&EPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
July 1981
Air
USER'S MANUAL FOR MODIFIED ROLLBACK/EM^
STRATEGY ASSESSMENT MODEL
-------
USER'S MANUAL
MODIFIED ROLLBACK/EKMA STRATEGY
ASSESSMENT MODEL
Air Management Technology Branch
Monitoring and Data Analysis Division
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
July 1981
-------
This report is issued by the U.S. Environmental Protection Agency to
report technical data of interest to a limited number of readers.
Copies are available free of charge to Federal employees, current
contractors and grantees, and nonprofit organizations, in limited
quantities, from the Library Services Office (MD-35), Research
Triangle Park, North Carolina 27711; or, for a fee from the National
Technical Information Service, 5285 Port Royal Road, Springfield,
Virginia 22161.
Publication No. EPA-450/4-81-025
-------
PREFACE
This report contains information on, and the computer programs for, the
Modified Rollback/EKMA Strategy Assessment Model. The model can be used to
generate emission inventories in future years for alternative mobile source
control strategies and growth rate scenarios. Ambient concentration estimates
can be generated for the pollutants carbon monoxide (CO), nitrogen dioxide
(NC^)* and ozone (CU). These air quality estimates are obtained using the
modified rollback equations of de Nevers and Morris for CO and annual average
N02 and the standard isopleth diagram of the Empirical Kinetic Modeling Approach
(EKMA) for ozone. The model is useful for conducting air quality assessments of
mobile source control strategies which are national in scope.
The program is written in ASCII FORTRAN for the UNIVAC 1100 Operating
System; thus, this manual only illustrates the use of the model with the UNIVAC
EXEC 8 Control Language. Applications on other computing systems may require
some minor programming changes and the substitution of a comparable system sort
routine.
A more detailed description of the assumptions and limitations of the
Modified Rollback Model in national strategy assessments is contained in
EPA-450/4-80-026, Methodology to Conduct Air Quality Assessments of National
Mobile Source Emissions Control Strategies. This report presents methodologies
for estimating selected input parameters for the rollback model. In some cases,
default values for missing data are also provided.
-------
TABLE OF CONTENTS
Page
Preface i i i
Abstract v
List of Figures vi
List of Tables vii
1.0 Introduction 1
2.0 System Description 4
2.1 Air Quality and Emissions Projections 4
2.1.1 Emission Projections in Rollback 4
2.1.2 Air Quality Projections in Rollback 6
2.2 System Sort Routine 9
2.3 Air Quality Reports 11
3.0 Preparation of Input Data 12
3.1 Control Cards 12
3.2 Strategy Cards 12
3.3 Source Region Data Cards 17
4.0 Computational Output 26
4.1 Emissions Summary Report 26
4.2 Emissions Data File 26
4.3 Air Quality Data File 26
4.4 Air Quality Summary Reports 34
4.4.1 Source Region Projections 34
4.4.2 Average Percent Changes 39
4.4.3 Number of Source Regions Above the Level of
the NAAQS 39
4.4.4 Total Number of Exceedances 40
5.0 Example Model Runs 41
5.1 Emissions Projections 41
5.2 Carbon Monoxide and Ozone Projections 47
5.3 Reprinting a Previous Simulation 47
6.0 References 58
Appendix A. Program Descriptions A-l
Appendix B. Source Program Listings B-l
IV
-------
ABSTRACT
The Modified Rollback/EKMA Strategy Assessment Model provides a computerized
procedure for conducting air quality assessments of national emission control
strategies for mobile source related pollutants. Air quality projections of
carbon monoxide and annual average nitrogen dioxide concentrations are made using
the Modified Rollback equations of de Nevers and Morris. Ozone air quality
concentrations are projected using the OZIPP/EKMA procedure. Emission inven-
tories are also projected for each source region and control scenario.
Major differences between this model and the earlier Modified Rollback Model
are: (1) use of the OZIPP/EKMA procedure for ozone projections; (2) no upper
limit on the number of source regions that can be considered; (3) high-altitude
and California strategies can be considered simultaneously with 49-State strategies;
and (4) the maximum number of mobile source categories which can be listed in the
inventory has been increased to 22.
The material presented is directed toward the model user familiar with the
UNIVAC 1100 System at the National Computing Center. Technical details of the
computer programming are discussed and complete descriptions of input and output
formats are given. Brief program descriptions and source code listings are
provided as appendices.
-------
LIST OF FIGURES
Number Page
2-1 System Flow Diagram 5
2-2 Estimating Projection Year Growth Rates 7
2-3 Standard EKMA Isopleths 10
4-1 Example Emissions Inventory Summary Report for
Carbon Monoxide 27
4-2 Example Emissions Inventory Summary Report for Volatile
Organic Compounds (.VOC) 28
4-3 Emissions Data File - Example Listing 30
4-4 VOC Emissions Data File - Example Listing 31
4-5 Unsorted CO Air Quality Data File 33
4-6 Sorted CO Air Quality Data File 35
4-7 Example CO Air Quality Summary Report 36
4-8 Example Ozone Air Quality Summary Report 37
4-9 Hourly Carbon Monoxide Measurements for 1972 in
Los Angeles, CA 38
5-1 Example #1 - Run Stream 42
5-2 Example #1 - Control Card 2 and Mobile/Stationary Source
Strategy Cards in MY*FILE.CO-STRATEGY 43
5-3 Example #1 - Source Region Data Cards for CO in
MY*FILE.CO-DATA 44
5-4 Example #1 - CO Emissions Inventory Summary Report 45
5-5 Example #1 - CO Emissions Data File Listing 46
5-6 Example #2 - Run Stream 48
5-7 Example #2 - CO Control Cards 1 and 2 and Source Strategy
Cards in MY*FILE.CO-SCENARIOS 49
5-8 Example #2 - Ozone Control Cards 1 and 2 and Source
Strategy Cards in MY*FILE.03-SCENARIOS 50
5-9 Example #2 - Source Region Data Cards (2 through 6) for
Ozone in MY*FILE.03-DATA 51
5-10 Example #2 - CO Emissions Inventory Summary Report 52
5-11 Example #2 - Unsorted CO Air Quality Data File 53
5-12 Example #2 - Sorted CO Air Quality Data File 54
5-13 Example #2 - CO Air Quality Summary Report 55
5-14 Example #2 - Ozone Air Quality Summary Report 56
5-15 Example £3 - Run Stream 57
A-l Use of Standard EKMA Isopleth Diagram A-6
vi
-------
LIST OF TABLES
Number Page
1-1 Summary of Modeled Pollutants 2
3-1 Input Card Sequence 13
3-2 Input Format for Control Card 1 14
3-3 Source Categories 15
3-4 Input Format for Control Card 2 16
3-5 Input Format for Mobile Source Strategy Card(s) 18
3-6 Input Format for Stationary Source Strategy Card(s) 19
3-7 Input Format for Region Header Card 20
3-8 Input Format for Region Card 2 21
3-9 Input Format for Region Card 3 22
3-10 Input Format for Region Card 4 23
3-11 Input Format for Region Card 5 24
3-12 Input Format for Region Card 6 25
4-1 Emissions Data File Output Format 29
4-2 Air Quality Data File Output Format 32
-------
1.0 INTRODUCTION
This report describes the Modified Rollback/EKMA Strategy Assessment Model
and its use in estimating emission inventories and ambient air quality concen-
trations in future years for alternative control strategies and growth rate
scenarios. The three emission inventory pollutants considered by the model are
carbon monoxide (CO), nitrogen oxides (NO ) and Volatile Organic Compounds
A
(VOC). Ambient concentration estimates can be obtained for carbon monoxide
(CO), annual average nitrogen dioxide (NOo) and ozone (03). Table 1-1 provides
a summary of the modeled pollutants. The program is written in the ASCII
FORTRAN language for the UNIVAC 1100 operating system.
This model differs from the earlier Modified Rollback Model primarily in
the way in which concentration estimates for ozone are made. Future ozone air
quality concentrations are now obtained using an algorithm which solves the
standard isopleth diagram of the Empirical Kinetic Modeling Approach (EKMA). As
a result, changes in both VOC and NO emissions can now be considered, simul-
X
taneously. Other changes include: (1) no upper limit on the number of source
areas which may be modeled, (.2) high-altitude and California regions can be
modeled simultaneously with the 49-State regions, (3) an increase in the number
of control strategies and emission source categories, and (4) the creation of
emission inventory and air quality data files for use in graphical or statis-
tical post-processors.
The material presented is directed toward the user familiar with computer
techniques. Technical details of the computer programming are discussed; complete
descriptions of input, output and test examples are given; and the FORTRAN
source statements are presented as appendices.
-------
Table 1-1. SUMMARY OF MODELED POLLUTANTS
POLLUTANT
NAME
Carbon Monoxide
Oxone*
Nitrogen Dioxide
AIR QUALITY
CODE
0C00
0C08
$03$
P02
AVERAGING
TIME
1-Hour
8-hour
Daily Max
1-Hour
Annual
Average
DEFAULT
UNITS
MG/M3
MG/M3
UG/M3
UG/M3
EMISSIONS
CODE
|zSC00
|zSC00
tfVOC
feSNOX
*NOTE: If ozone is the pollutant modeled, the user must assign the OZIPP
Isopleth Data File to input Unit 11. (See Example #2).
-------
A system overview, including flow charts, is presented in Section 2.
Control and data card preparation and input card sequence are discussed in
Section 3. Section 4 provides examples of the computational output from the
program. Finally, Section 5 provides several test examples. For a complete
discussion of the formulation and limitations of the air quality algorithms used,
the reader should consult Reference 1.
-------
2.0 SYSTEM DESCRIPTION
A system flow diagram of the Modified Rollback/EKMA Strategy Assessment
Model is presented in Figure 2-1. As indicated in the diagram, there are three
basic modules: the main emissions and air quality projection program, the system
sort routine, and the air quality summary report prograim. Each module is briefly
described in the following sections. More detailed descriptions of the computa-
tional aspects of the individual routines are contained in Appendix A.
2.1 Air Quality and Emission Projections
All air quality and emissions projections are performed by program ROLLBACK.
Program options, mobile and stationary source control strategies, base year air
quality concentrations and emission inventories for each source region are input
on cards. ROLLBACK performs card sequence checks and data screening for selected
parameters. If ozone is the pollutant being modeled, the data file containing
the digitized Standard EKMA Isopleths must also be assigned to the run.
Depending on the options selected, the program may output an emissions data
file, an emissions summary report for each source region, and an air quality data
file. The size of each data file and summary report is a function of the number
of source regions being modeled and the number of growth rates, projection years,
and control strategies.
2.1.1 Emission Projections in Rollback
Source region emission inventories are projected to future years on a
disaggregated basis. This procedure allows explicit consideration of different
control and growth rate assumptions for individual source categories. Also, a
distinction is made between existing stationary sources and new sources coming on
-------
DATA
CARDS
ROLLBACK'
INVENTORY
DATA
4-
INVENTORY
REPORT
ISOPLETH
DATA
AIR
QUALITY
DATA
SORTSDF
AQPRNT
AIR
QUALITY
REPORTS
Figure 2-1. SYSTEM FLOW DIAGRAM
-------
line through growth and replacement of existing facilities. It should be noted
that these rates are assumed to represent the growth and retirement of uncontrolled
emissions or emission indicators.
As a matter of programming convenience, growth and retirement factors
are calculated as compound growth rates. Thus, an exponential growth pattern is
assumed to represent the growth in emissions between the base year and the
projection year- For some applications, it may be desirable to provide separate
growth rates for each projection year. For example, the growth between the base
year and the two intermediate projection years shown in Figure 2-2 would be
significantly understated by the single compound growth rate represented by G85.
In this situation, two additional growth rate scenarios, G75 and G80, should be
input to the model following the procedures described in Section 3.3.
Summary reports of the base year and projection year inventories are
available from each source region, control scenario and growth rate combination.
A compact data file can also be output for post-processing by statistical or
graphics procedures.
Finally, the projected changes in the emission inventories form the
basis for the air quality projections.
2.1.2 Air Quality Projections in Rollback
Air quality projections for future calendar years are available for
each control scenario and growth rate combination. The deNevers and Morris
modified rollback equations are used to project CO and annual average NCL
concentrations (.Reference 2)_. For ozone, the EKMA procedure is used to project
future concentration levels (^References 3 and 4).
-------
1970
best estimate of
future growth
G85
force-fitted
growth curves
1985
Figure 2-2« Estimating Projection Year Growth Rates
-------
The modified rollback model merely extends basic, linear rollback to
multiple categories of sources, which may experience different rates of growth,
degree of control, and source-receptor relationships. The equation for this
model is expressed as:
m
+ B (2.1.2-1)
xo *
?.S' G
-------
Projections of ozone air quality concentrations are obtained from an
algorithm which solves the EKMA procedure for the Standard Isopleth Diagram
generated by the OZIPP Model (see Figure 2-3). Input to the procedure consists
of region specific ambient NMHC/NO ratios, the projected change in VOC emissions*
A
and the expected changes in NO emissions. The latter parameter must be deter-
X
mined exogenously, perhaps by previous model simulations for NOX- If an NMHC/NOX
ratio is not available, a default ratio of 9.5:1 is assumed.
Reference 3 provides a detailed description of the assumptions and
limitations of the EKMA procedure. A User's Guide for the OZIPP Model used to
generate the isopleth diagram is the subject of Reference 4. Finally, a descrip-
tion of the specific mathematical solution technique used in this EKMA algorithm
is provided in Appendix A.
2.2 System Sort Routine
A UNIVAC standalone sort routine, SORTSDF, is used to sort the air quality
data file prior to printing the air quality summary reports. The records are
sorted in ascending sequence by growth rate scenario name, control strategy name
and region name, respectively. The user must provide an estimate of the maximum
number of records to be sorted. This number must be greater than or equal to the
product of the number of source regions times the number of growth rate scenarios
times the number of control strategies.
In the EKMA routine, ambient organic concentrations are referred to col-
lectively as "NMHC," and initial concentrations are assumed to be reduced
in the same proportion as VOC emissions. Hence, NMHC is also reduced
in the same proportion as VOC emissions.
-------
a_
o_
?D.O
o
fs)
o" -
O "
(SI
o" -
(D
O
eg '
O~ .
oo
O
o" .
TT
O ". '.
O - .
o
o
t .
o.
- - . - _ .
. ...
..'..:::
.
: . : :
. . . .
- - - - - - --
. . . . _ ._
: :
f
. .
/
. /
/
. "/- .
-'/-"
-/- -r:
1 j'.s.;?
:1?':: =
'' L ~ ":
7
- - -
- - - - -
.' ".'~
'""::;-
.
::^::
~.~.~'.'.~j'
''it
/
..(J.
. .. j . ( . .
/-,?/:
/ -/--
/
/
/./... I
1 I
I
' '
V
- -
<:-~,'
:\~:~
~ ~ - K LJ - -
..
0.4
- - - ( t r
O "
1 i *
T
".":'/'. :
I
. ._ . . /_^. /
:.:/'/. > '-
i . t
--(- /
- 1 1 . (-. ,.
'i.t--l.\\f~:
/.. -.-.I; i
/:'.-.'/ '
-/ 11
i:':t:.::~i ".:
_ .
','-".' 1 -
I":-]"'
\ -
. . _ \
V
_ !! > r .. . ... _ -
? . : : : ^ - - : :
- . . .
0.6 0
: - ,,
J ? i
/ ; '
'-.I-'.'.'.--'
r'- ' /
/ .
' - /
/
. . . .
^\
v
""-.
+ **
* **
. *
~ ~ - -
-. .
0.0 1.0
0-2
0-4
0-6
1.2
1 .*
1 .6
1.8
rj
"o
to
"o
00
o
o
o
0-f) I -I)
NMHC.Pl'MC
1.6
1-0
Figure 2-30 Standard EKMA Isopleths
10
-------
2.3 Air Quality Reports
The program, AQPRNT, produces the air quality summary reports from the data
contained in the air quality data file. The input data are read from FORTRAN
Unit 9.
Air quality summary reports are output on the system print device
(default = Unit 6) for each control scenario and growth rate combination. As
noted above, the data file must be sorted prior to printing the Summary Reports.
The number of expected exceedances of the NAAQS are estimated by fitting a one-
parameter exponential distribution through the projected air quality concentra-
tion. Summary statistics are presented on the number of source regions above the
level of the standard, the average percent change in air quality and the total
number of expected exceedances. The reporting format varies by pollutant.
Example air quality summary reports are provided in Section 4.
11
-------
3.0 PREPARATION OF INPUT DATA
This section provides a description of the input data parameters, card
formats and input sequence. Reference 1 contains default values and/or recom-
mended methodologies for estimating the following input parameters: mobile
source emission factor ratios, stationary source control efficiencies, VMT growth
rates, stationary source growth and retirement rates, base year air quality
design values, and background concentrations and emissions inventories. The
input card sequence is summarized in Table 3-1.
3.1 Control Cards
The first control card in each model run establishes the types of reports
to be printed, the input/output unit numbers, the inventory pollutant to be
modeled, and the number of control scenarios, growth rates and projection years.
Table 3-2 presents the card format and default values.
The second control card identifies the emission inventory source categories
to be included in the base year inventory. Only emissions data from the selected
categories will be included in subsequent calculations. Table 3-3 contains the
source category selection codes, whereas Table 3-4 presents the control card
format.
3.2 Strategy Cards
Mobile and stationary source control strategy cards are required for each
control scenario to be evaluated. Within each control scenario, one mobile and
one stationary source control strategy card must be supplied for each projection
year. These cards contain the emission factor ratios for each source category
selected. That is, the ratio of the source category emission factor in the
12
-------
Table 3-1. INPUT CARD SEQUENCE
Control Card 1: Analysis Options
Control Card 2: Source Categories
Mobile Source Strategy Card: Scenario #1, Projection Year #1
Stationary Source Strategy Card: Scenario #1, Projection Year #1
Mobile Source Strategy Card: Scenario #1, Projection Year #n
Stationary Source Strategy Card: Scenario #1, Projection Year #n
GEOGRAPHICAL
GROUP 1
Mobile Source Strategy Card: Scenario #j, Projection Year #1
Stationary Source Strategy Card: Scenario #j, Projection Year #1
Mobile Source Strategy Card: Scenario #j, Projection Year #n
Stationary Source Strategy Card: Scenario #j, Projection Year #n
GEOGRAPHICAL
GROUP i
(max = 6)
SOURCE
REGION 1
Same Card Sequence As Geographical Group 1
Region Header Card
Region Card 2:
Region Card 3:
Region Card 4:
Region Card 5:
Region Card 6:
Mobile Source Emissions, Categories 1 through 11
Mobile Source Emissions, Categories 12 through 23
Stationary Source Emissions
Mobile Source Growth Rates, Growth Scenario #1
Stationary Source Growth Rates, Growth Scenario #1
Region Card 5: Mobile Source Growth Rates, Growth Scenario #3
Region Card 6: Stationary Source Growth Rates, Growth Scenario #3
LAST SOURCE
REGION
Same Card Sequence As Source Region 1
13
-------
TABLE 3-2. INPUT FORMAT FOR CONTROL CARD
CARD
COLUMNS FORMAT DESCRIPTION
1-2 12 Report Selection Flag, 'EIFLAG" (0 = emissions
and air quality projections with SSCF's;
1 = emission projections with SSCF's only;
2 = emission projections without SSCF's, only)
3-4 12 Emissions Inventory Summary Report Output Unit
'El' (Default = 6)
5-6 12 Emissions Inventory Data File Output Unit
'10' (Default = 8)
7-8 12 Air Quality Data File Output Unit 'IAQ1
(Default = 9)
9-12 A4 Emissions Inventory Pollutant Name (see
Table 1-1)
19-20 12 Number of Geographical Groups, Maximum = 6
24-25 12 Number of Control Scenarios Per Group,
Maximum = 9
29-30 12 Number of projection Years Per Control Scenario,
Maximum = 9
34-35 12 Number of Growth Rate Scenarios, Maximum = 3
39-40 12 Number of Mobile Source Categories,
Maximum = 23
44-45 12 Number of Stationary Source Categories,
Maximum = 9
14
-------
Table 3-3. SOURCE CATEGORIES
SELECTION
CODE
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
REPORT
LABEL
LDV-G
LDT1-G
LDT2-G
HOG
CYCLES
LDV-D
LDT1-D
LDT2-D
HDD
RAILRD
VESSELS
ACR-MT
ACR-CV
ACR-CM
FARM-G
LAWN
SNOW-M
INMCH
CONST-G
FARM-D
1NMCH-D
CONST-D
OFFHGWY
POINT
AREA
COMB-PT
OTHER
PETROL
STORAGE
INDUST
A-SOLV
IN-SOLV
DESCRIPTION
Light Duty Vehicles - gasoline powered
Light Duty Trucks ( < 6000 Ibs. GVW) - gas
Light Duty Trucks (6 - 8500 Ibs. GVW) gas
Heavy Duty Vehicles - gas
Motorcycles
Light Duty Vehicles - diesel powered
Light Duty Vehicles ( < 6000 Ibs. GVW) - diesel
Light Duty Trucks (6-8500 Ibs. GVW) - diesel
Heavy Duty Vehicles - diesel
Railroads
Vessels
Military Aircraft
Civilian Aircraft
Commercial Aircraft
Farm Machinery - gas
Lawn Equipment
Snow mobiles
Industrial Machinery - gas
Construction Equipment - gas
Farm Machinery - diesel
Industrial Machinery - diesel
Construction Equipment - diesel
Off Highway Vehicles
Point Sources
Area Sources
Fuel Combustion - Point Sources
Miscellaneous Area Sources
Petroleum Industry
Petroleum Storage and Transport
Miscellaneous Industrial Process Sources
Area Source Solvent Evaporation
Industrial Solvent Evaporation
15
-------
Table 3-4. INPUT FORMAT FOR CONTROL CARD 2
CARD
COLUMNS FORMAT DESCRIPTION
1-2 12 Source Category Selection Code for First
Source Category (see Table 3-3)
3-4 12 Source Category Selection Code for Second
Source Category
65-66 12 Source Category Selection Code for Source
Category Number 33
16
-------
projection year to the emission factor for that source category in the base year.
An example of alternative control scenarios might be the Federal Motor Vehicle
Control Program (FMVCP) with and without an inspection and maintenance program.
A given control scenario may result in different emission factor ratios for
different geographical areas, e.g., the FMVCP in high versus low altitude regions
To account for this situation, the strategy cards may be grouped by geographical
areas. That is, the set of control strategies is repeated for each different
geographical grouping, up to a maximum of six groups. It should be noted, how-
ever, that air quality summary reports are prepared for each control scenario,
thus all geographical areas are combined in one report.
The input card formats for the mobile and stationary source strategy cards
are presented in Tables 3-5 and 3-6, respectively. Reference 1 contains recom-
mended methodologies for calculating the emission factor ratios.
3.3 Source Region Data Cards
Six data cards are required for each source region modeled. Card -input
formats and default values are given in Tables 3-7 through 3-12. Recommended
default values and calculation methodologies are also contained in Reference 1.
The last group of six region cards must be followed by either an end-of-file
indicator (_@EOFl or an EXEC 8 control card.
17
-------
Table 3-5. INPUT FORMAT FOR MOBILE SOURCE STRATEGY CARD(S)
CARD
COLUMNS
1-8
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67-69
70-72
73-75
76-78
79-80
FORMAT
A8
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
12
DESCRIPTION
Control Scenario Name
Emission Factor Ratio For LDV-G
Emission Factor Ratio For LDT1-G
Emission Factor Ratio For LDT2-G
Emission Factor Ratio For HDG
Emission Factor Ratio For CYCLES
Emission Factor Ratio For LDV-D
Emission Factor Ratio For LDT1-D
Emission Factor Ratio For LDT2-D
Emission Factor Ratio For HDD
Emission Factor Ratio For RAILRD
Emission Factor Ratio For VESSELS
Emission Factor Ratio For ACR-MT
Emission Factor Ratio For ACR-CV
Emission Factor Ratio For ACR-CM
Emission Factor Ratio For FARM-G
Emission Factor Ratio For LAWN
Emission Factor Ratio For SNOW-M
Emission Factor Ratio For INMCH-G
Emission Factor Ratio For CONST-G
Emission Factor Ratio For FARM-D
Emission Factor Ratio For INMCH-D
Emission Factor Ratio For CONST-D
Emission Factor Ratio For OFFHGWY
Projection Year (1971 _< PY ^ 2069)
18
-------
Table 3-6. INPUT FORMAT FOR STATIONARY SOURCE STRATEGY CARD(S)
CARD
COLUMNS
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
FORMAT
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
F3.2
DESCRIPTION
New Point Source Emission Factor Ratio
Existing Point Source Emission Factor Ratio
New Area Source Emission Factor Ratio
Existing Area Source Emission Factor Ratio
New Fuel Combustion Emission Factor Ratio
Existing Fuel Combustion Emission Factor Ratio
New Miscellaneous Area Source Emission Factor
Ratio
Existing Miscellaneous Area Source Emission
Factor Ratio
New Petroleum Industry Emission Factor Ratio
Existing Petroleum Industry Emission Factor
Ratio
New Petroleum Storage & Transport Emission
Factor Ratio
Existing Petroleum Storage & Transport
Emission Factor Ratio
New Industrial Process Sources Emission
Factor Ratio
Existing Industrial Process Sources Emission
Factor Ratio
New Area Source Solvent Evaporation Emission
Factor Ratio
Existing Area Source Solvent Evaporation
Emission Factor Ratio
New Industrial Solvent Evaporation Emission
Factor Ratio
Existing Industrial Solvent Evaporation
Emission Factor Ratio
19
-------
Table 3-7. INPUT FORMAT FOR REGION HEADER CARD
CARD
COLUMNS
1-3
4-18
20-24
25-29
31-34
36-39
40-43
44-46
47-49
50-52
53-55
56-58
59-61
62-64
65-67
68-70
77
78-79
FORMAT
A3
3A4.A3
F5.2
F5.2
A4
A4
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
F4.1
11
12
DESCRIPTION
Region Identification Number, e.g. AQCR, FIPS
County Code
Region Name
Base Year Air Quality Design Value
Air Quality Background Concentration
Air Quality Pollutant Name, (see Table 1-1)
Pollutant Concentration Units, (e.g. PPM)
If Pollutant is Ozone, NMHC/NOX Ratio
(Default Ratio 9.5)
If Pollutant is Ozone, NOX Ratio For First
Projection Year, Blank = 1.0 (i.e.. NOXi/NOXg)
If Pollutant is Ozone, NOX Ratio For Second
Projection Year, (i.e. NOX2/NOXg)
If Pollutant is Ozone, NOX Ratio For Third
Projection Year, (i .e.NOX3/NOXg)
If Pollutant is Ozone, NOX Ratio For Fourth
Projection Year, (i.e. NOX^/NOXg)
If Pollutant is Ozone, NOX Ratio For Fifth
Projection Year, (i.e. NOX5/NOXg)
If Pollutant is Ozone, NOX Ratio For Sixth
Projection Year, (i.e. NOX6/NOXg)
If Pollutant is Ozone, NOX Ratio For Seventh
Projection Year, (i.e. NOX7/NOXg)
If Pollutant is Ozone, NOX Ratio For Eighth
Projection Year, (i.e. NOX8/NOXg)
If Pollutant is Ozone, NOX Ratio For Ninth
Projection Year, (i.e. NOX9/NOXg)
Strategy Geographical Group Number,
(i.e., I,2,or3, DEFAULTS )
Base Year (must be greater than 1970)
20
-------
Table 3-8. INPUT FORMAT FOR REGION CARD 2
CARD
COLUMNS
1-3
6-11
12-17
18-23
24-29
30-35
36-41
42-47
48-53
54-59
60-65
66-71
FORMAT
A3
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
DESCRIPTION
Region Identification Number
Base Year Emissions For LDV-G, (1000 tons/year
Base Year Emissions For LDT1-G
Base Year Emissions For LDT2-G
Base Year Emissions For HOG
Base Year Emissions For CYCLES
Base Year Emissions For LDV-D
Base Year Emissions For LDT1-D
Base Year Emissions For LDT2-D
Base Year Emissions For HDD
Base Year Emissions For RAILRD
Base Year Emissions For VESSELS
21
-------
Table 3-9. INPUT FORMAT FOR REGION CARD 3
CARD
COLUMNS
6-11
12-17
18-23
24-29
30-35
36-41
42-47
48-53
54-59
60-65
66-71
72-77
FORMAT
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
DESCRIPTION
Base Year Emissions For AC-MT, (1000 tons/year)
Base Year Emissions For AC-CV
Base Year Emissions For AC-CM
Base Year Emissions For FARM-G
Base Year Emissions For LAWN
Base Year Emissions For SNOW-M
Base Year Emissions For INMCH-G
Base Year Emissions For CONST-G
Base Year Emissions For FARM-G
Base Year Emissions For INMCH-D
Base Year Emissions For CONST-D
Base Year Emissions For OFFHGWY
22
-------
Table 3-10. INPUT FORMAT FOR REGION CARD 4
CARD
COLUMNS FORMAT DESCRIPTION
6-11 F6.0 Base Year Emissions For Point Sources
(1000 tons/year)
12-17 F6.0 Base Year Emissions For Area Sources
18-23 F6.0 Base Year Emissions For Fuel Combustion
24-29 F6.0 Base Year Emissions For Misc. Area Sources
30-35 F6.0 Base Year Emissions For Petroleum Industry
36-41 F6.0 Base Year Emissions For Petroleum Storage
and Transport
42-47 F6.0 Base Year Emissions For Industrial Process
48-53 F6.0 Base Year Emissions For Area Solvent Evapora
54-59 F6.0 Base Year Emissions For Industrial Solvent
Evaporation
60-61 F2.1 Stationary Source Contribution Factor
(0 4SSCF il.O) (Blank = 1.0)
62-63 F2.1 Area source Contribution Factor
64-65 F2.1 Fuel Combustion Contribution Factor
66-67 F2.1 Miscellaneous Area Source Contribution Factor
68-69 F2.1 Petroleum Industry Contribution Factor
70-71 F2.1 Petroleum Storage & Transport Contribution Fa|
72-73 F2.1 Industrial Process Contribution Factor
74-75 F2.1 Area Solvent Evaporation Contribution Factor
76-77 F2.1 Industrial Solvent Evaporation Contribution
Factor
23
-------
Table 3-11. INPUT FORMAT FOR REGION CARD 5
CARD
COLUMNS
1-3
4-5
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39'
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67-69
70-72
73-75
76-78
FORMAT
A3
A2
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
DESCRIPTION
Region Identification Number
Growth Rate Scenario Name, (e.g. HI, LO, etc.)
Growth Rate For LDV-G, (percent/year)
Growth Rate For LDT1-G
Growth Rate For LDT2-G
Growth Rate For HDG
Growth" Rate For CYCLES
Growth Rate For LDV-D
Growth Rate For LDT1-D
Growth Rate For LDT2-D
Growth Kate For HDD
Growth Rate For RAILRD
Growth Rate For VESSELS
Growth Rate For ACR-MT
Growth Rate For ACR-CV
Growth Rate For ACR-CM
Growth Rate For FARM-G
Growth Rate For LAWN
Growth Rate For SNOW-M
Growth Rate For INMCH-G
Growth Rate For CONST-G
Growth Rate For FARM-D
Growth Rate For INMCH-D
Growth Rate For CONST-D
Growth Rate For OFFHGWY
24
-------
Table 3-12. INPUT FORMAT FOR REGION CARD 6
CARD
COLUMNS
10-12
13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
-FORMAT
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
F3.1
DESCRIPTION
Point Source Growth Rate, (percent/year)
Point Source Retirement Rate, (percent/year)
Area Source Growth Rate
Area Source Retirement Rate
Fuel Combustion Point Source Growth Rate
Fuel Combustion Point Source Retirement Rate
Miscellaneous Area Sources Growth Rate
Miscellaneous Area Sources Retirement Rate
Petroleum Industry Growth Rate
Petroleum Industry Retirement Rate
Petroleum Storage and Transport Growth Rate
Petroleum Storage and Transport Retirement Rate
Industrial Process Growth Rate
Industrial Process Retirement Rate
Area Source Solvent Evaporation Growth Rate
Area Source Solvent Evaporation Retirement Rate
Industrial Solvent Evaporation Growth Rate
Industrial Solvent Evaporation Retirement Rate
25
-------
4.0 COMPUTATIONAL OUTPUT
Strategy model outputs include: (a) the Emissions Inventory Summary Report,
(b) the emissions inventory data file, (c) the air quality data file, and (d) the
Air Quality Summary Report. Each type of output, described in the following
sections, is accompanied by illustrative examples.
4.1 Emissions Summary Report
Examples of the Emissions Inventory Summary Report are provided as
Figures 4-1 and 4-2. The report illustrated in Figure 4-2 is an example of a
case where the source category totals "wrap-around" due to the width limitation
for a print line. A summary report of emission projections is output for each
source region, control scenario and growth rate combination.
4.2 Emissions Data File
The output format for the emissions data file is shown in Table 4-1. The
file is output on the unit number designated in the third data field of Control
Card 1 (.see Table 3-2). If a blank or zeros are encountered in this field, the
emissions data file is routed to output Unit 8. Emissions inventory data files
corresponding to the Emissions Inventory Summary Report examples are displayed as
Figures 4-3 and 4-4, respectively.
4.3 Air Quality Data File
The air quality data file is used to produce the air quality summary reports,
The output unit number is designated in the fourth data field of Control Card 1
Csee Table 3-2). If the field is blank or zero-filled, Unit 9 is assumed. The
output format of the air quality data file is given in Table 4-2, whereas an
example air quality data file is shown in Figure 4-5. After the header record,
26
-------
LOCATION: 100 COUNTY A
POLLUTANT: co
*** EMISSIONS INVENTORY PROJECTIONS ***
STRATEGY:SCEN »1
EMISSIONS (1000 TONS/YEAR)
SOURCE CATEGORIES
GROWTH RATE:HI
LDV-S LDT1-G
HOG
BASE YR
1978
PROJ YR
1984
1985
1990
1995
403.0
169.8
150.0
127.1
135.5
79.3 151.6
34.5
29.5
32.0
24.2
122.7
101.7
41.7
23.0
HDD
8.1
10.6
10.9
13.2
20.2
POINT
.9
1.1
1.1
1.4
1.6
AREA OTHER
7.5
7.9
7.9
8.3
8.6
16.6
19.3
19.7
22.3
25.3
YEAR
1978
1984
1985
1990
1995
MOBILE
TOTAL
642.0
337.6
292.1
203.9
203.0
STATIONARY
TOTAL
25.0
28.2
28.8
31.9
35.5
GRAND
TOTAL
667.0
365.9
320.9
235.8
238.5
Figure 4-1. Example Emissions Inventory Summary Report for Carbon Monoxide
27
-------
ION: 001 AQCR A
INT: VOC
*** EMISSIONS INVENTORr PROJECTIONS »**
STRATEGY;BASELINE
EMISSIONS (1000 TONS/YEAR)
SOURCE CATEGORIES
GROWTH RATE=LO
'R
LOV-G LOT1-G
61.9
.1
.0
.0
.0
.0
MOBILE
TOTAL
98.3
47.0
42.
31.
31.2
12.5
HOG
11.6
HDD RAILRO VESSELS ACR-MT ACR-CV ACR-CM OFFHGWY FUEL-CM OTHER
2.2
2.2
2.6
4.4
22.0
18.9
11.4
9.3
4.7
4.1
2.4
2.0
6.4
5.2
2.0
1.1
4.9
5.0
5.2
7.5
2.2
2.2
2.3
2.3
.1
.1
.1
.2
.5
.5
.6
.6
.7
.7
.8
.9
2.6
2.7
3.0
3.5
3.0
3.0
3.4
3.8
.5
.5
.6
.7
4.4
4.4
4.4
4.4
PETROL STORAGE INDUST A-SOLV IN-SOLV
8.8
.0
47.8
2.0 .0
2.0 .0
2.2 .0
2.4 .0
STATIONARY
TOTAL
61.3
42.1
42.5
44.2
46.1
35.1
35.4
36.8
38.3
GRAND
TOTAL
160.1
89.1
84.8
75.5
77.3
Figure 4-2.
Example Emissions Inventory Summary Report for Volatile Organic
Compounds (VOC)
28
-------
Table 4-1. EMISSIONS DATA FILE OUTPUT FORMAT
RECORD
NUMBER COLUMNS
1 1-3
4-18
20-27
28-31
34-37
38-39
42-43
44-45
46-47
108-109
2 1-4
8-12
13-20
21-28
29-36
37-44
'
109-116
2a (optional) 29-116
2b (optional) 29-116
3 1-4
8-116
3a (optional) 29-116
3b (optional) 29-116
|
N 1-4
8-116
FORMAT
A3
3A4SA3
A8
A4
A4
12
12
12
12
12
14
F8.1
F8.1
F8.1
F8.1
F8.1
'
F8.1
11F8.1
11F8.1
14
14F8.1
11F8.1
11F8.1
14
14F8.1
DESCRIPTION
Region identification number
Region name
Control scenario name
Growth rate name
Inventory pollutant name
Number of projection years, NPY
Number of source categories, NS
First source category code
Second source category code
Thirty- third source category code
Base year
Mobile source base year emissions
total, (1000 tons/year)
Stationary source base year emissions
total, (1000 tons /year)
Total region base year emissions,
(1000 tons/year)
First source category base year
emissions, (1000 tons/year)
Second source category base year
emissions, (1000 tons. year)
Eleventh source category base year
emissions, (1000 tons/year)
Base year emissions, source catego-
ries 12 thru 22, (1000 tons/year)
Base year emissions, source catego-
ries 23 thru 33, (1000 tons/year)
First projection year
First projection year emission to-
tals, (1000 tons /year)
First projection year emission to-
tals, (1000 tons/year)
First projection year emission to-
tals, (100 tons /year)
Last projection year
Last projection year emission totals.
N+l (optional) 29-116 11F8.1
N+2 (optional) 29-116 11F8.1
NOTE: N = 1 + (NPY + 1) * IFTX (NS/11)
-29
(1000 tons/year)'
Last projection year emission totals,
(1000 tons/year)
Last projection year emission totals,
(1000 tons/year)
-------
IDATA.I. S.
DATA 'RlSl SL74T9 06/15/81
1.
Z.
3.
5.
6.
7.
3.
9.
10.
11.
12.
13.
1*.
15.
16.
17.
13.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
34.
37 .
38.
39.
40.
41.
42 .
43.
44 .
-5.
46.
47.
43.
49.
50.
51.
52.
53.
54.
55.
56.
57.
53.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
"0.
71.
73.
75.
100 COUNTY
1978 642
1984 299
1985 C53
1990 160
1995 144
100 COUMTY
1973 642
1984 318
198S 272
1990 181
1995 171
100 COUNTY
1978 642
1934 337
1985 292
1990 203
1953 C03
100 COVMTf
1973 o4C
1934 299
1935 250
1990 156
1995 1*1
100 COMITY
1978 642
1934 318
1985 268
1990 176
1995 167
100 COUNTY
1978 32
19?S 30
1=30 30
13"5 3l
0*1 COUNTY
1973 1'4
I3;.. 32
1=35 63
1590 46
19=5 42
041 COUNTY
1978 194
1=84 87
1055 73
1990 51
1995 50
041 COUNT r
1978 194
1=P4 92
1935 78
1900 53
1995 59
001 COUNTY
1978 135
1<>S4 30
A
0
4
9
5
8
A
0
0
4
0
6
A
0
6
1
9
0
A
0
4
1
3
3
A
0
0
3
8
<4
A
0
6
7
2
0
a
g
1
0
3
7
a
3
2
a
3
7
a
9
6
<4
3
^
Z
3
1
6
0
4
B
9
t.
6
3
£
B
3
6
9
<4
<»
c
3
3
15:58:51 (1)
25.
23.
28.
31 .
35.
25.
28.
28.
31.
35.
25.
28.
23.
31.
35.
25.
28.
28.
31.
35.
25.
28.
28.
31.
35.
25.
28.
23.
31.
35.
17.
19.
19.
21.
23.
17.
19.
19.
21.
23.
17.
19.
19.
21.
23
17.
19.
19.
21.
23.
17.
19.
19.
21
23.
17.
19.
19.
21.
23.
13.
2S.
SCEN HI
0 667
2 327
8 282
9 1 92
5 180
SCEN *1
0 667
2 346
8 301
9 213
5 207
SCEN 51
0 667
2 365
3 320
9 235
5 238
SCEN B2
0 667
2 327
3 278
9 183
5 176
SCEN 82
0 667
2 346
8 297
9 208
5 202
SCEN »2
0 667
2 365
8 316
9 231
5 233
SCEN «
2 212
2 101
5 89
5 68
6 67
SCEN SI
2 212
2 106
5 94
5 74
6 75
SCEN »1
2 212
2 111
5 ICO
5 31
t> 3-.
SCEH =2
2 212
2 101
5 63
5 67
6 66
SCEN =2
2 212
2 106
5 93
S 73
6 73
SCEN 82
2 212
2 111
5 93
5 79
> S3
SCEN 51
2 20°
4 105
10
0
6
5
3
MO
0
3
3
0
1
HI
0
9
9
8
5
10
0
6
9
a
7
MO
0
3
1
a
a
HI
0
9
S
1
4
10
1
3
5
7
2
no
i
4
6
8
3
HI
1
3
0
5
3
to
1
3
2
4
0
MO
1
4
1
3
3
HI
1
3
4
3
0
10
0
7
CO
403.0
150.7
130.4
100.0
96.6
CO
403.0
160.0
139.9
112.8
114.5
CO
403.0
169.3
150.0
127.1
135.5
CO
403.0
150.7
126.6
96.3
93.0
CO
403.0
160.0
135.3
103.6
110.3
CO
403.0
169.8
145.6
122.3
130.5
CO
141.5
52.9
45.8
35.1
33.9
CO
141.5
56.2
49.1
39.6
40.2
CO
141.5
59.6
52.7
4*. 6
<+7 . b
CO
141.5
52.9
-.4.5
33.3
32.6
CO
141.5
56.2
47.7
33.1
33.7
CO
141.5
59.6
51.1
43.0
5.3
CO
132.6
49.6
4
4
4
4
4
4
4
4
4
*
4
4
4
7 1
79.3
30.7
25.3
17 C
i I - y
17.5
7 1
79.3
32.5
27.6
19.6
20.6
7 1
79.3
34.5
29 5
22.0
24.2
7 1
79.3
30.7
25.3
17.5
17.5
7 1
79.3
32.5
27.6
19.6
20.6
7 1
79.3
34.5
29.5
22.0
24.2
7 1
23.1
10.9
9.1
6.2
6.2
7 1
23.1
11.5
9.3
7.0
7.3
7 1
23.1
12.2
10. S
7.3
8.0
7 1
28 1
10.9
'.1
5 . 2
6.2
7 1
28.1
11.5
9.8
7.0
7.3
7 1
23.1
12.2
10.5
7 3
3.5
~ 1
26. 7
10.3
2 4 9242527
151.6 8
103.6 9
33.2 9
32.6 10
16.3 14
2 4 9242527
151.6 8
115.5 10
94.3 10
36.9 11
19.4 17
2 4 9242527
151.6 3
122.7 10
101.7 10
41.7 13
23.0 20
2 4 0242527
151.6 3
108.6 9
33.2 1
32.6 10
16.3 14
2 4 9242527
151.6 8
115.5 10
94.8 10
36.9 11
19.4 17
2 4 9242527
151.6 3
122.7 10
101.7 10
41.7 13
23.0 20
2 4 9242527
24.3
17.8
14.4
5.3
2.7
2 4 9242527
24.3
13.9
15.5
6.0
3.2 1
2 4 9242527
24.8
20.1
16.6
6.8
3.3 I
2 4 =242527
2t.3
17.8
14.4
5. 3
2.7
2 4 "242527
24.3
18.9
15.5
6.0
1.2 1
2 4 <=242527
24.3
20.1
1^ . 6
5 3
3.o 1
2 4 33^2Si7
23.3 3
16.7 3
1
4
5
6
1
o
2
7
2
1
6
9
2
2
1
4
5
4
6
1
0
2
7
2
1
6
9
2
2
5
6
6
6
9
5
6
6
7
1
5
7
7
3
2
5
6
6
o
9
5
6
6
7
1
S
~
7
3
C
2
7
.9
1.1
1.1
3
1.1
1.1
1.4
1.3
q
1.1
1.1
I.*
1.6
9
1.1
1.1
1.4
1.6
.9
1.1
1.1
1.4
1.6
o
1.1
1.1
1.4
1.6
.5
.6
.6
.3
. 9
.5
.6
.6
.3
.9
.5
0
.6
.3
3
.5
. 0
.4
.3
.9
.5
. 6
.6
3
Q
.5
. b
. 3
.3
i
.0
.0
7
7
7
5
T
7
7
3
3
7
7
7
8
3
7
7
7
8
3
7
7
7
a
3
7
7
7
3
3
7
7
7
7
3
7
7
7
7
a
7
7
7
7
3
;
~
7
~
8
7
7
7
7
£
7
7
7
7
3
13
14
5
9
9
5
Q
9
3
6
5
9
9
3
6
5
9
9
3
6
5
9
9
3
6
5
9
9
3
6
2
6
6
9
2
;
6
6
9
2
2
6
o
9
2
2
3
a
9
2
2
6
6
9
2
2
6
4
3
2
&
3
16.6
19.3
19.7
25.3
13.6
19.3
19.7
22.3
25.3
16.6
19.3
19.7
22.3
2S.3
16.6
19.3
19.7
22.3
25.3
16.0
19.3
9.7
2.3
5.3
6.6
9.3
9.7
2.3
5.3
9.5
1.0
11.3
12.8
14.5
'.S
11.0
11.3
12.3
14.5
9 5
11.3
11.3
12.3
1».5
9.5
11.0
11.3
12.3
iH.S
9.5
11.0
11.3
12.8
14.5
9.5
11.0
11.3
12.3
1- . 5
9.6
11.1
Figure 4-3. Emissions Data File - Example Listing
30
-------
SOATA.L 3.
DATA 9R1Q1 SL74T9 07/01/81
1.
2.
3.
4.
5.
6.
7.
3.
9.
10 .
11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
23.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
53.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
001 AQCR A
1978 98.3
1934 47.0
1985 42.3
1990 31.3
1995 31.2
001 AQCR A
1978 98.3
1984 49.3
1985 44.7
1990 33.9
1995 34.9
001 AQCR A
1978 98.3
1984 51.3
1935 47.3
1990 36.9
1995 39.2
002 AQCR B
1978 33.4
1984 16.7
1985 15.4
1990 12.4
1995 12.4
002 AQCR B
1978 33.4
1984 17.4
1985 16.0
1990 13.1
1995 13.3
002 AQCR B
1978 33.4
1984 18.1
1985 16.3
1990 13.9
1995 14.3
003 AQCR C
1978 21.3
1984 11.0
"
1985 10.1
1990 8.1
12=36:21 (0)
BASELINE LO VOC
61.8 160.1 61.9
4.4
42.1 89.1 22.0
4.4
42.5 34.8 19.9
4.4
44.2 75.5 11.4
4.4
4.4
BASELINE (10 VOC
61.3 160.1 61.9
4.4
42.1 91.5 23.3
4.4
42.5 37.2 20.2
4.4
44.2 78.1 12.3
4.4
46.1 81.0 11.1
4.4
BASELINE HI VOC
61.8 160.1 61.9
4.4
42.1 93.9 24.7
4.4
42.5 89.7 21.7
4.4
44.2 31.1 14.5
4.4
46.1 35.3 13.1
4.4
BASELINE LO VOC
15.0 48.4 21.3
2.6
14.8 31.6 7.6
2.6
14.8 30.2 6.5
2.6
14.3 27.2 3.9
2.6
15.0 27.4 3.2
2.6
BASELINE MO VOC
15.0 48.4 21.3
2.6
14.3 38.2 3.0
2.6
14.3 30.9 7.0
2.6
14.8 27.9 4.4
2.6
15.0 23.3 3.3
2.6
BASELINE HI VOC
15.0 48.4 21.3
2.6
14.8 33.0 9.5
2.6
14.8 31.6 7.5
2.6
14.8 28.7 5.0
2.6
15.0 29.3 4.5
2.6
BASELINE LO VOC
13.5 34.8 13.3
2.5
13.4 24.4 4.7
2.5
13.4 23.5 4.1
2.5
13.4 21.6 2.4
2.5
4 17 1
12.5
.1
4.7
.0
4.1
.0
2.4
.0
.0
4 17 1
12.5
.1
5.0
.0
4.4
.0
2.7
.0
2.3
.0
4 17 1
12.5
.1
5.3
.0
4.7
.0
3.0
.0
2.7
.0
4 17 1
4.3
.0
1.6
.0
1.4
.0
.8
.0
.7
.0
4 17 1
4.3
.0
1.7
.0
1.5
.0
.9
.0
.9
.0
4 17 1
4.3
.0
1.8
.0
1.6
.0
1.0
.0
.9
.0
4 17 1
2.7
.0
1.0
.0
.9
.0
.5
.0
2 4-910111213142326272329303132
11.6
8.8
6.4
2.0
5.2
2.0
2.0
2.2
2.4
4.2
.0
4.9
.0
5.0
.0
5.2
.0
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.3
2 . 3
33.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.4
.5
.5
.6
.6
.7
.7
.8
.9
2.2
2.6
2.7
3.0
3.5
2.6
3.0
3.0
3.4
3.3
2 4 910111213142326272829303132
11.6
8.8
6.8
2.0
5.5
2.0
2.3
2.2
1.3
2.4
4.2
.0
5.2
.0
5.4
.0
5.9
.0
8.9
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.8
2.3
33.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.2
.4
.5
.5
.6
.6
.6
.7
.7
.3
.9
2.2
2.6
2.7
3.0
3.5
2.6
3.0
3.0
3.4
3.8
2 4 910111213142326272829303132
11.6
3.8
7.2
2.0
5.9
2.0
2.6
2.2
1.6
2.4
4.2
.0
5.5
.0
5.7
.0
6.6
.0
10.5
.0
2.2
47.8
2.2
35.1
2.2
35.4
2.3
36.3
2.3
38.3
.1
.3
.1
.1
.1
.2
.1
.2
.2
.2
.4
.5
.5
.6
.6
.6
.7
.7
.8
.9
2.2
2.6
2.7
3.0
3.5
2.6
3.0
3.0
3.4
3.3
2 4 910111213142326272829303132
2.3
3.0
1.3
2.5
1.0
2.4
.4
2.1
.2
1.9
.4
.3
.5
.3
.5
.3
.5
.2
.7
.2
.7
3.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9
3.4
3.5
4.0
4.6
.2
.2
.2
.3
.3
.2
.2
.2
.3
.3
.9
1.0
1.1
1.2
1.3
2 4 910111213142326272829303132
2.3
3.0
1.3
2.5
1.1
2.4
.5
2.1
.3
1.9
.4
.3
.5
.3
.5
.3
.6
.2
.3
.2
.7
8.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9
3.4
3.5
4.0
4.6
.2
.2
.2
.3
.3
.2
.2
.2
.3
.3
.9
1.0
1.1
1.2
1.3
2 4 910111213142326272829303132
2.3
3.0
1.4
2.5
1.2
2.4
.5
2.1
.3
1.9
.4
.3
.5
.3
.5
.3
.6
.2
1.0
.2
.7
3.3
.7
9.1
.7
9.2
.7
9.4
.7
9.7
.2
.0
.2
.0
.2
.0
.3
.0
.3
.0
2.9
3.4
3.5
4.0
4.6
.2
.2
.2
.3
.3
.2
.2
.2
.3
.3
.9
1.0
1.1
1.2
1.3
i
2 4 910111213142326272829303132
1.2
2.4
.7
2.0
.5
1.9
.2
1.7
1.4
.0
1.6
.0
1.7
.0
1.7
.0
1.3
8.6
1.3
8.9
1.3
9.9
1.3
9.2
.0
.0
.0
.0
.0
.0
.0
.0
.4
.5
.5
.6
.0
.0
.0
.0
.4
.5
.5
.6
.6
. 7
. 7
.8
Figure 4-4. VOC Emissions Data File - Example Listing
31
-------
Table 4-2. Air Quality Data File Output Format
RECORD COLUMNS
NUMBER
1 1-4
5-8
9-14
15-19
21-22
23-24
2 to NREC* 2-4
5-19
21-28
30-31
34-37
38-42
43-47
51-54
55-58
61-64
65-69
131-134
135-139
FORMAT
A4
A4
F6.2
F5.3
12
12
A3
3A4,A3
AS
A2
14
F5.1
F5.1
15
F5.1
15
F5.1
15
F5.1
DESCRIPTION
Pollutant name, e.g. 03.
Pollutant units, e.g. PPM.
Ambient Standard
Value for rounding
Pollutant sequence code number
Number of projection years
Region ID number
Region name
Control strategy name
Growth rate name
Base year
Base year air quality concen-
tration
Background for CO, N02;
NMHC/NO Ratio for ozone
A
First projection year
Projected concentration
Second projection year
Projected concentration
Ninth projection year
Projected concentration
* The total number of records is given by, NREC = strategies* growth rates*
source regions + 1
32
-------
SO ATA, L 9.
DATA 9R1Q1 SL74T9 07/01/81 12
1.
2.
3.
4.
5.
6.
7.
3.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
C08
100
100
100
100
100
100
041
041
041
041
041
041
001
001
001
001
001
001
035
035
035
035
035
035
ERRORS
-36:07 (0)
PPM 9.00 .500 2 4
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY A
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY B
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY C
COUNTY D
COUNTY D
COUNTY D
COUNTY D
COUNTY D
COUNTY D
: HONE. TIME:
SCEN SI
SCEN #1
SCEN SI
SCEN #2
SCEN 92
SCEN 82
SCEN #1
SCEN SI
SCEN SI
SCEN S2
SCEN S2
SCEN S2
SCEN SI
SCEN SI
SCEN SI
SCEN #2
SCEN 92
SCEN S2
SCEN SI
SCEN SI
SCEN SI
SCEN »2
SCEN S2
SCEN S2
0.540 SEC
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
11.6 1985
12.3 1985
13.1 1985
11.6 1935
12.3 1985
13.1 1985
5.7 1985
6.0 1985
6.4 1985
5.7 1985
6.0 1985
6.4 1985
9.8 1985
10.4 1985
11.0 1985
9.8 1985
10.4 1935
11.0 1985
7.4 1985
7.8 1935
8.3 1985
7.4 1985
7.8 1985
8.3 1985
9.9 1990
10.6 1990
11.3 1990
9.7 1990
10.4 1990
11.2 1990
4.9 1990
5.2 1990
5.6 1990
4.8 1990
5.1 1990
5.5 1990
8.5 1990
9.1 1990
9.7 1990
8.4 1990
8.9 1990
9.5 1990
6.3 1990
6.8 1990
7.2 1990
6.2 1990
6.7 1990
7.1 1990
6.3 1995
7.1 1995
8.0 1995
6.2 1995
7.0 1995
7.8 1995
3.4 1995
3.8 1995
4.3 1995
3.3 1995
3.7 1995
4.1 1995
6.2 1995
6.9 1995
7.6 1995
6.0 1995
6.7 1995
7.5 1995
4.3 1995
4.8 1995
5.3 1995
4.2 1995
4.7 1995
5.2 1995
5.8
6.8
8.0
5.6
6.6
7.8
3.2
3.7
4.4
3.1
3.6
4.2
6.0
6.9
8.1
5.8
6.8
7.9
4.0
4.7
5.5
3.9
4.6
5.3
Figure 4-5. Unsorted CO Air Quality Data File
33
-------
the data records are output in source region - growth rate - control scenario
sequence. These data must be sorted in reverse sequence, control scenario-growth
rate - source region, before the air quality summary reports can be generated.
Figure 4-6 shows the sorted air quality data file.
4.4 Air Quality Summary Reports
These reports summarize the air quality projections across all source regions
for each control scenario - growth rate combination. Figure 4-7 illustrates an
example Linear Rollback Report for CO. The format of the EKMA report for ozone
is shown as Figure 4-8. Note that the ambient NMHC/NO ratio is displayed for
A
each source region. A default ratio of 9.5:1 is assumed in the absence of
measured data.
4.4.1 Source Region Projections
Estimated air quality concentrations and expected exceedances of the
NAAQS in each projection year are displayed for the individual source regions.
As described in Section 2.1, CO and N02 concentrations are estimated using the
Modified Rollback Model, whereas ozone concentrations are estimated from the
standard isopleth diagram of EKMA.
Accompanying each projected air quality concentration is the number of
expected exceedances of the NAAQS. For CO and 0.,, the number of exceedances is
obtained from a one-parameter exponential distribution fitted through the design
value concentration. Studies have shown the exponential distribution to provide
a good description of air quality concentration distributions, especially in the
upper tail of the distribution. ' As shown in Figure 4-9, the exponential
distribution plots as a straight line on semilog paper.
34
-------
3DATA.L 9.
DATA 9R1Q1 SL74T9 07/01/81 12:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
1*.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
COS
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
ERRORS
36:09 (0)
PPM 9.00 .500 2 4
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
: NONE. TIME:
SCEN ftl
SCEN 81
SCEN SI
SCEN #1
SCEN 82
SCEH 82
SCEN 32
SCEN 82
SCEN 81
SCEN #1
SCEN 81
SCEN #1
SCEN 82
SCEN #2
SCEN 82
SCEN 82
SCEN #1
SCEN 81
SCEN #1
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 82
0.540 SEC
HI
HI
HI
HI
HI
HI
HI
HI
LO
LO
LO
LO
LO
LO
LO
LO
MD
MD
MD
MD
MD
MD
MD
MD
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934
1984
1984
1984
1984
1984
1984
1984
1984
1984
13.1 1985
6.4 1985
11.0 1985
8.3 1985
13.1 1985
6.4 1985
11.0 1985
8.3 1935
11.6 1985
5.7 1985
9.8 1985
7.4 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
12.3 1985
6.0 1935
10.4 1985
7.8 1985
12.3 1985
6.0 1935
10.4 1985
7.8 1985
11.3 1990
5.6 1990
9.7 1990
7.2 1990
11.2 1990
5.5 1990
9.5 1990
7.1 1990
9.9 1990
4.9 1990
8.5 1990
6.3 1990
9.7 1990
4.8 1990
8.4 1990
6.2 1990
10.6 1990
5.2 1990
9.1 1990
6.8 1990
10.4 1990
5.1 1990
8.9 1990
6.7 1990
8.0 1995
4.3 1995
7.6 1995
5.3 1995
7.8 1995
4.1 1995
7.5 1995
5.2 1995
6.3 1995
3.4 1995
6.2 1995
4.3 1995
6.2 1995
3.3 1995
6.0 1995
4.2 1995
7.1 1995
3.8 1995
6.9 1995
4.8 1995
7.0 1995
3.7 1995
6.7 1995
4.7 1995
8.0
4.4
8.1
5.5
7.8
4.2
7.9
5.3
5.8
3.2
6.0
4.0
5.6
3.1
5.8
3.9
6.8
3.7
6.9
4.7
6.6
3.6
6.8
4.6
SlXQT TDS*ROLLBACK.A<3PRNT
Figure 4-6. Sorted CO Air Quality Data File
35
-------
LINEAR
STRATEGY: SCEN si
ROLLBACK
GROWTH RATE SCENARIO: HI
COS AIR QUALITY CONCENTRATION ( PPM) AND VIOLATIONS
(STANDARD IS 9.00 PPM)
PROJECTED
BASE 198* 1985 1990 1995
G I 0 N YEAR CONC BKGD
UNTY A 1978 25. 0.
UNTY B 1978 13. 0.
UNTY C 1973 22. 0. 11. 3 10.
UNTY D 1978 16. 0. 8. 0 7. 0 5. 0 6.
CONC EXEX CONC EXEX CONC EXEX CONC EXEX
13. 10 11. 4 8. 0 8. 0
6. 0 6. 0 4. 0 4. 0
1 8. 0 8. 0
E PERCENT CHANGE
REGIONS ABOVE STD
NO. OF EXCEEDANCES
-49.
2
13
-55.
2
5
-67.
0
0
-65.
0
0
JTE: AIR QUALITY CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING EPA GUIDELINES.
COMPARISONS WITH STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE
Figure 4-7. Example CO Air Quality Summary Report
36
-------
E K M A
STRATEGY: BASELINE GFJOWTH RATE SCENARIO; HI
03 AIR QUALITY CONCENTRATION ( PPM) AND VIOLATIONS
(STANDARD IS .12 PPM)
PROJECTED
BASE
1984
1985
1990
1995
REGION YEAR CONC RATIO CONC EXEX CONC EXEX CONC EXEX CONC EXEX
001 AQCR A 1978 .16 9.50 .13 1 .12 0 .12 0 .12 0
002 AQCR B 1978 .09 9.50 .08 0 .07 0 .07 0 .07 0
003 AQCR C 1978 .13 9.50 .11 0 .11 0 .11 0 .11 0
004 AQCR D 1978 .18 9.50 .15 3 .14 2 .14 2 .14 2
AVERAGE PERCENT CHANGE
NO. OF REGIONS ABOVE STD
TOTAL NO. OF EXCEEDANCES
-17.
2
4
-19.
1
2
-23.
1
2
-21.
1
2
*** NOTE: AIR QUALITY CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING EPA GUIDELINES.
THUS, COMPARISONS WITH STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
Figure 4-8. Example Ozone Air Quality Summary Report
37
-------
CONCENTRATION, ppm
Figure 4-9. Hourly carbon monoxide measurements for 1972 in
Los Angeles, CA
SOURCE: Reference 1
38
-------
The only parameter needed to fully describe the one-parameter exponential
distribution is the mean. Since the mean can be estimated from the projected
design value and its corresponding frequency of occurrence, an exponential distri-
bution unique to each area being modeled can be obtained. Using the definition
of the NAAQS for CO from Reference 7 and the tabular procedure for ozone in
Reference 8, the design value is assumed to be the second highest value for the
specified averaging time. For the annual average N02 standard, a direct comparison
between the projected concentration and the level of the NAAQS is made.
4.4.2 Average Percent Changes
The air quality summary statistic, average percent change, is calculated
as the average of the average percent change between the base year air quality
concentration and the projection year concentration in each region, i.e., each
region is given equal weight in the averaging process. These calculations are
performed using one more significant figure than displayed for the air quality
concentrations.
4.4.3 Number of Source Regions Above the Level of the NAAQS
Following the guidelines in References 7 and 8, the stated level of the
standard is taken as defining the number of significant figures to be used in
comparisons with the standard. For example, the standard level of 0.12 ppm for
the ozone NAAQS means that measurements are to be rounded to two decimal places
(0.005 rounds up); therefore 0.125 ppm is the smallest concentration in excess of
the level of the standard. Since the model performs all its calculations in ppm,
the comparisons with the CO and N02 standards are based on two and three signi-
ficant figures, respectively. Thus, the number of regions above the level of the
NAAQS is simply the sum of all those regions meeting the above criteria for that
projection year.
39
-------
4.4.4 Total Number of Exceedances
As the name suggests, this statistic is simply the total number of
exceedances across all regions for each projection year-
40
-------
5.0 EXAMPLE MODEL RUNS
Three example model simulations are presented in the following sections.
Example 1 illustrates" the use of the model to project emission inventories, only.
Example 2 illustrates how both CO and VOC emission inventories and CO and ozone
air quality projections can be obtained in a single run. Finally, Example 3
shows how to reprint the Air Quality Summary Reports from a demand terminal using
an air quality data file saved from a previous model simulation.
5.1 Emission Projections
Figure 5-1 presents a sample batch run for projecting CO emission inven-
tories. Control Card 1, displayed on line 8 of Figure 5-1, sets the simulation
parameters. Emission Summary Reports and an emissions data file will be output
by ROLLBACK (EIFLAG=2). Also, if the source region data cards contain stationary
source contribution factors, they will be set equal to 1.0 prior to projecting
future emissions. The input/output unit selections indicate that the Emissions
Sunmary Report will be output on the system print device and the emissions data
file will be written on the public disk file named "CO-EMISS." The remaining
fields on Control Card 1 indicate that the source areas fall within a single
group; two control scenarios are to be evaluated; emissions are to be estimated
for four projection years; there are three growth rate scenarios; and there are
four mobile and three stationary source emissions categories. The source selec-
tion codes, shown on line 1 of Figure 5-2, refer to the source categories in
Table 3-3. The remaining control strategy and source region input data cards and
selected model outputs for this example are shown in Figures 5-2 through 5-5.
41
-------
1 1. 3RUN.R/R RUNID.ACCOUNT/USERIO.PROJID,TIME,PAGES
2 2. 3PASSWO XYZ
3 3. 3SYM PRINT*,2,OATA1J
4 <+. 3ASG.CP CO-EMISS.
5 5. aUSE 8,CO-EMISS.
6 6. 2HDG.P CO EMISSIONS PROJECTIONS - EXAMPLE 91
7 7. 3XQT TDS*ROLIBACK.ROLLBACK
8 8. 02060809 CO R=01 S=02 N=04 6=03 M=04 S=03
9 9. 3ADD.P MY*FILE.CO-STRATEGY
10 10. 3>ADD,P MY*FILE.CO-DATA
11 11. 3FIN
12
13
14
is EXPLANATION:
16
17 1. RUN CARD FOR ROUTINE BATCH RUN WITH DEFAULT CORE ALLOCATION (50K)
18 2. USER PASSWORD
19 3. SEND TWO COPIES OF PRINTER OUTPUT TO TERMINAL 'DATA1J'.
20 4. ASSIGN A NEW PUBLIC DATA FILE NAMED 'CO-EMISS'.
21 5. USE UNIT S3 WITH FILE 'CO-EMISS1. ( EMISSIONS DATA FILE )
22 6. PRINTS HEADING, DATE, AND NUMBERS EACH PAGE.
23 7. EXECUTE THE STRATEGY MODEL TO PROJECT CO EMISSIONS ONLY.
2<+ 8. THE CONTROL CARD SELECTS EMISSIONS REPORTS ONLY, IGNORING
25 THE STATIONARY SOURCE CONTRIBUTION FACTORS.
26 9. ADD THE CO STRATEGY CARDS TO THE RUN STREAM.
27 10. ADD THE CO EMISSIONS AND AIR QUALITY DATA TO THE RUN STREAM.
23 11. TERMINATES THE RUN.
Figure 5-1. Example #1 - Run Stream
42
-------
01020409242527
SCEN 81 1 39 33 86 58
SCEN 81 1100100100100 100100
SCEN 81 1 34 27 72 52
SCEN 81 1100100100100 100100
SCEN 81 1 27 16 31 32
SCEN 81 1100100100100 100100
SCEN 81 1 27 14 18 25
SCEN #1 1100100100100 100100
SCEN 82 1 39 33 86 58
SCEN »2 iiooiooionioo looioo
SCEN 82 1 33 27 72 52
SCEN 82 1100100100100 100100
SCEN 82 1 26 16 31 32
SCEN 82 1100100100100 100100
SCEN 82 1 26 14 18 25
SCEN 82 1100100100100 100100
84
85
90
95
84
85
90
95
Figure 5-2.
Example #1 - Control Card 2 and Mobile/Stationary Source Strategy
Cards in MY*FILE.CO-STRATEGY^
43
-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
38
39
40
100 COUNTY A 23
100 403.0 79.3
100
100 0.9 7.5
100LO -07 27 -3
100LO 35 43 08 00
100MD 03 37 -2
100MD 35 43 08 00
100HI 13 47 -1
100HI 35 43 08 00
041 COUNTY B 15
041 141.5 28.1
041
041 0.5 7.2
041LO -07 27 -3
041LO 35 43 08 00
041MD 03 37 -2
041MD 35 43 08 00
041HI 13 47 -1
041HI 35 43 08 00
001 COUNTY C 25
001 132.6 26.7
001
001 0.0 13.6
001LO -07 27 -3
001LO 35 43 08 00
001MD 03 37 -2
001MO 35 43 08 00
001HI 13 47 -1
001HI 35 43 08 00
035 COUNTY D 18
035 183.0 35.8
035
035 2.2 7.2
035LO -07 27 -3
035LO 35 43 08 00
035MD 03 37 -2
035MD 35 43 03 00
035HI 13 47 -1
035HI 35 43 08 00
.3 0.0 COS MG/M
151.6
16.6
123
25 00
134
25 00
145
25 00
.1 0.0 C08 MG/M
24.8
9.5
123
25 00
134
25 00
145
25 00
.2 0.0 COS MG/M
23.3
9.6
123
25 00
134
25 00
145
25 00
.1 0.0 COS MG/M
58.0
14.6
123
25 00
134
25 00
145
25 00
8.1
.0.2 .2
.5
.0.2 .2
3.2
.0.2 .2
4.7
.0.2 .2
1781
2
3
4
5
6
5
6
5
6
1781
2
3
4
5
6
5
6
5
6
1781
2
3
4
5
6
5
6
5
6
1781
2
3
4
5
6
5
6
5
6
Figure 5-3. Example #1 - Source Region Data Cards for CO in MY*FILE.CO-DATA
44
-------
ISSIONS PROJECTIONS - EXAMPLE 81
»** EMISSIONS INVENTORY PROJECTIONS ***
ON= 100 COUNTY A STRATEGY:SCEN SI
»NT: CO
EMISSIONS (1000 TONS/YEAR)
DATE 070161
PAGE
GROWTH RATE:LO
SOURCE CATEGORIES
LDV-6 LDT1-G
HOG
HDD
POINT
AREA OTHER
403.0
79.3 151.6
8.1
.9
7.5
16.6
150.7
130.4
100.0
96.6
30.7
25.S
17.5
17.5
108.6
88.2
32.6
16.3
9.5
10.4
14.6
1.1
1.1
1.4
1.6
7.9
7.9
8.3
8.6
19.3
19.7
22.3
25.3
MOBILE
TOTAL
642.0
299.4
253.9
160.5
144.8
STATIONARY
TOTAL
25.0
28.2
28.8
31.9
35.5
GRAND
TOTAL
667.0
327.6
282.7
192.5
180.3
Figure 5-4. Example #1 - CO Emissions Inventory Summary Report
45
-------
CO EMISSIONS PROJECTIONS - EXAMPLE *1
JDATA.L 8.
DATA 9R191 SL74T9 07/01/81
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
IS.
16.
17.
13.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
43.
49.
SO.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
70.
71.
72.
73.
74.
75.
100 COUNTY A
1978 642.0
1984 299.4
1985 253.9
1990 160. S
1995 144.8
100 COUNTY A
1978 642.0
1984 318.0
1985 272.4
1990 181.0
1995 171.6
100 COUNTY A
1978 642.0
1984 337.6
1985 292.1
1990 203.9
1995 203.0
100 COUNTY A
1978 642.0
1984 299.4
198S 250.1
1990 156.3
1995 141.3
100 COUNTY A
1978 642.0
1984 313.0
1985 268.3
1990 176.8
1995 167.4
100 COUNTY A
1978 642.0
1984 337.6
1985 287.7
1990 199.2
1995 198.0
041 COUNTY 8
1978 194.9
1984 32.1
1985 70.0
1990 47.3
1995 43.7
041 COUNTY B
1978 194.9
1984 87.2
1985 75.0
1990 53.3
1995 51.7
041 COUNTY B
1978 194.9
1984 92.6
1985 80.4
1990 60.0
1995 61.2
041 COUNTY B
1978 194.9
1984 82.1
1935 68.6
1990 46.0
1995 42.4
041 COUNTY B
1978 194.9
1984 87.2
1985 73.6
1990 51.8
1995 50.2
041 COUNTY B
1978 194.9
1984 92.6
1985 78.9
1990 53.4
1995 59.4
001 COUNTY C
1978 185.3
1984 80.3
12:35:52 (0)
SCEN fl
25.0 667
28.2 327
28.3 282
31.9 192
35.5 180
SCEN *1
LO
.0
.6
.7
.5
.3
MD
25.0 667.0
28.2 346
28.3 301
31.9 213
35.5 207
SCEN »1
25.0 667
28.2 365
28.8 320
31.9 235
3S.5 238
SCEN 92
25.0 667
28.2 327
28.8 278
31.9 188
35.5 176
SCEN *2
25.0 667
28.2 346
28.8 297
31.9 208
35.5 202
SCEN *2
25.0 667
28.2 365
28.8 316
31.9 231
.3
.3
.0
.1
HI
.0
.9
.9
.8
.5
LO
.0
.6
.9
.3
.7
MO
.0
.3
.1
.3
.8
HI
.0
.9
.S
.1
35.5 233.4
SCEN »1
17.2 212
19.2 101
19.5 39
21.5 63
23.6 67
SCEN *1
17.2 212
19.2 106
19.5 94
21.5 74
23.6 75
SCEN «1
17.2 212
19.2 111
19.5 100
21.5 31
23.6 34
SCEN >2
17.2 212
19.2 101
19.5 38
21.5 67
23.6 66
SCEN 32
17.2 212
19.2 106
19.5 93
21.5 73
23.6 73
SCEN *2
17.2 212
19.2 111
19.5 98
21.5 79
23.5 83
SCEN SI
23.2 209
25.4 105
LO
.1
.3
.5
.7
.2
MD
.1
.4
.6
.3
.3
HI
.1
.3
.0
.5
.3
LO
.1
.3
.2
.4
.0
MD
.1
.4
.1
.3
.3
HI
.1
.3
.4
.8
.0
LO
.0
.7
CO
403.0
150.7
130.4
100.0
96.6
CO
403.0
160.0
139.9
112.8
114.5
CO
403.0
169.8
150.0
127.1
135.5
CO
403.0
150 .7
126.6
96.3
93.0
CO
403.0
160.0
135.8
108.6
110.3
CO
403.0
169.3
145.6
122.3
130.5
CO
141.5
52.9
45.8
35.1
33.9
CO
141.5
56.2
49.1
39.6
40.2
CO
141.5
59.6
52.7
44.6
47.6
CO
141.5
52.9
44.5
33.8
32.6
CO
141.5
56.2
47.7
38.1
38.7
CO
141.5
59.6
51.1
43.0
45.8
CO
132.6
49.6
4 71
79.3
30.7
25.8
17.5
17.5
4 71
79.3
32.5
27.6
19.6
20.6
4 71
79.3
34.5
29.5
22.0
24.2
4 71
79.3
30 . 7
25.3
17.5
17.5
4 71
79.3
32.5
27.6
19.6
20.6
4 71
79.3
34.5
29.5
22.0
24.2
4 71
28.1
10.9
9.1
6.2
6.2
4 71
28.1
11.5
9.3
7.0
7.3
4 71
28.1
12.2
10.5
7.8
3.6
4 71
28.1
10.9
9.1
6.2
6.2
4 71
28.1
11.5
9.8
7.0
7.3
4 71
28.1
12.2
10.5
7.8
8.6
4 71
26.7
10.3
2 4 9242527
151.6
108.6
38.2
32.6
16.3
8
9
9
10
14
.1
.4
.5
.4
.6
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242527
151.6
115.5
94.8
36.9
19.4
2 4 9242
151.6
122.7
101.7
41.7
23.0
a
10
10
11
17
527
3
10
10
13
20
.1
.0
.2
.7
.2
.1
.6
.9
.2
.2
.9
1.1
1.1
1.4
1.6
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6
7.S
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3
16.6
19.3
19.7
22.3
25.3
2 4 9242S27
151.6
83.2
32.6
16.3
8
9
10
14
.1
.5
.4
.6
.9
1.1
1.4
1.6
7.5
7.9
3.3
3.6
16.6
1 Q ^
IT. J
19.7
22.3
25.3
2 4 9242527
1S1.6
115. S
94.8
36.9
19.4
3
10
10
11
17
.1
.0
.2
.7
.2
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
8.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242S27
151.6
122.7
101.7
41.7
23.0
8
10
10
13
20
.1
.6
.9
.2
.2
.9
1.1
1.1
1.4
1.6
7.5
7.9
7.9
3.3
3.6
16.6
19.3
19.7
22.3
25.3
2 4 9242527
24.3
17.8
14.4
5.3
2.7
.5
.6
.6
.6
.9
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.8
14. S
2 4 9242527
24.8
18.9
15.5
6.0
3.2
1
.S
.6
.6
.7
.1
.5
.6
.6
.8
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.8
14.5
2 4 9242S27
24.3
20.1
16.6
6.8
3.8
1
.5
.7
.7
.8
.2
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.8
14.5
2 4 9242527
24.8
17.3
14.4
5.3
2.7
.5
.6
.6
.6
.9
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.3
14.5
2 4 9242527
24.8
13.9
15.5
6.0
3.2
1
.5
.6
.6
.7
.1
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
3.2
9.5
11.0
11.3
12.3
14.5
2 4 9242S27
24.8
20.1
16.6
6.3
3.3
1
.5
.7
.7
.8
.2
.5
.6
.6
.3
.9
7.2
7.6
7.6
7.9
8.2
9.5
11.0
11.3
12.8
14.5
2 4 9242527
23.3
16.7
3
3
.2
.7
.0
.0
13.6
14.3
9.6
11.1
Figure 5-5. Example #1. - CO Emissions Data File Listing
46
-------
5.2 Carbon Monoxide and Ozone Projections
Example 2 illustrates a run stream for carbon monoxide and ozone projections
which can be @STARTed from a demand terminal. The control cards and functional
descriptions are shown in Figure 5-6. Figures 5-7 through 5-14 present the input
data and output data files and selected summary reports. In this example, Control
Cards 1 and 2, and the mobile/stationary source strategy cards for CO, are found
in the data element MY*FILE.CO-SCENARIOS and for ozone in MY*FILE.03-SCENARIOS.
Note that both the CO and ozone emissions and air quality data files are output
to temporary disk files which are deleted at completion of the run. Also, the CO
data files are overwritten by the ozone data files. Since ozone is one of the
pollutants being modeled, the EKMA isopleth data file is assigned to Input
Unit 11. All printed output is directed to the remote batch terminal named
'DATAU.'
5.3 Reprinting a Previous Simulation
Example 3 in Figure 5-15 illustrates a procedure for obtaining Air Quality
Summary Reports using data from a previous model simulation which has been saved
in a program file element. This procedure is executed from a demand terminal and
routes the Air Quality Summary Reports to a remote batch terminal.
47
-------
1 1. J>RUN,R/R RUNID,ACCOUNTAISERID.PROJID,TIME,PAGES
2 Z. SSYM PRINTS,1.DATA1J
3 3. 3ASG.A TDS*OZIPP-ASCII.
ft 4. IiUSE 11,TDS*OZIPP-ASCII.
5 5. 3ASG.CP VOC-REPORT.
6 6. 3USE 40,VOC-REPORT.
7 7. 3ASG.T 8.
8 8. SASG.T 9.
9 9. oiHDG.P CO AND OZONE AIR QUALITY PROJECTIONS - EXAMPLE *2
10 10. aXQT TDS*ROLLBACK.ROLLBACK
11 11. 3ADD,P MY*FILE.CO-SCENARIOS
12 12. SADO.P MY*FILE.CO-DATA
13 13. SUS*ER.SORTSDF,A 9.,9.,100,13Z,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A
14 14. JiXQT TDS*ROLLBACK.AQPRNT
15 15. aXQT TOS*ROLLBACK.ROLLBACK
16 16. 5>ADD,P MY*FILE.03-SCENARIOS
17 17. 3ADD,P MY*FILE.03-DATA
18 18. aUS*ER.SORTSDF,A 9.,9.,100,132,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A
19 19. 3XQT TDS*ROLLBACK.AQPRNT
20 20. 3FREE VOC-REPORT.
21 21. aSYM,U VOC-REPORT.,2,PR
22 22. 3FIN
23
24
25
26 EXPLANATION:
27
28 1. RUN CARD FOR 3START RUN.
29 2. SEND ONE COPY OF PRINTER OUTPUT TO TERMINAL 'OATA1J'.
30 3. ASSIGN THE CATALOGED OZIPP DIAGRAM DATA FILE (ASCII).
31 4. READ THE OZIPP FILE ON UNIT *11.
32 5. ASSIGN A PUBLIC FILE NAMED PROJID*VOC-REPORT.
33 6. ASSIGN ALTERNATE PRINTS UNIT 840 TO VOC-REPORT.( VOC EMISSIONS REPORT ).
34 7. ASSIGN A TEMPORARY FILE 88. ( EMISSIONS DATA FILE ).
35 8. ASSIGN A TEMPORARY FILE S9. ( AIR QUALITY DATA FILE OUTPUT ).
36 9. PRINTS HEADING, DATE, AND NUMBERS EACH PAGE.
37 10. EXECUTE THE STRATEGY MODEL FOR CO.
38 11. ADD THE CONTROL CARD AND CO STRATEGY DATA TO THE RUN STREAM.
39 12. ADD THE CO EMISSIONS AND AIR QUALITY DATA TO THE RUN STREAM.
40 13. SORT THE CO AIR QUALITY OUTPUT DATA FILE (ASCII) BY GROWTH RATE,
41 STRATEGY AND REGION.
42 14. PRINT THE CO AIR QUALITY SUMMARY REPORTS FOR EACH STRATEGY/GROWTH
43 RATE COMBINATION.
44 15. EXECUTE THE STRATEGY MODEL FOR OZONE.
45 16. ADO THE CONTROL CARD AND OZONE STRATEGY DATA TO THE RUN STREAM.
46 17. ADD THE VOC EMISSICNS AND OZONE AIR QUALITY DATA TO THE RUN STREAM.
47 18. SORT THE OZONE AIR QUALITY OUTPUT DATA FILE (ASCII) BY GROWTH RATE,
48 STRATEGY AND REGION.
49 19. PRINT THE OZONE AIR QUALITY SUMMARY REPORTS FOR EACH STRATEGY/GROWTH
50 RATE COMBINATION.
51 20. FREE AND CATALOG THE FILE NAMED VOC-REPORT.
52 21. SEND TWO COPIES OF THE EMISSIONS SUMMARY REPORT TO THE CENTRAL
53 PRINTER AT NCC. DO NOT DELETE THE SYMBIONT PRINT FILE PROJID*VOC-REPORT.
54 22. TERMINATES THE RUN.
Figure 5-6. Example #2 - Run Stream
48
-------
R= 1 S= 2 N= 4 G= 3 M=04 S= 3
00060809 CO
01020409242527
SCEN HI 1 39 33 86 58
SCEN 81 1100100100100 100100
SCEN 81 1 34 27 72 " 52
SCEN #1 1100100100100 100100
SCEN #1 1 27 16 31 32
SCEN #1 1100100100100 100100
SCEN 81 1 27 14 18 25
SCEN 91 1100100100100 100100
SCEN #2 1 39 33 86 58
SCEN 82 1100100100100 100100
SCEN 82 1 33 27 72 52
SCEN 82 1100100100100 100100
SCEN 82 1 26 16 31 32
SCEN 82 1100100100100 100100
SCEN 82 1 26 14 18 25
SCEN 82 1100100100100 100100
84
85
90
95
84
85
90
95
Figure 5-7.
Example #2 - CO Control Cards 1 and 2 and Source Strategy Cards
in MY*FILE.CO-SCENARIOS
49
-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
00400809 VOC R= 2 S= 1 N= 4 6= 3 M=10 S=
0102040910111213142326272829303132
BASELIME1 37 32
BASELIHE1
BASELINE1 32 27
BASELINE1
BASELINE1 20 14
BASELINE1
BASELINE1 17 10
BASELIHE1
BASELINES 37 32
BASELINE2
BASELINE2 32 27
BASELINE2
BASELINE2 20 14
BASELIHE2
BASELIME2 17 10
BASELINE2
66 58100100100100100
100100100100 10100 20100 35100
55 ~" 53100100100100100
100100100100 10100 20100 35100
25 31100100100100100
100100100100 10100 20100 35100
16 25100100100100100
100100100100 10100 20100 35100
66 58100100100100100
100100100100 10 10 20 20 35 35
55 53100100100100100
100100100100 10 10 20 20 35 35
25 31100100100100100
100100100100 10 10 20 20 35 35
16 25100100100100100
100100100100 10 10 20 20 35 35
70100
70100
70100
70100
70 70
70 70
70 70
70 70
40100
40100
40100
40100
40 40
40 40
40 40
40 40
10084
10085
10090
10095
10084
10085
10090
10095
Figure 5-8.
Example #2 - Ozone Control Cards 1 and 2 and Source Strategy
Cards in MY*FILE.03-SCENARIOS ^
50
-------
UU1 AUCR
001 61
001 0
001
001LO
001LO
001HD
001MO
001HI
001HI
00 E AQCR
002 21
002 2
002
002LO
002LO
002MD
002MD
002HI
002HI
003 AQCR
003 13
003 0
003
003LO
003LO
003MD
003HD
003HI
003HI
004 AQCR
004 31
004 1
004
004LO
004LO
004MD
004MO
004HI
004HI
A
.9
.4
-07
03
13
B
.3
.9
-07
03
13
C
.3
.4
-07
03
13
D
.3
.0
-07
03
13
12.5
0.6
27
37
47
4.3
0.2
27
37
47
2.7
0.0
27
37
47
6.3
0.3
27
37
47
.157
2.2
0.4
-3
35
-2
35
-1
35
.090
0.2
0.3
-3
35
-2
35
-1
35
.133
0.4
0.0
-3
35
-2
35
-1
35
.180
0.6
0.2
-3
35
-2
35
-1
35
0.0
11.6
4.4
43 00
43 00
43 00
0.0
2.3
2.6
43 00
43 00
43 00
0.0
1.2
2.5
43 00
43 00
43 00
0.0
4.9
3.3
43 00
43 00
43 00
03 PPM
0.1 8
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM
0.0 3
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM
0.0 2
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
03 PPM
2.6 6
123 02
00 19 45
134 02
00 19 45
145 02
00 19 45
.8 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1.
.0 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1
.4 0.
27 27
19 45
27 27
19 45
27 27
19 45
9.5 1
.4 0.
27 27
19 45
27 27
19 45
27 27
19 45
0 47.
27 27
33 44
27 27
33 44
27 27
33 44
1. 1.
3 8.
27 27
24 50
27 27
24 50
27 27
24 50
1. 1.
0 8.
27 27
33 44
27 27
33 44
27 27
33 44
1. 1.
5 27.
27 27
13 49
27 27
13 49
27 27
13 49
8
08
08
08
1.
8
08
08
08
1
6
08
08
08
1
4
08
08
08
4.2
0.3
00 33
00 33
00 33
1. 1.
.4
0.0
00 33
00 33
00 33
1. 1.
1.4
0.0
00 33
00 33
00 33
1. 1.
2.6
0.0
00 33
00 33
00 33
2.2 0.1
44
44
44
1. 1. 1.
0.7 0.2
44
44
44
1. 1. 1.
1.3 0.0
44
44
44
1. 1. 1.
3.0 0.8
44
44
44
2781
2
2.6 3
4
23 5
6
23 5
6
23 5
6
1781
2
0.9 3
4
23 5
6
23 5
6
23 5
6
1781
2
0.6 3
4
23 5
6
23 5
6
23 5
6
2781
2
1.8 3
4
23 5
6
23 5
6
23 5
6
Figure 5-9. Example #2 - Source Region Data Cards 1 through 6 for Ozone
in MY*FILE.03-DATA
51
-------
CO AND OZONE AIR QUALITY PROJECTIONS - EXAMPLE *2
#** EMISSIONS INVENTORY PROJECTIONS ***
LOCATION: 100 COUNTY A STRATEGY:SCEN *i
POLLUTANT; co
EMISSIONS (1000 TONS/YEAR)
GROWTH RATE;LO
SOURCE CATEGORIES
LDV-G LDT1-G
HDG
BASE YR
1978
PROJ YR
1984
1985
1990
1995
403.0
150.7
130.4
100.0
96.6
79.3 151.6
30.7
25.8
17.5
17.5
108.6
88.2
32.6
16.3
HDD
8.1
9.4
9.5
10.4
14.6
POINT
AREA OTHER
1.5
1.6
1.6
1.7
1.7
3.3
3.9
3.9
4.5
5.1
YEAR
1978
1984
1935
1990
1995
MOBILE
TOTAL
642.0
299.4
253.9
160.5
144.8
STATIONARY
TOTAL
4.8
5.4
5.5
6.1
6.8
GRAND
TOTAL
646.8
304.8
259.5
166.6
151.6
Figure 5-10. Example #2 - CO Emissions Inventory Summary Report
52
-------
. 9.
.74T9 07/01/81 12:36 = 07 (0)
COS PPM 9.
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
100 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
041 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
001 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
035 COUNTY
00 .500 2 4
A
A
A
A
A
A
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
D
0
D
SCEN 81
SCEN 81
SCE'N 8i
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN «2
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
LO
MO
HI
LO
MO
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
LO
MD
HI
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 24.6
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 13.1
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 21.9
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
1978 15.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
11.6
12.3
13.1
11.6
12.3
13.1
5.7
6.0
6.4
5.7
6.0
6.4
9.8
10.4
11.0
9.8
10.4
11.0
7.4
7.8
8.3
7.4
7.8
8.3
1965 9
1985 10
1985 11
1985 9
1985 10
1985 11
1985 4
1985 5
1985 5
1985 4
1985 5
1985 5
1985 8
1985 9
1985 9
1985 8
1985 8
1985 9
1935 6
1985 6
1985 7
1985 6
1985 6
1985 7
.9 1990
.6 1990
.3 1990
.7 1990
.4 1990
.2 1990
.9 1990
.2 1990
.6 1990
.8 1990
.1 1990
.5 1990
.5 1990
.1 1990
.7 1990
.4 1990
.9 1990
.5 1990
.3 1990
.8 1990
.2 1990
.2 1990
.7 1990
.1 1990
6.3 1995
7.1 1995
8.0 1995
6.2 1995
7.0 1995
7.8 1995
3.4 1995
3.8 1995
4.3 1995
3.3 1995
3.7 1995
4.1 1995
6.2 1995
6.9 1995
7.6 1995
6.0 1995
6.7 1995
7.5 1995
4.3 1995
4.8 1995
5.3 1995
4.2 1995
4.7 1995
5.2 1995
5.8
6.8
8.0
5.6
6.6
7.8
3.2
3.7
4.4
3.1
3.6
4.2
6.0
6.9
8.1
5.8
6.8
7.9
4.0
4.7
5.5
3.9
4.6
5.3
ITA. ERRORS; NONE. TIME-- 0.540 SEC. IMAGE COUNT: 25
Figure 5-11. Example #2 - Unsorted CO Air Quality Data File
53
-------
SDATA.L 9.
DATA 9R1Q1 SL74T9 07/01/81 12:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
END DATA.
COS
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
100
041
001
035
ERRORS
36:09 (0)
PPM 9.00 .500 2 4
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY 0
COUNTY A
COUNTY B
COUNTY C
COUNTY 0
COUNTY A
COUNTY B
COUNTY C
COUNTY D
COUNTY A
COUNTY B
COUNTY C
COUNTY D
: NONE. TIME:
SCEN 91
SCEJN #1
SCEN SI
SCEN 81 .
SCEN #2
SCEN 92
SCEN 82
SCEN 82
SCEN 91
SCEN 81
SCEN SI
SCEN SI
SCEN 82
SCEN 82
SCEN 82
SCEN 82
SCEN 81
SCEN 81
SCEN 81
SCEN 81
SCEN 82
SCEN 82
SCEN 82
SCEN 82
0.540 SEC
HI
HI
HI
HI
HI
HI
HI
HI
LO
LO
LO
LO
LO
LO
LO
LO
MD
MD
MD
MD
MD
MD
MD
MD
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
1978 24.6
1978 13.1
1978 21.9
1978 15.7
. IMAGE COUNT:
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
25
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1934
13.1 1985
6.4 1985
11.0 1985
8.3 1985
13.1 1985
6.4 1985
11.0 1985
8.3 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
11.6 1985
5.7 1985
9.8 1985
7.4 1985
12.3 1985
6.0 1985
10.4 1985
7.8 1985
12.3 1985
6.0 1985
10.4 1985
7.8 1985
11.3 1990
5.6 1990
9.7 1990
7.2 1990
11.2 1990
5.5 1990
9.5 1990
7.1 1990
9.9 1990
4.9 1990
8.5 1990
6.3 1990
9.7 1990
4.8 1990
8.4 1990
6.2 1990
10.6 1990
5.2 1990
9.1 1990
6.8 1990
10.4 1990
5.1 1990
8.9 1990
6.7 1990
8.0 1995
4.3 1995
7.6 1995
5.3 1995
7.8 1995
4.1 1995
7.5 1995
5.2 1995
6.3 1995
3.4 1995
6.2 1995
4.3 1995
6.2 1995
3.3 1995
6.0 1995
4.2 1995
7.1 1995
3.8 1995
6.9 1995
4.8 1995
7.0 1995
3.7 1995
6.7 1995
4.7 1995
8.0
4.4
8.1
5.5
7.8
4.2
7.9
5.3
5.8
3.2
6.0
4.0
5.6
3.1
5.8
3.9
6.8
3.7
6.9
4.7
6.6
3.6
6.3
4.6
Figure 5-12. Example #2 - Sorted CO Air Quality Data File
54
-------
ID OZONE AIR QUALITY PROJECTIONS - EXAMPLE «2
DATE 070181
PAGE
LINEAR
STRATEGY: SCEN «i
ROLLBACK
GROWTH RATE SCENARIO: LO
COS AIR QUALITY CONCENTRATION ( PPM) AND VIOLATIONS
(STANDARD IS 9.00 PPM)
PROJECTED
BASE
G I 0 N YEAR CONC BKGO
UNTY A 1978 25.
UHTY B 1978 13.
UNTY C 1978 ZZ.
UNTY D 1978 16.
1985
1990
1995
GO CONC EXEX
0.
0.
0.
0.
13.
6.
10.
7.
5
0
1
0
CONC EXEX
10.
5.
9.
6.
1
0
0
0
CONC EXEX
6.
3.
6.
4.
0
0
0
0
CONC EXEX
6.
3.
6.
ft.
0
0
0
0
.£ PERCENT CHANGE
REGIONS ABOVE STD
HO. OF EXCEEDANCES
-54.
Z
6
-61.
1
1
-73.
0
0
-75.
0
0
)TE: AIR QUALITY CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING EPA GUIDELINES.
COMPARISONS WITH STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
Figure 5-13. Example #2 - CO Air Quality Summary Report
55
-------
CO AND OZONE AIR QUALITY PROJECTIONS - EXAMPLE *2
DATE 070181
E K M A
STRATEGY: BASELINE GROWTH RATE SCENARIO: LO
03 AIR QUALITY CONCENTRATION ( PPM) AND VIOLATIONS
(STANDARD IS .12 PPM)
PROJECTED
REGION
001 AQCR A
002 AQCR B
003 AQCR C
004 AQCR D
BASE
1984
1985
1990
1995
YEAR CONC RATIO CONC EXEX CONC
1978 .16 9.50 .12 0 .12
1978 .09 9.50 .07 0 .07
1978 .13 9.50 .11 0 .11
1978 .18 9.50 .14 2 .14
EXEX CONC EXEX CONC EXEX
0 .11 0 .11 0
0 .07 0 .07 0
0 .10 0 .11 0
2 .13 1 .14 1
AVERAGE PERCENT CHANGE
NO. OF REGIONS ABOVE STD
TOTAL NO. OF EXCEEDANCES
-19.
1
2
-21.
1
2
-26.
1
1
-25.
1
1
*** NOTE: AIR QUALITY CONCENTRATIONS ARE ROUNDED FOR DISPLAY FOLLOWING EPA GUIDELINES.
THUS, COMPARISONS WITH STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIFICANT FIGURE.
Figure 5-14. Example #2 - Ozone Air Quality Summary Report
56
-------
1. 5ASG.CP PRINT.
2. 3BRKPT PRINTS/PRINT
3. 3ASG.T 9.
4. SOATA.I 9.
5. 3AOD.D AQ.OZOUT9
6. SEND
7. 3XQT TDS*ROLLBACK.AQPRNT
8. 3ASG.A CO-FILE.
9. 3USE 9,CO-FILE.
10. 3XQT TDS*ROLLBACK.AQPRNT
11. 2BRKPT PRINTS
12. aFREE PRINT.
13. aSYM PRINT.,,DATA1J
EXPLANATION:
1. ASSIGN A NEW PUBLIC FILE NAMED 'PRINT1-
2. 3BRKPT THE SYMBIONT PRINT FILE TO FILE PRINT.
3. ASSIGN A TEMPORARY FILE NAMED '9'-
-------
6.0 REFERENCES
1. J. H. Wilson, Methodology To Conduct Air Quality Assessments of National
Mobile Source Emission Control Strategies, EPA-450/4-80-026, U. S.
Environmental Protection Agency, Research Triangle Park, N.C., October 1980.
2. N. deNevers and J. R. Morris, "Rollback Modeling: Basic and Modified,"
JAPCA, 25, 943, September 1975.
3. Uses, Limitations and Technical Basis of Procedures for Quantifying
Relationships between Photochemical Oxidants and Precursors,
EPA-450/2-77-021a, U. S. Environmental Protection Agency, Research Triangle
Park, North Carolina, November 1977.
4. G. Whitten and H. Hogo, User's Manual for Kinetics Model and Ozone Isopleth
Plotting Package, EPA-600/8-78-Ol4a, U. S. Environmental Protection Agency,
Research Triangle Park, North Carolina, July 1978.
5. T. C. Curran and N. H. Frank, "Assessing the Validity of the Lognormal
Model when Predicting Maximum Air Pollution Concentrations," presented
at the 68th APCA Annual Meeting, June 1975.
6. L. Breiman, J. Gins and C. Stone, "Statistical Analysis and Interpretation
of Peak Pollution Measurements." Final Report prepared by Technology
Service Corporation under contract to the U. S. Environmental Protection
Agency, Research Triangle Park, North Carolina, November 1978.
7. Guidelines For The Interpretation of Air Quality Standards, OAQPS No. 1.2-008,
U. S. Environmental Protection Agency, Research Triangle Park,'N.C.,
February 1977.
8. Guideline for Interpretation of Ozone Air Quality Standards,
EPA-450/4-79-003, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina, January 1979.
9. National Computer Center User's Reference Manual, prepared by SDC Integrated
Services, Inc. under contract to the U. S. Environmental Protection Agency,
Research Triangle Park, North Carolina, January 1980.
58
-------
APPENDIX A
PROGRAM DESCRIPTIONS
-------
SUBROUTINE DESCRIPTIONS
Program MAIN
Use. MAIN is the main program for the emissions inventory projection module of
the Modified Rollback/EKMA Strategy Assessment Model. It reads the key control
parameters, the mobile and stationary sources control strategy cards, and the
emissions and air quality data for each source region to be evaluated. Depending
on the options selected, MAIN outputs the Emissions Inventory Summary Report, the
emissions data file and/or the projected air quality data file. The program also
performs card sequence checks and data editing.
SUBROUTINE QBASE
Use. Obtains the total base year emissions inventory reduced by the source
contribution factors, if appropriate. QBASE is called by MAIN.
Common Blocks STRAT
REGION
GROWTH
10
ENTRY QPROJ (IRGN,IGR,IPY,ISTR,DYR)
Use. Provides emission projections for each source category, control scenario
and growth rate combination. The procedure is a FORTRAN entry point in SUBROUTINE
QBASE which is called from MAIN. Projection year total emissions are calculated
using the following relationships:
k
QM. = z IMS.*EFR.*O+VMT.) J
"i -j=i J J ^
A-'
-------
NEWSS.= Z QS^SSCF^SSNEW^l
m ' n
OLDSS. = z [QS^'SSCF^SSOLD^II-RRJ/'J
1 1=1 '
QTOT. = QMi + NEWSSi + OLDS$i
where:
i = the projection year index
j = the mobile source category index
k = the number of mobile source categories
1 = the stationary source category index
m = the number of stationary source categories
n = the difference between the projection year and the base year
MS- = the base year emissions in mobile source category j
J
EFR. = the ratio of the projection year emission factor to the base
year emission factor obtained from MOBILE2
VMT = the compound growth rate in vehicle miles traveled
QM- = the total mobile source emissions in projection year i
QS-| = the base year emissions in stationary source category 1
SSCFi = the stationary source contribution factor for source category 1
SSNEV/i = the emission factor ratio for new sources in stationary source
category 1, i.e., SSNEW1 = UOO-NSPS)1100
NSPS-| = the new source performance standard for cateogry 1
GR-j = the growth rate for stationary source category 1
RR-j = the retirement rate for stationary source category 1
NEWSS.J = the total stationary source emissions in projection year i
due to growth and equipment replacement
A-2
-------
OLDSS- = the total stationary source emissions in projection year i
from existing stationary sources
SSOLD. = the emission factor ratio for existing stationary sources in
source category 1
QTOT.J = the total regional emissions in projection year i
Arguments IRGN = the control scenario group number
IGR = the growth rate sequence number
IPY = the projection year sequence number
ISTR = the control scenario sequence number
DYR = the difference between the projection year and the
inventory base year
SUBROUTINE EIPRNT (NSTR.NGR.NPY)
Use. Outputs the Emissions Inventory Summary Report on unit device 'El'
(default = Unit 6). The report provides the base year inventory and the projected
inventories for each source category selected. These data are also output, in a
compact format, to alternate unit device '10' (default = Unit 8). The subroutine
is called by MAIN.
Arguments NSTR = the number of control scenarios per group
NGR = the number of growth rate scenarios
NPY = the number of projection years
Common Blocks STRAT
REGION
GROWTH
10
A-3
-------
SUBROUTINE LINEAR (NSTR,NGR,NPY)
Use. Provides an estimate of future air quality concentrations using the
following linear relationships:
T = CxB - BKG) * (
BKG
where
x- = air quality concentration in year i
Xn = base year air quality concentration
BKG = air quality background concentration
Q. = emissions in year i
QB = base year emissions
This subroutine is called by MAIN, whereas the emissions fraction, Qi/Qn is
calculated by QPROJ. The air quality data file is output on unit device ' IAQ1
C Default = Unit
Common Blocks STRAT
REGION
GROWTH
10
Arguments. NSTR = the number of control scenarios per group
NGR = the number of growth rate scenarios
NPY = the number of projection years
A-4
-------
ENTRY EKMA (NSTR,NCR,NPY,RATIO, DELNOX)
Use_. Provides an estimate of future ozone air quality concentrations by solving
the Standard Isopleth Diagram from the Empirical Kinetic Modeling Approach (EKMA)
using the ambient NMHC/NC) ratio and expected changes in VOC and NO emissions.
X X
The starting point of the algorithm is obtained by finding the intersection of
the ratio line and the base year concentration isopleth, e.g., point A on
Figure A-l. The individual EKMA isopleths are represented by piece-wise line
segments in the OZIPP data file. The isopleth file must be assigned to Unit 11.
The NMHC, NO coordinates (X , Y ) are multiplied by the expected percentage
J\ U U
changes in emissions to obtain the post-control coordinates, X , Y. The post-
control ozone value, Point A1, is found by a sequential search which uses linear
rollback to obtain a starting point. The procedure is a FORTRAN ENTRY POINT in
LINEAR which is called by MAIN.
Arguments. NSTR = the number of control scenarios per group
NCR = the number of growth rate scenarios
Npy = the number of projection years
RATIO = the ambient NMOC/NOY ratio
/\
DELNOX = the ratio of projected to base year NO emissions
A
Program @US*ER.SORTSDF,A 9.,9.,NREC,132,KEY/29/3.A,KEY/20/8.A,KEY/5/15.A
Use. This UNIVAC processor performs an alphanumeric sort on the air quality data
file. The sorted file is then read by program AQPRNT to produce the air quality
summary results. The sort keys are growth rate scenario name, control scenario
name and region name.
A-5
-------
?)).0
0.2
0.4
)
oc
O.fi
0.0
1 .0
1.6 1 .8
o.4
I .() 1 .?. * \ .A
NMIIC ,PI>MC
.6
.0
00
O
o
o
o
"o
Figure A-l. Use of Standard EKMA Isopleth Diagram
-------
Arguments. NREC = maximum number of records to be sorted
Program AQPRNT
Use. This program reads the sorted air quality data file and outputs the air
quality summary reports. One report is generated for each growth rate/control
scenario combination. These reports display the base year air quality design
values, projection year air quality design values and expected exceedances for
each source region modeled. Summary statistics include: (1) the average percent
changes in air quality, (2) the number of source regions in violation of the
NAAQS, and (3) the total number of expected exceedances. Data are input on
Unit 9 and output on Unit 6.
SUBROUTINE VIOLA(PAQC,IPOLL,STD,NVIOL,RNDING)
Use. This subroutine is called by Program AQPRNT to calculate the expected
number of exceedences of the appropriate NAAQS given the future year design
value. The algorithm fits a tail-exponential distribution through the design
value concentration point.
The exponential distribution has the form
FCC) = 1 - exp(-C/C) (1)
where
F(C) = the fraction of the value which are less than or equal to
the concentration^).
r = the mean of the concentration.
As noted above, the only parameter needed to fully describe the exponential
distribution is the mean. Thus, the projected design value, and its corresponding
A-7
-------
frequency of occurrence, are sufficient to fully describe an exponential distri-
bution unique to each area being modeled. For CO and (Xj, the design value is
assumed to be the second highest value for the specified averaging time.
The mean of an exponential distributed fitted through the projected design
value for a specific source region is given by:
TT. = DV./LOG(2/S) (2)
J J
where
"C = the mean of the exponential distribution for year j
DV- = the design value for year j
J
S = the sample size, i.e., S= the number of hours in a year divided
by the averaging time of the pollutant
j = year index.
Then the number of exceedances of the NAAQS can be estimated by
EXCEED = S*(EXPl-STD/ri). - 1 (3)
where
EXCEED = the number of violations
S = the sample size
STD = the air quality standard
~C = the mean from equation (2).
Obviously, if one is dealing with an annual standard, e.g., N02, then a
direct comparison of the projected design value with the NAAQS can be made.
A-8
-------
Arguments. PAQC = the future year design value
IPOLL = the pollutant sequence number
STD = the NAAQS concentration level
NVIOL = the calculated number of exceedances
RNDING = the rounding error used to determine violations of the
NAAQS.
SUBROUTINE ACURAT (A, B, C, N)
Use. Adds a small number to single-precision floating point input values to
account for machine accuracy differences.
Arguments. A = the first input variable
B = the second input variable
C = an input array
N = dimension of C
A-9
-------
APPENDLX B
SOURCE PROGRAM LISTINGS
-------
< B - SOURCE PROGRAM LISTINGS
DATE 070181
PAGE
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
C ROLLBACK MAIN ROUTINE HANDLES INPUT AND DRIVES SUBROUTINES
JLIBACK.MAIN
*07/01/81-12:36<8,
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
15.
16.
17.
18.
19.
20.
21.
22.
23.
REAL#8 HDNGS(33),STRCHK
REAL*4 RBCVNTI 4 )/l . 15 , 1 . 15 , 1960 . 0 , 1880 . 0/
INTEGER*4 EIFLAG,EIPLLS( 4) ,GRWCHK( 3 ) ,GRHRGN, LASTPY,DNOX< 9)
INTEGER*4 RECCNT/0/,RGHCHK( 5 ) , PREFIX, KODESt 33) ,SSCF2( 9 )
REAL*<+ RBSTDSl 4 )/35 .0,9.0,0.12,0. 05/
REAL*4 DECIMH 4 )/0. 5, 0.5, 0.005,0. 0057
INTEGER*^ RBPLLS(4),RBPOLL,RBUNIT,RBPLCK,PPM
REAL*4 SSCF(9),DELNOX(9)
INTEGER*4 BLANK/' '/
COMMON /STRAT/ DECLARATIONS
REAL*8 SORCES(33),STRNAM(9)
REAL*4 MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD(6,9,9,9)
INTEGER*** EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9)
COMMON /REGION/ DECLARATIONS
REAL*4 BAQC,BK,QMB(23),QSB(9),QBTOT
INTEGERS BASEYR,RGNNAM(5)
COMMON /GROWTH/ DECLARATIONS
REAL*4 MSGR(23,3),SSGR(9,3),SSRR(9,3),PAQC(3,9,9),PRPRTN(3,9,9),
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
1 76. SORCES(I)=HDNGS(J+1)
1 77. 50 CONTINUE
78. IF (NUM.EQ.33) GO TO 70
79. IST=NUM+1
SO. DO 60 I=IST,33_
1 81. 60 SORCES(I)=HDNGSU)
1 82 . C- *
1 83. C GET THE STRATEGY SETS *
1 gA, £.,_______.. »»____ , _. -. - « -. -. -. .> -» #
85. 70 DO 140 IRGN=1,NRGN
1 86. DO 1*0 ISTR=1,NSTR
2 87. DO 130 IPY=1,NPY
Z 88. C GET THE PROJECTION YEAR CARDS FOR THIS STRATEGY.
3 39. READ {IN,80,ERR=520,END=540) STRCHK,(MSEFRCIRGN,J,IPY,ISTR ),
3 90. 1J = 1,23 ),PROJYR(IPY,ISTR),(SSNEW(IRGN,J,IPY,ISTR),SSOLD(IRGN,J.IPY,
3 91. 2ISTR),J=1,9)
3 92. 80 FORMAT (A8,1X,23F3.2,I2,/,9X.18F3.2 )
3 93. RECCNT=RECCNT+2
3 9*. FREFIX=1900
3 95. IF (PROJYR(IPY,ISTR).LT,70) PREFIX=2000
3 96. PROJYR(IPY,ISTR)=PROJYR(IPY,ISTR)+PREFIX
3 97. IF (IPY.NE.l) GO TO 90
3 98. C THIS IS THE FIRST PROJECTION YEAR
3 99. STRNAM(ISTR)=STRCHK
3 100. LASTPY=-1
3 101. 90 CONTINUE
3 102. C CHECK STRATEGY NAME AGAINST THAT GIVEN ON THE FIRST PROJECTION YEAR
3 103. IF (STRNAN(ISTR).EP.STRCHK) GO TO 110
3 104. C STRATEGY NAME DOES NOT MATCH
3 105. WRITE (OUT,100) STRCHK,STRNAMCISTR),RECCNT
3 106. 100 FORMAT (///1HO,'***WARNING: STRATEGY NAME CHECK: ','NAME IS ''',A8
3 107. I,"1, BUT EXPECTING ' " ,A8,' " , AT RECCNT=',I5)
3 108. C CHECK PROJECTION YEAR FOR ASCENDING ORDER
3 109. 110 IF (PROJYR(IPY.ISTR).GT.LASTPY) GO TO 130
3 110. WRITE (OUT,120) USTPY,PROJYR(IPY,ISTR).RECCNT
3 111. 120 FORMAT (///1HO,'***WARNING: PROJECTION YEAR ','SEQUENCE CHECK:1,/!
3 112. 1H ,T5,'PREVIOUS YEAR = ',14,'. BUT THIS YEAR ','= ',14,', AT RECCN
3 113. 2T=',I5)
3 114. 130 CONTINUE
2 115. 140 CONTINUE
2 116. C GET REGION CARD 1:
117. 150 READ (IN,160,ERR=520,END=460) (RGNNAMf J ), J=l,5 ) ,BA<3C,BK,RBPOU,RBU
118. 1NIT,RATIO,OELNOX.ONOX,IRGN,BASEYR
119. 160 FORMAT (A3,3A4,A3,1X,2F5.2,1X,A4,1X,A4,F4.1,9F3.2.T44,9A3,T77.il,1
120. 12)
121. CALL ACURAT(BAQC,BK,DUMMY,1)
122. IF(IRGN.EQ.O)IRGN=1
123. RECCNT=RECCNT+1
124. BASEYR=1900+BASEYR
125. C GET REGION CARD 2,3,4:
126. READ (IN,170,ERR=520,END=540) RGNCHKf1),QMB,QSB,SSCF,SSCF2
127. 170 FORMAT (A3.2X,11F6.0,/,5X,12F6.0,/,5X,9F6.0,9F2.1,T60,9A2)
123. C INITIALIZE STATIONARY SOURCE CONTRIBUTION FACTORS, SSCF(I)
129. DO 160 1=1,9
1 130. IF (SSCF2(I).EG).BLANK) SSCF(I)=1.0
1 131. IF (EIFLAG.Eq.2) SSCF(I)=1.0
1 132. IF (DNOX(I).EQ.BLANK) DELNOX(I)=1.0
1 133. 180 CONTINUE
134. RECCNT=RECCNT+3
135. C CHECK REGION CARDS FOR REGION NUMBER MATCH
136. IF (RGNNAM(l).EQ.RGNCHK(l)) GO TO 200
137. WRITE (OUT,190) (RGNNAM(I),1=1,5),RGNCHK,RECCNT
138. 190 FORMAT (///1HO,'***WARNING: CHECK REGION NAMES. ','REGION CARDS 1
139. 1 AND 2 DO HOT MATCH:',/lH ,T5,'RGNNAM= " ',A3,3A4,A3,' " , BUT RGNCH
140. 2K='",A3,3A4,A3,"', AT RECCNT= ' ,15 )
141. GO TO 210
142. 200 CONTINUE
143. 210 CONTINUE
144. C CALCULATE BASE-YEAR COMPOSITE EMISSION RATE (Q) (IN TONS/YEAR)
145. CALL QBASE
146. C __*
147. C GET GROWTH RATE CARDS: *
148. C _*
149. DO 270 IGR=1,NGR
1 150. READ (IN,220,ERR=520,ENO=540) GRWRGN,GRWNAM(IGR),(MSGR(J.IGR ),J =
1 151. 11,23),(SSGR(J,IGR),SSRR(J.IGR),J=1,9)
1 152. 220 FORMAT (A3,A2,4X,23F3.1,/,9X.18F3.1)
-------
X B - SOURCE PROGRAM LISTINGS DATE 070181 PAGE
153- RECCNT=RECCNT+2
154. C CHECK GROWTH CARD FOR PROPER REGION
155. IF (RGNNAM(l).EQ.GRWRGN) GO TO 240
156. WRITE (OUT,230) IRGN.RGNNAMf1).GRWRGN.RECCNT
157. 230 FORMAT (///1HOv'***WAPNING: A GROWTH RATE CARD ','MAY BE IN THE WR
158. 10NG REGION :',/lH , T5, 'RGNNAMf 1,', 12 ,')='", A3, ", BUT ','GRWRGN='
159. 211,A3,ltl, AT RECCNT=',15)
160. 2*0 CONTINUE
161. C CHECK THE ORDER OF NAMES OF GROWTH RATE SCENARIOS
162. IF (KSW.EQ.l) GO TO 260
163. IF (GRWNAM(IGR).EQ.GRWCHK(IGR)) GO TO 260
164. WRITE (OUT,250) GRWNAM( IGR ) ,GP.WCHK< IGR ) .RECCNT
165. 250 FORMAT (///1HO,'**#WARNING: CHECK GROWTH RATE ','SCENARIO NAME. T
166. 1HE GROWTH NAMES UNDER THE ','FIRST REGION SHOULD CORRESPOND',/lH ,
167. 2T5,'EXACTLY WITH THOSE UNDER EVERY OTHER ','REGION.',/lH .TS.'GRWN
168. 3AM='",A2,'", BUT GRWCHK= " ,A2, ' , AT RECCNT=',15>
169. 260 GRWCHK(IGR)=GRWNAM(IGR)
170. 270 CONTINUE
171. C «
172. C CALCULATE PROJECTED COMPOSITE EMISSION RATES (Q, IN TONS/YEAR) *
173. C SAVE THE QP/QB PROPORTIONS FOR ROLLBACK PROJECTIONS *
174. C *
175. DO 300 ISTR=1,NSTR
176. DO 290 IPY=1,NPY
177. C DETERMINE TIME PERIOD FROM BASE-YEAR TO PROJECTION-YEAR
178. DYR=PROJYR(IPY,ISTRJ-BASEYR
179. DO 280 IGR=1,NGR
180. C CALCULATE PROJECTION-YEAR COMPOSITE EMISSION RATE (Q) (IN TONS/YEAR)
181. CALL QPROJ (IRGN,IGR,IPY,ISTR,DYR)
182. C CALCULATE AND SAVE THE QP/QB PROPORTION
183. PRPRTNfIGR,IPY,ISTR)=QPTOT(IGR,IPY,ISTR)/QBTOT
184. 280 CONTINUE
185. 290 CONTINUE
186. 300 CONTINUE
187. C »
188. C WRITE PROJECTION-YEAR AIR QUALITY DATA FILE
189. C *
190. IF (EIFLAG.GE.l) GO TO 450
191. DO 310 IRBPLL=1,NRBPLL
192. IF (RBPOLL.EQ.RBPLLSflRBPLD) GO TO 320
193. 310 CONTINUE
194. C RBPOLL ON REGION-CARD-1 IS INVALID.
195. GO TO 620
196. C RBPOLL ON REGION-CARD-1 IS VALID.
197. 320 RBPLCK=RBPOLL
198. C SET ROLLBACK STANDARD
199. RBSTD=RBSTDS(IRBPLL)
200. RNDING=DECIML(IRBPLL)
201. IF (RBUNIT.EQ.PPM) GO TO 330
202. BAQC=BAQC/RBCVNT(IRBPLL)
203. BK=BK/RBCVNT(IRBPLL)
204. RBUNIT=PPM
205. C PERFORM AIR QUALITY PROJECTIONS BASED ON POLLUTANT TYPE
206. C
207. 330 IF (IRBPLL.EQ.3) CALL EKMA (NSTR,NCR,NPY,RATIO,OELNOX)
208. IF (IRBPLL.NE.3) CALL LINEAR (NSTR,NGR,NPY)
209. C
210. C WRITE HEADER RECORD ON AQ FILE
211. C
212. IF (ISW.NE.O) GO TO 350
213. WRITE (IAQ.340) RBPOLL,RBUNIT,RBSTD,RNDING,IRBPLL,NPY
214. 340 FORMAT (2A4,F6.2,F5.3,IX,212)
215. ISW=1
216. C SELECT THE PROPER FORMAT CODE (DEPENDS ON THE POLLUTANT)
217. 350 DO 440 ISTR=1,NSTR
218. DO 430 IGR=1,NGR
219 GO TO (360,360,380,380,380,380,380), IRBPLL
220' 360 WRITE (IAQ.370) (RGNNAMfJ ),J = l,5),STRN4M(ISTR),GRWNAM(IGR),BAS
221' 1EYR,8AQC,BK,< PROJYRlIPY,ISTR),PAQC(IGR,IPY,ISTR),IPY = 1,NPY)
222! 370 FORMAT (IX,A3,3A4,A3,IX,A8,IX,A2,2X,14,2F5.1,2X,9(15,F5.1))
223. GO TO 420
224 380 IF (BK.LT.0.01) GO TO 400
..' WRITE (IAQ.390) ,BAS
2*6 1EYR,BAQC,BK,(PROJ1RIIPY,ISTR ) ,PAQC(IGR,IPY,ISTR),IPY = 1,NPY)
227 390 FORMAT (IX,A3,3A4,A3,IX,AS,IX,A2,CX,14,F5.3,F5.2,2X,9(15,F5.3))
->-.«' GO TO 420
229 C BK IS SMALL, SO DISPLAY EXTRA DIGIT SO IT WILL NOT APPEAR AS ZE30
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
Z 230. 400 WRITE (IAQ.410) (RGNNAM(J),J=l,5),STRNAM(ISTR),GRWNAM(IGR),BAS
2 231. 1EYR,BAQC,BK,(PROJYR(IPY,ISTR),PAQC(IGR,IPY,ISTR),IPY=1,NPY )
2 232. 410 FORMAT (1H ,A3,3A4,A3,IX,AS,IX,A2,2X,I4,2F5.3,2X,9(15,F5.3))
2 233. 420 CONTINUE
2 234. 430 CONTINUE
1 235. 440 CONTINUE
1 236. C *
1 237. C PRINT PROJECTION-YEAR EMISSION INVENTORY *
1 238. C *
1 239. C
240. 450 CALL EIPRNT (NSTR,NGR,NPY )
241. K5W=0
242. GO TO 150
243. C *
244. C PROGRAM EXIT POINT *
245. C~ *
246. 460 CONTINUE
247. WRITE (OUT,470) RECCNT
248. 470 FORMAT (1H1,1*** STOP WITH RECCNT=',I5)
249. STOP
250. C *
251. c ERRORS; *
252. C *
253. C INVALID POLLUTANT ENTRY ON SOURCE NAME CARD
254. 480 WRITE (OUT,490) EIPOLL
255. 490 FORMAT (1H ,'*** ERROR: " ,A4,''' IS HOT A VALID POLLUTANT ,'ENT
256. 1RY FOR THIS PROGRAM. VALID ENTRIES ARE:1)
257. DO 500 IEIPLL=1,NEIPLL
1 258. 500 WRITE (OUT,510) EIPLLSfIEIPLL)
259. 510 FORMAT (1H ,T5,'' " ,A4, " " )
260. GO TO 460
261. C ERROR ON READ
262. 520 RECCNT=RECCNT+1
263. WRITE (OUT,530)
264. 530 FORMAT (///1HO,'***ERROR: READ ERROR...SEE RECCNT. ***' )
265. GO TO 460
266. C UNEXPECTED END-OF-FILE
267. 540 WRITE (OUT,550)
268. 550 FORMAT (///1HO,'**«ERROR: UNEXPECTED END-OF-FILE ***' )
269. GO TO 460
270. C CONTROL ERRORS
271. 560 WRITE (UUT.570) NSTR.MXNSTR
272. 570 FORMAT UHO,1*** ERROR: 1 <= (NSTR=,12,') <= (MXNSTR=',12,' ) ?"
273. 1)
274. GO TO 460
275. 580 WRITE (OUT,590) NPY.MXNPY
276. 590 FORMAT (1HO,1*** ERROR: l <= (NPY=',I2,') <= (MXNPY=',12, ) ??')
277. GO TO 460
273. 600 WRITE (OUT,610) NGR.MXNGR
279. 610 FORMAT (1HO,1*** ERROR: 1 <= (NGR=',I2,') <= (MXNGR=',12,' ) ??')
280. GO TO 460
281. 620 WRITE (OUT,630) RBPOLL
282. 630 FORMAT (1H ,'*** ERROR:'" ,A4, "' is NOT A VALID POLLUTANT1)
283. GO TO 460
284. C
285. END
END FTN 514 IBANK 1107 DBANK 30275 COMMON
-------
[X B - SOURCE PPOGRAM LISTINGS
JOLLBACK.RLLBCK
»07/01/81-12:J6(5, )
DATE 070181
PAGE
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30 .
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51 .
52.
53.
54.
55.
56.
57.
S3.
59.
60.
61.
62.
63.
6^.
6s!
66.
67.
68.
71
72-
'
C RLLBCK -- (ENTRIES: LINEAR, EKMA >
C
C
SUBROUTINE LINEAR ( NSTR ,NGR ,NPY )
COMMON /STRAT/ DECLARATIONS
REALMS SCRCES(33),STRNAM(9)
REAL*4 MSEFR(6,26,9,9),SSNEW(6,9,9,9>,SSOLD<6,9,9,9)
INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR( 9,9 ) ,SSCF( 9)
COMMON /REGION/ DECLARATIONS
REAL*4 BAqC,BK,QrB(23),QSB(9),Q8TOT
INTEGER*^ BASEYR ,RGNNAM( 5 ) ,KOOES( 33)
COMMON /GROWTH/ DECLARATIONS
REAL*4 MSGR(23,3),SSGR(9,3),SSRR(9,3),PAqC(3,9,9),PRPRTN(3,9,9),qM
lP(23,3,9,9),qSP(9,3,9,9),qPTOT<3,9,9)
INTEGER*4 GRWNAM(3)
COMMON /10/ DECLARATIONS
INTEGER** El, IN, OUT
COMMON /STRAT/ SORCES.STRNAM.MSEFR ,SSNEW,SSOLD , EIPOLL, IEIPLL , IRBPL
1L,PROJYR,RNDING,RBSTD
COMMON /REGION/ BAQC, BK,QMB,qSB,QBTOT, BASEYR .RGNNAM, MS, NS.KODES
COMMON /GROWTH/ MSGR ,SSGR ,SSRR,PAQC,PRPRTN,qMP,qSP,QPTOT,GRWNAM,SS
1CF
COMMON /IO/ El, IN, OUT, 10, IAQ
START HERE
DO 30 ISTR=1,NSTR
DO 20 IGR=1,NGR
00 10 IPY=1,NPY
CALCULATE LINEAR PROJECTIONS OF AIR QUALITY
PAQCf IGR , IPY , ISTR ) =BK+ ( BAqC-BK )«PRPRTN< IGR , IPY , ISTR )
10 CONTINUE
20 CONTINUE
30 CONTINUE
GO TO 250
ENTRY EKMA ( NSTR, NGR ,NPY, RATIO, DELNOX)
REAL HC(200),NOX(200),DELNOX(9)
INTEGER TEST/0/
IFtTEST.Eq.DGO TO 35
TEST=1
DEFINE FILE 11(50,401 ,U,IPT)
35 BK=RATIO
IS=(BAQC*100+0.5)
READ (ll'IS) NP.HC.NOX
ISTOP=NP-1
DO 40 I=1,ISTOP
IF (RATIO. GE.(HC(I)/NOX(D). AND. RATIO. LE . ( HC( 1 + 1 )/NOX( 1 + 1 ) )) GO
1TO 50
40 CONTINUE
GO TO 200
50 OZONE=FLOAT(IS)*0.01
SLOPE = ( NOX( I )-NOX( 1 + 1 ) )/( HC( I )-HC( 1 + 1 ) )
B=NOX(I)-SLOPE*HC(I)
YB=B/(1.0-SLOPE*RATIO>
XB=RATIO*YB
DO 190 ISTR=1,NSTR
DO 180 IGR=1,NGR
DO 170 IPY=1,NPY
YP=OELNOX(IPY)»YB
XP=PRFRTN( IGR, IPY, ISTR )*X8
RSTAR=XP/YP
N:FLOAT(IS)»PRPRTN(IGR,IPY,ISTR)
IF (N.LT.4) N=4
60 READ (ll'N) NP.HC.NOX
OZONE=FLOAT(N)»0.01
ISTOP=NP-1
DO 70 I=1,ISTOP
IF ,RSTAR.GE.(HC(I)/MOX(I)).AND.RSTAR.LE.(HC(I+1)/NOX(I+1)
1 ) ) GO TO 80
70 CONTINUE
GO TO 90
80 SLOPE = (NOX(I)-NOX(I +
B=NOX(I)-SLOPE*HC(I)
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
3 76. Y1=B/(1.0-SLOPE*RSTAR)
3 77. X1=RSTAR*Y1
3 78. IF (Xl.LE.XP) GO TO 100
3 79. 90 N=N-1
3 80. IF (N.LT.4) GO TO 150
3 81. GO TO 60"
3 82. 100 N=N+1
3 83. IF (N.GT.40) GO TO 130
3 8*. READ (ll'N) NP,HC,NOX
3 85. OZONE=FLOAT(N)*0.01
3 86. ISTOP=NP-1
3 87. DO 110 I=1,ISTOP
4 88. IF (RSTAR.GE.(HC(I)/NOX(I)).AND.RSTAR.LE.(HC(I+1)/NOX(I+1)
4 89. 1)) GO TO 120
4 90. 110 CONTINUE
3 91. GO TO 130
3 92. 120 SLOPE=(NOX(I)-NOX(I-H))/(HC(I)-HC(H-1))
3 93. B=NOX(I)-SLOPE*HC(I)
3 94. Y2=B/(1.0-SLOPE*RSTAR)
3 95. X2=RSTAR*Y2
3 96. IF (XP.GE.X1.ANO.XP.LE.X2) GO TO 160
3 97. X1=X2
3 98. C Y1=Y2
3 99. GO TO 100
3 100. 130 CONTINUE
3 101. WRITE (OUT,140) (RGNNAMCJ),J=l,5),ISTR,IGR,IPY,XP,YP
3 102. 140 FORMAT (1HO,1 *** EKMA ERROR *** ',/,lX,A3,3A4,A3,' STRAT=',I2>' G
3 103. 1R=',I2,' PY=',I2,' HC=',F5.2,' NOX=',F5.3)
3 104. PAQC(IGR,IPY,ISTR)=99.99
3 105. GO TO 170
3 106. 150 PAQC(IGR,IPY,ISTR)=.04
3 107. GO TO 170
3 108. 160 DIFF=0.01
3 109. C
3 110. C INTERPOLATE OZONE LEVEL ON HC BASIS
3 111. C
3 112. PAQC(IGR,IPY,ISTR)=((XP-X1)/(X2-X1))*DIFF+(OZONE-0.01)
3 113. 170 CONTINUE
2 114. 180 CONTINUE
1 115. 190 CONTINUE
116. GO TO 250
117. 200 WRITE (6,210) (RGNNAMtJ),J=l,5),BAQC,RATIO
118. 210 FORMAT (1HO,1 *** EKMA ERROR ***',/,IX,A3,3A4,A3,' DV=',F4.2,' RAT
119. 1IO=',F5.1)
120. DO 240 ISTR=1,NSTR
1 121. DO 230 IGR=1,NGR
2 122. DO 220 IPY=1,NPY
3 123. PAQC(IGR,IPY,ISTR)=9999.9
3 124. 220 CONTINUE
2 125. 230 CONTINUE
1 126. 240 CONTINUE
127. 250 RETURN
128. C
129. END
END FTN 423 IBANK 571 DBANK 30275 COMMON
-------
XB - SOURCE PROGRAM LISTINGS
04TE 0/0131
PAGE
OLLBACK.EIPRNT
«07/01/81-12:36(4,
Z.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
6^.
65!
66.
67.
68.
69.
70
71*
7Z'
73'
74'
,5'
PRINTS EMISSION INVENTORY REPORTS
SUBROUTINE EIPRNT < NSTR ,NGR ,NPY )
COMMON /STRAT/ DECLARATIONS
REAL*8 SOPCES(33),STRNAM(9)
REAL*i* MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD(6,9,9,9)
INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9),KODES(33)
COMMON /REGION/ DECLARATIONS
REAL*4 QMB(23),I3SB(9),QBTOT,BFILL(33),PFILL(33)
REAL*'* QMSUB(9),QSUB(9),TOTAL(9)
INTEGER*^ BASEYR,RGNNAM(5)
COMMON /GROWTH/ DECLARATIONS
REAL*4 MSGR(23,3),SSGR(9,3),SSRR(9,3),PAQC(3,9,9),SSCF(9),PRPRTN<3
1,9,9),QMP(23,3,9,9),QSP(9,3,9,9),QPTOT(3,9,9)
INTEGER*** GRWNAM( 3)
COMMON /IO/ DECLARATIONS
INTEGER** El, IN, OUT
COMMON /STRAT/ SORCES,STRNAM,MSEFR ,SSNEW,SSOLD , EIPOLL, IEIPLL, IRBPL
1L,PROJYR,RNOING,RBSTD
COMMON /REGION/ BAQC,BK,QMB,QSB,QBTOT, BASEYR, RGUNAM, MS, NS,KODES
COMMON /GROWTH/ MSGR,SSGR ,SSRR ,PAQC,PRPRTN,QMP,QSP,QPTOT,GRWNAM,SS
1CF
COMMON /IO/ El, IN, OUT, 10, IAQ
DATA BFILL /33*0.0/ .PFILL /33*0.0/
NUM=MS+NS
SUB1=0.0
SUB2=0.0
00 10 1=1, MS
J=KODES(I)
SUB1=SUB1+QMB(J)
10 BFILL(I)=QMB( J)
DO 20 1=1, NS
J=KODES(I+MS)-23
SUB2=SUB2+QSB( J)
20 BFILL(I+MS)=QSB(J)
QTOT=SUB1+SUB2
DO 200 ISTR=1,NSTR
DO 190 IGR=1,NGR
IX=0
IST=1
ISTP=12
IF (NUM.LT.12) ISTP=NUM
WRITE (El, 30) (RGNNAMt J ) , J = l ,5 ) ,STRNAM( ISTR ) ,GRWHAM( IGR ) ,EIPOL
1L
30 FORMAT ( 1H1 ,25X, ' *** EMISSIONS INVENTORY PROJECTIONS ',' ***',/
11HO,' LOCATION: ', A3, 3A4, A3, T50, 'STRATEGY: ', AS, T80 , 'GROWTH RATE: ',
2A4/1HO, 'POLLUTANT: ' ,A4,/1HO ,T27,14X, ' EMISSIONS (1000 TONS/YEAR)',
3//lHO,T27,10X, 'S OURCE CATEGORIE S',//)
40 WRITE (El, 50) ( SORCESt I ) ,I=IST,ISTP)
50 FORMAT ( //,T15,12A8)
WRITE (El, 60)
60 FORMAT (IX, 'BASE YR1,/)
WRITE (El, 130) BASEYR , ( BFILL( I ) ,I=IST,ISTP )
WRITE (El, 70)
70 FORMAT (IX.'PROJ YR',/)
IF (IX.NE.O) GO TO 100
WRITE (10,80) (RGNNAM(J),J=1,5),STRNAM(ISTR),GRWNAM(IGR),EIPOL
1L,NPY,NUM,(KODES( J),J=1,NUM)
80 FORMAT ( A3 , 3A4 , A3, IX , A8, 2( IX, A4 ) , 12 , 14 , 3312 )
WRITE (10,90) BASEYR, SUB1 ,SUB2 ,QTOT, ( BFILH J > , J=l , HUM)
90 FORMAT ( 14, 14F3. 1 , 2( /, 28X, 12F8. 1 ) )
100
110
DO 140 IPY=1,NPY
QMSUBI IPY)=0.0
QSUB(IPY)=0.0
DO 110 1=1, MS
J=KCOES(I)
PFILL1 I )=QMP( J, IGR, IPY, ISTR)
QMSUBI IPY )=QMSUB( IPY 1+PFILLI I )
DO 120 1=1, NS
J=KODES(I+MS)-23
PFILL(I+MS)=QSP( J, IGR, IPY, ISTR )
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
4 76. 120 <3SUB(IPY)=qSUB(IPY) + PFILL(
3 77. TOTAL(IPY)=QSUB(IPY)+QMSUB(IPY)
3 78. WRITE (£1,130) FROJYRI IPY.ISTR ) , ( PFILU J) >J=IST,ISTP)
3 79. 130 FORMAT ( 1H ,1X,I4,T15,12( 1X,F6.1,1X) )
3 80. IF (IX.EQ.O) WRITE (10,90) PROJYRI IPY.ISTR ) ,QMSUB( IPY ) ,QSUB<
3 81. HPY),TOTAL(IPYr,(PFILL(J),J = l,NUM)
3 QZ. 140 CONTINUE
2 83. IX=1
2 84. IF ( NUM . LE . ISTP ) GO TO 150
2 85. IST=IST+12
2 86. ISTP=ISTP+12
2 87. IF (NUM. LT. ISTP) ISTP=NUM
Z 88. GO TO 40
2 89. 150 WRITE (El, 160)
2 90. 160 FORMAT (/1HO ,13X, 'MOBILE ' ,5X, 'STATIONARY1 ,5X, 'GRAND ' ,/2X, 'YEAR ' ,8X
2 91. 1, 'TOTAL1 ,8X, 'TOTAL' ,8X, 'TOTAL1 ,/)
2 92. WRITE (El, 170) BASEYR.SUBl ,SUB2,QTOT
2 93. 170 FORMAT ( 16 ,6X,F7.1 ,6X,F7.1,6X,F8.1 )
Z 94. DO 180 1=1, NPY
3 95. 180 WRITE (El, 170) PROJYR( I ,ISTR ) ,QMSUB( I ) ,QSUB( I ) ,TOTAL( I )
2 96. 190 CONTINUE
1 97. 200 CONTINUE
98. RETURN
99. C
100. END
END FTN 247 IBANK 497 DBANK 30275 COMMON
-------
X B - SOURCE PROGRAM LISTINGS
iQLLBACK.QBASE
»07/01/ftl-12:36<4, )
1. C***«* »**
2. C CALCULATES BASE YEAR AND PROJECTION YEAR INVENTORIES
3. C*********
4. C
5. SUBROUTINE OBASE
6. REAL*'* SSCF(9)
7. C COMMON /STRAT/ DECLARATIONS
8. REAL*8 SORCESf33) ,STRNAM(9)
9. REAL*'* MSEFR(6,26,9,9),SSNEW(6,9,9,9),SSOLD<6,9,9,9)
10. INTEGER*^ EIPOLL,IEIPLL,IRBPLL,PROJYR(9,9),KOOES<33)
11. C COMMON /REGION/ DECLARATIONS
12. REAL*4 BAQC,BK,QMB(23),qSB(9),qBTOT
13. INTEGER*4 BASEYR,RGNNAM(5)
14. C COMMON /GROWTH/ DECLARATIONS
15. REAL** MSGR(23,3),SSGR(9,3),SSRR(9,3),PAqC(3,9,9),PRPRTN<3,9,9),qM
16. lP(23,3,9,9),qSP(9,3,9,9),QPTOT<3,9,9)
17. INTEGER*^ GRWNAMC3)
18. C COMMON /IO/ DECLARATIONS
19. INTEGER*-* El,IN,OUT
20. COMMON /STRAT/ SORCES.STRNAM.MSEFR,SSNEW,SSOLD,EIPOLL,IEIPLL,IRBPL
21. IL.PROJYR.RNDING.RBSTD
22. COMMON /REGION/ BAQC,BK,QMS,QSB.QBTOT,BASEYR.RGNNAM,MS,NS.KODES
23. COMMON /GROWTH/ MSGR,SSGR,SSRR,PAQC,PRPRTN,QMP,qSP,QPTOT,GRWNAM,SS
24. 1CF
25. COMMON /IO/ El,IN,OUT,IO,IAQ
26. REAL*4 NEWGRW.OLDRET
27. C DEFINE THE COMPOUND GROWTH RATE
28. CMGRRT(GR)=(1.0+GR*0.01)**DYR
29. C
30. QBTOT=0.0
31. DO 10 1=1,MS
32. J=KOOES(I)
33. 10 QBTOT=QBTOT-K3MB(J)
34. DO 20 1=1,NS
35. J=KODES(I+MS)-23
36. QSB( J)=QSB(J)*SSCF(J)
37. 20 QBTOT=QBTOT+QSB(J)
33. GO TO 50
39. C
40. C *
41. C
42. ENTRY QPROJ (IRGN.IGR,IPY.ISTR.DYR)
43. QPTOT(IGR,IPY,ISTR)=0.0
44. DO 30 1=1,MS
45. J=KODES(I)
46. QMP( J,IGR,IPY,ISTR)=QMB(J)*MSEFR(IRGN,J,IPY,ISTR)*CMGRRT(MSGR(J,
47. 1IGR))
43. 30 QPTOT( IGR,IPY,ISTR)=QPTOT(IGR,IPY,ISTR) + QMP(J,IGR,IPY,ISTR)
49. DO 40 1=1,NS
50. J=KODES(I+MS)-23
51. NEWGRW=(CMGRRT(SSGR(J,IGR))-1.)*SSNEW(IRGN,J,IPY,ISTR ) + (1.-CMGRR
52. 1T(-SSRR(J,IGR)))*SSNEW(IRGN,J,IPY,ISTR)
53. OLDRET = (CMGRRTI-SSRR(J,IGR)) )*SSOLD(IRGN,J,IPY,ISTR)
54. QSPtJ,IGR,IPY,ISTR)=QSB(J>*
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
JFTN.S ROLLBACK.ACURAT
FTN 8R1 *07/01/81-12:36(<+, )
1. SUBROUTINE ACURAT(A,B,C,N)
3. DIMENSION C(N)
3. DATA X/l.E-6/
4. A=A+X
5. B=B+X
6. DO 1 1=1,N
1 7. 1 C(I)=C(I)+X
8. RETURN
9. END
END FTN 45 IBANK 17 DBANK
-------
> B - SOURCE PROGRAM LISTINGS
!OLLBACK.AQPRNT
*07/01/81-12: 36(13.)
Z. C PRINTS ROLLBACK AIR QUALITY DATA FILE
3. C******************^***********^********
4. C
5. REAL*4 AVRCHG(9),RGNNAM(5),PAQC(9), RBSTD
6. INTEGER*^ PROJYR( 9 > ,NVIOL( 9 > .BASEYR
7. INTEGER** NCAS( 9 ) ,KVIOL( 9) , OZONE/1 03 '/.COS/1 C08'/,CO/' CO V,OU
8. 1T.N02/' N02V
9. INTEGERS CONC/'CONC'/.EXEX/1 EXEX'/.RBPOLL.RBUNIT
10. REAL*8 STRNAM,STRAT,GRWNAM,GRWTH,HNDG(2)
11. DATA HNDG /'BKGO ',' RATIO1/
12. IP=1
13. OUT=6
14. IN=9
15. ISW=0
16. C INITIALIZE SUMMARY COUNTERS (WHICH COUNT ACROSS REGIONS) TO ZERO
17. READ (IN, 10) RBPOLL.RBUNIT, RBSTD, RNDING.IRBPLL.NPY
18. 10 FORMAT ( 2A4.F6.0 ,F5. 0.1X.2I2 )
19. CALL ACUR AT (RBSTD, DUMMY, DUMMY, 1)
20. DO 20 IPY=1,NPY
21. AVRCHG(IPY)=0.0
22. NCAS(IPY)=0
23. 20 KVIOL(IPY)=0
24. READ (IH,30,END=310) (RGNNAM( J ) ,J=1 ,5) ,STRNAM,GRWNAM, BASEYR ,BAQC ,B
25. 1K,(PROJYR( J),PAQC( J),J=1,NPY)
26. 30 FORMAT ( 1X,A3,3A4,A3,1X,A8,1X,A2,2X,I<»,2( 1X.F4.0 ) ,2X,9( I5,F5.0 ) )
27. CALL ACURAT(BAQC,BK,PAQC,9)
28. DO 40 1 = 1, NPY
29. CALL VIOLA ( PAQC( I ) .IRBPLL, RBSTD ,NVIOL( I ) .RNDING)
30. 40 CONTINUE
31. 50 STRAT=STRNAM
32. GRWTH=G.?WNAM
33. NRGN=0
34. IF (RBPOLL.NE. OZONE) GO TO 70
35. IP=2
36. WRITE (OUT, 60)
37. 60 FORMAT ( 1H1/1HO, 31X, 'E K M A ')
33. GO TO 90
39. 70 WRITE (OUT, 80)
40. 80 FORMAT ( 1H1/1H0.20X, ' L INEAR ROLLBACK')
41. 90 WRITE (OUT, 100) STRNAM.GRWNAM
42. 100 FORMAT ( 1H0.12X, 'STRATEGY: ' ,1X,A8,4X, 'GROWTH RATE SCENARIO: ', IX, A2
43. 1)
44. WRITE (OUT, 110) RBPOLL.RBUNIT , RBSTD .RBUNIT
45. 110 FORMAT <1HO,9X,A4,' AIR QUALITY CONCENTRATION (',A4,') AND VIOLATI
46. IONS', /1H ,23X, '(STANDARD IS ' >F5.2,1X,A4, ' ) ' )
47. WRITE (OUT, 120)
48. 120 FORMAT (1HO,T36,'P R 0 J E C T E D1,/)
49. WRITE (OUT, 130) ( PROJYRf IPY ) ,IPY=1 ,NPY )
50. 130 FORMAT ( 1HO.T21 ,3X, 'B A S E ' ,T36,9( 3X,I4,3X) )
51. WRITE (OUT, 140) HNOG( IP > , (CONC,EXEX,I=1,NPY )
52. 140 FORMAT ( /1H ,3X,'R E 6 I 0 N',T21,'YEAR CONC ' , A5,T36 , 9< IX, A4 , IX, A
53. 14))
54. C PRINT LINEAR ROLLBACK TABLE OF PROJECTED AQC AND NUMB OF VIOLATIONS
55. 150 DO 160 IPY=1,NPY
56 . AVRCHGI IPY )=AVRCHG( IPY ) + 100 . 0*( PAQCt IPY 1/BAQC-l . 0 )
57. KVIOH IPY )=KVIOL( IPY ) +NVIOH IPY )
58. IF (NVIOL(IPY).GT.O) NCAS( IPY )=NCAS( IPY ) + l
59. 160 CONTINUE
60. IF (RBPOLL.EQ.COS.OR.RBPOLL.EQ.CO) GO TO 180
61. IF (RBPOLL.EQ.N02) GO TO 200
62. WRITE (OUT, 170) (RGNNAM(J),J=1, 5), BASEYR, BAQC.BK ,( PAQCt IPY ) ,NVIOL(
63. 1IPY),IPY=1,NPY)
64. 170 FORMAT ( 1H , A3 , 3A4 , A3.T21 , 14, 2F5. 2 ,T35,9( F6 . 2 , 14 ) )
65 GO TO 220
66. 180 U'RITE (OUT, 190) < RGNNAMt J ) ,J = 1 ,5 ) .BASEYR ,BAQC ,BK ,( PAQCf IPY ) ,NVIOL(
67 1IPY) ,IPY=1,NPY)
68. 190 FORMAT ( 1H , A3, 3A4 , A3 ,T21 , 14 , 2F5 . 0 ,T35 , 9( F6 . 0 ,14 ) )
7fl! 200 WRITE foUT.210) ( RGNNAMf J ), J = l ,5 ) .BASEYR ,BAGC ,BK ,( PAQCi IPY ) .NVIOLl
210FORMAlH3A4,A3,),.,.,,.,
73 220 READ ( IN, 30 , END-310 ) ( RGNNAMf J ), J = l ,5 ), STRNAM.GRWNAM .BASEYR ,BAQC , B
74 ' IK , ( PROJ YR ( J ) , PAQC ( J ) , J = l . NPY )
ls\ CALL ACURAT(BAQC,BK,P4QC,9)
-------
APPENDIX B - SOURCE PROGRAM LISTINGS DATE 070181
76. DO 230 J=1,NPY
1 77. CALL VIOLA (PAQCfJ),IRBPLL,RBSTD,NVIOL(J),RNDING)
1 78. 230 CONTINUE
79. NRGN=NRGN+1
80. IF (STRNAM.EQ.STRAT.ANO.GRWNAM.EQ.GRWTH) GO TO 150
81. C DIVIDE THE TOTAL PERCENT CHANGE BY NUMBER OF REGIONS TO GET AVERAGE
82. 240 DO 250 IPY=1,NPY
1 83. 250 AVRCHG(IPY)=AVRCHG(IPY)/NRGN
1 8*. C PRINT SUMMARY
85. WRITE (OUT,260) (AVRCHG(IPY),IPY=1,NPY)
86. 260 FORMAT (/1HO,'AVERAGE PERCENT CHANGE',T36,9(5X.F5.0 ))
87. URITE (OUT,270) (NCAS(IPY),IPY=1,NPY )
88. 270 FORMAT (1H ,'NO. OF REGIONS ABOVE STD',T36,9(7X.I3))
89. WRITE (OUT,280) (KVIOLIIPY),IPY=1,NPY)
90. 280 FORMAT (1H ,'TOTAL NO. OF EXCEEDANCES',T36,9<*X,I6 ))
91. WRITE (OUT,290)
92. 290 FORMAT (/////,' *** NOTE: AIR QUALITY CONCENTRATIONS ARE ','ROUNDE
93. ID FOR DISPLAY FOLLOWING EPA GUIDELINES.1,/,1 THUS, COMPARISONS WIT
9*. 2H STANDARDS AND PERCENT CHANGES ARE BASED ON ONE ADDITIONAL SIGNIF
95. 3ICANT FIGURE.')
96. DO 300 IPY=1,NPY
1 97. AVRCHG(IPY)=0.0
1 98. NCAS(IPY)=0
1 99. 300 KVIOL(IPY)=0
100. IF (ISW.EQ.l) GO TO 320
101. GO TO 50
102. 310 ISW=1
103. NRGN=NRGN+1
10*. GO TO 2*0
105. 320 STOP
106. C
107. END
END FTN 212 IBANK 669 DBANK
-------
|X B - SOURCE PROGRAM LISTINGS
KJLLBACK. VIOLA
»07/01/81-12:36(3,I
1. C***********»*******#»-)Ht#-tHf»***»***** **»»*»*»*#*****#*#* *******< »*«»*»*-*
2. C VIOLA -- CALCULATES NUMBER OF VIOLATIONS *
3. C**********»*****#*************************»**»****<******-*******-* ******
4. C
5. SUBROUTINE VIOLA (PAQC.IPOLL.STD,NVIOL,RNOING)
6. REAL** EXCEED,NPERDS
7. INTEGER** NPRDSf*J/8760,1095,365,I/
8. IF (NPRDS(IPOLL).EQ.l) GO TO 20
9. NPERDS=NFRDS(IPOLL)
10. FRACT=2.0/NPERDS
11. CMEAN=-PAQC/ALOG(FRACT)
12. EXCEED=NPERDS*(EXP(-(STD+RNDING)/CMEAN))
13. C REMOVE THE HIGHEST PAQC VALUE
14. NVIOL=IFIX((EXCEED-1.))
15. C IF THE HIGHEST PAQC VALUE DOES NOT EXCEED THE STANDARD, THEN
16. C SIMPLY SET THE NVIOL TO ZERO.
17. IF (NVIOL.LT.O) NVIOL=0
18. 10 RETURN
19. C
20. 20 NVIOL=0
21. IF (PAGC.GE.tSTD+RNDING) ) NVIOL=I
22. GO TO 10
23. C
24. END
(I 58 IBANK 23 D8ANK
-------
. REPORT .\:O~'
EPA-45Q/4-81-Q25
TECHNICAL REPORT DATA
(Please read fnsn-ucnons on tne reverse b-:lore ^omptsnn
2.
l. TITLE AND SUBTITLE
User's Manual - Modified Rollback/EKMA
Strategy Assessment Model
J5 REPORT 2ATE
.. July 1981
6, PERFORMING ORGANIZATION CODE
AUTHOR(S)
Warren P. Freas
8. PERFORMING ORGANIZATION REPORT ND
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Monitoring and Data Analysis Division/AMTB (MD-14)
Research Triangle Park, NC 27711
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Same
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report contains information on, and the computer programs for, the Modified
Rollback/EKMA Strategy Assessment Model. The model can be used to generate emission
inventories in future years for alternative mobile source control strategies and growth
rate scenarios. Ambient concentration estimates can be generated for the pollutants
carbon monoxide (CO), nitrogen dioxide (N02)> and ozone (03). These air quality esti-
mates are obtained using the modified rollback equations of de Nevers and Morris for
CO and annual average N02 and the standard isopleth diagram of the Empirical Kinetic
Modeling Approach (EKMA) for ozone. The model is useful for conducting air quality
assessments of mobile source control strategies which are national in scope.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Croup
Modified Rollback
Mobile sources
Air quality analyses
is. DISTRIBUTION STATEMENI
Release Unlimited
19. SECURITY CLASS T'IU
Unclassified
120 SECUR'TY CLASS r'n.
Unclassified
PREVIOUS EOiTIOM iS
-------
INSTRUCTIONS
1. REPORT NUMBER
Insert the EPA report number as it appears on the cover of the publication.
2. LEAVE BLANK
3. RECIPIENTS ACCESSION NUMBER
Reserved for use by each report recipient.
TITLE AND SUBTITLE
^itle should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smalls
DC or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volurm
mber and include subtitle for the specific title.
5. REPORT DATE
Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of
.W(..-oval, date of preparation, etc.).
6. PERFORMING ORGANIZATION CODE
Leave blank.
7. AUTHOR(S)
Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it ditfers from the performing organ!
zation.
8. PERFORMING ORGANIZATION REPORT NUMBER
Insert if performing organization wishes to assign this number.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.
10. PROGRAM ELEMENT NUMBER
Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
11. CONTRACT/GRANT NUMBER
Insert contract or grant number under which report was prepared.
12. SPONSORING AGENCY NAME AND ADDRESS
Include ZIP code.
13. TYPE OF REPORT AND PERIOD COVERED
Indicate interim final, etc., and if applicable, dates covered.
14. SPONSORING AGENCY CODE
Insert appropriate code.
15. SUPPLEMENTARY NOTES
Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented'at conference of,
To be published in. Supersedes, Supplements, etc.
16. ABSTRACT
Include a brief ^200 words or less) factual summary of the most significant information contained in the report. If the report Contains a
significant bibliography or literature survey, mention it here.
17. KEY WORDS AND DOCUMENT ANALYSIS
(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.
(.b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
ended terms written in descriptor form for those subjects for which no descriptor exists.
(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the ma-
jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will folio*
the primary posting(s).
18. DISTRIBUTION STATEMENT
Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability tc
the public, with address and price.
19. & 20. SECURITY CLASSIFICATION
DO NOT submit classified reports to the National Technical Information service.
21. NUMBER OF PAGES
Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any
22. PRICE
Insert the pnce set by the National Technical Information Service or the Government Printing Office, if known.
EPA Form 2220-1 (Rev. 4-77) (Reverse)
------- |