TECHNICAL NOTE
OR1VEAD-76-4
A COMPUTER CODE (RVRDOS) TO CALCULATE POPULATION
DOSES FROM RADIOACTIVE LIQUID EFFLUENTS AND AN
APPLICATION TO NUCLEAR POWER REACTORS ON THE
MISSISSIPPI RIVER BASIN
II
I I I
:S
•.»•••».».•
Ill
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Radiation Programs
-------
O
A COMPUTER CODE (RVRDOS) TO CALCULATE
POPULATION DOSES FROM RADIOACTIVE LIQUID EFFLUENTS
AND AIM APPLICATION TO NUCLEAR POWER REACTORS
ON THE MISSISSIPPI RIVER BASIN
JAMES A. MARTIN, JR.
CHARLES ROBBINS
CHRISTOPHER B. NELSON
ROBERT D. COUSINS, JR.
MARY ANNE CULLITON
OCTOBER 1976
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RADIATION PROGRAMS
ENVIRONMENTAL ANALYSIS DIVISION
WASHINGTON, D. C. 20460
-------
ABSTRACT
A computer program RVRDOS has been developed to calculate
population doses due to releases of radionuclides into flowing
streams. Concentrations of the radionuclides downstream take
into account dilution, decay, and the ingrowth of a daughter
product. Population doses to four organs are calculated for
drinking water and fish ingestion pathways. Individual doses
due to swimming may also be estimated. A program manual for
RVRDOS is included in this report.
RVRDOS has been used to calculate population doses due
to releases from nuclear power reactors on the Mississippi
River Basin during 1973. The data base for these calculations
and a summary of the calculations are discussed.
11
-------
PREFACE
The Office of Radiation Programs is concerned with the evaluation
of radiation exposure to the population and the environment. Nuclear
facilities may release radioactive materials to the environment from
normal operations and thus become a potential source of exposure to
the population. The Environmental Analysis Division has responsibili-
ties for evaluating the environmental and public health impact from
such releases.
The river dose model discussed in this report was developed to
assess the consequences to the general population from the consump-
tion of drinking water and fish from waters which receive radioactive
liquid effluents. This is the first step by this Office to introduce
a computer code as a working model to investigate the consequences of
liquid radioactive discharges into rivers and streams. This model was
applied to nuclear power plants on the Mississippi River System and
population dose estimates were made which represent order of magni-
tude calculations. Although these results have not been validated by
field measurements, the model and the results are of sufficient interest
to warrant this interim report.
Readers are encouraged to write to this Office concerning
suggestions, recommendations, and omissions or errors in this report.
Floyd L. Galpin
Director
Environmental Analysis Division
Office of Radiation Programs
m
-------
CONTENTS
Abstract ii
Preface iii
I Introduction 3
II Summary and Results 7
III Aquatic Dispersion Model 15
IV RVRDOS Program Manual 25
Glossary 35
V References 41
VI Computer Printouts for RVRDOS Model 43
Tables
1. Radionuclides released in liquid effluents from
selected nuclear power plants, Mississippi River
Basin, 1973 8
2. Energy produced by selected nuclear power plants,
Mississippi River Basin, 1973 9
3. Calculated total population dose commitments for
selected nuclear power plants and pathways, Mississippi
River Basin, 1973 10
4. Calculated total body population dose commitments
(drinking water pathway) at selected locations
downstream from nuclear power plants, Mississippi
River Basin, 1973 11
-------
Tables (continued]
5. Calculated total population dose commitments for
selected pathways from nuclear power plants,
Mississippi River Basin, 1973 12
6. Format for input data to RVRDOS 32
Figures
1. Nuclear power reactors on the Mississippi
river basin, 1973 6
2. Schematic representation of a reach and
definition of symbols used in Section III 21
VI
-------
I
INTRODUCTION
-------
I
INTRODUCTION
Under the concept of environmental dose commitment as applied by
the Environmental Protection Agency (EPA), doses to all affected popu-
lations must be considered in the assessment of the overall risks vs.
benefits of nuclear power industry operations (1_). The measurement
of dose on such a grand scale is normally very difficult because instru-
ments of the required sensitivity are not available, or the extensive
monitoring capabilities that would be required are too expensive to be
cost effective, or both. EPA therefore suggests that in many cases
the use of calculational techniques for dose assessment may be a cost-
effective substitute to direct measurement (2). This appears to be the
case for the assessment of population dose from the release of radio-
active materials into flowing streams where the populations affected
may be quite large and diverse and the pollutant concentrations quite
small.
A model has been developed that can be used to calculate the
dispersion of radioactivity released into flowing streams and the
resulting population dose. A computer code called RVRDOS was de-
veloped for application of the model. The model has been applied to
calculate the dose to affected populations from the release of radio-
active materials during 1973 into the Illinois, Missouri, and the
Mississippi Rivers by operating nuclear power plants.
The scope of this initial work was bounded by several factors.
Individual doses and population doses within fifty miles of nuclear
power plants are routinely analyzed in environmental reports, and
there was no interest in duplicating these data. Doses to populations
beyond fifty miles of operating facilities are not routinely esti-
mated and such an estimate did appear to be desirable in the light
of the dose commitment concept. It was shortly recognized that two
major pathway parameters, sedimentation and resuspension of insoluble
effluents, could not be considered adequately within the time frame
and funding of this initial work. Although some rudimentary models
are available, the required data base for over 1500 river miles does
not exist and the development of such a data base represents an extra-
ordinary task. For the drinking water pathway this difficulty was
resolved by ignoring sedimentation and using dose factors for soluble
forms of the effluent radionuclides, thereby obtaining a generally
conservative (high) estimate of dose. For the fish consumption path-
way, sedimentation and resuspension were treated implicitly via the
use of measured reconcentration factors that relate the concentration
of elements in fish to the concentration in water. These reconcentra-
tion factors include the effects of sedimentation and resuspension.
-------
After performing a brief survey of river systems in the United
States on which nuclear power reactors are located, the Mississippi
River system was selected for study because of the larger number of
operating reactors located on its waters and the large population using
these waters. As the data base for the calculations was developed and
after making a few preliminary calculations, it became clear that the
drinking water and fish consumption pathways dominated the population
dose and that other pathways, such as immersion (swimming), were trivial
by comparison. Consideration was given to direct doses due to shore-
line deposits, but this too was found to be a small contributor to
population dose, although from an individual dose standpoint, it could
be important close to an effluent point. As a result of these and a
variety of other factors, the scope of this study was limited to the
calculation of population doses via the ingestion pathway, using
generally conservative assumptions.
It is stressed at the outset that the results of these calculations
are to be considered as order of magnitude, yet generally conservative,
results only, even though several significant figures are presented at
places in this report. Further development of the model and more accurate
or representative demographic and pathway data are expected to change
the results. Nonetheless, the present model and especially the data
base were considered to be of enough general interest that this initial
report of the approach and the results was prepared.
-------
II
SUMMARY AND RESULTS
-------
• CITY
D Nuclcur Reactor
A HEAD OF PASSES
( ) RIVER MILES
HEAD OF PASSES (0)
Figure 1 Nuclear power reactors on the Mississippi river basin, 1973
-------
II
SUMMARY AND RESULTS
l
J. A. Martin, Jr., and C. Robbins
The geographical extent of the anlysis performed to date is rep-
resented graphically in figure 1. Radionuclide activities released in
1973 into the Illinois River by the Dresden 2 and 3 units2, into the
Missouri River by the Ft.Calhoun unit, and into the upper reaches of
the Mississippi by the Genoa and Quad Cities units were propagated
from the points of release to the Gulf of Mexico. Doses to populations
downstream of these units were calculated for the drinking water and
fish inqestion pathways. Doses to four organs (whole body, thyroid,
GI (LLI), and bone) were calculated using dose factors derived from
data for the ICRP standard man (3_,_4).
Population drinking water statistics were taken directly from
data compiled by the U. S. Public Health Service (5j. The weight
of commercial fish taken from locations along the rivers was
obtained from data compiled by the U. S. Department of Commerce (6).
Data for sport (creel) fish catches were obtained from State agency
creel surveys and generally are not as complete as commercial fishing
data. In view of the greater uncertainty, the sport catch data were
treated separately from the commercial catch data. The creel catch
data listed in the computer printouts in Section VI are a best effort
compilation by the authors. Radionuclide reconcentration factors
for fish were taken from reference 7_.
Volume flow rates, stream speeds, river miles and volumes of dams
required for the diffusion calculations were obtained from the U. S.
Army Corps of Engineers' data (^-jj.) and water resources data published
for various States by the U. S. Department of Interior Geological Sur-
vey. Stream speeds, river miles and volumes of dams were required for
radioactive decay and daughter product ingrowth calculations. River
miles were obtained directly from the river charts. Stream speeds
were chosen by the authors as representative of data reported as esti-
mates by a number of sources. Volumes of dams were calculated using
river chart data and generally represent the volume of water in a
given reach. Since all of the dams are small, increases in volume
flow rates accounted for most of the dilution in the diffusion
calculations.
All of these data are included in the printouts of the computer
program RVRDOS in Section VI of this report. Representative data are
briefly summarized in tables 1 to 5. Table 1 lists the source terms
(activities of radionuclides released, by radionuclide) used for the
calculations (12). The quantities and mixes of nuclides in effluents
i
present address: U.S. Nuclear Regulary Commission, Wash., DC, 20555
Only gross activity released was available for the Dresden 1 unit
for the year 1973; dose calculations were thereby precluded.
-------
Table 1 Radionuclides released in liquid effluents from selected
nuclear power plants, Mississippi River Basin, 1973 (Curies)
Radio-
nuclide
58Co3 3
6°Co
51Cr
i37Cs
3H
i3imXe
133j
133Xe
51tMn
89Sr
Genoa
(LaCrosse)
0.07
11.8
1.26
0.81
5.66
10.1
103.0
3.13
2 '.89
0.43
0.085
0.05
Quad
Cities
1 & 2
0.0071
0.97
0.83
2.88
0.21
0.53
24 '.5
3.8
0.43
0.37
0.064
Dresden
2 & 3
1.48
0.144
2.09
1.17
1.17
4.24
25^8
1.41
0.406
0.089
Ft.
Calhoun
0.0607
0.469 (-4)
B
15'.8
0.0045
0.058
0.219
0.116 (-3)
0.169 (-4)
90Sr
0.021
0.0025
0.01
90y
135Xe
135Cs
65Zn
95Zr
95Nb
f
0.18 0.085
.
0.216 . 0.037
0.1116 0.009
0.007
Notes: . = Not reported.
(-N) = 10-N
from different facilities are unrelated to one another and are dependent
upon operating history, type of fuel and particular effluent treatment
systems used by the various units. Although not used for the population
dose calculations, the unit operating data for 1973, shown in table 2,
may be of interest from a risk/benefit standpoint.
No activity was released in liquid effluents by Monti cello. The
0.016 microcuries mixed fission and activation products and 73 microcuries
tritium released in liquid effluents by Prairie Island are considered
negligible for these dose calculations.
-------
The activity released in liquids from Dresden 1 is not included because
specific radionuclide data are not available. The mixed fission and activa-
tion product activity released by this facility in 1973 was 9.2 curies and the
tritium activity released in liquid effluents was 18.5 curies.
Table 2 Energy produced by selected nuclear power plants, Mississippi
River Basin, 1973
Authorized Electrical Energy
Power Level Produced
(Megawatts (th)) (Megawatt-years)
Genoa 165 22
(LaCrosse)
Quad Cities-1
-2
Dresden-1
-2
-3
Ft. Calhoun
Monticello
Prairie Island-1
Total energy produced
2511
2511
700
2527
2527
1420
1670
1650
547
580
625
558
413
67
368
2
3182
The results of the calculations are briefly summarized in tables 3,
4, and 5. (Details may be obtained from a perusal of the computer print-
outs. The RVRDOS code includes an option to print even finer detail, but
the bulk prohibits its reproduction in this report.) The dose conversion
factors (DCF) used for these calculations are for the first year dose due
to an ingestion of the radionuclide. They are equivalent to dose commit-
ment conversion factors with the exception of strontium-90 which has a long
biological half-life. Strontium-90, however, contributes so little to the
total organ doses from all nuclides released that the first year doses
are equivalent to dose commitments and are so indicated in tables 3, 4, and
5.
-------
10
Table 3 Calculated total population dose commitments for selected nuclear
power plants and pathways, Mississippi River Basin, 1973
Facility
Genoa
(LaCrosse)
Quad
Cities
Dresden
2,3
Ft. Calhoun
Person-rem
Drinking
Water
Comm'l
Fish
Creel
Fish
Drinking
Water
Comm'l
Fish
Creel
Fish
Drinking
Water
Comm ' 1
Fish
Creel
Fish
Drinking
Water
Comm'l
Fish
Creel
Fish
Total
Body
10.5
9.8
0.7
0.63
0.14
0.01
1.5
0.15
0.002
0.07
7(-6)
2(-6)
Thyroid
7.
0.9
0.05
32.
0.45
0.02
2.3
0.02
0.0005
0.25
3(-5)
K-5)
Bone
8.7
8.2
0.6
0.65
0.12
0.006
1.5
0.14
0.002
0.009
2(-7)
5(-7)
GI(LLI)
2.2
0.4
0.03
0.6
0.17
0.01
0.45
0.01
0.0001
0.14
K-4)
3(-5)
Note: (-N) = 10
-N
-------
Table 4 Calculated total body population dose commitments (drinking water pathway) at selected
locations downstream from nuclear power plants, Mississippi River Basin, 1973
Location
LaCrosse, WI
Cordova, IL
Bettendorf, IA—
Moline, IL
Davenport, IA—
Rock Island, IL
Burlington, IA
Ft. Madison, IA
Keokuk, IA
Quincy, IL
Hannibal , MO
Lock & Dam 27
St. Louis, MO—
East St. Louis, IL
Chester, IL
Cape Girardeau, MO
Thebes, IL
Vicksburg, MS
Donaldsville, LA
New Orleans, LA
Totals
Population
Served
(Thousand)
55.6
142.0
35.4
15.2
16.3
47.5
21.0
40.0
670.0
4.2
26.0
0.5
41.0
7.8
652.0
1,774.0
River,
Miles
1633
1460
1442
1439
1360
1338
1320
1283
1265
1141
1136
1065
1008
1000
438
177
100
-
Total body population dose commitment (person-rem)
Genoa
(LaCrosse)
1.0
2.6
0.57
0.24
0.25
0.63
0.26
0.24
3.5
0.02
0.13
0.002
0.066
0.012
1.0
10.5
Quad
Cities
0.065
0.16
0.034
0.014
0.014
0.037
0.015
0.013
0.2
0.001
0.007
0.0001
0.004
0.007
0.056
0.63
Dresden
2,3
1.1
0.007
0.042
0.0007
0.021
0.004
0.034
1.5
Ft.
Calhoun
0.007
4.0 (-5)c
2.0 (-4)
4.0 (-6)
1.0 (-4)
2.0 (-5)
0.002
0.009d
Subtotal
1.07
2.76
0.60
0.25
0.26
0.67
0.28
0.25
4.80
0.03
0.18
0.003
0.091
0.023
1.09
12. 7d
Population actually served drinking water from
Mississippi River.
}River miles to Head of Passes, LA.
Population dose on Missouri River was
calculated as 0.058 person-rem.
-------
12
The main results are presented in table 3 which lists the calcu-
lated total population doses due to the discharges listed in table 1.
The doses are broken down by facility, organ and pathway, summed over
location. To illustrate the detail considered to date in the analysis,
a breakdown of the total body population dose due to drinking water
consumption, by source and location, is presented in table 4. In 1973,
discharges of radionuclides into the Illinois, Missouri, and Mississippi
Rivers as by-products of the production of 2557 megawatt years of elec-
trical energy resulted in a total body population dose of approximately
13 person-rem in a population of 1,774,000 persons consuming drinking
water from those streams.
As illustrated in table 5, including drinking water and fish con-
sumption pathways, the calculated total population doses in 1973 for
the total body, thyroid, bone and GI(LLI) organs were 24, 43, 20 and 4
person-rem, respectively.
Table 5 Calculated total population dose commitments for selected
pathways from nuclear power plants, Mississippi River Basin, 1973
PathwayPerson-rem
(Population or Total Th -d B 61
catch weight) body •* (III)
Drinking water 12.7 41.6 10.8 3.4
(1,774,500 persons)
Commercial fish 10.1 1.4 8.5 0.6
(11,280,000 Ibs.)
Creel fish 0.7 0.1 0.6 0.04
(385,000 Ibs.)
Total 24. 43. 20. 4.
-------
Ill
AQUATIC DISPERSON MODEL
-------
15
III
AQUATIC DISPERSON MODEL
C. B. Nelson
Introduction
The aquatic disperson model used in the RVRDOS code considers
dilution, decay, and the ingrowth of a daughter product. Diffusion is
not considered; the concentration is considered uniform across a stream.
The variations in quantities with downstream distance from the source
are treated by dividing the modeled stream into a number of segments
or reaches as shown in figure 2. Reach boundaries are chosen so that
concentrations calculated for the downstream end of the reach adequately
characterize the concentrations within the reach. The stream flow rate
is not allowed to decrease in the downstream direction and no explicit
provision for branching of the stream is provided. Each reach may
incorporate an impoundment such as would occur behind a dam on the
stream. Such an impoundment is assumed to be uniformly mixed. The
only removal process considered in the model is radioactive decay. To
simplify notation, the equations in this section are developed for
i = 1 (see figure 2) and the nuclide subscript is used only as necessary
to distinguish a parent and daughter.
Dilution
Ignoring decay the activity flow (Ci/s)is conserved for the length
of the reach, i.e.,
cowo = C1W1
or solving for C,
C
,
Wl
Neglecting for the moment the effect of an impoundment, the decay
factor for a reach is exp (-At,) where x is the decay constant for the
particular radionuclide and t1 = d]/V1 is the transit time for the
reach.
Including the decay factor, then:
C W
oo / . \
C, = exp(-xt,)
1 Wl ]
-------
16
Ingrowth of a Daughter
If A and A , are the decay constants for the parent and daughter
P d
radionuclides and once again the effect of an impoundment is neglected,
then:
and
+CopWo
Wl
(exp(-x t )-exp(-AdtJ)
where the decay of the parent branches totally to the ingrowth of the
daughter (Provision is made in the RVRDOS code for the actual branching
ratio.). Note that the concentration of the daughter at the end of a reach
depends upon its initial concentration at the start of the reach as well
as the ingrowth from the parent during the course of the reach.
Effect of_ an_ Impoundment
To simplify the calculations for a reach with an impoundment, con-
sider initially the case of a reach consisting only of the impoundment,
i.e.,
d] = 0.
The impoundment is considered to be uniformly mixed. Quantities with the
subscript 0 are those prior to the impoundment and those with the subscript
1 pertain to the impoundment and its outflow. The impoundment is con-
sidered to have a turnover rate given by:
which implies that the impoundment may be fed by additional sources.
-------
17
The concentrations in the impoundment are obtained from the following
differential equations:
dClp Wo
—r~ = "AaClp +"\/7 Cop
QL I
and
dCld r r W
- A ,1, - A, L, , + 0 r
A4- Q IP D Id 7T~ L .
W W
where A A + A. and A, = A , + A. . _£. op and — C , are the forcing
a = p t b d t ,, K ,, od 3
vl vl
functions for the system. If C and C , are set to 0,
the resulting homogeneous equations may be solved using standard
methods (see reference 13) to obtain the response of the system to
a unit concentration of
Clpat t= 0.
Designating these impulse response solutions as h and h+,
h+pp(t) = exp(-Aat)
xd
h+dp(t) = ^—^- (exp(-Aat)-exp(-Abt))
d p
where h+ and h+, refer to the parent and daughter concentrations in the
impoundment, respectively, due to the unit initial concentration of the
parent.
-------
Similarly for a unit inital concentration of C, ,
h+Pd
and
h+dd
Since the contribution of an initial daughter concentration is
only to the daughter, it can be calculated separately and added to the
contribution from the parent; the next step of this development will
consider the initial daughter concentration to be zero.
The particular solution to the differential equations is obtained
by convolution of the forcing function with the impulse response of
the system. Since C (T) is constant for o
-------
19
Ad
Vl op VA V
b
At equilibrium (i.e., X t»l and X,t»l)
a b
_
lp ~ V-,X op
w
c -
Id V,.x x. uop
la b r
»blp
Alternatively in terms of X and X ,:
r» _
lp "WT °P ...(3)
i id
Since the turnover time for an impoundment is short compared to the
typical time period for a RVRDOS calculation, equilibrium is assumed for
such calculations even for long lived radionuclides.
Returning now to a reach with a finite length, the concentration of
the parent radionuclide can be calculated by combining (3) with the decay
factor from (1) giving
-------
20
Similarly the daughter ingrowth for a stream with an impoundment can
be calculated as:
C1H = ( o Xd (exp(-x t,)-exp(-xdt,))
u +\i \ } i ^ '
wl Vd xd xp
or
Cld= ° ^L (exp(-x V-expf-x^)) C
Wl+Vd Vxp
Vd
u +v > ..
wl+vlAd
Calculations for RVRDOS are based on (5) and (6). (Note that in the
RVRDOS code the location corresponding to 1=1 is the release point to
the stream and 1=2 corresponds to the first downstream location!). First
the concentration for a specific nuclide is calculated using (5). Then,
if the nuclide is a daughter, the ingrowth from its parent is calculated
using (6) and added to the original calculation. Calculations proceed
from reach to reach in the downstream direction. The concentrations
calculated for the end of one reach are used as those for the input to
the subsequent one. Note that the variables actually used in RVRDOS
have various customary units arid that conversion factors are employed
as necessary to make them consistent. These conversions have been
avoided for this discussion by assigning a consistent set of units to
the variables.
-------
Figure 2 Schematic representation of a reach and definition of
symbols used in Section III.
21
Additional flows
into .read
\ T
impoundment V.
direction of
-> stream flow
W. = Volume flow rate of the stream at location i (m /s)
u. = Speed of the stream at location i (tn/s)
C.. = Concentration of nuclide j at location i (Ci/m )
' J
.th
d. = Distance between location i and i-1 associated with the i
1 reach (m)
V. = Volume of an impoundment on the i reach (m )
Note that the values of the variable for the i reach are
assumed to be those for the end of the reach. The following quantities
are calculated from the above.
t. = The transit time associated with reach i (s)
-1
A,. = The turnover rate for the impoundment on reach i (s )
-------
IV
RVRDOS PROGRAM MANUAL
A FORTRAN IV PROGRAM TO CALCULATE
POPULATION AND INDIVIDUAL
DOSES DUE TO THE DISCHARGE OF
RADIONUCLIDES INTO FLOWING STREAMS
James A. Martin Jr.
Robert D. Cousins Jr.
-------
RVRDOS PROGRAM MANUAL
25
Introduction
RVRDOS is an attempt to fill the need for a simple self-inclusive
code which, with a minimum of input data, can provide useful estimates
of ingestion and immersion doses to individuals or populations served
by streams into which radionuclides are released. The user must input
data concerning 1) the radioactive releases at the discharge point,
and 2) the principal downstream locations (including dams). Principal
downstream locations will primarily be those locations where water or
fish are taken from the river to be used for human consumption. Branch-
ing of a stream is not included.
The essential data required to run RVRDOS are: activity released
(by radionuclide, including first daughter product information); dilu-
tion volumes; stream speed and volume flow rates at each location;
river miles at the locations; volumes of dams on the stream; and the
amounts (pounds) of fresh water fish (commercial and sport) taken from
the stream at various locations. As many as thirty-five downstream
locations and twenty radionuclides may be included. Ingestion dose
conversion factors (DCFS) for one to four body organs (by radionuclide)
and immersion DCFs for one or two organs must also be included with
the input data.
The output consists of a summary of the input data, followed by:
1) Radionuclide concentrations at each of the locations.
2) Drinking water population dose rates for each body organ
from each radionuclide at each location, and individual swimming dose
rates. (The latter do not appear in the population dose rate tables,
or in the summaries.)
3) and 4) Commercial and creel fish ingestion population dose
rates to each organ from each nuclide at each location.
5) A summary of the entire run consisting of subtotals of the
above doses:
a) summed over all locations listed, by radionuclide and
critical organ,
b) summed over all radionuclides listed, by location and
critical organ,
c) totaled over all locations and radionuclides, by critical
organ.
If the user desires to calculate dose rates to an individual, it
is only necessary to input a population of 1 and the appropriate amount
of fish caught (See section on Input Data).
-------
26
In order to be able to run RVRDOS, the user need only read this
introduction and the section entitled "Input Data." Further informa-
tion on the calculations used and on the code itself is contained in
the section entitled "Calculations."
The precise format for input data may be found in table 6. The
following paragraphs contain supplemental information and clarifica-
tion when necessary.
The first two cards contain information covering the entire run.
Next follows a pair of cards for each location on the stream for which
dose calculations are to be performed. Location #1 should be the dis-
charge canal, and the volume flow rate for location #1 should be the
discharge canal flow rate (ft3/sec). Location #2 should be downstream
from the facility. (The model used for calculations is not applicable
to the river at the discharge point, since mixing is not at all complete
at this point.) The rest of the locations should be in order of increas-
ing distance downstream. The following conversion factors may be
useful:
1 gallon/minute = 2.23xlO"3ft3/sec
1 liter/year = 1.119x1O"9 ft3/sec
The river miles may be measured from any fixed point (the facility
need not have river mile zero), and may either increase or decrease
with increasing distance downstream as long as the user is consistent.
(The program uses the absolute values of the changes in river miles.)
If there is no dam at a location the dam volume is input as 0. Volumes
(i.e., the volume of water behind dams) are in acre-feet:
1 acre-foot = 43,560 ft3 = .326 million gallons
The pounds of fish taken from the stream between locations N-l and
N are input with the data for location N (the section of the river be-
tween any location N and location N-l is called a reach). Fish data is
divided into two categories: that caught commercially and that caught
by sports fishermen (so-called creel catch). To calculate an individual
ingestion dose rate for a reference man eating 26 gm/day (landed weight),
input should be 21 pounds per year creel catch. (It should be recognized
that the populations consuming fish and water are quite different.)
When computing population doses due to drinking water, the population
which derives its drinking water from the river within the reach is input.
-------
27
Reaches should be selected such that radionuclide decay between the loca-
tion of a drinking water system intake and the end of the reach, N, is
small. Concentrations used for calculating drinking water doses are the
concentrations at point N. If the dose to an individual is desired at
location N, then a population of 1 is input.
After the location data cards, two cards follow with the number of
radionucl ides in the run, and the names of the critical organs for which
doses are to be calculated.
Finally, there are three cards for each radionuclide. These contain
decay data, dose conversion factor (in the same order as the names appear
ing on the earlier card), and release data (curies per year). The trip-
let for a daughter product must immediately follow the triplet for its
parent nuclide.
Calculations
The initial concentration (location 1) for each nuclide is
simply:
> __..
where:
CONCi concentration of radionuclide £ in the discharge canal
'£ (micro-Ci/ml)
£ radionuclide index
Q£ activity release of nuclide £, (Curies/year into discharge
canal )
FLOWi discharge canal flow rate (ft3/sec)
1.12xlO"6 converts Ci/yr per ft3/sec to micro-Ci/ml
Concentration of parent nuclides at downstream locations are calculated
using the equation derived in Section III where:
VOL volume of water behind dam, between points N-l and N (ft3).
n If there is no dam, V0l_n = 0.
RLMDA radionuclide decay constant (I/sec)
DELAY transit time from N-l to N, derived from the river mile
distance and stream speed (If stream speed is entered as
zero, a default value of 3 mph is assigned.).
-------
28
Account must be taken of the fact that a parent nuclide may decay
into more than one daughter. For instance, iodine-131 decays into
xenon-131m in only 1% of its decays. In the code, the calculated daughter
concentration is multiplied by (BRANCH2/100), where BRANCH2 is the so-
called branching ratio, the percentage of decays of p which yield d.
Water Ingestion Doses
Population doses due to water ingestion are calculated using the
equation:
DPWTV,m = CONCn,, • DCF*,m ' POPn ' DRINKS' 365' 1()6
where:
n location index
£ radionuclide index
m critical organ index (1, 2, 3, or 4)
DPWTR population dose (person-rem/yr)
CONC activity concentration, derived using equation (1) or
(2) (micro-Ci/ml)
DCF ingestion dose conversion factor (millirem per pico-Curie intake)
POP is the population served by drinking water from the stream
at n
DRINKS is the assumed ingestion rate (liters/day per person)
365 days per year
106 pCi per micro-Ci
DRINKS is set equal to 1.95 in the code. It may be easily changed, but
the program must then be recompiled.
RVRDOS does not take into account depletion by ingestion or depletion
by water and sewage treatment plants. Since a very small fraction of a
stream is used for drinking water, depletion by ingestion may be ignored.
Although water treatment plants, industrial uses and sewage treatment
plants may have large decontamination factors for the water taken from
the stream, only a small fraction of a stream is used by any given
-------
29
municipality. By ignoring these decontamination factors, RVRDOS pro-
vides a conservative estimate of population dose. Conservatism becomes
greater and greater as distance from the source increases.
Swimming (Immersion) Doses (M = 5 and 6)
Individual doses at location n, to organ m, from nuclide «,, due to
swimming in the stream are calculated using the equation:
Dose in rem/yr - CONC . DCF. . HOURS . 106
n 3 x, )o ^ m
where:
n,£,m location, nuclide, and organ indexes,
respectively (m =5 or 6)
CONC activity concentration, micro-Ci/ml
DCF mrem/hr per pCi/liter
(note different units from those of ingestion DCFs)
HOURS assumed time spent swimming
(hours/year per person)
Swimming population doses are not calculated, only individual swimming
doses.
The parameter HOURS is fixed in the code with the value of 100.
Like DRINKS it may be easily changed but the program must be recompiled.
Fish Ingestion Doses
Population doses due to commercial fish ingestion are calculated using
the relation:
DPCML = CONC „ . RECONC. DCFm „ . CTCHWT . 0.4536 x 106
n,£,m n,£ a m,a nsl
. CATUSE . CATEAT . CTLELF
where:
DPCML the population dose (person-rem/year)
CONC the activity concentration (micro-Ci/ml)
RECONC the fresh water fish reconcentration factor,
(ci/gm per Ci/ml)
-------
30
DCF dose conversion factor (mrem per pCi intake)
CTCHWT the total commercial fish yield between points n-1
n>1 and n (pounds/year)
0.4536 (kilograms/pound)
106 pico-Ci/micro-Ci
CATUSE the fraction of all commercially caught fish that is
available for human consumption
CATEAT the fraction (by weight) of a whole fish that is
actually edible
CTLEFT the fraction of nuclide in edible fish that remains
after cooking, frying, etc.
The parameters CATUSE, CATEAT, and CTLEFT are set equal to 0.49,
0.45, and 0.80, respectively, based on available data. These values
may be changed if the program is recompiled. Fresh water reconcentra-
tion factors for all elements up to atomic number ninety-five are also
included in the code, and may be similarly changed by the user.
DPCRL, the dose rate due to creel fish ingestion, is calculated
from the same equation with two changes:
1) CTCHWT is used rather than CTCHWTn
n,2 n'i
2) CATUSE is assumed to be 1, and is therefore omitted.
Sedimentation and resuspension processes are treated implicitly in
the reconcentration factors; these factors are grand averages from many
observations that have been made and include reconcentration by bottom
feeders and other organisms that are eaten by fish.
No decay factor is included in the population dose equation;
thus, the tacit assumption is made that the water and fish are consumed
immediately and at a uniform rate throughout a year. The former is
erally conservative depending upon the nuclide and organ, but this is
a trivial perturbation in the light of other sources of error.
Depletion of a stream via fish catches is not treated in RVRDOS.
This is another conservatism, but likely a trivial one in most cases
-------
31
of interest. For radionuclides other than tritium, the tacit assumption
that all radionuclides are soluble in the stream leads to generally con-
servative estimates of ingestion population doses.
Program Flow
The program flow is straightforward. In order, parameters are
initialized; input data are read; concentrations are calculated; water
and swimming doses are calculated and printed; commercial and creel
fish doses are calculated and printed; and a summary of the run is
tabulated and printed. The code includes comments describing the steps
performed. The calculations will stop if the absolute value of the
distance from location N-l to location N decreases. Since this model
is inapplicable for rivers that branch, the calculations will also
stop if a volume flow rate (FLOW) at location N-l exceeds the rate at
N. Various checks to prevent inadvertent division by zero are also
included. Several separate decks of cards of data may be processed
in one run by merely stacking them one after another.
Data Base
A data base is included in Section VI. These data were compiled
for the Illinois, Missouri, and Mississippi Rivers from Head of Passes
near the mouth of the Mississippi, upstream to the locations of four
nuclear power plants that discharged radionuclides into these rivers in
1973.
-------
32
Table 6 Format for input data to RVRDOS
Card
Sequence
1 Card
1 Card
Columns
1-20
22-25
29-30
34-45
70
4-5
Content
Facility name
/ear of data
Number of months of data
Source of release data
Blank or 1. (Print command)
Number of locations on stream,
Format
5A4
A4
A2
3A4
n
12
N pairs of Cards
1st Card 4-5
2nd Card
6-25
1-10
11-20
including facility (discharge
point) Maximum 35
One pair for each location on stream
Number of this location (Facility 12
discharge canal is number 1)
Name of this location 5A4
Population deriving drinking* F10.0
water from the river between
location N and N-l.
Volume flow rate at this location F10.0
in ft3/sec. For location 1,
this should be the discharge
canal blowdown rate. (Computer
will then calculate initial con-
centrations in discharge canal).
For the rest of the locations
the flow rate is that of the river.
*Drinking water population doses are calculated for the entire
population which derives its drinking water from the river between
locations N and N-l. Reaches should be selected such that the decay
between the intake to the supply and the end of the reach is small.
Concentrations used to calculate the drinking water dose are those
at location N. If the dose to one individual is desired at location
N, input a population of 1.
-------
Table 6 Format for input data to RVRDOS (continued)
Card
Sequence
Columns
21-30
31-40
Content
Stream speed in
River mile from
mi/hr
some fixed
Format
F10.2
F10. 2
41-50
51-60
reference point. (Facility
need not have river mile 0).
Volume of water behind dam at F10.0
location N, in acre-feet. If
there is no dam at location N,
then this is 0.
Pounds of fish caught commercially F10.0
per year between points N-l and
61-70
1 Card 4-5
1 Card 1-8
9-16
17-24
25-32
33-40
41-48
Sets of 3 cards
1st Card 3-10
11
Pounds of creel fish caught F10.0
per year
Number of radionuclides released 12
(1 to 20)
Name of 1st critical organ 2A4
(ingestion)
Name of 2nd organ (ingestion) 2A4
Name of 3rd organ (ingestion) 2A4
Name of 4th organ (ingestion) 2A4
Name of 5th organ (immersion) 2A4
Name of 6th organ (immersion) 2A4
One set for each radionuclide
Symbol and mass number of 2A4
nuclide, e.g., Co-58
Daughter call code 0 for parent, II
1 for daughter of immediately
preceeding nuclide
-------
34
Table 6 Format for input data to RVRDOS (continued)
Card
Sequence Columns Contents Format
12-15 Branching ratio: % of decays F4.0
of preceeding nuclide yielding
this nuclide (0 if parent)
19-20 Atomic number 12
21-30 Decay constant, I/sec E10.3
2nd Card 1-40 Ingestion dose conversion 4E10.3
factors for each of the four
critical organs listed on
earlier card, mrem per pCi
intake
41-60 Swimming (immersion) dose 2E10.3
conversion factors for two
organs in mrem/hr per pCi/
1 i ter
3rd Card 1-10 Activity released at facility, El0.3
Curies/yr
-------
35
GLOSSARY FOR RVRDOS
B, D, E, F, H, I, J, K, Al, A2 , El, B2, Dl , D2 , DECAYP , NMIN ,
DECAYS, si, 32, S3— All are temporary variables of little signif-
icance.
Aflc— Argument of exponential, equal to RLMDA times DECAY.
BRANCH (D— Branching ratio (%): the percentage of decays of
nuclide L-l that result in nuclide L. 0 for parent.
CATEAT— fraction (by weight) of a whole fish that is actually
edible; set equal to 0.45.
of all commercially caught fish that is used
for human consumption; set equal to 0.49.
CMLTOTCL,w;--DPCML(N,L,M), summed over N.
CONC(N,L) --Activity concentration in microcuries/mill iliter.
CRLTOT(L,n)— DPCRL ( N ,|_ ,M) , summed over N.
CTCHWT(N,D — Pounds of commercial fish taken from stream at N.
CTCHWT(N,2) — Pounds of creel fish taken from stream at N.
CTLEFT — Fraction of nuclide that remains in fish after cooking,
frying, etc; set equal to 0.80.
DCF(M,L) — Dose conversion factors for organ M and nuclide L.
For M - 1 - 4: ingestion DCFs in millirem per picocurie intake. For
M = 5,6: swimming (immersion) DCFs, in mrem/hr per pcurie/liter.
DCMLAW<'Ar/M/>--DPCML(N,L,M), summed over L.
DCRLNM(N,n)— DPCRL (N ,LMM) , summed over L.
DELAY— |RIVM(N) - RIVM(N-1)| *3600/VEL(N). time in seconds re-
quired for river to flow from location N-l to location N.
(N-l)/(Flow (N) + VOL (N) *RLMDA (L)). Dilution
factor for river between N-l and N, for nuclide L.
-------
36
DPCML(N,L,M) , DPCRL(N,L,M) ,DPWTR(N ,L,M) — Population dOS6 rates for
location N, nuclide L, and critical organ M (in person-rem per year), due to
ingestion of drinking water (DPWTR), commercial fish (DPCML), and creel
fish (DPCRL).
DPCMLW— DCMLNM(N,M), summed over N.
DPCRLM(M)— DCRLNM(N,M), summed over N.
DPWTR(M) — DWTRNM(N,M), summed over N.
DRINKS — Assumed drinking water consumption rate. Set equal to
1.95 liters/day per person.
DWTRNM(N,M) — DPWTR (N ,L ,M) , summed over L.
FACI to FACS — Facility name, total 20 characters.
FLOW(N) — Volume flow rate at location N, cubic feet per second.
HOURS — Assumed time one person spends swimming in river; set
equal to 100 hours per year.
L — Counter for radionuclides, 1-20.
LZ(L) — Atomic number of nuclide L.
M — Counter for locations 1-35. Release point has N=l .
NDTR (L) —Daughter call code=0, if parent; 1, if daughter. Data for
daughter product must immediately follow data for parent.
NISO — Number of radionuclides in run; maximum of 20.
) to NMN5(N) — Name of Nth location, up to 20 characters.
NMOGNKM), NMOGN2(M)--Name of critical organ corresponding to DCF
for M; up to eight characters
NMOS— Number of months of data, (used only for printing output).
NMOS=12 is assumed in all calculations.
— User-assigned number of location N. Normally NNPC(N)=N.
-------
37
NPC—Number of locations in run, including release point.
NREFI, NREF2, NREF3--Reference for release data (e.g., EIS, AEC
report), up to 12 characters.
NUCLKD, NucL2(L)—Name of radionuclide L (e.g., CO-58), up to
eight characters.
POP (w;—Population deriving drinking water from the river at
location N.
Q(D—Total curies of radionuclide L released at location
during year.
RECONC(LZ(L))—Fresh water fish reconcentration factors.
(Included in program for LZ=1 to LZ=95.)
RIVM(N)—River mile at N, from any fixed reference point.
RLMDA(L)—Decay constant of nuclide L, I/sec.
RMiLES(N) — |RIVM(N)-RIVM(1)|: The distance of location N from
the discharge point, in river miles.
TIME(N)—Travel time to location N, i.e., the total time available
for ingrowth or decay between the release point and location N.
VEL(N)—Stream speed at N, in mi/hr. (Default =3.0 mi/hr.)
VOL(N)—Volume of water behind dam between N-l and N, in acre-
feet.
WTRrorfL,w;~DPWTR(N,L,M), summed over N.
-------
V
REFERENCES
-------
V
REFERENCES
(1) U. S. ENVIRONMENTAL PROTECTION AGENCY, OFFICE OF RADIATION
PROGRAMS. Environmental Radiation Dose Commitment: An
Application to the Nuclear Power Industry. EPA-520/4-73-002.
Washington, D. C. 20460. Revised June 1974.
(2) W. D. ROWE, F. L. GALPIN, and H. T. PETERSON, JR. EPA's Environ-
mental Radiation Assessment Program. Nuclear Safety. V. 16, No. 6,
November-December 1975.
(3) INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION. Report of
Committee II on Permissible Dose for Internal Radiation (1959).
Health Physics, V. 3, June 1960.
(4) U. S. ATOMIC ENERGY COMMISSION. Final Environmental Statement
(for proposed Appendix I to 10 CFR 50). WASH-1258. July 1973.
(N.B., Table B-3, p. F-79). Washington, D.C. 20555.
(5) U. S. PUBLIC HEALTH SERVICE. 1963 Inventory—Municipal Water
Facilities. Div. of Water Supply and Pollution Control, Washing-
ton, D.C. 20201.
(6) U. S. DEPARTMENT OF COMMERCE. Fishery Statistics of the U. S.
(1971). Statistical Digest No. 65. Washington D. C. 20235.
(7) S. E. THOMPSON, C. A. BURTON, D. J. QUINN, and Y. C. NG. Concen-
tration Factors for Chemical Elements in Edible Aquatic Organisms.
UCRL-50564, Rev. 1, October 10, 1972. University of California
Radiation Laboratory, Livermore, CA.
(8) U. S. ARMY CORPS OF ENGINEERS. Upper Mississippi River Naviga-
tion Charts. (1972). U. S. Army Engineer Division, Chicago,
111. 60604.
(9) U. S. ARMY CORPS OF ENGINEERS. Charts of the Illinois Water-
way. U. S. Army Engineer Division, Chicago, 111. 60604, April
1970.
(10) U. S. ARMY CORPS OF ENGINEERS. Missouri River Hydrographic
Survey. Kansas City District Corps of Engineers, Kansas City,
MO. (1974).
(11) U. S. ARMY CORPS OF ENGINEERS. Aerial Photography and Maps of
the Missouri River. (Sioux City, IA., to Rulo, NE.) Omaha, NE.,
68101, June 30, 1969.
-------
42
(12) Personal Communication. Larry Bell, U. S. Nuclear Regulatory
Commission, Washington, D.C. 20555.
(13) 6. A. KORN and T. M. KORN. Mathematical Handbook for
Scientists and Engineers. Second Edition, p. 416. McGraw-
Hill, 1968, New York, N. Y.
-------
43
VI
COMPUTER PRINTOUTS FOR RVRDOS MODEL
Listing of source program for RVRDOS 45
Genoa:
Input data 57
Radionuclide concentrations by downstream location 60
Drinking water doses by nuclide 63
Drinking water doses by location 64
Commercial fish ingestion doses by location 66
Creel fish ingestion doses by location 68
Travel time to downstream locations 71
Quad Cities:
Input data 72
Drinking water doses by location 74
Commercial fish ingestion doses by location 75
Creel fish ingestion doses by location 76
Dresden 2/3:
Input data 77
Drinking water doses by location 79
Commercial fish ingestion doses by location 80
Creel fish ingestion doses by location 81
Fort Calhoun:
Input data 82
Drinking water doses by location 84
Commercial fish ingestion doses by location 85
Creel fish ingestion doses by location 86
-------
45
FORTRAN IV G LEVEL 21
MAIN
DATE = 76173
17/22/03
OOC1
OOC2
OOC3
OOC4
OOC5
OOC6
OOC7
OOC8
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0025
0026
0027
0028
0029
0030
J031
0022
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RVRDOS
A CODE FOR CALCULATING INGESTION POPULATION DOSE
RESULTING FROM DISCHARGES OF RADIONUCLICES DIRECTLY INTO
A STREAM. THE DIFFUSION ECUATION USED IS A SIMPLE LONG
TERM AVERAGE MODEL BASED UPON VOLUME FLOW RATES, VOLUMES
OF DAMS AND RADIONUCLICE DECAY CONSTANTS. POPULATION DOSES
DUE TO INGESTION GF STREAM WATER, AND COMMERCIAL AND
SPORT FISH CATCHES ARE CALCULATED AT UP TO THIRTY-FIVE
LOCATIONS ON THE STREAM. COSES TO FCUR USER SELECTED
INTERNAL ORGANS, FROM UP TO TWENTY RACIONUCLIDES MAY BE
CALCULATED IN A SINGLE RUN. FRtSH WATER FISH RECONCEN-
TRATION FACTORS FOR NINETY-FIVE ELEMENTS ARE INCLUDED
IN THE CODE. INDIVIDUAL SKIN AND WHCLE BODY IMMERSION
DOSES MAY ALSO BE CALCULATED.
JAMES A. MARTIN, JR. 10/74
ROBERT D. COUSINS 8/75
DIMENSION NNPC(35),NMM(35) ,NMN2 (35) ,NMN3 ( 35 ) ,NMN4 ( 35) ,NMN5<351 ,
* POP(35).FLOW(35) ,VEL(35),RIVM(35),DWTRNM(35,6).CTCHWT(35,2),
* DPWTR(35,20,6),DPWTRM(6),RECONC(95),LZ(20),NUCL1(20),
* NUCL2I20) ,RLMDA(20) .DFCML(35,'20,4),VOL(35),CONC(35,20),
* DCF(6,2C),Q(20),DPCRL(35,20,4),DPCRLM(4),DPCMLM(4),
* DCRLNM(35,4),DCMLNM(35,4),NMOGN1(6),NMOGN2(6),NDTR(20),
* BRANCH(20),RMILES(35),WTRTCT(20,6),CMLTOT(20,4),
* CRLTOT(20,4),TIME(35)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CATA
DATA
DATA
RECCNC(l)
RECONC(2)
RECCNCI3)
RECCNC(4)
RECONC(5)
RF.CCNCI6)
RECONC(7)
RECONC(8)
RECONC(S)
RECONCt10)
RECGNCU1)
R6CONCI12)
RECONC(13)
RECONCU4)
RECONC(15)
RECONCU6)
RECONC(17)
RECONCf18)
RECCNCU9)
RECCNCI2C)
RECONC(21)
RECCNC(22)
RECGNC(23)
RECONCJ24)
RECONC(25)
RECONCJ26)
RECCNC(27)
RF.CONC(28)
RECCNC(29)
RECONCI30)
RECONCt 31)
0.9/
I./
0.5/
2./
0.2/
5000./
150CC./
0.9/
10. /
I./
20./
50./
10./
2.5/
10CCC./
750./
50./
1. /
1000./
40./
100./
10CO./
10./
40./
IOC./
IOC./
20./
IOC./
20C./
10CC./
33C./
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37,
38.
39.
40.
41.
42.
43 .
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57-
58.
Listing of source program for RVRDOS
-------
46
FORTRAN IV G LEVEL 21
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0038
0089
0090
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
RECONCJ32)
RECCNC(33)
RECONC(34)
RECONCO5)
RECONC(36)
RFCONC<37)
RECONC(38)
RECONC<39)
RECONC(40)
RECONC(41)
RECONC142)
RECONC(43)
RECONC(44)
RECONC<45)
RECONCC46)
RECONC(47)
RECONC148)
RECONCI49)
RECONC<50)
RECONC(51)
RECONC(52)
RECONCI53)
RECONCC54)
RECQNCI55)
RECONC(56)
RECONC<57)
RECONCJ58)
RECONC(59)
RECONC(60)
RECONCJ61)
RECONC<62»
RECONC(63)
RECONCJ64)
RECONCC65)
RECONC(66I
RECONC(67)
RECONC(63)
RECONC(69)
RECONC170)
RECONC(71)
RECONC(72)
PECONC(73)
RECONCI74)
RECONC(75)
RECONC<76)
RECONC(77)
RECONC(78J
RECONC(79)
RECOMCC80)
RECONC(81)
RECONC132I
RECONC(33)
RECONCI34»
RECCNC(35)
RPCONC(86)
RECONCO7)
RECONC(88)
PECONCI89)
MAIN
/ 3300. /
/ 330. /
/ 170./
/ 420. /
/ I./
/ 2000. /
DATE = 76226
12/23/13
/ 25. /
/ 3.3/
30000. /
10. /
15. /
10. /
/ 10. /
/ 10. /
/ 2.3/
/ 200. /
/ 10000. /
/ 3000. /
/ I./
/ 500. /
/ 15. /
/ I./
/ 400. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 25. /
/ 3.3/
/ 30000. /
/ 1200. /
120. /
10. /
10. /
100./
33. /
1000. /
10000. /
300. /
15. /
/ 50. /
/ 15. /
/ 57. /
/ 400. /
/ 50. /
/ 25./
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
38.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
Listing of source program for RVRDOS (continued)
-------
47
FORTRAN iv G LEVEL 21
MAIN
DATE = 76226
12/23/13
0091
0092
0093
0094
0095
0096
0097
0099
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
OU4
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
C
C
C
DATA RECONC(90) / 30. /
DATA RECONC(91) / 11. /
DATA RECONCC92) / 10. /
DATA RECONC(93) / 1 0. /
DATA RECONC<94) / 3.5/
DATA RECONC195) / 25. /
WRITE(6,10)
10 FORMAT) 1H0.56X, ' PROGRAM RVRDOS'//
*43X,'FOR INFORMATION REGARDING THIS PROGRAM,
*51X, 'ENVIRONMENTAL PROTECTION AGENCY'/
*51X, 'OFFICE OF RADIATION PROGRAMS'/.
*51X, '401 M ST SW' /,
*51X, 'WASHINGTON, DC 20460'///,
*61X, 'INPUT DATA'/)
900 CONTINUE
INITIALIZE VARIABLES
CONTACT:'//.
C
C
C
C
C
C
DO 20 L=l,20
DO 20 N=l,35
DPWTR(N,L,5) = 0.
DPWTR(N,L,6) = 0.
CONC(N,L) = 0.
DO 20 M = 1,4
DPWTR(N,L,M) = 0.
DPCML(N,L,M) = 0.
20 DPCRL
-------
48
FORTRAN IV G LEVEL 21
MAIN
DATE = 76226
12/23/13
0125
0126
0127
0128
0129
0130
0131
0132
0133
013<»
0135
0136
013T
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
C
C
C
C
READ AND WRITE LOCATION DATA,INCLUDING FACILITY AS FIRST LOCATION.
VOLUME FLOW RATE FOR FACILITY IS AT POINT WHERE CURIES ARE
RELEASED.
HRITE<6,116)
116 FQRMATdHO,'REACH',8X,'NAME',13X,'POPULATION VOLUME FLOW ',
*'STREAM',5X,'RIVER DAM VOLUME COMMERCIAL CREEL FISH'/' NUMBER',
*26X,'SERVED RATE(CFS) SPEED(MPH) MILE ACRE-FEET FISH •
*,'WT,L8S WT,LBS«)
A=0.
8=0.
C = 0.
DO 130 N=1,MPC
READ(5,113) NNPC(N),NMN1(N>,NMN2(N),NMN3(N),NMN4(N),NMN5(N)
113 FORMAT(3X,I2,5A4)
RE AD (5, 114) PQP{N),FLOH ,
*CTCHWT(N,2)
114 FORMAT(2F10.0,2F10.2,3F10.0)
A=A+POP(N)
B=B-I-CTCHWT(N,1J
C=C+CTCHWT(N,2)
ASSIGN DEFAULT VALUE FOR VEL
IF (VEL(N).LE.O) VELCN)=3.
WRITE(6,117) NNPC(N),NMN1(N),NMN2(N),NMN3(N),NMN4(N),NMN5(N),
*POP(N),FLOW(N),VEL(M),RIVM(N),VOL(N),CTCHWT(N,1).CTCHWT(N ,2)
117 FORMAT ( 1HO,2X,I2,3X,5A4,1X,F10.0,3X,F10.0,2(1X,F10.1),1X,F10.0,2X,
*F10.0,3X,F10.0)
C
C
C
C
r
C
C
C
VOL(N) IS IN
CONVERT UNITS
VDL(N) = VOL(
130 CONTINUE
TOTPOP=A
TOTCML=B
TOTCRL=C
READ/WR
ACRE
TO
FEET AS INPUT.
CUBIC FEET.
N)*43560.
ITE
NUMBER OF ISOTOPES,
READ(5,200) NISO
C
C
C
200 FORMAT(3X,I2)
WRITE(6,210)
210 FORMAT( 1HO, /,
READ AND
NISO
SOX,
•RADIONUCLIDES RELE
WRITE ISOTOPE DATA
MAX. OF 20.
(TOTAL ',12,')')
READ(5,215) {(NMOGN1(M),NMOGN2(M)I,M=1,6(
215 FORMAT! 12A4)
WR!TE<6,220) ((NMOGNllM ),NMOGN2CM)),M=1,6)
220 FORMAT(1HO,85X,'DOSE CONVERSION FACTORS'/,82X,•INGESTION',27X,
*'SWIMMING'/,' ISOTOPE 0=PARENT BRANCH. ATOMIC DECAY CONS-',
*' CURIES',9X,'MILLIREM/YEAR PER PICO-CURIE/YEAR INTAKE MREM1
*,"/HR PER PCI/LITER'/,9X,'l=DAUGHTER RATIO,? NUMBER TANT, I/'.
*'SEC RELEASED'.4X,4(3X.2A4),2X,2(3X,2A4)»
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
137.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
229.
229.
230.
231.
232.
Listing of source program for RVRDOS (continued)
-------
49
FORTRAN IV G LEVEL 21
MAIN
DATE =
12/23/13
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
DO 240 L=1,NISO 233.
RFAO<5,230) NUCL1 ( L ), NUCL2 (L ) ,NDTP. (L ),BRANCH(L ),LZ(L) ,RLMDA(L) , 234.
*
-------
50
FORTRAN IV G LEVEL 21
MAIN
DATE
76226
12/23/13
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
C
C
C
DLUTE= FLOW(N-l) /(FLOW(N) + VOL(N) * RLMDA(LI)
CONC(N.L) = CONC(N-1,L) * DECAYD * DLUTE
CALC. INGROWTH
IF(NOTR(L).EQ.l)
* CONC(N,L) = CONC(NfL) + BRANCH(L) / 100. * (CONCCN-l.L-l) *
* RLMDA(L) / (RLMDA(L) - RLMDA(L-l)) * (DECAYP - DECAYD) *
* DLUTE + CONC(N.L-l) * RLMDA(L) * VOLIN) / (RLMDA(L) * VOL(N)
* FLOW(N)})
300 DECAYP
DECAYD
C
C
C
C
C
C
C
WPITE(6,310)
310 FORMAT(1H1,/,44X,'RADIONUCLIDE CONCENTRATIONS DOWNSTREAM*,/,49X,
*MMICROCURIES PER MILLIL ITER) •/)
IF(NISO.LT.IO) NMIN=NISO
IF(NISO.GE.IO) NMIN=10
WRITE(6,311) ((L),L=1,NMIN)
311 FORMATUHO, /,25X,10(4X,I2,4XM
WRITE(6,312) (t NUCLKL) tNUCL2(L)) ,L=1,NMIN)
312 FORMAT!1HO,27X,10(2A4,2X))
DO 315 N=1,NPC
315 WRITE(6,316) N.NMNHN),NMN2(N),NMN3(N),NMN4(N),NMN5 (N ),
*(CONC(N,L),L=1,NMIN)
316 FORMAT<1HO.I2,1.1tIX,5A4,10E10.2)
IF(NISO.LT.11.) GO TO 400
WRITE<6,311) (CL),L=11,NISO)
WRITE (6,312 ) ((NUCLKL ),NUCL2(D) ,L=11,NISO)
00 325 N=1,NPC
325 WRITE(6,316) N.NMNKN I ,NMN2(N),NMN3(N),NMN4(N),NMN5( N).
*(CONC(N,L),L=11,NISO)
CALCULATE WATER INGESTION DOSES BY NUCLIOE, REACH AND ORGAN
AND SUM OVER NUCLIDES IN EACH REACH.
400 DRINKS=1.95
HOURS = 100.
DO 420 N=1,NPC
IF(POP( N).F.Q.O. ) GO TO 420
B=POP(N)*ORINKS*365.25*1.E+06
DO 410 M=i,4
D=0.
DO 405 L=1,NISO
DPWTR(N,LtM)=CONC(N,L)*DCF(M, L)*B
405 D = D + DPWTR(N,L,M)
410 DWTRNM(NtM)=D
CALCULATE SWIMMING DOSES AND SUM IN REACHES
B=l. *HOURS*l.F--i-06
DO 420 M=5,6
D=0.
DO 415 L=1,NISO
OPWTR(N,L,M)=CONC(N,L)*DCF(M,LJ*B
415 D=D+DPWTR(NfL,M)
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
Listing of source program for RVRDOS (continued)
-------
51
FORTRAN IV G LEVEL 21
MAIN
DATE = ^6226
12/23/13
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
DWTP.NM(N,M) =
420 CONTINUE
WRITE DRINKING WATER AND SWIMMING DOSES AT
IF(NPRINT.NE.l) GO TO 440
ALL LOCATIONS
C
C
r
C
C
C
C
DO 440 N=1,NPC
IF(POP(N).EQ.O.» GO TO 440
WRITE(6,430) DRINKS,HOURS
430 FORMAT!IH1.30X,«DRINKING WATER AND SWIMMING1/,34X,•POPULATI ON ',
*«OOSE RATES'/,25X,'(PERSON-REM PER YEAR FIRST YEAR RATE)'//22X,
*'ASSUMING: 1) UNIFORM RELEASE RATES•/,3IX, • 2A) DRINKING: CONTI'.
*'NUOUS 1NGESTION RATE'/,35X,•OF «,F4.2,' LITERS PEP DAY-/.31X,
*'29) SWIMMING: «,F5.0f' HOURS OF IMMERSION"/,35X,'PER YEAR',
*• - ONE PERSON PER REACH')
WRITE LOCATION DATA
WRITE(6,432) N.NMNKN) ,NMN2!N) ,NMN3( NJ ,NMN4(N) ,NMN5«N) , PMILES(N) ,
*POP(N)
432 FORMAT! IHO,IX,•LOCATI ON' ,I OX,'NAME' ,10X,•MILES DOWNSTREAM',3X,
^'POPULATION SERVED',
*/,3X,I4,5X,5A4,3X,F10.2,10X,F10.0)
WRITE POPULATION DOSES BY NUCLIDE AND ORGAN,
WITH SUBTOTALS FOR EACH REACH BY ORGAN.
WRITE(6,434 I UNMOGN1(M),NMOGN2CM)),M=1,6>
434 FORMAT!IHO,IX,'NUCLIDE',4X,'CURIES DRINKING WATER DHSES
*'CRIT1CAL ORGANS)',8X,'SWIMMING DOSES'/,12X,'RELEASED',IX,
*4(3X,2A4),2X,2!3X,2A4M
DO 435 L=1,NISO
435 WRITE(6,436I NUCL1(L),NUCL2(L),Q
-------
52
FORTRAN IV G LEVEL 21
MAIN
DATE
76226
12/23/13
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
C
C
C
510 B1=CTCHWT'I
WRITEI6.551) I,J,K
551 FORMAT!1H0.22X,'ASSUMING: 1) UNIFORM INGESTION RATES'/,33X,
*'2) SI2,
*• PERCENT OF ALL COMMERCIALLY CAUGHT FISH IS FOR HUMAN CONSUMTION'
*/,33X,'31 ',12,' PERCENT (BY WEIGHT) OF A WHOLE FISH IS ACTUALLY1.
*' INGESTED'/,33X,'4) ',12,' PERCENT OF NUCLIDE REMAINS IN FISH',
*• AFTER COOKING'//)
WRITE(6,560) N.NMN1(N),NMN2(N),NMN31N),NMN4«N),NMN5(N),RMILES(N>,
*CTCHWT(N,1)
560 FORMATC1HO,IX,'LOCATION',10X,'NAME',10X,'MILES DOWNSTREAM',3X,
*'COMMERCIAL FISH CAUGHT (LBS)1,
*/,3X,I4,5X,5A4,3X,F10.2,16X,F10.0)
WRITE(6,564) ((NMOGN1(M),NMOGN2(M)J,M=1,4J
564 FORMAT(1HO,IX,•NUCLIDE',4X,'CURIES',4X,4(2A4,3X)/,12X,'RELEASED')
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
433.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
Listing of source program for RVRDOS (continued)
-------
53
FORTRAN iv G LEVEL 21
MAIN
DATE = 76226
12/23/13
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0319
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
00 566 L=1,NISO
566 WPITE(6,567) NUCL1(L),NUCL2(L),Q(L),
-------
54
FORTRAN IV G LEVEL 21
MAIN
DATE = 76226
12/23/13
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0331
0382
0383
0384
WRITF(6,622)
622 FORMAT!1H0.23X,'DOSES BY NUCLIDE, SUMMED OVER LOCATIONS1)
WRITE(6,6221) <(NMOGNl(M),NMOGN2
-------
55
FORTRAN iv G LEVEL 21 MAIN DATE = 7522?) 12/23/13
0395 WRITE(6,722I TOTCRL, 532.
0^87 723 FORMAT!1H1.21X,-TRAVEL TIME TQ DOWNSTREAM POINTS (HRS.)'I 533.
0388 DO 330 N=1,NPC 594.
0389 830 WRITE(6,724) N,NMN1(NI,NMN2(N),NMN3(NI,NMN4!N),NMN5(N),TIME ( N> 595.
0390 724 FORMAT!1HO,12,'. -,5A4,F10.1) 596.
C 587.
0391 WP1TEI6.901I 538.
0392 901 FORMAT!1H1) 599.
0393 GO T0 900 590.
C 591.
0394 999 CALL EXIT 592.
0395 STOP 593.
0396 END 594.
Listing of source program for RVRDOS (continued)
-------
PROGRAM RVRDOS
FOR INFORMATION REGARDING THIS PROGRAM, CONTACT:
ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RADIATTON PROGRAMS
401 M ST SW
WASHINGTON, DC 20460
INPUT DATA
FACILITY
GENOA (LACPOSSF)
YFAR OF RELEASES
1973
NO. MONTHS OF DATA
12
SOURCE OF RELEASE DATft
LOCATIONS ON STRFAM (TOTAL OF 29, FACILITY IS NO. 1)
REACH NAME
NUMBER
1 GFNOA
2 LHCK AND DAM 9
3 LOCK AND DAM 9
4 LOCK AND DAM 10
5 LOCK AND DAM 11
6 LOCK AND 0AM 12
7 LOCK AND DAM 13
9 LOCK AND PAM 14
9 8ETTFNOOPF-MOLINF
10 DAVEMPOPT-ROCKISLAND
11 LOCK AND DAM 17
12 LOCK AND DAM 19
13 RURLINGTON, IOWA
14 FT. MADISON
15 KEOKUK, LCD 19
16 LOCK AND DAM 20
17 OUINCY, ILL.
19 HANNIBAL, MO.
19 LOCK AND DAM 24
OPULATION
SERVED
1.
0.
0.
0.
0.
0.
0.
0.
55555.
141580.
0.
0.
35400.
15245.
16315.
0.
47500.
21000.
0.
VOLUME FLOW
RATE(CFS)
275.
28199.
30691.
34277.
39595.
44778.
46673.
49660.
50363.
50652.
55065.
57638.
58245.
b033b.
62119.
66636.
70155.
74065.
91776.
STREAM
SPEED(MPH)
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
RIVFR
MILE
-1633.3
-1633.0
-1603. 8
-1571.0
-1539. 9
-1510.5
-1478.3
-1449. 1
-1441.8
-1439.8
-1393.0
-1366.3
-1360. 0
-1339.3
-1319. 8
-1299.0
-1292.9
-1264. 9
-1229.3
DAM VOLUME
ACRE-FEET
0.
100400.
195800.
149700.
157400.
334JO.
185600.
80000.
30000.
99400.
51400.
95800.
0.
0.
214000.
73600.
76400.
91000.
29745.
COMMERCIAL
FISH WT,LBS
0.
1112264.
2040780.
675405.
529908.
405587.
994603.
396522.
151214.
459510.
450113.
929489.
0.
0.
920773.
75657.
138219.
128689.
214530.
CREEL FISH
WT.LBS
111.
0.
0,
0.
142927.
0.
113332.
0.
0.
0.
0.
33669.
0.
0.
0.
0.
0.
0.
0.
Genoa: Input data
en
-------
Genoa: Input data
(continued)
01
00
20 LOCK AND DAM
21 LOCK AND DAM
22 LOCK AND 0AM
23 ST. LOUTS, E.ST
24 CHESTER, ILL.
25
26
27
.LOUIS
25 CAPE GIRARDEAU, MO.
26 THEBES, ILL.
27 VICKSBURG, MI
23 DONALDSVILLE,
29 NEW ORLEANS,
ISOTOPF OPARENT
1=DAUGHTER
BALA-140 0
CO-58 0
CO-60 0
CR-51 0
CS-134 0
CS-137 0
BA-137M 1
H-3 0
1-131 0
XF-131M 1
1-133 0
XE-133 1
MN-54 0
SR-89 0
Y-89M 1
SR-90 0
Y-90 1
ss.
LA.
LA.
BRANCH.
RATIO, %
0.
0.
0.
0.
0.
0.
100.
0.
0.
1.
0.
100.
0.
0.
0.
0.
100.
0.
0.
40073.
670015.
4200.
25700.
450.
41000.
7750.
652125.
33727. 1.9
97090. 1.9
157739. 1.9
175900. 1.9
180500. 2.9
184550. 2.9
185100. 2.9
574000. 3.2
579000. 3.2
579000. 3.2
RADIONUCLIDES
ATOMIC DECAY CONS- CURIES
NUMBER TANT, I/SEC RELEASED
56
27
27
24
55
55
56
1
53
54
53
54
25
38
39
33
39
0. 211E-04 0.740E-01
0.113E-06 0.118E+02
0. 418E-08 0. 126E+01
0.289E-06 0.810E-01
0.107E-07 0.566E<-01
0. 733E-09 0.101E + 02
0.163E+02 0.0
0.179E-08 0.103E+03
0.996E-06 0.313E4-01
0.680E-06 0.0
0. 916E-05 0. 289E+01
0. 152E-05 0.430E+00
0.265E-07 0.850E-01
0.154E-06 0.500E-01
0.431E-01 0.0
0. 778E-09 0. 210E-01
0.301E-05 0.0
-1197.3
-1153.8
-1141.1
-1135.8
-1065.3
-1007.8
-999.8
-433.0
-177.0
-100.0
49674.
107082.
0.
0.
0.
0.
0.
0.
0.
0.
336105.
353487.
264390.
0.
0.
0.
0.
0.
0.
0.
0,
33761
0
0,
0,
0
0
0,
0
0
RELEASED (TOTAL 20)
DOSE CONVERSION FACTORS
INGESTION
MILLIREM/YEAR PER PICO-CURIE/YEAR INTAKE
BODY THYROID BONE GI-LLI
0.133E-05
0.168E-05
0.470E-05
0.267E-03
0.100E-03
0.560E-04
0.0
0.127E-06
0.337E-05
0.0
0.702P-06
0.0
0.863E-06
0.913E-05
0.0
0.395E-03
0.285E-09
0.0
0.0
0.0
0. 159E-08
0.0
0.0
0.0
0.127E-06
0.186E-02
0.0
0.482E-03
0.0
0.0
0.0
0.0
0.0
0.0
0.202E-04 0.402E-04
0.0 0.
0.0 0.
0.0 0.
0. 5296-04 0.
0.637E-04 0.
0.0 0.
0.0 0.
0.393E-05 0.
0.0 0.
0.143E-05 0.
0.0 0.
0.0 0.
0.320E-03 0.
0.0 0.
0.336E-03 0.
0.986E-08 0.
152E-04
394E-04
669E-06
255E-05
205E-05
0
640E-07
153E-05
0
225E-05
0
133E-04
498E-04
0
123E-03
105E-03
SWIMMING
MREM/HR PER PCI/LITER
SWIMSKIN SWIMBOOY
0.760E-06 0.490E-06
0.230E-05 0.180E-05
0.540E-05 0.460E-05
0.640E-07 0.520E-07
0.350E-05 0.290E-05
0.140E-05 0.100E-05
0.0 0.0
0.0 0.0
0.930E-06 0.680E-06
0.560E-07 0.620E-08
0.150E-05 0.960E-06
0.110E-06 0.570E-07
0. 180E-05 0. 150E-05
0.540E-06 0.460E-08
0.0 0.0
0.150E-06 0.540E-09
0.960E-06 0.130E-07
-------
XF-US
CS-135
ZN-65
O
0
0
0.
0.
0.
54
55
30
O. 2O96-O4
0.73OE-14
0.328E-07
o.isoetoo
0.0
0.216F+00
0.0
0.564E-05
0.503E-05
0.0
0.0
0.0
0.0 0.0 0. 790E-06 0.4.50E-06
0.144E-04 0.371E-07 0.110E-07 0.660E-10
0.345E-05 0.973E-05 0.1206-05 0.110E-05
Genoa: Input data
(continued)
-------
1. GENOA
2. LOCK AND DAM 8
3. LOCK AND 0AM 9
4. LOCK AND DAM 10
5. LOCK AND DAM 11
6. LOCK AND OA»1 12
7. LOCK AND DAM 13
8. LOCK AND DAM 14
9. BETTENDORF-MOL1ME
10. DAVENPOPT-ROCKISLANO
11. LOCK AND 0AM 17
12. LOCK AND 0AM 18
13. BURLINGTON, IOWA
14. FT. MADISON
15. KEOKUK, LKD 19
16. LOCK AND DAM 20
17. QUINCY, ILL.
IS. HANNIBAL, MO.
19. LOCK AND DAM 24
20. LOCK AND DAM 25
21. LOCK AND DAM 26
22. LOCK AND DAM 27
23. ST.LOUIS,E.ST.LOUIS
24. CHESTER, ILL.
25. CAPE GIRAPDEAU, MO.
26. THEBES, ILL.
;noa: Radionucl
ide concentrations
by downstream
location
CTi
O
RADIONUCLIOE CONCENTRATIONS DOWNSTREAM
(MICROCURIES PER MILLILITER)
1
BALA-140
0. 30E-09
0.63E-12
0.28E-13
0. 14E-14
0. 70E-16
0.69E-17
0.40E-18
0.47E-19
0.22E-19
0. 75E-20
0. 59E-21
0.77E-22
0. 59E-22
0.24E-22
0.27E-23
0. 54E-24
0. 13E-24
0.29E-25
0.48E-26
0.80E-27
0. 78E-28
0. 24E-23
0. 17E-28
0. 26E-29
0.57E-30
0.46E-30
2
CO-58
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
4SE-07
46E-09
41E-09
35E-09
31E-09
25E-09
24E-09
23E-09
22E-09
22E-09
20E-09
0.19E-09
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
18E-09
18E-09
17E-09
16E-09
15E-09
14E-09
12E-09
11E-09
10E-09
62E-10
56E-10
54E-10
52E-10
52E-10
3
CO-60
0.51E-03
0.50E-10
0.46E-10
0.41E-10
0.37E-10
0.31E-10
0.30E-10
0.28E-10
0.23F-10
0.2SE-10
0.2SE-10
0.24E-10
0.24E-10
0.23E-10
0.23E-10
0.21E-10
0.20E-10
0.19E-10
0.17E-10
0.16E-10
0.14E-10
0. 89E-11
0.80E-H
0.77E-11
0.76E-11
0.76E-11
4
CR-51
0.33E-09
0.31E-11
0.26E-11
0.21E-11
0.18E-11
0.15E-11
0.13E-11
0.12E-11
0.12E-11
0.11E-U
0.10E-11
0.93E-12
0.92E-12
0. 87E-12
O.S1E-12
0.73E-12
0.68E-12
0.63E-12
0.56E-12
0.50E-12
0.44E-12
0.27E-12
0.24E-12
0.23F-12
0.22E-12
0.22E-12
5
CS-134
0.23E-07
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Oo
0.
0.
0.
0.
0.
0.
0.
0.
22E-09
2 IE- 09
18E-09
16E-09
14E-09
13E-09
13E-09
12E-09
12E-09
11E-09
11E-09
11E-09
10E-09
10E-09
93E-10
88E-10
84E-10
76E-10
70E-10
64E-10
39E-10
35E-10
34E-10
33E-10
33E-10
6
CS-137
0.41E-07
0.40E-09
0.37E-09
0.33E-09
0.29E-09
0.25E-09
0.24E-09
0.23E-09
0.22E-09
0.22E-09
0.20E-09
0.20E-09
0.19E-09
0.19E-09
0. 18E-09
0.17E-09
0.16E-09
0.15E-09
0.14E-09
0.13E-09
0.12E-09
o.riE-io
0.64E-10
0.62E-10
0.61E-10
0.61E-10
7
BA-137M
0.0
0.40E-09
0.37E-09
0.33E-09
0.29E-09
0.25E-09
0.24E-09
0.23F-09
0.22E-09
0.22E-09
0.20E-09
0.20E-09
0.19E-09
0.19E-09
0. 18E-09
0.17E-09
0.16E-09
0.15E-09
0.14E-09
0.13E-09
0.12E-09
0.71E-10
0.64E-IO
0.62E-10
0.61E-10
0.61E-10
8
H-3
0.42E-06
0.41E-03
0.33E-08
0.34P-03
0.30E-08
0.26E-03
0.25E-03
0.23E-08
0.23E-03
0.23E-08
0.21E-03
0.20E-03
0.20E-03
0.19E-03
0.19E-03
0.17E-08
0.16E-08
0.16E-08
0.14E-08
0.13E-08
0.12E-08
0.73E-09
0.65E-09
0.64E-09
0.62E-09
0.62E-09
9
1-131
0. 13E-07
0.11E-09
0.73E-10
0.52E-10
0.37E-10
0.28E-10
0.21E-10
0.18E-10
0.17E-10
0.15E-10
0.13E-10
0.11E-10
0.10E-10
0.96E-11
0.78E-11
0.57E-11
0.59E-11
0.51F-11
0.43F-11
0.36E-11
0.29E-11
0.17E-11
0.16E-11
0. 14E-11
0.13E-11
0.12E-11
10
XE-131M
0.0
O.lOE-12
0.22E-12
0.25E-12
0.25E-12
0.22E-12
0.21E-12
0.20E-12
0.20E-12
0.19E-12
0.17E-12
0.16E-12
0.16E-12
0.15E-12
0.14E-12
0.13E-12
0.12E-12
0.11E-12
0.95E-13
0.85E-13
0. 74E-13
0.45E-13
0.40E-13
0.38E-13
0.36E-13
0.35E-13
-------
27. VICKSBUPG, MISS. 0.29E-36 0.16E-10 0.24E-11 0.59E-13 0.11E-10 0.20E-10 0.20E-10 0.20E-09 0.225-12 0.85E-14
29. noNALOSVULE, LA. 0.62E-39 0.15E-10 0.24E-11 0.53E-13 0.11E-10 0.19E-10 0.19E-10 0.20E-09 0. 1SE-12 0.72E-1*
29. NEW ORLEANS, LA. 0. 10E-39 0. 15E-10 0.24F-11 0.52E-13 O.llE-10 0.19E-10 0.19E-10 0.20E-09 0.15E-12 0.696-14
11 12 13 14 15 16 17 18 19 20
1-133 XE-133 MN-54 SR-89 Y-99M SR-90 Y-90 XE-135 CS-135 ZN-65
1. GENOA 0.12E-07 0.17E-08 0.35E-09 0.20E-09 0.0 0.35E-10 0.0 0.73E-09 0.0 0.98E-09
2. LOCK AND DAM 8 0.47E-10 0.23F-10 0.34E-H 0.19E-11 0.1/6-15 0.83E-12 0.2?E-12 0.17E-11 0.0 0.85E-11
3. LOCK AND CAM 9 0.74E-11 0.13E-10 0.31E-U 0.17E-U 0.15E-15 0.77E-12 0.53E-12 0.71E-13 0.0 0./3E-11
4. LOCK AND DAM 10 0.146-11 0.12E-10 0.27F-U 0.15E-11 0.135-15 0.69E-12 0.57E-12 0.35E-14 0.0 0.69E-11
5. LOCK AND DAM 11 0.2SE-12 0.77F-11 0.24E-11 0.135-11 0.115-15 0.61E-12 0.55E-12 0.18E-15 0.0 0.615-11
6. LOCK AND 0AM 12 0.78E-13 0.54E-11 0.21E-11 0.11E-11 0.955-16 0.52F-12 0.495-12 0.19E-16 0.0 0.52E-11
7. LOCK AND CAM 13 0.16E-13 0.37E-11 0.20F-U 0.98E-12 0.835-16 0.50E-12 0.49E-12 O.UE-17 0.0 0.50E-11
S. LOCK AND 0AM 14 0.57E-14 0.29E-11 0. 19E-11 0.90E-12 0.81E-16 0.47E-12 0.46E-12 0.13E-19 0.0 0.46E-11
9. BFTTFNDPRF-MOLTNE 0.40E-14 0.2TE-11 0. 19^-11 0.89E-12 0.795-16 0.47E-12 0.46E-12 0.61E-19 0.0 0.46E-U
10. OAVENPORT-ROCK1SLANO 0.22E-14 0.24E-11 0.19E-11 0.97E-12 0.735-16 0.46E-12 0.46E-12 0.21E-19 0.0 0.45E-11
11. LOCK AND DAM 17 0.67E-15 0.13F-11 0.17E-U 0. 78E-12 0. 70E-16 0.43E-12 0.42F-12 0.17E-20 0.0 0.42E-11
12. LOCK AND fiAM 18 0.24E-15 0.15E-11 0.16E-11 0.73E-12 0.66E-16 0.41E-12 0.40F-12 0.22E-21 0.0 0.40E-11
13. BURLINGTON, IOWA 0.21E-15 0.14E-11 0.16E-11 0.72E-12 0. 655-16 0.40E-12 0.40^-12 0.17E-21 0.0 0.39E-U
14. FT. MADI5PN 0. 14E-15 0.13E-U 0.15E-11 0.69E-12 0.625-16 0.39E-12 0.395-12 0.70E-22 0.0 0.38E-11
15. KFOKUK, LED 19 0.426-16 0.96E-12 0.15E-11 0.66E-12 0.59F-16 0.39F-12 0.39E-12 0.79E-23 0.0 0.365-11
16. LOCK AND DAM 20 0. 19E-16 0. 78E-12 0. 135-11 0.605-12 0.54E-16 0.35F-12 0.35F-12 0.16F-23 0.0 0.34E-11
17. QUIMCY, ILL. 0.95E-17 0.66E-12 0.13E-11 0.57E-12 0. 515-16 0.33F-12 0.33E-12 0.40E-24 0.0 0.32E-11
18. HANNIBAL, MO. 0.44E-17 0.55E-12 0.12E-11 0.53E-12 0.495-16 0.32F-12 0.32E-12 0.99F-25 0.0 0.30E-11
19. LOCK AND DAM 24 0.19E-17 0.44E-12 0.11E-11 0.47E-12 0.435-16 0.29E-12 0.29E-12 0.15E-25 0.0 0.27E-11
20. L^CK AND CAM 25 0.81E-18 0.36E-12 0.10E-11 0.43E-12 0.39E-16 0.26F-12 0.26E-12 0.25E-26 U.O 0.25E-H
21. LOCK AND DAM 26 0.26E-19 0.27E-12 0.91E-12 0.39E-12 0.355-16 0.24E-12 0.24F-12 0.25E-27 0.0 0.23E-11
22. LOCK AND CAM 27 0.12E-18 0.16E-12 0.56E-12 0.24E-12 0.215-16 0.155-12 0.15F-12 0.77E-28 0.0 0.14E-11
23. ST. LOUIS, F. ST. LOUIS 0. 98E- 19 0.14E-12 0.50E-12 0.21E-12 0.19E-16 0.13E-12 0.13E-12 0.56E-29 0.0 0.13E-11
24. CHESTER, ILL. 0.43E-19 0.12F-12 0.49E-12 0.20E-12 0.195-16 0.135-12 0.135-12 0.99E-29 0.0 0.12F-11
25. CAPE GIRARDEAU, MO. 0.22E-19 0.11E-12 0.48E-12 0.20E-12 0.195-16 0.13E-12 0.13F-12 0. 195-29 0.0 0.12E-11
Genoa: Radionuclide concentrations by downstream location
(continued)
-------
Genoa: Radionuclide concentrations by downstream location
(continued)
26. THEBES, ILL. 0.20F-19 0. 10e-12 0.48E-12 0.20E-1Z 0.18E-16 0.13E-1Z 0.13E-12 O.lfcE-29 0.0 0.12E-11
27. VICKSBURG, MISS. 0.21E-22 0.13E-13 O.L5E-12 0.57E-13 0.52E-17 0.41E-13 0.41E-13 O.llE-35 0.0 0.38E-12
23. DONALDSVILLE, LA. 0.15E-23 0.82E-14 0.15F-12 0.54E-13 0.49E-17 0.41E-13 0.41E-13 0.25E-38 0.0 0.37E-12
29. NEW ORLEANS, LA. 0.67E-24 0.72E-14 0.15E-12 0.54E-13 0.48E-17 0.41E-13 0.41E-13 0.42E-39 0.0 0.37E-12
-------
DRINKING WATER
POPULATION DOSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: II UNIFORM RELEASE RATES
2) DRINKING: CONTINUOUS INGESTION RATE
OF 1.95 LITERS PER DAY
DOSES BY NUCLIDE, SUMMED OVER LOCATIONS
MUCLIOE
8ALA-14C
CO-58
CO-60
CR-51
CS-134
CS-137
BA-137M
H-3
1-131
XF-131M
1-133
XE-133
MN-54
SR-99
Y-89M
SP-90
Y-90
XE-135
CS-135
ZN-65
CURIES
RELEASED
0.74E-01
0.12E+02
0.13E*01
0.81F-01
0.57F»01
0.10E+02
0.0
0. 10P+03
0.31F+01
0.0
0.29E+01
0.43E+00
0.85E-01
0.50E-01
0.0
0.21E-01
0.0
0.18E+00
0.0
0.22F+00
TOTALS
DRINKING WATER DOSES
BODY THYROID
0.28E-06
0. 14E+00
0.54E-01
O.lOE-05
0.50E+01
0.51E*01
0.0
0.12F*00
0.13E-01
0.0
0.61E-05
0.0
0.63E-03
0.29E-02
0.0
0.17E+00
0.54E-07
0.0
0.0
0.93E-02
0.11E»02
0.0
0.0
0.0
0.62E-06
0.0
0.0
0.0
0.12E+00
0.72F + 01
0.0
0.42E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 73E»01
(4 CRITICAL ORGANS )
BONE GI-LLI
0.43E-05
0.0
0.0
0.0
0.27E+01
0.58F+01
0.0
0.0
0.15E-01
0.0
0.13E-04
0.0
0.0
0.10E+00
0.0
0.64E-01
0.19E-05
0.0
0.0
0.63F-02
0.87E + 01
0.86E-05
0.13E+01
0.45E*00
0.26E-03
0.13E+00
0. 19E+00
0.0
0.60E-01
0.59E-02
0.0
0.20E-04
0.0
o. loe-oi
0.16E-01
0.0
0.23E-01
0.20E-01
0.0
0.0
0.13E-01
0.22F*Ol
Genoa: Drinking water doses by nuclide
o>
CO
-------
Genoa: Drinking water doses by location
DRINKING WATER
POPULATION DOSE RATES
(PERSON-SEN PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM RELEASE RATES
2) DRINKING: CONTINUOUS INGEST ION RATE
OF 1.95 LITERS PER DAY
OOSES BY LOCATION, SUMMED OVER NUCLIDES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
LOCATION
GENOA
LOCK AND DAM 8
LOCK AND CAM 9
LOCK AND DAM 10
LOCK AND 0AM 11
LOCK AND CAM 12
LOCK AND DAM 13
LOCK AND DAM 14
RETTENDQRF-MOL INE
DAVENPORT-ROCKISLAND
LOCK AND CAM 17
LOCK AND DAM 18
BUPLINGTON» IOWA
FT. MADISON
KEOKUK, LED 19
LOCK AND DAM 20
QUINCY, ILL.
HANNIBAL, MO.
LOCK AND 0AM 24
LOCK AND DAM 25
LOCK AND CAM 26
LOCK AND DAM 27
ST. LOUIS, E. ST. LOUIS
CHESTER, ILL.
MILES
DOWNSTREAM
0
0
29
62
94
122
155
134
191
194
240
267
273
295
313
334
350
363
403
436
474
492
497
568
.0
.3
.5
.3
.5
.3
.0
.2
.5
.5
.3
.0
.3
.0
.5
.3
.5
.5
.5
.0
.5
.2
.5
.0
POPULATION
SERVED
I.
0.
0.
0.
0.
0.
0.
0.
55555.
141580.
0.
0.
35400.
15245.
16315.
0.
47500.
21000.
0.
0.
0.
40073.
670015.
4200.
DRINKING WATER DOSES
BODY THYROID
0.
0.
35E-02
0
0.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0
0
0
10E+01
26E+01
0
0
57F + 00
24E+00
25E+00
0
63E+00
26E+00
0
0
0
24E+00
35E+01
22E-01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
21E-01
0
0
0
0
0
0
0
12E+01
29E+01
0
0
0.49E + 00
0.
0.
0.
0.
0.
0.
0.
0.
20E + 00
17E+00
0
38E+00
15E+00
0
0
0
0.95E-01
0.
0.
14E+01
80E-02
(4
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRITICAL
BONE
28E-02
0
0
0
0
0
0
0
84E+00
21E+01
0
0
46E+00
19E+-00
20E+00
0
51E+00
22E+00
0
0
0
19E+00
29E+01
18E-01
ORGANS)
GI-LLI
0. 85E-03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 22E+00
0.56E+00
O.n
0.0
0.12E+00
0. 50E-01
0.51E-01
0.0
0.13E+00
0.54E-01
0.0
0.0
0.0
0. 4TE-01
0.71E+00
0.43E-02
-------
H5. CAPE GIRARDEAU, MO. 625.5 25700.
26. THEBESt ILL. 633.5 450.
27. VICKSBURG, MISS. 1195.3 41000.
28. OONftLOSVILLE, LA. 1456.3 7750.
29. NEW ORLE4NS, LA. 1533.3 652125.
TOTALS 1773909.
0.13E+00
0.23E-02
0.44E-01
0.77E-03
0.11E*00
0.19E-02
0.26E-01
0.45E-03
0.66E-01 0.12E-01
0.12E-01 0.18E-02
0.10E+01 0.14E+00
0.11E*02 0.73e*0l 0.87E+01
0.54E-01 0.13E-01
0.10E-01 0.23E-02
0. 85E4-00
0.19E+00
0.22E+01
Genoa: Drinking water doses by location
(continued)
cr>
en
-------
Genoa: Commercial fish ingestion doses by location
en
CTl
COMMERCIAL FISH INGESTION POPULATION DOSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM INGESTION RATES
2) 49 PERCENT OF ALL COMMERCIALLY CAUGHT FISH IS FOR HUMAN CONSUMTION
31 45 PERCENT ( 3Y WEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT OF NUCLIDE REMAINS IN FISH AFTER COOKING
DOSES BY
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
LOCATION
GENOA
LOCK AND 0AM 3
LOCK AND DAM 9
LOCK AND DAM 10
LOCK AND DAM 11
LOCK AND 0AM 12
LOCK AND 0AM 13
LOCK AND DAM 14
BETTENDORF-MOLINE
DAVENPORT-ROCK ISLAND
LOCK AND DAM 17
LOCK AND DAM 13
BURLINGTON, IOWA
FT. MADISON
KEOKUK, L£D 19
LOCK AND DAM 20
QUINCY, ILL.
HANNIBAL, MO.
LOCK AND DAM 24
LOCK AND 0AM 25
LOCK AND DAM 26
LOCK AND DAM 27
ST. LOUIS, E. ST. LOUIS
LOCATION, SUMMED OVER
MILES
DOWNSTREAM
0.
0.
29.
62.
94.
122.
155.
184.
191.
194.
240.
267.
273.
295.
313.
334.
350.
369.
403.
436.
474.
492.
497.
0
3
5
3
5
a
0
2
5
5
3
0
3
0
5
3
5
5
5
0
5
2
5
COMMERCIAL FISH
CAUGHT (LBS)
0.
1112264.
2040780.
675405.
528808.
405587.
884603.
396522.
151214.
458510.
450113.
928489.
0.
0.
920778.
75657.
133218.
128689.
214530.
336105.
353487.
264390.
0.
NUCLIDES
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BODY
.0
.16E+Q1
.27E+01
. 80E+00
.55E+00
,37E<-00
. 76E+00
.32E+00
.12E*00
.36E+00
.33E+00
.65E+00
.0
.0
.59E+00
.46E-01
.79E-01
0.70E-01
0
0
0
0
0
.11E+00
.15E+00
.15E+00
.67E-01
.0
THYROID
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
30E+00
34E+00
79E-01
43E-01
25E-01
42E-01
16E-01
57E-02
16E-01
13E-01
22E-01
0
0
16E-01
11E-02
18E-02
15E-02
20E-02
27E-02
23E-02
10E-02
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
BONE
0
13E+01
22E+01
66E+00
46E-1-00
30E+00
64E+00
27E+00
lOEtOO
30E+00
27E+00
54E+00
0
0
50E+00
38E-01
66E-01
58E-01
88E-01
13E+00
12E+00
56E-01
0
GI-LLI
0.0
0. 74E-01
0.12E+00
0.36E-01
0. 25E-01
0.17E-01
0.34E-01
0. 14E-01
0.54E-02
0. 16E-01
0.15E-01
0.29E-01
0.0
0.0
0. 26E-01
0.20E-02
0.35E-02
0.31E-02
0.46E-02
0.67E-02
0.64E-02
0.29E-02
0.0
-------
2*. CHESTERt ILL.
25. CAPE GIRAROEAU, MO.
26. THEBES, ILL.
27. VICKSBUPG, MISS.
23. OONALDSVILLE, LA.
29. NEW ORLEANSf LA.
TOTALS
56S.O
625.5
633.5
1195.3
1456.3
1533.3
0.
0.
0.
0.
0.
0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10464149. 0.9SE«-01 0.93E+00 0. 32F + 01 0.44E + 00
Genoa: Commercial fish ingestion doses by location
(continued)
-------
Genoa: Creel fish ingestion doses by location
00
CREEL FISH INGESTION POPULATION DOSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATEI
ASSUMING: II UNIFORM INGESTION RATES
21 ALL CREEL FISH ARE IMMEDIATELY EATEN
3) 45 PERCENT (BY WEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT OF NUCLIOE REMAINS IN FISH AFTER COOKING
DOSES BY
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
J23.
LOCATION
GENOA
LOCK AND 0AM 8
LOCK AND DAM 9
LOCK AND CAM 10
LOCK AND DAM 11
LHCK AND DAM 12
LOCK AND DAM 13
LOCK AND DAM 14
BETTENOORF-MOLINE
OAVENPORT-ROCKISLAND
LOCK AND DAM 17
LOCK AND 0AM 18
BURLINGTON, IOWA
FT. MADISON
KEOKUK, L&D 19
LOCK AND DAM 20
QUINCY, ILL.
HANNIBAL, MO.
LOCK AND DAM 24
LOCK AND 0AM 25
LOCK AND DAM 26
LOCK AND 0AM 27
ST.LOUIS.E.ST.LOUIS
LOCATION, SUMMED OVER
MILES
DOWNSTREAM
0.
0.
29.
62.
94.
122.
155.
184.
191.
194.
240.
267.
273.
295.
313.
334.
350.
363.
403.
436.
474.
492.
497.
0
3
5
3
5
8
0
2
5
5
3
0
3
0
5
3
5
5
5
0
5
2
5
CREEL FISH
CAUGHT (LBS)
111.
0.
0.
0.
142927.
0.
118932.
0.
0.
0.
0.
83669.
0.
0.
0.
0.
0.
0.
0.
0.
38761.
0.
0.
NUCLIDES
0.
0.
0.
0.
BODY
33E-01
0
0
0
0.31E+00
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
21E+00
0
0
0
0
12E+00
0
0
0
0
0
0
0
0
33E-01
0
0
THYROID
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
30E-02
0
0
0
24E-01
0
12E-01
0
0
0
0
40E-02
0
0
0
0
0
0
0
0
52E-03
0
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
BONE
23E-01
0
0
0
25E+00
0
17E+00
0
0
0
0
99E-01
0
0
0
0
0
0
0
0
27E-01
0
0
GI-LLI
0.16E-02
0.0
0.0
0.0
0. 14E-01
0.0
0.94E-02
0.0
0.0
0.0
0.0
0.53E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 14F-02
0.0
0.0
-------
24. CHESTER, ILL.
25. CAPE GIPARDEAU, MO.
26. THEBFS, ILL.
27. VTCKSBURG, MISS.
23. DONALOSVILLE, LA.
29. NFW ORLEANS, LA.
TOTALS
553.0
625.5
633.5
1L95.3
1456.3
1533.3
0.
0.
0.
0.
0.
0.
384400.
0.0
0.0
0.0
0.0
0.0
0.0
0.70E*00
0.0
0.0
0.0
0.0
0.0
0.0
0.48E-01
0.0
0.0
0.0
0.0
0.0
0.0
0.53E«-00
0.0
0.0
0.0
0.0
0.0
0.0
0.32'
Genoa: Creel fish ingestion doses by location
(continued)
CTi
-------
71
TRAVEL TIME TO DOWNSTREAM POINTS (MRS.)
1. GENOA 0.0
2. LOCK AND DAM 3 0.2
3. LOCK AND DAM 9 15.5
4. LOCK AND DAM 10 32.8
5. LOCK AND DAM 11 49.7
6. LOCK AND DAM 12 64.6
7. LOCK AND CAM 13 81.&
8. LOCK AND DAM 14 96.9
9. BFTTENDORF-MOLINE 100.8
10. OAVFNPORT-ROCKISLANO 102.4
II. LOCK AND DAM 17 126.5
12. LOCK AND DAM 18 140.5
13. BURLINGTON, IOHA 143.3
14. FT. MADISON 155.3
15. KEOKUK, LSD 19 165.0
16. LOCK AND 0AM 20 175.9
17. QUINCY. ILL. 184.5
18. HANNIBAL, MO. 193.9
19. LOCK AND DAM 24 212.4
20. LOCK AND DAM 25 229.5
21. LOCK AND 0AM 26 249.7
22. LOCK AND DAM 27 259.1
23. ST.LOUIS,G.ST.LOUIS 261.8
24. CHESTER, ILL. 286.2
25. CAPE GIRARDEAU, MO. 306.0
26. THEBES, ILL, 303.7
27. VICKSBURG, MISS. 482.1
28. DONALDSVILLE, LA. 562.7
29. NEW ORLEANS, LA. 536.5
Genoa: Travel time to downstream locations
-------
Quad Cities: Input data
1N3
FACILITY YEAR OF RELEASES Nt . MONTHS OF
QUAD CITIES 1973 12
LOCATIONS ON STREAK (TCTAL DF
REACH
NUMBER
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
NAME
CUAC CITIES
LOCK AND DAM 14
BETTENOORF-POLINE
DAVENPCRT-ROCKISLAND
LOCK AND 0AM 17
LCCK AND DAM 18
BURLINGTON. IOWA
FT. MACISON
KEOKLK. LtD 19
LOCK AND DAM 20
QU1NCY. ILL.
HANNIBAL. MO.
LOCK AND DAM 24
LOCK AND DAM 25
LOCK AND DAM 26
LOCK AND DAM 27
ST. LOUIS, E. ST. LOUIS
CHESTER, ILL.
CAPE GIRARDEAU, MO.
THEBES. ILL.
VICKSBURG, MISS.
OCNALDSVILLE. LA.
NEW ORLEANS. LA.
POPULATION
SERVED
1.
0.
55555.
141580.
0.
0.
35400.
15245.
16315.
0.
47500.
21000.
0.
0.
0.
40073.
670C15.
4200.
25700.
450.
41000.
7750.
652125.
23, FACILITY
VOLUME FLO*
RATE
-------
ISOTOFE O-PARENT BRANCH.
1=DAUGHTER RATIO. X
8ALA-140
CO- 5 8
CO-60
CR-51
CS-134
CS-137
BA-137M
H-3
1-131
XE-131M
1-133
XE-133
MN-54
SR-89
V-89M
SR-90
V-90
ZN-65
ZR-95
NB-95
0
0
0
0
G
0
1
c
0
1
c
1
0
0
1
0
1
0
0
1
0.
0.
0.
0.
0.
0.
100.
0.
0.
1.
0.
100.
0.
0.
0.
0.
100.
0.
0.
100.
ATOMIC
NUMBER
56
27
27
24
55
55
56
1
53
54
53
54
25
38
39
38
39
30
40
41
DECAY CONS-
TANT, I/SEC
C.211E-C4
0.113E-06
0.41EE-C8
0.28«3E-06
0.1C7E-07
0.733E-CS
0.163E*02
c.nsE-ce
0.996E-06
C.68CE-06
0.916E-05
0.152E-C5
C.26SE-C7
0.154E-C6
C.431E-01
0.77eE-09
0.301E-C5
0.326E-C7
0.122E-C6
C.22SE-06
CURIES
RELEASES
C.71CE-C2
C.970E+00
C.830E+00
0.288E*01
C.210E*00
0.530E+00
0.0
C.245E+02
0.380E+01
0.0
C.430E+00
0.0
C.370E+00
0.640E-01
0.0
0.250E-02
0.0
C.850E-01
0.116E+00
0.0
MILLIREM/YGAR PER PICO-
BODY THYROID
0.133E-05
0.168E-05
0.4706-05
0.267E-08
0.10CE-03
0.560E-04
0.0
0.127E-06
0.337E-05
0.0
0.702E-06
0.0
0.868E-06
0.913E-05
0.0
0.895E-03
0.285E-09
0.508E-05
C.634E-08
0.181E-08
0.0
0.0
0.0
0.159E-C8
0.0
0.0
0.0
0.127E-C6
0.186E-C2
0.0
0.482E-03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
•CURIE/YEAR INTAKfc
BONE GI-LU
.202E-04 0.402E-04
.0 0.152E-04
.0 0.394E-04
,0 0.669£-06
•529E-G4 0.256E-05
.637E-04 0.205E-05
0 0.0
0 0.640E-07
393E-05 0.153E-05
0 0.0
143E-05 0.225E-05
0 0.0
G 0.138E-04
320E-03 0.498E-04
0 0.0
336E-03 0.123E-03
986E-08 0.105E-03
346E-05 0.978E-05
270E-07 0.229E-04
556E-08 0.203E-04
MREM/HR PtR PCI/LITER
SWIMSKIN SWIHBOOY
0.760E-06 0.4SOE-06
0.230E-05 0.180E-05
0.540E-C5 0.460E-05
0.640E-07 0.5206-07
0.350E-C5 0.2SOE-05
0.140E-05 C.100b-05
0.0 0.0
0.0 0.0
0.930E-06 0.680E-06
0.560E-07 0.620E-C8
0.150E-05 0.960b-06
0.110E-06 0.570E-07
0.180E-C5 0.150t-05
0.540E-06 0.460E-08
0.0 0.0
0.150E-06 0.540E-09
0.960E-06 0.130E-07
0.120E-05 0.110E-05
0.180E-05 0.150^-05
0.160E-05 0.140E-05
Quad Cities: Input data
(continued)
CO
-------
Quad Cities: Drinking water doses by location
DRINKING WATER
POPULATION DOSE RATES
(PERSON-REN PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM RELEASE RATES
2) DRINKING: CONTINUOUS INGESTION RATE
OF 1.95 LITERS PER CAY
DOSES BY LOCATION, SUMMED OVER NUCLIDES
LOCATION
DRINKING WATER DOSES (4 CRITICAL ORGANS)
1. OLAC CITIES
2. LCCK AND DAM 14
3. 8ETTENDORF-MOLINE
4. OAVENPCRT-ROCKISLAND
5. LCCK ANC CAM 17
6. LCCK AND CAM 18
7. BURLINGTON, IOWA
8. FT. MACISCN
9. KEOKUK, LED 19
10. LCCK ANC DAM 20
11. OLINCY. ILL.
12. HANNIBAL. MO.
13. LCCK AND DAM 24
14. LCCK AND DAM 25
15. LCCK AND DAM 26
16. LCCK AND CAM 27
17. ST.LOUIS.E.ST.LOUIS
18. CHESTER, ILL.
19. CAPE GIRARDEAU, MO.
20. THEBES, ILL.
21. VICKSBURG, MISS.
22. DCNALDSVILLE, LA.
23. NEW ORLEANS, LA.
TOTALS
DOWNSTREAM
0.0
9.7
17.0
20.0
65.8
92.5
98.8
120.5
139.0
159.8
176.0
194.0
229.0
261.5
300.0
317.7
323.0
393.5
451.0
459.0
1020.8
1281.8
1358.8
1 SERVED
1.
0.
55555.
141580.
0.
0.
35400.
15245.
16315.
0.
47500.
21CCO.
0.
0.
0.
40C73.
67CC15.
4200.
25700.
450.
41CCO.
7750,
652125.
1772909.
BODY
0.32E-04
0.0
0.65E-01
0.16S+00
0.0
0.0
0.34E-01
0.14E-01
0.14E-01
0.0
0.37E-01
0.15E-01
0.0
0.0
0.0
0.13E-01
C.2CE+OC
0.12E-02
0.72E-02
0.13E-03
0.36E-02
0.67E-03
0.56E-01
0.63E+00
THYROID
0.30E-02
0.0
0.56E*01
0.13£*02
C.O
0.0
0.22E+01
0.86E+00
0.75E+CC
0.0
0.16E+01
0.63E+OC
0.0
0.0
0.0
C.41E+00
0.61E+01
0.34E-01
0.19E+00
0.33E-02
0.52E-01
0.73E-02
0.57E + CC
0.32E+02
BONE
0.34E-04
0.0
0.7CE-01
0.17E + 00
0.0
0.0
0.36E-01
0.15E-01
0.15E-01
0.0
0.38E-01
0.16E-01
0.0
0.0
0.0
0.14E-01
0.20E+00
0.12E-02
0.73E-02
0.13E-03
0.36E-02
0.65E-03
0.55E-01
0.65E+00
GI-LLI
0.30E-04
0.0
0.62E-01
0.15E+00
0.0
0.0
0.33E-01
0.14E-01
0.14E-01
0.0
0.35E-01
0.15E-01
0.0
C.O
0.0
0.13E-01
0.19E+00
0.12E-02
0.69E-02
0.12E-03
0.34E-02
0.64E-03
0.53E-01
0.60E+00
-------
COMMERCIAL FISH INGESTICN POPULATION CCSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE I
ASSUMING: i> UNIFORM INGESTION RATES
2) 49 PERCENT OF ALL COMMERCIALLY CAUGHT FISH IS FOR HUMAN CONSUMTION
3) 45 PERCENT (BY WEIGHT) CF A WHOLE FISH IS ACTUALLY INGESTED
41 80 PERCENT OF NUCLIOE REGAINS IN FISH AFTER COOKING
DOSES BY
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
LCCATICN
OLAC CITIES
LCCK AND DAM 14
BETTENDORF-MOLINE
OAVENPCRT-ROCKISLAND
LCCK ANC DAM 17
LCCK ANC CAM 18
BLRLINGTON. IOWA
FT. MADISON
KFOKUK, LED 19
LCCK AND DAM 20
QLINCV, ILL.
HANNIBAL. NO.
LCCK AND DAM 24
LCCK AND DAM 25
LOCK AND DAM 26
LCCK AND DAM 27
ST. LOUIS. E, ST. LOUIS
CHESTER. ILL.
CAPE GIRARDEAU. MO.
THEBES. ILL.
VICKSBLRG, MISS.
OCNALOSVILLE. LA.
NEW ORLEANS. LA.
LOCATION, SINNED OVER NUCLICES
MILES
DOWNSTREAM
0
9
17
.0
.7
.0
20.0
65
92
98
120
139
159
176
194
229
261
300
317
323
3S3
451
459
1020
1281
1358
.8
,5
.8
.5
.0
.8
.0
.0
.0
.5
.0
.7
.0
.5
.0
.0
.8
.8
.B
COMMERCIAL FISH
CALGHT (LBSl
0.
396522.
151214.
458510.
450113.
528489.
0.
0.
S20778.
75657.
138218.
128689.
214530.
226105.
253467.
244390.
0.
0.
C.
C.
0.
C.
0.
0.
BOCY
C
0.15E-01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
G.
0.
0.
0.
0.
0.
,56E-02
17E-01
.15E-01
30E-01
0
0
28E-01
21E-02
37E-02
32E-02
4SE-02
70E-C2
68E-02
21E-C2
C
C
C
C
C
0
C
THYROID
0.0
0.71E-01
0.
0.
25E-01
70E-01
0.56E-01
0.
0.
0.
0.
0.
97E-01
0
0
71E-01
50E-02
0.81E-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
65E-02
S1E-02
12E-01
10E-01
46E-02
0
0
0
0
0
0
0
BONE
0.0
0.13E-01
0.50E-02
0.15E-C1
0.14E-C1
0.
0.
0.
0.
0.
0.
0.
27E-C1
0
0
24E-01
19E-02
32E-02
29E-02
0. 436-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
62E-C2
60E-02
27C-02
0
0
0
0
0
0
0
GI-LLI
0.0
0.32E-02
0.14E-02
0.51E-02
0.60E-02
0.14E-01
0.0
0.0
0.17E-01
0.14E-02
0.26E-02
0.25E-02
0.40E-02
0.60E-02
0.62E-02
0.29E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TCTALS
4816702. 0.14E+00 0.45E»00 0.12E»00 0.73E-01
Quad Cities: Commercial fish ingestion doses by location
-------
Quad Cities: Creel fish ingestion doses by location
CREEL FISH INGESTIQN POPULATION COSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: II UNIFORM INGESTION RATES
2) ALL CREEL FISH ARE IMMEDIATELY EATEN
31 45 PERCENT (BY HEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT OF NUCLIDE REGAINS IN FISH AFTER COOKING
DOSES BY LOCATIONt SUMMED OVER NUCLICES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
LOCATION
QUAC CITIES
LCCK ANC CAM 14
BETTENDORF-MOLINE
OAVENPCRT-ROCK ISLAND
LCCK ANC CAM 17
LCCK ANC DAM 18
BLRLINGTCN. IOWA
FT. MADISON
KEOKUK. LSD 19
LCCK AND CAM 20
OUINCY, ILL.
HANNIBAL. MO.
LCCK AND DAM 24
LCCK AND 0AM 25
LCCK ANC CAM 26
LCCK AND DAM 27
ST. LOUIS. E. ST. LOUIS
CHESTER. ILL.
CAPE GIRAROEAU. MO.
THPBES, ILL.
VICKSBURG, MISS.
DCNALDSVILLE. LA.
NEW ORLEANS. LA.
MILES
DOWNSTREAM
0.
9.
17.
20.
65,
92.
98.
120.
139.
159.
176.
194.
229.
261.
300.
317.
323.
393.
451.
459.
0
7
C
C
8
5
8
5
0
8
0
0
0
5
0
7
0
5
0
0
1020.8
1281.
1358.
8
8
CREEL FISH
CAUGHT (LBSi
111.
0.
0.
C.
0.
63669.
0.
0.
0.
0.
C.
0.
0.
0.
38761.
C.
0.
C.
0.
0.
0.
0.
0.
0
0
0
G
0
EOEY
.22E-03
.C
.0
.0
.C
0.56E-C2
0
0
0
0
0
0
0
0
C
0
0
0
0
0
0
0
0
.C
.0
.0
.C
.C
.0
.C
.0
.15E-02
.0
.0
.0
.C
.C
.C
.0
.C
0
0
0
0
THYROID
.12E-02
.0
.0
.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
.18E-01
.0
.0
.0
.0
.0
.C
.0
.0
.23E-02
.0
.0
0.0
0
0
0
0
0
.0
.0
.0
.0
.0
BONE
0.20E-03
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
.0
.0
.0
.49E-02
.0
.0
.0
.0
.0
.0
.0
.0
.13E-02
.0
.0
.0
.0
.0
.0
.0
.0
GI-LLI
0.33E-04
0.0
0.0
0.0
0.0
0.26E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.14E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TOTALS
122541. 0.73E-02 0.21E-01 0.64E-02 0.40E-02
-------
PROGRAM RVSDOS
FOR INFORMATION REGARDING THIS PROGRAM, CCNTACT:
ENVIRONMENTAL PPCT=CTIO"I AGENCY
OFFICE OF RADIATION PROGRAMS
401 M ST SW
WASHINGTON, DC 20460
INPUT OATA
FACILITY
DRESDEN L'ltTj 2/3
YE4R OF PFLEASCS
1-573
NO. MONTHS OF nATA
12
SCUPC*1 OF RELEASE DATS
LOCATIONS ON STREAM (TOTAL CF 13, FACILITY IS NO. II
PCACH NAMP
NUMBCR
I
2
3
4
5
6
'
3
9
10
11
12
V3
CPCSDEN
MCPSF ILL! ? L^CK ,OAV
STARVED POCK LED
PFORJA LTCK ANP 0AM
L*GRANGF LOCK, DAM
ALTCN, MO.
CT.LOUIS, E. ST. LOUIS
CHESTcn, ILL.
CAPE CIRARDEAU, *<~ „
THv.BFSt ILL.
VICKSBUPG, MISS.
nCNALDSVILLC, LA.
NEW 5F-LEANS, LA.
POPULATION
1.
0.
0.
0.
0.
0.
670015.
4200.
257QO.
450.
41COO.
7750.
652125.
^ATMCm"
1690.
10750.
11230.
13740.
19980.
97Q90.
175900.
130600.
184550.
115100.
5740CC.
579000.
579000.
? T k C t, M
jpccnmpH
1.2
2.5
1 .6
0.9
0.9
1.2
1.9
2.9
2.9
2.9
3.2
3.2
3.2
P I V R DA" VOLUME
) MILE ACP.F-F = ET
-1445. 7
-1421. 3
-1404.3
-1331.0
-1253. 5
-1153. 3
-1135. 9
-1065.3
-1007.8
-999.9
-433. 0
-177.0
-100.0
0.
13009.
11344.
49630.
5T237.
0.
0.
0.
0.
0.
0.
J.
0.
COMMERCIAL CRF'L FISH
FISH WT,LBS WT.LRS
0.
0.
0.
26204.
143104.
231463.
0.
0.
0.
0.
0.
0.
0.
111.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
•>.
0.
RAOIONUCL
ISOTOPE 0=PARENT BRANCH. ATOMIC DECAY CONS- CUR!cs
l = OAUGHTCf» pATIf,? KUMBr-S TANT, I/SEC ^LEASED
0.
0.
56
27
0.211E-04
J.113E-06
0. 143E<
RrlnAS-i> (TOTAL 18)
HOSE CONVERSION
!NGCS1 ITN
MI LLIPrM/YF AC prp PICC-CIIC IF/YCA°. INTAKE
BODY THYROID «:i'JE GI-LLI
0.133T-05 C.O
0.169E-05 0.0
0.202C-04 0.402:-04
0.0 0.152C-C4
SWIMMING
MP'M/HP PER PCI/LITER
SWIVSKIN SWIMPOOY
0.760F-06 0.490E-06
0.230E-05 0.190E-05
Dresden 2/3: Input data
-------
Dresden 2/3: Input
(continued)
CO-60
CP-51
CS-134
CS-137
BA-137M
H-3
1-131
XE-131M
MN-54
SP-39
Y-39M
SR-90
Y-90
ZN-65
ZP-95
NB-95
0
0
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0.
0.
0.
Oo
100.
0.
0.
lo
Oo
0.
0.
Oo
lOOo
0.
0.
100.
27
2*
55
55
5b
1
53
54
25
33
39
38
39
30
40
41
0.413E-OS
0.289E-06
0.107E-07
00733E-09
0.163E+02
0.179E-09
0.99bE-06
0.690E-06
Oo 265E-07
0.154E-06
0.431E-01
Oo778E-09
0.301E-05
0<,32SE-07
0.122E-Ob
0.229E-06
0.209E+01
0.117E+01
0.117F*01
0.424E*01
0.0
0.253E+02
0.141Et01
0.0
0«406F-fOO
0.390E-01
O.C
0.100E-01
0,0
Co 370E-01
0.900E-02
0.700F-02
Oo470E-05
0.257E-OB
0.100E-03
00560E-04
0.0
0.127E-06
0.337F-05
0.0
Oo863E-06
0.913E-05
0.0
0.895E-03
0.295E-09
0.508E-05
0.b34E-08
0.181E-08
data
0.0
0. 159p-OS
0.0
OoO
0.0
0.127t>06
0.185F-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.529E-04
0.637F-04
0.0
0.0
0.393F-05
0.0
0.0
0«320E-03
0.0
0.336E-03
0.996E-03
0.346E-05
0.27QE-Q7
0.556E-09
0.394E-04
0.659E-Ob
0.256E-05
0.205E-05
0.0
0.640E-07
0.153E-05
0.0
0.138E-04
0.493E-04
0.0
0.123F-03
0.105E-03
0.978F-05
0.2Z9E-04
0.203E-04
0.540F-05
0.540E-07
0.350E-C5
0.140E-05
0.0
0.0
0.930E-06
0.560E-07
0.180E-05
0. 540E-06
0.0
0.150E-06
0.960E-06
0.120E-05
0.180E-05
0.160E-05
-J
00
0.460E-05
0.520E-07
C.290E-05
0.100E-05
0.0
0.0
0.680E-06
0.620E-08
0.150E-05
0.4-60E-08
0.0
0.540E-09
0.130E-07
0.110E-05
0.150E-05
0.140E-C5
-------
DRINKING WATER
POPULATICN DCSE RATES
(PERSGN-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UMFCRM RELEASE RATES
2» DRINKING: CONTINUOUS INGESTICN RATE
CF 1.95 LITERS PER CAY
DOSES BY LCCATIGN, SLffEC CVEP NUCLIDES
LCCATICN
DRINKING WATtR DOSES <4 CRITICAL CRGANS J
DOWNSTREAM
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
DRESDEN
MARSEILLES LOCK, DAM
STARVED ROCK LEO
PFORIA LOCK ANC DAM
LAGRANGE LOCK, 0AM
ALTCN. fO.
ST.LOLIS. E. ST. LOUIS
CHESTER, ILL.
CAPE GIRAPDEAU. MO.
TI-ERES, ILL.
VICKSBURG, MISS.
OCNALDSVILLE. LA.
NEW ORLEANS, LA.
TCTALS
0
25
<•!
lift
192
266
309
380
437
445
1007
1268
1345
.0
.4
.4
.7
.2
.9
.9
.4
.9
.«
.7
.7
.7
SERVED
1.
0.
0.
0.
0.
0.
670C15.
42CC.
2570C.
450.
41COO.
7750.
652125.
14C1241.
0
0
c
0
c
0
0
c
c
c
0
0
c
0.
BODY
.18E-02
.0
.0
.0
.0
.0
.11E+01
.70E-C2
.42E-C1
.73E-03
.21E-01
.40E-02
.34E+CC
16E*C1
0
0
0
c
c
G
0
0
C
0
0
0
0
c.
THYROID
.12E-02
.C
.0
.C
.c
.c
.20E+01
.UE-01
.64E-01
.UE-02
.17E-01
.25E-02
.19E + 00
23E*01
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
BONE
.19E-03
.0
.0
.0
.0
.0
.11E+01
.66E-02
.40F-01
.69E-03
.20E-01
.38E-02
.326*00
15E*C1
GI-LLI
0.81E-04
0.0
0.0
0.0
0.0
0.0
0.33E+00
0.20E-02
0.12E-C1
0.21E-03
0.62E-02
0.12E-02
0.97E-01
0.456*00
Dresden 2/3: Drinking water doses by location
-------
Dresden 2/3: Commercial fish ingestion doses by location
00
o
COMMERCIAL FISH INGESTICN POPULATION DCSE RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM INGESTION RATES
2» 49 PERCENT OF ALL COMMERCIALLY CAUGHT FISH IS FOR HUNAN CONSUMTION
3) 45 PERCENT (BY WEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT OF NUCLICE REPAIhS IN FISH AFTER COOKING
LOCATION
DOSES BY LOCATION, SLfNED OVER NUCLIDES
MILES COMMERCIAL FISH BODY
DOWNSTREAM CAIC-HT (LBS)
THYROID
BONE
GI-LLI
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
DRESDEN
MARSEILLES LOCK, DAM
STARVED ROCK LED
PEORIA LOCK AND DAM
LAGRANGE LOCK. DAM
ALTON, CO.
ST.LOLIS. F. ST. LOUIS
CHESTER, ILL.
CAPE GIRARDEAU. MC.
THEBES, ILL.
VICKSBURG, MISS.
DCNALDSVILLE, LA.
NEW ORLEANS. LA.
TOTALS
0
.0
25.4
41.4
114
192
286
309
380
437
445
1007
1268
1345
.7
.2
.9
.9
.4
.9
.S
.7
.7
.7
0.
0.
0.
26204.
143104.
231463.
0.
G.
0.
0.
G.
0.
0.
400771.
0
0
0
c
0
0
0
0
0
0
0
0
0
0.
.0
.0
.c
.24E-01
.91E-01
.30E-01
.0
.0
.C
.0
,c
.c
.0
15E+00
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
.0
.0
.0
.35E-02
.89E-02
.222-02
.0
.0
.0
.0
.0
.0
.0
15E-01
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
.0
.0
.0
.23E-01
.86E-01
.28E-01
.0
.0
.0
.0
.0
.0
.0
14E+00
0.0
0.0
0.0
0.20E-02
0.76E-02
0.25E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.12E-01
-------
CREEL FISH INGESTION POPULATION CGSE BATES
(PERSON-RE* PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORP INGESTION PATES
2) ALL CREEL FISH ARE IMMEDIATELY EATEN
3) 45 PERCENT (BY HEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT GF NUCLIDE REfAIUS IN FISH AFTER COOKING
DOSES BY LOCATION, SLMMEC CVEP NUCLICES
1.
2.
3.
4.
5.
6.
7.
8.
<5.
10.
It.
12.
13.
LCCATICN
DRESDEN
MARSEILLES LOCK, DAM
STARVED ROCK LED
PFORIA LOCK ANC CAM
LAGP-ANGE LOCK, DAM
ALTON, PO.
ST. LOUIS, E. ST. LOUIS
CHESTER, ILL.
CAPE GIRARDEAU. MO.
ThEBES. ILL.
VICKSBURG. MISS.
OCNALDSVILLE, LA.
NEW CRLEANS, LA.
TCTALS
MILES CREEL FISH
DOWNSTREAM CALGhT (LBS»
0
.0
25.4
41
114
192
286
30<3
380
437
445
1007
1268
1345
,4
.7
.2
.9
.9
.4
.<;
.s
.7
.7
.7
111.
0.
0.
0.
0.
c.
0.
c.
0.
0.
c.
0.
c.
111.
c
0
0
0
0
c
c
0
c
0
c
0
0
0.
BODY
.17E-02
.C
.C
.C
.0
.C
.C
.0
.C
.C
.C
.C
.C
17E-02
THYROID
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47E-03
C
0
0
c
0
0
0
0
0
0
c
0
0.47E-03
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
80NE
.16E-C2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16E-02
GI-LLI
0.14E-03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.14E-03
Dresden 2/3: Creel fish ingestion doses by location
CO
-------
Fort Calhoun: Input data
CO
ro
FACILITY YEAR OF RELEASES "" ~NOTT"IONTffS~OiF~~ff AT A SOURCE OF RELEASE DATA
FORT CALHOUN 1973 12
LOCATIONS ON STREAM (TOTAL OF 18, FACILITY IS NO. 1)
REACH NAME
NUMBER
1
2
3
ft
5
b
7
8
9
10
11
12
13
14
15
16
17
18
FORT CALHOUN
OMAHA, NEB.
COUNCIL BLUFFS, IOWA
PLATTSMHUTH, NEB.
ST. JOSEPH, MO.
A TC HI SON, KAN.
LEAVENWORTH, KAN.
KANSAS CITY, KAN, MO
LEXINGTON, MO.
JEFFERSON CITY, MO.
GRANITE CITY, ILL.
ST. LOUIS, F. ST. LOUIS
CHESTER, ILL.
CAPE GIRARDEAU, MO.
THEBES, ILL.
VICKSBURG, MISS.
OONALDSVILLE, LA.
NEW ORLEANS, LA.
POPULATION
SERVED
1.
303305.
56000.
0.
92000.
15000.
23600.
825000.
4900.
31500.
43000.
670015.
4200.
25700.
450.
41000.
7750.
652125.
VOLUME FLOW
RATEICFSI
242.
26750.
26950.
30360.
38340.
43360.
48460.
54580.
55330.
68950.
158300.
175900.
180600.
184550.
135100.
574000.
579000.
579000.
STREAM RIVER DAM VOLUME
SPEED(MPH) MILE ACRE-FEET
2.6
2.6
2.6
3.3
2.9
2.6
2. 7
3.4
3.0
2.9
2.6
1.9
2.9
2.9
2.9
3.2
3.2
3.2
-1795.0
-1776.0
-1776.0
-1740.1
-1597.6
-1571.6
-1546.1
-1514.1
-1466.4
-12-93.0
-1139.8
-1135.3
-1055.3
-1007.3
-999.8
-433.0
-177.0
-100.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
COMMERCIAL CREEL FISH
FISH WT,LBS WT.LBS
0.
0.
0.
29752.
0.
0.
0.
48315.
0.
0.
335022.
0.
0.
0.
0.
0.
0.
0.
111.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
RAOIONUCLIDES RELEASED (TOTAL 11)
ISOTOPE 0=PARENT BRANCH. ATOMIC DECAY CONS- CURIES
1=DAUGHTER RATIO, % NUMBER TANT, I/SEC RELEASED
BALA-140
CO-53
H-3
1-131
0
0
0
0
0.
0.
0.
0.
56
27
1
53
0. 211E-04
0.113E-06
0.179E-08
0.996E-06
0.607E-01
0.469E-04
0.153E*02
0.448E-02
DOSE CONVERSION FACTORS
INGESTION
MILLIREM/YEAR PER PI CO-CUR IE/YEAR INTAKE
BODY THYROID BONE GI-LLI
0.133E-05 0.0 0.202E-04 0.402E-04
0.168E-05 0.0 0.0 0.152E-04
0.127E-06 0.127E-06 0.0 0.640E-07
0.337E-05 0.186E-02 0.393E-05 0.153E-05
SHIMMING
MREM/HR PER PCI/LITER
SHIMSKIN SWIMBODY
0.760E-06 0.490E-06
0.230E-05 0.180E-05
0.0 0.0
0.930E-06 0.680E-06
-------
XF-131M
XE-133
MN-54
SR-B9
Y-89M
SR-90
r-90
1
1
0
0
1
0
1
1.
100.
0.
0.
0.
0.
100.
54
54
25
33
39
38
39
O.6BOE-O6
0. 152E-C5
0.265E-07
0. 154E-06
0.431E-01
0.778E-09
0. 301E-05
0.0
0. 580E-01
0.219E+00
0.116E-03
0.0
0.169E-04
0.0
0.0
0.0
0.868E-06
0.913E-05
0.0
0.895F-03
0.235?-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 0.0
0.0 0.0
0.0 0.138E-04
0.320E-03 0.493E-04
0.0 0.0
*
0.336E-03 0.123E-03
0.936E-08 0.105E-03
0.5SOE-O7 0.620E-08
O.llOE-06 0.570E-07
0.180E-05 0.150E-05
0.540E-06 0.460E-03
0.0 0.0
0.150E-05 0.5<»OE-09
0.960E-06 0.130E-07
Fort Calhoun: Input data
(continued)
00
OJ
-------
Fort Calhoun: Drinking water doses by location
co
DRINKING WATER
POPULATION DOSE PATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM RELEASE RATES
2) DRINKING: CONTINUOUS INGESTION RATE
OF 1.95 LITERS PER DAY
DOSES BY LOCATION, SUMMED OVER NUCLIDES
LOCATION
1. FORT CALHOUN
2. OMAHA, NEB.
3. COUNCIL BLUFFS, IOWA
4. PLATTSMOUTH, NEB.
5. ST. JOSEPH, MO.
6. ATCHISON, KAN.
7. LEAVENWORTH, KAN.
8. KANSAS CITY, KAN, MO
9. LEXINGTON, MO.
10. JEFFERSON CITY, MO.
11. GRANITE CITY, ILL.
12. ST.LOUIS, E.ST.LOUIS
13. CHESTER, ILL.
14. CAPE GIRARDFAU, MO.
15. THEBES, ILL.
16. VICKSBURG, MISS.
17. OONALDSVILLE, LA.
18. NEW ORLEANS, LA.
TOTALS
OWNSTREAM
0.0
19.0
19.0
54.9
197.4
223.4
248.9
280.9
323.6
502.0
655.2
659.2
729. 7
787.2
795.2
1357.0
1618.0
1695.0
SERVED
1.
303305.
56000.
0.
92000.
15000.
23600.
325000.
4900.
31500.
43000.
670015.
4200.
25700.
450.
41000.
7750.
652125.
2795546.
BODY
0. 76E-05
0.21E-01
0.38E-02
0.0
0.42E-02
0.61E-03
0. 36E-03
0.27F-01
0. 16E-03
0.81E-03
0.48E-03
0.67E-02
0.41E-04
0.24E-03
0.43E-05
0. 13E-03
0.23E-04
0.20E-02
0.67E-01
THYROID
0.34E-04
0.92E-01
0.17E-01
0.0
O.l&F-Ol
0.23E-02
0.31E-02
0.95C-01
0.53E-03
0.24E-02
0.12E-02
0.17E-01
0.98E-04
0.56E-03
0.98E-05
0.21E-03
0.34E-04
0.23F-02
0.25E+00
DRINKING WATER DOSES (4 CRITICAL ORGANS)
BONE GI-LLI
0.42E-05 0.21E-04
0. 70E-02 0.49E-01
0.13E-02 0.90E-02
0.0 0.0
0.12E-03 0.77E-02
0.16E-04 0.11E-02
0. 22E-04 0.16E-02
0.65E-03 0.48E-01
0.37F-05 0.28E-03
0.18E-04 0.15E-02
0.99E-05
0.14F-03
0.33E-06
0.49E-05
0.86E-03
0. 12E-01
0.74E-04
0.44E-03
0.85E-07 0.77E-05
0.22E-05 0.22E-03
0.38E-06 0.41E-04
0.32E-04 0.35E-02
0.93E-02 0.14E+00
-------
COMMERCIAL FISH INGESTION POPULATION DOSE RATES
IPERSON-REM PER YEAR - FIRST YEAR RATE!
ASSUMING: II UNIFORM INGESTION RATES
2) 49 PERCENT OF ALL COMMERCIALLY CAUGHT FISH IS FOR HUMAN CONSUMTION
3) 45 PERCENT CBY HEIGHT) OF A WHOLE FISH IS ACTUALLY fNGESTED
41 80 PERCENT OF NUCLIOE REMAINS IN FISH AFTER COOKING
LOCATION
DOSES BY LOCATION, SUMMED OVER NUCLIOES
MILES COMMERCIAL FISH BODY
DOWNSTREAM CAUGHT (LBS»
THYROID
BONE
GI-LLI
1. FORT CALHOUN
2. OMAHA, NEB.
3. COUNCIL BLUFFS, IOWA
4. PLATTSMOUTH, NEB.
5. ST. JOSEPH, MO.
6. ATCHISON, KAN.
7. LEAVENWORTH, KAN.
8. KANSAS CITY, KAN, MO
9. LEXINGTON, MO.
10. JEFFERSON CITY, MO.
11. GPANITE CITY, ILL.
12. ST. LOUIS, E. ST. LOUIS
13. CHESTER, ILL.
14. CAPE GIRAROEAU, MO.
15. THEBES, ILL.
16. VICKSBUPG, MISS.
17. nONALDSVILLE, LA.
18. NEW ORLEANS, LA.
TOTALS
Fort Calhoun
0.0
19.0
19.0
54.9
197.4
223.4
248.9
280.9
328.6
502.0
0.
0.
0.
29752.
0.
0.
0.
48815.
0.
0.
655.2 335022.
659.2
729.7
787.2
795.2
1357.0
1618.0
1695.0
0.
0.
0.
0.
0.
0.
0.
0.0
0.0
0.0
0.19E-05
0.0
0.0
0.0
0.1 7E-05
0.0
0.0
0.39E-05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
413539. 0. 74E-05
: Cormerci al
fish
0.0
0.0
0.0
0. IOE-04
0.0
0.0
0.0
0.72E-05
0.0
0.0
O.UE-04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.23E-04
0.0
0.0
0.0
0.15E-06
0.0
0.0
0.0
0.32F-07
0.0
0.0
0.53E-07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.24E-06
ingesti on doses by location
0.0
0.0
0.0
0.27E-04
0.0
0.0
0.0
0.24E-04
0.0
0.0
0.56E-04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.11F-03
CO
tn
-------
Fort Calhoun: Creel fish ingestion doses by location
00
en
CREEL FISH INGESTION POPULATION DOSF RATES
(PERSON-REM PER YEAR - FIRST YEAR RATE)
ASSUMING: 1) UNIFORM INGESTION RATES
2) ALL CREEL FISH ARE IMMEDIATELY EATEN
3) 45 PERCENT (BY WEIGHT) OF A WHOLE FISH IS ACTUALLY INGESTED
4) 80 PERCENT OF NUCLIDE REMAINS IN FISH AFTER COOKING
DOSES BY LOCATION, SUMMED OVER NUCLIDES
1.
2.
3.
4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
LOCATION
FORT CALHOUN
OMAHA, NEB.
COUNCIL BLUFFS, IOWA
PLATTSMOUTH, NEB.
ST. JOSEPH, MO.
ATCHISON, KAN.
LEAVENWORTH, KAN.
KANSAS CITY, KAN, MO
LEXINGTON, MO.
JEFFERSON CITY, MO.
GRANITE CITY, ILL.
ST. LOUIS, E. ST. LOUIS
CHESTER, ILL.
CAPE GIP&RDEAU, MO.
THEBFS, ILL.
VICKS8URG, MISS.
DONALDSVILLE, LA.
NEW ORLEANS, LA.
TOTALS
MILES
DOWNSTREAM
0.
19.
19.
54.
197.
223.
248.
280.
328.
502.
655.
659.
729.
737.
795.
1357.
1618.
1695.
0
0
0
9
4
4
9
9
6
0
2
2
7
2
2
0
0
0
CREEL FISH
CAUGHT (LBS)
111.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
111.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
BODY
.18E-05
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18E-05
0
0
0
0
0
0
0
0
0
0
0
0
0
THYROID
. 11E-04
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0.0
0
0
0
0
0.
.0
.0
.0
.0
11E-04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
BONE
.45E-06
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
45E-06
GI-LLI
0.26E-04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.26E-04
------- |