Chesapeake Bay Watershed Model Application & Calculation of Nutrient & Sediment Loadings • Appendix D: Phase IV Chesapeake Bay Watershed Model Precipitation & Meteorological Data Development & Atmospheric Nutrient Deposition Prepared by the Modeling Subcomittee of the Chesapeake Bay Program EPA 903-R-97-022 CBP/TRS 181/97 Recycled/Recyclable Primed wiih Scy/CanoJa Ink on paper thai contains al leasl 50% recyded liber Chesapeake Bay Program ------- 903R97022 Principal Authors Dr. Ping Wang Maryland Department of Natural Resources Chesapeake Bay Program Office Annapolis, MD Lewis C. Linker United States Environmental Protection Agency Chesapeake Bay Program Office Annapolis, MD Jennifer Storrick Chesapeake Research Consortium, Inc. Chesapeake Bay Program Office Annapolis, MD U. S. Environmental Protection Agency Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 ------- Modeling Subcommittee Members James R. Collier, Chairman of the Subcommittee, Program Manager Water Resources Management Division Washington, DC Dr. Joseph Bachman US Geological Survey Towson, MD Mark Bennett Department of Soil and Water Conservation Richmond, VA Dr. Peter Bergstrom Chesapeake Bay Field Office US Fish & Wildlife Service Annapolis, MD Dr. Arthur Butt Chesapeake Bay Office VA Department of Environmental Quality Richmond, VA Brian Hazelwood Metropolitan Washington Council of Governments Washington, DC Dr. Albert Y.Kuo VA Institute of Marine Science Gloucester Point, VA Lewis C. Linker, Coordinator of the Subcommittee US EPA Chesapeake Bay Program Office Annapolis, MD Alan Lumb Hydrologic Analysis Support Section USGS National Center MS 415 Reston, VA Dr. Robert Magnien MD Department of Natural Resources Assessment Administration Annapolis, MD Dr. Ross Mandel Interstate Commission on the Potomac River Basin Rockville, MD Dr. Bruce Parker National Oceanic and Atmospheric Administration/NOS/OES33 Coastal & Estuarine Oceanography Branch Silver Spring, MD Kenn Pattison . PA Department of Environmental Protection Bureau of Water Quality Protection Harrisburg, PA Ron Santos US Army Corps of Engineers Baltimore, MD Tom Stockton MD Department of Environmental Resources Watershed Modeling & Analysis Division Annapolis, MD Paul Welle USDA Soil Conservation Service Northeast National Technical Center Chester, PA ------- Table of Contents Section Page 1 Introduction 1 2 Observed Meteorological Data Base Development 2 3 Observed Precipitation Data Base Development 13 4 Simulation of the Atmospheric Deposition of Nutrients 34 IV ------- List of Figures Figure Page D.2.1 Phase IV Model Segments of the Chesapeake Bay Watershed 3 D.2.2 Meteorologic Regions and Principal Stations 4 D.3.1 Thiessen Polygon of Precipitation Stations 15 D.3.2 Precipitation Segments of Phase IV Watershed Model 16 D.3.3 Location of Hourly and Daily Precipitation Stations 17 D.4.1 3D Model Cells 45 D.4.2 Precipitation Regions for the 3D Model 46 D.4.3 Precipitation Regions of the 3D Model & Coastal Watershed Model 47 ------- List of Tables Table Page D.2.1 Stations Used to Develop 1992-1994 Regional Meteorological Data 2 D.2.2 Missing Data and Filling Method < 5 D.2.3 Monthly Correction Factors to Potential Evaporation 6 D.2.4 Comparison of Meteorological Data Development 8 D.3.1 Precipitation Stations and Theissen Weights for Precipitation Segments 18 D.3.2 Format of Input Files for PRECIP.exe Program 23 D.3.3 Summary of Precipitation Data 25 D.4.1 Average Annual Atmospheric Wet NO3 and Wet NH, Depositions for 34 the Phase IV Chesapeake Bay Watershed Model Precipitation Segments, 1984-1994 D.4.2.a Annual Wet Deposition of NO3 at NADP Sites 36 D.4.2.b Annual Wet Deposition of NH4 at NADP Sites 36 D.4.3 Average Annual Atmospheric Wet & Dry NO3 Atmospheric Deposition 37 Loading Rates D.4.4 Phase IV Chesapeake Bay Watershed Model Precipitation Segments, 41 1984-1991 Average Annual Atmospheric Dissolved Organic Nitrogen Atmospheric Deposition Loading Rates DAS 1984-1994 Annual Average Atmospheric Nitrogen Deposition to 42 the Chesapeake Bay Watershed D.4.6 Correspondence of Phase IV Chesapeake Bay Watershed Model 44 Precipitation Segments with the Chesapeake Bay Water Quality Model Precipitation Regions Dry/Wet NO3 Atmospheric Deposition for the Chesapeake Bay 48 Water Quality Model Precipitation Regions VI ------- Acronyms and Abbreviations, CBPAS CBPO CRC deg-F DIP DON DSN FORTRAN HSPF kg/ha Ib/ac Ib/ac-yr mg/1 NADP NOAA OrN OrP ppn RADM STAC USEPA USGS WDM WSM Chesapeake Bay Program Ak Subcommittee Chesapeake Bay Program Office Chesapeake Research Consortium Degrees Fahrenheit Dissolved Inorganic Phosphorus Dissolved Organic Nitrogen Data Set Numbers Formula Translation Hydrological Simulation Program-FORTRAN Kilograms per hectare Pounds per acre Pounds per acre per year Milligrams per liter National Ak Deposition Program National Oceanic and Atmospheric Administration Organic Nitrogen Organic Phosphorus Precipitation (mm) Regional Acid Deposition Model Scientific and Technical Advisory Committee United States Environmental Protection Agency United States Geological Survey Watershed Data Management Watershed Model VII ------- Section D.I Introduction Precipitation and meteorological data are the primary forcing functions in the Phase IV Chesapeake Bay Watershed Model. Flow, nonpoint source loads, and reaction rates all primarily depend on the continuous hourly input of precipitation,temperature, evaporation, and solar radiation. Consequently, great care is used in the development of .the precipitation and meteorological data base. The Phase IV Chesapeake Bay Watershed Model requires continuous hourly input data for the 1984 to 1995 simulation. Developing twelve years of hourly precipitation tune series is a challenge. One of the first decisions encountered in precipitation time series development is the choice between obtaining the greatest number of observed stations and obtaining the greatest consistency in stations. If the greatest number of observed stations is used, many large gaps occur in the data as stations became operative and enter the data set, or, as the stations are discontinued and leave the data set. The possibility of introducing error due to the inconsistency of the precipitation stations throughout the simulation is a concern. On the other hand, if consistency is an absolute priority many stations will be eliminated due to data gaps. In an effort to compromise, a total of 147 precipitation stations are used, of which 88 are hourly and 59 are daily records of rainfall. Data gaps exist in these observed stations, but overall the observed stations used are relatively continuous over the entire simulation period. A computer program, PRECIP.exe, provides a technique to partially overcome the discontinuity of some station within a segment by re-weighting the data with the exclusion of the station with the missing data. All seven of the primary meteorological stations within or adjacent to the Chesapeake basin are used, including Binghamton, NY, Williamsport, PA, Harrisburg, PA, Elkton, WV, Dullas Airport, Richmond, VA, and Roanoake, VA. The work hi this phase of Watershed Model development is expansion of the precipitation and meteorological data base from 1984-91 to 1984- 1995. Slightly different methods were used in the 1991-95 data development due to upgrades in computer hardware and software, and a change from VMS/DOS to UNIX operating systems. Specifically, in the 1984-91 database development the program NOAA.EXE was used to transform the observed data into WDM file format. In the 1991 -95 database development, the newer programs PREDY, PREHR and HSPF programs were used the develop WDM files. In the meteorological data, various programs were used in the development of he 1984-91 WDM files whereas in the 1991-95 WDM development the newer program USGS METCOMP was used. In all cases the programs were designed for the same purpose and generated the same type of output. To assess comparability between the 1984-91 and the 1991-95 data, a year of overlap 1991 data is used. The 1991 precipitation and meteorological data is developed under the two equivalent methodologies and compared. No significant differences are discerned in the 1991 data generated from either of the two methodologies. ------- Section D.2 Observed Meteorological Data Base Development The National Oceanic and Atmospheric Administration (NOAA) standard formatted daily maximum air temperature, minimum air temperature, dew point temperature, cloud coverage, and wind speed for 1991 -1994 were collected from seven stations for the seven meteorological regions of the Phase IV Chesapeake Bay Watershed Model. Figure D.2.1 shows the Phase IV Watershed Model segments. The seven meteorological regions and associated model segments are illustrated on Figure D.2.2 and listed in Table D.2.1. Table D.2.1. Stations Used to Develop 1992-1994 Regional Meteorological Data Region # Station # Location 1 • 04725 Binghamton, NY 2 14778 Williamsport, PA 3 14711 Middletown Harrisburg, PA* 4 13729 Elkins, WV 5 93738 Dulles Airport, VA 6 13741 Roanoke,VA 7 ' 13740 Richmond, VA lb** ' 14768 Rochester, NY 2b** 14777 Wilkes-Barre/Scranton, PA 7b** 13733 Lynchburg AP, VA * Note: The Harrisburg Station, PA was used in Phase II. However, data after 10/01/91 were no longer available from the Harrisburg Station, PA so the Middletown Harrisburg Station, PA was used in Phase IV (1992-1994). Therefore, for the intercomparison stage 1 and stage 2 data transformations, Phase IV data for 1/91-9/91 were from Harrisburg and the 10/91-12/91 .data were from Middletown Harrisburg, PA. ** Note: These stations were utilized as alternative stations to fill in any missing data for the corresponding primary stations. The NOAA formatted data were reformatted to the HYDDY format using dBase and a FORTRAN program PREDY.F.1 A copy of this program is located at the end of this section. The HYDDY format is a code including information such as the station number, year, month and data. The format is generally encoded as follows: 1 Wang, P. (1995). Chesapeake Bay Program Office, Annapolis, MD. 2 ------- Figure D.2.1 Phase IV Chesapeake Bay Watershed Model Segments LOCATION MAP OFTHE Chesapeake Bay Watershed NY,PA,MD.D.C,DE. WVANDVA PW M^J Dale: June 20.1997 spoubome/pwang/sctup/ps/arcT/cov/ ' Source: USEPA Chesapeake Bay Program Office ------- Figure D.2.2 Phase IV Chesapeake Bay Watershed Model Meteorologic Regions and Principal Stations LOCATION MAP OF THE Chesapeake Bay Watershed NY.PA.MD.DC.DE. WVANDVA PW Map Pgg June 20.1997 Source: USEPA Chesapeake Bay Program Office ------- HYDDY 1. Station identifier (7 digits) 2. Year (last two digits) 3. Month (two digits) 4. Card Number: 1 is for days 1-10 2 is for days 11-20 3 is for days 21up to 31 5. Ten fields, for the daily data (11 fields for the card number 3). The HYDDY formatted data were then reformatted to Watershed Data Management (WDM) format using the HSPF software. WDM files are the type used as input to the watershed model. Data were inspected manually hi order to locate any possible missing data periods. The missing data periods in some meteorological regions were filled hi manually by utilizing data from nearby stations, as listed in Table D.2.2. Table D.2.2 Missing Data and Filling Method Region with missing data 1 2 3 4 7 Missing data type Cloud cover Cloud cover Cloud cover Cloud cover Cloud cover Missing period 11/01/95-12/31/95 06/01/94-09/30/94 09/01/95-12/31/95 09/01/91-09/30/91 09/28/92-10/28/92 10/13/94-12/31/94 01/01/95-09/30/95 10/01/95-12/31/95 Region used for filling data lt> 1 2b 2 5 6 3b The Metcmp software2 was used to retrieve the WDM formatted meteorological data in order to generate the required input data hi HSPF format hi order to compute the following operations: 2 Flynn, K., Lumb, A. (1991). Computation and Modification of Meteorolgic Time Series. Version 1.1. United States Geological Survey, Water Resources Division, Reston, VA. ------- a. Hourly air temperature was calculated from daily maximum and minimum air temperature. b. Hourly wind speed was disaggregated from daily data. c. Hourly solar radiation was generated using cloud coverage data and the regional latitudes. d. Hourly potential evaporation was generated by applying the Penman method3 using daily maximum air temperature, daily minimum air temperature, daily dew point temperature, daily wind speed, and hourly solar radiation. Monthly correction factors to the potential evaporation for the seven regions were estimated by examination of observed evaporation records and used on the potential evaporation data calculated with the Penman method. Monthly correction factors are tabulated in Table D.2.3. Table D.2.34 Monthly Correction Jan 1 0.555 R 2 0.548 E 3 0.562 G 4 0.569 I 5 0.562 O 6 0.562 N 7 0.540 Feb 0.593 0.585 0.601 0.608 0.601 0.601 0.608 Factors to Potential Evaporation Mar 0.722 0.713 0.732 0.741 0.732 0.732 0.703 Apr 0.851 0.840 0.862 0.874 0.862 0.862 0.829 May 0.889 0.878 0.901 0.913 0.901 0.901 0.866 Jun 0.912 0.900 0.924 0.936 0.924 0.924 0.888 Jul 0.912 0.900 0.924 0.936 0.924 0.924 0.888 Aug 0.897 0.885 0.909 0.920 0.909 0.909 0.873 Sep 0.836 0.825 0.847 0.858 0.847 0.847 0.814 Oct 0.745 0.735 0.755 0.764 0.755 0.755 0.725 Nov 0.646 0.638 0.655 0.663 0.655 0.655 0.629 Dec 0.562 0.555 0.570 0.577 0.570 0.570 0.548 Test for Consistency Between the 1984-91 and 1991-1995 Data Sets The program ANNIE.exe5 was used to export the hourly air temperature, wind speed, solar radiation, cloud coverage, and potential evaporation data from both (a) the WDM file which was generated in the above process (for 1991-1995), and (b) the WDM file which was developed in stage 3Viessman, W., Lewis, G.L., and Knapp, J.W. (1989). Introduction to Hydrology. Harper & Row Publishers. New York. 4 Provided by Aqua Terra Inc. 5 Lumb, A.M., Kittle, J., and Flynn, K.M. (1990). Users Manual for ANNIE, A Computer Program for Interactive Hydrologic Analyses and Data Management. U.S. Geological Survey. Reston, Virginia. ------- 1 (for 1984-1991) to insure the consistency between them. The HSPF software was used to process the 1991 meteorological data from these two Phases by summing up the daily values to yield a monthly summation. The results are summarized hi Table D.2.4. Table D.2.4 shows that the 1984-1991 and 1991-1995 methodologies are entirely consistent - most with <0.01 % difference, although up to 1 -2% difference in the monthly values summed from the daily data are observed. These differences may be due to the different methods in calculation, particularly for solar radiation, which in turn affects the calculation of evaporation. Based on the above analysis documenting the consistency of data from the two methodologies, the 1992-94 data were combined with the 1984-91 data using the ANNIE.exe software. ------- Table D.2.4 Comparison of Meteorological Data Development for Stage 1 and Stage 2 Region I (monthly averages from daily data in 1991) Stage 1 Date Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 Evapor. (inch) 0.0258 0.0348 0.0740 0.1488 0.2189 0.2576 0.2357 0.1986 0.1473 0.0939 0.0456 0.0291 Dew Point Cloud Cov (degF) 16.4355 20.5714 25.7164 35.8694 50.5161 52.7861 56.5323 58.6935 48.1903 40.5390 30.0264 23.1129 (AID) 7.7419 7.6429 7.2258 7.0000 5.6774 5.8000 6.2903 5.9677 5.4667 6.5806 7.8667 7.7419 Wind Speed (meters/hr) 265.4704 248.5714 271.1962 248.6389 218.7903 211.5972 205.7796 2152285 2182361 2382258 231.7639 263.1452 SolarRad (Langleys) 123.9651 182.2173 248.5887 336.9861 484.4220 5122778 442.8226 404.0457 352.4444 233.4946 131.1333 110.4005 MaxTemp • (degF) 30.4194 36.0357 43.6774 58.4000 72.4839 77.4000 80.5161 79.0000 69.5667 61.3226 46.2667 37.0968 MinTemp (degF) 16.5161 20.7857 28.2258 39.8667 50.9677 55.8667 59.7097 59.3871 48.4333 41.4516 32.0333 23.2258 AirTemp (degF) 23.1707 28.1875 35.5981 48.7986 61.3091 66.1611 69.6895 68.6882 58.5917 50.9261 38.8125 29.7460 Stage 2 Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 0.0256 0.0341 0.0723 0.1461 0.2166 0.2552 02331 0.1950 0.1432 0.0914 0.0448 0.0286 16.1707 20.5432 25.7164 35.8694 50.5161 52.7861 56.5323 58.6935 48.1903 40.5390 30.0264 23.1129' 7.7419 7.6429 72258 7.0000 5.6774 5.8000 6.2903 5.9677 5.4667 6.5806 7.8667 7.7419 265.4704 248.5714 271.1962 248.6389 218.7903 211.5972 205.7796 2152285 2182361 238.2258 231.7639 263.1452 113.1989 171.0714 236.0215 '326.3056 478.0914 506.2361 435.9409 394.6505 338.6528 220.4301 121.0111 99.2460 30.4194 36.0357 43.6774 58.4000 72.4839 77.4000 80.5161 79.0000 69.5667 61.3226 46.2667 37.0968 16.3226 20.7857 282258 39.8667 50.9677 55.8667 59.7097 59.3871 48.4333 41.4516 32.0333 23.2258 23.0645 28.1860 35.5981 48.8000 61.3065 66.1597 69.6895 68.6855 58.5903 50.9220 38.8097 29.7487 Region II (monthly averages from daily data in 1991) Stage 1 Stage 2 Date Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 Evapor. Dew Point Cloud Cov (inch) 0.0307 0.0452 0.0860 0.1214 02148 0.2534 0.2276 0.1927 0.1240 0.0802 0.0485 0.0344 0.0307 0.0451 0.0855 0.1210 0.2148 0.2528 0.2274 0.1922 0.1229 0.0796 0.0484 0.0342 (degF) 19.0296 22.4033 30.0027 40.0139 53.6519 56.0764 60.7258 62.0000 52.8833 45.2003 31.4000 24.5712 18.9261 22.4033 30.0027 40.0139 53.6519 56.0764 60.7258 62.0000 52.8833 45.2003 31.4000 24.5712 (rtO) 7.0968 7.6786 7.1613 7.9667 6.3226 5.9667 6.4194 6.0645 5.9333 6.4839 7.7333 7.2581 7.0968 7.6786 7.1613 7.9667 6.3226 5.9667 6.4194 . 6.0645 5.9333 6.4839 7.7333 7.2581 Wind Speed (meters/hr) 199.1263 214.1964 240.3898 211.2778 1612634 148.4028 1452419 128.5161 134.1597 183.7097 193.3611 202.3790 199.1263 214.1964 240.3898 211.2778 161.2634 148.4028 145.2419 128.5161 134.1597. 183.7097 193.3611 202.3790 SolarRad (Langleys) 142.9973 183.3036 255.5511 284.6111 475.1478 508.2778 438.9785 412.8091 346.5417 251.4516 144.9167 123.2070 140.7527 181.5476 252.5269 282.5556 475.0941 506.8333 438.1855 411.6129 343.1528 248.6022 143.4444 1202325 MaxTemp (degF) 36.8387 42.7143 51.4194 62.9000 81.0968 86.1000 87.9032 86.3871 74.5333 65.6774 50.3000 42.0968 36.8387 42.7143 51.4194 . 62.9000 81.0968 86.1000 87.9032 86.3871 74.5333 " 65.6774 50.3000 42.0968 MinTemp (degF) 19.4516 24.7500 32.0323 41.1667 53.0323 57.0667 62.4839 61.5806 50.7333 42.7742 33.6000 25.9355 19.4516 24.7500 32.0323 41.1667 53.0323 57.0667 62.4839 61.5806 50.7333 42.7742 33.6000 25.9355 AirTemp (degF) 27.7728 33.3839 41.3468 51.6056 66.5296 70.9486 74.6505 73.3978 62.1542 53.6680 41.6278 33.5202 27.7702 33.3824 41.3454 51.6042 66.5255 70.9458 74.6492 73.3952 62.1514 53.6680 41.6264 33.5094 ------- Table D2.4 Comparison of Meteorological Data Development for Stage 1 and Stage 2 Region III (monthly averages from daily data in 1991) Stage 1 Stage 2' Region Stage 1 Stags 2 Date Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Sep-91 Oct-91 Nov-91 Dec-91 E vapor. (inch) 0.0343 0.0550 0.0981 0.1471 0.2425 0.2880 0.2464 0.2218 0.1337 0.1008 0.0618 0.0405 0.0347 0.0561 0.0989 0.1481 0.2440 0.2883 0.2475 0.2236 0.1349 0.0983 0.0545 0.0401 Dew Point (degF) 0.1895 0.2098 0.1895 0.1958 0.1895 0.1958 0.1895 0.1895 0.1958 0.1895 0.1958 ' 0.1895 0.1895 0.2098 0.1895 0.1958 0.1895 0.1958 0.1895 0.1895 0.1958 0.1895 0.1958 0.1895 Cloud Cov 10) 6.5484 7.0714 6.3871 6.8667 5.7419 5.4000 6.4516 5.8387 5.4330 4.7419 6.8667 5.8387 6.5484 7.0825 6.3871 6.8667 5.7419 5.4000 6.4516 5.8387 5.4333 5.2581 7.1667 6.5484 Wind Speed (meters/hr) 170.9409 189.5089 211.2769 179.6806 149.9597 144.0833 129.5995 127.7419 105.2506 164.3548 198.4028 193.2392 170.9409 189.5089 211.2769 179.6806 149.9597 144.0833 129.5995 127.7419 105.2806 146.7876 198.2361 222.7419 SolarRad (Lahgleys) 164.3817 205.6250 2932796 354.4167 519.9731 540.1111 441.6935 434.3414 351.5278 303.1452 166.8750 151.4516 169.8253 2112351 297.0699 357.7639 5232930 540.8472 4442608 438.4543 355.3750 290.6329 1662778 147.6210 MaxTemp - (degF) 40.0323 46.7143 52.8387 64.0667 81.0000 86.2333 89.4194 87.1935 76.1000 70.0000 56.5667 48.6774 40.0323 46.7143 52.8387 64.0667 81.0000 86.2333 89.4194 87.1935 76.1000 67.0645 522333 44.3548 MinTemp (degF) 23.3548 27.9643 34.6452 43.3330 57.1613 62.0667 67.9032 65.1290 54.5667 43.0645 34.7000 282903 23.3548 27.9643 34.6452 43.3333 57.1613 62.0667 67.9032 65.1290 54.5667 46.6129 35.1000 28.5484 AirTemp (degF) 31.3495 36.9762 43.3804 53.3083 68.6828 73.6208 78.1599 75.6505 64.8875 55.8624 452472 37.8804 31.3481 36.9732 43.3777 53.3042 68.6788 73.6181 78.1586 75.6478 64.8792 56.3454 43.3264 35.9530 IV (monthly averages from daily data in 1 991 ) Date Oct-91 Nov-91 Dec-91 Oct-81 Nov-91 Dec-91 E vapor. (inch) 0.0749 0.0342 0.0262 0.0755 0.0345 0.0264 Dew Point (degF) 40.5188 30.8167 28.4651 4C.51SS 30.8167 28.4651 Cloud Cov (710) 6.5484 8.0667 7.7742 6.54S4 8.0667 7.7742 Wind Speed (meters/hr) 114.0390 135.2000 160.1747 114.C3SO 135.2000 160.1747 SolarRad (Langleys) 268.1720 142.5417 121.7097 271.1022 1462222 124.1048 MaxTemp (degF) 67.6774 51.6000 47.1613 57.5774 51.6000 47.1613 MinTemp (degF) 35.5161 272667 24.6774 3S.S161 27.2667 24.6774 AirTemp (degF) 50.7944 39.0417 35.2715 50.7587 39.0417 35.2527 Region V (monthly averages from daily data in 1991) Stage 1 Stage 2 Date Oct-91 Nov-91 Dec-91 Oct-91 Nov-91 Dec-91 E vapor. (inch) 0.1368 0.0959, 0.0723 0.1052 0.0639 0.0418 Dew Point (degF) 45.9704 33.3264 27.9099 45.9704 33.3264 27.9099 Cloud Cov (AID) 4.7419 6.8667 5.8387 4.7419 • 6.8667 S.8387 Wind Speed (meters/hr) 164.3548 198.4028 193.2392 164.3548 198.4028 1932392 SolarRad (Langleys) 3132392 175.1528 1602419 320.8199 182.9167 167.0968 MaxTemp (degF) 70.0000 56.5667 48.6774 70.0000 56.5667 48.6774 MinTemp (degF) 43.0645 34.7000 282903 43.0645 34.7000 282903 AirTemp (degF) 55.8669 452472 37.8804 55.8320 452458 375723 ------- Table D.2.4 Comparison of Meteorological Data Development for Stage 1 and Stage 2 Region VI (monthly averages from daily data in 1991) Stage 1 Date Evapor. Dew Point Cloud Cov Wind Speed (inch) (degF) (/ID) (meters/hr) Oct-91 0.1337 42.5806 4.1935 161.0349 Nov-91 0.0739 30.7833 6.1000 183.6806 Dec-91 0.0549 28.4651 5.4516 199.5833 SolarRad MaxTemp MinTemp • AirTemp (Langleys) (degF) (degF) (degF) 338.9113 199.9306 170.0806 73.5161 57.2667 5Z7742 45.2581 58.6976 36.3333 46.4444 31.8710 41.7272 Stage 2 Oct-91 Nov-91 Dec-91 0.1384 0.0763 0.0564 42.5806 30.7833 28.4651 4.1935 6.1000 5.4516 161.0349 183.6806 199.5833 355.9946 217.0417 185.9005 73.5161 57.2667 52.7742 45.2581 58.6573 36.3333 46.4444 31.8710 41.6989 Region VII (monthly averages from daily data in 1991) Stage 1 Date Oct-91 Nov-91 Dec-91 Evapor. Dew Point Cloud Cov Wind Speed (inch) (degF) (/10) (meters/hr) 0.1021 48.7513 0.0675 37.5764 0.0481 32.8844 5.3548 158.7097 6.1000 203.4444 5.1290 205.7796 SolarRad MaxTemp MinTemp AirTemp (Langleys) (degF) (degF) {degF) 301.6532 72.7419 210.5139 60.8667 189.0995 55.2581 46.9677 595487 38.1667 49.1056 33.2258 43.6331 Stage 2 Oct-91 0.1026 48.7513 Nov-91 0.0682 37.5764 Dec-91 0.0484 32.8844 5.3548 158.7097 6.1000 203.4444 5.1290 205.7796 303.7634 72.7419 214.6944 60.8667 191.9892 55.2581 46.9677 59.2097 38.1667 49.1042 33.2258 43.6599 The numbers in Table D.2.4 are only for the purpose of comparing the agreement of stage 1 and stage 2 data processes. Although the values of intensive variables such as wind speed cannot be simply added to represent the sum of the wind speed in the month, here they were summed up merely to show their values in these two phases for comparison. Therefore, the units should be ignored for the summation in the output files. The units in Table D.2.4 are the units for the houriy or daily Data Set Numbers (DSN) of WDM files. For Regions 4,5,6, and 7, the 1/91-9/91 data were not reported in Table D.2.4 because there were some missing data during 1/91-9/91 for these regions, and the missing data were filled in with the nearby stations' data. The stations used to fill in the missing data may be different between stage 1 and stage 2. Therefore, it is not accurate to use the data within the periods with missing data as a base to verify the consistency between the two phases of data development. For the stage 1 and stage 2 data verification, only 10/91-12/91 data were processed for Regions 4,5,6, and 7. 10 ------- The following is a copy of the PREDY.F program utilized to reformat the NOAA formatted dairy data into the HYDDY format hi order to make the data compatible with the HSPF software so that it may be inputted into the Phase IV Chesapeake Bay Watershed Model. character* 1 2 filtat(3), filin, filnam, filin2, filog character*3 rectypl character*8 stnid character* 4 elmtypl; stnid character*2 eunitl, state, stnidl character*! flagl 1(100), flag21(100),typ, stal character*5 stdumyl dimension idayl(100),ihourl(100),ivaluel(100), value(31) dimension isumyr(3), isumv2(3), iy(3), iso( 100,4) dimension isumv3(3), isumv4(3), my(3), PP(1 100,4) isumv2=0 isumv3=0 isumv4=0 PP = 0 Write(*,*)'Data extraction from NOAA Daily data1 WriteCVyreformat for HSPF runs' filin2 = 'predy.lis' open (8, file=filin2, access^sequential'jStatus^old1) read(8,*) nfil read(8,66) filin 66 format(al2) open (10, file=filin, access- sequential^status^old1) filnam = 'xxxxxxx.out' filog = 'xxxxxxx.log1 rewind(lO) ciose(lO) typ = i2 = 2 i3 = 3 LR = 0 line = 0 do 200 m= 1,1 00 line = line - 1 open (10, file=fiiin, access- sequential',status='old') 200 read(10,39,end=49,err=49)rectypel 39 format(a3) 33 format (a3, al , a2, a5, a4, a2, i4, i2, i2, i2; i2 11 ------- 49 write(*,*) line filnam(l:7) = filog(l:7) = open(24,FILE=filnam,STATUS='unknown') open (10, file=filin, access-sequential',status='old') do 100m=l,line read(10,33, end=301, err=301) rectypl, stal, stnidl, stdumyl, * elmtypl, eunitl, iyearl, imonl, ifill, inum, numvl, * (idayl(j), ihourl(j), * ivaluelG),flagll(j),flag21G)J = l,31) 40 iyr = iyearl -1900 do 53 k= 1,31 if(abs(ivaluel(k)) .gt. 99998) then ivaluel(k) = -999 endif 53 continue do 55 k= 1,31 value(k) = float(ivaluel(k)) / 100. 55 continue ' if(stal .eq. '18') state='MD' if(stal .eq. '36') state='PA' if(stal .eq. '44') state='VA' if(stal .eq. '46') state='WV' if(stal .eq. '07') state='DE' if(stal .eq.'18') state='MD' if(stal .eq. '30') state='NY1 write(24,205) stnidl, stdumyl, iyr, imonl, il, 1 (valueG)J=l,10) write(24,205) stnidl, stdumyl, iyr, imonl, i2, 1 (value(j),j=ll,20) write(24,207) staid 1, stdumy 1, iyr, imon 1, i3, 1 (valueO),j=21,31) 300 continue 100 continue 301 continue close(lO) close(24) 666 continue 205 format(a2, a5, i2, i2, il, 10f6.2) 207 format(a2, a5, i2, i2, il, 1 If6.2) end 12 ------- Section D3 Observed Precipitation Database Development The basic procedure for stage 2 precipitation data development follows the stage 1 method. Hourly stations and daily stations were selected in reference to stage 1. The stage 1 stations were selected based upon their locations within or near the boundary of the Chesapeake Bay watershed. Due to discontinuity in the operation of individual precipitation stations, data from 88 stations and 59 daily precipitation stations ( a total of 147 stations) were used in stage 2 database development compared with data from 155 precipitation stations used in stage 1. The data were formatted to Watershed Data Management (WDM) file format. Data from selected stations were reviewed hi an effort to guarantee the integrity of the data. These verified NOAA formatted daily precipitation data sets were then converted to the HYDDY format as previously described (see page 2). The hourly data were reformatted into the HYDHR format using the FORTRAN program PREHR. A copy of this program is found at the end of this section. The conversion for the HYDHR format is as follows: HYDHR 1. Station identifier (10 digits) 2. Year (last two digits) 3. Month (two digits) 4. Day (two digits) 5. Card number: 1 is for a.m. hours 2 is for p.m. hours 6. Twelve fields for hourly data. The HSPF software was utilized to reformat both the HYDDY and HYDHR formats into the WDM format. At this point the files were then applied to the PRECIP.exe program together with information from the Thiessen Polygon network of precipitation stations. The Thiessen polygon network of precipitation is illustrated in Figure D.3.1. The Thiessen polygon method was chosen for this data analysis because it makes it possibleto aerially weight the rainfall from each gage. This method is exceptionally useful in those situations in which the stations are not uniformly distributed and when the variations in rainfall amounts are relatively large in comparison to the mean. Although the Thiessen polygon method is the most widely used, it does not account for any elevations effects upon the precipitation distribution. The Thiessen polygon network is created by first drawing lines that connect the stations on a map. In order to form polygons around each gage, perpendicular lines are drawn on the map so that they bisect the before mentioned lines between the stations. Each stations weighted rainfall is calculated as the ratio of the area of each polygon within the model segment boundary to the total area6. 6Bedient, P.B., Huber, W.C. (1992). Hydrology andFloodplain Analysis. 2nded Addison-Wesley Publishing Co., New York: 26-27. 13 ------- The precipitation segments'illustrated in Figure D.3.2, are primarily based upon the Phase IV Chesapeake Bay Watershed Model Segments (Figure D.2.1). Since some of the model segments were too small to have sufficient hourly stations fall within them, some aggregation, determined by the number of hourly precipitation stations, of model segments occurred to form precipitation segments. The location of hourly and daily precipitation stations are shown in Figure D.3.3. Each station was assigned a DSN number for WDM file development. A Thiessen polygon network was generated using Arc/Info with the geographical locations of precipitation stations. The resultant Thiessen polygon network (Figure D.3.1) and Phase IV Watershed Model segmentation (Figure D.3.2) were overlapped to calculate the measurement of Thiessen polygon distribution within a precipitation segment, and then the area! percentage of each Thiessen polygon in a precipitation segment. Table D.3.1 lists precipitation stations and their areal percentage weights for each precipitation segment. Some of the areal percentage weights were converted to zero, because these stations actually had no precipitation data during 1991-1994 and they were not included in the input files when running the PRECIP.exe program. It is also acceptable for the calculation if the weight percentage still keeps the measured areal percentage in a precipitation segment. Additional adjustment to the Thiessen polygon network was required for precipitation segments 60, 80 and 100. All three of these segments had more than ten hourly stations falling within their boundaries. The PRECIP.exe program allows a maximum often hourly stations for the calculation of estimated precipitation. As a result, the data were manually inspected and stations with the least information based on the period of operation or Thiessen weight were selectively culled. Precipitation segments 700 and 750 are small segments with only three hourly precipitation stations each. Data from all six stations were missing for April 1994. Precipitation stations near segments 700 and 750 were selected and a new Thiessen polygon network was developed, which was then overlapped with both segments. The exposed area was used for Segments 700 and 750 to calculate April 1994 precipitation. The weight for precipitation stations in segments were then used to generate the input files (as the weight of precipitation contributing to certain segment) for PRECIP.exe program. The PRECIP.exe program read the input file (with ".inp" extension) and read from and wrote to the WDM. Table D.3.2 is the format for input files. The PRECIP.exe program operates by calculating the sum of a single day's precipitation using the respective weights for both hourly (hourly precipitation is summed to a daily value) and daily DSNs. The total daily weighted volume was then compared against the hourly stations total daily volumes. The hourly station that had a total daily volume closest to the weighted volume was u 14 ------- Figure D.3.1 Thiessen Polygon of Phase IV Chesapeake Bay Watershed Model Precipitation Stations Source: USEPA Chesapeake Bay Program Office 15 ------- Figure D.3.2 Phase IV Chesapeake Bay Watershed Model Precipitation Segments LOCATION MAP OF THE Chesapeake Bay Watershed NY.PA.MD.DC.DE. WVANDVA PW Map Dae June 20,1997 Source: USEPA Chesapeake Bay Program Office 16 ------- Rgure D.3.3 Location of Hourly and Daily Precipitation Stations Used in the Phase IV Chesapeake Bay Watershed Model Hourly Precipitation Station Daily Precipitation Station PW Map Dale June 20.19»7 Source: USEPA Chesapeake Bay Program Office 17 ------- Table 0.3.1 Precipitation Stations and Their Weights for Precipitation Segments Precip Model DSN Station Segment Segment Name Station Observation Weight Time ** (If daily) Precip Model DSN Station Segment Segment Name Station Observation Weight Time (if daily) 10 20 30 40 50 101 9 10 18 20 108 142 152 160 179 336 20 1 2 3 5 11 15 16 17 19 22 300 30 108 117 130 '141 142 147 170 173 181 187 300 315 40117 124 149 166 177 187 141* 146* 181* 999* 284 315 50113. 114 116 133 134 155 NYHR0270 ' NYHR3979 NYHR3983 NYHR8498 NYHR9229 PAHR1212 PAHR5731 PAHR6627 PAHR7310 PAHR8868 PADY9408 NYHR0270 NYHR0687 NYHR1987 NYHR2454 NYHR4070 NYHR5682 NYHR6685 NYHR7830 NYHR8625 NYHR9522 PADY7029 PAHR1212 PAHR2325 PAHR3521 PAHR5601 PAHR5731 PAHR5915 PAHR8275 PAHR8491 PAHR8905 PAHR9705 PADY7029 PADY8057 PAHR2325 PAHR3018 PAHR6004 PAHR7931 PAHR8763 PAHR9705 PAHR5601 PAHR5825 PAHR8905 XXHROOOO PADY5817 PADY8057 PAHR1961 PAHR2245 PAHR2298 PAHR4001 PAHR4027 PAHR6916 0.0492 0.1692 0.1550 0.1353 0.0995 0.0386 0.0733 0.1006 0.0162 0.1309 0.0322 0.0508 0.0851 0.1872 0.1015 0.0621 0.0649 0.2057 0.0849 0.0711 0.0780 0.0087 0.0682 0.1176 0.0037 0.0248 0.0152 0.2108 0.0449 0.0850 0.1797 0.1966 0.0261 0.0274 0.0397 0.0354 0.1809 0.1054 0.0824 0.0229 0.0001 0.0001 0.0001 0.0001 0.2045 0.3284 0.4211 0.0171 0.0018 0.0730 0.0177 0.2206 07:00 08:00 08:00 07:00 07:00 07:00 60 70 80 90 159 175 999* 333 60101 113 117 120 146 152 1.55 160 168 999* 268 274 283 306 323 336 342 70 108 117 166 2* 142* 147* 155* 181* 101* 999* 268 274 284 342 80 104 105 109 123 146 • 149 166 177 999* 196 268 269 283 289 345 90116 122 PAHR7217 PAHR8589 XXHROOOO PADY9022 PAHR0147 PAHR1961 PAHR2245 PAHR2629 PAHR5825 PAHR6627 PAHR6916 PAHR7310 PAHR8155 XXHROOOO PADY4853 PADY5109 PADY5790 PADY7409 PADY8469 PADY9408 PADY9728 PAHR1212 PAHR2325 PAHR7931 NYHR0687 PAHR5731 PAHR5915 PAHR6916 PAHR8905 PAHR0147 XXHROOOO PADY4853 PADY5109 PADY5817 PADY9728 , PAHR0725 PAHR0763 PAHR1354 PAHR2838 PAHR5825 PAHR6004 PAHR7931 PAHR8763 XXHROOOO PADY0482 PADY4853 PADY4896 PADY5790 PADY6297 PADY9950 PAHR2298 PAHR2721 0.0102 0.1344 0.0001 0.1040 0.0594 0.0314 0.0022 0.1034 0.0172 0.0001 0.0730 0.0669 0.0533 0.0001 0.0001. 0.1330 0.0370 0.1304 0.0704 0.1486 0.0751 0.0517 0.2471 0.1115 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.1038 0.0005 0.1493 0.3354 0.0581 0.1457 0.0468 0.0371 0.0288 0.1125 0.0880 0.0101 0.0001 0.1146 0.0594 0.0368 0.0635 0.1984 0.0001 0.1455 0.4343 07:00 17:00 07:00 07:00 08:00 08:00 07:00 24:00 17:00 07:00 07:00 24:00 07:00 17:00 15:00 07:00 07:00 08:00 18 ------- Table D.3.1 100 110 120 lei men: 100 110 120 DSN t. 127 133 161 608 134* 175* 502* 999* 312 104 105 109 113 116 133 146 155 161 999* 196 - 268 273 281 283 289 312 103 119 123 149 189 109* 137* 138* 999* 269 305 320 345 129 137 138 189 103* 119* 177* 601* 615* 999* 253 Station Name PAHR3295 PAHR4001 PAHR7312 MDHR4030 PADY4027 PADY8589 WVHR1323 XXHROOOO PADY7846 PAHR0725 PAHR0763 PAHR1354 PAHR1961 PAHR2298 PAHR4001 PAHR5825 PAHR6916 PAHR7312 XXHROOOO PADY0482 PADY4853 PADY4992 PADY5662 PADY5790 PADY6297 PADY7846 PAHR0605 PAHR2537 PAHR2838 PAHR6004 PAHR9938 PAHR1354 PAHR4763 PAHR4778 XXHROOOO PADY4896 PADY7322 PADY8379 PADY9950 PAHR3321 PAHR4763 PAHR4778 PAHR9938 PAHR0605 PAHR2537 PAHR8763 MDHR0015 MDHR9030 XXHROOOO PADY4019 Station Weight 0.0683 0.0002 0.0887 0.0003 0.0001 0.0001 0.0001 0.0001 0.2623 0.0983 0.0034 0.0000 0.0001 0.0075 0.1737 0.0781 0.0700 0.2221 0.0001 0.0344 0.0001 0.1453 0.0000 0.0029 0.0754 0.0887 0.0078 0.0051 0.0686 0.0613 0.0981 0.0001 0.0001 0.0001 0.0001 0.2693 0.0051 0.2391 0.2452 0.1758 0.3912 0.0037 0.0021 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.4266 Observation Time (if daily) 07:00 07:00 17:00 08:00 08:00 07:00 07:00 07:00 15:00 07:00 08:00 09:00 07:00 Precip Model DSN Station Segment Segment Name 160 160 122 PAHR2721 0.0028 127 PAHR3295 0.1818 503 WVHR1393 0.0112 509 WVHR6163 0.0630 Station Observation Weight Time (if daily) 170 175 180 190 510 116* 175* 502* 608* 999* 516 633 662 170502 503 508 509 510 707 724 127* 999* 516 525 535 633 813 175122 127 502 508 509 510 608 737 707* 999* 544 633 856 180 109 123 505 605 119* 123* 502* 742* 999* 623 640 643 818 190 707 722 726 737 742 WVHR7730 PAHR2298 PAHR8589 WVHR1323 MDHR4030 XXHROOOO WVDY0527 MDDY2282 MDDY8065 WVHR1323 WVHR1393 WVHR5739 WVHR6163 WVHR7730 VAHR2208 VAHR5880 PAHR3295 XXHROOOO WVDY0527 WVDY3215 WVDY6960 MDDY2282 VADY5595 PAHR2721 PAHR3295 WVHR1323 WVHR5739 WVHR6163. WVHR7730 MDHR4030 VAHR8046 VAHR2208 XXHROOOO WVDY9281 MDDY2282 VADY9186 PAHR1354 PAHR2838 WVHR4763 MDHR1530 PAHR2537 PAHR2838 WVHR1323 VAHR8396 VAHROOOO MDDY1032 MDDY3355 MDDY3975 VADY5851 VAHR2208 VAHR5690 VAHR6178 VAHR8046 VAHR8396 0.1001 0.0001 0.0001 0.0001 0.0001 0.0001 0.1672 0.2188 0.2546 0.0001 0.0475 0.0253 0.1684 0.1050 0.0026 0.0004 0.0001 0.0001 0.0057 0.3803 0.1973 0.0040 0.0632 0.0625 0.0094 0.1985 0.0955 0.0400 0.1269 0.1330 0.0410 0.0001 0.0001 0.2035 0.0884 0.0011 0.0543 0.0103 0.2589 0.1778 0.0001 0.0001 0.0001 0.0001 0.0001 0.0400 0.1377 0.2429 0.0776 0.3168 0.0548 0.0051 0.0080 0.0011 07:00 07:00 08:00 07:00 08:00 08:00 07:00 07:00 08:00 07:00 08:00 18:00 07:00 18:00 08:00 508* WVHR5739 0.0001 19 ------- Table D.3.1 Precip Model DSN Station Segment Segment Name Station Observation Weight Time (if daily) Precip Model DSN Station Segment Segment Name 200 210 220 230 724* 729* 503* 999* 525 760 807 836 200505 707 737 742 502* 509* 724* 999* 525 535 544 807 818 842 856 210 119 123 605 615 109* 189* 138* 999* 320 220742 747 505* 604* 605* 737* 602* 999* 630 818 849 230 729 742 604* 707* 722* 726* 737* 747* 612* 999* 760 776 VAHR5880 VAHR6712 WVHR1393 XXHROOOO WVDY3215 VADY0720 VADY5096 VADY8062 WVHR4763 VAHR2208 VAHR8046 VAHR8396 WVHR1323 WVHR6163 VAHR5880 XXHROOOO WVDY3215 WVDY6960 WVDY9281 VADY5096 VADY5851 VADY8448 VADY9186 PAHR2537 PAHR2838 MDHR1530 MDHR9030 PAHR1354 PAHR9938 PAHR4778 XXHROOOO PADY8379 VAHR8396 VAHR8906 WVHR4763 MDHR0700 MDHR1530 VAHR8046 MDHR0465 XXHROOOO MDHR1995 VADY5851 VADY8903 VAHR6712 VAHR8396 MDHR0700 VAHR2208 VAHR5690 VAHR6178 VAHR8046 VAHR8906 MDHR6915 XXHROOOO VADY0720 VADY2009 0.0001 0.0001 0.0001 0.0001 0.0117 0.1195 0.1350 0.3475 0.0752 0.0979 .0.3060 0.0557 0.0001 0.0001 0.0001 0.0001 0.0089 0.0073 0.0545 0.1108 0.1867 0 (0.2343) 0.0966 0.3897 0.0084 0.2442 0.3199 0.0001 0.0001 0.0001 0.0001 0.0374 0.2044 0.0491 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0279 0.2685 0.4495 0.3089 0.2033 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2531 0.0325 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 18:00 08:00 08:00 09:00 08:00 24:00 08:00 09:00 Station Observation Weight Time (if daily) 265 270 280 700 710 792 VADY3466 0.0176 07:00 807 VADY5096 0.1838 -08:00 265 713 714 724 503* 513* 707* 722* 735* 999* 813 817 270506 513 707 713 714 720 722 724 735 999* 525 778 798 813 817 836 843 280707 720 722 726 729 724* 735* 999* 756 760 765 782 792 806 843 700108 142 179 181 710 137 138 189 103* 119* VAHR3310 VAHR4128 VAHR5880 WVHR1393 WVHR9011 VAHR2208 VAHR5690 VAHR7285 XXHROOOO VADY5595 VADY5756 WVHR5284 WVHR9011 VAHR2208 VAHR3310 VAHR4128 VAHR5120 VAHR5690 VAHR5880 VAHR7285 XXHROOOO WVDY3215 VADY2044 VADY4565 VADY5595 VADY5756 VADY8062 VADY8600 VAHR2208 VAHR5120 VAHR5690 VAHR6178 VAHR6712 VAHR5880 VAHR7285 XXHROOOO VADY0243 VADY0720 VADY1136 VAOY2160 VADY3466 VADY5050 VADY8600 PAHR1212 PAHR5731 PAHR8868 PAHR8905 PAHR4763 PAHR4778 PAHR9938 PAHR0605 PAHR2537 0.0960 0.0767 0.2540 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2625 0.3102 0.0155 0.0599 0.0002 0.0259 0.0000 0.0371 0.0633 0.1082 0.1354 0.0001 0.0001 0.2057 0.2809 0.0159 0.0001 0.0427 0.0090 0.0071 0.1053 0.0870 0.000(-0.25) 0.0005 0.0001, 0.0001 0.0001 0.0717 0.0336 0.1953 0.1247 0.1363 0.0375 0.2007 0.3213 0.4548 0.0089 0.2150 0.1089 0.1552 0.2671 0.0001 0.0001 07:00 07:00 08:00 17:00 07:00 07:00 07:00 08:00 06:00 \ 07:00 08:00 07:00 07:00 07:00 18:00 06:00 20 ------- Table D.3.1 Precip Model DSN Station Segment Segment Name Station Observation Weight Time (if daily) 720 730 740 750 760 123* 129* 149* 615* 999* 253 269 345 720 129 137 138 119* 177* 189* 149* 999* 253 269 305 730 104 109 123 154 105* 119* 161* 605* 999* 281 643. 740 122 502 505 608 737 123* 127* 508* 509* 999* 281 312 643 856 750 119 123 605 760 119 615 123* 189* 604* 605* 601* 602* PAHR2838 PAHR3321 PAHR6004 MDHR9030 XXHROOOO PADY4019 PADY4896 PADY9950 PAHR3321 PAHR4763 PAHR4778 PAHR2537 PAHR8763 PAHR9938 PAHR6004 XXHROOOO RADY4019 PADY4896 PADY7322 PAHR0725 PAHR1354 PAHR2838 PAHR6852 PAHR0763 PAHR2537 PAHR7312 MDHR1530 XXHROOOO PADY5662 MDDY3975 PAHR2721 WVHR1323 WVHR4763 MDHR4030 VAHR8046 PAHR2838 PAHR3295 WVHR5739 WVHR6163 XXHROOOO PADY5662 PADY7846 MDDY3975 VADY9186 PAHR2537 PAHR2838 MOHR1530 PAHR2537 MDHR9030 PAHR2838 PAHR9938 MDHR0700 MDHR1530 MDHR0015 MDHR0465 0.0001 0.0001 0.0001 0.0001 0.0001 0.0852 0.2141 0.1688 0.1116 0.1894 0.4663 .0.0001 0.0001 0.0001 0.0001 0.0001 0.0133 0.0823 0.1366 0.0234 0.6995 0.1386 0.0609 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0771 0.0234 0.1730 0.2085 0.2063 0.0221 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0002 0.1245 0.2414 0.6449 0.3549 0.0002 0.0010 0.5421 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 07:00 15:00 08:00 07:00 15:00 07:00 08:00 18:00 08:00 07:00 18:00 08:00 Precip Model DSN Station Station Observation Segment Segment Name Weight Time Of daily) 1001 1002 1003 1004 1005 138* 999* 320 620 629 420401 430612 440725 745 749 999* 822 400401 820601 390602 830612 770602* 780 749* 604* 747* 129* 999* 840409 410642 370601 380602 800 129* 810 137* 138* 401* 745* ' 999* 409 140 129 450 137 850189 601 602 119* 138* 605* 747* 999* 253 320 ' 409 631 510 189 870601 470602 480604 860615 490 119* 612* 747* PAHR4778 XXHROOOO PADY8379 MDHR0470 MDHR1862 DEHR3570 MDHR6915 VAHR6139 VAHR8849 VAHR9151 XXHROOOO VADY6475 DEHR3570 MDHR0015 MDHR0465 MDHR6915 MDHR0465 VAHR9151 MDHR0700 VAHR8906 PAHR3321 XXHROOOO DEDY6410 MDDY3675 MDHR0015 MDHR0465 PAHR3321 PAHR4763 PAHR4778 DEHR3570 VAHR8849 XXHROOOO DEDY6410 PAHR3321 PAHR4763 PAHR9938 MDHR0015 MDHR0465 PAHR2537 PAHR4778 MDHR1530 .VAHR8906 XXHROOOO PADY4019 PADY8379 DEDY6410 MDDY2060 PAHR9938 MDHR0015 MDHR0465 MDHR0700 MDHR9030 PAHR2537 MDHR6915 VAHR8906 0.0001 0.0001 0.0442 0.0150 0.3969 0.2589 0.0284 0.0064 0.5244 0.0001 0.0001 0.1817 0.6525 0.0502 0.0648 0.2110 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0207 0.6506 0.1150 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2338 , 0.0357 0.0243 0.0439 0.1725 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2493 0.0026 0.1214 0.3497 0.0004 0.0525 0.2394 0.0085 0.0032 0.0001 0.0001 0.0001 08:00 24:00 17:00 16:00 ' 17:00 16:00 17:00 07:00 08:00 17:00. 24:00 21 ------- Table D.3.1 Precip Segment Segment 1006 1007 1008 1009 jl DSN nent 999* 253 320 631 620 629 642 880612 500747* 910602* 920604* 990 749* 729* 999* 642 776 550604 890612 900742 970 747 602* 615* 729* 999* 624 630 642 776 849 980 612 580734 930749 604* 729* 747* 745* 724* 999* 757 776 B22 600725 610734 590 749 940 612* 747* 745* 999* 757 776 Station Name XXHROOOO PADY4019 PADY8379 MDDY2060 MDDY0470 MDDY1862 MDDY3675 MDHR6915 VAHR8906 MDHR0465 MDHR0700 VAHR9151 VAHR6712 XXHROOOO MDDY3675 VADY2009 MDHR0700 MOHR6915 VAHR8396 - VAHR8906 MDHR0465 MDHR9030 VAHR6712 XXHROOOO MDDY1125 MDDY1995 MDDY3675 VADY2009 VADY8903 MDHR6915 VAHR7201 VAHR9151 MDHR0700 VAHR6712 VAHR8906 VAHR8849 VAHR6139 XXHROOOO VADY0327 VADY2009 VADY6475 VAHR6139 VAHR7201 VAHR9151 MDHR6915 VAHR8906 VAHR8849 XXHROOOO VADY0327 VADY2009 Station Weight 0.0001 0.0239 0.1541 0.0001 0.4498 0.0371 0.0306 0.3610 0.3048 0.0001 0.0001 0.0001 0.0001 0.0001 0.2497 0.0840 0.0500 0.0001 .0.1325 0.3211 0.0001 0.0001 0.0001 0.0001 0.0000 0.1193 0.0111 0.0105 0.3550 0.3363 0.0050 0.0873 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0326 0.4957 0.0425 0.0297 0.3208 0.3773 0.0001 0.0001 0.0001 0.0001 0.1246 0.0013 Observation Time (if daily) 07:00 08:00 24:00 24:00 17:00 16:00 16:00 09:00 24:00 - 09:00 16:00 09:00 24:00 18:00 09:00 16:00 18:00 09:00 Precip Model DSN Station Station Observation Segment Segment Name Weight Time (if daily) 1010 1011 1012 1013 780 822 830 845 857 950 725 630749 960 612* 620 734* 999* 845 330604 340615 119* 602* 605* 734* 742* 747* 999* 624 629 642 729 235 726* 250734* 260 742* 747* 612* 999* 757 776 780 792 806 734 290 720* 300 729* 310749* 722* 999* 755 756 767 757 765 780 782 786 830 857 VADY2142 VADY6475 VADY6906 VADY8800 VADY9213 VAHR6139 VAHR9151 MDHR6915 VAHR7201 XXHROOOO VADY8800 MDHR0700 MDHR9030 PAHR2537 MDHR0465 MDHR1530 VAHR7201 VAHR8396 VAHR8906 XXHROOOO MDDY1125 MDDY1862 MDDY3675 VAHR6712 VAHR6178 VAHR7201 VAHR8396 VAHR8906 MDHR6915 XXHROOOO VADY0327 VADY2009 VADY2142 VADY3466 VADY5050 VAHR7201 VAHR5120 VAHR6712 VAHR9151 VAHR5690 XXHROOOO VADY0187 VADY0243 VADY1322 VADY0327 VADY1136 VADY2142 VADY2160 VADY2941 VADY6906 VADY9213 0.0018 0.0016 0.0062 0.0454 0.0909 0.7701 0.0679 0.0001 0.0001 0.0001 0.1617 0.2692 0.0532 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.4485 0.2284 0.0827 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2494 0.2487 0.0609 0.0652 0.2925 0.0012 0.0001 0.0001 0.0001 0.0001 0.0001 0.1788 0.0663 0.0513 0.0001 0.0001 0.1637 0.0820 0.2324 0.1191 0.1045 08:00 16:00 07:00 07:00 07:00 7:00 24:00 17:00 16:00 18:00 09:00 08:00 07:00 18:00 07:00 07:00 08:00 18:00 07:00 08:00 07:00 07:00 07:00 07:00 ('indicates stations which possess Thiessen polygons outside of the segment, but are used to minimize skipped hourly precipitation events) ("indicates time of day that precipitfon data was observed at those stations subject to daily inspection) 22 ------- Table D3.2 Format of Input Files for PRECIP.exe Program Line FORTRAN Format 1 714 2 A64 3 14 4 2014 614 1014 7+ 10F8.2 Variable Name NGAGES IDAILY IHRLY TYPE COMP DIS AVG WDNAME DSN(21) DSN(1-NGAGES) SDATE(l-S) EDATE(l-3) lOBST(ll-IDAYT) WGT(l-NGAGES) Definition Total number of hourly and daily stations Number of daily stations Number of hourly stations Set to 2, for Thiessen method Set to 1 Set to 0 Set to 1 WDM file name and extension WDM data set number for the output time series generated by PRECIP.exe WDM data set numbers of the input hourly and daily precipitation tune series. Enter hourly stations DSNs first, then daily station DSNs Start date in year, month, day format End date in year, month, day format Observation times of the daily stations in the same order as they appear in line 4. If there are no daily stations to be included omit this line, do not leave a blank line Thiessen weights of the observed precipitation stations in the same order as line 4. Enter a maximum of ten values per line, then start a new line immediately below following the same format 23 ------- used to distribute that event by employing a proportional distribution pattern on an hourly basis. A data gap occurs when daily precipitation stations have precipitation recorded, but the hourly stations either have zero or missing precipitation. As no hourly distribution is available, for these instances the precipitation hourly record will contain data gaps. To eliminate hourly data gaps an ideal hourly station that rained every hour of every day for the period of the record. This ideal station (DSN999) had an extremely low precipitation volume (0.00042 inches per hour, or 0.01 inches per day) and was set to a weight of 0.0001 which was a negligable weight assigned to other nearby hourly stations not in the Thiessen precipitation segment but close by and used for hourly weights of the precipitation volume. The ideal station had no impact on a segment's calculated precipitation volume, but was selected when no other hourly station had precipitation registered for that day. This ideal station was included for all precipitation segments that missed more than one inch of calculated precipitation over the 1991-1994 run time. For those stations with less than one inch missed, all events were reviewed and determined to be less than 0.20 inch in depth. Table D.3.1 is the final draft with Thiessen weights with the augmented hourly stations marked with an asterisk and the inclusion of the ideal hourly station identified by an asterisk and a "999" in the DSN column. Both 1991 data from the above development and from the earlier 1984-1991 dataset were compared to verify the consistency between them. Table D.3.3 lists the monthly precipitation hi 1991 forthe 1984-1991 data set and for verification with the 1991-1995dataset, and in 1992-1995. \ In comparing 1991 precipitation of stage 1 and stage 2, there are only minor (<1%) differences between them. The differences may be due to any of the following reasons: 1)1984-91 used one decimal place for daily precipitation, while 1991-1995 used two decimal places, and 2) 1991-95 used eight fewer precipitation stations than 1984-91 did. From the above analysis, the 1991-95 precipitation data development was shown to be in agreement with 1984-91 precipitation data. Finally, the 1992-95 precipitation data were combined with 1984-1991 data using ANNIE.exe software, yielding 1984-95 precipitation data for application in the Phase IV Chesapeake Bay Watershed Model. 24 ------- Table D.3.3 Summary of 1991 Precipitation Data from Stage 1 WDM Files DATE DSN 1010 DSN 1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 1175 DSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 2012 DSN 2013 Jan-91 1.67 2.22 1.87 2.59 3.10 1.97 2.20 2.39 1.97 1.90 2.59 3.01 2.63 3.02 2.66 2.94 3.09 3.12 3.20 3.01 3.64 4.07 3.76 3.67 1.28' 2.46 2.79 2£4 2.81 3.00 3.38 4.59 4.55 3.68 3.50 3.26 3.31 2.98 3.62 3.90 4.55 3.24 3.71 4.17 Feb-91 1.24 1.79 1.58 1.68 1.82 1.43 1.79 1.62 1.66 1.66 1.12 1.13 1.72 0.96 1.20 1.09 1.45 1.01 1.34 0.82 1.04 1.74 2.00 1.94 1.27 1.15 1.16 1.44 1.11 1.50 1.15 0.87 0.86 1.08 1.19 0.78 0.80 0.80 0.96 1.19 0.88 0.94 1.08 2^2 Mar-91 2.96 3.63 3.33 3.64 5.20 4.15 3.59 3.97 4.12 • 4.62 3.61 3.52 4.01 5.06 4.43 4.25 5.20 4.70 4.04 4.94 5.01 6.04 6.81 5.56 2.99 3.55 3.74 4.31 4.17 4.12 4.03 . 4.89 5.56 4.92 4.34 4.89 4.71 4.92 4.48 '5.40 4.63 5.34 4.11 5.44 Apr-91 2.97 4.44. 3.11 2.91 3.52 2.89 2.72 2.48 2.67 2.70 2.00 2.25 3.04 2.03 1.93 2.11 1.88 1.93 2.02 1.80 2.48 2.14 2.25 2.42 2.99 1.85 2.28 2.87 2.04 2.36 1.73 2.96 2.64 2.66 2.34 1.91 1.66 1.67 ' 1.60 1.67 5.41 1.92 1.59 1.39 ' May-91 . 1.05 2.54 2.34 2.57 1.95 1.83 2.16 2.03 1.46 1.45 2.82 1.64 2.12 2.15 1.81 1.95 1.69 1.63 1.85 1.30 1.71 2.16 2.91 2.36 0.98 2.36 2.50 2.79 1.88 2.50 1.92 0.72 . 1.23 2.14 2,17 1.34 1.62 1.64 1.49 0.98 0.67 2.02 1.36 1.93 Jun-91 0.92 1.55 1.13 2.34 2.64 1.51 1.37 0.84 1.28 1.37 0.66 1.65 1.48 1.22 Z25 1.27 3.56 2.48 0.90 3.98 3.47 2.33 2.65 3.22. 0.67 0.81 1.92 0.58 1.61 0.50 1.43 2.62 3.22 1.34 1.73 0.80 2.45 3.46 3.39 4.82 4.22 1.95 3.72 2.88 Jul-91 2.53 3.12 2.84 3.31 3.33 2.80 3.23 2.06 2.61 2.37 1.92 3.24 2.69 4.02 2.43 . 1.93 7.31 2.74 2.08 2.65 5.30 5.74 6.00 8.24 2.05 1.90 3.06 2.03 1.63 2.32 1.67 3.89 4.34 3.18 3.19 2.47 3.58 3.66 4.12 5.91 7.15 2.25 ' 7.61 6.30 Aug-91 2.61 3.72 2.29 4.48 1.78 2.76 3.6 4.58 2.47 2.93 3.77 2.40 2.32 2.35 2.32 2.23 2.26 1.71 5.54 1.07 1.43 2.89 2.13 2.51 1.63 3.39 3.41 2.75 2.21 4.61 4.63 5.48 4.10 3.39 3.21 2.53 2.08 1.69 1.17 2.86 4.10 3.21 1.20 4.13 Sep-91 2.45 3.09 "> 3.15 3.63 3.00 3.29 4.18 2.32 1.49 2.32 3.65" 4.43 1.19 1.31 0.94 1.78 0.80 1.33 4.29 2.56 1.67 0.60 0.77 1.29 2.40 3.67 3.53 1.46 1.79 2.10 3.85 2£9 4.09 4.42 4.25 3.68 3.11 2.98 3.01 2.74 2.27 3.42 2.47 2.83 Oct-91 1.81 1.85 2.14 2.71 1.31 1.69 2.26 2.09 1.16 1.42 2.96 2.48 1.09 0.5 0.91 2.62 0.99 1.47 2.17 1.71 1.73 1.11 0.63 1.13 1.37 2.8 2.78 2.81 1.55 2.69 1.87 3.62 3.04 1.83 1.93 2.55 2.77 1.94 2.74 2.92 4.26 2.59 1.83 1.87 Nov-91 2.86 3.91 3.52 3.49 2.49 2.86 3.12 2.95 2.73 2.76 2.27 2.22 2.68 2.22 2.48 1.92 2.43 2.13 2.11 2.32 2.71 3.38 3.42 2.67 3.47 2.04 1.96 2.44 2.3 2.25 2.36 0.86 0.98 2.18 2.18 2.02 1.11 1.86> 1.15 0.85 1.46 2.16 1.42 1.23 Dec-91 2.76 2.8 2.81 3.19 2.83 3.01 3.18 2.93 3.06 2.62 3.41 3.7 3.97 3.88 3.64 4.1 4.46 4.29 3.86 4.6 4.73 5.63 4.79 5.36 2.47 3.44 3.35 3.42 3.72 3.73 4.23 3.54 4.37 4.21 A 4 •». 1 4.38 5.28 4.89 5.82 3.93 2.5 4.73 5.36 4.68 25 ------- Table D.3.3 Summary of 1991 Precipitation Processed by Stage 2 for Verification with Stage 1 DSN 1010 DSN1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 1175 DSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 2012 DSN 2013 Jan-91 1.68 2.22 1.87 2.54 3.10 2.00 2.22 2.41 2.01 1.97 2.63 2.90 3.27 2.81 2.75 3.61 3.48 3.25 3.21 2.89 3.57 3.46 3.75 3.51 1.28 2.45 2.73 2.69 2.84 3.00 3.32 4.60 4.55 3.68 3.34 3.25 3.32 2.95 3.59 3.90 4.56 3.18 3.63 4.19 Feb-91 1.26 1.79 1.59 1.74 1.59 1.54 1.79 1.60 1.68 1.63 1.14 1.23 1.65 0.96 1.16 1.18 1.47 1.02 1.45 0.85 1.00 1.75 2.01 2.04 1.27 1.16 1.27 1.45 1.11 1.50 1.11 0.88 0.86 1.08 1.19 0.84 0.83 0.84 0.96 1.16 0.84 1.01 1.05 2.23 Mar-91 2.96 3.63 3.31 3.53 5.20 4.11 3.56 3.97 4.08 4.58 3.61 3.45 4.10 5.12 4.45 4.21 5.17 4.78 4.04 5.02 . 5.01 5.64 6.75 5.61 2.99 3.54 3.77 4.32 4.17 4.12 4.12 4.87 5.56 4.94 4.36 4.92 4.75 4.98 4.47 5.82 6.08 5.46 4.09 5.44 Apr-91 2.97 4.44 3.11 2.84 3.08 2.88 2.70 2.49 2.67 2.66 1.96 2.60 3.06 2.06 1.98 2.22 1.92 1.93 2.02 1.76 2.46 2.02 2.19 2.33 2.99 1.84 • 2.40 2.93 2.01 2.36 1.69 2.98 2.64 2.64 2.42 1.86 1.70 1.63 1.76 1.71 . 5.42 1.88 1.70 1.32 C May-91 1.05 2.54 2.33 2.57 1.95 1.87 2.14 2.01 1.45 1.49 2.83 1.79 2.11 2.13 .84 .41 .76 .55 .85 1.33 1.73 2.12 2.94 2.50 0.98 2.49' 2.93 2.75 1.83 2.50 1.86 0.73 1.23 2.15 2.26 1.35 1.61 1.64 1.56 0.98 0.66 1.98 1.40 1.96 (ATE Jun-91 0.92 1.55 1.12 2.31 2.32 1.53 1.40 0.96 1.32 1.39 0.65 1.67 1.45 1.18 2.35 1.22 3.53 2.49 0.90 4.02 3.49 2.16 2.65 3.43 0.67 0.68 2.11 0.60 1.72 0.50 1.36 2.64 3.22 1.34 1.72 0.84 2.45 3.49 3.43 4.85 4.50 1.86 3.76 2.86 Jul-91 2.52 3.12 2.85 3.39 3.33 2.80 3.20 2.04 2.58 2.42 1.83 3.78 2.69 4.06 2.38 1.87 7.30 2.80 2.07 2.57 5.34 5.89 6.15 7.12 2.05 1.80 3.24 2.03 1.62 2.32 1.66 3.90 4.37 3.17 3.22 2.36 3.59 3.61 4.18 5.92 7.06 2.30 7.69 6.23 Aug-91 2.61 3.72 2.30 4.48 1.71 2.79 3.62 4.59" 2.44 2.85 3.81 2. 1O 2.34 2.36 2.33 2.03 2.24 1.69 5.55 1.04 1.43 2.72 2.14 2.62 1.63 3.50 3.69 2.79 2.19 4.61 4.62 5.46 4.10 3.35 3.24 2.46 2.09 1.70 0.96 2.87 .4.08 3.25 1.23 4.18 Sep-91 2.46 3.09 3.16 3.67 3.24 3.34 4.23 2.30 1.47 2.19 3.70 4.53 1.14 1.33 1.02 — 0.77 1.14 — 2.61 •1.61 0.63 0.79 1.51 2.40 3.66 3.44 — — — 3.93 2.89 4.09 4.38 4.16 3.72 3.12 3.04 3.20 2.73 2.26 3.48 2.46 2.84 Oct-91 1.81 1.85 2.14 2.71 1.32 1.74 2.26 2.12 1.14 1.38 2.96 2.15 1.08 0.55 0.97 2.07 1.06 1.32 2.17 1.75 1.76 1.10 0.63 0.96 1.37 2.78 2.81 2.77 1.64 2.69 1.91 3.63 3.04 1.80 1.92 2.57 2.77 1.99 2.76 2.95 4.25 2.62 1.88 1.87 Nov-91 2.86 3.91 3.51 3.39 2.59 2.87 3.18 3.01 2.82 2.80 2.33 2.28 2.69 2.92 2.46 1.69 2.51 2.00 2.11 2.40 2.75 3.36 3.49 2.61 3.47 Z11 2.06 2.43 1.20 2.25 2.34 0.86 0.98 2.08 2.10 2.01 1.14 1.90 1.14 0.88 1.45 2.15 1.39 1.15 Dec-91 2.76 2.8 2.81 3.21 2.94 3.04 3.22 2.93 2.98 2.57 3.57 3.63 4.00 '3.88 3.69 3.02 4.43 4.35 3.86 4.53 4.67 5.59 4°82 5.53 2.47 3.53 . 3.14 3.26 3.66 3.73 4.35 3.56 4.37 4.18 4.09 4.36 5.31 4.84 5.76 3.89 2.49 4.88 5.44 4.70 Note: There are no values for segments 1180,1210,1730,1740, and 1750 due to unacceptable raw data for those segments. 26 ------- Table D.3.3 Summary of 1992 Precipitation Data Processed by Stage 2 DSN 1010 DSN 1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 1175 DSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 201 2 DSN 201 3 Jan-92 1.73 1.70 1.69 1.34 1.84 1.93 1.76 1.62 1.87 1.53 1.37 1.87 1.79 1.35 1.36 1.47 2.57 2.26 1.52 2.38 3.03 1.49 2.28 2.80 .69 .50 .56 .66 .38 .65 2.04 1.57 1.06 1.14 1.57 1.43 1.92 2.38 2.17 2.41 4.37 2.06 2.03 2.37 Feb-92 1.21 2.07 1.70 2.00 1.76 1.42 1.66 1.90 1.96 1.64 1.58 1.47 2.88 1.49 1.82 1.29 2.05 1.77 1.84 2.07 2.19 4.01 2.82 2.99 1.36 1.55 1.45 1.99 ' 1.95 1.98 2.50 2.76 3.12 2.57 1.26 2.35 2.72 2.25 2.95 2.75 2.09 2.58 2.8 3.03 Mar-92 3.24 3.30 3.52 4.97 3.22 3.59 4.74 4.73 3.96 3.79 4.54 3.90 4.07 2.76 3.08 3.86 3.01 3.11 5.09 3.49 3.05 4.04 3.48 3.20 , 3.59 4.26 3.83 5.13 3.63 5.49 4.29 3.42 3.59 4.67 4.26 4.38 4.50 3.50 4.42 4.88 2.72 4.27 4.22 4.02 Apr-92 2,88 3.17 2.53 2.68 2.45 2.58 2.30 2,64 1.91 2.02 2.3B 1.70 2.33 2.52 2.35 4.09 4.44 4.01 , 3.53 3.73 4.23 3.46 4.39 3.34 2.40 1.97 1.48 3.26 • 3.52 3.18 2.76 1.56 1.36 1.67 0.98 1.98 2.19 2.78 1.77 2.44 1.70 2.62 2.04 2.72 C May-92 2.56 4.68 4.11 2.45 2.63 2.72 3.44 3.09 2.59 2.77 3.97 4.18 3.28 3.49 3.60 3.93 4.16 3.79 3.29 4.09 4.49 4.61 4.43 4.84 3.54 3.99 4.36 4.14 4.15 4.08 3.45 4.15 3.57 4.30 4.10 3.19 3.54 3.91 3.96 4.55 3.78 4.04 3.94 4.87 IATE Jun-92 2.03 1.73 1.64 2.82 1.58 2.22 2.82 £15 1.99 1.83 2.30 2.60 2.12 2.01 . 2.78 3.21 3.27 3.10 3.32 2.81 4.09 4.61 4.60 3.62 1.52 2.01 2.94 2.75 3.65 2.81 1.77 2.78 3.50 3.51 1.64 2.29 2.67 2.48 2.48 2.86 2.36 1.72 2.47 2.90 Jul-92 7.34 6.17 5.27 5.32 6.98 8.09 7.97 4.87 5.28 4.02 4.67 2.74 7.43 3.09 5.14 4.81 4.19 4.70 6.55 6.78 4.80 3.94 3.12 3.35 6.02 4.21 4.01 4.11 4.41 5.69 5.81 4.81 8.24 5.94 3.47 4.61 7.14 6.79 6.15 5.76 4.77 7.55 3.48 3.34 Aug-92 3.32 2.71 2.83 2.97 4.92 3.98 2.64 2.48 2.77 1.82 1.88 2.15 2.B3 1.65 2.56 2.55 2.00 2.08 2.51 1.68 2.60 2.22 2.27 2.05 3.54 1.81 2.36 2.08 2.32 1.60 2.14 5.16 4.85 2.95 2.33 2.48 4.14 2.03 5.76 7.49 12.97 2.41 4.03 3.86 Sep-92 3.87 3.43 3.30 3.02 4.34 4.09 2.60 3.00 3.10 3.21 4.75 3.78 1.75 1.96 2.60 4.96 4.38 4.83 4.81 5.39 6.03 2.18 2.95 5.46, 2.78 4.44 4.17 4.24 3.82 4.69 '4.19 5.59 5.20 5.62 2.42 5.45 4.17 4.81 3.87 2.29 2.31 4.45 4.15 3.12 Oct-92 2.17 3.34 2.52 2.15 1.45 1.77 1.20 1.75 0.68 0.85 1.58 2.50 0.59 0.29 0.47 0.65 1.57 0.75 1.32 2.11 1.97 1.06 1.54 1.87 2.72 1.50 1.82 0.68 0.41 1.26 1.98 1.45 1.65 1.86 2.14 2,18 1.82 2.04 1.93 2.37 2.82 2.17 2.09 2.25 Nov-92 3.13 4.06 3.75 3.52 4.14 4.30 3.65 4.31 3.66 4.03 4.96 3.57 3.28 1.65 3.03 3.74 4.06 3.42 4.78 5.26 5.82 4.81 4.54 5.60 3.07 4.31 4.11 5.28 2.20 6.18 5.22 4.65 2.77 4.04 2.24 4.20 3.28 4.30 3.09 3.03 4.00 4.88 4.09 3.69 Dec-92 2.74 2.6 3.18 2.17 3.39 3.29 1.94 3.57 4.21 4.09 2.87 3.79 4.59 2.56 4.25 4.49 5.68 5.81 3.81 4.73 7.69 3.00 2.85 4.60 3.06 2.87 3.75 5.63 4.65 4.30 4.87 4.46 4.61 4.85 3.73 4.11 4.08 3.88 4.40 3.53 3.44 4.53 4.83 3.94 27 ------- Table D.3.3 Summary of 1993 Precipitation Data Processed by Stage 2 DATE DSN 1010 DSN 1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 1175 OSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 201 2 DSN 201 3 Jan-93 1.78 2L39 1.80 1.85 2.95 2.48 1.53 2.24 1.75 1.88 1.94 1.77 1.81 1.32 1.41 1.73 2.39 1.81 2.08 2.50 2.88 1.94 2.70 4.38 1.41 1.76 1.97 2.08 1.67 2^7 2.41 3.62 3.21 2.80 2.02 2.55 3.27 2.84 3.65 4.66 4.93 2.86 3.99 4.81 Feb-93 .28 .77 .45 .37 2.10 .75 .14 .66 2.08 1.90 2.40 2.40 2.42 1.52 1.83 2.14 2.29 1.84 3.26 2.44 2.56 2.18 3,00 3.45 1.13 2.08 2.39 2.76 1.67 3.20 2.54 1.64 2.84 3.11 1.44 2.75 2.53 2.46 2.72 2.48 2.23 2.30 2.83 , 3.24 Mar-93 3.81 3.98 4.36 3.63 4.77 5.18 3.9 6.25 5.93 5.31 6.10 6.63 7.16 6.62 6.94 5.57 7.38 7.85 7.81 7.67 7.75 5.69 7.49 8.25 3.61 5.60 5.97 6.99 6.73 7.77 1.28 5.87 7.81 7.57 7.17 7.92 7.38 7.53 8.08 6.86 6.23 4.24 8.08 7.90 Apr-93 6.72 6.95 7.59 7.49 6.98 7.45 6.17 6.89 8.77 7.81 6.90 6.08 6.59 3.60 6.26 4.91 4.34 4.08 6.07 3.76 4.98 3.69 3.67 4.57 7.43 6.54 6.62 8.06 5.81 6.97 6.32 2.88 2.99 4.85 3.24 4.39 3.43 4.64 4.20 3.75 3.57 . 4.95 4.74 6.20 May-93 . 1.47 1.63 1.58 1.61 2.47 1.86 1.65 2.31 2.39 2.09 2.45 1.75 2.23 1.30 1.48 2.21 2.84 1.56 2.24 2.58 3.46 4.20 3.02 4.92 1.61 1.85 1.68 2.25 1.20 2.08 2.49 4.22 3.60 3.94 2.44 2.87 3.86 3.21 4.48 5.02 3.57 3.51 4.75 5.15 Jun-93 ,. 2.36 3.52 2.82 2.42 2.69 3.23 2.62 2.44 2.74 2.43 2.96 1.70 2.74 2.33 2.65 2.16 2.02 3.04 2.15 3.12 2.69 2.00 3.27 2.15 3.65 2.74 2.27 2.59 2.73 2.65 3.37 1.71 2.06 2.81 1.10 2.66 1.85 1.96 2.05 2.26 2.70 2.40 1.87 2.07 Jul-93 1.56 1.65 2.09 1.70 3.83 2.88 1.71* 3.41 3.89 3.13 3.44 2.19 3.48 1.78 3.49 2.07 2.65 2.66 2.12 1.68 3.03 2.16 2.47 2.86 1.32 3.09 2.68 3.40 2.75 2.78 1.58 0.44 1.27 2.43 1.86 2.11 1.10 1.56 1.10 1.48 0.36 1.37 1.58 1.93 Aug-93 3.08 3.03 3.71 4.42 2.55 3.93 3.68 4.29 2.57 2.14 4.16 3.33 2.48 2.11 1.88 2.28 2.18 2.25 3.48 3.68 2.71 2.32 2.05 2.32 3.24 3.75 2.48 2.57 1.86 3.44 4.04 3.00 4.73 2.93 3.54 3.60 4.54 4.36 3.44 2.50 1.34 4.84 2.35 2.54 Sep-93 4.42 3.69 5.42 4.56 5.50 5.10 4.21 4.34 4.63 4.27 6.47 6.09 5.04 4.09 4.29 6.97 4.23 4.13 8.84 4.22 3.60 4.98 4.31 3.88 3.76 6.70 7.46 5.57 5.39 7.79 5.16 2.76 2.58 6.09 6.59 4.99 3.24 4.26 4.25 2.78 3.95 4.17 4.14 4.30 Oct-93 2.10 2.84 3.61 2.90 3.03 3.30 2.52 3.32 2.81 2.47 3.47 2.93 2.78 2.08 2.25 1.92 2.32 2.38 2.91 2.41 2.79 2.64 2.11 2.44 2.23 3.35 3.41 3.10 2.49 3.12 2.98 4.02 2.46 3.08 3.86 3.22 2.65 2.51 2.60 2.78 3.45 3.35 2.39 2.75 Nov-93 4.17 3.91 4.13 2.99 5.38 4.86 3.53 3.45 4.90 4.77 4.46 ' 3.97 3.46 3.29 4.15 3.21 3.87 4.47 4.61 5.86 5.74 2.87 2.80 5.96 3.50 4.46 4.50 5.11 4.29 4.68 4.72 1.78 3.23 2.94 3.64 3.61 4.89 5.70 4.33 2.98 1.25 5.13 6.57 6.40 Dec-93 1.84 2.97 3.16 2.85 2.78 2.50 2.17 3.23 2.84 2.50 4.30 4.35 3.14 2.37 3.07 3.00 3.71 3.69 4.10 4.12 3.90 4.69 3.82 4.88 2.50 4.42 4.78 3.72 3.89 3.94 4.52 3.51 4.53 4.56 4.70 4.50 4.41 4.31 4.41 3.89 3.38 4.81 4.53 5.56 28 ------- Table D.3.3 Summary of 1994 Precipitation Data Processed by Stage 2 DATE DSN 1010 DSN 1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 1175 DSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 2012 DSN 2013 Jan-94 2.57 . 3.59 3.82 4.04 4.03 3.00 3.07 4.73 4.55 4.05 4.10 4.75 4.72 2.28 3.92 2.70 4.55 3.62 3.78 4.12 4.34 4.49 4.17 4.42 3.32 3.44 5.05 4.69 4.03 3.90 3.72 3.35 4.62 4.32 5.33 4.42 4.50 4.28 4.29 3.31 3.89 4.56 3.92 3.32 Feb-94 1.56 1.91 1.45 1.65 2.75 2.11 1.73 2^7 3.44 2.98 3.40 4.14 5.65 3.81 4.30 256 3.65 3.96 3.74 3.80 3.81 4.84 3.78 5.10 1.51 3.36 3.06 3.40 4.14 3.39 4.22 5.13 4.00 2.57 3.52 4.17 4.25 3.88 5.52 4.40 3.64 3.65 5.06 5.40 Mar-94 4.11 5.09 4.46 4.78 6.54 4.93 4.32 6.34 6.37 5.78 5.68 5.51 6.47 4.66 6.03 4.20 7.01 6.65 6.41 6.98 7.61 6.64 6.30 8.73 4.31 5.45 5.52 5.80 6.19 5.56 7.29 9.72 9.78 7.66 6.06 8.24 9.36 7.76 9.69 8.29 10.01 8.69 9.37 9.10 Apr-94 2.67 3.36 4.57 3.18 5.61 3.71 3.23 2.70 2.99 2.66 2.08 2.82 3.91 1.92 2.90 1.75 2.54 2.73 2.16 2.19 3.08 2.69 3:28 2.09 0.00 0.00 3.12 0.37 2.51 0.00 1.81 0.94 3.09 3.01 2.72 2.12 2.51 1.84 2.65 2.44 0.70 2.57 3.45 2.51 May-94 2.47 2.52 2.45 2.03 3.41 2.40 2.25 2.87 3.00 2.66 3.01 3.80 4.34 2.86 3.20 2.16 2.53 3.02 2.75 3.15 2.24 4.12 2.63 2.14 1.81 3.41 4.11 2.86 3.95 2.71 3.25 2.89 3.07 3.40 3.27 2.83 2.12 2.57 1.91 2.96 3.24 2.94 2.33 3.09 Jun-94 5.64 6.30 5.03 4.66 4.61 5.90 4.39 3.51 2.09 1.91 2.21 2.16 3.36 2.00 2.63 1.78 2.83 2.89 4.15 4.06 3.77 2.84 3.20 3.45 7.63 1.96 2.61 1.92 1.56 3.55 2.19 2.82 1.86 0.90 1.68 2.45 2.19 3.71 2.87 1.69 1.36 2.61 2.33 3.79 Jul-94 2.88 4.19 4.34 4.14 3.73 4.42 4.61 4.80 4.50 3.50 6.40 5.69 5.29 4.85 5.40 3.36 4.42 4.70 3.73 5.52 6.82 -6.88 5.53 6.81 5.29 7.34 6.67 3.84 4.45 3.78 4.98 6.90 6.32 9.28 6.46 5.22 5.97 5.12 7.57 7.67 12.46 8.47 7.62 5.52 Aug-94 6.82 6.46 7.16 4.84 8.84 8.29 5.47 6.95 7.58 6.60" 5.31 5.94 5.02 4.28 4.56 4.16 5.20 5.72 4.08 5.34 5.54 3.73 5.64 5^10 6.25 4.93 5.81 7.39 6.28 5.21 4.95 3.23 3.93 3.83 4.04 4.47 5.11 4.92 4.86 3.35 3.62 7.61 5.46 3.71 Sep-94 2.19 2.68 3.96 3.07 3.12 2.89 3.60 2.33 2.12 2.31 2.67 3.12 1.03 0.78 1.26 2.85 1.67 2.54 3.65 3.47 3.51 0.57 1.06 3.11 3.05 2.60 2.78 3.84 2.02 3.84 2.89 3.55 3.09 2.23 2.56 2.98 3.14 3.05 4.02 3.43 2.59 3.10 4.38 3.86 Oct-94 1.63 0.91 1.10 6.66 0.89 0.74 0.59 0.78 0.97 0.72 1.04 1.10 0.79 0.40 0.96 0.79 1.28 0.80 0.91 1.06 1.20 0.97 1.49 1.63 1.27 1.04 1.10 0.80 1.13 0.94 1.08 2.28 . 1.56 0.82 0.93 1.29 1.44 1.14 1.67 2.36 2.52 1.35 1.79 2.16 Nov-94 3.36 3.05 4.26 4.01 4.74 4.36 4.01 3.70 4.04 4.16 5.39 3.16 3.38 2.06 3.63 2.15 2.47 2.93 4.89 2.33 3.01 1.72 1.45 221 2.76 5.14 4.69 5.27 3.68 5.29 4.06 3.90 2.07 2.52 3.26 2.71 2.11 1.91 2.75 3.54 4.95 2.39 2.41 3.45 Dec-94 1.89 2.72 2.54 2.15 3.04 2.70 2.45 2.74 2.91 2.71 2.93 1.81 2.99 1.78 2.88 2.47 2.12 2.54 Z53 2.62 2.51 2.54 2.32 1.66 2.13 2.97 3.06 3.30 3.04 2.64 3.13 1.54 1.49 2.13 228 2.05 1.71 2.42 1.16 0.89 1.22 2.31 1.53 0.80 29 ------- Table D.3.3 Summary of 1995 Precipitation Data Processed by Stage 2 DSN 1010 DSN 1020 DSN 1030 DSN 1040 DSN 1050 DSN 1060 DSN 1070 DSN 1080 DSN 1090 DSN 1100 DSN 1110 DSN 1120 DSN 1160 DSN 1170 DSN 11 75 DSN 1180 DSN 1190 DSN 1200 DSN 1210 DSN 1220 DSN 1230 DSN 1265 DSN 1270 DSN 1280 DSN 1700 DSN 1710 DSN 1720 DSN 1730 DSN 1740 DSN 1750 DSN 1760 DSN 2001 DSN 2002 DSN 2003 DSN 2004 DSN 2005 DSN 2006 DSN 2007 DSN 2008 DSN 2009 DSN 2010 DSN 2011 DSN 2012 DSN 201 3 Jan-95 2.83 2.43 2.97 3.87 2.78 3.47 4.23 4.52 3.16 3.50 4.18 4.13 3.71 4.70 3.45 3.37 6.56 4.06 4.48 3.97 5.28 6.20 7.24 5.60 2.14 4.08 3.61 4.17 3.64 4.54 3.89 2.82 3.08 3.80 4.46 3.41 3.61 3.67 3.94 3.25 2.58 3.87 4.60 4.41 Feb-95 0.95 , 2.50 1.38 1.46 1.96 1.47 1.37 1.74 1.68 1.59 1.81 2.04 1.89 0.66 0.83 0.92 1.19 0.90 1.68 1.51 1.47 1.80 1.78 2.31 0.66 1.87 1.98 1.34 0.62 1.10 1.93 1.82 2.16 2.12 2.29 1.89 1.89 1.71 1.70 1.68 2.67 2.07 1.48 1.77 Mar-95 0.91 1.13 1.03 1.24 1.44 1.17 1.11 1.16 1.34 1.21 1.38 2.41 0.89 1.33 1.33 1.45 1.51 1.31 0.81 1.58 2.28 1.82 1.57 1.70 0.63 1.42 1.94 1.29 1.59 0.98 1.44 1.98 2.26 1.36 2.26 1.67 2.55 1.89 2.81 3.11 3.28 1.90 2.46 2.67 Apr-95 1.76 / 2.38 2.47 2.40 2.67 2.67 2.36 2.31 2.37 2.45 2.10 1.33 2.35 2.11 1.81 2.29 1.65 1.76 1.00 2.15 1.83 1.88 1.45 1.65 2.33 1.94 1.95 • 1.95 1.92 1.33 1.68 3.86 2.48 2.09 1.83 1.63 2.22 2.07 2.66 2.34 2.94 2.20 2.39 2.29 C May-95 1.56 1.91 1.93 2.31 4.30 3.48 2.46 2.91 3.36 3.59 4.39 3.40 4.33 4.06 3.55 3.48 4.81 4.13 3.70 4.76 5.31 4.30 4.47 5.83 1.49 3.76 3.29 3.05 4.87 3.47 5.88 4.06 4.22 3.89 3.63 4.08 4.39 4.91 4.23 4.61 2.68 6.15 5.31 5.97 IATE Jun-95 1.87 1.88 2.00 3.88 5.12 3.23 3.59 5.50 5.02 5.84 3.51 2.42 6.29 6.78 5.84 8.23 10.44 6.68 7.72 5.19 10.60 7.71 11.11 9.56 1.93 3.76 3.21 6.26 6.46 7.10 2.94 2.56 2.73 1.53 3.09 1.88 2.95 3.34 4.02 3.17 4.80 2.48 6.48 4.94 Jul-95 1.79 2.32 3.38 3.83 3.16 2.31 2.50 2.47 2.12 2.10 5.92 3.98 2.71 4.10 2.95 3.32 2.48 2.25 2.84 3.78 3.38 2.54 3.03 4.17 2.53 6.73 5.68 2.97 3.73 3.03 6.05 4.10 6.45 3.02 2.65 4.34 3.57 3.90 5.77 4.00 2.27 3.32 5.26 6.43 Aug-95 3.02 2.55 1.72 0.72 1.73 1.25 0.75 0.83 1.28 1.16 1.29 1.13 3.71 3.23 3.42 4.10 2.00 3.90 1.54 2.78 2.42 1.23 0.94 1.38 3.22 0.77 0.50 0.79 3.70 1.26 3.06 1.59 2.37 1.96 1.45 2.71, .02 .71 .08 .65 .43 2.02 1.25 0.92 Sep-95 2.08 3.15 2.81 2.04 1.34 1.39 1.57 1.79 1.72 1.70 2.48 3.70 1.77 1.67 1.68 3.15 3.40 2.38 2.95 2.93 3.17 2.37 2.37 3.27 3.22 2.80 2.99 1.75 2.08 2.68 2.79 5.15 3.65 3.81 4.34 .3.20 3.26 3.16 2.99 3.76 4.63 3.38 3.14 3.49 Oct-95 6.41 6.51 6.78 7.87 6.30 7.27 7.42 8.23 6.58 7.18 6.67 7.14 4.46 3.65 5.50 6.54 7.15 6.24 5.09 6.41 7.50 4.15" 4.70 8.29 6.12 6.80 8.27 8.89 7.06 6.50 6.05 4.74 6.61 6.46 6.38 6.27 7.37 7.18 6.89 5.47 4.95 7.44 8.39 7.24 Nov-95 3.09 3.72 4.35 5.15 4.26 4.51 4.57 4.51 3.98 4.14 4.49 4.55 3.34 2.48 3.85 3.79 3.39 3.66 3.72 4.54 4.34 3.05 4.02 4.16 3.02 4.70 5.18 4.87 3.96 3.81 4.88 2.88 3.92 4.62 4.63 4.38 3.79 4.83 3.64 2.75 3.02 4.32 3.67 3.27 Dec-95 1.29 2.14 1.42 1.38 1.77 1.74 1.33 1.92 2.49 2.10 2.56 1.78 2.37 1.81 1.92 2.17 2.33 2.07 1.79 2.06 2.26 2.22 2.15 2.28 1.34 2.39 2.22 2.11 2.23 1.84 1.81 2.22 2.86 2.26 2.13 1.52 2.55 2.10 2.47 1.89 1.83 2.25 2.50 2.02 30 ------- The following is a copy of the PREHR.F program which was used to reformat the hourly data from the NOAA format into a more compatible HYDHR format: character* 12 filtat(3), filin, filnam, filin2, filog character*3 rectypl character* 8 staid character*4 elmtypl, staid character*2 eunitl; state, staidl character*! flagl 1(100), flag21(100), typ, stal character*5 stdumyl dimension idayl(100),ihourl(100),ivaluel(100), value(31) dimension isumyr(3), isumv2(3), iy(3), iso(100,4) dimension isumv3(3), isumv4(3), my(3), PP(1100,4) isumv2=0 isumv3=0 isumv4=0 ' PP = 0 Write,(*,*)'Data extraction from NOAA Hourly data1 Write(*,*)lreformat for HSPF runs' filin2 = 'prehr.lis' open (8, file=filin2, access-sequential',status=lold') read(8,*) nfil read(8,66) filin 66 format(al2) open (10, file=filin, access='sequential',status='old') fihiam = 'xxxxxxx-out' filog = 'xxxxxxx.log1 rewind(lO) close(lO) typ = i2 = 2 ' - i3 = 3 LR = 0 line = 0 do 200 m= 1,2000 line = line - 1 open (10, file=filin, access- sequentiar,status='old') 200 read(10, 39, end=49, err=49) rectypel 39 format(a3) 49 write(*,*) line filnam(l:7) = filog(l:7) = 31 ------- open(24,FILE=filnam,STATUS='unknown') open (10, file=filin, access=lsequential',status='old') do 100m=l,line read(10, 33, end=40,err=40) ir, iyr, imn, idy, idum, Vdum, l(valueG),j = l,12) 33 fonnat (i2, i2, 12, i2, i8, F8.0, 12f8.0) 40 write(24,205)filin(l:7),iyr,imn,idy,il, l(valueO),j=l,12) write(24,205) filin(l :7), iyr, imn, idy, i2, 205 format(a7, 3x, i2, Ix, i2, Ix,i2,lx,il, 12f5.2) if(stal .eq. '18') state='MD' if(stal .eq. '36') state='PA' if(stal .eq. '44') state='VA1 if(stal .eq. '46') state='WV' if(stal .eq. '07') state='DE' if(stal .eq. '18') state=!MD' if(stal .eq. '30') state='NY' 100 continue close(lO) close(24) 666 continue end 32 ------- Section D.4 Simulation of the Atmospheric Deposition of Nutrients D.4.1 Introduction The atmospheric nutrient deposition inputs for the Phase IV Chesapeake Bay Watershed Model consist of wet nitrate (NO3), dry NO3, organic nitrogen (OrN), organic phosphorus (OrP), and dissolved inorganic phosphorus (DIP). The total amount of dry ammonia (NH4) deposited is assumed to be negligible. D.4.2 Wetfall Atmospheric Deposition of NO3 and NH4 for the Phase IV Chesapeake Bay Watershed Model Precipitation Segments The wetfall atmospheric deposition of NO3 and NH4 for the Phase IV Chesapeake Bay Watershed Model precipitation segments was calculatedaccording to a regression model which was developed by the Chesapeake Bay Program's Air Subcommittee7. The regression model is based principally on the logarithmic relationship between the amount of precipitation and the NH3 and NO3 concentrations in the precipitation. The regression relationship was developed using weekly data collected over an eight year period at fifteen National Air Deposition Program (NADP) sites. Due to the weekly pooled sampling protocol of NADP and concerns over transformation of the nutrient species over time, the data were quality controlled by selecting those data where the precipitation event occurred only on the last day of the weekly sample. Using this criteria, 265 samples were selected from the approximately 5,000 samples collected at the NADP sites. These selected data were then treated as daily samples and employed in developing the regressionmodel. The regression equation expresses the wetfall deposition of NO3 andNH4 as a function of daily precipitation, latitude, and month of the year: N[NO3] = 0.226 * exp(-0.3852 * ln(ppn) - 0.0037 * month2 + 0.0744 * latitude -1.289) N[NH,] = 0.7765 * exp(-0.3549 * ln(ppn) + 0.3966 * month - 0.0337 * month2 -1.226) where: Q is the concentration (in milligrams/liter) as N, ppn is the precipitation (in millimeters), the month is expressed as an integer, and the latitude is the centroid Y component (in decimal degrees) of precipitation segments. Load of N(rn kg/ha) = N[NO3 or NH,] * precipitation = (mg/L * ppn)/100. The regression model was applied to the precipitation data to produce daily deposition rates with the same spatial resolution as the Theissen distributed daily precipitation inputs. The annual average wet nitrate and ammonia atmospheric deposition loads during 1984-1994 for the Phase IV Chesapeake Bay Watershed Model precipitation segments are listed in Table D.4.1. Information regarding the model segments and their corresponding precipitation segments can be found in Table D.3.1. 'Valigura, RA., Luke, W.T., Artz, R.S., Hicks, B.B. (1996). Atmospheric Nutrient Input to Coastal Areas — Reducing the Uncertainties. NOAA Coastal Ocean Program Decision Analysis Series No. 9. Silver Spring, MD. 33 ------- Table D.4.1 Average Annual Atmospheric Wet NO, and Wet NH4 Depositions for the Phase IV Chesapeake Bay Watershed Model Precipitation Segments, 1984-1994 Average Annual Average Annual Bay Watershed Model Wet NO3 Deposition Wet NH4 Deposition Precipitation Segments Pound/acre Pound/acre 010 4.27 2.08 , 020 4.95 2.33 030 4.37 2.23 040 4.22 2.26 050 4.36 2.31 060 4.50 2.33 070 4.00 2.11 080 4.21 234 090 3.74 2.09 100 4.09 2.23 110 3.87 2.18 120 3.60 2.06 160 3.83 2.24 170 3.26 2.02 175 , 3.36 2.01 180 3.40 2.00 190 3.33 2.15 200 3.26 2.01 210 3.63 2.12 220 3.35 2.04 230 3.54 2.26 265 3.30 2.14 270 3.36 2.26 280 3.46 2.34 700 3.64 1.84 710 3.69 2.08 720 3.80 2.16 730 3.73 . 2.16 740 3.49 2.06 750 3.53 2.03 760 3.45 2.03 1001 3.10 2.00 1002 3.40 ' 2.10 1003 3.39 2.05 1004 3.71 2.14 1005 3.44 2.03 1006 3.20 2.00 1007 3.25 2.02 1008 3.20 2.10 1009 3.10 , 2.11 1010 ' 2.92 2.11 1011 3.46 2.09 1012 3.27 2.17 1013 3.16 2.18 34 ------- D.4.3Annual Wet Deposition of NO3 and NH4 The observed measurements of wetfall NO3 and NH4 as reported by the NADP for twelve sites in and around the Chesapeake Bay watershed are listed in Table D.4.28. The average annual wet NO3 and NH4 depositions derived from the regression equations (Table D.4.1.) are in the same ranges of magnitude as the observed data (Table D.4.2). Of those values obtained through the regression equations, watershed model precipitation segments 10-100 have the highest annual average wet NO,3 and NH4 deposition loading rates. These precipitation segments are located in the states ofNew York and Pennsylvania portions of the Susquehanna River basin. The NADP data (Table D.4.2) show that most of the atmospheric air deposition stations in New York and Pennsylvania generally have higher observed wet N03 andNR, deposition loading rates. The close agreement of the NADP values to those obtained from the regression equations verifies the application of the Chesapeake Bay Program Air Subcommittee regression simulation for the wet NO3 and NH4 atmospheric deposition inputs for the Phase IV Chesapeake Bay Watershed Model. A workshop sponsored by the Chesapeake Bay Program's Scientific and Technical Advisory Committee evaluated more recent NADP data through 1994 showed that 1983-1994 average annual inorganic nitrogen deposition at the NADP sites within or near the Chesapeake Basin range from 3.5kg N/ha-yr in southwestern Virginia to 7.7 kg N/ha-yr in northwestern Pennsylvania9. The wetNO3 +NH4 atmospheric deposition loading rates ranged from 6 to 7 Ib/ac-yr and the ratio of NO3-N to NI-^-N in wet deposition ranged from 1.3 to 2.5. These are consistent with Phase IV Chesapeake Bay Watershed Model adopted wet NO3 and NH4 deposition values presented in Table D.4.1. D.4.4 Dry Atmospheric Deposition for NO3 and NH4 The wet/dry ratios ofN03 atmospheric deposition was determined through the wet/dry NO3 ratio estimated by the RADM model cells distributed tot he Phase TV Chesapeake Bay Watershed Model segments and are listed in Table D.4.3. The annual average dry NO3 deposition, calculated by dividing the annual average (1984-94) wet NO3 deposition by the corresponding wet/dry ratio, is also presented in Table D.4.3. The wet-NO3 deposition was associated with precipitation, and, therefore, was differentiated among precipitation segments (as presented in Table' D.2.1). Each of the precipitation segments either corresponds to one model segment, or is aggregated from several model segments (see Section D.3). 8 Valigura, R.A., Luke, W.T., Artz, R.S., Hicks, B.B. (1996). Atmospheric Nutrient Input to Coastal Areas — Reducing the Uncertainties. NOAA Coastal Ocean Program Decision Analysis Series No. 9. Silver Spring, MD. 9 Gardner, R.H., Castro, M.S., Morgan R.P., Seagle, S.W. (1996). Perspectives on Chesapeake Bay: Nitrogen Dynamics in Forested Lands of the Chesapeake Basin. Chesapeake Bay Program Office. Annapolis, MD. 35 ------- Table D.4.2.3 Annual Wet Deposition of NADP Site White Rock, MD Wye,MD Lewiston, NC Finely Farms, NC Chautauqau, NY Jasper, NY Penn State, PA Leading Ridge, PA Milford, PA Charlottesville, VA Babcock State Park, WV Parsons, WV 1985 2.65 2.63 1.76 1.82 5.17 2.15 3.52 3.83 3.93 3.35 3.03 4.90 1986 3.27 2.77 2.05 — 5.30 2.77 3.74 4.89 — 2.97 3.51 5.58 1987 3.27 2.23 2.19 226 3.47 2.68 4.03. 4.89 4.05 3.15 2.76 3.63 NO3 at NADP Sites (Pounds Nitrogen /Acre) 1988 3.50 2.33 2.34 2.65 3.85 2.54 2.90 3.60 3.69 2.65 1.86 3.46 1989 3.96 3.85 2.54 3.35 3.63 2.70 3.72 4.81 4.06 ~ 3.54 4.70 1990 3.43 3.14 2.06 2.03 4.25 2.69 4.03 4.73 4.52 3.22 2.80 3.80 1991 2.77 3.01 2.05 1.98 3.19 2.06 3.49 3.56 3.22 2.93 2.52 3.54 1992 3.11 2.49 2.20 1.64 3.55 2.74 3.70 3.60 3.78 3.28 2.82 3.74 1993 4.03 3.14 2.05 1.93 3.50 2.60 4.03 4.20 3.96 3.52 3.56 3.99 1994 3.70 3.38 1.67 1.74 3.09 3.04 3.84 3.75 4.56 3.21 2.71 4.43 1995 2.58 2.66 2.13 2.26 3.09 1.84 2.85 2.84 2.93 3.18 2.87 3.61 Table D.4.2.b Annual Wet Deposition of NADP Site White Rock, MD Wye,MD Lewiston, NC Finely Farms, NC Chautauqau, NY Jasper, NY Penn State, PA Leading Ridge, PA Milford, PA Charlottesville, VA Babcock State Park, WV Parsons, WV 1985 1.21 1.42 1.13 1.27 3.04 1.21 1.61 1.83 1.95 1.60 1.41 2.36 1986 1.67 1.50 1.22 — 3.73 1.27 1.50 2.27 ~ 1.57 1.78 2.69 1987 1.77 1.21 1.45 1.78 1.92 1.50 1.78 2.29 1.39 1.45 1.59 1.92 NH4 at NADP Sites (Pounds Nitrogen / Acre) 1988 1.53 1.05 0.72 1.33 2.16 1.16 1.26 1.58 1.04 0.97 0.77 1.25 1989 2.40 2.36 1.53 3.89 2.17 1.79 2.27 2.71 1.58 - 1.89 2.58 1990 2.00 1.91 1.67 2.29 2.58 1.54 2.08 2.56 2.06 2.20 1.77 1.98 1991 1.57 1.83 1.28 2.28 1.78 1.03 1.70 1.77 1.42 1.66 1.05 1.52 1992 1.75 1.53 1.58 1.80 1.99 1.57 1.80 1.78 1.69 1.72 1.42 1.65 1993 2.34 1.95 1.85 2.13 2.05 1.14 1.64 1.84 1.69 2.34 1.91 1.71 1994 2.25 ; 2.11 1.32 1.80 1.64 1.81 1.89 1.83 2.17 2.01 1.55 2.48 1995 1.67 1.90 1.58 2.41 2.05 1.15 1.57 1.39 1.51 2.17 1.85 2.21 Constant annual dry NO3 deposition applied on a daily basis are used as the inputs of dry NO3 deposition for the Phase IV Chesapeake Bay Watershed Model. 36 ------- Table D.4.3 Average Annual Wet & Dry NO3 Atmospheric Deposition Loading Rates (Pounds-Nitrogen / Acre-Year) Phase IV Watershed Model Segment 10 20 30 40 50 60 70 80 90 100 ' 110 120 140 rl60 170 175 180 190 200 210 220 230 235 240 250 260 265 270 280 290 300 310 1984-1994 Annual Average Wet NO3 Atmospheric Deposition 4.27 4.95 4.37 4.22 4.36 4.50 4.00 4.21 3.74 4.09 3.87 • 3.60 3.71 3.83 3.26 3.36 3.40 3.33 3.26 3.63 3.35 3.54 327 327 3.27 3.27 3.30 3.36 3.46 3.16 3.16 3.16 Wet/Dry Ratio of NO3 Atmospheric Deposition 0.99 1.07 1.08 1.07 1.14 1.08 1.05 1.07 1.17 1.13 1.05 1.01 1.01 1.18 1.14 1.13 1.05 1.02 1.08 1.02 1.01 1.01 0.96 0.93 0.95 0.93 0.99 0.88 0.91 0.90 0.87 0.87 Estimated Annual Average Dry NO3 Atmospheric Deposition 4.32 4.63 4.04 3.95 3.82 4.17 3.81 3.93 3.20 3.62 3.69 3.56 3.67 3.25 2.86 2.98 324 321 3.02 3.56 3.31 3.50 3.40 3.51 3.44 3.51 3.34 3.82 3.81 3.51 3.63 3.63 37 ------- Table D.4.3 continued Phase IV Watershed Model Segment 330 340 370 380 390 400 410 420 430 440 450 470- 480 490 500 510 540 550 560 580 . 590 600 610 620 630 650 700 710 720 730 740 750 760 770 780 800 810 1984-1994 Annual Average Wet NO3 Atmospheric Deposition 3.46 3.46 3.39 3.39 3.40 3.40 3.40 3.10 3.10 3.10 3.71 3.44 3.44 3.44 3.20 3.44 3.25 325 3.20 3.20 3.10 3.10 3.10 2.92 2.92 3.44 3.64 3.69 3.80 3.73 3.49 3.53 3.45 3.40 3.40 3.39 3.39 Wet/Dry Ratio of NO3 Atmospheric Deposition 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.95 0.94 0.90 1.00 1.01 0.99 0.99 0.97 0.99 0.98 0.99 0.92 0.90 0.90 0.88 0.90 0.86 0.84 1.00 1.01 1.03 1.03 1.10 1.10 1.05 1.00 0.99 0.99 0.99 0.99 Estimated Annual Average Dry NO3 Atmospheric Deposition 3.49 3.49 3.42 3.42 3.44 3.44 3.51 3.26 3.30 3.45 3.71 3.40 3.47 3.47 3.30 3.47 3.32 3.28 3.48 3.56 3.45 3.53 3.45 3.40 3.48 3.44 3.60 3.58 3.69 3.40 3.18 3.37 3.45 3.44 3.44 3.42 3.42 38 ------- Table D.4.3 continued Phase IV Watershed Model Segment 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1984-1994 Annual Average Wet NO3 Atmospheric Deposition 3.40 3.40 3.40 3.71 3.44 3.44 3.20 3.25 3.25 3.20 3.20 3.20 3.10 2.92 2.92 3.25 3.20 3.20 Wet/Dry Ratio of NO3 Atmospheric Deposition 0.99 0.98 0.96 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.95 0.90 0.89 0.86 0.86 0.97 0.94 0.94 Estimated Annual Average Dry NO3 Atmospheric Deposition 3.44 3.47 3.54 3.71 . 3.47 3.47 3.26 3.32 3.32 3.30 3.37 3.56 3.49 3.40 3.40 3.35 3.41 3.40 D.4.5 Atmospheric Deposition for Organic Nitrogen. Organic nitrogen is only represented as wet atmospheric deposition of dissolved organic nitrogen (DON). This is because the magnitude of the dry fall organic nitrogen is currently unknown and, therefore, not accounted for separately. Organic nitrogen remains the least well characterized of all the nitrogen species in atmospheric deposition. It is useful to utilize previous studies' data to understand the magnitude of the values being incorporated into the Phase IV Chesapeake Bay Watershed Model. Dissolved organic nitrogen has considerable seasonal variability with the seasonal high occurring from April to June and the seasonal low from July to March10. Organic nitrogen measurements from Bermuda collected by 10 Smullen, J.T., Taft, J.L., Macknis, J. (1982). Nutrient and Sediment Loads to the Tidal Chesapeake Bay System. U.S. EPA Chesapeake Bay Program Technical Studies. Chesapeake Bay Program Office, Annapolis, MD. 39 ------- Knap and co-workers (1986) were calculated atabout 100 ug/1 (as N)11. Moper and Zika (1987) reported an average DON concentration from the western Atlantic and Gulf of Mexico of about 100 ug/1 (as N)12. This is consistent with the reported range of concentrations from the North Sea and Northeast Atlantic of between 90 ug/1 to 120 ug/113. A recent study reported an annual volume weighted avereage DON concentration in the mid-Atlantic coastal areas to be about 130 ug/1 (as N)14. The measurements in this study are consistent with the interannual variation (maximum in spring) reported hi previous studies15. » According to the studies focused on the mid-Atlantic coastal areas, 130 ug/1 (as N) is regarded as representative of an average annual DON wet deposition concentration14. Based on these studies, an average concentration of 98 ug/1 for July to March rainfall and an average concentration of'224 ug/1 for April to June rainfall were applied to the Chesapeake Bay watershed and tidal surface waters as part of the Phase IV model. Table D.4.4 summarizes the 1984-1991 average annual DON loading rates by the Phase IV watershed model precipitation segments. D.4.6 Atmospheric Deposition for Organic P and Inorganic Phosphate Daily atmospheric deposition loads of organic phosphorous (OrP) and inorganic phosphate (DIP) are employed hi the Phase IV Chesapeake Bay Watershed Model. The annual loading rates are 0.423 Ib/ac for P[Organic P] and 0.143 Ib/ac for PpPhosphate]16. The yearly loads were evenly allocated as daily loads for model input throughout all of the Phase IV watershed model segments. D.4.7 Atmospheric Deposition to Chesapeake Bay Water Quality Model Cells Inputs of atmospheric deposition of nutrients to the mainstem Bay and tidal tribuaries' surface waters—Chesapeake Bay Water Quality Model—utilizes the atmospheric deposition data for the coastal Phase IV Chesapeake Bay Watershed Model. As mentioned hi Sections D.4.2-D.4.5, the atmospheric NO3, NH4, and DON depositions were calculated and associated with precipitation, therefore, in order to utilize the atmospheric nutrient deposition of the Watershed Model for the 11 Knap, A., Jickells, T., et al. (1086). Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature 320 (3/13): 158-160. 12 Moper, K., Zika, R.G. (1987). Free amino acids in marine rain: Evidence for oxidation and potential role in nitrogen cycling. Nature 325:246-249. 13 Scudlark, J.R., Church, T.M. (1993). Atmospheric input of inorganic nitrogen to Delaware Bay. Estuaries 16(4): 747-754. 14 Scudlark, J.R., Russel, K.M., et al. (1996) Dissolved Organic Nitrogen in Precipitation: Collection, Analysis, and Atmospheric Flux. Report to: Maryland Department of Natural Resources, Annapolis, MD. 15 Smullen, J.T., Taft, J.L., Macknis, J. (1982). Nutrient and Sediment Loads to the Tidal Chesapeake Bay System. U.S. EPA Chesapeake Bay Program Technical Studies. Chesapeake Bay Program Office, Annapolis, MD. 16 .(1982). Technical Studies: A Synthesis. U.S. Environmental Protection Agency. Chesapeake Bay Program Office. Annapolis, MD. 40 ------- Chesapeake Bay Water Quality Model, a development or allocation of the watershed precipitation to the 3D water quality model cells is necessary. Arc/Info software was applied to data supplied by the Waterways Experimental Station of the U.S. Army Corps of Engineers on a grid with 2100 surface cells in order to divide the SD-cells into eight precipitation regions. The 3D-cells were divided based upon the NADP station's proximity to the Chesapeake Bay and the boundaries of the precipitation regions. Figure D.4.2 illustrates the eight precipitation regions for the 3D model cells. Each of the Bay Water Quality Model precipitation regions is associated with one coastal Chesapeake Bay Watershed Model precipitation segment (Table DAS, Figure D.4.3). Table D.4.4 Phase IV Chesapeake Bay Watershed Model Precipitation Segments 1984-1991 Average Annual Atmospheric Dissolved Organic Nitrogen Atmospheric Deposition Loading Rates (Pounds Nitrogen/Acre- Phase IV Watershed Model Precipitation Segment 10 20 30 40 50 60 70 80 90 100 110 120 160 170 175 180 190 200 210, 220' 230 265 270 280 Average Annual DON Deposition Loading Rate 1.02 1.18 1.19 1.24 1.26 1.19 1.14 ' 1.19 1.13 1.13 1.19 1.17 1.19 1.00 1.06 1.10 1.18 1.07 1.21 1.19 1.30 1.18 1.23 1.34 Year) Phase IV Watershed Model Precipitation Segment 700 710 720 730 740 750 760 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 Average Annual DON Deposition Loading Rate 1.00 1.15 1.24 .24 .10 .22 .17 .13 .17 .24 .16 .15 .16 .17 .21 .22 .25 .24 1.27 1.26 Table 0.4.5 shows the atmospheric nitrogen deposition to the Chesapeake Bay Watershed based upon 1991 landuse data and 1984-1994 annual average loads. 41 ------- Table 0.4.5 1984-1994 Annual Average Atmospheric Nitrogen Deposition Loads to the Chesepeake Bay Watershed (based on 1991 landuse as analyzed on March 16,1997 at the Chesapeake Bay Program Office) Mode! Wet-NO3 Wet-NH4 Dry-NO3 DON TN Segment thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr 10 7223 3512 7296 1738 19770 20 15733 7407 14704 3764 41609 30 6114 3121 5661 1673 16569 40 4015 2148 3753 1188 11104 50 3985 2113 3496 1160 10754 60 12270 6350 11361 3246 33228 70 3400 1794 3239 975 9408 80 6142 3418 5740 1748 17047 90 . 2245 1256 1919 678 6097 100 6326 3443 5599 1748 17116 110 4385 2463 4176 1358 12382 120 475 271 470 154 1370 140 689 397 682 217 1986 160 3311 - 1932 2806 1030 9080 170 3093 1917 2714 959 8683 175 2710 1616 2398 855 7580 180 1392 820 1326 454 3992 190 3466 2239 3398 1228 10330 200 2939 1814 2721 971 8445 210 ~ 1862 1089 1826 623 5400 220 2042 1244 2022 732 6041 230 3635 2324 3599 1344 10901 235 537 357 559 . 209 1662 240 705 468 758 . 274 2205 250 698 464 735 . 272 2169 260 1539 1022 1655 599 4815 265 738 477 745 264 2224 270 6289 4236 7147 2316 19987 280 6692 4513 7353 2593 21151 290 1040 717 1156 418 3331 300 2415 1664 2776 970 7825 310 320 220 367 128 1036 330 294 177 297 , 106 875 340 475 287 480 172 1414 370 128 78 129 47 382 380 .898 .544 907 330 2680 390 196 121 198 68 582 400 1025 633 1035 355 3048 410 1575 974 1624 546 4719 420 423 272 446 155 1296 430 1482 953 1576 541 4552 440 637 410 . 708 232 1987 450 1758 1014 1758 553 5082 470 1000 590 990 335 2916 480 271 160 273 91 795 490 341 201 345 114 1002 500 1068 666 1101 388 3223 510 104 61 105 35 306 540 336 209 343 121 1009 550 1301 810 1315 470 3896 560 2003 1311 2177 ' 761 6251 42 ------- Table 0.4.5 1984-1994 Annual Average Atmospheric Nitrogen Deposition Loads to the Chesepeake Bay Watershed (based on 1991 landuse as analyzed on March 16,1997 at the Chesapeake Bay Program Office) DON TN Model Wet-NO3 Wet-NH4 Dry-NO3 Segment thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr thousand Ibs/yr 580 590 600 610 620 630 650 700 710 720 730 740 750 760 770 780 800 810 820 830 840 850 860 870 ,880 890 900 910 320 930 940 950 960 970 980 990 Total 133 1826 2650 492 414 53 358 564 572 1153 1191 306O 379 272 243 154 173 366 91 296 942 204 203 94 369 189 461 515 1258 102 778 184 450 119 1229 67 155347 87 1239 1798 334 298 38 211 285 323 656 688 1802 218 160 150 95 105 222 56 183 582 117 120 55 230 118 287 321 785 67 528 133 324 74 804 42 89838 147 2029 3012 547 481 63 358 559 555 1120 1082 2781 361 272 245 156 175 370 92 302 981 204 205 95 377 193 470 530 1324 113 874 214 523 123 1307 71 152277 50 722 1048 195 178 23 122 156 180 377 395 967 131 93 84 54 63 134 32 103 326 64 68 31 134 68 166 187 457 39 308 79 193 43 467 24 49067 "417 5817 8508 1568 1371 178 1049 1563 1630 3305 3356 8609 1090 798 722 459 515 1092 272 884 2831 589 596 275 1111 568 1385 1553 3824 320 2487 611 1489 360 3807 205 446530 43 ------- Table D.4.6 Correspondence of Phase IV Chesapeake Bay Watershed Model Precipitation Segments with the Chesapeake Bay Water Quality Model Precipitation Regions Chesapeake Bay Water Quality Phase IV Watershed Model Precipitation Regions Precipitation Segments 1 1001 2 1009 3 1010 4 1004 5 - 1005 6 1006 7 1007 8 1008 Building on the above established linkages between the grouping of Bay Water Quality model cells and Chesapeake Bay Watershed Model precipitation segments, the same loading rates (Ib/ac-yr) for NO3, NH4, and DON atmospheric deposition developed for each respective Chesapeake Bay Watershed Model precipitation segment is applied to the correspondingBay Water Quality Model precipitation region (Table D.4.6). As determined for the Phase IV Chesapeake Bay Watershed Model segments, OrP and PO4 atmospheric deposition loading rates were assumed to be constant (P [Organic P] at 0.423 Ib/ac, and P [PO4] at 0.143 Ib/ac), and the yearly loads were evenly allocated as daily load for input into all Chesapeake Bay Water Quality Model Cells. As with all Chesapeake Bay Watershed Model segments, the dry NH» atmospheric deposition loading rate is assumed to be zero for all the Chesapeake Bay Water Quality Model cells. The dry NO3 atmospheric deposition loading rates for each Chesapeake Bay Water Quality Model cell were calculated as thirty percent of their corresponding watershed precipitation segment's 1984-1994 annual average wetNO3 deposition, because a long-term average of wet/dry fall nitrate to open water that is wider than about 5 meters is 3.3317. Table D.4.3 lists the dry-NO3 17 Valigura, R.A., Luke, W.T., Artz, R.S., Hicks, B.B. (1996). Atmospheric Nutrient Input to Coastal Areas — Reducing the Uncertainties. NOAA Coastal Ocean Program Decision Analysis Series No. 9., MD. v 44 ------- Figure D.4.1 Chesapeake Bay Water Quality Model Cells PW Map Date: July 24.1997 n»H.lKinieV«ig/iaiip/sB/»i:7/aiv/ Source: USEPA Chesapeake Bay Program Office 45 ------- Figure DA2 Chesapeake Bay Water Qaulity Model Precipitation Regions RegionS Region? PW Map Dae July». 1997 Source: USEPA Chesapeake Bay Program Office 46 ------- Figure DAS Chesapeack Bay Water Qaulity Model Precipitation Region with the Corresponding Coastal Phase IV Chesapeake Bay Watershed Model Precipitation Regions Region I Region 2 Region 3 Region 4 Region 6 Region? RegionS ^VYYVVV Vyy YYY Y VYYY YYYYYYYYYJgyYYYYYYYYV wyyxxxvyyxxxxxxxxx 1 —8: Water Qaulity Model Precipitation Regions 1000s: Coastal Watershed Model Precipitation Segments PW Mip Dae July 24,1997 Source: USEPA Chesapeake Bay Program Office 47 ------- versus wet-NO3 ratios for the eight precipitation regions of the Chesapeake Bay Water Quality Model cells. Table D.4.7 Wet and Dry NO, Atmospheric Deposition Loading Rates for the Chesapeake Chesapeake Bay Water Quality Model Precipitation Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Bay Water Quality 1984-1994 Annual Average Wet NO, (Pounds-Nitrogen/ Acre-Year) 3.10 . 3.10 2.92 . 3.71 '3.44 l 320 325 3.20 Model Precipitation Regions Wet/Dry Ratio 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 1984-1994 Annual Average Dry NO, (Pounds-Nitrogen/ Acre-Year) 0.93 0.93 0.88 1.11 1.03 0.96 0.97 0.96 48 ------- XX x —'—™ii3Effi~;nirt*«* Chesapeake Bay Program U.S. Environmental Protection Agency Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, MD 21403 1-SOO-YOURBAY www.epa.gov/chesapeake ------- |