R
I
g
fl
R
I
R
B
R
N
R
B
R
1
H
1
ft
B
ti
B
R
B
R
H
R
I
R
p
R
R
R
1
R
1
R
I
R
I
j,
B
I
I
I
t.
H
I
R
R
t
B
i|
i
R
R
1
I
I

•
i
SEI
(H/FI
R
R
H
R
B
R
R
F
F
F
F
H
R
B
B
B
r,
t
F
M
B
B
P
f
;
B
B
II
p
If
p
n
B
F
C
R
P.
C
F
R
R
P
R
B
fl
R
R
R
n
R
R
R
R
B
B
ft
ft
B
R
14
fl
R
B
B
F
F
C
F
F
r
p.
P
r
•
-
AGE HEIGHT HEIGHT BSA V( V» j
lyrl U;l III UQ.I) (l/iinl Rtin''
14
14
14
13
13
14
14
14
14
15

is
15

1
1
1
1
1
1
i
i -
;2
14
14
i:
i:
14
14
\i
14
14
M
13
1 *
13
i:
14
14
14
'4
14
14
13
i:
13
13
i (
is
14
14
I!
13
2;
21
2:
2 1
r
31. v
31.0
31 0
;?•'

'-!'• '

2s!o
;•;.:'
s:.:
5T.2
c • •>
••




72.6
44.4
44.4
43.1
43.1
65.8

?o!8
50.8
65.8
65.8
70 ^
7t'.3
65.5
6^ '
40.8
40.3
29.1
29.5
6e 9
«.'
39.;
-? ;';
31.:
si.:
"6 3
:-4.3
e*.5
»t , j
'" j
72. s
;4.-:.
34.0
34.-)
74. 0

34.4
49.4
49.4
61 c
65. i
53.3
Iff T
J:!i
4* I
77.1
77.1
74.9
74.8
36.7
36.7
50.8
3C.6





78 t
76it
78.6
80.3
80.3
30.3
39.8
cc 5
::9'.6
i" C
iT.O
*:'..'•





1.93
1.65
1.65
1.37
1.57
1.70
1.70
1.60
1.60
1.60
1.60
1.30
1.30
1.76
1.79
1.47
1.47
1 3*
i'.33
S.75
I. "5
1 "
.31
.63 ---
.63
1.47
1.47
1 4c
'..CO
1.75
:.73
; 45
1.45
1.40
1.40

1.52
1.69
1 &c
1.73
1.78
1.73
1.73
1.55
; 11
1.73
1.73
1.79
1.79
1.78
1.78
1.55
1.55





1.79 M
1.79 .9t
1.79 .9»
1.74 .95
1.74 .9'
.74 .93
.i8 .6'
.aB l.c;
.68 I.e-
.66 1.;'
.tt '..ie
.ct '..;'•





43.3
7.2
32.9
9.3
26.8
6.2
26.3
3.1
21.6
6.2
26.8
3.1
37.!
7.2
46.3
3.1
37.1
7.2
46.3
3.1
37.:
".i
la.!
'. '.
*•". '
7.2
46.:
i. '.
3". 1
* § ^

-------
                                        TABLE  C-l.     (continued)
irtvinc (,„,. ••.•;.2
         ::.o
         60.:
         6;.!

         CO. '
         74.9
         75.6

           66
           66
           66
           He
           66
                                                                                2.04

                                                                                :.77
                                                                                2.65
                                                                                2.44
                                                                                2.93

                                                                                4.2C
                                                                                1.9C
                                                                                 3.06

                                                                                 2.02
                                                                                 3.12
2.51

:.s!

3.30

2.16
 .74
 .13
 .21
 .23
 .16

2.34
2.2!
        1.63

        1.70

        1.70

        1.5!

        1.73

        1.6!

        1.73

        1.63

        I.Si

        1.63

        I.?./
  1.31'
  1.8C
  1.7*
  1.5<
  1.70
   .76
   .43
   .51
   .72
   .86
   .54
   .oO
   .89
                                                                                                  .36
                                                                                                  .ee
   22. o
   33.0
   46.0

   16.5
   14.1
   16.1
   15.6
    9.4
    7.6
   M.4
    6.9
   15.0
   15.
    4.
    6.
   14.
    9.
    9.
    6.

    ?'.

   10.
   10.
    <,.

   ;.?
   * i
   6.'2
   r i

   M

  0.75
  0.5:
          0.41
          0.8«
          i.:;

          6i46e

          ?•?:?
          0°.353
          I.GT6
          1.014

          0'.772
          0.95!
          0.996
          0.789
          1.48'
          0.344
          0.468
          O.:K>
          0.716
          0.876
          0..-9B
          0.921
          0.664
          0,660
          0.702
          0.718
          0.693
          0.672
          0.352
          0.670
          0.505
          1.078
          0.64!
          0.837
          0.740
          0.395
          0.376
          0.547
          0.36!
                                                           C-ll

-------
TABLE C-l.  (continued)
AUTHOR lynn MJHEER o< srccui ACTIVITY ACTIVITY SEI
SU&JECTS CHCUHSTAIiCES dpi/lift) TYPE* U/FI
Ntlion, I9«2
Icont.)

Hm-GnrttllKi- 14 Frnnwt '-12 >kt
2» i3-i»
4J 17-20
44 jj-24
4. 2J-26
40 29-J2
4: H-J»
•2 17-40
2? PutrptMl 1 k
J2 s ; »
26 3k
4 ' 4-j k
it • 7-14 •
20 ftoiiprtqnint
22 litl/prir.Q,ri«i«it
23 ' /tulti;rtvi04f
PutrptMl
II Priiigirii
10 IHiltlBtnt
'oeiiiion. i.ilfje 6 utn iriti
6 »ilutt Mtrilt
4 III. 14 1
!•:• in*!
10 io:i'ltt
9 until
II Irtit
11 MtftMtt
B iinul
12 irttt
12 lOOtri'.f
6 iii ml
10 I'tit
1! i33tr*U
9 IIII 111
10 «rit>.
1C Klf»tl
10 KIKil
10 Irtit
10 Mtftritt
4 Ulllil
a trrtt
9 ndtritt
i ttllMl
a «r«t
a iOHirjH
7 Mlllil
3 Irtit
3 todtritt
3 Mllill
1 Irttt
SMtoi. C. 11981' 9 Control













• Hrorrttitriic





















F
F
F
F
F
F
F
F
F
F
F
F
F
P
F
F

F
f
o t n
tt L «
i30 1. «
0 R n
171 1. s
29! L c
0
j::
»20
0
eoo
1330
0
830
U05
0
995
1700
0
935
us:
0
820
1135
0
79'
9«5
0
675
721
0
fl
n
N
n
s
R
H
n
fl
i«
it
n
H
R
H
R
*
B
A
n
n
n
N
R
n
L It
L »
L K
L K
I
I
L
^
L
L
L
I
L
L 11
L »
L "
AGE «I6HI HEICNT
lyr) (k;) (tl
0.002
o.o je
O.OC4
0.002
0.001
0.001
0.003
0.002
0.004
0.003
















o.u
o.O
6.1
ii.5
10.!
10.4
l«.l
l«.l
14.1
17.4
17.4
19.0
4.9
4.3
5.3
J.I
« •
Z5J
44.5
44.6
44.3
J2.1
11.5
30.7
63.1
63.0
62.7
73.0
75.0
75.0
91.0
















2.16
1.70
2.36
3.31
:.24
3.13
:.4B
2.89
33.5
si.:
3B.9
oO.l
62.4
63.0
66. S
66. B
60.:
39. »
56.2
56. C
oci.:
i:.s
63.1
o«.:

::.*
«;.«
:o.:
:o.:
11. 0
2V5
29.!
30.0
!!.S
5!. a
V.5
63.4
63.4
67. S
73.1
72.5
72.4
'9.3
7S.J
79. J
74.7
74.7
74.1
71.0
70.6
63.6
67.4
67.4
69.3
67.4
67.4
67.4
64.4
72.30
72.10
t6.50
66.50
75.30
75.30
53.95
55.9!
74.90
18.33
74.30
69.00
69.00
73.15
?:. 30
72.30


















I.It


1.57


1.46


1.79


1.79


1.77


1.77


1.71


1.72


1.70


1.64
.83
.33
.33
.83
.31
.81
.80
.30
.78
.66
.79
.73
.73
.72
.83
.8:
ISA Vt Vt I
Ufl.l' ll/linl Hun'


1.33
1.37
1.60
1.62
1.6!
1.67
1.70
1.6»
1.6:
1.60
1.60
1.38
1.61
1.36
1.64
1.6e

I.!:
1.6'
0.6C


1.06


1.9!


1.34


:.9;


1.96


1.93


1.83


1.79


1.74


1.70
1.93
1.93
1.37
1.87
1.94
1.94
1.71
1.71
1.90
1.64
1.93
I.B:
1.82
1.36
1.9J
1.93
O.S44
0.621
0.129
1.067
0.362
0.544
0.533
0.553
0.475
0.723
4.33
5.04
5.2:
3:6
5.80
6.05
6.17
5.16
4.66
«.;o
4.2C
4.40
4.63
6.78
6.70

5.17
5.::
0.1
21.2
13.3
7.1
27.;
51.4
7.;
42.9
9:.:
7.3
48.6
121.0
6.8
47.«
113.2
7.!
!2.=
122.4
3.1
55.7
97.6
7.4
43.0
86.3
6.8
52.8
80.3
4.9
47.6
47.7
!.7
3.85
4.22
4.00
2.92
3.72
3.60
3.32
4.60
3.66
5.16
4.77
3.54
3.28
3.93
5.70
5.«4


T
Y
Y
Y
Y
Y
Y
Y
t
V
Y
V
Y
Y
V
V

•
T
\
1
t
1
1
1
Y
Y
f
Y
f
Y
Y
t
)
Y
!
Y
Y
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

















            C-12

-------
                                 TABLE C-l.    (continued)
  AUTHOR lyt»rl
S»it on. 1981
  (cont.)
ir.oci, it.!. (19;?.
     «.«. tins.
     f.R.  i|96vi
     , C. (194U
 Thggtn, J.S.II96?
MJH8EA of
SUBJECTS












30
50
50
50
50
50
50
5u
46
46
27 t
27
39
38
21
< 15















5
























5. 7




SPECIAL
CIRCUHSTAlCtS












141 11.73-12.
rw(t
1J.75-I4.

13.73-16.

18.00-26.

27.00-43.

jtRMO,t




«i«in;»















triidull
HI 119-261























Kin U^M
ACTIVITY ACTIVITY
(kpt/iinl TYPE*
L
I
L
I
L
I
L
L
I
I
I
L
24 0 R
0 R
24 0 .R
0 R
24 0 R
0 R
24

00

9




fi
(r
ft
R
R
£










0
300
600
700
800
0
500
tOO
700
800
0
300
600
700
800
0
273 L
400 It
500 It
600 It
0 R
300 1.
400 It
500 H
600 H
L
•iUtt taotntf H
llottriti H
191 Htny
21-40 Htm
I
I
SCI AK ttlSHT KE16KT
(H/F) (yrl (k;l (i)
II 64.50 .81
n 64.50 .a:
H 75.30 .81
H 73.30 .81
53.95 .80
53.93 .80
74.90 .78
38.35 .66
74.50 .79
69.00 .73
69.00 .73
73.15 .72
it 12.0
f 12.0
R 14.0
F 14.0
H 16.1
F 16.0
H 22.0
F 22.0
» 27.4
F ;g.8
H 45
f 15
" tl
R 75
s 35
F ;.4V
1 .'•?
' . \t

( '.li
t .18
F _;.s
ft i.6c
H 2.41
F 3.2*
t 2.»8
F 3.96
F 3.18
F 2.46
F !.3e
F
„
H
n
n
n























n
n
ISA Vi
Itq.i) (l/iul
.87 3.85
.87 2.99
.94 3.68
.94 3.23
.71 6.72
.71 8.92
.90 4.19
.64 9.49
.93 6.87
.82 7.16
.82 6.96
.86 5.23
16.3
16.1
17.0
13.6
13.6
15.2
14.0
14.7
13.7
14.4
it.a:
16.?:
it. 9:
IS. 77
18.22
0.8J7
0.60'
O.c'
0.74?
0.61!
O.B51
0.4"
0.977
•3.55
0.7=6
o.;:
6.819
0.68
0.574
0.579

5.6
27.3
30.4
34.6
39.3
6.2
27.3
32.1
36.0
44.3
10.3
30.9
34.6
38.9
43.2
4.0
13.9
23.2
28.7
31.8
3.1
14. 8
14.4
20.6
17.3
23.4
33.6
46.9
45.7
57.3
Vt i
IttilO












y
Y
Y
Y
f





1
t
>
T
t









































y
Y
Y
Y
I
                                             C-13
                                                                                                            _

-------
                               TABLE C-l.    (continued)
AUTHOR lyiir)
Mill. J.6. 119571









Illiari.J.H.lW






WJK8ED of SPECIAL ACTIVITt
SUBJECTS C1RCUASTAIICES (kp*/iii>l








MM tiUlf







t
4
20 irquttir
20 Mdinq
21 tut

15
15
14
11









352
411
488





0

140
210
560
840
1090
1340
1430
1500
tic
tie
tic
4CO
750
900
1050
• 1200
ACTIVITY SEI WE
TYPE* IR'FI lyrl
II R 32

L
I
II







R
r
i
i
i
8.5
10.4
J* 4
9.0
9.0
10.2
11.7
12.0
HEIGHT
Ikq)
74.3









;?!o
49.0
27.4
30.4
37.2
45.8
49.7
HEIGHT
III
1.79









M5
.59
.34
.35
.42
.55
:.•'
BSA
(to.. i)
1.93









1.06
1.21
1.47
1.02
1.09
1.22
1.42
1.49
Vl
ll/linl
4.7
18.7
22.4
24.7
37.3
48.8
41.9
84.1
88.8
93.1
52.7
59.5
70.1
4«.5
49.9
41.3
45.9
79.9
Vl i
Hun?
Y
1






Y
t
Y
Y
Y
r
f
Y
Y
Y
•Sti t»«t lor trtCMttioit o* MCfi lutfior i boundt on tht »iri3ui tctivity tiptt.

R
   liont
» > I00ir UllMl
Y « >lt
                                               C-14

-------
APPENDIX D
            TV,

-------
                      ACTIVITY PATTERNS FOR NAAQS

          EXPOSURE MODEL ANALYSIS OF CARBON MONOXIDE EXPOSURE*
     This document is a supplement to a report on the application of the
NAAQS Exposure Model (NEM) to carbon  monoxide.  NEM  simulates  the air
pollutant concentration expected to occur in selected areas within a
study region under specified regulatory scenarios, adjusts the estimates
to account for an exhaustive set of microenvironments,  and simulates
typical movements of population subgroups through the areas and
microenvironments.

     For the NEMS analysis of carbon monoxide, activity patterns were
described for 56 population subgroups with hourly assignments  to a
microenvironment and an exercise level for typical weekdays, Saturdays,
and Sundays.  The 56  subgroups  listed in  Table 1  were obtained by
dividing age-occupation groups into three to six subgroups on the basis
of demographic variables that could affect exposure, such as commuting
time, work shift, work location, age, and degree of mobility.   The
population of each age-occupation group was apportioned among  its
constituent subgroups according to demographic statistics obtained from
the Bureau of Census and other sources.   Whenever possible, the activity
patterns developed for the subgroups were based on actual human activity
data.  Because such data are  limited  to a small number of studies
initiated for other purposes, many simplifying assumptions were made in
constructing the activity patterns.  For  example, retired persons with
limited mobility were assigned to  the outdoor microenvironment for fewer
hours than retired persons with full  mobility. Housewives with school-
age children at home were assigned to the transportation vehicle
microenvironment more often than housewives with no children  at home.
In each case, an attempt  was made to  construct an activity pattern which
was consistent with intuitive expectations of what members of  that
subgroup would do on a typical weekday, Saturday, or Sunday.

     Following Table 1 are tables presenting the activity patterns
associated with each of the 56 population subgroups.  At the top of each
table is a label indicating the age-occupation group, the subgroup, and
the percentage of the age-occupation group falling  into  the subgroup.
In the body of the table  are hourly assignments to locations,
microenvironments, and activity levels for weekdays, Saturdays, and
Sundays.  Note that  the hour  designated  "1 ajn."  is  the  hour which ends
at 1 a.m.

*Johnson, T.  Activity Patterns for NEM Analysis of Carbon Monoxide
 Exposure.  Prepared by PEDCO Environmental,  Inc.  for Office  of Air
 Quality Planning  and Standards,  U.S. Environmental Protection Agency,
 Research Triangle Park,  North Carolina,  October 1982.

                                    D-l

-------
                 TABLE 1.  DESCRIPTION AND APPORTIONMENT OF
                        ACTIVITY PATTERN SUBGROUPS
Age-occupation group
Students 18 and over



Managers and professionals





Sales workers




Clerical and kindred workers









Craftsmen and kindred
workers






Operatives and laborers







Subgroup
Code3
Oil
012
013
014
021

022
023

024
031
032
033
034
035
041

042

043

044

045
046
051

052

053
054
055
056
061

062

063
064
065
066
Description
<30 min commute, 8 a.m. class
<30 min commute, 9 a.m. class
>30 min commute, 8 a.m. class
>30 min commute, 9 a.m. class
<30 min commute, single family
house
<30 min commute, others
>30 min commute, single family
house
>30 min commute, others
Indoor work, <30 min commute
Indoor work, >30 min commute
Outdoor work
Indoor and outdoor work
Traveling
Indoor work, 1st shift, <30 min
commute
Indoor work, 1st shift, >30 min
commute
Indoor work, 2nd shift, <30 min
commute
Indoor work, 2nd shift, >30 min
commute
Outdoor work
Indoor and outdoor work
Indoor work, 1st shift, <30 min
commute
Indoor work, 1st shift, >30 min
commute
Indoor work, 2nd shift
Indoor work, 3rd shift
Outdoor work
Indoor and outdoor work
Indoor work, 1st shift, <30 min
commute
Indoor work, 1st shift, >30 min
commute
Indoor work, 2nd shift
Indoor work, 3rd shift
Outdoor work
Work in motor vehicle
Percent
23
45
11
21

47
21

22
10
43
21
5
9
22

56

26

9

4
1
4

50

24
10
2
4
10

39

18
6
3
18
16
(continued)'
D-2

-------
TABLE 1 (continued)
Aqe-occupation group
Service, military, and
private household workers






Housewives


Unemployed and retired





Children less than 5




Children 5 to 17










Subgroup
Code3
081

082

083
084
085
086
091
092
093
101
102
103
104
105
106
111
112
113
114

121

122

123

124
125

126

Description
Service, day time work, <30 min
commute
Service, day time work, >30 min
commute
Service, night time
Service, in motor vehicle
Military
Private household
No children at home
Some children <13
No children <13, some 13 to 18
Unemployed, job hunting
Unemployed, not job hunting
Disabled
Retired, full mobility
Retired, limited mobility
Retired, confined indoors
0 to 12 months
13 to 24 months
25 to 36 months
37 to 60 months
.
Elementary school, <30 min
commute
Elementary school, >30 min
commute, walk or bike
Elementary school, >30 min
commute, vehicle
High school, <30 min commute
High school, >30 min commute,
walk or bike
High school, >30 min commute,
vehicle
Percent

36

17
22
3
14
8
42
49
9
20
24
20
30
4
2
21
20
20
39


56

4

7
26

2

5
 First two digits indicate age-occupation group,  third  digit  indicates
 subgroup.
                                     D-3

-------
           ACTIVITY PATTERMS b Y A6E-OCCoPATl0*  S
A-0 GROUP: 1—Students age  18*      SubGROUP:1
PCT
SU8GROUP:23
DAY OF TIKE LuCATION/MICRGENVIRuNMENT/ACTlVlTY-LEVEL BY
4&EK OF DAY 1234567C91G11
•EEKDAYS Al* H
•*
1
PM H
2
1
SATURJAY AC H
2
1
PM H
i.
1
SUNCAY AH H
. -»
L.
1
PW H
T
^
1
LOCATION CODES: H=ho«
HICROENVIRONHENT CODE
1 = kork or school
k = roadside
H
2
1
H
1
1
h
2
1
h
i
1
H
2
1
H
2
1
e U
S:
2 =
5 =
H
2
1
H
1
1
H
2
1
H
5
3
H
2
1
H
5
3
=«or

ho>e
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
5
2
k

o r o
H
2
1
H
b
2
H
2
1
H
L
\
H
2
1
H
2
1


the
H
2
1
H
2
1
ri
L
1
H
2
1
H
2
1
N
2
1


r
out coo rs
H
2
1
h
4l
1
H
2
1
h
f.
1
H
2
1
H
(.
\


3
6
H
3
1
H
2
1
H
2
1
h
^>
1
H
2
1
H
2
1


= t r
= ki
H
1
1
H
2
1
H
2
1
H
2
2
H
2
1
H
1
1


anspo
tchen
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1


rt

H
5
3
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1


vehic

HOUR
12
H
1
1
H
2
1
H
3
1
H
t.
1
H
2
1
H
2
1


le

  ACTIVITY  LEVELS:  1=lu-   2=nediuB  3=high
                                    D-A

-------
           ACTIVITY PATTERNS  BY  AfcErOCCbPATlOS SUbSROUP


A-0 GROUP: 1 — Students  age  18*     SUbGROllP:2    PCT  IN  SUBGROUP:^?
DAY OF TIME LOCATION/HICR GEN VI RONHENT /ACTIVITY -LEV
WEEK OF DAY 123^5676910
«EEKDAYS AH H
2
1
P« H
2
1
SATURDAY A!" H
2
1
P* H
t
1
SUNDAY AM H
i
1
Pfc H
2
1
H
2
1
H
3
2
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
5
3
H
2
1
H
b
3
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
5

H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
H
i.
1
H
i
1
H
4,
1
H
i
1
H
i
1
H
2
1
H
c
1
H
2
1
H
2
1
H
2.
1
H
2
1
H
2
1
H
1
1
H
2
1
H
1
1
H
t
1
H
2
1
H
2
1
H
1
1
H
1
1
H
2
1
H
2
1
H
Ic.
2
H
2
1
H
2
1
EL BY HOUH
11 12
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
3
H
2
1
H
5
2
H
2
1
H
5
1
H
2
\
 LOCATION CODES:  H=hoee   U=vork

 NICROEN^IRONRENT CODES:
 1 -  tiork or  school     2 = hoae or other    3  =  transport  vehicle
 4 =  roadside           5 = outdoors   '     6  =  kitchen

 ACTIVITY LEVELS: 1=lc-   2=aediu«  3=high
                                   D-5

-------
           ACTIVITY PATTEkNS  bY  A bE-OCC uPATl Of, SUbGkOUP


A-o GROUP: 1—Stuoents age  13*      SUfaGROUP:3    PCT  IN  SU8«ROUP:11
DAY OF TIr*E LOCATION/niCROEN
WEEK CF DAY 1 2 3 H
-EEKDAYS A*- H
2
1
PM *
4.
1
SATURDAY A.-* H
i.
1
PM H
2
1
SUNDAY AM H
t.
1
9 n H
2
1
H
2
1
h
1
1
H
2
1
H
2
1
H
2
1
H
5
1
H
2
1
h
c
1
H
2
1
H
5
3
H
2
1
H
2
1
H
2
1
^
1
1
H
2
1
H
5
2
H
2
1
H
5
2
VI F.ONMEN
5 &
H
2
1
fa
3
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
n
f.
1
H
2
1
H
2
1
H
2
1
H
2
1
T/ACTIV1TY-LEVEL BY
7 £ 9 10 11
h
2
1
H
1*
3
H
2
1
H
t.
1
h
2
1
H
t.
1
H
3
1
H
l_
1
h
2
1
H
2
1
H
2
1
H
2
1
d
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1.
b
1
1
H
2
1
h
2
1
H
2
2
H
2
1
H
2
1
W
1
1
H
2
1
H
2
2
H
2
1
H
2
1
H
2
1
HOUR
12
y
1
3
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES:  h=home   W=work

 MCROENVIRONHENT  CODES:
 1 =  hork  or  school     2 = no«e or other    3  =  transport  vehicle
 4 =  roadside          5 = outdoors         6  -  kitchen

 ACTIVITY  LEVELS:  1=low   2=Bediua  3-hiyh
                                   D-6

-------
           ACTIVITY PATTERNS  dY  A l»E-OCC UP ATI ON SUc6fcCUP


«-0 GR?UP: 1—Stuoents age  13*      SUbGkOUPiA    PCT IK SUE(»ROUP:<1
DAI OF TirE LOCAT10N/M
MEEK CF DAY 123
toEEKDAYS AH H
L
1
Pp. fc
2
1
SATUR3AY AM — ri
2
1
PH H
J
1
SUNDAY AK H
2
1
PH h
2
1
H
2
1
b
^
1
H
2
1
H
2
1
H
2
1
h
A
2
H
2
1

5
3
H
2
1
H
5
3
H
2
1
H
2
1
ICROENVI RGNMENT/ACTIV1TY-LEVEL BY HOUR
4 5 c 7 b 9 10 11 12
H
2
1

1
1
H
2
1
H
5
2
H
i
1
H
5
2
H
2
1
M
1
1
H
£
1
H
2
1
H
C
\
H
5
1
H
2
1
to
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
^
1
H
f.
1
h
2
1
h
2
1
H
3
1
h
£.
1
H
2
1
H
L.
1
h
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
2
H
2
1
H
2
1

1
1
M
2
1
H
2
1
H
2
1
H
2
1
H
2
1
b
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1

1
1
H
1
1
H
3
1
H
c
1
h
2
1
H
i
1
 LOCATION CODES:  h=hom«    W=york

 MCRGENVIRONHENT  CODES:
 1 = work or  school     2 = hone or other    3  =  transport  vehicle
 4 = roadside           5 - outdoors         6  =  kitchen

 ACTIVITY LEVELS:  1=luw    2=aediua  ?=high
                                   D-7

-------
           ACTIVITY PATTERNS  BY  AfaE-OCCuPATlCN SUBGROUP


A-0 GKOUPr 2 —19rs &  Professionals SUtGROUP:1    PCT IN  SUBbROUP:<«7
DAY OF TIME LOCATION/HI
WEEK CF DAY 123
WEEKDAYS AP H
2
1
PM h
2
1
SATURDAY Af H
2
1
PM H
£
1
SUNDAY A.» H
•7
4.
1
P« H
2
1
h
2
1
to
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
ta
1
1
H
2
1
H
3
1
H
2
1
H
2
1
ICRQENVlRONMENTy ACTIVITY-LEVEL BY HGl'K
4 5 6 7 Z 9 10 11 12
H
<.
1
.
1
1
H
2
1
H
2
2
H
2
1
H
5
2
H
2
1
.
1
1
H
2
1
H
c
1
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
^
1
h
2
1
H
c
1
H
ti
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
c
1
to
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
2
i
H
c
1
H
2
1
H
2
1
y
1
1
H
2
1
H
5
2
H
2
1
H
3
1
H
2
1

1
1
H
c
1
H
2
1
H
c
1
H
2
1
H
2
1
 LOCATION  CODES; h=ho«e   w=work

 ftlCROENVlRONMENT CODES.:
 1 =  Mork  or  school    2 = hone or other     3  =  transport vehicle
 A =  roadsiue          5 = outdoors          6  =  kitchen

 ACTIVITY  LEVELS: 1=lo«   2=nedius  3=high
                                    D-8

-------
           ACTIVITY PATTERNS BY  AoE-OCCUPAT10N SUbGROUP


A-0 GROUP: 2 — r.grs & Professionals  SUBGKOUP:2    PCI IN SUB&ROUP:21
= = = = === s==.= === = = = = === = = = ======= =
DAY OF llflE LOCATION/MIC
WEEK OF DAY 125
•EEKDAYS A* H
^
1
PW .
1
1
SATUKOAY A* H
L
1
PK H
7
1
SUNDAY A* H
i
^
1
P« H
£
1
H
2
1
*r
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
b
1
1
H
2
1
H
2
1
H
2
1
H
2
1
RCENVlRONnENT/ACTIVlTY-LEVEL BY
4 J> 6 7 6 9 10 11
H
2
1
•
1
1
H
2
1
H
5
2
H
2
1
H
4
2
H
2
1
b
1
1
H
2
1
H
5
3
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
(.
1
H
£.
1
H
2
1
H
2
1
H
2
1
h
-i
«.
1
h
2
1
H
2
1
H
2
1
u
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
1
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
A
2
H
2
1
H
3
1
H
2
1
HOUR
12
•
1
1
H
i.
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES:  h=ho*e    »=«ork

 flICROENVlRONHENT  COOES:
 1 =  work  or  school     2 = hoae or other    3 = transport  vehicle
 4 =  roadside          b = outcoors         6 = kitchen

 ACTIVITY  LEVELS:  1=|o-    2=«ediua,  3 = high
                                   D-9

-------
          ACTIVITY PATTEkNS BY A«E-OCCcPMTlON SUbGfcCUF
A-0 6KOUP: * —
                  fc Professionals SUbGkOUP:3
PCT IN SU8GROUP:22
DAY OF TIME LCCATION/H1CRCENV1WONMENT/ACTIVITY-LEVEL BY
UcE* Cr DAY 1 2 3 4 5 6 7 b 9 1 0 1 1
•EEKDAYS AH H
c
1
PR 4
£.
1
SATUHPAY A* H
2
1
Pff H
<.
1
SUNDAY AM H
2
1
PN H
T
1
LOCATION CODES: H=hom
MCROENVIRONMENT CODE
1 - work or school
4 = roadside
H
2
1
'4
1
1
h
2
1
H
3
1
H
2
1
H
2
1
e u
Si
2 =
5 =
H
2
1
y
1
1
H
2
1
H
2
1
H
2
1
H
2
1
=uo r k

ho«e
H
2
1
.
1
1
H
<>
1
H
2
2
H
2
1
H
5
3


or
H
2
1
h
1
1
H
i
1
H
2
1
H
2
1
H
i
1


othe
H
2
1
H
3
1
H
2
1
H
2
1
H '
(.
1
H
2
1


r
outdoors
H
2
1
H
i
1
H
2
1
h
2
1
H
t.
1
H
c
1


3
6
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


= t ran
= k itc
d '
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


spo
hen
y
1
1
H
2
1
H
5
Z
H
Z
1
H
L
1
H
£
1


rt

U
1
1
H
2
1
H
2
2
H
2
1
H
2
1
H
2
1


veh i c

HOUR
12
h
1
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1


le

ACTIVITY LEVELS: 1=lo*    2=«ediua   3=high
                                  D-10

-------
           ACTIV1T1 PATTERNS EY  AtoE-OCCoPATI ON SUBGROUP


A-0 6ROCP: 2 — -grs & Prof ession* I s  SUcGitOUP:A    PCT IN SUBtROUP:10
DAY Of ll*E LO
WEEK CF DAY 1
•EEKDAYS AM H
i '»'
\
PH
1
1
SATURDAY AM H
A.
1
PH H
c
»
i
SUNDAY AH H
c.
1
PM H
?
1
CAT10N/NICROEN
L 3 4
H
2
1
to
1
1
H
2
1
H
2
1
h
2
1
H
4
1
H
2
1
•
1
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
M
1
1
H
2
1
H
2
2
H
2
1
H
2
1
VIR ON WENT/ACTIVITY -LEVEL
5 6 7 & 9 1C
H
2
1
h
1
1
H
2
1
H
4
«.
H
2
1
H
3
1
H
2
1
M
3
1
__
2
1
H
•>
^
1
H
2
1
H
2
1
H
2
1
h
t.
1
H
2
1
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
<.
1
H
2
1
»
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
1
1
H
2
1
h
2
1
H
2
2
H
2
1
H
2
<.
======
B^ H
11 1
U
1
1
H
2
1
H
c
3
H
2
1
H
2
1
H
2
1
IOI
2
b
1
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
: =
 LOCATION COOES:  H=hoae    W=wcrk

 M1CROENVIRONHENT  CODES:
 1 = «ork or  school     2  = home or other    3 = transport  vehicle
 4 = roadsioe           5  = outdoors         6 = kitchen

 ACTIVITY LEVELS:  1=low    2=nediu«  3=high
                                   D-ll

-------
           ACTIVITY  PATTERNS bt AuE-OCCuPATICN SUfcGROUP
A-0 GROUP:  3—Sales  Corkers
                                   SUBGROUP:!
PCT IN SUBGROUP:43
DAY OF TIKE LOCATION/MICRCENVIHUNMENT/ACTIVITY-LEVEL BY HOUR
UEEK OF DAY 125 AS 6 78 9 10 11 12
•EEKDAYS AH H
2
1
PM
2.
1
SATURDAY Ai* H
«!
1
PM H
2
1
SUNDAY AN H
2
1
PM H
2
1
LOCATION CODES: H=ho«e
HICROENV1RONMENT CODES
1 - bark or school
<» = roadside
H
^
1

1
1
h
2
1
H
2
1
H
2
1
h
3
1
u
.
2 =
5 =
H
2
1
.
1
1
H
2
1
H
2
1
H
2
1
H
5
2
=^0 r

hone
H
2
1

1
1
h
2
1
H
2
2
H
2
1
H
2
1
k

or
H
2
1
b
1
1
H
2
1
H
2
1
H
2.
1
H
2
1


othe
H
2
1
H
.1
1
H
2
1
H
2
1
H
2
1
H
2
1


r
out uoo rs
H
2
1
h
t
1
H
2
1
H
2
1
H
2
1
H
t
1


3 -
6 =
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1


,
1
1
H
2
1
H
2
2
H
2
1
H
2
1
H
2
1


t ranspo
ki
tchen
H
1
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1


rt we

b
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


hi


1
1
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1


cle

ACTIVITY LhVELS:  1 - 1
                             = mediura  3=high
                                    D-12

-------
           ACTIVITY PATTiHNS  faY  A fcE -OCC i. PA T 1 ON LU6GROUP


A-0 GROUP: 3—Sales Corkers         SUfa€kOUP:2    FCT IN SUBGROUF:21
OAT OF TI*E LO
WEEK OF DAY 1
.EEKDAYS A- H
2
*\
PB .
^
1
SATURDAY A*. H
2
1
PM H
2
1
SUNDAY AT H
2
1
PM H
2
1
CATION/M
i 3
h
2
1

1
1
h
2
1
H
2
1
H
2
1
H
2
1
h
2
1
B
1
1
H
2
1
H
2
1
h
2
1
H
5
1
ICRCENVI
4 5
H
2
1

1
1
H
2
1
H
2
1
H
2
1
H
2
2
h
2
1
u
1
1
H
2
1
H
2
1
H
L
1
H
2
1
RGNNENT/
6 7
ri
2
1
4
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
C
1
h
i
1
H
2
1
h
2
1
H
i
1
*CT1V1TY-LEVEL BY
a 9 10 11
H
3
1
H
2
1
H
2
1
H
i
1
H
i
1
H
2
1

1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
fc
1
1
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
HOUR
12

1
1
H
2
1
H
't.
1
H
2
1
H
2
1
H
2
1
 LOCATION CODESl  h=hoae    W=work

 MICROEkVlRONMEfcT  CODES:
 1 =  »ork or  school    2  = hone or other    3 ~ transport  vehicle
 4 =  roadside          5  = outdoors         6 = kitchen

 ACTIVITY LhVELSr  1=lo*    2=«ediu«  3=high
                                  D-13

-------
          ACT1»ITV PATTERNS bY A t>E-OC CuPAT I ON SUbGROUP
*-0
        :  3 — Sales workers
SUBGROUP:!
PCT IN SUBGROUP:  5
DAY OF TIME LOCAT10N/«lCROt^VI BONMENT/ ACTIVITY-LEVEL BY
WtEK OF DAY 1<:.J45c7fc91011
•EEKDAYS AP h
?
1
p«
'c
1
SATURDAY A* H
2
1
PW H
2
1
SUnOAY A.» H
2
1
pn H
-n
1
LOCATION COOES: rt=ho«
HICRCENV1RONMENT CODE
1 = *ork or school
4 = roadsiae
h
•^
1
.
4
l
H
2
1
H
2
1
H
2
1
H
2
1
e w
S:
n —
4, —
5 =
H
2
1
fa
4
1
H
2
1
H
2
1
h
2
1
H
2
1
=work

home
H
2
1
„
5
1
H
2
1
H
2
2
H
2
1
H
4
2


or o
H
c
1
„
4
2
H
£
1
H
2
1
H
2
1
H
2
1


th
H
2
1
H
3
1
H
i
1
H
2
1
H
2
1
H
2
1


e r
out doo rs
H
2
1
H
£
1
N
L
1
h
^
1
H
2
1
H
i
1


3
6
H
2
1
h
2
1
H
2
1
H
i
1
H
2
1
H
2
1


- t ran
= kite

4
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


spor
hen
ta
4
1
H
i
1
H
3
1
h
2
2
H
2
1
H
2
1


t

u
5
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


veh i c

HOUR
12
b
4
1
H
2
1
H
2
1
H
2
1
H
4
1
H
2
1


le

ACTIVITY LEVELS:  1=lc»    2=aediu«  3=high
                                  D-14

-------
           ACTIVITY PATTERNS BY AGE-OCCuPATION  SUBGROUP


A-0 6ROLP: 3—Sales workers        SUoGKOUP:4     PCT  IN  SUBGROUP: 9
DA» OF TIME LOCATION/*
.hEk. CF DAY 123
.EEKDAYS Af« H
2
1
PP. «
2
1
SATURDAY AK H
4.
*
P« W
2
^
SUNDAY AM H
i.
1
pn H
2
1
H
2
1
ft
3
1
H
2
1
w
i
1
H
2
1
H
2
1
H
2
1
b
5
2
H
2
1
b
3
1
H
2
1
w
3
1
===
ICROENV1
A 5
H
£
1
M
1
1
H
2
1
w
1
1
H
2
1
y
5

H
2
1
to
1
1
H
2
1
h
2
1
H
2
1
U
1
1
FGNMENT/
6 7
H
2
1
H
2
1
n
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
^
1
H
2
1
H
5
*•
H
't.
1
H
«.
1
ACTIVITY-LEV
6910
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1

1
1
H
2
1
H
2
1
H
2
1
W
1
1
h
2
1
¥
3
1
H
2
1
H
2
1
H
2
1
EL BY HOUR
11 12
u
3
1
H
2
1
w
5
2
H
2
1
H
2
1
H
2
1
b
5
2
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
 LOCATION CODES: h=ho«e   W=work

 MICROENVIROKMENT CODES:
 1 = teork or school    2 - hose or  other     3  = transport vehicle
 4 = roadside          5 = outdoors          6  - kitchen

 ACTIVITY LEVELS: 1=lc*   2=mediu«   3=high
                                  D-15

-------
           ACTIVITY PATTERNS  faY  A i»E-OC C bP AT ION SUEGROUP
A-0 6RCUP: 3—Sales Corkers
SUbG*OUP:5
FCT IN SUBGROUP :22
DAY OF TIME LOCATION/MICRGENV1RONMEN
WEEK OF DAY 1 
-------
           ACTIVIir  PATTEKNS bY A6E-OCCoPATION SUaGROuP


A-0 G*Ov,P: A — Clerical  Corkers     SUbGROUP:1     PCT IN SU3&RO(jP:5d
DAY OF TIME LOCA
MEEK OF DAY 1
•EEKDAYS AH H
w
1
PH U
1
1
SATURDAY AK H
-»
C.
1
PN H
2
1
SUNDAY AM H
->
1
PH H
?
1
TION/M
2 3
H
£
1
*
1
1
H
2
1
H
2
1
H
z
1
h
2
1
H
z
1
M
1
1
H
2
1
H
2
2
H
2
1
H
5
2
ICRCEN
««
n
2
1
t»
1
1
H
2
1
H
5
2
H
2
1
H
2
1
VI
5
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
H
2
1
zs
RONMEN
6
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
T>
7
H
ii
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
ACTIVITY
b 9
H
2
1
H
i
1
h
2
1
H
L.
1
h
2
1
h
2
T
k
d
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
-LEVEL £Y HOUR
10 11 12
to
1
1
H
2
1
H
3
1
H
L
1
H
2
1
H
2
1
h
1
1
H
2
1
H
A
1
H
2
1
H
2
1
H
2
1
k
1
1
H
Z
1
H
2
1
H
t.
1
H
3
1
H
2
1
 NICRCENVIftONMENT  COOES:
 1 =  bork or  school    2 = home or  other     3 = transport  vehicle
 4 =  roadsioe          5 = outdoors          6 = kitchen

 ACTIVITY LEVELS:  1=low   2=«ediun   3=high
                                    D-17

-------
           ACTIwlTT PATTERNS  BY A t,E-OC CuPATl OU SUbGKOUP


A-3 GROUP: 4— Clerical  Corkers     SUbbkOUP:2     rCT  IN  SUB6ROUP:2i
*AT OF TIME LOCATICS/MICROENV1 BuNKEMT/ACTI ViTY-LEVEL BY HOUR
ytEK OF DAY 1 2 3 4 5 6 7 0 9 10 11 12
»EEKOAYS AH K
T
«.
1
PM U
<.
1
SATURDAY A^ H
2
1
PH H
^
1
SUNDAY AW H
c
1
PM H
2
1
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
1
1
H
2
1
H
2
2
H
2
1
H
2
1
H
2
1
b
1
1
h
2
1
H
c
1
H
2
1
H
•>
3
===-
H
2
1
4
3
1
H
2
1
H
2
1
h
2
1
H
4
L.
h
2
1
H
c
1
H
2
1
H
2
1
h
2
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
iri
1
1
H
i
1
H
2
1
H
3
1
H
2
1
H
2
1
w
1
1
H
2
1
H
2
2
H
2
1
H
&
1
H
2
1
h
1
1
H
2
1
H
5
2
H
2
1
H
3
1
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES: H=home   W=work

 .1ICRGENV1RONHFNT CODtS:
 1  =  toork  or  school    2 = hone or other     3 = transport vehicle
 4  =  roadside          i = outdoors          6 = kitchen

 ACTIVITY  LEVELS: 1=low   2=«ediu«   3=high
                                   D-18

-------
           ACTIVITY  PATTERNS BY A v,E-OCC uP ATI ON  SUBGROUP


A-0 GROUP: <.—Clerical  workers     SUcGHOUP:2     PCT IN SUBGROUP:  5
wAY CF TIKE LO
WEEK CFDAY 1
•EEKDAYS An *
1
1
PM H
^
1
SATURDAY AC H
i.
*
Pfi h
2
1
SUNDAY At* H
4.
1
H™ H
(U
1
CATICN/M
2 3
to
1
1
H
2
1
H
2
1
H
i
2
H
2
1
H
2
1
H
c
1
H
2
1
H
2
1
H
2
1
H
2
1
H
5
3
ICROENVI
H 5
H
i
1
H
3
1
H
2
1
H
2
1
H
2
1
H
5
2
H
L.
1
W
2
1
H
2
1
H
3
1
H
2
1
H
2
1
RGNHENT/
6 7
H
2
1
w
1
1
H
2
1
H
4
2
H
2
1
H
2
1
H
2
1
m
1
1
H
t
1
H
2
1
h
2
1
H
2
1
ACTIVITY
3 9
H
2
1
•
1
1
H
2
1
H
L.
1
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
H
2
1
-LEVEL b
10 11
H
2
1

1
1
H
2
1
H
2
1
H
2
1
H
2
'
H
2
1
y
1
1
H
2
2
H
2
1
H
2
1
H
2
1
Y HOUR
12
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
H
4.
1
 LOCATION CODES:  H=hone   b=*ork

 MCROENVIRONHFMT CODES:
 1 = work or  school    2 = home or other     3  = transport vehicle
 4 = roadside           S = outdoors          6  - kitchen

 ACTIVITY LEVELS: 1 = low   2=cnediu«   3 = high
                                   D-19

-------
           ACTIVITY PATTERNS  BY  AGE-OCCbPATION SUbGROUP


A-o GROUP: 4—Clerical  -orkers      SUbGkOUP:4    PCT IN SUBGROUP:
DAY OF TI!»E LOCATION
WEE* OF DAY 1 2
•EEKDAYS Ah U
1
1
"K H
fc
*
SATURDAY A/ H
i
1
PH H
2
1
SUNDAY A* H
^
1
Pff H
i.

w
1
1
H
4
2
H
2
1
H
3
1
H
2
1
H
2
1
/MICROENViR ON WENT/ACTIVITY -LEVEL BY
3 45 6 769 10 11
U
3
1
H
2
2
H
^
1
H
4
2
H
2
1
H
5
7
H
z
1
H
2
1
ti
i
1
H
2
1
H
2
1
H
2
2
H
c.
1
H
5
1
H
^
1
H
2
1
H
2
1
H
5
1
H
2
1

1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
*
1
1
h
2
1
h
'(.
1
H
i.
1
H
c
1
H
2
1
h
1
1
H
2
2
H
i.
1
h
t
1
H
2
1
H
2
1
U
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
-
1
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
to
1
1
H
2
1
H
2
1
H
2
1
H
2
1
                                                                   1
                                                                   y
                                                                   1
                                                                   1
                                                                   H
                                                                   2
                                                                   1
                                                                   H
                                                                   2
                                                                   1
                                                                   H
                                                                   2
                                                                   1
 LOCATION  CODES:  h=ho«e   w=work

 MICROENVIRONMENT CODES:
 1 =  bork  or  school    2 = hone or other     3  =  transport  vehicle
 4 =•  roadside          S = ootaoors          6  -  kitchen

 ACTIVITY  LEVELS: 1=lj«   2=mediu«  3=high
                                   D-20

-------
            ACTIVITY PATTERNS  fa Y A tiE-OC CbP ATI ON SUBGROUP
A-0 5KOLP:  4— Clerical  workers
PCT IN SUBGROUP: 1
OAT OF TIME LOCA
•rftEK OF DM 1
•EEKDAYS AP H
c
1
F« »
*
1
SATUKDAY AK H
<
1
FK H
*
1
SUNDAY A.* M
C.
1
PK H
2
1
LOCATION CODES: H-hoae
HICROENV1RONWENT CODES:
1 = nork or school 2
4 = roadside 5
TI
e.
H
2
1
•
3
1
H
2
1
H
i
1
H
c
1
H
2
1


-
-
ON/M1CR
3
H
2
1
b
A
c
H
c
1
H
2
1
H
2
1
H
2
2
W=work

home o
outnoo
OE
H
H
i
1
M
4
1
H
2
1
H
2
1
H
2
1
H
2
1


r
rs
NVI
5
H
e.
1
te
1
1
H
i
1
H
2
1
H
&
1
H
5
2


RCNHEN
6
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1


othe r


T;
7
H
i
1
H
t
1
H
2
1
H
3
1
h
2
1
H
C
\


3
6
ACTl
c.
H
1
1
H
2
1
H
'c.
1
H
4
2
H
'(.
1
H
2
1


VITY-L
9
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


EVEL
10
»
4
2
H
2
1
H
Z
f.
H
I
1
H
2
1
H
2
1


= transport ve
= ki
tchen

BY
11
w
4
•*
c
H
4.
1
H
5
2
H
2
1
H
2
1
H
2
1


hie

HO UK
12
b
4
2
h
2
1
H
2
1
H
c
1
H
2
1
H
2
1


le

 ACTIVITY  LEVELS:  1 = lc-   2=meciuin   3=high
                                     D-21

-------
           ACTIVITY PATTfcSNS  bY  AGE-OCCoPATI0* SUbGnOuP


A-0 GhCuP: 4 — Clerical  workers      SUbG*OUP:6    PCT IN SUBGROUP:
fcAt OF TIME LGCATIONXMIC
WEEK. OF DA) 1 «. 1
•EEKOAYS A« H
2
1
PR w
•
1
SATURDAY Ah H
2
1
FK H
I
1
SUNDAY Aft H
2
1
PM H
fc.
1
H
^
1

5
1
H
2
1
H
2
1
H
2
1
H
2
1
H
£
1
b
4
2
H
2
1
h
2
1
H
2
1
H
2
1
ROENV1RONMENT/ACT1VITY-LEVEL BY HOUR
4 I 6 7 e 9 10 11 U
H
2
1
*
1
1
h
2
1
H
3
1
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
4,
2
H
2
1
H
2

H
2
1
rt
2
1
h
2
1
H
2
1
H
2
1
H
5
2
h
2
1
H
2
1
H
2
1
H
i
1
H
2
1
h
2
1
H
i:
1
H
2
1
h
2
1
H
c.
1
H
2
1
H
2
1
M
1
1
h
2
1
H
2
1
H
2
1
H
5
2
H
2
1
k
3
1
H
2
1
H
5
2
H
2
1
H
5
1
H
2
1
M
4
1
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
to
1
1
H
2
1
H
i.
1
H
2
1
H
2
1
H
2
1
  LOCATION  COOES: H=homr   W=

  r.ICRCENVlRGNFENT COOES:
  1  =  work  or school    2 = hoae or other     3  -  transport vehicle
  4  =  roadsioe          3 = outdoors          6  =  kitchen

  ACTIVITY  LEVELS: 1=lc*   2=»ediu»   3=high
                                   D-22

-------
           ACTIVITY  PATTERNS  bt A «E-OC C l,P AT 1 ON  SUeSRCUP
A-0 GhGoP: b — Craftsmen  &  Foremen  SUBGtiOUPil
                               PCT IN SUBGROUP:50
DAY OF TirE LCCA
WEEK. Of (.AY 1
•EEKDAYS ** H
c
1
PK
1
?
SATURDAY Arl H
c
1
FM H
w
1
SUNDAY AP K
2
1
PM H
•1
1
LOCATION CODES: H=hone
HICROENVIRONMENT CODES:
1 = «ork or scnocl 'c
4 = roadside 5
T10N/HICR
t. 3
H
2
1
.m
1
1
H
2
1
H
2
1
H
2
1
H
^
1
W

=
=
H
2
1
m
1
2
H
2
1
H
4
2
H
2
1
H
4
2
=work

home o
out doo
GENVIPCiNMENTyACTlVlTY-LE
4 5 6 7 o 9 1
H
2
1
m
1
1
H
t.
1
H
5
2
h
2
1
H
2
2


r
rs
H
2
1
h
3
1
H
t
1
H
2
1
h
2
1
H
2
1


othe

H H
2 i
1 1
H H
2 2
1 1
H H
2 2
1 1
H H
2 2
1 1
H H
2 2
1 1
H h
2 4
1 1


r 3 =
6 =

1
1
H
4
1
H
2
1
H
3
1
H
2
1
H
2
1


t r
ki
it
1
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


ansport
t chen
V
I
•
1
2
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1




EL EY
11
W
1
3
H
2
1
H
2
1
N
2
1
H
2
1
H
2
2


vehic

HOUR
12
te
1
1
H
2
1
H
2
1
h
2
1
H
2
1
H
c
1


le

ACTIVITY LfcVELS
= lo-   2=ncdiu«
                                       Mgh
                                   D-23

-------
           ACTIVJTt  PATTERNS  BY AGE-OCCUPATlON SUcGROUP


A-0 GROLP: 5 — Craltsmen  S  Foremen   SUBGROUP:*     I-CT  IK  SU66ROUP:24
UAY OF TIKE LOCAT10N/MICR OEN VI RONMEN T / ACT i VI
•4EEK OF DAt 123<,567o
»EEKD*YS AK H
2
"1
Pr s
1
1
SATURDAY A* H
z
1
PH H
«»
1
SUNDAY AM H
«L
1
PI" H
i
1
H
2
1
•
1
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
w
1
2
H
2
1
H
2
1
H
2
1
H
2
2
H
2
1
w
1
1
H
2
1
H
5
2
H
2
1
H
5
2
H
2
1
to
3
1
H
2
1
H
i
1
H
i.
1
H
2
1
H
2
1
K
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
5
1
k,
2
1
h
2
1
H
i.
\
H
2
1
H
*.
1
k
1
1
K.
2
1
H
2
2
H
2
1
H
i
^
1
H
2
1
TY-LEVEL BY HOUR
9 1b 11 12
y
1
1
K
2
1
H
2
1
H
2
1
H
3
1
H
2
1
W
1
2
K
«.
1
H
3
1
H
i.
1
H
2
1
H
2
1
y
1
2
K
2
1
H
4
2
H
2
1
H
2
1
H
2
1
to
1
1
K
C
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION CODES: H=ho«e   W=wortt

 MICROENVIfiONRENT CODES:
 1  =  fcork or school   -2 =  ho«e or  other    3 = transport vehicle
 4  =  rorfdsiae          5 =  outdoors          6 = kitchen

 ACTIVITY LEVELS: 1=lsw   2=mediu«   J=hi
-------
           ACTIVITY PATTERNS  br  A oE-0 C C I. P AT 1 ON SUbGRUUP


A-0 CivObP: 5> — Craftsmen  t,  Fortaen   SUBGROUP:!    PCI IN SU8GROUP:10
DAY OF TIME LOCATION/MICRCENV1 RONMENT/ ACTIVITY-LEVEL BY
WEEK OF DAI 1 i 3 <. 5 6 7fc 9 10 11
•EEKDAtS AM k
1
1
Pfl H
^
1
SATURDAY AC H
)
1
pn H
2
1
SUNDAY A« H
*.
1
PM h
*-
1
H
2
1
H
i
1
K
2
1
H
i>
Z
H
2
1
H
t.
1
H
2
1
H

-------
           ACTIVITY  PATTEHNS fc
-------
           ACTIVITY PATTERNS  Bt A t,E-C C C ^P ATI GN SUbGkCUP


A-0 GfcObP: 5—Craftsmen  &  Foremen   SUbGKOUP:5    PCT  IN  SUBGROUP: 4
DAY OF TIKE LOCATION/h
WEEK OF DAY 1 i. 3
«EEKDAYS AM H
^
1
Pf W
2
1
SATURDAY AV H
i
1
PH H
i.
1
SUNDAY AT. H
2
1
PH M
L
1
H
c
1
„
1
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
5
2
h
2
1
H
5
2
h
2
1
H
5
2
ICRoENVIRONHENT/ACTlVlTY-LEVEL BY HOUR
4, i 6 7 b 9 1C 11 12
H
2
1
.
b
3
H
2
1
H
2
1
H -
2
1
H
3
1
H
2
1
u
b
1
H
If.
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
i
1
H
2
1
H
2
1
H
t.
1
h
2
1
h
£
1
H
2
1
h
2
1
H
2
2
M
3
1
h
I
1
H
2
1
H
7
1
h
2
1
h
2
1
M
5
2
H
'c
1
H
2
1
H
2
2
H
2
1
H
2
1

5
3
h
i.
1
h
2
1
H
2
1
h
2
1
H
2
1
w
4
2
H
2
1
H
4
2
H
2
1
H
2
1
H
2
1
b
5
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2

 LOCATION  CODES;  H=home   W=work

 MICROENVIRONNEKT  CODES:
 \ - «ork  or  school     2 - nome or other     3  =  transport vehicle
 4 = roadsiae           S = outdoors          6  -  kitchen

 ACTIVITY  LEVELS:  1=lo*   2=mediu«  3=hiQh
                                   D-27

-------
           ACTZwIT*  PATTERNS  BY A»E-OCCuPATION SUBGROUP
A-0 fcROLP: 3 — Craftsmen  8  Foremen  SuLGkOUPii
                                                 PCT IN SUBGROUP:10
DAY OF TIKE LC CA Tl ON /WICR CEIVVI RONPENT / ACT 1 VI T Y-Lfc
WEEK CF DAY 1&3«,567fc91
.fcEKtAYS AM H
2
1
f-n .
1
1
SATURDAY AT H
t'
1
PM h
i
1
SU.%D>Y Af H
2
1
r fl H
7
i
LOCATION COOES: h=ho»
HICRGENV1RONKENT CODc
1 = «ork or school
4 = roads ioe
h
2
1
,
5
2
n
2
1
H
2
1
H
2
1
H
2
1
e U
S :
2 =
5 =
H
2
1

5
3
H
2
1
H
5
3
h
2
1
H
2
1
=wor k

home
H
t
1
.
1
£
H
2
1
H
2
1
rt
2
1
H
5
2


o r
H
2
1
^
1
1
H
2
1
H
2
1
H
2
1
H
i,
2


othe
H
2
1
H
2
1
H
i
1
H
2
1
H
2
1
H
2
1


r
out ooo rs
H
2
1
h
i
1
H
2
1
H
i
1
H
i
i
H
«.
1


3 =
6 =
h
5
1
H
2
1
H
i
1
H
2
2
h
2
1
h
7
1


tr
ki
*
1
1
H
2
1
ri
2
1
H
2
1
H
2
1
H
2
1
=======

ansport
tchen
VEL BY HOUR
C 11 12
k
1
2
h
i
1
H
3
1
h
2
1
h
i
1
H
2
1




U
5
3
H
2
1
H
4
1
H
2
1
H
3
1
H
2
1


wehi

^
1
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1


cle

ACTIVITY LEVELS:
                           2=«ediu«   ?=high
                                   D-28

-------
           ACTIVITY PATTERNS EY  AGE-OCCuPAT I ON  SUBGROUP
A-0 GKOuP: o—Operatives  &l«borers  SUbG*OUP:1
     PCT IN SU3oROUP:J9
DAY- CF TIfE LOCATION/^
WEEK OF DAY 1 2 3
.EEKDAYS AH H
£
1
PM t
1
1
SATURDAY AT H
i:
1
P* h
4.
1
SUNDAY A.'* H
c
1
P? H
2
1
n
2
1
fc
1
2
H
2
1
H
4.
1
H
2
1
H
t
2
H
2
1
y
1
1
H
2
1
H
3
1
H
2
1
H
5
1
1CROENV1
H 5
H
i
1
•
1
1
H
2
1
H
4,
2
H
2
1
H
2
1
H
i
1
H
3
1
H
i
1
h
i
1
H
2
1
H
2
1
RUNWENT/ACTIV1TY-LEVEL BY HOUR
6 7 6 9 10 11 12
H
2
1
H
2
1
H
^
1
H
i
1
H
2
1
H
2
2
h
t.
1
H
t
1
H
1
1
h
2
1
H
2
1
H
<:
1
h
1
1
H
4.
1
H
2
1
h
2
1
H
2
1
H
2
1
y
1
2
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1

1
1
H
t.
1
H
2
2
H
2
£
H
2
1
H
2
1
u
1
2
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1

1
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
 LOCATION CODES:  H=home    W=work

 MICROENtflRONMENT  CODES:
 1 =• work or school    2  - ho»e or other
 4 = roadsiae          5  = outdoors

 ACTIVITY LEVEL*:  1=tr*    2=«ediu«  3=high
3 = transport
6 - k\tthen
icle
                                   D-29

-------
           ACTIVITY PATTERNS  BY  A6E-OCCuPATION SUoGROUP
A-o GROUP: c —Oper at i wes  ^Laborers SUoG*OUP:2
r>CT IK SUBGROUP:!0
UAY OF TIJ»E LOCATION/KICROEltVlRONMENT/ACTlVlTY-LEVEL BY HOUR
WkEK, CF OAt 1 <. 3 <, b 6 7 8 9 10 11 12
WEEKDAYS Art h
•n
t
1
Ph w
1
*.
SATURDAY Af ri
4!
1
PP« H
(.
1
SUNDAY At- H
^
1
PK H
?
1
LOCATION COOES: h=hoa
rtlCROENVlRONNEwT CODE
1 - bo rk or school
4 = ro«dsiae
H
2
1
w
1
1
H
2
1
H
2
1
h
t
1
H
2
1
e w
S :
2 »
5 =
H
2
1
to
1
2
H
2
1
H
5
3
H
2
1
H
2
2
=wor

hone
H
2
1
•
1
1
H
2
1
H
2
1
H
2
1
H
5
2
k

o r
H
2
1
•
3
1
H
2
1
H
2
1
H
2
1
H
2
1


othe
H
2
1
ri
4
1
H
2
1
H
2
1
H
2
1
H
2
2


r
uutdoo rs
h
3
1
H
&
1
H
c
1
H
2
1
H
c
1
H
2
1


T =
6 =
•
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


t ran
kite
u
1
2
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1


spor
hen
U
1
™s
ri
2
1
H
3
1
H
2
1
H
2
1
H
2
1


t

y
1
1
H
^
1
H
2
2
H
2
1
H
2
1
H
2
1


vehi

b
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


cle

  ACTIVITY LEVELS: 1=lo*   2=««diu»   3=high
                                   D-30

-------
           ACTIVITY  PATTERNS bt A bt ~OC CuPAT 1 ON SUeiGKOUP


A-0 GKOuP: «— Operatives (^Laborers SUbGkOuP:3    PCT IN SUBGROUP:  £
OAT CF TIME LC
WEE*. OF DAT 1
• EEKDAYS AK *'
1
1
P« h
?
1
SATURDAY AM H
i_
1
PK ri
T
t
1
SUNDAY AM H
c
1
FM H
>
t.
1
CATION/*
2 3
h
2
1
h
2
1
H
z
1
H
2
1
H
2
1
H
2
1
H
2
1
H
7
1
H
2
1
H
5
2
H
2
1
H
5
1
ICROEN
k
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
VI RoNMEM/ACT 1VITY-LEVEL BY HOUR
5 6 7 o 9 1o 11 12
H
2
1
»
1
1
H
2
1
H
3
1
H
2
1
H
C
'(.
H
2
1
w
1
2
H
2
1
H
4
1
H
2
1
H
4
2
h
2
1
h
1
1
h
2
1
H
2
1
h
if.
1
H
2
1
H
2
1
to
1
2
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
1
2
H
i.
2
H
2
1
H
3
1
H
2
1
H
2
1
w
1
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
1
1
H
c
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES:  h=hotie   W=work

 MICROENVIRONMEKT CODES:
 1 -  teork  or  school    2 - ho&e or  other    3 = transport  vehicle
 A -  ro«dsioe          5 = uutucors          6 = kitchen

 ACTIVITY  LEVELS: 1=lu*   2=n«diuu   3=high
                                   D-31

-------
           ACTIVITY  PATTERNS bt A CiE-OC CbPATl ON  SUcGhCUP


A-0 GfOtP: o — Operatives ^Laborers SU&GKOUP:*.     PCT IN SUB&ROUP:  3
DAY OF TIi"E LOCAT10N/M1CRGENV1RONMENT/ACT1V1TY-LEVEL BY HOUR
WEEK CP DAY 1 2 3 H 5 6 7 t 9 1 0 1 1 1 2
WEEKDAYS A* 4
1
1
PR *
^
1
SATUhOAY A" H
,
1
Ptt H
2
1
SUNDAY AJ» H
c
1
PM ri
2
1

1
2
H
2
1
H
2
1
H
b
1
H
2
1
H
b
3
to
1
1
H
3
1
H
2
1
H
3
1
H
2
1
H
5
1

1
1
H
2
1
H
2
1
H

-------
           ACTIVIT PATTERNS BY AoE-OCCbPATIOS i>Ue GROUP


• -0  GfcOuP:  o—operatives ^Laborers  SUbOnOUPjS    FCT IN SUP6ROUP:1?
t-AY OF TIME LOCA
WEEK. CF UAt 1
*EEKDAYS A* H
A.
1
P* .
2
1
SATURDAY A- H
t
1
PI* h
P
1
..UN-DAY AK H
2
1
PP. H
^

T10I
L.
H
2
1

^
3
h
c
1
h
2
1
H
i
1
H
2
1
t»/H
3
H
2
1
w
1
2
H
2
1
h
2
1
H
2
1
H
5
1
ICRUEN
4
H
2
1
y
3
*
H
2
1
H
2
1
H
2
1
H
5
2
VII
5
H
2
1
y
5
1
H
2
1
H
5
2
H
2
1
H
t.
1
RONHEN
6
H
2
1
H
2
1
H
2
1
H
A
1
H
2
1
H
2
1
T/,
7
H
2
1
h
i
1
H
i
1
H
2
1
H
2
1
H
t.
1
ACT1
fc
H
2
1
H
t
1
H
2
2
n
2
1
H
2
1
H
2
1
VITY-L
9
w
1
1
H
2
1
H
2
1
H
i
1
H
2
1
H
T
1
EVEL
1C
W
5
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
B
11
U
4
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
Y HCUR
12
w
5
2
H
i.
1
H
2
1
H
2
1
H .
2
1
H
2
1
 LOCATION CODES: h=ho«e    W=work

 MICROENVIRONflENT CODES:
 1  =• work or school    2  - home or other    3 = transport  vehicle
 A  = roadside          5  =• outdoors         6 = kitchen

 ACTIVITY LEVELS: 1 = lo*.    2=mediua  3=hign
                                   D-33

-------
           ACTIVITY PATTEkNS  bY  Aofc-OCCoPATlON SUBGROUP


A-0 GROUP: o — Operatives  ^Laborers  SUe,6*OUP:6    FCT IN SUBGROUP:16
DAY CF TIME LOCATION /WICR OEN VI RONMENT /ACTI VI T Y-LEVEL
• eEK OF DAY 1234567S910
WEEKDAYS Ah H
2
1
P* W
<
1
SATURDAY A." H
_2
1
PM H
2
1
SUNDAY A? H
2
1
PM H
?.
1
H
2
1
«
.i
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
•
2
1
h
2
1
H
5
2
H
2
1
H
2
1
H
2
1
•
i
1
H
~L
1
H
&
1
H
2
1
H
2
1
H
2
1
h
3
1
H
4.
1
H
2
1
h
2
1
H
5
2
H
2
1
h
2
1
H
«.
1
h
2
1
H
2
1
H
2
1
M
3
1
h
L
\
H
2
1
H
•N
1
H
2
1
H
2
1
t>
3
1
H
2
1
H
2.
1
H
U
2
h
2
1
h
2
1
W
3
1
H
->
i
1
h
2
1
h
2
1
H
->
t
1
H
2
1
y
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
2
BY HOUR
11 12
U
4
2
h
2
1
H
2
2
H
2
1
H
3
1
H
2
1
b
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION  COOES:  n=hoae   b=Mork

 ftlCROENVIRONHENT  COOES:
 1 =  teork  or  school    2 - hoae or other    3  =  transport  vehicle
 <• =  roadsioe          5 = outdoors         6  =  kitchen

 ACTIVITY  LEVELS:  1 = low   2=i»edium  3 = high
                                   D-34

-------
           ACTIVITY  PATTERNS bt AoE-OCCoPATlON SUbGKOt'P


A-0 GROUP: <3—Service  * Household  SUbG«OUP:1    PCT 1U SUBtiROUP:36
DAY OF II* E LOCATION
rf&Ek OF DAY 1 2
•CEKDAVS AM H
c
1
FK it
t
1
SATURDAY Ar H
V.
1
PH h
w
1
SUNDAY AP H
c
1
P« H
4.'
1
H
^
1

1
2
h
2
1
h
c.
1
H
2
1
H
2
1
™- ^ » • • *
/KI
3
H
2
1

1
1
H
2
1
H
3
1
H
2
1
H
2
1
CRCEN
H
2
1
M
1
2
H
2
1
H
2
1
H
4.
1
H
5
2
VIS
5
H
2
1
y
1
1
H
1
1
H
2
1
h
2
1
H
A

ONMEN
6
H
2
1
ri
2
1
h
2
1
H
2
1
H
2
1
H
2
1
T/ACT 1V1TY-LEV
7 c 9 1C
H
2
1
h
2
1
H
i
1
H
2
1
n
,'i.
1
H
2
1
H
3
1
H
c
1
h
2
1
H
2
1
H
2
1
H
C
1
w
1
1
H
2
1
H
2
1
H
2
2
H
2
1
H
2
1

1
2
M
f.
1
h
;
3
H
2
1
H
3
1
H
^
1
EL 6
11
b
1
2
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
Y HOUR
11
to
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION CODES:  H=hom - outdoors          6 = kitchen

 ACTIVITY LkVELS: 1=lo*   2=«ediua   3=high
                                   D-35

-------
           ACTIVITY PATTERNS  BY  A (iE-OC CUP ATI ON SUBGROUP


A-0 GK^UP: b—Service  *  Household   SUoGKOUP:i    PCT IK SUBoROUP:!?

 DAY OF    TIME     LOCAT10N/MICROENVIRONHENT/ACT 1VITY-LEV EL  BY  HOUR
  WtEK.    OF DAY      1    i.    2   *   5   6   7   6   9  1L   11   11
WEEKDAYS AK H
^
1
PM ta
2
1
SATURDAY A^ . H
i,
1
DM u
• n n
2
1
SUNDAY Ar H
2
1
PH H
*
1
H
^
1
b
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
w
1
2
H
2
1
H
2
1
H
2
1
H
2
1
S = S
H
2
1
i*
1
2
H
— 2
1
H
2
1
H
2
1
H
i>
3
H
2
1
.
1
1
H
2
1
H
2
2
H
2
1
H
i
1
H
2
1
to
5
1
H
2
1
H
2
2
H
2
1
H
2
1
h
2
1
H
t.
1
h
t
1
h
2
1
H
c
1
H
2
1
K
i
1
H
2
1
H
2
1
h
2
1
H
2
1
H
k.
1
y
1
2
h
2
1
H
2
1
H
3
1
H
2
1
H
2
1
b
1
1
H
2
1
H
2
1
H
i
1
H
<:
1
h
i.

y
1
2
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
W
1
1
H
2
1
H
5
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES; H=hone   W=

 MICROENV1RONMENT CODES;
 1  =  work  or School    2 = ho«e or other     3  =  transport  vehicle
 4  =  roadside          5 = outdoors          6  =  kitchen

 ACTIVITY  LEVELS: 1=low   2=nedium   3=high
                                    D-36

-------
           ACTIVITY  PATTERNS  BY AGE-0CCuPATI ON SUbGROUP


*-0  GhOLP:  i—Service  t  Household  sUoGkOUPri    PCT IN SUB&ROUP:c2
DAY OF TIME LOCA
.EEK OP DAt 1
•EEKDAYS AH to
1
1
PK K
C
1
SATURDAY AM H
2
1
PH H
i.
1
SUNDAY A* H
4.'
1
PM H
^
1
TION/K
2 3
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
t.
2
H
2
1
H
5
2
ICROENV1RCNMENT/ALT1VITY-LEVEL BY HOUR
A b 6 7 & 9 1C 11 12
H
2
1
H
2
1
H
e.
1
H
2
1
H
2
1
H
5
2
H
2
1
to
1
1
H
c
1
H
2
1
H
2
1
H
2
1
H
^
1
to
1
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
-
1
2
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
to
1
1
h
t.
2
H
c.
\
H
2
1
H
2
1
H
2
1
u
1
1
H
2
1
H
2
1
H
2
1
H
3
1
H
i.
1
fc
1
2
H
L
1
H
2
1
H
2
2
H
2
1
H
t
1
tt
1
1
H
2
2
H
2
1
H
2
1
H
2
1
h
2
1
m
1
2
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION CODES; H=ho«e   to

 MICROENV1RONHENT CODES:
 1  = hork or school    2 = hone or other    3  = transport  vehicle
 <•  = roadside          5 = outdoors         6  = kitchen

 ACTIVITY LEVELS: 1=lo«   2=«ediu»  3=high
                                  D-37

-------
           ACTIVITY PATTERNS  bY  AbE-OCCUPAT1ON SUfcGROUP


A-0 GROUP: 6—Service  &  Household   SUb6fcOUP:4    PCT IN SUBbROUP:  ?
uAY OF TIME LOCATION/MICRliENVIRONMENT/ACTIVITY-LEVEt BY HOUf
atEK OFDAY 1 2 3 4 i 6 7 6 9 1C 11 12
.EEKDAYS Arf H
2
•
PM U
2
1
SATURDAY A* H
;
1
PM .
n.
1
SUNDAY AT H
Z
1
PH H
L
1
H
2
1
to
4
2
H
2
1
to
3
1
H
i
1
H
2
1
H
2
1
m
3
1
H
2
1
y
4
1
H
2
1
H
5
2
H
2
1
*
3
1
H
2
1
'4
J
1
H
2
1
H
2
1
H
2
1

3
1
H
<1
1
to
i
1
H
£.
1
H
2

H
2
1
to
1
1
H
2
1
w
1
1
H
2
1
H
2
1
H
2
1
h
2
1
H
-' 2
1
H
i
1
h
2
1
H
2
1
H
i
1
H
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
to
1
1
H
2
1
w
1
1
K
2
1
H
Z
1
H
1
1
U
3
1
H
2
1
w
3
1
H
2
1
H
2
1
H
2
1
to
4
2
H
2
1
w
4
2
H
£
1
H
3
1
H
2
1
 LOCATION  CODES: H=ho«e   W=work

 NICRCENVlRONnENT COOES:
 1  =  Mork  or  school    2 = hoar or other     3  =  transport vehicle
 4  -  roadside          5 - outdoors          6  =  kitchen

 ACTIVITY  LtVELS: 1=lo-   2=mediu«  3=high
                                   D-38

-------
           ACTIVITY PATTERNS  BT AbE-OCCoPAT I 0N  SUb€KCUP
A-0 GROUP: b — Service  I  Household  S'Jb GfcOuP : 5     PCT  IN SU36ROUP:14
uAY OF TIHE LOCAT
• EEK. OF DAY 1
tEEKDAt? A* H
7
1
PP h
1
1
SATURDAY ** H
£
1
P* H
^
1
SUNDAY AN H
£
1
PM H
<
1
LOCATION CODES: H=home
MICROENVIRONMENT CODES:
1 = work or school 2
4 =• roadside 3
10,
i
h
2
1
H
1
2
n
i
"I
H
4
2
h
2
1
H
3
1
w

=
-
N/HICR
3
h
2
1
H
3
1
H
2
1
H
£
1
H
2
1
H
5
2
=wor k

hune o
outdoo
UEN
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1


th

RlNMEN
6
H
t.
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


er

ft ACT
7
h
2
1
H
'c
1
H
c
1
H
£
1
h
i
1
H
2
1


3 = t
6 = k
IV!
o
H
t
1
h
<.
1
H
t
1
H
2
1
H
2
1
H
3
1


ran
itc
TT-Lc
9 1
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


sport
hen
VEL
C
H
1
2
H
2
1
H
3
1
H
Z
2
H
2
1
H
2
1


ve

EY
11
H
5
2
H
^
1
H
2
1
H
2
1
H
2
1
H
2
1


hie

HOUR
12
h
1
1
H
2
1
H
<.
1
H
2
1
H
c
j
1
h
2
1


le

 ACTIVITY  LEVELS:  1=lo*   2=aeoiua  3=high
                                    D-39

-------
           ACTIVITY  PATTERNS Bt AGE-OCCuPATION  SUBGROUP
A-0 GhOUP: «—Service  &  Household  SUuGROUP:6     PCT  IN SUBGROUP
*»AY OF TIHE LOCAT10N/HICROEUVIROMMENT/ACT1VITY-LEVEL 6Y HOUR
WEEK OF DAY 1 i. 3 * 5 6 7 o 9 1 0 1 1 1 2
•EEKCAYS AM H
s.
1
PM H
^
1
SATURDAY AP H
2
1
P* H
2
1
SUfcfAY AH H
2
1
PM H
2
1
LOCATION CODES: H=hone
nlCROENVIRONMEhT COOES:
1 = wo rk or s choo I 2
4 = roddsiae 5
H
2
1
H
2
2
H
2
1
h
2
2
H
2
1
H
2
1
u

=
H
2
1
H
2
1
H
2
1
H
i.
\
H
2
1
H
2
1
=wor

hOi,e
h
2
1
H
3
2
H
^
1
H
3
1
H
2
1
H
5
c
k

or o
H
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
2
\


the
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1


r
= outdoors
H H
<. 2
1 1
h H
t 2
1 1
H H
i c
1 1
h h
4. iC
1 1
H H
c 4
1 1
H N
2 2
1 1


H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


h
2
2
H
2
1
H
2
2
H
2
1
H
3
1
H
2
2


3 = transport
6 = ki
tchen

H
2
2
H
2
1
H
4
1
H
2
1
H
2
1
H
2
1


veh i

h
2
1
H
2
1
K
2
1
H
2
1
H
2
1
H
2
1


cle

 ACTIVITY  LEVELS: 1=low   2=«ediu«   3=high
                                   D-40

-------
           ACTI.ITy PATTERNS BY  AGE-OCCuPATI ON SUBGROUP


A-0 GROuP: V — Mousfwives            5>UoGhOUP:1    PCT IN SUB6ROUP:AZ
DAT OF TinE LOCATION/HlCROENVIRoNMENT/
WEEK OF DAY 1 «. 3 * 5 6 7
•EEKDAYS A* H
n
i.
1
PM h
4.
1
SATURDAY Ar H
c
1
PW H
6
1
SUNDAY Afl H
".
1
PH K
t
1
h
2
1
H
C
1
H
2
1
H
2
1
H
2
1
h
2
1
=====
H
2
1
h
3
1
H
2
1
H
5
2
h
2
1
H
2
1
H
2
1
H
c
1
H
2
1
H
2
1
H
2
1
H
2
2
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
i
2
H
2
1
H
6
1
H
2
1
h
2
1
H
2
1
H
2
1
h
0
1
n
2
1
h
2
1
H
c
1
H
2
1
h
0
1
ACTIVITY-LEVEL EY HOUR
6 9 10 11 12
H
2
<:
H
^
1
H
6
1
H
4
2
H
6
1
H
2
1
H
2
1
H
2
1
H
2
2
H
3
1
H
2.
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
2
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
H
5
1
H
2
1
h
2
1
H
2
1
H
3
1
h
2
1
 LOCATION CODES:  h=home    w=uork

 KICROENV1RONHENT  CODES:
 1 = work or school    2  - ho«e or other    3 = transport vehicle
 4 = roadsiae          5  = outdoors         6 = kitchen

 ACTIVITY LEVELS:  1=luw    2=*ediu«  3=high

-------
           ACTIVITY  PATTEKNS oY AoE-OCCbPATlON  «»UuGi ACT i VI T Y-LE VEL BY HOUR
»EEn OF DAY 1 
-------
           ACTIVITY  PATTEkNS bY Ata£-OCCuPATION SUbfiROUP
A-0 EROi-P: 9 — Housewives
                                   SUfcGnOuP:2
PCT IN SUBbPOUP:  9
UAYOF Tlf.E LO
.EEX CF DAY 1
-EEKDAYS AM H
^
1
P* H
T
1
SATURDAY Af» H
t
1
PM h
t
1
SUNDAY AT H
2
1
PM H
6
1
CATION/HICROEi
: 3 4
h
2
1
H
2
2
h
*.
1
H
2
2
h
2
1
H
2
1
h
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
h
^
1
H
5
3
H
2
1
H
5
2
f»vi«? ON ME NT/ACTIVITY -LEV
I 6 7 b 9 10
H
2
1
H
ic.
1
h
t
1
H
2
1
H
&
1
H
2
1
h
2
1
H
o
1
H
2
1
H
6
1
H
2
1
H
2
1
h
o
1
H
2
1
H
2
1
H
2
1
h
2
1
H
6
1
H
2
1
h
2
1
H
2
1
M
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
6
1
H
2
1
H
2
1
H
2
1
H
2
2
H
2
1
h
5
1
H
L.
1
h
2
1
h
2
1
EL B
11
H
5
2
H
2
1
H
2
1
H
3
1
H
2
1
H
2
2
Y HOUk
12
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION  CODES:  H=ho«e
                          • =work
niCROENVlRONMENT  CODES:
1 =• hork or school     2 = home or other     3
«* = roadsiae           5 = outdoors          6
ACTIVITY LfcVELS:  1 =
                           2=mediun   3 = high
                                                  transport  vehicle
                                                  k i tchen
                                    D-43

-------
           ACTIVITY PATTERNS faY AGE-OCCtPATlON SUBGROUP


A-0 GROlPilG—Unemployed &  Retireo  SUo6hOUP:1     PCT IN SUBGROUP:20
DAY CF T1*E LOCATlON/MICRtJENVlPONMENTyACTlVITY-LEVEL BY
WEEK ff OAT 123Ai67o91011
WEEKDAYS Aft H
2
1
Pit W
A
c
SATURDAY Ah H
«r
1
PR H
2
1
SUNDAY AT. h
t.
1
P» h
L.
1
h
2
1
u
1
1
h
2
\
h
2
1
h
I
1
H
2
1
=====
h
2
1
•
3
1
H
2
1
H
3
1
H
2
1
H
5
3
H
2
1
h
5
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
h
2
1
H
c
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
4.
1
H
2
1
H
i
1
H
2
1
H
4
2
H
2
1
h
«.
1
H
2
1
H
2
1
H
2
1
H
«.
1
H
2
1
h
2
1
H
2
1
H
2
1
h
2
1
H
2
1
h
2
1
h
2
1
H
4
1
H
2
1
H
5
1
H
2
1
W
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
HOUR
12
W
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
  LOCATION  CODES:  H=hone   u=work

  RlCRQEKVIRUNMENT CODES:
  1  =  fcork  or school    2 = ho«e or other    3 = transport vehicle
  4  =  roadsiae          S = outdoors         6 = kitchen

  ACTIVITY  LEVELS: 1=lo-   2=«ediu«  3=high
                                   D-44

-------
                VITY  PATTERNS Bt AbE-0CCUPATI Oft  SUbGROUP


A-0 GROuf»:1C,— Uiieaployed  i Netirea SUuG«OUP:2     PCT IN SUBGRCUP:24
DAY OF 1IKE LOCA
• EEK. OF DAT 1
WEEKDAYS AH H
!_'
1
PM h
~i
1
SATURDAY AK H
t"
1
Ph H
A.
1
SUNDAY Ar H
L»
1
PR H
i
1
T10N/MICROEN
2 i 4
h
t
1
H
4
2
h
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
5
2
H
2
1
H
5
3
H
2
1
H
2
1
H
<.
1
h
2
1
h
2
1
H
4
2
H
2
1
H
5
3
VI
3
H
2
1
H
2
1
H
2
1
H
2
1
H
i
1
H
2
1
RON MEN
6
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
7/ACT1V
7 £
H
c
1
h
«.
1
H
e.
1
h
2
\
h
2
1
H
4
1
h
2
1
H
4
1
h
2
1
h
7
-I
1
H
2
1
H
2
1
1TY-LEVEL 5
9 10 11
H
2
1
H
2
1
H
2
1
H
A
1
H
2
1
h
2
1
H
4
2
H
2
1
H
2
1
H
2
2
H
2
1
H
2
1
H
3
1
H
2
1
H
4
1
H
2
1
H
4
2
H
2
1
Y HOUR
12
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
h
2
1
 LOCATION  CODES: H=hoae   W=uork

 AICROENVlRONftENT CODES:
 1 -  work  or  school    2 = hone or other     5 = transport vehicle
 4 =  roadside          5 = outdoors          6 = kitchen

 ACTIVITY  LEVELS: 1=U*   2=nediu«   3=high
                                   D-A5

-------
           ACTIVITY PATTERNS BY AGE-OCCLPAT10N SUBGROUP


A-0 GROCP:1Q— Unemployed «, ketirea  SUbGkOUP:3    PCT  IN  SLuGROUPrZQ

 i\ • w nc    T T <• r      inr»Ttrik./MTro.-icioi»TDr. UMCkiT»«rTTVTTv_i rupi  BV u n 11 £
DAY OF TIP>E LOCATION/MICRGENVIRONMENT/ACTIVITY-LEVEL
WEEK CF DAY 1 2 3 - 5 6 7 & 9 1C '
-EEKDATb Ah h
?
1
PN H
2
1
SATUhOAY A? H
2
1
r ™ H
2
1
SUNDAY A.I H
z
1
PK H
£
1
H
2
1
h
2
1
H
2
1
H
c.
1
H
2
1
H
2
1
H
2
1
H
4
2
H
2
1
H
4
2
H
2
1
H
5
1
H
2
1
H
2
2
n
±
1
h
5
1
H
2
1
H
4
2
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
H
±
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
c
1
h
2
1
h
£
1
h
i
1
H
2
1
H
2
1
h
c
1
H
2
1
h
2
1
H
2
1
h
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
h
2
2
h
i:
1
H
W
1
H
2
1
BY
11
H
5
2
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
12
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
 LOCATION COOES: h=hoae    w=work

 KlCROENVlRONHeNT COOES:
 1  =  «ork or school    2  = ho»e or other     3  = transport vehicle
 4  =  roadsiae          5  - outdoors          6  = kitchen

 ACTIVITY LEVELS: 1=lo-    2=«ediu«  3=high
                                    D-A6

-------
           ACTIVITY  PATTERNS  bY AbE-OCCoPATI ON  SUBGROUP


A-0 GRUoP:10— (:nvBplo>ed  » ftetireu SUb6kOUP:4     PCT  IN  SUBGROUPr30
 OAT OF    TIKE      LOCATlON/nlCROENVlRONMENT/ACTiVlTY-LEVEL BY HOUR
  • EEK    CF DAY      123,567c91J1112
 -EEKDAYS   AH        HHHHHHhHHHHH
                      I    i   2   2   I   L    '<.    ~
-------
           ACTIVITY PATTERNS  &Y  AbE-OCCuPATlON SUBGROUP


A-0 GnOCP:10—unemuloyed  i  Ketirea SUcGROUPiS    PCI IH SUBbROUP:
wAY OF TIhE LCCATION/HICRUENVIRONMENT^ACTIVITY-LEVEL BY
WEEK OF DAY Ii34bo7fc9ic.ii
•EEXDAYS AK H
'(.
\
PM H
€.
1
SATURDAY AM H
t.
1
P» H
2
1
SUNDAY AM H
2
1
PM H

1
H
2
1
H
2
1
H
2
2
H
2
1
HOUR
1L
h
2
1
h
2
1
H
3
1
H
2
1
h
2
1
H
2
1
 LOCATION  COOES: H=hoa*   4=work

 fllCROENVIRONRENT CODES:
 1  =  -ork  or school    2 = ho«e or other     3  =  transport vehicle
 *•  =  roadside          5 = outdoors          6  -  kitchen

 ACTIVITY  LEVELS: 1=lc*   2=nediu«   3-hign
                                   D-48

-------
           ACTIVITY PATTERNS  bY  A bE-OCC UPAT1 ON SUbGfiOUP


A-0 GROLP:1u—Unemployed  *  Retiree SUsGROUP:6    PCT  IN  SUBGROUP:  2
DAY OF TIME LO
ritEK OF DAY 1
.EEKDAYS AM H
l_
1
Pf H
2
1
SATURDAY AK H
4.
1
PM H
*
1
SUNDAY A" H
Z
1
PM H
2
1
CATION/h
Z 3
H
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
1CRQEN
4»
h
2
1
H
2
1
H
2
1
H
2
1
ri
2
1
H
5
2
VlRONMENT/ACTlVlTY-LcVEL BY
5 6 7 & 9 10 11
H
'(.
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
2
h
2
1
H
2
2
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
2
t
H
2
1
H
2
1
H
2
2
h
2
1
H
c
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
ri
2
1
H
2
1
H
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
h
2
2
H
2
1
HOUR
12
H
2
2
H
2
1
H
5
1
H
2
1
H
2
1
H
2
1
 LOCATION COOES:  K=ltoae   b=work

 HICROENV1RONKENT COOES:
 1 - t.ork or  school     2 - hoae or other    3  =  transport  vehicle
 4 = roadside           ^ = outdoors         6  =  kitchen

 ACTIVITY LEVELS: 1=lc*   2=aeaiu«  3=Mgh
                                   D-49

-------
          ACTIVITY PATTERNS  BY A t>E -OC CuPATI 0*  SUbGKGUP
           — Children unoer  5
SUbG«tOUP:1
PCT IN. SbBfaROUP:21
CAY CF HhE LOCATlON/MlCRGENVlRGNMENT/ACTlVlTt-LfVEL bY HOUR
«EE* OF DAY 1 2 3 4 5 6 7 a 9 10 11 12
WEEKDAYS AM K
"1
1
9* H
7
1
SATURDAY AK H
2
1
DM U
" n n
c
i
SUNDAY A* H
I
1
PN H
2
1
LOCATION CODES: H=home
KICROENV1RONMENT CODES:
1 = toork or school e.
4 = roadside 5
H
2
1
H
2
1
H
2
1
H
3
1
H
2
1
H
2
1
w

=
H
2
1
H
5
1
H
2
1
H
i
1
H
2
1
H
5
1
=«ork

home
H
2
1
H
2
1
H
^
1
H
5
1
H
2
1
H
2
1


o r o
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


the
= outdoors
H H
'i C
1 1
H H
2 i
1 1
H H
2 <-
1 1
H h
2 t
1 1
H H
2 c
1 1
H H
2 <.
T 1


r 3
6
H
2
1
H
2
1
h
c
1
H
c
^
H
i
1
H
£
1


H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


H
2
1
H
'c
1
H
2
1
H
2
1
H
i
1
H
2
1


= transport
= k i
tcHen

H
3
1
H
2
1
H
5
1
H
2
1
H
2
1
H
2
1


vehi

H
2
1
H
i.
1
H
2
1
H
2
1
H
2
1
H
2
1


cle

ACTIVITY LEVELS:  1=lo*   2=mediua   3=high
                                  D-50

-------
           ACTIVITY PATTERNS  6Y  AuE-OCCuPATI ON SUbS&OUP


A-0 GROcPill — Children  uncer  b      SUb6ROUP:i:    PCT IN  SUB6<*OUP:2C
CAY OF II^E LOCATION/HI
WEEK OF DAY 1 c 3
WEEKDAYS AM H
•5
1
f-M V
C
1
SATURDAY Ar H
»L
i
PK H
t
1
SUNDAY AK H
2
1
PH H
2
1
H
2
1
H
c
t.
H
2
1
H
2
2
H
2
1
H
i
3
h
2
1
h
2
1
H
2
1
H
3
1
H
2
1
H
2
1
CROENV1R
A 5
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
H
3
1
H
i
1
H
c
1
H
2
1
H
2
2
H
2
1
H
2
1
CNHENT/
6 7
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
2
h
2
1
H
c
1
H
t.
1
H
*
1
H
c
1
H
^
1
ACTIVITY-LEVEL 5Y HOUR
b 9 1C 11 12
H
2
1
H
C
2
H
2
1
H
t.
1
H
2
1
H
£
1
H
2
2
H
2
1
H
2
i.
H
2
1
H
2
1
H
2
1
H
^»
1
H
2
1
H
5
2
H
2
1
H
i.
2
h
2
1
H
2
2
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION COOES;  H=ho«e   «=»ork

 MICRCEMVIRONMENT  CODES:
 1 = teork. or  school     2 = hone or other    3  = transport  vehicle
 4 = rondsiue           5 = outdoors         6  = kitchen

 ACTIVITY LEVELS:  1=lo*   2=mediua  3=high
                                   D-51

-------
                     PATTERNS dY A bE-OCC UPAT1 ON
A-0 GfcOuPsH — Children unocr b     iL'£6(
-------
                     ACTIVITY PATTtkNS tY AGE-OCCuPAT1 ON bUbGROUP
         A-0 GFOoPill—Chilcren unoer 5
SUBGROUP:*.
PCI IN SUBGROUP:!*?
J>AY OF Tl^E LOCATION/M
«EE* CF DAY 1
•EEKDAYS AM H
2
*
PM H
2
1
SATUkOAY A*! . . H_
4.
1
PM h
2
1
SUNDAY AW H
2
1
PM H
2
1
LOCATION CODES: H=home
MICROENV1RONMENT CODES:
1 = »o rk or s choo I 2
H = roadsiue 5
2
H
2
1
H
2
1
H
2
1
H
:j
2
H
2
1
H
f
3
w
3
H
2
1
H
2
1
H
2
1
H
2
2
H
2
1
H
2
1
= .0
ICRGENV1RONI1ENT/ACT1V1TY-LEVEL BY HOUR
*
H
2
1
H
5
*
H
2
1
H
2
1
H
2
1
H
2
1
rk
= home or
=
out
doors
5
H
2
1
H
2
1
H
i
1
H
3
1
H
2
1
H
3
1

other

6
H
L
1
h
2
1
H
^
\
M
^
1
h
2
1
H
2
1



7
H
(.
1
H
2
1
H
t,
1
H
2
1
H
2
1
h
2
1

3 =
6 =
6
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1

t r
ki
9
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
. 1

anspo
tchen
1C
H
2
1
h
2
1
H
5
\
H
2
1
H
i
1
H
^
1

rt

11
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1

vehi

12
h
5
*•
H
2
1
H
2
1
H
2
1
H
£
1
H
t
1

cle

           ACTIVITY LEVELS: 1=luw    2=«ediua  3=high
                                            D-53
L

-------
           ACTIVITY  PATTERNS bY Ab£-OCCuPATIOfc SUbGROuP
A-0 GhuLP:!,.— Children 5 to 17
                                   S;JbGROUP:1
PCT IN SUBbRGUP:56
DAY OF TIf'E LOCATION/MI
-EEK OF DAY 1 e. 2,
-HEKDAYS AM H
*»
1
PK H
1
1
SATURDAY A.r H
j
1
PM H
t.
1
SUNDAY A." H
— z
1
PK H
c
1
H
2
1
H
1
1
H
2
1
H
2
1
h
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
^
V
H
2
1
H
2
1
CROENV1R ON NENT/ACTIVITY -LEVEL £*
4 b o 7 6 9 10 11
H
2
1
H
2
1
H
^
1
H
5
2
H
2
1
H
5
1
H
2
1
H
b
2
H
2
1
H
2
1
H
2
1
H
5
2
H
2
1
H
2
1
H
2
1
H
^
1
H
2
1
H
2
1
h
2
1
H
2
1
H
^
1
H
t
1
H
t
1
H
2
1
H
2
1
H
t
1
H
c.
1
H
c
1
H
2
1
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
h
2
1
H
2
1
H
1
1
H
2
1
H
2
2
H
2
1
H
7
1
H
2
1
H
5
3
H
2
1
H
3
1
H
2
1
H
2
1
H
2
1
HOUR
12
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
 LOCATION CODES; H=ho«e
 MICROENVIRONHENT CODES:
 1  =  toork  or school     2  -  ho>e or other    5
 <•  =  roadside           5  =  outdoors         6
ACTIVITY LEVELS
                            2=iaeciium  l = high
                                                 transport vehicle
                                                 k i tchen
                                   D-54

-------
           ACTIVITY  PATTERNS  fcY A t>E-OCC UP AT I ON.  SUBGROUP


A-0 6KCUP:12—Children  5  to 17     SUbGkOUP:2     PCT  IN  SUBGROUP: 4
DAY OF TIMF LO
WEEK CF DAY 1
WEEKDAYS AM H
t-
1
PM h
1
1
SATURDAY AM H
2
1
PM H
*
1
SUNDAY Af H
^_
1
FW ri
-)
1
CATION/M
2 3
H
2
1
H
1
1
H
2
1
h
1
1
H
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
4
1
H
2
1
H
b
3
ICR OENVI RONMENT/ACT IV1TY-LEVEL 6Y HOUR
4 5 6 7 6 9 1G 11 12
H
2
1
H
4
2
n
2
1
H
c
1
H
2
1
H
2
1
h
2
1
H
2
1
H
L
1
H
2
2
H
<:
1
H
5
2
H
4.
1
H
5
2
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
h
2
1
H
(.
1
H
2
1
H
L
\
h
2
1
H
4
2
H
2
1
H
2
1
h
j>
1
H
i.
1
H
^
1
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
5
1
H
2
1
H
2
1
H
2
1
H
5
2
H
2
1
H
5
3
H
2
1
H
3
1
H
2
1
 LOCATION  ODES:  H=home   W=uork

 MICROENVI»UNPEMT CODES:
 1 =•  toork  or  school    2 = hone or other     3  = transport vehicle
 A =  roadside           S - outdoors          6  = kitchen

 ACTIVITY  LEVELS: 1=loy   2=«ediuB   3=high
                                   D-55

-------
           ACTIVITY  PATTERNS bY AGE-OCCoPATI ON  SUBGROUP


A-0 GfcOuP:l2— Children  5  to 17     SUbGKOUP:      PCT  IN  SUBGROUP:  7
DAY OF TI*E LOCATION/MI
•fcEK CF DAY 123
mEEKDAYS AH H
£
1
rM K
1
1
SATURDAY A* H
*
"*
PM H
i
1
SUNDAY Af — H
2
1
PH H
^
1
H
2
1
H
3
3
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
<,
1
H
2
1
H
2
1
ICROENV1RONMENT/ACT1V1TY-LEVEL BY HOI
4, 5 6 7 & 9 10 11 12
H
2
1
rt
.j
1
H
2
1
H
5
2
H
2
1
H
5

H
2
1
h
2
1
H
c
1
H
2
1
H
t
1
H
2
1
H
2
1
H
5
*
H
2
1
H
2
1
H
2
1
H
2
1
h
2
1
H
<;
1
H
i.
1
H
c
1
H
i.
1
h
2
1
h
2
1
H
2
1
H
c
1
H
2
1
H
I
1
H
t
1
H
3
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
H
1
1
H
2
1
H
2
2
h
2
1
H
2
1
H
't.
1
H
1
1
H
2
1
H
4
2
H
2
1
H
5
1
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
4
1
H
2
1
  LOCATION CODES: H=ho»c   U=uork

  AICROENVIRONNENT CODES:
  1  =  work or school    2  =  hcm«?  or  other    3 = transport  vehicle
  4  =  roaosiue          5  =  outdoors         6 = kitchen

  ACTIVITY LEVELS: 1=-lo*   2=«ediu«   3=high
                                    D-56

-------
          ACTIVITY  PATTERNS BY A«E-OCCOPATI ON SUsGROUP
-0 6ROOP:1Z—Chiloren 5 to 17
PCT IN SUB;
1
1
SATURDAY A (- H
•»
1
P»» h
z
1
i»U.«DAY AK H
•>
i.
1
P* h
^
t
1
LOCATION CODES; H=hone
P.ICROEfci/lRONKENT COOtS
1 = »ork or school
4 = roadsioe
H
2
1
rt
1
1
H
«.
1
H
4
1
h
c.
1
H
£
1
*
.
2 -
5 =
H
2
1
H
1
1
H
2
1
H
5
2
H
2
1
H
5
1
=wor k

hone o
out ooo
OENVIRONHEN
H 5 6
H
2
1
H
1
1
H
2
1
H
2
1
h
2
1
H
5
2


r
rs
H
ic.
\
H
5
1
H
i
1
H
2
1
H
2
1
H
2
1


othe

H
2
1
H
i
1
H
2
1
H
2
1
H
2
1
H
2
1


r

T/ACTIV1TY-LEVEL
7 fc 9 1C
H
ic.
1
h
2
1
h
«1
1
H
Z
1
H
'c
\
h
t
1


3 =
6 -
H
3
1
H
Z
1
H
2
1
H
3
1
H
3
1
H
2
1


t ran
kite
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


sport
hen
H
1
1
H
L
1
H
2
1
H
2
'c
H
2
1
H
2
1


we

BY
11
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1


hie

HOUR
12
rt
5
3
H
L
1
H
5
2
H
2
1
H
2
1
H
2
1


le

ACTIVITY  LEVELS: 1=low    Z=medium  3=high
                                  D-57

-------
          ACTIVITY PATTEKNS E>Y A^-OCCUPATION SUBGROUP
-0 bhOUP:l£— Chilaren 5 to 17      SUa6fcOuP:5     pCT IN SliBbROUf: 2
CAT OF TIME LO CATION /M I CR GEN VI RONMEM / ACT 1 VI T Y -L EV EL BY
*tEk PF DAY 1i2<,567&91011
WEEKDAYS AH* H
>
1
Frt h
«>
•»
SATURDAY Ar H
c
1
FM H
c.
1
SUNDAY Al* H
4
1
PR H
t
1
LOCATION CODES: ri=hoae
MICRCENVIRONMENT COOLS:
1 = nork or school 2
4 = roadside 5
H
2
1
H
1
1
H
2
1
H
2
1
H
2-
1
h
2
1
u

=
H
c
1
H
1
1
H
2
1
H
4
1
H
"*
1
H
5
3
«> S ^ «« «
=work

houe
H
2
1
H
1
1
H
2
1
H
2
1
H
2
1
H
5

-------
          ACTIVITY PATTERNS BY AGF-uCCUPAT10N  SUBGROUP


-0 tROUP:12— Children 5 to 17     SUbG*OUP:6     PCT  IN  SUBGROUP:  3
DAY OF TIPE LO
.EEK CF DAY 1
WEEKDAYS Af M
2
1
nn h
1
1
SATURDAY A.* H
t
1
PI *•
2
1
SUNDAY AT H
fa.
1
PP H
2
1
CAT10N/MICROEN
h
£
1
H
1
1
H
2
1
H
j
2
H
2
1
H
2
1
h
2
1
H
1
1
H
2
1
H
5
2
H
2
1
H
5
3
H
2
1
H
3
1
H
2
1
H
£
1
H
2
1
H
2
1
VI RON rtENT /ACTIVITY-LEVEL
5 6 7 o 9 1C,
H
2
1
H
2
1
H
2
1
H
2
1
H
i:
1
H
5
1
H
2
1
H
5
1
H
c.
1
H
i
1
H
2
1
H
2
1
H
t
1
h
i
1
h
2
1
H
c
1
H
2
1
H
t
1
H
5
1
H
2
1
H
£
1
H
£
1
H
2
1
H
£
1
H
1
1
h
2
1
H
2
1
H
2
1
H
2
1
H
2
1
h
5
5
H
i
1
H
£
1
H
3
2
H
3
1
H
£
1
BY
11
H
1
1
H
2
1
H
4
1
H
z
1
H
2
1
H
2
1
HOUR
12
H
1
1
H
2
1
H
2
1
H
2
1
H
2
1
H
2
1
LOCATION CODES:  H=ho«?   V=uork

HICROEhVlRONMENT  CODES:
1 =  toork or school    2  =  home or  other     3  = transport vehicle
4 -  roadsioe          5  -  outdoors         6  = kitchen

ACTIVITY LtVELS:  1=l^y   2=nediua   3=high
                                 D-59

-------