PB87-227310
DEVELOPMENT OF CHEMICAL COMPATIBILITY
CRITERIA FOR ASSESSING FLEXIBLE MEMBRANE LINERS
National Sanitation Foundation
Ann Arbor, MI
Aug o
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
-------
EPA/600/2-87/067
August 1987
PB87-227310
DEVELOPMENT OF CHEMICAL COMPATIBILITY
CRITERIA FOR ASSESSING FLEXIBLE
MEMBRANE LINERS
by
Gordon Bellen, Rebecca Corry, Mae Lynn Thomas
National Sanitation Foundation
PO Box 1468
Ann Arbor, MI 48106
Contract No. CR-810727
Project Officer
Mary Ann Curran
Land Pollution Control Division
Hazardous Waste Engineering Research Laboratory
Cincinnati, Ohio 45268
HAZARDOUS WASTE ENGINEERING RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT Of COMMERCE
SPRINGFIELD, VA. 22161
-------
TECHNICAL REPORT DATA
fftettt rttd InitruetiCHn on tht rtvtnt btfort completing)
, REPORT NO. • 2.
EPA/600/2-87/067
-TITLE AND SUBTITXE^
Development of themical Compatibility Criteria for
Assessing Flexible Membrane Liners
. AUTMOR(S)
Gordon Bellen, Rebecca Corry and Mae Lynn Thomas.
PERFORMING ORGANIZATION NAME AND ADDRESS
lational Sanitation Foundation
'.0. Box 1468 , .
inn Arbor, MI 48106
laY5>fa8QsN(WalVec^TneAeYi^^earch Laboratory
iffice of Research and Development
i.S. Environmental Protection Agency
indnnati, Ohio 45268
3. RECIPIENT'S ACCESSION NO.
PB87 2272MO/4C
S. REPORT DATE
August 1987
6. PERFORMING ORGANIZATION CODE
1. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
CR 810727
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA/600/12
.SUPPLEMENTARY NOTES
»
.ABSTRACT
Laboratory testing was conducted to develop chemical resistance data using
Immersion tests. Six FML materials (polyvinylchloride, chlorinated polyethylene,
chlorosulfonated polyethylene, high density polyethylene-,-epiehlorohydrin and
ethylene propylene diene terpolymer) were tested. Twenty chemical solutions
providing a range of chemical challengers; acid and base, polar and non-polar,
organic and inorganic, and increasing chemical concentration, were used. Duration
of immersions were 1, 7, 14, 28, and 56 days, and four month increments for up to
two years. All immersion tests were conducted at two temperatures, 23° and 50°C.
'Liners were evaluated for changes in appearance, weight,-dimensions, and tensile
properties. Procedures and criteria for evaluating immersion test results were
developed using data from this study and comparing these data with comparable data
from other studies, published reports and criteria, and liner manufacturer recom-
mendations. The criteria for chemical resistance include the need for a liner
response to have stabilized, retention of minimum physical properties, and maximum
percent change of physical properties. A mathematical curve fitting method is
proposed for evaluating immersion data as a function of time. The method assumes
the liner approaches a limit of physical property change (stability) asymptotically
The method can be used to predict the ultimate end point of physical property
change and sampling time intervals for continued immersion testing
,_ KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
i. DISTRIBUTION STATEMENT
Release to Public
b.lOENTIFIERS/OPEN ENDED TERMS
19. SECURITY CLASS ( Tl,tt Rtfonf
Unclassified
zoUsnEcctJaTsYifYes^"1"par"
c. COSATI Field/Croup
21. NO. OF PAGES
511
72. PRICE
JPA FMH% 2230-1 (R»». 4-77) PREVIOUS COITION is OBIOLETC
-------
NOTICE
The information in this document has been funded wholly or in part by the
United States Environmental Protection Agency under Cooperative Agreement
No. CR-810727 to the National Sanitation Foundation, it has been subject to
the Agency's peer and administrative review, and it has been approved for pub-
lication as an EPA document. Approval does not signify that the contents
necessarily reflect the views and policies of the U.S. Environmental Protec-
tion Agency nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
ii
-------
FOREWORD
Today's rapidly developing and changing technologies and industrial products
and practices frequently carry with them the increased generation of solid and
hazardous waste. These materials, if improperly dealt with, can threaten both
public health and the environment. Abandoned waste sites and accidental
releases of toxic and hazardous substances to the environment also have impor-
tant environmental and public health implications. The Hazardous Waste Engin-
eering Research Laboratory assists in providing an authoritative and defensi-
ble engineering basis for assessing and solving these problems. Its products
support the policies, programs, and regulations of the EPA; the permitting and
other responsibilities of State and local governments; and the needs of both
large and small businesses in handling their wastes responsibly and economi-
cally.
Flexible membrane liners (FMLs) are used as lining materials for hazardous
waste containment, in landfills and surface impoundments. A double-liner
system, including at least one synthetic liner, is required in all new instal-
lations. The FML used" in a waste containment application-must show long-term
chemical resistance to the waste stream. The EPA requires that FML selection
be based on evaluation of changes in physical properties resulting from the
immersion in the actual waste to be contained.
This report discusses results of immersion tests of six liner materials in
twenty chemical solutions at two temperatures. Procedures and criteria for
evaluating immersion results are presented.
For further information, please contact the Land Pollution Control Division of
the Hazardous Waste Engineering Research Laboratory.
Thomas R. Hauser, Director
Hazardous Waste Engineering Research Laboratory
iii
-------
ABSTRACT
Laboratory testing was conducted to develop chemical resistance data using
immersion tests. Six FML materials, polyvinylchloride, chlorinated
polyethylene, chlorosulfonated polyethylene, high density polyethylene,
epichlorohydrin and ethylene propylene diene terpolymer were tested. Twenty
chemical solutions providing a range of chemical challengers; acid and base,
polar and non-polar, organic and inorganic, and increasing chemical
concentration, were used. Duration of immersions were 1, 7, 14, 28, and 56
days, and four month increments for up to two years. All immersion tests were
conducted at two temperatures, 23° and 50°C. Liners were evaluated for
changes in appearance, weight, dimensions, and tensile properties.
Procedures and criteria for evaluating immersion test results were developed
using data from this study and comparing these data with comparable data from
other studies, published reports and criteria, and liner manufacturer
recommendations. The criteria for chemical resistance include the need for a
liner response to have stabilized, retention of minimum physical properties,
and maximum percent change of physical properties.
A mathematical curve fitting method is proposed for evaluating immersion data
as a function of time. The method assumes the liner approaches-a- limit -of
physical property change (stability) asymptotically. The method can be used
to predict the ultimate end point of physical property change and sampling
time intervals for continued immersion testing.
This report was submitted in fulfillment of Cooperative Agreement No. CR-810727
by the National Sanitation Foundation under the sponsorship of the U.S. Envi-
ronmental Protection Agency. This report covers the period July 1983 to April
1986.
iv
-------
COUTENTS
PAGE
FOREWORD ill
ABSTRACT iv
CONTENTS v
FIGURES vlii
TABLES xiii
ACKNOWLEDGMENTS xv
ABBREVIATION AND SYMBOLS xvi
ENGLISH TO METRIC CONVERSION TABLE xvii
1. INTRODUCTION 1
2. CONCLUSION AND RECOMMENDATIONS 4
3. METHODS OF PREDICTING CHEMICAL RESISTANCE OF POLYMERS 7
BASIC PRINCIPLES OF POLYMER INTERACTION IN SOLVENTS 7
Polymer Types 7
Chemical Attack vs. Solvation 9
General Guidelines For Polymer Solubility 10
THEPRETICAL SOLUBILITY PARAMETERS 11
CHEMICAL COMPATIBILITY TABLES 18
TEST METHODS FOR COMPATABILITY DETERMINATION 21
4. TECHNICAL.APPROACH 24
OBJECTIVES 24
PROJECT ADVISORY COMMITTEE 24
EXPERIMENTAL DESIGN 25
SELECTION OF FMLs FOR TESTING 28
Selection Criteria 28
FMLs Selected 28
Description of FMLs Received 30
FML "As Received" Properties 32
SELECTION OF IMMERSION CHEMICALS 39
Criteria for Selection of Chemicals 39
Seven Day Screening 40
Chemicals Selected 41
TEST EQUIPMENT 45
Immersion Jars 45
Weight and Dimension Tools 47
Die Punch 48
Test Chambers 48
Universal Test Machine 48
Data Handling 49
Data Evaluation 51
5. TEST PROCEDURES 52
MATERIAL STORAGE AND SAMPLE TRACKING 52
SAMPLE PREPARATION 53
IMMERSION PROCEDURE 55
6. QUALITY CONTROL 59
MEASUREMENT OBJECTIVES 59
WEIGHT AND DIMENSION 61
-------
TENSILE PROPERTIES MEASUREMENT 64
COMPLETENESS 65
CONTROL OF IMMERSION CHEMICAL CONCENTRATION 69
DATA CONTROL 76
REPLICATE TEST RESULTS 76
7- SAFETY 78
DESCRIPTION OF HAZARDS 78
ACTIONS TAKEN TO PREVENT HAZARDS .... 79
Chemical Handling 80
Protective Clothing 80
Location of Safety Equipment 8^
Transport Route 81
Work Area 81
Sample Handling 81
Chamber Entry and Exit • 81
Waste Disposal 82
8. RESULTS AND DISCUSSION 83
OVERVIEW OF DATA PRESENTATIONS AND DISCUSSIONS 83
Process for Determining Chemical Resistance Criteria 83
Curve Fitting Response Stabilization as a Function of Time • . 86
Temperature and Concentration Effects • 95
Response as a Function of Liner Grain (Direction) 97
Units of Measurement 99
Figures 99
POLYVINYL CHLORIDE (PVC) . . 100
Criteria for Determining FML Chemical Resistance .• . . . . . 100
Response Time and Stability 101
Magnitude of Liner Response 101
Types of Effects • 101
Indicators of Non-Resistance 105
CHLORINATED POLYETHYLENE (CPE) 114
Criteria for Determining FML Chemical Resistance 114
Response Time and Stability 118
Magnitude of Liner Response ......... 118
Types of Effects 122
Indicators of Non-Resistance 123
ETHYLENE PROPYLENE DIENE MONOMER (EPDM) 130
Criteria for Determining FML Chemical Resistance 130
Response Time and Stability 131
Magnitude of Liner Response 133
Types of Effects 136
Indicators of Non-Resistance 137
EPICHLOROHYDRIN (EPI-CO) 145
Criteria for Determining FML Chemical Resistance 145
Response Time and Stability 148
Magnitude of Liner Response 149
Types of Effects 152
Indicators of Non-Resistance 153
HIGH DENSITY POLYETHYLENE (HOPE) !61
Criteria for Determining FML Chemical Resistance 161
Response Time and Stability 163
Magnitude of Liner Response ^"^
Types of Effects 167
vi
-------
Indicators of Non-Resistance
CHLOROSULFONATED POLYETHYLENE-LOW WATER ABSORPTION (CSPE-LW) . . 172
Criteria for Determining FML Chemical Resistance 172
Response Time and Stability
Magnitude of Liner Response
Types of Effects 18°
Indicators of Non-Resistance • 182
REFERENCES 188
APPENDICES 19°
A. ADVISORY COMMITTEE MEMBERS 19°
B. INITIAL SCREENING RESULTS 194
C. WEIGHT AND DIMENSION PROCEDURE 205
D. PERCENT OF TARGET CONCENTRATION 214
E. IMMERSION RESULTS 220
vii
-------
FIGURES
Number Page
1. PVC in brine and 0.5 percent DCE 2
2. Project diagram 26
3. One quart and two gallon immersion jars 46
4. Sample coding system 50
5. FML material storage 52
6. Sample tracking system ........... ... 54
7- Pattern for typical immersion sample die cutting «• 57
8. Percent of target concentration of 4 percent phenol solution
versus days in solution 72
9. Percent of target concentration of 4 percent furfural solution
versus days in solution 73
10. Percent of target concentration of 13 percent MEK solution versus
days in solution 74
11. Percent of target concentration of saturated DCE versus days in
solution.. ........ . 75
12. CPE in four percent furfural at 50°C, predicted versus observed
values 92
13. EPDM in eight percent furfural at 50°C 94
14. Relationship of change in physical property to furfural concen-
tration at 23°C for PVC 96
15. Relationship of breaking factor and weight change for PVC .... 103
16. Effect of temperature on weight change for immersion in hydro-
chloric acid and sodium hydroxide at 23°C and 50°C 104
17. Relationship of breaking factor, S-100 modulus and weight change
for PVC 106
18. Relationship of elongation at break and weight change for PVC. . . 107
vm
-------
19. Physical property change with immersion in saturated salt
solution at 23°C for PVC 108
20. Physical property change with immersion in 10 percent
hydrochloric acid solution at 50°C for PVC 108
21. Physical property change with immersion in 8 percent furfural
solution at 23°C for PVC 110
22. Physical property change with immersion in 10 percent salt
solution at 23°C for PVC 110
23. Weight change with immersion in phenol solution at 23°C for PVC. . Ill
24. Physical property change with immersion in 1 percent phenol
solution at 50°C for PVC 112
25. Physical property change with immersion in 4 percent phenol
solution at 50°C for PVC 113
26. Physical property change with immersion in 8 percent phenol
solution at 50°C for PVC 113
27. Relationship of breaking factor and weight change for CPE 120
28. Relationship of elongation at break and weight change for CPE. . . 120
29. Relationship of S-100 modulus and weight change for CPE 121
30. Physical property change with immersion in saturated
(35 percent) salt solution at 23°C for CPE 125
31. Physical property change with immersion in water at 23°C for CPE . 125
32. Physical property change with immersion in water at 50°C for CPE . 126
33. Physical property change with immersion in 1 percent furfural
solution at 23°C for CPE 127
34. Physical property change with immersion in 4 percent furfural
solution at 23°C for CPE 127
35. Physical property change with immersion in 8 percent furfural
solution at 23°C for CPE 128
36. Physical property change with immersion in 1 percent furfural
solution at 50°C for CPE 128
37. Physical property change with immersion in 4 percent furfural
solution at 50°C for CPE 129
38. Physical property change with immersion in 8 percent furfural
solution at 50°C for CPE 129
ix
-------
39. Relationship of tensile strength (breaking factor normalized for
thickness) and weight change for EPDM
40. Relationship of elongation at break and weight change for EPDM . . 135
41. Physical property change with immersion in 10 percent sodium
hydroxide solution at 23°C for EPDM • • 139
42. Physical property change with immersion in ASTM #2 oil at 23 C
for EPDM 139
43. Physical property change with immersion in ASTM #2 oil at 50°C
for EPDM 14°
44. Percent weight change with immersion in 10 percent hydrochloric
acid solution at 23°C and 50°C for EPDM 1AO
45. Physical property change with immersion in 1 percent furfural
solution at 23°C for EPDM
46. Physical property change with immersion in 4 percent furfural
solution at 23°C for EPDM • •
47. Physical property change with immersion in 8 percent furfural
solution at 23°C for EPDM • • 143
48. Physical property change with immersion in 1 percent furfural
solution at 50°C for EPDM. 143
49. Physical property change with immersion in 4 percent furfural
solution at 50°C for EPDM 144
50. Physical property change with immersion in 8 percent furfural
solution at 50°C for EPDM 144
51. Physical property change with immersion in 8 percent phenol
solution at 50°C for EPDM 145
52. Relationship between breaking factor and weight change for
EPI-CO 151
53. Relationship between elongation at break and weight change for
EPI-CO 151
54. Relationship between tear resistance and weight change for
EPI-CO 152
55. Physical property change with immersion in saturated (35
percent) salt solution at 23°C for EPI-CO 154
-------
56. Physical property change with immersion in water at 23°C for
EPI-CO 155
57. Physical Property change with immersion in water at 50°C for
EPI-CO 155
58. Physical property change with immersion in 10 percent hydro-
chloric acid solution at 50°C for EPI-CO 156
59. Physical property change with immersion in 1 percent phenol
solution at 23°C for EPI-CO 157
60. Physical property change with immersion in 4 percent phenol
solution at 23°C for EPI-CO 158
61. Physical property change with immersion in 8 percent phenol
solution at 23°C for EPI-CO 158
62. Physical property change with immersion in 1 percent phenol
solution at 50°C for EPI-CO 159
63. Physical property change with immersion in 4 percent phenol
solution at 50°C for EPI-CO 159
64. Physical property change with immersion in 8 percent phenol
solution at 50°C for EPI-CO 160
65. Relationship between tensile strength (normalized for thickness)
and weight change for HDPE 166
66. Percent tensile, yield and tear resistant change with immersion
in 10 percent sodium hydroxide solution at 50°C for HDPE .... 169
67. Percent elongation at yield, elongation at break, and modulus
of elasticity change with immersion in 10 percent sodium
hydroxide solution at 50°C for HDPE 169
68. Percent weight change with immersion in ASTM //2 oil at 50°C
for HDPE 171
69. Percent tensile yield and tear resistance change with immersion
in ASTM #2 oil at 50°C for HDPE 171
70. Percent elongation at yield, elongation at break, and modulus of
elasticity change with immersion in ASTM #2 oil at 50°C for HDPE 172
71. Relationship between breaking factor and weight change at 23°C
for CSPE-LW 177
72. Relationship between S-100 modulus and weight change for CSPE-LW . 178
xi
-------
73. Relationship between tear resistance and weight change at 23°C
for CSPE-LW 179
74. Relationship between elongation at break and weight change
for CSPE-LW 180
75. Relationship between elongation at break and S-100 modulus at
23°C for CSPE-LW 181
76. Relationship between elongation at break and tear resistance at
23°C for CSPE-LW 181
77. Physical property change with immersion in saturated (35 percent)
salt solution at 50°C for CSPE-LW ISA
78. Physical property change with immersion in 10 percent sodium
hydroxide solution at 50°C for CSPE-LW 184
79. Physical property change with immersion in ASTM #2 oil at 23°C
for CSPE-LW 185
80. Physical property change with immersion in ASTM #2 oil at 50°C
for CSPE-LW 186
81. Physical property change with immersion in 8 percent phenol at
238C for CSPE-LW 186
82. Physical property change with immersion in 8 percent phenol at
50°C for CSPE-LW 187
xii
-------
TABLES
NAME PAGE
1. CHEMICAL RESISTANCE CRITERIA 6
2. SOLUBILITY PARAMETER DATA 14
3. COMPARISON OF IMMERSION RESULTS AND SOLUBILITY PARAMETER
DIFFERENCES 16
4. SAMPLE GUIDELINES FOR EVALUATING POLYMER CHAMICAL RESISTANCE
TEST DATA 20
5. FML MATERIALS SELECTED FOR CHEMICAL RESISTANCE TESTING 29
6. AS RECEIVED PROPERTIES: 30 MIL POLYVINYLCHLORIDE (PVC) 33
7. AS RECEIVED PROPERTIES: 30 MIL CHLORINATED POLYETHYLENE (CPE). . . 34
8. AS RECEIVED PROPERTIES: 30 MIL ETHYLENE PROPYLENE DIENE
MONOMER (EPDM) 35
9. AS RECEIVED PROPERTIES: 60 MIL EPICHLOROHYDRIN (EPI-CO) 36
10. AS RECEIVED PROPERTIES: 30 MIL HIGH DENSITY POLYETHYLENE (HOPE). . - -37
11. AS RECEIVED PROPERTIES: 30 MIL CHLOROSULFONATED POLYETHYLENE
LOW WATER ABSORPTION (CSPE-LW) 38
12. INITIAL SCREENING CHEMICALS AND CONCENTRATIONS 40
13. CHEMICAL IMMERSIONS SELECTED FOR FML IMMERSION TESTS 41
14. PHYSICAL PROPERTIES TEST FOR IMMERSION SAMPLES 58
15. QUALITY CONTROL OBJECTIVES FOR MATERIAL PROPERTIES TESTS 60
16. REPLICATION SYSTEM FOR PHYSICAL PROPERTIES TESTS 61
.17. MEANS AND STANDARD DEVIATIONS FOR EACH TECHNICIAN 62
18. PRECISION OF TECHNICIANS 63
19. COMPARISON OF NSF AND MANUFACTURER TENSILE PROPERTIES
TEST RESULTS 66
20. COMPARISON OF NSF AND USER TENSILE PROPERTIES TEST RESULTS .... 67
21. PERCENT COEFFICIENT OF VARIATION OF TENSILE PROPERTIES TESTS FOR
UNIMMERSED MATERIAL 68
22. PERCENT COMPLETION OF DATA 69
xiii
-------
23. LOW AND HIGH PERCENT TARGET CHEMICAL CONCENTRATIONS AFTER INITIAL
MIXING 71
24. POTENTIAL HAZARDS OF IMMERSION CHEMICALS 78
25. RESPONSE SUMMARY FOR CHEMICAL RESISTANCE: PVC 102
26. RESPONSE SUMMARY FOR CHEMICAL RESISTANCE: CPE 115
27. COMPARISON OF MANUFACTURER'S DATA TO NSF DATA FOR CPE RESISTANCE
TO SODIUM HYDROXIDE 117
28. RESPONSE SUMMARY OF CHEMICAL RESISTANCE: EPDM ..... 132
29. RESPONSE SUMMARY OF CHEMICAL RESISTANCE: EPI-CO 146
30. RESPONSE SUMMARY OF CHEMICAL RESISTANCE: HOPE 162
31. VARIABILITY IN HOPE TEST MEASUREMENTS 166
32. RESPONSE SUMMARY OF CHEMICAL RESISTANCE: CSPE-LW I"74
33. COMPARISON OF MANUFACTURER'S DATA TO NSF DATA FOR CSPE-LW
' RESISTANCE TO PHENOL 175
xiv
-------
ACKNOWLEDGMENTS
Members of the Project Advisory Committee (Appendix A) provided useful insight,
criticism, and recommendations throughout this project. The donation of their
time and talent was very much appreciated.
Dr. Clinton Allen's (NSF, retired) years of experience with plastics testing
was instrumental in establishing efficient procedures for sample handling and
quality control.
Additional assistance and information were provided by other individuals. The
authors would particularly like to acknowledge the following people:
Dr. Robert Wolfe, University of Michigan
Department of Biostatistics (curve fitting)
Martin Greiner NSF (testing)
Rod Soyka NSF (testing)
Yong Kim NSF (testing)
Jim Endres NSF (analytical chemistry)
Gloria Hunt NSF (typing)
Ann Lewis NSF (graphics)
Bruce Low NSF (data editing)
Keith Goodchild NSF (data management)
xv
-------
ABBREVIATIONS AND SYMBOLS
ASTM
CPE
CSPE-LW
EPDM
EPI-CO
FML
HDPE
PVC
SD
6
DCE
MEK
ANOVA
RMSE
AMERICAN SOCIETY FOR TESTING AND MATERIALS
CHLORINATED POLYETHYLENE
CHLOROSULFONATE POLYETHYLENE - LOW WATER ABSORPTION
ETHYLENE PROPYLENE DIENE TERPOLYMER (SOMETIMES
CALLED ETHYLENE PROPYLENE DIENE RUBBER)
EPICHLOROHYDRIN
FLEXIBLE MEMBRANE LINER
HIGH DENSITY POLYETHYLENE
POLYVINYLCHLORIDE
STANDARD DEVIATION
SOLUBILITY PARAMETER
1,2-DICHLOROETHANE
METHYL ETHYL KETONE
ANALYSIS OF VARIANCE
ROOT MEAN SQUARED ERROR
xvi
-------
ENGLISH TO METRIC CONVERSIONS
TO CONVERT
FROM
BTU/Ft3
°F
Ounces
Inches
Foot Pounds
#>
PSI
Mil
Ounces
Ounces (U.S. fluid)
Pound
PSI (pounds/in2)
TO
CAL/cm3
°C
Grams
Centimeters
Joules
MPa
Millimeters
Milligrams
Milliliters
Grams
2
Grams /cm
MULTIPLY
BY
.0089
(T-32) x 0.555
28.349
2.540
1.356
.0069
0.0254
0.028
29.573
453.592
70.307
xvii
-------
SECTION 1
INTRODUCTION
Flexible membrane liners (FMLs) are used increasingly as lining materials
for hazardous waste containment, in landfills and surface impoundments. A
double-liner system, including at least one synthetic liner, is required in
all new installations (1). The FML used in a waste containment application
must show long-term chemical resistance to the waste stream.
Waste streams are mixtures of chemical substances, with some chemical
components present in small or trace quantities. The presence of some trace
components may be unknown at the time a liner is being selected. Published
chemical resistance tables generally list only pure components, or mixtures of
one component in water. A small amount of a substance deleterious to the
liner could be present in a mixture whose major component has no effect.
Looking only at the effect of the major component in tables, the liner would
appear to be resistant. The presence of the incompatible chemical could mean
the difference between success and failure of the installation. As an example
of the effect of a small amount of an incompatible chemical, Figure 1 compares
the change in weight of the PVC liner used in this study in two solutions of
very different concentrations. Percent weight change is shown as a function
of immersion time. While a saturated brine solution (approximately 35% by
weight) causes very minor changes in FML weight, a 0.5% solution of
1,2-dichloroethane (DCE) results in much greater weight gain. A waste
containing both components might be classified as a brine waste, and chemical
resistance predicted.
-------
p
E
R
C
E
N
T
60-
50-
40-
30-
20-
10-
• i
/
• < W«4«M change (%) .9% DCE
«. W«4«hl chang* (%) Sat d NaCI /
•
f
','
^ *
• __ „ — " *"
_._ •* "^ ' "" *
i '^ •
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION ,
-Figure 1. PVC in brine and 0.5 percent DCE
For these reasons, the EPA requires that FML selection be based on"evaluation
of changes in physical properties resulting from immersion in the actual waste
to be contained. Several similar immersion test methods have been developed
to determine chemical resistance, with guidance on duration, temperature, and
types of tests to be performed (2). Evaluation of the test results has not
been well defined, however, the EPA considers "any significant deterioration
in any of the measured properties to be evidence of incompatibility unless a
convincing demonstration can be made that the deterioration exhibited will not
impair the liner integrity over the life of the facility" (3).
More guidance information is needed to be made available to FML users, who
must select the most appropriate lining material and demonstrate its resistance
to the wastes. Theoretical methods of predicting chemical resistance such as
Hansen solubility parameters and cohesive energy density numbers (4) are not
yet well developed for FMLs, and expert systems for data interpretation (5)
-------
are not currently refined and available. Acceptable changes in a physical
property such as tensile strength at a given temperature and immersion time
may be different for different FML materials. This project was initiated by
the EPA (cooperative agreement #CR 810727) to help develop chemical resistance
selection guidance information for FML users.
In this project, immersion testing of six FMLs was conducted at two
temperatures (23° C and 50° C) with a broad range of chemical exposures. FML
property changes were measured for exposure periods from one day to two years.
Results were studied to determine the basic FML responses to combinations of
chemical challenge, concentration, temperature, and time. The focus in data
interpretation was on the types of degradation encountered, stabilization of
the material response, the extent of property change, and indicators of
non-resistance (6). The method of interpretation can then be generalized to
provide guidance to FML users testing FMLs with specific waste streams.
-------
SECTION 2
CONCLUSIONS AND RECOMMENDATIONS
, Immersion testing of a liner in the waste it is intended to contain is
essential for determining chemical resistance. Low concentrations of some
chemicals can cause more significant change in FML physical properties
than higher concentrations of other chemicals. Testing with major con-
stituents would not be satisfactory.
, The stabilization of a material's response to a chemical challenge, when
considered in conjunction with the magnitude of that response, is an
important parameter in the evaluation of chemical resistance.
The proposed method of determining stability may be useful in determining
longevity of service based on chemical resistance, and also for comparing
FMLs for relative suitability for waste containment.
Increasing the immersion temperature may be used to accelerate the FML
response to determine chemical, resistance. For some chemical/material
combinations, however, increasing the immersion temperature to 50° C
produced a different response from the FML, instead of an accelerated
response. An elevated temperature may provide a test that is too
aggressive for some FMLs to simulate anticipated use (e.g., elastomers).
Not all materials are suitable for service at 50° C. Heat degradation is
an important consideration in conjunction with chemical resistance.
Water is sometimes an aggressive medium in itself, especially in
conjunction with an elevated temperature. The effect of water alone on
an FML must be evaluated when evaluating chemical resistance.
Increasing the concentration of organic solvents in water solution in
general increased the magnitude of the FML response (physical changes).
Weight change is a valuable indicator of material change for all FMLs
tested.
Minimum as-received property values listed in NSF Standard 54 for
Flexible Membrane Liners (7) can be useful as benchmarks in evaluating
chemical resistance test results.
-------
Compatibility tables can best be used to screen FMLs to find possibly
incompatible combinations. The limitations of compatibility tables are
that materials are usually rated qualitatively: (good, fair, poor) and
the test conditions used to determine resistance are not always detailed.
The proposed criteria for chemical resistance of the FMLs tested in this
project generally agree with ratings given in existing chemical
resistance tables. The criteria may possibly be expanded to evaluate
immersion data for USEPA Method 9090 (8).
Generalization of the criteria and chemical immersion responses of the
FMLs tested in the project must be done with caution. Similar liner
materials (such as two polar elastomers) may be expected to respond
similarly, but the degree of the response (amount of property change) may
change with different formulation and fabrication techniques.
Chemical resistance criteria for the six materials tested are shown in
Table 1.
-------
TABLE 1
CRITERIA FOR DETERMINING FML CHEMICAL RESISTANCE
Criteria
Material Type
Material Type
Material Type
Material Type
Material Type
Material Type
Stability
Weight gain
Stability
Breaking
Factor
% Elongation
at Break
Yield
% Elongation
at Voilrl
Tear
Modulus of
S-100
PVC
(Plasticized
Thermoplastic)
Yes
-10% s Wt. change
< 5%
> 80% of initial
and a NSF Std. 54
=r 70% of initial
and > NSF Std. 54
60% < S-100
Modulus < 140%
CPE*
(Thermoplastic)
Yes
< 25%
> 75% of initial
and > NSF Std. 54
> 70% of initial
onrl -> MCC C+rl t\A
> 70% of initial
and a- IMof- Std. 54
HOPE
(Partially
Crystalline)
Yes
<3%
a 80% of initial
and a NSF Std. 54
> 80% of initial
and a NSF Std. 54
^ 80% of initial
anri -- NI9F <3tri 54
21 80% of initial
nnH => MQF 80% of initial
and ^ NSF Std. 54
> 75% of initial
and > NSF Std. 54
EPI-CO
("Polar
Cross-Linked
Rubber)
Yes
< 20%
> 80% of initial
and == NSF Std. 54
> 70% of initial
and a NSF Std. 54
CSPE-LW
(Vulcanized
Rubber)
Yes
•& 5%
a 80% of
Initial
> 125% of
Initial
> 80% of
Initial
> 70% of
Initial
A/1 criteria for 23 C immersion tests
-------
SECTION 3
METHODS FOR PREDICTING CHEMICAL
RESISTANCE OF POLYMERS
BASIC PRINCIPLES OF POLYMER INTERACTION IN SOLVENTS
This section discusses types of polymers, methods of chemical attack, and
general guidelines for determining polymer resistance. This is a general
treatment of polymers, not specific to flexible membrane liners.
Polymer Types
A polymer molecule is a large molecule composed of repeated smaller units
(monomers) joined together by covalent bonds. The word polymer also applies
to the materials.jnade__up of these molecules.
Polymeric materials can be classified in several ways. Most often they
are classified on the basis of response to heat, method of synthesis, response
to force, and chemical structure. A complete list of terms and definitions
relating to polymers can be found in ASTM D883-83 (9).
Response to Heat—
Polymers are either thermoplastic or thermosetting. A thermoplastic
material is one which can be repeatedly made to flow when heated and subjected
to stress. A thermosetting material can be heated and made to flow under
stress only once. It undergoes a curing reaction caused by the heating, in
which chemical bonds are formed between polymer chains. The resulting network
is unable to flow under stress.
Method of Synthesis—
Two basic methods of synthesizing polymers are addition and condensation.
Addition polymers are those polymers in which the monomers are joined together
-------
in what is called an addition reaction. Addition reactions have two charac-
teristics: First, that the reaction involves breaking a double bond, and
second, that the polymer has the same chemical formula as the monomer (nothing
is split off during the reaction). Condensation polymers are polymers formed
by a condensation reaction. A condensation reaction is one in which a small
molecule (usually water) is split off when the joining bonds are formed.
Response to Force—
Two types of behavior in polymers, elastic and plastic, are used for
classification. Elastic behavior involves deformation under stress, with a
return to original form when the stress is removed. Plastic behavior involves
irreversible flow under stress. Polymers classified as plastics (thermoplas-
tics) have an elastic response to a small stress, but as the stress is
increased they show irreversible plastic deformation of flow. Polymer
materials classified as elastomers have a much greater ability to reversibly
deform when force is applied. They will not show appreciable plastic
deformation before failing.
Chemical Structure—
Terms such as linear, branched, crystalline and crosslinked are used in
classifying polymers according to their chemical structure. A linear polymer
is made from monomers able to join only on the ends, and the resulting chain,
although in reality quite convoluted, if stretched out would be linear.
Branching occurs when the monomers can form bonds at different points on the
polymer structure in addition to at the beginning and end. A chain with many
branches, long or short, can be formed. The difference in linear and branched
structure will affect the polymer properties.
A polymer which is partially crystalline (no polymer is 100% crystalline)
has areas in which the chains are lined up in a regular arrangement with
secondary associative bonds holding this arrangement together. These areas
are the crystalline regions, and the rest, where the chains are randomly
tangled, are called the amorphous regions. In general, linear polymers have a
greater ability to form crystalline regions, because it is easier to align the
-------
chains. Branching tends to obstruct the chains, keeping them in an amorphous
form. The degree of crystallinity of a polymer also affects its properties,
including chemical resistance.
Crosslinking refers to covalent bonds formed between adjacent polymer
chains. These bonds are much stronger than the secondary bonds of crystalline
structure. Vulcanization is one kind of crosslinking, done by adding sulfur
and heat. Most elastomers have been crosslinked to improve their elastic
response. This crosslinking holds the chains together so that they cannot
slip and flow with applied stress.
A thorough discussion of flexible membrane liner technology, the
different types of polymers used to make them, and their properties can be
found in the EPA document "Lining of Waste Impoundment and Disposal
Facilities" (10)
Chemical Attack vs. Solvation
A polymeric lining material may be chemically degraded by two basic
mechanisms, chemical attack and solvation. Chemical attack involves making
and breaking covalent bonds in the polymer structure, thus producing
irreversible chemical changes in the polymer chain. Chemical attack is
generally caused by acids, alkalies, oxidizers, and salts. The susceptibility
of a polymer to be attacked by a chemical is determined by the structure of
the polymer chain (11).
Polymers with polar groups are more likely to be attacked by acids,
alkalies, and salts, which are polar, while nonpolar polymers are more
resistant to attack by polar compounds. The resistance of reactive groups on
the polymer to chemicals is also important. An alkaline chemical may saponify
ester groups in a polymer such as polyvinyl acetate. It could hydrolyze a
cyano group in acrylonitrile, or react with acidic functional groups in
phenolic resins. Acids can also hydrolyze reactive groups, and hydrochloric
acid can react with double bonds to form a chlorinated polymer different than
-------
the original. Polymers, as organic compounds, are subject to oxidation, in
air or by an oxidizing agent. Chemicals such as chromic acid, nitric acid,
chlorine dioxide, and fuming sulfuric acid can oxidize many functional groups.
Unsaturated polymer chains are especially vulnerable (12).
Solvation occurs when a substance (the solvent) penetrates the polymer
and disrupts the secondary bonds between chains, replacing them with secondary
bonds between polymer and solvent. The polymer chain itself remains the same,
and can be recovered by evaporation of the solvent; however, additives (e.g.
plasticizers) may be lost in the process. The susceptibility of a polymer to
solvation by a solvent depends on the relative similarity between the polymer
and the solvent. This similarity can be predicted, based on structure/
activity relationships, by the solubility parameter, discussed later.
General Guidelines For Polymer Solubility
The solubility of a polymer in a solvent decreases with increasing
density and molecular weight of the-polymer.- An—increase in branching--of the
polymer tends to increase solubility. This is partially because the density
of the polymer is usually decreased with branching, making it easier for sol-
vent molecules to penetrate the polymer. With polymers that are crystalline
to some extent, an increase in branching also provides steric hindrance to
crystallinity. This will also tend to increase the solubility of the polymer
in the solvent.
The more crystalline the polymer, the less likely it is to be soluble in
a given solvent. This is partially caused by the increased density seen with
increasing crystallinity, making it harder for the solvent to penetrate the
polymer structure. Crystallinity occurs when strong secondary bonds form
between adjacent polymer chains, keeping the chains close together and lined
up in a regular arrangement. The solvent must overcome these secondary bonds
in order to separate the chains and dissolve the polymer.
10
-------
As with chemical attack, the rule "like dissolves like" applies in
general to polymer/solvent systems. A polar solvent is more likely to
dissolve a polymer with polar groups, while a non-polar solvent is more likely
to dissolve a non-polar polymer. For example, water with the polar (OH) group
will dissolve polyvinyl alcohol (13), while natural rubber, a nonvulcanized
hydrocarbon rubber, will be dissolved by gasoline.
Crosslinking, or forming covalent bonds between adjacent polymer chains,
reduces a polymer's solubility by reducing its capacity to expand (swell) and
take up solvent within the polymer matrix (13). Swelling does not always
indicate polymer destruction or incompatibility. The amount of swell exhibited
by a polymer exposed to a given solvent can be used as a measure of the extent
of polymer crosslinking (10). The more crosslinked a polymer is, the less it
will swell.
Additives used to alter the properties of a polymer, for example, to
enhance its resistance to ultraviolet light, may alter its chemical
resistance. The types and-amounts of-additives, sueh-as plastici-zers -and
fillers, vary from manufacturer to manufacturer and from one intended
application to another. Additives may affect a polymer's suitability for use
with a given chemical waste.
The solubility of a polymer in a given solvent increases with increasing
temperature.
THEORETICAL SOLUBILITY PARAMETERS
One way of predicting the solubility of a polymer in a solvent is with
the solubility parameter, developed by Hildebrand and Scott (12). The
solubility parameter is a measure of the compatibility of a solvent and solute
based on the change in enthalpy on mixing. The closer the solubility
parameter for a solvent and solute, the more likely they are to be mutually
soluble.
11
-------
The solubility parameter is defined as the square root of the cohesive
energy density, a measure of the strength of intermolecular forces in the
liquid state. The cohesive energy density is the molar change in internal
energy on vaporization divided by the molar volume of the liquid (4).
Solubility parameters for solvents can be calculated from the energy of
vaporization, and for polymers are measured empirically by finding the solvent
that is most compatible (that is, that most easily dissolves the polymer).
Solubility parameters are measured in (MPa) or hildebrands (cal/cm )
The equation for the solubility parameter is:
6 = (CED)1/2 = [Ey/v]1/2
1/2
where 6 = solubility parameter (MPa)
CED = Cohesive Energy Density (MPa)
E = molal change in internal energy
of vaporization (J)
3
v = molal volume (cm )
Solubility parameters are used extensively in the paint and coatings
industry to predict the dissolving power of multi-solvent blends. Solubility
parameter data exists for many substances, including pure chemicals, blends
(such as ASTM #2 Oil), and polymer resins.
Some of these values have been determined empirically, some have been
calculated. For mixtures where no chemical interaction occurs, the effective
solubility parameter for a binary mixture can be calculated using the
following equation:
6mix - (61 *l+«2*2>
where 5mix = mixture solubility parameter (MPa)1/2
6j = solubility parameter component 1 (MPa)1^2
<$2 = solubility parameter component 2 (MPa)1/2
. = volume fraction component 1
~ = volume fraction component 2
12
-------
There are several types of solubility parameters. The original is the
Hildebrand parameter. This is the overall solubility parameter as described
above. While this parameter is useful in many situations, polymer solubility
is generally too complex to be described by a single parameter. Supplementary
solubility parameter methods have been developed which take into account the
effect of dipole interactions and hydrogen bonding. One of these is the
Hansen parameter.
The Hansen solubility parameter (6) is a three-dimensional representation
of a substance's solubility potential. The solvent represents a point in
space, with the solubility parameter defining the vector from the origin to
this point (4). The three components of the Hansen parameter represent
dispersion (van der Waals forces) ( 6,), the permanent dipole interactions
( 6 ), and hydrogen bonding ( 6, ). The overall magnitude of the solubility
parameter is then represented as:
62 = (6d)2 + (6p)2 + (6h)2
The absolute-magnitude- of -the solubility parameter does not show how
generally soluble the substance will be. The difference between the
solubility parameters of two substances indicates the likelihood of mutual
solubility. The smaller the difference between the two parameters, the more
likely they are to be mutually soluble. For example, water, with an overall
1/2
solubility parameter of 48 MPa , is not likely to dissolve ASTM Oil #2,
1/2
which has an overall solubility parameter of 15.5 MPa (see Table 2).
For Hansen parameters, the magnitude of the difference between two
solubility parameters is calculated by subtracting the two vectors according
to the following equation:
i i 2 i 12i 1 '
d d p p h h
where A = magnitude of difference
6 = parameter of component i
J(5 = parameter of component j
13
-------
TABLE 2. SOLUBILITY PARAMETER DATA
LIQUID HANSEN SOLUBILITY PARAMETERS (MPa)1 2
Pure Chemicals
Water
ASTM Oil #2
Methyl Ethyl
Ketone
Phenol
Furfural
1.2-
Dichloroethane
-jj •
d
12.3
15.6
16.0
18.0
18.6
19.0
6
P
31.3
0.6
9.0
5.9
14.9
7.4
_
h
34.2
0.2
5.1
14.9
5.1
4.1
6
t
48
15.5
19
24.1
24.4
20.9
Source
(1)
(1)
(- V
1)
(1)
(2)
(2)
Chemical /Water Solutions
MEK 3%
MEK 13%
MEK 26%
Phenol 1%
Phenol 4% _
Phenol 8%
Furfural 1%
Furfural 4%
Furfural 8%
DCE 0.1%
DCE 0.5%
DCE 0.9%
Polymeric Materials
Polyethylene
PVC
Nat. Rubber
Ethylene
Propylene
Copolymer
12.44
12.88
13.42
12.35
..12.5.2
12.73
12.35
12.51
12.73
12.31
12.33
12.35
17.3
18.7
18.4
18.0
30.47
27.82
24.52
31.06
30.33
29 . 37
31.16
30.74
30.18
31.28
31.2
31.13
0
10.0
2.1
0.8
33.12
29.66
25.35
34.02
33.47
32.73
33.95
33.21
32.22
34.18
34.08
33.98
0
3.1
7.2
2.1
46.7
42.7
37.7
47.7
46.9
45.8
47.7
47.0
46.0
47.9
47.8
47.7
17.3
21.4
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
(4)
(1) Table 6. Chapter 8. Reference 4
(2) Table 5. Chapter 8. Reference 4
(3) Calculated from above values
(4) Table 14. Chapter 14. Reference 4
14
-------
Table 2 presents solubility parameter data for the chemicals used in this
project, and for some polymeric materials used to make flexible membrane
liners. The first part of the table presents Hansen parameters for the pure
chemicals used. These values were taken from the literature, and the sources
are listed. The second part of the table presents calculated values for the
chemical/water solutions used in immersion testing. The third part of the
table gives Hansen parameters for some polymeric materials.
Solubility parameters such as this may be useful for predicting the
compatibility of wastes and polymeric lining materials for combinations where
solvation is the primary or only interaction between the waste and the liner.
In cases where the difference between solubility parameters is small, the
liner could soften, swell, lose strength, or become permeable to the waste. A
comparison can be made of the data generated in this EPA/NSF project and
published solubility parameter values.
For example, the difference in solubility parameters for PVC and for
methyl ethyl ketone is calculated by subtracting the--two-parameters-, using
vector arithmetic. Using the previous equation, the difference is:
±JA1/2 = [ (18.7 - 16.O)2 + (10.0 - 9.0)2 = (3.1 - 5.I)2 ]1/2 = 3.5 MPa1/2
Table 3 shows one way that the project data can be compared to solubility
parameter predictions. The differences in solubility parameters between a
polymer and a chemical are calculated for two materials, polyethylene and
polyvinyl chloride, and for three chemicals: MEK, ASTM Oil #2, and water.
Also shown are summaries for weight and percent retention of breaking factor
data. The average and maximum weight and percent retention of breaking factor
for the material/chemical combinations are listed. (These data represent all
time exposures and both temperatures). Solubility parameter differences are
calculated using the above equation and the values listed in Table 2.
It must be noted here that the solubility parameters are given for pure
compounds. A PVC liner is not a pure compound, but contains additives to
15
-------
TABLE 3. COMPARISON OF IMMERSION RESULTS AND
SOLUBILITY PARAMETER DIFFERENCES
Material
HOPE
PVC
Chemical
Oil
MEK
Water
MEK
Oil
Water
Concentration
100%
Saturated
100%
Saturated
100%
100%
Maximum
Percent
Weight
Change
7.0
2.2
1.1
134.4
-0.6
2.7
Average
Percent
Weight
Change
3.5 !
1.6
0.07
41.5
-7.4
1.2
Maximum
Percent
Retention
Breaking Factor
Average
Percent
Retention
Breaking Factor
Difference
Between
Solubility
Parameters
100.6
116.6
112.8
131.0
188.1
105,7
92.6
91.1
102.6
21.3
100.8
98.1
(MPa)
1/2
1.8
11.1
46.6
3.5
10.3
38.2
-------
improve Its flexibility and biological resistance. A HDPE liner has additives
to improve its ultraviolet resistance. Also, the data given for MEK is for a
water-saturated solution.
Nevertheless, several interesting things are apparent looking at the
table. For polyethylene, as the difference between the solubility parameters
for polyethylene and a chemical increases, the magnitude of change in weight
and volume decreases. This is the expected relationship. Oil, with the
smallest difference in Hansen parameters from polyethylene, causes the largest
change in weight and volume. Water, with the largest difference, causes the
smallest changes.
At first glance, this does not seem to hold for polyvinyl chloride.
Looking again at Table 3, the large weight and volume changes for PVC in
methyl ethyl ketone correspond to a small difference in solubility parameters.
The small change in water correspond to a large difference in solubility
parameters. But for oil, the relationship does not hold. Where one would
expect to find weight and volume changes somewhere between those for MEK and
for water, one finds instead a net loss in weight and volume.
Observations of PVC liner samples after oil exposure showed that they
became smaller and stiffer with time. This evidence suggests that a
plasticizer added to the formulation was extracted by the oil. The migration
of plasticizer was the predominant change in the liner samples, rather than
oil. Plasticizer removal by oil is a well-known phenomenon (14,15). One
might expect to find that the solubility parameters for the plasticizer and
oil are even closer than for the polymer and the oil.
As mentioned before, substances added to a liner formulation to modify the
polymer properties can affect the solubility properties. Also, this shows
that the reaction of a liner sample can sometimes depend on the properties of
the additives more than on the base polymer itself.
17
-------
Another limitation of using solubility parameters to predict the
compatibility of complex wastes and polymeric lining materials is that the
possibility of chemical attack is not taken into account. The solubility
parameter is limited to predicting the likelihood of mutual solubility between
liner and waste.
Solubility parameters are intended to predict the ability of a solute to
be dissolved in a solvent. Normally, the solute is present in much smaller
quantity than the solvent, and is dispersed homogeneously in the solvent (or
solvent blend). This is not the case in chemical immersion testing, or in
liner/waste contact situations. The 'solvent' (the waste) may be present in
dilute form in water solution, while the 'solute' (the polymeric liner) is a
solid sheet in contact with the waste.
A solvent of interest (such as MEK in water solution) may be
preferentially absorbed by the liner making its effective concentration in the
polymer matrix much higher than that in the waste solution. The net effect
may be much more "severei than"predicted using a calculated solubility parameter-
for the binary solution (such as MEK/water, see Table 2).
Although solubility parameters should not be used as the only tool for
making predictions of compatibility, however, they can be used as a screening
tool to eliminate obvious incompatible liner chemical combinations. Some
general rules have been suggested (4). Non-crystalline and uncrosslinked
polymers will usually dissolve in a solvent which has a solubility parameter
within +^1.8 Hildebrand units of the polymer. Polymers will tend to swell in
solvents with solubility parameters within + 3.2 of the polymer.
CHEMICAL COMPATIBILITY TABLES
There are many existing chemical compatibility tables for polymers both
from textbooks and from manufacturers. Some of the tables refer to the pure
polymer, and some to a specific manufacturer's formulations *
18
-------
The chemical compatibility or chemical resistance tables currently available
do not clearly define compatibility. Terms such as good, fair, and poor are
used to describe resistance of polymeric materials to chemicals without
specifying chemical concentrations, exposure conditions, or how distinctions
between good, fair, and poor are made.
However, chemical compatibility tables which provide information of
sufficient specificity to make intelligent compatibility decisions would be
infinitely large, and would not eliminate the need for testing a liner with
the mixture it is intended to contain. Tables cannot replace testing because
tables cannot take into account synergistic or antagonistic effects of
mixtures of chemicals found in waste streams.
Initial chemical compatibility screening can be accomplished with some
understanding of the polymer/chemical interaction principles briefly discussed
in this document and the use of some currently available tables. Although
current tables cannot be used to make final liner waste compatibility
decisions, some tables may be used to determine which liner-waste combinations
are unacceptable.
Specific liner waste compatibility testing is required by regulation, but
procedures for evaluating results of testing to predict performance are not
documented. A chemical compatibility evaluation table could be designed to
assist the table user in evaluation of immersion test results. The testing
results for this and other concurrent projects should provide the basis for a
chemical evaluation table(s).
The project results will be evaluated in terms of material property
changes versus time of exposure, concentration of exposure, temperature of
exposure, and various combinations of time, concentration, and temperature.
In addition, when possible, laboratory data should be correlated with field
experience. With these data, specific criteria will be developed for property
changes which will provide a common base of evaluation. For example, tensile
19
-------
property changes of less than 20 percent for polymer A In a waste or leachate
is satisfactory performance for an immersion of seven days at 23°C.
This concept is advocated in the 1982-83 edition of the Modern Plastics
Encyclopedia (16). The following table of guidelines for evaluating the
extensive chemical resistance chart in the encyclopedia is fashioned after the
one on Page 44 of the encyclopedia.
TABLE 4.
SAMPLE GUIDELINES FOR EVALUATING POLYMER CHEMICAL RESISTANCE TEST DATA
Level of
Significance
Usually not
Significant
Change in
Weight, %
<5
Change in
Dimension, %
<2
Change in
Tensile Strength, %
<10
Significant
but usually
not conclusive 5-10 2-4 10-20
Usually
significant >10 >4 <20
Polymer properties may differ, consequently changes in properties may
have different significance for different polymers. The chemical
compatibility evaluation table must take this into account.
A table of this nature could be used in more than one way. Because the
basis for distinction between levels of significance of test results is speci-
fied, a knowledgeable and experienced designer could make a final selection
with some degree of confidence even if some test results were borderline.
20
-------
This evaluation table approach could be further expanded to incorporate
weighting factors for different tests. For example:
Test Weight Dimension Tensile
Weighting 0.4 0.2 0.4
Percent Change
Acceptable <5 <2 <10
Marginal 5-10 204 10-30
Unacceptable >10 >4 >30
The sum of the weighting factors would always equal one. An overall
grade for polymer A of less than 6.4, [ (0.4x5)+(0.2x2)+(0.4xlO) ] would
indicate overall acceptability, 6.4 to 16.8 would be marginal, and greater
than 16.8 would be unacceptable. Conceivably, a material might be marginal
for one test, but still be acceptable overall.
The weighting factors might be different for different materials because
the significance of say, dimension or tensile change is not necessarily the
same for all materials. Consequently, a system, such as just described, would
allow direct comparison of materials of different polymeric structures because
the relative importance of each test is considered for all materials.
TEST METHODS FOR COMPATIBILITY DETERMINATION
The U.S. Army Toxic and Hazardous Materials Agency conducted compatibil-
ity tests for FMLs with explosives and trichloroethylene. They studied alter-
native test methods and chose the initial screening method of the NSF Proposed
Standard for FMLs. They felt that this method represented a compilation of
the views of manufacturers, users, and regulatory agencies (17).
21
-------
Their comments on using this test method were that it was easy to use and
reproducible but that specific test procedures had to be developed before
using it. They found weight measurements quite reproducible, dimension
measurements less so. The Agency also commented that data interpretation was
somewhat subjective due to the lack of established evaluation criteria.
The test method selected for this study was similar to the NSF method
used by the Army. EPA Method 9090 is also similar. But at the time this
study was started, neither immersion procedure (Method 9090 and NSF Standard
54) was available.
When evaluating a polymer for its resistance to a particular chemical,
several criteria can be used. Visual observations give valuable information
about the condition of the polymer exposed to a chemical. Changes measured in
mechanical properties can also indicate whether the polymer is suitable for
use with the chemical.
Visual effects noted can include swelling, discoloration, blistering,
embrittlement, and softening. Of these, softening and swelling, usually found
together, are the most indicative of loss of useful properties. Swelling
occurs as a solvent penetrates the polymer structure, loosening secondary
bonds between polymer chains and replacing them with solvent-polymer
associations. This can result in loss of mechanical properties.
Changes in mechanical properties include tensile strength, tear strength,
hardness, permeability, puncture resistance, elongation and environmental
stress cracking. One or more of these properties may be measured when
evaluating a polymer for chemical resistance.
Several test methods are available for testing. ASTM D543 is a standard
method used for all plastics (18). It is an immersion test listing 51
standard chemicals at standard concentrations. Properties measured include
change in weight, dimensions, tensile strength, and elongation.
22
-------
EPA Method 9090 is also an immersion test, but it is designed
specifically to evaluate flexible membrane liner material for use in the
containment of chemical wastes, it specifies that the actual waste be tested.
Properties measured include change in weight, dimension, tensile strength,
elongation, hardness, and tear resistance (8).
The National Sanitation Foundation Proposed Standard for flexible
membrane liner material also has an exposure test for evaluating chemical
resistance of liner material (7). This test is modeled on ASTM D543, the more
general plastics evaluation procedure. The test program is two-phased, with
an initial evaluation that measures change in weight and dimensions while
observing visual changes in material exposed to the waste chemicals. The
second phase of testing, for those materials which look promising based on the
initial evaluation, is a longer immersion followed by physical properties
testing which Includes tensile strength, tear resistance, and elongation.
Manufacturers of polymers and of FMLs use either their own test methods
or some form of the above methods.
All of the above test methods can be run at either room temperature, or
at elevated temperatures. It has been suggested that a temperature of 50°C be
used as the higher temperature unless the actual intended application is at an
even higher temperature, in which case the actual intended temperature should
be used (2). However, results from this study indicated that elevated
temperatures may not give realistic results for some liners.
The test method selected for this project closely paralleled the NSF
immersion procedure, including additional immersion periods. The NSF
immersion procedure was best suited to the objective and number of samples of
this project. The current EPA immersion test, Method 9090, was not written at
the time the study began. However, the procedures in Method 9090 are
essentially equivalent to the procedures used in this study. Consequently, it
is anticipated that the data evaluation criteria from this project could be
used for evaluating data from tests using Method 9090.
23
-------
SECTION 4
TECHNICAL APPROACH
OBJECTIVES
The purpose of the project was to investigate the chemical resistance of
flexible membrane liner materials using immersion tests. The results from
this study will help liner users select the most appropriate liner for their
waste containment application.
To accomplish this, the project had the following objectives:
*•
- to expose liner materials to a range of chemicals typical of waste
streams and challenging to the liner under controlled laboratory
conditions
- to measure changes in the physical properties of these exposed liners
- to evaluate the liner material response (changes in physical
properties) to determine the indicators of liner chemical resistance or
non-resistance
- to determine, for each liner material, the basic material response and
degree of response indicative of nonresistance so that the criteria can
be applied to the evaluation of immersion test data for liner specimens
in real waste (e.g., Method 9090 results)
PROJECT ADVISORY COMMITTEE
An advisory committee made up of individuals from academia, regulatory
agencies, and industry was formed. The purpose of the advisory committee was
to provide guidance on liner and chemical selection, test methods, and data
interpretation. The advisory committee provided input through correspondence.
24
-------
Individuals were selected for the advisory committee based on expressed
interest in the project and known expertise in hazardous waste containment or
treatment and FML technology. Thirty-four individuals were contacted, and
twenty-nine agreed to participate. The names and affiliations of the
participants are listed in Appendix A.
EXPERIMENTAL DESIGN
The project was divided into three parts: planning, testing, and
reporting. The testing phase extended for twenty-eight months, and was
divided into four sections (see a diagram of the testing in Figure 2). The
four sections for the testing phase were initial screening tests, tests of
unexposed (as-received) material properties, measurement of weight and
dimension changes after long immersion periods, and measurement of changes in
mechanical properties after immersion periods of 1, 7, 14, 28, 56 days and two
years. Each section is described below:
. Initial Screen Tests. The initial screening tests were performed to
aid in the selection of organic chemical concentrations for FML immer-
sion tests. Coupons of FML materials were exposed to five concentra-
tions of five organic chemicals (including pure solvents) for seven
days at room temperature. Changes in weight, dimension and appearance
were noted. The samples were allowed to air dry for another seven days.
After drying, coupon weight and dimension were measured again.
Results from these initial screening tests were evaluated and used to
select organic concentrations for testing. The goal was to select the
highest test concentration, one with sufficient chemical strength to
produce measurable, but not catastrophic, changes in most of the liners
within seven days. Two lower concentrations of incremental dilutions
were then selected to give a total of three concentrations of organic
chemicals for immersion.
25
-------
INI
StL tC T10N
N3
\
Physical Properties lests
Incoinlntj Samples
0r,,,}0
Initial bcreentng lusts
EVALUATION
Physical Properties Tests - Exposed Samples
Every 4th Month
I-2Vr
Weight and Dimension Changes
Key: WD - Weight and Dimension measurements
I-nd = Immersion of "n" days
PPT = Physical Properties tests
Figure 2. Project diagram
-------
Unexposed Material Property Tests. As-received liner samples were
tested against NSF Standard 54 (Flexible Membrane Liners) requirements
(7). Results were compared both to the Standard 54 tables and to
manufacturers' test results. The properties measured included, but
were not limited to, the properties measured after chemical immersion
(tensile properties and tear resistance).
These as-received measurements served as a control and baseline for
material changes after chemical immersion. They were also a quality
assurance tool, showing that the liner material was of good
manufacture, and that the test methods produced results within the
expected range for the materials.
Long-term Weight and Dimension Changes. Samples of each liner were
immersed in all of the selected chemicals at all concentrations. Each
sample (composed of three die-cut specimens) was measured for changes
in weight and dimensions every four months for up to two years. The
tensile strength and elongation of these weight and dimension specimens
were measured at the end of the test period.
Mechanical Property Changes. Coupons of all FMLs were immersed in all
of the selected chemical exposures for periods of 1, 7, 14, 28, or 56
days. Two exposure temperatures were used: 23° and 50° Centigrade.
Weight and dimension were measured before and after immersion, and
percentage changes were calculated. Test specimens were die-cut from
the coupons after exposure and tensile properties and tear resistance
were also measured. Ten test specimens were cut for tensile properties
testing (five in the machine direction and five in the transverse
direction) and five specimens were cut for tear resistance testing.
27
-------
SELECTION OF FMLs FOR TESTING
Selection Criteria
Six FML materials were used for immersion testing in this project. All
materials used were donated by manufacturers. The criteria for FML selection
were:
. to have at least one material from each of three polymer
classifications; thermoplastic, crosslinked elastomer, and partially
crystalline thermoplastic
. to choose material types that are in use in the field, based on the
information in SW-870 "Lining of Waste Impoundment and Disposal
Facilities" (10)
. to choose materials similar to those used in the U.S. Bureau of
Reclamation (USER) study of FML seam chemical resistance (19)
. to select liners so that, if possible, no manufacturer would provide
more than one FML for testing
FMLs Selected
Table 5 lists the materials tested in this project. Six manufacturers
provided material. Industrial grade chlorosulfonated polyethylene (CSPE-LW)
replaced the potable grade CSPE initially selected. This change was made
because the CSPE-LW better represented liner material used in waste
containment applications (21).
All materials except epichlorohydrin (EPI-CO) were 30 mils thick (0.03
inch). Epichlorohydrin was not available in 30 mil thickness, and a 60 mil
liner was used. The 30 mil thickness was chosen primarily to correspond to
the liner thickness used in the USER project.
Only unsupported FML liners were tested (material with no reinforcing
scrim). It was decided that the chemical resistance of the scrim was not of
primary concern and was beyond the scope of the study. Having a scrim present
28
-------
would be a complicating variable in the testing, and would have required much
work to eliminate (that is, sealing all cut edges of samples to prevent con-
tact between the solutions and the scrim). Immersion testing is an acclerated
test procedure, not designed to simulate actual use conditions. Using scrim
and flood coating edges adds variables which are hard to control, does not
enhance the quality of the immersion data, and may only retard but not change
the final results.
Table 5. FML MATERIALS SELECTED FOR CHEMICAL RESISTANCE TESTING
FML NAME
SYMBOL
THICKNESS
(mils)
CROSSLINKED ELASTOMER:
Ethylene Propylene Diene Monomer EPDM
Epichlorohydrin EPI-CO
30
60
THERMOPLASTICS:
Polyvinyl Chloride
Chlorinated Polyethylene
PVC
CPE
30
30
PARTIALLY CRYSTALLINE:
High Density Polyethylene
HDPE
30
UNVULCANIZED RUBBER:
Chlorosulfonated Polyethylene
(industrial grade)
CSPE-LW
30
29
-------
Description of FMLs Received
Polyvinyl chloride (PVC)—is a thermoplastic polymer made by polymerizing
vinyl chloride monomer, or vinyl chloride/vinyl acetate monomers. PVC is a
rigid material, and to make flexible liners, plasticizers must be added (3).
From 25 to 35 percent of plasticizers and 1 to 5 percent by weight of heat
stabilizers are added to the liner formulation (7).
A medium grey 30 mil unsupported PVC liner was used. The liner had a
smooth surface with no observable defects. The roll stock received was
approximately five feet wide.
Chlorinated polyethylene (CPE),--a saturated polymer, is produced from a
reaction between polyethylene and chlorine. The polymer contains 25-45
percent chlorine by weight and 0-25% crystallinity (3,7). An FML bearing the
name CPE contains CPE resin as at least 50 percent of the total polymer
content.
The CPE liner supplied was a 30 mil unsupported thermoplastic material on
a five foot wide roll. It was charcoal grey with an embossed texture on one
side. Tiny streaks of entrapped air were visible, randomly distributed
throughout the liner. The manufacturer stated that these streaks are an effect
of the manufacturing process, and would not effect immersion results (22).
Ethylene propylene diene •ononer (EPDM)—is a synthetic elastomer terpolymer
based on ethylene, propylene, and a third monomer of diene hydrocarbon that
provides sites for crosslinking (3). EPDM liners are available in both
thermoplastic and crosslinked (vulcanized) forms (7).
The EPDM liner used was a grey vulcanized liner of nominal 30 mil
thickness. Actual thickness varied from 31 to 48 mils (average 40 mils).
Seams occurred on the roll approximately every five feet, and were avoided
when cutting test samples. The roll received was ten feet wide, and was cut
into two five feet sections for storage (see Section 5).
30
-------
Epichlorohydrln rubber (KPI-CO)—is a synthetic organic polymer made from
epichlorohydrin (1-chloro 2,3-epoxypropane) (12). The polymer is a saturated
polyether with chloromethyl side chains. Epichlorohydrin liners are generally
vulcanized (3).
The EPI-CO liner received and tested was of nominal 60 mil thickness
(30 mil was not available). The roll was ten feet wide; it was cut in two for
storage. Seams occurred approximately every five feet and were avoided when
obtaining test samples.
High density polyethylene (HDPE)—is a polymer prepared by low pressure
polymerization of ethylene as the principal monomer. This material is
partially crystalline in nature and is stiffer than other types of membrane
materials. Two to three percent carbon black is added to improve ultraviolet
light resistance (3).
A 30 mil black HDPE liner was used. The three rolls received were
approximately five feet wide. The liner outside surface had shallow
lengthwise calender marks, which were not considered a defect. Because of the
relative stiffness of the roll stock, the liner retained a 'curve' from the
roll when cut into samples.
Chlorosulfonated polyethylene - low water absorption (CSPE-LW)—is a specific
formulation of CSPE. This polymer is made by a reaction between polyethylene
and chlorine and sulfur dioxide. FMLs contain 24 to 43 percent chlorine and
1 to 1.4 percent sulfur by weight (7). There are two grades of liner pro-
duced: potable (also called standard) and low-water absorption (also called
industrial). The two grades have significantly different properties, and the
low water absorption grade (CSPE-LW) is more suitable for waste containment
applications (20). Most CSPE and CSPE-LW liners are supplied as thermoplas-
tics, but the liner crosslinks with time in response to heat, moisture, and
light (3). These liners are usually reinforced with a scrim to improve
strength and temperature-related properties.
31
-------
A 30 mil unsupported CSPE-LW liner was used. The liner was black rubber
with a smooth surface similar to rainboots, and had no observable defects.
The roll was approximately five feet wide with no seams.
FML "As Received" Properties
The six flexible membranes selected for exposures were tested for
selected physical properties by NSF and by the manufacturer that provided the
material. NSF presented results to each manufacturer prior to seeing the
manufacturers' results. There were three objectives for this testing: 1) to
establish that the materials used in this study met the physical properties
requirements in NSF Standard 54; 2) to establish comparability of test
methodology between NSF and the manufacturers; and 3) to provide
interlaboratory QC results. The results are presented in Tables 6-11.
All materials met the requirements of the current NSF Standard 54 where
applicable. Unsupported 30 mil chlorosulfonated polyethylene (CSPE-LW) is not
covered under Standard 54 and could not be compared to it. The HDPE results
were reviewed by the manufacturer, but manufacturer test results for this
sample were not available for comparison.
Two properties differed consistently from manufacturers' results. The
first was tear resistance. In three out of the four cases where manufacturer's
data was available, NSF's value for tear resistance was lower than the manu-
facturer's value. Average difference was two and one half pounds. Three of
these five materials were tested in round robin testing with the U.S. Bureau
of Reclamation (USER). Tear resistance values were very close, NSF's results
averaging one half pound higher.
32
-------
Table 6. AS RECEIVED PROPERTIES: 30 MIL POLYVINYLCHLORIDE (PVC)
PROPERTY
NSF RESULTS MANUF. RESULTS
STANDARD 54 SPEC
THICKNESS
(inches)
SPECIFIC GRAVITY
DIMENSIONAL STABILITY
(percent)
Machine
Transverse
VOLATILE LOSS
(percent)
HARDNESS
TENSILE PROPERTIES
BREAKING FACTOR
(pounds/inch width)
Machine
Transverse
ELONGATION AT BREAK
(percent)
Machine
Transverse
S-100 MODULUS
(pounds/inch width)
Machine
Transverse
TEAR RESISTANCE
(pounds)
Machine
Transverse
.0307
1.26
-1.7
+0.9
0.48
90
88.3
84.6
449.6
462.6
50.8
47.3
10.6
10.5
.0306
1.26
-1.7
+ 1.0
0.61
93
90.6
84.2
480
475
46.4
43.7
12.1
13.4
minimum .0285
minimum 1 . 20
maximum 5
maximum 5
maximum 0.7
N.R.1
minimum 69
minimum 69
minimum 300
minimum 27
minimum 8
N.R. - Not required
33
-------
Table 7. AS RECEIVED PROPERTIES: 30 MIL CHLORINATED POLYETHYLENE (CPE)
PROPERTY
NSF RESULTS MANUF. RESULTS
STANDARD 54 SPEC
THICKNESS
(inches) .0296
SPECIFIC GRAVITY 1.358
DIMENSIONAL STABILITY
(percent)
Machine -8.0
Transverse +1.9
VOLATILE LOSS
(percent) 0.45
TENSILE PROPERTIES
BREAKING FACTOR
(pounds/inch width)
Machine 54.2
Transverse 47.9
ELONGATION AT BREAK
(percent)
Machine 437
Transverse 609
S-100-MODULUS
(pounds/inch width)
Machine 37.6
Transverse 17.9
TEAR RESISTANCE
(pounds)
Machine 7.54
Transverse 6.12
.0298
1.350
-6.8
+0.6
0.30
56.9
46.9
346
458
29.9
15.4
8.49
7.99
minimum .0285
minimum 1.20
maximum 16
maximum 16
maximum 0.5
minimum 43
minimum 300
minimum 12
minimum 4.5
34
-------
Table 8. AS RECEIVED PROPERTIES: 30 MIL ETHYLENE PROPYLENE DIENE MONOMER (EPDM)
PROPERTY NSF RESULTS MANUF. RESULTS STANDARD 54 SPEC
THICKNESS
(inches) .0404
SPECIFIC GRAVITY 1.165
DIMENSIONAL STABILITY
(percent)
Machine -0.8
Transverse -0.1
VOLATILE LOSS
(percent) .480
HARDNESS 59
Durometer A
TENSILE PROPERTIES - - - -
BREAKING FACTOR
(pounds/inch width)
N.R. = Not required
* A one-inch wide specimen was tested
1.18
62
minimum .027
1.18 + .03
maximum 2
maximum 2
N.R.
60+ 10
Machine
Transverse
ELONGATION AT BREAK
(percent)
Machine
Transverse
TEAR RESISTANCE
(pounds)
Machine
Transverse
63.4
68.9
401.8
395.0
8.9
9.0
51.0*
420*
6.8
minimum 42
minimum 42
minimum 300
minimum 300
minimum 4
35
-------
Table 9. AS RECEIVED PROPERTIES: 60 MIL EPICHLOROHYDRIN (EPI-CO)
PROPERTY NSF RESULTS MANUF. RESULTS STANDARD 54 SPEC
THICKNESS
(inches)
SPECIFIC GRAVITY
.0587
1.51
.062
1.515
minimum
1.49 +
.054
.06
DIMENSIONAL STABILITY
(percent)
Machine
Transverse
VOLATILE LOSS
(percent)
HARDNESS
Durometer A
TENSILE PROPERTIES
BREAKING FACTOR
(pounds/inch width)
-.10
-.10
0.014
73
73
maximum 2
maximum 2
N.R.1
70+ 8
Machine
Transverse
ELONGATION AT BREAK
(percent)
Machine
Transverse
TEAR RESISTANCE
(pounds)
Machine
Transverse
96.4 120.96
104.7
302.0 340.0
312.3
13.0 16.0
14.1
minimum 90
minimum 90
minimum 210
minimum 210
minimum 8
minimum 8
N.R. = Not required
36
-------
Table 10. AS RECEIVED PROPERTIES: 30 MIL HIGH DENSITY POLYETHYLENE (HDPE)
PROPERTY
THICKNESS
(inches)
SPECIFIC GRAVITY
DIMENSIONAL STABILITY
(percent)
Machine
Transverse
NSF RESULTS MANUF. RESULTS
.0295
.9507
+1.12
-1.63
STANDARD 54 SPEC
minimum .030
minimum .940
maximum + 3
VOLATILE LOSS
(percent) -0.18
TENSILE PROPERTIES
BREAKING FACTOR
(pounds/inch width)
Machine 153.1
Transverse 162.7
ELONGATION AT BREAK
(percent)
Machine 647.3
Transverse 663.2
YIELD STRESS
(pounds/inch width)
Machine 84.0
Transverse 92.5
750
N.R.
1
minimum 90
minimum 500
minimum 50
ELONGATION AT YIELD
(percent)
Machine
Transverse
9.5
8.4
13
minimum 10
MODULUS OF ELASTICITY
(pounds per square inch)
Machine 64,000
Transverse 65,000
110,000'
minimum 80,000
TEAR RESISTANCE
(pounds)
Machine 26.2
Transverse 27. 1
1
2
N.R. = Not required
were given by the manufacturer as typical for this material. It is unknown
whether this data is for the machine or transverse direction.
37
-------
Table 11. AS RECEIVED PROPERTIES: 30 MIL CHLOROSDLFONATED POLYETHYLENE (CSPE-LW)
PROPERTY NSF RESULTS MANUF. RESULTS2 STANDARD 54 SPEC
THICKNESS
(inches) .0306
SPECIFIC GRAVITY
DIMENSIONAL STABILITY
(percent)
Machine •
Transverse -—
VOLATILE LOSS
(percent) —-
HARDNESS -—
Durometer A
TENSILE PROPERTIES
BREAKING FACTOR
(pounds/inch width)
Machine 49.0
Transverse 40.0
ELONGATION AT BREAK
(percent)
Machine 211
Transverse 304
TEAR RESISTANCE
(pounds)
Machine 12.7
Transverse 10.2 -—
1 There are no NSF Standard 54 Specifications for unsupported material
(without scrim).
2 Manufacturer did not provide as received properties.
38
-------
While a slight difference in method may have caused the consistently
lower values, NSF's tear resistance results in general are very consistent,
and within reasonable error bounds.
The second property which differed was S-100 modulus. A measure of the
tensile stress at 100 percent elongation, this property depends on the
accuracy of both load and elongation measurements. NSF's value for S-100 was
higher than the manufacturer's for both CPE and PVC. Conversations with the
manufacturers indicated that one cause may have been a difference in the
initial strain rate when testing. Again, S-100 modulus results at NSF are
consistent and within reasonable error bounds.
This consistency means that when significant differences do occur in
testing results for chemical exposures, the relative change will be a real
indication of a change in the material, even though the absolute values may be
slightly different from the manufacturer's data. The relative change is a
principal criteria ^pr evaluation of data.
SELECTION OF IMMERSION CHEMICALS
Criteria for Selection of Chemicals
Twenty chemical immersion solutions using nine chemicals and water were
used for FML chemical resistance testing. The goal in selecting the chemical
types was to have a broad range of chemicals that may be found in hazardous
waste streams. A 'typical' waste is impossible to identify or produce. A
project goal was to study the liner response to chemical challenge and relate
that to other published data, therefore solutions of one chemical in water
were chosen as opposed to chemical mixtures. Manufacturer and published data
for single chemicals are available.
Types of chemicals such as acid, base, salt, ketone, and aldehyde, were
considered. The final selection of chemicals was chosen using advisory
committee comments, and attempted to parallel the study of FML seams being
39
-------
done by the USSR (EPA Interagency Agreement No. DW 14930547-01-2). Chemicals
and concentrations were also selected to assure a broad range of material
response to immersion. The broad range of material response (e.g., change in
property) would assure that responses indicative of chemically resistant and
non-resistant behavior were measured in the study.
Seven Pay Screening
The chemicals and concentrations used for seven-day screening tests are
listed in Table 12.
Table 12. INITIAL SCREENING CHEMICALS AND CONCENTRATIONS
Chemicals Concentration (wt %)
Water distilled
Furfural 1, 5, saturated (app 8.3), 100
Phenol 1, 5, saturated (app 8.3), 100
MEK 1, 10, saturated (app 26), 99
1,2-Dichloroethane 0.1, 0.5, saturated (app 0.8), 100
ASTM #2 oil saturated «.l), 100%
The purpose of the screening tests was to choose the maximum concentra-
tions of organic chemicals to use in further testing. A concentration that
produced a measurable change in the samples during a seven-day exposure with-
out destroying them was sought.
The samples were weighed and dimensioned before exposure, immediately
after seven days exposure, and again after seven days air drying. These
results are presented in Appendix B.
40
-------
The data show the percent change in weight and volume for increasing
concentration of chemicals up to the saturation point. The exception is for
ASTM #2 oil, which shows only the saturation and 100% concentration. Volume
was computed from thickness, width and length measurements.
Chemicals Selected
The chemicals used for immersion testing, including water, are shown in
Table 13. The concentrations used were chosen based on seven-day screening
tests results, predicted ease of handling, and comparability to USER immersion
chemicals.
Table 13. CHEMICAL IMMERSION SOLUTIONS SELECTED FOR FML IMMERSION TESTS*
Name
Formula
Type
Concentrations
(percent wt:wt)
Water
Hydrochloric Acid
Sodium Hydroxide
Sodium Chloride
Potassium Dichromate
Phenol
Furfural
Methyl Ethyl Ketone
1,2-Dichloroethane
ASTM #2 Oil
HC1
NaOH
NaCl
C6H5OH
C1(CH2)2C1
Control
Acid
Base
Salt
Oxidizer
Phenol
Aldehyde
Ketone
Chlorinated-
Hydrocarbon
Oil
100
10
10
10, sat'd (app 35)
10
1,4, sat'd (app 8)
1,4, sat'd (app 8)
3,13, sat'd (app 26)
0.1, 0.5, sat'd
(app 0.8)
100%, Sat'd (water with
oil stirred in)
All chemicals were technical grade quality or better per ASTM D543 (9)
*
An 8% solution of methyl ethyl ketone was used in place of the sat'd
solution for CPE testing (see Section 8).
41
-------
FML samples for seven-day screening tests consisted of three one-inch by five-
inch coupons. Coupons were measured and weighed according to procedure FML-1
(see Appendix C) and hung in the immersion solutions. The immersion was
conducted at room temperature (23° +_ 2°C). After -immersion, the samples were
blotted on paper towels to remove adhering liquid and put into a labeled
polyethylene bag. The samples were reweighed and measured the same day and
then air-dried by hanging in open jars for seven days. The dried samples were
then weighed and measured once more.
In water solutions of furfural at or less than saturation, all materials
gained weight (1 to 25%). Some of this weight gain disappeared after seven
days of air drying. Samples exposed to pure furfural gained up to 80% in
weight. No materials were destroyed by furfural.
In solutions of 1,2-dichloroethane up to the saturation limit, the
f
samples gained from 1 to 25% in weight. These weight gains were reversible,
as the materials returned to within 5% of their original weight after the
seven-day air drying. In pure 1,2-dichloroethane, three materials swelled
severely: CSPE increased 124% in weight, PVC increased 464%, and CPE could
not be measured because it came apart into many soft pieces. All five of the
materials showed shrinkage and weight loss after seven days of air drying.
In solutions of MEK at or below saturation, all materials gained weight,
up to 200%. Again, the weight gain was reversible - all samples but one
returned to within 1% of their original weight after air drying. In 99% MEK,
HDPE showed a slight weight gain, EPDM lost weight and became smaller and
stiffer, and CSPE gained weight during immersion but after drying showed a
weight loss. Both CPE and PVC showed severe swelling and loss of strength. No
measurements were possible on these two materials.
In phenol in water up to the saturation limit, all materials gained
weight, none more than 27%. Some of this gain disappeared during drying. One
material, PVC, shrank slightly and lost weight when exposed to phenol-
saturated water. For phenol at approximately 88% concentration, two materials
42
-------
lost weight and two gained. One showed no change. Maximum weight change was
43%, and no materials were destroyed.
In ASTM #2 oil-saturated water, the maximum weight change was under 3%.
In pure #2 oil, only EPDM showed a significant change in weight. It gained
40% in weight during the seven-day immersion.
A comparison of results for samples immediately after immersion and
after a seven-day drying period are also interesting. Some materials weigh
less than their original weight after drying, indicating membrane material
loss. The material lost is probably additives, but could possibly be polymer
degradation. For most samples showing weight loss after seven days of drying,
there has been a relatively large volume increase (swelling) during immersion.
The swelling could make additive dissolution easier. Swelling may also
indicate crosslink bond-breaking.
The three concentrations of organic solvents selected were the saturation
limit in water as a maximum, 50 percent of that saturation limit, and a lower
concentration of 10 to 15 percent of the maximum which was easy to maintain
and measure. The absolute concentration of the immersion solution was not as
critical to evaluation of the data as was the demonstrable difference of
response of the material to immersion in the different concentrations.
A brine solution of sodium chloride was used at 10 and 35 percent by weight.
Hydrochloric acid, sodium hydroxide, and potassium dichromate solutions were
all 10 percent by weight. All chemicals used were technical grade quality or
better per ASTM D543(9). Brief descriptions of the chemicals used follow.
• Water—Both the water for water immersion tests and the water used for
the organic chemical solutions were lightly buffered in order to
provide pH control and ionic strength. Sodium bicarbonate and calcium
chloride were used to a level of 100 mg/L hardness as CaCO. and to
provide a pH of 8.3 + 0.5.
43
-------
Furfural—Furfural is an aldehyde derived from oat hulls, rice hulls,
or corn cobs by steam-acid digestion. It has a sweetish odor and is
an amber or straw-colored liquid at room temperature. Some uses are:
solvent refining of lubricating oils and other organic materials;
solvent for nitro-cellulose; wetting agent; weed killer; production of
lysine; road construction; flavoring (20).
Hydrochloric acid—Hydrochloric acid is a strong, highly corrosive
acid. It is commonly used in oil well acidification, chemical
synthesis, ore reduction, food processing, and pickling and metal
cleaning (20).
Sodium Hydroxide—Sodium hydroxide is an important commercial caustic.
Some uses are: manufacturing of other chemicals; oil refining;
aluminum processing; pulp and paper; soap; textile processing;
reclaiming rubber (20).
Potassium Bichromate—Potassium dichromate is a poisonous, bright
orange salt, and is used as an oxidizing agent in chemical synthesis.
It is also used in brass pickling, electroplating, explosives, adhe-
sives, wood stains, photography and lithography, and pigments (20).
Sodium Chloride—Sodium chloride is the most common salt. Used widely
in chemical manufacturing, metallurgy, refrigeration, glass, food
preservation, soap production, and for ice control on streets and
runways (20).
ASTM No.2 Oil—This is a petroleum based thick oil with an aniline
point of 93 +_ 3°C. This oil is used as a reference oil to evaluate
the chemical resistance of rubbers per ASTM Method D471 (21).
Methyl Ethyl Ketone—MEK is a colorless, volatile, flammable ketone.
Some of the many uses are: organic chemical synthesis; lacquers; de-
waxing of lubricating oils; paint removers; adhesives; and printing (20)
44
-------
. Phenol—Phenol is one of the most important organic chemicals. Phenol
is a solid at room temperature, and is colorless when very pure, but
turns pinkish with impurity on exposure to light. Phenol is used to
make phenolic resins, epoxy resins, herbicides, adipic acid, salicylic
acid, picric acid, germicidal paints, and many Pharmaceuticals (20).
• 1,2-Dichloroethane—1,2-Dichloroethane is also known as ethylene
dichloride. It is a colorless, oily liquid with a chloroform-like
odor and is used as a solvent for fats, oils, waxes, rubber, and gums.
Other uses are: oil extraction; dry cleaning; paint and varnish
removers; metal degreasing; wetting agents; organic synthesis (20).
TEST EQUIPMENT
Immersion Jars
Immersion of FML sample coupons in chemical solutions was done in glass
jars. Glass was chosen because of its resistance to the wide range of
chemicals being tested, transparency (to allow inspection of sample
condition), and low cost.
For long-term immersions, one quart canning jars were used. A screw on
cap lined with polyethylene was used to control evaporative loss from the
jars.
For shorter immersions (up to 56 days), two gallon apothecary jars were
used. Apothecary jars were sealed with rope caulking between the glass lid
and the jar. Jars containing solutions of volatile chemicals were also taped
with a stretchable heat and moisture-resistant transparent tape to reduce
evaporative loss. A picture of one quart and two gallon immersion jars is
shown in Figure 3.
45
-------
Figure 3. tee qoart and two gallon Inersion Jars
For the shorter immersions, a total of 1600 two gallon immersions were
carried out corresponding to 20 combinations of chemical concentrations, two
temperatures, six exposure periods, six materials, plus triplicates for two
materials at one temperature (the testing was staggered so that 1600 jars were
not needed). For each of the 1600 immersions, five tensile specimens and five
tear specimens each in the machine and transverse directions were generated.
Tensile properties and tear resistance are reported as means of five
specimens.
46
-------
The long-term Immersion consisted of 240 quart jars (six materials, two
temperatures, and 20 combinations of chemical concentrations). In each jar,
there were three 1" x 3" specimens cut in the machine direction. From these
specimens weight and dimension changes were measured over a two year period.
Tensile properties were measured from the 1" x 3" coupons at the end of two
years. Weight, dimension data, and the final tensile properties from the
long-term immersion are reported as means of three specimens.
The FML materials were suspended in solution with teflon "spaghetti" tubing
(0.016 inch diameter). Holes were punched in the top of the liner, the tubing
threaded through the holes and taped on the outside of the jars. The tubing
did not interfere with closing the lids on the jars.
Long-term immersion coupons were measured in triplicate for weight and
dimension changes at four-month intervals and replaced in solution. To
maintain coupon identity, each of the three triplicates was marked by clipping
1) two corners,--2)_.one corner, and 3) no corner of the coupon.
Weight and Dimension Tools
A Mettler A30 balance was used for weighing the 1" x 3" sample coupons.
Weight was recorded to within 0.0001 gram.
A Federal 691B deadweight dial micrometer was used to measure thickness.
The micrometer was modified to provide a 2" diameter anvil and a seven ounce
weight was used to give a pressure of 3.8 psi. This method modification
increases accuracy for materials softened by immersion. Thickness was
measured to 0.0001 inch (0.1 mil).
Standard dial calipers were used to measure the width and length of the
test coupons to the nearest 0.001 inch (1 mil).
47
-------
Die Punch
A pneumatic punch press (NAEF Model P/44) was selected for cutting FML
test specimens. This punch uses precision dies specified in ASTM test methods
(18). Dies included a l"x 4", l"x 6", and l"x 3" straight edge, an ASTM D638
type IV dumbell, a D412 dumbell, and a D624 tear. Dies were sharpened by the
die manufacturer as needed.
Test Chambers
Immersion jars were stored in one of two ventilated test chambers for the
specified immersion periods. The chambers are insulated walk-in units with
steel wire shelving for the immersion jars. Liquid temperature was maintained
at 23 +_ 2° and 50 HK 2° C in the two chambers.
+
Liquid temperature was monitored daily by recording the temperature of
water in jars_placed on the top and bottom shelves in each chamber.
Universal Test Machine
Mechanical properties were measured using a Unite-0-Matic 20,000 pound
frame universal tester made by United Testing Systems. Load cells of 100 and
1000 pounds capacity provided the correct range of force measurement for FML
testing. Elongation was measured by grip separation, using a crosshead motion
detector.
Load and elongation data were collected with the Data-Matic data acquisi-
tion and reporting computer. Load data precision was 0.0125 percent of full
scale (for example, .125 Ib for a 1000 Ib cell) and load cell accuracy was
within 0.1 percent of full scale. Elongation precision was 0.01 inch.
Air-actuated grips were used to hold test specimens for tear and tensile
testing. Air-actuated grips were chosen because they apply a constant and
uniform pressure during the test, minimizing the potential for specimens to
48
-------
slip. Also, the applied pressure can be controlled and reproduced from sample
to sample.
Smooth, hard rubber was used on one grip face, with smooth metal on the
other. Both a one-inch square grip face and a one by three inch grip face
were used.
Data Handling
The sample coding system is shown in Figure 4. Each sample was assigned
a seven-part sample number that identified both the material and the chemical
exposure conditions. For example, 'PL280P2' represents PVC ('P') tested after
exposure at 23°C ('L') for 28 days in 100% ASTM No. 2 Oil ('0'), at 100 per-
cent concentration ('P'). This sample is the second of three replicates ('2').
Test data taken in the machine direction is identified as '[property]M*, for
example 'Tear Resistance M', and that in the transverse direction as 'T?. The
weight and -dimension .data..corresponding to a sample number represents the
average of three specimens while tensile properties and tear resistance data
are averages of 5 specimens.
Project data was stored in a database using the DATATRIEVE data sorting
and reporting software on NSF's VAX 11-750 computer. The sample code number
allowed data to be sorted by any parameter (for example, temperature) and
reported or graphed. Test scheduling and sample tracking and labeling were
also assisted by using the computer database.
49
-------
Figure 4. Sample Coding System
- 5-6
1 = Material
2
3
Temperature
Time
Chemical
Concentration
C
E
Q
CPE
EPDM
CSPE-LW
23° C
P
L
H
H
PVC
EPI-CO
HOPE
50e C
1
7
14
A
B
D
F
M
0
P
S
W
X
L
M
H
P
= 1 Day 28 =
= 7 Days 56 =
= 14 Days 99 =
= Hydrochloric Acid
= Sodium Hydroxide
= 1,2 Dichloroethan
= Furfural
= Methyl Ethyl Ketone
= ASTM #2 Oil
= Phenol
= Sodium chloride
= Buffered Water
= Potassium Dichromate
= Low
= Medium
= High
= Pure
28 Days
56 Days
2 Years
Note: For chemicals with only one concentration "M" was used.
6 = Replication*
* For samples in the two-year immersion study, replication refers to the
testing period. For instance, "0" would mean an initial measurement, "1"
refers to a measurement after the first month of immersion, "2" would refer
to 4 months of immersion. For numbers greater than "2", the replication
number would reflect four month intervals, A "3" would represent 8 months,
etc. For EPDM and PVC in the short-term study, replication number refers
to the triplicate samples.
50
-------
Data Evaluation
The goal in data evaluation was to measure the response of a given FML
material to a chemical challenge as a function of time, temperature, and
concentration, and to evaluate the significance of this response in terms of
liner chemical resistance. The tools used in making this evaluation were:
. comparison of data to previous work (manufacturers' resistance tables,
EPA projects, literature)
. comparison of data to 'benchmarks' to measure extent of change (tests
of unexposed liner samples and liner samples exposed to water,
Standard 54 tables of minimum acceptable as-received properties)
. comparison of data to predictions from theory (solubility parameters)
. statistical analysis-of-data to determine statistical significance of
changes, trends and stabilization.
51
-------
As the liner material was cut from the roll to be divided up into test
samples, it was put into a box labeled with the material code. All pieces
cut from the roll were marked with the grain direction (machine or
transverse) as they were cut.
The sample tracking system is shown in Figure 6. A sample number was
assigned to a group of specimens (one sample) as the initial weight and
dimension measurements were taken. Two adhesive labels (preprinted with the
sample number and necessary tracking information) became part of the 'sample
kit' along with the data sheet. When the sample was immersed in a chemical
solution ('on test'), the first label was put onto the exposure jar, showing
the date in and the scheduled date out. The immersion date for the sample
was then logged into the computed database. When the sample was removed from
the exposure solution ('off exposure'), it was put into a scalable
polyethylene bag until testing was completed. The second preprinted label
was put onto this bag, showing the date removed from solution.
Remains of tested sample were kept in these labeled bags and stored
until all the samples for that chemical type had been completed. Weight and
dimension results were combined with mechanical test reports and entered into
the computer database. The database provided the sample masterlog. When the
entire sample group (one chemical exposure for all FMLs) had been tested, the
data was edited to correct any errors in computer entries.
SAMPLE PREPARATION
Samples of each FML were cut for chemical immersion. The two-year
immersion samples (three one-inch by three-inch coupons) were cut with the
long side parallel to the machine direction. The shorter-term samples, for
mechanical property testing, consisted of three coupons: two were approxi-
mately eight by eight and one-half inches in size, and the third was the same
as the two-year samples." This small coupon was used as the indicator for
weight and dimensional changes; and the larger coupons were used to cut
specimens for mechanical property changes after immersions of up to 56 days.
Preceding page blank 53
-------
Vfl
*-
Material Cut Into Sample
Initial Measurement ft recorded
on Data Sheet
I. Simula 'kit' assembled
Specimens die-cut from
Exposed Sample: Physical Testing
I
Is
Test reports Compiled
Physical Testing
Sample Immersed In Jar
Jar label dated and aff1»ed
Data Sheet Into Active File
Date logged Into Computer
2. Immersion of Sample
Temporary Sample Storage
Data Entry and Edit
5. After Testing
Figure 6. Sample tracking system
Sample put In PE bag
PE bag labelled and dated
Final Measurements recorded on
Data Sheet
3. After Immersion
Sample Disposal
6. Storage & Disposal
-------
All of the small die-cut specimens were weighed and measured for
thickness, width, and length prior to immersion according to NSF procedure
FML-1 (Appendix C). Small holes were punched in the top of the small
specimen, and corner holes were punched into the large coupons.
IMMERSION PROCEDURE
Quart mason jars were used for the two-year immersion samples, and
two-gallon glass apothecary jars were used for the larger samples (shorter
term samples).
All immersions were conducted with a liner surface-to-volume ratio of
approximately 40 milliliters per square inch of liner surface area. The
surface to volume ratio was specified for consistency and to assure that the
amount of solvent present in solution would not be limiting (e.g.,
concentration would remain relatively constant). Immersions were incubated
at two temperatures,.23° and_ 50°C. Chemical solutions were mixed in the
immersion jars. Solution preparation was done on the same day as immersion
for volatile solutions, and on the same day or the day before for
non-volatile solutions.
Teflon cord (0.016 inch) was threaded through the holes and the samples
were lowered into the immersion jars.
Rope caulk was put around the edges of the apothecary jar lip before the
glass lid was put on to help seal the jar. Jars of volatile solutions were
also taped with heat- and moisture-resistant adhesive tape to reduce evapor-
ative loss.
Immersion jars were placed in controlled temperature chambers. Jars
were set on open wire shelving to allow air circulation for temperature
control. The temperature of jars of water in the chambers placed on top and
bottom shelves were measured twice daily (+ 2°C tolerance each).
55
-------
After the specified length of immersion time, sample jars were removed
from the incubation chambers and samples removed. Low temperature samples
were removed from the solutions, blotted, and cleaned with soap and water
and/or rinsed, if necessary (e.g., oily exposures, acid and basic solutions),
and placed in plastic bags. High temperature samples were reimmersed in a
23°C solution of the same composition for at least one hour before bagging
per ASTM D543 (18). The small coupons were weighed and dimensioned. Two-
year immersion coupons were then returned to a fresh solution of chemical for
continued exposure.
Tear resistance and tensile property specimens were cut from the larger
of the short-term samples. Five of each type were cut in both the machine
direction and the transverse direction. Figure 7 shows a typical cutting
pattern for an elastomeric FML sample. Thermoplastic FML samples were cut
similarly, except instead of the 'dogbone' tensile bars, straight one-inch by
four-inch tensile bars were cut. The tensile properties; S-100 modulus,
breaking factor, -elongatian. .a.t..break,_and_..tear resistance tests were
performed on the samples. ASTM methods appropriate to the type of liner
material were used, specifying specimen shapes and test conditions. Table 14
lists the physical properties tests performed on exposed liner materials.
56
-------
Figure 7. Pattern for typical lanersion sample die cutting
-------
Table 14. PHYSICAL PROPERTIES TESTS FOR IMMERSION SAMPLES
LINER TYPES
TESTS REQUIRED
NO. SPECIMENS
METHODS
Elastomers Breaking Factor 10*
(Ib/lnch width)
Elongation at Break (inch)
Tear Resistance (Ib) 10*
Weight and Dimension 3
ASTM D412 die C
ASTM D624 die C
NSF method FML-1
Partially Breaking Factor 10*
Crystalline (Ib/inch width)
Yield Strength
(Ib/inch width)
Elongation at Break (inch)
Elongation at Yield (inch)-
Modulus of Elasticity
(psi)
Tear Resistance (Ib) 10*
Weight and Dimension 3
ASTM D638 type IV
ASTM D1004 die C
NSF method FML-1
Thermoplastic
Breaking Factor 10*
(Ib/inch width)
Elongation at Break (inch)
S-100 Modulus
(Ib/inch width)
Tear Resistance (Ib) 10*
Weight and Dimension 3
ASTM D882 die
1" x 4"
ASTM D624 die C
NSF method FML-1
Five each in the machine and transverse direction of cut
58
-------
SECTION 6
QUALITY CONTROL
MEASUREMENT OBJECTIVES
Quality assurance objectives for precision, accuracy, and completeness
for the physical properties testing parameters required for this project are
given in Table 15. The load cells used in these measurements are accurate to
within one tenth of one percent of the load cell capacity.
Round-robin testing conducted with the United States Bureau of
Reclamation (USER) and with the manufacturers supplying the liner materials
were used to gauge accuracy of NSF's physical properties measurement, and
interlab reproducibility of the jne_tho_ds_,
Completeness refers to NSF objectives in number of tests carried to
completion of all those begun. Reasons for inability to complete tests were
documented and every attempt made to retest. The completeness target for the
project was 95%. For physical properties testing after chemical exposure, if
a sample was degraded to the degree that testing was impossible, the test will
still be considered completed.
A system of replication was used for physical properties testing to
determine experimental precision and material varability. Three separate
samples of PVC and EPDM were exposed and tested for the conditions shown in
Table 16.
Representativeness of portions of liner material used for immersion
testing was established by visual inspection before and after cutting
59
-------
TABLE 15. QUALITY CONTROL OBJECTIVES FOR PHYSICAL PROPERTIES TESTS
TEST
DESCRIPTION
Tensile
Properties
REFERENCE ACCURACY
ASTM D638 (a)
ASTM D882
ASTM D4
PRECISION COMPLETENESS
+ 10% 95%
Tear Resistance ASTM D624
ASTM D1004
(a)
+ 10%
95%
Thickness
ASTM D374
1 mil
0.7 mil
95%
Weight
NSF Std. 54~-
"1 mg.
0.9--mg.
95%
Dimension
NSF Std. 54
6 mil
6 mil
95%
(a) Load cells are accurate to 0.1% of capacity (e.g., 1 pound for a 1,000
pound load cell)
immersion speciments. Before cutting, the area to be cut was inspected to
assure that there were no apparent material distortions or anomalies not
representative of the entire material. After cutting, the specimen was
inspected to assure that the cutting did not produce distortions or anomolies
which are not representative of the entire material. Test results were used
to compare the properties of liner materials before and after exposure to the
simulated chemical wastes, and are expressed as percent change. Direct
comparison of property changes between liners of different polymers is not
valid.
60
-------
TABLE 16. REPLICATION SYSTEM FOR PHYSICAL PROPERTIES TESTS
IMMERSION PARAMETER TEST CONDITIONS REPLICATION CONDITIONS
Temperature 23,50 Centigrade 23 Centigrade
Chemical Exposures 20 20
Length of Exposure 1,7,14,28,56 days 1,7,14,28,56 days
Number of Materials 6 2
WEIGHT AND DIMENSION
Calipers and balances were calibrated one time per day with premeasured
blocks and weights traceable to the National Bureau of Standards. The primary
source of variability in weight and dimension testing was measurement
technique.
Technician training was conducted at the beginning of the project to
assure consistency in measurement technique. Three technicians were asked to
weigh and measure the same five coupons of five FML materials. Means and
standard deviations for each technician are shown in Table 17. A two-way
analysis of variance (ANOVA) was performed on each data set to determine if
there were statistical differences between the mean result for each technician
and whether there were statistical differences within the five coupons. A
data set consisted of data from all three technicians for one FML material and
one of the measurements — weight or a dimension. The calculated F-values
were compared to the tabulated F-values corresponding to 95 percent confidence
and the appropriate degrees of freedom.
The coupons proved to be statistically the same for all materials and
measurements. There were several areas where the three technician mean
results were not statistically the same. These were the width, thickness and
weight for EPI-CO and EPDM; the width and thickness for HOPE, and the width
for CPE.
61
-------
TABLE 17. MEANS AND STANDARD DEVIATIONS FOR EACH TECHNICIAN
CTi
NJ
Weight
Technician
2020
2080
2A18
Overall
2020
2080
2418
Overall
2020
2080
2418
Overall
2020
2080
24L8
Overall
2020
2080
2418
Overall
Mean
(grams)
HOPE
1.5619
1.5615
1.5616
1.5617
PVC
1.9034
1.9035
1.9035
1.9035
CPE
2.0453
2.0450
2.0454
2.0452
EPI-CO
4.5781
4.5774
4.5775
4.5777
EPDM
2.2415
2.2416
2.2424
2.2418
Standard
deviation
0.00021
0.00017
0.00004
0.00021
0.00011
0.00028
0.00004
0.00017
0.00040
0.00019
0.00013
0.00030
0.00007
0.00019
0.00008
0.00034
0.00008
0.00021
0.00007
0.00044
Thickness
Mean
(mil)
34.7
34.1
33.8
34.2
31.3
31.3
31.3
31.3
31.3
31.3
31.3
31.3
63.6
63.6
63.7
63.6
38.7
38.8
39.0
38.8
Standard
deviation
0.11
0.08
0.04
0.37
0.05
0.08
0.05
0.07
0.09
0.04
0.00
0.06
0.00
0.05
0.00
0.05
0.04
0.09
0.04
0.13
Width
» Mean
(inch)
0.999
1.000
.0.998
0.999
0.997
0.997
0.996
0.997
1.000
1.001
0.998
1.000
0.996
0.993
0.992
0.994
0.996
0.995
0.992
0.994
Standard
deviation
0.0005
0.0005
0.0012
0.0011
0.0008
0.0005
0.0030
0.0018
0.0011
0.0007
0.0011
0.0017
0.0008
0.0008
0.0009
0.0020
0.0011
0.0008
0.0008
0.0019
Length
Mean
(inch)
3.002
3.002
3.002
3.002
2.996
2.998
2.997
2.997
3.002
3.003
3.003
3.003
2.995
2.996
2.995
2.995
3.000
3.001
3.002
3.001
Standard
deviation
0.0008
0.0005
0.0009
0.0008
0.0004
0.0023
0.0027
0.0021
0.0032
0.0007
0.0000
0.0018
0.0017
0.0011
0.0019
0.0016
0.0018
0.0015
0.0018
0.0019
-------
To determine how important the statistical differences were, the root
mean squared error (RMSE) was calculated and compared to the precision target
values for this study (Table 15). The thickness of HDPE and the weight of
EPDM both were greater than the precision requirements in Table 15 (see Table
18). A precision of 1.0 mil for HDPE thickness was achieved while the target
precision was 0.7 mil. The weight measurement of EPDM had a precision of
1.1 mg with the target precision of 0.9 mg. This is as one would expect con-
sidering observable properties of these materials.
TABLE 18. PRECISION OF TECHNICIANS
Measurement
Material
HDPE
PVC
CPE
EPI-CO
EPDM
Weight
(grams)
0.0004
0.0001
0.0004
0.0009
0.0011
Thickness
(mil)
1.0
0.1
<0.1
0.1
0.3
Width
(inch)
0.002
0.001
0.004
0.005
0.004
Length
(inch)
0.001
0.002
0.001
0.002
0.003
Target 0.0009 0.7 0.006 0.006
Because of the stiffness and curvature of HDPE, the thickness measurement
is very technique-dependent. To measure thickness of HDPE using the dial
micrometer, it is necessary to hold the sample flat on the anvil. The pres-
sure applied to flatten the sample affects the measurement. Also, with HDPE,
the sample has to be placed on the anvil with the cut side up to obtain
consistent results, (This practice was routinely followed in this project.)
With unimmersed material, the precision of 1.0 mil is as precise as can be
achieved in a controlled evnironment using a dial micrometer.
Using calipers may give a more precise measure of HDPE thickness. When
measuring thickness, two forces affect the technicians ability to measure
accurately: indentation and curvature. Generally FMLs are soft enough that
indentation is the primary problem in measuring thickness. The larger
surfaced pressure foot of the dial micrometer is preferred over the smaller
63
-------
surfaced calipers. A larger surface reduces the effect of indentation while a
smaller surface reduces the effect of curvature. In the case of HDPE, a stiff
material which is prone to taking the curved shape of the roll, smaller
surface instruments like calipers may be required to reduce the effect of the
curvature. However, this could result in reduced precision because of inden-
tation. Precision of 1.0 mil for this HDPE is reasonable.
The weight of EPDM is dependent on the amount of handling the specimens
receive. EPDM is covered with a powder and handling gradually removed this
powder. In a situation where three people handle the same specimens, the
first person would be measuring a heavier, more powdered specimen, while the
last technician would be measuring a lighter, less powdered specimen.
To test this hypothesis, a small rectangle of EPDM was weighed, and then
washed, dried and weighed again. The specimen lost 6.4 mg which is plenty to
account for the 1.1 mg range between the technicians values. To further sup-
port this condusion^JLhe technician with the lowest weight value was the last
to measure the coupons. Also, there was no trend or indication that the tech-
nician with the highest mean and furthest from the overall mean, technician
#2418, was typically inaccurate in weight and dimension measurements of other
materials.
TENSILE PROPERTIES MEASUREMENT
Calibration of tensile and tear test equipment included periodic dead
load tests to assure accuracy of the load cells and annual calibration of the
test system by the equipment manufacturer. Calibration records are on file at
NSF.
Three tests were conducted to measure accuracy and precision tensile
properties measurements for unimmersed material: 1) measurement of split
samples between NSF and the manufacturer, 2) split sample testing between
NSF and the U.S. Bureau of Reclamation, and 3) inhouse precision study on
all materials. Summary results are presented in Tables 19, 20, and 21.
64
-------
Table 19 compares tensile properties test results as measured by NSF and
the manufacturer who supplied the material. Manufacturers were asked to test
the material before submitting it to NSF but to hold the results until NSF
completed testing. NSF's results were then submitted to the manufacturer
prior to NSF seeing the manufacturers results. The agreement is good.
The agreement is equally good between NSF and the USER, as shown in Table 20.
For all interlaboratory data, there is no evidence of systematic error at NSF.
For a given test, NSF results are both higher and lower than other laboratories.
Table 21 presents typical precision data for tensile properties tests for
unimmersed material. The data presented are percent coefficients of variation
(standard deviation X 100 * mean) for tests conducted on liners prior to
immersion. Coefficients of variations are based on five replications. The
precision meets the goals set in Table 15.
COMPLETENESS
Table 22 presents data for completeness by test and material. The com-
pleteness goal of 95 percent was met with the exception of some HDPE tensile
tests. The best measure of completeness for this project is the percent of
weight measurements completed. Some tensile tests could not be completed after
an immersion because the material was degraded too much for physical properties
tests. Weight measurements were 100 percent complete for all materials and
represent the number of planned immersions carried to completion.
Yield strength, elongation at yield, and modulus of elasticity for HDPE
are not reported as 95 percent complete because not all data for these mea-
surements were included in this report. Early project data for these three
measurements for HDPE immersions in water and inorganic chemicals were
obtained through interpretation of analog data. A test system upgrade allowed
for digital output and computer aided interpretation. Although both proce-
dures were accurate, the digital data interpretations were more reproducible
and were the only ones included in the final data evaluations.
65
-------
TABLE 19. COMPARISON OF NSF AND MANUFACTURER TENSILE PROPERTIES TEST RESULTS
Breaking3 S-1003 Elongation3 Tear3
Factor Modulus at Break Resistance
Test (Ibs/inch width) (Ibs/inch width) (Percent) (Pounds)
Material
CPE
NSF
Manufacturer
CSPE
NSF
Manufacturer
EPDM
NSF
Manufacturer
EPI-CO
NSF
Manufacturer
HOPE
NSF
Manufacturer
PVC
NSF
Manufacturer
a. Only machine direction results reported
b. NT - Not tested
c. A one-inch-wide specimen was tested
54.2
56.9
41.7
48.4
63.4
51.0°
96.4
121.Q
153.1
NT
88.3
90.6
37.6
29.9
NTb
NT
NT
NT
NT
NT
NT
NT
50.8
46.4
437
346
418
415
402
420C
302
340
647
NT
450
480
7.54
8.49
7.7
10.4
8.9
6.8
13.0
16.0
26.2
NT
10.6
12.1
66
-------
TABLE 20. COMPARISON OF NSF AND USSR TENSILE PROPERTIES TEST RESULTS
Breaking
Factor
(Ibs/inch
width)
S-100
Modulus
(Ibs/inch
width)
Elongation
at Break
(Percent)
Tear
Resistance
(Pounds)
Modulus
of Elasticity
(Ibs/sq. inch)
Material
CPE
NSF
USBR
EPDM
NSF
USBR
HOPE
NSF
USBR
PVC
NSF
USBR
54.2
65.6
63.4
66.0
153.1
148.8
88.3
92.0
37.6
30.3
4.1
NT
NT
NT
50.8
33.0
437
492
402
443
647
658
450
455
7.5
6.6
8.9
8.2
26.2
24.6
10.7
10.2
NT
NT
NT
NT
64,090
58,000
NT
NT
a. Machine direction results only
b. NT - Not tested
67
-------
TABLE 21. PERCENT COEFFICIENT OF VARIATION OF TENSILE
PROPERTIES TESTS FOR UNDMERSED MATERIALa
Breaking Elongation S-100 Tear Yield Elongation Modulus
Factor at Break Modulus Resistance Strength at Yield of Elasticity
Material
CPE
Machine
Transverse
CSPE-LW
Machine
Transverse
EPDM
Machine
Transverse
EPI-CO
Machine
Transverse
HDPE
Machine
Transverse
PVC
Machine
Transverse
1.1
0.7
3.8
3.7
6.7
2.4
3.4
1.6
5.6
6.3
2.5
1.9
2.4
2.8
6.6
3.0
2.4
4.0
13.1
4.7
4.3
7.1
3.8
3.3
2.5
2.0
6.5
4.3
7.4
3.8
4.4
1.5
NT
NT
1.0
1.7
1.2
1.3
1.6
1.0
2.7
1.3
1.8
5.3
NT
NT
1.5
2.2
NTb
NT
NT
NT
NT
NT
NT
NT
6.4
5.6
NT
NT
NT
NT
NT
NT
NT
NT
NT
NT
10.4
4.9
NT
NT
NT
NT
NT
NT
NT
NT
NT
NT
3.0
4.0
NT
NT
a. Five specimens were tested at NSF for each material and direction
b. NT - Not tested
-------
TABLE 22. PERCENT COMPLETENESS OF DATA
Material CPE CSPE EPDM EPI-CO HOPE PVC
Test
Weight
Dimension
Breaking Factor
Elongation at Break
S-100 Modulus
Tear Resistance
Yield Strength
Elongation at Yield
Modulus of Elasticity
100%
100%
98%
98%
98%
99%
N/A
N/A
N/A
100%
100%
99%
100%
99%
99%
N/A
N/A
N/A
100%
100%
100%
98%
N/A
100%
N/A
N/A
N/A
100%
100%
98%
98%
N/A
99%
N/A
N/A
N/A
100%
100%
97%
97%
N/A
100%
94%
94%
93%
100%
100%
98%
98%
98%
100%
N/A
N/A
N/A
CONTROL OF IMMERSION CHEMICAL CONCENTRATION
The primary data used for evaluation of resistance of a liner material to
a chemical was the response of that liner to immersion. When testing a waste
or leachate, the chemical(s) causing the response may be unknown. The FML
response is of primary importance. Consequently, knowing the absolute concen-
tration of a chemical at all times was not critical to the data interpretation.
The loss of chemical concentration from solution could occur by three pathways;
evaporation, absorption into the liner, and chemical transformation. It was
assumed that loss due to chemical transformation would be negligible because
the chemicals used were not labile, and the only other substances present
which could react with the immersion chemical were water and the liner.
Evaporation was controlled by sealing the two-gallon immersion jars (two-
month immersions) with temperature- and water-resistant rope caulking and
moisture-resistant tape. Saturated solutions of MEK and oil were maintained
by keeping an excess layer of the solvent on top of the water. Chemical
69
-------
solutions for two-year immersions were kept in quart jars with screw-on lids.
The solutions in the two-year immersion jars were replaced every four months.
Concentrations of chemicals were measured right after mixing to assure that
make-up concentrations were correct. Chemical concentrations were also
analyzed at various intervals to determine how well the solution
concentrations were maintained.
Table 23 shows the range of percent of target concentrations for organic
chemicals measured in jars immediately after immersion. The goal was to have
all immersion concentrations be 100 HH 10 percent (wt:wt) of target. Furfural
and phenol were generally within the target range. One furfural solution
targeted for 8 percent in a 23°C immersion was measured to be 86.9 percent of
target. One mid-range MEK solution was measured at 84.6 percent of the target
of 4 percent. Target concentrations for DCE were harder to attain. DCE is
not very soluble in water, is volatile, and was difficult to get into
solution. However, the ratio of low to high DCE concentrations was attained.
Figures 8 and 9 show the concentrations after immersion periods of up to
56 days at 23 and 50°C for phenol and furfural respectively. The concentra-
tions of these two chemicals were very stable over time.
Figure 10 shows the percent of target concentration for MEK at 23 and
50°C. MEK concentration was not as stable, particularly at 50°C.
The increase in chemical loss with increasing temperature implies that
volatile loss was the primary reason for loss of solvent. Data for MEK in
Figure 10 after 56 days were for two-year immersion samples in one-quart jars.
The results for DCE are shown in Figure 11. The results are similar to
those for MEK; more apparent volatile loss at 50°C.
70
-------
TABLE 23. LOW AND HIGH PERCENT TARGET CHEMICAL
CONCENTRATIONS AFTER INITIAL MIXING
Target Concentration Percent of Initial Target Concentration
(Percent wt/wt) 23°C 50°C
Furfural
1 98.0 - 106.0 95.0
4 97.5 - 104.5 101.0
8 86.9 - 101.3 106.8
Phenol
1 90.0 - 110.0 100.0 - 110.0
4 97.5 - 107.5 92.5 - 112.5
8 91.3 - 101.3 96.3 - 101.3
MEK
3 100.0 - 100.0
13 84.6 - 92.3
26 °
DCE
0.1 74.0 53.0 - 74.0
0.5 50.0 56.0 - 86.0
0.8 70.0 50.0 - 83.8
a If only one number is shown, only one measurement was made
Saturated MEK solutions maintained by keeping a layer
of MEK on top of the aqueous phase
71
-------
/0 -15«
O
F
T 100
A
R
G
E _,
T 50
C
O
N 9
C <
•
> 1
|
0 2
<*•
+
+
0 3
+
0 4
a 5
^
+
0 6<
DAYS IN SOLUTION, 50°C
" IOC
O
F
A
R
G
C
O
N.
9
C <
.
> i
i
*
.____.._..____
0 2
X
+
1 , ..„„.— T--,.,,T1T.T..^.....
0 3
" *
0 4
DAYS IN SOLUTION, 23°C
Figure 8. Percent of target concentration of 4 percent phenol solution
versus days in solution
72
-------
150
O
F
ivv
A
R
G
E
T
C
O
NA
C <
» 1
T
0 2
*
0 3
0 4
0 5
. ^ .....
0 6
DAYS IN SOLUTION, 50°C
O
F
T
A
R
G
E
T
C
O
N
C
Figure
150
100
10
ov
DAYS IN SOLUTION, 23°C
9. Percent of target concentration of 4 percent furfural solution
versus days in solution
73
-------
% 150
O
F
T 100
A
R
G
Rfl
T
C
O
N 0
C <
+
i t
+ +
+
+ +
+
+ +
^
+
> 5
+
+
+
j.
i
+
0 1<
,^ —
+
+ +
+ +
4.
>0 IS
DAYS IN SOLUTION, 50°C
1S«>
O
F
1 100
A
R
G
E
T 50
C
O
N A
c *,
"
+
+
+ + +
+
+•
1 R
+ +
+
i___+_
+
*
a «
•f
+
— ' — +• •" -....—..
+
+
+
1/1 JC
150
DAYS IN SOLUTION, 23°C
Figure 10. Percent of target concentration of 13 percent MEK solution
versus days in solution
74
-------
"> 100
0
F 88
T
A M
R
G Aft
E 4*
T
ex
C
0
N 0
C
+
+
+
+
T
3 1
e 2
x.
+
9> I
+
« 4
-------
There were no instances of complete loss of solvent measured. Absence of
solvent was not a factor in data interpretation. All liner response data
exhibited the anticipated concentration dependence indicating that changes in
chemical concentration did not influence the liner response approach to
chemical resistance evaluation used in Section 8 of this report. This does
not mean, however, that evaporative loss is not important to control when
using immersion tests (e.g., EPA Method 9090) to evaluate liner resistance to
a real waste. There is a relationship between chemical concentration and
liner response, and the liners in this study were generally less resistant to
the more volatile low molecular weight organics than other chemicals.
All chemical concentration data are presented in Appendix D.
DATA CONTROL
Data from bench sheets were manually entered into NSF's Digital Equipment
VAX 11-70 computer system. After entry, edit sheets were printed and proofed
against bench sheets. Data was also reviewed for completeness and reasonable-
ness, (e.g., units, decimal places, significant figures, etc.) All data
review was completed prior to data analysis.
REPLICATE TEST RESULTS
PVC and EPDM materials were tested in triplicate for immersions at 23° C.
The purpose of the triplicate analysis was to measure the precision of the
entire immersion test procedure.
A one-way ANOVA was performed on the triplicate data to determine if the
triplicates gave statistically equal results for repeated tests. If the ANOVA
showed a statistical difference at the 95 percent confidence interval, the
RMSE was calculated to determine if any statistical differences were
important. The RMSE was also used to give an indication of the precision
achieved with immersed materials.
76
-------
Several sets of triplicate data were determined to be statistically
different. An examination of the RMSE indicated that the target precision for
physical properties tests of polymeric materials of + 10 percent is
unrealistic. This is particularly true after immersion in chemicals. Tests
precision was discussed previously in this section under subheading "Tensile
Properties Measurement".
Measurement precision varied with resistance, material and the property
being tested. Most non-resistant material/chemical combinations gave results
that were highly variable. In fact, the precision of a measurement after
immersion may be another useful tool for determing chemical resistance.
However, this concept needs further study. Non-resistant data was not used
when establishing the precision of each physical properties test for PVC and
EPDM. In general, the measurements of EPDM were less precise than the PVC
measurements, however, elongation at break was more precise for EPDM than PVC.
The most precise measurement was the breaking factor for PVC of +_ 11
percent and the least precise measurement was the normalized breaking-factor
for EPDM of 38 percent. Most of the measurement resulting from resistant
material/chemical combinations (94 percent) were precise within +_ 20 percent.
EPDM elongation at break and PVC tear varied +_ 25 percent; EPDM normalized
tear and PVC S-100 modulus varied about +_ 30 percent; and PVC elongation at
break varied about 4^ 36 percent.
It is difficult to control the many effects acting on a material immersed
in a chemical solution (e.g., solution concentration). Table 21, showing the
precision of physical properties tests of unimmersed materials, gives
precisions better than the +_ 10 percent target. This indicates that the large
variablility in the physical properties results of the immersed materials is
caused by the many variables acting on a material when it is immersed in a
chemical rather than caused by problems in a technique or in the equipment
used. For an experiment of this design, the measurements were as precise as
possible.
77
-------
SECTION 7
SAFETY
DESCRIPTION OF HAZARDS
A summary of the potential hazards of each chemical used in the study is
presented in Table 24. The categories of hazards are flammability, reactivity
and health. The categories are rated on a 4 point scale: minimal, moderate,
hazardous, and extreme. Also included in the table are recommended personnel
protection measures. This information was compiled from Material Safety Data
Sheets (MSDS). As a minimum, all protective measures were used in this
project.
TABLE 24. POTENTIAL HAZARDS OF IMMERSION CHEMICALS
Chemical
Flammability Reactivity Health Protective Measures
ASTM No. 2 Oil Moderate Minimal Minimal None Specified
Sodium Chloride Minimal Minimal Minimal None Specified
Water
Minimal Minimal Minimal None Specified
Potassium
Dichromate
Minimal Minimal Moderate Gloves, safety glasses,
laboratory coats, exhaust
Hydrochloric
Acid
Minimal
Minimal Extreme
Gloves, safety glasses,
laboratory coat , general
protection from burns
Sodium Hydroxide Minimal
Moderate Extreme Gloves, safety glasses,
laboratory coat, exhaust
78
-------
TABLE 24. (Continued)
Chemical Flammabllity Reactivity Health Protective Measures
1,2-Dichloro- Extreme Moderate Hazardous Gloves, safety glasses,
ethane laboratory coat, exhaust,
vapor mask or respirator,
grounded storage container
Furfural Moderate Minimal Moderate Gloves, safety glasses,
laboratory coat, exhaust,
grounded storage container,
respirator available
Methyl Ethyl Extreme Minimal Moderate Gloves, safety glasses,
Ketone laboratory coat, exhaust,
grounded storage contain-
tainers, store away from
ignition sources
Phenol Moderate Minimal Hazardous Neoprene rubber gloves,
goggles and face shield,
laboratory coat, exhaust
ACTIONS TAKEN TO PREVENT HAZARDS
A review of safety procedures for chemical immersion testing was
performed by the Michigan Occupational Safety and Health Administration
(MIOSHA). Areas covered included chemical handling, protective clothing,
vapor concentrations in air, respiratory protection, and general safety
precautions. The review, offered as a free consultation service by MIOSHA,
was performed at the request of NSF.
79
-------
The following procedures recommended by MIOSHA were used to protect
technicians and avoid accidents.
Chemical Handling
Drums of full strength organic chemicals were stored near a hood and
grounded throughout their use.
Jars of dilute chemicals (exposure solutions) were transported in low
carts and care was taken not to overload. The larger jars were stored on
lower shelves. Jars with organic chemicals were taped with duct tape around
the lid to prevent splashing when transporting.
The organic chemical waste drum was kept in the 23°C exposure chamber
under t;he exhaust port. When emptying a jar into the drum, the auxiliary
blower was turned on, the damper was fully opened and the vent in the drum was
opened.
Protective Clothing
For mixing the solutions, filling and transporting the jars, and
immersing and deimmersing the samples, the following protective clothing was
used: lab coat, chemical resistant apron, thick chemical resistant gloves,
sleeve protectors worn over the lab coat, goggles, closed shoes, protective
skin cream for the face and neck area. Both organic vapor and acid gas
respirators were available for use in operations where vapors were present.
Location of Safety Equipment
All personnel were shown the location and use of the showers, fire
extinguishers, eye wash stations and spill control centers.
80
-------
Transport Route
The transport route was between the solution prep room and the exposure
chambers. Great care was taken to keep the path free of liquids and debris
that would cause slippery spots.
Work Area
The work area was kept clean and neat to avoid accidents caused by
scattered tools, improper disposal of paper towels, or jars not put away.
Sample Handling
Disposable polyethylene gloves were worn when handling samples that had
been immersed in chemical solutions. A portable hood was used to store
samples which had been immersed in organic solutions while they were waiting
for testing. After the tests were completed, the samples were stored in
plastic bags in a box in the 23°C chamber for two weeks, at which time they
were discarded.
Chamber Entry and Exit
Specific instructions were given on the entry and exit of the chamber to
help keep the ventilation adequate, the exposure temperatures in the
acceptable range, and the time spent in the hot chamber at a minimum.
Technicians were instructed to minimize the time in the chamber, keep the door
open when inside a chamber, and place a flag in the hallway to indicate to
fellow workers that they were in the chamber.
In the case of a spill, spill kits were available to absorb the solvents
and technicians were advised of hazards and procedures to be used.
81
-------
Waste Disposal
Acidic and basic wastes were neutralized before being disposed. Wastes
were collected in 55 gallon drums and hauled away by a licensed waste disposal
contractor.
The following companies and Michigan Department of Natural Resources
license numbers are pertinent.
National Sanitation Foundation
License No. MI D 059695452
Transport
Drug and Laboratory Disposal, Inc.
License No. MI D 092947928
Disposal
A-l Disposal Corporation
License MI D 059695452
82
-------
SECTION 8
RESULTS AND DISCUSSION
OVERVIEW OF DATA PRESENTATIONS AND DISCUSSIONS
Data and discussions are organized by material. No effort was made to
compare material responses because each type of material has unique properties
and unique responses to immersion. Each material section discusses criteria
for determining chemical resistance unique to that material, rate of liner
response and stabilization, magnitude of material response, type of effects
observed, and indicators of non-resistance.
The data are summarized and discussed in this section. All data can be
found in Appendix E. Results are presented for percent retention of initial
property, mean material property values after immersion, and standard
deviations for all measurements. -
Process for Determining Chemical Resistance Criteria
The general criteria for determining whether a liner was resistant were
whether the liner response (e.g., change in physical property) stabilized, and
whether at the point of stabilization the liner had maintained enough of its
initial properties to still provide its intended function. The need for a
stabilized response is intuitive. A material which is continuing to change
with time cannot be expected to remain in service for long periods of time.
The magnitude of material response which is significant as an indicator
of non-resistance is less straight forward to determine. Both percent and
absolute change were evaluated.
83
-------
The process for evaluating the data involved several ways of looking at
material response, such as:
. Comparing results with other data on liner/chemical resistance obtained
from published reports and manufacturers literature, (10, 14, 17, 22-29)
. Correlating results of different measurements e.g., breaking factor,
weight, etc., and establishing criteria for all measurements,
. Evaluating percent change in material property in the context of test
variability, and
. Determining minimum physical properties which should be maintained after
immersion.
There are no previously established or accepted benchmarks of performance
based on immersion tests. The NSF Standard 54 physical property values suggest
a possible benchmark which correlates well with existing chemical resistance*
data (30). The EPA draft guidance document suggests that the NSF Standard 54
specifications be used as absolute minimums for physical properties in immer-
sion tests (3). For liners tested in this study for which there were material
properties tables in NSF Standard 54, results of liner strength tests (e.g.,
breaking factor, etc.) generally fell below Standard 54 values after immersion
in chemicals for which the liner was reported to be non-resistant in manufac-
turer's literature or other sources.
Using Standard 54 material properties values for virgin material to
evaluate the physical properties of immersed material is justified when one
considers the increased variability in physical properties measurement after
chemical immersion. For example, for the PVC material tested in the study,
the coefficient of variation for breaking factor was 2.5 percent for virgin
material, and as high as: 11.5 percent for the FML which had stabilized in
4 percent furfural. To pass Standard 54, the mean breaking factor for five
specimens must be at or above the minimum value in the physical properties
84
-------
table. Comparing the average value of test results to a Standard 54 speci-
fication as a pass/fail criterion implies that 96 percent of the liner coupons
tested are within H^ 2 s.d. of the sample mean. If the sample mean and
Standard 54 value was 50 lb/in., 2 s.d. would equal 2.5 Ib/in. for the
unexposed FML and 11.5 lb/in. for the FML after immersion in 4 percent
furfural. Assuming a normal distribution of test data, this means that, two
percent of the unexposed liner could have a breaking factor less than 47.5
lb/in. and still be acceptable, but two percent of the liner exposed to four
percent furfural could have a breaking factor less than 38.5 lb/in. Therefore
when increasing material variability after immersion is taken into account,
the Standard 54 value is not too strict for evaluating immersed samples.
A maximum allowable change in physical properties is also necessary for
evaluating chemical resistance for three reasons. If an FML's initial prop-
erties are much higher than the Standard 54 values, substantial material
degradation could occur before the Standard 54 limit would be passed. Also,
Standard 54 values are minimums, and give no guidance in cases where a prop-
erty such as breaking factor may increase as a result of chemical exposure.
Finally, acceptable changes in weight and volume can not be determined from
Standard 54.
To determine percent change limits for chemical resistance evaluation,
three steps were followed. First the variability of the immersion test method
was established from replicate results (see Section 6) and from inspection of
all immersion results for a material. Next, the magnitude of the variability
was compared with the magnitude of change associated with published data for
resistant and non resistant liner/chemical combinations (27). Percent change
limits were then set at a magnitude which represents real change, not just
limits of reproducibility. The third step was to establish percent change
limits for measurements for which there was no published comparative data.
For example, if published data were available for the breaking factor of PVC
but not percent elongation at break, the data for percent elongation at break
would be compared with limits set for breaking factor and Standard 54 minimum
values to establish limits for percent elongation at break.
85
-------
Curve Fitting Response Stabilization as a Function of Time
Data are collected sequentially through time on a physical characteristic
(measured response) of a material exposed to a chemical. The objective is to
determine whether the material stays within appropriate control limits with /
respect to a physical characteristic by studying the pattern of change of the
physical characteristic. In particular, one common objective is to determine
whether the characteristic stabilizes or continues to change in a monotonic
fashion (increasing or decreasing). If the characteristic stabilizes, then
the limiting value and the rate at which the limiting value is approached are
both of interest.
There are several possible conclusions that could be reached about the
stabilization of a material property.
f
. The property doesn't stabilize and exceeds percent change limits within
too short a time.
. The property doesn't stabilize but is not projected to exceed percent
change limits for such a long period of time that the material is judged
to be acceptable.
. The property stabilizes, but at too high a level too soon.
The property stabilizes at too high a level but remains within control
limits for an adequate period of time.
The property stabilizes at a limit within percent change limits.
This proposed method is presented as a conceptual framework for addressing
the problem of evaluating stabilization. Stability of response is described as
an asymptotic approach to some fixed value. The fundamental tool proposed is
the use of statistical inference for the parameters of a mathematical equation
that describes the response of a material through time. The equation assumes
that the measure will stabilize.
86
-------
The equation can be used to project the expected value of the response in
the future as well as the asymptotic level which is being approached. Projec-
tions based on the equation can thus be used as the basis of a decision pro-
cess for evaluating the behavior of a material. The decision process should
account for the uncertainly about the equation that results from the fact that
it is estimated from data rather than being derived from a physical model.
The approach proposed here is based on the fitting of a model to early
experimental data. The model used assumes that the measure will stabilize.
Projections for subsequent behavior are then made based on the model. These
projections are used for a variety of purposes, including determining whether
or not to continue the experiment and deciding when to take the next sample if
the experiment is to be continued. The level and rate at which stabilization
is reached are predicted from the model.
There are several details that need to be resolved before this proposal
can be considered to be a working methodology. Some of the issues that must
be resolved before attempting to use th-i« methodology on a routine basis are
detailed next.
The objectives of a specific stabilization experiment should be listed in
detail in order to determine an appropriate analytic methodology to address
those objectives. Evaluating the response of a material to immersion is a
complex process which may involve a series of decisions, each of which can
have an effect on which data are collected for use in subsequent decisions.
The possible steps in such a decision process should be documented before
detailed analytical methods are developed to accompany each of the steps.
Even after the objectives and corresponding methods are documented, it should
be realized that exceptions to the rules may still occur and so the methods
may have to be customized for specific situations.
The choice of a model i.e., the choice of the form of the equation,
should be appropriate for the response and material being evaluated. Such
choices should ideally be based on experience. Lacking experience, the
87
-------
methodology should include an explicit step for evaluating goodness of fit of
the equation being used. Goodness of fit can be evaluated if there are
replications at each time point during the experiment. Protocols should be
developed for the number of replications at each time point.
Protocols must be developed which prescribe the minimum duration and number
of samples for an experiment of a particular type. Such protocols must be spe-
cific to the material and characteristic being evaluated. This is especially
important for characteristics that are likely to reach plateaus at several
different epochs of an experimental evaluation. A naive analysis of data from
the first epoch of such an experiment might indicate that stability had been
achieved at the first plateau, which could result in serious decision errors.
Prescriptions of the duration and replication for an experiment should be based
largely upon experience so that appropriate analytical methods can be used.
Despite the need for development of individual protocols for each material
and response, as discussed above, it is still possible to describe the broad
characteristics of an analytical methodology for evaluating data from a stabi-
lization experiment. Some of the characteristics of such an analytic methodol-
ogy are discussed below.
One model for a response measure, Y, as a function of time, T, is given
below where PI, P2, and P3, are to be estimated from the data. This equation
is just one of the simplest of the many equations that could be used for
evaluating stabilization.
Y = (PI + P3 T) / (1.0 + P2 T)
At time 0, Y has the value PI. As T increases, this equation implies that
Y approaches a limit of P3/P2.
In order to be judged successful, the material must behave as predicted by
a model which assumes that the study characteristic will stabilize. The model
is fitted based on accumulated data and the limiting level is computed from the
88
-------
estimated equation. Values are subsequently measured after continued exposure
in order to see if the material is approaching the asymptotic limit predicted
by the equation.
If the new results yield values within a range predicted by the model,
then the material is judged to have stabilized. If the material appears not to
have stabilized, then the experiment can be further extended assuming a higher
stabilization level.
-At any step in the procedure above, the experiment can be stopped and the
material judged a failure if the results are not promising enough.
There are several computing programs that can be used to fit equations
with asymptotic limiting values to data. For example, the BMDP programs are
available on many mainframe computers and are available for the IBM XT personal
computer (31). The nonlinear regression program in BMDP 3R, allows models to
be fitted in which the mean response measure is contrained to approach a limit
as time increases indefinitely. The 3R program with built-in function number 4
is convenient to use, although it is not the only such model nor is it
necessarily the best.
The equation discussed above is one of the forms available in the BMDP
series, a ratio of two polynomials of time. More than three parameters could
be used, but would require more data. In order to assure that the model has a
limiting asymptote, an odd number of parameters should be used. For the short
series of observations typical of immersion tests, the best choice is probably
three parameters.
The estimated response function can be used to calculate the limiting
value, P3/P2 in this example. The approximate standard error of this estimate
can also be calculated, using Fieller's Theorem for the ratio of two parameter
estimates (32). :
89
-------
The next step is to calculate a time in the future when the behavior of
the material will be tested again in order to see if it is behaving as pre-
dicted from the model. The time at which the response will reach 95 percent,
for example, of the limiting value can be computed. If the predicted response
at the last observed time is already over 95% of the limiting value, then cal-
culate the time at which some higher value will be reached in order to test the
predictive accuracy of the model.
Take k samples at this later test time. If the mean of k samples is within
the appropriate prediction interval for the mean of k new observations, then
the material is judged to have stabilized at the estimated limit. All of the
data could then be used to re-estimate the limiting value, if desired.
The method described above is meant to give a framework for a decision
process rather than to be a strict prescription for how to judge a material.
The samples below show how the method could be applied to several data series
from this study.
The model available in BMDP 3R was used with 3 parameters to analyze data
from several data series recording weight change through time. The model for
the weight change, Y, as a function of time, T, is reiterated below where PI,
P2, and P3 are parameters to be estimated from the data.
Y = (PI +P3 T)/(1.0 + P2 T)
As T increases, this model implies that Y approaches a limit of P3/P2.
The model' can be inverted to give T as a function of Y:
T = (Y - P1)/(P3 - P2 Y)
Figure 12 gives the: results of analysis of the data for CPE in 4 percent
Furfural at 50 degrees Centigrade. The predicted (P) and observed (0) values
are plotted for the data through day 719. This set was chosen because the data
90
-------
plot indicates that the weight change has stabilized. The data at day 719 will
be treated separately in order to demonstrate how the data through 622 could be
used as part of a decision process for this material. The data at day 719 will
be used as though it were collected after the analysis on day 622.
The data through day 622 were used to fit the three parameter function
from BMDP. The resulting parameter estimates are Pl=3.85, P2=0.027551, and
P3=4.563867. The estimated limiting weight change percent is thus
4.563867/0.027551=165.7%, based on data through day 622. If this asymptotic
limiting weight change predicted from data through day 622 were out of control
limits for this type of material, then the experiment could be stopped at day
622. If the estimated limit is acceptable, then the experiment could be
continued to see if the material appears to follow the projected behavior. If
subsequent data indicates no problem with goodness of fit of the model and if
the projected limit is acceptable, then the material will be judged to have
satisfied the stability criteria for this property.
Steps for deciding how to continue the experiment will be discussed next.
The observation at day 622 (the last day of the experiment so far) has a pre-
dicted weight change of 156.7% which is 94.6% of the estimated limit. Since
this is already close to the projected limit, we have no prescription for
choosing the next sample day. Consider a plan to take the next sample at day
719 (the day that was actually sampled). The projected weight gain on that day
is 157.7%.
If the observation at day 719 is less than the upper 95% (95% is chosen
arbitrarily and has nothing to do with the fact that the current weight gain is
close to 95% of the limit) prediction interval for the projection, then the
material will be assumed to be conforming to the projections of the equation.
In fact, the observation at day 719 turned out to be 156.1%, which is less
than 157.7%, the predicted value at day 719, so the material is certainly below
the upper prediction limit for day 719. Thus, there is no evidence that the
weight change is approaching a limit higher than the estimated limit. If the
91
-------
160 -
120 -
Percent
Weight
Change 80. -
40. -
0.0 -
p p 6
-OP 0
0 P 0 , 0
p
0
p
0
p
- 0
P = Predicted
0 O = Observed
P
I .1 .. i _. -l .. _t 1 — J 1 1 1 1-
0.0 80. 160 240 320 400 480 560 640 720 800
Time of immersion (days)
Figure 12. CPE in foarupercent furfural me 50*C, -predicted versus observed
values
92
-------
weight gain had been larger than the upper prediction limit for the projection
then the conclusion would be that the weight gain either has a higher limit or
is increasing without limit.
When needed, the upper limit of the 95% prediction interval for a single
new observation can be computed from:
Fitted value+1.96*root(mean squared error+variance(fitted value)), where the
fitted value, mean squared error, and the variance of the fitted value can be
derived from computer output.
Further analysis uses all of the data through day 719. The estimated
limit based on all of the data is 165.2%=44.5888/0.027783. Feiller's theorem
can be used to compute the s.e. of this estimate. The 95 percent confidence
interval for this limit is between 157 percent and 180 percent (this is based
on Feiller's theorem and can be computed with a programmable calculator).
Another example gives the results of - analysis-o-f data for HPDM -in 8 percent
furfural at 50 degrees Centigrade (Figure 13). This example was selected
because the data do not appear to have stabilized. The analysis indicates that
the limiting weight change will be 216%=0.2238/0.001036. The 95 percent
confidence interval for this limit is very wide being between 158 percent and
620 percent. Suppose that we are interested in knowing when 95 percent of the
projected weight gain will have occurred i.e., when 205.2%=0.95*216% will have
occurred. The equation for T in terms of Y can be used to compute that the
weight gain is projected to be 205.2% on day 18,445=(205.2-(-1.617802))/(0.2238-
(0.001036*205.2)). The weight gain observed so far is just 42%=90.9/216 of the
projected limit.
Note that the model for EPDM is being used to project, or extrapolate,
the information through day 721 and a weight gain of 91% to day 18,445 and a
weight gain of 216%. The numerical results of this large of an extrapolation
are not very reliable, as reflected by the large confidence interval for the
limit. Such extrapolation should only be used as a guideline to decide when
93
-------
120
00. - -
Percent
Weight
Change 60. -f.
30. - •
0.0
P
0
00 0
. PO
-I—I
0
P
0
P
H h
P
0
P = Predicted
O = Observed
H h
0.0 80. 160 240 320 400 480 560 640 720 800
Time of Immersion (days)
Figure 13. KPDM in eight-percent .furfural at 50°C
-------
to take the next sample or in deciding whether or not to continue the
experiment.
Teaperature and Concentration Effects
Five basic types of response to chemical immersion were observed; minor
change, swelling, swelling and softening with loss of strength, shrinking and
stiffening with loss of elongation, and a combination of swelling and shrink-
ing depending on immersion conditions.
The response of liners to increased immersion temperature shows that
higher temperatures (at least up to 50°C) can be used to accelerate the
material response for some materials but not others. Caution must be used to
separate a temperature from a chemical response.
When the response was minor or the response time very fast, the differ-
ence in results between the two temperatures was often small. In these cases,
a higher exposure temperature did not significantly accelerate the response,
but neither did it change the response. This would indicate that the higher
temperature itself did not affect the material nor did it speed up the test.
Some data showed that the magnitude of the response did not increase with
temperature, but the rate at which the response stabilized did increase. For
such materials, temperature would be an effective method for accelerating
immersion testing.
For other material/chemical combinations, the magnitude of response was
affected by temperature. Using elevated temperatures for predicting chemical
resistance is generally not a good practice unless a liner's response to heat
stress is known.
Four organic chemicals were tested at three concentrations for all
materials. All liner responses seen with these chemicals were affected by
concentration. An example is shown in Figure 14, the effect of furfural
concentration on PVC weight change, breaking strength, and S-100 modulus.
95
-------
Although liner response as a function of concentration was not used to develop
chemical resistance criteria in this report, this example shows the potential
usefulness of concentration dependent data for selecting the best material for
a specific waste or chemical application.
P
£
R
C
E
N
T
100:;
50:L
20
10
5
• = Weight Change (%)
D= Breaking Factor (% retention)
A= S-100 Modulus (% retention)
4-
4-
4-
012345 67 89
CONCENTRATION (wt/wt percent)
Figure 14. Relationship of change In physical property to furfural concen-
tration at 23*C for PVC
96
-------
The response to furfural (swelling and softening) increases with
concentrations. The response (absorption of furfural) appears to be first
order with respect to concentration, and could be represented as:
bx
y = ae
where y = liner response (percent
retention of modulus, for example)
x = furfural concentration (wt/wt percent)
b = liner sensitivity factor
Plotting the y value on a log scale, the intercept of the line would be
log(a), and the slope b. This type of graph could be useful in predicting
acceptable chemical concentrations in a waste stream, based on allowable
stabilized property changes. Note that it would be of use only if the FML
material stabilizes in the waste solution, and if the response is first order,
and if the chemical concentration is not expected to increase over the life of
the application.
The liner sensitivity factor (b) could also be used to compare materials.
The greater the value of b, the more susceptible the liner would be to changes
in concentration or concentration gradients within a lagoon or impoundment.
Response as a Function of Liner Grain (Direction)
Generally, mechanical property results presented are for .the machine
direction. The machine direction is used in all graphs to allow presentation
of the two-year tensile property results (for which there are only machine
direction samples.) In the case of CPE, both directions are included.
EPDM with ethylene propylene diene rubber (EPDM), there was negligible
difference between the transverse and machine direction results for mechanical
97
-------
properties after chemical immersion. The differences found in directional
response for other materials were as follows:
EPI-CO strength and tear properties are slightly higher in the transverse
direction, while elongation was slightly more in the machine direction. The
difference between directions in response to chemical challenge was generally
less than 15 percent, with the percent retention of properties slightly better
in the transverse direction.
CSPE-LW breaking strength and S-100 modulus were less in the transverse
direction than in the machine direction. The difference in response to
chemical challenge, however, was generally less than 10 percent.
CPE in determining chemical resistance for CPE, both directions were
considered because the mechanical properties were significantly different in
the two directions. Breaking strength and S-100 modulus are less in the
transverse direction than in the machine direction. The difference in
response to chemical "challenge in the two directions was-generally less than~_
15 percent.
HDPE the transverse direction was slightly stronger than the machine
direction. The only significant difference in response to chemical challenge
in the two directions was for elongation at break, for which retention was
less in the transverse direction. Percent change in mechanical properties
was evaluated in both directions in determining chemical resistance.
PVC in general, strength is higher in the machine direction than in the
transverse direction, but the response to chemical challenge, is similar.
98
-------
Units of Measurement
For four of the six materials (PVC, CPE, EPI-CO, CSPE-LW), breaking
factor and S-100 modulus were calculated in pounds per inch width (Ib/in) and
tear resistance was calculated in pounds. HDPE and EPDM had thicknesses that
varied substantially throughout the material (more than three standard
deviations from the average). In these cases, the strength properties
(breaking factor and tear resistance) were normalized for initial thickness
(as received). Breaking factor was converted to tensile strength in pounds
per square inch (psi) and tear resistance was calculated in pounds per inch
thickness (Ib/in).
Weight was used as the indicator for swelling responses. Volume changes
were generally larger than weight changes, but the two are closely related,
and because the weight measurement is more precise, weight change was chosen
for presentation. Weight changes are expressed as percent change (compared to
initial weight).
Figures
The figures in this section show data points for the physical properties
which represent the average of 5 test specimens. Each point on a weight or
dimension figure represents 3 test specimens.
For EPDM and PVC, triplicates were performed for some conditions,
resulting in multiple data points appearing for the same time in these
figures.
Each curve was fit to a straight line, an exponential curve, a
logarithmic curve, a power curve and a quadratic curve. The curve with the
2
largest correlation coefficient (R ) was chosen as appropriate and drawn in
most cases. There were two scenarios when this procedure was abandoned: 1)
2
all of the R 's were so small that no curve could reasonably be chosen from
2
the five choices and 2) the R 's were large, however the curve indicated that
99
-------
the material reacted in a way that was not intuitively predictable from the
data points. In almost all cases of the first situation the data appeared to
form a horizontal straight line which cannot be modeled from the curves
tested. A horizontal straight line was drawn for these cases. In the second
r\
case, the R would indicate that a quadratic curve best fit the data. The
curve would appear to fit the data well, however, between the last short
immersion physical properties measurement (56 days) and the only physical
properties measurement of the two-year study (at 2 years) the curve would dip
down and then come back up to meet the last data point at two years. Without
data between 56 days and two years, it is difficult to believe that the
material would actually react in this way. In these situations the curve was
smoothed out not showing the dip in the modeled curve.
Polyvinyl Chloride (PVC)
Criteria for Determining FML Chemical Resistance
Parameters for evaluating PVC chemical resistance includer stabi-lity of
the liner's properties in contact with the waste, the magnitude of physical
changes observed, and the type of change. Based on the data from this study,
the following criteria are proposed for determining PVC chemical resistance
with immersion tests:
. Stability of weight change and mechanical properties with time.
. A stabilized weight change of not more than five percent gain or ten
percent loss.
. The breaking factor must be at least 80 percent of the initial value and
equal to or greater than the minimum as-received value in the material
properties table of NSF Standard 54 for the appropriate thickness.
. The percent elongation at break must be at least 70 percent of the
initial value and equal to or greater than the minimum as-received value
in the material property table of NSF Standard 54.
. The S-100 modulus must be between 60 and 140 percent of the- initial value
(based on the relationship of modulus to breaking factor and elongation).
100
-------
These criteria are used in evaluating the FML's response to the chemicals
in Table 25. Resistance or non-resistance is listed in the second to last
columns, and the reasons for a non-resistance rating are given in the last
column.
Response Time and Stability
Response time, or the time required for the liner to stabilize in a given
solution, varied from less than one week to no stabilization after two years.
Response time was generally faster for weight gain (absorption of chemical or
water) than for weight loss (extraction of plasticizer).
Magnitude of Liner Response
To determine reasonable percent change limits for chemical resistance
evaluation, three steps were followed. First, the variability of the property
was evaluated. For example, Figure 15 shows the overall relationship of break-
ing strength and weight change (the figure shows weight changes between -30
and +30 percent weight change) for this FML. The variability of breaking
strength measurements for this FML was roughly +_ 15 percent, as measured by
the center locus of points which correspond to a sample which showed resistant
behavior. Next, the limits of variability defined in step one, and the overall
range of observed property change were compared to reported chemical resis-
tance information (10,14,17,22-29). Limits of acceptable change were then
set. Third, limits for parameters such as percent weight change were set by
determining the amount of change that correlated with the limits set for those
properties listed in the Standard 54 material properties tables.
Types of Effects
The results in Table 25 for this plasticized thermoplastic PVC are
grouped according to the type of effects seen. A temperature or concentration
effect is noted in the third and fourth columns. Five basic types of response
to chemical immersion were observed with this liner: minor change, swelling,
101
-------
Table 25. POLVVINVL CHLORIDE (PVC): RESPONSE SUMMARY FOR CHEMICAL RESISTANCE
CHEMICAL TEMPER- CONCEN- TYPE OF
NAME TYPE ATURE TRATION RESPONSE
EFFECT EFFECT
Water - no - | Minor Change
1
Sodium Chloride SALT no no | Minor Change
Potassium Dichromate OXIDIZER no - | Minor Change
Hydrochloric Acid ACID yes - | Swelling at 50 C
1
1
Furfural ALDEHYDE no yes | Swelling and
I Softening
1
1 . 2-Dichl oroethane CHLORINATED no yes I Swelling and
HYDROCARBON j Softening
to
1
Sodium Hydroxide BASE yes - | Shrinking and
j Stiffening
ASTM »2 Oil OIL yes - | Shrinking and
I Stiffening
Methyl Ethyl Ketone KETONE no yes Swelling and
Softening with
some later
| Shrinking and
| Stiffening
Phenol PHENOL no yes Swelling and
Softening at low
concentration and
shrinking and
| stiffening at
j high concentration
STABILITY RESISTANT- REASONS FOR
ACHIEVED- NON-RESISTANCE «
CONDITIONS
23 C
50 C
23 C 10% &
50 C safd
23 C 10%
;so c '
123 C 10%
50 C
23 C 1%
' 4%
8%
50 C 1%
4%
8%
23 C .1%
.5%
.8%
50 C . 1%
.5%
.8%
23 C 10%
50 C
23 C 100%
50 C
23 C 3%
13%
26%
50 C 3%
13%
26%
23 C 1%
4%
8%
50 C 1%
4%
8%
V
Y
V
Y
Y
V
N
N
V
V
V
V
V
V
V(v)
V(v)
V(v)
V(v)
V(v)
V(v)
V
N
Y
V
V(v)
V
V(v)
V
X(v)
V
Y
N
V
N
N
V
V
V
V
V
V
N
N
Y
N
N
N
N
N
V
N
N
V
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
S
S. WG
WG. BL, SL
WG. BL. SL
WG (marginal
WG. BL. SL
WG. BL. SL
WG,
WG.
WG.
WG,
WL.
WL.
WL.
WL.
WQ,
WG.
WG,
WG,
WG.
BL.
BL.
BL,
BL,
BL.
BL.
BL.
BL.
BL,
BL.
SL
SL
SL
SL
SG.
SG.
SG
SG.
SL
SL
SL,
SL
SL
SL
WG(marginal
S
S. WL. SG,
WG
S
S. WL. SG.
)
EL
EL
EL
EL
EL
EL
* S = No Stability. WG = weight gain, WL = weight loss. BL = Breaking Factor Loss, EL = Elongation at Break Loss,
SG = S-100 Gain. SL = S-100 Loss
Y = Yes. N = No. (v) = variable results due to volatility of chemical
-------
•Criteria Boundaries
-2» -!• • id 26
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 15. Relationship of breaking factor and weight change for PVC
swelling and softening with loss of strength, shrinking and stiffening with
loss of elongation, and a combination of swelling and shrinking depending on
immersion conditions.
Temperature Effects—
The response of this liner to increased immersion temperature shows that
higher temperatures (at least up to 50°C) can be used to accelerate the
material response.
When the response was minor or the response time very fast (inorganic
salts, solvents methyl ethyl ketone and 1,2-dichloroethane), the difference in
results between the two temperatures was small. In these cases, a higher
exposure temperature did not significantly accelerate the response, but
neither did it change the direction of the response. This would indicate that
the higher temperature itself did not affect the material.
103
-------
Temperature affected this FML's response to two conditions: immersion in both
hydrochloric acid and in those chemicals which caused a weight loss. The liner
response to hydrochloric acid at 50°C shows a much larger weight gain compared
to the sample exposed at 23°C. But, at both temperatures, the weight gain was
slow and steady, and had not stabilized after two years.
Both the rate and the magnitude of weight loss are affected by immersion
temperature for the stiffening response. The initial rate of sample weight
loss in NaOH was faster at 50°C, and the final weight loss was greater. The
rate of loss, though, became similar at both temperatures after about 300 days
of immersion.
Figure 16 illustrates the effect of temperature on weight change. This
figure shows weight change as a function of time for both hydrochloric acid
and sodium hydroxide immersion samples, at both 23 and 50°C. While the acid
solution caused a weight gain and the caustic solution caused a weight loss,
increasing the temperature did not change the nature of the response in either
case. Both responses were accelerated, however. This indicates that an
elevated temperature (at least up to 50°C) can be useful in accelerating
chemical resistance testing for PVC, using these and perhaps other chemicals.
40
P
E
R
C
E
.N
T
30--
20--
10--
0
-10--
-20--
-30
10Z HC1 solution at 23*C
10Z HC1 volution at 50*C
10Z HaOH at 23*C
10Z NaOH at 50*C
•_-.—•—•••
-°--c^5::ass
10
20
50
100 200
500 1000
: LOG DAYS IMMERSION
Figure 16. Effect of temperature on weight change for immersion in hydro
Chloric acid and sodium hydroxide at 23*C and 50*C
104
-------
Concentration Effects—
Four organic chemicals were tested in three concentrations. All
responses seen with these chemicals were affected by concentration. All four
saturated organic solutions caused significant change in the liner properties,
in some cases almost total loss of strength. But the response at lower
concentration is much less severe, and appears to stabilize over time. Table
25 shows that the lowest concentrations tested of furfural (23°C only),
1,2-dichloroethane, and phenol (23°C only) are considered resistant using the
above criteria.
Figure 14 shows the effect of furfural concentration on weight change,
breaking strength, and S-100 modulus. The response to furfural (swelling and
softening) stabilized with time at all concentrations. Stabilized properties
(log scale) are shown as a function of concentration for the 23°C exposure
samples. The response (absorption of furfural) appears to be first order with
respect to concentration.
Indicators of Non-Resistance
For PVC, the most important indicators of non-resistance are weight
change, breaking strength, S-100 modulus, and elongation at break. Tear
resistance generally followed the same trend as breaking strength.
Changes in weight corresponded to changes in tensile strength and
stiffness (S-100 modulus) for this liner. (The exception seen for PVC was for
immersion in hot hydrochloric acid, which caused weight gain but no loss of
strength.) In general, strength and modulus decreased with weight gain, and
increased with weight loss.
When absorption of liquid (weight gain) is the response to chemical
challenge, weight change, breaking strength, and modulus are key indicators of
chemical resistance. Figure 15 shows the overall relationship of breaking
strength and weight change (for weight changes between -30 and +30 percent)
for PVC. Weight changes of about 5 percent correspond to a 15 percent loss of
105
-------
breaking strength, and a strength less than the minimum acceptable as-received
value for this FML according to NSF Standard 54.
Weight loss indicates loss of plasticizer from the liner material. An
FML formulation of this material can contain up to 35 percent plasticizer.
For extraction of plasticizer, changes in weight and in modulus are particu-
larly important. The beginning of plasticizer extraction (which can continue
until the material becomes brittle) can be detected earlier by these measure-
ments than by breaking strength or elongation. As shown in Figure 17, the
rate of change in modulus with respect to weight change is greater than for
breaking factor.
f
^;P
• E
150
100 "
C
£
N
T 50
0= Breaking Factor (% retention)
a= .S-100 Modulus (% retention)..
-20
-15
PERCENT WEIGHT CHANGE IN ASTM #2 OIL AND 10% SODIUM HYDROXIDE
Figure 17. Relationship of breaking factor, S-100 aodulus and weight change
for PVC
Elongation at break appears to be the least sensitive, but the most
decisive, measurement. The criteria established for elongation at break for
PVC is >_ 70 percent of initial and >^ NSF Standard 54. The variability in
measurement for resistant materials is large, roughly + 20 percent. Until the
sample is very stiff, and nearly brittle, elongation does not always correlate
with other indicators. Figure 18 shows retention of ultimate elongation as a
106
-------
159
28
t* PQ
w o
CL iJ
W
\ * <
Criteria Boundaries
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 18. Relationship of elongation at break and weight change for PVC
function of weight change. Elongation is not a good indicator of material
change for small weight losses or for weight gains for PVC. Only when the
weight loss is around ten percent or more does the elongation show substantial
decreases.
Minor change—
In water, salt, and potassium dichromate solutions only minor changes in
weight and mechanical properties were observed. An example is shown in Figure
19. This figure shows the response of PVC to a saturated salt solution at 23°
Centigrade. Very little change is seen in weight or mechanical properties,
even after two years.
Swelling—
Hydrochloric acid immersion was the only exposure condition for PVC in
which an increase in weight does not correspond to a decrease in strength.
The liner had a long, slow weight and volume gain at 50°C that was an order of
magnitude greater than the gain at 23°C (34 percent compared to 4 percent)
after two years). There was no corresponding change in mechanical properties,
however. Figure 20 shows the response of the liner to hydrochloric acid at
50°C.
107
-------
p
E
R
C
E
N
T
150
a
O m
+ v-
Height Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
w •—.»-
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 19. Physical property change with iaserslon In saturated salt
solution at 23*C for PVC
P
R
C
E
N
J.OO-
150-
<
100-
50-
o-
-sn -
"" """--^ V n
V7 ^*"* ** **
• - Weight Change (Z) "-—'/
° - Breaking Factor (Z retention)
. V * Elongation at Break (Z retention) •,•-•'
2 5 10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 20. Physical property change with laBersion In 10 percent
hydrochloric acid solution at 50*C for PVC
108
-------
Swelling and softening—
In furfural and 1,2-dichloroethane, this plasticized thermoplastic PVC
liner swelled, softened, and decreased in strength, indicating absorption of
liquid. Figure 21 shows an example of the liner response to 8 percent furfural.
In furfural, the liner's weight gain was slower and continued over a much
longer time period than with 1,2-dichloroethane, but in both exposures the
breaking strength response was fast and stablized. With the steady increase
in weight it is surmized from the data that elongation at break continuously
decreased after 56 days of immersion in furfural. This decrease would not be
predicted by looking only at the short-term data.
Shrinking and stiffening—
Shrinking and stiffening, with gain in modulus, breaking strength, and
loss of elongation, indicate loss of plasticizer. This response occurred with
exposure of the PVC to ASTM #2 oil and 10 percent sodium hydroxide. In both
chemicals, the liner became very stiff as immersion time increased, and
sometimes was brittle, breaking as soon as a test- load was --applied.---
Figure 22 presents the liner response to a 10 percent solution of sodium
hydroxide at 23°C. The response was similar but more severe at 50°C. At
50°C, the liner sample became brittle after a two-year exposure and broke as
soon as a load was applied. The S-100 modulus, although not shown on these
figures, also increased with exposure to oil and sodium hydroxide.
Combination Response—
The fifth type of response seen in PVC was a combination of swelling and
shrinking responses. This corresponds to rapid absorption of the immersion chem-
ical and then a slower diffusion of additives (e.g., plasticizers) from the liner.
Immersion in methyl ethyl ketone and phenol resulted in both swelling/softening
and shrinking/stiffening depending on time, temperature, and concentration.
Exposure to these chemicals caused both absorption of the chemical or
water into the liner and extraction of the plasticizer out of the liner. In
109
-------
150-
P ^
E 100-
R l
C
E
N 5°-
T !
__„ • — \
..——••" V \
. — .- — «•- -o y \
v v w \
' • - Weight Change (Z) . i
1 0 - Breaking Factor (Z retention) V
V - Elongation at Break (Z retention)
1 "" Boon - — n
X
Figure 21. Physical property change with
solution at 23*C for P7C
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
nrsion in 8 percent furfural
P
E
R
C
E
N
T
150-
\
100-|
50-
o-
' Q w- nn — -a,-
1 V DD «
• = Weight Change (Z)
a = Breaking Factor (Z retentioi
V = Elongation at Break (Z retec
2 5 10 20 50 1
D
--
^-.^
0
ition) y
*. • • • • •
00 200 500 1
LOG DAYS IMMERSION
Figure 22. Physical property change with inversion in 10 percent salt
solution at 23*C for PVC
110
-------
general, the absorption process Is faster, resulting In an Initial weight gain
that is dependent on concentration. As exposure time and/or chemical
concentration increases, the slower extraction process becomes significant.
Figure 23 shows percent weight gain as a function of immersion time for
samples exposed at 23°C. Weight gain is shown for samples exposed to 1, 4, and
8 percent phenol solutions. After a one day exposure, all samples have gained
weight, and the weight gain increased with increasing phenol strength. This
Initial relationship of weight to concentration becomes reversed as the
immersion time is lengthened. The lowest phenol concentration (1 percent) has
the largest weight gain, and the highest concentration (8 percent) has the
most weight loss, after two months immersion.
P
E
R
C
E
N
T
15
10
5
0
-5
-10
-15
• = Weight Change (Z) 1Z Phenol
0 - Height Change (Z) 4Z Phenol
V - Height Change (Z) 82 Phenol
5 10 20
LOG DAYS IMMERSION
50
100
Figure 23. Height change with laaerslon In phenol solution at 23°C for PVC
The PVC liner's mechanical properties also showed this combination
response. Figures 24, 25; and 26 show percent weight change, percent retention
of breaking factor, and percent retention of ultimate elongation with
immersion time at 50°C. In Figure 24, response to a 1 percent phenol solution,
a stabilized decrease in breaking strength corresponds to the moderate weight
111
-------
gain. Elongation is not significantly affected. In a 4 percent solution
(Figure 25), the initial weight gain recedes with time. The corresponding
initial loss of breaking strength (from softening due to absorption) is
recovered and breaking strength increases with time. Elongation still shows
no significant change. The liner response to an 8 percent solution (Figure
26) shows the continuation of these trends. The initial weight gain (and
initial loss of strength) becomes a weight loss (and increase in strength).
In 8 percent phenol, however, an additional effect is apparent: the elongation
at break has decreased after a two-year exposure, another sign of stiffening
and possible eventual embrittlement.
p
E
100-
R 1
^ 1
C
E
N 50~
T
0J
n 2_. — n ________.-
--- — '~~' — v y
i "^
i . n
D D
• - Weight Change (Z)
o - Breaking Factor (Z retention)
V - Elongation at Break (Z retention)
2 5 10 20 50 100 200 500 1(
LOG DAYS IMMERSION
Figure 24. Physical property change with
solution at 50*C for PVC
xsion in 1 percent phenol
112
-------
IX)-
p
I (Ml T
E '
R
C 50-
E
N
T
• - Weight Change (Z)
o - Breaking Factor (Z
V - Elongation at Break
1 i_u.i_i_i_i_U 1 1 i i i i i il
=^=^=3
retention)
(Z retention)
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 25. Physical property change with
solution at 50*€ for PVG
rslon In 4 percent phenol
1DU-
P
IOOT
R i
C 50-
E
N
i
T
DODO
r ,_ _ .t~i— i. -i.. -AiL i L.
j rT Vf "V^ -.
1
o
N
• - Weight Change (Z) "^
0 - Breaking Factor (Z retention) V
V - Elongation at Break (Z retention)
200
500 1000
Figure 26. Physical property change with
solution at 50*C for PVC
10 20 50 100
LOG DAYS IMMERSION
irsion In 8 percent phenol
113
-------
CHLORINATED POLYETHYLENE (CPE)
Criteria for Determining FML Chemical Resistance
For this CPE liner, based on the overall data In this project, the
following criteria are proposed for determining CPE chemical resistance with
immersion tests:
• Stability of weight change and mechanical properties with time.
. A stabilized weight gain of not more than 25 percent for immersion
testing conducted at 238C.
. The breaking factor must be at least 75 percent of the initial value and
equal to or greater than the minimum as-received value in the material
properties table of NSF Standard 54 for the appropriate thickness.
. The percent elongation at break must be at least 70 percent of the
initial value and equal to or greater than the minimum as-received value
in the material property table of NSF Standard 54.
. The S-100 modulus must be at least 70 percent of the initial value and
equal to or greater than the minimum as-received value in the material
property table of NSF Standard 54.
. The tear resistance must be at least 70 percent of the initial value and
equal to or greater than the minimum as-received value in the material
property table of NSF Standard 54.
These criteria are used in evaluating the FML's response to the chemicals
in Table 26. Table 26 is a summary of the results of chemical resistance
testing for CPE liner, and the table is explained and amplified in the
sections that follow. The chemicals listed in Table 26 are grouped according
to the type of response seen. Resistance or non-resistance is listed in the
second to last columns, and the reasons for a non-resistance rating are given
in the last column. Also listed in the table are whether temperature and
concentration effects were seen, whether the liner achieved stability in
contact with the chemical exposure, and whether the CPE is considered
resistant to the chemical exposure.
114
-------
Table 26. CHLORINATED POLYETHYLENE (CPE): RESPONSE SUMMARY FOR CHEMICAL RESISTANCE
CHEMICAL TEMPER- CONCEN- TYPE OF
NAME TYPE ATURE TRATION RESPONSE
EFFECT EFFECT
Water - yes
Sodium Chloride SALT no no
Loss of Elongation
at SO C
Minor Loss of
Elongation at SO C
Potassium Olchromate OXIDIZER yes - | Minor Loss of
1 Elongation at 50 C
Hydrochloric Acid' ACID yes
Furfural ALDEHYDE yes yes
1 . 2-Dtchl oroethane CHLORINATED
' HYDROCARBON
yes yes
Sodium Hydroxide BASE yes
Loss of Elongation
at 50 C
Swel 1 Ing and
Sof t enl ng
Loss of Elongation
at 50 C
Swel 1 Ing and
Sof ten Ing
'
Minor Loss of
Elongation at 50 C
ASTM *2 Oil OIL yes - Minor Loss of
Elongation at SO C
Methyl Ethyl Ketone KETONE
yes yes
Swel 1 Ing and
Softening
Phenol PHENOL I Swelling and
yes yes Softening
1
1
1
STABILITY
ACHIEVEO-
CONDITIONS
23
SO
23
50
11
C
C
C
C
C
C
28 C
60
23
SO
23
56
23
SO
23
50
23
50
23
50
C
C
C
C
C
C
C
C
C
C
C
C
-
10% &
sat 'd
10%
10%
C
1%
4%
8%
1%
4%
8%
. 1%
.5%
.8%
. 1%
.5%
.8%
10%
100%
3%
13%
26%
3%
13%
26%
1%
4%
8%
1%
4%
8%
Y
V
V
V
V
V
V
V
N
N
V
N
V
Y
V
N
N
Y
V
V
Y
Y
Y
Y
V
Y
Y
V
V
V
N
N
V
N
N
Y
RESIST ANT-
V
N
V
V
V
Y.
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
Y
V
Y(m)
Y(m)
N
N
N
N
N
N
N
N
N
N
N
N
REASONS FOR
NON-RESISTANCE •
(WG)
S. WG.
S. WG.
WG.
S. WG.
WG.
WG.
WG.
WG.
WG.
WG.
WG.
WG.
WG.
WG.
WG,
WG,
WG.
WG.
WG,
WG.
WG.
WG.
WG.
EL
EL(m)
TL(m). SL
BL. TL. SL
BL. TL. SL
BL. TL(m). SL
BL. TL. SL. EL
BL. TL. SL. EL
PUm). TL. SL
BL . TL. SL
BL. TL. SL
TL(m). SL. EL
BL. TL. SL. EL
BL, TL. SL
BL(m). SL(m)
BL(m). SL(m). EL(m)
bL. TL(m). SL
BL. TL. SL
BL. TL. SL
BL. TL(m). SL
BL. TL. SL
BL. TL. SL. EL
BL(m). SL
BL. TL. SL
BL. TL. SL
TL(m). SL. EL
BL. TL. SL
BL. TL. SL
S = No Stability. WG = Height gain. BL = Breaking Factor Loss, EL = Elongation at Break Loss,
TL = Tear Resistance Loss. SL = S-IOO Loss (m) = Marginal or borderline results
V = Ves, M = No. (v) = variable results due to volatility of chemical
-------
The suggested criteria for mechanical properties are based on the limits
of material variability seen for this CPE liner. Although significant
increases in elongation were seen as a result of some chemical exposures, it
was not possible to set an upper limit for change in this property. The
increased elongation did not correlate well with strength or weight gain, and
appeared to be a result of variability within the liner. Limits on weight
change are specified for a 23°C immersion temperature. This was necessary
since the weight gain was strongly temperature-dependent*
The suggested criteria for S-100 modulus and elongation agree with those
proposed by the EPA in the document "Resistance of FML's to Chemicals and
Wastes"(27). Tear resistance was not included in the EPA list. The EPA
criteria lists ten percent as the limit for weight gain, with the exception of
water, and notes that weight gains of more than ten percent in water did not
correspond to decrease in mechanical properties. Limits on breaking factor
were set at 75 percent retention in this project rather than the 80 percent
retention listed in the EPA document to reflect the test reproduclbllity.
This would not result in any difference in the number of exposures rated as
non-resistant for this project.
CPE resistance ratings are listed in the EPA matrix for five of the
chemicals tested in this project. Four of the five ratings given agree with
ratings derived using the proposed criteria with project data (phenol, HC1,
salt, and water). CPE was rated as non-resistant to NaOH (30 percent) in the
matrix, based on weight change data. Table 27 compares the two sets of weight
data (NSF and matrix reference). NSF weight change results are much lower,
and no significant changes were observed in the liner's mechanical properties.
The difference in ratings is probably a function of concentration (10 percent
in this study, <30 percent in the EPA matrix).
Agreement between percentage change criteria and absolute minimum
property values (using Standard 54 tables) was quite good. The absolute limit
for breaking factor, though, was more stringent than the percentage change
criteria for breaking factor because this CPE liner has much less strength in
the transverse direction.
116
-------
TABLE 27. COMPARISON OF MANUFACTURER'S DATA
TO NSF DATA FOR CPE RESISTANCE TO NaOH.
DAYS IMMERSION PERCENT WEIGHT CHANGE
Matrix Reference NSF Data
(24°C, < 30 percent NaOH) (23°C, 10'percent NaOH)
1 0.3
3 3.0
7 0.8
11 8.0-
14 1.0
28 1.6, 1.7
56
2.4
81 15.6
144
1.8
238 1.1
368 1.0
510 0.7
622 0.2
732 0.3
Two limitations in the proposed criteria for CPE chemical resistance are
temperature and permeability. First, the effect of temperature on chemical
resistance is especially significant for CPE. No service temperature limits
can be proposed since only two temperatures were used for immersion testing,
but service at 508C does not appear to be suitable for CPE.
117
-------
Also, these tests do not address the permeability of the liner.
Permeability is an important functional parameter for all FMLs used in waste
containment applications. Haxo et al. tested the permeability of several FMLs
exposed to acidic waste. He found that the permeability of the CPE liner
increased with time on exposure to the waste, probably due to high water
absorption (29).
Response Time and Stability
The FML response to the chemical immersion must stabilize in order for it
to be considered chemically resistant. Response time, or the time required
for the liner to stabilize in a given solution, varied from less than one
month to more than five hundred days for CPE.
Significant weight changes (large enough to correspond with changes in
breaking strength) were usually evident within a two-month test period,
although weight often continued to Increase. Breaking strength and tear
resistance stabilized faster than weight change, usually within two months.
Slow changes in elongation at break and S-100 modulus were sometimes evident
up to the two-year exposure.
Magnitude of Liner Response
A two-part evaluation of the magnitude of physical property change was
followed in determining CPE chemical resistance. Both an absolute minimum value
for a mechanical property (for example, elongation at break) and an allowable
percent change of that property (from the initial value) were determined.
The range of changes seen in the CPE liner was large. No losses in
weight were seen, but weight gain varied overall from less than one percent to
over three hundred percent, depending on the exposure conditions. Exposure to
water at 23°C and 50°C caused CPE weight gains of 19 and 90 percent within two
years, respectively. Weight gains seen in hydrochloric acid, salt, potassium
dichromate, sodium hydroxide, and ASTM #2 oil were less than those in water at
118
-------
each temperature. The reduced liner swelling in ionic solutions is probably
caused by the liner's inability to overcome the hydration energy of the
inorganic solute. This phenomenon was typical for all liners. MEK, DCE,
furfural, and phenol solutions caused weight gains larger than in water and
dependent on concentration and temperature.
Changes in the mechanical properties of the CPE liner in general
corresponded to weight changes. Losses in breaking strength from zero to 99
percent (saturated MEK at 50°C) were observed. Change in elongation at break
was both positive and negative, and became extremely variable in some
exposures. Retention of intial elongation ranged from 42 to 254 percent.
Absolute Amount—
Because the CPE liner is strongly anisotropic, the values for mechanical
properties in each direction were evaluated. The NSF Standard 54 CPE material
property table was used for the minimum absolute values.
Using the Standard 54 values, all four organic solvents are considered
non-resistant at all three concentrations. While for the most dilute
concentrations, properties in the machine direction were above Standard 54
values, the transverse direction values fell below Standard 54. Marginal
results were obtained for some transverse direction samples exposed to ASTM #2
oil, oily water, salt, water, and dichromate solutions. Physical properties
of CPE should be measured in the transverse direction as a minimum.
Percent Change from Initial Value—
Figure 27 shows the relationship between breaking factor retention and
weight change for machine direction samples. Breaking factor variability in
this CPE liner was approximately +_ 20 percent, measured by looking at those
samples with little or no weight change. (Variability in the transverse
direction was similar.) A limit on change of 25 percent was chosen as a
conservative estimate of real material degradation.
Retention of ultimate elongation (machine direction) is shown as a
function of weight change in Figure 28. Exposure to fluids tended to increase
119
-------
u
<<
H
03
Criteria Boundaries
J* +
•*• +
^ + +*
PERCENT WEIGHT CHANGE
1 - - 4
Figure 27. Belationship of breaking factor and weight change for CPE
300
O W
iffl 200
M
U O
W O
! Criteria
Boundaries
...i.
Figure
PERCENT WEIGHT CHANGE
28. Relationship of elongation at break and weight change for CPE
120'
-------
CPE elongation, however, even for small weight change, and elongation became
extremely variable for some chemical exposures.
No limits on increase in elongation can be set from the data. Decreases
in elongation with time were usually associated with exposure at 50°C, and
were apparent only after a two-year immersion period. A 30 percent decrease
in elongation retention was chosen as evidence of degradation.
A limit for decrease in the S-100 modulus was set at 70 percent of
initial based on the variability shown in Figure 29. (This figure shows the
machine direction, but variability was similar in the transverse direction.)
For tear resistance, the same 30 percent limit was set. Variability in tear
resistance was about 25 percent in the machine direction and 20 percent in the
transverse direction.
lav
O
55 iJ 109
a D
E-> Q
W O
OS 2
E* o
55 O r-A
W rH 50
U i
at co
0.
A
A
Jf*
M
i+
j±_
ft-*1
j|L.t
w«-^
•I**
*
V
.Criteria
X
i* +
I.-H-
• i* +
""T*"""™ *""""""
f" "*"
. . ^^ ^
fcT T^ ^ ^>
L T" L
•• +$ * ++
+ + *
Boundaries
+
+
+
+
^ + + ^
•t
* + i ++t> *
j^
* •(•
*
0
tee
PERCENT WEIGHT CHAJJGE
Figure 29. Relationship of S-100 modulus and weight change for CPE
A limit for allowable stabilized weight gain for this CPE liner was set
at 25 perctnt for 23°C immersion tests. This limit is comparable to the
weight gain seen in water at 23°C, for which no significant changes in
physical properties were seen. It must be emphasized that weight change.alone
121
-------
cannot determine chemical resistance for CPE. Absorption of water may cause
no change in physical properties, while a comparable weight gain caused by
absorption of solvent can cause softening. This was seen in CPE on exposure
to 0.1 percent DCE at 23°C. While the increase of weight was 22 percent
(compared to 19 percent for water), the retention of S-100 modulus was only 65
percent (compared to 96 percent for water).
Types of Effects
The results in Table 26 for this thermoplastic CPE liner are grouped
according to the type of effects seen. Temperature and concentration effects
are noted in the third and fourth columns. Three basic types of response to
chemical immersion were observed with this liner: minor change, degradation
due to temperature, and swelling and softening (sometimes accompanied by
degradation due to temperature).
Temperature Effects—
The response of this liner to increased immersion temperature shows that
an elevated temperature is not suitable for accelerated testing. Significant
effects were caused by temperature alone at 50°C. The CPE liner stretched in
the transverse direction and shrank in the machine direction in nearly all
high temperature exposures. Also, weight gain was considerably more for most
50°C samples than for the corresponding 23°C samples.
Another temperature-related change seen in the CPE was a decrease in the
amount of elongation at break after a two year immersion period. Samples
immersed in 50°C water lost 39 percent of their elongation after two years,
compared to an 8 percent for corresponding samples at 23°C. This loss of
elongation at 50°C was seen in the inorganic solutions, oil, furfural, and the
lower concentrations of the other organic solutions. The most severe losses
were seen in those solutions most like water (i.e. low organic chemical
concentration and/or low ioiic strength). This loss of elongation appears to
be related to the amount of weight change (water or chemical absorption) as
well. CPE samples immersed in salt or caustic solutions gained less weight
than those in water.
122
-------
Concentration Effects—
Four organic chemicals were tested in three concentrations. All
responses seen with these chemicals were affected by concentration. Percent
weight gain increased with increasing solution concentration. Strength,
modulus, and tear resistance all decreased with increasing solution
concentration.
Indicators of Mon-Resistance
For this CPE liner, the most important indicators of non-resistance were
weight change, S-100 modulus, breaking strength, and elongation at break.
Tear resistance generally followed the same trend as breaking strength, and
volume change (swelling) corresponded to weight change.
In general, an increase in sample weight indicated a change in mechanical
properties for CPE. When weight gain was due primarily to absorption of
organic solvents, strength and modulus were less than initial values. When
weight gain was due primarily to absorption of water at 50°C, elongation at
break showed long-term deterioration.
The S-100 modulus was a more sensitive indicator of solvent absorption
and softening than the breaking factor for CPE. In the same example immersion
discussed in the previous section (0.1 percent DCE at 23°C), the retention of
S-100 modulus stabilized at 65 percent, while the breaking strength stabilized
at 91 percent retention. Since softening may indicate an increase in
permeability or a decrease in puncture resistance, the sensitivity of the
S-100 modulus is important in chemical resistance evaluation. Also, an
increase in S-100 modulus was seen in some samples after a two-year immersion
(a recovery from an initial decrease), which could indicate stiffening and
possibly crosslinking of the CPE.
While breaking factor is not as sensitive an indicator, it is still
useful for evaluating CPE chemical resistance.
123
-------
Elongation at break is the least sensitive measurement for short-term
immersion testing. With this CPE liner, elongation became extremely variable
with exposure to organic chemicals, especially furfural. Within a group of
five test specimens cut from the same exposed coupon, elongation could vary
from 400 percent to over 1000 percent (of initial'grip separation). This in
itself is an indication of chemical effect on the liner, but quantitative
interpretation of results is difficult.
After a two-year immersion period, however, elongation is a better
indicator of material change. Especially at the higher temperature, CPE
elongation was often significantly less than its initial value, indicating
material degradation. Since this decrease in elongation was sometimes
accompanied by a recovery of the modulus, it may be an indicator of stiffening
and/or crosslinking.
Minor Change—
The following 23°C exposures produced only minor changes in CPE weight
and mechanical properties: water, sodium hydroxide, hydrochloric acid, salt,
potassium dichromate, ASTM #2 oil, and water with ASTM #2 oil added. An
example is shown in Figure 30. This figure shows the response of the CPE
liner to a saturated salt solution at 23°C. Weight gain is less than three
percent over the two-year period. Breaking strength was not affected, nor was
the S-100 modulus (not shown). Although the elongation at break was initially
increased by contact with the solution, it is nearly at its initial value
after two years.
Degradation due to temperature—-
As previously discussed, degradation in CPE material properties was
caused by exposure to 50°C solutions. While weight gain and elongation at
break are the best indicators for this effect, breaking strength sometimes
also is decreased. Figures 31 and 32 compare the response of the CPE liner to
water at 23 and 50°C. In Figure 30, a moderate gain in weifht (absorption of
water) is seen. Breaking factor is unchanged, and elongation shows
approximately 8 percent decrease after two years.
124
-------
\
p
E
R
C
E
N
T
100--"
a
V
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 30. Physical property change with immersion in saturated
(35 percent) salt solution at 23'C for CPE
150
P
E
R
C
E
N
T
100-^
50--
0
- Weight Change (Z)
= Breaking Factor (Z retention)
= Elongation at Break (Z retention)
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 31. Physical property change with immersion in water at 23°C for CPE
125
-------
150-
P
E \
100-E
R
C
E
N 50-
T
D
~ ' IT n D D ____^
i V " '"--^..^
1- — ,__. .— — . — _ ^^^
V V • -. _^ a^*
7 ~°^-V °
• - Weight Change (%) x ^17
a = Breaking Factor (Z retention) } ^
V = Elongation at Break (Z retention)^''
x*
-x
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 32. Physical property change with immersion in water at 50°C for CPE
At 50°C (Figure 32), however, the changes in CPE properties are more
severe. Weight gain is more than four times the gain at 23°C. Both breaking
strength and elongation are less than initial values after two years exposure.
Swelling and softening (sometimes accompanied by temperature degradation)—
The CPE response to organic solutions (phenol, furfural, MEK, and
1,2-dichloroethane) was primarily one of swelling and softening. The degree of
the response was dependent on the chemical concentration in all cases.
Breaking strength, S-100 modulus, and tear resistance decreased to some degree
in all samples exposed to these chemicals. As shown in Table 26, CPE was
rated as non-resistant to all concentrations of these four chemicals. Also
observed in some exposures was an increase in elongation at break, and a
greatly increased variability in the elongation results.
These effects are illustrated in Figures 33-38. These figures show the
response of the CPE liner to solutions of furfural in water. Weight change,
retention of breaking strength and retention of elongation at break are shjwn
as a function of immersion length. Figures 33-35 show results for 23°C
exposures, and 36-38 for 50°C exposures. Note that weight gains increase with
concentration and with temperature. Variability in weight measurements is
126
-------
p
L
E
R
C
E
N
T
300-
-250 -
200-
150-
lOOi
50-
• - Weight Change (Z)
- a =. Breaking Factor (Z retention)
V * Elongation at Break (Z retention)
. ^
. -- \
.» - \
„ — \
o " — -'^' \
i^^izil 0 \
^^9
^ A^W^F^
-9 , , 1 1 .
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 33. Physical property change with inversion in 1 percent furfural
P
E
R
C
E
T
solution at 23 "C for CPE
250-
200-
150-
\
100-
50-
• - Weight Change (Z)
a - Breaking Factor (Z retention)
V a Elongation at Break (Z retention)
V y _j -,x
r '" >
r
J^ 0S
~~~ — " -*^^
. m — • — — """
f9 _ ^ — — •^•^
Figure 34. Physical property change with
solution at 23"C for CPE
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
rsion In 4 percent furfural
127
-------
p
E
R
C
E
N
T
300-
250-
.200-
150-
\
100 -<
50-
y
J*^ ,-jJ^^ ">
x- ^ y - -"*~ ~~ • *
\ *^"
^v _ — - "* • - Weight Change (Z)
>KT * D - Breaking Factor (Z retention)
/X ^-^ V = Elongation at Break (Z retention)
, ' ^*±^r-. n 9 ' i i HI 1 1 T\\
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 35. Physical property change with ionersion in 8 percent furfural
solution at 23*C for CPE
p
E
R
C
E
N
1
juu-
250-
200-
150-
\
100 -*
50-
0-
• » Weight Change (Z)
D = Breaking Factor (Z retention)
7 = Elongation at Break (Z retention)
y y n •/ •
""^ ~™ ^^ ~ ~ ~ ~ ^^ ~ ~ •^*™ — = — ^ «, _ .^^ . _ W— „, /
y ~ ~ "** - — /
O "* ~"^«. X
u "3 • — S . — —*. ^ .
^ .»** ^v
^^-+"'
2 5 10 20 50 100 200
LOG DAYS IMMERSION
Figure 36. Physical property change with inmersion in 1
solution at 50°G for CPE
500 1000
percent furfural
128
-------
juu-
p 250-
E 200-
R
C 150-j
E
N I0>-
T
50 -f
o-
• - Weight Change (Z)
D = Breaking Factor (Z retention)
V * Elongation at Break (Z retention)
X
r ^
~\7 y"
. -. •*"
. — - -~"
2 5 10 20
LOG DAYS
• >x •
_^ x-
^-""~*<~"'^..
n n
50 100 200 500 1000
IMMERSION
Figure 37. Physical property change with inversion in 4 percent furfural
p 250-
E 200-
R
C 150-
E \
N IOOJ
T
50-
o -<
solution at 50 *C for CPE
• - Weight Change (Z)
° - Breaking Factor (Z retention)
V » Elongation at Break (Z retention)
V
_\? • • ^^-"
*
r • ^ •"
IV ^^. -i""
2 5 10 20
~~^-~~
*,
\
^
N
- Q n
50 100 200 500 1000
LOG DAYS IMMERSION
Figure 38. Physical property change with inaersion in 8 percent furfural
solution at 50°C for CPE
129
-------
highest at the highest concentration (8 percent). Weight stability is
achieved in the 8 percent solution at both temperatures after 100 days and in
the 4 percent solution at 50°C only (Figures 35, 37, and 38).
The loss in breaking strength is clearly dependent on solution
concentration, although the strength appears to stabilize in all exposures.
Nearly complete loss of strength is seen in CPE exposed in 8 percent furfural
solutions.
Variability in elongation at break is particularly evident in Figure 35.
Sample elongation was as much as 250 percent (average of five specimens) of
its initial value; there were large differences in elongation between adjacent
specimens of the same sample, cut from the same area of the liner material.
These differences were as high as +_ 37 percent of the average percent value.
The effect of temperature on elongation can be seen by comparing Figures
35 and 38. After two year's immersion time, the sample exposed at 50°C
retains less than 50 percent of initial elongation, while the sample exposed
at 23°C retains more than 150 percent of the initial value. Crosslinking of
the CPE polymer is a possible cause of this decrease in elongation in response
to heat, but it is clearly accompanied by liner degradation, as evidenced by
the large weight gains and losses in strength.
ETHYLKNE PROPYLENE DIENE MONOMER (EPDM)
Criteria for Determining FML Chemical Resistance
For EPDM liner, based on the overall data from this project, the
following criteria are proposed for determining chemical resistance of EPDM
with immersion tests:
. Stability of weight change and mechanical properties with time.
. A stabilized weight gain of not more than 30 percent.
. The breaking factor must be at least 80 percent of the initial value and
130
-------
also equal to or greater than the minimum as-received value in the
material properties table of NSF Standard 54.
. The percent elongation at break must be at least 75 percent of the
initial value and also equal to or greater than the minimum as-received
value in the material property table of NSF Standard 54.
These criteria are used in evaluating the FML's response to the chemicals
in Table 28. Table 28 is a summary of the results of chemical resistance
testing for EPDM liner, and the table is explained and amplified in the
sections that follow. The chemicals listed in Table 28 are grouped according
to the type of response seen. Resistance or non-resistance is listed in the
second to last columns, and the reasons for a non-resistance rating are given
in the last column. Also listed in the table are whether temperature and
concentration effects were seen, whether the liner achieved stability in
contact with the chemical exposure, and whether the EPDM is considered
resistant to the chemical exposure.
Response Time and Stability
Response time, or the time required for the liner to stabilize in a given
solution, ranged from less than one month to more than two years for EPDM.
The rate of weight change was different for different chemical exposures, but
can be divided roughly into two categories. In the first group, weight gain
stabilized within 250 days: water, salt, dichromate, sodium hydroxide, DCE,
ASTM #2 oil, and MEK. In the second group, stabilization took 500 days or
more: hydrochloric acid, furfural, and phenol.
EPDM immersion tests need to be longer than two months in duration. Few
significant changes in mechanical properties were seen within a two-month
period. With the exception of ASTM #2 oil, exposures that caused large
eventual weight gain and loss of mechanical properties acted slowly. At least
eight months is needed to determine EPDM chemical resistance from immersion
testing.
131
-------
Table 28. ETHYLEN-E PROPYLENE OIENE MONOMER (EPDM):
CHEMICAL TEMPER- CONCEN- TYPE OF
NAME TYPE ATURE TRATION RESPONSE
EFFECT EFFECT
Water - yes - | Minor Change
Sodium Chloride SALT no no
Potassium Dtchromate OXIOIZER yes
Sodium Hydroxide BASE no
ASTM #2011 OIL yes
1 . 2-Oi chl oroethane CHLORINATED yes yes
HYDROCARBON
M
w _ -- -- -_ _
M Methyl Ethyl Ketone KETONE yes yes
Hydrochloric Acid ACID yes
Furfural ALDEHYDE yes yes
Phenol PHENOL no yes
Minor Change
Minor Change
Minor change
Rapid weight gain
Rapid weight gain
(weight loss
in pure
chemical )
Rapid weight gain
(weight loss
in pure
chemical )
Slow weight gain
Slow weight gain
Slow weight gain
RESPONSE SUMMARY FOR CHEMICAL RESISTANCE
STABILITY RESISTANT- REASONS FOR
ACHIEVED- NON-RESISTANCE *
CONDITIONS
fl
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
_
10% &
sat *d
10%
10%
100%
. 1%
.5%
.8%
. 1%
.5%
.6%
3%
13%
26%
3%
13%
26%
10%
1%
4%
8%
1%
4%
B%
1%
4%
B%
1%
4%
8% ,
V
Y
V
V
V
Y
V
Y
V
V
Y
V
Y
V
Y
V
V
V
V
V
Y
Y
V
V
V
N
N
V
N
N
Y
N
N
N
N
N
V
V
Y
Y
Y
V
V
Y
N WG, BL. EL
N WG. BL, EL
Y
Y
V
V
V
V
V
V
V
V
Y
N BL
Y
N WG. BL. EL
Y
N S,
N S, EL
V WG (marginal)
N S
N S, WG, BL. EL
V
N S
N S
N S
N S
N S
* S = No Stability, WG = weight gain, WL = weight loss, BL
V = Ves, N = No
Breaking Factor Loss, EL = Elongation at Break Loss,
-------
Magnitude of Liner Response
A two-part evaluation of the magnitude, of physical property change was
followed in determining EPDM chemical resistance. Both an absolute minimum
value for a mechanical property (for example, elongation at break) and an
allowable percent change of that property (from the initial value) were
determined.
Both weight gain (indicative of absorption of chemical or water) and
weight loss were observed in testing EPDM. Weight loss was seen only in the
initial screening tests, on exposure to neat or concentrated chemicals. The
EPDM showed a dried weight loss of 22 percent for pure DCE, 21 percent for
pure MEK, 3 percent for pure furfural, and 2 percent for liquified phenol (88
percent). Those samples which had been in DCE and in MEK were visibly smaller
and stiffer.
Weight gain varied overall from less than one percent to over one hundred
percent, depending on the exposure conditions. Water, salt, potassium
dichromate, and sodium hydroxide all showed only minor weight change. MEK,
DCE, and phenol solutions caused weight gains of between two and sixteen
percent, depending on concentration and temperature. Weight gain in furfural
was strongly influenced by temperature and concentration and ranged from 3 to
91 percent. In 10 percent hydrochloric acid, the stabilized weight gains were
5 and 112 percent in low and high temperature, respectively. Weight gain in
ASTM #2 oil stabilized at 90 percent at both temperatures.
Changes in the mechanical properties of the EPDM liner were similar. The
largest losses in breaking strength were observed after exposure to hydro-
chloric acid at 50°C (up to 50 percent loss), ASTM #2 oil (up to 53 percent
loss), and furfural (up to 29 percent loss). Loss in ultimate elongation was
most severe for the same three chemicals (71 percent, 30 percent, and 58
percent loss, respectively).
133
-------
Absolute Amount—
The Standard 54 minimum properties for EPDM are used as the limits for
absolute amount of change. The Standard 54 values are not normalized for
thickness. EPDM must be normalized to interpret immersion results because of
the variable thickness of EPDM and the correlation between thickness and
strength. For breaking factor, some samples exposed to ASTM #2 oil,
hydrochloric acid-(50°C only), and saturated furfural fell below the 42
Ib/inch limit.
Some samples exposed to ASTM #2 oil and some exposed to hot hydrochloric
acid (50°C only) were below the Standard 54 limit of 300 percent for percent
elongation at break. Only one sample exposed to ASTM #2 oil fell below the
Standard 54 limit of 4 Ib for tear resistance.
Percent Change from Initial Value—
Figure 39 shows the relationship between breaking factor and weight
change. To minimize the effect of liner thickness, both the breaking strength
and the weight change are normalized for sample thickness by dividing by the
initial sample thickness. (Each 500 percent weight change per inch thickness
is equivalent to a 15 percent weight change in a 30 mil liner.) Breaking
factor reproducibility for EPDM was approximately +_ 15 percent. A limit on
change of 20 percent was chosen as a conservative estimate of real material
degradation.
Retention of ultimate elongation is shown as a function of weight change
in Figure 40. Again, the weight change is normalized for thickness. Vari-
ability in elongation is about +_ 20 percent, and a limit of 25 percent was
chosen as evidence of degradation.
A limit for allowable stabilized weight gain for this EPDM liner was set
at 30 percent for a 30 mil liner (1000 percent per inch thickness). This
limit was set using Figures 39 and 40, and correlating the. weight gain at
which the mechanical properties fell below the percent change limit. The 30
percent limit is larger than the recommendations given in the Los Angeles
134
-------
w
t-
DO
(O
U W
OS 55
(a u
o. H
-aw
Criteria Boundaries
* *.**
44
_|
1/
28W
Figure
PERCENT WEIGHT CHANGE PER INCH
39. Relationship of tensile strength (breaking factor normalized for
thickness) and weight change for EPUf
t
law
H-l OC
fig
U •<
U O
O, J
U
-500 0 " 500 1000 1500 2000 2500 3000
PERCENT WEIGHT CHANGE PER INCH
Figure 40. Relationship of elongation at break and weight change for EPDM
135
-------
Rubber Group guide (23), which rates a 20 percent (volume) gain as 'not
recommended'. Their more conservative limits may be based on recognizing the
slow response time of some elastomers and the short duration of most immersion
tests. Stability of weight change was not discussed in their publication.
No limit can be set for weight loss from the data in this project.
Weight loss was only seen in initial screening tests, for which no tensile
tests were performed.
Types of Effects
The different effects of chemical immersion observed in EPDM liner are
shown in Table 28. A temperature or concentration effect is noted in the
third and fourth columns. Four basic types of material changes were observed
when EPDM liner was exposed to the immersion chemicals: shrinking and
stiffening, minor change, rapid absorption of water or chemical, and slow
absorption of water or chemical. These responses are listed in the fifth
column.
Temperature Effects—
Increasing the immersion temperature affected nearly all the EPDM
exposures. Only salt (sodium chloride) and sodium hydroxide solutions showed
no difference in response due to temperature. Percent change (gain) in weight
was higher at 50°C than at 23°C for all other exposures. In water, the EPDM
liner gained two and five percent weight at 23 and 50°C, respectively.
Mechanical properties were significantly affected by temperature in only three
exposures: 10 percent hydrochloric acid, ASTM #2 oil, and furfural. (These
three chemicals also caused the largest weight gains for EPDM). Increasing
the temperature of exposure makes the chemical contact more aggressive, in
particular with the acid exposure. But the effect of temperature per se, as
measured by the water exposures, does not appear to adversely affect the
cross^inked EPDM liner. Results of immersion tests accelerated by using an
elevated temperature must be interpreted with caution.
136
-------
Concentration Effects—
Increasing the chemical concentration increased the amount of weight gain
by the EPDM liner for all four organic exposure series (MEK, furfural, DCE,
and phenol). The effect of increased concentration on the liner's mechanical
properties was less. Significant decrease in EPDM strength and elongation
caused by increasing chemical concentration was only apparent with liner
exposed to furfural. Furfural also caused much higher weight gain than the
other organic solvents used.
Indicators of Bon-Resistance
For this FML, the most important indicators of non-resistance are weight
change, breaking strength, and elongation at break.
For immersion testing of two months or less, weight is the most sensitive
indicator of material change. Even weight change, however, is not always a
good indictor of possible slow changes in the EPDM liner.
Breaking strength and elongation do indicate material degradation, but
these measurements are much less sensitive than weight (or volume) changes.
In general, strength and elongation decreased with weight gain, but changes in
these mechanical properties were significant only when the weight gain was
around 30 percent.
The usefulness of tear resistance as an indicator of chemical non-
resistance for EPDM could not be well evaluated in this project. Tear
resistance generally followed the same trend as breaking strength, but tear
resistance tests were not performed on the two-year immersion samples.
Because of the slow response time of EPDM, significant changes in tear
resistance were only seen from ASTM #2 oil.
Shrinking and Stiffening—
This response was observed only in the initial screening tests, on
exposure to neat solvents. EPDM in contact with pure DCE and MEK was visibly
smaller and stiffer after seven days immersion.
137
-------
Minor Change—
Four exposure conditions produced only minor change in the weight and
mechanical properties of the EPDM liner. Figure 41 shows the response to 10
percent sodium hydroxide solution at 23°C, which is typical of this category.
Less than one percent change in weight occurred during the two-year immersion.
Breaking strength and elongation at break were no.t significantly affected.
Bapid Weight Gain-
Three chemical exposures produced weight gains in EPDM which stabilized
within 250 days: ASTM #2 oil, MEK, and DCE. In oil, the weight gain was large
(up to 90 percent) and resulted in up to 50 percent loss of strength, and over
30 percent loss of elongation. Figures 42 and 43 show the effect of ASTM #2
oil on the EPDM liner at 23 and 50°C. The stabilized material properties were
essentially the same at both temperatures, but the higher temperature exposure
stabilized faster. This is an example where increasing the immersion
temperature accelerated the response.
Weight changes in MEK and DCE were less and depended on temperature and
concentration. Maximum weight gain for EPDM in water solutions of these chem-
ical was 13 percent. Physical properties showed moderate decreases and were
not clearly related to concentration or temperature. NOTE: These two chemicals
caused significant loss of weight in their neat form. This is especially
significant for DCE, with a solubility of only about 0.8 percent by weight.
Slow Weight Gain-
Three chemicals caused slow weight gain in EPDM liner: hydrochloric acid,
furfural, and phenol. Weight gains in these chemicals took at least 500 days
to stabilize, and some did not stabilize within the two-year immersion period.
Each of these three chemicals caused unique effects in the EPDM and will be
discussed separately.
In 10 percent hydrochloric acid --.olution, a severe temperature effect is
apparent. While a slow, steady weight gain occurred at both 23 and 50°C, the
resulting stabilized changes were 5 and 112 percent, respectively. Figure 44
138
-------
150-
P
E
R
C
E
N
T
IOC
• - Weight Change (Z)
a - Tensile Strength (Z retention)
7 - Elongation at Break (Z retention)
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 41. Physical property change with laarrsion in 10 percent sodit
hydroxide solution at 23°C for EPDH
150
P
E
R
C
E
N
T
Weight Change (Z)
Tensile Strength (Z retention)
Elongation at Break (Z retention)
100
50--
2 5 10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 42. Physical property change with inversion in ASTM #2 oil at 23°C
for EPDM
139
-------
150-
P
E
100-
R .
c l
E
N 50~
T
• = Weight Change (Z)
0 = Tensile Strength (Z retention)
V » Elongation at Break (Z retention)
. _.»_- — — •- —«-•-•"*
!"<;^^^5^i*ir.^_n_.._.!_-^~ — «
^ D
, X
1
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 43. Physical property change with immersion in ASTM #2 oil at 50°G
for EPDM
P
E
R
C
E
N
T
ISO
100--
• » weight change Q& at 23*0
a - veighe change (Z) at SO*C
50--
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 44. Percent weight change with immersion in 10 percent hydrochloric
acid solution at 23*C and 50°C for EPDM
140
-------
shows the difference in weight gain for the two temperatures. Differences in
strength and elongation were also large for the two temperatures. After two
years, the EPDM exposed at 50°C had lost 50 percent of its strength and 71
percent in elongation. Respective losses were only 12 and 9 percent at 23°C.
This illustrates a case where the elevated temperature provided an environment
too aggressive to serve as an accelerated test.
EPDM exposed to furfural solutions shows the clear effect of time,
temperature, and chemical concentration. These effects are illustrated in
Figures 45-50. Note the slow response of the EPDM liner. Weight gain begins
slowly. No significant change can be seen in breaking strength or elongation
during the short-term testing period (1 to 56 days). As the test progressed,
however, differences in weight caused by temperature and concentration become
apparent. And after two years, these weight gains are corroborated by
degradation of mechanical properties. Breaking strength is less only for the
saturated solutions, where weight gain was 48 percent at 23°C and 91 percent
at 50°C. Elongation at break, however, decreased in all 50°C exposures and in
the saturated exposure at 23°C.
The response of EPDM in furfural illustrates a situation where short-term
testing is not suitable for chemical resistance determination.
The effect of phenol solutions on EPDM is much less severe after a
two-year immersion period than the effect of acid or furfural. Phenol caused
a slow, steady weight gain, dependent on time and temperature. The maximum
weight gain in two years was only sixteen percent, however. Breaking strength
and elongation showed moderate decreases (up to 17 percent loss) but were not
dependent on concentration and temperature. Although significant degradation
was not seen, the resistance of EPDM to phenol must be questioned because the
response is so slow. Only the low concentration samples stabilized within two
years. Figure 51 shows the response of EPDM to an 8 percent solution of
phenol in water at 50°C. Although the values for mechanical properties have
not significantly declined, the weight of the sample is still increasing after
141
-------
150
p
E
R
C
E
N
T
50--
Weight Change (Z)
Tensile Strength (Z retention)
Elongation at Break (Z retention)
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 45. Physical property change with imersion in 1 percent furfural
solution at 23'C for EPBM
R
C
E
N
T
50--
•
0
Weight Change (Z)
Tensile Strength (Z retention)
Elongation at Break (Z retention)
i i i r^ 11~"
^
5 10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 46. Physical property change with inmersion in 4 percent furfural
solution at 23*C for EPDM
142
-------
15U-
P
E lOOi
R 1
C
E
N 50-
T
rv -t
IT n ' n n
1 U Q u n — __^\
• - Weight Change (Z) ^
- o > Breaking Factor (Z retention) •
V - Elongation at Break (Z retention) »x
;X
£ «n^
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 47. Physical property change with immersion in 8 percent furfural
solution at 23*C for EPDM
IDU-
P
E
R
C
E
N 50~
IN
T
U
• - Weight Change (Z)
a m Breaking Factor (Z retention)
V ** Elongation at Break (Z retention)
•
i— — i r — i — r-f n H — *— T ~ • — r T"TT-T 1 * i ~~ i
^. /
y
•. j j-
i i i t i
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 48. Physical property change with immersion in 1 percent furfural
solution at 50°C for EPDM
143
-------
p
E
R
C
E
N
T
150
100-
•
D
Weight Change (Z)
Tensile Strength (Z retention)
Elongation at Break (Z retention)
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 49. Physical property change with imersion in 4 percent furfural
solution at 50"C for EFDM
13U-
P
E <
1001
R
C
E
N 5°-
T
i -— .0 tf_,_v__
D ' L- __
• - Weight Change (Z)
- o * Tensile Strength (Z retentio
7 = Elongation at Break (Z reten
_* —-•"*"'
^
~~~~--^-^ *
^\ — ^!/
• N\7/
B) • - %Y,
Cion) / V
X
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 50. Physical property change with inmersion in 8 percent furfural
solution at 50°C for EPDM
144
-------
1 JU
p
E <
100 -[
R
C
E
N 50-
T
O-1
tf
? tf— •
r — •
D— — __Q D
• = Weight Change (Z)
Q - Tensile Strength (Z
V - Elongation at Break
k 1 1- i T1-», ,-T • J- • ,-
.
t
\7
_ D v
retention)
(Z retention)
- 1 TTuT — ~r i ..iii
10 20 50 100 200
LOG .DAYS IMMERSION
500 1000
Figure 51. Physical property change with i—ersion in 8 percent phenol
solution at 50°C for EPDM
two years. It is probable that furthe-r increase in weight would correspond to
deterioration of the strength and elongation. This is an illustration of the
importance of weight stability in evaluating chemical resistance.
EPICHLOROHYDRIN (EPI-CO)
Criteria for Deteraining FML Chemical Resistance
For this PML, based on the overall data in this project, the following
criteria are proposed for determining EPI-CO chemical resistance with
immersion tests:
Stability of weight change and mechanical properties with time.
. A stabilized weight change of not more than 20 percent gain.
. The breaking factor must be at least 80 percent of the initial value and
equal to or greater than the minimum as-received value in the material
properties table of NSF Standard 54.
. The percent elongation at break must be at least 70 percent of the
Initial value and equal to or greater than the minimum as-received value
In the material property table of NSF Standard 54.
145
-------
Table 29. EPICHLOROHVDRON (EPI-CO): RESPONSE SUMMARY FOR CHEMICAL RESISTANCE
CHEMICAL TEMPER- CONCEN- TYPE OF STABILITY RESISTANT-
NAME TYPE ATURE TRATION RESPONSE ACHIEVED-
EFFECT EFFECT CONDITIONS
Water - yes - Minor with Loss of
Elongation at 50 C
Sodium Chloride SALT yes yes Minor with Loss of
j Elongation at 50 C
Potassium Dichromate OXIDIZES yes - Minor with Loss of
Elongation at 50 C
Sodium Hydroxide BASE yes - j Minor with Loss of
Elongation at 50 C
ASTM *2 Oil OIL yes
1 . 2-Dichl oroethane CHLORINATED yes yes
HYDROCARBON
Minor with Loss of
Elongation at 50 C
Moderate with Loss of
El ongat ion
at 50 C
Hydrochloric Acid ACID yes - Swell at 50 C with
Loss of Elongation
Furfural ALDEHYDE yes yes
Methyl Ethyl Ketone KETONE yes yes
Phenol PHENOL yes yes
Softening and
Swel 1 ing with
Loss of
Elongation at 50 C
Softening and
Swel 1 ing with
Loss of Elongation
at 50 C
Softening and
Swel 1 ing with
Loss of Elongation
at 50 C
23 C 10% &
50 C sat'd
23. C 10% &
50 C sat'd
23 C 10% &
50 C sat'd
23 C 10%
50 C
23 C 100%
50 C
23 C .1%
.5%
.8%
50 C .1%
.5%
.8%
23 C 10%
50 C
23 C 1%
4%
a%
50 C IX
4%
8%
23 C 3%
13%
26%
50 C 3%
13%
26%
23 C 1%
4%
8%
50 C 1%
4%
8%
V
Y
V
Y
Y
V
V
Y
V
V
Y
Y
Y
V
V
V
V
N
N(m)
N
V
N
Y
Y
V
Y
V
V
Y
Y
N(m)
V
V
Y
V
N
V
Y
Y
N( 10%)
Y
V
Y
N
Y
V
V
V
N
N
N
N
V
N
V
N
N
N
N
N
V
N
N
N
N
N
Y(m)
N
N
N
N
N
REASONS FOR
NON-RESISTANCE »
S(m)
EL(m)
EL(10%)
EL(m)
EL.
S(m)
WG
WG.
WG.
WG.
S. WG.
S(m)
S. WG,
WG.
S. WG.
WG.
WG.
WG,
WG.
WG.
WG.
WG,
S(m).
WG.
WG.
WG.
WG.
S. WG.
BL.
BL.
BL.
BL.
BL.
BL,
BL,
BL,
WG(m)
BL,
BL,
BL,
BL.
EL
EL
EL
EL
EL.
EL.
EL
EL.
EL.
TL(m)
t
TL
TL
TL
TL
TL(m)
EL. TL
EL
EL(m). TL
EL. TL
EL.
EL.
EL
EL.
EL.
TL
TL
TL
TL
« S = No Stability. WG = weight gain. BL = Breaking Factor Loss, EL = Elongation at Break Loss. TL = Tear Resistance Loss
V = Yes, N = No. (m) = marginal or borderline results
-------
These criteria are used in evaluating, the FML's response to the chemicals
in Table 29. Table 29 is a summary of the results of chemical resistance
testing for RPI-CO liner. The table is explained and amplified in the
sections that follow. The chemicals listed in Table 29 are grouped according
to the type of response seen. Resistance or non-resistance is listed in the
second to last columns, and the reasons for a non-resistance rating are given
in the last column. Also listed in the table are whether temperature and
concentration effects were seen, whether the liner achieved stability in
contact with the chemical exposure, and whether EPI-CO is considered resistant
to the chemical exposure.
The recommended criteria for breaking factor, S-100 modulus and
elongation agree with those used by the EPA in the document "Resistance of
Flexible Membrane Liners to Chemicals and Wastes" (27). Tear resistance was
not included in the EPA list. This EPA document lists ten percent as the
limit for weight gain. A 20 percent limit was set in this project based on
the relationship of weight gain to loss of mechanical property, and is larger
than the EPA document limit. The LA rubber guide (23) defines categories of
compatibility for elastomers as follows:
minor effect: 0 to 5 percent volume change
moderate effect: 5 to 10 percent volume change
severe effect: 10 to 20 percent volume change
not recommended: >20 percent volume change
For this EPI-CO liner, the ratio of weight change to volume change was
0.75. A 20 percent limit on weight gain would therefore mean approximately a
25-30 percent volume gain. This would be considered 'not recommended1 by the
rubber guide.
EPI-CO resistance ratings are listed in the EPA matrix (27) for only five
chemical/temperature combinations tested in this project. Four of these five
ratings given agree with ratings derived using the proposed criteria with
project data (water and HC1 at low and high temperature). EPI-CO was rated as
147
-------
non-resistant only to HC1 at high temperature (tested at 100 C) in the matrix,
based on qualitative information. Disagreement between the EPA matrix and
project data was for liner exposed to NaOH at 50°C, which was rated as
non-resistant in this project because of loss of elongation with time. The
matrix rating was based on a manufacturer's qualitative report, and the length
of exposure was not given.
Agreement between percentage change criteria and absolute minimum
property values (using Standard 54 tables) was good for elongation at break
and tear resistance, although the percentage change criteria were more
stringent. Agreement between percentage change and absolute criteria for
breaking factor was not good, because the EPI-CO liner initial (unexposed)
results were within 10 percent of the Standard 54 table values. In
determining chemical resistance for Table 29, therefore, the absolute criteria
for breaking factor is not used. This is done to focus the interpretation on
the material response rather than the strength limitations of this particular
EPI-CO liner sample.
A major limitation inherent in these proposed criteria for EPI-CO
chemical resistance is the effect of temperature on chemical resistance. As
discussed below, the long-term effect of a 50°C exposure is significant for
EPI-CO. No service temperature limits can be proposed since only two
temperatures were used for immersion testing, but long-term service at 50°C
does not appear to be suitable for EPI-CO.
Response Time and Stability
An FML response to the chemical immersion must stabilize in order for it
to be considered chemically resistant. Response time, or the time required
for the liner to stabilize in a given solution, varied from less than one week
to more than twenty months for this EPI-CO FML.
Significant weight changes (large enough to correspond with changes in
breaking strength) were usually evident within a two-month test period,
148
-------
although weight often continued to increase. Breaking strength and tear
resistance stabilized faster than weight change, usually within two months.
Changes observed in elongation at break were both rapid and slow. Rapid
changes were associated with absorption of organic chemical solutions, while
slow changes in elongation at break were evident for samples exposed for
twenty-months at 50°C to water and inorganics.
Magnitude of Liner Response
A two-part evaluation of the magnitude of physical property change was
followed in determining EPI-CO chemical resistance. Both an absolute minimum
value for a mechanical property (for example, elongation at break) and an
allowable percent change of that property (from the initial value) were
determined.
The range of changes seen in the EPI-CO liner was large. No losses in
weight were seen, but weight gain varied overall from less than one percent to
over 100 percent, depending on the exposure conditions. Exposure to water at
23°C and 50°C caused EPI-CO weight gains of 13 and 19 percent within twenty
months, respectively. Weight gains seen in salt, potassium dichromate, sodium
hydroxide, and ASTM #2 oil were less than those in water at each temperature.
Solutions of organic chemicals (MEK, DCE, furfural, and phenol) in all cases
caused weight gains larger than in water, and increased with increasing
concentration and temperature.
Changes in the mechanical properties of the EPI-CO liner in general cor-
responded to weight changes. Minimum retention of breaking strength was 33
percent (eight percent phenol at 50°C, Figure 51), 22 percent of elongation
(eight percent furfural at 50°C, Figure 51), and of tear resistance 23 percent
(eight percent phenol at 23°C).
149
-------
Absolute Amount—
Using the Standard 54 table values for elongation at break and tear
resistance, three of the organic solutions (MEK, furfural, and phenol) were
rated non-resistant at the highest concentration. Results for all other
exposures were above the table values e
The breaking factor absolute value, 90 Ib/inch width, was not used in
determining non-resistance for EPI-CO because the unexposed liner breaking
factor values were very close to or below the absolute limit, probably caused
by testing variability. In actual waste testing, with a prospective FML, the
liner should be evaluated using this absolute limit.
Percent Change from Initial Value-—
The percent changes in material properties suggested as criteria for
chemical resistance were developed by evaluating the variability in the
material and testing process, and setting reasonable estimates of material
degradation.
Figure 52 shows the relationship between breaking factor and weight
change for machine direction samples. Breaking factor variability in this
EPI-CO liner was approximately +_ 15 percent, measured by looking at those
samples with little or no weight change. (Variability in the transverse
direction was similar.) A limit on change of 20 percent was chosen as a con-
servative estimate of real material degradation, (e.g., changes of greater
than 20 percent may result from immersion in compatible chemicals, but this
limit provides a safety factor until additional data can support a higher
limit.)
Retention of ultimate elongation (machine direction) is shown as a
function of weight change in Figure 53. Variability in elongation is about
+^ 25 percent. Decreases in elongation with time were from two causes:
absorption of organic chemical solutions, which was ralatively fast, and
exposure at 50°C, apparent only after a twenty month immersion period. A 30
percent decrease in elongation was chosen as evidence of degradation.
150
-------
150
2
o os
i— i o
E- E«
W ^ 10^
E"1 fc
2
E-. »-.
2 «
W 55 CTA
U W 5"
OS OS
Cd CQ
0
.
*
Criteria
20
f&" + "*
i^i (fa. , + ,
ar^jrr + ^
Hgf ..•£/ -H 4-+
fwBpTFf ^Jff J
T il^rT^flB' . \nf
A f ' '1*
Boundaric
) 2
t>
•t-
_..j. ._
, +
+ + i +
^ «t
^ * *"
+
0 4
A
,+
*•»• + +
hi *
t»~ i
+
0 6
—.......................
"" """
•k^U.
1? -ff +
^ 4- A*
o a
...»......»••»>-»—
««
*" T" +
x
0 K
PERCENT WEIGHT CHANGE
Figure 52. Relationship between breaking factor and weight change for
EPI-CO
13V
O U
E- CQ
§ E« 10°
E- <
a
OS 2
o
SU 50
a o
IX U
f
te^
p^
U^
002
Crite
f +
0 4
ria Bound;
C
^
0 S
iries
*
** * +
LJLk—*.
+ — ^-
"^ T
•K
0 8
* *
0 10
PERCENT WEIGHT CHANGE
Figure 53. Relationship between elongation at break and weight change for
EPI-CO
151
-------
Tear resistance had a variability of about 25 percent. Figure 54 shows
the relationship between weight change and retention of tear resistance.
Although a trend of decreasing tear resistance with increasing weight is
clear, the locus of points around zero weight change is centered at 90 percent
retention.
A limit for allowable stabilized weight gain for this CPE liner was set
at 20 percent, based on the relationship between changes in breaking factor
and changes in weight, and on the relationship between tear resistance and
weight change.
150
55
o w
E tz
S S 100
W I-
E-> CO
S3 1-4
K CO
Gt3
Zt CA
KJ OS 50
U <
W H
04
-1
•
LO (
*
' -i *
dlfe^Jfe^.^H
SBK^
gi yp^ i
T +
+ +
+
) i
1
i
1 Cri<
•(• ^ .itc
TT*VT ' «=-»»«»
L*J'**4t4' +
• . T H^jH^-(. i, j.
i ^ +
|
_.. .. .
I
j
i
i
i
0 20 3
:eria 1
,
+ ^
+ +"1
0 4
ioundai
M
* +
0 5
•les
+
•'•^
0 6
t
,
0 7
+ +
f ""^
0 3<
PERCENT WEIGHT CHANGE
Figure 54. Relationship between tear resistance and weight change for
EPI-CO
Types of Effects
The results in Table 29 for EPI-CO, a polar elastomeric liner, are grouped
according to the type of effects seen. Temperature and concentration effects
are noted in the third and fourth columns. Three basic types of response to
chemical immersion were observed with this liner:, minor change, degradation
due to temperature sometimes with indications of stiffening, and swelling and
softening (sometimes accompanied by degradation due to temperature).
152
-------
Temperature Effects—
The response of EPI-CO to increased immersion temperature shows that an
elevated temperature may be suitable for accelerating the material response in
short-term testing (perhaps up to four months). But for extended test
duration, significant effects are seen due to temperature alone at 50°C. A
decrease in the elongation at break after a two-year immersion period was
observed in all exposures.
This long-term loss of elongation at 50°C was accompanied by an increase
in the breaking factor for water, salt, dichromate, and ASTM #2 oil exposures.
This indicates that the liner is becoming less flexible with time.
Concentration Effects—
Four organic chemicals were tested in three concentrations. All
responses seen with these chemicals were affected by concentration. Percent
weight gain increased with increasing concentration. Breaking strength and
tear resistance decreased with increasing solution concentration. Elongation
decreased with increasing concentration for phenol, MEK, and furfural
exposures.
Indicators of Non-Besistance
For this EPI-CO liner, the most important indicators of non-resistance
were weight change, breaking strength, and elongation at break. Tear resis-
tance generally followed the same trend as breaking strength, and volume
change (swelling) corresponded to weight change. Since tear resistance
testing was performed only for exposure up to two months in duration, no
long-term trends in tear resistance are known.
In general, an increase in sample weight indicated a change in mechanical
properties for EPI-CO. When weight gain was due primarily to absorption of
organic chemicals, strength and elongation responded quickly and were less
than initial values. When weight gain was due primarily to absorption of
water at 50°C, elongation at break showed long-term deterioration.
153
-------
Minor Change—
The following 23°C exposures produced only minor changes in weight and
mechanical properties: water, scrdium hydroxide, hydrochloric acid, salt,
potassium dichromate, ASTM #2 oil, water with ASTM #2 oil added, one percent
phenol, one percent MEK, 0.1 and 0.5 percent DCE, and one percent furfural.
An example is shown in Figure 55. This figure shows the response of the
EPI-CO liner to a saturated salt solution at 23°C. Weight gain is less than
three percent over the two-year period. Breaking strength was not affected,
nor was the elongation at break.
150-
P
R [
C
E
N 50~
T
y y —-———,
n n n
i " n D LJ
• - Weight Change (Z)
o = Breaking Factor (Z retention)
V = Elongation at Break (Z retention)
2 5 10 20 50 100 200 500 1<
LOG DAYS IMMERSION
Figure 55. Physical property change with imersion in saturated (35
percent) salt solution at 23'C for EPI-CO
Degradation Due to Tenperature—
As previously discussed, degradation in material properties was caused by
exposure to 50°C solutions. While weight gain and elongation at break are the
best indicators for this effect, breaking strength was also affected some-
times. Figures 56 and 57 compare the response of the EPI-CO liner to water at
23 and 50°C. In Figure 56, a moderate gain in weight (absorption of water) is
154
-------
1JU
p
E [
100j
R
\
C
E
M 50-
IN
T
n -
n V -°- "
} v \7
. • - Weight Change (Z)
O m Breaking Factor (Z retention)
V - Elongation at Break (Z retention)
\
\
\
n
— n
^---v
,-- —
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 56. Physical property change with inversion in water at 23°C for
EPI-CO
150
P
E
R
C
E
N
T
^
100--
I ]
50--
-C
---\7
a
7
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
5 10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 57. Physical Property change with inersion In water at 50°C for
EPI-CO
155
-------
seen. It is not clear whether weight stability has been achieved at the end
of the"twenty month testing period. Breaking factor and elongation, although
variable for this sample, show no conclusive changes or trends.
In Figure 57 (50°C), however, changes are evident in the EPI-CO liner.
Weight gain is only slightly more than the gain at 23°C, and has stabilized.
Breaking strength shows an upward trend, and elongation a downward trend with
time. This suggests that the liner is becoming stiffer with exposure to the
hot water.
Exposure to HC1 at 50°C also produced effects not seen in the 23°C
exposure. At 23°C no conclusive changes were observed, and weight gain was
smaller than in water alone. At 50°C, (Figure 58) however, weight gain is
greater than water and has not stabilized at the end of the test period. Both
breaking strength and elongation decreased. The liner is not becoming
stiffer, as it is in water alone, but is becoming softer and weaker with time.
I3U-
P
E \
100-
R '
C
E
N 50~
T
o -
f— U v
r "a — T-T-. _
V
^^^^^^^
^ ^^o
.• - Weight Change (Z) /X^
. 0 - Breaking Factor (Z retention) V
V - Elongation at Break (Z retention)
— -•• -^- -r-|--*~| — *~i '*"T"?"Ti 1 1
. •-•
_ •— "" ""
500 1000
2 5 10 20 50 100 200
LOG DAYS IMMERSION
Figure 58. Physical property change with inversion in 10 percent hydro-
chloric acid solution at 50°C for EPI-CO
156
-------
Swelling and Softening—
The EPI-CO response to organic solutions (phenol, furfural, MEK, and
1,2-dichloroethane) was primarily one of swelling and softening. The degree of
the response was dependent on the chemical concentration in all cases. Typical
responses were weight gain (and swelling), loss of breaking strength, and loss
of elongation. Blisters were seen on some samples exposed to MEK and furfural.
Additional deterioration in elongation was a result of exposure at 50°C.
These effects are illustrated in Figures 59-64. These figures show the
response of EPI-CO liner to solutions of phenol in water. Weight change,
retention of breaking factor, and retention of elongation at break are shown
as a function of immersion time. Figures 59-61 show results for 23°C expo-
sures, and 62-64 for 50°C exposures. Weight gains increase with concentration
and with temperature. Variability in weight measurements is high at the
highest concentration (8 percent). Weight stability is not achieved for the
lowest concentration at low temperature, nor for the highest concentration at
the high temperature (Figures 59 and 64).
13U-
P
E i
100 J
R !
C
E
N 50~
T
n ->
fl --tT
^7— -~
, n n n
] LJ Q
• - Weight Change (Z)
- a « Breaking Factor (Z retention)
7 * Elongation at Break (Z retention)
__._ , •-
, rT-| "•TnT""* \ *"" i ii'''| I
..^
\
\
__
J*J-'
V
_-.-*-•
1,1,!
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 59. Physical property change with immersion In 1 percent phenol
solution at 23°C for EPI-CO
157
-------
150
R
C
E
N
T
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 60. Physical property, change with Immersion in 4 percent phenol
solution at 23"C for EPI-CO
p
E
100-
R
C
E <
N 5°-!
T
• - Weight Change (Z)
o « Breaking Factor (Z retention)
V » Elongation at Break (Z retention) ___
- . — ~" ' • •
— — • """ """" *
— •—•""""•"" • •
?IT>*--T~"'~"~ *
"~ """"""-— • • •
L '^"^""""-~S7.. " q
2 5 10 20 50 100 200 500 1
1000
LOG DAYS IMMERSION
Figure 61. Physical property change with inersion in 8 percent phenol
solution at 23°C for EPI-CO
158
-------
inu-
P
E 100-
R i
c
E
N 50-
T
n -i
i '_ y_ ___ n
1 n a- — • — a Q- ^
\^
• - Weight Change (Z) V
- 0 " Breaking Factor (Z retention)
V - Elongation at Break (Z retention)
. •__•-•-»
9 •-• — • •
2 5 10 . 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 62. Physical property change with ianerslon in 1 percent phenol
solution at 50*C for EPT-CO
150
P
E
R
C
E
N
T
100--
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 63. Physical property change with
solution at 50°C for EPI-CO
rslon in 4 percent phenol
159
-------
150-
P
E
100-
R
C
E
N 50~
T
• - Tensile Strength (Z retention)
D = Tear Resistance (Z retention)
V - Yield Strength (Z retention)
•
• /'
/
• S
V — 57 — •§-— 5— ^ xx
r n a D 9 a '--^^.^
— __^__ * ^>^ o
9
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 64. Physical property change with imersion in 8 percent phenol
solution at 50°C for EPI-CO
The loss in breaking strength is clearly dependent on solution
concentration, although the strength stabilizes quickly (generally in one
week). There is no significant difference in retention of breaking strength
between the two exposure temperatures. The exception to these two statements
is the response to a 1 percent phenol solution at 50°C. Here the response is
similar to the response in water at 50°C (Figure 57), with strength increasing
with time. This suggests that the effect of water and heat is predominant
over the effect of phenol.
160
-------
HIGH DENSITY POLYETHYLENE (HOPE)
Criteria for Determining FKL Chemical Resistance
For this FML, based on the overall data in this project, the following criter-
ia are proposed for determining HDPE chemical resistance with immersion tests.
. Stability of weight change and mechanical properties with time.
. A stabilized weight gain of not more than 3 percent.
. The breaking factor must be at least 80 percent of the initial value and
equal to or greater than the minimum as-received value in the material
properties table of NSF Standard 54.
. The percent elongation at break must be at least 80 percent of the
initial value and equal to or greater than the minimum as-received value
in the material property table of NSF Standard 54.
. The yield strength must be at least 80 percent of the initial value and
equal to or greater than the minimum as-received value in the material
property table of NSF Standard 54.
. The elongation at yield must change no more than 20 percent in either
direction and be equal to or greater than the minimum as-received value
in the material property table of NSF Standard 54.
. Tear resistance must be at least 80 percent of the initial value and
equal to or greater than the minimum as-received value in the material
property table of NSF Standard 54.
. Modulus of elasticity must be at least 70 percent of the initial value
and equal to or greater than the minimum as-received value in the
material property table of NSF Standard 54.
These criteria are used in evaluating the FML's response to the chemicals
in Table 30. Table 30 is a summary of the results of chemical resistance
testing for HDPE liner, and the table is explained and amplified in the
sections that follow. The chemicals listed in Table 30 are grouped according
to the type of response seen. Resistance or non-resistance is listed in the
161
-------
Table 30. HIGH DENSITY POLYETHYLENE (HOPE): RESPONSE SUMMARY FOR CHEMICAL RESISTANCE
NJ
CHEMICAL TEMPER- CONCEN- TYPE OF STABILITY RESISTANT- REASONS FOR
NAME TYPE ATURE TRATION RESPONSE ACHIEVED- NON-RESISTANCE *
EFFECT EFFECT CONDITIONS
Water no
Sodium Chloride SALT no no
Potassium Dichromate OXIDIZES yes
Hydrochloric Acid ACID no
Furfural ALDEHYDE yes yes
1 ,2-Dichloroethane CHLORINATED yes yes
HYDROCARBON
minor
minor
minor
weight gain with
decrease in
strength and
elongat Ion
weight gain with
decrease in
strength and
el ongat Ion
Sodium Hydroxide BASE no - minor
ASTM *2 Oil OIL yes yes weight gain,
softening
Methyl Ethyl Ketone KETONE yes yes
weight gain with
decrease in
strength and
e longat ion
Phenol PHENOL no yes weight gain with
decrease in
strength and
e longat ion
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
-
10% &
sat 'd
10%
10%
1%
4%
8%
1%
4%
8%
. 1%
.5%
.8%
. 1%
.5%
.8%
10%
100%
3%
13%
26%
3%
t3%
26%
1%
4%
8%
1%
4%
8%
Y
V
Y
V
V
Y
V
V
V
V(v)
V(v)
V
V(v)
V(«)
Y
V(v)
V
V
V(v)
V
V
V
N
V
V(v)
V
V(v)
V(v)
V(v)
Y
Y
V
V
V
Y
V
V
V
V
(m)
V
V
V
(m)
(m)
(m)
(m)
(m)
(m)
(m)
(m)
N
(m)
(m)
N
V
Y
N
N
V
V
(m)
(m)
(m)
(m)
(m)
(m)
(m)
(m)
N
(m)
WG(m) .
WG(m) ,
WG(m) .
WG(m) ,
WG,
WG(m),
WG.
S, WG.
WG.
WG(m)
WG(m) ,
WG(m) .
EYG(m) ,
WG(m). EVG.
BLdn),
BL(m) „
BL(m),
BL(m) ,
BL(m) .
BL(m) .
BL(m) .
BL(m) .
BL(m) .
BL(m) .
BL(m) .
BL(m).
BL(m) .
ML(m)
EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
'EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
EVG
EVG, ML, TL(m)
EYG(m)
EYG(nt)
BL(m) ,
BL(m) .
BL(m) ,
8L(m),
BL(m),
BL(m).
. ML'(m)
ML(m)
EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
EL(m)
» S = No Stability. WG = weight gain, BL = Breaking Factor Loss, EL = Elongation at Break Loss, TL = Tear Resistance Loss
EYG = Elongation at Yield Gain, ML = Modulus Loss, (m) = marginal or borderline results
- Y = Yes. N = No. (v) = variable results due to volatility of chemical
-------
second to last columns, and the reasons for a non-resistance rating are given
in the last column. Also listed in the table are whether temperature and
concentration effects were seen, whether the liner achieved stability in
contact with the chemical, and whether the HDPE is considered resistant to the
chemical exposure.
These suggested criteria for weight change, breaking factor (calculated
as tensile strength), and elongation at yield are the same as those proposed
by the EPA in the document "Resistance of FMLs to Chemicals and Wastes" (27).
Tear resistance, yield strength, elongation at break, and modulus of
elasticity were not included in the EPA list.
The Modern Plastics Encyclopedia (16) considers a less than ten percent
change in tensile strength of HDPE as 'usually not significant', a change of
10 to 20 percent 'significant but usually not conclusive', and more than 20
percent change 'usually significant1. To compare NSF results with this
guidance, Table 30 shows changes between 10 and 20 percent as marginal (m) for
breaking strength, yield strength, tear, modulus, and elongation at yeild and
break. Weight gains between 2 and 3 percent are also listed as marginal (m).
HDPE resistance ratings are listed in the EPA matrix for nine of the
chemicals tested in this project. Five of the favorable ratings given in the
matrix agree with resistant ratings derived using the proposed criteria with
project data (NaOH, HC1, dichromate, salt, and water). Two chemicals were
rated as unfavorable in the matrix: phenol and 1,2-dichloroethane. NSF
results for some concentrations of these two chemicals also showed
non-resistance. Furfural and MEK were listed as resistant in the matrix, but
NSF results were not conclusive. For both furfural and MEK, changes in
properties in the 10 to 20 percent range were observed.
Response TLae and Stability
The HDPE FML response to the chemical immersion must stabilize in order
for it to be considered chemically resistant. Response time, or the time
163
-------
required for the liner to stabilize in a given solution, varied from less than
one week to two years for HOPE. Only one exposure, ASTM #2 oil at 23°C did
not stabilize with respect to weight. • -—-
Magnitude of Liner Response
A two-part evaluation of the magnitude of physical property change was
followed in determining HOPE chemical resistance. Both an absolute minimum
value for a mechanical property (for example, yield strength) and an allowable
percent change of that property (from the initial value) were detemined.
Note: the absolute minimum requirement was not used for elongation at break
and modulus (see following section).
The range of changes seen in the HDPE liner was small. No losses in
weight were seen, and weight gain varied overall from less than one percent to
over six percent, depending on the exposure conditions. The largest weight
gains were in ASTM #2 oil and saturated 1,2-dichloroethane.
Changes were generally between zero and 20 percent for all mechanical
properties except elongation at yield and modulus of elasticity. Elongation
at yield tended to increase with weight gain, and some values above 140
percent were measured. Modulus decreased with weight gain in oil exposures
only to roughly 50 percent of its inital value.
Absolute Amount-
Standard 54 values were not critical in determining chemical resistance
for the project data for two reasons. First, none of the results of strength
properties (tear resistance, yield, and breaking strength) or elongation at
yield were lower than the Standard 54 table values. In addition, only a few
elongation at break and modulus of elasticity results were lower than the
Standard 54 values. These were not used as resistance criteria in Table 30
because the method used for elongation measurement (grip separation) gives
results less than when an extensometer is used.
164
-------
In evaluating future test data, however, the table values do provide a
benchmark for comparison. It appears that the strength properties in the
Standard 54 table may be too low, based on the difference between project data
and table values for breaking factor, yield strength, and tear resistance.
Percent Change from Initial Value—
The percent changes in property listed as recommended criteria were
developed by evaluating the variability in the material and testing process,
and setting reasonable estimates of material degradation.
Figure 65 shows the relationship between tensile strength (psi — break-
ing factor divided by thickness) and weight change (divided by thickness to
indicate percent change per inch thickness) for machine direction samples. A
weight change adjusted for thickness of 50 percent per inch thickness
corresponds approximately to a 1.5 percent weight change. This presentation
was chosen to minimize scatter in the data due to thickness variation.
Reproducibility of the measurement of HDPE tensile strength was approximately
+^ 15 percent, measured by looking at those samples with zero weight change. A
limit on change of 20 percent was chosen as an estimate of real material
degradation. Changes between 10 and 20 percent were listed as borderline in
the table.
Table 31 lists the test variability for each of the measured HDPE
properties, the criteria that were chosen, and whether or not there is a
relationship between weight gain and that measurement. The only changes in
mechanical properties of the HDPE liner that corresponded to weight changes
were modulus of elasticity and elongation at yield.
A limit for allowable stabilized weight gain for this HDPE liner was set
at 3 percent for immersion tests. This limit is based on manufacturer's
recommendations as listed in the EPA matrix (27). No weight criteria could be
established from the project, data, since there were not good COTrelations
between weight and mechanical properties.
165
-------
w a
EH PS
w EH
ee w
U 1-4
50 100 150
PERCENT WEIGHT CHANGE PER INCH
Figure 65. Relationship between tensile strength (normalized for thickness)
and weight change for HDPE
TABLE 31. VARIABILITY IN HOPE TEST MEASUREMENTS
Test Variability
(percent)
Tensile Strength at Break 15
Elongation at Break 10
Tensile Strength at Yield ' 10
El. at Yield 10
Modulus 20
Tear 10
Weight
Criteria for
Resistance
<20
<20
<20
<20
<30
<20
< 3
Relationship to
Weight Change
no
no
no
yes
yes
no
166
-------
Types of Effects
The results in Table 30 for this partially crystalline HOPE liner are
grouped according to the type of effects seen. Temperature and concentration
effects are noted in the third and fourth columns. Three basic types of
response to chemical immersion were observed with this liner: minor change,
swelling and softening (oil), and weight gain with decrease of strength and
elongation.
Temperature Effects—
Temperature had a moderate effect on HDPE FML results. Weight gains were
slightly larger in those samples exposed at 50°C than at 23°C. Elongation at
yield was greater in 50°C samples for immersions of phenol and MEK.
In ASTM #2 oil, the modulus of elasticity and the tear resistance were
less for samples exposed at 50°C.
Only the immersion sample exposed to ASTM #2 oil at 23°C did not
stabilize with respect to weight. The 50°C sample did stabilize, so the
increased temperature appears to have accelerated the response. Increasing
the temperature of immersion tests for HDPE appears to be a satisfactory
option for accelerating response.
Concentration Effects—
Four organic chemicals were tested in three concentrations. All responses
seen with these chemicals were affected by concentration. Percent weight gain
increased with increasing solution concentration.
Indicators of Non-Resistance
For this HDPE liner, the most important indicators of non-resistance were
weight change, tensile strength, modulus, elongation at yield.
167
-------
Weight change is generally smaller than other types of FMLs because of
the crystalline nature of the HOPE. With smaller weight changes, the method
reproducibility becomes more important, and extra care is needed in measuring.
Tensile strength appears to give indications of chemical resistance but
no conclusive results were obtained, that is, no consistent changes more than
20 percent were seen. The variability in this measurement is about 15 percent,
so it was difficult to definitely show changes.
Modulus of elasticity is a difficult measurement to take, and showed a
variability of 20 percent. The elastic portion of the HDPE liner stress/strain
curve is small, with yield occuring at about 10 to 20 percent elongation.
Graphical methods were used to record much of the modulus data. Only for ASTM
#2 oil was there a large decrease in modulus, so it is not possible to genera-
lize the relationship of modulus change to weight change to all situations.
Elongation at yield increased with weight gain for some immersion
samples. Only for a few exposures (mostly ASTM #2 oil) were the changes
conclusive (greater than 20 percent).
It must be noted that environmental stress crack resistance (ESCR) was
not considered in this project. ESCR is oftened considered an important
parameter for HDPE and other partially crystalline materials. Susceptibility
to stress cracking from exposure to the chemicals tested in the project would
not be apparent from the results since the samples were not under stress
during exposure.
Minor Change—
The following 23°C exposures produced only minor changes in weight and
mechanical properties: water, sodium hydroxide, hydrochloric acid, salt, and
potassium dichromate. An example is shown in Figure 66 and 67. These figures
show the response of the HDPE liner to a 10 percent NaOH solution at 50°C.
Weight gain (not shown) is less than one percent over the two-year period.
Figure 66 shows tensile strength, yield strength, and tear resistance as a
168
-------
p
E
R
C
E
N
T
50--
0
• - Tensile Strength (Z retention)
o - Tear Resistance (Z retention)
V - Yield Strength (Z retention)
2 5 10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 66. Percent tensile, yield and tear resistant change with inversion
in 10 percent sodim hydroxide solution at 50"C for HOPE
P
E
R
C
E
N
T
7
6"
\i*
5 --
l ]
4---
3--
Elongation at Tield (Z retention)
Elongation at Break (Z retention)
Modulus of Elasticity (Z retention)
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 67. Percent elongation at yield, elongation at break, and modulus
of elasticity change with laaersion in 10 percent sodlta
hydroxide solution at 50°C for HOPE
169
-------
function of immersion time. None show significant change over the immersion
period. Figure 67 shows elongation at yield, elongation at break, and modulus
of elasticity. No significant trends are seen.
Weight Gain with Softening—
The response to ASTM #2 oil at 50°C is illustrated in .Figures 68,69 and
70. Weight gain was over six percent, and stabilized after about 150 days
(Figure 67). No significant changes were seen in the strength properties:
tensile strength, yield strength, and tear resistance (Figure 69). Figure 70,
however, does illustrate changes in mechanical properties after immersion.
Elongation at yield increased and the modulus of elasticity decreased with
increasing immersion time. (Two year samples could not be tested for modulus
due to the sample shape.) Elongation at break shows no change.
Weight Gain with Decrease In Strength and Elongation—
In the organic solutions, changes in physical properties generally fell
in the the borderline region (2 to 3 percent for weight, 10 to 20 percent for
mechanical). Weight, breaking strength and elongation were the main indica-
tors. While for most immersion these changes were not conclusive due to the
limits of significance of the testing, they indicate that there is question
about the resistance of the HOPE to these chemicals.
Using the weight change criteria, HDPE was considered non-resistant to
saturated 1,2-dichloroethane. Consistent weight changes above three percent
were measured. Changes in mechanical properties were borderline (10 to 20
percent) and not conclusive.
170
-------
150-
P
E
R
C
E
N
ioo--
50-'
x
X
X
• - Weight Change (Z)
x
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure. 68. Percent weight change with immersion In ASTM #2 oil at 50°C
for HDPE
I3U~
P
E
100-^
R \
C
E
N 50~
T
I-
• - Tensile Strength (Z retei
a =» Tear Resistance (Z retenl
V = Yield Strength (Z retenti
i i j i i i i i 1 i i i i i i i i
-S
/
~ ~ — — ^,, _ X
-'
ition)
:ion)
Lon)
i
2 • 5 10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 69. Percent tensile yield and tear resistance change with Imerslon
in ASTM #2 oil at 50*C for HDPE
171
-------
p
E
R
C
E
N
T
200-
150-
100 -j
!
50-
• = Elongation at Yield (Z retention) ^-— •
o = Elongation at Break (Z retention) ^^
V = Modulus of Elasticity (Z retention)
^"
^^^•*
• -w~
n t-]
i "*-' n n ^_^^ f*
1" — - — ..... ^ '
"""V q
2
5 !0 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 70. Percent elongation at yield, elongation at break, and modulus, of
elasticity change with inversion in ASTM tl oil at 50 °C for HOPE
CHLOROSULFONATED POLYETHYLENE-LOW WATER ABSORPTION (CSPE-LW)
Criteria for Determining FML Chemical Resistance
For this FML, based on the data in this project, the following criteria
are proposed for determining the chemical resistance of CSPE-LW with immersion
tests:
. A stabilized liner response
. A weight gain of not more than five percent for immersion testing at 23°C.
. The breaking factor must be at least 80 percent of the initial value.
. The S-100 modulus must be at least 70 percent of the initial value.
. The tear resistance must be at least 80 percent of the initial value.
. The elongation at break must not be more than 125 percent of the initial
value.
172
-------
These criteria are used in evaluating the FML's response to the chemicals
in Table 32. Table 32 is a summary of the results of chemical resistance
testing for CSPE-LW liner, and the table is explained and amplified in the
sections that follow. The chemicals listed in Table 32 are grouped according
to the type of response seen. Resistance or non-resistance is listed in the
second to last columns, and the reasons for a non-resistance rating are given
in the last column. Also listed in the table are whether temperature and
concentration effects were seen,and whether the liner achieved stability in
contact with the chemical exposure.
The suggested criteria for mechanical properties are based on the test
reproducibility seen for this CSPE-LW liner.
Limits on weight change are specified for a 23°C immersion temperature.
This was necessary .since the CSPE-LW liner response was changed by elavating
temperature.
These suggested criteria for breaking factor and S-100 modulus are the
same as those proposed by the EPA in the document "Resistance of FMLs to
Chemicals and Wastes" (27). Tear resistance was not included in the EPA list,
and the limits for elongation at break were given as 70 percent retention.
Because the liner tested showed no decrease in elongation for exposures at
23°C, a lower limit could not be determined from the data. This EPA document
lists ten percent as the limit for weight gain, while this project specifies a
five percent gain as the limit for exposures at 23°C. This more conservative
limit, with temperature limitations was chosen based on the temperature
effects and the limits of method reproducibility.
Comparison of Table 33 results to the EPA chemical resistance matrix
mentioned above show reasonable agreement, although the matrix does not
specify whether industrial grade CSPE (low water absorption) was used, or
whether the material was thermoplastic or crosslinked. Results at 23°C for
water and hydrochloric acid are termed resistant in both cases. Weight change
in sodium hydroxide solution, however, was much higher in the NSF data than in
the matrix reference, and resulted in the NSF non-resistant rating. For
173
-------
CHEMICAL TEMPER- CONCEN- TYPE OF
NAME TYPE ATURE TRATION RESPONSE
EFFECT EFFECT
Water - yes
Sodium Chloride SALT no no
Potassium Dichromate OXIDIZER no
Hydrochloric Acid ACID yes
Sodium Hydros ide BASE yes
ASTM *2 Oil OIL yes
Furfural ALDEHYDE yes yes
1 . 2-Dichloroethane CHLORINATED yes yes
HYDROCARBON
Methyl Ethyl Ketone KETONE yes yes
Phenol PHENOL yes yes
Minor Change
Cross) Inking at 50
Minor Change
Minor Change
Minor Change
Swel 1 Ing/Soft at 50
Swe 1 1 ing and
Cross 1 Inking
Swel 1 Ing and
Softening
Swe 1 1 Ing and
Softening
Swel 1 ing and
Softening
Swel 1 ing and
Softening
Swe 1 1 ing and
Softening
STABILITY
ACHIEVED-
CONDITIONS
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
23
50
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
-
10% &
sat d
10%
10%
10%
100%
1%
4%
8%
1%
4%
8%
[5%
.8%
.1%
.5%
.8%
3%
13%
26%
3%
13%
26%
1%
4%
e%
1%
4%
8%
(N)
Y
Y
V
V
V
N
N
N
V
N
V
N
N
V
N
V
V
Y
V
V
N
N
N
N
N
V
Y
V
V
V
V
V
N
V
N
RESISTANT-
V
N
V
Y
V
V
V
N
N
N
Marg.
N
V
N
N
N
N
N
V
N
N
N
N
N
Marg.
N
N
N
N
N
Y
N
N
N
N
N
REASONS FOR
NON-RESISTANCE *
WG,
•
WG,
WG
WG,
WG.
WG. 8L.
SL
SL.
TL, EG
TL(m)
SL(m). TL(m)
SL. TL. EG
WG, SL(m), TL(tn)
WG, SL, TL(m).
WG, SL, TL(m)
WG. SL. TL
WG, BL, SL, TL. EG
WG(m).
WG,
WG.
WG,
WG,
WG(m) .
WG.
WG,
WG.
WG , BL ,
WG, BL,
WG.
WG.
WG.
WG,
WG, BL.
SL
SL.
SL,
SL.
SL,
EG
TL, EG
EG(m)
TL(m)
TL, EG
SL(m)
SL, TL. EG
SL. TL. EG
SL, TL
SL. TL. EG
SL. TL, EG
SL]
SL.
SL.
SL.
TL. EG
TL, EG
TL
TL. EG
TL. EG
» WG = weight gain. BL = Breaking Factor Loss. TL = Tear Resistance Loss, SL = S-100 Loss, EG = Elongation at Break Gain
Y = Yes. N = No, (m) = marginal or borderline results
-------
phenol, the EPA matrix rates CSPE-LW resistant to < 30 percent phenol based on
manufacturers' data. This weight data is compared with NSF data in Table 32.
Although the concentration of phenol is not specified in the matrix reference,
the data is similar to the NSF results for 4 percent phenol solution. CSPE was
termed resistant to this phenol solution in the EPA matrix (using its weight
change limit of 10 percent), whereas using the NSF criteria (5 percent weight
change limit), the higher two concentrations are non-resistant.
TABLE 33. COMPARISON OF MANUFACTURER'S DATA
TO NSF DATA FOR CSPE-LW RESISTANCE TO PHENOL.
DAYS IMMERSION
Matrix Reference
(24°C, < 30% phenol)
PERCENT WEIGHT CHANGE
NSF Data (23°C, phenol)
1% 4% 8%
1
3
7
11
14
28
36
46
56
81
130
137
241
5.6
6.0
6.0
11
2
2
2
2
2
2
2
2
6
6
6
6
7
6
7
7
9
9
9
11
10
10
12
13
Response Tiae and Stability
The maximum immersion time for this liner was eight months. Over half of
the exposed CSPE-LW liners showed weight stability within this period, but
other types of FML also sometimes required longer than eight months to achieve
weight stability.
175
-------
Response time, or the time required for the liner to stabilize in a given
solution, varied from less than seven days to more than eight months for
CSPE-LW. In most cases, though, a four-month exposure time would appear to be
sufficient to determine chemical resistance. There were fifteen exposures for
which CSPE-LW liner did not show stability withi.n eight months. The liner
appeared to be resistant to only three of these non-stabilized exposures
(water, HC1, and 1 percent furfural, all at 23°C). In the other twelve cases,
there were multiple indicators of non-resistance.
Magnitude of Liner Response
A two-part evaluation of the magnitude of physical property change was not
possible in evaluating CSPE-LW chemical resistance. There is no Standard 54
table for unsupported CSPE-LW FML. Only a maximum allowable percent change
based on the control (unexposed) results was determined.
Changes in weight were always positive for CSPE-LW immersion tests; no
samples showed a weight loss. Weight gains ranged from zero to over one
hundred percent (ASTM #2 oil at 50°C).
Breaking strength and elongation at break showed both gain and loss due to
chemical immersion. Breaking strength ranged from 30 percent retention (in
saturated MEK) to 130 percent retention (in NaOH). Elongation ranged from 54
percent retention (in saturated furfural) to 188 percent retention (in ASTM #2
oil). In general, elongation decreased as breaking strength increased.
Tear resistance and S-100 modulus showed either minor change only or
losses. Retention of tear resistance ranged from 21 percent (two months in
ASTM #2 oil at 50°C) to 102 percent (one day in HC1). S-100 modulus ranged
from 7 percent retention (eight months in ASTM #2 oil at 50°C) to 101 percent
retention (two months in NaOH).
Percent Change from Initial Value-
Limits on allowable change for the CSPE-LW liner were set by looking
primarily at the 23°C data in order to separate the effects of temperature
176
-------
from the effects of the chemical Immersion.. The material is sensitive to
temperature, and tends to slowly crosslink on exposure to heat and moisture.
The effect of crosslinking is increased breaking strength .and decreased
elongation. General chemical resistance improves with aging (from
crosslinking), but the liner becomes difficult to seam. The higher temperature
exposures in general had a wider range of weight gain, especially for the
organic immersion solutions.
Figure 71 shows the relationship between breaking factor and weight change
at 23°C. Breaking factor reproducibility in this CSPE-LW liner was
approximately 15 percent, measured by looking at those samples with little or
no weight change. A limit on change of 20 percent was chosen as a conservative
estimate of real material degradation.
IT
Criteria Boundaries
W 00
cu
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 71. Relationship between breaking factor and weight change at 23°C
for CSPE-LW
The S-100 modulus tended to decrease as a result of chemical immersion.
Figure 72 shows the retention of S-100 modulus as a function of weight change.
This figure contains data from both temperatures, since the S-100 modulus
response was similar (ie., at the higher immersion temperature, although the
177
-------
Criteria Boundaries
+ +
+ i
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 72. Relationship between S-100 modulus and weight change for CSPE-LW
weight gain may be greater, the S-100 modulus change is also proportionally
greater). Although almost all immersion samples retained less than 100 percent
of the modulus, the variability around zero weight change appears to be about
percent. This represents inherent property variability after immersion but
with no other effect evident. A limit of 30 percent loss of S-100 modulus was
chosen as an indicator of real material degradation.
Like the S-100 modulus, retention of tear resistance was almost always
less than 100 percent, and temperature did not change the basic response. To
focus on the lower portion of the weight range, the data from 23 °C exposures
only is shown in Figure 73. Tear resistance variability around the zero weight
change point is about ten percent, with a clear relationship between weight
gain and loss of tear resistance. (Above a twenty percent weight gain, the
tear resistance response is not linear with weight gain, but look similar to
the curve for S-100 modulus (Figure 72).
A limit for weight gain for this CSPE-LW liner was set at 5 percent for a
30 mil liner. This limit was set using Figures 71 and 72, selecting the weight
178
-------
gain for which the S-100 modulus and tear resistance properties fell below the
percent change limit. The 5 percent limit is smaller than the limit in the EPA
guide (27), which lists a ceiling 10 percent weight gain, but is justified by
the drop in the tensile properties at five percent weight gain.
O W
a E* "
E- W
%Z !
ca i
E- « i
L%7^£^ "
t.T -
Criteria Boundaries
-i- -*
W
U
(X
w
a.
>a 5 iv 15 50
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 73. Relationship between tear resistance and weight change at 23°C
for CSPE-LH
Retention of ultimate elongation is shown as a function of weight change
in Figure 74. Variability in elongation is about 20 percent around the zero
weight gain point. Data for both temperatures are included in the figure for
illustration. Two separate types of response can be seen. For most immersions,
elongation at break increased, probably due to the softening effect from
liquid absorption. Some immersion samples, however; retained less elongation
after immersion and appeared to be crosslinking. Most of the samples with
decreased elongation were exposed at 50°C, in NaOH or water.
Because the trend for CSPE-LW was for the elongation at break to increase
as a result of chemical immersion at 23°C, and because cro3slinking is not
considered material degradation, no lower limit on percent retention could be
determined and probably is not appropriate. To set a limit of allowable
179
-------
OH 4Kfli r
M « .=« r
63
§
•*j! j^ JT'1^ **•
W O
CU tJ
3
i '•" ,' -
-•is
i - / *f
f | -f,
Criteria Bo
i......... _ . ...
1
~
•*$£"*?*
£?**«•. ^
f*Z -t
*± '
undari
"
<••** ,
*•' f
esr +
t
+
*
;
T
"•" ,
PERCENT WEIGHT CHANGE ALL EXPOSURES
Figure 74. Relationship between elongation at break and weight change
for CSPE-LW
increase in elongation, the relationship between elongation and other indica-
tors was studied. Figures 75 and 76 show the relationship between elongation
at break and S-100 modulus and tear resistance, respectively. An increase in
elongation of 25 percent (125 percent retention) roughly corresponds to the
limits set on both properties.
Types of Effects
The results in Table 33 for CSPE-LW are grouped according to the type of
effects seen. A temperature or concentration effect is noted in the third and
fourth columns. Three basic types of response to chemical immersion were
observed with this liner: minor change, crosslinking, and swelling and
softening.
Temperature Effects—-
The response of this liner to increased immersion temperature shows that
higher temperatures (at least up to 50°C) can sometimes accelerate the
response, but must be interpreted with caution. Crosslinking of the CSPE-LW
180
-------
Criteria Boundaries
PERCENT RETENTION OF S-100 MODULUS. ALL EXPOSURES AT 23 C
Figure 75. Relationship between elongation at break and S-100 nodulus at
23°C for CSPE-LH
C.1V
x%
o a
>-* 04 "S Tl
EH OQ ""
z
M CH
E- -<
a
o u'*
^s
w <
tf § -
H § :; .
O, J
ca
.1 >
___ !
- -T^*^si_<.
: ; -
'*-•••: i
Criteria Boundaries
x "-r- ' . :-
IT-^
fe^^r-Jtixj* J" +
" "^ ^. *** J- ti*~-^-^-L
otf
PERCENT RETENTION OF TEAR. ALL EXPOSURES AT 23°C
Figure 76. Relationship between elongation at break and tear resistance at
23°C for CSPE-LW
181
-------
liner is a known response to heat and moisture. For water and sodium
hydroxide, increased evidence of crosslinking was seen at 50°C. For these two
exposures, the breaking strength increased with time, and the elongation at
break decreased.
Increasing the temperature to 50°C generally resulted in more weight gain,
and more severe losses of property, especially for organic solutions. In these
cases, the increased temperature appeared to accelerate the test.
Concentration Effects—
Four organic chemicals were tested in three concentrations. All responses
seen with these chemicals were affected by concentration, with more weight
gain at higher concentration.
Indicators of Non-Resistance
For CSPE-LW, the most sensitive indicators of non-resistance are weight
gain, decrease of S-100 modulus, and decrease of tear resistance. As discussed
above, a weight gain of 5 percent corresponds to a 20 percent drop in tear
resistance and a 30 percent drop in S-100 modulus.
Changes in breaking strength can indicate material degradation, but the
measurement is much less sensitive. As shown previously in Figure 71, the 15
percent variability in breaking strength around zero weight gain means that
changes in breaking strength less than 15 percent are not conclusive. Only for
weight gains above 20 percent are conclusive changes in breaking factor seen.
Elongation at break is at best an indirect indicator of chemical
non-resistance, since an increase in elongation can be correlated with
decreases in S-100 modulus and tear resistance. Decreasing elongation,
however, is not a good indicator of CSPE-LW chemical non-resistance since the
FML may be crosslinking in response to heat and moisture (3).
182
-------
Minor change—
In water (23°C only), salt, potassium dichromate, and hydrochloric acid
(23°C only) minor changes in weight and mechanical properties were observed .
An example is shown in Figure 77. This figure shows the response of CSPE-LW
liner to a saturated salt solution at 50°C. No significant weight gain was
recorded over the eight month immersion period. Both elongation at break and
breaking strength were unchanged from their initial values. S-100 modulus and
tear resistance were slightly lower.
Crosslinking—
In water (50°C), and in sodium hydroxide solutions at both temperatures
evidence of crosslinking was seen. While not evidence of non-resistance in
itself, crosslinking should be noted as a response. Figure 78 shows the
response of CSPE-LW- to 10 percent sodium hydroxide at 50"C. Weight gain was
about 25 percent, and may have stabilized after 100 days. Elongation shows a
downward trend with time, beginning after about one month immersion time. At
the same time, the breaking strength increased to 130 percent of its initial
value. It should be noted that the S-100 modulus, not shown on this figure,
remained relatively steady and did not show the same increase as breaking
factor. The responses may have not yet stabilized with respect to time.
Swelling and softening—
In all four organic series (MEK, phenol, furfural, and
1,2-dichloroethane), in ASTM #2 oil, and in hydrochloric acid (50°C only),
swelling and softening was the primary response of the CSPE-LW liner. Exposure
to these chemicals caused weight gain, reduced S-100 modulus, reduced tear
resistance, and an increase in elongation at break. For the organic chemical
series, only the lowest concentrations of each tested at 23°C did not change
the CSPE-LW enough for it to be considered non-resistant.
At 50°C, the initial increase in elongation decreased with time for these
exposure.}, and the breaking strength tended to remain the same or decrease.
While some crosslinking may be occuring, caused by temperature, the material
also appears to be weakening as a result of the exposure. As shown in
183
-------
150
p
E
R
C
E
N
T
• » Weight Change (Z)
° = Breaking Factor (Z retention)
V = Elongation at Break (Z retention)
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 77. Physical property change with Immersion in saturated (35 percent)
salt solution at 50'C for CSPE-LH
150
P
E
R
C
E
N
T
50-- Q
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
10 20 50 100
LOG DAYS IMMERSION
200
500 1000
Figure 78. Physical property change with immersion in 10 percent sodium
hydroxide solution at 50°C for CSPE-LW
184
-------
Table 32, breaking strength is below 80 percent retention only for the higher
concentrations of furfural, MEK, and phenol at 50°C only.
Figures 79 and 80 show the CSPE-LW response to ASTM #2 oil at both
temperatures. At 23°C (Figure 79), the weight is above ten percent and still
increasing with time, although the breaking strength and elongation show no
effect. Retention of S-100 modulus and tear resistance, not shown are
borderline and had not stabilized within the testing period. At 50°C (Figure
80) the response is much faster and more severe. Weight gain has stabilized at
100 percent, and breaking strength at around 50 percent retention. The initial
large increase in elongation at break peaked at fourteen days and declined to
just over 100 percent after eight months. The liner was quite soft and swollen
after exposure to the hot oil.
The response to 8 percent phenol is shown in Figures 81 and 82. These
figures again show the swelling response, and the difference between exposure
at 23 and 50°C. Weight gain is much higher at 50°C than at 23°C and does not
stabilize at the higher temperature. Elongation at break increases immediately
and then declines again with time at 50°C.
^uu-
p
150-
R
c ioo-
E
N
T
• - Height Change (Z)
Q - Breaking Factor (Z retention)
V - Elongation at Break (Z retention)
g__ y — v v
-ss=s-=:a~"-~ \/ a D
__,--.— ••--•-"•
2 5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 79. Physical property 'change with imnersion in ASTM #2 oil at 23°C
for CSPE-LW ?
185
-------
200
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
P
E
R
C
E
N
T
5 10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 80. Physical property change with immersion in ASTM #2 oil at 50°C
for CSPE-LW
^uu-
p
150-
E
R
C 100^
[
E
N
T 5°-
0-
^-'-V"^"
„.- *"""
i »•*
•^ n
] D
• - Weight Change (Z)
° = Breaking Factor (Z
7 = Elongation at Break
i i i i i M i i i
---- tf--~ " \7
—
n a
retention)
(Z retention)
10 20 50 100 200 500 1000
LOG DAYS IMMERSION
Figure 81. Physical property change with immersion in 8 percent phenol at
23°C for CSPE-LS
186
-------
p
E
R
C
E
N
ISO
lOOtr
-D
V
Weight Change (Z)
Breaking Factor (Z retention)
Elongation at Break (Z retention)
D
D
10 20 50 100 200
LOG DAYS IMMERSION
500 1000
Figure 82. Physical property change with inversion in 8 percent phenol at
50°C for CSPE-LH
187
-------
REFERENCES
1. U.S. Code of Federal Regulations Part 40, Sections 264.221 and 264.301.
2. Tratnyek, Joseph, Peter Costas and Warren Lyman. Test Methods for
Determining the Chemical Waste Compatibility of Synthetic Liners. U.S. EPA
Report No. 600/2-85-029, U.S. Environmental Protection Agency, Cincinnati,
Ohio, 1984.
3. U.S. Environmental Protection Agency. Draft Minimum Technology Guidance on
Double Liner Systems for Landfills and Surface Impoundments — Design,
Construction, and Operation, December 1984.
4. Barton, Allen F. CRC Handbook of Solubility Parameters and Other Cohesion
Parameters. CRC Press, Inc., Boca Raton, Florida, 1983.
5. Personal communication, Mary Ann Curran, October 1985.
6. Rossiter, Walter J. A Methodology for Developing Tests to Aid Service Life
Prediction of Single-Ply Roofing Membranes. Paper presented at the
NBS/NRCA 7th Conference on Roofing Technology, 1983.
7. National Sanitation Foundation. Standard 54 for Flexible Membrane Liners.
NSF, Ann Arbor, MI, 1985.
8. U.S. Environmental Protection Agency. Compatibility Test for Wastes and
Membrane Liners, Method 9090, October 1984.
9. American Society for Testing and Materials. Standard Definitions of Terms
Relating to Plastics. ASTM D883-83, Section 8, Vol. 08.04, pp. 22-37.
ASTM Philadelphia, PA, 1986.
10. U.S. Environmental Protection Agency. Lining of Waste Impoundment and
Disposal Facilities. Office of Solid Waste and Emergency Response Report
No. SW-870, March 1983.
11. Hall, Christopher. Polymer Materials, An Introduction for Technologists
and Scientists. John Wiley and Sons.
12. Seymour, Raymond B. and Robert H. Steiner. Plastics for Corrosion
Resistant Applications. Reinhold Publishing Corp., New York, 1955.
13. Rosen, Stephen L. Fundamental Principles of Polymeric Materials. SPE
Monograph Series, John Wiley and Sons, 1982.
14. Quackenbos, H.M. Plasticizers in Vinyl Chloride Resins: Migrations of
Plasticizer. Industrial and Engineering Chemistry, June 1984.
15. Reed, M.C., H.F. Klemm and E.F. Schultz. Plasticizers in Vinyl Chloride
Resins: Removal by Oil, Soapy Water, and Dry Powders. Industrial and
Engineering Chemistry, June 1954.
188
-------
16. Agranoff, J., ed. Modern Plastics Encyclopedia. McGraw-Hill, Inc...Volume
59, October 1983.
17. Gibbons, Gregory M., and Jonathan W. Braswell. U.S. Army Toxic and
Hazardous Materials Agency. Engineering and Development Support of General
Decon Technology for the Darcom Installation Restoration Program: Task 1.
Lagoon/Landfill Liner Compatibility Testing with Explosives, June 1983.
18. American Society for Testing and Materials. Standard Test Method for
Resistance of Plastics to Chemical Reagents. ASTM D543-67, reapproved
1978.
19. Morrison, W.R., and L.D. Parkhill. Evaluation of Flexible Membrane Liner
Seams. U.S. EPA Report No. 600/2-87-015, February 1987.
20. Hawley, Gessner G. Condensed Chemical Dictionary, Tenth Edition. Van
Nostrand Reinhold Company, New York, 1981.
21. American Society for Testing and Materials. Standard Test Method for
Rubber Property - Effects of Liquids. ASTM D471-75, Section 8, Vol. 08.01,
pp. 123-130. ASTM Philadelphia, PA, 1986.
22. Perry's Chemical Engineering Handbook, 5th Edition, McGraw-Hill, New York,
1973.
23. The General Chemical Resistance of Various Elastomers. 1979 Yearbook of
the Los Angeles Rubber Group, Inc., 1979.
24. Chemical Resistance Rating Guide. Gundle Corp.
25. Comparative Properties of Typical Commercial Elastomers. DuPont Elastomers
Polymer Selection Guide. DuPont Company, Elastomer Chemicals Department,
Wilmington, DE.
26. Chemical Resistance. Schlegel-Chemische Corp.
27. Schwope, Arthur D., Peter Costas and Warren J. Lyman. Resistance of
Flexible Membrane Liners to Chemicals and Wastes. U.S. EPA Report No.
600/2-85-127, January 1986.
28. CRC Handbook of Chemistry and Physics, 59th Edition, 1978-79.
29. Haxo, H.E., Jr., et al. Liner Material Exposed to Hazardous and Toxic
Waste. Final Report to the U.S. Environmental Protection Agency,
Cincinnati, Ohio, 1984.
30. Tod Baseden, DuPont Co., personal communication.
31. Dixon, W.J. BMPD Statistical Software Manual, University of California
Press, Berkley, 1985.
32. Finney, D.J. Statistical Methods in Biological Assay, 2nd Edition.
Hafner Publishing, New York, 1964.
189
-------
APPENDIX A
ADVISORY COMMITTEE MEMBERS
190
-------
PROJECT ADVISORY COMMITTEE
CHEMICAL RESISTANCE OF FLEXIBLE MEMBRANE LINERS
Mr. Tod Baseden
Polymer Products Department
E. I. duPont Company
Chestnut Run
Wilmington, DE 19898
(302) 999-2410
Joan B. Berkowitz
President/CEO
Risk Science International
1101 30th Street, NW
Washington, DC 20007
(202) 342-2206
Mr. Allen Crepeau
Uniroyal Chemical
Service Center
Spencer Street, Building 112
Naugatuck, CT 06770
(203) 723-3825
Dr. Stacy L. Daniels
(Chemical Manufacturers Association)
Dow Chemical, USA
734 Building
Midland, MI 48667
Dr. Gerald L. DePoorter
Los Alamos National Laboratory
DAD/NP MS F671
PO Box 1663
Los Alamos, NM 87545
(505) 667-1033
Mr. Norman R. Francingues
Chief, Water Supply & Waste
Treatment Group
US Army Corp of Engineers
Waterways Experiment Station
PO Box 631
Vicksburg, MS 39180
(601) 636-3111
Mr. Ron Frobel
CHEMIE LINZ
1726 Cole Blvd
Suite 325
Golden, CO 80401
(303) 278-4529
Mr. Dean M. Golden
Electric Power Research Institute
PO Box 10412
Palo Alto, CA 94303
(415) 855-2516
Dr. Henry Haxo
Matrecon, Incorporated
81 Atlantic Avenue
Alameda, CA 94501
(415) 521-1762
Mr. Larry Kamp
Matrecon, Incorporated
81 Atlantic Avenue
Alameda, CA 94501
(415) 521-1762
Dr. Robert M. Koerner
Department of Civil Engineering
Drexel University
Philadelphia, PA 19104
(215) 895-2343
Mr. James Krider
US Soil Conservation Service
5248 South Agriculture Building
PO Box 2890
Washington, DC 20013
(202) 447-5023
Mr. John Lawrence
Society of the Plastics Industry
355 Lexington Avenue
New York, NY 10017
(212) 573-9400
191
-------
Mr. Paul W. Lussier
Supervisor, R&D
Canadian General-Tower
PO Box 160
Cambridge, Ontario
Canada N1R 5T7
(519) 623-1630
Mr. Don Mitchell
Battelle Northwest
324-TR15
PO Box 999
Richland, WA 99352
(509) 376-0983
Mr. Don Patterson
Polysar Incorporated Rubber
Technical Centre
1501 Commerce Drive
Stow, OH 44224
Mr. Roger Pennifill
US Nuclear Regulatory Commission
MS 623 SS
Washington, DC 20555
(301) 427-4536
Mr. Arnold G. Peterson
Stevens Elastomeric and Plastics
PO Box 431
Easthampton, MA 01027
(413) 527-0700
Mr. Paul A. Pezzoli
Dow Chemical Company
Building 2307, Box 150
Plaquemine, LA 70764
(504) 382-8275
Dr. Frederick G. Pohland
Department of Civil Engineering
Georgia Institute of Technology
Atlanta, GA 30332
(404) 894-2265
Mr. David Eakin
President
Gundle Lining Systems
1340 East Richey Road
Houston, TX 77073
(713) 443-8564
Mr. Alfred Silverman
Spartan-Aqualon Corporation
17 Cotters Lane
East Brunswick, NJ 28816
(201) 238-5100
Mr. Wayne E. Sisk
Commander/US Army Toxic and
Hazardous Materials Agency
ATTN: DRX-TH-TE-D
Aberdeen Proving Ground, MD 21010
(301) 671-2054
Dr. Edward D. Smith
US Army-CERREL
Environmental Group
PO Box 4005
Champaign, IL 61820
(217) 352-6511
Mr. Lloyd Timblin, Jr.
Chief, Applied Sciences Branch
Bureau of Reclamation
Engineering and Research Center
Building 67, DFC
Code D-1520
PO Box 25007
Denver, CO 80225
(303 236-8098
Mr. Richard Ward
B.F. Goodrich Company
PO Box 657
Marietta, OH 45750
(614) 373-6611
192
-------
Mr. William E. Witherow
Product Manager
Carlisle Syntec Systems
PO Box 99
Carlisle, PA 17013
(717) 245-7000
Mr. Ralph Woodley
Technical/Product Manager
Burke Rubber Company
2250 South Tenth Street
San Jose, CA 95112
(408) 297-3500
Ms. Lynn Zwickert
Senior Product Representative
Hercules, Incorporated
Hercules Plaza
Wilmington, DE 19899
(302) 594-6358
193
-------
APPENDIX B
INITIAL SCREENING RESULTS
194
-------
POLVVINYL CHLORIDE: INITIAL SCREENING, RETENTION OF PROPERTIES. 23°C
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
4
1
6
1
470
2
15
6
37
15
70
59
1
13
67
.4
.5
.6
.6
.7
*
.7
.2
.9
.2
.3
.2
. 2
.0
.7
.4
. 1
.4
.8
.3
PERCENT
THICKNESS
CHANGE
1 2 DICHLOROETHANE
.6
.3
1 2 DICHLOROETHANE
.6
.3
1 2 DICHLOROETHANE
77. 1
*
FURFURAL 1.0%
.3
.3
FURFURAL 5.0%
4.8
1 .9
FURFURAL 8.0%
12.1
6.0
FURFURAL 100.0%
18.8
*
METHYL ETHYL KETONE
.6
.3
METHYL ETHYL KETON.E
4.8
1 .0
METHYL ETHYL KETONE
21.8
1 .9
PERCENT
LENGTH
CHANGE
.9%
1
.5%
1
1
100.0%
57
4
1
8
3
14
8
1 .0%
10.0%
3
1
26.0%
13
4
.9
.0
. 1
.0
.3
*
. 7
. 1
.7
.5
.9
.4
.6
.5
.6
.2
.6
. 1
. 1
.2
PERCENT
WIDTH
CHANGE
2.
1 .
94.
*
1 .
5.
2.
7.
18.
1 1 .
4.
21 .
1 .
2
2
9
9
9
0
*
3
2
5
7
5
0
9
2
B
2
2
2
PERCENT
VOLUME
CHANGE
1 .
3.
2.
3.
442.
*
2.
15.
5.
31 .
10.
61 .
*
2.
13.
66.
1 .
7
5
7
2
9
1
2
5
7
1
4
4
1
3
8
4
9
2
-------
POLYVINYL CHLORIDE: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
O-v
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
*
.9
.6
.6
2.5
3. 1
2. 1
6.8
4.5
.5
4.8
4.2
11.1
PERCENT PERCENT
THICKNESS LENGTH
CHANGE CHANGE
METHYL ETHYL KETONE 99.0%
* *
* «
ASTM #2 OIL SATURATED
* .3
* .4
ASTM #2 OIL 100.0%
.3 .5
.3 1.1
PHENOL 1.0%
1.3 1.1
.3 .8
PHENOL 5.0%
2.9 1.3
1.3 1.1
PHENOL 8.0%
.3 1.5
11.9 3.0
PHENOL 88.0%
1.3 3.5
6.4
PERCENT PERCENT
WIDTH VOLUME
CHANGE CHANGE
* *
* *
.4 . 1
.8 1.2
.5 .7
1.0 2.4
.8 3.2
.7 1 .8
2.0 6.3
1.4 3.9
1.8 3.0
3. 1 17.2
3.2 7.8
6.1 12.1
-------
CHLORINATED POLYETHYLENE: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
vo
-j
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
21 .
3.
12.
2.
4
4
2.
1 .
19.
10.
65.
20.
79.
48.
3.
27.
3.
191 .
92.
4
3
7
9
5
2
5
5
4
1
5
4
0
2
2
2
3
1
PERCENT PERCENT
THICKNESS LENGTH
CHANGE CHANGE
1 2 DICHLOROETHANE .9%
26.0 .9
14.4 1.6
1 2 DICHLOROETHANE .5%
13.8 .5
3.4 .5
1 2 DICHLOROETHANE 100.0%
* *
* *
FURFURAL 1 .0%
2.0 .1
.3 *
FURFURAL 5.0%
17.5 1.6
8.6 2.5
FURFURAL 8.0%
49.5 2.2
17.7 2.7
FURFURAL 100.0%
47.3 3.7
36.0 10.7
METHYL ETHYL KETONE 1.0%
3.1 *
.3 *
METHYL ETHYL KETONE 10.0%
30.5 3.3
9.9 2.7
METHYL ETHYL KETONE 26.0%
131.7 4.4
98.6 10.2
PERCENT
WIDTH
CHANGE
9.
3.
4.
1 .
5.
2.
19.
9.
20
12
12
3
44
31
4
9
7
3
*
*
.2
*
.7
, 1
.6
.0
.6
.5
.5
.3
.9
.2
.8
.4
PERCENT
VOLUME
CHANGE
36.
16.
18 .
4.
*
*
2.
22.
8 .
74.
24.
71 .
36.
3.
7
9
6
3
3
4
3
1
8
9
0
5
&
7
42.5
10.4
220.6
134.3
-------
CHLORINATED POLYETHYLENE: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
WO
00
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
LENGTH
CHANGE
PERCENT
WIDTH
CHANGE
PERCENT
VOLUME
CHANGE
METHYL ETHYL KETONE 99.0%
2
1
2
1 1
7
26
10
42
21
*
*
.4
.5
.5
.7
.4
. 1
.2
.0
.3
.8
.7
.8
*
*
ASTM #2 OIL SATURATED
8.2
.3
ASTM #2 OIL 100.0%
1 .7
1 .0
PHENOL 1.0%
2.4
*
PHENOL 5 . 0%
10.3
3. 1
PHENOL 8 . 0%
23.2
10.2
PHENOL 88.0%
36.9
21 .0
*
V
#
. 1
. 1
. 1
.2
.2
.3
.5
.6
.2
1 .9
*
4
.4
.2
.3
.2
.2
*
2.0
.8
5.9
3. 1
9.2
5.4
*
*
7.8
.4
2. 1
.8
2.8
.2
12.9
4.4
31 .3
13.7
49. 1
25.2
-------
ETHYLENE PROPVLENE DIENE MONOMER: INITIAL SCREENING, RETENTION OF PROPERTIES, 23DC
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR^DRIED
PERCENT
WEIGHT
CHANGE
16.1
20.9
1 .5
1 .2
40.5
40.3
.5
*
1 .0
.5
1 .4
.6
.7
2. 1
PERCENT
THICKNESS
CHANGE
METHYL
B.
1 1 .
ASTM *2
ASTM #2
15.
15.
PHENOL
PHENOL
PHENOL
9.
7.
PHENOL
1 .
PERCENT
LENGTH
CHANGE
PERCENT
WIDTH
CHANGE
PERCENT
VOLUME
CHANGE
ETHYL KETONE 99.0%
8
6
OIL SATURATED
3
*
OIL 100.0%
1
1
1 .0%
3
*
5.0%
2
2
8.0%
3
9
88.0%
5
5
7.4
9.8
.4
.5
13.9
14.4
. 1
*
. 1
. 1
.2
.2
.7
1 .0
5.3
7.5
. 1
.7
11.3
11.3
.4
.4
.3
. 1
.4
.4
.3
.8
20. 1
26. 2
.8
1 .2
45.8
46.5
. 1
.4
.6
*
10.0
7.3
1 .5
3.3
-------
ETHYLENE PROPVLENE DIENE MONOMER: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
O
o
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
3. 1
.2
3. 1
. 1
9.9
22.7
.4
*
1 .4
. 1
1 .9
. 1
1 .8
2.8
.4
. 1
1 .5
*
5.5
. 2
PERCENT
THICKNESS
CHANGE
1 2 DICHLOROETHANE
1 .7
*
1 2 DICHLOROETHANE
.8
.5
1 2 DICHLOROETHANE
7. 1
11.8
FURFURAL 1 .0%
.7
.5
FURFURAL 5.0%
1 .5
.2
FURFURAL 8.0%
1 .5
FURFURAL 100.0%
1 .0
.7
METHYLETHYL KETONE
.5
4
METHYL ETHYL KETONE
*
. 7
METHYL ETHYL KETONE
2.4
1 .0
PERCENT
LENGTH
CHANGE
.9%
.8
. 1
.5%
.8
*
1 00 . 0%
6.7
9.3
*
. 1
.2
. 1
.4
.2
.8
1 . 1
1 .0%
.2
*
10.0%
V
.3
26.0%
2. 2
. 2
PERCENT
WIDTH
CHANGE
.8
*
.9
*
6.0
8.8
*
. 1
.6
. 1
.5
.2
.4
.4
.2
.5
*
. 1
2 . 1
. 4
PERCENT
VOLUME
CHANGE
3.3
. 1
2.5
.5
18.6
27. 1
.7
.3
2.3
.3
2. 3
2. 1
2.2
.5
.5
*
1 . 1
6. 9
. 8
-------
EPICHLOROHVDRIN: INITIAL SCREENING. RETENTION OF PROPERTIES, 23°C
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
PERCENT PERCENT
THICKNESS LENGTH
CHANGE CHANGE
PERCENT PERCENT
WIDTH VOLUME
CHANGE CHANGE
1 2 DICHLOROETHANE 100.0%
223.8
1 .9
62.
1 ,
.6 41.0
•3 .7
33.3 205.6
.4 2.4
FURFURAL 100.0%
189.0
3.0
110.3
3.4
176.9
49. 1
62.
1
METHYL
44
1
PHENOL
63
30
.6 48.8
.6 i.o
ETHYL KETONE 99.0%
.8 28.1
.6 .9
88.0%
.5 49.3
. 1 18.1
39.4 237.4
.8 3.5
19.9 122.6
.8 3.2
39.1 239.7
12.9 73.5
-------
HIGH DENSITY POLYETHYLENE: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
1 .6
*
1 .6
*
4.3
. 1
.3
.2
1 . 1
.3
.9
.4
.5
. 1
.3
*
.8
*
1 .5
*
PERCENT
THICKNESS
CHANGE
1 2 DICHLOROETHANE
8.7
8.7
1 2 DICHLOROETHANE
4.3
6.4
1 2 DICHLOROETHANE
1 .9
2.2
FURFURAL 1 .0%
3.4
3. 1
FURFURAL 5.0%
.3
.3
FURFURAL 8.0%
3.6
.3
FURFURAL 100.0%
*
*
METHYL ETHYL KETONE
2.2
2.9
METHYL ETHYL KETONE
2.8
1 .6
METHYL ETHYL KETONE
.6
. 3
PERCENT
LENGTH
CHANGE
.9%
.6
*
.5%
.6
*
100.0%
1 .7
*
. 1
. 1
*
*
.2
. 1
.2
. 1
1 .0%
*
*
1 0 . 0%
.5
. 2
26.0%
1 .6
. 2
PERCENT
WIDTH
CHANGE
. 1
.7
.2
.6
.8
.6
.4
.2
.2
. 1
. 1
.3
*
. 1
*
.3
. 1
. 1
. 6
*
PERCENT
VOLUME
CHANGE
8. 1
9.3
3.6
7.0
.6
2.8
3.8
3.4
.5
.4
3.7
. 1
.2
*
2.3
3.2
2.3
1 .3
i . e
. i
-------
HIGH DENSITY POLVETHVLENE: INITIAL SCREENING, RETENTION OF PROPERTIES. 23°C
NJ
o
U)
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
1 .8
. 1
.5
.5
.6
.5
*
*
.5
*
. 2
.2
. 2
. 1
PERCENT
THICKNESS
CHANGE
METHYL ETHYL KETONE 99
1 .3
1 .6
ASTM #2 OIL SATURATED
.7
1 .0
ASTM #2 OIL 100.0%
*
*
PHENOL 1 .0%
1 .9
1 .0
PHENOL 5.0%
*
.6
PHENOL 8.0%
1 .7
.3
PHENOL 88.0%
1 .3
.3
PERCENT
LENGTH
CHANGE
.0%
1 .0
*
*
. 1
*
. 1
*
*
*
. 1
*
.2
*
. 2
PERCENT
WIDTH
CHANGE
.2
*
.2
. 1
. 1
. 1
. 1
*
.4
.7
.3
.3
.3
1
PERCENT
VOLUME
CHANGE
. 1
1 .6
.8
.8
. 1
. 2
1 .8
.9
.4
1 .5
1 .4
.8
1 .6
.3
-------
CHLOROSULPHONATED POLYETHYLENE, LOW WATER ABSORPTION: INITIAL SCREENING, RETENTION OF PROPERTIES, 23°C
O
-P-
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
7 DAY IMMERSION
7 DAY AIR-DRIED
PERCENT
WEIGHT
CHANGE
PERCENT PERCENT
THICKNESS LENGTH
CHANGE CHANGE
PERCENT PERCENT
WIDTH VOLUME
CHANGE CHANGE
1 2 DICHLOROETHANE 100.0%
105.7
11.7
34
2
.6 3.3
.9 10.6
9.7 42.8
.2 13.4
FURFURAL 100.0%
10.1
1 4
14.0
5.9
13.2
1 .5
9
METHYL
9,
1 ,
PHENOL
10.
.7 2.1
.3 .7
ETHYL KETONE 99.0%
,8 .7
.7 4.4
88.0%
.3 2.5
* .8
3.7 16.1
.3 1.3
3.4 12.6
1.3 7.2
3.9 17.5
.3 1.1
-------
APPENDIX C
WEIGHT AND DIMENSION PROCEDURES
205
-------
SOP #'. FML-1
Revision: 2
Date? 3/5/85
of
INSTRUCTIONS FOR MEASURING FML SAMPLES
USING THE FEDERAL 69 IB MICROMETER
Before beginning, make sure the measuring surfaces are clean. (The anvil
and presser foot, see illustration.) Zero the micrometer by loosening
the knob A and adjusting the dial face, retightening the knob when done.
Check the zero by lifting the presser foot slightly a couple of times,
using the lever B, and seeing that the dial" indicator goes back to zero
at rest.
Lift the presser foot with the lever. Insert the sample to be measured
under the presser foot. Gently release the lever and lower the foot onto
the sample. Lift the foot slightly a couple of times to make sure the
reading is stable. Read the dial as shown below and record the reading.
To read the dial: First, the small dial on the lower left portion of the
big one is the hundredths of an inch reading. The scale goes from one to
ten, or from 0.01 to 0.10 inch. Then read the main dial, from 00 to 99,
or from .0000 to .0099 inches. Example, the dial is as shown in the
figure: Read the small dial at 3 (use the next lower number from where
the needle rests). Read the large dial at 44. This gives you a value of
0.0344 inches, or 34.4 mils. (A mil is one thousandth of an inch.)
For FML samples, measure the thickness at three places along the sample:
each end and in the middle. Make sure the end readings are at least 1/4
206 k!3/9s
-------
SOP #:
FML-1
Revis ion: f__
Date: 3/5/85
Page
2 of 8
FIGURE 1. FEDERAL 690B MICROMETER
207
k!3/9s
-------
SOP //; FML-1
Revision: 2
Date: 3/5/85
Page 3 of
inch in from the edges of the sample. Record the readings and average
them on the data sheet.
To calibrate: use a calibration sheet like the one in Figure 2. Zero
the micrometer and then measure the gage blocks 0..0500 and 0.1001 inches.
Determine the difference between the measurements and the actual
thickness. Average the two values. If the average is more than .5 mil
(0.0005 inches), correct your thickness readings on future FML samples by
this difference. Report the difference to the lab supervisor.
208
-------
SOP If: FML-I
Revision: 2
Date: 3/5/85
Page 4 of 8_
CALIBRATION RECORD "OK FEDERAL .,•]& D IHL -ILK rtl-TEh
IC IA N : „ 0 A T E .
N POP CALIBRATION: SCHEDULED UNSCHEDULED
unscheduled 9ive- deseription"of problem)
GAGE BLOCK READING
DlLTUkENCE
NONE (SET TO ZERO)
0.0500 INCHES
0.1001 INCHtC
AVERAGE DIFFERENCE:
IF AVERAGE DIFFERENCE IS LESS THAN 0.0005 INCHES. NO P
IS TO BE APPLIED TO THE READINGS. -
IF AVERAGE DIFFERENCE IS MORE THAN 0.0005 INCHES. rORRECT ALL
READINGS BY THE AVERAGE DIFFERENCE. REPORT THE DIFFERENCE TO
ACTION TAKEN:
FIGURE 2. CALIBRATION SHEET
209
k!3/9s
-------
SOP #: FML-1
Revision: 2
Date: 3/5/85
5 of
USING THE CALIPERS
Before measuring the samples, you need to make sure that the calipers are
calibrated. This should be done EACH DAY. If in doubt, calibrate them.
To Calibrate: Use the one inch gage block. Measure this block and set
the dial on the calipers to read exactly 1.000 inches. This dial is set
by loosening the black knob in back of the dial, rotating the dial to be
set exactly at the zero mark, and retightening the black dial.
To measure FML Samples: Open the calipers wider than the sample and
slowly close them until you just contact the edge of the sample. Be
careful not to squeeze and flex the material. You can tell when you have
the correct position when the sample will just be caught and moved on
both edges, but not lifted all the way up, when the calipers are lifted.
Read the calipers as follows: Read the inches and tenths of inches from
the lower scale. For example, 0.9 inches. Then use the dial to read the
next two decimal places. NOTE: The dial uses only 1/2 rotation to go
from 00 to 100.
For Example: On the calipers in Figure 3, the reading is 0.956 inches.
For FML Samples: Measure the length at two points.
Measure the width at three, at both ends and in the middle.
Average each of these and record.
210 kl3/9s
-------
SOP #:
FML-1
Revision: 2
Date: 3/5/85
Page
6
of
FIGURE 3. CALIPERS
211
U3/9s
-------
SOP #: FML-1
Revision: 2
Date: 3/5/85
Page 7 of
USING THE METTLER A30 ANALYTICAL BALANCE
Before starting, check to see that the balance Is level by looking to see
that the level Indicator bubble Is Inside the circle. (See Figure 4»)
If you are weighing samples that have been immersed In a chemical
solution, use a plastic weighing tray to protect the balance surface.
With all the balance doors closed, zero the balance by pressing the tare
bar. Allow time for the reading to stabilize. If using a weighing tray,
put the tray on the balance pan and re-zero. Allow to stabilize.
Open one door and place the sample in the tray (or on the pan). Close the
door and allow the reading to stabilize. Record the weight on your data
sheet.
Open door and remove sample. Check to see that the balance reads zero
again before weighing another sample. Use the tare bar if necessary.
212 k!3/9s
-------
SOP #:
FML-1
Revision: 2
Date: 3/5/85
Page
8 of
U
T ~ -
/: p >/-',
FIGURE 4. METTLER A30 AHALYTICAL BALAHCE
213
k!3/9s
-------
APPENDIX D
PERCENT OF TARGET CONCENTRATION
214
-------
CHEMICAL CONCENTRATIONS AFTER IMMERSION (WEIGHT PERCENT)
ELAPSED
DAYS
TARGET
CONCENTRATION
23°C
PERCENT OF TARGET
50°C
PERCENT OF TARGET
CPE
NaOH
150
10.0
119.00
100.00
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
*
7
7
7
56
56
56
.5
. 1
.6
.8
. 1
.5
.5
. 1
.8
40.20
46.00
35.88
72.00
53.00
73.75
42.50
38.00
50.00
20.80
4.00
24.25
CPE
CPE
CPE
CPE
CPE
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
14
28
28
56
56
4.0
1 .0
4.0
4.0
1 .0
*
*
100.00
250.00
*
101.25
102.00
101.25
100.00
110.00
CPE
CPE
CPE
CPE
CPE
CPE
MEK
MEK
MEK
MEK
MEK
MEK
14
16
28
56
1 13
126
13.0
13.0
13.0
13.0
13.0
13.0
*
*
61 .54
76.92
*
*
92.31
15.38
61 .54
107.69
92.31
107.69
CPE
CPE
CPE
CPE
CPE
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
14
28
56
56
56
4.0
4.0
8.0
4.0
1 .0
107.50
107.50
60
110.00
105.00
95.00
100.00
100.00
EPDM
NaOH
150
10.0
110.00
102.00
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
*
7
7
7
56
56
56
. 1
.8
.5
.8
.5
. 1
.8
. 1
.5
54. 13
41 .00
55.00
70.00
50.00
56.00
48.75
60.00
51 .00
45. 13
20.00
1 .20
EPDM
EPDM
FURFURAL
FURFURAL
14
28
4.0
1 .0
4. 15
.94
103.75
94.00
-------
CHEMICAL CONCENTRATIONS AFTER IMMERSION (WEIGHT PERCENT)
EPDM
EPDM
EPDM
FURFURAL
FURFURAL
FURFURAL
ELAPSED
DAYS
28
56
56
TARGET
CONCENTRATION
4.0
4.0
1.0
23°C
PERCENT OF TARGET
105.00
97.50
*
50°C
PERCENT OF TARGET
103.75
107.50
110.00
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
MEK
MEK
MEK
MEK
MEK
MEK
7
14
21
56
113
126
13.0
13.0
13.0
13.0
13.0
13.0
69.23
69.23
53.85
46. 15
100.00
*
100.00
53.85
7.69
53.85
100.00
84.62
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
EPDM
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
*
*
14
28
56
56
56
4.0
8.0
0
0
0
0
0
0
107.50
101.25
1 10.00
115.00
110.00
112.50
96.25
110.00
105.00
1 17.50
100.00
100.00
93.75
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
FURFURAL
FURFURAL
FURFURAL
FURFURAL
*
*
*
7
7
7
28
28
28
56
56
56
14
28
28
56
. 1
.5
.8
.5
. 1
.8
.8
.5
. 1
. 1
.8
.5
4.0
4.0
1.0
4.0
72.25
61 .00
61 .00
184.00
78.38
53.60
102.50
*
95.00
70.00
86.00
77.50
58.00
54.00
57.50
80.38
7.80
78.00
32.00
9.00
65.60
102.50
105.00
101.00
107.50
HOPE
HOPE
HOPE
HOPE
MEK
MEK
MEK
MEK
14
56
1 13
126
13.0
13.0
13.0
13.0
*
92.31
23.08
53.85
69.23
84.62
HOPE
HOPE
HOPE
HOPE
HOPE
PHENOL
PHENOL
PHENOU
PHENOL
PHENOL
14
28
56
56
56
4.0
4.O
1 .O
a.o
•4 . O
112.50
110.0O
115.00
112.5O
1OO.OO
1OO.OO
97. so
-------
CHEMICAL CONCENTRATIONS AFTER IMMERSION (WEIGHT PERCENT)
ELAPSED
DAYS
TARGET
CONCENTRATION
23°C
PERCENT OF TARGET
50°C
PERCENT OF TARGET
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
*
7
7
7
56
56
56
.5
.8
. 1
. 1
.5
.6
.5
.8
. 1
33.60
52.50
76.00
72.00
67.50
74.00
47.00
34.00
38.75
1 .60
*
8.00
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
14
28
28
56
56
4.0
1 .0
4.0
1.0
4.0
*
*
92.50
*
98.00
97.50
103.00
92.50
110.00
98.25
EPI-CO
EPI-CO
EPI-CO
MEK
MEK
MEK
14
56
1 13
13.0
13.0
13.0
*
*
130.77
61 .54
30.77
84.62
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
EPI-CO
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
*
*
*
14
28
56
56
56
4.0
8.0
1.0
4.0
97.50
90.00
91 .25
90.00
92.50
*
*
92.50
100.00
101.25
100.00
92.50
87.50
80.00
85.00
PVC
PVC
PVC
PVC
PVC
pyc
PVC
PVC
PVC
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
*
7
7
7
56
56
56
.8
. 1
.5
.8
.5
. 1
.8
.5
. 1
38.75
32.20
36.00
83.75
57.00
82.00
53.75
54.00
22.00
2.38
30.00
190.00
PVC
PVC
PVC
PVC
PVC
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
14
28
28
56
56
4.0
4.0
1 .0
97.50
92.50
*
102.50
94.00
102.50
93.75
105.00
PVC
MEK
14
13.0
76.92
23.08
-------
CHEMICAL CONCENTRATIONS AFTER IMMERSION (WEIGHT PERCENT)
PVC
PVC
PVC
PVC
PVC
PVC
MEK
MEK
MEK
MEK
MEK
MEK
ELAPSED
DAYS
19
28
28
56
1 13
126
TARGET
CONCENTRATION
13.0
13.0
3.0
13.0
13.0
13.0
PERCENT OF TARGET
*
84.62
100.00
61.54
100.00
*
50°C
PERCENT OF TARGET
23.08
100.00
66.67
15.38
76.92
69.23
PVC
PVC
PVC
PVC
PVC
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
14
28
56
56
56
4.0
4.0
4.0
8.0
1 .0
100.00
105.00
*
*
*
102.50
100.00
92.50
90.00
100.00
00
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
7
7
7
28
28
28
56
56
56
.8
. 1
.5
.5
. 1
.8
.5
.8
. 1
. 1
.8
.5
62.60
58.50
69.00
32.00
43.75
41 .00
82.50
63.00
74.00
48.00
43.00
53.75
53.60
68.50
72.00
3.00
13.88
35.40
CSPE-LW
MEK
91
13.0
84,62
84.62
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
CSPE-LW
PHENOL
PHENOL
PHENOL
PHENOL
PHENOL
14
28
56
56
56
8.0
1 .0
112.50
107.50
*
*
107.50
100.00
97.50
96.25
100.00
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCE
*
*
*
7
7
7
56
56
56
. 1
.5
.8
. 1
.5
.8
. 1
.5
.8
74.00
50.00
70.00
*
*
*
76.00
64.60
46.00
54.00
72.00
77.50
46.00
28.00
73.75
20.00
3.40
17.88
CONTROL
CONTROL
CONTROL
CONTROL
FURFURAL
FURFURAL
FURFURAL
4.O
a .o
i . o
102.75
108.38
1O7.OO
113.00
1O1.OO
1O6.7S
95. OO
1OO.OO
-------
CHEMICAL CONCENTRATIONS AFTER IMMERSION (WEIGHT PERCENT)
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
FURFURAL
ELAPSED
DAYS
7
7
14
14
14
28
28
28
TARGET
CONCENTRATION
8.0
4.0
4.0
8.0
1 .0
4.0
1 .0
8.0
23°C
PERCENT OF TARGET
105.63
111.50
113.25
92. 13
104.00
97.50
100.00
96.25
50°C
PERCENT OF TARGET
101.63
102.75
102.25
92.63
95.00
90.00
110.00
92.50
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
MEK
MEK
MEK
MEK
MEK
MEK
28
28
14
28
56
1 13
13
3
13.0
13.0
13.0
13.0
69.23
66.67
69.23
30.00
76.92
84.62
69.23
66.67
53.85
107.69
38.46
30.77
CONTROL
CONTROL
CONTROL
DCE
DCE
DCE
36
36
36
. 1
.8
.5
61 .00
58.75
780.00
11 .00
71 .25
76.00
VO
CONTROL
CONTROL
CONTROL
FURFURAL
MEK
PHENOL
36
36
36
4.0
13.0
4.0
97.50
30.00
97.50
102.50
92.31
105.00
-------
APPENDIX E
IMMERSION RESULTS
220
-------
PVC :. FINAL PROPERTIES
221
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
to
WEIGHT THICKNESS
(gram) (mi 1)
PH01AM1 1
PH07AM1 7
PH14AM1 14
PH99AM1 28
PH28AM1 29
PH56AM1 56
PH99AM2 144
PH99AM3 252
PH99AM4 368
PH99AM5 51 1
PH99AM6 621
PH99AM7 733
PL01AM2 1
PL01AM1 1
PL01AM3 1
PL07AM1 7
PL07AM3 7
PL07AM2 7
PL14AM3 14
PL14AM1 14
PL14AM2 14
PL99AM1 28
PL28AM1 29
PL28AM2 29
PL28AM3 29
PL56AM1 56
PL56AM3 56
PL56AM2 56
PL99AM2 144
PL99AM3 238
PL99AM4 368
PL99AM5 538
PL99AM6 621
PL99AM7 735
PH01BM1 1
PH07BM1 7
PH14BM1 14
PH28BM1 28
PH99BM1 29
1 .86
1 .94
1 .97
2.01
1 .94
34.88
2.20
2.35
2.41
2.50
2.53
2.56
1 .88
1 .90
1 .89
1 .90
1 .87
1 .85
1 .89
1 .90
1 .91
1 .92
1 .89
1 .87
1 .89
32.53
32.80
33. 15
.94
.95
.96
.98
.98
.99
1 .89
1.71
1 .66
1 .60
*
31 .80
32.40
32.40
32.80
33. 10
33.50
34.20
35.30
35.50
35.70
35.90
36.30
31 .60
31 .70
31 .70
31 .60
31 .30
31 .00
31 .80
32. 10
32. 10
31 .80
31 .80
31 .60
32.00
32.00
32.20
32.50
32.00
32. 10
32.40
32. 10
32.30
32.60
31 .40
30.90
30.50
30.20
32.00
LENGTH
(inch)
WIDTH
(inch)
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
HYDROCHLORIC ACID
2.98
3.01
3.05
3.03
2.96
7.72
3.13
3.23
3.23
3.26
3.28
3.30
1 .01
1 .02
1 .03
1 .02
1 .04
7.13
1 .07
1 . 10
1.11
1.11
1.12
1.13
50.
44.
50.
55.
51 .
57.
HYDROCHLORIC
3.00
3.00
3.00
3.01
3.00
3.00
3.01
3.00
3.01
2: 99
3.00
3.00
3.01
7.43
7.46
7.44
3.01
3.02
3.02
3.02
3.03
3.04
3.00
2.85
2.84
2.76
2.76
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1.01
1 .00
6.91
6.92
6.93
1.01
1 .02
1 .01
1 .01
1 .02
1 .02
SODIUM
1 .00
0.97
0.96
0.94
0.93
47.
45.
46.
42.
42.
42.
48.
49.
49.
52.
50.
52.
49.
52.
53.
47 .
50
02
34
*
42
42
*
*
*
*
*
80
ACID
50
78
70
15
70
75
50
78
30
*
26
26
18
58
18
26
*
*
*
*
*
60
HYDROXIDE
40.
59.
72.
80.
42
66
10
40
*
10.0%
43.94
41 . 10
47.90
*
54.74
49.34
*
*
*
*
*
*
10.0%
41 .74
43.26
44.78
39.20
39.00
41 .60
47.30
45.38
45.20
*
47.78
48.54
47.78
44.02
46. 10
44.78
*
*
*
*
*
*
1 0 . 0%
46.98
64.58
71.10
79.22
*
BREAKING
FACTOR
M
( lb/
inch
width)
50°
88
84
88
89
87
89
23°
84
78
83
79
82
82
86
91
90
93
92
90
90
92
89
89
50°C
81
94
92
97
C
.30
.06
.98
*
.06
.74
*
*
*
*
*
.30
C
. 10
.06
.46
.25
.80
.70
.94
.82
.86
*
. 10
.02
.86
.70
.74
. 18
*
*
*
*
*
.60
.06
.30
.58
.20
*
BREAKING
FACTOR
T
(pound/
inch
width)
78.
75.
84.
82.
81 .
80.
77.
81 .
76.
78.
76.
84.
81 .
84.
83.
83.
82.
82.
82.
82.
91 .
89.
89.
101 .
42
25
42
*
22
06
*
*
*
*
*
*
70
98
06
97
20
50
90
74
62
*
50
70
86
10
62
58
*
*
*
*
*
*
26
90
46
82
*
ELONGATION
AT
BREAK
M
( inch)
429
482
454
367
41 1
523
422
372
416
431
456
439
427
486
482
433
464
425
431
430
392
581
512
483
402
284
.60
.00
.70
*
.60
. 10
*
*
*
*
*
.00
.30
.40
.90
.38
.88
.88
.30
.00
. 10
*
.90
.80
.50
.40
.20
.30
*
*
*
*
*
.00
.30
.40
.30
.50
*
ELONGATION
AT
BREAK
T
( inch)
433.
465.
469.
344.
384.
470.
428.
456.
469.
485.
438.
482.
455.
487.
436.
410.
422.
438.
423.
442.
502.
501 .
387.
294.
40
75
10
*
30
40
*
*
*
*
*
*
10
30
10
33
80
00
75
40
00
*
50
10
40
10
60
30
*
*
*
*
*
*
90
70
80
40
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
10.38
10.74
1 1 .30
*
12.04
10.74
*
*
10.18
10.06
9.98
10.98
1 1 .46
10.50
1 1 .22
1 1 .62
1 1 .34
*
11.10
10.44
10.76
1 1 .22
1 1 .38
.34
*
*
*
*
*
*
10.80
.14.36
22.98
22.78
1 1
9.46
10.38
10.94
12.21
10.62
*
*
*
*
*
*
9.86
9.70
9.90
9.82
10.42
10.90
10.86
10.74
1 1 .46
*
9.88
10.68
9.90
1 1 .26
10.86
10.70
11 .48
14.70
21 .48
23.58
-------
u>
WEIGHT THICKNESS
(gram) (mi 1 )
LENGTH
(inch)
WIDTH
(inch)
SODIUM
PH56BM1
PH99BM2
PH99BM3
PH99BM4
PH99BM5
PH99BM6
PH99BM7
56
144
252
368
510
622
733
1 .56
1 .53
1 .52
1 .51
1 .51
1 .48
1 .47
30.
32.
29.
29.
29.
35.
29.
90
90
30
50
10
60
80
2
2
2
2
2
2
2
.75
.72
.70
.68
.67
.67
.66
0
0
0
0
0
0
0
.93
.92
.91
.91
.90
.90
.90
SODIUM
PL01BM3
PL01BM1
PL01BM2
PL07BM3
PL07BM2
PL07BM1
PL14BM2
PL14BM1
PL14BM3
PL28BM2
PL99BM1
PL28BM1
PL28BM3
PL56BM3
PL56BM1
PL56BM2
PL99BM2
PL99BM3
PL99BM4
PL99BM5
PL99BM6
PL99BM7
1
1
1
7
7
7
14
14
14
28
28
28
32
56
56
56
144
238
368
510
622
735
1 .88
1 .89
1 .88
1 .86
1 .90
1 .88
1 .90
1 .87
1 .90
1 .85
1 .89
1 .84
1 .84
1 .74
1.71
1 .72
1 .66
1 .59
1 .58
1 .57
1 .55
1 .55
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
30.
30.
31 .
30.
30.
29.
31 .
30.
10
30
20
60
50
30
70
40
60
30
70
30
10
10
50
90
10
50
30
20
30
80
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
.99
.00
.99
.99
.99
.99
.98
.99
.98
.98
.97
.97
.98
.89
.89
.90
.83
.00
.80
.77
.77
.76
1
1
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.99
.00
.00
.00
.00
.00
.99
.99
.99
.99
.96
.96
.96
.95
.94
.93
.92
.92
.92
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
HYDROXIDE
85.
02
*
*
*
*
*
*
HYDROXIDE
42.
44.
42.
48.
49.
45.
39.
51 .
41 .
40.
47.
42.
68.
61 .
61 .
82.
54
50
46
10
30
38
98
22
38
46
*
54
02
02
42
22
*
4
*
*
4
00
10
79
10
39
45
40
46
45
40
37
44
36
49
44
51
63
60
65
. 0%
.74
.0%
.90
.70
. 18
.02
.50
.98
.26
.75
.22
.54
*
.62
. 18
.90
.06
.30
4
4
4
4
4
*
BREAKING
FACTOR
M
(lb/
inch
width)
50°C
1 10.
122.
23°C
88.
82.
89.
90.
91 .
94.
87.
88.
86.
78.
88.
79.
96.
92.
89.
136.
26
00
50
54
46
22
66
10
46
82
22
98
4
42
66
58
10
34
4
4
4
*
4
00
BREAKING
FACTOR
T
(pound/
inch
width)
107
82
86
80
85
85
83
78
83
77
91
81
92
89
88
89
. 14
.06
.38
.46
.30
.66
.26
.82
.05
.22
.42
4
.38
. 10
.38
.34
.50
ELONGATION
AT
BREAK
M
(inch)
420
9
507
501
525
492
500
578
537
425
505
480
466
486
480
435
476
175
.70
.00
.60
.60
.90
.50
.00
.40
.70
.40
.30
.90
4
.40
.20
.70
.50
.70
.00
ELONGATION
AT
BREAK
T
(inch)
400.
540.
463.
503.
520.
530.
567.
548.
471 .
522.
489.
494.
475.
469.
488.
444.
50
*
*
*
4
4
*
20
70
20
40
70
40
60
75
00
80
4
20
60
20
00
00
*
4
4
4
4
*
TEAR
RESISTANCE
M
(lb)
30
1 1
10
1 1
1 1
1 1
10
10
1 1
10
10
1 1
1 1
16
15
15
.99
.20
. 19
.44
.02
.04
.62
.22
.66
.50
.98
4,
.50
.32
.50
. 13
.90
TEAR
RESISTANCE
T
(lb)
29
1 1
10
1 1
10
10
10
9
10
9
1 1
10
1 1
16
16
15
.60
.22
.60
.30
.58
.48
. 14
.98
.52
.68
.60
4
.70
.68
.67
.53
.44
1 2 DICHLOROETHANE .8% 50°C
PH01DH1 1
PH07DH1 7
PH14DH1 14
PH990H1 28
PH28DH1 29
PH56DH1 56
PH99DH2 133
PH99DH3 244
PH99DH4 364
PH99DH5 495
PH99DH6 629
PH99DH7 726
2.24
2.17
2.13
2.24
2. 19
2.00
1 .98
2.31
2.04
2.07
1 .93
2. 19
33.00
33. 10
33. 10
32.50
32.80
32.30
32.20
32. 70
32.80
32.90
31 .70
33.30
3.06
3.07
3.04
3.02
3.06
2.99
2.99
3.01
3.01
3.03
2.97 1
3.06 1
.05
.07
.04
.02
.05
.02
.01
.03
.03
.03
.01
.04
21 . 15
22.67
28.84
4
23. 10
31 .87
32.84
20.31
23.40
31 .23
4
22.66
29.93
4
62.09
56.53
69.66
4
62.73
71 .39
4
4
*
*
4
64.71
61 . 15
61 . 15
67.91
4
58.84
69.25
4
4
*
*
4
4
498 .58
459. 20
502.09
4
506. 10
466.68
*
4
4
4
4
492.67
535.98
531 .28
481 .38
4
510. 25
494.28
6.73
8.83
6.48
4
7.33
8.99
4
4
4
4
4
4
6.07
8.06
5.99
4
6.32
8.89
4
4
4
4
4
-------
POLVVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
(lb/
inch
width)
BREAKING
FACTOR
M
(lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
1 2 DICHLOROETHANE .8% 23°C
PL01DH3
PL01DH2
PL01DH1
PL07DH1
PL07DH2
PL07DH3
PL14DH2
PL14DH1
PL14DH3
PL28DH2
PL28DH3
PL99DH1
PL28DH1
PL56DH1
PL56DH2
PL56DH3
PL99DH2
PL99DH3
PL99DH4
PL99DH5
PL99DH6
PL99DH7
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
134
231
364
495
630
728
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1 .
2.
2.
14
16
13
1 1
03
15
16
21
12
22
08
00
16
07
13
15
09
05
07
99
13
15
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
31 .
32.
32.
32.
32.
31 .
32.
32.
31 .
33.
32.
70
60
30
80
20
40
80
80
10
60
20
70
70
60
70
70
70
10
00
60
00
30
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.05
.05
.04
.04
.03
.03
.04
.08
.02
. 1 1
.04
.04
. 10
.01
.03
.04
.05
. 10
.07
.02
.04
.06
1 .04
1 .04
1 .04
1 .04
1 .03
1 .04
1 .04
1 .05
1 .03
1 .05
1 .03
1 .02
1 .05
1 .03
1 .03
1 .04
1 .02
1 .05
1 .03
1 .01
1 .04
1 .04
26
19
25
19
26
20
34
28
31
26
21
31
33
25
.34
.40
.97
.57
.38
.96
.29
.65
.79
*
*
*
. 14
.71
.90
.54
*
*
*
*
*
.30
25
19
23
19
25
20
34
23
30
22
20
30
29
.23
.81
.58
. 18
.52
.30
.75
.66
.06
*
*
*
.05
.62
.96
.71
*
*
*
*
*
*
67
58
70
60
62
58
75
69
74
64
60
67
71
68
.97
.68
.21
.90
.41
.20
.95
.23
.28
*
*
*
.52
.71
.33
.00
*
*
*
*
*
.70
66
60
66
59
65
59
76
62
69
59
57
63
64
.49
.80
.05
.65
. 1 1
. 10
.23
.97
.85
*
*
*
.62
.00
.98
. 16
*
*
*
*
*
*
515
509
508
534
475
506
503
492
492
494
485
462
480
715
. 15
.80
. 15
.48
. 15
.60
.35
.53
. 15
*
*
*
.20
. 15
.80
.70
*
*
4
*
*
.00
509
548
525
553
529
554
495
527
51 1
526
486
468
483
.73
.30
.78
.63
.40
.80
.25
.30
.80
*
*
*
.28
.00
.38
.55
*
*
*
*
*
*
6
6
7
9
7
7
6
6
7
7
7
6
7
9
9
.42
.65
.36
.36
.36
.91
.88
.48
. 1 1
.60
.28
*
. 16
.04
.07
.99
*
*
*
*
#
*
5.93
5.95
6.75
8.70
6.59
7.27
6.98
5.74
7.84
7.46
6.36
*
5.71
6.64
8.39
9.16
*
*
*
*
*
*
1 2 DICHLOROETHANE .1% 50°C
PH01DL1
PH07DL1
PH14DL1
PH99DL1
PH28DL1
PH56DL1
PH99DL2
PH99DL3
PH99DL4
PH99DL5
PH99DL6
PH99DL7
1
7
14
28
29
56
139
246
366
496
631
728
.94
.94
.95
.95
.93
.98
.95
.97
.96
.96
.96
.96
32
31
32
32
31
32
31
32
32
31
32
32
.20
.80
. 10
.20
.70
.20
.90
.00
. 10
.90
.00
. 10
2
2
2
3
2
2
3
3
3
3
3
3
.96
.98
.96
.00
.97
.98
.00
.01
.01
.00
.00
.01
1 .01
1 .01
1 .01
1.01
1 .01
1 .02
1.01
1 .01
1 .01
1 .01
1 .01
1 .02
36.
37.
35.
34.
30.
47.
24
88
88
*
47
36
*
*
*
*
*
80
34
36
34
32
29
05
50
25
*
32
97
*
*
*
*
*
*
78.
81 .
78.
76.
68.
86.
86
38
47
*
97
54
*
*
¥
*
*
70
75
76
74
72
67
.82
.49
.89
*
.92
.29
*
*
*
*
*
*
476
498
495
505
470
643
.20
.09
.93
*
.85
.50
*
*
*
*
*
.00
504
506
51 1
525
489
.93
.00
.83
*
.78
.78
*
*
*
*
*
*
9
10
9
9
8
.63
.04
.23
*
.08
.64
«
*
*
*
*
*
9.27
9.38
8.37
*
9.23
8.64
*
*
*
*
*
*
1 2 DICHLOROETHANE .1% 23°C
PL01DL3 1
PL01DL2 1
PL01DL1 1
PL07DL1 7
PL07DL2 7
PL07DL3 7
1 .93
1 .92
1 .91
1 .95
1 .94
1 .97
31 .50
31 .60
31 .30
31 .80
31 .50
31 .90
2.99
2.99
3.00
3.00
3.01
3.02
1 .01
1 .01
1 .01
1.01
1.01
1 .01
38.57
33. 1 1
35.52
35.59
32.50
33. 16
35.61
30.65
32.95
31 .88
29.25
30.72
85. 10
80.65
80.98
79.78
76.95
79.95
79.44
75.97
76.04
74.47
73.47
73.96
516.90
519.35
488.78
494.50
523.00
530. 70
542. 15
554.48
515.58
535.75
566.00
557. 70
9.90
9.57
10.18
9.42
9.05
9.38
9. 19
8.14
8. 75
8 .70
8.71
8. 65
-------
WEIGHT THICKNESS
(gram) (mi 1)
PL14DL1 14
PL14DL2 14
PL14DL3 14
PL28DL3 28
PL99DL1 28
PL28DL2 28
PL28DL1 29
PL56DL2 56
PL56DL3 56
PL56DL1 56
PL99DL2 136
PL99DL3 233
PL99DL4 366
PL99DL5 496
PL99DL6 632
PL99DL7 730
PH01DM1 1
PH07DM1 7
PH14DM1 14
PH99DM1 28
PH28DM1 29
PH56DM1 56
PH99DM3 245
PH99DM4 365
PH99DM5 496
PH99DM6 630
PH99DM7 727
PL01DM3 1
PL01DM2 1
PL01DM1 1
PL07DM2 7
PL07DM3 7
PL07DM1 7
PL14DM3 14
PL14DM2 14
PL14DM1 14
PL99DM1 28
PL28DM2 28
PL28DM3 28
PL28DM1 29
1 .95
1 .96
1 .95
1 .95
1 .91
1 .93
1 .95
1 .92
1 .93
1 .97
1 .93
1 .93
1 .93
1 .91
1 .92
1.91
2.06
2.01
2.05
2.00
2.04
2.00
2.01
1 .95
1 .96
1 .96
1 .97
2.07
2.06
2.07
2.03
1 .98
2.06
2.00
2.05
2.06
2.06
2.08
2.05
2.05
31 .70
31 .70
31 .70
31 .80
31 .40
31 .60
31 .90
31 .60
31 .70
31 .60
31 .40
31 .50
31 .60
31 .40
31 .50
31 .70
32.20
32.00
32.60
31 .90
32.50
32. 20
31 .90
31 .90
31 .90
32.00
32.00
32. 20
32.40
32.20
32.00
31 .80
32.20
32.00
32. 10
32.60
32.40
32.50
32.00
32.00
LENGTH
(inch)
WIDTH
(Inch)
S-100 S-100
MODULUS MODULUS
M T
(1b/ (lb/
inch inch
width) width)
1 2 DICHLOROETHANE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.01
.00
.00
.00
.00
1 .01
1.03
1 .01
1 .01
1 .00
1 .01
1 .01
1 .00
1.01
1 .02
1 .00
1 .01
1 .01
1 .01
1 .01
1 .01
33
33
32
33
34
31
38
44
.59
.21
.40
*
*
*
. 1 1
.34
.41
. 17
*
*
*
*
*
.98
1 2 DICHLOROETHANE
3
3
3
3
2
2
3
3
3
3
3
.01
.00
.00
.02
.99
.97
.02
.00
.00
.00
.01
1 .03
1 .02
1 .03
1 .02
1 .03
1 .02
1 .02
1 .02
1 .02
1 .02
1 .02
27
24
27
28
32
41
. 14
.87
.48
*
.08
.00
*
*
*
*
.98
1 2 DICHLOROETHANE
3
3
3
3
3
3
3
3
3
3
3
3
3
.04
.03
.04
.04
.01
.03
.03
.03
.05
.05
.04
.03
.06
.02
.03
.04
.02
.02
.03
1 .02
1 .03
1 .04
1 .02
1 .03
1 .03
1 .04
26
28
29
26
30
22
26
24
28
24
.89
. 12
.55
.79
.00
.55
.62
.37
.55
*
*
*
.55
. 1%
30.50
30.47
29. 12
*
*
*
31 .34
31 .92
31 .96
35.09
*
*
*
*
*
*
.5%
26.09
24.30
27.33
*
27.06
30.53
*
*
*
*
*
.5%
23.94
25. 23
25.09
25.31
28. 10
21 .95
27. 12
22. 11
24.54
*
*
*
23.36
BREAKING
FACTOR
M
( lb/
inch
width)
23°C
76
80
78
78
74
75
81
86
50°C
68
65
66
65
71
80
23°C
72
73
72
70
72
62
70
69
71
63
. 1 1
.07
. 18
*
*
*
.44
.23
.41
. 14
.23
.62
.71
.59
*
.97
.27
*
*
*
*
.44
.76
. 10
.99
.84
.47
.04
.86
.55
. 14
*
*
*
.61
BREAKING
FACTOR
T
(pound/
inch
width)
74
73
71
75
71
71
76
67
60
65
63
69
66
68
69
62
70
62
72
64
65
62
. 19
.57
.68
*
*
*
.56
. 17
.63
.30
*
*
*
*
*
*
. 18
.55
. 19
*
. 19
.42
*
*
*
*
*
.37
.79
.27
.46
. 10
.36
.42
. 12
.84
*
*
*
.89
ELONGATION
AT
BREAK
M
(inch)
471
516
491
503
467
527
457
588
485
516
478
483
480
637
521
517
473
505
502
500
507
532
503
493
.83
.38
.33
*
*
*
.40
.55
.70
.48
*
*
*
*
*
.83
.50
.35
.68
*
.63
. 13
*
4
*
4
. 25
.80
15
.23
.80
. 20
.23
.68
.25
. 13
*
*
*
.55
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) Ub)
527.78
530.95
516.40
*
535.45
509.08
543.08
469.03
515.60
495.73
493.20
*
496.28
509.33
539.48
553.55
512.63
495.83
552.60
542.88
556.70
548.08
520.73
*
533. 15
8.93
9.75
8.41
10.52
*
9.63
9.65
10.07
9.81
9.56
7.69
8.43
8.80
*
7.91
9.46
*
*
if
*
*
6.39
7.08
7 .27
7.93
8.95
8.64
9. 14
95
02
7.77
9.26
8.60
9.58
*
9.42
8.78
9.44
8.84
9.06
7.62
8.02
7.25
*
7.41
9.09
8.32
7.28
7 .42
5.94
7.39
6.49
7.59
8.13
8.00
8.72
7.77
6.32
*
7.54
7.13
6.77
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
C^
WEIGHT THICKNESS
(gram) (mi 1)
PL56DM1 56
PL56DM3 56
PL56DM2 56
PL99DM2 135
PL99DM3 233
PL99DM4 365
PL99DM5 496
PL99DM6 631
PL99DM7 729
PH01FH1 1
PH07FH1 7
PH14FH1 14
PH28FH1 28
PH99FH1 28
PH56FH1 56
PH99FH2 1 17
PH99FH3 236
PH99FH4 350
PH99FH5 485
PH99FH6 616
PH99FH7 713
PL01FH3 1
PL01FH2 1
PL01FH1 1
PL07FH2 7
PL07FH3 7
PL07FH1 7
PL14FH1 14
PL14FH3 14
PL14FH2 14
PL28FH1 28
PL28FH3 28
PL99FH1 28
PL28FH2 28
PL56FH1 56
PL56FH2 56
PL56FH3 56
PL99FH2 117
PL99FH3 219
PL99FH4 350
1 .93
2.07
2.00
1 .99
2.05
1 .97
2.03
2.05
2.12
1 .96
3.07
2.64
2.79
2.85
2.79
2.75
3.34
3.31
3.05
3.41
3.57
2.35
2.44
1 .92
2.68
2.69
2.75
2.64
2.65
2.74
2.87
2.90
2.88
2.00
2.80
3.01
2.93
2.95
2. 89
3.22
31 .80
32.50
32.20
32. 10
32.60
32.30
32.40
32.50
33.00
31 .90
37.40
35. 10
36.60
36.30
35.90
36.50
37.50
38.60
38. 10
39.70
39.80
34.90
35.40
31 .40
35.20
35.30
36.00
35.00
35.40
36.20
36.30
36.20
35.80
36. 10
35.90
36.90
36. 10
39.40
36.60
37.40
LENGTH
(inch)
S-100
MODULUS
M
(lb/
WIDTH inch
(inch)1 width)
S-100
MODULUS
T
(lb/
inch
width)
1 2 DICHLOROETHANE
3.
3.
3.
3.
3.
3.
3.
3.
3.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.'
3.
3.
3.
3.
3.
3.
00
02
00
02
06
01
03
03
07
98
35
24
21
30
29
29
45
49
44
53
63
28
30
02
30
32
39
26
26
29
29
35
33
34
30
36
37
40
45
50
.01
.02
.02
.01
.03
.01
.02
.02
.03
FURFURAL
1 .02
1 .21
1.15
1 . 17
1.15
1 . 17
. 15
.20
.23
.20
.24
.26
FURFURAL
1.14
1.14
1.01
1.15
1.14
1.15
1.13
1.14
1.15
1.16
1 .07
1 . 15
1.17
1 . 15
1 . 18
1 . 18
1.18
1 .20
1.21
29
32
32
28
8
17
3
6
5
6
1 1
8
5
5
38
6
6
6
7
6
6
6
5
5
4
5
5
.71
.33
.04
*
*
*
*
*
.78
.0%
.60
.92
.30
. 10
*
.43
*
*
*
*
#
.98
.0%
.41
.63
.40
.44
.54
.36
.00
.30
.30
.00
.70
*
.00
.94
.60
.56
*
*
*
26
30
31
50°C
15
4
5
4
5
23°C
5
5
36
6
7
6
4
6
6
5
5
5
5
5
5
.5%
.75
.24
.48
*
*
1
*
*
*
.90
.56
.60
.50
*
.02
*
*
*
*
*
*
.44
. 14
.80
.68
.26
.36
.80
.50
.40
.40
.40
*
.00
.66
. 20
.34
*
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
70
71
71
73
38
19
24
23
23
30
22
19
79
20
23
21
20
21
20
22
20
21
19
21
21
.23
.99
46
*
*
*
*
*
.29
.66
.30
.62
.34
*
.83
*
*
*
*
*
.03
.45
.32
.70
.56
.02
.00
.80
.22
.76
.24
.72
*
.02
.30
.24
.28
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
67
68
68
37
17
22
20
21
18
18
77
19
23
21
18
21
18
19
19
20
18
18
19
.91
. 14
.78
*
*
*
*
*
*
.58
.84
.63
.82
*
.08
*
*
*
* •
*
*
.91
.36
.30
.96
. 10
.06
.45
.40
.04
.42
.26
*
.08
.72
.40
.52
*
*
*
ELONGATION
AT
BREAK
M
(inch)
455
487
486
675
481
51 1
567
635
560
468
557
525
465
458
528
494
497
505
515
619
519
496
632
536
554
. 13
.23
.08
*
*
*
*
*
.58
.00
. 20
.50
.00
*
.00
*
*
*
*
*
.25
.90
.30
.00
.40
.00
.40
.00
.00
.00
.00
.00
*
.00
.00
.00
.00
*
*
*
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
497.83
502.98
505.73
*
523.00
489.60
564.00
615.00
*
489.00
532.10
561.20
509.00
798.40
562.40
560.00
538.00
569.00
488.00
597.00
568.00
*
601.00
603.00
526.30
565.00
*
8.45
9. 14
9.80
5.62
2.35
2.64
2.39
*
2. 14
*
*
*
*
*
*
3.41
2.96
6.44
2.49
2.73
2.63
2.36
2.22
2.32
2.45
2.08
*
2.34
2.37
2.27
2.16
7.79
8.25
8.86
6. 19
1 .91
2.52
2. 14
*
2.14
*
*
*
*
*
*
3. 18
3.06
6.96
2.38
2.53
2.40
2.27
2.32
.08
.39
2.
2.
2.46
2.40
2.40
2. 15
2. 15
*
-------
WEIGHT THICKNESS
(gram) (mi 1)
PL99FH5
PL99FH6
PL99FH7
PH01FL1
PH07FL1
PH14FL1
PH28FL1
PH99FL1
PH56FL1
PH99FL2
PH99FL3
PH99FL4
PH99FL5
PH99FL6
PH99FL7
PL01FL2
PL01FL3
PL01FL1
PL07FL2
PL07FL3
PL07FL1
PL14FL3
PL14FL2
PL14FL1
PL28FL2
PL28FL3
PL99FL1
PL28FL1
PL56FL3
PL56FL2
PL56FL1
PL99FL2
PL99FL3
PL99FL4
PL99FL5
PL99FL6
PL99FL7
485
617
715
1
7
14
28
28
56
123
241
355
488
621
718
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
123
224
355
488
622
720
2
3
3
1
1
1
1
2
1
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
.90
.66
.68
.96
.97
.96
.96
.01
.97
.01
.06
.06
.05
.06
.05
.91
.91
.92
.97
.95
.93
.95
.96
.96
.97
.96
.95
.94
.97
.95
.95
.95
.98
.00
.99
.00
.99
36.
39.
39.
31 .
32.
31 .
31 .
32.
31 .
32.
32.
32.
32.
31 .
32.
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
32.
31 .
3 .
3 .
3 .
32.
3 .
3 .
32.
80
50
40
80
00
70
70
60
80
50
70
40
80
80
90
30
20
20
70
70
20
60
60
60
80
70
70
40
10
60
50
70
90
00
90
80
10
LENGTH
( inch)
3.41
3
3
2
2
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.64
.66
.98
.97
.00
.99
.02
.00
.03
.04
.04
.03
.04
.04
.01
.01
.01
.01
.01
.02
.01
.01
.01
.01
.01
.01
.01
.00
.00
.02
.02
.03
.05
.03
.02
.04
s-ioo
MODULUS
M
Ob/
WIDTH Inch
(inch) width)
FURFURAL 8.0%
1.19 *
1 .27
1 .28
FURFURAL
1 .02
1 .02
1 .02
1 .02
1 .01
1 .02
1 .02
1 .02
1 .03
1 .02
1 .03
1 .03
FURFURAL
1.01
.00
.00
.02
.01
.01
.01
.01
.02
1 .01
1 .01
1 .00
1.01
1 .02
1 .01
1 .02
1.01
1 .02
1 .02
1.01
1 .02
1 .02
6
1
32
24
32
31
33
39
1
35
34
37
24
21
23
28
27
28
31
30
31
29
31
31
33
*
.80
.0%
.82
.60
.40
.90
*
.20
.74
.0%
.64
.46
.58
.20
.60
.30
.40
.20
.30
.63
.70
*
. 13
.70
.70
.04
.69
S-100
MODULUS
T
(1b/
inch
width)
23°C
*
50°C
30
24
30
30
31
23°C
39
37
33
21
20
20
27
26
27
30
28
28
27
30
27
*
*
26
10
40
50
*
06
*
*
*
*
*
*
05
85
90
70
60
00
60
90
60
60
20
*
40
68
56
58
*
*
*
*
*
*
BREAKING
FACTOR
M
(1b/
inch
width)
*
21
74
69
76
70
75
79
73
72
76
74
67
71
76
76
76
79
75
74
•76
78
71
74
*
.60
.74
.90
.00
.38
*
.58
. 18
.05
.02
.74
.40
.94
. 10
.20
.66
. 10
.33
.06
*
.46
. 28
.76
.98
*
*
*
*
*
.22
BREAKING
FACTOR
T
(pound/
inch
width)
*
71
65
68
70
71
78
77
75
70
64
64
72
74
73
76
71
71
71
75
70
*
*
.58
.50
.50
.92
*
.32
.75
.90
.22
. 22
. 10
.56
.90
.50
. 16
. 26
.98
*
.88
.74
.36
.78
*
ELONGATION
AT
BREAK
M
(inch)
*
517
466
570
490
475
530
578
454
454
434
570
560
559
520
600
512
541
507
550
537
543
504
631
*
17
80
50
40
00
*
00
*
*
*
*
*
00
00
40
00
00
00
00
00
00
80
30
00
*
00
00
00
.00
*
*
*
*
*
.58
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (1b) (1b)
494.70
578.00
484.00
543.00
*
545.00
434.00
418.50
495.30
601.00
577.00
585.00
557.50
637.00
536.00
560.00
541.00
*
603.00
580.00
575.00
565.00
10.48
8.53
8.86
9.24
*
9.97
*
*
*
*
*
*
10.37
10.57
1 1 .75
8.73
8.31
8.44
9.57
9.21
9.34
9.60
9.54
8.87
8.31
9.07
9.11
*
*
#
*
*
8.96
8.02
8.07
9.02
*
8.78
12.84
12.52
12.92
8.24
6.91
7.54
8.64
8.45
10
14
8.54
*
8.67
7.96
8 .44
8.35
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
00
WEIGHT THICKNESS
(gram) (mi 1)
PH01FM1
PH07FM1
PH14FM1
PH28FM1
PH99FM1
PH56FM1
PH99FM2
PH99FM3
PH99FM4
PH99FM5
PH99FM6
PH99FM7
PL01FM1
PL01FM3
PL01FM2
PL07FM1
PL07FM2
PL07FM3
PL14FM1
PL14FM2
PL14FM3
PL28FM1
PL99FM1
PL28FM3
PL28FM2
PL56FM2
PL56FM3
PL56FM1
PL99FM2
PL99FM3
PL99FM4
PL99FM5
PL99FM6
PL99FM7
PH01MH1
PH07MH1
PH14MH1
PH28MH1
PH99MH1
PH56MH1
1
7
14
28
28
56
123
241
355
489
621
718
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
123
227
355
489
622
720
1
7
14
28
29
56
2.17
2. 16
2.16
2.18
2.18
2.18
2.17
2.32
2.30
2.25
2.32
2.28
2. 14
1 .99
2.00
2.15
2. 15
2.14
2. 19
2.13
2.15
2. 19
2.17
2. 14
2. 15
2. 16
2. 15
2.17
2.12
2.23
2.28
2.27
2.27
2.26
2.65
2.59
2.91
2.51
1.71
2.77
32.80
32.80
32.70
32.90
33. 10
32.80
33. 10
33.70
33.80
33.60
34.20
34.00
32.50
32.00
32.20
32.70
32.60
32.50
33. 10
32.30
33.00
33. 10
33.00
32.50
32.50
32.60
32.60
32.70
32.80
33.30
33.50
33.40
33.60
33.60
38.20
38.00
41 .80
38.90
31 .90
39.40
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(1b/
inch
width)
FURFURAL 4.
3.00
3.08
3.09
3.09
3.07
3.08
3.07
3. 13
3. 14
3.09
3.11
3.12
1 .06
1 .05
1 .06
1 .05
1 .05
1 .06
1 .05
1 .07
1 .08
1 .06
1 .06
1 .07
15.
16.
15.
14.
17.
22.
FURFURAL 4.
*
3.08
3.09
3.09
3.09
3.08
3.11
3.09
3.09
3.07
3.08
3.06
3.07
3.09
3.08
3.08
3.07
3.13
3. 15
3.12
3.02
3.13
3.26
2.98
3 . 27.
2.91
2 .60
3.11
1 .04
1 .04
1 .04
1 .05
1 .05
1 .05
1 .06
1 .05
1 .04
.05
.04
.04
.05
.05
.05
.05
.04
.07
1 .07
1 .06
1 .01
1 .06
METHYL
1 . 20
1 . 18
1 .37
1 . 19
1 .00
1.21
14.
14.
13.
14.
17.
18.
14.
15.
16.
15.
14.
13.
15.
15.
16.
17.
ETHYL
4.
3.
17.
1 .
2.
0%
54
00
00
38
*
50
*
*
*
*
*
34
0%
58
33
27
30
30
94
88
70
20
08
*
80
10
68
96
20
*
*
*
*
*
30
S-100
MODULUS
T
(1b/
inch
width)
50°C
14
15
14
14
16
23°C
13
13
12
14
16
17
13
14
14
13
13
13
14
15
12
KETONE
02
50
63
24
*
67
3
3
14
1
2
.58
.40
. 10
.70
*
.44
*
*
*
*
*
*
.34
.37
.70
.40
.26
.60
.30
.80
.60
.26
*
.60
. 20
.80
.46
.84
*
*
*
*
*
*
26
.66
.34
.63
.30
*
.24
BREAKING
FACTOR
M
(lb/
i nch
width)
40.
45.
44.
45.
50.
49.
.41 .
48.
46.
46.
49.
56.
45.
48.
48.
44.
45.
45.
46.
47.
46.
43.
0% 50
21 .
14.
53.
8.
14.
78
10
66
30
*
30
*
*
*
*
*
53
62
47
79
30
34
70
96
84
65
86
*
18
90
46
10
20
*
*
*
*
*
99
°C
50
75
39
34
*
41
BREAKING
FACTOR
T
(pound/
inch
width)
36
47
43
47
48
37
43
44
47
46
48
41
45
45
42
45
45
43
49
44
20
17
48
8
12
.42
.70
.24
.72
*
.86
*
*
*
*
*
*
.82
.74
.06
.50
.56
.86
.36
.08
.64
.46
#
.38
.52
.56
.76
.20
*
*
*
*
*
*
.70
. 18
.05
. 15
*
.49
ELONGATION
AT
BREAK
M
(inch)
442.
478.
492.
530.
584.
449.
444.
531 .
542.
538.
464.
502.
508.
525.
512.
541 .
532.
588.
562.
535.
528.
551 .
556.
470.
545.
469.
456.
00
00
00
00
*
00
*
*
*
*
*
08
10
30
70
00
80
40
00
00
50
00
*
00
00
00
00
00
*
*
*
*
*
67
40
63
50
40
*
40
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
430.30
551.00
523.20
561.00
*
539.00
*
*
*
*
*
457.80
528.50
548.20
597.00
505.60
476.80
514.40
539.00
525.00
569.00
*
607.00
654.00
556.00
603.00
659.00
589.80
530.80
533.50
450.80
*
429.10
3.39
6.42
5.60
4.95
*
5.74
4
*
*
*
*
*
6.50
6.94
6.96
6.32
5.79
6.84
26
15
23
4.61
4.78
4.74
5.03
5.06
4.85
*
*
*
*
*
*
2.34
8.07
7.00
1 .02
*
2. 24
3.43
5.53
5.23
5.04
5.16
7.77
7.01
5.96
5.48
5.40
6.13
5.32
4.66
4.70
4.55
*
4.50
4.42
4.62
4.72
4.54
58
84
6.53
1 .25
*
2. 28
-------
WEIGHT THICKNESS
(gram) (mi 1 )
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
( lb/
inch
width)
S-100
MODULUS
T
(lb/
i nch
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
2.54
2.52
2.67
2.43
2.51
2.49
METHYL ETHYL KETONE 26.0% 50°C
*
*
*
*
*
35.60
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
PL01MH1
PL01MH3
PL01MH2
PL07MH2
PL07MH1
PL07MH3
PL14MH2
PL14MH1
|vo PL14MH3
M PL28MH3
^° PL99MH1
PL28MH2
PL28MH1
PL56MH2
PL56MH1
PL56MH3
PL99MH2
PL99MH3
PL99MH4
PL99MH5
PL99MH6
PL99MH7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
121
235
358
494
627
724
2
4
3
2
3
3
2
3
2
2
2
3
3
3
2
3
2
2
3
3
2
2
.29
.41
.53
.63
. 16
.35
.91
.05
.89
.83
.65
. 18
.00
.00
.72
. 29
.33
.06
.04
.67
.91
.70
35.
43.
39.
41 .
40.
41 .
40.
39.
40.
40.
37.
41 .
40.
39.
37.
39.
35.
36.
37.
39.
34.
36.
10
20
80
00
70
70
40
70
70
50
10
50
20
20
20
20
40
00
40
40
40
60
3.
3.
3.
3.
3.
3.
3.
3.
3
3
3
3
3,
3
3
3
2
3,
3.
3
2.
3.
. 21
.80
.01
.26
.43
.55
.33
.51
.36
.26
. 18
.45
.33
.40
. 22
.51
.90
. 13
. 22
.42
.89
. 1 2
1.11
1 .39
1 .30
1 .23
1.31
1 .35
1 .26
1 .27
1 .30
1 .23
1.16
1 . 29
1 .29
1 .23
1.18
1 . 27
1 .07
1.14
1 . 22
1 .25
1 .09
1.13
10
0
1
1
2
2
3
4
4
1
1
1
4
3
2
2
.22
. 10
.90
.66
.82
.02
.48
. 13
.30
.57
*
.67
.67
.43
.92
.66
*
*
t
*
*
.79
8.
1 .
1 ,
1 .
2.
2,
2
5
4
1
1
1
3
3
1
.70
.03
.50
.46
. 18
. 18
.68
.49
.55
. 17
*
.23
.25
. 15
. 10
.98
*
*
*
*
*
*
35
0
12
8
12
12
21
22
26
6
5
5
21
18
6
17
.20
.30
.78
.34
. 18
.34
. 16
.91
. 20
.69
*
.94
.32
. 19
.89
. 23
*
*
*
*
*
.90
32
3
7
7
13
1 1
20
24
25
7
6
4
18
16
7
.78
.48
.98
.78
.22
.38
.78
.22
. 1 1
.21
*
.32
.52
.36
.53
.99
*
*
*
*
*
*
542.
70.
495.
365.
410.
496.
546.
534.
595.
325.
274.
261 .
556.
480.
208.
643.
10
00
00
20
00
40
40
88
50
00
*
90
60
83
90
40
*
*
*
*
+
60
618
189
380
377
523
464
637
558
570
392
324
262
543
472
322
.40
.00
.70
.90
.80
.50
.20
.38
.20
.00
*
.20
.20
.60
.70
.20
*
*
*
*
a
*
3
1
1
2
4
3
2
2
2
1
1
1
2
2
1
.62
. 10
.70
.45
. 10
.39
.59
.28
. 27
. 12
*
. 15
. 12
.31
.03
.48
*
*
*
*
*
*
3
0
1
2
2
3
2
2
2
1
0
0
2
2
1
.86
.98
.42
. 27
.52
.64
.37
.80
.47
.53
*
.99
.86
. 1 1
. 15
.45
*
*
*
*
*
*
PH01ML1 1
PH07ML1 7
PH14ML1 14
PH28ML1 28
PH99ML1 28
PH56ML1 56
PH99ML2 120
PH99ML3 240
PH99ML4 358
PH99ML5 493
PH99ML6 626
PH99ML7 722
1 .97
2.03
1 .99
2.01
2.02
1 .96
2.13
2.15
2.17
2.12
2.13
2.14
32.50
32.40
32.40
32.80
32.60
32.20
33.70
33,80
33.90
33.80
33.80
34.00
2.98 1 .02
3.01 1 .05
3.00 1 .02
2.99 .03
3.02 .02
2.98 .02
2.97 .05
2.98 .06
2.99 .06
2.97 1 .05
2.97 1 .05
2.98 1 .06
26.86
21 .00
28.01
31 .99
*
33.48
*
*
*
*
*
28.58
24.38
20.01
26.21
28. 15
*
31 .93
*
68.22
55. 13
60.06
65.08
*
70.96
*
*
*
*
*
74.55
65.66
51.12
58.72
60. 18
*
66.63
*
*
*
*
*
*
486.80
490.90
438.80
429.80
*
471 .80
*
*
*
*
*
678 .92
539.00
487.70
477.20
457.70
*
475.40
*
*
*
*
*
*
8.38
7.88
9.72
10.39
*
10. 16
*
*
*
*
*
*
8.74
6.97
8.79
9.45
*
9.73
*
*
*
*
*
*
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
i nch
width)
S-100
MODULUS
T
( lb/
inch
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
METHYL ETHYL KETONE 3.0% 23°C
PL01ML3
PL01ML2
PL01ML1
PL07ML3
PL07ML1
PL07ML2
PL14ML1
PL14ML2
PL14ML3
PL28ML3
PL28ML2
PL28ML1
PL99ML1
PL56ML1
PL56ML2
PL56ML3
PL99ML2
M PL99ML3
U> PL99ML4
0 PL99ML5
PL99ML6
PL99ML7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
120
235
358
494
627
724
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
2
2
2
1
2
2
.93
.98
.96
.99
.99
.00
.98
.94
.96
.97
.96
.98
.00
.97
.93
.94
.02
.02
.04
.99
.02
.03
31
31
31
32
32
32
32
31
31
32
32
32
32
32
31
32
32
32
32
32
32
32
.40
.80
.60
. 10
.00
. 10
.30
.70
.90
.30
.00
.20
.50
.20
.80
.30
.40
.60
.60
.30
.40
.70
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.03
.04
.04
.03
.03
.03
.02
.03
.03
.02
.00
.02
.03
.00
.03
.04
.04
.05
.05
.02
.03
.04
1.01
1 .02
1 .02
1 .02
1 .02
1 .02
1 .02
1 .02
1 .02
1 .01
1.01
1 .02
1.01
1 .02
1 .02
1 .03
1 .02
1 .03
1 .02
1 .01
1 .02
1 .02
24
25
23
29
24
29
19
16
18
38
33
29
32
29
27
30
.54
.40
.34
.22
.65
.90
.83
.64
.64
. 16
.96
. 16
*
.45
.50
.86
*
*
*
*
*
.93
21 .
24.
20.
27.
21 .
26.
18.
13.
17.
34.
32.
28.
29.
27.
24.
62
90
82
43
75
26
35
38
1 1
79
67
84
*
16
70
89
*
*
*
*
#
*
71
70
66
71
63
69
53
49
54
79
73
68
72
68
65
77
.22
.70
.66
.58
.50
.60
.23
.29
.99
.27
.22
.57
*
.41
.88
.79
*
*
*
*
*
. 10
61
66
63
65
59
67
52
41
49
73
72
66
70
64
64
26
90
42
66
15
67
75
87
55
70
77
49
*
10
91
01
*
*
*
*
*
*
575
567
536
462
466
458
483
515
547
473
478
476
476
491
470
636
40
13
80
58
50
80
80
00
10
60
90
90
*
60
70
00
*
*
*
*
*
92
518.
577.
580.
510.
502.
602.
552.
538.
553.
514.
497.
512.
552.
509.
528.
60
70
60
50
60
50
70
10
90
70
70
70
*
30
70
30
*
10
9
7
10
9
10
7
5
7
9
10
9
9
9
9
.86
.70
.90
.89
.47
.42
.76
.36
.86
.67
.55
.29
*
.49
.74
.37
*
*
*
*
*
*
9
10
8
9
8
9
7
4
7
9
10
8
9
8
8
!70
. 18
. 14
.47
.24
.61
.33
.30
.45
.53
. 12
.48
*
. 19
.55
.26
*
*
*
¥
*
*
METHYL ETHYL KETONE 13.0% 50°C
PH01MM1
PH07MM1
PH14MM1
PH99MM1
PH28MM1
PH56MM1
PH99MM2
PH99MM3
PH99MM4
PH99MM5
PH99MM6
PH99MM7
1
7
14
28
28
56
120
239
357
493
625
721
2
2
2
2
2
1
2
2
2
2
2
2
.23
.65
.09
.31
.59
.95
.44
.54
.46
.64
.57
.57
35
37
34
34
37
34
35
35
35
36
36
35
.50
.40
.00
.70
. 10
.60
.30
.00
.50
. 10
.00
.00
3.
3.
2.
3.
3.
2.
3.
3.
3.
3.
3.
3.
07
20
95
21
17
87
12
10
15
17
10
17
1.11
1 .20
1 .06
1 .08
1.17
1 .03
1.13
1.12
1 . 14
1.15
1.12
1.16
7.
8.
12.
6.
24.
12.
06
24
78
*
49
14
*
*
*
*
*
1 1
6.
7.
13.
5.
23.
10
65
85
*
73
16
*
*
*
*
*
*
30
30
42
26
67
59
.46
.32
.83
*
.20
.26
*
*
*
*
*
. 18
28
30
47
22
60
.86
.51
.81
*
.89
.84
*
*
*
*
*
*
555.
443.
518.
486,
549.
731 .
40
.00
00
*
,70
.70
*
*
*
*
*
.83
595
480
532
453
507
.70
.40
.50
*
.70
.20
*
*
*
*
*
*
3
5
7
2
7
. 18
.33
.09
*
. 16
.56
*
*
*
*
*
*
3
5
7
2
6
.46
.43
.72
*
.22
.97
*
*
*
%
*
*
METHYL ETHYL KETONE 13.
23°C
PL01MM2 1
PL01MM3 1
PL01MM1 1
PL07MM2 7
PL07MM3 7
PL07MM1 7
2.31
2.29
2.21
2.25
2.34
2.30
34.30
34.20
34. 10
34.70
34.80
34.60
3.16
3.17
3,. 16
3.08
3.20
3.17
1 . 19
1 .09
1 .07
1.11
1.11
1.10
8.58
8.06
10.30
18.69
8.78
11.18
8. 10
8.06
10.06
18.13
1 1 .34
1O. 18
32.82
31 .54
34. 26
56.87
*
39.74
30.62
33. 18
35.02
54.45
36.02
36.66
590. 10
632.80
528.40
504.90
559.60
558.60
624.90
635.30
587.00
499.80
521 .90
582. 60
5.78
4.78
3.98
7.55
6.11
6.97
5.30
5.10
3 . 54
7 35
5.82
6.49
-------
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
(lb/
i nch
width)
BREAKING
FACTOR
M
(lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
( inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) Cb)
METHYL ETHVL KETONE 13.0% 23°C
PL14MM1
PL14MM2
PL14MM3
PL28MM2
PL28MM3
PL28MM1
PL99MM1
PL56MM2
PL56MM3
PL56MM1
PL99MM2
PL99MM3
PL99MM4
PL99MM5
PL99MM6
PL99MM7
Ni
U>
I-1 PH010M1
PH070M1
PH140M1
PH990M1
PH280M1
PH560M1
PH990M2
PH990M3
PH990M4
PH990M5
PH990M6
PH990M7
14
14
14
28
28
28
28
56
56
56
120
234
357
493
626
723
1
7
14
28
28
56
128
251
364
503
626
728
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2 .
2.
1 .
1 .
1 .
2.
1 .
1 .
2.
2.
2.
2.
2.
2 .
27
19
21
08
19
20
21
04
07
15
29
15
27
34
30
28
90
92
97
02
94
92
19
40
45
44
40
41
34
34
34
34
34
34
33
32
33
33
33
34
33
34
32
34
31
31
32
33
31
31
33
36
35
31
36
.40
. 10
.30
.20
.30
.50
.60
.50
.20
.40
.60
. 10
.80
. 10
.40
.00
.50
.90
.40
.00
.90
.70
*
.50
.60
.60
.80
.20
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
2
2
3
3
2
2
3
3
3
3
3
3
16
14
13
98
09
10
13
02
04
07
15
19
18
18
01
.09
.08
.08
.05
.08
.08
.07
.03
.05
.05
.08
.09
.08
.09
.03
16 1 .09
ASTM #2
98 1.01
95 1.01
00 1.01
05 1 .03
98 .01
98 .02
28 .10
29 .11
34 .13
32 .12
33 .12
31 .14
1 1
1 1
13
13
13
13
28
22
17
10
OIL
42
43
43
42
41
63
.08
.61
.94
. 19
.66
.64
*
.73
. 15
.25
*
*
*
*
*
.38
1 1
12
13
1 1
12
1 1
24
19
16
.41
. 19
.80
.70
.75
.61
*
.67
.49
.05
SATURATED
. 18
.70
.40
*
.70
.58
.00
39
39
42
40
41
.66
.98
.02
*
. 10
.50
34
37
44
38
39
39
65
58
47
41
50°C
85
76
81
81
83
77
. 17
.77
.90
.06
.49
.28
*
.47
.45
.24
*
*
*
*
*
.53
.22
.22
.58
*
.78
.90
4
*
*
*
*
.50
37
40
42
34
34
37
58
49
43
77
76
77
79
79
53
07
91
34
35
24
*
23
70
60
26
46
86
*
50
34
*
*
*
*
*
*
508.
541 .
551 .
465.
472.
469.
461 .
481 .
467.
739.
538.
416.
499.
503.
564.
363.
10
80
60
50
40
42
*
20
50
10
08
00
50
70
*
00
80
*
4
*
*
*
00
582.
578.
562.
490.
443.
532.
471 .
474.
485.
537.
540.
522.
556.
538.
70
10
70
60
60
25
*
00
10
30
00
60
90
*
70
40
5.
5.
5.
4.
4.
3.
6.
5.
5.
13.
1 1 .
14.
10.
1 1 .
50
22
77
07
23
99
*
07
95
13
*
4
4
*
*
*
34
66
42
*
80
58
*
*
*
*
*
*
5.
5.
5.
3.
3.
3.
5.
5.
5.
12.
10.
14.
10.
1 1 .
07
89
72
80
67
70
*
89
41
33
*
*
4
4
4
*
90
82
02
*
30
14
ASTM #2 OIL SATURATED 23°C
PL010M3
PL010M1
PL010M2
PL070M1
PL070M2
PL070M3
PL140M2
PL140M1
PL140M3
PL280M1
PL280M2
PL280M3
1
1
1
7
7
7
14
14
14
28
28
28
1 .89
1.91
1 .93
1 .92
1 .90
1.91
1.91
1.91
1.91
1.91
1 .92
1 .92
31
31
31
31
31
31
31
31
31
31
31
31 .
. 10
.50
.70
. 70
. 10
.40
.40
.60
.30
.40
.50
.50
2
1 .
2
2
3
3,
3.
3.
3.
3.
3.
3.
.99
.00
.99
.99
.00
.00
.01
.00
.00
.00
00
00
1 .00
1.01
1 .00
1 .00
1 .00
1 .00
1 .01
1.01
1.01
1 .00
1 .00
1.01
41 ,
41 .
41
42
40.
40
40.
42.
36.
44,
40.
41 .
. 18
.46
.26
.62
. 74
.95
.86
.34
.40
. 10
.66
,30
37,
38.
38
40
38
38
38
40
38.
44
38,
37,
.60
.30
.06
.34
.62
.82
.66
. 10
.46
. 10
.34
.98
81
84
82
84
83
83
84
82
83
83
81
82
.26
.46
.42
.98
.62
.86
. 14
.23
.80
.50
.30
.74
78
77
78
79
78
77
77
80
79
83
79
78
.90
.30
.62
.78
.38
.54
.26
.50
.66
.50
.54
.02
501 .
513.
497.
521 .
527.
522.
527.
497.
538.
473.
482.
496.
50
20
90
50
90
90
40
80
00
00
80
40
562
528
553
542
563
543
541
565
557
473
550
535
.88
.80
.90
.70
.20
.20
.70
.20
.30
.00
.50
.50
13
13
12
1 1
1 1
10
1 1
13
1 1
10
13
14
.55
.38
.90
.66
.30
.98
.58
.30
.42
.60
.82
.22
12
13
1 1
1 1
10
1 1
10
13
10
10
13
13
.74
.26
.46
.02
.74
. 10
.54
. 18
.74
. 10
. 10
.66
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
( lb/
inch
width)
S-100
MODULUS
T
( lb/
inch
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
ASTM #2 OIL SATURATED 23°C
PL990M1
PL560M2
PL560M1
PL560M3
PL990M2
PL990M3
PL990M4
PL990M5
PL990M6
PL990M7
28
56
56
56
128
237
364
503
626
730
1 .89
1 .90
1 .92
1 .93
1 .90
1 .89
1 .91
1 .88
1 .85
1 .86
32
31
31
31
31
31
31
31
31 .
32.
.30
. 20
.60
.80
.50
.60
.60
.40
.50
.30
2,
3
3
3,
3.
2.
2,
2,
2.
2.
.99
.00
.01
.00
.00
.99
.99
.97
,97
.96
1
1
1
1
1
1
1
1
0
1
.00
.01
.00
.00
.00
.00
.00
.00
.99
.00
39
47
39
52
*
.38
.26
.26
*
*
*
*
*
.40
37.
39,
38,
*
. 18
.26
.58
*
*
*
*
*
*
82.
84.
80.
88.
*
.45
.34
,74
*
*
*
*
*
,40
*
77.78
82.58
80.46
*
*
*
*
*
*
513
474
528
617
*
.00
.90
.00
*
*
*
*
*
.00
587,
552
532.
*
.50
.20
.30
*
*
*
*
*
*
*
1 1 .98
1 1 .78
1 1 .66
*
*
*
*
*
*
*
1 1 .50
1 1 .06
1 1 .98
*
*
*
*
*
*
l-o
PH010P1
PH070P1
PH140P1
PH280P1
PH990P1
PH560P1
PH990P2
PH990P3
PH990P4
PH990P5
PH990P6
PH990P7
1
7
14
28
28
56
141
257
385
509
627
734
1 .85
1 .77
1 .75
1 .68
1 .69
1 .68
1 .62
1 .61
1 .58
1 .58
1 .58
1 .57
31
30
31
30
30
31
31 ,
30,
29.
30,
29,
29.
.40
.90
. 10
.20
.90
. 10
.50
.30
.80
. 10
.70
,80
2
2
2
2
2
2
2,
2
2,
2,
2,
2.
.94
.88
.86
.82
.82
.93
.77
.75
.74
.74
.74
.91
0,
0
0
0
0
0,
0.
0,
0,
0,
0,
0.
.99
.98
.97
.95
.95
.98
.93
.93
.92
.92
.92
.92
43
59
64
70
84
.22
. 10
.05
.76
*
.86
*
*
*
*
*
*
41
57
62
72
80
.54
. 13
.50
.82
*
.50
*
*
*
*
*
*
82
84
87
87
94
165
.86
.34
.95
.66
*
.98
*
*
*
*
*
.50
78.
85.
88.
91 .
92.
78
20
74
82
*
30
*
*
*
*
*
*
529
393
386
410
390
60
.90
. 10
.00
.60
*
.50
*
*
*
*
*
.75
544.
452.
459.
383.
424.
10
20
10
30
*
20
*
*
*
*
*
*
1 1
13
15
18
22
. 14
.64
.93
.98
*
.30
*
*
*
*
*
*
10
12
14
18
21
.62
.86
.53
. 18
*
.82
*
*
*
*
*
*
PL010P1
PL010P3
PL010P2
PL070P2
PL070P3
PL070P1
PL140P2
PL140P3
PL140P1
PL280P1
PL280P3
PL280P2
PL990P1
PL560P2
PL560P3
PL560P1
PL990P2
PL99OP3
1
1
1
7
7
7
14
14
14
28
28
28
28
55
55
56
141
244
1 .88
1 .88
1 .90
1 .88
1 .85
1 .86
1 .86
1 .84
1 .87
1 .84
1 .85
1 .84
1 .83
1 .82
1 .83
1 .82
1 .77
1 .73
31 .
31 .
31 .
31 .
30.
31 .
31 .
31 .
31 .
31 .
31 .
31 .
31 .
30.
31 .
31 .
31 .
30.
30
20
40
20
90
00
20
10
30
20
20
40
40
70
10
20
00
50
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.98
.99
.98
.97
.97
.98
.96
.96
.97
.94
.95
.95
.94
.80
.94
.93
.90
.88
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.99
.99
.99
.99
.99
.99
.98
.95
.99
.98
.97
.96
40
43
44
44
42
48
47
46
52
50
54
50
57
54
58
.42
. 10
.58
.82
. 14
.90
.54
.54
.98
.58
.22
.90
*
.22
.86
.90
*
*
37
40
41
41
40
44
44
44
49
50
50
47
.
54
50
54
.90
.62
. 18
. 14
. 14
.58
.34
.46
.42
.70
.98
.82
*
. 14
.94
.58
*
*
86.
87.
85.
87.
78.
88.
87.
83.
89.
87.
88.
87.
89.
83.
91 .
22
18
98
78
54
78
18
98
06
58
50
82
*
62
94
06
*
*
79
78
81
77
78
83
82
80
86
85
84
83
83
83
85
.50
.02
.46
.82
.22
.66
.06
.06
.54
.54
.94
.38
*
.98
.86
.42
*
*
566
505
490
577
528
466
499
488
461
461
445
471
466
410
471
.50
.70
.00
.30
.30
.90
.80
.40
.80
.30
.60
.40
*
.40
.00
.20
*
*
574
490
543
554
544
514
547
521
518
478
489
500
476
502
497
.40
.60
.50
.00
.50
.80
.90
.00
.50
.80
.00
.30
*
.20
.50
. 10
*
*
10
13
16
1 1
10
10
12
12
1 1
16
13
15
14
13
14
. 18
.66
.78
. 14
.30
.68
.62
.90
.00
.98
.30
.98
*
.54
.74
.30
*
*
9.62
13.54
15.50
10.42
10.10
10.32
11 .50
1 1 .62
10.48
17.54
12.82
17.58
14.62
13.82
13.90
*
*
-------
WEIGHT THICKNESS
(gram) (mi 1)
PL990P4
PL990P5
PL990P6
PL990P7
PH01PH1
PH07PH1
PH14PH1
PH28PH1
PH99PH1
PH56PH1
PH99PH2
PH99PH3
PH99PH4
PH99PH5
PH99PH6
PH99PH7
PL01PH1
PL01PH2
PL01PH3
PL07PH1
PL07PH2
PL07PH3
PL14PH2
PL14PH1
PL14PH3
PL28PH2
PL28PH3
PL28PH1
PL99PH1
PL56PH1
PL56PH2
PL56PH3
PL99PH2
PL99PH3
PL99PH4
PL99PH5
PL99PH6
PL99PH7
385
509
627
736
1
7
14
28
29
56
1 21
243
362
499
624
720
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
121
230
362
499
625
722
1.71
1 .70
1 .69
1 .68
1 .94
1 .75
1 .70
1 .72
1 .81
1.71
1 .75
1 .84
1 .79
1 .89
1 .84
1 .79
2.09
2.09
2.08
1 .80
1.81
1.81
1 .76
1 .76
1 .77
1 .73
1.71
1 .72
1 .82
1 .69
1 .69
1 .70
1 . 75
1 .74
1 .72
1 .73
1 .63
1 .59
30
30
30
30
31
31
30
31
31
31
31
31
31
31
31
31
32
32
32
30
31
30
30
30
30
30
30
30
31
30
30
30
31
30
30
30
30
30
.20
.50
.00
.90
.70
. 10
.40
.20
.30
.00
.40
.50
.50
.90
.50
.20
.20
.30
. 10
.60
.00
.90
.80
.60
.70
.60
.20
.30
.00
. 20
.40
.40
. 10
.40
.80
.30
.20
. 20
LENGTH
(inch)
2.87
2.85
2.85
2.84
s-ioo
MODULUS
M
(lb/
WIDTH inch
(inch) width)
ASTM #2 OIL 100
0.96 *
0.95 *
0
0
.95
.95
PHENOL
2.97
2.80
2.89
2.77
2.87
2.77
2.87
2.88
2.85
2.92
2.87
2.83
1
0
0
0
0
0
0
0
0
0
0
0
.01
.96
.95
.95
.97
.95
.97
.97
.97
.99
.97
.97
PHENOL
3.08
3.07
3.07
2.89
2.88
2.87
2.83
2.85
2.85
2.82
2.82
2.82
2.89
2.79
2.78
2.84
2.85
2.84
2.83
2.83
2.74
2.73
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.03
.03
.03
.98
.97
.97
.96
.96
.96
.95
.95
.95
.97
.94
.94
.95
.95
.96
.95
.95
.92
.92
75.
8.0%
38.
54.
55.
55.
55.
68.
8.0%
31 .
31 .
29.
44.
44.
44.
45.
46.
43.
47.
47.
48.
50.
54.
51 .
70.
*
00
50
02
79
23
06
*
80
00
23
07
04
88
14
73
48
81
14
08
33
69
35
*
63
08
92
*
*
*
*
*
90
S-100
MODULUS
T
(lb/
i nch
width)
.0% 23°C
*
*
°C
35
51
52
53
52
°C
27
27
27
41
41
41
42
43
45
45
44
44
48
49
50
*
*
08
96
62
19
*
10
*
*
*
*
*
*
85
88
85
.01
15
10
51
59
37
50
15
00
*
94
19
94
BREAKING
FACTOR
M
( lb/
inch
width)
*
*
87
76
88
88
88
86
77
71
66
69
81
87
88
89
85
85
87
87
86
89
87
87
88
*
.00
.70
.46
.65
.06
*
.60
.00
.01
.67
.96
.37
.68
.73
.30
.65
.02
.83
.81
.85
*
.63
.92
.92
.00
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
71
86
87
86
80
65
68
66
76
82
82
84
83
89
84
80
81
86
82
88
*
*
.05
.04
.33
.63
*
.80
*
*
*
*
*
*
.96
.05
.70
.61
. 1 1
.06
.99
.73
.69
.00
.80
. 10
*
.31
.31
. 13
ELONGATION
AT
BREAK
M
( inch)
*
*
463
433
408
435
456
441
306
417
412
452
398
472
478
439
428
497
436
462
451
452
410
434
225
*
.00
.78
. 13
.79
.31
*
.95
.00
. 23
.75
.08
.03
.48
.78
.83
.38
.88
. 29
.25
.78
*
.66
.63
.67
*
*
*
*
*
.00
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
440.40
444.98
479.50
463.28
*
454.15
452.55
488.68
485.33
416.00
490.40
499.83
473.95
474.53
448.13
456.80
468.65
489.20
4
450.84
495.47
494.28
8.82
14.43
10.92
15.97
*
16.29
*
*
*
*
*
*
8.34
8.57
8.87
13.05
12.75
12.46
12.78
13.07
13.05
14.34
13.79
14.30
*
15.49
15.53
14.72
*
*
*
*
8.64
14.16
10.75
15.11
*
15.61
7.79
7.78
8.09
12.35
12.04
1 1 .84
12.47
12.70
12.51
13.44
13.02
13.83
*
14.12
14.97
14.63
-------
POLYVINVL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
PH01PL1
PH07PL1
PH14PL1
PH99PL1
PH28PL1
PH56PL1
PH99PL2
PH99PL3
PH99PL4
PH99PL5
PH99PL6
PH99PL7
PL01PL2
PL01PL3
PL01PL1
PL07PL2
PL07PL1
PL07PL3
PL14PL2
PL14PL3
PL14PL1
PL28PL1
PL28PL3
PL28PL2
PL99PL1
PL56PL3
PL56PL1
PL56PL2
PL99PL2
PL99PL3
PL99PL4
PL99PL5
PL99PL6
PL99PL7
PH01PM1
PH07PM1
PHI 4PM 1
PH28PM1
PH99PM1
PH56PM1
1
7
14
28
28
56
122
245
363
499
625
721
1
1
1
7
7
7
-14
14
14
28
28
28
28
56
56
56
1 22
233
363
499
626
723
1
7
14
28
29
56
1
1
2
2
2
1
2
2
2
2
2
2
1
1
1
1
2
2
1
1
2
2
2
2
2
2
2
1
1
1
2
1
.96
.98
.00
.02
.00
.99
.03
.04
.04
.05
.08
.08
.90
.90
.91
.99
.97
.98
.97
.96
.98
.98
.99
.99
.02
.00
.98
.97
.02
.02
.03
.03
.05
.05
.03
.91
.89
.87
.04
.82
32
32
32
32
32
32
32
32
33
32
32
32
31
31
31
32
31
32
31
31
32
32
32
32
31
32
32
32
32
32
32
32
32
32
32
32
31
31
32
31
.00
.30
.60
.60
.70
.40
.50
.70
.20
.60
.90
.80
.00
.00
.20
. 10
.90
.20
.90
.90
.00
.00
.20
.20
.80
. 20
. 10
.00
.50
.60
.70
.50
.70
.80
.40
. 10
.70
.50
.50
.30
LENGTH
(inch)
WIDTH
( inch)
PHENOL
3.00
2.99
2.99
3.02
3.00
2.98
3.03
3.03
3.04
3.04
3.02
3.06
1
1
1
1
1
1
1
1
1
1
1
1
.01
.02
.02
.02
.02
.03
.02
.02
.02
.02
.03
.03
PHENOL
3.01
3.01
3.01
3.02
3.03
*
3.02
3.02
3.03
3.02
3.02
3.02
3.03
3.03
3.01
3.02
3.04
3.04
3.04
3.04
3.05
3.05
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.00
.01
.00
.02
.02
*
.01
.01
.02
.02
.02
.02
.01
.02
.02
.02
.01
.02
.02
.01
.02
.02
PHENOL
3.02
2.92
2.92
2.91
3.02
2.88
1
1
1
0
1
0
.03
.00
.00
.99
.02
.99
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
BREAKING
FACTOR
M
(lb/
inch
Width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
1.0% 50°C
41 .
41 .
38.
37.
39.
38.
19
24
44
*
44
10
*
*
*
*
*
00
37.20
39. 10
36.43
*
35.70
34.95
*
*
*
*
*
*
82
84
82
79
81
80
.75
.04
.77
*
.75
.05
*
*
*
*
*
.68
82
79
80
80
76
. 18
.98
.30
*
.55
.60
*
*
*
*
*
*
402
453
485
505
489
614
.78
.40
.03
*
.41
.05
.33
1.0% 23°C
42.
43.
42.
38.
40.
37.
37.
38.
37.
36.
35.
34.
35.
38.
35.
39.
4 . 0%
34.
44.
43.
44.
47.
22
29
44
85
65
77
47
57
22
70
90
90
*
20
10
55
*
*
*
*
*
42
50°C
77
41
44
75
*
60
39.97
39.71
*
36. 16
36.84
34.38
34.74
34.72
34.34
34.75
33.05
32.75
*
34.45
34.50
33.25
*
*
*
*
*
*
32.55
42.03
40. 78
42.80
*
44.80
86
90
85
87
84
86
87
89
83
83
77
81
82
83
83
89
75
83
82
85
88
. 10
.00
.62
.83
.30
.52
.97
.03
.47
.75
.90
.45
*
.80
.70
.75
*
*
*
*
*
.77
.28
. 10
.99
.55
#
.85
84
82
84
80
78
81
82
84
83
79
79
78
81
80
77
69
79
80
82
81
.22
.78
.40
.67
.85
.64
. 16
.67
.95
.45
.05
.60
*
.60
. 10
.75
*
*
*
*
*
*
.73
.07
.74
.25
*
.05
452
475
418
506
428
503
499
501
474
512
482
507
554
479
513
679
427
430
466
467
471
.48
.95
.90
. 13
.03
.93
.43
.85
.70
.78
.55
.88
*
.95
.00
.68
*
*
*
*
*
.50
.38
.40
.03
.50
*
.90
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
464.38
465.65
506.78
*
535.80
529.70
507. 15
489.60
481 .00
505.88
453.88
543.60
528.83
552.20
543.85
542.08
536.20
557.55
*
.25
18
543.53
*
571
545.
433.80
449.45
495.85
486.88
*
467.25
9.39
10.32
9.65
*
9.87
9.59
*
10.14
10.49
9.38
9.84
10.95
9.48
9.37
9.61
9.38
9.56
9.25
9.35
*
9.57
8.91
9.45
7.91
11.01
15.45
12.48
*
1 1 .89
9.12
9.49
9.09
9.14
9.38
*
*
10,11
9.83
8.63
9.26
10.24
8.92
8.84
8.82
8.99
9.18
8.50
8.64
*
9.02
9.03
8.50
*
7.
10.
14.
1 1
, 17
.65
.99
10
*
1 1 . 75
-------
PH99PM2
PH99PM3
PH99PM4
PH99PM5
PH99PM6
PH99PM7
WEIGHT THICKNESS
(gram) (ml 1 )
121 2.01 32.40
244 1 .97 32.20
362 1 .98 32.30
499 1 .98 32.50
624 1.96 32.10
720 1.93 32.10
LENGTH
(inch)
3.01
2.99
3.00
2.98
2.98
2.96
S-100 S-100 BREAKING
MODULUS MODULUS FACTOR
M T M
(lb/ (lb/ (lb/
WIDTH inch inch inch
(inch) width) width) width)
1.02 * *
1.01 * *
1 .02 * *
1.01 * *
1.01 * *
1.01 56.30 * 90.30
PHENOL
PL01PM2
PL01PM1
PL01PM3
PL07PM2
PL07PM1
PL07PM3
PL14PM3
PL14PM2
PL14PM1
PL28PM1
PL28PM3
U> PL28PM2
W PL99PM1
PL56PM2
PL56PM3
PL56PM1
PL99PM2
PL99PM3
PL99PM4
PL99PM5
PL99PM6
PL99PM7
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
1 21
231
362
499
625
722
2
2
2
1
2
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
.03
.02
.03
.98
.01
.96
.92
.95
.94
.90
.87
.90
.99
.87
.86
.84
.00
.03
.99
.89
.85
.81
31
31
31
32
32
31
31
31
31
31
31
31
31
31
31
31
31
32
32
31
30
31
.80
.70
.70
. 10
. 10
.90
.50
.90
.80
.50
.20
.50
.90
.30
.20
.00
.90
. 10
.00
.30
.80
.20
3
3
3
3
3
2
2
2
2
2
2
2
3
2
2
2
3
3
3
2
2
2
07
07
07
00
02
99
97
98
98
95
94
96
03
93
94
92
04
07
02
96
92
91
1
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
1
1
1
0
0
0
03
03
03
01
01
01
00
00
00
99
99
99
01
99
98
98
02
03
01
98
98
97
4.0% 23
33
32
32
37
37
35
37
36
37
38
38
38
40
40
41
56
. 1 1
.64
.30
.26
.61
.75
.04
.40
.49
.80
.20
.35
*
.20
. 15
.60
.00
°C
29
29
30
34
34
32
34
33
34
37
36
36
38
37
39
85
79
03
25
50
89
30
66
53
15
65
15
*
35
15
70
*
*
*
*
*
*
78
76
76
85
80
84
81
86
84
83
86
84
82
88
85
86
.00
.80
. 16
.06
.82
. 10
.71
.33
.99
.95
.70
.65
*
.30
.50
.50
*
*
*
*
*
.20
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
*
*
*
73.
75.
74.
80.
73.
79.
80.
78.
77.
79.
81 .
78.
83.
78.
82.
55
12
20
40
16
89
83
94
96
45
30
75
*
35
95
90
*
ELONGATION
AT
BREAK
M
(inch)
668.00
463.
436.
456.
485.
435.
501 .
449.
506.
490.
469.
493.
456.
535.
581 .
471 .
635.
05
68
58
05
48
16
33
20
88
23
00
13
*
50
03
63
00
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
*
*
498.
487.
500.
504.
433.
518.
505.
489.
486.
475.
505.
470.
541 .
558.
478.
25
08
58
23
83
83
85
65
70
05
45
38
*
78
53
78
*
TEAR
RESISTANCE
M
(lb)
9.
8.
8.
9.
9.
9.
9.
9.
10.
10.
10.
10.
1 1 .
1 1 .
1 1 .
74
58
87
82
48
46
90
91
15
84
70
51
*
40
94
17
lit
*
*
*
4
*
TEAR
RESISTANCE
T
(lb)
8
7
8
8
9
8
9
9
9
10
10
9
10
10
10
.06
.61
. 17
.97
. 16
.91
. 10
. 14
.57
.29
.25
.95
*
.80
.82
.97
*
*
•
*
*
*
SODIUM CHLORIDE 35.0% 50°C
PH01SH1
PH07SH1
PH14SH1
PH99SH1
PH28SH1
PH56SH1
PH99SH2
PH99SH3
PH99SH4
PH99SH5
PH99SH6
PH99SH7
1
7
14
28
28
56
131
253
379
510
630
734
.91
.88
.85
.91
.88
.88
.91
.92
.91
.90
.90
.90
31
31
31
31
31
31
31
31
31
31
31
.70
#
.00
.60
.60
.40
.60
.70
.90
.50
.60
.70
2
3
2
2
3
3
2
2
2
2
2
2
97
00
99
97
00
00
97
97
98
97
96
97
1 .00
1.01
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1.01
1 .00
1 .00
1.01
40
41
46
44
49
22
18
*
*
22
38
*
*
*
*
*
23
38
38
41
41
38
55
*
*
46
62
*
*
*
*
*
*
82
84
91
83
84
.06
.66
*
*
.38
.98
*
*
*
*
*
.53
78.
79.
84.
80.
18
45
*
*
26
46
*
*
*
*
*
*
508.
572.
551 .
494.
632.
10
30
*
*
10
40
*
*
*
*
*
83
522.
579.
588.
523.
30
00
*
*
30
60
*
*
V
*
*
*
10
10
9
9
10
.38
.26
.88
*
.88
.92
*
*
*
*
*
*
9
9
9
10
10
.9
.5
.6
*
.0
.4
-------
POLYVINVL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
( lb/
inch
width)
BREAKING
FACTOR
M
(lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
SODIUM CHLORIDE 35.0% 23°C
PL01SH1
PL01SH2
PL01SH3
PL07SH2
PL07SH1
PL07SH3
PL14SH3
PL14SH1
PL14SH2
PL28SH2
PL28SH3
PL99SH1
PL28SH1
PL56SH1
PL56SH3
PL56SH2
PL99SH2
PL99SH3
£5 PL99SH4
ON PL99SH5
PL99SH6
PL99SH7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
131
246
379
510
630
736
1 .88
.90
.91
.89
.90
.90
.90
.91
.91
.89
.82
.90
.89
.89
.90
.90
.90
.90
.90
.90
.90
.89
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
.40
.60
.80
.20
.50
.40
.50
.90
.60
.20
.20
.50
.60
.50
.40
.30
.40
.70
.60
.40
.30
.60
2
2
2
2
2
2
2
3
2
3
2
2
3
3
3
3
2
2
2
2
2
2
.96
.99
.99
.99
.99
.99
.98
.00
.98
.00
.90
.99
.00
.00
.01
.01
.99
.99
.99
.99
.99
.99
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
.00
.00
.00
.00
.00
1 .00
1 .00
1 .00
45
47
44
41
41
38
45
45
42
42
43
40
45
44
46
.22
. 14
. 10
.94
.50
.30
.90
*
. 10
.74
.82
*
.50
.78
. 10
.26
*
*
*
*
*
.50
41
43
40
38
38
36
39
45
42
42
35
45
47
.66
.94
.74
.58
.86
.54
.90
*
*
.50
.74
*
.34
.30
.80
.78
*
*
*
*
*
*
85
86
87
85
82
88
87
94
85
84
86
88
83
82
92
.66
.54
.46
. 10
.42
.70
.66
*
.82
.30
.02
*
.22
.38
.40
.46
.30
81
80
81
77
79
80
82
95
92
82
85
88
90
.46
.98
.62
.06
.98
.90
.70
*
*
.86
.62
*
.58
.62
.30
.38
*
*
*
#
*
*
495.
482.
503.
519.
502.
683.
505.
569.
519.
493.
504.
539.
502.
522.
662.
80
50
30
70
80
20
60
*
00
30
50
*
50
70
00
70
*
if
*
*
*
20
532
505
545
515
553
632
585
583
578
499
718
519
508
. 10
.80
.30
.40
.70
. 10
.70
*
*
.00
.50
*
.90
.70
.00
. 10
*
*
*
*
*
*
10
10
10
10
9
9
10
9
10
10
10
10
10
9
10
.90
.42
. 14
.06
.90
.70
.70
.92
.77
.24
.20
*
.34
.57
.68
.28
*
*
*
*
*
*
9.94
9.46
9.52
9.86
9.54
9.20
10.12
9.48
10.40
10.40
10.79
*
9.70
9.68
10.62
*
*
*
*
*
*
*
SODIUM CHLORIDE 10.0% 50°C
PH01SM1 1
PH07SM1 7
PH14SM1 14
PH28SM1 28
PH99SM1 28
PH56SM1 61
PH99SM2 132
PH99SM3 254
PH99SM4 370
PH99SM5 51 1
PH99SM6 624
PH99SM7 735
1 .87
1 .87
32.64
32. 17
1 .89
32.59
1 .89
1.91
1 .90
1 .90
1 .89
1 .88
31 .30
31 .50
31 .90
31 .60
31 .50
31 .90
31 .40
31 .40
31 .60
32.00
31 .30
31 .50
2.99 1.01
2.97 1 .00
7.42 6.86
7.38 6.87
2.97 1 .00
7.43 6.87
2.97 1 .00
2.97 .00
2.97 .00
2.97 .00
2.96 .00
2.97 .00
44.46
46.78
49. 10
45.42
*
46.62
*
*
*
*
*
50.20
43.34
43.50
45. 14
42.58
*
48. 14
*
*
*
*
*
*
86. 14
87.94
90.74
85.26
*
85.90
*
*
*
*
*
91 .60
83.30
80.60
85.22
81 .62
*
80.54
461 . 10
523.50
467.20
500.40
*
470.20
*
*
*
*
*
633.00
486.30
502. 10
495.00
537.70
*
456.00
*
*
*
*
*
*
10.22
10.58
10.94
10.98
*
1 1 .82
*
*
*
*
*
*
9.50
10.94
10.94
10.94
*
1 1 .66
*
*
*
*
*
*
SODIUM CHLORIDE 10.0% 23°C
PL01SM2 1
PL01SM3 1
PL01SM1 1
PL07SM2 7
PL07SM3 7
PL07SM1 7
1 .87
1 .91
1 .87
1 .88
1 .86
1 .84
31 .40
31 .90
31 .40
31 .60
31 .30
31 .OO
3.01
3.01
3.01
3.00
2.99
3.0O
1 .01
1 .01
1.01
1 .00
1 .00
1 .00
46.26
45.42
44.94
45. 10
45.54
43.70
41 .94
41 .50
41 .46
40.94
41 .94
43. 74
88.98
87.02
86. 14
85.62
, 89.06
88. 10
78.30
79.50
80.70
80.74
82.66
82.46
457.90
456.80
459. 10
495.00
524.60
546. 20
435.60
447.20
467.00
525.30
542.80
518.90
9.94
9.82
9.86
10.98
11.18
1 1 .30
9.66
9.58
9.50
10.30
9 .98
9.98
-------
10
WEIGHT THICKNESS
(gram) (mi 1)
PL14SM1
PL14SM3
PL14SM2
PL99SM1
PL28SM3
PL28SM2
PL28SM1
PL56SM2
PL56SM3
PL56SM1
PL99SM2
PL99SM3
PL99SM4
PL99SM5
PL99SM6
PL99SM7
PH01WP1
PH07WP1
PH14WP1
PH28WP1
PH99WP1
PH56WP1
PH99WP2
PH99WP3
PH99WP4
PH99WP5
PH99WP6
PH99WP7
PL01WP2
PL01WP1
PL01WP3
PL07WP2
PL07WP1
PL07WP3
PL14WP1
PL14WP2
PL14WP3
PL28WP1
PL99WP1
PL28WP2
14
15
15
28
28
28
28
56
56
61
132
246
370
51 1
624
737
1
7
14
28
28
56
133
254
370
503
622
735
1
1
1
7
7
7
14
14
14
28
28
28
32
1
1
1
32
31
32
32
32
32
1
1
1
1
1
1
1
1
33
1
1
32
1
1
1
1
1
1
1
1
1
1
1
1
32
1
1
1
1
1
.39
.90
.90
.90
.69
.98
.51
.37
.60
.69
.90
.89
.90
.89
.88
.88
.92
.92
.78
.96
.94
.91
.95
.96
.95
.95
.95
.95
.89
.90
.89
.92
.91
.90
.85
.91
.93
.91
.92
.89
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
32
31
32
32
32
31
32
32
32
32
31
32
31
31
31
32
31
31
31
31
31
31
31
31
.50
.80
.90
.40
.70
.50
.40
.60
.60
.80
.30
.40
.50
.30
.30
.70
.00
.90
.20
.30
.00
.90
.30
.00
.40
.00
.90
.20
.70
.80
.70
.00
.60
.50
.90
.40
.90
.60
.70
.50
LENGTH
( inch)
WIDTH
( inch)
SODIUM
7.42
3.00
3.00
3.00
7.40
7.21
7.45
7.41
7.42
7.43
3.00
3.00
3.00
2.99
2.98
2.99
6
1
1
1
6
7
6
6
6
6
1
1
1
1
1
1
92
00
00
00
92
00
91
88
95
95
00
01
00
.00
.00
00
WATER
3.00
2.98
7 .49
2.98
2.99
7.37
2.99
2.99
2.99
2.99
2.99
2.99
1
1
6
1
1
6
1
1
1
1
1
1
.00
.02
.99
01
.01
.96
.01
01
.02
.01
01
01
WATER
3.00
3.00
3.00
3.00
3.01
3.01
7 43
3.00
3.00
3.00
2.99
3.00
1
1
1
1
1
1
6
1
1
1
1
1
00
00
00
00
01
02
97
00
00
00
00
00
s-ioo
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
(lb/
inch
width)
BREAKING
FACTOR
M
( lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
( inch)
CHLORIDE 10.0% 23°C
47
50
50
45
42
43
43
44
49
46
100.
46
42
54
44
49
45
100.
47
48
47
43
43
43
48
46
45
47
47
.00
.78
.50
*
.70
.98
.78
.58
.80
. 18
.00
0%
.94
.82
.97
.58
*
.62
*
*
*
*
4
.55
0%
.70
.66
.54
.46
.02
. 26
. 14
.02
.50
.38
*
.30
44
49
47
40
40
39
43
44
41
50°C
44
40
50
44
46
23°C
45
45
46
39
41
40
48
42
43
44
39
40
38
30
*
34
14
34
22
02
14
*
*
*
*
*
*
70
90
97
22
*
14
*
*
*
*
*
*
34
10
38
62
22
06
20
94
22
78
*
90
88
85
87
89
85
88
84
87
89
89
85
87
89
80
87
83
90
90
92
87
84
84
85
85
86
87
87
.90
.42
.26
*
.78
. 74
.38
.70
.30
. 18
*
*
*
*
*
.00
.46
.58
.50
.54
*
. 18
*
*
*
*
*
.58
.34
.86
.22
.46
.58
. 14
. 14
.54
. 10
.82
*
.30
84
86
83
82
84
80
80
81
79
82
81
85
81
78
85
86
85
82
82
79
87
83
82
84
81
.70
. 10
. 18
*
.94
. 10
.94
.90
.46
.22
*
*
*
*
*
*
. 10
.66
.60
.90
*
.98
*
*
*
*
*
*
.54
.34
.78
.58
.66
.58
.70
.06
.98
. 10
*
.50
449
399
437
471
469
481
449
457
457
604
415
539
403
445
421
664
473
479
499
487
466
449
401
450
460
473
462
.70
.90
.60
*
.50
.40
. 10
.50
.63
.20
*
*
*
*
*
.00
.70
.60
.20
.80
*
.40
*
*
4
*
*
.58
.00
.40
. 10
.20
.40
. 20
.60
.70
.20
.90
*
.60
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
475.80
467.90
468.00
*
531.60
561.70
554.50
475.70
461.60
484.00
451.30
542.70
445.75
487.90
*
460.90
468.00
522.00
482.10
529.00
513.30
533.90
461.00
489.90
493.50
511.20
*
538.80
11.10
12.06
1 1 .78
*•
10.06
10.
10.
1 1 .
1 1 ,
.74
06
22
02
12.02
10.66
10.62
11.18
11.18
*
1 1 .30
*
10.50
10.46
10.58
10.22
10.34
10.62
1 1 .42
10.22
10.50
1 1 .26
*
10.10
10.90
1 1 .66
1 1 .38
*
9.78
9.82
10.
10.
.30
.54
1 1
10
.00
.94
*
*
*
*
*
10.30
10.50
10.38
10.74
*
10.86
10.22
10.06
10.14
10'. 50
10.42
10.14
10.26
9.70
9.90
10.26
*
10.00
-------
POLYVINYL CHLORIDE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
PL28WP3
PL56WP3
PL56WP2
PL56WP1
PL99WP2
PL99WP3
PL99WP4
PL99WP5
PL99WP6
PL99WP7
PH01XM1
PH07XM1
PH14XM1
PH99XM1
PH28XM1
OJ PH56XM1
0° PH99XM2
PH99XM3
PH99XM4
PH99XM5
PH99XM6
PH99XM7
PL01XM2
PL01XM1
PL01XM3
PL07XM3
PL07XM1
PL07XM2
PL14XM3
PL14XM1
PL14XM2
PL28XM2
PL28XM3
PL99XM1
PL28XM1
PL56XM3
PL56XM2
PL56XM1
PL99XM2
28
56
56
56
132
247
370
503
622
737
1
7
14
28
28
56
1 18
231
363
489
609
712
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
1 18
1 .92
1.91
1 .92
32.58
1 .93
1.91
1 .93
1 .93
1 .92
1 .91
.90
.93
.89
.92
.89
.90
.92
.93
.92
.92
.92
.91
1 .89
1.91
1 .89
1 .92
1 .92
1 .91
1 .90
1 .89
1 .90
1 .93
1 .89
1 .92
1 .89
*
*
1 .90
1 .92
32. 10
31 .60
31 .70
31 .50
31 .60
31 .70
31 .80
31 .70
31 .60
31 .80
31 .30
31 .70
31 .50
31 .80
31 .80
31 .70
31 .80
31 .70
31 .80
31 .70
31 .70
31 .70
31 .20
31 .60
31 .30
31 .70
31 .60
31 .30
31 . 20
31 .50
31 .20
31 .80
31.10
31 .70
31 .60
31 .50
31 .30
31 .50
31 .60
LENGTH
(inch)
S-100
MODULUS
M
( lb/
WIDTH inch
( inch) width)
S-100
MODULUS
T
(lb/
i nch
width)
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
inch inch
width) width)
ELONGATION
AT
BREAK
M
(inch)
WATER 100.0% 23°C
3.00
2.99
3.00
7.42
2.99
3.02
3.00
2.99
3.00
3.00
1
1
1
6
1
1
1
1
1
1
.00
.01
.00
.94
.00
.03
.01
.00
.00
.00
POTASSIUM
3.00
3.00
2.99
2.98
3.03
2.97
2.99
2.99
2.99
2.99
2.98
2.99
1
1
1
1
0
1
1
1
1
1
1
1
.00
.00
.00
.00
.99
.01
.00
.00
.00
.00
.00
.00
POTASSIUM
3.00
3.01
3.00
3.00
3.00
3.01
3.00
3.00
3.00
3.01
3.00
3.00
3.01
3.01
3.01
3.01
3.00
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.00
47.50
55.46
51 . 22
48.86
*
*
*
*
*
47.75
41
52
4B
46
DICHROMATE
42. 10
45.06
48.06
*
43.90
47.42
*
*
*
*
*
49.80
37
44
46
46
42
DICHROMATE
49.26
45.90
49.34
46.94
43.86
47.54
36.46
46. 18
38.66
45. 18
42.66
*
43.58
43.30
42.70
42.98
*
43
39
40
41
42
41
40
45
42
40
39
40
38
39
39
. 10
.49
. 14
.45
*
*
*
*
*
*
10
.50
.98
.70
*
. 18
.74
*
10
. 22
.06
.78
.70
. 18
.98
.46
.78
. 18
.90
.98
*
.06
.74
.50
.06
*
89
88
, 84
87
93
0%
85
90
90
86
88
88
0%
94
86
89
84
i 89
84
81
86
82
87
86
85
89
85
89
.50
.26
.80
. 10
*
*
*
*
*
.00
50°C
.50
.50
.38
*
.86
.50
*
*
*
*
*
.20
23°C
.38
.30
.86
.38
.34
.78
. 10
.98
.94
.50
.78
*
.90
.94
.34
.82
*
84
74
80
78
79
84
82
81
82
83
84
76
77
83
77
83
84
90
87
88
81
81
80
82
.30
.31
.94
.66
*
*
*
*
*
*
.98
.74
.62
*
.46
.98
*
*
*
*
*
*
.94
.62
.66
. 14
.62
.62
.62
.02
.74
.42
.38
*
.26
.82
.74
.58
*
531
408
422
461
637
458
524
497
484
490
569
484
484
455
415
500
407
482
454
51 1
530
594
451
503
474
522
10
90
00
.20
*
*
*
*
*
.00
.00
.80
.20
*
.40
.00
*
*
*
*
%
.00
.20
.60
. 10
.60
.20
.30
.40
.30
. 10
.20
.90
*
.60
.90
.00
.40
*
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
561.80
406.70
430.70
424.90
*
*
*
*
597.60
502.80
471.90
*
486.30
543.50
528.30
605.50
443.00
433.40
499. 10
427.60
469.80
464.80
485.50
489.00
528.00
*
487.30
518.50
506.70
574.10
1 1 .
1 1
12
1 1
50
92
10
06
*
*
*
*
*
*
9.95
10.64
1 1 .40
*
10.54
1 1 .00
1 1 .50
10.08
10.76
11.10
00
32
56
46
9.88
10.64
1 1 .08
*
10.58
10.44
10.62
9.85
*
1 1
1 1
9
1 1
9.70
1 1 .73
1 1 .56
10.46
10.60
10.14
10.66
*
10.42
10.80
*
*
*
*
*
*
10.82
10.24
10. 88
1 1 .86
10-.42
10.62
10.38
10.36
10.06
10.82
1 1
.20
*
10.50
9.70
10.24
10.30
*
-------
PL99XM3 223
PL99XM4 363
PL99XM5 489
PL99XM6 609
PL99XM7 714
WEIGHT THICKNESS
(gram) (mi 1)
1 .92
1 .92
1 .92
1 .92
1 .91
31 .70
31 .70
31 .60
31 .60
31 .80
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lt>/
inch
width)
S-100
MODULUS
T
(1b/
inch
width)
POTASSIUM DICHROMATE 10,
3.00
3.00
3.00
3.00
3.00
1 .00
1 .00
1 .00
1 .00
1 .00
*
*
*
*
47.30
*
*
*
*
*
BREAKING
FACTOR
M
(1b/
i nch
width)
. 0% 23°C
*
*
*
*
90.20
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
*
604.50
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (Ib) (lb)
U)
-------
PVC : STATISTICS
240
-------
POLVVINYL CHLORIDE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
PH01AM1
PH07AM1
PH14AM1
PH28AM1
PH56AM1
PL01AM1
PL01 AM2
PL01 AM3
PL07AM2
PL07AM3
PL07AM1
PL14AM1
PL14AM2
PL14AM3
PL28AM1
PL28AM2
PL28AM3
PL56AM2
PL56AM3
PL56AM1
PH01BM1
PH07BM1
PH14BM1
PH28BM1
PH56BM1
PL01BM2
PL01BM3
PL01BM1
PL07BM2
PL07BM1
PL07BM3
PL14BM1
PL14BM2
PL14BM3
PL28BM1
PL28BM2
PL28BM3
1
7
14
29
56
1
1
1
7
7
7
14
14
14
29
29
29
56
56
56
1
7
14
28
56
1
1
1
7
7
7
14
14
14
28
28
32
5
5
5
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .960
2.755
4.303
2.861
1 .492
3.705
5.604
2.700
1 .400
1.410
3.890
3.340
2.483
900
870
3.064
1 .307
6. 337
2.368
2.310
2. 224
1 .955
1 .922
*
3.973
1 . 243
1 . 124
2.540
1 .452
1 .668
2.560
2.982
2.085
0.923
2.230
3.245
2.050
NUMBER
BF
T
5
4
5
5
5
5
5
5
3
3
3
5
5
4
5
5
5
5
5
5
STD
DEV NUMBER
BF
T
HYDROCHLORIC
1 .900
1.710
1 .368
2.480
1.819
HYDROCHLORIC
2.633
2.608
2.479
2. 120
0.830
2.390
3.269
2. 180
3.590
2.997
1 .790
2.947
1.419
1 .361
0.737
EAB
M
ACID
5
5
5
5
5
ACID
5
5
5
4
4
4
5
5
5
5
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
2.090
1 .524
3.923
1 .467
2. 166
5
5
5
4
5
SODIUM HYDROXIDE
5
5
5
5
5
5
4
5
5
5
5
5
0.779
1 . 108
2.508
1 .459
2.559
1 .674
0.680
1 .665
5.081
2.855
0.783
2.421
5
5
5
5
5
5
5
5
5
5
5
5
10.0%
39
27
36
26
16
10.0%
55
75
34
30
30
32
25
25
26
18
50
25
59
19
25
10.0%
37
1 1
25
*
43
10.0%
8
22
37
26
21
39
36
31
17
15
40
23
STD
DEV
EAB
M
50°C
.698
.641
.950
. 180
.740
23°C
. 150
.114
.050
.330
. 250
. 100
.590
.620
.893
.990
.040
.756
.883
.212
.650
50°C
.618
.741
.530
.239
23°C
.306
.480
.930
.451
.204
.510
.493
. 107
.962
. 186
.436
.922
NUMBER
EAB
T
5
4
5
5
5
5
5
5
3
3
3
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
18.910
20.900
24.000
11.778
9.990
25.399
26.640
63.128
31.800
12.740
23.860
18.210
38.740
36.550
43.860
36.965
34.875
12.682
9.006
7.040
27.994
13.319
36.626
50.180
5. 160
16.481
15.617
22.613
7.840
29.650
32.280
8.990
21.249
61.303
31.952
15.724
29.588
5
5
5
10
5
5
5
5
6
5
5
5
5
5
10
10
10
5
5
5
10
10
5
10
7
10
10
9
10
10
10
10
10
10
9
10
10
0.415
0.517
0.469
0.550
0.261
0. 167
0.856
0.303
0.669
0.767
0.657
0.415
0.261
0.363
0.843
0.267
0.905
0.865
0.303
0.460
0.287
0.401
0.593
0.880
0.61 1
0.366
0.302
0.609
0.378
0.301
0. 169
0.893
0. 193
0.283
0.794
0.234
1 .081
5
5
5
10
5
5
5
5
5
5
5
5
5
5
10
5
10
5
5
5
10
9
10
8
6
10
10
10
10
10
10
10
10
10
9
10
10
0.385
0.228
0.684
0.694
0.335
0.762
0.498
0.316
0.329
0.955
0.110
0. 261
0.410
0.329
0.485
1 .500
0.452
0.583
0.555
0.518
0.290
0.343
1 .940
0.238
0.487
0.422
0.661
0.435
175
.227
.434
.394
.567
199
0.346
0.216
0.476
0.
0.
0.
0.
0.
0.
-------
POLYVINYL CHLORIDE:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
PL56BM3 56
PL56BM2 56
PL56BM1 56
PH01DH1 1
PH07DH1 7
PH14DH1 14
PH28DH1 29
PH56DH1 56
PL01DH2 1
PL01DH3 1
PL01DH1 1
PL07DH1 7
PL07DH3 7
PL07DH2 7
PL14DH1 14
PL14DH3 14
PL14DH2 14
PL28DH2 28
PL28DH3 28
PL28DH1 29
PL56DH1 56
PL56DH2 56
PL56DH3 56
PH01DL1 1
PH07DL1 7
PH14DL1 14
PH28DL1 29
PH56DL1 56
PL01DL3 1
PL01DL2 1
PL01DL1 1
PL07DL2 7
PL07DL1 7
PL07DL3 7
PL14DL2 14
PL14DL1 14
NUMBER
BF
M
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
STD
DEV
BF
M
4.086
1 .070
4.572
3. 166
5.720
3.600
2.477
3.204
4.378
5.826
3.771
2.800
6.200
4.980
5.580
3.220
5. 190
3.093
1 .671
0.954
1 .889
0.920
1 .850
1 .820
1 .243
0.547
1 .346
1 .475
1 .733
4.220
1 .240
1.110
1 .500
5 .750
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
SODIUM HYDROXIDE
5
5
5
2.500
1 .638
1 . 126
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1.161
3.530
2.510
1 .922
1 .516
5
5
4
5
5
1 2 DICHLOROETHANE
5
5
5
4
5
4
5
5
5
5
5
5
5
5
5
1 .358
0.977
3.131
1 .640
1 .700
6.030
1 .980
1 .700
6.090
*
*
3.210
1 . 150
2. 152
4.773
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
1 2 DICHLOROETHANE
5
4
5
5
5
1 . 129
0.760
2.470
0.839
1 .330
5
4
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
4
5
5
5
2. 146
1 .678
1 .543
1 .600
1 .000
1 .770
4.950
1 .970
5
5
5
4
4
5
5
5
STD
DEV
EAB
M
10.0% 23°C
37.093
15.601
43.287
.8% 50°C
26.200
72.460
12.900
13.513
30.998
.8% 23°C
43.549
27.609
1 5 . 540
1 9 . 040
49.600
71 .470
21 .560
25.880
12.280
*
*
18.576
21 .268
5.003
4.896
. 1% 50°C
13.600
20.420
20.010
8.076
1 1 .768
.1% 23°C
9.522
6.565
5.306
30.800
12.d90
7 . ,1 1 0
1 1 .980
54. 280
NUMBER
EAB
T
5
5
5
4
5
4
5
5
5
5
5
5
5
5
5
5
4
5
5
5
STD
DEV
EAB
T
28.300
16. 107
19.556
15.952
16.920
42.600
23.276
1 1 . 175
9.493
40.878
24.703
18.040
14.900
51.800
22.950
14.360
18.220
*
*
20.777
1 1 . 162
17.227
47.200
12.371
11.960
18.720
8.055
12.576
22.368
17.994
14.158
17.000
7.290
16.500
44.600
16.360
NUMBER
TEAR
M
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.400
0.821
0.671
0.378
0.280
0. 102
0.376
0. 155
0.517
0.293
0.324
0.230
0.61 1
0. 150
0.223
0.530
0. 150
0.840
0. 160
0. 174
0.310
0.857
0.427
0.325
0.340
0.220
0.380
0.323
0.226
0.352
0.381
0.400
0.464
0.438
0.590
0. 1OO
NUMBER
TEAR
T
5
'5
5
5
5
5
5
5
4
5
5
5
5
4
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.509
0.728
0.51B
0.202
0. 180
0. 150
0.295
0.331
0.338
0. 161
0.093
0.580
0.630
0.920
0.072
0.340
0.430
0.361
0.161
0. 108
0.323
0. 197
0.091
0. 198
0.260
0. 120
0.360
0.651
0.274
0.448
0.207
0. 171
0.337
0. 180
0. 200
O. 15O
-------
N>
-P-
OJ
PL14DL3 14
PL28DL2 28
PL28DL3 28
PL28DL1 29
PL56DL1 56
PL56DL2 56
PL56DL3 56
PH01DM1 1
PH07DM1 7
PH14DM1 14
PH28DM1 29
PH56DM1 56
PL01DM3 1
PL01DM2 1
PL01DM1 1
PL07DM2 7
PL07DM1 7
PL07DM3 7
PL14DM2 14
PL14DM3 14
PL14DM1 14
PL28DM2 28
PL28DM3 28
PL28DM1 29
PL56DM3 56
PL56DM2 56
PL56DM1 56
PH01FH1 1
PH07FH1 7
PH14FH1 14
PH28FH1 28
PH56FH1 56
PL01FH3 1
PL01FH1 1
PL01FH2 1
PL07FH2 7
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .470
*
*
2. 184
1 .572
1 .776
1 .231
2. 159
0.870
1 .450
2.212
2.828
1 .675
3.287
2.666
3.210
1 .720
4.000
0.810
3.820
4. 100
*
*
2.033
0.945
1 . 149
2.864
1 . 193
1.321
1 .566
2.666
1 .274
2.073
3.290
2.712
2.274
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
1.110
*
*
2.348
1.711
1 . 138
4.454
5
5
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 .466
7. 720
0.410
1 .572
0.621
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .981
2.356
1.716
4.850
1 .320
2.580
1 .050
1 .450
2.040
*
*
1 .508
2.030
1 . 298
1 .899
FURFURAL
0.968
1 .447
1 .997
1 .906
1 .602
FURFURAL
2.171
1 .525
2.204
1 .787
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8.0% 50°C
5
5
5
5
5
8.0% 23°C
5
5
5
5
STD
DEV
EAB
M
. 1% 23°C
14.040
*
*
12. 204
10.235
17. 128
2.811
.5% 50°C
8.759
9. 130
9.580
24.625
16.639
.5% 23°C
13. 143
29.524
15.655
30. 200
24.610
33.300
9. 100
21.810
13.090
*
*
22.606
12.023
10. 178
10.347
20.740
39.030
29.690
*
41 .430
68.407
28.500
94. 231
82.000
NUMBER
EAB
T
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
5
5
5
5
5
5
5
14.
*
*
12.
10.
17.
2.
040
204
235
128
81 1
5
5
5
5
5
5
5
14.
*
*
16.
9.
10.
48.
650
498
001
331
259
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
780
121
352
101
179
616
281
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
180
274
140
410
509
403
221
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
12.757
86.120
9.000
11.855
9.439
20.472
25.167
15.970
47.280
17.940
23.100
11.610
12.750
19.090
10.309
10.535
11.258
8.615
5
5
5
5
5
0. 188
0.300
0.380
0.397
0.091
5
5
5
5
5
0. 149
0.240
0.390
0. 186
0.372
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.317
.356
.342
.510
.310
.330
. 240
.340
.320
.345
. 139
.231
. 142
.658
.357
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.328
.832
. 159
. 190
. 180
.310
.530
.470
.200
.211
.303
. 179
.061
.275
. 128
5
5
5
5
5
16.050
49. 200
43.930
85.660
74.700
5
5
5
5
5
0.241
0. 132
0. 223
0. 167
0.082
5
5
5
5
5
0.451
0.089
0.079
0.082
0. 134
54 . 296
10.250
66.128
71 .480
0.471
0. 178
0.278
0. 149
0.895
0.516
0.520
0. 175
-------
POLYVINYL CHLORIDE:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
-P-
-P-
PL07FH3 7
PL07FH1 7
PL14FH2 14
PL14FH1 14
PL14FH3 14
PL28FH3 28
PL28FH1 28
PL28FH2 28
PL56FH2 56
PL56FH1 56
PL56FH3 56
PH01FL1 1
PH07FL1 7
PH14FL1 14
PH28FL1 28
PH56FL1 56
PL01FL3 1
PL01FL2 1
PL01FL1 1
PL07FL2 7
PL07FL1 7
PL07FL3 7
PL14FL2 14
PL14FL3 14
PL14FL1 14
PL28FL2 28
PL28FL1 28
PL28FL3 28
PL56FL3 56
PL56FL2 56
PL56FL1 56
PH01FM1 1
PH07FM1 7
PH14FM1 14
PH28FM1 28
PH56FM1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.040
1 .903
2.007
2.660
1 .403
1 .394
1 .950
1 .683
0.929
0.800
1 .681
1.314
1.517
1 .870
4.064
3.270
3.780
3.770
1 .705
2.902
1 .851
3. 165
2.721
1 .595
2.040
1 .972
7.029
1 .292
1 .303
3.838
4.245
5.249
2.300
2.430
2.992
3.986
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL
1 .070
1 .778
1 .218
2.407
2.255
1 .977
2. 104
1 .462
2.025
2.508
1 . 132
FURFURAL
1 .480
1 .696
2.980
1 .608
1 .992
FURFURAL
5.300
3.260
1 .646
1 .457
3.800
3.305
1 . 173
1 .808
4.290
2.424
0.581
2.575
0.527
1 .613
2.263
FURFURAL
2.266
2.729
0.439
3.281
4.621
NUMBER
EAB
M
8.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
1 .0% 50°C
5
5
5
5
5
1.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4.0% 50°C
5
5
5
5
5
STD
DEV
46
51
62
83
22
27
18
88
40
61
47
16
16
24
26
23
33
32
10
20
10
13
25
41
8
42
4
6
24
27
59
65
23
27
20
91
EAB
M
.040
.350
.050
. 190
.080
.930
. 170
.490
.990
.700
.750
;
.7'l4
.240
.920
.460
.450
.770
.713
.216
.920
.250
.690
.000
.080
.200
.500
.080
.710
.390
.750
.310
. 196
.080
.420
.400
.060
NUMBER
EAB
T
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
29.200
29.530
56.860
75.960
68.870
65.060
69.070
58.250
59.350
86.500
25.980
13.029
13.040
32.860
10.950
34.280
44.600
33.400
16.579
24.089
37.910
38.990
37.520
39.130
16.730
23.450
30.330
14.320
20.000
20.620
37.750
30.997
31.900
14.800
60.660
45.880
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.255
0. 162
0.057
0.113
0. 182
0.110
0.269
0. 152
0. 157
0. 179
0. 185
0.274
0.251
0.503
0.827
0.890
0.414
0.400
0.242
0.295
0.569
0.579
0.485
0.527
0.055
0.406
0.208
0.971
0. 167
0.458
0.532
0.249
0. 158
0.235
0.665
0.207
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.233
0.235
0. 148
0.082
0. 182
0.297
0. 103
0. 187
0.050
0. 122
0. 122
0.982
0.410
0.964
0.555
0.550
0.931
0.854
1.011
0.327
0.422
0.301
0. 100
0. 184
0.308
0. 167
0.407
0.241
0.270
0.288
0.200
0.118
0.514.
0.250
1 . 120
0.498
-------
PL01FM1 1
PL01FM2 1
PL01FM3 1
PL07FM3 7
PL07FM2 7
PL07FM1 7
PL14FM1 14
PL14FM2 14
PL14FM3 14
PL28FM2 28
PL28FM3 28
PL28FM1 28
PL56FM1 56
PL56FM2 56
PL56FM3 56
PL01MH1 1
PL01MH3 1
PL01MH2 1
PL07MH3 7
PL07MH1 7
PL07MH2 7
PL14MH1 14
PL14MH2 14
PL14MH3 14
PL28MH2 28
PL28MH3 28
PL28MH1 28
PL56MH1 56
PL56MH2 56
PL56MH3 56
PH01ML1 1
PH07ML1 7
PH14ML1 14
PH28ML1 28
PH56ML1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
NJ
4^
Ul
PH01MH1
PH07MH1
PH14MH1
PH28MH1
PH56MH1
1
7
14
28
56
5
4
1
5
5
STD
DEV
BF
M
2.081
2.615
2.518
3.492
5.720
2.500
3.500
3.303
1.912
2.020
2. 265
1 .997
3.487
4. 170
2. 275
2.604
1 .370
*
0.706
2 .934
2.914
0. 160
2.715
1 .940
2.030
0.910
1 .040
3.341
2.951
1 .609
0.373
0.787
3. 130
1 .540
2.521
3.992
2. 740
2.790
4.558
4.843
NUMBER
BF
T
STD
DEV NUMBER
BF
T
EAB
M
STD
DEV NUMBER
EAB
M
EAB
T
FURFURAL 4.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .
2.
3.
0.
1 .
2.
1
2
1
2
1
2
2
1
4
634
045
341
876
986
678
710
029
350
1 1 1
507
463
006
454
423
METHYL ETHYL
5
5
1
5
5
3
1
*
1
1
010
889
555
209
METHYL ETHYL
5
6
5
5
5
5
4
5
5
5
5
5
5
5
5
1
2
1
1
1
2
2
1
0
0
. 197
.080
.025
.590
.930
575
. 190
. 185
.415
100
.307
.267
.118
.554
.642
METHYL ETHYL
5
5
5
5
5
3
2
3
8
3
070
777
378
136
338
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
KETONE
5
4
1
5
5
KETONE
5
3
5
5
5
5
4
5
5
5
5
5
5
6
5
KETONE
5
5
5
5
5
24
36
32
48
46
16
33
43
25
34
57
44
46
45
28
26.
68
89
*
35
71
26.
23
24
*
85
74
20
43
77
87
74
26
48
60
18
74
.752
. 130
.598
.460
.940
.810
.470
.300
.000
.390
.510
. 220
.720
.360
.280
0% 50°C
. 102
.250
. 106
.090
0% 23°C
.767
.800
.780
.060
.650
.880
.089
.555
. 100
.420
.070
.315
. 107
.821
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
5
5
5
6
5
5
5
5
4
5
5
5
5
5
5
5
5
3.0%- 50°C
40
38
32
39
49
.864
.470
. 665
.687
.600
5
5
5
5
5
STD
DEV
EAB
T
19.987
36.604
51.615
19.270
31.570
44.670
26.770
32.040
20.620
37.650
23.870
26.790
32.860
28.590
37.680
50.422
51.480
*
67.413
31.970
27. 130
98.800
*
65.860
80.880
*
71.470
37.850
65.747
44.848
73.951
47.468
31 .495
87.560
27 470
23.060
31.440
60.226
71.235
51.760
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.484
0.400
0.394
0.442
. 243
.259
195
0.113
0. 197
0. 152
0.217
0.635
0.335
0.217
0.239
0.
0.
0.
0.335
0.200
0.350
0. 158
0.640
0.378
0. 140
0.382
0. 251
0. 158
0. 239
0.230
0.115
0.304
0.086
1 .490
0.257
0.533
0.452
0.255
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.689
0.410
0.282
0.866
0.203
0.372
0.497
0.261
0.095
0.045
0.354
0.335
0.263
0.228
0. 164
5
5
3
5
5
0.219
0.712
1 .320
0.005
0. 231
5
5
3
5
5
0.335
1 .030
0.242
0. 178
0.324
0.261
0.110
0.110
0.288
0. 295
0.181
0.234
0.284
0.347
0. 144
0.405
0.061
0.226
0. 1 26
0.094
0.817
0.362
0.406
1 .090
0.357
-------
POLYVINVL CHLORIDE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
PL01ML2 1
PL01ML3 1
PL01ML1 1
PL07ML1 7
PL07ML3 7
PL07ML2 7
PL14ML2 14
PL14ML3 14
PL14ML1 14
PL28ML3 28
PL28ML2 28
PL28ML1 28
PL56ML1 56
PL56ML3 56
PL56ML2 56
PH01MM1 1
PH07MM1 7
PH14MM1 14
PH28MM1 28
PH56MM1 56
PL01MM3 1
PL01MM2 1
PL01MM1 1
PL07MM1 7
PL07MM2 7
PL07MM3 7
PL14MM3 14
PL14MM1 14
PL14MM2 14
PL28MM2 28
PL2BMM1 28
PL28MM3 28
PL56MM1 56
PL56MM2 56
PL56MM3 56
NUMBER
BF
M
4
5
5
5
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
5
5
5
5
STD
DEV
BF
M
2. 200
3.570
1 .337
6.724
2. 252
4.040
3.547
1 .827
2.470
2.210
4.310
4.461
3.423
2.973
1 .540
1 .432
2. 183
4.321
1 .293
1 .530
2.472
1 . 137
2. 193
1 .700
1 .932
4.330
2.450
4. 194
4.115
5.670
4.430
1.812
4.516
3.456
3.033
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
STD
DEV NUMBER
BF
T
METHYL ETHYL
3.320
5.670
2.479
5.234
3.935
3.502
5.365
2.887
2.390
1 .503
2.893
1 .269
0.945
2.602
2.054
METHYL ETHYL
1 . 195
3.444
4.720
2.455
5.870
METHYL ETHYL
1 .376
1 .683
1 .354
3.005
5.579
2.230
2.080
0.846
3.460
3.963
3.750
2.456
2.516
3.353
2.027
EAB
M
KETONE
4
5
5
5
6
5
5
5
5
5
5
5
5
5
5
KETONE
5
5
5
5
3
KETONE
5
5
5
5
5
5
5
5
5
5
6
5
5
5
5
STD
DEV NUMBER
EAB
M
3.0% 23°C
33. 1,40
26.570
1 1 . 1 64
61 .995
*
37.743
26.619
25.590
30.7|30
26. 124
29.440
43 . 8.99
17.849
17. 200
29. 166
13.0% 50°C
35.548
27.300
73.228
32.816
18. 100
13.0% 23°C
43. 134
24.Q94
42. 147
48.430
16.520
*
49.883
69.346
56.Q92
74.850
54.907
28.598
66.910
36.370
32.329
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
STD
DEV
EAB
T
42. 100
*
25.681
27.395
56.118
*
35.290
35.657
28.400
14.296
16.916
22.176
21.600
12.846
24.503
21.840
57.030
7.620
62.518
54.142
66.880
32.617
25.772
67.490
14.728
42.282
25.859
27.430
74.009
65.022
69.450
46.880
52.912
12.452
12.434
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.620
1 .030
0.200
0.382
0.322
0.569
1 . 107
0. 156
0.377
0.222
0.340
0.349
0.220
0.270
0. 198
0.335
0.288
0.471
0. 140
0.569
0.303
0.438
0.228
0.472
0.442
0.718
0.217
0.642
0.227
0.310
0. 132
0.214
0.247
0.228
0.298
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
' 5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.303
0.710
0.456
0. 168
0.316
0.377
0.562
0.374
0.454
0.271
0.552
0.407
0.433
0.658
0.230
0.518
0.365
0.407
0.131
0.360
0.283
0.245
0.456
0.447
0.356
0.409
0.220
0.567
0.359
0. 160
0.462
0.302
0. 143
0.341
0.216
-------
t-o
.£-
PH010M1 1
PH070M1 7
PH140M1 14
PH280M1 28
PH560M1 56
PL010M3 1
PL010M1 1
PL010M2 1
7
7
7
14
PL070M2
PL070M3
PL070M1
PL140M1
PL140M2 14
PL140M3 14
PL280M2 28
PL280M1 28
PL280M3 28
PL560M2 56
PL560M3 56
PL560M1 56
PH010P1
PH070P1
PH140P1
PH280P1 28
PH560P1 56
1
7
14
PL010P1 1
PL010P3 1
PL010P2 1
PL070P2 7
PL070P3 7
PL070P1 7
PL140P1 14
PL140P2 14
PL140P3 14
PL280P1 28
PL280P2 28
PL280P3 28
PL560P3 55
PL560P2 55
PL560P1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.712
3.340
1.712
3.446
1 .727
3.070
2. 104
1 .433
2.568
1 .740
1 .507
1.210
1 . 194
2.600
2.960
2 .850
3.232
1 .667
7. 257
2.783
3. 260
1 . 196
9.540
1 .824
6.925
1 .585
2.216
2.003
2.352
15.284
2.928
3.327
3.171
3.297
2. 261
3.357
4.114
4.815
3. 158
2.066
NUMBER
BF
T
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF
T
ASTM #2 OIL
2.500
1 .682
2.696
1 .078
2.971
ASTM #2 OIL
2.270
2.021
0.923
2.032
3.439
2.741
2.654
3.232
1 .670
2.819
2 .850
2.641
1 .901
0.984
2.532
ASTM #2 OIL
0.867
5.000
3.293
6.556
0.776
ASTM #2 OIL
1.218
5. 190
2.696
8 .890
1 . 254
2.995
4.683
1 .539
1 .925
3.737
2. 120
2.718
2.118
3.582
0.912
EAB
M
STD
DEV
EAB
M
SATURATED 50°C
5
5
5
5
5
26.272
37.012
20. 221
35.999
15.360
SATURATED 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
100.0%
5
5
4
5
5
100.0%
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
41 . 1,67
24.551
17.030
32.044
26.847
25.577
13.730
14.899
38 .900
28.016
76.560
34.025
26.650
45.010
29.337
50°C |
39.4,99
18.687
76.500
27 . 230
51 .700
23°C
21 .634
23.334
28.962
26.093
*
39.976
38.280
36.683
42. 237
31 . 234
26.753
38.882
57.897
38.251
21 . 274
NUMBER
EAB
T
STD
DEV
EAB
T
35.222
36.378
29.548
21.067
14.577
27.570
25.343
4.434
24.152
33.029
42.349
24.102
25.727
30.230
36.034
76.560
50.732
77.658
50.141
30.223
9.367
52.000
41.007
80.902
12.029
15.599
53.028
43.191
*
22.190
35.048
54 .587
25.403
23.883
24.700
39 .810
17.914
22.680
55.829
6.576
NUMBER
TEAR
M
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.434
0.607
1 .418
0.300
0.110
0.412
0.522
0.927
0.283
0.415
0.654
0.490
0.716
0.460
0.716
0. 200
0.986
1 .331
0.518
0.335
0.357
0.220
0.430
0.438
0.648
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.735
0.559
1 .221
0.600
0.623
0.385
1 .396
5.043
0.590
0.374
0.390
2.072
0.434
0.297
0. 787
0. 200
0. 792
0.316
1.119
0.329
0.303
0.470
0.210
0.716
1 .060
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
1 ,
0,
0,
0,
0.
0.
0,
1 .
0.
0
0.
0
0
. 179
.297
.747
.607
.200
.110
.310
. 179
.616
.390
.482
.283
.623
.994
.469
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
1 .
2.
0.
1 .
0.
0.
0.
0.
2.
2.
0.
0.
0
0
,303
.410
. 173
.438
,010
.250
.110
.141
. 228
.660
.318
.390
.522
.460
.632
-------
POLYVINVL CHLORIDE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
NUMBER
BF
M
STD
DEV
BF
M
PH01PH1 1
PH07PH1 7
PH14PH1 14
PH28PH1 28
PH56PH1 56
5
5
3
4
5
2.716
4. 150
1 .690
0.430
5. 149
5
5
4
4
5
7.236
1 .450
1 .428
1 .331
2.328
5
5
3
4
5
24.650
32.671
22.020
19.510
49.682
5
5
4
4
5
55.483
14.181
9.400
20.560
26.977
5
5
5
5
5
0.215
0. 194
0.298
0.247
0.870
5
5
5
5
5
0.263
0.181
0.219
0.203
0.238
PL01PH3
PL01PH1
PL01PH2
PL07PH2
PL07PH3
PL07PH1
PL14PH1
PL14PH3
PL14PH2
PL28PH3
PL28PH1
PL28PH2
PL56PH1
PL56PH2
PL56PH3
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
5
5
5
5
5
5
5
5
5
4
5
3
4
3
3
3.
1 .
4.
2.
3.
5.
6.
1 .
4.
0.
4.
4.
2.
4.
2.
104
889
556
540
060
346
806
562
003
375
060
300
750
880
470
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
NUMBER
BF
T
5
5
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
PHENOL 8.
7.236
1 .450
1 .428
1 .331
2.328
PHENOL 8 .
2.303
3.151
2.468
1.110
3.210
2.609
4.688
3.866
2.019
1 .995
1 .808
1 .676
1 .230
2.330
1 .930
PHENOL 1 .
1 .504
2.980
0.804
1 .374
1 .664
PHENOL 1 .
2.400
3.246
0.608
9.860
3.720
0.660
1 .870
1 .954
1 .662
1 .588
2.870
0.779
NUMBER
EAB
M
0% 50°C
5
5
3
4
5
0% 23°C
5
5
5
5
5
5
5
5
5
4
5
3
4
3
3
0% 50°C
5
5
5
4
5
0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
M
NUMBER
EAB
T
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
5
5
5
5
5
5
5
5
5
4
5
3
4
3
3
27
21
41
24
20
46
42
12
31
7
29
27
24
37
30
.306
.734
.7<61
.000
.473
.030
.952
.889
.947
.200
. 160
.260
. 160
. 120
.390
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
22
30
22
15
28
21
38
27
12
IB
20
17
20
26
21
.594
.984
. 157
.800
.888
.882
. 146
.432
.912
.784
.399
. 173
.890
.280
.370
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.572
. 170
.261
.280
.265
. 139
.224
.375
.380
. 101
.387
.277
.407
.304
.476
5
5
5
5
5
4
5
4
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
0.
0.
0.
0.
0.
162
208
239
220
150
157
220
409
314
100
21 1
443
522
421
446
PH01PL1 1
PH07PL1 7
PH14PL1 14
PH28PL1 28
PH56PL1 56
5
5
5
4
5
10.052 .
2.720
1 .889
3.090
0.331
5
5
5
5
5
1 .504
2.980
0.804
1 .374
1 .664
5
5
5
4
5
75.648
20.760
18.998
33.630
23.209
5
5
5
5
5
10.754
25.050
10.232
14.733
13.386
5
5
5
5
5
0. 109
0.251
0.329
0.293
0.256
5
5
5
5
5
0.171
0.380
0.249
0.254
0.478
PL01PL1
PL01PL3
PL01PL2
PL07PL2
PL07PL1
PL07PL3
PL14PL2
PL14PL1
PL14PL3
PL28PL2
PL28PL3
PL28PL1
1
1
1
7
7
7
14
14
14
28
28
28
5
5
5
5
5
5
5
5
5
5
5
5
2.
2.
6.
2.
3.
2.
0.
3.
1 .
1 .
5.
4.
670
607
229
220
520
500
978
045
537
823
422
603
5
5
5
5
5
5
5
5
5
5
5
5
2
3
0
9
3
0
1
1
1
1
2
0
.400
.246
.608
.860
.720
.660
.870
.954
.662
.588
.870
.779
5
5
5
5
5
5
5
5
5
5
5
5
18
14
54
18
27
23
7
27
1 1
17
50
34
.744
.094
.547
.916
.370
-760
.540
.099
.508
.259
.074
.976
5
5
5
5
5
5
5
5 -
5
5
5
5
1 1
30
7
85
31
6
12
17
13
23
33
40
.350
.813
.087
.673
.410
.886
.650
.775
.877
.933
.907
.688
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
1 .
0.
0.
0.
0.
0.
0.
0.
699
471
490
225
581
250
145
203
160
247
247
269
5
5
5
5
5
4
5
5
5
5
5
5
0.213
0.234
0.866
0.373
0.741
0.420
0.486
0.504
0.350
0. 188
0. 185
O.348
-------
PL56PL3 56
PL56PL1 56
PL56PL2 56
PH01PM1 1
PH07PM1 7
PHI 4PM1 14
PH28PM1 28
PH56PM1 56
PL01PM1 1
PL01PM2 1
PL01PM3 1
PL07PM1 7
PL07PM3 7
PL07PM2 7
PL14PM2 14
PL14PM1 14
PL14PM3 14
PL28PM2 28
PL28PM3 28
PL28PM1 28
PL56PM3 56
PL56PM2 56
PL56PM1 56
PH01SH1 1
PH07SH1 7
PH14SH1 14
PH28SH1 28
PH56SH1 56
PL01SH1 1
PL01SH2 1
PL01SH3 1
PL07SH1 7
PL07SH3 7
PL07SH2 7
PL14SH3 14
PL14SH2 14
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.858
3.370
2.777
5.065
1 .590
4.364
5.737
1 .053
1 .849
1 .846
2.396
2.320
4.525
3.493
3.242
1 . 180
5.053
1 . 771
5.215
3.858
9.352
5.988
2.456
4. 175
5.391
*
3. 189
4.091
1 .851
2.308
3.051
2.629
4.308
1 . 226
4.942
2.048
NUMBER
BF
T
STD
DEV NUMBER
BF EAB
T M
STD
DEV
EAB
M
PHENOL 1 .0% 23°C
5
5
5
3.065
0.995
2. 195
5
5
5
20.848
33 . 360
16.045
PHENOL 4.0% 50°C
5
5
5
5
5
2.366
1.210
2. 125
1 .722
2.864
5
5
5
5
5
40.5O1
12.330
31 .599
49. 173
19.041
PHENOL 4.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
*
5
5
5
5
5
5
5
5
5
*
2.377
1 .579
1 .580
3.320
2 .030
2.030
2.406
3.733
3.624
2.366
3.785
2 .420
1 .933
3.556
2.613
SODIUM CHLORIDE
5.383
2. 160
*
1 .808
1 .808
SODIUM CHLORIDE
1 .367
1 .702
1 .591
3.472
2.223
3.267
0.971
*
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
35
5
5
*
5
5
35
5
5
5
5
5
5
5
5
14.654
18.390
15. 196
18. 286
35. 159
33.480
26.233
16.502
42.383
18.862
48.837
31 .723
54.920
59.672
33. 156
. 0% 50°C
39.659
78.490
*
31 .391
52.450
.0% 23°C
21 .590
47.527
22.608
26. 120
90. 277
24.500
66.915
25.993
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
23.440
21.673
19.014
21.708
10.140
16.598
20.954
17.736
21.607
12.572
13.664
29.350
22.120
15.500
23.584
31.265
25.363
16.250
28.025
21.966
36.052
18.292
17.556
39.329
23.450
*
13.399
15.251
17 482
20.899
22.358
18.300
24.797
40.611
13.573
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0. 155
0.293
0.411
0.319
0. 144
0.211
0.444
0.363
0. 261
1 .580
0. 170
0.522
0.466
0. 144
0.295
0.483
0.210
0. 129
0.443
0. 189
0.571
0.335
0.268
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.276
0.537
0. 177
0. 149
0. 159
0.273
0.268
0.290
0.207
0.221
0.338
0.429
0.115
0.256
0. 201
0.449
0. 153
0.346
0.264
0. 159
0.295
0.326
0.335
5
5
10
10
10
0.228
0.475
0.358
0.274
0.457
5
5
9
10
10
0.303
0. 187
0.524
0.403
0. 267
5
5
5
5
5
5
8
10
0.245
0. 280
0.350
0. 200
0.340
0. 299
0.370
0.346
0. 261
0. 170
0.040
0.260
0.340
0.498
0.273
0.466
-------
POLYVINVL CHLORIDE:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
Ln
O
PL14SH1 14
PL28SH2 28
PL28SH3 28
PL2BSH1 28
PL56SH3 56
PL56SH2 56
PL56SH1 56
PH01SM1 1
PH07SM1 7
PH14SM1 14
PH28SM1 28
PH56SM1 61
PL01SM1 1
PL01SM3 1
PL01SM2 1
PL07SM1 7
PL07SM3 7
PL07SM2 7
PL14SM1 14
PL14SM3 15
PL14SM2 15
PL28SM3 28
PL28SM2 28
PL28SM1 28
PL56SM3 56
PL56SM2 56
PL56SM1 61
PH01WP1 1
PH07WP1 7
PH14WP1 14
PH28WP1 28
PH56WP1 56
PLQ1WP1 1
PL01WP2 1
PL01WP3 1
PL07WP1 7
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
STD
DEV
BF
M
1 .704
2.216
5.606
4.470
1 .785
2.003
4.740
1.819
1 .630
1 .931
3.260
1 .370
1 .990
2.280
1 .680
3.030
5.910
1 .950
3.940
2.870
2.780
1 .770
1.510
3.340
4.060
3.337
3.683
1 .798
7. 100
7.394
2.403
3.380
1 .660
2.013
2.010
STD
NUMBER DEV NUMBER
BF
T
*
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
BF EAB
T M
SODIUM CHLORIDE
*
1 .883
2.792
1.191
6.780
1 .706
0.658
SODIUM CHLORIDE
1 .643
1.710
1 .250
1 .530
1 .940
SODIUM CHLORIDE
2.360
2.400
3.040
0.480
1 .730
0.865
1 .960
1 .352
1.213
1 .460
2.892
0.433
1 . 126
1 .820
5.626
WATER 100.0%
1 .440
1 .990
1 .730
2.182
4.360
WATER 100.0%
0.817
3. 140
3.060
0.520
35.
*
5
5
5
5
5
5
10,
5
5
5
5
5
10.
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
50°C
5
5
5
5
5
23°C
5
5
5
5
STD
DEV
EAB
M
,0% 23°C
*
20.267
17.252
58.720
20.300
25.419
19.903
r
. 0% 50°C
45.334
33.585
20.810
17.370
21 .240
.0% 23:°C
i
13.360
23.870
23.470
30.820
46.290
61 .880
20.500
48.550
25.900
33.700
18.960
29.080
31 . 100
30.7,70
49.930
30.329
10.465
97.600
72.510
*
t
5.370
5.290
5.583
24. OOO
NUMBER
EAB
T
STD
DEV
EAB
T
1 .930
29. 143
13.252
34.560
19.026
13.627
22.514
19.540
13.560
25. 1 10
25.900
41.530
16.590
38.770
16.150
36.810
10.920
22.300
13.409
5.561
14.380
18.322
35.190
14.670
12.480
55.850
15.971
16.750
14.700
19.990
43.180
5.840
5.240
5.410
2. 32O
NUMBER
TEAR
M
10
10
10
10
5
5
9
5
5
5
5
5
5
5
10
10
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.820
0.327
0.271
0.523
0.400
0.440
0.316
0.460
0.415
0.300
0.390
0.360
0.360
0.230
0.385
1.510
0.440
0.701
0.370
0.470
0.620
0.297
0.385
0. 167
0.228
0.230
0.540
0.329
0.460
0.540
0.228
0.735
0.261
0.424
0.110
O.O89
NUMBER
TEAR
T
10
10
10
10
5
5
10
5
5
5
5
5
5
5
10
10
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.545
0.302
0.437
0.298
0.360
0.580
0.405
0.316
0.219
0.430
0.261
0.261
0.350
0. 180
0.261
0. 180
0.360
0.400
0.490
0.440
0.501
0.360
0.460
0.283
0.416
0.360
0.790
0.316
0.240
0.335
0. 167
0.358
0.555
0.415
0. 167
O.415
-------
PL07WP3
PL07WP2
PL14WP3
PL14WP1
PL14WP2
PL28WP2
PL28WP3
PL28WP1
PL56WP1
PL56WP2
PL56WP3
7
7
14
14
14
28
28
28
56
56
56
PH01XM1 1
PH07XM1 7
PH14XM1 14
PH28XM1 28
PH56XM1 56
PL01XM3
PL01XM2
PL01XM1
PL07XM3
PL07XM1
PL07XM2
PL14XM1
PL14XM3
PL14XM2
PL28XM2
PL28XM1
PL28XM3
PL56XM3
PL56XM2
PL56XM1
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
360
060
750
3.769
1 .630
4.980
3.500
2.774
2.900
1 .570
4.090
0. 280
2.440
3.730
1.210
2.800
2.910
1 .770
2.960
1 .433
2.455
3.565
1 .942
0.585
0.887
1 .760
3.600
2.530
2.780
2.590
1 .580
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
WATER
2.
1 .
3.
2.
1 .
1 .
0.
1 .
3.
3 .
0.
T
100
480
280
350
650
350
500
450
929
1 10
860
720
POTASSIUM
5
5
5
5
5
2.
0.
3.
1 .
1 .
230
740
080
920
460
POTASSIUM
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3 .
3.
2.
0.
1 .
1 .
2.
5.
3.
2.
2.
1 .
2.
3.
2.
240
120
101
841
671
895
904
430
030
840
150
501
320
1 10
580
NUMBER
EAB
M
.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
DICHROMATE
2
5
5
5
5
DICHROMATE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
M
17.890
41 .620
18.550
24.977
17.330
50. 100
88.280
26.728
44. 200
13.710
30.910
10.0%
18 .500
23.490
26. 180
10.940
20.720
10.0%
38.920
8.250
48 .360
13.614
42.518
37. 153
8.442
96. 200
1 1 .270
29.500
35.600
40.380
30.570
28.899
30.820
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
50°C
23UC
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
98. 120
6.450
41.510
29.500
18.360
39.960
23.780
25.727
25. 160
25.020
39.700
22.070
20.940
33.000
29.210
22.800
48.390
33.510
33.390
11.992
24.328
16.122
25.527
34.920
32.130
33.680
29.960
25.560
20.000
52.310
25.840
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
10
10
4
10
10
10
8
10
10
9
10
10
10
10
10
10
10
10
10
10
10
STD
DEV
TEAR
M
0.660
0.415
0.245
0.522
0.415
0.550
1 .500
0.792
0.573
0.283
0.440
0.570
0.401
0.650
0.793
0.614
0.710
0.530
0.561
0.518
0.519
0.358
0.479
0.341
0.358
0.300
0.330
0.405
0. 220
0.391
0.141
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
10
9
8
10
10
10
6
10
10
10
10
10
10
10
10
9
10
10
10
10
10
10
STD
DEV
TEAR
T
0.385
0. 140
0.245
0.385
0.200
0.450
0.450
0.498
0. 170
0.300
0.430
0.380
0.310
0.430
0.501
0.303
0.721
0.464
0.690
2.670
0.415
0.583
0.755
0.379
0.350
0.420
0.340
0.780
0. 231
0.366
0.481
-------
PVC : RETENTION OF PROPERTIES
252
-------
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SHOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
1 BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
HYDROCHLORIC ACID 10.0% 50°C
PH01AM1
PH07AM1
PH14AM1
PH99AM1
PH2BAM1
PH56AM1
PH99AM2
PH99AM3
PH99AM4
PH99AM5
PH99AM6
PH99AM7
1
7
14
28
29
56
144
252
368
51 1
621
733
1 .
2.
5.
5.
5.
8.
15.
22.
25.
30.
32.
34.
0
4
1
1
9
5
0
9
9
7
3
0
2
1
2
3
3
7
8
1 1
12
13
13
14
.3
.6
.9
.8
.4
.0
. 2
.7
.3
.0
.6
.9
2
3
7
7
9
15
20
31
33
36
39
43
.4
.3
.3
.2
.2
.7
.6
.9
.7
.3
.5
.5
99
86
99
*
109
101
*
*
*
*
*
122
PL01AM2
PL01 AMI
PL01AM3
PL07AM1
PL07AM3
PL07AM2
PL14AM3
PL14AM1
PL14AM2
PL99AM1
PL28AM1
PL28AM2
PL28AM3
PL56AM1
PL56AM3
PL56AM2
PL99AM2
PL99AM3
PL99AM4
PL99AM5
PL99AM6
PL99AM7
1
1
1
7
7
7
14
14
14
28
29
29
29
56
56
56
144
238
368
538
621
735
1
1
1
1
1
1
1
2
3
3
4
3
3
4
5
6
6
4
1
1
4
7
1
9
9
4
0
4
8
3
2
5
0
1
1
1
1
1
2
2
1
1
2
.3
.3
.3
.6
.3
*
.6
.3
.9
*
.6
.0
.3
.9
. 2
. 2
.6
.9
.9
.9
.6
.5
1
1
1
1
1
2
3
3
3
1
3
3
3
4
5
9
2
*
6
*
6
9
8
1
2
0
9
0
1
0
2
3
2
8
0
5
7
93
90
92
83
84
84
95
98
97
*
102
99
102
97
102
104
100
PH01BM1 1
PH07BM1 7
PH14BM1 14
PH28BM1 28
PH99BM1 29
PH56BM1 56
PH99BM2 144
.6
9.4
11.0
15.0
100.0
16.8
19.5
*
.6
2. 2
3.8
1 .9
1 .6
4.8
. 1
8.4
11.3
16.8
12.5
16.0
12.5
79
1 17
141
158
*
167
*
99
86
99
*
109
101
*
*
*
*
*
122
HYDROCHLORIC
93
90
92
83
84
84
95
98
97
*
102
99
102
97
102
104
100
93
87
102
*
1 16
105
*
*
*
*
*
*
ACID 10.0%
89
92
95
83
83
89
101
97
96
*
102
103
102
94
98
95
*
*
*
*
*
SODIUM HYDROXIDE 10.0%
79
1 17
141
158
*
167
*
100
137
151
169
*
170
*
100
96
101
*
101
100
*
*
*
*
*
101
23°C
96
89
95
90
94
94
99
104,
103
*
106
105
103
103
105
101
102
50°C
92
107
105
1 10
*
125
*
92
89
99
*
97
95
95
92
95
91
92
90
100
96
100
*
98
98
97
97
97
97
107
106
105
120
*
1 26
95
107
101
*
82
91
*
*
*
*
*
88
94
83
93
96
102
98
95
108
107
*
96
103
95
96
96
87
98
1 14
107
89
63
*
93
*
94
101
101
*
74
83
*
*
*
*
102
93
99
101
105
95
104
98
105
*
94
89
91
95
91
96
109
108
64
64
*
87
98
101
107
*
1 14
101
*
96
95
94
104
108
99
106
1 10
107
*
105
98
102
106
107
107
102
135
217
215
*
292
90
99
104
*
1 16
101
*
*
*
*
*
94
92
94
94
99
104
103
102
109
*
94
102
94
107
103
102
109
140
205
225
*
282
-------
POLYVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PH99BM3
PH99BM4
PH99BM5
PH99BM6
PH99BM7
PL01BM3
PL01BM1
PL01BM2
PL07BM3
PL07BM2
PL07BM1
PL14BM2
PL14BM1
PL14BM3
M PL28BM2
Jj" PL99BM1
PL28BM1
PL28BM3
PL56BM3
PL56BM1
PL56BM2
PL99BM2
PL99BM3
PL99BM4
PL99BM5
PL99BM6
PL99BM7
PH01DH1
PH07DH1
PH14DH1
PH99DH1
PH28DH1
PH56DH1
PH99DH2
PH99DH3
PH99DH4
PH99DH5
PH99DH6
PH99DH7
252
368
510
622
733
1
1
1
7
7
7
14
14
14
28
28
28
32
56
56
56
144
238
368
510
622
735
1
7
14
28
29
56
133
244
364
495
629
726
20.
20.
20.
22.
22.
.
.
.
2.
1 .
2.
2.
8.
7.
9.
13.
16.
17.
18.
18.
19.
18.
14.
1 1 .
16.
17.
6.
3.
20.
6.
8.
14.
1
7
4
2
7
2
*
1
4
4
4
a
6
9
4
3
2
6
4
7
0
4
6
6
0
9
1
8
6
9
8
0
8
1
5
6
2
5
3
PERCENT
THICKNESS
CHANGE
6.7
6. 1
7.3
13.4
5. 1
*
.3
.3
*
V
.3
*
.6
.3
*
.3
1 .6
3.5
4. 1
7.6
.9
2.5
5.4
5.8
5.4
2.5
5. 1
4.2
1 .6
3.2
3.5
3.8
*
5.0
PERCENT
VOLUME
CHANGE
23.3
23.6
25.3
9.0
24.2
.3
.3
. 1
. 1
. 2
*
.7
1 . 1
1 .5
1 .5
1 . 1
1 .9
1 .5
8. 1
8.0
8.2
12.1
9.6
16.7
21 . 1
15.8
17.5
13.1
16.6
11.1
5.5
1 1 .8
5.8
2.7
6.5
6.4
8.0
.3
11.6
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
SODIUM HYDROXIDE 10.0% 50°C
*
*
*
*
*
SODIUM
83
87
83
94
97
89
78
100
81
79
*
93
82
133
120
120
*
*
*
*
172
*
*
*
*
*
HYDROXIDE 10.0%
85
97
85
98
97
87
79
95
77
105
*
95
109
136
128
139
*
*
*
*
*
1 2 DICHLOROETHANE .8%
41
44
57
*
45
62
*
*
*
*
*
69
43
50
66
*
48
64
*
*
*
*
*
*
*
*
*
*
1 139
23°C
101
94
102
103
104
107
99
101
98
90
*
100'
91
1 10
105
102
*
*
*
#
155
50°C
71
64
79
*
71
81
*
*
*
*
#
74
PERCENT
RETENTION
BF
T
97
102
95
100
101
98
93
98
91
108
*
96
108
105
104
105
*
*
*
*
72
72
80
*
69
81
*
*
*
*
*
PERCENT
RETENTION
EAB
M
1 13
1 1 1
1 17
109
1 1 1
129
1 19
95
1 12
107
*
104
108
107
97
106
*
*
29
1 1 1
102
1 12
*
1 12
104
*
*
*
83
PERCENT
RETENTION
EAB
T
1 17
100
109
1 12
1 15
123
1 18
102
1 13
106
*
107
103
101
105
96
*
*
*
*
*
1 16
1 15
104
*
1 10
107
*
*
*
*
*
PERCENT
RETENTION
TEAR
M
106
96
108
104
104
100
96
1 10
99
104
*
108
107
156
143
150
*
*
63
83
61
*
69
85
*
*
*
*
*
PERCENT
RETENTION
TEAR
T
107
101
108
101
100
97
95
100
92
1 10
*
102
1 1 1
159
157
147
58
77
57
*
60
85
*
*
*
*
-------
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
1 2 DICHLOROETHANE .8% 23°C
PL01DH3
PL01DH2
PL01DH1
PL07DH1
PL07DH2
PL07DH3
PL14DH2
PL14DH1
PL14DH3
PL28DH2
PL28DH3
PL99DH1
PL28DH1
PL56DH1
PL56DH2
PL56DH3
PL99DH2
PL99DH3
PL99DH4
PL99DH5
PL99DH6
PL99DH7
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
134
231
364
495
630
728
13.
14.
12.
10.
7.
13.
13.
15.
1 1 .
18.
10.
5,
15.
8
1 1
13
10
8
9
5
13
13
3
0
7
5
1
9
. 1
9
.7
,2
.7
.7
.0
.5
.6
. 1
.9
.7
.6
.5
. 1
.7
4.
3.
3.
4.
2.
3.
4.
4.
2 .
4,
3,
1 .
4.
3
3
4
1
2
2
1
5
3
1
8
2
1
.5
. 2
. 1
,5
.9
.2
.5
.6
.8
.5
.5
. 1
.6
.9
.6
.3
.8
.5
10.
9.
9.
9.
7.
8.
9.
12.
6.
12.
8.
5,
13.
6
7
9
5
1 2
8
3
1 1
9
5
8
0
7
.0
,5
,0
.8
. 1
.6
.3
. 2
.4
.7
.9
.5
.7
.0
.5
.5
.9
.5
52
38
51
38
52
41
67
56
62
*
*
*
51
43
63
66
*
*
*
*
*
53
PH01DL1
PH07DL1
PH14DL1
PH99DL1
PH28DL1
PH56DL1
PH99DL2
PH99DL3
PH99DL4
PH99DL5
PH99DL6
PH99DL7
1
7
14
28
29
56
139
246
366
496
631
728
2
2
3
2
2
4
2
3
2
2
2
3
.0
. 1
. 1
.4
.9
. 1
.5
.7
.9
.9
.9
.0
1
1
1
2
2
2
1
1
2
1
1
2
.9
.9
.9
.5
.3
.5
.6
.9
. 2
.6
.9
.2
1 .
2.
2,
3.
2.
4,
2 .
3.
3.
2.
3.
3.
.8
.9
, 1
.0
.3
, 2
. 3
.5
. 7
.8
. 1
.9
71
74
70
*
68
60
*
*
*
*
*
101
PL01DL3
PL01DL2
PL01DL1
PL07DL1
PL07DL2
PL07DL3
PL14DL 1
PL14DL2
PL 14DL3
1
1
1
7
7
7
14
14
14
1
1
1
2
3
3.
2.
3,
3.
.8
.6
.8
.6
.0
.3
.9
.4
.4
.3
.6
.3
1 .3
1 .0
.9
1 .0
1 .0
1 .3
1 .
1
1
2
2
2.
2.
2.
2.
.0
. 4
.0
. 4
.4
.6
.6
. 1
, 7
76
65
70
70
64
65
66
65
64
54
42
50
41
54
43
74
50
64
47
44
66
63
*
*
*
1 2 DICHLOROETHANE
72
78
73
*
69
64
*
*
*
*
*
*
1 2 DICHLOROETHANE
76
65
70
68
62
65
65
65
62
1%
77
67
80
69
71
66
86
79
84
*
73
69
77
81
*
*
*
*
*
78
50°C
90
92
89
*
87
78
*
*
99
1% 23°C
97
92
92
91
87
91
86
91
89
PERCENT
RETENTION
BF
T
78
72
78
70
77
70
90
74
82
*
*
*
70
67
75
75
*
*
*
*
89
90
88
*
86
79
93
89
89
88
86
87
87
87
84
PERCENT
RETENTION
EAB
M
1 14
1 13
1 13
1 19
106
1 13
1 12
109
109
*
*
*
1 10
108
103
107
120
106
1 1 1
1 10
*
1 12
105
*
*
108
1 15
1 15
109
1 10
1 16
1 18
105
1 15
109
PERCENT
RETENTION
EAB
T
1 10
1 18
1 14
120
1 14
120
107
1 14
1 1 1
*
*
*
1 14
105
101
104
109
109
1 1 1
*
1 14
106
1 17
120
1 1 1
1 16
122
120
1 14
1 15
1 12
PERCENT
RETENTION
TEAR
M
61
63
69
88
69
75
65
61
67
72
69
*
58
66
86
94
*
91
95
87
*
86
82
*
93
90
96
89
85
88
84
92
79
PERCENT
RETENTION
TEAR
T
56
57
64
83
63
69
66
55
75
71
61
*
54
63
80
87
88
89
80
*
88
82
*
*
*
87
77
83
83
83
82
74
88
82
-------
POLVVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PL28DL3
PL99DL1
PL28DL2
PL2BDL1
PL56DL2
PL56DL3
PL56DL1
PL99DL2
PL99DL3
PL99DL4
PL99DL5
PL99DL6
PL99DL7
PH01DM1
N> PH07DM1
"-" PH14DM1
PH99DM1
PH28DM1
PH56DM1
PH99DM3
PH99DM4
PH99DM5
PH99DM6
PH99DM7
PL01DM3
PL01DM2
PL01DM1
PL07DM2
PL07DM3
PL07DM1
PL14DM3
PL14DM2
PL14DM1
PL99DM1
PL28DM2
PL28DM3
PL28DM1
PL56DM1
PL56DM3
PL56DM2
PL99DM2
PL99DM3
28
28
28
29
56
56
56
136
233
366
496
632
730
1
7
14
28
29
56
245
365
496
630
727
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
135
233
PERCENT PERCENT
WEIGHT THICKNESS
CHANGE CHANGE
2.0 1.0
1 . 1
2.0
2.3
1 .0
1 .4
3.6
2.0
1 .9
2.0
1 . 2
1 . 7
1 .0
.6
1 .0
.9
.6
1 .3
.3
.6
1 .0
1 .3
.6
1 .0
1 .6
PERCENT
VOLUME
CHANGE
1 .7
1 .0
1 .6
1 .8
.8
1 .8
2.5
1 .2
2.5
1 .8
1 . 2
1 .7
2.6
PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION
SMOD SMOD BF
M T M
1 2 DICHLOROETHANE .1% 23°C
* * *
*
*
65
67
62
75
*
*
*
*
*
95
*
*
67
68
68
75
1 2 DICHLOROETHANE
9.2
6.6
8.0
6. 1
7.2
6.2
6.6
3.4
4.0
3.9
4.6
2.5
2.6
3.5
1 .9
3.2
3.5
1 .9
1 .9
1 .9
2.2
2.2
6.9
5. 1
6.6
4.9
5. 1
5.2
5. 1
4.0
4.4
4.6
5.2
53
49
54
*
55
63
*
*
*
*
88
56
52
58
*
58
65
*
*
*
*
*
1 2 DICHLOROETHANE
9.2
8.3
9.5
7. 1
4.7
9.3
5.7
8.0
8.3
7.5
8.8
9. 1
9.5
2.6
8.4
5.8
3.8
6.9
2.2
2.2
2.2
1 .9
1 .6
2.9
1 .9
2.6
3.2
1 .9
3.5
3.2
3.2
1 .9
2.8
2.5
.9
2 .5
5.8
6.3
7.7
5.7
4. 1
6.9
5.7
6.6
9.3
6. 1
7.5
7. 1
8.3
2.3
5.8
4.7
3.2
7 .9
53
55
58
53
59
44
52
48
56
*
*
*
48
58
63
63
*
*
51
54
53
54
60
47
58
47
52
*
*
*
50
57
64
67
*
*
*
*
89
84
86
92
*
*
*
*
*
98
.5% 50°C
78
75
76
*
75
81
*
*
*
*
91
.5% 23°C
83
83
83
81
82
71
81
79
81
*
*
*
72
80
82
81
*
*
PERCENT
RETENTION
BF
T
*
*
*
89
84
84
90
*
*
*
*
*
*
79
71
77
*
74
82
*
*
*
*
*
78
81
81
73
82
73
85
75
77
*
*
*
74
80
80
81
*
*
PERCENT
RETENTION
EAB
M
*
*
1 12
104
1 17
102
*
*
*
*
*
99
108
1 15
106
*
107
107
*
*
*
*
107
1 16
1 15
105
1 12
1 12
1 1 1
1 13
1 18
1 12
*
*
*
1 10
101
108
108
*
*
PERCENT
RETENTION
EAB
T
*
*
1 16
1 10
1 17
101
*
*
*
*
*
*
1 1 1
107
107
*
107
1 10
*
*
*
*
*
1 17
120
1 1 1
107
1 19
1 17
120
1 18
1 12
*
*
*
1 15
108
109
109
*
*
PERCENT
RETENTION
TEAR
M
99
*
91
91
95
93
90
*
*
*
*
*
*
73
80
83
*
75
89
*
*
*
*
*
60
67
69
75
84
82
86
75
66
*
78
69
70
80
86
92
*
*
PERCENT
RETENTION
TEAR
T
91
*
90
84
90
84
86
*
*
*
*
*
*
73
76
69
*
71
87
*
*
*
*
*
57
70
62
72
77
76
83
74
60
*
72
68
64
74
79
84
*
*
-------
\
PL99DM4 365
PL99DM5 496
PL99DM6 631
PL99DM7 729
PH01FH1 1
PH07FH1 7
PH14FH1 14
PH2BFH1 28
PH99FH1 28
PH56FH1 56
PH99FH2 117
PH99FH3 236
PH99FH4 350
PH99FH5 485
PH99FH6 616
PH99FH7 713
PL01FH3 1
PL01FH2 1
PL01FH1 1
PL07FH2 7
PL07FH3 7
PL07FH1 7
PL14FH1 14
PL14FH3 14
PL14FH2 14
PL28FH1 28
PL28FH3 28
PL99FH1 28
PL28FH2 28
PL56FH1 56
PL56FH2 56
PL56FH3 56
PL99FH2 1 1 7
PL99FH3 219
PL99FH4 350
PL99FH5 485
PL99FH6 617
PL99FH7 715
PH01FL1 1
PH07FL1 7
PH14FL1 14
PH28FL1 28
PH99FL1 28
PERCENT
HEIGHT
;HANGE
2.6
5.9
6.5
10.6
3.6
61 .0
41.0
46. 1
48.7
48.5
43.4
74.0
72.8
58.9
77.6
86.0
25.2
29.3
1 .6
42.5
42.9
44 . 1
39.8
40.5
43.3
50.7
53.6
49. 7
6.3
47.5
58.0
56. 1
53.4
50.3
67.8
51.1
90.8
91.8
3.2
3.8
4.2
4.6
4. 1
PERCENT
THICKNESS
CHANGE
1 .6
1 .9
2.2
3.8
1 .9
18.4
12.9
15.8
14.2
15.8
14.8
17.9
21.4
19.8
24.8
25.2
12.2
13.5
.6
13.2
13.1
13.9
11.8
13.5
14.6
14.9
15.7
14.0
15.3
15.4
17.5
16.8
25.5
16.6
19. 1
17.2
25.8
25.5
1 .9
2.2
1 .9
1 .9
1 .6
PERCENT
VOLUME
CHANGE
3. 1
5.2
5.6
10.0
3.2
59.9
40.3
45.2
44. 5
48.2
44.4
62.8
73.9
64.9
81.5
90.3
39.3
42. 2
1 .9
42.7
43. 1
48 .9
37.0
41 1
43.6
47.0
38.0
45.3
49.6
45.9
55.5
54. 4
67 7
61.1
67.6
58.8
94.5
96.3
3.0
2.9
3.8
3.3
3.4
PERCENT
RETENTION
SMOD
M
FURFURAL
*
*
*
61
35
8
12
10
*
13
*
*
*
*
*
25
FURFURAL
1 1
1 1
75
13
13
12
14
12
12
12
1 1
*
10
10
1 1
1 1
14
FURFURAL
64
48
64
63
*
PERCENT
RETENTION
SMOD
T
8.0% 50°C
*
*
*
*
34
10
12
10
*
1 1
*
8.0% 23°C
12
1 1
78
14
15
14
10
14
14
1 1
1 1
*
1 1
12
1 1
1 1
*
*
*
*
*
*
1 .0% 50°C
64
51
65
65
*
PERCENT
RETENTION
BF
M
1 *
*
*
83
44
22
28
27
*
27
*
*
*
*
*
34
26
22
91
23
26
24
24
24
24
25
24
*
24
22
24
24
*
*
*
*
*
25
85
79
86
80
*
PERCENT
RETENTION
BF
T
*
*
*
*
44
21
27
24
*
25
*
*
*
*
*
*
22
22
91
23
27
25
22
25
21
23
23
*
24
22
22
23
*
*
*
*
*
*
84
77
81
83
*
PERCENT
RETENTION
EAB
M
*
*
*
1 14
107
1 14
126
141
*
124
*
*
*
*
*
79
124
1 17
103
102
1 17
1 10
1 10
1 12
1 14
138
1 15
*
1 10
140
1 19
123
87
104
1 27
109
106
*
PERCENT
RETENTION
EAB
T
*
*
*
*
1 13
106
122
133
*
106
*
*
*
*
*
*
1 15
121
1 10
172
121
121
1 16
123
105
29
23
*
30
30
14
22
107
125
105
117'
*
PERCENT
RETENTION
TEAR
M
*
*
*
*
53
22
25
23
*
20
*
32
28
61
24
26
25
22
21
22
23
20
*
22
22
21
20
99
80
84
87
*
PERCENT
RETENTION
TEAR
T
*
*
*
*
59
18
24
20
*
20
*
*
*
*
*
*
30
29
66
23
24
23
22
22
20
23
23
*
23
23
20
20
*
85
76
77
86
4
-------
POLYVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PH56FL1 56
PH99FL2 123
PH99FL3 241
PH99FL4 355
PH99FL5 488
PH99FL6 621
PH99FL7 718
PL01FL2 1
PL01FL3 1
PL01FL1 1
PL07FL2 7
PL07FL3 7
PL07FL1 7
PL14FL3 14
PL14FL2 14
PL14FL1 14
PL28FL2 28
PL28FL3 28
PL99FL1 28
PL28FL1 28
PL56FL3 56
PL56FL2 56
PL56FL1 56
PL99FL2 123
PL99FL3 224
PL99FL4 355
PL99FL5 488
PL99FL6 622
PL99FL7 720
PH01FM1 1
PH07FM1 7
PH14FM1 14
PH28FM1 28
PH99FM1 28
PH56FM1 56
PH99FM2 123
PH99FM3 241
PH99FM4 355
PH99FM5 489
PH99FM6 621
PH99FM7 718
PERCENT
WEIGHT
CHANGE
4.7
4.2
6.8
6.4
6.0
6.7
6.4
1 .5
1 .6
1 .8
3.0
3.3
3.0
2.9
3.3
3.2
3.4
3.7
2.5
3.3
3.7
3.8
4. 1
2.7
4.3
5. 2
4.5
5.0
4.9
13.9
14.3
14.8
14.8
14. 1
15.9
13.3
21 .3
19.9
17.6
21 . 1
18.9
PERCENT
THICKNESS
CHANGE
2.6
1 .2
1 .9
.9
2.2
.9
2.5
.3
.6
*
.3
1 .6
.0
.0
.0
.3
.3
.9
.3
1 .0
2.6
2.3
1 .6
.3
.9
1 .3
.9
.6
1 .6
4. 1
4.8
5. 1
4.8
4. 1
6. 1
4. 1
6.0
6.3
5.7
7.5
6.9
PERCENT
VOLUME
CHANGE
4.5
3.9
5.4
5.0
5.7
2.9
6.4
1 .2
1 .3
.4
1 .6
2.8
2.2
2.2
2.3
2.8
2.9
3.4
1 . 1
2.5
4.2
3.7
3.7
2.2
4. 1
4.7
2.8
3. 1
4.8
10.3
12.9
14.7
13. 1
12.1
15.5
12.1
18.3
19.7
15.5
18.2
19.1
PERCENT
RETENTION
SMOD
M
FURFURAL 1
65
*
*
*
*
*
84
FURFURAL 1
70
68
74
47
42
46
56
53
55
62
60
*
61
58
62
61
*
*
*
*
*
71
FURFURAL 4
30
31
29
28
*
34
*
*
4
*
*
47
PERCENT
RETENTION
SMOD
T
.0% 50°C
66
*
*
*
*
*
*
.0% 23°C
83
81
72
46
44
43
59
57
59
65
60
#
60
59
65
59
*
*
*
*
*
*
0% 50°C
31
33
30
31
*
35
*
*
*
*
*
*
PERCENT
RETENTION
BF
M
86
*
*
*
*
*
90
83
82
87
85
77
81
87
87
86
90
85
*
85
87
90
82
*
*
*
*
*
84
46,
51
51
51
*
57
*
*
*
*
*
56
PERCENT
RETENTION
BF
T
84
*
*
*
*
*
*
93
92
88
83
75
76
86
88
86
90
85
*
85
84
89
83
*
*
*
*
*
*
43
56
51
56
*
57
PERCENT
RETENTION
EAB
M
1 18
*
*
*
*
*
97
101
101
96
127
124
124
1 16
133
1 14
120
1 13
*
122
1 19
121
1 12
*
*
*
*
*
106
98
106
109
1 18
*
130
*
*
*
*
*
76
PERCENT
RETENTION
EAB
T
1 18
*
*
*
*
*
*
94
90
107
130
125
126
120
138
1 16
121
1 17
*
130
125
124
122
*
*
*
*
*
*
93
1 19
1 13
121
*
1 16
*
*
*
t
*
*
PERCENT
RETENTION
TEAR
M
94
*
*
*
*
*
*
98
100
1 1 1
82
78
80
90
87
88
91
90
*
84
78
86
86
*
*
*
*
*
*
32
61
53
47
*
54
PERCENT
RETENTION
TEAR
T
84
*
*
*
*
*
*
122
1 19
123
78
66
72
82
80
77
87
81
*
83
76
80
80
*
*
*
T
*
*
33
53
50
48
*
49
*
*
*
*
-------
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
FURFURAL 4.0% 23°C
PL01FM1
PL01FM3
PL01FM2
PL07FM1
PL07FM2
PL07FM3
PL14FM1
PL14FM2
PL14FM3
PL28FM1
PL99FM1
PL28FM3
PL28FM2
PL56FM2
PL56FM3
PL56FM1
PL99FM2
NJ PL99FM3
^ PL99FM4
PL99FM5
PL99FM6
PL99FM7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
123
227
355
489
622
720
12
5
6
13
14
13
14
13
1 1
14
13
13
14
14
14
15
10
16
19
18
18
17
.5
.8
. 1
.5
. 1
.3
.8
.0
.9
.4
.3
.8
.3
.6
.5
.3
.7
. 1
. 1
.2
.3
.7
3.
3.
3.
4.
4.
4.
4.
3.
4.
4.
3.
4.
4.
5.
5.
5.
2.
4.
5.
4.
5.
5.
5
2
5
5
2
5
7
9
1
7
4
2
8
2
5
5
8
4
0
7
3
3
100.
10.
1 1 .
13.
12.
12.
14.
12.
12.
13.
10.
10.
12.
13.
13.
14.
9.
16.
17.
15.
6.
17.
0
1
0
4
9
6
7
0
0
0
2
9
4
6
9
1
0
3
7
7
6
0
29
28
26
28
34
37
29
31
32
30
*
29
26
31
31
32
*
*
*
*
*
36
PH01MH1
PH07MH1
PH14MH1
PH28MH1
PH99MH1
PH56MH1
PH99MH2
PH99MH3
PH99MH4
PH99MH5
PH99MH6
PH99MH7
1
7
14
28
29
56
1 22
240
358
494
626
722
38
36
52
32
10,
45
12
20
6
10
.6
.8
.3
.6
.4
.8
.6
.7
.6
.3
.8
.3
21 .
21 .
32,
23,
25,
6
2
1
.3
.0
.3
. 1
.9
.5
.9
.6
.3
.8
.3
.9
57
42
97
42
12
57
1 7
18
1
26
16
19
. 7
.5
. 7
.4
. 7
.0
.3
.5
.6
. 1
.9
. 2
8
7
35
2
*
5
*
*
*
*
*
*
PL01MH1
PL01MH3
PLO 1MH2
PL07MH2
PL07MH1
PL07MH3
PL14MH2
PL14MH1
PL14MH3
1
1
1
7
7
7
14
14
14
22
134
86
37,
66,
76,
53.
61 .
51 .
. 1
.4
. 1
.7
.8
.7
.4
, 1
,0
12,
38,
26.
29.
29.
32.
28.
26.
28.
.9
.9
.8
. 7
,6
8
,7
8
0
33
144
65,
73,
94.
. '12,
79.
88.
86.
.7
.6
.8
. 1
.9
.4
.9
,5
,5
20
*
4
3
6
4
7
8
8
29
28
26
28
34
37
29
31
32
30
*
29
26
31
31
32
*
*
*
*
*
36
METHYL ETHYL
8
7
35
2
*
5
*
*
*
*
*
*
METHYL ETHYL
20
*
4
3
6
4
7
8
8
28
28
27
31
35
37
28
31
31
28
*
29
28
31
33
27
*
*
*
*
*
*
KETONE
8
7
31
3
*
5
*
4
*
*
*
*
KETONE
19
2
3
3
5
5
6
12
10
47
55
53
53
56
64
52
56
55
51
*
51
52
53
54
53
*
*
*
*
*
50
26.0% 50°C
24
17
61
9
*
16
*
*
*
*
*
131
26.0% 23°C
40
*
15
9
14
14
24
26
30
PERCENT
RETENTION
BF
T
44
51
52
56
55
57
49
53
54
50
*
53
54
51
59
52
24
20
57
10
*
15
*
39
4
9
9
16
13
24
28
30
PERCENT
RETENTION
EAB
M
99
1 18
121
120
103
1 12
113
1 17
1 14
120
*
1 18
131
125
1 19
1 17
*
*
93
124
105
121
104
*
101
*
*
*
120
16
1 10
81
91
1 10
121
1 19
132
PERCENT
RETENTION
EAB
T
99
1 14
118
129
109
103
1 1 1
1 16
1 13
123
*
131
141
120
130
142
127
1 15
1 15
97
*
93
*
*
*
134
41
82
82
1 13
100
138
121
123
PERCENT
RETENTION
TEAR
M
61
65
66
60
55
65
50
49
49
43
*
45
45
47
48
46
*
22
76
66
10
*
21
*
34
10
16
23
39
32
24
21
21
PERCENT
RETENTION
TEAR
T
74
67
57
52
51
58
51
44
45
43
*
43
42
44
45
43
*
*
*
*
*
*
25
75
62
12
*
22
37
9
14
22
24
35
23
27
24
-------
POLYVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PL28MH3 28
PL99MH1 28
PL28MH2 28
PL28MH1 28
PL56MH2 56
PL56MH1 56
PL56MH3 56
PL99MH2 121
PL99MH3 235
PL99MH4 358
PL99MH5 494
PL99MH6 627
PL99MH7 724
PH01ML1 1
PH07ML1 7
PH14ML1 14
PH28ML1 28
PH99ML1 28
PH56ML1 56
PH99ML2 120
PH99ML3 240
PH99ML4 358
PH99ML5 493
PH99ML6 626
PH99ML7 722
PL01ML3 1
PL01ML2 1
PL01ML1 1
PL07ML3 7
PL07ML1 7
PL07ML2 7
PL14ML1 14
PL14ML2 14
PL14ML3 14
PL28ML3 28
PL28ML2 28
PL28ML1 28
PL99ML1 28
PL56ML1 56
PL56ML2 56
PL56ML3 56
PL99ML2 1 2O
PL99ML3 235
PERCENT
WEIGHT
CHANGE
49.2
39.6
66.4
57.4
62.0
43.3
77.7
22.8
8.6
59.9
93.3
53.4
42.0
3.9
7.0
4.9
5.0
4.4
4. 1
9.8
11.2
1 1 .9
9.7
9.9
10.4
3. 1
3.4
3.2
4.8
5.0
4.6
3.6
3.6
3.6
2.9
2.6
3.8
3.2
3.5
3.9
4. 1
4 .3
3 .9
PERCENT PERCENT
THICKNESS VOLUME
CHANGE CHANGE
28.6
17.8
30.9
26.4
25.6
17.7
25.6
12.4
14.3
18.7
25. 1
9. 2
16.2
3.5
2.9
2.9
3. 1
1 .9
2.2
5.3
5.6
5.9
5.6
5.6
6.3
1 .0
.6
1 .0
1 .9
1 .9
1 .3
1 .6
1 .9
1 .6
1 .6
1 .3
1 .6
1 .6
1 .3
1 .9
2.5
1 . 3
1 .9
72.0
45.2
94.8
81.4
76.0
49.8
87.5
15.5
35.7
55.0
78.3
14.0
36.0
4.6
8.2
5.3
5.6
4. 1
4. 1
10.0
11.1
12.0
9.9
9.9
11.4
3.7
3.5
4.2
5. 1
5.5
4.5
4.3
5.0
4.5
3.3
3. 1
3.2
3.6
3.4
4.7
6.8
4 .4
6. 1
PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION
SMOD SMOD BF
M T M
METHYL
3
*
3
3
9
8
5
*
*
*
*
*
6
METHYL
53
41
55
63
*
66
*
*
*
*
*
60
METHYL
48
50
46
57
48
59
39
33
37
75
67
57
*
64
58
55
*
*
ETHYL KETONE
2
*
3
3
7
7
4
*
*
*
*
*
*
ETHYL KETONE
52
43
56
60
*
68
*
*
*
*
*
*
ETHYL KETONE
46
53
44
58
46
56
39
28
36
74
70
61
*
62
59
53
*
*
26.0% 23°C
'' 8
¥
7
6
24
21
7
*
*
*
*
*
20
3.0% 50°C
78
63
68
74
*
81
*
*
*
*
*
85
3.0% 23°C
81
80
76
81
72
79
60
56
62
90
83
78
*
82
78
75
*
*
PERCENT
RETENTION
BF
T
8
*
7
5
22
19
9
*
*
*
*
*
*
77
60
69
71
*
78
*
*
*
*
*
*
72
79
75
77
70
80
62
49
58
87
86
78
*
82
76
75
*
*
PERCENT
RETENTION
EAB
M
72
*
61
58
124
107
46
*
*
*
*
*
108
108
109
98
96
*
105
*
*
*
*
*
1 14
128
126
1 19
103
104
102
108
1 14
122
105
106
106
*
106
109
1O4
*
*
PERCENT
RETENTION
EAB
T
85
*
70
57
1 17
102
70
*
*
*
*
*
*
1 16
105
103
99
*
103
*
*
*
*
*
*
1 12
125
125
1 10
109
130
1 19
1 16
120
1 1 1
107
1 1 1
*
1 19
1 10
1 14
*
*
PERCENT PERCENT
RETENTION RETENTION
TEAR TEAR
M T
1 1
*
1 1
1 1
22
19
14
*
79
74
92
98
*
96
102
92
75
103
89
98
73
51
74
91
99
88
*
89
92
88
15
*
9
8
20
20
14
83
66
84
90
*
93
92
97
78
90
78
91
70
41
71
91
96
81
*
88
81
79
-------
PL99ML4 358
PL99ML5 494
PL99ML6 627
PL99ML7 724
PH0 1 MM 1 1
PH07MM1 7
PH 1 4MM 1 1 4
PH99MM1 28
PH28MM1 28
PH56MM1 56
PH99MM2 120
PH99MM3 239
PH99MM4 357
PH99MM5 493
PH99MM6 625
PH99MM7 721
PL01MM2 1
PL01MM3 1
PL01MM1 1
PL07MM2 7
PL07MM3 7
PL07MM1 7
PL14MM1 14
PL14MM2 14
PL14MM3 14
PL28MM2 28
PL28MM3 28
PL28MM1 28
PL99MM1 28
PL56MM2 56
PL56MM3 56
PL56MM1 56
PL99MM2 120
PL99MM3 234
PL99MM4 357
PL99MM5 493
PL99MM6 626
PL99MM7 723
PERCENT
WEIGHT
CHANGE
5.0
2.7
4.0
4.5
18.4
39.8
10.2
22. 1
36.9
2.9
28.8
34. 1
29.8
39.7
36. 1
35.6
21.4
21.2
16.2
18.8
22.4
21.3
19.9
16.7
16.9
10.1
15.5
16.5
17.1
10.1
10.7
13.6
21.3
14.1
20. 2
23.8
21 .7
21 .0
PERCENT
THICKNESS
CHANGE
1 .9
.9
1 .3
2.2
13.1
19. 1
8.3
10.5
18.2
9.8
12.4
11.5
13.1
15.0
14.6
11.5
9. 2
9.3
8 .6
10.9
10.5
9.8
9.6
9.3
9.6
9.6
9.6
9.9
7.0
4.5
5.7
5.4
7.0
8.6
7.6
8.6
3.2
8.3
PERCENT
VOLUME
CHANGE
5.9
2.5
4.0
5.6
27.9
51 .9
13.0
28 .7
46.5
8.5
32.2
29 .4
35.3
40. 2
33.3
36.8
37.0
26.4
22.9
26.2
30.8
28.0
26.0
23.3
23.7
14.2
22.3
22.7
20. 1
8.8
12.3
14.1
21.5
26. 1
23 .9
25.4
7.3
24.4
PERCENT
RETENTION
SMOD
M
METHYL ETHYL
*
*
*
65
METHYL ETHYL
14
16
25
#
13
47
*
*
*
*
*
25
METHYL ETHYL
17
16
20
37
17
22
22
23
27
26
27
27
*
56
43
34
*
*
*
*
*
22
PERCENT
RETENTION
SMOD
T
KETONE
*
*
*
*
KETONE
13
16
29
*
12
49
*
*
*
*
*
*
KETONE
17
17
21
39
24
22
24
26
29
25
27
25
*
52
41
34
*
PERCENT
RETENTION
BF
M
3.0% 23°C
*
*
*
88
13.0% 50°C
35
34
49
*
30
76
*
*
*
*
*
67
13.0% 23°C
37
36
39
65
*
45
39
43
51
43
45
45
*
74
66
54
*
*
*
*
*
47
PERCENT
RETENTION
BF
T
*
*
*
*
34
36
56
*
27
72
36
39
41
64
42
43
44
47
50
40
40
44
»
69
58
51
*
*
*
«
*
*
PERCENT
RETENTION
EAB
M
4
*
*
107
123
98
1 15
*
108
122
*
*
*
*
*
123
131
141
1 17
1 12
124
124
1 13
120
123
103
105
104
*
102
107
104
*
f
*
*
*
124
PERCENT
RETENTION
EAB
T
*
*
*
*
129
104
1 15
*
98
1 10
*
*
*
*
*
*
135
137
127
108
1 13
126
126
125
122
106
96
1 15
*
102
102
105
PERCENT
RETENTION
TEAR
M
*
*
4
*
30
50
67
*
20
71
*
*
*
*
*
*
55
45
38
71
58
66
52
49
54
38
40
38
*
57
56
48
PERCENT
RETENTION
TEAR
T
4
*
*
*
33
52
74
*
21
66
50
49
34
70
55
62
48
56
54
36
35
35
*
56
52
51
*
*
*
4
*
4
-------
POLYVINVL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
ASTM #2 OIL SATURATED 50°C
PH010M1
PH070M1
PH140M1
PH990M1
PH280M1
PH560M1
PH990M2
PH990M3
PH990M4
PH990M5
PH990M6
PH990M7
PL010M3
PL010M1
PL010M2
PL070M1
PL070M2
PL070M3
PL140M2
PL140M1
PL140M3
PL280M1
PL280M2
PL280M3
PL990M1
PL560M2
PL560M1
PL560M3
PL990M2
PL990M3
PL990M4
PL990M5
PL990M6
PL990M7
PH010P1
PH070P1
PH140P1
PH280P1
PH99OP1
PH560P1
PH99OP2
PH99OP3
PH99OP4
1
7
14
28
28
56
128
251
364
503
626
728
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
128
237
364
503
626
730
1
7
14
28
28
56
141
257
385
.
.
3.
7.
2.
1 .
16.
27.
30.
29.
27.
27.
.
.
.
1 .
1 .
1 .
1 .
1 .
1 .
2.
6.
8.
1 1 .
1 1 .
12.
14.
15.
6
6
3
2
0
9
3
1
1
4
4
9
2
1
3
4
5
2
7
6
6
1
4
3
2
9
8
0
9
1
1
3
6
2
6
1
3
2
4
2
9
7
16.9
1 .0
.9
3.2
5.8
1 .6
1 .9
100.0
7.4
17.3
14.1
1 .9
16.0
*
.3
.3
.3
.6
*
.6
*
.6
3.5
.3
.6
1 .3
1 .0
1 .3
1 .3
.6
1 .0
3.5
.9
.0
.3
1 .3
.6
4.4
10.9
1 .9
2.5
100.0
30.3
48.2
40.9
27.6
46.6
.3
.5
. 1
. 2
.2
. 1
.8
1 . 1
.7
.4
.2
.8
2.8
.7
.9
1 .3
1 . 1
3.5
1 .9
1 .3
*
3.8
5.4
1 .6
1 .4
.6
1 .5
2. 2
4.0
7.4
9.4
13.5
12.3
5.4
13.8
18.2
20 . 2
83
86
85
*
84
82
*
*
*
*
*
133
ASTM #2 OIL
81
81
81
84
80
80
80
83
71
86
80
81
*
77
93
77
*
*
*
*
*
1 10
ASTM #2 OIL
85
1 16
126
139
*
166
84
85
89
*
85
88
*
t
*
*
*
4
SATURATED
80
81
81
86
82
83
82
85
82
94
82
81
*
79
84
82
*
*
*
*
*
*
100.0% 50
88
122
133
155
*
171
97
87
93
*
93
95
*
*
*
*
*
88
23°C
92
96
94
97
95
95
96
93
95
95
92
94
*
94
96
92
*
*
*
t
*
100
°c
94
96
100
100
*
1OB
91
90
92
*
94
93
93
91
92
94
92
91
91
95
94
98
94
92
*
92
97
95
*
*
*
*
*
93
100
104
108
*
109
120
93
1 1 1
*
1 12
126
*
*
*
61
1 1 1
1 14
1 1 1
1 16
1 17
1 16
1 17
1 1 1
120
105
107
1 10
*
1 14
106
1 17
*
*
*
*
*
104
1 18
87
86
91
*
87
1 16
1 17
1 13
*
120
1 16
*
*
*
*
*
122
1 14
120
1 17
122
1 17
1 17
122
120
102
1 19
1 16
*
127
1 19
1 15
*
*
*
*
1 18
98
99
83
*
92
126
1 10
136
*
102
109
*
*
128
126
122
1 10
107
104
109
125
108
100
130
134
*
1 13
1 1 1
1 10
*
105
129
150
179
*
210
123
103
134
t
98
106
121
126
109
105
102
106
100
126
102
96
125
130
*
1 10
105
1 14
*
*
*
t
*
*
101
122
138
173
*
208
-------
M
PERCENT PERCENT
WEIGHT THICKNESS
CHANGE CHANGE
PH990P5
PH990P6
PH990P7
PL010P1
PL010P3
PL010P2
PL070P2
PL070P3
PL070P1
PL140P2
PL140P3
PL140P1
PL280P1
PL280P3
PL280P2
PL990P1
PL560P2
PL560P3
PL560P1
PL990P2
PL990P3
PL990P4
PL990P5
PL990P6
PL990P7
PH01PH1
PH07PH1
PH14PH1
PH28PH1
PH99PH1
PH56PH1
PH99PH2
PH99PH3
PH99PH4
PH99PH5
PH99PH6
PH99PH7
PL01 PHI
PL01PH2
PL01 PH3
509
627
734
1
1
1
7
7
7
14
14
14
28
28
28
28
55
55
56
141
244
385
509
627
736
1
7
14
28
29
56
121
243
362
499
624
720
1
1
1
16.9
17.1
17.5
.8
.6
.6
1 .9
1 .6
1 .8
2.6
2.6
2.2
3.6
3.6
3.6
3.7
4.9
3.8
4.7
7.0
8.8
9.9
10.4
11.2
11.6
4.2
7 .8
9.3
9.6
5.6
9.9
8.4
4. 1
6.4
1 . 1
4.0
6.5
12.1
11.4
11.2
4.
5.
5.
.
1 .
1 .
1 .
.
1 .
1 .
2.
1 .
1 .
3.
4.
3.
4
1
2
1 .
2
1
1
1
1 .
3.
3.
3.
4
7
4
3
*
3
6
0
6
0
*
6
3
0
6
3
5
0
3
6
2
1
2
8
9
9
6
9
6
6
3
3
9
9
3
9
9
9
9
9
PERCENT
VOLUME
CHANGE
19.5
20.6
15.5
1 .2
.3
.4
3. 1
2.2
2.3
3.0
2.0
3.0
4.4
3.9
4 . 1
3.9
14.0
4. 2
4.4
7.7
10.2
12.3
12.1
13.9
11.4
2.7
11.6
10.3
13.1
9.0
13.4
9.0
7.5
8.7
3.8
7 .9
10.6
10.0
9.5
9.5
PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION
SMOD SMOD BF
M T M
ASTM #2 OIL
*
*
*
ASTM #2 OIL
79
85
87
88
83
96
93
91
104
99
106
100
*
1 12
108
1 15
*
*
*
*
t
158
PHENOL 8.0%
75
107
108
108
*
109
143
PHENOL 8.0%
61
61
59
100.0% 50°C
*
*
*
100.0% 23°C
81
86
88
88
85
95
94
95
105
108
108
102
*
1 15
108
1 16
*
*
*
*
*
*
50°C
75
1 1 1
1 12
1 13
*
1 1 1
*
*
*
*
*
*
23°C
59
59
59
; *
*
188
98
99
98
100
89
101
99
95
101
100
101
100
*
102
95
103
99
87
101
101
100
*
98
*
*
*
*
*
88
81
76
79
PERCENT
RETENTION
BF
T
*
*
*
94
92
96
92
92
98
97
94
102
101
100
98
*
99
99
100
*
*
*
*
*
*
84
101
103
102
*
95
78
80
78
PERCENT
RETENTION
EAB
M
*
*
10
126
1 12
109
128
1 17
104
1 1 1
109
103
103
99
105
*
1 04
91
105
*
*
*
*
*
78
96
91
97
101
*
98
*
*
*
*
*
51
93
92
100
PERCENT
RETENTION
EAB
T
*
*
*
124
106
1 17
120
1 18
1 1 1
1 18
1 13
1 12
103
106
108
*
103
109
107
*
*
*
*
4
*
95
96
104
100
*
98
98
106
105
PERCENT PERCENT
RETENTION RETENTION
TEAR TEAR
M T
96
129
158
105
97
101
1 19
122
104
160
125
151
*
137
130
135
83
136
103
151
*
154
79
81
84
92
129
148
99
96
98
1 10
1 1 1
100
167
122
167
*
139
132
132
*
*
*
*
*
82
135
102
144
*
149
*
*
*
*
74
74
77
-------
POLYVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
PHENOL 8.0% 23°C
PL07PH1
PL07PH2
PL07PH3
PL14PH2
PL14PH1
PL14PH3
PL28PH2
PL28PH3
PL28PH1
PL99PH1
PL56PH1
PL56PH2
PL56PH3
PL99PH2
PL99PH3
PL99PH4
PL99PH5
PL99PH6
PL99PH7
PH01PL1
PH07PL1
PH14PL1
PH99PL1
PH28PL1
PH56PL1
PH99PL2
PH99PL3
PH99PL4
PH99PL5
PH99PL6
PH99PL7
PL01PL2
PL01PL3
PL01PL1
PL07PL2
PL07PL1
PL07PL3
PL14PL2
PL14PL3
PL14PL1
PL28PL1
PL28PL3
PI_28PI_2
7
7
7
14
14
14
28
28
28
29
56
56
56
121
230
362
499
625
722
1
7
14
28
28
56
122
245
363
499
625
721
1
1
1
7
7
7
14
14
14
28
28
28
3.5
4.7
5.0
7.2
6.7
7.2
9.2
9.3
8.9
4.5
11.2
11.2
10.8
7.8
8.8
9.4
8.9
14.4
16.1
3.2
4.6
4.9
4.7
4.9
5. 2
5.0
5.7
5.8
6.0
8.0
7.5
2. 1
2.4
1 .7
3.9
4. 1
3.6
3.9
3.6
4. 1
4.4
4.6
4 .7
1 .0
1 .0
1 .6
1 .9
1 .9
1 .9
2.9
2.9
2.9
1 .6
3.5
3.5
3.8
1 .3
3.5
2.2
3.8
4. 1
4. 1
2.2
2.5
3.2
2.2
3.5
3.8
1 .9
2.5
4. 1
2.2
3. 1
2.8
.6
1 .0
.3
1 .6
1 .3
2.2
1 .6
1 .6
1 .9
2. 2
1 .9
2. 2
6.2
7.8
9.0
11.0
10.3
10.8
13.4
13.3
13.3
8.2
15.6
15.8
13.8
10.6
12.8
12.3
14.0
19.6
19.8
3.4
4.8
5. 2
5.4
5.6
5.8
5.6
6.7
8.8
6.4
8. 1
9.0
1 .2
2.0
1 .3
4. 1
4. 1
100.0
3.7
3.7
4.7
4.5
4.9
4.7
87
88
87
90
90
84
93
94
95
*
99
106
102
*
*
*
*
149
PHENOL
81
81
75
*
73
77
*
*
*
*
80
PHENOL
83
85
83
76
80
74
73
76
73
72
7O
68
87
88
87
90
93
97
97
94
94
*
104
105
108
*
1.0% 50°C
79
83
78
*
76
74
*
*
*
*
*
1.0% 23°C
85
84
*
77
78
73
74
74
73
74
7O
7O
92
100
101
101
97
97
100
100
99
*
102
100
100
*
*
*
100
94
95
94
*
91
92
*
*
*
92
98
102
97
100
96
98
100
101
95
95
89
93
90
97
97
100
99
106
99
95
95
*
102
97
104
97
94
94
*
95
90
*
*
99
97
99
95
93
96
97
100
99
93
93
92
88
105
106
98
95
1 1 1
97
103
100
*
101
91
97
*
*
*
*
*
38
90
101
108
*
1 12
109
*
*
*
*
*
103
101
106
93
1 12
95
1 12
1 1 1
1 12
105
1 14
107
1 13
90
106
108
102
102
97
99
101
106
*
97
107
107
100
101
109
*
1 16
1 14
*
*
*
*
*
*
1 10
106
104
109
98
1 17
1 14
1 19
1 17
1 17
1 16
120
123
120
1 18
121
123
123
135
130
135
*
146
147
139
89
97
91
*
93
90
96
99
88
93
103
89
88
91
88
9O
87
ee
1 18
1 15
1 13
1 19
121
1 19
128
124
132
*
134
143
139
87
90
87
*
87
89
*
*
96
94
82
88
97
85
84
84
86
87
8 1
82
-------
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
K>
PH01PM1
PH07PM1
PH14PM1
PH28PM1
PH99PM1
PH56PM1
PH99PM2
PH99PM3
PH99PM4
PH99PM5
PH99PM6
PH99PM7
PL01PM2
PL01PM1
PL01PM3
PL07PM2
PL07PM1
PL07PM3
PL14PM3
PL14PM2
PL14PM1
PL28PM1
PL28PM3
PL28PM2
PL99PM1
PL56PM2
PL56PM3
PL56PM1
PL99PM2
PL99PM3
PL99PM4
PL99PM5
PL99PM6
PL99PM7
1
7
14
28
29
56
121
244
362
499
624
720
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
1 21
231
362
499
625
722
7.4
.2
.6
1 .2
6.4
3. 1
4.9
3.0
3.5
3.5
2.3
1 .0
8.0
8.4
8.5
3.5
5.3
3.7
1 .6
2.3
2.0
. 1
.7
.3
4.9
1 .9
2.0
2.8
5.6
7.0
5.0
. 2
2.6
4.5
3.8
1 .3
.6
1 .0
1 .9
.3
1 .6
.9
1 .3
1 .9
.6
.6
2.6
2.6
2.6
1 .6
1 .6
1 .9
1 .0
1 .3
1 .0
.3
.3
1 .3
.9
.6
.6
1 .3
PHENOL 1.0% 23°C
*
73
73
71
*
*
*
*
*
*
4.0% 50°C
69
89
87
91
*
95
*
*
*
*
*
*
4.0% 23°C
64
63
64
73
73
70
73
72
73
79
78
77
t
82
79
84
1 .9
1 .6
.6
2.2
1 .0
1
4
4
5
4
5
6
4
6
7
7
1
2
2
4
5
3
1
2
2
7
7
7
2
3
2
2
2
2
3
4
4
5
4
7
3
3
6
6
.8
.7
.5
.3
.8
.9
.0
.9
.8
. 1
.4
.0
.5
.7
.8
. 2
.7
.5
.9
.5
. 7
. 1
.8
.9
. 7
.4
.9
. 7
. 2
.6
.6
. 1
.3
. 2
.8
.4
.2
. 1
.3
.0
.5
.4
.9
.3
*
69
75
70
*
*
*
*
*
83
PHENOL
68
87
85
88
*
93
*
*
*
*
V
1 18
PHENOL
65
64
63
73
74
70
73
71
74
76
75
75
*
79
79
82
*
*
*
*
*
1 18
PERCENT
RETENTION
BF
M
*
94
95
95
*
*
*
*
*
102
86
94
94
97
*
101
*
*
*
*
*
103
89
87
87
97
92
96
93
98
97
95
99
96
*
94
101
97
*
98
PERCENT
RETENTION
BF
T
*
96
94
91
*
*
82
93
95
97
*
95
87
88
87
95
86
94
95
93
92
93
96
93
*
98
93
98
*
*
*
*
PERCENT
RETENTION
EAB
M
123
106
1 14
1 14
95
96
104
104
*
105
1 12
103
97
101
108
97
1 1 1
100
1 12
109
104
1 10
101
*
1 19
129
105
*
*
*
*
*
107
PERCENT
RETENTION
EAB
T
*
123
118
1 17
*
*
PERCENT PERCENT
RETENTION RETENTION
TEAR TEAR
M T
94
97
107
105
*
101
*
*
*
108
105
108
109
94
1 12
109
106
105
103
109
102
*
1 17
121
103
90
84
89
75
104
146
1 18
*
1 12
92
81
84
93
89
89
93
93
96
102
101
99
*
108
1 13
105
*
*
*
86
86
81
68
101
143
106
*
1 12
77
72
78
85
87
85
87
87
91
98
98
95
*
103
103
104
*
*
*
*
*
-------
POLVVINVL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PH01SH1
PH07SH1
PH14SH1
PH99SH1
PH28SH1
PH56SH1
PH99SH2
PH99SH3
PH99SH4
PH99SH5
PH99SH6
PH99SH7
PL01SH1
PL01SH2
PL01SH3
PL07SH2
PL07SH1
PL07SH3
PL14SH3
PL14SH1
PL14SH2
PL28SH2
PL28SH3
PL99SH1
PL28SH1
PL56SH1
PL56SH3
PL56SH2
PL99SH2
PL99SH3
PL99SH4
PL99SH5
PL99SH6
PL99SH7
PH01SM1
PH07SM1
PH14SM1
PH28SM1
PH99SM1
PH56SM1
PH99SM2
PH99SM3
PH99SM4
1
7
14
28
28
56
131
253
379
510
630
734
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
131
246
379
510
630
736
1
7
14
28
28
61
132
254
370
PERCENT PERCENT
PERCENT
WEIGHT
CHANGE
. 1
. 1
*
.4
. 1
.2
.3
.4
*
.3
.5
.6
. 1
*
*
. 1
*
*
. 1
*
.4
. 1
.2
*
*
. 1
. 1
. 1
.3
*
. 1
.3
. 1
.2
.2
. 2
*
. 1
.3
. 1
.6
.5
.4
PERCENT
THICKNESS
CHANGE
.3
100.0
.3
.3
.3
*
.3
.6
1 .3
*
.3
.6
.6
*
.3
.3
*
.6
*
.6
.6
*
.3
.3
*
*
*
*
*
1 .0
.6
*
.3
.6
*
*
.9
1 .3
.3
.6
*
*
. 6
PERCENT
VOLUME
CHANGE
.7
100.0
.7
.4
.3
.3
.5
.2
1 .3
.9
.6
.4
.8
. 1
*
.8
.2
.9
*
.9
. 1
*
.3
.2
.3
.3
.7
.4
*
1 .3
.5
. 1
.2
.6
. 1
.4
.3
.2
.5
. 1
.8
.8
. 1
RETENTION RETENTION
SMOD
M
SODIUM
79
81
*
*
91
87
*
*
*
*
#
104
SODIUM
89
92
86
82
81
75
90
*
88
84
84
*
85
80
88
87
*
*
*
*
*
98
SODIUM
87
92
96
89
*
91
*
*
*
SMOD
T
CHLORIDE 35.0%
82
82
*
*
88
89
*
CHLORIDE 35.0%
89
93
87
82
83
78
85
*
*
97
91
*
90
75
97
102
*
*
*
*
*
*
CHLORIDE 10.0%
92
93
96
91
*
102
*
*
*
PERCENT
RETENTION
BF
M
-50°C
93
96
.*
*
104
95
*
*
*
*
• *
96
23°C
97
98
99
97
94
101
100
*
108
97
95
*
98
100
95
94
*
*
*
*
*
105
50°C
98
100
103
97
*
98
*
*
*
PERCENT
RETENTION
BF
T
92
93
*
*
99
95
*
*
*
*
*
*
96
95
96
91
94
95
97
*
*
1 13
109
*
97
101
104
106
*
*
*
*
*
*
98
95
100
96
*
95
*
*
*
PERCENT
RETENTION
EAB
M
1 13
127
*
*
122
1 10
*
*
*
*
*
106
1 10
107
1 12
1 15
1 12
152
1 12
*
126
1 15
1 10
*
1 12
120
1 12
1 16
*
*
*
*
*
1 1 1
102
1 16
104
1 1 1
*
104
*
*
*
PERCENT
RETENTION
EAB
T
1 13
125
*
*
127
1 13
*
*
*
*
*
*
1 15
109
1 18
1 1 1
120
137
127
*
*
126
125
*
108
155
1 12
1 10
*
*
*
*
*
*
105
108
107
1 16
*
98
*
*
*
PERCENT
RETENTION
TEAR
M
98
97
93
*
93
103
*
*
*
*
*
*
103
98
96
95
93
92
101
94
102
97
96
*
98
100
91
97
*
*
*
*
*
*
96
100
103
104
*
1 12
*
*
*
PERCENT
RETENTION
TEAR
T
95
91
92
*
95
99
ir
*
*
*
*
*
95
90
91
94
91
88
96
90
99
99
103
*
92
92
101
*
*
*
*
*
*
90
104
104
104
*
1 1 1
*
*
*
-------
PERCENT PERCENT
WEIGHT THICKNESS
CHANGE CHANGE
PH99SM5 51 1
PH99SM6 624
PH99SM7 735
PL01SM2 1
PL01SM3 1
PL01SM1 1
PL07SM2 7
PL07SM3 7
PL07SM1 7
PL14SM1 14
PL14SM3 15
PL14SM2 15
PL99SM1 28
PL28SM3 28
PL28SM2 28
PL28SM1 28
PL56SM2 56
PL56SM3 56
PL56SM1 61
PL99SM2 132
PL99SM3 246
PL99SM4 370
PL99SM5 51 1
PL99SM6 624
PL99SM7 737
PH01WP1 1
PH07WP1 7
PH14WP1 14
PH28WP1 28
PH99WP1 28
PH56WP1 56
PH99WP2 133
PH99WP3 254
PH99WP4 370
PH99WP5 503
PH99WP6 622
PH99WP7 735
PL01WP2 1
PL01WP1 1
PL01WP3 1
.3
.6
.7
.2
. 2
. 2
.4
.4
.2
4
.4
.3
. 1
.2
. 2
. 1
4
4
. 2
.3
4
. 2
4
.8
.9
.8
1 . 2
1 .7
1 .7
2. 1
1 .4
2.3
2.7
2.5
2.6
2.6
2.5
. 1
.3
*
1 .9
.3
.3
4
.6
4
.3
4
.3
.3
.3
*
4
.3
.3
4
.3
.3
.3
1 .0
4
1 . 3
1 .6
1 .9
.9
1 .9
1 .9
.9
2.2
.9
.6
1 .6
.3
4
.3
PERCENT
VOLUME
CHANGE
1 .3
1 .3
.6
1 .0
. 1
4
. 2
.2
. 1
.7
.3
4
4
. 1
.5
. 2
4
4
.4
.2
.8
. 2
.7
.7
.8
.3
1 .3
1 .9
2. 2
1 .4
1 .9
2.7
2. 1
3.6
1 .8
1 .8
2.5
.3
.3
.3
PERCENT PERCENT
RETENTION RETENTION
SMOD SMOD
M T
SODIUM
4
4
106
SODIUM
91
89
88
88
89
86
92
100
99
*
90
84
86
85
88
96
4
4
4
4
4
97
WATER
92
84
108
87
4
97
4
4
4
4
4
96
WATER
94
95
93
CHLORIDE 10.0%
4
4
4
CHLORIDE 10.0%
89
88
88
87
89
93
94
105
101
4
86
85
84
92
94
88
4
4
4
4
4
4
100.0% 50°C
95
87
108
94
4
98
4
100.0% 23°C
96
96
99
PERCENT
RETENTION
BF
M
50°C
4
4
104
23°C
101
99
98
97
101
100
101
97
99
4
102
97
100
96
99
101
4
4
4
4
4
101
97
100
102
92
4
99
95
103
103
105
PERCENT
RETENTION
BF
T
4
4
4
92
94
95
95
97
97
100
101
98
4
98
99
95
95
96
93
4
4
4
4
4
4
97
96
101
96
4
93
4
4
4
4
4
*
101
102
101
PERCENT
RETENTION
EAB
M
4
4
106
102
102
102
1 10
1 17
121
100
89
97
4
105
104
107
100
102
102
4
4
4
*
4
102
92
120
90
99
4
94
4
4
4
4
4
1 12
105
107
1 1 1
PERCENT
RETENTION
EAB
T
4
4
4
94
97
101
1 13
1 17
1 12
103
101
101
4
1 15
121
120
103
100
105
*
4
4
4
4
4
97
1 17
96
105
4
100
4
4
4
4
4
4
101
1 13
104
PERCENT
RETENTION
TEAR
M
4
4
*
94
93
93
104
105
107
105
1 14
1 1 1
4
95
101
95
106
104
1 13
4
101
100
105
105
4
107
99
99
100
PERCENT
RETENTION
TEAR
T
4
4
4
92
91
90
98
95
95
104
1 1 1
108
4
93
94
98
100
105
104
4
4
4
4
4
4
98
100
99
102
4
103
97
96
97
-------
POLYVINYL CHLORIDE: CHEMICAL IMMERSION ANALYSIS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
00
PL07WP2
PL07WP1
PL07WP3
PL14WP1
PL14WP2
PL14WP3
PL28WP1
PL99WP1
PL28WP2
PL28WP3
PL56WP3
PL56WP2
PL56WP1
PL99WP2
PL99WP3
PL99WP4
PL99WP5
PL99WP6
PL99WP7
7
7
7
14
14
14
28
28
28
28
56
56
56
132
247
370
503
622
737
.4
.6
.5
.8
.8
.9
.7
1 .0
.9
.8
1 . 1
.9
.8
1 .5
.8
1 .8
1 .4
1 .2
.7
*
.3
.3
1 .6
1 .0
.9
.6
.6
.6
.3
1 .3
.3
1 .0
.9
.6
.3
.6
.9
.3
2
1
1
1
2
1
1
2
.3
.5
.8
.2
.2
.3
.0
.5
.2
.3
.0
.0
.7
.8
.6
.6
.5
.6
. 1
85
84
85
94
90
89
93
*
93
93
109
100
96
*
*
*
*
*
100
PH01XM1
PH07XM1
PH14XM1
PH99XM1
PH28XM1
PH56XM1
PH99XM2
PH99XM3
PH99XM4
PH99XM5
PH99XM6
PH99XM7
1
7
14
28
28
56
1 18
231
363
489
609
712
.4
.5
.3
.4
.2
.6
.5
.6
.2
.2
. 1
*
PL01XM2
PL01XM1
PL01XM3
PL07XM3
PL07XM1
PL07XM2
PL14XM3
PL14XM1
PL14XM2
PL28XM2
PL28XM3
PU99XM1
1
1
1
7
7
7
14
14
14
28
28
28
.2
.2
.2
.3
.5
.4
.3
.3
.5
.5
.4
.6
.3
.6
.0
.6
.6
.3
.6
.3
.3
.3
.3
.3
.6
.3
*
.3
. 1
.4
.8
.3
.2
. 1
.5
.4
.3
. 1
. 2
.5
WATER 100.0% 23°C
84
88
85
103
91
92
95
85
87
1 12
102
99
*
*
*
*
*
PERCENT
RETENTION
BF
M
99
96
96
97
97
98
100
*
99
102
100
96
99
*
*
*
*
*
106
PERCENT PERCENT
RETENTION RETENTION
BF EAB
T M
POTASSIUM DICHROMATE 10.0% 50°C
83
88
94
*
86
93
*
*
105
80
96
99
*
98
91
*
*
*
97
103
103
*
99
101
*
*
*
*
*
100
POTASSIUM DICHROMATE 10.0% 23°C
97
90
97
92
86
93
71
91
76
89
84
92
83
87
89
90
89
86
97
90
87
85
107
98
102
96
102
96
92
99
94
99
99
97
97
94
103
98
98
99
*
96
99
87
95
93
94
100
97
*
96
98
99
100
90
91
98
91
98
99
107
103
1O4
108
104
100
89
100
102
105
*
103
1 18
91
94
102
*
*
*
*
*
107
102
1 17
1 10
*
108
109
*
*
*
*
*
96
108
108
101
92
1 1 1
91
107
101
1 14
1 18
132
PERCENT
RETENTION
EAB
T
1 14
1 1 1
1 15
100
106
107
1 10
*
1 16
121
88
93
92
*
*
*
*
*
*
129
109
102
*
105
1 17
1 14
131
96
94
108
92
101
100
105
106
1 14
PERCENT
RETENTION
TEAR
M
96
98
100
108
96
99
106
*
95
108
1 12
1 14
104
*
94
100
108
*
99
104
*
*
*
108
95
102
105
104
107
90
108
93
10O
105
PERCENT
RETENTION
TEAR
T
100
99
97
98
92
94
98
*
95
92
1 12
1 10
100
*
*
*
*
*
101
97
102
*
99
103
103
98
104
1 13
99
101
99
99
96
1O3
7O7
-------
PL28XM1
PL56XM3
PL56XM2
PL56XM1
PL99XM2
PL99XM3
PL99XM4
PL99XM5
PL99XM6
PL99XM7
28
56
56
56
1 18
223
363
489
609
714
.4
100.0
100.0
.6
.6
.2
.2
.3
.2
. 1
PERCENT PERCENT
WEIGHT THICKNESS
CHANGE CHANGE
PERCENT
VOLUME
CHANGE
.9
.2
.6
. 2
.5
.3
*
.3
.4
.4
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
POTASSIUM DICHROMATE 10.0% 23°C
85
85
84
84
*
*
*
99
85
82
84
83
*
*
*
*
*
*
98
102
97
102
*
103
PERCENT
RETENTION
BF
T
96
96
95
97
PERCENT
RETENTION
EAB
M
100
1 12
105
1 16
*
*
102
PERCENT
RETENTION
EAB
T
105
1 12
109
124
PERCENT
RETENTION
TEAR
M
100
98
100
93
*
*
*
*
*
PERCENT
RETENTION
TEAR
T
100
92
98
98
-------
GPE : FINAL PROPERTIES
270
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CH01AM1
CH07AM1
CHI 4AM 1
CH99AM1
CH28AM1
CH56AM1
CH99AM2
CH99AM3
CH99AM4
CH99AM5
CH99AM6
CH99AM7
CL01 AMI
CL07AM1
CL14AM1
CL28AM1
CL99AM1
CL56AM1
CL99AM2
CL99AM3
CL99AM4
CL99AM5
CL99AM6
CL99AM7
CH01BM1
CH07BM1
CH14BM1
CH28BM1
CH99BM1
CH56BM1
CH99BM2
CH99BM3
CH99BM4
CH99BM5
CH99BM6
CH99BM7
1
7
14
28
29
56
144
252
368
51 1
621
732
1
7
14
29
31
56
144
238
368
51 1
621
732
1
7
14
28
29
56
144
252
368
510
622
732
2.
1 .
2.
2.
36.
2.
2.
2.
2.
2.
2.
1 .
2.
2.
1 .
2.
35.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
*
05
96
10
05
19
22
31
33
40
43
53
92
02
01
99
03
45
05
04
05
05
05
06
*
10
06
05
12
06
1 1
13
19
15
16
22
32.
30.
33.
32.
32.
34.
37.
36.
37,
38,
40
29
31
31
31
31
32
31
31
31
31
31
31
32
32
32
33
32
33
33
33
33
34,
35,
*
00
70
30
,50
,90
,70
.00
.20
.50
.00
. 10
.60
.30
.50
.00
.20
. 10
.40
.40
.50
.20
.40
.80
*
.70
.30
.70
. 10
.70
. 10
.50
.30
.40
.40
.20
LENGTH
( inch)
WIDTH
(inch)
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
HYDROCHLORIC
*
2.98
2.99
2.99
2.99
7.48
2.98
2.98
2.98
2.97
2.97
2.97
1 .
1 .
1 .
1 .
6.
1 .
1 .
1 .
1 .
1 .
1 .
*
01
01
01
01
92
02
03
03
04
04
04
32.
37.
39.
41 .
32.
HYDROCHLORIC
3.01
2.99
3.00
3.01
3.01
7.43
3.01
3.01
3.01
3.01
3.01
3.02
1 .
1 .
1 .
1 .
1 .
6.
1 .
1 .
1 .
1 .
1 .
1 .
01
00
00
01
01
94
01
02
01
01
02
02
SODIUM
*
3 .02
2.98
3.02
2.97
2.97
2.97
2.97
2.97
2.97
2.97
2.97
1 .
1 .
0.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
*
00
02
99
01
01
01
01
01
01
01
01
36.
36.
39.
37.
37.
ACID
70
*
54
*
74
54
*
*
*
*
*
63
ACID
38
*
62
78
*
54
68
HYDROXIDE
32.
19.
36.
37.
40.
37.
98
82
34
82
*
70
98
10
19.
20.
19.
21 .
10
19.
17.
19.
19.
10.
15.
21 .
20.
18.
34.
.0%
78
*
50
*
54
30
*
*
*
*
*
*
.0%
78
*
42
06
*
14
*
*
*
*
*
*
0%
30
14
10
58
*
34
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
50°C
55
64
65
75
55
23°
55
54
60
60
62
50°C
54
49
62
59
65
57
.34
*
.38
*
.86
.90
.29
C
.30
*
.50
.38
*
.30
*
*
*
*
*
.83
. 18
.70
.78
.54
*
. 10
*
*
*
*
*
.39
50
51
48
60
46
47
50
51
47
50
47
47
60
82
*
30
*
02
66
26
*
06
90
*
46
*
*
*
*
*
*
54
18
98
38
*
58
*
*
*
*
*
*
520
426.
374.
403.
396.
505.
445.
446.
442 .
547.
499.
517.
502.
461 .
441 .
491 .
00
*
20
*
20
80
*
*
4
*
*
20
60
*
20
50
*
00
*
*
*
*
*
42
90
60
70
60
*
70
08
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
512.90
*
428.30
*
356.20
430.90
*
*
*
*
*
522.60
*
596.70
584.20
*
539.30
664.90
.00
10
457.
462.
519.90
*
523.60
7.62
*
8. 14
#
8.92
8.22
7.22
*
6.90
7. 13
*
7.90
7.36
6.92
7.54
7. 18
*
5.99
6.62
*
7.38
*
7.92
8.34
6.34
*
6.94
6.75
*
7.62
6.96
6.90
6.16
6. 17
*
6.90
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL01BM1
CL07BM1
CL14BM1
CL99BM1
CL28BM1
CL56BM1
CL99BM2
CL99BM3
CL99BM4
CL99BM5
CL99BM6
CL99BM7
CH01DH1
CH07DH1
CH14DH1
CH99DH1
CH2BDH1
CH56DH1
CH99DH2
CH99DH3
CH99DH4
CH99DH5
CH99DH6
CH99DH7
CL01DH1
CL07DH1
CL14DH1
CL99DH1
CL28DH1
CL56DH1
CL99DH2
CL99DH3
CL99DH4
CL99DH5
CL99DH6
CL99DH7
1
7
14
28
28
56
144
238
368
510
622
732
1
7
14
28
29
56
133
244
364
495
629
726
1
7
14
28
29
56
134
231
364
495
630
725
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
4.
3.
3.
4.
4.
5.
5.
4.
2.
2.
2.
2.
2.
2.
2.
2.
3.
3.
4.
5.
03
03
03
06
03
04
06
05
04
04
03
03
33
50
71
79
37
03
70
58
73
17
44
71
29
37
36
18
57
49
73
80
01
31
18
68
31
31
31
31
31
31
31
31
31
31
31
31
36
39
42
46
61
48
60
72
76
87
88
74
34
35
35
33
38
37
40
40
43
48
64
85
. 10
. 20
.40
.60
.60
.80
.80
.80
.60
.50
.60
.60
.50
.70
.90
.50
.50
.90
.60
.60
. 10
.40
.80
.20
.20
.90
.70
.50
.90
.40
.70
.70
.90
.50
.60
.30
LENGTH
(inch)
WIDTH
(inch)
SODIUM
3.00
3.01
3.01
3.00
3.02
3.02
3.00
3.01
3.00
3.00
3.01
3.01
2.81
2.80
2.75
2.78
2.63
2.73
2.71
2.63
2.60
2.55
2.58
2.61
2.99
2.97
2.98
3.01
2.89
2.97
2.95
2.93
2.91
2.90
2.69
2 .44
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.00
.00
.01
.01
.00
.01
.01
.01
.00
.00
.00
.00
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
HYDROXIDE
41
37
35
32
20
41
.86
.66
.86
*
.38
.06
*
*
*
*
*
.67
2 DICHLOROETHANE
.05
.08
. 1 1
. 14
.30
. 18
.25
.29
.33
.35
.37
.34
10
1 1
1 1
6
1 1
19
.20
.27
.85
*
.62
.67
*
*
*
*
*
.04
2 DICHLOROETHANE
.04
.05
.05
.03
. 1 1
. 10
. 13
. 15
. 18
. 22
.32
.72
9
5
9
5
1 1
6
. 19
.65
.47
*
.99
.31
*
*
*
*
*
.93
1 0 . 0%
18.94
17.30
17.74
*
17.30
16.18
*
*
*
*
*
*
.8%
5.44
7 .02
6.35
if
5.00
7.01
*
*
#
*
*
*
.8%
4.43
3.94
5. 27
*
4.63
5.65
*
*
*
*
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
62
64
58
55
48
64
50°C
22
29
27
1 1
22
39
23°C
21
12
22
1 1
23
16
.46
.66
.30
*
.42
.42
*
*
*
*
*
.42
.64
.42
.33
*
.37
.58
*
*
*
*
*
.41
.20
.28
. 22
*
.87
. 10
*
*
*
*
*
.53
BREAKING
FACTOR
T
(pound/
i nch
width)
53
55
51
45
43
17
27
18
9
16
13
14
15
12
15
.98
. 14
.22
*
.82
.90
*
.58
.31
.21
*
.87
. 17
*
*
*
*
*
*
.78
. 19
.58
*
.61
. 15
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
( inch)
441
533
453
534
489
564
698
646
563
394
442
522
685
618
605
496
448
533
.00
. 10
.40
*
.70
.00
*
*
f
*
*
.92
.55
.85
.35
*
.50
.65
*
*
*
*
#
. 17
.40
.58
.90
*
.38
. 13
*
*
*
*
*
.92
ELONGATION
AT
BREAK
T
(inch)
594.
699.
581 .
517.
576.
877.
734.
601 .
486.
455.
879.
1008.
744.
670.
525.
10
40
00
*
30
10
*
*
*
*
*
*
85
13
03
*
63
58
*
*
*
*
*
*
68
83
28
*
68
30
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
8.24
7.86
7.12
*
6.98
8.24
3.45
4.54
3.39
57
32
3.25
4.38
2.78
*
3.15
3.72
*
*
*
7.12
7.10
6.48
*
6.34
7.73
3.12
4.61
4.27
*
2.50
4.53
2.94
4.26
1 .47
*
3.22
3.72
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
NJ
OJ
WEIGHT THICKNESS
(gram) (mi 1 )
CH01DL1
CH07DL1
CH14DL1
CH99DL1
CH28DL1
CH56DL1
CH99DL2
CH99DL3
CH99DL4
CH99DL5
CH99DL6
CH99DL7
CL01DL1
CL07DL1
CL14DL1
CL99DL1
CL28DL1
CL56DL1
CL99DL2
CL99DL3
CL99DL4
CL99DL5
CL99DL6
CL99DL7
CHOI DM1
CH07DM1
CH14DM1
CH99DM1
CH28DM1
CH56DM1
CH99DM3
CH99DM4
CH99DM5
CH99DM6
CH99DM7
1
7
14
28
29
56
139
246
366
496
631
728
1
7
14
28
29
56
136
233
366
496
632
727
1
7
14
28
29
56
245
365
496
630
727
2.
2.
2.
2.
2.
2.
3.
3.
4.
4.
4.
4.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
3.
3.
4 .
4.
4 .
12
28
30
45
44
64
10
62
16
37
45
50
02
1 1
13
13
15
21
27
34
39
.41
44
.47
.23
,45
56
68
.68
83
67
95
44
78
87
32
35
36
39
38
41
50
58
65
70
71
73
31
32
32
32
32
33
34
35
36
37
37
37
35
39
40
43
42
44
60
65
78
80
84
.70
.90
.00
.50
. 10
.80
.70
.50
.60
.00
. 20
.30
.00
.50
.60
.80
.90
.80
.80
.90
.50
.00
.40
.90
. 10
.00
.60
.90
.30
.90
.90
. 20
. 30
.50
. 10
LENGTH
(inch)
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
WIDTH inch inch
(inch) width) width)
1 2 DICHLOROETHANE
2
2
2
2
2
2
2
2
2
2
2
2
.99
.94
.95
.95
.90
.93
.91
.87
.84
.83
.83
.83
1 .01
1 .04
1 .05
1 .06
1 .07
1 .08
1.12
1.17
1 .22
1 .23
1 . 24
1 . 24
28.
24.
25.
20.
30.
31 .
13
65
28
*
31
94
*
*
*
4
4
92
1 2 DICHLOROETHANE
3
3
3
3
3
3
3
3
3
3
3
3
.01
.01
.01
.01
.00
.00
.01
.02
.01
.01
.01
.02
.01
.02
.01
.02
.02
1 .03
1 .04
1 .05
1 .05
1 .05
1 .38
1 .06
30.
26.
22.
19.
24.
31 .
06
03
54
4
35
78
4
*
4
*
*
23
1 2 DICHLOROETHANE
2
2
2
2
2
2
2
2
2
2
2
.86
.80
.78
.78
. 76
. 77
.73
.73
.64
.63
.61
1 .04
1 .08
1.11
1.11
1.13
1.15
1 .20
1 .22
1 . 25
1 .29
1 .28
16.
15.
15.
15.
18.
31 .
33
63
34
*
44
93
4
4
4
4
50
. 1%
12.56
1 1 .76
1 1 .88
4
9.61
13:63
*
4
4
4
4
4
. 1%
13.71
12.53
10.54
4
8.63
1 1 . 26
4
*
4
4
4
*
.5%
8 .38
8 .03
7.57
4
8.10
9.4,9
4
4
4
4
4
BREAKING
FACTOR
M
( lb/
inch
width)
50°C
54.
61 .
55.
48.
56.
52.
23°C
54.
51 .
45.
42.
51 .
52.
50°C
34.
39.
31 .
32.
35.
52.
14
49
72
*
12
27
*
4
4
4
4
92
70
32
80
4
34
64
4
4
4
*
4
78
60
33
93
4
32
77
4
4
*
4
03
BREAKING
FACTOR
T
(pound/
inch
width)
49
42
31
28
33
44
49
37
28
40
28
28
20
22
24
44
26
47
*
38
54
*
4
4
*
4
4
49
85
51
4
65
39
4
94
61
90
t
44
77
ELONGATION
AT
BREAK
M
(inch)
578
586
480
526
377
357
533
577
589
625
537
459
647
635
491
487
401
371
.98
.55
.20
*
.35
.58
4
4
4
*
4
.25
.35
.75
.45
*
.28
.60
4
4
4
4
4
.00
.88
.73
.65
4
.58
.03
4
4
4
*
.92
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
758.35
552.50
433.03
*
477.08
355.23
697.05
808.73
742.43
*
697.20
608. 18
*
4
4
4
4
4
847.88
667.58
525.55
4
520.45
433.65
6.48
5.77
5.31
4
5.20
6.30
4
4
4
4
4
4
6.85
5.97
4.82
4.95
6.04
4
4
*
4.16
4.81
4.42
4
4.45
5.96
6. 16
5.95
5.77
4
5.43
5.86
4
4
4
4
4
4
6.34
5.80
5.01
4
4.81
5.88
4. 27
4.75
4.55
4
4.30
4.88
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL01DM1
CL07DM1
CL14DM1
CL99DM1
CL28DM1
CL56DM1
CL99DM2
CL99DM3
CL99DM4
CL99DM5
CL99DM6
CL99DM7
CH01FH1
CH07FH1
CH14FH1
CH28FH1
CH99FH1
CH56FH1
CH99FH2
CH99FH3
CH99FH4
CH99FH5
CH99FH6
CH99FH7
CL01FH1
CL07FH1
CL14FH1
CL99FH1
CL28FH1
CL56FH1
CL99FH2
CL99FH3
CL99FH4
CL99FH5
CL99FH6
CL99FH7
1
7
14
28
29
56
135
233
365
496
631
726
1
7
14
28
28
56
1 17
236
350
485
616
712
1
7
14
28
28
56
1 14
219
350
485
617
712
2
2
2
2
2
2
2
2
2
2
2
3
2
3
4
5
5
5
5
6
5
4
6
6
2
3
4
4
4
5
5
5
5
4
5
5
. 12
.24
.30
. 24
.32
.38
.36
.49
.50
.73
.81
.04
.06
.78
.48
.09
. 10
.80
.81
.25
.88
.78
.24
.32
.01
.23
.23
.70
. 18
.08
.60
.20
.70
.68
. 13
.25
32
33
34
34
35
35
36
37
38
41
41
44
32
55
64
70
82
82
91
87
86
83
87
88
31
46
54
60
54
63
67
65
66
61
62
68
.40
.70
.70
.20
.00
.70
. 10
.80
.60
.60
.90
.90
.30
.50
.20
.90
. 10
.70
.20
.30
.40
.80
.80
.90
.00
. 10
.30
.40
.40
.80
.20
.70
.80
.20
.30
.80
LENGTH
( inch)
3
3
3
3
2
3
3
3
3
2
2
2
.01
.02
.01
.01
.99
.00
.01
.01
.00
.98
.97
.94
S-100
MODULUS
M
( lb/
WIDTH inch
(inch) width)
1
1
1
1
1
1
1
1
1
1
1
1
1
S-100
MODULUS
T
(lb/
inch
width)
2 DICHLOROETHANE
.01
.03
.04
.03
.05
.06
.05
.07
.07
. 10
. 13
. 16
FURFURAL
3
2
2
2
2
4
2
2
2
2
2
2
.02
.68
.67
.66
.60
. 15
.59
.68
.70
.69
.76
.79
1
1
1
1
1
0
1
1
1
1
1
1
.00
.28
.31
.36
.33
.85
.33
.39
.38
.40
.43
.76
FURFURAL
3
2
2
2
2
4
2
2
2
2
2
3
.01
.84
.83
.85
.98
.33
.84
.84
.84
.76
.76
. 1 1
1
1
1
1
1
0
1
1
1
1
1
1
.00
. 21
.34
.39
.32
.95
.47
.46
.47
.38
.39
.35
19.47
12.44
12.82
*
12.05
15.25
15.04
8 . 0%
32. 10
2.80
1 .89
2. 14
*
2.00
*
*
*
*
*
7.93
8 . 0%
35.80
2.26
1 . 13
*
1 .72
1 .51
*
*
*
*
*
2.00
9
7
6
6
6
50°C
15
1
1
1
1
23°C
17
1
0
1
1
.5%
.69
. 17
.54
*
. 17
.99
*
*
*
*
*
*
.80
.66
.22
.26
*
. 16
*
.80
.72
.64
*
.28
.26
*
*
*
*
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
42
30
28
28
34
31
55
6
4
5
5
9
57
6
2
4
3
6
.46
.64
.83
*
.37
. 16
*
*
*
*
*
.23
.80
.76
.70
.48
*
.54
*
*
*
*
*
.05
.70
. 13
.73
*
.88
.91
*
*
*
*
*
. 10
BREAKING
FACTOR
T
(pound/
inch
width)
38
28
21
18
22
51
3
2
2
2
52
5
1
2
2
.88
.41
.26
*
.99
.75
*
*
*
*
*
*
. 16
.88
.52
.70
*
.96
*
*
*
*
*
*
.40
. 16
.90
*
.95
.47
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
606
686
614
565
476
539
540
810
940
681
732
244
490
958
1 108
853
693
996
.03
.65
.68
*
.98
.30
*
#
*
*
*
.83
.00
.00
.00
.00
*
.00
*
*
*
*
*
.00
.00
.00
.30
*
.00
.00
*
*
*
*
*
.30
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
851.55
906.00
788.78
*
371.60
561.15
*
730.00
940.00
990.00
783.00
*
884.00
640.00
1067.00
1480.00
*
822.50
930.00
5.12
4.41
3.67
*
4.07
4.76
*
*
*
3.78
1 .62
1 .30
1 .26
*
1 . 19
4.31
1 .24
0.88
*
0.97
1 . 14
5.37
4.15
3.58
*
3.93
4.45
*
4
*
4.89
2.60
1.19
1 .03
*
0.93
5.87
05
80
0.78
1 .06
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
i nch
width)
S-100
MODULUS
T
( lb/
i nch.
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
FURFURAL 1.0% 50°C
CH01FL1 1
CH07FL1 7
CH14FL1 14
CH28FL1 28
CH99FL1 28
CH56FL1 56
CH99FL2 123
CH99FL3 241
CH99FL4 355
CH99FL5 489
CH99FL6 621
CH99FL7 718
2.08
2.18
2.35
2.43
2.58
2.86
3.41
4.14
4.54
4.94
5.14
4.90
32. 10
34.80
37.50
38.70
42.30
45.00
53.50
63.70
72. 10
75.70
74.40
72 .70
3.02
3.15
2.82
2.84
2.83
3.44
2.81
2.78
2.76
2.74
2.75
2.76
1.00 29.40
0.96 22.60
1 .08 23.30
1.10 21 .70
1.10 *
0.93 20. 12
1 .20
1 .27
1 .30
1 .31
1 .30
1.30 23.03
13.61
10.90
11.10
1 1 .00
*
10.00
*
*
*
*
*
*
53.06
46.92
46.80
58.82
*
48.08
42.41
39.61
34.46
30.50
35.32
*
27.36
*
*
*
*
*
*
533.50
653.00
520.00
639.00
*
597.00
*
*
*
*
*
408. 33
586.20
680.00
524.00
535.00
*
518.00
*
*
*
*
*
*
7.45
6. 14
5.98
6.33
*
5.36
*
4
*
*
*
*
7.87
6. 14
6.34
5.91
*
4.94
FURFURAL 1.0% 23°C
CL01FL1 1
CL07FL1 7
CL14FL1 14
CL99FL1 28
CL28FL1 28
CL56FL1 56
CL99FL2 123
CL99FL3 224
CL99FL4 355
CL99FL5 489
CL99FL6 622
CL99FL7 717
1 .94
2.10
2.13
2.14
2.16
2.25
2.28
2.40
2.52
2.60
2.68
2.72
29.70
32. 10
32.30
33. 10
33. 10
34. 20
35.00
36.60
38.00
38 .80
40. 10
40.80
3.01
3.02
3.05
3.01
3.06
3.10
3.01
3.02
3.01
3.02
3.01
3.01
1.00 33.33
1.01 23.07
1.01 24.60
1 .02 *
1.01 23.30
1.01 20.34
1 .05 *
1 .07 *
1 .08 *
1 .09 *
1.10 *
1.11 24. 23
14.95
12.38
1 1 .02
*
1 1 .30
10.00
*
*
*
*
*
*
52.98
46. 20
52.54
*
49.70
46. 22
*
*
*
*
4
49.83
42.40
42.08
42.46
*
40.84
39.62
#
*
*
*
*
*
469.50
616.70
693.00
*
604.00
684.00
*
*
*
*
*
578.50
587.50
768.80
830.00
*
739.00
850.00
*
*
*
*
*
*
8.09
8.20
6.34
*
5.78
5.03
10.43
6.33
6.67
*
5.88
5.07
*
FURFURAL 4.0% 50°C
CH01FM1 1
CH07FM1 7
CH14FM1 14
CH28FM1 28
CH99FM1 29
CH56FM1 56
CH99FM2 124
CH99FM3 242
CH99FM4 356
CH99FM5 490
CH99FM6 622
CH99FM7 719
2.29
2.53
2.83
3. 32
3.46
4.10
4.94
5.03
4.94
4.90
5.02
5.12
35.30
39.70
44. 20
50. 20
54.40
60.60
76.20
76.20
75.50
75.90
78. 10
79.80
3.13
3.32
3.43
3.56
2.70
3.79
2.65
2.75
2.65
2.65
3.67
2.69
0.97
0.93
0.92
0.92
1 . 19
0.90
1 .34
1 .34
1 .34
1 .34
1 .36
1 .37
1 1 . 26
9.62
9.00
7.56
*
8.14
18.76
5.89
5.90
4.58
4.30
*
5.00
*
*
*
#
*
*
26. 21
20.84
18.93
17.92
*
16.90
*
*
*
*
*
23.35
18.71
17.86
14.50
11.16
*
10.48
*
*
*
*
*
*
640.70
658.00
51 1 .30
512.00
*
436.00
*
*
*
*
*
383.83
832.00
855.00
575.00
616.00
*
433.80
*
*
*
*
*
*
4.53 5.2
4.08 3.6
3.65 4.1
3.47 3.3
* *
3.81 4.5
*
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL01FM1
CL07FM1
CL14FM1
CL28FM1
CL99FM1
CL56FM1
CL99FM2
CL99FM3
CL99FM4
CL99FM5
CL99FM6
CL99FM7
CH01MD1
CH07MD1
CH14MD1
CH28MD1
CH56MD1
CL01MD1
CL07MD1
CL14MD1
CL28MD1
CL56MD1
CH01MH1
CH99MH1
CH99MH2
CH99MH3
CH99MH4
CH99MH5
CH99MH6
CH99MH7
CL01MH1
CL99MH1
CL99MH2
CL99MH3
CL99MH4
1
7
14
28
29
56
124
228
356
490
623
715
1
7
14
28
58
1
7
14
28
56
1
28
122
240
358
494
626
722
1
28
1 21
235
358
2.
2.
2.
2.
2.
2.
2.
3.
3.
4.
4.
4.
2.
3.
3.
3.
3.
2.
2.
2.
2.
2.
4.
7.
10.
9.
7.
7.
6.
5.
3.
6.
1 1 .
7.
8 .
06
33
40
58
51
75
95
16
67
01
33
50
48
45
69
60
50
09
26
51
51
51
74
78
18
51
07
22
16
87
47
09
14
26
76
31
35
36
38
37
40
43
46
51
53
56
60
41
54
58
57
58
32
35
39
38
39
63
132
137
161
128
140
1 17
142
52
90
121
106
1 1O
.80
.50
.60
.50
.80
.70
.50
.20
.20
.30
.90
.40
.00
.80
.60
.40
.30
.70
.70
.00
.70
. 20
.70
.00
.00
.40
.80
.00
.70
.50
.20
.30
.00
.00
.80
3.01
3.15
3.19
3.30
2.90
2.88
2.87
2.86
2.86
2.86
2.84
2.86
3.26
3.60
3.70
3.63
3.58
3.02
2.93
3.28
3.31
3. 29
4.57
2. 19
2.24
2.08
2.02
1 .98
1 .96
1 .96
3.87
2.75
2 .97
2.68
2.68
WIDTH
( inch)
S-100 S-100 BREAKING
MODULUS MODULUS FACTOR
M T M
inch inch inch
width) width) width)
FURFURAL 4.
1 .01
0.99
0.97
0.97
1.10
1.14
1.16
1.21
1 .27
1 .31
1 .35
1 .39
METHYL
0.94
0.89
0.89
0.91
0.90
METHYL
1 .00
1 .08
0.97
0.98
0.96
METHYL
0.84
1 .61
1.71
1 .60
1 .49
1 .44
1 .38
1 .36
METHYL
0.94
1 .48
1 .67
1 .62
1 .64
24.
10.
9.
7.
8.
7.
ETHYL
5.
9.
13.
1 1 .
21 .
ETHYL
15.
9.
18.
1 1 .
17.
ETHYL
0.
2.
ETHYL
1 .
0% 23°
12 1
74
20
98
*
20
*
*
*
*
*
68
KETONE
80
60
78
66
46 1
KETONE
86
54
60
38
08
KETONE
55
*
*
*
*
*
*
62
KETONE
10
*
*
*
*
C
1
5
4
4
4
3
5
7
6
1
7
5
9
5
8
0
0
.44
.30
.94
.30
*
.64
*
*
*
*
*
*
8 . 0%
.50
.02
. 14
.90
.55
8 . 0%
.90
.02
.94
.79
.40
26.0%
.50
*
*
*
*
*
#
*
26.0%
.54
*
*
*
* :
44.64
26.84
25.26
19.94
*
21 .30
*
*
*
*
*
25. 17
50°C
12.30
21 .50
23.74
21 .90
42.37
23°C
35.58
28.06
35.83
26.52
39.67
50°C
0.70
*
*
*
*
*
*
4.50
23°C
1 .54
*
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
34
21
15
13
13
8
14
14
13
21
27
19
24
17
24
0
0
.52
.08
.34
.98
*
.30
*
*
*
*
*
*
.34
.58
.06
.67
.76
.62
.98
.42
.90
.55
.90
*
*
*
*
*
*
*
.70
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
514
746
723
578
695
667
689
546
415
445
470
610
781
563
543
551
245
459
337
.88
.00
.80
.00
*
.00
*
*.
*
*
*
.08
.00
.83
.80
.20
.70
. 10
.30
.75
.38
. 10
.50
*
*
*
*
*
*
.00
.70
*
*
*
*
ELONGATION
AT
BREAK
T
(inch)
630
1 189
902
777
769
888
679
445
431
361
814
999
590
675
535
335
513
.60
.00
.00
.00
*
.00
*
*
*
*
*
*
.50
.90
.60
. 10
.50
.20
.00
.80
.00
. 10
.00
*
*
*
*
*
*
*
.50
*
*
*
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
6.79
3.95
3.49
3.46
*
3.03
3.50
4.45
2.85
4.59
6.31
5.78
4.76
3.16
4.17
5.51
0.73
*
*
*
1 .02
9.22
4.28
3.48
3.26
*
3.30
*
*
3.14
5.25
2.66
4.21
5.36
5. 10
4.87
3.18
4.67
5.88
0.50
0.90
*
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL99MH5
CL99MH6
CL99MH7
CHOI ML 1
CH07ML1
CH14ML1
CH28ML1
CH99ML1
CH56ML1
CH99ML2
CH99ML3
CH99ML4
CH99ML5
CH99ML6
CH99ML7
CL01ML1
CL01ML2
CL07ML1
CL14ML1
CL99ML1
CL28ML1
CL56ML1
CL99ML2
CL99ML3
CL99ML4
CL99ML5
CL99ML6
CL99ML7
CHOI MM 1
CH07MM1
CH14MM1
CH99MM1
CH28MM1
CH56MM1
CH99MM2
CH99MM3
CH99MM4
494
627
721
1
7
14
28
28
55
120
240
358
494
626
722
1
1
7
14
28
28
55
120
235
358
494
627
721
1
7
14
28
28
55
120
239
357
8.
7.
7.
2.
2.
2.
2.
2.
2.
3.
4.
5.
5.
6.
6.
1 .
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
5.
2.
3 .
6.
6.
8.
9.
39
98
42
12
50
63
21
80
91
81
34
08
76
27
46
93
06
1 1
19
21
63
24
38
49
65
75
83
86
82
4
91
97
08
19
22
37
1 1
100.
133.
104.
33.
40.
42.
34.
47.
47.
64.
70,
79,
102
109
99
30
31
32
33
34
42
34
36
38
40
41
42
42
45.
89.
48.
46.
101 .
100.
116.
156.
00
00
80
60
70
70
, 10
,00
,00
.80
.80
.20
.90
.40
.70
. 10
.90
.40
. 70
.00
.50
.50
.00
. 10
.00
.00
.30
.80
.40
4
,90
,50
,60
10
00
00
60
LENGTH
(Inch)
2.69
2.52
2.59
3.07
3.26
3.29
3.11
2.77
3.41
2.58
2.59
2.59
2.58
2.57
2.57
2.99
3.01
3.05
3.07
3.01
3.33
3.09
3.02
3.02
3.03
3.01
3.01
3.02
3.40
*
2.56
2.77
3.56
4.20
2.45
2.55
2.41
WIDTH
(inch)
METHYL
1 .64
1 .61
1 .59
METHYL
0.98
0.93
0.94
1 .01
1.12
0.92
1 . 27
1 .33
1 .38
1 .40
1.41
1.41
METHYL
1 .00
1 .01
1 .01
1.01
1 .03
0.94
1.01
1 .05
1 .07
1 . 10
1.11
1.11
1.13
METHYL
0.92
*
1 .38
1.13
0.95
0.80
1 .34
1 .64
1 .55
S-100 S-100 BREAKING
MODULUS MODULUS FACTOR
M T M
(1b/ (lb/ (1b/
inch inch inch
width) width) width)
ETHYL KETONE 26.0% 23°C
* * *
0.
ETHYL
21 .
17.
20.
20.
28.
18.
ETHYL
30.
29.
21 .
23.
25.
23.
19.
ETHYL
3.
2.
2.
4.
2.
*
74
KETONE
22
50
20
66
*
34
98
9
8
10
10
14
KETONE
70
94
20
50
*
40
93
*
*
*
*
*
78
14
13
9
1 1
12
1 1
KETONE
90
77
67
*
50
18
*
*
*
2
1
1
2
1
*
*
3.0%
97
98
94
81
*
36
*
3.0%
62
30
78
78
*
44
01
*
*
*
*
*
*
1 3 . 0%
80
90
45
*
91
35
*
*
*
2.
50°
47.
40.
36.
41 .
53.
31 .
23°
58.
53.
46.
40.
44.
56.
41 .
50
8.
6.
5.
10.
4.
*
18
C
06
82
40
90
*
48
*
*
*
*
*
35
C
02
46
70
10
*
83
90
*
*
*
*
*
47
°C
18
23
43
*
93
70
*
*
*
BREAKING
FACTOR
T
(pound/
i nch
width)
*
33
28
23
29
31
53
45
41
32
36
34
6
4
2
7
2
*
*
.23
.62
.54
.07
*
.41
*
*
*
*
*
*
. 10
.62
.06
.06
*
.35
. 12
*
*
*
*
*
*
.35
.37
.73
*
.23
.85
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
661
601
574
452
461
458
352
605
567
645
532
612
596
586
642
533
575
535
622
*
. 17
.60
.30
. 17
.50
*
.40
*
*
*
*
*
.08
.60
.60
.60
.40
*
.88
.20
*
*
*
*
*
.92
.00
.67
.00
*
.88
.38
*
4
*
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
641.83
603.00
452.40
472.50
*
390.40
821.20
751.00
890.60
643.70
*
549.90
529.30
*
4
746.25
676.17
582.20
4
546.40
598.40
*
4
6. 17
5.66
4.85
6. 14
*
7.77
*
46
06
76
06
5.61
6.21
2.62
1 .50
1 .33
4
3.53
1 .60
4
t
5.62
6.05
4.94
5.96
*
6.93
7.02
7.02
5.67
5.04
5. 18
6.39
2.34
1 .30
1 .23
*
3.01
1 . 19
4
4
4
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mil)
CH99MM5
CH99MM6
CH99MM7
CL01MM1
CL01MM2
CL07MM1
CL14MM1
CL28MM1
CL99MM1
CL56MM1
CL99MM2
CL99MM3
CL99MM4
CL99MM5
CL99MM6
CL99MM7
CH010M1
CH070M1
CH140M1
CH990M1
CH280M1
CH560M1
CH990M2
CH990M3
CH990M4
CH990M5
CH990M6
CH990M7
CL010M1
CL070M1
CL140M1
CL990M1
CL280M1
CL560M1
CL990M2
CL99OM3
CL990M4
493
625
721
1
1
7
14
28
28
55
120
234
357
493
626
720
1
7
14
28
28
56
128
251
364
503
626
727
1
7
13
28
28
56
128
237
364
8.
8.
8.
2.
2.
2.
3.
5.
3.
3.
4.
5.
6.
6.
6.
6.
2.
2.
2.
2.
2.
2.
3.
3.
3.
4.
4.
4.
2.
2.
2.
2.
2.
2.
2.
2.
2.
44
18
24
42
43
97
32
68
67
81
68
89
17
16
13
18
04
19
19
39
37
56
06
62
94
30
49
70
02
05
07
10
10
1 1
23
27
32
146
1 12
38
38
44
48
91
53
55
62
1 12
105
102
103
31
44
34
37
37
40
59
61
67
70
74
31
31
31
32
32
32
34
35
35
*
.70
.90
. 10
.50
.90
.20
.00
. 10
.00
.70
.00
. 20
*
. 20
.70
.60
. 10
.30
.80
.20
.20
*
.20
.70
.80
.70
.20
.00
.40
.80
.50
.30
.40
.20
. 10
.60
LENGTH
(inch)
2.35
2.33
2.37
3.21
3. 23
2.86
3.68
4.12
2.84
3.93
2.85
2.47
2.47
2.46
2.44
2.47
3.02
3.07
3.09
2.97
3. 14
3.01
2.94
2.91
2.90
2.89
2.89
2.89
3.01
3.02
3.02
3.01
3.04
3.01
3.01
3.01
3.01
WIDTH
( inch)
METHYL
1.51
1 .50
1 .50
METHYL
0.99
0.97
1 .20
0.95
0.85
1 .27
0.93
1 .40
1 .35
1 .36
1 .34
1 .32
1 .34
ASTM #2
1 .00
1 .00
1 .00
1 .05
0.99
0.99
. 1 1
. 16
. 19
. 21
. 23
.23
ASTM #2
1 .00
1 .00
1.01
1 .01
1.01
1 .02
1 .02
1 .04
1 .03
S-100 S-100
MODULUS MODULUS
M T
inch inch
width) width)
ETHYL KETONE 13
* *
5
*
90
*
*
ETHYL KETONE 13
5
5
5
4
7
6
3
OIL
31
31
29
25
30
29
OIL
31
33
30
25
32
18
22
70
26
93
*
49
*
*
*
*
*
32
2.58
2.98
2.90
2.35
4.63
*
4.12
*
*
*
*
*
*
SATURATED
66
46
74
*
40
50
47
15.78
15.02
13. 15
*
10.70
13.50
#
*
*
*
*
#
SATURATED
94
90
34
*
40
02
*
*
*
15.58
17.18
14.30
*
10.70
14.55
*
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
.0% 50°C
*
15.
.0% 23
1 1 .
1 1 .
17.
8.
17.
17.
1 1 .
50°C
51 .
50.
48.
50.
50.
47.
23°C
52.
53.
51 .
50.
51 .
*
20
°C
14
90
46
81
94
*
06
*
*
*
*
*
29
58
86
90
*
00
38
*
*
*
*
*
73
38
98
18
*
00
86
*
*
*
BREAKING
FACTOR
T
(pound/
i nch
width)
6.
7.
9.
4.
1 1 .
10.
45.
42.
37.
43.
34.
47.
47.
44.
43.
45.
*
t
22
34
38
99
06
*
37
*
*
*
*
*
*
74
18
78
*
80
94
*
*
*
*
*
*
94
54
54
*
80
30
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
676
698
839
797
589
516
572
734
542
494
543
462
464
347
523
478
560
560
486
*
.42
.40
.70
.30
.20
.60
*
.20
*
*
*
*
*
.25
. 10
.60
.60
*
.00
.00
*
*
*
*
*
.25
.50
.30
.40
*
.00
.70
*
»
*
ELONGATION
AT
BREAK
T
(inch)
*
895
999
991
686
563
590
726
613
713
543
550
725
685
760
745
654
*
#
.70
.00
.50
.20
.50
#
.50
*
*
*
*
*
*
.30
.00
.20
*
.00
.70
*
*
*
*
*
*
.40
.00
.30
*
.00
.63
*
4
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
1 .98
2.14
2.81
1 .63
4.70
*
3.50
6.70
7.66
8.42
*
5.90
6.26
*
6.86
8.46
8.30
6.30
7.54
2.26
2.26
3.92
1 .59
4.07
*
3.27
*
*
*
*
6.58
6.82
7.26
*
5.44
5.66
6.54
6.78
7.30
*
5.80
6.54
*
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL990M5
CL990M6
CL990M7
CHOI OP 1
CH070P1
CH140P1
CH990P1
CH280P1
CH560P1
CH990P2
CH990P3
CH990P4
CH990P5
CH990P6
CH990P7
CL010P1
CL070P1
CL140P1
CL990P1
CL280P1
CL560P1
CL990P2
CL990P3
CL990P4
CL990P5
CL990P6
CL990P7
CH01PH1
CH07PH1
CH14PH1
CH28PH1
CH99PH1
CH56PH1
CH99PH2
CH99PH3
CH99PH4
CH99PH5
CH99PH6
CH99PH7
503
626
727
1
7
14
28
28
56
141
257
385
509
627
733
1
7
14
28
28
56
141
244
385
509
627
733
1
7
14
28
29
56
121
243
362
499
624
720
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
3
3
4
3
4
5
6
6
6
6
5
.34
.37
.41
.97
. 12
. 15
.21
. 16
. 17
.33
.40
.39
.41
.43
.43
.01
.01
.94
.02
.06
.05
.05
.06
.08
. 10
. 13
. 1 1
.56
.30
.45
. 1 1
.82
.85
. 29
.26
.64
.90
.42
.98
35.
36.
37.
30.
32.
33.
34.
33.
33.
36.
37.
37.
37.
37.
38.
30.
31 .
30.
31 .
31 .
31 .
31 .
31 .
31 .
32.
32.
32.
39.
49.
52.
72.
61 .
111.
130.
130.
99.
96.
90
60
20
60
70
20
40
30
80
50
30
70
60
60
10
80
00
20
10
50
30
40
70
90
10
00
80
30
90
40
40
30
*
00
00
70
t
60
60
LENGTH
(inch)
3.01
3.01
3.01
3.00
3.04
3.06
3.00
3.05
3.07
3.00
3.00
3.01
3.00
3.00
3.01
3.01
3.01
3.00
3.00
3.01
3.00
3.01
3.01
3.01
3.01
2.68
3.02
2.87
2.74
2.76
2.77
2.75
2.67
2.71
2.68
2.67
2.72
2.70
2.69
S-100 S-100 BREAKING
MODULUS MODULUS FACTOR
M T M
WIDTH inch inch inch
(inch) width) width) width)
ASTM #2 OIL SATURATED 23°C
1 .03 * * *
1
1
04
04
ASTM #2
1
1
01
00
.00
03
00
00
.04
.04
.04
.04
.05
.05
ASTM #2
1
1
1
1
1
1
1
1
1
1
1
1
.01
.00
.00
.00
.01
.00
.01
.01
.01
.01
.01
.02
PHENOL
1
1
1
1
1
1
1
1
1
1
1
1
08
21
21
21
24
25
27
26
25
29
27
26
32.
OIL
27.
29.
34.
30.
34.
36.
OIL
28.
35.
28.
33.
35.
37.
8.0%
9.
7.
5.
7 .
7.
5.
*
63
100.
45
80
26
*
78
55
*
*
*
*
*
45
100.
82
34
40
*
70
03
*
*
*
*
*
00
50°
74
79
56
55
*
52
*
*
*
*
4
10
0%
12
12
15
13
14
0%
13
16
1 1
15
16
C
4
3
2
4
4
*
*
50°C
45
04
58
*
50
06
*
*
*
*
*
*
23°C
30
62
76
*
03
54
*
*
*
*
*
*
85
93
20
23
*
14
*
*
*
*
*
#
59
45
49
54
46
53
55
49
58
52
55
56
57
26
15
16
15
14
16
*
.93
.20
.60
.22
*
.74
.75
*
*
*
*
*
. 16
.46
.54
.00
*
.38
. 10
.52
.36
.53
.40
.28
*
.88
.37
BREAKING
FACTOR
T
(pound/
i nch
width)
*
38
42
44
42
43
40
49
44
49
48
20
9
8
9
9
*
*
05
20
50
*
00
46
*
*
*
*
*
*
54
70
40
*
03
94
*
*
*
*
*
*
41
71
19
61
+
51
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
519
567
462.
467.
410.
435.
421 .
599.
531 .
577.
494.
518.
518.
547.
403.
533.
490.
504.
826.
*
25
00
00
80
*
70
33
*
*
*
*
*
25
00
70
00
*
60
67
*
*.
*
*
*
58
15
68
35
60
*
78
*
*
*
*
*
08
ELONGATION
AT. TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
750.50
639.00
604.10
*
659.75
606.50
826.20
668.80
726.00
*
671.00
698.00
*
*
*
4
*
*
680.88
468.73
553.83
519.18
*
579.20
*
5.86
.90
10
5.98
7.06
*
6. 10
6.30
6.40
*
7.86
7.48
91
77
83
2.87
2.59
5.65
5.50
5.30
*
5.70
6.70
5.66
60
90
6.66
7. 22
3.07
2.80
2.25
2.34
*
2.12
*
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
K>
00
O
WEIGHT THICKNESS
(gram) (mi 1)
CL01PH1 1
CL07PH1 7
CL14PH1 14
CL28PH1 28
CL99PH1 29
CL56PH1 56
CL99PH2 121
CL99PH3 230
CL99PH4 362
CL99PH5 499
CL99PH6 625
CL99PH7 719
CHOI PL 1 1
CH07PL1 7
CH14PL1 14
CH99PL1 28
CH28PL1 28
CH56PL1 56
CH99PL2 122
CH99PL3 245
CH99PL4 363
CH99PL5 499
CH99PL6 625
CH99PL7 721
CL01PL1 1
CL07PL1 7
CL14PL1 14
CL2BPL1 28
CL99PL1 28
CL56PL1 56
CL99PL2 122
CL99PL3 233
CL99PL4 363
CL99PL5 499
CL99PL6 626
CL99PL7 720
2.28
2.78
3.01
3. 10
2.89
*
3.21
3.12
3.15
3.85
3.36
3. 14
2.03
2.21
2.20
2.53
2.52
2.71
3.32
4.08
4.48
4.63
4.87
4.86
2.04
2.01
2.10
2. 14
2.36
2.16
2.71
2.78
2.83
2.86
2.93
2.94
35.20
40.90
44.00
46.00
43.00
43.40
47.40
46.90
47.30
54. 20
48. 10
46. 20
31 .40
35.20
35. 10
40.30
39.70
42.50
54.30
62.40
72.70
71 .40
74.70
68. 10
31 .50
31 .20
32.40
33.00
36.00
33.40
39.90
41 .40
42.20
42.40
42.90
43.70
LENGTH
(inch)
WIDTH
(inch)
PHENOL
3.01
2.97
2.94
2.94
2.95
2.90
2.93
2.93
2.92
2.90
2.88
2.89
1
1
1
1
1
1
1
1
1
1
1
1
.01
. 10
. 16
. 14
. 13
. 15
. 17
. 17
. 17
.27
.20
. 19
PHENOL
3.00
2.87
2.94
2.85
2.88
2.81
2.82
2.79
2.80
2.79
2.79
2.78
1
1
1
1
1
1
1
1
1
1
1
1
.01
.05
.06
.09
.08
. 15
. 19
. 27
.29
.29
.30
.29
PHENOL
3.01
3.01
3.01
*
3.03
3.01
3.00
2.98
2.99
2.98
2.98
2.98
1
1
1
1
1
1
1
1
1
1
1
1
.00
.01
.01
.02
.04
.03
. 1 1
. 13
. 13
. 13
. 14
. 14
S-100 S-100
MODULUS MODULUS
M T
(lb/ (1b/
inch inch
width) width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
B.0% 23°C
20.
7.
6.
5.
7 .
8.
20
64
69
80
*
01
*
*
*
*
*
28
9.39
3.70
3.82
5.26
*
3.20
45
18
21
18
20
19
.47
.53
.63
. 1 1
*
.53
*
if
ir
*
*
.42
38
12
13
1 1
12
.57
.45
.44
.75
*
.32
*
*
*
*
*
*
507
480
565
626
647
657
.78
.88
.88
. 15
*
.50
*
*
*
*
*
.83
636
604
699
458
775
. 15
.33
.65
.98
*
.20
*
*
*
*
*
*
1.0% 50°C
32.
26.
23.
24.
21 .
30.
1 . 0%
34.
32.
29.
26.
24.
21 .
66
56
70
*
49
01
*
*
*
*
*
50
23°C
17
83
97
78
*
45
*
*
*
*
*
87
15.57
13.76
10.64
*
1 1 .57
10.47
*
*
if
*
*
*
16.48
15.75
14.08
12.62
*
1 1 .72
*
*
*
*
#
*•
64
65
57
52
44
49
60
60
59
60
54
48
.40
.35
.89
if
.95
.61
*
*
*
*
*
.61
.22
.03
.77
.69
*
.74
*
*
*
*
*
.33
52
47
36
31
26
49
52
52
48
41
.81
.46
.23
*
.63
. 13
*
*
*
*
*
*
.05
.97
.35
.60
*
.63
*
*
*
*
*
*
515
523
509
469
526
393
484
481
534
603
596
615
.55
.25
.35
*
.70
.50
*
*
*
i
*
.42
. 13
.20
. 18
.40
*
.58
*
*
*
*
*
.42
581
479
471
444
448
564
600
649
663
617
.88
.25
.20
*
.65
.70
*
*
*
3f
*
*
.00
.90
.30
.88
*
.60
*
*
*
*
*
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
4.05
2.62
2.46
2.61
*
2.36
*
4
*
*
5.56
6.04
5.83
.88
.08
*
*
5.88
6.86
6.36
6.29
*
5.47
*
3.81
3.06
2.71
2.65
2.77
*
*
5.65
5.88
5.86
if
5.89
5.26
*
*
*
*
*
*
5.69
6.68
6. 15
6.05
*
5.33
*
if
if
if
*
If
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
( lb/
inch
width)
S-100
MODULUS
T
( lb/
inch
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
(inch)
2.98
2.77
2.76
2.73
2.77
2.73
2.74
2.71
2.70
2.69
2.69
2.69
PHENOL 4.0% 50°C
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
CL01PM1 1
CL07PM1 7
CL14PM1 14
CL28PM1 28
CL99PM1 29
CL56PM1 56
CL99PM2 121
CL99PM3 231
CL99PM4 362
CL99PM5 499
CL99PM6 625
CL99PM7 719
2.07
2.07
2.37
2.54
2.13
*
2.31
2.44
2.62
2.95
3.14
3.20
32.00
31 .70
35.80
38.00
32.90
48.90
35. 10
37.00
39.00
42.60
44.80
46.40
3.01
3.02
3.03
3.00
3.02
2.96
3.03
3.03
3.04
2.98
2.96
2.95
1.00 30.26
1 .02 19.77
1 .05 1 1 .42
1.08 12.24
1 .02 *
1.12 10.96
1 .05 *
1 .07 *
110 *
1.15 *
1.17 *
1.18 12.07
14.35
9.62
5.13
6. 10
*
5.67
*
57.06
48.37
31 . 60
32.09
*
32.28
*
*
*
*
*
32.53
48.87
36.90
24.63
18. 35
*
19.35
*
*
¥
*
*
*
495.68
539.65
491 .60
555.48
*
679.75
*
*
*
*
*
673.08
594.78
591 .60
580.44
533. 10
*
651 . 18
5.88
5.83
4.47
3.81
*
3.38
*
*
*
*
*
*
5.84
5.58
4.63
4.02
*
3.43
3.01
00
99
99
3.01
.99
.98
.98
99
97
98
*
39.82
*
*
50.46
44.86
2.98
516.25
525.30
484.50
566.40
521.42
650.10
675.90
649.80
6.62
6.65
6.54
*
6.70
6.80
*
*
*
6.14
6.02
6.61
*
6.58
7.96
*
*
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
CL01SH1
CL07SH1
CL14SH1
CL2BSH1
CL99SH1
CL56SH1
CL99SH2
CL99SH3
CL99SH4
CL99SH5
CL99SH6
CL99SH7
CH01SM1
CH07SM1
CH14SM1
CH99SM1
CH28SM1
CH56SM1
CH99SM2
CH99SM3
CH99SM4
CH99SM5
CH99SM6
CH99SM7
CL01SM1
CL07SM1
CL14SM1
CL28SM1
CL99SM1
CL56SM1
CL99SM2
CL99SM3
CL99SM4
CL99SM5
CL99SM6
CL99SM7
1
7
14
28
28
56
131
246
379
510
630
733
1
7
14
28
28
61
132
254
370
51 1
624
734
1
7
14
28
28
61
132
246
370
51 1
624
734
2.02
1 .99
1 .99
1 .99
2.02
2.03
2.03
2.03
2.03
2.04
2.03
2.03
1 .99
1 .96
35.24
2.12
35.39
35.78
2.11
2. 10
2. 15
2. 10
2.09
2.08
1 .96
2.03
34.88
35.43
2.07
35.37
2.09
2.09
2.09
2.08
2.08
2.07
31 .20
30.50
30.80
31.10
31 .20
31 .60
31.10
31 .20
31 .40
31 .20
31.10
31 .50
31.10
31 .00
31 .80
32.90
32.30
32,80
32.50
32.60
32.50
32.40
32.60
32.50
30.60
31 .60
31 .50
32.00
31 .80
32. 10
32. 10
32.20
32.20
31 .90
32. 10
32. 10
LENGTH
(inch)
3.00
3.01
3.01
3.00
3.00
3.00
3.01
3.02
3.02
3.01
3.01
3.01
2.99
2.98
7.48
2.99
7.46
7.50
2.98
2.98
2.98
2.98
2.97
2.98
3.00
3.00
7.43
7.44
3.01
7.44
3.01
3.02
3.02
3.02
3.01
3.02
WIDTH
(inch)
SODIUM
1 .00
1.01
1 .00
1 .00
1.01
1 .01
1 .01
1 .02
1 .02
1 .01
1.01
1 .02
SODIUM
1.01
1.01
6.95
1 .02
6.89
6.92
1 .02
1 .02
1 .03
1 .02
1 .02
1 .03
SODIUM
1.01
1 .01
6.96
6.98
1 .02
6.97
1 .02
1 .03
1 .02
1 .02
1 .02
1 .02
S-100
MODULUS
M
( lb/
i nch
width)
CHLORIDE
30
34
38
30
37
.82
. 14
*
.82
*
.46
*
*
*
*
*
.52
CHLORIDE
36
36
34
29
37
37
.94
. 14
.62
*
.34
. 10
*
*
*
*
*
.88
CHLORIDE
33
37
35
36
35
37
.66
.82
.42
.42
*
.38
*
*
*
*
*
.92
s-ioo
MODULUS
T
( lb/
inch
width)
35 . 0%
14.26
16.18
*
20. 10
*
13.38
*
*
*
He
*
*
1 0 . 0%
16.46
17.62
17.46
*
15.70
19.94
*
*
*
*
*
*
10.0%
15.14
18.78
15.86
15'.82
*
16.86
*
*
*
*
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
51
54
62
53
57
50°C
56
55
57
54
55
50
23°C
52
55
58
59
56
53
. 18
.35
*
. 18
*
.26
*
*
*
*
*
.66
.58
.22
.90
*
.70
.90
*
*
*
*
if
.73
.34
.46
.78
.26
*
.90
*
*
*
*
*
.73
BREAKING
FACTOR
T
(pound/
inch
width)
47
47
53
43
43
44
45
45
46
42
48
50
51
46
.06
.94
*
.86
*
.66
*
*
*
*
*
*
.58
. 10
.70
*
.22
.78
*
*
*
*
*
*
.22
.78
.78
.02
*
.54
*
*
f
*
*
*
ELONGATION
AT
BREAK
M
(inch)
589
487
489
554
568
451
465
488
564
412
505
469
415
467
486
452
492
.80
.00
*
.25
*
.70
.33
.20
.20
.20
*
. 10
.40
*
*
*
*
*
.83
.50
.00
.90
.50
*
.70
*
*
*
#
*
.50
ELONGATION
AT
BREAK
T
(inch)
861 .
640.
599.
708.
559.
536.
540.
683.
489.
581 .
565.
600.
720.
558.
60
70
*
90
*
50
*
*
*
*
*
*
80
20
20
*
00
20
*
*
*
*
*
*
20
30
50
60
*
40
*
*
*
*
*
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) Ob)
04
54
6.42
7.04
*
6.94
*
*
7.62
7.93
7.94
*
7.82
9.02
*
6.78
8.62
7.62
7.26
*
8.10
7.43
6.54
6.79
6.80
*
6.77
6.42
7.70
6. 14
*
6.58
6.90
6.02
7.27
6.42
6.34
*
6.74
*
-------
WEIGHT THICKNESS
(gram) (mi 1)
CHLORINATED POLVETHVLENE: AVERAGE FINAL PROPERTIES
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
( lb/
inch
width)
S-100
MODULUS
T
( lb/
inch
width)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
( inch)
WATER 100.0% 50°C
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
N)
CO
OJ
CH01WP1
CH07WP1
CH14WP1
CH99WP1
CH28WP1
CH56WP1
CH99WP2
CH99WP3
CH99WP4
CH99WP5
CH99WP6
CH99WP7
CL01WP1
CL07WP1
CL14WP1
CL28WP1
CL99WP1
CL56WP1
CL99WP2
CL99WP3
CL99WP4
CL99WP5
CL99WP6
CL99WP7
CH01XM1
CH07XM1
CH14XM1
CH99XM1
CH28XM1
CH56XM1
CH99XM2
CH99XM3
CH99XM4
CH99XM5
CH99XM6
CH99XM7
1
7
14
28
28
56
132
254
370
503
622
734
1
7
14
28
28
56
132
246
370
503
622
734
1
7
14
28
28
56
1 18
231
363
489
609
71 1
2
2
38
2
2
45
3
3
4
4
4
4
2
2
35
2
2
37
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.02
. 16
.42
.47
.37
.30
.06
.58
.01
.20
.30
.33
.00
.05
.02
. 15
. 10
.58
. 23
. 27
.32
.35
.36
.38
.04
. 10
. 15
. 19
. 15
. 18
.28
.31
.33
.32
.31
.34
31
33
37
39
37
39
49
56
62
67
69
69
31
31
31
32
32
32
34
35
35
36
36
37
31
32
34
34
33
35
36
36
37
37
36
37
.50
.90
.30
. 10
.20
.30
.20
.50
.50
.80
.20
.90
. 10
.30
.70
.80
.30
. 10
.40
.20
.70
. 20
.40
.00
.50
.70
. 10
.60
.90
.00
.30
.50
.30
. 10
.80
.70
3.00
2.98
7.69
2.97
2.98
7.91
2.93
2.90
2.90
2.91
2.88
2.89
3.00
3.01
7.46
3.01
3.00
7 .55
3.01
3.03
3.01
3.01
3.01
3.01
3.00
3.05
2.98
2.95
3.06
2.95
2.94
3.00
2.93
93
93
2.93
1
1
6
1
1
7
1
1
1
1
1
1
.01
.02
.88
.06
.05
.32
. 12
. 17
. 19
. 21
. 21
. 21
WATER
1
1
6
1
1
7
1
1
1
1
1
1
.01
.01
.95
.02
.02
.25
.03
.06
.04
.04
.04
.04
33
37
40
32
35
29
100.
35
36
35
35
35
37
.78
.06
.60
*
.25
.02
*
*
*
*
*
.47
0%
. 10
.70
.94
.82
*
.66
. 18
16
18
18
15
0
23°C
16
17
18
17
17
POTASSIUM DICHROMATE
1
1
1
1
1
1
1
1
1
1
1
1
.01
.00
.03
.03
.00
.31
.04
.04
.04
.04
.04
.05
36
30
36
32
35
37
.50
.58
.02
*
.34
.26
*
*
#
*
*
.63
16
15
1 7
15
18
.50
.22
.82
*
.62
.33
*
*
*
*
*
*
.86
.46
.06
. 14
*
.46
*
*
*
*
*
*
10
. 10
. 70
.58
*
.06
.86
*
*
*
*
*
*
55
72
63
63
62
47
56
60
59
60
61
65
0%
62
53
59
54
60
58
.42
.74
.70
*
.00
.30
.73
. 14
.94
.50
.62
*
.74
4
*
*
*
*
.53
50°C
.82
.90
.66
4
.30
.86
*
*
*
*
*
. 13
49.86
56. 18
45.42
*
36.34
35.06
*
*
*
*
48.06
52.06
49.30
47.26
*
48.78
48.30
41 .78
45.38
*
38.94
45.86
472.10
483.60
343.90
*
406.00
411.20
*
*
*
347.25
472. 10
505.10
453.20
484.20
*
521.60
526.00
476.70
588. 10
478.90
*
514.00
445.30
*
487.25
638.90
492.60
403.00
*
338.60
311.10
T .22
7.02
7. 18
*
6.94
6.94
*
6.02
6.52
6.06
*
6.18
5.98
*
*
*
*
*
582. 10
632.50
586.50
543.70
*
540.50
678. 20
557.10
498.80
*
530.80
537.30
*
*
*
*
*
*
7.42
7.02
7.14
7.26
*
6.82
7.26
6.50
6.68
6.50
6.96
6.22
6. 10
6.82
6.42
*
5.86
*
6.34
7.24
6.78
*
6.30
5.44
-------
CHLORINATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
ro
GO
-P-
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
S-100
s-ioo
BREAKING BREAKING
MODULUS MODULUS FACTOR
M T M
(lb/ (lb/ (lb/
WIDTH inch inch inch
(inch) width) width) width)
POTASSIUM DICHROMATE 10.0% 23°C
FACTOR ELONGATION ELONGATION
T AT AT TEAR TEAR
(pound/ BREAK BREAK RESISTANCE RESISTANCE
inch M T M T
width) (inch) (inch) (lb) (lb)
CL01XM1
CL07XM1
CL14XM1
CL28XM1
CL99XM1
CL56XM1
CL99XM2
CL99XM3
CL99XM4
CL99XM5
CL99XM6
CL99XM7
1
7
14
28
28
56
1 18
223
363
489
609
71 1
2
2
2.
2,
2.
2.
2,
2.
2.
2.
2.
2.
.03
.01
.06
.04
. 1 1
. 10
. 18
.21
. 25
.27
.25
.27
31 .
30.
32.
31 .
32.
32.
33.
34.
34.
35.
34.
35.
10
90
00
70
50
70
60
30
60
00
80
20
3.
3,
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
.00
.01
.01
.02
.00
.01
.00
,00
,00
,00
,00
,01
1 .01
1.01
1 .02
1 .01
1.01
1 .02
1 .02
1 .02
1 .02
1 .02
1 .03
1 .03
36
33
35
33
33
36
.62
.66
.38
.42
*
.78
1C
*
*
*
*
.23
18
15
18
15
15
.58
.82
.30
.50
*
. 10
#
*
*
*
*
*
63
55
60,
, 60
58
60
.42
. 14
.90
.06
*
.54
*
*
*
*
*
.38
49.
50.
48.
46.
46.
90
30
22
10
*
38
*
*
*
*
*
*
585
503
489
535
492
612
. 10
.40
.30
.50
*
.60
*
*
*
#
*
.75
514
710
524
642
641
.40
.60
.40
.50
*
.•80
*
*
*
*
*
*
7
6
7
6
6
.22
.88
.86
.90
*
.84
*
*
*
«
*
*
7.
7.
6.
6.
6.
32
22
50
44
*
07
*
*
*
*
*
*
-------
CPE : STATISTICS
285
-------
CHLORINATED POLYETHVLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
CHOI AMI 1
CH07AM1 7
CHI 4AM1 14
CH28AM1 29
CH56AM1 56
CL01AM1 1
CL07AM1 7
CL14AM1 14
CL28AM1 29
CL56AM1 56
CH01BM1 1
CH07BM1 7
CH14BM1 14
CH28BM1 28
CH56BM1 56
CL01BM1 1
CL07BM1 7
CL14BM1 14
CL28BM1 28
CL56BM1 56
CH01DH1 1
CH07DH1 7
CH14DH1 14
CH28DH1 29
CH56DH1 56
CL01DH1 1
CL07DH1 7
CL14DH1 14
CL28DH1 29
CL56DH1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
4
5
STD
DEV
BF
M
2.406
*
3.727
1.915
3.660
2.260
*
1 .570
1.910
3.579
4. 100
1 .770
1 . 130
0.975
4.598
2. 120
4.430
4.280
1 .450
1 .260
1.412
3.774
3.036
4.253
1 .463
1 .424
5.870
4.415
2.013
0.322
NUMBER
BF
T
5
*
5
5
5
5
*
5
5
5
STD
DEV NUMBER
BF
T
HYDROCHLORIC
2.456
*
3.003
4.413
3. 180
HYDROCHLORIC
2.960
*
1 .905
3.216
2. 170
EAB
M
ACID
5
*
5
5
5
ACID
5
*
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
2.000
1 .993
2.090
2.720
1 .601
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
2.880
1 .880
1 .970
0.687
2. 130
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
4
5
5
0.689
2.400
1 .347
1 .704
0.522
5
5
4
5
5
STD
DEV
EAB
10.0%
26.
*
42.
19.
24.
10.0%
*
*
27.
59.
50.
10.0%
*
60.
22.
43.
21 .
10.0%
59.
40.
33.
50.
38.
.8%
42.
31 .
8.
97.
15.
1 2 DICHLOROETHANE .8%
5
5
5
5
5
0.936
3. 170
2.110
2 . 127
0.393
5
5
5
4
5
32.
72.
58.
80.
1 1 .
M
50°C
555
750
190
050
i23°C
9'17
740
710
50°C
420
600
530
350
23°C
370
730
790
210
540
50°C
373
327
852
512
309
23°C
717
470
700
717
613
NUMBER
EAB
T
5
*
5
5
5
5
*
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
48.838
*
32.459
16.030
25.987
5
*
5
10
5
1 .540
*
0.555
0.733
0.228
5
*
5
10
5
0.303
*
0.303
0.520
0.767
5
*
5
5
5
67.480
*
70.430
65.370
18.260
5
*
5
9
5
0.240
*
0.374
0.308
0.326
5
*
5
10
5
0. 167
*
0.385
0.392
0.228
36.300
52.277
23.090
43. 190
31.440
34.900
37.210
12.917
87.314
36.213
61.826
69.000
36.280
53.450
5.498
10
5
10
8
7
0. 100
52.277
0.207
0. 100
0. 107
5
5
5
5
5
0. 169
0.058
0.330
0.821
0.426
0.351
0.080
0.273
0.381
0.091
10
10
10
8
10
5
5
5
5
5
0.270
0.231
0.250
0.390
0.313
5
5
5
5
5
55. 100
24.960
47.960
26. 190
35.760
10
10
10
10
7
0.380
0. 158
0.270
0.700
0.458
9
10
10
10
7
0.440
0.327
0.390
0.260
0.668
0.048
0.072
0.270
0.382
0.303
0. 107
0.090
0.300
0.043
0. 125
-------
CHLORINATED POLYETHYLENE:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
CH01DL1
CH07DL1
CH14DL1
CH28DL1
CH56DL1
CL01DL1
CL07DL1
CL14DL1
CL28DL1
CL56DL1
CHOI DM1
CH07DM1
CH14DM1
CH28DM1
CH56DM1
CL01DM1
CL07DM1
CL14DM1
CL28DM1
CL56DM1
CH01FH1
CH07FH1
CH14FH1
CH28FH1
CH56FH1
CL01FH1
CL07FH1
CL14FH1
CL28FH1
CL56FH1
1
7
14
29
56
1
7
14
29
56
1
7
14
29
56
1
7
14
29
56
1
7
14
28
56
1
7
1 4
28
56
NUMBER
BF
M
5
5
5
5
5
STD
DEV
BF
M
1 .082
1 .520
2.840
4.217
1 .071
1 .258
1 .640
0.380
2.800
2.920
0.937
4.760
0.600
0.501
0.351
2.571
5.350
0.536
1 .964
2.358
2.460
1 . 165
0.570
1 . 188
0.826
2.970
0.934
0.231
0.377
0.573
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
1 2 DICHLOROETHANE
5
5
5
5
5
1 .335
3.410
1 .650
0.924
0.547
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 . 133
0.560
1 .390
2.016
2.852
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
0.479
1 .780
0.940
0.705
1 . 149
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .048
0.760
1 .290
1 .394
0.818
FURFURAL
3.131
0.449
0. 164
0.274
0.410
FURFURAL
2.987
1 .254
0 .447
0.436
0.399
5
5
5
5
5
8.0% 50°C
5
5
5
5
5
8.0% 23°C
5
5
5
5
5
STD
DEV
EAB
M
.1% 50°C
23.230
18.630
30.090
18.922
12.948
.1% 23°C
34.653
19.050
15.390
34.41 1
22.390
.5% 50°C
43.340
70.850
16.300
1 1 .640
6.110
.5% 23°C
36.888
20 . 700
29.808
19.832
29.369
22.360
97.790
78.300
*
*
41 .800
*
*
80.510
86.570
NUMBER
EAB
T
STD
DEV
EAB
T
26.665
20.140
31.360
22.123
9.090
20.061
11.990
25.420
33.012
53.210
15.169
58.400
21.860
25.335
10.443
22.341
7.070
32.890
36.844
21.391
77.860
99.940
41.800
94.840
*
82.160
*
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.114
0.110
0.110
0.092
0.261
0. 145
0.110
0.050
0.048
0.264
0. 185
0. 150
0.220
0.246
0.682
0.068
.0.096
0.040
0.209
0.060
0.239
0.257
0.065
0.071
0.089
NUMBER
TEAR
T
5
5
5
5
5
STD
DEV
TEAR
T
0.091
0. 100
0.200
0. 107
0. 169
0.110
0.300
0.050
0.048
0.152
0.091
0.098
0.080
0.079
0. 233
0.054
0.080
0.060
0.093
0. 162
0.268
0.114
0.041
0.024
0.068
5
5
5
5
5
0.313
0.041
0.057
0.061
0.063
5
5
5
5
5
0.233
0.061
0.036
0.076
0.112
-------
CHLORINATED POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
00
CH01FL1 1
CH07FL1 7
CH14FL1 14
CH28FL1 28
CH56FL1 56
CL01FL1 1
CL07FL1 7
CL14FL1 14
CL28FL1 28
CL56FL1 56
CH01FM1 1
CH07FM1 7
CH14FM1 14
CH28FM1 28
CH56FM1 56
CL01FM1 1
CL07FM1 7
CL14FM1 14
CL28FM1 28
CL56FM1 56
CH01MD1 1
CH07MD1 7
CH14MD1 14
CH28MD1 28
CH56MD1 58
NUMBER
BF
M
5
5
5
5
5
STD
DEV
BF
M
1 .992
4. 106
3.094
4.913
4.400
2.995
3.460
2.265
1 .876
2.493
1 .391
2.674
1 .059
1 .375
2.234
3.500
1 .983
1 .647
2.515
1 .329
0.380
3.230
2.790
2. 140
4.300
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL 1 .
1 .592
4.929
2.538
3.662
3.890
FURFURAL 1 .
1 .634
3.867
3.554
2.496
3.553
FURFURAL 4.
2.210
2.970
3.674
0.522
1 . 170
FURFURAL 4.
2.301
1 .951
2.720
3.255
1 .204
METHYL ETHYL
0.430
1 .494
1 .320
0.915
0.655
NUMBER
EAB
M
0% 50°C
5
5
5
5
5
0% 23°C
5
5
5
5
5
0% 50°C
5
5
5
5
5
0% 23°C
5
5
5
5
5
KETONE
5
5
5
5
5
21
52
57
50
55
51
14
60
42
44
47
*
29
35
57
55
65
77
58
39
STD
DEV
EAB
M
.282
.870
.010
.300
.600
i
.850
.430
. 170
.920
.220
,
.692
.550
.810
.270
.090
.420
.800
.370
.370
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8.0% 50°C
30
76
44
80
42
.930
.840
.030
.760
.720
5
5
5
5
5
STD
DEV
EAB
T
29.498
57.990
36.300
56.680
68.800
30.961
37.500
67.450
55.950
76.400
83.612
59.690
12.250
61.580
67.990
46.916
96.720
62.910
*
34.710
50.760
73.700
27.820
19.299
17.080
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.115
0.318
0. 107
1 . 141
0. 176
0.376
0.917
0.409
0. 148
0.067
0. 150
0.219
0. 172
0.319
0.554
0.476
0.093
0. 167
0.652
0. 154
0.200
0.226
0. 120
0. 135
0.258
NUMBER
TEAR
T
STD
DEV
TEAR
T
1 .850
0.087
0.311
0.074
0. 177
0.429
0.378
0.321
0. 104
0.203
0.246
0.285
0.214
0. 143
0.961
0.749
0. 128
0. 182
0. 108
0. 120
0.260
0.744
0. 178
0.098
0. 100
-------
CHLORINATED POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
CL01MD1 1
CL07MD1 7
CL14MD1 14
CL28MD1 28
CL56MD1 56
CH01MH1 1
CL01MH1 1
CHOI ML 1 1
CH07ML1 7
CH14ML1 14
CH28ML1 28
CH56ML1 55
CL01ML2 1
CL01ML1 1
CL07ML1 7
CL14ML1 14
CL28ML1 28
CL56ML1 55
CHOI MM 1 1
CH07MM1 7
CH14MM1 14
CH28MM1 28
CH56MM1 55
CL01MM1 1
CL01MM2 1
CL07MM1 7
CL14MM1 14
CL28MM1 28
CL56MM1 55
NUMBER
BF
M
STD
DEV
BF
M
2.550
4.439
1 .630
0.979
1 .830
0.200
0. 170
2.520
6.367
1 .980
2. 176
1 .720
2.980
2.580
3.046
2.250
2.065
4.590
1 .706
1 .501
0.981
0.790
0.075
0.740
1 .090
1 .884
0.561
1 . 290
1 .640
NUMBER
BF
T
5
5
5
4
5
1
5
3
5
5
5
5
5
5
5
5
5
5
4
3
5
5
5
5
5
5
5
4
5
STD
DEV
BF
T
METHYL ETHYL
3.320
0.729
1 .660
2. 190
0.701
METHYL ETHYL
*
METHYL ETHYL
0.141
METHYL ETHYL
2.043
1 .800
0.980
2.229
0.577
METHYL ETHYL
3.250
1 .720
1 .900
1 . 180
1 .491
1 .260
METHYL ETHYL
1 .865
0.503
0.233
0.792
0. 160
METHYL ETHYL
0.390
1 .320
0.990
0.761
0 .404
2. 150
NUMBER
EAB
M
KETONE
5
5
5
4
5
KETONE
4
KETONE
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
4
5
KETONE
5
3
5
4
4
KETONE
5
5
5
5
5
5
STD
DEV
EAB
M
8.0% 23°C
67.760
44.796
13.230
38.868
32.440
26.0% 50°C
52.696
26.0% 23°C
37. 100
3.0% 50°C
84.630
75.610
29.300
26.503
31 . 100
3.0% 23°C
43.200
19.700
31 .470
97.400
*
55. 130
13.0% 50°C
78.350
59.779
44.600
30.899
60.280
13.0% 23°C
86.030
91.210
38.651
32. 1 10
33.500
55.260
NUMBER
EAB
T
5
5
5
4
5
1
5
t
3
5
5
5
5
5
5
5
5
5
5
4
3
5
5
5
5
5
5
5
4
5
STD
DEV
EAB
T
91.405
26.315
22.390
73.520
22.440
44.397
26.300
35.300
43.108
14.100
44.500
34.400
18.904
27.930
37.017
31.360
29.956
73.970
49.397
48.400
53.180
62.250
87.600
48.122
38.138
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.110
0. 101
0. 106
0. 170
0. 194
0. 153
0.230
0.420
0. 149
0.063
0.051
0.070
0.090
0.260
0.239
0. 100
0.644
0. 160
0.390
*
0.055
0.449
0.446
0. 180
0.260
0.443
0. 103
0. 291
0.417
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 140
0. 198
0.250
0. 180
0. 192
0. 100
0. 140
0.110
0.210
0.215
0. 185
0.430
0. 170
0. 180
0. 142
0.039
0, 130
0. 297
0. 170
*
0. 105
0.316
0.074
0. 170
0.260
0.529
0. 144
0.298
0. 120
-------
CHLORINATED POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NJ
VD
O
CH010M1 1
CH070M1 7
CH140M1 14
CH280M1 28
CH560M1 56
CL010M1 1
CL070M1 7
CL140M1 13
CL280M1 28
CL560M1 56
CH010P1 1
CH070P1 7
CH140P1 14
CH280P1 28
CH560P1 56
CL010P1 1
CL070P1 7
CL140P1 14
CL280P1 28
CL560P1 56
CH01PH1 1
CH07PH1 7
CH14PH1 14
CH28PH1 28
CH56PH1 56
CL01PH1 1
CL07PH1 7
CL14PH1 14
CL28PH1 28
CL56PH1 56
NUMBER
BF
M
5
5
5
5
5
4
5
5
5
4
5
5
5
5
3
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .879
2.520
1.613
3.536
2.935
3.905
4. 125
1 .820
*
1 .735
1 .800
2.584
1 .074
1 . 187
1 .636
2.598
2.269
1 .581
3.684
1 .039
0.868
0.615
1 . 226
2.248
0.407
2.213
0.692
1.716
6.681
1 .251
STD
NUMBER DEV NUMBER
BF
T
5
5
5
5
5
5
5
5
5
4
4
5
5
4
5
5
5
5
3
5
5
5
5
5
5
5
5
5
5
5
BF
T
ASTM #2 OIL
1 .367
1 .853
3.060
1 .643
2.295
ASTM #2 OIL
1 . 126
5. 129
2.463
*
4.305
ASTM #2 OIL
1 .628
1 .643
2.939
1 .887
1 .452
ASTM #2 OIL
1 .374
2.404
1 . 140
4.588
1 .894
PHENOL 8.0%
1 .353
0.373
0.754
2.826
2.925
PHENOL 8.0%
2.077
0.670
0.846
3. 134
1 .672
EAB
M
STD
DEV
EAB
M
SATURATED 50°C
5
5
5
5
5
27.923
43.803
20.080
51 .600
68.844
SATURATED 23°C
5
5
5
5
5
100.0%
4
5
5
5
3
100.0%
5
5
5
5
3
50°C
5
5
5
5
5
23°C
5
5
5
5
5
75. 126
55.025
9.667
48.750
19.641
50°C '
i
35.656
47.500
32.740
47.920
26.312
23°C |
i
6. 175
37. 106
37.900
52.887
20.599
t
24.219
25.769
32.382
*
24. 180
18.285
32.809
28.265
*
44.084
NUMBER
EAB
T
5
5
5
5
5
STD
DEV
EAB
T
36.062
45.690
36.105
45.000
45.075
53. 185
82.800
35. 1 13
11.750
93.897
21.004
52.300
48.905
62.135
20.724
34.682
31.542
27.300
80. 1 17
32.909
32.814
23.584
43.713
*
65.989
35.192
20.318
75.808
85.547
67.638
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
*
0.590
1 .205
0.400
0.219
0.089
0.953
0.872
0.200
0.805
0.090
0.300
0. 100
0.390
0.297
0.200
0. 100
0.713
0.402
0.076
1 .550
0.076
0. 1 19
0. 1 15
0. 163
0.014
0.052
0. 127
0.029
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.228
0.110
0. 167
0.300
0. 167
0.219
0.460
1 .020
0. 100
0. 167
0. 190
0.200
0.200
0.432
0.374
0. 167
0.200
0.080
0.089
0.228
0.045
0.215
0.020
0.052
0.050
0.041
0.112
0.042
0. 139
0.058
-------
CHLORINATED POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
CH01PL1
CH07PL1
CH14PL1
CH28PL1 28
CH56PL1 56
1
7
14
CL01PL1 1
CL07PL1 7
CL14PL1
CL28PL1 28
CL56PL1 56
14
CH01PM1 1
CH07PM1 7
CH14PM1 14
CH28PM1 28
CH56PM1 56
CL01PM1 1
CL07PM1 7
CL14PM1 14
CL28PM1 28
CL56PM1 56
NUMBER
BF
M
STD
DEV
BF
M
1 .782
4.435
4. 133
2.957
1 . 142
3.732
4.481
4.060
1 .752
1 .902
1 .282
1 .465
3.253
0.988
1 .894
2. 755
4 .094
7 .600
4. 250
2.315
CHOI SHI
CH07SH1
CH14SH1
CH28SH1
CH56SH1
1
7
14
28
56
4
5
*
5
5
3
2
*
2.
3.
.626
.030
.027
.050
*
5
*
5
5
CL01SH1 1
CL07SH1 7
CL14SH1 14
CL28SH1 28
CL56SH1 56
5
4
*
5
5
4.115
4. 297
*
1 .368
1 .345
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
PHENOL 1 ,
4.514
2.285
3.415
1 .952
1 .741
PHENOL 1 ,
1 . 176
1 .898
2. 150
2.589
1.614
PHENOL 4
2. 200
1 .043
1 .428
0.850
0.300
PHENOL 4
3.032
3.279
4 . 190
1 . 170
0.947
NUMBER
EAB
M
. 0% 50°C
5
5
5
5
5
. 0% 23°C
5
5
5
5
5
.0% 50°C
5
5
5
5
5
.0% 23°C
5
5
5
5
5
SODIUM CHLORIDE 35.
*
5
*
5
5
*
2.820
*
3.819
3. 254
4
5
*
5
5
SODIUM CHLORIDE 35.
5
5
*
5
5
1 .500
3.761
*
2.917
1 .479
5
4
*
4
5
STD
DEV
EAB
M
23.467
25.514
20.566
29.683
25.581
32.41 1
43.641
37. 260
13.799
8.420
28.400
15.067
52.501
21 .484
35.583
30.931
38.050
53.600
74.504
28.651
.0% 5q°c
43. 1 17
39.700
*
58.857
52.230
.0% 23°C
67.448
95.669
*
23. 139
21 .076
NUMBER
EAB
T
STD
DEV
EAB
T
43.557
20.797
22.875
27.976
29.018
14.968
21.633
16.110
38.242
27.054
31.029
10.469
39.271
20.182
9.551
36.090
41.722
56.730
21.858
15.625
43.729
4
51.230
53.639
20.558
49.920
*
36.015
42.714
NUMBER
TEAR
M
STD
DEV
TEAR
M
0. 107
0.121
0.084
0.069
0. 170
0.272
0. 179
0. 169
0.270
0.112
0.091
0.078
0.076
0.074
0.116
0.077
0. 186
0. 172
0.062
0.048
NUMBER
TEAR
T
STD
DEV
TEAR
T
0. 165
0. 169
0.113
0.101
0. 196
0.057
0. 158
0. 138
0.141
0. 199
0.117
0. 169
0.066
0.091
0.028
0.084
0. 277
0.119
0.089
0.054
5
4
5
5
5
0. 169
0.191
0.310
0.473
0.216
5
5
5
5
5
0. 167
0. 109
0. 176
0. 133
1 .070
5
5
10
10
10
0.249
0.089
0. 169
0. 165
0.685
5
5
9
10
9
0.502
0.219
0. 145
0. 287
0.424
-------
CHLORINATED POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NJ
VO
N3
CH01SM1 1
CH07SM1 7
CH14SM1 14
CH28SM1 28
CH56SM1 61
CL01SM1 1
CL07SM1 7
CL14SM1 14
CL28SM1 28
CL56SM1 61
CH01WP1 1
CH07WP1 7
CH14WP1 14
CH28WP1 28
CH56WP1 56
CL01WP1
CL07WP1
CL14WP1
CL28WP1 28
CL56WP1 56
1
7
14
CH01XM1 1
CH07XM1 7
CH14XM1 14
CH2BXM1 28
CH56XM1 56
CL01XM1 1
CL07XM1 7
CL14XM1 14
CL28XM1 28
CL56XM1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.680
1 .246
1.310
2.550
3. 170
2. 150
3.488
2.110
1 .930
3.720
1 .741
2.605
4.800
2.877
2.960
2.490
2.300
3.250
1 .980
2.040
2.720
2. 100
2.310
1 .790
2.651
1 .560
2.368
1 .980
1 .860
1 .750
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF EAB
T M
SODIUM CHLORIDE 10.
2.480 5
1.980 5
1.620 5
1.600 5
1.680 5
SODIUM CHLORIDE 10.
1 .530 5
4.021 5
2.400 5
0.890 5
1 .860 5
WATER 100.0% 50°C
1.967 5
2.500 5
3.810 6
0.620 4
1.040 5
WATER 100.0% 23°C
1.310 5
1 .670 5
3.760 5
2.710 5
2.530 5
POTASSIUM DICHROMATE
5.380 5
3.530 5
2.650 5
2.460 5
0.953 5
POTASSIUM DICHROMATE
3.280 5
1 .840 5
3.000 5
1 . 170 5
3.800 5
STD
DEV
EAB
M
0% 50°C
46. 130
43.537
15.400
43.790
70.200
0% 23°C
30.700
51 .731
13.000
25.400
27.600
28.057
34.492
41 .400
27.401
43.790
31 .970
26.440
36.500
24.560
41 .680
10.0%
46.970
20.482
29.370
15. 122
42.495
10.0%
65.700
25.567
20.QOO
20.580
79.400
NUMBER
EAB
T
50°C
23UC
STD
DEV
EAB
T
58.770
56.877
35.380
16.390
19.570
30.500
67.084
32.690
18.870
13.970
39.695
35.300
57.360
15.670
16.010
13.850
43.200
69.000
48.490
38.370
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.540
0.535
0.590
0.110
0.300
0.870
0.325
0.610
0.090
0.420
0.303
0.270
0.230
0.300
0.260
0.230
0.110
0. 170
0. 167
0.335
NUMBER
TEAR
T
STD
DEV
TEAR
T
0.410
0.876
0. 167
0.110
0.240
0.300
0.731
0.230
0.090
0.650
0. 179
0.230
0.220
0.230
0.110
0.110
0.200
0.270
0. 179
0.090
5
5
5
5
5
*
57.200
31 . 100
26.500
78.033
10
10
10
10
7
0. 160
0.430
0.720
0.330
0.251
5
10
10
10
7
0.370
0.542
0.330
0.210
0.223
37.980
37.940
53.490
42. 150
49.700
10
10
9
10
7
0.330
0.200
0.750
0.340
0. 220
10
10
10
10
7
0.380
0.460
0.710
0. 190
0. 140
-------
CPE : RETENTION OF PROPERTIES
293
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION RETENTION
SMOD SMOD BF BF
M T ' M T
HYDROCHLORIC ACID 10.0%
CH01AM1
CH07AM1
CH14AM1
CH99AM1
CH28AM1
CH56AM1
CH99AM2
CH99AM3
CH99AM4
CH99AM5
CH99AM6
CH99AM7
1
7
14
28
29
56
144
252
368
51 1
621
732
100
2
4
4
4
4
10
14
15
19
20
25
.0
.9
.0
. 1
.2
.5
.0
.7
.6
. 2
.4
. 2
100
4
7
5.
6.
1 1 .
19.
16.
21 .
22.
29.
0
3
4
4
2
1
9
4
8
0
6
4
100.
4.
7.
5.
6.
12.
20.
18.
22.
24.
32.
0
1
4
3
6
8
6
9
8
8
8
3
86
*
99
*
105
109
*
*
*
*
*
89
1 16
*
121
*
1 15
125
HYDROCHLORIC ACID 10.0%
CL01AM1
CL07AM1
CL14AM1
CL28AM1
CL99AM1
CL56AM1
CL99AM2
CL99AM3
CL99AM4
CL99AM5
CL99AM6
CL99AM7
CH01BM1
CH07BM1
CH14BM1
CH28BM1
CH99BM1
CH56BM1
CH99BM2
CH99BM3
CH99BM4
CH99BM5
CH99BM6
CH99BM7
CL01BM1
CLO7BM1
1
7
14
29
31
56
144
238
368
51 1
621
732
1
7
14
28
29
56
144
252
368
510
622
732
1
7
1
1
1
1
2
2
2
2
2
2
3
100
2
3
3
4
3
3
4
7
5
6
9
.5
.2
.8
.8
.5
.2
.6
.2
.7
.8
.6
.2
.0
.8
. 2
.0
. 2
.8
.7
.9
.6
.8
.4
.3
.3
.8
1 .
1 .
1 .
2.
2.
2.
2.
1 .
2.
3.
100.
3.
4.
5.
6.
6.
6.
7.
6.
7.
10.
12.
7
3
6
6
6
9
3
3
6
6
3
6
0
8
2
5
1
2
1
4
7
1
3
8
3
3
1 .
2.
2.
3.
2.
3.
3.
1 .
2.
4.
100.
3.
4.
4.
5.
6.
5.
6.
6.
6.
9.
12.
.
1
7
8
1
0
6
5
2
0
4
9
6
0
4
0
6
3
0
2
4
4
2
9
6
2
6
96
*
96
105
*
99
*
*
*
*
*
103
SODIUM
87
52
96
100
*
107
*
*
*
*
*
104
SODIUM
1 10
99
116.
*
102
1 12
*
1 13
*
*
*
*
*
*
HYDROXIDE 10.0%
90
124
1 18
109
*
202
*
*
*
*
*
*
HYDROXIDE 10.0%
1 1 1
1O2
50°C
102
*
1 19
*
122
141
*
*
*
*
*
94
23°C
102
*
101
1 12
*
1 12
*
*
*
*
*
107
50°C
100
92
1 16
1 10
*
121
98
23°C
1 16
12O
108
*
109
*
102
129
*
*
*
*
*
*
98
*
100
108
*
109
*
*
*
*
1 *
*
101
107
102
101
*
129
*
*
*
*
*
*
1 15
1 17
PERCENT PERCENT
RETENTION RETENTION
EAB EAB
M T
108
*
109
+
102
129
*
*
*
1 19
K
98
it
86
92
CO
*
*
*
*
*
*
88
74
61
74
1 16
f
102
102
*
101
95
1 14
1 18
1 15
106
<
101
86
101
1 22
90
103
101
C
93
1 15
79
80
90
C
90
PERCENT PERCENT
RETENTION RETENTION
TEAR TEAR
M T
102
t
109
k
1 19
1 10
96
E
92
95
C
105
98
92
101
96
c
80
109
C
121
c
130
137
104
I
1 14
1 1 1
125
1 14
1 13
101
101
<
1 13
1O2
121
1 10
1O5
1 17
1 16
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
SODIUM HYDROXIDE 10.0%
CL14BM1 14
CL99BM1 28
CL28BM1 28
CL56BM1 56
CL99BM2 144
CL99BM3 238
CL99BM4 368
CL99BM5 510
CL99BM6 622
CL99BM7 732
1 .0
1 .6
1 .7
2.4
1 .8
1 . 1
1 .0
.7
.2
.3
.6
1 .6
1 .9
2.3
2.3
2.3
1 .6
1 .3
1 .6
1 .6
1 .0
2.0
2.4
3.3
2.8
2.9
1 .7
1 .0
2.0
1 .8
94
*
85
53
*
*
*
4
4
1 14
104
*
102
95
*
*
*
*
*
*
1 2 DICHLOROETHANE .8%
CH01DH1 1
CH07DH1 7
CH14DH1 14
CH99DH1 28
CH28DH1 29
CH56DH1 56
CH99DH2 133
CH99DH3 244
CH99DH4 364
CH99DH5 495
CH99DH6 629
CH99DH7 726
15.1
23.3
32.4
37. 1
119.3
53.5
81.8
125.0
132.6
154. 2
167.4
131.6
17.4
27.2
36.2
48. 1
99.7
60.3
93.0
131.2
142.4
178.3
182.8
136.3
15.6
28. 2
38 .5
56.3
127.8
70.4
118.5
160.9
178 .9
219.2
233.3
176.3
27
30
31
*
17
31
*
*
*
*
+
52
32
41
37
*
29
41
1 2 DICHLOROETHANE .8%
CL01DH1 1
CL07DH1 7
CL14DH1 14
CL99DH1 28
CL28DH1 29
CL56DH1 56
CL99DH2 134
CL99DH3 231
CL99DH4 364
CL99DH5 495
CL99DH6 630
CL99DH7 725
14.0
17.1
17.0
8.6
26.6
27.0
35. 7
39. 1
49.6
64.8
107.8
182.3
10.0
15.1
15.2
8. 1
24.7
23.0
31.3
31.3
41.6
56.5
108.4
175. 2
12.3
18.8
19.9
10.9
32.5
32.4
45.4
46. 6
61.8
83.2
146.4
284.4
24
15
25
*
16
30
*
t
*
*
*
19
26
23
31
*
27
33
*
*
*
*
*
*
1 2 DICHLOROETHANE .1%
CH01DL1 1
CH07DL1 7
CH14DL1 14
CH99DL1 28
CH28DL1 29
CH56DL1 56
3.7
11.7
14.2
21.6
22.8
30. 7
4. 1
14.0
16.5
25.4
25.3
34.8
4.2
16.1
19.6
29.4
29.9
40.8
74
65
67
*
53
81
74
69
70
*
57
80
PERCENT
RETENTION
BF
M
23°C
108
*
103
90
1 10
50°C
42
54
51
*
21
42
*
*
*
*
*
67
23°C
39
23
41
*
22
43
*
*
*
*
*
28
50°C
100
1 14
103
*
89
104
PERCENT
RETENTION
BF
T
109
*
97
93
*
*
*
*
*
*
37
58
39
*
21
34
29
30
33
*
27
32
105
90
67
*
60
71
PERCENT
RETENTION
EAB
M
104
V
122
1 12
99
160
148
129
*
90
101
*
*
*
*
*
91
157
142
139
*
1 14
103
93
132
134
1 10
*
120
86
PERCENT
RETENTION
EAB
T
100
*
89
99
151
127
104
*
84
79
*
*
*
*
*
*
152
174
128
*
1 16
91
*
*
*
*
*
*
131
95
75
*
82
61
PERCENT
RETENTION
TEAR
M
95
*
93
1 10
*
*
*
*
*
*
46
61
45
*
48
71
*
*
*
*
*
*
43
58
37
*
42
50
4
*
*
*
*
*
86
77
71
*
69
84
PERCENT
RETENTION
TEAR
T
106
*
104
127
*
*
*
*
*
*
51
76
70
*
41
74
*
48
70
24
*
53
61
*
»
*
v
*
*
101
98
95
4
89
96
-------
PERCENT
WEIGHT
CHANGE
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
1 2 DICHLOROETHANE .1% 50°C
PERCENT PERCENT PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION RETENTION RETENTION
BF EAB EAB TEAR TEAR
T M T M T
CH99DL2
CH99DL3
CH99DL4
CH99DL5
CH99DL6
CH99DL7
CL01DL1
CL07DL1
CL14DL1
CL99DL1
CL28DL1
CL56DL1
CL99DL2
CL99DL3
CL99DL4
CL99DL5
CL99DL6
CL99DL7
CH01DM1
CH07DM1
CH14DM1
CH99DM1
CH28DM1
CH56DM1
CH99DM3
CH99DM4
CH99DM5
CH99DM6
CH99DM7
CL01DM1
CL07DM1
CL14DM1
CL99DM1
CL28DM1
CL56DM1
CL99DM2
CL99DM3
CL99DM4
CL99DM5
139
246
366
496
631
728
1
7
14
28
29
56
136
233
366
496
632
727
1
7
14
28
29
56
245
365
496
630
727
1
7
14
28
29
56
135
233
365
496
53
79
106
1 16
120
123
1
3
5
5
7
8
12
15
17
19
20
22
1 1
20
29
32
31
42
81
95
1 19
135
140
5
1 1
14
10
17
18
17
23
24
35
.5
.7
.3
.9
.7
.0
.2
.5
.5
.2
.7
.7
.0
.3
.9
.3
.4
.0
.4
.6
.2
.0
.9
.6
.0
.0
.0
.9
.3
.4
.0
. 1
.9
.2
.8
.2
.4
. 1
. 1
61.0
85.7
108.3
122.2
126.0
132.7
.6
3.5
5.2
5. 1
6.8
8.7
11.5
15. 1
17.0
18.6
19.9
21 .5
14.7
25.0
32.7
40.3
36.0
47. 2
94.6
108.3
150.2
157.2
168.7
4.9
8.7
11.9
10.0
14.8
15.5
16.1
21 .5
24. 1
33.8
73.8
106.6
139.5
156.5
163. 1
170.2
1 .3
4.7
6.5
6.7
8.9
11.3
15.3
20.6
22.4
25.0
65.7
29.5
13.3
25. 1
35.6
44. 1
41 .0
54.5
111.4
130.0
175.0
189.9
198.9
5.6
12.1
15.8
13.1
20.2
22.0
21.9
30.0
33. 2
46 .4
87
79
69
59
51
65
*
*
*
85
81
74
62
*
51
66
*
*
*
*
*
43
41
40
*
41
50
*
*
*
49
47
45
*
48
56
*
51
33
34
*
32
40
57
42
38
*
36
41
*
*
*
*
*
90
1 2 DICHLOROETHANE .1% 23°C
101
95
85
78
96
*
90
1 2 DICHLOROETHANE .5% 50°C
64
73
59
*
60
66
86 * 88
1 2 DICHLOROETHANE .5% 23°C
79
57
53
53
63
*
* *
* *
* *
* *
* 62
95
106
80
61
86
62
61
44
*
48
53
83
60
45
t
40
48
122
132
135
143
123
120
139
128
t
120
105
80
148
145
1 13
c
1 12
92
146
1 15
91
t
90
75
65
139
157
141
130
109
147
156
136
C
64
97
91
80
64
66
80
55
64
59
59
79
68
59
49
54
63
104
95
82
79
96
70
78
75
70
80
88
68
59
64
73
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
to
vo
—I
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
1 2 DICHLOROETHANE .5%
CL990M6 631
CL99DM7 726
CH01FH1 1
CH07FH1 7
CH14FH1 14
CH28FH1 28
CH99FH1 28
CH56FH1 56
CH99FH2 117
CH99FH3 236
CH99FH4 350
CH99FH5 485
CH99FH6 616
CH99FH7 712
CL01FH1 1
CL07FH1 7
CL14FH1 14
CL99FH1 28
CL28FH1 28
CL56FH1 56
CL99FH2 1 14
CL99FH3 219
CL99FH4 350
CL99FH5 485
CL99FH6 617
CL99FH7 712
CH01FL1 1
CH07FL1 7
CH14FL1 14
CH28FL1 28
CH99FL1 28
CH56FL1 56
CH99FL2 123
CH99FL3 241
CH99FL4 355
CH99FL5 489
CH99FL6 621
CH99FL7 718
39.4
50.6
3.4
87.6
125. 1
160.7
154.3
191.3
190.0
212.0
193.6
138.7
211.6
215.3
.8
61.3
112.3
130.6
113.6
149.6
174.5
155. 1
179.6
1 29.5
151.4
157.6
3.9
12.7
18.9
25.9
27.9
40.4
69. 2
105.3
1 25. 1
145. 2
155. 2
142.8
34.7
44.4
4.5
79.0
109.8
136.3
166.6
169.4
196. 1
183.4
180.5
172. 1
185. 1
188.6
.6
49.7
78.0
93.0
81.3
103.8
114.7
109.9
113.4
95.5
99.0
1 19.8
4.6
17.2
24. 2
29.9
35.6
43.8
71.5
104.2
131.1
142.6
138.5
133.0
50. 1
64.6
4.6
104.6
144.5
183.8
204.8
216.9
237.7
250.4
246.6
237.8
273.4
369.3
.9
70.6
1 23.8
154.4
138 . 1
175. 7
199.4
190.5
198.0
148.3
154.8
208.9
4.9
18. 1
25.4
33.9
38.9
53.0
90.3
137.4
172.3
186.9
181.1
175.9
*
41
FURFURAL
84
7
5
6
*
5
*
*
*
*
*
22
FURFURAL
94
6
3
*
5
4
*
*
*
*
*
5
FURFURAL
77
59
61
57
*
53
*
*
*
*
*
63
*
*
8.0% 50°C
93
10
7
7
*
7
8.0% 23°C
105
10
4
*
8
7
*
*
*
*
*
*
1.0% 50°C
80
64
65
65 '
*
59
*
*
*
*
*
*
PERCENT
RETENTION
BF
M
23°C
*
53
103
13
9
10
*
10
15
107
1 1
5
*
9
7
10
98
87
87
109
*
89
72
PERCENT PERCENT
RETENTION RETENTION
BF EAB
T M
* *
* 94
109 124
8 185
5 215
6 156
* *
6 168
43
111 112
11 219
4 254
* *
6 195
5 159
*
*
*
*
if
* 174
84 122
73 149
65 1 19
75 146
* *
58 137
* *
* *
* *
* *
* *
* 71
PERCENT
RETENTION
EAB
T
*
*
126
162
171
135
*
152
1 10
184
255
*
142
160
101
1 17
90
92
*
89
*
*
*
t
*
*
PERCENT
RETENTION
TEAR
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
M
50
22
17
17
16
57
17
12
13
15
99
82
80
84
71
PERCENT
RETENTION
TEAR
T
*
*
80
43
20
17
*
15
*
*
*
*
*
*
96
17
13
%
13
17
*
129
101
104
97
*
81
*
*
*
*
*
*
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
CL01FL1
CL07FL1
CL14FL1
CL99FL1
CL28FL1
CL56FL1
CL99FL2
CL99FL3
CL99FL4
CL99FL5
CL99FL6
CL99FL7
1
7
14
28
28
56
123
224
355
489
622
717
1
3
6
6
8
1 1
13
19
25
29
33
35
.2
.6
. 2
.5
.3
.4
.5
.2
.4
.4
.2
.2
1
3
4
6
7
9
12
17
22
24
28
31
.4
.2
.9
.4
.5
.6
.5
.7
.2
.8
.9
.2
1 .
4.
6.
8.
10.
14.
16.
25.
30.
35.
40.
44.
5
2
5
1
5
0
8
2
8
2
8
5
88
61
65
*
61
54
*
*
*
4
*
66
FURFURAL 1.0% 23°C
88
73
65
*
66
59
*
*
*
*
PERCENT
RETENTION
BF
M
98
86
97
*
92
86
*
*
*
*
*
85
PERCENT
RETENTION
BF
T
90
90
90
*
87
84
*
*
*
*
*
*
PERCENT
RETENTION
EAB
M
107
141
159
C
138
157
101
PERCENT
RETENTION
EAB
T
101
133
143
127
147
PERCENT
RETENTION
TEAR
M
108
109
85
»
77
67
PERCENT
RETENTION
TEAR
T
171
104
109
(
96
83
K>
VO
00
CH01FM1
CH07FM1
CH14FM1
CH28FM1
CH99FM1
CH56FM1
CH99FM2
CH99FM3
CH99FM4
CH99FM5
CH99FM6
CH99FM7
1
7
14
28
29
56
1 24
242
356
490
622
719
13
29
42
66
73
105
147
151
147
145
151
156
.9
.8
.2
.4
.0
.9
.4
.9
.4
.4
.3
. 1
13
32
44
63
77
97
148
148
145
147
154
159
.9
.3
.0
.0
.2
.4
.2
.2
.9
.2
.4
.9
14,
35
49
76.
89.
123.
192.
202.
188.
191 .
321 .
217.
.2
.8
.7
.0
.5
.9
.2
.6
.9
.3
.2
.6
30
25
24
20
*
21
*
*
¥
*
*
51
CL01FM1
CL07FM1
CL14FM1
CL28FM1
CL99FM1
CL56FM1
CL99FM2
CL99FM3
CL99FM4
CL99FM5
CL99FM6
CL99FM7
1
7
14
28
29
56
124
228
356
490
623
715
3
15
20
31
23
36
45
55
80
97
1 12
121
.5
.9
.3
.5
.3
.5
.0
.4
.3
.3
.8
.2
4
14
19
27
20
31
39
47
63
70
81
93
.3
. 1
.2
.9
.8
.3
.0
.6
.6
.3
.8
.0
4
17
23
35
27
42
54
69
98
1 1 1
130
154
.6
.8
.2
.4
.9
.5
.2
.5
.0
.3
.6
. 1
63
28
24
21
*
22
*
*
*
*
*
21
FURFURAL 4.0% 50°C
35
35
27
25
*
29
*
*
*
*
*
*
FURFURAL 4.0% 23°C
67
31
29
25
*
27
*
*
49
39
35
33
*
31
*
*
40
83
50
47
37
*
39
*
*
*
43
40
38
31
24
*
22
73
45
33
30
*
28
147
151
1 17
1 17
<
100
143
147
99
106
*
75
67
1 18
171
166
132
I
159
1 16
109
205
156
134
>
133
60
54
49
46
51
90
53
47
46
40
85
59
68
56
74
151
70
57
53
C
54
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
,BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
METHYL ETHYL KETONE 8.0% 50°C
CH01MD1
CH07MD1
CH14MD1
CH28MD1
CH56MD1
CL01MD1
CL07MD1
CL14MD1
CL28MD1
CL56MD1
CH01MH1
CH99MH1
CH99MH2
CH99MH3
CH99MH4
CH99MH5
CH99MH6
CH99MH7
CL01MH1
CL99MH1
CL99MH2
CL99MH3
CL99MH4
CL99MH5
CL99MH6
CL99MH7
CHOI ML 1
CH07ML1
CH1 4ML1
CH28ML1
CH99ML1
CH56ML1
CH99ML2
CH99ML3
CH99ML4
CH99ML5
1
7
14
28
58
1
7
14
28
56
1
28
122
240
358
494
626
722
1
28
121
235
358
494
627
721
1
7
14
28
28
55
1 20
240
358
494
23. 7
72. 1
85.0
79.2
75.5
7.0
17.9
24. 2
25.7
25.5
135.8
288.0
408. 2
374.7
252.8
260.4
207.4
192.8
70.6
202.4
453.3
260.5
335.0
316.4
296.2
268.4
6. 1
24.8
31.1
10.6
38.0
45.0
88.3
114.4
150. 8
184. 1
32.7
77.9
87.8
85.8
88.7
8.6
21.4
25.0
26. 1
26.5
106. 1
327.2
343.4
422.3
316.8
353. 1
280.9
361 . 2
66.8
190.4
289. 1
240.8
256.3
221.5
327.7
237.0
8.7
32.6
38
1 1
50.6
52. 1
107 .7
126.9
153.8
229.8
34.8
89.2
106.0
102.4
100.5
9.4
28. 1
32.5
34.9
33.5
160.9
401 .3
465.0
478. 1
315.4
329.2
241 .9
308.7
100. 1
289.8
537.7
387.2
416.9
370. 1
473.6
359. 7
8.4
34.2
41.1
15.7
54.3
59. 1
126.2
159.2
201 .4
294.3
15
25
36
31
56
21
30
42
41
68
23
40
44
41
78
METHYL ETHYL KETONE 8.0% 23°C
42
25
49
30
45
46
30
58
34
49
66
52
66
49
73
METHYL ETHYL KETONE 26.0% 50°C
METHYL ETHYL KETONE 26.0%
8
23°C
METHYL ETHYL KETONE 3.0% 50°C
56
46
53
54
*
75
*
*
59
53
64
64
*
84
87
76
67
78
*
99
*
*
*
18
31
30
29
46
59
43
52
38
52
71
61
50
62
t
67
158
125
95
102
108
140
179
129
124
126
56
153
1 17
77
74
62
140
172
102
1 16
92
58
80
77
89
1 15
138
131
103
106
[
105
1 1 1
104
78
81
E
67
47
59
38
61
84
77
63
42
56
74
10
14
82
75
65
82
104
51
86
44
69
88
84
80
52
77
96
15
92
99
81
98
1 14
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
O
O
CH99ML6 626
CH99ML7 722
CL01ML1 1
CL01ML2 1
CL07ML1 7
CL14ML1 14
CL99ML1 28
CL28ML1 28
CL56ML1 55
CL99ML2 120
CL99ML3 235
CL99ML4 358
CL99ML5 494
CL99ML6 627
CL99ML7 721
CHOI MM 1 1
CH07MM1 7
CH14MM1 14
CH99MM1 28
CH28MM1 28
CH56MM1 55
CH99MM2 120
CH99MM3 239
CH99MM4 357
CH99MM5 493
CH99MM6 625
CH99MM7 721
CL01MM1 1
CL01MM2 1
CL07MM1 7
CL14MM1 14
CL28MM1 28
CL99MM1 28
CL56MM1 55
CL99MM2 120
CL99MM3 234
CL99MM4 357
CL99MM5 493
CL99MM6 626
CL99MM7 7 2O
PERCENT
WEIGHT
CHANGE
209.6
219.1
1 .8
1 .4
5.4
7.7
9.0
31.0
12.3
17.4
23.0
31 . 1
36. 1
39.7
41.3
42.3
100.0
208.8
47.3
54.4
207.8
208.2
314.9
351 .7
318.5
305.4
308.6
19.4
19.9
47.0
64.0
184.8
81.7
89.7
131.4
191.6
205. 1
205 .0
2O3 .3
2O6.O
PERCENT
THICKNESS
CHANGE
250.6
219.6
2.4
1 .9
5.9
7.3
8.6
37.5
12.0
15.0
21.7
27.8
31.0
35. 1
36.7
48.9
100.0
204.7
55.4
50.3
226. 1
220.5
271 .8
401 .9
100.0
370.2
261 .9
22. 1
23.4
45.8
54.5
195.5
70. 2
78.6
101.0
259.0
237. 2
1OO.O
227 .6
232 .4
PERCENT
VOLUME
CHANGE
320.0
282.7
2.6
2. 1
8.0
10.3
11.4
42. 1
15.5
20.6
30. 1
40.4
44.3
49.0
52.9
53.7
100.0
256.6
62.5
69.4
262.2
250.7
421 .3
523.5
100.0
451 .4
328. 1
28.6
27.9
65.9
79.5
242.7
106.7
116.8
169.5
300.8
279.5
100.0
251 . 6
267 .8
PERCENT
RETENTION
SMOD
M
METHYL ETHYL
*
52
METHYL ETHYL
81
79
56
62
*
67
63
*
*
*
*
*
54
METHYL ETHYL
10
7
7
*
12
6
*
*
*
*
*
16
METHYL ETHYL
14
14
15
1 1
21
*
17
*
*
*
*
*
9
PERCENT
RETENTION
SMOD
T
KETONE 3.
*
*
KETONE 3.
86
78
58
69
*
73
65
*
*
*
*
*
*
KETONE 13
16
1 1
9
*
17
8
*
*
*
*
*
*
KETONE 13
15
18
17
14
27
*
24
*
PERCENT
RETENTION
BF
M
0% 50°C
*
53
0% 23°C
107
99
86
74
*
83
105
*
*
*
*
*
71
.0% 50°C
15
12
10
*
20
9
*
*
*
*
*
26
.0% 23°C
21
22
32
16
33
*
32
*
*
*
*
*
19
PERCENT
RETENTION
BF
T
*
*
1 13
97
87
68
*
77
73
*
*
*
*
*
*
14
9
6
*
15
6
*
*
*
*
*
*
13
16
20
1 1
24
*
22
*
*
*
*
*
*
PERCENT
RETENTION
EAB
M
*
61
139
130
148
122
*
140
136
*
*
*
*
v
102
147
122
132
*
123
142
*
*
*
*
*
1 18
160
192
182
135
1 18
*
131
*
*
*
*
*
1 28
PERCENT
RETENTION
EAB
T
*
*
142
129
154
1 1 1
*
95
91
*
*
*
*
*
*
129
1 17
100
*
94
103
154
172
171
1 18
97
*
102
*
*
*
*
*
*
PERCENT
RETENTION
TEAR
M
*
*
99
94
77
67
*
75
83
*
*
*
*
*
*
35
20
18
*
47
21
*
*
*
*
*
*
26
29
37
22
63
*
47
*
*
#
*
*
*
PERCENT
RETENTION
TEAR
T
*
*
1 15
1 15
93
83
*
85
105
*
*
*
*
*
*
38
21
20
*
49
20
*
*
*
*
*
*
37
37
64
26
67
*
54
*
*
*
*
*
*
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
U>
O
CH010M1 1
CH070M1 7
CH 1 40M 1 1 4
CH990M1 28
CH280M1 28
CH560M1 56
CH990M2 128
CH990M3 251
CH990M4 364
CH990M5 503
CH990M6 626
CH990M7 727
CL010M1 1
CL070M1 7
CL140M1 13
CL990M1 28
CL280M1 28
CL560M1 56
CL990M2 128
CL990M3 237
CL990M4 364
CL990M5 503
CL990M6 626
CL990M7 727
CHOI OP 1 1
CH070P1 7
CH140P1 14
CH990P1 28
CH280P1 28
CH560P1 56
CH990P2 141
CH990P3 257
CH990P4 385
CH990P5 509
CH990P6 627
CH990P7 733
CL010P1 1
CL070P1 7
CL140P1 14
PERCENT
WEIGHT
CHANGE
2.7
9. 1
11.9
19.4
19. 1
27.5
52.9
80.6
97.0
114.9
1 24. 1
134.9
.6
2. 1
6. 1
5.0
5.4
6.5
11.5
13.6
16.0
17.1
18.6
20.5
1 .7
5.0
7.3
9.8
8.0
11.4
15.7
18.8
18.6
19.5
20.3
20.3
. 7
.7
1 .0
PERCENT
THICKNESS
CHANGE
3.6
43.2
13.6
23. 1
21.2
29.3
100. 0
92.8
101.0
120.8
130.3
141.7
.6
1 .9
6.0
5.5
4.9
6.2
11.0
14.0
15.6
16.6
18.8
20.8
1 .7
5.5
7. 1
10.6
8.5
12.3
17.4
19.9
21.2
20.9
20.9
22.5
.3
.6
1 .3
PERCENT
VOLUME
CHANGE
3.9
45.7
13. 1
27.3
24.3
27.5
100.0
116.5
130.2
156.5
171.4
185.8
.8
2.5
7. 1
6.9
5.5
8.3
13.9
18.1
19.6
20. 2
23.8
26.3
1 .8
5 .7
8.7
13.3
9.6
14.0
21.1
24.4
26.4
25.6
26.0
28.6
.5
.6
1 .0
PERCENT
RETENTION
SMOD
M
ASTM #2 OIL
83
83
78
*
67
80
80
ASTM #2 OIL
84
89
80
*
67
84
*
*
*
*
*
89
ASTM #2 OIL
72
78
90
*
81
91
*
*
*
*
*
99
ASTM #2 OIL
76
93
75
PERCENT
RETENTION
SMOD
T
SATURATED
93
88
77
*
63
79
SATURATED
92
101
84
*
63
86
*
*
*
*
*
*
100.0% 50
73
71
92
*
79
83
100.0% 23
78
98
69
PERCENT
RETENTION
BF
M
50°C
96
94
91
*
93
93
81
23°C
97
100
95
*
93
96
*
4
*
*
*
102
°C
84
92
100
#
87
100
*
*
*
*
+
94
°C
92
108
96
PERCENT
RETENTION
BF
T
97
90
80
*
93
74
102
101
95
*
93
96
*
*
4
*
*
*
81
90
95
*
89
92
86
106
94
PERCENT
RETENTION
EAB
M
124
1 13
124
*
106
106
61
120
109
128
*
128
1 1 1
*
*
*
*
*
91
130
106
107
*
94
100
*
*
*
*
*
73
137
122
132
PERCENT
RETENTION
EAB
T
125
106
123
4
94
95
*
125
118
131
*
128
1 13
129
1 10
104
*
1 14
105
*
*
41
*
*
*
142
1 15
125
PERCENT
RETENTION
TEAR
M
89
102
1 12
*
79
83
*
*
*
*
*
*
91
1 13
1 1 1
*
84
101
*
4<
*
4
*
*
78
79
81
*
80
94
*
*
*
*
*
*
81
84
85
PERCENT
RETENTION
TEAR
T
108
1 12
1 19
*
89
93
*
*
*
*
*
*
107
1 1 1
120
*
95
107
*
93
90
87
*
93
1 10
*
*
*
4i
*
*
93
92
97
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
CL990P1
CL280P1
CL560P1
CL990P2
CL990P3
CL990P4
CL990P5
CL990P6
CL990P7
CH01PH1
CH07PH1
CH14PH1
CH28PH1
CH99PH1
CH56PH1
CH99PH2
CH99PH3
CH99PH4
CH99PH5
CH99PH6
CH99PH7
CL01PH1
CL07PH1
CL14PH1
CL28PH1
CL99PH1
CL56PH1
CL99PH2
CL99PH3
CL99PH4
CL99PH5
CL99PH6
CL99PH7
CH01PL1
CH07PL1
CH14PL1
CH99PL1
CH28PL1
CH56PL1
28
28
56
141
244
385
509
627
733
1
7
14
28
29
56
121
243
362
499
624
720
1
7
14
28
29
56
121
230
362
499
625
719
1
7
14
28
28
56
1
1
1
2
3
4
5
6
5
27
65
85
104
89
149
162
210
228
241
217
196
12
43
55
54
43
100
59
54
56
91
66
55
3
13
18
26
25
39
.3
.0
.6
.7
. 1
.2
. 1
.5
.7
.0
.5
.5
.0
.5
.5
.2
.3
.8
.8
.9
.6
.6
. 1
.0
.7
.6
.0
.4
.9
.6
. 1
.8
.9
.5
.6
.4
.2
.6
.4
PERCENT
THICKNESS
CHANGE
1 .
1 .
2.
3.
3.
4.
4.
6.
26.
62.
83.
132.
97.
100.
256.
318.
320.
100.
220.
210.
12.
35.
47.
48.
38.
48.
52.
50.
52.
74.
54.
48.
3.
17.
21 .
30.
28.
41 .
3
3
0
3
3
9
6
2
8
8
0
2
1
1
0
9
0
3
0
3
6
8
9
2
4
3
6
4
8
1
3
7
6
6
3
9
8
1
7
PERCENT
VOLUME
CHANGE
1
3
4
5
5
6
8
30
78
104
158
121
100
304
365
361
100
263
246
13
48
65
65
52
65
73
71
72
1 12
78
69
4
17
26
36
32
52
.6
.7
.7
.3
.5
.7
.8
.0
.9
.6
. 2
. 1
.5
.4
.0
.4
. 1
.0
.0
.8
.2
.8
.2
.9
.9
.8
.5
.0
.3
.3
.5
. 1
. 1
. 1
.8
.4
.4
.6
. 1
PERCENT PERCENT
RETENTION RETENTION
SMOD SMOD
M T
ASTM #2
*
89
92
*
*
*
*
*
101
PHENOL
26
21
15
20
*
20
*
*
*
*
*
14
PHENOL
53
20
18
15
*
18
*
*
*
*
*
23
PHENOL
86
70
62
*
64
55
PERCENT
RETENTION
BF
M
OIL 100.0% 23°C
*
88
97
*
*
*
*
*
*
8.0% 50°C
29
23
13
25
*
24
*
*
*
*
*
*
8.0% 23°C
55
22
22
31
*
19
*
*
*
*
*
*
1 .0% 50°C
92
81
63
*
68
62
*
103
104
*
#
*
*
*
98
49
29
30
28
*
28
*
*
*
*
*
28
84
34
40
34
*
38
*
*
*
*
*
33
1 19
121
107
*
98
83
PERCENT PERCENT
RETENTION RETENTION
BF EAB
T M
*
104
104
*
43
21
17
20
•
20
82
26
29
25
it
26
1 12
101
77
*
67
56
1 13
1 19
90
125
92
122
1 12
(
1 16
144
1 16
1 10
129
143
c
148
1 15
1 18
120
1 17
K
1O7
12O
PERCENT
RETENTION
EAB
T
1 16
120
1 17
81
95
90
f
100
1 10
104
121
79
*
134
100
83
81
77
77
PERCENT
RETENTION
TEAR
M
105
100
39
37
38
38
34
54
35
33
35
31
74
81
78
78
68
PERCENT
RETENTION
TEAR
T
109
1 18
50
46
37
38
35
62
50
44
43
45
93
96
96
97
86
-------
PERCENT
WEIGHT
CHANGE
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PHENOL 1.0% 50°C
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
O
U)
CH99PL2
CH99PL3
CH99PL4
CH99PL5
CH99PL6
CH99PL7
CL01PL1
CL07PL1
CL14PL1
CL28PL1
CL99PL1
CL56PL1
CL99PL2
CL99PL3
CL99PL4
CL99PL5
CL99PL6
CL99PL7
CH01PM1
CH07PM1
CH14PM1
CH28PM1
CH99PM1
CH56PM1
CH99PM2
CH99PM3
CH99PM4
CH99PM5
CH99PM6
CH99PM7
CL01PM1
CL07PM1
CL14PM1
CL28PM1
CL99PM1
CL56PM1
CL99PM2
CL99PM3
CL99PM4
122
245
363
499
625
721
1
7
14
28
28
56
122
233
363
499
626
720
1
7
14
28
29
56
121
244
362
499
624
720
1
7
14
28
29
56
121
231
362
65.6
103.0
123.3
130.8
142.7
142. 2
.9
3. 1
4.6
7.8
17.3
11.1
34.5
38.0
40.6
41.9
45.3
45.9
9.8
29.7
39.4
54. 7
47 .9
87. 3
99.3
136.0
148.5
169.2
178 . 1
179.5
3. 1
12.2
17.7
26.9
5.8
100.0
14.9
21.4
30.2
76.3
102.6
136.0
131.8
142.5
121.1
1 .0
3.3
3.8
7. 1
16. 1
11.3
28.7
33.5
36. 1
36.8
38.4
41.0
10.3
33.5
42.0
56.8
53.4
88 . 1
104.5
199.4
179.3
100.0
191.9
227. 2
3.2
11.2
14.7
22.6
5.8
63.5
12.9
19.0
25.4
98.6
141.0
185.9
179.7
195. 1
166.5
1 .2
4.2
5.3
100.0
23. 2
15.2
43.6
50.8
54.3
55. 1
57. 1
60.9
11.7
37.6
48. 7
70. 1
62.7
113.0
135.6
248.0
222.6
100.0
235.9
274.0
3.3
14.2
21.3
31.5
7.8
80.2
18.0
27.5
37.9
83
55
38
28
33
*
30
42
80
52
30
32
*
29
PHENOL 1.0% 23°C
90 97
86 93
79 83
70 74
* *
64 69
*
*
*
60 *
PHENOL 4.0% 50°C
58
42
25
37
*
33
*
*
*
*
*
*
PHENOL 4.0% 23°C
84
57
30
36
*
33
*
*
*
*
*
*
84
1 12
1 1 1
1 1 1
1 12
*
101
*
*
*
82
95
55
53
48
*
43
*
*
*
*
*
52
106
90
59
59
*
60
*
*
*
104
1 13
1 1 1
103
*
89
98
42
31
30
*
28
104
79
52
39
*
41
*
*
69
1 1 1
1 10
122
138
137
107
123
92
1 12
104
1 17
1 15
1 13
123
1 1 2
127
156
97
104
1 12
1 14
106
108
73
77
70
84
103
102
100
92
1 12
78
91
85
84
73
62
65
57
56
51
78
78
60
51
45
93
109
101
99
87
73
75
64
60
49
96
91
76
66
56
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
OJ
O
-P-
PERCENT
WEIGHT
CHANGE
CL99PM5
CL99PM6
CL99PM7
CH01SH1
CH07SH1
CH14SH1
CH99SH1
CH28SH1
CH56SH1
CH99SH2
CH99SH3
CH99SH4
CH99SH5
CH99SH6
CH99SH7
CL01SH1
CL07SH1
CL14SH1
CL28SH1
CL99SH1
CL56SH1
CL99SH2
CL99SH3
CL99SH4
CL99SH5
CL99SH6
CL99SH7
CH01SM1
CH07SM1
CH14SM1
CH99SM1
CH28SM1
CH56SM1
CH99SM2
CH99SM3
CH99SM4
CH99SM5
CH99SM6
CH99SM7
499
625
719
1
7
14
28
28
56
131
253
379
510
630
733
1
7
14
28
28
56
131
246
379
510
630
733
1
7
14
28
28
61
132
254
370
51 1
624
734
46
56
59
1
1
1
2
1
1
4
1
1
1
1
1
1
1
1
3
2
5
3
3
5
4
7
4
4
3
.7
.0
.0
.7
.4
. 2
.6
.4
.5
.7
.7
.3
.5
. 1
.2
.2
.7
.9
.9
.7
.5
.3
.2
.5
.6
.2
.3
.6
.6
.6
.5
.8
.6
. 1
.7
.4
.6
. 0
.7
PERCENT
THICKNESS
CHANGE
37
44
49
1
1
2
2
2
2
1
1
1
1
2
1
1
1
1
2
4
3
6
5
5
5
5
5
5
5
5
.0
. 1
.2
.3
.0
.9
.6
.0
.6
.2
.6
.9
.6
.9
.6
.3
.3
*
.3
.6
.3
.3
.6
.3
.6
.3
.6
.3
.0
.6
.8
.6
.8
.5
.8
.5
.2
.8
.5
PERCENT
VOLUME
CHANGE
55
64
71
1
1
3
2
3
3
2
3
1
2
4
1
1
2
1
2
3
1
1
2
2
4
3
7
5
6
6
6
6
5
6
6
.3
.6
.9
.4
.0
.9
.4
. 1
.0
.0
.5
.8
.8
.6
.0
. 1
.7
.6
.6
.4
.0
. 1
.5
.0
.8
.4
.9
.0
. 1
.8
.9
.7
.3
.2
.5
.5
.5
.2
.7
PERCENT PERCENT
RETENTION RETENTION
SMOD SMOD
M T
PHENOL
*
*
33
SODIUM
91
83
*
*
106
87
#
*
*
*
*
106
SODIUM
81
90
*
102
*
80
*
*
*
*
*
102
SODIUM
97
95
91
*
77
98
*
*
*
*
*
1O3
4.0% 23°C
*
*
*
CHLORIDE 35.0%
*
85
*
*
100
92
*
*
*
*
*
*
CHLORIDE 35.0%
84
95
*
1 18
*
79
*
*
t
*
*
*
CHLORIDE 10.0%
97
104
.103
*
92
1 17
*
*
*
*
*
*
PERCENT
RETENTION
BF
M
*
*
55
50°C
' 101
94
*
*
1 17
100
*
*
*
*
*
93
23°C
95
101
*
1 15
*
99
98
50°C
105
102
107
*
101
104
*
*
*
*
*
86
PERCENT
RETENTION
BF
T
*
*
*
*
85
*
*
107
95
*
*
*
*
*
*
100
102
*
1 15
*
93
*
*
*
*
*
*
93
94
97
*
96
100
PERCENT
RETENTION
EAB
M
*
*
1 17
1 18
120
*
*
1 1 1
130
*
*
*
*
*
91
135
1 1 1
*
1 12
*
127
*
V
*
*
*
99
103
106
1 12
*
129
94
88
PERCENT
RETENTION
EAB
T
*
*
*
*
1 12
*
*
1 17
1 12
*
*
*
*
*
*
149
1 10
*
103
*
122
*
*
*
*
*
*
97
92
93
*
1 18
84
PERCENT PERCENT
RETENTION RETENTION
TEAR TEAR
M T
88
89
87
89
91
101
99
108
r
108
130
107
87
86
94
c
93
122
107
1 1 1
1.1 1
K
1 1 1
102
106
106
C
104
120
105
126
101
k
108
1 13
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
U)
O
PERCENT
WEIGHT
CHANGE
CL01SM1 1
CL07SM1 7
CL14SM1 14
CL28SM1 28
CL99SM1 28
CL56SM1 61
CL99SM2 132
CL99SM3 246
CL99SM4 370
CL99SM5 51 1
CL99SM6 624
CL99SM7 734
CH01WP1 1
CH07WP1 7
CH14WP1 14
CH99WP1 28
CH28WP1 28
CH56WP1 56
CH99WP2 132
CH99WP3 254
CH99WP4 370
CH99WP5 503
CH99WP6 622
CH99WP7 734
CL01WP1 1
CL07WP1 7
CL14WP1 14
CL28WP1 28
CL99WP1 28
CL56WP1 56
CL99WP2 132
CL99WP3 246
CL99WP4 370
CL99WP5 503
CL99WP6 622
CL99WP7 734
.6
1 .3
1 .7
2.8
2.7
3.0
4. 1
3.8
3.8
3.4
3.2
3.0
1 .8
8. 1
14.6
8.5
18.1
25.4
34.6
57.4
76.2
84.8
89.2
90.3
.9
2.4
3.0
5.3
4.8
6.6
11.3
13.3
16.0
17.4
18.0
18.9
PERCENT
THICKNESS
CHANGE
.3
1 .3
2.6
3.9
2.9
3.9
3.9
4. 2
4. 2
3.2
3.9
3.9
2.3
10. 1
21.5
26.9
20.8
32.3
59.7
83.4
102.9
120. 1
124.7
126.9
.6
2.0
3.6
4.8
4.5
7.4
3
13.9
15.5
17.2
17.8
19.7
1 1
PERCENT
VOLUME
CHANGE
. 1
1 .8
3.2
4.7
4.3
4.6
5.9
7.2
6.3
5. 1
5.9
6.0
2. 2
11.4
27.2
32 .4
25.4
37.7
73.8
106.5
131.3
156.5
159.5
162.8
1 . 1
3.4
4.2
6.5
6. 2
8.6
14.5
21.6
20.2
21.7
22.8
25.0
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
SODIUM CHLORIDE 10.0% 23°C
89
100
93
96
*
93
89
98
107
*
85
92
*
*
*
*
80
92
97
95
94
*
94
*
*
*
*
*
101
89
1 10
93
93
*
99
103
WATER 100.0% 50°C
97
107
1 1 1
92
2
*
WATER 100.0% 23°C
99
103
106
101
*
103
*
*
*
97
103
109
1 10
*
105
91
103
135
1 18
*
1 17
1 15
*
*
*
*
*
81
104
1 13
1 10
1 12
*
1 14
1 1 1
PERCENT
RETENTION
BF
T
90
104
108
109
*
99
102
1 1 1
105
101
*
104
*
PERCENT PERCENT
RETENTION RETENTION
EAB EAB
M T
107
95
107
1 1 1
[
104
86
108
1 16
104
1 1 1
[
1 19
100
97
104
124
E
96
106
120
97
*
77
75
*
4
*
*
*
*
108
1 1 1
79
» >
93
94
61 <
1 10
85
69
»
58
54
»
100
109
101
94
[
93
92
PERCENT
RETENTION
TEAR
M
90
1 15
102
97
108
96
94
96
93
93
99
94
95
97
91
PERCENT
RETENTION
TEAR
T
99
1 19
105
104
I
1 10
99
107
99
[
101
98
102
100
1 12
105
I
96
-------
CHLORINATED POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
OJ
o
CH01XM1 1
CH07XM1 7
CH14XM1 14
CH99XM1 28
CH28XM1 28
CH56XM1 56
CH99XM2 118
CH99XM3 231
CH99XM4 363
CH99XM5 489
CH99XM6 609
CH99XM7 71 1
CL01XM1 1
CL07XM1 7
CL14XM1 14
CL28XM1 28
CL99XM1 28
CL56XM1 56
CL99XM2 118
CL99XM3 223
CL99XM4 363
CL99XM5 489
CL99XM6 609
CL99XM7 711
PERCENT
WEIGHT
CHANGE
2. 1
5.4
7.3
9.6
7. 1
11.8
13.9
15.4
16.3
16.0
15.4
17.1
.7
1 .9
2.4
3.6
3.6
4.9
6.9
8.4
10.3
11.1
10.6
11.3
PERCENT
THICKNESS
CHANGE
.6
3.2
8.9
12.7
8.7
14.4
18.2
18.9
21 .5
20.8
19.9
22.8
1 .0
1 .6
1 .9
3.6
3.8
4.8
7.3
9.6
10.5
11.8
11.2
12.5
PERCENT
VOLUME
CHANGE
.8
4.6
10.3
13.7
10.5
47.0
20.2
23.7
23.5
22.7
21.9
25. 2
1 .3
1 .9
2.9
5.0
4.3
6. 1
9.0
12.1
13.0
14.1
13.8
15.6
PERCENT
RETENTION
SMOD
M
POTASSIUM
96
80
95
*
85
93
*
*
*
3k
*
103
POTASSIUM
96
89
93
88
*
89
*
*
*
*
*
99
PERCENT
RETENTION
SMOD
T
DICHROMATE
95
92
103
*
89
1 1 1
*
*
*
*
*
*
DICHROMATE
109
93
108
91
*
89
*
*
*
*
*
*
PERCENT
RETENTION
BF'
M
10.0% 50°C
1 16
100
1 10
*
101
1 13
*
*
*
*
*
99
10.0% 23°C
1 17
102
1 13
1 1 1
*
108
103
PERCENT
RETENTION
BF
T
_ 103
89
97
*
83
98
*
*
*
*
*
*
106
107
103
98
*
99
*
*
*
*
*
*
PERCENT
RETENTION
EAB
M
109
135
1 10
*
1 18
102
*
*
»
*
*
85
134
1 15
1 12
123
*
1 13
*
*
*
*
*
107
PERCENT
RETENTION
EAB
T
1 17
96
86
*
92
93
*
*
4
*
*
*
89
123
90
1 1 1
*
1 1 1
*
PERCENT
RETENTION
TEAR
M
97
87
89
*
87
93
*
*
*
*
*
V
96
92
105
92
*
91
*
*
*
*
*
*
PERCENT
RETENTION
TEAR
T
104
1 19
1 1 1
*
103
89
*
*
*
*
*
*
120
1 18
107
106
*
100
*
*
*
*
*
*
-------
EPDM : FINAL PROPERTIES
307
-------
ETHYLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
(lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
HYDROCHLORIC ACID 10.0% 50°C
EH01AM1
EH07AM1
EH14AM1
EH28AM1
EH99AM1
EH56AM1
EH99AM2
EH99AM3
EH99AM4
EH99AM5
EH99AM6
EH99AM7
1
7
14
27
28
56
144
252
368
51 1
621
741
2.
2.
2.
2.
2.
46.
3.
4.
4.
5.
5.
5.
12
13
27
70
75
24
65
40
75
22
36
06
37
37
39
37
46
45
50
53
55
56
57
56
.50
.30
.40
.40
. 10
.50
.90
.60
.00
.60
. 10
.80
3
3
3
3
3
7
3
3
3
3
3
3
.01
.04
.05
.05
.08
.71
.39
.68
.72
.86
.91
.82
1 .00
1 .02
1 .02
1.01
1 .04
7.28
1.14
1 .24
1 .26
1 .32
1 .34
1 .30
65.04
66.65
68.30
59.30
*
58.32
30.24
69
69
64
62
61
20
05
36
17
*
36
*
*
*
*
*
*
496
441
.419
362
341
233
.40
.84
.28
.72
*
.92
*
*
*
*
*
.58
450.08
422.40
401 .92
378.00
*
321 .84
*
*
*
*
*
*
7.90
9.07
7.90
8.05
*
8.50
8.42
9.24
8.26
8.58
*
10. 10
HYDROCHLORIC ACID 10.0% 23°C
EL01AM2
Q EL01AM1
CO EL01AM3
EL07AM1
EL07AM3
EL07AM2
EL14AM3
EL14AM1
EL14AM2
EL28AM1
EL28AM2
EL28AM3
EL99AM1
EL56AM2
EL56AM1
EL56AM3
EL99AM2
EL99AM3
EL99AM4
EL99AM5
EL99AM6
EL99AM7
1
1
1
7
7
7
14
14
14
27
27
27
28
56
56
56
144
238
368
51 1
621
736
2.
1 .
1 .
2.
1 .
2.
1 .
1 .
1 .
2.
2.
1 .
2.
43.
39.
42.
2.
2.
2.
2.
2.
2.
28
78
80
54
96
53
80
79
78
55
56
86
51
54
09
49
54
54
56
60
60
61
40.
31 .
32.
45.
34.
45.
31 .
31 .
31 .
45.
45.
32.
44.
44.
42.
43.
44.
44.
44.
44.
44.
45.
20
60
70
70
40
90
60
40
20
70
40
70
10
00
60
40
30
30
50
80
70
20
3
3
3
3
3
3
3
3
3
3
3
3
3
7
7
7
3
3
3
3
3
3
.00
.00
.00
.00
.00
.01
.01
.01
.01
.00
.00
.01
.01
.48
.43
.44
.01
.01
.02
.03
.04
.04
1 ,
1 .
1 .
1 .
1 .
1 .
1
1 .
1 .
1 .
1 ,
1 ,
1 ,
6.
6.
7,
1 ,
1 ,
1 ,
1 ,
1 ,
1 .
.00
.00
.00
.00
.00
.00
.01
.01
.01
.00
.00
.01
.00
.98
.97
.01
.01
.01
.01
.01
.01
.01
54
56
70
56
51
69
59
74
63
65
71
64
70
58
66
60
.48
.72
.00
.36
.92
.54
.21
.74
.26
.82
.00
.89
*
.96
.00
.64
*
*
*
*
*
.52
57
59
54
62
70
57
74
75
64
67
71
72
64
61
70
.84
.44
.96
.57
.30
. 1 1
.70
.30
.71
.58
.48
. 15
*
.72
.04
.48
*
*
#
*
*
*
452
431
434
476
449
440
409
481
416
439
430
423
434
432
426
738
.24
.28
.32
.00
.04
.40
.04
. 12
.40
.50
.64
.76
*
.72
.00
.40
*
*
*
*
*
.92
426.00
378.00
438.64
399.44
430. 16
433.20
434. 16
450.24
427.68
440.24
450.40
461 .68
*
407.76
393.84
423.20
*
*
*
*
*
*
SODIUM HYDROXIDE 10.0% 50°C
EH01BM1 1
EH07BM1 7
EH14BM1 14
EH28BM1 28
2.56
1 .88
2.27
2.24
44.40
32.90
39.80
39 .60
3.00
3.00
3.00
3.00
1 .00
1 .00
1 .00
1 .00
71.18
75.43
59.86
78.78
67.75
74.90
64.63
75. 22
433.52
460.00
420.96
427.28
445.60
430.48
425.76
402.56
6.82
8.78
8.42
8.10
8.59
10.21
9.11
10.74
9.65
9.99
10. 10
9.08
*
10.42
9.50
10.82
*
*
*
*
*
8.78
9.57
8.77
10.01
7.90
7.78
7.90
8.03
9.89
8.48
10.43
10.87
9.39
10.
10.
.24
17
9.69
*
8.50
9.30
9.78
8.52
9.09
9.89
9.03
-------
ETHYLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
Co
O
EH99BM1 29
EH56BM1 56
EH99BM2 144
EH99BM3 252
EH99BM4 368
EH99BM5 510
EH99BM6 622
EH99BM7 741
EL01BM3
EL01BM1
EL01BM2
EL07BM3
EL07BM2
EL07BM1
EL14BM2
EL14BM1
EL14BM3
EL28BM2
EL99BM1
EL28BM1
EL28BM3
EL56BM3
EL56BM1
EL56BM2
EL99BM2
EL99BM3
EL99BM4
EL99BM5
EL99BM6
EL99BM7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
144
238
368
510
622
736
1
7
14
28
28
EH01DH1
EH07DH1
EH14DH1
EH99DH1
EH28DH1
EH56DH1 56
EH99DH2 133
EH99DH3 244
EH99DH4 364
EH99DH5 495
WEIGHT
(gram)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
1
2
2
2
2
2
2
2
2
.45
.33
.45
.45
.46
.46
.45
.50
.49
.51
.42
.59
.72
. 15
.51
.28
.73
.98
.50
.25
.07
.99
. 16
.54
.49
.47
.48
.49
.47
.48
THICKNESS
(mi 1)
42.
40.
42.
42.
42.
42.
42.
43.
42.
43.
41 .
45.
47.
37.
42.
39.
47 .
34.
43.
39.
35.
34.
38.
44.
43.
43.
43.
43.
43.
43.
40
60
30
40
40
40
60
10
90
50
70
30
20
20
90
90
00
50
60
40
90
90
40
00
40
40
40
40
30
50
LENGTH
( inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
00
00
00
00
00
00
00
00
00
00
00
00
00
99
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
BREAKING
FACTOR
M
(lb/
WIDTH inch
(inch) width)
SODIUM HYDROXIDE 10.0%
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
1 .00
1 .00
SODIUM HYDROXIDE
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1.01
1 .00
1 .00
1 .00
1 .00
71 .
69.
10
62.
77.
65.
68.
55.
76.
52.
59.
60.
65.
60.
64.
64.
63.
54.
62.
1 2 DICHLOROETHANE
2
2
2
2
2
2
2
2
2
2
.42
.03
.44
. 71
.36
.02
.70
.88
.83
.82
40.
33.
40.
46.
38.
34.
45.
46.
46.
47.
00
80
60
20
60
10
90
50
70
00
3
3
3
3
3
3
3
3
3
3
06
03
05
04
07
05
04
06
10
09
1 .02
1 .02
.02
.01
.02
.02
.01
.02
.03
.02
48.
47 .
51 .
55.
52.
*
85
82
.0%
81
50
40
05
29
86
46
93
07
40
*
65
81
86
90
38
*
*
*
*
*
73
.8%
22
82
28
*
76
96
*
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
75
23 °C
68
71
74
71
56
79
55
63
63
68
75
70
67
74
62
50°C
50
49
52
54
56
*
13
*
*
*
*
#
*
41
00
76
90
26
88
27
13
06
98
*
30
02
58
23
02
*
*
*
*
*
*
76
48
94
*
66
84
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
444
771
429
430
403
456
454
448
438
441
437
480
440
453
496
496
473
776.
409
435
471
426
436
*
48
*
*
*
*
*
50
36
88
68
72
64
96
32
84
68
88
*
80
28
40
00
28
*
v
*
*
*
25
16
02
86
*
06
88
*
*
*
4
ELONGATION
AT
BREAK
T
(inch)
431
415
427
432
459
414
432
409
431
452
413
388
430
448
438
390
416
466
410
436
*
.36
*
. 1 2
.52
.08
.84
.72
.08
. 28
.80
.56
.20
*
.96
.40
.80
.80
*
.90
.08
. 1 2
*
.30
.02
*
*
#
*
TEAR
RESISTANCE
M
(lb)
7
8
9
9
9
7
9
7
7
7
8
6.
8.
8.
8.
8 .
7.
6
7
6
8
*
.94
*
*
*
*
*
*
88
44
93
04
45
64
48
02
63
49
*
84
75
39
89
15
*
*
*
*
*
*
13
79
39
*
82
69
*
*
*
*
TEAR
RESISTANCE
T
(lb)
9
8
8
9
8
6
9
6
8
7
8
8
9
7
9
8
6
6
6
6
7
*
.02
.40
. 24
.21
.89
.69
.98
.93
.70
.62
.26
*
.60
.49
.71
. 21
. 13
*
.79
.34
.32
*
.95
. 18
*
*
*
*
-------
ETHVLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EH99DH6 629
EH99DH7 734
EL01DH3
EL01DH2
EL01DH1
EL07DH1
EL07DH2
EL07DH3
EL14DH2
EL14DH1
EL14DH3
EL28DH1
EL28DH2
EL28DH3
EL99DH1
EL56DH1
EL56DH2
EL56DH3
EL99DH2
EL99DH3
EL99DH4
EL99DH5
EL99DH6
EL99DH7
EH01DL1
EH07DL1
EH14DL1
EH28DL1
EH99DL1
EH56DL1
EH99DL2
EH99DL3
EH99DL4
EH99DL5
EH99DL6
EH99DL7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
134
231
364
495
630
729
1
7
14
28
28
56
139
246
366
496
631
736
WEIGHT
(gram)
2.87
2.80
2.32
2.02
2.11
2.31
2.43
2.30
2.01
2.05
2.41
2.53
2.54
2.24
2.35
1 .94
2.34
2.00
2.42
2.38
2.39
2.38
2.43
2.44
2.27
1 .89
2.25
2. 22
2.58
2.25
2.61
2.66
2.66
2.66
2.67
2.66
THICKNESS
(mil)
47.30
47.20 •
39
34
35
39
41
39
33
34
40
42
42
37
40
33
39
33
40
40
37
40
43
41
39
32
38
37
45
39
44
45
45
45
45
45
. 10
.30
. 10
.00
.50
.80
.50
.00
.00
. 10
.40
.70
.20
.20
.30
.50
.50
.90
.60
.40
.90
. 10
.50
.70
.60
.90
.20
.20
.80
.30
. 10
.40
.70
.50
LENGTH
(inch)
1
3.09
3.09
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
1
02
01
04
04
02
02
05
05
01
07
04
04
02
02
04
04
03
07
04
04
04
06
1
01
02
02
01
01
01
02
04
04
04
04
04
BREAKING
FACTOR
M
( lb/
WIDTH inch
(inch) width)
2 DICHLOROETHANE .8%
1 .03 *
1 .03 54.91
2 DICHLOROETHANE
1 .01
1 .01
1 .01
1.01
1.01
1 .01
.02
.02
.02
.02
.02
.02
1 .04
1 .02
1 .02
1 .02
1 .01
1 .02
1 .01
1.01
1 .01
1 .02
54
57
52
52
54
59
57
60
58
46
47
51
51
59
56
64
.8%
.82
.62
.54
.00
.96
.34
.74
.54
.78
.62
.62
.30
*
.36
.08
.24
*
*
*
*
*
.87
2 DICHLOROETHANE .1%
1 .00
1 .00
1 .00
1 .00
1.01
.00
.01
.01
.02
.02
1.01
1 .02
49
55
57
56
52
66
.06
.92
.82
.82
*
.30
*
*
*
#
*
.45
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
*
*
23°C
57
57
51
52
59
60
61
58
47
49
56
58
60
56
50°C
50
56
58
54
52
.36
.04
.90
. 14
.24
*
.84
.50
.60
.86
. 18
.00
*
.70
.50
.48
*
*
*
*
*
*
.98
. 10
.44
.36
*
.66
*
*
¥
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
813.20
410
455
422
458
460
490
432
440
426
425
41 1
392
432
427
737
417
429
427
412
779
90
10
62
32
12
68
94
*
84
32
54
08
*
46
46
94
*
*
*
*
*
58
56
44
*
70
*
12
*
*
*
*
*
33
ELONGATION
AT
BREAK
T
(inch)
*
*
382
398
387
414
436
410
431
396
402
386
412
398
402
393
404
397
388
.52
.46
.28
.36
.00
*
.00
*
.54
. 14
.84
.36
*
.36
.02
.26
*
.94
•. 18
*
.06
*
. 18
*
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
7
7
7
7
7
9
7
8
7
5
6
8
8
8
7
6
7
7
6
8
.82
.48
.70
.39
.74
.30
.33
.29
.79
.89
.85
.62
*
.59
.00
.03
*
*
*
*
*
*
.98
.28
.62
.84
*
.35
TEAR
RESISTANCE
T
(lb)
*
*
7.54
7.67
6.43
6.85
7.11
8.23
7.21
7.71
6.89
5.81
5.98
5.99
*
7.51
7.56
8.03
*
6.84
7.52
8.06
6.79
*
7.46
*
*
*
*
*
*
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
1 2 DICHLOROETHANE .1% 23°C
EL01DL3
EL01DL2
EL01DL1
EL07DL1
EL07DL2
EL07DL3
EL14DL1
EL14DL2
EL14DL3
EL28DL1
EL28DL3
EL99DL1
EL28DL2
EL56DL2
EL56DL3
EL56DL1
EL99DL2
EL99DL3
EL99DL4
EL99DL5
EL99DL6
EL99DL7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
136
233
366
496
632
731
1 .
1 .
2.
1 .
2.
2.
2.
2.
2.
2.
2.
2.
2.
1 .
1 .
2.
2.
2.
2.
2.
2.
2.
93
88
23
88
30
23
27
33
33
27
18
52
26
87
89
24
54
53
53
54
56
53
33.
32.
38.
32.
39.
38.
39.
40.
40.
39.
37.
44.
39.
32.
32.
39.
44.
44.
44.
44.
44.
44.
80
60
60
70
60
40
20
50
20
50
60
20
00
70
80
20
30
50
40
50
40
80
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
01
01
00
01
99
00
00
00
00
00
00
01
00
00
01
00
01
02
01
.01
.02
.02
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .01
1 .01
1 .00
1 .00
1 .01
54
52
55
53
56
59
55
58
59
61
47
53
56
59
58
62
.04 -
.90
.66
.00
.36
.70
.88
.54
.06
.64
.96
*
. 12
.34
.26
.46
*
*
*
*
*
.93
56.
53.
56.
52.
59.
61 .
56.
61 .
56.
60.
49.
53.
59.
60.
61 .
96
12
76
12
62
70
20
24
58
60
00
*
64
22
16
88
*
423.
424.
407.
433.
428.
432.
446.
483.
433.
41 1 .
407.
428.
426.
420.
879.
16
04
70
38
40
08
*
60
06
80
68
*
82
16
70
04
75
401
402
400
400
407
442
423
415
404
393
402
441
397
407
.48
.94
.54
.36
.28
.06
*
.60
. 12
.62
.70
*
.86
.04
. 12
.24
*
*
*
*
*
*
1 2 DICHLOROETHANE .5% 50°C
EH01DM1
EH07DM1
EH14DM1
EH28DM1
EH99DM1
EH56DM1
EH99DM3
EH99DM4
EH99DM5
EH99DM6
EH99DM7
1
7
14
28
28
56
245
365
496
630
735
2.
2.
2.
2.
2.
2.
2 .
2.
2.
2.
2.
06
24
46
51
58
39
69
65
67
70
70
35
38
41
41
43
40
44
44
44
45
45
30
30
60
ao
90
70
60
70
60
10
00
3
3
3
3
3
3
3
3
3
3
3
04
03
00
05
03
02
07
07
07
08
09
.00
.00
.01
.01
.01
.01
.02
.02
.02
.02
.03
57
57
56
48
56
59
10
70
88
48
*
34
*
*
*
t
38
58.
60.
55.
49.
55.
56
98
26
90
*
08
*
*
*
*
*
430
441
489
440
433
717
98
04
58
08
*
54
*
*
*
*
00
413.1
430.0
*
421 .0
*
397.3
1 2 DICHLOROETHANE .5% 23°C
EL01DM3 1
EL01DM2 1
EL01DM1 1
EL07DM2 7
EL07DM3 7
EL07DM1 7
EL14DM3 14
2.31
1 .93
1 .96
2. 27
2.31
2.29
1 .95
39. 30
32.90
33 . 10
38.60
41.10
38.90
33.30
3.02
3.02
3.03
3.01
3.01
3.03
3 . 00
1.01
1.01
1.01
1 .01
1.01
1.01
1.01
55.60
52.20
51 .88
53.82
53.24
56.30
55.08
57.78
53.32
50.84
56.08
57.44
55.36
57. 22
468.28
445.04
409.82
413.42
409. 16
412.92
427.80
448.88
410.00
379.50
409.86
400.62
391 .94
404.92
8
8.06
7.22
8.17
7.32
15
8.73
8.04
8.50
7.69
7.61
6.84
*
7.47
8.25
8.26
8.85
8.08
8.58
6.61
7.03
*
7.91
8.54
7.77
7.46
7.77
7.
7.
.64
.99
7.04
6.62
7.41
.00
.58
. 13
13
. 74
8.91
7.73
6.56
*
7.04
8.05
7.54
8.30
*
*
*
*
*
*
7.59
7.22
8.02
5.85
*
7.78
.52
.01
.59
.50
7.29
6.99
7.94
6.92
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EL14DM2
EL14DM1
EL28DM1
EL99DM1
EL28DM2
EL28DM3
EL56DM3
EL56DM2
EL56DM1
EL99DM2
EL99DM3
EL99DM4
EL99DM5
EL99DM6
EL99DM7
EH01FH1
EH07FH1
EH14FH1
EH28FH1
EH99FH1
EH56FH1
EH99FH2
EH99FH3
EH99FH4
EH99FH5
EH99FH6
EH99FH7
14
14
28
28
28
28
56
56
56
135
233
365
496
631
730
1
7
14
28
28
56
1 17
236
350
485
616
721
EL01FH3 1
EL01FH2 1
EL01FH1 1
EL07FH2 7
EL07FH3 7
EL07FH1
EL14FH1
EL14FH3 14
EL14FH2 14
EL28FH1 28
EL28FH3 28
EL99FH1 28
EL28FH2 28
7
14
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
(1b/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(1b)
1 2 DICHLOROETHANE .5% 23°C
2.33
2.41
2.41
2.57
2.43
1 .93
2.26
2.31
1 .95
2.59
2.57
2.56
2.57
2.59
2.64
2.42
2.30
2.25
2.35
2.11
2.46
2.38
3.02
3.35
3.49
3.79
3.96
2.30
2.23
2.30
2.27
2.33
2.23
2.66
2.33
2.45
2.65
2.24
2.12
1 .98
39.
41 .
41
44
41
33.
39.
39.
33.
44.
44.
44.
44.
44.
44.
41 .
39.
38.
39.
35.
41 .
38.
42.
45.
45.
47.
48.
40.
39.
39.
38.
39.
38.
46.
39.
41 .
45.
38.
36.
34.
60
40
70
40
70
40
50
00
50
30
40
30
50
50
60
70
00
50
50
10
50
60
80
20
10
00
50
10
40
50
80
90
20
10
90
80
20
20
70
10
3.02
3.00
3.03
3.02
3.01
3.01
3.01
3.01
3.01
3.03
3.02
3.02
3.02
3.03
3.04
3.01
3.02
3.03
3.03
3.03
3.03
3. 17
3.41
3.57
4.15
3.72
3.76
3.01
3.00
3.01
3.01
3.01
3.02
3.01
3.01
3.01
3.01
3.02
3.01
3.04
1
1
1
1
1
FURFURAL
1
1
1
1
1
1
1
1
1
1
1
1
FURFURAL
1
1
1
1
1
1
1
1
1
1
1
1
1
.01
.01
.01
.00
.01
.01
.01
.01
.01
.01
.01
.02
.00
.00
.01
8.0%
.00
.01
.01
.01
.01
.01
.05
. 12
. 18
. 19
.22
.23
8.0%
.00
.00
.00
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
57.00
51 .68
48.32
*
58.58
50.80
57.92
50.62
50.34
*
*
*
*
*
63.27
50°C
63.30
56.56
55. 12
60.64
*
62.88
*
*
*
*
*
34.85
23°C
68.74
69.02
66.30
64.30
60.32
58.76
58.48
51 .92
55.60
54.44
56.64
*
53.68
61
55
50
59
52
59
52
51
63
62
56
59
66
68
72
69
66
62
62
61
57
59
58
60
53
.72
.90
.62
*
.86
.44
. 10
.46
.72
*
*
*
4
*
*
.76
.96
.56
.76
*
.96
*
*
*
*
*
*
. 12
.20
.80
.34
. 16
.20
.92
.60
.84
. 12
.56
*
.04
426
419
420
427
415
412
398
880
443
504
463
456
461
343
442
455
445
482
452
463
468
439
470
480
468
463
.74
*
.00
*
.44
.66
.34
.32
.08
*
*
*
*
*
.92
.00
.40
.20
.40
*
.60
*
*
*
*
*
.75
.88
.68
.00
.80
.00
.20
.80
.20
.40
.00
.80
*
. 20
407
432
396
404
396
401
388
398
487
460
423
479
410
432
421
423
444
455
464
440
469
446
454
465
.28
*
.48
*
.86
.86
.68
.76
. 12
*
*
*
*
*
*
.40
.20
.80
.20
*
.20
*
*
*
*
*
*
.24
.08
.20
.20
.00
.20
.80
.80
.60
.40
.40
*
.60
8
7
7
8
7
7
6
7
12
9
7
8
8
12
12
12
10
10
9
8
B
7
8
8
7
.03
.45
. 16
*
.54
.47
.79
.67
.00
*
*
*
*
*
*
.68
.92
.54
. 18
*
.70
*
*
*
*
*
*
.01
.57
.79
.46
.41
.74
.48
. 10
.61
. 14
.40
*
.08
7.06
6.29
6.04
*
8.37
6.99
7.23
6.56
6.74
*
*
*
*
*
*
12.04
8.38
8.52
8.68
*
8.65
*
*
*
*
*
*
13.95
13.88
16.38
10.11
10.79
10.06
8. 14
6.78
7.83
7.42
7.54
*
6. BO
-------
ETHVLENE PROPVLENE DIENE MONOMER:
AVERAGE FINAL PROPERTIES
LO
t—•
U>
EL56FH1
EL56FH2
EL56FH3
EL99FH2
EL99FH3
EL99FH4
EL99FH5
EL99FH6
EL99FH7
EH01FL1
EH07FL1
EH14FL1
EH28FL1
EH99FL1
EH56FL1
EH99FL2
EH99FL3
EH99FL4
EH99FL5
EH99FL6
EH99FL7
EL01FL2
EL01FL3
EL01FL1
EL07FL2
EL07FL3
EL07FL1
EL14FL3
EL14FL2
EL14FL1
EL28FL2
EL28FL3
EL99FL1
EL28FL1
EL56FL3
EL56FL2
EL56FL1
EL99FL2
EL99FL3
EL99FL4
56
56
56
1 17
219
350
485
617
716
1
7
14
28
28
56
123
241
355
489
621
726
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
123
224
355
WEIGHT
(gram)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
56
38
35
19
36
64
55
82
96
31
32
34
31
1 1
37
15
.32
.32
.37
.42
.43
.30
.26
.29
.46
.30
.27
. 19
20
33
20
25
52
30
33
32
33
53
55
55
THICKNESS
(mil)
43
40
40
37
39
40
40
41
42
39
40
40
39
36
40
36
38
38
38
39
39
39
40
39
42
39
39
37
37
40
37
38
44
39
39
39
39
44
44
44
.40
.80
. 10
.20
.00
.40
.30
.90
.80
.70
.00
.60
.60
.80
.90
.70
.40
.50
. 10
. 10
.30
.60
.00
.70
.40
.60
.50
.50
.80
.50
.70
.20
.30
.60
.90
.60
.80
.20
.60
.50
LENGTH WIDTH
( i nch) ( i nch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
FURFURAL
.02 1
.02 1
.02 1
.05 1
.15 1
.26 1
.21 1
.31 1
.37 1
FURFURAL
.01 1
.01 1
.01 1
.00 1
.01 1
.02 1
.03 1
. 10 1
.11 1
.17 1
. 14 1
.15 1
FURFURAL
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00 1
.00
.00
.00
.01
.02
.02
8.0%
.00
.01
.01
.01
.04
.08
.06
.09
. 10
1 .0%
.00
.00
.00
.00
.00
.01
.01
.03
.03
.03
.04
.04
1 .0%
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
BREAKING
FACTOR
M
(lb/
i nch
width)
23°C
61 .
60.
63.
43.
50°C
67.
60.
59.
65.
59.
52.
23°C
64.
69.
58.
67.
64.
52.
55.
58.
58.
62.
58 .
64.
57.
59.
67.
36
56
04
42
13
20
12
76
*
76
66
52
51
70
48
68
96
08
72
48
56
96
*
40
12
28
84
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
64
62
62
68
59
57
68
59
65
68
62
68
69
56
57
58
62
62
58
68
62
61
70
.88
.40
.88
*
*
*
*
*
*
.30
. 16
.92
.58
*
.76
4
*
*
*
*
4
.27
.22
.89
.96
. 12
.08
.60
.40
.50
.96
.96
*
. 16
.48
.72
.04
*
*
*
ELONGATION
AT
BREAK
M
(inch)
472
463
498
538
451
513
466
473
472
666
405
396
422
482
470
512
484
480
456
450
432
472
408
453
485
.80
.20
.40
*
*
*
*
*
. 17
.44
.60
.40
.60
*
.00
*
*
*
*
*
.60
.92
.08
.56
.00
.40
.00
.00
.00
.80
.40
.80
*
.80
.00
.60
.30
*
*
*
ELONGATION
AT
BREAK
T
(inch)
448
468
444
416
464
450
468
441
448
432
417
470
460
440
423
458
456
428
417
462
434
440
446
.80
.00
.00
*
.90
.80
.40
.00
*
.60
*
*
*
*
*
*
.80
.25
.92
.40
.40
.80
.20
.40
.00
.00
.60
*
.40
.40
.00
.40
*
*
*
TEAR
RESISTANCE
M
(lb)
9
8
9
13.
9.
8.
9.
8.
13.
1 1 .
10.
10.
10.
9.
8.
8.
9.
7.
7.
8.
9.
8.
10.
15
05
67
13
39
09
32
*
82
24
68
94
88
53
24
70
16
64
93
48
*
71
05
67
03
*
*
*
TEAR
RESISTANCE
T
(lb)
7
8.
8.
10.
9.
9.
9.
7.
14.
14.
15.
10.
1 1 .
8.
7.
8.
8.
8.
8.
9.
8.
7.
9.
98
41
77
*
36
99
58
38
*
63
*
*
*
*
*
*
37
81
50
24
33
06
70
64
72
44
16
*
01
38
73
12
*
*
*
-------
ETHYLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EL99FL5
EL99FL6
EL99FL7
EH01FM1
EH07FM1
EH14FM1
EH28FM1
EH99FM1
EH56FM1
EH99FM2
EH99FM3
EH99FM4
EH99FM5
EH99FM6
EH99FM7
EL01FM1
EL01FM3
EL01FM2
EL07FM1
EL07FM2
EL07FM3
EL14FM1
EL14FM2
EL14FM3
EL28FM1
EL28FM3
EL28FM2
EL99FM1
EL56FM1
EL56FM2
EL56FM3
EL99FM2
EL99FM3
EL99FM4
EL99FM5
EL99FM6
EL99FM7
489
622
721
1
7
14
28
29
56
124
242
356
490
622
727
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
124
228
356
490
623
722
WEIGHT
(gram)
2.55
2.58
2.57
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.37
.20
.25
.67
. 18
.46
.20
.35
.40
.45
.54
.59
.21
.35
.29
.24
.27
.33
.63
.20
.61
.25
.27
.21
.55
.31
.36
.46
.57
.58
.61
.62
.65
.66
THICKNESS
(mil)
44.30
44.60
44.20
40
37
38
45
38
42
38
39
39
37
41
48
37
41
40
38
38
39
46
38
45
38
38
37
44
38
40
42
44
44
44
44
45
45
.20
.50
.40
.90
.00
.60
.40
.40
.80
.00
.00
.30
.90
. 10
.00
.40
.70
.90
. 10
.50
.70
.50
.50
.70
.00
.80
.40
.00
. 10
.40
.40
.50
.00
. 10
LENGTH WIDTH
(inch) (inch)
FURFURAL 1.0%
3.01 1 .00
3.02 1.01
3.03 1.01
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
FURFURAL
.02 1
.01 1
.01 1
.02 1
.02 1
.00 1
.05 1
.09 1
.11 1
.15 1
. 16 1
.20 1
FURFURAL
.00 1
.00 1
.00 1
.01 1
.00 1
.01 1
.01 1
.01 1
.01 1
.01 1
.00 1
.01 1
.00 1
.01 1
.00 1
.01 1
.02 1
.02 1
.04 1
.03 1
.04 1
.06 1
4.0%
.00
.00
.01
.01
.01
.01
.01
.03
.03
.04
.05
.05
4 . 0%
.00
.00
.01
.00
.01
.00
.00
.01
.01
.01
.00
.00
.00
.00
.00
.01
.00
.01
.01
.01
.01
.02
BREAKING
FACTOR
M
( lb/
inch
width)
23°C
*
*
59.01
50°C
63.
65.
55.
58.
66.
53.
23°C
58.
63.
62.
53.
65.
67.
57.
55.
60.
61 .
56.
61 .
63.
65.
60.
61 .
51
48
19
80
*
80
*
*
*
*
*
61
86
34
81
76
12
28
64
12
80
68
40
20
*
28
12
24
*
*
*
4
*
25
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
62
65
56
65
68
59
68
64
54
66
71
.56
57
60
62
56
62
64
65
62
.78
.60
.54
. 12
*
.48
*
*
*
*
*
*
.90
. 10
.74
.40
.76
. 16
.92
. 16
.36
.68
.00
.72
*
.50
.76
.96
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
758.83
458
506
471
469
478
644
443
457
448
488
471
460
482
448
442
467
478
464
-
466
485
460
819
.80
.00
.20
.60
*
.80
*
*
*
*
*
.83
.20
.04
.80
.00
.20
.00
.40
.00
.40
.20
.40
.80
*
.40
.60
.80
*
*
*
*
*
.83
ELONGATION
AT
BREAK
T
(inch)
*
*
*
418
460
455
466
457
407
424
412
457
454
451
452
460
425
452
453
428
428
449
458
.00
.80
.20
.40
*
.60
*
*
*
*
*
*
.04
.32
.96
.60
.40
.20
.00
.80
.30
.00
.60
.00
*
.00
.60
.40
*
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
1 1
10
8
8
9
10
12
1 1
8
10
1 1
8
7
9
9
7
8
8
9
8
.57
.88
.92
.80
*
.82
*
*
*
*
*
*
.63
.52
.59
.42
.36
.22
.72
.48
.42
. 12
.58
.56
*
.90
.09
.55
*
*
*
*
*
*
TEAR
RESISTANCE
r
(lb)
*
*
*
14
10
8
8
9
12
12
12
8
10
10
9
8
8
8
7
8
8
8
8
.64
.08
.82
.51
*
.09
*
*
*
*
*
*
.75
.70
.09
.67
.79
.69
.78
.42
.68
.60
.26
. 14
*
.23
.88
.78
*
*
*
*
*
*
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EH01MH1
EH07MH1
EH14MH1
EH28MH1
EH99MH1
EH56MH1
EH99MH2
EH99MH3
EH99MH4
EH99MH5
EH99MH6
EH99MH7
EL01MH1
EL01MH3
EL01MH2
EL07MH2
EL07MH1
EL07MH3
EL14MH2
EL14MH1
EL14MH3
EL28MH3
EL99MH1
EL28MH2
EL28MH1
EL56MH2
EL56MH1
EL56MH3
EL99MH2
EL99MH3
EL99MH4
EL99MH5
EL99MH6
EL99MH7
EH01ML1
EH07ML1
EH14ML1
EH28ML1
EH99ML1
EH56ML1
1
7
14
28
28
57
1 15
240
358
494
626
730
1
1
1
7
7
7
14
14
14
28
28
28
28
57
57
57
121
235
358
494
627
725
1
7
14
28
28
57
WEIGHT
(gram)
2.37
2.65
2.54
2.56
2.67
2.39
2. 72
2.72
2.70
2.64
2.68
2.76
2.86
2.35
2.38
2. 28
2.50
2.34
2.65
2.28
2.56
2.12
2.35
2.26
2.39
2.35
2.39
2.31
2.38
2.28
2.36
2.36
2.39
2.37
2.40
2.32
2. 22
2.41
2.57
2.17
THICKNESS
(mil)
40
44
42
43
44
39
44
45
45
44
44
45
48
41
40
38
41
40
44
38
43
35
39
38
39
39
40
39
39
40
46
39
39
39
40
39
37
41
44
37
.20
.40
.80
.90
.80
.70
.70
.30
.00
.40
.70
.50
.70
.00
.80
.40
.80
. 10
.50
.40
. 10
.80
.60
.30
.90
.90
.80
.30
.30
.00
.40
.50
.00
.60
.90
.50
.90
.00
.60
.50
LENGTH WIDTH
(inch) (inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
METHYL
.06
.09
. 10
.09
.08
. 12
.07
.08
.08
.04
.05
.08
METHYL
.07
.08
.06
.06
.06
.07
.07
.05
.06
.06
.07
.07
.07
.07
.08
.08
.07
.08
.06
.06
.01
.06
METHYL
.02
.02
.01
.03
.02
.00
ETHYL
.03
.03
.03
.03
.02
.03
.02
.02
.02
.01
.01
.02
ETHYL
1 .02
1 .03
1 .02
1 .02
1 .02
1 .02
1 .02
.02
.02
.02
.02
.03
.02
.03
.03
.02
.02
.02
.02
.01
1 .00
1 .02
ETHYL
1.01
1 .00
1.01
1 .00
1 .00
1 .00
BREAKING
FACTOR
M
( lb/
i nch
width)
KETONE
61
58
55
63
63
44
KETONE
57
61
64
65
57
63
61
60
64
63
64
58
68
65
63
50
KETONE
60
65
63
64
65
26.0%
68
32
92
83
*
99
*
*
*
*
*
95
26.0%
68
20
08
52
84
44
20
88
72
29
*
60
39
76
72
46
*
*
*
*
*
90
3.0%
56
52
1 2
66
*
90
BREAKING
FACTOR
T
(pound/
i nch
width)
50°
61
62
57
67
65
23°
60
63
64
68
58
65
62
62
66
66
66
59
70
66
65
50°C
61
65
65
68
69
C
.84
. 16
.68
.03
*
.30
*
*
*
*
*
#
C
.88
.28
.00
.24
.80
.52
.80
.96
.32
.49
*
.72
.62
. 74
.97
.74
4
*
*
*
*
*
.20
.04
.36
.06
*
.03
ELONGATION
AT
BREAK
M
(inch)
449
424
432
432
436
772
435
444
442
445
444
447
436
432
456
444
435
442
463
464
460
686
431
431
460
448
457
.92
.40
.32
.72
*
.40
*
*
*
*
*
.20
. 12
.56
.80
.04
.80
.20
.88
.72
.00
.80
*
.60
.24
. 20
.32
.08
.00
.76
.76
.00
.88
*
.92
ELONGATION
AT
BREAK
T
(inch)
445
406
423
431
416
418
431
404
417
413
421
409
419
408
415
421
414
428
435
429
452
431
443
445
432
.60
. 16.
.60
.20
*
.64
.32
.76
.53
.44
.28
.92
.52
.20
. 24
.44
*
. 10
.72
.80
.36
.20
.88
.44
.04
. 12
*
.08
TEAR
RESISTANCE
M
(lb)
9.
10.
10.
9.
9-
8.
10.
10.
12.
1 1 .
12.
1 1 .
1 1 .
12.
10.
10.
9.
1 1 .
10.
10.
8.
13.
12.
10.
1 1 .
70
90
10
87
*
97
*
*
*
*
*
*
58
14
45
90
90
25
50
86
42
72
*
44
51
42
87
74
*
*
*
*
*
*
70
06
58
66
*
99
TEAR
RESISTANCE
T
(lb)
9.
10.
9.
9.
8.
8.
9.
9.
12.
10.
1 1 .
10.
10.
1 1 .
9.
10.
9.
9.
10.
10.
9.
1 1 .
1 1 .
10.
10.
18
50
74
68
*
76
*
82
38
42
14
98
74
42
90
14
67
*
17
08
98
05
14
02
70
42
31
*
89
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
2.64
2.66
2.66
2.67
2.66
2.65
THICKNESS
(mil)
44.60
45.00
45.20
45.00
45. 10
45.20
LENGTH
(inch)
3.03
3.05
3.05
3.04
3.05
3.04
WIDTH
(inch)
METHYL ETHYL
1.01
1 .01
1 .02
1 .02
1.01
1 .01
BREAKING
FACTOR
M
( lb/
inch
width)
KETONE 3.0%
*
*
*
*
*
62.56
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
*
*
756.83
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
*
*
TEAR
RESISTANCE
M
Ob)
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
*
*
*
*
METHYL ETHYL KETONE 3.0% 23°C
ON
EL01ML3
EL01ML2
EL01ML1
EL07ML3
EL07ML1
EL07ML2
EL14ML1
EL14ML2
EL14ML3
EL28ML3
EL28ML2
EL28ML1
EL99ML1
EL56ML1
EL56ML2
EL56ML3
EL99ML2
EL99ML3
EL99ML4
EL99ML5
EL99ML6
EL99ML7
1
1
1
7
7
7
14
14
14
28
28
28
28
57
57
57
120
235
358
494
627
725
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.22
. 12
.95
. 19
.43
.27
.73
.30
.29
.58
.22
.48
.46
.26
.26
.33
.50
.48
.49
.48
.50
.49
38
37
33
38
41
39
47
39
39
44
38
42
42
39
39
38
42
43
42
42
43
43
.40
. 10
.80
. 10
.90
.20
. 10
.60
.80
.30
.30
.80
.80
.50
.00
.70
.80
.20
.90
.90
.00
.20
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.00
.00
.00
.00
.01
.01
.01
.01
.01
.00
.00
.01
.01
.01
.00
.01
.02
.02
.02
.01
.02
.03
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.00
.00
.01
58
69
64
66
57
66
57
66
61
61
65
61
63
64
68
59
64
04
08
64
52
48
36
80
84
86
82
75
*
50
12
30
*
*
*
*
*
99
65
67
66
66
60
65
58
67
61
66
67
67
62
66
68
36
92
80
48
88
84
96
60
52
57
06
67
*
18
41
49
*
*
*
*
*
*
396
447
450
450
432
453
448
438
445
443
435
421
440
445
437
835
.56
.44
.48
.56
.88
.84
.32
.72
.84
.84
. 12
.20
*
.24
.04
.36
*
*
*
*
*
.58
398. 16
405.76
410.40
414.80
419.04
423.28
430.00
422.32
434.56
424.80
415.12
420.56
*
419.60
419.76
413.60
*
*
*
*
if
*
10.22
9.74
10.22
13.70
12.34
13.50
1 1 .70
13.22
12.26
10.97
11.31
1 1 .49
*
10.95
11.10
12.03
9.82
10.86
9. 10
10.90
10.66
12.18
1 1 .50
12.06
10.90
9.87
9.91
9.92
*
9.94
10.56
11.13
*
*
*
*
*
METHYL ETHYL KETONE 13.0% 50°C
EH01MM1
EH07MM1
EH14MM1
EH99MM1
EH28MM1
EH56MM1
EH99MM2
EH99MM3
EH99MM4
EH99MM5
EH99MM6
EH99MM7
1
7
14
28
28
57
120
239
357
493
625
729
2.32
2.65
2.46
2.60
2.46
2.38
2.70
2.75
2.74
2.72
2.72
2.76
39
45
41
44
41
41
45
45
45
45
45
45
.70
.20
.70
.90
.50
.50
. 10
.80
.50
.20
.40
.80
3
3
3
3
3
3
3
3
3
3
3
3
.05
.06
.05
.03
.09
.05
.05
.07
.07
.06
.05
.07
1 .02
1 .02
1 .01
1 .01
1 .02
1 .02
1 .02
1 .03
1 .03
1 .02
1 .02
1 .03
59,
57,
66,
65,
60,
55.
.44
.04
. 16
*
.50
.76
*
*
*
*
*
.82
59
60
67
66,
66
.44
.56
.28
*
.74
.97
*
*
*
*
*
*
431
438
451
440
439
783
. 12
.72
.20
*
.72
.84
*
*
*
*
*
.58
401 .04
434.64
409.76
*
417.04
434.72
*
*
*
*
*
*
9. 14
1 1 .38
12.34
*
10.69
1 1 .77
9.02
10.62
10.62
*
9.42
10.26
-------
ETHYLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mi 1)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
( inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
METHYL ETHYL KETONE 13.0% 23°C
EL01MM2
EL01MM3
EL01MM1
EL07MM2
EL07MM3
EL07MM1
EL14MM1
EL14MM2
EL14MM3
EL2BMM2
EL28MM3
EL28MM1
EL99MM1
EL56MM2
EL56MM3
EL56MM1
EL99MM2
EL99MM3
EL99MM4
EL99MM5
EL99MM6
EL99MM7
1
1
1
7
7
7
14
14 '
14
2B
28
28
28 '
57
57
57
120
234
357
493
626
724
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
20
18
13
34
31
61
29
32
49
17
35
29
1 7
52
62
27
20
18
22
23
22
23
37
37
36
40
39
45
39
39
43
37
40
39
37
43
44
39
37
37
37
37
37
38
80
20
70
00
50 •
00
10
50
10
30
50
40
10
10
90
40
40
80
60
60
20
00
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.03
.03
.04
.03
.03
.04
.02
.02
.03
.03
.04
.04
.03
.03
.02
.02
.03
.05
.04
.05
.02
.05
.01 63.
* 60.
.01 64.
.01 60.
.01
.01 66.
.01 60.
.01 56.
.01 60.
.01 57.
.01 65.
.01 61 .
.01
.01 64.
.00 68.
.01 68.
.01
.02
.01
1 .01
1.01
1.01 47.
76
08
24
24
*
64
88
72
08
58
35
46
*
54
87
23
*
*
*
*
*
10
62
58
65
59
69
61
57
60
62
66
63
65
68
71
.00
64
.68
76
*
36
84
36
08
82
55
37
*
18
70
56
*
*
*
*
*
*
440
435
433
438
431
434
451
441
450
442
459
426
453
432
648
.32
.68
.52
.48
*
.68
.48
.84
.92
.88
.56
.92
*
.88
.92
.00
*
*
*
*
*
.58
390
400
423
406
427
403
418
403
421
408
433
395
434
432
.72
.40
.04
.56
*
.84
.36
.00
.36
.84
.56
.36
*
.36
.64
.48
*
ASTM #2 OIL SATURATED 50°C
EH010M1
EH070M1
EH14OM1
EH990M1
EH280M1
EH560M1
EH990M2
EH990M3
EH990M4
EH990M5
EH990M6
EH99OM7
1
7
14
28
28
56
128
251
364
503
626
736
2
2
2
2
2
2
3
3
3
3
3
3
.06
.07
.44
.90
.06
.61
.04
.30
.33
.40
.56
.70
33
36
41
48
35
43
52
49
49
53
52
60
10
40
50
40
50
*
40
90
90
40
40
3
3
3
3
3
3
3
3
3
3
3
3
06
01
02
18
02
04
20
27
30
33
40
44
.01
.00
.00
.04
.00
.00
.07
. 13
. 10
. 13
. 14
. 13
57
64
59
61
60
40
33
05
*
20
68
*
#
*
*
*
59
66
61
59
62
45
68
96
*
60
09
*
*
#
*
*
437.76
435.44
422.64
*
452.00
467.92
417
415
421
424
425
92
76
04
*
00
52
*
*
*
*
*
60.74
ASTM #2 OIL SATURATED 23°C
824.42
EL010M3 1
EL010M1 1
EL010M2 1
EL070M1 7
EL070M2 7
EL070M3 7
1 .93
2.09
1 .94
2.74
2.62
2.41
33
34
33,
47.
45.
41 .
.50
. 70
.50
.40
.20
10
3.00
3.10
3.00
3.00
3.00
3.01
1 .00
1 . 04
1 .00
1 .00
1 .00
1 .00
61 .70
65.02
65.22
63.64
62 .33
66.09
65
67
66
62
62
67,
. 14
. 22
.06
.84
.97
. 22
425
423
452
486
439
454
.52
.68
.32
.00
.52
.80
397. 76
424.32
416.32
414.40
402.56
430.80
10.
14
*
.58
10
.66
.02
.62
, 26
.90
.96
.91
16
*
1 1 .67
12.81
12.43
9.
12.
13.
14.
12.
12.
1 1
9.
10.
10.
7.60
10.09
7.94
*
7.50
8.98
8.85
9.06
8.75
9.10
10.01
10.14
9.14
9.02
9.66
1 1 .58
12.46
12.10
1 1 .70
10.50
11.18
9.13
10.03
9.20
*
9.78
1 1 .40
10. 77
8.55
10.85
8.54
*
7.70
8.41
8.30
9.25
8.81
9.04
9.09
9.53
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mi 1 )
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
ASTM #2 OIL SATURATED 23°C
EL140M2
EL140M1
EL MOMS
EL280M1
EL280M2
EL280M3
EL990M1
EL560M2
EL560M1
EL560M3
EL990M2
EL990M3
EL990M4
EL990M5
EL990M6
EL990M7
(jO
i — '
CO
EH010P1
EH070P1
EH140P1
EH280P1
EH990P1
EH560P1
EH990P2
EH990P3
EH990P4
EH990P5
EH990P6
EH990P7
14
14
14
28
28
28
28
56
56
56
128
237
364
503
626
731
1
7
14
28
28
56
141
257
385
509
627
742
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
.73
.56
.48
.25
.28
.74
.70
. 18
.64
.62
.74
.74
.78
.06
. 13
.20
.52
.61
.93
.31
. 1 1
.39
.48
.67
.61
.68
.71
.74
47.
44.
42.
38.
39.
47.
45.
37.
46.
45.
46.
45.
45.
47.
47.
48.
51 .
57.
61 .
52.
54.
52.
55.
55.
55.
56.
55.
56.
50
30
00
40
00
00
50
60
00
40
60
70
70
60
90
10
90
40
10
40
30
70
50
90
50
00
90
30
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
.00
.01
.01
.01
.00
.00
.05
.01
.01
.01
.07
.06
.09
. 17
.70
.28
ASTM
.30
.66
.66
.68
.69
.70
.79
.81
.81
.82
.84
.84
1 .00
1 .00
1.01
1 .00
1 .00
1 .00
1 .01
1 .00
1 .00
1 .00
1 .04
1 .03
1 .04
1 .05
1 .08
1 .08
#2 OIL
1.11
1 .25
1 .25
1 .24
1.19
1 .25
1 .23
1 .23
1 .24
1 .24
1 .25
1 .25
64.
63.
52.
53.
65.
58.
49.
66.
59.
57.
100.0%
46.
38.
38.
42.
42.
42.
23
27
58
20
62
81
*
68
55
76
*
*
*
*
*
83
50°C
33
80
80
86
*
00
*
*
#
*
*
99
66
64
56
56
67
58
54
76
67
44
37
39
42
41
.30
.74
.84
.00
.62
.90
*
.80
.39
.28
*
*
*
*
*
*
.07
.20
. 20
.66
*
.04
*
*
*
*
*
*
440
446
413
412
431
433
424
427
429
755
345
280
276
279
278
564
.20
.08
.28
.00
.84
.84
*
.72
.92
. 12
*
*
*
*
*
.42
.92
.00
.00
. 12
*
.00
*
*
*
*
*
.58
426
422
418
404
414
396
428
437
427
351
272
248
277
266
.88
.72
.32
.00
.56
.32
*
.72
.52
.04
*
*
*
*
*
*
.20
.00
.00
. 12
*
.08
*
*
*
*
*
*
8.80
8.41
7.39
7.30
9.55
8.03
*
8.10
10.09
9.42
5.83
4.14
4.72
6.22
*
5.98
8.71
8.98
7.62
7.30
9.00
7.74
*
6.62
8.70
8. 14
*
*
*
*
*
*
7.20
3.58
4.28
6. 10
5.94
*
ASTM #2 OIL 100.0% 23°C
EL010P1
EL010P3
EL010P2
EL070P2
EL070P3
EL070P1
EL140P2
EL140P3
EL140P1
EL280P1
EL280P3
EL280P2
1
1
1
7
7
7
14
14
14
28
28
28
2
2
2
3
3
2
3
4
4
4
4
3
.60
.20
.42
.59
.69
.99
.41
.00
.00
.44
.38
.39
42
35
39
52
54
42
45
55
56
58
57
43
.60 '
.50
.40
.60
.30
.50
.70
.80
.50
. 10
.30
.00
3
3
3
3
3
3
3
3
3
3
3
3
.07
. 13
.09
.30
.30
.36
.49
.40
.41
.52
.53
.60
1 .02
1 .04
1 .04
1.10
1.13
1.14
1 . 29
1.16
1.16
1 . 19
1 .20
1 . 23
66
60.
60,
57.
54,
43.
36,
47,
54,
40,
35.
33.
.04
.74
.92
. 18
.73
.20
.74
.98
.80
.90
.96
.72
68.
61 .
59.
56.
55.
43.
35.
48.
52.
.43.
36.
33.
.38
. 19
,53
. 26
. 13
.20
,77
60
40
08
14
78
429
434
421
406
379
356
312
349
360
280
285
286
.20
.00
.20
.40
.28
.00
.64
.84
.00
.96
.93
.40
418.56
404.08
370.56
372.00
376.40
336.00
294.72
334. 10
340.00
279.28
274.80
270.32
11.01
8.42
8.63
8.31
7.12
5.10
5.40
6.85
5.56
6.33
6.63
5. 74
10.43
8.88
8.93
6.46
6.41
4.44
6.30
6.75
6.02
6.99
5.43
6.O4
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EL990P1
EL560P2
EL560P3
EL560P1
EL990P2
EL990P3
EL990P4
EL990P5
EL990P6
EL990P7
EH01PH1
EH07PH1
EH14PH1
EH28PH1
EH99PH1
EH56PH1
EH99PH2
EH99PH3
EH99PH4
EH99PH5
EH99PH6
EH99PH7
EL01PH1
EL01PH2
EL01PH3
EL07PH1
EL07PH2
EL07PH3
EL14PH2
EL14PH1
EL14PH3
EL28PH2
EL28PH3
EL2BPH1
EL99PH1
EL56PH1
EL56PH2
EL56PH3
EL99PH2
EL99PH3
28
55
55
56
141
244
385
509
627
737
1
7
14
28
29
56
1 21
243
362
499
624
728
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
1 21
230
WEIGHT THICKNESS
(gram) (mi 1 )
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2
. 17
.51
.77
.28
.70
.63
.65
.66
.64
.63
. 44
.60
.48
.42
.54
.69
.61
.68
.71
.77
.80
.83
.33
.96
.81
.61
.39
.38
.46
.60
.44
.93
.91
.41
.34
.43
. 27
.26
.37
.40
54.
57.
60.
53.
56.
56.
56.
56.
56.
56.
41 .
44.
42.
41 .
43.
45.
43.
44.
44.
45.
45.
45.
39.
33.
31 .
45.
41 .
41 .
42.
45.
42.
33.
32.
41 .
40.
41 .
38.
38.
40.
41 .
30
50
50
30
20
30
10
30
00
20
80
50
30
60
30
50
50
20
50
10
10
40
20
70
70
00
40
30
20
20
10
00
90
00
80
20
90
70
80
10
LENGTH WIDTH
(inch) (inch)
ASTM #2 OIL
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.69
.63
.60
.64
.81
.82
.81
.80
.82
.83
PHENOL
.02
.00
.04
.01
.02
.03
.06
.09
. 1 1
. 13
. 14
. 15
PHENOL
.00
.00
.01
.00
.01
.02
.03
.01
.01
.02
.02
.01
.01
.02
.02
.01
.03
.04
1.18
1 .23
1 .23
1 .24
1 . 23
1 . 24
1 . 23
1 . 22
1 . 24
1 . 24
8.0%
1 .00
1 .00
1 .02
1 .01
1 .01
.01
.01
.03
.03
.03
.04
.04
8.0%
*
.00
.00
.01
.00
.01
.01
.00
.01
.00
.01
.00
.01
1.01
1 .01
1 .01
1.01
1.01
BREAKING
FACTOR
M
inch
width)
100.0% 23°C
44
43
36
48
50°C
55
62
61
60
60
52
23°C
47
45
63
54
50
64
63
51
65
54
48
58
62
61
56
*
08
12
80
*
*
*
*
*
02
78
28
22
06
*
60
*
*
*
*
*
47
32
08
40
30
18
03
34
68
44
02
88
12
*
26
08
26
*
*
BREAKING
FACTOR
T
(pound/
i nch
width)
43
40
39
57
63
60
64
62
48
45
66
56
49
66
65
52
67
53
50
58
61
66
61
*
.60
.56
. 12
*
*
*
*
*
*
. 20
.50
.22
.64
*
.50
*
*
*
*
*
*
.34
.78
.84
.62
. 18
. 76
.56
.68
.82
.68
.82
.80
*
.62
.92
.24
*
*
ELONGATION
AT
BREAK
M
(inch)
277
273
269
556
449
418
508
472
469
808
449
461
445
427
454
450
438
467
443
458
457
447
484
455
476
V
. 12
.60
.04
*
*
*
*
*
.92
.64
.84
.88
.54
*
.80
*
*
*
*
*
.00
.34
.48
.44
.86
. 12
.27
.36
.78
.78
.42
.58
.80
*
.00
.88
.94
*
*
ELONGATION
AT
BREAK
T
( inch)
276.
245.
277 .
435.
411.
517.
465.
458.
414.
416.
422.
414 .
410.
430.
420.
443 .
428 .
427.
422.
437.
429.
442.
439.
*
16
28
52
*
28
42
80
66
*
10
*
*
#
*
*
*
74
74
58
00
46
16
92
16
50
04
74
36
*
64
44
24
*
*
TEAR
RESISTANCE
M
(lb)
4
5
6
7.
8.
8.
9.
7.
,
6.
6.
9.
8.
7.
9.
9.
7 .
9.
6.
7.
6.
8.
8.
8.
*
94
02
26
32
79
91
24
*
78
*
*
*
*
*
*
71
34
14
09
39
74
07
85
37
98
48
80
*
92
92
33
*
*
TEAR
RESISTANCE
T
(lb)
6
5
5
7
8
8
7
7
6
6
8
7
6
8
8
7
8
6
6
8
8
8
7
*
.62
.98
.50
*
.50
.79
.53
.96
*
.92
#
*
*
*
*
*
57
01
17
36
.23
.95
.30
.06
.79
.83
. 24
.69
*
.09
. 15
.85
*
*
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EL99PH4
EL99PH5
EL99PH6
EL99PH7
EH01PL1
EH07PL1
EH14PL1
EH99PL1
EH28PL1
EH56PL1
EH99PL2
EH99PL3
EH99PL4
EH99PL5
EH99PL6
EH99PL7
EL01PL2
EL01PL3
EL01PL1
EL07PL2
EL07PL1
EL07PL3
EL14PL2
EL14PL3
EL14PL1
EL28PL1
EL28PL3
EL28PL2
EL99PL1
EL56PL3
EL56PL1
EL56PL2
EL99PL2
EL99PL3
EL99PL4
EL99PL5
EL99PL6
EL99PL7
362
499
625
723
1
7
14
28
28
56
122
245
363
499
625
729
1
1
1
7
7
7
14
14
14
28
23
28
28
56
56
56
122
233
363
499
626
724
WEIGHT
(gram)
2.42
2.45
2.48
2.50
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
.41
.36
.63
.54
.36
.59
.57
.61
.62
.62
.65
.63
.46
.50
.38
.54
.59
.40
.36
.34
.41
.38
.83
.48
.54
.42
.37
.40
.58
.57
.59
.58
.60
.59
THICKNESS
(mi 1 )
41 .20
41 .30
41 .50
41 .90
41
40
45
44
40
44
44
44
44
44
45
45
41
43
40
44
45
41
41
40
41
41
31
43
43
41
41
41
44
44
44
44
44
44
.50
.90
.60
.50
.40
.60
.50
.80
.80
.60
. 10
.40
.90
.70
.90
. 20
.20
.90
.20
.80
.50
. 10
.90
. 10
.30
.70
.30
.60
.20
.50
.30
.30
.30
.60
LENGTH WIDTH
(inch) (inch)
PHENOL 8.0%
3.05 1 .02
3.06 1.01
3.07 1.02
3.09 1.02
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PHENOL
.00
.00
.01
.00
.00
.00
.02
.04
.05
.04
.03
.05
PHENOL
.00
.00
.00
.00
.99
.00
.00
.00
.01
.00
.01
.00
.01
.01
.00
.02
.03
.03
.03
.03
.03
.04
1 . 0%
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .01
1.01
1.01
1 .01
1 .02
1 .01
1 .0%
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .33
1 .00
1 .00
1 .00
1 .00
1 .00
1 .01
1 .01
1 .01
1.01
1 .01
1.01
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
*
*
*
52.73
50°C
59.
58.
50.
60.
59.
59.
23°C
54.
63.
60.
65.
57,
63.
64.
62.
57.
58.
59.
65.
62.
53.
64.
61 .
60
14
92
*
20
62
*
*
*
*
*
42
32
24
64
20
98
92
18
54
94
18
92
90
*
14
70
46
56
BREAKING
FACTOR
T
(pound/
i nch
width)
*
*
*
*
61
56
52
6i
62
59
64
64
68
60
64
65
64
54
62
62
67
65
57
62
.72
. 18
.52
*
.74
.38
*
*
*
^
*
*
.98
.66
.78
. 12
.36
.40
.66
.96
.46
.70
.30
. 10
*
.02
.36
.78
*
*
*
*
*
T
ELONGATION
AT
BREAK
M
(inch)
*
*
*
710.50
469
466
434
476
492
741
447
435
422
419
454
432
470
459
446
469
446
446
437
456
469
848
.94
.78
. 12
*
.44
.24
*
*
*
*
*
.25
.24
.04
.20
.26
.04
.22
.50
.66
.26
.06
.70
.76
*
.72
.70
. 10
*
*
*
*
*
.08
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
464
423
408
477
458
402
41 1
412
.413
444
426
429
432
415
461
420
432
424
428
451
.72
.04
.88
*
.30
.00
*
*
*
*
*
*
.64
.72
.24
.96
.90
.30
.00
.82
.62
.56
.20
.02
*
.72
.06
. 12
*
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
9
a
7
9
8
9
9
9
9
9
9
8
9
7
9
8
9
8
8
8
.47
. 14
.45
*
.68
.76
*
*
*
*
*
*
. 16
.04
.34
.60
.42
.74
.97
.24
.30
.55
.67
.45
*
.86
.39
.44
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
*
*
8.
8.
7.
a.
7.
6.
7.
8.
9.
7.
8.
8.
8.
9.
8.
8.
8.
8.
7.
a.
33
42
50
*
92
91
*
*
*
*
*
*
19
95
89
07
51
84
99
76
04
72
28
85
*
79
38
30
*
*
*
*
*
*
-------
ETHVLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EH01PM1
EH07PM1
EH14PM1
EH28PM1
EH99PM1
EH56PM1
EH99PM2
EH99PM3
EH99PM4
EH99PM5
EH99PM6
EH99PM7
EL01PM2
EL01PM1
EL01PM3
EL07PM2
EL07PM1
EL07PM3
EL14PM3
EL14PM2
EL14PM1
EL28PM1
EL28PM3
EL28PM2
EL99PM1
EL56PM2
EL56PM3
EL56PM1
EL99PM2
EL99PM3
EL99PM4
EL99PM5
EL99PM6
EL99PM7
1
7
14
28
29
56
121
244
362
499
624
728
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
121
231
362
499
625
723
EH01SH1
EH07SH1
EH14SH1
EH28SH1
EH56SH1
EH99SH2
1
7
14
28
56
131
EH99SH3 253
WEIGHT
(gram)
2.41
2.64
2.42
2.39
2.62
2.61
2.67
2.73
2.75
2.81
2.82
2.83
1 .87
2.41
1 .99
2.38
2.41
2.36
2.42
2. 22
2.43
2.40
2.40
2.49
2.55
2. 27
2.37
2.58
2.57
2.57
2.59
2.61
2.62
2.62
1 .90
2.68
2.23
2.23
2.05
2.50
2.51
THICKNESS
(mil )
41 .
45.
41 .
41 .
45.
44.
45.
46.
46.
46.
46.
47.
32.
42 .
34.
41 .
41 .
41 .
41 .
38 .
42.
41 .
41 .
42.
44.
39.
40.
44.
44.
44.
45.
44.
44.
44.
33.
37.
39.
39.
36.
44.
44.
60
60
40
30
30
60
60
60
50
80
90
00
80
40
30
50
70
20 ,
80
70
00
50
10
90
70
40
40
60
30
90
60
60
80
50
10
10
10
20
50
10
00
BREAKING
FACTOR
M
(lb/
LENGTH WIDTH inch
(inch) (inch) width)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
PHENOL
.00
.00
.03
.01
.02
.00
.04
.07
.08
.09
.09
. 10
PHENOL
.00
.00
.01
.01
.00
.01
.00
.00
.02
.00
.02
.01
.01
.01
.00
.01
.02
.02
.03
.04
.04
.05
SODIUM
.01
.00
.00
.01
.00
.99
.99
4.0% 50
.00
.01
.01
.01
.00
.01
.01
1 .02
1 .03
1 .03
1 .03
1 .03
4.0% 23
.00
.00
.00
.00
.00
.00
1 .00
1 .00
1.01
1 .00
1 .00
1 .00
1 .00
1.01
1.01
1 .00
1.01
1.01
1 .01
1.01
1.01
1 .01
CHLORIDE
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
0.99
°C
48
48
52
45
50
57
°C
47
51
55
63
55
52
61
61
61
54
59
67
68
63
46
53
35
55
72
53
62
71
.36
.86
. 16
.32
*
.24
4
4
4
4
4
.34
.04
.42
.42
.20
. 16
.40
.74
.46
.70
.92
.04
.84
*
. 16
.30
.78
*
*
4
4
*
.48
.0%
.85
.44
.29
.70
.38
4
*
BREAKING
FACTOR
T
(pound/
inch
width)
51
50
56
48
56
48
52
58
63
57
53
62
65
62
56
64
66
66
62
50
50°C
55
75
56
75
66
. 14
.06
.82
.44
*
.52
*
4
*
4
4
4
.42
.36
.44
. 12
. 14
.82
.70
.38
.34
.64
.38
.84
*
.68
.88
. 16
4
4
4
4
t
«
. 29
.85
.73
.53
.73
*
*
ELONGATION
AT
BREAK
M
(inch)
509
421
439
445
474
742
449
490
447
447
471
438
468
437
453
448
451
436
465
451
439
678
443
438
413
389
468
.42
. 18
.54
.36
4
.74
.60
.24
.88
.66
.28
.82
.60
. 22
.80
.24
.50
.30
.22
4
.52
.78
.28
4
4
4
4
4
. 17
.92
.24
.60
. 12
.56
4
*
ELONGATION
AT
BREAK
T
(inch)
483
409
426
434
471
412
472
408
420
442
405
429
441
450
435
432
458
427
425
425
431
434
383
452
438
.84
.74
.58
.62
*
.82
4
*
*
*
4
*
.98
.44
.06
.66
.88
.58
.98
.82
.30
.26
.48
.88
4
.08
.64
.56
4
4
4
4
4
4
.76
.40
.76
.50
.96
*
*
TEAR
RESISTANCE
M
(lb)
7
7
8
6
7
6
7
8
9
9
8
8
9
9
9
8
10
9
8
6
6
9
8
8
9
.84
.61
.97
.90
4
.09
4
4
4
4
4
*
.48
.74
.68
.07
.30
.37
.71
.20
.46
. 10
.64
.02
4
.02
.86
.63
4
4
4
4
4
*
.59
.51
.91
. 12
.05
4
4
TEAR
RESISTANCE
T
(lb)
6
7
7
5.
5.
6.
8.
7.
8.
6.
7.
8.
8.
8.
7.
7.
8.
8.
8.
5.
6
9
8
8
9
99
17
76
81
4
96
4
4
t
*
4
4
45
20
31
02
90
29
69
26
29
10
60
38
*
40
42
94
94
39
10
71
37
4
4
-------
ETHYLENE PROPYLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EH99SH4
EH99SH5
EH99SH1
EH99SH6
EH99SH7
EL01SH1
EL01SH2
EL01SH3
EL07SH2
EL07SH1
EL07SH3
EL14SH3
EL14SH1
EL14SH2
EL28SH2
EL28SH3
EL99SH1
EL28SH1
EL56SH1
EL56SH3
EL56SH2
EL99SH2
EL99SH3
EL99SH4
EL99SH5
EL99SH6
EL99SH7
EH01SM1
EH07SM1
EH14SM1
EH28SM1
EH99SM1
EH56SM1
EH99SM2
EH99SM3
EH99SM4
EH99SM5
EH99SM6
EH99SM7
379
510
630
630
742
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
131
246
379
510
630
737
1
7
14
28
28
61
132
254
370
51 1
624
743
WEIGHT
(gram)
2.52
2.56
2.53
2.49
2.48
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
38
37
2
40
2
2
2
2
2
2
.74
.70
.44
.47
*
. 19
.56
. 21
.70
. 15
.58
.50
.25
.49
.51
.38
.51
.51
.50
.50
.49
.48
.21
.22
. 10
. 17
.47
.41
.47
.47
.46
.48
.45
.46
THICKNESS
(mi 1 )
43.90
44.40
44.30
44. 10
44.00
47
47
42
42
46
37
44
38
47
37
44
44
39
44
43
40
44
43
43
43
43
43
39
39
39
38
42
41
42
42
42
42
42
43
.50
.00
.30
.80
.70
.60
.40
.90
.00
. 10
.80 '
.20
.40
.20
.30
.90
.00
.90
.80
.60
.80
.70
.30
. 10
.50
.50
.90
.50
.60
.60
.50
.60
.60
.00
BREAKING
FACTOR
M
( lb/
LENGTH WIDTH inch
(inch) (inch) width)
2.99 1 .00 *
2.99 0.99 *
2.99 1 .00 *
2.99 1 .00 *
2.99 0.99 67.31
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
7
7
3
7
3
3
3
2
2
2
SODIUM CHLORIDE
.00 1.00
.00 1 .00
.01 1.00
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.00
.00
.00
.00
SODIUM CHLORIDE
.01 1 .00
.99 1.00
.30 6.92
.38 6.90
.00 1.00
.39 6.92
.00 1.00
.00 1.00
.00 1.00
.99 1.00
.98 1.00
.99 1 .00
35
61
72
71
62
66
55
67
61
73
70
68
70
75
67
61
63
10
57
57
62
60
64
62
.0%
.51
.40
.60
.86
.38
.06
.64
.64
.61
. 17
.63
*
. 18
.43
.20
.20
*
*
*
*
*
.02
.0%
.52
.53
.64
.24
*
.24
*
*
*
*
*
.88
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
23°C
64
74
72
65
71
58
66
55
74
67
70
71
64
67
60
50°C
53
54
62
53
62
.23
.40
.00
.53
.50
.66
.82
.32
.66
.54
.31
*
.21
.57
.60
.00
*
*
*
*
*
*
.84
.63
.64
.52
*
.80
*
*
*
*
*
*
ELONGATION
AT.
BREAK
M
(inch)
*
*
*
797.25
430
428
452
459
431
447
461
436
463
422
462
408
489
396
412
841
392
458
432
448
455
744
. 16
.00
.00
.60
.04
.92
.60
.24
.92
.08
.80
*
.72
.84
.00
.00
*
*
*
*
*
.83
.80
.64
.70
.88
*
.76
*
*
*
*
*
.83
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
401
408
416
450
421
422
398
388
452
441
446
454
371
428
412
398
480
420
412
419
.76
.00
.00
. 16
.92
.00
.80
.88
.08
.36
.08
*
.08
.36
.00
.00
*
*
*
*
*
*
.88
.00
. 16
.08
*
.84
*
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
*
a
9
8
9
9
7
8
7
8
8
8
8
9
B
6
6
7
7
7
9
.46
.60
.92
.07
.09
. 13
.50
.49
.73
.67
.69
*
. 1 1
.44
.36
.84
.70
.59
. 17
.66
*
.82
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
8
9
9
7
a
7
8
8
9
7
8
9
8
7
7
7
7
7
6
g
.80
.36
.76
.80
.93
.60
.82
.54
.25
.69
.52
*
.61
.68
.98
.50
*
*
*
*
*
*
.90
.21
.22
.86
.42
*
*
*
*
*
*
-------
ETHVLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi I )
EL01SM2
EL01SM3
EL01SM1
EL07SM2
EL07SM3
EL07SM1
EL14SM1
EL14SM3
EL14SM2
EL99SM1
EL28SM3
EL28SM2
EL28SM1
EL56SM2
EL56SM3
EL56SM1
EL99SM2
J*J EL99SM3
oo EL99SM4
EL99SM5
EL99SM6
EL99SM7
EH01WP1
EH07WP1
EH14WP1
EH28WP1
EH99WP1
EH56WP1
EH99WP2
EH99WP3
EH99WP4
EH99WP5
EH99WP6
EH99WP7
EL01WP2
EL01WP1
EL01WP3
EL07WP2
EL07WP1
EL07WP3
EL14WP1
EL14WP2
1
1
1
7
7
7
14
15
15
28
28
28
28
56
56
61
132
246
370
51 1
624
738
1
7
14
28
28
56
133
254
370
503
622
743
1
1
1
7
7
7
14
14
2.
2.
2.
2.
2.
2.
38.
2.
2.
2.
39.
39.
38.
36.
38.
42.
2.
2
2
2
2
2
2
2
3.6
2
2
40
2
2
2
2
2
2
2
1 .
2.
2.
2.
2.
35.
2.
21
19
19
23
23
27
59
25
15
42
61
82
75
80
39
31
42
42
43
44
41
41
04
38
00
35
54
57
57
62
61
62
63
63
05
93
09
27
34
31
41
49
39
39
39
39
39
40
39
39
38
42
40
40
39
37
39
43
42
41
42
42
41
42
36
41
37
40
43
41
43
44
44
44
44
44
36
34
37
40
40
39
40
43
60
.30
.40
. 10
.20
.40
.70
.90
.90
.40
. 10
.40
.60
.20
.00
.20
. 10
.90
.00
.00
.90
.00
.40
.00
.50
.50
.80
. 20
.90
.40
.60
.40
.50
.60
.50
.20
.40
.00
.30
.80
.70
.50
LENGTH WIDTH
(inch) (inch)
3
3
3
3
3
3
7
3
3
3
7
7
7
7
7
7
3
3
3
3
2
3
2
3
7
3
3
7
3
3
3
3
3
3
3
3
3
2
3
3
7
3
SODIUM
00
00
00
00
00
00
40
00
01
00
41
42
43
43
35
46
00
00
00
00
.99
00
WATER
.96
.01
.45
.00
.01
44
.02
.04
.04
05
.04
.05
WATER
00
00
00
94
01
00
41
00
BREAKING
FACTOR
M
(lb/
inch
width)
CHLORIDE 10
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
6.95
1 .00
1 .01
1 .00
6.93
6.96
6.92
6.97
6.99
6.94
1 .00
1 .01
1 .00
1 .00
1 .00
1 .00
100.0%
1 .00
1 .00
6.92
1 .00
1 .00
6.95
1 .00
1.01
1.01
1.01
1 .02
1 .02
100 .0%
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
6.94
1 .00
66
63
67
58
57
52
62
55
56
65
63
60
59
62
64
59
50°C
66
58
56
65
62
62
23°C
69
66
69
61
61
61
53
64
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
.0% 23°C
.32
.44
. 10
.04
. 14
.95
.40
.42
. 14
*
.04
. 76
.56
.44
.80
.88
*
*
*
*
*
.20
. 10
.96
.40
.52
*
. 16
*
*
*
*
*
.75
.70
.64
.04
.04
.40
.50
.90
.56
64
65
64
52
53
60
61
60
62
58
65
57
65
64
67
71
65
58
64
60
65
65
66
64
59
58
54
70
72
00
72
47
13
87
84
82
58
*
32
36
04
52
40
28
*
*
*
*
*
*
60
20
70
72
*
08
04
36
64
40
60
32
90
32
403
449
428
436
404
441
406
398
390
401
423
449
423
441
432
809
352
436
448
438
446
704
436
424
435
447
435
423
426
420
.92
.04
.50
.40
.48
.04
.80
.00
.96
*
.84
.92
.44
.28
.76
.80
.75
.60
.60
.00
.64
*
.00
*
*
*
*
*
.92
. 10
.88
.28
.90
.60
.00
.00
.00
418
419
418
434
442
431
404
381
417
401
482
430
421
404
428
364
413
429
41 2
424
422
406
433
420
412
398
407
334
. 16
.00
.40
. 16
.80
.76
.40
. 12
.52
*
. 12
.56
.48
. 12
.88
.56
.08
. 10
.70
.96
*
.48
. 24
.80
.44
. 16
.60
.32
.00
.96
8
6
9
8
8
8
7
8
8
7
7
8
8
7
8
8
8
6
8
8
8
8
8
9
8
8
8
9
.66
.50
.02
.28
.40
. 12
.42
.34
.88
*
.46
.98
. 10
.06
.74
.94
*
*
*
*
*
*
.62
.54
.65
.70
*
. 18
*
*
*
*
*
*
.46
.42
.42
.06
.22
.78
.60
.02
7
8
8
7
7
7
7
8
8
8
7
7
9
8
8
8
8
8
8
7
8
8
7
8
8
6
6
9
.70
.86
.78
.70
.61
.65
.70
.31
.71
*
.06
.30
.86
. 14
.42
.30
.50
.34
.54
.06
*
. 14
*
.38
.02
.78
.00
.62
.60
.60
. 10
-------
ETHYLENE PROPVLENE DIENE MONOMER: AVERAGE FINAL PROPERTIES
EL14WP3
EL28WP1
EL99WP1
EL28WP2
EL28WP3
EL56WP3
EL56WP2
EL56WP1
EL99WP2
EL99WP3
EL99WP4
EL99WP5
EL99WP6
EL99WP7
14
28
28
28
28
56
56
56
132
246
370
503
622
738
WEIGHT
(gram)
2.50
2. 26
2.49
1 .98
2.00
2.49
2.53
45.29
2.51
2.48
2.52
2.51
2.51
2.51
THICKNESS
(mil)
43.
39.
43.
34.
35.
43.
43.
46.
43.
43.
43.
43.
43.
43.
60
20
20
90
30
20
70
40
00
30
30
00
40
60
LENGTH
(inch)
3.00
3.00
3.00
3.00
3.00
3.01
3.01
7.36
3.01
3.04
3.01
3.02
3.01
3.02
WIDTH
(inch)
WATER 100.0%
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
6.98
1 .00
1 .03
1.01
1 .00
1.01
1 .01
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
i nch inch
width) width)
23°C
68.
66.
65.
65.
66.
61 .
72.
57.
POTASSIUM DICHROMATE
EH01XM1
EH07XM1
EH14XM1
EH99XM1
EH28XM1
EH56XM1
EH99XM2
EH99XM3
EH99XM4
EH99XM5
EH99XM6
EH99XM7
1
7
14
28
28
56
1 18
231
363
489
609
720
2.00
2.77
2.52
2.49
2.30
,2.30
2.48
2.52
2.53
2.53
2.53
2.54
34.
48.
44.
43.
40.
40.
43.
43.
43.
43.
43.
43.
90
20
10
10
30
20
50
50
40
70
90
50
3.00
2.99
3.01
3.00
3.00
3.01
3.01
3.01
3.01
3.01
3.01
3.01
1 .00
1 .00
.00
.00
.00
.01
.00
.00
1 .00
1 .00
1 .00
1 .00
70.
62.
69.
73.
51 .
64.
POTASSIUM DICHROMATE
EL01XM2
EL01XM1
EL01XM3
EL07XM3
EL07XM1
EL07XM2
EL14XM3
EL14XM1
EL14XM2
EL28XM2
EL28XM3
EL99XM1
EL28XM1
EL56XM3
EL56XM2
EL56XM1
EL99XM2
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
1 18
1 .94
2.07
2.06
2.69
2.07
2.25
1 .93
2. 19
2.11
2.29
2 .46
2.17
2.18
*
*
2 .53
2.17
33.
36.
35.
46.
35.
39.
33.
39.
36.
39.
42.
37 .
38.
40.
35.
44.
37 .
60
20
90
70
70
00
60
10
40
60
40
60
80
40
3O
40
5O
3.01
3.00
3.00
3.01
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.01
3.OO
3.01
3. OO
1 .00
1 .00
1 .01
1 .00
1 .00
.00
.00
.00
.00
.00
.00
.00
1 .00
1 .00
1 . OO
1 .00
1 . OO
70.
76.
74.
70.
66.
59.
71 .
66.
76.
69.
64.
74.
63.
60.
67 .
88
48
*
52
84
26
35
08
*
*
*
*
*
90
1 0 . 0%
33
14
37
*
58
78
*
*
*
*
*
86
10.0%
74
46
89
23
30
00
21
62
41
43
06
*
74
02
98
77
*
70.80
70.48
*
61 .68
64.88
65.66
61.13
71 .92
*
*
*
*
*
*
50°C
57.74
67.75
73.94
*
72.02
60.52
*
23°C
75.53
64.66
74.25
69.37
68.38
61.11
63.74
69.46
74.31
65.88
65.04
*
74. 12
59. 51
68 .65
59 . 61
*
ELONGATION
AT
BREAK
M
(inch)
436
433
422
452
427
450
440
747
468
442
451
417
462
724
437
474
457
460
441
452
450
426
458
485
467
430
461
455
444
.48
.28
*
.80
.72
.76
.88
.08
*
*
*
*
*
.83
.08
.64
.60
*
.76
.80
*
*
*
*
*
.67
.28
.32
. 12
.64
.20
.56
. 16
.88
.32
.04
.28
*
.40
. 76
.04
. 64
*
ELONGATION
AT
BREAK
T
(inch)
399.
408.
422.
421 .
396.
416.
436.
434.
424.
428.
446.
442.
446.
393.
428.
418.
440.
417.
455.
435.
479.
489.
489.
448 .
435.
428 .
445.
20
88
*
72
04
80
08
40
*
*
*
*
*
V
48
96
40
*
80
64
*
88
52
08
72
24
12
68
28
12
40
20
*
80
92
48
04
*
TEAR
RESISTANCE
M
9. 14
9.06
*
9.50
9.74
9.22
9.31
9.50
*
*
*
*
*
*
8.47
8.83
7.75
*
8.23
8.33
*
*
*
*
*
*
9.13
9.75
9.27
8.13
8.82
7.36
7.30
8.88
7.58
8.28
8.75
*
8.44
9.05
8 .86
7. 7O
*
TEAR
RESISTANCE
T
(lb)
9.06
8.34
*
8.86
8. 18
8.89
9. 15
9.50
*
9.65
6.73
9.33
*
9.31
7.13
*
8.58
7.84
8.67
9.06
6.94
7.84
8.69
9.65
9.62
8.81
7.91
8 . 76
8 . 75
7. 88
8 . 65
-------
EL99XM3 223
EL99XM4 363
EL99XM5 4S9
EL99XM6 609
EL99XM7 715
2.16
2.17
2.16
2.16
2.16
37. 60
37.60
37.6O
37.60
37.70
3.01
3.01
3.01
3.00
3.00
1 .00
1 .00
1 .00
1 .00
1 .00
53.78
828.42
U>
N>
-------
EPDM : STATISTICS
326
-------
ETHVLEN6 PROPVLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U)
NJ
EH01AM1 1
EH07AM1 7
EH14AM1 14
EH28AM1 27
EH56AM1 56
1
1
1
7
7
7
14
EL01AM1
EL01AM2
EL01AM3
EL07AM2
EL07AM3
EL07AM1
EL14AM1
EL14AM2 14
EL14AM3 14
EL28AM1 27
EL28AM2 27
EL28AM3 27
EL56AM2 56
EL56AM3 56
EL56AM1 56
EH01BM1 1
EH07BM1 7
EH14BM1 14
EH28BM1 28
EH56BM1 56
EL01BM2
EL01BM3
EL01BM1
EL07BM2
EL07BM1
EL07BM3
EL14BM1
EL14BM2
EL14BM3
EL28BM1
EL28BM2 28
EL28BM3 28
1
1
1
7
7
7
14
14
14
28
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
4
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .430
1 .090
1 .490
1 .700
1 .070
5.890
1 .660
1 . 260
1 .530
2. 160
1 . 330
1 .340
4.310
6.790
2.891
1 .840
1 . 140
0.670
2.850
0.924
0. 233
1 .622
1 .884
1 .501
0.788
7 .860
3. 744
3.636
1 . 440
0.758
4. 243
1.311
4. 373
1 .434
1 .302
1 . 199
3.351
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF
T
HYDROCHLORIC
2.710
1.510
2.260
0.790
2.070
HYDROCHLORIC
5. 170
1 .040
1 .730
1 .492
1.310
4.800
1.510
2.090
1 .800
2.960
1 .070
1 .340
1 .340
1 .340
3.500
EAB
M
ACID
5
5
5
5
5
ACID
5
5
5
5
5
5
5
5
5
4
5
5
5
5
4
SODIUM HYDROXIDE
5
5
5
5
5
1 .341
2.584
2.209
1 .973
2.397
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
5
5
5
5
5
5
5
2.261
2. 270
3.848
4.091
1.912
1 .552
1 .860
4.502
2.475
2.695
1.419
1 .329
5
5
5
5
5
5
5
5
5
5
5
5
10.0%
15
12
15
12
5
10.0%
0
5
12
7
26
15
12
38
68
24
1 1
9
10
16
18
10.0%
5
5
16
15
7
10.0%
66
15
20
10
9
39
14
48
50
9
9
20
STD
DEV
EAB
M
50°C
. 170
. 130
.480
.800
. 170
23°C
.510
.680
.540
.420
.400
.720
.000
.950
.640
.867
.280
.270
.910
.660
.965
50°C
.295
.394
.919
.230
.255
23°C
.481
. 270
.888
.932
.795
.601
.878
.380
.995
.894
.207
.586
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
36.430
8.520
15.140
6.280
9.980
42.660
32.500
17.200
14.540
10.720
35.600
18.050
10.500
11.920
23.310
9.400
17.460
8.900
17.420
25.600
14.897
23.838
15.647
6.912
18.863
23.665
3.607
5.599
24.932
12.903
10.315
20. 130
30.578
21 .452
29.491
7.965
10.946
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.420
0.440
0.570
0.450
*
0.460
0.670
0.110
0.460
0.340
0.460
0.520
0.220
0. 150
0.420
0.220
0. 190
0. 270
0.580
0.560
0.267
0.615
0. 140
0. 165
0.462
0.541
0.305
0.442
0.089
0.473
0.191
0. 125
0.074
0.063
0.268
0.649
0.471
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.330
0.480
0.400
0.530
0.550
0.580
0.420
0.240
0.390
0.530
0. 250
0.290
0.280
0.400
0.350
0.500
0. 180
0.370
0.300
0.360
0. 199
0. 195
0. 145
0.331
0. 164
0. 199
0.264
0.487
0.256
0.373
0.068
0.207
0.530
0. 162
0. 243
0.778
0.119
-------
ETHVLENE PROPYLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U>
K>
00
EL56BM3 56
EL56BM2 56
EL56BM1 56
EH01DH1 1
EH07DH1 7
EH14DH1 14
EH28DH1 28
EH56DH1 56
14
EL01DH2 1
EL01DH3 1
EL01DH1 1
EL07DH1 7
EL07DH3 7
EL07DH2 7
EL14DH1
EL14DH3 14
EL14DH2 14
EL28DH1 28
EL28DH2 28
EL28DH3 28
EL56DH2 56
EL56DH3 56
EL56DH1 56
EH01DL1 1
EH07DL1 7
EH14DL1 14
EH2BDL1 28
EH56DL1 56
EL01DL3 1
EL01DL2 1
EL01DL1 1
EL07DL2 7
EL07DL1 7
EL07DL3 7
EL14DL2 14
EL14DL1 14
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .430
1 .252
1 .280
1 .325
1 .960
1.610
1 .913
4.322
1 .289
3.279
3.341
1 .850
3. 150
3.700
1 .940
2.970
0.940
0.318
2.644
8.737
1 .802
3.659
4.394
2. 293
2. 230
2.460
3.546
0.689
3. 128
1 .308
1 .666
1.810
1 . 130
1 .520
2.400
1 . 4OO
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
SODIUM HYDROXIDE 10
5
5
5
1 .243
1 .599
4.526
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 .013
1 .860
1 .730
2.931
5. 173
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
0
5
5
5
5
5
5
5
5
5
5
3.254
1 .809
1 .957
1 .320
*
1.510
1 .680
1 .950
1 .900
1 .033
2.060
8.550
1.317
3.798
2.529
5
5
5
5
5
5
0
5
5
5
5
5
5
5
5
STD
DEV
EAB
M
, 0% 23°C
12.632
10.984
7.801
,8% 50°C
1 4 . 3,9 1
13.380
20.380
7.512
10.449
.8% 23°C
29.019
19. 227
19.916
10.380
22.500
41 .000
*
9. 130
1 1 .350
13. T56
35.408
16.016
23.583
17.263
38.550
1 2 DICHLOROETHANE .1% &Q°C
5
5
5
5
5
1 .434
1 . 180
3.910
1 .331
1 .927
5
5
0
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
5
3.206
2. 139
0.993
3. 100
1 .090
2.010
2.46O
2 . 2OO
5
5
5
5
5
5
5
0
25.717
16.730
*
' 16.809
17.301
1% 23°C
14.447
10.936
39. 123
10.370
8. 580
12.270
30. ilOO
*
NUMBER
EAB
T
STD
DEV
EAB
T
15.447
13.481
29.997
15.144
16.830
6.030
10.406
10.549
26.410
9.355
23.919
23.500
*
20.200
*
19.200
13.900
6.083
28.355
14.938
11.040
18.396
6.387
12.886
11.340
*
18.151
8.032
14.897
11.501
7.272
16.740
14.430
44.560
18.500
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.381
0.097
0.229
0.101
0. 221
0. 190
0. 100
0.340
0. 230
0. 238
O. 28O
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 152
0. 255
0. 191
5
5
5
5
5
0.343
0.380
0.270
0.239
0. 168
5
5
5
5
5
0.205
0.250
0.230
0. 170
0.251
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
„ 162
. 176
. 178
.590
.210
.600
.240
. 160
. 180
.096
.206
.463
.328
.406
.287
5
5
5
5
5
5
5
5
5
' 5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.117
. 176
. 120
.570
.380
. 120
.250
. 190
.210
.054
.327
.291
.338
.337
. 125
5
5
5
5
5
0.306
0. 170
0.230
0.201
0.300
5
5
5
5
5
0. 129
0.490
0.070
0. 123
0.286
0. 179
0.535
0. 104
0. 250
0.330
0.460
O. 179
O. 3OO
-------
ETHVLENE PROPVLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NUMBER
BF
M
STD
DEV
BF
M
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
STD
DEV
EAB
M
NUMBER
EAB
T
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
u>
EL14DL3 14
EL28DL1 28
EL28DL2 28
EL28DL3 28
EL56DL1 56
EL56DL2 56
EL56DL3 56
5
5
5
5
5
5
5
6.000
1 . 199
3.634
1 . 100
1 .088
4.652
1 .046
5
5
5
5
5
5
5
3.590
2.856
1 .452
1 .209
1 .837
1 .375
1.111
5
5
5
5
5
5
5
1 2 DICHLOROETHANE .1% 23°C
30.910
9.036
18.286
9.916
21.942
47.094
22.817
1 2 DICHLOROETHANE .5% 50°C
5
5
5
5
5
5
5
19.480
19.230
5.214
19.297
7.883
28.878
15.291
5
5
5
5
5
5
5
0.210
0.273
0.234
0.065
0.342
0.216
0.479
5
5
5
5
5
5
5
0.230
0. 174
0.217
0. 178
0.462
0.275
0.229
EH01DM1 1
EH07DM1 7
EH14DM1 14
EH28DM1 28
EH56DM1 56
5
5
5
5
5
1 .256
1 .440
5.860
1.417
0.452
5
5
5
5
5
1 .485
1 .690
5.240
2.654
2.078
5
5
5
5
5
18.566
17.800
37. 100
18.522
8.618
5
5
0
5
5
9.215
1 2.920
*
22.637
15.405
5
5
5
5
5
0.090
0.290
0. 150
0. 142
0.376
5
5
5
5
5
0. 138
0. 290
0.250
0. 129
0.215
EL01DM3
EL01DM2
EL01DM1
EL07DM2
EL07DM1
EL07DM3
EL14DM2
EL14DM3
EL14DM1
EL28DM2
EL2SDM1
EL28DM3
EL56DM3
EL56DM2
EL56DM1
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
0
4
3
3
3
1
2
2
1
1
2
0
1
0
.955
.905
.864
.360
.710
.470
.690
.510
.080
.511
.486
.116
.809
.299
.755
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
2,
1 ,
0,
3,
1 ,
0,
2
2,
2
1
0.
1 ,
1 .
0,
.883
.329
.824
.740
.270
.040
.910
.400
.470
. 103
.332
.790
.023
.320
,858
5
5
5
5
5
5
5
5
0
5
5
5
5
5
5
1 2 DICHLOROETHANE .5% 23°C
27.333
19.487
45.210
29.500
9.660
31.840
19.400
18.700
*
10.716
18.109
34.877
12.501
17.411
19.791
5
5
5
5
5
5
5
5
0
5
5
5
5
5
5
24
18
23
10
33
20
8
6
20
23
9
14
14
8
.715
.540
.072
.000
.430
.900
. 100
.800
*
.304
.916
.924
.555
.256
.547
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .
0,
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
. 197
.153
.286
.320
.230
. 150
. 100
. 170
,200
186
337
091
141
193
150
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
303
220
197
590
150
250
190
230
216
276
249
149
170
232
188
FURFURAL 8.0% 50°C
EH01FH1 1
EH07FH1 7
EH14FH1 14
EH28FH1 28
EH56FH1 56
5
5
5
5
5
4.097
3.067
1 .906
3.694
2.958
5
5
5
5
5
5.320
1 .851
4. 182
2.056
1 .459
5
5
5
5
5
31 .560
26.400
43.490
32. 140
28. 230
5
5
5
5
5
48.710
8.200
39.740
26.890
8.200
5
5
5
5
5
0.239
0.370
0.321
0.396
0. 120
5
5
5
5
5
0. 277
0.402
0.084
0.259
0.332
FURFURAL 8.0% 23°C
EL01FH3 1
EL01FH1 1
EL01FH2 1
EL07FH2 7
3. 146
0.870
3. 226
0.890
2.489
1 .356
0.829
0.963
13.201
10.000
21.584
10.920
8. 167
15.070
9.887
4.380
1 .083
0.839
0.622
0.552
0.782
0.949
0.200
0.611
-------
ETHYLENE PROPYLENE DIENE MONOMER: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U>
U>
O
EL01FL3
EL01FL2
EL01FL1
EL07FL2
EL07FL1
EL07FL3
EL14FL2
EL14FL3
EL14FL1
EL28FL2
EL28FL1
EL28FL3
EL56FL3
EL56FL2
EL56FL1
EH01FM1
EH07FM1
EH14FM1
EH28FM1
EH56FM1
7
7
14
14
14
28
28
28
EL07FH3
EL07FH1
EL14FH2
EL14FH1
EL14FH3
EL28FH3
EL28FH1
EL28FH2
EL56FH2 56
EL56FH1 56
EL56FH3 56
EH01FL1 1
EH07FL1 7
EH14FL1 14
EH28FL1 28
EH56FL1 56
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
1
7
14
28
56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.270
2.418
3.633
2.704
4.320
2.809
1 .080
1 .775
5.356
3.041
2.308
3.470
2.498
5.847
2.347
2. 147
2.628
3.414
3.262
1 .324
1 .489
3.638
2.390
2.972
3.893
1 .931
2.514
2.780
6. 167
3. 142
2.393
1 .851
2.013
2. 179
4.040
2.653
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL
0.358
1.918
1.711
2.748
2.870
0.669
2.440
1 .403
3.622
2.390
4.112
FURFURAL
2.366
5.228
4.358
1 .478
2.377
FURFURAL
4.325
0.495
1 .978
0.829
2.265
2. 143
2.608
1 .720
3.700
1 .951
2.291
2.238
1 .035
2.305
1 .857
FURFURAL
1 .953
3.131
2.455
2.806
1 .753
NUMBER
EAB
M
8.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
1.0% 50°C
5
5
5
5
5
1 .0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4.0% 50°C
5
5
5
5
5
STD
DEV
EAB
M
26.830
33.750
20.510
39.940
27.330
46.850
7.500
12.460
25.980
9.960
33.660
1.510
10.430
1 1 .870
29.750
18.550
19.335
28.792
18.365
4.480
33.820
29.200
4.9,00
65.480
21 .430
17.570
20.060
1 1 .800
68.060
45. 130
17.340
8.602
1 1 .400
1 1 . 100
52.730
26.520
NUMBER
EAB
T
STD
DEV
EAB
T
8.940
50.230
23.080
21.240
1 .790
16.400
30.800
32.200
25.610
29.180
36.220
7. 100
47.780
12.840
16.490
33.060
14.330
1 1 . 155
13.027
19.920
5.930
15.770
15.650
13.680
5.660
20.780
15.900
22.380
13.450
23.660
24.430
22.925
23.900
12.130
17.800
12.840
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
.624
.631
.216
. 192
.245
.212
.243
. 179
.371
.200
. 186
5
5
5
5
5
5
5
5
5
5
5
1 .657
0.730
0.044
0. 152
0. 126
0. 195
0.329
0. 187
0.332
0. 182
0.217
5
5
5
5
5
0.542
0.297
0.297
0. 135
0. 160
0.472
0.117
0.353
0.084
0.61 1
0.359
0.297
0.245
0.171
0. 126
0.342
0. 148
0.262
0.254
0.286
0.590
0.342
0.557
0.411
0. 144
5
5
5
5
5
163
799
489
065
0.471
1 .794
2.994
0.838
0.658
0.607
0.977
0.261
0.245
.806
1 14
195
. 152
179
.217
0.249
1 .342
0.683
0.898
0. 182
0.074
-------
ETHYLENE PROPVLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
OJ
LO
EL01FM1
EL01FM2
EL01FM3
EL07FM3
EL07FM2
EL07FM1
EL14FM1
EL14FM2
EL14FM3
EL28FM2
EL28FM3
EL28FM1
EL56FM1
EL56FM2
EL56FM3
EH01MH1
EH07MH1
EH14MH1
EH2BMH1
EH56MH1
EL01MH1
EL01MH3
EL01MH2
EL07MH3
EL07MH1
EL07MH2
EL14MH1
EL14MH2
EL14MH3
EL28MH2
EL28MH3
EL28MH1
EL56MH1
EL56MH2
EL56MH3
EHO 1ML1
EH07ML1
EH14ML 1
EH28ML1
EH56ML1
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
1
7
14
28
57
1
1
1
7
7
7
14
14
14
28
28
28
57
57
57
1
7
14
28
57
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .625
0.974
3.520
2.257
2.305
1 .757
2.787
2.567
1 .980
1 .020
1 .265
2.373
1 . 277
1 .368
4.036
1 .840
2.373
2.086
1 .361
1 .440
2.370
1 . 129
1 .338
1 .042
1.315
2.007
2.084
2.652
1 .658
3. 156
1.217
2.390
2.480
2.070
1 .679
3.316
3.077
1 .071
2.890
2.420
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL 4.
2.265
1 .290
3.273
1.117
1 .990
0.548
1 .604
3.615
2. 165
1 .425
1 .720
1 .487
3.400
3.378
2.865
METHYL ETHYL
3.810
3.118
2. 162
0.802
1 .307
METHYL ETHYL
3. 128
2.566
3.422
0.911
1 .960
2.359
1 .909
2.591
3.861
1 .030
0.752
2.383
1 .950
1 .065
2.290
METHYL ETHYL
1 . 260
3.726
3.118
1.411
3. 140
NUMBER
EAB
M
0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
KETONE
5
5
5
5
5
STD
DEV
EAB
M
1 1 .828
6.447
17.410
18.710
17.530
10.950
19.920
10.950
24.750
16.590
3.580
22. 160
13.740
15.390
51.410
26.0% 50°C
9.260
12.010
12.540
18. 102
1 1 .770
26.0% 23°C
10.310
9.535
13.466
14.490
1 2.995
12.640
14.026
25.240
8.235
24. 169
17.114
32.098
12.390
31 .368
11.191
3.0% 50°C
39.050
21 . 183
15.810
25.584
5.210
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
9.235
10.283
24.692
13.970
16.150
25.080
32.000
51.410
16.170
16.730
10.810
16.490
36.220
30.540
27.940
60.370
7.473
17.680
10.325
7.910
21.158
13.493
24.350
15.410
18.280
8. 130
8.859
19.970
23.869
11.048
10.273
26.901
9.690
14.764
11.113
31.860
18.997
7.210
10.224
15.870
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.445
0.850
1 .310
0.327
0.217
0.328
0.589
0. 130
0. 192
0. 152
0. 192
0.161
0.320
0.285
0.371
0.510
0.447
0.583
0.474
0.310
0. 179
0.219
0.252
0.681
0.447
0.374
0.841
0.490
0.540
0.312
0.579
0.557
0.236
0. 237
0.368
0.383
0.694
0.228
0.263
0.326
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
1 .578
0.921
1 .310
0.681
1 .426
1 .234
1 .330
0.110
0.303
0.279
0.207
0. 230
0.404
0.266
0.480
0.660
0.748
0.910
0.408
0.574
0.303
0.335
0. 179
0.555
0.460
0.607
0.400
0.890
0.623
0.378
0.249
0.549
0.375
0. 227
0.403
0.230
0.424
0.576
0. 184
0.602
-------
ETHYLENE PROPVLENE DIENE MONOMER: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
Co
OJ
K3
EL01ML2
EL01ML3
EL01ML1
EL07ML1
EL07ML3
EL07ML2
EL14ML2
EL14ML3
EL14ML1
EL28ML3
EL28ML2
EL28ML1
EL56ML1
EL56ML3 57
EL56ML2 57
EH01MM1
EH07MM1
EH14MM1
EH28MM1
EH56MM1
1
1
1
7
7
7
14
14
14
28
28
28
57
1
7
14
28
57
EL01MM3
EL01MM2
EL01MM1
EL07MM1
EL07MM2
EL07MM3
EL14MM3
EL14MM1
EL14MM2
EL28MM2 28
EL28MM1 28
EL28MM3 28
EL56MM1 57
EL56MM2 57
EL56MM3 57
1
1
1
7
7
7
14
14
14
NUMBER
BF
M
STD
DEV
BF
M
2.620
4.210
1 .750
1 .753
1 .919
2.373
1.131
2.425
1.315
2.879
3.049
5.953
1 .790
1 .530
3.320
3.320
1.910
1 .910
2.436
4.450
2.750
2.930
0.670
3.269
2.069
*
3.374
2. 160
1 .454
7.544
1 .000
0.780
3.059
4. 144
0.860
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF
T
METHYL ETHYL
3. 100
3.270
2.650
2. 160
3.327
1 .438
1 .876
2.303
1 .992
3.532
2. 124
3.519
1 .770
3.930
2. 160
METHYL ETHYL
2.430
1 .310
2.690
2.872
3.630
METHYL ETHYL
2.850
4.560
0.710
0.353
2.737
*
2. 160
2.358
1 .640
2.759
1.115
6.030
0.936
3.740
4.370
EAB
M
KETONE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
0
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
EAB
M
3.0% 23°C
16.300
18.560
4.450
20.940
10.663
6.630
10.510
21 .498
9. J55
16.817
25.552
63.71 1
23.730
28.860
21 .560
13.0% 50°C
15.200
21 .420
10.046
19.850
23.480
13.0% 23°C
27. ;150
9.420
7.220
31 .780
15.950
*
13.900
13.218
9.260
******
9.847
1 1 .332
22.508
26.910
4.880
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
29. 100
28.300
17.900
20.410
20.108
25.108
17.202
8.680
19.049
10.850
20.287
29.333
18.398
35.300
17.024
10.550
5.760
33.350
22.312
14.070
29.290
44.040
10.160
6.870
18.230
*
21.390
24.276
22.147
18.398
9.653
50.397
4.880
29.960
11.410
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.330
0.300
0.580
0.358
0.800
0.748
0.473
0.456
0.529
0. 156
0.333
0. 199
0.360
0.398
0.350
0. 170
0.464
1 .220
0.215
0.310
0.300
0.260
0.300
0.677
0.400
0.329
1 . 170
0.576
0.261
0.282
0.218
0.351
0.243
0.437
0.420
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.434
0.360
0.240
0.261
0.400
0.363
0.385
0.490
0.490
0.497
0.331
0.312
0.272
0.570
0.404
0.410
0.502
0.576
0. 108
0. 170
0.330
0.410
0.330
0.548
0. 179
0.713
1 .213
0.447
0.280
0.699
0.381
0.207
0.355
0.330
0.593
-------
ETHVLENE PROPYLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
u>
EH010M1 1
EH070M1 7
EH140M1 14
EH280M1 28
EH560M1 56
EH010P1
EH070P1
EH140P1
EH280P1
1
7
14
28
EH560P1 56
EL010P1
EL010P3
EL010P2
EL070P2
EL070P3
EL070P1
EL140P1
EL140P2
EL140P3
EL280P1
EL280P2 28
EL280P3 28
EL560P3 55
EL560P2 55
EL560P1 56
1
1
1
7
7
7
14
14
14
28
NUMBER
BF
M
EL010M3
EL010M1
EL010M2
EL070M2
EL070M3
EL070M1
EL140M1
EL140M2
EL140M3
EL280M2
EL280M1
EL280M3
EL560M2
EL560M3
EL560M1
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
3.613
1 . 193
4.320
4.400
1.151
0.925
4.419
1.114
1 .396
2.298
1 . 134
4.634
0.451
2.278
1 . 199
5. 200
2.969
3.649
5.408
5.978
3.974
1 .200
0.800
1.101
0.800
3.599
1 .577
0.847
1 .228
1 .499
4.800
2.000
3.966
3.831
2.034
0.480
0.578
0.912
0.716
0.912
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
5
5
STD
DEV
BF
T
ASTM #2 OIL
3.585
1 .352
4.761
2.800
1.118
ASTM #2 OIL
1 .965
4.280
2.697
2.500
2. 292
0.601
4. 143
0.722
0.705
2.491
3. 200
2.546
2. 263
3.025
1 .096
ASTM *2 OIL
2.286
1 .200
0.640
1 .072
1 .000
ASTM #2 OIL
1 .880
1 .361
9.361
1 .228
1 .086
4.400
2.000
2.010
1 .900
3. 224
1 .036
0.796
3.640
0.800
0.912
NUMBER
EAB
M
SATURATED
5
5
5
5
5
SATURATED
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
M
50°C
14.283
14.290
33.520
20.000
10.801
23°C
18.564
27.944
5.058
7.704
25.225
72.3,56
15.4^34
7.600
21.171
1 1 .957
52.000
12.9.33
59. 126
8. 157
35.696
100.0% 50°C
5
5
5
5
5
19.955
7.500
7.500
8.273
9.637
100.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
29.332
18. 140
16.431
1 1 . 242
15.340
25.000
10.000
1 7. 220
20.836
22.444
6.693
56.254
7.310
7.086
6.912
NUMBER
EAB
T
STD
DEV
EAB
T
16.046
15.083
10.007
20.000
14.783
23.833
7.500
7.000
18.660
13.776
16.142
9.080
69.747
11.242
15.612
35.000
7.500
9.581
10.600
24.861
7 . 276
7 .470
26.863
7.403
6.912
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.338
0.624
0.334
0. 100
0.248
1 . 103
0.220
0.110
0.669
5.980
11.010
8.418
0.459
3.310
7. 122
0.700
0.200
0.990
1 .850
6.334
1 .284
0.243
0.303
0.219
0.510
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.518
0.765
0.515
0.300
0.348
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
10.
25.
18.
24.
21 .
1 1 .
12.
9.
15.
1 1 .
28.
10.
9.
3.
7.
980
976
360
241
071
819
390
885
382
068
000
010
564
425
155
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
195
495
197
162
432
838
161
467
242
968
300
531
283
303
127
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
. 151
.717
.246
.409
.272
.453
.291
.617
.217
.225
.300
.395
.228
.219
.259
0.305
0.290
0.280
0.825
0.931
0.483
8 .882
0.433
3.310
0.353
0. 250
0.110
0.990
1 . 273
0.540
0.960
0.230
0.363
0.415
0.510
-------
ETHYLENE PROPYLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NUMBER
BF
M
STD
DEV
BF
M
STD
DEV
EAB
M
NUMBER
EAB
T
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
EH01PH1 1
EH07PH1 7
EH14PH1 14
EH28PH1 28
EH56PH1 56
5
5
5
5
5
3.460
1 .330'
2.010
2. 159
3.518
5
5
5
5
5
4. 100
2.340
1 . 140
2.802
3.110
5
5
5
5
5
12.220
9.630
18.200
5. 196
21 .932
5
5
5
5
5
19.590
1 1 .440
19.240
12.007
7.050
5
5
5
5
5
0.250
0.340
0. 120
0.216
0.151
5
5
5
5
5
0.050
0. 170
0.290
0. 129
0.251
EL01PH3
EL01PH1
EL01 PH2
EL07PH2
EL07PH3
EL07PH1
EL14PH1
EL14PH3
EL14PH2
EL28PH3
EL28PH1
EL28PH2
EL56PH1
EL56PH2
EL56PH3
1
1
1
7
7
7
14
14
14
28
28
28
56
56
56
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
0
0
2
1
2
1
1
1
3
9
1
3
1
2
.393
.818
.748
.039
.059
.820
. 130
.929
.425
.410
.378
.714
.673
.274
.020
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
1
0
1
1
4
1
1
1
2
7
3
2
2
1
.082
.697
.909
.551
.055
.300
.910
.675
.808
.670
.919
.024
.346
.397
.640
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8
6
1 1
7
8
17
15
12
13
14
25
14
16
20
26
.662
. 124
.726
.510
.433
.530
.680
.859
.595
.714
.137
.•127
.030
.968
.650
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
7
1 1
15
12
9
8
24
8
14
13
12
34
8
1 1
17
.360
. 155
.999
.034
.373
.550
.360
.932
.448
.865
.742
.615
.248
.035
.450
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
168
204
191
281
1 17
157
151
095
1 18
141
238
214
268
384
294
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.433
0. 188
0. 149
0. 163
0.231
0. 276
0. 180
0.269
0.341
0. 186
0.266
0. 180
0. 170
0.151
0.278
EH01PL1
EH07PL1
EH14PL1
EH28PL1
EH56PL1
1
7
14
28
56
2.900
4.313
0.445
3.272
2.455
5
5
5
5
5
13,
12.
17,
41 ,
7.
.420
.402
.280
.967
.379
5
5
5
5
5
15,
13,
26,
15.
14,
.320
.984
.480
.721
.610
5
5
5
5
5
0.
0.
0.
0.
0.
103
167
270
131
167
5
5
5
5
5
0
0
0
0
0
.110
.228
.450
. 176
.453
EL01PL1
EL01PL3
EL01PL2
EL07PL2
EL07PL1
EL07PL3
EL14PL2
EL14PL1
EL14PL3
EL28PL2
EL28PL3
EL2BPL1
1
1
1
7
7
7
14
14
14
28
28
28
5
5
5
5
5
5
5
5
5
5
5
5
5
2
1 1
2
4
1
3
7
0
1
1
1
.900
.717
.472
.701
.860
. 182
.684
.870
.777
.762
.232
. 350
5
5
5
5
5
5
5
5
5
5
5
5
2,
2,
13,
1 .
5,
2.
2.
3,
2
1
2
3
.891
.565
.325
.922
. 130
.288
.027
.010
.524
.407
. 203
.501
5
5
5
5
5
5
5
5
5
5
5
5
41
10
34
31
10
20
28
20
20
20
17
18
.600
.296
. 133
.784
.810
.576
.212
.920
.453
.543
.935
. 277
5
5
5
5
5
5
5
5
5
5
5
5
4.
12.
40.
22.
8.
8.
19.
6.
34.
18.
6.
4O.
889
322
608
673
970
207
745
000
1 1 1
585
344
166
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
250
134
144
237
148
315
221
320
199
290
165
238
5
5
5
5
5
5
5
5
5
5
5
5
0.203
0.280
0.314
0.250
0. 140
0.076
0. 279
0. 390
0. 1 68
0. 147
0. 1 33
0. 145
-------
ETHYLENE PROPVLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
CO
Ln
EL56PL3 56
EL56PL1 56
EL56PL2 56
EH01PM1 1
EH07PM1 7
EH14PM1 14
EH28PM1 28
EH56PM1 56
EL01PM1 1
EL01PM2 1
EL01PM3 1
EL07PM1 7
EL07PM3 7
EL07PM2 7
EL14PM2 14
EL14PM1 14
EL14PM3 14
EL28PM2 28
EL28PM3 28
EL28PM1 28
EL56PM3 56
EL56PM2 56
EL56PM1 56
EH01SH1
EH07SH1
EH14SH1
EH28SH1
EH56SH1
EL01SH1
EL01SH2
EL01SH3
EL07SH1
EL07SH3
EL07SH2
EL14SH3
EL14SH2
1
7
14
28
56
1
1
1
7
7
7
14
14
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
0.994
1 .943
0.673
1 .690
1 .281
2.050
0.936
0.681
3.023
1 .333
4. 135
4.280
1 .400
2.710
0.370
2.096
2.610
2. 175
1 .047
3.681
1 . 290
1 .830
1 .708
4.307
1 . 222
3.800
1 .725
1 .763
1 .020
4.400
3.600
2 . 239
3. 227
6.565
3.367
2.693
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
PHENOL 1 .
3.510
3.626
3.460
PHENOL 4.
1 .420
1 .426
2. 150
1.411
2.484
PHENOL 4.
3.324
1 .395
3.825
4.690
2.330
2.078
1 .001
2.690
3.404
3.273
3. 189
4. 267
1 .080
1 .230
0. 441
NUMBER
EAB
M
.0% 23°C
5
5
5
. 0% 50°C
5
5
5
5
5
. 0% 23°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
SODIUM CHLORIDE 35.
5
5
5
5
5
2.113
0.788
3.990
2.694
2.528
5
5
5
5
5
SODIUM CHLORIDE 35.
5
5
5
5
5
5
5
5
1 . 234
4.400
1 .600
0.947
2.922
4.998
2.752
1 . 241
5
5
5
5
5
5
5
5
STD
DEV
EAB
M
1 1 .990
10.916
10.710
6.460
21 .376
10.480
8. 132
16.861
J
21 .264
9.907
15.816
26.890
16.600
15.380
24.410
13.470
36.585
19. 139
11.618
30.421
15.390
1 1 .450
14.356
. 0% 50°C
20.332
17.010
35.000
17. 100
9.721
.0% 23°C
12.329
28.000
28.000
8.023
10.479
40.805
10.989
28.052
NUMBER
EAB
T
STD
DEV
EAB
T
17.730
15.806
18.660
19.460
21.247
14.690
15.212
1 2.342
20.400
10.384
6.996
35.100
10.740
16.616
20.560
7.660
12.049
25.599
8.609
40.393
10.150
14.520
8.213
13.413
6.850
7.660
18.620
1 1 .678
17.926
7.500
20.000
10.606
8 . 147
27.284
22.197
18.930
NUMBER
TEAR
M
STD
DEV
TEAR
M
0. 159
0.397
0. 102
0. 180
0. 173
0.210
0.251
0. 106
0.320
0. 250
0.228
0.348
0. 166
0. 290
0. 250
0.310
0.256
0.204
0.090
0. 135
0.257
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 275
0.208
0.340
0.203
0.244
0.280
0. 130
0.101
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.057
.422
.41 1
. 130
, 102
, 165
. 103
233
158
181
295
267
307
230
227
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
200
093
469
212
163
232
054
290
270
208
157
105
070
220
131
0.089
0. 170
0.670
0.415
0.499
0.478
0. 250
0.200
0. 225
0. 280
0. 257
0.023
0.572
-------
ETHYLENE PROPYLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
Co
U)
EL14SH1 14
EL28SH2 28
EL28SH3 28
EL28SH1 28
EL56SH3 56
EL56SH2 56
EL56SH1 56
EH01 SM1
EH07SM1
EH14SM1
EH28SM1
EH56SM1
EH01WP1
EH07WP1
EH14WP1
EH28WP1
EH56WP1
1
7
14
28
61
EL01SM1
EL01SM3
EL01SM2
EL07SM1
EL07SM3
EL07SM2
EL14SM1
EL14SM3
EL14SM2
EL28SM3 28
EL28SM2 28
EL28SM1 28
EL56SM3 56
EL56SM2 56
EL56SM1 61
1
1
1
7
7
7
14
15
15
1
7
14
28
56
EL01WP1 1
EL01WP2 1
EL01WP3 1
EL07WP1 7
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
5
5
STD
DEV
BF
M
3.061
3.325
3.030
0.997
*
2.000
3.479
2.090
1 .260
1 .040
2.220
1 . 185
1 .210
1.310
1 .840
1 .530
1 .380
1 .340
0.440
1 .580
0.630
1 .540
2. 150
1 .430
1 .380
1 .993
0.710
1 .850
2.400
1.410
1 .070
1 .040
1 .040
1 .730
2.22O
1 .540
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
5
5
5
5
5
5
STD
DEV NUMBER
BF EAB
T M
SODIUM CHLORIDE 35
0.457 5
5.790 5
3.329 5
1 .354 5
1.600 2
4.000 5
1 . 150 5
SODIUM CHLORIDE 10,
1 . 190 5
1 .950 5
2.220 5
1 .070 5
2. 190 5
SODIUM CHLORIDE 10,
1.660 5
0.880 5
2.160 5
2.230 5
1 420 5
0.690 5
1 .040 5
0.780 5
1 . 180 5
0.720 5
2.490 5
1 .320 5
1 . 130 5
0.440 5
3. 180 5
WATER 100.0% 50°C
0.980 5
1 .260 5
3.000 7
1 .660 5
1.660 5
WATER 100.0% 23°C
12.980 5
1 .640 6
1 .040 5
1 .390 5
STD
DEV
EAB
M
.0% 23°C
44 . 03 1
10. 157
25.617
6.225
'*
40.000
14.651
. 0% 50°C
20.430
8.830
12.700
10.280
13.847
. 0% 23°C
6.060
1 1 .490
14.640
23.440
19.910
12.390
5.700
10.220
6.570
13.470
19.300
15.000
5.830
12.450
6.020
13.800
27.000
14.;100
8.680
10.620
(
2.290
9J250
8. !490
2O.,6OO
NUMBER
EAB
T
STD
DEV
EAB
T
5.205
16.770
19.067
23.805
20.000
20.000
16.610
******
19.700
10.930
17.060
19.230
7.600
18.430
17.190
10.970
12.230
23.400
7.070
10.800
12.770
******
10.830
6.900
5. 151
19.720
13.020
14.600
30.900
27.090
18.070
19.290
9.460
66.7BO
7.900
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
STD
DEV
TEAR
T
5
5
5
5
5
5
5
0. 196
0. 104
0.236
0.231
0.900
0.550
0.437
5
5
5
6
5
5
5
0.592
0.273
0.222
0.295
0.290
0.250
0.346
5
5
5
5
0.200
0.510
0. 1 15
0. 170
0.303
0.415
0.330
0. 140
0.244
0.390
0.460
0. 297
0.52O
O. 3OO
5
5
5
S
0. 170
0.510
0. 180
0.360
0.268
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.228
.240
. 170
.320
.620
.250
.270
.250
.449
.220
.334
.240
.434
.817
.090
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.363
0.380
0.320
0.790
0.500
0.390
0.370
0.710
0.237
0.300
0.141
0.360
0.832
0.477
0.420
0.400
0.261
0. 180
0.220
0.330
0.660
0.46O
O. 30O
O. 36O
-------
ETHVLENE PROPYLENE DIENE MONOMER:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
EL07WP3 7
EL07WP2 7
EL14WP3 14
EL14WP1 14
EL14WP2 14
EL28WP2 28
EL28WP3 28
EL28WP1 28
EL56WP1 56
EL56WP2 56
EL56WP3 56
EH01XM1 1
EH07XM1 7
EH14XM1 14
EH28XM1 28
EH56XM1 56
EL01XM3 1
EL01XM2 1
EL01XM1 1
EL07XM3 7
EL07XM1 7
EL07XM2 7
EL14XM1 14
EL14XM3 14
EL14XM2 14
EL28XM2 28
EL28XM1 28
EL28XM3 28
EL56XM3 56
EL56XM2 56
EL56XM1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
2.370
1 .820
1 .450
1 .200
1 .540
1 .750
1 .040
0.910
1 .340
4.800
2.360
2.714
6.111
0.359
2.371
1 .599
1 .350
4.453
3.730
2. 103
7.397
4.330
3.752
3.996
4.716
4. 1 24
2. 281
1 .806
1 .559
1 .992
2.217
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
4
5
5
5
STD
DEV
BF
T
WATER 100
1 .450
1 .870
2.590
1 .900
1 .450
1 .560
0.911
2.370
1 .660
2. 160
1 .580
POTASSIUM
1.210
8.709
2.254
1 .385
2.523
POTASSIUM
3.297
1 .952
1 .540
1 .802
6.931
4.564
1 .069
6. 124
7.783
1 .888
2.051
1 .274
3.204
2.413
0.633
NUMBER
EAB
M
.0% 23°C
5
5
5
5
5
5
5
5
5
5
5
DICHROMATE
5
5
5 .
5
5
DICHROMATE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
25
16
13
21
14
17
1 1
1 1
22
25
12
10
26
26
9
20
23
10
5
46
28
12
10
17
28
15
8
30
17
42
13
24
64
STD
DEV
EAB
M
.200
.500
.770
.000
. 260
.300
.500
.990
.110
.950
.590
.0%
.863
.658
.394
.809
. 146
.0%
.725
.663
.117
.963
.334
.860
.968
.224
.661
.853
.881
.674
.314
.178
.423
NUMBER
EAB
T
50°C
23°C
5
5
5
5
'5
5
5
5
5
4
5
4
5
5
5
STD
DEV
EAB
T
14.900
11.200
19.890
20.000
*
11.100
5.700
19.630
29.530
9.700
9.000
16.250
4.438
12.208
18.004
26.436
19.307
8.201
85.812
19.968
18.201
26.171
7 .227
31.141
11.561
21.086
15.393
9.404
25.272
22.213
6.924
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
.228
.220
.430
. 130
.390
.370
. 167
.520
.370
.780
.590
5
5
5
5
5
5
5
5
5
5
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
240
550
456
200
680
300
390
170
400
490
020
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0. 184
0.212
0.485
0.333
0.075
0.468
0.393
0. 184
0.430
0.821
0.313
0.486
0.121
0.236
0. 104
0.420
0. 109
0. 180
0.249
0.072
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0.065
0.089
0.419
0.362
0.221
0.384
0. 168
0. 130
0.305
0.092
0.305
0.603
0.234
0.443
0.152
0. 193
0.349
0.252
0.117
0.079
-------
EPDM : RETENTION OF PROPERTIES
338
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
EH01AM1
EH07AM1
EH14AM1
EH28AM1
EH99AM1
EH56AM1
EH99AM2
EH99AM3
EH99AM4
EH99AM5
EH99AM6
EH99AM7
EL01AM2
EL01AM1
EL01AM3
EL07AM1
EL07AM3
EL07AM2
EL14AM3
EL14AM1
EL14AM2
EL28AM1
EL28AM2
EL28AM3
EL99AM1
EL56AM2
EL56AM1
EL56AM3
EL99AM2
EL99AM3
EL99AM4
EL99AM5
EL99AM6
EL99AM7
EH01BM1
EH07BM1
EH14BM1
EH28BM1
EH99BM1
EH56BM1
1
7
14
27
28
56
144
252
368
51 1
621
741
1
1
1
7
7
7
14
14
14
27
27
27
28
56
56
56
144
238
368
51 1
621
736
1
7
14
28
29
56
1 .
4.
6.
8.
12.
16.
48.
79.
93.
112.
118.
106.
2.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
2.
2.
2.
2.
4.
4.
5.
.
1 .
8
9
7
3
1
1
8
3
3
5
3
0
4
7
6
0
9
2
8
4
1
1
3
6
7
9
6
5
1
1
9
6
3
0
3
3
7
1
6
4
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
fENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
1 .4
3.3
3.7
5.4
7.2
9. 1
18.4
24.7
27.9
31.6
32.8
32. 1
.5
.3
1 .2
.4
.3
.4
.6
.3
*
.7
.9
*
*
1 .9
1 . 2
1 .9
.5
.5
.9
1 .6
1 .4
2.5
.4
.3
*
.3
. 2
*
PERCENT PERCENT
PERCENT RETENTION RETENTION
VOLUME TENSILE fENSILE
CHANGE
HYDROCHLORIC
1 .8
6. 2
6.8
9.0
14.4
19.3
53.3
90. 1
100.9
122.9
132.8
118.9
HYDROCHLORIC
.4
.3
1 .5
.3
.3
.6
1 .2
.3
.9
.3
.6
.7
.5
3.0
3. 1
3.2
1 .6
1 .9
2. 2
3.6
4. 2
5.5
M
ACID
132
1 14
1 1 1
101
*
90
*
*
*
*
*
50
ACID
87
*
137
79
97
97
120
152
130
*
*
*
*
105
88
100
*
*
*
*
*
98
SODIUM HYDROXIDE
.7
*
. 1
.6
.3
.4
106
109
98
107
*
1 14
T
10.0% 50°C
140
1 18
104
106
*
94
*
*
*
*
*
*
10.0% 23°C
92
*
107
88
131
80
151
153
133
#
*
*
*
96
93
106
*
*
*
*
*
*
10.0% 50°C
101
108
106
102
*
1 19
124
1 10
105
91
*
85
29
1 13
108
109
1 19
1 12
1 10
102
120
104
1 10
108
106
*
109
108
107
91
108
1 15
105
107
*
1 1 1
1 13
106
100
95
*
80
*
107
95
1 10
100
108
108
109
1 13
107
1 10
1 13
1 15
*
102
98
106
*
*
*
*
*
*
1 1 1
108
106
101
*
108
105
102
84
90
*
85
*
t
4
71
*
108
74
104
93
121
143
129
*
*
*
*
101
94
106
1 1 1
103
88
96
*
101
*
*
*
*
*
*
82
*
101
73
120
77
138
144
126
*
*
*
*
82
92
96
*
85
90
94
88
*
82
83
86
106
80
*
93
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EH99BM2
EH99BM3
EH99BM4
EH99BM5
EH99BM6
EH99BM7
EL01BM3
EL01BM1
EL01BM2
EL07BM3
EL07BM2
EL07BM1
EL14BM2
(_0 EL14BM1
•P- EL14BM3
0 EL28BM2
EL99BM1
EL28BM1
EL28BM3
EL56BM3
EL56BM1
EL56BM2
EL99BM2
EL99BM3
EL99BM4
EL99BM5
EL99BM6
EL99BM7
EH01DH1
EH07DH1
EH14DH1
EH99DH1
EH2BDH1
EH56DH1
EH99DH2
EH99DH3
EH99DH4
EH99DH5
EH99DH6
EH99DH7
144
252
368
510
622
741
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
144
238
368
510
622
736
1
7
14
28
28
56
133
244
364
495
629
734
.4
.5
.9
.7
.4
2.7
.2
. 1
.2
.4
.2
*
.4
.3
.0
.2
.9
.4
.4
.8
.6
.3
.6
.2
.2
.4
.2
*
8.3
8.2
10.0
6. 1
9.7
7.5
5.6
12.9
.5
. 2
.2
.2
.2
1 .4
.7
.5
*
.8
*
.9
.5
.2
.6
.2
.3
*
.3
.3
.2
.7
.7
.7
.7
.9
.5
10.7
10.5
12.5
9.9
2.0
1 .8
2.3
3.8
2.4
2. 1
3. 1
4.5
4.9
5 .6
6. 3
6. 1
PERCENT
VOLUME
CHANGE
SODIUM
.9
.4
.7
.9
*
1 .2
SODIUM
*
.5
.7
. 1
1 . 1
.6
1 .0
. 2
.3
.7
.2
*
*
.6
.5
. 1
.6
*
.5
.6
.8
.3
PERCENT
RETENTION
TENSILE
M
HYDROXIDE 10.0%
*
*
*
*
*
1 17
HYDROXIDE 10.0%
96
1 1 1
95
99
103
107
96
105
97
105
*
1 10
103
96
100
96
*
*
*
*
*
102
1 2 DICHLOROETHANE .8%
5.7
5.0
5.8
6.6
6.7
6. 1
5.7
8.9
12.1
11.8
12.7
12.8
92
90
89
*
95
91
*
*
*
*
*
88
PERCENT
RETENTION
TENSILE
T
50°C
*
*
*
*
*
*
23°C
105
102
109
105
105
1 1 1
101
1 1 1
102
1 1 1
*
136
1 1 1
100
1 16
109
*
*
*
*
*
*
50°C
97
94
92
*
93
97
*
*
*
*
*
*
*
95
107
108
101
1 14
1 14
1 12
1 10
1 10
109
120
*
1 10
1 13
124
124
1 18
*
*
*
*
*
95
102
109
1 18
*
107
109
1OO
104
107
108
1 15
104
108
102
108
1 13
103
*
97
108
1 12
1 10
*
*
*
*
*
*
*
98
104
1 17
*
103
109
89
88
94
86
90
88
90
80
81
89
*
81
91
81
91
94
*
89
84
84
*
75
97
84
77
88
85
81
91
83
100
81
87
*
102
99
75
94
94
84
78
72
*
77
80
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
1 2 DICHLOROETHANE
EL01DH3
EL01DH2
EL01DH1
EL07DH1
EL07DH2
EL07DH3
EL14DH2
EL14DH1
EL14DH3
EL28DH1
EL28DH2
EL28DH3
EL99DH1
EL56DH1
EL56DH2
EL56DH3
EL99DH2
EL99DH3
EL990H4
EL99DH5
EL99DH6
EL99DH7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
134
231
364
495
630
729
5.3
4.7
7. 1
6.5
5.3
4.3
7.2
9.0
8.9
9.4
7.4
6.0
3.0
4.4
7.4
7.9
6.4
4.6
5.0
4.7
6.5
7. 1
EH01DL1
EH07DL1
EH14DL1
EH28DL1
EH99DL1
EH56DL1
EH99DL2
EH99DL3
EH99DL4
EH99DL5
EH99DL6
EH99DL7
EL01DL3
EL01DL2
EL01DL1
EL07DL1
EL07DL2
EL07DL3
1
7
14
28
28
56
139
246
366
496
631
736
1 . 1
2. 2
3. 1
3. 1
2.2
2.5
3.5
5.2
5.4
5.5
5.9
5.5
1 . 1
1 .3
.9
1 .4
1 .7
1 . 7
.5
.3
.9
1 .6
.7
.8
1 .5
1 .8
2.3
3.2
2.4
2. 2
.2
1 . 2
1 .6
2. 1
1 .0
2.0
6.2
.7
9.5
2.5
.3
*
.8
2.0
.8
1 . 1
2.3
1 .8
2.5
3.2
2.7
*
.3
.5
.6
.8
*
2
1
3
3
2
2
4
5
5
7
5
5
5
3
4
5
3
6
3
2
12
6
1
1
1
2
1
2
4
4
6
5
5
1
.0
.4
. 1
.8
.2
. 2
.5
.6
. 1
.5
.4
. 1
. 1
.5
.6
.0
.2
.5
.6
.9
.2
.5
2
.6
.0
. 7
.2
.8
.5
.3
.8
.6
.0
.3
.8
2
.5
.4
.3
. 7
. 7
4
94
99
95
93
91
91
93
90
94
91
91
90
*
86
91
90
*
*
*
*
*
1 15
DICHLOROETHANE
94
95
93
98
*
89
*
*
*
*
*
107
DICHLOROETHANE
94
99
96
94
92
92
.8% 23°C
99
98
94
93
98
*
98
91
94
94
94
98
+
98
93
90
1% 50°C
98
95
94
94
*
90
1% 23°C
98
100
98
93
98
95
103
1 14
106
1 15
1 15
123
108
*
1 10
107
106
103
*
98
108
107
91
104
107
*
107
*
103
*
*
96
106
106
102
108
107
108
96
100
97
104
109
*
103
*
108
99
101
97
*
103
100
101
*
*
98
101
*
99
*
97
*
*
*
*
100
101
100
100
102
1 1 1
88
84
91
86
83
93
77
80
82
75
85
98
*
93
80
73
88
80
80
77
*
93
*
85
86
76
80
77
82
75
75
72
74
74
68
*
82
76
84
86
83
85
76
*
83
*
*
*
91
89
93
85
87
88
80
81
84
81
81
82
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
1 2 DICHLOROETHANE
EL14DL1
EL14DL2
EL14DL3
EL28DL1
EL28DL3
EL99DL1
EL28DL2
EL56DL2
EL56DL3
EL56DL1
EL99DL2
EL99DL3
EL99DL4
EL99DL5
EL99DL6
EL99DL7
U)
-P-
ho
EH01DM1
EH07DM1
EH14DM1
EH28DM1
EH99DM1
EH56DM1
EH99DM3
EH99DM4
EH99DM5
EH99DM6
EH99DM7
14
14
14
28
28
28
28
56
56
56
136
233
366
496
632
731
1
7
14
28
28
56
245
365
496
630
735
1
1
1
1
1
1
1
2
1
1
2
1
1
2
2
1
4
3
5
6
4
4
9
7
8
9
9
.7
.8
.4
.7
.7
. 1
.5
.0
.6
.4
.0
.7
. 7
.0
.5
.6
.7
.9
.5
.8
.7
. 2
.5
.9
.4
.8
.9
EL01DM3 1
EL01DM2 1
EL01DM1 1
EL07DM2 7
EL07DM3 7
EL07DM1 7
EL14DM3 14
EL14DM2 14
EL14DM1
EL28DM1
EL99DM1 28
EL28DM2 28
EL28DM3 28
EL56DM3 56
14
28
3.9
4.2
5.9
4.0
3.2
4.5
4.9
4.9
4.7
3.8
2.8
4.0
3.3
3 .7
.3
.2
*
.3
.5
1 . 1
.5
.6
.6
.3
.9
.4
. 7
.4
.7
.2
.9
.8
1 .2
1 .7
1 .2
2.0
2.8
3.0
2.8
3.9
3.7
.8
.3
1 .5
.3
2.5
.5
.6
1 .3
1 .0
.7
.5
.2
1 . 2
1 .5
.5 95
.4
.3
*
.8
.8
.5
1 .0
1 .0
.5
.2
1 .2
.3
.2
.3
1 .4
1 2
2.6
2.0
1 .8
4.5
2.9
3. 1
7.2
7.5
7.3
8.9
9.4
1 2
2. 1
1 .5
3.8
1 .2
3.7
2.6
1 .6
2. 7
1 .6
2.5
1 .3
.9
1 .8
2 . 2
92
98
96
96
*
95
86
95
91
*
*
*
*
*
100
DICHLOROETHANE
96
89
95
92
*
96
*
*
*
*
97
DICHLOROETHANE
94
96
92
88
90
90
95
92
92
87
*
92
92
93
23UC
1 96
96
94
95
98
*
96
90
96
97
*
*
*
*
*
.5% 50°C
98
94
93
95
*
94
*
*
*
.5% 23°C
98
98
90
91
97
89
99
100
99
91
*
94
95
95
*
1 12
121
108
103
*
102
107
107
105
*
108
108
1 10
122
1 10
*
108
* '
*
*
*
88
1 17
1 1 1
102
103
102
103
107
107
*
105
*
105
107
1O4
106
104
101
98
*
101
1 10
99
102
*
*
*
*
103
108
*
105
*
99
*
*
*
*
1 12
103
95
102
100
98
101
102
*
108
*
99
101
99
90
87
84
78
90
*
87
82
86
90
*
88
87
72
87
*
88
95
94
86
83
85
84
83
85
86
84
*
88
SB
82
80
79
97
79
86
*
82
80
79
85
83
73
88
72
*
87
83
85
87
80
78
83
78
75
73
71
*
86
83
76
-------
ETHVLENE PROPVLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
EL56DM2
EL56DM1
EL99DM2
EL99DM3
EL990M4
EL99DM5
EL99DM6
EL99DM7
56
56
135
233
365
496
631
730
ELO1FH3
EL01FH2
EL01FH1
EL07FH2
EL07FH3
EL07FH1
EL14FH1
EL14FH3
EL14FH2
EL28FH1
EL28FH3
EL99FH1
EL28FH2
EL56FH1
EL56FH2
EL56FH3
EL99FH2
EL99FH3
EL99FH4
EL99FH5
EL99FH6
EL99FH7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
1 1 7
219
350
485
617
716
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
3. 1
4.0
3.4
2.5
2.2
2.5
3.5
5.3
u>
.e-
U)
EH01FH1
EH07FH1
EH14FH1
EH28FH1
EH99FH1
EH56FH1
EH99FH2
EH99FH3
EH99FH4
EH99FH5
EH99FH6
EH99FH7
1
7
14
28
28
56
1 17
236
350
485
616
721
3
3
5
1
5
14
45
61
68
82
90
.8
.6
.6
.4
.8
.0
.7
.7
.8
.5
.7
.9
. 1
.3
1 .7
1 .9
2.0
2.4
2.4
2.3
3.0
2.8
6.5
2.9
3.3
3.4
3.5
9.8
18.2
32.2
27.7
41.2
48.3
1 .6
1 .5
. 2
.5
. 2
.7
.7
.9
.2
1 .0
1 .3
2. 1
3.2
10.0
21 .9
28.8
28.5
33.9
38.2
1 .0
.5
.3
.3
.5
.8
. 2
.5
.5
.9
1 .3
.8
.3
1 . 2
1 .8
2. 2
7. 1
11.0
10.7
15.1
17.6
1 2 DICHLOROETHANE .5% 23°C
2.4
2.8
1 .6
2.2
2.5
1 .9
1 .8
3. 1
FURFURAL
.8
2.6
3.5
4.4
2.5
5. 2
21.6
55.7
80.4
111.0
102. 1
112.3
94
93
102
8.0% 50°C
97
95
91
96
*
93
*
*
*
71
FURFURAL 8.0% 23°C
1 .8
.8
. 1
1 .0
1 .4
2.0
.9
1 . 7
1 .8
2. 2
3.3
1 . 7
2.9
.8
2.5
3. 2
5.4
17.0
30.0
25. 1
38 .0
45.4
96
94
95
95
93
94
91
90
91
94
91
*
97
93
95
95
*
85
98
95
98
106
93
94
*
99
95
99
100
98
95
99
96
99
98
101
97
*
96
98
98
94
*
103
100
108
1 1 1
126
1 16
1 14
1 15
42
1 1 1
1 14
1 1 1
121
1 13
1 16
1 17
1 10
1 18
120
1 17
*
1 16
1 18
1 16
125
*
*
*
66
100
97
100
122
1 15
106
*
120
*
*
*
*
*
103
108
105
106
1 1 1
1 14
1 16
1 10
1 1 7
1 12
1 14
*
1 16
1 12
1 17
1 1 1
81
85
128
109
81
84
*
84
1 10
1 12
1 20
100
104
101
86
91
81
92
88
*
83
90
82
95
*
80
81
121
92
92
90
*
83
*
*
*
*
*
*
127
124
153
97
108
105
82
76
83
84
79
*
80
79
86
86
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
FURFURAL 1.0% 50"C
EH01FL1
EH07FL1
EH14FL1
EH28FL1
EH99FL1
EH56FL1
EH99FL2
EH99FL3
EH99FL4
EH99FL5
EH99FL6
EH99FL7
1
7
14
28
28
56
123
241
355
489
621
726
1 .
1 .
1 .
1 .
3.
3.
1 1 .
1 1 .
13.
16.
16.
7
4
6
9
6
2
4
4
4
7
3
7
.5
.8
.7
1 .3
1 . 1
1 .5
.8
5.5
5.8
4.7
7.4
8.0
.5
1 .5
1 .3
2.0
1 .8
2.4
2.9
1 1 .9
13.1
13.7
17.0
18.3
98
99
96
95
96
*
*
*
*
103
99
97
94
99
*
96
*
*
*
*
1 13
128
1 17
1 18
*
1 18
82
104
1 16
1 13
1 17
*
1 10
125
100
86
88
*
93
*
*
*
*
*
98
107
101
88
*
80
FURFURAL 1.1
23°C
EL01FL2
EL01FL3
EL01FL1
EL07FL2
EL07FL3
EL07FL1
EL14FL3
EL14FL2
EL14FL1
EL28FL2
EL28FL3
EL99FL1
EL28FL1
EL56FL3
EL56FL2
EL56FL1
EL99FL2
EL99FL3
EL99FL4
EL99FL5
EL99FL6
EL99FL7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
123
224
355
489
622
721
1 .
1 .
1 .
1 .
1 .
2.
1 .
1 .
1 .
1 .
1 .
1 .
2.
2.
3.
2.
4
4
3
9
2
9
6
0
0
5
2
7
1
3
8
5
1
9
1
1
1
7
EH01FM1 1
EH07FM1 7
EH14FM1
EH28FM1 28
EH99FM1 29
EH56FM1 56
14
2.0
2.5
2. 7
3.4
1 .9
4.6
.3
1 .0
.5
.2
*
.3
.3
.3
. 2
.5
*
.7
.3
.3
.3
.5
.5
1 .4
1 . 1
.7
1 .4
.5
.5
.8
.5
1 .3
1 .3
2. 2
.3
1 .0
.7
.5
*
. 1
.4
. 1
.6
.5
*
1 .0
.6
.6
.7
.5
1 .2
2.9
2.8
1 . 1
2.9
2.3
FURFURAL
1 .7
1 .5
1 .4
2.7
2 .7
3.2
100
97
95
98
95
96
95
97
93
96
94
96
91
93
95
*
*
95
4.0% 50°C
97
97
93
89
*
94
101
95
101
101
101
101
100
97
99
97
94
*
101
99
97
98
96
97
95
98
*
96
101
99
106
121
1 18
128
121
120
1 14
1 13
108
*
1 18
102
1 13
121
*
*
*
*
*
93
1 15
127
1 18
1 1 7
*
1 2O
1 12
108
104
1 18
1 15
1 10
106
1 15
1 14
107
104
*
1 16
109
1 10
1 12
*
*
*
*
105
1 15
1 14
1 17
*
1 14
133
106
1 15
104
100
109
98
88
100
80
78
*
85
94
89
92
*
*
*
*
*
1 15
105
97
87
*
9O
144
135
163
97
108
95
87
94
90
85
85
*
88
87
79
84
*
*
*
145
97
97
84
*
84
-------
ETHVLENE PROPVLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
FURFURAL 4.0% 50°C
l_n
EH99FM2
EH99FM3
EH99FM4
EH99FM5
EH99FM6
EH99FM7
EL01FM1
EL01FM3
EL01FM2
EL07FM1
EL07FM2
EL07FM3
EL14FM1
EL14FM2
EL14FM3
EL28FM1
EL28FM3
EL28FM2
EL99FM1
EL56FM1
EL56FM2
EL56FM3
EL99FM2
EL99FM3
EL99FM4
EL99FM5
EL99FM6
EL99FM7
EH01MH1
EH07MH1
EH14MH1
EH28MH1
EH99MH1
EH56MH1
EH99MH2
EH99MH3
EH99MH4
EH99MH5
EH99MH6
EH99MH7
124
242
356
490
622
727
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
124
228
356
490
623
722
1
7
14
28
28
57
1 15
240
358
494
626
730
2.9
9.8
12.3
14.8
19. 1
21 . 1
.9
*
*
2. 1
2.9
2.8
2.2
2. 2
3.4
2.8
2.6
2.9
3.3
4. 2
4.9
6. 1
6.4
6. 1
9.2
9.9
9.0
8.4
11.5
10.4
10.3
9.6
6.9
8.
2.4
5. 1
6. 1
1 .3
9.3
28.8
.3
1 .5
1 .5
1 . 1
*
.5
.7
.5
. 2
.8
*
.3
.2
.3
1 .0
.7
.5
1 . 1
1
. 7
12.0
1
1 .4
2.5
2.7
2.6
4. 2
4.6
5.3
3.7
6. 1
3.5
4.9
4.2
2.8
3.5
5.3
5.3
10.9
13.4
7.7
21 . 1
44.5
*
*
*
*
102
FURFURAL 4.0% 23°C
20.0
1 .8
1 .9
1 .7
1 .2
1 .0
1 . 1
1 .3
.9
.6
.3
1 . 1
.2
. 7
1 . 2
1 .3
1 .5
3.2
3.5
3.3
5. 1
6.5
94
94
94
98
99
95
94
93
93
92
95
94
*
95
94
90
*
*
*
99
96
101
97
99
101
100
93
97
92
93
94
96
*
97
95
94
METHYL ETHYL KETONE 26.0% 50°C
8.3
10.4
10.8
12.3
8.7
14.2
8 . 1
9.9
9.8
5.3
6.7
11.0
92
88
89
95
*
96
74
92
94
92
99
#
98
79
1 1 1
1 14
1 12
122
1 18
1 15
121
1 12
1 1 1
1 17
120
1 16
*
1 17
121
1 15
101
1 12
106
108
108
*
109
95
102
106
103
1 14
1 14
1 13
1 13
1 15
106
1 13
1 13
107
*
107
1 12
1 15
1 1 1
102
106
108
*
104
*
*
t
*
*
*
1 10
121
1 13
100
103
103
93
83
94
88
83
86
87
85
84
*
*
*
V
*
*
94
108
105
95
*
97
*
133
123
1 18
103
107
98
105
93
87
83
80
82
*
81
84
86
89
103
101
94
+
86
*
*
*
*
*
*
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EL01MH1
EL01MH3
EL01MH2
EL07MH2
EL07MH1
EL07MH3
EL14MH2
EL14MH1
EL14MH3
EL28MH3
EL99MH1
EL28MH2
EL28MH1
EL56MH2
EL56MH1
EL56MH3
EL99MH2
EL99MH3
EL99MH4
EL99MH5
EL99MH6
EL99MH7
1
1
1
7
7
7
14
14
14
28
28
28
28
57
57
57
121
235
358
494
627
725
5
4
4
5
5
6
5
5
6
6
7
6
6
6
7
7
8
4
7
7
8
7
.3
.8
.5
.9
.8
. 1
.7
. 1
. 1
.2
.0
.4
.2
.3
. 1
.6
.6
.0
.4
.5
.8
.8
EH01ML1
EH07ML1
EH14ML1
EH28ML1
EH99ML1
EH56ML1
EH99ML2
EH99ML3
EH99ML4
EH99ML5
EH99ML6
EH99ML7
1
7
14
28
28
57
120
240
358
494
626
730
EL01ML3 1
EL01ML2 1
EL01ML1 1
EL07ML3 7
EL07ML1 7
EL07ML2 7
EL14ML1
14
1 .2
3. 1
3.6
2.6
2.6
2.4
5.3
5.9
6. 1
6.4
6.2
5.8
.6
.8
1 .0
1 . 1
.9
1 . 1
.9
3.0
1 .5
2.3
2. 1
2.7
3. 1
2.3
1 .3
2.9
2.6
12.5
3.0
.5
3.9
3.3
3.7
11.6
13.6
31 .8
12.2
10.8
12.5
.5
*
1 .3
.5
.9
1 .6
.9
1 .8
2.3
1 .8
2.0
2.3
.3
1 .4
.3
. 2
PERCENT
VOLUME
CHANGE
METHYL
8. 1
7.0
6.8
6.4
6.8
7.9
5.9
4.7
7. 1
7.0
17.7
7.9
5.3
8.6
8.5
9. 2
16.5
19.3
37.7
16.2
12.0
16.8
METHYL
1 .0
.8
2.6
1 .6
1 .8
2.2
2.8
4.7
5.6
4.6
5.0
5.0
METHYL
.4
1 .6
. 1
.4
.7
. 2
. 5
PERCENT
RETENTION
TENSILE
M
ETHYL KETONE
89
89
95
92
95
92
93
92
94
93
*
94
93
96
95
93
*
*
*
*
*
103
ETHYL KETONE
95
100
98
94
*
97
*
*
*
*
*
101
ETHYL KETONE
87
99
96
100
96
1O1
97
PERCENT
RETENTION
TENSILE
T
26.0% 23°C
i 94
92
95
96
96
95
95
96
96
97
*
97
95
99
97
96
*
*
*
*
*
*
3.0% 50°C
96
99
102
99
*
102
*
*
*
*
*
*
3.0% 23°C
97
97
101
100
101
1OO
100
109
1 1 1
1 1 1
1 1 1
1 1 1
1 12
109
108
1 14
1 1 1
#
109
1 1 1
1 16
1 16
1 15
*
*
*
*
*
84
108
108
1 15
1 12
*
1 14
*
*
*
93
99
1 12
1 13
1 13
108
1 13
1 1 2
105
108
101
104
103
105
102
105
102
104
*
105
104
107
109
107
*
*
*
1 13
108
1 1 1
1 1 1
*
108
100
101
103
104
105
106
108
87
96
101
1 18
127
1 16
1 13
1 18
1 17
103
*
100
99
104
103
103
*
*
*
*
89
130
128
101
*
1 15
100
91
100
135
134
133
1 29
89
89
91
1 1 1
1 18
1 1 1
103
108
105
92
*
97
95
91
95
97
93
1 16
1 16
98
*
105
*
*
95
101
90
107
1 16
12O
1 27
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
U)
EL14ML2
EL14ML3
EL28ML3
EL28ML2
EL28ML1
EL99ML1
EL56ML1
EL56ML2
EL56ML3
EL99ML2
EL99ML3
EL99ML4
EL99ML5
EL99ML6
EL99ML7
EH01MM1
EH07MM1
EH14MM1
EH99MM1
EH28MM1
EH56MM1
EH99MM2
EH99MM3
EH99MM4
EH99MM5
EH99MM6
EH99MM7
EL01MM2
EL01MM3
EL01MM1
EL07MM2
EL07MM3
EL07MM1
EL14MM1
EL14MM2
EL14MM3
EL28MM2
EL28MM3
EL28MM1
EL99MM1
EL56MM2
14
14
28
28
28
28
57
57
57
120
235
358
494
627
725
1
7
14
28
28
57
120
239
357
493
625
729
1
1
1
7
7
7
14
14
14
28
28
28
28
57
1.1
1.1
1 .4
1 .9
1 .2
1 .0
1 .3
.8
5.7
2.4
1 .7
2. 1
1 .7
2.6
2.3
4. 1
7. 1
4.5
4.4
7.6
6.3
8.4
10.4
9.8
9.2
9.2
10.5
2.8
2.5
2.3
3.5
3.6
3.5
3.4
3.2
2.7
3.0
3.3
2.8
2.6
2.6
.5
.8
. 2
.3
*
*
.8
.0
.3
*
.9
. 2
. 2
.5
.9
2.3
3.0
2.5
3.0
5. 1
4.8
3.4
5.0
4.4
3.7
4. 1
5.0
1 .3
.3
.5
.3
1 .3
1 .6
1 .0
.8
1 .4
1 . 1
1 .0
1 .0
.3
1 .9
METHYL ETHVL KETONE 3.0% 23°C
98
100
100
95
101
*
101
105
99
.7
1 .3
.4
. 1
. 2
.4
1 .2
1 .2
.5
1 .0
2.4
1 .5
.9
1 .3
2.3
METHYL
5.9
6.8
5.2
4.9
10.4
8. 1
7. 1
10.7
10.0
8. 1
8.2
10.6
METHYL
3.3
100.0
3.0
2. 2
3.3
3.9
2.6
2.4
3.0
3. 1
3.5
3 . 1
1 .4
3.6
97
101
93
93
92
*
103
102
99
*
*
*
*
*
100
ETHYL KETONE
93
93
96
*
95
91
*
*
*
*
*
91
ETHYL KETONE
94
92
94
94
*
94
92
95
97
90
93
98
*
98
13.0% 50°C
93
99
98
*
97
101
13.0% 23°C
91
89
96
94
*
98
94
96
97
98
95
101
*
99
1 10
1 1 1
1 1 1
109
105
*
1 10
1 1 1
109
*
*
*
*
*
103
108
1 10
1 13
*
1 10
1 10
*
96
1 10
109
108
1 10
*
108
109
1 13
1 10
1 13
1 1 1
1 15
*
107
106
109
106
104
105
*
105
105
103
*
*
*
*
100
109
102
*
104
109
98
100
106
102
*
107
101
105
101
105
102
108
*
99
126
130
108
105
1 1 1
*
1 16
1 15
1 14
94
121
1 17
*
101
1 15
*
97
*
91
124
126
130
125
134
125
101
102
105
*
1 16
1 15
1 16
97
92
96
*
105
109
105
93
1 13
100
*
89
10O
88
90
92
1 18
1 15
1 12
1 15
1 15
1 17
93
93
95
*
97
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
U>
-P-
00
EL56MM3
EL56MM1
EL99MM2
EL99MM3
EL99MM4
EL99MM5
EL99MM6
EL99MM7
EH010M1
EH070M1
EH140M1
EH990M1
EH280M1
EH560M1
EH990M2
EH990M3
EH990M4
EH990M5
EH990M6
EH990M7
EL010M3
EL010M1
EL010M2
EL070M1
EL070M2
EL070M3
EL140M2
EL140M1
EL140M3
EL280M1
EL280M2
EL280M3
EL990M1
EL560M2
EL560M1
EL560M3
EL99OM2
EL990M3
EL99OM4
EL99OM5
57
57
120
234
357
493
626
724
1
7
14
28
28
56
128
251
364
503
626
736
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
128
237
364
503
1 .8
2.6
3.9
3. 1
4.7
5.2
5.0
5.4
6.7
1 .3
1 .5
15.9
2. 1
5. 1
21.4
31 .7
33.0
35.6
42.2
47.7
.7
10.4
.6
.7
.6
1 .4
.7
.6
1 .8
1 .6
.9
1 .5
7.9
1 .5
2.3
1 .6
14.5
14.5
16.0
27 .8
1 .4
1 .0
.5
1 .6
1 . 1
1 . 1
*
2.2
.3
1 . 1
.2
10.0
*
.5
100.0
18.8
13.2
13.2
21.1
18.8
5.5
.6
.6
.7
.2
.4
.5
.2
*
*
.2
1 .8
.8
.7
1 . 1
4.3
2.2
2. 2
6.5
PERCENT PERCENT
PERCENT RETENTION RETENTION
VOLUME TENSILE TENSILE
CHANGE M T
METHYL ETHYL
2
2
2
5
4
3
1
5
. 1
.7
. 1
.4
.0
.7
.4
.3
ASTM #2 OIL
3
1
21
1
2
100
45
36
41
56
53
12
1
1
1
5
1
1
1
1 1
7
10
18
.5
.7
.8
.2
.2
.2
.0
.5
.5
.5
.2
.5
.4
.9
.0
. 2
.5
.4
.8
.9
.2
.6
.4
.3
.2
.3
.4
.8
.4
.8
.4
.5
KETONE 13.0%
98
99
*
*
*
*
*
90
100.0% 50°C
1 1 1
100
94
*
100
88
*
*
*
*
*
98
99
95
102
104
98
101
101
100
93
93
99
97
*
94
105
94
*
*
*
*
23°C
98
104
*
#
*
*
*
*
1 15
104
99
*
97
90
*
*
*
*
*
*
104
99
103
102
99
103
104
102
100
98
102
97
*
103
121
106
*
*
*
*
1 13
108
*
*
*
80
109
109
106
*
1 13
1 17
*
*
*
101
106
106
1 13
122
1 10
1 14
1 10
1 12
103
103
108
108
*
106
107
107
109
108
104
104
105
*
106
106
99
106
104
104
101
108
107
106
105
101
104
99
*
107
109
107
*
PERCENT
RETENTION
TEAR
LB/IN
M
1 19
1 18
*
*
*
*
*
96
102
83
*
80
85
*
*
*
*
*
*
93
87
89
97
103
101
90
87
85
83
94
87
*
100
104
97
*
*
PERCENT
RETENTION
TEAR
LB/IN
T
106
103
*
*
*
*
*
108
1 10
89
*
82
80
*
*
*
*
*
*
87
89
90
96
94
95
89
93
88
83
89
84
*
81
90
84
*
*
-------
ETHYLENE PROPVLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EL990M6
EL990M7
EH010P1
EH070P1
EH140P1
EH280P1
EH990P1
EH560P1
EH990P2
EH990P3
EH990P4
EH990P5
EH990P6
w EH990P7
.e-
VO
EL010P1
EL010P3
EL010P2
EL070P2
EL070P3
EL070P1
EL140P2
EL140P3
EL140P1
EL280P1
EL280P3
EL280P2
EL990P1
EL560P2
EL560P3
EL560P1
EL990P2
EL990P3
EL990P4
EL990P5
EL990P6
EL990P7
EH01PH1
EH07PH1
626
731
1
7
14
28
28
56
141
257
385
509
627
742
1
1
1
7
7
7
14
14
14
28
28
28
28
55
55
56
141
244
385
509
627
737
1
7
30.5
33.4
34.0
79.3
82.5
81 .9
65.9
86.4
80.9
88.8
86.3
89. 1
90. 1
91.4
10.0
14.2
12.5
33.4
34.4
41.7
56. 1
46.8
47.5
63.0
62.9
72.6
69. 3
75. 1
74.5
77.5
90. 7
88. 1
88.6
89.0
88.5
88.0
1 .9
2. 1
7.2
7.6
13.1
64.0
29. 2
28.4
26.0
29.2
28.8
29.7
28.8
29.9
29.7
30.6
3.6
6.3
5.9
12.4
42.5
15.8
19.9
17.7
19.2
22.6
23.8
25.4
26.6
27.5
27.4
26.3
31.0
31.2
30.8
31.2
30.5
31.0
.2
*
PERCENT PERCENT
PERCENT RETENTION RETENTION
VOLUME TENSILE TENSILE
CHANGE
ASTM #2 OIL
4.9
27.6
ASTM #2 OIL
38.5
148.7
97.4
95. 1
83.9
99.9
99.5
103.0
102.5
105.9
107.4
109. 1
ASTM #2 OIL
8.5
15.7
13.6
36.9
76.6
47.9
80. 2
54.5
57.4
71.0
73.9
84.9
84.5
90.6
88.4
89.9
105. 1
106.9
105.2
103.8
105.9
107 .4
PHENOL 8.0%
1 . 1
.5
M
100.0% 23°C
*
92
100.0% 50°C
81
65
57
62
*
62
*
*
*
*
*
71
100.0% 23°C
95
98
109
85
87
80
67
75
79
62
58
60
*
75
70
56
*
*
*
*
*
80
50°C
98
95
T
*
*
77
62
57
62
*
61
98
99
107
84
87
80
65
76
75
66
58
60
*
74
65
59
*
*
*
*
*
*
101
97
93
86
70
69
70
*
70
69
107
109
105
102
95
89
78
87
90
70
71
72
*
69
68
67
68
1 12
105
88
68
62
69
*
67
105
101
93
93
94
84
74
84
85
70
69
68
*
69
61
69
*
*
*
*
109
103
67
45
45
59
*
58
*
*
*
*
103
89
101
80
73
62
64
70
52
63
69
67
*
55
53
62
*
*
*
*
*
*
84
88
82
39
41
58
*
58
*
97
94
105
63
66
54
75
69
57
70
57
70
*
74
63
55
86
88
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
OJ
EH14PH1
EH28PH1
EH99PH1
EH56PH1
EH99PH2
EH99PH3
EH99PH4
EH99PH5
EH99PH6
EH99PH7
EL01 PHI
EL01PH2
EL01PH3
EL07PH1
EL07PH2
EL07PH3
EL14PH2
EL14PH1
EL14PH3
EL28PH2
EL28PH3
EL28PH1
EL99PH1
EL56PH1
EL56PH2
EL56PH3
EL99PH2
EL99PH3
EL99PH4
EL99PH5
EL99PH6
EL99PH7
EH01PL1
EH07PL1
EH14PL1
EH99PL1
EH28PL1
EH56PL1
EH99PL2
EH99PL3
EH99PL4
14
28
29
56
121
243
362
499
624
728
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
121
230
362
499
625
723
1
7
14
28
28
56
1 22
245
363
4. 1
4.0
4.0
4.8
6.9
9.9
10.9
13.5
14.8
16.0
1
1
1
1
1
2
3
1
2
2.3
2.7
2.6
7.7
3.7
3.6
3.6
9. 1
10.4
11.3
12.
14.
14.9
1 .2
1 . 1
1 .8
2.2
2.0
2.4
3.7
5.2
5 .5
1 .4
.7
1 .2
1 .8
1 .6
3.3
4.0
5.4
5.4
6. 1
.3
.3
.3
.2
.2
1 .2
1 .0
.2
.7
2.8
.6
.2
. 2
1 .2
.8
1 .3
.2
1 .0
1 .2
1 .5
2.0
2.9
.2
.7
.4
1 . 1
1 .0
1 .4
1 . 1
1 .8
1 . 8
PERCENT
VOLUME
CHANGE
PHENOL
4.6
1 .5
2.7
3.7
5.5
9.6
11.3
14.0
15.0
16.6
PHENOL
100.0
.5
.3
.3
.9
2.4
3.0
.3
2.2
3.8
1 .9
.9
1 .5
2.8
2.3
2.8
2.2
4. 1
4.7
5.3
6.6
8.8
PHENOL
.3
.7
.8
2.0
1 .2
1 .8
2.9
4.4
5 . 1
PERCENT
RETENTION
TENSILE
M
8.0% 50°C
95
94
*
94
*
*
*
*
*
87
8.0% 23°C
100
96
97
94
102
99
95
89
94
102
95
95
*
94
95
92
*
*
*
*
*
92
1.0% 50°C
95
100
93
*
91
100
*
* •
*
94
102
*
97
102
98
102
98
100
103
99
91
98
101
99
97
*
93
104
100
98
97
96
*
93
104
127
1 18
*
1 17
99
1 12
1 15
1 1 1
107
1 14
1 13
1 10
1 17
1 1 1
1 15
1 14
1 12
*
121
1 14
1 19
*
87
1 17
1 17
109
*
1 19
123
129
1 16
*
1 15
*
*
*
*
104
104
106
104
103
108
105
1 1 1
107
107
106
109
*
107
1 1 1
1 10
1 16
106
102
*
1 19
1 15
90
95
*
79
93
88
91
91
98
98
89
88
88
86
95
73
*
88
91
89
*
*
*
*
*
98
92
89
*
95
95
*
87
82
*
80
90
84
81
83
83
90
82
80
83
84
79
93
*
80
83
84
*
*
*
*
*
*
86
95
90
*
88
86
*
-------
ETHYLENE PROPVLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
PHENOL 1.0% 50°C
U>
t_n
EH99PL5
EH99PL6
EH99PL7
EL01PL2
EL01PL3
EL01PL1
EL07PL2
EL07PL1
EL07PL3
EL14PL2
EL14PL3
EL14PL1
EL28PL1
EL28PL3
EL28PL2
EL99PL1
EL56PL3
EL56PL1
EL56PL2
EL99PL2
EL99PL3
EL99PL4
EL99PL5
EL99PL6
EL99PL7
EH01 PM1
EH07PM1
EH14PM1
EH28PM1
EH99PM1
EH56PM1
EH99PM2
EH99PM3
EH99PM4
EH99PM5
EH99PM6
EH99PM7
499
625
729
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
1 22
233
363
499
626
724
1
7
14
28
29
56
1 21
244
362
499
624
728
5.6
6.5
6. 1
1 .0
1 . 1
1 .5
.4
.4
.4
.7
1 .3
1 .8
1 . 2
1 . 1
1 .3
2. 2
1 .5
1 .4
1 .8
3.4
3.2
3.9
3.6
4.3
4.0
1 .3
1 .4
3.0
3.0
3. 1
3.6
5.0
7. 7
8.4
10.5
11.0
11.5
1 .4
2.5
3.2
*
.2
.5
.2
*
.7
*
*
.7
. 2
.3
.2
1 .6
. 2
*
1 .0
.5
1 . 1
.7
.7
.7
1 .4
.2
. 2
1 .0
.7
.9
1 .6
1 .6
3.8
3.6
4.2
4.5
4.7
4.3
5.8
6.6
*
*
96
PHENOL 1.0% 23°C
. 1
. 1
.5
.4
. 2
.4
.3
.4
1 .4
.3
34.0
.4
. 1
. 1
.5
2. 1
2.6
3.7
3.6
3.4
3.4
4.3
.9
.5
2. 7
1 .6
2. 1
2.5
3.7
8.5
9.2
10.4
10.8
11.5
92
98
95
95
98
98
97
95
95
91
98
100
*
97
95
103
*
*
*
*
*
100
PHENOL 4.0% 50°C
92
94
85
94
*
95
*
*
91
102
100
101
100
102
99
99
98
90
98
102
102
*
102
101
100
*
97
97
93
100
*
107
*
*
*
*
*
*
*
*
91
1 12
109
106
105
1 14
108
1 18
1 15
1 12
1 17
1 12
1 1 2
*
109
1 14
1 17
104
127
105
1 10
1 1 1
*
1 19
*
*
*
*
*
91
101
103
103
103
1 1 1
107
107
108
104
1 15
105
108
*
106
107
1 13
121
102
107
109
*
1 18
102
92
95
92
104
97
89
91
78
97
92
94
*
90
96
88
*
*
97
96
95
93
*
88
*
69
80
91
87
83
89
89
87
97
89
88
88
*
90
85
87
86
90
83
78
*
73
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EL01PM2
EL01 PM1
EL01PM3
EL07PM2
EL07PM1
EL07PM3
EL14PM3
EL14PM2
EL14PM1
EL28PM1
EL28PM3
EL28PM2
EL99PM1
EL56PM2
EL56PM3
EL56PM1
EL99PM2
EL99PM3
EL99PM4
EL99PM5
EL99PM6
EL99PM7
1
1
1
7
7
7
14
14
14
28
28
28
29
56
56
56
121
231
362
499
625
723
1 .2
1 .2
1 .2
.6
1 . 1
.5
1 . 2
1 . 2
2.2
1 .5
2.5
1 .6
1 .9
2.2
2.3
1 .9
2.9
2.9
3.5
4.2
4.8
4.9
EH01SH1
EH07SH1
EH14SH1
EH28SH1
EH56SH1
EH99SH2
EH99SH3
EH99SH4
EH99SH5
EH99SH1
EH99SH6
EH99SH7
1
7
14
23
56
131
253
379
510
630
630
742
. 1
. 1
.3
.4
.6
.7
1 .2
1 .7
3. 1
2. 1
.3
EL01SH1 1
EL01SH2 1
EL01SH3 1
EL07SH2 7
EL07SH1 7
EL07SH3 7
EL14SH3 14
. 1
. 1
. 1
. 1
100.0
. 1
. 2
.3
.2
.3
. 2
.2
.7
.9
.3
.7
.7
1 .0
*
1 .4
.8
.2
.5
.5
1 .8
3.4
1 . 1
1 .6
.9
.6
1 .3
.3
.5
.2
*
1 . 1
.9
.5
.2
.4
.4
. 2
.5
.4
.5
. 7
PHENOL 4.(
23UC
. 1
.6
. 1
.5
.6
.3
.7
.4
1 .7
43.9
1 .8
.8
1 .8
1 .6
.6
.9
1 .4
3.8
5.7
3.6
4. 1
3.9
SODIUM
.5
1 .2
. 1
*
. 1
. 1
.4
.3
.6
.7
*
.4
SODIUM
. 1
.6
. 2
.3
.4
. 7
.8
97
93
96
102
96
96
98
97
92
91
96
100
*
102
100
98
*
*
*
*
*
86
CHLORIDE 35.0%
102
127
91
101
109
*
*
*
*
*
*
109
CHLORIDE 35.0%
96
99
102
98
96
98
1O3
100
94
101
102
99
99
100
103
93
94
104
99
*
100
100
105
*
*
*
*
*
*
50°C
101
133
97
122
101
*
*
*
*
*
*
*
23°C
100
102
102
102
103
105
101
1 12
123
1 12
1 12
1 18
1 10
1 17
109
1 13
1 12
1 13
109
*
1 16
1 13
1 10
*
*
*
*
*
83
1 1 1
1 10
103
97
1 17
*
*
*
*
*
*
98
108
107
1 13
1 15
108
1 12
1 15
103
1 18
102
105
1 1 1
101
107
1 10
1 13
109
108
1 15
*
107
106
106
108
109
96
1 13
1 10
*
100
102
104
1 13
105
106
TOO
87
91
98
95
105
100
91
95
92
99
91
97
*
88
92
90
*
*
*
*
*
*
79
109
99
86
90
86
86
83
93
86
83
84
87
96
83
84
78
88
90
85
81
77
80
81
*
82
87
81
83
108
90
92
93
*
*
*
*
90
84
90
80
84
88
88
-------
ETHVLENE PROPVLENE OIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EL14SH1
EL14SH2
EL28SH2
EL28SH3
EL99SH1
EL28SH1
EL56SH1
EL56SH3
EL56SH2
EL99SH2
EL99SH3
EL99SH4
EL99SH5
EL99SH6
EL99SH7
EH01SM1
EH07SM1
EH14SM1
EH28SM1
EH99SM1
EH56SM1
EH99SM2
EH99SM3
EH99SM4
EH99SM5
EH99SM6
EH99SM7
EL01SM2
EL01SM3
EL01SM1
EL07SM2
EL07SM3
EL07SM1
EL14SM1
EL14SM3
EL14SM2
EL99SM1
EL28SM3
EL28SM2
EL28SM1
EL56SM2
14
14
28
28
28
28
56
56
56
131
246
379
510
630
737
1
7
14
28
28
61
132
254
370
51 1
624
743
1
1
1
7
7
7
14
15
15
28
28
28
28
56
.2
.2
. 1
.8
.3
.5
.3
.3
.9
.9
.8
.8
. 1
.3
1 .0
.6
.2
5.4
1 .0
.3
1 . 2
1 .0
.8
1 .4
.2
.5
.9
.7
.7
.6
. 7
.6
.3
. 6
.5
. 1
.3
. 1
4.9
.5
SODIUM CHLORIDE 35.0% 23°C
. 2
.5
.7
.2
.3
*
.7
1 .0
. 2
.5
.7
1 . 1
.7
.9
.5
1 .3
.5
.5
.7
.5
*
*
. 2
.9
.3
. 3
*
.5
.8
.5
*
.3
.8
.2
.5
.7
. 2
.8
.5
.7
.4
.5
.6
.4
.8
. 2
. 2
.4
.9
.3
.3
SODIUM
.2
1 .6
. 6
.3
.3
.4
.3
. 2
. 7
.7
.8
.5
SODIUM
. 7
. 1
. 2
1 .3
1 .0
.4
.5
.4
1 .2
. 2
.6
.8
. 1
. 1
107
104
109
106
*
109
1 13
104
105
*
*
4
*
*
102
CHLORIDE 10.0%
94
94
102
101
*
99
*
*
*
*
*
105
CHLORIDE 10.0%
107
103
109
95
93
84
101
89
92
*
103
100
98
102
96
106
105
109
*
1 10
97
104
103
50UC
88
89
102
89
*
96
23°C
105
106
105
86
87
96
100
98
103
*
93
103
92
1 12
109
1 16
106
1 16
*
102
122
99
103
*
*
104
98
1 15
108
1 12
*
1 14
92
101
1 12
107
109
101
1 10
102
100
98
*
100
106
1 12
106
97
1 13
1 10
1 12
*
1 14
93
107
103
*
100
120
105
103
*
105
105
105
105
109
1 1 1
108
101
95
104
*
100
121
108
105
85
81
88
88
*
82
92
84
77
*
*
*
if
*
71
81
76
84
*
98
91
90
95
88
90
84
78
87
95
*
78
82
85
90
97
85
78
86
*
97
85
80
84
*
*
*
*
84
77
77
75
*
94
81
94
93
82
81
79
81
87
93
*
84
75
83
103
-------
ETHYLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
EL56SM3 56
EL56SM1 61
EL99SM2 132
EL99SM3 246
EL99SM4 370
EL99SM5 51 1
EL99SM6 624
EL99SM7 738
.5
.5
.2
. 2
.5
1 .0
.2
.2
LO
Ul
-P-
EH01WP1
EH07WP1
EH14WP1
EH28WP1
EH99WP1
EH56WP1
EH99WP2
EH99WP3
EH99WP4
EH99WP5
EH99WP6
EH99WP7
1
7
14
28
28
56
133
254
370
503
622
743
1
1
3
2,
3.
3,
5.
5,
5,
5,
5,
.7
.2
.7
.9
.4
.0
.5
.3
.3
.3
.7
.8
EL01WP2
EL01WP1
EL01WP3
EL07WP2
EL07WP1
EL07WP3
EL14WP1
EL14WP2
EL14WP3
EL28WP1
EL99WP1
EL28WP2
EL2BWP3
EL56WP3
EL56WP2
EL56WP1
EL99WP2
EL99WP3
EL99WP4
EL99WP5
EL99WP6
EL99VJP7
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
132
246
370
503
622
738
.4
.4
.5
.7
.8
.7
.8
1 .0
.7
1 .0
.9
1 .2
1 . 1
1 .3
1 .5
1 .3
1 .8
.5
2. 2
1 .9
2 .O
2 .O
1 .0
.9
.5
.9
.7
.7
.9
.7
.3
.5
.5
3.8
.9
2.7
1 . 2
2.3
2.8
2.3
2.5
2.8
.3
.6
.3
1 .0
*
.5
.7
.2
*
2. 1
.5
.9
.6
*
.2
. 2
*
.7
.7
*
.9
1 .4
PERCENT
VOLUME
CHANGE
SODIUM
.2
.4
.9
1 . 1
1 .0
1 .0
1 .5
1 .0
WATER
.6
. 7
.9
4. 2
1 .5
3.7
2.3
5.0
5.7
5.2
5.5
6.0
WATER
. 1
.8
. 1
.9
.2
.2
.7
.3
. 1
2.3
.9
.9
*
.9
1 .5
.6
.7
4.8
1 .6
1 .0
1 .8
2.7
PERCENT
RETENTION
TENSILE
M
CHLORIDE 10.0%
102
95
*
*
*
*
*
100
100.0% 50°C
1 16
92
97
103
*
99
*
*
*
*
*
103
100.0% 23°C
123
125
1 18
98
97
99
84
95
101
108
*
120
1 19
98
90
100
*
*
*
*
*
96
PERCENT
RETENTION
TENSILE
T
23°C
105
99
*
*
*
.*
*
*
126
102
101
102
*
96
*
*
*
*
*
*
1 15
122
1 14
103
95
94
86
103
104
1 15
*
1 13
1 18
97
90
99
*
*
*
*
*
*
1 10
108
*
*
*
*
*
100
88
109
1 12
1 10
*
1 12
*
*
*
*
*
87
109
106
109
1 12
109
106
107
105
109
108
*
106
1 13
107
1 13
1 10
101
107
91
103
107
103
*
106
106
102
108
105
103
100
102
84
100
102
*
106
105
99
104
109
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
82
86
*
I
*
99
87
75
90
*
85
*
*
*
*
*
*
97
103
94
95
85
92
88
87
88
97
*
1 14
1 15
89
89
86
PERCENT
RETENTION
TEAR
LB/IN
T
89
80
*
*
*
97
85
95
83
*
75
*
*
4
*
*
*
96
98
87
84
89
69
67
88
87
89
*
106
97
86
88
86
*
-------
ETHVLENE PROPYLENE DIENE MONOMER: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
EH01XM1
EH07XM1
EH14XM1
EH99XM1
EH28XM1
EH56XM1
EH99XM2
EH99XM3
EH99XM4
EH99XM5
EH99XM6
EH99XM7
EL01XM2
U> EL01XM1
«-" EL01XM3
01 EL07XM3
EL07XM1
EL07XM2
EL14XM3
EL14XM1
EL14XM2
EL28XM2
EL28XM3
EL99XM1
EL28XM1
EL56XM3
EL56XM2
EL56XM1
EL99XM2
EL99XM3
EL99XM4
EL99XM5
EL99XM6
EL99XM7
1
7
14
28
28
56
1 18
231
363
489
609
720
1
1
1
7
7
7
14
14
14
28
28
28
28
56
56
56
1 18
223
363
489
609
715
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
TENSILE
M
PERCENT
- RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
.2
.5
.8
1 .0
4. 1
1 .2
.9
2.5
2.6
2.9
2.8
3.0
.2
*
.3
.3
.3
.4
. 2
.7
.4
.4
.6
1
.7
100.0
100.0
.7
.9
.5
.8
.6
.6
.5
1
.2
.2
.5
3.3
*
.5
.5
.2
.9
1 .4
.5
.2
.6
.3
.9
.5
*
.3
.2
.5
*
*
.6
*
.8
.5
.5
.5
.5
.3
POTASSIUM DICHROMATE 10.0% 50°C
. 1
.2
. 1
. 7
3.2
.6
.9
.8
.8
1 .6
1 .8
1 .0
107
99
107
*
109
89
107
88
108
1 14
*
107
104
POTASSIUM DICHROMATE 10.0% 23°C
99
1 10
103
108
99
103
1 14
104
1 12
108
100
*
1 14
96
92
100
101
106
93
102
107
102
107
102
108
109
103
102
*
1 13
91
104
88
1 17
1 1 1
1 13
*
104
1 16
*
*
*
89
109
1 19
1 14
1 15
1 10
1 13
1 13
107
1 15
121
1 17
*
108
1 15
1 14
1 1 1
*
*
*
*
*
102
109
106
107
*
1 12
1 1 1
1 12
98
107
105
1 10
104
1 14
109
1 20
1 22
122
*
1 12
109
107
1 1 1
84
92
78
*
80
94
84
92
83
82
86
84
76
90
72
85
89
*
84
90
88
74
95
70
94
*
90
80
*
*
*
*
*
79
74
78
91
68
89
91
98
92
90
81
*
87
87
78
83
*
*
*
*
*
-------
EPI CO : FINAL PROPERTIES
356
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mi 1 )
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
( inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
HYDROCHLORIC ACID 10.0% 50°C
U>
Ln
LH01AM1
LH07AM1
LH14AM1
LH28AM1
LH99AM1
LH56AM1
LH99AM2
LH99AM3
LH99AM4
LH99AM5
LH99AM6
LL01 AM1
LL07AM1
LL14AM1
LL28AM1
LL99AM1
LL56AM1
LL99AM2
LL99AM3
LL99AM4
LL99AM5
LL99AM6
LH01BM1
LH07BM1
LH14BM1
LH28BM1
LH99BM1
LH56BM1
LH99BM2
LH99BM3
LH99BM4
LVI99BM5
LH99BM6
LL01BM1
LL07BM1
LL14BM1
1
7
14
27
39
56
121
241
374
484
609
1
7
14
27
39
56
101
241
374
484
606
1
7
14
28
38
56
1 21
241
373
485
609
1
7
14
4.32
4.46
4.30
4.24
4.26
4.62
4. 28
4. 29
4.32
4.32
4.36
4.27
4.39
4. 22
4. 34
4.35
4.72
4.43
4.47
4.38
4.35
4.44
4. 24
4.36
4. 26
60. 10
61 .60
59.30
58.90
59. 10
64.20
59.50
59.40
59.40
59.30
59.70
57.90
60.20
57.90
59.70
61 .70
65.70
62.70
61 .60
62. 10
61 .90
62.30
58. 10
59. 20
58. 10
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
02
03
05
10
06
1 1
13
20
23
27
29
1
1
1
1
1
1
1
1
1
1
1
01
01
02
03
03
03
08
08
08
10
1 1
HYDROCHLORIC ACID
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
01
01
01
02
01
04
02
02
02
02
03
0
1
1
1
1
1
1
1
1
1
1
99
00
00
00
01
01
01
01
00
01
01
SODIUM HYDROXIDE
3.
3.
3.
3.
3.
3.
3.
3.
2.
2.
2.
01
01
00
00
01
01
01
00
99
99
99
1
1
1
1
1
1
1
1
1
1
1
00
00
00
00
00
01
00
00
00
00
86.
90.
99.
94.
91 .
73.
48
04
76
73
*
74
*
*
*
*
00
10.0%
84.
87.
92.
92.
97.
85.
10
93.
92.
93.
93.
95.
00 107.
SODIUM HYDROXIDE
3.
3.
3.
01
00
01
1
1
1
00
00
00
10
86.
90.
87.
72
86
88
50
*
1 1
*
*
*
*
87
.0%
26
74
05
35
+
06
*
*
*
*
40
.0%
62
97
83
93.
103.
102.
105.
113.
23°C
92.
98.
94.
97.
105.
50°C
95.
97.
92.
99.
99.
23°C
93.
94.
94.
68
37
48
24
*
54
*
*
*
*
*
24
04
32
66
*
26
90
46
21
70
*
94
*
*
*
*
*
43
70
71
426.72
417.04
422.08
428.16
*
310.56
*
*
*
*
860.70
453.04
343.68
370.96
295.28
*
283.60
*
364.00
418.00
454.96
434.88
402.88
405.60
392.64
413.04
*
316.64
409.30
378.88
346.50
266.16
*
319.76
15.94
15.07
13.82
14.25
*
13.70
14.98
16.06
13.90
16.05
*
15.08
*
*
*
t
*
14. 27
14.91
13.57
12.16
*
11.92
17.06
15.02
15.40
15.88
*
14.94
16.62
17.21
16.90
17.57
*
15.66
*
*
*
15.34
16.53
13.99
12.63
*
14.03
*
*
410.30
429.60
404.56
13.74
14.98
14.48
15.44
15.97
16.78
-------
EPICHLOROHVDRIN RUBBER: AVERAGE FINAL PROPERTIES
00
LL28BM1
LL99BM1
LL56BM1
LL99BM2
LL99BM3
LL99BM4
LL99BM5
LL99BM6
LH01DH1
LH07DH1
LH14DH1
LH28DH1
LH99DH1
LH56DH1
LH99DH2
LH99DH3
LH99DH4
LH99DH5
LH99DH6
LL01DH1
LL07DH1
LL14DH1
LL28DH1
LL99DH1
LL56DH1
LL99DH2
LL99DH3
LL99DH4
LL99DH5
LL99DH6
LH01DL1
LH07DL1
LH14DL1
LH28DL1
LH99DL1
LH56DL1
LH99DL2
28
38
56
101
241
373
485
606
1
7
14
28
37
56
121
234
365
499
609
1
7
14
28
37
56
101
234
365
500
606
1
7
14
28
37
56
1 21
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
inch
width)
SODIUM HYDROXIDE 10.0%
4.56
4. 25
4.65
4.25
4. 34
4.27
4.25
4.26
4.93
5.33
5.29
5.55
5.67
5. 24
5.65
5.35
5.41
5.52
5.61
4.79
4.87
5.32
5.26
5.60
5.11
5.67
5.77
5.69
5.58
6.16
4.82
4.86
4.80
5.32
5.02
5.10
5.12
63
58
63
58
58
59
58
58
65
66
67
69
69
67
70
68
69
71
72
64
64
67
67
70
65
72
72
72
71
74
65
65
63
70
67
66
68
.00
.70
.90
.60
.80
.20
.60
.70
.50
.20
. 20 '
. 10
.90
.70
.80
.50
.80
.70
.40
.90
.90
.50
.60
.80
.50
.60
.90
. 20
.80
.20
.90
.80
.70
.40
.20
.20
.30
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.01
.02
.05
.02
.02
.02
.01
.02
1
.07
.23
. 10
.27
.36
.22
.38
.30
.30
.25
.29
1
.05
. 12
. 18
. 19
.27
.20
.30
.31
.29
.33
.43
1
.03
.07
. 13
. 17
. 18
. 19
.21
1 .00
1 .00
1 .00
1 .01
1 .00
1 .00
1 .00
1 .00
90
94
83
2 DICHLOROETHANE
1 .02
1 .05
1 .05
1 .08
1 . 10
1 .06
1 . 10
1 .08
1 .08
1 .07
1 .08
80
80
72
65
87
91
2 DICHLOROETHANE
1.01
.03
.04
.05
.06
.05
.08
1 .08
1 .07
1 .09
1.12
80
77
77
73
75
98
2 DICHLOROETHANE
1.01
1 .02
1 .03
1 .05
1 .05
1 .05
1 .06
75
81
80
80
84
.79
*
.50
*
*
*
*
.83
.8%
.60
.96
.78
.82
*
.36
*
*
*
*
.80
.8%
.02
.22
.68
.82
*
.38
*
*
*
*
.69
. 1%
.88
.28
. 10
.90
*
. 1 2
*
BREAKING
FACTOR
T
(pound/
i nch
width)
23°C
96
92
50°C
84
77
79
69
89
23°C
84
82
78
77
81
50°C
85
85
84
84
88
50
*
62
*
*
*
*
*
70
20
26
92
*
44
*
*
*
*
*
52
18
84
78
*
08
*
*
*
*
*
18
42
70
90
*
16
*
ELONGATION
AT
BREAK
M
(inch)
304
444
623
373
365
345
361
324
499
364
393
405
433
378
674
388
398
336
321
234
.32
*
.08
*
*
*
*
. 17
.06
. 12
.38
.94
*
.98
*
*
*
*
.25
.32
.00
.34
.64
*
.00
*
*
*
*
.33
.58
.26
.92
.93
*
.58
*
ELONGATION
AT
BREAK
T
(inch)
426
476
324
372
328
332
296
329
357
359
396
353
364
354
327
309
266
.96
*
.80
*
*
*
*
*
.26
. 10
.00
. 16
*
.86
*
*
*
*
*
.54
.86
.90
.05
*
.60
*
*
*
*
*
.72
.90
.96
.58
*
.76
*
TEAR
RESISTANCE
M
(lb)
15
14
14
13
12
1 1
14
14
13
1 1
1 1
12
14
14
13
13
13
.52
*
.73
*
*
*
*
*
.04
.44
.27
.56
*
.44
*
*
*
*
*
. 29
.22
.53
.86
*
.71
*
*
*
*
*
.90
.73
.52
.20
*
.84
*
TEAR
RESISTANCE
T
(lb)
16
16
13
1 1
12
10
13
14
12
1 1
12
12
15
14
1 3
1 2
1 3
37
*
58
*
*
*
*
*
.75
.81
.70
.96
*
.83
*
*
*
*
*
.72
.71
.94
.21
*
.49
.32
. 58
. 61
. 37
*
. 99
*
-------
EPICHLOROHVDRIN RUBBER: AVERAGE FINAL PROPERTIES
OJ
Ui
vD
LH99DL3
LH99DL4
LH99DL5
LH99DL6
LL01DL1
LL07DL1
LL14DL1
LL28DL1
LL99DL1
LL56DL1
LL99DL2
LL99DL3
LL99DL4
LL99DL5
LL99DL6
LH01DM1
LH07DM1
LH14DM1
LH28DM1
LH99DM1
LH56DM1
LH99DM2
LH99DM3
LH99DM4
LH99DM5
LH99DM6
LL01DM1
LL07DM1
LL14DM1
LL28DM1
LL99DM1
LL56DM1
LL99DM2
LL99DM3
LL99DM4
LL99DM5
LL99DM6
234
364
499
609
1
7
14
28
37
56
101
234
364
500
606
1
7
14
28
37
56
121
234
365
499
609
1
7
14
28
37
56
102
234
365
500
606
WEIGHT
(gram)
5.30
5.34
5.38
5.38
4.62
4.64
4.55
4.86
4.43
4.71
4.51
4.61
4.67
4.74
4. 77
5.33
4.92
4.94
5.41
5.36
5.16
5.53
5.52
5.56
5.61
5.77
4.82
4.83
4.87
5.09
4. 77
4.97
4.83
5.52
5.00
4.98
4.89
THICKNESS
(mi 1)
69.30
68.60
67.70
69.20
63
63
61
65
60
63
61
61
62
62
63
69
64
64
69
69
67
70
70
70
71
72
66
66
63
66
62
65
63
63
63
64
63
.50
. 10
.90
. 10
.50
. 10
. 10
.70
.40
.50
.00
.30
.50
.30
. 10
. 10
.00
.80
.80
.70
.50
. 10
. 10
. 10
. 70
.00
. 10
. 70
.00
.00
.90
.20
.70
LENGTH
( inch)
1
3.26
3.31
3.31
3.32
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
.00
.03
.06
.07
.07
.09
. 10
. 13
. 15
. 16
. 17
1
. 16
. 12
. 18
. 21
. 24
.20
.30
.30
.31
.32
.36
1
.03
.06
. 12
. 15
. 13
. 15
. 16
. 17
.20
.20
. 18
BREAKING
FACTOR
M
(lb/
WIDTH inch
(inch) width)
2 DICHLOROETHANE .1%
1 .07 *
1 .08 *
1 .08 *
1 .08 91 .94
2 DICHLOROETHANE
1 .00
1 .01
1 .01
1 .02
1 .02
1 .02
1 .03
1 .04
1 .04
1 .05
1 .05
80
80
79
80
80
91
2 DICHLOROETHANE
1 .04
1 .04
1 .04
1 .06
1 .07
1 .05
1 .08
1 .09
1 .08
1 .09
1.10
78
77
75
75
84
90
2 DICHLOROETHANE
1 .00
1 .02
1 .03
1 .04
1 .06
.03
.07
.07
.08
.08
.07
81
78
77
80
80
93
. 1%
.72
.62
.56
.00
*
.78
*
*
*
*
.05
.5%
.60
.58
.50
.74
*
.86
*
*
*
*
. 15
.5%
.32
.86
.96
.00
*
.86
*
*
*
*
.23
BREAKING
FACTOR
T
(po'und/
inch
width)
50°C
*
*
*
*
23°C
86
85
83
84
85
50°C
82
82
80
79
89
23°C
86
83
80
82
83
86
66
44
96
*
70
*
*
*
*
*
96
32
44
32
*
24
*
*
*
*
*
16
58
96
30
*
36
ELONGATION
AT
BREAK
M
(inch)
*
*
4
536.00
365
421
392
386
389
745
377
419
361
342
291
479
360
371
359
398
396
790
.20
.32
.24
.20
*
.74
*
*
*
*
.50
.04
.38
.74
.48
*
.52
*
*
*
*
.67
.46
.92
.62
.78
*
. 14
*
*
*
*
.20
ELONGATION
AT
BREAK
T
( inch)
*
*
*
*
326
378
337
360
359
351
387
329
299
274
306
391
354
356
362
.38
.84
.82
.04
*
.48
.54
.70
.02
.30
*
.74
.08
.80
.82
.68
*
. 14
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
16
14
14
14
15
13
13
12
12
14
15
14
1 1
12
13
.44
.90
.40
.40
*
.33
.01
.60
.85
.36
*
.28
*
*
*
*
*
.68
.47
.93
.61
*
.72
TEAR
RESISTANCE
T
(lb)
*
*
*
*
16.10
15.43
14.29
14. 28
*
15.50
13.16
13.89
12.58
1 1 .73
*
14.21
*
*
*
*
*
15. 23
15.03
1 1 .96
12.60
*
14.10
*
*
*
*
*
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
LH01FH1
LH07FH1
LH14FH1
LH28FH1
LH99FH1
LH56FH1
LH99FH2
LH99FH3
LH99FH4
LH99FH5
LH99FH6
LL01FH1
LL07FH1
LL14FH1
LL28FH1
LL99FH1
LL56FH1
LL99FH2
LL99FH3
LL99FH4
LL99FH5
LL99FH6
LH01FL1
LH07FL1
LH14FL1
LH28FL1
LH99FL1
LH56FL1
LH56FL2
LH99FL2
LH99FL3
LH99FL4
LH99FL5
LH99FL6
1
7
14
28
39
56
121
233
368
499
609
1
7
14
28
39
56
102
233
368
500
606
1
7
14
28
39
56
56
121
233
367
499
609
WEIGHT
(gram)
4.
7.
7.
7.
6.
7.
8.
6.
6.
7.
8.
4.
7.
7.
6.
6.
6.
7.
7.
6.
7.
7.
4.
4.
5.
5.
5.
5.
5.
5.
5.
5.
6.
6.
74
03
07
12
53
64
27
90
78
58
16
57
01
16
99
92
83
59
86
85
43
42
73
99
03
12
24
27
15
59
78
92
03
10
THICKNESS
(mil)
64
78
77
78
73
81
80
71
74
78
81
63
79
78
78
74
73
78
79
76
78
78
64
66
65
66
68
67
65
71
72
73
74
74
.60
.80
.40
.70
.30
.90
.80
.50
.30
.20
.40
.40
.80
.80
. 10
.50
.50
.80
.20
.80
.20
. 10
.00
.00
.80
.30
.80
. 10
. 10
.40
.40
.20
.20
.80
LENGTH WIDTH
(inch) (inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
FURFURAL
.04
.59
.62
.71
.61
.69 1
.96 1
.71 1
.70 1
.82 1
.88 1
FURFURAL
.02 1
.57 1
.62 1
.70 1
.69 1
.66 1
.86 1
.90 1
.72 1
.78 1
.77 1
FURFURAL
.05
. 13
. 16
. 19
.23
.24
.24
.32
.37 1
.40 1
.43 1
.43 1
8 . 0%
.01
. 15
. 17
. 16
. 16
. 18
.25
.28
. 19
.22
.24
8.0%
.00
. 15
. 16
. 16
. 18
. 17
.23
.24
. 19
.21
.21
1 . 0%
.01
.03
.05
.05
.06
.06
.07
.08
. 10
. 10
. 1 1
. 12
BREAKING
FACTOR
M
( lb/
i nch
width)
50°C
79.
48.
44.
51 .
47.
40.
23°C
81 .
44.
45.
55.
44.
31 .
50°C
78.
81 .
83.
79.
78.
84.
90.
44
48
32
44
*
44
*
*
*
*
40
12
84
04
92
*
56
*
*
*
*
51
63
04
12
60
*
64
32
*
*
*
*
50
BREAKING
FACTOR
T
(pound/
inch
width)
86
50
49
51
48
84
50
45
56
48
82
84
84
81
84
79
.56
.32
.44
.96
*
. 12
*
*
*
*
*
.80
.24
.92
.08
*
.08
*
*
*
*
*
.76
.84
.40
.36
*
.00
.40
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
400
21 1
244
244
164
401
246
236
321
249
1.72
439
416
351
315
325
307
41 1
.00
*
.20
.00
*
.00
*
*
*
*
.30
.60
.40
.00
.60
*
.60
*
4
*
*
.50
.28
.00
.20
.20
*
.60
.20
*
*
*
*
.00
ELONGATION
AT
BREAK
T
(inch)
365
243
202
213
200
382
229
214
281
239
377
405
320
321
285
288
.20
.20
.40
.60
*
.80
*
*
*
*
*
.40
.60
.40
.60
*
.20
*
*
*
*
4
.76
.60
.00
.60
*
.60
.80
*
*
*
*
*
TEAR
RESISTANCE
M
' (lb)
B
7
7
6
4
20
9
6
7
6
17
17
15
12
12
13
.85
.46
.40
.02
*
.92
*
#
*
*
*
.80
.02
.32
.80
*
.08
*
*
*
*
*
.77
.08
.74
.46
*
. 16
. 16
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
12
7
6
6
4
26
8
6
6
5
24
16
26
1 1
1 1
1 1
.56
.06
.82
.26
*
.41
*
*
*
*
*
.00
.74
.34
.82
*
.44
*
V
*
*
*
. 13
.66
.00
.88
*
.54
.88
*
*
*
*
*
-------
EPICHLOROHYDRIN RUBBER:
AVERAGE FINAL PROPERTIES
OJ
LL01FL1
LL07FL1
LL14FL1
LL2BFL1
LL99FL1
LL56FL1
LL56FL2 56
LL99FL2 102
LL99FL3 233
LL99FL4 367
LL99FL5 500
LL99FL6 606
1
7
14
28
39
56
LH01FM1
LH07FM1
LH14FM1
LH28FM1
LH99FM1
LH56FM1
LH99FM2
LH99FM3
LH99FM4
LH99FM5
LH99FM6
LL01FM1
LL07FM1
LL14FM1
LL28FM1
LL99FM1
LL56FM1
LL99FM2
LL99FM3
LL99FM4
LL99FM5
LL99FM6
1
7
14
28
39
56
121
233
367
499
609
1
7
14
28
39
56
105
233
367
500
606
LH01MH1 1
LH07MH1 7
LH14MH1 14
WEIGHT
(gram)
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
6
6
7
7
7
7
4
5
5
5
5
5
6
6
6
6
7
7
7
.54
.66
.79
.84
.51
.69
.66
.63
.77
.86
.93
.98
. 19
.62
.69
.96
.82
.42
.64
.40
. 15
.26
.20
.91
. 19
.51
.54
*
.87
.98
. 24
.05
.57
.90
.61
. 18
.97
THICKNESS
(mil)
62
63
64
64
60
61
60
61
62
63
63
63
66
70
70
72
71
76
80
81
80
80
80
64
66
69
68
72
73
75
73
77
79
83
84
88
.20
.20
.70
.90
.60
.20
.70
.60
.80
.00
.60
.90
.40
.30
.20
.70
.90
.30
. 10
. 10
.50
.80
.00
.80
. 10
.30
.90
*
.70
.80
.40
.80
.40
. 10
.60
. 20
.90
LENGTH
(Inch)
3.01
3.05
3.07
3. 10
3.08
3.12
3. 13
3.11
3. 15
3.17
3. 18
3.20
3. 19
3.28
3.34
3.38
3.38
3.45
3.57
3.72
3.67
3.69
3.66
3.09
3.21
3.26
3. 28
*
3.32
3.40
3.46
3.40
3.50
3.61
3.98
3.75
3.98
WIDTH
(inch)
FURFURAL 1 .
.00
.01
.02
.02
.03
.03
.03
.05
.06
.06
.07
. 18
FURFURAL 4.
.05
.07
.09
. 10
. 10
. 12
. 15
.20
. 19
. 19
. IB
FURFURAL 4.
1 .03
1 .06
.07
.07
*
.08
. 10
. 12
. 1 1
. 13
. 17
METHYL ETHVL
1 .25
1 .20
1 .26
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
0% 23°C
78
80
78
78
78
77
90
0% 50°
75
70
65
66
64
70
0% 23°
77
72
69
67
68
72
KETONE
40
47
36
.38
.08
. 16
.56
*
.72
.68
*
*
*
*
.23
C
.80
. 16
.44
.56
*
.96
*
*
*
*
.60
C
.93
.88
.60
.33
*
.80
*
*
*
*
.32
26.0%
.88
. 28
.08
83.
86.
84.
82.
83.
89.
77.
70.
68.
66.
66.
78.
77.
70.
69.
71 .
50°C
37.
49.
37.
56
80
00
96
*
76
52
54
52
56
96
*
08
20
84
72
60
*
68
*
*
*
*
*
68
20
36
379
395
391
440
420
407
752
416
376
340
306
280
291
400
428
440
404
354
430
229
313
175
. 12
.60
.20
.80
*
.00
.20
*
*
*
*
. 17
.46
.80
.00
.40
*
.80
*
*
*
*
.00
.00
.00
.00
.00
*
.40
*
*
4
4
.58
.44
.28
.44
367
389
364
410
389
400
388
338
316.
280.
250.
354
396
383
408
336
192
218
151
.92
.20
.80
40
*
60
00
*
*
*
*
*
00
40
80
80
*
40
80
40
20
80
*
80
*
*
*
*
*
56
80
20
17
17
17
14
15.
14.
14.
14.
1 1 .
9.
9.
15.
15.
12.
10.
1 1 .
6
8
69
96
76
22
*
06
48
70
46
82
96
*
06
*
*
*
*
*
81
08
34
87
*
20
28
55
*
24
19
18
14
14
15
18
12
1 1
1 1
8
19
14
13
12
10
6
8
.69
.42
.96
.97
*
.90
.20
.73
96
30
10
*
96
. 29
.90
.44
.58
*
.32
*
*
*
*
*
.66
.02
*
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
LH28MH1
LH99MH1
LH56MH1
LH99MH2
LH99MH3
LH99MH4
LH99MH5
LH99MH6
LL01MH1
LL07MH1
LL14MH1
LL28MH1
LL99MH1
LL56MH1
LL99MH2
LL99MH3
LL99MH4
LL99MH5
LL99MH6
LH01ML1
LH07ML1
LH14ML1
LH28ML1
LH99ML1
LH56ML1
LH99ML2
LH99ML3
LH99ML4
LH99ML5
LH99ML6
LL01ML1
LL07ML1
LL14ML1
LL28ML1
LL99ML1
LL56ML1
LL99ML2
28
36
55
120
247
367
500
609
1
7
14
28
36
55
109
247
367
501
606
1
7
14
28
37
55
121
247
367
500
609
1
7
14
28
37
55
109
WEIGHT
(gram)
7.68
7.03
7.22
7.25
6.37
6.29
6.04
5.65
7.64
6.51
6.52
7.30
7.11
6.92
5.96
6.37
6.01
7. 18
6.03
4.51
4.72
4.82
5.27
4.91
5.41
5.03
4.99
5.02
5.01
5.05
4.48
4.83
4.83
5.00
4.66
5.02
4.76
THICKNESS
(mil)
86
81
82
84
76
76
75
72
86
85
80
80
78
82
75
73
72
71
73
59
61
63
66
63
68
64
63
64
64
64
60
65
66
66
62
66
63
.00
.00
.90
.90
.50
. 10
.20
.70
.40
.80
.40
.00
.90
.90
.60
.20
.20
.50
. 10
.90
.60
.00
.90
.30
.50
.30
.90
.70
.20
.50
.80
.60
. 10
.90
.40
.90
.40
LENGTH WIDTH
(inch) (inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
METHYL
.87
.67
.77
.78
.47
.54
.41
.37
METHYL
.87
.74
.61
.77
.79
.82
.60
.53
.50
.41
.53
METHYL
. 1 1
. 17
.20
.27
.26
.25
.29
.27
.20
.28
.29
METHYL
.03
.07
.09
. 1 1
. 1 1
. 13
. 15
ETHYL
1 .24
1 .22
1 .21
1 .20
1.11
1.14
1 .09
1 . 10
ETHYL
1 .23
1 . 19
. 16
.20
.20
.22
. 17
. 13
. 12
. 13
. 13
ETHYL
.02
.05
.06
.07
.07
. 17
.08
.07
.07
.07
.08
ETHYL
1 .00
1 .02
1 .02
1 .03
1 .04
1 .04
1 .06
BREAKING
FACTOR
M
(lb/
inch
width)
KETONE
32
34
36
KETONE
40
48
56
37
37
65
KETONE
80
80
83
80
81
84
KETONE
86
86
83
82
83
26.0%
.71
*
.48
*
*
*
*
.58
26.0%
.88
.80
.40
.80
*
. 18
*
*
*
*
.77
3 . 0%
.72
.24
.60
.60
*
.58
*
*
*
*
.91
3 . 0%
. 16
. 16
.92
.41
*
.99
*
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
34.
32.
23°C
37.
49.
56.
38.
37.
50°C
87.
85.
87.
84.
87.
23°C
87.
89.
87.
88.
86.
12
*
38
*
*
*
*
*
84
52
40
23
*
89
*
*
*
*
*
60
12
12
57
*
85
*
*
*
*
*
44
68
28
66
*
50
*
ELONGATION
AT
BREAK
M
(inch)
169
168
31 1
237
272
340
202
189
601
437
378
337
337
312
443
419
440
420
464
432
.30
*
.07
*
*
*
*
.58
.68
.64
.56
.00
*
.60
*
*
*
4
.60
.92
.56
.76
.44
*
.48
*
*
*
*
.67
. 12
.64
.32
.00
*
.40
*
ELONGATION
AT
BREAK
T
(inch)
166
146
195
246
31 1
185
166
414
403
333
336
316
395
383
392
436
391
.48
*
.24
*
*
*
*
*
. 12
.64
.76
.76
*
.64
*
*
*
*
*
.08
.76
.20
.24
*
.88
*
*
*
*
*
.04
.76
.64
. 16
*
.44
*
TEAR
RESISTANCE
M
(lb)
6
6
6
a
10
7
6
14
16
16
14
14
17
16
15
17
. 17
*
.03
*
*
*
*
*
.56
.50
.94
. 13
*
.71
*
*
*
*
*
.62
.22
.70
.42
*
.89
*
*
*
*
*
. 74
.80
*
.63
«
.33
*
TEAR
RESISTANCE
T
(lb)
5.49
*
5.67
*
*
*
*
*
7.30
7.86
1 1 .34
7. 18
*
6.76
*
*
*
*
*
14.78
16.98
19.38
12.49
*
13.76
16.50
17.75
15.88
16. 23
*
-------
EPICHLOROHYDRIN RUBBER
AVERAGE FINAL PROPERTIES
LL99ML3
LL99ML4
LL99ML5
LL99ML6
LH01MM1
LH07MM1
LH14MM1
LH28MM1
LH99MM1
LH56MM1
LH99MM2
LH99MM3
LH99MM4
LH99MM5
LH99MM6
LL01MM1
LL07MM1
LL14MM1
LL28MM1
LL99MM1
LL56MM1
LL99MM2
LL99MM3
LL99MM4
LL99MM5
LL99MM6
LH010M1
LH070M1
LH140M1
LH280M1
LH990M1
LH560M1
LH990M2
LH990M3
LH990M4
LH990M5
LH990M6
247
367
501
606
1
7
14
28
37
55
121
247
367
500
609
1
7
14
28
37
55
109
247
367
501
606
1
7
13
28
39
56
1 21
247
371
494
609
WEIGHT
(gram)
4.91
4.99
5.04
5.06
5
5
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
5
4
5
5
5
5
5
.40
.56
. 18
.45
.91
.75
.92
.62
. 12
.25
. 22
.46
.30
.60
.88
.65
.63
.81
.76
.51
.57
.53
.52
.45
.56
.81
.08
.95
.23
.23
.32
.28
.34
THICKNESS
(mi 1 )
64. 10
64.20
65. 10
65.50
67
69
66
77
71
70
72
73
66
67
67
63
68
72
71
69
70
72
69
68
66
69
61
59
59
62
67
63
68
68
69
68
68
. 10
.20
.60
.20
.90
.90
. 10
.00
.70
.70
.60
. 10
.00
.50
.60
.40
.50
.80
.20
.50
. 10
. 10
.40
.60
.90
.90
.30
. 10
.30
.40
.00
.80
.80
LENGTH WIDTH
(inch) (inch)
METHYL ETHYL
3.18 1.06
3.27 1.08
3.21 1.07
3.23 1 .08
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
METHYL
.41
.40
.47
.55
.51
.04
.51
.36
.27
.21
.31
METHYL
.27
.30
.33
.46
.39
.35
.50
.39
.36
.25
.37
ASTM *2
.04
.09
. 10
. 17
. 18
. 22
. 22
. 23
.25
.26
.25
ETHYL
1 . 10
1.11
1.12
1 . 14
. 13
.09
. 13
.09
.07
.07
.08
ETHYL
.06
.08
.08
. 12
. 12
.09
. 17
. 12
. 1 1
. 10
.08
OIL
.01
.02
.02
.04
.05
.06
.06
.06
1 .06
1 .07
1 .07
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
inch inch
width) width)
KETONE 3.0% 23°C
* *
* *
* *
90.57 *
KETONE
66
71
62
54
74
73
KETONE
73
78
71
66
70
79
13
.80
.76
.32
.44
*
.49
*
*
*
*
.29
13
.68
.00
.92
.95
*
.74
*
*
*
*
.31
SATURATED
83
85
89
88
89
105
.43
. 21
.29
.80
*
.43
4
*
*
*
.20
0% 50°
66
71
66
60
75
0% 23°
75
82
78
65
70
50°C
86
95
95
92
91
C
.32
.60
.48
.87
*
.86
C
.76
.32
.00
.54
*
.42
*
*
*
*
*
.58
.72
. 16
.00
*
. 21
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
739.00
409
370
289
259
335
528
448
432
346
408
415
678
429
383
407
344
340
590
04
56
12
36
*
12
*
*
*
*
92
48
48
64
72
*
12
*
*
*
*
80
20
68
04
00
*
72
*
«
*
*
00
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
358
346
277
248
31 1
412
412
395
356
375
404
416
404
308
306
.56
.40
. 12
.32
*
.92
*
*
*
*
*
.88
.80
.20
. 24
*
.28
.56
.32
.32
.00
*
.96
TEAR
RESISTANCE
M
(lb)
*
*
*
*
1 1
12
12
8
12
13
12
14
10
12
15
18
16
12
13
.96
.30
. 10
.48
*
.83
.54
.30
.58
.81
*
.36
.33
.43
. 14
. 20
*
.31
TEAR
RESISTANCE
T
(lb)
*
V
*
*
10
12
12
8
12
1 1
13
15
10
1 1
16
20
17
12
14
86
82
86
45
*
23
62
14
30
22
*
81
54
31
35
70
*
13
*
*
*
*
*
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mi 1 )
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
Ob)
TEAR
RESISTANCE
T
(lb)
ASTM #2 OIL SATURATED 23°C
(jo
C^
-P-
LL010M1
LL070M1
LL140M1
LL280M1
LL990M1
LL560M1
LL990M2
LL990M3
LL990M4
LL990M5
LL990M6
LH010P1
LH070P1
LH140P1
LH280P1
LH990P1
LH560P1
LH990P2
LH990P3
LH990P4
LH990P5
LH990P6
LL010P1
LL070P1
LL140P1
LL280P1
LL990P1
LL560P1
LL990P2
LL990P3
LL990P4
LL990P5
LL990P6
LH01PH1
LH8BPH1
LHO7PH1
1
7
13
28
39
56
105
247
371
494
606
1
7
14
28
39
56
121
241
371
489
609
1
7
14
28
39
56
106
241
371
489
606
1
1
7
4.42
4.37
4.31
4.26
4.46
4.43
4.45
4.44
4.46
4.46
4.47
4.25
4.43
4.37
4.49
4. 14
4.31
4. 13
4.15
4.16
4.15
4.16
6.67
2.40
7 .20
60. 10
60. 10
59. 10
58.00
62.30
60.40
62.00
62.90
62.30
62.40
62.70
58.00
60.50
60.90
61 .40
57.90
58.70
57.80
57.70
57.90
57.80
58.00
75.90
*
78 .90
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
00 1
02 1
01 1
05 1
07 1
06 1
10 1
13 1
15 1
16 1
17 1
ASTM #2
00 1
00 1
01 1
00 1
01 1
02 1
02 1
02 1
02 1
02 1
03 1
ASTM #2
00 1
00 1
00 0
00 1
00 1
00 1
00 1
01 1
00 1
01 1
01 1
PHENOL
56 1
*
66 1
.00
.01
.01
.01
.02
.02
.02
.03
.04
.04
.04
OIL
.00
.00
.00
.00
.00
.00
.00
.01
.00
.00
.01
OIL
.00
.00
.99
.00
.00
.00
.00
.00
.00
.00
.00
8.0%
. 15
*
. 17
85.
87.
88.
85.
84.
98.
1 00 . 0%
86.
92.
86.
83.
85.
102.
100.0%
86.
80.
82.
87.
87.
82.
50°C
87.
39.
80
62
07
60
*
07
*
*
*
*
68
50°C
31
80
00
03
*
36
*
*
*
*
20
23°C
50
70
40
69
*
60
*
*
*
*
80
*
79
74
90. 15
84.80
92.90
90. 14
*
93.84
*
*
91 .72
87. 10
91 .60
90. 14
90. 16
*
45.88
*
40. 18
452.40
400.00
441.00
432.56
*
442.40
*
*
*
*
589.00
446.80
457.00
400.00
447.68
*
354.16
*
*
*
710.30
87.79
235.94
404.72
436.00
418.00
418.88
*
334.56
*
*
*
421 .76
411.00
388.00
397.84
389.68
*
15.31
16.50
15.95
13.50
*
15.96
*
*
*
18.43
14.20
14.40
15.87
*
15.59
*
19.03
14.00
14.20
17.48
*
16.38
*
*
18.05
17.94
16.91
13.00
*
16.65
*
19.36
15.40
15.70
18.58
*
15.10
*
*
*
*
*
19.93
14.70
15.90
17.25
*
17.62
204.20
219.40
6.28
5.57
5.94
5.22
-------
EPICHLOROHVORIN RUBBER: AVERAGE FINAL PROPERTIES
LH14PH1
LH28PH1
LH99PH1
LH56PH1
LH99PH2
LH99PH3
LH99PH4
LH99PH5
LH99PH6
LL01PH1
LL07PH1
LL14PH1
LL28PH1
LL99PH1
LL56PH1
LL99PH2
LL99PH3
LL99PH4
LL99PH5
LL99PH6
LH01PL1
LH07PL1
LH14PL1
LH28PL1
LH99PL1
LH56PL1
LH99PL2
LH99PL3
LH99PL4
LH99PL5
LH99PL6
LL01PL1
LL07PL1
LL14PL1
LL28PL1
LL99PL1
LL56PL1
LL99PL2
14
28
38
56
120
239
375
500
609
1
7
14
28
38
56
106
239
375
501
606
1
7
14
28
37
56
120
239
374
500
609
1
7
14
28
37
56
108
WEIGHT
(gram)
7.56
7.27
6.30
7.04
6. 12
6.51
8.16
8.53
8.83
6.45
7.64
7.70
7.69
6.93
7.79
6.97
6.70
8.50
8.58
B.30
4.63
4.99
5. 19
5.30
5.17
5.31
5. 27
5.42
5.36
5.44
5.45
4.53
4.60
4.73
4.89
4.81
4.92
4.96
THICKNESS
(mil)
81
78
75
76
74
76
85
87
88
73
81
81
80
78
81
78
76
86
97
85
62
65
66
68
68
68
69
69
69
70
69
62
62
63
64
65
64
66
.80
.50
.80
.90
.40
.30
.00
.20
.60
.40
.70
. 10
.30
.20
.30
.70
.90
.40
.70
.20
.50
.50
.90
.50
.00
.80
. 20
. 10
.30
. 10
. 20
.40
.20
.30
.80
.20
.50
.80
LENGTH WIDTH
(Inch) (inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PHENOL
.70
.69
.47
.66
.42
.51
.86
.91
.94
PHENOL
.53
.76
.79
.80
.63
.77
.65
.52
.95
.95
.89
PHENOL
.06
. 14
. 19
. 22
.22
.23
.26
. 27
.27
.29
.28
PHENOL
.02
.06
.08
. 1 1
. 1 1
. 15
. 16
8.0%
. 19
. 18
. 12
. 17
. 10
1 . 13
1 .22
1 .24
1 .25
8.0%
. 13
. 18
. 21
.21
. 17
.21
. 17
. 15
.25
.23
.24
1 .0%
1.01
1 .04
1 .05
1 .06
1 .06
1 .06
1 .07
1 .07
1 .07
1 .08
1 .07
1 .0%
1 .00
1 .01
*
1 .03
1 .03
1 .03
1 .05
BREAKING
FACTOR
M
(lb/
inch
width)
50°C
42
41
41
29
23°C
46
34
32
35
35
41
50°C
81
78
81
80
81
93
23°C
81
83
85
86
81
.02
.30
*
.94
*
*
*
*
.40
.92
.46
.88
.70
*
.30
*
*
*
*
.28
.62
.40
.02
.70
*
.48
*
*
*
*
.90
.86
.32
. 16
.08
*
.96
*
BREAKING
FACTOR
T
(pound/
inch
width)
41
42
42
52
36
37
37
36
86
84
83
85
82
87
87
90
92
88
84
66
*
00
48
34
34
82
*
64
*
*
*
*
*
14
14
38
30
*
58
78
16
80
50
*
30
*
ELONGATION
AT
BREAK
M
(inch)
219
210
232
181
241
187
129
177
188
193
408
367
417
370
377
481
380
399
457
441
449
. 10
.74
*
. 18
*
*
*
*
.00
.32
.58
.88
.40
*
.04
*
*
*
*
.30
.68
.74
.84
.54
*
.25
*
*
*
*
.00
.74
.60
.64
.90
*
.72
*
ELONGATION
AT
BREAK
T
( inch)
198
199
216.
245.
184.
169.
159.
172.
362.
434.
406.
358.
345.
347.
350.
429.
409.
428.
14
62
*
10
*
¥
*
*
*
40
72
30
08
*
52
*
*
*
*
*
06
12
84
56
*
72
*
*
*
*
*
72
12
82
64
*
64
*
TEAR
RESISTANCE
M
(lb)
4
4
4
6.
4.
4.
4.
4.
15.
15.
15.
14.
13.
15
16
16
15
15
86
90
*
79
89
00
36
15
*
26
*
*
*
*
*
45
41
1 1
64
*
66
4
*
*
*
*
13
61
05
94
*
47
*
TEAR
RESISTANCE
T
(lb)
5.02
4.59
*
4.38
*
*
*
*
*
6.82
4.20
3.50
4.39
*
3.84
*
4
*
*
*
15.61
16.43
14.93
14.59
*
13.80
16.52
16. 25
15.67
15.60
*
16.11
*
-------
EPICHLOROHVDRIN RUBBER: AVERAGE FINAL PROPERTIES
ON
LL99PL3
LL99PL4
LL99PL5
LL99PL6
LH01PM1
LH07PM1
LH14PM1
LH28PM1
LH99PM1
LH56PM1
LH99PM2
LH99PM3
LH99PM4
LH99PM5
LH99PM6
LL01PM1
LL07PM1
LL14PM1
LL28PM1
LL99PM1
LL56PM1
LL99PM2
LL99PM3
LL99PM4
LL99PM5
LL99PM6
LH01SH1
LH07SH1
LH14SH1
LH28SH1
LH99SH1
LH56SH1
LH99SH2
LH99SH3
LH99SH4
LH99SH5
LH99SH6
240
374
501
606
1
7
14
28
37
56
120
239
375
500
609
1
7
14
28
37
56
107
240
375
501
606
1
7
14
28
36
56
120
241
372
492
609
WEIGHT
(gram)
5.09
5.17
5.30
5.34
5.
5.
5.
6.
5.
6.
5.
5.
5.
5.
6.
4.
5.
5.
5.
5.
6.
5.
5.
5.
5.
5.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
44
93
87
03
79
32
69
69
82
95
1 1
87
82
74
95
39
25
51
61
81
90
95
43
43
28
25
26
27
26
26
25
25
25
THICKNESS
(mil)
67.30
68.00
68.90
68. 10
68
72
67
71
72
75
72
72
72
73
74
64
71
69
71
66
73
67
68
69
63
70
60
60
58
58
59
58
59
59
59
59
59
.40
.70
.20
.80
.80
.50
.00
.20
.80
.60
.80
.80
.20
.00
.50
.60
.80
.70
.40
.70
. 10
.30
.20
. 10
.60
.60
.00
.90
.20
.00
.00
. 10
.00
BREAKING
FACTOR
M
(lb/
LENGTH WIDTH inch
(inch) (inch) width)
PHENOL 1.0% 23°C
3.00 1.05 *
3.22 1.05 *
3.25 1.07 *
3.26 1.07 84.40
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
2.
PHENOL
26
36
40
42
34
43
31
31
34
37
38
PHENOL
12
34
38
40
34
42
37
00
45
46
47
SODIUM
01
00
01
01
00
00
01
00
00
00
99
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
608.50
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
*
*
4 . 0% 50°'C
.06
.09
. 10
. 1 1
.09
. 12
.08
.08
.09
. 10
. 10
4.0% 23
.03
.09
.09
. 1 1
.08
. 12
. 10
. 10
. 1 1
1.12
1.12
CHLORIDE
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
1 .00
1 .00
68
57
63
59
57
64
°C
78
58
62
54
56
52
35
91
88
93
99
90
103
.44
.38
. 14
.02
*
.90
*
*
*
*
.90
. 10
.62
.52
.28
*
.94
*
*
*
*
.30
.0%
.30
.28
.51
.86
*
.23
*
*
4
*
.60
70.
57.
61 .
60.
56.
79.
59.
62.
55.
56.
50°C
95.
96.
100.
97.
101 .
38
74
64
10
*
02
#
*
*
*
*
04
46
78
44
*
90
*
*
*
*
*
93
18
01
72
*
05
*
*
*
*
*
420
399
376
331
347
349
394
397
362
381
344
534
475
410
323
400
370
540
.80
.38
. 10
46
*
.44
*
*
*
*
.00
.54
. 18
.02
.90
*
.90
*
*
*
*
.30
.20
.96
.36
.64
*
.48
*
*
*
*
.00
391
346
316
313
310
338
355
327
346
297
424
410
387
382
322
.42
.90
.02
.46
*
.76
*
*
*
*
*
.20
.08
.28
.48
*
.04
*
*
*
*
*
.88
.24
.60
.48
*
.00
*
*
¥
*
*
12
10
10
10
9
13
10
10
9
9
14
16
13
16
12
.48
.95
.65
.43
*
.47
*
*
*
*
if
.73
.09
.05
.54
*
.82
*
*
*
*
V
.58
. 13
.43
.45
*
.75
*
*
*
*
*
10
10
9
9
a
13
9
8
8
8
17
15
14
14
.96
. 19
.55
.48
*
.71
*
*
*
*
*
.93
.52
.74
.74
*
.20
*
*
*
*
*
.09
*
.43
.00
*
.03
*
*
*
*
*
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
Ob)
TEAR
RESISTANCE
T
(lb)
LL01SH1
LL07SH1
LL14SH1
LL28SH1
LL99SH1
LL56SH1
LL99SH2
LL99SH3
LL99SH4
LL99SH5
LL99SH6
LH01SM1
LH07SM1
LH14SM1
LH28SM1
LH99SM1
LH56SM1
LH99SM2
LH99SM3
LH99SM4
LH99SM5
LH99SM6
LL01SM1
LL07SM1
LL14SM1
LL28SM1
LL99SM1
LL56SM1
LL99SM2
LL99SM3
LL99SM4
LL99SM5
LL99SM6
LH01WP1
LH07WP1
LH14WP1
LH28WP1
1
7
14
28
36
56
108
241
372
492
606
1
7
15
28
36
56
120
241
372
485
609
1
7
15
28
36
56
107
241
372
485
606
1
7
14
28
4.59
4.49
4.70
4.75
4.33
4.65
4.34
4.35
4.35
4.33
4.34
4.56
4.32
4.76
4.80
4.30
4.66
4.31
4.32
4.31
4.30
4.30
4.65
4.97
4.85
4.87
64.30
62.00
64. 30
66. 10
59.90
62.90
60.00
59.80
60.50
60.00
59.90
63. 70
59. 20
66.30
71 .30
59.40
64.30
59.2O
59.30
59. 10
59.40
59. 20
64.30
68.30
65.70
66. 10
SODIUM CHLORIDE 35.0% 23°C
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.01
.00
.01
.00
.01
.01
.00
.00
.01
.00
.00
SODIUM
.02
.03
.03
.03
.02
.04
.03
.03
.02
.02
.02
SODIUM
.01
.01
.01
.03
.03
.04
.03
.03
.03
.02
.03
WATER
.03
.08
. 10
. 12
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
CHLORIDE
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.00
CHLORIDE
1 .00
1 .00
1 .00
1 .00
1 .00
1 .01
.03
.01
.00
.01
.00
100.0%
1.01
1 .02
1 .03
1 .03
84
89
85
94
84
85
10
83
85
86
86
105
105
10
82
87
85
95
95
84
50°C
85
95
87
96
90
42
93
09
*
19
*
*
*
*
33
0%
76
46
34
64
*
54
*
*
*
*
90
0%
80
14
24
76
*
27
*
*
*
*
63
50
28
92
08
93
88
92
91
99
50°C
91
94
89
94
104
23°C
88
85
90
81
102
104
103
91
102
.69
.70
. 22
.75
*
.06
*
*
*
*
*
.28
.87
.96
.32
*
. 14
*
*
*
*
*
.56
.61
.41
.68
*
. 15
*
*
*
*
*
.56
.60
.44
.32
405.68
384.40
396.16
313.04
*
291.52
*
*
*
*
498.30
416.64
429.20
412.72
327.04
*
284.32
*
665.92
404. 10
295.36
348.08
305.92
385.68
365.76
344.00
321.36
*
288.72
*
*
*
*
395.76
387.44
386.30
381 . 12
*
277.84
*
*
*
*
*
305.68
316.88
386.72
309.92
15.07
16.06
15.35
1 1 .64
*
14.38
*
*
*
*
*
13.66
16.17
14.21
13.62
*
14.00
12.90
14.80
15.63
12.78
*
13.95
*
*
*
*
*
13.94
10.94
13.30
12.50
15.58
15.62
17.08
15.74
«
16.38
15.82
17 .00
15.84
14.06
*
15.08
15.86
17.52
16.94
14.34
*
15.33
*
*
*
*
15.14
12.54
13.14
13.90
-------
EPICHLOROHYDRIN RUBBER: AVERAGE FINAL PROPERTIES
00
LH99WP1
LH56WP1
LH99WP2
LH99WP3
LH99WP4
LH99WP5
LH99WP6
LL01WP1
LL07WP1
LL14WP1
LL28WP1
LL99WP1
LL56WP1
LL99WP2
LL99WP3
LL99WP4
LL99WP5
LL99WP6
LH01XM1
LH07XM1
LH14XM1
LH28XM1
LH99XM1
LH56XM1
LH99XM2
LH99XM3
LH99XM4
LH99XM5
LH99XM6
LL01XM1
LL07XM1
LL14XM1
LL28XM1
LL99XM1
LL56XM1
LL99XM2
LL99XM3
LL99XM4
LL99XM5
LL99XM6
36
55
120
241
364
483
609
1
7
14
28
36
55
108
241
364
483
606
1
7
14
28
39
56
120
247
373
493
609
1
7
14
28
39
56
107
247
373
493
6O6
WEIGHT
(gram)
5.01
5.41
5.17
5.21
5.24
5.25
5.26
4.63
4.75
4.64
4.65
4.31
5.05
4.39
4.50
4.57
4.62
4.66
THICKNESS
(mi 1 )
67.50
70.40
68.70
69. 10
69.20
69.30
69.00
65.40
67.20
64. 10
63.70
59.60
68.00
60.80
61 .60
61 .70
62. 10
62.40
LENGTH
(inch)
3. 17
3.16
3.21
3.22
3.23
3.06
3.23
3.01
3.02
3.03
3.05
3.05
3.06
3.09
3. 12
3. 14
3. 15
3. 17
WIDTH
(inch)
WATER 100.0%
1 .04
.05
.05
.06
.06
.06
.06
WATER 100.0%
.00
.01
.01
.01
.01
.01
.03
.03
.04
.04
.04
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
inch inch
width) width)
50°C
*
101 .58
*
*
*
*
105.00
23°C
96.40
97.36
88.08
86. 16
*
108.49
*
*
*
*
84.69
POTASSIUM DICHROMATE 10.0%
4.57
4.41
4.47
4.37
4.73
4.99
4.78
4.79
4.80
4.77
4.81
62.90
59.40
60.40
59.50
65.60
67.80
65.90
65.80
65.90
65.80
65.70
3.02
3.04
3.06
3.05
3.10
3. 10
3.11
3.11
3.11
3.08
3.09
.01
.01
.02
.01
.03
.02
1 .03
1 .03
1 .02
1 .03
1 .02
90. 12
89.85
97.69
102.79
*
95.48
*
*
*
*
1 10.60
POTASSIUM DICHROMATE 10.0%
4.51
4.39
4.38
4.27
4.57
4.49
4.63
4.70
4.73
4.73
4.76
63.00
59.60
60. 10
58.40
63.50
61 .00
64. 10
64. BO
64. 9O
64. 9O
65 .40
3.00
3.00
3.02
3.04
3.05
3.04
3.06
3.09
3.O9
3.09
3.10
1 .00
1 .00
1.01
1 .01
1.01
1 .02
1 .02
1 .02
1 .02
1 . 03
1 .03
88. 18
83.69
90.52
96. 10
*
90.38
*
*
*
*
93 . 61
*
1 12.25
*
*
*
*
*
104.72
100.72
93.52
103.76
*
108.30
*
*
*
*
*
50°C
99.50
92. 17
96.78
95.50
*
98.23
*
*
*
*
*
23°C
95.24
95.27
102.22
91.11
*
96.39
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
295
538
302
323
409
378
308
609
450
454
426
409
325
557
352
423
435
379
443
583
*
.52
*
*
*
*
.00
.00
. 12
. 12
. 16
#
.88
*
*
*
*
.83
.32
.64
.00
.92
*
.04
*
*
*
*
.00
.24
.92
.28
.20
*
.52
*
*
*
*
.92
ELONGATION
AT
BREAK
T
(inch)
292
312
281
398
317
294
419
409
385
400
316
425
418
330
434
418
*
.88
*
*
*
*
*
.32
.68
.88
.92
*
.48
*
*
*
*
*
.28
.20
.20
.73
*
.00
*
*
*
*
*
.92
.48
.64
.00
*
.00
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
13.96
*
*
*
*
*
12.98
13.22
15.22
14.26
*
16.37
*
*
*
*
*
14.88
14.02
15.63
16.59
*
13.17
*
*
*
*
*
13.65
14.36
15.51
15.74
*
11.51
*
*
#
*
*
TEAR
•RESISTANCE
T
(lb)
*
15.35
*
*
*
*
*
14.06
16.06
15.94
15.26
*
15.83
*
*
*
*
*
16.01
15.82
18.09
15. 19
*
13.62
*
*
*
*
*
16.65
15.42
17.43
15.49
*
14.16
*
*
4
*
*
-------
EPI CO : STATISTICS
369
-------
EPICHLOROHVDRIN:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U)
^4
O
LH01AM1 1
LH07AM1 7
LH14AM1 14
LH28AM1 27
LH56AM1 56
LL01AM1 1
LL07AM1 7
LL14AM1 14
LL2BAM1 27
LL56AM1 56
LH01BM1 1
LH07BM1 7
LH14BM1 14
LH28BM1 28
LH56BM1 56
LL01BM1 1
LL07BM1 7
LL14BM1 14
LL28BM1 28
LL56BM1 56
LH01DH1 1
LH07DH1 7
LH14DH1 14
LH28DH1 28
LH56DH1 56
LL01DH1 1
LL07DH1 7
LL14DH1 14
LL28DH1 28
LL56DH1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
3.650
2.567
2.851
2. 120
7.732
1 .210
1 .730
1 .210
0.557
2.232
1 .326
3. 192
1 .279
1 .365
3. 179
1 .466
0.598
2.114
9.464
0.930
2.778
1 . 180
1 .960
1 .065
3.113
0.682
1 .320
0.380
2.327
3.364
STD
NUMBER DEV NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
BF EAB
T M
HYDROCHLORIC ACID
2.160 5
3.250 5
1 .338 5
3.666 5
4.180 5
HYDROCHLORIC ACID
1 . 190 5
3.940 5
1.452 5
1.594 5
1.250 5
SODIUM HYDROXIDE
4.716 5
1 .658 5
2.670 5
0.893 5
0.777 5
SODIUM HYDROXIDE
1.099 5
2.869 5
1 .61 1 5
2.110 5
1.262 5
1 2 DICHLOROETHANE
1 . 108 5
4.130 5
1 . 180 5
1 . 124 5
1.624 5
1 2 DICHLOROETHANE
1.270 5
0.720 5
2.180 5
0.929 5
1 .759 5
10.0%
46
13
38
23
55
10.0%
26
6
14
13
32
10.0%
16
31
15
20
57
10.0%
25
15
32
67
19
.8%
16
8
24
7
27
.8%
8
2
13
12
18
STD
DEV
EAB
M
50°C
.400
.910
.413
. 130
.590
23°C
.380
.470
.630
.340
.485
50°C
.922
.025
.632
.023
.272
23°C
. 128
.583
.420
.840
.867
50°C
.551
.370
.220
.013
.884
23°C
.548
.360
.830
. 185
. 1O6
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
STD
DEV
EAB
T
26.430
7.266
9. 104
28.263
23. 1 10
17.420
15.290
16.270
14.630
8.900
25.525
7.508
13.860
7.649
14. 173
18.108
13.342
14.697
24.668
16.300
17.032
44.070
4.510
15.142
12.625
18.528
10.510
30.180
9.881
20.80O
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.817
0.975
0.228
0.702
0.392
0.794
0.838
0.510
0.632
0.732
0. 157
0.269
0.121
0. 176
0. 132
0. 130
0.270
0. 140
0.270
0.224
0.229
0.440
0.380
0.356
0.32O
NUMBER
TEAR
T
5
5
5
5
5
STD
DEV
TEAR
T
0.456
0.665
0.559
0.361
0.752
0.268
0.551
0.600
0. 186
0.527
5
5
5
5
5
0.086
0.334
0.336
0.301
0.234
5
5
5
5
5
0.402
0.310
0. 142
0. 130
0.248
0. 162
0.306
0.667
0.294
0.116
0.310
0.280
0.210
0.334
0.377
0.329
0. 160
0.290
0.319
O. 2O9
-------
EPICHLOROHVDRiN:
STANDARD DEVIATIONS OF CHEMICAL. IMMERSION RESULTS
LH010L1 1
LH07DL1 7
LH14DL1 14
LH28DL1 28
LH56DL1 56
LL01DL1 1
LL07DL1 7
LL14DL1
LL28DLI 28
LL56DL1 56
14
LH01DM1 1
LH07DM1 7
LH14DM1 14
LH28DM1 28
LH56DM1 56
LL01DM1 1
LL07DM1 7
LL14DM1 14
LL28DM1 28
LL56DM1 56
LH01FH1 1
LH07FH1 7
LH14FH1 14
LH28FH1 28
LH56FH1 56
LL01FH1 1
LL07FH1 7
LL14FH1 14
LL28FH1 28
LL56FH1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
5.791
0.950
2.550
3.590
2.493
1 .907
1 .200
2.430
1 .062
1 .551
2.488
0.410
1 .480
1 .599
4.226
1 .637
3.450
1 . 140
1 .697
0.826
1 .992
3.229
4.573
1 .403
1 . 729
1 . 841
1 .472
1 . 663
1 . 145
1 .081
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
1 2 DICHLOROETHANE
5
5
5
5
5
2.455
1 .030
2.340
0.688
1 .365
5
5
5
4
5
1 2 DICHLOROETHANE
5
5
5
5
5
2.697
1 .340
1 .390
1 .340
2.340
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
2.256
1 .290
1 .500
1.716
2.272
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .289
1 .320
2.440
1 .295
1 .773
FURFURAL
1 .280
1 .682
1 .780
1 .802
1 .947
FURFURAL
2. 154
2.695
0.335
1 .706
2.028
5
5
5
5
5
8.0% 50°C
5
*
5
5
5
8.0% 23°C
5
5
5
5
5
STD
DEV
EAB
M
.1% 50°C
71 .876
25.350
41 .760
25.890
3.283
.1% 23°C
38.447
18. 100
16.870
13.722
19.322
.5% 50°C
17.038
4.470
1 1 .430
21 .536
26.862
.5% 23°C
15.719
75.610
45.490
5.309
19.685
30.590
*
28.480
5.660
8.000
45.830
20.710
13.860
3.580
13.450
NUMBER
EAB
T
STD
DEV
EAB
T
13.524
33.950
13.830
7.895
11.038
17.485
16.970
17.800
9.930
7.532
18.720
21.140
17.790
17.579
11 .256
14.677
1 1 .800
36.340
14.570
25.401
14.250
7. 160
5-. 370
15.320
3.350
36.400
14.310
10.040
5.370
20.860
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.444
0.200
0.220
0.352
0.267
0.276
0.380
0. 130
0.581
0.381
0.098
0.290
0.310
0.293
0.289
0.337
0.340
0.290
0. 128
0.416
0.265
0.923
1 . 125
0. 148
0.217
1 .065
2.063
0. 192
1 . 102
0.502
NUMBER
TEAR
T
STD
DEV
TEAR
T
0.413
0.370
0.230
0.458
0.338
0.233
0.530
0.590
0. 198
0.213
0.642
0.210
0.340
0.373
0. 228
0.329
0. 130
0.440
0. 160
0. 124
0. 256
1 .006
0.342
0.358
0.233
3.819
1 .770
0.910
1.418
0.089
-------
EPICHLOROHYDRIN: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U>
LH01FL1 1
LH07FL1 7
LH14FL1 14
LH28FL1 28
LH56FL2 56
LH56FL1 56
LL01FL1 1
LL07FL1 7
LL14FL1 14
LL28FL1 28
LL56FL2 56
LL56FL1 56
LH01FM1 1
LH07FM1 7
LH14FM1 14
LH28FM1 28
LH56FM1 56
LL01FM1 1
LL07FM1 7
LL14FM1 14
LL28FM1 28
LL56FM1 56
LH01MH1 1
LH07MH1 7
LH14MH1 14
LH28MH1 28
LH56MH1 55
LL01MH1 1
LL07MH1 7
LL14MH1 14
LL28MH1 28
LL56MH1 55
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
0.822
1 .802
1 .425
6.705
1 .635
1 .640
4.764
6. 108
5.040
3.401
6.873
2.806
1 . 183
1 .930
1 .340
1 .004
1 .043
0.961
0.715
1 .523
2.838
1 .625
2.920
1 .2.10
2.690
2.360
2.370
1 .660
1 .840
1 .870
6.966
1 .730
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL 1 .
O.B16
3.341
2.622
4.460
1 .442
1 .549
FURFURAL 1 .
2.300
1 .649
2.513
1 .889
6.321
1 . 152
FURFURAL 4.
1 .759
2.076
2.892
1.315
1 .277
FURFURAL 4.
2.438
1 .370
1 .480
0.400
1 .534
METHYL ETHYL
2.300
2.040
2. 147
3.409
4.750
METHYL ETHYL
1 .910
1 .450
1 .876
1 .706
2. 1OO
NUMBER
EAB
M
0% 50°C
5
5
5
5
5
5
0% 23°C
5
5
5
5
5
5
0% 50°C
5
5
5
5
5
0% 23°C
5
5
5
5
5
KETONE
5
5
5
4
5
KETONE
5
5
5
5
5
STD
DEV
EAB
M
15.529
18.550
9. 120
25.040
17.300
14.860
61 .827
78. 100
57.650
46.600
44.850
19. 180
20.565
13.680
12.330
12.840
7. 160
17.674
35. 100
22.630
6.930
23.600
26.0% 50°C
1 1 .920
*
5.860
10.026
12.950
26.0%. 23°C
10.890
14.080
33.620
45.300
7 . 64O
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
5.918
21 .650
28.430
11.520
22.520
4.560
14.676
15.970
30.380
10.810
24.170
29.340
12.635
14.590
7. 160
9. 120
14.310
29.536
23. 170
15.590
17.980
14.810
11.460
9.470
3.795
19.494
14.790
10.320
16.570
9.495
5. 289
5.750
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.615
0.889
0.602
0.227
0.230
0.546
0.472
1 .073
0.486
2.285
0. 1 14
1 .069
0.563
0.364
0.390
0.235
0.730
0.530
*
0.624
0.330
0.800
0.670
0.555
0. 165
O.390
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
1.211
0.450
0.594
0.459
0.250
0.055
5
5
5
5
5
5
0.504
0.531
0.288
0.325
0.327
0.462
5
5
5
5
5
5
1 .661
0.952
1.171
0.567
0.367
0.424
776
163
604
515
0.270
0.353
0.800
0.673
0.701
0.277
0.330
0.870
*
0.431
0.200
0.370
0.767
0. 261
O. 748
O. 29O
-------
EPICHLOROMYDRIN:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
OJ
LH01ML1 1
LH07ML1 7
LH14ML1 14
LH28ML1 28
LH56ML1 55
LL01ML1 1
LL07ML1 7
LL14ML1
LL28ML1 28
LL56ML1 55
14
LH01MM1 1
LH07MM1 7
LH14MM1 14
LH28MM1 28
LH56MM1 55
LL01MM1 1
LL07MM1 7
LL14MM1 14
LL28MM1 28
LL56MM1 55
LH010M1 1
LH070M1 7
LH140M1 13
LH280M1 28
LH560M1 56
LL010M1 1
LL070M1 7
LL140M1 13
LL280M1 28
LL560M1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1.214
6.510
3.250
8. 143
2.018
4.912
1 . 187
2.010
1.513
1 .533
2.713
1 .990
9.288
6.359
3.250
2.007
1 . 130
8.940
2.919
1 .950
1 .877
8.718
1 .447
1 .600
2.066
2.615
1 .696
2.083
0.400
5.398
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
METHYL ETHYL
1 .386
2.999
2.810
3. 197
3.063
METHYL ETHYL
4.644
2.806
1 .660
1 .678
1 .520
METHYL ETHYL
1 .658
0.980
1.212
1 .931
2.540
METHYL ETHYL
1 .820
1.210
1 . 130
1.111
1 .780
ASTM #2 OIL
3.035
0.446
1 .250
1 .600
2.511
ASTM #2 OIL
2.057
1 .699
1 .674
2.800
1 .848
NUMBER
EAB
M
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
STD
DEV
EAB
M
3.0% 50°C
32.855
71 .803
3. 160
57.868
7.680
3.0% 23°C
12.470
10.470
26.460
14.371
20.520
13.0% 50°C
14.418
18.720
55.600
37.640
27.470
13.0% 23°C
7.340
8.580
52.650
39.854
5.720
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
SATURATED 50°C
5
5
5
5
5
100.'0%
5
5
5
5
5
1 1 .790
93.521
24.454
32.000
10.367
23°C
9. 137
17.651
24.533
16.000
75. 219
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
NUMBER
TEAR
M
STD
DEV
TEAR
M
NUMBER
TEAR
T
STD
DEV
TEAR
T
5
5
5
5
5
7.785
8.513
4.750
7.647
10.830
5
5
5
5
5
0.390
1 .238
0.424
0.099
0.255
5
5
5
5
5
0.807
1 .404
1 .430
0.488
0.412
20.480
44.230
13.510
11.353
26.730
9.613
12.480
8 .980
13.751
12.950
8.380
14.500
21.200
29.441
22.220
45.050
6.510
7.770
16.000
28.502
9.631
7.989
5.940
28.000
20.704
0.498
0.756
*
0.443
0.339
0.385
0.283
0.400
0.730
0. 195
0.330
0.550
0.593
0.592
0. 133
0.614
0.901
0.470
0.500
0.292
1 . 248
0.405
0.511
0.200
0.306
0.374
1 .370
*
0.908
0.215
0.498
0.830
0.865
0.568
0.517
0.360
1 .300
0.735
1 . 194
0.280
0. 305
2.900
0.661
0.600
0. 248
0.263
0.444
0. 332
0.040
0.353
-------
EPICHLOROHYDRIN:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
-vj
-P-
LH010P1 1
LH070P1 7
LH140P1 14
LH280P1 28
LH560P1 56
LL010P1 1
LL070P1 7
LL140P1 14
LL280P1 28
LL560P1 56
LH01PH1 1
LH88PH1 1
LH07PH1 7
LH14PH1 14
LH28PH1 28
LH56PH1 56
LL01PH1 1
LL07PH1 7
LL14PH1 14
LL28PH1 28
LL56PH1 56
LH01PL1 1
LH07PL1 7
LH14PL1 14
LH28PL1 28
LH56PL1 56
LL01PL1 1
LL07PL1 7
LL14PL1 14
LL28PL1 28
LL56PL1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .780
2.400
1 .400
3.550
1 .735
1 .048
1 . 100
3.200
1 .676
3.347
*
1 .571
1 .440
1 .823
3.047
1 .366
3.850
3.080
3.200
1 .070
1 .300
7.496
2.420
1 .808
0.900
1 .200
0.565
2. 190
1 .250
0.927
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
ASTM
2
0
0
0
1
ASTM
2
1
1 1
1
1
BF
T
#2 OIL
.839
.800
.900
.918
.735
#2 OIL
.629
.900
.200
.299
.640
PHENOL 8.0%
5
*
5
5
5
5
1
*
1
1
1
1
.930
.334
.210
.670
.528
PHENOL 8 . 0%
5
5
5
5
5
2
4
2
2
3
.671
.350
.310
. 163
.074
PHENOL 1.0%
5
5
5
5
5
1
2
3
1
2
.920
.418
. 170
.839
.610
PHENOL 1.0%
5
5
5
5
5
1
1
1
1
2
.530
.353
.840
.306
.435
EAB
M
SATURATED
5
5
5
5
5
STD
DEV
EAB
M
50°C
32.409
36.000
5.200
44.720
13.651
100.0% 23°C
5
5
5
5
5
50°C
*
*
5
5
5
5
23°C
5
5
5
5
5
50°C
5
5
5
5
5
23°C
5
5
5
5
5
31 .382
24.000
51 .000
13.896
68.251
*
*
36. 120
14.690
10.282
25.391
6. 109
25.501
25.240
18.300
9.857
6.500
98.707
19.600
14.067
4.450
9.420
9.718
45.560
6. 154
3.571
NUMBER
EAB
T
STD
DEV
EAB
T
8.251
12.000
16.000
10.520
24.288
33.417
14.500
75.000
15.328
16.725
12.680
*
25.295
12. 170
6.070
24.077
9.666
10.430
10.860
8. 123
16.719
10.200
25.151
31.780
13.970
17.177
21.460
12.593
13.400
6.118
8.399
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.694
0.200
0.300
0.404
1 .070
0.492
0.300
0.200
0.399
0.522
0.222
*
0.062
0. 150
0.210
0. 134
0.41 1
2.245
0.540
0.380
0. 183
0.210
0.828
0.089
0.335
0.288
0.200
0.391
0.460
0.262
0.300
NUMBER
TEAR
T
5
5
5
5
5
STD
DEV
TEAR
T
1.213
0.500
0.300
0.254
1 .407
0.672
0.300
0.200
0.429
0.593
0. 160
*
0.200
0. 137
0. 172
0. 189
0.329
0. 155
1 .330
0.223
0. 185
0.530
0.417
0. 156
0.604
0.356
0.290
0.338
0. 104
0.372
O.369
-------
EPICHLOROHVDRIN:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
U>
--J
Ul
LH01PM1 1
LH07PM1 7
LH14PM1 14
LH28PM1 28
LH56PM1 56
LL01PM1 1
LL07PM1 7
LL14PM1 14
LL2BPM1 28
LL56PM1 56
LH01SH1 1
LH07SH1 7
LH14SH1 14
LH28SH1 28
LH56SH1 56
LL01SH1 1
LL07SH1 7
LL14SH1 14
LL2BSH1 28
LL56SH1 56
LH01SM1 1
LH07SM1 7
LH14SM1 15
LH28SM1 28
LH56SM1 56
LL01SM1 1
LL07SM1 7
LL14SM1 15
LL28SM1 28
LL56SM1 56
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
1 .230
1.151
0.401
1 .420
2. 148
1 .903
1 .409
0.930
1 .357
0.765
1 .450
4.059
7.810
0.547
1 .408
6.392
4.594
1.116
0.703
1 .590
1.315
1.519
0.804
4.397
1 .724
1 .880
1 .588
4.409
0.367
0.991
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF EAB
T M
PHENOL 4.0% 50°C
1.200 5
0.867 5
1.396 5
1 . 100 5
2.066 5
PHENOL 4.0% 23°C
0.776 5
1.033 5
1.598 5
1.032 5
0.635 5
SODIUM CHLORIDE 35
1.630 5
1.850 5
1.693 5
0.752 5
2.798 5
SODIUM CHLORIDE 35
0.887 4
3.222 5
1.487 5
3.734 5
1 .544 5
SODIUM CHLORIDE 10
3.030 5
1.640 5
1 . 140 5
2.160 5
2.340 5
SODIUM CHLORIDE 10
0.361 5
1.450 5
2.090 5
2.010 5
1.420 5
STD
DEV
EAB
M
17.880
9.449
15.330
8.000
13.897
7.649
18.052
16.826
16.892
6.971
.0% 50°C
14.883
45.730
86. 289
30.481
15. 179
.0% ,23°C
99. 194
48.778
21 .071
17.987
23.242
.0% 50°C
30.590
21 .855
12.000
53.417
6.400
.0% 23°C
24. 130
18.182
39.607
9.430
8.720
NUMBER
EAB
T
STD
DEV
EAB
T
22.700
19.844
21 .372
5.590
15.343
17.089
14.728
8.950
17.464
24.537
30.829
10.015
14.814
12.522
7.228
14.700
32.933
15.382
61.988
39.765
40.160
30.524
29.240
31.500
18.980
20.170
13.990
27.640
28.590
10.910
NUMBER
TEAR
M
STD
DEV
TEAR
M
0. 120
0.265
0.446
0. 290
0.274
0. 139
0. 153
0.223
0.224
0.058
0.297
0. 126
0. 168
0.334
0.287
0. 167
0.224
*
0.201
0.429
0.477
0.586
0.895
0.642
0.690
0.910
0.648
0.412
0.807
0.560
NUMBER
TEAR
T
5
5
5
5
5
STD
DEV
TEAR
T
0.200
0. 143
0.181
0.310
0.392
0.473
0. 153
0.210
0. 123
0.201
0. 247
*
0. 135
0. 166
0.337
0.296
0.349
0.229
0.341
0. 105
0.460
0.605
0.908
0.931
0.311
0.300
0.599
0.452
0. 261
0.670
-------
EPICHLOROHYDRIN:
STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
LH01WP1
LH07WP1
LH14WP1
LH28WP1
LH56WP1
LL01WP1
LL07WP1
LL14WP1
LL28WP1
LL56WP1
LH01XM1
LH07XM1
LH 1 4XM 1
LH28XM1
LH56XM1
LL01XM1
LL07XM1
LL14XM1
LL28XM1
LL56XM1
1
7
14
28
55
1
7
14
28
55
1
7
14
28
56
1
7
T4
28
56
NUMBER
BF
M
STD
DEV
BF
M
6. 100
2.230
2.010
1 .560
2.660
2.530
0.361
2.230
3.810
2.045
0.994
1 .572
1 .638
1 .256
1 .906
3.738
12.878
2.858
3.048
3.806
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
WATER 100
1 .740
0.800
1 .730
2. 160
1 .890
WATER 100
1.210
1 .750
1.212
0.880
3.010
POTASSIUM
3.828
0.820
1 .804
3. 191
0.812
POTASSIUM
1 .983
1 . 179
0.927
6.557
2.315
NUMBER
EAB
M
.0% 50°C
5
5
5
5
5
.0% 23°C
5
5
5
5
5
DICHROMATE
5
5
5
5
5
DICHROMATE
5
5
5
5
5
71
30
17
19
27
3
8
30
39
1 1
10
8
23
23
18
28
10
4
*
25
35
55
STD
DEV
EAB
M
.300
.620
.730
.850
.740
.400
.380
.730
.720
.820
.0%
.404
.784
.968
.761
.340
.0%
. 244
.539
.074
NUMBER
EAB
T
50°C
23°C
5
5
5
5
5
STD
DEV
EAB
T
13.470
11.898
16.430
17.010
12.180
3.490
10.913
IB.150
19.800
15.108
33.41 1
6.493
27.820
38.948
12. 182
33.267
21.488
28.332
75.463
33.707
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.384
0.430
0.141
0.447
1 .760
0. 180
0.415
0.832
0.300
0.667
0. 196
0.279
0.295
0.425
0.572
0. 159
0.533
0.266
0.246
0.942
NUMBER
TEAR
T
STD
DEV
TEAR
T
1 .040
0.540
0.385
0.510
1.210
0.570
0.590
0. 167
1 .080
1 .440
0. 195
0.506
0.857
2.673
1 .205
0. 185
0.359
0.891
0.238
0. 168
-------
EPI CO : RETENTION OF PROPERTIES
377
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
LH01AM1
LH07AM1
LH14AM1
LH28AM1
LH99AM1
LH56AM1
LH99AM2
LH99AM3
LH99AM4
LH99AM5
LH99AM6
LL01AM1
LL07AM1
LL14AM1
OJ LL28AM1
JjJ LL99AM1
LL56AM1
LL99AM2
LL99AM3
LL99AM4
LL99AM5
LL99AM6
LH01BM1
LH07BM1
LH14BM1
LH28BM1
LH99BM1
LH56BM1
LH99BM2
LH99BM3
LH99BM4
LH99BM5
LH99BM6
LL01BM1
LL07BM1
LL14BM1
LL2BBM1
LL99BM1
1
7
14
27
39
56
121
241
374
484
609
1
7
14
27
39
56
101
241
374
484
606
1
7
14
28
38
56
121
241
373
485
609
1
7
14
28
38
PERCENT
WEIGHT
CHANGE
3. 1
5. 1
5.4
8.0
8.0
10. 1
15.5
23.6
26. 1
31.1
33.0
1 . 1
1 .5
1 .7
1 .9
1 .5
3.2
2. 1
2.2
2.9
3.0
3.9
1 .3
1 .3
2.0
1 .3
2.9
1 .8
2.7
.7
. 1
2.0
.5
.8
1 . 1
1 .6
1 .9
PERCENT
THICKNESS
CHANGE
1 .5
3.9
3.8
7.0
4.7
7.4
10.5
14.9
15.5
18.2
18.9
.2
.7
.7
1 .2
.7
2.2
1 .4
1 .2
1 .2
1 .0
1 .7
.5
1 .3
.9
.3
.6
1 .4
1 .0
.8
*
.3
.3
.7
.2
.5
1 . 1
1 .2
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
BF
M
HYDROCHLORIC ACID 10
4. 1
6.8
8. 1
13.8
9.9
15.2
25.2
32.5
35.2
43.0
45.2
94
98
108
103
*
100
*
*
*
*
83
HYDROCHLORIC ACID 10
1 . 1
1 .8
1 .8
2. 1
2.0
4.8
2.9
2.6
2.0
3. 1
4.0
SODIUM
1 . 1
1 .8
.9
.4
. 2
2.3
1 .5
*
.3
.9
.2
SODIUM
1 . 1
. 1
.5'
2. 1
2.7
92
96
101
101
*
106
*
*
*
*
98
HYDROXIDE 10.
101
101
101
101
*
103
*
*
*
*
122
HYDROXIDE 10.
94
99
95
99
*
PERCENT
RETENTION
BF
T
.0% 50°C
103
1 14
1 13
1 16
*
125
*
*
*
*
*
.0% 23°C
101
108
104
107
*
1 16
*
*
*
*
*
0% 50°C
105
107
101
1 10
*
1 10
*
*
*
*
*
0% 23 °C
103
104
104
106
*
PERCENT
RETENTION
EAB
M
107
1 16
1 12
1 16
*
93
*
*
63
1 15
1 13
1 14
1 16
*
84
*
if
*
*
1 14
122
93
100
80
*
77
*
*
*
*
48
1 13
1 23
1 18
82
PERCENT
RETENTION
EAB
T
1 18
125
1 16
122
*
93
1 17
1 18
1 14
120
*
92
*
*
*
*
*
1 19
1 10
101
78
*
93
PERCENT
RETENTION
TEAR
M
97
92
84
87
*
84
91
98
85
98
*
92
*
*
87
91
83
74
*
73
PERCENT
RETENTION
TEAR
T
1 12
99
101
104
*
98
*
*
120
125
1 18
124
84
91
88
95
*
109
1 13
1 1 1
1 16
*
103
*
*
*
*
*
101
109
92
83
*
92
*
102
105
1 10
108
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
u>
LL56BM1
LL99BM2
LL99BM3
LL99BM4
LL99BM5
LL99BM6
LH01DH1
LH07DH1
LH14DH1
LH28DH1
LH99DH1
LH56DH1
LH99DH2
LH99DH3
LH99DH4
LH99DH5
LH99DH6
LL01DH1
LL07DH1
LL14DH1
LL28DH1
LL99DH1
LL56DH1
LL99DH2
LL99DH3
LL99DH4
LL99DH5
LL99DH6
LH01DL1
LH07DL1
LH14DL1
LH28DL1
LH99DL1
LH56DL1
LH99DL2
LH99DL3
LH99DL4
LH99DL5
LH99DL6
56
101
241
373
485
606
1
7
14
28
37
56
121
234
365
499
609
1
7
14
28
37
56
101
234
365
500
606
1
7
14
28
37
56
121
234
364
499
609
PERCENT
WEIGHT
CHANGE
2.6
1 .8
4.0
2.5
1 .9
2.0
6.2
20.6
17.9
24.8
32.3
17.6
31.8
24.7
26.2
28.7
30.7
6.6
9.0
18.3
17.8
22. 1
17.5
23.7
25.9
24. 1
21.8
34.4
3. 1
6.9
10.3
14.5
14.6
15.2
16.9
21.0
21.8
22.9
22. 7
PERCENT
THICKNESS
CHANGE
1 . 1
1 .0
1 .4
2. 1
1 .0
1 .2
1 . 1
7.8
8.6
12.4
14.2
9.9
15.7
1 1 .9
14.1
17.2
18.3
3.3
5.4
8.2
8.7
9.9
8.4
12.7
13.2
12.1
11.5
15.2
1 .5
3.8
5. 1
8. 1
7.5
7.8
9.3
10.9
9.8
8.3
10.7
PERCENT
PERCENT RETENTION
VOLUME BF
CHANGE M
SODIUM HYDROXIDE 10
3.4 103
2.8 *
2.7 *
3.0 *
2.1 *
2.6 95
1 2 DICHLOROETHANE
5.6 88
22.2 88
17.7 79
32.0 72
40.8 *
24.9 95
44.3 *
33.9 *
35.6 *
36. 1 *
40.2 105
1 2 DICHLOROETHANE
6.5 87
13.1 84
20.0 84
21.2 80
27.9 *
22.0 82
34.5 *
35.6 *
32.4 *
35. 1 *
47 .5 112
1 2 DICHLOROETHANE
3.5 82
9.2 88
13.3 87
19.6 88
20.0 *
20.3 91
24. 1 *
29.5 *
30.9 »
29.8 *
33.3 105
PERCENT
RETENTION
BF
T
0% 23°C
102
8% 50°C
93
85
87
77
*
98
*
*
*
*
*
8% 23°C
93
90
87
85
*
89
*
*
*
4
*
1% 50°C
94
94
93
93
*
97
*
*
*
*
4
PERCENT
RETENTION
EAB
M
120
*
*
*
*
82
101
99
93
98
*
88
*
*
*
*
66
98
106
1 10
1 17
*
102
*
*
89
105
108
91
87
*
63
*
*
*
*
71
PERCENT
RETENTION
EAB
T
139
PERCENT
RETENTION
TEAR
M
90
PERCENT
RETENTION
TEAR
T
109
95
108
96
97
*
87
*
*
*
96
104
105
1 15
*
103
106
103
96
90
*
78
86
82
75
70
*
88
*
87
81
70
72
*
78
*
*
*
4
*
91
90
82
80
*
84
90
78
84
72
*
91
*
*
*
97
84
79
80
*
82
101
96
90
81
*
92
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
LL01DL1
LL07DL1
LL14DL1
LL28DL1
LL99DL1
LL56DL1
LL99DL2
LL99DL3
LL99DL4
LL99DL5
LL99DL6
1
7
14
28
37
56
101
234
364
500
606
LL01DM1
LL07DM1
LL14DM1
LL28DM1
LL99DM1
LL56DM1
LL99DM2
LL99DM3 234
LL99DM4 365
LL99DM5 500
LL99DM6 606
1
7
14
28
37
56
102
LH01FH1
LH07FH1
LH14FH1
LH28FH1
LH99FH1
LH56FH1
1
7
14
28
39
56
PERCENT
WEIGHT
CHANGE
1 .5
3.9
5.0
6.5
6.6
7.3
8.3
10.7
12.2
13.8
14.7
w
00
0
LH01DM1
LH07DM1
LH14DM1
LH28DM1
LH99DM1
LH56DM1
LH99DM2
LH99DM3
LH99DM4
LH99DM5
LH99DM6
1
7
14
28
37
56
121
234
365
499
609
17
1 1
14
18
20
16
24
24
25
26
29
.2
.5
.3
.0
.6
.0
.4
.2
.0
.2
.7
3.9
6.2
11.2
13.9
14.5
12.4
15.9
32.5
20.0
19.5
17.3
4.7
53. 1
60.
58
58
PERCENT
THICKNESS
CHANGE
.6
2. 1
2.5
3.5
3.2
3.8
4.3
5.3
6.5
6.7
7.5
10.2
5.9
7.5
9.3
10.0
8.4
12.7
12.7
12.6
13.9
14.8
2.0
4.3
5. 1
6.8
6.2
6.3
7.7
7.7
9.2
9.7
8.9
2.7
23.9
26.9
26.3
26.4
29.4
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
1 2 DICHLOROETHANE .1% 23°C
.8
4.6
6. 1
7.8
8.4
9. 1
11.6
14.3
16.5
17.9
19.9
1 2
20.6
14.3
19. 1
24. 1
26.9
22.0
34.2
35.0
34.2
37.4
41 .2
1 2
3.4
8. 1
12.1
16.9
17.6
15.4
21 .6
21 .7
25.9
26.4
24.2
88
88
86
87
*
88
*
»
*
*
104
DICHLOROETHANE .5%
85
84
82
82
*
92
*
*
*
*
103
DICHLOROETHANE .5%
88
86
85
87
*
88
*
*
*
*
106
95
94
92
93
*
94
*
*
*
*
*
50°C
91
90
88
87
*
98
*
*
*
*
*
23°C
95
92
89
90
*
92
*
*
*
*
*
FURFURAL 8.0% 50°C
6. 1
71 .3
78.4
81.4
77.7
88.6
86
53
48
56
*
52
95
55
54
57
*
53
PERCENT
RETENTION
EAB
M
99
1 14
106
104
*
105
*
*
*
*
98
102
1 13
98
93
*
79
63
97
101
97
108
*
107
*
*
*
*
104
108
57
66
PERCENT
RETENTION
EAB
T
95
1 10
98
105
*
105
*
102
1 13
96
87
*
80
*
*
*
*
4
89
1 14
103
104
*
106
*
*
PERCENT
RETENTION
TEAR
M
100
91
88
88
*
93
*
*
$
*
*
79
83
78
75
*
87
*
*
*
*
*
96
88
73
77
*
84
*
*
PERCENT
RETENTION
TEAR
T
106
102
94
94
*
102
*
*
*
87
91
83
77
*
93
*
*
*
*
*
100
99
79
83
*
93
*
106
71
59
62
*
59
54
45
45
37
*
30
83
46
45
41
*
29
-------
EPICHLOROHYORIN: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
OJ
PERCENT
WEIGHT
CHANGE
LH99FH2
LH99FH3
LH99FH4
LH99FH5
LH99FH6
LL01FH1
LL07FH1
LL14FH1
LL28FH1
LL99FH1
LL56FH1
LL99FH2
LL99FH3
LL99FH4
LL99FH5
LL99FH6
LH01FL1
LH07FL1
LH14FL1
LH28FL1
LH99FL1
LH56FL1
LH56FL2
LH99FL2
LH99FL3
LH99FL4
LH99FL5
LH99FL6
LL01FL1
LL07FL1
LL14FL1
LL28FL1
LL99FL1
LL56FL1
LL56FL2
LL99FL2
LL99FL3
LL99FL4
LL99FL5
LL99FL6
121
233
368
499
609
1
7
14
28
39
56
102
233
368
500
606
1
7
14
28
39
56
56
121
233
367
499
609
1
7
14
28
39
56
56
102
233
367
500
606
101 .
67.
64.
84.
98.
1 .
51 .
60.
55.
66.
62.
83.
89.
65.
79.
78.
4.
1 1 .
13.
16.
17.
19.
19.
25.
29.
32.
35.
37.
1 .
4.
6.
8.
8.
10.
10.
1 1 .
14.
16.
18.
19.
0
9
a
3
5
2
9
3
6
7
1
1
6
2
1
9
5
4
9
1
7
4
6
5
7
9
4
0
5
1
0
3
3
7
2
2
6
7
5
7
PERCENT
THICKNESS
CHANGE
39.3
23.3
28. 1
34.8
40.3
.8
24.5
27.3
25.8
26.9
26.5
34.2
34.9
30.8
33.2
33.0
2.2
6.6
7.2
8.7
8.7
10.9
10.2
12.8
14.4
15.6
17.2
18.2
1 .0
1 .9
3.5
4.8
3.9
5.7
5.2
5.7
7.7
8. 1
9. 1
9.6
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
FURFURAL 8.0% 50°C
131.1 »
96. 1 *
88.6 *
111.1 *
124.9 46
FURFURAL 8.0% 23°C
1 .8
70.0
IB.2
79.6
85.5
80.8
113.5
118.2
94.2
103.7
102.6
88
49
49
61
*
48
*
4
*
*
36
FURFURAL 1.0% 50°C
5.3
15.5
18.0
21 .5
24.5
27.6
26.8
35.6
41.7
45.0
49.7
51.4
FURFURAL
1 .6
4.6
7 . 7
11.3
10.5
12.9
13.1
15.2
20.4
21.2
24.4
38.3
85
88
90
87
*
85
92
*
103
1.0% 23°C
85
87
85
85
*
86
84
*
103
93
55
50
62
*
53
91
93
93
89
*
92
87
*
*
*
*
*
92
95
92
91
*
92
98
*
*
*
*
*
*
22
109
67
64
87
*
67
*
*
*
*
23
1 19
1 12
95
85
*
88
83
*
*
54
102
107
106
1 19
*
1 14
1 10
*
*
*
*
99
1 1 1
67
63
82
*
70
*
*
*
*
1 10
1 18
93
94
*
83
84
*
*
*
107
1 13
106
120
*
1 14
1 17
*
*
*
PERCENT
RETENTION
TEAR
M
127
55
39
48
*
37
*
*
*
*
*
108
104
96
76
*
74
80
*
*
*
108
1 10
108
87
*
92
88
*
PERCENT
RETENTION
TEAR
T
171
58
42
45
*
36
159
1 10
171
78
*
76
78
162
128
125
98
*
98
100
*
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
00
00
KJ
LH01FM1
LH07FM1
LH14FM1
LH28FM1
LH99FM1
LH56FM1
LH99FM2
LH99FM3
LH99FM4
LH99FM5
LH99FM6
LL01FM1
LL07FM1
LL14FM1
LL28FM1
LL99FM1
LL56FM1
LL99FM2
LL99FM3
LL99FM4
LL99FM5
LL99FM6
LH01MH1
LH07MH1
LH14MH1
LH99MH1
LH56MH1
LH99MH2
LH99MH3
LH99MH4
LH99MH5
LH99MH6
LL01MH1
LL07MH1
LL14MH1
LL28MH1
LL99MH1
1
7
14
28
39
56
121
233
367
499
609
1
7
14
28
39
56
105
233
367
500
606
1
7
14
36
55
120
247
367
500
609
1
7
14
28
36
PERCENT
WEIGHT
CHANGE
16.6
25.0
29.4
32.9
32.4
40.2
51 . 1
68.3
62.7
65.0
63.7
10.7
18.9
23.0
25.0
100.0
28.3
34.2
40. 1
35.9
47.5
54.8
72.6
68.5
76.8
60.7
61 .3
65.7
45.6
43.7
38.2
29.2
66. 1
40.4
43.8
67.4
69. 1
PERCENT
THICKNESS
CHANGE
8. 1
12.5
14.9
16.3
16.2
20.2
29.4
31 .0
30.0
30.5
29.2
5,7
9.8
12.0
12.6
100.0
14.7
16.2
18.7
16.2
21.9
24.6
38.4
43.4
41 . 1
29.4
33.5
35.6
22.2
21.6
20. 1
16.1
36.9
34. 1
27.0
33.3
33. 1
PERCENT PERCENT
PERCENT RETENTION RETENTION
VOLUME
CHANGE
FURFURAL 4.
20.0
32.0
39.8
43.9
44.3
55.4
77.8
95.6
89. 6
92.0
87.3
FURFURAL 4.
12.3
24. 1
30.3
32. 1
100.0
37.7
46. 1
54.4
46.9
62.0
75.6
METHYL ETHYL
130.2
1 15.0
135.7
93. 1
102.7
105.2
57.8
63.3
49.2
43.4
METHYL ETHYL
117.8
99.3
76.8
102. 2
1O2.8
BF
M
0% 50°C
82
76
71
72
*
71
*
*
*
*
80
0% 23°C
85
79
76
73
*
75
*
*
*
*
82
KETONE 26.0%
44
51
39
*
37
*
*
*
*
42
KETONE 26.0%
44
53
61
41
*
BF
T
85
77
75
74
*
73
*
*
*
*
*
86
86
78
76
*
79
*
*
*
*
*
50°C
41
54
41
*
36
*
*
*
*
*
23°C
42
54
62
42
*
PERCENT
RETENTION
EAB
M
1 13
102
92
83
*
76
*
*
*
*
38
108
1 16
1 19
109
*
96
57
62
85
47
*
45
*
*
*
*
41
64
74
92
55
PERCENT
RETENTION
EAB
T
1 13
99
92
82
*
73
*
*
*
103
1 16
1 12
1 19
*
98
*
*
*
*
*
56
64
44
*
43
*
PERCENT
RETENTION
TEAR
M
90
88
72
61
*
55
*
96
92
75
66
*
68
*
*
V
*
*
38
52
37
*
37
PERCENT
RETENTION
TEAR
T
123
85
74
73
*
59
*
127
98
88
83
*
68
*
44
53
46
*
37
57
72
91
54
40
52
67
44
48
52
75
47
-------
EPICHLOROHVDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
LL56MH1
LL99MH2
LL99MH3
LL99MH4
LL99MH5
LL99MH6
LH01ML1
LH07ML1
LH14ML1
LH28ML1
LH99ML1
LH56ML1
LH99ML2
LH99ML3
U) LH99ML4
00 LH99ML5
W LH99ML6
LL01ML1
LL07ML1
LL14ML1
LL28ML1
LL99ML1
LL56ML1
LL99ML2
LL99ML3
LL99ML4
LL99ML5
LL99ML6
LH01MM1
LH07MM1
LH14MM1
LH28MM1
LH99MM1
LH56MM1
LH99MM2
LH99MM3
LH99MM4
LH99MM5
LH99MM6
55
109
247
367
501
606
1
7
14
28
37
55
121
247
367
500
609
1
7
14
28
37
55
109
247
367
501
606
1
7
14
28
37
55
121
247
367
500
609
PERCENT
WEIGHT
CHANGE
56.5
41 .7
51 .3
42.7
70.6
43.4
6.8
12.0
15.5
20. 1
20.0
19. 1
23.0
22. 1
22.7
22.5
23.5
2.0
4.7
5.7
8. 1
9.8
9. 1
12.2
15.5
17.6
18.7
19.3
27.6
28.9
35.4
41.3
40.2
26.7
40.5
33.3
21.4
24.7
PERCENT
THICKNESS
CHANGE
35.9
27.5
23.4
21.8
20.6
23.3
3.6
6.4
8.6
10.6
10.1
9.8
1 1 .8
11.1
12.5
11.7
12.2
24.0
1 .3
2.8
3.3
4.7
4.9
6.0
6.6
7.7
7.9
9.4
10.1
15.5
16.5
4.4
22.2
20.4
13.8
20.8
22.3
11.7
13.4
13.2
PERCENT
VOLUME
CHANGE
METHYL
111.3
79. 1
64.6
59.9
55.0
64.3
METHYL
10.6
17.9
22.3
28.8
28.7
38.5
32.5
30.6
28.8
31.0
33. 1
METHYL
2.7
6.8
8.8
11.6
13.5
14.6
18.3
21.6
26.8
25.7
27.8
METHYL
45.6
46.2
36.2
64.7
60.0
25.9
60.7
50.0
30.5
30. 1
35. 1
PERCENT
RETENTION
BF
M
ETHYL KETONE
40
*
*
*
*
75
ETHYL KETONE
88
87
91
88
*
89
*
*
*
*
97
ETHYL KETONE
94
94
91
90
*
91
*
*
*
*
103
ETHYL KETONE
73
78
68
59
*
81
*
»
4
*
83
PERCENT
RETENTION
BF
T
26.0% 23°C
42
3.0% 50°C
96
94
96
93
*
97
3.0% 23°C
96
99
96
97
*
95
*
*
*
*
*
13.0% 50°C
73
79
73
67
*
83
*
*
*
*
*
PERCENT
RETENTION
EAB
M
51
*
*
*
*
79
1 18
102
91
91
*
84
*
*
*
*
59
1 13
1 19
1 14
125
*
1 17
97
1 1 1
100
78
70
*
91
*
*
*
*
70
PERCENT
RETENTION
EAB
T
49
*
*
*
*
*
121
1 18
97
98
*
92
1 15
1 12
1 14
127
*
1 14
105
101
81
72
*
91
*
*
*
PERCENT
RETENTION
TEAR
M
41
*
*
*
*
*
89
99
102
88
*
91
108
102
95
*
106
*
73
75
74
52
*
78
PERCENT
RETENTION
TEAR
T
44
97
1 12
128
82
*
91
109
1 17
104
*
107
71
84
85
56
*
80
-------
EPICHLOROHVDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
LL01MM1
LL07MM1
LL14MM1
LL2BMM1
LL99MM1
LL56MM1
LL99MM2
LL99MM3
LL99MM4
LL99MM5
LL99MM6
LH010M1
LH070M1
LH140M1
OJ LH280M1
00 LH990M1
** LH560M1
LH990M2
LH990M3
LH990M4
LH990M5
LH990M6
LL010M1
LL070M1
LL140M1
LL280M1
LL990M1
LL560M1
LL990M2
LL990M3
LL990M4
LL990M5
LL990M6
LH010P1
LH07OP1
LH14OP1
LH28OP1
1
7
14
28
37
55
109
247
367
501
606
1
7
13
28
39
56
121
247
371
494
609
1
7
13
28
39
56
105
247
371
494
606
1
7
14
28
11
21
22.4
35. 1
34.7
26.7
38.6
37.3
31 .5
32.7
32.0
2.6
6.4
8.0
12.2
14.6
16.3
18.2
18. 1
20. 1
19.3
20.6
.5
2.0
1 .3
4.2
5. 1
5.0
7. 1
9.9
1 1 .4
12.0
13. 1
. 2
.4
.4
.5
PERCENT
THICKNESS
CHANGE
10. 1
13.5
13.6
19. 1
17.4
14.8
23.2
17.1
15.9
11.8
16.9
1 .5
4.0
4.2
7.3
7.2
7.9
8.8
8.9
9.9
9.6
9.6
.3
.8
1 .5
1 .8
2.4
2.6
3.3
4.9
5.5
6.5
6.7
.7
.5
.2
.2
PERCENT
VOLUME
CHANGE
METHYL
27. 1
35.2
36.0
54. 1
50.5
40.3
68.9
49. 1
44.6
34.5
43.4
ASTM #2
3.8
9.9
10.4
17.5
19.4
22.5
23.9
25. 1
26.9
27.3
27. 1
ASTM #2
. 1
2. 1
3.0
4.5
6.7
7. 1
9.7
13.3
15.3
17.2
17.9
ASTM #2
.7
.6
.6
. 1
PERCENT
RETENTION
BF
M
ETHYL KETONE
80
85
78
73
*
77
*
*
*
*
90
OIL 100.0%
91
93
97
97
*
97
*
*
*
*
120
OIL 100.0%
93
95
96
93
*
91
*
*
*
*
1 12
OIL 100.0%
94
101
93
90
PERCENT
RETENTION
BF
T
13.0% 23°C
83
90
86
72
*
77
50°C
95
105
105
101
*
100
23°C
50UC
97
103
104
99
*
102
99
93
102
99
PERCENT
RETENTION
EAB
M
121
1 17
94
1 10
*
1 12
*
90
1 16
104
1 10
93
*
92
*
*
78
120
123
120
126
*
1 12
*
89
1 22
108
1 19
1 17
PERCENT
RETENTION
EAB
T
120
120
1 15
104
*
109
*
*
1 18
121
1 18
90
*
89
121
125
129
132
*
134
*
*
*
*
*
1 18
127
122
1 22
PERCENT
RETENTION
TEAR
M
83
75
89
66
*
75
93
1 12
98
74
*
81
*
*
*
*
*
93
101
97
82
*
97
*
*
PERCENT
RETENTION
TEAR
T
76
86
101
67
*
78
109
134
1 14
84
*
93
*
*
1 19
1 18
1 1 1
86
*
1 10
*
*
1 12
87
88
97
127
101
103
122
-------
EPICHLOROHVDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
u>
LH990P1
LH560P1
LH990P2
LH990P3
LH990P4
LH990P5
LH990P6
LL010P1
LL070P1
LL140P1
LL280P1
LL990P1
LL560P1
LL990P2
LL990P3
LL990P4
LL990P5
LL990P6
LH01PH1
LHB8PH1
LH07PH1
LH14PH1
LH28PH1
LH99PH1
LH56PH1
LH99PH2
LH99PH3
LH99PH4
LH99PH5
LH99PH6
LL01PH1
LL07PH1
LL14PH1
LL28PH1
LL99PH1
LL56PH1
LL99PH2
LL99PH3
39
56
121
241
371
489
609
1
7
14
28
39
56
106
241
371
489
606
1
1
7
14
28
38
56
120
239
375
500
609
1
7
14
28
38
56
106
239
2. 1
1 .0
1 .8
1 .5
2. 1
2. 1
2.3
.4
.2
. 1
. 1
.2
.2
.4
*
.4
. 1
.3
48.8
140.0
60.2
67.4
66. 1
41 .0
61 .8
36.9
45.7
82.7
90.9
97.7
43.8
70.4
76.4
77.4
57.9
76.9
58.8
52.7
PERCENT
THICKNESS
CHANGE
.2
.5
.3
1 . 1
.2
.3
.8
.2
.2
.2
.6
.2
.2
.3
.5
.2
.3
*
23.8
100.0
27.5
30.7
29.8
19.7
28.0
17.5
20.5
34.3
37,8
40.0
20.7
31 .4
34.0
34.3
25. 1
34.2
25.9
23.0
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
ASTM #2 OIL 100.0% 50°C
1 .3
1 .3
1 .0
3.2
1 .5
1 .8
2.8
ASTM #2 OIL
.3
*
.3
.9
.2
.2
.5
. 1
. 1
.3
.7
PHENOL 8.0%
68.2
100.0
82.2
92.6
89.3
55.0
81.8
48 . 1
59.4
112.3
123.6
129.8
PHENOL 8.0%
60.4
94.9
105. 1
106.2
76.9
104.9
79.7
*
93
*
*
*
*
1 16
100.0%
94
88
90
95
*
95
*
*
*
*
94
50°C
*
100
43
46
45
*
46
*
*
*
*
33
23°C
51
37
36
39
*
38
*
103
23°C
66.2
101
96
101
99
*
99
*
*
*
*
*
50
44
46
47
*
46
*
*
*
58
40
41
42
40
*
*
PERCENT
RETENTION
EAB
M
120
*
*
*
*
78
121
124
108
121
*
96
*
*
*
*
94
100
64
59
57
t
63
*
*
24
65
51
35
48
*
51
*
*
PERCENT
RETENTION
EAB
T
*
98
*
*
4
*
123
120
1 13
1 16
*
1 14
*
60
*
64
58
58
*
63
*
*
*
*
*
72
54
49
46
*
50
*
*
PERCENT
RETENTION
TEAR
M
*
95
1 16
85
87
107
100
38
*
34
30
30
*
29
42
24
27
25
*
26
PERCENT
RETENTION
TEAR
T
*
99
*
131
97
105
1 13
*
1 16
39
*
34
33
30
29
*
45
28
23
29
*
25
*
4
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
oo
LL99PH4
LL99PH5
LL99PH6
LH01PL1
LH07PL1
LH14PL1
LH28PL1
LH99PL1
LH56PL1
LH99PL2
LH99PL3
LH99PL4
LH99PL5
LH99PL6
LL01PL1
LL07PL1
LL14PL1
LL28PL1
LL99PL1
LL56PL1
LL99PL2
LL99PL3
LL99PL4
LL99PL5
LL99PL6
LH01PM1
LH07PM1
LH14PM1
LH28PM1
LH99PM1
LH56PM1
LH99PM2
LH99PM3
LH99PM4
LH99PM5
LH99PM6
375
501
606
1
7
14
28
37
56
120
239
374
500
609
1
7
14
28
37
56
108
240
374
501
606
1
7
14
28
37
56
120
239
375
500
609
PERCENT
WEIGHT
CHANGE
93.8
95.5
89.2
2.8
11.7
15. 1
17.7
17.5
19.2
20.0
23.3
21 .9
23.8
24.0
.7
5.0
7.0
9.5
9.5
12.2
12.8
15.8
17.6
20.6
21 .5
21.3
30.9
34.5
36. 1
28. 1
38.5
25.9
25.B
28.8
31.8
35.3
PERCENT
THICKNESS
CHANGE
38.2
56.3
36.3
2.3
6.3
7.9
9.3
8.5
10.8
10.4
10.2
10.5
11.8
10.4
.6
2.8
3.4
5.0
4.5
6.6
9.0
10.4
9. 1
10.3
15.6
11.4
17.5
14.3
18.9
13.0
13.3
14.3
15.5
17.4
PERCENT
VOLUME
CHANGE
PHENOL
128,3
153.9
119.5
PHENOL
6.0
15.9
20.8
23.9
23.5
27,0
27.7
28.4
28.6
32.5
29.7
PHENOL
1 .9
6.2
100.0
12.4
1 1 ,8
15.9
18.2
13.5
22,8
27.8
27.2
PHENOL
27.9
40.8
39.8
48. 6
38.7
52.3
34.6
35.2
38.6
43.2
PERCENT
RETENTION
BF
M
8.0% 23°C
*
*
47
1.0% 50°C
89
85
88
88
*
89
*
*
*
*
107
1.0% 23°C
89
91
93
94
*
89
*
*
*
*
96
4.0% 50°C
74
62
69
64
*
63
*
*
*
*
PERCENT
RETENTION
BF
T
95
92
92
94
*
91
*
*
*
*
96
96
100
102
*
97
77
63
68
66
*
62
*
45.8
74
PERCENT
RETENTION
EAB
M
*
*
25
1 10
99
1 13
100
*
102
*
*
4
*
63
103
108
124
1 19
*
122
*
*
*
*
80
1 14
108
102
90
*
94
*
*
*
*
46
PERCENT
RETENTION
EAB
T
106
127
1 19
105
*
101
*
101
102
125
1 19
*
125
1 14
101
92
91
*
91
PERCENT
RETENTION
TEAR
M
^
*
*
94
94
92
89
*
83
*
*
4
*
*
92
101
98
97
*
94
*
*
*
*
76
67
65
64
*
58
*
*
*
*
PERCENT
RETENTION
TEAR
T
4
*
*
103
108
98
96
*
91
4
4
*
4
*
109
107
103
103
4
106
*
*
*
*
72
67
63
62
*
57
*
*
*
*
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
00
LL01PM1
LL07PM1
LL14PM1
LL28PM1
LL99PM1
LL56PM1
LL99PM2
LL99PM3
LL99PM4
LL99PM5 501
LL99PM6 606
1
7
14
28
37
56
107
240
375
PERCENT
WEIGHT
CHANGE
9. 1
30. 1
32.8
35.8
28.6
39.4
31 .5
33.8
38.6
40.7
41 .8
LH01SH1
LH07SH1
LH14SH1
LH28SH1
LH99SH1
LH56SH1
LH99SH2
LH99SH3
LH99SH4
LH99SH5
LH99SH6
1
7
14
28
36
56
120
241
372
492
609
.7
.6
.7
.9
.8
.8
.7
.7
.6
.5
.6
LL01SH1
LL07SH1
LL14SH1
LL28SH1
LL99SH1
LL56SH1
LL99SH2
LL99SH3
LL99SH4
LL99SH5
LL99SH6
1
7
14
28
36
56
108
241
372
492
606
.2
.4
.5
.6
.9
.8
1 .4
.8
.9
.5
.6
LH01SM1 1
LH07SM1 7
LH14SM1 15
LH28SM1 28
1 .8
3.4
.8
3.7
PERCENT
THICKNESS
CHANGE
7.5
15.6
16.2
18.0
13.1
19.8
14.9
16. 1
18.3
7. 1
19.4
*
1 .3
1 . 1
2.2
PERCENT
VOLUME
CHANGE
PHENOL
14.8
40.6
43.3
48.5
36.7
52.6
42. 1
28.0
51.6
39.0
55.6
SODIUM
. 1
. 1
1 .5
1 .0
. 1
1 .0
.4
. 2
.7
.2
.7
SODIUM
. 1
. 1
.4
.6
. 1
1 .0
1 .0
. 1
.3
. 1
. 1
SODIUM
.9
3.3
2.7
3.3
PERCENT
RETENTION
BF
M
4.0% 23°C
85
64
68
59
*
62
*
*
*
*
60
CHLORIDE 35.0%
99
96
102
109
*
98
*
*
*
*
1 18
CHLORIDE 35.0%
92
97
93
102
*
92
*
4
*
*
97
CHLORIDE 10.0%
91
93
94
94
PERCENT
RETENTION
BF
T
87
65
69
61
*
63
50°C
105
106
1 10
107
*
1 1 1
23°C
103
97
101
101
*
109
*
*
*
*
*
50°C
100
104
99
104
PERCENT
RETENTION
EAB
M
107
107
98
103
*
93
*
*
*
*
70
128
1 1 1
87
108
*
100
*
*
*
*
71
97
1 16
1 17
1 14
*
1 13
*
*
*
*
107
1 10
104
107
85
PERCENT
RETENTION
EAB
T
99
104
95
101
*
87
*
*
*
*
124
120
1 13
1 12
*
94
*
*
*
*
*
1 18
1 19
124
128
*
105
*
*
*
*
*
1 12
107
100
94
PERCENT
RETENTION
TEAR
M
84
62
61
58
*
60
89
98
82
100
*
78
*
92
98
94
71
*
88
*
*
*
83
99
87
83
PERCENT
RETENTION
TEAR
T
92
63
58
58
*
54
1 12
102
92
*
92
*
*
*
*
*
102
103
1 12
104
*
108
*
*
*
*
104
1 12
104
93
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
LH99SM1
LH56SM1
LH99SM2
LH99SM3
LH99SM4
LH99SM5
LH99SM6
LL01SM1
LL07SM1
LL14SM1
LL28SM1
LL99SM1
LL56SM1
LL99SM2
Oj LL99SM3
00 LL99SM4
00 LL99SM5
LL99SM6
LH01WP1
LH07WP1
LH14WP1
LH28WP1
LH99WP1
LH56WP1
LH99WP2
LH99WP3
LH99WP4
LH99WP5
LH99WP6
LL01WP1
LL07WP1
LL14WP1
LL28WP1
LL99WP1
LL56WP1
LL99WP2
36
56
120
241
372
485
609
1
7
15
28
36
56
107
241
372
485
606
1
7
14
28
36
55
120
241
364
483
609
1
7
14
28
36
55
108
PERCENT
WEIGHT
CHANGE
2.7
3.8
3.0
3.3
3.2
2.8
3.0
.6
1 .5
1 .7
3.0
2.3
3.2
2.5
2.7
2.6
2.2
2.3
2.9
6.3
8.5
9.9
13.2
13.2
16.7
17.6
18.5
18.
LL99WP3 241
.7
18.9
1 .0
2.4
3.4
4.9
4.9
5.4
6.B
9.5
PERCENT
THICKNESS
CHANGE
1 .2
1 .8
1 .4
1 .0
2.2
1 .4
1 .2
*
.3
1 .2
9.9
.8
1 . 1
.5
.7
.3
.8
.5
1 .4
3.5
5.0
4. 1
7.0
7.0
8.9
9.5
9.7
9.8
9.4
*
1 .4
2. 1
2. 1
2.2
2.9
4.3
5.7
PERCENT
VOLUME
CHANGE
SODIUM
2.5
4.0
3. 1
2.7
3.5
2.4
2.0
SODIUM
.4
. 1
1 .8
10.8
2.6
3.3
5.0
2.8
2. 1
2.6
2. 1
WATER
3. 1
8.9
11.4
11.6
18.4
19.7
23. 1
25.4
25.2
19.5
25. 1
WATER
.5
3.0
3.7
4.9
5.8
6.9
10.6
13.8
PERCENT
RETENTION
BF
M
CHLORIDE 10.0%
*
1 15
*
*
*
*
121
CHLORIDE 10.0%
90
95
93
104
*
104
*
*
*
*
96
100.0% 50°C
93
104
96
104
*
1 10
*
4
*
*
120
100.0% 23°C
105
106
96
94
*
1 18
*
*
PERCENT
RETENTION
BF
T
50°C
*
1 14
23°C
97
94
99
90
*
1 12
*
*
*
*
*
1 15
1 14
100
1 12
*
123
*
*
*
*
*
1 15
1 1 1
103
1 14
*
1 19
*
*
PERCENT
RETENTION
EAB
M
*
79
*
66
1 13
1 16
1 12
88
*
77
*
88
109
80
94
83
*
80
*
71
82
87
1 1 1
102
*
83
*
PERCENT
RETENTION
EAB
T
84
*
1 15
1 13
1 13
1 1 1
*
81
89
92
1 13
90
*
85
*
91
82
1 16
93
*
86
*
PERCENT
RETENTION
TEAR
M
*
85
*
*
*
*
*
79
90
95
78
*
85
*
*
*
*
*
85
67
81
76
*
85
*
*
*
*
79
81
93
87
*
100
*
PERCENT
RETENTION
TEAR
T
t
99
*
*
*
*
#
104
1 15
1 1 1
94
*
101
*
*
*
*
*
100
83
86
91
*
101
*
*
*
*
93
106
105
100
*
104
*
-------
EPICHLOROHYDRIN: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
LL99WP4
LL99WP5
LL99WP6
LH01XM1
LH07XM1
LH14XM1
LH28XM1
LH99XM1
LH56XM1
LH99XM2
LH99XM3
LH99XM4
LH99XM5
LH99XM6
00
vo
LL01XM1
LL07XM1
LL14XM1
LL28XM1
LL99XM1
LL56XM1
LL99XM2
LL99XM3
LL99XM4
LL99XM5
LL99XM6
364
483
606
1
7
14
28
39
56
120
247
373
493
609
1
7
14
28
39
56
107
247
373
493
606
PERCENT
WEIGHT
CHANGE
11.3
12.5
13.3
2.2
4.2
5.2
5.0
7.7
8.0
8.7
9.0
9.3
8.6
9.5
.7
1 .7
2. 1
3.4
4.0
3.9
5.5
7. 1
7.7
7.8
8.5
PERCENT
THICKNESS
CHANGE
5.8
6.5
7.0
1 .6
2.6
3.2
2.6
4.6
4.8
5. 1
4.9
5. 1
4.9
4.8
1 .0
.2
.8
1 .6
1 .4
2.2
2.4
3.5
3.7
3.7
4.5
PERCENT
VOLUME
CHANGE
PERCENT
RETENTION
BF
M
WATER 100.0% 23°C
15.3
16.9
18.5
*
*
96
PERCENT
RETENTION
BF
T
POTASSIUM DICHROMATE 10.0% 50°C
3.2
5.6
7. 1
6.2
10.9
11.2
11.7
11.8
11.3
10.8
10.8
98
98
106
1 12
*
104
*
*
*
*
126
109
101
106
105
*
108
*
*
*
*
POTASSIUM DICHROMATE 10.0% 23°C
1 .3
.9
2.3
3.6
4.8
5.6
7.0
9. 1
9.5
9.9
10.9
96
91
98
104
*
98
*
*
107
105
105
1 12
100
*
106
PERCENT
RETENTION
EAB
M
80
122
123
1 15
1 1 1
*
88
*
*
*
*
73
95
1 15
1 18
102
*
120
*
*
*
*
77
PERCENT
RETENTION
EAB
T
122
1 19
1 12
1 17
*
92
*
*
*
*
*
124
122
96
127
*
122
PERCENT
RETENTION
TEAR
M
91
86
95
101
*
80
*
*
*
*
83
88
95
96
*
70
PERCENT
RETENTION
TEAR
T
105
104
1 19
100
*
90
*
1 10
101
1 15
102
*
93
*
*
*
*
-------
HDPE : FINAL PROPERTIES
390
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
u>
WEIGHT
(gram)
THICKNESS
(mil)
BREAKING
FACTOR
M
LENGTH WIDTH inch
(inch) (inch) width)
HYDROCHLORIC ACID 10.0%
HH0 1 AM 1
HH01AM2
HH07AM2
HH07AM1
HH14AM1
HH14AM2
HH99AM1
HH28AM1
HH28AM2
HH56AM1
HH56AM2
HH99AM2
HH99AM3
HH99AM4
HH99AM5
HH99AM6
HH99AM7
1
1
7
7
14
14
28
29
29
56
56
144
252
368
51 1
621
770
1
1
1
1
1
1
1
1
25
1
1
1
1
1
1
1
.44
.34
.37
.41
.56
.55
.44
.54
*
. 18
.58
.45
.44
.44
.44
.44
.44
31
30
31
31
34
35
32
34
32
34
30
31
32
31
31
30
.90
.50
.30
.90
.70
.40
.00
.20
*
. 10
.60
.90
. 10
.70
.20
.50
.80
3.00
3.00
3.00
3.01
3.00
3.00
3.01
3.00
*
7.47
3.01
3.01
3.01
3.01
3.01
2.68
3.01
1
1
0
1
0
0
0
1
6
1
0
0
1
0
1
0
.00
.00
.98
.00
.99
.99
.99
.00
*
.99
.00
.99
.99
.00
.99
.00
.99
159.28
*
*
158.32
144.08
*
*
138.96
*
152.40
*
*
*
*
*
*
96.25
HYDROCHLORIC ACID 10.0%
HL01AM2
HL01AM1
HL07AM2
HL07AM1
HL14AM2
HL14AM1
HL99AM1
HL28AM1
HL28AM2
HL56AM2
HL56AM1
HL99AM2
HL99AM3
HL99AM4
HL99AM5
HL99AM6
HL99AM7
1
1
7
7
14
14
28
29
29
56
56
144
238
368
51 1
621
768
1
1
1
1
1
1
1
1
1
25
1
1
1
1
1
1
.33
.57
.33
.40
.33
.34
.38
.56
*
.57
.21
.38
.38
.39
.38
.38
.38
30
35
30
31
30
30
30
34
34
32
29
30
30
29
30
30
.20
.30
.20
.80
.00
.50
. 10
.70
t
.80
.30
.80
.50
.90
.60
.50
.30
3.00
3.00
3.01
3.00
3.01
3.01
3.00
3.00
*
3.00
7 43
3.00
3.01
3.00
3.01
3.01
3.01
1
1
1
1
6
1
1
1
1
1
1
.00
.00
.00
.00
.00
.00
.00
.00
*
.00
.90
.00
.00
.00
.00
.00
.00
SODIUM HYDROXIDE
HH01BM1
HH07BM1
HH14BM1
HH28BM1
HH99BM1
1
7
13
28
29
1
1
1
1
1
.48
.35
.58
.38
.38
32
29
34
30
30
.60
.90
.90
.60
.30
3.01
3.00
3.01
3.01
3.00
1
1
1
1
1
.00
.00
.00
.00
.00
*
160.88
*
135.92
*
166.64
*
151 . 28
*
*
157.52
*
*
*
*
*
1 16.33
10.0%
163.68
145.81
143. 30
160.07
*
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
174
163
140
161
151
23°C
168
146
172
155
165
50°C
190.
169.
141 .
165.
.32
*
*
.44
.88
*
*
04
*
.92
*
*
*
88
*
96
*
40
*
60
*
*
52
*
*
*
*
*
*
30
58
61
38
*
ELONGATION
AT
BREAK
M
(inch)
686
659
641
612
673
1563
642
670
664
668
698.
1791 .
61 1 .
617.
635.
634.
.64
*
*
.84
.44
*
*
48
*
04
*
50
*
24
*
64
*
64
*
48
*
*
24
*
*
*
*
*
58
93
04
44
80
*
ELONGATION
AT
BREAK
T
(inch)
630
625
571
583
603
61 1
600
629
582
655
644
637
580
608
.40
*
*
.52
.52
*
*
.36
*
.52
*
*
*
*
*
*
*
*
.92
*
.48
*
.52
t
.40
*
*
. 12
*
*
*
*
*
*
96
12
88
80
*
TEAR
RESISTANCE
M
Ob)
26
29
25
25
30
32
26
32
28
30
25
29
26
23
.64
*
*
.90
.90
*
*
.88
*
. 10
*
*
t
*
*
*
*
*
44
*
54
*
10
78
*
*
70
*
*
t
*
*
*
48
07
68
48
*
TEAR
RESISTANCE
T
Ob)
32
31
24
28
29
27 .
28.
32.
30.
30.
30.
28
26
26
.61
*
*
.20
.62
*
*
94
*
70
*
*
„
*
*
*
*
40
*
06
*
94
90
*
50
*
*
*
,
*
*
16
04
04
18
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
U>
VD
CO
HH56BM1 56
HH99BM2 144
HH99BM3 252
HH99BM4 368
HH99BM5 510
HH99BM6 622
HH99BM7 770
WEIGHT
(gram)
1 .45
1 .39
1 .39
1 .38
1 .38
1 .38
1 .38
THICKNESS
(mil)
32.20
29
30
30
29
37
29
90
40
40
90
40
40
LENGTH
(inch)
3.00
3.01
3.01
3.00
3.01
3.01
3.01
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
WIDTH inch inch
(inch) width) width)
1.00 157.37 165.32
1
1
0
1
1
00
00
*
99
00
*
*
*
*
*
00 119.25 *
ELONGATION ELONGATION
AT AT
BREAK BREAK
M T
(inch) (inch)
694.72 619.44
*
*
*
*
*
1818.83
*
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
29.55
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
30.52
*
*
*
*
*
*
HH56BM1
HH99BM2
HH99BM3
HH99BM4
HH99BM5
HH99BM6
HH99BM7
HL01BM1
HL07BM1
HL14BM1
HL28BM1
HL99BM1
HL56BM1
HL99BM2
HL99BM3
HL99BM4
HL99BM5
HL99BM6
HL99BM7
HH01DH1
HH07DH1
HH14DH1
HH28DH1
HH99DH1
HH56DH1
HH99DH2
HH99DH3
HH99DH4
HH99DH5
HH99DH6
HH99DH7
HL01DH1
HL07DH1
HL14DH1
HL99DH1
HL28DH1
56
144
252
368
510
622
770
1
7
14
28
28
56
144
238
368
510
622
768
1
7
14
28
28
56
133
244
364
495
629
763
1
7
14
28
28
SODIUM HYDROXIDE 10.0% 23°C
1 .45
1.51
1 .54
1 .45
.40
.56
.41
.40
.42
.41
.41
.41
1 .68
1 .45
1 .50
1 .54
1 .43
1 .39
1 .42
1 .45
1 .42
1 .42
1 .42
1 .43
1 .45
1 .42
1 .60
1 .43
1 .61
32. 10
33.40
33.80
32.40
30.60
34.50
30.40
31 .20
31 .50
30.40
32.50
29.70
35.60
31 .30
32.50
33.00
30.80
*
30.60
30.90
31 .20
31 .50
32.40
32.00
31.10
30.70
34. 10
30.70
35.00
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
98
00
00
01
00
00
00
01
00
01
01
00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
131 .38
138.89
130.62
148.89
*
165.93
166
167
154
159
140
20
78
26
18
*
38
*
*
*
*
*
602
592
607
640
680
.60
. 16
.52
.64
*
.56
*
*
*
*
*
643
627
574
624
574
.04
.44
.08
.64
*
.96
*
*
*
*
*
1 13.58
1 2 DICHLOROETHANE .8% 50°C
1 2 DICHLOROETHANE
23UC
1738.00
3.03
3.03
3.03
3.04
3.01
3.01
.01
.00
.00
.01
.00
.00
3.01 0.99
3.02 0.99
3.01 1 .00
3.01 0.99
3.01 0.99
3.01 0.99
133
120
122
121
95
.56
.23
.00
.20
*
*
*
*
*
*
*
.00
138
134
139
136
.56
.80
.50
. 10
*
*
*
*
*
*
*
*
630.24
570. 15
571 .00
576.80
1565.00
600
567
579
578
32
10
00
60
*
*
*
*
*
*
*
*
3.03
3.01
3.03
3.01
3.03
1 .01
1 .00
1 .01
1 .00
1 .01
128.76
127.70
129.20
*
128. 10
140.56
129.60
130.40
*
136.AOjV?s
629.04
598.90
607.30
*
rTG
597.96
547.60
557.90
*
24.54
30.22
26.97
27.41
*
28.33
*
#
*
*
*
*
24.27
22.00
23.20
24.70
*
23.30
*
*
*
*
*
*
23.90
22.70
23.30
*
26.41
31 .38
26.63
27.08
*
30. 13
*
*
23.71
22.80
23.50
25.20
*
24.00
*
*
*
*
*
*
24.04
22.80
24. 10
*
-------
HIGH DENSITY POLVETHVLENE: AVERAGE FINAL PROPERTIES
U>
VO
HL99DH4 364
HL99DH5 495
HL99DH6 630
HL99DH7 761
HH01DL1
HH07DL1
HH14DL1
HH99DL1
HH28DL1
HH56DL1
HH99DL2
HH99DL3
HH99DL4
HH99DL5
HH99DL6
HH99DL7
HL01DL1
HL07DL1
HL14DL1
HL99DL1
HL28DL1
HL560L1
HL99DL2
HL99DL3
HL990L4
HL99DL5
HL99DL6
HL99DL7
1
7
14
28
28
56
139
246
370
496
631
765
1
7
14
28
28
56
136
233
366
496
632
763
HH01DM1 1
HH07DM1 7
HH14DM1 14
HH28DM1 28
HH99DM1 28
HH56DM1 56
HH99DM3 245
HH99DM4 365
HH99DM5 496
WEIGHT
(gram)
1 .43
1 .43
1 .43
1 .43
1 .35
1.41
1 .39
1.41
1.41
1 .56
1.41
1 .42
1 .40
1 .41
1 .41
1 .41
1 .36
1 .51
1 .68
1 .42
.46
.58
.43
.42
.42
.42
.42
.42
1 .44
1 .48
1 .60
1 .45
1 .48
1 .42
1 .54
1 .48
1 .48
THICKNESS
(mil)
31 .00
30.70
31 .90
33. 10
30
31
30
30
30
34
30
30
30
30
31
32
30
33
34
31
32
34
30
31
30
30
31
32
31
32
35
31
31
30
32
31
32
.00
.30
.50
.90
.90
.20
.50
.60
.60
.40
.80
.30
.40
.30
.70
.20
.30
. 10
.30
. 10
.50
.40
.50
. 10
. 10
.20
.20
.30
.90
.90
.20
.90
. 10
LENGTH
(inch)
1
3.02
3.01
3.02
3.02
1
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
1
3.01
3.01
3.01
3.01
3.01
3.01
3.00
3.01
3.00
3.00
3.01
3.00
1
3.01
3.02
3.03
3.02
3.01
3.02
3.02
3.01
3.01
BREAKING
FACTOR
M
( 1t>/
WIDTH inch
(inch) width)
2 DICHLOROETHANE .8%
1 .00 *
1 .00 *
0.99 *
0.99 118.25
2 DICHLOROETHANE
1
1
1
1
1
1
1
1
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.99
.99
.99
.99
131
121
127
126
1 16
2 DICHLOROETHANE
1
1
1
1
1
1
1
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
133
130
132
130
123
2 DICHLOROETHANE
1
1
1
1
1
1
1
0
0
.00
.01
.01
.00
.00
.00
.00
.99
.99
129
1 17
129
128
. 1%
32
70
70
*
20
*
50
. 1%
56
40
00
*
50
*
*
*
*
*
*
75
.5%
72
40
10
70
*
*
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
23°C
4
t
*
*
50°C
139
133
139
138
23°C
142
136
136
134
50°C
141
133
135
132
.92
.90
50
*
40
*
*
*
*
*
*
*
30
20
40
*
30
84
40
90
70
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
1785. 13
642.
586.
604.
600.
1870.
625.
606.
611.
620.
1861 .
632.
578.
599.
615.
60
20
00
*
60
00
90
40
60
*
00
*
*
*
*
*
*
75
56
00
80
00
ELONGATION
AT
BREAK
T
(inch)
*
*
*
4
612
560
579
569
612
556
562
566
601
585
571
568
.20
.30
00
*
10
*
*
*
*
*
*
*
52
70
40
*
00
*
*
*
*
*
V
*
74
00
10
90
*
*
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
23
22
23
25
23
23
22
23
25
23
24
22
23
24
24
55
95
50
*
70
40
*
f
*
*
*
*
63
80
40
*
70
00
25
30
30
30
*
40
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
«
*
23.
23.
23.
26.
24.
24.
22.
24.
26.
24.
24.
21 .
23.
26.
23
96
30
90
*
50
20
60
90
10
*
50
20
*
*
*
*
*
*
40
80
20
00
4>
80
*
*
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH99DM6
HH99DM7
HL01DM1
HL07DM1
HL14DM1
HL28DM1
HL99DM1
HL56DM1
HL99DM2
HL99DM3
HL99DM4
HL99DM5
HL99DM6
HL99DM7
HH01FH1
HH07FH1
HH14FH1
HH28FH1
HH99FH1
HH56FH1
HH99FH2
HH99FH3
HH99FH4
HH99FH5
HH99FH6
HH99FH7
HL01FH1
HL07FH1
HL14FH1
HL99FH1
HL28FH1
HL56FH1
HL99FH2
HL99FH3
HL99FH4
HL99FH5
HL99FH6
HL99FH7
630
764
1
7
14
28
28
56
135
233
365
496
631
762
1
7
14
28
28
56
1 17
236
350
485
616
750
1
7
14
28
28
56
1 17
219
350
485
617
74B
WEIGHT
(gram)
1 .48
1 .48
THICKNESS
(mi 1 )
34.30
33.80
BREAKING
FACTOR
M
( 1b/
LENGTH WIDTH inch
(inch) (inch) width)
1 2 DICHLOROETHANE .5%
3.01 0.99 *
3.01 0.99 100.25
1 2 DICHLOROETHANE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.41
.62
.45
.41
.43
.41
.44
.43
.43
.43
.43
.43
.44
.57
.46
.48
.52
.43
.51
.51
.51
.51
.58
.51
.48
.36
.46
.46
.62
.41
.46
.46
.46
.50
.48
.47
31 .
35.
31 .
30.
31 .
30.
31 .
31 .
31 .
31 .
32.
32.
31 .
34.
32.
32.
32.
30.
32.
32.
32.
33.
35.
34.
32.
29.
32.
31 .
35.
31 .
31 .
32.
31 .
32.
33.
36.
00
10
30
90
10
40
10
60
80
30
50
00
80
20
30
20
30
40
50
50
60
50
40
70
50
90
50
10
40
00
30
10
90
40
20
30
3.02
3.01
3.01
3.02
3.00
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.01
3.03
3.01
3.01
3.02
2.99
3.02
3.02
3.02
3.02
3.03
3.02
3.00
3.01
3.01
3.01
3.01
3.00
3.01
3.02
3.01
3.02
3.02
3. O1
1
1
1
1
0
1
0
1
1
0
0
0
FURFURAL
1
1
1
1
1
1
1
1
1
1
1
0
FURFURAL
1
1
1
1
1
1
1
1
1
1
1
1
.00
.01
.00
.00
.99
.00
.99
.00
.00
.99
.99
.99
8.0%
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.99
8.0%
.00
.00
.00
.00
.00
.00
.00
.01
.00
.01
.01
.00
142
127
132
126
1 12
50°
1 13
120
122
131
128
100
23°
121
1 19
127
139
129
83
.5%
.78
. 10
. 10
.00
*
*
*
*
*
*
#
.38
C
.59
.50
. 13
.47
*
.27
*
*
*
*
*
.75
C
.34
.80
.47
*
.90
.07
.70
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
*
*
23°C
143
143
134
137
124
128
133
145
143
121
128
135
133
134
.70
.70
.00
.50
*
*
*
.26
.30
.44
.00
*
.28
*
*
*
*
*
*
.03
.80
.04
*
.50
.00
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
1652.00
663.
608.
618.
600.
1741 .
523.
587.
576.
576.
501 .
1590.
550.
552.
592.
631 .
526.
1313.
10
00
00
00
*
*
38
92
00
00
70
*
30
*
*
*
*
*
50
16
00
00
*
00
70
25
ELONGATION
AT
BREAK
T
(inch)
*
*
598
564
566
579
508
546
543
556
519
496
535
542
522
543
06
.60
.00
.00
*
*
*
*
*
*
¥
*
.40
.00
.60
.00
*
.20
.24
.00
.40
*
.00
.50
*
TEAR
RESISTANCE
M
(lb)
it
*
24
22
24
24
24
26
23
24
24
25
27
25
23
22
25
.44
.50
.50
.60
*
. 10
*
*
*
*
V
*
.66
.28
.60
.42
*
.00
*
*
*
*
*
*
.56
.20
.94
*
.86
.04
TEAR
RESISTANCE
T
(lb)
*
*
24.70
24.50
24.80
27.20
*
24.70
*
*
*
*
*
*
32.66
24.48
25.02
24.90
*
25.20
*
*
*
*
*
*
31 .20
26.00
24.82
*
24. 12
25.54
*
*
*
*
4
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
FURFURAL 1.0% 50°C
HH01FL1
HH07FL1
HH14FL1
HH28FL1
HH99FL1
HH56FL1
HH99FL2
HH99FL3
HH99FL4
HH99FL5
HH99FL6
HH99FL7
1
7
14
28
29
56
124
242
356
489
622
756
.37
.42
.56
.62
.51
.53
.51
.53
.51
.52
.53
.52
29
31
34
36
32
33
32
32
32
32
34
31
.90
.60
.20
.20
.80
.80
.70
.70
.70
.70
.00
.80
u>
VO
Cn
HL01FL1
HL07FL1
HL14FL1
HL28FL1
HL28FL2
HL99FL1
HL56FL1
HL99FL2
HL99FL3
HL99FL4
HL99FL5
HL99FL6
HL99FL7
1
7
14
28
28
29
56
124
225
356
489
623
754
.39
.58
.56
.58
.39
.50
1 .52
1 .49
1 .49
1 .50
1 .50
1 .50
1 .50
30.20
35.40
34.30
34.80
30.90
33. 10
33.80
32.10
33.50
32.50
32.30
32.80
33.90
HH01FM1
HH07FM1
HH14FM1
HH28FM1
HH99FM1
HH56FM1
HH99FM2
HH99FM3
HH99FM4
HH99FM5
HH99FM6
HH99FM7
1
7
14
28
29
56
124
242
356
490
622
756
1 .60
1 .44
1.41
1 .61
1 .44
1 .57
1 .40
1 .44
1 .44
1 .45
1 .49
1 .44
34
31
30
35
30
34
30
31
31
31
33
30
.80
.40
.80
.50
.80
.20
.90
.20
.00
.50
.30
.80
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
.01
.01
.01
.01
.01
.01
.01 1
.01 1
.01 1
.01 0
.02 1
.01 1
FURFURAL
.00
.01
.01
.01
.00
.01
.01
.01 1
.01 1
.00 1
.00 1
.01 1
.01 1
FURFURAL
.01
.02
.01
.01
.02
.01
.02
.03 1
.02 1
.03 1
.03 1
.02 1
.00
.00
.00
.00
.00
.00
.00
.00
.00
.99
.00
.00
1 .0%
.00
.01
.00
.00
.00
.00
.00
.00
.01
.00
.00
.00
.00
4.0%
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
143.00
1 19.33
120.48
119. 50
*
136.00
100.00
23°C
108.39
1 18.93
1 14.50
*
130.60
*
132.40
1 14.50
50°C
115.16
120.40
1 19.50
123.50
*
130.00
86.67
120.25
125.50
124.80
140.48
*
144.32
1 17.56
130.30
124.40
138.93
*
135.44
*
*
*
118.84
131.30
133.30
134.40
*
146.00
519.52
561.30
576.80
493.20
*
536.00
*
*
*
*
*
1563.00
487.36
559.30
552.00
*
590.00
*
597.00
*
*
*
1701 .67
520.00
558.70
578.50
697.30
*
569.30
*
*
t
*
4
1418.67
491.84
550.00
534.80
513.20
*
531.20
*
*
485.76
536.50
535.60
*
558.70
*
508.40
491.92
531.00
556.50
658.70
*
582.40
27.76
24. 14
27.76
26.73
*
25.36
31 .98
24.04
26.24
25.53
25.20
*
25.74
*
*
*
*
*
*
31 .94
24. 14
24.26
23.32
*
25.70
4
*
*
*
33.92
24. 10
27.36
26.49
*
24.68
33.04
25.26
28 .50
24.88
25.78
*
27.76
31 .42
24.26
24.00
23. 26
*
26.20
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT
(gram)
THICKNESS
(mil)
LENGTH
(inch)
WIDTH
(inch)
BREAKING
FACTOR
M
(lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
TEAR
RESISTANCE
M
(lb)
TEAR
RESISTANCE
T
(lb)
FURFURAL 4.0% 23°C
VO
HL01FM1
HL07FM1
HL14FM1
HL28FM1
HL99FM1
HL56FM1
HL99FM2
HL99FM3
HL99FM4
HL99FM5
HL99FM6
HL99FM7
1
7
14
28
29
56
124
228
356
490
623
754
1.51
1 .47
1 .55
1 .39
1 .52
1 .58
1 .52
1 .52
1 .52
1 .52
1 .53
1 .53
33
32
33
30
32
34
32
33
32
33
33
35
.40
.30
.80
.30
.90
.40
.30
.40
.50
. 10
.60
.20
HHO 1 MH 1
HH07MH1
HH 1 4MH 1
HH28MH1
HH99MH1
HH56MH1
HH99MH2
HH99MH3
HH99MH4
HH99MH5
HH99MH6
HH99MH7
1
7
14
28
29
57
122
240
358
493
626
759
1 .55
1 .57
1 .40
1 .54
1 .45
1 .46
1 .45
1 .45
1 .45
1 .44
1 .43
1 .43
34.
34.
31 .
33.
31 .
32.
30.
31 .
30.
31 .
32.
32.
20
00
40
40
00
10
70
20
80
00
00
60
HL01MH1
HL07MH1
HL14MH1
HL28MH1
HL99MH1
HL56MH1
HL99MH2
HL99MH3
HL99MH4
HL99MH5
HL99MH6
HL99MH7
1
7
14
28
29
57
122
235
358
493
627
757
1 .45
1 .54
1 .42
1 .56
1 .40
1 .40
1 .41
1 .40
1 .41
1 .40
1.41
1 .40
31 .80
33.70
31 .70
34.40
30. 10
31 .40
29.70
30.30
29.90
29.90
30.00
30.30
HH01ML1 1
HH07ML1 7
1 .52
1 .44
33.30
31 .90
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
01
02
01
01
01
01
01
02
01
01
1 1
01
METHYL
04
04
04
03
03
02
04
04
04
03
03
03
METHYL
02
03
03
01
03
00
03
03
03
02
01
03
METHYL
01
02
1
1
1
1
1
1
.00
.01
.00
.00
.00
.00
.00
.01
.00
.01
.05
.00
ETHYL
1
1
1
1
1
1
1
1
1
0
0
0
.01
.01
.01
.01
.00
.00
.00
.00
.00
.99
.99
.99
ETHYL
1
1
1
1
.00
.01
.00
.00
.01
.00
.01
.01
.00
.00
.00
.00
ETHYL
1
1
.00
.00
109
120
128
1 18
128
86
KETONE
137
154
131
137
138
84
KETONE
136
149
143
147
178
91
KETONE
142
150
.62
.30
.67
.90
*
.00
*
*
*
*
*
.08
26.0%
.68
. 14
.66
.06
*
.58
*
*
*
*
*
. 17
26.0%
.40
.99
.35
.94
*
.47
.75
3 . 0%
.64
.74
122.
130.
138.
134.
141 .
50°C
148.
151 .
158.
149.
156.
23°C
152.
149.
152.
149.
145.
50°C
138.
148.
22
24
67
96
*
60
*
*
*
*
*
*
72
77
50
32
*
26
*
*
4
*
*
*
40
00
58
19
*
34
*
*
*
*
*
*
48
1O
512.00
630.50
605.30
666.00
*
662.70
*
*
1334.00
622.88
658.88
629.44
660.24
*
580.00
1523.50
652.48
654.88
504.72
551.20
519.30
621.60
*
625.60
*
*
*
*
*
*
148.
151 .
158.
149.
156.
72
77
50
32
*
26
*
*
4
*
*
*
636
676
578
631
647
1237
.08
.64
. 16
.90
*
.20
*
*
*
*
*
.00
608
602
621
605
656
.40
.24
.28
.04
*
.00
*
*
*
*
*
*
607.44
586.32
596.48
600.96
*
586.16
588.72
579.28
31 .00
24.06
24.70
22.96
*
23.62
*
25.26
25.37
24.70
25.37
*
24.94
*
*
*
*
*
*
25. 18
25.37
28.38
25.44
*
24.98
*
*
*
*
24. 9O
26. 17
32.08
25. 10
24.94
22.78
*
24.72
*
26. 10
26.64
25.28
25.64
*
24.58
*
26.34
25.99
27.55
26.69
*
25.24
25. 18
27. O6
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
CO
HH14ML1
HH28ML1
HH99ML1
HH56ML1
HH99ML2
HH99ML3
HH99ML4
HH99ML5
HH99ML6
HH99ML7
HL01ML1
HL07ML1
HL14ML1
HL28ML1
HL99ML1
HL56ML1
HL99ML2
HL99ML3
HL99ML4
HL99ML5
HL99ML6
HL99ML7
HH01MM1
HH07MM1
HH14MM1
HH99MM1
HH28MM1
HH56MM1
HH99MM2
HH99MM3
HH99MM4
HH99MM5
HH99MM6
HH99MM7
HL01MM1
HL07MM1
14
28
28
57
120
240
358
493
626
759
1
7
14
28
28
57
120
235
358
494
627
757
1
7
14
28
28
57
120
239
357
493
625
758
1
7 A(
WEIGHT
(gram)
1
1
1
1
1
.60
.52
.54
.35
.55
.55
.54
.55
.53
.53
.57
.54
.58
.41
.42
.48
.43
.42
.43
.43
.42
.42
.40
.58
.52
.54
.45
.36
.42
.40
.40
.40
.39
.39
.51
THICKNESS
(mil)
35
34
33
30
33
34
33
33
34
34
34
33
35
31
30
33
30
31
30
31
30
31
31
34
33
33
31
30
30
30
29
30
31
30
32
.70
.40
.20
.50
. 10
.60
. 10
.70
. 10
.70
.50
.90
. 10
.30
.90
.00
.60
.20
.70
.00
.80
. 10
. 10
.70
.50
. 10
.50
. 10
.00
.50
.90
. 10
.40
.90
.90
LENGTH WIDTH
(inch) (inch)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
METHYL
.01
.01
.01
.00
.01
.01
.01
.01
.01
.02
METHYL
.00
.01
.01
.00
.00
.00
.01
.01
.01
.01
.01
.01
METHYL
.03
.00
.02
.01
.01
.01
.03
.03
.03
.02
.02
.02
METHYL
.01
ETHYL
1 .00
1 .00
1 .00
0.98
1 .00
1 .00
0.99
1 .00
0.99
0.99
ETHYL
1 .00
1 .00
1 .01
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
ETHYL
0.99
1 .00
1 .01
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
0.99
0.99
ETHYL
1 .00
BREAKING
FACTOR
M
( 1b/
inch
width)
KETONE
142
144
135
101
KETONE
136
147
141
147
146
126
KETONE
136
153
148
135
136
89
KETONE
140
3.0%
.68
.44
*
.94
*
*
*
*
*
.38
3.0%
.24
.90
.37
. 16
*
.94
.25
13.0%
.40
.85
. 17
*
.83
.62
*
*
*
*
*
.08
13.0%
.56
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
160.
150.
154.
23°C
148.
165.
151 .
160.
153.
50°C
142.
143.
144.
.152.
150.
23°C
145.
94
47
*
89
*
*
*
*
*
*
72
30
98
38
*
13
96
83
95
*
79
73
20
ELONGATION
AT
BREAK
M
(inch)
634
652
616
1525.
613.
636.
641 .
640.
665.
1841 .
607.
676.
661 .
615.
646.
1508.
652.
80
64
*
60
*
*
*
*
*
13
20
40
04
80
*
84
83
76
08
60
*
76
16
*
*
*
*
*
33
48
ELONGATION
AT
BREAK
T
(inch)
624
612
618
590
643
602
620
61 1
576
560
589
61 2
621
601
.48
.00
*
.32
*
*
*
*
*
»
.64
.68
.32
. 16
*
.52
*
*
*
*
*
*
08
72
92
*
32
76
4
*
*
*
*
*
76
TEAR
RESISTANCE
M
(lb)
25
24
25
26
25
25
27
25
24
26
26
26
25
24
.51
.79
*
.54
.62
.85
.09
.85
*
.81
*
*
*
*
*
*
54
70
42
*
25
14
*
*
*
*
*
*
66
TEAR
RESISTANCE
T
(lb)
25
25
25
27
26
26
28.
25.
25.
26.
26.
28.
25.
25
.24
.85
*
.94
38
44
46
94
*
63
10
95
99
*
10
64
*
*
t
*
*
*
10
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
OJ
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
VO
HH990P2 141
HH990P3 257
HH990P4 365
HH990P5 509
HH990P6 627
HH990P7 771
HL010P1
HL070P1
HL140P1
HL990P1
HL280P1
HL560P1
HL990P2
HL990P3
HL990P4
HL990P5
HL990P6
HL990P7
HH01PH1
HH07PH1
HH14PH1
HH28PH1
HH99PH1
HH56PH1
HH99PH2
HH99PH3
HH99PH4
HH99PH5
HH99PH6
HH99PH7
1
7
14
28
28
56
141
244
385
509
627
769
1
7
14
28
29
56
121
243
362
499
624
757
14
HL01PH1 1
HL07PH1 7
HL14PH1
HL28PH1 28
HL99PH1 29
HL56PH1 56
HL99PH2 121
HL99PH3 230
WEIGHT
(gram)
1 .58
.59
.58
.59
.59
.58
THICKNESS
(mi 1)
32.50
32.60
32.60
33.00
33.50
32.80
LENGTH WIDTH
(Inch) (inch)
ASTM #2 OIL
3.09 .01
3.09 .01
3.12 .01
3.10 .00
3.20 .01
3.09 1.01
ASTM #2 OIL
1 .37
1 .37
1 .44
1 .51
1 .60
1 .51
1 .53
1 .53
1 .54
1 .56
1 .56
1 .56
1 .55
1 .51
1 .38
1 .37
1 .45
1 .53
1 .46
1 .45
1 .45
1 .44
1 .44
1 .44
1 .42
.41
1 .40
1 .35
1 .46
1 .36
1 .46
1 .46
29
30
32
32
35
33
32
34
32
32
33
34
33
32
30
29
31
33
30
31
31
31
31
31
30
31
29
30
31
30
31
32
.70
.40
.20
.60
. 10
. 10
.40
. 10
.50
.90
.30
.40
.80
.90
.60
.90
. 10
.50
.90
. 10
. 10
. 10
.60
.90
.90
.20
.90
.00
.60
.00
.50
.40
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
01
01
01
01
01
01
02
03
03
04
05
05
PHENOL
01
01
01
01
02
01
02
03
02
02
02
02
PHENOL
00
00
01
01
00
01
01
01
1 .00
1 .00
0.99
1 .00
1 .00
1 .00
1 .00
1 .01
1 .00
1 .00
1 .01
1 .01
8.0%
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
0.99
8.0%
*
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .01
BREAKING
FACTOR
M
(lb/
inch
width)
100.0% 50°C
1 13.00
100.0%
126
147
138
142
142
104
50°C
136
131
127
130
133
1 17
23°C
129
131
126
133
132
23°C
. 16
.02
.06
*
.64
.56
.58
. 12
.82
.58
.08
4
.76
*
*
*
*
*
.00
.46
.58
. 14
.54
*
.96
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
*
*
*
146
164
141
158
140
140
124
128
138
128
134
128
135
140
138
.80
.38
.51
*
. 16
.24
*
*
*
*
*
*
30
60
46
14
*
54
*
*
*
*
*
*
08
92
04
08
*
96
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
*
*
1700.00
597
670
632
667
648
1663
633
623
612
609
631
1722
615
634
606
625
621
.36
.00
.64
*
.44
.40
.58
.88
.80
. 10
.24
*
.26
*
*
*
*
*
.38
.56
.46
.06
.42
*
.00
*
*
ELONGATION
AT
BREAK
T
( inch)
*
*
*
*
*
*
617
654
585
629
576
584
539
564
581
565
579.
570.
574
587
585
.52
.64
.68
*
.36
.48
*
*
*
*
*
*
40
70
24
90
*
76
34
82
22
56
*
22
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
*
*
24
25
23
24
23
24
24
24
22
24
23
24
24
23
.81
.30
.50
*
*
.90
*
*
*
*
*
*
.90
.39
. 19
.39
*
.48
*
*
*
*
*
*
.42
.86
.49
.57
*
.30
*
*
TEAR
RESISTANCE
T
(lb)
25.97
26. 10
23.70
*
24.93
25.98
*
24.60
24.05
24.78
24.47
*
22.98
25.03
24.65
26.09
24.06
*
24.84
*
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
O
O
HL99PH4 362
HL99PH5 499
HL99PH6 625
HL99PH7 755
HH99PL4
HH01PL1
HH07PL1
HH14PL1
HH28PL1
HH99PL1
HH56PL1
HH99PL2
HH99PL3
HH99PL5
HH99PL6
HH99PL7
1
1
7
14
28
28
56
122
245
499
625
758
HL01PL1 1
HL07PL1 7
HL14PL1 14
HL28PL1 28
HL99PL1 28
HL56PL1 56
HL99PL2 122
HL99PL3 233
HL99PL4 363
HL99PL5 499
HL99PL6 626
HL99PL7 756
HH01PM1 1
HH07PM1 7
HH14PM1 14
HH28PM1 28
HH99PM1 29
HH56PM1 56
HH99PM2 121
HH99PM3 244
HH99PM4 362
WEIGHT
(gram)
1 .45
1 .46
1 .46
1 .47
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
*
.46
.35
.49
.33
.41
.60
.41
.42
.41
.41
.41
.44
.54
.33
.56
.42
.42
.42
.42
.43
.42
.42
.42
.41
.45
49
.34
.52
.36
.53
.50
.52
THICKNESS
(mil)
31 .70
31 .40
30.70
33.90
31
29
32
29
30
35
30
30
30
32
32
32
36
29
34
30
31
30
31
30
30
31
31
31
32
32
29
32
29
32
32
32
*
.80
.70
.20
.20
.40
.80
.50
.60
.50
.00
.70
.00
. 10
.30
.40
.40
.40
.70
. 10
.70
.50
.70
.70
.20
. 10
.40
.40
.30
.80
.40
.50
.60
LENGTH WIDTH
(inch) (inch)
PHENOL 8.0%
3.01 1.00
3.01 1 .00
3.01 1.00
3.01 1.00
PHENOL 1 .0%
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
*
.00
.00
.01
.01
.01
.01
.01
.01
.02
.02
.01
PHENOL
.00
.00
.01
.01
.00
.01
.01
.01
.01
.01
.01
.01
PHENOL
.00
.01
.01
.01
.02
.01
.02
.03
.02
1 .
1 .
1 .
0.
1 .
1 .
1 .
1 .
0.
1 .
0.
1
„
.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
4
1 .
*
00
00
00
99
00
00
00
00
99
00
99
.0%
00
01
00
00
00
00
00
00
00
00
00
00
.0%
00
00
00
00
00
00
00
00
00
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
*
*
*
107. 17
50°C
129
132
129
131
124
97
23°C
129
121
128
130
134
97
50°C
138
135
130
132
134
*
. 10
.38
.44
.46
*
.08
*
*
*
*
.38
.60
. 14
.66
.55
*
.84
*
*
*
*
*
.75
.04
.56
.50
.40
*
.20
*
*
*
BREAKING
FACTOR
T
(pound/
inch
width)
*
*
*
*
140
140
137
140
138
139
139
139
137
140
127
140
139
134
141
*
.48
. 14
.74
.28
*
.50
*
#
*
*
*
.42
.60
.64
.28
*
.48
*
*
*
*
#
*
.64
.56
.64
. 12
*
.58
*
*
*
ELONGATION
AT
BREAK
M
(inch)
*
*
*
1685.75
610
627
616
609
582
1460
552
581
613
620
619
1557
569
621
600
614
632
*
. 18
.58
.92
.00
*
.02
*
*
*
*
.38
.50
.98
.76
.47
*
.00
*
*
*
*
*
.42
.52
.80
.36
.04
*
.82
*
*
*
ELONGATION
AT
BREAK
T
(inch)
*
*
*
*
576.
591 .
592.
582.
583.
515.
578.
586.
566.
578.
610.
585.
569.
563.
586.
*
00
00
52
78
*
40
#
*
*
*
*
40
00
04
04
*
90
*
*
*
*
*
*
40
28
98
34
*
34
*
#
*
TEAR
RESISTANCE
M
(lb)
*
*
*
*
24
24
24
24
24
24
25
24
24
25
24
24
24
24
23
4
.89
.20
.56
.60
*
.04
*
*
*
*
*
.37
.03
.33
.74
*
. 15
*
*
*
*
*
*
.02
.91
.94
.42
*
.47
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
*
*
24
26
25
25
23
24
26
25
25
24
23
25
24
24
*
.80
.30
.20
.73
*
.70
*
*
*
*
*
.39
.39
.09
.90
*
.68
*
*
*
*
*
*
.77
.84
*
.24
*
.50
*
*
#
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH99PM5 499
HH99PM6 624
HH99PM7 757
HL01PM1
HL07PM1
HL14PM1
HL28PM1
HL99PM1
HL56PM1
HL99PM2
HL99PM3
HL99PM4
HL99PM5
HL99PM6
HL99PM7
HH01SH1
HH07SH1
HH14SH1
HH99SH1
HH28SH1
HH56SH1
HH99SH2
HH99SH3
HH99SH4
HH99SH5
HH99SH6
HH99SH7
HL01SH1
HL07SH1
HL14SH1
HL28SH1
HL99SH1
HL56SH1
HL99SH2
HL99SH3
HL99SH4
HL99SH5
HL99SH6
HL99SH7
1
7
14
28
29
56
121
231
362
499
625
755
1
7
14
28
28
56
131
253
379
510
630
771
1
7
14
28
28
56
131
246
379
510
630
769
WEIGHT
(gram)
1 .53
1 .52
1 .53
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.47
.44
.35
.47
.46
.34
.47
.46
.46
.47
.46
.47
.51
.50
.53
.52
.44
.32
.51
.53
.51
.52
.51
.51
.38
.44
.53
.37
.55
.32
.54
.53
.55
.54
.53
.54
THICKNESS
(mi 1 )
33.30
33.90
35.20
32
31
29
31
31
29
31
32
31
31
32
32
32
32
33
33
32
29
32
32
33
32
35
31
30
31
34
30
34
29
33
33
33
33
33
35
.40
.70
.90
.90
. 20
.70
.40
.00
.60
. 20
. 20
.20
.90
.90
.90
. 10
.30
.70
.50
.70
.40
.80
.20
. 20
.50
.80
.40
.70
.70
.50
.20
.80
.30
. 10
.90
.90
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
LENGTH WIDTH inch inch
(inch) (inch) width) width)
PHENOL 4.0% 50°C
3.03 1 .00 * *
3.03 1.00 * *
3.03 1 .00 82.50 *
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PHENOL
.00
.01
.01
.01
.01
.01
.00
.01
.01
.01
.02
.02
SODIUM
.01
.01
.00
.01
.01
.02
.01
.01
.01
.01
.02
.01
SODIUM
.01
.00
.01
.00
.00
.00
.01
.01
.00
.00
.01
.01
ELONGATION
AT
BREAK
M
(inch)
*
*
1306.58
ELONGATION
AT
BREAK
T
( inch)
*
*
*
TEAR
RESISTANCE
M
(lb)
*
*
*
TEAR
RESISTANCE
T
(lb)
*
*
*
4.0% 23°C
.00
.00
.00.
.00
.00
.00
.00
.01
.00
.00
.00
.00
CHLORIDE
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
1 .00
0.99
CHLORIDE
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1.01
1 .00
1 .00
1 .00
1 .00
130
1 19
125
1 27
130
1 14
35
145
135
141
156
149
98
35
141
134
141
145
140
108
.04
.78
. 74
. 10
*
.48
*
*
*
*
*
. 25
.0%
.99
. 18
.74
*
.49
. 14
*
*
*
*
*
.00
. 0%
.96
.68
62
. 13
*
76
*
*
*
*
*
75
128
138
139
133
141
50°C
151
150
164
171
147
23°C
155
134
151
162.
151 .
.02
.62
.84
.00
*
. 10
*
*
*
*
*
*
30
86
28
*
72
02
*
*
*
*
*
4
98
12
67
86
*
24
622
567
607
605
631
1683
586
606
655
636
673
1597
652
598
654
656
664
1553
.06
.40
. 18
.00
*
.92
*
*
*
*
*
.50
.56
.88
.92
*
.32
.20
*
*
*
*
*
50
64
24
72
67
»
80
20
555
589
582
567
602
671 .
646.
630.
606.
597.
633.
615.
628.
614.
619.
56
72
40
00
*
02
*
*
*
*
*
*
52
40
1 1
*
70
04
44
20
1 1
40
*
68
*
*
*
*
*
#
22
24
25
24
24.
24.
24.
27.
27.
27.
24.
24.
24.
23.
25.
99
45
1 1
20
*
56
*
*
*
*
*
*
24
60
26
*
70
00
*
*
*
*
*
*
89
87
72
93
*
18
*
24
24
25
24
24
25
25
27
25
27
26
26
28
26
26
. 10
.80
.36
.83
*
.30
. 24
.33
. 12
*
.32
.79
*
.31
.95
.42
.84
*
.45
*
*
*
*
*
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH01SM2
HH01SM1
HH07SM1
HH07SM2
HH14SM1
HH14SM2
HH28SM2
HH99SM1
HH28SM1
HH56SM2
HH56SM1
HH99SM2
HH99SM3
HH99SM4
HH99SM5
HH99SM6
HH99SM7
HL01SM1
HL01SM2
HL07SM1
HL07SM2
HL14SM1
HL14SM2
HL28SM2
HL99SM1
HL28SM1
HL56SM2
HL56SM1
HL99SM2
HL99SM3
HL99SM4
HL99SM5
HL99SM6
HL99SM7
HH01WP2
HH01WP1
HH07WP1
HH07WP2
HH14WP1
HH14WP2
1
1
7
7
14
15
28
28
28
56
61
132
254
370
51 1
624
772
1
1
7
7
14
15
28
28
28
56
61
132
246
370
51 1
624
770
1
1
7
7
14
14
WEIGHT
(gram)
1 .44
1 .61
1 .55
1 .58
27.33
1 .54
1 .53
1 .48
27.40
1 .39
23.80
1 .48
1 .47
1 .46
1 .46
1 .46
1 .47
1 .53
1 .58
1 .56
1 .58
26.65
1 .61
1 .50
1 .45
26.01
1 .58
25.64
1 .46
1 .46
1 .46
1 .47
1 .46
1 .47
1 .63
1 .50
1 .53
1 .59
27. 18
1 .65
THICKNESS
(mil)
31 .30
35.40
33.80
34.50
34.80
34.40
33.30
32.40
35. 10
29.50
30.30
31 .80
31 .70
32. 10
32.50
33.70
31 .00
33.70
34.80
34.30
35.00
34.00
35.50
32.90
32.50
35.00
34.00
31 .90
31 .90
32.20
32.00
31 .70
32.90
36.90
*
33.00
34.00
34.90
33.70
36. 10
LENGTH WIDTH
(inch) (inch)
3
3
3
3
7
3
3
3
7
3
7
3
3
3
3
3
3
3
3
3
3
7
3
3
3
7
3
7
3
3
3
3
3
3
3
3
3
7
3
SODIUM
.01
.01
.00
.01
.46
.01
.01
.01
.40
.01
.35
.01
.01
.01
.00
.01
.01
SODIUM
.01
.01
.00
.00
.43
.01
.00
.00
.42
.00
.46
.00
.01
.00
.00
.01
.01
WATER
*
.01
.01
.01
.48
.00
BREAKING
FACTOR
M
inch
width)
CHLORIDE 10.0%
1 .00
1 .00
.00
.00
6.94
.00
.00
.00
6.92
1 .00
6.93
1 .00
1 .00
1 .01
0.99
1 .00
0.99
*
148.56
144.88
*
165.84
*
*
*
159.92
*
142.96
125.00
CHLORIDE 10.0%
1 .00
1 .00
1 .00
1 .00
6.94
1 .00
1 .00
1 .00
6.54
1 .00
6.94
1 .00
1 .01
1 .00
1 .00
1 .00
1 .00
1 00 . 0%
*
1 .00
1 .00
1 .00
6.98
1 .00
146.32
*
149.84
*
168.24
*
*
*
154.80
*
159.92
*
*
*
*
*
125.00
50°C
*
157.68
162.64
*
164.70
*
BREAKING
FACTOR
T
(pound/
inch
width)
50°C
147
143
174
152
179
153
23°C
146
2
137
1 13
152
166
162
173
*
.60
.92
.64
.56
*
*
*
. 12
*
.52
*
*
*
*
*
*
.96
*
.96
*
.36
*
*
*
.52
*
.72
*
*
*
*
*
*
*
.96
.00
*
. 10
*
ELONGATION
AT
BREAK
M
(inch)
674.
664.
655.
633.
642.
1800.
600.
668.
668.
629.
672.
1800.
637.
695.
580.
*
56
56
*
92
*
*
*
84
*
96
*
*
*
*
*
00
08
*
80
*
96
*
*
*
52
*
64
*
*
*
*
*
00
*
12
10
*
70
*
ELONGATION
AT
BREAK
T
(inch)
597.
590.
564.
651 .
623.
587.
660.
504.
426.
608.
681 .
640.
599.
*
28
40
*
96
*
*
*
84
*
04
*
*
*
*
*
*
12
*
64
*
96
*
*
*
72
*
80
*
*
,
*
*
*
*
10
88
*
40
*
TEAR
RESISTANCE
M
29
26
30
30
26
30
27
29
29
28
31
25
30
*
.30
.94
*
.34
*
*
*
.86
*
.94
*
*
*
*
*
*
.46
*
.58
*
.78
*
*
*
.02
*
.82
*
*
*
*
*
if
*
.02
.94
*
. 10
*
TEAR
RESISTANCE
T
(lb)
*
27.30
29.26
*
29.06
*
*
*
29.06
*
28.54
*
*
*
*
*
*
29. 14
*
30.22
*
28.90
*
*
*
31 .62
*
29.82
*
28.42
26.78
*
29 .90
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH99WP1 28
HH28WP2 28
HH28WP1 28
HH56WP2 56
HH56WP1 56
HH99WP2 133
HH99WP3 254
HH99WP4 370
HH99WP5 503
HH99WP6 622
HH99WP7 772
HL01WP2 1
HL01WP1 1
HL07WP1 7
•£• HL07WP2 7
8 HL14WP2 14
HL14WP1 14
HL28WP2 28
HL99WP1 28
HL28WP1 28
HL56WP1 56
HL56WP2 56
HL99WP2 132
HL99WP3 246
HL99WP4 370
HL99WP5 503
HL99WP6 622
HL99WP7 770
WE I GHT
(gram)
1 .48
1 .57
1 .57
1 .58
27.28
1 .48
1 .53
1 .51
1 .52
1.51
1 .52
*
1 .61
1 .54
1 .54 '
1 .64
27. 25
1 .57
1 .49
1 .56
28.71
1 .59
1 .49
1 .48
1 .49
1 .48
1 .48
1 .49
THICKNESS
(mil)
33
34
34
34
32
3-2
32
33
32
33
31
36
33
33
37
32
34
32
33
34
35
32
32
33
32
32
36
10
70
30
80
50
70
70
90
90
90
80
*
20
90
70
50
70
80
10
80
10
20
20
50
00
20
30
60
LENGTH WIDTH
(inch) (inch)
WATER 100.0%
3
3
3
3
7
3
3
3
3
3
3
1
3
3
3
7
3
3
3
7
3
3
3
3
3
3
3
.01
.00
.00
.01
.41
.01
.01
.01
.01
.01
.01
WATER
*
.00
.01
.00
.01
.45
.00
.00
.00
.54
.00
.00
.03
.00
.00
.00
.00
.00
.00
.00
.00
7.39
.00
.00
1 .00
0.99
1 .00
1 .00
100.0%
*
1 .00
1 .00
1 .00
1 .00
7. 22
1 .00
1 .00
1 .00
7.36
1 .00
1 .01
1 .03
1 .00
1 .00
1 .01
1 .00
BREAKING BREAKING
FACTOR FACTOR
M T
(lb/ (pound/
inch inch
width) width)
50°C
148
158.
158
1 18.
23°C
150.
152.
143.
163.
149.
163.
126.
POTASSIUM DICHROMATE
HH01XM1 1
HH07XM1 7
HH14XM1 14
HH28XM1 28
HH99XM1 28
HH56XM1 55
HH99XM2 1 18
HH99XM3 231
HH99XM4 363
HH99XM5 489
HH99XM6 609
HH99XM7 749
1 .59
1 .40
1 .35
1 .34
1 .40
1 .53
1 .40
1.41
1 .40
1 .40
1 .40
1 .40
36
30
31
29
30
33
30
31
30
30
32.
30.
20
80
30
90
00
70
50
30
50
30
10
10
3
3
3
3
3
3
3
3
3
3
3
3
.00
.01
.01
.00
.00
.00
.01
.01
.01
.01
.01
.01
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
0.99
0.99
1 .00
0.99
144.
160.
146.
167.
162.
80.
*
40
24
*
20
00
*
48
88
*
*
40
60
*
04
60
*
*
*
*
*
*
63
10.0%
62
50
41
90
*
44
83
*
157.20
168.72
*
159.94
*
*
*
*
*
*
*
157.52
181 .20
*
*
183. 20
163.00
*
165.68
158.80
*
*
*
*
*
*
*
50°C
161 .45
168. 15
137.82
174.50
*
162. 12
ELONGATION
AT
BREAK
M
(inch)
700
706
659
1712
680
640
613
704
666
663
1796
584
652
651
690
664
1256
*
.72
.96
*
.40
.00
*
.08
.72
*
*
.00
.72
*
. 16
.44
*
*
*
*
*
*
25
93
32
60
88
*
72
*
*
*
*
*
83
ELONGATION
AT
BREAK
T
( inch)
629
628
614
641
652
639
639
610
628
622.
629.
553.
665.
630.
*
.44
.00
*
.90
*
. 12
.08
*
*
.00
60
*
96
72
*
*
*
*
*
*
*
64
44
76
44
*
64
TEAR
RESISTANCE
M
(lb)
*
26. 18
26.86
*
28.50
*
27.30
29 . 78
*
*
30. 10
30.60
*
25. 10
29.06
*
*
*
*
*
*
*
25.76
30.38
26.86
26.83
*
27.32
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
*
26.02
28 . 70
*
29.30
*
*
*
*
*
*
*
26.46
31 . 62
*
*
26.50
25 .50
*
26.42
28 . 50
26.04
29 .63
25.54
25.72
*
25.90
*
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL01XM1
HL07XM1
HL14XM1
HL28XM1
HL99XM1
HL56XM1
HL99XM2
HL99XM3
HL99XM4
HL99XM5
HL99XM6
HL99XM7
1
7
14
28
28
55
1 18
223
363
489
640
747
WEIGHT
(gram)
THICKNESS
(mi 1 )
LENGTH
( inch)
WIDTH
(inch)
BREAKING
FACTOR
M
( 1 b/
inch
width)
POTASSIUM DICHROMATE 10
1 .45
1 .58
1 .34
1 .54
.41
.57
.41
.40
.40
1 .42
1 .40
1 .39
31 .80
35.50
30. 10
34.30
30.40
35.20
30.60
31 .60
30.80
30.30
31 .80
33.60
3.01
3.01
3.00
3.00
3.00
3.00
3.00
3.01
3.00
3.00
3.01
3.00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
1 .00
.01
.00
.00
.00
.00
149.80
147.72
171.10
155.85
*
140.54
*
4
*
*
*
99.75
BREAKING
FACTOR
T
(pound/
inch
width)
0% 23°C
163.05
142.84
137.93
111.14
*
153.50
*
*
*
*
*
*
ELONGATION
AT
BREAK
M
(inch)
661 .84
677.76
679.20
589.92
*
668.64
*
*
4
*
*
1552.50
ELONGATION
AT
BREAK
T
TEAR
RESISTANCE
M
( inch) ( 1 b)
653.
587.
557.
430.
636.
12
44
68
64
*
96
*
*
*
*
*
*
24
25
24
24
27
10
79
62
67
*
66
*
*
*
*
*
*
TEAR
RESISTANCE
T
(lb)
24.27
27. 12
25.09
26.98
*
28.92
*
#
*
*
*
*
-P-
O
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
YIELD
STRENGTH
M
( lt>/
Inch
width)
YIELD
STRENGTH
T
(lb/
inch
width)
ELONGATION
AT
YIELD
M
(inch)
ELONGATION
AT
YIELD
T
(inch)
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
HYDROCHLORIC ACID 10.0% 50°C
HH01AM1
HH01AM2
HH07AM2
HH07AM1
HH14AM1
HH14AM2
HH99AM1
HH28AM1
HH28AM2
HH56AM1
HH56AM2
HH99AM2
HH99AM3
HH99AM4
HH99AM5
HH99AM6
HH99AM7
HL01AM2
HL01AM1
HL07AM2
HL07AM1
HL14AM2
HL14AM1
HL99AM1
HL28AM1
HL28AM2
HL56AM2
HL56AM1
HL99AM2
HL99AM3
HL99AM4
HL99AM5
HL99AM6
HL99AM7
HH01BM1
HH07BM1
HH14BM1
HH28BM1
HH99BM1
1
1
7
7
14
14
28
29
29
56
56
144
252
368
51 1
621
770
1
1
7
7
14
14
28
29
29
56
56
144
238
368
51 1
621
768
1
7
13
28
29
*
79.92
85. 16
*
*
78.96
91 .20
*
99.28
*
*
87.75
83.60
*
94.88
*
83.04
*
*
90.88
86.96
*
*
*
78.50
103.20
90.72
85. 20
90.30
*
*
91 .76
98.00
*
*
88.96
*
*
99.30
*
103.20
16.20
15.20
*
*
16.20
*
*
15.20
*
15.50
100.88
*
94.00
*
98.24
100.48
100.88
*
17.33
HYDROCHLORIC ACID 10.0% 23°C
16.60
*
14.50
*
14.80
*
*
*
15.40
14. 80
* *
* *
* *
* *
* 15.08
SODIUM HYDROXIDE 10.0% 50°C
108.32 14.00
100.48 15.10
90.00 14.80
98.00 16.20
*
15.10
14.60
*
*
14. 20
*
*
14.60
*
14.30
*
*
*
*
*
13.40
*
1 1 .80
*
13.80
*
*
*
14.50
13. 20
14.00
15.60
14. 20
15.00
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH56BM1
HH99BM2
HH99BM3
HH99BM4
HH99BM5
HH99BM6
HH99BM7
HL01BM1
HL07BM1
HL14BM1
HL28BM1
HL99BM1
HL56BM1
HL99BM2
0 HL99BM3
ON HL99BM4
HL99BM5
HL99BM6
HL99BM7
HH01DH1
HH07DH1
HH14DH1
HH28DH1
HH99DH1
HH56DH1
HH99DH2
HH99DH3
HH99DH4
HH99DH5
HH99DH6
HH99DH7
HL01DH1
HL07DH1
HL14DH1
HL99DH1
HL28DH1
HL56DH1
56
144
252
368
510
622
770
1
7
14
28
28
56
144
238
368
510
622
768
1
7
14
28
28
56
133
244
364
495
629
763
1
7
14
28
28
56
YIELD
STRENGTH
M
(lb/
inch
width)
83.92
*
*
*
*
*
85. 17
*
87.40
91
*
*
.04
83.92
74.90
74.80
76.93
75.30
*
*
*
*
84.83
72.50
76.80
74.40
*
73.00
YIELD
STRENGTH
T
( lb/
i nch
width)
ELONGATION
AT
YIELD
M
(inch)
SODIUM HYDROXIDE 10.0% 50°C
98.80
*
16.80
*
99.76
99.52
*
*
89.40
*
*
*
*
*
*
1
83.62
83.40
83.70
85.00
*
*
*
*
16.83
SODIUM HYDROXIDE 10.0% 23°C
*
14.80
*
*
*
16.30
83.80
82.90
82.00
*
82.50
17.02
2 DICHLOROETHANE .8% 50°C
19.40
16.78
18.30
20.50
16.00
1 2 DICHLOROETHANE .8% 23°C
18.10
18.80
18.80
*
18 . 20
ELONGATION
AT
YIELD
T
(inch)
15.10
*
*
*
*
*
12.60
13.50
14.80
*
*
*
*
*
*
16.30
15.30
00
21
17
10
16.70
17.10
17.80
15. 70
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL99DH2 134
HL99DH3 231
HL99DH4 364
HL99DH5 495
HL99DH6 630
HL99DH7 761
.p-
o
HH01DL1
HH07DL1
HH14DL1
HH99DL1
HH28DL1
HH56DL1
HH99DL2
HH99DL3
HH99DL4
HH99DL5
HH99DL6
HH99DL7
1
7
14
28
28
56
139
246
370
496
631
765
HH01DM1 1
HH07DM1 7
HH14DM1 14
HH2BDM1 28
HH99DM1 28
HH56DM1 56
HH99DM3 245
YIELD
STRENGTH
M
( lb/
Inch
width)
*
*
*
83.50
74.58
74.50
73.80
73.40
*
*
*
*
*
83.58
HL01DL1
HL07DL1
HL14DL1
HL99DL1
HL28DL1
HL56DL1
HL99DL2
HL99DL3
HL99DL4
HL99DL5
HL99DL6
HL99DL7
1
7
14
28
28
56
136
233
366
496
632
763
77.
78.
77.
72.
82.
46
60
50
*
30
*
*
*'
*
*
*
42
72.60
70.90
76.80
73.00
VIELD
STRENGTH
r
( lb/
inch
width)
82.28
85.20
85.00
86.00
*
86.32
89.00
87.10
*
84.60
*
*
*
84.74
78.20
82.80
83.50
*
*
*
ELONGATION
AT
YIELD
M
(inch)
1 2 DICHLOROETHANE .8% 23°C
17.33
1 2 DICHLOROETHANE .1% 50°C
17.72
18. 10
18.60
*
19.50
17.25
1 2 DICHLOROETHANE .1% 23°C
16.69
23.30
18.70
*
18.10
*
*
15.42
1 2 DICHLOROETHANE .5% 50°C
18.90
14.90
18.50
19. 20
*
ELONGATION
AT
YIELD
T
(inch)
16.92
16.20
17.20
*
17.00
*
16.46
14.90
16.70
*
15.80
17.00
16.90
16.80
16.80
*
*
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE:
AVERAGE FINAL PROPERTIES
Co
HH99DM4 365
HH99DM5 496
HH99DM6 630
HH99DM7 764
HL01DM1
HL07DM1
HL14DM1
HL28DM1
HL99DM1
HL56DM1
HL99DM2
HL99DM3
HL99DM4
HL99DM5
HL99DM6
HL99DM7
1
7
14
28
28
56
135
233
365
496
631
762
HH01FH1
HH07FH1
HH14FH1
HH28FH1
HH99FH1
HH56FH1
HH99FH2
HH99FH3
HH99FH4
HH99FH5
HH99FH6
HH99FH7
1
7
14
28
28
56
1 17
236
350
485
616
750
HL01FH1 1
HL07FH1 7
HL14FH1 14
HL99FH1 28
HL28FH1 28
HL56FH1 56
HL99FH2 117
HL99FH3 219
HL99FH4 350
YIELD
STRENGTH
M
(lb/
Inch
width)
*
89.00
76.70
74.20
77. 20
75.00
86.58
80.72
74.67
76.80
74.67
*
83.07
*
*
*
*
*
88.70
84. 16
77.80
77.73
*
75.20
77.20
*
YIELD
STRENGTH ELONGATION
T
( lb/
inch
width)
*
*
*
*
85.68
83.55
83.40
83.20
*
*
*
*
*
4
*
*
88.00
86.00
87.40
83.20
*
89.44
£
*
*
*
*
*
90.24
85.50
88.40
*
82.40
88.67
*
AT
YIELD
M
(inch)
1 2 DICHLOROETHANE .5%
*
V
*
16.75
1 2 DICHLOROETHANE .5%
18. 10
15.90
17.30
17.80
*
*
*
*
*
*
*
17 42
FURFURAL 8.0% 50°C
15.80
17.40
17.40
17.30
*
16.20
19.50
FURFURAL 8.0% 23°C
16.60
16.50
17.40
*
16.90
16.70
*
50"C
23°C
ELONGATION
AT
YIELD
T
(inch)
16.23
15.20
18.00
17.20
15.50
15.90
16.30
15.90
*
15.90
15.50
15.60
15.80
16.00
16.00
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
VD
HL99FH5 485
HL99FH6 617
HL99FH7 748
HH01FL1
HH07FL1
HH14FL1
HH2BFL1
HH99FL1
HH56FL1
HH99FL2
HH99FL3
HH99FL4
HH99FL5
HH99FL6
HH99FL7
1
7
14
28
29
56
124
242
356
489
622
756
HL01FL1
HL07FL1
HL14FL1
HL28FL1
HL28FL2
HL99FL1
HL56FL1
HL99FL2
HL99FL3
HL99FL4
HL99FL5
HL99FL6
HL99FL7
1
7
14
28
28
29
56
124
225
356
489
623
754
1
7
14
HH01FM1
HH07FM1
HH14FM1
HH28FM1 28
HH99FM1 29
HH56FM1 56
HH99FM2 124
HH99FM3 242
HH99FM4 356
VIELD
STRENGTH
M
Ob/
inch
width)
83.92
83.00
78.80
76. 16
80.20
*
79.07
93.83
83.00
78. 13
77.80
*
76.40
*
78.53
*
*
*
86.75
82.32
77.60
76.80
76.00
*
82.80
YIELD
STRENGTH
T
( 1 b/
i nch
width)
FURFURAL
*
*
*
FURFURAL
89.28
88.40
85.84
90.00
*
90.27
*
*
*
*
*
FURFURAL
92.56
87.87
84.88
*
84.80
*
92.53
*
*
*
*
*
FURFURAL
90. 24
87.73
86.93
85.50
*
90.27
*
*
ELONGATION
AT
YIELD
M
(inch)
8.0% 23°C
*
*
16.30
1.0% 50°C
16.60
16.90
17.40
15.80
*
16.70
18.25
1.0% 23°C
16.00
16.70
16.50
*
16.40
*
15.40
15.75
4.0% 50°C
16.50
16.40
16.70
17.40
*
17. 20
*
*
ELONGATION
AT
YIELD
T
(inch)
15.80
15.90
17.20
15.80
*
16.70
13.80
15.60
16.90
*
15.40
*
13.80
14.80
15.60
15.60
16. 70
*
15.90
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HH99FM5 490
HH99FM6 622
HH99FM7 756
HL01FM1
HL07FM1
HL14FM1
HL28FM1
HL99FM1
HL56FM1
HL99FM2
HL99FM3
HL99FM4
HL99FM5
HL99FM6
HL99FM7
1
7
14
28
29
56
124
228
356
490
623
754
HH01MH1
HH07MH1
HH14MH1
HH28MH1
HH99MH1
HH56MH1
HH99MH2
HH99MH3
HH99MH4
HH99MH5
HH99MH6
HH99MH7
1
7
14
28
29
57
122
240
358
493
626
759
HL01MH1 1
HL07MH1 7
HL14MH1 14
HL28MH1 28
HL99MH1 29
HL56MH1 57
HL99MH2 122
HL99MH3 235
HL99MH4 358
HL99MH5 493
YIELD
STRENGTH
M
( 1b/
inch
width)
86.25
79.84
77.33
77.00
74.67
*
78. 13
*
*
86.75
78.08
80.32
80.24
79.30
*
71 .84
*
83.25
82.20
79.68
80.72
81 .04
*
80.64
YIELD
STRENGTH
T
( lb/
inch
width)
FURFURAL 4.
*
4
*
FURFURAL 4.
93. 12
86. 16
86.20
85.50
*
86.00
*
*
*
*
*
*
METHYL ETHYL
88.80
88. 16
90.08
89.44
*
83.36
*
*
*
*
*
*
METHYL ETHYL
92.08
88.88
90.24
87.28
*
88.24
*
*
ELONGATION
AT
YIELD
M
(inch)
0% 50°C
*
*
19.67
0% 23°C
15.70
17.90
16.50
16.90
*
16.70
16.33
KETONE 26.0%
15.40
16.00
15.50
16.00
*
18.00
*
*
*
*
*
17 .58
KETONE 26.0%
15.00
14.30
14.30
14.50
*
15.10
*
*
ELONGATION
AT
YIELD
T
(inch)
14.60
15.40
15.40
15.60
*
14.60
50°C
23°C
15.50
13.70
13.80
14.90
*
17.20
*
*
*
14.30
13.40
13.70
13.50
4>
14.80
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL99MH6 627
HL99MH7 757
HH01ML1 1
HH07ML1 7
HH14ML1 14
HH28ML1 28
HH99ML1 28
HH56ML1 57
HH99ML2 120
HH99ML3 240
HH99ML4 358
HH99ML5 493
HH99ML6 626
HH99ML7 759
HL01ML1
HL07ML1
HL14ML1
HL28ML1
HL99ML1
HL56ML1
HL99ML2
HL99ML3
HL99ML4
HL99ML5
HL99ML6
HL99ML7
1
7
14
28
28
57
120
235
358
494
627
757
HH01MM1
HH07MM1
HH14MM1
HH99MM1
HH28MM1
HH56MM1
HH99MM2
HH99MM3
HH99MM4
HH99MM5
HH99MM6
HH99MM7
1
7
14
28
28
57
120
239
357
493
625
758
YIELD
STRENGTH
M
( lb/
inch
width)
*
80. 17
75.76
80.64
83.28
80.56
*
80.80
*
*
93.42
82.32
81 .68
78.40
83. 10
*
81 .68
80.58
81 . 28
81 . 20
78. 16
*
79.04
76.40
*
82.92
YIELD
STRENGTH
T
inch
width)
ELONGATION
AT
YIELD
M
(inch).
ELONGATION
AT
YIELD
T
(inch)
80.56
92.00
92.88
89.60
*
91 .44
METHYL ETHYL KETONE 26.0% 23°C
18.25
METHYL ETHYL KETONE 3.0% 50°C
16.30
14.80
15.50
15.70
16.20
*
18.83
METHYL ETHYL KETONE 3.0% 23°C
92. 16 14.80
92. 16 13.80
90.48 15.20
91.68 15.40
* *
91.84 15.50
* *
* *
* *
* *
* 16.70
16.00
14.90
13.50
14.60
*
14.50
13.80
13.40
14.80
14.00
*
14. 20
*
*
*
*
METHYL ETHYL KETONE 13.0% 50°C
88.40 15.40 14.40
94.24 16.50 14.80
87.92 15.40 13.80
* * *
90.56 16.50 14.20
86.32 17.10 16.50
* *
* *
19.83 *
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL01MM1
HL07MM1
HL14MM1
HL28MM1
HL99MM1
HL56MM1
HL99MM2
HL99MM3
HL99MM4
HL99MM5
HL99MM6
HL99MM7
HH010M1
HH070M1
fl HH140M1
N> HH280M1
HH990M1
HH560M1
HH990M2
HH990M3
HH990M4
HH990M5
HH990M6
HH990M7
HL010M1
HL070M1
HL140M1
HL990M1
HL280M1
HL560M1
HL990M2
HL990M3
HL990M4
HL990M5
HL990M6
HL990M7
1
7
14
28
28
57
120
234
357
493
626
756
1
7
13
28
28
56
128
251
364
503
626
765
1
7
13
28
28
56
128
237
364
503
626
763
YIELD
STRENGTH
M
(lb/
i nch
width)
74.72
80.24
81 .40
78.40
*
82.40
*
*
*
80.00
84.32
79.36
82.96
77.83
84.60
77.83
81 .00
79.52
79.92
86.56
*
*,
*
79.70
YIELD
STRENGTH ELONGATION ELONGATION
T
( lb/
inch
width)
METHYL ETHYL
84.56
91 .60
92.80
90.32
*
92.08
*
*
*
*
*
*
ASTM #2 OIL
93.20
87.60
91 .44
*
*
94.00
*
*
*
*
*
*
ASTM #2 OIL
91 .52
89.36
89.68
*
*
99.60
*
*
*
*
AT
YIELD
M
(inch)
KETONE 13.0% 23°C
15.20
15.10
16.20
15.40
*
15.70
*
*
*
*
*
17.00
SATURATED 50°C
15.10
16.30
16.60
*
29.50
15.60
*
*
*
*
*
29.50
SATURATED 23°C
15.60
15.70
16.50
*
*
16.00
*
*
*
*
AT
YIELD
T
(inch)
14.90
13.40
14.50
14.00
*
14.30
*
*
*
*
*
*
14.80
16.80
15.70
«
*
14.80
*
*
*
*
*
*
15.10
15.20
15.70
*
*
14.60
*
*
*
*
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
24.40
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL. PROPERTIES
U)
HH010P1 1
HH070P1 7
HH140P1 14
HH280P1 28
HH990P1 28
HH560P1 56
HH990P2 141
HH990P3 257
HH990P4 385
HH990P5 509
HH990P6 627
HH990P7 771
HL010P1
HL070P1
HL140P1
HL990P1
HL280P1
HL560P1
HL990P2
HL990P3
HL990P4
HL990P5
HL990P6
HL990P7
1
7
14
28
28
56
141
244
385
509
627
769
HH01PH1
HH07PH1
HH14PH1
HH28PH1
HH99PH1
HH56PH1
HH99PH2
HH99PH3
HH99PH4
HH99PH5
HH99PH6
HH99PH7
1
7
14
28
29
56
121
243
362
499
624
757
YIELD
STRENGTH
M
( 1b/
inch
width)
75.20
71 .36
70.80
73.07
*
70. 16
82.00
75.92
76.88
78.08
*
77.04
77.04
*
82.00
73.46
73.46
72.80
77. 14
*
74.40
*
*
*
87.00
YIELD
STRENGTH ELONGATION
T AT
(1b/ YIELD
inch M
width) (inch)
81
77
80
76
82
86
84
86
88
83
82
81
85
81
ASTM #2 OIL
.76
*
.60
.64
*
. 16
*
*
*
*
*
*
ASTM #2 OIL
.00
. 24
. 24
*
.80
.08
PHENOL 8.0%
.88
. 10
. 10
.72
*
.90
*
*
*
*
*
*
100.0% 50°C
16.
19.
19.
21 .
21 .
30.
80
70
20
50
*
70
00
100.0% 23°C
15.
16.
16.
16.
16.
24.
50°C
18.
18.
18.
17.
18.
17.
70
00
60
*
60
20
*
*
*
58
80
69
80
77
4
90
*
*
*
*
*
20
ELONGATION
AT
YIELD
T
(inch)
16.30
*
19.40
20.80
*
22.00
15.40
14.80
15. 20
*
15.40
15.40
*
16.00
14.80
17.81
15.50
*
16.92
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLVETHYLENE: AVERAGE FINAL PROPERTIES
HL01PH1
HL07PH1
HL14PH1
HL28PH1
HL99PH1
HL56PH1
HL99PH2
HL99PH3
HL99PH4
HL99PH5
HL99PH6
HL99PH7
HH99PL4
HH01PL1
HH07PL1
HH14PL1
HH28PL1
HH99PL1
HH56PL1
HH99PL2
HH99PL3
HH99PL5
HH99PL6
HH99PL7
HL01PL1
HL07PL1
HL14PL1
HL28PL1.
HL99PL1
HL56PL1
HL99PL2
HL99PL3
HL99PL4
HL99PL5
HL99PL6
HL99PL7
1
7
14
28
29
56
121
230
362
499
625
755
1
1
7
14
28
28
56
122
245
499
625
758
1
7
14
28
28
56
122
233
363
499
626
756
YIELD
STRENGTH
M
( lb/
i nch
width)
77.98
72.90
75.70
76.62
*
73.78
87.08
75.44
75.02
75.56
76.28
*
77.80
*
*
82.42
77.98
78.92
74.88
77.20
75.82
79.92
YIELD
STRENGTH
T
(lb/
inch
width)
PHENOL
82.72
86.68
85.02
84.60
*
82. 14
*
*
*
*
*
PHENOL
*
88.50
84.46
83.28
85.20
*
86.58
*
*
*
*
*
ELONGATION
AT
YIELD
M
(inch)
8.0% 23°C
17.58
17.90
17.70
15.67
*
18.40
*
*
*
*
17.16
1.0% 50°C
*
18.60
17.84
17.96
16.70
*
18.90
*
*
*
*
17.92
PHENOL
87. 10
86.68
83.08
88.34
*
85.40
16.73
15.77
18.46
15.96
*
14.60
*
15.58
ELONGATION
AT
YIELD
T
(inch)
15.10
16.50
17.70
14.30
*
16.70
*
*
19.00
15.40
16.20
15.70
*
15.30
*
15.30
15.60
16.50
15.38
*
16.50
*
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHVUENE :
AVERAGE FINAL PROPERTIES
HH01SH1
HH07SH1
HH14SH1
HH99SH1
HH28SH1
HH56SH1
HH99SH2
HH99SH3
HH99SH4
HH99SH5
HH99SH6
HH99SH7
1
7
14
28
28
56
131
253
379
510
630
771
YIELD
STRENGTH
M
( 1b/
inch
width)
HH01PM1
HH07PM1
HH14PM1
HH28PM1
HH99PM1
HH56PM1
HH99PM2
HH99PM3
HH99PM4
HH99PM5
HH99PM6
HH99PM7
1
7
14
28
29
56
121
244
362
499
624
757
80,
78,
77,
77.
76.
89.
.20
.88
.36
.60
*
.44
*
*
*
*
*
,58
HL01PM1
HL07PM1
HL14PM1
HL28PM1
HL99PM1
HL56PM1
HL99PM2
HL99PM3
HL99PM4
HL99PM5
HL99PM6
HL99PM7
1
7
14
28
29
56
121
231
362
499
625
755
75,
75,
75,
77.
75.
85,
. 16
.56
.22
.65
*
.06
*
*
*
T
f
.25
*
*
79.48
*
94.72
84.80
*
*
*
*
*
88.33
YIELD
STRENGTH
T
(lb/
inch
width)
ELONGATION
AT
VIELD
M
(inch)
72.56
87.22
80.70
84.46
*
85.46
*
*
*
*
PHENOL 4.0% 50°C
16.40
18.20
17. 19
17.34
*
18.35
83 . 16
82.00
86.70
85.55
*
84.84
*
96.40
*
*
95.92
*
19.83
PHENOL 4.0% 23°C
16.70
17. 27
17.90
17.08
*
17.77
*
*
*
*
*
16.33
SODIUM CHLORIDE 35.0% 50°C
*
*
16.30
*
14.90
16.90
*
*
*
*
*
18.00
ELONGATION
AT
YIELD
T
(inch)
18.00
16.23
16.23
15.00
*
18.23
*
*
*
*
*
4
15.00
14.80
16. 23
15.60
*
15.65
13.80
*
*
15.50
*
*
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL01SH1
HL07SH1
HL14SH1
HL28SH1
HL99SH1
HL56SH1
HL99SH2
HL99SH3
HL99SH4
HL99SH5
HL99SH6
HL99SH7
1
7
14
28
28
56
131
246
379
510
630
769
HH01SM2
HH01SM1
HH07SM1
HH07SM2
HH14SM1
HH14SM2
HH28SM2
HH99SM1
HH28SM1
HH56SM2
HH56SM1
HH99SM2
HH99SM3
HH99SM4
HH99SM5
HH99SM6
HH99SM7
1
1
7
7
14
15
28
28
28
56
61
132
254
370
51 1
624
772
7
7
14
HL01SM1 1
HL01SM2 1
HL07SM1
HL07SM2
HL14SM1
HL14SM2 15
HL28SM2 28
HL99SM1 28
HL28SM1 28
HL56SM2 56
HL56SM1 61
YIELD
STRENGTH
M
( lb/
inch
width)
*
79.60
79.04
*
*
*
89.00
86.32
*
*
81 .07
*
87.68
84.88
81 .60
*
*
*
*
92.00
90.88
*
77.44
*
96.00
100.88
94.96
YIELD
STRENGTH
T
(lb/
inch
width)
SODIUM
*
*
90.32
*
*
91 .36
*
*
*
*
*
*
SODIUM
96.24
*
*
98.00
*
100.56
100.64
*
*
104.88
*
*
*
*
V
*
SODIUM
*
99.68
*
92.56
*
100.88
97. 12
*
*
101 .60
ELONGATION
AT
YIELD
M
(inch)
CHLORIDE 35.0%
*
*
15.20
*
*
16.50
#
*
*
*
*
14.75
CHLORIDE 10.0%
16.50
*
*
16.70
*
16.20
15.80
*
*
15.70
*
*
*
*
*
17.00
CHLORIDE 10.0%
*
17.10
*
16.60
*
14.60
15.20
*
*
14.50
23"C
50°C
23°C
ELONGATION
AT
YIELD
T
(inch)
*
13.20
*
*
15.20
*
*
*
*
14.90
*
15.37
16.00
*
14.00
14.20
*
*
14.20
*
15.40
14.80
14.90
13.60
*
*
13.70
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
HL99SM2
HL99SM3
HL99SM4
HL99SM5
HL99SM6
HL99SM7
HH01WP2
HH01WP1
HH07WP1
HH07WP2
HH14WP1
HH14WP2
HH99WP1
HH28WP2
i_I HH28WP1
^J HH56WP2
HH56WP1
HH99WP2
HH99WP3
HH99WP4
HH99WP5
HH99WP6
HH99WP7
HL01WP2
HL01WP1
HL07WP1
HL07WP2
HL14WP2
HL14WP1
HL28WP2
HL99WP1
HL28WP1
HL56WP1
HL56WP2
HL99WP2
HL99WP3
HL99WP4
HL99WP5
HL99WP6
HL99WP7
132
246
370
51 1
624
770
1
1
7
7
14
14
28
28
28
56
56
133
254
370
503
622
772
1
1
7
7
14
14
28
28
28
56
56
132
246
370
503
622
770
YIELD
STRENGTH
M
( lb/
inch
width)
*
85.00
90.50
*
*
89.52
87.60
93.68
*
93.76
*
*
*
*
*
*
93.00
84.72
*
*
93.20
95.36
79.30
*
*
83.84
*
*
*
*
*
86.25
YIELD
STRENGTH
T
( lb/
inch
width)
ELONGATION
AT
YIELD
M
(inch)
91 .36
97.84
99. 10
104.32
SODIUM CHLORIDE 10.0% 23°C
*
*
*
*
*
16.00
WATER 100.0% 50°C
16.00
*
*
16.60
*
15.20
99.84
*
15. 0
* *
* 17.50
WATER 100.0% 23°C
89.92 15.70
* *
* *
102.00 15.70
100.48 15.10
98.20 *
93.36
*
*
13.40
*
*
15.58
ELONGATION
AT
YIELD
T
(inch)
15.20
*
*
13.80
14. 20
13.40
*
*
*
*
13.80
*
*
14.30
13.70
*
*
*
*
*
13.10
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HIGH DENSITY POLYETHYLENE: AVERAGE FINAL PROPERTIES
.p-
I— i
CO
HH01XM1
HH07XM1
HH14XM1
HH2BXM1
HH99XM1
HH56XM1
HH99XM2
HH99XM3
HH99XM4
HH99XM5
HH99XM6
HH99XM7
HL01XM1
HL07XM1
HL14XM1
HL28XM1
HL99XM1
HL56XM1
HL99XM2
HL99XM3
HL99XM4
HL99XM5
HL99XM6
HL99XM7
1
7
14
28
28
55
1 18
231
363
489
609
749
1
7
14
28
28
55
1 18
223
363
489
640
747
YIELD
STRENGTH
M
(lb/
i nch
width)
92.00
90.64
83.44
92.00
*
94.72
*
*
*
85.25
83.20
80.64
97.60
89.40
*
80.48
*
*
*
81 .75
YIELD
STRENGTH
T
(lb/
inch
width)
94
95
93
95
99
92
89
93
98
89
POTASSIUM
.64
.60
.36
.36
*
.20
*
*
4
*
*
*
POTASSIUM
.00
.68
.28
.64
*
.20
*
*
*
*
*
ELONGATION ELONGATION
AT AT
YIELD YIELD
M T
(inch) (inch)
DICHROMATE 10.0% 50°C
16
15
16
16
16
17
.80
.40
.20
.70
*
.60
*
*
*
*
*
.75
15
14
14
14
16
.60
. 10
.00
.50
*
. 10
*
*
*
*
*
*
DICHROMATE 10.0% 23°C
16
15
15
14
15
14
.20
.70
.20
.60
*
.50
*
*
*
*
.42
13
13
13
14
15
.20
.70
.50
.20
*
.20
*
*
*
*
*
MODULUS
OF
ELASTICITY
M
(PSI)
MODULUS
OF
ELASTICITY
T
(PSI)
-------
HDPE : STATISTICS
419
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH01AM1 1
HH01AM2 1
HH07AM2 7
HH07AM1 7
HH14AM1 14
HH14AM2 14
HH28AM1 29
HH28AM2 29
HH56AM1 56
HH56AM2 56
HH01BM1 1
HH07BM1 7
HH14BM1 13
HH28BM1 28
HH56BM1 56
HL01BM1 1
HL07BM1 7
HL14BM1 14
HL28BM1 28
HL56BM1 56
HH01DH1 1
HH07DH1 7
HH14DH1 14
NUMBER
BF
M
HL01AM2
HL01 AMI
HL07AM2
HL07AM1
HL14AM1
HL14AM2
HL28AM1
HL28AM2
HL56AM1
HL56AM2
1
1
7
7
14
14
29
29
56
56
0
5
0
5
5
0
5
0
5
0
5
4
5
STD
DEV
BF
M
9. 170
13.740
16.600
*
12.620
*
1 1 . 100
11.240
*
11.090
12.100
*
6.780
5.440
*
3.480
12.970
24.000
8.710
6.330
30.970
26. 100
15.960
5.340
11.150
6.320
8.093
12.200
NUMBER
BF
T
05
00
00
05
05
00
05
00
05
00
00
05
00
05
05
00
05
00
05
00
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV NUMBER
BF EAB
T M
HYDROCHLORIC ACID
2.160 5
* 0
* 0
14.060 5
3.030 5
* 0
1 1 . 100 5
* 0
9.310 5
* 0
HYDROCHLORIC ACID
* 0
1 .660 5
* 0
1 1 .390 5
16.940 5
* 0
4.660 5
* 0
6.060 5
* 0
SODIUM HYDROXIDE
4.340 5
8.740 5
14.570 5
11.540 5
3.860 5
SODIUM HYDROXIDE
3.610 5
3.570 5
16.540 5
12.040 5
4.740 5
1 2 DICHLOROETHANE
10.320 5
6.500 4
4.900 5
STD
DEV
EAB
M
10.0% 50°C
31 .070
*
*
50.670
64.570
*
57.550
*
47.200
*
10.0% 23°C
*
42.410
*
8.060
45.650
*
41 .630
*
13.680
*
10.0% 50°C
1 1 .600
56.970
78. 180
33.260
28.000
10.0% 23°C
******
******
57.940
15.930
43.880
.8% 50°C
23. 100
33.239
42.000
NUMBER
EAB
T
5
0
0
5
5
0
5
0
5
0
0
5
0
5
5
0
5
0
5
0
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
9.490
32.030
46.770
42.520
14.540
NUMBER
TEAR
M
STD
DEV
TEAR
M
10
10
09
08
10
0.380
0.590
1 . 190
0.300
0.730
NUMBER
TEAR
T
0
5
0
5
5
0
5
0
5
0
*
4,
*
40,
55,
*
12,
*
20,
*
, 170
,690
.980
.650
.350
05
07
05
05
05
05
10
05
05
05
*
0
*
0
1
*
1
*
0
*
.380
.650
.350
.540
.880
5
6
5
5
5
5
10
5
5
5
10
10
10
10
10
STD
DEV
TEAR
T
5
0
0
5
5
0
5
0
5
0
9
*
*
49
8
*
47
*
36
*
.600
.360
.860
.200
.670
07
00
00
05
05
00
10
05
05
05
0
*
*
1
0
*
0
*
0
*
.530
.290
.680
.702
.920
7
0
0
5
5
0
10
5
5
5
0.
*
*
1 .
0.
*
2.
*
0.
*
870
010
480
100
680
*
0.330
*
1 .060
0.330
*
2. 190
*
0.560
*
0.460
0.680
0.840
0.220
1 .720
5
5
5
5
5
14.000
1 1 .280
48.900
40.830
17.030
10
10
09
10
10
0.510
0.940
0.880
0.360
1 .750
10
10
9
10
10
0.490
0.540
1 .360
0.470
1 . 190
33.200
27.500
2*
05
05
05
0.350
0. 200
0.500
0.110
0.600
0.600
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH28DH1 28
HH56DH1 56
NUMBER
BF
M
5
0
STD
DEV
BF
M
9.900
HL01DH1 1
HL07DH1 7
HL14DH1 14
HL28DH1 28
HL56DH1 56
5
5
5
5
0
7.900
3.700
2.500
5.000
*
05
05
05
05
00
5.800
1 .500
7. 100
4.300
*
5
5
5
5
0
33.800
13.000
9.300
17.000
*
5
5
5
5
0
21 .000
23.500
26.000
17.000
4
05
05
05
05
05
0.400
0.500
0.600
0.500
0.400
5
5
5
5
5
0.520
0.300
1 .900
0.900
0.300
HL01DM1 1
HL07DM1 7
HL14DM1 14
HL28DM1 28
HL56DM1 56
5
4
5
5
0
9.040
8.000
3.300
13.500
*
05
02
05
05
00
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
1 2 DICHLOROETHANE
05
00
7.400
*
5
0
1 2 DICHLOROETHANE
05
05
05
05
00
5.800
1 .500
7. 100
4.300
*
5
5
5
5
0
1 2 DICHLOROETHANE
05
05
05
05
00
15.200
7. 100
3.900
2.600
*
5
5
5
5
0
1 2 DICHLOROETHANE
05
05
05
05
00
5.500
4.200
6.200
9.400
*
5
5
5
5
0
1 2 DICHLOROETHANE
05
05
05
05
00
13.300
4.500
10. 100
5.400
*
5
5
5
5
0
1 2 DICHLOROETHANE
05
02
05
05
00
1 1 .870
*
5.900
1 .400
*
5
4
5
5
0
STD
DEV
EAB
M
.8% 50°C
40.500
*
.8% 23°C
NUMBER
EAB
T
STD
DEV
EAB
T
23.000
*
NUMBER
TEAR
M
05
05
STD
DEV
TEAR
M
1 .200
0.360
1% 50°C
1% 23°C
.5% 50°C
.5% 23°C
NUMBER
TEAR
T
STD
DEV
TEAR
T
1 .300
0.400
HH01DL1 1
HH07DL1 7
HH14DL1 14
HH28DL1 28
HH56DL1 56
5
5
5
5
0
4. 270
6.700
8.600
8.800
*
05
05
05
05
00
15.200
7. 100
3.900
2.600
*
5
5
5
5
0
12.600
28.700
37.000
33.700
*
5
5
5
5
0
52.700
24.000
1 1 .000
9.700
*
05
05
05
05
05
0.660
0.630
0.700
1 .300
0.300
5
5
5
5
5
0. 260
0.600
0.500
2.300
0.200
HL01DL1 1
HL07DL1 7
HL14DL1 14
HL28DL1 28
HL56DL1 56
5
5
5
5
0
8.850
4.000
4.500
3.400
*
05
05
05
05
00
5.500
4.200
6.200
9.400
*
5
5
5
5
0
30.400
2*
16.900
18.000
*
5
5
5
5
0
21 .000
29.000
26.300
37.000
*
05
05
05
05
05
0.630
0.500
0.500
1 .500
0.400
5
5
5
5
5
0. 700
0.300
0.300
1 .800
0.300
HH01DM1 1
HH07DM1 7
HH14DM1 14
HH28DM1 28
HH56DM1 56
5
5
5
5
0
4. 140
1 1 .800
5.800
3. 100
*
05
05
05
05
00
13.300
4.500
10. 100
5.400
*
5
5
5
5
0
17.000
51 .000
22. 100
13.000
*
5
5
5
5
0
16.600
14.000
32.500
19.400
*
05
05
05
05
05
0.710
0.400
0.800
0.600
0.800
5
5
5
5
5
0.840
0.400
0.200
1 .000
0.700
5
4
5
5
0
43
29
14
56
*
.920
.200
.300
.000
5
2
5
5
0
43.
*
21 .
6.
*
. 100
.200
.000
05
05
05
05
05
0.
0
1
0
0
.620
.400
.800
.600
.300
5
5
5
5
5
0.
2.
0.
2
0
.700
.400
.900
.500
.400
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
t-0
HH01FH1 1
HH07FH1 7
HH14FH1 14
HH28FH1 28
HH56FH1 56
HL01FH1 1
HL07FH1 7
HL14FH1 14
HL28FH1 28
HL56FH1 56
HH01FL1 1
7
14
HH07FL1
HH14FL1
HH28FL1 28
HH56FL1 56
HL01FL1 1
HL07FL1 7
HL14FL1 14
HL28FL1 28
HL28FL2 28
HL56FL1 56
HH01FM1 1
HH07FM1 7
HH14FM1 14
HH28FM1 28
HH56FM1 56
HL01FM1 1
HL07FM1 7
HL14FM1 14
HL28FM1 28
HL56FM1 56
NUMBER
BF
M
5
5
5
5
5
STD
DEV
BF
M
3.489
5.740
6.020
1 .620
20.400
4.819
3.530
2.050
6.870
11.710
59.900
5.030
13.010
13.510
*
2.740
5.080
4.430
*
10.470
5.090
4.580
6.550
3.420
8.700
8.720
6.421
3.240
6.110
13.200
3.480
NUMBER
BF
T
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
00
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
BF
T
FURFURAL
6.372
6.480
4.240
1.410
9.380
FURFURAL
0.502
2. 170
5.230
11.310
15.750
FURFURAL
3.094
5.260
10.640
10.790
4.960
FURFURAL
1 .840
4.940
6.390
*
2.720
9.250
FURFURAL
6.930
2.470
6.050
1 .440
5. 100
FURFURAL
3.240
4.320
1 . 150
3.090
7.800
NUMBER
EAB
M
8.0% 50°C
5
5
5
5
5
8.0% 23°C
5
5
5
5
5
1.0% 50°C
5
5
5
5
5
1 .0% 23°C
5
5
5
0
5
5
4.0% 50°C
5
5
5
5
5
4.0% 23°C
5
5
5
5
5
STD
DEV
14
25
22
7
72
17
1 1
4
51
56
59
14
46
50
1 1
15
18
13
*
14
9
18
27
13
58
29
22
15
20
60
12
EAB
M
. 137
.400
.300
.600
.700
.972
.000
.000
. 100
.900
.330
.000
.700
.700
.300
.990
. 100
. 100
. 100
.900
. 160
.200
.300
.600
.500
.410
. 100
.500
.400
.900
NUMBER
EAB
T
5
5
5
5
5
STD
DEV
EAB
T
19.326
24.500
15.800
5.000
28. 100
3.500
10.900
17.600
40.200
55.700
10.950
12.000
36.400
33.800
18.800
8.290
18.100
24.500
*
18.900
47.800
11.300
7.000
22.300
23.400
29.800
10.327
59.500
25.800
51.800
44.100
NUMBER
TEAR
M
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
TEAR
M
0.740
0.563
0.7B4
0.427
0.374
0.493
0.570
0.900
0.300
0.488
0.670
0.594
0.360
1 .790
0.439
740
594
288
396
0.570
1 .382
0.493
0.819
1 . 187
0.526
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
1 .501
0.740
1 .000
1 .240
1 .934
1 .200
0.803
1 .510
1 . 134
0. 167
1 .910
0.224
0.410
1 .605
0.205
05
05
05
05
05
05
1 .250
0.270
0.703
0.760
0.570
0.321
5
5
5
5
5
5
3. 100
0.885
2. 160
0.677
0.952
1 .286
1 .800
0.370
0.394
0.404
0.292
0.817
0.900
0.709
0.502
0.522
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NJ
CO
HHO1MH1 1
HH07MH1 7
HH14MH1 14
HH28MH1 28
HH56MH1 57
HL01MH1 1
HL07MH1 7
HL14MH1 14
HL28MH1 28
HL56MH1 57
HH01ML1 1
HH07ML1 7
HH14ML1 14
HH28ML1 28
HH56ML1 57
HL01ML1 1
HL07ML1 7
HL14ML1 14
HL28ML1 28
HL56ML1 57
HH01MM1 1
HH07MM1 7
HH14MM1 14
HH28MM1 28
HH56MM1 57
HL01MM1 1
HL07MM1 7
HL14MM1 14
HL28MM1 28
HL56MM1 57
NUMBER
BF
M
5
5
5
4
5
5
5
5
5
5
STD
DEV
BF
M
8. 170
2.760
17.356
8.820
8.753
14.340
11.743
10.786
6.537
78.000
6.610
10. 278
9.745
9.331
22.384
11.502
13.435
7.526
3.630
12.020
25.336
4.665
21.535
16.127
10.157
4.433
15.539
8.400
13.964
8.361
NUMBER
BF
T
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
BF
T
METHYL ETHYL
7.214
14.727
8.248
9.836
3.280
METHYL ETHYL
5.630
10.241
10.919
14.798
16.624
METHYL ETHYL
9.910
0.781
3.960
13.371
10. 165
METHYL ETHYL
4.790
2.621
15.776
6.709
16.514
METHYL ETHYL
10.872
23.293
16.141
5.543
9.690
METHYL ETHYL
3.795
16.279
6.680
12.818
3.459
NUMBER
EAB
M
KETONE
5
5
5
4
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
4
KETONE
5
5
5
4
5
KETONE
5
5
5
5
5
KETONE
5
5
4
4
5
STD
DEV
EAB
M
26.0% 50°C
29.200
15.496
******
31 .895
37.940
26.0% 23°C
50.250
45.280
41 .800
22. 149
******
3.0% 50°C
29.080
27.952
40.831
26.953
92.472
3.0% 23°C
47.828
41 .940
27.027
37.609
47.470
13.0% 50°C
99.713
24. 149
87.355
62.220
45.350
13.0% 23°C
16.063
60.684
32.566
51 .976
31 .490
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
24.610
51.313
28.539
34.117
15.450
17.930
30.439
32. 158
50.851
57.054
41 .380
30.809
13.517
49.745
35.596
22.246
3.776
53.028
16.800
52.502
36.182
77.691
58. 191
23.058
34.184
13.367
57.195
25.950
44.760
7. 240
NUMBER
TEAR
M
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
TEAR
M
0.910
0. 184
0. 197
0.597
0.370
0.410
0. 200
2.385
0.865
0.318
0.400
0.279
0. 281
0.744
0.370
1 .566
0.575
0.347
1.513
0.526
0.410
0.268
0.836
0.983
0.366
0.358
0.272
0.415
1 .420
0.442
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
1 .840
1 .347
0. 165
0.357
0. 123
0.330
0.319
0.491
0.418
0.567
0.540
0.444
0.222
0.628
0.226
0.460
2. 145
0.892
1 .621
0.534
0.374
0.393
0.559
1 .945
0. 268
0.400
0. 273
0.410
1 . 204
0.090
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH010M1
HH070M1
HH 1 40M 1
HH280M1
HH560M1
HL010M1
HL070M1
HL140M1
HL280M1
HL560M1
HH010P1
HH070P1
HH140P1
HH280P1
HH560P1
HL010P1
HL070P1
HL140P1
HL280P1
HL560P1
HH01PH1
HH07PH1
HH14PH1
HH28PH1
HH56PH1
HL01PH1
HL07PH1
HL14PH1
HL28PH1
HL56PH1
1
7
13
28
56
1
7
13
28
56
1
7
14
28
56
1
7
14
28
56
1
7
14
28
56
1
7
14
28
56
NUMBER
BF
M
STD
DEV
BF
M
11.149
5.325
9.285
8.090
1 .078
4.419
5.589
5.835
11.692
12.172
9.722
7.029
16.093
9. 100
5.408
9.181
5.032
1 1 .637
2.907
3.885
6. 298
4.600
5.540
4.817
8.500
4.200
4.030
3.700
10.500
3.610
NUMBER
BF
T
05
05
05
05
05
05
05
05
05
05
05
00
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
BF
T
ASTM #2 OIL
8.256
6.390
7.034
12. 140
20.377
ASTM #2 OIL
3.279
1 1 .885
60.729
12.939
14. 160
ASTM #2 OIL
3.394
*
6.529
8.698
6.509
ASTM #2 OIL
8. 198
9.226
14.545
4.286
13.499
PHENOL 8.0%
12.800
15.300
14.260
4.240
5.820
PHENOL 8 . 0%
8.800
10.500
8.500
3.700
5.480
NUMBER
EAB
M
STD
DEV
EAB
M
SATURATED 50°C
5
5
5
5
5
35.796
27. 181
43.057
27.918
37.317
SATURATED 23°C
5
5
5
5
5
100.0%
5
5
4
3
5
1 00 . 0%
5
5
5
5
5
50°C
5
5
5
5
5
23°C
5
5
5
5
5
30.479
19.001
23.848
46.905
34.738
50°C
41.716
25.612
72. 129
30.300
33.572
23°C
42.621
16.616
47.970
1 1 .263
10.772
20.700
22.200
26.700
18.500
34.400
29. 100
18.500
16.300
38.300
17.000
NUMBER
EAB
T
STD
DEV
EAB
T
24.946
20.825
26.042
49.900
67.188
13.176
42.486
******
27.026
43.142
14.332
*
31 .927
28.321
17.936
27.571
31.620
5.486
10.343
49.505
43.300
55.100
43.400
21.870
32.800
18.600
54.000
29.600
16.800
17.400
NUMBER
TEAR
M
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
00
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
TEAR
M
2.741
0.825
1 .460
0.7QO
1 .230
0.746
2.620
1 .370
1 .000
0.646
0.867
1 . 100
0.200
0. 168
0.268
1 .692
0.600
0.500
*
0.860
0.300
0.220
0.414
0.820
0.250
0.900
0.500
1 .040
0.750
0.660
NUMBER
TEAR
T
STD
DEV
TEAR
T
2.741
0.825
1.613
0.700
0.800
0.835
1 .262
0.850
0.600
0.969
0. 129
0.400
0. 100
0.501
0.740
973
500
0.700
2.008
1 .205
0.360
,000
,250
,460
0.370
0.400
0.800
2.300
0.380
0.400
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HHO1 PL 1 1
HH07PL1 7
HH14PL1 14
HH28PL1 28
HH56PL1 56
HL01PL1 1
HL07PL1 7
HL14PL1 14
HL28PL1 28
HL56PL1 56
HH01PM1 1
HH07PM1 7
HH14PM1 14
HH28PM1 28
HH56PM1 56
HL01PM1 1
HL07PM1 7
HL14PM1 14
HL28PM1 28
HL56PM1 56
HHO1 SHI 1
HH07SH1 7
HH14SH1 14
HH28SH1 28
HH56SH1 56
HL01SH1 1
HL07SH1 7
HL14SH1 14
HL28SH1 28
HL56SH1 56
NUMBER
BF
M
5
5
5
5
5
STD
DEV
BF
M
7.300
0.320
5.700
8.300
12.400
3.800
1 1 . 100
5.410
4.680
5. 100
8.300
12.400
9.700
5.940
11.900
4.760
14.500
3.700
14.720
2.490
26.950
20.490
9.600
12.500
5. 150
17.170
13.180
8.090
13.440
16.650
NUMBER
BF
T
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
BF
T
PHENOL 1
7.800
5. 100
7.300
7.300
7.600
PHENOL 1
12.400
10.400
1 480
7.680
4.940
PHENOL 4
6. 100
3.320
2.600
10.400
2.860
PHENOL 4
6.900
4.690
4.900
8.000
5.670
NUMBER
EAB
M
.0% 50°C
5
5
5
5
5
.0% 23°C
5
5
5
5
5
.0% 50°C
5
5
5
5
5
.0% 23°C
5
5
5
5
5
SODIUM CHLORIDE 35
05
05
05
05
05
25.640
7. 130
4.590
30. 100
1 1 .850
5
5
5
5
5
SODIUM CHLORIDE 35,
05
05
05
05
05
8.930
9.640
17.580
5. 130
16.500
5
5
5
5
5
STD
DEV
EAB
M
33.500
18.000
24.900
31 .000
48. 100
23.400
47.700
19.900
18.600
25.000
48.800
44.800
25.600
23.600
39.800
14.700
56.500
19.000
65.000
20.600
. 0% 50°C
97.020
******
34.400
49.080
27. 200
. 0% 23°C
68.880
45.400
29.400
51 .040
71 .330
NUMBER
EAB
T
STD
DEV
EAB
T
28.000
8.000
12.400
26.100
24.600
36.600
33.000
8.790
27.900
16.300
18.700
15.700
12.400
35.000
8.680
29.290
17.600
14.800
27.000
17.100
99.300
23.300
15.560
96.930
46.050
31.150
33.120
66.890
13.170
72.880
NUMBER
TEAR
M
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
STD
DEV
TEAR
M
0.740
0.350
0.540
0.740
0.300
0.450
0.500
0.525
0.643
1 .200
0.340
0.490
1 .070
0.450
0.370
0.340
0.800
0.770
0.500
1 .540
0.420
0.500
1 .660
0.430
0.410
0.520
0.370
0.850
0.620
0.210
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 100
2.500
1 .200
0.460
0.200
0.540
0.700
0.800
1 .000
0.700
0.340
0.700
*
0.500
1 .250
1 .300
0.700
0.470
0.500
1 .370
0.460
0.630
0.970
0.830
0.250
0.630
0.310
1 . 220
0.700
0.670
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH01SM2
HH01SM1
HH07SM1
HH07SM2
HH14SM1
HH14SM2
HH28SM2 28
HH28SM1 28
HH56SM2 56
HH56SM1 61
1
1
7
7
14
15
HH01WP2
HH01WP1
HH07WP1
HH07WP2
HH14WP2
HH14WP1
HH28WP1
HH28WP2 28
HH56WP2 56
HH56WP1 56
1
1
7
7
14
14
28
HL01WP1
HL01WP2
HL07WP2
HL07WP1
HL14WP1
HL14WP2
HL28WP1
HL28WP2
HL56WP2 56
HL56WP1 56
1
1
7
7
14
14
28
28
NUMBER
BF
M
HL01SM1
HL01SM2
HL07SM2
HL07SM1
HL14SM1
HL14SM2
HL28SM2
HL28SM1
HL56SM2
HL56SM1
1
1
7
7
14
15
28
28
56
61
5
0
5
5
5
0
0
5
0
5
5
0
0
5
7
0
5
5
0
5
STD
DEV
BF
M
4.640
7. 170
*
6.730
*
*
23.000
*
15.790
10.030
*
*
14.860
10.380
*
*
21
.000
*
7.350
17.420
15. 120
*
1 1 .
5.
700
350
8.910
13.200
8.030
*
*
9.840
21.000
*
10.250
2.990
*
5.54O
STD
NUMBER DEV NUMBER
BF
T
BF EAB
T M
SODIUM CHLORIDE
00
05
05
05
05
00
00
05
00
05
*
7.
15.
2.
4.
*
*
5.
*
14.
170
370
960
710
320
680
SODIUM CHLORIDE
05
00
00
05
05
00
00
05
00
05
00
05
05
00
00
07
05
05
00
07
05
00
00
05
07
00
05
05
00
05
1 .
*
*
2.
1 1 .
*
*
3.
*
7 .
WATER
*
5.
4.
*
*
12.
4.
17.
*
17.
WATER
12.
*
*
2.
21 .
*
3.
10.
#
1 1 .
730
960
120
770
300
1 00 . 0%
640
630
400
220
770
780
100.0%
940
990
300
980
600
870
10.
0
5
5
0
5
0
0
5
0
5
10.
5
0
0
5
5
0
0
5
0
5
50°C
0
5
5
0
0
7
5
5
0
5
23°C
5
0
0
5
7
0
5
5
0
5
STD
DEV
EAB
M
0% 50°C
*
23.750
31 .750
*
27.930
*
*
81 .830
*
65.250
0% 23°C
85.370
*
*
65.570
37.710
*
*
77.030
*
33.290
*
66.240
49.540
*
*
34.600
23.650
50.590
*
51 .900
38.450
*
*
39.550
81 .000
*
44. 760
9.610
*
26.030
NUMBER
EAB
T
0
5
5
0
5
0
0
5
0
5
0
4
5
0
0
7
5
5
0
7
5
0
0
5
7
0
5
5
O
5
STD
DEV
EAB
T
22.470
55.940
*
15.800
*
*
19.630
*
54.320
27.700
19. 240
73.700
15. 230
68.810
*
48.530
46.950
9.610
7*
9.570
41 . 100
46.47O
NUMBER
TEAR
M
00
05
05
00
05
00
00
05
00
05
5
0
0
5
5
0
0
5
0
5
6.
*
*
13.
21 ,
*
*
15.
*
27,
.840
.090
,770
. 1 10
.990
05
00
00
05
05
00
00
05
00
05
00
05
05
00
00
05
05
05
00
05
05
00
00
05
05
00
05
05
00
05
STD
DEV
TEAR
M
*
0.692
0.550
*
0.264
*
n
1 .800
0.610
0.740
*
*
0.690
0.640
0.730
*
0.590
0.760
0.820
0.450
0.990
0.410
*
0.710
1 .570
*
0.780
1 . 100
0.610
1 .060
1 . 34O
NUMBER
TEAR
T
0
5
5
0
5
0
0
5
0
5
5
0
0
5
5
0
0
5
0
5
5
0
0
5
5
0
5
5
O
5
STD
DEV
TEAR
T
*
1 . 157
0.660
*
0.555
*
1 . 130
*
1 . 130
1 .300
0.670
0.710
*
*
0.860
*
1 . 190
*
0.870
1 .620
0.460
1 .910
0.700
*
0.950
0.700
*
*
0.730
0.300
*
0.780
0.710
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HHO1XM1 1
HH07XM1 7
HH14XM1 14
HH28XM1 28
HH56XM1 55
HL01XM1 1
HL07XM1 7
HL14XM1 14
HL28XM1 28
HL56XM1 55
NUMBER
BF
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
M
28.480
8.960
11.160
10.200
15.230
10.450
7.340
9.800
17.390
9.980
NUMBER
BF
T
05
05
05
05
05
05
05
05
05
05
STD
DEV
BF
T
POTASSIUM
12.350
10.440
15.250
5.250
9.780
POTASSIUM
8.680
13.250
6.890
2.890
5.050
NUMBER
EAB
M
DICHROMATE
5
5
5
5
5
DICHROMATE
5
5
5
5
5
STD
DEV
EAB
M
10.0%
*
31 .200
36.840
44.800
58.540
10.0%
42.490
30.050
34.910
94.290
39. 160
NUMBER
EAB
T
50°C
23°C
STD
DEV
EAB
T
44.320
31 .810
51.410
21.680
38.210
32.820
47.000
23.360
12.050
19.470
NUMBER
TEAR
M
05
05
05
05
05
05
05
05
05
05
STD
DEV
TEAR
M
0.390
0.840
1 .650
0. 190
0.590
0.390
0.470
1 .790
0.440
1 .060
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.500
1 . 100
1 .280
0.480
0.440
0.380
0.980
1 .720
0.490
0.970
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH01AM1 1
HH01AM2 1
-P-
1-0
00
HH07AM2 7
HH07AM1 7
HH14AM1 14
HH14AM2 14
HH28AM1 29
HH28AM2 29
HH56AM1 56
HH56AM2 56
HL01AM2 1
HL01AM1 1
HL07AM2 7
HL07AM1 7
HL14AM2 14
HL14AM1 14
HL28AM1 29
HL28AM2 29
HL56AM1 56
HL56AM2 56
HH01BM1 1
HH07BM1 7
HH14BM1 13
HH28BM1 28
HH56BM1 56
HL01BM1 1
HL07BM1 7
HL14BM1 14
HL28BM1 28
HL56BM1 56
HH01DH1 1
HH07DH1 7
HH14DH1 14
NUMBER
YS
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
YIELD
M
*
1 .800
0.850
2.790
*
2.640
*
2.220
1 .600
*
0.330
2.310
*
*
7.110
2.590
2.380
1 .480
1 .480
2. 150
1 . 150
*
0.830
*
*
1 .080
0.750
0.804
1.812
NUMBER
YS
T
HYDROCHLORIC ACID
5
5
5
5
5
5
5
5
5
5
HYDROCHLORIC ACID
5
5
5
5
5
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
STD
DEV
YIELD
T
10.0% 50°C
*
1 . 190
1 .700
*
*
1 . 150
*
2.500
*
3.390
10.0% 23°C
1 .430
*
3.000
*
1 .850
*
*
0.870
*
2.070
10.0% 50°C
2.390
3.700
1 .390
2.280
2.330
10.0% 23°C
*
2.260
1 .990
*
0.690
.8% 50°C
1 .720
1 .500
2 .300
NUMBER
EV
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
M
0.800
0.300
*
1 .400
*
1 .000
*
1 . 100
0.400
*
0.300
*
1 .000
*
*
0.500
*
0.800
1 .000
0.300
1 . 100
0.300
0.800
*
0.700
*
*
0.300
2. 100
0.550
2. 100
NUMBER
EY
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
T
*
0.700
0.500
*
*
0.700
*
0.800
*
0.700
0.400
*
0.400
*
0.900
*
*
0.300
*
0.300
0.600
0.500
0.800
0.500
0.400
0.900
1 .600
*
0.400
1 .670
1 .400
2.400
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
VO
HH28DH1 28
HH56DH1 56
HL01DH1 1
HL07DH1 7
HL140H1 14
HL28DH1 28
HL56DH1 56
HH01DL1 1
HH07DL1 7
HH14DL1 14
HH28DL1 28
HH560L1 56
HL01DL1 1
HL07DL1 7
HL14DL1 14
HL28DL1 28
HL56DL1 56
HH01DM1 1
HH07DM1 7
HH14DM1 14
HH28DM1 28
HH56DM1 56
HL01DM1 1
HL07DM1 7
HL14DM1 14
HL28DM1 28
HL56DM1 56
NUMBER
YS
M
5
5
5
5
5
STD
DEV
YIELD
M
1 . 120
*
2. 120
1 .720
1 .560
1 .820
*
3. 230
3.990
1 .450
1 .660
*
0.740
2.500
2.340
1 .068
*
0.750
1 .600
1 .600
1 .400
*
1 .700
2.311
0.700
1 .900
NUMBER
YS
T
1 2 DICHLOROETHANE
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
STD
DEV
YIELD
T
.8% 50°C
0.730
*
.8% 23°C
0.390
3.600
1 .780
2.750
*
.1% 50°C
1 .720
1 .010
3.250
2.330
*
. 1% 23°C
1 .350
1 . 100
1 .570
2.060
*
.5% 50°C
3.030
1 .900
1 .240
0.930
*
.5% 23°C
1 .400
2.333
0.800
1 .300
*
NUMBER
EY
M
5
5
5
5
5
STD
DEV
ELYLD
M
0.930
*
0.900
0.400
1 .500
1 .500
*
1 .380
2. 100
0.500
1 .400
1 .360
4.600
1 .400
0.700
*
1 .300
2.400
2.500
1 .400
*
1 .600
1 .200
1 .800
0.900
*
NUMBER
EY
T
5
5
5
5
5
5
5
5
5
5
STO
DEV
ELYLD
T
0.800
*
0.010
1 .500
1 . 700
1 .400
*
1 .550
0.500
0.600
0.970
0.690
3.400
0.600
0.600
*
1 .400
2.300
2.000
1 . 100
0.800
*
0.800
1 .000
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
OJ
O
HH01FH1 1
HH07FH1 7
HH14FH1 14
HH28FH1 28
HH56FH1 56
HL01FH1 1
HL07FH1 7
HL14FH1 14
HL28FH1 28
HL56FH1 56
HH01FL1 1
HH07FL1 7
HH14FL1 14
HH28FL1 28
HH56FL1 56
HL01FL1 1
HL07FL1 7
HL14FL1 14
HL28FL2 28
HL28FL1 28
HL56FL1 56
HH01FM1 1
HH07FM1 7
HH14FM1 14
HH28FM1 28
HH56FM1 56
NUMBER
YS
M
5
5
5
5
5
STD STD
DEV NUMBER DEV
YIELD YS YIELD
M T T
FURFURAL 8.0% 50°C
2.630 5 2.450
1.860 5 2.290
0.690 5 2.880
0.920 5 0.800
3.490 5 2.440
FURFURAL 8.0% 23°C
3.350 5 1.340
0.280 5 1.000
0.462 5 1.690
2.230 5 0.570
1.440 5 1.010
FURFURAL 1.0% 50°C
2.582 5 0.780
1.730 5
3.180 5
1.400 5
1.410 5
FURFURAL 1.0% 23°C
2.580 5 0.780
2.000 5 0.980
4.210 5 2.160
3.170 5 4.230
* 5 *
1.150 5 3.010
FURFURAL 4.0% 50°C
0.660 5 4.870
0.570 5 1.620
0.690 5 1.010
* 5 0.680
1.440 5 1.620
FURFURAL 4.0% 23°C
1 .880
2.200
1 .670
2.440
NUMBER
EY
M
STD
DEV
ELYLD
M
0.004
0.400
0.400
1 .300
1 . 100
0.400
0.500
0.400
0.570
0.900
0.600
0. 100
0. 140
0.500
0.400
1 .000
0.090
0.022
0.090
0.400
0.090
0.400
'0.400
0.040
NUMBER
EY
T
5
5
5
5
5
STD
DEV
ELYLD
T
0.300
0.400
0.700
0.400
0.900
0.600
0.400
0.400
1 .000
0.200
0.400
0.400
0. 140
1 .500
0.400
0.500
0.040
0.090
0.800
0. 100
4.000
0.400
1 . 200
0.400
HL01FM1 1
HL07FM1 7
HL14FM1 14
HL28FM1 28
HL56FM1 56
5
5
5
5
5
2.270
1 . 150
1 .410
0.610
1 .670
1 .480
1.410
1.410
2.390
2.000
0.400
0.400
1 .600
0.001
0.400
0.900
*
*
1 .000
0.800
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HHO1MH1 1
HH07MH1 7
HH14MH1 14
HH28MH1 28
HH56MH1 57
HL01MH1 1
HL07MH1 7
HL14MH1 14
HL28MH1 28
HL56MH1 57
HH01ML1 1
HH07ML1 7
HH14ML1 14
HH28ML1 28
HH56ML1 57
HL01ML1 1
HL07ML1 7
HL14ML1 14
HL28ML1 28
HL56ML1 57
HH01MM1 1
HH07MM1 7
HH14MM1 14
HH28MM1 28
HH56MM1 57
HL01MM1 1
HL07MM1 7
HL14MM1 14
HL28MM1 28
HL56MM1 57
NUMBER
YS
M
STD
OEV NUMBER
YIELD YS
M T
METHYL ETHYL KETONE
2.160 5
2.580 5
2.570 5
3.090 5
5.580 5
METHYL ETHYL KETONE
2.620 5
2.050 5
3.590 5
1.730 5
1.890 5
METHYL ETHYL KETONE
0.780 5
3.160 5
1.730 5
0.960 5
3.630 5
METHYL ETHYL KETONE
1.480 5
2.860 5
3.240 5
1.440 5
2.830 5
METHYL ETHYL KETONE
4.360 5
1.650 5
1.220 5
1.560 5
1.060 5
METHYL ETHYL KETONE
2.390 5
1.520 5
1.480 5
* 5
2.350 5
STD
DEV
YIELD
T
26.0% 50°C
0.800
2.340
1.110
2. 150
2.090
26.0% 23°C
0.590
1 .000
2. 150
2.420
1 .040
3.0% 50°C
3.730
3.430
1 .660
1 .720
3.630
3.0% 23°C
2.030
3.680
1 .480
3.630
4.510
13.0% 50°C
2.590
0.610
3.330
0.780
2.880
13.0% 23°C
1 .930
2.340
1 .600
6.730
4. 160
NUMBER
EY
M
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
M
*
0.600
1 .000
0.700
0.400
0.400
1 .600
0.400
0.300
0.400
0.600
0.060
0.600
0.700
0.600
0. 300
0.500
0.300
0.600
0.800
1 .400
0.700
0.500
0.900
0.300
0.300
0.400
1 . 100
0.600
0.400
NUMBER
EY
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
T
1 .700
0.600
0.800
0.400
0. 700
0.400
0.400
0.600
0.400
0.600
0.600
0.040
0.400
2.590
1 .000
0.800
0.400
0.600
0.300
0.900
0.400
0.300
0.900
0.400
0.700
0.900
0.700
0.600
0.600
0.700
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH010M1
HH070M1
HH140M1
HH28OM1
HH560M1
1
7
13
28
56
HL010M1 1
HL070M) 7
HLMOM1 13
HL280M1 28
HL560M1 56
HH010P1 1
HH070P' 7
HH140P1 14
HH280P1 28
HH560P1 56
HL010P' 1
HL070P1 7
HL14OP1 14
HL280P1 28
56
HHQ1PH1 1
HH07PH1 7
HH14PH1 14
HH28PH1 28
HH56PH1 56
HL01PH1 1
HL07PH1 7
HL14PH1 14
HL28PH1 28
HL56PH1 56
NUMBER
YS
M
STD
DEV
YIELD
M
0.440
1 .430
1 .490
*
0.770
1 . 150
0.720
1 . 150
*
5.020
1 .790
1 .000
2.880
1.010
3.210
2.500
1.210
0.870
1.310
2.240
3.820
1 . 190
2.110
1.010
1 .350
1 .660
1 .560
0.840
0.400
2.310
NUMBER
YS
T
STD
DEV
YIELD
T
ASTM #2 OIL SATURATED 50°C
1 440
2.350
1 .890
*
1 .630
ASTM #2 OIL SATURATED 23°C
1 .660
0.830
1 .480
*
4.770
ASTM #2 OIL 100.0% 50°C
1 .760
*
1 .670
0.610
2.070
ASTM #2 OIL 100.0% 23°C
5 2.620
5 1.150
5 0.780
5 0,570
5 2.850
PHENOL 8.0% 50°C
5 2.800
5 2.210
5 3.810
5 3 . 0.1 0
5 1.070
PHENOL 8.0% 23°C
5 2.180
5 3.840
5 1.850
5 2.500
5 1.980
NUMBER
EV
M
STD
DEV
ELYLD
M
0.700
0.600
0.400
*
0.400
0.900
0.900
0.700
*
1 .000
1 .000
0.400
0.800
0,800
0.300
0,400
0,600
1 , 200
1 .000
0.500
0.400
1 .900
0.480
1 .640
0.900
0.700
1 . 100
0.085
0.900
0.500
NUMBER
EV
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
T
0.600
0.300
0.900
*
0.400
0.400
0.600
0.400
*
0.800
0.800
*
0 .600
0.500
1 .000
0.300
0.300
1 . 100
0.890
2.060
0.840
0.980
1 .000
1 .500
0.086
0.500
1 . 100
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
CO
CO
HH01PL1 1
HH07PL1 7
HH14PL1
HH28PL1 28
HH56PL1 56
14
HL01PL1 1
HL07PL1 7
HL14PL1 14
HL28PL1 28
HL56PL1 56
HH01PM1 1
HH07PM1 7
HH14PM1 14
HH28PM1 28
HH56PM1 56
HL01PM1 1
HL07PM1 7
HL14PM1 14
HL28PM1 28
HL56PM1 56
NUMBER
VS
M
STD
DEV
YIELD
M
3.400
1 .730
1 .350
1 .940
2. 240
1 .338
1.210
0.950
1 .940
2.370
0.950
1.310
4.700
0.810
1 .720
1 .790
2.340
1 .800
2.210
1 .840
STD
NUMBER DEV
YS YIELD
T T
PHENOL 1.0% 50°C
5 1.760
5 1.780
5 2.830
5 2.930
5 2.270
PHENOL 1 .0% 23°C
5 3.690
5 1.541
5 0.730
5 2.720
5 1.540
PHENOL 4.0% 50°C
5 1.560
5 1.960
5 2.030
5 2.320
5 0.770
PHENOL 4.0% 23°C
5 2.350
5 3.375
5 1.420
5 1.080
5 1.890
SODIUM CHLORIDE 35.0% 50°C
NUMBER
EY
M
STD
DEV
ELYLD
M
1 .700
1 .000
0.500
1 .800
1 .000
1 .460
0.510
1 .820
0.620
0.800
1 .000
0. 700
2. 100
1 .300
0.930
1 .500
1 . 390
1 .500
1 .240
1 . 700
NUMBER
EV
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
T
3.600
0.900
1 .800
0.900
0.500
0.700
0. 130
1 .500
1 . 760
1 .000
0.970
0.870
1 .200
0.480
0.620
0.380
1 . 230
1 .600
0.600
0.920
HH01SH1 1
HH07SH1 7
HH14SH1 14
HH28SH1 28
HH56SH1 56
1 .980
0.820
3.580
2. 150
*
3.640
*
*
1 .000
1 .300
0.700
*
*
0.500
*
0.900
SODIUM CHLORIDE 35.0% 23°C
HL01SH1 1
HL07SH1 7
HL14SH1 14
HL28SH1 28
HL56SH1 56
1 .720
*
2.890
*
3.340
*
0.960
1 . 100
*
0.700
*
0.800
*
0.030
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
HH01SM2 1
OJ
-P-
HH01SM1 1
HH07SM1 7
HH07SM2 7
HH14SM1 14
HH14SM2 15
HH28SM2 28
HH2BSM1 28
HH56SM2 56
HH56SM1 61
HL01SM1 1
HL01SM2 1
HL07SM1 7
HL07SM2 7
HL14SM1 14
HL14SM2 15
HL28SM2 28
HL28SM1 28
HL56SM2 56
HL56SM1 61
HH01WP2 1
HH01WP1 1
HH07WP1 7
HH07WP2 7
HH14WP1 14
HH14WP2 14
HH28WP2 28
HH28WP1 28
HH56WP2 56
HH56WP1 56
HL01WP1 1
HL01WP2 1
HL07WP2 7
HL07WP1 7
HL14WP1 14
HL14WP2 14
NUMBER
YS
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
YIELD
M
410
310
2,
*
*
2.
*
1 .930
0.800
*
3.290
*
1 .340
0.360
2.790
1 . 150
2.050
*
2.430
*
*
0.910
3.000
.710
380
780
750
3.500
2. 170
NUMBER
SODIUM
SODIUM
WATER
WATER
YS
T
CHLORIDE 10
5
5
5
5
5
5
5
5
5
5
CHLORIDE 10
5
5
5
5
5
5
5
5
5
5
100.0% 50°C
5
5
5
5
5
5
5
5
5
5
100.0% 23°C
5
5
5
5
5
5
STD
DEV
YIELD
T
.0% 50°C
1 .690
*
*
1 .850
*
1 . 250
3. 280
*
1 .560
*
. 0% 23°C
*
1 .780
*
0.360
*
2.880
1 .680
*
2.940
*
2.410
*
*
1 .280
1 .950
1 .430
*
*
1.710
*
*
3.500
1 . 100
*
4.800
2.010
NUMBER
EY
M
STD
DEV
ELYLD
M
0.700
*
*
0.400
*
0.800
7.000
*
1 . 200
*
0.600
*
0.900
*
0.800
0.600
*
0.300
0.400
*
1 .000
*
0.300
*
0.800
*
0.700
0.500
0.700
NUMBER
EY
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
ELYLD
T
1 .200
*
*
0.600
*
0.300
0.700
*
0.400
0.800
*
0.600
*
0.700
0.600
*
0.600
*
0.600
0.700
*
0.700
*
*
0.700
*
0.500
1 .000
0.030
-------
HIGH DENSITY POLYETHYLENE: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
NUMBER
vs
M
STD
DEV
YIELD
M
NUMBER
VS
T
WATER 100.0% 23°C
STD
DEV
YIELD
T
NUMBER
EY
M
STD
DEV
ELYLD
M
NUMBER
EY
T
STD
DEV
ELYLD
T
HL28WP2 28
HL28WP1 28
HL56WP2 56
HL56WP1 56
HH01XM1 1
HH07XM1 7
HH14XM1 1 4
HH28XM1 28
HH56XM1 55
*
*
1 .760
1.410
1.610
2.030
0.860
1 .370
*
*
2.480
POTASSIUM DICHROMATE 10.0% 50°C
5
5
5
5
5
3. 260
3. 250
0.830
1 .850
2. 120
*
*
0.900
0.300
0.600
1 .000
0. 700
1 .500
5
5
5
5
5
1 .000
0.400
0.600
0.600
0. 100
POTASSIUM DICHROMATE 10.0% 23°C
-P-
U)
Ln
HL01XM1 1
HL07XM1 7
HL14XM1 14
HL28XM1 28
HL56XM1 55
1 .020
3.400
0.400
0.690
2.4-10
3.480
2.860
2.960
1 .250
1 .060
0.500
0.700
1 .600
0.600
0.900
1 .000
0.800
0.900
0.900
0.900
-------
HDPE : RETENTION OF PROPERTIES
436
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
IMMERSION
DAVS
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
PERCENT
ELYLD
M
PERCENT
ELYLD
T
PERCENT
MODE
M
PERCENT
MODE
T
HYDROCHLORIC ACID 10.0% 50°C
HH01AM1
HH01AM2
HH07AM2
HH07AM1
HH14AM1
HH14AM2
HH99AM1
HH28AM1
HH28AM2
HH56AM1
HH56AM2
HH99AM2
HH99AM3
HH99AM4
HH99AM5
HH99AM6
HH99AM7
.p-
U>
HL01AM2
HL01AM1
HL07AM2
HL07AM1
HL14AM2
HL14AM1
HL99AM1
HL28AM1
HL28AM2
HL56AM2
HL56AM1
HL99AM2
HL99AM3
HL99AM4
HL99AM5
HL99AM6
HL99AM7
1
1
7
7
14
14
28
29
29
56
56
144
252
368
51 1
621
770
1
1
7
7
14
14
28
29
29
56
56
144
23B
368
51 1
621
768
.8
.3
2.7
.2
1 . 1
1 .3
.4
*
100.0
. 1
.3
.3
. 1
.4
.4
.4
.3
*
. 1
.3
.2
. 1
*
*
. 1
100.0
.2
. 1
.4
. 1
.9
. 1
. 1
. 2
HH01BM1
HH07BM1
HH14BM1
HH28BM1
HH99BM1
HH56BM1
HH99BM2
HH99BM3
HH99BM4
1
7
13
28
29
56
144
252
368
.3
*
. 1
.9
.6
.5
.6
.3
.3
*
1 .7
*
1 .6
*
100.0
2.9
1 .7
1 .9
1 .3
3.8
1 .0
*
2.2
.3
.6
1 .0
*
1 .3
1 .0
1 .0
*
100.0
1 .4
4.2
2.0
.3
1 .6
2.6
.3
.3
.3
4.5
.6
.3
1 .3
*
*
1 .7
1 .7
1
1
.9
.3
.4
. 1
.7
*
.5
. 1
100.0
2.9
2. 1
2.0
1 .3
4. 1
1 . 1
10.8
2.4
95
101
*
*
94
*
*
109
*
1 18
1 10
*
100
107
*
*
97
*
*
108
+
1 12
*
*
*
*
HYDROCHLORIC ACID 10.0% 23°C
.2
.4
.9
. 1
1 .5
1 .0
1 . 1
. 1
100.0
1 .5
4.5
1 .8
.8
2. 1
2.5
1 .0
*
100
*
1 13
*
99
*
*
*
108
104
*
*
*
*
*
*
99
1 10
*
102
*
107
109
1 10
SODIUM HYDROXIDE 10.0% 50°C
.4
4.4
.8
. 2
1 .0
*
.3
1 .5
100.0
123
108
101
108
*
100
1 18
109
98
107
*
107
103
96
103
*
96
*
98
*
*
*
1 12
105
92
*
94
97
94
*
97
89
96
94
103
*
106
*
*
95
92
89
*
*
92
*
90
*
84
*
74
*
87
*
91
83
88
98
89
94
*
95
*
101
93
*
*
98
*
*
109
#
102
*
108
87
»
*
93
1 10
*
101
*
*
*
102
*
93
*
1 12
*
*
*
104
96
*
*
*
*
*
1 14
88
98
87
*
89
*
*
91
*
97
*
91
*
*
*
107
98
*
*
103
87
101
89
+
98
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HH99BM5
HH99BM6
HH99BM7
HL01BM1
HL07BM1
HL14BM1
HL28BM1
HL99BM1
HL56BM1
HL99BM2
HL99BM3
HL99BM4
HL99BM5
HL99BM6
j> HL99BM7
U5
00
HHO 1 DH 1
HH07DH1
HH14DH1
HH28DH1
HH99DH1
HH56DH1
HH99DH2
HH99DH3
HH99DH4
HH99DH5
HH99DH6
HH99DH7
HL01DH1
HL07DH1
HL14DH1
HL99DH1
HL28DH1
HL56DH1
HL99DH2
HL99DH3
HL99DH4
HL99DH5
HL99DH6
HL99DH7
510
622
770
1
7
14
28
28
56
144
238
368
510
622
768
1
7
14
28
28
56
133
244
364
495
629
763
1
7
14
28
28
56
134
231
364
495
630
761
PERCENT
WEIGHT
CHANGE
.4
.2
.2
*
*
*
. 1
.8
. 1
.4
.4
1 .0
.2
.2
.4
3.4
2.7
4.2
2.9
1 . 1
1 .0
.5
2.4
.8
.5
.5
1 .0
2.8
1 .8
3.7
1 .0
2.0
2.4
1 .6
1 .3
.8
.9
1 . 1
PERCENT
THICKNESS
CHANGE
*
25. 1
1 .7
.3
*
.3
*
*
1 .2
.7
2.0
2.9
.7
6.2
2.9
*
.3
3.5
*
.7
100.0
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
1
1 .4
2.0
2.9
5.9
4.6
.3
.6
.3
1 .3
1 .4
.3
1 .3
*
.3
1 .3
2.6
6.4
SODIUM HYDROXIDE 10.0% 50°C
.5
25.3
2.0
107
SODIUM HYDROXIDE 10.0% 23°C
.4
. 1
.4
. 1
. 1
1 .2
.3
2.3
3.5
.6
6.9
2.9
*
104
10
105
1 2 DICHLOROETHANE .8% 50°C
1 .2
.8
4.6
1 . 1
1 .5
100.0
.3
1 .7
2.7
3.0
6.3
5. 1
89
89
92
90
*
*
*
*
*
107
*
108
108
*
*
97
*
*
*
91
91
91
92
1 2 DICHLOROETHANE .8% 23°C
.8
.3
1 . 1
.8
2.4
.7
.5
1 .6
.8
.9
2.4
5.9
86
91
89
*
87
*
*
*
*
*
105
91
90
89
90
*
*
*
PERCENT
ELYLD
M
*
109
94
*
*
*
103
1 10
123
106
1 16
130
103
1 15
1 19
1 19
*
1 15
*
*
1 12
PERCENT
ELYLD
T
79
85
*
*
93
*
*
*
*
4
*
103
96
132
108
*
*
*
105
108
1 12
*
99
*
PERCENT
MODE
M
102
*
95
88
102
92
90
90
93
97
*
95
PERCENT
MODE
T
1 1 1
1 16
*
*
104
*
*
*
*
88
101
86
91
94
97
93
*
90
*
*
*
*
*
-------
IMMERSION
DAYS
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
1 2 DICHLOROETHANE .1% 50°C
PERCENT
ELYLD
M
PERCENT
ELYLD
T
PERCENT
MODE
M
PERCENT
MODE
T
HH01DL1 1
HH07DL1 7
HH14DL1 14
HH99DL1 28
HH28DL1 28
HH56DL1 56
HH99DL2 139
HH99DL3 246
HH99DL4 370
HH99DL5 496
HH99DL6 631
HH99DL7 765
HL01DM1 1
HL07DM1 7
HL14DM1 14
HL28DM1 28
HL99DM1 28
HL56DM1 56
.7
.5
I .7
.3
.3
.3
.4
.9
.2
. 1
. 1
. 1
.p-
u>
VD
HL01DL1
HL07DL1
HL14DL1
HL99DL1
HL28DL1
HL56DL1
HL99DL2
HL99DL3
HL99DL4
HL99DL5
HL99DL6
HL99DL7
1
7
14
28
28
56
136
233
366
496
632
763
.3
.5
5.8
.3
.5
.4
.9
.3
. 2
.2
.3
.4
HH01DM1
HH07DM1
HH14DM1
HH28DM1
HH99DM1
HH56DM1
HH99DM3
HH99DM4
HH99DM5
HH99DM6
HH99DM7
1
7
14
28
28
56
245
365
496
630
764
2.
1 ,
2.
1
1 .
4
.0
.6
. 1
.6
.3
.3
.4
.2
.2
.2
. 1
1 .7
2.0
2.9
1 .5
.7
1 .0
.7
.6
.7
*
*
.6
1 .3
1 .0
1 .0
1.6
2.9
4.5
.7
.6
*
2.5
.3
.3
5.3
2.8
4.7
5.0
1 .6
.3
.6
.3
2.0
.3
.3
1 .0
.6
.3
.3
7 . 2
5.6
.6
.6
.6
*
.3
*
.6
.8
.5
.3
*
.7
1 .6
1 .2
1 .5
2.4
2. 1
3.6
89
89
88
*
87
105
1 2 DICHLOROETHANE .1%
.5
.6
. 1
2.5
.4
.4
5.3
2.4
5.2
5.3
2. 1
.3
92
94
92
*
86
103
1 2 DICHLOROETHANE .5%
1 .0
*
3.2
.9
.4
.6
1 . 1
.5
.2
6.8
5.4
86
84
91
87
*
*
*
*
*
*
1 12
1 2 DICHLOROETHANE .5%
1 . 1
.7
.4
.6
.5
.4
91
88
92
89
*
*
89
93
92
*
93
*
*
*
*
*
*
*
23°C
94
97
95
*
92
*
*
*
*
#
*
*
50°C
92
85
90
91
*
*
23°C
93
91
91
90
*
*
1 12
1 15
1 18
*
123
*
*
*
*
*
*
1 1 1
106
147
1 18
*
1 15
106
102
108
*
107
104
94
105
*
99
99
120
94
1 17
122
#
*
*
*
*
*
108
1 15
101
109
1 13
*
*
107
106
106
106
102
96
1 13
108
*
*
90
97
92
*
87
92
94
95
*
93
*
*
90
84
97
89
99
86
89
95
92
104
88
*
102
*
*
96
93
101
*
100
90
80
85
93
95
96
96
90
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HL99DM2 135
HL99DM3 233
HL99DM4 365
HL99DM5 496
HL99DM6 631
HL99DM7 762
HL01FH1
HL07FH1
HL14FH1
HL99FH1
HL28FH1
HL56FH1
HL99FH2
HL99FH3
HL99FH4
HL99FH5
HL99FH6
HL99FH7
HH01FL1
HH07FL1
HH14FL1
HH28FL1
HH99FL1
HH56FL1
HH99FL2
HH99FL3
HH99FL4
HH99FL5
HH99FL6
HH99FL7
1
7
14
28
28
56
1 17
219
350
485
617
748
1
7
14
28
29
56
124
242
356
489
622
756
PERCENT
WEIGHT
CHANGE
1 .4
.7
.3
.6
.8
.6
.p-
-P-
O
HH01FH1
HH07FH1
HH14FH1
HH28FH1
HH99FH1
HH56FH1
HH99FH2
HH99FH3
HH99FH4
HH99FH5
HH99FH6
HH99FH7
1
7
14
28
28
56
1 17
236
350
485
616
750
1
1
1
2
5
1
1
1
1
6
1
.3
. 1
.0
. 1
.2
. 1
.7
.6
.9
.5
.5
.5
.7
.8
.8
1 .3
.7
.9
1 .0
1 . 1
1 .4
3.9
2.4
1 .5
.2
.2
.3
.2
.2
.4
.2
1 .3
. 2
.6
1 .5
.5
PERCENT
THICKNESS
CHANGE
.3
1 .9
2.6
1 .0
4.8
3.2
.3
.6
.3
.3
.3
.7
.9
.9
1 .2
4.0
9.9
7.8
.3
1 .0
.6
.3
3.2.
*
1 .0
3.5
2.9
4.5
7. 1
17.1
4.2
.3
.3
.3
1 .9
.9
1 .6
1 .6
1 .6
1 .6
5.6
1 .2
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
1 2 DICHLOROETHANE .5%
1 .0
3.2
3.5
1 .4
5.4
3.6
FURFURAL
.4
. 1
. 1
.3
.6
.7
1 .2
1 .5
1 .6
4.7
10.9
8.0
FURFURAL
.2
.6
1 . 1
.6
3.5
*
1 .5
5.3
3.3
6.3
8.8
17.5
FURFURAL
4.3
.2
.3
.3
1 .9
.6
1 .6
1 .7
1 .6
1 . 1
6.4
1 .0
*
*
*
*
*
109
8.0% 50°C
96
89
91
89
#
99
*
*
*
*
*
1 1 1
8.0% 23°C
100
93
93
*
90
92
*
*
*
*
*
105
1.0% 50°C
99
94
91
95
*
94
*
*
*
*
*
1 IB
PERCENT
YIELD
M
23UC
96
93
95
90
*
97
98
93
96
*
90
96
*
*
*
*
97
96
93
98
*
98
PERCENT
ELYLD
M
*
*
*
*
*
1 12
100
1 10
1 10
109
*
103
*
*
*
*
*
126
105
104
1 10
*
107
106
*
*
*
*
*
105
106
107
1 10
100
*
106
1 18
PERCENT
ELYLD
T
97
100
103
100
#
100
*
*
97
98
99
*
101
101
99
100
108
99
*
105
*
*
*
PERCENT
MODE
M
92
102
109
93
*
95
*
*
*
1 10
1 12
98
*
93
91
98
98
*
95
#
105
*
PERCENT
MODE
T
91
106
1 1 1
89
*
92
*
100
109
121
*
94
95
*
*
*
*
90
1 10
*
78
*
1 12
*
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
PERCENT
ELYLD
M
PERCENT
ELYLD
T
PERCENT
MODE
M
PERCENT
MODE
T
FURFURAL 1.0% 23°C
HL01FL1 1
HL07FL1 7
HL14FL1 14
HL28FL1 28
HL28FL2 28
HL99FL1 29
HL56FL1 56
HL99FL2 124
HL99FL3 225
HL99FL4 356
HL99FL5 489
HL99FL6 623
HL99FL7 754
HL01FM1
HL07FM1
HL14FM1
HL28FM1
HL99FM1
HL56FM1
HL99FM2
HL99FM3
HL99FM4
HL99FM5
HL99FM6
HL99FM7
1
7
14
28
29
56
124
228
356
490
623
754
.2
.2
.2
.2
.2
.7
.3
.3
.4
.8
.6
.6
.8
HH01FM1
HH07FM1
HH14FM1
HH28FM1
HH99FM1
HH56FM1
HH99FM2
HH99FM3
HH99FM4
HH99FM5
HH99FM6
HH99FM7
1
7
14
28
29
56
124
242
356
490
622
756
1
2
1
2
4
1
.4
.8
.7
.8
.5
.6
.0
.4
.9
. 1
.6
.3
HHO1MH1 1
HH07MH1 7
HH14MH1 14
HH28MH1 28
.3
.7
.7
1 .3
.8
.6
.8
1 . 1
1 .0
1 .0
1 .7
1 .6
1 .8
1 .9
1 . 7
1 .4
4. 1
.9
.3
.3
.3
.6
*
2.4
1 .8
1 .2
1 .8
.3
3.0
2.0
1 .3
2.9
8.8
7
2.7
1 .7
.3
1 .9
*
*
3.4
.6
2.5
4.0
9.0
2.7
.3
2.3
*
4.5
1 . 1
*
.3
.3
.7
.2
2.2
2.7
1 . 1
2.0
.5
3.3
FURFURAL 4.
.5
. 1
1 . 1
.4
1 . 1
.4
1 . 1
2.3
1 .4
3.6
9.9
1 .2
FURFURAL 4.
.4
2. 2
1 .6
. 1
2.5
. 1
.4
5.0
1 .3
3.4
13.1
9.6
METHYL ETHYL
4. 2
.9
3.7
.7
99
93
93
*
91
*
93
*
*
*
*
*
109
0% 50°C
98
92
91
90
*
99
*
*
*
*
*
108
0% 23°C
95
92
92
89
*
93
*
*
*
*
*
109
KETONE
93
96
96
94
101
96
92
*
92
*
101
98
95
94
93
*
98
*
*
*
101
94
94
93
*
93
26.0% 50°C
97
96
98
97
101
106
104
*
104
*
97
102
104
104
106
1 10
*
109
127
99
1 13
104
107
*
106
105
97
101
98
101
87
98
106
*
97
*
87
93
98
98
105
*
100
92
97
97
98
*
92
*
*
*
it
*
*
97
86
87
94
103
1 16
*
105
*
*
*
*
*
99
97
101
107
*
94
*
*
*
109
105
*
*
*
*
101
*
*
*
*
*
*
101
104
93
91
*
95
120
106
108
78
*
108
*
*
107
1 21
102
108
*
108
96
87
91
1 15
94
95
96
103
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HH99MH1
HH56MH1
HH99MH2
HH99MH3
HH99MH4
HH99MH5
HH99MH6
HH99MH7
29
57
122
240
358
493
626
759
HL01ML1 1
HL07ML1 7
HL14ML1 14
HL28ML1 28
HL99ML1 28
HL56ML1 57
HL99ML2 120
HL99ML3 235
PERCENT
WEIGHT
CHANGE
2. 1
1 .6
2. 1
2. 1
2.2
1 .5
1 . 1
.8
HL01MH1
HL07MH1
HL14MH1
HL28MH1
HL99MH1
HL56MH1
HL99MH2
HL99MH3
HL99MH4
HL99MH5
HL99MH6
HL99MH7
1
7
14
28
29
57
122
235
358
493
627
757
.9
1 .3
1 .5
1 .3
1 .8
1 .7
2.0
1 .5
1 .9
1 .7
1 .9
1 .8
HH01ML1
HH07ML1
HH14ML1
HH28ML1
HH99ML1
HH56ML1
HH99ML2
HH99ML3
HH99ML4
HH99ML5
HH99ML6
HH99ML7
1
7
14
28
28
57
120
240
358
493
626
759
.4
.7
.3
*
.9
.2
1 .6
1 .2
1 .0
1 .6
.4
.2
. 1
.4
.5
.2
.3
.3
.8
.3
PERCENT
THICKNESS
CHANGE
1 .6
.3
1 .0
4.2
6.2
.6
1 .2
1 .0
.3
1 .0
.9
.3
1 .7
.3
.3
.7
1 .7
.3
.6
1 . 1
3.0
.9
.7
1 .2
3.3
1 . 2
.6
1 .8
3.6
.6
*
*
1 .0
.7
1 .2
.3
1 .6
PERCENT
VOLUME
CHANGE
METHYL ETHYL
2.5
.2
1 .3
2.9
1 .8
1 .5
4.2
6.7
METHYL ETHYL
1 .2
. 1
2.4
.2
2.4
1 .0
1 .2
3.3
1 .6
1 .4
1 .2
2.5
METHYL ETHYL
.4
.5
1 . 1
3.0
1 .0
1 .2
1 .3
3.3
1 .6
.6
1 .4
3.2
METHYL ETHYL
.5
*
. 1
1 .2
.8
1 .2
. 1
1 .9
PERCENT
YIELD
M
KETONE 26.0%
*
86
*
- *
*
*
*
105
KETONE 26.0%
98
95
96
96
*
96
*
*
*
v
*
101
KETONE 3.0%
90
96
99
96
*
96
*
*
*
*
*
1 17
KETONE 3.0%
98
97
93
99
*
97
#
4
PERCENT
YIELD
M
50°C
*
91
*
*
*
*
*
*
23°C
100
97
98
95
*
96
*
*
*
*
*
*
50°C
88
100
101
97
*
99
*
*
*
*
*
*
23°C
100
100
98
100
*
100
*
*
PERCENT
ELYLD
M
1 14
*
*
1 13
95
91
91
92
*
96
1 18
103
94
98
99
*
103
*
*
*
*
*
121
94
87
96
97
*
98
*
*
PERCENT
ELYLD
T
108
90
84
86
85
*
93
*
101
94
85
92
*
91
*
87
84
93
88
*
89
*
PERCENT
MODE
M
*
70
*
*
*
98
90
93
99
*
88
87
86
96
1 1 1
*
93
*
*
*
*
*
103
87
93
124
*
97
PERCENT
MODE
T
79
*
1 12
99
92
93
*
98
82
109
104
1 19
*
94
1 17
85
108
1 18
*
104
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HL99ML4 358
HL99ML5 494
HL99ML6 627
HL99ML7 757
HH010M1
HH070M1
HH140M1
HH280M1
HH990M1
HH560M1
HH990M2
HH990M3
HH990M4
HH990M5
HH990M6
HH990M7
1
7
13
28
28
56
128
251
364
503
626
765
PERCENT
WEIGHT
CHANGE
i .0
1. i
.7
.3
HHO 1 MM 1
HH07MM1
HH14MM1
HH99MM1
HH28MM1
HH56MM1
HH99MM2
HH99MM3
HH99MM4
HH99MM5
HH99MM6
HH99MM7
1
7
14
28
28
57
120
239
357
493
625
758
1 .6
1 .6
.4
11.2
.8
1 .0
2.6
1 .6
1 .6
1 .2
.7
.6
HL01MM1
HL07MM1
HL14MM1
HL28MM1
HL99MM1
HL56MM1
HL99MM2
HL99MM3
HL99MM4
HL99MM5
HL99MM6
HL99MM7
1
7
14
28
28
57
120
234
357
493
626
756
.7
1 .2
1 .2
1 .0
1 .2
.4
1 .8
.8
1 .0
1 .2
1 .2
.9
. 1
.2
1 . 1
1 .0
3.6
.3
4.7
5.6
5.2
5.9
5.3
6. 1
PERCENT
THICKNESS
CHANGE
*
1 .0
.3
1 .3
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
METHYL ETHYL KETONE 3.0% 23°C
1
10
1 .7
.3
.3
4.7
3.0
4. 2
.3
1 .0
2.0
1 .0
.7
2.0
.7
1 .0
.3
.3
.6
.3
2.9
1 .9
1 .3
2.0
100.0
.7
.3
.7
3.6
1 .3
. 1
1 .2
.3
1 .3
METHYL ETHYL
1 .9
2.0
.8
10.6
.5
.4
1 .0
2.7
.5
.7
4.4
3.3
METHYL ETHYL
*
4.8
.7
1 .5
.9
1 . 2
.5
3.4
. 1
.3
68.0
1 . 1
ASTM #2 OIL
.3
.8
3.3
1 .7
3.4
1 .4
100.0
3.7
3. 1
4. 1
8.2
4.8
*
*
*
101
KETONE 13.
97
97
93
*
94
91
*
*
*
*
*
104
KETONE 13.
89
96
97
93
*
98
*
*
*
*
*
100
SATURATED
100
94
99
*
*
101
*
*
*
*
*
98
*
*
*
*
0% 50°C
96
102
96
*
98
94
*
*
*
*
*
*
0% 23°C
92
100
101
98
*
100
*
*
*
4
*
*
50°C
101
95
99
*
*
102
*
*
*
*
*
*
PERCENT
ELYLD
M
*
*
*
108
97
104
97
*
104
108
*
*
*
128
96
96
103
97
*
99
*
*
*
*
*
1 10
96
103
105
*
*
99
*
*
*
190
PERCENT
ELYLD
T
91
93
87
*
89
104
*
*
*
*
*
*
94
84
91
88
*
90
*
*
*
*
*
*
93
106
99
*
*
93
*
*
PERCENT
MODE
M
101
99
83
*
90
82
100
93
102
1 1 1
*
91
*
*
1 12
90
100
100
*
PERCENT
MODE
T
108
1 1 1
104
*
80
76
*
*
*
*
*
*
95
93
1 13
128
*
91
98
92
86
*
*
99
*
*
*
*
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HL010M1
HL070M1
HL140M1
HL990M1
HL280M1
HL560M1
HL990M2
HL990M3
HL990M4
HL990M5
HL990M6
HL990M7
HH010P1
HH070P1
HH140P1
HH280P1
HH990P1
HH560P1
HH990P2
HH990P3
HH990P4
HH990P5
HH990P6
HH990P7
HL010P1
HL070P1
HL140P1
HL990P1
HL280P1
HL560P1
HL990P2
HL990P3
HL990P4
HL990P5
HL990P6
HL990P7
HH01PH1
HH07PH1
HH14PH1
HH28PH1
1
7
13
28
28
56
128
237
364
503
626
763
1
7
14
28
28
56
141
257
385
509
627
771
1
7
14
28
28
56
141
244
385
509
627
769
1
7
14
28
PERCENT
WEIGHT
CHANGE
. 1
.2
.2
.8
.3
.2
1 .3
1 .0
1 .6
2.4
2. 1
3.0
.8
2.8
4. 1
4.8
5.4
5.5
5.9
7.0
5.9
6.7
6.5
6. 1
2. 1
2.8
3.9
3.9
4.2
.4
1 .0
. 1
.9
PERCENT
THICKNESS
CHANGE
.6
.3
2.4
2.6
1 .5
*
2.0
3.3
2.3
1 .6
3.6
11.1
1 .2
1 .0
.3
.3
1 .6
1 .6
1 .9
1 .9
3. 1
4.7
2.5
1 .0
1 .0
.3
.9
*
.3
.3
5.6
.6
1 .9
3. 1
6.5
.3
.3
.3
.7
PERCENT
VOLUME
CHANGE
ASTM. #2 OIL
4
. 1
2.4
3.4
.9
.2
3.4
5. 1
3.8
2.6
6.3
13.1
ASTM #2 OIL
.6
3. 1
2. 1
3.0
5.9
3.6
6.2
6.6
7.4
7.3
13.5
7.0
ASTM #2 OIL
.9
.8
.5
1 .2
.4
.4
1 .7
7.8
2.4
3.6
6.3
9.4
PHENOL 8.0%
.2
. 2
.3
.4
PERCENT
YIELD
M
SATURATED 23°C
96
95
95
*
*
103
*
*
*
*
*
100
100.0% 50°C
90
85
84
87
*
84
*
¥
¥
*
*
103
100.0% 23°C
90
92
93
*
92
92
*
*
*
*
*
103
50°C
87
87
B7
92
PERCENT
YIELD
M
99
97
97
*
*
108
*
*
*
*
*
*
89
*
84
88
*
83
*
*
*
*
*
*
89
94
92
*
94
96
*
*
*
*
*
*
91
89
88
93
PERCENT
ELYLD
M
99
99
104
*
*
101
157
106
125
122
136
*
137
*
*
*
*
*
194
99
101
105
*
105
103
*
*
159
1 19
1 18
1 19
1 12
PERCENT
ELYLD
T
95
96
99
92
103
*
122
131
*
138
97
93
96
*
97
97
*
*
101
93
1 1 2
97
PERCENT
MODE
M
96
106
92
96
*
*
85
72
71
56
*
55
95
104
124
*
87
82
*
4
*
*
*
*
90
86
89
92
PERCENT
MODE
T
102
1 12
94
*
*
1 1 1
81
*
78
66
*
58
88
107
1 1 1
*
97
90
93
85
89
92
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
Ul
IMMERSION
DAYS
HH99PH1 29
HH56PH1 56
HH99PH2 121
HH99PH3 243
HH99PH4 362
HH99PH5 499
HH99PH6 624
HH99PH7 757
HH99PL4
HH01PL1
HH07PL1
HH14PL1
HH28PL1
HH99PL1
HH56PL1
HH99PL2
HH99PL3
HH99PL5
HH99PL6
HH99PL7
1
1
7
14
28
28
56
122
245
499
625
758
1
7
14
HL01PL1
HL07PL1
HL14PL1
HL28PL1 28
HL99PL1 28
HL56PL1 56
HL99PL2 122
HL99PL3 233
PERCENT
WEIGHT
CHANGE
1 .3
.4
2.0
1 .2
1 .3
1 . 1
.8
1 .0
HL01PH1
HL07PH1
HL14PH1
HL28PH1
HL99PH1
HL56PH1
HL99PH2
HL99PH3
HL99PH4
HL99PH5
HL99PH6
HL99PH7
1
7
14
28
29
56
121
230
362
499
625
755
1 .3
. 1
3.7
.7
.8
.4
.9
.8
.4
.8
.8
1 .2
100.0
.3
1 .2
1 .9
. 2
.7
. 1
1 . 1
1 .6
.8
1 . 1
1 .0
.4
. 1
.2
. 2
.3
. 1
.4
.4
PERCENT
THICKNESS
CHANGE
*
.6
.6
*
*
*
1 .6
2.6
.3
*
.7
2.3
.6
.3
.3
3.2
1 .0
*
2.2
8.0
100.0
*
. 3
.6
1 .4
.7
*
.3
t
.3
4.6
6.9
5.9
.3
.6
2.3
*
1 .3
*
PERCENT
VOLUME
CHANGE
PHENOL 8.0%
.6
.8
.2
.9
.6
.5
1 .9
2.8
PHENOL 8.0%
100.0
.2
.3
2.0
.7
.3
.8
4.2
1 .3
.5
1 .8
8.4
PHENOL 1 .0%
100.0
1
.4
.7
1 .7
.4
. 1
. 1
.5
*
5.8
6.9
PHENOL 1 .0%
. 2
6. 1
.6
.7
1 .9
*
.8
1 . 1
PERCENT
YIELD
M
50°C
*
89
*
*
*
*
*
109
23°C
93
87
90
91
*
88
*
*
*
*
*
109
50°C
*
90
89
90
91
*
93
*
*
*
*
103
23°C
93
94
89
92
4
90
*
*
PERCENT
YIELD
M
*
89
90
94
92
92
*
89
96
92
91
93
*
94
*
*
4
*
*
95
94
90
96
*
93
PERCENT
ELYLD
M
*
120
*
*
*
*
*
1 1 1
1 1 1
1 13
1 12
99
*
1 16
1 1 1
*
1 18
1 13
1 14
106
*
120
*
1 16
106
100
1 17
101
*
92
*
*
PERCENT
ELYLD
T
*
106
*
*
*
*
*
95
104
1 1 1
90
*
105
*
*
1 19
97
102
99
*
96
96
98
104
97
*
104
*
PERCENT
MODE
M
*
92
93
85
87
95
*
92
*
*
*
*
*
86
91
93
97
*
99
104
99
89
99
*
94
*
*
PERCENT
MODE
T
90
92
86
93
92
*
92
*
87
92
98
87
*
104
106
98
91
93
*
102
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
HL99PL4
HL99PL5
HL99PL6
HL99PL7
HH01PM1
HH07PM1
HH14PM1
HH28PM1
HH99PM1
HH56PM1
HH99PM2
HH99PM3
HH99PM4
HH99PM5
HH99PM6
HH99PM7
HL01PM1
HL07PM1
HL14PM1
HL28PM1
HL99PM1
HL56PM1
HL99PM2
HL99PM3
HL99PM4
HL99PM5
HL99PM6
HL99PM7
HH01SH1
HH07SH1
HH14SH1
HH99SH1
HH28SH1
HH56SH1
HH99SH2
HH99SH3
HH99SH4
HH99SH5
HH99SH6
HH99SH7
363
499
626
756
1
7
14
28
29
56
121
244
362
499
624
757
1
7
14
28
29
56
121
231
362
499
625
755
1
7
14
28
28
56
131
253
379
510
630
771
PERCENT
WEIGHT
CHANGE
1 . 1
.5
.5
.7
.3
.4
2.2
.7
1 .3
.3
2.3
.4
1 .6
2.4
1 .9
2.3
1 „ 1
.4
.5
2.4
.7
.3
1 .4
.6
.9
1 . 1
.8
1 .2
PERCENT
THICKNESS
CHANGE
1 .3
1 .9
1 .9
1 .9
.3
.3
.3
.3
1 .5
.3
1 .2
.9
.6
1 .5
3.4
7.3
.3
*
.3
*
.3
.3
.3
2.2
1 .0
.3
2.9
2.9
1 .2
.6
.6
2.8
1 .9
2.0
.9
1 .6
3.7
1 .9
9.3
3. 1
PERCENT
VOLUME
CHANGE
PHENOL 1 .0%
.7
1 .3
3.0
2.6
PHENOL 4 . 0%
.4
.4
.3
.4
.8
.5
.5
. 1
. 1
2.4
4.8
8. 1
PHENOL 4.0%
. 1
. 1
.6
.2
. 1
.9
.6
3.4
1 .3
•j
0 *
3.8
3.4
PERCENT
YIELD
M
23°C
*
*
*
100
50°C
95
94
92
92
*
91
*
*
*
*
•*
1 12
23°C
89
90
90
92
*
89
*
*
*
*
107
SODIUM CHLORIDE 35.0%
1 .2
.7
.4
3. 1
2.2
1 .8
1 .0
1 .B
4.4
1 .7
10.3
3. 1
*
*
95
*
1 13
101
*
*
*
*
*
1 1 1
PERCENT
YIELD
M
79
95
88
92
*
93
PERCENT
ELYLD
M
50UC
90
89
94
93
*
92
*
*
*
*
*
105
*
*
104
101
104
1 15
109
1 10
*
1 16
*
*
128
106
109
1 13
108
*
1 12
*
*
*
*
*
105
*
103
*
94
107
*
1 16
PERCENT
ELYLD
T
1 13
102
102
94
*
1 15
*
94
93
102
98
*
98
*
*
*
*
*
87
*
*
97
*
PERCENT
MODE
M
96
94
95
89
*
86
*
*
*
*
95
88
90
92
*
97
*
*
91
*
94
81
*
*
*
PERCENT
MODE
T
85
90
95
91
*
94
*
*
97
89
98
92
*
93
*
84
90
*
*
-------
HIGH DENSITV POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
PERCENT
WEIGHT
CHANGE
HL01SH1
HL07SH1
HL14SH1
HL28SH1
HL99SH1
HL56SH1
HL99SH2
HL99SH3
HL99SH4
HL99SH5
HL99SH6
HL99SH7
1
7
14
28
28
56
131
246
379
510
630
769
. 1
*
*
. 1
1 . 1
. 1
1 . 1
.2
1 .5
.5
. 1
.6
HH01SM2
HH01SM1
HH07SM1
.C- HH07SM2
** HH14SM1
"^ HH14SM2
HH28SM2
HH99SM1
HH28SM1
HH56SM2
HH56SM1
HH99SM2
HH99SM3
HH99SM4
HH99SM5
HH99SM6
HH99SM7
1
1
7
7
14
15
28
28
28
56
61
132
254
370
51 1
624
772
.2
.3
.4
.6
4
.4
.4
1 .7
6.7
.6
4
1 .3
.8
.3
.3
4
.7
HL01SM1
HL01SM2
HL07SM1
HL07SM2
HL14SM1
HL14SM2
HL28SM2
HL99SM1
HL28SM1
HL56SM2
HL56SM1
HL99SM2
HL99SM3
HL99SM4
HL99SM5
1
1
7
7
14
15
28
28
28
56
61
132
246
370
51 1
.4
.2
. 1
. 1
. 1
.4
.4
. 1
7.0
.3
*
.2
. 1
.5
.7
PERCENT
THICKNESS
CHANGE
1 .3
1 .2
.3
1 .0
4.5
.3
*
1 .8
.3
.3
2. 1
8.1
2.2
.8
1 . 2
.3
1 . 2
.9
1 .2
2.2
.3
2.0
2.3
.3
*
1 .3
2.5
6.3
2.2
1 .2
1 . 1
.6
*
*
1 .4
.9
5.8
.3
2.0
1 .8
7.5
6.7
7.2
8. 1
PERCENT PERCENT PERCENT
VOLUME YIELD YIELD
CHANGE
SODIUM CHLORIDE
1 .4
1 .2
.2
.8
4.7
.3
.4
2.7
.4
.2
2.9
8.3
SODIUM CHLORIDE
2.3
.5
1 .0
..4
.9
1 .0
1 .9
2.5
. 1
2. 1
2.3
.7
. 2
2.3
1 .8
7.2
2.3
SODIUM CHLORIDE
1 . 1
1 .0
.6
4
. 1
1 .3
1 . 2
5.9
.2
2. 1
1 .7
7.2
5.6
7. 1
8.3
M
35.0% 23°C
*
*
95
*
*
94
1 12
10.0% 50°C
103
4
*
97
*
104
101
4
4
97
4
4
4
*
4
4
1 16
10.0% 23°C
4
108
4
92
4
1 14
120
4
+
1 13
M
4
*
98
4
4
99
4
4
4
4
4
4
105
4
4
107
4
109
109
4
4
1 14
*
4
4
4
4
4
4
4
108
4
101
4
1 10
106
4
4
1 10
4
4
4
4
4
PERCENT
ELYLD
M
*
*
96
*
*
104
*
*
*
*
*
95
104
*
*
106
*
103
100
*
*
99
*
*
*
*
*
*
1 10
*
108
*
105
*
92
96
92
*
*
*
*
*
PERCENT
ELYLD
T
*
83
*
*
96
*
94
*
97
101
*
88
89
*
*
89
*
*
*
*
*
*
*
97
*
93
*
94
86
*
*
86
*
PERCENT
MODE
M
*
*
77
4
*
84
*
105
*
*
99
*
104
101
*
*
94
*
*
*
*
PERCENT
MODE
T
*
109
*
*
89
106
*
*
93
*
100
96
*
*
99
*
*
*
*
96
*
106
*
108
103
*
*
89
*
*
.*
*
101
*
109
*
94
1 15
*
*
107
*
*
4
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
00
IMMERSION
DAYS
HL99SM6
HL99SM7
HH01WP2
HH01WP1
HH07WP1
HH07WP2
HH14WP1
HH14WP2
HH99WP1
HH28WP2
HH28WP1
HH56WP2
HH56WP1
HH99WP2
HH99WP3
HH99WP4
HH99WP5
HH99WP6
HH99WP7
HL01WP2
HL01WP1
HL07WP1
HL07WP2
HL14WP2
HL14WP1
HL28WP2
HL99WP1
HL28WP1
HL56WP1
HL56WP2
HL99WP2
HL99WP3
HL99WP4
HL99WP5
HL99WP6
HL99WP7
HH01XM1
HH07XM1
HH14XM1
HH28XM1
HH99XM1
624
770
1
1
7
7
14
14
28
28
28
56
56
133
254
370
503
622
772
1
1
7
7
14
14
28
28
28
56
56
132
246
370
503
622
770
1
7
14
28
28
PERCENT
WEIGHT
CHANGE
*
I . 1
. 1
. 1
*
. 1
1 .8
. 1
.5
.2
. 1
2.0
1 . 1
. 2
.3
. 1
.3
100.0
. 1
. 1
. 1
. 1
*
. 1
. 1
1 .4
PERCENT
THICKNESS
CHANGE
4.6
7.0
100.0
.9
1 .8
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
.9
1 .2
.3
4. 1
1 .7
.9
2.7
1 .8
5.2
5.2
1 .7
4.6
1 .7
7.8
100.0
.6
1 .2
.3
3.0
.9
.6
12.3
*
.3
3.5
12.0
11.2
9.8
12.0
11.7
.8
*
2.6
3.9
.3
SODIUM CHLORIDE 10.0% 23°C
4. 1
6.8
«
107
WATER 100.0% 50°C
100.0
.7
2.3
.8
.8
. 1
2.9
2. 1
• .7
2.7
1 .8
3.9
4.3
.8
3.9
.2
6.8
108
*
*
107
104
1 12
*
*
*
1 12
*
*
*
*
*
it
1 17
WATER 100.0% 23°C
100.
11
3.
10.
6.8
9. 1
11.3
10.4
.6
101
*
*
1 1 1
1 14
94
#
*
*
T
100
*
*
*
*
*
108
99
*
*
106
108
1 13
*
*
*
109
*
*
*
*
*
*
*
98
1 1 1
109
107
*
*
101
POTASSIUM DICHROMATE 10.0% 50°C
.8
$
3.0
3.8
.a
1 10
108
99
1 10
103
104
101
104
PERCENT
ELYLD
M
103
101
105
*
96
*
98
*
*
*
*
*
*
1 13
99
*
*
99
96
*
*
*
*
*
85
*
101
106
97
103
106
PERCENT
ELYLD
T
96
*
*
87
*
89
*
84
87
*
*
90
86
*
*
*
*
82
98
89
88
91
PERCENT
MODE
M
94
*
*
98
*
1 13
*
*
*
103
*
1 10
87
94
*
*
*
*
*
103
*
*
*
*
*
*
106
38
88
93
PERCENT
MODE
T
105
*
*
90
*
104
*
*
*
105
*
1 14
*
*
108
106
*
*
100
100
82
1 10
94
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
IMMERSION
DAYS
PERCENT
WEIGHT
CHANGE
HH56XM1 55
HH99XM2 118
HH99XM3 231
HH99XM4 363
HH99XM5 489
HH99XM6 609
HH99XM7 749
*
1 .5
2.2
1 .3
1 .3
1 .3
1 .5
PERCENT
THICKNESS
CHANGE
1 .2
1 .3
4.0
1 .3
.7
6.6
PERCENT
VOLUME
CHANGE
PERCENT
YIELD
M
PERCENT
YIELD
M
POTASSIUM DICHROMATE 10.0% 50°C
1 .2
.9
3.8
.7
.2
6.8
.5
1 13
107
108
PERCENT
ELYLD
M
105
*
*
*
*
*
1 15
PERCENT
ELYLD
T
101
*
*
*
PERCENT
MODE
M
96
PERCENT
MODE
T
87
*
*
POTASSIUM DICHROMATE 10.0% 23°C
-p-
VD
HL01XM1
HL07XM1
HL14XM1
HL28XM1
HL99XM1
HL56XM1
HL99XM2
HL99XM3
HL99XM4
HL99XM5
HL99XM6
HL99XM7
1
7
14
28
28
55
1 18
223
363
489
640
747
*
*
*
.7
.8
. 2
. 1
1 .3
. 1
.5
.6
.3
1 .0
1 .5
.7
1 .4
1 .3
4.6
2.0
.3
5.3
11.3
.8
.4
1 .3
1 .5
. 1
1 .5
.9
4.9
1 .4
.3
5.5
10.6
99
96
1 16
106
*
96
*
*
*
103
100
97
101
107
*
97
103
99
96
92
*
98
*
*
93
83
86
85
89
*
96
91
74
120
83
*
86
94
80
105
90
*
73
*
*
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T-
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
HH01AM1
HH01 AM2
HH07AM2
HH07AM1
HH14AM1
HH14AM2
HH99AM1
HH28AM1
HH28AM2
HH56AM1
HH56AM2
HH99AM2
HH99AM3
HH99AM4
HH99AM5
HH99AM6
HH99AM7
HL01AM2
HL01AM1
HL07AM2
HL07AM1
HL14AM2
HL14AM1
HL99AM1
HL28AM1
HL28AM2
HL56AM2
HL56AM1
HL99AM2
HL99AM3
HL99AM4
HL99AM5
HL99AM6
HL99AM7
HH01BM1
HH07BM1
HH14BM1
HH28BM1
HH99BM1
1
1
7
7
14
14
28
29
29
56
56
144
252
368
51 1
621
770
1
1
7
7
14
14
28
29
29
56
56
144
238
368
51 1
621
768
1
7
13
28
29
105
*
*
104
87
*
*
85
*
100
*
*
*
86
*
96
*
90
*
1 15
91
*
106
*
*
*
*
*
104
105
93
94
105
*
108
*
*
101
80
*
*
93
*
93
*
HYDROCHLORIC ACID 10.0% 50°C
106
*
102
99
*
*
95
*
104
*
*
*
*
91
HYDROCHLORIC ACID 10.0% 23°C
94
*
91
*
1 1 1
*
88
*
*
105
*
99
*
104
*
103
*
103
*
*
108
*
*
*
*
*
104
SODIUM HYDROXIDE 10.0% 50°C
1 15
101
87
102
95
95
98
98
95
*
*
94
86
88
*
91
*
*
*
*
*
*
*
*
92
*
91
*
95
*
88
*
*
99
97
96
88
92
*
103
*
*
1 16
92
*
*
93
*
1 16
*
1 13
*
103
*
130
*
102
122
*•
122
*
*
1 16
84
*
*
101
*
1 10
*
*
*
92
*
105
*
128
*
106
*
*
1 17
*
*
*
96
109
103
91
1 10
101
97
98
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
U1
HH56BM1 56
HH99BM2 144
HH99BM3 252
HH99BM4 368
HH99BM5 510
HH99BM6 622
HH99BM7 770
HL01BM1
HL07BM1
HL14BM1
HL28BM1
HL99BM1
HL56BM1
HL99BM2
HL99BM3
HL99BM4
HL99BM5
HL99BM6
HL99BM7
1
7
14
28
28
56
144
238
368
510
622
768
HH01DH1
HH07DH1
HH14DH1
HH28DH1
HH99DH1
HH56DH1
HH99DH2
HH99DH3
HH99DH4
HH99DH5
HH99DH6
HH99DH7
1
7
14
28
28
56
133
244
364
495
629
763
HL01DH1 1
HL07DH1 7
HL14DH1 14
HL99DH1 28
HL28DH1 28
HL56DH1 56
PERCENT
RETENTION
TENSILE
M
100
106
88
90
87
94
*
104
*
101
92
82
82
83
*
85
89
87
89
*
89
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
SODIUM HYDROXIDE 10.0% 50°C
99 107
* 106
SODIUM HYDROXIDE 10.0% 23°C
104 93
101 92
96 94
95 99
* *
83 105
*
*
4
*
*
101
1 2 DICHLOROETHANE .8% 50°C
89
86
88
87
*
*
91
83
84
*
88
97
88
88
89
*
*
*
*
*
*
*
91
1 2 DICHLOROETHANE .8% 23°C
97
93
94
*
93
PERCENT
RETENTION
EAB
T
93
*
*
*
*
*
*
97
95
87
94
*
87
*
*
*
*
*
*
91
86
87
87
90
83
84
*
86
*
PERCENT
RETENTION
TEAR
LB/IN
M
1 1 1
96
1 15
105
102
*
104
*
*
*
*
98
88
92
99
*
93
*
97
91
95
*
97
91
PERCENT
RETENTION
TEAR
LB/IN
T
1 10
100
1 15
100
97
*
107
*
*
*
*
*
*
92
88
90
98
*
93
94
88
94
*
98
93
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HL99DH2 134
HL99DH3 231
HL99DH4 364
HL99DH5 495
HL99DH6 630
HL99DH7 761
HH01DL1
HH07DL1
HH14DL1
HH99DL1
HH28DL1
HH56DL1
HH99DL2
HH99DL3
HH99DL4
HH99DL5
HH99DL6
HH99DL7
1
7
14
28
28
56
139
246
370
496
631
765
PERCENT
RETENTION
TENSILE
M
105
90
84
87
*
87
*
*
*
104
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
1 2 DICHLOROETHANE .8% 23°C
* *
* *
* *
* *
* 104
1 2 DICHLOROETHANE .1% 50°C
90 99
87 91
89 93
* *
89 93
*
*
*
*
*
109
1 2 DICHLOROETHANE .1% 23°C
PERCENT
RETENTION
EAB
T
92
85
87
*
86
*
*
*
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
95
93
94
*
104
94
PERCENT
RETENTION
TEAR
LB/IN
T
93
91
92
*
103
94
*
HL01DL1
HL07DL1
HL14DL1
HL99DL1
HL28DL1
HL56DL1
HL99DL2
HL99DL3
HL99DL4
HL99DL5
HL99DL6
HL99DL7
1
7
14
28
28
56
136
233
366
496
632
763
91
88
90
*
90
*
1 10
91
86
87
*
87
97
94
95
*
96
*
*
*
*
*
*
108
92
84
85
*
85
95
90
94
*
104
94
95
87
93
*
104
95
1 2 DICHLOROETHANE .5% 50°C
HH01DM1 1
HH07DM1 7
HH14DM1 14
HH28DM1 28
HH99DM1 28
HH56DM1 56
HH99DM3 245
88
81
87
89
90
86
86
86
98
89
93
95
*
91
88
86
86
97
90
93
99
*
98
*
94
85
89
102
*
92
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HH99DM4 365
HH99DM5 496
HH99DM6 630
HH99DM7 764
HL01DM1 1
HL07DM1 7
HL14DM1 14
HL28DM1 28
HL99DM1 28
HL56DM1 56
HL99DM2 135
HL99DM3 233
HL99DM4 365
HL99DM5 496
HL99DM6 631
HL99DM7 762
HH01FH1
HH07FH1
HH14FH1
HH28FH1
HH99FH1
HH56FH1
HH99FH2
HH99FH3
HH99FH4
HH99FH5
HH99FH6
HH99FH7
1
7
14
28
28
56
1 17
236
350
485
616
750
HL01FH1 1
HL07FH1 7
HL14FH1 14
HL99FH1 28
HL28FH1 28
HL56FH1 56
HL99FH2 117
HL99FH3 219
HL99FH4 350
PERCENT
RETENTION
TENSILE
M
*
*
*
89
96
87
91
85
*
*
*
100
75
83
85
92
*
85
90
80
82
87
*
97
86
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
1 2 DICHLOROETHANE .5% 50°C
* *
* *
* *
* 96
1 2 DICHLOROETHANE .5% 23°C
91 102
92 94
87 96
87 93
* *
* *
* *
* *
* *
* *
* *
* 101
FURFURAL 8.0% 50°C
77
83
87
95
*
89
81
91
89
89
*
77
*
*
*
93
FURFURAL 8.0% 23°C
75
82
87
*
87
84
*
*
85
85
91
*
98
81
*
*
*
PERCENT
RETENTION
EAB
T
90
85
85
87
77
82
82
84
*
78
75
81
82
*
79
82
PERCENT
RETENTION
TEAR
LB/IN
M
97
90
99
98
*
96
104
94
100
100
*
98
*
107
101
97
*
93
98
PERCENT
RETENTION
TEAR
LB/IN
T
94
95
97
104
*
95
*
123
95
98
99
*
95
*
*
1 17
100
96
*
95
96
-------
HIGH DENSITY POLYETHYLENE; CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
HL99FH5 485
HL99FH6 617
HL99FH7 748
HH01FL1
HH07FL1
HH14FL1
HH28FL1
HH99FL1
HH56FL1
HH99FL2
HH99FL3
HH99FL4
HH99FL5
HH99FL6
HH99FL7
1
7
14
28
29
56
124
242
356
489
622
756
HL01FL1
HL07FL1
HL14FL1
HL28FL1
HL28FL2
HL99FL1
HL56FL1
HL99FL2
HL99FL3
HL99FL4
HL99FL5
HL99FL6
HL99FL7
1
7
14
28
28
29
56
124
225
356
489
623
754
HH01FM1 1
HH07FM1 7
HH14FM1 14
HH28FM1 28
HH99FM1 29
HH56FM1 56
HH99FM2 124
HH99FM3 242
HH99FM4 356
PERCENT
RETENTION
TENSILE
M
*
75
93
82
81
80
*
92
89
72
82
77
89
89
102
77
82
81
86
*
84
*
*
PERCENT
RETENTION
TENSILE
T
FURFURAL
»
*
*
FURFURAL
74
81
78
88
*
92
*
FURFURAL
73
84
79
89
*
86
*
*
*
*
FURFURAL
75
84
85
88
89
*
PERCENT
RETENTION
EAB
M
8.0% 23°C
i
76
1.0% 50°C
80
87
89
76
*
83
*
*
*
*
91
1.0% 23°C
75
86
85
91
*
92
*
*
*
99
4.0% 50°C
80
86
89
108
88
*
PERCENT
RETENTION
EAB
T
74
83
81
77
*
80
*
*
*
73
81
81
*
84
*
77
*
*
*
*
*
*
74
80
84
99
*
88
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
106
97
109
105
*
101
124
97
104
100
101
*
102
*
*
*
125
97
97
95
*
98
*
PERCENT
RETENTION
TEAR
LB/IN
T
125
93
104
100
*
94
*
*
123
98
109
94
100
*
106
*
*
*
*
1 19
94
92
92
*
96
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HH99FM5
HH99FM6
HH99FM7
HL01FM1
HL07FM1
HL14FM1
HL28FM1
HL99FM1
HL56FM1
HL99FM2
HL99FM3
HL99FM4
HL99FM5
HL99FM6
HL99FM7
HH01MH1
HH07MH1
HH14MH1
HH28MH1
HH99MH1
HH56MH1
HH99MH2
HH99MH3
HH99MH4
HH99MH5
HH99MH6
HH99MH7
HL01MH1
HL07MH1
HL14MH1
HL28MH1
HL99MH1
HL56MH1
HL99MH2
HL99MH3
HL99MH4
HL99MH5
HL99MH6
HL99MH7
490
622
756
1
7
14
28
29
56
124
228
356
490
623
754
1
7
14
28
29
57
122
240
358
493
626
759
1
7
14
28
29
57
1 22
235
358
493
627
757
PERCENT
RETENTION
TENSILE
M
*
*
77
74
82
68
82
*
87
*
*
*
77
93
102
87
92
*
93
*
*
75
92
99
94
99
*
120
*
*
82
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
FURFURAL 4.0% 50°C
*
83
FURFURAL 4.0% 23°C
78 79
84 97
89 94
88 103
* *
91 102
78
METHYL ETHYL KETONE 26.0% 50°C
95
94
99
94
*
99
*
98
105
89
98
*
100
*
*
*
*
*
72
METHYL ETHYL KETONE 26.0% 23°C
96
92
94
94
*
92
96
102
97
102
*
90
*
*
89
PERCENT
RETENTION
EAB
T
76
83
78
94
*
94
92
91
94
91
*
99
92
88
90
91
*
88
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
123
97
100
93
*
95
*
*
*
*
*
*
101
99
96
100
*
99
99
98
109
100
*
99
PERCENT
RETENTION
TEAR
LB/IN
T
123
97
97
89
*
96
*
*
*
*
*
*
100
100
95
98
*
94
100
97
102
101
*
96
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HH01ML1
HH07ML1
HH14ML1
HH28ML1
HH99ML1
HH56ML1
HH99ML2
HH99ML3
HH99ML4
HH99ML5
HH99ML6
HH99ML7
1
7
14
28
28
57
120
240
358
493
626
759
.p-
Ul
ON
HL01ML1
HL07ML1
HL14ML1
HL28ML1
HL99ML1
HL56ML1
HL99ML2
HL99ML3
HL99ML4
HL99ML5
HL99ML6
HL99ML7
1
7
14
28
28
57
120
235
358
494
627
757
HH01MM1
HH07MM1
HH14MM1
HH99MM1
HH28MM1
HH56MM1
HH99MM2
HH99MM3
HH99MM4
HH99MM5
HH99MM6
HH99MM7
1
7
14
28
28
57
120
239
357
493
625
758
PERCENT
RETENTION
TENSILE
M
96
97
94
98
*
89
*
*
*
*
*
90
92
97
95
98
*
99
*
*
1 12
91
100
97
4
91
92
79
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
METHYL ETHYL KETONE 3.0% 50°C
87
89
99
96
*
95
*
101
101
98
101
*
95
*
*
89
METHYL ETHYL KETONE 3.0% 23°C
94
102
96
101
*
97
*
95
98
99
99
*
103
*
*
*
*
*
107
METHYL ETHYL KETONE 13.0% 50°C
90
88
89
*
96
96
94
104
102
*
95
100
*
88
PERCENT
RETENTION
EAB
T
89
87
94
92
*
93
*
*
*
*
*
*
89
97
91
94
*
92
*
*
*
*
87
85
89
*
92
94
*
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
98
99
99
99
&
98
*
105
100
99
109
*
102
*
*
*
*
97
102
102
*
103
100
PERCENT
RETENTION
TEAR
LB/IN
T
96
98
94
99
*
96
104
98
100
109
*
97
#
*
*
*
*
*
95
99
100
*
107
98
*
*
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
LB/IN
M
PERCENT
RETENTION
TEAR
LB/IN
T
METHYL ETHYL KETONE 13.0% 23°C
HL01MM1 1
HL07MM1 7
HL14MM1 14
HL28MM1 28
HL99MM1 28
HL56MM1 57
HL99MM2 120
HL99MM3 234
HL99MM4 357
HL99MM5 493
HL99MM6 626
HL99MM7 756
95
91
95
89
*
96
*
*
*
*
4
82
92
91
97
87
*
102
*
101
95
100
93
*
99
*
*
*
87
91
88
94
85
*
96
*
*
*
4
98
102
100
102
*
99
96
96
93
105
*
94
ASTM #2 OIL SATURATED 50°C
HH010M1
HH070M1
HH140M1
HH280M1
HH990M1
HH560M1
HH990M2
HH990M3
HH990M4
HH990M5
HH990M6
HH990M7
1
7
13
28
28
56
128
251
364
503
626
765
95
93
86
100
*
98
*
*
*
*
*
96
91
94
88
99
*
95
*
*
*
*
*
*
96
98
91
99
*
100
*
*
*
4
*
96
86
92
86
94
*
90
100
98
101
103
*
101
97
98
102
102
*
98
ASTM #2 OIL SATURATED 23°C
HL010M1
HL070M1
HL140M1
HL990M1
HL280M1
HL560M1
HL990M2
HL990M3
HL990M4
HL990M5
HL990M6
HL990M7
1
7
13
28
28
56
128
237
364
503
626
763
96
94
90
*
99
102
*
*
*
*
*
100
92
92
74
*
103
100
*
*
*
*
*
*
100
101
97
*
105
106
*
*
*
*
*
103
89
91
73
*
103
94
99
102
101
*
100
106
*
4
4
4
98
97
95
4
99
91
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HH010P1
HH070P1
HH140P1
HH280P1
HH990P1
HH560P1
HH990P2
HH990P3
HH990P4
HH990P5
HH990P6
HH990P7
HL010P1
4^ HL070P1
<•" HL140P1
00 HL990P1
HL280P1
HL560P1
HL990P2
HL990P3
HL990P4
HL990P5
HL990P6
HL990P7
HH01PH1
HH07PH1
HH14PH1
HH28PH1
HH99PH1
HH56PH1
HH99PH2
HH99RH3
HH99PH4
HH99PH5
HH99PH6
HH99PH7
1
7
14
28
28
56
141
257
385
509
627
771
1
7
14
28
28
56
141
244
385
509
627
769
1
7
14
28
29
56
121
243
362
499
624
757
PERCENT
RETENTION
TENSILE
M
89
96
93
93
*
95
*
*
*
*
*
101
87
99
93
*
97
96
*
*
*
*
*
93
93
90
89
91
*
94
104
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
ASTM #2 OIL 100.0% 50°C
89 95
* 103
96 97
93 97
* 4
92 95
* *
* *
* *
* *
* 99
ASTM #2 OIL 100.0% 23°C
95
104
90
*
101
89
92
104
98
*
103
100
*
*
*
*
*
97
PHENOL 8.0% 50°C
90
80
84
90
*
85
98
96
95
94
*
98
*
. *
100
PERCENT
RETENTION
EAB
T
90
*
95
91
*
92
*
93
99
88
*
95
87
88
81
85
88
*
85
*
*
*
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
101
93
91
91
*
97
100
100
94
99
96
98
99
100
*
93
PERCENT
RETENTION
TEAR
LB/IN
T
97
86
87
90
*
98
*
*
*
101
100
91
*
96
99
*
*
*
*
*
*
95
93
98
97
*
92
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HL01PH1
HL07PH1
HL14PH1
HL28PH1
HL99PH1
HL56PH1
HL99PH2
HL99PH3
HL99PH4
HL99PH5
HL99PH6
HL99PH7
1
7
14
28
29
56
121
230
362
499
625
755
7
14
HH99PL4 1
HH01PL1 1
HH07PL1
HH14PL1
HH28PL1 28
HH99PL1 28
HH56PL1 56
HH99PL2 122
HH99PL3 245
HH99PL5 499
HH99PL6 625
HH99PL7 758
PERCENT
RETENTION
TENSILE
M
88
93
89
91
*
91
95
*
88
91
91
91
*
83
*
*
*
*
87
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PHENOL 8.0% 23°C
86
86
90
90
*
89
95
98
94
97
*
96
*
*
*
*
*
98
PHENOL 1.0% 50°C
90
91
91
91
*
87
*
94
97
95
94
*
90
*
85
PERCENT
RETENTION
EAB
T
87
86
87
89
*
88
*
*
*
87
89
89
88
*
88
*
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
98
100
102
99
*
94
*
100
98
101
100
*
94
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
T
97
99
104
93
*
96
*
*
*
*
*
*
*
96
103
100
101
*
90
PHENOL 1.0% 23°C
HL01PL1
HL07PL1
HL14PL1
HL28PL1
HL99PL1
HL56PL1
HL99PL2
HL99PL3
HL99PL4
HL99PL5
HL99PL6
HL99PL7
1
7
14
28
28
56
122
233
363
499
626
756
89
83
88
90
*
92
87
90
90
90
89
*
90
*
*
v
*
*
*
85
90
95
96
*
96
*
*
*
*
*
91
78
87
88
85
*
87
*
*
*
*
*
98
101
98
101
*
100
95
102
98
102
*
95
*
*
*
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HH01PM1
HH07PM1
HH14PM1
HH28PM1
HH99PM1
HH56PM1
HH99PM2
HH99PM3
HH99PM4
HH99PM5
HH99PM6
HH99PM7
HL01PM1
.p. HL07PM1
& HL14PM1
0 HL28PM1
HL99PM1
HL56PM1
HL99PM2
HL99PM3
HL99PM4
HL99PM5
HL99PM6
HL99PM7
HH01SH1
HH07SH1
HH14SH1
HH99SH1
HH28SH1
HH56SH1
HH99SH2
HH99SH3
HH99SH4
HH99SH5
HH99SH6
HH99SH7
1
7
14
28
29
56
121
244
362
499
624
757
1
7
14
28
29
56
121
231
362
499
625
755
1
7
14
28
28
56
131
253
379
510
630
771
PERCENT
RETENTION
TENSILE
M
96
93
89
91
*
92
*
*
*
*
«
73
90
82
87
89
*
90
*
*
*
*
*
102
97
95
92
*
97
101
*
*
*
87
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
PHENOL 4.0% 50UC
83 88
90 96
90 93
86 95
91 98
* #
* *
* *
* *
4 *
* 76
PHENOL 4.0% 23°C
83
89
91
87
*
91
*
*
96
88
94
94
*
98
*
*
*
*
* 98
SODIUM CHLORIDE 35.0% 50°C
95
99
100
*
100
93
*
*
*
*
*
91
94
101
#
98
104
*
93
PERCENT
RETENTION
EAB
T
92
88
86
85
*
88
84
89
88
86
*
91
*
*
*
*
*
*
101
97
95
*
92
90
PERCENT
RETENTION
TEAR
LB/IN
M
98
100
100
98
*
95
94
99
103
100
*
100
95
101
104
*
101
107
PERCENT
RETENTION
TEAR
LB/IN
T
93
100
94
*
95
*
*
*
95
97
100
98
*
95
*
95
100
100
*
89
107
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
HL01SH1 1
HL07SH1 7
HL14SH1 14
HL28SH1 28
HL99SH1 28
HL56SH1 56
HL99SH2 131
HL99SH3 246
HL99SH4 379
HL99SH5 510
HL99SH6 630
HL99SH7 769
HH01SM2 1
4^ HH01SM1 1
CT> HH07SM1 7
1-1 HH07SM2 7
HH14SM1 14
HH14SM2 15
HH28SM2 28
HH99SM1 28
HH28SM1 28
HH56SM2 56
HH56SM1 61
HH99SM2 132
HH99SM3 254
HH99SM4 370
HH99SM5 511
HH99SM6 624
HH99SM7 772
HL01SM1 1
HL01SM2 1
HL07SM1 7
HL07SM2 7
HL14SM1 14
HL14SM2 15
HL28SM2 28
HL99SM1 28
HL28SM1 28
HL56SM2 56
HL56SM1 61
PERCENT
RETENTION
TENSILE
M
96
94
97
102
*
98
*
*
*
*
*
97
*
88
90
*
98
*
*
*
101
*
98
1 1 1
91
*
92
*
101
99
*
106
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
SODIUM CHLORIDE 35.0% 23°C
99
88
98
107
*
99
101
92
101
101
*
103
* 90
SODIUM CHLORIDE 10.0% 50°C
82
84
100
85
*
*
*
106
*
99
*
104
103
*
101
*
*
*
98
*
99
105
SODIUM CHLORIDE 10.0% 23°C
86
78
*
68
*
95
93
*
103
*
103
*
*
4
97
*
104
PERCENT
RETENTION
EAB
T
96
93
95
93
*
93
*
*
*
*
*
90
89
*
85
*
*
*
98
*
94
*
*
89
*
100
76
*
*
*
64
*
92
PERCENT
RETENTION
TEAR
LB/IN
M
99
102
100
99
*
103
*
102
98
*
106
1 14
*
109
*
1 1 1
*
99
*
105
*
*
*
109
*
1 13
PERCENT
RETENTION
TEAR
LB/IN
T
101
106
1 1 1
107
*
105
*
92
103
*
97
*
*
*
104
*
1 1 1
103
*
105
*
98
*
1 14
*
1 12
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
RETENTION
TENSILE
M
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
HL99SM2
HL99SM3
HL99SM4
HL99SM5
HL99SM6
HL99SM7
HH01WP2
HH01WP1
HH07WP1
HH07WP2
HH14WP1
HH14WP2
HH99WP1
.p- HH28WP2
0s HH28WP1
HH56WP2
HH56WP1
HH99WP2
HH99WP3
HH99WP4
HH99WP5
HH99WP6
HH99WP7
HL01WP2
HL01WP1
HL07WP1
HL07WP2
HL14WP2
HL14WP1
HL28WP2
HL99WP1
HL28WP1
HL56WP1
HL56WP2
HL99WP2
HL99WP3
HL99WP4
HL99WP5
HL99WP6
HL99WP7
132
246
370
51 1
624
770
1
1
7
7
14
14
28
28
28
56
56
133
254
370
503
622
772
1
1
7
7
14
14
28
28
28
56
56
132
246
370
503
622
770
111
100
100
*
96
*
*
90
97
*
102
*
*
«
105
*
87
95
*
*
80
99
*
93
101
*
*
*
*
*
*
1 13
SODIUM CHLORIDE 10.0% 23°C
105
WATER 100.0% 50°C
100
94
*
94
89
97
*
97
*
*
98
107
*
90
*
*
108
109
*
102
*
*
*
*
*
100
WATER 100.0% 23°C
*
86
105
96
92
*
97
92
*
105
99
*
*
95
109
*
103
103
PERCENT
RETENTION
EAB
T
*
103
97
*
90
*
*
95
95
*
93
*
*
*
*
*
*
*
97
98
*
*
96
96
*
92
95
*
*
*
*
*
PERCENT
RETENTION
TEAR
LB/IN
M
1 16
94
*
103
93
97
*
108
*
*
*
*
*
*
93
108
*
*
99
109
*
92
105
*
*
*
*
105
PERCENT
RETENTION
TEAR
LB/IN
T
102
94
*
98
*
*
89
99
*
107
*
87
1 1 1
*
*
84
87
*
93
99
-------
HIGH DENSITY POLYETHYLENE: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
OJ
HHO1XM1 1
HH07XM1 7
HH14XM1 14
HH28XM1 28
HH99XM1 28
HH56XM1 55
HH99XM2 118
HH99XM3 231
HH99XM4 363
HH99XM5 489
HH99XM6 609
HH99XM7 749
HL01XM1
HL07XM1
HL14XM1
HL28XM1
HL99XM1
HL56XM1
HL99XM2
HL99XM3
HL99XM4
HL99XM5
HL99XM6
HL99XM7
1
7
14
28
28
55
1 18
223
363
489
640
747
PERCENT
RETENTION
TENSILE
M
90
101
97
105
*
103
72
101
97
1 13
102
*
92
89
PERCENT
RETENTION
TENSILE
T
PERCENT
RETENTION
EAB
M
POTASSIUM BICHROMATE 10.0% 50°C
94
99
86
102
*
96
*
*
*
*
*
*
90
101
101
107
*
103
*
*
*
*
*
73
PERCENT
RETENTION
EAB
T
94
95
84
100
*
95
POTASSIUM DICHROMATE 10.0% 23°C
104
88
85
68
*
95
102
105
105
91
*
103
*
*
*
90
99
89
84
65
*
96
PERCENT
RETENTION
TEAR
LB/IN
M
94
1 12
105
98
*
102
*
*
*
*
*
*
96
99
96
95
*
107
*
PERCENT
RETENTION
TEAR
LB/IN
T
92
106
96
91
*
93
93
101
94
100
+
108
-------
CSPE LW : FINAL PROPERTIES
464
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
( i nch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
(lb/
inch
width)
BREAKING
FACTOR
M
(lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
i nch
width)
ELONGATION
AT
BREAK
M
( inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
HYDROCHLORIC ACID 10.0% 50°C
QH01AM1 1
QH07AM1 7
QH14AM1 14
QH28AM1 28
QH99AM1 46
QH56AM1 56
QH99AM2 123
QH99AM3 242
2.17
2.30
2.25
2.43
2.44
2.54
2.63
2.63
30.30
32.00
31 .80
34.50
35.40
36.00
37.50
38. 10
2.96
2.92
2.91
2.92
2.90
2.93
2.94
2.94
1.01
1 .01
1 .02
1 .02
1 .04
1 .03
1 .07
1 .07
40.64
39.62
38. 16
37.82
*
30.94
*
16.95
26.92
26.44
26.54
24.40
*
19.02
*
*
50.60
53. 18
52.64
57.02
*
55.96
*
49.85
44.44
47.74
51 .62
51 .88
*
53.88
*
*
224.86
239.62
251 .90
239. 18
*
246.06
*
539.67
304. 16
318.60
328. 16
329.44
*
349.96
*
*
1 1 . 70
11.71
1 1 .22
10.49
*
8.47
*
*
9. 13
9.31
9.26
8.60
*
7.35
*
*
Ln
3.00
3.01
3.00
3.01
2.99
3.00
2.99
3.00
44.80
41 .26
40.42
45.80
*
44.64
*
*
196.00
204.08
218.98
208.42
*
215.84
*
457.75
280.22
299. 10
328.74
310.78
*
311.02
13.01
12.60
12.27
12.86
*
1 1 .98
*
*
10.15
9.85
9.62
10.12
*
9.82
*
2.94
2.90
2.91
2.95
2.90
2.95
2.96
2.98
42.74
39.58
43.00
42.24
*
49.96
188.28
207.40
202.08
186.46
*
183.44
*
310.00
312.18
301.60
255.26
213.34
*
208.88
*
*
1 1 .50
1 1 .28
11.11
9.76
*
10.08
*
9.53
9.11
9.18
8.43
*
8. 20
QL01BM1
QL07BM1
QL14BM1
QL2BBM1
QL99BM1
O.L56BM1
QL99BM2
QL99BM3
1
7
14
28
46
56
124
241
2.
2.
2.
2.
2,
2.
2.
2.
.25
,30
, 13
.35
.35
.55
.41
.57
31 .
31 .
29.
32,
34
36
37,
38,
.40
.80
.60
.50
.00
.40
.60
.00
3
3
3
3
3
3
3
3
.00
.01
.00
.01
.02
.02
.03
.06
1 .00
1 .00
1 .00
1 .01
1.01
1 .02
1 .02
1 . 04
42
41
42
40
44
32
.74
.26
.54
. 26
*
.68
*
.70
24
26
26
24,
27
1 2 DICHLOROETHANE
QH01DH1
QH07DH1
1
7
2.
2.
32
.45
31 .
34.
,60
. 10
2.
2
.91
.94
1 .05
1 .02
25,
24
.72
.88
17 .
16
.90
. 20
.80
.34
*
.50
*
*
.8%
.48
. 14
46.
45.
51 .
53.
64,
62.
50°C
38.
38 ,
.84
.02
, 1 2
.72
*
. 24
*
.54
.28
.90
39,
38,
42
45,
53
35,
35
.02
.70
.66
.06
*
. 16
*
*
. 12
.68
183.
204.
214,
242 .
222
390
319
312
.08
. 22
. 78
.34
*
.36
*
. 25
.96
.32
334.
314.
299.
339.
301
422
428
. 28
.80
.66
. 22
*
. 28
*
*
.94
.94
1 1
1 1
1 1
1 1
10
9
9
.83
.43
.97
.56
*
.78
*
*
.38
. 18
9
9
9
9
8
a
7
.99
.29
. 18
.39
*
.59
*
*
.00
.86
-------
•CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QH14DH1
QH28DH1
QH99DH1
QH56DH1
QH99DH2
QH99DH3
QL01DH1
QL07DH1
QL14DH1
QL28DH1
QL99DH1
QL56DH1
QL99DH2
QL99DH3
QH01DL1
QH07DL1
QH14DL1
QH28DL1
QH99DL1
QH56DL1
QH99DL2
QH99DL3
QL01DL1
QL07DL1
QL14DL1
QL28DL1
QL99DL1
QL56DL1
QL99DL2
QL99DL3
QH0 1 DM 1
QH07DM1
QH14DM1
QH28DM1
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
48
59
41
36
57
69
29
41
29
29
35
28
36
39
24
25
27
26
25
34
40
52
17
18
23
36
16
24
19
19
28
25
43
43
34.
35.
35.
33.
38.
39.
30.
32.
31 .
31 .
32.
31 .
33.
33.
31 .
31 .
32.
32.
32.
33.
34.
36.
29.
30.
30.
32.
30.
30.
31 .
31 .
31 .
31 .
33.
34.
80
70
70
40
00
60
90
60
50
50
80
20
20
60
40
30
30
30
80
00
80
60
80
00
70
50
60
90
10
30
50
10
80
60
LENGTH
(Inch)
WIDTH
(inch)
S-100 S-100
MODULUS MODULUS
M T
(1b/ (1b/
inch inch
width) width)
1 2 DICHLOROETHANE
2
2
2
2
2
2
.94
.89
.78
.91
.80
.81
1 .04
1 .06
1 .04
1 .04
1 .06
1 .08
24
20
33
21
.25 16
.42 14
*
.72 22
*
.43
.8%
.08
. 14
*
.32
*
*
1 2 DICHLOROETHANE .8%
3
3
3
3
3
3
3
3
.03
.03
.04
.02
.01
.03
.00
.00
1 .02
.03
.02
.01.
.01
.03
.00
.01
30
31
28
33
31
25
.12 19
.22 22
.16 17
.78 22
*
.42 20
*
.82
.34
.30
.70
. 14
*
.04
*
*
1 2 DICHLOROETHANE .1%
2
2
2
2
2
2
2
*
.97
.95
.93
.88
.94
.91
.95
1 .01
1 .02
1 .00
1.01
1 .02
1 .03
1 .03
1 .06
33
32
29
33
32
22
.44 22
.06 21
.26 17
.02 21
*
.95 21
*
.89
1 2 DICHLOROETHANE
3
3
3
3
3
3
3
3
.00
.01
.01
.01
.00
.01
.01
.01
1 .01
1.01
1 .01
1.01
1 .00
1.01
0.99
1 .00
34
37
29
34
35
29
.52 22
.50 23
.82 19
.34 22
*
.24 21
*
.52
1 2 DICHLOROETHANE
2
2
2
2
.94
.96
.94
.92
1 .03
1 .02
1 .04
1 .02
27
29
23
33
.90 17
.10 17
.42 14
.86 22
.50
.00
.64
.42
*
.02
*
*
. 1%
.52
.32
. 10
. 10
*
.32
*
*
.5%
.94
.28
.80
.28
BREAKING
FACTOR
M
(lb/
inch
width)
50°C
39
38
47
49
23°C
39
39
41
43
43
43
50°C
40
40
42
47
49
54
23°C
39
43
40
43
46
47
50°C
39
39
37
47
.33
.44
*
.86
*
.00
.40
.88
.24
.46
*
.32
*
.68
.96
.50
.50
.78
*
.08
*
.55
.50
.38
.40
.58
*
.52
*
.40
.48
.86
.62
.40
BREAKING
FACTOR
T
(pound/
inch
width)
35.
34.
44.
33.
33.
33.
40.
38.
37.
37.
37.
42.
43.
36.
38.
35.
38.
39.
35.
35.
33.
43.
46
16
*
14
*
*
64
60
68
36
*
26
*
*
96
06
64
46
*
90
*
*
08
72
52
62
*
76
*
*
36
46
70
1 2
ELONGATION
AT
BREAK
M
(inch)
329
349
251
391
273
268
301
240
275
533
247
256
289
272
254
377
224
246
281
247
257
472
297
291
324
270
.85
. 18
*
.98
*
.00
.90
.24
. 16
.80
*
.84
*
.42
.24
.58
.78
.42
*
.65
*
.92
.30
.98
.64
.70
*
.76
*
.42
.54
.06
.28
.28
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
426.34
424.80
*
323.00
*
*
374.42
306.40
380.22
368.22
*
325.30
357.36
336.02
403.48
358.36
*
329.14
352.22
360. 18
378.06
356.80
*
374.78
412.70
403.78
428.40
350.40
8.98
*
if
10.32
*
it
9.88
10.20
9. 27
10.10
*
9.17
*
10.79
1 1 .20
10.68
10. 29
*
10.32
*
10.85
1 1 .34
10.34
1 1 .08
1 1
86
*
9.56
9.36
10.54
9.80
7.73
*
*
9.08
8.31
8. 18
7.53
8.61
*
7.82
*
8.72
8.93
9.12
8.87
*
8.29
*
8.42
9.40
8.38
9.08
9.89
*
*
7.72
8.65
8.79
8.36
-------
CMLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QH99DM1
QH56DM1
QH99DM2
QH99DM3
QL01DM1
QL07DM1
QL14DM1
QL28DM1
QL99DM1
QL56DM1
QL99DM2
QL99DM3
QH01FH1
QH07FH1
QH14FH1
QH28FH1
QH99FH1
QH56FH1
QH99FH2
QH99FH3
QL01FH1
QL07FH1
QL14FH1
QL28FH1
QL99FH1
QL56FH1
QL99FH2
QL99FH3
QH01FL
QH07FL
QH14FL
QH28FL
QH99FL
QH56FL
QH99FL2
QH99FL3
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
1 4
28
46
56
137
242
2.30
2.35
2.43
2.60
2.21
2.24
2.24
2.39
2.25
2.26
2.27
2.32
2.41
2.49
2.56
2.75
2.68
2.76
2.85
2.91
2.49
2.55
2. 27
2.68
2.37
2.61
2.39
2 .44
2.34
2.32
2.33
2.31
2.30
2.33
2.46
2.59
33.60
33.80
35.60
37.60
30.00
30.40
30.50
33.50
31 .20
31 .00
31 .80
32.40
33.00
34.90
35.50
38.00
37.40
38. 10
40.30
41 .40
33.60
34. 10
31 .70
36. 20
32. 20
35.20
32.80
33.30
32.80
32.60
32.70
33.30
33.50
33. 10
35.50
37.00
LENGTH
(inch)
2.
2.
2.
2.
84
85
87
90
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
WIDTH inch inch
(inch) width) width)
1 2 DICHLOROETHANE .5%
1 .03
1 .05
1 .04
1 .07
34
22
*
.04
*
.40
22
1 2 DICHLOROETHANE
3.
3.
3.
3.
3.
3.
3.
3.
2.
2.
2.
2 .
2.
2.
2.
2.
3.
3.
3.
3
3.
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
02
02
02
00
01
02
01
02
97
91
95
96
92
98
96
99
04
06
01
05
06
04
06
07
95
92
95
92
89
93
92
95
1 .02
1 .01
1 .01
1 .00
1.01
1.01
1 .00
1.01
FURFURAL
.03
.05
.05
.06
.09
1 .09
1.11
1.13
FURFURAL
.02
.03
.00
.04
.03
1 .04
1 .03
1 . 04
FURFURAL
.01
.02
.02
.01
.02
.03
.04
.06
34
32
31
31
33
27
8
28
28
27
29
27
21
8
34
31
35
28
28
22
1
38
36
35
36
36
23
.06
.98
.70
.78
*
.24
*
. 1 2
.0% 50
.96
.42
. 24
.46
*
.42
*
.98
.0% 23
.68
.32
.42
.90
*
. 74
#
. 16
.0% 50
.88
. 26
.34
.00
*
.56
*
.46
21
19
19
20
20
°C
17
17
17
18
17
°C
21
18
23
18
1 7
°C
24
22
22
23
23
*
.82
*
*
.5%
.20
.88
.02
.42
*
.30
*
*
.92
.74
.02
.88
*
.04
*
*
.42
.72
.06
.58
*
.80
*
*
.98
.68
. 26
. 16
*
. 22
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
50°C
49.
56.
23°C
40.
44.
41 .
43.
44.
44.
45.
47.
46.
44.
50.
33.
47.
45.
48.
40.
43.
41 .
51 .
53.
50.
47.
55.
54.
*
60
*
57
90
64
00
00
*
42
*
80
02
36
98
22
*
32
*
59
14
50
00
36
*
40
*
71
06
40
94
54
*
70
*
67
BREAKING
FACTOR
T
(pound/
i nch
width)
44
35
36
35
37
39
40
42
40
38
44
41
37
44
34
37
48
49
46
43
49
*
. 12
*
*
28
34
86
46
*
18
*
*
70
26
66
74
*
68
*
*
52
82
94
82
*
50
*
*
08
58
76
48
*
70
*
*
ELONGATION
AT
BREAK
M
( inch)
254
416
243
248
260
270
258
504
284
289
286
258
260
221
252
259
234
286
289
514
237
256
244
247
242
384
*
.54
*
.08
.92
.40
.98
.58
*
. 24
*
.33
.30
.40
. 12
.76
t
46
*
.50
22
.80
.46
.54
*
36
*
33
50
.66
.42
.72
*
.48
*
.42
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
323.64
361.62
377.34
382.00
373.60
*
368.04
*
*
398.74
375.84
378.64
334. 18
*
336.50
*
*
354.06
367.50
354.46
388. 18
*
398.36
*
*
345.06
356.96
339.50
341.04
*
321 . 16
*
*
10.22
10.25
10.16
10.11
10.37
*
10.84
*
*
9.37
9.03
8.62
8. 18
*
6.90
10.56
9.11
10.81
8.99
*
9.34
*
*
1 1 .40
10.58
10.30
10.68
*
10.08
*
8.85
*
8.58
8.38
7.96
8.47
*
9.36
*
*
7.67
7.76
7 .49
6.83
*
6.49
*
*
8.63
7.86
8.76
7.49
*
8.20
*
*
9.72
9.30
8.68
8.55
*
8.01
*
*
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QL01FL1
QL07FL1
QL14FL1
QL28FL1
QL99FL1
QL56FL1
QL99FL2
QL99FL3
QH01FM1
QH07FM1
QH14FM1
QH28FM1
QH99FM1
QH56FM1
& QH99FM2
00 QH99FM3
QL01FM1
QL07FM1
QL14FM1
QL28FM1
QL99FM1
QL56FM1
QL99FM2
QL99FM3
QH01MH1
QH07MH1
QH14MH1
QH28MH1
QH99MH1
QH56MH1
QH99MH2
QH99MH3
1
9
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
3
2
2
3
2
.29
.38
.24
.31
.24
.38
.27
.28
.41
.48
.21
.36
.43
.50
.67
.65
.35
.32
.27
.30
.32
.34
.34
.37
.72
.26
.94
.02
.89
.98
.31
.97
31
32
31
32
31
32
31
32
33
34
30
32
35
35
38
38
32
31
30
32
32
32
32
33
39
45
40
32
44
42
47
43
.60
.70
. 10
. 10
.40
.80
.80
. 10
.40
.70
.90
.50
.00
.00
.00
. 10
. 10
.70
.90
. 10
.40
.20
.90
.30
.20
.40
.70
.20
.00
.20
.30
.40
3.01
3.02
3.00
3.00
3.01
3.01
3.01
3.02
2.95
2.91
95
03
89
93
93
2.94
3.03
3.01
3.06
2.95
3.02
3.04
3.01
3.03
2.90
2.82
2.88
2.79
2.50
2.90
2.27
2.41
S-100
MODULUS
M
WIDTH inch
(inch) width)
FURFURAL
1 .00
1 .01
1 .01
1 .01
1 .00
1.01
1 .00
1 .01
FURFURAL
.02
.04
.03
.02
.04
.05
.08
.08
FURFURAL
.01
.01
.03
.03
.01
.02
.01
.01
1 .0%
45. 12
40.72
40.56
33.00
*
34.34
*
29.68
4 . 0%
31 .68
31 .60
31 .80
34.30
*
34.42
*
23.28
4.0%
40.34
34.94
28.86
33.70
*
35.96
*
28.09
s-ioo
MODULUS
T
(lb/
inch
width)
23°C
29
26
24
21
20
50°C
20
20
20
20
21
23°C
25
21
17
21
22
METHYL ETHYL KETONE
1.14
1 . 18
1 . 16
1.16
1.21
1 . 19
1 .20
1.17
18.34
15.20
18.54
16.82
*
15.66
*
12.98
10
9
14
10
9
.22
.92
.32
.06
*
.48
*
*
.28
.82
. 16
.78
*
.94
*
*
. 12
.86
.56
.30
*
. 18
*
*
26
.84
.36
.00
.96
#
.58
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
55.
51 .
50.
40.
47.
48.
46.
48.
50.
43.
54.
50.
51 .
47.
43.
48.
49.
46.
0% 50
35.
32.
38.
35.
36.
15.
12
28
88
86
*
56
*
91
28
54
36
14
*
14
*
53
20
60
62
62
*
74
*
73
°C
32
78
60
62
*
56
*
09
BREAKING
FACTOR
T
(pound/
inch
width)
48
46
45
37
41
42
45
44
37
49
44
42
38
42
43
30
28
38
33
32
.68
.24
.06
. 16
*
. 12
*
*
. 14
.30
.04
.80
*
. 16
*
*
.88
.52
.38
.60
*
.34
*
*
.40
.78
.52
.98
*
. 10
*
#
ELONGATION
AT
BREAK
M
( inch)
217
222
216
246
263
513
275
275
268
245
242
369
237
251
274
255
248
499
369
364
328
358
309
283
.62
.36
.46
.98
*
. 16
*
.42
.92
.88
. 10
.92
*
.82
*
.33
.96
. 10
.88
.00
*
. 10
*
.67
.42
.62
. 14
.30
*
.26
*
.92
ELONGATION
AT
BREAK
T
(inch)
310
324
332
350
372
364
372
348
364
323
344
353
380
336
358
476
458
392
439
377
.30
.58
.96
.78
*
.06
*
*
.82
.98
. 16
.36
*
.46
*
*
. 16
. 14
.88
.62
*
.42
*
*
.30
.98
.02
.00
*
.42
*
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (lb)
12.
1 1 ,
1 1 ,
-1 1 ,
67
91
71
02
10.51
9.95
10.04
9.51
10.24
*
8.56
11.81
10.26
8.82
9.70
*
10.52
*
5.61
5.34
6.24
6. 15
*
4.37
10.53
9.43
9.64
9.10
*
9.09
*
8.28
8.48
8.20
8.73
*
7.33
9.62
8.99
7.53
8.17
*
8.84
4.80
5.43
5.65
4.91
*
4.02
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (ml 1)
QL01MH1
QL07MH1
QL14MH1
QL28MH1
QL99MH1
QL56MH1
QL99MH2
QL99MH3
QH01ML1
QH07ML1
QH14ML1
QH28ML1
QH99ML1
QH56ML1
QH99ML2
QH99ML3
QL01ML1
QL07ML1
QL14ML1
QL28ML1
QL99ML1
QL56ML1
QL99ML2
QL99ML3
QH01MM1
QH07MM1
QH14MM1
QH28MM1
QH99MM1
QH56MM1
QH99MM2
QH99MM3
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
2.64
2.50
2.61
2.70
2.56
2.55
2.58
2.59
2.17
2.26
2.22
2.38
2.38
2.28
2.60
2.62
2.39
2. 16
2.27
2.28
2.21
2.30
2.23
2.24
2.49
2.54
2.58
2.62
2.81
2.91
2.79
2.78
35.40
33.80
35.50
36.70
35.30
35.80
35.60
35.70
30.70
31 .80
31 .30
34. 10
34.80
32.60
37.60
38. 20
32.80
29.80
32.00
31 .90
31.10
32.00
31 .40
31 .70
35.90
36.00
36.20
37.00
41 .60
41 .90
41 .70
42.00
LENGTH
(inch)
3.
3.
3.
3.
3.
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3
3
3
3
2
2
2
2
2
2
2
2
08
07
05
04
04
10
05
05
93
93
94
92
85
96
90
90
01
02
00
01
01
01
01
01
90
84
93
94
76
88
69
70
WIDTH
(inch)
METHYL
.06
.06
.06
.07
.05
1 .07
1 .05
1 .38
METHYL
1 .02
1 .03
1 .03
1 .02
1 .03
1 .03
1 .06
1 .07
METHYL
1.01
1 .01
1 .00
1 .00
1 .00
1.01
1 .00
1 .00
METHYL
1 .07
1.10
1 . 10
1.10
1.14
1.13
1.13
1.14
S-100 S-100 BREAKING
MODULUS MODULUS FACTOR
M T M
(lb/ (lb/ (lb/
inch inch inch
width) width) width)
ETHYL
26.
24.
28.
24.
20.
17.
ETHYL
30.
31 .
33.
30.
34.
22.
KETONE
60
22
42
32
*
38
*
37
16.
16.
18.
15.
12.
KETONE
96
18
50
32
*
04
*
14
20.
20.
21 .
20.
19.
ETHYL KETONE
33.
35.
37.
33.
34.
28.
ETHYL
23.
21 .
25.
24.
19.
17.
14
44
16
02
#
00
*
45
21 .
21 .
23.
19.
20.
KETONE
30
14
76
16
*
38
*
05
14.
14.
17.
15.
1 1 .
26.0%
86
90
48
06
*
38
*
*
3.0%
30
64
16
02
*
80
*
*
3.0%
84
90
58
98
*
00
*
*
13.0%
98
12
34
18
*
84
*
*
23°C
38.70
37.04
44.92
37.34
*
36.74
*
44.67
50°C
38.48
46.34
49. 18
43. 10
*
54.44
*
50.80
23°C
38.92
41 .08
50.78
41 .30
*
48.60
*
47.53
50°C
37.52
39.34
48.60
42.88
*
43.40
t
35.65
BREAKING
FACTOR
T
(pound/
i nch
width)
32
32
39
32
31
34
41
45
40
43
33
35
44
34
40
34
37
41
39
37
.44
.50
.82
.54
*
.08
*
*
. 20
.46
.58
.08
*
.64
*
*
.08
.78
.36
.60
*
.40
*
*
.70
.20
.72
. 18
*
.92
*
*
ELONGATION
AT
BREAK
M
( inch)
290
307
276
305
320
560
248
273
261
280
244
356
226
224
248
261
273
541
333
334
303
310
307
352
.64
.34
.74
.28
*
. 16
*
. 17
.80
.00
.02
.94
*
.62
*
.42
.88
.94
.52
.02
*
.50
*
50
60
36
.50
.68
*
. 24
*
.42
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
385.82
397.56
360.62
421.10
*
429.68
*
*
360.26
377.24
359.18
370.60
*
332.58
327.98
344.64
343.02
376.62
*
373.50
*
*
446.70
417.22
360.66
387.40
*
380.34
19
86
88
19
6.62
*
t
10.14
10.43
10.37
9.91
*
8.72
*
*
10.08
10.81
10.89
1 1 .07
*
10.49
6.63
7.98
8.29
8.00
*
6.03
6.59
6.57
6.61
6.99
*
5.40
*
8.31
8.37
8.90
8.47
*
7.48
*
*
8.64
8.61
9.23
8.71
*
8.59
*
*
6.36
6.55
7.42
6.92
*
5.40
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QL01MM1
QL07MM1
QL14MM1
QL28MM1
QL99MM1
QL56MM1
QL99MM2
QL99MM3
QH010M1
QHQ70M1
QH140M1
QH280M1
QH990M1
QH560M1
QH990M2
QH990M3
QL010M1
QL070M1
QL140M1
QL2BOM1
QL990M1
QL560M1
QL990M2
QL990M3
QH010P1
QH070P1
QH140P1
QH280P1
QH990P1
QH560P1
QH990P2
QH990P3
1
7
14
28
46
56
137
240
1
7
14
28
46
56
133
242
1
7
14
28
46
56
106
241
1
7
14
28
46
56
128
242
2.56
2.34
2.50
2.37
2.38
2.33
2.40
2.43
2.27
2.51
2.35
2.37
2.29
2.36
2.50
2.73
2.15
2.33
2.25
2.33
2.17
2.25
2.23
2.27
2.45
3.39
3.64
4.10
4.40
3.85
4.40
4.26
35. 10
31 .80
34.40
32.60
33.60
32. 10
34.30
34.60
32. 10
34.90
33. 10
33.50
33. 10
32.90
35.70
37.70
29.70
32. 10
31.10
32. 10
30.80
31 .00
31 .80
31 .90
34.50
44.30
44.60
31 .80
55.70
48. 10
59.90
59.70
LENGTH
(inch)
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
WIDTH inch inch
(inch) width) width)
METHYL ETHYL KETONE
3.04
3.05
3.03
3.05
3.02
3.06
2.99
2.98
2.96
2.96
2.93
2.93
2.90
2.95
2.95
3.00
3.01
3.01
3.01
3.01
3.00
3.02
3.02
3.03
2.99
2.97
2.81
2.78
2.54
2.85
2.47
2.46
1 .03
1 .03
.04
. 1 1
.02
.04
.02
.01
ASTM #2
1 .02
1 .05
1 .02
1 .03
1 .02
1 .03
1 .05
1 .08
ASTM #2
1 .00
1 .00
1.01
1 .01
1 .00
1 .01
1 .00
1.01
ASTM #2
1 .04
1 .23
1 .39
1 .42
1 .48
1 .41
1 .51
1 .51
30
25
35
28
25
24
OIL
37
31
34
35
34
22
OIL
40
37
38
39
38
28
OIL
29
12
7
6
7
2
.84
.88
.76
. 16
*
.70
*
.41
20.
16.
23.
17.
16.
13.
32
16
56
18
*
00
*
*
SATURATED
.94
. 10
.68
.42
*
.58
*
.74
23.
18.
22.
22.
21 .
92
78
84
36
*
82
*
*
SATURATED
.28
.82
. 14
.96
*
.30
*
.60
100
. 16
.72
.50
.06
*
.44
*
.74
26.
24.
24.
24.
23.
0%
17.
6.
7.
7.
7 .
24
22
14
92
*
48
*
*
50°
04
40
73
28
*
28
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
0% 23°C
40
35
49
39
41
46
50°C
45
43
49
51
56
56
23°C
46
44
47
49
50
43
C
39
32
27
24
27
25
.42
.34
.94
.32
*
.80
*
.73
. 14
.66
.02
.06
*
.22
*
. 18
.20
.22
.48
.64
*
.98
*
.94
.36
.62
.40
.52
*
.08
*
.84
32
30
45
32
35
41
40
45
47
51
41
37
42
44
45
35
30
24
24
27
.92
.20
.78
.98
*
. 10
*
*
.34
.22
.70
.92
*
.72
*
*
.04
.78
.38
.60
*
.80
*
*
.78
.98
.75
.65
*
.40
*
*
265
294
243
287
302
577
226
275
250
247
249
364
207
242
228
216
230
532
256
364
397
382
338
457
.66
.72
.82
.00
*
.42
*
.42
.22
.30
.58
.94
*
.88
*
.00
.00
.36
.08
.90
*
.64
*
.67
.'94
.28
.46
.04
*
.06
*
.75
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
359.44
410.10
344. 10
390.26
397.06
337.96
395.54
333.10
339.74
*
324.92
316.12
346.90
321.28
333. 18
*
341.34
*
*
381.48
538.98
471 . 18
443.80
*
435.50
9.48
8.74
10.04
9.38
*
8.38
*
1 1 .27
10.23
1 1 .24
10. 12
*
9.30
12.24
1 1 .46
1 1 .20
1 1 .55
*
1 1 .25
8.29
4.69
3.48
2.92
*
2.71
8.16
7.03
8.53
7.45
6.73
9.04
8.28
8.68
8.48
*
7.98
9.77
9.05
9.77
9.35
*
9.11
*
7. 13
5.09
4.07
3. 17
*
2.54
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QL010P1
QL070P1
QL140P1
QL280P1
QL990P1
QL560P1
QL990P2
QL990P3
QHO 1 PH 1
QH07PH1
QH14PH1
QH28PH1
QH99PH1
QH56PH1
QH99PH2
QH99PH3
QL01PH1
QL07PH1
QL14PH1
QL28PH1
QL99PH1
QL56PH1
QL99PH2
QL99PH3
QH01PL1
QH07PL1
QH14PL1
QH28PL1
QH99PL1
QH56PL1
QH99PL2
QH99PL3
1
7
14
28
46
56
128
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
. 19
.21
.23
.34
.29
.32
.38
.45
.43
.54
.78
.94
.83
.80
.04
. 15
.33
.49
.31
.40
.47
.32
.48
.51
. 23
. 27
. 17
.47
.35
. 25
.57
.74
30.
30.
30.
32.
31 .
31 .
32.
33.
33.
35.
38.
40.
39.
37.
41 .
42.
32.
34.
31 .
32.
34.
31 .
34.
34.
31 .
32.
30.
34.
34.
31 .
37.
39.
40
60
80
40
70
70
40
50
90
30
80
50
50
50
70
90
30
90
80
70
20
50
40
70
50
20
90
90
30
60
10
40
LENGTH
(inch)
3.
3.
3.
3.
3.
3.
3.
3.
2.
2.
2.
3.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
00
01
02
03
04
06
08
1 1
98
98
95
97
96
03
00
03
02
03
05
05
05
06
05
06
95
93
93
92
88
95
91
95
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
WIDTH inch inch
(inch) width) width)
ASTM #2
1 .00
*
1 .01
1 .02
1 .02
1 .03
1 .04
1 .05
PHENOL
1 .04
1 .06
1 .07
1 .08
1.10
1.10
1.13
1 . 15
PHENOL
.01
.02
.03
.03
.03
.03
.02
.03
PHENOL
1 .00
1 .02
1 .02
1 .02
1 .02
1 .02
1 .04
1 .07
OIL
42.
42.
42.
39.
37.
28.
8.0%
25.
25.
14.
21 .
21 .
13.
8.0%
35.
27.
28.
27.
21 .
1 .0%
38.
38.
27.
37.
30.
21 .
BREAKING
FACTOR
M
(lb/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
100.0% 23°C
72
82
50
22
*
38
*
52
50°C
64
30
60
32
*
18
*
1 1
23°C
18
32
*
36
*
92
*
23
50°C
18
82
14
32
*
70
*
40
27.46
27. 15
26.92
26.24
*
23.42
*
*
16.54
14.82
6.32
12.56
*
12.32
*
*
20.66
17.04
*
17.00
*
15.96
*
*
21 .30
24.96
14.78
23.50
*
20. 12
*
*
45
49
49
49
48
47
47
49
37
48
46
33
42
43
47
39
40
52
55
44
57
44
58
.88
.84
. 12
.32
*
.02
*
.68
.56
.40
.88
.68
*
.50
*
.73
.34
.02
*
.24
*
.28
*
.84
.44
.06
. 26
.70
*
.96
*
. 12
40
42
41
44
42
43
43
35
43
42
37
37
41
36
37
51
40
50
42
.04
.35
. 22
.26
*
.48
*
*
.58
.74
.58
. 12
*
64
*
*
00
40
*
00
*
92
*
*
38
42
90
16
*
58
*
*
200
225
202
231
229
457
313
325
306
324
302
441
223
303
282
304
312
613
231
248
263
257
263
386
.58
.00
.22
.46
*
.72
*
.42
.44
.92
.54
.62
4
.36
*
.67
.78
.78
.78
.26
*
.66
*
.08
.84
. 10
. 16
.90
*
. 18
*
.08
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (1b) (lb)
315.96
311.98
293. 14
322.02
*
320.56
417.16
434.28
430.24
423.82
*
398.92
389. 18
423.74
429.66
420.94
*
435.38
*
359.92
346.88
351 . 14
337.88
*
344.32
*
*
1 1 .86
1 1 .30
10.79
1 1
10
.02
*
.43
*
*
8. 25
8.49
7.63
6.97
*
6. 10
*
*
10.29
9.29
9.79
8.77
*
9.24
*
10.86
11.25
10.69
9.98
*
9. 19
9.33
9.52
9.28
8.09
*
8.12
*
7.76
7.26
6.82
6.06
*
5.66
8.57
7.61
7.59
7.43
*
7.57
*
*
9.24
10.15
9.18
8.54
*
7 .52
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
LENGTH
(inch)
WIDTH
(inch)
S-100
MODULUS
M
(lb/
inch
width)
S-100
MODULUS
T
()b/
inch
width)
BREAKING
FACTOR
M
(lb/
i nch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
PHENOL 1.0% 23°C
QL01PL1 1
QL07PL1 7
QL14PL1 14
QL28PL1 28
QL99PL1 46
QL56PL1 56
QL99PL2 137
QL99PL3 241
2. 15
2.17
2. 19
2. 19
2.26
2. 14
2.27
2.26
30.40
30.00
30.30
30.60
31 .60
29.60
31 .70
31 .80
2.99
3.01
3.01
3.00
3.00
3.01
3.00
3.01
0.99
1 .01
1 .01
1 .00
1 .00
1 .01
1 .00
1 .00
43.38
42.36
38.30
39.62
*
38.20
*
30.04
27.02
26.64
23.56
24.92
*
22.74
*
*
53.54
53.34
44.20
52.48
*
53.44
*
48.29
41 .04
47 . 16
39.80
45.28
*
40.84
it
*
192.98
235. 10
248.40
241 .60
*
239.96
*
514.58
305.86
329. 16
370.28
334.66
*
364.06
*
*
12.01
12.51
1 1 .45
1 1 .33
*
10.65
*
*
9.77
10.31
9.64
9.32
*
9.03
*
*
QH01PM1 1
QH07PM1 7
QH14PM1 14
QH28PM1 28
QH99PM1 46
QH56PM1 56
QH99PM2 137
QH99PM3 242
2.27
2.41
2.29
2.34
2.51
2.43
2.96
3. 10
31 .50
34.40
32.60
32.90
36.00
34.50
41 . 20
43. 10
2.97
2.93
2.93
2.93
2.89
2.97
2.97
3.01
1 .02
1 .01
1 .03
1 .04
1 .05
1 .04
1.11
1.13
29.24
30.42
*
28.94
*
28.66
*
16. 15
19.60
19.30
*
17.28
*
16.68
*
*
39.48
50.96
*
53.22
*
53.00
*
42.73
43.34
46.06
*
45.52
*
43. 18
*
V
266.58
293.62
289.42
290.86
*
279.74
*
391 .00
395.02
385.58
397.22
364.56
*
393. 10
*
*
9.85
9.84
9.41
8. 13
*
8.29
*
*
8.19
8.04
7.85
7.17
*
7.32
*
*
QL01PL1
QL07PL1
QL14PL1
QL28PL1
QL99PL1
QL56PL1
QL99PL2
QL99PL3
QH01PM1
QH07PM1
QH14PM1
QH28PM1
QH99PM1
QH56PM1
QH99PM2
QH99PM3
QL01PM1
QL07PM1
QL14PM1
QL28PM1
QL99PM1
QL56PM1
QL99PM2
QL99PM3
QH01SH1
QH07SH1
QH14SH1
QH28SH1
QH99SH1
QH56SH1
QH99SH2
QH99SH3
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
131
242
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
. 15
. 17
. 19
. 19
.26
. 14
.27
.26
.27
.41
.29
.34
.51
.43
.96
. 10
.27
.24
.26
.38
.32
.27
.33
.34
. 18
.23
.24
.22
. 14
.39
. 14
. 13
30
30
30
30
31
29
31
31
31
34
32
32
36
34
41
43
31
30
31
32
32
30
32
32
30
31
31
31
31
34
31
31
.40
.00
.30
.60
.60
.60
.70
.80
.50
.40
.60
.90
.00
.50
. 20
. 10
.80
.60
.00
.80
.50
.70
.70
.90
.60
.80
.50
.40
.00
.00
.30
.40
3.00
3.04
3.04
3.03
3.02
3.01
3.03
3.03
0
1
1
1
1
1
1
1
.99
.01
.01
.00
.00
.01
.00
.00
PHENOL
1
1
1
1
1
1
1
1
.02
.01
.03
.04
.05
.04
. 1 1
. 13
PHENOL
.00
.02
.02
.02
.01
.02
.01
.01
SODIUM
1
1
1
1
1
1
1
1
.01
.01
.01
.01
.01
.01
.01
.01
43.
42.
38.
39.
38.
30.
4 . 0%
29.
30.
28.
28.
16.
38
36
30
62
*
20
*
04
50
24
42
*
94
*
66
*
15
4.0% 23
37.
33.
33.
29.
23.
36
34
*
94
*
34
*
77
CHLORIDE
40.
40.
42.
39.
41 .
37.
26
30
28
68
*
84
*
46
27
26
23
24
22
°C
19
19
17
16
°C
25
20
19
18
35.
25
27
27
25
28
.02
.64
.56
.92
*
.74
*
*
.60
.30
*
.28
*
.68
*
*
.86
.68
*
.94
*
.78
*
*
0%
.54
.56
.36
.76
*
.24
*
*
53
53
44
52
53
48
39
50
53
53
42
48
46
51
46
40
50°C
45
44
50
45
52
53
.54
.34
.20
.48
*
.44
*
.29
.48
.96
*
.22
*
.00
*
.73
.02
.32
*
.44
*
. 18
*
.48
.54
.44
.58
.54
*
.20
*
.63
48.02
46.32
*
51 .44
*
46. 18
*
40.48
43.52
40.02
*
43.58
*
43.50
*
*
225.82
277.40
288.72
279. 14
*
274. 10
*
584.33
296.48
373.40
395.30
377.24
*
380.70
*
*
1 1 .82
10.60
9.83
9.77
*
9.33
*
*
8.97
8.37
8.20
8.11
*
7.41
*
*
QH01SH1 1
QH07SH1 7
QH14SH1 14
QH28SH1 28
QH99SH1 46
QH56SH1 56
QH99SH2 131
QH99SH3 242
2. 18
2.23
2.24
2.22
2. 14
2.39
2. 14
2.13
30.60
31 .80
31 .50
31 .40
31 .00
34.00
31 .30
31 .40
2.95
2.91
2.91
2.91
2.88
2.95
2.88
2.89
1 .01
1 .01
1 .01
1 .01
1 .01
1 .01
1 .01
1 .01
40.26
40.30
42.28
39.68
*
41 .84
*
37.46
25.54
27.56
27.36
25.76
*
28.24
*
*
45.54
44.44
50.58
45.54
*
52.20
*
53.63
40.80
39.06
45.72
39.64
*
46.00
*
*
194.48
209.82
215.56
208.20
*
210.00
*
420.50
324.48
314.46
31 1 .86
314.08
*
273.86
*
*
1 1 .40
12.09
12.24
1 1 .60
*
11.16
*
*
9.33
9.77
9.63
9. 10
*
9.89
*
«
-------
CHLOROSULFONATED POLYETHYLENE:
AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QL01SH1
QL07SH1
QL14SH1
QL28SH1
QL99SH1
QL56SH1
QL99SH2
QL99SH3
QH01SM1
QH07SM1
QH14SM1
QH28SM1
QH99SM1
QH56SM1
QH99SM2
QH99SM3
QL01SM1
QL07SM1
QL14SM1
QL28SM1
QL99SM1
QL56SM1
QL99SM2
QL99SM3
QH01WP1
QH07WP1
QH14WP1
QH28WP1
QH99WP1
QH56WP1
QH99WP2
QH99WP3
1
7
14
28
46
56
131
241
1
7
14
28
46
56
124
242
1
7
14
28
46
56
124
241
1
7
14
28
46
56
122
242
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
. 16
.23
. 12
.26
. 13
.20
. 13
. 13
.39
.28
. 26
. 14
. 18
.09
. 17
. 16
.06
.22
.22
. 18
. 16
. 18
. 16
. 17
.27
.34
.33
.38
.34
.38
.49
.64
30
31
29
31
30
30
30
30
33
32
31
30
31
29
31
31
28
31
30
30
30
31
30
30
31
33
32
33
34
33
35
38
. 10
.00
.50
.40
. 10
.70
.20
.50
.60
.30
.90
.40
.50
.50
.50
.70
.60
.00
.90
.30
.60
.00
.80
.80
.90
.50
.80
.50
.30
.60
.80
.30
LENGTH
(inch)
3
3
3
3
2
3
2
2
2
2
2
2
2
2
2
2
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
00
01
00
01
99
00
99
99
94
91
92
93
68
93
88
88
00
01
00
00
99
99
99
99
.94
.92
93
.93
89
93
92
95
WIDTH
(inch)
SODIUM
1 .00
1 .00
1 .00
1 .00
0.99
1 .00
0.99
0.99
SODIUM
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1 .00
SODIUM
1 .00
1 .00
1 .00
1.01
0.99
0.99
0.99
0.99
WATER
1.01
.02
.02
.02
.02
.03
.03
.06
S-100 S-100
MODULUS MODULUS
M T
(lb/ (lb/
inch inch
width) width)
CHLORIDE
39
43
41
41
41
34
.26
.38
.80
.94
*
.34
*
.78
CHLORIDE
38
38
37
36
39
36
.48
.32
. 10
. 10
*
.00
*
.64
CHLORIDE
38
41
42
39
41
33
100.
43
34
32
34
34
23
.90
.30
.78
.82
*
. 14
*
.93
0% 50
.00
.36
.04
.35
*
.34
*
.78
35.0%
24.92
27.38
27.42
26.54
*
26.58
*
*
10.0%
24.58
24.60
25.94
22.58
*
26. 14
*
*
10.0%
23.78
26.20
26.50
26.22
*
26.42
*
*
°C
27.44
21 .94
21 .70
22.34
*
21 .44
*
*
BREAKING
FACTOR
M
(lb/
inch
width)
23°C
42
45
46
48
50
42
50°C
42
44
47
44
50
55
23°C
43
44
49
48
51
48
48
44
47
49
55
55
. 18
.86
.42
.08
*
.40
*
.92
.50
.38
.86
. 14
*
.66
*
. 17
.58
.30
.34
.64
*
.34
*
.37
.98
.90
. 12
.30
*
.70
*
. 10
BREAKING
FACTOR
T
(pound/
inch
width)
37
37
41
42
41
37
40
45
39
46
37
38
41
42
46
43
40
44
44
50
.72
.30
. 16
.62
*
.82
#
*
.40
.42
.06
.00
*
.62
*
*
. 16
.82
. 18
.50
*
. 18
*
*
. 24
.44
.90
. 18
*
.20
*
*
ELONGATION
AT
BREAK
M
(inch)
181
206
196
197
209
436
197
229
235
238
228
390
217
206
210
220
222
493
186
259
255
268
254
357
.80
.78
.64
.82
*
. 16
*
. 17
. 12
.54
84
02
*
48
*
50
68
40
20
26
*
34
*
83
54
58
82
15
*
00
*
83
ELONGATION
AT TEAR TEAR
BREAK RESISTANCE RESISTANCE
T M T
(inch) (lb) (lb)
320.86
297.06
313.88
312.24
*
280.86
*
303.56
333.38
325.16
335.32
*
305.60
*
*
325.72
324.28
287.44
305.12
*
317.96
*
302.68
353.26
351.00
353.72
*
332.22
12.22
12.19
12.62
1 1 .87
*
12.30
*
*
10.
1 1
1 1
10.
49
76
80
70
1 1 . 23
1 1
1 1
12
1 1
1 1
.67
,99
,07
.57
*
.73
1 1 .74
10.81
10.41
10.97
*
9.76
10.11
9.66
10.14
9.63
*
9.51
9. 24
9.34
9.26
8.32
*
8 .94
9.42
9.44
9.58
9.28
*
9.60
*
*
9.66
9.07
8.43
8.95
*
8.05
*
-------
CHLOROSULFONATED POLYETHYLENE: AVERAGE FINAL PROPERTIES
WEIGHT THICKNESS
(gram) (mi 1)
QL01WP1
QL07WP1
QL14WP1
QL28WP1
QL99WP1
QL56WP1
QL99WP2
QL99WP3
QH01XM1
QH07XM1
QH14XM1
QH2BXM1
QH99XM1
QH56XM1
QH99XM2
QH99XM3
QL01XM1
QL07XM1
QL14XM1
QL28XM1
QL99XM1
QL56XM1
QL99XM2
QL99XM3
1
7
14
28
46
56
122
241
1
7
14
28
46
56
132
242
1
7
14
28
46
56
132
241
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
16
29
12
34
23
31
25
26
27
12
27
15
19
09
19
19
28
27
23
29
19
45
19
19
29
31
30
32
31
31
31
32
31
29
32
30
31
29
31
32
31
31
30
31
31
33
31
31
.90
.70
. 10
.30
.40
.90
.50
.00
.70
.80
. 10
.50
.80
.50
.90
.00
.60
.30
.90
.70
.00
.90
.00
.20
LENGTH
(Inch)
S-100
MODULUS
M
Mb/
WIDTH inch
(inch) width)
S-100
MODULUS
T
( 1b/
inch
width)
BREAKING
FACTOR
M
( 1b/
inch
width)
BREAKING
FACTOR
T
(pound/
inch
width)
ELONGATION
AT
BREAK
M
(inch)
ELONGATION
AT
BREAK
T
(inch)
WATER 100.0% 23°C
3.00
3.01
3.01
3.01
3.00
3.01
3.00
3.00
0
0
.00
.00
.00
.01
.99
.00
.00
.99
POTASSIUM
2.96
2.93
2.93
2.93
2.88
2.93
2.88
2.87
1
1
1
1
1
1
1
1
.01
.01
.01
.01
.01
.01
.01
.01
POTASSIUM
3.00
3.02
3.01
3.01
2.99
3.01
2.99
2.98
1
0
.00
.00
.01
.00
.00
.01
.00
.99
38.04
43.20
41 .76
38.76
*
39.66
*
31 .75
25.26
28. 18
27.08
23.64
*
24.04
*
*
DICHROMATE 10
40.20
37.00
37. 14
31 .28
*
36.94
*
32.98
26.20
24.30
24. 16
20.32
*
24.82
*
*
DICHROMATE 10
45.40
41 .34
39.72
41 .32
*
40.84
*
32.29
28.74
26.56
26.62
26.30
*
25. 10
#
*
44
48
50
47
52
43
0%
50
47
48
41
53
55
0%
52
48
50
48
52
41
.34
. 18
.04
.84
*
. 14
*
.51
50°C
.92
.06
.28
.76
*
.46
*
.53
23°C
.28
.92
.24
.06
*
.06
*
.72
39
42
44
42
46
45
44
46
38
48
44
43
44
42
46
.04
.44
.22
.50
*
.98
*
*
.92
.52
.54
.02
*
.86
*
*
.50
.26
.66
.54
*
.34
*
*
223.
195.
213.
225.
228.
461 .
229.
230.
219.
256.
238.
435.
200.
205.
217.
206.
229.
451 .
12
26
14
54
*
86
*
83
68
88
14
14
*
88
*
17
12
50
96
00
*
52
*
75
308
308
312
335
329
314
325
324
354
318
294
311
301
314
318
.26
.64
.68
.62
*
.82
*
*
.04
.80
.84
.64
*
.40
*
*
.52
.72
.62
.68
*
.50
*
*
TEAR TEAR
RESISTANCE RESISTANCE
M T
(lb) (Ib)
1 1 .84
12.49
1 1 .94
10.93
*
1 1 .95
1 1 .
1 1 .
1 1 .
10.
33
13
28
31
10.54
12.
1 1 .
1 1 ,
1 1 ,
34
76
84
50
1 1 .75
9.34
10.20
9.66
9.31
*
9.82
9.72
9.18
9. 13
8.53
*
8.77
9.94
9.75
9.64
9.70
*
9.33
-------
CSPE LW : STATISTICS
475
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
QH01AM1 1
QH07AM1 7
QH14AM1 14
QH28AM1 28
QH56AM1 56
QL01AM1 1
QL07AM1 7
QL14AM1 14
QL28AM1 28
QL56AM1 56
QH01BM1 1
QH07BM1 7
QH14BM1 14
QH28BM1 28
QH56BM1 56
QL01BM1 1
QL07BM1 7
QL14BM1 14
QL28BM1 28
QL56BM1 56
QH01DH1 1
QH07DH1 7
QH14DH1 14
QH28DH1 28
QH56DH1 56
QL01DH1 1
QL07DH1 7
QL14DH1 14
QL28DH1 28
QL56DH1 56
NUMBER
BF
M
STD
DEV
BF
M
1 .000
2. 160
0.939
1 .830
0.298
1 .860
0.771
3.825
1 .645
2.066
2.278
1 .340
1 .649
1 .367
2.489
1 .880
2.372
1 .570
2.292
0.946
1 .033
0.860
0.695
0.602
1 .721
0.620
2.090
0.770
1 .905
0.488
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF
T
HYDROCHLORIC
2.280
1 .620
1 .085
0.680
0.640
HYDROCHLORIC
1 .570
1 .344
1.216
1 .61 1
1 .470
EAB
M
ACID
5
5
5
5
5
ACID
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
0.956
0.900
0.686
0.923
1 . 136
5
5
5
5
5
SODIUM HYDROXIDE
5
5
5
5
5
0.638
0.936
2. 145
0.603
1 .226
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
0.965
0.510
0.770
0.482
2 . 469
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
0.880
0.896
2.360
0.578
0.651
5
5
5
5
5
STD
DEV
EAB
10.0%
3.
13.
5.
15.
9.
10.0%
12.
9.
7.
12.
17.
10.0%
18.
5.
7.
12.
7.
1 0 . 0%
32.
10.
12.
4.
5.
.8%
18.
5.
7.
9.
8.
.8%
14.
26.
12.
15.
9.
M
50°C
010
010
951
160
162
23°C
900
804
878
667
786
50°C
418
160
591
572
682
23°C
547
530
899
270
499
50°C
134
240
567
075
554
23°C
126
060
300
678
683
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
1 1 .850
11.040
15.407
4.790
6.387
13.950
18.963
12.174
15.671
18.052
8.893
5.863
12.578
6.096
7.703
7.502
9.640
19.000
11.349
20.638
8.786
89.700
30.500
13.270
9.726
NUMBER
TEAR
M
STD
DEV
TEAR
M
0. 100
0.270
0.359
0.060
0.290
0.200
0.223
0.242
0. 132
0. 159
0.201
0. 127
0.433
0.270
0.220
0.284
0.240
0.080
*
0.091
0. 196
0.230
0.230
0.037
0.208
NUMBER
TEAR
T
5
5
5
5
'5
STD
DEV
TEAR
T
0.220
0. 135
0.082
0.210
0.071
0.090
0. 125
0. 188
0.067
0.283
5
5
5
5
5
21 .007
9.730
9.161
4.221
5.656
5
5
5
5
5
0.507
0.240
0. 194
0. 190
0.082
5
5
5
5
5
0. 180
0. 160
0. 191
0. 133
0. 144
0. 140
0.221
0. 191
0. 164
0. 126
0.229
0.300
0. 180
*
0. 183
0. 183
0. 180
0. 160
0.332
0.072
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
QH01DL1 1
QH07DL1 7
QH14DL1 14
QH2BDL1 28
QH56DL1 56
QL01DL1
QL07DL1
QL14DL1
QL2BDL1
1
7
14
28
QL56DL1 56
QH01DM1 1
QH07DM1 7
QH140M1 14
QH28DM1 28
QH56DM1 56
QL01DM1 1
QL07DM1 7
QL14DM1 14
QL28DM1 28
QL56DM1 56
QH01FH1 1
QH07FH1 7
QH14FH1 14
QH26FH1 28
QH56FH1 56
QL01FH1
QL07FH1
QL14FH1
QL28FH1
QL56FH1
1
7
14
28
56
NUMBER
BF
M
STD
DEV
BF
M
1 . 128
1 .400
0.760
2.347
2.340
1 .395
1 .400
1 .880
1 .594
1 .892
2.218
2. 230
1 .006
0.908
0.401
1 . 209
1 .494
1 .380
1 .848
1 .507
2.010
1 .960
1 . 344
1 .730
2. 109
1 .380
1 .390
2.035
1 .340
1 .937
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
1 2 DICHLOROETHANE
5
5
5
5
5
1 .031
1 .060
0.560
1 .520
2.505
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
0.865
0.620
2. 180
1 . 169
1 .573
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
0.610
0.480
0.680
0.900
1 . 195
5
5
5
5
5
1 2 DICHLOROETHANE
5
5
5
5
5
5
5
5
5
'5
5
5
5
5
5
0.934
0.370
0.840
0.569
1 .857
FURFURAL
1 .480
1 .040
0.429
1 .270
0.869
FURFURAL
1 .450
1 .001
1 .474
0.660
0.612
5
5
5
5
5
8.0% 50°C
5
5
5
5
5
8.0% 23°C
5
5
5
5
5
STD
DEV
EAB
M
. 1% 50°C
10.182
15.010
12.490
1 1 .848
6.750
. 1% 23°C
1 1 . 228
17.700
8.700
18. 150
17.944
.5% 50°C
22. 1 12
17. 180
5.280
9.743
8. 189
.5% 23°C
17.909
14. 161
12.670
8 .444
16.114
16.590
12.610
5.456
12.210
9.839
15.340
12.390
14. 195
13.940
12. 166
NUMBER
EAB
T
STD
DEV
EAB
T
21.216
56.700
13.510
9.810
13.180
10.712
8. 140
17.360
12.569
17.763
15.973
10.920
11.740
12.900
12.958
12.333
8.200
8.660
10.379
18.876
8.200
13.560
6.751
8. 120
6. 168
10.330
17.700
8.312
10.300
6.056
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.244
0.490
0.320
0.201
0.493
0. 178
0.270
0.210
0.113
0. 273
0.303
0.090
0. 100
0.210
0.230
0.217
0.210
0.063
0. 160
0. 140
0. 130
0.060
0. 149
0.320
0.181
0.018
0. 140
0. 156
0. 190
0. 187
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.294
0. 120
0.280
0.086
0.114
0. 130
0.080
0.350
0.243
0. 277
0.204
0. 280
0. 250
0.208
0. 199
0. 265
0. 140
0.243
0.084
0.210
0.090
0.060
0. 143
0. 190
0. 240
0. 150
0. 160
0. 176
0. 230
0. 104
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
QH01FL1
QH07FL1
QH14FL1
QH28FL1
QL01FM1
QL07FM1
QL14FM1
QL28FM1
1
7
14
28
QH56FL1 56
QL01FL1 1
QL07FL1 9
QL14FL1 14
QL28FL1 28
QL56FL1 56
QH01FM1 1
QH07FM1 7
QH14FM1 14
QH28FM1 28
QH56FM1 56
1
7
14
28
QL56FM1 56
QHO1MH1 1
QH07MH1 7
QH14MH1 14
QH28MH1 28
QH56MH1 56
QL01MH1
QLD7MH1
QL14MH1
QL28MH1
1
7
14
28
QL56MH1 56
NUMBER
BF
M
5
5
5
5
5
STD
DEV
BF
M
3.590
0.940
1 .646
2.930
3.210
1 . 240
2. 139
2.511
2.300
0.813
2.300
1 . 140
0.977
1.610
0.953
2.240
2. 194
0.301
1 .390
1 .756
0.873
0.687
0.880
1 .078
0.380
0.941
1 .053
1.010
1 .433
1 .062
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
FURFURAL 1.
0.730
0.610
1 .886
2.370
2.228
FURFURAL 1 .
0.690
2 . 134
2.209
1 .690
0.858
FURFURAL 4.
1 . 140
1 .270
1.171
1 .340
0.585
FURFURAL 4.
1 .480
1.219
0.569
0.950
0.649
METHYL ETHYL
2.094
0.822
1.310
1 .676
1 .027
METHYL ETHYL
0.611
0.697
0.400
0.619
1.016
NUMBER
EAB
M
0% 50°C
5
5
5
5
5
0% 23°C
5
5
5
5
5
0% 50°C
5
5
5
5
5
0% 23°C
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
STD
DEV
EAB
M
7.780
6.310
13.208
18.550
7.299
5.690
13.536
18.550
16.330
12:714
8.310
14.610
4. 165
13.240
3.113
12.030
17.418
13.471
1 1 .870
18.566
26.0% 50°C
1 1 .544
6.589
6.830
5.217
7.719
26.0% 23°C
5.252
8.257
7.070
12.485
4. 108
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
6.630
2.850
14.567
8.040
8.969
8.640
16.376
20.436
23.100
12.143
7.220
13.500
14.796
20.230
4.569
9.500
7.603
10.036
10.830
7.477
19.519
5.886
5.710
19.029
7.656
11.616
5. 148
11.580
10.097
14.381
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.230
0. 160
0.320
0. 150
0.343
0. 120
0.270
0.207
0. 170
0. 120
0.229
0.090
0,078
0. 180
0.119
0. 140
0. 123
0. 193
0. 100
0. 102
0.151
0.333
0. 180
0.131
0, 193
0.202
0. 180
0. 170
0. 148
0. 172
NUMBER
TEAR
T
STD
DEV
TEAR
T
0. 120
0.210
0. 168
0.110
0.211
0.290
0. 129
0.274
0. 100
0. 157
0. 130
0. 178
0.247
0. 120
0.097
0.090
0.239
0. 129
0.080
0. 128
0.085
0.376
0.280
0.298
0. 137
0. 179
0.297
0.260
0.325
0. 100
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
QH01ML1 1
QH07ML1 7
QH14ML1 14
QH28ML1 28
QH56ML1 56
QL01ML1 1
QL07ML1 7
QL14ML1 14
QL26ML1 28
QL56ML1 56
QH01MM1
QH07MM1
QH14MM1
QH28MM1 28
QH56MM1 56
1
7
14
QL01MM1 1
QL07MM1 7
QL14MM1 14
QL28MM1 28
QL56MM1 56
QH010M1
QH070M1
QH140M1
QH280M1
1
7
14
28
QH560M1 56
QL010M1
QL070M1
QL140M1
QL280M1
1
7
14
28
QL560M1 56
NUMBER
BF
M
STD
DEV
BF
M
1 .038
1 .553
. 680
.016
1 .437
1.110
2.290
0.670
0.882
1 .000
1 .356
1 .350
0.840
1 .648
1 .406
0.266
1 .087
1.510
1 . 299
1 .049
2.309
1 .303
3.503
1 .499
1 .300
1 .445
0.841
1.519
1 . 736
2.622
NUMBER
BF
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
METHYL ETHYL
1 .351
0.502
0.560
1 .437
0.665
METHYL ETHYL
1 .085
1 .750
0.860
1.614
1 .000
METHYL ETHYL
0.746
1 .277
4.340
1 . 169
1 .003
METHYL ETHYL
0. 147
0.764
1 .460
1 .880
1 .277
ASTM #2 OIL
0.832
1 . 184
2.784
1 .665
1 .042
ASTM #2 OIL
1 .436
0.433
1 .424
2.051
1 .701
NUMBER
EAB
M
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
KETONE
5
5
5
5
5
STD
DEV
EAB
M
3.0% 50°C
17.094
10. 108
10. 150
4.311
5.239
3.0% 23°C
1 1 .769
25.370
7.740
25.321
13.500
13.0% 50°C
6.917
4.232
2.890
4.664
5.442
13.0% 23°C
5.932
18.336
7.010
12.366
6.373
NUMBER
EAB
T
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
SATURATED 50°C
5
5
5
5
5
23. 144
14.171
8.044
12.341
5.498
5
5
5
5
5
SATURATED 23°C
5
5
5
5
5
3.737
9.823
1 1 .806
17. 726
10. 784
5
5
5
5
5
STD
DEV
EAB
T
15.719
11.317
2.610
14.771
10.336
40.087
27.801
14.750
22.141
8.800
9.808
3.417
40.370
11.745
5.088
4.618
17.026
4.010
25.666
10.159
6. 193
26.235
19.616
10.460
6.907
5.642
18.291
14.402
16.588
9.377
NUMBER
TEAR
M
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
M
0.099
0.098
0.060
0. 176
0. 180
0. 246
0.093
0. 160
0. 102
0.288
0.053
0.707
0. 180
0. 165
0.247
0. 198
0.262
0. 149
0. 160
0.225
0.101
0. 240
0. 195
0.220
0.697
0.215
0. 174
0.228
0.249
0. 242
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 146
0. 167
0.410
0.045
0. 134
0. 178
0.141
0.220
0. 148
0.201
0. 174
0.172
0. 240
0. 193
0.085
0.346
0. 137
0.251
0.045
0.232
0. 188
0.349
0. 120
0.265
0.068
0. 134
0.054
0. 170
0.095
0.131
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
O
QH010P1 1
QH070P1 7
QH140P1 14
QH280P1 28
QH560P1 56
QL010P1 1
QL070P1 7
QL140P1 14
QL280P1 28
QL560P1 56
QH01PH1 1
QH07PH1 7
QH14PH1 14
QH28PH1 28
QH56PH1 56
QL01PH1 1
QL07PH1 7
QL14PH1 14
QL28PH1 28
QL56PH1 56
QH01PL1 1
QH07PL1 7
QH14PL1 14
SH28PL1 28
QH56PL1 56
QL01PL1 1
QL07PL1 7
QL14PL1
QL28PL1 28
QL56PL1 56
14
NUMBER
BF
M
STD
DEV
BF
M
0.670
1 .220
1 .344
1 .728
3.095
1 .348
0.867
1 .431
2.467
1 .949
1 .480
0.562
1 .690
0.483
1 .220
3.847
1 .932
*
2.442
0.554
1 .986
2.897
1 .660
0.810
2.080
.861
.826
.740
.257
1 .419
NUMBER
BF
T
5
5
4
5
5
5
4
5
5
5
5
5
5
5
5
5
5
*
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV
BF
T
ASTM #2 OIL
1 .429
1 .600
0.819
0.570
2.200
ASTM #2 OIL
0.868
0.742
1 .274
1 .777
0.758
PHENOL 8 . 0%
1 .677
0.791
1 .650
1 . 136
1 .240
PHENOL 8 . 0%
0.648
1.101
*
1 .680
2.270
PHENOL 1 .0%
0.747
1 .303
0.680
0.830
2.630
PHENOL 1.0%
4.818
0.931
0.750
2. 176
2.260
NUMBER
EAB
M
100.0%
5
5
5
5
5
1 00 . 0%
5
5
5
5
5
50°C
5
5
5
5
5
23°C
5
5
5
5
5
50°C
5
5
5
5
5
23°C
5
5
5
5
5
STD
DEV
EAB
M
50°C
9.230
22.400
25. 194
12.806
20.632
23°C
16.734
8.338
10.781
9.266
15.599
7.211
7. 153
16.000
5.462
4.600
26. 123
19.782
30.314
17.323
13.590
9.591
12.892
3.510
4.400
7.010
13.117
1 1 . 109
0.940
7.374
8.708
NUMBER
EAB
T
5
4
5
5
5
5
5
5
5
5
STD
DEV
EAB
T
15.535
17.800
19.463
5.980
14.160
6.435
8.520
9.798
23.405
14.693
12.263
12.386
7.020
19.296
6. 190
NUMBER
TEAR
M
5
5
5
5
5
5
5
5,
5
5
STD
DEV
TEAR
M
0. 174
0.250
0.116
0. 148
0.082
0.241
0.262
0. 155
0. 145
0.253
0. 146
0. 145
0.310
0.210
0. 102
2.939
8.525
15.570
11.830
17.850
30.667
14.394
7.050
25.033
7. 160
0. 147
0.801
0. 180
0.060
0.161
0.241
0.463
0. 160
0.201
0.298
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0. 168
0. 160
0. 174
0.091
0. 120
0. 159
0.254
0. 196
0.094
0.296
0.201
0. 169
0.046
0.118
0. 105
5
5
5
5
5
26
19
30
17
13
. 123
.782
.314
.323
.590
5
5
5
5
5
10
16
8
19
12
.794
.898
. 1 10
.080
.950
5
5
5
5
5
0
0
0
0
0
.364
.264
.049
.089
.068
5
5
5
5
5
0
0
0
0
0
. 185
. 164
.091
. 160
. 197
0.240
0.813
0.080
0.090
0.111
0. 134
0. 191
0. 192
0. 176
0. 100
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
00
QH01PM1 1
QH07PM1 7
QH14PM1 14
QH28PM1 28
QH56PM1 56
QL01PM1 1
QL07PM1 7
QL14PM1 14
QL28PM1 28
QL56PM1 56
OHO 1 SHI 1
QH07SH1 7
QH14SH1 14
QH28SH1 28
QH56SH1 56
QL01SH1 1
QL07SH1 7
QL14SH1 14
QL28SH1 28
QL56SH1 56
QH01SM1 1
QH07SM1 7
QH14SM1 14
QH28SM1 28
QH56SM1 56
QL01SM1 1
QL07SM1 7
QL14SM1 14
QL28SM1 28
QL56SM1 56
NUMBER
BF
M
STD
DEV
BF
M
1 .620
1 .703
*
1.210
1 . 180
2.408
0.745
*
1.316
3.220
1 .546
1 . 150
1 .649
1 .380
2.503
1 .339
1 .330
1 .875
2.356
1 .355
1 .804
1 .580
3. 146
1 . 170
0.659
1 . 785
1 .280
1.813
1 . 250
1 .405
NUMBER
BF
T
5
5
*
5
5
5
5
*
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
STD
DEV NUMBER
BF EAB
T M
PHENOL 4.0% 50°C
3.219 5
1.639 5
* 5
1.883 5
1.330 5
PHENOL 4.0% 23°C
2.774 5
1.822 5
* 5
0.784 5
0.982 5
SODIUM CHLORIDE 35
1 .439 5
1 . 200 5
1.256 5
1 . 180 5
1.043 5
SODIUM CHLORIDE 35
1.522 5
1.560 5
1 .847 5
1 .448 5
2.092 5
SODIUM CHLORIDE 10
1 .320 5
1 .023 5
1.845 5
1.260 5
1 . 194 5
SODIUM CHLORIDE 10
1 . 170 5
0.690 5
5.077 5
2.550 5
1.461 5
STD
DEV
EAB
M
20.423
8.283
5.080
4.023
7.210
7 .578
18.013
11.410
12.382
16.540
. 0% 50°C
29.047
15.930
15.213
14.980
14.685
. 0% 23°C
14.803
21.010
17.768
15.119
1 1 .893
. 0% 50°C
28. 1 16
17.880
6.453
14.780
7.833
.0% 23°C
12.097
17 .640
24. 282
12.550
18.309
NUMBER
EAB
T
5
5
5
5
5
STD
DEV
EAB
T
15.517
14.495
3.560
18.938
8.940
28.413
16.646
8. 170
9.204
10.480
16.169
10.400
7. 145
13. 170
13.569
12.437
26.330
19.490
11.790
23.096
36.617
23.120
8.953
8.430
6.233
11.410
7.210
56.481
23.800
12.349
NUMBER
TEAR
M
5
5
5
5
5
STD
DEV
TEAR
M
0.305
0.257
0. 161
0. 166
0.210
0.415
0. 159
0. 170
0. 104
0.089
0.172
0. 190
0.250
0. 140
0. 187
0.381
0. 190
0.305
0.230
0. 276
0. 242
0. 160
0.409
0.080
0.092
0.076
0. 190
0. 180
0.230
0. 107
NUMBER
TEAR
T
5
5
5
5
5
5
5
5
5
5
STD
DEV
TEAR
T
0.359
0.205
0. 169
0. 137
0.080
0.474
0.119
0.068
0.078
0. 159
0. 240
0. 180
0. 199
0.290
0.303
0.161
0. 170
0.207
0. 145
0.305
0.311
0. 120
0.318
0. 190
0. 159
0. 1 29
0.028
0.161
0. 140
0.099
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: STANDARD DEVIATIONS OF CHEMICAL IMMERSION RESULTS
-P-
00
QH01WP1 1
QH07WP1 7
QH14WP1 14
QH28WP1 28
QH56WP1 56
QL01WP1 1
QL07WP1 7
QL14WP1 14
QL28WP1 28
QL56WP1 56
QH01XM1 1
QH07XM1 7
QH14XM1 14
QH28XM1 28
QH56XM1 56
QL01XM1 1
QL07XM1 7
QL14XM1 14
QL28XM1 28
QL56XM1 56
NUMBER
BF
M
5
5
5
4
5
STD
DEV
BF
M
1 .007
1.010
1 .344
0.535
1 . 244
1.018
1 .303
1 .454
2. 173
0.896
0.920
2.981
1.710
0.820
1 .807
2.000
1 .230
2.320
3.310
1 .270
NUMBER
BF
T
STD
DEV
BF
T
NUMBER
EAB
M
STD
DEV
EAB
M
WATER 100.0% 50°C
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1 .383
0.630
1 . 138
1 .725
1 .308
WATER 100
1.919
1 .656
1 .547
1 .002
1 .871
POTASSIUM
1 .650
1 .966
2.020
0.920
0.798
POTASSIUM
2.370
0.730
2.230
1 .370
1 .873
5
5
5
4
5
.0% 23°C
5
5
5
5
5
DICHROMATE
5
5
5
5
5
DICHROMATE
5
5
5
5
5
1 1 .972
10.110
3.596
9.282
4.982
15.636
21 .055
1 1 . 175
12.309
7.725
1 0 . 0%
14.700
16.285
17.390
10.700
8.847
10.0%
1 1 .680
1 8 . 570
1 1 .750
23.300
9.973
NUMBER
EAB
T
50°C
23°C
STD
DEV
EAB
T
31 .926
6.910
9.899
16.117
5. 130
15.810
11.414
18.180
9.600
7.885
17.060
11.750
18.220
17.150
17.113
NUMBER
TEAR
M
STD
DEV
TEAR
M
0.258
0.310
0.423
0.151
0.222
0. 150
0.085
0.285
0. 180
0. 185
0.340
0.200
0. 196
0. 150
0. 195
NUMBER
TEAR
T
STD
DEV
TEAR
T
0.322
0.280
0.454
0.116
0.060
5
5
5
5
5
17.000
8.046
12.564
1 1 .282
13.945
5
5
5
5
5
0.232
0. 188
0.351
0. 166
0.098
5
5
5
5
5
0. 140
0.111
0. 231
0. 178
0.114
0. 100
0. 158
0. 134
0.210
0. 135
0.201
0.080
0. 190
0.280
0. 139
-------
CSPE LW : RETENTION OF PROPERTIES
483
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
OO
QH01AM1
QH07AM1
QH14AM1
QH28AM1
QH99AM1
QH56AM1
QH99AM2
QH99AM3
QL01 AMI
QL07AM1
QL14AM1
QL28AM1
QL99AM1
QL56AM1
QL99AM2
QL99AM3
QH01BM1
QH07BM1
QH14BM1
QH28BM1
QH99BM1
QH56BM1
QH99BM2
QH99BM3
QL01BM1
QL07BM1
QL14BM1
QL28BM1
QL99BM1
QL56BM1
QL99BM2
QL99BM3
QH'OIDHI
QH07DH1
QH14DH1
QH28DH1
QH99DH1
1
7
14
28
46
56
123
242
1
7
14
28
46
56
123
241
1
7
14
28
46
56
124
242
1
7
14
28
46
56
124
241
1
7
14
28
46
1
5
6
12
1 1
21
21
4
1
2
1
5
10
1 1
1 1
24
27
2
1 1
13
15
22
9
10
1 1
14
9
.3
.4
.9
.4
.3
.6
.2
. 1
.3
.4
.2
.6
.5
.7
.0
.4
.3
.0
.2
. 1
.7
.6
.7
.5
.4
.5
.6
.7
.7
.2
.0
.3
.9
.3
.9
.5
.0
PERCENT
THICKNESS
CHANGE
1 .0
2.6
5.3
9.2
15.7
13.9
22.5
24.5
.3
*
V
1 .3
.7
1 .0
.7
2.6
2.2
5.3
10.1
11.2
16.4
14.4
26.8
28.2
.6
1 .0
1 .4
3.2
14.9
16.3
27.0
28.4
8.2
9.3
10.8
14.8
14.1
PERCENT
THICKNESS
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
HYDROCHLORIC ACID 10.0% 50°C
.2
1 .3
3.8
8.5
16.6
14.7
28.8
31.8
88
86
82
82
*
67
*
42
90
88
88
81
*
63
*
*
HYDROCHLORIC ACID 10.0%
.3
.3
. 1
1 .6
1 .0
1 . 1
.8
3.2
.7
3.3
9.3
12.7
16.5
16.2
34.0
38.8
.6
1 .3
1 .5
4. 2
17.9
18.6
32.5
37.7
99
94
95
95
*
88
*
82
SODIUM HYDROXIDE
90
82
91
91
#
102
*
83
SODIUM HYDROXIDE
92
89
92
87
*
97
*
82
102
91
91
96
*
87
*
*
10.0%
92
83
93
96
*
107
*
*
1 0 . 0%
83
87
89
81
*
92
*
4
1 2 DICHLOROETHANE .8%
9.8
9.8
14.4
16.8
11.7
56
54
52
44
*
58
54
54
47
*
103
109
107
116
*
1 14
*
100
23°C
106
102
108
104
*
104
*
88
50°C
94
91
109
1 1 1
*
130
*
130
23°C
96
92
104
1 10
*
131
*
125
50°C
78
79
80
78
*
PERCENT
RETENTION
BF
T
1 1 1
1 19
129
130
*
135
*
*
1 12
103
101
1 15
*
1 12
*
107
99
108
106
*
125
*
*
98
97
107
1 13
*
133
*
*
88
89
89
85
PERCENT
RETENTION
EAB
M
107
1 14
1 19
1 13
*
1 17
*
131
93
97
104
99
*
102
*
1 1 1
89
98
96
88
*
87
*
75
87
97
102
1 15
*
105
ir
95
152
148
156
165
PERCENT
RETENTION
EAB
T
100
105
108
108
*
1 15
92
98
108
102
*
102
103
99
84
70
*
69
1 10
104
99
1 12
*
99
*
139
141
140
140
*
PERCENT
RETENTION
TEAR
M
92
92
88
83
*
67
*
*
102
99
97
101
*
94
*
*
91
89
87
77
*
79
93
90
94
91
*
85
74
72
71
PERCENT
RETENTION
TEAR
T
89
91
91
84
*
72
100
97
94
99
*
96
*
*
93
89
90
83
*
80
98
91
90
92
*
84
*
*
78
77
76
-------
CHLORQSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
00
Ln
QH560H1
QH99DH2
QH99DH3
QL01DH1
QL07DH1
QL14DH1
QL2SDH1
QL99DH1
QL56DH1
QL99DH2
QL99DH3
QH01DL1
QH07DL1
QH14DL1
QH28DL1
QH99DL1
QH56DL1
QH99DL2
QH99DL3
QL01DL1
QL07DL1
QL14DL1
QL28DL1
QL99DL1
QL56DL1
QL99DL2
QL99DL3
QH01DM1
QH07DM1
QH14DM1
QH28DM1
QH99DM1
QH56DM1
QH99DM2
QH99DM3
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
10.5
16.3
21 .6
6.3
6.4
8.8
7.0
7.6
8.0
8. 1
9.4
1 .9
3.5
3.8
5.2
6.9
7.0
14.0
20. 1
1 . 1
1 .8
2.3
2.7
2.8
3. 1
3.9
3.8
5.9
6. 1
7. 7
8.0
7. 2
7.6
13.3
21.3
PERCENT
THICKNESS
CHANGE
12.5
21.4
26.5
3.7
4.2
6.4
4.7
6. 1
6.5
7.4
8.7
3.0
4.0
4.9
6.3
9.7
8.9
16.4
PERCENT
THICKNESS
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
1 2 DICHLOROETHANE .8% 50°C
22.4
.3
.3
1 .7
2. 2
2.7
2.7
4.4
5.4
6. 1
5.4
8.3
9. 1
11.3
11.2
17.9
24.5
12.7
21 .8
30.4
73
*
54
74
*
*
1 2 DICHLOROETHANE
6.7
7.6
10.9
6.8
9.5
9.7
9.8
12.1
65
67
61
73
*
68
*
65
64
74
59
74
*
67
*
*
1 2 DICHLOROETHANE
100.0
4. 2
4.5
6.3
8.9
9. 1
18.2
29.0
72
69
63
71
*
71
*
57
75
70
59
71
*
70
*
*
1 2 DICHLOROETHANE
*
1 . 2
2.7
3.0
2.9
3.6
5.6
6.2
75
81
64
74
*
76
*
74
75
78
64
74
*
71
*
*
1 2 DICHLOROETHANE
6.4
6.4
9.8
9.7
9.0
9.9
18.0
29.8
60
63
51
73
*
74
*
56
60
58
49
74
t
76
*
*
98
*
98
.8% 23°C
80
81
84
89
*
88
*
87
. 1% 50°C
84
83
87
98
*
100
*
109
. 1% 23°C
81
89
82
89
*
95
*
95
.5% 50°C
81
81
77
97
4
101
*
1 13
PERCENT
RETENTION
BF
T
1 10
*
*
84
84
84
101
*
96
95
93
94
106
*
1 10
90
97
89
97
*
99
88
89
84
108
*
1 10
*
*
PERCENT
RETENTION
EAB
M
1 19
*
95
130
127
143
1 14
*
131
*
130
1 17
122
137
129
*
121
*
92
106
1 17
133
1 17
*
122
*
1 15
141
138
154
128
*
121
*
101
PERCENT
RETENTION
EAB
T
106
*
*
123
101
125
121
*
107
*
1 18
1 1 1
133
1 18
*
108
*
1 16
1 18
1 24
1 17
*
123
136
133
141
1 15
*
106
PERCENT
RETENTION
TEAR
M
81
*
*
78
80
73
80
*
72
85
88
84
81
*
81
*
85
89
81
87
*
93
75
74
83
77
*
80
PERCENT
RETENTION
TEAR
T
89
*
*
81
80
74
84
*
77
85
88
89
87
*
81
83
92
82
89
*
97
76
85
86
82
*
87
*
*
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT
PERCENT PERCENT PERCENT RETENTION RETENTION RETENTION RETENTION RETENTION RETENTION RETENTION RETENTION
WEIGHT THICKNESS THICKNESS SMOD SMOD BF BF EAB EAB TEAR TEAR
CHANGE CHANGE CHANGE MT MTMTMT
1 2 DICHLOROETHANE .5% 23°C
QL01DM1 1
QL07DM1 7
QL14DM1 14
QL2BDM1 28
QL99DM1 46
QL56DM1 56
QL99DM2 137
QL99DM3 241
QH01FH1 1
QH07FH1 7
QH14FH1 14
QH28FH1 28
QH99FH1 46
QH56FH1 56
QH99FH2 137
QH99FH3 242
-P-
00
ON
QL01FH1 1
QL07FH1 7
QL14FH1 14
QL28FH1 28
QL99FH1 46
QL56FH1 56
QL99FH2 137
QL99FH3 241
QH01FL1 1
QH07FL1 7
QH14FL1 14
QH28FL1 28
QH99FL1 46
QH56FL1 56
QH99FL2 137
QH99FL3 242
QL01FL1 1
QL07FL1 9
QL14FL1 14
QL28FL1 28
4.8
5.3
5.7
5.4
4. 1
5.3
5.0
7.5
9.3
12.7
14. 1
16.5
27. 1
24.7
35. 1
37.9
7.2
11.3
9.9
12.4
12.5
13.8
13.4
15.8
1 .7
3.9
3.6
4.6
6.5
7. 1
13.5
19.7
1 .0
2.3
2.0
2.6
2.7
3.4
2.7
4.0
2.6
4.0
4.6
6.6
7.5
13.7
14. 1
16.6
25.9
23.7
35.7
39.4
4.7
7.6
10.8
9.4
8.8
11.0
10.8
12.5
2.5
5.2
4.8
6.7
9.5
9.2
16.0
20.9
1 .0
1 .9
2.0
2.6
5.0
5.2
5.0
6. 1
4.0
5.4
5.9
9.3
9.8
15.3
17.9
21.2
34.7
33.4
50.6
58.9
8.4
12.9
11.5
15.0
14.8
17.7
17.0
20.2
1 .7
4.3
4.5
6.5
8.8
9.5
18.6
26.9
1 .3
2.9
2.8
3.8
74
71
68
69
*
72
*
68
FURFURAL
63
61
59
64
*
59
*
55
FURFURAL
75
68
77
62
*
62
*
56
FURFURAL
84
78
76
78
*
79
*
59
FURFURAL
97
88
88
71
71
66
63
68
*
68
8.0% 50°C
60
59
57
63
*
57
*
*
8.0% 23°C
71
62
77
62
*
59
*
*
1.0% 50°C
83
76
74
77
*
77
*
1 .0% 23°C
97
90
81
70
83
91
84
88
*
91
*
89
92
97
96
90
4
103
*
67
96
93
98
82
*
89
*
83
104
109
104
97
*
1 14
*
109
1 12
105
104
83
88
91
90
94
*
98
*
*
102
106
102
97
*
1 12
*
104
95
112
87
*
94
*
120
124
1 17
109
*
124
*
122
1 16
1 13
93
1 16
1 18
124
128
*
122
*
122
135
137
136
123
*
123
*
54
120
123
1 1 1
136
*
137
*
125
1 13
122
1 16
1 17
*
1 15
*
93
103
105
103
1 17
1 19
124
126
123
*
121
*
131
124
125
1 10
*
1 1 1
1 16
121
1 17
128
*
131
*
*
1 14
1 17
1 12
1 12
*
106
*
*
102
107
1 10
1 15
81
80
80
82
*
85
74
71
68
64
*
54
83
72
85
71
*
74
*
90
83
81
84
*
79
100
94
92
87
84
82
78
83
*
92
*
75
76
73
67
*
64
*
85
77
86
73
*
80
*
95
91
85
84
*
78
*
*
103
92
95
89
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT PERCENT
WEIGHT THICKNESS
CHANGE CHANGE
QL99FL1 46
QL56FL1 56
QL99FL2 137
QL99FL3 241
QH01FM1 1
QH07FM1 7
QH14FM1 14
QH28FM1 28
QH99FM1 46
QH56FM1 56
QH99FM2 137
QH99FM3 242
QL01FM1 1
QL07FM1 7
QL14FM1 14
QL28FM1 28
QL99FM1 46
QL56FM1 56
QL99FM2 137
QL99FM3 241
QH01MH1 1
QH07MH1 7
QH14MH1 14
QH28MH1 28
QH99MH1 46
QH56MH1 56
QH99MH2 137
QH99MH3 242
QL01MH1 1
QL07MH1 7
QL14MH1 14
QL28MH1 28
QL99MH1 46
QL56MH1 56
QL99MH2 137
QL99MH3 241
3.0
3.3
4. 1
4.5
4.4
7.3
7.0
11 .0
12.3
12.7
23.4
22.6
2.9
5.0
4.7
2.9
6. 1
6.7
7.0
8.3
23.6
35.8
35.8
33.3
33.6
38.5
52.9
37.5
15.5
16. 1
16.9
17.4
18. 1
17.4
18.9
19.5
2.6
2.5
3.9
4.9
4.7
8. 1
8.0
9.4
14.4
13.6
24.2
24.5
1 .9
3.3
1 .3
2.9
4.5
5.9
6. 1
7.4
28.9
35.5
33.9
2.5
44.3
39.7
55. 1
42.3
11.7
12.7
13.8
14.3
15.4
17.0
16.3
16.7
PERCENT
PERCENT RETENTION
THICKNESS SMOD
CHANGE M
3.9
4.3
5.2
6.7
5.0
8.2
9.0
12.1
15.8
16.2
31 .9
32.3
3.6
5.0
8.0
4.2
7.3
9.4
8.9
11.2
41 .2
50. 1
50.7
10.2
46.2
61 .7
42.8
35.0
21.8
22. 1
22.4
24. 1
24.5
30.5
25.4
66. 1
FURFURAL 1 .
*
74
*
74
FURFURAL 4.
68
68
69
74
*
74
*
58
FURFURAL 4.
87
75
62
73
*
78
*
70
METHYL ETHYL
40
33
40
36
*
34
*
33
METHYL ETHYL
57
52
61
53
*
44
*
44
PERCENT PERCENT
RETENTION RETENTION
SMOD BF
T M
0% 23°C
*
68
*
*
0% 50°C
68
69
67
69
*
73
*
*
0% 23°C
84
73
59
71
*
74
*
*
KETONE 26.0%
36
31
47
37
*
32
*
*
KETONE 26.0%
56
56
62
50
*
41
*
*
*
97
*
98
94
99
103
88
*
1 10
*
101
104
97
89
99
*
102
*
93
50°C
72
67
79
73
*
75
*
30
23°C
79
76
92
76
*
75
*
89
PERCENT
RETENTION
BF
T
*
103
*
*
105
1 13
1 10
95
*
123
*
*
1 12
106
96
107
*
108
*
*
76
72
96
85
*
80
*
*
81
81
100
81
*
78
*
*
PERCENT
RETENTION
EAB
M
*
125
*
125
131
131
127
1 17
*
1 15
*
90
1 13
1 19
130
121
*
1 18
*
121
175
173
156
170
*
147
4
69
138
146
131
145
*
152
*
136
PERCENT
RETENTION
EAB
T
*
122
*
*
120
123
1 15
120
*
106
*
*
1 13
1 16
125
1 1 1
*
1 18
*
*
157
151
129
144
*
124
*
*
127
131
1 19
139
*
141
*
*
PERCENT
RETENTION
TEAR
M
*
83
*
*
78
79
75
81
*
67
*
*
93
81
69
76
*
83
*
*
44
42
49
48
*
34
*
*
57
62
62
64
*
52
*
*
PERCENT
RETENTION
TEAR
T
*
89
*
4
81
83
80
86
*
72
*
*
94
88
74
80
*
87
*
*
47
53
55
48
*
39
*
*
65
64
65
68
*
53
*
*
-------
IIL.K.31UM KHOUL-I.}, KLIt-NllUN Uh PKOHtKIItb
PERCENT
WEIGHT
CHANGE
QH01ML1
QH07ML1
QH14ML1
QH28ML1
QH99ML1
QH56ML1
QH99ML2
QH99ML3
QL01ML1
QL07ML1
Q,_14ML1
QL28ML 1
QL.99ML1
QL56ML1
QL.99ML2
QL99ML3
QH01MM1
QH07MM1
QH14MM1
OH28MM1
OH99MM1
OH56MM1
OH99MM2
QH99MM3
QL01MM1
QL07MM1
QL 14MM1
QL28MM1
QL99MM1
QL56MM1
QL99MM2
QL99MM3
QH010M1
QH070M1
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
241
1
7
14
28
46
56
137
242
1
7
14
28
46
56
137
240
1
7
2
5
5
6
9
9
19
20
1
2
2
3
3
3
4
5
1 1
20
21
22
28
26
28
27
6
8
9
9
9
9
10
1 1
2
12
.9
.0
.6
. 2
.2
.3
.6
. 1
. 1
.6
.9
.2
.7
.9
.6
. 1
.6
.2
.8
.5
.7
.7
.0
.4
.7
.8
. 1
.6
.4
.6
.2
.6
.0
. 1
PERCENT
THICKNESS
CHANGE
4.8
6.7
7.2
7.9
13.4
13.2
22.5
24.4
.6
2. 1
1 .6
2.9
3.0
3.9
4.0
5.0
15.8
22.9
23.5
24.6
34.6
31.3
35.0
35.9
5. 1
6.4
7.8
6.2
9. 1
8.8
11.4
12.3
3.2
11.5
PERCENT
THICKNESS
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
PERCENT PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION RETENTION
BF EAB EAB TEAR
T M T M
METHYL ETHVL KETONE 3.0% 50°C
4
6
7
8
12
15
26
29
1
3
3
4
4
5
5
6
19
26
32
33
42
42
37
40
9
1 1
13
19
13
15
14
14
3
14
.6
.9
.9
.6
.4
.6
.4
.3
.0
.7
.2
.6
.8
.8
.5
.8
. 1
.9
.5
.9
. 2
. 1
.9
.4
.5
.5
. 1
. 1
.5
. 2
.8
.7
. 1
.8
67
67
72
65
*
74
*
55
METHYL ETHYL
72
77
80
71
it
73
*
71
METHYL ETHYL
50
46
56
52
*
42
*
43
METHYL ETHYL
67
56
77
61
*
56
*
61
ASTM #2 OIL
82
67
68
69
71
67
*
66
*
*
KETONE 3.
73
73
79
67
*
67
*
*
KETONE 13
50
47
58
51
*
39
*
*
KETONE 13
68
54
79
57
*
53
*
*
SATURATED
80
63
79
95
100
88
*
1 1 1
*
101
0% 23°C
79
84
104
84
*
99
*
95
.0% 50°C
77
80
99
88
*
89
*
71
.0% 23°C
82
72
102
80
*
85
*
93
50°C
92
89
86
104
1 14
100
*
109
*
83
89
1 1 1
87
*
101
*
87
93
104
98
*
95
*
82
76
1 14
82
*
88
*
103
101
1 IB
129
124
133
*
1 16
*
87
108
107
1 18
124
*
130
*
131
158
158
144
147
*
146
*
86
126
140
1 16
136
*
143
*
140
107
130
1 19
124
1 18
122
*
109
108
1 13
1 13
124
*
123
147
137
1 19
127
*
125
1 18
135
1 13
128
*
131
1 1 1
130
80
82
82
78
*
69
79
85
86
87
*
83
*
52
63
65
63
*
47
75
69
79
74
*
66
89
PERCENT
RETENTION
TEAR
T
81
82
87
83
*
73
85
84
90
85
*
84
62
64
73
68
*
53
80
69
84
73
*
66
*
89
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS. RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
QH990M 1
QH560M1
QH990M2
QH990M3
QL010M1
QL070M1
QL140M1
QL280M1
QL990M1
QL560M1
QL990M2
QL990M3
QH010P1
QH070P1
QH140P1
QH280P1
QH990P1
QH560P1
QH990P2
QH990P3
QL010P1
QL070P1
QL140P1
QL280P1
QL990P1
QL560P1
QL990P2
QL990P3
QHO 1 PH 1
QH07PH1
QH14PH1
QH28PH1
QH99PH1
QH56PH1
QH99PH2
QH99PH3
46
56
133
242
1
7
14
28
46
56
106
241
1
7
14
28
46
56
128
242
1
7
14
28
46
56
128
241
1
7
14
28
46
56
137
242
7.
9.
16.
27.
1 .
1 .
2.
2.
3.
4.
6.
16.
48.
71 .
84.
103.
85.
103.
96.
1 .
2.
4.
5.
7.
9.
13.
14.
16.
16.
22.
29.
28.
38.
44.
1
8
9
7
6
2
5
3
2
2
7
7
4
4
6
1
0
5
3
B
7
4
8
7
8
0
8
3
7
4
9
8
2
5
9
0
PERCENT
THICKNESS
CHANGE
9.6
10.4
18.2
24.8
1 .0
1 .6
1 .3
1 .6
2.0
3.0
5.3
5.6
19.4
38.0
52.7
2.9
83.2
67 .6
97.0
96.4
1 .0
1 .0
2.7
4.5
4.6
5.0
6.9
10.6
13.0
16.9
17.9
22.7
27.8
23.8
35.0
38.8
ERCf
iCKr
HAN(
9.
12,
23,
36.
1 ,
1 .
2,
2,
2
4
7
9
24
66
98
34
134
124
150
148
1
100
3
7
8
9
14
20
18
22
23
75
39
37,
53,
62,
:NT
•IES
;E
, 2
.0
.8
.8
. 1
.9
.0
.6
.8
.4
.5
.4
.0
.7
.3
.3
. 1
.0
.4
.2
1
.0
.9
. 1
.3
.4
.4
.9
.4
.7
.9
.0
.3
. 1
.7
.7
PERCENT
RETENTION
S SMOD
M
ASTM #2 OIL
*
75
*
57
ASTM #2 OIL
87
82
82
86
*
83
*
72
ASTM #2 OIL
63
27
16
13
*
16
*
7
ASTM #2 OIL
92
92
92
85
*
81
4
71
PHENOL 8.0%
55
55
32
46
*
46
4
33
PERCENT
RETENTION
SMOD
T
SATURATED
*
73
*
*
SATURATED
87
81
80
83
*
78
*
*
100.0% 50
57
21
26
24
*
24
*
*
100.0% 23
92
91
90
87
*
78
*
*
50°C
55
49
21
42
*
41
*
*
PERCENT
RETENTION
BF
M
50°C
*
1 15
*
1 12
23°C
94
90
97
101
4
104
*
88
°C
80
67
56
50
*
55
*
52
°C
94
102
100
101
*
98
*
95
97
101
77
99
*
95
4
67
PERCENT
RETENTION
BF
T
*
129
*
*
103
94
106
1 12
*
1 15
*
4
89
77
62
62
*
69
*
4
100
106
103
1 1 1
*
106
*
*
109
109
89
108
*
107
*
4
PERCENT
RETENTION
EAB
M
*
1 18
*
88
98
1 15
108
103
*
109
*
129
122
173
188
181
*
160
*
1 1 1
95
107
96
1 10
*
109
*
1 1 1
149
154
145
154
*
143
*
107
PERCENT
RETENTION
EAB
T
*
107
*
*
104
1 14
106
1 10
*
1 12
4
*
125
177
155
146
*
143
*
*
104
103
96
106
*
105
*
*
137
143
142
139
*
131
*
4
PERCENT
RETENTION
TEAR
M
4
73
*
*
96
90
88
91
*
89
*
*
65
37
27
23
*
21
4
*
93
89
85
87
*
82
*
*
65
67
60
55
*
48
*
4
PERCENT
RETENTION
TEAR
T
*
78
*
*
96
89
96
92
*
89
*
*
70
50
40
31
*
25
*
*
91
93
91
79
4
80
*
*
76
71
67
59
*
55
4
4
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PHENOL 8.0% 23°C
PERCENT PERCENT PERCENT' PERCENT PERCENT PERCENT
RETENTION RETENTION RETENTION RETENTION RETENTION RETENTION
BF BF EAB EAB TEAR TEAR
M T M T M T
QL01PH1 1
QL07PH1 7
QL14PH1 14
QL28PH1 28
QL99PH1 46
QL56PH1 56
QL99PH2 137
QL99PH3 241
QH01PL1 1
QH07PL1 7
QH14PL1 14
QH28PL1 28
QH99PL1 46
QH56PL1 56
QH99PL2 137
QH99PL3 242
-P-
0
QL01PL1 1
QL07PL1 7
QL14PL1 14
QL28PL1 28
QL99PL1 46
QL56PL1 56
QL99PL2 137
QL99PL3 241
QH01PM1 1
QH07PM1 7
QH14PM1 14
QH28PM1 28
QH99PM1 46
QH56PM1 56
QH99PM2 137
QH99PM3 242
QL01PM1 1
QL07PM1 7
QL14PM1 14
QL2BPM1 28
6.7
10.7
9.0
9.5
10.9
9.8
11.5
12.6
1 .9
2.5
1 .8
4.0
6.0
5.0
15.9
23.5
.9
1 .8
1 .9
2.0
2.0
2.2
2.4
2.4
6. 1
6.8
7.3
9.8
12.8
11.9
33.0
39.5
2.9
6.0
5.7
6.4
4.9
8.4
9.3
7. 2
7.2
7.9
7.8
8.8
2.6
3.9
4.7
6. 1
8.2
6.4
17.0
24.3
.7
1 .4
1 .7
.3
1 .6
2. 1
1 .9
2.3
5.4
7.5
8.3
10.8
14.6
12.4
31 .2
37.3
2.3
3.7
3.7
5.5
7.8
13.8
13.8
1 1 .8
12.8
12.9
13.2
14.8
2.3
2.9
4. 1
5.3
7.2
6.4
20.3
32.6
1 .3
2.3
2.4
.9
2.5
3.0
2.6
2.9
6.7
8.3
8.9
11.8
16.3
15.6
45.2
57.0
3.3
7.0
6.6
8.5
76
59
*
61
*
60
*
53
PHENOL 1.0%
82
84
59
81
*
66
*
54
PHENOL 1.0%
94
91
83
86
*
83
*
75
PHENOL 4.0%
63
66
*
63
*
62
*
40
PHENOL 4.0%
81
72
*
73
69
57
*
57
*
53
*
*
50°C
71
83
49
78
*
67
*
*
23°C
90
89
79
83
*
76
*
*
50°C
65
64
*
58
*
56
*
*
23°C
86
69
*
66
86
88
*
96
*
80
*
82
107
1 12
90
1 18
*
92
*
1 16
109
109
90
107
*
109
*
96
81
104
*
109
*
108
*
85
98
95
*
105
93
94
*
103
*
92
93
129
102
125
*
106
103
1 18
100
1 13
*
102
*
108
1 15
*
1 14
*
108
109
100
*
109
106
144
134
144
*
148
*
149
1 10
1 18
125
122
*
125
*
94
91
1 1 1
1 18
1 15
*
1 14
*
125
126
139
137
138
*
133
*
95
107
131
137
132
128
139
141
138
*
143
1 18
1 14
1 16
1 1 1
*
1 13
*
*
101
108
122
1 10
*
120
130
127
131
120
#
129
*
98
123
130
124
81
73
77
69
*
73
85
89
84
79
*
72
95
99
90
89
*
84
*
*
78
77
74
64
*
65
*
*
93
83
77
77
84
75
74
73
*
74
*
*
91
100
90
84
*
74
*
96
101
95
91
*
88
*
80
79
77
70
*
72
*
88
82
80
79
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
QL99PM1 46
QL56PM1 56
QL99PM2 137
QL99PM3 241
OHO 1SH1 1
QH07SH1 7
QH14SH1 14
QH28SH1 28
QH99SH1 46
QH56SH1 56
QH99SH2 131
QH99SH3 242
QL01SH1 1
QL07SH1 7
QL14SH1 14
QL28SH1 28
QL99SH1 46
QL56SH1 56
QL99SH2 131
QL99SH3 241
QH01SM1 1
QH07SM1 7
QH14SM1 14
QH28SM1 28
QH99SM1 46
QH56SM1 56
QH99SM2 124
QH99SM3 242
QL01SM1 1
QL07SM1 7
QL14SM1 14
QL28SM1 28
QL99SM1 46
QL56SM1 56
QL99SM2 124
QL99SM3 241
PERCENT
WEIGHT
CHANGE
PERCENT
THICKNESS
CHANGE
PERCENT PERCENT
PERCENT RETENTION RETENTION
THICKNESS SMOD SMOD
CHANGE M T
PERCENT
RETENTION
BF
M
PERCENT
RETENTION
BF
T
PERCENT
RETENTION
EAB
M
PERCENT
RETENTION
EAB
T
PERCENT
RETENTION
TEAR
M
PERCENT
RETENTION
TEAR
T
PHENOL 4.0% 23°C
6.4
6.6
7.0
7.3
.3
.3
.4
.4
.6
.6
.6
.2
.2
.2
.3
.4
.4
4
.3
.4
_ 4
. 5
.6
. 6
.7
. 3
. 1
.3
.4
.5
.5
.7
.6
.6
.8
4.5
4. 1
5. 1
5.8
2.0
3.2
1 .9
3.0
3.3
3.0
4.3
4.7
.7
.6
1 .0
.6
.3
.7
. 7
1 .7
1 .8
3.2
1 .9
3.4
2.9
2.4
2.9
3.6
. 7
1 .0
.3
1 .0
.3
1 .6
.3
.3
7.2
6.5
8 . 1
8.6
.8
1 .0
.6
.9
. 9
2.0
1 . 6
2. 1
.7
1 .0
1 .2
.9
.4
.9
.5
1 .7
.5
1 .2
. 1
1 .8
.6
1 . 1
.3
.9
.7
1 .3
.2
1 .3
. 1
2.2
.4
. 2
*
63
£
60
SODIUM CHLORIDE
87
87
91
86
^
90
+
94
SODIUM CHLORIDE
85
94
90
91
*
89
*
87
SODIUM CHLORIDE
83
83
80
78
*
84
*
92
SODIUM CHLORIDE
84
89
92
86
*
89
*
85
*
63
*
*
35.0%
85
92
91
86
*
94
*
*
35 . 0%
83
91
91
88
*
69
*
*
10.0%
82
82
86
75
*
87
4
*
10.0%
79
87
88
87
*
88
*
*
*
94
*
81
50°C
93
91
103
93
*
107
*
107
23°C
86
94
95
98
*
103
*
86
50°C
87
91
98
90
*
103
*
1 10
23°C
89
90
101
99
*
105
*
97
*
109
*
t
102
98
1 14
99
*
1 15
*
*
94
93
103
107
*
105
*
*
94
101
1 13
98
*
1 17
*
*
93
97
103
106
*
1 15
*
*
*
130
*
142
92
99
102
99
*
100
*
102
86
98
93
94
*
99
*
106
93
109
1 12
1 13
*
108
*
95
103
98
100
104
*
105
*
120
*
125
*
*
107
103
103
103
'fc
90
#
*
106
98
103
103
*
92
*
*
100
1 10
107
1 10
*
101
*
*
107
107
95
100
*
105
*
*
*
73
*
90
95
96
91
*
88
*
*
96
96
99
93
*
97
*
*
83
93
93
84
*
88
*
*
92
94
95
91
*
92
*
*
*
73
*
*
91
96
94
89
*
97
*
*
99
95
99
94
$
93
$
+
91
92
9 1
82
*
88
*
*
92
93
94
91
*
94
*
*
-------
CHLOROSULFONATED POLYETHYLENE LOW WATER ABSORPTION: CHEMICAL IMMERSION RESULTS, RETENTION OF PROPERTIES
PERCENT
WEIGHT
CHANGE
QH01WP1 1
QH07WP1 7
QH14WP1 14
- QH28WP1 28
QH99WP1 46
QH56WP1 56
QH99WP2 122
QH99WP3 242
QL01WP1 1
QL07WP1 7
QL14WP1 14
QL28WP1 28
QL99WP1 46
QL56WP1 56
QL99WP2 122
QL99WP3 241
-P-
vo
NJ
QHO 1 XM 1 1
QH07XM1 7
QH14XM1 14
QH28XM1 28
QH99XM1 46
QH56XM'1 56
QH99XM2 132
QH99XM3 242
QL01XM1 1
QL07XM1 7
QL14XM1 14
QL28XM1 28
QL99XM1 46
QL56XM1 56
QL99XM2 132
QL99XM3 241
1 .0
2.3
3.2
4.4
6.7
6.0
13.3
20.3
.4
1 .0
1 .3
1 .8
2.3
2. 1
2.9
3.7
.5
.9
.8
1 .0
.9
1 .2
1 . 1
1'.2
.5
.7
.8
.2
.2
.5
.3
• .3
PERCENT
THICKNESS
CHANGE
2.9
4.4
5. 1
6.3
8.5
7.7
13.3
21 .2
.3
1 .0
2.0
1 .9
1 .3
1 .9
1 .6
PERCENT
THICKNESS
CHANGE
PERCENT
RETENTION
SMOD
M
PERCENT
RETENTION
SMOD
T
PERCENT
RETENTION
BF
M
WATER 100.0% 50°C
3.2
1 .6
2.8
2.9
3.4
3.6
3. 1
3.9
4.2
.6
*
.7
1 .6
1 .6
1 .8
1 .6
2.3
1 ,4
2.9
4.5
5.8
8.2
7.5
15.7
28. 1
.3
1 .3
2.5
2.3
2.3
2.5
2.8
4.2
1 . 1
1 .4
1 .4
1 .4
.9
1 .5
1 .2
1 .5
.9
.7
1 .3
2. 1
1 .8
2.5
1 .7
2. 1
93
74
69
74
*
74
#
60
WATER 10(
82
93
90
84
«
86
*
80
POTASSIUM
87
80
80
68
*
80
*
63
POTASSIUM
98
89
86
89
*
88
*
81
91
73
72
74
*
71
*
*
D.0% 23°C
84
94
90
79
*
80
*
*
DICHROMATE
87
81
81
68
*
83
*
*
DICHROMATE
96
89
89
88
*
84
*
*
100
92
96
101
*
114
*
1 10
90
98
102
98
*
106
*
87
10.0% 50°C
104
96
99
85
*
109
*
1 1 1
10.0% 23°C
107
100
103
98
*
106
*
83
PERCENT
RETENTION
BF
T
108
101
1 12
110
*
126
*
*
98
106
1 1 1
106
*
1 17
*
*
115
111
1 16
95
*
122
*
*
1 1 1
108
112
106
*
1 16
*
*
PERCENT
RETENTION
EAB
M
88
123
121
127
*
120
*
87
106
93
101
107
*
108
*
1 12
109
109
104
121
*
113
*
106
95
97
103
98
*
109
*
1 10
PERCENT
RETENTION
EAB
T
100
116
1 15
1 16
*
109
*
*
101
102
103
1 10
*
108
*
103
107
107
1 17
*
105
97
103
99
104
*
105
*
*
PERCENT
RETENTION
TEAR
M
92
85
82
86
*
77
*
93
98
94
86
*
94
*
*
89
88
89
81
*
83
#
*
97
93
93
91
*
93
#
4
PERCENT
RETENTION
TEAR
T
95
89
83
88
*
79
92
100
95
91
*
96
95
90
89
84
4
86
97
96
95
95
*
91
*
*
------- |