vvEPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-84-001
April 1984
Air
<.
Emission Factor
Documentation
For AP-42:
Section 3.2.3,
Inboard Powered
Vessels
-------
EPA-450/4-84-001
Emission Factor
Documentation For AP-42:
Section 3.2.3,
Inboard Powered Vessels
By
Engineering Science
Arcadia, California
Contract No. 68-02-3509
EPA Project Officer: William H. Lamason
Prepared For
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office Of Air, Noise And Radiation
Office Of Air Quality Planning And Standards
Research Triangle Park, North Carolina 27711
April 1984
-------
DISCLAIMER
This report has been reviewed by the Office of Air Quality Planning and
Standards/ U.S. Environmental Protection Agency, and approved for publication
as received from Engineering-Science, Inc., Arcadia, California. Approval does
not signify that the contents necessarily reflect the views and policies of the
U.S. Environmental Protection Agency, nor does mention of trade names or com-
mercial products constitute endorsement or recommendation for use. Copies of
this report are available from the Air Management Technology Branch, Monitoring
and Data Analysis Division, Office of Air Quality Planning and Standards, U.S.
Environmental Protection Agency, Research Triangle Park, NC 27711.
ii
-------
TABLE OF CONTENTS
Page
SECTION 1 INTRODUCTION 1-1
SECTION 2 DATA COMPILATION METHODOLOGY:. STEAMSHIPS MOTORSHIPS .. 2-1
2.1 Data Sources . 2-4
SECTION 3 DATA COMPILATION METHODOLOGY: PLEASURE CRAFT 3-1
3.1 Data Sources 3-1
3.2 Emission Factor Calculations 3-2
SECTION 4 SUMMARY 4-1
4.1 Emission Factor Evaluation 4-1
4.2 Conclusion 4-1
SECTION 5 REFERENCES 5-1
APPENDIX A MOTORSHIP AND STEAMSHIP EXAMPLE STATISTICAL A-1
APPENDIX B MOTORSHIP AND STEAMSHIP DATA B-1
B-1. Steam Boiler/Generator Data for AP-42
Table 3.2.3-3 B-2
B-2. Diesel Engine Data for AP-42 Table 3.2.3-4 B-7
B-3. Residual Oil Fired Motorships Data for AP-42
Table 3.2.3-5 B-17
APPENDIX C GASOLINE-POWERED INBOARD PLEASURE CRAFT DATA C-1
APPENDIX D EMISSION DATA SUMMARIES FROM THE REFERENCED DATA
SOURCES D-1
iii
-------
LIST OF TABLES
Table Title
2.1 Emission Factor Selection Criteria
2.1.6-1 Reported Coast Guard Vessel Duty Cycles
2.1.7-1 Engine Specifications
2.1.7-2 Testing Methods and Instrumentation From
Diesel Engine Water-in-Fuel Emulsion Study
2.1.10-1 Summary of Test Equipment and Procedures
2.1.10-2 Summary of Actual Test Conditions
2.1.11 Summary fo Test Procedures
LIST OF FIGURES
Figure Title
2.1.11 Marine Testing System and Oil Tanker
Emission Testing
iv
-------
SECTION 1
INTRODUCTION
The Air Management Technology Branch (AMTB) of the U.S. Environmental
Protection Agency (EPA) has the responsibility for maintaining the document
Compilation of Air Pollutant Emission Factors, AP-42. AP-42 is widely used by
industry and government (including EPA, Department of Defense, and State and
local air pollution control agencies) for developing emission inventories and
emission estimates. It is increasingly used as a tool in a variety of air
quality management applications, including modeling, new source.review and
control strategy development.
It was brought to the attention of EPA that existing factors (January
1975) for steam and motorships were inadequate for newer vessels and that addi-
tional emission data were available on "Inboard Powered Vessels" that warranted
an AP-42 revision. Accordingly, the marine vessel combustion emission factors
provided in AP-42 were revised incorporating recently acquired combustion emis-
sion testing data. This background document provides the methodologies used to
expand the existing emission data base and compile the revised marine vessel
emission factors. The document concludes with the rationale used to assign a
qualitative rating to the emission factors. Raw data summaries are supplied as
Appendices.
1-1
-------
SECTION 2
DATA COMPILATION METHODOLOGY: STEAMSHIPS AND MOTORSHIPS
The data acquisition required a two phase approach. During the first
phase of the effort, literature searches were conducted by both EPA and
Engineering-Science, Inc. (E-S). A search of the National Technical Infor-
mation Service (NTIS) data base was performed by EPA. Concurrently, E-S
searched the Lockheed DIALOG, Information Retrieval Services, Inc. DIALOG has
more than 170 data bases available on the system and contains.in excess of 75
million records or units of information. Using key word indicators to search
each system, potential titles were identified and their abstracts screened.
Technical documents considered relevant were subsequently obtained.
The second phase of the data acquisition effort involved direct contact
between E-S and potential information sources. Governmental sources were the
Maritime Administration within the U. S. Department of Transportation and the
U. S. Navy. Private sector sources contacted were oil company affiliated
research groups, marine surveyors, marine engine manufacturers, select marine
vessel owners and operators, and the American Petroleum Institute (API).
Acquired information was categorized as either operational or emission
related data. Operation factors included: vessel activity modes, traffic,
and classifications necessary to apply the resultant emission factors. (An
expanded discussion of operational practices and modes are presented in the
main text Section 3.2.3.2.) Emission related data consisted of actual combus-
tion emission measurements and corresponding vessel powerplant performance
information. For the data base to be useable, both elements were considered
necessary to express or transform emission results from each data source into
the same units of measurement. Only results of actual emission measurements
were incorporated into the data base.
Criteria pollutant types obtained from the sources presented in this
document include oxides of nitrogen (NOX) expressed as NO2, carbon monoxide
(CO), volatile organic compounds (VOCs), oxides of sulfur (SO) expressed as
Ji
SO2, and total suspended particulate matter (TSP).
Emission results from each data source were reported in terms of concen-
tration and/or by mass. In certain cases, pollutant concentrations were pro-
vided but the exhaust gas flow rate was unknown. Two methods were developed to
estimate an exhaust flow rate in order to convert concentration data to a mass
emission rate.
The first method utilized tabulated combustion data found in Table D6,
Appendix D, of Air Pollution Engineering Manual, AP-40, page 947. 1 This table
quantifies the exhaust gas volume produced when combusting various grades of
fuel oil. The values are expressed in cubic feet of exhaust gas per pound of
fuel oil and are adjusted for combustion with air 40 percent saturated at 60"F
(i.e., less than 1 percent moisture by volume) and were thus considered to
represent dry standard conditions. The exhaust gas flow rate in dry standard
cubic feet per minute is then calculated using the fuel consumption rate,
2-1
-------
percent excess air used during combustion, and the appropriate combustion
volume from Table D6.a
In instances where the excess air or exhaust gas 02 content was unknown or
higher than values listed in Table D6, a second method based on the fuel sulfur
content and exhaust gas SC>2 concentration, was used to calculate the exhaust
gas flow rate. This method assumes that all the sulfur within the fuel is com-
busted to S02 and that no additional sulfur is introduced into the combustion
process. Using these assumptions, the following relationship was derived to
calculate the exhaust gas flow rate (dscfm):
(118,356) (Ib/hr fuel rate) (% S content)
dscfm = 60
ppm SO2
The resultant mass emission rate (in Ib/hr) can thus be calculated from
the pollutant molecular weight, exhaust gas flow rate, and a conversion con-
stant based on the Ideal Gas Law and standard conditions.b
The purpose of the AP-42 emission factor compilation is to provide poten-
tial users assigned the responsibility to generate emission estimates with a
document applicable to data in their presence. Therefore, whenever the data
allow, emission factors should be presented in commonly understood units.
These units should be the most common values expected to be encountered by the
user.
The emission rate data from each source were subsequently converted into
the following identical units for compilation:
diesel engines - grams per liter (pounds per 1000 gallons) of fuel
or, grams per kilowatt (pounds per horsepower) hour
of output.0
steam propelled - grams per liter (pounds per 1000 gallons) of fuel
or, milligrams per kilojoule (pounds per million
BTU) of heat input.c
Evaluation of the SOX measurement data indicated that the measured and
theoretical SOX emissions are essentially equivalent. Therefore, the main text
SOX emission factors were presented in terms of the fuel sulfur content or the
theoretical emission rate.
a The excess air used during combustion may be determined from the exhaust gas
02 content using the relationship defined in Figure 9 of Reference 2.
" Standard conditions are for dry gases at 60°F and one atmosphere. The VOC
molecular weights used in the calculations were based on VOC speciation
results tabulated in Table 1.04-04, 1.04-004, and 2.01-003, of Volatile
Organic Compound (VOC) Species Data Manual, Second Edition EPA-450/4-80-015
(Reference 3). ,
c In many cases emission data were only provided in terms of fuel consumed or in
terms of power. For those cases, the emissions were converted into both units
of measure only if fuel efficiency test data were provided. Data assumptions
were minimized in order for the data base to reflect actual measured values.
2-2 ...:r-
-------
Subsequent to converting all data to similar units, the emission data were
classified according to steamship or motorship, entered into the ES computer,
and arranged in order of decreasing size and load.^
With the data loaded into the E-S computer, the next step involved select-
ing appropriate powerplant size and load ranges necessary for final emission
data groupings and emission factor determination. The range selection criteria
included evaluation of emission data trends and number of test results and
powerplants in a given group. This procedure allows for easy identification of
substantial changes in emission levels and data base gaps. A minimum of four
data points per pollutant (two points for Residual Oil Fired Motorships, Table
3.2.3-5) were required to establish an emission factor for each grouping. If
this was not possible, the emission factor was not developed or the data points
were averaged as part of an adjacent grouping.
Programming the range selections resulted in data base arrangement by
category, calculation of the mean and standard deviation for each category,
and a printout of the complete data population and results for each selection
range.
TABLE 2.1
EMISSION FACTOR SELECTION CRITERIA
Powerplant (or Engine)
Rated
Capacity (HP)
Load
(% Full Power)
Motorship (Distillate or
Diesel Fuel Fired Diesel
Engines)
Motorships (Residual or
Bunker "C" Fuel Fired
Diesel Engines)
Steamships (Residual
Fuel Fired Boilers)
Steamships (Distillate or
Diesel Fuel Fired Boilers)
0-300
300-900
1000-3600
0-5000
5000-10,000
10,000-15,000
15,000-20,000
20,000-30,000
All capacities
All capacities
0-15, 15-45, 50-75, 75-100
0-10, 15-35, 45-75, 75-100
0-25, 35-55, 75-100
100
100
100
60-100
60-100
10-60
75-100+
11, 20-30, 35-60, 95-100
dlt should be noted that the emission rate data on pleasure craft (see
Section 3) were handled separately from the motorship and steamship data.
2-3
-------
The resulting motorship and steamship information was statistically
analyzed for data exclusion using a log normal probability approach. This
approach establishes an acceptability range (expressed as a constant [K] multi-
plied by the population standard deviation) whereby outliers may be excluded.
It is based on selection of an appropriate confidence level (i.e., percent pro-
bability that valid data will not be excluded) and use of Table A-2 in Reference
4. A confidence level of 90% was selected for the data sets.
The "final" population (i.e., minus the outliers) was subsequently
averaged again to produce the tabulated emission factors.
See Document Appendix A for an example statistical calculation and Append-
ix B for motorship and steamship data population results. The steamship emis-
sion factors in terms of pounds per MM BTU were in some cases calculated using
fuel heating values of 150,000 BTU/gal for residual oil and 140,000 BTU/gal
gal for distillate oil.
2.1 DATA SOURCES
The following sections describe the individual emission data sources and
present sample calculations used to compile the expanded motorship and steam-
ship data base. Sections 2.1.1 through 2.1.8 present the diesel engine sources
while Sections 2.1.9 through 2.1.14 present the steam boiler and generator
sources.
In order to calculate the steamship emissions in terms of fuel consumption
and heat input, it was assumed that the thermal conversion efficiency is con-
stant over load for a given steam boiler or generator. For ease in presenta-
tion of data and methodologies, all sample calculations were performed in the
reported English units.
The referenced data sources provided organic emission data in terms of
total hydrocarbons (i.e., total VOC) only. Therefore, the document entitled
Volatile Organic Compound (VOC) Species Data Manual, Second Edition, EPA-450/
4-80-015 was used to estimate the methane and nonmethane portion of the total
compiled VOC.^ This document provided volume and weight prcentages associated
with each organic constituent produced during residual and distillate fuel oil
combustion. It was also used to establish a carbon composite molecular weight
necessary to calculate mass emissions from measured concentration.
In each case, the total VOC emissions were compiled prior to computation
of the methane/nonmethane fraction. The following organic parameters were
assigned to calculate mass emissions and compile the emission factors:
1) Distillate fuel fired boiler: molecular weight per carbon atom
= 19.320 g/g-mole, 100% nonmethane VOC
2) Residual fuel fired boiler: molecular weight per carbon atom
= 20.556 g/g-mole, 11% methane VOC
3) Distillate (Diesel) fuel fired reciprocating engine (also
assumed for residual fuel fired reciprocating engine): molecular
weight per carbon atom = 14.012 g/g-mole, 11.6% methane VOC
2-4
-------
Particulate size data were not provided by the data sources. Therefore,
the revised Section 3.2.3 in AP-42 references generic size specific particulate
information compiled in other AP-42 sections.^
Following compilation of the information, each data source was assigned
a quality rating. Criteria for assignment are defined on page 33 of the AP-42
preparation document.6 A complete data summary for each data source is provided
in Appendix D.
2.1.1 Caterpillar Tractor Company
Caterpillar supplied combustion emission data on select industrial diesel
engines which may be considered representative of marine diesel engine applica-
tions. Fuel consumption and emission rate data (VOC, NO , SO^, CO, and parti-
culate) were provided in units of gallons/hour and grams/hour respectively, at
rating (full load), thus allowing a direct calculation to convert the emission
rate to pounds per 1000 gallons and grams/HP/hr. The diesel engines in the
data set range in size from 90 - 900 HP.
2.1.1.1 Testing Methods
The data used in this effort from Caterpillar were the result of certi-
fication runs performed on actual industrial engines. Test methods for each
pollutant were:
VOC - measured using a heated FID (Horiba or Beckman) calibrated with
propane. Calculations used carbon balance technique as described in
40 CFR 86 Subpart D
CO - NDIR (Horiba)
NOX - NDIR (Horiba) plus converter
Dry particulate matter - Opacity meter and a correlation curve from smoke
to particulate matter
2.1.1.2 Sample Calculation
A sample calculation demonstrating the direct conversion of the emission
rate from reported units to desired emission factor units is provided below.
Given: One 850 HP engine at full load consumes 45.7 gallons/hr of #2
diesel fuel
VOC emissions = 60 g/hour
60 g/hr = 0.07 g VOC/HP/hr
850 HP
60 g/hr = 0.13 Ib VOC/hr
453.6 g/lb
2-5
-------
0.13 Ib VOC/hr = 2.84 Ib VOC/lOl gal at 850 HP (100% load)
45.7 gal/hr
2.1.1.3 Data Source Rating
The industrial diesel engine emission data were gathered Using approved
EPA methodologies for engine emissions certification. However, documentation
of tests was limited with most support information provided via telecommuni-
cations. Therefore, the data were assigned a B rating.
2.1.2 Colt Industries, Fairbanks-Morse Engine Division
Fairbanks-Morse provided exhaust emission data in terms of grams/HP/hr at
full load on three marine diesel engine classifications, a four stroke 520 RPM
650 HP/ cylinder engine class, a two stroke 900 RPM 320 HP/cylinder engine
class, and a two stroke 900 RPM 180 HP/ cylinder engine class.8 The VOC, NOX,
CO, S02, and particulate emission rates provided were reported to be applicable
to all size engines within the specified engine classification.
2.1.2.1 Data Source Rating
The methodology used to test the Fairbanks-Morse diesel engine class was
essentially consistent with EPA methodology. However, because the emission
results were averages over the entire engine classification and not verifiable
from the information obtained, a C rating was assigned.
Since C rated data may not be compiled with B rated data, the Fairbanks-
Morse information was excluded from the data base. 6
2.1.3 American MAN Data
There are two sets of data provided by American MAN (manufacturer of large
diesel engines). One data set was submitted to Scott Environmental Technology
as part of the Appendix to their emission study of California Coastal Waters .^
This set provided VOC, NO, NOX, CO, S02, and particulate emission data in terms
of kg/KW/hr for two, four stroke and two, two stroke engine classifications at
100%, 85%, and/or 60% of full power.
The second set of data was provided by a representative of American
NOX, VOC, and CO exhaust gas concentrations (in ppm) were provided at maximum
load for five engine classifications in current production. These data apply
as in the case of Fairbanks-Morse to several engine sizes within each classifi
cation. Using the same arguments as in the Fairbanks-Morse case, the provided
emission rates were applied to each engine type in the class.
2.1.3.1 Testing Methods
The American MAN diesel engine emission data measurements were performed
at the manufacturing plant in Germany. Company contacts in the U. S. were
unable to obtain information on test methodology and instrumentation without a
formal request to German personnel. This process is expected to be too time
consuming for this project effort. Emission data provided by the other engine
2-6
-------
manufacturers have basically been consistent with EPA mobile source testing
methodology. Since American MAN performance test results are compared to U. S.
manufacturers, it appears reasonable that the testing instrumentation (engine
dynamometer, gaseous analyzers, etc.) are consistent with the U. S. standards.
2.1.3.2 Sample Calculations
Mass emission rates from each currently produced engine were calculated
from exhaust gas mass emissions (in kg/KW/hr) provided at full load for each
engine classification and a measured exhaust gas emission concentration (in
kg/m3) from a 14,770 rated HP engine provided in the American MAN supplement
to the Scott Environmental Technology study. Per discussions with American
MAN personnel, it was assumed that measured concentrations would be represent-
ative of the exhaust gas concentrations from these currently produced engines.
American MAN also provided the fuel consumption data for projected oper-
ation (propulsion) data in terms of g/KW/hr necessary to calculate emission
data in lb/103 gallons or kg/103 liters. American MAN diesel engine burners
have the capability of being fired with #6 fuel oil or #2 diesel fuel.
Scott Environmental Technology American MAN Input;
Engine Classification KSZ 70/125B
(2065 HP/cylinder sizes, four to ten cylinder engines)
Given: at 100% load CO emissions = 2.28 g CO/KW-hr
2.16% S heavy fuel oil #6
Example: four cylinder engine = 2065 x 4 = 8260 HP engine (rated
capacity)
2.28 g/KW-hr CO = 1.67 g CO/HP-hr
1.361 HP/KW
NOTE: Fuel consumption values not provided in this case, therefore
lb/103 gal emission factor not calculated
American MAN Current Production Data
Conversion from ppm to g/hr/cylinder:
Assume the 1.2937 kg/m3 (at 0°C and 1 atm. dry) exhaust gas density
from a 14,770 HP engine (Scott Environmental Technology) applies to
the other currently produced diesel engines.
Convert to standard conditions (i.e., 60°F and 1 atm)
1.2937 kg/m3 ,492°R. = 1.2240 kg/m3
520»R
kg/KW/hr (exhaust gas quantity) x rated KW/cylinder
(1.2240 kg/m3 @ 60°F dry)
2-7
-------
x 35.31 ft3/m3 x 1 hr/60 min
= 3.445841 x 1O~5 (kg/KW/hr exhaust mass emissions)(rated KW/cyl)
= dscfm/cyl
measured concentration (ppm) x MW x dsfm x 1.58 x 10"' x 453.6 g/lb
cyl
= g/hr/cylinder (where 1.58 x 10"' = ideal gas constant)
Example: Engine classification 20/27 (100 KW/cylinder for 4 to 9,
12, 14, 16, and 18 cylinder engines)
Given: 120 ppm (actual VOC emissions), 7.4 kg/KW/hr exhaust gas
and 212 g/KW/hr fuel consumption at 100% load
120 ppm VOC x 14.012 MW x 7.4 kg/KW/hr x 100 KW/cyl
x 3.445841 x 10-5 g VOC/hr/cylinder = 42.88 g VOC/hr/cylinder
(Molecular weight assumed for heavy fuel oil reciprocating engine
combustion, Reference 3)
The emission rate per cylinder applies to each size engine within the
engine classification.
Therefore a four cylinder engine (100 KW/cyl x 1.3613 HP/KWa> x 4
cylinders = 545 rated HP engine) at full (100%) load would have the
following VOC emission rate:
42.88 g/hr/cylinder x 4 cylinder = 0.31 g VOC/HP/hr
545 HP
212 g/KW/hr fuel rate x 1 KW = 155.7 g/HP/hr fuel rate
1.3613 HP*
Using a fuel oil #6 density of 8.1 Ib/gal
155.7 g/HP/hr x 1 g x 1 gallon
453.6 Ib 8.1 Ib fuel
= 0.0424 gal/HP-hr fuel rate
0.31 g VOC/HP-hr x 1 Ib x 1000 = 16.1 lb/103 gal VOC emissions
0.0424 gal/HP/hr 453.6 g
2.1.3.3 Data Source Rating
Due to limited documentation of testing and analytical procedures, a
rating of C was applied to the American MAN data base.
a^ This conversion factor is based on specific metric hp and kw engine
designations by American MAN sales brochures.
2-8
-------
2.1.4 Cummins Engine Company
The Cummins Engine Company, a manufacturer of marine diesel engines,
provided EPA certification data (i.e., emission rates in g/HP/hr and diesel #2
fuel consumption rates in Ib/hr) for a series of automotive engine models.^
While the data were for automotive tests , the information was reported to be
applicable to marine engines.
Total hydrocarbon, NOx, and CO data were provided for 6 engine models at
2, 25, 50, 75, and 100% of full rated power. Emissions in terms of fuel con-
sumption were calculated using a diesel #2 density value of 7.12 Ib/gal.
2.1.4.1 Testing Methods
The Cummins engines were tested for EPA certification in 13 different
modes and 13 different load cycles. Test procedures and analytical techniques
are as follows:
VOC - measured with a FID (Scott) calibrated with propane. Values
were expressed as carbon using the carbon balance calculation
procedures presented in 40 CFR 86, Subpart D.
NOX - measured using NDIR (Horiba)
CO - measured using NDIR (Horiba)
2.1.4.2 Sample Calculation
Engine model VT-225
Rated HP = 225
Given: NC^ at 75% power = 7.10 g/HP/hr NOx
Fuel consumption rate = 70.5 Ib/hr at 75% power
_ 70.5 IbAr _ => 0.0587 gal/HP-hr
(225 HP) (0.75) (7. 12 Ib/gal diesel #2 density)
7.10 g/HP/hr x 1 Ib x 1000 gal = 266.7 lb/103 gal (NO^)
0.0587 gal/HP-hr 453.6 g 10-1 gal
2.1.4.3 Data Source Rating
The diesel engine emission results supplied by Cummins were taken from
current EPA certification tests of automotive diesel engines. While the tests
were reported to follow standard procedures, the necessary information to
verify the results was unavailable. Therefore, the data were assigned a B
rating .
2.1.5 Detroit Diesel, Allison Division of General Motors
Detroit Diesel , a manufacturer of diesel engines for marine propulsion and
electrical generation, provided emission testing data for several electrical
generation and propulsion units.^
2-9
-------
Data applicable to the existing data base consisted of NO and CO emission
test results from six engine types. Emissions in terms of fuel consumption
were calculated using a #2 diesel density value of 7.02 Ib/gal supplied by the
manufacturer.
2.1.5.1 Testing Methods
The Detroit Diesel engines were tested using methodology in alignment with
the Federal Register. Modal testing was performed on engine dynamometers util-
izing non-dispersive infrared continuous analyzers.
2.1.5.2 Sample Calculation
Engine #12V-149T1 at 1900 RPM
Rated HP = 1150, Fuel Consumption = 0.397 Ib/HP-hr
Given CO emissions at 100% load (or power) = 6397 g/hr
6397 g/hr = 5.563 g/HP-hr CO
1150 HP
5.563 g/HP-hr CO x 7.02 Ib/gal fuel density
0.397 Ib/HP-hr (fuel consumption)
x 1 Ib x 1000 gal = 216.9 lb/103 gal CO
453.6 g 103 gal
2.1;5.3 Data Source Rating
The diesel engine emission results supplied by Detroit Diesel were taken
from engine dynamometer modal testing of marine engine and generator set appli-
cations. While the tests were reported to follow procedures consistent with EPA
methodology, complete data verification was not possible utilizing the supplied
data. Therefore, the data were assigned a B rating.
2.1.6 Emission Testing of U.S. Coast Guard Cutters
Scott Research Laboratories, Plumsteadville, PA, conducted emissions tests
at various loads on Coast Guard Cutter power plants, and auxiliary generators
and boilers.^ A total of 14 vessels were tested, 13 were propelled with diesel
powered engines and one was propelled with fuel oil fired boilers and steam
turbines. This section will discuss the 13 diesel engines. The loads were
presented in terms of mode of activity (i.e., cruise, idle, full, 2/3, or slow)
and/or in some cases, in terms of horsepower output. For entries where only
activity modes were presented, assumptions were made as to the percent of rated
horsepower per activity mode. These assumptions were based primarily on Table
2.1.6-1 extracted from a U. S. Coast Guard abatement program report. Emis-
sions are presented in terms of lb/1000 pounds of fuel and, in some cases, in
terms of Ib/hour. The steamship testing was excluded from the data base
because load percentages during testing was unknown.
2-10
-------
2.1.6.1 Testing Methods
The testing instrumentation and methodology used by Scott are described
below:
Particulate matter - EPA Method 5
VOC (Total) - Heated FID (Scott Model 215)
NO and N02 - Chemiluminescence (Scott Model 125) analyzer and
thermal normal converter
CO - NDIR analyzer (Beckman 315)
TABLE 2.1.6-1
REPORTED COAST GUARD VESSEL DUTY CYCLESa
Type of Vessels
I WHEC, WMEC, WAGE
II WPB 95
III WLB, WPB 82
IV WHEC 327
Mode
Slow
2/3
Cruise
Full
Slow
Cruise
Idle
2/3
Cruise
Idle
Cruise
Bull
Horsepower ( % )
15
25
55
79
32
72
3
22
60
Boiler
aReference 14.
2.1.6.2 Sample Calculation
Vessel: USCGC Chase Class WMEC
Given: Main diesel engine #1 rated at 3600 HP during cruise mode CO
emissions = 5.04 lb/1000 pound Navy distillate fuel or 3.87 Ib
CO/hr
5.04 lb/103 Ib fuel x 7.12 Ib/gal (assumed distillate fuel density) =
35.88 Ib CO/101 gal
2-11
-------
Cruise mode represents 55% of full power from Reference 15
= 3600 HP x 0.55 = 1980 HP output
3.87 Ib/hr x 453.6 g/lb = 0.89 g (CO)/HP/hr
1980 HP output
2.1.6.3 Data Source Rating
The thirteen diesel engine powered Coast Guard Cutters were tested follow-
ing EPA methodology. The field data sheets and calculation procedures were
provided to document test results. Therefore/ the data source was assigned an
A rating.
2.1.7 U. S. Department of Transportation Exhaust Emission Estimates from Water
in Fuel Emulsions
A study prepared for the U. S. Department of Transportation evaluated the
impact on emissions of increased water in fuel emulsions.16 Serving as a refer-
ence point in each evaluation was a measurement of zero percent water in fuel.
These zero water tests were included in the emission factor data base.
2.1.7.1 Test Methods
A series of water in fuel tests were conducted on a Cummins four stroke
engine and a Detroit Diesel two stroke unit by Southwest Research Institute.
Descriptions of the two engines are presented in Table 2.1.7-1.
The engines were installed in a test cell and connected to an engine dynamo-
meter. The emission tests were conducted using the continuous monitoring
systems and methods presented in Table 2.1.7-2. A total of 13 zero percent
water emission tests respectively were performed on the Cummins and Detroit
Diesel engines.
TABLE 2.1.7-1
ENGINE SPECIFICATIONS FOR
DIESEL ENGINE WATER IN FUEL EMULSION STUDYa
Cummins Engine Company, Inc.
General Motors Corporation
Detroit Diesel Allison Division
Model: VTA-1710-C800 (VT12-900M)
Type: Four Stroke Cycle
Bore and Stroke: 5.5 x 6
No. of Cylinders: 12
Displacement: 1710 cubic inches
Rated Horsepower: 800 at prop shaft
Rated Speed: 2300 RPM
Model: 12V-149TI (16V-149TI)
Type: Two Stroke Cycle
Bore and Stroke: 5.75 x 5.75
No. of Cylinders: 12 (16)
Displacement: 1788 cubic inches
Rated Horsepower: 900 (1200)
Rated Speed: 1800 RPM
aReference 16.
2-12
-------
2.1.7.2 Sample Calculation
Information provided as a result of the test program included:
1. fuel density
2. test run number
3. brake horsepower during test
4. fuel flow (Ib/hr)
5. mass emission rates for total hydrocarbons, carbon monoxide,
oxides of nitrogen (NOX)(presented as both g/hr and g/bhp/hr)
Data for g/hr were converted to lb/10^ gal by the following two step
calculation:
Step 1 - conversion of fuel consumption from Ib/hr to 103 gal/hr
(Ib/hr) = gal/hr
(Ib/gal density)
gal/hr x 1Q3 gal = 103 gal/hr
1000 gal
Step 2 - conversion of g/hr to lb/103 gal
Ib/hr = lb/103 gal
103 gal/hr
Test Application
Given: Test Run #171
436 HP output
182 Ib/hr diesel fuel flow
7.12 Ib/gal assumed #2 diesel density
0.28 g/HP/hr total hydrocarbon emissions
182 Ib/hr diesel = 0.026 x 103 gal/hr
(7.12 lb/gal)(103)
0.28 g VOC/HP/hr x 436 HP = 122 g VOC/hr
122 g/hr = 10.3 Ib VOC/lOl gal
(454 g/lb)(0.026 x 103 gal/hr)
2-13
-------
TABLE 2.1.7-2
TESTING METHODS AND INSTRUMENTATION FOR DIESEL ENGINE
WATER IN FUEL EMULSION STUDYa
Emission
Carbon Monoxide
(S/N AIA-23)
Carbon Monoxide
(S/N 15395)
Oxides of Nitrogen
(S/N LOAR-9691-110 )
Hydrocarbons13
(S/N 10010)
Oxygen
(S/N 271001)
Detection
Method
NDIR
NDIR
CL
FID
Polaro-
graphic
Instrument
Horiba OPE-15
Horiba OPE-15
TECO 10
Beckman 402
Beckman
OM-11EA
Range
1
2
3
1
2
3
1
2
3
1
2
3
1
2
Nominal
Concentration
0-1000 ppm CO
0-3000 ppm CO
0-6000 ppm CO
0-16% C02
0-6% C02
0-2% C02
0-250 ppm
0-1000 ppm
0-2500 ppm
0-500 ppm C
0-1000 ppm C
0-5000 ppm C
0-25% 02
0-5% O2
aReference 16.
bHydrocarbon analyzer calibrated with propane.
calculation was 1.8 to 1.
2.1.7.3 Data Source Rating
H/C ratio in mass emission
The two diesel engines used in the fuel emulsion study were tested
according to methods consistent with EPA continuous analyzer methodology. The
referenced document thoroughly discusses the emission calculation and analyzer
calibration procedure. Based on testing methodology and documentation, a
rating of A was assigned to these data.
2.1.8 U.S. Coast Guard Pollution Abatement Program:
the Emissions Testing of Boat Diesel Engines
A Preliminary-Report on
Data were taken from the mass emission rate summaries of a report prepared
by the Transportation Systems Center.^ Reported information taken from the
table included the engine horsepower at the time of the test and the emission
rates for oxides of nitrogen and total hydrocarbons reported as grams per
brake horsepower per hour (g/bhp/hr). Data were reported for tests performed
on four different engines/ each rated at 200 HP. Since the rated engine size
2-14
-------
was known, engine horsepowers at specific test conditions were converted
to percent of load. A total of 26 emission data points for a 200 HP diesel
engine operating at a variety of load conditions was entered into the data
base.
2.1.8.1 Test Methods
The emission tests were conducted on three General Motors (GMC-71) and a
Cummins (VT-330) diesel engines. Tests were conducted using an engine dynamo-
meter as a function of engine load. The GM engines were rebuilt prior to
testing while the Cummins engine was in a used condition.
Each engine was tested in six operating modes ranging from idle (600 rpm,
zero bhp) to full rated capacity (2,000 rpm, 185 bhp). Two test runs were
conducted at each engine load for a total of 12 test runs per engine. The
following continuous monitoring systems were used to perform these emission
tests.
Pollutant Continuous Testing Method
Carbon Monoxide and Nondispersive infrared
Carbon Dioxide
Total Hydrocarbons Total hydrocarbon analyzer
(carbon balance technique used
to calculate VOC mass emission
rate)
Oxides of Nitrogen Chemiluminescence
Oxygen Paramagnetic
Smoke Ringelmann chart and opacity
meter
Each continuous analyzer was zeroed and calibrated both before and after
each test run.
Reported in the summary of information but not included in the evaluation
was mass emission rates for the same pollutants in units of pounds per hour.
The data source did not adequately report fuel consumption during tests so no
calculation was made of corresponding pounds of pollutant per unit fuel usage.
2.1.8.2 Data Source Rating
The diesel engine emission data were obtained from engine dynamometer
tests consistent with EPA mobile testing methodology. However, only minimal
documentation of tests data was available. Therefore, a B rating was assigned
to this data source.
2-15
-------
2.1.9 Nitrogen Oxide Monitoring on a British Petroleum Tanker
Scott Environmental Technology conducted NOX emission testing during cargo
offloading of a British Petroleum tanker.^ The tanker was equipped with two
oil fired main boilers which supply steam to power the cargo unload operation.
The maximum steam production rate and steam heat rate output from each boiler
is 6395.8 kg (141,000 Ib) per hour of steam and 102.2 x 109 J (96.9 x 106 BTU)
per hour respectively.
2.1.9.1 Test Methods
Emission tests were conducted on the starboard boiler using a Scott Model
125 chemiluminescent nitrogen oxide analyzer. The analyzer was connected to
the sample point by a 30.5 m (100 ft) temperature controlled, teflon sampling
line. The temperature was regulated to 383°K (230°F) to maintain the sample
above the moisture dew point through the entire sampling system up to the NOX
converter. At the converter a valve assembly provided the option of running
the sample through the converter to convert N(>2 to NO giving total NOX or
bypassing the converter to measure only NO (N02 by difference). Emission data
were averaged on a time weighted basis and tabulated hourly and, in some cases,
every half hour over a cargo unloading period of 27 hours. Emissions were
recorded in terms of ppm and Ib/bbl of fuel.
2.1.9.2 Sample Calculations
The following two step calculation procedures demonstrates the technique
used to arrive at NOX emission rates.
1. Boiler Heat Input Calculation
Given: Fuel Oil heat content by analysis: 18,450 BTU/lb Boiler
Boiler thermal efficiency: 70% (reported in reference)
Maximum boiler heat output: 96.9 x 106 BTU/hr
(96.9 x 106 BTU/hr heat output max. ^
70% thermal efficiency
= 138.5 x 106 BTU/hr Maximum Heat Input per Boiler
2. N0y Emission Calculation
Given: Total Fuel Rate = 89 bbl/2 hr,
NOX emission = 3.01 Ib NOx/bbl
(3.01 Ib N0x/bbl) x ( 1 bbl) x (1000 gal) = 71.67 Ib NOX/103 gal
(42 gal)
2-16
-------
18,450 BTU/lb (heating value) x 8.1 Ib/gal (assumed fuel oil #6
density from Reference 7) x 1000 gal/106 BTU = 149.445 x 106
BTU/103 gal
71.67 lb/103 gal = 0.48 Ib N0y/106 BTU
149.445 x 10° BTU/10J gal
2.1.9.3 Data source Rating
The British Petroleum data were derived by EPA approved testing methodol-
ogies, including Method 7 validation runs. Raw NOX data were also provided in
the form of strip charts with calibration curves. As a result, these data were
assigned on A rating.
2.1.10 Stack Gas Analysis of Steamship Boiler Propulsion Plant
CE-Power Systems of Windsor, CT, conducted shipboard emission tests of a
two boiler propulsion unit rated at 23,863 KW (32,000 hp). The port boiler
rated at 156 x 109 J (148 million BTU) per hour was tested over a five day
period.^ During the testing, the boiler was fired on No. 6 fuel oil at various
loads (percentages of full power) and excess air levels.
2.1.10.1 Test Methods
A summary of test equipment and procedures are presented in Table 2.1.10-1.
Actual test conditions are presented in Table 2.1.10-2. Test results of all
pollutants were recorded measured in actual ppm and ppm corrected to 3 percent
°2*
2.1.10.2 Sample Calculations
To calculate the pollutant mass emission rate in Ib/hr from the ppm
calculation, the excess air calculation method (See Section 2) was employed.
Given: 10/27/76 test date
Boiler load 109%
Excess air 17%
Average fuel oil heating value = 18,445 BTU/lb
CO concentration = 5 ppm actual
Boiler rated (at 100% load) = 148 x 106 BTU/hr
148 x 106 BTU/hr x 1.09 = 161 x 106 BTU/hr heat input @ 109% load
161.32 x 106 BTU/hr = 8746 Ib/hr fuel rate
18,445 BTU/lb
8746 Ib/hr fuel = 145.8 Ib/min fuel rate
60
2-17
-------
TABLE 2.1.10-1
SUMMARY OF TEST EQUIPMENT AND PROCEDURES FOR A
32000 HP STEAM PROPULSION PLANT3
Measured
Quantity
Description of Test Equipment
Method Employed
CO
NO..
A
SO2
so3
H20
Teledyne O2 Analyzer
Ecolyzer CO Analyzer
Dynasciences NOX Analyzer
Scott Gas Sampling Train
Scott Gas Sampling Train
Scott Gas Sampling Train
Electrochemical Cell
Electrochemical Cell
Electrochemical Cell
EPA Method 6b
EPA Method 8b
EPA Method 4b
aReference 2.
bCode of Federal Regulations, Title 40, Chapter 1, Part 60.
TABLE 2.1.10-2
SUMMARY OF ACTUAL TEST CONDITIONS FOR A 32000 HP STEAM PROPULSION PLANTa
Test
Condition
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Actual Boiler
Load at Full
Power
11
(In Port)
27
29
44
46
44
79
78
95
95
94
94
111
110
109
Actual
Excess
Air %
192
40
98
17
24
33
10
16
5
9
16
22
5
9
17
Sample
Numbers*!
8,9,10,11,12
40,41,42
43,44,45
38,39
34,35,37
36
28,29,30
31,32,33
13,14,15
5,6,7
1,2,3,4
16 , 17 , 18
25,26,27
22,23,24
19,20,21
Test Date
10/26/76
10/29/76
10/29/76
10/29/76
10/29/76
10/29/76
10/28/76
10/29/76
10/27/76
10/25/76
10/25/76
10/27/76
10/28/76
10/28/76
10/27/76
aReference 2.
*>45 total samples.
2-18
-------
5 ppm CO x 28 MW x 216.2 dscf/lb
(Table D6 of AP-40 interpolated for 17% excess air and # 6 fuel oil)
x 1.58 x 10~7 (ideal gas law constant) x 145.8 Ib/min (fuel rate)
= 0.697 Ib CO/hr or 316.2 g CO/hr
8746 Ib/hr fuel rate
8.1 Ib/gal (assumed fuel density from Reference 20)
= 1079.75 gal/hr fuel rate
0.697 Ib CO/hr x 1000 = 0.646 Ib CO/lOl gal
1079.75 gal/hr fuel
0.697 Ib CO/hr = 0.004 Ib CO/IOJ. BTU
161.32 x 106 BTU/hr
2.1.10.3 Data Source Rating
The marine boiler used in the reliability study followed methodologies
consistent with EPA procedures. However, complete data validation was not
possible due to limited documentation in the reference. The information source
was therefore assigned a rating of B.
2.1.11 Scott Environmental Technology Oil Tanker Testing
Scott Environmental Technology conducted NOX, CO, SO2, and total hydrocar-
bon emission tests on boilers from three tanker steam powerplants during cargo
offloading.^ in addition, one of these vessels (ARCO Sag River) was testing at
various operating modes while in transit from Long Beach to San Francisco, CA.
2.1.11.1 Test Methods
Both the cargo offloading and intransit tests were performed using con-
tinuous analyzers for NOX, CO and total VOC, along with EPA Method 8 testing
for S02 and 1^304. Test procedures utilized are presented in Table 2.1.11.
Figure 2.1.11 illustrates the instrumentation system used to analyze the
gathered sample. No. 6 fuel consumption and 02 content measurements were taken
during the testing period.
2.1.11.2 Sample Calculations
To calculate emissions in terms of lb/103 gal or lb/106 BTU required use
of one of the methods discussed in Section 2. The sulfur content method was
used if the boiler excess air was higher than 100% while the method utilizing
Table D6 of AP-40 was used if the excess air was less than 100%.
2-19
-------
TABLE 2.1.11
SUMMARY OF TEST PROCEDURES OIL TANKER EMISSION TESTINGa
Gas Constituent
Test Procedure
S02 and
NO and
CO
Hydrocarbons
Oxygen
C02
EPA Method 8
Philco-Ford Chemiluminescent
continuous analyzer
Ecolyzer Electrochemical
continuous analyzer
Scott Heated Flame lonization
continuous analyzer
Beckman Polarographic
continuous analyzer
Orsat
aReference 9.
In transit testing of Arco Sag River Tanker
Given: 18000 HP steam turbine (2 boilers)
Transition mode (harbor to sea lane)
6.6% 0~f 4% excess air, 227.5 ppm NOv at 59.9% load
4* X
Two boiler Propulsion unit, 106.8 tons No. 6 fuel oil/day rated capacity
15.71 bbl/hr (660 gal/hr) fuel consumption rate at 59.9% load
8.1 Ib/gal, 18408 BTU/lb (No. 6 fuel oil density and heating value
Reference 20)
Rated capacity of boiler in terms of BTU:
106.8 T/day fuel x 2000 Ib/T x 1 day/24 hours
= 8900 Ib/hr fuel rated capacity
18408 BTU/lb (heating value) x 8900 Ib/hr fuel
= 163.83 x 10^ BTU/hr rated capacity propulsion unit
Calculation of NO,, mass emission rate
-7
227.5 ppm NOX x 46 MW (NOX as NO2) x 1.58 x 10~' (ideal gas constant)
x 268.3 dscf (No. 6 fuel oil at 44% excess air, Table D6, AP-40)
1b fuel
2-20
-------
FIGURE 2.1.11. MARINE TESTING SYSTEM AND OIL TANKER EMISSION TESTING3
aReference 9.
2-21
-------
x 660 gal/hr fuel
x 8.1 Ib/gal fuel density x 1 hr/60 min = 39.53 Ib NOx/hr
39.53 Ib NO^/hr = 0.403 lb/NOx 106 BTU
163.83 x 10b BTU/hr rated capacity x (0.599 load)
39.53 Ib NO^/hr x 1000 = 59.9 Ib NOX/103 gal
660 gal/hr fuel
2.1.11.3 Data Source Rating
A review of submitted information indicated that the oil tanker boilers
were sampled utilizing essentially EPA approved methodology. However, a B
rating was assigned to this data source due to the lack of complete trace-
bility.
2.1.12 Land Based Naval OLG-9 Steam Generator Testing
Emissions testing of a land based DLG-9 (naval destroyer) steam generator
was conducted by three Naval laboratories within the Naval Ship Research and
Development Center. NOX' S02 and particulate emissions were tested using
electrochemical type continuous analyzers in addition to EPA wet chemistry.
Particulate emissions were also measured using EPA wet chemistry. Tests were
conducted while the steam generator fired Navy Distillate (ND) or Navy Special
Fuel Oil (NSFO) at full power, 35% load (simulating maneuvering or harboring),
and 11% load (simulating hoteling). Results were tabulated in terms of Ib
pollutant per million BTU.
2.1.12.1 Test Methods
Selection of site and preparation of DLG-9 were performed according to EPA
Method 1. Site location was approximately eight equivalent diameters beyond
any major disturbance, such as a bend, flange, etc. This location was selected
to ensure a stable flow pattern. A prototype air pollution monitoring system
for source emissions was assembled for use in obtaining the shipboard air pol-
lutant emission measurements. Elements of the prototype system included flow
meters and a heated sample line maintained at 394°K (250°F). Test procedures
included EPA wet chemistry Method 6 for SO2 and EPA Method 7 for NOX.
2.1.12.2 Sample Calculations
The following calculations present the methodology used to estimate
emission factors from this data base using both Navy Distillate and Special
Fuel Oil.
specific test run where a pollutant was measured simultaneously using both
testing methods presented above, the resultant emissions were averaged and
allocated as a single entry to the data base.
2-22
-------
1. Generator firing Navy Distillate Fuel
Given: Rated power 257 x 106 BTU/hr
0.29 Ib NOx/106 BTU @ 100% load (full power) Navy Distillate
heating value = 19,300 BTU/lb
7.12 Ib/gal (assumed distillate or #2 diesel fuel density)
19,300 BTU/lb x 7.12 Ib/gal x 1000 gal = 137.74 x 106 BTU
1 x 106 BTU 1000 gallons
0.29 Ib NOV 106 BTU x 137.74 x 106 BTU/103 gal = 39.9 Ib NO^IO3 gal
X ^m-~^—^^—
2. Generator Firing Navy Special Fuel Oil
Given: Rated power = 249 x 106 BTU/hr
Emissions = 0.6103 Ib TSP/106 BTU @ 11% load
NSFO heating value = 18,700 BTU/lb
Assumed NSFO or fuel oil #6 density (Reference 20)
=8.1 Ib/gal
18,700 BTU/lb x 8.1 Ib/gal x 1000 gal = 151.47 x 106 BTU
1 x 106 BTU 1000 gallons
0.6103 Ib TSP/106 BTU x 151.47 x 106 BTU = 92.4 Ib TSP/103 gal
1000 gallons
2.1.12.3 Data Source Rating
The land based naval steam generator was tested using methods consistent
with EPA continuous analyzer and wet chemistry methodologies. However, the
reported results in pounds of pollutant per million BTU were not completely
verifiable from the reference document and thus a B rating was assigned.
2.1.13 Naval Shipboard Testing of the USS Kawishiwi, USS Juneau, USS Forrest
Sherman, and USS L.Y. Spear
Shipboard emission tests were conducted on the Navy distillate fired steam
propulsion boilers on these vessels.19,22-23 ^^e juneau an
-------
b. USS Forrest Sherman
Particulate matter - Method 5 for one hour
Total VOC - heated probe to FID, results reported as ppm carbon
S02/ NOX, CO - "continuous gas analyzers" of unknown type
c. USS L.Y. Spear
Particulate matter - EPA Method 5
SO2 ~ Pulse fluorescence detector
NOX - Chemiluminescence
VOC (total) - heated FID, values reported as ppm methane
CO and C02 - NDIR
2.1.13.2 Sample Calculation
For cases where only ppm values were tabulated, the corresponding mass
emission rates were determined using the fuel sulfur content method presented
in Section 2.
Given: Emissions = 40 ppm S02 and 20 ppm NOjj @ 20% load (hoteling)
Navy Distillate heating value = 19,300 BTU/lb (Reference 21
Navy Distillate sulfur content = 1.02% sulfur
Fuel burning rate = 26.9 x 106 BTU/hr @ 20% load
Assumed Navy Distillate density = 7.12 Ib/gal
Exhaust gas volume at 60°F, dry, 1 atm
= , 118,356 . x , 26.9 x 106 Btu/hr» x .1.02% S fuel>
60 min/hr 19,300 BTU/lb 40 ppm SO2
= 70,109 dscfm exhaust volume @ 20% load
20 ppm NOx x 46 (MW NO2 ) x 70,109 dscfm
x 1.58 x 10"7 (ideal gas constant) = 10.19 Ib N
_ 10.19 Ib N0x/hr _ = 0.38 Ib NO^/106 BTU
26.9 x 106 BTU/hr at 20% load
19,300 BTU/lb fuel heating value x 7.12 Ib/gal fuel density x 1000
1 x 106
= 137.42 106 BTU /1000 gals'
0.38 lb/105 BTU x 137.42 106 Btu = 52.2 Ib NO]C/103 gal
1000 gal
2-24
-------
2.1.13.3 Data Source Rating
The use of Method 5 for particulate matter sampling and the various
continuous analyzers for the gaseous pollutants are consistent with EPA method-
logies. However, the information provided was insufficient to allow for valid-
ation of test results. Therefore, all the data were given a B rating.
2.1.14 Shoreside Boiler Demonstration of Fuel Water Emulsions
Particulate and oxides of nitrogen (NO-) emissions were measured during a
series of onshore tests of marine boilers.24 The purpose of the tests were to
determine the effect of different water-to-fuel emulsions on engine performance
and subsequent emissions. To serve as a base reference in the test program, a
series of tests were performed using oil with no water. These tests of 0%
water in were considered appropriate for use in the emission factor data base.
Operational information and fuel characteristics were taken from ASME test
forms presented in report document Appendix E. See Appendix D of this document
for data summaries. Items included:
••Calculated total heat input (106 BTU/hr)
0Percent of load
"Fuel consumption (Ib/hr) and density (specific gravity)
Emission rates were taken from Appendix H (of the source report), Summary
Tables of Emission Test Results. Table values were presented in units of
lb/106 BTU. Conversion of this value to Ib/lO^ gal is achieved as follows:
Step 1 - (lb/106 BTU)(106 BTU/hr) = Ib/hr emissions
Step 2 - (sp. gr.)(8.33 Ib/gal water) = Ib/gal fuel
steP 3 * Ib/hr fuel = 1000 gai/hr fuel
1000 Ib/gal fuel
steP 4 ~ Ib/hr emission = lb emissions/1000 gal fuel
1000 gal/hr fuel
2.1.14.1 Test Methods
Tests were conducted using the following sampling procedures:
Particulate matter - EPA Methods 1 through 5
Oxides of Nitrogen - continuous monitoring using a Monitor Labs Model
8430 NO,, Chemiluminescent analyzer
X
2.1.14.2 Sample Calculations
Given: 13.15 x 106 BTU/hr heat input to boiler
711.4 Ib/hr fuel rate
36.8% load
0.201 lb/106 BTU NOX
0.9567 specific gravity
2-25
-------
Emissions = 0.201 Ib NO^IO6 BTU x 13.15 x 106 BTU/hr
. = 2.64 Ib NOX hr
Fuel Density = (0.9567)(8.33 Ib/gal water) =7.97 Ib/gal fuel
711.4 Ib/hr fuel = 0.089 x 103 gal/hr fuel rate
(1000)(7.97 Ib/gal fuel)
2.64 Ib NO^/hr = 29.6 Ib NO^/103 gal
0.089 x 10J gal/hr
2.1.14.3 Data Source Rating
The Shoreside boiler tests were performed using EPA Referenced procedures
as a guideline. However, a B rating was assigned because the reference did
not contain enough field data to sufficiently document test results.
2-26
-------
SECTION 3
DATA COMPILATION METHODOLOGY: 'PLEASURE CRAFT
Essentially two data sources were utilized to provide the emission data
base for gasoline powered pleasure craft. 25,26 rphe
-------
mass emissions in g/hr were taken from Table 3 (both tables located in the
referenced document). Horsepower settings were.then converted to percent of
load based on the rated engine size. These tables are presented in Appendix
D.
As with the previous set/ the emissions measured from the combustion of
gasoline in the four engines were converted from g/hr to g/HP/hr by dividing
the mass emission rate by the horsepower setting measured during the test.
Fuel consumption figures were reported in the appropriate document appendix
in Ib/hr. Conversion to lb/103 gal based on fuel density of 6.17 Ib/gal was
achieved similarly to the previous data source discussion.
Step 2 - Ib/hr fuel = 103 gal/hr fuel
(6.17 lb/gal)(1000)
Ib/hr pollutant = lb pollutant/103 gal fuel
103 gal/hr fuel
Emission testing of these outboard engines are consistent with testing
procedures and instrumentation approved by EPA. It is difficult to trace
the mass emission rates presented in the reference document for purposes of
verification. Therefore, a B rating was assigned.
3.1.2 U.S. Coast Guard Pollution Abatement Program, Two Stroke Cycle Outboard
Engine Emissions
Data were utilized from a study prepared by the Transportation Systems
Center, Cambridge, MA.^6 Emissions were reported for total VOC oxides of
nitrogen, and carbon monoxide. The total VOC were converted to mass quantities
using the carbon balance technique. The procedure used was consistent with the
equation presented in 40 CFR 86, Subpart D.
Emission values are reported in engine modes for each of the five engines
tested. Translation from modes to engine performance was accomplished in Table
2, while emissions are taken taken from Table 7 (both located in the referenced
document). Three measurements in grams per hour (g/hr) were reported for each
test: (1) mass emissions, (2) emissions retained in water, (3) emissions
vented to air. Results indicated a high variation in emissions scavaged in
water due to engine design. Therefore, total mass emissions were utilized for
the data base. Values were for outboard engines burning gasoline. It was
assumed that inboard engines would be of similar size and design and exhibit
similar emission characteristics.
The conversion of g/hr to grams per horsepower hour (g/HP/hr) was achieved
by dividing the mass rate by the horsepower achieved during that particular
test. Fuel consumption was provided for only one test series (1962 Mercury, 70
HP rated). Gram per hour emissions for this data set were converted to pounds
per thousand gallons of fuel in the following 2 steps.
Step 1 - g/hr = Ib/hr
454 g/lb
Step 2 - Ib/hr = lb/103 gal
(gal/hr)(1000)
3-2
-------
Estimates for emission losses in water were obtained from Table 8 of the
reference and are included in Appendix D. Losses in water as a percent of
total mass emissions varied significantly. Averaged values over all modes
ranged from 14.3 percent (carbon monoxide from the 1959 Johnson, rated at 50
HP) to 58 percent (total hydrocarbons from the 1964 Mercury, rated at 65 HP).
While individual engine averages varied considerably, in general carbon mon-
oxide losses in water were the lowest with total hydrocarbons the highest, and
oxides of nitrogen ranging between the two.
Continuous analyzer testing consistent with EPA referenced methodology was
performed on the outboard engines. Although the carbon balance technique used
to calculate mass emissions was thoroughly discussed in the document, data
traceability was difficult and thus a B rating was assigned.
3.2 EMISSION FACTOR CALCULATIONS
The data from the two sources indicated distinct trends in emissions based
on percent of load. Therefore, it was decided that engine grouping would be
based not on size, but on load condition. Data availability made the groupings
somewhat different for g/HP/hr and lb/103 gal factors. Values are presented in
the emission factor summary tables in Appendix C. Assembled values were aver-
aged to arrive at final emission factors for each percent of load. Composite
emission factors presented in Table 3.2.3-7 (GasolinePowered Inboard Pleasure
Craft) of the main text were derived"on a time weighted average basis using the
following time in modes (or loads):25
1. In idle 12% of time;
2. Less than 10% full load 29% of time;
3. 10-50% full load 12% of time;
4. 50-90% full load 41% of time; and
5. 100% full load 6% of time.
3-3
-------
SECTION 4
SUMMARY
4.1 EMISSION FACTOR EVALUATION
Each data source for steamships, motorships, and pleasure craft provided
emission testing data using testing methodologies consistent with EPA method-
ology, however, complete data validation in most cases was not possible.
Distillate (diesel) powered motorship emission factors were grouped and
compiled from A and B rated data in such a way as to minimize the population
variability. Therefore, an overall rating of C was assigned to these factors.
Residual powered motorship emission factors were developed from C rated data
and may not represent a random sample from the industry. In this case, an
overall rating of D was assigned.
Due to the small number of data sources (all A and B rated) used to
compile the steamship emission factors, an overall rating of C was assigned.
Gasoline powered inboard pleasure craft emission factors were developed
from B rated data covering a wider industry sampling than the previous AP-42
revision. In addition, distinct trends appeared within the load ranges
selected for inboard pleasure craft emission factor compilation. However, the
assumption that inboard and outboard engine emissions are similar is tenious,
and an overall rating of D was thus assigned to these factors.
4.2 CONCLUSION
The revision to Section 3.2.3 of AP-42 provides emission factors based on
an expanded data base more representative of the overall industry. Power plant
size and load ranges selected for factor compilation along with vessel classi-
fication tables (Tables 3.2.3-1 and 3.2.3-2 of the main text) provide the user
with a tool for effective emission factor application.
Table 3.2.3-4 (Residual Fuel Fired Motorship Emission Factors) of the main
report is considered the most significant addition to this AP-42 section, in
that it supplies the user with emission data on large diesel engines (>2680 KW,
3600 HP) not previously developed.
4-1
-------
SECTION 5
REFERENCES
1. Air Pollution Engineering Manual, Second Edition, AP-42 U. S.
Environmental Protection Agency, Research Triangle Park, NC, May 1973.
Out of Print.
2. Improved Marine Boiler Reliability Phase II, Volume IV; Stack Gas Analysis,
Contract No. MA-6-38088, C-E Power Systems, Windsor, CT, February 1977.
3. Volatile Organic Compound (VOC) Species Data Manual, Second Edition.
EPA-450/4-80-015, U. S. Environmental Protection Agency, Research Triangle
Park, NC, July 1980. Out of Print.
4. M. G. Natrella, Experimental Statistics, NBS Handbook 91, National Bureau
of Standards, U. S. Department of Commerce, Washington, DC, October 1966.
5. Compilation of Preliminary Particle Size Emission Factor Data Base,
EPA-450/4-82-016, U. S. Environmental Protection Agency, Office of Air
Quality Planning and Standards, Research Triangle Park, NC, November 1982.
6. Technical Procedures for Developing AP-42 Emission Factors and Preparing
AP-42 Sections, Office of Air Quality Planning and Standards, U. S.
Environmental Protection Agency, Research Triangle Park, NC, April 1980.
7. Diesel engine combustion emission data for marine applications, Cater-
piller Tractor Company, Peoria, IL, January 1983.
8. Diesel engine combustion emission data for marine applications, Colt
Industries, Fairbanks-Morse Engine Division, Beloit, WI, February 1983.
9. W. C. Kelly, et al., Inventory of Emissions from Marine Operations within
California Coastal Waters, Contract No. ARB-A6-208-30, Scott Environmental
Technology, San Bernardino, CA, June 1981.
10. Marine diesel engine combustion emission data, American M. A. N.
Corporation, San Francisco, CA, March 1983.
11. Diesel engine combustion emission data for marine applications, Cummins
Engine Company, Inc., Columbus, IN, March 1983.
12. Diesel engine combustion emission data for marine diesel engines and gen-
erator sets, Detroit Diesel Allison Division of General Motors, Romulus,
MI, March 1983.
13. A. F. Souza, A Study of Emissions from Coast Guard Cutters, Contract No.
DOT-TSC-429, Scott Research Laboratories, Inc., Plumsteadville, PA,
February 1973.
14. R. A. Walter, United States Coast Guard Pollution Abatement Program;
Cutter Estimated Exhaust Emissions, Report No. DOT-TSC-USGC, U. S.
Department of Transportation, Cambridge, MA, September 1975.
5-1
-------
15. Consideration of Approval of a Draft Report to the Legislature on the
Control of Visible Emissions from Ships with Steam Boilers, Acurex
Corporation, Moutain View, CA, May 1982.
16. C. W. Coon, Multi-cylinder Diesel Engine Tests with Unstabilized Water
Fuel Emulsion, Southwest Research Inc., San Antonio, TX, June 1981.
17. R. A. Walter, United States Coast Guard Pollution Abatement Program; A
Preliminary Report on the Emissions Testing of Boat Diesel Engines, Report
No. DOT-TSC-USCG-73-2, U. S. Department of Transportation, Cambridge, MA,
November 1973.
18. Nitrogen Oxide Monitoring on an Oil Tanker, Scott Environmental Technology,
Inc., Plumsteadville, PA, April 1977.
19. Overall review of Studies of Air Pollution from Naval Ship Propulsion
Systems, USS L. Y. Spear Pollution Data, U. S. Department of the Navy,
Bethesda, MD, April 1977.
20. Worldwide Analysis of Marine Bunker C Fuel Oils, Maritime Administration,
U. S. Department of Transportation, Washington, DC, December 1980.
21. B. L. Wallace, Evaluation of Developed Methodology for Shipboard Steam
Generator Systems, Report No. 28-463, U. S. Department of the Navy,
Annapolis, MD, March 1973.
22. A. L. Waldron, Sampling of Emission Products from Ships' Boiler Stacks,
Report No. 28-169, U. S. Department of the Navy, Annapolis, MD, April
1972.
23. B. L. Wallace, Pollution Monitoring of a 1200 PSI Shipboard Steam
Generator, Report No. DTNSRDC/SME-81/15, U. S. Department of the Navy,
Bethesda, MD, August 1981.
24. R. W. Cass, et al., Shoreside Boiler Demonstration of Fuel-Water Emulsions,
Seaworthy Engine Systems, Inc., Essex, CT, August 1982.
25. C. T. Hare and K. J. Springer, Exhaust Emissions from Uncontrolled
Vehicles and Related Equipment Using Internal Combustion Engines, Contract
No. EHS 70-108, Southwest Research Institute, San Antonio, TX, October
1972 and January 1973.
26. U. S. Coast Guard Pollution Abatement Program, Two-stroke Cycle Outboard
Engine Emissions, U. S. Department of Transportation Cambridge, MA,
September 1975.
27. Draft 1979 Emissions Inventory, South Coast Air Basin, South Coast Air
Quality Management District, El Monte, CA, July 1981.
28. Marine Engineering, Society of Naval Architects and Marine Engineers, New
York, NY, 1973.
5-2
-------
APPENDIX A
MOTORSHIP AND STEAMSHIP EXAMPLE STATISTICAL ANALYSIS
A-l
-------
APPENDIX A
Sample Statistical Calculation for Motorships
Given: Diesel engines at 0-300 HP rated capacity and 0-15% load
There are 16 VOC data entries in lb/103 gal for this selection
criteria
Avg. Value = 310.30 Ib VOC/103 gal
Std. Dev. = 316.37 lb/103 gal
Confidence level selected was 90% (i.e./ 10% risk of excluding
valid THC data) and a is therefore equal to 0.10
(1 - a)1/n = p (inpUt to Table A-2)
where n = the number of data points
(1 - 0.1)1/16 _ 0.9934 = P
In Table A-2 (Reference 27) Zp is the multiplier [K]
Using this table and interpolating, Zp (or K) = 2.50
The acceptability range is equal to the Avg. Value +_ K Std. Dev. or 310.30
Ib VOC/103 gal +_ (2.50) (316.37 Ib VOC/103 gal) = 310.3 ;f 790.93 lb/103
gal for a range of 0 to 1101 Ib VOC/103 gal
All data entries outside this range would be excluded prior to
reaveraging. The data base had a VOC entry of 1312.2 lb/103 gal which was
therefore excluded. The subsequent data population consisting of 15 data
points was reaveraged which resulted in a VOC emission factor of 243.50
lb/103 gal.
The identical procedures were used for steamships.
A-2
-------
APPENDIX B
MOTORSHIP AND STEAMSHIP DATA
Note: 1. Diesel or distillate fuel is represented on the computer
printouts as ND or D, where ND = Navy Distillate fuel, and D
= distillate fuel from other than naval sources. Residual or
No. 6 fuel oil is represented by F06 or "neat" where "neat"
refers to residual fuel with 0% water added during a water in
fuel emulsion study.
2. -9.00 means there is no data entry in that position.
3. Load is in percent.
B-l
-------
B-1. Steam Boiler/Generator Data for AP-42
Section Table 3.2.3-3
Methane-nonmethane fractions taken from
Reference 3, Table 1-01-004 for Residual Oil
and Reference 3, Table 1-01-004 for Distillate Oil
B-2
-------
*** STEAM SUTLERS **»
RANGE t-
MMBTU/HR 0.00- 400,00
LOAD 10.00- 60.00
RATED LOAD LB POLLUTANT/10«*3 GAL
CAPACITY (%)
MMSTU/HH
36.00
36.00
36.00
36,00
36.00
36.00
. 36,00
36. OU
36.00
36.00
3*. 00
36.00
36.00
63.70
1 38.4D
1 38.40
138.40
13°. 40
13^.40
13 ".40
14.,•> 0
31,40
39.80
39.90
31 ,40
40,40
32.80
_.4_0,40_.
32.80
36.80
35.40
39.10
35.40
36.60
26.70
49.60
49j6o
34.00
30.60
34.00
34.no
30.60
29,00
44.00
44.00
46.00
44.00
29.00
27.no
148.00 46.00
14?. 00 46.00
14?. 00 29.00
14°. 00
1 «<; . no
1*3. «3
163. S3
163.83
lt>3,83
16?. S3
1*3.83
24°. nn
749.00
249.00
249.00
249.00
757.00
341 .80
AVG 132.68
STD 75.47
V.
I
27.00
11 .00
28.90
41.70
54.80
59,90
48.60
26.70
1 1.00
35.00
10,00
10,00
10.00
35.00
48.60
34.86,
— 3/*-
11. "Si
Cw*vt
•sit*, vj&fc. i_»>irr5 ft*
l-ol-oo^-
f \ N^OC-
-9.00
-9.00
_r9.P.P_
-9.00
-9.00
-9..00
-9.00
-9,00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.PP
-9.PO
-9.00
-9. OP
-9,00
-9.00
-9.00
-9, OP
-9.00
-9.00
-9jOO
-9.PP
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-9.00
•^9~!oO~
44.30
-9.00
12.83
J.f
11.29
{0
LR POLLUIANT/MHBTU
VOC
-9.00
-9.
-9.
-9.
-9.
-9.
-.9..
-9.
-9.
-9.
-9.
-9.
_...-9_.
0.
-9.
-9,
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9,
-9.
0.
0.
0.
0,
0.
0.
-9,
-9.
-9.
•9.
-9.
-9.
0.
3 1 '
'la 7^.
8
OU
00
00
CO
-9,PO
-9.00
-9.00
-9.00
PO -9.PP
00 -9.00
.PO -9..PP
00 -9.00
00 -9.00
00 -9.00
00
00
00
03
00
OP
00
00
00
00
00
OU
00
00
00
00
oo
oo
00
oo
Oo
Oo
01
00
02
Ol/
00
00
oo
OU
00
00
00
oo
0*
acflg*
01
01
«B»H
-9.00
-9.00
~o'oo ~
-9.00
-9. OP
-9.00
-9.00
-9.00
-9.00
•9.00
-9.00
-9. OP
0.01
-9.00
0.01
-9.00
-9.00
0.01
C.OO
-9.00
-9.00
0.01
•9.00
0.06
0.51
0^.10
0.01
0.00
-9jOO
-9.00
-9.00
-9,00
-9.00
-9.00
0,00
to. 060*
O.ns
O.oiL
0.14
NOX
.0.18
0.16
0.15
_P,17
0.16
0.15
_ruj5
0.14
0.20
0.16
0.19
0^60
0.26
0.12
0.1P
0.09
. 0.11
0.07
0.24
0^.24
0.29
0.26
0..28
P. 26
0.24
0_.21
0.29
0.28
P. 24
0.27
0.27
OjlO
0.3P
0.39
0.40
0.30
P. 60
-9,00
0.52
0.39
-9.00
0.26
-9.00
0..30
0.24
o. 16
0.12
PART
0.05
P.P3
0.05
0.05
O.P3
0.08
0*07~~
-9.00
O.OH
-9.00
-9.00
.__-9.0P ._
-9.00
-9,00
-9.PO
-9.00
-9, OP
-9..00
-9.PP
-9.00
-9.00
-9.00
-9.00
-9.. 00
-9. OP
-9.PP
-9. OP
-9.00
-9.00
-9.00
-9.00
-9.00
-9. OP
-9.PO
-9.PP
-9,00
-9.00
-9.00
-9.00
-9. OP
-9.00
-9. OP
-9.00
0.29
-9.00
O.oBOf.
0.09
O.OB. 7
0,07
to
FUEL Utrtr.c'jce.
TYPE *
NEATx
NEAT \
NEAT \
NEAT \
NEAT i,
JtEAI y* ...
NEAT /
NEAT /
NEAT /
NEAT /
NEAT/
NEAT. ..
F06N\
F06 \ ._
F06 ~|7
F06 /
F06 /
F06 /
F06'
F06 X.
F06 X.
FQ6 ;,
roe r
F06 /
F06 /
F06 /
F06 /
F06 /
F06/
F06.
F06 ^»«^^
F06 T
F06 /
F06 /
FU6/
F06"^\
F06 IP
F06 /
F06 /
F06 ^
l
5- O."03"7
-------
LOAD
..75,00-. 115,00
RATED
:APACITT
LOAD
LB POLLUTANT/10»»3 CAL
IB POLLUTANT/KMBTU
TTfPE.
KHSTU/HR
VOC
CO
.*OX .PART....-
VOC
-CO
NOX
PART
36.00
36.00
36.00
36.00
36,00
36.00
36,00
36.00
36.00
36,00
36,00
36.00
138.40
138.40
138.40
138.40
136.40
138.40
- 136.40
138.40
138.40
138.40
138.40
138.40
- - 138.40
138.40
138.40
138.40
138,40
138.40
138.40
13R.40
136.40
138.40
138.40
138.40
138.40
13R.40
138,40
138.40
148,00
146.00
146.00
148.00
148.00
148.00
148.00
148.00
148.00
148.00
148.00
148.00
.1-148.00
148.00
148.00
148.00
14?. 00
146.00
146.00
148.00
148.00
148.00
148.00
148.00
148.00
146,00
148.00
148.00
163. 63
163.63
163. S3
163.83
163.83
249.00
249.00
257.00
108,10
95,60
97,80
95.60
99.40
94,80
110.90
108,10
110,90
97.80
94,80
99»40
83.30
100.90
85.00
86.00
89.00
87,40
100.20
83.30
100.20
84,30
99,40
86,40
. 85.00
99.40
100,20
P9.00
86.00
87.40
84,30
98.00
86,40
100,90
83.30
100.90
86.00
100.90
98,00
83.30
111.00
109,00
95.00
94.00
109.00
95.00
111.00
95.00
94.00
79,00
111.00
79.00
-. -7.9.^9 0_
7«.00
110.00
94,00
109.00
95,00
95.00
78.00
94.00
110.00
94.00
95.00
94.00
78.00
110.00
94.00
89.60
100.00
91 .50
105.80
102.60
100.00
100.00
100,00
- -9.00
-9.00
-9,00
-9.00
... .9.00
-9,00
-i.OJL_
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-.9.00
• 9.00
•9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00 1
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
•9,, 00
-9.00
-9,00
-9.00
-9.00
-9jOO
-9.00
-9,00
-9,00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
. -9.00 ,
-9.00
-9.00
-_r9,_p_0_
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
_-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
9.58
0.11
0.26
0.07
0.14
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9,00
— 9,00
-9,00
-9,00_
•9.00
• 9.00
-9.00
- -9,00
-9,00
•9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-9,00
.-9,00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9,00
-9,00
-9.00
-9,00
0.65
40.74
1.92
0.65
36.80
-9,00
40.74
t.«2
. 17.04_
219.84
4.87
_?9_.00 .
-9.00
1.21
-9.00
0.65
36.80
36.80
-9.00
1,92
4.83
-9.00
40.74
-9.00
-9.00
4.83
1.92
9.61
46,05
10.29
37.90
21.46
-9.00
-9,00
-9.00
. 30.30
35.60
30,60
34.20
29.00
" 28.00
3.4.. JO
29.90
34,30
27.00
35.10
•26.00
57.60
75.00
37.90
56.40
51.20
50.50
60,70
58.30
47.90
50.50
61.00
59.50
17.40
63.80
14.50
49.80
46.70
58.80
52.40
37.90
70,00
76.40
34.80
71.70
34,30
79.30
-9.00
30.50
41.97
59.21
44.51
52.09
59.21
44.51
41.97
44.51
52.09
_ 39.44 .
41.97
39,44
. 39.44
4S.07
52.60
59.19
59.21
44.51
44.51
45.07
52.09
52.60
59.19
44.51
59.19
45.07
52.60
.52,09
60.37
58.07
56.92
60.50
62.70
92.40
95.40
-9.00
_.- 7. SO
20.00
16.20
17T70
7.01
-9,00
10,50
6.33
9.22
14,90
'20.50
• 6.98
--9. Op
-9,00
-9.00
-9.00.
•9.00
•9.00
_-9-.0.0_
•9,00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
• 9.00
•9.00
-9.00
-9.00
•9.00
•9,00
-9.00
•9.00
43.60
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
•9,00
-9.00
_ -9.00
-9.00
-9.00
-9.00
-9.00 "
-9.00
-9.00
-9.00
•9.00
-9.00
"9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9, OP
-9,00
-9,00
• 9.00
-9.00
-9.00
-9.00
-9,00
-9,00
• ..V-1.00
•9,00
-9,00
-9^00
- - -<), CO
:- -9,00
•-9.00
•9,00
•9,00
•9.M
•-.'•: -9,00
"" -9,50
. : «s.oo_
-9,00
•9,00
•9.0$_
-9,00
.-9.00
•- -9.04.
•9,00
-9,00
-9-P8_
-9,00
-9,00
. .-9.00
-9,00
•9,00
-9jOO
-9,00
-9,00
-9.00
-9.00
-9,00
-9,00
-9,00
•9.00
-9.00
-9,00
-9,00
-9,00
-9,00
-9,00
-9.00
-9,00
•9,00
-9^0
' -9.00
-9.00
-9.00
.-9-OU
-9.00
-9.00
•9.1**
--9.00
-9,00
-9,00
-9,00
-9,00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9,00
-9.00
0.06
. 0.00
0.00
0.00
0.00
-9.00
-9.00
-9.00
-9,OD
-9.00
•9.00
-9,00
- -9,00 •
-9.00
.Q ,00
-9.00
-9.00
-Q.OO
•- -9,00
-9,00
-9,00
-9.00
•9.00
•9.00
•-9. 00
-9.00
-9,00
-9.00
-9,00
-9,00
•9,00
-9,00 .
- —9-00
-9,00
•9.00
-9,00
--9. 00
-9,00
-9.00
-9,00
-9,00
-9.00
-9,00
-9,00
-9.00
-9.00
-9.00
-9.00
1,60
0.00
0.27
0.01
0,00
0.75
1,60
0.27 .-
o.ot
D.li. -,.
1,60
0,03
n.OS-
•9.00
0.01
-9.00
0.00
0.25
0,25
-9.00
0.01
0.03
-V.OU
0.27
-9.00
-9.00
0.03
0,01
0.06
0.31
0,69
0.25
0.14
•9.00
-9,00
-9.00
; o_.2-i '
0.24
0.21
D_,23
0,20
0,19
O.Jl
0.20
0.23
0, 1 8
0,24
-0.19
0.39
0.50
0.25
0,36
0.34
0,34
0.41
0.39
0.32
0,34
0.4}
0.40
-0.12
0.43
0.10
0,33
0.31
0.39
•0_,35
0.25
0.47
0.51
0.23
0.48
0.23
0.53
-9,00
0,20
0,28
0.40
0.30
0.35
0.40
Oj30
0.28
«»JO
0^15
0.26
0.28
0.26
0.26
O.Jl
O.JS
0.40
0.40
0.30
0,30
0.31
0.35
OJS
0.40
0.30
0,40
0.31
0.35
0.35
0.41
0,39
0,38
0.41
0.42
0.61
0.63
-9.00
• "0-05 NC»1V
0.14 NEAT\
0.11 NEAT \
0,15 NC4T \
--. 0.05 NEAT \ -
-9.00 NEAT i«
0,07 NE»T r:
0.04 NEAT /
0.06 NEAT /
0,10 N1TAT /
0,14 NEAT/
0.05 NEAT7
-9,00 F06,
-9.00 F06\
-9.00 F06 \
-9,00 F06 \
•9.00 roe \
-9.00 F06 \
-e,oo FOR \
-9,00 F06 \
-9,00 F06 \7
-9,00 FU* *'
-9,00 F06 /
-9.00 F06 /
•-.9,00 FOS . /
-9.00 F06 /
•9.00 F06 /
-9.00 FOR /
-9.00 F06 /
-9,00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
•9.00 F06 /
-9.00 F06 /
-9,0p F06 /
•9.00 F06/
0.29 F06/
-9.00 F06'
-9.00 F06,
•9,00 F06\
-9.00 F06 \
-9.00 F06 \
-9.00 F06 \
-9.00 F06 \
-9.00 F06 \
— $.00 - f06 \
-«,oo roe \
-9.00 F06 _\
-9.00 F06 \
-9,00 -F06 \
. -9.00 .F06 \
-9.00 roe \
-9.00 roe \
-9.00 F06 f.
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9.00 F06 /
-9,00 F06 /
-9.00 F06 /
•9.00 F06 /
-9.00 F06/
-9,00 FDS'
-9.00 F06^
-9.00 F06 ^\
-9.00 F06 \v
-9.00 F06 JJ
-9.00 F06 ^^
-9.00 TOt,^
-9.00 F06 20
-9.00 F06 20
AVG 131.91
STD 46. S7
••>•*
* Co*
**/
£•/•
95.34. 2. 03]-. 25.84 49.13
*J*- , Jr 3.' s.l
9.4(/ "1.77 43.75 15.25
5" Z4 -M-
trtte ftc*-. •SX.fcv. u**. ^aitO £.***
S-^Jt. O.T.I. «•* FK=>~-.
X- o.e*6 o.Z.1,
14.99 , 0.01 0.30
'•83/.V * <5. '3
10.01-""-1 PJU2 0.48
!«.«••>
JAiwJ £V»CT»C. AiVWn.wfa /*
Rt*5, r i-o\-oo^
0.33
0. 14
0.10
74
v— *7
0.10
0,34 1
0.07
|2_
41A'_ oil..
tyforu *> ex0*5 °-°^ •
v/frf-r n.n<3C> £, 0.00 5Z
-------
RANGE t-
MMBTU/HR
LOAD
»»» STEAM BOILERS *»»
0.00-
11.00-
400.00
11.00
RATED
CAPACITY
HMBTU/HR
257.00
251 ftO
257.00
257.00
257.00
257.00
257.00
257 .00_
AVC 257.00
STO 0.00
K i
LOAD
(%)
U.oo
11 .00 -
11.00
11.00
11,00
11,00
11.00
—ll.flO
11.00
Lb
..HOC -
-9.00
• 9,00-
-9.00
-9.00
-9.00 .
-9,00
-9.00
«9.00--.
-9,00
-9.00
Q
Lb POLLUTANT/10**3 GAL
CO - -«OX .. PART
•9,00 -9.00
.9.00 24.70-
•9,00 -9.00
•9,00
p9,00
•9,00
•9.00
-9.00
22.00..
•9.00
20.60
•-9.00 22,OQ_
•9,00 22.33
•9.00
16.40
_.9.00 —
158.30
273.90
. -9.00.-
71.10
-9.00
._*$.. 00
129.93
97*. 32
LB PQLLUTANT/HMBTU
VOC .CO - "OX
•9.00
-9.00
- "9-.00 .9,00
-9.00
-9.00
_p9.00 ..
•9.00
•9,00
-9, QO
-9.00
•"> —
• 9.00
o
•9.00
-9.00
-9.00
•9.00
•9.00
• Q on
-9.00
•9.00
O
-9.00
-0 . 1 8 -
-9.00
-9.00
. 0,16
•9.00
0.15
Q _ ^ t
0.16
O.OJ
*\
- - PAR1
0.12
— •9.00
1.15
1.99
• 9.00
0.52
• 9.00
-"9.00
L(cl*
0.94
0^71
-T-
FUEL et/^eieoc.6
TYPE *
I
ND\
,_.ND N^. .
ND ^\
ND 20
ND- / ......
ND /
NO /
ND'
/<
RANGE I-
MMBTU/HR
LOAD
*«« STEAM BOILEHS »»*
" on_
0.00-
20.00-
400.00
30.00
RATED LOAD
CAPACITY (%)
HMBTU/HR .
139.40 20.00
— 145.70 27,00-
145.70 27.00
197.66 20,00
197.66 20.00
197.66 26.00
197,66 20.00
- -19 7.. 66 24 ,.0 0
LB POLLUTANT/10**3 GAL
_..VOC -
CO
NOX .- PART
LB POLLUTANT/NNBTU
VOC — -CO • *UX
FUEL
TYPE
PART
'9.00
9.00-
9.00
2.07
1.45
0.62
1.03
1,03-
-9.00
15.30—
-9,00
5.56
— 4.17
0.62
16.70
2»3J
•9,00
i.40
12.60
34.70
34.70 -
29.20
33.30
32.00
8.98
9.08
6.98
5.00
3,89
5.42
2.22
5.56
AVC 177.39 23«'f0
STD 26.23 3.27
'9.
•9.
'9.
0.
0.
'9.
0.
.°*
00
00—
00
01
01-
00
01
01 -
•9
- 0
•9
0
. 0
0
0
_ 0
.00
.11
.00
.04
.03
.00
.12
.02
•9
0
0
0
- 0
0
0
o
.00
.06
.09
.25
.25
.21
.24
.23
0.07
0,06-
0.05
0.04
• 0.03
0.04
0.02
0 ,-04
ND
ND
ND
ND>
Ni)
ND
ND
..ND--
1.24 -7-.-S2- 26.41
0.15" 0.13 "3^-
0.49 6.19 10.27
5.89
2.22
a
Pu»—T. t-ol-
*-. 3 .
.0.01
0-0°3
0.00
O.OS
o.o I',
O.OS
f>
0.19 0.042+
...o o«'2 o.o /g :
0.07 0.01
„._! 8.
2\
IB
/B
35.
-------
RANGE I-
MKBTU/HR
LOAD
»*» STEAK BOILEKS *»*
OIV
0.00-
35,00-
400,00 .
60,00
RATED LOAD
CAPACITY (%)
MMdlU/HR- -.
IB POLLUTANT/10*»3 GAL
VOC CO WUX PART
LH PULLUTANT/MMBTU
VUC- . —CO f
FUEL
TXPE
PAST
110.
| 145.
! 257,
. 257.
257.
257.
257.
AYG— ..215,
STD 59.
n%
00 SO.
40 40,
70 57,
00 35,
00 35.
00 35,
00 35,
£4 35.
00 35.
23 J9.
75 7.
00
00
00
00
00 _ -
00
00
04
00
63
73
-9.00 -9,00
.9.00 -9,00
-9.00 3,53
-9.00 -9,00
•9.00 .-59.00
-9,00 -9,00
-9.00 -9.00
.0,00 -9 nO
-9.00 -9,00
<>.<*S
.9.00 3.5i
- J/l f
-9.00 ' 0,00
o \
•9,00
.9.00
3,50
22.00
- 21.30
-9.00
28.90
-9,00
26,10
20.36
6.87
5"
51,40
6,73.
4.B9
-9.00
— »9.00
18.90
•9.00
«9.oa
-9.00
iO.48
18.65
-T
-9,00
•0,00—
•9.00
•9.00
-9)00
•9,00
«9,flO—
•9,00
.9.06
-9,00
O
-9,00
—•9,00-
0,03
•9,00
.- .5,00-
•9.00
•9,00
-.9^00-
•9,00
0.»5.? .
0.03 -
1
-9,00
-6 Oi)
0.25
0.16
- 0.16---
-9,00
0,21
-9,00
0.19
0.19 —
0.0 9S.
0,03
5"
0.37
— 0,05-
0.04
-9.00
• 9. 00-.
0.14
•9,00
•9.00
—0.15-
0.0 fe
0,13
•4
Nu 21
im *i
NO |&
• NO •• ^SS"'s's-
NO ^%_
NO *°
ND -*1 —
5"
«»« STEAM BOILERS »»*
RANGE I-
MHBTU/HR
LOAD
0,00- 400.00
9S.OO- 100.00
RATED LOAD
CAPACITY t%)
HMBTU/HB
LB POLLUTANT/10**3 GAL
. VUC -.CO HOX PART
LB POLLUTANT/MMBIU
voc co.. NOX .
110,00
139.40
14?. 70
257.00
. 257.00
257.00
257.00
JS7,00
257.00
257.00
_. - 257.00
257.00
Ji\l£ 225.68-
STD 54,81
K--
100,00 -9.00
. 9S.OO._ .9.00
100.00 -9.00
100.00 -9.00
100.00 .9.00
100.00 -9.00
100.00 .-9.00
100,00 -9,00
100,00 -9.00
100.00 -9.00
.100.00— .9.00.
100.00 -9.00
— 99,58 -9..00-
__
1.38 -9.00
O
-9.00
— •9.00
-9.00
-9,00
.9,00
-9.00
-9.00
-9,00
-9.00
-9,00
— •9.00.
-9,00
-9..00
— 3
-9.00
O
-9.00
- "9.00
-9.00
39.90
44.00
49.50
27.50
-41.20
-9.00
-9.00
-9.00
42.60
— 40,7.8-
01 *•**
'* 6.67
t,
14.60
— .. 3.99
4.75
• 9.00
- -9,00
•9.00
•9.00
.. «9.00
63.70
109.60
10.00
-9.00
34.44
^••1
39.38
£>
• 9.00
«9,00
• 9.00
• 9.00
-9,00
• 9.00
-9.00
-9.00
-9.00
-9,00
- _ .--9.00
-9.00
^..5,00
^jioj" ~~~
•9.00
O
-9.00
— ..9.00
-9.00
-9.00
•9,00 .
•9.00
•9.00
•9,00
-9,00
•9.00
... .9.00-
-9,00
.9.00
—
-9,00
O
-9.00
• 9.00.
0,20
0.29
0.32
0.36
0.20
0.30
•9.00
-9,00
•9.00
0.31
-0.28
O-/ T,
0.06
1
PART
'9.00
O.OJ-
0.03
'9.00
9.00 .
•9.00
•9.00
•9.00 .
0.46
0.80
0.07
9.00
O.J8
o'.31
"s
FUEL etFEUBJcE.
TYPE -tt.
ND Z|
ND - j| - —
ND IB
ND'V
NO \v
ND \
ND 1°
ND /
ND /
NO S-
ND/
-------
B-2. Diesel Engine Data for AP-42
Section Table 3.2.3-4
Methane-nonmethane fractions taken from
Reference 3, Table 2-01-003 for Diesel
or Distillate Oil and Reference 3,
Table 2-02-001 for Residual Oil
B-7
-------
RANG!-: :-
HI'
LOAD
0.0<>-
0.00-
299.90
14.40
*** niK.sr.i, KNGINRS ***
l(»ll-:i> I.IIAH 1,1. t'll|,|.IITAMr/10«*3 GAL.
26.80
26. PO
26. PO
2 6 . S 0
26. "0
53.60
bl.60
69.70
200.00
200.00
200.00
200.00
200.00
200.00
200.00
700.00
700.00
225.00
26«.20
2<>fl.20
2«>R.20
2''^. oo
200.00
AVG 160.85
STP 9^.72
* * i
o.oo
0.00
o.oo
O.Oli
0.00
0.00
0.00
o.oo
0.00
,S('
.so
1 .00
.50
1 .00
.00
10.00
io.no
2.00
o.oo
0.00
O.no
M.OO
2.0U
7. 9J
4.19
W//V\-vot
('•lj.~f.tH
M-V»e.
)
kin irt
A,Vo_,
WIIC
740.90
16.9.50
794 .SO
7I.H.40
62.40
4H4.60
66B.70
-9.00
-9.00
1H3.HO
426.10
-°.oo
3-.O.70
-9.00
-O.OO
-4,oo
-o.on
131 .40
32.20
6.12
9 6 . 3 0
-9.00
24.40
243.50
Itin.io
215. JTf
yt.*n,
21. m
IST.H7
3.3»H
Cl'
235.60
103^70
170.50
7iH .10
97.30
162.20
179.30
497.20
-9.00
-9.00
b2
k-vJ-l
A,/,
,-j
11-
I I
-------
RAHGK t-
HP ')
L(l»l) 15
RATf:i.'
IIP
25.80
26.80
2n.HO
7C>.8'l
69.70
69.70
69.70
6<>.70
69.70
84.50
84.50
107. 30
107.30
107.30
t07.30
107.30
107.30
20-1.00
200.0.1
200.00
7OD.OO
200.00
200.00
200.00
200,00
200.00
700.00
225.00
268.20
268.20
769.00
7-jn.oo
AVG 141.40
STI> 7-1.73
M 1"
fjf^VOC.
(gii- VMIIS)
.00- :
.110-
b"AP
(t >
30.,)0
30. .10
40. 10
35. V)
35.00
2O.. 10
35.00
45.00
4 5. «0
70.00
20.HO
25.10
25.00
25.00
25.00
75.00
25.00
36.00
34.00
30. 10
30. 1 0
34.00
30. 10
15.00
36.00
30. 10
34.. 10
7^.00
30.00
10.no
25.00
75.00
3 0 . A I
6.57
Mvot
•15.00
*»* niFSt:i, KNU1NF..S ***
I.H l>ni,l,IITANT/lo»«3 UAI.
Vfjf
'13.30
S6. 10
3a2. 70
357.30
86 1 , 00
"-'1,00
BH7.50
-o.oo
760.70
1 1)6.. 10
1 .to. HO
573.50
51 1 .30
429.10
525.30
4H6.60
423.10
-9.no
-9.PO
12 3. on
t 15.70
-o.OO
I '17. 10
-U.OO
-O.OO
55.70
-o.oo
25.40
14.70
1 1.00
-9.00
17.40
3u ('.SO
7/3.43
3«J.-1»6
nz. -m
36.152
<*.?.« 7
CD
41.70
47.60
7 .1 . a o
77.00
237.HO
129.00
227.60
94.70
194.50
145.20
175.70
98.90
97.90
58.20
99.60
104.40
56.00
-9.00
-9.00
111.10
705.10
-9.00
7H7.90
-9.00
-0,00
84.70
-o.OO
98.70
56.90
28.70
77.50
38.40
1 13.0^
66.84
I3.50
l|(>>
-9.00
46*. 30
325.50
342.50
337.00
214.70
311 .90
217.60 •
322.70
160. HO
73.QO
243.40
278.70
240.80
229.00
273.00
22H.40
-9.00
-9.0o
130.00
372.20
-9.00
-9.00
-9.00
-9.00
71.40
-9.00
135.00
155.70
161.50
366.70
166.70
242.61
90.05
•Zl.fttr
PART
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9. CO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-0.00
-9.00
-9.00
-9.00
-9.00
-9.0()
-9.00
-9.00
Av
t/nc
3 3. HO
28.20
-o.OO
-o.OO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
29.60
23.20
23.10
34.07
22.00
22.70
3.20
13.50
-9.00
-o.oo
1 1 . 30
-9.00
4.30
13.10
-9.00
6. MO
I.Ob
-9.0d
-9.00
-9.00
0.13
16.0()
11 ,7H
C/HP-IIW
CIJ
-9.00
16.90
-y .00
-9.00
-o.oo
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
5.50
4.'«0
3.19
6.'j2
4.74
3.01
3.50
4.20
-9.00
-9.00
3.00
- 9 . 'j 0
3.70
3.00
-9.00
4.OO
4.08
-9.00
-O.Ou
2.42
1.33
4.70
3.35
Nil*
12.60
21.40
-9.00
-9."0
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
13.70
12.70
13.00
14,70
12.40
17.20
11.20
16.30
-9.00
-9.00
14.70
-9,00
11.20
15.30
-9.00
15. BO
5.5H
-9.00
-9.00
1 1 .40
5.77
17.94
3. SB
1'AHT
-9.00
-9.00
-9.00
-o.OO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
1- UK),
TYI'K
HI) \
NO 1
Ml!
K'l)
HI)
Nil /
Ml) /
*'l) (
un *
ND
Ml)
HI)
NO
ND
:°J
Ml)/
0
n
NO
Ml)
p
ND
D
0
NO
I)
1)2
HI)
Ml)
1)
1)2
S-
1
1
13
n
n
•3
>3
n
•3
n
17
D
n
i|
13
!•)
1?
II
J.tJI
«0.0}'l
I7.T7J
K-iir. -XO'/i)
f'/n\i c
-------
RAmjE ;-
HP
LOAD
o.oo-
50.00-
299.10
7i.no
*** OIKSKI, KNGINE5 ***
HAITI)
HP
26. HO
26. BO
26.80
26. PO
51.60
51.60
53.60
200.00
200.00
200.00
200.00
200.00
200.00
200.00
2Pf.no
200.00
200.00
200.00
200.00
200.00
22*. 00
26H.20
26*. 70
26«.20
26'«.nn
290.00
ftVfi 171.41
SIT) H5.S9
(jlhX.'M
Minn I,B piii.i,ijTftMT/in»*3 <;AII
(*)
50.00
50.00
60.00
70.00
50.00
50.00
50.00
7 1 . on
55.00
51.00
67.50
6B.OO
67.50
54.no
52.00
51. OO
71 .00
54.00
70.00
67.50
50.00
71.00
61.00
55.00
50.00
5'). 00
5H.60
«.56
MVoc_
f/MVOC
\
)
H Vȣ
A//WVOC
vnr.
257. HO
1H4.20
222.60
47.70
272.90
303.30
21H.OO
-9.00
-9.00
-9.00
211 .BO
-9.no
1 13.90
-9.00
-9.00
-9.00
-9.00
-'J.OO
-9.00
143.60
)3 . 1 (i
29.40
20.70
14.no
-q.nn
7.9H
155.19
1 24, 16
H.ooz
U7.U7
'iJfl
UN 3?
CM
42.60
64.60
SB. 50
30.90
69.20
I) H , 6 (I
71.00
-9.00
-9,Oo
-9.00
121 .70
-9.00
129.40
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
132.70
77.40
70.10
97.90
43.60
41 .90
33.00
72.07
31 ,H2
1.U4
NIIX
391.70
390.90
426,20
549.01)
236.60
211.30
22H.70
-9.PO
-9.00
-9.00
-9.00
-9.00
422.90
-9.00
-9.00
-9.PO
-9.01)
-9.oo
-9.00
-9.00
1SS.M)
143. 30
117. HO
117.20
463.50
276.7C
297. 9b
135,22
3r.tfl +
PAMT
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-''.PO
-9.00
-9,00
-9.00
-9,0i'
-9.00
-9.00
-9.PO
-9.00
-9.00
-9.00
-9.00
*>
M/
DC
9.00
9.OO
9.0(1
'9.00
9,00
•9.00
'9.00
4.20
7.40
2.70
9.00
5.30
9.00
4.30
2. HO
7.30
4.10
5.4o
5.70
9.00
('.40
0.7;
9.DU
9.00
9.00
0.22
3.H9
2.32
G/HP-HR
CD
-9,00
-P.OO
-9,'iO
-9.00
-9.00
-9.00
-9.00
6. %0
2.10
2.70
-9.00
2.60
-9.00
2.70
2.00
2.10
6.10
2.70
3.00
-9.00
2.30
1.00
-9,00
-9.00
1.10
O.'M
2. IB
l.OH
NIIX
-9.no
-9.00
-9.00
16.20
-9.PO
-9.00
-9.00
14.10
14.60
11 .80
-9,00
13.20
-9.00
13.30
10.50
15. ?0
13,70
13.10
12.20
-9.00
5.96
3.69
-9.00
-9.00
12.10
7.63
11. H2
3.39
PAHT
-9.00
-9.00
-9.PO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.PO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
run,
TVPK
HIJ\
HO \
Nl) /
Nil ?
Ml) ]
NO /
NO/
p-
|j
1)^^"^
HI)
I)
MD
Mil
II /"
M|1~~}
WO ?
wJ
I)
P2
A. W O c
'/•ll/OC
Y.LI I
8.T77
O.-I1T
t.Jso
(-7
n
13
lw-»e~ //,3'/l)
Jtr-rin.- /J.e°?)
-------
RANGK :-
HP 0.00. 799.90
tOAO 7fi.oO- 100.00
*»* ntEKEI, KMtiTHKii ***
RATKP LOAD l.B I'll. 1. ((TAUT/ 1 0**3 UAL
HP m
vor ro unx MAHT
26. PO
53.60
53.60
S3. 60
HO. SO
HS.OO
100.00
17*>.0o
140.00
165.00
20C.OO
200.00
200.00
200.00
200.00
200.00
200.00
200.00
700.00
201.00
200.00
210.00
725.00
72S.OQ
250.00
26P.20
26«.00
269.00
270.00
29". 00
290.00
AVC 1R7.24
STO 7 ".40
(j^- X.MIZ)
BO. 00
75.00
75.00
VS. 00
99.00
10". 00
100.00
100. po
IOO.OO
100.00
91 .Oo
76.00
79.00
79.00
7-1.00
7P.OO
75.00
93.00
93. 00
79.00
7'). 00
100.00
VS. 00
100.0'J
loo.no
H5.00
1 do. no
75.00
100.00
100.00
7ri.0()
R7.6I
1 " . H 4
H-JOC.
U/M <•<>£.
Wo'
WyWoc
31.40
70'-. 70
7 '.i H . | 0
7 i 7. 4(1
1 n.3.00
3.90
3.70
3.90
3,60
7.90
-9.00
-9.00
71 .90
IS. 00
23.50
1 14.00
-9.00
-9.00
-9.00
'JS.70
133.10
1.70
9.01
6.47
2.20
2.63
-9.00
-o.oo
7.60
S.64
S.47
S6.69
til .63
t.yit
$o.l iH
(.711
0.7«9
t.on'l
1R.90
59.60
69.80
72.90
278.70
43.10
35.50
41 .60
45.80
42.30
-9.00
-9.00
93.50
349.10
77.10
59.30
-9.00
-9.00
-9.00
69.40
7 3 . 1 •)
211 .30
66.50
66.60
13.10
16.70
-•).()('
67.6(1
76.90
3". 90
2R.50
7H.67
JO. 41
?.M*r
469.70
251.50
216.70
735.70
77.70
149.00
133.90
104.40
216.90
201 .00
-9.00
-9.00
109.30
214.70
199.50
-9.00
-9.00
-9.00
-9.00
426.80
-9.00
262.60
266.70
324.00
241.60
138.60
522.80
570.00
170.50
463.50
371.70
267.45
132.32
>7.o4|
-9.00
-9.00
-9^00
-9.00
-9.00
3.92
3.23
6.49
7.73
9.67
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
5.11
-9.00
-9.00
-9.00
7.56
-9.00
-9.00
5.45
7.31
O.C53
M Vi <-
H -Jr, (.
1 -A,
CD
S.'>7
-9.' 00
-9.00
-9.00
6.-J9
.20
.00
.20
.20
.20
9.30
7.70
-9.00
-9.00
-9.00
-9.00
b.OO
8.70
11.20
-9.00
-9.00
5.20
1.77
1.7b
0.32
0.76
9.<.0
1 .OH
0.70
0.09
0.73
t.'iy
*.',»
rZS-7
(UYf
NCIX
14.10
-9.00
-9.00
-9.00
1 .9 /
4.10
3.80
5.20
5.FO
5.80
11.70
11.00
-9.00
-9.00
-9.00
-9.00
10.70
12.60
13.50
-9.00
-9.00
6.50
7.10
8.51
6.00
6.27
12. CO
14.10
4. SO
11.50
9.51
8.51
3.69
11.11*.
IS.-TiS
I'AHT
-9.00
-9.00
-9.00
-9.00
-9.00
0.12
0.10
0.17
0.20
0.27
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.0C
-9.00
-9.00
0.12
-9.00
-9.00
-9.00
0.06
-9.00
-9.00
0.15
0.07
O.?o|
''"'
MiF:|,
im:
NtfX
MO i
»* \
N!) /
n7"x_
1-2 T
02 )
"/
n
D
D
NO
W|)
l>2
02
02
P2
Nl)
I)
1)
r>2
t'2
1)2
«^
'
-7
17
n
*
17
13
n
-7
M
II
7
| >
iZ
I7_
7
II
II
.Q/fc
(A
W-Mft - X t-Ttl)
-------
RAH1JE 1-
HP 30O.HO- 9(i0.iio
LOAD o.oo- ir. .00
•*« DIK.SFI. KNGIIIF.S »**
KATEI.1 |.l A.i> I.H I'HI,I.IJTAIJT/10»*.I i;Al,
lip
31 O.OO
IK. 00
34f.OO
31". 00
37^.00
40f'. 00
400.00
470.00
470.00
451.00
451 .00
480.00
500.00
527.00
600.00
600.00
600.00
600.00
600.00
600.00
67'1. 50
671.50
70P.OO
700.0')
800.10
90(.i.0(l
900.00
AVC 5 41.* 3
sin 164.51
(<]// = -X.lllt)
(1)
10.00
7.00
7. 10
2.00
2.10
2.00
y.oo
3.00
2.00
7.0O
7.00
4.00
1.50
.1.00
5.00
2.00
0.00
0.00
O.OO
0.10
0.00
0.00
3.no
3.00
7 Otj
3 . 00
.1.111
7.13
2.17
J£f£
M VOC.
H/I»V*2.40
60.4(>
69.50
91 .40
SO. 60
I6f>. 10
749.70
•M .00
100.70
7.40
300.40
197.70
121 .26
fl0.6R
Ifl.'l ^
11.527
1.^ *5~
12.11/i
CO
1 44.40
319.90
7J9.20
1 J9.9(!
749.60
161 .60
157.20
-9.00
Hi 8 . 3(>
M5.70
137.80
731 .10
2H7.50
-9.00
720.30
46.70
147.80
165.00
1HB.OO
191 .00
75.5(1
41,90
7S9.60
126,70
55,90
359.60
bH.70
I7R.H8
87.34
3ll.11 °
(MIX
336.70
236.70
130.30
45.20
3H] .HO
29S.40
30H. in
-9.00
249.50
44.50
227.90
749.90
99.40
-9.00
(.75.60
lfl.50
-9.00
317.00
276.30
318.10
151.90
147.70
270.50
221.40
1 4.7.60
94.10
121 .00
252.92
172.14
la.-*"*
PART
-9.0(.l
-9.00
-9.00
-9.00
-9.0O
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
-9,00
—
r
H
VIIC
-9.OO
-9.00
-9.0(1
29.70
-9.00
2«.1o
-9.00
-9.00
-9.0(1
10.90
-9.OO
-9.OO
-9.00
-9.00
-9.00
-0.0(1
-9.no
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
0.23
-9.00
-9.OO
II .54
y.o.-nt
ie.315"
Vl.ot.7
5.1T2
R/III'-IIH
CM
6.16
-'». '.ill
17,'JU
20.20
15.00
22.70
13.20
19.19
12.'10
•MO
-9.00
27.70
9.39
7.3d
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9.00
1.75
-9.00
-9.00
14.05
6.04
MIIX
14.40
13.00
37.10
27 | 40
37.30
31 .70
54.70
19.50
10.02
20. SO
31 .50
-9.00
54.60
2J9.4
-9.00
-9.00
-9.00
-9.00
-9.00
-9.OO
-9.00
-9.00
4.61
-9.00
-9.00
25.02
15.33
PART
-9.00
-9.00
Kilf.l.
T»I'K
•9.00
•9.00
•".0"
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
•9.00
9.00
9.00
•9.00
9.00
•9.00
9.00
•9.00
•9.00
9.00
9.00
n~-
i> .
D _
02
l!
112
O'5
n •
D^
">2
D
n
Mil
O
n
02
Nir-
Mil
wo
Ml)
Nil
Mil
Niy
1)
Ml)
HI)
(Pcf
IZ
II
II.
tl.
It
II
II.
II
II
I)
y/rij-ni? - x /.=?)
('VIi>'»'"-M""X^.-2J")
-------
HP
LOAD
300.dr.- >0.00
451 .00
48P.OO
577.00
601.00
600.00
600.00
600.00
600.00
600.00
9OO.OO
900.00
900.00
900.00
AVC 530.71
STI) |U7.7;|
-'1.00
-9.00
H.K'
-9.00
-9.00
-9.PO
-9.00
21 .00
13.00
10.70
31.20
I 4.40
-il.OO
-9.00
(-.30
77.30
IB. 10
H.40
3.. 100
2.ICZ
0.1-51
1.117
r-iii,i.nTANT/io«*3 (;AI,
Cij
.59.00
54.20
111.80
77.10
56.0(1
91 .60
31 .70
hb.50
70.90
73.50
47.40
00.00
54.90
6YMV.-.C
MVOc
H/M VO C
vnt;
-9.00
-9.00
-9.00
-9.00
1.14
-9.00
0.43
-9.00
-.(>(>
-9.00
0.39
-9.00
-9.00
-9.00
-9.00
-9.00
-9.0(1
0.33
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
0.57
0.33
0.-.U
O.oit'l
o.t->5
l.-Ltl
-O.lfC
l.lll
(;/Ht'-HH
CH
-9.00
1.97.
3.34
2.7.;
2.13
7.60
0.9b
2.02
2.14
7.41
1.49
3.14
I. 'll
2.19
l.'il
-9.00
-9.00
0.00'
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
2.06
0.71
2.7^2,
i/.V»Z
NilX
-9.00
12.60
1 1 .20
13.40
3.P7
11.00
6.4?
12.00
13.10
10.50
4.63
11 .40
9.b7
1.3.30
9.70
-9.00
-9.00
5.31
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
9.B9
3.21
13.2(2-
20.213
PAKT
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.0O
~-
_
FflKI.
TVI'E
ND
"""•— ^
0
0— —
02
D
D2
D-
D
D^- —
1)2
n~~^-,
0
0^^-^
D
N||-—
M|)
D2
Nir-v
ID \
Hll *
NO ]
"U J
»US
(:
j
17.x:
-tt
n
"~~ !»-
. — --
II
11
II
~~~~ 11
,*—***
II
11-
—
II
" 13
1
i
iA-w
J
-*:',-}>li )
'-HR~X2.Z*<5)
-------
300.00- 900.00
45.00- 74.90
«*» DIFSEL ENGINES **»
RATED
HP
300
300
310
MO
340
340
,'7P
ill"
10'
•17"
42?
45n
451
•190
50"
52?
600
600
600
60"
60"
&.-,o
b-1"
6.i"
ft""
60"
&•" "
&.". ' •
60"
6""
60"
"
?o"
700
7,1.1
"
, r>o
. " ' >
. 0 '.'
.00
. 1"
• xn
. (' '•:
. "':
.1 .•
. '*' 0
.<"'
1,0 AD
C*)
67.50
67.50
50.10
bO.OO
50.00
50.00
50.00
50.00
50.00
50.00
bn.oo
50. "0
50.00
50.00
->7.50
? 0 . ,1 0
50. 10
7J.OO
"7.50
74.00
h 7 . 5 0
•7 0 . 1 0
•*o .".•'/
'-7.50
•4 5 . .1 0
31. 10
•t 7 . 0 U
•* r' , <1 0
•17. "in
74.1C
'.) 0 . " C
S7.'50
50.1 j
- •"• . t1 0
50.00
•50.10
rs 0 . -1 f,
•>'' . "'','
55.™
5 h . •* I.'
5T .CO
5". 00
5 s . 0 C
'- 5 . f i,
-' • , 1 C
^s . "0
bS."0
5 5 . p y
05.00
LB
vnr
60.20
36.50
-0.00
-9.00
-o.no
16.70
-0.00
9.70
-9.00
-o.OC
-9 .Od
10.90
-9.00
-9.00
41.50
-9.00
-9.10
9.50
3B.90
11 .70
4.»0
42.00
U .70
37.00
13. FO
-9.00
1 f . 1 0
11 .30
).S<>
36. «C
".SO
? . 4"
i 7 . 7 C-
-o.OO
* . 1 0
10.70
3.60
7.70
'J.SO
fc . 1 0
'j ,40
13.10
5.40
7.90
•1,1"
fc.OQ
5. 'ill
10.30
7.70
5.10
POM,UT4NT/10»*3 GAL
Crj
54.70
39.90
40.40
03.00
51.40
37.70
51.70
23.80
42.00
58.20
46.50
30. JO
57.90
40.00
y9.so
55 .70
3S.70
24.60
M .61
23.10
U 3 . 1 0
54.60
-9.00
4,5.10
72.90
135.40
20.70
2'). 90
27,90
57.50
26. 3C
t 6.5C
12S.7'0
39. 4c
37.0 0
S6.90
t°.90
31.30
1 5 . ? 0
46.30
24.20
121.20
51 .50
53.50
33.r»'J
102.70
4H.AO
59.70
54.20
47.60
NOX
383. SO
395.10
-9.00
375.00
535.10
lt>4.90-
386.00
316.70
S4I .10
500,30
390.30
223.40
398. HO
419.20
339.60
4S4.80
370.10
327,00
415.40
329.30
315.50
347.60
791 .10
453.50
431.00
390,40
3M7.00
391.30
360. 30
463.40
327.00
269. 3C
1 20.00
223.10
422.40
-9.00
458.10
455.00
437. 40
749. rio
259.«0
315.10
240.30
201.00
333. HO
237.90
21S.30
79P.50
297.00
219.20
PART
-9.00
-9.00
-9.00"
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
•9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-0.00
-9.00
-9.00
-9,00
-9.00
-9.00
-9.00
-9.00
- 9 . o (j
-9.00
-9.00
-9.00
-9 .('0
-9.00
-9.00
-9.00
-9.00 '
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-O.OQ
VQC
-9.00
-9.00
-9.00
-9.00
-9.00
" 0.47
-9.0Q
0.21
-9.00
-9.00
-9.00
0.30
-9.no
-9,00
-9.00
-9.00
-9.10
0.3u
-9.00
0.30
-4.00
-9.00
-9.00
-9.00
-9.00
-9.00
0.30
0.30
0. 1C
-9.00
0.30
0.21
-9 . i>0
2.1o
-9.0o
-9.00
-9.00
-9.00
-9.00
O.lo
0.21
0.35
0.15
O.Oh
0.11
o. ly
0.11
0.2S
0.21
0.14
G/HP-HR
CO
-9.00
-9.00
1. 10
l.'jl
1.30
" 1.06
1.33
0.57
1.06
1.45
1.24
0.33
1.47
1.05
-9.00
l.'»6
1.06
" 0.70
-9.00
C.OO
' -9.00
-9.00
-9.00
-9.00
0.50
-9.00
0.50
0.50
0.60
-9.00
O.'O
0.42
-9.00
1.16
-9.00
-9.00
-9.00
-9.00
-9.00
1 .25
0.02
3.22
1.17
-9.00
0.07
2.7S
1.25
1.62
1 .41
1.25
NOX
-9.00
-9.00
-9.00
9.bO
13.60
' 5.20
9.90
7.57
14.00
12.50
10.40
6.12
11.10
10.90
-9.00
13.00
10,40
9.50
-9.00
8.60
-9.00
-9 . 00
-0.00
-9.00
11 .70
-9.00
9.50
9.90
R. SO
-9.00
8.50
*.73
-9.00
5.5s
-9.00
-9.00
-9.00
-9. Of
-9.00
6.7R
!-. 6-1
?.3H
6.34
S.30
7! 70
5.63
8.09
7.73
5.85
PART
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
•9.00
-9.00
-o.OO
~-9'. 00
-9.00
-9.00
-9.00-
-9,00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.0"
-9.00
-9.00
-9.00
• 0.00
•9.00
-9.00
-9.00
-9.00
-9.00
-9.00
•9.00
-9.00
-9.00
-o.OO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
"KUEL"
NO *.
NO— — -
0^^^
0
c* -*-"'^
C2 . '
D
D2
5 ~~— «»
n
o **"^
n2
D~~— -~«
0.
NO
0 ""~~».
D •
sr!\
Nu \
ND
"0 /
MU 7
vrj /
vy i
NC 1
"0
"0
!•'[!
NO ;
MO /
nlj
D2
'Jt'
NO
MO J
\'0 /
VC/
n\
0\
3 \
0
D ,
P /
/
0 /
13 /
D/
n/
^
(
IZ.
II
11
II
'1
II
(^
J ^
1 *
1 1
\
' •*
/
•SO"
90"
jnr
9,-r
W
v
17]
• '' *"
.'"'A
• " ^
. V1
.00
. ^°
.31-.
5 »• . 0 o
nil.OO
" 0 . r' 0
"0.0 '..'
6 0 , '. n
3f .01
7 . 5^
'1 . 1 Ij
- 9 . 0 C
V * . 4 0
-9.00
7. WO
IS.4W
1 3 . 69
•'• 5 . 7 "
V5.SO
"5.90
76 , K 0
?5,40
b2.36
2P.66
1 96,70
35". 5"
465.70
77". 03
344.00
3ib , r>7
45.78
-9.00
-9.00
•9.00
-9. 00
-9.00
-9.00
-o.OO
0.24
-9.00
-o.OO
-o.oo
0.20
".31
0 . -1 C,
I. J5
2.04
-9.00
2.10
2,04
1 * 2 J
0 , o 1
b.22
9.50
-9.00
7. be
9.10
H.bo
2.37
-o.OO
-o.OQ
-o.OO
-9.00
-9.00
-" . 00
-9.00
D
NLi
»rr)
M n
MO
*•<<-•*
-------
KANCK !-
HI1
LOAD
300.00- r'0o.oo
7b.no- ioo.no
RA run
HP
300.00
300.00
30O.OO
300.00
310.00
310.00
311.00
31').oo
'25.00
340. PO
340.00
340.00
340.00
36r«.PO
37S.OO
37«.00
400.00
4pO . PO
400.00
40B.PO
420.00
420.00
42°. 00
47 0
75.00
100.00
100.00
100.00
75.00
75.00
100.00
100.00
75.00
100.00
75.00
100.00
75.00
75.00
100.00
100.00
75.no
100.00
loo.oo
75.00
79.0')
loo.oo
75.00
100.00
1 OO.OO
75.00
78.00
75.00
75.00
100.00
75.0')
75.00
79.
Ml
1' .30
1 .50
2.10
27. HP
-' .00
-' .00
-9.00
-9.OO
8.60
-9. OP
-9.00
10.80
8.56
6.53
-9.00
-9.00
7.50
8.P.4
-9.00
-9.0O
-9.00
-9. OP
-9.00
-9.PO
0.97
6.19
-9,00
-9.00
6.64
-9.00
-9.00
2 7 . » 0
-'1.0')
-9.00
3. 81
-o.OO
-9.no
17.00
11 .60
1 1 .70
6.12
6.04
1 1 .90
17.10
1 7.50
10.60
1 5.50
49. SO
- ') . 0 O
•II .'.0
PIII,IJJTAN11/10**3
ro HMX
46.90
43.50
B3.70
hO.30
205.70
36. '90
-9.00
137.50
5B.IO
-9.00
107.40
35.60
<>4.40
h(.).8o
456.80
73. BO
25.60
44.70
719.90
62.60
413.90
61.00
215.00
54.30
27.10
32.70
123.20
50.30
60.90
l'»fl.20
34.00
H4.70
32«.00
60.90
57.40
156.10
33.40
25.50
25.60
17.10
14.60
15.50
25.90
30.70
27.10
29. 10
74 .'10
124.90
-9.00
150.70
326. BO
25B.30
2 1 3 . R 0
301 .70
583.60
546.70
274.10
405.60
358. 10
455. 30
583. 70
781.70
396.90
309.00
376.00
428.50
407.00
472.70
670. 10
675.50
538.60
579.10
417.90
437.30
341.70
459.90
458.50
464.70
1 90.90
607.30
530.60
269.20
585.30
577. 6P
753.70
60O.OO
484.2U
340.10
350.40
325.no
508. JO
396.5(1
350.30
306.70
319.10
317.60
7 y 4 . H o
4 4 n . 6 0
-9."0
4bO.'»('
PAKT
-9.00
-9.00
-O.OO
-9.00
-9. (HI
-9.00
-9.00
-9.00
17.74
-9.00
-9.PO
-9.('0
-9.00
14.60
-9.00
-9.00
-9.0()
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-o.OO
1 3.70
-9.00
-0.00
-9.00
-9,Po
-9.00
3.«3
-9.00
-O.DO
-9.00
-9.00
-o.OO
-9.OO
-9.00
-9. dp
-9.OO
-9.110
-9.0I)
-ij.iiO
-0.0(1
37. sp
-".'10
VOC
-9.00
-9.00
-9.00
-9. on
-9.PO
-O.OO
-9.PO
-9.00
0.7(1
-9.PO
-9.00
0.77
0.21
0.70
-9.011
-9.0u
0.17
0.20
-9.00
-9.00
-9.00
-o.OO
-9.0"
-9.00
0.25
O.lb
-9.00
-9. (Ml
0.20
-9.PO
-9.00
-9.00
-9 . On
-9.00
0.10
-9.00
-9.00
0.30
o. 30
0.30
0.14
0. 14
O. 30
0.30
n.3ii
0. 3d
O.4O
-o. on
-9.OU
I.I/
G/HP-HH
CU
-9.00
-9.00
-9.00
-9.00
b.Ob
0.">3
-9.00
J.'tS
l.'.0
-9.00
2. '.7
0.09
i .'.a
1 ,50
11.00
1.S2
O.OB
1.00
5.49
1 Ob
o)o5
1 .4,0
5.15
I. 37
O.OB
0,7«
3. 14
1.31
1.00
4.10
O.'Jl
-9.00
8.05
l.M
1 .40
3.04
0.")4
0.70
0.70
0.00
0.7''
0.36
0.70
0.%o
0.70
O.7O
o.OO
-9.00
-9.00
1.07
MIX
-9.00
-9.00
-9.00
-9.00
11.40
13.70
7.4'j
10.20
8.7n
1 1 .90
14.50
7.04
9.74
7.60
9.57
IP. 60
9.23
10.70
16.70
16.80
13.00
13.90
10.60
11 .60
R.S7
11.14
11.70
12.10
5.20
14.70
17.60
-9.00
14.40
14.40
t>.50
14.80
12.20
P. 70
9.40
8.4O
11.62
9.19
9.40
7. HO
8.10
7.80
7. 50
-o.OO
-O.oo
17.4(1
PAKT
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
0.41
-9.00
-9.00
-9.00
-9.00
0.36
-0.00
-9.00
-9.00
-9.00
-9.00
-o.OO
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.PO
0.36
-9.00
-9.00
-9.00
-9.00
-9.00
P. 10
-9.00
-9.00
-9.00
-s.oo
-9.PO
-9.00
-9.00
-9.00
-Q.OO
-9.00
-9.00
-9.00
0.72
0.79
-9.00
FlltL,
TVPt.
NP^
NO
NO
Nil,/
P" .
I)
n
n/^
n ).
p
D
P2
02
P2
1)
0
02
02
^"""•N^
n
D
0
p /
D/
02
P2
P
P -•-
r>2
o —
n ,-
Nil
r>
n .._
P2
p —
n —• —
W|)" — -
Mil
NO,--'
n-/ —
02,---
Nl) \
NO
Ml)
K\\
Kit 1
Ml) /
II
•^^
/
*r
•~ — ^
^
'1
I-J
1?
n
n
T
tz
l-i.
II
II
IZ
/
/
l i
i \
- —
• —
;
17
—
'"">
• 17
— — -
7
^__
•
•^^
13
^s"
^
• — . ,
n
/
/
/
f~> /
-------
AVfi
STP
t-/.
670
670
87.S
«bO
4R3
1.3fl
1?)
.so
.SO
."0
.00
.M
.71
'! 0 . n 0 - o .
H0.no -18.
100.00 7.
100.00 7.
H«-.Ot 1 1.
1 1 . 3 H 17.
*/Cvoc /2/)
I.T^
00 9?. 80 399.70
10 bl.70 -9.00
40 J7.60 788.00
SO 4". 10 75.70
61 H9.fi! 40«.H3
Ib 94. S3 130. Hh
15"
n"S
ra iP.-72.-N v».l«o
.37. SO -9.00
-9.0(1 |.3»
1.97 O.lil
3.94 0.10
IS. 04 0.31
11. JH 0.79
l.toZ. o.MU
7.2b 9.h7 0
1.47 -9.00 -9
O.ij? 7.75 0
t.?0 ft. I') 0
7.29 10. M 0
7 . '• 7 7 . H 7 0
J.»7 1 H.lt>1 c
.79 Ml)
.00 N'll-
.Ob P2
.09 n^
.4)
.7H
MVOC O.2.03 MVOt O.OHt
^/«voc r^-
-/7
tl/ni'c. a.^f,t
MVfcC. O.O77
tJ/HjfC. 0.60?-
5.^ •»3.'«« «.
A/^/j
.7OH
-------
RAHGK :-
IIP
I,DM)
1000,00- 361)0.00
0.00- 25.00
*»* P1K.SEI, ENGINES »**
HATH1
Ml'
101H.OO
1150.00
1200.00
1200.00
1200*00
1200.00
1200.00
1200.OO
1200.00
1200.00
1200.00
1580.00
1580.00
2500.00
2500.00
2500.00
-2500*00
2500.00
2500.00
2500*00
2500.00
3600.00
3600*00
3600.00
3600,00
ftVO 2021.12
STD 895,06
I.I'AO
(*)
25,00
25.00
25.00
14.00
15.00
4.00
8.00
25.00
21.00
8.00
24,00
15.00
15.00
25.00
25.00
25.00
25*00
15,00
15,00
15*00
15,00
15,00
15*00
25,00
25.00
18. 6H
6*46
IA-KDC
W/1M0
-------
RANOK :-
HP
LUAI)
looo.oo- 3hOO.no
35.00- 55.0O
HP
I HAD
UJ
«** UIKSKL ENGINKS ***
I.B PI)l,l,llTANt/10**3 <.AI,
VUC CO NUX PAHT
VUC
G/HH-IIK
CO
NUX
CANT
Hit.I,
AVG
5TD
1018.00
1150.00
1200.00
1200.00
1500.00
1580.00
2500.00
2500.00
3(>00.00
3600.00
3600.00
2138.91
1012.98
50.00
50.00
38.00
34.00
- 55.00
55.00
55,00
55.00
55.00
55.00
55*00
51.00
6,41
_/M-V« O
u/wi- Y ^»
t»>^oin»<»
-------
IIP
LOAD
1000.00- 3MJO.UII
75.00- 100.mi
*** niESKl, tNGINKS **»
HATKD
HI'
1018.00
1018.00
11 SO. 00
1150.00
1580.00
1580.00
1580.00
1S80.00
2500.00
2500.00
2500.00
2500.00
3600. UO
3600.00
3600.00
A u r* oo 01* 01
AVu ZU 7 r * U f
STD 917.17
liOAO
(% )
100.00
75.00
100.00
75.00
-79; 00-
79,00
79.00
79.00
79.00
79.00
79;00
79.00
79,00
79;00
79,00
- H 1 - 9 1
H J , £ 7
7.47
LH PU1.LUTAN1/10**3 GAI, C/HF-HH fllEl,
TYPE
VHC CU Nf)X PAKT VOC CU UUX PART
-9.00 294.40 3BH.OO -9.00 -9.00 -9.00 9.B5 -9,00 U ]
-9.00 84.90 486.50 -9.00 -9.110 2;10 12.00 -9*00 0 / j-i
-9.00 216.90 454.00 -9.OO -9.00 5.56 11.60 -9.00 D\
-9.00 d8.90 50J.50 -9.00 -9.00 2.30 13.00 -9.00 D/
| u • AH Q ) 1 - #«ft - wQ - flii - wQ-flft • •tl-iifi- --•Udfl - «*U (111- •- 1 ) Ci^ff MO - • -
1'fUU / J 1 ^ O V ^:f»UU "TffUU ;f§UU 5fj*JU ^^jr^UU 1 ( J V nl/ - .—
22.70 226,30 523.60 -9.00 -9.00 -9.00 -9.00 -9.00 ND
13.30 255.80 449.80 -9.00 -9.00 -9,00 -9.00 -9.00 ND
Ui20 2b4.bO 442.50 -9.00 -9400 -9.00 -9.0O --9,00 NO
24. bO 137.60 375.40 -9.00 O.bO . bO 12.20 -9.00 M)
2»>.80 77,40 413.30 -9.00 0.90 ,SO 13.50 -9,00 MO '*
14.1.0 78jlO 402,40-9,00 0,50 ,50 13,10-9,00 «0
19.50 90,40 407.00 -9,00 0,60 .90 13.20 -9.00 ND
27.60 68.80 287,80 J9.30* 0.70 .60 6.80 0.93*- NO
24, RO 69.60 295, bO 39;30* 0*60 470 7iOO-- 0<93*NO ...--.._
36.00 48.90 337.50 72. bO* 0.90 ,20 8.30 1.79* NO
»i| Q1- 4AR 91--A1I-QA — f>ft A t\ • - 1* - T 1- - -- *)- AQ - 1 1\ Ci£- -* ° A __....
A 1 • 7 r I *• n f < / ^i*»»^ TFT^^**^ u « r 1 c^v' #vy"O *Tp*^f — — . - — - -
5O.50 "I.V7
6.73 83.77 69.19 15.70 0.15 1,29 2.42 0.35
0. 04 V
I1.1U3
>,lfV
-------
B-3. Residual Oil Fired Motorships Data for
AP-42 Section Table 3.2.3-5
Note: Computer data are in terms of g/metric Hp-hr
as opposed to English Horsepower units for
residual oil fired motorships.
This is due to the data source's use of metric
units (Reference 10). The conversion factor for
metric HP is 1.361 KW/metric HP as opposed to
1.341 KW/HP (English).
B-17
-------
RAHCJE: :-
HP
LOAD
O.IIU- 4999.90
100,00- IOO.OO
r9A
«»* OIKSKL tNGIHES ***
RATKD
HP
545.00
6HO.OO
815.00
950.00
1090.00
1225.00
1630.00
1800.00
1900.00
2180.00
2400.00
2450.00
2700.00
3000.00
3500.00
3600.00
4000.00
4500.00
4500.00
4800.00
AVG 2413.25
SID 1334.19
LOAD
(*)
100,00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
0.00
LH
vuc
16.10
16.10
16.10
16.10
16.10
16.10
16.30
43.80
16.30
16.30
43.80
16.30
43.80
20.00
20.00
44.00
20.00
2b.80
20.00
44.00
24.35
11.52
PUI,l,UTANT/10**3 GAL
CO
48.90
4H.90
48.90
48.90
48.90
48.90
49.30
b8. 40
49.30
49.30
bB, 40
49,30
58.40
100,20
100.20
58.60
100.20
37,30
100,20
58,60
61.06
20.21
mix
268,30
268.30
268.30
266.30
268.30
268.30
270. bO
b53.80
270.80
270.80
553.80
270.80
553.60
417.00
417.00
556.60
417.00
496.90
417.00
566.60
381.73
121.47
PANT
-9.00
-9.011
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
VDC
0.31
0.31
0.31
0.31
0.31
0.31
0.31
O.bl
0.31
0.31
o.bl
0.31
O.HI
0.36
0.36
O.HI
0.36
0.45
0.36
0.61
0.4b
0.21
li/liO'-HK
CH
0.94
II. '/4
V.'jt
11.94
0.94
0,94
0.94
1 .OH
0.94
0.94
I. Oh
0.94
.08
.'.0
.(.0
.08
,'jo
O.O5
l.'jO
1.08
1.13
0.35
MiX
b.lb
b.lb
5.16
b.lb
b.lb
b.lb
b.16
10.30
b.16
b.16
10.30
5.16
10.30
7 . 4 9
7.49
10.30
7.49
H.69
7.49
10.30
V.09
2.14
H.K-1
-9. 0
-9.00
-9.00
-9.00
-9.00
-9.00
-9.0O
-9.OO
-9.00
-9.0O
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
Hit-
TKP
t<»,
(•Kb
Mjb
(•nb
HJh
tii6
K«t>
tub
Ki'6
Kl.lb
H/h
Ku6
tub
(•Ub
t'u6
K.J6
tub
K06
Kib
fuh
7.3 11?
4J-WI
')( V
•i -ftl.
If..\ll(,
/III
flmtri
/1/> V
Df\TA.
CJ/K* ,.,i -
IA-10C
-------
RANCK :-
IIP
LDAh
soon.on- 9999.90
ion.no- 100.l
o. Jjc
i.^TC.
CO
37.30
58.60
37,30
101,80
34.20
37.30
101.80
34*20
101.80
-9.00
-9*00
34,20
38,10
101.80
34.20
- 57;89—
29,90
<.*><
-
NIIX
49H.90
5bti.hU
49H.90
42J.40
650.40
498.90
423.40
650.40
423.40
-9.00
-9,00
650.40
509.50
423.40
650.40
527*54
90.89
**'"
PAKT
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9*00
-9.00
-9.00
-9*00
-9.00
-9.00
-9*00
-9.00
- -9*00
-9.00
»A VOC •
W- M-V(J<^, .
t»
M-u
G/HP-HH
VOC
0.45
O.HI
0.45
0.36
O.bb
0.45
0.36
0.85
0.36
0.53
0.53
0.85
0.45
0*36
O.b5
0iS7 _._
0.20
b.ott
0.104
0.77C,
.Y»cr<5.096
i.,H... 0. (.&(
cu
0.65
1*48
O.dS
l.dO
0*59 -
0.05
1.00
0*59
l.bO
1.70
1*70
0,59
0,65
1*60
0.59
1*11
0,55
"
Mil
NIIX
8.69
10. JO
b.69
7.49
11*20
8.69
7.49
11*20
7,49
8.43
b*43 - —
11.20
8.69
7*49
11 .20
Sill
1.44
. , __
I2./OI
• - —
PART
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-y.oo
-9.00
-9.00
-9*00
-9.00
-9-.00-
-9.00
f UtL
K06
FU6
F06
FU6 nl-l—
'FOb • - i^;_i
FO6 - H"lEf-
FO6 ho Ar
F06 t)flT/
tub
F06
F06 -• -.-•
FU6
F06
F06
F06
.._._. .....
G /V«w- t*fl ; V 1
1.46'
20-Vil
-------
RANilE I-
HP 10000.00-14999.90
LOAD 100.00- 100.0.)
«** UIESKL ENGINES »»*
RATtl)
HP
LOAD
Ml l>UI,LUTANT/10**i GAI,
VOC
10325.
10325.
10500.
10550.
12000.
12390,
12390.
12660.
13500.
14455.
14455.
14770.
14770.
AVG 12545.
STD 1675.
( a/u . *
on
00
00
00
00
00
00
00
00
00
00
00
00
38
32
r .l>9
100
100
100
too
100
100
100
too
100
100
100
100
100
100
0
\1
t,)
M-
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
(A -VUG
- M -»»<,
H-<«<-
U-4UC,
-9.
-9,
26,
50.
26.
-9.
-9.
5U.
26.
-9.
-9.
50.
37.
38.
It.
. >•)).
J.C
0.4
X.o
00
00
40
40
40
00
00
40
40
00
00
40
90
33
11
Uu
re*
>V
y>
\°>
CO
-9.
-9.
38.
3b.
38.
-9,
-9.
35.
3B.
-9.
-9.
35.
29.
35.
3.
i.'i
00
00
10
00
10
00
00
00
10
00
00
00
00
47
01
\e°>
NUX
-9,
-9.
509.
664.
509,
-9.
-9.
664.
509.
-9.
-9,
664.
296.
545.
124.
6<:
PAHT
oo
00
50
3o
50
00
00
30
50
00
00
30
00
34
49
^v
-9
-9
-9
-9
-9
-9
-9
-9
-9
-9
-9
-9
33
-**
0
A
1
o.\
.
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.9o
T*«
.00
.061
'"6
, //..
VOC
0.53
0.53
0.4b
0,85
0.45
O.b3
0.53
O.bb
0.4b
O.b3
O.b3
0.65
0.67
0.60
0.15
0.010
O.liO
o.an
(i/H|—l|M
tn
1.10
1.70
O.'ji
1 ,"/0
1.70
0.'>9
I'.TO
1.10
0,'>9
l.tl
O.S5
huA
8.4J
8.43
8.69
11 .2u
8.43
8.43
11.'^U
8!43
8.43
1 1 ,'Hl
5.2D
b.HH
I.b4
( AIM
-9.00
•9.00
-9.00
-9.00
-y.oo
-9.00
-9.00
-9.00
-9.00
•9.00
• 9,00
K.hU
0.00
Kun
Klo
h'ub
FOO
Hib
fuh
PUb
/I/I
1.3 ot
6.117
lr+
(4-U-IHC
o.\\t>
ptl.
-------
RAHCK :-
HP
15000.iiO-l9994.90
hO.OO- 100.00
»»« DIKSKI, ENGINES ***
KATEli
ill'
159QO.OO
15590. OC
15990.00
15940.00
15990.00
15990.00
15990.00
15900.00
16520.00
16520.00
16880*00
18585.00
18585.00
18990.00
AVG 16665.71
STD 1108.60
r *-..«>
LOAD
(*)
60.00
85.00
00.00
.Jb. 00
- 00.00
65.00
60.00
85.00
100.00
100,00
100*00
100.00
100.00
100*00
84,29
lb.57
U -AKl
-9.00
-4.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9*00
-9.00
-9.00
-9*00
-9.00
-9.00
-9.00
-9.00
-9.00
»-v»
voc
0.40
0.50
0.50
0.40
0*40
0.50
0.50
0*40
0.53
0.53
0*bb
0.53
0.53
O.B5
0.53
0.14
o.oCV
0.1 1 1
O.ti4
G/HP-HH
CU
0.90
'I , 00
.00
.20
*9u
.00
.00
*20
.70
.70
0,'j9
1.70
1.10
0.59
l.'jfl
0.02
t.O4~l
KUtL
TKPE
NUX l-AHT
8.
8*
«.
».
8*
8.
*.
b*
8.
6.
»!
B.
11*
9.
0.
12.
89
59
?4
74
89-
59
74
74
43
43
•J *.
43
43
•to
00
91
2(1
-9.00
-9*00
-9.00
-9.00
-9.00
-9,00
-9,00
-9.00
-9.00
-9.00
-9<00
-9.00
-9.00
-9*00
-9.00
-9.00
tOb
FU6
fUb
f"U6 K.I
K06 'I*-1-
FO6 fl/'l££l<.-AN
r'Ob w\A*l
K* •»•. » »'r1/v
•- FO6
f'Ub £)/\T"f)
FU6
FII6
FU6
F06
Cg/^-mt.xl.5<.0 )
-------
RANGE :-
HP 2000(1.(>n»30UOO.fin
LOAD 60.00- 100.00
RATKD
20650.00
20630.00
21320.00
21320.00
Q 1 1 1 ft An
AlJzl'iUU
21320.00
21320,00
21320,00
21320.00
21320.00
294-10. UO
29440.00
29440,00
29440.00
29440.00
29440.00
29440,00
29440.00
AVG 24854.45
3TD 4106.31
LOAD
(*)
100.00
100.00
85.00
b5.00
fa ft A A -
B3 . UU
bO.OO
60.00
60.00
60.00
H5.00
60,00- -
05,00
bb.OO
60.00
85.00
60.00
• •- fi •* — Art --
H D 9 UU
60.00
75.56
14.61
Ml H)I.MJTAN'1/10**3 GAI,
VOC
-9.00
-9.00
-9.uO
-9.00
•• y « oo
-9.00
-9.00
-9.00
-9.00
-9.00
-9.00
-9,00
-9.00
-9,00
-9.00
-9.00
i) A A
— 7 . O V
-9,00
-9*00
-9.00
CO
-9.00
-9.00
-9.00
-9.00
~9 * Ou
-9,00
-9,00
-9.00
-9,00
-9.00
-9*00
-9,00
-9,00
-9*00
-9.00
-9,00
— 9*00 ""
-9.00
-9*00
-9.00
NOX
-9.00
-9.0O
-9.0O
-9.00
— 9 . Ou
-9.00
-9.00
-9.00
-9.00
-9.00
-9*00
-9,00
-9.00
-9*00
-9.00
-9.00
«ti 4»A
— V t VV~~
-9.00
-9*00
-9.00
PAkT
-9.00
-9.00
-9.00
-9.00
— 9.00
-9.00
-9.00
-9*00
-9,00
-9.00
-9*00
-9,00
-9.00
-9*00
-9.00
-9.00
• O (1 A
~y i uu
-9,00
-9*00
-9.00
G/HP-HH
VUC CO
0
0
O
O
11
0
0
0
0
O
.53 1.70
.53
.50
.40
- An -
• " v
.40
.50
*50
.411
.50
0*20
0
0
0
0
0
0
o
.10
.10
*20
.20
.20
,">u
'iO
.20
!'>0
.(.0
*(.0
,r>0
, 'jO
*00
.20
.20
*oo
.JO
.00
* .-\
.20 1.00
*34 1*39
.15 0.52
NOX
8.43
8.4J
8.59
8.74
... .1 . -J A
0, /*
8.89
8,74
8.74
U.B9
8.59
9*97
9.97
9.97
9*97
9.97
9,97
»U 1
• » '
9.97
-9*25
0.61)
HART
-9.00
-9.00
-9,00
-9,00
—9 * 00
-9.00
-9.00
-9*00
-9,00
-9.00
9,00
-9,00
-9.00
-~ -9*00
-9.00
-9.00
_Q /\rt
*3f§VV
-9.00
9*00
-9.00
UltL
TXPE
-
K06
FU6
FU6 .. , .
FUb fill
F06 /?AlE^/C/»A/
f 06 JVl-A fJ
fiib -- ^~A
F06 l)flTri
Fno
F06 - --
F06
FOb
FOb
FUb
Fob
pi \f.
•• t uo
F06
-
0.03^
t.DGl-i)
avoid
x a .1->C )
-------
APPENDIX C
GASOLINE POWERED INBOARD PLEASURE CRAFT FOR AP-42
TABLE 3.2.3-7
C-l
-------
TABLE C-1
GASOLINE POWERED PLEASURE CRAFT EMISSION FACTORS
Idle Modea
Engine Size
HP
4
9.5
35
65
AVG
VOC
(lb/10l gal)
2,796
3,140
3,104
3,349
3,097
( 235/2862 )b
CO
(Ib/lOl gal)
3,417
2,851
3,043
2,883
3,049
•
N°x
(lb/10-L gal)
0
0.78
1.81
0.90
0.87
aReference 25. Each emission value represents multiple tests on a single
engine.
bMethane/nonmethane VOC split derived from Table 9-06-021B, Reference 3.
Metric Units
9/1
Ch4
28.2
NMVOC
342.9
CO
365
N°x
0.10
C-2
-------
TABLE C-2
GASOLINE POWERED INBOARD PLEASURE CRAFT EMISSION FACTORS
Less than or equal to 10 percent of load
Value
(% Load)
1.3a
5.8a
1.8a
10. 0*
1.4a
8.3*
1.4*
8.0a
2.3b
1.6b
9.2b
1.3b
8.0b
2.3b
1.8b
AVG.
VOC
(g/HP/hr)
3,520
730
2,429
672
1,492
359
2,411
381
2,759
1,476
299
1,814
412
817
420
1,333d
(lb/10-> gal)
2,364
1,869
2,765
2,189
2,375
1,818
2,779
2,248
c
c
c
2,774
2,068
c
c
2,325d
CO
( g/HP/hr )
5,500
1,317
2,776
1,001
2,160
797
2,878
556
3,879
667
126
1,281
358
1,022
769
1,672
(lb/10-3 gal)
3,693
3,371
3,160
3,263
3,468
4,038
3,317
3,281
c
c
c
1,960
1,798
c
c
3,132
NOX
(g/HP/hr)
2.00
0.87
0.59
0.74
1.20
0.59
0.89
0.15
0.46
0.95
0.20
0.80
0.20
0.65
0.28
0.70
(Tb/10J gal)
1.34
2.22
0.67
2.40
1.91
2.97
1.02
0.91
c
c
c
1.22
0.99
c
c
1.60
aReference 25.
bReference 26.
CNot Available.
dMethane is 101 g/HP/hr or 177 lb/103 gal and NMVOC is 1232 g/HP/hr
2148 lb/103 gal as derived from Table 9-06-021B, Reference 3.
or
Pollutant
Conversions
g/kw/hr
l/103HP/hr
9/1
CH4
135
223
21.2
NMVOC
1652
2717
257
CO
2242
3688
375
NOX
0.94
1.54
0.19
-------
TABLE C-3
PLEASURE CRAFT EMISSION FACTORS
Greater than 10 percent but less than or equal to 50 percent of load
Value
(% Load)
18. 8a
43. 5a
27. 3a
22. 6a
46. Oa
20. Oa
44. 9a
36. 3b
25. 3b
22. Ob
45. lb
13. 2b
36. 3b
10. lb
27. 9b
AVG.
VOC
(g/HP/hr)
283
186
319
196
115
163
93.5
339
137
244
120
180
74.1
185
67.3
180. 1^.
(lb/10-» gal)
1,501
1,637
1,846
1,716
1,471
1,692
1,503
c
c
2,511
2,135
c
c
c
c
1,779!
CO
(g/HP/hr)
632
337
587
509
358
373
172
551
82.2
286
238
133
121
111
112
307
(lb/10-i gal)
3,357
2,965
3,392
4,450
4,580
3,871
2,770
c
c
2,946
4,214
c
c
c
c
3,616
NOV
(g/HP/hr)
0.80
0.75
0.73
0.44
0.43
0.25
0.66
0.47
0.15
0.16
0.14
0.32
0.43
0.21
0.34
0.42
(Tb/103 gal)
4.25
6.57
4.24
3.87
5.49
2.51
10.6
c
c
1.67
2.53
c
c
c
c
4.6
''Reference 25.
^Reference 26.
cNot available.
d13.7 g/HP/hr or 135 lb/103 gal methane
nonmethane VOC as derived from Table 9-
and 166 g/HP/hr or 1644 lb/103 gal
•06-021B, Reference 3.
Pollutant
Conversions
g/Kw/hr
lb/103HP/hr
g/i
CH4
18.4
30.2
16.2
NMVOC
223
366
197
CO
412
677
433
NOV
0.563
0.926
0.551
-------
TABLE C-4
GASOLINE POWERED INBOARD PLEASURE CRAFT EMISSION FACTORS
Greater than 50 percent but less than or equal 100 percent of load
Value
(% Load)
68. 3a
56. 2a
83. 2a
81. ia
70. 2*
82. 2a
74. 5b
51. 9b
90. 7b
78. 8b
74. 5*>
57. 2b
AVG.
VOC
(g/HP/hr)
211
152
109
101
102
119
156
80
55.2
55.3
65.4
63.3
106
(8.1/97.9)d
(lb/103 gal)
2,282
1,505
1,332
1,510
1,697
1,869
c
c
c
1,263
c
c
1,637
(124/1513)d
CO
( g/HP/hr )
256
316
294
328
135
167
204
147
113
172
193
201
211
(lb/103 gal)
2,764
3,128
3,598
4,882
2,246
2,627
c
c
c
3,933
c
c
3,311
NOV
(g/HP/hr)
2.01
0.71
0.86
0.34
1.83
1.53
0.50
0.13
0.20
0.20
0.37
0.24
0.74
(Tb/103 gal)
21.7
7.03
10.6
5.09
30.4
24.0
c
c
c
4.47
c
c
14.8
aReference 25.
^Reference 26.
«Not available.
ciMethane/nonmethane VOC splits derived from Table 9-06-02B, Reference 3.
Pollutant
Conversions
g/Kw/hr
lb/1Q3HP/hr
9/1
CH4
10.9
17.9
14.9
NMVOC
131
216
181
CO
283
465
397
NOx
0.99
1.63
1.77
-------
TABLE C-5
GASOLINE POWERED INBOARD PLEASURE CRAFT EMISSION FACTORS
100 percent of load3
Engine Size
(HP)£
50
65
70
40
40
AVG.
VOC
(g/HP/hr)
93
69.2
52.9
62.5
51.3
65.8
(5.0/60.8)d
CO
(g/HP/hr)
153
143
180
156
105
147.4
-
NOX
(g/HP/hr)
C
0.42
0.30
0.48
0.52
0.43
aReference 25.
^Tests conducted for five different engines.
GNot available.
Conversions
g/Kw/hr
lb/103HP/hr
Pollutant
CH4
6.7
11.0
NMVOC
81.5
,134
CO
198
325
NOX
0.58
0.95
-------
APPENDIX D
EMISSION DATA SUMMARIES FROM REFERENCED DATA SOURCES
NOTE: Pollutant concentration, emissions and table numbers are
expressed in terms as reported in the referenced document,
D-l
-------
1. American MAN Heavy Fuel Fired Diesel Engine Data
References 9 and 10
D-2
-------
AMERICAN MAN 1978 DIESEL ENGINE DATA3
Engine
Classification
14V 52/55A
(four stroke)
KSZ 70/125B
(two stroke)
KSZ 78/1 55B
KSZ 78/1 55BL
KSZ 90/160B
KSZ 90/1 60BL
Full Load
10850 KW
(14770 HP)
1520 KW/cyl
(2065 HP/cyl)
4-10 cyl
1960 KW/cyl
(2665 HP/cyl)
(6+8 cyl)
1960 KW/cyl
(2665 HP/cyl)
(6+8 cyl
2700 KW/cyl
3680 HP/cyl
8 cyl
2700 KW/cyl
3680 HP/cyl
8 cyl
Fuel Sulfur
Content
(%)
2.16
2.16
1.0
2.5
4.0
2.5
4.0
2.5
4.0
2.5
4.0
2.5
4.0
2.5
4.0
2.5
4.0
2.5
4.0
Load
(%)
100
100
100
85
85
60
60
85
85
60
60
85
85
60
60
85
85
60
60
SO? NO ASH NOX CO HC
gm/KW/hr
8.5
9.2
4.3
11.1
17.7
11.2
17.9
11.2
17.8
11.2
18.0
10.9
17.5
11.0
17.7
11.1
17.7
11.2
17.9
^
7.44
7.44
7.7
7.7
7.9
7.9
7.6
7.6
7.8
7.8
8.8
8.8
8.9
8.9
8.8
8.8
8.9
8.9
0.8
-
-
-
-
—
-
-
-
—
-
-
-
—
-
-
-
^
7.129
-
-
-
-
—
—
-
-
—
—
-
-
—
—
-
-
^
.698
2.28
1.7
1.7
1.2
1.2
3.5
3.5
2.5
2.5
1.5
1.5
1.4
1.4
1.6
1.6
1.4
1.4
.913
0.72
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.3
0.3
0.3
0.3
0.2
0.2
0.3
0.3
Consumption
(kg/KW/hr)
0.196
Reference 10 (information originally provided in an Appendix to Reference 9).
-------
AMERICAN MAN FOUR STROKE DIESEL ENGINE DATA
(Current Production as of March 1983)a
Fuel Type
Heavy Fuel*5
Heavy Fuel*5
Heavy Fuel*3
Heavy Fuel*3
Heavy Fuel**
Engine
Classif cation
L and V 20/27C
L and V 25/3 Od
L and V 32/36e
L and V 40/45®
L and V 52/55e
Rate
Capacity
KW/cyl
100
220
370
550
775
HC
ppm
120
300
120
150
290
NOX
ppm
600
1160
760
890
1160
CO
ppm
180
200
300
110
100
Load
%
100
100
100
100
100
Exhaust
Gas Mass
Kg/KW/hr
7.4
7.6
8.4
8.4
8.3
Fuel Consumption
L Engine
g/KW/hr
212
204
198
192
190
V Engine
g/KW/hr
210
203
195
188
186
aReference 10.
bHeating value (lower) = 42700 KJ/kg.
CL engine configuration consists of 4-9 cylinder engines.
V engine configuration consists of 12, 14, 16 and 18 cylinder engines.
"L engine configuration consists of 6, 8 and 9 cylinder engines.
V engine configuration consists of 12, 16 and 18 cylinder engines.
eL engine configuration consists of 6-9 cylinder engines.
fExhaust gas density estimated to be 1.2240 kg/m3 at 60CF an 1 atm. (std. conditions).
(This value obtained from measurement on a 14 cylinder V 52/55 engine is considered representative of
exhaust densities from the engine classifications).
-------
2. Fairbanks-Morse Diesel Engine Emission Data3
Reference 8
NOTE: These data were excluded from the data base due to a C rating
which cannot be averaged with the A and B rated data
-------
DIESEL ENGINE EXHAUST EMISSION DATA3
Fairbanks-Morse Engine Division
Below is listed the anticipated exhaust emissions with engines burning
#2 diesel fuel.
Colt-Pielstick, 520 RPM,
NOX
CO
HC
S02
Particulates
650 HP/cylinder15 (four stroke)
9.0
.8
.2
.9
.1
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
Fairbanks-Morse 38TD8-1/8,
NOX
CO
HC
S02
Particulates
900 RPM, 320 HP/cylinder0
8.0
1.0
.3
1.0
.2
(two stroke)
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
Fairbanks-Morse 38D8-1/8 ,
NOX
CO
HC
S02
Particulates
900 RPM, 180 HP/cylinderd
17.0
.8
.3
1.1
.2
(two stroke)
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
g/BHP/hr
aData provided are average results over the engine classification range,
^This engine classification consists of 14, 16 and 18 cylinder engines.
GThis engine classification consists of 6, 9, and 12 cylinder engines.
engine classification consists of 4, 5, 6, 8, 10, and 12 cylinder
engines.
-------
3. Caterpillar Tractor Company Industrial Diesel Engine
(four stroke) Emission Data at Full Load (100%)
Reference 7
-------
CATERPILLAR TRACTOR COMPANY INDUSTRIAL DIESEL ENGINE
(four stroke)
EMISSION DATA AT FULL LOAD (100%)
Sales Model
D348
D348
D379
D379
D379
D379
3304
3304
3304
3304
3304
3304
3306
3306
3306
3306
3306
3306
3306
3306
D348
D398
D398
D379
D379
3208
3208
D399
3208
3406
3406
3408
3408
3408
3408
3412
Rating at
HP or RPM
670
850
500
540
550
545
140
165
125
90
100
85
195
270
250
150
180
198
225
165
900
825
912
570
600
120
130
1215
210
325
285
365
475
410
450
575
1800
2000
1225
1300
1225
1225
1800
2200
2000
2100
2200
2000
2200
2200
2200
2200
2200
1950
2200
2200
2000
1200
1200
1200
1200
2800
2800
1200
2800
2100
2100
1800
2100
2100
2100
1800
100%
gal/hr
in fuel
35.1
45.7
28.6
31.3
31.3
31.2
8.3
10.4
7.7
6.2
5.1
15.6
13.7
45.7
11.5
17.4
19.9
27.1
g/hr Pollutant
HC
60
55
14
15
15
15
10
8
20
19
15
20
20
20
16
20
65
50
50
55
55
60
60
50
10
70
30
60
80
40
40
60
CO
1000
746
171
200
145
90
100
100
90
191
80
125
90
90
82
90
1100
675
730
692
758
200
190
480
1100
460
220
550
750
620
250
680
NOV
A
5200
3601
818
950
646
421
375
347
960
1208
1500
530
900
1290
1380
960
5500
5980
6400
3694
3870
980
1070
6100
1370
2828
1683
2790
2447
3000
2279
3790
S0x
570
404
102
130
94
73
85
65
146
196
190
120
137
150
165
146
610
600
640
412
435
96
102
850
150
224
209
240
317
300
330
380
DPMa
80
55
28
45
22
10
10
10
25
17
30
10
6
25
27
25
110
43
55
54
57
42
38
160
175
134
32
133
170
30
83
186
aDPM = dry particulate matter
-------
4. Cummins Engine Company Diesel Engine Data
Reference 11
-------
DIESEL ENGINE EMISSION DATA CUMMINS ENGINE COMPANY3
Emissions
(g/HP/hr)
NO*
HC
• Engine Model VT-255
100% Power
75% Power
50% Power
25% Power
2% Power
Rated
8.51
7.10
5.96
5.58
37.60
HP 225 @
0.17
0.24
0.40
1.05
40.00
Engine Model VT-350
100% Power
75% Power
50% Power
25% Power
2% Power
Rated
9.74
7.04
5.20
3.82
12.29
HP 340 @
0.21
0.27
0.47
1.14
29.70
Engine Model NTC-290
100% Power
75% Power
50% Power
25% Power
2% Power
. Rated
11.50 _,
9.51
7.63
5.77
30.90
HP 290 @
0.14
• 0.14
0.22
0.43
5.02
Engine Model NTC-400
100% Power
75% Power
50% Power
25% Power
2% Power
Rated
10.70
9.23
7.57
6.42
37.30
HP 400 @
0.20
0.17
0.21
0.43
28. 10
CO
(555 cu.
3000 RPM
1.75
1.77
2.36
4.08
70.60
(903 cu.
2400 RPM
1.58
0.89
1.06
2.13
38.00
(855 cu.
1900 RPM
0.99
0.73
0.91
1.33
24.60
(855 cu.
1900 RPM
1.00
0.58
0.57
0.86
20.20
Air
(Ib/hr)
in. )
2415
2203
2061
1861
1770
in.)
3400
3163
2969
2764
2616
in.)
2979
2585
2370
2019
1854
in. )
3845
3308
2776
2245
1925
Fuel Rate
(Ib/hr)
92.7
70.5
53.8
36.5
21.5
131
100
75
50
29
112.9
87.4
62.8
39.4
18.7
142.2
106.9
75.0
43.2
15.7
-------
(Continued) DIESEL ENGINE EMISSION DATA CUMMINS ENGINE COMPANYa
Emissions
(g/HP/hr)
100% Power
75% Power
50% Power
25% Power
2% Power
100% Power
75% Power
50% Power
25% Power
2% Power
NO*
Engine Model
Rated HP
11.14
8.57
6.12
4.63
HC
KT-450
450 @
0.15
0.25
0.30
0.39
10.02 10.90
Engine
Rated HP
11.62
9.19
6.73
5.31
2.94
Model
600 @
0.14
0.14
0.21
0.33
8.34
CO
(1150 cu.
2100 RPM
0.78
0.68
0.83
1.49
19.19
KTA-600
2100 RPM
0.79
0.36
0.42
0.60
7.36
Air
(Ib/hr)
in.)
4357
3885
3395
2949
2538
5694
5131
4360
3497
2728
Fuel Rate
(Ib/hr)
171.2
132.9
96.7
62.1
31.8
215.2
163.7
117.8
72.5
30.0
aThe above emission data (Reference 4) are current (as of March 1983)
EPA certification data of automotive diesel engines. Marine engines
are not emission tested. The manufacturer, however, stated that these
data "provide a close estimate of the emissions expected from marine
engines".^ ^
-------
5. Detroit Diesel Allison Division of General Motors
Reference 12
-------
ENGINE TYPE: 12V-149TI PROPULSION UNIT
COMPUTED DATA
Date: 3/22/74
RPM
1900
1900
1900
1900
1900
1600
1600
1600
1600
1600
Load
%
100
75
50
25
2
100
75
50
25
2
BHP
1150
862
575
287
0
1018
749
509
255
0
BSFC
( Ib/BHP-hr )
.397
.401
.423
.533
186.1
.393
.382
.396
.494
157.2
F/C
183.3
138.9
97.6
61.4
27.0
190.7
136.6
96.1
60.0
22.8
PPM
NO
1133
1089
854
478
134
1042
1112
901
507
106
PPM
CO
889
316
74
42
126
1300
319
82
73
150
BOSH
1.4
.7
.4
.3
.3
1.6
.7
.4
.3
.2
Air
CFM
3903
3420
3035
2687
2297
3175
2679
2324
2084
1858
Flow
Mass
266
233
207
183
159
216
182
158
142
128
A/F
34.9
40.4
51.0
71.8
142
32.4
38.2
47.0
67.6
160
GM/HR
NO
8734
7334
5077
2502
605
6541
5866
4102
2059
383
%
NO
20
17
12
6
1
15
14
9
5
1
GM/HR
CO
6397
1985
409
203
533
7610
1570
349
275
508
%
CO
32
10
2
1
3
38
8
2
1
3
650
95.5
13.9
89
165
.2
155
11 64
27
47
-------
ENGINE TYPE: 8V-71T PRIME POWER GENERATOR SET
COMPUTED DATA
Date: 9/9/80
RPM
1800
1800
1800
1800
1800
1500
1500
1500
1500
1500
Load
%
100
75
50
25
10
100
75
50
25
8
BHP
310
232
155
77.0
31.5
269
202
135
67.0
22.7
BSFC
(Ib/BHP-hr)
0.381
0.389
0.420
0.519
0.660
0.380
0.384
0.405
0.483
0.590
F/C
73.6
56.3
40.6
24.9
13.0
76.5
58.0
40.9
24.2
10.0
PPM
NO
1220
1018
696
386
197
1245
1150
757
396
177
PPM
CO
702
113
102
92
139
1561
225
113
137
163
BOSH
0.3
0.2
0.2
0.1
0.1
0.9
0.6
0.4
0.1
0.1
Air
CFM
82.8
70.8
61.9
57.2
52.7
62.5
56.2
49.1
44.2
41.0
Flow
Mass
1178
1008
880
814
849
889
799
699
629
584
A/F
42.1
47.1
57.0
85.9
152
36.7
43.4
53.9
81.9
184
GM/HR
NO
2918
2077
1236
630
295
2252
1863
1068
500
206
%
NO
22
16
9
5
2
17
14
8
4
2
GM/HR
CO
1566
215
170
140
194
2635
339
148
162
177
%
CO
27
4
3
2
3
45
6
3
3
3
-------
ENGINE TYPE: 8V-71TI PROPULSION UNIT
COMPUTED DATA
Date: 1/27/77
- RPM
2100
2100
2100
2100
2100
1500
1500
1500
1500
1500
Load
%
100
75
50
25
2
100
75
50
25
2
BHP
428
321
214
107
25
310
233
155
77
23
BSFC
(Ib/BHP-hr)
.392
.392
.412
.508
1.21
.418
.388
.396
.468
.85
F/C
90.1
67.7
47.5
29.2
16.4
97.6
67.9
46.2
26.9
14.5
PPM
NO
1144
1070
712
396
285
884
1071
731
460
165
PPM
CO
967
209
139
150
205
4758
597
202
225
367
BOSH
.6
.3
.2
.1
.1
2.3
.7
.2
.1
.2
Air
CFM
88.8
78.3
70.8
64.7
60.5
57.9
49.6
46.0
42.9
41.5
Flow
Mass
1257
1108
1002
916
856
819
702
652
607
588
A/F
31.8
37.4
48.2
71.6
119
26.8
33.0
45.1
72.2
130
GM/HR
NO
2955
2425
1451
733
318
1497
1545
970
564
195
%
NO
23
19
11
6
2
12
12
8
4
2
GM/HR
CO
2331
441
265
258
329
7513
803
250
257
404
%
CO
18
3
2
2
3
58
6
2
2
3
-------
ENGINE TYPE: 8V-71TI PROPULSION UNIT
COMPUTED DATA
Date: 1/26/77
RPM
2300
2300
2300
2300
2300
1800
1800
1800
1800
1800
Load
%
100
75
50
25
2
100
75
50
25
2
BHP
451
316
226
90
26
378
284
190
95
21
BSFC
( Ib/BHP-hr )
.395
.404
.430
.608
1.39
.394
.381
.397
.473
1.11
F/C
87.6
63.1
47.8
27.0
17.7
93.4
68.0
47.2
28.1
14.6
PPM
NO
1160
970
694
326
178
1122
1047
730
434
261
PPM
CO
512
173
151
148
178
2241
296
161
182
280
BOSH
.4
.2
.2
.2
.2
1.0
.3
.1
.1
.1
Air
CFM
102
89.3
81.9
71.7
68.4
72.1
64.4
58.3
54.9
50.6
Flow
Mass
1447
1263
1159
1014
968
1081
912
825
777
716
A/F
34.4
42.0
50.6
78.3
114
29.0
35.7
46.5
73.4
131
GM/HR
NO
3442
2500
1633
666
347
2360
1954
1227
681
375
%
NO
22
16
11
4
2
15
13
8
4
2
GM/HR
CO
1418
415
332
283
322
4396
516
252
266
376
%
CO
16
5
4
3
4
50
6
3
3
4
-------
Date: 11/1/76
ENGINE TYPE: 8V-71T GENERATOR SET
COMPUTED DATA
RPM
1800
1800
1800
1800
1800
1500
1500
1500
1500
1500
Load
%
100
75
50
25
2
100
75
50
25
2
BHP
408
305
204
102
14
340
254
169
85
9
BSFC
( Ib/BHP-hr )
.386
.384
.399
.477
1.59
.405
.384
.392
.456
1.74
F/C
99.4
74.0
51.4
30.7
14.4
104.5
73.6
50.2
29.2
12.0
PPM
NO
1653
1439
967
517
194
1254
1367
986
561
188
PPM
CO
892
219
123
134
158
3132
414
156
156
224
BOSH
.1
.1
.1
.1
.1
.4
.2
.2
.1
.0
Air
CFM
92.7
80.2
66.7
57.9
52.5
72.4
60.6
52.6
46.3
40.9
Flow
Mass
1320
1142
949
824
751
1030
862
749
659
585
A/F
35.4
41.0
49.2
71.8
138
31.5
37.3
47.7
72.0
151
GM/HR
NO
4447
3334
1856
856
289
2642
2399
1494
744
218
%
NO
24
18
10
5
2
14
13
8
4
1
GM/HR
CO
2238
474
221
206
219
6154
677
220
193
242
%
CO
20
4
2
2
2
56
6
2
2
2
-------
ENGINE TYPE: 12V-71T PRIME POWER GENERATOR SET
COMPUTED DATA
Date: 9/9/80
RPM
1800
1800
1800
1800
1800
1500
1500
1500
1500
1500
Load
%
100
75
50
25
4
100
75
50
25
3
BHP
480
360
240
120
20.3
420
315
210
105
12.0
BSFC
( Ib/BHP-hr )
0.375
0.368
0.405
0.510
0.650
0.372
0.371
0.386
0.468
0.595
F/C
74.9
57.0
40.4
25.4
13.0
78.0
58.3
40.5
24.5
10.0
PPM
NO
1342
958
617
297
187
1264
1159
796
455
246
PPM
CO
720
101
97
93
95
1596
201
152
123
168
BOSH
0.3
0.2
0.2
0.1
0.1
0.9
0.6
0.4
0.1
0.1
Air
CFM
119
107
96.9
87.8
79.0
96.9
85.3
74.8
68.8
61.5
Flow
Mass
1689
1529
1379
1248
1124
1379
1214
1064
979
874
A/F
39.6
48.7
59.8
86.0
359
37.2
43.8
55.4
84.1
516
GM/HR
NO
4606
2962
1713
745
417
3546
2853
1709
895
428
%
NO
23
15
9
4
2
18
14
9
4
2
GM/HR
CO
2305
291
251
217
197
4178
461
305
225
272
%
CO
26
3
2
2
2
47
5
3
3
3
-------
ENGINE TYPE: 16V-71T PRIME POWER GENERATOR SET
COMPUTED DATA
Date: 9/9/80
RPM
1800
1800
1800
1800
1800
1500
1500
1500
1500
1500
Load
%
100
75
50
25
5
100
75
50
25
3
BHP
600
450
300
150
28.0
522
391
261
130
16.0
BSFC
(Ib/BHP-hr)
0.381
0.391
0.424
0.525
0.660
0.380
0.385
0.407
0.487
0.599
F/C
71.3
54.9
39.7
24.6
13.0
74.2
56.3
39.8
23.7
10.0
PPM
NO
1199
888
577
277
177
1303
1160
796
455
245
PPM
CO
513
101
97
93
95
1200
201
147
123
168
BOSH
0.3
0.2
0.2
0.1
0.1
0.9
0.6
0.4 .
0.1
0.1
Air
CFM
167
140
123
114
105
130
110
96.8
87.0
82.2
Flow
Mass
2378
1997
1748
1618
1498
1848
1558
1378
1238
1169
A/F
43.9
47.9
57.9
86.7
342
39.3
43.7
54.7
82.5
514
GM/HR
NO
5780
3590
2032
900
526
4892
3664
2215
1131
570
%
NO
23
14
8
4
2
19
14
9
4
2
GM/HR
CO
2306
380
318
281
263
4204
592
382
285
363
%
CO
24
4
3
3
3
44
6
4
3
4
-------
6. Scott Environmental Technology Oil Tanker Emission Testing Data
Reference 9
-------
Test
Date
9/6/78
10/4/78
11/8/78
11/8/78
11/8/78
11/8/78
11/8/78
11/9/78
11/9/78
11/9/78
11/9/78
11/9/78
11/9/78
11/10/78
10/7/78
Fuel
Type
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
No. 6
Powerplant
Turbine (elec)
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steaa Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Steam Turbine
Rated
7,000
18 ,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
18,000
26,000
OUT
HP
27,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
70,000
120,000
Mode
Offloading
Offloading
Offloading
Harbor Standby
Harbor Standby
Harbor Transit
Sealane Trans.
Full
Full
Full
Reduced" Power
Reduced Power
Sealane Trans.
Transit
Offloading
Load
Z
26.7
41.7
28.9
14.9
15.8
37.5
59.9
102.6
105.8
100
91.5
89.6
74.6
54.8
48.6
S02
ppm
562.6
747.8
963
-
-
-
-
809
809
809
796
796
-
726
706.3
°2
8.8
5.25
16.5
14.9
16.1
13.5
6.6
4.4
4.5
4.5
4.2
5.3
7.9
10.2
4.8
C02
Z
9.3
12.7
-
-
-
-
-
-
-
-
-
-
-
-
13.5
HC
ppm
3.1
2.3
23
21
22
15.1
3
1.4
0.7
1.1
2.5
0.9
3.5
14.8
2.5
NOX
ppm
304
188
80
83
81
115.4
227.5
227.5
267.6
260.6
257.4
253
214.4
175.5
194
CO
ppm
1.0
63b
728
699
681
491
96.8
156.6
279
337.2
759.6
65.7
114.5
373.1
5.3
Fuel
Cons.
gal/hr
294
265-554
318
164
174
413
660
1130
1164
1101
1007
986
821
603
441-630C
Boiler
Ratlngd
MMBTU/hr
-
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
163.8
-
Footnotes
aReference 9.
''Instrument Interference.
cFuel consumption averaged used for calculation.
dBoller ratings baaed on fuel value of 18,408 BTU/lb, fuel density of 8.1 lb/gal19 and a rated boiler fuel
consumption of 106.8 tons/day.
-------
6. NOX Monitoring of an Oil Tanker
Scott Environmental Technology
1. Data table was taken from Reference 17.
2. Testing was conducted on the British
Renown Oil Tanker during offloading.
3. The tanker has two oil fired boilers that
are designed for a max. evaporation of
141,000 Ibs/hr.
4. Tests were conducted December 3, 1976.
-------
7. NOx Monitoring of an Oil Tanker
Scott Environmental Technology
1. Data table was taken from Reference 18.
2. Testing was conducted on the British
Renown Oil Tanker during offloading.
3. The tanker has two oil fired boilers that
are designed for a max. evaporation of
141,000 Ibs/hr.
4. Tests were conducted December 3, 1976.
5. The NOX concentrations (in ppm) are
uncorrected.
-------
TABLE 1
AVERAGE DO CONCEHTRATIOBS 27 CHEMIUMIHESCE8CE AKALTZER
TiM
Begin
1700
1130
IBM
1913
2000
2036
2100
2200
2232
2314
2400
0100
0200
0300
0405
0440
0500
0520
0600
0636
0700
0800
0900
1000
1100
1200
1300
1400
1500
1600
1620
1700 '
1800
1840
1900
1920
Time
fH
-------
TABLE 3. BOILER FIRING RATE; % C02 and C>2
Start
1800
2000
2200
2400
0200
0400
0600
0800
1000
1200
1400
1600
1700
1900
Stop"
2000
2200
2400-
0200
0400 .
0600
0800
1000
1200
1400
1600
1700
1900
2000
Firing Rate
(bb 1/2 Hour)
89.0
87.7 -
88.4
86.5
75.1
73.5
75.9
74.4
78.5
77.1
76.2
43.8
30.0
27.0
z co2
8.3
10
9.6
11
10.4
8.8
10.2
10.0
10.5
10.5
10.6
9.8
10.0
8.7
zo2
—
7.0
7.3
6.2
6.1
6.2
6.4
7.5
7.5
7.0
6.4
6.2
6.5
7.5
*Stopped purging at 0630 - Took on ballast 8.24 Ave. 6.75 Ave.
Note; CO analysis was negligible at each of these sample times
-------
TABLE 4
FUEL ANALYSIS
BRITISH RENOWN - NOX STACK TEST
Ultimate Analysis
Carbon, Z
Hydrogen, %
Nitrogen, %
Sulfur, %
Oxygen, %
Ash, %
Ash Analysis
Na -
V -
Ni -
Fe -
Ca -
Vg -
Si -
Al -
As -
70 ppm
70 ppm
8 ppm
3 ppm
2 ppm
2
1
1
1
Physical Analysis
84.40
11.48
0.29
2.56
0.40
0.03
Minors(.1 .9 ppm)
Zn • .7
Pb - .4
Co - .4
Ba - .3
Mn - .3
Cu - .2
Mo - .2
P - .15
Sn - .1
Ti - .1
W - .1
Cr - .1
API gravity
Pour, °F
Flash P.M., °F
Carbon, Residue, Ramsbottom
B.S&W
BTU content, BTU/#
Viscosity, SUS @
15.9
30
182
4.723
0.8
18,450
100°F
2200
Distillation
See page 15
Trace(<.l ppm)
Ag
Be
Cd
Se
B
130°F
673
210°F
110
-------
8. Emission Testing Data for Fourteen U.S. Coast Guard
Cutter Vessels [13 Diesel Engine Powered, One (USCG
Campbell) Steam Powered]
Reference 13
Notes Per Vessel:
1. USCGC Vankton Tests Conducted 6/28, 6/29 and 7/8/72
2. USCGC Convslip Tests Conducted 7/10-7/12/72
3. USCGC Campbell - Data not used - % load unknown
4. USCGC Active Tests Conducted 8/3-8/4/72
5. USCGC Relief Test Conducted 8/8/72
6. USCGC 40538 Tests Conducted 8/11 and 8/14/72
7. USCGC White Heath Tests Conducted 8/16, 8/17, and
9/18/72
8. USCGC Chase Tests Conducted 8/23, 8/24 and 10/31/72
9. USCGC Spar Tests Conducted 8/29-8/31/72
10. USCGC Cape Horn Test Conducted 9/6/72
11. USCGC Point Jackson Tests Conducted 9/11-9/12/72
12. USCGC Shackle Tests Conducted 9/14-9/15/72
13. USCGC Decisive Tests Conducted 10/3-10/4/72
14. USCGC Boat 44318 Test Conducted 10/12/72
-------
SCOTT RESEARCH LABORATORIES SR
dASELI^E STACK EMISSION 3A7* - COAST GUARD VESSELS
VESSEL NAME t USCSC YANKTON
*<
ENG MQOE ENG SHAFT PROP APPflOX. RA'E »••»•• ••••••••- —
3P« qpv PITCH LOAO •/«« CO TKC
31 NORMAL O.2 3.42 l-'S
31 2S 12J8 18 J9 179 282 MP 188.4 3." .S*
11 SLOW *-ii 16J 291 I? iSi.J 2.91 1 .«.
XI SLOW -J8 164 272 Rf> U8.J 2.9<> 1.S8
-1 C3UISE SJ9 298 1.72 IP 131.* *.13 l-*9
••i cauiss sa» z^a ^r «P lau* 3-3^ a.ia
-1 CRUISE 529 H2 i*l «P 181.* 3.65 1.33
-1 CSutSS S29 l»l »*2 *f 1=1.* 3.5* 1.33
il CRUISE 538 l«« i-3 "P UU* 3.*3 1.57
M CPuISE 533 19* **8 i» 131.* 3. «J 1.57
W2 IDLE 32fl J 8 HP 2«. »6 8.*J
"2 IDLE 329 9 9 "P 23.19 9-76
•2 SLOW »« 129 272 HP M6.2 3. J2 1.9*
12 CRUISE 529 192 •'.72 HP 189.2 *-3l 1.79
».i C9U1SE S3« 192 *73 HP 199.2 3.3J 1.76
"2 CRUISE S3i! 19fc 469 HP 139.2 3.53 1.S9
-2 C3UISE 5*9 19* '~~A IP 184.2 3.«i. I.a7
12 CHuISE S*J 19* k-3 HP 149.2 3.59 1.63
SERIAL •
12S2S
6-71-l»«-9S8
j-71-l»«-«JS
ia««
1341
• ITJEL
NOX SOX
2.25
12.18
33. a2
32.16
)*.U
J4.1S
ia.*s
....67
ib.ai
13. sa
:i*.36
'.iH.13
•W..61
<.l.*l
•.5.92
..i.92
..0.25
..5.76
.U..S2
.,J.53
•.3.17
.... .ai
..7.76
-.9.29
'.9.21
TOT.ENO. TSMOH
riME-H8s HH$ RATED OUTPUT
•»
18*13 1825 52 Kb »
16557 3631 52 Kk S
22915 5919 619 HP » 721 RPM
22993 *«9l 689 m> » 728 RPM
• / HOUP.
SMOKE PART co THC NOX sax
s.s
6.1
4.1
4.5
4.5
4.S
*.s
4.5
4.S
•DATE 13/15/73
VESSEL • •• 2
PACE 1
VESSEL RES • t 277
TOT. ENG. TSnOn
TIME-HRS 'HM a»fEO OUTPUT
12519* 619989 3TU
-------
SCOTT HES8ARCH LABORATORIES SR
STACK EMISSION 0»f» . COAST GUARD VESSELS
13*2-«16-*373
VESSEL NAȣ t USCOC CAMPBELL
VESSEL TYPE I CLASS i «n£C - 337
OATE I3/J3/T3
VESSEL « : 3
PACE 1
VESSEL REG • t 32
POMERPLANT DESCRIPTION DATA rait SAMPLED VESSEL
CODE POWERPLANT DESCRIPTION ENG. MODEL ENG. MfGR.
M| ST30 MAIN ENG-SP £
12 PORT MAIN ENG-SP A
13 STBO MAIN ENO-SP f
14 PORT MAIN ENG-SP B
H STBO MAIN ENG-SP G
16 PORT MAIN 6NG-SP C
MT JT30 MAIN ENO-SP M
M8 PORT MAIN ENO-SP 0
EXH4UST EMISSION
£NG 100E ESS
9P*
11 I3LE
11 CRUISE
Ml FULL
12 IDLE
12 csutse
12 FULL
13 IDLE
13 CRUISE
13 PULL
"4 ISLE
14 CRUISE
i» FUCL
MS IDLE
i3 CRUISE
i5 FULL
16 IDLE
i« CRUISE
16 FULL
iT IDLE
17 cauise
17 FULL
"9 IDLE
i* CRUISE
-s FULL
FT4A-6 9A8COCX i
FT4A-4 9A8COCK i
FT4A-6 9A8COCK I
FT4A-4 9A8COCX «
FT4A-4 3A8CQCX "k
FT4A-4 8A8COCX k
FT4*-« 9A8COCX i
FT4A«« 3ABCOCX fc
•• ILCOX
« ILCOX
'.ILCOX
>• ILCOX
.ILCOX
•ILCOX
• ILCOX
.ILCOX
SERIAL •
TOT.ENG. TSHOH
TIME-HAS 'HKS RATED
135* HP
135* HP
133* HP
133* nP
1531 HP
153* nP
135* HP
153* nP
OUTPUT
»
9
?
a
,1
»
»
»
DATA ON A MASS BASIS :
Sn»FT PROP
api PITCH
1
18)
22*
1
ie»
221
<
is*
. 22)
t
18*
22 f
i
191
221
1
18)
22*
1
tat
22*
4
184
2?9
»oos
STARBOARD aOlL£R '.OLE
=QRT SOIL£R
CSUISE
FULL
ISLE
CRUISE
='JLL
FUEL
tPPROX. BATE •-
LOAO »/««
644.4
1243.9
2112.2
644.4
1411.9
2U2.2
694.4
12»3.9
2112.2
694.4
1411.9
2112.2
644.4
1293.9
2112.2
6*4.4
1411.9
2112.2
6*4.4
129S.9
2112.2
6*4.4
1411.9
2112.2
FUEL
!!ATS
S!/H» CO
SG4.4 .59
!.23S.9 .34
U12.2 1.49
604.4 2.35
1411.9 .S3
2112.2 .45
•
CO
.41
.43
'1.79
1.28
.41
.36
.47
.38
2.48
1.79
• 43
.8*
.73
.29
1.49
1.93
.44
.31
.63
'.23
1.44
6.42
1.41
.34
* /
THC
-
.094
/ in*
THC
.14
.17
.14
.93
.1)
.11
.93
1.31
.99
.42
.19
.44
.96
.11
.11
.94
AVERAGE
1000 •«
NO
5.
5.
.101 4.
.
.093
.39
3.
1 4.
S.
« FUEL
NOX SOX
3.62
4.87
4.88
6.32
5.41
5.59
3.45
5.13
4.34
5.13
S.2t) 23.3)
5.79
3.61
3.99 36.12
4.37 27.42
6.13
3.27
5.42 23.13
5.37
5.41
5.47
5.49
4.16
S.23
EMISSION RATES
eijSL
i "x
SI
36 37.64
92 29.02
63
93 24.63
SO 29.67
SMOKE
1.4
2.3
2.3
2.5
3.3
3.4
1.9
3.*
2.3
1.4
3.4
1.3
US
3.S
2.4
2.4
5.4
3.4
2.4
3.4
2.5
4.3
2.4
PART
3.233
17.121
3.690
14.720
• /
?»HT CO
.23
.32
3.79
.78
.33
.76
.23
.46
• 4.4*
1.48
.61
1.69
.47
.34
2.31
1.17
.61
.65
.39
.33
2.19
3.38
1.43
.73
a / -OUR
ca THC
.35
.44 .11
3.15 .21
1.72
.32 .12
.95 .74
HOUR
ThC
.17
.37
.13
.97
.12
.33
.47
2.76
.11
.43
.14
.48
.47
.23
.16
.47
NO
3
6
10
3
^
11
NOX SOX
3.44
5.37
11.39
3.32
7.64
11.32
3.29
6.22
19.22
3.19
7.46 36. -3
12.23
3.39
7.12 43.56
14. 39 57.12
3.73
7.44
U.46 59.43
3.25
6.31
19.71
3.48
5.74
11.46
i »X
.33
.46 4S.39
.39 61.29
.;3
.03 34.30
.52 52.67
NOTES: CRUISE AND FULL VALUES ARE STACK VELOCITY WEIGHTED AVERAGES.
i2L£ VALUES ARE AREA WEIGHTED AVERAGES.
-------
scorr RESEARCH LABORATORIES
liASELINE STACK EMISSION 0*"
VESSEL MAKE I USCOC »CTIv£
SAL 1312->16-)3T3
• COAST (HJARO VESSELS
DATE 13/95/73
VESSEL • : 4
PACE 1
VESSEL RES • : 618
VESSEL TYP« I CLASS : «M€C - 21*A
POKfRPLANT DESCRIPTION DATA FOR SAMPLED VESSEL : •
CODE POMERPLANT DESCRIPTION ENO.MOOEL
31 STBO 30ILER S916SJ-S
32 PORT 30ILER 91US1-S
SI ST80 SS GENERATOR 03OTA
92 PORT SS GENERATOR 0343TA
xl STBO MAIN OlESEL-FMO SP FvSM-12-T
M2 PORT MAIN DIESEL -^0 SP Fvan-12-T
x3 ST80 MAIN OlESEL-STRN SP FVSM-12-T
«4 PORT MAI.1 DIESEL-STAN SP FV8M-12-T
iXMauST 'MISSION DATA aw A -.ASS BASIS i
FUEL
ENS XOOE ENO SHAFT PROP APPROX. «A'£
p.i>M 5PX PITCH LOAD »/HR
32 NOBMAL
92 1.0 FLM
51 1 % 18)1 i *M
ai 1.1 % leu 3) .iw
01 63 « 13)1 125 KM
32 1 * 1811 1 KM
32 3» « I8ill 61 KM
02 55 t 1319 111 KM
xl SLOW S31 161 .2 '
XI CRUISE 61) 185 .3
Ml FULL 39) 265 .8
"2 FULL 4«> 2SS .3
M3 SLOW S3) 16) .2
"3 CRUISE 61) 183 .3
M3 FULL 34« 265 .3
.X4 FULL 41) 263 .i
SCOTT 8CSCARCM LABORATORIES
BASELINE STACK EMISSION DATA • COAST SUARO
VESSEL NAME i usesc RELIEF
VESSEL TYPE 4 CLASS i «LV - 128
ENO. MFGS.
VAPOR
VAPOR
CATERPILLAR
CATERPILLAR
COOPEH-8ESSEHER
COOPEN-9ESSSK«R
COOPEM-8ESSEMCR
COOP£R-9ESS£x«R
* / 1)1)
CO THC
9.11 43.12
9.7J 33.39
12.16 .34
4.13 1.93
13.75 2.91
17.23 4.32
7.49 2.17
6.12 2.72
19.15
6.26
31.91 2.67
33.43 1.37
13.32
6.27
31.79 3.19
33.74 1.86
SERIAL «
178*
1783
338639
334638
6865
6864
6865
6864
« FUEL
.'40 X SOX
1.39
1.36
23.36
.'2.96
16.33
19.63
21.31
16.46
31.49
117.31
cj.ta
S2.31
37.23
r3.S4
t2.lS
SRL 13)2-116-1373
VESSELS
TOT.ENO. TSMOH
TIME-MRS 'HHS RATED OUTPUT
21)11 3
211)1 *
11133 2)1 KM »
11356 211 K» jl
766) 1331 nP *
7656 138) HP »
766) 138) HP »
7656 1531 HP »
• / nOUR
SMOKE PART CO THC NOX 30>
6.1
6.1
7.4
9.4
9.3
6.4
8.1
7.1
4.5
1.131
8.1 3.616
4.5
5.4
9.5
DATE 13/13/73
VESSEL » : 5
PAOE 1
VESSEL REO * : 613
POMERPLANT DESCRIPTION DATA FOR SAMPLED VESSEL I
CODE POWERPLANT DESCRIPTION ENO.MOOEL
31 STBO BOILER N-193
52 PORT JOILER N-193
31 ST90 SS (3ENE9ATOR 41648
32 PORT SS 4ENERATOR 4)643
xl MAIN OUSEL ENO 241)-€
EXHAUST EMISSION DATA ON A '•ASS BASIS i
FUEL
ENO "00£ ENO SHAFT PROP APPROX. RATE
3P«. 3PX PITCH LOAD «/HH
32 NORMAL 25.2
31 1 t 1291 1 Kw
31 Si % 1299 19 Kv
Gl 73 t 1291 31 Ku
52 i I 12)1 i KW
32 SI 4 1291 . 29 «W
J2 3d » 12dl 16 <*
32 75 > 129» 27 KM
32 75 1 1201 34 KM
ENO. MFOR.
YORK-SHIPLEY
YORK-SHIPLEY
SENERAL MOTORS
GENERAL MOTORS
3ENERAL xOTOP.3
• / 1)))
CO THC
«^-— — —
22.73 68.16
9.72 38.33
3.37 28.32
18.16 93.35
9.47 39.89
9.64 42.61
9.31 36.25
11.24 34.45
SERIAL •
4A-18S52
4A- 18554
• FUEL
NOX SOX
3.41
33.33
33.23
33.32
23.77
32.12
31.43
33.11
TOT.ENO. TSMOH
TIME-MRS rt»j RATED OUTPUT
1123) 33)101 3IU 9
13557 351111 3TU 9
64115 4294 41 'KM »
36343 38)7 41 K'« .*
661 HP »
• / XOUR
SMOKE PART CO T«c NOX SOX
l.l .16 .21
3.4
6.4
7.4
6.1
6.3
7.3
-------
SCOTT RESEARCH LABORATORIES
iASELl.NE STACK EMISSION
VESSEL NAME i uscsc 41S38
VESSEL TYpg & CLASS i U/T
SRL 1312-116*9373
COAST «MRO VESSELS
49
o*rc 93/93/73
VESSEL • : 6
PAOE I
VESSEL RES * i 49338
POKERPLANT DESCRIPTION OATA ;'OR SAMPLED VESSEL :
CODE POVERPlANT DESCRIPTION £NG.MOOEL ENfi. MFGA.
SEPlAL •
TOT.ENO. TSMOH
'
OUTPUT
»l ST80 MAIN OIESEL ENO 6»TJ-«-flM OEMERAL MOTORS 4A-17S21 2243
.-. anur MAIN OIESEL ENO 6171-A-CH 5ENERAL MOTORS 6A-19I616 2246
•XHAUST EMISSION DATA ON A MASS BASIS i
£sS MODE
MI IDLE
•I CSuiSE
-I FULL
•2 SLOW
•2 SLOW
.<2 CSUISE
-2 O»u(SE
»2 FULL
ENO SHAFT PROP .iPPROX.
FIP. 3p« PITCH LOAD
639
991
1199
699
911
919
UJf
1
441
399
»s
4«l
311
319
RATE •
»/HR
1.4
17.3
33.6
9.2
9.2
17.3
17.3
34U
CD
73.83
17.19
19.26
39.73
29.89
18.63
19.17
8.33
i / llll • FUEL
THC NOX SOX SMOKE PART
JS3~*\ TT
29.74 3.1
19.69 l.l
21.66 7.9
16.23 32.27
21.71 3.1
13.94 39.39
16.11 4.1
13.4* 39.9*
211 nP » 2119 aPM
299 HP f 2999 3PM
• / HOUR
CO THC NOX SOX
.11 .48
.39 .SI
.34 .63
.33 .17
.24 .13 .43
.32 .36
.31 .28 1.13
.29 .S3
.3* .46 2.17
SCOTT QCSCAflCH LABORATORIES
3ASELINE STACK CMSSIOh OAT* - COAST SUARO VESSELS
VESSEL NAME I USCGC rfMlTE «E.lTM
VESSEL TYPE k CLASS : ««.M - l»
SAL l3IZ-«t6-4373
DATE J3/JS/73
VESSEL • I 7
PAGE i
VESSEL «ES • i 543
POVERPLANT DESCRIPTION DATA TOR SAMPLED VESSEL
COM POMERPLANT DESCRIPTION
91 BOILER
SI FWO SS GENERATOR
G2 AFT SS GENERATOR
MI STBO MAIN DIESEL ENO
M2 PORT MAIN DIESEL ENO
E»H«uST EMISSION 3ATA ON A »ASS
ENO
3S-8
.MODEL
1-11178
60TG-317
16
16
BASIS
••:'j MODE ENO SHtFT PROP »*P90X.
*p« 5PM PITCH LOAD
~"\ NORDIC ~~
01 99 t 1399 41
*l SLOK 129 129
Ml CRUISE 291 299
"i PULL 3i* 3i«
"i POLL 328 Jan
«2 CRUISE 269 269
"2 PULL 339 331
-2 rULI. 341 341
KK
i
FUEL
PATS
•/HR
18.1
31.7
13. 1
43.2
119.9
37.4
92.2
99.4
ENO. i
BUCXLET
CUMMINS
auOA
UNION
UNION
CO
.84
39.14
8.29
7.68
6-11
11.64
5.49
6. 39
a. ,7
*^GH«
h SCOTT
• / 1919
THC
2.29
22.89
7.96
9.43
1.99
3.24
3.12
2.71
3.91
SERIAL •
19336
U7S189
15676S
43366
43363
• PUEL
NOX SOX
1.96
11.91
47.41
33.86
36.28
21.13
35.49
43.91
42.34
TOT.ENG.
TIM£-«aS
1*94
3798
35161
33969
SMOKE PART
3.1
9.3
6.1
3. 3
7.9
3.3
3.1
6.1
7.1
TSMOH
'n*» RATED OUTPUT
63199 BTU
1994 61 «k
3798 38 Kb
3273 399 nP
2821 391 HP
• / «flu»
CO ThC
.12 .14
1.24 .73
.11 .11
.33 .36
.68 .21
.21 .19
.61 .23
.04 .39
,
» 1511
> 1451
* 3S1
» 339
NOX
.14
.33
.61
2.33
4.12
2. 18
4.23
4.21
RPM
RPM
0PM
SPM
SOX
-------
SCOTT RESEARCH LABORATORIES
3ASELINE STICK EMISSION DATA
COAST GUARD VESSELS
1312-«l6-«73
VESSEL NAME : USCSC CHASC
78 .3
ssi ;s l
611 Iff 1
729 123 .98
699 141 .98
344 1S4 .98
1
ruEL
RATE
234.7
213.3
224.7
213.3
61.7
283.9
293.9
233.3
31.8
142.4
227.3
192.2
443.3
768.2
1436.2
1436.2
192.2
417.5
779.4
779.4
1113.1
1319.4
•
CO
~47l6
3.49
2.43
2.32
3.89
13.13
17.54
21.17
19.64
3.34
7.26
21.36
4.43
3. 44
9.78
9.66
23.39
19. a?
2.93
11.22
2.43
4.87
11.44
/ 1111
TMC
1.37
.93
2.32
2.74
33.17
9.93
6.93
3.34
23.64
19.32
6.7S
4.18
3.3*
3.38
3.44
3.38
7.711
3. 35
..45
6.77
5.46
4.23
3ATEO OUTPUT
18943 1699*
18142 1699*
67-J1-U97 15611 1119 399 KW
£7-11-1122 1499* 111* 399 KW
47943 6643 4 3644 "P
47182 739* 5349 3641 MP
* 7UEL
NOX
2.39
3.13
2.41
2.23
29.73
56.17
62.72
64.73
21.61
31.34
36.32
49.74
43.36
41. S3
€6.45
46.37
51.49
54.23
49.31
47.44
48.49
sox SMOKE PART
4.1
4.1
4.1
4.3
7.1
7.4 .932
6.3 .932
6.4 .932
7.1
6.4
7.4
7.3
1.1
2.4
3.1
4.1 3.332
6.1) 5.332
1.3 1.921
6.4
9.S 3.298
6.4
7.3 11.244
9.4
-
•
CO
.93
.75
.37
.34
.36
2.66
3.41
.53
.79
1.65
4.29
2.19
3.a7
11.33
11.23
3.82
1.29
7.96
2.28
7.53
15.49
/ *>UR
THC
.-4
.21
.39
.39
2.16
1.33
1.49
1.23
1.47
1.54
1.77
1.69
2.73
3.67
4.14
1.34
1.37
3.47
:.23
5.58
5.59
J
*
» 919 'PM
» 999 PPM
MOX S0>
.61
.63
.36
.43
1.28
11.43
16.32
1.12
4.46
19.86
22.46
33.31
43.39
42.69
3.95
29.73
42.26
33.31
52.23
63.32
-------
SCOTT RESEARCH LABORATORIES
dASELIsiE STAC* EMISSION DATA
VESSEL NAME : USC6C SPAA
VESSEL TYPE I CLASS : '«L8
SRL 13*2-«16-I373
COAST GUARD VESSELS
18>C
DATE *3/M/73
VESSEL • t 9
PAGE 1
VESSEL RES • I 493
POMERPlANT DESCRIPTION DATA FOR SAMPLED VESSEL :
CODE POugRPLANT DESCRIPTION £NQ. MODEL ENG. »*».
81
92
Gl
53
Ml
«3
STBO 90ILER
PORT 90ILER
STBO SS GENERATOR
PORT SS GENERATOR
STBO MAIN DIESEL £N4
PORT MAIN DIESEL EN6
rBM-*6«a
rBM-*6*98
6-OTG-344
6-OTG-944
GN-4
GN-8
VAPOR
VAPOR
3UOA
auoA
HOfHTH-eESSEMCR
COOPeK-SESSEMER
SERIAL »
12183
12184
34339
26423
2B26
382S
TOT. ENS. TSMOH
TIME-MRS 'Mrts
449
6*
4414 4414
62339 41*1
76616 2ISS
724*3 747
RATED OUTPUT
6*9*1* 8?U
6499*9 9TU
63 «.'•
63 *k
79* nP
79* flP
,
*
i 1211 SPN
* 1211 RPN
* 71* RPM
* 799 SPM
EXHAUST EMISSION DATA ON A MASS BASIS i
•NO MOOC
31 2* *
53 21 %
MI ISLE
Ml CRUISE
-1 CRUISE
-3 IDLE
"3 CRutSE
-3 CRUISE
"3 CRUISE
ruEL
ENG SHAFT PROP APPMX. RATE
RPM RPM PITCH LOAD / 199*
TMC
35.49
14.93
12.78
1.98
1.21
14.14
1.39
1.13
• ruEL
NOX
19.38
22.59
,37.99
63.9*
64.34
31.99
59.33
68.46
• / HOUR
sox SMOKE PART co TMC NOX sox
7.S
7.9
2.9
S.*
. »•*
1.5
7.9 .179
6.4 .179
5.S
5COTT ACSEARCH LABORArORIES
3ASELINC STACK EMISSION 041'» - COAST SUARO VESSELS
VESSEL NAHE i uscac CAPE HORN
•£S5£L TYPE 4 CLASS : 3/»s/73
VESSEL • i 19
PiOE 1
VESSEL RES * I 9S322
»Ok£RPlANT DESCRIPTION DATA 'OR SAMPLED VESSEL i
CODE POVERPtAftT DESCRIPTION E*G.MOQ£L ENG. MFGR.
SERIAL •
TOT.ENG. TSMOM
"
RATED OUTPUT
91
51
53
MI
M2
•3
M4
30ILEP.
fVO SS GENERATOR
Art SS GENERATOR
fVO ST80 MAIN DIESEL
r«o PORT MAIN DIESEL
»fT STBO MAIN DIESEL
AfT PORT MAIN DIESEL
363t-l(E
3-71
3-71
VT12M
VT12M
VT12H
~VT12H
WAY-.OLrr
GENERAL MOTORS
GENERAL MOTORS
CUMMINS
CUMMINS
CUMMINS
CUMMINS
2«2-39<5
2A2-362*
211336
211339
3J1337
2J1338
1S33S
14279
347*
1(765
1*822
1(96*
439*
S219
3479 •-
U76S -
7718 *
7717 *
31 <»
39 Kk
691 nP
699 HP
699 nP
691 nP
,
IB
.«
9 3199 ftPN
9 3199 R»>M
9 211* RPM
*) 31** RPM
£JIMAUST EMISSION DATA ON A >
-------
SCOTT 9ESEARCM LABORATORIES
SUCK EMISSION DATA
SRC 13»2-»16-«373
COAST GUARD VESSELS
VESSEL NAME : USCOC POINT JACKSON
VESSEL TYPE I CLASS : ''PS - 820
DATE 43/13/73
VESSEL • : 11
PAGE 1
VESSEL RES * > 82378
COOE
31
Gl
G2
Ml
M2
M3
M4
PLANT DESCRIPTION DATA 'OS SAMPLED VESSEL :
POvERPlAhT DESCRIPTION ENG. MODEL ENS. MfGR.
80ILES
rvo SS GENERATOR
»rr ss GENERATOR
ST30 MAIN DIESEL - FSP
PORT MAIN DIESEL - '3P
STBO MAIN OliSEL - ASP
PORT MAIN OIESEL - ASP
M-12.
2-71
2-71
VT-IJ-9*«M
vr-U-9»«M
VT-12-9IIM
VT-|2-4««M
REPCO
GENERAL MOTORS
GENERAL MOTORS
CUMMINS
CUMMINS
CUMMINS
CUMMINS
SERIAL •
*,,-7
2A7787*
2A78216
679763-3
«St361-l
679763-3
681361-3
TOT.ENO. TSMOH
TIME-HAS 'H« S»TEO OUTPUT
1162
8*4
124)
1238
12*1
1238
23I*«« 9IU
2* KVI
2* Kk
9)1 HP
9«* HP
91* HP
9*» H?
>
*
9
* 238* RPM
» 23«* SP»
» 23*4 aP*
t 2311 3PM
EXHAUST EMISSION DATA ON A MASS 9ASIS t
ENG MODE
31 NORMAL
31 1 1
Gl 1* *
31 31 1
32 11.
32 3» »
02 7) i
HI IDLE
MI 2/3
"1 CRUISE
"2 ISLE
M2 2/3
M2 CRUISE
M3 2/3
M3 CRUISE
•<4 2/3
•«• CRUISE
ENO
RPM
123*
123*
123*
123*
125*
123)
63*
133*
19*0
68*
138*
2191
133*
1911
135*
2(*«
SMAfT PROP »PP90x.
9PM PITCH LOAO
* K«
» KU
17 K«
* KU
7 /HR
16.6
4.3
3.8
n.a
2.9
4.3
3.6
22*. 6
22*. 6
224.4
229.4
1
CO
.*S
13.67
3.99
2.66
l*.S«
.3.86
4.3*
I2.46~
9.44
12.46
51.37
3.93
11.99
7. a*
1».61
«.2S
11.79
SCOTT RESEARCH LABORATORIES S«L
• / 1«(* •
THC
.2*
3.76
7.88
4.83
23. a*
13.1*
6.7*
27.76
3.34
3.71
42.19
.38
l.*9
ruEi.
NOX
2.42
52.68
63.49
63.97
89.17
S2.4S
77.19
16.99
56.43
63.4*
13.22
!3.22
*a.3i
26.91
49.23
19.77
:9.ia
sox ' SMOKE PART
3.
2.
2.
t-
2.
3.
4.
a.
a.
9.
Si
3.
9.
a.
7,
a
«•
S
t
S
4
3
4
4
T '"
.4
,3
.3
III
.*
.5
.5
•4
13(2-*I6-<)73
*
CO
.41
.46
.43
.43
.44
.43
.44
2.71
2.69
2.43
2.47
DATE
/ HOUR
THC
.4*
.44
.43
.43
.47
.46
.46
.33
.24
NOX SOX
.43
.23
.38
.71
.26
.36
.67
14.69
i*.as
11.27
a. 97
43/K3/73
JASELIXE STiC* EMISSION 3AfA - COAST SUARO VESSELS
VESSEL NAME i tscae SHACKLE
VESSEL TYPE I CUSS : «»TL - 453
VESSEL • : 12
PACE 1
VESSEL RES « i 63689
PQXEAPLlNT DESCRIPTION DATA fflS SAMPLED VESSEL :
COOE
31
Gt
52
MI
?O«E»PLANT
90ILER
C«0 SS
DESCRIPTION
GENERATOR
irr ss GENERATOR
MAIN OIESEL ENGINE
£«H»jST EMISSION
ENG
*l
31
31
32
32
32
Ml
"1
Ml
MOOE
NORMAL
1 i
5* t
t 1
35 1
44 t
IDLE
CRUISE
PULL
ENG
9**
132*
9»)
132*
132*
S3*
33*
12)1
ENG. MODEL
1924>aC
2-71
2-71
6LROCSM
ENO. HFOS.
GENERAL
GENERAL
MOTORS
MOTORS
4AUKESMA
SERIAL •
22*4
2AS2S39
2AS2S**
2*91*
TOT. ENG. TSMOH
TIME-**S H*S SATED OUTPUT
liSeil 3TU a
3326 2* K» 9
199* 2* Kb $
5183 5*1 nf } 12(1 «PH
3ATA ON A MASS 3 AS IS :
SM«fT PROP
apM PITCH
i
293
412
ruEL
AP«90X. atle
LOAO >/HA
f XU
It
-------
SCOTT 0£SE»RCH LABORATORIES SRL 1382-316-3373
'JAS£LIN£ STAC.< EMISSION OATA - COAST GUARD VESSELS
*
*
t
*
•
1348 *PM
1888 »*M
1938 SPM
1888 RPM
1389 RPM
1188 HPM
1888 SPM
1988 9PM
OATA ON A .MASS 3 AS IS :
SHAFT
169
28*
275
248
168
195
333
168
293
388
163
298
273
298
PRO* APPRO)!. RA'E
PITCH LOAD «/MR
9
1*5
178
S3
85
as
35
6*
35
8*
6*
a*
8*
S3
85
86
35
46.3
32.*
KM 19.3
KM 78.7
Kit 162.3
7].*
3*5.6
1385.5
1386.6
127.9
235.1
1939.2
127.9
235.1
1999.2
73.*
345. 6
, 1995.5
1336.6
SCOTT RESEARCH LABORATORIES
3ASELINE STACK EMISSION DATA - COAST GUARD
VESSEL NAME : USCOC BOAT 4*318
VESSEL TYPE & CLASS : «_a - ii.
•
CO
68.3*
9.94
26.6*
9.3*
2.3*
9.13
16.18
9.38
13.97
8.37
15.92
19.31
8.22
15.21
18.37
3.23
21.38
11.39
12.78
SRL
VESSELS
/ 1338
THC
1.98
2.87
13.52
4.13
.37
5.37
2.16
1.78
1.97
3.32
3.25
3.48
1.92
2.39
3.77
2.3*
1.75
2.36
2.7*
• PUEL
NOX
2.43
1.97
17.13
21.13
13.47
66.43
51.28
54.67
SJ.S2
4J.18
*1. **
SJ.73
44.9*
42.67
S3.1S
71.15
41.99
51.92
57.16
1382-916-3373
SOX SMOKE PART CO
*T7s 2.32
3.3 .32
6.3 .51
3.3 .77
7.5 .38
5.3 .67
' 9.3 6.25
6.8 9.85
6.9 11.35
S.S 1.37
s.s 4.s*
6.S 19.49
1.15
4.3*
13.37
.63
9.S 7.36
4.S 11.36
• / nOUR
TMC
.39
.39
.26
.33
.96
.37
.75
1.71
1.98
.42
.93
3. SI
.25
.39
3.31
.17
.61
2.38
7.3 12.78 2.76
VESSEL «EG • :
NOX SOX
1
3
4
17
S*
S6
S
I!
S3
S
12
S3
5
.11
.36
.33
.58
.15
.33
.35
.97
.39
.98 "" '
.32
.22
.75
.17
.59
.74
16.93
ss
.32
S7.S3
DATE 13/35/73
VESSEL • : 1«
P»GE i
4*313
=OwESPt.ANr OESCSIPTION OATA FOR SAMPLED VESSEL :
COOE POwgHPLAM DESCRIPTION ENG.WJOEL
-il ST80 MAIN DIESEL ENS V6-299M
-2 SORT .MAIN OIESEL ENS V6-298M
EXHAUST EMISSION DATA ON A MASS 3ASIS i
ENO. MFOM.
SERIAL •
TOT.ENG.
*ATEO OUTPUT
116 MODE
-I IDLE
Ml SLOW
MI FULL
M2 IDLE
M2 SLOW
ENG
3PM
• ••^
749
1519
2688
74»
IS*!
2251
22SD
SMA?T PROP
9PM PITCH LOAD
1 CUMMINS
> CUMMINS
1
FUEL
RAI£ .——.-.
«/HA CO
19.37
1S.64
49. »3
7.71
11.98
U.13
19.33
• / 1988
THC
51.38
17.27
2.19
39. a<.
7.32
3.17
3.39
3376*2
362882
• fUEL
NOX
.33
13.26
33. IS
.97
ID. 33
24.72
23.12
2308 289 nP t Jin *P«
387 283 HP a 3189 3P*
• / nOUR
SOX SMOKE PART CO TMC NOX <
3.3
3.1
9.S
S.S
7.1
9.S
9.5
SOX
-------
9. U.S. Coast Guard Abatement Program Boat Diesel Engines
Reference 17
-------
U.S. COAST GUARD BOAT DIESEL ENGINES
MASS EMISSION DATA
A. Engine Model 607, Serial No. 6A60137
Mass Emission
Dry Concentrations
Corrected to Wet
Ib/hr
Date Time
3/20 0920
3/20 0940
3/20 1005
3/20 1035
3/20 1105
3/20 1142
3/20 1220
3/20 1245
3/20 1310
3/20 1330
Mode
1
2
2
3
3
4
4
5
5
6
hp
idle
20
18
70
71
102-105
101-103
150-152
150
182
rpm
700
1200
1200
1380
1380
1600
1600
1800
1800
1800
Correc.
Factor
.9855
.9803
.9803
.9654
.9654
.9659
.9607
.9522
.9506
.9439
B1. Engine
CO
(ppm)
1123
490
451
251
241
249
231
857
780
982
Model
C02
<*)
0.99
1.62
1.62
3.28
3.28
4.21
3.79
4.67
4.85
5.57
02
(Z)
18.72
18.92
19.02
16.51
15.93
14.64
14.65
13.09
13.07
11.52
6071, Serial No.
NO
(ppm)
360
181
188
459
465
603
610
747
746
755
6A60144
NO 2
(ppm)
47
59
55
24
22
14
12
0
0
0
THC
(ppm)
770
It-
it—
590
440
430
470
380
260
250
CO
1.72
0.97
0.898
.567
.547
.5-5
.611
2.55
2.25
3.72
NO
.092
.624
.617
1.703
1.736
2.373
2.66
3.66
3.53
4.71
NO 2
.013
.011
.011
.002
.002
.001
.001
0
0
0
THC
.590
.476
.438
.666
.499
.574
.623
.566
.375
.474
CO
_
22.0
22.6
3.67
3.49
2.60
2.72
7.67
6.79
9.29
g/bhp/hr
NO
_
14.1
15.56
11.04
11.1
10.5
11.8
11.01
10.7
11.7
N02
_
.250
.277
.13
.13
.004
.004
0
0
0
THC
_
10.8
11.0
4.32
3.19
2.84
2.77
1.70
1.135
1.18
Mass Emission
Dry
Concentrations
Corrected to Wet
Ib/hr
Date Time
3/2/73 0855
3/2/73 0930
3/2/73 0955
3/2/73 1005
3/2/73 1042
3/2/73 1050
3/2/73 1130
3/2/73 1133
Mode
1
1
2
3
3
4
4
5
hP ,
67.5
72
20
110
108
140
135
185
rpm
1400
1425
1200
1600
1600
1780
1770
1975
Correc.
Factor
.9655
.9655
.9800
.9587
.9592
.9449
.9458
.9427
CO
(ppra)
241
232
451
201
201
350
303
1018
C02
<*)
3.28
3.28
1.67
4.03
3.98
3.53
5.44
5.75
02
(%)
14.82
14.72
16.90
13.66
13.76
12.14
12.06
10.74
NO
(ppn)
570
570
235
757
763
850
870
909
N02
(ppm)
19
19
61
10
10
0
0
0
THC
(ppm)
1600
1600
1100
1250
1200
1300
1150
120
CO
.626
.601
1.71
.573
.581
.937
.828
3.536
NO
2.429
2.430
1.460
3.548
3.616
3.751
3.918
5.197
NO 2
.002
.002
.011
.001
.001
0
0
0
THC
2.074
2.074
2.088
1.780
1.730
1.743
1,574
2.084
CO
4.2
3.78
38.8
2.36
2.44
3.04
2.78
8.67
g/bhp/hr
NO
16.33
15.32
33.3
14.64
15.2
12.16
13.17
12.75
N02
.013
.012
.249
.004
.004
.0
.0
.0
THC
13.45
13.07
7.4
7.35
7.27
5.65
5.29
5.11
Reference 17.
-------
U.S. COAST GUARD BOAT DIESEL ENGINES3
MASS EMISSION DATA
C. Engine Model 6072A, Serial No. 6A20533
Mass Emission
Dry Concentrations Corrected to Wet
Ib/hr
Date
3/7/73
3/7/73
3/7/73
3/7/73
3/7/73
3/7/73
3/7/73
3/7/73
3/7/73
Tine
0840
0908
0926
1005
1120
1143
1215
1240
1315
Mode
1
1
2
2
3
3
4
4
5
hp
22.5
21.0
67.5
67.5
107
105
142.5
142.5
185
cpm
1200
1200
1390
1390
1600
1610
1790
1790
2000
Correc.
Factor
.9778
.9783
.9646
.9646
.9593
.9587
.9508
.9501
.9407
CO
(ppm)
401
372
232
233
232
232
666
608
1072
C02
(Z)
1.91
1.86
3.38
3.38
3.93
4.03
4.85
4.94
5.93
°2
(Z)
16.87
17.85
15.55
15.92
14.39
14.38
12.84
13.06
11.05
NO
(ppm)
293
274
531
559
696
705
332
827
790
NO 2
(ppm)
68
68
34
29
14
12
0
0
0
THC
(ppm)
1100
980
1350
800
950
750
820
820
780
CO
.837
.800
.578
.592
.627
.616
2.148
1.929
4.548
NO
1.008
0.970
2.180
2.335
3.091
3.075
4.417
4.314
5.513
N02
0.011
0.011
.003
.003
.001
.001
.000
.000
.000
THC
1
1.148
1.055
1.686
1.015
1.283
0.995
1.323
1.301
1.654
CO
16.8
17.29
3.88
3.98
2.66
2.66
6.84
6.14
11.16
g/bhp/hr
NO
20.3
20.97
14.65
15.82
13.1
13.29
14.08
13.7
13.5
N02
.22
.24
0.20
0.20
.004
.004
0
0
0
THC
23.16
22.81
11.34
6.82
5.44
4.30
4.21
4.14
4.05
Reference 17.
-------
10. Multi-Cylinder Diesel Engine Tests Water in Fuel Emulsions
Zero Percent Water Emission Data
Reference 16
-------
MULTI-CYLINDER DIESEL ENGINE TESTS3
CUMMINS ENGINE EMISSION DATAb
Rated Horsepower: 800
Rated Speed: 2300 RPM
Measured at 1800 rpm
Fuel Type: Diesel fuel with 35.3° API at 60°F
0% Water Emulsion
Run #
171
177
183
188
195
201
216
217
223
231
237
245
251
BHP
436
442
444
416
436
434
444
436
441
443
449
445
447
Fuel Flow
(Ib/hr)
182
177
181
55
179
180
177
180
179
180
181
182
182
HC
( g/BHP/hr )
0.28
0.11
0.35
0.23
0.21
0.19
0.21
0.16
0.14
0.14
0.15
0.24
0.08
(g/hr)
122
50
155
27
82
81
95
72
63
60
69
107
34
CO
(g/BHP/hr)
1.62
0.87
3.22
1.75
1.41
2.78
0.62
1.25
1.25
1.25
1.27
1.35
6.34
(g/hr)
705
385
1,431
203
615
1,206
275
547
551
562
608
539
632
NO.,
( g/BHP/hr )'
8.09
8.58
8.38
4.61
7.73
7.70
6.64
6.76
5.63
5.85
6.34
5.22
5.30
' (g/hr)
3,527
3,789
3,720
536
3,371
3,339
2,950
2,949
2,483
2,588
2,842
2,322
2,373
aReference 16.
bCununins Engine Company, Inc. Model VTA-1710-C800 (VT12-900M).
Type: Four Stroke Cycle, Bore and Stroke: 5.5 x 6, No. of Cylinders: 12, Displacement:
1710 cu. in., Rated Horsepower: 800 at prop shaft Rated Speed: 2300 RPM.
-------
MULTI-CYLINDER DIESEL ENGINE TESTSa
DETROIT DIESEL ENGINEb
600 RPM, rated 1800
Rated HP: 1200
Fuel Type: Diesel fuel with 35.1° API - 7.07 Ib/gal
Run #
142
Same I
114
120
Same I
107
113
Same I
121
127
144
150
Same I
123
134
BHP
45
i-uel at
92
94
Sngine i
172
174
Sngine e
289
294
290
295
Sngine <
453
459
Fuel Flow
(Ib/hr)
24.1
800 rpm - Se
43.0
43.3
ind Fuel at 1
73.3
73.4
md Fuel at 1
115
116
115
116
ind Fuel at 1
178
178
HC
(g/BHP/hr)
7.06
ime Engine
4.30
3.95
000 rpm
2.92
3.56
200 rpm
2.65
2.68
2.92
2.77
400 rpm
2.22
2.60
*
(g/hr)
310
388
356
488
594
746
755
822
779
977
1147
CO
(g/BHP/hr)
5.91
2.21
2.24
1.08
1.30
0.83
0.85
0.83
0.87
1.45
1.39
(g/hr)
260
199
202
180
217
234
239
233
246
640
613
NO,
( g/BHP/hr )'
21.6
17.61
17.09
15.05
14.48
13.06
12.60
12.72
12.51
13.47
13.10
' (g/hr)
951
1588
1541
2513
2418
3673
3542
3577
3519
5940
5776
aReference 16.
^General Motors Corporation, Detroit Diesel Allison Division
Model: 12V-149TI (16V-149TI), Type: Two stroke cycle, Bore and Stroke: 5.75 x 5.75,
No. of Cylinder: 12 (16), Displacement: 1788 cu. in., Rated Horsepower: 900 (1200),
Rated Soeed: 1800 rpm.
-------
11. Land-based Steam Generation Systems Naval Ship and Research Center
Reference 21
NOTES:
1. Navy Distillate Fuel (ND) Heating Value = 19,300 BTU/lb
Navy Special Fuel Oil (NSFO) Heating Value = 18,700 BTU/lb
2. A density of 8.1 Ib/gal (NSFO) and 7.12 Ib/gal (ND)
was used to convert emission results to the units used
in the data base.
-------
TABLE 3
POLLUTION DATA, NAVY DISTILLATE FUEL
CLEAR STACK, OPTIMUM EXCESS AIR
Operating Conditions
Bun
nun
Mrt
WW •
1
6
7
9
19
14
16
3
12
15
% Full Power
100
100
100
100
100
35
35
11
11
11
Burners
6
4
5
6
6
6
6
3
3
3
Pollution Measurements
Sulfur,Dioxidel
lb/106 Btu
A
0.93
-
-
1.06
1.03
0.99
1.00
0.83
0.87
0.91
B
0.093
-
-
1.11
0.98
0.73
0.98
0.313
-
0.85
Oxides of Nitrogen2
lb/106 Btu
C
_
-
-
-
0.29
0.21
0.16
0.15
0.15
D
0.36
-
f
0.32
0.30
0.17
0.15
0.18
0.17
0.15
Mean Value4' s 0.95 0.93
A - Dynascience Corp., SS 330 Electrochemical.
B - Manual Wet Chemical Method 6 of Federal Register, 23 Dec 1971.
2C - Dynascience Corp., NX 220 Electrochemical.
D - Manual Wet Chem
ieal Mafe^ed-tl of
' Federal Register, 23 Dec 1971.
Values discarded in determining mean value
Mean represents constant output independent of all other conditions.
Theoretical SO2 emission calculated from sulfur content of fuel
(1.02%) and HHV (19,300 Btu/lb) is 1.06 lb/106 Btu.
TABLE 4
POLLUTION DATA, NAVY DISTILLATE FUEL
NONCLEAR STACK, LOW AND HIGH EXCESS AIR
Ooeratinq Conditions
Run
No.
2
11
20
17
13
18
4
% Full
Power
100
100
100
35
35
35
11
Burners
6
6
6
6
6
6
3
Stack
Conditions
Heavy Trace
Black*
Heavy Trace
Heavy Trace
White
White
Heavy Trace
Excess
Air
Low
Low
Low
Low
High
High
Low
Pollution Measurements
Sulfur Dioxide-'-
lb/106 Btu
A
0.74
1.11
1.20
0.97
0.66
0.52
0.75
B
-.
1.27
-
-
-
-
0.29
Oxides of Nitrogen^
lb/106 Btu
C
0.29
-
0.34
0.19
-
1.15
-
D
1
0.20
0.27
0.13
0.21
- .
0.16
3, 4
Mean 0.85
A - Dynascience Corp., SS 330 Electrochemical.
B - Manual Wet Chemical Method 6 of Federal Register, 23 Dec 1971.
2C - Dynascience Corp., NX 220 Electrochemical.
D - Manual Wet Chemical Method 7 of Federal Register, ' 23 Dec 1971.
Mean represents constant output independent of all other conditions.
^Theoretical S02 emission calculated from sulfur content of fuel
(1.02%) and HHV (19.300 Btu/lb) is 1.06 lb/106 Btu.
-------
TABLE 5
POLLUTION DATA, NAVY SPECIAL FUEL OIL
VARIOUS STACK CONDITIONS AND EXCESS AIR
Operating Conditions
Run
No.
21
22
23
24
25
26
% Full
Power
10
10
10
35
100
100
Burners
3
3
3
6
6
6
Stack
Conditions
Light Trace
White
Heavy Trace
Light Trace
Light Trace
Heavy Trace
Excess
Sir
Optimum
High
Low
Optimum
Optimum
Low
Pollution Measurements
Sulfur
Dioxide
lb/106 Btu
A
1.20
0.74
1.44
1.82
2.02
2.03
Mean3'4 1.54
XA - Dynascience Corp., SS 330 Electrochemical.
B
0.94
0.79
1.40
-
-
-
Oxides of
Nitroaen2
lb/10
C
0.25
1.25
0.32
0.42
0.57
0.54
6. Btu
D
0.26
0.22
0.45
0.62
0.69
0.67
B - Manual Wet Chemical Method 6 of Federal Register, 23
23 Dec 1971.
2C - Dynascience Corp., NX 220 Electrochemical.
D - Manual Analytical Method, Method 7, Federal Register,
23 Dec 1971.
Mean value for SO2 reflects constant output (independent of
all other conditions) .
4 Theoretical SO2 emission calculated from sulfur content of
fuel (1.67%) arid HHV (18,700 Btu/lb) is 1.78 lb/10 Btu.
TABLE 6
POLLUTION EMISSIONS OF NAVAL DISTILLATE
VERSUS NAVY SPECIAL FUEL OIL AT THREE
DIFFERENT POWER RATES
% Full
Power
100
35
11
SO2 Emission
lb/106 Btu
ND
0.74-1.20
0.52-1.00
0.75-0.91
NSFO
2.02-2.03
1.82
0.74-1.44
NO Emission
lb/106 Btu
MD
0.29-34
0.16-1.15
0.15
NSFO
0.54-0.57
0.42
0.25-1.25
-------
TABLE 7
PARTICULATE DATA
NAVY DISTILLATE AND NAVY SPECIAL FUEL OIL
Operating Conditions
Run
No.
3
4
12
15
21
16
24
1
9
19
25
%
Full Power
11
11
11
11
11
35
35
100
100
100
100
Burners
3
3
3
3
3
6
6
6
6
6
6
Fuel
ND
ND
ND
ND
NSFO
ND
NSFO
ND
ND
ND
NSFO
Pollution Measurements
P articulate
Mass Cone
Lb /hr
30.8971
53.4502
13.8812
3.1983
16.0067
11.2350
23.6635
120.2089
206.8551
18.8910
279.2463
P articulate
Mass Cone
Lh./108 Btu
1.1523
1.9935
0.5177
0.1193
0.6103
0.1372
0.2924
0.4635
0.7976
0.0728
1.434C
%
Isokinectic
61.9
60.5
63.9
66.6
62.4
61.1
65.4
- 69.0
65.7
-
59.2
Cone - concentration
-------
12. Shipboard Testing of Boiler Stacks Naval Ship Research
and Development Center Emission Data
Reference 22
Note: Only particulate data from the two naval vessels
were used in the data base. The referenced
document indicated that the other pollutant
measurements were invalid.
-------
U4S KftvJis»i>i«i > -NISFo
EMISSION DATA
Fuel Burning Rate (gal/min)
Fuel Burning Rate (BTU/h:)
Particular Matter (grains/set)
(S/sci)
(»/nr)
(8/10% TU)
SCkj (ppra)
Spj (»/106BTU)
NO, (ppm)
NOz (S/106BTU)
CO (ppm)
COz ffo
Oz ffe
Excess Air Based on
*02
OPERATING PARAMETER
HOTELING (20?> Load)
3.2
26. 9 x 106
.0108
1. 54 X JO"6
1.15
.065
40
-
20
.-
260
6
16.5
"•
10 KNOTS (40% Load)
5.5
46.2 xlO6
.0241
1.57X10"6
2.27
.049
-
-
- -
-
2£0
1 1/2
1£ 1/2
•~
17 KNOTS (9C-100$)
16.6
139.4X106
.0104
1.49 x 10"8
4.09
.029
-
-
-
-
250
3.0 '
.12.5
—
oVi Jum£*j-fHDPo
EMISSION DATA
Fuel Burning Rate (gal/min)
Fuel Burning Rate (BTU/hi)
Particular Matter (graUu/icf)
(ib/scf)
(Ib/hr)
(lb/106BTU)
Sp2 (pprn)
SOg (lb/106BTU)
NOj (ppm)
NOj (lb/106BTU)
CO (ppm)
CQjj CS
QZ (ft
Excesi Air Baisd on
*°2
OPER/ TING PARAMETER
SO^Uadf2'
8.75
73. 46/106
0. 1538
22.02x10"'
27.48
0. 31*1'
550
i.srf1'
50
0.067
140
11.4
4.0
22
lOOTb Load*3)
11.65
109. 98 x 106
0.0353
6.05xlO*6
J1.65
0. 106
500
fcl*™
_(fl
_(•»)
112
8.6
5.0
28
NOTES: EPA LImiu. Reference (d)
Particular Matter - 0.20 lb/106BTU
SOj - 0.80 lb/106BTU •
NOg - 0.30 lb/l(.6BTU
(1) Exceeds EPA limit
(2) 3 burners @ 245 division! (burner adiusrment)
(3) 5 burners @ 275 divisions (burner adjustment)
(4) NOj tensor malfunction (no rending! obtained)
-------
13. Shipboard Steam Generator Systems Naval Ship Research and
Development Center U.S.S. Forrest Sherman Emission Data
Reference 23
Note: Emission tests aboard the U.S.S. Sherman were
conducted September 17-19, 1980
A low sulfur fuel (0.57% by wt sulfur) with a heating
value of 19,515 BTU/lb was the fuel used during testing
of a 1200 psi steam generator aboard the U.S.S. Sherman
-------
SOURCE EMISSION DATA FROM USS FORREST SHERMAN (DD 931)
Run
No.'
1
2
3
4
5
Time
1600
1800
1920
0850
1000
Smoke
RN
0.25
0.25
0.35
0.25
0.35
Particu-
lates
Ib/MBtu
0.036
0.02S
0.016
0.039
0.040
S02
Measured
ppm
163
153
140
179
132
Ib/MBtu
0.49
0.46
0.42
0.62
0.45
Theor-
etical
ppm
195
193
196
167
171
NOX
ppm
116
115
112
85
94
Ib/MBtu
0.25
0.25
0.24
0.21
0.23
HC
ppm
12.5
8.9
6.9
4.2
6.5
CO
ppm
24.1
20.3
7.0
18.5
13.4
02
%
10.33
10.39
10.29
11.90
11.76
EA
%
90.9
92.6
90.0
121.2
116.7
CO2
°/0
8.13
8.35
8.02
6.46
6.13
Dry
ft3/lb
fuel
352
355
350
410
401
•Runs 1-3 at hoteling rate;
runs 4 & 5 at harbor transit rate.
-------
14. Results from Emission Testing Aboard the Submarine
Tender U.S.S. L. Y. Spear - Testing Performed on a
600 psi Main Propulsion Boiler
Reference 19
-------
TABLE 3
NAVY DISTILLATE FUEL
Element Analysis
Carbon
Hydrogen
Sulfur
Nitrogen
HHV, Btu/lb
% by Weight1
A
85.7
13.6
o.4i
0.1
19,630.0
B
85.8
13.4
0.48
0.1
19,590-0
1Two samples taken during testing period.
TABLE 6
POLLUTION DATA USS L. Y. SPEAR (AS 36)
ND FUEL
Power
Condition
27
27
57
100
No.
of
Burners
1
1
3
3
Excess
Air
81
93
55
60
Smoke
RN
0.41
0.50
0.72
0.63
Particulate
(No./lO6 Btu)
0.05(D
0.065(2)
0.035
0.034
Sulfur
D iox ide
0.33
0.33
0.38
0.46
Oxides
of
Nitrogen
0.09
0.06
0.25
0.20
I1) Average of three runs using lo-vol particulate sampler.
Tests were performed pier side in Norfolk, Virginia, during
period 29 April -3 May 1974.
(2)single run using hi-vol particulate sampler. Test was per-
formed at pierside in Halifax, Nova Scotia, during sea
trials of 24 June -3 July 1974.
-------
TABLE 10
CARBON MONOXIDE AND HYDROCARBON EMISSIONS
Power Condition
%
m
27
57
100
Carbon Monoxide
p/m
i
64
20
0
Hydrocarbons as p/m
Methane
16
<100
<100
-------
15. Improved Marine Boiler Reliability Study
Emission Data
Reference 2
-------
TABLE 1
SUMMARY OF BOILER DESIGN PARAMETERS
Condition
Rating
Total Evaporation
Food Temperature
Efficiency
Oil Firing Rate
Air Temperature to Burners
Excess Air
Furnace Release Rate
Absorption Rate RHAS
Firing Rate/RHAS
Heat Input
%
Ib/hr
r Outlet psig
ater Outlet °F
°F
%
Ib/hr
ners °F
%
Btu/hr-ft3
Btu/hr-ft2
Ib oil/hr-ft2
Btu/hr
Full Power
100
108,000
870
955
286
88.5
7669
291
10
86,600
67,400
9.1
148 x 106
Overload
115
124,
870
955
286
88.2
8852
291
10
100,
200
000
75,000
10.5
170
x 106
-------
TABU 6-1
TUT am A» USULIS rent comma* »i
UX_ioiui IATIVB win 1922 BOSS AIX
TABU 6.2
rut BAZA AD warn «m conmai n
in BOXUB BATIK HZn MX BCIU Alt
TMt DAM i
Actaal toiler Load, X of Full Powar
Bxcaaa Air. 2
10/26/7*
11 (la-Port)
H2 (Clear Stock)
Sample Kuober
02 Z By Voluw
00 PIM
KJg PPM
802 "**
SO] PPM
00 - PIM Adj. To 3Z 02
HO,- PPM Ad]. To 3Z 02
SOj- PPM Adj. To 31 02
$03- PPM Adj. To 31 02
Z Coavoriloo of SOj to 803
8
14.0
573
80*
766
13.6
1479
206
1970
33
.1:74
9
14.0
S73
80
696
12.1
1479
206
1790
31.1
1.71
10
14.0
573
80
684
10.2
1479
206
1738
26.2
1.47
11
14.0
375
80
749
10.9
1479
206
1926
28.0
1.43
12
14.0
375
80
731
13.9
1479
206
1880
33.7
1.86
A*s.
14.0
1479
206
1863
31.2
1.64
tMC Dec*
Actual BolUr Load, X of Full Povar
Air, S
10/29/7*
27
40 (Clear Stack)
*«MB!O fta*«r
Oj X iy Voliaw
00 PPM
•0* PPM
802 PPM
80] PPM
00 - PPM Adj. To 32 0?
•Or- PPM Adj. To 3Z Oj
»2- PPM Adj. To 3X 0*
*0j- PPM Adj. To 32 0]
Z CooT*r«lao of 502 to 803
40
6.0
3
160
1629
18.C
6
192
1935
21.6
1.09
41
6.1
0
160
1667
18.9
0
193
2014
22.8
1.12
42
6.5
0
160
1663
19.0
0
199
2064
23.6
1.13
ATS
6.2
2
195
2011
22.7
1.11
tot mi Iba abovo acaii air value raaulta fro* tha •Inlaua ialat vaaa
laakaga with tha forced draft fan oo lov tpaad and tha Ialat vanaa
cloaad down to tha •aehanieal itopa.
-------
SAILS 6-3
TUT DATA AMD USOLI8 FOR CCKDITHM »3
MX souia BATIK nn an ncm AII
UBLI 6-4
TVT DATA AMD U8ULTS POft COKDITIOII M
44Z BOim BATIK: Hltt 171 BOSS Alt
TMC Oat*
Actual Sollar Load, Z of full Pamir
BXC*M Air. Z
10/29/76
29 Actual Bollor Uod. I et full
•• (OMT Stack)
Sa^l* lha*«r
02 Z By foluM
oo m
«ii PPM
SO] PPM
S&j PPM
CO - PPM Adj. To 3Z 0}
•V- PPM Adj. To 3Z 02
SOj- PPM Adj. To }> 02
803- PPM Adj. To 32 02
Z Convarcioa of SO] to 803
43
11.0
0
101
1101
19.7
0
182
1982
35.1
1.74
44
10.3
0
100
1205
21.0
0
171
2066
36.0
1.71
43
10.4
0
100
1190
26.8
0
170
2021
43.3
2.20
ATC
10.6
0
174
2023
38.9
1.88
10/29/7*
17 (Clear Itack)
Sa*la HM*«r
Oj > ty VoluM
00 PPM
•D, PPM
80] 'PPM
SO] PPM
00 - PPM Adj. To 3Z 0]
fOg- PPM Adj. To 3Z 0]
802- PPM Adj. To 3Z 0]
SCj- PPM Adj. To 3Z 0]
Z Coovcraloa of SO] to 803
18
3.1
15
183
1923
20.2
13
186
1936
20.3
1.04
39
3.1
10
183
1928
20.8
10
186
1939
20.9
1.07
•M
3.1
13
186
1937
20.6
1.06
-------
TMU «-)
TB7 DATA AMD U3ULTS POB COTOITIOB f 5
46X MILIl IATUB HUB 24X BOSS All
TttU 6-6
T(ST DATA AH) USVLTt POI CONDITION M
441 lOILtt lATlNG «« MX BOSS All
Teet
Actual Boiler Load, Z of full Power
BXCCM Air. X
10/29/76
46
24 (Clear Stock)
Staple ftabar
Oj X ly Voliaw
CO PPM
HO, PPM
S02 PPM
$03 PPM
CO - PPM Adj. To IX 02
•V- PPM Adj. To 3Z 02
SO]- m Adj. To 3X 02
803- PHI Adj. To 3X 02
X Convereloo of SO] to 803
34
3.9
7
190
1939
18.7
7
200
2041
19.7
.96
35
4.3
}
186
1669
18.8
2
200
2014
20.3
1.00
37
4.0
0
185
1079
19.4
0
196
1990
20.5
1.02
Atrg
4.1
3
199
2015
20.2
.99
Teat Bats
Actual Boiler Lomt, I of Full Fovar
•BCN* Air, X
Staple Muabor
02 X By Vol««
CO mi
HO, PPM
802 rm
803 rnt
CO - PPM Adj. To 3X 02
HO,- PPM Adj. To 3X 02
802- PPM Adj. To n 32
803- PPM Ad]. To 31 02
X Conversion of SO? to 803
36
S.4
0
180
1700
20.1
0
207
1962
23.2
1.17
10/29/76
33 (Clear Stack)
-------
TABU 6-7
ItST DATA am U8ULI8 K» COUITIOH 17
791 MILK* RATIHG Win 101 BXOB8 Alt
Toot Oat*
Actual Bollor Load, I of rull Powor
br.M« Air. X
10/28/76
n
10 (Clear Slack)
TABU 6-6
TBt DATA AMD UJOLT* MB COnmOM M
7tt BOILS* BATIK MR! IU SUBS All
iollar Uad. Z of full Pomr
Air. X
7«
!• (Cl«ar Suck)
SjBpU Ni^Mr
03 S By ValiM
oo m
•a, rm
so] mi
80] FFH
CO - PFM Adj. To 31 02
WV PPM Adj. To 3Z 02
802- "M Adj. To 31 02
S03- PPM Adj. To 3X 02
X Coavoraloo of S02 to SO]
2S
1.63
140
201
2264
20.6
132
in
2120
19.4
.90
29
2.0
40
201
7223
10.9
38
190
2108
17.9
.04
30
2.0
60
200
2184
20.3
37
190
2069
19.2
.92
An
1.93
76
190
2102
18.8
.89
Saaola ft*>«r
Oj X By VoliM
00 m
•0, PPM
•O] PIN
80) PPM
CO - PPM Adj. To M 02
•V- PPM Adj. To 3X Oj
80]- PPM Adj. To 3X 02
SOj- PPM Adj. To 3X 02
Z Coavaraloo of 802 to 80]
31
2.9
0
220
2029
20.8
0
219
2018
20.7
1.02
32
3.0
0
220
2037
19.2
0
220
2037
19.2
.93
33
3.0
0
220
2033
20.0
0
220
2033
20.0
.96
An.
3.0
0
220
2036
20.0
.97
-------
YABU 6-9
TUT DATA AD BBSULT* rot coamai
•51 MILD BATIK Hin 3S BOBS All
TABU 6-10
TOT DAT1 AM MBIT* FOB. CODITIO* f 10
f 51 BOIUB BATIK Win 9X BCBI AXB
Taat DM*
Actual Boiler Load, Z of Full
Bacaaa Air, X
10/27/7*
ts
S (Claar Stack)
IMC Data
Actual Boilar Load. S of Full rovar
bcaai Air. X
10/29/76
•5
f (Claar Btack)
ZaBpla Kuabar
02 X By VoluM
00 PPM
MO. PPM
SO] PPM
803 PPM
CO - PPM Adj. T» JX 02
•Ox- PPM Adj. To 3Z 0]
SO]- PPM Adj. To 3X 02
$03- PPM Adj. T* JX Oj
X Cdnvarsloa of SO] to $03
13
1.1
390
240
2392
10.3
316
217
2164
9.3
.43
14
1.1
330
240
2429
13.4
116
217
2197
12.1
.54
13
1.1
330
240
2439
10.6
116
217
2224
9.6
.43
AVV.
1.1
316
217
2193
10.4
.47
Sa^la Itabar
02 S By VoluM
00 . ItM
•D, nil
BO] m
BO) PIN
CO - rw Adj. To 31 02
•Or- PIN Adj. To IX 02
B02- PPM Adj. To 3X 02
BO]- PPM Adj. To 31 Oj
X Coovariloo of SO] to M]
3
l.B
309
233
231B
It.*
28*
21J
2173
IS.*
.B4
«
l.B
X5
233
2347
14.4
2M
218
2200
13.3
.•1
7
l.B
303
233
2354
12.3
2B6
21B
2209
11.7
.33
A*s.
l.B
2Ba
218
21»4
14.3
.M
-------
TABU 6-11
TUT DATA AID USULTI F01 COKDinOB 111
94* toxin UTUC WITH 162 news AXI
TABU
mr BAZA An mm** m conmo* #1
MS BOILS! IATIK Mm 22* BOBS AH
Taat Bat*
Actual Boilar Load. I of Full Fovar
Air. X
10/23/76 T*.t Data
»4 Actual BOU., un, s of ^^ j^
16 (Claar Stack) tBcaaa Air. Z
Saapla Huatar
0] S By Voluaa -
CO PPM
•0, PPM
SO] PPM
SO] PPM
CO - PPM Adj. To J2 0]
HO*- P« Adj. Id 32 0]
SO]- PPM Ad j . To H 0]
SOj- PPM Adj. To 32 0]
2 Coovariloo of SO] to SO]
1
3.0
13
230
2016
19.6
15
230
2018
19.6
.M
2
3.0
15
230
2137
14.7
13
230
2157
14.7
.68
3
3.0
13
230
2039
14.3
13
230
2039
14.3
.69
4
3.0
13
230
2209
13.9
13
230
2209
13.9
.63
An-
3.0
13
230
2110
13.6
.74
?
10/27/7*
ft
22 (Claar Suck)
Saafila tabar
Oj S By VoliM
CO m
•Og PfM
SO] m
SO] PM
CO - m Adj. To 32 02
•V m Adj. To 32 0]
SO]- FPM Adj. to 32 0]
SO]- m Adj. To 32 0]
S Coovaraio* of SO] to SO]
16
4.1
0
263
2030
24.1
0
282
2162
23.7
1.17
17
4.1
0
263
1977
21.3
0
282
210,
29.9
1.40
18
4.1
0
2*3
1984
26.2
0
282
2113
27.9
1.30
ATg.
4.1
282
2127
27.8
1.29
-------
TABU 6-14
T«T BAZA AW BSUUS POt COnXTXOI tit
110X MILB IAXZW HIT! 9X BOSS AX*
IA8U 6-13
BAZA AD uran to* canimm »i
iiix MXIJI IATUE «n ss nou AU
TJMt Itatt
ActMl Boiler LMd. X of mil Pov«r
Bkc*M Air, X
10/U/7A
110
•
-------
16. Shoreside Boiler Fuel-Water Emulsions Study
Neat Oil (0% Water) Emission Data
Reference 24
Fuel Oil #6 Used During Testing
-------
TABLE II-1
SUMMARY OF PARTICIPATE EMISSIONS DURING PRE LONG TERM NEAT OIL TESTS
II.ST
NO.
2
3a
3l>
'.a
4b
5a
'jb
6 a
6b
7
DATE
9/10/80
9/10/80
9/10/80
9/11/80
9/11/80
9/12/80
9/12/80
9/12/80
9/12/80
9/15/80
TIME
1030-1330
1430-1730
1535-1835
1336-1700
1415-1715
0900-1150
0930-1216
1340-1640
1400-1700
0925-1300
7. STEAM
LOAD
35.4
31.4
31.4
32.8
32.8
95.6
95.6
97.8
97.8
94.8
ISOKINETIC
7.
108
102
108
113
106
108
105
105
106
108
SAMPLE
VOLUME
DSCK
27.6
43.4
43.1
69.9
46.2
91.5
88.8
91.7
85.2
70.3
STAC
PLOW
AC EM
4420
7260
6750
10400
7530
18000
17800
18500
16900
14000
K GAS
RATE
DSCFM
2500
4220
3920
6130
4260
8370
8270
8630
7900
6450
FLUE GAS
%
MOISTURE
11.99
12.15
12.52
10.43
14.39
12.50
12.53
11.82
12.11
11.76
FLUE GAS
TEMP.
°F
366
341
339
345
344
545
542
545
544
549
AVERAGE
ORSAT
7. 02 (DRY)
4.5
5.3
4.7
5.1
5.1
4.3
4.3
3.6
3.6
3.4
Fd
DSCF
lO^BTU
9406.9
!
Ih/DSCF
7.01x10'*
3.97x10*
4.23x10*
5.39x10*
6.4 xlO~*
U.SxlO'6
LO.lxlO~*
9.64x10*
8. 87x10"*
L2.4xlO~6
lb/106 BTU
0.0840
0.0500
0.0513
0.0671
0.0779
0.136
0.120
0.110
0.101
0.139
-------
TABLE H-2
SUMMARY OF NITROGEN OXIDE EMISSIONS FOR BOILER NO. 3 DURING PRE LONG TERM NEAT OIL TESTS
TEST
NO.
la
Ib
2a
2b
3a
3b
Aa
4b
5a
5b
6a
6b
7a
7b
DATE
9/9/80
9/9/80
9/10/80
9/10/80
9/10/80
9/10/80
9/11/80
9/11/80
9/12/80
9/12/80
9/12/80
9/12/80
9/15/80
9/15/80
TIME
1255-1355
1355-1635
0930-1130
1130-1330
1430-1600
1600-1830
1330-1430
1430-1530
0830-1100
1/100-1330
1330-1530
1530-1720
0830-1000
1000-1200
'L STEAM
LOAD
36.8
36.8
35.4
35.4
31.4
31,4
32.8
32.8
95.6
95.6
97.8
97.8
94.8
94.8
AVC. NO AS
NO (ppm)
136
124
106
128
120
120
91
97
171
165
154
135
178
142
AVC. NO AS
NO (Ib/BsCF)
1.06 x 10~5
9.62 x 10~6
8.22 x 10~6
9.93 x 10~6
9.31 x 10~6
9,31 x 10~6
7.06 x 10~6
7.52 x 10~6
1.33 x 10~5
1.28 x 10~5
1.19 x 10~5
1.05 x 10~5
1.38 x 10~5
1.10 x 10~5
AVC. NO AS
N02 (lb7DSCF)
1.62 x 10~5
1.47 x 10"5
1.26 x 10~5
1.52 x 10~5
1.43 x 10~5
1,43 x 10~5
1.08 x 10~5
1.15 x 10~5
2.03 x 10~5
1.96 x 10~5
1.83 x 10~5
1.61 x 10" 5
2.12 x 10~5
1.69 x 10~5
AVERAGE ORSAT
Z 02 (DRY)
5.1
5.8
4.1
4.7
5.4
4.8
5.4
6.2
4.4
4.3
3.6
3.6
3.4
3.4
Fd DSCF/106
BTU
9406.9
\ i
NO AS NO,
Iby'lO6 BTIT
0.201
0.192
0.148
0.185
0.181
0.174
0.137
0.154
0.242
0.232
0.208
0.183
0.238
0.190
-------
TABLE H-3
SUMMARY OF PARTICULATE EMISSIONS DURING POST LONG TERM NEAT OIL TESTS
TEST
NO.
2a
2b
3a
3b
4a
4b
5a
5b
6a
6b
DATE
5/5/81
5/5/81
5/5/81
5/5/81
5/6/81
5/6/81
5/6/81
5/6/81
5/7/81
5/7/81
TIME
0900-1200
1035-1330
1435-1730
1525-1800
0821-1116
0920-1210
1330-1630
1430-1715
0900-1145
0950-1250
% STEAM
LOAD
39.8
39.8
40.4
40.4
110.9
110.9
99.4
99.4
108.1
108.1
ISOKINETIC
*
98.1
104.1
106.5
106.0
102.0
93.1
101.4
103.3
102.3
105.6
SAMPLE
VOLUME
DSCF
57.1
48.6
51.8
46.7
91.8
84.3
75.3
77.8
100.7
92.7
STAC
FLOW
ACFM
11053
10350
9212
10250
22600
20000
18000
17800
23100
20700
1C CAS
RATE
DSCFM
5906
5553
4939
5508
9140
9190
7540
7640
9990
8910
FLUE GAS
I
MOISTURE
11.86
11.35
11.37
11.19
11.60
12.20
14.70
12.0
10.70
11.20
FLUE GAS
TgMP.
410
412
411
411
679
680
606
606
642
640
AVERAGE
ORSAT
^ 02 (DRY)
6.2
6,2
6.1
6.1
5.1
5.1
3.3
3.3
4.1
4.1
Fd
DSCF
106BTU
9272
\
Ih/DSCF
2.07x10*
3.63x10*
9.99x10*
2.53x10*
5.11x10*
5.66x10*
4.30x10*
4.32x10*
3.73x10*
4.24x10*
lb/10* BTU
0.0273
0.0479
0.131*
0.0332
0.0626
0.0694
0.0474
0.0476
0.0430
0.0489
Test 3a parttculaCe data not believable based on disagreement with results of follr (4) other tests run at essentially
the same load. Questionable results believed to be due to pick-up of partlculate from duct floor during Cest. Results
not used in data analysis.
-------
TABLE H-4
SUMMARY OF NITROGEN OXIDE EMISSIONS DURING POST LONG TERM NEAT OIL TESTS
TEST
NO.
1
2a
2b
3 a
3b
4a
4b
5a
5b
6a
6b
DATE
5/4/81
5/5/81
5/5/81
5/5/81
5/5/81
5/6/81
5/6/81
5/6/81
5/6/81
5/7/81
5/7/81
TIME
1500-1530
0900-1115
1115-1330
1435-1545
1545-1800
0821-1030
1030-1210
1330-1500
1500-1715
0900-1110
1110-1250
1 STEAM
LOAD
39.1
39.8
39.8
40.4
40.4
110.9
110.9
99.4
99.4
108.1
108.1
AVG. NO AS
NO (ppm)
93
99
96
95
100
160
•160
145
150
148
150
AVC. NO AS
NO (Ib/fiSCF)
7.24 x 10"6
7.71 x 10"6
7.47 x 10"6
7.40 x 10"6
7.78 x 10~6
12.4 x 10~6
12.4 x 10~6
11.3 x 10'6
11.7 x 10~6
11.5 x 10~6
11.7 x 10~6
AVG. NOV AS
N02 (lb?DSCF)
11.1 x 10"6
11.8 x 10"6
11.4 x 10~6
11.3 x 10"6
11.9 x 10~6
19.0 x 10'6
19.0 x 10"6
17.3 x 10~6
17.9 x 10"6
17.6 x 10~6
17.9 x 10~6
AVERAGE ORSAT
^ 02 (DRY)
7.1
6.2
6.2
6.1
6.1
5.1
5.1
3.3
3.3
4.1
4.1
Fd DSCF/106
BTU
9272
i
f
NO AS NO-
Ib^lO6 BTIT
0.156
0.155
0.150
0.148
0.156
0.233
0.233
0.190
0.197
0.203
0.206
-------
TABLE M-5
SUMMARY OF PARTICULATE EMISSIONS DURING PRE LONG TERM EMULSIFIED OIL TESTS
TEST
NO.
2
3a
3b
4a
4b
5a
5b
6a
6b
7a
DATE
6/22/81
6/23/81
6/23/81
6/23/81
6/23/81
6/24/81
6/24/81
6/24/81
6/24/81
6/25/81
TIME
1329-1558
0752-1055
0850-1150
1256-1549
1353-1700
0810-1059
0905-1154
1333-1610
1431-1705
0813-1048
% STEAM
LOAD
41.4
40.5
40.5
40.3
40.3
103.8
103.8
96.6
96.6
96.8
ISOKINETIC
%
104
105
105
105
105
100
101
102
104
103
SAMPLE
VOLUME
DSCF
45.2
52.2
39.8
47.8
44.1
92.4
90.1
81.9
76.2
82.4
STAC
FLOW
ACFM
7880
9080
6920
8270
7750
20200
20000
16600
16100
17600
< CAS
RATE
DSCFM
4310
4970
3840
4570
4300
9220
9090
7990
7460
7990
FLUE CAS
7.
MOISTURE
12.1
12.1
11. 1
12.1
11.7
11.2
11.0
11.8
12.1
12.8
FLUE CAS
TEMP.
°F
377
381
382
377
378
574
581
540
545
554
AVERAGE
OR SAT
7. 02 (DRY)
4.4
5.2
5.2
5.0
5.0
4.5
4.7
4.1
4.0
4.1
Fd
DSCF
106BTU
9369
'
Ib/DSCF
2.24xlrt*
16.1X10"6
2.28x10"*
2.16x10*
1.88x10*
2.49x10"*
2.47x1(1*
2.64x10*
2.56xlO~*
2.36X10"6
lb/10& BTU
0.0266
0.201*
0.0285
0.0232
0.0266
0.0297
0.0299
0.0316
0.0297
0.0275
Test 3a participate data not believable based on disagreement with results of four (4) other tests run at essentially the
same load. Questionable results believed to be due to pick-up of partlculate from duct floor during test. Results not used
in statistical analysis.
-------
TABLE H-6
SUMMARY OP NITROGEN OXIDE EMISSIONS DURING PRE LONG TERM EMULSIFIED OIL TESTS
TEST
NO.
2a
2b
3a
3b
4a
4b
5a
5b
6a
6b
7a
7b
DATE
6/22/81
S/22/81
6/23/81
6/23/81
6/23/81
6/23/81
6/24/81
6/24/81
6/24/81
6/24/81
6/25/81
6/25/81
TIME
1330-1430
1430-1600
0752-1055
1050-1150
1256-1549
1353-1700
0810-1059
0905-1154
1333-1610
1431-1705
0810-0940
0940-1100
7. STEAM
LOAD
41.4
41.4
40.5
40.5
40.3
40.3
103.8
103.8
96.6
96.6
96.8
96.8
AVG. NO AS
NO ( ppm )
82
80
79
80
91
93
135
135
130
130
125
127
AVC. NO AS
NO Ub/fisCF)
6.4 x 10~6
6.2 x 10~6
6.1 x 10~6
6.2 x 10"6
7.1 x 10~6
<:
7.2 x 10~b
10.5 x 10~6
10.5 x 10~6
10.1 x 10~6
10.1 x 10~6
9.7 x 10~6
9.8 x 10~6
AVC. NO AS
N02 (lb?DSCF)
9.7 x 10~6
9.5 x 10"6
9.4 x 10~6
9.5 x 10~6
10.8 x 10'6
f.
11.1 x 10"°
16.1 x 10'6
16.1 x 10"6
15.5 x 10"6
15.5 x 10"6
14.9 x 10"6
15.1 x 10"6
AVERAGE ORSAT
Z 02 (DRY)
4.5
4.3
5.2
5.2
5.0
5.0
4.5
4.7
4.1
4.0
4.1
4.1
Fd DSCF/106
BTU
9369
l
t
NO AS NO,
Ib^lO6 BTtT
0.116
0.119
0.117
0.119
0.133
0.137
0.192
0.195
0.181
0.180
0.140
0.176
-------
TABLE 11-7
SUMMARY OF PARTICULATE EMISSIONS DURING POST LONG TERM EMULSIFIED OIL TESTS
TEST
NO.
1
2a
2b
3a
3b
4a
4b
5a
5b
6
DATE
3/22/82
3/23/82
3/23/82
3/23/82
3/23/82
3/24/82
3/24/82
3/24/82
3/24/82
3/25/82
TIME
1355-1600
0815-1025
0905-1045
1245-1450
1330-1535
0730-1040
0900-1125
1325-1530
1400-1605
0720-0900
7. STEAM
LOAD
102.4
99.9
99.9
96.7
96.7
34.7
34.7
34.1
34.1
34.6
1 SDK [NET 1C
•L
104
107
108
105
107
105
103
103
102
104
SAMPLE
VOLUME
DSCF
38.7
37.1
36.0
35.9
34.3
53.5
60.0
33.2
43.3
37.1
STAC
FLOW
ACFM
21800
20004
19445
19771
18316
5378
5794
5241
6249
5662
K CAS
RATE
DSCFM
9723
9113
8723
9044
8342
3137
3367
3055
3658
3290
FLUE GAS
•L
MOISTURE
10.8
10.3
11.0
12.4
12.5
12.6
12.6
12.0
12.0
12.2
FLUE CAS
TgMP.
589
583
591
556
557
339
342
345
342
343
AVERAGE
ORSAT
Z 02 (DRY)
3.9
4.2
4.2
2.8
2.8
4.5
4.5
4.5
4.5
4.6
Fd
DSCF
106BTU
9205
•
Ib/DSCF
6. 61x10"*
30.9x10"*
S. 09x10"*
i. 75x10"*
5.69x10"*
».57xio~*
». 80x10"*
}. 56x10"*
3.95x10"*
i. 95x10"*
lb/106 BTU
0.0748
0.356*
0.0586
0.0610
0.0710
0.0536
0.0564
0.0420
0.0463
0.0584
Test 2a partlculate data not believable based on disagreement with results of four (4) other tests run at essentially the
same load. Questionable results believed to be due to pick-up of partlculate from duct floor during test. Results not used
In statistical analysis.
-------
TABLE H-8
SUMMARY OF NITROGEN OXIDE EMISSIONS DURING POST LONG TERM EMULSIFIED OIL TESTS
TEST
NO.
la
Ib
2a
2b
3a
3b
4a
4b
5a
5b
6a
6b
DATE
3/22/82
3/22/82
3/23/82
3/23/82
3/23/82
3/23/82
3/24/82
3/24/82
3/24/82
3/24/82
3/25/82
3/25/82
TIME
1315-1515
1515-1715
0715-0915
0915-1115
1200-1400
1400-1600
0755-0955
0955-1100
1315-1515
1515-1715
0700-0900
0900-1100
% STEAM
LOAD
102.4
102.4
99.9
99.9
96.7
96.7
34.7
34.7
34.1
34.1
34.6
34.6
AVG. NO AS
NO (ppm)
112
129
132
135
138
170
70
75
77
80
73
80
AVC. NO AS
NO (Ib/BSGF)
8.72 x 10~6
10.02 x 10"6
10.28 x 10~6
10.47 x 10~6
10,67 x 10~6
13.19 x 10~6
5 ,41 x 10"6
5.80 x 10"6
5.99 x 10~6
6.18 x 10~6
5.69 x 10~6
6.24 x 10~6
AVG. N0v AS
N02 (Ib/DSCF)
1.34 x 10~5
1.54 x 10"5
1.58 x 10~5
1,61 x 10~5
1.64 x 10~5
2.02 x 10~5
8.30 x 10~6
8.89 x 10~6
9,18 x 10~6
9,48 x 10~6
8.72 x 10~6
9.56 x 10~6
AVERAGE ORSAT
X 02 (DRY)
3.9
3.9
4.2
4.2
2.8
2.8
4.5
4.5
4.5
4,5
4.3
4.3
Fd DSCF/106
BTU
9205
—
I
,
NO AS N0«
lb?106 BTU*
0.152
0.174
0.182
0.185
0.174
0.215
0.097
0.104
0.108
0.111
0.101
0.111
-------
DATA SUMMARY ON NEAT OIL FUEL #6
FUEL CONSUMPTION3
Test
Per-
formed
Test
Date
Heat Input
(106 Btu/hr)
Percent
of
Load
Fuel Characteristics
sp. gr.
Ib/hr
Pre-Long Term Tests
la
Ib
2a
2b
3a
3b
4a
4b
5a
5b
6a
6b
7a
7b
9/9/80
9/9/80
9/10/80
9/10/80
9/10/80
9/10/80
9/11/80
9/11/80
9/12/80
9/12/80
9/12/80
9/12/80
9/15/80
9/15/80
13.15
13.15
12.80
12.80
11.09
11.09
11.61
11.61
35.40
35.40
35.53
35.53
35.14
35.14
36.8
36.8
35.4
35.4
31.4
31.4
32.8
32.8
95.6
95.6
97.8
97.8
94.8
94.8
Post-Long Term Tests
1
2a
2b
3a
3b
4a
4b
5a
5b
6a
6b
5/4/81
5/5/81
5/5/81
5/5/81
5/5/81
5/6/81
5/6/81
5/6/81
5/6/81
5/7/81
5/7/81
14.09
14.32
14.32
14.47
14.47
42.97
42.97
37.47
37.47
41.32
41.32
39.1
39.8
39.8
40.4
40.4
110.9
110.9
99.4
99.4
108.1
108.1
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
0.9567
711.4
711.4
692.8
692.8
599.8
599.8
628.1
628.1
1915.6
1915.6
1922.4
1922.4
1901.4
1901.4
0.9194
0.9194
0.9194
0.9194
0.9194
0*9194
0.9194
0.9194
0.9194
0.9194
0.9194
733.0
744.8
744.8
752,
752,
2235,
2235,
1949.0
1949.0
2149.3
2149.3
,7
,7
,1
,1
-------
17. Exhaust Emissions from Uncontrolled Vehicles and Related
Equipment Outboard Motors
(For Pleasure Craft Data Base)
Reference 25
Note: It is assumed that inboard engine emissions are comparable to
outboard engine emission factors and are treated as such for
data base input.
-------
TABLE 2. AVERAGE POWER OUTPUT OBSERVED
DURING OUTBOARD TESTS
Average Observed Propshaft Horsepower/Rpm in Modes
OMC 4 hp
Mode
1
2
3
4
5
6
7
2.
1.
0.
0.
0.
x = 3
73/4500
74/4000
75/3000
23/2000
05/1250
Idle/(1050)
OMC 9. 5 hp
x = 2. 5
7.
5.
2.
0.
0.
29/4500
34/4000
59/3000
95/2000
17/1000
Idle/ (700)
Chrysler
x = 2. 5
28.
16.
7.
2.
0.
4/5000
1/4000
9/3000
9/2000
5/1000
Idle/ (1000)
35 hp
x = 3
28.
14.
6.
1.
0.
4/5000
3/4000
1/3000
8/2000
2/1000
Idle/(1100)
by Engine
Mercury 65 hp
53.
45.
29.
13.
5.
0.
x = 2.5
4/5200
6/4800
2/4000
0/2890
2/2000
9/1000
Idle/ (800)
Reference
-------
TABLE 3. TOTAL MASS EMISSIONS AND MASS EMISSIONS RETAINED
IN WATER PHASE (EXPERIMENTALLY) FOR FOUR OUTBOARD MOTORS
Raw Mass Emission Rate, g/hr Loss in Water (Experimental), g/hr
Mode
Gas
HC
CO
CO2
NOX
°2
H2O
HC
CO
C02
NOX
°2
H2O
HC
CO
C02
NOX
02
H2O
HC
CO
CO2
NOX
°2
H?0
HC
CO
CO2
NOX
°2
H2O
HC
CO
CO2
NOX
02
H2O
HC
CO
C02
NOX
02
H2O
Johns.
4
577
699
2660
5.5
1560
1480
324
587
1980
1.3
1010
1110
212
474
1350
0.6
565
806
168
303
748
0.2
373
507
176
275
464
0. 1
343
369
198
242
373
0.0
358
315
--
--
--
--
--
--
Johns.
9.5
792
2140
5830
• 6.3
1970
4020
813
1690
5350
3.8
2040
3560
827
1520
3790
1.9
2020
2720
638
951
2180
0.7
1340
1650
413
472
885
0. 1
769
730
402
365
662
0. 1
729
564
--
--
--
--
--
--
Chrys.
35
2880
9310
13500
9.7
5230
12300
1850
5760
9803
6.9
33'50
8300
1550
4020
6540
3.5
2830
5650
1040
2310
4130
1.7
1880
3440
746
1080
1850
0.6
1170
1600
1030
1010
1630
0.6
1410
1480
--
--
--
--
--
Merc.
65
6340
8910
32800
81.5
17700
19900
4660
6170
29200
83.4
12500
16900
2730
5030
19000
19.2
6750
11660
2120
4850
10300
3.2
5670
7760
1980
2890
6480
0.8
5000
4840
2170
2590
4300
0.8
5750
3780
1870
1610
2440
0. 5
5610
2350
Johns.
4
148
64.0
857
1.4
-86.9
1210
97.8
104
723
0. 1
60.4
931
63.4
51.7
426
0.0
-36. 1
671
61.5
25.2
294
0.0
-22.4
427
54.0
24. 2
124
0.0
-17.6
306
64.0
22.0
100
0.0
-1.6
258
--
--
. ..
--
--
--
Johns.
9.5
294
79.9
2330
0.5
-71.8
3190
351
83.2
2240
0.4
-106
2800
365
71.5
1520
0.4
28.9
2120
310
68.0 •
867
0.2
43.2
1280
200
45. 1
342
0.0
33.3
553
190
31.0
261
0.0
32. 5
422
--
--
--
--
.-
Chrys.
35
1460
384
5300
2.5
-301
9800
686
319
3910
1.9
-152
6600
572
115
2730
1.6
-177
4440
390
138
998
0. 7
-45.6
2700
236
30. 5
772
0.4
63. 1
1230
373
73.6
666
0.4
48.6
1100
--
--
--
--
Merc.
65
2220
260
14300
14.4
215
16500
1350
270
13300
16. 1
-428
14300
977
177
7570
1. 5
-299
9920
743
193
3830
0. 9
-89. 5
' 6590
552
6. 3
2430
0. 3
34.6
4030
537
116
1550
0.4
67. 3
3030
389
70.4
799
0. 2
138
1760
-------
TEST DATA; ON JOHNSON t-S X\> OUTBOARD MOTOR.
MODE
1
1 A
Z
1A
3
J A
4
4- A
5
5A
fc
4. A
FUEL COKJSO^PTION . *-/V
RUN NUMBER
1
8.i7
8.05
7.43
7.4J
fe.n
t,.i?
4-08
4.0?
2. IB
2.18
I.&8
1.83
i
ft.ll
b.i}
7.44,
7.S7
(o.Wo
fc.l?
4.H
^.il
1.95
M6
••&§_
i.BO
3
8.34
ft.37
TS 2
1.54-
&.33
C..37
3.94
4.07
1.99
1.93
i-S9
i.fci
4-
6.0)
6.14
7.0?
7.05
S.9I
6.90
3.80
3.73
I. (oO
I.S5
I.Sfc
1.52.
5
?.&i
7.86
7.12
7.2.2
S.BB_
SBC,
3.?1
3.. 19
4.09
4.07
Z.7S
2.ZO
I.7S
1.17
7
T9S
&.00
7.3&
7.36
fo.Z7
Q..30
4.16
4.13
1. 00
2.01
1. 6S
t.B4
8
8-37
B.3T
T3!
7.38
S9fc
5.91
3."74
3.73
2.1 1
2.10
I.&D
I.BC,
AMERA.S-E
OR TtPltAL
VM.OE
a. n
6.14
7.35
-J.3S
&.OJ
fe. U
3.9C,
3. 95
Z.03
2.03
1. 74
I.7S
MODE
1
1 A
2
2A
i
3A
4-
4A
S
SA
I 07
0.17
« 10
3.34-
2.d>l
>. BZ
1. IU
0.^3
0 9&
* II
i.4Z
2.56
2.04-
..19
1.05
0.96
A,VtK«.&E
OR TVOCAL
vALUi.
4.08/«1.16
Z^/l'fcO
1.92
1. 21
1.01
O.K.
* NEW TOIL POMP IMS1ALLEP PRIOR. 10 60W 10
MODE
1
1 A
2
Z A
3
3A
4
4 A
S
S A
-------
TEST DATA ON MERCURY fcSQ OuTBOARb MOTOR
2/11/12 - 1/lb/ll. ll-Z8fe»-OI
TEST DATA ON CHRYSLER, J& Kp OUTBOARD MOTOR.
MODE.
1
1 A
2
1 A
3
5 A
4
4 A
£
S A
6
fc A
7
1 A
FUEL CONSUMPTION , lb- /h»
RUN NUMBER. . .
2
44.9
41.4
3fc.9
It.?
24.1
24.5
11.4
11.4
17.0
12.0
10.4
I0.(,
7.14
1.01
3
4fc.9
47.1
37.5
17.2
24.4
24.4
»7.3
17.5
i2.2
12.5
tO.3
10.4
b.89
7. Ob
4-
4-5-7
4fc.l
17.7
16.1
24.4
24.4
lfc.8
Ifc. 8
I). 8
12.1
10-4
104
7.03
(,.81
5
4fc.4
4fc.S
37.0
37 2
2S.O
24. ^
^17.8
n-9
12 1
II. 6
10.1
10.7
8.89
B-Sfe
1.0
12. 0
lO.t
lO.fc
7.U
7.61
Mooe
1
1 A
2
2 A
3
3 A
4
4 A
S
S A
6
b A"
-1_
7 A
FUEL CONSUMPTION , *A*
RUN NUMBER
2
Zl,100
2.1,500
Ifc, 700
it, too
11,200
H,1OO
7440
744.0
SA4O
S44-0
_.4-T 20
46IO
3240
32ZO
a
2.1,300
2.1,400
17,000
Ifc.SOO
1 1, 100
11, 100
.1850
7940
5540
54,70
*fc7.P
41 ZO
51 20
3100
4
ZO, 7 00
20,900
17,100
17,300
1 1 , 1 00
II, 100
TfclO
7bZ-0
S3 SO
£490
_*7.10
4720
3190
3090
S
21,000
11, 100
Ifc, 600
Ifc, 900
n, 300
It. 300
6070
6120
£490
53SO
_4 8SO
4BSO
4010
J880
Q>
ZO.30O
2\,10O
IQ.,9 00
l(o,800
11,100
It, 300
_lkL0_
7BSO
SiSO
5310
/*??t>
50 3O
f 31.70
3fc40
AOJERACt
OR TYPICAL
VAV.OE
20,900
Z\,ZOO
Ifc, 960
lfe,900
It, ZOO
It, 200
77 10
7800
5440
5440
4& 10
4b 1 0
345O
34 10
MODE
1
|A
2
2A
3
3A
4-
4A
5
5A
6
6A
FUEL CONSUMPTION), '*>-/W
RUN NUMBER.
1
zt.o
2S.8
Ifc. 9
n.o
11.4
12.3
1.2G
7.4-4
J.TJ
3.8>
4.17
4.14
I
Z7.0
2U.B
)(..&
n.o
IZ.3
12.2
1.18
1.3i
S.7I
J.tl
3.)1
4.00
3
ZS.fc
2S.3
Ifc.B
17.0
11.8
1 1.1
1.88
7.91
4.33
4.33
4-H
4-»Z
4-
15.8
15.8
I&.0
17.9
U.7
H^
7.)S
7.85
4.48
4.11
4.90
4.&(.
S
25.0
1S.O
<7.1
I7.S
I2.S
12.5
7-H
T92.
4- IS
4.17
4. SB
4.56
6
17.2
174
12.2
12.1
1,88
1-9t
4.SS
4.51
7
17.2
17.3
12.4
I2.S
1.8S
7.85
4.4)
4-34
AMteA&t
OR TYPICAL
V/ALU6
1-5
1SJ
1S.7
17-1
H.l
12.3
IZ.J
7.(,t
7.CJ
4-11
4.08
4.SI
4.S2
«.|7
17.2
17.4-
12.3
11.3
7.ftt
LIB
4.44
4.SI
I«10DE
1
|A
1
1A
3
3A
4
4 A
5
5A
&
fcA
FUEL CONSUMPTION, %/hc
RUN NUM&EK
1
11,800
11.100
7tbO
1700
504O
5S60
319O
iieo
1720
1770
1810
1920
2
I2,ZOO
11,200
T.20
1700
£570
£510
3300
3320
IfcBO
16,40
n&o
I&ZO
i
11,600
11.500
15JO
7fc40
SifcO
5470
3570
3590
I9b0
1970
2Z4O
123O
4.
l»,700
11,700
6170
8120
5 ISO
5790
IblO
jSfcO
2030
2000
2.120
r72IO
S
11,400
11,300
1810
1930
£480
SfcfcO
3bOO
3590
1930
1890
2090
2080
&
7820
1900
5£10
5480
3S7O
3S90
20(0
205O
7
1800
78SO
5fc|0
SfefcO
3590
35 bO
1970
2Q40
ftMER-A&E
OR TYPICAL
VALOE.
I-S
11,750
Il.tIO
1170
1820
5(pOO
5580
3480
3490
IBfcO
1850
2040
10 SO
6H
1810
7810
ssto
£570
3S70
3580
2020
2040
-------
18. U. S. Coast Guard Pollution Abatement Program Two Stroke
Cycle Outboard Gasoline Engine Emissions
(for Pleasure Craft Data Base)
Reference 26
NOTE: It is assumed that inboard engine emission factors are
comparable to outboard engine emissions factors and
are treated as such for data base input.
-------
TABLE 2. APPLIED HP FOR TEST ENGINES
Speed
(RPM)
700-800
1000
2000
3000
4000
4500
5000
5200
5500
1959
Johnson
-
1.16
6.58
18.14
37.25
50.00
-
-
-
1965
Mercury
-
1.05
5.96
16.43
33.75
-
58.93
65.00
-
1962
Mercury
-
0.937
5.58
15.30
31.57
-
55.16
-
70.00
1974
Evinrude
-
0.93
5.27
14.51
29.80
40.00
-
-
-
1972
Mercury
-
0.715
4.05
11.15
22.89
-
40.00
-
-
-------
TWO STROKE OUTBOARD ENGINE EMISSION DATAa/b
Engine
Johnson 1959
50 hp rated
Mercury 1964
65 hp rated
Mercury 1962
70 hp rated
Evinrude 1974
40 hp rated
Mercury 1972
40 hp rated
HP
Idle
1.16
6.58
18.14
37.25
50.00
1.05
5.96
16.43
33.73
58.93
65.00
0.937
5.57
15.38
31.57
55.16
70.00
Idle
0.93
5.27
14.51
29.80
40.00
Idle
0.715
4.05
11.15
22.89
40.00
Load
%
—
2.3
13.2
36.3
74.5
100.0
1.6
9.2
25.3
51.9
90.7
100.0
1.3
8.0
22.0
45.1
78.8
100.0
2.3
2.3
13.2
36.3
74.5
100.0
-
1.8
10.1
27.9
57.2
100.0
Fuel Cons.
gal/hr
—
-
-
-
-
—
—
-
-
-
-
—
1.35
2.45
3.29
3.92
5.32 .
6.47
_
-
-
-
-
-
-
-
-
-
-
™
Total Emissions (g/hr)
CO
2,850
4,500
7,000
10,000
7,600
7,650
700
750
1,350
4,950
6,650
9,300
1,200
2,000
4,400
7,500
9,500
12,600
900
950
700
1,750
5,750
6,250
500
550
1,450
1,250
4,600
4,200
NOX
2.6
3.0
4.5
8.6
18.5
—
1.0
1.2
2.5
4.5
12.0
27.0
0.7
1.1
2.5
4.5
10.8
21.0
0.4
0.6
1.7
6.2
11.1
19.3
0.2
0.2
0.85
3.8
5.55
20.8
THC
3,050
3,200
7,050
6,150
5,800
4,650
1,550
1,780
2,250
2,700
3,250
4,500
1,700
2,300
3,750
3,800
3,050
3,700
900
760
950
1,075
1,950
2,500
450
300
750
750
1,450
2,050
aReference 26.
^Gasoline density
6.17 Ib/gal.
-------
TWO STROKE OUTBOARD ENGINE EMISSIONS DATA a/b
Engine
Johnson
4 hp
Johnson
9.5 hp
Chrysler
35 hp
Mercury
65 hp
HP
2.73
1.74
0.75
0.23
0.05
Idle
7.29
5.34
2.59
0.95
0.17
Idle
28.4
16.1
7.9
2.9
0.5
Idle
53.4
45.6
29.2
13.0
5.2
0.9
Idle
Load
%
68.3
43.5
18.8
5.8
1.3
-
83.2
56.2
27.3
10.0
1.8
-
81.1
46.0
22.6
8.3
1.4
-
82.2
70.2
44.9
20.0
8.0
1.4
Fuel Cons.
gal/hr
^
-
-
-
-
-
—
-
-
-
-
-
-
-
-
-
-
-
—
-
-
. -
-
.
Total Emissions (g/hr)
HC
577
324
212
168
176
198
792
813
827
638
413
402
2,880
1,850
1,550
1,040
746
1,030
6,340
4,660
2,730
2,120
1,980
2,170
1,870
CO
699
587
474
. 303
275
242
2,140
1,690
1,520
951
472
365
9,310
5,760
4,020
2,310
1,080
1,010
8,910
6,170
5,030
4,850
2,890
2,590
1,610
NOV
5.5
1.3
0.6
0.2
0.1
0
6.3
3.8
1.9
0.7
0.1
0.1
9.7
6.9
3.5
1.7
0.6
0.6
81.5
83.4
19.2
3.2
0.8
0.8
0.5
aReference 26.
bGasoline density = 6.17 Ibs/gal
-------
TABLE 7. WATER/EXHAUST MIXING RESULTS
40DE
1
2
3
4
S
6
j-f :
GAS
CO
C02
HO,
ml
CO,
co2
MO2
ml
CO ,
CO,
NO*
iTHt
CO
o>2
ml
CO
CO,
NO*
ml
CO
co2
NOJ
THC
MASS EMISSIONS (|/hr)
XX X X X
o ui e wo o
fl I* 5V IV S*
C* |H» UO> :>9l |UO>
•> M . KM .-KM MM -KM
2150 700 . 1200 900 500
7000 3125 2000 1200 1250
2.6 1.0 ./S 0.4 0.2
3050 1550 1700 900 450
4500 750 ,- 2000 950 550
9125 .3625 J900 2100 1400
3.0 1.2 1.1 0.6 0.2
3200 1710 - 2300 760 300
7000, 1350 4400 700 1450
9250 6750 4ISO S7SO 3300
4.5 2.5 2.5 1.7 O.IS
7050 2250 n 3750 950 750
10000 4950 : 7500 1750 1250
12500 10625 > 1400 9500 6000
1.6 4.5 4.5 6.2 3.1
61SO 2700 .3100 1075 750
7600 06SO -9500 5750 4600
20000 11000 43500 12200 7600
11.5 12.0 10.1 11.1 5.55
5100 3250 . 3050 1950 1450
7650 9300 12600 6250 4200
- . '20200 17400 13100
2'.0 21.0 19.3 20.1
4650 4500 3700 2500 2050
EMISSIONS RETAINED IN HATER (g/hr)
X X X X X
0 »/> O MO O
OOt UOl UOk >O> WOl
•-»M KM KM MM KM
201 316 366 246 112
5230 .744 1413 1005 1062
1.2 0.6 0.4 0.23 0.12
597 934 910 474 235
344 427 510 245 160
6991 3093 2076 1715 1221
1.35 0.77 0.55 0.24 0.12
643 1033 1411 352 160
1123 624 146 142 502
7145 5759 3507 4769 2933
1.96 1.36 1.05 0.24 C.36
2641 1274 213S 452 426
1773 2221 1209 554 414
9125 9132 5129 7921 5493
0.65 1.96 1.22 1.74 1.75
1125 1631 2116 413 441
1747 *367 92S 1662 1664
16052 15109 10292 10009 6I!6
.91 S.62 2. OS 3.76 2.60
1412 1501 1419 99* 155
-f
5173 474 1137 1191
14115 1470* 11752
13.1 5.39 6.12 10.1
2916 ISO* 1309 1077
EMISSIONS VENTED TO AIR (g/hr)
X X XXX
o >n o uio o
jKoT 0»" BN 35 V B r-«
£"» •** «« — •- •« f-
Be> W* uio> >o« wet
->M KM KM SJM SM
2649 314 134 654 311
1770 311 517 195 1*1
1.4 0.4 0.35 0.17 0.01
2453 616 790 426 215
'4156 323 1490 70S 390
2127 532 124 IS 179
1.65 0.43 0.55 0.36 0.01
2557 747 1*9 401 140
5*77 726 3554 SSI 941
2105 991 1343 911 367
2.54 1.14 1.45 1.46 0.49
4409 976 1615 491 324
•227 2729 6291 1196 136
2675 1493 2571 1572 507
7.95 2.54 3.21 4.46 2.05
4325 1069 1614 592 309
5153 2713 IS7S 4011 2936
3941 2191 .3201 2191 714
17.52 6.31 I./S 7.34 2.95
4311 1742 1631 954 595
3427 12126 4413 3009
S3IS 2694 2041
13.2 15.61 12.41 10.7
1514 2392 1191 973
------- |