&EPA
                       United States
                       Environmental Protection
                       Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
July 1981
                       Air
                           USER'S MANUAL FOR MODIFIED ROLLBACK/EM^

                           STRATEGY ASSESSMENT MODEL

-------
                USER'S MANUAL

       MODIFIED ROLLBACK/EKMA STRATEGY

              ASSESSMENT MODEL
      Air Management Technology Branch
    Monitoring and Data Analysis Division
Office of Air Quality Planning and Standards
    U.S. Environmental  Protection Agency
Research Triangle Park, North Carolina  27711
                  July 1981

-------
This report is issued by the U.S. Environmental  Protection Agency to
report technical data of interest to a limited number of readers.
Copies are available free of charge to Federal employees, current
contractors and grantees, and nonprofit organizations, in limited
quantities, from the Library Services Office (MD-35), Research
Triangle Park, North Carolina  27711; or, for a  fee from the National
Technical Information Service, 5285 Port Royal Road, Springfield,
Virginia  22161.
                Publication No. EPA-450/4-81-025

-------
                                     PREFACE





     This report contains information on, and the computer programs for, the



Modified Rollback/EKMA Strategy Assessment Model.  The model  can be used to



generate emission inventories in future years for alternative mobile source



control strategies and growth rate scenarios.  Ambient concentration estimates



can be generated for the pollutants carbon monoxide (CO), nitrogen dioxide



(NC^)* and ozone (CU).  These air quality estimates are obtained using the



modified rollback equations of de Nevers and Morris for CO and annual  average



N02 and the standard isopleth diagram of the Empirical Kinetic Modeling Approach



(EKMA) for ozone.  The model is useful for conducting air quality assessments of



mobile source control strategies which are national in scope.





     The program is written in ASCII FORTRAN for the UNIVAC 1100 Operating



System; thus, this manual only illustrates the use of the model with the UNIVAC



EXEC 8 Control Language.  Applications on other computing systems may require



some minor programming changes and the substitution of a comparable system sort



routine.





     A more detailed description of the assumptions and limitations of the



Modified Rollback Model in national strategy assessments is contained in



EPA-450/4-80-026, Methodology to Conduct Air Quality Assessments of National



Mobile Source Emissions Control Strategies.  This report presents methodologies



for estimating selected input parameters for the rollback model.  In some cases,



default values for missing data are also provided.

-------
TABLE OF CONTENTS
                                                                      Page

Preface 	    i i i

Abstract 	     v

List of Figures  	     vi

List of Tables  	     vii

1.0  Introduction  	      1

2.0  System Description  	      4

     2.1  Air Quality and Emissions Projections 	      4

          2.1.1  Emission Projections in Rollback	      4
          2.1.2  Air Quality Projections in Rollback	      6

     2.2  System Sort Routine  	      9
     2.3  Air Quality Reports  	     11

3.0  Preparation of Input Data  	     12

     3.1  Control  Cards  	     12
     3.2  Strategy Cards  	     12
     3.3  Source Region  Data Cards  	     17

4.0  Computational Output 	     26

     4.1  Emissions Summary Report  	     26
     4.2  Emissions Data  File  	     26
     4.3  Air Quality Data File  	     26
     4.4  Air Quality Summary  Reports 	     34

          4.4.1  Source  Region  Projections 	     34
          4.4.2  Average  Percent Changes 	     39
          4.4.3  Number  of Source Regions Above the Level of
                 the NAAQS 	     39
          4.4.4  Total Number  of Exceedances 	     40

5.0  Example Model Runs  	     41

     5.1  Emissions Projections  	     41
     5.2  Carbon Monoxide and  Ozone Projections 	     47
     5.3  Reprinting a Previous Simulation 	     47

6.0  References  	     58

Appendix A.  Program Descriptions 	     A-l

Appendix B.  Source Program Listings 	     B-l
                                        IV

-------
ABSTRACT
     The Modified Rollback/EKMA Strategy Assessment Model  provides a computerized
procedure for conducting air quality assessments of national  emission control
strategies for mobile source related pollutants.  Air quality projections of
carbon monoxide and annual average nitrogen dioxide concentrations are made using
the Modified Rollback equations of de Nevers and Morris.  Ozone air quality
concentrations are projected using the OZIPP/EKMA procedure.  Emission inven-
tories are also projected for each source region and control scenario.

     Major differences between this model and the earlier Modified  Rollback Model
are:  (1) use of the OZIPP/EKMA procedure for ozone projections;  (2) no upper
limit on the number of source regions that can  be considered; (3) high-altitude
and California strategies can be considered simultaneously with 49-State strategies;
and (4) the maximum number of mobile source categories which can  be listed in the
inventory has been increased to 22.

     The material presented is directed toward  the model user familiar with the
UNIVAC 1100 System at the National Computing Center.  Technical details of the
computer programming are discussed and complete descriptions of input and output
formats are given.  Brief program descriptions  and source code listings are
provided as appendices.

-------
LIST OF FIGURES
Number                                                                 Page
2-1       System Flow Diagram 	     5
2-2       Estimating Projection Year Growth Rates  	     7
2-3       Standard EKMA Isopleths  	    10
4-1       Example Emissions Inventory Summary Report for
          Carbon Monoxide  	    27
4-2       Example Emissions Inventory Summary Report for Volatile
          Organic Compounds (.VOC)  	    28
4-3       Emissions Data File - Example Listing  	    30
4-4       VOC Emissions Data File  - Example Listing 	    31
4-5       Unsorted CO Air  Quality  Data File 	    33
4-6       Sorted CO Air Quality Data File  	    35
4-7       Example CO Air Quality Summary Report  	    36
4-8       Example Ozone Air Quality Summary Report 	    37
4-9       Hourly Carbon Monoxide Measurements for  1972 in
          Los Angeles, CA  	    38
5-1       Example #1 - Run Stream  	    42
5-2       Example #1 - Control Card 2 and  Mobile/Stationary Source
          Strategy Cards in MY*FILE.CO-STRATEGY  	    43
5-3       Example #1 - Source Region Data  Cards  for CO in
          MY*FILE.CO-DATA  	    44
5-4       Example #1 - CO  Emissions Inventory Summary Report  	    45
5-5       Example #1 - CO  Emissions Data File Listing 	    46
5-6       Example #2 - Run Stream  	    48
5-7       Example #2 - CO  Control  Cards 1  and 2  and Source Strategy
          Cards in MY*FILE.CO-SCENARIOS 	    49
5-8       Example #2 - Ozone Control Cards 1 and 2 and Source
          Strategy Cards in MY*FILE.03-SCENARIOS 	    50
5-9       Example #2 - Source Region Data  Cards  (2 through 6) for
          Ozone in MY*FILE.03-DATA 	    51
5-10      Example #2 - CO  Emissions Inventory Summary Report  	    52
5-11      Example #2 - Unsorted CO Air Quality Data File 	    53
5-12      Example #2 - Sorted CO Air Quality Data  File 	    54
5-13      Example #2 - CO  Air Quality Summary Report 	    55
5-14      Example #2 - Ozone Air Quality Summary Report 	    56
5-15      Example £3 - Run Stream  	    57
A-l       Use of Standard  EKMA Isopleth Diagram  	    A-6
                                        vi

-------
LIST OF TABLES
Number                                                                Page
1-1       Summary of Modeled Pollutants 	     2
3-1       Input Card Sequence 	    13
3-2       Input Format for Control Card 1 	    14
3-3       Source Categories 	    15
3-4       Input Format for Control Card 2 	    16
3-5       Input Format for Mobile Source Strategy Card(s) 	    18
3-6       Input Format for Stationary Source Strategy Card(s) 	    19
3-7       Input Format for Region Header Card 	    20
3-8       Input Format for Region Card 2 	    21
3-9       Input Format for Region Card 3 	    22
3-10      Input Format for Region Card 4 	    23
3-11      Input Format for Region Card 5 	    24
3-12      Input Format for Region Card 6 	    25
4-1       Emissions Data File Output Format 	    29
4-2       Air Quality Data File Output Format 	    32

-------
1.0  INTRODUCTION



     This report describes the Modified Rollback/EKMA Strategy Assessment Model



and its use in estimating emission inventories and ambient air quality concen-



trations in future years for alternative control strategies and growth rate



scenarios.   The three emission inventory pollutants considered by the model are



carbon monoxide (CO), nitrogen oxides (NO ) and Volatile Organic Compounds
                                         A


(VOC).  Ambient concentration estimates can be obtained for carbon monoxide



(CO), annual average nitrogen dioxide (NOo) and ozone (03).  Table 1-1 provides



a summary of the modeled pollutants.  The program is written in the ASCII



FORTRAN language for the UNIVAC 1100 operating system.





     This model differs from the earlier Modified Rollback Model primarily in



the way in which concentration estimates for ozone are made.  Future ozone air



quality concentrations are now obtained using an algorithm which solves the



standard isopleth diagram of the Empirical Kinetic Modeling Approach (EKMA).   As



a result, changes in both VOC and NO  emissions can now be considered, simul-
                                    X


taneously.   Other changes include:  (1) no upper limit on the number of source



areas which may be modeled, (.2) high-altitude and California regions can be



modeled simultaneously with the 49-State regions, (3) an increase in the number



of control  strategies and emission source categories, and (4) the creation of



emission inventory and air quality data files for use in graphical or statis-



tical post-processors.





     The material presented is directed toward the user familiar with computer



techniques.  Technical details of the computer programming are discussed; complete



descriptions of input, output and test examples are given; and the FORTRAN



source statements are presented as appendices.

-------
                    Table 1-1.  SUMMARY OF MODELED POLLUTANTS
POLLUTANT
NAME
Carbon Monoxide

Oxone*

Nitrogen Dioxide
AIR QUALITY
CODE
0C00
0C08
$03$

P02
AVERAGING
TIME
1-Hour
8-hour
Daily Max
1-Hour
Annual
Average
DEFAULT
UNITS
MG/M3
MG/M3
UG/M3

UG/M3
EMISSIONS
CODE
|zSC00
|zSC00
tfVOC

feSNOX
*NOTE:  If ozone is the pollutant modeled, the user must assign the OZIPP
        Isopleth Data  File to  input Unit  11.   (See Example #2).

-------
     A system overview, including flow charts, is presented in Section 2.
Control and data card preparation and input card sequence are discussed in
Section 3.  Section 4 provides examples of the computational  output from the
program.  Finally, Section 5 provides several  test examples.   For a complete
discussion of the formulation and limitations  of the air quality algorithms used,
the reader should consult Reference 1.

-------
2.0  SYSTEM DESCRIPTION



     A system flow diagram of the Modified Rollback/EKMA Strategy Assessment



Model is presented in Figure 2-1.  As indicated in the diagram, there are three



basic modules:  the main emissions and air quality projection program, the system



sort routine, and the air quality summary report prograim.  Each module is briefly



described in the following sections.  More detailed descriptions of the computa-



tional aspects of the individual routines are contained in Appendix A.





2.1  Air Quality and Emission Projections



     All air quality and emissions projections are performed by program ROLLBACK.



Program options, mobile and stationary source control strategies, base year air



quality concentrations and emission  inventories for each source region are input



on cards.  ROLLBACK performs card sequence checks and data screening for selected



parameters.  If ozone is the pollutant being modeled, the data file containing



the  digitized Standard EKMA Isopleths must also be assigned to the run.





     Depending on the options selected, the program may output an emissions data



file, an emissions summary report for each source region, and an air quality data



file.  The size of each data file and summary report is a function of the number



of source regions being modeled  and  the number of growth rates, projection years,



and  control strategies.





     2.1.1  Emission Projections in  Rollback



          Source region emission inventories are projected to future years on a



disaggregated basis.  This procedure allows explicit consideration of different



control and growth rate assumptions  for individual source categories.  Also, a



distinction is made between existing stationary sources and new sources coming on

-------
                           DATA
                           CARDS
                         ROLLBACK'
INVENTORY

  DATA
                                     •4-
INVENTORY
 REPORT
                          ISOPLETH
                            DATA
  AIR
QUALITY
 DATA
                                                   SORTSDF
                                                   AQPRNT
                                                     AIR
                                                   QUALITY
                                                   REPORTS
       Figure  2-1.   SYSTEM  FLOW  DIAGRAM

-------
line through growth and replacement of existing facilities.  It should be noted
that these rates are assumed to represent the growth and retirement of uncontrolled
emissions or emission indicators.
          As a matter of programming convenience, growth and retirement factors
are calculated as compound growth rates.  Thus, an exponential growth pattern is
assumed to represent the growth in emissions between the base year and the
projection year-  For some applications, it may be desirable to provide separate
growth rates for each projection year.  For example, the growth between the base
year and the two intermediate projection years shown in Figure 2-2 would be
significantly understated by the single compound growth rate represented by G85.
In this situation, two additional growth rate scenarios, G75 and G80, should be
input to the model following the procedures described in Section 3.3.
          Summary reports of the base year and projection year inventories are
available from each source region, control scenario and growth rate combination.
A compact data file can also be output  for post-processing by statistical or
graphics procedures.

          Finally, the projected changes in the emission inventories form the
basis for the air quality projections.
     2.1.2  Air Quality Projections  in  Rollback
          Air quality projections for future calendar years are available for
each control scenario and growth rate combination.  The deNevers and Morris
modified rollback equations are used to project CO and annual average NCL
concentrations (.Reference 2)_.  For ozone, the EKMA procedure is used to project
future concentration levels (^References 3 and 4).

-------
         1970
                                        best  estimate  of
                                        future  growth
                                                 G85
                                                    force-fitted
                                                    growth  curves
1985
Figure 2-2«   Estimating  Projection Year Growth Rates

-------
          The modified rollback model merely extends basic, linear rollback to
multiple categories of sources, which may experience different rates of growth,
degree of control, and source-receptor relationships.  The equation for this
model is expressed as:
                             m
                                               + B          (2.1.2-1)
xo • *
?.S' G
-------
          Projections of ozone air quality concentrations are obtained from an

algorithm which solves the EKMA procedure for the Standard Isopleth Diagram

generated by the OZIPP Model (see Figure 2-3).  Input to the procedure consists

of region specific ambient NMHC/NO  ratios, the projected change in VOC emissions*
                                  A
and the expected changes in NO  emissions.  The latter parameter must be deter-
                              X

mined exogenously, perhaps by previous model simulations for NOX-   If an NMHC/NOX

ratio is not available, a default ratio of 9.5:1 is assumed.


          Reference 3 provides a detailed description of the assumptions and

limitations of the EKMA procedure.  A User's Guide for the OZIPP Model used to

generate the isopleth diagram is the subject of Reference 4.   Finally, a descrip-

tion of the specific mathematical solution technique used in this  EKMA algorithm

is provided in Appendix A.


2.2  System Sort Routine

     A  UNIVAC standalone sort routine, SORTSDF, is used  to sort the air  quality

data file  prior to printing the  air quality summary  reports.   The  records  are

sorted  in  ascending  sequence  by  growth rate scenario name, control  strategy name

and  region name,  respectively.   The user  must  provide an estimate  of the maximum

number of records  to be  sorted.   This number must be greater than  or equal to the

product of the  number of source  regions times  the number of growth  rate  scenarios

 times  the number  of  control  strategies.
      In the EKMA routine,  ambient organic  concentrations  are  referred  to  col-
      lectively as "NMHC,"  and initial  concentrations  are  assumed  to  be reduced
      in the same proportion as VOC emissions.   Hence,  NMHC  is  also reduced
      in the same proportion as VOC emissions.

-------
a_
o_
?D.O
o


fs)
o" -

O "
(SI
o" -
(D
O


eg • '
O~ .


oo •
O
o" .



TT
O ". '.
O - .

o
o
• t .

o.
- - . - _ .

. 	 ...

..'..:::
	

	 .

: . : :
. . . .

- - - - - - --
. . . . _ ._
: :

f
. .
/
. /
/
• . "/- .
-'/-"
•-/- -r:
1 j'.s.;?
:1?':: =
'' L ~ ":

7
- - -

- - - - • -

.' ".'~
'""::;-

	 .
::^::
~.~.~'.'.~j'
''it
/
..(J.
. .. j . ( . .
/-,?•/:
/ -/--
/
/
/./... I
1 I
I
' '
V
• - -
<:-~,'
:\~:~
~ ~ - K LJ - -

..
0.4
- - - ( t r
O "

1 i *
T
".":'/'. :
I
. ._ . . /_^. /
:.:/'/. >• '-
i . t
• --(- /
- 1 1 . (-. ,.
'i.t--l.\\f~:
/.. -.-.I; i
/:•'.-.'/ '

-/ 11
i:':t:.::~i ".:
_ .
','-".' 1 -
I":-]"'

• \ -
. . _ \

V

_ !! > • r .. . ... _ -
? . : : : ^ - - : :
	 —
— — 	

- . . .
0.6 0
•: - ,,

J ? i
/ ; '
'•-.I-'.'.'.--'
r'- ' •/

/ .
' - /

/


. . . .

^\
v
""-.
+ **
* **
„. *

•
~ ~ - - 	 	

-. . —


                          0.0      1.0
0-2
                    0-4
0-6
                                                      1.2
                                  1  .*
                                  1 .6
1.8
                                                                                          rj

                                                                                         "o
                                                                                          to


                                                                                         "o
                                                                                          00
                                                                                          o
                                                                                          o
                                                                                          o
0-f)      I -I)

     NMHC.Pl'MC
                                                                       1.6
1-0
  Figure 2-30   Standard EKMA Isopleths
                                            10

-------
2.3  Air Quality Reports
     The program, AQPRNT, produces the air quality summary reports from the data
contained in the air quality data file.  The input data are read from FORTRAN
Unit 9.

     Air quality summary reports are output on the system print device
(default = Unit 6) for each control  scenario and growth rate combination.  As
noted above, the data file must be sorted prior to printing the Summary Reports.
The number of expected exceedances of the NAAQS are estimated by fitting a one-
parameter exponential distribution through the projected air quality concentra-
tion.  Summary statistics are presented on the number of source regions above the
level of the standard, the average percent change in air quality and the total
number of expected exceedances.  The reporting format varies by pollutant.
Example air quality summary reports  are provided in Section 4.
                                        11

-------
3.0  PREPARATION OF INPUT DATA
     This section provides a description of the input data parameters, card
formats and input sequence.  Reference 1 contains default values and/or recom-
mended methodologies for estimating the following input parameters:  mobile
source emission factor ratios, stationary source control efficiencies, VMT growth
rates, stationary source growth and retirement rates, base year air quality
design values, and background concentrations and emissions inventories.  The
input card sequence is summarized  in Table 3-1.
3.1  Control Cards
     The first control card  in each model run establishes the types of reports
to be printed, the input/output unit numbers, the inventory pollutant to be
modeled, and the number of control scenarios, growth rates and projection years.
Table 3-2 presents the card  format and default values.
     The second control card identifies the emission inventory source categories
to be included in the base year inventory.  Only emissions data from the selected
categories will be included  in subsequent calculations.  Table 3-3 contains the
source category selection codes, whereas Table 3-4 presents the control card
format.

3.2  Strategy Cards
     Mobile and stationary source  control strategy cards are required for each
control scenario to be evaluated.  Within each control scenario, one mobile and
one stationary source control strategy card must be supplied for each projection
year.  These cards contain the emission factor ratios for each source category
selected.  That is, the ratio of the source category emission factor in the
                                        12

-------
                               Table 3-1.   INPUT CARD SEQUENCE
                     Control  Card 1:  Analysis Options
                     Control  Card 2:  Source Categories
                     Mobile Source Strategy Card:  Scenario #1, Projection Year #1
                     Stationary Source Strategy Card:  Scenario #1, Projection Year #1

                                                     •
                     Mobile Source Strategy Card:  Scenario #1, Projection Year #n
                     Stationary Source Strategy Card:  Scenario #1, Projection Year #n
GEOGRAPHICAL
  GROUP 1
Mobile Source Strategy Card:  Scenario #j, Projection Year #1
Stationary Source Strategy Card:  Scenario #j, Projection Year #1
                                •
Mobile Source Strategy Card:  Scenario #j, Projection Year #n
Stationary Source Strategy Card:  Scenario #j, Projection Year #n
 GEOGRAPHICAL
   GROUP  i
   (max =  6)
   SOURCE
   REGION 1
            Same Card Sequence As Geographical Group 1
                      Region  Header  Card
 Region Card 2:
 Region Card 3:
 Region Card 4:
 Region Card 5:
 Region Card 6:
Mobile Source Emissions, Categories 1  through 11
Mobile Source Emissions, Categories 12 through 23
Stationary Source Emissions
Mobile Source Growth Rates, Growth Scenario #1
Stationary Source Growth Rates, Growth Scenario #1
                      Region Card 5:   Mobile  Source Growth  Rates, Growth Scenario  #3
                      Region Card 6:   Stationary Source Growth Rates, Growth Scenario  #3
     LAST SOURCE
      REGION
               Same  Card  Sequence  As Source  Region  1
                        13

-------
              TABLE 3-2.  INPUT FORMAT FOR CONTROL CARD
CARD
COLUMNS        FORMAT                        DESCRIPTION


 1-2           12             Report Selection Flag, 'EIFLAG" (0 = emissions
                              and air quality projections with SSCF's;
                              1 = emission projections with SSCF's only;
                              2 = emission projections without SSCF's, only)

 3-4           12             Emissions Inventory Summary Report Output Unit
                              'El' (Default = 6)

 5-6           12             Emissions Inventory Data File Output Unit
                              '10' (Default = 8)

 7-8           12             Air Quality Data File Output Unit 'IAQ1
                              (Default = 9)

 9-12          A4             Emissions Inventory Pollutant Name (see
                              Table 1-1)

19-20          12             Number of Geographical Groups, Maximum = 6

24-25          12             Number of Control Scenarios Per Group,
                              Maximum = 9

29-30          12             Number of projection Years Per Control Scenario,
                              Maximum = 9

34-35          12             Number of Growth Rate Scenarios, Maximum = 3

39-40          12             Number of Mobile Source Categories,
                              Maximum = 23

44-45          12             Number of Stationary Source Categories,
                              Maximum = 9
                                  14

-------
Table 3-3.   SOURCE CATEGORIES
SELECTION
CODE
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
REPORT
LABEL
LDV-G
LDT1-G
LDT2-G
HOG
CYCLES
LDV-D
LDT1-D
LDT2-D
HDD
RAILRD
VESSELS
ACR-MT
ACR-CV
ACR-CM
FARM-G
LAWN
SNOW-M
INMCH
CONST-G
FARM-D
1NMCH-D
CONST-D
OFFHGWY
POINT
AREA
COMB-PT
OTHER
PETROL
STORAGE
INDUST
A-SOLV
IN-SOLV
DESCRIPTION
Light Duty Vehicles - gasoline powered
Light Duty Trucks ( < 6000 Ibs. GVW) - gas
Light Duty Trucks (6 - 8500 Ibs. GVW) gas
Heavy Duty Vehicles - gas
Motorcycles
Light Duty Vehicles - diesel powered
Light Duty Vehicles ( < 6000 Ibs. GVW) - diesel
Light Duty Trucks (6-8500 Ibs. GVW) - diesel
Heavy Duty Vehicles - diesel
Railroads
Vessels
Military Aircraft
Civilian Aircraft
Commercial Aircraft
Farm Machinery - gas
Lawn Equipment
Snow mobiles
Industrial Machinery - gas
Construction Equipment - gas
Farm Machinery - diesel
Industrial Machinery - diesel
Construction Equipment - diesel
Off Highway Vehicles
Point Sources
Area Sources
Fuel Combustion - Point Sources
Miscellaneous Area Sources
Petroleum Industry
Petroleum Storage and Transport
Miscellaneous Industrial Process Sources
Area Source Solvent Evaporation
Industrial Solvent Evaporation
         15

-------
                 Table 3-4.  INPUT FORMAT FOR CONTROL CARD 2
  CARD
COLUMNS          FORMAT                          DESCRIPTION
  1-2              12              Source Category Selection Code for First
                                   Source Category (see Table 3-3)

  3-4              12              Source Category Selection Code for Second
                                   Source Category
 65-66             12              Source Category Selection Code for Source
                                   Category Number 33
                                     16

-------
projection year to the emission  factor for that source category in the base year.
An example of alternative control  scenarios might be the Federal Motor Vehicle
Control  Program (FMVCP) with and without an inspection and maintenance program.

     A given control  scenario may result in different emission factor ratios for
different geographical areas, e.g.,  the FMVCP in high versus low altitude regions
To account for this situation, the strategy cards may be grouped by geographical
areas.  That is, the set of control  strategies is repeated for each different
geographical grouping, up to a maximum of six groups.  It should be noted, how-
ever, that air quality summary reports are prepared for each control scenario,
thus all geographical  areas are combined in one report.

     The input card formats for the  mobile and stationary source strategy cards
are presented in Tables 3-5 and 3-6, respectively.   Reference 1  contains recom-
mended methodologies for calculating the emission factor ratios.

3.3  Source Region Data Cards
     Six data cards are required for each source region modeled.  Card -input
formats and default values are given in Tables 3-7 through 3-12.  Recommended
default values and calculation methodologies are also contained in Reference 1.
The last group of six region cards must be followed by either an end-of-file
indicator (_@EOFl or an EXEC 8 control  card.
                                        17

-------
Table 3-5.  INPUT FORMAT FOR MOBILE SOURCE STRATEGY CARD(S)
CARD
COLUMNS
1-8
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67-69
70-72
73-75
76-78
79-80
FORMAT
A8
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
12
DESCRIPTION
Control Scenario Name
Emission Factor Ratio For LDV-G
Emission Factor Ratio For LDT1-G
Emission Factor Ratio For LDT2-G
Emission Factor Ratio For HDG
Emission Factor Ratio For CYCLES
Emission Factor Ratio For LDV-D
Emission Factor Ratio For LDT1-D
Emission Factor Ratio For LDT2-D
Emission Factor Ratio For HDD
Emission Factor Ratio For RAILRD
Emission Factor Ratio For VESSELS
Emission Factor Ratio For ACR-MT
Emission Factor Ratio For ACR-CV
Emission Factor Ratio For ACR-CM
Emission Factor Ratio For FARM-G
Emission Factor Ratio For LAWN
Emission Factor Ratio For SNOW-M
Emission Factor Ratio For INMCH-G
Emission Factor Ratio For CONST-G
Emission Factor Ratio For FARM-D
Emission Factor Ratio For INMCH-D
Emission Factor Ratio For CONST-D
Emission Factor Ratio For OFFHGWY
Projection Year (1971 _< PY ^ 2069)
                               18

-------
Table 3-6.   INPUT  FORMAT  FOR STATIONARY SOURCE STRATEGY CARD(S)
CARD
COLUMNS
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
FORMAT
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
DESCRIPTION
New Point Source Emission Factor Ratio
Existing Point Source Emission Factor Ratio
New Area Source Emission Factor Ratio
Existing Area Source Emission Factor Ratio
New Fuel Combustion Emission Factor Ratio
Existing Fuel Combustion Emission Factor Ratio
New Miscellaneous Area Source Emission Factor
Ratio
Existing Miscellaneous Area Source Emission
Factor Ratio
New Petroleum Industry Emission Factor Ratio
Existing Petroleum Industry Emission Factor
Ratio
New Petroleum Storage & Transport Emission
Factor Ratio
Existing Petroleum Storage & Transport
Emission Factor Ratio
New Industrial Process Sources Emission
Factor Ratio
Existing Industrial Process Sources Emission
Factor Ratio
New Area Source Solvent Evaporation Emission
Factor Ratio
Existing Area Source Solvent Evaporation
Emission Factor Ratio
New Industrial Solvent Evaporation Emission
Factor Ratio
Existing Industrial Solvent Evaporation
                              Emission  Factor  Ratio
                            19

-------
Table 3-7.  INPUT FORMAT FOR REGION HEADER CARD
CARD
COLUMNS
1-3
4-18
20-24
25-29
31-34
36-39
40-43
44-46
47-49
50-52
53-55
56-58
59-61
62-64
65-67
68-70
77
78-79
FORMAT
A3
3A4.A3
F5.2
F5.2
A4
A4
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
11
12
DESCRIPTION
Region Identification Number, e.g. AQCR, FIPS
County Code
Region Name
Base Year Air Quality Design Value
Air Quality Background Concentration
Air Quality Pollutant Name, (see Table 1-1)
Pollutant Concentration Units, (e.g. PPM)
If Pollutant is Ozone, NMHC/NOX Ratio
(Default Ratio 9.5)
If Pollutant is Ozone, NOX Ratio For First
Projection Year, Blank = 1.0 (i.e.. NOXi/NOXg)
If Pollutant is Ozone, NOX Ratio For Second
Projection Year, (i.e. NOX2/NOXg)
If Pollutant is Ozone, NOX Ratio For Third
Projection Year, (i .e.NOX3/NOXg)
If Pollutant is Ozone, NOX Ratio For Fourth
Projection Year, (i.e. NOX^/NOXg)
If Pollutant is Ozone, NOX Ratio For Fifth
Projection Year, (i.e. NOX5/NOXg)
If Pollutant is Ozone, NOX Ratio For Sixth
Projection Year, (i.e. NOX6/NOXg)
If Pollutant is Ozone, NOX Ratio For Seventh
Projection Year, (i.e. NOX7/NOXg)
If Pollutant is Ozone, NOX Ratio For Eighth
Projection Year, (i.e. NOX8/NOXg)
If Pollutant is Ozone, NOX Ratio For Ninth
Projection Year, (i.e. NOX9/NOXg)
Strategy Geographical Group Number,
(i.e., I,2,or3, DEFAULTS )
Base Year (must be greater than 1970)
                                 20

-------
Table 3-8.   INPUT FORMAT FOR REGION CARD 2
CARD
COLUMNS
1-3
6-11
12-17
18-23
24-29
30-35
36-41
42-47
48-53
54-59
60-65
66-71
FORMAT
A3
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
DESCRIPTION
Region Identification Number
Base Year Emissions For LDV-G, (1000 tons/year
Base Year Emissions For LDT1-G
Base Year Emissions For LDT2-G
Base Year Emissions For HOG
Base Year Emissions For CYCLES
Base Year Emissions For LDV-D
Base Year Emissions For LDT1-D
Base Year Emissions For LDT2-D
Base Year Emissions For HDD
Base Year Emissions For RAILRD
Base Year Emissions For VESSELS
                       21

-------
Table 3-9.  INPUT FORMAT FOR REGION CARD 3
CARD
COLUMNS
6-11
12-17
18-23
24-29
30-35
36-41
42-47
48-53
54-59
60-65
66-71
72-77
FORMAT
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
DESCRIPTION
Base Year Emissions For AC-MT, (1000 tons/year)
Base Year Emissions For AC-CV
Base Year Emissions For AC-CM
Base Year Emissions For FARM-G
Base Year Emissions For LAWN
Base Year Emissions For SNOW-M
Base Year Emissions For INMCH-G
Base Year Emissions For CONST-G
Base Year Emissions For FARM-G
Base Year Emissions For INMCH-D
Base Year Emissions For CONST-D
Base Year Emissions For OFFHGWY
                        22

-------
          Table 3-10.   INPUT FORMAT FOR REGION CARD 4
 CARD
COLUMNS            FORMAT                             DESCRIPTION

  6-11              F6.0            Base Year Emissions For Point Sources
                                    (1000 tons/year)
 12-17              F6.0            Base Year Emissions For Area Sources
 18-23              F6.0            Base Year Emissions For Fuel Combustion
 24-29              F6.0            Base Year Emissions For Misc. Area Sources
 30-35              F6.0            Base Year Emissions For Petroleum Industry
 36-41              F6.0            Base Year Emissions For Petroleum Storage
                                    and  Transport
 42-47              F6.0            Base Year Emissions For Industrial Process
 48-53              F6.0            Base Year Emissions For Area Solvent Evapora
 54-59              F6.0            Base Year Emissions For Industrial Solvent
                                    Evaporation
 60-61              F2.1            Stationary Source  Contribution Factor
                                    (0 4SSCF il.O)  (Blank = 1.0)
 62-63              F2.1            Area source  Contribution Factor
 64-65              F2.1            Fuel Combustion Contribution Factor
 66-67              F2.1            Miscellaneous  Area Source Contribution Factor
 68-69              F2.1            Petroleum Industry Contribution Factor
 70-71              F2.1            Petroleum Storage  & Transport Contribution Fa|
 72-73              F2.1            Industrial Process Contribution Factor
 74-75              F2.1            Area Solvent Evaporation Contribution Factor
 76-77              F2.1            Industrial Solvent Evaporation Contribution
                                    Factor
                                  23

-------
Table 3-11.  INPUT FORMAT FOR REGION CARD 5
CARD
COLUMNS
1-3
4-5
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39'
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67-69
70-72
73-75
76-78
FORMAT
A3
A2
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
DESCRIPTION
Region Identification Number
Growth Rate Scenario Name, (e.g. HI, LO, etc.)
Growth Rate For LDV-G, (percent/year)
Growth Rate For LDT1-G
Growth Rate For LDT2-G
Growth Rate For HDG
Growth" Rate For CYCLES
Growth Rate For LDV-D
Growth Rate For LDT1-D
Growth Rate For LDT2-D
Growth Kate For HDD
Growth Rate For RAILRD
Growth Rate For VESSELS
Growth Rate For ACR-MT
Growth Rate For ACR-CV
Growth Rate For ACR-CM
Growth Rate For FARM-G
Growth Rate For LAWN
Growth Rate For SNOW-M
Growth Rate For INMCH-G
Growth Rate For CONST-G
Growth Rate For FARM-D
Growth Rate For INMCH-D
Growth Rate For CONST-D
Growth Rate For OFFHGWY
                         24

-------
Table 3-12.   INPUT FORMAT FOR REGION CARD 6
CARD
COLUMNS
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
-FORMAT
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
DESCRIPTION
Point Source Growth Rate, (percent/year)
Point Source Retirement Rate, (percent/year)
Area Source Growth Rate
Area Source Retirement Rate
Fuel Combustion Point Source Growth Rate
Fuel Combustion Point Source Retirement Rate
Miscellaneous Area Sources Growth Rate
Miscellaneous Area Sources Retirement Rate
Petroleum Industry Growth Rate
Petroleum Industry Retirement Rate
Petroleum Storage and Transport Growth Rate
Petroleum Storage and Transport Retirement Rate
Industrial Process Growth Rate
Industrial Process Retirement Rate
Area Source Solvent Evaporation Growth Rate
Area Source Solvent Evaporation Retirement Rate
Industrial Solvent Evaporation Growth Rate
Industrial Solvent Evaporation Retirement Rate
                        25

-------
4.0  COMPUTATIONAL OUTPUT



     Strategy model outputs include:  (a) the Emissions Inventory Summary Report,



(b) the emissions  inventory data file, (c) the air quality data file, and (d) the



Air Quality Summary Report.  Each type of output, described in the following



sections, is accompanied by illustrative examples.





4.1  Emissions Summary  Report



     Examples of the Emissions  Inventory Summary Report are provided as



Figures 4-1 and 4-2.  The  report illustrated in Figure 4-2 is an example of a



case where the source category  totals "wrap-around" due to the width limitation



for a print line.  A summary report of emission projections is output for each



source region, control  scenario and growth rate combination.





4.2  Emissions Data File



     The output format  for the  emissions data file is shown in Table 4-1.  The



file is output on  the unit number designated in the third data field of Control



Card 1 (.see Table  3-2).  If a blank or zeros are encountered in this field, the



emissions data file is  routed to output Unit 8.  Emissions inventory data files



corresponding to the Emissions  Inventory Summary Report examples are displayed as



Figures 4-3 and 4-4, respectively.





4.3  Air Quality Data File



     The air quality data  file  is used to produce the air quality summary reports,



The output unit number  is  designated  in the fourth data field of Control Card 1



Csee Table 3-2).   If the field  is blank or zero-filled, Unit 9 is assumed.  The



output format of the air quality data file is given in Table 4-2, whereas an



example air quality data file is shown in Figure 4-5.  After the header  record,
                                        26

-------
 LOCATION:  100 COUNTY A
POLLUTANT:   co
                        ***   EMISSIONS INVENTORY PROJECTIONS   ***
                                              STRATEGY:SCEN  »1
                                     EMISSIONS (1000 TONS/YEAR)
                                  SOURCE  CATEGORIES
                                                               GROWTH RATE:HI
               LDV-S  LDT1-G
                               HOG
BASE YR

 1978
PROJ YR

 1984
 1985
 1990
 1995
  403.0
  169.8
  150.0
  127.1
  135.5
79.3   151.6
34.5
29.5
32.0
24.2
122.7
101.7
 41.7
 23.0
                                      HDD
                           8.1
10.6
10.9
13.2
20.2
                                             POINT
                                    .9
1.1
1.1
1.4
1.6
                                                      AREA  OTHER
                                          7.5
7.9
7.9
8.3
8.6
                                                 16.6
19.3
19.7
22.3
25.3
 YEAR

 1978
 1984
 1985
 1990
 1995
MOBILE
TOTAL
642.0
337.6
292.1
203.9
             203.0
STATIONARY
  TOTAL

   25.0
   28.2
   28.8
   31.9
   35.5
        GRAND
        TOTAL

        667.0
        365.9
        320.9
        235.8
        238.5
         Figure  4-1.   Example Emissions Inventory Summary  Report for Carbon  Monoxide
                                                       27

-------
ION: 001 AQCR A

INT:  VOC
***   EMISSIONS INVENTORr PROJECTIONS   »**
                      STRATEGY;BASELINE


             EMISSIONS (1000 TONS/YEAR)

          SOURCE  CATEGORIES
GROWTH  RATE=LO
'R
        LOV-G  LOT1-G
         61.9
            .1
            .0
            .0
            .0
            .0
       MOBILE
       TOTAL

        98.3
        47.0
        42.
        31.
        31.2
                 12.5
                        HOG
                        11.6
              HDD   RAILRO  VESSELS  ACR-MT  ACR-CV  ACR-CM OFFHGWY  FUEL-CM OTHER
                                        2.2
                                                                      2.2
                                                                              2.6
                                                                                            4.4
22.0
18.9
11.4
9.3
4.7
4.1
2.4
2.0
6.4
5.2
2.0
1.1
4.9
5.0
5.2
7.5
2.2
2.2
2.3
2.3
.1
.1
.1
.2
.5
.5
.6
.6
.7
.7
.8
.9
2.6
2.7
3.0
3.5
3.0
3.0
3.4
3.8
.5
.5
.6
.7
4.4
4.4
4.4
4.4
        PETROL  STORAGE  INDUST  A-SOLV  IN-SOLV
                  8.8
                           .0
                                47.8
2.0 .0
2.0 .0
2.2 .0
2.4 .0
STATIONARY
TOTAL
61.3
42.1
42.5
44.2
46.1
35.1
35.4
36.8
38.3
GRAND
TOTAL
160.1
89.1
84.8
75.5
77.3
    Figure 4-2.
  Example  Emissions  Inventory Summary  Report for  Volatile Organic
  Compounds (VOC)
                                                28

-------
                  Table 4-1.  EMISSIONS DATA FILE OUTPUT FORMAT
RECORD
NUMBER COLUMNS
1 1-3
4-18
20-27
28-31
34-37
38-39
42-43
44-45
46-47
108-109
2 1-4
8-12

13-20

21-28

29-36

37-44
'•
109-116

2a (optional) 29-116

2b (optional) 29-116

3 1-4
8-116

3a (optional) 29-116

3b (optional) 29-116
• |
N 1-4
8-116
FORMAT
A3
3A4SA3
A8
A4
A4
12
12
12
12
12
14
F8.1

F8.1

F8.1

F8.1

F8.1
'•
F8.1

11F8.1

11F8.1

14
14F8.1

11F8.1

11F8.1
•
14
14F8.1
DESCRIPTION
Region identification number
Region name
Control scenario name
Growth rate name
Inventory pollutant name
Number of projection years, NPY
Number of source categories, NS
First source category code
Second source category code
Thirty- third source category code
Base year
Mobile source base year emissions
total, (1000 tons/year)
Stationary source base year emissions
total, (1000 tons /year)
Total region base year emissions,
(1000 tons/year)
First source category base year
emissions, (1000 tons/year)
Second source category base year
emissions, (1000 tons. year)
Eleventh source category base year
emissions, (1000 tons/year)
Base year emissions, source catego-
ries 12 thru 22, (1000 tons/year)
Base year emissions, source catego-
ries 23 thru 33, (1000 tons/year)
First projection year
First projection year emission to-
tals, (1000 tons /year)
First projection year emission to-
tals, (1000 tons/year)
First projection year emission to-
tals, (100 tons /year)
Last projection year
Last projection year emission totals.
N+l (optional)     29-116           11F8.1


N+2 (optional)     29-116           11F8.1





   NOTE:   N = 1 + (NPY + 1)  * IFTX (NS/11)


                                      -29
(1000 tons/year)'

Last projection year emission totals,
(1000 tons/year)

Last projection year emission totals,
(1000 tons/year)

-------
IDATA.I. S.
DATA 'RlSl SL74T9 06/15/81
1.
Z.
3.
5.
6.
7.
3.
9.
10.
11.
12.
13.
1*.
15.
16.
17.
13.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
34.
37 .
38.
39.
40.
41.
42 .
43.
44 .
-5.
46.
47.
43.
49.
50.
51.
52.
53.
54.
55.
56.
57.
53.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
"0.
71.

73.

75.

100 COUNTY
1978 642
1984 299
1985 C53
1990 160
1995 144
100 COUMTY
1973 642
1984 318
198S 272
1990 181
1995 171
100 COUNTY
1978 642
1934 337
1985 292
1990 203
1953 C03
100 COVMTf
1973 o4C
1934 299
1935 250
1990 156
1995 1*1
100 COMITY
1978 642
1934 318
1985 268
1990 176
1995 167
100 COUNTY
1978 32
19?S 30
1=30 30
13"5 3l
0*1 COUNTY
1973 1'4
I3;.. 32
1=35 63
1590 46
19=5 42
041 COUNTY
1978 194
1=84 87
1055 73
1990 51
1995 50
041 COUNT r
1978 194
1=P4 92
1935 78
1900 53
1995 59
001 COUNTY
1978 135
1<>S4 30

A
0
4
9
5
8
A
0
0
4
0
6
A
0
6
1
9
0
A
0
4
1
3
3
A
0
0
3
8
<4
A
0
6
7
2
0
a
g
1
0
3
7
a
3
2
a
3
7
a
9
6
<4
3
^
Z
3
1
6
0
4
B
9
t.
6
3
£
B
3
6
9
<4
<•»
c
3
3
15:58:51 (1)

25.
23.
28.
31 .
35.

25.
28.
28.
31.
35.

25.
28.
23.
31.
35.

25.
28.
28.
31.
35.

25.
28.
28.
31.
35.

25.
28.
23.
31.
35.

17.
19.
19.
21.
23.

17.
19.
19.
21.
23.

17.
19.
19.
21.
23

17.
19.
19.
21.
23.

17.
19.
19.
21
23.

17.
19.
19.
21.
23.

13.
2S.

SCEN HI
0 667
2 327
8 282
9 1 92
5 180
SCEN *1
0 667
2 346
8 301
9 213
5 207
SCEN 51
0 667
2 365
3 320
9 235
5 238
SCEN B2
0 667
2 327
3 278
9 183
5 176
SCEN 82
0 667
2 346
8 297
9 208
5 202
SCEN »2
0 667
2 365
8 316
9 231
5 233
SCEN «
2 212
2 101
5 89
5 68
6 67
SCEN SI
2 212
2 106
5 94
5 74
6 75
SCEN »1
2 212
2 111
5 ICO
5 31
t> 3-.
SCEH =2
2 212
2 101
5 63
5 67
6 66
SCEN =2
2 212
2 106
5 93
S 73
6 73
SCEN 82
2 212
2 111
5 93
5 79
•> S3
SCEN 51
2 20°
4 105

10
0
6
5
3
MO
0
3
3
0
1
HI
0
9
9
8
5
10
0
6
9
a
7
MO
0
3
1
a
a
HI
0
9
S
1
4
10
1
3
5
7
2
no
i
4
6
8
3
HI
1
3
0
5
3
to
1
3
2
4
0
MO
1
4
1
3
3
HI
1
3
4
3
0
10
0
7

CO
403.0
150.7
130.4
100.0
96.6
CO
403.0
160.0
139.9
112.8
114.5
CO
403.0
169.3
150.0
127.1
135.5
CO
403.0
150.7
126.6
96.3
93.0
CO
403.0
160.0
135.3
103.6
110.3
CO
403.0
169.8
145.6
122.3
130.5
CO
141.5
52.9
45.8
35.1
33.9
CO
141.5
56.2
49.1
39.6
40.2
CO
141.5
59.6
52.7
4*. 6
<+7 . b
CO
141.5
52.9
-.4.5
33.3
32.6
CO
141.5
56.2
47.7
33.1
33.7
CO
141.5
59.6
51.1
43.0
••5.3
CO
132.6
49.6

4




4





4





4





4





4





4





4





4





*





4





4





4



7 1
79.3
30.7
25.3
17 C
i I - y
17.5
7 1
79.3
32.5
27.6
19.6
20.6
7 1
79.3
34.5
29 5
22.0
24.2
7 1
79.3
30.7
25.3
17.5
17.5
7 1
79.3
32.5
27.6
19.6
20.6
7 1
79.3
34.5
29.5
22.0
24.2
7 1
23.1
10.9
9.1
6.2
6.2
7 1
23.1
11.5
9.3
7.0
7.3
7 1
23.1
12.2
10. S
7.3
8.0
7 1
28 1
10.9
'.1
5 . 2
6.2
7 1
28.1
11.5
9.8
7.0
7.3
7 1
23.1
12.2
10.5
7 3
3.5
~ 1
26. 7
10.3

2 4 9242527
151.6 8
103.6 9
33.2 9
32.6 10
16.3 14
2 4 9242527
151.6 8
115.5 10
94.3 10
36.9 11
19.4 17
2 4 9242527
151.6 3
122.7 10
101.7 10
41.7 13
23.0 20
2 4 0242527
151.6 3
108.6 9
33.2 1
32.6 10
16.3 14
2 4 9242527
151.6 8
115.5 10
94.8 10
36.9 11
19.4 17
2 4 9242527
151.6 3
122.7 10
101.7 10
41.7 13
23.0 20
2 4 9242527
24.3
17.8
14.4
5.3
2.7
2 4 9242527
24.3
13.9
15.5
6.0
3.2 1
2 4 9242527
24.8
20.1
16.6
6.8
3.3 I
2 4 =242527
2t.3
17.8
14.4
5. 3
2.7
2 4 "242527
24.3
18.9
15.5
6.0
1.2 1
2 4 <=242527
24.3
20.1
1^ . 6
5 3
3.o 1
2 4 33^2Si7
23.3 3
16.7 3


1
4
5
6

1
o
2
7
2

1
6
9
2
2

1
4
5
4
6

1
0
2
7
2

1
6
9
2
2

5
6
6
6
9

5
6
6
7
1

5
7
7
3
2

5
6
6
o
9

5
6
6
7
1

S
~
7
3
C

2
7


.9
1.1
1.1


3
1.1
1.1
1.4
1.3

q
1.1
1.1
I.*
1.6

9
1.1
1.1
1.4
1.6

.9
1.1
1.1
1.4
1.6

o
1.1
1.1
1.4
1.6

.5
.6
.6
.3
. 9

.5
.6
.6
.3
.9

.5
0
.6
.3
3

.5
. 0
.4
.3
.9

.5
. 6
.6
3
Q

.5
. b
. 3
.3
i

.0
.0


7
7
7
5

T
7
7
3
3

7
7
7
8
3

7
7
7
8
3

7
7
7
a
3

7
7
7
3
3

7
7
7
7
3

7
7
7
7
a

7
7
7
7
3

;•
~
7
~
8

7
7
7
7
£

7
7
7
7
3

13
14

5
9
9


5
Q
9
3
6

5
9
9
3
6

5
9
9
3
6

5
9
9
3
6

5
9
9
3
6

2
6
6
9
2

;
6
6
9
2

2
6
o
9
2

2
3
a
9
2

2
6
6
9
2

2
6
4
3
2

&
3

16.6
19.3
19.7
25.3

13.6
19.3
19.7
22.3
25.3

16.6
19.3
19.7
22.3
2S.3

16.6
19.3
19.7
22.3
25.3

16.0
19.3
9.7
2.3
5.3

6.6
9.3
9.7
2.3
5.3

9.5
1.0
11.3
12.8
14.5

'.S
11.0
11.3
12.3
14.5

9 5
11.3
11.3
12.3
1».5

9.5
11.0
11.3
12.3
iH.S

9.5
11.0
11.3
12.8
14.5

9.5
11.0
11.3
12.3
1- . 5

9.6
11.1
Figure 4-3.  Emissions Data File - Example Listing
                          30

-------
SOATA.L 3.
DATA 9R1Q1 SL74T9 07/01/81
1.
2.
3.
4.
5.
6.
7.
3.
9.
10 .
11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
23.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
53.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
001 AQCR A
1978 98.3

1934 47.0

1985 42.3

1990 31.3

1995 31.2
001 AQCR A
1978 98.3

1984 49.3

1985 44.7

1990 33.9

1995 34.9

001 AQCR A
1978 98.3

1984 51.3

1935 47.3

1990 36.9

1995 39.2

002 AQCR B
1978 33.4

1984 16.7

1985 15.4

1990 12.4

1995 12.4

002 AQCR B
1978 33.4

1984 17.4

1985 16.0

1990 13.1

1995 13.3

002 AQCR B
1978 33.4

1984 18.1

1985 16.3

1990 13.9

1995 14.3

003 AQCR C
1978 21.3

1984 11.0
"
1985 10.1

1990 8.1

12=36:21 (0)
BASELINE LO VOC
61.8 160.1 61.9
4.4
42.1 89.1 22.0
4.4
42.5 34.8 19.9
4.4
44.2 75.5 11.4
4.4
4.4
BASELINE (10 VOC
61.3 160.1 61.9
4.4
42.1 91.5 23.3
4.4
42.5 37.2 20.2
4.4
44.2 78.1 12.3
4.4
46.1 81.0 11.1
4.4
BASELINE HI VOC
61.8 160.1 61.9
4.4
42.1 93.9 24.7
4.4
42.5 89.7 21.7
4.4
44.2 31.1 14.5
4.4
46.1 35.3 13.1
4.4
BASELINE LO VOC
15.0 48.4 21.3
2.6
14.8 31.6 7.6
2.6
14.8 30.2 6.5
2.6
14.3 27.2 3.9
2.6
15.0 27.4 3.2
2.6
BASELINE MO VOC
15.0 48.4 21.3
2.6
14.3 38.2 3.0
2.6
14.3 30.9 7.0
2.6
14.8 27.9 4.4
2.6
15.0 23.3 3.3
2.6
BASELINE HI VOC
15.0 48.4 21.3
2.6
14.8 33.0 9.5
2.6
14.8 31.6 7.5
2.6
14.8 28.7 5.0
2.6
15.0 29.3 4.5
2.6
BASELINE LO VOC
13.5 34.8 13.3
2.5
13.4 24.4 4.7
2.5
13.4 23.5 4.1
2.5
13.4 21.6 2.4
2.5

4 17 1
12.5
.1
4.7
.0
4.1
.0
2.4
.0
.0
4 17 1
12.5
.1
5.0
.0
4.4
.0
2.7
.0
2.3
.0
4 17 1
12.5
.1
5.3
.0
4.7
.0
3.0
.0
2.7
.0
4 17 1
4.3
.0
1.6
.0
1.4
.0
.8
.0
.7
.0
4 17 1
4.3
.0
1.7
.0
1.5
.0
.9
.0
.9
.0
4 17 1
4.3
.0
1.8
.0
1.6
.0
1.0
.0
.9
.0
4 17 1
2.7
.0
1.0
.0
.9
.0
.5
.0







2 4-910111213142326272329303132
11.6
8.8
6.4
2.0
5.2
2.0
2.0
2.2
2.4
4.2
.0
4.9
.0
5.0
.0
5.2
.0
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.3
2 . 3
33.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.4

.5

.5

.6


.6

.7

.7

.8
.9

2.2

2.6

2.7

3.0
3.5



2.6

3.0

3.0

3.4
3.3

2 4 910111213142326272829303132
11.6
8.8
6.8
2.0
5.5
2.0
2.3
2.2
1.3
2.4
4.2
.0
5.2
.0
5.4
.0
5.9
.0
8.9
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.8
2.3
33.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.2
.4

.5

.5

.6

.6

.6

.7

.7

.3

.9

2.2

2.6

2.7

3.0

3.5

2.6

3.0

3.0

3.4

3.8

2 4 910111213142326272829303132
11.6
3.8
7.2
2.0
5.9
2.0
2.6
2.2
1.6
2.4
4.2
.0
5.5
.0
5.7
.0
6.6
.0
10.5
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.3
2.3
38.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.2
.4

.5

.5

.6

.6

.6

.7

.7

.8

.9

2.2

2.6

2.7

3.0

3.5

2.6

3.0

3.0

3.4

3.3

2 4 910111213142326272829303132
2.3
3.0
1.3
2.5
1.0
2.4
.4
2.1
.2
1.9
.4
.3
.5
.3
.5
.3
.5
.2
.7
.2
.7
3.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9

3.4

3.5

4.0

4.6

.2

.2

.2

.3

.3

.2

.2

.2

.3

.3

.9

1.0

1.1

1.2

1.3

2 4 910111213142326272829303132
2.3
3.0
1.3
2.5
1.1
2.4
.5
2.1
.3
1.9
.4
.3
.5
.3
.5
.3
.6
.2
.3
.2
.7
8.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9

3.4

3.5

4.0

4.6

.2

.2

.2

.3

.3

.2

.2

.2

.3

.3

.9

1.0

1.1

1.2

1.3

2 4 910111213142326272829303132
2.3
3.0
1.4
2.5
1.2
2.4
.5
2.1
.3
1.9
.4
.3
.5
.3
.5
.3
.6
.2
1.0
.2
.7
3.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9

3.4

3.5

4.0

4.6

.2

.2

.2

.3

.3

.2

.2

.2

.3

.3

.9

1.0

1.1

1.2

1.3
i
2 4 910111213142326272829303132
1.2
2.4
.7
2.0
.5
1.9
.2
1.7
1.4
.0
1.6
.0
1.7
.0
1.7
.0
1.3
8.6
1.3
8.9
1.3
9.9
1.3
9.2
.0
.0
.0
.0
.0
.0
.0
.0
.4

.5

.5

.6

.0

.0

.0

.0

.4

.5

.5

.6

.6

. 7

. 7

.8

Figure 4-4.  VOC Emissions Data File - Example Listing
                                      31

-------
                   Table 4-2.  Air Quality Data File Output Format
RECORD COLUMNS
NUMBER
1 1-4
5-8
9-14
15-19
21-22
23-24
2 to NREC* 2-4
5-19
21-28
30-31
34-37
38-42
43-47
51-54
55-58
61-64
65-69
131-134
135-139
FORMAT
A4
A4
F6.2
F5.3
12
12
A3
3A4,A3
AS
A2
14
F5.1
F5.1
15
F5.1
15
F5.1
15
F5.1
DESCRIPTION
Pollutant name, e.g. 03.
Pollutant units, e.g. PPM.
Ambient Standard
Value for rounding
Pollutant sequence code number
Number of projection years
Region ID number
Region name
Control strategy name
Growth rate name
Base year
Base year air quality concen-
tration
Background for CO, N02;
NMHC/NO Ratio for ozone
A
First projection year
Projected concentration
Second projection year
Projected concentration
Ninth projection year
Projected concentration
* The total  number of records is given by, NREC = strategies* growth rates*
  source regions + 1
                                        32

-------
SO ATA, L 9.
DATA 9R1Q1 SL74T9 07/01/81 12
1.
2.
3.
4.
5.
6.
7.
3.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
C08
100
100
100
100
100
100
041
041
041
041
041
041
001
001
001
001
001
001
035
035
035
035
035
035
ERRORS
-36:07 (0)








PPM 9.00 .500 2 4
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY D
COUNTY D
COUNTY D
COUNTY D
COUNTY D
COUNTY D
: HONE. TIME:
SCEN SI
SCEN #1
SCEN SI
SCEN #2
SCEN 92
SCEN 82
SCEN #1
SCEN SI
SCEN SI
SCEN S2
SCEN S2
SCEN S2
SCEN SI
SCEN SI
SCEN SI
SCEN #2
SCEN 92
SCEN S2
SCEN SI
SCEN SI
SCEN SI
SCEN »2
SCEN S2
SCEN S2
0.540 SEC
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984

11.6 1985
12.3 1985
13.1 1985
11.6 1935
12.3 1985
13.1 1985
5.7 1985
6.0 1985
6.4 1985
5.7 1985
6.0 1985
6.4 1985
9.8 1985
10.4 1985
11.0 1985
9.8 1985
10.4 1935
11.0 1985
7.4 1985
7.8 1935
8.3 1985
7.4 1985
7.8 1985
8.3 1985

9.9 1990
10.6 1990
11.3 1990
9.7 1990
10.4 1990
11.2 1990
4.9 1990
5.2 1990
5.6 1990
4.8 1990
5.1 1990
5.5 1990
8.5 1990
9.1 1990
9.7 1990
8.4 1990
8.9 1990
9.5 1990
6.3 1990
6.8 1990
7.2 1990
6.2 1990
6.7 1990
7.1 1990

6.3 1995
7.1 1995
8.0 1995
6.2 1995
7.0 1995
7.8 1995
3.4 1995
3.8 1995
4.3 1995
3.3 1995
3.7 1995
4.1 1995
6.2 1995
6.9 1995
7.6 1995
6.0 1995
6.7 1995
7.5 1995
4.3 1995
4.8 1995
5.3 1995
4.2 1995
4.7 1995
5.2 1995

5.8
6.8
8.0
5.6
6.6
7.8
3.2
3.7
4.4
3.1
3.6
4.2
6.0
6.9
8.1
5.8
6.8
7.9
4.0
4.7
5.5
3.9
4.6
5.3

Figure 4-5.  Unsorted CO Air Quality Data File
                                       33

-------
the data records are output in source region - growth rate - control scenario



sequence.  These data must be sorted in reverse sequence, control scenario-growth



rate - source region, before the air quality summary reports can be generated.



Figure 4-6 shows the sorted air quality data file.





4.4  Air Quality Summary Reports



     These reports summarize the air quality projections across all source regions



for each control scenario - growth rate combination.  Figure 4-7 illustrates an



example Linear Rollback Report for CO.  The format of the EKMA report for ozone



is shown as Figure 4-8.  Note that the ambient NMHC/NO  ratio is displayed for
                                                      A


each source region.  A default ratio of 9.5:1 is  assumed in the absence of



measured data.





     4.4.1  Source Region Projections



          Estimated  air quality concentrations and expected exceedances of the



NAAQS  in each projection year are displayed for the  individual source regions.



As described  in Section 2.1, CO and N02 concentrations are estimated using the



Modified Rollback Model, whereas ozone concentrations are estimated from the



standard isopleth diagram of EKMA.





          Accompanying each projected air  quality concentration is the number of



expected exceedances of the NAAQS.  For CO and 0.,, the number of exceedances is



obtained from a one-parameter exponential  distribution fitted through the design



value  concentration.  Studies have shown the exponential distribution to provide



a  good description of air quality concentration distributions, especially in the



upper  tail of the distribution. '   As shown in Figure 4-9, the exponential



distribution plots as a straight line on semilog  paper.
                                         34

-------
3DATA.L 9.
DATA 9R1Q1 SL74T9 07/01/81 12:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
1*.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
COS
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
ERRORS
36:09 (0)








PPM 9.00 .500 2 4
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
: NONE. TIME:
SCEN ftl
SCEN 81
SCEN SI
SCEN #1
SCEN 82
SCEH 82
SCEN 32
SCEN 82
SCEN 81
SCEN #1
SCEN 81
SCEN #1
SCEN 82
SCEN #2
SCEN 82
SCEN 82
SCEN #1
SCEN 81
SCEN #1
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 82
0.540 SEC
HI
HI
HI
HI
HI
HI
HI
HI
LO
LO
LO
LO
LO
LO
LO
LO
MD
MD
MD
MD
MD
MD
MD
MD
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934
1984
1984
1984
1984
1984
1984
1984
1984
1984

13.1 1985
6.4 1985
11.0 1985
8.3 1985
13.1 1985
6.4 1985
11.0 1985
8.3 1935
11.6 1985
5.7 1985
9.8 1985
7.4 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
12.3 1985
6.0 1935
10.4 1985
7.8 1985
12.3 1985
6.0 1935
10.4 1985
7.8 1985

11.3 1990
5.6 1990
9.7 1990
7.2 1990
11.2 1990
5.5 1990
9.5 1990
7.1 1990
9.9 1990
4.9 1990
8.5 1990
6.3 1990
9.7 1990
4.8 1990
8.4 1990
6.2 1990
10.6 1990
5.2 1990
9.1 1990
6.8 1990
10.4 1990
5.1 1990
8.9 1990
6.7 1990

8.0 1995
4.3 1995
7.6 1995
5.3 1995
7.8 1995
4.1 1995
7.5 1995
5.2 1995
6.3 1995
3.4 1995
6.2 1995
4.3 1995
6.2 1995
3.3 1995
6.0 1995
4.2 1995
7.1 1995
3.8 1995
6.9 1995
4.8 1995
7.0 1995
3.7 1995
6.7 1995
4.7 1995

8.0
4.4
8.1
5.5
7.8
4.2
7.9
5.3
5.8
3.2
6.0
4.0
5.6
3.1
5.8
3.9
6.8
3.7
6.9
4.7
6.6
3.6
6.8
4.6

SlXQT TDS*ROLLBACK.A<3PRNT
        Figure  4-6.  Sorted CO Air  Quality  Data File
                                                   35

-------
             LINEAR

     STRATEGY: SCEN si
 ROLLBACK

GROWTH RATE SCENARIO: HI
    COS AIR QUALITY CONCENTRATION (  PPM) AND VIOLATIONS
                 (STANDARD IS  9.00  PPM)

                           PROJECTED
               BASE        198*      1985      1990      1995

 G I 0 N     YEAR CONC BKGD
UNTY A       1978   25.   0.
UNTY B       1978   13.   0.
UNTY C       1973   22.   0.   11.   3   10.
UNTY D       1978   16.   0.    8.   0    7.   0    5.    0    6.
 CONC EXEX CONC EXEX CONC  EXEX CONC EXEX
  13.  10   11.   4    8.   0    8.   0
   6.   0    6.   0    4.   0    4.   0
                  1    8.   0    8.   0
E PERCENT CHANGE
 REGIONS ABOVE  STD
NO. OF EXCEEDANCES
      -49.
         2
        13
-55.
   2
   5
-67.
   0
   0
-65.
   0
   0
JTE: AIR QUALITY CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING  EPA GUIDELINES.
COMPARISONS WITH STANDARDS  AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE
    Figure  4-7.   Example CO  Air  Quality Summary Report
                                                   36

-------
                              E K M A

            STRATEGY: BASELINE    GFJOWTH RATE  SCENARIO; HI

          03 AIR QUALITY CONCENTRATION (  PPM) AND  VIOLATIONS
                      (STANDARD IS   .12  PPM)
                                 PROJECTED
                     BASE
                                    1984
                                              1985
                                                       1990
                                                                 1995
   REGION     YEAR CONC RATIO CONC EXEX CONC  EXEX CONC EXEX CONC EXEX
001 AQCR A        1978  .16 9.50   .13   1    .12    0    .12   0   .12   0
002 AQCR B        1978  .09 9.50   .08   0    .07    0    .07   0   .07   0
003 AQCR C        1978  .13 9.50   .11   0    .11    0    .11   0   .11   0
004 AQCR D        1978  .18 9.50   .15   3    .14    2    .14   2   .14   2
AVERAGE PERCENT CHANGE
NO. OF REGIONS ABOVE STD
TOTAL NO.  OF  EXCEEDANCES
-17.
   2
   4
-19.
   1
   2
-23.
   1
   2
-21.
   1
   2
*** NOTE:  AIR QUALITY CONCENTRATIONS ARE ROUNDED  FOR DISPLAY FOLLOWING EPA GUIDELINES.
THUS,  COMPARISONS WITH STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
         Figure  4-8.   Example  Ozone  Air  Quality  Summary Report
                                                       37

-------
                          CONCENTRATION, ppm
Figure 4-9.  Hourly carbon monoxide measurements  for  1972 in
             Los Angeles, CA
        SOURCE:  Reference 1
                              38

-------
          The only parameter needed to fully describe the one-parameter exponential
distribution is the mean.   Since the mean can be estimated from the projected
design value and its corresponding frequency of occurrence, an exponential distri-
bution unique to each area being modeled can be obtained.  Using the definition
of the NAAQS for CO from Reference 7 and the tabular procedure for ozone in
Reference 8, the design value is assumed to be the second highest value for the
specified averaging time.   For the annual average N02 standard, a direct comparison
between the projected concentration and the level of the NAAQS is made.

     4.4.2  Average Percent Changes
          The air quality summary statistic, average percent change, is calculated
as the average of the average percent change between the base year air quality
concentration and the projection year concentration in each region, i.e., each
region is given equal weight in the averaging process.  These calculations are
performed using one more significant figure than displayed for the air quality
concentrations.

     4.4.3  Number of Source Regions Above the Level of the NAAQS
          Following the guidelines in References 7 and 8, the stated level of the
standard is taken as defining the number of significant figures to be used in
comparisons with the standard.  For example, the standard level of 0.12 ppm for
the ozone NAAQS means that measurements are to be rounded to two decimal places
(0.005 rounds up); therefore 0.125 ppm is the smallest concentration in excess of
the level of the standard.  Since the model performs all its calculations in ppm,
the comparisons with the CO and N02 standards are based on two and three signi-
ficant figures, respectively.  Thus, the number of regions above the level of the
NAAQS is simply the sum of all those regions meeting the above criteria for that
projection year.
                                         39

-------
     4.4.4  Total Number of Exceedances
          As the name suggests, this statistic is simply the total number of
exceedances across all regions for each projection year-
                                         40

-------
5.0  EXAMPLE MODEL RUNS



     Three example model simulations are presented  in the following sections.



Example 1 illustrates" the use of the model to project emission  inventories,  only.



Example 2 illustrates how both CO and VOC emission  inventories  and CO and ozone



air quality projections can  be obtained in a single  run.  Finally, Example 3



shows how to reprint the Air Quality Summary Reports from a demand terminal  using



an air quality data file saved from a previous model simulation.





5.1  Emission Projections



     Figure 5-1 presents a sample batch run for  projecting CO emission  inven-



tories.  Control Card 1, displayed on line 8 of  Figure  5-1, sets the simulation



parameters.  Emission Summary Reports and an emissions  data file will be output



by ROLLBACK (EIFLAG=2).  Also, if the source region  data cards  contain  stationary



source contribution factors, they will be set equal  to  1.0 prior to projecting



future emissions.  The  input/output unit selections  indicate that the Emissions



Sunmary Report will be  output on the system print  device and the emissions data



file will be written on the  public disk file named  "CO-EMISS."  The remaining



fields on Control Card  1 indicate that the source  areas fall within a single



group; two control scenarios are to be evaluated;  emissions are to be estimated



for four projection years; there are three growth  rate  scenarios; and there  are



four mobile and three stationary source emissions  categories.   The source selec-



tion codes, shown on line 1  of Figure 5-2, refer to  the source  categories in



Table 3-3.  The remaining control strategy and source region input data cards and



selected model outputs  for this example are shown  in Figures 5-2 through 5-5.
                                        41

-------
 1       1.   3RUN.R/R RUNID.ACCOUNT/USERIO.PROJID,TIME,PAGES
 2       2.   3PASSWO XYZ
 3       3.   3SYM  PRINT*,2,OATA1J
 4       <+.   3ASG.CP CO-EMISS.
 5       5.   aUSE  8,CO-EMISS.
 6       6.   2HDG.P   CO EMISSIONS PROJECTIONS - EXAMPLE 91
 7       7.   3XQT  TDS*ROLIBACK.ROLLBACK
 8       8.   02060809 CO     R=01 S=02 N=04 6=03 M=04 S=03
 9       9.   3ADD.P MY*FILE.CO-STRATEGY
10      10.   3>ADD,P MY*FILE.CO-DATA
11      11.   3FIN
12
13
14
is      EXPLANATION:
16
17       1.   RUN CARD FOR ROUTINE BATCH RUN WITH DEFAULT CORE ALLOCATION (50K)
18       2.   USER  PASSWORD
19       3.   SEND  TWO COPIES OF  PRINTER OUTPUT TO TERMINAL 'DATA1J'.
20       4.   ASSIGN A NEW PUBLIC DATA FILE NAMED 'CO-EMISS'.
21       5.   USE UNIT S3 WITH  FILE  'CO-EMISS1. ( EMISSIONS DATA FILE )
22       6.   PRINTS HEADING, DATE, AND NUMBERS EACH PAGE.
23       7.   EXECUTE THE STRATEGY MODEL TO PROJECT CO EMISSIONS ONLY.
2<+       8.   THE CONTROL CARD  SELECTS EMISSIONS REPORTS ONLY, IGNORING
25           THE STATIONARY SOURCE CONTRIBUTION FACTORS.
26       9.   ADD THE CO STRATEGY CARDS TO THE RUN STREAM.
27      10.   ADD THE CO EMISSIONS AND AIR QUALITY DATA TO THE RUN STREAM.
23      11.   TERMINATES THE RUN.
      Figure 5-1.   Example #1  -  Run  Stream
                                                     42

-------
 01020409242527
 SCEN 81 1 39 33    86             58
 SCEN 81 1100100100100      100100
 SCEN 81 1 34 27    72             52
 SCEN 81 1100100100100      100100
 SCEN 81 1 27 16    31             32
 SCEN 81 1100100100100      100100
 SCEN 81 1 27 14    18             25
 SCEN #1 1100100100100      100100
 SCEN 82 1 39 33    86             58
 SCEN »2 iiooiooionioo      looioo
 SCEN 82 1 33 27    72             52
 SCEN 82 1100100100100      100100
 SCEN 82 1 26 16    31             32
 SCEN 82 1100100100100      100100
 SCEN 82 1 26 14    18             25
 SCEN 82 1100100100100      100100
                                                          84

                                                          85

                                                          90

                                                          95

                                                          84

                                                          85

                                                          90

                                                          95
Figure 5-2.
Example  #1  - Control Card 2  and Mobile/Stationary Source Strategy
Cards in MY*FILE.CO-STRATEGY^
                                              43

-------
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
38
39
40
100 COUNTY A 23
100 403.0 79.3
100
100 0.9 7.5
100LO -07 27 -3
100LO 35 43 08 00
100MD 03 37 -2
100MD 35 43 08 00
100HI 13 47 -1
100HI 35 43 08 00
041 COUNTY B 15
041 141.5 28.1
041
041 0.5 7.2
041LO -07 27 -3
041LO 35 43 08 00
041MD 03 37 -2
041MD 35 43 08 00
041HI 13 47 -1
041HI 35 43 08 00
001 COUNTY C 25
001 132.6 26.7
001
001 0.0 13.6
001LO -07 27 -3
001LO 35 43 08 00
001MD 03 37 -2
001MO 35 43 08 00
001HI 13 47 -1
001HI 35 43 08 00
035 COUNTY D 18
035 183.0 35.8
035
035 2.2 7.2
035LO -07 27 -3
035LO 35 43 08 00
035MD 03 37 -2
035MD 35 43 03 00
035HI 13 47 -1
035HI 35 43 08 00
.3 0.0 COS MG/M
151.6

16.6
123
25 00
134
25 00
145
25 00
.1 0.0 C08 MG/M
24.8

9.5
123
25 00
134
25 00
145
25 00
.2 0.0 COS MG/M
23.3

9.6
123
25 00
134
25 00
145
25 00
.1 0.0 COS MG/M
58.0

14.6
123
25 00
134
25 00
145
25 00
8.1
   .0.2  .2
 .5
   .0.2  .2
3.2
   .0.2  .2
4.7
   .0.2  .2
1781
   2
   3
   4
   5
   6
   5
   6
   5
   6
1781
   2
   3
   4
   5
   6
   5
   6
   5
   6
1781
   2
   3
   4
   5
   6
   5
   6
   5
   6
1781
   2
   3
   4
   5
   6
   5
   6
   5
   6
     Figure 5-3.   Example #1  - Source  Region  Data Cards  for CO  in MY*FILE.CO-DATA
                                                44

-------
ISSIONS PROJECTIONS - EXAMPLE 81

                  »**   EMISSIONS INVENTORY PROJECTIONS   ***

ON= 100 COUNTY  A                         STRATEGY:SCEN SI

»NT:  CO

                               EMISSIONS (1000  TONS/YEAR)
                                                                      DATE 070161
                                                                                       PAGE
                                                    GROWTH  RATE:LO
                           SOURCE  CATEGORIES
        LDV-6  LDT1-G
                        HOG
                                HDD
                                       POINT
                                                AREA  OTHER
        403.0
                 79.3    151.6
                                 8.1
                                          .9
                                7.5
                                                       16.6
        150.7
        130.4
        100.0
         96.6
30.7
25.S
17.5
17.5
108.6
 88.2
 32.6
 16.3
 9.5
10.4
14.6
1.1
1.1
1.4
1.6
7.9
7.9
8.3
8.6
19.3
19.7
22.3
25.3
      MOBILE
      TOTAL

      642.0
      299.4
      253.9
      160.5
      144.8
STATIONARY
  TOTAL

   25.0
   28.2
   28.8
   31.9
   35.5
        GRAND
        TOTAL

         667.0
         327.6
         282.7
         192.5
         180.3
    Figure 5-4.   Example #1  -  CO  Emissions  Inventory  Summary Report
                                                   45

-------
       CO EMISSIONS PROJECTIONS - EXAMPLE *1
JDATA.L 8.
DATA 9R191 SL74T9 07/01/81
1.
2.
3. •
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

IS.
16.
17.
13.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
43.
49.
SO.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
70.
71.
72.
73.
74.
75.
100 COUNTY A
1978 642.0
• 1984 299.4
1985 253.9
1990 160. S
1995 144.8
100 COUNTY A
1978 642.0
1984 318.0
1985 272.4
1990 181.0
1995 171.6
100 COUNTY A
1978 642.0
1984 337.6
1985 292.1
1990 203.9
1995 203.0
100 COUNTY A
1978 642.0
1984 299.4
198S 250.1
1990 156.3
1995 141.3
100 COUNTY A
1978 642.0
1984 313.0
1985 268.3
1990 176.8
1995 167.4
100 COUNTY A
1978 642.0
1984 337.6
1985 287.7
1990 199.2
1995 198.0
041 COUNTY 8
1978 194.9
1984 32.1
1985 70.0
1990 47.3
1995 43.7
041 COUNTY B
1978 194.9
1984 87.2
1985 75.0
1990 53.3
1995 51.7
041 COUNTY B
1978 194.9
1984 92.6
1985 80.4
1990 60.0
1995 61.2
041 COUNTY B
1978 194.9
1984 82.1
1935 68.6
1990 46.0
1995 42.4
041 COUNTY B
1978 194.9
1984 87.2
1985 73.6
1990 51.8
1995 50.2
041 COUNTY B
1978 194.9
1984 92.6
1985 78.9
1990 53.4
1995 59.4
001 COUNTY C
1978 185.3
1984 80.3
12:35:52 (0)
SCEN fl
25.0 667
28.2 327
28.3 282
31.9 192
35.5 180
SCEN *1
LO
.0
.6
.7
.5
.3
MD
25.0 667.0
28.2 346
28.3 301
31.9 213
35.5 207
SCEN »1
25.0 667
28.2 365
28.8 320
31.9 235
3S.5 238
SCEN 92
25.0 667
28.2 327
28.8 278
31.9 188
35.5 176
SCEN *2
25.0 667
28.2 346
28.8 297
31.9 208
35.5 202
SCEN *2
25.0 667
28.2 365
28.8 316
31.9 231
.3
.3
.0
.1
HI
.0
.9
.9
.8
.5
LO
.0
.6
.9
.3
.7
MO
.0
.3
.1
.3
.8
HI
.0
.9
.S
.1
35.5 233.4
SCEN »1
17.2 212
19.2 101
19.5 39
21.5 63
23.6 67
SCEN *1
17.2 212
19.2 106
19.5 94
21.5 74
23.6 75
SCEN «1
17.2 212
19.2 111
19.5 100
21.5 31
23.6 34
SCEN >2
17.2 212
19.2 101
19.5 38
21.5 67
23.6 66
SCEN 32
17.2 212
19.2 106
19.5 93
21.5 73
23.6 73
SCEN *2
17.2 212
19.2 111
19.5 98
21.5 79
23.5 83
SCEN SI
23.2 209
25.4 105
LO
.1
.3
.5
.7
.2
MD
.1
.4
.6
.3
.3
HI
.1
.3
.0
.5
.3
LO
.1
.3
.2
.4
.0
MD
.1
.4
.1
.3
.3
HI
.1
.3
.4
.8
.0
LO
.0
.7
CO
403.0
150.7
130.4
100.0
96.6
CO
403.0
160.0
139.9
112.8
114.5
CO
403.0
169.8
150.0
127.1
135.5
CO
403.0
150 .7
126.6
96.3
93.0
CO
403.0
160.0
135.8
108.6
110.3
CO
403.0
169.3
145.6
122.3
130.5
CO
141.5
52.9
45.8
35.1
33.9
CO
141.5
56.2
49.1
39.6
40.2
CO
141.5
59.6
52.7
44.6
47.6
CO
141.5
52.9
44.5
33.8
32.6
CO
141.5
56.2
47.7
38.1
38.7
CO
141.5
59.6
51.1
43.0
45.8
CO
132.6
49.6
4 71
79.3
30.7
25.8
17.5
17.5
4 71
79.3
32.5
27.6
19.6
20.6
4 71
79.3
34.5
29.5
22.0
24.2
4 71
79.3
30 . 7
25.3
17.5
17.5
4 71
79.3
32.5
27.6
19.6
20.6
4 71
79.3
34.5
29.5
22.0
24.2
4 71
28.1
10.9
9.1
6.2
6.2
4 71
28.1
11.5
9.3
7.0
7.3
4 71
28.1
12.2
10.5
7.8
3.6
4 71
28.1
10.9
9.1
6.2
6.2
4 71
28.1
11.5
9.8
7.0
7.3
4 71
28.1
12.2
10.5
7.8
8.6
4 71
26.7
10.3
2 4 9242527
151.6
108.6
38.2
32.6
16.3
8
9
9
10
14
.1
.4
.5
.4
.6
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242527
151.6
115.5
94.8
36.9
19.4
2 4 9242
151.6
122.7
101.7
41.7
23.0
a
10
10
11
17
527
3
10
10
13
20
.1
.0
.2
.7
.2

.1
.6
.9
.2
.2
.9
1.1
1.1
1.4
1.6

.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6

7.S
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3

16.6
19.3
19.7
22.3
25.3
2 4 9242S27
151.6
83.2
32.6
16.3
8
9
10
14
.1
.5
.4
.6
.9
1.1
1.4
1.6
7.5
7.9
3.3
3.6
16.6
1 Q ^
IT. J
19.7
22.3
25.3
2 4 9242527
1S1.6
115. S
94.8
36.9
19.4
3
10
10
11
17
.1
.0
.2
.7
.2
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
8.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242S27
151.6
122.7
101.7
41.7
23.0
8
10
10
13
20
.1
.6
.9
.2
.2
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242527
24.3
17.8
14.4
5.3
2.7





.5
.6
.6
.6
.9
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.8
14. S
2 4 9242527
24.8
18.9
15.5
6.0
3.2




1
.S
.6
.6
.7
.1
.5
.6
.6
.8
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.8
14.5
2 4 9242S27
24.3
20.1
16.6
6.8
3.8




1
.5
.7
.7
.8
.2
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.8
14.5
2 4 9242527
24.8
17.3
14.4
5.3
2.7





.5
.6
.6
.6
.9
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.3
14.5
2 4 9242527
24.8
13.9
15.5
6.0
3.2




1
.5
.6
.6
.7
.1
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.3
14.5
2 4 9242S27
24.8
20.1
16.6
6.3
3.3




1
.5
.7
.7
.8
.2
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.8
14.5
2 4 9242527
23.3
16.7
3
3
.2
.7
.0
.0
13.6
14.3
9.6
11.1
Figure  5-5.   Example  #1. -  CO Emissions Data File  Listing
                                            46

-------
5.2  Carbon Monoxide and Ozone Projections



     Example 2 illustrates a run stream for carbon monoxide and ozone projections



which can be @STARTed from a demand terminal.  The control cards and functional



descriptions are shown in Figure 5-6.  Figures 5-7 through 5-14 present the input



data and output data files and selected summary reports.  In this example, Control



Cards 1 and 2, and the mobile/stationary source strategy cards for CO, are found



in the data element MY*FILE.CO-SCENARIOS and  for ozone  in MY*FILE.03-SCENARIOS.



Note that both the CO and ozone emissions and air quality data files are output



to temporary disk files which are deleted at  completion of the run.  Also, the CO



data files are overwritten by the ozone data  files.  Since ozone is one of the



pollutants being modeled, the EKMA  isopleth data file is assigned to Input



Unit 11.  All printed output is directed to the remote  batch terminal named



 'DATAU.'





5.3  Reprinting a Previous Simulation



     Example 3 in Figure 5-15 illustrates a procedure for obtaining Air Quality



Summary Reports using data from a previous model simulation which has been saved



in a program file element.  This procedure is executed  from a demand terminal and



routes the Air Quality Summary Reports to a remote batch terminal.
                                         47

-------
 1       1.   J>RUN,R/R  RUNID,ACCOUNTAISERID.PROJID,TIME,PAGES
 2       Z.   SSYM  PRINTS,1.DATA1J
 3       3.   3ASG.A  TDS*OZIPP-ASCII.
 ft       4.   IiUSE  11,TDS*OZIPP-ASCII.
 5       5.   3ASG.CP VOC-REPORT.
 6       6.   3USE  40,VOC-REPORT.
 7       7.   3ASG.T  8.
 8       8.   SASG.T  9.
 9       9.   oiHDG.P    CO  AND  OZONE AIR  QUALITY  PROJECTIONS  -  EXAMPLE  *2
10      10.   aXQT  TDS*ROLLBACK.ROLLBACK
11      11.   3ADD,P  MY*FILE.CO-SCENARIOS
12      12.   SADO.P  MY*FILE.CO-DATA
13      13.   SUS*ER.SORTSDF,A 9.,9.,100,13Z,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A
14      14.   JiXQT  TDS*ROLLBACK.AQPRNT
15      15.   aXQT  TOS*ROLLBACK.ROLLBACK
16      16.   5>ADD,P  MY*FILE.03-SCENARIOS
17      17.   3ADD,P  MY*FILE.03-DATA
18      18.   aUS*ER.SORTSDF,A 9.,9.,100,132,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A
19      19.   3XQT  TDS*ROLLBACK.AQPRNT
20      20.   3FREE VOC-REPORT.
21      21.   aSYM,U  VOC-REPORT.,2,PR
22      22.   3FIN
23
24
25
26      EXPLANATION:
27
28       1.   RUN CARD  FOR 3START RUN.
29       2.   SEND  ONE  COPY OF PRINTER OUTPUT  TO TERMINAL  'OATA1J'.
30       3.   ASSIGN  THE CATALOGED OZIPP DIAGRAM DATA FILE  (ASCII).
31       4.   READ  THE  OZIPP FILE ON UNIT  *11.
32       5.   ASSIGN  A  PUBLIC  FILE NAMED PROJID*VOC-REPORT.
33       6.   ASSIGN  ALTERNATE PRINTS UNIT 840 TO VOC-REPORT.( VOC EMISSIONS  REPORT ).
34       7.   ASSIGN  A  TEMPORARY  FILE 88.  (  EMISSIONS DATA  FILE  ).
35       8.   ASSIGN  A  TEMPORARY  FILE S9.  (  AIR  QUALITY  DATA FILE OUTPUT  ).
36       9.   PRINTS  HEADING,  DATE, AND  NUMBERS  EACH PAGE.
37      10.   EXECUTE THE  STRATEGY MODEL FOR CO.
38      11.   ADD THE CONTROL  CARD AND CO  STRATEGY DATA  TO  THE RUN STREAM.
39      12.   ADD THE CO EMISSIONS AND AIR QUALITY DATA  TO  THE RUN STREAM.
40      13.   SORT  THE  CO  AIR  QUALITY OUTPUT DATA FILE (ASCII) BY GROWTH  RATE,
41           STRATEGY  AND REGION.
42      14.   PRINT THE CO AIR QUALITY SUMMARY REPORTS FOR  EACH  STRATEGY/GROWTH
43           RATE  COMBINATION.
44      15.   EXECUTE THE  STRATEGY MODEL FOR OZONE.
45      16.   ADO THE CONTROL  CARD AND OZONE STRATEGY DATA  TO  THE RUN  STREAM.
46      17.   ADD THE VOC  EMISSICNS AND  OZONE  AIR QUALITY DATA TO THE  RUN STREAM.
47      18.   SORT  THE  OZONE AIR  QUALITY OUTPUT  DATA FILE (ASCII) BY GROWTH  RATE,
48           STRATEGY  AND REGION.
49      19.   PRINT THE OZONE  AIR QUALITY  SUMMARY REPORTS FOR  EACH STRATEGY/GROWTH
50           RATE  COMBINATION.
51      20.   FREE  AND  CATALOG THE FILE  NAMED  VOC-REPORT.
52      21.   SEND  TWO  COPIES  OF  THE EMISSIONS SUMMARY REPORT  TO THE CENTRAL
53           PRINTER AT NCC.  DO  NOT DELETE THE  SYMBIONT PRINT FILE PROJID*VOC-REPORT.
54      22.   TERMINATES THE RUN.
      Figure  5-6.   Example  #2  - Run Stream
                                                       48

-------
               R= 1 S= 2  N= 4 G= 3 M=04 S=  3
00060809 CO
01020409242527
SCEN HI 1  39 33    86            58
SCEN 81 1100100100100      100100
SCEN 81 1  34 27    72  "          52
SCEN #1 1100100100100      100100
SCEN #1 1  27 16    31            32
SCEN #1 1100100100100      100100
SCEN 81 1  27 14    18            25
SCEN 91  1100100100100      100100
SCEN #2  1  39 33    86            58
SCEN 82  1100100100100      100100
SCEN 82  1  33 27    72            52
SCEN 82  1100100100100      100100
SCEN 82  1  26 16    31            32
SCEN 82  1100100100100      100100
SCEN 82  1  26 14    18            25
SCEN 82  1100100100100      100100
                                                                         84

                                                                         85

                                                                         90

                                                                         95

                                                                         84

                                                                         85

                                                                         90

                                                                         95
Figure 5-7.
               Example  #2 -  CO Control Cards  1  and  2  and  Source  Strategy Cards
               in  MY*FILE.CO-SCENARIOS
                                               49

-------
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
00400809 VOC    R= 2 S= 1 N= 4 6= 3 M=10 S=
0102040910111213142326272829303132
BASELIME1 37  32
BASELIHE1
BASELINE1 32  27
BASELINE1
BASELINE1 20  14
BASELINE1
BASELINE1 17  10
BASELIHE1
BASELINES 37  32
BASELINE2
BASELINE2 32  27
BASELINE2
BASELINE2 20  14
BASELIHE2
BASELIME2 17  10
BASELINE2
66             58100100100100100
  100100100100  10100  20100 35100
55  ~"          53100100100100100
  100100100100  10100  20100 35100
25             31100100100100100
  100100100100  10100  20100 35100
16             25100100100100100
  100100100100  10100  20100 35100
66             58100100100100100
  100100100100  10 10  20 20 35 35
55             53100100100100100
  100100100100  10 10  20 20 35 35
25             31100100100100100
  100100100100  10 10  20 20 35 35
16             25100100100100100
  100100100100  10 10  20 20 35 35
70100

70100

70100

70100

70 70

70 70

70 70

70 70
40100

40100

40100

40100

40 40

40 40

40 40

40 40
10084

10085

10090

10095

10084

10085

10090

10095
     Figure 5-8.
             Example #2 - Ozone  Control Cards 1  and  2 and  Source Strategy
            Cards  in MY*FILE.03-SCENARIOS                                    ^
                                                    50

-------
UU1 AUCR
001 61
001 0
001
001LO
001LO
001HD
001MO
001HI
001HI
00 E AQCR
002 21
002 2
002
002LO
002LO
002MD
002MD
002HI
002HI
003 AQCR
003 13
003 0
003
003LO
003LO
003MD
003HD
003HI
003HI
004 AQCR
004 31
004 1
004
004LO
004LO
004MD
004MO
004HI
004HI
A
.9
.4

-07

03

13

B
.3
.9

-07

03

13

C
.3
.4

-07

03

13

D
.3
.0

-07

03

13

12.5
0.6

27

37

47


4.3
0.2

27

37

47


2.7
0.0

27

37

47


6.3
0.3

27

37

47

.157
2.2
0.4
-3
35
-2
35
-1
35
.090

0.2
0.3
-3
35
-2
35
-1
35
.133

0.4
0.0
-3
35
-2
35
-1
35
.180

0.6
0.2
-3
35
-2
35
-1
35
0.0
11.6

4.4

43 00

43 00

43 00
0.0
2.3

2.6

43 00

43 00

43 00
0.0
1.2

2.5

43 00

43 00

43 00
0.0
4.9

3.3

43 00

43 00

43 00
03 PPM

0.1 8
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM


0.0 3
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM


0.0 2
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM


2.6 6
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45


.8 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1.


.0 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1


.4 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1


.4 0.
27 27
19 45
27 27
19 45
27 27
19 45


0 47.
27 27
33 44
27 27
33 44
27 27
33 44
1. 1.


3 8.
27 27
24 50
27 27
24 50
27 27
24 50
1. 1.


0 8.
27 27
33 44
27 27
33 44
27 27
33 44
1. 1.


5 27.
27 27
13 49
27 27
13 49
27 27
13 49


8

08

08

08
1.


8

08

08

08
1


6

08

08

08
1


4

08

08

08
4.2

0.3

00 33

00 33

00 33
1. 1.
.4

0.0

00 33

00 33

00 33
1. 1.
1.4

0.0

00 33

00 33

00 33
1. 1.
2.6

0.0

00 33

00 33

00 33
2.2 0.1



44

44

44
1. 1. 1.
0.7 0.2



44

44

44
1. 1. 1.
1.3 0.0



44

44

44
1. 1. 1.
3.0 0.8



44

44

44
2781
2
2.6 3
4
23 5
6
23 5
6
23 5
6
1781
2
0.9 3
4
23 5
6
23 5
6
23 5
6
1781
2
0.6 3
4
23 5
6
23 5
6
23 5
6
2781
2
1.8 3
4
23 5
6
23 5
6
23 5
6
Figure 5-9.  Example #2 - Source Region Data Cards 1 through 6 for Ozone
             in MY*FILE.03-DATA
                                      51

-------
  CO AND OZONE AIR QUALITY PROJECTIONS  -  EXAMPLE *2

                        #**   EMISSIONS  INVENTORY PROJECTIONS   ***

 LOCATION:  100 COUNTY A                        STRATEGY:SCEN *i

POLLUTANT;  co

                                      EMISSIONS (1000 TONS/YEAR)
                                                               GROWTH RATE;LO
                                  SOURCE  CATEGORIES
               LDV-G  LDT1-G
                               HDG
BASE YR

 1978
PROJ YR

 1984
 1985
 1990
 1995
  403.0
  150.7
  130.4
  100.0
   96.6
           79.3   151.6
30.7
25.8
17.5
17.5
108.6
 88.2
 32.6
 16.3
                                       HDD
                           8.1
 9.4
 9.5
10.4
14.6
                                             POINT
                                                      AREA  OTHER
                                           1.5
1.6
1.6
1.7
1.7
                                                  3.3
3.9
3.9
4.5
5.1
 YEAR

 1978
 1984
 1935
 1990
 1995
MOBILE
TOTAL

642.0
299.4
253.9
160.5
144.8
STATIONARY
  TOTAL

    4.8
    5.4
    5.5
    6.1
    6.8
        GRAND
        TOTAL

         646.8
         304.8
         259.5
         166.6
         151.6
          Figure  5-10.   Example #2 -  CO Emissions Inventory Summary Report
                                                         52

-------
.  9.
.74T9 07/01/81 12:36 = 07 (0)
COS PPM 9.
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
00 .500 2 4
A
A
A
A
A
A
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
D
0
D
SCEN 81
SCEN 81
SCE'N 8i
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN «2
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
LO
MO
HI
LO
MO
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
11.6
12.3
13.1
11.6
12.3
13.1
5.7
6.0
6.4
5.7
6.0
6.4
9.8
10.4
11.0
9.8
10.4
11.0
7.4
7.8
8.3
7.4
7.8
8.3
1965 9
1985 10
1985 11
1985 9
1985 10
1985 11
1985 4
1985 5
1985 5
1985 4
1985 5
1985 5
1985 8
1985 9
1985 9
1985 8
1985 8
1985 9
1935 6
1985 6
1985 7
1985 6
1985 6
1985 7
.9 1990
.6 1990
.3 1990
.7 1990
.4 1990
.2 1990
.9 1990
.2 1990
.6 1990
.8 1990
.1 1990
.5 1990
.5 1990
.1 1990
.7 1990
.4 1990
.9 1990
.5 1990
.3 1990
.8 1990
.2 1990
.2 1990
.7 1990
.1 1990
6.3 1995
7.1 1995
8.0 1995
6.2 1995
7.0 1995
7.8 1995
3.4 1995
3.8 1995
4.3 1995
3.3 1995
3.7 1995
4.1 1995
6.2 1995
6.9 1995
7.6 1995
6.0 1995
6.7 1995
7.5 1995
4.3 1995
4.8 1995
5.3 1995
4.2 1995
4.7 1995
5.2 1995
5.8
6.8
8.0
5.6
6.6
7.8
3.2
3.7
4.4
3.1
3.6
4.2
6.0
6.9
8.1
5.8
6.8
7.9
4.0
4.7
5.5
3.9
4.6
5.3
ITA.  ERRORS; NONE. TIME--  0.540 SEC. IMAGE COUNT: 25
    Figure  5-11.  Example #2  -  Unsorted  CO Air Quality Data File
                                               53

-------
SDATA.L 9.
DATA 9R1Q1 SL74T9 07/01/81 12:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
COS
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
ERRORS
36:09 (0)








PPM 9.00 .500 2 4
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY 0
COUNTY A
COUNTY B
COUNTY C
COUNTY 0
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
: NONE. TIME:
SCEN 91
SCEJN #1
SCEN SI
SCEN 81 .
SCEN #2
SCEN 92
SCEN 82
SCEN 82
SCEN 91
SCEN 81
SCEN SI
SCEN SI
SCEN 82
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 82
0.540 SEC
HI
HI
HI
HI
HI
HI
HI
HI
LO
LO
LO
LO
LO
LO
LO
LO
MD
MD
MD
MD
MD
MD
MD
MD
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934

13.1 1985
6.4 1985
11.0 1985
8.3 1985
13.1 1985
6.4 1985
11.0 1985
8.3 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
12.3 1985
6.0 1985
10.4 1985
7.8 1985
12.3 1985
6.0 1985
10.4 1985
7.8 1985

11.3 1990
5.6 1990
9.7 1990
7.2 1990
11.2 1990
5.5 1990
9.5 1990
7.1 1990
9.9 1990
4.9 1990
8.5 1990
6.3 1990
9.7 1990
4.8 1990
8.4 1990
6.2 1990
10.6 1990
5.2 1990
9.1 1990
6.8 1990
10.4 1990
5.1 1990
8.9 1990
6.7 1990

8.0 1995
4.3 1995
7.6 1995
5.3 1995
7.8 1995
4.1 1995
7.5 1995
5.2 1995
6.3 1995
3.4 1995
6.2 1995
4.3 1995
6.2 1995
3.3 1995
6.0 1995
4.2 1995
7.1 1995
3.8 1995
6.9 1995
4.8 1995
7.0 1995
3.7 1995
6.7 1995
4.7 1995

8.0
4.4
8.1
5.5
7.8
4.2
7.9
5.3
5.8
3.2
6.0
4.0
5.6
3.1
5.8
3.9
6.8
3.7
6.9
4.7
6.6
3.6
6.3
4.6

Figure 5-12.   Example #2 - Sorted CO Air Quality Data File
                                      54

-------
ID OZONE AIR QUALITY PROJECTIONS - EXAMPLE  «2
                                                             DATE 070181
                                                                                                         PAGE
             LINEAR

     STRATEGY: SCEN «i
 ROLLBACK

GROWTH RATE SCENARIO:  LO
   COS AIR QUALITY CONCENTRATION (  PPM) AND VIOLATIONS
                (STANDARD IS  9.00  PPM)

                           PROJECTED
               BASE

 G I 0  N     YEAR CONC BKGO
UNTY A       1978  25.
UHTY B       1978  13.
UNTY C       1978  ZZ.
UNTY D       1978  16.
             1985
                       1990
                1995
GO CONC EXEX
0.
0.
0.
0.
13.
6.
10.
7.
5
0
1
0
CONC EXEX
10.
5.
9.
6.
1
0
0
0
CONC EXEX
6.
3.
6.
4.
0
0
0
0
CONC EXEX
6.
3.
6.
ft.
0
0
0
0
.£ PERCENT  CHANGE
 REGIONS ABOVE STD
HO. OF EXCEEDANCES
      -54.
         Z
         6
-61.
   1
   1
-73.
   0
   0
-75.
   0
   0
)TE: AIR QUALITY  CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING  EPA GUIDELINES.
COMPARISONS WITH STANDARDS  AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
     Figure 5-13.   Example  #2  -  CO Air Quality Summary  Report
                                                     55

-------
  CO AND  OZONE AIR QUALITY PROJECTIONS - EXAMPLE  *2
                                                                             DATE  070181
                              E K M A
            STRATEGY: BASELINE    GROWTH RATE  SCENARIO:  LO
          03 AIR QUALITY CONCENTRATION (  PPM) AND  VIOLATIONS
                      (STANDARD IS   .12  PPM)
                                 PROJECTED
   REGION
001 AQCR A
002 AQCR B
003 AQCR C
004 AQCR D
                     BASE
                                    1984
                                              1985
                                                       1990
                                                                 1995
YEAR CONC RATIO  CONC EXEX CONC
1978  .16 9.50    .12   0    .12
1978  .09 9.50    .07   0    .07
1978  .13 9.50    .11   0    .11
1978  .18 9.50    .14   2    .14
EXEX CONC EXEX CONC EXEX
  0   .11   0   .11   0
  0   .07   0   .07   0
  0   .10   0   .11   0
  2   .13   1   .14   1
AVERAGE PERCENT CHANGE
NO. OF REGIONS ABOVE STD
TOTAL NO.  OF  EXCEEDANCES
                     -19.
                       1
                       2
-21.
   1
   2
-26.
   1
   1
-25.
   1
   1
*** NOTE:  AIR QUALITY CONCENTRATIONS ARE  ROUNDED  FOR DISPLAY FOLLOWING EPA GUIDELINES.
THUS,  COMPARISONS WITH STANDARDS AND PERCENT  CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
          Figure  5-14.   Example  #2 -  Ozone Air  Quality  Summary  Report
                                                         56

-------
   1.  5ASG.CP  PRINT.
   2.  3BRKPT PRINTS/PRINT
   3.  3ASG.T 9.
   4.  SOATA.I  9.

   5.  3AOD.D AQ.OZOUT9
   6.  SEND

   7.  3XQT TDS*ROLLBACK.AQPRNT
   8.  3ASG.A CO-FILE.
   9.  3USE 9,CO-FILE.
  10.  3XQT TDS*ROLLBACK.AQPRNT
  11.  2BRKPT PRINTS
  12.  aFREE PRINT.
  13.  aSYM PRINT.,,DATA1J
  EXPLANATION:

   1.   ASSIGN A  NEW  PUBLIC  FILE NAMED  'PRINT1-
   2.   3BRKPT THE  SYMBIONT  PRINT FILE  TO FILE PRINT.
   3.   ASSIGN A  TEMPORARY FILE NAMED  '9'-
   
-------
6.0  REFERENCES

   1.  J. H. Wilson, Methodology To Conduct Air Quality Assessments of National
       Mobile Source Emission Control Strategies, EPA-450/4-80-026, U. S.
       Environmental Protection Agency, Research Triangle Park, N.C., October 1980.

   2.  N. deNevers and J. R. Morris, "Rollback Modeling:  Basic and Modified,"
       JAPCA, 25, 943, September 1975.

   3.  Uses, Limitations and Technical Basis of Procedures for Quantifying
       Relationships between Photochemical Oxidants and Precursors,
       EPA-450/2-77-021a, U. S. Environmental Protection Agency, Research Triangle
       Park, North Carolina, November 1977.

   4.  G. Whitten and H. Hogo, User's Manual for Kinetics Model and Ozone Isopleth
       Plotting Package, EPA-600/8-78-Ol4a, U. S. Environmental Protection Agency,
       Research Triangle Park, North Carolina, July 1978.

   5.  T. C. Curran and N. H. Frank, "Assessing the Validity of the Lognormal
       Model when Predicting Maximum Air Pollution Concentrations," presented
       at the 68th APCA Annual Meeting, June 1975.

   6.  L. Breiman, J. Gins and C. Stone, "Statistical Analysis and Interpretation
       of Peak Pollution Measurements."  Final Report prepared by Technology
       Service Corporation under contract to the U. S. Environmental Protection
       Agency, Research Triangle Park, North Carolina, November 1978.

   7.  Guidelines For The Interpretation of Air Quality Standards, OAQPS No. 1.2-008,
       U. S. Environmental Protection Agency, Research Triangle Park,'N.C.,
       February 1977.

   8.  Guideline for Interpretation of Ozone Air Quality Standards,
       EPA-450/4-79-003, U.S. Environmental Protection Agency, Research Triangle
       Park, North Carolina, January 1979.

   9.  National Computer Center User's Reference Manual, prepared by SDC Integrated
       Services, Inc. under contract to the U. S. Environmental Protection Agency,
       Research Triangle Park, North Carolina, January 1980.
                                       58

-------
     APPENDIX A
PROGRAM DESCRIPTIONS

-------
                             SUBROUTINE DESCRIPTIONS
Program  MAIN
Use.   MAIN is the main program for the emissions inventory projection module of
the Modified Rollback/EKMA Strategy Assessment Model.  It reads the key control
parameters, the mobile and stationary sources control strategy cards, and the
emissions and air quality data for each source region to be evaluated.  Depending
on the options selected, MAIN outputs the Emissions  Inventory Summary Report, the
emissions data file and/or the projected air quality data file.  The program also
performs card sequence checks and data editing.


SUBROUTINE  QBASE
Use.   Obtains the total base year emissions inventory reduced by the source
contribution factors, if appropriate.  QBASE is called by MAIN.

Common Blocks       STRAT
                    REGION
                    GROWTH
                    10


     ENTRY QPROJ (IRGN,IGR,IPY,ISTR,DYR)
Use.   Provides emission projections for each source category, control  scenario
and growth rate combination.  The procedure is a FORTRAN entry point in SUBROUTINE
QBASE which is called from MAIN.  Projection year total  emissions are calculated
using the following relationships:
           k
     QM. = z IMS.*EFR.*O+VMT.) J
       "i  -j=i   J    J       ^
                                        A-'

-------
NEWSS.= Z QS^SSCF^SSNEW^l

         m             '             n
OLDSS. = z [QS^'SSCF^SSOLD^II-RRJ/'J
     1  1=1   '

QTOT. = QMi + NEWSSi + OLDS$i

     where:
           i = the projection  year index
          j = the mobile source category index
           k = the number of mobile source categories
           1 = the stationary  source category index
           m = the number of stationary source categories
           n = the difference  between the projection year and the base year
        MS- = the base year emissions in mobile source category j
           J
        EFR. = the ratio of the projection year emission factor to the base
              year emission factor obtained from MOBILE2
        VMT = the compound growth rate in vehicle miles traveled
        QM- = the total mobile source emissions in projection year i
        QS-| = the base year emissions in stationary source category 1
       SSCFi = the stationary source contribution factor for source category 1
      SSNEV/i = the emission factor ratio for new sources in stationary source
               category 1, i.e., SSNEW1 = UOO-NSPS)1100
       NSPS-| = the new source performance standard for cateogry 1
        GR-j = the growth rate for stationary source category 1
         RR-j = the retirement rate for stationary source category 1
      NEWSS.J = the total stationary source emissions in projection year  i
              due to growth and equipment replacement
                                   A-2

-------
          OLDSS-  = the total  stationary source emissions in projection year i
                   from existing stationary sources
          SSOLD.  = the emission factor ratio for existing stationary sources in
                   source category 1
           QTOT.J  = the total  regional emissions in projection year i

Arguments       IRGN = the control scenario group number
                IGR = the growth rate sequence number
                IPY = the projection year sequence number
               ISTR = the control scenario sequence number
                DYR = the difference between the projection year and the
                      inventory base year


SUBROUTINE EIPRNT (NSTR.NGR.NPY)
Use.   Outputs the Emissions Inventory Summary Report on unit device 'El'
(default = Unit 6).  The report provides the base year inventory and the projected
inventories for each source category selected.  These data are also output,  in  a
compact format, to alternate unit device '10' (default = Unit 8).   The subroutine
is called  by MAIN.

Arguments       NSTR = the number of control scenarios per group
                NGR = the number of growth rate scenarios
                NPY = the number of projection years

Common Blocks  STRAT
               REGION
               GROWTH
               10
                                        A-3

-------
SUBROUTINE LINEAR (NSTR,NGR,NPY)
Use.   Provides an estimate of future air quality concentrations using the
following linear relationships:
T  = CxB - BKG)  * (
                            BKG
     where
          x- = air quality concentration in year i
          Xn = base year air quality concentration
         BKG = air quality background concentration
          Q. = emissions in year i
          QB = base year emissions

This subroutine is called by MAIN,  whereas the emissions fraction, Qi/Qn is
calculated by QPROJ.  The air quality data file is  output on unit device ' IAQ1
C Default = Unit
Common Blocks       STRAT
                    REGION
                    GROWTH
                    10
Arguments.     NSTR = the number of control  scenarios per group
                NGR = the number of growth rate scenarios
                NPY = the number of projection years
                                        A-4

-------
     ENTRY EKMA (NSTR,NCR,NPY,RATIO, DELNOX)



Use_.   Provides an estimate of future ozone air quality concentrations by solving



the Standard Isopleth Diagram from the Empirical Kinetic Modeling Approach (EKMA)



using the ambient NMHC/NC)  ratio and expected changes in VOC and NO  emissions.
                         X                                         X


The starting point of the algorithm is obtained by finding the intersection of



the ratio line and the base year concentration isopleth, e.g., point A on



Figure A-l.   The individual EKMA isopleths are represented by piece-wise line



segments in the OZIPP data file.  The isopleth file must be assigned to Unit 11.



The NMHC, NO  coordinates  (X  , Y ) are multiplied by the expected percentage
            J\               U   U


changes in emissions to obtain the post-control coordinates, X , Y.  The post-



control ozone value, Point A1, is found by a sequential search which uses  linear



rollback to obtain a starting point.  The procedure is a FORTRAN ENTRY POINT in



LINEAR which is called by MAIN.





Arguments.     NSTR = the number of control scenarios per group



                NCR = the number of growth rate scenarios



                Npy = the number of projection years



              RATIO = the ambient NMOC/NOY ratio
                                         /\


             DELNOX = the  ratio of projected to base year NO  emissions
                                                            A






Program @US*ER.SORTSDF,A  9.,9.,NREC,132,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A



Use.  This UNIVAC processor performs an alphanumeric sort on the air quality data



file.  The sorted file is  then read by program AQPRNT to produce the air quality



summary results.  The sort keys are growth rate scenario name, control scenario



name and region name.
                                        A-5

-------
  ?)).0
0.2
0.4
   )•
oc
O.fi
0.0
                                                      1 .0
1.6       1 .8
                       o.4
                    I  .()       1 .?.  *•    \ .A
                NMIIC ,PI>MC
                                                                        .6
                                                                        .0
                                                                                                          00
                                                                                                          O
                                                                                                          o

                                                                                                          o
                                                                                                           o

                                                                                                          "o
 Figure A-l.  Use of Standard EKMA Isopleth Diagram

-------
Arguments.      NREC = maximum number of records to be sorted


Program AQPRNT
Use.   This program reads the sorted air quality data file and outputs the air
quality summary reports.  One report is generated for each growth rate/control
scenario combination.  These reports display the base year air quality design
values, projection year air quality design values and expected exceedances for
each source region modeled.  Summary statistics include:  (1) the average percent
changes in air quality, (2) the number of source regions in violation of the
NAAQS, and (3) the total number of expected exceedances.  Data are input on
Unit 9 and output on Unit 6.


SUBROUTINE  VIOLA(PAQC,IPOLL,STD,NVIOL,RNDING)
Use.  This subroutine is called by Program AQPRNT to calculate the expected
number of exceedences of the appropriate NAAQS given the future year design
value.  The algorithm fits a tail-exponential distribution through the design
value concentration point.

     The exponential distribution has the form
          FCC) = 1 - exp(-C/C)                                   (1)
          where
          F(C) = the fraction of the value which are less than or equal  to
                 the concentration^).
            r  = the mean of the concentration.

     As noted above, the only parameter needed to fully describe the exponential
distribution is the mean.  Thus, the projected design value, and its corresponding
                                        A-7

-------
frequency of occurrence, are sufficient to fully describe an exponential distri-


bution unique to each area being modeled.   For CO and (Xj, the design value  is


assumed to be the second highest value for the specified averaging time.




     The mean of an exponential distributed fitted through the projected design



value for a specific source region is given by:




          TT. = DV./LOG(2/S)                                      (2)
           J     J


          where


          "C = the mean of the exponential  distribution for year j


        DV- = the design value for year j
          •J

          S = the sample size, i.e.,  S= the number of hours in a year divided

              by the averaging time of the pollutant


          j = year index.




Then the number of exceedances of the NAAQS can be estimated by




          EXCEED = S*(EXPl-STD/ri). -  1                           (3)



          where


          EXCEED = the number of violations


               S = the sample size


             STD = the air quality standard


               ~C = the mean from equation  (2).




     Obviously, if one is dealing with an  annual  standard, e.g., N02, then  a


direct comparison of the projected design  value with the NAAQS can be made.
                                        A-8

-------
Arguments.     PAQC = the future year design value
              IPOLL = the pollutant sequence number
                STD = the NAAQS concentration  level
              NVIOL = the calculated number of exceedances
             RNDING = the rounding error  used  to  determine  violations of  the
                      NAAQS.


 SUBROUTINE ACURAT  (A, B, C,  N)
 Use.  Adds a small number to single-precision  floating  point  input  values  to
 account  for machine accuracy differences.

 Arguments.     A = the  first input variable
               B = the  second input variable
               C = an input  array
               N = dimension of  C
                                         A-9

-------
      APPENDLX B
SOURCE PROGRAM LISTINGS

-------
< B - SOURCE PROGRAM LISTINGS
                                                                                        DATE 070181
                                                                                                         PAGE
  25.
  26.
  27.
  28.
  29.
  30.
  31.
  32.
  33.
  34.
  35.
  36.
  37.
  38.
  39.
  40.
  41.
  42.
  43.
  44.
  45.
  46.
  47.
  48.
  49.
  50.
  51.
  52.
  53.
  54.
  55.
  56.
  57.
  58.
  59.
  60.
  61.
  62.
  63.
  64.
  65.
  66.
  67.
  68.
  69.
  70.
  71.
  72.
  73.
  74.
  75.
       C  ROLLBACK MAIN ROUTINE — HANDLES INPUT AND DRIVES SUBROUTINES
JLIBACK.MAIN
 *07/01/81-12:36<8,
  1.
  2.
  3.
  4.
  5.
  6.
  7.
  8.
  9.
  10.
  11.
  12.
  13.

  15.
  16.
  17.
  18.
  19.
  20.
  21.
  22.
  23.
    REAL#8 HDNGS(33),STRCHK
    REAL*4 RBCVNTI 4 )/l . 15 , 1 . 15 , 1960 . 0 , 1880 . 0/
    INTEGER*4 EIFLAG,EIPLLS( 4) ,GRWCHK( 3 ) ,GRHRGN, LASTPY,DNOX< 9)
    INTEGER*4 RECCNT/0/,RGHCHK( 5 ) , PREFIX, KODESt 33) ,SSCF2( 9 )
    REAL*<+ RBSTDSl 4 )/35 .0,9.0,0.12,0. 05/
    REAL*4 DECIMH 4 )/0. 5, 0.5, 0.005,0. 0057
    INTEGER*^ RBPLLS(4),RBPOLL,RBUNIT,RBPLCK,PPM
    REAL*4 SSCF(9),DELNOX(9)
    INTEGER*4 BLANK/'    '/
 COMMON /STRAT/ DECLARATIONS
    REAL*8 SORCES(33),STRNAM(9)
    REAL*4 MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD(6,9,9,9)
    INTEGER*** EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9)
 COMMON /REGION/ DECLARATIONS
    REAL*4 BAQC,BK,QMB(23),QSB(9),QBTOT
    INTEGERS BASEYR,RGNNAM(5)
 COMMON /GROWTH/ DECLARATIONS
    REAL*4 MSGR(23,3),SSGR(9,3),SSRR(9,3),PAQC(3,9,9),PRPRTN(3,9,9),
-------
APPENDIX B - SOURCE PROGRAM LISTINGS                                                            DATE  070181

 1       76.           SORCES(I)=HDNGS(J+1)
 1       77.      50   CONTINUE
         78.         IF (NUM.EQ.33) GO TO 70
         79.         IST=NUM+1
         SO.         DO 60 I=IST,33_
 1       81.      60   SORCES(I)=HDNGSU)
 1       82 .   C-		*
 1       83.   C  GET THE STRATEGY SETS                                               *
 1       gA,    £.,_______.. »»____ — —, — _. — — — — — — -. — — —— — — — — — -• — «•—— — — — —— — — — — — -. — — — — — — -.— — — — — — -. — .•> — -» — #
         85.      70 DO 140 IRGN=1,NRGN
 1       86.           DO 1*0 ISTR=1,NSTR
 2       87.             DO 130 IPY=1,NPY
 Z       88.   C  GET THE PROJECTION YEAR CARDS FOR THIS STRATEGY.
 3       39.               READ {IN,80,ERR=520,END=540) STRCHK,(MSEFRCIRGN,J,IPY,ISTR ),
 3       90.        1J = 1,23 ),PROJYR(IPY,ISTR),(SSNEW(IRGN,J,IPY,ISTR),SSOLD(IRGN,J.IPY,
 3       91.        2ISTR),J=1,9)
 3       92.      80 FORMAT (A8,1X,23F3.2,I2,/,9X.18F3.2 )
 3       93.               RECCNT=RECCNT+2
 3       9*.               FREFIX=1900
 3       95.               IF (PROJYR(IPY,ISTR).LT,70) PREFIX=2000
 3       96.               PROJYR(IPY,ISTR)=PROJYR(IPY,ISTR)+PREFIX
 3       97.               IF (IPY.NE.l) GO TO 90
 3       98.   C  THIS IS THE FIRST PROJECTION YEAR
 3       99.               STRNAM(ISTR)=STRCHK
 3      100.               LASTPY=-1
 3      101.      90       CONTINUE
 3      102.   C  CHECK STRATEGY NAME AGAINST THAT GIVEN ON THE FIRST PROJECTION YEAR
 3      103.               IF (STRNAN(ISTR).EP.STRCHK) GO TO 110
 3      104.   C  STRATEGY NAME DOES NOT MATCH
 3      105.               WRITE (OUT,100) STRCHK,STRNAMCISTR),RECCNT
 3      106.     100 FORMAT (///1HO,'***WARNING: STRATEGY NAME CHECK: ','NAME IS ''',A8
 3      107.        I,"1, BUT EXPECTING ' " ,A8,' " , AT RECCNT=',I5)
 3      108.   C  CHECK PROJECTION YEAR FOR ASCENDING ORDER
 3      109.     110       IF (PROJYR(IPY.ISTR).GT.LASTPY) GO TO 130
 3      110.               WRITE (OUT,120) USTPY,PROJYR(IPY,ISTR).RECCNT
 3      111.     120 FORMAT (///1HO,'***WARNING: PROJECTION YEAR ','SEQUENCE CHECK:1,/!
 3      112.        1H ,T5,'PREVIOUS YEAR = ',14,'. BUT THIS YEAR ','= ',14,', AT RECCN
 3      113.        2T=',I5)
 3      114.     130       CONTINUE
 2      115.     140     CONTINUE
 2      116.   C  GET REGION CARD 1:
        117.     150 READ (IN,160,ERR=520,END=460) (RGNNAMf J ), J=l,5 ) ,BA<3C,BK,RBPOU,RBU
        118.        1NIT,RATIO,OELNOX.ONOX,IRGN,BASEYR
        119.     160 FORMAT (A3,3A4,A3,1X,2F5.2,1X,A4,1X,A4,F4.1,9F3.2.T44,9A3,T77.il,1
        120.        12)
        121.         CALL ACURAT(BAQC,BK,DUMMY,1)
        122.         IF(IRGN.EQ.O)IRGN=1
        123.         RECCNT=RECCNT+1
        124.         BASEYR=1900+BASEYR
        125.   C  GET REGION CARD 2,3,4:
        126.         READ (IN,170,ERR=520,END=540) RGNCHKf1),QMB,QSB,SSCF,SSCF2
        127.     170 FORMAT (A3.2X,11F6.0,/,5X,12F6.0,/,5X,9F6.0,9F2.1,T60,9A2)
        123.   C  INITIALIZE STATIONARY SOURCE CONTRIBUTION FACTORS, SSCF(I)
        129.         DO 160 1=1,9
 1      130.           IF (SSCF2(I).EG).BLANK) SSCF(I)=1.0
 1      131.           IF (EIFLAG.Eq.2) SSCF(I)=1.0
 1      132.           IF (DNOX(I).EQ.BLANK) DELNOX(I)=1.0
 1      133.     180   CONTINUE
        134.         RECCNT=RECCNT+3
        135.   C  CHECK REGION CARDS FOR REGION NUMBER MATCH
        136.         IF (RGNNAM(l).EQ.RGNCHK(l)) GO TO 200
        137.         WRITE (OUT,190) (RGNNAM(I),1=1,5),RGNCHK,RECCNT
        138.     190 FORMAT (///1HO,'***WARNING: CHECK REGION NAMES.  ','REGION CARDS 1
        139.        1 AND 2 DO HOT MATCH:',/lH ,T5,'RGNNAM= " ',A3,3A4,A3,' " , BUT RGNCH
        140.        2K='",A3,3A4,A3,"', AT RECCNT= ' ,15 )
        141.         GO TO 210
        142.     200 CONTINUE
        143.     210 CONTINUE
        144.   C  CALCULATE BASE-YEAR COMPOSITE EMISSION RATE (Q)  (IN TONS/YEAR)
        145.         CALL QBASE
        146.   C			__*
        147.   C  GET GROWTH RATE CARDS:                                              *
        148.   C					_*
        149.         DO 270 IGR=1,NGR
 1      150.           READ (IN,220,ERR=520,ENO=540) GRWRGN,GRWNAM(IGR),(MSGR(J.IGR ),J =
 1      151.        11,23),(SSGR(J,IGR),SSRR(J.IGR),J=1,9)
 1      152.     220 FORMAT (A3,A2,4X,23F3.1,/,9X.18F3.1)

-------
X B  - SOURCE  PROGRAM LISTINGS                                                            DATE 070181      PAGE

 153-            RECCNT=RECCNT+2
 154.   C   CHECK GROWTH CARD FOR PROPER REGION
 155.            IF  (RGNNAM(l).EQ.GRWRGN) GO TO 240
 156.            WRITE (OUT,230) IRGN.RGNNAMf1).GRWRGN.RECCNT
 157.      230  FORMAT (///1HOv'***WAPNING: A GROWTH RATE CARD ','MAY BE IN THE WR
 158.         10NG REGION :',/lH  , T5, 'RGNNAMf 1,', 12 ,')='", A3, •",  BUT ','GRWRGN='
 159.         211,A3,ltl, AT RECCNT=',15)
 160.      2*0    CONTINUE
 161.   C   CHECK THE ORDER OF NAMES OF GROWTH RATE SCENARIOS
 162.            IF  (KSW.EQ.l) GO TO 260
 163.            IF  (GRWNAM(IGR).EQ.GRWCHK(IGR))  GO TO 260
 164.            WRITE (OUT,250) GRWNAM( IGR ) ,GP.WCHK< IGR ) .RECCNT
 165.      250  FORMAT (///1HO,'**#WARNING: CHECK  GROWTH RATE ','SCENARIO NAME.  T
 166.         1HE GROWTH NAMES UNDER THE  ','FIRST REGION SHOULD CORRESPOND',/lH  ,
 167.         2T5,'EXACTLY WITH  THOSE  UNDER EVERY OTHER ','REGION.',/lH .TS.'GRWN
 168.         3AM='",A2,'", BUT GRWCHK= • " ,A2, • ' • , AT RECCNT=',15>
 169.      260    GRWCHK(IGR)=GRWNAM(IGR)
 170.      270    CONTINUE
 171.   C		«
 172.   C   CALCULATE PROJECTED  COMPOSITE EMISSION RATES (Q, IN TONS/YEAR)      *
 173.   C   SAVE THE QP/QB PROPORTIONS FOR ROLLBACK PROJECTIONS                 *
 174.   C	*
 175.          DO 300 ISTR=1,NSTR
 176.            DO  290 IPY=1,NPY
 177.   C   DETERMINE TIME PERIOD FROM BASE-YEAR  TO PROJECTION-YEAR
 178.             DYR=PROJYR(IPY,ISTRJ-BASEYR
 179.             DO 280 IGR=1,NGR
 180.   C   CALCULATE PROJECTION-YEAR  COMPOSITE EMISSION RATE (Q)   (IN TONS/YEAR)
 181.                CALL QPROJ  (IRGN,IGR,IPY,ISTR,DYR)
 182.   C   CALCULATE AND SAVE THE QP/QB PROPORTION
 183.                PRPRTNfIGR,IPY,ISTR)=QPTOT(IGR,IPY,ISTR)/QBTOT
 184.      280        CONTINUE
 185.      290     CONTINUE
 186.      300    CONTINUE
 187.   C	»
 188.   C   WRITE PROJECTION-YEAR AIR  QUALITY DATA FILE
 189.   C		—		*
 190.          IF (EIFLAG.GE.l)  GO TO  450
 191.          DO 310 IRBPLL=1,NRBPLL
 192.            IF  (RBPOLL.EQ.RBPLLSflRBPLD) GO TO 320
 193.      310    CONTINUE
 194.   C   RBPOLL ON REGION-CARD-1 IS INVALID.
 195.          GO TO 620
 196.   C   RBPOLL ON REGION-CARD-1 IS VALID.
 197.      320  RBPLCK=RBPOLL
 198.   C   SET ROLLBACK STANDARD
 199.          RBSTD=RBSTDS(IRBPLL)
 200.          RNDING=DECIML(IRBPLL)
 201.          IF (RBUNIT.EQ.PPM) GO TO 330
 202.          BAQC=BAQC/RBCVNT(IRBPLL)
 203.          BK=BK/RBCVNT(IRBPLL)
 204.          RBUNIT=PPM
 205.   C   PERFORM  AIR QUALITY  PROJECTIONS BASED ON POLLUTANT TYPE
 206.   C
 207.      330  IF (IRBPLL.EQ.3)  CALL EKMA (NSTR,NCR,NPY,RATIO,OELNOX)
 208.          IF (IRBPLL.NE.3)  CALL LINEAR (NSTR,NGR,NPY)
 209.   C
 210.   C   WRITE HEADER RECORD  ON AQ  FILE
 211.   C
 212.          IF (ISW.NE.O) GO  TO 350
 213.          WRITE (IAQ.340) RBPOLL,RBUNIT,RBSTD,RNDING,IRBPLL,NPY
 214.      340  FORMAT (2A4,F6.2,F5.3,IX,212)
 215.          ISW=1
 216.   C   SELECT THE PROPER FORMAT CODE (DEPENDS ON THE POLLUTANT)
 217.      350  DO 440 ISTR=1,NSTR
 218.            DO  430 IGR=1,NGR
 219             GO TO (360,360,380,380,380,380,380), IRBPLL
 220'      360     WRITE (IAQ.370) (RGNNAMfJ ),J = l,5),STRN4M(ISTR),GRWNAM(IGR),BAS
 221'         1EYR,8AQC,BK,< PROJYRlIPY,ISTR),PAQC(IGR,IPY,ISTR),IPY = 1,NPY)
 222!      370  FORMAT (IX,A3,3A4,A3,IX,A8,IX,A2,2X,14,2F5.1,2X,9(15,F5.1))
 223.             GO TO 420
 224      380     IF (BK.LT.0.01) GO TO 400
 ..'             WRITE (IAQ.390) ,BAS
 2*6         1EYR,BAQC,BK,(PROJ1RIIPY,ISTR ) ,PAQC(IGR,IPY,ISTR),IPY = 1,NPY)
 227      390  FORMAT (IX,A3,3A4,A3,IX,AS,IX,A2,CX,14,F5.3,F5.2,2X,9(15,F5.3))
 ->-.«'             GO TO 420
 229   C   BK  IS SMALL, SO DISPLAY EXTRA DIGIT SO IT WILL NOT APPEAR AS ZE30

-------
 APPENDIX B - SOURCE PROGRAM LISTINGS                                                            DATE 070181

  Z      230.     400     WRITE (IAQ.410)  (RGNNAM(J),J=l,5),STRNAM(ISTR),GRWNAM(IGR),BAS
  2      231.        1EYR,BAQC,BK,(PROJYR(IPY,ISTR),PAQC(IGR,IPY,ISTR),IPY=1,NPY )
  2      232.     410 FORMAT (1H ,A3,3A4,A3,IX,AS,IX,A2,2X,I4,2F5.3,2X,9(15,F5.3))
  2      233.     420     CONTINUE
  2      234.     430     CONTINUE
  1      235.     440   CONTINUE
  1      236.   C	*
  1      237.   C  PRINT PROJECTION-YEAR EMISSION INVENTORY                             *
  1      238.   C			*
  1      239.   C
         240.     450 CALL EIPRNT (NSTR,NGR,NPY )
         241.         K5W=0
         242.         GO TO 150
         243.   C	*
         244.   C  PROGRAM EXIT POINT                                                  *
         245.   C~	—		*
         246.     460 CONTINUE
         247.         WRITE (OUT,470) RECCNT
         248.     470 FORMAT (1H1,1*** STOP WITH  RECCNT=',I5)
         249.         STOP
         250.   C	*
         251.   c  ERRORS;                                                             *
         252.   C	*
         253.   C  INVALID POLLUTANT ENTRY  ON SOURCE NAME  CARD
         254.     480 WRITE (OUT,490) EIPOLL
         255.     490 FORMAT (1H ,'*** ERROR: • " ,A4,'''  IS HOT  A VALID POLLUTANT  •,'ENT
         256.        1RY FOR THIS PROGRAM.   VALID  ENTRIES  ARE:1)
         257.         DO 500 IEIPLL=1,NEIPLL
  1      258.     500   WRITE (OUT,510) EIPLLSfIEIPLL)
         259.     510 FORMAT (1H ,T5,'' " ,A4, " " )
         260.         GO TO 460
         261.   C  ERROR ON READ
         262.     520 RECCNT=RECCNT+1
         263.         WRITE (OUT,530)
         264.     530 FORMAT (///1HO,'***ERROR: READ ERROR...SEE RECCNT. ***' )
         265.         GO TO 460
         266.   C  UNEXPECTED END-OF-FILE
         267.     540 WRITE (OUT,550)
         268.     550 FORMAT (///1HO,'**«ERROR: UNEXPECTED END-OF-FILE  ***' )
         269.         GO TO 460
         270.   C  CONTROL ERRORS
         271.     560 WRITE (UUT.570) NSTR.MXNSTR
         272.     570 FORMAT UHO,1*** ERROR: 1 <=  (NSTR=•,12,') <=  (MXNSTR=',12,' )   ?"
         273.        1)
         274.         GO TO 460
         275.     580 WRITE (OUT,590) NPY.MXNPY
         276.     590 FORMAT (1HO,1*** ERROR: l <=  (NPY=',I2,')  <=  (MXNPY=',12,• ) ??')
         277.         GO TO 460
         273.     600 WRITE (OUT,610) NGR.MXNGR
         279.     610 FORMAT (1HO,1*** ERROR: 1 <=  (NGR=',I2,')  <=  (MXNGR=',12,' ) ??')
         280.         GO TO 460
         281.     620 WRITE (OUT,630) RBPOLL
         282.     630 FORMAT (1H ,'*** ERROR:'" ,A4, "'  is NOT A VALID  POLLUTANT1)
         283.         GO TO 460
         284.   C
         285.         END

END FTN 514 IBANK 1107 DBANK 30275  COMMON

-------
[X B - SOURCE PPOGRAM LISTINGS

JOLLBACK.RLLBCK
 »07/01/81-12:J6(5, )
                                                                                 DATE 070181
                                                                                                  PAGE
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30 .
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51 .
52.
53.
54.
55.
56.
57.
S3.
59.
60.
61.
62.
63.
6^.
6s!
66.
67.
68.
  71
  72-
     '
C  RLLBCK -- (ENTRIES: LINEAR, EKMA >
        C

        C
      SUBROUTINE LINEAR ( NSTR ,NGR ,NPY )
   COMMON /STRAT/ DECLARATIONS
      REALMS SCRCES(33),STRNAM(9)
      REAL*4 MSEFR(6,26,9,9),SSNEW(6,9,9,9>,SSOLD<6,9,9,9)
      INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR( 9,9 ) ,SSCF( 9)
   COMMON /REGION/ DECLARATIONS
      REAL*4 BAqC,BK,QrB(23),QSB(9),Q8TOT
      INTEGER*^ BASEYR ,RGNNAM( 5 ) ,KOOES( 33)
   COMMON /GROWTH/ DECLARATIONS
      REAL*4 MSGR(23,3),SSGR(9,3),SSRR(9,3),PAqC(3,9,9),PRPRTN(3,9,9),qM
     lP(23,3,9,9),qSP(9,3,9,9),qPTOT<3,9,9)
      INTEGER*4 GRWNAM(3)
   COMMON /10/ DECLARATIONS
      INTEGER** El, IN, OUT
      COMMON /STRAT/ SORCES.STRNAM.MSEFR ,SSNEW,SSOLD , EIPOLL, IEIPLL , IRBPL
     1L,PROJYR,RNDING,RBSTD
      COMMON /REGION/  BAQC, BK,QMB,qSB,QBTOT, BASEYR .RGNNAM, MS, NS.KODES
      COMMON /GROWTH/  MSGR ,SSGR ,SSRR,PAQC,PRPRTN,qMP,qSP,QPTOT,GRWNAM,SS
     1CF
      COMMON /IO/ El, IN, OUT, 10, IAQ
   START HERE
      DO 30 ISTR=1,NSTR
        DO 20 IGR=1,NGR
          00 10 IPY=1,NPY
   CALCULATE LINEAR PROJECTIONS  OF AIR  QUALITY
            PAQCf IGR , IPY , ISTR ) =BK+ ( BAqC-BK )«PRPRTN< IGR , IPY , ISTR )
   10       CONTINUE
   20     CONTINUE
   30   CONTINUE
      GO TO 250
      ENTRY EKMA  ( NSTR, NGR ,NPY, RATIO, DELNOX)
      REAL HC(200),NOX(200),DELNOX(9)
      INTEGER TEST/0/
      IFtTEST.Eq.DGO TO  35
      TEST=1
      DEFINE FILE 11(50,401 ,U,IPT)
   35 BK=RATIO
      IS=(BAQC*100+0.5)
      READ (ll'IS) NP.HC.NOX
      ISTOP=NP-1
      DO 40 I=1,ISTOP
        IF (RATIO. GE.(HC(I)/NOX(D). AND. RATIO. LE . ( HC( 1 + 1 )/NOX( 1 + 1 ) )) GO
     1TO 50
   40   CONTINUE
      GO TO 200
   50 OZONE=FLOAT(IS)*0.01
      SLOPE = ( NOX( I )-NOX( 1 + 1 ) )/( HC( I )-HC( 1 + 1 ) )
      B=NOX(I)-SLOPE*HC(I)
      YB=B/(1.0-SLOPE*RATIO>
      XB=RATIO*YB
      DO 190 ISTR=1,NSTR
        DO 180 IGR=1,NGR
          DO 170  IPY=1,NPY
            YP=OELNOX(IPY)»YB
            XP=PRFRTN( IGR, IPY, ISTR )*X8
            RSTAR=XP/YP
            N:FLOAT(IS)»PRPRTN(IGR,IPY,ISTR)
            IF (N.LT.4) N=4
   60       READ  (ll'N) NP.HC.NOX
            OZONE=FLOAT(N)»0.01
            ISTOP=NP-1
            DO 70 I=1,ISTOP
              IF  ,RSTAR.GE.(HC(I)/MOX(I)).AND.RSTAR.LE.(HC(I+1)/NOX(I+1)
     1 ) ) GO TO 80
   70         CONTINUE
            GO TO 90
   80       SLOPE = (NOX(I)-NOX(I +
            B=NOX(I)-SLOPE*HC(I)

-------
 APPENDIX B -  SOURCE  PROGRAM  LISTINGS                                                            DATE 070181

  3       76.               Y1=B/(1.0-SLOPE*RSTAR)
  3       77.               X1=RSTAR*Y1
  3       78.               IF  (Xl.LE.XP)  GO TO  100
  3       79.       90      N=N-1
  3       80.               IF  (N.LT.4)  GO TO 150
  3       81.               GO  TO  60"
  3       82.      100      N=N+1
  3       83.               IF  (N.GT.40) GO TO 130
  3       8*.               READ  (ll'N)  NP,HC,NOX
  3       85.               OZONE=FLOAT(N)*0.01
  3       86.               ISTOP=NP-1
  3       87.               DO  110 I=1,ISTOP
  4       88.                 IF  (RSTAR.GE.(HC(I)/NOX(I)).AND.RSTAR.LE.(HC(I+1)/NOX(I+1)
  4       89.         1))  GO TO  120
  4       90.      110        CONTINUE
  3       91.               GO  TO  130
  3       92.      120      SLOPE=(NOX(I)-NOX(I-H))/(HC(I)-HC(H-1))
  3       93.               B=NOX(I)-SLOPE*HC(I)
  3       94.               Y2=B/(1.0-SLOPE*RSTAR)
  3       95.               X2=RSTAR*Y2
  3       96.               IF  (XP.GE.X1.ANO.XP.LE.X2)  GO  TO  160
  3       97.               X1=X2
  3       98.    C     Y1=Y2
  3       99.               GO  TO  100
  3      100.      130      CONTINUE
  3      101.               WRITE  (OUT,140) (RGNNAMCJ),J=l,5),ISTR,IGR,IPY,XP,YP
  3      102.      140 FORMAT  (1HO,1 ***  EKMA ERROR ***  ',/,lX,A3,3A4,A3,'  STRAT=',I2>'  G
  3      103.         1R=',I2,'  PY=',I2,' HC=',F5.2,' NOX=',F5.3)
  3      104.               PAQC(IGR,IPY,ISTR)=99.99
  3      105.               GO  TO  170
  3      106.      150      PAQC(IGR,IPY,ISTR)=.04
  3      107.               GO  TO  170
  3      108.      160      DIFF=0.01
  3      109.    C
  3      110.    C   INTERPOLATE OZONE LEVEL ON HC BASIS
  3      111.    C
  3      112.               PAQC(IGR,IPY,ISTR)=((XP-X1)/(X2-X1))*DIFF+(OZONE-0.01)
  3      113.      170      CONTINUE
  2      114.      180     CONTINUE
  1      115.      190   CONTINUE
         116.          GO  TO 250
         117.      200 WRITE (6,210) (RGNNAMtJ),J=l,5),BAQC,RATIO
         118.      210 FORMAT  (1HO,1 ***  EKMA ERROR ***',/,IX,A3,3A4,A3,' DV=',F4.2,' RAT
         119.         1IO=',F5.1)
         120.          DO  240  ISTR=1,NSTR
  1      121.            DO 230  IGR=1,NGR
  2      122.              DO  220  IPY=1,NPY
  3      123.               PAQC(IGR,IPY,ISTR)=9999.9
  3      124.      220      CONTINUE
  2      125.      230     CONTINUE
  1      126.      240   CONTINUE
         127.      250 RETURN
         128.    C
         129.          END

END FTN 423 IBANK 571 DBANK 30275  COMMON

-------
XB - SOURCE  PROGRAM  LISTINGS
                                                                                         04TE  0/0131
                                                                                                          PAGE
OLLBACK.EIPRNT
 «07/01/81-12:36(4,
 Z.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
6^.
65!
66.
67.
68.
69.
70
71*
7Z'
73'
74'
,5'
            PRINTS  EMISSION  INVENTORY REPORTS
              SUBROUTINE  EIPRNT < NSTR ,NGR ,NPY )

          COMMON  /STRAT/ DECLARATIONS
              REAL*8  SOPCES(33),STRNAM(9)
              REAL*i*  MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD(6,9,9,9)
              INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9),KODES(33)
          COMMON  /REGION/ DECLARATIONS
              REAL*4  QMB(23),I3SB(9),QBTOT,BFILL(33),PFILL(33)
              REAL*'*  QMSUB(9),QSUB(9),TOTAL(9)
              INTEGER*^ BASEYR,RGNNAM(5)
          COMMON  /GROWTH/ DECLARATIONS
              REAL*4  MSGR(23,3),SSGR(9,3),SSRR(9,3),PAQC(3,9,9),SSCF(9),PRPRTN<3
             1,9,9),QMP(23,3,9,9),QSP(9,3,9,9),QPTOT(3,9,9)
              INTEGER*** GRWNAM( 3)
          COMMON  /IO/ DECLARATIONS
              INTEGER** El, IN, OUT
              COMMON  /STRAT/ SORCES,STRNAM,MSEFR ,SSNEW,SSOLD , EIPOLL, IEIPLL, IRBPL
             1L,PROJYR,RNOING,RBSTD
              COMMON  /REGION/ BAQC,BK,QMB,QSB,QBTOT, BASEYR, RGUNAM, MS, NS,KODES
              COMMON  /GROWTH/ MSGR,SSGR ,SSRR ,PAQC,PRPRTN,QMP,QSP,QPTOT,GRWNAM,SS
             1CF
              COMMON  /IO/ El, IN, OUT, 10, IAQ
              DATA BFILL /33*0.0/ .PFILL  /33*0.0/
              NUM=MS+NS
              SUB1=0.0
              SUB2=0.0
              00  10 1=1, MS
               J=KODES(I)
               SUB1=SUB1+QMB(J)
           10  BFILL(I)=QMB( J)
              DO  20 1=1, NS
               J=KODES(I+MS)-23
               SUB2=SUB2+QSB( J)
           20  BFILL(I+MS)=QSB(J)
              QTOT=SUB1+SUB2
              DO  200  ISTR=1,NSTR
               DO 190 IGR=1,NGR
              IX=0
                  IST=1
                  ISTP=12
                  IF  (NUM.LT.12)  ISTP=NUM
                  WRITE (El, 30) (RGNNAMt J ) , J = l ,5 ) ,STRNAM( ISTR ) ,GRWHAM( IGR ) ,EIPOL
             1L
           30 FORMAT  ( 1H1 ,25X, ' ***   EMISSIONS  INVENTORY PROJECTIONS ','    ***',/
             11HO,' LOCATION: ', A3, 3A4, A3, T50, 'STRATEGY: ', AS, T80 , 'GROWTH RATE: ',
             2A4/1HO, 'POLLUTANT:  ' ,A4,/1HO ,T27,14X, ' EMISSIONS (1000 TONS/YEAR)',
             3//lHO,T27,10X, 'S OURCE   CATEGORIE S',//)

          40     WRITE (El, 50) ( SORCESt I ) ,I=IST,ISTP)
          50 FORMAT  ( //,T15,12A8)
                  WRITE (El, 60)
          60 FORMAT  (IX, 'BASE YR1,/)
                  WRITE (El, 130)  BASEYR , ( BFILL( I ) ,I=IST,ISTP )
                  WRITE (El, 70)
          70 FORMAT  (IX.'PROJ YR',/)
                  IF  (IX.NE.O)  GO TO 100
                  WRITE (10,80) (RGNNAM(J),J=1,5),STRNAM(ISTR),GRWNAM(IGR),EIPOL
             1L,NPY,NUM,(KODES( J),J=1,NUM)
          80 FORMAT  ( A3 , 3A4 , A3, IX , A8, 2( IX, A4 ) , 12 , 14 , 3312 )
                  WRITE (10,90) BASEYR, SUB1 ,SUB2 ,QTOT, ( BFILH J > , J=l , HUM)
          90 FORMAT  ( 14, 14F3. 1 , 2( /, 28X, 12F8. 1 ) )
100
110
                  DO 140 IPY=1,NPY
                    QMSUBI IPY)=0.0
                    QSUB(IPY)=0.0
                    DO 110  1=1, MS
                      J=KCOES(I)
                      PFILL1 I )=QMP( J, IGR, IPY, ISTR)
                      QMSUBI IPY )=QMSUB( IPY 1+PFILLI I )
                    DO 120  1=1, NS
                      J=KODES(I+MS)-23
                      PFILL(I+MS)=QSP( J, IGR, IPY, ISTR )

-------
 APPENDIX B -  SOURCE  PROGRAM LISTINGS                                                            DATE 070181
  4       76.      120          <3SUB(IPY)=qSUB(IPY) + PFILL(
  3       77.                TOTAL(IPY)=QSUB(IPY)+QMSUB(IPY)
  3       78.                WRITE  (£1,130)  FROJYRI IPY.ISTR ) , ( PFILU J) >J=IST,ISTP)
  3       79.      130  FORMAT ( 1H  ,1X,I4,T15,12( 1X,F6.1,1X) )
  3       80.                IF (IX.EQ.O)  WRITE  (10,90)  PROJYRI IPY.ISTR ) ,QMSUB( IPY ) ,QSUB<
  3       81.         HPY),TOTAL(IPYr,(PFILL(J),J = l,NUM)
  3       QZ.      140        CONTINUE
  2       83.          IX=1
  2       84.              IF ( NUM . LE . ISTP )  GO TO  150
  2       85.              IST=IST+12
  2       86.              ISTP=ISTP+12
  2       87.              IF (NUM. LT. ISTP)  ISTP=NUM
  Z       88.              GO TO 40
  2       89.      150      WRITE (El, 160)
  2       90.      160  FORMAT (/1HO ,13X, 'MOBILE ' ,5X, 'STATIONARY1 ,5X, 'GRAND ' ,/2X, 'YEAR ' ,8X
  2       91.         1, 'TOTAL1 ,8X, 'TOTAL' ,8X, 'TOTAL1 ,/)
  2       92.              WRITE (El, 170)  BASEYR.SUBl ,SUB2,QTOT
  2       93.      170  FORMAT ( 16 ,6X,F7.1 ,6X,F7.1,6X,F8.1 )
  Z       94.              DO 180  1=1, NPY
  3       95.      180        WRITE  (El, 170)  PROJYR( I ,ISTR ) ,QMSUB( I ) ,QSUB( I ) ,TOTAL( I )
  2       96.      190      CONTINUE
  1       97.      200    CONTINUE
          98.          RETURN
          99.    C
         100.          END

END FTN 247 IBANK 497  DBANK  30275  COMMON

-------
X B - SOURCE PROGRAM LISTINGS

iQLLBACK.QBASE
 »07/01/ftl-12:36<4, )
   1.   C***«* »**
   2.   C   CALCULATES BASE YEAR  AND  PROJECTION  YEAR  INVENTORIES
   3.   C*********
   4.   C
   5.         SUBROUTINE OBASE
   6.         REAL*'* SSCF(9)
   7.   C  COMMON /STRAT/ DECLARATIONS
   8.         REAL*8 SORCESf33) ,STRNAM(9)
   9.         REAL*'* MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD<6,9,9,9)
   10.         INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9),KOOES<33)
   11.   C  COMMON /REGION/ DECLARATIONS
   12.         REAL*4 BAQC,BK,QMB(23),qSB(9),qBTOT
   13.         INTEGER*4 BASEYR,RGNNAM(5)
   14.   C  COMMON /GROWTH/ DECLARATIONS
   15.         REAL** MSGR(23,3),SSGR(9,3),SSRR(9,3),PAqC(3,9,9),PRPRTN<3,9,9),qM
   16.        lP(23,3,9,9),qSP(9,3,9,9),QPTOT<3,9,9)
   17.         INTEGER*^ GRWNAMC3)
   18.   C  COMMON /IO/ DECLARATIONS
   19.         INTEGER*-* El,IN,OUT
   20.         COMMON /STRAT/ SORCES.STRNAM.MSEFR,SSNEW,SSOLD,EIPOLL,IEIPLL,IRBPL
   21.        IL.PROJYR.RNDING.RBSTD
   22.         COMMON /REGION/  BAQC,BK,QMS,QSB.QBTOT,BASEYR.RGNNAM,MS,NS.KODES
   23.         COMMON /GROWTH/  MSGR,SSGR,SSRR,PAQC,PRPRTN,QMP,qSP,QPTOT,GRWNAM,SS
   24.        1CF
   25.         COMMON /IO/ El,IN,OUT,IO,IAQ
   26.         REAL*4 NEWGRW.OLDRET
   27.   C  DEFINE THE COMPOUND  GROWTH RATE
   28.         CMGRRT(GR)=(1.0+GR*0.01)**DYR
   29.   C
   30.         QBTOT=0.0
   31.         DO 10 1=1,MS
   32.           J=KOOES(I)
   33.      10   QBTOT=QBTOT-K3MB(J)
   34.         DO 20 1=1,NS
   35.           J=KODES(I+MS)-23
   36.           QSB( J)=QSB(J)*SSCF(J)
   37.      20   QBTOT=QBTOT+QSB(J)
   33.         GO TO 50
   39.   C
   40.   C	*
   41.   C
   42.         ENTRY QPROJ (IRGN.IGR,IPY.ISTR.DYR)
   43.         QPTOT(IGR,IPY,ISTR)=0.0
   44.         DO 30 1=1,MS
   45.           J=KODES(I)
   46.           QMP( J,IGR,IPY,ISTR)=QMB(J)*MSEFR(IRGN,J,IPY,ISTR)*CMGRRT(MSGR(J,
   47.        1IGR))
   43.      30   QPTOT( IGR,IPY,ISTR)=QPTOT(IGR,IPY,ISTR) + QMP(J,IGR,IPY,ISTR)
   49.         DO 40 1=1,NS
   50.           J=KODES(I+MS)-23
   51.           NEWGRW=(CMGRRT(SSGR(J,IGR))-1.)*SSNEW(IRGN,J,IPY,ISTR ) + (1.-CMGRR
   52.        1T(-SSRR(J,IGR)))*SSNEW(IRGN,J,IPY,ISTR)
   53.           OLDRET = (CMGRRTI-SSRR(J,IGR)) )*SSOLD(IRGN,J,IPY,ISTR)
   54.           QSPtJ,IGR,IPY,ISTR)=QSB(J>*
-------
 APPENDIX B - SOURCE PROGRAM LISTINGS                                                            DATE  070181

JFTN.S ROLLBACK.ACURAT
FTN 8R1  *07/01/81-12:36(<+, )
           1.         SUBROUTINE ACURAT(A,B,C,N)
           3.         DIMENSION C(N)
           3.         DATA X/l.E-6/
           4.         A=A+X
           5.         B=B+X
           6.         DO 1 1=1,N
  1        7.       1 C(I)=C(I)+X
           8.         RETURN
           9.         END

END FTN 45 IBANK 17 DBANK

-------
> B  - SOURCE  PROGRAM LISTINGS

!OLLBACK.AQPRNT
 *07/01/81-12: 36(13.)
   Z.   C    PRINTS  ROLLBACK AIR QUALITY DATA FILE
   3.   C******************™^***********^********
   4.   C
   5.          REAL*4  AVRCHG(9),RGNNAM(5),PAQC(9), RBSTD
   6.          INTEGER*^ PROJYR( 9 > ,NVIOL( 9 > .BASEYR
   7.          INTEGER** NCAS( 9 ) ,KVIOL( 9) , OZONE/1  03 '/.COS/1  C08'/,CO/'  CO V,OU
   8.         1T.N02/'  N02V
   9.          INTEGERS CONC/'CONC'/.EXEX/1 EXEX'/.RBPOLL.RBUNIT
  10.          REAL*8  STRNAM,STRAT,GRWNAM,GRWTH,HNDG(2)
  11.          DATA  HNDG /'BKGO ',' RATIO1/
  12.          IP=1
  13.          OUT=6
  14.          IN=9
  15.          ISW=0
  16.   C   INITIALIZE SUMMARY COUNTERS (WHICH COUNT ACROSS REGIONS) TO ZERO
  17.          READ  (IN, 10)  RBPOLL.RBUNIT, RBSTD, RNDING.IRBPLL.NPY
  18.       10 FORMAT  ( 2A4.F6.0 ,F5. 0.1X.2I2 )
  19.          CALL  ACUR AT (RBSTD, DUMMY, DUMMY, 1)
  20.          DO 20 IPY=1,NPY
  21.            AVRCHG(IPY)=0.0
  22.            NCAS(IPY)=0
  23.       20   KVIOL(IPY)=0
  24.          READ  (IH,30,END=310)  (RGNNAM( J ) ,J=1 ,5) ,STRNAM,GRWNAM, BASEYR ,BAQC ,B
  25.         1K,(PROJYR( J),PAQC( J),J=1,NPY)
  26.       30 FORMAT  ( 1X,A3,3A4,A3,1X,A8,1X,A2,2X,I<»,2( 1X.F4.0 ) ,2X,9( I5,F5.0 ) )
  27.          CALL  ACURAT(BAQC,BK,PAQC,9)
  28.          DO 40 1 = 1, NPY
  29.            CALL  VIOLA  ( PAQC( I ) .IRBPLL, RBSTD ,NVIOL( I ) .RNDING)
  30.       40   CONTINUE
  31.       50 STRAT=STRNAM
  32.          GRWTH=G.?WNAM
  33.          NRGN=0
  34.          IF (RBPOLL.NE. OZONE) GO TO 70
  35.          IP=2
  36.          WRITE (OUT, 60)
  37.       60 FORMAT  ( 1H1/1HO, 31X, 'E K M A  ')
  33.          GO TO 90
  39.       70 WRITE (OUT, 80)
  40.       80 FORMAT  ( 1H1/1H0.20X, ' L INEAR    ROLLBACK')
  41.       90 WRITE (OUT, 100) STRNAM.GRWNAM
  42.      100 FORMAT  ( 1H0.12X, 'STRATEGY: ' ,1X,A8,4X, 'GROWTH RATE SCENARIO: ', IX, A2
  43.         1)
  44.          WRITE (OUT, 110) RBPOLL.RBUNIT , RBSTD .RBUNIT
  45.      110 FORMAT  <1HO,9X,A4,'  AIR QUALITY CONCENTRATION (',A4,') AND VIOLATI
  46.         IONS', /1H ,23X, '(STANDARD IS ' >F5.2,1X,A4, ' ) ' )
  47.          WRITE (OUT, 120)
  48.      120 FORMAT  (1HO,T36,'P R 0 J E C  T E D1,/)
  49.          WRITE (OUT, 130) ( PROJYRf IPY ) ,IPY=1 ,NPY )
  50.      130 FORMAT  ( 1HO.T21 ,3X, 'B A S E ' ,T36,9( 3X,I4,3X) )
  51.          WRITE (OUT, 140) HNOG( IP > , (CONC,EXEX,I=1,NPY )
  52.      140 FORMAT  ( /1H ,3X,'R E 6 I 0 N',T21,'YEAR CONC ' , A5,T36 , 9< IX, A4 , IX, A
  53.         14))
  54.    C   PRINT LINEAR ROLLBACK TABLE OF PROJECTED AQC AND NUMB OF VIOLATIONS
  55.      150 DO 160  IPY=1,NPY
  56 .            AVRCHGI IPY )=AVRCHG( IPY ) + 100 . 0*( PAQCt IPY 1/BAQC-l . 0 )
  57.            KVIOH IPY )=KVIOL( IPY ) +NVIOH IPY )
  58.            IF  (NVIOL(IPY).GT.O) NCAS( IPY )=NCAS( IPY ) + l
  59.      160   CONTINUE
  60.          IF (RBPOLL.EQ.COS.OR.RBPOLL.EQ.CO) GO TO 180
  61.          IF (RBPOLL.EQ.N02) GO TO 200
  62.          WRITE (OUT, 170) (RGNNAM(J),J=1, 5), BASEYR, BAQC.BK ,( PAQCt IPY ) ,NVIOL(
  63.         1IPY),IPY=1,NPY)
  64.      170 FORMAT  ( 1H , A3 , 3A4 , A3.T21 , 14, 2F5. 2 ,T35,9( F6 . 2 , 14 ) )
  65          GO TO 220
  66.      180 U'RITE (OUT, 190) < RGNNAMt J ) ,J = 1 ,5 ) .BASEYR ,BAQC ,BK ,( PAQCf IPY ) ,NVIOL(
  67         1IPY) ,IPY=1,NPY)
  68.      190 FORMAT  ( 1H , A3, 3A4 , A3 ,T21 , 14 , 2F5 . 0 ,T35 , 9( F6 . 0 ,14 ) )

  7fl!      200 WRITE foUT.210) ( RGNNAMf J ), J = l ,5 ) .BASEYR ,BAGC ,BK ,( PAQCi IPY ) .NVIOLl
          210FORMAlH3A4,A3,),.,.,,.,
  73      220 READ ( IN, 30 , END-310 )  ( RGNNAMf J ), J = l ,5 ), STRNAM.GRWNAM .BASEYR ,BAQC , B
  74 '         IK , ( PROJ YR ( J ) , PAQC ( J ) , J = l . NPY )
  ls\          CALL ACURAT(BAQC,BK,P4QC,9)

-------
 APPENDIX  B  -  SOURCE  PROGRAM  LISTINGS                                                             DATE 070181

          76.          DO  230  J=1,NPY
  1        77.           CALL  VIOLA  (PAQCfJ),IRBPLL,RBSTD,NVIOL(J),RNDING)
  1        78.      230  CONTINUE
          79.          NRGN=NRGN+1
          80.          IF  (STRNAM.EQ.STRAT.ANO.GRWNAM.EQ.GRWTH)  GO  TO  150
          81.    C  DIVIDE THE TOTAL PERCENT  CHANGE  BY  NUMBER  OF REGIONS TO  GET AVERAGE
          82.      240 DO  250  IPY=1,NPY
  1        83.      250  AVRCHG(IPY)=AVRCHG(IPY)/NRGN
  1        8*.    C  PRINT  SUMMARY
          85.          WRITE  (OUT,260)  (AVRCHG(IPY),IPY=1,NPY)
          86.      260 FORMAT  (/1HO,'AVERAGE  PERCENT CHANGE',T36,9(5X.F5.0 ))
          87.          URITE  (OUT,270)  (NCAS(IPY),IPY=1,NPY )
          88.      270 FORMAT  (1H  ,'NO.  OF REGIONS ABOVE  STD',T36,9(7X.I3))
          89.          WRITE  (OUT,280)  (KVIOLIIPY),IPY=1,NPY)
          90.      280 FORMAT  (1H  ,'TOTAL NO.  OF  EXCEEDANCES',T36,9<*X,I6 ))
          91.          WRITE  (OUT,290)
          92.      290 FORMAT  (/////,' *** NOTE:  AIR QUALITY CONCENTRATIONS  ARE ','ROUNDE
          93.         ID FOR DISPLAY FOLLOWING EPA GUIDELINES.1,/,1  THUS, COMPARISONS  WIT
          9*.         2H STANDARDS AND PERCENT CHANGES  ARE BASED ON ONE ADDITIONAL  SIGNIF
          95.         3ICANT FIGURE.')
          96.          DO  300  IPY=1,NPY
  1        97.           AVRCHG(IPY)=0.0
  1        98.           NCAS(IPY)=0
  1        99.      300  KVIOL(IPY)=0
         100.          IF  (ISW.EQ.l) GO  TO 320
         101.          GO  TO 50
         102.      310 ISW=1
         103.          NRGN=NRGN+1
         10*.          GO  TO 2*0
         105.      320 STOP
         106.    C
         107.          END

END  FTN 212  IBANK 669 DBANK

-------
|X B -  SOURCE PROGRAM LISTINGS

KJLLBACK. VIOLA
 »07/01/81-12:36(3,I
   1.    C***********»*******#»-)Ht#-tHf»***»***** **»»*»*»*#•*****#•*#* ****•***< »*«»•*»*-*
   2.    C  VIOLA -- CALCULATES NUMBER OF VIOLATIONS                             *
   3.    C**********»*****#*************************»**»****<******-*******-* ******
   4.    C
   5.          SUBROUTINE VIOLA (PAQC.IPOLL.STD,NVIOL,RNOING)
   6.          REAL** EXCEED,NPERDS
   7.          INTEGER** NPRDSf*J/8760,1095,365,I/
   8.          IF (NPRDS(IPOLL).EQ.l) GO TO  20
   9.          NPERDS=NFRDS(IPOLL)
   10.          FRACT=2.0/NPERDS
   11.          CMEAN=-PAQC/ALOG(FRACT)
   12.          EXCEED=NPERDS*(EXP(-(STD+RNDING)/CMEAN))
   13.    C  REMOVE THE HIGHEST PAQC  VALUE
   14.          NVIOL=IFIX((EXCEED-1.))
   15.    C  IF THE  HIGHEST  PAQC VALUE DOES  NOT EXCEED  THE STANDARD, THEN
   16.    C  SIMPLY SET THE NVIOL TO  ZERO.
   17.          IF (NVIOL.LT.O) NVIOL=0
   18.       10 RETURN
   19.    C
   20.       20 NVIOL=0
   21.         IF (PAGC.GE.tSTD+RNDING) ) NVIOL=I
   22.         GO TO 10
   23.   C
   24.         END

(I 58 IBANK 23  D8ANK

-------
. REPORT .\:O~'	

   EPA-45Q/4-81-Q25
                                   TECHNICAL REPORT DATA
                            (Please read fnsn-ucnons on tne reverse b-:lore ^omptsnn
2.
l. TITLE AND SUBTITLE
   User's Manual - Modified Rollback/EKMA
   Strategy Assessment Model
                             J5 REPORT 2ATE

                               ..  July 1981
                              6, PERFORMING ORGANIZATION CODE
 AUTHOR(S)
   Warren P. Freas
                                                           8. PERFORMING ORGANIZATION REPORT ND
9. PERFORMING ORGANIZATION NAME AND ADDRESS
                                                           10. PROGRAM ELEMENT NO.
   U.S.  Environmental  Protection Agency
   Office of Air Quality  Planning and Standards
   Monitoring and Data  Analysis Division/AMTB   (MD-14)
   Research Triangle  Park,  NC  27711
                              11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
   Same
                              13. TYPE OF REPORT AND PERIOD COVERED
                                 Final
                                                           14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
      This report contains  information on, and  the computer programs  for,  the Modified
 Rollback/EKMA Strategy  Assessment Model.  The  model  can be used  to generate emission
 inventories in future years for alternative  mobile source control strategies and growth
 rate scenarios.  Ambient concentration estimates  can be generated for the pollutants
 carbon monoxide  (CO), nitrogen dioxide (N02)>  and ozone (03).  These air  quality esti-
 mates are obtained  using the modified rollback equations of de Nevers and Morris for
 CO and annual average N02  and the standard  isopleth diagram of the Empirical Kinetic
 Modeling Approach  (EKMA) for ozone.  The model  is useful for conducting air quality
 assessments of mobile source control strategies which are national in scope.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS
                                            c. COSATI Field/Croup
 Modified Rollback
 Mobile sources
 Air quality  analyses
is. DISTRIBUTION STATEMENI

  Release Unlimited
                 19. SECURITY CLASS T'IU
                    Unclassified
                                              120 SECUR'TY CLASS  r'n.
                                                 Unclassified
                      PREVIOUS EOiTIOM iS

-------
                                                          INSTRUCTIONS

   1.   REPORT NUMBER
       Insert the EPA report number as it appears on the cover of the publication.

   2.   LEAVE BLANK

   3.   RECIPIENTS ACCESSION NUMBER
       Reserved for use by each report recipient.

       TITLE AND SUBTITLE
       ^itle should indicate clearly and briefly the subject coverage of the report, and be displayed prominently.  Set subtitle, if used, in smalls
         DC or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volurm
          mber and include subtitle for the specific title.

   5.   REPORT DATE
       Each report shall carry a date indicating at least month and year. Indicate the basis  on which it was selected (e.g., date of issue, date of
       .W(..-oval, date of preparation, etc.).

   6.   PERFORMING ORGANIZATION CODE
       Leave blank.

   7.   AUTHOR(S)
       Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.).  List author's affiliation if it ditfers from the performing organ!
       zation.

   8.   PERFORMING ORGANIZATION REPORT  NUMBER
       Insert if performing organization wishes to assign this number.

   9.   PERFORMING ORGANIZATION NAME AND ADDRESS
       Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.

   10. PROGRAM ELEMENT NUMBER
       Use the program element number under which the report was prepared. Subordinate numbers may be included in  parentheses.

   11. CONTRACT/GRANT NUMBER
       Insert contract or grant number under which report was prepared.

   12. SPONSORING AGENCY NAME AND ADDRESS
       Include ZIP code.

   13. TYPE OF REPORT AND PERIOD COVERED
       Indicate interim final, etc., and if applicable, dates covered.

   14. SPONSORING AGENCY CODE
       Insert appropriate code.

   15. SUPPLEMENTARY NOTES
       Enter information not included elsewhere but useful, such as:  Prepared in cooperation with, Translation of, Presented'at conference of,
       To be published in. Supersedes, Supplements, etc.

   16. ABSTRACT
       Include a brief ^200 words or less) factual summary of the most significant information contained in the report.  If the report Contains a
       significant bibliography or literature survey, mention it here.

   17. KEY WORDS AND DOCUMENT ANALYSIS
       (a) DESCRIPTORS -  Select from the  Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
       concept of the research and are  sufficiently specific and precise to be used as index entries for cataloging.

       (.b) IDENTIFIERS  AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
       ended terms written in descriptor form for those subjects for which no descriptor exists.

       (c) COSATI FIELD GROUP - Field and group assignments are to be taken from the  1965 COSATI Subject Category List. Since the ma-
       jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will  be  specific discipline, area of human
       endeavor, or type of physical object.  The application(s) will be cross-referenced with secondary Field/Group assignments that will folio*
       the primary posting(s).

   18. DISTRIBUTION STATEMENT
       Denote releasability to the public or limitation for reasons other than security for example  "Release Unlimited." Cite any availability tc
       the public,  with address and price.

   19. &  20. SECURITY CLASSIFICATION
       DO NOT submit classified reports to  the National Technical Information service.

   21. NUMBER OF PAGES
       Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any

   22. PRICE
       Insert the pnce set  by the National Technical Information Service  or the Government Printing Office, if known.
EPA Form 2220-1 (Rev. 4-77) (Reverse)

-------