&EPA
United States Industrial Environmental Research EPA-600/7-80-017b
Environmental Protection Laboratory January 1980
Agency Research Triangle Park NC 27711
Advanced Combustion
Systems for Stationary
Gas Turbine Engines:
Volume II. Bench Scale
Evaluation
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-80-017b
January 1980
Advanced Combustion Systems
for Stationary Gas Turbine Engines:
Volume II. Bench Scale Evaluation
by
R.M. Pierce, S.A. Mosier, C.E. Smith,
and B.S. Hinton
Pratt and Whitney Aircraft Group
United Technologies Corporation
P.O. Box 2691
West Palm Beach, Florida 33402
Contract No. 68-02-2136
Program Element No. INE829
EPA Project Officer: W.S. Lanier
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
FOREWORD
This report was prepared by the Government Products Division of the Pratt & Whitney
Aircraft Group (P&WA) of United Technologies Corporation under EPA Contract No.
68-02-2136, "Advanced Combustion Systems for Stationary Gas Turbine Engines." It is
Volume II of the final report which encompasses work associated with the accomplishment of
Phase II of the subject contract from 1 January 1978 through 12 April 1979. The originator's
report number is FR-11405.
Contract 68-02-2136 was sponsored by the Industrial Environmental Research Laboratory
of the Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
under the technical supervision of Mr. W. S. Lanier.
The authors wish to acknowledge the valuable contribution made to this program by Mr.
W. S. Lanier, whose skillfull management and insight have been a key factor in the success of
the program and of the Rich Burn/Quick Quench combustor design concept.
The Pratt & Whitney Aircraft Program Manager is Mr. Robert M. Pierce; the Deputy
Program Manager is Mr. Clifford E. Smith. Mr. Stanley A. Mosier is Technology Manager for
Fuels and Emissions Programs at the Government Products Division of Pratt & Whitney
Aircraft Group.
Special recognition is due Mr. E. R. Robertson of the Component Design and Integration
Group, who was responsible for all drafting, hardware fabrication, and data processing
activities. The skillfull assistance of Mr. R. Taber of the Instrumentation Laboratory in setting
up and operating the gas analysis equipment is also acknowledged.
iii/iv
-------
TABLE OF CONTENTS
Section Page
I INTRODUCTION 1
II DESIGN CONCEPTS 2
Review of Phase I Concept Identification 2
Primary Concept Selection 6
Concept Descriptions 7
III EXPERIMENTAL PROGRAM 14
Test Philosophy 14
Combustor and Rig Hardware 17
Bench-Scale Combustor Experimental Results 26
Analytical Model Simulations 197
IV CONCLUSIONS FROM PHASE II 204
REFERENCE 205
APPENDIX A A-l
APPENDIX B B-l
APPENDIX C C-l
APPENDIX D... D-l
EPA FORM E-l
-------
LIST OF ILLUSTRATIONS
Figure Page
1 Initial Configuration for Concept No. 1 8
2 Initial Configuration for Concept No. 3 9
3 Initial Configuration for Concept No. 5 With Water as Coolant 10
4 Configuration for Concept No. 5 With Air as Coolant 11
5 Initial Configuration for Concept No. 6 12
6 Initial Configuration for Concept No. 7 12
7 Overview of Bench-Scale Screening Program Test Plan Outline 15
8 Phase II Bench-Scale Test Program 16
9 Typical Screening Cycle 17
10 "Erector Set" Burner Hardware 20
11 Modular Burner Sections Used in the Bench-Scale Test Program 20
12 Bulkhead Plate and "Erector Set" Framework With Combustor 22
13 Bulkhead "Erector Set" Framework and Combustor Installed in Rig 22
14 Schematic Diagram of Bench-Scale Rig 23
15 Photograph of the Bench-Scale Test Rig 23
16 Schematic Diagram of Bench-Scale Rig (Instrumentation) 25
17 Schematic of Gas-Sample Analysis Equipment 27
18 Schematic Diagram of Ammonia Addition System 28
19 Bench-Scale Combustor Scheme 1-1A 30
20 Experimental Hardware Used in the Evaluation of Concept No. 1 — Low
Intensity Flame 31
21 Bench-Scale Combustor Scheme 1-2A 32
22 Bench-Scale Combustor Scheme 1-3A 33
23 Bench-Scale Combustor Scheme 1-5A 35
24 Exhaust Emission Data for Scheme 1-5A 36
25 Bench-Scale Combustor Scheme 1-6A 36
vi
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
26 Exhaust Emission Data for Scheme 1-6A 37
27 Bench-Scale Combustor Scheme 1-7A 38
28 Exhaust Emission Data for Scheme 1-7A (No. 2 Fuel) 38
29 Variation in NO, Concentration and Rate of Bound Nitrogen Conversion
With Equivalence Ratio for Concept No. 1 — Low Intensity Flame 39
30 Exhaust Emission Data for Scheme 1-7A 40
31 Bench-Scale Combustor Scheme 1-8A 41
32 - Exhaust Emission Data for Scheme 1-8A 42
33 Bench-Scale Combustor Scheme 1-9A 43
34 Exhaust Emission Data for Scheme 1-9A 43
35 Bench-Scale Combustor Scheme 1-10A 45
36 Exhaust Emission Data for Scheme 1-10A 45
37 Bench-Scale Combustor Scheme 3-2A 46
38 Experimental Hardware for Scheme 3-2A 47
39 Bench-Scale Combustor Scheme 3-3A 48
40 Air Heat Exchanger Module Used in the Evaluation of Poncept No. 3 —
Superlean With Heat Recirculation 48
41 Experimental Hardware for Scheme 3-3A 49
42 Bench-Scale Combustor Scheme 3-4A 51
43 Bench-Scale Combustor Scheme 3-5A 51
44 Bench-Scale Combustor Scheme 3-6A 52
45 Comparison of Variation in NO, and CO Concentrations With Equivalence
Ratio for Two Flameholder Types in Concept No. 3 (Superlean
With Heat Recirculation) 53
46 Experimental Hardware Used in the Evaluation of Concept No. 4 —
Superlean With Preburner 55
47 Bench-Scale Combustor Scheme 4-1A 56
48 Bench-Scale Combustor Scheme 4-2A 56
vii
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
49 Bench-Scale Combustor Scheme 4-3A 57
50 Bench-Scale Combustor Scheme 4-4A 57
51 Basic Heat Exchanger Module Used in the Evaluation of Concept No. 5 —
Heat Removal 59
52 Array of Four Heat Exchanger Modules 59
53 Alternative Heat Exchanger Hardware Utilizing Air as Coolant 60
54 Bench-Scale Combustor Scheme 5-1A 60
55 Bench-Scale Combustor Scheme 5-2A 61
56 Bench-Scale Combustor Scheme 5-3A 61
57 Bench-Scale Combustor Scheme 5-4A 63
58 Bench-Scale Combustor Scheme 5-5A 63
59 Bench-Scale Combustor Scheme 5-6A 64
60 Bench-Scale Combustor Scheme 5-7A 64
61 Bench-Scale Combustor Scheme 5-8A 65
62 Bench-Scale Combustor Scheme 5-9A 65
63 Bench-Scale Combustor Scheme 5-10A 66
64 Bench-Scale Combustor Scheme 5-11A 66
65 Bench-Scale Combustor Scheme 5-12A 67
66 Variation in NO. Concentration With Equivalence Ratio, Fuel Burned, and
Inlet Air Temperature... 67
67 Variation in NO, Concentration With Equivalence Ratio and Inlet Air
Temperature for Adulterated (0.5% Nitrogen) No. 2 Fuel Oil 68
68 Variation in NO. Concentration With Equivalence Ratio and Inlet Air
Temperature for Radial Fuel Injection at 50 psia Chamber Pressure 69
69 Bench-Scale Combustor Scheme 5-12B 70
70 Schematic Diagrams of Natural Gas Fuel Injection Means 70
71 Variation in NO. Concentration With Equivalence Ratio Fuel Injection
Means for Natural Gas/Air 71
viii
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
72 Variation in NO, Concentration With Equivalence Ratio and Fuel Injection
Means for Natural Gas/Air < 71
73 Bench-Scale Combustor Scheme 5-13A 72
74 Bench-Scale Combustor Scheme 5-14A 73
75 Bench-Scale Combustor Scheme 5-15A 73
76 Comparison of Variations in NO, Concentration With Equivalence Ratio
and Heat Exchanger Location for Natural Gas/Air (pc = 50 psia,
Tair = 600°F) 74
77 Comparison of Variations in NO, Concentration With Equivalance Ratio
and Heat Exchanger Location for Natural Gas (pc = 50 psia, Tair
= 800°F) 74
78 Comparison of Variations in NO, Concentration With Equivalence Ratio
With and Without Downstream Heat Removal (pc = 50 psia, Tair
= 800°F) 75
79 Bench-Scale Combustor Scheme 5-16A 76
80 Bench-Scale Combustor Scheme 5-17A 76
81 Bench-Scale Combustor Scheme 5-18A 77
82 Bench-Scale Combustor Scheme 5-19A 77
83 Variation in NO. Concentration With Equivalence Ratio, Type Fuel, and
Rate of Heat-Removal for the Heat-Removal Concept (No. 5) 78
84 Comparison of Variation in NO, Concentration With Equivalence Ratio and
Chamber Pressure for Two Rates of Heat Removal in Concept
No. 5 (Heat-Removal) 79
85 Bench-Scale Combustor Scheme 5-20A 80
86 Variation in Species Concentration With Equivalence Ratio for Concept
No. 5 (Heat-Removal) 81
87 Bench-Scale Combustor Scheme 5-21A 82
88 Comparison of Variation in Emission Concentrations With Equivalence
Ratio for Two Dilution Air Hole Shapes in Concept No. 5
(Heat-Removal) (Four Heat Exchange Modules, Downstream of
Dilution Air Jets) : 83
89 Bench-Scale Combustor Scheme 5-22A.... 84
IX
-------
LIST OF ILLUSTRATIONS (Continued)
Figure . • Page
90 Bench-Scale Combustor Scheme 5-23A 84
91 Bench-Scale Combustor Scheme 5-24A 85
92 Bench-Scale Combustor Scheme 5-25A 85
93 Variation in Species Concentration With Equivalence Ratio for Concept
No. 5 — Heat Removal Using Air as the Coolant Fluid 86
94 Bench-Scale Combustor Scheme 5-26A 87
95 Bench-Scale Combustor Scheme 6-1A 88
96 Experimental Hardware Used in the Evaluation of Concept No. 6 — Quench
Reheat 89
97 Bench-Scale Combustor Scheme 6-2A 90
98 Bench-Scale Combustor Scheme 6-3A 90
99 Bench-Scale Combustor Scheme 6-4A 91
100 Bench-Scale Combustor Scheme 6-5A 91
101 Variation in NO, and CO Concentrations With Equivalence Ratio and
Operating Mode for Quench-Reheat Combustor Concept (PC = 50
psia, T.ir = 600°F) 92
102 Bench-Scale Combustor Scheme 7-1A 94
103 Bench-Scale Hardware Used in the Evaluation of Concept No. 7, Staged
Centertube Combustor 95
104 Bench-Scale Combustor Scheme 7-2A 95
105 Bench-Scale Combustor Scheme 7-3A 96
106 - Bench-Scale Combustor Scheme 7-4A 96
107 Bench-Scale Combustor Scheme 7-5A 97
108 Bench-Scale Combustor Scheme 7-6A 97
109 Bench-Scale Combustor Scheme 7-7A 98
110 Variation in Species Concentration With Equivalence Ratio for Concept
No. 7 — Staged Centertube Burner, a. Effect of Centertube Inser-
tion Depth, b. Composite Plot of Data Items 99
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
111 Variation in Species Concentration With Equivalence Ratio for Concept
No. 7 — Staged Centertube Burner 100
112 Variation in Species Concentration With Equivalence Ratio for Concept
No. 7 — Staged Centertube Burner, a. Comparison of Ceramic and
101
113
114
115
116
117 '
118
119
120
121
122
123
124
125
126
127
128
129
130
131
Variation in Species Concentration With Equivalence Ratio for Concept
No. 7 — Staged Centertube Burner (Staging Effects), a. Scheme
7-2A (Centertube Insertion 2.0 in.), b. Scheme 7-3A (Centertube
Insertion 2.0 in.)
Exhaust Gas Recirculation Module
EGR Combustor Scheme
Porous Plate Flameholders
Bench-Scale Combustor Scheme 11-1A
Experimental Hardware Used in the Evaluation of Concept No. 11 —
Distributed Flame
Bench-Scale Combustor Scheme 11-2A
Bench-Scale Combustor Scheme 11-3A
Bench-Scale Combustor Scheme 11-4A
Bench-Scale Combustor Scheme 11-5A
Bench-Scale Combustor Scheme 11-6A
Bench-Scale Combustor Scheme 11-7 A
Bench-Scale Combustor Scheme 11-8A
Bench-Scale Combustor Scheme 11-9A
Bench-Scale, Combustor Scheme 11-10A
Comparison of Variation in Species Concentration With Equivalence Ratio
for Two Flameholder Types in Concept No. 11 (Distributed Flame)
Bench-Scale Combustor Scheme 11-11A
Bench-Scale Combustor Scheme 11-12A
Ceramic Liner Mounting Scheme for Bench-Scale Testing
102
106
106
107
108
108
109
110
110
111
112
112
113
113
114
116
117
117
118
XI
-------
LIST OF ILLUSTRATIONS (Continued)
Figure
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
Boost-Air Dilution Combustor Module
Bench-Scale Combustor Scheme 14-1A
Bench-Scale Combustor Scheme 14-2A
Reductions in NO, Achieved With Concept No. 14, Boost-Air Dilution
Experimental Hardware Used in the Evaluation of Concept No. 16 —
Extended Injector
Bench-Scale Combustor Scheme 16-1A
Bench-Scale Combustor Scheme 16-2A
Bench-Scale Combustor Scheme 16-3A
Bench-Scale Combustor Scheme 18-1A
Air Staging Module Designed for Use in the Bench-Scale Combustor
Program
Bench-Scale Combustor Scheme 26-1A
Bench-Scale Combustor Scheme 26-2A
Bench-Scale Combustor Scheme 26-3A
Experimental Hardware (Dilution Air Spraybar Module) Used in the Eval-
uation of Concept No. 28 — Rich Preburner
Bench-Scale Combustor Scheme 28-1A
Bench-Scale Combustor Scheme 28-2A
Variation in Species Concentration WithEquivalence Ratio for Concept
No. 28 (Rich Preburner) With Dilution Air Spraybars
Bench-Scale Combustor Scheme 28-3A
Bench-Scale Combustor Scheme 28-4A
Bench-Scale Combustor Scheme 28-5A
Bench-Scale Combustor Scheme 28-6A
Bench-Scale Combustor Scheme 28-7A
Component Diagram of Rich Burning Concept
Page
121
122
122
123
124
125
125
126
127
129
131
131
132
134
135
135
136
137
138
138
139
139
141
Xll
-------
LIST OF ILLUSTRATIONS (Continued)
Figure " Page
155 Bench-Scale Combustor Scheme 29-1A 141
156 Bench-Scale Combustor Scheme 29-2A 142
157 Bench-Scale Combustor Scheme 29-3A 142
158 Bench-Scale Combustor Scheme 29-4A 143
159 Bench-Scale Combustor Scheme 29-6A 143
160 Bench-Scale Combustor Scheme 29-7A 144
161 Bench-Scale Combustor Scheme 29-8A 144
162 Comparison of Characteristic NO, Emission Signatures for Heat No. 2 Fuel
and the Same Containing 0.5% Chemically-Bound Nitrogen 145
163 Typical Rich Burn/Quick Quench Arrangement 146
164 Typical Bench-Scale Rich Burn/Quick Quench Combustor Hardware 146
165 NO, and CO Emission Signatures for the Rich Burn/Quick Quench Com-
bustor Concept at Low Power Setting (0.5% Fuel Nitrogen, Scheme
29-8A) 147
166 Bench-Scale Combustor Scheme 29-9A 148
167 Bench-Scale Combustor Scheme 29-10A 148
168 Bench-Scale Combustor Scheme 29-11A 149
169 Bench-Scale Combustor Scheme 29-12A 149
170 Bench-Scale Combustor Scheme 29-13A 150
171 Bench-Scale Combustor Scheme 29-14A 150
172 Bench-Scale Combustor Scheme 29-15A 151
173 Bench-Scale Combustor Scheme 29-16A 151
174 Bench-Scale Combustor Scheme 29-17A 152
175 Bench-Scale Combustor Scheme 29-18A 152
176 NO, and CO Emission Signatures for the Rich Burn/Quick Quench Com-
bustor Concept at High Power Setting (0.5% Fuel Nitrogen,
Scheme 29-9A) 153
Kill
-------
LIST OF ILLUSTRATIONS (Continued)
Figure
111
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
NO, Staging Capability
Effect of Primary Zone Airflow Staging on NO, and CO Emissions (Scheme
29-19A)
Emissions from Simulated Engine Cycle
Bench-Scale Combustor Scheme 29-19A
Bench-Scale Combustor Scheme 29-20A
Bench-Scale Combustor Scheme 29-21A
Bench-Scale Combustor Scheme 29-22A
Bench-Scale Combustor Scheme 29-23A
Bench-Scale Combustor Scheme 29-24A
Bench-Scale Combustor Scheme 29-25A
Bench-Scale Combustor Scheme 29-26A
Bench-Scale Combustor Scheme 29-27A
Bench-Scale Combustor Scheme 29-28A
Bench-Scale Combustor Scheme 29-29A
Bench-Scale Combustor Scheme 29-30A
Bench-Scale Combustor Scheme 29-31A
Bench-Scale Combustor Scheme 29-32A
Bench-Scale Combustor Scheme 29-33A
Bench-Scale Combustor Scheme 29-34A
Bench-Scale Combustor Scheme 29-35A
Bench-Scale Combustor Scheme 29-36A
Bench-Scale Combustor Scheme 29-37A
Bench-Scale Combustor Scheme 29-38A
S
Bench-Scale Combustor Scheme 29-39A
Bench-Scale Combustor Scheme 29-40A
Page
154
155
156
158
158
159
159
160
160
161
161
162
163
164
164
165
165
166
166
167
167
168
168
169
169
XIV
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
202 Bench-Scale Combustor Scheme 29-41A 170
203 Bench-Scale Combustor Scheme 29-42A 170
204 Bench-Scale Combustor Scheme 29-43A 171
205 Alternative Premixing Tube 171
206 Bench-Scale Combustor Scheme 29-44A 173
207 Bench-Scale Combustor Scheme 29-45A 173
208 Bench-Scale Combustor Scheme 29-46A 174
209 Bench-Scale Combustor Scheme 29-47A 174
210 Bench-Scale Combustor Scheme 29-48A 175
211 Bench-Scale Combustor Scheme 29-49A 175
212 Bench-Scale Combustor Scheme 29-50A 176
213 Bench-Scale Combustor Scheme 29-51A 176
214 Bench-Scale Combustor Scheme 29-52A 177
215 Bench-Scale Combustor Scheme 29-53A 177
216 Bench-Scale Combustor Scheme 29-54A 178
217 Bench-Scale Combustor Scheme 29-55A 178
218 Bench-Scale Combustor Scheme 29-56A 179
219 Bench-Scale Combustor Scheme 29-57A 179
220 Bench-Scale Combustor Scheme 29-58A 180
221 Bench-Scale Combustor Scheme 29-59A 180
222 Bench-Scale Combustor Scheme 29-60A 181
223 Bench-Scale Combustor Scheme 29-61A 181
224 Bench-Scale Combustor Scheme 29-62A 182
225 Bench-Scale Combustor Scheme 29-63A 182
xv
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
226 Bench-Scale Combustor Scheme 29-64A 183
227 Bench-Scale Combustor Scheme 29-65A 183
228 Bench-Scale Combustor Scheme 29-66A 184
229 Bench-Scale Combustor Scheme 29-67A 184
230 Minimum NO, as a Function of Primary Zone Residence Time 185
231 Bench-Scale Combustor Scheme 29-68A 186
232 Bench-Scale Combustor Scheme 29-69A 186
233 Bench-Scale Combustor Scheme 29-70A 187
234 Bench-Scale Combustor Scheme 29-71A 187
235 Bench-Scale Combustor Scheme 29-72A 188
236 Bench-Scale Combustor Scheme 29-73A 188
237 Bench-Scale Combustor Scheme 29-74A 189
238 Bench-Scale Combustor Scheme 29-75A 189
239 Bench-Scale Combustor Scheme 29-76A 190
240 Bench-Scale Combustor Scheme 29-77A 190
241 Effects of Secondary Zone Residence Time and Equivalence Ratio on CO
Emmissions 195
242 Variation in Emission Concentrations With Fuel-Air Ratio for Tests Con-
ducted With low Btu Gaseous Fuel 196
243 Variation in Emission Concentrations With Fuel-Air Ratio for Tests Con-
ducted With Low-Btu Gaseous Fuel 197
244 Location of Streamtubes for Analytical Simulation of Concept 7 — Staged
Centertube Burner 198
245 Comparison of Predicted and Experimental Emission Data, Concept No. 7
— Staged Centertube Burner ; 199
246 Comparison of Predicted and Experimental Emission Data, Concept No. 29
— Rich Burn/Quick Quench 201
xvi
-------
LIST OF ILLUSTRATIONS (Continued)
Figure Page
B-l Bench-Scale Combustor Scheme 1-4B B-2
C-l Photograph of Acurex/Aerotherm Catalytic Burner Hardware C-2
C-2 Acurex/Aerotherm Catalytic Combustor (Scheme 2-1A/B) C-3
C-3 P&WA Alternate Injection — Premix Scheme 26-3A C-3
C-4 Conversion of Bound Nitrogen to NO, as a Function of Pressure C-6
xvu
-------
LIST OF TABLES
Table Page
I List and Brief Description of Combustor Concepts 2
II Utilization of Major Bench-Scale Combustor Component Pieces 21
III Bench-Scale Combustor Rig Operating Conditions 24
IV Low-Btu Gas Composition (Water-Free Basis) 28
V Combustor Operating Conditions of a Typical 25 Megawatt Engine With
Free Turbine 29
VI Comparison of Burner Characteristics for Configurations Tested in the
Evaluation of Concept No. 1 — Low Intensity Flame 35
VII Configurations Tested in the Evaluation of Concept No. 11 Ill
VIII Combustor Configurations Having Ceramic Liner Sections 119
IX Concepts Incorporating Fuel Staging 129
A-l Combustor Operator Parameter Data A-4
A-2 Emission Concentration and Gas Analysis Parameter Data A-39
A-3 Combustor Liner Temperature Data and Fuel Air Ratio Information A-76
A-4 Special Parameters — Heat Exchanger Information A-113
A-5 Special Parameters — Pressure Drop and Airflow Rate Data A-116
A-6 Special Parameters — Low Btu Gas Temperature A-l 18
A-7 Special Parameters — Cooling Scheme Data A-119
A-8 Special Parameters — Aero/Thermal Flow Modeling Data A-120
A-9 Special Parameters — Smoke Data A-121
B-l Low-Btu Gas Composition B-l
C-l Catalytic Burner Data (Flow Conditions) C-4
C-2 Catalytic Burner Data (Emissions) C-5
C-3 Catalytic Burner Data (Temperatures) C-5
xviu
-------
SUMMARY
This report describes an exploratory development program to identify, evaluate, and
demonstrate dry techniques for significantly reducing production of NO, from thermal and
fuel-bound sources in burners of stationary gas turbine engines.
Initially, duty cycle analyses were conducted to identify current and projected dominant
operating modes and requirements of stationary gas turbine engines. These analyses indicated
that the propensity for the generation of NO, in combustors of stationary gas turbine engines
will increase significantly in the future as compression ratios and turbine inlet temperatures
are increased to improve thermal efficiency and net plant heat rate. In ten years, uncontrolled
thermal NO, generation is predicted to double over today's levels; in 20 years, the factor is
predicted to triple. These predictions are based on an assumption that current fuel character-
istics will prevail into the future. Uncontrolled emissions should increase by an even greater
factor if future fuels contain significant amounts of chemically bound nitrogen.
An extensive survey was made of candidate combustor design concepts and an analytical
study was accomplished from which those concepts considered to have significant potential for
reducing production of NO, were identified. The initial compilation of 26 design concepts
included many variations of basic strategies such as fuel-rich combustion, ultra lean combus-
tion, heat removal, fuel prevaporization, and fuel-air premixing. An assessment of the
NO,-control effectiveness of each concept was made using a combustor streamtube computer
code. The code employs a modular approach in the prediction of combustor emissions (NO,,
CO, and unburned hydrocarbons), with sub models for the internal flowfield, physical
combustion processes (including droplet vaporization and droplet burning), hydrocarbon
thermochemistry, and NO, kinetics. The initial analytical work is described in detail in
Volume I of this report. While these analytical efforts were considered to be a valuable tool in
the analysis of concepts, the results were used for guidance only, and were not considered
conclusive evidence of concept potential.
In the work described in this volume, results of the computer studies as well as the
general conclusions from the survey were drawn upon to select a group of concepts for
experimental screening in a bench-scale combustor test rig. An erector-set approach was
followed in the experimental program, making possible the rapid evaluation of many different
concepts and combinations of concepts. About half the NO, reduction techniques evaluated
were based on fuel-lean burning, and half were based on fuel-rich burning. Two successful
approaches were ultimately identified, and their performance relative to the program goals was
assessed. It was concluded that one of the two concepts, referred to by the descriptive name
"Rich Burn/Quick Quench," showed significant potential for application in stationary gas
turbine engines, and was capable of meeting or exceeding all program exhaust emission goals.
Based on this assessment, the Rich Burn/Quick Quench concept was selected for
implementation into the design of a full-scale (25 megawatt engine size) gas turbine com-
bustor. In support of the design activity, additional bench scale tests were conducted to
generate parametric data, and characterize the basic concept more fully. The final design and
experimental evaluation of the full-scale combustor were carried out in subsequent phases of
the program, described in Volume III and Volume IV of this report.
Appendix D gives SI unit conversions.
xix/xx
-------
SECTION I
INTRODUCTION
Gas turbine engines used by the electrical utilities and by industry account for a
relatively small portion of the total quantity of oxides of nitrogen (NO.) emitted from
stationary sources in this country. On a local scale, however, the gas tirbine can be a
significant contributor to air quality degradation, especially in the vicinity of engine installa-
tions where the NO, background level is already objectionably high. In addition, the impact of
stationary gas turbines may become more significant in the future. Along with the present
modes of utilization, combined cycle and industrial cogeneration applications are being
projected. The advanced engine technology needed to provide higher cycle efficiencies, and the
anticipated firing of coal-derived, shale-derived, and petroleum residual fuels, will make it
more difficult to meet proposed emission regulations.
Until recently, gas turbine combustors have been designed without regard for exhaust
emissions. Initial attemp 3 to control NO, by modifying existing designs did not produce the
targeted reductions. Although water injection was identified as an interim solution, this
approach is not effective when nitrogen-laden fuels must be burned. In light of these
developments, it was clear that new design concepts specifically addressing exhaust emissions
should be considered.
Under EPA Contract 68-02-2136, an exploratory development program was undertaken
to identify, evaluate, and demonstrate alternative combustor design concepts for significantly
reducing the production of NO, in stationary gas turbine engines. The investigations were
directed toward dry combustion control techniques suitable for use in a 25 megawatt (nominal)
engine. Operation on both petroleum distillate fuels (non-nitrogenous and nitrogen bound) and
low-Btu gaseous fuels was specified. Program goals were 50 ppmv NO, (at 15% O2) for
non-nitrogenous fuels (oil and gas), and 100 ppmv NO, (at 15% O2) for oil or gas containing
0.5% nitrogen by weight. The goal for CO was 100 ppmv (at 15% O2). Accomplishment of the
overall objective was effected via complementary analytical and experimental programs.
Intrinsic in the support activities were combustor analytical model and engine duty cycle
analyses, bench-scale screening tests of promising NO, reduction concepts and, finally,
full-scale evaluation tests of combustors incorporating the most promising NO, reduction
techniques.
The original program was accomplished in four phases. Phase I consisted of an analytical
investigation of combustion concepts considered to have potential for reducing the production
of NOX. In Phase II of work, a number of promising low-NO, concepts were bench-tested to
select the best candidate for implementation into the design of a full-scale, 25 megawatt-size,
utility gas turbine engine combustor. In Phase III, a full-scale low NO. combustor was designed
and fabricated. Verification testing of the prototype combustor was conducted in Phase IV,
and guidelines regarding the applicability of the demonstrated low NO, design technology to
stationary gas turbine engines were generated.
-------
SECTION II
DESIGN CONCEPTS
In Phase II bench-scale evaluation tests of candidate NO, control concepts identified in
Phase I were conducted. Data obtained during these tests were analyzed and used for two
purposes: to rank the concepts in order of their potential for reducing NO,, and to obtain the
design information needed in Phase III to implement the most promising concepts into
full-scale combustor hardware. The initial work in Phase II commenced with the design and
procurement of rig hardware and with preliminary definition of the experiments required to
evaluate the various concepts.
The following paragraphs present an overview of Phase I, primary concept selection, and
concept descriptions detailing initial implementation to hardware leading into the experimen-
tal concept screening program which comprised Phase II and is described in Section III.
2.1 REVIEW OF PHASE I CONCEPT IDENTIFICATION
During Phase I of the program, an extensive review of the literature and of current design
practices was conducted to identify combustion concepts with NO, control potential. From this
survey, a list of 26 (initially) candidate design concepts was compiled. This list of design
concepts is presented in Table I, along with a brief description of each.
TABLE I. LIST AND BRIEF DESCRIPTION OF COMBUSTOR CONCEPTS
Concept No.
Title and Description
Low-Intensity Flame
Extended length flame jet, fuel rich, mixes slowly with surrounding air.
Bound nitrogen NO, reduced under fuel rich conditions within flame jet.
Premizing Catalytic Burner
Catalyst preceded by premixing/preburning module. In low power preburn-
ing mode, fuel is partially burned and mixed with air before entering
catalyst, thereby ensuring uniform high temperature mixture for efficient
operation of catalyst.
Superlean With Heat Recirculation
Premix tube air preheated indirectly in liner convective cooling passages or
by other means to improve fuel vaporization and widen flammability limits.
Lean burning for low thermal NO,.
Superlean With Preburner
Premix tube air preheated directly by preburner to improve fuel vapor-
ization and widen flammability limits. Lean burning for low thermal NO,.
Heat Removal
Coolant tubes inside the combustor reduce temperature of rich burning
mixture before excess air is added for CO oxidation and final dilution.
2
-------
TABLE I
LIST AND BRIEF DESCRIPTION OF COMBUSTOR CONCEPTS (Continued)
Concept No. Title and Description
6 Quench Reheat
Main burning zone is rich, resulting in low flame temperature. This mixture
is rapidly quenched to a very lean equivalence ratio, causing excessive
formation of CO but very little NO,. In a Reheat zone, effluent from a pilot
burner heats the mixture to an intermediate temperature for CO consump-
tion.
7 Staged Centertube Burner
An axially staged burner configuration with swirl mixing. Concentric center-
tubes of different lengths determine the axial fuel-air distribution. As an
experimental device the configuration allows easy variation of burning and
mixing zone lengths. Both rich and lean air schedules were considered.
8 Exhaust Gas Recirculation
Gas abstracted near the end of the primary zone, and mixed with fresh air
in passages leading to the premix tube. Heat lost from the mixture in the
passages (to surrounding inlet air) causes a reduction in flame temperature.
9 . Hydrogen Enrichment
Hydrogen injected along with fuel results in lower lean flammability limit of
primary zone mixture.
10 Surface Combustion
Flame stabilized in contact with surface of porous plate flameholder.
Coolant tubes imbedded in plate remove heat from flame.
11 Distributed Flame
Perforated plate flameholder produces many small flames, each stabilized
separately, eliminating large scale recirculation and reducing residence
times.
12 Ceramic Liner
Wall quenching of flame diminished by the elimination of film cooling air
and a higher allowable wall temperature.
13 External Combustion
Combustor located outside the gas turbine engine. This concept essentially
removes the geometrical and residence time considerations experienced with
on-board combustors.
-------
TABLE I
LIST AND BRIEF DESCRIPTION OF COMBUSTOR CONCEPTS (Continued)
Concept No. Title and Description
14 Boost-Air Dilution
Dilution air injected at higher pressure than other burner airflow to achieve
higher mixing rate and reduce lag time in reaching desired equivalence
ratios. Compressor or other means of achieving pressure differential
required. M-
15 Artificial Excitation
Vibrational excitation of burning gases in the combustor to increase reaction
rates, allowing residence times to be reduced. Method of excitation may be
acoustic, electronic, or other means.
16 Extended Injector
Perforated plate flameholder with tubular extension pieces. By varying the
number and length of tubes, their routing, and discharge points, mixture
and temperature profile can be controlled.
17 Pebble Bed
An external burning concept with a vertical discharge low velocity com-
bustor. Ceramic (or other material) pebbles are fed in near the exit, fall
through the flame, and remove heat. They are collected and recycled
through a heat exchanger (where pebbles are cooled by inlet air) back into
the combustor.
18 Coanda Flame
Flameholder using coanda wall attachment effect. High velocity fuel-air
mixture discharges through ring nozzle onto surface of concial nosepiece and
entrains flow from surrounding environment. Method of setting up low
intensity flame.
19 Electric Assist Nozzles
Atomization of liquid fuel enhanced by an applied electric field, with
dispersion of charged droplets which are further guided, vaporized and
mixed with air under the influence of electric fields.
20 Virtual Staging
Burning zone expands in volume and elongates as combustor loading in-
creased (from idle to max. power). Flamefront grows into additional com-
bustion airflow needed at max. power, thereby providing automatic or
virtual staging.
-------
TABLET
LIST AND BRIEF DESCRIPTION OF COMBUSTOR CONCEPTS (Continued)
Concept No. Title and Description
21 Engine Inlet Fuel Injection
Vaporization and premixing of liquid fuel to very lean equivalence ratio for
reaction in a catalyst or flameless combustor. Achieved by introducing fuel
into engine inlet.
22 Flameless Combustion
Large volume burner operating at very lean equivalence ratios. Consumes
fuel by low-temperature long-residence-time flameless reactions.
23 Air Staging
Combustor airflow distribution controlled by variable geometry to maintain
desired equivalence ratios in burning zones and elsewhere over the range of
engine operating points.
24 Fuel Staging
Multiple fuel injection points provide variable fuel distribution and set up
successive zones of desired equivalence ratios.
25 Vorbix
Acronym — Vortex burning and mixing. Swirling air jets cause high rate of
mixing in main burning zone. Pilot burner used for rapid vaporization of
main fuel and controlled autoignition of resultant mixture. Lean burning for
low NO,.
26 Fuel Air Premixing
Fuel injected into airstream prior to combustion zone to produce a uniform
fuel-air mixture and reduce spread in localized equivalence ratios before
burning begins.
Note: Concepts 27, 28, and 29 were conceived during the bench-scale evaluation program and are described in
Sections 3.3.27, 3.3.28, and 3.3.29.
From this initial compilation of 26 concepts, twelve were subsequently selected for study
using a combustor emission prediction computer code described in reference 1 and Volume I of
this report. Parametric predictions were made showing the variation in emission characteristics
with the principal design features of the various concepts. The general conclusions derived
from the analytical modeling efforts can be summarized as follows:
To reduce the production of NO, in the primary zone, rich burning, in the
equivalence ratio range between 1.2 and 1.4 is preferred over superlean
burning. Although the combustion process in the primary zone is in-
complete as a result, the reaction can be directed to completion by
carefully injecting and mixing dilution air.
5
-------
2. Elevating the temperature of the primary-zone air supply to achieve more
complete fuel vaporization is counterproductive under fuel-lean operating
conditions, generally enhancing the production of NO,.
3. The production of NO, can be effectively curtailed by removing heat in the
primary zone.
4. When rich burning is incorporated in the primary zone, dilution air must
be rapidly injected and mixed to curtail further production of NO, while
also enhancing oxidation of carbon monoxide and unburned hydrocarbons.
Mainstream temperature levels in the range from 2000 to 2800°F, for
example, are most desirable.
5. Reducing NO, production is enhanced by prevaporizing liquid fuel and
mixing the fuel with air prior to entering the combustion chamber.
6. To curtail production of NO,, recirculation-zone length should be min-
imized; a perforated-plate flameholder is a potential means for ac-
complishing this.
7. Significant reductions in NO, production can be achieved by reducing or
eliminating injection of cooling air into the main combustion stream; this is
particularly true for the injection of air into the primary zone during fuel
rich operation.
8. A promising means for reducing production of NO, is to incorporate fuel
staging in which the secondary fuel is uniformly distributed through
2.2 PRIMARY CONCEPT SELECTION
Five primary concepts were selected as exhibiting the greatest apparent potential for
NO, control on the basis of the information on hand at the end of Phase I. These concepts are
defined and the basic reasons for their selection are explained below:
Concept No.
1
Title
Low-Intensity Flame
Superlean with Heat Recirculation
Heat Romoval
Reason for Selection As
Initial Primary Concept
• Rich combustion for bound N
• Extended flame for radiant heat
loss from flame jet
• Prevaporization of fuel
• Fuel premixing
• Lean combustion for thermal NO,
• Heat removed from primary zone
and recirculated to inlet for im-
proved fuel vaporization
• Fuel premixing
• No cooling flow injected into prima-
ry zone
• Rich combustion for bound N
• Removal of Heat in primary zone
• Fuel premixing and prevaporization
• No cooling flow injected into prima-
ry zone
-------
Quench Reheat
Rich combustion
Rapid flame quenching
Parallel lean combuator for reheat-
ing to consume CO
Fuel premixing and prevaporization
No cooling flow injected into com-
bustion zones
Staged Centertube Burner
• Lean or rich combustion or com-
bination of both
• Fuel premixing and prevaporization
• No cooling flow injected into com-
bustion zones
• Swirl mixing for rapid buoyant in-
teraction between zones
• Axial fuel-air ratio control
• Easy variation of configuration
These five concepts were only the initial selection of primary concepts and were subject to
definitive testing described in section 2.4. It was entirely possible that other concepts not
initially selected as primary could be moved to primary status based on exploratory testing.
The secondary concepts (those not designated as primary concepts) were selected from
those of the remaining candidates that had apparent potential but required further substantia-
tion. The secondary candidates fell into several categories. Some were complete design
concepts, perceived to be self-sufficient approaches to NO, reduction (Concept No. 8, Exhaust
Gas Recirculation, is one example). Others were partial design concepts, often addressing a
particular component and applicable only in combination with other concepts (Concept No. 14,
Boost-Air Dilution for example, was considered for use in combination with rich-burning
concepts such as Concept No. 6, Quench Reheat). Several of the secondary candidates were
leading prospects for eventual evaluation as primary concepts. Others had been virtually
eliminated from further consideration as a result of practical constraints or because they were
judged to be outside the scope of the investigation (e.g., Concept No. 9, Hydrogen Enrichment
was eventually dropped after the initial design study because of the practical requirement for
an auxiliary source of hydrogen). Not every secondary concept was tested in the bench-scale
program. Those with more apparent potential, and those that could be more readily im-
plemented into bench-scale hardware were favored.
2.3 CONCEPT DESCRIPTIONS
Descriptions of the concepts evaluated in the bench-scale screening program are pres-
ented in this section. The major design criteria and the general method of implementation in
experimental hardware of each of the first five primary concepts are discussed.
-------
2.3.1 Concept No. 1 — Low-Intensity Flame
The low-intensity flame concept calls for fuel-rich burning under conditions of low-level
turbulent mixing. Flame is stabilized as an elongated jet that originates at the fuel injector at
the discharge plane of the premix tube, and extends well into the aft region of the combustor.
Constituents within the flame interact slowly with the surrounding gases, and the central
flame system remains at a high equivalence ratio for an extended period of time. Under these
conditions, NO. produced from both air and fuel-bound sources of nitrogen is diminished. As
the jet mixes out, local values of equivalence ratio on the boundary of the jet decline and pass
through unity, with a resultant increase in local mixture temperature. The propensity to form
thermal NO, under these conditions is offset by a loss of heat to the surroundings (by
radiation) that has occurred along the length of the flame jet, and by partial vitiation of the
surrounding gases from products of combustion that have previously mixed out.
The initial burner configuration selected to evaluate Concept No. 1 is shown in Figure 1.
An aerodynamic swirler mounted in the dome of the combustor served as the principal
flameholding device. The fuel-air mixture formed in the premixing passage (which accounted
for approximately 12% of the total burner airflow) was accelerated in the throat (minimum
area region) of the aerodynamic swirler and discharged at high velocity to produce a central
flame jet inside the combustor. Additional airflow entering through tangential slots in the
aerodynamic swirler (6.1% of total burner airflow) caused rotation of the gases on the
periphery of the jet, and promoted mixing between the jet and its surroundings. The average
mixture equivalence ratio was approximately 2.5, based on jet airflow alone, and 1.7, based on
total aerodynamic swirler airflow. It was intended that an overall effective burning equivalence
ratio of about 2.0 would be achieved by this arrangement.
Aerodynamic Swirler
Louver-cooled Liner
Figure 1. Initial Configuration for Concept No. 1
The combustor liner was louver cooled. All airflow (except aerodynamic swirler airflow)
entered the combustor through cooling louvers. This arrangement provided gradual mixing of
the flame jet with its surroundings. The length of the burner was 20 inch (L/D = 4), selected
to allow ample distance for the flame jet to mix out.
-------
2.3.2 Concept No. 3 — Superlean with Heat Recirculation
The principal feature of this concept is the provision for preheating premix-tube airflow
to effect an improvement in fuel vaporization and to widen the flammability limits of the
primary-zone fuel-air mixture. Airflow scheduled for the premix-tube is routed through
convective-cooling passages within or around the burner and heated indirectly to a tem-
perature several hundred degrees higher than the burner-inlet air temperature. In the primary
zone, because of the increased heat content of the inlet air, the lean-blowout margin is
improved. Thermal NO, is reduced because of improved fuel vaporization and improved
premixing, and because of the attainment of more uniform fuel lean equivalence ratios
throughout the primary zone.
The bench-scale hardware utilized initally for Concept No. 3 is shown in Figure 2. A
three-inch diameter premix tube was provided, through which approximately 61.8% of the
total burner airflow was introduced. The resultant design point primary-zone equivalence ratio
was 0.5 at an overall fuel-air ratio of 0.021. Premix-tube air was preheated to a temperature of
about 1200°F in an array of tubes positioned in the combustor internal flow stream.
Premix-tube mixture velocity was maintained at approximately 110 fps. A double-wall liner
construction scheme was employed to provide convective cooling throughout the burner.
Coolant airflow was discharged at the exit plane to prevent the occurrence of local over-lean
regions within the burner.
Air Preheat Tubes
(36 Total)
r
n
.
tflwfly
/*
V
u
^ r1
T
LJ4
R
- —
- —
\
,/_Y
=\_ :
1 J,L JjL
1
J .
_^i_*
All
1 1-
rj
-
. .1. r-
1
I
fh
I
r
• I1 -
-
-
-
^—Preheat Shroud
Figure 2. Initial Configuration for Concept No. 3
2.3.3 Concept No. 5 - Heat Removal
The heat removal concept involves rich burning and the subsequent removal of heat
before the addition of the secondary air required to quench and dilute the primary-zone
mixture to an overall lean exit-plane equivalence ratio. The principle design criteria for this
concept were a primary-zone equivalence ratio of 2.0 at the overall burner fuel-air ratio of
0.021, and the removal of a quantity of heat equivalent to a 400°F drop in burner inlet airflow
temperature. To achieve these conditions, 15.4% of the total burner airflow was admitted
through a two-inch diameter premixing tube (providing a mixture velocity in the tube of
approximately 50 fps). Heat removal was effected in an array of quarter-inch diameter coolant
tubes positioned approximately one diameter downstream from the dome.
-------
Concept No. 5 was implemented in the basic bench-scale combustor in the manner shown
in Figure 3. In initial tests, water was used as the coolant with flowrates adjusted to achieve
the desired rate of heat removal. In subsequent tests, burner airflow was also adopted as a
coolant. See Figure 4. Burner-liner cooling was accomplished convectively by means of the
double wall construction indicated. This feature, which was common to several bench-scale
burner configurations, allowed the effect of liner cooling airflow to be eliminated as an
uncertain influence on emission results.
2.3.4 Concept No. 6 — Quench Reheat
This concept involves parallel burning stages: in one stage (the main burning zone)
consumption of approximately two-thirds of the fuel supplied to the combustor takes place. In
the other stage (pilot zone) the remaining fuel is burned to generate hot gases for later use.
Rich burning is maintained in both stages. The mixture discharged from the main burning
zone is abruptly quenched to a very lean equivalence ratio, producing a reduction in the
average bulk temperature. Gases from the pilot zone are subsequently mixed in to achieve an
average overall secondary zone temperature high enough for CO consumption but low enough
to preclude thermal NO, formation.
The bench-scale burner configuration selected for this concept is shown in Figure 5. A
main burning zone was provided, sized to accommodate 8% of the total burner airflow. The
resultant average equivalence ratio in the main burning zone was 2.26 (at FA = 0.021)
corresponding to a flame temperature of approximately 2600° F. The pilot zone was supplied
with 4.5% of the total airflow, resulting in the same burning conditions. A total of 54% of the
total burner airflow was added in the quench zone, producing an equivalence ratio of 0.294 and
a mixture temperature of approximately 2000°F. In the reheat zone, where the pilot zone and
main burning zone flows were combined, an overall average (fuel lean) mixture temperature of
2600° F was the design point.
Convective cooling was employed in each of the burning zones. Coolant airflows from the
main burning zone and from the pilot zone were discharged into the interior of the combustor,
while coolant from the five-inch diameter section was discharged at the burner exit.
Coolant Tubes
o
-Double-wall Liner
Figure 3. Initial Configuration for Concept No. 5 With Water as Coolant
10
-------
J
1
J
7
1
f
r'
-L
_f
— i
i
^y
<
-------
Main Burning Zone
Quenching Zone —I >— Reheat Zone
Figure 5. Initial Configuration for Concept No. 6
2.3.5 Concept No. 7 — Staged Centertube Burner
The staged centertube combustor incorporates swirl mixing and swirl burning as princi-
pal design concepts. Adoption of this basic combustor arrangement as a design concept in itself
provided the opportunity to construct a versatile test piece to evaluate several major design
concepts in combination with swirl mixing and swirl burning. As shown in Figure 6, the basic
configuration consisted of a centertube structure with four concentric tubes, and a double-wall,
convectively cooled liner. Each of the four tubes supplied air (or a fuel-air mixture) to a
particular zone of the combustor. Swirl was imparted to the flow in each zone by vanes in the
concentric tubes.
Primary Sprayring
-Zone 1
-Zone 2
Zone 3
^-Centertube
Structure
Secondary Sprayring
Figure 6. Initial Configuration for Concept No. 7
12
-------
In the first zone, swirling flow provided the principal means of flame stabilization.
Although no region of appreciable reverse flow was set up because of the centertube structure,
the swirl vanes established a centrifugal force field that served to move the denser gases
(cooler, unburned) radially outward, and the less dense gases (hot, burning) radially inward.
The interactive movements of these gases caused an increase in turbulence and a higher
turbulent flamespeed, making it possible to establish a stable flamefront with minimum
dependence on regions of recirculating flow that may contribute to thermal NO, formation.
In the second zone, dilution airflow was added through swirl vanes, again setting up a
centrifugal force field. The dilution air (colder) entering this zone from the inner wall was
forced radially outward, mixing rapidly with the burned gases from the first zone. This swirl
mixing process was duplicated in the third and fourth zones where (colder) air and fuel-air
mixture were introduced into the burned gases from the centertube.
The initial application of the staged centertube burner, involved lean burning and fuel
staging, and was carried out according to the following scheme.
Zone 1 was used for idle operation. Twenty four percent of the total burner airflow was
admitted through the outer concentric tube, resulting in an equivalence ratio of 0.6 at an
overall fuel-air ratio of 0.010. This equivalence ratio was also maintained during operation at
high overall fuel-air ratios.
Twelve percent of the total burner airflow was admitted to the second zone (no fuel
added) resulting in an average equivalence ratio of 0.4 after mixing had been completed. The
mixture temperature was approximately 2300°F (slightly higher or slightly lower depending on
burner inlet air temperature). At this temperature, it was assumed that the rate of formation
of thermal NO, would be low, but that sufficient heat would be present for a strong piloting
effect in the succeeding zone.
In the fourth zone, additional fuel and air were admitted to produce an equivalence ratio
of 0.6 at an overall fuel-air ratio of 0.021 (at lower values of overall fuel-air ratio between 0.010
and 0.021, the equivalence ratio in the fourth zone varied between 0.4 and 0.6).
The airflow and fuel flow schedules cited above could be varied in the test program. The
length of each zone could also be varied to determine the requisite stay time for the
completion of burning and mixing processes, and for the termination of thermal NO, for-
mation.
13
-------
SECTION III
EXPERIMENTAL PROGRAM
In Phase II, bench-scale screening tests of the design concepts selected in Phase I were
conducted. Data obtained during these tests were analyzed and used for two purposes: first, to
rank the concepts in order of their potential for reducing NO, levels to those of the program
goal and, second, to obtain design information needed in Phase III to implement the most
promising concepts into full-scale combustor hardware. A continuing evaluation of the can-
didate design concepts described in Table I was carried out during the experimental study. In
the course of the program, additional concepts were identified on the basis of the bench-scale
test results.
This section addresses the Phase II experimental effort. It contains detail descriptions of
the combustor and rig hardware, the test facilities and instrumentation, the basic test
philosophy, the tests conducted, and the interpretation of test results. The heuristic nature of
the test program is illustrated in the movement of the screening investigation from five initial
concepts into a number of alternative approaches selected or synthesized on the basis of
experimental results, to the final selection and characterization of a successful design concept.
3.1 TEST PHILOSOPHY
The purpose of the bench-scale test program was to determine experimentally the degree
of NO, control attainable with each of a number of candidate design concepts. It was desirable
to evaluate as many different burner configurations as possible in order to select a successful
concept (or more than one concept), and to generate data that might be required to
substantiate the selection. Because of the exploratory nature of the program and the lack of
prior knowledge of any particular concept that satisfied the established NO, reduction goals, it
was anticipated that an extensive amount of testing would be required. Under these circum-
stances, it was essential that the test program be conducted in a cost-effective manner so that
all promising candidates could be screened, and a fair evaluation of each could be made.
The test plan was structured to reflect these considerations. An operating procedure was
devised that allowed a large number of burner configurations to be tested, and permitted the
amount of effort devoted to any one design concept to vary in accordance with the results
obtained. Flexibility was considered paramount.
Experience in many previous burner development programs had taught that the number
of cycles in a test program (each cycle consisting of a configuration change and subsequent
testing) was often a determining factor in the degree of success ultimately achieved. The more
successful programs had generally involved several major cycles of hardware development. In
keeping with this experience, a provision was made for multiple cycles of hardware develop-
ment in the evaluation of the many design concepts under consideration.
An overview of the test program is presented in Figure 7. The experimental effort was
divided into five parts, consisting of: an initial period of component and system checkout;
three cycles of testing; and a period of final refinement of the concept(s) chosen for
implementation into full-scale combustor hardware. The initial checkout period was used to
verify satisfactory operation of burner components and rig systems. Many of the design
concepts tested in the course of the program made use of common burner-section and
premixing-section modular component pieces (see Section 3.2.2). These components were
subjected to preliminary development testing during the initial checkout period to correct
unforeseen problems and to verify the intended performance. The proper functioning of all rig
systems (such as the low-Btu-gas supply system, the ammonia injection system, and the
high-pressure rig cases) was verified.
14
-------
Initial
• Component
and System
Checkout
Verify
Basic
Burner
Components
Checkout
Rig Systems
Low-Btu Gas
System
NH3 Injection
System
Cycle 1
• Initial 5 Concepts
• Preliminary Test
Others
Primary Concepts -
1) Five from Initial
Design Selection
2) Definitive Testing
of These
Concepts
Secondary Concepts -
1) Preliminary
Testing
All Others
Candidates -
1) Testing if
Appropriate and
Convenient
Exploratory
1) Testing of New
Leads and
Ideas
2) Assign Status
if Appropriate
Cycle 2
• Retire 5 Concepts
• Test Remainder
Primary Concepts -
1) Select Additional
Candidates
2) Retire Five
Concepts
Add Candidates
for Exploratory
Testing as
Appropriate
Cycle 3
• Retire 7 Concepts
Concepts
Primary Concepts -
1) Select Additional
Candidates
2) Retire Seven
Concepts
•-
Refinement
• Final Concepts
Bench-Scale
Refinement
of Specific
Configurations
(Final Two
Concepts)
Figure 7. Overview of Bench-Scale Screening Program Test Plan Outline
-------
The logical structure of the test program is again illustrated in Figure 8. Experiments in
Cycles 1, 2, and 3 were conducted according to several guidelines. First, candidate design
concepts were divided into two groups: primary concepts, those that were judged to have
significant promise and would be subjected to definitive testing; and secondary concepts, those
that would be subjected to exploratory tests to determine whether further evaluation might be
warranted. Typical screening cycles for primary and secondary concepts were conducted as
shown in Figure 9. Initially, the primary group consisted of the five concepts selected in Phase
I on the basis of analytical-model studies and information made available in the design
compilation. In Cycle 1, definitive testing of these concepts was begun. This testing involved
the evaluation of burner performance and emission characteristics at actual engine operating
conditions, and at other select conditions selected to provide parametric results. The burner
configuration was refined in each case, as appropriate, to ensure proper implementation of the
design concept. The remaining concepts were placed, initially, in the secondary group to
undergo exploratory testing in Cycle 1 as hardware and test time became available. Ex-
ploratory testing consisted of a brief evaluation of burner performance and emission character-
istics at a few operating conditions selected to reveal salient features of the concept.
Parametric data was not generated and no refinement of the hardware was attempted.
I Candidate Combustor Concepts |
1
t
Screening
Cycle 1
t
Screening
Cycle 2
1
1 Experimental
Results
Screening
Cycle 3
t
I
Selection of
Most Promising
Concepts
Figure 8. Phase II Bench-Scale Test Program
The two types of testing described (definitive and exploratory) were continued in Cycles
2 and 3. As the test program progressed, some of the more promising candidate concepts from
the secondary group were transferred to the primary group for definitive testing. New
candidate concepts were also added to the secondary group as they evolved from the various
activities of the overall program. There was no limit placed on the number of candidates that
might be included in the secondary group. It was considered desirable to test as many different
concepts as possible, subject only to the overall program schedule and cost constraints. On the
other hand, the relatively extensive testing required for primary concepts was costly and time
consuming and, therefore, a limit of twelve was placed on the final number of concepts
contained in the primary group.
16
-------
I Candidate Combustor Concepts I
Primary
Concepts
Definitive
Testing
Parametric
Data
Comparative
Analysis
Secondary
Concepts
Exploratory
Testing
Brief
Evaluation
Eliminate
Concept
Test as
Primary
Concept
Figure 9. Typical Screening Cycle
The testing of primary candidate concepts took place according to an open-ended
schedule. As discussed previously, it is not possible to determine a priori the number of burner
configurations! changes needed to properly implement a given design concept and render a fair
evaluation. Accordingly, no fixed number of tests or test hours was specified for any concept.
In order to ensure an orderly progression in the program however, it was required that
definitive testing of five primary concepts be completed by the end of Test Cycle 2, and that
definitive testing of the remaining seven be completed by the end of Test Cycle 3. The
duration of testing for each concept, and the order in which the tests were completed,
depended on the degree of difficulty encountered in each case.
At the end of Test Cycle 3, final refinement and parametric characterization of the
concepts selected for Phase IV full-scale testing was undertaken. Emphasis was placed on
scaling criteria, and the performance of full-scale burner components.
3.2 COMBUSTOR AND RIG HARDWARE
Careful consideration was given to the basic designs and methods of utilization of
bench-scale burner hardware in Phase II. A major objective was to provide burner components
having considerable versatility so that modifications to a particular configuration could be
readily implemented on the test stand. To aid in achieving this goal, experimental parts were
designed and fabricated to be interchangeable wherever possible, and were generally not
restricted to use on any one concept. In addition, standardized burner and premixing-tube
modules were adopted to help minimize the total number of parts that would be required.
These pieces were pretested as separate components during the initial checkout period of the
bench-scale program.
17
-------
3.2.1 Basic Bench-Scale Combustor
In the bench-scale screening experiments, it was necessary to evaluate design concepts
that would ultimately be applied in full-scale combustor hardware. In executing the design of
the basic bench-scale combustor, it was desirable to reproduce as many of the essential
features of a representative full-scale combustor as possible, and to take steps to minimize the
inherent difficulties of scaling. These requirements led to the establishment of the following
basic design criteria for the bench-scale combustor:
a. Size should be small enough to allow operation at actual engine pressures
and temperatures within the available airflow capacity of the bench-scale
facility.
b. Similarity to a representative engine combustor in space heat-release
rate, reference velocity, and liner surface-to-volume ratio should be
preserved.
Consideration of these criteria revealed that it was impossible to satisfy all the similarity
constraints simultaneously. To illustrate, a combustor representative of full-scale design
practice operated at a burner inlet-air flowrate of 33 Ib^/sec at a pressure of 211'psia and an
inlet air temperature of 787°F. The available stand airflow capacity at the same pressure and
temperature was approximately 3 lbm/sec. If the full-scale combustor can be viewed as a
cylinder (ten inch diameter, twenty inches long), then to achieve equivalent values of
heat-release rate and reference velocity in reduced scale, a bench-scale combustor should be a
cylinder approximately three inches in diameter and twenty inches long (one eleventh the
volume and one eleventh the cross-sectional area). Unfortunately, a combustor of these
dimensions would have nearly three times the surface-to-volume ratio of the full-scale can.
Obviously the desired similarity in terms of surface-to-volume ratio cannot be maintained
without relaxing one or both of the other two scaling criteria.
It was concluded that a compromise should be sought that combined reasonable values of
the three scaling parameters and yet fell within the range of gas turbine combustor design
experience. A baseline configuration calling for a combustor five inches in diameter and 15
inches long was proposed. These dimensions provided a space heat-release rate approximately
72% of that obtained in the referenced full-size can; the surface-to-volume ratio was greater by
a factor of two; and the reference velocity was lower by a factor of three. Although the relative
reduction in reference velocity was substantial it did not represent a radical departure from
conventional design practice. Corresponding to an absolute value of approximately 50 fps, the
reference velocity of the basic bench-scale configuration was very close to that of an opera-
tional combustor of comparable dimensions used in the PWA FT12 gas turbine engine. This
close correspondence was viewed as an important assurance that potential difficulties of a
fundamental nature (such as the existence of dimensions below the minimum quenching
distance) would not be encountered in the bench-scale design.
The remaining differences between the proposed bench-scale configuration and the
referenced full-scale burner did not appear to present insurmountable scaling difficulties. The
bench-scale combustor had a slightly lower heat-release rate and a higher surface-to-volume
ratio in addition to the lower reference velocity. It was not inconceivable that a successful
design concept might be sensitive to these differences. If found to be important however, these
differences could be resolved by revising the bench-scale design to achieve a configuration that
reproduced the critical features of the full-scale combustor. A final refinement period of the
bench-scale test program was reserved for this purpose. In the unlikely event that this
transformation procedure might prove unsuccessful, a final alternative remained: to reproduce
18
-------
the exact features of the bench-scale configuration in the full-scale design. Basically, a
plurality of small combustors or a full-scale combustor with more surface area would be
required. Such an approach could be taken at the expense of greater engine cross-sectional
area and additional complexity. These changes do not represent insurmountable difficulties in
stationary gas turbine engines applications.
3.2.2 Modular Hardware
The configurations illustrated in Figures 2 through 6 contained several modular pieces
constructed in accordance with the philosophy outlined in 3.2.1. For example, the convective-
ly-cooled dome piece in Figure 3 (Concept No. 5) is also common to Concept No. 6 (Figure 5),
and to Concept No. 3 (Figure 2). In addition, five-inch diameter convectively-cooled burner
sections were used interchangeably among Concepts 3, 5, 6 and 7. Two-inch diameter
premixing-tube sections were used in common among Concepts 1, 5 and 6. Photographs of
some of the "erector-set" hardware are presented in Figures 10 and 11. The interchangeability
of the component parts is evident. Components were also made readily modifiable to facilitate
changes and refinements in configuration during the experimental program. In Table II, a
compilation of the major component pieces utilized for the various concepts is presented.
Several different pieces were made available in each of several functional categories so that
alternative designs could be drawn upon in fulfilling the various functional requirements of
each burner configuration.
The method of assembling component pieces into complete burner configurations gener-
ally involved the use of standardized slip joints. Tubular sections were swaged or machined for
insertion into mating sections having the same basic diameter. Entire stack-ups of premix-
ing-tube and burner-section pieces were held in place by spacers secured to an "erector-set"
framework and to the rear bulkhead plate of the rig (see Figure 12). The entire assembly was
inserted into the bench-scale rig as shown in Figure 13.
3.2.3 Bench-Scale Rig
A schematic diagram and a photograph of the bench-scale rig used in Phase II are shown
in Figures 14 and 15. The main rig components were the burner case, the exit duct, and the
exit-plate assembly. These items were suspended from an overhead support structure by
wheels that allowed axial movement of the entire assembly or of individual sections.
Burner test pieces were positioned inside the twelve-inch diameter burner case and
mounted to a rear bulkhead plate that separated the burner compartment and the exit duct
section. The test pieces extended upstream into the forward portion of the burner case where
five access ports were provided for fuel lines, instrumentation, and quartz viewing windows.
Burner exhaust was discharged into the water-cooled exit duct, where an additional
side-mounted viewing port was provided. A viewing port in the exit plate was used to monitor
the operation of the burner by video camera. Exhaust-emission probes were located in the exit
duct and in the exit plate assembly. The exit-plate assembly was water jacketed and contained
quench-water probes for cooling the back-pressure valve.
19
-------
Figure 10. "Erector Set" Burner Hardware
Figure 11. Modular Burner Sections Used in the Bench-Scale Test Pro-
gram
20
-------
TABLE II. UTILIZATION OF MAJOR BENCH-SCALE COMBUSTOR COMPONENT PIECES
Component
Diameter
inches
Length
inches 123
Concept
567 8 10 11 12 14 16 18 23 25
Combustor Liners
Louver Cooled
Ceramic
Double Walled
Double Walled
Double Walled
Fuel Injectors
Central Nozzle
Wall Injection
Sprayring
Premix Tubes
Cylindrical
Cylindrical
Cylindrical
Cylindrical
Cylindrical
Annular
Annular
Annular
3
2,4
20
10
Various
4
6
2
4 •
Various
6
5
Various
Various
Various
Flameholders
Aerodynamic Swirler
Conventional Swirler
Conventional Swirler
Conventional Swirler
Conventional Swirler
Swirl Vanes
Swirl Vanes
Swirl Vanes
Porous Plate
Perforated Plate
Extended Injector
Coanda
Dilution Modules
Round Hole
Round Hole
Slots
Boost-air Dilution
Vorbix
Variable Geometry
2.5
1
1.5
2
3
4
3
2
5
4
3
2
Various
4
3
4
4
6
21
-------
Figure 12. Bulkhead Plate and "Erector Set" Framework With Combustor
Figure 13. Bulkhead "Erector Set" Framework and Combustor Installed
22
-------
vr
(n)
Overhead Support Structure
Access Port
Viewing Port
et^ercase
Low Btu Gas Heat Exchanger
E*"
I
Exit Plate Asembly
Figure 14. Schematic Diagram of Bench-Scale Rig
Figure 15. Photograph of the Bench-Scale Test Rig
23
-------
Several features of the rig were incorporated in the interest of providing maximum
configurational versatility for cost effective operation. For example, the rear-bulkhead plate
was made movable so that burner test pieces could be positioned at any desired axial location
in the burner case or exit duct. This feature made it possible to align any section of an
experimental combustor with an access port. The quench-reheat burner configuration (Con-
cept No. 6) took advantage of this arrangement by utilizing an access port to side mount the
pilot-burner module shown in Figure 5. Other configurations were aligned to ensure that
viewing ports could be used for monitoring the condition of key parts of the burner during a
test. Another rig feature that provided configurational versatility was the overhead support
structure, which allowed full access to all sides of the rig and facilitated the rapid removal and
reinstallation of burner parts. A third feature was the interchangeability of access port
hardware. Instrumentation, fuel lines, and quartz windows were built to a common design and
could be mounted to any port in the burner case or exit duct.
3.2.4 Test Facilities and Instrumentation
The bench-scale program was conducted at a Pratt & Whitney Aircraft test facility used
for engine hot-section components that utilize high temperature, high pressure air at modest
flowrates. The combustor rig operating conditions are listed in Table III. Instrumentation was
provided to measure burner operational parameters, including gas stream and metal tem-
peratures, pressures, fuel flowrates, and airflow rates. A schematic diagram of the rig
instrumentation system is shown in Figure 16.
Most tests were conducted by maintaining constant liner pressure loss at a constant inlet
pressure and temperature. For a given pressure and temperature, constant liner pressure loss
means nearly constant airflow (slight decline in airflow with increasing fuel-air ratio). Fuel
flow was then varied to obtain an excursion in fuel-air ratio.
TABLE III. BENCH-SCALE COMBUSTOR RIG OPERATING CONDI-
TIONS
Rig Airflow (max) — 4 pps
Operating Pressure (max) — 200 psia
Inlet. Air Temperature (max) — 1000°F
Fuel System — Multiple zones for liquid fuel; single zone
for low, medium, and high Btn gaseous
fuels.
Ignition System — TEB (pyrophoric) and spark ignition.
24
-------
Venturi Total Pressure (VPT1,2)
Venturi Throat Static Pressure (VPST1.2)
Venturi Total Temperature (VTT1.2)
Main Rig
Airflow
Heater
Airflow
Gas Sample Temperature At Probe (TSG1)
Probe Cooling Air Pressure (PAGS)
Burner Inlet Total Temperature (TT31.2)
Burner Inlet Total Pressure (PT31.2)
Burner Skin Temperature (BST1,2,3,4)
• Exit Duct Static
Pressure (PS41)
Burner Case
Low-Btu Gas
Temperature (TG2)-
Exit Duct
. 2 Fuel
i
Low-Btu Gas (heated)
Ammonium
Hydroxide
um x*
idei
nnntiOv
Quench Water
Pressure (PQW)
Main Rig
Discharge
Heat
Heat
Low-Btu Gas Heat Exchanger
Heat Exchanger Wall Temperature (THX1)
Exchanger Air Inlet Pressure (PXAIR)
Exchanger Air inlet Temperature (TXAIR)
I Low-Btu Gas Pressure (PG1)
\~~| Low-Btu Gas Temperature (TG1)
Low-Btu Gas
•Case Cooling Water
Pressure (PCASE)
Low-Btu Gas Control Skid
V
Low-Btu Gas Flowrate (WG1)
Fuel System (No. 2 Fuel)
Zone 1 Fuel Pressure (PF1)
Zone 2 Fuel Pressure (PF2)
Zone 1 Fuel Temperature (TF1)
Zone 2 Fuel Temperature (TF2)
Zone 1 Fuel Flowrate (WF1-1, WF1-2)
Zone 2 Fuel Flowrate (WF2-1, WF2-2)
Figure 16. Schematic Diagram of Bench-Scale Rig (Instrumentation)
-------
Analysis of gaseous emissions was accomplished with the equipment shown in Figure 17.
A continuous sample flow of gas, abstracted from the burner exhaust, was conducted through
an electrically heated transfer line to the gas-sample analysis system. Sample transfer time was
maintained below two seconds. The gas sample was cooled in the sample probe to approx-
imately 300°F, a temperature low enough to ensure quenching of high-temperature oxidation
reactions, but high enough to prevent condensation. At the gas sample cart, instruments were
provided for analyzing different constituent gases. Concentrations of unburned hydrocarbons
were measured using a Beckman 402 Flame-Ionization Detector. Concentrations of carbon
monoxide and carbon dioxide were measured by nondispersive-infrared Mine Safety Appliance
Analyzers. Determinations of nitric oxide, nitrogen dioxide and ammonia concentrations were
made using a Thermoelectron Chemiluminescent-Type Analyzer. A molybdenum converter,
together with a high-temperature stainless steel converter, was used to adapt the latter
instrument for ammonia analysis service. Filters and gas driers were also located within this
system to ensure the proper conditioning of the exhaust-gas sample. All temperatures and
pressures necessary for monitoring the operation of the gas-sampling system were measured by
thermocouples and transducers maintained within the gas analysis cart.
The calibration gases used were traceable to National Bureau of Standards reference
materials. Check calibrations of the testing standards against the primary standards were
made periodically to ensure their continued accuracy.
Low-Btu gas was supplied to the test rig from a 51,000 standard cubic foot, readable tube
trailer. This trailer was filled to a pressure of 2,400 psig with the various constituent gases
called for in the experimental fuel mixture. A typical dry gas analysis is shown in Table IV.
Water with dissolved ammonia was added under pressure to the low-Btu gas mixture in the
fuel line leading to the test rig. Reagent-grade ammonium hydroxide (28-32%) was mixed with
the water to vary fuel nitrogen content. In Figure 18, a schematic diagram of the wa-
ter/ammonia-addition equipment is shown. The system was fabricated from stainless steel and
was inert to alkaline materials.
The low-Btu gaseous fuel was preheated to temperatures up to 1200°F using an
indirect-fired heat exchanger that operated as an auxiliary rig system. The unit is shown
schematically in Figure 18. Operation was accomplished by the introduction of liquid fuel
through a fuel nozzle mounted in the center tube of the heat exchanger. Flame stabilized
within the center tube by means of a small combustor provided the necessary heat input. The
low-Btu gaseous fuel was heated to the desired temperature level while flowing in the reverse
direction in an outer concentric passage.
3.3 BENCH-SCALE COMBUSTOR EXPERIMENTAL RESULTS
This section presents the results of the bench-scale screening experiments conducted in
Phase II. Descriptions of the experiments have been divided into 29 groups corresponding to
the 29 NO. reduction concepts identified in Phase I and Phase II. Documentation in each case
for which tests were conducted consists of a brief overview of the evaluation, a series of
schematics of the hardware configurations tested, and selected exhaust emission data curves.
Complete data listings for the bench-scale program are presented in Appendix A.
Table V shows the combustor operating conditions of a representative 25 megawatt gas
turbine engine. This table contains the inlet pressure and temperature, the operating overall
equivalence ratio, and the average combustor exit temperature over the entire range of
conditions from cold start to peak load. It is included for comparing rig conditions to typical
engine conditions.
26
-------
to
3-Way Valves
(Air-Operated)
Q Temperature Sensor
(p) Pressure Sensor
GN2
Purge
Hydrocarbon
Exhaust
Heated Gas Sample
Transfer Lines
13
1. 10 Micron Filter
2. Heated Sample Pump
3. Particutate Trap
4. Calibrated Orifices
5. Oven Temperature
6. 3-Way (Sample - Cal Gas) Valve
7. Hydrocarbon Analyzer
8. Differential Regulator
9. Chemiluminescent NO, Analyzer
10. Moore Pressure Regulator
11. Carbon Monoxide Analyzer
12. Carbon Dioxide Analyzer
13. Permeation Tube (Dryer)
14. Dump Manifold
15. Galston Filter
16. Oxygen Analyzer
Exahust
Out
GN2 In
Figure 17. Schematic of Gas-Sample Analysis Equipment
-------
TABLE IV. LOW-BTU GAS COMPOSI-
TION (WATER-FREE BASIS)
Component
Percent
(volume)
Methane
Carbon Dioxide
Carbon Monoxide
Hydrogen
Nitrogen
0.6
7.0
21.6
13.3
57.5
*Water and ammonia added in the line leading to the
test rig.
77 Oil Cap
450 ptl Max
Mellon Tink
Ammonium
Hydroxide
NH4OH
28HW/NH3
Figure 18. Schematic Diagram of Ammonia Addition System
28
-------
TABLE V. COMBUSTOR OPERATING CONDITIONS OF A
TYPICAL 25 MEGAWATT ENGINE WITH FREE
TURBINE
Inlet Inlet Exit Exit
Operating Total Pressure Total Temperature Equivalence Temperature
Point (psia) (°F) Ratio
Peak Load
Baseload (100%)
70%
50%
Synch Idle
Cold Start
208
180
150
120
50
15
750
700
600
500
300
70
0.31
0.28
0.24
0.20
0.13
0.29
2100
1950
1650
1450
950
1450
The various combustor configurations tested were identified by a scheme number. The
first number of the scheme identification is the concept number which corresponds to that
listed in Table I. The number following the hyphen is the configuration (of the concept)
number. The final alphabetic designation refers to minor modifications (for example, a fuel
nozzle change) of the configuration not involving airflow distribution. For example, Scheme
29-ISA would mean the fifteenth configuration of the Rich Burn/Quick Quench concept.
Scheme definition sheets are provided for all configurations tested. These include a scale
drawing of the combustor and the following pertinent information:
LB — Burner length
AREF — Reference area
L/D — Burner length to diameter ratio
VOLREF — Burner volume
ACDSUM — Total effective flow area including leakage
AX — Cross-sectional area at axial station identified
ACD — Effective flow area at indicated station.
Information pertaining to the evaluation and to the results obtained from each of the
concepts are presented in the following 29 subsections in order of concept number. Actual
testing of the concepts did not follow this order chronologically.
3.3.1 Evaluation of Concept No. 1 — Low Intensity Flame
The evaluation of Concept No. 1, Low Intensity Flame, was accomplished in two parts.
First, several configurations of the bench-scale combustor (Schemes 1-1A, 1-2A, and 1-3A)
were evaluated cursorily in conjunction with the initial checkout of rig hardware at the start of
the program. Visual observations indicated generally unsatisfactory performance of all the
initial configurations with regard to both premixing and flameholding functions. Exhaust
emission characteristics were not fully documented in these tests. However NO, concentration
levels were generally observed to be high.
Scheme 1-1A. This initial configuration, defined in Figure 19, was identical to that
described in Section 2.1.1. The experimental hardware is shown in Figure 20. Operation of the
aerodynamic swirler proved unsatisfactory: the flame was non-uniform and polarized along a
horizontal plane, apparently the result of non-axisymmetric feeding of air into the tangential
slots of the swirler (plane A2 in Figure 19). The intended flame structure (elongated, fuel rich,
as required under the Low Intensity Flame concept) was not achieved. The limited emission
data obtained were characteristic of predominant diffusion burning (high NO. levels, not
strongly dependent on the overall burner fuel-air equivalence ratio) and weak flame stability
(high CO and UHC, and a high lean blowout point).
29
-------
D
G
V
H
V
I
V
J
•v
LB
27.00
AREF
21. 24
L/D
5-19
VOLREF
ACDSUM
2.53
STATION
A
Al
A2
6
C
D
E
F
G
h
I
J
AX
3.140
3.140
3.140
21.226
21.226
21.226
21.226
21.226
21.226
21.226
21.226
21.226
AGO
0.319
0.0
0.0
0.241
0.367
0.248
0.245
0.245
0.248
0.248
0.183
0. 183
Figure 19. Bench-Scale Combustor Scheme 1-1A
30
-------
3
o
I
*w
!
c
c
o
-s
a
3
"fi
I
I
s
I
-------
Scheme 1-2A. Tests of this configuration (Figure 21) were conducted to establish
baseline performance of the louver combustor using a standard axial swirler, and to verify that
the non-axisymmetric flame previously observed had been associated solely with the aero-
dynamic swirler used in Scheme 1-1A. Results showed that a totally symmetric flame had been
restored as a result of the swirler change. It was concluded that the aerodynamic swirler had
been sensitive to distortions in the rig inlet air profile, and that other burner components
(such as the fuel injector) were not involved. Baseline performance results were not obtained
because of a fuel leak in the ductwork, which caused preignition of the fuel in the premixing
passage and resultant damage to the premix tube swirler.
— *.
= B.
— 9*
t
•B
1
^
r4d
Lffl
^_
2
C
v_
D
X.
1*
E
N,
< -*
F
N—
t ^
C
"-,
k
H
\
K ^
i
V
j
^
•4 ^a
Lb
27.00
AREF
21.i*
L/D
5.1*
VOLRtF
424.7
ACDSUM
2.6%
STATION
A
Al
A?
fc
C
D
E
f
G
H
I
J
AX
AGO
1.331
3.140
3.1*0
21.^.26
il.226
21.226
21.226
11 .226
21.226
21.226
il.i26
21. 226
0.319
0.0
0.162
0.241
0.3e7
0.248
0.24i
0.24S
0.248
0.240
0.183
0.183
Figure 21. Bench-Scale Combustor Scheme 1-2A
Scheme 1-3A. In this scheme (Figure 22) the aerodynamic swirler was retested in
conjunction with a combustor liner having conventional burning zones (primary and secon-
dary) set up by introducing penetration air (at sites C and D in Figure 22). The purpose of the
test was to evaluate the aerodynamic swirler in conjunction with a combustor having no film
cooling airflow (the double-wall construction employed in this scheme allows cooling air to
pass along the entire length of the liner and be discharged at the exit plane). Comparison of
the results to those obtained for Scheme 1-1A (which had film cooling airflow but no
penetration airflow) were made to help isolate and define the effects of penetration airflow and
louver cooling airflow on the flame established by the aerodynamic swirler. An investigation of
flame structure and of interactions between the flame and liner airflow was also a principal
objective. Results showed that the flame comprised a well-premixed core (which appeared as
blue flame in the throat of the aerodynamic swirler at low fuel loadings), and an outer sheath
in which diffusion burning was predominant (formed by liquid fuel on the wall of the premix
tube, which had been entrained and burned in the tangential air jets at location B). Maximum
liner heating occurred near the first row of penetration holes (location C in Figure 22), an
indication that the flame jet produced by the aerodynamic swirler intersected the liner at that
approximate location, and that additional heat release was occurring due to the introduction of
penetration air jets. Carbon scales were formed on the wall of the combustor opposite each of
32
-------
the first-row penetration jets, indicating that unburned fuel was still present in the combustor
at location C. Flame stability was also noted to be poor, as in Scheme 1-1A. The flame jet was
more symmetric than that observed for Scheme 1-1 A, however the elongated structure
intended was not achieved. The interpretation of these results was that the axial jet emanating
from the center of the aerodynamic swirler had been weaker than intended and had not set up
a strong dump recirculation zone. It had nevertheless served to spread flame along the axis of
the burner. The tangential velocity component contributed by air introduced on the periphery
of the jet (through the slots at B in Figures 20 and 22) served to generate turbulence but had
not been great enough (by design) to produce strong flameholding. The presence of a
substantial amount of liquid fuel in the tangentially-introduced airflow (at B) caused predomi-
nant diffusion burning. The net result was an overextended diffusion flame with poor stability
characteristics and high NO,.
Bl
p
BL.
r
A2
t
-1=
-H
B
-<
-<
/
1
C
>-
^
'<
(*
J
7
1
)-
*
Al
IB
27.50
AREF
19.09
L/D
VOIREF
305.4
ACDSUM
2.87
STATION
A
Al
A?
B
61
C
D
t
1.331
2.924
t.bbb
19.079
19.079
19.079
19.079
19.079
ACO
0.319
O.C
0.0
0.162
0.0
0.974
1.178
0.241
Figure 22. Bench-Scale Combustor Scheme 1-3A
Conclusions drawn from these results were that: improvements in fuel-air premixing
should be made to eliminate diffusion burning within the flame-tube and the presence of
unburned fuel in the periphery of the flame jet; modifications should be made to the
aerodynamic swirler to produce a more elongated flame jet (e.g. by an increase in jet velocity);
and that penetration air should not be employed because of probable disruption of the flame
jet.
Scheme 1-4B. This configuration, utilized for low-Btu gas firing, is described in
Appendix B.
In the second part of the evaluation of Concept No. 1 (Low Intensity Flame), six
additional bench-scale combustor schemes were examined. In the previous tests the aero-
dynamic swirler had been employed as a candidate long-flame generator. This device had been
unsuccessful in that role, producing a diffuse, sometimes distorted flame that spread to the
wall of the burner can. The limited emission data obtained had been generally characteristic of
33
-------
predominant diffusion burning and weak flame stability. Not only were NO, concentration
levels high (an indication of extensive burning at near-stoichiometric conditions), but lean
blowout had occurred at an unusually high burner overall fuel-air ratio (about 0.014, cor-
responding to about 50% power in a typical 25 m.w. gas turbine engine).
In considering what changes might be made to better achieve the long-flame burning
characteristics desired, a review was made of the basic requirements and principles of the Low
Intensity Flame Concept. These were summarized as follows:
1. An elongated, rich, flame should be established by introducing a
high-velocity jet of premixed fuel and air along the axis of the burner.
2. The rate of mixing of the jet with the surrounding air should be controlled
to preserve the integrity of the long flame.
3. Burning should take place within the jet at fuel-rich equivalence ratios; the
resultant low flame temperature and lack of oxygen serve to inhibit the
formation of NO, from both thermal and fuel-bound sources.
4. The flame must be long enough to allow time for completion of the
relatively slow reactions of fuel-rich burning.
5. Flame stability is provided by diffusion burning on the boundary of the jet
(where the fuel-rich mixture and the surrounding air diffuse into one
another). This process must be limited in magnitude to avoid excessive
thermal NO, formation, but must be sufficient to "pilot" the rich flame.
6. Final mixing and burning of the products of rich combustion from within
the jet must be spread out over a large area so that the average local flame
temperature is reduced by radiative heat loss and by entrainment of
previously evolved products of combustion.
A common denominator in the requirements listed were the establishment of a strong
central flame jet, and careful control of the rate of mixing (and burning) of the jet with its
surrounding environment. Subsequent modifications made to the combustor hardware were
designed to strengthen the central flame jet (by increasing the axial velocity), and to
investigate alternate methods of controlling the rate of mixing of the jet with air introduced
through the combustor liner.
Scheme 1-5A. (Depicted in Figure 23) This scheme featured a four-fold increase in jet
axial velocity, and the elimination of swirl (Table VI summarizes the salient features of this
scheme, and others subsequently tested). A centerbody was mounted at the discharge plane of
the premixing tube to serve as a bluff body flameholder for the central flame jet; this gave the
jet an annular cross-section, at least initially. Complete exhaust emission data were obtained.
The variation in NO, concentration with the equivalence ratio for Scheme 1-5A is illustrated in
Figure 24. Concentration levels were found to be high (compared to other rich-burning
concepts, such as heat removal (described in Section 3.3.5), and were found to decline as the
overall equivalence ratio was increased. Visual observations of the flame, as recorded on video
tape, showed the presence of a distinct flame jet only at very low equivalence ratios. These
results, taken together, indicated that some burning had occurred under locally fuel-rich
conditions (as evidenced by the decline in NO, at higher equivalence ratios), but that diffusion
burning had also occurred, causing generally high NO, concentration levels. The latter
observation was supported by the lack of a distinct flame jet.
34
-------
PLJDi
Al
f C D E F C H I J
f
i
*
"*
k
1 ' -•
Lb
33.75
A2
AHtF
19.63
L/D
6.65
VOLiUF
*90.t)
ACDSUM
STA1 lOt.
A
Al
A2
e
.t
o
i
F
G
H
1
J
X
AX
2.924
0.826
&.9-.S
19.079
IV.625
19.645
19.625
19.625
19.6i5
0
0.0
0.0
0.0
0.0
0.0
Figure 23. Bench-Scale Combustor Scheme 1-5A
TABLE VI. COMPARISON OF BURNER CHARACTERISTICS FOR CONFIGURA-
TIONS TESTED IN THE EVALUATION OF CONCEPT NO. 1 — LOW
INTENSITY FLAME
Scheme
1-1A
1-5A
1-6 A
1-7A
1-8A
1-9 A
1-10A
18-1A<6)
NOTES: "'
(2)
(3)
(4)
(5)
(6)
. (1)
<^P
2.2
0.9
2.1
1.4
0.75
0.8
0.9
1.4
, (2)
1.8
3.6
3.4
1.9
1.3
2.6
4.1
3.4
Vj.,(3)
75
330
330
330
390
390
390
330
Average primary zone equivalence ratio
Average jet equivalence ratio
Jet velocity in ft/sec
Ratio of jet to can diameter
Btu/hr/atm/ft3
This scheme is essentially the same concept -
(No. 18) — Coanda Flame was employed as
D,/DJ<>
0.26
0.14
0.14
0.20
0.23
0.17
0.14
0.14
Firing
Swirl No.
0.8
0
0
0
0.4
0.2
0
0
Rate'"
1.3*10"
1.5*10"
1.5*10"
1.3*10"
1.6*10"
1.5*10"
1.4*10"
1.1*10"
- Low Intensity Flame — except a secondary concept
the means of flame stabilization.
35
-------
200
a.
a.
s
in
T—
O
.0
o
a>
v>
O
E
ai
100
O-NOX
A- co
UHC
50 psia, 600°F, No. 2 Fuel
0.10 0.20
Equivalence Ratio
Figure 24. Exhaust Emission Data for Scheme 1-5A
0.30
Scheme 1-6A. This scheme was identical to Scheme 1-5A except for a reduction in dome
cooling airflow (see Figure 25). This modification, which resulted in a higher average primary
zone equivalence ratio in Scheme 1-6A, was made in order to determine whether the diffusion
burning encountered in Scheme 1-5A had been caused in part by excessive primary zone film
cooling airflow. A comparison of NO, data for these two schemes (Figure 26 and Figure 24)
showed no appreciable difference.
Lt
33.25
AREF
19.63
STATION
ft
Al
A2
b
L
P
E
F
G
H
I
J
X
L/D
b.65
o.tia
0.943
IV. 079
19.62S
19.625
19.625
19.L25
19.6<;5
19.ti5
113.0
-------
200
Q.
Q.
CM
O
in
•oi
o
~! 100
_
o
o,
CO
C
O
O-NOX
A- co
UHC
50psia,600°F,No. 2 Fuel
0.10 ' 0.20
Equivalence Ratio
0.30
Figure 26. Exhaust Emission Data for Scheme 1-6A
Scheme 1-1'A. Scheme 1-7A differed from Scheme 1-6A in only one respect: the center-
body at the discharge plane of the premix tube was replaced by one of smaller diameter (0.5 in.
dia vs 0.8 dia). This change resulted in a slightly higher premix tube airflow rate (the
centerbody having been the restricting area in that passage), and also brought about a lower
average primary zone equivalence ratio. (See Figure 27 and Table VI).
NO, concentration data for Scheme 1-7A using neat No. 2 fuel oil are illustrated in
Figure 28. The nearly horizontal appearance of the curve was interpreted as evidence of a
diffusion-burning process that is essentially invariant with overall equivalence ratio.
Data for Scheme 1-7A were also measured at two values of liner pressure loss (LPL) other
than the nominal value of 3%. Changes in airflow were used as the means of varying LPL; thus
not only LPL, but burner reference velocity and the absolute levels of fuel flow and airflow
were varied. Isolated NO, data points for LPL = 1% and LPL = 6% appear in Figure 28. For
both these values of LPL, NO, concentrations were lower than for LPL = 3%.
Tests were also conducted with Scheme 1-7A using No. 2 fuel with 0.5% bound nitrogen
(pyridine additive). These data are presented in Figure 29. The variation in NO, concentration
and the variation in nitrogen conversion with equivalence ratio are shown for tests conducted
at 3% liner pressure loss. As expected, the rate of conversion was higher at the lower
equivalence ratios, and declined to a value of about 20% under the locally rich burning
conditions associated with the higher overall equivalence ratios.
37
-------
V.
ie
AREF
VOLR6F
ACuSUM
Q.
Q.
"8
o
o
o
o
ox
•z.
STATION
A
Al
A2
b
C
o
t
F
t
H
1
J
X
O.65
AX
2.92^
G.H28
19.0V-V
AGO
u.O
0.36?
L.z^e
0.245
0.245
u. 2-^b
0.246
0.183
C . 1 8 2
1.765
M L AD E
PST2
AXIAL LOG HAD LOC C1RCUM LOG
6.00
10.00
16.00
0.66
2.t>0
2. So
o.c
0.0
o.o
Figure 27. Bench-Scale Combustor Scheme 1-7A
JOU
300
250
100
50
0
600°F,
rr^
2 ^ H
50 psia
*G^"*IT — u*.
0
Q 3% LPL
0 1% LPL.
^ 6% LPL
Scheme 1-7A
D 0.1 0.2 0.3 0.4 0.
Equivalence Ratio, Overall
Figure 28. Exhaust Emission Data for Scheme 1-7A (No. 2 Fuel)
38
-------
0)
O)
o
I
o>
a.
50
o 40
0)
30
20
10
0.1
0.2
0.3
Scheme 1-7A
0.4
0.5
1 300
a.
a
25°
£ 200
(O
•g
O
O
c
o
a>
u
O
O
150
100
50
No. 2 Fuel
No. 2 Fuel With 0.5% Nitrogen
Scheme 1-7 A
0.1 0.2 0.3
Equivalence Ratio, Overall
0.4
0.5
Figure 29. Variation in NOX Concentration and Rate of Bound Nitrogen
Conversion With Equivalence Ratio for Concept No. 1 — Low
Intensity Flame
39
-------
Additional data showing the effect of liner pressure loss on NO, concentration levels in
Scheme 1-7A are presented in Figure 30. The tests represented were all conducted using No. 2
fuel with 0.5% bound nitrogen. With reference to the baseline data of 3% liner pressure loss,
NO. concentrations at 1% LPL were greater at low equivalence ratios, but declined and
became lower as equivalence ratio was increased. This result was consistent with the view that
lower liner pressure loss causes less vigorous turbulent mixing within the burner (particularly
between the flame jet and the surrounding air), and therefore produces a flame jet that is more
nearly self-contained and dependent upon its own average internal equivalence ratio. A jet of
this type would cause more burning to take place at fuel-rich internal equivalence ratios, and
would produce a decline in NO, concentration as equivalence ratios are increased.
E JbU
a
a
•£ 300
<»
CM
0
g 250
| 2°°
£
$ 150
o
c
.2 inn
NOX Concentrat
Ol C
0 0 C
°(
\
ra_ r.j
D3% LPL
"01% LPL"
600°F, 50
iK^ |TL_
^^
No. 2F
psia
a^
uel With 0.5%
S
Nitrogen
cheme 1-7A
D 0.1 0.2 0.3 0.4 0.
Equivalence Ratio, Overall
Figure 30. Exhaust Emission Data for Scheme 1-7A
Scheme 1-8A. Scheme 1-8A is depicted in Figure 31. Three main features distinguished
this configuration from those already discussed: (1) an outer concentric premixing passage was
provided in addition to the central passage employed in Schemes 1-5A, 1-6A, 1-7A; (2) a
swirler was mounted in the discharge plane of the outer passage; (3) a ten-inch long ceramic
liner section was inserted into the burner, between the dome, and the louver-cooled main
section. The purpose of the outer premixing passage was to investigate the hypothesis that
injecting fuel into the region of turbulent mixing between the central flame jet and the airflow
surrounding it might constitute a means of reducing (chemically) some of the NO, already
formed. This approach was derived from tests performed with automobile engines in which a
lean ethane/air mixture was injected into the exhaust manifold to achieve reburning of the
near-stoichiometric products of combustion discharged from the cylinders (see reference 1). In
Scheme 1-8A a design point equivalence ratio of 0.5 was selected for the outer premixing
passage. The purpose of the ceramic liner section was to eliminate film cooling airflow in the
forward end of the burner so that the turbulent mixing region around the jet could be more
carefully controlled.
40
-------
— J
-, INI 1^3
i « (L
11
-•
•»
LB
40.53
AREF
19.63
L/D
8.10
AX
VOLREF
638.0
ACOSUM
5.54
ACD
STATION
A
Al
A2
A3
6
C
D
E
F
G
H
I
J
X
MtAOEK AXIAL LOG RAD IOC C1RCUM LOG
2.924
0.828
2.221
2.221
19.07V
19.625
19.625
19.625
19.625
19.625
19.625
19.625
19.625
113.040
0.602
G.O
0.0
0.404
1.247
0.367
. 0.2*8
0.2*5
0.243
0.148
0.2t6
0.183
0.163
1.316
BST4
BST2
B&T3
9.00
16.00
23.00
2.66
2.50
2.50
0.0
0.0
0.0
Figure 31. Bench-Scale Combustor Scheme 1-8A
Tests of Scheme 1-8A were conducted at three values of outer passage equivalence ratio
(including zero). The emission concentration data obtained are presented in Figure 32. In that
figure, the outer and inner premixing passages have been designated primary and secondary,
respectively, in keeping with the nomenclature used on the test stand. The curves for both
settings of primary (outer passage) fuel flow, and for secondary (inner passage) operation alone
all exhibited high NO, concentration levels at the lower equivalence ratios, and a steady
decline as equivalence ratio is increased. These results were consistent with those obtained for
Schemes 1-5A and 1-6A, and the same comments made for those schemes can be applied to
Scheme 1-8A as well: (1) the high levels measured are indicative of diffusion burning at the
lower equivalence ratios; (2) the decline in NO, concentration can be attributed to an increase
in the proportion of fuel-rich burning as equivalence ratio is increased. This change probably
occurs as the quantity of fuel injected into the forward end of the burner consumes all the
airflow present and available for diffusion burning on the boundary of the flame jet. A
noteworthy feature of the data is that both curves for primary (outer passage) operation are
higher than the one for secondary (inner passage) operation at the lower equivalence ratios.
This result seems to indicate that, in transferring fuel from the inner to the outer passage
(with the overall equivalence ratio constant), the quantity of NO, generated increases signifi-
cantly because additional fuel has been added to the diffusion burning zone. This observation
tends to confirm the hypothesis that much of the NO, formed originates in a large, turbulent
diffusion burning zone located between the central flame jet and the burner liner. In the tests
conducted, no beneficial effect of supplying fuel to the outer passage (at locally lean or
near-stoichiometric equivalence ratios) was found.
41
-------
600°F, 50 psia
i Secondary Only
FAOX1 = 0.004-
FAOX1 =0.007
0.2 0.3
Equivalence Ratio, Overall
Figure 32. Exhaust Emission Data for Scheme 1-8A
Scheme 1-9A. This scheme marked a return to single premixing passages. The configura-
tion was identical to that for Scheme 1-8A except for the elimination of the outer premixing
passage and the addition of a new flameholder to the inner passage. The new flameholder,
shown in Figure 33, consisted of an axial swirler with an open center. This arrangement was
intended to provide high axial velocities for forming a central flame jet, and to foster a low
degree of swirl for adequate but not excessive, mixing.
The variation in NO, concentration with equivalence ratio and liner pressure loss (LPL)
is shown in Figure 34. As in the previous case for Scheme 1-8A, the results for Scheme 1-9A
show that NO, was high at low equivalence ratios, and declined steadily as equivalence ratio
was increased. Variations in liner pressure loss above and below a nominal value of 4%,
resulted in lower NO. concentrations at the higher equivalence ratios, and (in the one case
investigated, 2% LPL) higher NO, concentrations at the low end. These results were the same
as those already stated for Scheme 1-8A and (in the case of variations in NO, with LPL) for
Scheme 1-7A. The initial sharp increase in NO, concentrations at lower equivalence ratios,
which had been deduced for several of the previous schemes, was actually measured for the
first time in the case of Scheme 1-9A.
42
-------
rl
A [1
r
A2
LB
40.15
ARtF
19.63
L/0
8.03
VOLREF
638.0
ACOSUH
5.03
STATION
ACD
HfcWEK
BST4
BSTi
6ST3
A
Al
A2
6
C
0
E
F
G
H
I
J
X
0.916
0.828
2.221
19.079
19.625
IV. 625
19.625
19.62!)
19.625
19.62S
19.625
19.625
113.040
AXIAL LOC RAD LOG
9.00 2.66
16.00 2. SO
23.00 2.50
0.596
0.0
0.0
1.247
0.367
0.248
0.241
0.245
0.248
0.248
0.163
0.183
1.222
CIKCUM LOC
0.0
0.0
0.0
Figure 33. Bench-Scale Combustor Scheme 1-9A
4% LPL
0- 2% LPL
7.5% LPL
Equivalence Ratio, Overall
Figure 34. Exhaust Emission Data for Scheme 1-9A
43
-------
Scheme 1-10A. This scheme was very similar to Scheme 1-9A, and it produced the most
promising results obtained with the Low Intensity Flame Concept. The configuration, shown in
Figure 35, was set up by blocking off the swirler at this discharge plane of the premixing tube
in Scheme 1-9A. By eliminating the influence of swirl from the burner in this manner, it was
hoped that the rate of mixing between the central flame jet and the surrounding gases might
be reduced. The test data shown in Figure 36, indicated that this desired result had been
achieved. NO, concentrations were low (100 ppmv) compared to the previous schemes and
were very nearly constant over the entire range of equivalence ratios tested. The results were
similar to those of Scheme 1-7A in the sense that a horizontal NO, curve was obtained. As in
the case of Scheme 1-7A, this characteristic can be interpreted as evidence that NO, was
formed by diffusion burning. In addition, the fact that the NO, concentration curve for
Scheme 1-10A was lower than the one for Scheme 1-7A indicates that the proportion of
diffusion burning was higher in the latter case.
The results obtained and the conclusions formulated in the tests conducted with Concept
No. 1 are summarized below.
1. Elongated flames can be established by providing high jet velocities and
small jet diameters.
2. The degree of interaction between the central flame jet and the surround-
ing airflow has a strong effect on NO, concentration levels. Any influence
that serves to increase the rate of mixing in the region around the jet (e.g.,
the presence of swirl, excessive local cooling airflow, or, tentatively, in-
creased liner pressure loss) tends to increase the proportion of diffusion
burning occurring in the burner.
3. Diffusion burning on the boundary of the central flame jet cannot be
eliminated altogether. A minimum amount is necessary for flame stabiliza-
tion in the region along the boundary of the central flame jet. The ultimate
success of the concept appears to depend on confining a major proportion
of the burning to the interior of central flame jet where fuel-rich conditions
prevail, and on verifying that the NO, necessarily formed by diffusion
burning can be reduced to acceptable levels.
4. The most successful configuration tested (Scheme 1-10A) had high prima-
ry zone and jet interior equivalence ratios, high jet velocity, a low jet to can
diameter ratio, and no swirl. These features are summarized in Table VI.
5. Concept No. 1 was retired.
3.3.2 Evaluation of Concept No. 2 — Premixing Catalytic Burner
Catalytic burner concepts were excluded from screening under the Phase II bench-scale
program. However, at the request of and under the direction of the EPA, and by cooperation
between two EPA contractors (Pratt & Whitney Aircraft Group of United Technologies
Corporation under EPA Contract 68-02-2136, and Aerotherm Division of Acurex Corporation
under EPA Contract 68-02-2116), tests of an advanced-concept catalytic combustor provided
by Acurex were conducted in the P&WA bench-scale test facility. The experimental program
and test results obtained are presented in Appendix C.
44
-------
_r~r^
i — flHh
JE
A
1
f
1
A2 x
Lb AREF L/C VOLREF ACOSUM
40.15 19.o3 8.03 638.0 4.78
ACD
STATION
A
Al
A2
6
C
0
t
F
G
H
1
J
X
HI.AOEK AXIAL LOG RAO LOG CIRCUM LOG
8ST4
bST2
8iT3
0.360
0.828
2.221
IV. 079
19.625
19.625
ly.625
19.625
19.625
1*. 025
19.625
19.625
115.040
0.36C
0.0
0.0
1.2*7
0.367
0.248
0.2*5
0.245
0.248
0.246
U.183
0.183
1.211
9.00
16.00
23.00
2.66
2..30
2.50
0.0
0.0
0.0
Figure 35. Bench-Scale Combustor Scheme 1-10A
a
c a
.° c
0) vO
o SS
c in
o t-
o o
en +-•
« T3
i §
.
O
o
ouu
250
200
150
100
50
n
50 psie
, 600°F
/
U
4^^-
\>
^rp^n*
<^>
._ /
Q
}22%
<^$>
n NOX
Oco
Flagged Symbols
Indicate No. 2
Bound
Conversion
Schem<
III) U.O/O
Nitrogen
31-10A
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 36. Exhaust Emission Data for Scheme 1-10A
45
-------
3.3.3 Evaluation of Concept No. 3 — Superlean With Heat Recirculation
The evaluation of Concept No. 3, superlean with heat recirculation, addressed two main
objectives: (1) the determination of baseline performance of the bench-scale lean-front-end
(premixed) combustor; and (2) determination of the improvements in exhaust emissions that
might be effected by preheating airflow directed to the premix tube. Preheating was ac-
complished in a heat exchanger mounted in the midsection of the combustor.
The initial configuration tested, Scheme 3-2A (Figure 37) consisted of the basic
lean-front-end combustor hardware and did not include provisions for heat recirculation. A
centrally mounted VADO (variable area dual orifice) fuel nozzle was employed, mounted in a
three-inch diameter premix tube. This combination of components was selected to provide
high front-end airflow for lean design point operation. The experimental hardware is shown in
Figure 38. Tests were conducted at high rig pressure (200 psia) and high inlet air temperature
(800° F) to investigate operation of the combustor under relatively severe conditions. Dif-
ficulties were encountered in the operation of the premix tube. Upon ignition of the burner
(accomplished by injection of TEB, a pyroforic liquid, into the premix tube), flame was
stabilized in the wake of the fuel injector at the entrance section of the premix tube. As a
result, the flameholder (swirler) located at the discharge plane of the premix tube was
overheated and destroyed. Damage to sections of the burner liner was also sustained.
Examination of the fuel nozzle after the test revealed deposits of carbon over the upstream
surfaces of the nozzle assembly, indicating that liquid had been caught in a reverse flow
pattern along the outside surface. It was conjectured that the aerodynamic blockage of the fuel
injector had been excessive, causing regions of recirculating flow to form and resulting in the
stabilization of flame. Exhaust emission data were not recorded. The principal conclusion
drawn from this brief test was that the VADO fuel nozzle should be replaced by an alternative
design with less blockage, and that the premix tube air velocity should be increased in
subsequent configurations.
LB
20.50
AREF
19.09
L/D
A. 16
VOLREF
391.3
ACDSUM
5.44
STATION
AX
ACL)
Al
A 2
A
Bl
B
C
6.739
6.739
6.739
19.079
19.079
19.079
0.0
o.o
3.011
0.0
1.178
1.247
Figure 37. Bench-Scale Combustor Scheme 3-2A
46
-------
Figure 38. Experimental Hardware for Scheme 3-2A
Modifications were made to the premix tube to eliminate further occurrences of
flashback, drawing upon the results of tests of Concept No. 4, Superlean With Preburner
(again, note that while the concepts are reported in order, testing was not consecutive), which
had similar design requirements. Subsequent testing of Concept No. 3 was carried out with the
air heat exchanger in place. Scheme 3-3A, shown in Figure 39, featured a revised premix tube
design (which included a low-blockage fuel injector, and a high-velocity premixing passage),
and a swirler-stabilized primary zone flame. The experimental components are shown in
Figure 40 (the heat exchanger module prior to assembly) and Figure 41 (the final assembly
with outer shroud removed). Tests were conducted at a chamber pressure of 50 psia and an
inlet air temperature of 600°F using No. 2 fuel oil. The heat recirculation feature of the
concept functioned well with no distress of the heat exchanger tubes being experienced.
Premix tube air temperature was increased from 600° F, the nominal inlet temperature level, to
approximately 740°F. Testing was generally confined to lower values of fuel-air ratio in order
to avoid overheating the heat-exchanger tubes; however, this choice of operating condition
proved to be in the range of interest for maintaining low NO, emission concentrations. The
lowest NO, levels were acquired near lean blowout for the experimental arrangement used; at
values of overall equivalence ratio slightly higher, the NOX concentration increased very
rapidly.
47
-------
LB
31.60
AkEF
19.63
ACOSUM
i.ll
AGO
A
Al
»2
A j
A4
e
G
X
6.73%
0.739
<:.9U9
6.739
19.L'79
19.079
19.079
HS.O'.O
2.S4U
(J.U
0.0
u.o
u.U
I.1U7
O.V7',
O.-.09
HtADtk AXIAL LOG RACi LOL C1KCUM LOG
SSTl
BST2
9.!>0
17. 'jO
17.SO
l.Zi
1.46
0.60
0.0
0.0
0.0
0.0
Figure 39. Bench-Scale Combustor Scheme 3-3A
F/IE 752/70
Figure 40. Air Heat Exchanger Module Used in the Evaluation of Concept
No. 3 — Superlean With Heat Recirculation
48
-------
Figure 41. Experimental Hardware for Scheme 3-3A
49
-------
Three other configurations were subsequently tested, featuring modifications directed
toward lower intensity flameholding and better premixing of the fuel and recirculated air.
Scheme 3-4A (Figure 42) incorporated an alternative flameholding scheme (air swirl vanes at
the premix tube inlet and a dump at the exit). These modifications represented an attempt to
stabilize the flame under conditions of lower-intensity turbulence (to preclude blowout due to
flame stretch at lean fuel-air ratios), and reduced stay times (to preclude the entrapment of
reactants within high temperature recirculation zones). Under fuel-lean burning conditions,
attainment of these objectives was expected to bring about concurrent reductions in CO (which
increases exponentially at the onset of lean blowout) and NO, (which is time-temperature
dependent and tends to increase in response to the same factors that enable high intensity
burning to take place). Further revisions were investigated in Scheme 3-5A (Figure 43), which
featured a flamespreading device, and in Scheme 3-6A (Figure 44) which featured a gradual
expansion flameholder. The most successful configuration was Scheme 3-4A. A comparison of
NO, and CO data for Schemes 3-4A and 3-6A is shown in Figure 45. Although Scheme 3-6A
produced higher levels of both constituents, there were noteworthy features in the test results.
With reference to the dump flameholder of Scheme 3-4A, the gradual-expansion flameholder
in Scheme 3-6A produced a NO, curve that was shifted to the left (toward lower equivalence
ratios), but produced a CO curve that was virtually identical. The resultant "scissors effect,"
seen in comparing the two plots in Figure 45 resulted in the crossover point of the NO, and CO
curves being shifted upward to about 180 ppmv for the gradual-expansion flameholder, from
about 80 ppmv for the dump flameholder. The significance of this "scissors effect" is that the
tradeoff between NO, and CO had been altered, and although the new configuration represent-
ed a step backward in this tradeoff, these results served to illuminate some of the controlling
design features involved.
In the tests conducted of various configurations of Concept No. 3, no substantial
reductions in the production of NO, were realized. The tradeoffs encountered between
NO, and CO appeared to be typical of lean-burning in general, and did not reflect any
noticeable improvement due to the recirculation of heat to aid in fuel prevaporation and
premixing. Tests involving lean combustion were continued in the evaluation of several other
concepts, including Concept No. 7, Staged Centertube Burner, in which substantial reductions
in NO, were achieved. Concept No. 3 was retired.
50
-------
L6
31.60
AREF
19.63
L/D
6.32
VOLRfcF
406.8
AGDSUM
5.02
STATION
A
Al
A;
A3
AH
B
c
x
AX
6.739
6.739
2.909
6.739
19.CV9
1*.079
19.079
113.0*0
ACD
2.5*0
O.C
0.0
o.o
o.o
1.187
0.974
9.317
HEADER AXIAL LOG RAO LOG G1RGUM LOG
6ST1
BST2
BVT3
3.75
9.50
17.50
17.50
1.25
1.46
0.0
0.0
0.0
0.0
0.0
Figure 42. Bench-Scale Combustor Scheme 3-4A
1-
X
A
Al
2
J
A3
h
J
1
;
I
n
^
J
1
1
1
\u
s
\
A
4
A
rt'rt1'
i
1
T| Jj
¥ V B
H
-<
f
c x
LB
39.60
AREF
19.63
L/0
7.92
VOLREF
406.8
ACOSUM
2.54
STATION
AGO
A
Al
A2
A3
A4
B
C
X
6.739
6.739
2.909
6.739
19.079
19.079
19.079
113.040
2.540
0.0
0.0
0.0
0.0
1.187
0.974
0.258
HEADER AXIAL LOG RAO LOG CIRCUM LOG
BST1
6ST2
BST3
BST4
11.75
17.50
25.50
25*50
1.25
1.46
0.0
2.56
0.0
0.0
0.0
0.0
Figure 43. Bench-Scale Combustor Scheme 3-5A
51
-------
Al
IB
39.60
AREF
19.63
L/0
7.92
VQLREF
406.8
AGUSUM
STATION
A
Al
A2
A3
A4
B
C
X
AX
6.739
6.739
2.909
6.739
^19.079
19.079
19.079
113.040
AGO
2.540
O.C
0.0
0.0
0.0
1.187
0.974
0.679
HEADER
BST1
BST2
BST3
BST4
AXIAL LOC RAD LOG G1RGUM LOG
5.32
13.57
25.50
25.50
1.25
1.46
0.0
2.56
O.G
0.0
0.0
O.C
Figure 44. Bench-Scale Combustor Scheme 3-6A
52
-------
600
Dump Flameholder
a.
a.
400
300
200
100
50PSIA, 600°F, No. 2 Fuel
Gradual Expansion
0.1 0.2
Equivalence Ratio, Overall
0.3
Figure 45. Comparison of Variation in NOX and CO Concentrations With
Equivalence Ratio for Two Flameholder Types in Concept No. 3
(Superlean With Heat Recirculation)
53
-------
3.3.4 Evaluation of Concept No. 4 — Superlean With Preburner
Limited tests were conducted with several secondary concepts that involve lean burning.
The first was Concept No. 11 (Distributed Flame). These tests were generally unsuccessful
because of preignition in the premixing tube section of the combustors. Qualitatively, it was
learned that the fuel vaporizer module developed for use primarily under rich-front-end
conditions in Concept No. 5 (see Section 3.3.5) had a pronounced tendency to cause preignition
when used in a lean premixing environment. Insufficient exhaust emission data were obtained
to make even a qualitative comparison of various flameholders to the swirlers more conven-
tionally employed. In Figure 46 a photograph of the bench-scale hardware used in the
evaluation of Concept No. 4 is presented.
Initial testing was directed toward achieving a stable uniformly burning fuel-air mixture
in the front-end and preburner regions of the bench-scale burner configurations.
Schemes 4-1A and 4-2A, shown in Figures 47 and 48, respectively, featured a premixed
pilot operating at near stoichiometric conditions, and the introduction of the main complement
of fuel through wall-mounted injectors. Scheme 4-2A differed from 4-1A in that the fuel-air
premixing tube was shortened to gain access to the secondary fuel injectors to facilitate their
cleaning. The objective of initial testing was to acquire a preburner/mainburner system that
could provide thorough vaporization of fuel and complete mixing of fuel and air prior to
combustion. Ambient-pressure tests were conducted at an inlet-air temperature of 600°F at
three values of fuel-air ratio. Only visual observations were made; no attempt was made to
acquire emissions data. The secondary fuel appeared to ignite at the point of injection rather
than to undergo vaporization and premixing with air prior to igniting and burning.
Schemes 4-3A and 4-4A are shown in Figures 49 and 50, respectively. Scheme 4-4A
differed from 4-3A in that the length between the pilot and secondary fuel injector was
reduced.
These schemes differed from Schemes 4-1A and 4-2A in that the main premix tube
airflow was restricted to produce a fuel-rich mixture. Operation of the combustor in this mode
allowed the fuel-vaporization function to be studied apart from the admixing of air to achieve
an overall lean condition.
Ambient-pressure tests were conducted at an inlet-air temperature of 600°F at four
values of fuel-air ratio. Only visual observations were made during these tests. Subsequent
tests were conducted at a chamber pressure of 50 psia at an inlet-air temperature of 600°F;
emission measurements were made during these tests. Secondary fuel appeared to ignite at the
point of injection (as in the tests of Schemes 4-lA and 4-2A). NO, readings indicated droplet
burning.
The final tests of Concept No. 4 addressed the design of the pilot module (preburner)
only and were conducted in the auxiliary 'pilot rig.' Various arrangements of an air-boost fuel
nozzle and various pilot-burner swirler positions were tested. Visual observations were re-
corded (no emissions data taken) and comparisons of flame stability were made. The test
results indicated that the use of sonic (air-boost) fuel nozzles and a short premixing tube
within the pilot module did not improve either compactness or flame stability. The flame
stability of all configurations of the pilot module was found to be marginal at atmospheric
pressure and ambient inlet air temperature, although generally satisfactory at 50 psia. These
results indicated that further refinement of the hardware was required if this general method
of fuel vaporization were pursued. Although further tests were conducted with the same
hardware in conjunction with Concept No. 5 — Heat Removal (see Section 3.3.5) and with
Concept No. 28 — Rich Preburner (see Section 3.3.28), the preburner approach was eventually
retired.
54
-------
Figure 46. Experimental Hardware Used in the Evaluation of Concept No.
4 — Superlean With Preburner
55
-------
u
^j]^=-L^k HI"!
^Ip-ps/ |i 1 1
A 1
C
C2
-«
(
-<
t-
s^
(.
3
LB
0.0
ARtF
0.0
L/0
c.o
VOLREF
0.0
ACDSUM
5.31
STATION
A
B
C
Cl
C2
0
fc
X
AX
0.785
3.538
6.739
2.909
19.079
19.079
19.079
113.MO
ACD
0.704
0.063
1.726
0.0
0.0
0.974
1.247
0.0
Figure 47. Bench-Scale Combustor Scheme 4-1A
c3l
3 — ,
B,
b? — i— - ..
u*
4-
— -"-"'^
1
Cl
H
-<
[
>-
fc-
C2
D
LB
31.50
AREF
19.09
L/0
6.39
VOLREF
210.0
ACDSUM
5.27
STATION
AX
ACD
A
B
C
Cl
C2
0
E
X
0.785
3.538
6.739
2.909
19.079
19.079
19.079
113.040
0.659
0.663
1.726
0.0
.0.0
0.974
1.247
0.0
Figure 48. Bench-Scale Combustor Scheme 4-2A
56
-------
A -^
3i-«- ^3
*TZ^^~g
laT | ii
"^B
cx
-71 —
Cl
(1
^""*"*'
-
-<
(
-t
*• •'
D
\
5~
•
E
LB
0.0
0.0
S1A1IUN
A
B
C
Cl
t2
0
E
L/0
J.O
0.705
3.538
6.739
2.909
IV.079
IV.079
1V.079
113.0<.G
VOLREF
O.G
3.03
0.70<>
0.075
0.0
0.0
0.0
0.97-.
1.274
0.0
Figure 49. Bench-Scale Combustor Scheme 4-3A
Cl
V
-f
I
1
1
-€
-4
^
>-
E
C8
37.50
19.09
STAT1LN
A
B
C
tl
L/0
7.61
3.536
6.7J9
2.909
19.079
19.0V9
19.079
113.040
VOLR6F
326.5
ACDSUH
2.74
ACD
0.075
O.D
O.O
0.0
0.97*
1.217
0.0
Figure 50. Bench-Scale Combustor Scheme 4-4A
57
-------
3.3.5 Evaluation of Concept No. 5 — Heat Removal
Extensive tests were conducted of Concept No. 5, Heat Removal. In addition to the
central investigation which addressed the methods and benefits of heat extraction, various
techniques for prevaporizing liquid fuels were evaluated. In particular, the preburner approach
which had been initiated with Concept No. 4, Superlean with Preburner (see Section 3.3.4),
was adapted to fuel-rich operation and refined. Results obtained with this approach were
promising, although there were recurrent difficulties with carbon formation. At the conclusion
of tests of the Heat Removal concept, further development of the preburner approach was
carried out in conjunction with Concept No. 28, Rich Preburner (see Section 3.3.28). In the
course of the evaluation of Concept No. 5, tests were also conducted firing natural gas in order
to establish a baseline case representing complete fuel prevaporization.
Heat removal was accomplished using tubular heat exchangers of the design shown in
Figure 51, with water employed as the coolant fluid. By making use of modular construction,
individual heat exchangers were combined to form arrays of up to four modules (see Figure
52), and were positioned in various sections of the combustor. Tests were also conducted using
an alternative heat exchanger design which allowed burner airflow to be used as the coolant
fluid. The modular hardware used in these tests (see Figure 53) was originally used in the
evaluation of Concept No. 3, Superlean with Heat Recirculation, (see Section 3.3.3).
The data, including exhaust emissions, obtained for the Heat Removal concept are
presented in Appendix A. Special heat removal parameters are contained in Table A-4.
Initial tests were performed with Scheme 5-1A (Figure 54) which contained a single
heat-exchanger module. The premix tube and aerodynamic swirler from Concept No. 1, Low
Intensity Flame (Section 3.3.1) were employed. Ambient-pressure tests were conducted at an
inlet temperature of 600°F over a range of fuel-air ratios at two rates of heat removal. Results
were considered to be inconclusive because of a maldistribution of the flame profile resulting
from the aerodynamic swirler.
Tests of Scheme 5-2A (Figure 55), which employed an alternate non-premixed front-end
section, were conducted to examine flame stability and homogeneity. The heat exchanger that
had been located in the flame tube downstream of the premixing tube in Scheme 5-1A was
removed for these front-end optimization tests. Subsequent tests of Schemes 5-3A through
5-9A were also conducted without heat removal. Ambient-pressure tests were conducted over a
range of fuel-air ratios at inlet-air temperatures of 600°F and 800°F. Only visual observations
were made. The flame distribution appeared to be good; however, heterogeneous combustion
predominated, probably as a result of an inadequate vaporization length in the swirl-cup
region.
Further optimization of the front-end section of the combustor was subsequently under-
taken. In Scheme 5-3A, the vane-type swirler was replaced by a premix tube which was
recessed to provide a second fuel-vaporization/fuel-air premixing region prior to combustion
(see Figure 56). Ambient-pressure tests were conducted at an inlet-air temperature of 800°F at
three values of fuel-air ratio. Flame distribution appeared to be good; however, heterogeneous
burning 'predominated within the premixing tube.
58
-------
Ml
iU
Figure 51. Basic Heat Exchanger Module Used in the Evaluation of Concept No.
5 — Heat Removal
• • -
, »
Figure 52. Array of Four Heat Exchanger Modules
59
-------
Figure 53. Alternative Heat Exchanger Hardware Utilizing Air as Coolant
X
=^ *-D
LB
20.75
-
,--
-
B
I -[ "" '~"~
\ [2
J3~ .
^
AREF L/D
19.09 4.21
STATION AX
A 3.140
6 7.065
C 19.079
D 19.079
X 113.040
C
<> ^
(>
e
o ^
vo
L
\
>
N
7
>-
LREF
243.4
ACJ
0.319
0.162
0.974
1.247
0.0
ACDSUM
2.70
Figure 54. Bench-Scale Combustor Scheme 5-1A
-------
LB
13.00
AREF
19.09
L/D
2.64
o-
X
VOLREF
ACOSUM
3.53
STATION
AX
ACD
A
B
C
D
E
X
2.924
2.924
3.140
19.079
19.079
113.040
0.228
0.945
0.137
0.974
1.247
0.0
Figure 55. Bench-Scale Combustor Scheme 5-2A
**r
A^*
1^1 1
r?n^ ^
B
-«
-<
k
D*"
IB
21.00
ARCF
19.0V
L/0
-------
Schemes 5-4A and 5-5A (Figures 57 and 58) utilized the premix tube and upstream
section from Scheme 5-3A as a preburner.
In Scheme 5-4A the secondary fuel was injected via orifices in a wall-mounted manifold;
in Scheme 5-5A, the secondary fuel was injected via a single fuel nozzle located in the
preburner exhaust gas stream. In both schemes a ceramic liner (tubular section of
recrystallized silicon carbide) was incorporated in the primary zone of the reaction chamber
downstream of the fuel-vaporization tube. Tests were conducted at a chamber pressure of 50
psia at an inlet-air temperature of 600°F over a range of fuel-air ratios. Exhaust emission
concentrations were measured. NO. readings again indicated that droplet burning pre-
dominated. With droplet burning predominating, combustion occurs largely at stoichiometric
conditions. The effect this has on NO, concentrations is generally to increase the measured
amounts at both fuel-lean and fuel-rich conditions over that measured in a more prevaporized
system.
In Schemes 5-6A through 5-9A further refinements were made in the arrangement of the
preburner. These schemes, shown in Figures 59 through 62, represent variations in pilot
configuration and in the location of the secondary fuel-injection site as part of an investigation
of pilot-zone stability characteristics. The secondary fuel-injection system consisted of four
fuel nozzles located at 90 deg spacing on the circumference of the fuel-vaporization tube at a
fixed axial station; the secondary fuel was injected normal to the pilot-chamber exhaust
stream. Tests were conducted at a chamber pressure of 50 psia at an inlet air-temperature of
600° F over a range of fuel-air ratios. Exhaust emission concentrations were measured.
Interactions were encountered between the pilot chamber and the secondary fuel injectors.
The pilot flame was apparently drawn into the secondary fuel jets in "ejector" fashion in the
initial test. These two regions were successfully separated during subsequent test series. With
the "best" hardware arrangement, NO, readings indicated that progress had been made toward
homogeneous burning with reduced concentrations at the higher equivalence ratio settings.
Schemes 5-10A and 5-11A (Figures 63 and 64) represented minor changes in the
configuration of the preburner. Data were generated firing both neat No. 2 fuel oil, and
pyridine-spiked No. 2 fuel oil (0.5 weight percent nitrogen). Subsequent tests were conducted
firing natural gas. To accommodate gaseous fuel, the preburner was removed and replaced
initially by a radial injector as shown in Figure 65 (Scheme 5-12A). The natural gas testing was
included to simulate the physical situation in which the fuel entering the combustion chamber
was fully vaporized (without having to incorporate a preburner), and was accomplished in a
parallel path to allow for the development of the premix tube.
Variations in NO, concentration with equivalence ratio for the aforementioned tests are
shown in Figures 66 through 68. Data for neat No. 2 fuel oil at inlet air temperatures of 600° F
and 800° F and for natural gas at an inlet air temperature of 600° F are shown in Figure 66. The
data shown for the prevaporized No. 2 fuel oil and for the natural gas (except for one data
point at an equivalence ratio of approximately 0.19) appear to be continuous: to belong to a
common curve. This commonality was an initial indication that the preburner might have
effectively transformed liquid No. 2 fuel oil into vapor prior to its being mixed with air and
burned. Note that the preburner configuration was that of Scheme 5-llA/B/C.
62
-------
J
A
-L 1 B n- ffl
WJ^T
3-pS1
^=r=-
-Hr*
' Ic '"
^_— •
c
1
C2
'
1
•4-
^
D E
L6
0.0
ARfF
0.0
L/0
o.u
VOLftEF
O.C
ACOSUM
3.13
STATION
A
b
C
Cl
a
G3
0
5.J80
6.739
2.909
20.619
19.079
19.079
19.079
ACD
0.101
0.0
C.O
0.162
9.0
1.178
Figure 57. Bench-Scale Combustor Scheme 5-4A
't
1
1
Ji
'"N
J
L •-
A
~*-B
' ft
'Up
tkr*
*— c
3
x •
1
. E
'
X
r
G
^
-<
-4
-<
^
h-
f
^H
L8
38.65
AfUF
19.63
L/D
7.73
VOLREF
361.3
ACDSUM
2.97
STATION
A
B
C
D
E
F
G
AX
1.227
5.380
6.739
20.019
19.625
19.6Z5
19.625
19.625
ACO
0.183
0.101
0.061
0. 162
1.2A7
0.119
0.97«.
0.119
HEAOE* AXIAL LOG RAD LoC C1KCUK LOG
bSTl
B1T2
BbTJ
0.50
1A.09
32.59
1.5C
1.50
l.SO
2.50
0.0
0.0
0.0
0.0
Figure 58. Bench-Scale Combustor Scheme 5-5A
63
-------
B
1 °
* C _
* ^TF — i — S
A T <-
i
.
-
"*
-------
f
A
1
f—
m — i
LA4 — J
1 c
.pi
L.
' £
[ i L .
•
D
\
£
r
i-
LB
36. IS
AREF
19.63
L/D
7.23
VOLREF
361.3
ACDSUM
3.10
STATION
C
Cl
0
I
F
G
H
X
AX
0.86*
0.864
2.924
2.909
20.619
19.625
19.625
19.625
19.625
113.040
ACO
0.030
0.0
0.4!>0
0.0
0.162
1.247
0.119
0.974
0.119
o.u
HEADER AXIAL LOG RAO LOG CIRCUM LOG
BST1
BST2
bST3
BST4
1.25
3.75
14.75
30.05
0.66
0.66
1.46
2.50
0.0
0.0
0.0
0.0
Figure 61. Bench-Scale Combustor Scheme 5-8A
B
ft
'i\-
'
JJ
— Jic- '
Cl
c
?
JF
i
j
j
— -j
^\
D
)
E
^
F
^
fa
Y
ft*
f\ r
G H
p
LB
39.28
AREF
19.63
L/D
7.86
VQLREF
361.3
ACDSUM
3.0V
STATION
A
B
G
Cl
G2
D
E
F
G
H
X
AX
0.196
0.586
0.864
2.924
6.647
20.619
IV. 625
19.625
19.625
19.625
113.040
ACD
0.017
O.C
0.0
0.450
0.0
0.162
1.247
0.119
0.974
0.119
0.0
HtAOtrf AXIAL LOG RAO LOG C1RCUM LOG
am
8ST2
BST3
1.65
5.50
17.88
33.18
0.95
0.66
1.46
2.50
(1.0
0.0
0.0
0.0
Figure 62. Bench-Scale Combustor Scheme 5-9A
65
-------
A
L8
39.28
-A-
^'^
AREF
19.63
— _(-
^VD
^
k.
4.^
4-
T
4
^
F H
L/0 VOLREF ACDSUM
7.66 361.3 3.09
STATION
A
B
C
0
e
F
G
H
X
BS.T1
BST2
BST3
BST4
AX
0.196
0.566
2.924
2C.619
19.625
19.625
19.625
19.625
113.040
ACu
0.017
o.o
0.-.5G
C.162
1.2s7
0.119
0.97A
0.119
0.0
HEAOcR AXIAL LOG RAD LOG
1.65
5.50
17.88
33.18
0.95
0.66
1.46
Figure 63. Bench-Scale Combustor Scheme 5-10A
B
1 A
C'
L8 AREF
41.28 19.63
L/0
8.25
X
F
—
^D
V
E
^0
4-
V
II
VOLREF AGDSUH
361.3 3.09
STATION
A
B
G
D
E
F
G
H
X
AX
0.196
0.586
2.92<.
20.619
19.625
19.625
19. 62'5
19.625
113.0.0
AGO
0.017
0.0
0.450
0.162
1.247
0.119
0.97*.
0.119
O.O
HEAQtR
Bill
SST2
BST3
BST4
AXIAL LOG HAD LOG C1RCUM LOG
3.65
8.90
Ib.VO
0.95
0.95
0.66
1.46
G.O
0.0
0.0
0.0
Figure 64. Bench-Scale Combustor Scheme 5-11A
66
-------
LB
19.63
STATION
A
b
C
D
E
F
C
L/0
5.33
AX
VOLREF
361.3
ACDSUM
3.07
2.92<»
20.619
19.62S
19.625
19.625
19.625
U3.CKG
AGO
o.'.so
0.0
0. 162
0. 119
0.974
0.119
n.O
Figure 65. Bench-Scale Combustor Scheme 5-12A
500
Q.
a
CM
O
Si
o
400
300
o
o
6
z
O
O
O
X
O
z
200
100
j
(F
Q No.
O No.
A Nat
•••
/^
• L—
•
•
•
t
t
•
^ ^
P
L
£ = 50 psi
2 Fuel Oil
2 Fuel Oil
jral Gas,
(Radial I
l
•
\
V
LJ
3)
1
, T(AIR) =
, T(AIR) =
T(AIR) =
njector)
/V A
^
= 8008F
= 600°F
= 600°F
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
Figure 66. Variation in NO, Concentration With Equivalence Ratio, Fuel
Burned, and Inlet Air Temperature
67
-------
500
G>T(AIR) = 600°F
G]T(AIR) = 8000F
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
Figure 67. Variation in NOX Concentration With Equivalence Ratio and
Inlet Air Temperature for Adulterated (0.5% Nitrogen) No. 2
Fuel Oil
68
-------
JUU
TJ
8
o> 250
o
0
0 1 200
z s-
> Q.
-2 .£
C > 1 Cf)
Q ICM 1 OVJ
•4= o
is
§ o100
0 ~
o
* KO
O 5U
Z
Q
^>
/
u
•
d
•
.«
ri c
V
\
n
^
rK
Natural <
3as/Air
OT(AIR) = 600°F
DT(AIR) = 800°F
• -D
0
0.1
0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 68. Variation in NOX Concentration With Equivalence Ratio and
Inlet Air Temperature for Radial Fuel Injection at 50 psia
Chamber Pressure
Figure 66 also shows the effect of inlet air temperature on NO, concentration over a range
of overall equivalence ratios. The trends shown are indicative of those for a combustion device
operated over a combustible mixture range from fuel-lean, through stoichiometric, to fuel-rich.
The peak concentrations of NO, were considerably higher, by nearly a factor of two, at an
inlet air temperature of 800°F than at an inlet air temperature of 600°F. NO, concentrations
decreased rapidly as the overall equivalence ratio was both increased and decreased from the
peak NO, equivalence ratio. Obviously, for the burner configuration tested, it was more
desirable to operate at overall equivalence ratios well away from 0.15.
In Figure 67 data for No. 2 fuel oil containing 0.5% nitrogen are shown for the tests
conducted at inlet air temperatures of 600°F and 800°F. The values of NO, obtained were
higher than in the tests conducted with non-nitrogenous No. 2 fuel oil. In Figure 68 data
obtained at two inlet air temperature settings (600° F and 800° F) are shown for natural gas.
The NO, concentration "hump," which had been observed in the liquid-fuel tests, was
also found in the higher inlet air temperature tests; the "hump" was not observed at the lower
inlet air temperature tests.
A subsequent test series was conducted to ascertain the influence of the gaseous fuel
injection means on NO, concentration. The initial tests had been carried out using a radial
injector arrangement. An axial fuel injection arrangement (Scheme 5-12B, shown in Figure 69)
was used during a second test series. Schematic diagrams of the two injection schemes are
shown in Figure 70. Test data obtained during the second test series are shown in Figures 71
and 72. At lower values of overall equivalence ratio, the axial injection means was more
effective than the radial in reducing the generation of NO, at inlet air temperatures of both
600°F and 800°F. As the overall equivalence ratio was increased, the differences in NO,
concentration measured in the exhaust gas stream for both the radial and axial fuel injection
arrangements were very small.
-------
/ CO
!
-*t
X
A
IB
26.66
p^
•
B
l~"
^
^1
c
D
-€
13
LL
k
T
t
ARfcF L/D VOL&EF ACDSOM
19.63 S>.33 361.3 3.07
STATION
A
e
c
0
E
F
G
X
AX
ACD
10.619
19.625
19.625
19.6^i
113.040
0.162
1.247
0.119
0.974
0.11V
Figure 69. Bench-Scale Combustor Scheme 5-12B
Radial Fuel Injection
n
Direction of Flow
Axial Fuel Injection
Figure 70. Schematic Diagrams of Natural Gas Fuel Injection Means
70
-------
NOX Concentration (as NO) Corrected
to 15% O2, in ppmv
-» -» ro N> c*
cji o en o en c
30 0 O O O C
pc
= 50 psia, T
(AIR) = 60(
•••iii «j"n[-}
I°F
**>j^
O Axial Injection
CD Radial Injection
•0....H
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 71. Variation in NOX Concentration With Equivalence Ratio Fuel
Injection Means for Natural Gas/Air
300
0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 72. Variation in NOX Concentration With Equivalence Ratio and
Fuel Injection Means for Natural Gas/Air
71
-------
The next test series was conducted firing natural gas to determine the effectiveness of the
heat-removal concept in reducing NO, production. The combustor configuration was altered to
Scheme 5-13A (Figure 73) which provided a contraction in the premix tube (at point C in
Figure 73) designed to prevent flame stabilization at the injector tube. Baseline tests were
conducted initially without heat removal using Scheme 5-13A. Subsequent tests were con-
ducted using dual heat exchanger modules in both a downstream and an upstream location as
shown in Figures 74 and 75 (Schemes 5-14A and 5-15A). The data obtained in these tests are
shown in Figures 76 and 77 for inlet-air temperatures of 600° F and 800° F, respectively. Heat
removal was effective in reducing the production of NO, when the heat exchanger was placed
in the upstream, or near-dome, location. When the heat exchanger was placed further
downstream in the burner, near the dilution region, there was generally no advantage except at
high values of equivalence ratio at the high-inlet air temperature condition. In general, the
upstream heat exchanger is believed to have reduced the reactant temperature in the
NO, formation region and, therefore, reduced the temperature contribution to the rate of
formation of NO,. The contribution of the downstream heat exchanger at the higher values of
equivalence ratio for tests conducted at an inlet air temperature of 800° F is believed to have
been essentially the same as the contribution of the heat exchanger in the upstream location
during leaner operation. Reaction between the very fuel-rich mixture entering the dilution
zone and the dilution air was influenced by the removal of heat in a critical
NO, formation region. In essence, at the higher values of equivalence ratio, the primary zone
was shifted downstream to the dilution region and the heat removal concept functions as it
had further upstream at leaner overall equivalence ratios. The reduction in NO, concentration
at the higher values of equivalence ratio for tests conducted with and without downstream
removal of heat at an inlet air temperature of 800° F is shown in Figure 78.
<*-,
LB
33.03
AREF
19.63
L/D
6.61
VOLREF
361.3
AGDSUM
3.07
STATION
A
B
C
D
E
F
G
H
1
J
K
X
AX
2.924
1.49J
0.533
2.035
7.J89
9.6B2
20.619
IV.tZi
19.625
19.625
19.625
113.040
ACD
0.450
0.0
O.O
U.U
O.C
U.O
0. loZ
1.247
0.119
0.974
0.119
0.0
HEADER AXIAL LOG HAD LOG C1RCUM LOG
BST2
BS13
BST-.
1.75
8.00
14.00
26.90
1.00
0.95
2.00
2.00
0.0
0.0
0.0
0.0
Figure 73. Bench-Scale Combustor Scheme 5-13A
72
-------
f
1
1
=====
=====
>• <
> <
h
§• •(
9- <
IL^
>
»•
>
K
>•
k
X
I
>
H
^
i
\
4
i?
^
s
V
*•
L9
AREF
19.63
STATION
A
B
C
0
E
F
&
H
1
J
K
X
L/D
7.31
AX
0.533
i.Oii
7.369
9.682
2 0 . 619
19.025
19.62S
19.625
IV.625
113.0*0
VOLREF
399.5
Acosim
3.07
ACCi
0.0
J.O
c.o
O.C
Ci. u
0.162
1.2*7
0. 114
0.97*
0.119
0.0
HEADER AXIAL LOC RAO LOC C1RLUM LOC
BSTJ
8iT2
8!>T3
BSI*
1.00
7.50
13.50
21.50
1.00
1.20
2.00
2.61
330.0
U.O
330.0
30.0
Figure 74. Bench-Scale Combustor Scheme 5-14A
1 J
LB
35.23
=*=
==5=
AH
19.
I
===='
=====
£F
63
--
*» G
F
i
i.
Hx
f
-4.
>-
^K"
L/D VOLSEF ACOSUM
7. OS 37*. 7 3.07
STATION
«
b
C
0
E
F
G
h
1
J
K.
X
AX
0.533
Z.035
7.369
9.662
20.619
19.623
19.625
1-V.625
19.625
113.0*0
AGO
0.*5C
0.0
0.0
O.C1
o.o
O.C
1.162
1.2*7
0.119
0.97*
0. 119
0.0
HEAOt" AXIAL LOC RAD U,C C1RCUM LOC
SST1
8ST2
BS.T3
BST*
l.CC
7.50
13.50
l&.OO
i.to
1.20
2.00
2.81
310.C
O.C
330.0
30.0
Figure 75. Bench-Scale Combustor Scheme 5-15A
73
-------
0)
u
c
O
O
300
> 250
a
a.
.E 200
CN
O
^ 150
o
•*->
-Q
4-1
O
0)
100
50
'
1
c = 50 psia,
nf* /
d^
T(AIR) = 6(
n
D— |TJ
— '**-t
-v — /~Y"y
DO°F, Axial
Upstream f
Downstrea
• Baseline T£
ID — en r
1"., OU f
Axial Fue
"
Fuel Injectic
Heat Exchan
m Heat Exc
!st Series
>sia, T(AIR)
1 Injection)
J
i
jn
ger _
danger
0
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 76. Comparison of Variations in NOX Concentration With Equi-
valence Ratio and Heat Exchanger Location for Natural
Gas/Air (pc = 50 psia, Tair = 600°F)
0)
c
t
O
O
(D
C
,g
V-i
£
^
I
o
O
X
o
300
250
a
a.
200
^150
in
100
50
t
•
•
IT
•
•
•
•
•
•
•
P
«
-*••
^
Gr^7
(
r
3"Q\-
•
m
9
*
•
f
p-e^
Pc = 50
3 Upstrea
]3 Downst
— Baseline
(Pc = 5C
Axial F
t
\
\ (~*^f—^~
k;^
psiaT(AIR) = 800°F
m Heat Exchanger
ream Heat Exchanger
• Test Series
I psia, T(AIR) = 600°F,
uel Injection)
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 77. Comparison of Variations in NOX Concentration With Equiv-
alence Ratio and Heat Exchanger Location for Natural Gas
(pc = 50 psia, Tair = 800°F)
74
-------
300
Equivalence Ratio, Overall
Figure 78. Comparison of Variations in NOX Concentration With Equiv-
alence Ratio With and Without Downstream Heat Removal
(pc = 50 psia, Tair = 800°F)
Having established baseline results for the Heat Removal Concept using natural gas, the
combustor was reconverted to liquid fuel operation, and tests were conducted firing No. 2 fuel
oil and using four different configurations of the bench-scale hardware. Variations in the rate
and location of heat removal were provided, as shown in Figures 79 through 82.
Thirty-three test points at rig pressures of 50, 100, 125, and 150 psia were obtained. In
these tests the rate of heat removal was varied by mounting either two or four heat-exchanger
modules (it had been determined previously that variations in heat exchanger water flow rate
did not significantly effect the rate of heat transfer).
The variation in NO, concentration with equivalence ratio and the relative rate of heat
removal is shown in Figure 83, for both No. 2 fuel and natural gas (data previously shown). As
expected, NO, levels were higher with No. 2 fuel (because of imperfect fuel vaporization), and
with the lower rate of heat removal (two heat exchanger modules). These data (along with
subsequent pressure-parametric data) also show a tendency toward higher NO, concentrations
as pilot fuel flow was increased.
Parametric data showing the variation in NO, concentrations with equivalence ratio and
chamber pressure are shown in Figure 84. Although measured concentrations generally
increased with increasing pressure, the data obtained at 125 psia were an exception, exhibiting
higher concentrations than the data at 150 psia.
75
-------
L/D
8.65
VOLRfcF
361.3
ACDSUM
3.14
STATION
AX
AGO
9ST1
SST2
BST3
6ST4
A
Al
A2
A3
B
C
Cl
G2
C3
C*
C5
D
E
F
c-
h
0.0
7.3S9
2.C35
0.664
0.664
2.924
1.495
0.535
2.03!
7.369
9.682
20.619
19.025
19.625
0.017
O.C
C.C
u.O
t.O
U.5'J1
O.C.
t.c
0.0
0.0
L.C
0.162
1.247
0.119
0.974
0.119
ME»DEK AXIAL LOG HAD LOG ClKGUM LOG
4.20
11.00
IS.00
27.10
1.T5
0.6!>
1.00
2.61
0.0
0.0
0.0
0.0
Figure 79. Bench-Scale Combustor Scheme 5-16A
I X
VGLREF
613.1
ACDSUM
6.22
STATION
A
Al
A2
A3
B
C
Gl
G?
G3
C<.
G5
C
E
(•
G
H
1
X
SSI I
SiTJ
8STJ
3ST<.
AX
O.!>02
7.389
2.03t>
2.924
1.49i>
0.533
2.035
7.389
V.882
19. J79
19.079
19.079
. 19.625
19.625
19.625
113.0MJ
ACU
O.U17
t.O
O.C
o.O
0.0
0.5UO
0.0
u.o
c.o
0.0
0.0
J. 162
0.0
0.600
0.119
0.974
0. 119
3.527
AXIAL LOG KAD LOG C1RCUM LOG
4.50
11.00
15.00
29.63
1.75
0.66
1.00
2.81
0.0
O.O
C.O
0.0
Figure 80. Bench-Scale Combustor Scheme 5-17A
76
-------
L6
47.92
'rf
k,
"l '
*f~il|-
^==J_
C
1
ARE*
19.63
|
1
\
\
\
r
k-
k-
k-
i—
K
>
t
I
I
1 —
>
1
1
YJ t |
\
^
1'
1
-------
O
0)
k_
i_
o
o
c
o
300
250
200
(O .=
8
u
a>
a.
CO
a
a.
^ 150
- 100
I I I I I
600°F Inlet Air Temperature 50 psia Chamber Pressure
No. 2 Fuel, Two Heat Exchanger Modules
No. 2 Fuel, Four Heat Exchanger Modules
Natural Gas, Two Heat Exchanger Modules
This Point (Q) Run at
Reduced Pilot Fuel Flow
0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
0.6
Figure 83. Variation in NOx Concentration With Equivalence Ratio, Type
Fuel, and Rate of Heat-Removal for the Heat-Removal Concept
(No. 5)
78
-------
Two Heat Exchanger Modules
300
200
I 100
Q.
CM
O
ss
in
Q 50 psia Chamber Pressure
A125 psia Chamber Pressure
O150 psia Chamber Pressure
600°F Inlet Air Temperature, No. 2 Fuel
•This Point Run at
Increased Pilot Fuel Flow
6
(U
k-
k_
o
o
Species Concentration
i M CO
300
3 O O
HJU
Q
Four Heat Exchanger Modules
^
_ — <
\&~*
c
0
1
> 50 psia Chart
100 psia Charr
Sc
iber Pressure
iber Pressure
heme 5-18A
0 0.1 0.2 0.3 0.4 0.
Equivalence Ratio, Overall
Figure 84. Comparison of Variation in NOX Concentration With Equiva-
lence Ratio and Chamber Pressure for Two Rates of Heat
Removal in Concept No. 5 (Heat-Removal)
79
-------
Toward the end of the testing of Concept No. 5, another arrangement of the burner
component modules was evaluated. In Scheme 5-20A, shown in Figure 85, heat exchanger
modules were positioned downstream of the penetration air jets in the dilution zone, in an
attempt to achieve a lower flame temperature in the burnout process that occurred there. In
the dilution zone, fuel-rich gases from the primary zone were mixed with excess air and reacted
to completion. Previous tests had indicated that this diffusion-burning process might be a
principal source of thermal NO,. Other tests had indicated that the removal of heat from a
burner operating at lean to stoichiometric equivalence ratios can significantly reduce thermal
NO,. It was reasoned that similar reductions might be achieved in the dilution zone.
Al
LB
6.2T
ARE*
19.63
L/U
9.25
VOLREF
476.4
ACDSUM
5.15
STATION
AGO
PHI
MAC UN
A
Al
A2
AJ
6
C
Cl
0
t
f-
n
0.031
7.36V
2.04$
0.664
0.664
O.B64
2.909
19.079
19.079
19.079
113.040
0.024
0.0
0.0
0.0
0.0
0.500
0.0
0.162
1.251
0.8OO
2.41S
.562
.562
.562
.562
7 .992
.211
.231
2.466
0.674
0.616
0.329
0.463
0.463
0.463
0.463
0.463
10.166
10.166
13.313
37. 595
53.124
ino.onn
tlBAUEH AXIAL LUC RAD LUC C1RCUM LOC
biTI
BST3
DiT*
4.50
14.OO
17.50
25. 00
1.75
0.66
I.00
2.61
o.n
0.0
0.0
0.0
Figure 85. Bench-Scale Combustor Scheme 5-20A
The results of tests conducted of this version of the heat-removal concept are shown in
Figure 86. The curves for NO,, CO, and UHC are similar to those obtained in previous tests of
the heat removal concept: (1) NO, concentration levels increased with increasing equivalence
ratio up to the point that the local mixture ratio in the primary zone exceeded stoichiometric
conditions, then declined as conditions there became progressively richer (this produces the
familiar "hump" in the NO, curve); (2) CO and UHC concentration levels declined as the NO,
curve approaches its peak. However, a significant departure from the previous results is seen in
the fact that CO concentration levels were sharply higher at the higher equivalence ratios,
giving the CO curve a characteristic "bucket shape."
Previously, in tests of the heat-removal concept, CO concentration levels had continued
to decline as overall equivalence ratio was increased. In this case, however, the removal of heat
during the burnout process apparently caused a large portion of the CO coming down from the
primary zone into the dilution zone to be quenched.
80
-------
500
50 psia, 600T, No. 2 Fuel
Four Heat Exchanger Modules
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
Figure 86. Variation in Species Concentration With Equivalence Ratio for
Concept No. 5 (Heat-Removal)
One further series of tests was conducted in which the heat exchanger modules (4 units)
were positioned downstream of the dilution air jets. The initial results obtained using this
arrangement (Scheme 5-20A) had indicated that quenching of CO (which ordinarily would be
consumed in the dilution zone) had taken place due to the presence of the heat exchanger
modules in the aft section of the burner. It had been postulated that a more gradual rate of
addition of dilution airflow might help avoid the quenching of CO. Accordingly, the burner
configuration was changed to include round dilution air holes (see Figure 87) in place of the
rectangular slots that had been used previously. It was reasoned that the penetration of the
round holes would be diminished, resulting in a more gradual dilution process. The test results
obtained did not support this hypothesis. As may be seen in Figure 88, both CO concentrations
and UHC concentrations were higher for the burner using round holes. Conversely,
NO, concentrations were lower. It was conjectured that the interaction between dilution air
jets and the cooled tubes of the heat exchanger modules might be more complex than
originally imagined. If, for example, dilution air jets happen to impinge directly upon the heat
exchanger tubes in one configuration but not in another, then local regions of excessive
quenching may exist, with resultant high concentrations of CO and UHC.
Two final configurations using water as the coolant fluid were evaluated. As shown in
Figures 89 and 90, these Schemes (5-22A and 5-23A) were essentially the same as Scheme
5-18A. Data generated for Schemes 5-22A and 5-23A were generally consistent with those
previously generated, and are tabulated in Appendix A.
81
-------
The use of air rather than water as the coolant in the heat exchanger tubes was evaluated
in three burner schemes. The configuration of the bench-scale burner hardware used to
accommodate air was necessarily different from the previous configurations used for water. A
comparison of the two basic designs may be seen in Figures 82 and 91. In Figure 82, the basic
configuration used for water (Scheme 5-19A) is represented. Two heat exchanger modules
(each consisting of an array of seven tubes mounted in a plane perpendicular to the axis of the
burner), were located in the primary zone of the burner. The burner had a ceramic liner, and a
piloted prevaporizer module for liquid fuel. Water passing through the heat exchanger tubes
was dumped outside the rig, resulting in a net heat loss to the burner system.
The basic configuration for air is shown in Figure 91 and 92. Heat exchanger tubes were
located in six consecutive planes (five tubes per plane) perpendicular to the burner axis. The
airflow passing through the tubes was collected in a shroud and conducted to the aft section of
the burner where it was introduced as dilution air. All the dilution airflow passed through the
heat exchanger tubes in this manner. The tubes were sized to remove a quantity of heat
roughly equal to the amount removed by the water-fed heat exchanger modules in Figure 82.
The air-fed configurations differed from the water-fed configuration in two main re-
spects: first, the tubes in Figure 53 were positioned farther downstream (causing heat to be
removed at an "intermediate zone" location rather than a primary zone location); and second,
the heat removed was reintroduced into the burner rather than dumped overboard, with no
resultant net heat loss to the burner system.
The test results obtained with Scheme 5-24A and Scheme 5-25A (essentially the same)
are shown in Figure 93. Curves for NO, and CO are presented. The apparent data scatter
among the lower equivalence ratio points was the result of a minor variation in primary zone
cooling airflow that existed between the two schemes. The two reference curves included are
for NO, as generated in previous tests of the basic water-fed heat-removal configuration.
C2
A2
Cl
=*-
f
A3
u
_lj]
LJ?
\
*
1
\
1
c
V
^5"
1— J
c
\-
r
u.
-i
-f
>--
X
;*-
€
t
<
(
)
>
»
>
T
£
t
&
©•
f
»
>
>
>
i
T
A
ffl
x.
I
'
E
LB
l .50
ARfF
19.63
L/0
8.30
VOLREF
382.8
ACDSUM
S.28
AGO
STATION
A
Al
A2
A3
3
C
Cl
C2
D
e
HtAOtft AXIAL LOC KAD LOC CIRCUM LOC
0.031
Y.389
2.031,
0.&6-.
U.B6*
O.bb'.
2.V09
19.079
19.07*>
iv.t/y
H3.0-.0
0.023
0.0
c.o
0.0
0.0
c.soo
0.0
O.'J
O.STt
0.800
i.961
gSTl
gST2
BST3
. 50
17. 5u
25.00
1.75
0.66
l.VJO
2.61
0.0
U.O
0.0
0.0
Figure 87. Bench-Scale Combustor Scheme 5-21A
82
-------
500
Rectangular Slots
(Data Previously Shown)
Scheme 5-20A 600 F, 50 psia
500
400
300
200
100
Round Holes
0.3 0
Equivalence Ratio, Overall
Scheme 5-21A 600 F, 50 psia
Figure 88. Comparison of Variation in Emission Concentrations With Equivalence Ratio for Two Dilution Air Hole Shapes in Concept
No. 5 (Heat-Removal) (Four Heat Exchange Modules, Downstream of Dilution Air Jets)
-------
* A3 ! C
~-^
***"
IIMl
=p*====
iv^T^
^
LB
46.
80
Cl
I
L
L
AREF
19.63
r
L
>
t
t
»
1
6
s
f-
i
^
^
>
>
k
H
>
>
-<
.
-<
t
^
>-
L/D VOLREF ACOSUH
9.36 496.6 5.73
STATION
A
Al
A2
A3
&
C
Cl
0
E
F
G
X
AX
0.502
7.389
2.035
0.864
0.864
0.864
2.909
19.07V
19.079
19.079
19.079
113.040
AGO
0.017
O.O
0.0
O.O
0.0
0.500
0.0
0.600
0.0
1.187
0.974
2.250
HEADER AXIAL LOC RAD LOC CIRCUH LOC
BiTl
BST2
BST3
BST4
4.50
12.00
20.00
31.50
1.75
0.66
1.50
2.81
0.0
0.0
0.0
0.0
Figure 89. Bench-Scale Combustor Scheme 5-22A
Al
Lb
46.60
AREF
19.63
L/0
9.36
VOLREF
496.6
ACDSUH
5.53
STATION
A
Al
A2
A3
B
C
Cl
0
E
F
G
X
AX
0.502
7.389
2.U35
0.6o4
O.B64
0.864
2.VOV
19.079
IV. 079
19.079
19.079
113.040
AGO
0.017
0.0
O.O
O.O
0.0
0.500
0.0
0.162
0.0
1.187
0.974
2.685
HEADER
BST1
BST2
6ST3
BST4
AXIAL LOC RAD LOC CIRCUH LOC
4.50
12.00
20.00
31.50
1.75
0.66
1.50
2.81
0.0
0.0
0.0
0.0
Figure 90. Bench-Scale Combustor Scheme 5-23A
84
-------
Al
LB
4.8.25
»REF
14.63
STATION
A
Al
A2
A3
B
I
Cl
0
f.
F
X
L/D
9.69
AX
0.502
7.389
2.035
0.864
0.864
0.364
2.909
19.079
19.079
19.079
113.040
VOLREF
542.3
ACDSUM
4.96
»CD
0.017
0.0
0.0
0.0
0.0
G.500
0.0
0.0
0.705
1.257
2.479
HtAOEk AXIAL LOC RAO LOC C1RCUH LOC
6ST1
BST2
BST3
6CT4
28.60
7.00
12.iO
20.00
J.-.1
O.vS
0.66
1.50
270.0
0.0
0.0
O.O
Figure 91. Bench-Scale Combustor Scheme 5-24A
Al
LB
46.25
AREF
19.63
STATION
A
Al
A2
A3
B
C
Cl
D
E
F
X
L/D
9.65
AX
0.502
7.389
2.035
0.864
0.864
0.664
2.909
19.079
19.079
19.079
113.040
VOLREF
542.3
ACDSUM
4.50
ACD
0.017
O.O
(1.0
0.0
0.0
0.500
0.0
0.705
0.0
1.257
2.024
HEADER AXIAL LOC RAD LOC CIRCUM LOC
bSTl
6ST2
BST3
6ST4
28.60
7.00
12.50
20.00
3.41
0.95
0.66
1.50
270.0
0.0
0.0
C.O
Figure 92. Bench-Scale Combustor Scheme 5-25A
85
-------
Upstream Heat Removal
I I
50 psia, 600°F, No. 2 Fuel
No Heat Removal, Basic Water-Fed
Configuration - Ref Curve
For NO
Equivalent Heat Removal using
Water as the Coolant Fluid,
Ref Curve For NO
Schemes 5-24B and 5-25A
0.2 0.3
Equivalence Ratio, Overall
Figure 93. Variation in Species Concentration With Equivalence Ratio
for Concept No. 5 — Heat Removal Using Air as the Coolant
Fluid
The NO, data for the air-fed configuration fell midway between the two reference curves.
This result suggested that some degree of NO, suppression was achieved relative to the
no-heat-removal case, but that the reduction was not as pronounced as that achieved using
water as the coolant fluid. There are two factors that may have contributed to this result: (1)
the water-fed heat exchanger modules may have been more effective in reducing the peak
flame temperature because they were located in the primary zone rather than the intermediate
zone of the burner; (2) in the air-fed configuration the reintroduction of coolant airflow
(carrying with it the full complement of the heat previously removed) into the dilution zone
may have compromised any reduction in flame temperature that had been achieved in the
intermediate zone.
Further evaluation of the use of air rather than water as the coolant was carried out using
Scheme 5-26A (Figure 94) in which the heat exchanger tubes were moved to an upstream
location comparable to that which had been used in previous water-fed configurations. Results
of tests conducted with Scheme 5-26A indicated that significant reductions in the NO,
concentration levels were not achieved.
From the experiments conducted during the evaluation of Concept No. 5, Heat Removal,
it was concluded that the removal of heat from the combustor in quantities that could be
achieved utilizing the practical devices selected, did not produce reductions in NO, great
enough to meet the program goals. It was shown that heat removal did effect NO,, but that
significant improvements in the heat exchangers used would be necessary to realize any further
potential gains. It was also demonstrated that the implementation of improved techniques for
fuel prevaporization resulted in modest reductions in NO, for this concept. Concept No. 5 was
eventually retired.
86
-------
Al
VOLREF
522.0
ACDSUM
5.1*2
STATION
A
Al
A2
A3
&
C
Cl
D
E
f
X
AX
AGO
0.502
7.399
2.035
0.664
0.664
0.66-t
2.V09
19.079
19.079
19.07V
113. OHO
0.017
0.0
0.0
0.0
0. 0
0. 500
o.o
u.o
0.705
1.257
3.*M)
HEADER
BSTl
8SI3
AXIAL LOG RAD LOO ClRCUM LOO
3.00
23.70
1.75
2.66
O.G
0.0
Figure 94. Bench-Scale Combustor Scheme 5-26A
3.3.6 Evaluation of Concept No. 6 — Quench Reheat
Concept No. 6, Quench Reheat, was one of the five concepts initially labeled as a primary
concept and designated for definitive testing. This concept embodied introducing a reasonably
homogeneous fuel-air mixture into the main burning zone. This mixture was to be fuel-rich
within the main burning volume. The main (primary) zone was terminated by a very rapid
quenching process to an extremely lean fuel-air ratio. While this quenching would freeze
thermal NO, formation, excessive quantities of CO would be formed. In a reheat zone, effluent
from a small pilot burner would raise the temperature of the quenched products from the main
zone to a temperature which would be high enough to efficiently consume CO, while at the
same time, be low enough to preclude the formation of appreciable thermal NO, in the reheat
zone.
A brief series of tests, consisting of the evaluation of five variations of the combustor
hardware, was carried out to determine the NO, reduction capability of the Quench Reheat
concept. These tests are described in the following paragraphs.
The initial configuration of the quench reheat combustor is depicted in Figure 95.
Representative experimental hardware is shown in Figure 96. Subsequent tests of the concept
were conducted using Schemes 6-2A through 6-5A, shown in Figures 97 through 100. These
configurations represented minor variations in the combustor airflow distribution and in the
method of primary zone fuel injection; the variations did not significantly alter the emission
characteristics of the combustor.
Figure 101 contains representative data showing the variation in NO, and CO concentra-
tions with overall equivalence ratio for tests conducted at a chamber pressure of 50 psia and an
inlet-air temperature of 600°F. The fuel burned in the primary combustor was natural gas; the
fuel burned in the reheat burner was No. 2 fuel oil. Results indicate that the reheat
configuration (single side entry burner) did not completely consume the CO that was produced
87
-------
in the quick quench zone of the mainstage burner. The side-mounted reheat burner was
observed to produce a single jet of flame that penetrated to the central axis of the main burner
that did not visibly mix out in the 15-inch length provided. An important sidelight of the
results obtained with Concept No. 6 is also shown in Figure 101. At an overall equivalence
ratio of approximately 0.11, low concentrations of both NO, and CO were measured simultane-
ously (both near 50 ppmv, corrected to 15'V. O2).
The identification of a single operating point having low concentrations of both NO, and
CO exhaust constituents, while unexpected, served as a basis for further investigation. While
more closely observing the basic emission characteristics of this concept (Figure 101), it was
noticed that the NO, concentration tended to decline with equivalence ratio to an apparent
minimum which was low enough to meet the program goal. At the same time, CO went through
a peak and then rapidly declined as the equivalence ratio within the reheat region increased. It
was apparent that by carefully controlling the stoichiometry of both the main combustion zone
and the reheat zone concurrently, low values of both NO, and CO could be obtained, without
the use of the reheat pilot burner.
L3
50.27
»REF
L/0
10.Ob
VOLREF
7^7.9
ACUSUM
6.30
iTATlCN
A
Al
B
C
Cl
D
£
F
&
H
1
X
esr i
8ST2
3ST3
2.92't
6.176
6.176
6.^8-t
19.079
19.0/9
1V.07S
19.079
19.079
19.PV9
i9.079
113. ota
O.SOi
o.o
0. 101
1.726
0.0
O.C71
0 . 1
-------
Figure 96. Experimental Hardware Used in the Evaluation of Concept No. 6 — Quench Reheat
-------
Al
A2
LB
SI.SO
»REF
19.63
STATION
A
Al
A2
b
C
Cl
D
E
F
C
x
L/O
10.30
AX
2.924
12.560
12.560
6.484
6.484
19.079
19.079
19.079
19.019
11.019
113.040
VOLREF
842.7
ACDSUH
6.SO
ACD
0.501
0.0
0.0
b.O
1.726
0.0
0.071
0.148
0.677
1.665
1.712
HEADER AXIAL LOC RAO LOG C1RCUM LOG
bSTl
BST2
bST3
bST4
6.00
13.25
24.70
38.20
2.25
l.SO
6.7S
2.66
0.0
0.0
0.0
0.0
Figure 97. Bench-Scale Combustor Scheme 6-2A
Al
— G
Lb
I.SO
AREF
19.63
STATION
A
Al
A2
B
C
Cl
D
E
F
L/O
10.30
AX
2.924
12.560
12.56u
6.^84
6.464
19.079
19.079
19.379
19.079
19.L79
113.C4C
VOLREF
842.7
ACOSUM
6.50
ACD
O.S01
0.0
O.G
0.0
1.126
0.0
O.C71
11.148
!>. 677
o. iso
3.227
HtADtR AXIAL LOC RAD LOC CIRCuM LOC
BSTl
BST2
6ST3
6.00
13.25
24.70
38. 2O
2.2S
l.SO
6.75
2.66
O.C
0.0
0.0
0.0
Figure 98. Bench-Scale Combustor Scheme 6-3A
90
-------
Al A
^=ntj
2
B C
"*Hrt
J*
')
1 F
LB
16.27
AREF
19.63
STATION
Al
»2
a
c
ci
o
t
11.i5
Al
2.97*
12.560
12.560
6.*fc..
6.*B*
19.07V
IV.074
I9.0YV
19.079
19.07%
IV.625
19.625
19.625
113.(Mb
VOLREF
9*O.V
ACDSUM
6.M
AGO
U.2C5
0.0
O.C
C.fc
1.361
L.C
b.U71
0.1*8
•J.061
G.140
0.119
U.5*b
0.119
3.72*
AXIAL LOL RAU LOC (.1RCUM LOC
SiTi
6.00
IB.00
27.IS
l.SO
6.75
2.66
0.0
0.0
0.0
0.0
Figure 99. Bench-Scale Combustor Scheme 6-4A
Al
LB
S7.27
AREF
19.63
L/D
11.
STATION
A
Al
A2
t
C
Cl
. D
E
F
G
H
I
J
X
AX
2.924
12.560
12.560
6.48*
6.*b*
19.079
19.079
19.079
19.079
19.079
IV. 625
19.625
19.625
113.0*0
VOLREF
9*0.9
ACD
0.205
0.0
0.0
0.0
1.381
0.0
0.071
0.1*8
0.061
C.150
0.119
0.5*8
0.119
1.499
ACDSUH
*.30
HEAObK AXIAL LOC RAD LOC CIRCUM LOC
bSTl
BST2
BSI3
BST*
6.00
18.00
27.15
*2.15
2.2S
1.50
6.75
2.66
0.0
O.O
0.0
0.0
Figure 100. Bench-Scale Combustor Scheme 6-5A
91
-------
500
a
.E 40°
CN
O
Si
° 300
u
OJ
L~
k_
o
O
.2 200
u
o
o
£
a
CO
100
f-\
ft
•
6 I
9
•
•
Q
ill
0 NOX Concentration^ Reheat Burner
O CO Concentration f Off
Q| NOX Concentration i Reheat Burner
<3 CO Concentration / On
a
0.1 0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
Figure 101. Variation in NOX and CO Concentrations With Equivalence
Ratio and Operating Mode for Quench-Reheat Combustor
Concept (PC = 50 psia, T. = 600°F)
In conclusion the results of the Quench Reheat concept were found to be very encourag-
ing in that low concentrations of both NO, and CO were attained at a single operating
condition. These very low concentrations were apparently an outcome of the rapid quenching
of fuel-rich primary zone products of combustion made possible by the use of a
"quick-quench" module. The original concept had called for the use of a "reheat combustor"
in the secondary zone to promote the burnout of excess CO that might have been kinetically
frozen in passing through the quick-quench module. Although high concentration levels of CO
were formed in the quick-quench module over most of the range of operation of the combustor,
use of the reheat combustor was found to be counterproductive: reductions in CO were
accompanied by increased NO, concentration levels. There remained, however, a single
operating condition at which both NO, and CO concentration levels were low without use of
the reheat combustor. These test results indicated that the reheat combustor should be
eliminated, and that further evaluation of a modified version of the original concept should be
undertaken. This ultimately led to the identification of Concept No. 29, Rich Burn/Quick
Quench, which successfully demonstrated superior emission reduction capabilities and was
eventually chosen as the single concept to be implemented to full-scale hardware.
92
-------
3.3.7 Evaluation of Concept No. 7 — Staged Centertube Burner
The staged centertube combustor incorporates swirl mixing and swirl burning as princi-
pal design concepts. Adoption of this basic combustor arrangement as a design concept in itself
provided the opportunity to construct a versatile test piece to evaluate several major design
concepts in combination with swirl mixing and swirl burning. The basic configuration con-
sisted of a centertube structure with four concentric tubes, and a double-wall, convectively
cooled liner. Each of the four tubes supplied air (or a fuel-air mixture) to a particular zone of
the combustor. Swirl was imparted to the flow in each zone by vanes in the concentric tubes.
In the first zone, swirling flow provided the principal means of flame stabilization. Although no
region of appreciable reverse flow was set up because of the centertube structure, the swirl
vanes established a centrifugal force field that served to move the denser gases (cooler,
unburned) radially outward, and the less dense gases (hot, burning) radially inward. The
interactive movements of these gases caused an increase in turbulence and a higher turbulent
flamespeed, making it possible to establish a stable flamefront with minimum dependence on
regions of recirculating flow that may contribute to thermal NO, formation. In the second
zone, dilution airflow was added through swirl vanes, again setting up a centrifugal force field.
The dilution air (colder) entering this zone from the inner wall was forced radially outward,
mixing rapidly with the burned gases from the first zone. This swirl mixing process was
duplicated in the third and fourth zones where (colder) air and fuel-air mixture were
introduced into the burned gases from the centertube.
The evaluation of this concept was initiated using the configuration shown in Figure 102:
a four-zone arrangement of the burner hardware with movable concentric centertubes. A
photograph of the experimental hardware is shown in Figure 103. Fuel was introduced into the
first (outer-most) and third tubes; the second and fourth tubes contained air alone.
Equivalence ratios in the first and third zones were 0.5 at the design point fuel-air ratio of
0.020. No exhaust emission data were obtained with the configuration shown. Flashback was
encountered in the outer premixing tube upon initial light off, resulting in destruction of the
swirler. The cause of this occurrence was found to have been an unacceptably low velocity (less
than 50 fps) in the premixing passage.
To correct the flashback problem, smaller premixing passages (with higher velocities)
were decided upon. A second configuration (Figure 104) was assembled in which only the two
innermost centertubes of the previous arrangement were retained. Fuel was introduced into
both tubes at mixture velocities approaching 200 fps. Equivalence ratios in both tubes were 0.5
at the design point overall fuel-air ratio of 0.020. The centertube was movable, and could be
actuated manually during testing.
Extensive testing of the basic lean-front-end configuration shown in Figure 104 was
carried out; a total of six configuration changes (Schemes 7-2A through 7-7A, shown in Figures
104 through 109) representing only minor variations in the basic arrangement were made. The
test results were consistently encouraging. NO, concentration levels generally were found to be
very responsive to changes in the burner overall equivalence ratio, providing evidence of
thorough prevaporization and premixing. At low values of overall equivalence ratio, very low
NO, concentrations were measured; CO concentrations were also low.
In the tests conducted, the effects of fuel staging, centertube insertion depth, inlet air
pressure and temperature, liner pressure loss, and ceramic vs metal liners were all evaluated.
The data generated in these tests are presented in Figures 110 through 113. Data generally
representative of the successful lean-front-end configuration are shown in Figure 110. In these
tests fuel was introduced into the outer premixing passage only. The NO, concentrations
measured at overall equivalence ratios in the immediate vicinity of 0.2 were very low (e.g., 25
ppmv, corrected to 15% 02). CO concentrations were also low (e.g., 20 ppmv corrected to 15%
02).
93
-------
C D
C
u
x
T H
LB
33.27
AREF
19.63
L/D
6.65
VOLRfcF
339.0
AGDSUM
STATION
A
6
C
D
E
F
G
H
1
J
X
BST1
BST2
6SJ3
AX
0.0
0.0
0.406
0.0
0.0
0.0
0.299
0.874
0.2LO
19.079
113.0*0
AGO
0.0
O.O
0.406
0.0
G.O
0.0
0.299
0.2LO
1.187
1.420
HEADER AXIAL LOG RAD LOG C1RCUM LOG
3.00
13.00
18.00
1.30
2.00
2.61
0.0
O.O
0.0
Figure 102. Bench-Scale Combustor Scheme 7-1A
-------
Figure 103. Bench-Scale Hardware Used in the Evaluation of Concept
No. 7, Staged Centertube Combustor
ilAlKN
L/0
339.0
A
Al
f_.
c
D
t
r-
(j
X
2.V24
O.t>79
C.i.79
0.6/9
u.679
l^.u/9
19.u7«
19.079
113.U-.0
i
L»(
U
t
O.
0.
i.
u.
.Jl'l
.c
. L
.C
. 0
. 0
. t7t
. Lifl
. 9L7
HEADtK 4XT*L LOG RAL- uOC CIRCUM LIJC
CST1
biTi
L-ST 1
7.00
15.00
23.60
1.00
1.00
...61
c.o
C.G
0.0
ACDSUK
3.2-,
Figure 104. Bench-Scale Combustor Scheme 7-2A
95
-------
IB
33.47
AREF
19.63
L/0
6.69
VOLREF
339.0
ACDSUM
3.3*
STATION
A
Al
6
C
D
E
F
G
X
AX
2.924
0.679
O.679
O.679
0.6T9
19.079
19.079
19.079
113.040
AGO
0.210
0.0
0.0
C..O
J.O
0.0
0.674
1.187
1.066
HEADER AXIAL LOC RAD LOC CIRCUM LOC
8ST1
9ST2
BST4
3.20
11.20
19.20
1.00
1.00
2.61
0.0
0.0
0.0
Figure 105. Bench-Scale Combustor Scheme 7-3A
18
33 .".7
AREF
IV.63
L/D
6.69
VOLREF
339.0
ACDSUH
3.07
STATION
A
Al
B
C
0
t '
F
G
X
0.679
2.036
0.0
0.674
19.079
19.079
IV.079
113.(KU
ACD
U.21G
0.0
0.0
0.0
o.c
G.C
0.87',
1.187
O.796
HtlOLfi AXIAL LOC RAD LOC C1KCUM LQC
BST1
8ST2
8SI-.
3.20
11 .20
19. 2O
l.UO
1.00
2.61
0.0
0.0
0.0
Figure 106. Bench-Scale Combustor Scheme 7-4A
96
-------
A
A
s_
g-cs
1 E
\ I
D
^-^-Jf
°V'' ' •[ • -d
C H —
L8
33.
19.63
STATION
A
Al
B
C
D
L
F
0
x
L/D
6.69
0.679
0.679
U.t79
19.079
19.379
19.079
113.0*0
VOLREF
33V.0
ACDSUM
3.13
M.O
0.210
C.O
o.c
cut
C.O
o.o
0.6V-.
i.167
0.859
HiADEH
esii
BST»
3ST4
AXIAL LOG RAD LOG C1RLUM LOG
3.iO 1.00 0.0
11.iO l.CO O.G
19.^0 2.61 u.O
Figure 107. Bench-Scale Combustor Scheme 7-5A
D E
LB
33.bO
AREF
19.63
STATION
A
Al
B
C
D
E
F
G
X
L/D
6.70
AX
2.924
0.679
0.679
0.679
0.679
19.C79
IV.079
19.079
113.OtO
VDLREF
339.6
AGO
0.210
0.0
O.C
0.0
0.0
0.0
0*874
1.187
O.824
ACOSUM
3.09
HEADER AXIAL LOG RAD LOC CIRGUH LOC
BST2
BST4
BSTO
6.OO
19.00
0.0
1.00
2.61
0.0
0.0
0.0
0.0
Figure 108. Bench-Scale Combustor Scheme 7-6A
97
-------
luV '
®% P / , .um , ,
U 1 ^
( fj
\*l
-
LB ARtF L/D VOLRtF ACDSUM
31. 4-» 19.63 6.29 299.1 3.01
STATION
A
Al
I
C
D
E
F
G
X
AX
0.619
0.6V9
0.679
0.679
18.848
ie.8-,6
16.848
113.040
ACD
0.210
0.0
0.0
0.0
0.0
0.0
U.874
1.187
HbADER AXIAL LOG RAO LOG CIRCUH LOG
BST2 6.00 1.00 0.0
Figure 109. Bench-Scale Combustor Scheme 7-7A
98
-------
a. Effect of Centertube Insertion Depth
300
200
Q.
a
c
CN
O
55
in
o
a>
100
600°F, 50 ps
a, No. 2 Fuel
Q NOX, 5 in. Centertube Depth
^ CO, 5 in. Centertube Depth
H NOX, 2 in. Centertube Depth
^ CO, 2 in. Centertube Depth
M
I
4^
c
Scheme 7-3A
o b. Composite Plot of Data Obtained at
Concentration
g
o
0)
8 200
a
CO
100
n
Centertube Insertion, Depth of 5.0 in.
600°F, 50 ps
a. No. 2 Fuel
r/Qr*
^7
t& Sch
ernes 7-3A, 7-!
QNOX
0>co
5A, and 7-6A
0
0.1 0.2 0.3
Equivalence Ratio, Overall
0.4
0.5
Figure 110. Variation in Species Concentration With Equivalence Ratio
for Concept No. 7 — Staged Centertube Burner, a. Effect of
Centertube Insertion Depth, b. Composite Plot of Data Items
99
-------
300
200
I
Q.
CN
O
ID
2
T3
O>
100
0
0
a. Effect of Inlet Pressure, 600°F, No. 2 Fuel
I
0.1
NOX, at 50 psia
CO, at 50 psia
NOX, at 100 psia
CO, at 100 psia
NOX, at 140 psia _
CO, at 140 psia
Scheme 7-7A
0.4
0.5
O
0
Concentration
CJ
o
o
8
3 200
Q.
CO
100
0
C
b. Effe
ct of Inlet Air
m
«5«
Temperature,
100 psia, No.
2 Fuel
D NOX, at 600°F
• NOX, at 800°F
^CO, at800°F
S
cheme 7-7A
I 0.1 0.2 0.3 0.4 0.
Equivalence Ratio, Overall
Figure 111. Variation in Species Concentration With Equivalence Ratio
for Concept No. 7 — Staged Centertube Burner
100
-------
300
200
I
Q.
_c
CN
o
100
o 0
•§
a. Comparison of Ceramic and Metal Liners
600°F, 50 psia, No. 2 Fuel
NOX, Metal Liner
CO, Metal Liner
NOX, Ceramic Liner
(Scheme 7-3A)
Scheme 7-7 A
-
o
o
b. Effect of Liner Pressure Loss (LPL)
800°F, 50 psia, No. 2 Fuel
0.2 0.3
Equivalence Ratio, Overall
Figure 112. Variation in Species Concentration With Equivalence Ratio
for Concept No. 7 — Staged Centertube Burner, a. Comparison
of Ceramic and Metal Liners, b. Effect of Liner Pressure Loss
(LPL)
101
-------
a. Scheme 7-2A (Centertube Insertion 2.0 in.) 600°F, 50 psia
300
200
I 100
a
CM
o
s?
in
NOX, FAOXI = 0
CO, FAOXI = 0
NOX/FAOXI = 0.004
CO, FAOXI = 0.004
NOX;FAOXI = o.ooe
CO, FAOXI = 0.008
u
0)
k_
o
O
c
o
b. Scheme 7-3A (Centertube Insertion 2.0 in.) 600°F, 50 psia
Species Concentral
i s =
CO, FAOXI = 0
B NOX, FAOXI = 0.006
^ CO, FAOXI = 0.006
n r-4
%f\
X> £^
$
Scheme 7-3A
0.1 0.2 0.3
Equivalence Ratio, Overall
0.4
0.5
Figure 113. Variation in Species Concentration With Equivalence Ratio
for Concept No. 7 — Staged Centertube Burner (Staging
Effects), a. Scheme 7-2A (Centertube Insertion 2.0 in.).
b. Scheme 7-3A (Centertube Insertion 2.0 in.)
102
-------
The effect of centertube insertion depth is indicated in Figure 110. Results obtained at
depths of two and five inch were identical (same shape curves and same minimum
NO, concentrations) except for a very slight separation in the positions the two NO, curves on
the X-axis; this separation is believed to be the result of slight differences in the amounts of
airflow that may leak past the rear seal of the burner during testing (increased leakage causes
a shift to the left in the NO, curve). Although the data presented in Figure 110 show the
burner to have been insensitive to changes in centertube depth in the range from two to five
inches, tests conducted briefly at a depth of zero inches (i.e., with the swirlers of both
centertubes mounted flush with the dome) showed that a stable flame could not be main-
tained. Thus, on the basis of the tests conducted to date, it appears that the centertube
structure may have been instrumental in providing flame stability at the very low equivalence
ratios required for low NO,.
The effects of inlet air pressure and temperature are shown in Figure 111. Compared to
the baseline operating conditions of 50 psia and 600°F (most of the data having been obtained
at those conditions) it was anticipated that higher NO. concentrations would be measured at
100 and 140 psia (roughly in accordance with the square root of the pressure ratio), and at
800°F (as a function of the higher flame temperature). These effects should be readily
observable in a well premixed, prevaporized burner of the type under evaluation.
The pressure effects, shown in Figure Ilia, did conform approximately to expectations.
NO, concentrations measured at 100 psia were higher than those measured at 50 psia by a
factor roughly equal to the square root of the pressure ratio. However, the NO, data measured
at 140 psia appear to fall on the same curve as the data measured at 100 psia. No satisfactory
explanation for this result is known. A noteworthy feature of the data is the steeper slope of
the NO, curves at higher pressures; this is consistent with the expectation of higher reaction
rates at elevated pressures.
Data measured at two different values of inlet air temperature are shown in Figure lllb.
The NO, curve for tests conducted at 800° F lies farther to the left and has somewhat higher
concentration levels than the one for tests at 600° F. It might well be postulated that these
effects are the result of higher flame temperatures and broader flammability limits (enabling
the burner to be operated at lower equivalence ratios) — both caused by increased inlet air
temperature. Unfortunately this explanation is open to question because the effect of inlet air
temperature on flame temperature is much less than the measured NO, data might indicate
(more than a two-fold increase in NO, was registered — considerably more than would be
expected as the result of a simple increase in flame temperature of about 100°F). Although the
influence of increased-inlet air temperature may in some cases be more than a simple increase
in flame temperature (if for example it causes burning to be initiated earlier and persist for a
longer period of time, then significantly higher NO, concentrations may result), the postulated
explanation should be held as tentative because of the possibility of other strong influences
(such as unsuspected differences in the rate of leakage at the rear seal of the burner) which
could have the same effect of shifting the NO, curves to the left or right on the X-axis.
A comparison of the effects of ceramic and metal combustion chamber liners is shown in
Figure 112. Six of the seven configurations of the staged centertube burner tested (Schemes
7-1A through 7-6A) incorporated a ceramic liner section as shown in Figure 104. In Scheme
7-7A this section was replaced by a metal liner (thick-wall, stainless steel, uncooled) of equal
length. A comparison of the data in Figure 112 indicates that there were no major differences
in the concentrations of NO, and CO measured using the two configurations. Although there
were slight differences in the shapes of the NO, curves, neither of the two liners appear to offer
any significant advantage over the other.
103
-------
The effect of liner pressure loss is shown in Figure 112. There appears to have been no
significant differences between the emission characteristics of the burner at 3.8% and 5.4%
liner pressure loss. It might have been expected that the increased turbulence and higher
premixing velocities associated with a higher liner pressure loss (changes in LPL were effected
simply by increasing burner airflow) would lead to a more uniform fuel-air mixture in the
primary zone, with more sharply delineated blowout characteristics, and perhaps a steeper
NO, curve. There is some evidence of an effect of this type at the lower equivalence ratios,
where the curve for 3.8% LPL extends to a lower value of equivalence ratio, and is less steep.
However, only one data point is available for this comparison; the results must therefore be
considered inconclusive.
In the tests already discussed, fuel was introduced into the outer premixing passage only
(see Figure 104). Typically, the NO, curves generated in these tests were very steep, descend-
ing rapidly to very low concentrations as the burner overall equivalence ratio was decreased.
The lowest NO, concentrations were found at equivalence ratios slightly higher than the
lean-limit-extinction point. As the steep positive slope of the curve indicates, the
NO, concentrations measured at equivalence ratios only a little higher than the minimum
point were unacceptably high, failing to meet the program goal of 50 ppmv NO, for neat No. 2
fuel. Thus, the burner configuration as tested, with only one premixing passage in use, must be
considered as having only a single operating point for low-level exhaust emissions. Although
this operating point can easily be adopted as the design point of the combustor, it is necessary
to operate the engine over a wide range of power settings, and the combustor must not only
remain lit and burn efficiently at off-design point conditions, it must also produce acceptably
low concentration levels of NO,. To meet these requirements, some method of achieving
satisfactory multiple-point operation must be devised. One promising approach is staged
combustion, where fuel flow is split between two or more zones, allowing axial control over
stoichiometry.
In the burner configuration shown in Figure 104, staged combustion was implemented by
introducing fuel into the center premixing tube, thereby augmenting and extending the flame
generated by the outer premixing passage. If the equivalence ratios in the two premixing
passages are carefully adjusted to achieve low flame temperatures, then low NO, concentra-
tions can, in theory, be achieved at a number of different operating points.
The results of staging tests conducted with the lean-front-end staged centertube com-
bustor are shown in Figure 113. Data are presented for two Schemes, 7-2A and 7-3A; these
were identical except for a minor change in the location of the fuel injector in the outer
premixing tube. The results demonstrate that two operating points, each with low NO, and CO
concentrations, can be established by staging the combustion process. In Figure 113b for
example, the first operating point was established at an overall equivalence ratio of 0.19, using
secondary fuel flow alone (FAOX1 = 0), and resulting in concentrations of 25 ppmv NO, and
30 ppmv CO. The second operating point was established at an overall equivalence ratio of
0.27 using both fuel zones, and resulting in concentrations of 50 ppmv NO, and 20 ppmv CO.
In the tests conducted no attempt was made to optimize the primary/secondary fuel flowsplit
at operating points other than the two selected. By setting values of FAOX1 other than 0.006,
it should be possible to establish low-emission operating points over a fairly wide range of
overall equivalence ratios.
104
-------
The results obtained, and the conclusions formulated in the tests conducted with
Concept No. 7 can be summarized as follows:
1. Concentrations of NO, and CO low enough to meet the program goals
using neat No. 2 fuel can be achieved at a single operating point in a
staged centertube combustor (single zone, lean-front-end).
2. The centertube structure appears to be instrumental in maintaining
flame stability.
3. Centertube insertion depth has no effect on emission concentration levels
in the range between 2 and 5 inch.
4. Low concentrations of NO, and CO can be achieved at two operating
points by two-zone staged combustion.
5. Ceramic combustion chamber liners offer no apparent advantage over
metal liners in terms of emission concentration levels.
3.3.8 Evaluation of Concept No. 8 — Exhaust Gas Recirculation
Tests of this concept were not conducted, although the experimental hardware necessary
for initial exploratory evaluation had been fabricated. In Figure 114, the exhaust gas recircula-
tion module is shown. A typical configuration of the experimental hardware as it might be
arranged for evaluation of the Exhaust Gas Recirculation (EGR) concept is depicted in Figure
115. There were novel features to the concept that may merit investigation in future
experimental studies. The use of side-mounted ejectors, driven by the incoming primary zone
airflow, for the abstraction of combustion gases (or secondary zone products of combustion,
depending upon placement of the EGR module) provides an extended mixing length within
the recirculation conduit. Within this length, a more uniform mixture of the recycled gases and
the incoming airflow can be achieved than in schemes which provide mixing only at the end of
the recirculation conduit. The greater uniformity achieved can be expected to reduce hot
streaks that may cause preignition when the EGR module is used in conjunction with a fuel-air
premix tube. In addition to the evaluation of this particular module design; future studies
might also include parametric variations in the placement of the EGR module. The abstraction
of gases at various sites along the length of the combustor, and the reintroduction of these
gases at various other sites within both the primary zone and secondary zone, holds promise
for a new dimension of combustion control. The pursuit of these objectives was not undertaken
under the current program because of funding and schedule constraints, and because of the
demonstrated success of Concept No. 29, Rich Burn/Quick Quench in meeting all program
objectives.
3.3.9 Evaluation of Concept No. 9 — Hydrogen Enrichment
This concept was eliminated from further consideration at the end of Phase I, because of
the implicit requirement for an external source of hydrogen. It had been decided that the
introduction of additive materials (including water) would not be considered under the current
program, because of the intended emphasis on "dry" NO, control techniques.
105
-------
Figure 114. Exhaust Gas Recirculation Module
Cooling Fins
Inlet Air
Ejector
Figure 115. EGR Combustor Scheme
106
-------
3.3.10 Evaluation of Concept No. 10 — Surface Combustion
Tests of this concept were not conducted, although fabrication of a surface combustion
porous plate flameholer (Figure 116) had been accomplished prior to the experimental
program. This flameholder, which contained imbedded cooling tubes for temperature control,
was judged to lack functional compatibility with the other bench-scale combustor modular
hardware, because of its very low airflow capacity, and because of the lack of knowledge of any
premixing device capable of distributing fuel and air over the surface of the flameholder
without danger of flashback.
Heat Exchanger
Tubes
5 in. dia
Porous Stainless
Steel Plate -
0.25 in. Thick
Cooling Flow
Figure 116. Porous Plate Flameholders
3.3.11 Evaluation of Concept No. 11 — Distributed Flame
Limited tests were conducted of this lean-burning concept to isolate those flameholder
design features that may enhance the stability of low-temperature (lean) flames. One approach
(that embodied in the Distributed Flame concept is to avoid large, highly turbulent recircula-
tion zones (such as those produced by swirlers), and to set up, as an alternatve, a plurality of
smaller flame jets, each independently stabilized and characterized by lower flame turbulence.
As in tests of other lean burning concepts, preignition of the fueair mixture within the premix
tube was a recurrent problem.
107
-------
The initial configuration, Scheme 11-1A, is shown in Figure 117. Experimental hardware
representative of that tested is shown in Figure 118. Results of the first test series indicated
that inadequate premixing had been achieved (NO, and CO) emission signature curves were
found to be characteristic of diffusion burning), and that damage to the perforated plate (due
to preignition) had occurred.
Al
LB
21.75
AKEF
19.63
L/U
VOLREF
267.3
X
ACDiLM
STATlLf<
A
i~ 1
b
c
D
X
2.909
19.07*
19.07V
113.04-0
OLD
o.c
1.310
0.0
i.187
1.618
HEADER
BSTl
8ST2
BST3
6STA
AXIAL LOG kAu LUC CIKCUM LOC
2.50
7.00
12.25
19.25
1.50
2.00
2.81
0.0
0.0
c.c
0.0
Figure 117, Bench-Scale Combustor Scheme 11-1A
Figure 118. Experimental Hardware Used in the Evaluation of Concept
No. 11 — Distributed Flame
108
-------
In subsequent tests various fuel-preparation devices and flameholders were evaluated.
Beginning with Scheme 11-2A, the rich preburner module developed under Concept No. 4
Superlean with Preburner, and under Concept No. 28, Rich Preburner (see Sections 3.3.4 and
3.3.28) was utilized in conjunction with both perforated plate and conventional swirler
flameholders. The configurations tested, Schemes 11-2A through 11-5A, are shown in Figures
119 through 122. In Table VII, a summary of the flameholders tested is provided. Tests
involving the rich preburner module were conducted at fuel-rich primary zone operating
conditions to provide data supporting various other rich burning concept investigations that
were proceeding in parallel. Results were generally unsuccessful because of inadequate premix-
ing and poor fuel preparation. No significant emissions data were obrained. Qualitatively, it
was learned that the rich preburner module had a pronounced tendency to cause preignition.
Insufficient data were obtained to make comparison of the two flameholder types.
Scheme 11-6A utilized a perforated plate flameholder and an air-boost nozzle, as shown
in Figure 123, and was designed for fuel-lean operation. Data points recorded indicated that
diffusion burning had been predominant, possibly due to inadequate dispersion of droplets
from the centrally mounted air-boost fuel nozzle over the cross-section of the premixing
passage.
Tests of four configurations were conducted firing low Btu gaseous fuel. Schemes 11-7A
and 11-8A, shown in Figures 124 and 125, both employed a conventional swirler flameholder.
Schemes 11-9A and 11-10A, shown in Figures 126 and 127, both employed an alternative
flameholder design featuring multiple V-gutters. Except for minor variations, the four con-
figurations were the same, making it possible to compare the two flameholder designs. The
swirler schemes served as a baseline while the alternative design produced eight individually
stabilized jets of flame without getting up a large central recirculation zone. In order to
eliminate the influence of fuel vaporization on the test results, a gaseous fuel was employed (in
this case, low Btu gas, which was more readily available than natural gas at the time).
Composition of the gaseous fuel is given in Table IV, Section 3.2.4.
Al
ID
36.Ob
AREF
19.63
L/D
7.21
VOLRtF
274.8
ACDSUM
3. 71
AX
AGO
STATION
A
Al
Ai
A3
B
C
Cl
C2
D
E
X
HfcAOER AXIAL LOG RAO LOG GIRGUN LOG
0.50i
7.389
i.035
0.86-t
0.864
6.739
t.909
12. lit
19.079
19.079
113.040
0.009
0.0
0.0
0.0
u.o
0.253
0.0
0.0
0.0
1.187
i.264
bSTl
bST2
BST3
3.00
16. 60
26.55
33.55
1.75
1.50
2.81
2.81
0.0
0.0
0.0
0.0
Figure 119. Bench-Scale Combustor Scheme 11-2A
109
-------
Al
LB
36.
AREF
19.63
STATION
A
Al
A2
A3
B
C
Cl
C2
D
t
X
L/D
7.21
AX
0.502
7.389
2.035
0.86*
0.861.
6.7J9
2.<*0*
12.124
19.07V
19.079
113.0<,0
VOLREF
274. B
AC OS UN
3.66
ACO
G.025
o.o
o.o
0.0
0.0
0.2S3
0.0
0.0
0.0
1.187
2.215
HtAObH AXIAL LOC RAD LOG CIRGUM LOG
fcSTl
bST2
L-ST3
BST<.
3.00
16.80
26.55
33.55
1.75
1.50
2.81
2.81
0.0
0.0
0.0
0.0
Figure 120. Bench-Scale Combustor Scheme 11-3A
LB
37.
AB.EF
19.09
STA1ION
A
Al
A;
A3
B
C
Cl
C2
D
E
X
L/D
7.67
AX
0.031
7.369
2.033
0.86-t
(j.Sbt
6.739
2.909
6.73V
Z.V?!
19.07V
VOL*EF
267.2
ACO
C'.ulo
C.O
C.I
0.0
0.0
0.27e
0.0
G.O
o.c
1.167
1.260
HEADER AXIAL LCC RAD LUG URCUM LOG
BST1
BiTZ
SST3
BSTt
12.50
28.32
35.32
1.75
2.81
2.61
0.0
0.0
0.0
0.0
Figure 121. Bench-Scale Combustor Scheme 11-4A
110
-------
La
37.13
AREF
19.09
STATJCN
Al
A2
A3
B
C
Cl
D
01
t
X
L/D
7.53
AX
0.031
7.389
2.035
0.664
0.66'.
b.739
6.739
2.",91
19.07V
19.079
113.OO
VOLREF
267.2
ACDSUM
2.71
AGO
0.016
0.0
0.0
0.0
o.c
0.276
0.0
0.0
o.o
1.167
1.229
HEADER AXIAL LOC RAD LOC C1RCUM LOC
6ST1
8STZ
fcST3
UST-,
4.50
11.50
27.63
34.63
1.75
0.52
2.61
2.61
C.O
0.0
0.0
0.0
Figure 122. Bench-Scale Combustor Scheme 11-5A
TABLE VII. CONFIGURATIONS TESTED IN THE EVAL-
UATION OF CONCEPT NO. 11
/Scheme/Flameholder/Fuel Injector
11-1A
11-2A
11-3A
11-4A
11-5A
11-6A
11-7A
11-8A
11 -9 A
11-10A
11-11A
11-12A
I
I
I
II
II
I
II
II
III
III
II
II
A
B
C
C
C
D
E
E
E
E
C
C
Flameholders
I - Perforated Plate
II - Swirler
III - "V-Gutter"
Fuel Injectors
A - Pressure Atomizing
B - Air Blast Preburner/
Pressure Atomizing Primary
C - Air-Boost Preburner/
Pressure Atomizing Primary
D - Air-Boost
E - Open Tube (Gaseous Fuel)
111
-------
_L^
LB
V.7S
ARfcF
L/D
VOLktF
267.2
ACDSUM
3.33
STATION
A
8
C
0
t
F
X
3.V>9
1.1104
2.904
1.301
19.079
19.079
AGO
l.30t
0.0
C.C33
0*o
0.0
1.187
O.fcl?
HEADt*
6ST1
tST2
biT3
EST*
AXIAL LOG HAL. LOG CJHCUM LOG
2.00
O.tO
i.CO
IV. 25
2.61
0.0
0.0
C.O
0.0
Figure 123. Bench-Scale Combustor Scheme 11-6A
B Bl
Lfc
2&.02
»REF
19.09
L/D
b.07
VOLREF
267.2
ACDSUM
H.ib
STATICN
A
B
Bl
C
D
E
1.807
2.910
o.ifiS
2.<>91
IV.079
19.079
113. U*0
AC D
l.BOV
0.0
O.C
o.c
O.G
u.O
1.167
1.J83
HEAJtK AXIAL LOC HAD LOG C1HCUM LOG
BST1
bb.T2
O.50
10.00
14.00
22.00
1.50
1.50
i.bl
2.61
U.O
0.0
0.0
0.0
Figure 124. Bench-Scale Combustor Scheme 11-7A
112
-------
n i"
I 1 1 """——
-j —
^^*^
^
1 ! F t
F
4
A L) tt=
^
LB
30.^1
AREF
19.09
STATION
A
B
Bl
C
D
E
F
G
X
L/D
6.1?
AX
5.957
1.607
2.910
6.188
19.079
19.079
19.625
IV.625
113.0*0
VOLREF
360.S
ACDSUM
5.05
ACD
1.B07
0.0
0.0
0.0
0.162
1.167
C.119
0.119
1.657
HEADER AXIAL LOC RAO LOG C1RCUM LOG
6ST2
BiT3
BST4
6.50
8.50
12.00
23.30
1.50
1.50
2.81
2.66
0.0
0.0
0.0
0.0
Figure 125. Bench-Scale Combustor Scheme 11-8A
LB
31.39
AKEF
19.09
STATION
A
e
c
D
E
. F
G
X
L/D
6.37
AX
2.570
11.3*5
12.130
19.079
19.079
19.625
19.625
113.040
VOLKEF
330.9
ACDSUM
7.29
ACD
2.570
0.0
0.0
0.162
1.157
0.119
0.119
3.13S
HEADER AXIAL LOC RAD LOC C1RCU1 LOC
SST1
BST2
BST3
BSTt
B.00
11.50
13.50
2*.27
2.00
2.00
2.ai
2.66
0.0
0.0
c.c
G.O
Figure 126. Bench-Scale Combustor Scheme 11-9A
113
-------
LS
31 .39
19.09
L/D
6.37
VC.LK6F
380.8
ACDSUM
5.83
STATION
A
e
c
L-
£
F
G
AX
2.57C
11.3*5
12.130
19.079
19.079
I*.625
19.62^
U3.OC
1.750
O.c
0.0
0.162
1.187
0. 119
O.liv
2.490
H E AD E R
BST1
BST2
BST3
AXIAL LOC i
-------
A comparison of the NO, and CO concentrations measured in these tests s shown in
Figure 128. For both flameholders, NO, concentrations were very low (5 to 30 ppmv) reflecting
the face that ambient temperature low-Btu gas, without ammonia, was used. CO concentra-
tions were high, because of the close proximity of lean limit extinction. The "v-gutter"
flameholder produced lower CO but higher NO, than the swirler. In addition, the tradeoff
between NO, and CO was poorer for the "v-gutter;" this result may be seen by visualizing a
rightward shift of both curves for the "v-gutter" (as miught be effected by adding more air
flow to the premixing tube, making the primary zone leaner), and noting that NO, concentra-
tions for the "v—gutter" would remain higher than those for the swirler even when the two CO
curves coincide. A tentative conclusion drawn from this comparison was that flame stability in
the case of the "v-gutter" is achieved in a manner that causes local regions of higher
temperature and increased residence time to form (perhaps in the wakes of the radial
"v-gutters"), with the result that NO, concentration levels are higher for a given level of CO.
A final series of tests was performed utilizing an improved preburner module for liquid
fuel prevaporization. The two configurations evaluated, Schemes 11-llA and 11-12A (shown in
Figures 129 and 130), differed only in the fuel nozzles used in the preburner device. Tests were
conducted at fuel-lean primary zone operating conditions. Conventional swirler flameholders
were employed in order to establish baseline results. The data obtained indicated that
substantial diffusion burning had still taken place. For this reason comparative tests with a
distributed flameholding device were not undertaken.
While no conclusive information was obtained from these tests of the Distributed Flame
concept, it was evident that the tradeoff between NO. and CO can be affected by means of
flame stabilization. This concept was retired.
3.3.12 Evaluation of Concept No. 12 — Ceramic Liner Combustor
Although a comprehensive evaluation of liner cooling techniques was not meant to be
part of the overall program, ceramic liners were identified as a secondary design concept, to
undergo limited exploratory testing, and to be considered as a candidate for later definitive
testing. The use of ceramic liner materials can help reduce emissions and control the burning
of hydrocarbon fuels in two ways. First, the elimination of liner film cooling airflow prevents
air quenching of the combustion gases adjacent to the liner and precludes the formation of
N0, due to local diffusion burning. Second, the increased operating temperature capability of
the ceramic material (in comparison to metal liners) increases the radiative interchange
between the liner and the combustion zone. The rate of burning of carbon particulate material
that may be formed under certain conditions, and with some fuels is directly affected. The
particles formed are small, radiate intensely, and tend to take on the temperature of the
surrounding liner. If the liner is hot, the particles also tend to be hot and burn quickly.
The exploratory tests involved the substitution of nonmetallic liner test sections for
conventional designs that employ air cooling during the screening tests of various other
concepts. Silicon carbide cylindrical test sections were used. The ceramic pieces, which had a
nominal wall thickness of 0.25 in., were mounted as shown in Figure 131, and were made
interchangeable with corresponding metallic liner sections. In Table VIII, the combustor
schemes that utilized ceramic liner sections are listed. Reference is made to the other
paragraphs of this section, in which the test results for the schemes listed are described.
In general the use of ceramic liner test sections was found to be operationally difficult.
Thermal gradients within the thick-wall material led to frequent cracking of the cylinders. No
significant benefits were noted in terms of NO, or CO concentration levels, in comparison to
other available cooling techniques (such as backside convective cooling) that do not require the
discharge of cooling airflow through the cooled surface into the combustion zone.
115
-------
10,000
8000
"V-Gutter" Flameholder
Oco
n NO
Swirler
tco
NO
• Unheated Low-Btu Gas
• SOpsia Inlet Air
• 600°F Inlet Air
Schemes 11-8A and 11 -1OA
0.2 0.3
Equivalence Ratio, Overall
Figure 128. Comparison of Variation in Species Concentration With
Equivalence Ratio for Two Flameholder Types in Concept No. 11
(Distributed Flame)
116
-------
STATION
A
Al
A2
A3
B
C
Cl
C2
0
E
X
L/0
8.72
AX
0.031
7.389
2.03*
0.864
0.664
7.924
2.909
6.739
2.491
19.079
113.040
C2
VOLREF
1903.9
ACDSUM
3.70
ACO
0.021
0.0
o.O
0.0
0.0
2.491
0.0
0.0
0.0
1.187
o. o
HtAOfcR AXIAL LOC RAO LOC CIHCUM LOG
bSTl
BST2
BST3
&ST4
11.00
18.00
29. SO
39.00
1.75
0.66
1.50
2.66
0.0
0.0
0.0
0.0
Figure 129. Bench-Scale Combustor Scheme 11-11A
LB
43.02
AREF
19.09
STATION
L/D
8.72
AX
VOLREP
1903.9
ACOSUM
3.70
ACD
A
Al
A2
A3
B
C
Cl
C2
0
E
X
0.031
7.389
2.035
0.864
0.864
2.924
2.909
6.739
2.491
19.079
113.040
0.021
0.0
0.0
0.0
0.0
2.491
o.o
0.0
0.0
1.187
0.0
HEADER AXIAL LOC RAO LOC CIRCUM LOC
BSTl
BST2
BST3
B&T4
11.00
IB.00
29.50
39.00
1.75
0.66
1.50
2.66
0.0
0.0
0.0
0.0
Figure 130. Bench-Scale Combustor Scheme 11-12A
117
-------
Figure 131. Ceramic Liner Mounting Scheme for Bench-Scale Testing
118
-------
TABLE VIII. COMBUSTOR CONFIGURATIONS
CERAMIC LINER SECTIONS
HAVING
Scheme No.
Ceramic Liner
Location
5-4A
5-5A
5-5B
5-5C
5-6A
5-7A
5-8A
5-9A
5-10A
5-10B
5-11A
5-11B
5-11C
5-12A
5-12B
5-13A
5-14A
5-15A
5-16A
5-17A
5-18A
5-19A
5-19B
5-20A
5-22A
5-23A
5-23B
6-1A
6-2A
6-3A
6-4A
6-5A
7-1A
7-2A
7-3A
7-4A
7-5A
7-6A
11-8A
11-9A
11-10A
14-1A
14-2A
28-1A
28-2A
5.125 ID X 5.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 "Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 5.0 Long (2 parts)
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
5.125 ID X 10.0 Long
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Secondary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
Primary Zone
119
-------
3.3.13 Evaluation of Concept No. 13 — External Combustion
This concept was not evaluated explicitly in the bench-scale experimental program. The
use of an externally mounted combustor (as opposed to an internally mounted design, which
may be in-line or canted) provides the inherent advantage of greater available residence time.
Many of the other concepts screened were tested without regard for residence time restrictions
(combustion and premixing modules were generally sized to provide ample residence times).
Thus many of the results reported in other parts of this section can be reviewed in the context
of greater available residence time, in order to gauge their applicability to external combustion
systems.
3.3.14 Evaluation of Concept No. 14 — Boost-Air Dilution
Limited tests of this concept were conducted to determine the feasibility of utilizing
increased dilution air pressure drop (provided by an external compressor or other means) to
achieve a higher mixing rate and reduce the time required to effect changes in equivalence
ratio and gas stream temperature within the combustor. The capability for rapid mixing was
viewed as extremely important in making the transition from fuel-rich to fuel-lean burning in
conjunction with various rich-burning approaches to NO, reduction.
Tests of the boost-air dilution module shown in Figure 132 were conducted using a basic
rich front end, natural-gas-fueled, bench-scale burner. Two configurations were tested
(Schemes 14-lA and 14-2A, shown in Figures 133 and 134), differing in the flowsplit between
boosted and conventional dilution air in the aft section of the combustor. In both schemes,
total dilution airflow was maintained approximately constant, but there was a difference of
about two to one in the pressure drop of the boosted dilution jets.
Figure 135 shows the variation in CO and NO, emission concentrations with overall
equivalence ratio and dilution-air pressure drop for the burning of natural gas and air at a
chamber pressure of 50 psia and an inlet air temperature of 600°F. Significant reductions in
NO, concentration were achieved over the power range investigated at the expense of an
average dilution-air pressure drop of approximately 34 percent. When the dilution-air pressure
drop was reduced to approximately 19 percent the measured NO, concentrations were slightly
higher: but the CO concentrations decreased significantly. Although a general trend in
reducing NO, emission concentrations by increasing dilution-air injection pressure appears to
have been established, greater reductions were achieved later by other means that did not
require an expenditure of externally supplied power (in particular, the "quick quench"
technique employed in conjunction with Concept No. 29, Rich Burn/Quick Quench was
successful in this regard). In this light, the Boost-Air Dilution Concept was retired.
3.3.15 Evaluation of Concept No. 15 — Artificial Excitation
This concept, which called for the use of vibrational or electronic excitation of burning
gases within the combustor to increase reaction and mixing rates, was not tested in the
bench-scale experimental program. Although no specific tests were planned, it had been
anticipated that acoustic resonance might be encountered in the operation of the bench-scale
hardware at some point during the evaluation of the other concepts. In that event, com-
parisons in emission concentration levels might have been made between vibrationally excited
and non-excited operating points. There were no occurrences of acoustic excitation in the
bench scale test program.
120
-------
Figure 132. Boost-Air Dilution Combustor Module
121
-------
LB
38.03
AREF
19.63
1TATION
C
Cl
a
C3
C4
C5
D
E
f
G
H
L/0
7.61
AX
2.924
1.495
0.533
Z.03S
7.389
9.882
70.61V
19.625
19.625
19.625
19.625
VOLKEF
459.3
ACD
0.501
0.0
o.o
o.o
0.0
0.0
G. 162
2.179
0.5BI
0.119
0.11V
HEADER AXIAL LQC RAO LOC C1RCUM LOG
fcSTl
BST2
BST3
BST4
1.00
6.88
14.13
16.63
1.00
0.95
2.00
2.61
90.0
0.0
0.0
0.0
Figure 133. Bench-Scale Combustor Scheme 14-1A
Cl C2 C3
C5
Lc
3U.03
ARCF
19.63
STATION
C
Cl
C2
C3
L^
C5
D
t
F
&
H
L/0
7.61
AX
2.92/OLREF
459.3
C. ^01
Ci.C
o.c
j.O
0.0
J.O
0.162
C.O
.I.SB1
U. 119
1.133
HEADtH AXIAL LOC KAD LOC CIRLUM LOC
BST 1
BSTi
BST3
1.00
16.63
i.oo
0.95
2.00
2.61
9C.O
G .0
O.C
J.O
ACDSUH
3.16
Figure 134. Bench-Scale Combustor Scheme 14-2A
122
-------
500
E
Q.
Q.
CM
O
s?
in
I
o
o
Q.
C/3
400
300
u
2
o
o
.2 200
+J
2
100
I I I I
Natural Gas 50 psia Chamber Pressure
T(AIR) = 600°F
Q NOX Concentration, Boost Air
O CO Concentration, AP/P = 34%
Qj NOX Concentration, Boost Air
CO Concentration, AP/P = 19%
0.2 0.3 0.4
Equivalence Ratio, Overall
0.5
Figure 135. Reductions in NOX Achieved With Concept No. 14, Boost-
Air Dilution
123
-------
3.3.16 Evaluation of Concept No. 16 — Extended Injector
Limited testing of the Extended Injector concept indicated that the exhaust emission
concentration levels achievable were not better than those demonstrated with other
flameholder designs. The design concept called for a perforated plate flameholder with tubular
extension pieces on various holes, through which air or fuel-air mixture passed, to be
discharged at various locations within the primary zone of the combustor. The experimental
hardware used to evaluate this concept is shown in Figure 136. By varying the number and
sizes of tubes, their routing and discharge points, broad range control of mixture and
temperature profiles within the combustor could in principle be achieved.
Figure 136. Experimental Hardware Used in the Evaluation of Concept
No. 16 — Extended Injector
Exploratory tests were conducted utilizing three configurations of the combustor involv-
ing slightly modified premix tube sections (Schemes 16-1 A, 16-2A, and 16-3A, shown in
Figures 137, 138, and 139). The extended injector tube configuration chosen provided for
heating of the fuel-air mixture in the outermost tubes by the flame stabilized downstream of
the shorter central tubes. The combustor was operated at fuel-lean primary zone equivalence
ratios. Although significant reductions in NO, were not demonstrated, this concept does offer
an alternative to a very flexible flameholder design with many possible configurations that
were not evaluated. With the success of Concept No. 29, Rich Burn/Quick Quench, the
Extended Injector concept was retired.
124
-------
IB
30.89
19.63
f
.3
STATION
A
B
C
X
I/O
6.18
AX
2.221
19 .079
14.079
113. MO
Vbl
»;
ACO
o.biS
olo
1.187
1.311
ACDSU*
3.32
HEADER AXIAL LOC RAD LOC CIKCUM LOC
8ST1
5.CO
14.60
i.ta
0.0
0.0
Figure 137. Bench-Scale Combuator Scheme 16-1A
*~ ""'^
l
t
3-
Lfi AREF L/D VULKEF ACDSUM
35.89 19.63 7.16 437.1 3.62
STATION AX \CU
A 2-Z21 0.82E
9 19.C79 0.0
C 19.079 1.167
X 113.040 1.606
HEAOIR
6STI
8ST2
AXIAL LGC RAO LOC C1RLUM LOC
10.00
19.60
0.95
2.7b
u.o
0.0
Figure 138. Bench-Scale Combuator Scheme 16-2A
125
-------
LB
43.29
AREF
IV.63
L/D
8.fo6
tfOLRCF
437.1
AtDSUM
3.55
STATION
A
6
C
x
AX
2.221
19.079
19.079
113.040
ACD
0.825
0.0
I.V87
1.533
AXIAL LOC RAD LOt C1RCUM LOG
BST1
18.00
26.90
0.95
2.76
0.0
O.U
Figure 139. Bench-Scale Combustor Scheme 16-3A
3.3.17 Evaluation of Concept No. 17 — Pebble Bed Combustor
No evaluation of this concept was attempted. The approach calls for a side-mounted
combustor (external to the gas turbine engine) having a low-velocity vertical discharge passage.
Ceramic (or other material) pebbles are fed in near the exit, fall through the flame and remove
heat. They are subsequently collected and recycled through a heat exchanger (where pebbles
are cooled by inlet air) back into the combustor.
3.3.18 Evaluation of Concept No. 18 — Coanda Flame
Exploratory tests of a single configuration of the bench scale combustor (Scheme 18-1A,
Figure 140) were conducted in the evaluation of the Coanda Flame concept. These tests were
complementary to the investigation of the Low Intensity Flame concept reported in Section
3.3.1.
Scheme 18-1A represented another variation in the means of flameholding for burning
within a central flame jet. This configuration consisted of a centerbody (identical to the one
employed in Schemes 1-5A and 1-6A) and a rearward extension piece, attached to the
centerbody, forming a groove for flame stabilization. The concept of stabilization employed in
this design is that airflow streaming over the centerbody and extension piece can produce an
eddy of recirculating flow and a region of reduced static pressure within the groove. If the
airflow is premixed with fuel at mixture ratios within the limits of flammability, then the
126
-------
recirculating flow can support continuous burning within the groove and can serve as a pilot
for the mainstream mixture. The reduced static pressure within the groove serves to draw
adjacent stream tubes onto the surface of the centerbody. The overall result is a low-drag
flameholder potentially useful in piloting a flame within a high velocity jet. NO, concentration
data obtained for Scheme 18-1A were identical to those of Scheme 1-6A. This result may have
been due in large part to the fact that the extension piece attached to centerbody was
destroyed during the test, making the configuration exactly the same as that of Scheme 1-6A.
No conclusion was drawn regarding the effectiveness of the Coanda flameholder.
V
Al
LB
33.25
AREF
19.63
STATION
A
Al
A2
B
C
D
E
f
G
H
I
J
X
HEADER
6VT4
BST2
bST3
L/D
6.65
AX
2.924
0.628
0.945
19.079
19.625
IV.625
19.62b
19.£25
19.625
IV.625 '
19.625
IV.625
113.040
VOLREF
490.8
ACOSUM
4.54
AGO
0.404
0.0
0.0
0.255
0.367
0.248
0.245
0.245
0.243
0.248
0.183
C.183
1.913
AXIAL LUC RAD LUC CIRCUM LOG
6.00
10.CO
16.CO
0.66
2.50
2.50
0.0
0.0
0.0
Figure 140. Bench-Scale Combustor Scheme 18-1A
3.3.19 Evaluation of Concept No. 19 — Electric Assist Nozzles
This concept had been identified as a potential area of investigation in order to provide
for the selection of an electric assist nozzle in the event that an attractive candidate could be
found in a survey of fuel injector manufacturers. Devices utilizing an applied electric field for
atomization and subsequent controlled dispersion of droplets were envisioned. After a brief
review, the concept was determined to be beyond the scope of the current program, because it
appeared that extensive development would be required.
3.3.20 Evaluation of Concept No. 20 — Virtual Staging
No explicit investigation of the virtual staging concept was carried out. However, the
principles involved were factored into the combustor designs used in the evaluations of other
concepts. According to this concept, use can be made of the fact that burning zone volume
increases (and the flame elongates) as combustor loading is increased (e.g., from idle to
maximum power). By careful positioning of air entry holes in the combustor liner, the
127
-------
flamefront originating in the primary zone can be made to grow into the additional airflow
needed at maximum power, thereby providing automatic or "virtual" staging. Experience
gained in the bench-scale program indicated that although virtual staging can provide a
moderate degree of separation between zones, more positive control (such as that achievable
with air staging or fuel staging) is also required to achieve the low NO. and CO concentration
levels specified in program goals.
3.3.21 Evaluation of Concept No. 21 — Engine Inlet Fuel Injection
This concept, which called for engine inlet injection and premixing of liquid fuel to
achieve a very lean and uniform equivalence ratio at the inlet of the combustor (which would
have been a catalytic or flameless combustion device) was determined to be beyond the scope
of the current program.
3.3.22 Evaluation of Concept No. 22 — Flameless Combustion
The concept of flameless combustion, which postulated the careful application and
control of heat from high temperature products of combustion to promote low-temperature,
long residence-time flameless reactions (it was envisioned that nearly ideal premixing and
prevaporization of liquid fuel, and a very large volume combustor would have been required to
attain this mode of operation) was determined to be far beyond the current state-of-the-art in
practical gas turbine combustion devices to warrant experimental evaluation is this program.
3.3.23 Evaluation of Concept No. 23 — Air Staging
To gain control of .the physical and chemical processes of combustion for NO, reduction,
it is useful to vary the combustor internal airflow distribution. To accomplish this, variable
geometry devices are usually proposed to apportion and regulate the airflow entering different
sections of the combustor. Modular bench-scale hardware was constructed prior to the
experimental program to provide off-on control of individual dilution air jets. The device
selected, shown in Figure 141, utilized air-cylinder actuators that were operated by means of
the pressure differential between the combustor compartment and the ambient environment
external to the engine. In the course of the experimental program, there was no occasion to use
this device in conjunction with other NO, reduction concepts for the enhancement of
NO, control capability. In keeping with the general view that air staging is a secondary design
concept, incapable of providing within itself the degree of control necessary to meet program
NO. and CO emission goals, the hardware shown was not tested.
An important application of air staging was demonstrated in conjunction with Concept
No. 29, Rich Burn/Quick Quench, however. By valving the airflow supplied to the primary
zone a constant stoichiometry was maintained, and it was possible to achieve a low
NO, concentration level at multiple engine operating conditions. A discussion of the air staging
effects described is presented in Section 3.3.29.
3.3.24 Evaluation of Concept No. 24 — Fuel Staging
Fuel staging was included in the list of design concepts because it represents a major
category of combustor variable zoning techniques. Fuel staging techniques were utilized in
conjunction with a number of other design concepts, as indicated in Table IX. It was intended
that further refinement of the methods of fuel staging employed might be undertaken if the
test results indicated that more extensive development was required. Although considerable
effort was devoted to improvements related to fuel staging provisions in the course of the
experimental program, it was not necessary to isolate these for in-depth treatment as a
separate design concept.
128
-------
Figure 141. Air Staging Module Designed for Use in the Bench-Scale Com-
bustor Program
TABLE IX
CONCEPTS INCORPORATING FUEL STAGING
Concept No. 1
Concept No. 4
Concept No. 5
Concept No. 6
Concept No. 7
Concept No. 11
Concept No. 28
Low Intensity Flame
Superlean With Preburner
Heat Removal
Quench Reheat
Staged Centertube Burner
Distributed Flame
Rich Preburner
(Section 3.3.1)
(Section 3.3.4)
(Section 3.3.5)
(Section 3.3.6)
(Section 3.3.7)
(Section 3.3.11)
(Section 3.3.28)
129
-------
3.3.25 Evaluation of Concept No. 25 — Vorbix
This concept, which calls for the use of swirling air jets to achieve a high rate of mixing in
the main burning zone of a combustor, was not evaluated explicitly in the bench-scale
screening program. Further specific provisions of the concept include the use of a preburner to
promote rapid vaporization of the main fuel and to provide controlled autoignition of the
resultant mixture.
Limited use of swirl in conjunction with secondary zone dilution air jets was made in
conjunction with Concept No. 14, Boost-Air Dilution (Section 3.3.14), however no tests were
conducted to establish a comparison to non-swirling jets as a baseline case.
3.3.26 Evaluation of Concept No. 26 — Fuel-Air Premixing
Much of the work conducted in conjunction with other design concepts to achieve
uniform fuel-air premixing in lean-front-end burners was directed specifically toward the
problems of premixing rather than the evaluation of lean burning. In recognition of the
extensive effort devoted to this topic in the area of fuel preparation and in view of its
fundamental importance, fuel-air premixing was identified as a separate design concept.
Tests were conducted of a particular fuel-air premixing device that showed promise for
lean-burner applications. It had been suggested that this particular configuration (depicted in
Figures 142 through 144) which consisted of an annular premixing chamber with an inlet
swirler and four externally mounted fuel injectors, might serve as a backup device for the
catalytic combustor evaluated in conjunction with Concept No. 2, Premixing Catalytic Burner.
Tests of the device were conducted at 900°F and 50 psia using JP5 fuel. The configura-
tion, Scheme 26-3A was operated at 0.021 fuel-air ratio setting, with very encouraging results.
A very low NO, concentration (12 PPMV, at 15% 02) was recorded, indicating that a nearly
homogenous fuel-air mixture had been provided in the primary zone of the combustor by the
fuel-air premixing tube. (An appreciable degree of nonuniformity would have caused a sharp
increase in NO,, as a result of diffusion burning.) Visual observation of the burner during the
tests also indicated that although the flame appeared to be piloted at an upstream location in
the wake of the premixing passage, there was no glowing (heating) of the combustor liner at
any point upstream of the joint between the conical diffuser and the five-inch diameter liner.
This result seemed to indicate that the mixing-out of the very lean, piloted flame inside the
combustor had been substantially completed within the conical transition piece, resulting in a
very uniform fuel-air mixture at the entrance to the main combustor section. Altogether, these
results indicated that a very homogenous lean fuel-air mixture can be achieved using the
premix tube in question.
130
-------
ARfF
20.01
L/0
VOLREF
164.0
ACDSUM
2.22
STATION
A
b
C
D
X
AX
6.739
6.739
18.fell
19.996
113. 04&
»CO
1.569
o.o
o.c
0.0
(1.646
HEADbR AXIAL LOG RAD LOC C1RCUM LOG
BST1
BST2
8ST3
8.00
14.00
26.00
1.50
i.eo
2.00
u.o
0.0
0.0
Figure 142. Bench-Scale Combustor Scheme 26-1A
LB
t.so
AREF
20.00
L/D
8.88
VOLREF
348.8
ACDSUN
1.89
STATION
Al
A2
A
B
C
X
AX
2.924
6. 739
6.739
3.140
19.996
113.0^0
•CD
0.0
0.0
1.500
0.0
0.0
0.388
HEADER AXIAL LOC RAD LOC CIRCUH LOC
BST1
BST2
BST3
10.00
23.00
29.00
1.50
3.00
4.00
0.0
0.0
0.0
Figure 143. Bench-Scale Combustor Scheme 26-2A
131
-------
Al
AL1
LB
'.'..SO
»k£F
20.00
STATION
Al
A;
A
8
C
X
8511
BSTi
8ST3
L/U
AX
6.739
6.739
3.1*0
19.996
113. 0*0
VOLREF
348.8
AGO
0.0
0.0
1.500
0.0
0.0
0.606
ACDSUM
2.11
AXIAL LOG RAO LOG G1RCUM LOG
10 . 00
23.00
29.CO
1. SO
3,00
4.CO
G.C
0.0
0.0
Figure 144. Bench-Scale Combustor Scheme 26-3A
While the above results represent only those specifically designated at Concept No. 26,
Fuel-Air Premixing, much work on premixing was embodied in the evaluation of other
concepts. In general, the experience gained in fuel-air premixing may be summarized by the
following comments:
1. Good premixing of fuel and air can be a valuable tool in achieving lower
exhaust emissions.
2. Care must be exercised in the design of premixing devices to avoid
preignition or flashback. Generally, the following design criteria were
followed:
• Passage velocities should be maintained sufficiently high to
avoid flashback. This is particularly important for bound-
ary layer considerations. If the mainstream average velocity
is high, the velocity gradient of the boundary layer will be
steep and will prevent the flame from propagating up-
stream through the boundary layer. A "rule-of-thumb"
generated in this program was to maintain the average
velocity above 200 fps.
• In venturi passage designs (used to create high velocity for
atomization purposes), a conservative diffuser should be
used.
• Residence time within the premixing passage (after fuel
injection) should not be allowed to approach the auto-
ignition time of the fuel. A large safety factor is usually
advisable (>10) to account for unknowns in the boundary
layer.
• A clean aerodynamic design should be employed to prevent
extended wakes or regions of separated or reversed flow.
132
-------
3. While perfect fuel-air premixing (and prevaporization) is an ideal condi-
tion, it is possible to achieve excellent exhaust emissions in a practical
system. It has been shown that when fuel, atomized to sufficiently small
droplets, is reasonably well distributed through an airstream, residence
time for vaporization to occur becomes less important.
3.3.27 Evaluation of Concept No. 27 — Refractory Block Flame Stabilizer
This concept, which was identified in the course of the experimental program, called for
the use of a conically contoured combustor head plate made of ceramic material. Operation of
the head plate at an elevated surface temperature was intended as a means of improving flame
stability at ultralean primary zone equivalence ratios. No tests of the concept were conducted
because of the initial success of the lean burning techniques employed in conjunction with
Concept No. 7, Staged Centertube Combustor, and because of the subsequent program
emphasis on rich burning in conjunction with Concept No. 29, Rich Burn/Quick Quench.
3.3.28 Evaluation of Concept No. 28 — Rich Preburner
Much of the development effort expended in the evolution of a basic rich front-end
burner (in conjunction with Concept No. 5 - Heat Removal, and other concepts based on rich
burning) can be classified as work leading to the demonstration of a successful rich preburner.
Similarly much of the work conducted to achieve uniform fuel-air premixing in lean-front-end
burners had been directed specifically toward the problems of Rich Preburner premixing
rather than the evaluation of lean burning concepts. In recognition of the extensive effort
devoted to this topic in the area of fuel preparation, and in view of its fundamental
importance, Rich Preburner was identified as a separate design concept.
Subsequent to the specification of Concept No. 28 as a new area of investigation, the
thrust of the experimental program shifted away from fuel preparation and was directed
toward the evaluation of techniques for rapid dilution of primary zone products of combustion.
Two test series were conducted, the first utilizing a basic rich preburner combustor modified to
evaluate the concept of dilution air spraybars. Dilution air spraybars were a means of injecting
airflow uniformly across the burner cross section to affect rapid dilution. These spraybars,
shown in figure 145, were tapered, hollow "hats" directed radially inward with holes spaced
and sized according to area. In the second test series, the preburner was removed, and natural
gas firing of the same combustor was accomplished.
The initial series of tests was conducted to evaluate the effectiveness of dilution air
spraybars as a means of achieving rapid mixing in rich-front-end combustors. A sufficiently
high rate of mixing, if achieved in the dilution zone of a rich-front-end combustor, would allow
the products of combustion from the primary zone to be diluted and cooled quickly enough to
avoid the formation of appreciable thermal NO,. In an attempt to achieve more rapid dilution,
a system of spraybars was devised to disperse airflow uniformly over the cross-section of the
dilution zone. Holes in the tube served to introduce the dilution airflow into the burner at
multiple locations; the holes were sized in proportion to the local cross-sectional areas of
adjacent regions of coverage inside the burner. The tubes were tapered to maintain a constant
internal air velocity as airflow was discharged.
133
-------
A photograph of the burner hardware is shown in Figure 145. As indicated, the spraybars
were mounted in the position normally occupied by conventional dilution zone penetration air
holes. In all other respects the combustor configuration, shown in Figure 146, was similar to
previous configurations tested in the evaluation of rich-burning concepts.
The tests conducted with the dilution air spraybars were meant to provide a basis for
comparing these devices to conventional dilution holes. Two configurations of the burner
hardware (Schemes 28-1A and 28-2A, shown in Figures 146 and 147) differing only in the
amount of dome cooling airflow were evaluated. Data obtained are shown in Figure 148. While
the CO data for both schemes fell on the same curve, there were significant differences in
NOX concentration levels. Increased dome cooling (3.7 percent vs 0 percent) caused a reduction
in the peak NOX concentrations measured.
Figure 145. Experimental Hardware (Dilution Air Spraybar Module) Used
in the Evaluation of Concept No. 28 — Rich Preburner
134
-------
Al
LB
AREt-
19.63
L/t)
6.37
VOLREF
617.1
ACDiUM
STATION
A
Ai
A?
A3
6
C
C1
0
E
f
X
AX
0.502
7.389
2.035
0.664
O.S6H
2.924
?.9l>9
19.079
19.079
19.079
113.040
ACD
0.017
0.0
0.0
0.0
0.0
0.500
0.0
0.162
1.178
0.451
Z.070
HtiDER AXIAL LOC RAO LOC C1HCUH LOC
8ST1
BST2
asTj
8ST4
3.00
12.t>U
16.00
22.60
1.75
0.66
l.OO
2.B1
0.0
0.0
0.0
0.0
Figure 146. Bench-Scale Combustor Scheme 28-1A
Al
B
L.
1 C1
A* A3 ! c
^r*^ 1 A L_ r
"Wf— -f '
==L=S5^ i|i L.
\-8 AREF
41.68 19.63
ntliOH
A
Al
AZ
A3
B
e
Cl
D
t
F
X
1
L
X
rP1
WE
A
1
L/0 VOLRbF ACOSUM
8.37 417.1 3.75
AX AGO
0
7
.502 6.017
.359 0.0
2.035 0.0
0
0
2
2
19
19
19
113
HEADER AXIAL LOC
BSli 3
&S1Z 12
BST3 16
6ST4 22
.00
.50
.00
.60
.8^4 0.0
.864 0.0
.9J
-------
500
a
a
U)
O
400
«- 300
"8
O
t
o
O
c
O
c
0>
o
O
O
(/>
QJ
600T, 50 psia, No. 2 Fuel
Conventional Dilution
Holes Ref Curve
— for NO
No Dome
Cooling Airflow
^-3.7% Dome
Cooling Airflow
Schemes 28-1A
and 28-2A
0.1 0.2 0.3 ' 0.4
Equivalence Ratio, Overall
Figure 148. Variation in Species Concentration With Equivalence Ratio
for Concept No. 28 (Rich Preburner) With Dilution Air
Spraybars
The dashed curve included for reference in Figure 148 represents NO, data taken in a
similar rich-front-end burner with conventionnal dilution zone penetration air holes. A
comparison of the dashed curve to the NO, data points obtained in the configuration with no
dome cooling, shows the following result. While the peak concentrations in the two curves very
nearly coincide, the curve for dilution air spraybars does not drop off as rapidly on the right
side of the peak. This result, indicating that more NO, was formed at the higher equivalence
ratio points with dilution air spraybars, is the opposite of the desired effect. If the influence of
the spraybars is assumed to be confined to the dilution zone (as presumably it must be), then
it can be concluded that the added increment of NO, measured with spraybars was formed in
the dilution zone of the burner. Although this conclusion may at first appear inconsistent with
the presumption that more rapid mixing is offered by the spraybars, there is a potential
explanation. NO, formation may have occurred in the dilution zone primarily because of
ineffective jet penetration and relatively slow mixing of the dilution flow with the mainstream.
This would allow more time at higher temperatures which are favorable for NO, formation.
Upon further consideration it might also be reasoned that an inappropriate transition was
effected. A proper transition might require physical separation between zones great enough to
isolate the processes occurring in each. A much more effective transition was ultimately found
in the reduced cross-sectional area configuration successfully employed in Concept No. 29,
Rich Burn/Quick Quench, which is described in the next section.
136
-------
Further tests with dilution air spraybars were conducted in which the orientation of the
air jets was varied from downstream directed to upstream directed. Baseline tests were also
conducted in which conventional slotted and round wall jets were evaluated. The combustor
configurations tested, Schemes 28-3A through 28-7A are shown in Figures 149 through 153.
The majority of these tests were conducted firing natural gas in order to remove any influence
of variations in fuel prevaporization on the test results. It was concluded from the experiments
performed that there was no evident advantage noted in using dilution air spraybar devices in
place of conventional dilution holes in the basic rich-front-end combustor evaluated.
LB
41.66
AREF
19.63
L/D
6.37
VOLREF
417.1
ACDSUM
H.09
STATION
A
Al
A2
A3
B
C
Cl
0
E
F
X
AX
0.502
7.389
2.035
0.664
0.664
2.924
2.909
19.079
19.079
19.0Y9
113.040
ACC
0.017
O.C
0.0
0.0
0.0
0.500
0.0
0.0
1.176
0.451
1.941
HEADER AXIAL LOG RAD LOG GIRCUM LOC
6ST1
BST2
BST4
3.00
12.50
19.00
22.60
1.75
0.66
1.50
2.76
0.0
0.0
0.0
0.0
Figure 149. Bench-Scale Combustor Scheme 28-3A
137
-------
LB
28.30
AREF
19.09
L/0
5.75
VOLREF
405.7
ACDSUM
4.24
STATION
A
b
C
0
X
AX
2.924
19.079
19.079
19.079
113.040
AGO
0.500
0.0
1.294
0.431
1.996
HEADtR AXIAL LOC RAO LOG C1RCUH LOG
BSTl
6ST2
BST3
2.50
6.00
13.10
1.00
1.50
2.78
0.0
0.0
0.0
Figure 150. Bench-Scale Combustor Scheme 28-4A
I
V^T
;. i , — ~
85=^1
l_
L8
26.38
nf
n
1
y
T-
AREF u/D VCLREF
19.63 5.68 417.1
STATION AX ACD
A 2.924 t.500
B IV. 079 o.O
C 19.U79 1.294
D 19.179 0.451
X 113.040 2.105
f\C
\
r
. ACDSUM
4.35
D
AXUL LOC KAO LOC C1KCUM LOC
3ST1
BST2
BST3
2.50
6.00
13. 10
1.00
1.50
2.78
0.0
0.0
0.0
Figure 151. Bench-Scale Combustor Scheme 28-5A
138
-------
p
-"rr4_
r. L
LB
29.39
f
I
,
e
c
AkEF L/D VGLREF
19.63 S.68 437.1
STATION AX AGC:
A 2.924 O. 500
6 19.019 0.0
C 19.079 1.251
D 19.07-i 0.997
X 113. 040 1.9Z6
cr
3
ACDSbM
*.66
D
AXIAL LOC RAD LOG CIRCUM LOG
8ST1
BST2
BSTJ
2.SO
6.00
13.10
l.CO
1.50
2.T8
0.0
O.b
0.0
Figure 152. Bench-Scale Combustor Scheme 28-6A
r
H p"T
i
LB
I
I
* C
~* ' ^lll?
(qj
AR£F L/0 VOLREF ACOSUM
19.63 5.68 417.1 4.11
STATION AX ACD
A 2.924 0.500
b 19.079 0.0
C 19.079 0.974
CJ 19.079 O.AS1
X 11J.IKC 2.185
D
HEAULK AXIAL LOC !
-------
3.3.29 Evaluation of Concept No. 29 — Rich Burn/Quick Quench
The design concept employed in this rich burning investigation did not correspond
exactly to any of the other 28 candidate design concepts previously identified in Phase I or in
the bench-scale testing program of Phase II. A unique description of the approach taken was
established by designating it as a separate design concept. Concept No. 29 — Rich Burn/Quick
Quench — was selected as the title for the concept. Because of the initial success of this
particular approach to NO, reduction, the Rich Burn/Quick Quench combustion concept was
not only selected as a primary design concept, but was subsequently subjected to further, more
detailed parameter evaluation.
Reference is made to the description of prior tests involving Concept No. 6
(Quench-Reheat) presented in Section 3.3.6 of this report. In those tests it had been found
that concurrently low concentrations of NO, and CO could be achieved by setting up a rich
primary zone in combination with a dilution zone of rapid flame-quenching ability.
a. Initial Testa
In Concept No. 6, Quench Reheat, four key elements were associated with the success of
the concept: (1) fuel-air premixing; (2) fuel-rich operation within the primary combustion
volume; (3) rapid secondary air flame quenching; and (4) reheating of the fuel-lean secondary
zone gases with a small pilot burner. It had been found that the reheat burner was
counterproductive in that NO, increased significantly when the reheat burner was used
compared to when it was not used. It was also found, when the reheat burner was not used, a
single point remained where values of NO, and CO were simultaneously low.
Under Concept No. 29 a configuration was proposed that was essentially identical to the
Concept No. 6 configuration, with the exception that provisions for liquid fuel operation were
made (the tests of Concept No. 6 had been conducted using natural gas), and that the aft
section of the Concept 6 burners, which had contained a side-mounted pilot-burner module
(for reheating purposes), was removed. The configuration is schematically represented in
Figure 154. Several variations of this basic configuration were tested initially (see Figures 155
through 161). Typical test results (see Figure 162) showed that with fuels containing nitrogen,
NO, concentration levels were high at idle-range values of the overall equivalence ratio
(because of local mixture ratios near stoichiometric in the primary zone); but that very low
concentration levels were measured at intermediate-range values (because of fuel-rich burning
in the primary zone). At high-range values of overall equivalence ratio, NO, concentration
levels were again high, perhaps due to the appearance of fuel nitrogen species in the secondary
zone. These results characterized the initial burner configuration as having a single design
point for low NO. as predicted from the results of Concept No. 6. However, for fuels without
appreciable nitrogen, it was observed that NO, remained low at the high operating conditions.
In the initial test series, concentrations as low as 34 ppmv NO, (corrected to 15% 02)
were measured at the design point operating equivalence ratio using No. 2 distillate fuel oil
with 0.5% chemically bound nitrogen (in the form of pyridine). These results, obtained at 50
psia and 600°F, were considered very promising and indicated that the program goal of 100
ppmv (for fuels with bound nitrogen) could be met.
140
-------
Liquid Fuel
With Bound
Nitrogen
(Fuel Rich)
(Fuel Lean)
Dilution
Zone
Air
Figure 154. Component Diagram of Rich Burning Concept
STATION
A
t
C
D
E
F
G
H
1
X
HCADCK AXIAL LOC KAO LCC C1*CUH LOC
r.9;-4
0.62b
2. Si*
12. '(<;•.
U.7k-.
?.iav
7.iS9
1 V . 0V 9
IV. 079
113. OtO
0» v*»t>
U.O
u.G
u. 0
ij. 0
o.c
l.iSl
0.0
0.700
D.*»o
bSTl
3.00
13.20
18.20
O.i6
C.O
0.0
0.0
Figure 155. Bench-Scale Combustor Scheme 29-1A
141
-------
37.ol
19.63
L/D
7.5fc
VOLREF
301.9
ACDSUH
3.63
AA
2.9i.4
u. 0
o.u
L.O
I'.O
J.O
1. jbl
j.(,
l/. 700
•1.2 /;
*X1AL LOC RAC LOC ClktUM LOG
3.CO
13.^'0
Ib.tO
0.0
l/.C
O.u
Figure 156. Bench-Scale Combustor Scheme 29-2A
C D E
ARiF
19.63
L/D
8.96
VOLREF
365.6
ACDSUH
3.49
STATION
A
6
C
D
E
F
(.-
H
I
X
2. Si*
12.724
7.389
7.3B*
19.079
113. 04U
ACD
U.iTu
0.0
u.O
li. 0
0.0
u.O
1.381
o.c
0.700
1.140
HLADfcR AXIAL LOC RAD LOC C1RCUM LOC
bSTl
bSTi
BST3
3.00
13.00
21.20
0.56
i.Z'j
0.0
0.0
0.0
Figure 157. Bench-Scale Combustor Scheme 29-3A
142
-------
IB
42. HI
4RIF
19.t3
L/0
0.56
VOLREF
365.6
ACDSUN
3.96
ST4T1CA
ACD
O.t28
2.92*
12.724
12.7Zt
7.3bV
7.iS9
1V.C79
IV.OVV
lli.O'.O
(,.0
0.0
0.0
c.c
0.0
1.381
u.u
0.7UO
HLiDEh HX1AL LOG KAO LOC C1RCUM LOC
till
( ST.
3. CO
I j.CO
0.0
o.o
Cl.O
Figure 158. Bench-Scale Combustor Scheme 29-4A
C D E
L8
AREF
19.63
L/D
8.»6
VOLREF
365.6
ACOSUM
3.70
STATION
AX
AGO
A
B
G
D
E
F
G
H
I
X
2.924
0.828
i.924
12.724
12.724
7.389
7.389
19.079
19.079
113.040
0.569
0.0
0.0
0.0
0.0
0.0
1.381
0.0
0.700
1.051
HEADER AXIAL LOC RAD LOC C1RGUM LOG
6i,Tl
BST2
&ST3
3.00
13.00
21.20
0.56
2.25
2.25
0.0
0.0
0.0
Figure 159. Bench-Scale Combustor Scheme 29-6A
143
-------
C D E
L6
AREF
19.63
STATION
HEADER
BST1
6ST2
BST3
A
B
C
0
E
f
G
H
I
X
AXIAL
3.
11.
19.
L/0
8.15
AX
2.924
0.828
2.9*4
12.7*4
12.724
7.3B9
7.389
19.079
19.079
113.040
LOC RAO LOC
00 1.00
00 2.25
20 2.25
VOLREF
365.6
ACO
0.746
0.0
0.0
0.0
0.0
0.0
1.381
0.0
0.700
1.166
CIRCUM LOC
0.0
0.0
0.0
ACDSUM
3.99
Figure 160. Bench-Scale Combustor Scheme 29-7A
Lt
1 .31
AKEF
1V.C-3
L/L)
VOLRtF
STAUCN
A
e
c
p
L
f
C
H
I
X
10.
1^'. Vt-.
22. ;.><)
7.3cc/
ll.C-Ti
ACU
L.C
l.'.U
I .0
1 . i
u. 700
l.iOO
oiri
t Hi
biTi
UJ.CHU
AXIAL LOt KAD LOC tJKLU!" LOC
3.UO ij.'sb
21.tO i.76
c.c
c.o
c.o
ACDSUM
3.VI
Figure 161. Bench-Scale Combustor Scheme 29-8A
144
-------
RICH BURNER FUEL CHARACTERISTICS
(50 psia, 600°F)
400
Q.
a
300
X
o
2. 200
O
s
3
No. 2 Fuel
0.5% Nitrogen
No. 2 Fuel
0.1
0.2
0.3
0.4
Overall Equivalence Ratio
Figure 162. Comparison of Characteristic NOX Emission Signatures for
Heat No. 2 Fuel and the Same Containing 0.5% Chemically-
Bound Nitrogen
b. Basic Emission Characteristics
In the course of the initial evaluation of Concept No. 29, a basic understanding of the
factors responsible for the success of the concept began to emerge. The title, "Rich Burn/Quick
Quench," described the intended approach to NO, reduction embodied in this concept.
Consecutive zones of: (1) rich burning (to suppress the formation of NO, by virtue of a low
flame temperature and a low concentration of available oxygen); and (2) very rapid dilution
were established within the burner. The rich-burning zone was supplied with a mixture of fuel
and air of sufficient homogeneity to ensure that the bulk of the combustion process would
actually take place at locally fuel-rich conditions (lack of homogeneity results in diffusion
burning, which takes place largely at near-stoichiometric conditions). The requirement for
homogeneity was satisfied by the use of a premixing passage, and by the elimination from the
rich-burning zone of any source of airflow other than that entering from the premixing
passage. The dilution zone featured a quick-quench device (dilution holes in a reduced
diameter section) that introduced excess air and caused it to mix rapidly, resulting in a near
step change in the mixture composition (from fuel-rich to fuel-lean). If the change in mixture
composition had been allowed to take place slowly, diffusion burning (at near-stoichiometric
conditions) would have predominated, resulting in high thermal NO, concentrations. In
designing the quick-quench device, a high mainstream velocity was maintained, making it
difficult for flameholding to occur in the wakes of the dilution air jets. A small-angle conical
diffuser downstream of the dilution slots was also provided, precluding the possibility of flow
separation and flameholding within the associated reverse-flow regions. While these were the
initial considerations used to design the quick quench zone, it was later determined that round
holes functioned as well as the slots, and that by providing a dump in place of the diffuser, no
significant increase in NO, was found. It was also discovered later, that a passage of reduced
cross section in which a substantial mass addition momentum pressure loss occurs, may
provide very effective separation of the fuel-rich and fuel-lean process within each zone; and
ultimately aid in making the near step transition in composition and temperature resulting in
lower NO, emissions.
145
-------
The rich-burner (Rich Burn/Quick Quench) arrangement is shown in Figure 163. A
typical configuration of the experimental hardware is shown in Figure 164. The basic emission
characteristics of the Rich Burn/Quick Quench concept are presented in Figure 165. Curves for
NO, and CO are shown, plotted against the burner overall (exit plane) equivalence ratio. The
curve for UHC has been omitted for clarity; all UHC concentrations were below 5 ppmv for
these tests and for the other tests described in this section. The data presented in Figure 165
were generated by holding the burner airflow nearly constant and by varying the burner fuel
flowrate to achieve different equivalence ratio settings. An explanation of the features of these
curves is given in the following paragraphs.
Figure 163. Typical Rich Burn/Quick Quench Arrangement
Figure 164. Typical Bench-Scale Rich Burn/Quick Quench Combustor Hard-
ware
146
-------
RICH BURNER CHARACTERISTICS
(50 psia, 600°F, 0.5% Nitrogen)
E
Q.
Q.
O
O
X
O
o
-------
Therefore, the Rich Burn/Quick Quench concept was combined with Concept No. 23, Air
Staging, in an attempt to demonstrate control over primary zone stoichiometry and evaluate
the effects on exhaust emissions. Air staging was accomplished using an externally mounted air
valve fitted to the inlet of the fuel-air premix tube. Several configurations were tested, as
depicted in Figures 166 through 175.
' 1
1
1
.— fv. r: -1 • ^T^P^^^
A JL ^ § -— II .^ J
111 i-
C I) K » „ s
Lr. ArcF L/D ^OLRtF AGOSUM
Sl.^i 19. LJ l>).3fc 6t3.i *.;<.
S.TAT1-U
ACJ
(.-.rift
7.389
V.2.6V
L. L
0.0
i:.C
L'.O
J.Jttl
J.O
h:.J'J;R AXIAL LCC KA3 L'JL ClKCUl LOG
D 51 I
3.00
J.SL o.o
?.i-5 t.O
t . 7 8 0.0
Figure 166. Bench-Scale Combustor Scheme 29-9A
C D £
Lb
1.bl
19.03
STATION
A
b
C
D
fc
F
G
h
I
X
L/U
10.36
Ll.02t
2Z.C09
7.3BV
7.3M9
IV. 07V
19.079
113. (.tC
VOLREF
«CO
0. 376
J.O
O.O
c.o
0.0
O.O
1 . 30 1
0.0
U.700
ACOSUM
3.bt
HtAQtK AXIAL LGC RAO LOG C1RGUM LOG
bSTl
LSTZ
tSTJ
0.0
3.00
o.c
O.i>6
2.7b
0.0
0.0
0.0
0.0
figure 767. Bench-Scale Combustor Scheme 29-10A
148
-------
— I
18
51.81
AREF
IV.63
L/0
10.36
VOLREF
623.2
ACDSUM
4.06
STATION
A
b
C
0
e
r
G
h
I
X
AX
2.924
0.626
2.92*
12.72*
22.009
T.389
7.38*
19.079
19.079
113.040
ACO
0.606
l/.O
0.0
0.0
0.0
0.0
1.3(31
0.0
O. 700
1.366
HEfcDEK AXIAL LOC KAD LOL C1KCUH LOG
8STi
8ST3
BST4
0.0
3.00
14.00
21.50
0.0
0.56
2.25
2.7B
C.O
0.0
b.C
U.O
Figure 168. Bench-Scale Combustor Scheme 29-11A
Ld
40.91
AREF
19.63
L/0
9.78
VOLREF
645.9
ACDSUM
3.83
STATION
A
B
C
D
E
F
G
H
I
X
AX
2.924
0.628
2.924
12.724
19.996
7.389
7.389
19.079
19.079
113.040
ACO
0.507
0.0
0.0
0.0
0.0
0.0
1.381
0.0
0.700
1.239
HEADER AXIAL LOC RAO LOC CIRCUM LOC
6ST1
BST2
BST3
bST4
0.0
3.00
13.00
Z3.CO
0.0
0.56
2.78
2.78
0.0
0.0
0.0
0.0
Figure 169. Bench-Scale Combustor Scheme 29-12A
149
-------
Lt
ARtF
19.63
L/D
VOLKfF
645. V
ACDSim
3.37
STATION
~CL-
2. •/<:•.
li.<<".
19. 99t
Y.jS3 V.BS o
-------
1 A— **" T i i
!N 1
D c
-*-—
—
=7*
0
'
0 E
Lb AREF L/D VOLREF
49.2S 19.63 9.85 6*5.9
ACOSUM
3.2s
STATION
*
B
C
0
E
F
G
H
1
X
AX
2.920
2.92*
2.924
12.72*
19.996
7.3tt9
7.389
19.079
19.079
113.040
AGO
1.104
0.0
0.0
C.O
0.0
0.0
0.917
0.0
(j.700
0.529
HEADER AXIAL LOC RAO LQC CIRCUH LOG
bSTl
BST2
BiT3
0.0
0.0
13.00
18.00
0.0
0.0
1.00
2.7b
0.0
0.0
0.0
0.0
Figure 172. Bench-Scale Combustor Scheme 29-15A
LE
t>G.Ob
ARbF
19.o3
STATION
A
e
c
0
t
F
G
H
I
X
BSTl
BST2
BST3
8ST4
L/a
10.01
AX
2.924
12.724
7.3b9
7.ib9
19.079
113.040
VOLREF
652.6
ACDSUM
3.15
AGO
1.104
U.O
C.O
0.0
0.0
G.O
0.954
0.0
•J.7UO
HtADE* AXIAL LOC RAD LOC CIRCUH LOC
0.0
O.C
13.00
18.00
0.0
0.0
l.OC
2.78
0.0
0.0
0.0
o.o
Figure 173. Bench-Scale Combustor Scheme 29-16A
151
-------
L8
46.i5
AR6F
19.63
STATION
A
B
C
0
E
F
G
h
I
X
3ST1
3ST2
9ST3
8514
L/D
9.71
AX
2.92*
2.924
2.924
12.72*
19.996
7.369
7.389
19.079
19.079
113.040
VOLRfcF
652.6
ACDSUM
3.53
ACT
o.u
0.0
L.O
t.O
u.O
1.361
0. J
0.700
0.331
AXIAL LOC RAO LOG C1KCUM LUC
0.0
3.CO
0.0
11.00
O.U
1.00
0.0
2.7fa
c.o
c.o
0.0
0.0
Figure 174. Bench-Scale Combustor Scheme 29-17A
B
LB
.65
C
4
i
X
X
A
E
)
REF
.63
F
^===i==t
^^f^
=
*y~
4^
H X
1 1
F^============'
L/D VDLREF ACDSUM
10.33 652.6 3.»2
' I
STATION
A
b
C
0
t
F
G
H
I
X
6ST1
8ST2
AX
2.9Z4
0.826 '
2.924
12.724
19.996
7.389
7.389
19.079
19-079
113.040
ACD
1.026
C.O
o.u
0.0
0.0
0. 0
1.361
0.0
C.700
0.412
AXIAL LOC KAD LOC C1KCUM LOC
O.O
3.00
20.10
0.0
O.S6
2.78
2.78
0 .0
0.0
0.0
0.0
Figure 175. Bench-Scale Combustor Scheme 29-18A
152
-------
By varying the quantity of air admitted to the primary zone, it was found that the
position of the "bucket" could be shifted. For example, by increasing the primary zone airflow
from 10% (the value represented in Figure 165) to 20%, it was possible to shift the
NO, "bucket" from 0.18 to 0.28 on the equivalence ratio scale. These data are shown in Figure
176. Again, one of the more northworthy features of the results is the fact that the position of
the CO curve did not change the NO, bucket was shifted. This meant that separate control of
the NO, curve has been demonstrated in these tests. By staging the amount of airflow that
enters the primary zone through the premix tube (in effect, by shifting airflow from the
dilution zone to the premix tube and back), it was possible to achieve a low NO, concentration
at any value of overall equivalence ratio between 0.18 and 0.28, with essentially no change in
CO emissions near the NO, bucket. This is illustrated in Figure 177 as low NO, corridor
covering the range of operating equivalence ratios.
RICH BURNER STAGING
(50 psia, 600°F, 0.5% Nitrogen,
1000
600
400
E
a
^ 200
O
O
X
O
T3
&
O
a>
o
O
100
60
40
20
10
I
0.1 0.2 0.3
Overall Equivalence Ratio
0.4
Figure 176. NO, and CO Emission Signatures for the Rich Burn/Quick
Quench Combustor Concept at High Power Setting (0.5% Fuel
Nitrogen, Scheme 29-9A)
153
-------
NOX STAGING RANGE
(50 psia, 600°F, 0.5% Nitrogen)
1000
600
400
§• 200
X
o
u
0)
o
O
100
60
40
20
10
L.£.._.....J
Low NOy Corridor
0.1 0.2 0.3 0.4
Overall Equivalence Ratio
Figure 177. NO, Staging Capability
This phenomenon is further illustrated by plotting exhaust emission concentrations
against primary zone equivalence ratio. This is shown for Scheme 29-19A in Figure 178. It can
be seen in this figure that as the primary zone airflow is increased from a low valve (9.8%)
through an intermediate value (13.5%) to a high setting (21.4%), the NO, emissions remain
fixed. A large change in the CO is noticed instead. What this actually means is, as a larger
quantity of airflow is admitted to the primary zone, a proportionately larger quantity of fuel is
required to achieve the same primary zone equivalence ratio. Since the quick quench airflow
remains nearly the same (for the same pressure drop), the higher fuel flow translates into a
higher equivalence ratio within the secondary zone. This in turn causes the temperatures of
the secondary zone gases to rise and ultimately leads to decreased CO concentrations. The
need to maintain a high enough temperature within the secondary zone is self-evident. In
practice, this would either require the use of final dilution airflow (to allow higher tem-
peratures initially in the secondary zone) or a means of varying the quick quench airflow.
Two other significant results were also evident from the initial bench-scale evaluation of
the Rich Burn/Quick Quench concept. In Figure 179, data recorded at 150 psia rig pressure are
presented which indicate that there is virtually no increase in the level of the NO, concentra-
tion measured at the bottom of the NO, "bucket," compared to the level previously obtained
at 50 psia. This lack of a pressure effect for NO, is strong evidence of the fact that the
primary-zone combustion process had taken place predominantly under locally fuel-rich
conditions. At the same time however, CO concentrations at 150 psia were markedly lower
than at 50 psia. The effect of increased inlet-air temperature is also hinted at in Figure 179.
The minimum NO, concentration achieved at 750°F inlet-air temperature was only 10 ppmv
higher (60 ppmv vs 50 ppmv) than the one measured at 650° F. Although these data were
recorded at two different primary airflow settings, there is no reason to believe that this
difference would affect the minimum NO, concentration level (in Figure 176, it was shown that
there is no effect of staging on the minimum NO, concentration level).
154
-------
1000
eg
O
m
o
2
o
s
o
O
1
a
a.
at
c
O
'55
.52
UJ
100
50 ps\a, 600°F Inlet Conditions
No. 2 Fuel With 0.5% Nitrogen
Constant
NOX
Emissions
10
9 - NOX Primary Zone Airflow = 9.8%
A- CO
& - NOX Primary Zone Airflow = 13.5%
A-CO
O - NOX Primary Zone Aiflow = 21.4%
A-°? I I
Increasing 0 Secondary
Zone (By Increasing
Primary Zone Airflow)
Causes Lower CO
0.2 0.4' 0.6 0.8 1.0 1.2
Primary Zone Equivalence Ratio
1.4
1.6
Figure 178. Effect of Primary Zone Airflow Staging on NO, and CO
Emissions (Scheme 29-19A)
155
-------
RICH BURNER SIMULATED ENGINE CYCLE
(150 psia, 0.5% Nitrogen)
1000
600
| 400
Q.
Q.
O 200
O
O 100
60
40
o
O
20
10
7% Primary Air 14% primary Air
at 750°F at 650oF
CO
0.1 0.2 0.3 0.4
Overall Equivalence Ratio
Figure 179. Emissions from Simulated Engine Cycle
In Figure 162, a comparison of the NO, curves for neat No. 2 distillate fuel oil (having
negligible bound nitrogen content) and for No. 2 fuel with 0.5% fuel nitrogen is shown. The
effect of the fuel nitrogen is readily apparent in these results. At the minimum point in the
NO, curve, the proportion of total NO, due to fuel nitrogen is at its minimum value. To the
right and to the left of this point (a point that appears to be the optimum primary-zone
equivalence ratio for minimizing the conversion of the fuel-bound nitrogen to NO,), the
proportion is significantly higher. Rates of conversion of the fuel nitrogen to NO, typically
were observed to be well above 50% for overall equivalence ratios on either side of the
minimum point, while values as low as 10% were observed at the minimum point itself. This
minimum point appeared to occur at a primary-zone equivalence ratio near 1.3. Another very
important feature of the data shown in Figure 162 is the lack of variation of NO, with overall
equivalence ratio manifested in the curve for neat No. 2 fuel. In the range from 0.10 to 0.22
equivalence ratio, the NO, concentration measured was essentially constant at 45 ppmv. This
result suggests that the Rich Burn/Quick Quench concept may offer NO, reduction capability
over a range of operation wide enough to preclude the need for air staging in the case of fuels
containing no appreciable bound nitrogen.
156
-------
In summary, the following points are emphasized:
1. An optimum fuel-rich primary zone equivalence ratio near 1.3 was demon-
strated.
2. This optimum value can be maintained over a wide range of operating
conditions through the use of air staging (variable geometry on primary
zone airflow).
3. Emission goals of the program can be met with this concept on clean fuels
and also fuels with bound nitrogen (specified to 0.5% wt).
4. Virtually no pressure effect on NO, was found.
5. CO curve remains fixed allowing "independent" control over NO, and CO.
c. Primary Zone Refinement
Definitive testing of several combustor schemes, Figures 180 through 188, was conducted
to evaluate such effects as primary-zone length, primary-zone louver cooling airflow, premixing
quality, and flame stabilization on the emission characteristics of the burner. Data were
obtained at a number of test conditions selected to simulate a typical engine cycle. As just
mentioned, the tests conducted at 150 psia indicated that there was virtually no effect of
pressure on the level of the NO, concentration measured at the bottom of the NO, "bucket"
when compared to the level obtained at 50 psia. Similarly, the influence of increased inlet-air
temperature (750 vs 600°F) on measured NO, concentrations appeared to be a minor one,
causing an increase of only about 10 ppmv (60 vs 50 ppmv). A lower inlet-air temperature (320
vs 600° F) was found to cause an increase in both NO, and CO concentration levels, initially
attributed to the result of poorer fuel vaporization (consequently resulting in degraded fuel
preparation, causing more combustion at near-stoichiometric conditions and producing more
NO.).
In this test series, utilizing combustor Schemes 29-19A through 29-27A, a tradeoff was
documented between primary-zone length and the minimum NO, concentration achievable at
the bottom of the NO, curve bucket. When the primary-zone length was shortened from 24 to
9 inches, the minimum NO, concentration increased from about 40 to 80 ppmv (all data at
15% 02, 600°F and 50 psia, with 0.5% fuel nitrogen). While the 80 ppmv concentration level
still satisfied the program goal of 100 ppmv for NO,, it was evident that primary-zone
residence time had a significant influence on NO, concentration levels. The mode of flame
stabilization was also shown to have an influence on NO, concentration levels. In tests utilizing
the long primary zone (24 in.), relatively low NO. concentrations (40 ppmv) were achieved at
the bottom of the NO, curve bucket without the use of a swirler for positive flame stabiliza-
tion. However, in tests utilizing the short primary zone (9 in.), the minimum concentration
without a swirler was 150 ppmv, while 80 .ppmv was achieved when the swirler was present.
Thus, to a degree, the disadvantages that may be associated with a lower primary-zone
residence time can be offset by improved utilization of volume available.
157
-------
18
SO *oG
AK6F
19.63
L/D
10.12
VOLftEF
6S2.6
ACDSUH
f.06
STATION
CSTl
35T2
3CT3
2.924
C.826
2.924
12.724
19.996
7.389
7.38*
19.C7*
19.079
19.079
19.C/9
1-J.C79
113.040
1.026
c.u
o.a
'J.O
0.0
0.0
0.7tl
o.O
1... 700
C.119
0.7bJ
AXIAL LOC «AD LuC ClKCUM LOC
o.c
3.00
13.10
19.10
u.a
U.i6
2.73
£.76
0.0
o.o
o.c
Figure 180. Bench-Scale Combustor Scheme 29-19A
ACDSUK
4.1C
STATION
A
a
c
D
E
F
G
H
I
'J
K
L
X
AX
2.924
O.biB
2.924
12 . 72"»
19.996
7.309
7.369
19.079
19.079
19.079
19.07*
19.079
113.0'tO
ACD
1.026
0.0
L.C
0.0
0.0
O.O
0.76V
0. (J
0.700
0.119
BiTl
bSIJ
BST3
AXIAL LOC RAL) LOC ClKCUM LOC
C.C
3.00
10.20
14.00
0.0
O.bb
2.25
2.27
0.0
0.0
0.0
o.o
Figure 181. Bench-Scale Combustor Scheme 29-20A
158
-------
Lb
30.31
ARfF
19.63
STATION
A
6
C
D
E
F
G
H
I
J
K
L
X
L/D
7.26
AX
0.828
1.766
12.724
19.996
7.389
7.369
19.079
19.079
19.O79
19.079
19.CY9
113.040
VOLRtF
362.5
ACDSUM
3.91
ACD
0.446
0.0
u.o
0.0
0.0
o.o
0.761
o.t
0.700
0.119
0.54S
0.119
HtUDtft AXIAL LOC RAO LOG CIRCUH LOG
BST1
8ST2
BST3
SJST4
0.0
3.00
10.20
14.00
0.0
0.56
2.25
2.27
0.0
0.0
0.0
0.0
Figure 182. Bench-Scale Combustor Scheme 29-21A
LB
34.73
STATION
BST1
fciTZ
b!>T3
6!>T4
L/D
fc.95
2.924
o.aza
1.766
8.V.i
16.500
il.3C8
^1.308
21.71V
14.212
7.339
7.389
1V.O7V
19.079
19.079
19.079
4.930
12.000
AGO
O.H46
j.O
'1.0
0.131
C.211
0.153
0.153
0.153
0.129
0.0
0. /6l
0.0
J.700
0.119
O.54b
U.119
1.716
VOLRtF
367. Z
WAPCT
0.276
0.0
J.O
3.359
3.915
2.839
2.639
2.63V
2.394
0.0
14.121
0.0
It.989
2.208
10.169
2.208
31.843
HEADER AXIAL LOC RAO LOG CIRGUM LOG
C.O
8.70
11.70
16.70
0.0
1.19
2.63
1.7S)
0.0
0.0
0.0
0.0
AGDSUM
5.39
Figure 183. Bench-Scale Combustor Scheme 29-22A
159
-------
iTATICA
A
6
C
0
6
F
G
H
1
J
K
L
X
2.92',
O.B2b
1.766
12.724
19.996
7. 369
7.389
19.079
19 . u7 9
19.079
lv.07*
l».0/9
1 i .1. •>. J
ACDSUM
3.66
ACli
C.446
O.U
0.0
L.C
0.0
U.O
'.5.7e>l
u.O
0.700
0. 119
0.0
J.119
1. il 9
rlEAOER AXIAL LOC kAD LOG ClkCUM LOC
8ST1
8iT2
3ST3
0.0
3.CC
10.20
l
-------
LB
35.71
AREF
19.63
STATION
L/D
7.1*
AX
VOLREF
350.2
ACOSUM
3.31
ACO
A
a
c
D
E
F
G
H
1
X
2. 424
0.628
7.750
12.724
19.996
7.369
7.389
19.079
19.079
113*040
O. 0
0.360
0.0
0.0
0.0
0.569
0.0
0.700
1.200
HtAOER AXIAL LOC RAD LOG C1HCUH LOC
BST2
BST3
BST4
0.0
3.00
0.0
10.20
0.0
0.56
0.0
2.25
0.0
0.0
0.0
0.0
Figure 186. Bench-Scale Combustor Scheme 29-25A
\.e
36.71
AftEF
19.63
L/D
7.34
VOLKEF
350. 2
ACOSUM
3.07
STATION
A
6
C
0
E
8ST1
BST2
8ST3
Z.924
2.687
12.72-V
19.996
V.3faS
7.389
19.079
19.079
113.G
-------
LB
36.21
19.63
L/0
VOLREf-
350. i.
ACOSUM
3.Z1
AX
*CC
,TA1ION
A
•2
C
0
t
f
G
H
1
X
ricAOtR AXIAL LOC *AL LOt C11CUM LUC
2.92^
2 • < 87
12.V2*
19.9V*
7.389
7. 389
19.079
19.079
113.040
C.C
o.c
U.L
0.0
o.c
O.SS9
c.c
0.700
0.9<.5
EST1
PST2
SST3
SST*
0.0
3.50
10.50
17.50
G.O
i.oo
J.U
G.O
0.0
C.C
Figure 188. Bench-Scale Combustor Scheme 29-27A
In other tests, the importance of good fuel preparation was evident. In order to help
induce a greater volume of airflow into the primary zone, the diameter of the premixing
passage was increased from 1 to 2 inches (see Figures 187 and 188). Velocities within the
premixing passage were reduced as a result. Although the remainder of the burner was
unchanged, the minimum achievable NO, concentrations increased from about 40 to about
60 ppmv. This increase appears to have been the result of less effective fuel-air mixture
preparation (associated with a lower velocity in the premixing tube), which can give rise to
diffusion burning and cause increased NO, production. In two other tests the necessity of
eliminating nonpremixed air from the primary zone was demonstrated (all airflow should pass
through the premixing tube and become thoroughly mixed with the fuel to preclude the
possibility of diffusion burning within the primary zone). In tests for which louver cooling
(Scheme 29-22A, Figure 183) was employed in the primary zone, the minimum achievable
NO, concentration increased from 80 to 1 80 ppmv. When primary penetration airholes were
opened near the discharge plane of the premixing tube, the minimum achievable
NO, concentration increased from 80 to 140 ppmv. All tests just discussed were conducted with
a short primary zone, at 50 psia, 600°F, 15% 02, and with 0.5% fuel nitrogen.
162
-------
d. Initial Parametric Investigation
Based on the bench-scale test results obtained up to this point, the Rich Burn/Quick
Quench concept was viewed as having the capability to meet the program goals for exhaust
emissions. Accordingly, the remaining experimental bench-scale test program was devoted to
the generation of the design information necessary to scale the selected concept to a size
compatible with a 25-Mw gas turbine can-type combustor. Refinement of the concept was
continued with a series of tests conducted using combustors of different primary-zone length,
primary-zone volume, and liner pressure drop (see Figures 189 through 204). Although the
data obtained were compromised to a degree by incomplete fuel-air preparation, the effects of
the parametric variables were not totally obscured, and the results represented the initial
input needed to characterize the Rich Burn/Quick Quench concept. In conjunction with these
tests, an alternative design for the fuel-air premixing tube, shown in Figure 205, and an
alternative method for the addition of the quick-quench airflow (Figures 200 through 203)
were also evaluated.
It was initially the objective of this test series to generate parametric design information.
In particular, the relationships among primary-zone length and volume, liner pressure drop,
combustor loading, and NO, concentration levels were to have been developed. In the course of
conducting the necessary tests however, a general increase in NO, concentration levels (in
particular, an increase in the minimum concentration levels measured at the bottom of the
NO. "bucket") was noted. Because of the definitive nature of the data being generated, it was
necessary to isolate the cause of the increased NO,. Attention was focused on the fuel-air
premixing tube, which represented the major difference between the configuration being tested
and previous configurations. The fuel-air premixing device had been changed from the initial
configuration in an attempt to generate parametric data representative of the lowest
achievable NO, concentration levels. In time it was found that the new premixing tube
arrangement (Figure 205) did not provide the high degree of fuel preparation that is believed
to be necessary for minimum NO, concentration levels.
ie
ARtF
19.63
L/0
8.97
VOLRfcF
35U.2
ACDSUH
3.20
ACD
STATION
A
e
t
L
t
F
G
H
I
X
HfOEK AXIAL LCt *AD LCC ClKCUM LOG
2.92.4
2.V2*
Z.CJ7
12.72s
19.994
7.389
V.S8*
19.079
1 9 . 079
U3.04G
0.988
0.0
C.u
c.o
O.I'
c.c
0.589
w* 0
u.700
(..916
em
•STJ
B5T4
0.0
12.CO
20.70
25.70
t.O
l.OC
2. 25
1.75
0.0
0.0
t.O
u.o
Figure 189. Bench-Scale Combustor Scheme 29-28A
163
-------
ACDSUN
3.26
STATION
A
E
C
0
E
F
G
H
X
AX
L.924
3.6b2
19.996
7.389
0.484
1V.079
lv.CY9
113.040
ACC
C.98B
0.0
0.0
0.0
0.0
U.761
0.0
u.700
0.830
HEADER
bSTS
bST-.
AXIAL LOG RAD LOG CIRCUM LOG
0.0
8.70
26.70
0.0
1.00
2.78
1.75
0.0
0.0
0.0
0.0
Figure 190. Bench-Scale Combustor Scheme 29-29A
LB
AREF
19.63
STATION
A
B
C
D
E
f-
G
H
X
L/D
8.93
AX
3.652
19.996
7.389
6.484
19.079
19.079
113.040
VOLREF
386.2
ACOSUM
3.54
ACD
1.677
o.o
0.0
o.o
0.0
0.761
0.0
0.700
0.
-------
VOLREF
386.2
ACDSUM
3.24
STATION
A
8
C
0
E
f
G
H
X
AX
2.92..
2.92*
3. 652
19.946
7.369
6.484
19.079
19.079
113.040
ACD
1.152
U.O
0.0
0.0
0.0
0.761
0.0
0.700
0.625
HEADER AXIAL LOC RAD LOG CIRCUM LOC
BST1
bST2
BST1
0.0
8.70
18.50
26.70
0.0
1.00
2.78
1.75
0.0
0.0
0.0
0.0
Figure 192. Bench-Scale Combustor Scheme 29-31A
— H
LB
ARfcF
19.63
L/0
S.V3
VOLREF
386.2
ACDSUM
3.45
STATION
A
B
C
D
E
f
G
H
X
AX
2.924
k.924
3.652
19.996
7.369
6.484
19.079
19.079
113.040
AGO
1.152
0.0
0.0
0.0
0.0
0.933
0.0
0.700
0.663
HEADtH AXIAL LOG RAO LOG CIRCUM LOG
BSTl
bST2
BST3
bST4
0.0
8.70
18.50
26.70
C.O
1.00
2.78
1.75
0.0
0.0
0.0
o.o
Figure 193. Bench-Scale Combustor Scheme 29-32A
165
-------
Lb
ARtF
19.63
L/D
6.93
VOtREP
386.2
ACD&UM
3.71
STATION
ACU
2.92',
3.652
19.996
7.389
6.484
19.079
19.079
Hi.040
1.152
0.0
C.O
0.0
0.0
1.106
u.O
O. 700
U.Tib
HtADck AXIAL LOG RAO LOC CIKCUH LOG
faSTl
frST2
bST3
0.0
6.70
I8.t>0
26.70
0.0
1.00
2.78
1.75
0.0
0.0
0.0
0.0
Figure 194. Bench-Scale Combustor Scheme 29-33A
LB
44.68
STATION
AX
AGO
Al
A2
A
b
C
0
E
f-
G
H
X
2.9i4
6.7i*
6.739
1.7b6
1.766
19.996
7.3fc9
6.4b4
IV.079
19.079
113.(HO
0.0
0.0
1.639
u.O
0.0
0.0
0.0
1. 10<>
0.0
o. vou
HLADEX AXIAL LUG RAO LOC CIRCUM LOG
bSTi
11.25
0.0
Ib.bO
26.70
1.50
0.0
2.78
1.75
0.0
0.0
0.0
0.0
Figure 195. Bench-Scale Combustor Scheme 29-34A
166
-------
LB
AREF
19 .fei
L/0
6.93
VOLREF
386.2
ACDSUH
3.71
STATION
A
b
C
0
E
F
G
H
X
2. 924
3.652
19.996
Y.389
6.484
19.079
19.07V
113.040
SCO
1.152
0.0
0.0
c.c
1.106
0.3
0.700
0.752
HcAOck AXIAL IOC RAO LUC CIRCUM LOC
bSfl
P:TZ
faiT3
biTf
11.25
0.0
18.50
26.70
1.00
0.0
2.78
1.75
0.0
0.0
0.0
0.0
Figure 196. Bench-Scale Combustor Scheme 29-35A
I
a— r^
|
A "** * * ->-
I1 'i
I 1
Lb
^^
AREF
19.63
L/0
7.05
VOLREF
386.2
ACDSUH
3.6 =
STATION
A
B
C
0
E
f-
G
H
X
3.652
1*.9VC>
7.369
6.4i)4
IV.079
19.079
113.0*0
ACD
0.0
O.C
L-.G
0.0
1.149
O.O
U.700
O.Sti
HtAOEK AXIAL LOC RAO LOG CIRCUM LOG
EST1
bST2
bST3
5.00
0.0
9.10
17.30
1.00
0.0
2.78
U75
0.0
0.0
0.0
J.O
Figure 197. Bench-Scale Combustor Scheme 29-36A
167
-------
Lb
44.08
AREF
19.63
I/O
8.93
VGLREF
386.2
ACDSUM
4.44
STATION
Al
A2
A
B
C
D
E
F
G
H
X
AX
i.924
6.73V
6.73V
1.7C.6
1.766
19.996
7.389
6.<.fc4
113.040
ACD
0.0
0.0
1.6J6
U.O
0.0
O.G
o.o
1.69*
G.O
u. <00
0.413
HCADEK AXIAL LOG RAD LOG CIRCUM LOG
tSTl
6ST2
BST3
11.ib
0.0
18.iO
26.70
l.bO
O.k
2.78
0.0
0.0
0.0
0.0
J9S. Bench-Scale Combustor Scheme 29-37A
—H
LB
35. i<*
ARtF
19.63
L/0
7.0t>
VOLREF
386.2
ACDSUM
STATION
A
b
c
D
t
f
G
H
X
AX
i.924
3.6b2
19.996
7.369
6. 484
19.079
19.079
113.040
ACD
J.942
0.0
0.0
0.0
0.0
1.694
O.O
0.700
C.842
HtADtR AXIAL LOG RAD LOG CIRGUM LOG
bST2
bST3
BST4
5.00
0.0
9.10
17.30
1.00
0.0
2.78
1.75
0.0
0.0
0.0
o.o
Figure 199. Bench-Scale Combustor Scheme 29-38A
168
-------
Lb
32.90
AREF
L/0
6.15
VOLREF
596.3
ACDSUM
3.78
STATION
AX
AGO
A
B
C
D
X
6.739
2?.427
22.427
19.V96
113.040
1.638
0.0
1.733
0.0
0.400
HEADER AXIAL LOG RAD LOC CIRCUH LOG
BSTl
BST2
6ST3
3.00
0.0
11.80
0.0
1.50
0.0
2.78
0.0
0.0
0.0
0.0
0.0
Figure 200. Bench-Scale Combustor Scheme 29-39A
Lb
32.-»0
AKEf
L/D
6.15.
VOLK6F
5*6.3
ACOSUM
3.60
STATION
A
B
C
u
X
AX
6.7J9
ZZ.til
c 2 . ".2 7
l*.99o
113.OtO
• CD
o.toi
C.u
1.V3B
0.0
HbA3£K AXIAL LOC RAD LOC CIRCUH LOC
em
BSTZ
UST4
3.00
0.0
11.80
0.0
1.40
0.0
i.78
0.0
0.0
0.0
0.0
0.0
Figure 201. Bench-Scale Combustor Scheme 29-40A
169
-------
LB
32 .90
AREF
22.44
L/D
b.15
VOLREF
S96.3
ACDSUM
3.17
STATION
A
6
C
0
X
AX
6.739
22.*27
22.427
19.996
113.040
AGO
0.944
0.0
1.738
0.0
C.4S7
HEADER AXIAL LOG RAD LOG CIRCUH LOG
BSTl
BST2
BST3
3.00
G.O
11.60
1.50
0.0
2.7B
0.0
0.0
0.0
Figure 202. Bench-Scale Combustor Scheme 29-41A
A~-HT*1
i rl
1 o^ — ,
\ • C-s^-J
,\-t
1' " I'
_^^
^~~~^
Lt
32. 9C
22
L/D
1/DLSte
ACDSUM
J.1V
ST41
. iT 1
l-'. T 2
L^r3
«X
t.73v
2Z.42V
2Z.S2V
' i9»S7C>
U3.G-.G
?i'>
.87
*XJAL LCC SAJ LGL C1KUI.K LOC
3.CC 1.5C C.C
(j ,L u.v C.C
ll.So 2.7E J.O
. Bench-Scale Combustor Scheme 29-42A
170
-------
It
ARLF
L/D
8.36
VOLRtF
460.7
ACDSUM
3.37
STATION
Al
A;
A
B
C
0
E
F
G
X
3SI1
6ST2
^.739
6.73V
1.766
1.7t6
19.9VC.
7.369
113. G*G
AGO
L'.O
O.C
J.O
L..O
c.u
1.69
u.u
rltADtK AXIAL LDt RAO LClC C1KCUM LOt
bit".
12. tO
0.0
18.-0
2b.«0
1.50
0.0
2.78
I.lit
0.0
0.0
0.0
0.0
Figure 204. Bench-Scale Combustor Scheme 29-43 A
Swirl
Vanes
Radial Fuel
Injector
Figure 205. Alternative Premixing Tube
171
-------
The alternative premixing tube design differed from the premixing tube previously used
in three respects: (1) the swirler was located at the inlet to the premixing passage rather than
at the discharge plane; (2) four side-mounted fuel injectors were provided, compared to one
centrally located injector used previously; and (3) the premixing passage was annular rather
than cylindrical. The primary advantage to the alternative design is that the swirler was
located upstream of the fuel injection plane, eliminating the possibility of unwanted
flameholding either within or upstream of the swirler vanes. A second potential advantage is
that the greater number of point sources of fuel can lead to improved fuel distribution.
In the tests conducted mixed results were obtained. Very good fuel preparation was
achieved under conditions of low fuel loading. For example, in one series of tests in which the
fuel flowrate was reduced to achieve an overall lean condition within the primary zone, a
NO, concentration of 3 ppmv (uncorrected) was recorded. This extremely low concentration
could not have been achieved without essentially perfect fuel prevaporization and premixing.
On the other hand, incomplete fuel preparation was indicated under conditions of high fuel
loading. At the burner design point condition, for example, the fuel mass flowrate is about
30% greater than the air mass flowrate within the premixing passage. At this condition and at
other points within this general range of operation, the NO, concentration levels measured
with the alternative premixing tube were consistently higher (by about 20 ppmv) than those
that had been obtained previously with the original premixing tube. After evaluating the
results of a number of comparison tests in which the premixing tube was the only feature
varied, it was concluded that a slight deterioration in the degree of fuel prevaporization or
fuel-air premixing had occurred in the case of the alternative design. This deterioriation
caused a slight shift toward diffusion burning in the primary zone, resulting in somewhat
higher NO, concentration levels. The effort expended in resolving this matter yielded two main
benefits. First, the importance of good fuel preparation in the maintenance of low NO,
concentration levels was documented. Second, experience was gained with an alternative
premixing tube configuration that has several attractive, conservative design features. Even
though the initial test results were not as good as those obtained using the original configura-
tion, these test results could serve as a starting point for future successful refinements of the
premixing device.
e. Alternative Dilution Scheme
Tests of an alternative method for the addition of quick-quench airflow were next
explored (see Figures 200 through 203). Initial testing of the schemes depicted indicated that
excessive airflow was entering the primary zone through the premixing passage. This made the
establishment of fuel-rich conditions within the primary combustion volume impossible.
Modifications were made to restrict the airflow through the premix tube. Retesting indicated
that NO, levels were not as good as those achieved earlier. The dilution tube was subsequently
moved forward (less primary-zone residence time) with the result that NO, increased slightly
over the original position. It was thought that introducing airflow from a centertube structure
might offer an effective alternative to the baseline (reduced diameter) method, and might also
facilitate the introduction of provisions for variable primary zone residence times (effected by
translation of the centertube during operation of the combustor). However, these initial
centertube configurations failed to produce the same low emissions as the baseline version. It
was thought that the reason for this was that an ineffective quenching process had been
established, perhaps due to the outboard direction of jet spreading and perhaps due to low
mainstream velocities, compromising the transition between the primary and secondary zones.
f. Primary Zone Residence Time
The bench-scale test program was concluded with tests of the combustor configurations
depicted in Figures 206 through 240. Reference is made in the following paragraphs and in
subsequent sections to these figures, not necessarily in chronological order.
• 172
-------
Al
A2
LB
19.64
L/D
10.bj
VOlRfcF
M6.3
STATKM
AGO
it .;Di:fv
l-STl
t jii
bil 3
•J 1 1 A
Al
A2
A
b
C
D
t
F
C
H
X
AXIAL
12.
0.
ta.
it.
2,12''
6.739
6.73'>
1.766
1.7&6
19.996
7.36V
6 .424
19.079
19.079
113. ClC
LOC ".AD LOC
40 1. 50
0 w .0
40 2.78
•ij 1.71
0.0
u.O
1.1 VI
J.O
c.u
i/.C
0.0
1 .694
l>.0
,-.700
J.364
C1RCUM LOC
c.o
0.0
0.0
r..o
ACDSUH
Figure 206. Bench-Scale Combustor Scheme 29-44A
LS
'.B. 2i
D
rj
AREF
E F
^
r*
==
^=J^--==^_
L/0
19.09 V.78
STATION
A
b
C
VOLRtF
606
.3
AX iCD
2.924 1.
o.azb o.
2.924 J.
D 19.996 0.
E
F
7. 369 0.
7.389 0.
G 19.079 u.
H ]
V.079 0.
026
0
0
0
0
761
(j
700
I 19.079 ^.119
J 19.079 O.iVJ
K 19.079 0.
X ' 11
HE'DEK AXIAL LOC
oSTl 4.bO
BST2 0.0
oST3 11.10
fciT4 2fc.60
i.0*0 1.
119
03o
>
0.0
0.0
0.0
0.0
LOC
.K
-U
LJ
ACDSUH
4.31
Figure 207. Bench-Scale Combustor Scheme 29-45A
173
-------
46.06
ARf F
19.09
L/D
9.34
VOLREF
541.2
ACDSUM
4.00
STATION
AX
AGP
A
B
C
0
E
F
G
H
X
2.924
0.626
1.766
19.996
7.389
6.484
19.079
19.079
113.040
0.446
0.0
0.0
0.0
0.0
1.6*4
0.0
0.700
1.158
HEADER AXIAL LOG RAD LOG CIRCUM LOG
bSTl
faST?
BST3
BST4
,00
0
30
24.80
O.t>6
0.0
2.78
1.75
0.0
0.0
0.0
0.0
Figure 208. Bench-Scale Combustor Scheme 29-46A
L8
52.*3
AKEF
19.64
STATION
Al
A2
A
b
C
D
E
f-
G
H
X
L/D
10.48
AX
2.V24
6.739
6.73-9
1.76t>
1.7o6
19.996
7.389
6.484
19.079
19.079
113.040
VOLREF
541.4
ACOSUM
4.46
fcCD
0.0
O.C
1.500
0.0
O.O
0.0
o.u
1.694
0.0
0. 700
0.562
H£AO£« AXIAL LOG RAD LOG C1RGUM LOG
8VTI
SST2
BST3
6ST4
0.0
18.40
34.75
1.50'
O.CI
2.78
1.75
0.0
0.0
0.0
0.0
Figure 209. Bench-Scale Combustor Scheme 29-47A
174
-------
Al
LB
39.48
ARtF
19.09
L/D
e.oi
VOLREF
JX.1.2
ACOSUH
STATION
Al
A2
A
B
C
0
E
F
G
H
X
AX
2.M4
u.828
1.766
1.766
1.766
19.996
7.365
6.484
19.079
19.079
113.040
ACU
0.0
O.O
0.446
O.b
0.0
O.C
o.o
1.69-.
0.0
0.700
1.303
HEADER AXIAL LOG RAO LOG G1RGUN LOG
bSTl
fcST*
6ST3
bil-.
1.50
O.C
5.80
21.10
0.56
C.O
2.78
0.0
0.0
0.0
0.0
Figure 210. Bench-Scale Cotnbuator Scheme 29-48A
L8
46.12
IRtF
IV.09
L/U
VOLRbF
&41.2
ACUSUM
5.4t
STATILN
A
Al
A2
b
C
C
E
F
G
H
X
11.245
11.781
2.356
5.047
2.674
4.9SO
12. LOO
C.G
0.0
C.C
O.o
1.461
j.O
D.O
1.691
O.C
u.700
1.607
HEADER AXIAL LOC *AD LOC C1KCUM LOC
BiT3
biT4
7.19
0.0
12.35
2*7.65
3.19
0.0
2.76
1.75
0.0
0.0
0.0
0.0
Figure 211. Bench-Scale Combustor Scheme 29-49A
175
-------
AI
C-l
L6
39.-.8
»REF
K.39
L/D
6.01
VOLSfcF
clS.8
ACDSUM
STATION
AC LI
Al
A2
A
'fa
C
0
E
F
' 0
X
1.7(16
1.766
1 .766
19.5-Jt
V . it>i>
6.4.S4
1V.G79
llJ.i-0
j. 0
o.o.
G. «.«<:•
U.U
c.c
O.u
C.O
AXIAL LQC «AD LOC C1SCUM LDC
BST1
RST2
O.I'
0.0
b.BO
G.C
C.O
2.7U
1.75
C.C
C.O
0.0
0.0
Figure 212. Bench-Scale Combustor Scheme 29-50A
Al
Lb
39.46
ARfcF
19.09
L/0
6.01
VOLREF
541.2
ACDSUM
3.95
STATION
AX
ACD
Al
A2
A
b
C
D
fc
F
G
H
X
2.V24
0.828
1.766
1.766
1.766
19.996
7.365
6.H84
19.079
19.07V
113.040
0.0
U.O
0.446
0.0
O.C
(>. u
0.0
I.t94
0.0
0.700
1.112
HtfcDEK
AXIAL LOG RAD LOC CIRCUM LOC
tSTl
BST2
BST3
bST4
0.0
O.O
5.80
21.10
0.0
0.0
2.78
1.75
0.0
0.0
0.0
0.0
Figure 213. Bench-Scale Combustor Scheme 29-51A
176
-------
Al
LB
19.09
L/D
6.01
VOLREF
698.2
ACDSUH
STATION
AX
ACD
Al
A2
A
8
C
X
2.924
0.626
1.766
19.9*6
19.996
U3.(X»I>
0.0
u.c
0.4«i6
O. 0
i.&y«
0.822
Bill
BST2
ESTJ
AXIAL LOG RAC LliG C1RCUM LOG
O.o
0.0
21.10
0.0
0.0
2.76
2.78
0.0
0.0
0.0
0.0
Figure 214. Bench-Scale Combustor Scheme 29-52A
Al
-------
L8
APEh
46.
L/D
9.3U
VGLREF
582.1
ACDSUM
3.37
STATION
AX
ACL
A]
A2
A
t
c
D
2.924
G.bib
L.7t6
3.o52
12.72".
19.079
u.U
0.0
0.41:4
il3.C4(J
1.232
O.u
1.160
AXIAL LOG HAD LOC C1KCUM LOC
6S1 1
6LT3
liit f
C.C
0.0
7.SO
2i.30
O.C
C.C
0.0
o.o
0.0
Figure 216. Bench-Scale Combustor Scheme 29-54A
Al
L3
30.73
ARLF
19.09
L/D
6.23
VOLREF
ACOSUM
2.91.
STATION
Al
A2
A
D
C
0
E
F
X
0.826
1.766
1.766
1*.996
7.365
6.^84
19.996
113.040
ACD
O.C
O.O
0.446
O.C
o.o
0.0
1.694
0.0
O.b03
HhADtK
AXIAL LOC RAO LOC CIRCUM LOC
BST1
BST2
BST3
0.0
O.C
5.60
12.40
0.0
0.0
2.78
1.75
0.0
0.0
0.0
0.0
Figure 217. Bench-Scale Combustor Scheme 29-55A
178
-------
Al
LB
37.51
AREF
L/D
7.61
VOLREF
629.9
ACDSUM
3.06
STATION
AX
ACD
Al
A2
A
B
C
0
E
F
G
X
2.924
0.628
1.766
3.646
19.079
6.484
6.484
6.484
19.996
113.040
0.0
0.0
0.446
0.0
0.0
3.0
0.512
I.i32
0.0
0.867
HEADER AXIAL LOG RAD LOG CIRGUM LOG
BST1
BST2
6ST3
BST4
1.50
0.0
5.50
19.00
0.57
0.0
2.70
2.00
0.0
0.0
0.0
0.0
Figure 218. Bench-Scale Combustor Scheme 29-56A
Al
AREF
19.09
L/D
8.22
VOLRfcF
671.6
ACDSUM
3.20
STATION
AX
ACC
Al
A2
A
B
C
D
E
F
X
2.924
1.53V
1.766
1.766
19.996
7.3ob
6.484
19.079
113.040
O.C
C.C
0.756
0.0
3.0
O.G
1.694
0.0
0.750
HEADER AXIAL LOG RAD LOG GIRGUM LOG
BST2
tiJj
BST4
1.80
0.0
6.38
22.58
0.62
u.O
2.78
1.75
0.0
0.0
0.0
0.0
Figure 219. Bench-Scale Combustor Scheme 29-57A
179
-------
STATION
Al
Ai
A
B
C
0
E
F
X
AX
5.851
1.657
2.756
V.3C8
19.996
7.365
6.484
19.079
113.040
ACOSUM
3.23
ACO
o.o
0.0
0.89i
0.0
O.C
U.O
1.694
0.0
0.649
HbAOER AXIAL LOG KAD LOG CIRCUM LOC
BST1
BST3
BVT.4
0.0
0.0
5.50
21.70
O.C
O.o
2.78
1.75
0.0
0.0
0.0
0.0
Figure 220. Bench-Scale Combustor Scheme 29-58A
Al A2 B
39
•
C
' \l
1-4-1
LB ARtF L/D - V
.73 6.49 13.82
E X
1
OLREF ACOSUM
413.7 2-86
STATION
Al
AI
A
B
C
D
E
X
AX
2.924
0.828
1.766
3.646
6.484
6.484
19.079
113.040
ACD
0.0
0.0
0.446
0.0
0.0
1.694
0.0
0.725
HEADER AXIAL LQC RAO LOL CIRCUM LOC
BST1
BiT2
6ST3
BST4
0.0
0.0
5.80
21.30
o.o
o.o
1.63
1.63
o.o
0.0
0.0
0.0
Figure 221. Bench-Scale Combustor Scheme 29-59A
180
-------
Al
VOLREF
3*5.3
ACDSUN
2. 68
STATION
Al
A2
A
e
c
D
E
X
AX
2.VI.'.
G.826
1. V06
3.696
6.48-.
o.*<:4
IS.079
U3.0tO
ACO
l/.C
li.O
U.L
I'.O
M-;«OCR AXIAL LOG RAL LOG C1RCUH LOC
0.0
C.tr
0.0
B.bO
0.0
0.0
0.0
1.43
c.o
0.0
0.0
0.0
. Bench-Scale Combustor Scheme 29-60A
Al
LE
39.73
AREF
32.24
STATION
Al
A2
A
B
C
D
£
F
X
L/0
6.20
AX
0.82B
1.766
3.696
32.224
r.0b5
6.484
19.079
113.040
VOLREF
799.2
ACDSUM
2.75
ACD
0.0
0.0
0.446
0.0
C.C
u.O
1.694
0.0
0.608
HcADEK AXIAL LOC KAO LOC C1RCUH LOC
BST1
BST2
BST3
bST4
0.0
0.0
6.80
21.60
0.0
0.0
3.31
3.31
0.0
0.0
0.0
0.0
Figure 223. Bench-Scale Combustor Scheme 29-61A
181
-------
1
LB
H1.O9
t
1
AKEF L/D
19.09 8.33
X
1
^\
^j
f Jjr
I
~^5=Bi » G
VOLREF ACDSUN
S60.* 2.26
STATION
ACL)
1.99*
2.7o7
19.G74
16.880
7.H39
iO.GOD
11 3.0-.0
0.0
(j.C
J.O
0.0
tLT J
AXIAL LOC SAC/ UOC CIRCUM LOt
o.CO
u .0
10. CO
18. CO
1.C3
C.O
i.76
t. ve
0.0
o.c
0.0
0.0
Figure 224. Bench-Scale Combustor Scheme 29-62A
Lb
37.SI
AREF
19.09
L/0
7.61
VQLREF
522.7
ACOSUM
2.10
STATION
Al
42
A
b
C
C
E
C.tZS
\ . 7t,6
3.696
ACD
•J.O
O.C
o.c/
u.9r>3
•J.CJ
0.70G
HtftUtK AXIAL LOC RAL LOC CIRCUM LOC
D.ST1
tSTi
isST3
6.ub
B.53
•11..-IS
13. ta
l/.OO
i.OO
t.!i6
4.27
C.G
0.0
0.0
0.0
Figure 225. Bench-Scale Combustor Scheme 29-63A
182
-------
L
Lb
41.09
ARfcF
19.09
L/0
6.33
VOLRtF
S60.4
ACOSUH
2.37
STATION
A
B
C
0
fc
F
C
X
AX
1.9S4
1.9V.
2.V67
19.07*
16.863
7.439
kO.OOt
Hi.040
ACC
0.942
0.0
c.c
c.o
(,.U
0.710
0.017
0. 700
HtAOCR AXIAL LUC k»0 LOG C1RCUM LOC
B5.T1
e.OO
10.00
28.00
1.03
i.76
2.78
0.0
0.0
0.0
Figure 226. Bench-Scale Combustor Scheme 29-64A
La
30.73
ARtF
19.09
L/D
6.23
VULREF
448.0
ACDSUM
2.9!>
STATION
Al
A2
A
B
C
D
t
f
X
AX
2.924
0.828
I.7o6
3.0*6
1».*96
7.365
6.484
19.079
113.040
3.0
0.0
0.446
0.0
U.O
0.0
1.694
0.0
0.610
ritADER AXIAL LOC RAO LOC CIRCUM LOC
bSTl
b5T2
bST3
0.0
S.80
12.40
0*0
2.78
1.75
0.0
0.0
o.o
Figure 227. Bench-Scale Combustor Scheme 29-65A
183
-------
LB
ARIF
19.09
L/0
6.03
VOLREF
530.4
ACOSUH
3.'.'.
STATION
A
t
c
0
t
F
G
H
X
i.767
19.07-.
16.660
?.<.3*
2U.G06
7.
-------
100
I
i i
• 600°F, 50 psia
• 4% Nominal Liner Pressure Loss (except as indicated)
• Fuel:
8 No. 2 with 0.5% N
Neat No. 2
0.04
0.08 0.12 0.16 0.20
Primary Zone Residence Time, Seconds
0.24
0.28
0.32
Figure 230. Minimum NO as a Function of Primary Zone Residence Time
-------
A2
L6
AHtF
19.09
L/D
B.tac.
VOLREF
361.4
AtDSUM
4.21
STATION
At
A2
A
b
t
D
E
F
G
H
X
0.73V
6.739
3.1*0
3.696
19.996
7. 36b
6.
6.484
19.079
113.040
ACD
0.663
0.0
0.0
1.694
0.0
0.606
HtADER AXIAL LOG RAD LOL C1RCUH LOG
BST1
BST2
biT3
6.00
9.10
15.60
1.00
2.78
1.75
0.0
0.0
0.0
Figure 232. Bench-Scale Combustor Scheme 29-69A
186
-------
Al
Lb
37.51
AREF
19.09
STATION
Al
A2
A
6
C
D
E
f
X
L/0
7.61
AX
4.924
0.826
1.766
3.696
19.079
6.739
6.484
19.079
113.040
VOLREF
522.7
ACOSUN
2.22
ACU
0.0
0.0
0.446
0.0
0.0
0.0
1.170
0.0
0.600
HtAOEk AXIAL LOC RAO LOG CIRCUH LOG
EST1
BiTi
bST3
EST4
6.08
8.58
11.08
13.58
5.00
5.00
4.86
4.27
0.0
0.0
0.0
0.0
Figure 233. Bench-Scale Combustor Scheme 29-70A
L6
39.4S
AREF
19.09
X
I
L/D
8.01
VOLREF
615.6
ACDSUM
STATION
Al
A2
A
B
C
0
E
F
G
X
AX
2.924
0.621)
1. 706
1.7.66
1.7fc6
1S.9SI6
7.365
6.484
19.079
113.CKO
ACD
O.ti
0.0
0.446
O.u
0.0
c.o
L'.O
l.a-y*
0.0
1.438
HcADEK AXIAL LOC SAD LOC CIRCUH LOC
BSTi
t.OO
16.00
2.78
i.78
0.0
0.0
Figure 234. Bench-Scale Combustor Scheme 29-71A
187
-------
Al
Lfc
39.6S.
AREF
20.01
STATION
Al
A2
A
B
C
D
E
F
G
H
X
L/C
7.89
AX
2.924
0.62fa
1.766
3.fc9t
19.996
14.246
3.652
3.652
6.739
19.996
113.040
VOLREF
593.8
ACOSUM
3.61
ACD
li.O
0.0
0.446
o.o
0. 0
L.O
O.O
1.694
0.0
O.O
1.472
HtADcK AXIAL LOG DAD LOC CIRCUH LOG
bl>Tl
bST3
4.00
10.50
12.50
1.50
2.76
2.78
0.0
0.0
0.0
Figure 235. Bench-Scale Combustor Scheme 29-72A
LB
21.58
AREF
6.74
L/D
7.36
VOLREF
114.6
ACOSUM
6.11
STATION
Al
A2
A
B
G
X
AX
2.924
3.696
1.766
12.124
6.739
113.040
AGO
0.0
O.O
0.446
2.272
1.656
1.741
HtADER AXIAL LOG RAD LOC CIRCUH LOC
ESTi
BST2
BST3
SST4
6.58
8.58
10.58
12.58
1.50
1.50
1.50
1.50
0.0
90.0
180.0
270.0
Figure 236. Bench-Scale Combustor Scheme 29- 73A
188
-------
Al
Lb
32.16
ARfcF
19.09
L/0
6.52
VOLREF
476.0
ACDSUH
3.17
STATION
Al
A2
A
B
C
0
E
F
t,
X
AX
2.924
0.828
1.766
1.766
1.766
19.996
7.365
6.484
19.079
113.040
AGO
0.0
b.b
0.446
0.0
o.c
0.0
u.O
1.694
c.c
1.033
HtADfck AXIAL LOG RAO LOC C1RCUM LOG
till
bST2
4.00
6.00
16.00
0.75
2.78
2.7B
0.0
0.0
0.0
Figure 237. Bench-Scale Combustor Scheme 29-74A
LB
26.B4
AREF
19.09
L/D
5.44
VOLREF
369.5
ACDSUM
3.03
STATION
Al
A2
A
B
C
0
E
F
G
X
AX
2.924
0.828
1.766
1 .766
1.766
19.996
7.365
6.484
19.. 07V
113.040
AGO
0.0
b.O
0.4^6
0.0
0.0
0.0
o.t
1.6*4
b.O
0. fr86
HtAOEK
BST1
3ST2
bSTi
AXIAL LUG RAO LUG GIRGUH LOC
4.00
6.00
16.00
0.75
2.78
2.78
0.0
0.0
0.0
Figure 238. Bench-Scale Combustor Scheme 29-75A
189
-------
Lt
A«EF
6. 74
L/G
7.36
VOLREF
11-..6
ACDSUH
6.01
STATION
A2
A
AX
2.924
3.6V6
1.766
12.124
6.731*
113. D4U
AC..
0.0
U.G
HcAD£-< AXIAL LOC HAD LOG C1RCUN LOG
0.0
6.58
10. :>»
12. ib
0.0
l.SO
0.0
90.0
160.0
270.0
Figure 239. Bench-Scale Combustor Scheme 29-76A
LB
27.38
ARtF
19.09
L/0
VOLR6F
369.5
ACOSUM
3.26
STATION
AX
ACD
Al
A2
A
B
C
D
E
F
X
2.924
I.£.39
1.766
1.766
19.996
7.365
0.484
19.679
lib.MO
0.0
D.C
0.7b6
U.O
o.o
0.0
1.694
o.G
0.613
HfADeR
cSTI
HSTi
bSTi
AXIAL LOC RAO LOG CIRCUM LOC
4.00
6.00
16.00
0.75
i.78
L.78
0.0
0.0
0.0
Figure 240. Bench-Scale Combustor Scheme 29-77A
190
-------
First, additional testing was conducted to explore more fully the effect of primary-zone
residence time on minimum NO, attainable. Several configurations were used to generate these
data. Figures 208, 210, 211, 217, and 219 depict these schemes.
Several additional combustor designs (Schemes 29-58A, 29-59A, 29-60A, 29-61A, 29-65A,
29-67A, shown in Figures 220, 221, 222, 223, 227, and 239, respectively) were tested to more
fully document the effect of primary-zone residence time on the minimum attainable
NO, concentration level. A plot of the results is presented in Figure 230. Curves are included
for neat No. 2 fuel, and for No. 2 fuel with 0.5% bound nitrogen (as pyridine). As expected,
the functional dependence of the minimum attainable NO, concentration on primary-zone resi-
dence time was more pronounced in the case of the nitrogen-bearing fuel. A residence time
greater than 0.02 sec is evidently required to maintain the minimum NO, concentration at
levels below 100 ppmv in bench-scale burners when fuels containing 0.5% nitrogen are burned.
A residence time greater than 0.10 sec is required to maintain the NO, concentration below 50
ppmv.
Several data points did not fall directly on the curves drawn in Figure 230. Those at 0.72
and 0.113 sec were obtained at values of liner pressure drop above and below the nominal
values of 4%. Liner pressure drop was varied by increasing and decreasing burner airflow while
holding the burner configuration fixed (total open hole area constant). It is hypothesized that
the increases in NO, measured in these tests were due to off-design-point operation of the
premixing tube rather than variations in turbulent mixing inside the combustor. At the low
airflow setting (low pressure loss), the air velocity in the premixing passage is reduced, and
fuel atomization is poorer (lower fuel nozzle flowrate and pressure drop); these two changes
can cause a severe decline in the quality of preparation of the fuel-air mixture. Similarly, at
the high airflow setting (high pressure drop), the increased flow of fuel can cause an
overloading of the premixing passage, with a resultant decline in mixture quality. The data
points at 0.30 sec were obtained in tests of the 6-inch dia primary liner. While the
NO, concentrations measured using this liner were not exceedingly high, it seemed unlikely
that the greatly increased primary-zone residence time afforded by a larger diameter would
result in an increased concentration level. In keeping with this view, the curves in Figure 230
have been drawn well below the actual data appearing at 0.30 sec (dashed extensions of the
curves from lower values of the primary-zone residence time). It is believed that the 6-inch dia
primary- zone liner represents a departure from optimum design practice, in particular that
the 1.5-inch dia swirler at the discharge plane of the premixing passage was too small in
relation to the 6-inch dia liner, with the result that only a portion of the available
cross-sectional area of the primary zone was effectively used.
Several tests were again conducted for the purpose of gaining further experience in
fuel-air premixing using the schemes shown in Figures 206 through 212, and 219. The basic
combustors were essentially the same, and the results indicated the following: (1) the original
style premix tube with central injector and exit swirler performed the best; (2) the length of
the original tube could be shortened significantly (compare Figures 208 and 210) without an
increase in NO,, indicating that sufficient premixing and prevaporization had taken place in
the short premix tube and that any NO, initially formed due to nonhomogeneity in the fuel-air
mixture had been consumed in the available primary-zone residence time; (3) it was possible to
increase the size of the premix tube (Figure 219), allowing an increase in the quantity of
airflow admitted to the primary zone without adversely effecting NO,; (4) premix tubes
utilizing inlet swirlers, while offering the potential of a more conservative design from the
standpoint of pre-ignition within the premixing passage, had demonstrated poorer emission
characteristics than their exit swirler counterparts; (5) the importance of good fuel-air
preparation for the very low NO, concentration levels demonstrated with the Rich Burn/Quick
Quench combustor concept.
191
-------
g. Quick Quench Investigation
Tests were also conducted to determine the latitude available in designing the
quick-quench dilution zone. The dilution zone must provide strong mixing, so that an abrupt
termination of the primary-zone rich-burning process can be achieved. It had been shown that
the contraction from a 5-inch dia primary-zone section to a 3-inch dia dilution section in the
bench-scale burner configuration was instrumental in providing the strong mixing required
(the results of Schemes 29-50A and 29-52A, Figures 212 and 214, respectively, may be found in
Appendix A). However, the shape of the dilution holes had been shown to be optional. Round
holes, as used in Scheme 29-51A, were found to be equally effective as the elongated slots as
used in Scheme 29-48A in the bench-scale tests. Also, it was shown that the diffuser
downstream of the quick-quench zone, as in Scheme 29-48A (Figure 210), was unnecessary. It
was concluded that the thermal NO, formed in the recirculation region of the sudden
expansion in Scheme 29-50A (Figure 212) was of negligible proportion.
Mixing effectiveness produced by the quick-quench zone was previously observed to be
compromised by injecting the quench airflow without the benefit of a reduced burner
diameter. Reference is made to Scheme 29-52A, Figure 214, where NO, concentration levels of
this combustor (without a reduced diameter quench region) were significantly higher than
measured with the baseline Rich Burn/Quick Quench combustor (with a cross-sectional area
constriction ratio of 0.36). In an attempt to determine whether a further reduction of the
quench zone diameter (to a constriction ratio of 0.16) would further increase the mixing
effectiveness and lower NO, emissions, Scheme 29-72A, shown in Figure 235, was tested. The
minimum NO, achieved at the bottom of the bucket for this configuration was found to be
higher than the baseline. This result suggested that an optimum constriction ratio in the
bench-scale hardware was around a value of 0.36.
h. Primary Liner Cooling
Because of the importance of eliminating nonpremixed air from the primary zone, cooling
considerations become more critical. The schemes depicted in Figures 215, 216, and 218 were
initial attempts to convectively cool an inner liner by forcing airflow between the inner liner
and an outer liner, discharging the spent cooling air into the quick-quench holes.
Analytical examinations of primary liner cooling methods not requiring the discharge of
spent cooling air into the rich combustion region (primary zone) of the burner had been
conducted in parallel to the test program and had revealed that an impingement/convection
technique might hold an advantage (from the standpoint of increased cooling effectiveness)
over the two convection techniques previously employed. Bench-scale hardware was con-
structed from an analytical design to investigate the feasibility of impingement cooling
techniques. The burner configuration is shown in Figure 225. The primary liner consisted of a
double-wall section made up by concentric cylindrical/conical pieces. The outer piece con-
tained a plurality of small holes through which the liner cooling airflow enters, impinging on
the surface of the inner piece. The annular passage between the pieces lead to the dilution
section of the burner, where spent cooling air was discharged through the quick-quench slots.
In the initial test of this configuration, failure of the inner liner wall occurred. Examination of
the hardware following the test indicated that the longitudinal ribs separating the inner and
outer pieces had constrained the inner wall, preventing thermal expansion. As a result,
buckling of the inner wall occurred, and the effectiveness of the impingement cooling
technique was compromised, leading to failure.
192
-------
A second impingement cooling scheme was constructed in which attempts were made to
improve the deficiencies found in the first design. The second design eliminated the longitu-
dinal ribs and increased the impingement hole diameter slightly. This configuration is shown
in Figure 233. Upon testing this configuration, failure of the inner liner was again experienced.
Hardware examination indicated that this time circumferential buckling had occurred, pre-
sumably due to the prevention of thermal expansion of the inner liner in the axial direction,
since the inner liner was rigidly affixed to the outer liner for support. From this experience it
was concluded that if impingement cooling techniques were to be used, several design
improvements would need to be implemented: (1) the inner liner to outer liner gap height
must be maintained for uniform cooling effectiveness; (2) the inner liner must not be
constrained from thermal growth, which implies that rigid affixment to any relatively cool
structure should be avoided; (3) possible use of a more rigid, perhaps thicker walled, inner
liner should be explored.
Further primary zone cooling analysis was conducted using two convection schemes. The
first, Scheme 29-73A (shown in Figure 236), incorporated swirl vanes at the cooling passage
entrance to explore the effectiveness of a swirl cooling technique. The other configuration,
Scheme 29-76A (Figure 239), was essentially the same combustor without the cooling passage
swirl vanes. The tests conducted indicated that there was no appreciable difference in the
cooling effectiveness of the two schemes. The data generated in these experiments were used
as a standard of comparison for analytical model predictions with regard to the influence of
burner airflow rate, inlet pressure, and inlet-air temperature on primary-zone liner tem-
perature level. A complete description of the test results and model predictions can be found
in Section 2.5 of Volume III of this report.
/. Multiple Premix Tubes
Multiple premix tubes hold an advantage over a single tube in that a more uniform
distribution of the fuel-air mixture, and a more effective utilization of the available volume in
the primary zone of a combustor can be effected by introducing the fuel and air at a number of
different locations rather than at a single site. To determine whether the use of multiple
premix tubes might compromise the emission characteristics of the Rich Burn/Quick Quench
combustor, an exploratory test was conducted in the bench-scale rig. A configuration having
two small premixing tubes (Scheme 29-58A, shown in Figure 220) was compared to a second
configuration having a single large premixing tube (Scheme 29-57A, shown in Figure 219).
Total front-end airflow was the same in each combustor, and the two configurations were
identical in all other respects. There were no major differences between the emission character-
istics of the two schemes. A slightly higher NO, concentration (60 vs 54 ppmv) was measured
at the bottom of this NO, curve "bucket" in the dual-tube combustor; however, this difference
was no greater than a reasonable experimental error.
/. Further Testa of Alternative Dilution Scheme
A reduced diameter quick-quench section had been used in most configurations of the
Rich Burn/Quick Quench combustor. An alternative design was previously described, which
drew airflow through a centertube and discharged it as quench air in a radially outward
direction. The results showed that NO, concentration levels were higher. It was reasoned that
the quenching process was ineffective due to low mainstream velocities. In an attempt to
further explore this alternative method of quick-quench air addition, and to restore the
quenching effectiveness, three additional combustor designs (Schemes 29-62A, 29-64A, and
29-66A, shown in Figures 224, 226, and 228, respectively) were tested. The arrangement was
similar to conventional combustors which have a centertube structure designed to promote
more effective mixing. The first configuration (Scheme 29-62A) tested showed that rich
combustion in the primary zone could not be achieved at a reasonable overall equivalence
193
-------
ratio. The quick-quench slots were enlarged (Scheme 29-64A), and retesting showed the same
results. A series of holes were added to the exterior liner to supplement the airflow from the
centertube slots (Scheme 29-66A). The test results obtained using this alternative method of
quench air addition were not encouraging. While a rich primary zone was established, a
NO, concentration of about 84 ppmv (corrected to 15% O2) was measured at the minimum
point of the NO, curve. This concentration was about 24 ppmv higher than the level measured
previously in a comparable combustor having the reduced diameter quick-quench section.
It was concluded that the centertube arrangement of quick quench airflow addition, even
with a reduced cross-sectional area, did not function as well as the baseline (reduced diameter)
device. While the reasons for this were unclear, it was thought that perhaps the increased
surface area of the annular passage might adversely affect the trade off between jet pene-
tration and proper dilution air coverage, thereby compromising the quenching process.
k. Shale Derived Fuel
A shale-derived fuel having a nitrogen content of approximately 0.24 fV> by weight was
fired in two series of tests of the Rich Burn/Quick Quench combustor. These tests were
designed to provide a comparison between No. 2 fuel with pyridine additive, which was used
routinely in the bench-scale program, and a naturally nitrogeneous fuel (containing heavier
nitrogen compounds). The shale fuel, which meets the basic specifications of Diesel Fuel
Marine, was made available to this program by the Naval Ship Research and Development
Center, Annapolis, Maryland.
The results of the tests were regarded as inconclusive. The NO, concentration levels
obtained using the shale fuel (0.24% N) were nearly identical to those obtained using No. 2
fuel with 0.5 % nitrogen as pyridine. This outcome was not unreasonable in itself (if the
heavier nitrogen compounds contained in the shale fuel take longer to burn, proportionately
more NO. might be produced in a given combustor). However, an unusually high
NO, concentration level (about 100 ppmv, corrected to 15% O2) was recorded for both fuels.
This level was 100 % higher than the 50 ppmv level ordinarily measured for No. 2 fuel with
0.5%. nitrogen as pyridine. A result of this kind raised the question of improper functioning of
the combustor; in particular, a question of possible deterioration in the quality of fuel
preparation, as can occur due to partial clogging of the fuel nozzle with the heavy earth waxes
contained in the shale fuel.
/. Alternative Premix Tube Design
The alternative premixing module that had been proposed as an alternative fuel prepara-
tion device for use with the Acurex catalytic combustor (which was tested successfully under
fuel-lean operating conditions as described earlier) was tested in combination with the basic
Rich Burn/Quick Quench combustor in a single test series. The configuration, designated
Scheme 29-68A, is shown in Figure 231. Although previous tests had shown that this premixing
tube arrangement performed poorly under the fuel-rich conditions required for operation of
the Rich Burn/Quick Quench combustor, revisions to the configuration (an increase from four
to eight in the number of fuel injectors) seemed to offer some potential for improved
performance. The combustor was operated on JP5 fuel (No. 2 fuel was temporarily out of
stock), and on No. 2 fuel with 0.5% pyridine. Performance was poor, as it had been in the
previous tests. The minimum attainable NO, concentration was 128 ppmv (at 15% 02) with
the nitrogeneous fuel. Once again, the results seemed to indicate overloading of the premixing
tube, with fuel impinging on the inside surfaces of the passage.
194
-------
m. Secondary Zone Residence Time
A brief series of tests was conducted to generate data revealing the tradeoff between
secondary zone length and CO concentration levels. Results from burner Schemes 29-71A,
29-74A, 29-75A, and 29-77A, shown in Figures 234, 237, 238, and 240, respectively, were used
primarily for this purpose. A plot of CO concentrations measured at the minimum of the
NO, curve "bucket" (primary-zone equivalence ratio of approximately 1.3) for several secon-
dary-zone residence times* is presented in Figure 241. It is evident from this figure that the
CO oxidation process is a gradual one which depends (as expected) upon two major parame-
ters: secondary-zone residence time; and secondary-zone equivalence ratio (and consequently,
the resulting temperature). From these results it was estimated that a cold residence time in
excess of 50 ms would be required to reach a CO concentration level of 100 ppmv (corrected to
15 % 02), if the equivalence ratio within the secondary zone were on the order of 0.3. With an
increase in secondary equivalence ratio to around 0.4, much less time would be required for the
oxidation of CO at the burner design point. Secondary-zone equivalence ratio was increased
without affecting primary-zone equivalence ratio through the use of a larger premix tube
(Scheme 29-77A). This caused primary-zone residence time to be reduced somewhat, but not
enough to affect NO,. Increasing the secondary-zone equivalence ratio had little or no effect on
the measured NO, concentrations at the design point. Further discussion of residence time
considerations may be found in Section 2.6 of Volume III of this report.
1000
CM
O
- 800
o
u
Q.
a
o
1
<-<
I
o
O
O
600
400
200
No. 2 Fuel Pressure = 50 psia
Inlet Temperature = 600°F
Primary Equivalence Ratio =1.3
GJSecondary Equivalence Ratio = 0.3
^Secondary Equivalence Ratio = 0.4
A
0.01 0.02 0.03 0.04
Ideal Cold Secondary Residence Time - sec
Figure 241. Effects of Secondary Zone Residence Time and Equivalence
Ratio on CO Emissions
•Residence time based on inlet temperature and fully developed, fully attached flow in the secondary zone. Note that
the actual cold residence time would be less due to the high-velocity, nonattached jet exiting the quick-quench zone.
195
-------
n. Low-Btu Gaseous Fuel
Tests of the Rich Burn/Quick Quench concept were also conducted using a low-Btu
gaseous fuel. The arrangement of the bench-scale hardware, Scheme 29-69A, is shown in
Figure 232. The exhaust emission data, and the composition of the synthetically prepared
gaseous fuel mixture are shown in Figure 242 and in Figure 243. The emission characteristics
of the combustor, measured for low-Btu gaseous fuel, were very similar to those obtained
previously with the nitrogeneous distillate fuel. A minimum NO, concentration of about 80
ppmv (uncorrected — note the values tabulated in Appendix A were corrected to 15% O2) was
measured at the bottom of the "bucket" in the NO, curve. By varying the primary air setting
(which was not attempted in the tests conducted), it should be possible to achieve this same
concentration level at any desired operating point over a wide range of overall equivalence
ratios, in keeping with the results of staging tests conducted for the same concept using the
distillate fuels.
320
0.16
0.20
0.24 0.28
FA - (Wet Fuel)
0.32
0.36
Figure 242. Variation in Emission Concentrations With Fuel-Air Ratio for
Tests Conducted With Low Btu Gaseous Fuel
196
-------
100
B
C D
Test Point
Figure 243. Variation in Emission Concentrations With Fuel-Air Ratio for
Tests Conducted With Low-Btu Gaseous Fuel
3.4 ANALYTICAL MODEL SIMULATIONS
In a parallel analytical modeling effort (Task 2 of Phase II - Model Update), simulations
of a successful lean-front-end burner (Concept No. 7 - Staged Centertube Burner), and of a
successful rich-front-end burner (Concept No. 29 - Rich Burn Quick Quench) were carried out.
3.4.1 Simulation of Staged Centertube Burner — Concept No. 7
The staged centertube burner was modeled using the General Emissions Prediction Deck
in the annular burner made with bluff-body flame stabilization. The modeling of this can-type
burner as an annular configuration was done in order to allow the centertube airflow to be
treated as dilution air entering from the inner liner. The model input parameters, including
burner inlet airflow, temperature, pressure and airflow distribution, were chosen to duplicate
the experimental conditions as closely as possible. The streamtube nomenclature and relative
positions are shown in Figure 244. Streamtubes 4 and 6, in general, contain the inner and outer
liner cooling flows respectively, which in this case are zero and thus not shown in the figure.
Region 1 is the bluff-body-induced recirculation zone. The airflow in each streamtube is
specified as model input and the streamtube radii are determined by the condition of equal
flow per unit area.
The fuel is assumed to be fully vaporized at station X = 0 and is injected equally into
streamtubes 2A and 2B. The fuel-air ratio in the recirculation zone was set to 0.035 to simulate
the lean front-end of the actual burner. The burner length input was made 12 inches greater
than the actual burner length in order to simulate the effect of the exhaust duct in the test
stand between the burner exit and the plane of the sampling probes. It was found that at
higher fuel-air ratios (f/a = 0.020) this additional length reduced the predicted CO and HC
emissions slightly. Additional length beyond this 12 inches had negligible effect on the
emissions.
197
-------
Figure 244. Location of Streamtubes for Analytical Simulation of Con-
cept 7 — Staged Centertube Burner
This arrangement was evaluated over a range of fuel-air ratios from 0.010 to 0.021 with a
centertube length of 1.5 inches. The NO, and CO emissions corrected to 15 percent oxygen are
plotted in Figure 245 as smooth curves along with some experimental data for comparison.
There is good agreement between the analytical and experimental results. The length of the
centertube was increased during this computer simulation to 5 inches with only a few ppm
changes in the NO, emissions and no change in the CO emissions. This effect was verified by
experimental data.
3.4.2 Simulation of Rich Burn/Quick Quench — Concept No. 29
The modeling effort was extended to include the Rich-Burn/Quick Quench concept,
which was treated as a can burner with a swirl stabilized pilot. In the actual burner, the
quenching is accomplished by slots or holes located in the throat of a converging-diverging
section. The rapid quenching rate which these dilution parts afford was involved by reducing
the effective hole diameter since the model assumes complete mixing of dilution air within 10
diameters.
The actual hardware involved a premixing-prevaporizing section upstream of the pilot
swirler. The extent of the fuel prevaporization had not been experimentally determined but
was believed to have been nearly complete at low fuel flows. In the model, the fuel was
arbitrarily assumed to be 25 percent prevaporized at a fuel flow corresponding to an overall
fuel-air ratio of 0.021. This equivalent mass of fuel vapor is held constant at lower fuel flows
until it corresponds to 100 percent prevaporization. Subsequent variation of the degree of
prevaporization at various fuel-air ratios shows that 25 percent at f/a eq 0.021 yields the
minimun NO, formation. As in previous cases, additional burner length was employed in the
model to simulate the effect of the exhaust duct between the end of the burner can and the
plane of the sampling probes. Also, the leakage airflow which occurred at the rear attachment
plate of the burner was modeled as dilution airflow into streamtubes 3 and 4 at an axial
position corresponding to the rear of the real burner.
198
-------
240
Experimental Data
O NOX
Q CO
0
0.2
Equivalence Ratio, Overall
Figure 245. Comparison of Predicted and Experimental Emission Data,
Concept No. 7 — Staged Centertube Burner
199
-------
The results of these initial modeling efforts are shown in Figure 246, which shows the
variation in CO and NO, with overall burner equivalence ratio. The model predictions are
shown as smooth curves. For comparison, actual data is also shown. For these model
predictions, the front-end burner airflow is 12.4 percent of total burner airflow. This yields a
pilot equivalence ratio of 1.0 at an overall fuel-air ratio of 0.010. There is good agreement
between the analytical and experimental results.
The streamtube model was also used to predict the influence of primary zone louver
cooling airflow on NO, emission concentrations, and to determine whether preheated cooling
airflow (as might be discharged from convective cooling passages in the primary zone liner) can
be admitted through the dilution slots without compromising the low-emission characteristics
of the burner. Results indicated that the diffusion burning which occurs in the mixing region
between the premixed flame and the cooling streamtube can be a significant contributor to
high NO, concentration levels. The streamtube analytical model also predicts that this
sensitivity may be confined to the upstream end of the primary zone however, and suggests
that louver cooling can be employed in the rear portion of the primary zone without a
significant impact on NO, emission concentrations.
o. Summary of Concept No. 29 — Rich Burn/Quick Quench
Rich Burn/Quick Quench is a descriptive title indicating the intended approach em-
bodied in this concept. Consecutive zones of : (1) rich burning to suppress the formation of
NO, by virtue of low flame temperatures and low concentrations of available oxygen; and (2)
very rapid dilution to fuel-lean combustion to preclude NO, formation in the transition. It was
found that the rich burning zone should be supplied with a mixture of fuel and air of sufficient
homogeneity to ensure that the bulk of the combustion process would take place under locally
fuel-rich conditions. A deterioration in the quality of fuel-air preparation was shown to result
in increased NO, emissions. Similarly, the dilution effectiveness of the quench zone was also
determined to influence NO, formation. A deterioration in the quenching effectiveness
produced increased NO, emissions. It was also shown that all the airflow admitted into the rich
zone needed to be mixed with fuel prior to entry. This meant that conventional liner cooling
techniques (usually louvers which inject a film of air along the wall) could not be used for the
primary zone.
The basic emission signature of the combustor (obtained experimentally by maintaining a
constant airflow setting and varying the fuel flowrate) is illustrated in the data shown in figure
165. Attention should be focused first on the CO curve. Beginning at the left, CO is initially
high because of lean blowout in the primary zone. The CO concentration level declines as the
fuel flowrate is increased to achieve a higher overall equivalence ratio. Moving toward the
right, the CO curve passes through a minimum point at about 0.08 overall equivalence ratio.
This corresponds to the attainment of efficient burning in the primary zone, at a relatively
low, uniformly lean, local equivalence ratio. At this condition, the flame temperature is too low
to form an appreciable concentration of CO by thermal dissociation of C02. Moving further to
the right however, the CO concentration increases sharply as the primary zone equivalence
ratio increases and passes through stoichiometric, becoming fuel rich. The large quantities of
CO produced in the primary zone under these conditions are frozen by the rapid quenching of
the dilution slots, resulting in the very high CO concentration peak (nearly 1000 ppmx). As the
fuel flowrate is increased further, the consumption of CO in the dilution zone begins to take
place, and the concentration declines to a low level.
200
-------
240
Concept No. 29 - Rich Burn/Quick Quench
Experimental Data
O NO
D CO
50 psia
600°F
No Bound Nitrogen
NOV, Predicted
CO, Predicted
0
0
0.1
Equivalence Ratio, Overall
Figure 246. Comparison of Predicted and Experimental Emission Data,
Concept No. 29 — Rich Burn/Quick Quench
201
-------
The NO, curve reflects the same internal processes that have just been described. Moving
from left to right, the NO, concentration increases and reaches a peak as the primary zone
equivalence ratio increases and passes through stoichiometric. It then declines to a minimum
point, which corresponds to fuel-rich primary zone operation. By increasing the fuel flowrate
further, the NO, concentration is made to increase again, because of a decline in the influence
of the fuel-rich primary zone and a general transition of influence from the primary zone to
the dilution zone. In the dilution zone, where conditions are fuel lean (on an overall average
basis) the rate of production of NO, escalates sharply as the fuel flowrate (and local
equivalence ratio) is increased.
While there is the potential for smoke formation at primary zone equivalence ratios
greater than about 1.5, the smoke data obtained indicated that operation near the design point
(1.3) produced smoke numbers well below the visible range.
While the basic emission signature of the concept indicates a single operating point where
both NO, and CO concentrations are low (a range for clean fuels), a gas turbine combustor
experiences a multitude of operating conditions determined by power setting. It was demon-
strated that the optimum primary zone equivalence ratio could be maintained over a wide
range of conditions by employing variable geometry, to stage the quantity of airflow admitted
to the primary zone, in proportion to the fuel flow. The CO characteristic of the burner was
shown to remain essentially fixed as primary zone airflow was varied. It is in essence
dependent upon the equivalence ratio (temperature) within the secondary zone. This implies
the need for a final dilution flow later in the secondary zone to allow residence time at a higher
temperature for CO consumption. It also implies varying the quench flow for the ideal
implementation of the concept. Variable quench flow is not necessary unless the combustor is
intended to operate at extremely low equivalence ratios.
Gas turbine combustors also experience a range of inlet pressures, which in conventional
(lean) combustors has a very substantial effect on the NO, formed. It was demonstrated that
there is no pressure effect on NO, with the Rich Burn/Quick Quench concept. CO concentra-
tions were shown to significantly decline with increasing pressure as expected since it is
controlled by the fuel-lean secondary zone.
A certain amount of parametric information was also generated. In summary:
1. There is a trade-off between primary zone residence time and minimum
achievable NO, concentration.
2. There is also a trade-off between secondary zone residence time, secondary
equivalence ratio at the design point, and CO concentrations attained.
3. Deficient fuel preparation results in increased NO,.
4. Deficient quenching results in increased NO,. From the bench scale con-
figurations tested, the best method of quenching was a reduced diameter
section with radial jet penetration. A cross-sectional area constriction ratio
of about 0.36 was found to perform the best.
202
-------
5. Swirl flame stabilization was found to be the best, probably due to more
effective utilization of combustion volume available.
6. Round holes appeared to be equally effective in quenching as elongated
slots.
7. A sudden expansion after the quick quench zone was determined not to
significantly affect the NO, formed in the secondary zone when compared
to the gradual diffuser used initially.
The Rich Burn/Quick Quench combustor design concept was determined to have the
potential of meeting all the program exhaust emission goals while operating not only on
non-nitrogenous fuels, but also on fuels containing significant quantities of chemically bound
nitrogen. It was concluded that, based on the superior performance demonstrated, the Rich
Burn/Quick Quench concept should be the single design committed to full-scale hardware of a
size representative of a 25 megawatt gas turbine engine.
203
-------
SECTION IV
CONCLUSIONS FROM PHASE II
Specific comments and conclusions about each of the 29 NO, reduction candidates were
made within the applicable part of subsection 3.3. General comments concerning the overall
efforts of the Phase II experimental program are offered here:
1. Bench-scale experimental screening proved to be a valuable tool for
evaluating a large number of candidate NO, reduction concepts. It also
revealed new avenues of approach which were not identified initially. For
example, Concept No. 29, Rich Burn/Quick Quench, was evolved from a
similar concept, Quench Reheat.
2. The experimental screening efforts demonstrated that the NO, reduction
potential of two concepts could meet the program emission goals. One
approach involved use of the Staged Centertube Burner (a lean, premixed
configuration employing fuel staging) which was shown to be capable of
meeting the program emission goals when operating on non-nitrogenous
fuels. The other approach was the Rich Burn/Quick Quench concept. With
this concept, the ability to meet the program goals when operating on
either non-nitrogenous fuels or fuels with significant quantities of
chemically bound nitrogen (specified as up to 0.5% wt in the program) was
demonstrated.
3. The Rich Burn/Quick Quench design (Concept No. 29) was chosen as the
single concept to be transferred to full-scale hardware in Phase III because
of the multifuel (clean and nitrogenous) capability and the superior
performance demonstrated.
204
-------
REFERENCE
1. Mador, R. J., and Roberts, R., "A Pollutant Emissions Prediction Model for Gas Turbine
Combustors," AIAA Paper No. 74-1113, 10th Propulsion Specialists Conference, San
Diego, California, October 1974.
205
-------
APPENDIX A
Tables Description Page
A-l Combustor Operator Parameter Data '... A-4
A-2 Emission Concentration and Gas Analysis Parameter Data A-39
A-3 Combustor Liner Temperature Data and Fuel Air Ratio Information A-76
A-4 Special Parameters — Heat Exchanger
Information A-113
A-5 Special Parameters — Pressure Drop and Airflow Rate Data A-116
A-6 Special Parameters — Low Btu Gas Temperature A-l 18
A-7 Special Parameters — Cooling Scheme Data A-119
A-8 Special Parameters — Aero/Thermal Flow Modeling Data A-120
A-9 Special Parameters — Smoke Data A-121
A-l
-------
Parameter
Scheme
EQR
PT3
TF3
LPL
Airflow
8HX
Fuel
HCQ15
CMQ15
NXCQ15
CDQ1
OXQ1
EFFGA
DEFINITION OF PARAMETERS
USED IN APPENDIX A TAiLES
Definition
Concept No. — Configuration No. — Test Point No.
Overall equivalence ratio determined by measured fuel and airflow rates
Combustor inlet total pressure — (psia)
Combustor inlet total temperature — (°F)
Liner pressure loss (%)
Airflow rate (lbm/sec)
Inlet specific humidity
Fuel type:
2 — No. 2 distillate fuel oil
2/0.5N — No. 2 distillate with 0.5'V chemically-bound nitrogen as
pyridine
P — Propane
M — Methane
M+2 — Methane in Zone 1 and No. 2 distillate fuel oil in Zone 2
G — Low-Btu gas
5 — JP-5
S — Shale derived DFM
Unburned hydrocarbon concentration in exhaust corrected to 15% 02
(ppmv)
Carbon monoxide concentration in exhaust corrected to 15% O2 (ppmv)
Oxides of nitrogen, NOX, concentration in exhaust corrected to 15% 02
(ppmv)
Carbon dioxide concentration in exhaust (% volume)
Oxygen concentration in exhaust (% volume)
Combustion efficiency determined by gas analysis (%)
A-2
-------
CFRAC
Note
BST1 through
BST4
FASAM
FUAIR
FAOX1
FAOX2
Parameters in
fable A-4
through A-9
Carbon balance fraction determined from measured fuel and air against
measured exhaust emission quantities
Refers to nonrepresentative test conditions — see explanation at end of
Table A-2
Combustor wall temperatures — see scheme definition figures for locations
Overall fuel-air ratio determined by sample, gas analysis
Overall fuel-air ratio determined by measured fuel and airflow rates
Fuel-air ratio in Zone 1
Fuel-air ratio in Zone 2
Described at end of each table
A-3
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA
DATA TABLE
FINAL KEPOR1
SCHEME
tUR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
01-05A-1
01-O5A-2
01-05A-3
01-05A-4
01-05A-5
01-05A-6
01-06A-1
01-0 6A-2
01-0 6A-3
01-07A-1
01-07A-2
01-O7A-3
01-O7A-4
01 -07 A -5
01-07A-A
01-O7A-7
01-07A-8
01-O7A-9
01-O7A-10
01-07A-11
01-O7A-12
01-07A-13
01-07A-14
01-O7A-15
01-07A-16
01-07A-17
01-O7A-18
01-O7A-19
01-O7A-20
01-O7A-21
01-O7A-22
01-O8A-1
01-O8A-2
01-O8A-3
01-08A-4
01-O8A-5
01-08A-6
01-08A-7
01-O8A-6
01-08A-9
01-O8A-10
01-08A-11
01-08A-12
01-O8A-13
01-O8A-14
01-08A-15
01-O8A-16
01-08A-17
01-O9A-1
01-O9A-2
01-09A-3
0.08*5
0.1247
0.1750
0.1858
0.1415
0.1095
0.1123
0.1456
0.17bO
0.1798
0.2252
0.1463
0.2786
0.3397
0.3896
0.2264
0.1779
0.1206
0.3971
0.1922
0.1431
0.1 7o6
0.2291
0.2749
0.3283
0.3756
0.1489
0.24OO
0.3243
0.3611
0.1690
0.1204
0.1752
0.2284
0.2829
0.3367
0.2295
0.2430
0.2997
0.3538
0.1833
0.2376
0.2953
0.3491
0.3938
0.4069
0.3355
0.1733
0.0934
0.1477
0.2029
50.0000
50.0000
50.0000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.000O
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5OOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
40. 0000
50.0000
50.0000
50.&WO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5U.OOOO
50.0000
601.5000
603.0000
605.5000
598.5OOO
599.0000
609.5000
602.5000
603.0000
6O0.5000
600.0000
6O2.5000
603.5000
602.5000
598.5000
bOl'.OOOO
601.00OO
602.0000
602.0000
6O3.0000
598.5000
596.5300
603.OOOO
600.5000
601.5000
602.0000
599.5000
601.5000
602.0000
597.5000
607.5000
6O0.5000
598.0000
603.5000
597.5000
600.0000
601.0000
6O0.500O
603.0000
603.000O
599.0000
602.0000
598.5000
600.5000
601.5000
6O2.OOOO
599.5000
599.0000
5*9.5000
603.0000
597.5000
602.5000
2.6000
3.0000
3.0000
3.0OOO
2.8000
2.8000
3.2000
3.4000
3.4OOO
3.0000
3.0000
3.0000
3.0000
3.2000
3.2000
3.0OOO
3.0000
1.0101
1.0000
5.8000
2.8000
3.0OOO
3.OOOO
3.0000
3.0000
3.0000
3.3OOO
1.0000
1.2000
1.2000
1.2000
3.4000
3.60OO
3.8000
3.8000
3.8000
3.BOOO
3.8000
3.8000
3.8000
3.6000
3.8000
3.8000
3.8000
3.8OOO
3.8000
3.8000
3.6000
3.6000
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
tCR
PT3
• TT3
LPl
AIRFLW
SHX
FUEL
01-09A-4
01-09A-5
01-09A-*
01-09A-7
01-09A-8
01-09A-9
01-09A-10
01-09A-11
01-09A-12
01-09A-13
01-09A-14
01-09A-15
01-09A-16
01-10A-1
01-10A-2
01-10A-3
01-10A-4
01-10A-5
Ol-lOA-6
01-10A-7
01-10B-8
02-01A-1
O2-O1B-1
02-01B-2
02-01B-3
02-01B-4
02-O1B-5
02-01B-6
02-OIB-7
02-O1B-8
02-018-9
02-01B-10
02-016-11
02-01B-12
02-O1B-13
02-016-14
03-03A-1
C3-O3A-2
03-O3A-3
03-0 3A -4
03-0 3A -5
O3-04A-1
03-O4A-2
03-04A-3
03-04A-4
03-0 4A -5
03-O4A-6
03-05A-1
03-05A-2
03-O5A-3
03-05A-*
0.2580
0.3121
0.3643
0.1195
0.1060
0.1204
0.1734
0.1116
G.2521
0.3109
0.3705
0.1965
0.3021
0.1207
0.1753
0.2297
0.2836
0.3344
0.3636
0.1211
0.3406
0.4672
0.3875
0.3469
0.4062
0.2627
0.2360
0.3624
0.1753
0.1956
0.1669
0.1618
0.1295
0.2699
0.2468
0.2512
0.0819
0.0989
0.1129
0.1272
0.0989
0.0567
0.0737
0.0849
0.0993
0.1130
0.1273
0.0991
0.1127
0.1266
0.1402
50.OOOO
50.0000
50.0000
50.0000
50.0OOO
50.000O
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
-'5O.OOOO
50.0000
50.0000
50.0000
46.0000
45.0000
73.0000
73.0000
99.5000
147.5000
45.5000
44.0000
44.5000
76.5000
103.0000
43.5000
45.0000
74.5000
99.2500
50.0000
49.7500
50.0000
50.5000
49.2500
50.2500
50.5000
50.7500
51.0000
51.0000
5O.OOOO
49.25OO
50.1500
50.5000
50.6000
602.0000
599.5OOO
596.5000
590.5000
597.0000
602.i)OOO
6O3.0OOO
600.0000
603.00OO
5Vb.5000
600.0000
598.5000
602.5000
600.0000
603.0000
603.0OOO
598.5OOO
59O.OOOU
602.0000
602.0000
604.5000
679.0000
693.0000
711.0003
701.5000
712.5000
820.5000
670.5000
879.50OO
887.0000
815.00OO
687.5000
868.5COO
769.5000
751.00CO
744.5000
607.500O
607.0000
610.0000
612.5000
609.50OO
611.0000
613.0000
616.5000
616.0000
614.5000
618.0000
621.0000
614.50OO
617.0000
612.5OOO
4.2000
4.4000
4.4000
4.0000
3.8000
3.8000
2.0000
1.8000
l.bOOO
2.OOOO
2.0000
7.4OOO
7.6000
3.6000
3.8000
4.0000
4.0000
4.2OOO
4.2000
3.60OC
•».2000
0.8696
0.2222
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.1437
3.3569
3.3402
3.4044
3.2913
3.2258
3.4044
3.3876
3.4673
3.5636
3.6349
3.0918
3.0303
3.5989
3.6743
1.5376
1.5391
1.5.482
1.5558
1.5536
1.5463
1.0736
1.08^5
1.0705
1.0710
1.0686
2.0121
2.0017
1.5406
1.5405
1.5410
1. 5439
1.5580
1.5462
1.5428
1.539S
0.3230
0.1696
0.1934
0.1937
0.2166
0.5036
O. 1643
0. 3468
0.3511
0. 7643
1.0753
O.J326
0. 3494
0.6699
0.8303
.5347
.5365
.5358
.5328
.5354
.5317
.5311
.5322
.528B
.5343
.5336
.5234
1.5322
1.5329
1.5383
U.OO86 2
U.OO86 2
0.0086 2
0.0086 2
0.0086 2
0.0086 2
0.0086 2
0.0086 2
0.0086 2
0.0066 <:
0.0086 2
0.0086 2
0.0086 2
0.0079 2
0.0079 2
0.0079 2
0.0079 2
0.0079 2
0.0079 2
0.0077 2/.
0.0077 2/.
0.0139 P
0.0038 P
0.0038 P
0.0038 P
0.0088 P
O.OOBtt P
0.0086 P
0.0093 2
O.O093 2
O.0093 2
0.0093 2
0.0093 2/.
0.0103 2/.
0.0103 2/.
0.0103 2/.
0.0095 2
0.0095 2
0.0095 2
0.0095 2
0.0095 2
0.0029 2
0.0029 2
0.0029 2
0.0029 2
0.0029 2
0.0029 2
0.0156 2
0.0156 2
0.0156 2
0.0156 2
5N
5N
5N
bN
5N
5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
O3-O6A-1
03-06A-2
O3-O6A-3
03-O6A-4
03-O6A-5
03-06A-6
03-0 6A-7
04-O1A-1
04-O1A-2
04-01 A -3
04-O1A-4
04-02 A-l
04-O2A-2
04-O2A-3
04-02A-4
O4-O2A-5
O4-O3A-1
04-O3A-2
04-O3A-3
04-0 3A -4
04-O4A-1
04-O4A-2
04-O4A-3
C4-O5A-1
04-O5A-2
04-05A-3
04-0 5A -4
G4-O5A-5
04-O5A-6
04-O5A-7
04-O5A-8
04-O5A-9
04-35 A -10
04-O5A-11
04-0 5 A -12
04-05A-13
04-05A-14
04-0 5A -15
04-05 A -16
04-O5A-17
04-05A-18
04-05A-19
04-O5A-20
04-O5A-21
04-O5A-22
04-O5A-23
04-0 5A -2 4
04-O5A-25
04-0 5 A -2 6
04-05A-27
04-J5A-28
0*0847
0.0533
0.0730
0.0843
0.0984
0.1124
0.0559
0.1030
0.2611
0.2659
0.1101
0.1281
0.3612
0.3253
0.3672
0.1487
0.0646
0.2291
0.1567
0.2113
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
49.8500
49.2500
49.7500
49.7500
49.7500
*9.9500
49.4500
15.0000
15.0OOO
15.0000
15.0000
15.0000
15.0000
15.0000
15.0000
15.UOOO
15.1000
15.1000
15.1000
15.0000
14.8136
14.8136
14.8136
14.8288
14.8288
14.6288
14. 6288
14.8288
14.8286
14.8288
14.7218
14.7218
14.7218
14.7006
14.7006
14.7606
14.7606
14.8421
14.8421
14.8421
14.8421
14.8421
14.8421
14.8421
14.8421
14.8421
14.6421
14.8421
14.6249
14.8249
14.8249
612.OOOO
612.0000
616.0000
617.5000
616.5000
617.5000
613.5000
609.0000
613.5OOO
620.000O
611.5000
630.00OO
617.50OO
627.5OOO
627.5000
615.0000
615.0000
olO.OOOO
613.0000
607.5000
OiO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
3.5473
4.1889
3.9493
4.0481
4. 1468
4.3269
3. 6740
2.2923
2.61S7
2.6197
2.6197
2.6197
3.2147
2 . 9472
2.9472
3.9296
3.5783
H.2289
4.6795
4.9120
0.0
O.O
O.O
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.5263
1. 5372
1. 5336
1.5322
1.5336
1.5329
1.5376
0.4039
0. 4O27
0.4012
0. 4J56
0. 3802
0.3958
0. 3905
0.3913
0.3795
0.3723
0.3741
0.4016
0.3830
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O. 0
0.0
O.b
0.0
0.0
0.0
0.0
0.0
0.0
o.o
O.C149 2
0.0149 2
0.0149 i
0.0149 2
0.0149 2
0.0149 2
0.0149 2
0.0168 2
0.0188 2
O.O188 i
0.0161 2
0.0154 2
0.0154 2
0.0141 2
0.0141 2
0.0141 2
0.0132 2
0.0132 2
0.0132 2
0.0126 2
0.0099 2
0.0099 2
O.O099 2
0.0063 2
0.0063 2
0.0063 2
0.0063 2
0.0063 i
0.0063 2
0.0063 i
0.0132 2
0.0132 2
0.0132 2
0.0126 2
0.0126 2
0.0130 2
0.0130 2
0.0061 2
0.0061 2
O.OO61 2
0.0061 2
O.OObl 2
0.0061 2
0.0061 2
0.0061 2
O.O061 2
0.0061 2
O.O061 2
0.0081 2
0.0081 2
0.0081 2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EUR
PT3
TT3
LPL
AIRFLH
SHX
FUEL
04-05* -29
04-O5A-30
04-05A-31
04-0 5 A -3 2
04-O5A-33
04-0 5A -34
04-O6A-1
04-O6A-2
04-0 6A -3
04-O6A-4
04-O6A-5
04-0 6 A -6
O4-O6A-7
04-06A-«
04-06 A -9
04-O6A-10
04-06A-11
04-06A-12
04-O7A-1
04-0 7A -2
04-O7A-3
04-0 7A -4
04-0 7 A -5
05-01A-1
05-0 1A-2
05-01A-3
05-01A-4
05-0 1A-5
05-01A-6
05-01A-7
05-OIA-8
05-0 1A-9
05-01A-10
05-O2A-1
05-02A-2
05-O2A-3
05-02A-4
05-0 3A-1
05-0 3A-3
05-O3A-3
05-04A-1
05-O4A-2
05-0 4A-3
05-0 *A -4
05-O4A-5
05-O4A-*
05-0 4A -7
05-O4A-8
05-O4A-9
05-O5A-1
05-O5A-2
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1521
0.2169
0.2641
0.3252
0.3808
0.3736
0.3226
0.3753
0.3162
0.2653
0.1644
0.3654
0.3963
0.8092
0.1602
0.3111
0.42OB
0.1698
0.2475
0.3061
0.2920
0.2128
0.2351
0.2701
0.2819
0.3111
0.2408
0.2190
14.6249
14.8249
14.82*9
14.8249
14.824V
14.8249
14.77O4
14.7704
14.7704
14.7704
14.7704
14.7704
14.8342
14.8342
14.8342
14.8342
14.6342
14.8342
14.7743
14.7743
14.77*3
14.7743
14.7743
15.0000
14.9000
14.9500
14.9000
14.9000
14.9000
14.9000
14.9000
14.9000
14.9000
15.0000
15.0000
15.OOOO
15.0000
15.0000
15.0000
15.2500
60.0000
64.OOOO
60.5000
59.2500
56.7500
57.7500
60.0000
62.2500
63.5000
50.5000
49.0000
• 0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
O.O
0.0
0.0
0.0
596.0000
630.0000
635.0000
629.0000
621.5000
624.0000
634.0000
626.50OO
631.5000
623.5000
659.0000
647.5000
760.0000
775.00OO
787.5000
792.5000
B02.5000
627.5000
625.0000
627.5000
634.0000
607.5000
600.0000
612.5000
607.5000
600.0000
612.5000
613.5000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0*0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
.3099
.6373
.6105
.0373
.5350
.8674
.7410
1.9042
2.1264
2.0467
1.8149
1.9339
3.2098
3.3081
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.2292
0.2322
0.2446
0.2421
0.2371
0.2416
0.2413
0.2406
0.2461
0.2'.'. 7
0.23*4
0.2390
0.2150
0.2063
0.2160
0.2105
0.2055
1.2775
1.3142
1.2755
.2777
.2839
.2935
.2978
.3223
.3308
1.5466
1. 5445
0.0061 2
0.0081 2
0.0081 2
0.0081 2
0.0081 2
0.0061 2
0.0128 2
0.0128 2
0.0128 2
0.0128 2
0.0128 2
0.0128 2
0.0056 2
0.0056 2
0.0056 2
0.0056 2
O.O056 2
O.O056 2
O.O127 2
0.0127 2
0.0127 2
0.0127 2
0.0127 2
0.0117 2
0.0117 2
O.O117 2
0.0117 2
0.0117 2
0.0117 2
O.O117 2
0.0119 2
0.0119 2
0.0119 2
0.0127 2
0.0127 ?
0.0127 2
O.O153 2
0.0152 2
0.0144 2
0.01*4 2
0.0115 2
0.0115 2
O.O115 2
0.0115 2
0.0115 2
0.0115 2
0.0115 2
0.0115 2
0.0115 2
0.0162 2
O.O162 2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHfcME
EOR
PT3
TT3
LPL
A1HFLH
SHX
FUEL
05-0 5A-3
05-0 5A -4
05-0 5A -5
05-O5A-6
05-O5A-7
05-05A-6
05-O5A-9
05-O5B-1
05-05B-2
05-05d-3
05-05B-4
05-05B-5
05-O5B-6
05-O5B-7
05-056-8
05-058-9
05-0 5C-1
05-05C-2
05-05C-3
05-05C-4
05-05C -5
05-O5C-6
05-0 5C -7
05-0 5C -ft
05-O5C-9
05-05C-10
05-05C-11
05-05C-12
05-05C-13
05-05C-14
05-O6A-1
05-0 6A-2
05-06A-3
05-06A-4
05-0 7A-1
05-O7A-2
05-07A-3
05-07A-4
05-07A-5
05-07A-6
05-07A-7
05-07A-8
05-07A-9
05-07A-10
05-07A-11
05-07A-12
05-07A-13
05-O7A-14
05-07A-15
05-08A-1
05-09A-1
0.1884
0.1383
0.1631
0.2772
0.168*
0.2*69
0.2771
0.0560
0.0691
O.0477
0.0550
0.0697
0.0756
0.0470
U.0551
3.0691
0.1411
0.1963
0.2526
0.2280
0.2800
0.2932
0.2609
0.2420
0.2041
0.1990
0.2450
0.2760
0.3071
0.3153
0.1578
0.1874
0.1871
0.2210
0.2154
0.3103
0.0445
0.3084
0.3104
0.3358
0.2417
0.3171
0.2898
0.2185
0.1878
0.1564
0.1289
0.0299
0.0157
0.0151
0.0106
48.0000
48.000O
50.5000
48.2500
47.2500
49.5000
46.5000
4B.7500
48.4500
49.150O
48.0000
48.2500
49.0000
48.OOOO
48.0000
48.7500
48.2500
49.0000
49.0000
48.5000
48.7500
49.3500
49.1500
48.0000
49.0000
47.5000
49.5000
50.7500
52.5000
53.7500
50.2500
49.7500
48.7500
50.0000
50.7500
50.5000
49.7500
49.7500
49.7500
49.7500
49.5000
50.2500
50.2500
49.7500
49.7500
49.5000
47.7500
49.5000
47.7500
50.2500
50.7*00
61V. 5000
617.5000
617.5000
622.5000
620.OOOO
617.50OO
617.5000
622.5000
600.0000
615.OOOO
59*1.5000
612.5000
619.0000
60V. 0000
602.50OO
601.5000
607.5000
602.5000
612.5OOO
612.50OO
607.5000
61O. OOOO
613.5000
614. OOOO
612.5C.OO
592.500O
622.5000
632.5000
600.0000
600.0000
6O2.500O
600.0000
602.5000
015.0000
615. OOOO
627.5000
617.5000
012.500O
622.5000
617.5000
626.0000
629.0000
625. OOOO
615.0000
612.5000
612.5000
604.0000
592.50OO
602.5000
635.0000
610.0000
3.4793
3.3770
3.2098
3.2577
3.5346
3.4731
3.6460
3.7281
3.8525
3.7900
3.9910
4.1739
4.1100
4.0933
4.0933
4.1311
4.07481
1.5445
1. 5449
1.5433
1. 5449
1.5385
1. 55b6
1.5358
1.5650
1.5452
1. 5402
1.5547
1. 5566
1.5549
1.5376
1.5522
1.5481
1.5442
1.5515
1. 5479
1. 5545
1.5520
1.5450
1.5420
1.5367
1.5450
1. 5436
1.5387
1.5348
1.5444
1.5451
1.5412
1.5313
1.5299
1.5316
1.5394
1.5351
1. 5384
1.5313
1.5218
1.5145
1.5364
1.533V
1.5339
1.5339
1.5456
1.5328
1.2302
1.5402
0.0162
0.0112
0.0162
0.0162
0.0151
0.0151
0.0151
0.018B
0.0188
0.0168
O.O183
0.0183
0.0183
C.0192
0.0192
0.0192
0.0099
O.OO99
0.0099
0.0099
0.0101
0.01O1
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0161
0.0181
0.0151
0.0151
0.0112
0.0112
0.0112
0.0119
0.0119
C.0122
0.0122
0.0122
0.0110
0.0110
0.0110
0.0110
0.0110
0.0131
0.0134
0.0115
0.0119
2
2
2
».
f.
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
i
2
i
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2/.5N
2
2
2
2
2
2
2
2
2
2
2
2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
05-O9A-i
05-09A-3
05-09A-4
05-09A-5
05-O9A-6
05-09A-7
05-09A-8
05-O9A-9
05-09A-10
05-O9A-11
05-09A-12
05-O9A-13
05-1 OA-1
05-10A-2
05-10A-3
05-10A-4
05-1 OA -5
05-108-1
05-10B-2
05-1 OB -3
05-1 OB -*>
05-10B-5
05-10B-6
05-1 OB -7
05-10B-6
05-1 1 A-l
05-11A-2
05-11 A -3
05-11A-4
05-11A-5
05-11A-6
05-11 A -7
05-11A-8
05-1 1 A -9
05-11A-10
05-llA-ll
05-11 A -12
05-1 IB-l
05-11B-2
05-1 1B-3
05-1 IB-*
05-11B-5
05-11B-6
05-1 IB -7
05-llB-«
05-llC-l
05-11C-2
05-1 1C -3
05-1 1C-*
05-11C-5
O5-11C-*
0.1841
0.1917
0.2191
0.2855
0.3287
0.3203
0.2912
0.2297
0.20*6
0.132*
0.1265
0.1*39
0.1271
0.1600
0.2102
0.268*
0.2348
0.01*0
0.017*
0.0202
0.025*
0.0313
0.0379
0.0*38
0.0*87
0.022*
0.0252
0.0135
0.0167
0.0193
0.0221
0.1165
0.1857
0.2379
0.0169
0.1138
0.1121
0.0166
0.2915
0.3191
0.2*21
0.1830
0.1583
0.1170
0.1358
0.1357
0.0675
0.1200
0.1773
0.2283
0.2900
*9.7500
50.2500
50.7500
50.7500
50.7500
50.5000
50.2500
50.7500
*8.7500
5O.2500
*9.7500
50.7500
*5.0000
*9.7500
50.7500
5O.2500
50.2500
49.5000
50.0000
50.2500
50.2500
*9.7500
50.0000
5C.2500
50.2500
50.0000
49.5000
50.2500
*9.7500
50.2500
50.7500
50.2500
50.2500
50.2500
*6.7500
50.7500
50.7500
50.7500
50.2500
51.2500
50.2500
49.2500
48.2500
49.2500
49.7500
49.2500
49.2500
50.2500
49.7500
50.0000
50.2500
.604.0000
606.0000
605.0000
596.0000
595.0000
572.5000
602.5000
607.5000
612.5000
61O.OOOO
610.0000
612.5000
605.5000
600.0000
604.5000
6O4.0000
604.5000
599.0000
587.0000
604.5000
603.5000
607.5000
608.0000
615.0000
605.0000
597.5000
619.5000
592.5000
605.5000
593.5000
59U.5000
602.0000
601.0000
603.OOOO
608.0000
606.5000
606.0000
596.0000
611.0000
615.0000
599.0000
599.5000
600.5000
603.0000
606.0000
596.5000
606.5OOO
605.0000
605.5000
600.5000
6O8.OOOO
5.0354
5.0831
5.0330
5.0330
5.4201
5.3497
5.2786
4.9362
5.1387
4.3988
4.6405
4.5490
5.5669
4. 7392
4.7*26
4.8876
4.8876
3.9693
3.9296
4.1056
4.1056
4.1468
4.1261
4.2033
4.2033
4.3226
4.3662
4.3011
4.3443
4.3011
*.2587
4.8876
5.1808
5.5718
4.5342
4.8394
4.7426
4.3555
5.3763
4.9839
5.1808
5.2860
5.3956
4.9868
4.9367
5.0865
•..6876
4.8876
5.2329
5.2067
5.1808
1. 5364
1.5332
1.5339
1.5432
1.5495
1.5720
1.5423
1.5387
1.5350
1.5351
1.5351
1.5293
1.5354
1.5108
1. 5394
1.5339
1.5391
1.5366
1.5628
1. 5408
1.5455
1.5418
1.5381
1.5353
1.5399
1.5563
1.5367
1.5543
1.5473
1.5561
1.5554
1.5525
1.5532
1.5541
1.5280
1.5462
1. 5469
1.5529
1.5389
1.5389
1.5478
1. 5543
1.5528
1.5502
1.5537
1.0565
1.6474
1.6440
1.6453
1.6541
1. 5454
0.0119 2
0.0119 2
0.0119 2
0.0119 2
0.0119 2
0.0127 2/.5N
0.0127 2/.5N
0.0127 2/.5N
U.0127 iY.5N
0.0127 2/.5N
0.0127 2/.5N
0.0127 2/.5N
0.0063 2/.5N
0.0063 2
0.0074 2
0.0066 2
0.0066 2
0.0082 2
0.0082 2
0.0082 2
0.0082 2
U.O084 *
O.0066 2
0.0086 2
0.0086 i.
0.0096 2
0.009* 2
0.0099 2
0.0099 2
0.0099 2
0.0099 i
0.0103 2
0.0103 2
0.0103 2
0.0149 2
0.0149 2
C.C141 2
0.0152 2
0.0146 2
O.0146 i
0.0146 2
0.0146 i
0.0151 i
0.0151 2
0.0151 2
0.0190 2
0.0181 2
0.0181 2
0.0181 2
0.0181 i
0.0281 2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
AIRFLU
SHX
FUEL
05-1 1C-7
05-11C-8
05-11C-9
05-11C-10
05-11C-11
05-1 1C -12
05-11C-13
05-11C-14
05-11C-15
05-HC-16
05-1 1C -17
05-1 1C -18
05-11C-19
05-11C-20
05-11C-21
05-11C-22
05 -11C -23
05-11C-24
05-11C-25
05-11C-26
05-1 1C -27
05-11C-28
05-1 1C -29
05-1 1C -30
05-11C-31
05-11C-32
05-11C-33
05-11C-34
05-11C-35
05-11C-36
05-12A-1
05-12A-2
05-12A-3
05-1 2A -4
05 -12 A -5
05-12A-6
05-12A-7
05-12A-8
05-12A-9
05-12A-10
05-12A-11
05-12A-12
05-12A-13
05-12A-14
05-1 2A -15
05-1 2A -16
05-12A-17
05-12A-18
05-12A-19
05-12A-20
05-12A-21
O.2678
0.1547
0.1811
0.2417
0.2972
0.2153
0.1044
0.2122
0.0732
0.1288
0.3180
0.0785
0.1501
0.2071
0.2697
0.0650
0.1110
0.2648
0.3295
0.2068
0.1414
0.2358
0.2966
0.0848
0.1435
0.2033
0.2640
0.1747
0.1132
0.2642
0.2012
0.2732
0.3515
0.4883
0.4216
0.3915
0.3526
0.3134
0.2924
0.2764
0.3108
0.4216
0.5742
0.3524
0.2490
0.2143
0.1798
0.1946
0.2138
0.1616
0.1434
49.2500
49.7500
49.7500
50.7500
50.7500
H9.7500
49.7500
50.0000
49.7500
50.0000
50.2500
48.7500
49.25OO
50.2500
50.7500
50.0250
50.7500
50.7500
49.7500
49.7500
49*2500
50.2500
50.7500
49.2500
50.7500
50.0000
50.7500
50.2500
50.7500
50.0000
49.7500
50.7500
50.7500
50.7500
51.7500
50.7500
49.2500
49.7500
50.5000
49.7500
50.0000
50.2500
50.0000
50.2500
49.5000
50.2500
50.2500
50.5000
50.7500
49.7500
49.5000
591.5000
609.00OO
599.0000
606.0000
602.5000
604.5000
602.5000
596.0000
598.0000
593.5000
601.0000
800.0000
81O.OOOO
80t>.5ooo
807.0000
804.0000
802.5000
801.5000
799.5000
804.0000
802.5000
796.0000
795.5000
793.0000
799.0000
801.5000
796.50OO
797.0000
798.SOOO
802.0000
600.00OO
597.5000
600.0000
608.00OO
550.5000
592.5000
602.0000
598.0000
603.5000
582.0000
800.500O
806.0000
804.5000
800.5000
803.0000
801.5000
804.00OO
805.0000
806.5000
801.0000
803.5000
5.3857
4.9367
5.2329
5.0330
5.4201
5.4303
4.7392
5.2067
4.9367
4.912C
5.4741
5.03Y9
5.1863
5.1808
5.3233
4.9095
4.8344
5.3233
5.7266
5.4303
5.1863
5.3763
5.5169
5.1863
4.9362
5.3O50
5.3233
5.2786
4.9362
5.4032
5.4303
5.2266
5.4201
5.4201
5.3154
5.6137
5.7847
5. 7266
5.3497
5.6278
5.7962
5.8651
5.8944
5.6696
5.5570
5.3763
5.1808
5.2524
5.2266
5.0354
5.0608
1.5420
1. 5430
1.5566
1.5399
1.3480
1.5501
1.5426
1.5521
1. 5492
1.5525
1. 5459
1.3938
1.3915
1.3978
1. -i930
1. 3967
1.4045
1.4045
1.40i7
1. 3999
1.4041
1.4103
1.4103
1.4092
1.4059
1.4033
1.4048
1.4024
1.4045
1.3980
1.5438
1.5419
1.5434
1. 5323
1. 5455
1.5503
1.5416
1.5477
1.5467
1.5677
1.3918
1.3850
1.3901
1.3925
1.3883
1.3883
1.3852
1.3864
1.3859
1.3852
1.3878
0.0281 2
0.0163 2/.5N
0.0163 2/.5N
0.0163 2/.5N
0.01<>3 2/.5N
0.0163 2/.5N
O.O163 2/.5N
0.0163 2/.5N
0.0163 2/.5N
0.0163 2/.5N
0.0163 2/.5N
0.0138 2/.5N
O.0138 2/.5N
0.0138 2/.5N
0.0130 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5M
0.0139 2/.5N
0.0139 2/.5N
0.0146 2
O.0146 2
0.0146 2
0.0146 2
0.0146 2
0.0146 2
0.0061 2
0.0076 M
0.0076 M
0.0076 M
0.0076 M
0.0076 M
O.O076 M
0.0076 M
0.0076 M
0.0076 M
0.0104 M
0.01O8 M
0.0108 M
0.0108 M
0.0108 N
0.0108 M
0.0108 M
O.O108 M
0.0108 N
0.0108 M
0.0108 M
0.0108 M
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
AIRF-LW
SHX
t-UEL
05-12B-1
05-1 2B -2
05-123-3
05-128-4
05-12B-5
05-12B-6
05-12B-7
05-128-8
05-12B-9
05-128-10
05-128-11
05-128-12
05-128-13
05-1 3A-1
05-13A-2
05-13A-3
05-13A-4
05-13A-5
05-1 3A -6
05-13A-7
O5-13A-8
05-1 3A -9
05-13A-10
05-1 3A -11
05-1 3A -12
05-1 3A -13
05-13A-14
05-13A-15
05-13A-16
05-13A-17
05-1 3A -18
05-13A-19
05-1 3A -20
O5-13A-21
05-13A-22
05-13A-23
O5-13A-24
05-13A-25
05-13A-26
05-13A-27
05-13A-29
05-14A-1
05-1 4A -2
05-14A-3
05-14A-4
05-14A-5
05-14A-6
05-14A-7
O5-14A-8
05-14A-9
05-14A-10
0.1696
0.2282
0.2589
0.2948
0.3464
0.4023
0.2109
0.1425
0.1700
0.2494
0.2871
0.3361
0.3789
0.1274
0.1623
0.1603
0.1919
0.220V
0.2809
0.3136
0.4120
0.3540
0.3023
0.2833
0.2389
0.2008
0.1686
0.3504
0.2761
0.1514
0.2008
0.2203
0.2445
0.2641
0.2851
0.3066
0.3325
0.4061
0.3590
0.2225
0.2933
0.1417
0.1676
0.2018
0.2392
0.2596
0.2753
0.3102
0.3309
0.3930
0.1256
49.7500
49.7500
50.0OOO
49.2500
50.COOO
50.0000
50.2500
49.7500
49.2500
49.7500
50.2500
50.7500
50.0000
50.2500
50.2500
50.2500
50.2500
49.7500
50.7500
50.7500
50.2500
50.7500
49.7500
49.7500
50.5000
50.2500
49.7500
49.7500
49.7500
49.75OO
50.0000
50.2500
50.0000
50.0000
50.0000
50.0000
50.5000
50.5000
50.0000
50.0000
50.7500
50.2500
50.0000
50.7500
50.0000
50.5000
50.2500
50.2500
50.7500
50.7500
50.2500
•601.00OO
597.0000
6O2.5OOO
606.0000
005.5000
606.5000
796.5OOO
797.5000
793.000O
784.0000
789.0000
788.0000
783.5000
602.5000
601.5000
606.5000
595.0000
608.0000
605.5000
598.0000
603.5000
606.50OO
613.5000
609.0000
609.5000
598.5000
602.00OO
601.50OO
596.0000
799.5000
801.5000
8O6.OOOO
808.0000
803.5000
801.0000
003.0000
803.0000
800.5000
801.0000
598.0000
595.0000
594.0000
606.0000
591.5000
59*. 5 000
605.0000
607.0000
602.0000
596.00OO
600.00OO
812.5000
5.2329
5.1341
5.1085
5.38S7
5.3050
5.3050
4.9853
4.9367
5.1863
5.3316
5.2786
5.*201
5.6979
4.3988
4.6921
4.8876
4.6921
4.8379
4.8394
4.9362
5.1808
5.1298
5.0354
5.0354
4.8634
4.6921
4.64O5
5.2329
5.0354
4.6405
4.7155
4.5943
4.7155
4.8138
4.8136
4.9120
4.8634
5.U579
5.1085
4.7155
4.9362
3.2258
3.6349
3.3876
3.4384
3.4044
3.5190
3.5190
3.4844
3.5812
3.2258
1. b365
1. 5436
1.5251
1.5338
1.5373
1.5392
1.3846
1.3833
1.3834
1.3916
1.3649
1.3877
1. 3948
1.5386
1.5506
1.5392
1. 5484
1.5399
1. 5432
1.5539
1.5355
1.5323
1.5216
1.5323
1.5314
1. 5406
1. 5445
1.5393
1.5429
1.3962
1. 3955
1. 3B87
1.3894
1. 3938
1.3957
1.3965
1. 3949
1.3976
1.3979
1.5594
1. 550U
1. 5469
1.5389
1.5509
1.5486
1.5444
1.5421
1.5443
1.5480
1.5473
1.3870
0.0108 M
0.0106 M
0.0108 M
0.0108 M
0.0108 H
0.0108 M
0.0108 M
0.0106 M
0.0108 M
0.0106 M
0.0108 M
0.0108 H
O.0108 H
0.0162 M
0.0162 H
0.0162 M
0.0162 H
0.0162 M
0.0162 M
0.0162 M
O.OO95 M
0.0095 H
0.0095 M
0.0095 M
0.0095 M
O.0095 M
0.0095 M
O.O095 M
0.0095 M
0.0086 M
0.0086 H
0.0086 M
0.0086 M
0.0066 M
0.0086 M
O.0086 H
0.0066 H
0.0086 M
0.0086 M
O.0086 M
0.00b6 M
0.0151 H
0.0151 H
0.0151 M
0.0151 H
0.0151 M
0.0151 H
0.0151 M
0.0151 H
0.0151 M
0.0159 M
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
fcQR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
to
05-14A-U
05-14* -12
05-14A-13
05-1 4* -14
05-14* -15
05-14A-16
05-15A-1
05-15A-2
05-15* -3
05-1 5A -4
05-15A-5
05-15A-6
05-15A-7
05-15A-8
05-15* -9
05-15A-10
05-15A-11
05-15A-12
05-15*-13
05-15A-14
05-15A-15
05-15A-16
05-1 6 A-l
05-16A-2
05-16A-3
05-1 6* -4
05-16A-5
05-1 6A -6
05-16A-7
05-16A-6
05-1 6A -9
05-17A-1
05-17A-2
05-1 7A -3
05-1 7A-4
05-17A-5
05-17*-*
05-17A-7
05-1 7A-8
05-1 7A-9
05-18A-1
05-18* -2
05-1 8 A -3
05-18A-4
05-1 8A -5
05-18A-6
05- 18* -7
05 -18* -3
05-18A-9
05-18A-10
05-19A-1
0.1725
0.2059
0.2517
0.2957
O.3415
0.3966
0.1361
0.1703
0.2007
0.2467
0.2875
0.3355
0.3978
0.3566
0.1232
0.1745
0.2059
0.2459
0.2922
0.3372
0.3902
0.3655
0.1464
0.1355
0.1341
0.1984
0.2269
0.2550
0.2843
0.3091
0.3106
0.0646
0.0705
0.1293
0.1939
0.2563
0.3248
0.2537
0.3193
0.2561
0.0826
0.0796
0.1396
0.2031
0.2657
0.3226
0.3531
C.0124
0.0786
0.1997
0.0
50.2500
50.2500
50.7500
50.2500
50.7500
50.7500
50.2500
50.2500
50.7500
50.7500
50.75OO
50.7500
50.5000
50.2500
50.0000
50.7500
50. 7500
50.7500
50.2500
50.7500
51.OOOO
49.7500
50.0.100
50.2500
50.2500
50.2500
50.2500
50.7500
50.75OO
50.5000
50.2500
49.2500
49.5000
50.0000
49.4OOO
50.2000
50.3500
49.6000
49.9500
49.6500
48.6500
49.6500
49.4500
49.VOOO
49.9000
50.1000
50.6000
101.7500
99.OOOO
100.3500
49.7500
794.5000
799.5COO
805.0000
804.500O
807.5000
609.50OO
605.0000
589.0000
598.5000
604.5000
603.0000
605.0000
603.5000
601.50OO
805.5000
805.0000
809.0000
811.5000
805.5000
803.5000
602.0000
803.0000
606.5vX»
588.5000
586.0000
596.5000
601.0000
603.0000
598.0000
599.5000
597.0000
609.50OO
614.50OO
612.5000
611.OOOO
611.0000
607.5000
6O8.5OOO
608.0000
607.5000
598.5000
59&.OOOO
599.5000
591.5000
605.5000
588.50OO
6O2.0000
605.5000
584.5000
591.0000
593.5000
3.4213
3.4213
3.2908
3.4213
3.3876
3.3876
3.9100
3). 9100
3. 6715
4.0651
4.1619
4.1619
4.1825
4.3968
3.9296
3.8715
3.8715
3.9683
4.O078
4.0651
3.948V
4.2455
5.3050
5.1808
5.1808
5.1808
5.2786
5.2266
5.4201
5.4470
5.5718
3.O457
3.4343
3.4OOO
3.8462
3.9841
3.9722
4.0323
4.8048
4.6324
3.6847
3.6254
4.0445
4.2084
4.4088
4.5908
4.5455
3.1450
3.535*
3.V660
2.8141
1.4042
1.3928
1.3918
1.392O
1.3922
1.3918
1.5429
1.5629
1.5503
1. 5470
1.5440
1.5429
1.5436
1.5479
1.3918
1.3879
1.3902
1.3697
I. 3928
1.3942
1. 3963
1.3950
1.5532
1. 5596
1.5693
1.5614
1.5546
1.5517
1.5580
1.5569
1.5580
1.5252
1.5223
1.5315
1.5340
1.5315
1.5280
1.5297
1.5268
1.5318
1.5311
1.5286
1.5254
1.5318
1.5257
1.5407
1.5351
2.9581
3.0069
3.0129
1.5376
0.0159 M
0.0159 M
0.0159 H
0.015V M
0.0159 H
0.0159 M
0.0161 H
0.0161 H
O.0161 M
0.0161 M
0.0161 M
0.0161 H
O.0161 M
O.Olbl M
0.0171 H
0.0171 H
0.0171 M
0.0171 M
0.0171 M
0.0171 H
0.0171 M
0.0171 H
O.0154 2
O.0154 'i.
0.0154 2
0.0154 2
0.0154 2
0.0154 2
0.0154 2
O.0154 2
0.0154 2
0.0087 2
O.0092 2
0.0092 2
0.0092 2
0.0092 2
0.0092 2
0.0092 2
O.OOV2 2
0.0092 2
0.0103 2
0.0101 2
0.0101 2
0.0101 2
0.0101 2
0.0101 2
0.0101 i
0.0101 2
0.0101 2
0.0101 2
O.O087 2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
tOR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
05-198-1
05-198-2
05-198-3
05-19B-4
OS-19B-5
05-198-6
05-198-7
05-19B-8
05-20*-!
05-2 0* -2
05-20* -3
05-20*-*
05-21A-1
05-21 A -2
05-21A-3
05-2 l*-4
05-21A-5
05-22A-I
05-22 A -2
05-22A-3
05-22A-4
05-22A-5
05-23A-1
05-23A-2
05-238-1
05-238-2
05-238-3
05-23B-*
05-23B-5
05-2 38 -6
05-238-7
05-238-8
05-238-9
05-23B-10
05-238-11
05-238-12
05-23B-13
05-238-14
05-238-15
05-236-16
05-238-17
05-2 3B -18
05-238-19
05-238-20
05-23B-21
05-238-22
05-2 HA -1
05-2 48 -1
05-2*8-2
05-2 5A-1
05-2 5A -2
0.1369
0.2659
0.3561
0.0865
0.154V
0.1525
0.1395
0.1899
0.0906
0.1163
0.1489
0.2313
0.1408
0.1520
0.1202
0.0984
0.0701
0.2087
0.2701
O.3195
0.3708
0.1522
0.0
0.0
0.2168
0.2873
0.3737
0.1550
0.0991
0.1268
0.1811
0.0919
0.1510
0.2000
0.2472
0.2076
0.1574
0.1018
0.4321
0.3039
0.2632
0.3460
0.3878
0.2173
O.1222
0.1674
0.0
0.1245
0.1525
0.1310
0.1669
50.0500
49.8500
*9.8500
125.6000
125.6000
124.8500
148.8500
150.6000
50.0000
50.0000
5O.COOO
50.0000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50 . OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
33.5000
33.7500
33.7500
33.5000
33.5000
33.5000
33.5000
125.0000
125.0000
126.5000
124.0000
50.0000
50.0000
50.3000
49.0000
50 . 5000
50.0000
50. OOOO
50.0000
50.0000
198.5000
197.0000
50.0000
50. OOOO
50.0000
50.0000
50.0000
599.5000
601.5000
603. OOOO
626.0000
591.5000
610.0000
596.5000
59*.5OOO
592.5000
609.5000
5VB.5GOO
549.0000
6O2.000O
605.0000
601.0000
60,:. OOOO
602.0000
591.0000
6O4.0000
598.0000
600.5000
602.0000
592.0000
591.5000
591.5000
589. OOOO
597.5000
602.0000
596.0000
595.5000
592.5OOO
575.0000
593*0000
591.0000
596.5000
585.0000
597.5000
593.5000
6C1.5000
595.0000
594.5000
594.5000
601.5000
596.0000
590.5000
616.0000
598.5000
596.0000
596.0000
597.5000
596.5000
3.1968
3.61O8
3.6108
2.3885
2.5*78
2.4830
2.8216
2.7888
2.6525
2.6525
2.7507
2.94V2
3.5366
3.5366
3.5366
3.5366
3.5366
3.1437
3.2419
3.3402
3.3402
3.3*02
2.B490
2 . 7507
4.8387
4.9464
5.2395
*.8387
4.5454
*.5454
4.8387
1.2800
1.4400
1.4229
1.4516
3.4000
3.4000
3.1809
3.6735
3.3663
3.4000
3 . 6OOO
3.8000
3.4000
0.6045
0.6599
2.8000
3.6OOO
3.8000
4.0000
*.2000
1. 1.345
1.5310
1.5273
i.4005
3.*293
3.3758
4.3814
4.3800
1.3712
1.3578
1. 3640
1.3601
1.3675
1. 3672
1.3710
1.3701
1.3713
1.5391
1.5312
1.5316
1.5305
1.5280
1. 5169
1.5162
1.5362
1.5387
1.5298
1. 5263
1.5295
1.5355
1.5373
2.6648
2.6753
2. 6483
2.6654
1.5311
1.5409
1.5438
1. 5330
1.5419
1.5419
1.5391
1.5351
1.5320
2.9238
2.7066
1.3279
1.3482
1.3525
1.3558
1.3621
0.0082
O.OO82
0.0082
0.0061
0.0061
0.0061
0.0066
0.0066
O.0110
0.011C
0.0110
0.0110
0.0069
0.0069
0.0069
0.0069
0.0069
0.0092
O.OO9*
0.0092
U.0092
0.0092
0.0096
0.0101
0.0106
0.0106
0.0106
0.0106
O.0106
0.0106
O.0106
0.0109
0.0109
0.0109
0.0109
0.010*
0.0104
0.0104
0.0104
O.0104
0.0104
0.0104
0.0104
0.0112
0.0112
0.0112
0.0103
O.O099
0.0099
0.0123
0.0123
2
f.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
«?
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
ECR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
05-25A-3
05-25A-4
05-2 5A -5
05-25A-*
05-2 5A -7
05-25A-8
05-2 5A -9
05-25A-10
05-26A-1
05-2 6A -2
05-2 6A -3
06-O1A-1
06-O1A-2
06-0 1A -3
06-O2A-1
06-02A-2
06-0 3A -I
06-O3A-2
06-03A-3
06-0 3A -4
06-v>4A-l
06-0 5A-1
06-05A-2
06-0 5A -3
06-0 5A -4
06-05A-5
O6-O5A-6
06-05A-7
06-05A-8
06-0 5A -9
06-0 5A -10
06-05A-11
06-0 5A -12
06-05A-13
06-0 5A -14
06-O5A-15
06-05A-16
06-O5A-17
06-O5A-18
06-0 5A -19
06-05A-20
06-05A-21
06-05A-22
06-05A-23
06-0 5A -2*
06-05A-25
06-0 5A -2 6
06-0 5A -2 7
06-0 5A -2 8
06-054-29
06-O5A-30
0.4052
0.3518
0.3066
0.2585
0.21 A3
0.1676
0.1298
0.4058
0.1553
0.2008
0.2617
0.1756
0.2478
0.3071
0.1756
0.2911
0.1724
0.2559
0.0880
0.1183
O.0659
0.0844
0.1190
0.1611
0.2251
0.2786
0.0539
0.0659
0.0783
0.0914
0.1278
0.1393
0.1521
0.1623
0.1911
0.1101
0.1169
0.1567
0.1880
0.2052
0.2192
0.2337
0.1248
0.0766
0.0895
0.1502
0.1331
0.1247
0.1151
0.0612
0.0475
50.0000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.OOOO
50.0OOO
49.7500
50.2500
50.7500
50.2500
50.2500
50.2500
50.5000
50.2500
47.7500
49.2500
49.0000
49.7500
50.0000
50.2500
50.5000
50.2500
50.0OOO
50.2500
50.0000
50.2500
5O.5000
50.7500
50.2500
50.7500
50.2500
49.2500
49.7500
50.0000
49.2500
49.7500
49.7500
49.7500
49.2500
50.2500
49.7500
50.0000
49.7500
49.7500
49.7500
50.5000
50.0000
595.5000
595.00OO
599.5000
598.5000
598.5000
59&.OOOO
600.0000
601.5000
604.0000
6OJ.OOOO
600.0000
610.5000
604.5000
607.5000
60B.OOOO
613.5000
610.5000
603.0000
662.5000
668.5000
632.5000
638.000O
643.5000
622.0000
616.5OUO
622.0000
652.OOOO
649.0000
654.0000
652.0000
643.0000
644.0000
643.5OOO
643.5000
643.0000
638.0000
605.5COO
636.0000
639.0000
639.5000
635.5000
640.0000
636.5000
643.0000
648.0000
649.5000
657.5000
656.5GOO
649.5000
621.0000
626.0000
5.0000
4.6000
4.6000
4.4OOO
4.4000
4.2000
•».oooo
5.0000
3.8775
3.80OO
3.8191
1.9550
1.9358
2.0526
1.8573
2.0528
1.9453
1.9550
2.0574
1.9947
5.1125
3.7519
3.7331
3.7145
3.7934
4.0078
2 . 7507
2.7370
2.7507
2.6348
2.82O8
2.8069
2.8348
2.9036
3.1260
2.7926
2.6658
2.7507
2.7926
2.7645
2.7645
2.7645
2.5931
2.3460
5.2329
5.6979
5.7266
5.7266
5.7266
5.2524
5.4032
1.3575
1.3596
1.3565
1.3572
1.3569
1.3556
1.3575
1.345V
1.5882
1. 5942
1.5852
1.5365
1.5446
1.5405
1.5273
1.5231
1.5269
1.5340
1.5318
1.5389
2.3052
1.5361
1.5294
1.5318
1.5315
1. 5308
1.5315
1.5336
1.5320
1.5315
1. 5334
1.5379
1.5376
1.5372
1.5350
1.5351
1.5605
1.5334
1.5326
1.5315
1. 5323
1.5281
1.5355
1. 5348
2.1947
2.1916
2.1645
2.1860
2.2173
2.2076
2. 2040
0.0123 i;
0.0123 i
0.0123 2
0.01<3 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0173 2
0.0173 2
0.0173 2
0.0094 M
0.0094 M
0.00*4 M
0.0073 M
O.OO73 M
0.0069 M
0.0069 M
0.0069 M
0.0069 M
0.0124 M
O.OO21 M
0.0021 M
O.C021 M
0.0021 M
O.0021 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0039 M
0.0036 M
0.0036 M
0.0036 M
0.0036 M
0.0036 M
0.0036 M
O.0036 M
0.0038 M
O.OO38 M
O.OO38 M
0.0038 M
0.0038 M
0.0038 M
0.0034 M
0.0034 M
»2
*2
+2
+2
»2
+2
+ 2
»2
+2
+2
»2
»2
»2
»2
»2
»2
»2
+2
»2
»2
+2
»2
»2
+2
»2
»2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EUR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
07-0 1A-1
07-02A-1
07-02A-2
07-02A-3
07-02A-4
07-02A-5
07-O2B-1
07-02B-2
07-02B-3
07-02B-4
07-02B-5
07-02B-6
07-O2B-7
07-02B-8
07-02B-9
07-O3A-1
07-03A-2
07-0 3A-3
07-03* -4
07-0 3A -5
07-0 3A-*
07-03A-7
07-03A-8
07-03A-9
07-03A-10
07-03A-11
C7-03A-12
07-O3A-13
07-03A-14
07-03A-15
07-03A-16
07-0 3A -17
07-O4A-1
07-0 5A-1
07-05A-2
07-05A-3
07-05A-4
07-0 6A-1
07-06A-2
07-O6A-3
07-06A-4
37-O6A-5
07-0 6A -6
07-06A-7
07-O6A-8
07-0 6A -9
07-06A-10
07-0 6A -11
07-O6A-12
C7-06A-13
07-07A-1
0.0
0.2074
0.22!>1
0.2718
0.2529
0.2210
0.2071
0.1 744
0.1661
0.2688
0.2668
0.2369
0.3272
0.2983
0.20*4
0.2357
0.2140
0.2*19
0.2237
0.2000
0.1789
0.1920
0.2353
0.2166
0.2012
0.2319
0.2002
0.2013
0.2854
0.2812
0.3065
0.3161
0.2125
0.2529
0.2291
0.2237
0.2165
0.2573
0.2370
0.2154
0.2096
0.2049
O.1966
0.1890
0.1771
0.2625
0.2420
0.2219
0.2009
0.1883
0.2460
50.OOOO
50.OOOO
50.0000
50.COOO
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.9000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
6O3.50OO
603.5000
606.0000
604.0000
548.5000
602.5000
598.5000
599.5000
59V.5000
5V9.5000
601.0000
604.0000
601.5000
599.00OO
599.5000
601.5000
600.5000
600.0000
599.000O
604.5000
603.5000
603.5000
6O4
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EGR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
O5
07-O7A-2
07-O7A-3
07-0 7A-4
07-07A-5
07-O7A-6
07-07A-7
07-0 7A-6
07-0 7A -9
07-07A-10
07-07A-11
07-07A-12
07-07A-13
07-O7A-14
07-O7A-15
07-07A-16
07-07A-17
07-07A-18
07-O7A-19
07-07A-20
07-O7A-21
07-0 7A -22
07-07 A-2 3
07-07A-24
07-0 7A -2 5
07-07A-26
07-07A-27
07-07A-28
07-O7A-29
07-O7A-30
07-07A-31
07-O7A-32
07-07A-33
07-07A-34
07-O7A-35
07-O7A-36
07-07A-37
07-07A-38
07-07A-39
07-07A-40
07-O7A-41
07-O7A-42
07-07A-43
07-07A-44
07-J7A-45
07-07A-46
07-07A-47
11-01A-1
11-O1A-2
11-01A-3
I1-02A-1
11-03A-1
0.2261
0.203b
0.1857
0.2699
0.2469
0.2232
0.1991
0.1997
0.1876
0.1743
0.1668
0.1603
0.1565
0.2540
0.2277
0.2113
0.2049
0.1909
0.1748
0.1646
0.1811
0.1731
0.1661
0.1580
0.1516
0.2980
0.2833
0.25B8
0.2372
0.2134
0.2046
0.1934
0.1832
0.1727
0.1660
0.1586
0.1459
0.1779
0.1649
0.1523
0.1473
0.1424
0.2344
0.2125
0.1964
0.1334
0.2828
0.3855
0.2497
0.0
0.0067
50.0000
50.OOOO
50.0000
50.0000
50.OOOO
50.0000
50.0000
99.0000
99.5000
99.5OOO
101.0000
100.0000
100.0000
50.0000
50.0000
50.0000
50.0000
50. 000 C
50.0000
140.0000
141.5000
141.5OOO
142.0OOO
142.0000
144.0000
50.0000
49.7500
49.OOOO
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
09.5000
4V. 0000
99. 5000
100.2500
99.2500
99.0000
98.2500
49.0000
50.0000
49.7500
48.0OOO
49.6000
49.8500
49. 5000
50.5000
49.6000
610.0000
60 3. 51*00
600.5000
603.5000
602.00OO
605.500O
59*.0000
602.5000
597.5000
600.500O
600.0000
601.5000
601.5000
599.0000
600.5000
6O5.0000
600.5000
598.5000
602.0000
599.0000
607.0000
597.5000
601.5000
594.5000
596.0000
807.00OO
808.5000
804.50OO
800.0000
798.0000
805.0000
810.0000
893.0000
798.5000
802.0000
804.5000
805.0000
804.0000
8O3.5000
803.5000
803.0000
800.0000
812.0000
799.0000
8O3.500O
805.5000
597.0000
597.0000
794.0000
592.0000
609.0000
7.0000
7.0000
7.2000
6.4000
6.4000
0.6000
6.4000
3.5354
3.6181
3.7186
3.6634
3.7000
3.3000
4.2000
4.4000
t.4000
4.2000
<».2000
4.2000
4.1429
4.0283
4.0283
4.0845
3.9437
3.8194
5.8000
5.8291
5.9184
5.6000
5.60CO
5.4000
5.4545
5.2000
5.2000
5.2000
5.2525
5.1020
3.7186
3.5910
3.6272
3.6364
3.6641
3>.87Y5
3.6000
3.6181
3.5417
4.6545
*.9268
2.5800
2.9180
7.6255
1.0953
1.1117
1. 1081
0.9998
1.0082
1.0204
1.0373
1.6638
1.6595
1.6674
1. 6666
1.680V
1.6691
0.6140
0.8157
0.8183
0.8018
0.8151
0.8154
2.6460
2.6340
2.6339
2.6222
2. 6297
2.6056
0.9016
0.8744
0.6761
0. 8675
0.8667
0.8626
0. 8685
0.8695
O. 8711
0.84*2
O.S380
0.8219
1.5095
1.4995
1.4867
1.4797
1.4714
0.6965
0.6671
0. 6547
0.6632
1. 34t>9
1.3459
1.1128
1.0757
1.1957
0.0129 2
0.0129 2
0.0129 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0151 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0163 2
0.0020 2
0.0020 2
0.0038 2
0.0029 2
O.OO67 i
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
ECR
PT3
TT3
LPL
AIRFLW
SHX
FUtL
X1-04A-1
11-05A-1
11-O6A-1
11-0 6A-2
11-07A-1
11 -07 A -2
11-08A-1
11-08A-2
11-O8A-3
11-0 8A -4
11-09A-1
11-O9A-2
11-10A-1
11-10A-2
11-10A-3
11-11A-1
11-12A-1
11-12A-2
11-12A-3
14-0 1A-1
14-01A-2
14-O1A-3
14-0 2A-1
14-0 2A-2
14-02 A -3
14-O2A-4
14-02A-5
14-02A-6
14-02A-7
14-02A-6
16-OIA-1
16-01A-2
16-01 A -3
16-0 IB -1
16-02A-1
16-02A-2
16-02* -3
16-O3A-1
16-03A-2
16-0 3*-3
18-O1A-1
18-0 1A -2
18-0 1A-3
18-O1A-4
18-01A-5
18-31A-6
18-0 1A-7
18-01A-8
18-O1A-*
18-0 1A -10
18-01A-11
0.0187
0.2132
0.0
0.3372
0.0
0.0
0.1387
0.1912
0.2497
0.3086
0.0
0.0
0.1576
0.1235
0.0926
0.0262
0.3461
O.3246
0.2969
0.1359
0.1428
0.1326
0.3550
0.2251
0.2805
0.3187
0.3735
0.3059
0.2354
0.3447
0.2684
0.2466
0.2601
0.2483
0.2563
0.2360
0.2183
0.2629
0.2420
0.2171
0.1493
0.2114
0.2779
0.3431
0.3767
0.1493
0.2086
0.3744
0.2492
0.3452
0.3858
48.8500
50.0000
49.7500
61.5000
49.2500
45.0000
50.2500
49.5000
49.7500
49.7500
50.0000
50.0000
55.OOOO
55.2500
56.5000
49.0000
50.0000
49.0OOO
50.5000
14.7000
14.7000
5O.2500
64.5000
50.5000
50.7500
50.OOOO
50.7500
50.0000
50.0OOO
49.7500
49.0000
50.0000
49.7500
48.7500
49.7500
48.7500
49.7500
49.7500
49.2500
49.7500
50.0000
50.OOOO
49.5000
50.5000
50.0000
49.0000
50.OOOO
50.OOOO
50.0000
50.0000
50.0000
610.OOOO
600.0000
606.5000
616.0000
81.0000
594.5000
597.00OU
592.5000
603.5000
602.0000
601.5000
602.5000
608.50OO
599.5000
599.5000
606.0000
606.5000
6O5.0000
003.5000
119.5000
501.5000
607.0000
612.5000
606.5000
611.5000
617.0000
599.0000
605.0000
605.0000
602.0000
600.0000
595.5000
600. O 000
608.0000
604.5000
6OO.OOOO
606.0000
60*. 5000
598.5000
806.0000
600.50JO
605.0000
596.0000
600.5000
601.0000
603.0000
601.0000
604.0000
601.0000
6G3.0000
605.5000
5.0276
4.9120
*.9367
1.99o7
4.8871
5.67ol
3.7145
3.6716
3.8506
3.9493
2.V472
1 . 96*8
2.0541
2.0448
1.9996
3.*083
2.9472
3.0073
2.8208
0.6683
0.6683
2.6393
1.9039
2.9160
3.O004
3.1437
3.1940
2.8490
2.7507
2.96^0
3.9095
3.8314
3.6506
••.2319
3.8506
3.9296
3.6531
4.4*30
4.4881
5.4303
3.2000
3.4000
3.4343
3.3663
3.4OOO
3.2653
3.4OOO
3.6000
1.2000
1.2000
1.2000
O. 9885
0.9685
0. 7926
0.8036
2.1710
1.4319
1.4063
1.4366
1.4217
l.*190
1.9526
1.6892
1.3803
1.3858
1.38*5
1.0625
1.2712
1.2595
1.2621
0. 3328
0.3156
1.6990
1. 6666
1.8747
1. 87O6
1.6640
1.8837
1.7582
1.7065
1.7085
1.0559
1.0373
1.0407
1. 0697
1.0871
1.0898
1.0809
1.0572
1.06O6
0.9873
1.275*
1.2764
1.27*7
1.2773
1.2733
1.2733
I.i744
1.2813
0.7624
0.7203
0. 7207
0.0040 «.
0.0117 2
0.0156 2
0.0156 2
O.OOV3 t.
0.0099 G
0.0136 G
O.0136 G
0.0136 G
0.0136 G
0.0151 G
0.0157 G
0.0147 G
0.0147 G
0.0147 G
0.01*2 2
O.OObb 2
0.0068 2
0.0088 i
0.0094 M
0.0094 H
0.009* M
0.0094 M
0.0117 M
0.0117 M
0.0117 M
0.0117 M
0.0117 M
0.0117 M
0.0117 M
0.0188 2
0.0188 2
C.0188 2
0.0185 2
0.0172 2
0.0172 2
0.0172 2
0.0158 i
0.0158 2
0.0158 2
O.O123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
0.0123 2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
ECR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
QO
26-0 1A-1
26-02A-1
26-02A-2
26-02A-3
26-02A-4
26-02A-5
26-02A-6
26-02A-7
26-02A-8
26-02A-9
26-02A-10
26-03A-1
26-0 3A -2
26-0 3A-3
26-O3A-4
26-0 3A -5
26-0 3 A -*
26-03A-7
26-0 3A -8
26-O3A-9
26-03A-10
28-0 1A-1
28-0 1A-2
28-01A-3
28-0 IA-4
28-OIA-5
28-0 1A-6
28-01A-7
28-02A-1
28-O2A-2
28-02A-3
28-02A-4
28-02A-5
28-02A-*
28-0 3A-1
28-0 3A -2
iB-J3A-3
28-0 aA-4
28-0 3A -5
28-0 4A -6
28-05A-1
28-05A-2
28-05A-3
2B-O5A-4
28-05A-5
2B-O5A-6
28-05A-7
28-05A-8
2B-05A-9
2 8 -05 A -10
28-05A-U
0.0
0.3700
0.3914
0.4466
0.4658
0.4987
0.4711
0.4193
0.3634
0.4511
0.3921
0.36B4
0.2905
0.3382
0.3640
0.2700
0.3677
0.3351
0.2692
0.2864
0.4004
0.1385
0.2315
0.2776
0.3254
0.3726
0.4000
0.4347
0.1698
0.2151
0.2689
0.3225
0.3773
0.4238
0.1773
0.2377
0.2982
0.3593
0.4203
0.0
0.1649
0.2177
0.2766
0.3334
0.3978
0.1566
0.1998
0.2573
0.3159
0.3734
0.4327
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
49*5000
50.0000
49.0000
50.0000
49.50OO
50.0000
44.7500
45.75OO
45.7500
45.750O
45.2500
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.8500
49.8500
49.8500
49.8500
49.8500
49.&500
50.0000
49.7500
49.7500
•>o.oooo
50.0000
49.0000
49.5000
48.7500
49.5000
50.2500
49.7500
49.0000
49.2500
49.7500
49.7500
49.7500
49.5000
599.0000
6O0.5000
599.0000
602.0000
601.0000
603.0000
601.0030
604.5000
603.5000
887.0000
892.0000
60B.OOOO
609.5000
606.00OO
6Ob.5000
606.0000
602.5000
599.5OOO
610.5000
612,5000
580.5000
603.0000
599.5000
598.5000
600.0000
601.0OOO
598.0000
604.0000
603.0000
602.0000
599.5000
601.00OO
603.5000
602.0OOO
602.0000
597.0000
594.5000
601.0000
599.5000
601.00CO
604.0OOO
598.5000
602.5000
596.0000
599.5000
60*.5000
602.0000
602.0000
604.0000
602.0000
603.00CO
3.8314
6.4838
6.6803
6.6803
7.2698
7.5645
6.3509
6.4838
6.4838
6.2874
5.5570
7.4662
4.6113
4.7155
5.2593
4.1261
5.0492
6.2272
4. 0799
2.1473
1.3026
4.0000
4.6000
4.0OOO
4.8000
f -8OOO
5.OOOO
5.0000
5.0150
5.6169
5.6169
5.8175
5.6169
5.6169
5.6000
6.0302
6.2312
6.2000
6.4000
4.0816
4.4444
4.9231
5.J505
4.9751
5.2261
4.4898
4.8731
5.0251
5.0251
5.2261
5.4545
0.6115
0.5416
0. 5639
0.5398
0.5613
0.5650
0.5038
b. 3159
0. 5370
0. 3989
0.4061
0.5643
0. 6000
0. 5899
O.oOt.9
0.5841
0.4364
O.4146
0. 4365
0.3189
0.2353
1.3456
1.3488
1.3517
1. 3475
1.3444
1.3549
1.3409
1.2251
1. 2407
1.2407
1.2306
1.2263
1.2376
1.3852
1.3865
1.3832
1.3819
1.3799
1.3679
1.3612
1.3797
1.3655
1.3755
1.3745
1.3939
1.3761
1.3764
1.3751
1. 3775
I. 3740
0.0113 2
0.0117 2
0.0117 2
0.0117 2
0.0117 2
0.0117 2
0.0117 2/.5N
0.0117 2/.5N
O.O117 2/.5N
0.0117 2
0.0117 2
0.0108 P
0.0108 P
0.0108 P
0.0108 P
0.0108 P
0.0053 2
0.0053 2
0.0053 2
0.0053 2
0.0053 P
0.0145 2
0.0145 2
0.0145 2
0.0145 2
O.O145 i
0.0145 2
0.0145 2
0.0157 i
0.0157 2
0.0157 2
0.0157 2
0.0157 2
0.0X57 2
0.0172 2
0.0172 2
0.0172 2
0.0172 i
0.0172 2
0.0165 M
0.0152 H
0.0152 M
0.0152 M
O.O152 M
0.0152 H
0.0176 M
0.0176 H
0.0176 M
0.0176 H
0.0176 M
0.0176 H
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
AIRFLU
SHX
FUEL
CO
28-05A-IZ
28-05A-13
28-O5A-14
28-06A-1
28-06A-2
28-O6A-3
28-06A-4
2 8-0 6* -5
28-06A-6
2B-06A-7
28-O6A-8
28 -07 A-l
28-O7A-2
2B-07A-3
28-07A-*
28-07A-5
28-O7A-6
28-07A-7
28-O7A-*
28-O7A-9
29-0 1A-I
29-OIA-2
29-O1A-3
29-O1A-4
29-0 2A-1
29-02A-2
29-02A-3
29-02A-4
29-02A-5
29-0 2A -6
29-02A-7
29-O2A-8
29-02A-*
29-OZA-10
29-02 A -11
29-02A-12
29-02 A -13
29-02A-14
29-J3A-1
29-O3A-2
29-O3A-3
29-03A-4
29-03A-5
29-0 3A -6
29-O3A-7
29-O3A-8
29-O3A-9
29-03A-10
29-O3A-11
29-0 3A -12
29-O3A-13
0.4619
0.4915
0.2002
0.1523
0.1927
0.2480
O.3039
0.3579
0.4131
0.4484
0.3065
0.1518
0.196!>
0.2524
0.3091
0.3655
0.4214
0.4465
0.4347
0.1980
0.3242
0.4038
0.2448
0.1832
0.2490
0.1679
0.1482
O.1055
0.0779
0.3040
0.3616
0.2491
0.3081
0.1893
0.1266
0.0778
0.0544
0.1303
0.2104
O.2686
0.3079
0.3465
0.0855
0.1270
O.1712
0.0538
0.1895
0.1913
0.2286
0.2656
0.3057
50.0000
50.0000
49.7500
50.2500
50.2500
50.2500
49.250O
48.7500
49.2500
49.2500
49.25OO
50.2500
50.0000
50.0000
50.2500
49.7500
50.0000
50.0000
49.5000
5O.OOOO
49.2500
50.it.00
49.2500
49.2500
50.2500
49.7500
50.2500
49.5OOO
50.2500
50.0000
49.7500
49.7500
50.2500
49.7500
49.2500
49.7500
49.2500
50.2500
50.2500
50.2500
50.2500
50.2500
49.7500
49.7500
5O.2500
49. 7500
50.0000
50.2500
50.0000
49.7500
49.7500
603.0000
606.5000
595.0000
597.5000
605.0000
599.5000
603.5000
604.5000
596.50OO
602.0000
604.5OOO
607.5000
599.0000
599.0000
605.0000
603.0000
599.5OOO
595.0000
597.5000
602.0000
603.5000
603.5000
59B.5OOO
600.0000
596.50OO
600.00OO
598.5000
6O1.OOOO
601.5000
602.5000
600.0000
604.0000
59b.5GOO
603.0000
603.50OO
600.50OO
602.5000
603.5000
6O1.000O
603.5000
602.0000
603.00CO
59 tt. 0000
597.5000
600.000O
601.00OO
595.0000
602.0000
6O6.0000
602.5000
604.5000
5.4000
5.4000
4.6231
3. 9601
3.9801
4.1791
4.4670
4.5128
4.4670
4.4670
4.2640
5.3731
5.6000
5.8000
5.7711
6.2312
6 . 2OOO
£.2000
6.2626
5.6OOO
5.1863
5.1808
4.9868
4.9868
4.6921
4.9367
4.4966
4.5647
4.3011
5.0102
5.1341
4.6405
4.6921
4.8379
4.6876
«..3443
4.3834
4.2033
4.6921
4.7898
4.8876
4.9853
4.3443
4.3443
4.4966 '
4.2455
4.4208
4.8876
5.1085
5.2329
5.2329
1.3756
1.3761
1. 3733
1.3651
1.3710
1.3721
1.3709
1.3782
1.3876
1.3636
1.3666
1.3768
1.3738
1.3774
1.3772
1.3788
1.3801
1.3893
1.3824
1.3777
1.1292
1.1258
1.1358
1.1705
1.1185
1.1429
1.1375
1.1441
1.1363
1.1310
1.1361
1.1234
1.1227
1.1406
1.1445
1. 14*6
1.1419
1.1087
1.1181
.1165
.Ilo5
.1203
.1415
.1328
.1294
.1476
.1308
1.1317
1.1328
1.1382
1.1341
0.0176
0.0176
0.0176
0.0146
0.0146
O.O146
O.O146
O.0146
O.O146
0.0146
O.O146
0.017C
O.O170
0.0170
0.0170
0.0170
0.0170
0.0170
0.0170
0.0170
0.0165
0.0165
a. 0165
0.0165
0.0167
0.0167
0.0167
0.0167
0.0167
O.Olo?
0.0167
0.0103
0.0103
0.0103
0.0103
0.0103
O.O103
0.0103
0.0152
0.0152
0.0152
0.0152
0.0152
0.0152
O.0152
0.0152
0.0152
0.0168
O.0168
0.0168
0.0168
M
M
H
M
M
M
M
M
M
M
M
M
H
H
M
M
M
M
h
M
2
2
2
2
'/
2
2
2
2
2
4.
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
29-03A-14
29-03A-15
29-03A-16
29-0 3A -17
29-03A-18
29-04A-1
29-O4A-2
29-04A-3
29-0 4A-4
29-0 *A -5
29-0 AA -6
29-0 4A-7
29-04A-8
29-O4A-9
29-O5A-1
29-05A-2
29-05A-3
29-05A-4
29-O5A-5
29-0 5A -6
29-O5A-7
29-0 5A-8
29-05A-9
29-0 6A-1
29-06A-2
29-06A-3
29-0 6A -4
29-O6A-5
29-06A-6
29-0 6A-7
29-O6A-8
29-06A-9
29-06A-10
29-0 6A -11
29-06A-12
29-O6A-13
29-06A-14
29-O6A-15
29-O6A-16
29-06A-17
29-06A-18
29-07A-1
29-0 7A -2
29-0 7A -3
29-07A-4
29-07A-5
29-08A-1
29-O8A-2
29-0 8A-3
29-0 8 A -4
29-0 8A -5
0.3474
0.1397
0.1067
0.0790
0.0551
0.0911
0.1265
0.1635
0.1269
0.1729
0.2098
0.2*75
0.2873
0.3220
0.0868
0.1289
0.1735
0.2108
0.2463
0.2861
0.3244
0.3647
0.2258
0.1265
0.1706
0.2076
0.2442
0.2825
0.3216
0.1297
0.1749
0.2123
0.2497
0.2889
0.3261
0.3663
O.Z285
0.1917
0.2388
0.1071
0.2473
0.1767
0.2144
0.2484
0.2902
0.3488
0.1729
0.2096
0.2484
0.2862
0.3297
49.7500
49.7500
50.0000
*9.250C
49.7500
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
50.0000
49.5000
49.5000
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
49.5000
49.5000
5O.OOOO
50.2500
50.0000
50.0000
49.7500
49.7500
50.0000
50.0000
50.0000
49.5000
49.5000
49.7500
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
49.5OOO
49.0000
49.5OOO
49.0000
603.5000
601.OOOO
604.5000
607.0000
605.5000
605.0000
6O3.5OOO
599.0000
591.5000
598.5COO
602.0000
602.5000
6O3.OOOO
600.0000
604.0000
60t.OOOO
600.0000
599.0000
598.5000
6O1.0000
602.0000
602..0000
596.0000
595.0000
598.5OOO
600.5000
597.5000
599.5000
599.5000
597.5000
600.0000
599.5000
600.0000
603.0000
599.0000
596.0000
594.5000
599.5000
599.0000
597.5000
593.0000
604.0000
601.5000
601.5000
599.0000
595.0000
610.5000
604.0000
6O6.50OO
605.5000
610.5000
5.3316
4.5417
4.4208
4.3884
4.3443
3.8314
3.9296
4.1261
3.8314
3.9296
4.1261
*.2670
4.3226
4.5647
3.7708
3.7331
3.9296
4.0278
4.3226
4.4655
4.56*7
4.7155
4.4208
4.0685
4.2243
4.4208
4.5190
4.7632
4.7632
4.2243
4.3011
4.4208
4.6173
4.8379
4.9367
5.0102
4.6173
4.4208
4.6639
4.2670
4.5417
3.4384
3.6349
4.0278
4.0278
4.1261
4.5190
4.7632
5.2127
5^0608
5.2127
1.1271
1. 142B
1. 1379
1. 128b
1.1290
1.1318
1.1320
1.1407
1.1369
1.1215
1.1245
1.1252
1.1210
1.1374
1.1275
1.1192
1. lib?
1.1201
1.1227
1.1264
1.1314
1.1267
1.1367
1.1368
1.1331
1.1339
1.1382
1.138*
1.1374
1.1178
1.1146
1.1168
1.1216
1.1221
1. 1305
1.1287
1.1304
1.1258
1.1261
1.1314
1.1300
1.1O63
1.1091
1. 1303
1.1191
1.1231
1.1292
1.1335
1.1298
1.1351
1.1210
0.0168 2/.5N
O.O168 2/.5N
0.0168 2/.5N
0.0168 2/.5N
0.0168 2/.5N
0.0172 2
0.0172 2
0.0172 2
0.0167 2
0.0167 2
0.0167 2
0.0167 2
0.0167 *
0.0167 2
0.0174 2
0.0174 2
0.017* 2
0.0174 2
0.0174 i
0.0174 2
0.017* 2
0.0174 2
0.0174 2
0.0160 2
0.0160 2
O.OlbO 2
0.0160 2
0.0160 2
0.0160 2
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5M
0.0172 2/.5N
O.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.0194 2/.5N
0.0194 2/.5N
0.0194 2/.5N
O.O194 2/.5N
0.0194 2/.5N
0.0150 2/.5N
O.0150 2/.5N
O.0150 2/.5N
0.0150 2/.5N
0.0150 2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCH6ME
fcQR
PT3
TT3
LPL
AIR FLU
SHX
FUEL
29-08A-6
Z9-O8A-7
29-08A-B
29-09A-1
29-O9A-2
29-O9A-3
29-O9A-4
29-09A-5
29-O9A-6
29-O9A-7
29-09A-8
29-O9A-9
29-09A-10
29-09A-11
29-O9A-12
29-O9A-13
29-09A-14
29-09A-15
29-09A-16
29-09A-17
29-O9A-18
29-O9A-19
29-O9A-20
29-09 A -2 I
29-09A-22
29-O9A-23
29-O9A-24
29-10A-1
29-10A-2
29-10A-3
29^10A-4
29-1 OA -5
29-1 OA-6
29-1 OA -7
29-10A-8
29-10A-9
29-10A-10
29-10A-11
29-10A-12
29-IOA-13
29-10A-14
29-10A-15
29-10A-16
29-10A-17
29-10A-18
29-10A-19
29-1 OA -20
29-10A-21
29-1 OA -2 2
29-10A-23
29-10A-24
0.2290
0.1270
0.0869
0.1715
0.2105
0.2489
0.2877
0.3270
0.1704
0.1988
0.2553
0.2795
0.3172
0.3550
0.2520
0.2912
0.3321
0.3722
0.2196
0.1877
0.1385
0.1041
0.2052
0.2802
0.3197
0.3586
0.2995
0.1477
0.1814
0.2154
0.2490
0.2826
0.1673
0.2042
0.2374
0.2733
0.3197
O.2578
0.2923
0.3339
0.2065
0.1716
0.2352
I). 2662
0.3090
0.1905
0.25C8
0.2957
0.3393
0.2337
0.2123
48.7500
49 . 5OOO
50.0000
49.5000
50.5000
50.0000
49.5000
50.7500
50.0000
50.0000
50.OOOO
50.UOOO
49.5000
50.0000
49.5OOO
50.OOOO
H9.0000
50.0000
50.0000
50.2500
49.OOOO
50.0000
50.0000
49.5000
50.0000
49.0000
50.5000
49.5000
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
49.5000
49.5000
49.5000
49.2500
49.5000
49.0000
49.5000
49.5000
50.0OOO
5O.OOOO
50.0000
49.0000
49.0000
49.0000
49.OOOO
49.5000
602.0000
• 596.5000
59V.OOOO
6O7.00OO
609.000O
609.0000
610.0000
608.500O
614.0000
620.5OOO
624.5000
61 V. 0000
622.5000
615.5000
621.0000
618.5000
618.0000
613.5000
617.00OO
619.5000
613.0000
611.5000
620.0000
622.0000
624.0000
621.5000
623.0000
613.0000
611.0000
614.5000
614.0000
611.5000
612.OOOO
613.5000
617.0000
613.5000
613.0000
739.0000
740.5000
739.0000
733.5000
727.5000
680.0000
661.OOOO
672.0000
657.0000
664.0COO
665.0000
662.0000
661.OOOO
666.5000
4.9372 1
4.5647 1
4.2243 1
4.4655 1
4.1825
4.3226
4.4655
4.2587
3.*296
4.2243
4.51VO
4.6173
4.6639
4.7155
4.5647
4.6173
4.7115
4.6173
4.3226
4.0078
3.8093
3.5366
4.1261
4.3662
4.42O8
4.7115
4.2798
5.2593
5.2067
5.1085
5.1085
5.1601
3.8314
4.1261
4.2243
4.3662
4.3662
4.1678
4.2886
4.3662
4.1100
3.9693
4.2670
4.3226
4.3226
3.9296
4.5110
4. 5110
4.3105
4.4106
4.1678
. 1317
.1451
.1340
.1)826
.0617
.0816
.0829
.0806
.0903
.1452
.0559
.1142
.1145
.1139
.1157
.1163
.1140
.1148
.1152
.1158
.1144
.1135
.1604
.1605
.1670
.1564
.1595
.2534
.2515
.24b3
.2476
.2472
.1089
.1139
.1344
.1389
.1049
.0441
.0641
.0573
.1012
.0798
.1433
.1588
.1413
.1926
.1466
.1487
1.1439
1.1544
1.1473
0.0150
O.O150
0.0150
0.0167
0.0167
0.0167
0.0167
0.0167
0.0167
0. 0167
0.0167
0.0167
0.0167
0.0167
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
0.0175
11.0175
0.0172
0.0172
0.0172
0.0172
0.0172
0.0176
0.0176
0.0176
0.0176
O.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
U.0176
0.0176
0.0176
0.0161
0.0161
0.0161
0.0161
0.0161
2/.5N
2/.5N
2/.5N
2
2
2
£.
2
2
4.
2
2
£.
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2
2
2
2
2
2
«^
2
2
<;
2
2/.5N
2/.5M
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
tOR
PT3
TT3
LPL
AIRPLW
SHX
FUEL
to
to
29-10A-25
29-10A-26
29-10A-27
29-10A-28
29-10A-29
29-10A-30
29-11A-1
29-118-1
29-11B-2
I9-12A-1
29-1 2A ~2
29-12A-3
29-12A-4
29-12A-5
29-12A-6
29-12A-7
29-12A-8
29-12A-^
29 -12 A -10
29-13A-1
29-1 3A -2
29-1 3A -3
29-13B-1
29-13B-2
29-13B-3
29-138 -4
29-1 3B -5
29-13B-6
29-13B-7
29-138 ~0
29-13B-9
29-1 3B -10
29-14A-1
29-1 4A -2
29-14A-3
29-14A-4
29-14A-5
29-14A-6
29-14A-7
29-14A-8
29-14A-9
29-1 4A -10
29-14A-11
29-14A-12
29-15A-1
29-15A-2
29-15A-3
29-15A-4
29-15A-5
29-15*-*
29-15A-7
0.1269
0.1496
0.2025
0.2113
0.2430
0.2504
0.0
0.3567
0.3639
0.2685
0.2847
0.3018
0.3246
0-2578
0.3015
0.2830
0.2683
0.2527
0.3478
0.1687
0.2073
0.2946
0.2452
0.2117
0.1708
0.1275
0.1009
0.1754
0.0894
0.1295
0.2188
0.2597
0.2305
9.1861
0.1647
0.1271
0.2579
0.1436
0.1735
0.2124
0.2552
0.1822
0.2138
0.2526
O.1647
0.2027
0.2396
0.2764
0.3142
0.2109
0.2500
100.0000
100.5000
89.0000
66.0000
100.0OOO
100.0000
50.0000
126.5000
125.7500
147.2500
150.7500
154.7500
155.7500
148.7500
152.7500
150.7500
149.7500
148.2500
154.7500
49.7500
50.2500
49.7500
49.7500
49.2500
49.2500
5O.5000
50.0000
5O.5000
50.0000
50.5000
50.2500
50.5000
50.5000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.5000
50.0000
50.0000
50.5000
50.0000
49.5000
50.0000
50.0OOO
50.0000
50.0000
50.0000
49.5000
628.0000
633.5000
654.000O
677.5000
64B.OOUO
667.0000
604.0000
679.0000
641.5000
621.5000
628.5JOO
648.5000
657.5000
653.0000
653.0000
650.5000
649.5OOO
646.0000
64V.OOOO
644..0000
625.50OO
645.5000
656.0000
661.00OO
649.0000
613.5000
, 602.0000
599.0000
611.0000
575.5000
625.0000
647.5000
645.5000
618.5000
601.0000
614.0000
60*. 0000
604.5000
599.0000
6O1.000O
634.5000
691.0000
611.5000
606.0OOO
59*.0000
597.5000
563.5000
584.0COO
586.5000
595.0000
591.0000
j.1437
3.1280
3.1459
3.2375
1.6210
1.7683
2.0000
1.5810
1.4314
2.8523
2.7197
2.5848
2.5662
2.8908
2.7496
2.7861
2.8047
2.8331
2.4556
5.0251
4.7761
5.0251
5.*2>03
5.2660
5.0865
4.8634
4.9120
5.0579
4.9120
4.7661
5.1808
5.2524
4.1825
4.3226
4.4208
4.4208
4.7155
4.2243
4.5190
4.4743
4.7155
4.1261
4.1825
4.3226
5.6562
5.7962
5.8944
5.9926
6.1891
5.8944
6.0532
2.2662
2.2574
1.9*3;.
1.8804
1.6750
1.5834
0.8191
1.7035
1. 6692
2.7106
2.7011
2.b853
2.0250
2.6732
?. t>968
2.6815
2. 6847
2.6856
2.7048
1.0997
1.0987
1.0594
1.0828
1.0753
1.0868
1.1174
1.1223
1.1241
1.11*6
1.1328
1. 0965
1. 0906
1.0756
1.1071
1.1237
1.1169
1.1223
1. 1233
1.1217
1.1149
1.0961
1.0672
1.1070
1. 1072
1.1230
1.1185
1.1207
1.1227
1.1208
1.1224
1.1167
0.0161
0.0161
0.0161
0.0161
0.0161
0.0161
0.0163
0.0158
0.0158
0.0167
0.0167
0.0167
0.0167
0.0167
0.0172
0.0172
0.0172
0.0172
0.0172
0.0190
0.0190
0.0190
0.0201
0.0201
0.0201
0.0201
0.0201
0.0195
0.0195
0.0195
0.0195
0.0195
0.0185
0.0185
0.0185
0.0185
0.0185
0.0174
0.0174
O.O174
0.0174
0.0181
0.0181
0.0181
0.0179
0.0179
0.0179
0.0179
0.0179
0.0172
0.0172
2/.5N
i/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
i.
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME EQR PT3 TT3 LPL A1RFLW SHX FUEL
>
CO
29-1 5A-6
29-1 5A -9
29-15A-10
29-15A-11
29-15A-12
29-15A-13
29-1 5A -14
29-1 5A -15
29-1 5A -16
29 -15 A -17
29-1 5A -18
29-15A-19
29-16A-1
29-16A-2
29-16A-3
29-16A-4
29-16A-5
29-16A-6
29-1 6A -7
29-16A-B
29-1 6A -9
29-lfcA-lO
29-16A-11
29-1 7A-1
29-1 7A -2
29-1 7A -3
29-1 7A -4
29-1 7A -5
29-17A-6
29-1 7A -7
29-17A-6
29-17A-9
29-17A-10
29-17A-11
29-1 8A-1
29-18A-2
29-18A-3
29-1 8A -4
29-18A-5
29-1 8A-*
29-1 8A -7
29-18A-6
29-1 8 A -9
29-18A-10
29-18A-11
29-1 8A -I 2
29-1 8A -13
29 -18 A -14
29-18A-15
29-18A-16
29-18A-17
0.1924
0.2898
0.1811
0.1792
0.2166
0.2556
0.1461
0.1450
0.1365
0.1779
0.2111
0.2495
0.2331
0.2762
0.3163
0.1426
0.2067
0.2487
0.2959
0.2055
0.1540
0.1593
0.1934
0.2131
0.2523
0.2913
0.3208
0.2209
0.2574
0.2368
0.1785
0.1322
0.1277
0.1071
0.2107
0.2621
0.2714
0.2905
0.2641
0.2311
0.1943
0.1948
0.1937
0.1931
0.1264
0.1249
0.1250
0.1227
0.1935
0.2362
0.2357
49.5000
50.OtX)U
49.5000
50.0000
50.OOOO
50.5000
50.0000
50.OOOO
50.0000
50.0000
50.5000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50 . OOOO
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50. OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50. OOOO
50.0000
50. OOOO
50. OOOO
50. OOOO
50.0000
50. OOOO
50.0000
53.0000
593. OOOO
587.5000
597. OOOO
591.5000
590.5000
633.0000
672.0000
586.500O
581.5000
591.5000
592.0000
604.0000
589.0000
575.5OOO
594.5300
570.00CO
586.5000
578.0000
575.5000
577.5000
583.0000
570.0000
583.0000
680.5000
681.5000
675.5OOO
674.5000
687. OOOO
689.0000
687.5000
693.5000
699.0000
700.0000
740.5000
672.5000
662.0000
668.5000
665.5000
673.0000
676.500O
674.0000
676.0000
692.5000
691.0000
692. OOOO
688.5000
712.0000
670.5000
674.0000
689.5000
689. OOOO
6.0532
6.2874
6.2516
0.1891
6.4838
6.8067
6.2874
6.O909
5.8944
0.2874
6.3224
6.6803
5.2067
5.3O50
5.4032
5.1085
5-2067
5.3050
5.4032
5.4032
5.7386
5.3050
5.5014
4.4208
••.5190
4.7155
4.7155
4.5190
4.7155
4.9120
4.6173
4.5190
4.7155
5.2067
4.5190
4.7155
4.7155
4.8138
4.9120
4.9120
4.5190
4.8138
5.0102
5.0102
4.9120
5.^067
5.0102
4.6173
4.6173
4.9120
4.8138
1. 1208
1.1160
1.1243
1. 1190
i.nei
1.0929
1.0788
1.120V
1.1299
1.1240
1.1199
1.1197
0.9723
0.9716
0.98O4
0.9950
0. 9779
0.9817
0.9836
0.9769
1. 0068
0. 989 1
0.9793
1.0647
1.0647
1.0654
1.0975
1.0710
1.0868
1.0631
1.0646
1.O578
1.0574
1.0480
1.0757
1.0853
1.0856
1.0771
1.0822
1.0782
1.0790
1.0/40
1.0692
1.0740
1.0732
1.0688
1.0572
1.0845
1.0789
1. 0778
1.0734
0.0172 L/.5N
0.017*: 2/.5N
0.017? 2/.5N
0.0179 2/.5N
0.0179 2/.5N
0.0179 2/.5N
0.0179 2/.5N
0.0179
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
ECR
PT3
TT3
LPL
A1RFLM
SHX
FUEL
>
I
NO
29-1BA-18
29-19A-1
29-19A-2
29-19A-3
29-19A-4
29-19A-5
29-1 9A -6
29-1 9A-7
29-19A-8
29-19A-9
29-19A-10
29-194-11
29-19A-12
29-19A-13
29-19A-14
29-19A-15
29-19A-16
29-19A-17
29-19A-18
29-19A-19
29-19 A -20
29-19A-21
29-19A-22
29-19A-23
29-19A-24
29-19A-25
29-19A-26
29-19A-27
29-19A-28
29-19A-29
29-19A-30
29-19A-31
i9-19A-32
29-19A-33
29-19A-34
29-19A-35
2 9-1 9A -3 6
29-19A-37
29-19A-3B
29-19A-39
29-1 9A -40
29-19A-A1
29-19A-42
29-19A-43
29-19A-44
29-19A-45
29-2OA-1
29-20A-2
29-20A-3
i9-20A-4
29-20A-5
0.2359
0.2052
0.2054
0.2073
0.2067
0.2498
0.1732
0.1756
0.1302
0.1741
0.1743
0.174*
0.1741
0.2080
0.2099
0.2491
0.0864
0.0905
0.1255
0.1282
0.1283
0.1258
0.1693
0.2077
0.2457
0.0902
0.090b
0.1275
0.1756
O.2091
0.0947
0.1276
0.1075
0.1496
0.1343
0.1350
0.1522
0.1810
0.2256
0.2200
0.1933
0.1587
0.2109
0.2584
0.2459
0.2075
0.1250
0.1656
0.2052
0.2424
0.2808
50.0000
50.0000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.000O
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
126.0000
125. jnoo
126.0000
127.0000
125.0000
129.0000
128.0000
125.0000
127.0000
150.0000
1 -.9. 0000
150.0000
51.0000
50.0000
50.0000
50.0000
50.0000
693.SOOO
671.0000
679.5000
685.0000
640.0000
675.5000
668.5OOO
686.OOOO
709.5000
684.5000
696.5000
708.0000
701.5000
tSl.OOOO
681.0000
675.0000
673.0000
756.00OO
676.5000
726.5000
763.0000
633.0000
633.5000
630.5000
634.5000
632.0000
645.5000
650.0000
644.5000
645.5000
644.5000
641.0000
650.0000
647.0000
625.5000
622.0000
643.5000
625.0000
630.0000
634.0000
629.5000
630.000O
763.5000
727.5000
751.5000
750.0000
624.0000
63V. 0000
632.5000
633.0000
636.5000
5.0102
4.5190
4.5190
4.5190
4.5190
4.3226
3.9296
4.4208
4.5190
4.6173
5 . 1065
5.1085
4.9120
4.7155
4.7155
4.6173
4.1261
5.0102
4.3226
5.1085
5.4032
4.6173
4.6173
4.8138
5.0102
4.7155
4.91iO
5.2067
5.4032
5.5014
5.3O50
5.4032
5.3050
5.5014
3.4127
3.8400
2.9365
3.2283
3.0400
2.6682
2.*219
2.4000
2.2835
1.4667
1.2752
1.3333
4.6231
4.9120
4.9120
4.9120
4.9120
1.0746
1.1342
1.1332
1.1230
1.1254
1.1197
1.1239
1.1060
1.1117
1.1162
1.1169
1. 1159
1.1176
1.1382
1.1278
1.1225
1.1357
1.0831
1. 1523
1.1282
1.1276
1.1541
1.1525
1.1427
1.1410
1.1414
1.1331
1.1359
1.1353
1.1345
1.1348
1. 1360
1. 1293
1.1334
2. 7389
2.7562
2.4132
2.5191
2.3870
2.4660
2.3550
i. 3096
2.1621
1.7617
1.6680
1. 7395
1.1621
1.1510
1.1572
1.1567
1.1550
0.0176
3.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
0.0176
O.O176
0.0176
0.0176
0.0176
0.0176
O.O176
0.0176
0.0176
0.0185
0.0185
0.0185
O.0185
0.0185
0.0176
0.0176
0.0176
0.0176
0.0170
0.0170
0.0170
0.0170
0.0167
0.0167
0.0167
0.0167
0.0167
0.0165
0.0165
0.0165
0.0165
0.0163
0.0163
0.0163
0.0169
0.0169
0.0169
0.0169
0.0169
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5M
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/. 5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
A1RFLU
SHX
FUEL
29-20A-6
29-2 OA -7
29-2 OA-6
29-20A-^
29-20A-10
29-20A-11
29-2 1A-1
29-21A-2
29-21 A -3
29-21 A -4
29-21A-5
2V-21A-6
29-21 A -7
29-21A-8
2V-21A-9
29-21A-10
29-21A-11
29-21A-12
29-21 A -13
29-21A-14
29-21A-15
29-22A-1
29-22 A -2
29-22A-3
29-22A-4
29-22A-5
29-22* -6
29-22A-7
29-2 2A -8
29-23A-1
29-23A-2
29-23A-3
29-23*-*
29-23A-5
29-23A-*
29-24A-1
29-2 4A -2
29-24A-3
29-24* -4
29-24* -5
29-24A-6
29-24A-7
29-24A-8
29-24A-9
29-24A-10
29-2 5* -1
2 9-2 5 A -2
2 9-25 A -3
29-25* -4
29-2 5A -5
29-25A-6
0.1261
0.1603
0.1965
0.2317
0.2696
0.2876
0.0903
0.1345
0.1798
0.2177
0.1827
0.16 1C
0.1333
0.1977
0.1119
0.0689
0.0901
0.1106
0.1361
0.1616
O.1856
0.1467
0.1751
0.2072
0.2388
0.2703
0.1114
0.1440
0.2075
0.1299
0.1791
0.2149
0.1309
0.1612
0.2118
0.2201
0.2622
0.1854
0.1530
0.11*5
0.1201
0.1486
0.1763
0.2102
0.2492
0.1143
0.2255
0.2723
0.3195
0.3691
0.4187
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.OOOO
50.0000
50.0000
52.0000
52.0000
52.5000
52.5000
50.0000
50.COOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.5000
50.OOOO
50.0000
50.0000
50.OOOO
50.0000
50.0000
50.0000
49.5000
50.0000
49.5000
50.0OOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
o23.5000
634.5600
635.56OO
631.00OO
633.0000
639.5000
602.0000
599.5000
599.5000
601.5000
598.OOOO
598.0000
6O0.5000
59U.50OO
600.5000
600.5000
600.00OO
601.0000
603.0000
604.0000
599.5000
599.5000
602.50OO
605.0000
6O4.0000
595.0000
6O6.0000
604.5000
605.5000
359.5COO
371.0000
347.5000
346.0000
704.5000
671.00OO
653.5000
658.0000
661.OOOO
6*9.5000
657.0000
334.0000
336.0000
335.0000
339.5000
341.5000
659.0000
654.5000
656.5000
647.5000
656.0000
654.0000
4.9120 1
4.9120
4.9120 ]
4.9120 ]
4.9120
4.9120
3.438*
4.1261
4.2243
4.22*3
4.2243
4.3226
4.1261
4.2243
4.2243
4.4208
4.5190
4.3452
4.O618
3.9296
3.9296
3.7331
3.8314
3.9296
3.9296
4.2243
4.5190
3.7331
3.6314 1
3.7331 1
4.0278
3.9880
4.1261 ]
4.0278 (
4.1261 (
3.4384 (
3.43B4 (
3.4384 (
3.2*19 (
3.2747 (
3.4384 (
3.4731 C
3.4384 (
3.6349 (
3.6000 (
3.7331 (
4.2243 (
4.6173 (
4.7155 (
5.1085 (
5.4032 (
L. 1621
1.1562
L. 1566
.1608
.1533
.1537
.0897
.0791
.0845
.08 97
.0906
.0856
.0891
.0932
.0860
.0993
.0928
.0995
.0669
.0509
.0512
.3593
.3559
.3532
.3581
.3644
.3465
.3544
U 3506
L.0849
1.0*29
L. 1 073
L.1486
j. VO25
5.9311
1.6612
J.6297
).6567
J.6445
i.6630
J. 8205
). 8187
>. 7973
). 8084
3.7835
3.8599
J. 6641
J. 8708
>. B763
J.8771
). 8794
0.0190 2
0.0190 2
0.0190 2
0.0190 2
O.OIVO 2
0.0190 2
0.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
O.0172 2/.5N
0.0172 2/.5N
0.0172 2/.5N
0.01V2 2/.5N
0.0172 2/.5N
0.0172 2/.5N
O.O168 2/.5N
0.0168 2/.5N
0.0168 2/.5N
0.0168 2/.5N
0.0166 2/.5N
0.0168 2/.5N
0.0176 2/.5N
0.0176 2/.5N
0.0176 2/.5N
0.0176 2/.5N
0.0176 2/.5N
0.0176 2/.5N
O.0176 2/.5N
0.0176 2/.5N
0.0171 2/.5N
0.0171 2/.5N
0.0171 2/.5N
0.0171 2/.5N
0.0171 2/.5N
0.0171 2/.5N
0.0192 2/.5N
0.0192 2/.5N
0.0192 2/.5N
0.0192 2/.5N
O.0192 2/.5N
0.0192 2/.5N
0.0192 2/.5N
O.0192 2/.5N
0.0192 2/.5N
0.0192 2/.5N
0.0170 2/.5N
0.0170 2/.5N
0.0170 2/.5N
O.0170 2/.5N
0.0170 2/.5N
0.0170 2/.5N
-------
to
a>
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
29-254-7
29-26*-!
29-2 6A -2
29-26A-3
29-27A-1
29-27A-2
29-27A-3
29-27A-4
29-27A-5
29-2 8A-1
i9-28A-2
29-28A-3
29-28A-4
29-28A-5
29-28A-6
29-2 8 A-7
29-28A-8
29-28A-9
29 -2 8 A -10
29-28A-11
29-28A-12
29-2 8 A -13
29-28A-14
29-28A-15
29-28A-16
29-2 8A -17
2 9-2 8A -18
29-28A-19
29-28A-20
29-29A-1
29-29A-2
29-29A-3
29-29A-4
29-29A-6
29-30A-1
29-30A-2
29-30A-3
29-30A-4
29-3OA-5
29-30A-6
29-31A-1
29-31A-2
29-32A-1
2 9-32 A -2
29-3 3A-1
29-33A-2
29-33A-3
29-33A-*
29-33A-5
29-33A-6
29-33A-7
O.H496
0.2620
0.159V
0.3605
0.2732
0.2760
0.2767
0.3657
0.3*77
0.1636
0.2167
0.2656
0.3143
0.3614
0.3888
0.1638
0.1367
0.1100
0.2180
0.1967
0.2479
0.2719
0.2918
0.2838
0.3280
0.3833
0.3556
0.2987
0.2823
0.1285
0.1382
0.1498
0.2043
0.1253
0.2370
0.2793
0.3229
0.3696
0.3686
0.3700
0.3728
0.3552
0.3723
0.2845
0.2058
0.2547
0.2735
0.2937
0.3195
0.1947
9.24OO
50.0000
50.0000
49.5000
50.00CO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
49.5000
50.0000
50.0000
50.0000
49.5000
49.5000
50.0000
50.0000
5O.OOOO
49.5000
49.5000
50.0000
50.0000
50.0000
49.5000
50.0000
100.0000
99.0000
100.0000
100.0000
100.0000
50.OOOO
50.0000
50.0000
50.0000
50.0000
50 . 0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
64B.5000
625.0000
627.5OOO
633.5000
678.0OOO
657.0000
664.0000
630.0000
637.5000
643.5000
631.OOOO
634.5000
634.0000
632.5000
634.0000
635.5000
635.5000
637.0OOO
662.0000
656.0000
649.5000
6541 0000
661.5000
643.5000
632.0000
640.5000
638.0000
64O.OOOO
635.5000
620.5000
623.0000
569.000O
596.0000
549.0000
632.5000
627.0000
628.5000
634.5OOO
630.50OO
628.5000
631.5000
640.5000
645.0000
627.0000
618.5000
63O.5000
619.5000
628.0000
622.0000
618.0000
623.50OO
5.4032
4.7155
4.6639
5.1085
6.4838
6.0909
6.0909
5.3050
5.4032
4.7155
4.9120
5.2593
5.2593
5.4578
5.403?
4.8138
4.6173
4.36t2
6.4501
5.8944
5.9926
6.2874
6.6486
».4578
5.5997
5.5014
5.5014
5.7555
5.5997
4.5682
4.6639
4.6173
4.7646
4.42O8
4.5190
4.7155
4.9120
5.0102
5.5014
5.4032
4.6138
5.0102
*.8138
3.9296
3.5366
3.5366
3.7331
3.7331
3.7331
3.3402
3.6349
0.8661
0.9040
0.9063
0. 8974
0.6665
0.8574
0.8548
0.8827
0.8957
0.8660
0.8989
0.8918
0.8900
0. 8947
0.8881
0.8839
0. 6872
0.8925
0.8937
0. 8617
0.8708
0.8711
O. 885O
0. 8756
0.8871
0.8687
0.8776
0.9044
0.8828
1.9380
1.9542
1.9428
1.9376
1.9666
0.9621
0. 9658
0.9657
0.9569
0.9595
0.9555
0.9445
0.9914
0.9469
0.943b
0.9382
0.9225
0.9363
0.9450
0.9356
0. 9467
0.9413
0.0170
0.0190
0.0190
0.0190
0.01*5
0.0195
0.0195
0.0195
0.0181
0.0190
U.0190
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190
O.O190
0.0190
0.0190
0.0190
0.0190
0.0184
0.0184
0.0184
0.0164
0.0184
0.0184
0.0190
0.0203
0.0203
0.0203
a. 02 03
0.0163
0.0163
0.0183
0.0163
0.0197
0.0197
0.0165
0.0165
0.0150
0.0150
0.0167
0.0167
O.OU7
0.0167
0.0167
0.0156
0.0156
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
i
2
2
2
2
2
i
2
i
2
2
2
2
2
2
i
2
2
2/.5N
2/.5N
2
2
2
2
2
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME fctR PT3 TT3 LPL AIRFLW SHX FUEL
29-3 3 A -8
29-33* -9
29-33A-10
29-3 3A -11
29-34A-1
29-35A-1
29-35* -2
29-35A-3
29-35A-4
29-3 5 A -5
29-35A-1
29-36A-1
29-36A-2
29-36A-3
29-36A-4
29-36A-5
29-36A-6
29-36A-7
29-36A-6
29-36A-9
29-36A-10
29-36A-11
29-36A-12
29-37A-1
29-37A-2
29-3 7A -3
29-37A-4
29-37A-5
29-37A-6
29-37A-7
29-37A-6
29-37A-9
29-3 7A -10
29-37A-11
29-3 7A -12
29-37A-13
29-37A-14
29-3 7A -15
29-3 7A -16
29-37A-17
29-38A-1
29-38 A -2
29-38A-3
29-38A-4
29-3 8A -5
29-3 8 A -6
29-3 8A -7
29-38A-8
29-38A-9
29-38A-10
29-38A-11
0.2671
0.2845
0.2573
0.2834
0.0
0.1675
0.196O
0.2606
0.3281
0.3885
0.4153
0.2344
0.2741
0.2963
0.3178
0.3396
0.3519
0.37*6
0.2058
0.1873
0.1640
0.1419
0.1201
0.2000
0.2384
0.2563
0.2730
0.2920
0.3111
0.1818
0.1449
0.2068
0.2457
0.2847
0.3049
0.2652
0.3218
0.1882
0.1484
0.0984
0.2245
0.2596
0.2596
0.2918
0.3117
0.2230
0.2318
0.2685
0.3055
0.2454
0.2728
50.0000
.50.0000
50.0000
50.0000
50.0000
80.0000
80.OOOO
80.0000
83.0000
84.5000
86.0OOO
50.0000
50.0000
50.0OOO
50.0000
50.0000
50.0000
50.0000
50.0OOO
50.0OOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0OOO
50.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
50.0OOO
50.0000
50.0000
50.0000
50.0OOO
50.0000
50.0000
50.0000
50.0000
50.0000
'626.0000
624.5000
624.0000
619.5000
640.0000
604.0000
593.5000
60
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
to
oo
29-38* -12
29-38A-13
29-38A-14
29-38A-15
29-38A-16
29-38A-17
29-38A-18
29-38A-19
29-38A-20
29-38* -21
29-38* -22
29-38A-23
29-38A-24
2 9-3 8A -2 5
29-3BA-26
29-38A-27
29-38A-28
29-38* -29
29-39*-!
29-39* -2
2 9-39* -3
29-39A-4
29-39A-5
29 -40 A -1
29 -40* -2
29-40*-3
29-40* -4
29 -40* -5
29-40A-*
29-40* -7
29 -40* -8
29-40* -9
29-40A-10
29-»OA-ll
29-* 1 A-l
29-41A-2
29-41A-3
29-41A-4
29 -4 2 A-l
29-.2A-2
29-42A-3
29-4 3A-1
29-4 3A-2
29-4 3A-3
29 -4 3* -4
29-43* -5
29-43A-6
29-4 3*-7
29-*43»-8
29-43* -9
29-43A-10
0.2574
0.2322
0.2672
0.28S6
0.3025
0.3219
0.3404
0.2177
0.2434
0.2575
0.2756
0.2929
0.2243
0.2526
0.2679
0.2729
0.2857
0.3016
0.2592
0.258O
0.2713
C.28B2
0.3088
0.2902
0.3309
0.3735
0.4761
0.4946
0.5331
0.5749
0.6178
0.2646
0.2455
0.2253
0.5258
0.5427
0.4749
0.4248
0.4248
0.4610
0.5114
0.2426
0.2903
0.3371
0.3629
0.3803
0.4040
0.4199
0.4457
0.4669
0.3076
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OOOO
49.5000
50.0000
50.0000
50.0000
49.0000
49.OOOO
50.0000
49.5000
50.00CO
50.0000
49.5000
49.7500
50.0000
49.0000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
5C.OOOO
50.0000
SO.OJOO
50.0000
50.0000
50.0000
49.5000
50.0000
50.5000
50.0000
50.0000
49.5000
50.0000
49.5000
50.0000
50.0000
50.OOOO
49.5000
50.0000
50.0000
50.0000
49.5000
>o.oooo
599.0000
604.0000
600.5000
600.5000
604.5000
601.5000
604.0000
601.0000
600.5000
603.0000
606.5000
60O.5000
604.0000
607.0000
599.5000
606.5000
598.5000 '
597.5000
589.5000
605.00OO
605.5000
598.5000
605.5000
602.0000
605.0000
000.0000
604.00OO
601.0000
601.5000
599.5000
603.5000
599.0000
599.0000
605.0000
603.5000
601.5000
606.0000
6O3.OOOO
603.0000
602.5000
603.5000
606.0000
605.5000
603.0000
605.5000
608.5000
610.0000
603.5000
595.9000
600.0000
601.0000
4.3226
3.9296
3.9296
4.0278
4.0278
3.8314
3.8314
4.3226
4.4655
4.5190
4.6173
4.6173
2.3056
2.5061
2.4560
2.4808
2.5542
2.4560
5.5570
5.5291
5.3050
5.4132
5.0102
4.6173
4.7155
4.8138
5.3050
5.4032
5.5997
5.2067
5.2067
4.3226
4.6173
4.7155
5.0608
5.1085
4.7661
4.8138
4.8138
5.0608
5.2067
4.3662
4.5190
4.5190
4.5190
4.6639
4.7155
4.9120
4.9120
5.0608
4.5190
1.2071
1.1601
1.1649
.1633
.1675
.1617
.1603
.2524
.254O
.2541
1.2516
1.2537
0.9594
0.9352
0.9289
0.9429
0.9462
0.9538
1.0864
1.3738
.0676
.0770
.0726
. oooa
.0040
. JO17
.0061
.0109
.0161
.0142
.0115
.017O
.0118
.0091
0. b708
0.8823
0.8757
0.8799
0.6796
0.9017
0.8942
0.9356
0.9260
0.9215
0.9137
0.9262
0.9236
0.9385
0.9310
O.9335
0.9274
0.01b3
0.0154
0.0154
0.0154
0.0154
0.0154
0.0154
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0140
0.0152
0.0152
O.O152
0.0152
0.0152
0.0171
0.0171
0.0171
0.0171
0.0159
0.0159
0.0159
O.G159
0.0159
0.0159
0.0159
0.0161
0.0161
0.0161
O.Olel
0.0166
0.0166
0.0166
0.0125
3.0125
0.0125
0.0125
0.0125
0.0125
0.0125
0.0125
0.0125
0.0125
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
f.
2
2
2
2
2
2
2
2
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
TT3
LPL
AIRFLW
SHX
f-UEL
29-43A-11
29-43A-12
29-* 3* -13
29-*3A-14
29-4 3A -15
29-4 3A -16
29-43A-17
29-43A-18
29-44A-1
29-44A-2
29-44A-3
29-44A-4
29-44A-5
29-44* -6
29-44A-7
29-*4A-6
29-44A-9
29-44A-10
29-44A-11
29-44A-12
29-44A-13
29-44A-14
29-45 A-l
29-4 5A-2
29-4 5A -3
29-45A-4
29-45A-5
29— »5A-6
29-45A-7
29-45A-6
29-45A-9
29-4 5A -10
29-45 A-l 1
29-45A-12
29-45A-13
29-458-1
29-458-2
29-458-3
29-458-4
29-458-5
29-458-6
29-458-7
29-458-8
29-458-9
29-458-10
29-458-11
29-458-12
29-»6A-l
29-4 6A -2
29-46A-3
29-46A-4
0.3501
0.3947
0.4437
0.4134
0.3771
0.3358
O.2955
0.2511
0.1922
0.2275
0.2622
0.2794
0.2980
0.3149
0.3327
O.35O6
0.2016
0.2352
0.2726
O.3071
0.3275
O.2920
0.2234
0.2597
0.2764
0.2932
0.3107
0.1860
O.1543
0.1625
0.1961
0.2303
0.2679
0.2665
0.25BO
0.1890
0.2234
0.2593
0.2760
0.2932
0.3107
0.3271
0.1968
0.2323
0.2654
0.2863
0.3046
0.1316
O.1715
0.2106
0.2484
50.OOOO
50.0000
50.0000
49.5000
50.OOOO
49.5000
49.5000
49.5000
50.0000
49.5000
49.5000
5O.OOOO
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.OOOO
49.5000
50.0000
50.0000
5O.OOOO
49.5000
49.5000
49.5000
49.5000
49.0000
50.0000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.OOOO
50.0000
50.0000
50.0000
49.5000
5O.OOOO
49.5000
50.0000
50.0000
SO.OOuO
50.0000
50.0000
bOo.OOOO
605.0000
6O0.5OOO
600.5000
60O.OOOO
599.5000
599.0000
600.0000
602.0000
603.5000
005.00OO
600.5000
602.5000
60k. 0000
603.0000
605.0000
599.5000
604.00OO
604.0000
5*6. 5000
594.5000
6at>.OOOJ
600.0000
603.0GOO
601.0000
602.5000
602.5000
5*7.5000
601.5OOO
605.5000
605.0000
593.0000
599.5000
601.0000
599.0000
601.50OO
600.0000
604.5000
601.0UOO
600.5000
601.5000
599.5OOO
604.0000
602.5000
600.5000
602.0000
601.0000
605.5000
6O2.0000
605.0000
603.0000
4.H208
4.6173
4.7155
4.8624
4.5190
4.5647
4.5647
4.4655
3.7331
3.8701
3.9693
4.O278
4.0278
4.0278
4.1261
4.2670
3.7331
3.6314
3.9296
4.0278
4.0278
4.1261
4.5647
4.6173
4.7155
4.8138
4.9616
4.3662
4.2670
4.1678
<».4108
4.4190
4.7632
4.9120
4.7155
4.32i6
-..6173
4.7155
4.9120
4.9120
5.0102
5.0102
4.3226
4.0639
4.9120
4.9616
5.0102
4.1261
3.9296
3.8314
3.9296
0.9211
0.9296
0.9^72
0.9408
0.9252
0.9*03
O.9t34
0.9*G1
1. lbV8
1.189V
1.1S21
1.1941
1.1897
1.1927
l.lvil
1.1913
1.1966
1.1890
1.1883
1.1 998
1.1935
1.1851
1.1076
1. 1994
1.2029
1.2054
1.2042
1.2k>97
1.2022
1. 1962
1. 2066
1.2137
1.2066
1.2053
1.2052
1.2044
1. 2067
1.2012
1. 2045
1.2055
1.2051
1.2062
1.2026
1.2038
1.2181
1.2066
1.2077
1.0811
1.0818
1.0800
1.0839
0.0125
0.0125
O.01?5
O.O125
0.0125
0.0125
0.0125
0.0125
O.O091
0.0091
O.O091
O.O091
0.0091
O.O091
0.0091
0.0091
0.0091
0.0091
0.0091
0.0091
O.OOV1
0.0091
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0113
0.0130
0.0130
0.0130
0.0130
2/.5N
2/.5N
2/.5N
k/.5N
2/.5N
^/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2/.5N
2/.5M
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EfcR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
29— » 64 -5
29-46A-6
29-46A-7
29-46A-8
29-46A-9
29-46A-10
29-46A-11
29-46A-12
29-4 6A -13
29-4 7A-1
29-4 7A -2
29 -47 A -3
29-47A-4
29-47A-5
29-47A-6
29-4 7A -7
29-47A-8
29-47A-9
29-47A-10
29-47A-11
29-47A-12
29-47A-13
29-^8A-l
29-48A-2
29-48A-3
29-4 8A -4
29-4 8A -5
29-48A-6
29-48A-7
29-4BA-8
29-4BA-9
29-46A-10
29-4 9A-1
29-50A-1
29-50A-2
29-50A-3
29-50A-4
29-50A-5
29-50A-6
29-50A-7
29-5 OA -8
29-50A-9
29-50A-10
29-50A-11
29-50A-12
29-50A-13
29-50A-14
29-50A-15
29-50A-16
29-50A-17
29-50A-18
0.1339
0.1803
0.2168
0.1988
0.1556
0.1982
0.1785
0.1344
0.1113
0.2269
0.2620
0.2983
0.3142
0.3332
0.3505
0.2345
0.2723
0.3128
0.3279
0.2902
0.1013
0.1060
0.2086
0.2282
0.1905
0.1718
0.2018
0.0868
0.1635
0.2005
0.2376
0.1622
0.0
0.2218
0.2769
0.2340
0.2127
0.2624
0.3088
0.3609
0.2396
0.1900
0.1631
0.1387
0.0999
0.2222
0.1869
0.2435
0.23i:9
0.^694
0.3196
49.5000
50.0000
50.0000
50.0000
50.0000
50.5000
50.0000
49.OOOO
50.UOOO
50.0000
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
50.0000
49.5000
50.0000
50.0000
SO. 0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
5O.OJOO
50.5000
50.0000
50.0000
50.5000
50.5000
50.2500
50.0000
50.0000
50.0000
49.2500
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
604.0000
605.00OO
604.0000
602.5000
5V9.0GOO
607.0000
598.0000
604.5000
601.5000
601.00UO
601.5000
60^.5000
600.5000
602.0000
6CJ.OOOO
598.0000
603.0000
600.OOOO
600.5000
599.5000
603.0000
604.5OOO
598.5000
603.0000
603.0000
601.5000
602.0000
604.0000
604.0000
602.5000
602.5000
602.5000
603.0000
597.5000
611.0000
601.0000
598.5000
600.5000
602.0000
604.5000
605.5000
597.0000
601.50OO
603.0000
598.5000
606.0000
603.5000
595.5000
600.5000
602.5000
610.5000
3.8701
3.9296
3.9296
3.8314
3.8314
3.7934
3.9296
3.8093
3.7331
3.9i96
4.027B
4.1261
4.2^43
t.2670
4.2243
3.9296
4.0278
4.1261
4.2670
4.1678
3.5366
3.5724
4.1261
4.1261
4.1261
4.1261
4.1261
3.9296
3.9296
4.1261
4.2243
4.1261
2.4560
4.9120
5.1085
4.7661
4.4208
4.6173
4.8634
5.0579
4.4966
4.2243
"..2243
4.1261
4.6U76
4.6173
•..9120
5.01O2
4.8138
5.0102
5.0102
1.0805
1.0785
l.OblO
1.C841
1.0876
1.0872
1.0886
1.0756
1.0877
1.1872
1.1887
1.1844
1.1906
1.1861
1.1666
1.1912
1.1866
1.1868
1.1886
1.1887
1.1855
1.1854
1.1341
1.1296
1.1314
1.1312
1.1302
1.1301
1.1307
1.1314
1.1312
1.1315
1.3242
0. 8779
0.8559
0.8501
0.8784
0.6724
0.8772
0.6673
0.8670
0.6694
0.8781
0.8731
0. 6969
0.6792
0.9003
0.8893
0.8843
0.6823
0. 8778
0.0130
0.0130
0.0130
0.0130
0.0130
0.0130
0.0130
0.0130
0.0130
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0133
0.0121
0.0121
0.0121
0.0121
O.0121
0.0121
0.0121
0.0121
0.0121
0.0121
G.0087
0.0080
0.0080
0.008O
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
(1.0051
0.0051
0.0051
0.0051
0.0051
2/.5N
2/.5N
2/.5N
2/.5N
*/.5N
2/.5N
2/.5N
2/.5N
2/.5N
i
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
£
2
2
2
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
it.
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EQR
PT3
1T3
LPL
AlRf-LW
SHX
FUtL
>
CO
29-50A-19
29-51A-1
29-51A-2
29-51A-3
29-51A-4
29-51A-5
29-51A-6
29-51A-7
29-51A-6
2 9-51 A -9
29-51A-10
29-51A-11
29-51A-12
29-51A-13
29-51A-14
29-51A-15
29-51A-16
29-51A-17
29-51A-18
29-51A-19
29-51A-20
29-52A-1
29-52 A -2
29-52A-3
29-5 2A -4
29-52A-5
29-52 A -fc
29-52A-7
29-52 A -6
2 9-52 A -9
29-52A-10
29-52* -11
29-52A-12
29-52A-13
29-52A-14
29-52* -15
29-52A-16
29-52A-17
29-53A-1
29-5 4A-1
29-54* -2
29-54A-3
29-54* -*
29-54*-5
29-54* -6
29-54*-7
29-54* -6
29-55*-!
29-55A-2
29-55A-3
29-5 5A-4
0.2337
0.2745
0.2231
0.1637
0.1483
0.1091
0.2283
0.1876
0.1621
0.1397
0.1160
0.2072
0.1878
0.1830
0.1375
0.1585
0.1785
0.1827
0.1991
O.219O
0.2382
0.3159
0.2678
0.2237
0.2781
0.3059
0.3315
0.3513
0.2458
C.2266
0.2002
0.3053
0.2914
0.2626
0.2389
0.2153
0.1920
0.3397
0.0
0.2653
0.2435
0.2175
0.2148
0.2122
0.1980
0.1802
O.1676
0.2506
0.2085
O.1984
0.1792
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
50.0000
49.5000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
49.0000
4V. 5000
49.5000
5O.OOOO
50.0000
49.5000
50.0000
49.5000
49.5000
50.0000
49.5000
49-5000
49.5000
49.5000
49.5000
49.5000
31.0000
49.0000
49.5COO
50.0000
5O.OOOO
50.0000
45.5000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
49.5000
595.00OO
605.50OO
598.5OOO
604.5000
602.5000
591.5000
599.5000
598.OOOO
597.5000
59U.5000
598.0000
604.5000
601.50UO
602.0000
602.00OO
602.0000
601.5000
602.5000
604.0000
602.5000
604.50OO
596.5000
605.0000
60V. 0000
602.0000
6O1.5OOO
600.5000
602.000O
599.0000
601.0000
604.OOOO
59t.OOOO
604.0000
602.0000
604.5000
6O4.0000
604.5000
601.5000
166.5000
599.5000
607.5000
605.0000
598.0000
598.5000
606.5000
600.0000
599.5000
607.0000
603.0000
602.5000
606.0000
4.6138
k.8490
i..65i.b
1.2771
1.1739
1.UU9
4.51*0
4.3226
4.3662
4.2243
4.1678
4.7632
4.42Gb
4.t208
4.3226
4.3226
4.5190
^.5190
4.7155
4.8138
4.8138
5.8547
5.8142
5.5570
5.2593
5.3050
5.
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME EQR PT3 TT3 LPL A1RFLW SHX FUEL
CO
to
29-5 5A -5
29-55A-6
29-55A-7
29-5 5A -6
29-5 5A -9
29-55A-10
29-55A-11
29-55A-12
29-55A-13
29-55A-14
29-5 5A -15
29-55A-16
29-55A-17
29-55A-18
29-55A-19
29-55A-20
29-5 6A-1
29-56A-2
29-56A-3
29-56A-*
29-56A-5
29-56A-6
29-56A-7
29-5 6A -8
29-56A-J9
29-5 6A -10
29-56A-11
29-56A-12
29-56A-13
29-56A-14
29-56A-15
29-57A-1
29-57A-2
29-57A-3
29-57A-4
29-57A-5
29-57A-6
29-57A-7
29-57A-8
29-57A-9
29-57A-10
29-5 7A -11
29-57A-12
2 9-5 7 A -13
29-58A-1
29-5 8A-2
29-58A-3
29-58A-V
29-58A-5
2 9-5 8 A -6
29-58A-7
0.1499
0.2418
0.2946
0.2206
0.1898
0.2791
0.2408
0.2062
0.1971
0.1801
0.1492.
0.3156
0.3402
0.2362
0.1810
0.3923
0.4017
0.3477
0.2852
0.2248
0.2090
0.1953
0.2158
0.2223
0.2760
0.2288
0.1960
0.1768
0.1646
0.1614
0.1533
0.3155
0.3663
0.3894
0.3703
0.3463
0.3231
0.3449
0.3741
0.3512
0.35V3
0.281k
0.2277
0.1671
0.3876
0.3293
0.4065
0.4306
0.4143
0.4054
0.3105
49.OOOO
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
49.5000
50.0000
49.0000
49.0000
50.0000
49.5000
49.50OO
49.5000
50.0000
50.0000
49.5000
49.5000
49.0OOO
49.0000
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
50.0000
49.0000
50.0OOO
50.0000
50.0000
49.0000
50.0000
49.5000
49.5000
50.000O
49.5000
50.0000
50.0000
49.5000
5O.OOOO
6O4.5000
604.0000
607.5000
602.COOO
603.5000
608.0000
'602.5000
605.0000
608.0000
599.5000
603.5000
606.000O
601.0000
605.5000
600.0OOO
617.0000
6O7.0000
607.0000
606.00OO
605.5000
6O1.00OO
603.0000
607.5000
6O2.50OO
605.5000
605.0000
603.5000
6O3.5OOO
604.5000
603.0000
598.5000
597.5000
603.50CO
598.0000
605.0000
602.0CCO
604.5000
600.0000
600.5GGO
602.50OO
603.5000
603.0000
598.0000
602.0000
6O1.OOOO
600.0OOO
600.00OO
601.5000
6&4.00OO
604.00OO
6O4.OOOO
3.4O83
3.3402
3.5366
3.6716
3.4384
4.5190
4.5190
4.3662
4.1261
3.9296
3.9296
4.5190
4.9120
3.5366
3 . 6349
4.5190
4.C639
4.3226
4.3105
4.3105
4.1261
4.1678
4.1678
4.1678
4.3226
4.1261
4.1678
4.1678
4.2103
4.1100
4.0278
4.2243
4.4208
4.5190
4.5647
4.4655
<».4208
4.6113
4.5190
4.5190
4.5190
4.3105
3.9296
3.8701
4.O685
3.8314
4.0685
4.2243
4.2243
4.2670
4.0278
0.8131
0. 7509
0. 7355
0.7712
0. 7660
0.6995
0.7057
0.7047
0.6883
0.6750
0.7212
0.6851
0.6975
0.6143
0.6717
0.6591
0.7533
0.7452
0.7592
0.7564
0.7416
0.7442
0. 7409
0.7418
0.8539
0.8524
0.8665
0. 8755
0.8817
0.8759
0.8544
0.8572
0.8530
O. 8566
0.8663
0.8777
0. 8675
0.8759
0. 8665
0.8603
0.8526
0. 8437
0.8565
0. 8662
0.8488
0.8518
0.8527
0.6570
0. 8576
0. b653
0.6691
0.0166
0.0166
0.0166
0.0166
0.0166
O.O166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0097
O.OO97
O.OO97
0.0097
0.0097
0.0097
0.0097
O.OO97
0.0097
0.0097
O.OO97
0.0097
0.0097
0.0097
0.0097
O.Olbl
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0101
0.0110
0.0110
0.0110
0.0110
0.0110
0.011O
0.0110
i/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/. 5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
i/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
i/.5N
2/.5N
i/.5N
Z/.5N
2/.SN
2/.5N
2
2
'
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
CO
CO
29-58A-8
29-56A-9
2 9-5 8A -10
29-58A-11
29-58A-12
29-58A-13
29-59A-1
29-59A-2
29-59A-3
29-59A-*
29-59A-5
29-59A-6
29-59A-7
29-59A-8
29 -59 A -9
29-59A-10
29-59A-11
29-59A-12
29-59A-13
29-60A-1
29 -60 A -2
29-60A-3
29-6 OA -4
29-60* -5
29-60A-6
29-60A-7
29-60A-6
29-60A-9
29-60A-10
29-6OA-11
29-6OA-12
29-61 A-l
29-61A-2
29-6 1A-3
29-61A-4
29-61A-5
29-61A-6
29-61 A -7
29-61A-«
29-61 A -9
29-61A-10
29-61A-11
29-6 IA -12
29-61A-13
29-61A-14
29-61A-15
29-61A-16
29-61A-17
29-61A-18
29-61A-19
29-61A-20
0.3614
0.3673
0.4096
0.43*4
0.4274
0.4123
0.3025
0.2769
0.2474
0.2154
0.1929
0.1833
0.2O20
0.2869
0.2702
0.2428
0.2114
0.2003
0.1527
0.2827
C.2446
0.2169
0.1863
0.2075
0.2710
0.2388
0.2154
0.1835
0.1533
0.1218
0.2861
0.3045
0.2688
0.2346
0.2159
0.1918
0.2486
0.2310
0.2757
0.2548
0.2199
0.1889
0.2370
0.2946
0.3004
0.2337
0.2078
0.2446
0.2540
0.2699
0.2397
so.uooo
50.0000
49.5000
49.5000
50.0000
49.5000
50.0OOO
50.0OOO
50.0000
50.5000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.OOOO
50.0000
5C.OOOO
50.0000
49.5OOO
50.0000
49.5000
50.5000
50.5000
49.5000
50.5000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
50.0000
50.0000
50.0000
4V. 0000
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
605.0000
597.0000
597.5000
6C5.5000
603.50OO
604.0000
6O2.OOOO
6O5.5000
6O9.0OOO
602.5OOO
6U0.5OOO
605.5000
603.5OOO
602.0000
604.5000
60*. 5 000
6O2.5OOO
602.5000
6O2.5OOO
604.0000
606.0000
600.0000
601.0OOO
601.5000
607.0000
59b.OOOO
603.5000
596.5OOO
609.5000
600.0000
602.5000
598.0000
599.5000
603.0000
602.5000
597.0000
603.0000
600.00OO
596.5000
596.0000
600.5000
6O3.0000
596.5000
596.5000
601.0000
596.5000
599.5000
601.00OO
601.5000
601.0000
599.5000
•..1261
4.1261
4.2670
4.4655
4.2243
4.4655
4.B138
5.0102
5.1085
4.9606
5 . 160 1
5.0102
5.1085
5.1085
4.9120
4.8138
4.9120
4.7155
4.5190
4.0276
4.6639
4.3226
4.1678
. 7632
0. 7765
0.7638
0. 7777
0.7665
0.8065
0.7962
0. 7096
0. 7249
0.7230
0. Y385
0.7553
0.7275
0. 7333
0.7059
0. 72 70
0. 7460
0.7539
0.7287
0.7013
0.7183
0.7250
0.7437
0.7395
0.7303
0.7210
0.7277
0.0110 2
O.011U 2
O.0110 2
O.0110 2
0.0110 '<.
0.0110 2
0.0124 2/.5N
O.0124 2/.5N
O.0124 2/.5N
0.0124 2/.5N
0.012* 2/.5M
0.0124 2/.5N
0.0124 2/.5N
0.0124 2
0.012* 2
O.0124 i
O.0124 2
0.0124 2
0.0124 2
0.013* 2/.5N
0.0134 2/.5N
0.0134 2/.5N
0.0134 2/.5N
0.0134 2/.5N
0.0134 2
O.0134 2
0.0134 2
0.013* 2
0.0134 2
0.0134 2
O. 0134 2
0.0155 2/.5N
0.0155 2/.5N
0.0155 2/.5N
0.0155 2/. 5N
0.0155 2/.5N
0.0155 «V.5N
0.0155 2/.5N
0.0155 2/.5N
0.0155 2
0.0155 2
0.0155 2
0.0155 2
0.0155 2
0.0113 2/.5N
0.0113 2/.5N
0.0113 2/.5N
0.0113 2/.5N
0.0113 2/.5N
0.0113 2/.5N
0.0113 2/.5M
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEHE
EOR
PT3
TT3
LPL
A1RFLH
SHX
FUEL
29-61A-21
29-6 1 A -a 2
29-61A-23
29-61A-24
29-61A-25
29-61A-26
29-61A-27
29-62A-1
29-62A-2
29-62A-3
29-63A-1
29-64A-1
29-64A-2
29-64A-3
29-64A-4
29-6 4A -5
29-6 4A -6
29-65A-1
29-6 5A -2
29-6 5A -3
29-65A-»
29-6 5A -5
29-6 5A -6
29-65A-7
29-6 5A-«
29-65A-9
29-65* -10
29-65A-11
29-6 5A -12
29-65A-13
29-65A-14
29-6 5A -15
29-65A-16
29-65A-17
29-65A-18
29-65A-19
29-6 5A -20
29-6 5A -21
29-65A-22
29-6 5 A -2*
29-65A-25
29-65A-26
29-65A-26
29-45A-27
29-65A-28
29-65A-29
29-65A-30
29-65A-31
29-6 5A -32
29-65A-33
29-6 5A -34
0.2311
0.2761
0.2452
0.2115
0.1769
0.2284
0.2356
0.2958
0.2608
0.2209
0.0
0.3665
0.3638
0.3151
0.2853
0.2413
0.1987
0.2844
0.2809
0.2511
0.2233
0.1842
0.1978
0.2227
0.2301
0.2753
O.2428
0.2162
0.1828
0.2026
0.2156
0.2183
0.2113
0.2039
0.2263
0.2589
0.1833
0.1984
0.1956
0.2239
0.2469
0.1868
0.2611
0.2331
0.1972
0.1841
0.1689
0.1996
0.2254
O.2440
0.1757
50.0000
50.0000
50.0000
49.0000
49.0OOO
50.0000
50.0000
50.0000
49.5000
50.000O
50.0000
50.0000
50.0000
50.0000
49.5000
49.5000
49.5000
50.0000
50.0000
50.0000
5O . 0000
50.0000
50.0000
50.5OOO
50.0000
50.5000
50.0000
50.0000
50.000O
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.50CO
50.0000
50.0000
50.0000
50.5000
50.0000
50.0000
5O.OOOO
50.0000
49.500C
49.0000
49.5OOO
50.5000
50.5000
50.5000
49.0000
601.5000
60O.5000
597.5000
598.5000
596.5000
595.0000
593.5000
601.5000
6O8.5000
604.OOOO
601.5000
599.0000
60*. 5000
603.5000
605.0000
6O2.5000
603.5000
603.0000
601.5000
604.5000
603.5000
6O1.0000
600.5000
600.5000
6O3.000O
602.5000
6O5.500O
606.OOOO
605.5000
600.0000
602.0000
605.0000
6O1.0000
597.0000
599.5000
598.5000
603.0000
602.5000
602.5000
604.0000
601.0000
607.5000
594.0000
602.5000
605.5000
604.5000
601.5000
601.0000
6OO..OJOO
600.0000
599.0000
3.7331
4.3226
4.3226
4.6113
4.5110
4.3226
4.3226
5.3050
5.5570
5.5014
3.9296
5.6979
5.1085
5.010?
4.7632
4.5647
4.5647
3. 9296
3.9296
4.0278
3.7331
3.7331
3.7331
3.6962
3.7331
3.8907
3.9296
3.7331
3.7331
3.7331
3.7331
3.7331
3.7331
3.7331
3.7331
3.8907
3.V296
3.9296
2.7507
2.7235
2.6525
2.7507
5.1085
4.9120
5.1601
5.2127
4.9616
7.0032
6.8087
6.8087
7.3179
0.7325
0. 7460
0.7574
0.7769
0.7806
0.7574
0. V525
0.6283
0.6313
0.6462
0. 5900
0. 6246
0.5707
0.5919
0.5782
0.5750
0.5867
0.7613
0. 7709
0^7776
0. 7609
0.7882
O. 7830
0. 7625
0. 7602
0.7511
0. 7661
0.7609
0.7813
0.7697
0.7633
0.7530
0.7548
0.7579
0. 7490
0.7525
0.7912
0.7798
O. 6110
0.6273
0.6C70
0.6001
0.8270
0.8360
0. 8600
0.8661
0.8587
0.9761
J.9580
O. 9367
0.9646
0.0113 2/.5N
0.0113 2
0.0113 2
0.0113 2
0.0113 i
0.0113 2
0.0113 2
0.0130 2
0.0130 2
O.O13O 1
0.0076 2/.5N
0.0087 2
0.0087 2
0.0087 2
0.0087 2
l*. 0087 2
0.0087 2
0.013V 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0139 2/.5N
0.0121 2
0.0121 2
0.0121 2
0.0121 ?
0.0121 2
0.0121 2
0.0121 2
0.0118 2/.5N
0.0118 2/.5N
0.0118 2/.5N
0.0118 2/.5N
0.0118 2/.5N
0.0118 2/.5N
0.0096 27. 5N
0.0096 2/.5N
0.0096 2/.5N
0.0096 2/.5N
0.0093 2/.5N
O.OO93 2/.5N
0.0093 2/.5N
O.O093 2/.5N
0.0093 2/.5N
0.0093 2/.5N
0.0093 2/.5N
O.0093 2/.5N
0.0093 2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME EQR PT3 TT3 LPL AIRFLW SHX FUbL
CO
en
29-6 SA -35
29-6 5A -36
29-6 5A -3 7
29-65A-38
29-65A-39
29-6 5A -40
29-6 5A -41
29-65A-42
29-6 5A -A3
29-66A-1
29-66A-2
29-66A-3
29 -46 A -4
29-66A-*
29-66A-6
29-66A-7
29-66* -fl
29-66A-9
29-66A-10
29-66A-11
29-66A-12
29-6 6A -13
29-66A-14
29-67A-1
29-67A-2
29-67A-3
29-6 7A -4
29-67A-5
29^67A-6
29-67A-7
29-6 7A-6
29-6 7A -9
29-6 7A -10
29-67A-11
29-67A-12
29-67A-13
29-67A-14
29-67 A -15
29-67A-16
29-67A-17
29-67A-18
29 -6 7 A-l 9
29-67A-20
29-67A-21
29-67A-22
29-67A-23
29-6 7A -2*
29-67A-25
29-67A-26
29-67A-27
29-67A-28
0.2902
0.26*9
0.2291
0.1967
0.2173
0.2249
0.2411
0.2031
0.1892
0.3332
0.3605
0.3807
0.4105
0.3143
0.2854
0.2616
0.2386
0.3129
0.3418
0.3688
0.3959
0.2921
0.2637
0.2168
0.1946
0.1719
0.1519
0.1277
0.1027
0.1814
0.1637
0.1454
0.1256
0.1044
0.2066
C.1601
0.1517
0.1268
0.1017
0.2115
0.1907
0.1676
0.1770
0.2317
0.2283
0.2047
0.1731
0.1452
0.1619
0.2227
0.1966
49.5000
50.0000
49.0000
49.5000
49.5OOO
50.0000
50.0000
-.9.5000
49.00OO
50.0000
50.5000
50.0000
50.0000
50.5000
50.0000
50.0000
50.5000
49.5000
50.0000
50.0000
50.0000
5O.OOOO
50.0000
49.7500
49.7500
49.7500
49.7500
SO. 0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50.0000
50 . OOOO
50.0000
49.5000
50.0000
50.0000
50.0000
49.5000
50.0000
50.0000
50.0000
50.0000
50.0000
610.5000
602.5UOO
610.5000
600.5000
61O.5000
604.0000
60*. 0000
596.5000
6oO.OOOO
599.0000
6O7.0000
603.5000
609.5000
602. OOOO
60O.5000
604.0000
598.5DOO
604.0000
600.0000
600.0000
600. OOOO
59&.5000
60 3. OOOO
606.5000
602.5000
597.5000
605.5000
601. OOOO
605.5000
598.0000
602.5000
603.0000
597.0000
600.0000
599.5000
607. OOOO
600.5000
602.5000
599.0000
6U2.000O
605.5000
6U4.5000
599.5000
603.5000
601.0000
601.5000
598.5000
597.0000
598.5000
598.0000
597.0000
4.4655
4.2243
4.1100
3.9693
3.9693
4.9120
5.1085
5.0608
5.1125
3.7331
3.6962
3.7331
3.7331
3.5016
3.3402
3.3402
3.1126
3.7708
3.7331
3.7331
3.V331
3.5366
3.5366
3.9493
3.9493
3.7519
3.7519
3.7331
3.7331
6.0909
6.0909
5.8944
5.8944
5.9926
4.0278
3.9296
*.O276
3.9296
3.9296
3.9296
3.9296
3.9693
3.9i96
4.1261
3.9296
4.O685
3.9296
4.1261
4.1261
3.9296
4.1261
0.7463
0.7378
0. 7*22
0.7391
0.7355
0.8066
0.8099
0. 8116
0.8187
0.8736
0.8658
O. 8747
0. 8o22
0.8507
0.8720
0. 8707
0.8671
0.8936
0.8821
0.8775
O.b733
0.8842
0.8985
0.9540
0.9552
0.9571
0.9395
0.945U
0.9567
1.1394
1.1346
1.1307
1.1358
1.1554
0.9421
0.9412
0.9548
0. 9574
0. 9663
0.9485
0.9455
0.9515
G.9t83
0.9534
0.9*77
0.9533
0.9522
0.9670
0.9565
0.9320
0.9396
0.0157
0.0157
0.0157
0.0157
0.0157
0.0157
0.0157
0.0157
0.0157
0.0141
0.0141
0.0141
0.0141
O.C141
0.0141
0.0141
0.0141
O.O131
0.0131
0.0131
0.0131
0.0131
0.0131
0.0156
0.0156
0.0156
0.0156
0.0156
0.0156
0.015t
0.0156
0.0156
0.0156
0.0156
0.0156
0.0156
0.0156
0.0156
0.0156
O.O154
0.0154
0.0154
0.0154
0.0154
0.0154
0.0154
0.0154
0.015*
0.015*
0.0154
0.0154
2/.5N
2/.5N
2/.5N
i/.i>N
2/.5N
2/.5N
2/.5N
i/.5N
2/.5N
2
t.
2
2
2
2
i
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
4/.5N
2/.5M
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
EOR
PT3
TT3
LPL
AIRFLM
SHX
FUEL
•>
CO
29-72* -1
29-72A-2
29-72A-3
2 9-7 2* -4
29-72* -5
29-72A-6
29 -7 2* -7
29-72* -«
29-72A-9
2 9-7 2* -10
29-7 2* -11
29-72*-12
29-7 2* -13
29-72*-!*
29-72A-15
29-73* -1
29-7 3* -2
29-7 3* -3
29 -7 3* -4
29-73* -5
29-7 3* -6
29-73A-7
29-7 3* -8
29-73* -9
29 -7 3* -10
2 9-7 3* -11
29-73* -12
29-73A-13
29-73A-14
29-7 3A -15
29-73A-16
29-7 3A -17
29-7 3* -18
29 -7 3* -19
29-73A-20
29-73* -21
29-73* -22
29-73A-23
29-74A-1
29-74* -2
2 9 -7 4* -3
29-74* -4
29-7** -5
29-74* -6
29 -74* -7
29-74* -6
29-74* -9
29 -7 4* -10
29-74A-11
2 9-7 4* -12
^9-7 H* -13
0.3564
0.2875
0.2564
0.2179
0.1891
0.1571
0.1227
0.0934
0.2694
0.2307
0.1886
0.1543
0.1145
0.0834
0.0988
0.0656
0.0808
0.0504
0.0359
0.0488
0.0636
O.082O
0.0701
0.0906
0.1029
O.O466
0.0531
0.0677
0.0793
0.0875
0.0929
0.0693
0.0801
0.0873
0.0927
0.0918
0.1130
0.0755
0.1706
0.2029
0.2316
0.2609
0.2910
0.3219
0.3498
0.1763
0.2104
0.2401
0.2852
0.3160
0.3455
*9.7500
49.7500
49.7500
49.0000
49.5000
50.0000
*9.5000
49.7500
49.7500
49.5000
49.5000
49.5000
49.5000
49.5000
49.5000
50.0000
49.7500
50.2500
80.0000
80.5000
80.0000
49.3000
49.7500
49.5000
49.7500
49.0000
74.5000
74.2500
74.2500
73.7500
75.0000
99.2500
99.2500
101.0000
100.0000
49.2500
49.7500
49.5000
49.5000
50.0000
49.5000
50.0000
49.5000
49.7500
50.0000
49.2500
49.7500
49.7500
49.7500
49.7500
49.2500
604.0000
602.0000
613.0000
601.0000
596.0000
599.5000
583.0000
596.0000
600.0000
610.0000
599.5000
604.0000
596.5000
608.0000
5UV.5000
601.5000
59S.OOOO
593.5000
601.5000
600.0000
59a.SOOO
606.5000
601.5OOO
606.OOOO
603.0000
604.0000
603.5000
606.5000
6O2.5OOO
601.0COO
603.0000
597.0000
600.5000
599.5000
601.5000
792.0000
810.5000
802.5000
599.0000
604.5OOO
602.0000
603.5000
603.5000
601.0000
601.5000
601.0000
602.5OOO
603.0000
604.5000
602.5000
600.5000
3.6531
3.3569
3.2582
3.20/8
2.7785
2.6525
2.3816
2.1721
3.356V
3.1754
3.0762
2.9770
2.7785
2.77*5
2.6793
3. 4384
3.6531
3.4213
1.2280
1.3424
1.3508
2.4242
2.*121
2.4242
2.4121
2.2449
2.4161
2.5589
2.6936
2.7119
2.6667
2.5189
2.5189
2.4752
2.5OOO
3.0457
3.0151
3.0303
4.2670
4.2243
4.4655
*.«.208
4.6639
4.6405
4.7155
4.2B&6
4.4430
4.4430
t.5417
4.6405
4.8871
0.6224
0.6293
0. 62*4
0.6371
0.6210
0.6088
0. 6060
0.6171
0.6331
0.6318
0.6475
O.6405
0.6645
0.6427
0.6334
1.4475
1.4427
1.4651
1.4761
1.5108
1.4934
1.0588
l.t»58d
1. 0546
1.0558
1.0563
1.7150
1.7309
1.7461
1.7283
1.7181
2. 3009
2.2510
2. 2976
2.2965
1.0373
1.0350
1.0355
0.6835
0. 6805
0.0871
0.68V1
O. 6860
0.6850
0.6881
0.6863
0.6890
0. 68 34
0.6830
0.6788
0.6&58
O.OO11
0.0011
0.0011
O.O011
0.0011
0.0011
0.0011
0.0011
0.0049
0.0049
0.0049
0.0049
O.OO49
0.0049
O.0049
0.0083
O.O083
O.OO83
0.0083
0.0083
0.00b3
0.0119
0.0119
0.0119
0.0119
0.0119
0.0123
0.0123
O.O12J
0.0123
0.0123
0.0123
0.0123
0.0123
0.0123
0.0123
0.0123
0.0123
0.0092
0.0092
0.0092
0.0092
0.0092
O.OOV2
0.0092
0.0092
O.OO92
0.0092
0.0092
0.0092
0.0092
2
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
cl
2
2
2
2
2
2
2
2
2
2
2
it
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME EOR
PT3
TT3
LPL
A1RFLW
SHX
FUEL
>
do
29-75A-1
29-75A-2
29-75* -3
29-75A-4
29-75A-5
29-7 5A -6
29 -7 5 A -7
29-75A-6
2 9-7 5 A -9
29-75A-1G
2 9-7 5A -11
29-75A-12
29-75A-13
2V-75A-14
29-76A-1
29-76A-2
29-76A-3
29-76A-4
29-76A-5
29-7 6A-6
29-7 6A -7
29-76A-B
29-76A-9
29-76A-10
29-76A-11
29-7 6A -12
29-76A-13
29-76A-14
29-7 6A -15
29-76A-16
29-76A-17
29-76A-1B
29-77A-1
29-77A-2
29-77A-3
29 -7 7 A -4
29-7 7A -5
29-77A-6
29-77A-7
29-77A-6
29-77A-9
29-77A-10
29-7 7A -11
2 9-7 7A -12
29-77A-13
29-77A-14
29 -7 7 A -15
29-77A-16
29-77A-17
29-77A-18
29-77A-19
0.1974
0.2313
0.2613
0.3030
0.3350
0.3760
0.4138
0.2068
0.2463
0.2876
0.3284
0.2662
0.2298
0.1645
0.0952
0.0838
0.0724
0.0541
0.0548
0.0696
0.0852
0.0747
0.0647
0.0515
0.0442
0.0515
0.0629
0.0702
0.0359
0.0493
0.0599
0.0669
0.1394
0.1718
0.2354
0.2948
0.3545
0.4149
0.4453
0.4746
0.5054
0.3504
0.4084
0.4355
0.4658
0.4454
0.5404
0.2973
0.3355
0.2307
0.2790
49.9500
50.0000
50.OOOO
50.0000
50. CO 00
50.0000
50.0000
50.0000
50.0000
50.2500
50.2500
50.OOOO
50.0000
50. COCO
49.5000
49.750O
49.7500
49.5000
98.0000
100.0000
98.5000
49.5000
50.5000
49.5000
49.5000
49.2500
48.5000
50 . OtlOO
50.2500
53.5000
49.2500
49.2500
49.5000
49.50OO
50.0000
50.0000
49.5000
49.5000
49.5OOO
49.5000
49.5000
50.0000
50.0000
50.0000
50.0000
49.0000
49.5000
49.7500
50.2500
49.7500
50.250O
601.0000
6O3.0000
604.0000
601.0000
605.0000
6O5.0000
602.5000
6O4.OOOO
604.0000
601.0000
601.0000
597.0000
600.0000
604.0000
604.0000
604.5000
598 .OOOO
602.0000
6C4.0000
597.0000
600.0000
6O1.OOOO
602.0000
598.0000
601.0000
599.5000
60*. 0000
594.000O
402.0000
397.0000
403.0000
39U.OGOO
597.5000
598.5000
601.5000
602.5000
599.0000
604.5000
604.5UOG
602.0000
602.5000
603.0000
6OO.OOOO
603.5000
606.OOOO
6O2.OOOO
603.0000
600.0000
605.0000
597.0000
603.0000
4.4252
4.5190
4.0173
4.7155
•».8138
4.9120
5.0102
4.6173
4.9120
5.0831
5.1808
i.2067
5.2067
5.4O32
2.2823
2.1721
^.1721
2.1831
1.4034
1.3754
1.2966
4.7632
4.O688
4.7632
4.6639
6.5626
6.4818
5.8944
4.3986
t.2234
4.5879
4.5679
4.3662
4.3662
4.5190
4.7155
4.9616
5.1601
5.2593
5.3585
5.2593
4.7155
4.9120
5.4032
5.59*7
5.7140
5.5570
5.1341
4.1056
4.4430
4.4966
0.5924
0.5976
O.6095
0. b9«,l
0.5V79
O. b&67
0.5821
0.5874
0. 59 94
0.5903
0.5936
0.5996
0.59 01
0.5976
1.1336
1.1327
1.1328
1.1324
1.9692
1.9807
1. 6647
1.6741
1.6695
1.67*3
1.C703
1.9279
1. B543
1.8427
2.0532
1.9278
1.8743
1.8714
0.6796
0. 6775
0.6740
0.6772
0.6778
0.6766
0.6760
0.6769
O. 6758
0.6747
0. 68-.0
0.6913
0.6938
0.6959
0.6802
0.6045
0.5958
O. 8667
0.8619
0.0208
O.020EJ
0.0208
0.0208
0.0208
0.0206
0.0206
0.0215
0.0215
0.0215
0.0215
0.0215
0.0215
0.0215
0.0094
0.0094
O.OO9*
O.O094
0.0094
0.0094
0.0094
O.O088
0.0088
0.0086
O.O088
0.0088
0.0088
0.0088
0.0088
O.O08B
0.0068
0.0088
0.0099
0.0099
0.0099
0.0099
0.0099
O.OOVV
0.009'*
0.0099
0.0099
0.0099
0.0099
0.0099
0.0099
O.O09V
O.OO99
0.009*
0.0092
O.OO92
0.0092
2
t.
1
i
£.
'{
'i
2/.SN
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2/.5N
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
<
2
2
2
2
2
2
2
2
2
*.'
2
2/.5N
2/.5N
<./.5N
2/.5N
-------
TABLE A-l
COMBUSTOR OPERATOR PARAMETER DATA (Continued)
SCHEME
fcOR
PT3
TT3
LPL
AIRFLW
SHX
FUEL
29-77A-20
29-77A-21
29-77A-22
29-77A-23
29-77A-24
29-77A-25
29-77A-26
29-77A-27
29 -7 7 A -2 8
29-77A-29
29-77 A -30
29-77A-31
29-7 7A -32
29-77A-33
0.3017
0.3243
0.3474
0.3131
0-2084
0.1606
O.1099
0.3975
0.4224
0.3741
0.0
0.0
0.0
O.O
49.7500
49.7500
50.0000
50.0000
50.0000
49.7500
49.7500
50.0000
50.0000
50.COOO
SO. 0000
50.0000
5O.OOOO
50.OOOO
602.0000
60H.OOOO
596.5000
600.0000
601.5000
598.0000
6O4.0000
605.0000
606.0000
598.5000
604.5000
597.0000
600.5000
604.5000
4.7392
4.9367
4.8138
4.519G
4.3226
4.2455
4.14t8
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA
SCHEME
LOR
HCQ15
CMQ15
NXCQ15
CD01
0X01
fcFFGA
CFKAC
NOTE
CO
CO
01-05A-1
01-0 5A -2
01-05A-3
01-0 5A-4
01-05A-5
01-05A-6
01-06A-1
01-06 A-2
01-06A-3
01-O7A-1
01-0 7 A -2
01-O7A-3
01-07A-4
01-07A-5
01-07A-6
01-07A-7
01-O7A-8
01-07A-9
01-O7A-1O
01-07A-11
01-O7A-12
01-O7A-13
01-07A-14
01-07A-15
01-07A-16
01-O7A-17
01-07A-18
01-07A-19
01-07A-20
01-07A-21
01-O7A-22
01-08A-1
01-0 dA -2
Ol-OBA-3
01-08A-4
01-08A-5
01-08A-6
01-O8A-7
01-08A-6
Ol-ObA-9
01-08A-10
01-08A-11
01-08A-12
01-O8A-13
01-U8A-14
01-O8A-15
01-08A-16
01-08A-17
01-09A-1
01-O9A-2
01-09A-3
0.08*5
0.12*7
0.1750
0.1858
0.1*15
0.1095
0.1123
0.1*56
O.1780
0.1798
0.2252
0.1463
0.2786
0.3397
0.3896
0.226*
0.1779
0.1206
0.3971
0.1922
0.1*31
0.1766
0.2291
0.27*9
0.3283
0.3756
0.1489
0.2*00
0.3243
0.3611
0.1690
0.120*
0.1752
0.2284
0.2829
0.3367
0.2295
0.2*30
0.2997
0.3538
0.1833
0.2376
0.2953
0.3*91
0.3938
0.4O69
0.3355
0.1733
0.093*4
0.1477
0.2029
26.9592
*4.10O4
5.18*7
2.5720
9.V766
10.75*9
23.2586
2.8339
1.7358
16.0659
13.3252
9.2981
9.9690
5.5899
3.3556
3.2055
3.1975
7.3272
0.5180
0.53*2
6.026*
1.9931
1.0958
0. 5*70
0.3050
0.2666
1.3*78
0.8359
0.6166
0.6952
1.1875
2.7764
0.9520
0.5597
0.4322
0.3466
0.2*21
0.4575
0.185*
0.1885
1.2143
0.0234
0.24*6
0.1751
0.1976
0. 1639
0.2485
0.3206
7.6072
2.5815
1.0722
38.2923
29.6552
34.3739
2 8. 6266
*5.7911
29.5308
3*.8*17
26.8620
28.*5*3
50.0**7
37.90*0
37.7700
16.5230
11.51*4
6.8570
15.2422
19.3971
220.2920
7.5302
22.7539
53.12*1
18.2179
13.0418
10.0324
6.9968
5.5033
41.7613
9.5709
5.6656
6.3625
13.5971
23.0646
22.4536
17.22*6
25.4036
8.24*0
15.1271
30.5371
11.5831
6.5370
67.2242
29.2674
10.9611
5.9527
6.4521
6.2*40
8.2631
22.6716
22.1871
34.3635
26.2*85
19*. 2361
186.4252
17O.2O2*
167.2875
153.607*
162.7623
200.7750
1B3.482*
160.1573
158.3227
172.7567
139.2792
168.7750
160 . 3***
149.6742
174.4202
169.7558
127.4526
120.3937
128.8399
220.5191
227.1570
209.6138
208.8040
199.7333
186.0726
212.9617
208.99*7
167.0455
161.7650
272.9587
227.9251
199.9661
149.6158
130.4601
136.1227
156.7811
172.5430
134.4372
119.1260
250.6007
173.3653
136.t216
12(3.0812
117.2315
114.7*89
125.4318
199.1253
1O*.6*78
168.60*8
141.7905
1. 1830
1.6951
2.^567
2.*69*
1.888*
1. 6377
1.5369
1.9*83
2. 3363
2.**73
3.0821
2.0216
3.7567
*.6852
5.3978
3.2029
2.*667
1.8*43
5. V519
2.6688
2. 0956
2. 5696
3. 23*6
3.9820
4.6311
5. 5899
2. 1*69
3.7344
*.82*7
5. 6092
2. 7590
1.6691
2. 39*3
3.1135
3.9005
4. 7091
3.1610
3.1241
3.9269
4.6970
2.3748
3.13*6
3.9318
4.6541
5.2387
5.371*
4.6066
2.3424
1.3652
2.0623
^.8286
18.3236
18.2619
17.1132
16.8272
17.3647
17.9329
17.9499
17.1883
16.5685
17.2484
16.**66
17.8897
13.3691
13.7449
12.7174
15.4717
16.9082
17.9098
12.5005
16.7263
17.7177
16.9799
16.0051
15.9257
18.5370
13.3131
17.5580
13.8657
13.9250
16.8803
16.6215
17.7124
16.6826
15.5572
14.3774
13.4*19
15.3568
10.4448
11.1886
11.6611
16.2197
15.1714
14. O2 34
13.0520
12.233*
12.0947
11.6517
16.1593
18.6300
17.5591
16.5033
99.8649
99.8173
99.9419
99.9574
99.9141
99.9292
99.8811
99.9587
99.960*
99.8867
99.9100
99.92*2
99.9*66
99,9672
99.9779
99.9711
99.9663
99.7155
99.9892
99.9712
99.9170
99.9717
99.9808
99.9662
99.9906
99.9925
99.9461
99.9858
99.9911
99.99OO
99.9799
99.9635
99.9702
99.9776
99.9682
99.9889
99.9812
99.9621
99.9855
99.9915
99.9162
99.9651
99.9861
99.9923
99.9916
99.9919
99.9893
99.9721
9V. 9*84
99.95O7
99.9652
0.98O6
0.9548
O.9O79
0.9361
0.9377
1.0*80
0.9601
0.9398
0.9239
0.9591
0.9671
O.9708
0.9555
0.9812
0.9669
0.9989
0.9759
.0775
.0344
0.9783
.0289
.0238
0.9971
.0261
.0025
.O61O
.0136
.0993
.0571
1.1066
1.1484
0.9723
0.9615
0.9625
0.9774
0.994*
0.9728
0.9O92
0.9302
0.9452
0.9135
0.9324
it. 9443
0.9486
0.9497
0.9432
0.9765
0.9510
1.0231
0.9609
0.9826
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EUR
HCQ1S
CM015
NXCQ15
CDQ1
OXQ1
EFFGA
CFRAC
NOTE
01-09A-4
01-09A-5
01-09A-6
01-09A-7
01-09A-6
01-09A-9
01-09A-10
01-09A-11
01-09A-12
01-09A-13
01-09A-14
01-09A-15
01-09A-16
01-10A-1
01-10A-2
01-10A-3
Ol-lOA-4
01-10A-S
01-10A-6
Ul-lOA-7
oi-ioB -e
02-0 1A-1
02-O1B-1
02-O1B-2
02-0 1B-3
02-01B-*
02-0 1B-5
02-O1B-*
02-O1B-7
02-01B-6
02-O1B-9
02-0 IB -1O
02-OlB-ll
02-018-12
02rOiB-13
02-O1B-14
03-03A-1
03-0 3A -2
03-0 3A-3
03-O3A-4
03-0 3A -5
03-04A-1
03-O4A-2
G3-O4A-3
03-O4A-4
03-04A-5
03-04A-*
03-O5A-1
03-O5A-2
03-O5A-3
03-O5A-4
0.2530
0.3121
0.36*3
0.1195
0.1060
0.1204
0.1734
0.1116
0.2521
0.3109
0.3705
0.1965
0.3021
0.1207
0.1753
0.2297
0.2836
0.3344
0.3636
0.1211
0.3406
0.4672
0.3875
0.3469
0.4062
0.2627
0.2360
0.3624
0.1753
0.1956
O.1669
0.1618
0.1295
0.2699
0.2468
0.2512
0.0819
0.0989
0.1129
0.1272
0.0989
0.0567
0.0737
0.0849
0.0993
0.1130
0.1273
0.0991
0.1127
0.1266
0. 1402
0.4845
0.4181
0.1491
1.3648
7.^217
2.7146
0.6270
1.4623
0.0216
0.0524
0.0586
0.1382
0.0180
2.6205
1.2013
0.6870
0.4077
0.3301
0. 1445
3.9282
0.6182
0.5077
0.1357
0.0757
0.0
0.1000
0.0
0.1451
4O.9874
15.2374
12.1325
143.6034
0.0.
26.8474
8.5448
5.2171
1294.6462
292.4114
54.8130
17.6495
176.0198
335.9O41
47.2430
5.7484
4.3017
3.2390
2.3971
0.0
o.o
0.0
34.9414
16.0664
9.6161
7.5913
23.2066
il.7c.94
21.0917
27.9902
22.7408
10.9785
8.1539
8.0817
27.0498
9.1607
56.4188
37.4854
26.5930
15.7255
14.7250
13.5426
64.0384
13.0966
7.4319
4.9420
4.5120
4.2830
122.7413
29.7864
6.6697
1886.0195
958.4O45
33B3.1426
5964.4531
5603.2461
100.9959
1497.4001
1755.1624
4816.1836
2501.8853
916.5476
187.7081
2322.9521
3106.9790
333.3562
169.0583
42.3861
26.1494
25.2859
5108.5273
5014.3008
167.0900
76.6550
136.6951
123.9230
112.3696
213.1.242
172.5821
213.2354
142.5126
267.6484
135.5493
116.6232
107.0785
129.5204
116*6697
102.5431
93.U938
96.3920
103.6635
100.8122
103.9520
130.5347
145.7160
172.5532
2.0392
1.1407
1.7535
0.9071
1.0099
0.2194
5.8664
8.4752
6.6077
5.3725
106.3130
147.8661
86.3970
78.6568
30.3199
88.8939
154.6901
241.0770
106.6535
36.6981
39.4832
60.3936
98.0088
153.V035
218.4893
10.5645
13.2676
23.5388
74.5897
3. 5973
4.*065
5. 13VV
1.0063
1.4775
1.6362
2.4093
I. 6945
3.8586
4.5816
5.4131
2.6556
4. 1482
1.7195
2.4493
3.2295
3.9768
4. 7063
5.0982
1.7131
4.7823
6. 1346
5.0419
4. 4956
5.2948
3. 9093
3. 3022
4.2455
2. 5049
2. 8472
2.5877
2.1813
1.8522
4. 0788
3.3373
3.1857
1.1696
1.5762
1.8921
2. 1658
1.6155
1.0009
1.3034
1.5119
1.7059
1.8507
2.082*
0.7522
1.1053
2.3034
2.1506
15.4840
lt.3020
13.2392
17.9443
18.2364
17.9547
16.8302
17.8340
14.7871
13.8567
12.7596
16.3694
14.2543
17.9518
16.9163
15.8248
14.6554
13.7743
13.1146
17.7950
13.6O69
11.O304
12.8742
13.6676
12.2241
14.8755
15.5019
14.3140
16.2985
15.7553
15.5263
15.7049
16.2168
14.6125
15.4955
15.5757
18.4593
17.9954
17.5331
16.9821
17.7010
18.6763
16.2120
17.7010
17.4638
17.1209
16.7246
18.9248
18.3326
17.2673
16.8844
99.9792 0.9864
99.9871 1.0026
99.9904 1.0052
99.9680 0.9891
99.95O2 0.9764
99.9660 0.9531
99.9647 0.9780
99.9683 1.0643
99.9868 1.0824
99.9901 1.0462
99.9901 1.0413
V9.9674 0.9525
99.9890 0.9742
99.9246 0.9997
99.9516 0.9838
99.9661 0.9933
99.9798 0.9938
99.9812 1.0010
99.9833 0.9992
99.9113 0.9933
99.9822 0.9991
99.9863
100.0000
100.0000
100.000O
99.8551 1.2031
99.965O 1.1272
99.9916 0.9506
97.6283
98.8120
95.9543
92.4597
93.3837
99.7888
98.1889
97.8927
90.0095
96.0746
98.7356
99.7193
96.6745
95.2301
99.4502
99.7818
99.9357
99.9583
99.9621
.0529
.0494
.1736
.0987
.1411
.0729
.9932
.9403
.1464
.1844
.1973
.1982
.2046
.3158
.2442
.2485
.2030
.1472
.1476
93.9804 0.6568
94.0860 0.8106
99.8027 1.1131
99.7923 1.0789
1
1
1
1
2
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
4 5
5
5
5
5
5
5
4
4
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
tOR
HC015
CH015
KXCC15
CDQ1
0X01
EFFGA
CFRAC
NOTE
03-06A-1
03-O6A-2
03-O6A-3
03-0 6A-4
03-O6A-5
03-O6A-6
03-O6A-7
04-O1A-1
04-01* -2
04-01 A -3
O4-O1A-4
04-02A-1
04-O2A-2
O4-02A-3
04-O2A-4
04-02A-5
04-0 3»-l
O4-03A-2
04-03A-3
04-03A-4
04-0 4A-1
04-0 4A -2
04-04A-3
04-O5A-1
04-05A-2
04-0 5A -3
04-O5A-4
04-05A-5
04-05 A -6
04-0 5 A -7
04-05A-6
04-0 5A -9
04-0 5A -10
04-05A-11
04-O5A-12
04-0 5 A -13
04-05A-14
04-0 5A -15
04-05A-16
04-05A-17
04-O5A-18
04-O5A-19
04-0 5A -20
O4-O5A-21
04-0 5A -2 2
04-05A-23
04-O5A-24
O4-O5A.-25
04-0 5 A -26
04-O5A-27
04-05A-28
0.0847
C.0533
0.0730
0.0843
0.0984
0.1124
0.0559
0.1030
0.2611
0.2659
0.1101
0.1281
0.3612
0.3253
0.3672
0.1487
0.0648
0.2291
0.1567
0.2113
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
125.4901
0.0
0.0
71.9043
30.4498
19.3253
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
o.c
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1505.9062
6954.0469
1879.9*17
663.79*8
81.1179
47.O42O
6162.6289
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
a.o
0.0
0.0
0.0
O.O
0.0
o.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
46.2380
65.3041
110.7931
12V.4301
192.6*84
298.2874
100.P525
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.394*
0.6918
1. 1997
1.3716
1.OU62
1.6050
0. 7090
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
O.O
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0,0
18.1954
18.946*
18.3184
lb.0453
17.7003
17.3710
18.754C
0.0
C.O
0.0
0.0
O.O
0.0
0.0
0.0
O.O
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
O.O
o.o
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
o.c
0.0
97.8082
91.8314
91.7887
98.9785
99.8026
99.8799
92.7597
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
-
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
_
—
_
—
_
—
—
—
_
1 . 1906
1 .O768
1.1938
1.1550
1.1451
1.1264
1.0358
-
—
—
—
—
-
—
—
—
—
_
—
_
_
_
_
_
_
—
_
—
—
—
—
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
6
6
6
6
6
6
6
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
tOR
HCQ15
CMQ15
NXCU15
CDQl
JXQI
EFFGA
CFRAC
NOTE
04-05A-29
04-J5A-30
04-O5A-31
04-0 5A -32
04-05A-33
04-05A-34
04-06A-1
04-O6A-2
04-O6A-3
04-O6A-4
04-O6A-5
04-0 6A-*
04-O6A-7
04-06A-8
04-O6A-9
04HJ6A-10
04-0 6 A -11
04-06A-12
04-O7A-1
04-O7A-2
04-0 7A -3
04-0 7A -4
04-O7A-5
05-01 A -1
05-O1A-2
05-O1A-3
05-01A-4
05-O1A-5
05-01A-*
05-01A-7
C5-01A-6
05-O1A-9
05-01A-10
05-0 2A-1
05— 02 A— 2
05-02A-3
05-O2A-4
05-O3A-1
05-O3A-3
05-O3A-3
05-O4A-1
05-0 4A -2
05-04A-3
05-0 4A -4
05-0 4A -5
05-04A-6
05-O4A-7
05-O4A-8
05-04A-9
05-05A-1
05-O5A-2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1521
0.2169
0.2641
0.3252
0.3808
0.3736
0.3226
0.3753
0.3162
0.2653
0.1644
0.3654
0.3963
0.8O92
0.1602
0.3111
0.4208
0.1698
0.2475
0.3061
0.2920
0.2128
0.2351
0.2701
0.2819
0.3111
0.2408
0.2190
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
165.1151
54.7521
31.3351
30.7118
19.4848
12.9857
17.6913
10.6470
17.1484
13.9858
0.0
0.6
0.0
0.0
0.0
0.0
0.0
10.9805
4.7503
2.7176
2.6489
1.7518
1.8297
1.1683
1.0173
0.5532
2.3834
1.3109
0.0
0.0
O.O
0.0
0.0
G.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
82.4329
39.5335
63.3178
241.6073
200.4634
189.7301
131.3101
161.0806
104.3O17
43.7162
0.0
0.0
0.0
0.0
0.0
0.0
0.0
344.4773
37.20^5
18.7882
0.0
117.3788
4.5397
0.0
0.0
0.0
25.2274
25.7986
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
84.6933
51.8311
62.7283
49 . 1O33
42.7388
47.6591
41.8946
46.6451
38.8448
16.6133
0.0
0.0
0.0
O.O
0.0
0.0
0.0
152.8840
66.4688
138.7816
139.4867
13H.4212
108.6884
109.1430
120.4987
126.2557
159.9817
131.0290
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.9001
1.7255
2.2908
2.5023
2.4672
2.6735
2.0125
2. 5738
1.9134
1.5197
O.O
0.0
c.o
0.0
0.0
0.0
0.0
2. 3695
3. 6992
4.3605
4. 2438
2.6439
2.6178
3.3172
3.9466
4.1666
3. 7088
2.9941
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.o
10.1027
11.3691
9.7136
18.2271
16.0529
16.4729
20.0315
18.4791
19.1868
21.2410
0.0
0.0
0.0
O.O
0.0
0.0
0.0
16.8084
16.8317
15.7939
15.3430
16.9137
17.3584
16.8502
16.3133
16. 5964
14.4028
13.0560
-
-
99.3481
99.7685
99.8186
99.6O67
99.6929
99.7280
99.7829
99.7703
99.8171
99.90O6
-
-
-
—
—
—
—
»9.5552
99.9397
99.9663
99.9903
99.8547
49.9884
99.9960
99.9966
99.9961
99.9619
99.9649
-
—
0.8833
0.5583
0.6160
0.5534
O.4675
0.5151
O.44&8
0.4932
0.4327
0.4066
—
—
—
—
—
—
—
0.9900
1.0572
1.O161
1.0305
0.8786
0.7864
0.8695
0.9917
0.9553
1.0888
0.9652
3
3
3
3
3
3
3
3
3
3
7
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCIU5
CMC 15
NXCQ15
CDC I
0X01
eFFGA
CFRAC
NOTE
>
CO
O5-05A-3
05-05A-4
05-05A-5
05-O5A-6
05 -05 A -7
05-O5A-0
05-05A-9
05-05B-1
05-O5B-2
05-0 5B -3
05-O5B-4
05-0 5B -5
05-05B-6
05-05B-7
O5-O5B-8
05-05B-9
05-0 5C-1
05-0 5C -2
05-0 5C -3
05-0 5C -4
05-0 5C -5
O5-O5C-6
05-05C-7
05-05C-8
05-O5C-9
05-05C-10
05-05C-11
05-O5C-12
05-O5C-13
O5-O5C-14
05-0 6A -I
05-O6A-2
05-0 6A -3
05-0 6A-4
05-0 7A-1
05-O7A-2
05-O7A-3
05-O7A-4
05-O7A-5
05-07A-6
05 -07 A -7
05-O7A-6
05-O7A-9
05-0 7A -10
05-O7A-11
05-07A-12
05-0 7A -13
05-07A-14
05-0 7A -15
05-08A-1
05-09A-1
0.1884
0.13fa3
0.1631
0.2772
0.1884
0.2469
0.2771
0.0560
0.0691
0.0477
0.0550
0.0697
0.0756
0.0470
0.0551
O.O691
0.1411
0.1963
0.2526
0.2280
0. 2800
0.2932
0.2609
0.2420
0.2041
0.1990
9.2450
0.276O
0.3071
0.3153
0.1578
0.1874
0.1871
0.2210
0.2154
0.3103
0.0445
0.3084
0.31O4
0.3358
0.2417
0.3171
0.2898
0.2185
0.1878
0.1564
0.1289
0.0299
0.0157
0.0151
0.0106
4.5684
360.4429
29.9037
5.1762
3.0459
2.2>248
2.0712
50.9494
24.7749
119.6733
36.2784
24.5631
18.8510
30.3311
25.8673
16.502*
7.9660
5.7227
0.7418
0.7046
0.6692
1.0046
1.0261
0.9955
0.9184
9.1545
5.0286
3.2993
2.5287
2.2077
18.0O36
6.0622
15.1803
15.4239
2.7288
1.0824
949.0083
2.9952
.8938
.5O06
.7373
.5890
.6419
.7933
2.0870
3.0*28
4.5594
39.8795
695.6853
161.8710
86.1698
25.63*7
1296.6787
36.0313
19.3622
29.8147
25-2715
15.7827
198.3281
85.7159
203.9975
96.1703
59.7370
36.6358
113.2848
76.3546
*3.4864
189.7278
186.210?
21.7614
25.5346
18.7287
20.1411
25.7374
45.1842
20.5208
24.4609
9.8623
11.0747
I*. 5668
15.2501
134.1563
131.2580
139.3602
265.7761
45.5814
14.2794
1530.7617
10.7357
9.6052
6.4O40
30.2217
7.44*9
7.3880
34.6944
24.7982
17.4501
20.9257
821.5564
977.9576
O.O
147.0149
74.9372
l
20.1382
19.6762
18.8999
19.4954
17.6482
19.3216
16.7565
15.8043
16.4996
15.7065
16.3636
19.3599
18.8192
18.3833
18.6991
17.6583
17.8403
16.9312
17.9893
17.4760
16.8646
15.0243
19.6114
15.0992
14.5965
14.0865
16.2631
14.4474
14.8485
16.2204
16.9717
17.6550
18.022*
19.8585
19.866O
0.0
19.8992
99.9542
97.2600
99.8570
99.9594
99.9544
99.9621
99.9742
99.5972
99.8166
99.3619
99.7661
99.8478
99.8940
49.766O
99.8235
99.8938
99.7491
99.7599
99.9716
99.9673
99.9754
99.9725
99.9659
99.9429
99.9725
99.94O2
99.9713
99.9756
99.9740
99.9743
99.7809
99.8240
99.7838
99.6322
99.9367
99.9792
95.0429
99.9770
99.9821
99.9872
99.9582
99.9857
99.9856
99.9527
99.9636
99.9691
99.9600
98.9038
46.5422
99.4621
99.5415
0.9523
0.7492
0.9317
1.2179
1.0337
1.0436
0.9208
0.3185
0.5519
0.3775
0.4925
0.4976
0.6491
0.6117
0.6503
0.7150
1.0366
0.7715
0.8181
O.8915
0.8372
0.8813
0.8565
0.8185
0.8123
0.4849
0.4276
O.4O55
0.5112
0.3923
0.6069
0.7169
0.6052
0.6634
0.9424
0.9127
0.5521
0.8668
0.8790
O.8B29
0.7787
0.8769
0.9230
0.8825
0.8037
0.7467
0.7236
1.0064
0.952O
0.004O
1.1290
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
3
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHtME
EQR
HC015
CM015
NXC015 CDOl
0X01
tFFGA
CFRAC
NOTE
05-O9A-2
05-0 9A -3
05-O9A-4
05-09A-5
O5-09A-6
05-09A-7
05-09A-8
05-09A-9
05-09A-10
05-09A-11
05-O9A-1Z
05-09A-13
05-lOA-l
05-10A-2
05-10A-3
05-10A-4
05-10A-5
05-lOB-l
05-10B-2
05-10B-3
05-108 -4
05-10B-5
05-106 -6
05-108-7
05-lOB-B
05-1 1A-1
05-1 1A -2
05-11A-3
U5-11A-4
05-11A-5
05-11A-6
05-11A-7
05-llA-«
05-11A-9
05-11 A -10
05-llA-ll
05-11A-12
05-11B-1
05-11B-2
05-1 1B-3
05-11B-4
05-11B-5
05-1 IB -6
05-11B-7
05-1 lB-«
05-llC-l
05-1 1C-2
05-1 1C -3
05 -11C -4
05-1 1C -5
05-1 1C -6
0.1841
0.1917
0.2191
0.2855
0.3287
0.3203
0.2912
0.2297
0.2046
0.132".
0.1265
0.1439
0.1271
0.1600
0.2102
0.2684
0.2348
O.014O
0.0174
0.0202
0.0254
0.0313
0.0379
0.0438
0.0487
0.0224
0.0252
0.0135
0.0167
0.0193
0.0221
0.1165
0.1857
0.2379
0.0169
0.1138
0.1121
0.0166
0.2915
0.3191
0.2421
0.1830
0.1583
0.1170
0.1358
0.1357
0.0675
0.1200
0.1773
0.2283
0.2900
5.1297
4.1808
3.1377
1.9076
1.6570
0.8959
0.5916
O.U751
1.1222
2.8171
5.6872
6. 9580
11.5759
4.6651
1.011U
0.6932
0.5659
87.5642
61.4120
79.6828
38.8903
28.1010
22.5307
12.1539
19.V157
34.2395
24.2949
129.0934
82.5526
62.6439
51.3327
8.6014
4.1149
2.5440
31.2254
3.4834
2.5925
17.3691
0.6300
0.7409
0.8678
1.0042
1.3273
9.*773
1.7402
2.5491
28.8981
0.2215
0.2998
0.2329
0.2751
118.8640
54.9270
45.7756
29.3799
17.1811
12.0877
22.4681
77.3659
70.7987
80.7808
156.3353
214.2528
3B8.9456
212.2627
91.2682
24.5583
63.9294
24.7934
30.3291
34.9536
75.6352
11V.8608
131.3405
144.5660
155.7344
71.0129
77.8310
104.6582
247.0562
353.3838
364.0911
115.5958
55.7103
29.5905
22«.*130
130.2912
91.5687
291.7017
11.2988
8.1769
26.3728
67.9032
105.2602
346.4648
48.1651
75.6196
836.6436
55.9011
63.6034
31.6431
7.8221
215.1020
261.8601
192.4625
133.68*9
111.3835
163.9523
174.4O15
170.5612
153.7962
104.9725
96.3022
128.3457
188.4299
110.0271
121.6265
185.7750
119.7742
150.8755
139.3514
150.4825
14*. 6372
116.2961
106.6041
108.0577
81.6573
63.2108
53.6777
136.0134
97.9760
87.5118
90.1301
114.9307
199.1998
147.2827
69.1016
116.1204
113.4368
74.0147
177.7184
182.2630
148.0924
155.5807
163.2878
122.3980
139.6421
173.4352
77.4683
160.9842
196.2567
134.6*21
114.5111
i. 54*4
2.6249
2.9535
3.3302
4.1215
4.0677
3.57tt5
2.5781
2. 1814
1.1482
1.0333
1.2892
1.6657
1.514O
2.6893
3.2507
2.Y904
0.2172
0.2779
0.2666
0. 3406
0.4396
0.4857
0.5292
0.6270
0.2311
0.2416
0.2068
0.2238
0.2648
0. 3044
1.6824
2.6*79
3.3431
0.2654
1. 7294
1.6857
0.2688
4.2321
4. 5977
3.4977
2. 6649
2. 3298
1.7344
2.0198
1.9923
1.0829
1.8099
2. 5845
3. 3094
3.9913
16.8481
16.4233
15.6793
15.4846
14.2774
1*.2431
15.0881
16.3821
17.0706
18.6020
18.6665
18.3358
0.0
16.8139
16.0993
15.5885
15.9129
19.4408
19.8900
19.7826
19.4494
19.6437
19.4714
19.6131
19.3273
19.8998
2O. 0691
19. 9485
19.8257
19.7033
19.8164
17.7423
16.5697
15.4816
19.4181
17.6848
17.3081
18.9743
14.3073
13.7942
15.2534
16.39O4
16.7355
17.5764
17.2122
17.2825
18.6006
17.5471
16.3703
15.3531
14.2413
99.3419 C
99.9208 C
99.9350 C
99.9585 C
99.9738 G
99.9825 0
99.9712 0
99.9051 C
99.9122 C
99.8952 C
99.7957 C
99.7234 C
99.5020 C
99.7332 C
99.8682 (
99.9684 C
99.9221 C
99.6801 1
99.7603 ]
99.6941 C
99.7820 (
99.7659 {
99.7709 C
99.7898 (
99.7514 «
99.8029 (
99.8280 C
99.4484 ]
99.4362 (
99.3770 C
99.4026 (
99.8348
99.9201
99.9562
99.6296
99.8347
99.8833
99.6005
99.9844
99.9877
49.9657
99.9162
99.8710
99.5595
99.9373
99.9021
98.9199
99.9333
99.9236
99.9616
99.9897 I
(.9759
».9053
1.9521
1.8397
t.8916
I.9O23
1.8716
(.7944
1.7530
1.6103
(.5767
t.63*3
1.9285
1.6702
1.9043
(.8577
1.8407
.0789
i.H42
1.9923
> .9365
(.9810
(.8471
>.8457
>.9O15
1.7210
1.6694
L.O680
).9434
>.963S
).9682
.0143
.0052
.9932
.0968
.0679
.0559
.1312
.0295
.0236
.0213
.0262
.0365
.047*
.0441
.0318
.14O6
.0579
.0268
.0238
).9758
9
9
9
10
10
1J
10
10
3
3
3
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCQ15
CMUll
NXCC15
CDQ1
0X01
EFFGA
CFRAC
NOTE
05-1 1C-7
05 -11C -8
05-11C-*
05-11C-10
05-11C-11
05-11C-12
05-11C-13
05-11C-14
05-11C-15
05-11C-16
05-1 1C -17
05-11C-18
05-11C-19
05-1 1C -20
05-11C-21
05 -11C -2 2
05-1 1C -2 3
05-1 1C -24
05-11C-25
05-11C-26
05-11C-27
05-11C-28
05-1 1C -2 9
05 -11C -30
05-11C-31
05-11C-32
05 -11C -33
05-1 1C -34
05-1 1C -35
05-11C-36
05-124-1
05-1 2 A -2
05-12A-3
C5-12A-4
05-12A-5
05-12A-6
05-12A-7
05-12A-8
G5-12A-9
05-12A-10
05-12A-11
05-12A-12
05-12A-13
05-12A-14
05-12A-15
05-12A-16
05-1 2* -17
05-12A-18
05-12A-19
05-12A-20
05-12A-21
0.2676
0.1547
0.1811
0.2417
0.2972
0.2153
0.1044
0.2122
0.0732
0.1288
0.3180
0.0785
0.1501
0.2071
0.2697
C.0650
0.1110
0.2648
0.3295
0.2068
0.1414
0.2358
0.2966
0.0848
0.1435
0.2033
0.2640
0.1747
0.1132
0.2642
0.2012
0.2732
0.3515
0.4883
0.4216
0.3915
0.3526
0.3134
0.2924
0.2764
0.3108
0.4216
0.5742
0.3524
0.2496
0.2143
0.1798
0.1946
0.2138
0.1616
0.1434
0.2V79
1.3682
0.5843
0.3283
0.3560
1.5*07
6.09**
0.3741
33.5729
2.2604
0.166**
11.6312
2.4707
1.2779
0.9815
4.4460
1.1321
0.5949
0.4782
0.7617
1.4862
1.0025
O.V972
0.6192
O.1829
0.1291
0.3978
0.45O8
1.6240
0.3004
0.1320
0.1944
0.1510
0.1631
0.1889
0.1356
0.1506
0.1694
0.1816
0.1955
0.4349
0.277*
0.2t>68
0.2301
0.1805
0.2102
0.2004
0.1851
0.1685
0.1115
0.0628
12.3521
63.3511
57.3382
16.7176
4.7133
42.2750
184.0947
42.6595
597.8694
72.2341
•••.3805
134.6103
26.9120
16.9637
3.8828
86.6816
39.-»893
V.275O
6.5283
2O.18-t9
32.2538
12.5435
7.0260
111.3260
31.9905
23.3223
9.9190
30.2140
51.5541
7.2506
11.3479
10.2295
1.4651
1.7747
1.6505
1.3268
1.9362
3.3268
3.5812
•..3476
1.6639
1.6216
3.2970
1.4624
2.7426
6.<»464
7.6978
7.9717
6.4417
6.4219
4.8049
121.3308
301.C999
265.V639
195.H370
163.1037
237.O260
236.1440
229.83OB
224.5889
280.8994
173.0264
247.*316
43t.5964
374.6909
0.0
219.6575
295.5010
226.2077
191.8397
336.6741
384.2117
258.4338
195.85*0
117.8102
340.1365
277.9260
186.7932
333.7339
211.8805
312.8430
113.4537
107.4780
97.7761
56.1584
66.1380
72.6901
84.7621
99.6596
UO.OJ01
98.2524
152.1289
98.1675
95.1763
123.2992
199.4187
248.1199
199.4857
243.2989
255.6O72
154.9554
109.5280
3.4955
2.3186
2. 6568
3.5245
4. t. 524
3-0107
1.5621
2.9501
1.2081
1.9618
4.8250
1.2761
2. 2666
3.0582
4.0139
1.0985
1.7405
3. »895
4. 7943
3.1101
2.1212
3.3973
4. 2670
1.3598
2.1188
2.9636
3.8219
2.5516
1.6903
3. 7474
1.8580
2.0221
3.4771
4.9390
4. 3307
3.8812
3. 4996
2.9438
2.7853
2.8928
2. 7862
4.6097
6.8634
3.7239
2.5951
2.1971
1. 7939
1.9947
2.2378
1.6312
1.4299
14.7778
10.6526
16.3490
15.3454
14.2209
15.7814
18.0100
15.8334
18.4576
17.4510
13.5916
18.5962
17.1576
16.1416
0.0
18.2471
17.440B
14.5160
13.5847
15.6374
16.6950
Id. 3207
13.9002
16.224O
17.1620
16.O604
14.7309
16.4886
17.5760
14.8742
16.2965
15.0052
13.5038
11.0591
11.9049
12.7705
13.5711
14.3425
14.5173
14.5482
13.7113
11.8157
O.O
13.1419
14.9510
15.4721
16.1792
15.6332
15.5368
16.4405
16.9434
V9.9843
99.9205
99.9301
99.9790
99.9932
99.94<.4
99.7626
99.9481
99.1847
99.9071
99.9942
99.8021
99.9599
99.9756
99.9921
99.8833
99.9495
99.9869
99.9906
99.9735
99.9569
99.9817
99.9889
99.8669
99.9616
99.9719
99.9868
99.9627
99.9337
99.9903
99.9860
99.9870
99.9977
99.9973
99.9973
99.9979
99.9971
99.9954
99.9951
99.9941
99.9965
99.9971
99.995O
99.9974
99.9961
99.9916
99.9901
99.9898
99.9917
99.9920
99.9940
0.9242
1.0539
1.0335
1.03O5
1.0147
0.9872
1.O519
0.9814
1.1684
1.0694
1.0777
1.1391
1.0612
1.0410
1 .0535
l.ldlB
1.0985
1.0395
1.0344
1.0604
1 .0537
1.0177
1.0205
1.1241
1.0373
1.0278
1.0247
1.0282
1.0472
1.0037
0.8911
O.9299
0.9622
0.9915
1.0032
0.9666
0.9655
0.9117
0.9235
1.0137
0.8700
1.0680
1.1776
1.0281
1.0O55
0.9899
0.9612
0.9863
1.O103
0.9716
0.9587
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HC015
CM015
NXCQ15
CUQ1
0X01
EFFGA
CFRAC
NOTE
05-128-1
05-128-2
05-12B-3
05-128-*
05-128-5
05-128-6
05-12B-7
05-128-8
05-128-9
05-128-10
05-128-11
05-128-12
05-128-13
05-13A-1
05-1 3A -2
»-13A-3
05-13A-4
05-13A-5
05-13A-6
05-13A-7
05-1 3A -8
05-13A-9
05-13A-10
05-13A-11
05-13A-12
05-13A-13
05-13A-14
05-13A-15
05-13A-16
05-1 3A -17
05-13A-18
05-13A-19
U5-13A-20
05-13A-21
05-13A-22
05-1 3A -23
05-13A-24
05-1 3A -2 5
05-13A-26
05-13A-27
05-13A-29
05-14A-1
05-14A-2
05-14A-3
05-14A-4
05-14A-5
05-1 4A-«
05-14A-7
05-14A-8
05-14A-9
05-14A-10
0.1896
0.2282
0.2589
0.2948
0.3464
0.4023
0.2109
0.1425
0.1700
0.2494
0.2871
0.3361
0.3789
0.1274
0.1623
3.1603
0.1919
0.2209
0.2809
0.3136
0.4120
0.3540
0.3023
0.2833
0.2389
0.2008
0.1686
0.3504
0.2761
0.1514
0.2008
0.2203
0.2445
0.2641
0.2851
0.3068
0.3325
0.4061
0.3590
0.2225
0.2933
0.1417
0.1676
0.2018
0.2392
0.2596
0.2753
0.3102
0.3309
0.3930
0.1256
0.4277
0. 1974
0.1044
0.1222
0.10 -.0
0.1120
0.2136
0.1897
0.0530
0.1445
0.1255
0.1608
0.0713
0.7073
0.0555
0.4497
0.3287
0.2855
0.2566
0.2586
0.1531
0.1527
0.1788
0.1590
0.1886
0.2243
0.3741
0.2O57
0.2284
0.3931
0.4657
0.3472
0.3128
0.2574
0.2385
0.2216
0.2300
0.2093
O.2131
0.2291
0.1738
1.3395
0.3086
0.0854
0.1802
O.O996
0.0626
C.llll
0.1303
0.1316
0.3417
18.4510
16.5165
10.0*21
5.8959
5.0146
j.8837
9.9286
6.5252
9.1827
t.2643
4.8693
4.1120
5.0662
6.7265
6.3562
9.7t>23
13.4579
13.3687
4.9037
2.7366
6.4897
5.6496
6.6112
9.4239
17.6929
21.1057
18.5393
5.6996
11.3488
21.2026
19.7741
14.6183
14.7211
11.5040
9.9445
9.2402
8.5257
7.9131
7.3668
23.9962
10.3508
64.8321
20.1052
22.4708
14.8857
12.9682
12.9136
9.5753
6.4O25
6.6043
23.3279
96.6501
104.9896
100.0506
86.7940
74.1699
66.1022
191.2819
67.3*12
95.8849
193.6481
156.9794
123.0079
106.4566
48.8555
40.5807
56.4839
88.5898
125.8989
107.9939
88.6065
76.0618
90.8381
107.7318
107.9610
115.3846
91.0375
65.8652
87.4775
104.0506
58.0633
134.7631
190.7081
219.5906
222.3725
209.7675
193.8802
149.8293
68.1323
112.1954
123.7737
115.7906
34.5916
39.6489
58.6252
57.2435
61.7620
63.6401
61.2528
60. IbYB
61.6958
45.6727
1.8265
2.1154
2. 5998
2.8993
3.4362
4.0270
1.8812
1.2587
1.4608
2.3232
2.7731
3.2123
3.6670
1.2303
1.4840
1. 5436
1.8303
2.0888
2.7013
3. 1045
4.2425
3.5776
3.0921
2. 7691
2.3656
1. 9628
1.6361
3.4689
2.7278
1.3959
1.8935
2. 1104
2. 2730
2.4507
2. 7067
2.9068
3.2112
4.0292
3.4816
2.0845
2.7084
1.3447
1. 5908
1.9699
2. 2557
2.5430
2. 7350
3.0108
3.2583
3.9007
1.2571
10.5095
15.9791
15.1235
14.6368
13.8102
12.7481
16.5161
17.7638
17.2407
15.7243
14.6735
13.9930
13.0223
17.5072
16.9932
16.6611
16.1461
15.5337
14.2830
13.5734
12.2754
13.3056
14.3083
14.5347
15.2543
15.8686
16.4679
13.2026
14.3785
17.4690
16.7261
16. 1363
15.9119
15.5141
14.3670
14.4351
13.8999
12.4O93
13.2S91
15.7658
14.5885
17.4154
16.8496
16.2788
15.6154
15.0689
14.6326
14. 1696
13.6877
12.5385
17.9962
99.9765
99.9771
99.9875
99.9925
99.9936
99.9949
99.9874
99.9892
49.9868
99.9920
99.9937
99.9945
99.9936
99.9896
99.9922
99.9869
99.9828
99.9830
99.9932
99.9958
99.9916
99.9927
99.9914
99.9881
99.9781
99.9740
99.9766
99.9924
99.9856
99.9734
99.9748
99.9813
99.9813
99.9853
99.9872
99.9881
99.9689
99.9897
99.9904
S9.9705
99.9870
99.9182
99.9749
99.9728
99.9815
99.9841
99.9843
99.9881
99.9894
99.9916
99.9711
0.9291
0.8960
0.9721
0.9538
0.9649
0.9767
0.8610 3
0.8495 3
0.8275 3
0.9011
0.9364
0.9291
0.9430
0.9277
0.8799
0.9271
O.9200
0.9136
0.9319
0.9611
1.0053
0.9833
0.9924
0.9473
0 .9577
O.9433
0.9350
0.9631
0.9572
0.8876
0.9101
0.9254
0.8992
0.8985
0.9204
0.9195
0.9386
0 .9684
0.9439
0.9053
0.8955
0.9142
0.9144
0.9421
0.9121
0.9482
O.9626
0.9423
0.9571
0.9680
0.9622
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME EOR
HC015
CMOli
NXCQ15 COG1
0X01
EFFGA
CFRAC
NOTE
05-1 if* -11
05-14A-12
05-14A-13
05-14A-14
05-14A-15
05-14A-16
05-15A-1
05-15A-2
05-1 5A -3
05-15A-4
05-15A-5
05 -ISA -6
05-15A-7
05-15A-8
05-15A-9
05-15A-10
05-15A-11
O5-15A-12
05 -ISA -13
05 -ISA -I*
OS-lSA-15
05-15A-16
05-16A-1
05-16A-2
05-16A-3
05-16A-4
05-1 6A -5
05-16A-6
05-16A-7
05-16A-8
05-1 6A-9
05-1 7A-1
05-17A-2
05-17A-3
05-17A-*
05-17A-5
05-1 7A -6
05-17A-7
05-17A-8
05-17A-9
05-1 8A-1
05-18A-2
05-18A-3
05-1 8A-4
05-18A-5
05 -18 A -6
O5-18A-7
05-1 8A-6
05 -ISA -9
05-18A-10
05-1 9A-i
0.1725
0.20b9
0.2517
0.2957
0.3415
0.3966
0.1361
0.1703
0.2007
0.2467
0.2875
0.3355
0.3978
0.3566
0.1232
0.17*5
0.2059
0.2459
0.2922
0.3372
0.3902
0.3655
0.1464
0.1355
0.1341
0.1984
0.2269
0.2550
0.2843
0.3091
0.3106
0.0646
0.0705
0.1293
0.1939
0.2563
0.3248
0.2537
0.3193
C.2561
0.0828
0.0796
0.1396
0.2031
0.2657
0.3226
0.3531
0.0124
0.0786
0.1997
0.0
0.0498
0.0834
0.0341
0.1741
0.1507
0.1731
1.O182
0.4067
0.3451
0.1755
0.1807
0.1548
0.1306
0.1700
0. 8440
0.4963
0.4628
0.3522
0.2964
0.3083
0*2664
0.2844
0.2355
0.0636
0.0643
0.1738
0.1140
0.1014
0.0607
0.0558
0.0555
14.4031
12.3962
7.1929
2.3960
1.3599
1.4307
2.2897
0.1818
0.2267
136.7854
363. 1594
10.4673
1.7995
0.6879
0.3776
O.B<>26
24.5484
94.3199
2.1347
O.O
15.8640
lb.0501
10.1047
6.5716
7.4693
6.4126
21.8756
18.5764
20.5085
20.5486
16.9634
12.2427
6.7521
11.0070
27.2735
23.6224
15.3464
15.1362
12.1825
9.3906
9.1097
9.1826
<2.2470
23.9212
24.0997
45.7901
21.3468
7.2325
15.5685
11.0956
7.2094
36.1484
36.6261
34.5262
32.6842
20.6127
18.0537
29.6265
13.2344
11.9355
U07.5*V8
1339.1699
55.5720
23. 119*
14.1042
10.9253
9.9624
56.6016
1077.6394
18.8134
0.0
55.1555
9O.i889
95.5610
99.7930
101.3402
98.7434
59.7470
96.6436
138.1227
133.1729
103.3404
72.3049
5S.5769
64.1139
71.3506
133.0-.3i
228.3174
24G.76U1
177.0199
116.7672
83.6623
94.4934
102.7158
90.40*1
89.7392
172.5751
205.4362
196.8612
184.9471
172.8468
177.5367
84.4839
85.6961
155.2810
164.7903
136.0840
125.9146
146.7292
128.5052
152.9481
48.6789
42.9869
67.7526
84.3066
83.2247
82.5699
68 . 5646
43.1235
64.6506
108.9614
0.0
1.6556
2.0542
2.4993
2.9335
3.5206
4.2312
1.3857
1.6853
2.0575
2.4580
2.9225
3.45SO
4.1426
3.69O4
1.2164
1.6597
2.0417
2.4479
2.8441
3.4107
4.0794
3.6930
2.1830
2.1446
2.1433
3.0056
3.4557
3. 7739
4.2560
4.6351
4.6306
1.2691
1.2855
2.0600
2.9362
3.7315
4.6312
3.7163
4. 4646
3.6475
1.2468
1.2120
2. 0947
2.9866
3.8328
4.5953
5.0389
0.1863
1.1051
2.7543
0.0
17.1970
16.1770
15.3649
14.5843
13.6014
12.2298
17.«598
16.8714
16.1768
15.4643
14.6330
13.7248
12.4604
13.2220
17.2340
16.4354
15.7490
15.0361
14.5843
13.4472
12.3790
13.1580
16.6740
16.6396
16.7282
15.5633
14.8315
14.2407
13.7019
13.0440
12.8856
18.5469
18.2258
17.0424
15.6114
14.4465
0.0
14.4345
13.1760
14.3334
18.7996
19.1688
17.9946
16.1689
14.6934
13.5871
12.7733
19.5O59
18.1541
15.7946
0.0
99.9809 0.9249
99.9805 0.9631
99.9877 O.9607
99.9691 0.9624
99.9905 1.0025
99.9916 1.0406
99.9705 0.9787
99.9764 0.9532
99.9743 0.9894
99*9747 0.9642
99.9790 0.9857
99.9647 1.0021
99.9890 1.0159
99.9861 1.0073
99.9647 0.9493
99.9701 0.9167
99.9801 0.9S72
99.9806 0.9632
99.9843 0.9441
99.9876 0.9836
99.9881 1.0196
99.9679 O.9839
99.9729
99.9715
99.9713
99.9451
99.9742
99. 9V 10
99.9812
99.9865
99.9912
99.9095
99.9157
99.9351
99.9532
99.9637
99.9735
99.9570
99.9836
99. 98 SO
98.2397
97.2119
99.8992
99.9665
99.9809
99.9856
99.9851
99.8521
96.4171
.0475
.1105
.1211
.0684
.0755
.0467
.0611
.0*44
.0564
.3734 3
.2736 3
.1182 3
.0670
.0305
.0135
.0365
.9935
.0076
.0826
.1055
.0544
.0368
.0213
.0121
.01 62
.0465
.0115
99.9705 O.9720
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA
SCHEME
EQR
HCQ15
CMQ15
NXCQ15
COQ1
UXQ1
tFFGA
CFRAC
NOTE
05-198-1
05 -196 -2
05-19B-3
05-19B-4
05-1 9B -5
05-19B-*
05-19B-7
05-19B-8
05-20A-1
05-20A-2
05-20A-3
05-20A-4
05-21A-1
05-21 A-2
05 -21 A -3
05-21A-4
05-21A-5
05-2 2A-1
05-22A-2
05-22A-3
05-22A-4
05-22A-5
05-23A-1
05-23A-2
05-236 -1
05-2 3B-2
05-236-3
05-23B-4
05-23B-5
05-23B-6
05-236-7
05-23B-8
05-23B-9
05-23B-10
05-23B-11
05-2 3B -12
O5-23B-13
05-23B-14
05-23B-15
05-23B-16
05-236-17
05-238-18
05-23B-19
05-23B-20
05-238-21
05-238-22
05-24A-1
05-2 4B-1
05-248-2
05-25A-1
05-25A-2
0.1369
0.2659
0.3561
0.0865
0.1549
0.1525
0.1395
0.1899
0.0906
0.1163
0.1489
0.2313
0.1408
0.1520
0.1202
0.0984
0.0701
0.2087
0.2701
0.3195
0.3708
0.1522
0.0
0.0
0.2168
0.2873
0.3737
0.1550
0.0991
0.1268
0.1811
0.0919
0.1510
0.2000
(1.2472
0.2076
0.1574
0.1018
0.4321
0.3039
0.2632
0.3460
0.3878
0.2173
0.1222
0.1674
0.0
0.1245
0.1525
0.1310
C.1669
77.4030
1.7361
0.8098
4.66U4
1.4d88
6.4451
0.8267
1.2145
33.8143
16.7146
7.V098
8.6449
101.9119
105.3470
120.3832
153.3158
247.9282
2.0339
0.3916
0.0
0.1425
6.6692
0.0
0.0
8.1406
2.2780
0.7270
2.8095
139.0576
17.4777
2.1024
124.5108
28.81-00
15.0703
6.6842
10.3477
4.5467
187.0884
1.5181
1.1773
0.9060
0.6893
9.3075
52.3849
4.7874
1.8998
0.0
24.7224
21.7224
14.5O09
4.3483
953.7671
19.4568
10.5971
54.4342
45.8339
71.2781
54.4014
22.3428
313.9219
142.0124
136.2383
398.5876
342.2339
342.3896
.303.9666
233.7622
263.7«t59
74.6912
34.8954
18.4065
13.9512
111.7827
0.0
0.0
52.8112
22.7167
14.3495
39.1002
834.2009
3*2.1741
30.8779
1068.2705
31.8321
22.8901
20.3712
20.4241
27.0604
1376.8459
10.9541
9.3388
14.37*>
9.5701
7.3169
33.0111
^1.1028
40.0686
0.0
198.6777
159.1590
113.9736
110.7422
67.3177
99.7465
1O6.6156
125.2742
114.3487
116.6382
105.9940
115.U753
130.0542
169.1842
201.6971
151.2742
140.6757
117.3805
148.3959
122.4252
62.0488
7B.2722
86.0931
96.9591
97.7816
60.9161
0.0
0.0
85.4828
91.3735
95.Z466
76.1510
47.4754
61.8819
85.8693
76.O944
120.3497
li.4.7169
134.9771
166.3260
167.3803
5&.4O28
165.6449
162.5061
164.3368
159.9471
16O.V639
90.7822
159.1919
153.4583
0.0
126.5233
133.8759
105.6060
120.2074
2.049b
3.9966
5.2182
1.3216
2.2106
2.2216
1.V531
2. 7204
1.3834
1.7153
2. 1438
3.2105
1.9466
2.1131
1.6822
1.3913
1.0030
3.0560
3.9384
4.6480
5.414O
2.2061
0.0
O.O
3. 2722
4.2223
5.6155
2.3217
1.4505
1. 8788
2. 6466
1. 3292
2.2170
2.9155
3.5717
2. V6V7
2.2432
1.4425
t. 1452
4.3200
3.6951
4.8862
5. 3976
3. 1083
1.6565
2.6076
0.0
1. 8766
2. 2322
1.8124
2.3121
17.2539
14.0368
12.8749
18.05O9
16.7216
16.8653
17.2085
16.2028
18.0340
17.4001
16.7208
15.1920
17.2199
16.8396
17.4399
17.8553
18.4442
16.0018
14.8601
13.7072
12.3639
16.2887
0.0
0.0
15.5288
14.6369
12.668t
16.9378
17.9667
17.3074
16.2828
18.3630
17.2120
16.1574
15.0097
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16.2363
17.42O1
16.9497
O.O
18.0357
17.3913
17.7641
16.9529
98.6139 1.0757
99.9709 1.0646
99.9845 1.0435
99.9203 1.0694
99.9408 .0033
99.8941 .0251
99.9329 .V839
99.9694 .0090
99.5173 .O766
99.7765 .0367
99.8124 1.0142
99.4969 0.9899
99.2540 0.9808
99.2417 0.9871
99.2384 0.9907
99.2121 0.9984
98.8628
99.9045
99.9571
99.9780
99.9828
99.8454
—
—
99.9098
99.9652
99.9803
99.9443
98.5522
99.5375
99.9563
98.3259
99.8657
99.9221
99.9532
99.94O9
99.9527
97.7519
99.9816
99.9848
99.9798
99.9862
99.9902
99.7843
99.9237
99.9462
_
99.6827
99.7389
.0122
.0339
.0332
.0337
.0408
.O2O5
—
—
.0662
.0420
.0715
.0532
.0479
.04 79
.0290
.04O4
.0324
.0280
.0217
•0089
.0020
.0299
.0181
.00*9
.9936
.0050
.9932
.0112
.0663
.0960
-
.O616
.0324
99.8168 O.9736
99.8543 0.9766
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOT
HC015
CHOI 5
NXC015
COQ1
0X01
EFF&A
CFRAC
NOTE
05 -i 5 A -3
05-25A— »
05-2 5 A -5
05-2 5A -6
05-25A-7
05-25A-8
05-25A-9
05-2 5A -10
05-2 6A-1
05-26A-2
05-26A-3
06-0 IA-1
C6-01A-2
06-0 1A -3
06-02A-1
06-32 A -2
06-0 3A-1
06-0 3A-2
06 -03 A -3
O6-03A-4
06-O4A-1
06-J5A-1
06-0 5A-2
06-05A-3
06-05A-4
06-05A-5
06-05A-6
O6-05A-7
06-05A-8
06-0 5A -9
06-05A-10
06-0 5A-1 r
06-05A-12
06-05A-1J
06-05A-14
06-05A-15
06-05A-16
06-05A-17
06-05A-18
06-O5A-19
06-O5A-20
06-05A-21
06-O5A-22
06-O5A-23
06-05A-?'*
06-05A-25
06-0 5A -26
06-05 A -2 7
06-O5A-28
06-O5A-29
06-O5A-30
0.4052
0.3518
0.3066
0.25B5
0.2143
0.1676
0.1298
0.4058
0.1553
0.2068
0.2617
0.1756
0.2473
0.3071
0.1756
0.2911
0.1724
0.2559
0.0880
0.1183
0.0659
0.0844
0.1 19O
0.1611
0.2251
0.2786
0.0539
0.0659
0.0783
0.0914
0.1278
0.1393
0.1521
C.1623
0.1911
0.1101
0.1189
0.1567
0.1880
0.2052
0.2192
0.2337
0.1248
C.0766
0.0895
0.1502
0.1331
0.1247
0.1151
0.0612
0.0475
0.2534
O.V381
0.1673
0.5964
O.4791
1.5353
4.3808
0.126H
9.3137
2.0094
0.791*
0.846)
0.4937
0.3414
0.4826
0.1820
0.5531
0.2691
4.3645
2.7076
5.4621
2.6036
1.7143
5.7497
0.0588
0.0285
3.9786
3.2559
2.0298
1.6522
0.5595
0.4182
0.2760
0.2122
0.1525
1.0106
1.1516
0.5318
0.2288
0.2228
0.1840
0.1841
0.8824
2.4517
2.1281
0.0
0.0
O.O
0.0
0.0
0.0
10.8961
12.5303
23.5104
22.5224
45.6268
70.96o7
73.6063
24.0256
63.7216
34.0829
19.7409
23.0782
15.4822
12.4385
7.2528
3.5133
7.4589
6.0284
246.2350
134.3299
602.2212
285.9824
122.6566
8*.5509
234.4352
6.3476
413.5ol5
520.8848
478.2168
330.2756
88.2408
107.4041
92.6681
63.56bO
14.6995
82.6312
55.1831
21.9495
11.6662
7.6152
6.5608
9.3288
33.0306
298.5869
472.3159
158.2030
186.3385
244.5988
340.2734
354.4653
344.4448
101.4544
102.&506
105.5650
121.5679
138.7495
136.05o8
118.2063
102.9219
113.6043
117.4306
113.4431
30.6443
98.b003
145.642-.
43.2450
144.4434
50.5547
124.2501
37.3296
56.4165
85.5355
38.0727
35.1304
52.0070
70.9968
82.9839
137.7866
87.2609
59.9813
44.4484
112.5694
92.852U
77.2813
69.4377
67.6542
38.7753
35.1415
51.5067
61.2060
71.7442
82.6643
94.6400
37.4561
49.0173
42.7562
58.4661
54.6374
55.7249
64.J498
70.4593
70.1111
5. 7536
4.9771
4.3>073
3.6318
3.*>93
2. 3492
1.8319
5.7153
2.1931
2.9356
3.7028
1.7274
2. 4704
i.0392
1.8547
2.8555
1.8285
2. 6992
0.9,. 56
2.0234
0.6100
0. 8445
1.0637
1.5364
2.1250
2. 5997
0.7548
0.8682
0.9687
1.0838
2.2572
2.3909
2.5247
2.0865
3.0456
1.3231
1.5260
2.4782
3.0821
3.4049
3.7354
4.0328
1.6131
1.0896
1.0704
2.3624
2.1362
2.0083
1.8166
1.2877
1.0619
12.1079
13.1097
13.8525
14.7337
15.5242
16.4438
17.1915
11.8207
17.4052
16.3356
15.2410
17.1550
15.7977
14.6617
16.8423
14.4320
16.8495
15.2O43
18.6651
22.9374
16.7064
17.9925
17.4994
16.8006
15.6663
14.7559
24.5798
24.2719
24.0186
23.7731
22.0357
21.8555
21.5232
21.3617
20.5029
22.6941
22.6637
21.2993
20.4858
19.7487
19.2865
16.672*
22.1708
22.9836
22.8941
21.3889
21.7026
21.7834
22.0000
23.4187
23.8277
99.9860 1
99.9835 1
99.9713 C
99.9711 0
99.9442 1
99.9108 C
99.8984 C
99.9707 1
99.8934 C
99.9528 ]
99.9738 1
99.9696 C
99.9797 t
99.9839 C
99.9897 ]
99.9951 C
99.9892 1
99.9918 1
99.6926 1
97.3277 ]
99.2668 C
99.6514 C
99.8482 (
99.8796 C
99.7190 C
99.9923 (
91.9040
89.3909
90.7643
93.6031
98.2469
97.9166
98.2175
98.7825
99.7134
98.3654
98.8819
99.5569
99.7672
99.8436
99.8272
99.8117
99.3775
94. 1699
9O. 8656
97.0068
96.4494
95.3951
93.5972
17.5160
19.9231
.0146
.0072
1.9975
.9944
.0111
1.9871
1.9911
.0066
.9939
.0014
.0014
).9483
1.9647
).9608
L.0173
1.9512
L.O216
..0205
.0165
.4791
1.9058
>.9680
1.8625
>.9218
).9195
1.9040
.3556
.2814
.2O37
.1504
.3922
.3879
.3584
.3757
.3472
.1585
.2377
.4115
.4093
.4O27
.4231
.4265
.2445
.3746
.1640
.3201
.3685
.3930
.3884
.4789
.5698
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCQ15
CHOI 5
NXCC15
CDU1
0X01
6FFG*
CFRAC
NOTE
07-01A-1
07-O2A-1
07-02A-2
07-02A-3
07-O2A-4
07-0 2»-5
07-02B-1
07-O2B-2
07-O2B-3
07-O2B-4
07-02B-5
07-O2B-6
07-02B-7
07-O2B-8
07-O2B-9
07-0 3A-1
07-O3A-2
07-O3A-3
07-O3A-4
07-0 3A -5
07-0 3A -6
07-0 3A -7
07-O3A-6
07-O3A-9
07-O3A-10
07-03A-11
07-O3A-12
07-03A-13
07-O3A-14
07-03A-15
07-O3A-16
07-O3A-17
07-04A-1
07-O5A-1
07-05A-2
07-O5A-3
07-O5A-4
07-0 6A-1
07-O6A-2
07-O6A-3
07-0 6A -4
07-O6A-5
07-0 6A-6
07-O6A-7
07-O6A-8
07-O6A-9
07-O6A-10
07-O6A-11
07-06A-12
07-0 6A -1 3
07-O7A-1
0.0
0.2074
0.2251
0.271B
0.2529
0.2210
0.2071
0.17*4
0.1661
0.2668
0.2666
0.2369
0.3272
0.2983
0.2044
0.2357
0.2140
0.2419
0.2237
0.2000
0.1789
0.192C
0.2353
0.2186
0.2012
0.2319
0.2002
0.2013
0.2854
-0.2812
0.3065
0.3161
0.2125
0.2529
0.2291
0.2237
0.2165
0.2573
C.2370
0.2154
0.2096
0.2049
0.1966
0.1890
0.1771
0.2625
0.2420
0.2219
0.2009
0.1883
0.2460
0.0
1.4839
0.0
0.0
0.0
0.0
5.4148
5.0079
6.7480
4.1715
4.4057
3.1398
1.2931
1.2403
1.2907
4.5396
3.9131
2.2973
2.0291
2.1419
1.9701
1.5719
2.6845
3.0111
2.8755
2.1529
2.7583
2.61O9
1.1944
1.1189
1.0265
0.9121
10.6997
1.4776
1.O473
0.9534
0.8615
7.1033
3. 1482
3. 2226
2.4481
2.0005
1.6922
1.6238
3.4807
5.1383
2.7619
2.3120
2.0396
2.1765
1.4567
0.0
46.0415
42.3694
30.0137
18.3884
46.3234
43.5572
37.1293
193.2475
33.6043
19.9542
17.5665
16.2343
13.1820
14.68*1
22.5409
21.4317
27.9728
21.5880
22.9283
21.6173
20.1394
64.32O7
42.6971
33.3202
27.8371
28.6954
27.3168
14.24O9
12.7346
11.6749
9.8084
40.0431
18.4793
12.2328
12.5216
11.8197
16.5705
17.9587
16.4471
13.5021
15.0071
15.6071
18.7322
24.034O
23.3067
16.4993
13.7516
14.0254
19.9681
24.9077
0.0
131.7238
23.2960
124.1977
107.7390
50.1717
136.6872
107.52i7
42. HO 16
135.7211
102.1814
82.0568
164.7182
130.8057
141.6438
135.3009
96. 8322
158.2323
109.1778
73.2655
26.9635
34.6115
82.1817
59.9002
23.4200
94.2095
24.2368
19.6004
51.6085
41. t.200
87.6352
116.8174
102.0338
112.9221
61.6542
38.3072
24.6903
139.3712
109.5060
79.9884
51.0007
41.7640
37.7299
33.9438
26.5223
145.7157
120.0995
85.6889
37.0143
19.2206
129.1317
0.0
3.1713
3.4052
4. 0233
3.8127
3.0553
3.0881
2.6925
2. 5432
4. 1462
3.6658
3.4659
4.6403
4.3356
3.OY38
3.6321
3. 3240
3.6075
3.0428
3.1535
2. 7926
2.9776
3.4351
3. 1452
2. 9973
3.42*2
2.9869
2.9225
4.2022
4.1380
4.4674
4.7142
3.1534
3.6583
3. 47*8
3.2871
3.1357
3. 7803
3.5481
3.2457
3.1091
3.0133
2.9138
2. 8932
2.6417
3.8892
3.6126
3.2918
2. 9776
2.7621
3.6702
0.0
15.7292
16.0043
14.5009
15.1007
15.9915
15.8465
16.4229
16.6104
14.5368
15.0800
15.2323
13.6356
14.0456
15.7462
15.2542
15.5481
14.9575
15.3957
15.6911
16.2355
16.0205
15.3349
15.7870
15.9953
15.4213
16.O567
16.0027
14.2384
14.4357
13.8334
13.4528
15.7805
14.9636
15.2370
15.3168
15.4807
14.9061
15.2242
15.6064
15.7554
13.8538
16.0194
16.2119
16.2389
14.4O55
14.9111
15.3134
15.7603
16.1023
15.1817
99.9403 .0787
99.9496 .0686
99.9642 .0485
99.9781 .0662
99.9449 0.9764
99.9301 .0524
99.9365 .0868
99.7486 .0808
99.9458 1.0928
99.9613 0.9730
99.9685 1.0340
99.9762
99.9800
99.9782
99.9579
99.9614
99.959O
99.9675
99.9656
99.9678
99.9708
99.9144
99.9391
99.9508
99.9596
99.9567
99.9588
99.979O
99.9810
99.9826
99.9852
99.9164
99.9730
99.9819
99.9819
99.9830
99.9563
99.9680
99.9696
99.9757
99.9754
99.97S8
99.9723
99.9598
99.9549
99.971O
99.9759
99.9765
99.969O
99.9654
.0081
.0312
.0599
.0890
.0959
.1129
.0867
.1112
.0989
.0926
.O327
.0162
.O5O4
.0433
.0520
.0234
.O435
.O428
.034*
.0593
.0475
.0232
.0710
.0374
.0217
.0398
.0577
.06 30
.0463
.0370
.0445
.0780
.0498
.04 88
.0552
.0471
.0444
.0331
.0550
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
E6R
HCC15
CHOI 5
NXC015
COQ1
OXQ1
EFFGA
CFRAC
NOTE
07-07A-2
07-07A-3
07-07A-4
07-07A-5
07-0 7A -6
07-07A-7
07-07A-6
07-O7A-^
07-07A-10
07-07A-11
07-O7A-12
07-07A-13
07-07A-14
07-O7A-15
07-07A-16
07-07A-17
07-O7A-18
07-07A-19
07-07A-20
07-07A-21
07-07A-22
07-O7A-23
07-O7A-24
07-07A-25
O7-07A-26
07-0 7A -2 7
07-07A-28
07-O7A-29
07-0 7A -30
07-07A-31
07-O7A-32
07-0 7A -33
07-07A-34
07-07A-35
07-07A-36
O7-O7A-37
07-07A-38
07-07A-39
07-07A-40
07-07A-41
07-07A-42
07-07A-43
07-07A-44
07-0 7A -45
07-O7A-46
07-07 A -47
11-OlA-l
11-O1A-2
11-0 1A -3
11-0 2A-1
11-O3A-1
0.2261
0.203B
0.1857
0.2699
0.2469
0.2232
0.1991
0.1997
0.1876
0.1743
0.1668
0.1603
0.156*
0.2540
0.2277
0.2113
0.2049
0.1909
0.1748
0.1646
0.1811
0.1731
0.1661
0.1580
0.1516
0.2980
0.2833
0.2588
0.2372
0.2134
0.2046
0.1934
0.1832
0.1727
0.1680
0.1586
0.1459
0.1779
0. 1649
0.1523
0.1473
O.1424
0.2344
0.2125
0.1964
0.1334
0.2828
0.3855
0.2497
0.0
0.0067
1.0172
1.0027
0.8246
3.3877
2.0008
.5116
.0408
.1630
.1049
.4874
.0868
.6174
.8231
.2255
.2528
.2269
.5195
.2220
.4830
0.1570
0.4285
0.2988
0.3113
0.1637
0.0
2.6259
0.9151
0.6003
0.5456
0.4851
0.2528
0.2675
0.1411
0.0
0.3079
0.1630
0.5320
1.3113
1.O993
1.0203
1.0548
0.7266
0.1103
0.0
0.0
0.3877
1.6400
38.0732
0.0
0.0
277.3020
18.7164
19.6206
21.4986
22.8041
16.2830
13.7575
14.2287
9.4481
1O.065O
10.8405
15.5788
22.0917
91.2190
B.3749
10.36O7
12.2913
11.5313
13.6169
22.9310
17.2102
13.03b4
12.2715
12.7771
22.4266
43.6385
11.0858
10.8360
11.8046
11.9517
14.3666
13.8263
15.8530
16.7314
17.8000
21.0649
23.8269
42.1683
11.9498
14.3224
15.48O1
19.2095
28.1768
16.1135
18.9183
21.6668
0.0
15.0261
10.5316
0.0
0.0
1574.3638
97.2157
66.8177
39.3036
134.6251
118.1741
74.3326
52.6913
14O.6568
105.3275
69.7851
50.3936
41.9949
30.9597
156.1847
106.3244
87.3201
73.9036
52.0704
3*. 4980
46.8163
98.8567
77.0793
49.7581
40.3996
34.2476
224.1347
207.4714
179.6286
151.4274
120.7430
105.4457
87.6261
77.6634
66.2015
59.7195
46.8076
28.5936
151.3788
117.0382
85.2162
76.6870
64.9937
156.9878
127.3726
105.6366
55.1436
83.1482
161.1448
0.0
0.0
45.4335
3.3048
3. Oi.66
2.6832
3.8192
3.4956
3.1398
2.7864
2.8761
2.7006
2.^989
2.3863
2.2886
2.2234
3.5254
3.1248
2.8935
2.7853
2. 5976
2. 3656
2.
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCQ1!>
CM015
NXCQ15
CD01
0X01
EFFGA
CFRAC
NOTE
>
to
11-04A-1
11-05A-1
11-06A-1
U-06A-2
11-07A-1
11-07A-2
11-0 8A-1
11-O8A-2
11-98A-3
11-0 8A -4
11-09A-1
11 -09 A -2
11-10A-1
11-10A-2
11-10A-3
11-11A-1
11-12A-1
11-12A-2
11-12A-3
14-01A-1
14-O1A-2
14-O1A-3
14-O2A-1
14-O2A-2
14-O2A-3
14-0 2A -4
14-02 A -5
14-O2A-6
14-0 2A-7
14-02A-8
16-O1A-1
16-0 1A-2
16-0 1A -3
16-0 IB -1
16-0 2A-1
16-O2A-2
16-O2A-3
16-O3A-1
16-O3A-2
16-03A-3
18-O1A-1
18-01A-2
18-01A-3
18-O1A-4
18-O1A-5
18-O1A-6
18-O1A-7
18-01A-6
18-01A-9
18-01A-10
18-01A-11
0.0187
0.2132
0.0
0.3372
e.o
0.0
0.1387
0.1912
0.2497
0.30S6
0.0
0.0
0.1578
0.1235
3.09 £6
0.0262
0.3461
0.3246
0.2969
0.1359
O.1428
0.1326
0.3550
0.2251
0.2805
0.3187
0.3735
0.3059
0.2354
0.3447
0.2684
0.2486
0.2601
0.2483
0.2563
0.2360
0.2183
0.2629
0.2420
0.2171
0.1493
0.2114
0.2779
0.3431
0.3767
0. 1493
0.2086
0.3744
0.2492
O.3452
0.3858
101.1530
0.0
0.0
0.0
0.0
0.0
9.9211
1.9982
«. 87 29
0.8833
0.0
0.0
4.1489
7.0810
8.8546
63.1323
2.0529
0.5025
0.0
0.0
o.o
0.5202
0.0486
1.8525
0.2368
1.3614
0.6684
0.2987
0.5294
0.3615
16.3698
7.3508
2.8694
113.6652
3.9300
2.2831
5.8181
8.5861
3.0837
8.9104
37.0121
3.0993
1.4435
0.8752
0.5304
1.0029
0.2865
0.1464
0.2599
0.0144
0.0387
7«t.4346
0.0
0.0
0.0
0.0
0.0
3085.1125
1800.2554
213.4125
67.4216
0.0
0.0
1347.8357
1939.9736
2320.0635
42.2201
17.4205
11.1379
27.4215
0.0
0.0
20.5611
2.3156
33.5914
9.562O
5.3369
3.9163
2.3877
11.3877
1.4183
57.0394
2S3.5364
65.7781
2491.9587
23.1978
60.7762
693.8452
43.4801
108.3066
58.2655
82.4419
43.8928
19.9907
10.7841
9.2O73
34.1091
21.0669
8.0277
17.6397
9.3759
8.3906
97.7688
0.0
0.0
0.0
0.0
0.0
8.6956
5.9105
5.1309
6.0921
0.0
0.0
17.1386
21.8922
28.4059
169.4908
137.3067
130.5056
122.5374
0.0
O.O
99.4595
97.6867
78.2348
62.7700
61.8975
59.0O4H
70.9432
87.8602
69.6437
44 . 6569
33.3336
42.7489
41.4231
75.1085
52.5930
36.6036
72.7639
58.8709
66.8586
173.6120
163.6898
139.8434
123.2819
121.20OG
201.4433
170.2694
125.2696
136.1167
122.1431
116.2950
0.1761
0.0
0.0
O.O
0.0
0.0
4.6522
6.0465
7.7383
9. 1920
0.0
0.0
4.6192
3.6853
2.9809
0. 4.491
4. 9756
4.6282
4.1615
0.0
O.O
1.2836
3.9901
2.2961
2. 8O03
3.3163
3.9032
3.3410
2.4009
3.8137
3.3445
3.0269
3.2166
2.4184
4.0063
3.6637
3.3098
3.6008
3. 3128
2.8389
2.0803
2.9931
3.8995
4.8862
5. 3257
2.1181
2.6689
5.3194
3. 6590
5.213O
5.8175
20.1724
0.0
0.0
O.O
0.0
0.0
14.7381
13.4440
11.5670
10.O646
0.0
O.O
15.1641
16.1142
16.7832
19.4O89
13.O974
13.5607
13.8953
0.0
0.0
18.2542
13.1395
16.0599
14.9611
14.0708
12.8147
13.8087
15.4893
13.O463
15.8946
16.6882
16.4174
17.2005
15.2351
15.6523
15.9762
15.6482
15.7911
16.5502
11.3517
11.3517
11.3517
11.3517
11.3517
11.3517
11.3328
11.3422
11.3422
11.3517
11.3517
99.5765
-
—
—
—
—
99.3409
99.6001
99.9498
99.9830
—
—
99.7074
99.59O6
99.5236
99.7405
99.9721
99.9778
99.9672
—
—
99.9737
99.997O
99.9535
99.9877
99.9889
99.9930
99.9961
99.9845
99.9970
99.8767
99.6377
99.9119
96.6499
99.9591
99.9200
99.1561
99.9192
99.86O7
99.9008
99.7784
99.9374
99.9713
99.9841
99.9871
99.9563
99.9740
99.9899
99.9781
99.9887
99.9898
0.6605
-
—
—
—
—
1.1976
1.1668
1.1785
1.1840
—
—
1.O460
1.0412
1.0957
0.6646
1.0234
1.0133
0.9946
-.
—
0.93 OS
1.0936
0.9862
0.9674
1.0113
1.0179
1.O599
0.9860
1.0757
0.883«
0.867*
0.1766
0.7532
1 . 1062
1.097*
1.0871
0.9702
0.969*
0.9239
0.9809
0.9995
0.9943
1.0133
1.OO82
0.9971
0.9691
1.0131
1.0384
1 .0745
1 .0760
3
11
11
11
11
3
4
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HC015
CM015
NXC015
CD01
OXQ1
EFFGA
CFRAC
NOTE
01
GO
26-O1A-1
26-02A-1
26-02A-2
26-O2A-3
26-02* -4
26-024-5
26-02A-6
26-C2A-7
26-O2A-6
26-02A-9
26-02A-10
26-O3A-1
26-0 3A -2
26-O3A-3
26-0 3A -4
26-O3A-5
26-0 3A -6
26-O3A-7
26-0 3A -8
26-0 3A -9
26-03A-10
28-01A-1
28-0 1A-2
28-O1A-3
28-0 1A -4
28-O1A-5
28-01A-6
28-01A-7
28-024-1
28-0 2A -2
28-02A-3
28-02A-4
28-02A-5
28-O2A-*
28-0 3A-1
28-0 3ft -i
28-03A-3
28-0 3A -4
28-0 3A -5
28-O4A-1
28-O5A-1
28-O5A-2
28-O5A-3
28-O5A-4
28-0 5A -5
28-05A-6
28-O5A-7
28-05A-8
28-05A-9
28-O5A-10
28-0 5A -11
0.0
0.3700
0.3914
0.4466
0.4658
0.4987
0.4711
0.4193
0.3634
0.4511
0.3921
0.3684
0.2905
C.3382
0.3640
0.2700
0.3677
0.3351
0.2692
0.2864
0.4004
0.1385
0.2315
0.2776
0.3254
0.3726
0.4OOO
0.4347
0.1698
0.2151
0.2689
0.3225
0.3773
0.4238
0.1773
0.2377
0.2982
0.3593
0.4203
0.0
0.1649
0.2177
0.2766
0.3334
O.3978
0.1566
0.1998
0.2573
0.3159
0.3734
0.4327
0.0
0.0
1.9002
1. 1262
0.4529
O.2641
0.2236
0.0
0.0
0.0
0.0
0.2141
0.1810
0.1555
0.1444
0.1947
0.5013
0.3926
O..7829
0.4594
0.2628
11.1341
0.2346
0.3915
0.1670
0.1458
0.0
0.0
2.7363
0.7167
0.1908
0.3184
0.1360
0.1211
1.2970
0.5366
0.3421
0.2839
0.2427
0.0
4. 8403
0.938S
0.5537
0.5361
0.4493
0.9777
0.3629
0.1982
0.1614
0.1365
0.1178
0.0
5.6499
6.6871
7.0433
5.9970
5.9544
5.9248
5.6218
5.7513
5.0221
4.4373
7.0860
8.3828
7.7205
7.654O
9.6708
8.4894
8.7926
50.5404
7.8499
4. 7461
449.6000
30.9534
14.1440
9.2177
8.6809
7.5033
7.4415
84.7281
44.1599
16.3021
7.8670
7.3460
6.5361
33.2011
14.8069
6.2876
5.6710
10.0591
0.0
28.6385
14.1806
10.3072
7.8310
8.9614
27.131.2
12.9894
11.9156
5.9760
6.3219
5.4469
0.0
9.5283
11.0322
15.7372
17.4967
25.7557
201.6274
164.8052
157.9502
31.6940
14.5504
2.5626
5.0441
8 . 5462
19.6712
3.1385
19.5302
12.8256
7.0370
27.9338
22.1043
66.1097
137.4263
14O.4987
134.9428
133.1124
119.2800
120.0808
117.3736
173.6205
192.8215
157.1159
139.2699
126.1451
186.63O5
1V8.5863
141.9957
121.7067
106.9056
0.0
42.0646
76.8695
137.4354
10*. 3337
66.5133
40.8382
42.9415
121.3982
128.9243
82.7216
60.4100
0.0
4.7562
5.0731
5.7582
6.0316
6.5277
6.6012
5.5936
5.0446
5. 7346
5. 0560
4.3254
3.0955
3.5918
4.0214
2.7206
5.6104
4.9876
4.1108
4.6246
4.6735
1.9664
3. 3477
4.0528
4.7706
5.5263
5.8429
6.5105
2.4552
3.2404
4.0248
4.8466
5.6697
6.3116
2.5299
3.4630
4.2852
5.2461
6.1324
0.0
1.3661
1.9921
2.6274
3.2325
4.0409
1.4201
1.6064
2.4538
3.1105
3.8819
4. 4989
0.0
13.5384
12.9409
12.1904
11.6737
10.9597
10.92O2
12.0912
12.7922
12.0712
13.0336
13.8395
15.5813
14.8931
14.2398
15.9708
12.9384
13.6410
14. 72O6
13.6979
13.0524
17.5345
15.5398
14.66O2
13.6442
12.7111
12.2263
11.3960
17.1402
16.0674
15.1248
14.3170
13.1605
11.9692
16.8150
15.4519
14.2479
12.9260
11.6879
0.0
18.2824
17.0664
15.8164
14.6459
13.2243
18.4358
18.0604
16.4127
15.1845
14.1019
12.8581
—
99.9932
99.9855
99.9876
99.9912
99.9919
99.9921
99.993O
99.9931
99.9939
99.9947
99.9909
99.9895
99.9903
99.9904
99.9879
99.9881
99.9881
99.9371
99.9891
99.9935
V9.4312
99.9624
99.9818
99.9884
99.9891
99.9910
99.9910
99.8905
99.9451
99.9799
99.9895
99.9907
99.9917
99.9563
99.9806
99.9913
99.9920
99.9670
-<
99.9492
99.9798
99.9857
99.9887
99.9876
99.9643
99.9832
99.985O
99.9922
99.9919
99.9930
—
0.9163
0.9253
0.9237
0.929O
0.9410
1.0055
0.9539
0.9888
0.9109
0.9203
0.9530
0.8608
0.8606
0 .8965
0.8131
1.0874
1.0584
1.0823
1 . 194O
0.9901
1.0076
1.0216
1.0343
1.0420
.0573
.0433
.0722
.0187
.0637
.0599
.0678
.0715
.0654
.0045
.O294
.O192
.0398
.0435
_
0.7983
0.8841
O.92O5
0.9424
O.9911
0.8731
0.7769
0.9233
0.9561
1.0129
1.0162
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCQ15
CMQ15
NXCQ15
CDQ1
0X01
EFFGA
CFRAC
NOTE
28-0 5A -12
28-0 5A -13
28-O5A-14
28-06A-1
28-06A-2
28-O6A-3
28-O6A-4
28-O6A-5
28-O6A-6
28-0 6A-7
28-06A-8
28-07A-1
28-07A-2
28-O7A-3
28-O7A-4
28-07A-5
28-0 7A-*
28-07A-7
28-0 7A-*
28-07A-9
29-O1A-1
29-0 1A-2
29-0 1A-3
29-O1A-4
29-O2A-1
29-0 2A -2
29-O2A-3
29-O2A-4
29-0 2A -5
29-O2A-*
29-O2A-7
29-O2A-8
29-O2A-9
29-O2A-10
29-02A-11
29-02A-12
29-02A-13
29-02A-14
29-03A-1
29-O3A-2
29-0 3A -3
29-03A-4
29-03A-5
29-03A-6
29-0 3A-7
29-O3A-8
29-0 3A -9
29-03A-10
29-O3A-11
29-O3A-12
29-0 3A -13
0.4619
0.4915
0.2002
0.1523
0.1927
0.2480
0.3039
0.3579
0.4131
0.4484
0.3065
0.1518
0.1965
0.2524
0.3091
0.3655
0.4214
0.4465
0.4347
0. 1980
0.3242
0.4036
0.2448
0.1832
0.2490
0.1879
0.1482
0.1055
0.0779
0.3040
0.3616
0.2491
0.3081
0.1893
0.1266
0.0776
O.0544
0.1303
0.2104
0.2686
0.3079
0.3465
0.0855
0.1270
0.1712
0.0538
0.1895
0.1913
0.2286
0.2656
0.3O57
0.0552
0.0519
0.2547
2.0150
0.6621
0.5144
0.5039
0.3565
0.2470
O.2845
0.3329
1.0089
0.3893
0.3031
0.1649
0.0697
0.0605
0.0571
0.0586
0; 1287
4.0794
1.9768
0.9396
0.9756
3.1435
0.5509
0.8733
1.2270
3.3266
0.5110
0.4297
1.0408
0.757O-
1.6448
2.6646
4.6666
9.5568
2.9879
6.9532
1.0325
0.6543
0.0
4.1327
2.5825
2.0646
8.9249
1.8651
2.1126
1.1022
0.6633
0.5764
5.6221
6.7225
14.1543
18.5991
19.6000
11.4157
6.2071
5.2631
6.2769
5.2564
6.9150
21.9315
15.7089
11.2857
8.4467
5.85O8
5.6361
5.8475
6.0019
14.3869
26.4046
15.3004
36.9824
233.1367
44.34O8
249.2468
1002.9534
231.25O4
63.0991
16.5080
23.9999
44.3508
21.3157
242.3974
891.1663
57.1396
42.9879
1033.8000
149.264O
20.0717
12.9201
9.4505
927.4634
857.6589
259.1831
26.0568
195.1859
186.9313
55.6063
11.4617
9.1868
56.740V
5V. 2710
43.2062
76.5561
107.6463
102.4242
95.6382
75.8933
68.7055
68.5790
90.6191
56.5995
66.8243
111.V123
134.5797
94.2696
69.5986
63.8591
65.4358
56. 1294
45.9815
62.9O07
39.6260
36.1552
4^.3744
47.04V3
88.1935
228.6371
315.5171
48.4353
59.4197
109.2500
123.3212
76.83O5
157.1353
415.0659
159.3452
120.9178
56.1647
53.108*
44.6859
50.8310
243.1948
38.6875
40.8521
125.6561
42.7342
144.1582
162.7161
180.3406
188.8982
4. 92 8V
5.3216
1.6248
1. 4478
1.8526
2.4020
2.9627
3.4170
4.1147
4.5522
2.9379
1.5168
1.7940
2.4869
3.1638
3.6429
4.3937
4.8256
4.5493
1.8816
4. 5292
5.7268
3.3471
2.4845
3. 5453
2.5958
2.0340
1.5545
1.2686
4. 3973
5.2268
3.4854
4.3622
2.4964
1.8117
1.2474
0.8339
1.8990
3.0895
4.0877
4. 7054
5.3053
1.5346
2.0575
2. 64O9
0.9589
2.8570
2.6031
3>.2246
3.8390
4.4329
12.0346
11.2376
17.8963
18.5196
17.7560
16.5546
15.4714
14.4972
13.1507
12.3525
15.1028
18.5314
17.9774
16.6609
15.4048
14.5790
13.2870
12.4425
12.8788
17.5536
14.4882
12.84O4
16.1360
17.2607
15.7510
17.0624
17.8805
18.6403
19.2026
14.7379
13.5083
15.6114
14.5103
16.8491
17.8000
18.6901
19.5495
18.0237
16.7479
15.4815
14.5795
0.0
18.9240
18.2857
17.5066
19.8628
17.3630
16.8504
15.9874
15.2693
14.4694
99.9930
99.9916
99.9822
99.971O
99.9743
99.9846
99.9908
99.9924
99.9915
99.9926
99.9905
99.9704
99.9799
99.9854
99.9893
99.9927
99.9930
99.9927
99.9925
99.9823
99.9546
99.9748
99.9528
99.7204
99.9366
99.7027
98.8113
99.7233
99.9146
99.9762
99.9697
99.9437
9V. 9720
99.7O71
96.9390
99.9172
99.9176
96.7692
99.7994
99.9726
99.9823
99.9887
98.8943
98.9788
99.6861
99.9397
99.7623
99.7712
99.9302
99.9841
99.9871
1.0448
1.0619
0.7833 6
0.9148
0.9274
0.9370
0.946O
0.9292
0.9725
0.9932
0.9303
0.9618
0.8809
0.9534
0.9936
0.9704
1.0185
1.0572
1.0230
0.9168
0.9932
1.0133
0.9673
0.9601
1.0078
0.97M
0.91*3
1 .0373
1.1390
1.0261
1 .0302
0.9902
1.0053
0.9347
1.0252
1.1212
1.0701
1.0471
1 .03«8
1.0777
1.0848
1.0895
1 .2775 6
1 . 1568 6
1.0913
1.2432
1.0664
0.9627
0.9969
1.0229
1.0292
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HC015
CMQ15
NXCQ15
CCXjl
0X01
EFFGA
CFRAC
NOTE
>
C7I
29-O3A-^14
29-O3A-15
29-03A-16
29-03A-17
29-0 3A -18
29-0 4A-1
29-O4A-2
29-O4A-3
29-O4A-4
29-04A-5
29-0 4A -6
29-04A-7
29-O4A-B
29-O4A-9
29-05A-1
2 9-0 5 A -2
29-05A-3
29-O5A-4
29-05* -5
29-05A-6
29-0 5A -7
29-O5A-6
29-05A-9
29-06A-1
29-O6A-2
29-06A-3
29-O6A-4
29-O6A-5
29-O6A-6
29-06A-7
29-0 6A -8
29-06A-9
29-O6A-10
29-O6A-11
29-06 A -12
29-O6A-13
29-O6A-14
29-06A-15
29-O6A-16
29-06 A -17
29-O6A-18
29-07 A -1
29-07A-2
29-07A-5
29-O7A-4
29-07A-5
29-O8A-1
29-0 8A -2
29-O6A-3
29-08A-4
29-O8A-5
0.3*74
0.1397
0.1067
0.0790
0.0551
0.0911
0.1265
0.1635
0.1269
0.1729
0.2098
0.2*75
0.2873
0.3220
0.0868
0.1289
0.1735
0.2108
0.2483
0.2861
0.3244
0.3647
0.2258
0.1265
0.1706
0.2076
0.24-»2
0.2825
0.3216
0.1297
0.1749
0.21*3
0.2497
0.2869
0.3261
0.3663
0.2285
0.1917
0.2388
0.1071
0.2473
0.1767
0.2144
0.2484
0.2902
0.3488
0.1729
0.2096
0.2464
0.2862
0.3297
0.5798
1.9853
3.3105
4.7947
7.7*50
3.7531
1.8702
0.6422
4.5718
1.5209
0.7512
0.4243
0.1827
0.1630
3.1965
1.9545
0.6703
0.4771
Q.3O36
0.1756
0.0774
0.0689
0.1113
11.5665
4.9191
2.9295
1.0318
0.266V
0.0781
9.2643
5.9812
6.5207
1.9245"
0.6973
0.3857
0.2058
0.1099
0.3934
0.4212
1.6447
0.3049
4.3698
1.0727
0.3079
0.4397
0.0
1.J337
0.365O
0.2052
0.0891
0.2320
7.408O
752.3704
1171.6365
1346.9397
1029.8413
38.3085
161.6759
406.5276
287.7788
283.3528
65.7V69
11.2669
8.0800
7.9423
48.5469
209.7853
321.5920
47.9136
11.2878
8.9790
6.6353
8.3274
24.8766
202.2350
410.8528
100.1094
30.7013
13.2190
7.9837
203.8272
326.2666
71.6827
31.7528
12.0713
11.4009
19.0844
IS. 3 191
106.7480
11.6782
153.2401
13.1492
200.0731
63.2425
18.7191
12.O1OO
9.3294
625.2842
76.2760
19.6721
14.6185
12.6887
186.4754
152.8863
145.1217
85.0627
97.6999
143.35*5
28O.1766
183.8424
322.1521
99.1795
37.1603
42.4429
44.9991
49.5834
111.1477
257.3381
202.3936
46.2149
37.0343
41.6733
41.7019
43.2203
42.0546
258.7966
188.5797
47.2148
32.4906
35.9678
39.1268
381.8643
182.5103
63.5196
74.4304
134.4931
148.879C
156.2609
56.2564
69.2739
91.2923
398.5889
94.4919
205.1475
139.6262
101.4018
104.0867
150.0982
80.7348
40.6922
100.0988
125.3063
135.2291
5.0634
1.9240
1.6227
1.2811
0.9340
1.3676
1. 7688
2.2928
1.8560
2.5296
3.0184
3.6347
4.2554
4.7605
1.3457
1.9119
2.4893
3.1391
3. 7030
4.3467
4.9594
5.5216
3.3640
1.8179
2. 3204
2.6693
3.5129
4.C373
4. 6760
1.8834
2. 3945
2. 9727
3.5147
4.1129
4.6275
5.1910
3.2562
2.7392
3.4063
1.6527
3.5013
i.3594
2.9065
3.4042
4.0405
4.9877
2.3015
2.8369
3.3850
3.9353
4.4916
13.5045
17.6846
18.1909
18.7278
19.2458
18.7429
18.1363
17.3452
17.6765
16.8446
16.3335
15.2203
14.4635
13.8217
18.6362
17.8456
17.1615
16.3475
15.4842
14.7114
14.0570
13.3072
15.6833
18.1551
17.4894
16.7429
15.6677
15.1536
14.2994
18.0044
17.1902
16.2977
15.8124
15.1201
14.3497
13.5144
15.9788
16.6998
15.7255
16.2006
15.7044
17.4379
16.6547
15.8351
15.1626
13.9026
17.4884
16.6588
15.B911
15.1454
14.1633
99.9892
99.1043
98.6076
98.3967
98.7642
99.9423
99.8029
99.5167
99.6449
99.6593
99.9193
99.9852
99.9897
99.9899
99.9322
99.7457
99.6162
99.9415
99.9855
99.9887
99.9894
99.9898
99.9700
99.7225
99.4970
99.8713
99.9600
99.9833
99.9902
99.7283
99.5935
99.8929
99.9557
99.9832
99.9850
99.9764
99.9778
99.8721
99.9847
99.6138
99.9833
99.7483
99.9213
99.9767
99.9842
99.9888
99.2560
99.9058
99.9759
99.9822
99.9840
1.0372
O.985O
1.0932
1 . 1664 3
1.2076 3
1.0503
0.9842
O.9956
1.0322
1.0360
1.016O
1.0383
1.0499
1.0504
1.0856
1.0448
1.0171
1.0511
1.0542
1.0771
1.0663
1 .0766
1.0521
1.0126
O.9666
0.9835
1.0171
1.0127
1.0330
1.0231
0.9712
0.9890
0.9958
.O093
.O086
.0100
.0061
.O09O
.0079
• O838
.OOO9
O.9441
0.9677
0.9690
0.9873
1.0177
0.9515
O.9568
0.9636
0.9747
0.9684
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HC015
CMQ15
NXCOlb
COQ1
OXQ1
EFFGA
CFRAC
NOTE
29-0 8* -6
29-08A-7
29-08A-8
29-O9A-1
29-09A-2
29-O9A-3
29-09A-4
29-09A-5
29-O9A-6
29-O9A-7
29-09A-8
29-09A-9
29-O9A-10
29-O9A-11
29-O9A-12
29-O9A-13
29-09A-14
29-09A-15
29-09A-16
29-O9A-17
29-O9A-18
29-09A-19
29-09A-20
29-09A-21
29-O9A-22
29-O9A-23
29-O9A-24
29-10A-1
29 -10 A -2
29-10A-3
29-1OA-4
29-10 A -5
29-10A-*
29-1 OA -7
29-10A-8
29-1 OA -9
29-10* -10
29-lOA-ll
29-10A-12
29-10A-13
29-10A-14
29-10A-15
29-10A-16
29-IOA-17
29-10A-18
29-10A-19
29-10A-20
29-1 OA -21
29-10A-22
29-10A-23
29-10A-24
0.2290
0.1270
O.0869
O.1715
0.2105
0.2489
0.2877
0.3270
0.1704
0.1968
0.2553
0.2795
0.3172
0.3550
0.2520
0.2912
0.3321
0.3722
0.2196
0.1877
0.1385
0.1041
0.2052
0.2802
0.3197
0.3586
0.2995
0.1477
0.1814
0,2154
0.2490
O.282.6
0.1673
0.2042
0.2374
0.2733
0.3197
0.2578
0.2923
0.3339
b.2065
0.1716
0.2352
0.2682
0.3090
0.1905
0.2508
0.2957
0.3393
0.2337
0.2123
0.1113
0.6023
1.1735
0.8927
0.1211
0.1024
0.0886
0.1559
0.5987
0.1262
0.0998
0.0912
0.1607
0.0718
0.2023
0.0875
0.2304
0.0685
0*4646
0.2716
0.3681
0.7350
0.1242
0.1820
0.0797
0.2133
0.0851
4.5261
1.6920
0.7108
0.5124
0.3611
5.7059
3.7823
0.8608
0.3733
O.2393
0.1977
0. 1744
0.0763
0.1234
0.2972
0.2167
0.0950
0.1650
0.2676
0.2033
0.1724
0.2255
0.3273
0.3603
26.4278
772.6121
40.1116
872.9011
76.8600
14.0027
10.4941
18.5150
118.5791
146.O619
29.2033
9.9761
7.3245
7.1895
24.0143
10.374O
8.3972
7.H926
106.3004
235.3948
33.6283
15.6070
125.3706
9.1093
7.2658
6.4776
6.2039
1032.6794
105.2785
39.1203
29.1478
lb.6999
623.5610
69.0612
25.6019
17.9583
21.2319
11.7718
8.7825
9.7969
22.6322
136.5424
19.8691
7.8351
6.7942
84.0354
12.1O08
7.1054
6.1795
18.9842
53.0236
51.4015
193.4021
313.2791
33.9109
32.1749
4C.0974
44.85*5
42.3677
314.3584
170.6027
36.0268
31.0659
27.1631
29.4539
58.4974
57.8222
US. 2461
127.1407
117.2765
403.9998
197.0963
157.9154
441.9414
84.6978
45.4611
99.7827
56.4617
15.8770
24.3897
32.8604
37.4586
36.9460
36.0134
31.1341
38.2702
38.4759
40.1464
41 .0546
43.9036
47.1988
36.3714
39.0500
40.6619
33.1033
38.2187
105.9131
54.9954
64.5126
116.6336
61.9390
86.1096
3.153*
1. 8856
1.3315
2.:>44O
3.0091
3.5993
4.2507
4. 7927
2.3183
2.8730
3. 4600
3.9954
4.5855
5. 1467
3.4872
0.0895
4.7050
5. 2686
3.0165
2. 5232
1.8738
1.4025
2.8393
3.9388
4. >590
5.1256
4.3119
2.0683
2. 5395
3.0873
3.5704
4.0496
2.3112
2.8539
3.*829
3.9216
4.6235
3.6310
4.2138
4. 7983
2. 4569
2. 4672
3.3530
3.9301
4. 5459
2.7640
3.4963
4. 1474
4.7672
3.2406
2.9156
16.07*9
17.6675
18.8430
17.6368
16.78c5
15.9090
14.8785
14.1367
17.2963
16.574O
15.8569
15.1032
14.V708
13.6017
15.6050
14.8201
14.0659
13.2646
16.0462
16.7011
17.5739
18.3246
16.6375
14.9573
14.2105
13.2347
14.1603
17.3541
16.6931
15.9688
15.3421
14.7777
17.5040
16.7642
16.0020
15.3421
14.4152
15.6151
14.9571
14.2491
16.3325
17.0764
15.8045
15.0073
14.3202
16.4596
15.6942
14.9237
14.1218
16.1632
16.5021
99.9682 0.9728
49.0858 1.0598
99.9489 1.0717
98.9633 O.9824
99.9083 1.0097
99.9830 1.O226
99.9872 1.0473
49.9773 1.0418
99.8576 0.9595
99.8262 1 .O214
99.9649 0.9592
99.9878 1.0127
99.9907 1.0268
99.9911 1.O323
99.9707 0.9790
99.9873 O.9956
99.9892 1.0O73
99.9908 1.0092
99.8721 0.9717
99.7200 0.9522
99.9590 0.9501
99.9791 0.9436
99.8508 0.9784
99.9885 0.9960
99.9910 1.0129
99.9915 1.0179
99.9923
98.7639
99.8696
49.9511
99.9636
99.980O
99.2426
99.9053
99.9666
49.9773
99.9738
99.9853
99.9889
99.9880
99.9727
99.8373
99.9756
99.9903
99.9913
99.8995
.0214
.0089
.9876
.0115
.0143
.0157
.9865
.9868
.0309
.0163
.0278
.9964
.0222
.0219
.0097
.0146
.0070
.0374
.0441
.0234
49.9849 0.9858
99.9909 0.9946
99.9918 0.9993
99.9763 0.9796
99.9356 0.9695
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
HCC15
CMQ15
NXCG15
CJC1
0X31
fcFFGA
CFRAC
NOTE
Cn
-J
29-10A-25
29-10A-26
2 9-1 OA -2 7
29-1 OA -2 8
29-10A-29
29-10A-30
29-1 1A-1
29-11B-1
29-11B-2
29-12A-1
29-12A-2
29-12A-3
29-12A-4
29-12A-5
29-12A-A
29-1 2A -7
29-12A-8
29-12A-9
29-12A-10
29-13A-1
29-13A-2
29-13A-3
29-1 3B-1
29-13B-2
29-13B-3
29-13B-4
29-1 38 -5
29-1 3B-*
29-1 36 -7
29-138-6
29-138-9
29-1 3B -10
29-14A-1
29-1 4A -2
29-14A-3
29-1 4A-4
2V-14A-5
29-14A-6
29-14A-7
29-14A-8
29-14A-9
29-14A-10
29-14A-11
29-1 4A -12
29-15A-1
29-1 5A -2
29-1 5A -3
29-1 5A-»
29-15A-5
29-1 5A -6
29-1 5 A -7
0.1269
0.1496
0.2025
0.2113
0.2430
0.2504
0.0
0.3567
0.3639
0.2685
0.2847
0.3016
0.3246
0.2578
0.3015
0.2830
0.2683
0.2527
0.3478
0.1687
0.2073
0.2946
0.2452
0.2117
0.1708
0.1275
0.1009
0.1754
0.0894
0.1295
0.2188
0.2597
0.2305
0.1861
0.1647
0.1271
0.2579
0.1436
0.1735
0.2124
0.2552
0.1822
0.2138
0.2526
0.1647
0.2027
0.23%
0.2764
0.3142
0.2109
0.2500
1.4082
1.1950
0.2517
0.2413
O.3148
0.3O55
0.0
0.2144
0.1401
0.0949
0.1791
O.O844
0.2356
O.O989
0.1691
O.O901
0.1900
0.3027
01.0733
0.7564
0.3689
0.1730
0. 1039
0.2408
0.4479
1.2012
1.7722
0.5817
1.7138
0.9848
0.1165
0.1963
0.331*
0.4110
0.4644
0.8027
0.0988
0.7105
0.4410
0.3602
0. 1998
0.4199
0.2385
0.2018
0.6193
0.1257
0.2128
O.O922
0.2435
0.1208
0.2039
36.8250
70.5869
32.3492
14.3629
9.5962
9.3173
0.0
6.5413
6. 412-6
7.8226
7.38J7
6.95/9
7.1886
.8.1451
6.9659
7.4211
7.8272
7.3898
7.3880
953.5278
547.2817
55.9630
112.4024
251.8937
756.0449
1454.8*77
1141.3259
820.6501
693.845O
1648.1392
267.5630
150.4 1 13
94.6536
493.5642
998.4626
1066.3606
56.0583
1430.2168
1106.8U59
261.2504
97.6361
660.5312
158.2401
101.9261
416.2761
104.2248
47.5820
36.2281
29.9645
103.1030
45.5932
321.6391
0.0
57.4128
44.6528
&b.i»63
42.5501
0.0
76.0385
63.5804
52.8228
55.6165
60.9529
65.3005
44.5*71
87.1258
69.9849
56.0818
40.7829
59.5569
61.5520
53.6187
52.2923
49.1385
46.8416
46.7356
44.7021
109.2586
82.0291
239.7440
71.7603
119.31V7
149.3294
37.5126
50.0240
55.1746
236.0867
37.8008
120.4579
54.8508
86.2440
117.1778
68.2953
67.0206
94.2860
246.3602
81.4564
40.4073
35./700
37.4243
73.3909
79.7614
1.7780
2.1107
2.8662
2. 9902
3.4370
3. i346
0.0
5.2571
5.4653
*. 0068
4.0296
4.5367
4.8922
3.7866
4.2835
4.0125
3.8O06
3.5759
4.9595
2.0076
2.6O10
4.0011
3.23*2
2.7621
2.2359
1.7015
1.2504
1.1485
1.22U
1.6613
2.7875
3.2832
3. 1473
2.5126
2.2248
1. 7*07
3.5237
1.8251
2.2439
2. 7809
i.3874
2. 3400
2.8840
3.4145
2.2767
2.9053
3.4607
4.0107
4.5624
2.9985
3.5753
18.1551
IV. 6460
16.6792
16.6155
lb.1075
lc.0020
o.o
13.7850
13.7638
15.2049
14.6032
14.5177
14.3162
15.5206
14.6276
15.1223
15.4122
15.5552
13.9449
17.9073
17.0241
14.8299
16.O586
16.6281
17.5947
18.4525
19.0556
17.7251
19.2495
16.4523
16.6763
15.8142
16.1701
17.O228
17.4O77
18.1230
15.4382
18.5522
17.6861
16.9776
15.9123
17.6461
16.87C6
16.1427
17.7423
17.0086
16.2234
15.5044
14.7799
16.8649
16.1032
99.9518
99.9125
99.9608
99.9821
99.9875
99.9879
—
99.9914
99.9918
99.9903
99.9906
99.9914
99.9906
99.9900
99.9911
99.9908
99.99OO
99.9902
99.9909
98.8685
99.3491
99.9326
99.8659
99.7001
99.1032
98.2783
98.6490
99.0260
99.1772
98.0506
99.6817
99.8201
99.8863
99.4136
98.8166
98.7383
99.9329
98.3072
98.6877
99.6886
99.8830
99.2158
99.8113
99.8779
99.5052
99.8759
99.9427
99.9565
99.9633
99.8772
99.9450
0.9829
0.9925
0.9979
0.9981
O.9996
0.9979
-
1.0495
1.0701
1.0566
1.0030
1.0665
1.0708
1 .0369
1.0081
1.0048
1.0028
1.0OO5
1.0149
0.8604
0.8977
0.9643
O. 9359
0.9262
0.9391
0.9715
0.8957
0.8819
0.9726
0.9398
0.9O54
0.8979
0.9663
0.9625
0.9741
0.9864
0.9676
0.9273
0.9370
0.9298
0.9412
0.9202
0.9553
0.9582
0.9816
1.O124
1.0216
1.0283
1.0317
1.0048
1.0120
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
6QR
HCQ1!>
CMQ15
NXC&15
COQ1
OXQ1
EFFGA
CFRAC
NOTE
Cn
00
29-1 5A -8
29-15A-9
29-1 5A -10
29-15A-11
29-15A-12
29-15A-13
29-15A-14
29-15A-15
29-15A-16
29-1 5 A -17
29-15A-18
29-1 5A -19
29-16A-1
29-16A-2
29-16A-3
29-16A-4
29-16A-5
29-16A-6
29-16A-7
29-16A-8
29-16A-9
29-16A-10
29-16A-11
29-17A-1
29-17A-2
29-1 7A-3
29-1 7A -4
29-17A-5
29-17A-6
29-17A-7
29-17A-3
29-17A-9
29-17A-10
29-17A-11
29-18A-1
29-18A-2
29-18A-3
29-18A-4
29-18A-5
29-18A-6
29-1 8A-7
29-1 8A -8
29-18A-9
29-18A-10
29-18A-11
29-18A-12
29-18A-13
29-18A-14
29-18A-15
29-18A-16
29-18A-17
0.1924
O.2898
0.1811
0.1792
O>2166
0.2558
0.1461
0.1450
0.1365
0.1779
0.2111
0.2495
0.2331
0.2762
0.3163
0.1426
0.2067
0.2487
O.2959
0.2055
0.1540
0.1593
0.1934
0.2131
0.2523
0.2913
0.3208
0.2209
0.2574
0.2366
0.1785
0.1322
0.1277
0.1071
0.2107
0.2621
0.2714
0*2905
0.26*1
0.2311
0.19*3
0.1948
0.1937
0.1931
0.1264
0.1249
0.1250
0.1227
0.1935
0.2362
0.2357
0.3975
0.1759
0.1408
0.2845
0.1177
0.0996
0.6983
0.879B
0.9350
0.4301
0.2415
0.1022
0.1093
0.2770
0.1612
0.7157
0.1233
0.3076
0.1723
0.1240
0.6624
0.4802
0.9240
0.8389
0.2021
0.0875
0.1589
0.3463
0.0990
0.2153
0.1428
0.5785
0.3991
1.1915
2.6804
1.5636
1.6998
1.4110
0.1931
0.1103
0.2624
0.2617
0.1315
0.3961
0.4032
0.2041
0.2039
0.4155
0.3954
0.1079
0.1081
145.6699
35.8979
287.7146
349.8611
141.0826
67.3847
477.4543
679.96O9
578.3193
441.2771
106.9258
65.8364
ll.O7
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HCQ15
CHOI 5
NXC015
C001
0X01
EFFGA
CFRAC
NOTE
en
CD
29-18A-18
29-19A-1
29-19A-2
29-19* -3
29-1 9A-4
29-19A-5
29-1 9A -6
29-19A-7
29-19A-8
29-19A-9
29-19A-10
29-19A-11
29-1 9A -12
29-19A-13
29-19A-14
29-19A-15
29-19A-16
29-19A-17
29-19A-18
29-19A-19
29-19A-20
29-1 9A -21
29-19A-22
29-19A-23
29-19A-24
29-19A-25
29-19A-26
29-19A-27
29-19A-28
29-19A-29
29-19A-30
29-19A-31
29-19A-32
29-196-33
29-19A-34
29-19A-35
29-19A-36
29-19A-37
29-19A-38
29-19A-39
29-19A-40
29-19A-41
29-19A-42
29-19A-43
29-19A-44
29-19A-45
29-20A-1
29-2 OA-2
29-2 OA -3
29-20 A -4
29-20A-5
0.2359
0.2052
0.2054
0.2073
0.2067
0.2498
0.1732
0.1756
0.1302
0.1741
0.1743
0.1744
0.1741
0.2080
0.2099
0.2491
0.0864
0.0905
0.1255
0.1282
0.1283
0.1258
0.1693
0.2077
0.2457
0.0902
0.0908
0.1275
0.1756
0.2091
0.0947
0.1276
0.1075
0.1496
0.1343
0.1350
0.1522
0.1810
0.2258
0.2200
0.1933
0.1587
0.2109
C.2584
0.2459
0.2075
O.1250
O.1656
0.2052
0.2424
0.2808
0.2161
0.0
0.0
0.0
0.0
0.1020
0.4416
0.1451
0.3915
2.0584
0.4369
0.8702
1.0266
0.0
0.0
0.0
2.3660
1.1276
0.6097
0.-3977
0.3974
1.5785
0.5854
0.1192
0.0
1.0991
1.0911
0.5829
0.0
0.0
1.0468
0.5822
0.6912
0.3311
0.9229
0.5505
0.3253
0. 1367
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.82&O
0.0
0.2521
0.3201
0.2764
102.0215
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
58.2124
70.2549
59.5316
62.2555
30.9585
2(1.4533
23.9821
85.2784
4O5.4734
71.5814
172.3790
130.0294
48.2286
66.3890
31.4679
18.9805
36.15f6
77.1167
283.9949
53.2348
26.7735
897.5774
258.8459
694.7998
106.7466
55.6547
102.6276
53.7286
34.8093
18.5798
19.0590
24.1016
38.2179
22.1057
15.3177
16.0994
17.9547
42.4291
36.9863
28.0645
14.2474
10.6495
48.6096
126.3415
89.9704
59.5441
56.0497
58.7016
273.1143
56.2061
65.2516
324.2874
66.V008
64.5155
57.1439
120.7095
55.8684
57.5098
248.4707
65.9582
309.6138
89.8532
57.7677
286.6685
296.1465
117.9515
56.0854
225.1599
343.0281
124.0555
48.8351
111.6615
109.3132
58.5804
73.3433
96.1985
548.9395
64.84O8
49.1311
38.6673
117.7662
43.9898
41.8935
102.7323
46.5168
64.1132
68.5015
39.0400
i62.7715
244.7462
196.5756
130.2871
125.2866
3.1996
3.0148
2.9153
2.9791
2.9588
3.6383
2.5631
2.5600
2.0106
2.4063
2.4425
2.4573
2.4884
3.0117
3.0764
3. 6493
1.4136
1.4444
1.8948
1. 9043
1.8996
1.8543
2.4204
2.9537
3.4672
1. 3848
1.3712
1.85*5
2.4285
2.9537
1.3803
1.8595
1. 5349
2.1460
2.0391
2.1314
2.4107
2.7521
3.4382
3. 2434
3.1096
2.5563
3.2147
3.5092
3.*4o2
2.9567
1.8112
2.2983
2. 8678
3.4221
3.9847
13.4372
16.OO18
16.1275
15.9910
15.9027
15.0163
16.3607
10.3607
16.9790
16.9360
16.8661
16.7308
16.6935
16.0072
15.9137
15.1828
18.0708
18.0373
17.5O53
17.5O94
17.5466
17.3811
16.6381
15.9246
15.1951
17.7071
17.6847
17.0151
16.3063
15.5838
17.4996
16.8194
17.3104
16.4968
16.9597
16.8101
16.5155
16.1035
15.1644
15.4148
15.5405
16.1785
15.4841
15.0828
15.1085
15.7489
17.4987
16.8531
16.1304
15.3942
14.5986
99.8779
—
—
-
-
99.9996
99.9985
99.9995
99.9987
99.9241
99.9153
99.9265
99.9228
99.9632
99.9662
99.9715
99.8917
99.5187
99.9135
99.7951
99.8451
99.9378
99.9194
99.9622
99.9774
99.9538
99.9055
99.6628
99.9369
99.9682
98.9392
99.6924
99.1785
99.8727
99.9312
99.8769
99.9354
99.9583
99.9779
99.9774
99.9714
99.9548
99.9737
99.9818
99.9808
99.9787
99.9471
99.9538
99.9658
99.9820
99.9864
0.9605
—
—
—
—
1.0295
1.0406
1.0252
1.0826
0.9735
0.9873
0.9925
1.0067
1.0213
1.0338
1.0362
1.1464
1.1263
1.06O4
1.0456
1.0414
1.0346
1.0065
1.0031
0.9978
1 .0745
1.0574
1.0294
0.9738
0.9963
1.0416
1.0276
1.0166
1.0099
1.0662
1.1100
1.1132
1.0704
1.0751
1.0407
1.1333
1.1329
1.0750
0.9608
0.9908
1.0049
1.0167
O.9762
0.9856
0.9977
1.0055
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HC015
CMCI15
NXCQ15
COQ1
OXQ1
EFFGA
CFRAC
NOTE
29-2 OA -6
29-20A-7
29-20A-8
29-20A-9
29-2 OA -10
29-20A-11
29-21 A -1
29-21A-2
29-21A-3
29-2 1A-4
29-21 A -5
29-2 1A-6
29-2 1A -7
29-21A-8
29-2 1A-9
29-21A-10
29-21A-11
29-2 IA -12
29-21 A -13
29-2 1A-14
29-21A-15
29-2 2A-1
29-22A-2
29-22A-3
29-2 2A-4
29-2 2A -5
29-2 2 A -6
29-22A-7
29-22A-8
29-23A-1
29-2 3A-2
29-2 3A -3
29-2 3A-4
29-23A-5
29-23A-6
29-2 4A-1
29-24A-2
29-24A-3
29-24A-4
29-24A-5
29-24A-6
29-24A-7
29-24A-8
29-24A-9
29-2 4A -10
29-25A-1
29-2 5A -2
29-25A-3
29-25A-4
29-25A-5
29-2 5A-*
0.1261
0.1603
0.1965
0.2317
0.2696
0.2876
0.0903
0.13*6
0.1798
0.2177
0.1827
0.161O
0.1333
0.1977
O.1119
0.0689
0.0901
0.1106
0.1361
0.1616
0.1866
0.1467
0.1751
0.2072
0.2388
0.2703
0.1114
0.1440
0.2075
0.1299
0.1791
0.2149
0.1309
0.1612
0.2118
0.2201
0.2622
0.1854
0.1530
0.1145
0.1201
0.1486
0.1703
0.2102
0.2492
0.1143
0.2255
0.2723
0.3195
0.3691
0.4187
0.6156
0.4U42
0.2632
0.3349
0.2879
0.2698
1.4330
1.3479
0.1438
0.0
0.4247
0.8038
0.4711
0.3925
0.0
0.3752
0.6743
0.7016
0.7605
0.6405
0.2787
1.7918
1.2004
0.8874
0.6599
0.5830
2.1240
1.4595
0.7593
0.1962
0.1423
0.5937
0.5843
0.6331
0.1204
0.2317
0.0972
0.1374
0.3333
1.1146
1.7020
1.0305
0.7237
0.3639
0.2046
2.2371
0.22t>l
0.0936
0.0798
0.0
0.0
45.7156
40.2908
28.1738
13.89O8
11.0928
9.6018
6V. 03 76
94.9125
25.6537
20.1217
23.97«.3
32.9621
65.9814
22.1598
194.1685
164.8489
199.2385
117.5299
80.0420
61.6310
64.9987
108.3639
94.7524
46.8632
25.4653
16.6265
68.8O58
126.4408
46.7926
423.3013
130.5456
41.3483
508.3801
74.1545
39.7395
16.4118
12.0462
23.1587
29.5592
83.3399
442.1377
124.8139
46.3256
23.6670
16.3215
31.6316
20.0517
12.4385
7.7698
6.7244
7.5448
107.6663
129.5552
125.2683
75.0186
61.7148
66.5749
284.6816
341.5681
83.4769
113.9746
66.8223
73.7129
97.2613
147.9374
12O.O39O
296.4586
80.7335
106.0059
152.0840
170.5880
181.6533
236.1156
209.6191
170.0902
149.8398
146.8967
231.0501
233.1550
170.4737
132.8439
93.5608
124.9231
120.3921
75.8466
144.9243
120.0495
177.4738
79.4355
94.5OOO
221.3214
193.4257
110.5686
97.0973
96.2985
118.4691
204.4846
261.5312
308.1372
229.8896
150.4654
117.3342
1.B300
2. 2740
2.7572
3.2870
3.8183
4.0821
1.4365
1.9243
2.5531
3.1272
2.6175
2.3324
2.0145
2.8779
1.68i>5
1.1614
1.3865
1.6852
2. O766
2.3811
2.7522
2.0121
2.4139
2.8927
3.3396
3.7615
1.6216
2.0216
2.8371
2.0647
2.6469
3. 2408
2.0901
2.5131
3.2253
3.4891
4. 2008
3. 0506
2.6605
2.2403
1.9025
2.4021
2. 7056
3.0865
3.6552
1.7412
3.1585
3.8417
4. 5838
5.2275
5.9458
17.1857
16.6146
15.9991
15.3179
14.6491
14.3550
18.5379
17.6463
16.7130
15.9915
16.6008
16.9432
17.2093
16.6388
18.0259
18.6706
18.3673
18.0259
17.5323
17.0953
16.6579
16.9208
16.4832
15.8237
18.9913
14.7979
17.3621
16.7963
15.8183
17.5945
16.9971
16.3232
17.5O13
17.0674
16.3607
15.3901
14.3915
15.8729
16.3794
16.7867
17.1796
16.5480
16.1920
15.6793
14.9445
17.5799
15.8034
14.8442
13.8812
13.O284
12.0201
99.9440 1.0187
99.9607 0-V978
99.9667 0.9891
99.9823 1.0019
99.9868 1.0029
99.9876 1.0061
99.9139 1.1139
99.8834 1.0O58
99.9691 0.9996
99.9761 1.0135
99.9702 1.0085
99.9583 1.0186
99.9188 .0618
99.9724 .0259
99.7710 .O561
99.8049 . 18O7
99.7634 .0813
99.8591 .0697
99.9029 .0723
99.9249 .0370
99.9220 .0453
99.8659 0.9652
99.8837 0.9718
99.9414 0.9851
99.9675 O.9885
99.9782 0.9855
99.9117 1.O212
99.8467 0.98B2
99.9419 0.9647
99.4995
99.8448
99.9489
99.3977
99.9101
99.9524
99.9797
99.9853
99.9721
99.9639
99.8980
99.4726
99.8490
99.9427
99.9707
99.9799
99.9552
99.9754
99.9848
99.990*
99.9919
99.9909
.1251
.0429
.0645
.1321
.0975
.0746
.1189
.1336
.1584
.2222
.3730
.1213
.1379
.0807
.0356
.0371
.0602
.9890
.9990
.Olt2
.•093
.0165
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HC015
CM015
NXCQ15 CDQ1
OXQ1
EFFGA
CFRAC
NOTE
29-25A-7
29-26A-1
29-2 6A-2
29-26A-3
2 9-2 7 A -1
29-27A-2
29-2 7A -3
29-27A-4
29-27A-5
29-28A-1
29-28A-2
29-28A-3
29-2 8* -4
29-28* -5
29-28* -6
29-2 8*-7
29-28* -8
29-28* -9
2 9-2 8* -10
29-2 8* -11
29-28A-12
29-28A-13
29-2 8A-14
29-28A-15
29-28A-16
29-28* -17
29-28A-18
29-28*-19
29-28*-20
29-29A-1
29-29* -2
29-29A-3
29 -29* -4
29-29A-5
29-30*-!
29-30* -2
29-3OA-3
29-30*-*
29-30* -5
29-30* -6
29-3 1A-1
29-31A-2
29-32A-1
2 9-32 A -2
29-33*-!
29-33A-2
29-3 3* -3
29-33* -4
29-33* -5
29-33A-6
29-33A-7
0.4496
0.2620
0.1599
0.3605
0.2732
0.2760
0.2767
0.3657
0-3*77
0.1636
0.2167
0.2656
0.3143
0.3614
0.3888
0.1638
0.1367
0.1100
0.2180
0.1967
0.2479
0.2719
0.2918
0.2838
0.3280
0.3833
0.3556
0.2987
0.2823
0.1285
0.1382
0.1498
0.2043
0.1253
0.2370
0.2793
0.3229
0.3696
0.3686
0.3700
0.3728
0.3552
0.3723
0.2845
0.2058
0.2547
0.2735
0.2937
0.3195
0.1947
0.2400
0.0
0. 1940
0.7977
0.0707
O.«r669
0.2771
0.0921
0.1394
0.0733
0.3116
0.4709
0.3642
0.4060
0.3530
0.3281
0.4671
0.1864
0.2316
0-.0
0.0
0.0
0.0
0.0874
0.0
0.0
O.O
0.0
0.0
0.0903
1.6403
0.5710
0.3510
0.2573
80.3940
0.2218
0.3/67
0.0814
0.0
0.0
0.0
0.1410
0.1480
0.4952
0.1848
0.7675
0.0
0.0
0.0
0.0
0.0
0.0
7.0313
19.7540
39.<.361
13.7311
16.3577
14.5673
14.5088
9.7o97
8.3548
21.8198
13.3876
9.2437
6.3844
7.4072
6.3048
25.9196
2-.. 4717
24.274V
15.3593
19.2982
11.6930
10.6676
10.7084
7.0702
6.7981
6.9845
6.2701
6.7176
7.1024
24.3016
29.0829
31.3428
29.5986
1230.0972
11.2961
7.9834
8.9827
7.8485
9.0848
5.4231
6.5806
7.5370
12.60V6
18.8694
32.855d
12.3430
9.8487
7.6413
6.3192
46.4051
14.0404
11&.8596
224.8737
233.582V
19.6720
136.1642
134.1297
129.9713
Il4.29i4
69.5561
199.7050
326.2796
315.2639
18V. 7353
128.6103
131.2203
247.8589
207.0471
199.5763
173.8044
220.0770
139.2468
127.4351
127.1225
123.7488
79.0621
95.4157
82.9544
86.38C2
100.0*49
21.6627
68.0459
124.6140
306.2036
28.5293
271.8979
208.7607
106.5304
66.2892
59.0030
56.6443
59.0405
58.4401
175.9879
11*. 5861
300.6699
10&.04>9
68.3270
53.5080
52.1580
301.8O35
114.7969
6. 3664
3.7265
2.3869
5.1765
3.8768
3. 8445
3.8659
5.28*3
4.9813
2.1266
im t.500
3.2833
4.1155
4. 7429
5.6449
2.4560
2.0690
1.7055
3.1330
i. 7838
3.5485
3.8686
4. 2030
4.2910
4. 8674
5.6077
5.2748
4.5017
4. 1836
1.7180
2.0457
2.2213
3.0579
1.7994
3. 5448
4.1765
4.8513
5.4868
5.5122
5. 4947
5. 2626
5.3320
5.5941
4.3432
2. 8469
3.4554
3. 7309
4.0382
4.3564
2.7662
3.4186
11.3903
15.2391
16.9220
13.3176
15.0136
14.8247
14^7425
12.8051
13.0910
14.7928
14.0036
13.2735
12.7968
12.3000
12.5189
16.4719
16.6898
17.2688
15.5300
15.9880
14.9759
14.5790
14.0964
13.9540
13.3004
12.3471
12.6801
13.6693
13.9466
17.6761
0.0
O.O
16.0148
17.4059
15.4465
14.7168
13.7751
12.8466
12.7898
12.6674
13.3051
13.2292
13.0534
14.6802
16.1920
15.3841
14.9509
14.5358
14.O560
16.0740
15.2462
99.9915
99.9758
99.9507
99.9833
99.9789
99.9817
99.9824
99.9878
99.9897
99.9731
99.9825
99.9877
99.9910
99.9899
99.9913
99.9677
99.9705
99.9706
99.9618
99.9771
99.9861
99.9873
99.9869
99.9916
99.9919
99.9916
99.9925
99.9920
99.9912
99.9656
99.9637
99.9618
99 . 9640
98.2787
99.9858
99.9892
99.9890
99.9906
99.9891
99.9935
99.9916
99.9904
99.9832
99.9769
99.9584
99.9653
99.9883
99.9909
99.9924
99.9450
99.9833
.0179
.0067
.0495
• G231
.0049
O.9867
0.9896
1.0298
1.0197
0.9141
0.6630
0.8750
O.9299
0.9349
1 .0360
1.0545
1.0621
1.0858
1.0140
0.9971
1.0120
1.0075
1.0214
1.0715
1.0547
1.0437
1 .0562
1.0691
1.0501
0.9381
1 .0395
1.0421
1.0554
1 .0390
1.0567
1.0599
1.0674
1.0585
1.0659
1.0585
1.0063
1.0689
1.0713
1.0821
0.9759
0.9595
0 .9660
0.9751
0.9685
1.0018
1.0066
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
tCR
HC015
NXCQlS
coai
OXQl
EFFGA
CFRAC
NOTE
>
to
29-33A-8
29-33A-9
29-3 3A -10
29-33A-11
29-34A-1
29-35A-1
29-35A-2
29-35A-3
29-3 5 A -4
29-35A-5
29-35A-6
29-36A-1
29-36A-2
29-36A-3
29-36A-4
29-36A-5
29-36A-6
29-36A-7
29-36A-8
29-36A-9
29-36A-10
29-36A-H
29-36A-12
29-37A-1
29-3 7A -2
29-3 7A -3
29-37A-4
29-37A-5
29-3 7A -6
29-37A-7
29-37A-8
29-37A-9
29-37A-10
29-37 A -11
29-37A-12
29-37A-13
29-37A-14
29-37A-15
29-37A-16
29-37A-17
29-38A-1
29-38A-2
29-38A-3
29-38A-4
29-38A-5
29-38A-6
29-38A-7
2.9-38A-8
29-38A-9
29-38A-10
29-38A-11
0.2671
0.2845
0.2573
0.2834
3.0
0.1675
0.1960
0.2606
0.3281
0.3885
0.4153
0.2344
0.2741
0.2963
0.3178
0.3396
0.3519
0.3746
0.2058
0.1873
0.1640
0.1419
0.1201
0.2000
0.2364
0.2563
0.2738
0.2920
0.3111
0.1818
0.1449
0.2068
0.2457
0.2847
0.3049
0.2652
0.3218
0.1882
0.1484
0.0984
0.2245
0.2596
0.2596
0.2918
0.3117
0.2230
0.2318
0.2685
0.3055
0.2454
0.2728
0.0984
0.092*
0.0
0.0
0.0
1.7323
0.9406
0.6062
0.3207
0.1353
O.O
2.2576
0.7687
0.3551
0. 1654
0.0774
0.0
0.0
0.1277
0.1403
0.1602
0.3705
1.3149
0.657B
0.2205
0.1025
0.0
0.0
0.0
0.7239
0.9077
0.2542
0.2140
0.0
0.0
O.O
0.0817
0.2794
0.7089
1.3365
1.1742
0.6085
0.6085
0.2704
0.2531
1.1820
0.6813
0.2938
0.1721
0.5362
0.5790
9.2423
9.4702
10.4719
8.7125
O.O
26.87*3
22.9671
12.0675
9.5832
9.2526
0.0
33.4802
17.9551
14.3380
11.2424
9.8607
10.7879
9.5369
28.2702
29.8**5
29.9662
31.5232
39.1068
95.7588
25.5053
16.6687
12.3050
11.5466
8.6662
193.7571
151.4088
125.4525
30.3106
12.6381
11.0529
20.3672
10.4786
257.4526
97.8228
34.2029
90.4826
64.8206
71.9543
41.1410
22.4193
150.0779
129.0332
69.6143
26.5924
110.4552
77.8887
92.5915
102.2408
93.2665
112.3848
0.0
166.3297
212.V101
246.3620
181.6025
140.3175
133.3187
256.8303
139.6596
110.0775
88.5045
74.2537
68.2637
67.8394
251.3196
184.3548
106.9407
52.1586
34.5457
161.4429
88.4565
67.8931
55.5990
49.6530
47.8840
202.6433
157.7384
222.O476
123.3652
90.2870
89.7142
92.1871
99.3272
234.9156
232.6251
168.0230
69.2385
31.2578
28.8605
25.9467
30.4708
68.9923
112.4895
65.1201
74.4264
82.4763
32.2622
3.8381
4.1473
3. 6936
4. 0926
O.O
«:.4297
2.8338
3.7416
4.6915
5.6206
0.0
3.3921
4. 0340
4.3789
4.5813
4.8681
5. 3090
5. 2665
3.0505
2. 7341
2.3819
2.0983
1.8075
2.8520
3.3663
3.6297
3.8381
4. 1667
4. 3706
2.5980
2.0879
2. 7984
3.4106
3.9434
4.2130
3.6882
4.4595
2. 5365
1.9956
1.4541
0.0
0.0
0.0
O.O
0.0
0.0
3.1359
3. 5843
4.1108
3.3097
3.6591
14.7746
14.3588
14.9132
14.3726
0.0
16.8288
16.2928
15.1140
13.9032
12.6548
0.0
15.6417
14.8312
14.3777
14.0181
13.6390
13.221*
12.8599
15.5040
15.8298
16.2430
16.5757
16.9648
16.3982
15.7733
15.4534
15.1897
14.7368
14.4l!>5
16.5194
17.0442
16.1250
15.4475
14.6058
14.4276
15.0136
14.0370
16.2616
16.9177
17.5159
O.O
0.0
0.0
0.0
0.0
O.O
15.9292
15.2712
14.6490
15.5910
15.0828
99.9886
99.9884
99.9875
99.9896
-
99.9624
99.9696
99.9636
99.9874
99.9884
—
99.9526
99.9760
99.9817
99.9860
99.9879
99.9871
99.9885
99.9660
99.9641
99.9640
99.9615
99.9494
99.8842
99.9689
99.9798
99.9853
99.9862
99.9896
99.7680
99. 8 ISO
99.8502
99.9632
49.9*49
99.9868
99.9757
99.9872
99.6938
99.8820
99.9552
99.8885
99.9207
99.9122
99.9500
99.9723
99.8177
99.8443
99.9160
99.9676
99.6667
99.9052
1.0171
1.0332
1.0157
1.0235
—
1.0206
1.0190
1.0161
1.0164
1 .0324
_
1.0227
1.0423
1.0484
1.0241
1.0198
1.0740
1.0028
1.0453
1 .0283
1.0212
1.0385
1.OS54
l.OO»9
0.9979
1.0020
0.9927
1.0117
0.9975
1.0106
1.0141
0.9568
0.9817
0.9819
0.9808
0.9845
0.9846
0.9552
0.9463
1 -OJ-.J
—
—
—
—
—
—
O.9582
0.9467
0.9554
O.9559
0.9516
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
E&R
HC615
CM015
NXCQ15
CDQ1
OXQ1
tFF&A
CFRAC
NOTE
29-38A-12
29-38A-13
29-38A-14
29 -3 8 A -15
29-38A-16
29-38A-17
29-38A-18
29-38A-19
29-38A-20
29-3 8A -21
29-38A-22
29-38A-23
29-38A-24
29-38A-25
29-36A-26
29-38A-27
29-3 8A -2 8
29-38A-29
29-39A-1
29-39A-2
29-39A-3
29-39A-4
29-39A-5
29-40A-1
29-4OA-2
29-40A-3
29-40A-4
29-40A-5
29-40A-6
29-40A-7
29-40A-8
29-40A-9
29-40A-10
29-40A-11
29-41A-1
29-41* -2
29-41A-3
29-41A-4
29-42A-1
29-*2A-2
29-4 2A -3
29-4 3A-1
29-4 3A -2
29-*3A-3
29-4 3A -4
29-43A-5
29-*3A-6
29-4 3A -7
29-4 3A -8
29-4 3* -9
29-4 3A -10
' 0.2574
0.2322
0.2672
0.2856
0.3025
0.3219
0.3404
0.2177
0.2434
C.2575
0.2756
0.2929
0.2243
0.2526
0.2679
0.2729
0.2857
0.3016
0.2592
0.2580
0.2713
0.2882
0.3066
0.29C2
O.33O9
0.3735
O.*76l
0.4946
0.5331
0.5749
0.6178
0.2646
0.2455
0.2253
0.5258
0.5427
0.4749
0.4248
0.4248
0.4610
0.511*
0.2426
0.2903
0.3371
0.3629
0.3803
0.4040
O.4199
0.4457
0.4669
0. 3076
0.8186
0.3397
0.1967
0.0920
0.0
0.0
0.0
0.2*15
0.2160
0.1021
0.0*54
0.1795
0.2344
0.2081
0.1V62
0.0963
0.1840
0.1743
2.0416
1.6385
0.7769
0.1824
0.0851
0.1811
O.0794
0.1408
0.0552
0.0531
0.0
0.0
0.0425
0.0
0.1071
0.9355
0.0
0.0969
0.0553
0.0619
O.O619
0.0570
0.0
0.2167
0.1811
0.1560
0.0724
0.0691
0.0650
0.0626
0.1180
O.O563
0.0854
97.9709
5^.7190
21.0791
12.6084
9.66*8
6.3620
7.9223
94.454*
38.0925
22.740*
15.5166
11.5216
53.5563
19.6111
15.1066
13.1837
11.0142
8.9351
125.5466
113.2724
9*. 6454
64.0045
24.1O23
9.2815
8.1409
9.0220
6.1262
0.3523
6.7433
6.2533
6.1641
11.0256
38.6638
81.8723
5.5565
6.2146
5.6740
6.3428
5.8177
5.8496
5.2725
71.3443
17.0647
6.6580
6.1655
5.9053
5.5589
4.2777
5.5444
6.2580
10.2250
33.28*3
108.1177
52.2744
45.4543
*3.566l
41.3504
41.8232
220.2329
116.9640
90.0815
74.6216
71.7729
183.2177
89.4728
74.7850
68.0943
68.7317
74.9605
25.5902
25.7101
31.2*56
39.8901
71.6233
65.3733
128.6506
202.3569
210.3468
lbO.3779
123.107*
95.1397
82.4506
75.7208
53.6924
36.5714
53.6464
54.1630
74.1048
106.70*7
91.9928
75.4850
61.3405
211.6639
136.3835
87.9743
69.0163
54.*126
47.4706
42.0701
39.4837
40.2351
131.5257
3.5311
3.2675
3.fc784
3.9665
4.2128
4.5353
4.7805
3.0454
3.4400
3.6545
3.9203
4. 11*3
3.2727
3.7372
3.8669
4.0726
4.20*2
4.3449
3.5261
3.5261
3.7266
3.9574
4.3261
4.0067
4.5422
5.1660
6.5586
6. 7554
7.2771
7.77*1
8. 4440
3.6891
3.4150
3.1670
7. 3343
7.6835
6. 68 39
0.0810
6.0854
6.5518
7.1171
3.4120
4.0759
4.7432
5.0244
5.3189
5.5672
5.8183
6.1614
6.4492
*.2739
15.2335
16.0177
15.4096
15.0703
1*.6924
14.2004
13.9160
15.5229
15.0703
14.6058
14.5600
14.2691
15.3155
14.6124
14.7113
14.5411
14.3329
14.1625
16.1789
16.2493
16.0359
15.7782
15.4591
14.9822
14.2642
13.4492
11.5336
11.1701
10.5376
9.6072
8.9202
14.7057
14.9445
15.2335
10.6152
10.3158
11.5527
12.1637
11.9157
11.2656
10.5184
15.6359
14.7302
13.7751
13.3699
13.0094
12.6674
12.2766
11.7052
11.2853
13.9453
99.8805
99.9362
99.9742
99.9846
99.9684
99.9900
99.9905
99.8870
99.9539
99.9726
99.9612
99.9856
99.9356
99.9759
99.9813
99.9839
99.9862
99.9667
99.8435
99.8595
99.8845
99.9230
99.9709
99.9883
99.9900
99.9887
99.9924
99.9921
99.9918
99.9924
99.9923
99.9868
99.9536
99.8995
99.9933
99.9921
99.9930
99.9921
99.9928
99.9927
99.9936
99.914*
99.9790
99.9915
99.9923
99.9927
99.9931
99.9946
99.9929
99.9922
99.9875
0.9725
0.99*7
0.97*7
0.98*5
0.9881
1.0009
0.9991
0.9891
0.9998
.0043
.0078
.9972
.0308
.O465
.0225
.0568
1.0429
1.0222
0.9653
0.9694
0.9749
0.9749
0.9954
0.9787
0.9756
0.9S62
0.9888
0.9816
0.9836
0.9771
0.9904
0.9870
0.9841
0.9941
.0045
.0206
.0102
.0240
.02*6
.0192
.0013
0.9953
0.9956
1.0006
O.9864
O.9974
0.9843
0.9909
O.9903
0.9909
0.9863
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCQ15
CHQ15
NXC015
CD01
OXQ1
6FFGA
CFRAC
NOTE
29-43A-11
29-43A-12
29-4 3A -13
29-43A-14
29-4 3A -15
29-4 3* -16
29-43A-17
29 -43* -18
29-44A-1
29-44A-2
29-44A-3
29-4 4A -4
29-44A-5
29-44A-6
29-44A-7
29-44A-8
29-44A-9
29-44A-10
29-44A-11
29-44A-12
29-44A-13
29-44A-14
29-45A-1
29-45A-2
29-45A-3
29-45A-4
29-4 5A -5
29^45A-6
29-45A-7
29-45A-8
29-4 5A -9
29-45A-10
29-45A-11
29-45A-12
29-45A-13
29-4 5B-1
29-458-2
29-45B-3
29-45B-4
29-45B-S
29-458-6
29-458-7
29-4 SB -«
29-45B-9
29-45B-10
29-45B-11
29-45B-12
29-46A-1
29-46A-2
29-4 6A-3
29-46A-4
0.3501
0.3947
0.4437
0.4134
0.3771
0.3358
0.2955
0.2511
0.1922
0.2275
0.2622
0.2794
0.2980
0.3149
0.3327
0.3506
0.2016
0.2352
0.2726
0.3071
0.3275
0.2920
0.2234
0.2597
0.2764
0.2932
0.3107
0.1880
0.1543
0.1625
0.1961
0.2303
0.2679
0.2865
0.258O
0.1890
0.2234
0.2593
0.2760
0.2932
0.3107
0.3271
0. 1968
0.2323
0.2654
0.2863
0.3046
0.1318
0.1715
O.2106
0.2484
O.O
0.0
0.0592
0.0636
0.0697
0.0
0.1779
0. 1047
1.5C92
0.6942
0.5017
0.4709
0.4415
0.1670
0.0790
0.0750
1.0452
0.7836
Of 6763
0.5142
0.5628
0.7217
0.4710
0.1012
0.0951
0.1793
0.0
0.1398
0.5111
0.4853
0.0
0.0
0.0
0.0
0.0
0.8357
0.5890
0.4058
0.4768
0.7187
0.7633
0.6442
1.3398
0.9074
0.6944
0.5516
0.5185
1.1985
0.7671
0.1248
0.0
5.7761
5.1166
5.0624
5.9774
6.5489
6.0186
12.9426
79.1086
109.2451
47.7649
8.5506
O.O
9.0457
8.5611
6.7496
5.7595
139.0967
43.2520
12.3622
8.0380
7.5320
9.2251
20.0089
13.7681
12.1130
9.8917
8.6154
32.1458
40.6145
45.508O
26.2075
15.5039
12.5008
10.1246
12.9684
107.9813
64.3452
39.75*3
37.3777
38.6559
33.1708
31.5070
£5.1138
12.9267
8.87VO
7.4809
6.3267
276.6311
615.3738
60.6034
23.2582
116.8607
89.1555
86.7344
85.4400
93.6745
124.0055
149.1611
259.2520
230.3388
134.4010
73.3840
5*. 8300
40.0203
35.1534
34.0660
35.9032
321.6084
155.7229
80.2801
68.0241
75.8607
68.8361
92.6522
54.5697
47.9199
45.1715
46.2422
158.7957
135.7932
243.2311
223.3790
127.3639
79.7232
79.5971
85.0619
192.B322
99.5965
52.5721
44.5836
41.9569
43.2238
47.7493
256.0125
121.6771
73.8276
69.1371
81.9272
100.1500
15.4925
22.4131
23.4203
4. 8960
5.4475
6.0840
5. 6953
5.2578
4.7802
4.1735
3.4799
0.0
O.O
3.5141
3. 7463
3.9709
4.1656
4.4061
4.6296
2.6015
3.0607
3.5481
3.9412
4.2303
3.7915
2. 9638
3.4414
3. 6661
3.8748
4.0971
2.5082
2.0288
2.0765
2.6400
3.0688
3. 5336
3.8964
3. 4627
2.5378
2.9791
3.4547
3. 6634
3.9424
4.1408
4.3666
2.6301
3.1223
3. 6342
3.8856
4.1299
1. 7406
2.2430
2.77-»8
3. 2697
13.1612
12.4772
11.6004
12.0773
12.5809
13.1802
13.8245
14.6368
13.8613
12.8443
15.3389
14.9387
14.5506
14.2684
13.9294
13. 5974
18.8065
18.1745
17.5253
16.9567
16.5551
17.1929
16.2211
15.5852
15.3O88
15.0011
14.6357
16.5569
17.1004
16.9693
16.2805
15.7733
15.1458
14.7368
15.2085
16.6266
16.1283
15.5172
15. 1643
14.7918
14.4625
14.1823
16.1333
15.6100
14.9843
14.5931
14.2944
11.9623
16.9082
16.2800
15.5190
99.9931
99.9938
99.9937
99.9926
99.9919
99.9928
99.9839
99.9055
99.8654
99.9409
99.9881
99.9984
99.9877
99.9892
99.9916
99.9928
99.8314
99.9459
99.9830
99.9886
99.9891
99.9865
99.9746
99.9832
99.9852
99.9876
99.9897
99.9614
99.9502
99.9445
99.9689
99.9816
99.9851
99.9879
99.9845
99.8692
99.9215
99.9513
99.9538
99.9514
99.9577
99.9601
99.9657
99.9816
99.9871
99.9892
99.99O7
99.6693
99.2687
99.9276
99.9723
0.9953
0.9853
0.9822
0.9847
0.9943
1.0123
1.0O19
0.9817
—
—
0.9482
0.9496
O.9452
O.9394
0.9416
0.9400
0.9126
0.9199
0.9219
0.9108
0.9179
O.9207
0.9367
0.9378
O.9395
0.9370
O.9362
0.939V
0.9241
0.8989
0.94*7
0.9412
0.9340
0.9640
0.9495
O.948U
0.9427
0 .9435
0.9410
0.9542
0.9467
O.9493
0.9421
0.9495
0.9691
0.9618
0.9621
0.9331
0.9347
0.9305
0.9308
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HCOlb
CMU15
NXC015
CUQ1
0X01
EFFGA
CFRAC
NOTE
29-46A-5
29-46A-6
29-46 A -7
29-*6A-8
29-46A-9
29-46A-10
29-4 6A -11
29-46A-12
29-46A-13
29-47A-1
29-* 7 A -2
29-47A-3
29-47A-4
29-47A-5
29-47A-6
29-47A-7
29-WA-B
29-47A-9
29-47A-10
29-47A-11
29-47A-12
29-47A-13
29-<»8A-l
29-48 A -2
29-48A-3
29-48* -4
29-48A-5
29-48A-6
29-4 BA-7
29-4 BA -8
29-48A-9
29-4BA-10
29-49A-1
29-50A-1
29-5OA-2
29-50A-3
29-5OA-4
29-50A-5
29-50A-*
29-50A-7
29-50A-8
29-5 OA -9
29-50A-10
29-50 A -11
29-50 A -12
29-50A-13
29-50A-14
29-50A-15
29-50A-16
29-50A-17
29-50A-1B
0.1339
0.1803
0.2188
0.1988
0.1556
0.1982
0.1785
0.1344
0.1113
0.2269
0.2620
0.2983
0.3142
0.3332
0.3505
0.2345
0.2723
0.3128
0.3279
0.2902
0.1013
0.1060
0.2086
0.2282
0.1905
0.1718
0.2018
0.0868
0.1635
0.2005
0.2376
0.1822
0.0
0.2218
0.2769
0.2340
0.2127
0.2624
0.3088
0.3609
0.2396
0.1900
0.1631
0.1387
0.0999
0.2222
0.1889
0.2435
0.2329
0.2694
0.3196
0.9824
0.4376
0.0
0.1322
0.6762
0.0
0.4419
0.9788
1.4186
2.2147
1.1073
0.5294
0.3348
0.0789
0.0750
0.2242
0.0
0.0
0.0
O.Q
3.6506
1.9890
0.5045
0.1152
0.2760
0.3O60
0.0
1.2128
0.3216
0.0
0.0
0.1443
O.O
0.3556
0.0949
0.1123
2.1128
0.8032
0.5969
0.2186
0.1097
0.1383
0.1611
0.3790
1.0530
0.0
0.0
0.0
0.0
0.0
0.0
73i.2073
499.2507
32.5684
119.6826
853.6665
75.857O
453.7810
1011.0476
6O6.8843
62.0491
24.5012
12.2645
10.1911
8.2281
7.8182
42.1391
15.9796
b.7582
8.3615
10.2434
1B.O385
17.2379
147.7b06
47.6107
288.2112
462.3049
180.5481
21.1*98
557.9277
174.2713
32.0580
389.2205
0.0
0.0
0.0
0.0
687.8772
57.7736
16.4470
19.0302
135.7393
770.0432
503.4910
107.9081
0.0
534.3796
818.5503
144.5229
4O1.7187
18.1839
12.55*7
168.6794
30.^011
114.6784
53.2061
40.3312
96.0976
32.5479
72.4319
27^.1072
184.0555
106.3350
5i.79S5
41.6799
37.5133
36.9969
195 .4846
120.9818
68.5608
67.6277
84.8315
29.5717
161.7880
36.6O34
62.3553
47.2599
79.7690
39.6875
210.5674
67.9222
22.9557
28.6684
27.8250
0.0
21.9659
109.1993
34.0606
36.2391
25.1131
30.1593
29.8558
25.8372
60.7697
198.9O30
315.7349
97.8669
44.8045
106.6270
39.2794
36.4936
83.0269
128.8573
1.77*1
2.2817
i. 8928
2.5724
2.0240
2.6798
2.3076
1.77V1
1.5480
3.0198
3.4600
3.9018
4. 1602
4.3721
4. 6256
3.2024
3. 5520
4.15-»3
4.3444
3.8238
1.4069
1.4750
2.6817
2.9620
2.4523
2.2205
2.6239
1. 1953
2. 1 147
2.6568
3.1091
2. 3953
0.0
3.0126
3.8667
3. 2409
2.8624
3.5918
4.2176
4.9523
3. 3264
2.5625
2.2785
1.9387
1.3527
3.0045
2.5131
3.3657
3.1194
3.7380
4. 3 745
17.3250
16.7047
15.9907
10.3091
16.9154
16.1802
16.5805
17.1313
17.4059
16.0378
15.4970
14.8726
14.5381
14.2588
13.9300
15.5636
15.0952
14.3958
14.0909
14.7054
17.5011
17.5011
16.6179
16.1777
16.7336
16.9511
16.4633
18.2190
16.9696
16.3397
15.7822
16.5438
O.O
16.2170
15.2006
15.8931
16.3275
15.5322
14.7244
13.7806
15.S2«»5
16.6127
16.9620
17.3838
18.1146
15.9671
16.6311
15.5599
15.9116
15.1761
14.5250
99.1307
99.4070
99.9613
9V. 8576
98.9879
99.910O
99.4609
98.8025
99.2772
99.9188
99.9671
99.9636
49.9867
99.9899
99.9904
99.9491
99.9809
99.9895
99.9900
99.9878
99.9665
99.9730
99.B229
99.9430
99.6573
99.4515
99.7858
99.9710
99.3386
99.7932
99.9619
99.5383
—
99.9988
99.9997
99.9996
99.176O
99.9284
99.9783
99.9764
99.8381
99.0865
99.4O36
99.8712
99.9965
99.3650
99.0295
99.8280
99.5223
99.9783
99.9B5O
0.9498
0.9029
0.9333
0.9146
0.9347
O.9543
0.92O6
0.9533
O.9887
O.9408
0.9349
0.9279
0.9402
0.9329
0.9395
Q.96%4
0.924O
0.9
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HCQ15
CMC15
NXC015
CD01
OXQ1
fcFFGA
CFRAC NOTE
29-50A-19
29-51A-1
29-51A-2
29-5 IA-3
29-51A-4
29-51A-5
29-51A-6
29-5 1A -7
29-51A-8
29-51A-9
29-51A-10
29-5 1A -11
29-51A-12
29-51A-13
29-51A-14
29-51A-15
29-51A-16
29-5 1A -17
29-51A-18
29-51 A -19
29-51A-20
29-52A-1
2 9-52 A -2
29-52 A -3
29-52A-4
29-52A-5
29-5 2A -6
29-5 2A-7
29-52A-8
29-52A-9
29-52A-10
29-52A-11
29-52A-12
29-52A-13
29-52A-14
29-52A-15
29-52A-16
29-52 A -17
29-53A-1
29-54A-1
29-54A-2
29-54A-3
29-54A-4
29-54A-5
29-54A-6
29-54A-7
29-54A-8
29-5 5A-1
2 9-5 5 A -2
29-5 5 A -3
29-55A-4
0.2337
0.2745
0.2231
0.1637
0.1483
0.1091
0.2283
0.1876
0.1621
0.1397
0.1160
0.2072
0.1878
0.1830
0.1375
0.1585
0.1785
0.1827
0.1991
0.2190
0.2382
0.3159
0.2678
0.2237
0.2781
0.3059
0.3315
0.3513
0.2458
0.2286
0.2002
0.3053
O.2914
0.2626
0.2389
0.2153
0.1920
0.3397
0.0
0.2653
0.2435
0.2175
0.2146
0.2122
0.1980
0.1802
0.1678
0.2506
0.2085
0.1984
0.1792
0.0
0.3833
0.1178
0.4820
0.5320
0.9647
0.1151
0.2802
0.3243
O.5646
0.9067
0.0
0.0
0.1436
0.3825
0.3318
0.1472
0.1438
0.0
0.0
0.0
0.1664
0. 1963
O.J526
O.O
0.0
0.0
0.0
0.0
0.0
0.1313
0.0
0.0
O.O
0.0
0.1221
0.1369
0.0
0.0
0.0991
0.0
0.0
0.0
0.0
0.0
0. 1458
0.1566
0.0
0.0
0.1325
0.0
319.9768
19.8006
24.3629
101.875O
164.6446
420.2061
25.4043
145.17V8
276.1370
407.7400
227.8474
63.2715
120.7944
156.5308
446.0969
321.2356
179.8900
143.6041
63.0385
26.4829
21.3502
9.9346
18.9946
25.1287
15.7305
8.5355
6.8134
6.4288
19.9694
20.6900
22.7457
9.7012
9.5608
15.3090
18.3121
21.9720
20.0246
5.6238
O.O
114.4970
156.0720
491.9077
619.0208
646.0229
790.6221
994.4375
1099.9487
98.7658
353.1062
489.7676
669.8457
35.2331
256.4167
8i.4837
54.0890
52.5309
114.0061
102.0611
39.7002
61.9149
139.6812
389.8816
50.6833
38.2453
38.8660 -
76.8795
36.9156
27.5642
27.2921
31.0642
35.8357
34.6230
83.1962
95.6655
226.9232
83.4053
79.0961
91.5804
117.0694
124.8495
161.6857
329.4429
64.8766
58.6153
64.0242
92.0790
187.8992
304.9858
70.0490
0.0
124.0287
95.2155
45.4543
37.1665
35.3099
29.8318
28.4789
34.7371
60.1977
42.8487
45.6765
57.2290
3.1563
3.7621
3.0556
2.6170
2. 3302
1.9104
3. 1943
2. 5823
2.3122
1.9804
1.6659
2.7869
2.5972
2.4884
1.9520
2.1814
2.4442
2. 5377
2. 7368
3.0198
3.2822
4.2592
3.6440
3.0556
3.8897
4.3749
4.6332
4.9836
3.4333
3.2511
2. 8574
4. 5136
4. 1607
3.7611
3.«.124
3. 0403
2.7117
4.8054
O.O
3.6334
3.3238
2. 9638
2.8979
2.8272
2.7067
2.5180
2.3463
3.5169
3.1221
2.9944
2.8023
16.0040
15.5026
16.3140
16.8928
17.2372
17.8227
16.0461
16.7599
17.0722
17.4571
17.7679
16.4285
16.7047
16.8334
17.4716
17.2149
16.9762
16.9027
16.7231
16.4101
16.0779
14.9784
15.6863
16.3910
15.2073
14.7422
14.3438
13.9248
15.7529
15.9753
16.41*3
14.4426
14.9286
15.3199
15.7714
16.1788
16.5528
14.1380
O.O
15.6064
15.9173
16.2723
16.3643
16.4012
16.4931
16.6585
16.8097
15.6340
16.0779
16.2072
16.3869
99.6195
99.9751
99.9706
99.8778
99.8035
99.5013
99.9694
99.8270
99.6721
99.5163
99.7282
99.9249
99.8568
99.8140
99.4717
99.6188
99.7864
99.8293
99.9252
99.9685
99.9746
99.9875
99.9767
99.9689
99.9812
99.9898
99.9918
99.9923
99.9762
99.975*
99.9726
99.9884
99.9886
99.9818
99.9782
99.9735
99.9758
99.9933
_
99.8632
99.8143
99.4157
99.2648
99.2329
99.O621
98.8212
98.6973
99.8824
99.5808
99.4185
99.2064
0.9620
0.9709
0.9670
1.1263
1.1073
1.2367
0.9881
0.9723
1.0091
1.0046
1.0112
0.9495
0.9767
0.9606
1.0072
0.9750
0.9677
0.9808
0.9698
0.9732
0.9736
0.9576
0.9636
0.9644
0.990*
1.0151
0.9936
1.0098
0.9876
1.O042
1.0063
1.0491
1.0122
1.O135
1.0093
0.9964
0.9952
1.0062
_
0.9719
0.9682
0.9733
0.9667
0.9555
O.9826
1.0075
1.0099
0.9944
1.0641
1.0756
1.1168
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME EOR
HC015
CMOli
NXC015 CDQ1
0X01
fcFFGA
CFRAC NOTE
29-5 5A -5
29-55A-6
29 -5 5 A -7
29-55A-8
29-5 5A -9
29-55A-10
29-55A-11
29-55A-12
29-55A-13
29-55A-14
29-55A-15
29-55A-16
29-55A-17
29-55 A -18
29-55A-19
29-55A-20
29-56A-1
29-56A-2
29-56A-3
29 -56 A -4
29-56A-5
29-56A-6
2 9-56 A -7
29-56A-*
29-5 6A -9
29-56A-10
29-56A-11
29-56A-12
29-56A-13
29-56A-14
29-56A-15
29-57A-1
29-57A-2
29-57A-3
29-57A-4
29-57A-5
29-57A-6
29-5 7A -7
29-57A-*
29-5 7A -9
29-57A-IO
29-5 7A -11
29-57A-12
29-57A-13
29-58A-1
29-58A-2
29-58A-3
29-58A-4
29-58A-5
29-5 BA -6
29-58A-7
0.1499
0.2418
0.2946
0.2206
0.1898
0.2791
O.2408
O.2062
0.1971
0.1801
0.1492
O.31S6
0.3402
0.2362
0.1810
0.3923
0.4017
0.3477
0.2852
0.2248
0.2090
0.1953
0.2158
0.2223
0.2780
0.2288
0.1960
0.1768
0.1646
0.1614
0.1533
0.3155
0.3663
0.3894
0.3703
O.3463
0.3231
0.3449
0.3741
0.3512
0.3593
0.2812
0.2277
0.1671
0.3876
0.3293
0.4065
0.4306
0.4143
0.4054
0.3105
0.3508
0.0
0.0
0.0
0.1384
1.9916
1.0948
0.8940
0.6675
0.7303
0.8820
0.3334
0.3093
0.1113
0.2905
0.0670
0.3932
0.9106
0.4612
0.1169
0.1257
0.1345
0.0
0.0
4.2251
2.8963
.6157
.4910
.2805
.1422
.0305
.9037
.9813
.5857
.2300
1.1596
0.9933
0.8527
0.7144
0.7611
0.7438
0.7598
1.0562
1.4390
1.1550
0.7173
0.4516
0.6553
0.5066
0.3232
0.2530
728. 11 M
99.2097
52.7841
236.0088
719.7156
263.0210
746.1023
1136.7097
1136.0569
1142.5227
1107.8345
131.9592
108.8021
485.9321
1147.1826
62.7156
82.7882
130.3736
271.7505
845.9036
1071.3271
1176.8521
998.7051
921.2693
115.4039
271.1692
823.834O
1048.3746
1207.7776
1295.2727
1313.0117
11.0402
6.6284
6.2407
6.0905
6.5075
9.1477
6.5479
6.4955
5.9202
5.7942
32.8167
140.1701
55.1870
5.7231
7.2587
5.0344
4.7533
4.9398
5.0483
7.6989
144.6546
79.8795
137.7773
60.1105
46.98*2
111.5675
64.1992
50.1O44
51.7281
64.3477
119.6216
144.4888
147.9489
119.6945
60.0400
145.2370
163.5083
159.7340
149.2715
56.9994
49.4763
63.1691
46.6763
52.2163
155.2715
109.4000
54.4239
44.1270
46.1866
45.4413
48.2648
49.7217
31.3125
30.491B
29.8942
32.7374
74.2061
54.0172
51 .9457
48.4827
46.2665
116.1086
403.9541
298.1643
64.5054
120.4852
51.9100
55.4625
51.7360
49.6114
117.1449
2.3521
3.5327
4.2313
3.2872
2.7772
3.7127
3.2768
2.8677
i.7972
i.5977
2.3326
4.1820
4. 38 OO
3.4644
2.7271
5.3445
5.3096
4.6474
4. 0567
3.2406
2.9031
2.7171
3.0046
3.0914
3.6914
3.0914
2.6473
2. 4009
2.2454
2.1923
2.0534
*. 3222
4.9379
5.3185
4.9942
4.6971
4.4153
4. 7674
5.1871
4.8648
4.8964
3. 8050
3.1167
2. 3669
5.5047
4. 7402
5.8503
6. 1536
5.96BB
5.8090
4. J741
16.8659
15.5172
14.6549
15.7529
16.2343
15.4559
15.9753
16.4744
16.5298
16.7510
17.1191
14.8415
14.5614
15.66O1
16.6174
13.3720
13.1913
14.0748
14.7482
15.7343
16.0123
16.2528
15.8270
15.6787
14.9348
15.6601
16.2108
16.4280
16.6359
16.6313
16.8388
14.4605
13.6218
13.1373
13.4514
13.8111
14.0947
13.6408
13.0914
13.4402
13.3567
14.5413
15.3210
16.2236
13.33*7
14.2458
12.7805
12.4588
12.6481
12.7616
14.2122
99.1379
99.8819
99.9370
99.7196
V9.1462
99.6795
99.1086
98.6478
98.6501
98.6438
96.6872
99.8411
99.8686
99.4217
98.6397
99.92*4
99.8991
99.8407
99.6741
98.9943
98.7277
98.6037
98.8138
98.9053
99.8481
99.6679
99.0174
98.7531
98.5661
98.4634
98.4436
99.9769
99.9853
99.9871
99.9685
99.9883
99.9857
99.9892
99.9898
99.9903
99.9905
99.9583
99.8298
99.9298
99.9892
49.9889
99.9924
99.9913
99.9923
99.99iB
99.9899
1.1199
1 .0345
1.0197
1.0573
1.0477
0.9488
0.9799
1.0085
1.0277
1.0428
1.1252
0 .9443
0.9183
1.0478
1.0887
0.9740
0.9461
0.9544
.0145
.03 84
.0057
.0088
.0067
.0042
0.9433
0.96O4
0.9720
0.9811
0.9687
0.9866
0.9734
0.9730
0.9605
O.9749
0.9614
0.9653
0.9710
0.9836
0.9886
0.9861
0.9706
0.9593
0.9698
0.9971
.0133
.0231
.0282
.0228
.029E
.0237
.0001
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HCQ15
NXCIJlb
CD01
OXQ1
EFF&A
CFRAC
NOTE
29-56* -6
29-58A-9
29-58A-10
29-58A-U
29-58A-12
29-58A-13
29-59A-1
29-59A-2
29-59A-3
29-59A-4
29-59A-5
29-59A-6
29-59A-7
29-59A-8
29-59A-9
29-59A-10
29-59A-11
29-5 9A -12
29-59A-13
29-60A-1
29-60A-2
29-60A-3
29-60A-4
29-60A-5
29-60A-6
29-60A-7
29-60A-8
29-60A-9
29-60A-10
29-60A-11
29-60A-12
29-6 1A -I
29-6 1A -2
29-61A-3
29-6 IA -4
29-61A-5
29-6 1A-6
29-61A-7
29-61A-6
29-6 1A -9
29-61A-10
29-61A-11
29-61A-12
29-61A-13
29-61A-14
29-61A-15
29-61A-16
29-61Arl7
29-61A-18
29-6 1A -19
29-61A-20
0.3614
0.3873
0.4096
0.4344
0.4274
0.4123
0.3025
0.2769
0.2474
0.2154
0.1929
0.1833
0.2020
0.2889
0.2702
0.2428
0.2114
0.2003
0.1527
0.2827
0.2446
0.2169
0.1863
0.2075
0.2710
0.2388
0.2154
0.1835
0.1533
0.1218
0.2861
0.3O45
0.2688
0.2346
0.2159
0.1918
0.2486
0.2310
0.2757
0.2548
0.2199
0.1889
0.2370
0.2946
0.3004
0.2337
0.2078
0.2446
0.2540
0.2699
0.2397
0.2174
0.1351
0.1278
0.1808
0.1225
0.1270
0.2608
O.2849
0.3189
0.2441
0.4114
0.4304
0.3904
0.0910
0.0973
0.1082
0.3732
0.5253
0.6.615
0.4654
0.7536
0.6066
0.7062
0.3803
0.1940
0.2202
0.1220
0.2865
0.3430
0.6475
O.O
0.3456
0.0
0.0
0.1217
0.1370
0.0
0.1138
0.0
0.0
0.0
0.0
0.0
0.0
2.5632
1 . 694V
1.6515
1.0779
0.8297
0.6830
0.6589
4.7141
4.3980
4.1591
4.3159
4.3867
4.1322
8.5649
IS. 5 164
81.8132
331-8130
439.6760
494.1938
421.9219
14.4222
36*6472
161.8862
424.9395
513.4431
584.7451
9.7436
71.4723
274.1453
485.8372
393.8191
15.962S
1 27.5490
362.0527
615.5342
425.8401
162.3316
11.4516
9.6179
42.1329
337.7456
635.1O69
169.3766
83.4267
123.0890
29.2268
60.4663
192.5954
188.4279
131.9485
12.3090
41.6622
284.6997
592.2527
164.0988
95 ,O 398
54.7298
195.2231
50.7203
36.4037
30.7179
30.6333
30.3631
29.8781
150.1669
124.9168
73.7705
43.5337
53.2718
64.B026
46.3511
36.1832
33.2838
29.9134
29.3558
30.6477
91.2071
146.6257
•94.0986
73.6253
101.2582
81.7013
39.0365
33.73*4
38.2507
48.5091
114.6769
182.3696
37.9O97
109.6878
40.5611
31.2656
44.8023
175.8536
47.6892
56.4169
39.8221
23.4137
28.1426
122.97*5
23.1894
33.7328
122.4272
39.1801
59.0296
36.5839
40.7354
67.6809
35.6534
5.0278
5. 3887
5.6622
6. 0639
5.6976
5. 7149
4.2318
3.8061
3. 3435
2.9184
2.0478
2.4798
2.7175
3.8594
3.6048
3.2349
2.8378
2. 6329
2. 0678
4.O2O4
3.3694
3.0199
2.6926
2.8127
3.7051
3.2865
2. 9843
2. 4847
2.1109
1.7045
3.8327
4.3168
3. 8450
3.3752
3.0607
2.8174
3. 5427
3.3700
3.9576
3.7330
3. 1786
2. 6772
3.3856
4.2236
4.1582
3.2198
2.8526
3.3440
3.49O2
3.7277
3.2870
13.4788
13.0072
12.7237
12.1075
12.2591
12.4484
14.8059
15.3222
15.8806
16.3447
16.6596
16.7752
16.4607
14. 899 *
15.2603
15.6519
16.1169
16.3397
16.9424
14.9801
15.7986
16.1324
16.5025
16.3175
15.2037
15.7057
15.9470
16.5025
16.9642
17.4432
14.8559
14.7253
15.2654
15.6741
16.0078
16.3225
15.4142
15.6129
14.9055
15.1850
15.7429
16.2485
15.4827
14.4761
14.7253
15.8782
16. 2990
15.7057
15.4699
5.6004
15.5442
99.9936
99.9942
99.9946
99.9942
99.9943
99.9946
99.9889
99.9758
99.9015
99.6051
99.62/9
99.4129
99.4980
99.9825
99.9560
99.8070
99.4942
99.3890
99.3056
99.9868
99.9124
99.6723
99.4217
99.5312
99.9803
99.8475
99.5696
99.2695
99.4952
99.8062
99.9863
99.9873
99.9498
99.5983
99.2452
99.7987
99.9007
99.8533
99.9651
99.9280
99.7712
99.7766
99.8430
99.9853
99.9415
99.6557
99.2914
99.8011
99.884O
99.9324
99.7655
0.9910
0.9927
0.9879
O.9991
0.9872
0.9908
0.9926
0.9739
0.9573
0.9640
0.9783
0.9643
0.9582
O.9471
0.9453
0.9454
0.9572
0.9389
0.9653
1.0078
O.9751
0.9888
1 .0293
O.9654
0.9681
O.9755
0.9860
0.9681
0.9777
O.9844
0.9495
.OO62
.0136
.0245
.0156
.0383
.0093
.0331
.0174
.0375
.0244
.0024
.0124
1.0169
0.9829
0.9798
O.9B26
0.9703
0.9740
O.9791
0.9735
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EQR
HC01S
CM015
NXC015
cogi
OXQl
6FFGA
CFRAC
NOTE
29-*lA-21
29-61A-22
29-61A-23
29-61A-24
29-61A-25
29-61A-26
29-61A-27
29-62A-1
29 -6 2 A -2
29-62A-3
29-6 3A-1
29-64A-1
29-64A-2
29-6* A -3
29-6 4A -4
29-64A-5
29-64A-6
29-65A-1
29-6 5A -2
29-6 5 A -3
29-65A-4
29-6 5A -5
29-65A-*
29-6 5A-7
29-65A-8
29-6 5A -9
29-65A-10
29-65A-11
29-65A-12
29-65A-13
29-65A-14
29-65A-15
29-65A-16
29-65A-17
29-*5A-18
29-654-19
29-6 5A -20
29-6 5A -21
29-65* -22
29-65A-24
29-65A-25
29-65A-26
29-6 5A -2 6
29-6 5 A -2 7
29-6 5A -28
29-65A-29
29-65A-30
29-65A-31
29-6 5A -32
29-65A-33
29-6 5 A -34
0.2311
0.2761
0.2452
O.2115
0.1769
0.226*
0.2356
0.2956
0.2608
0.2209
0.0
0.3665
0.3638
0.3151
0.2853
J.2413
0.1967
0.28<>4
0.2809
0.2511
0.2233
0.1842
0.1978
0.2227
0.2301
0.2753
0.2428
0.2162
0.1828
0.2026
0.2156
0.2183
0.2113
0.2039
0.2263
0.2589
0.1833
0.1984
0.1956
0.2239
0.2469
0.1868
0.2611
0.2331
O.1972
0.1841
0.1689
0.1996
0.2254
0.2440
0.1757
0.5692
0.3811
0.3217
0.4974
0.7436
0.3454
0.3349
0.3557
0.2016
0.2380
0.0
0.7916
0.3616
0.2504
0.1843
0.1089
0.3969
3.2746
0.6563
0.5239
0.4712
0.4282
0.2658
0.1180
0.1142
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
o.o
0.0
0.0
0.0
0.0
0.0
0.0
223.3846
*9.6248
94.0954
195.7304
197.9735
141.5009
117.7508
6.3832
7.2416
20.3784
0.0
8.5250
5.7052
6.0356
5.4472
6.4414
117.7470
19.0842
10.5155
34.5070
124.5088
370.9441
310.0203
172.0022
107.8217
10.7246
37.9313
223.0052
501.8257
405.5276
183.61*6
159.1854
£35.5045
382.3271
86.2725
22.3401
619.9956
470.1824
93.9266
49.3277
16.9563
102.4883
22.1519
73.0920
499.2383
800.1614
959.5234
250.4334
130.4926
60.5196
3O4.7913
35.8172
35.3546
31.0856
40.7151
135.3718
34.2103
31.4852
55.7168
27.0661
14.00*2
0.0
163.1567
170.5425
106.1139
5V.6311
26.9157
10.9707
82.0268
95.9319
63.9O45
68.5536
131.5272
92.1007
65.0610
58.89*0
35.0143
29.6577
27.5625
74.4356
36.1785
25.1247
48.8162
46.8561
43.7246
81.4514
134.3668
56.C163
44.1780
84.4513
69.3368
123.7*96
86.5352
125.4412
121.3627
55.4954
45.1335
62.0951
82.325k
66.4619
95.4915
115.6522
3.2301
3.8397
3. 3648
2.9335
2.4399
3.1272
3.2352
4.2182
3.6693
3.1375
0.0
5.2395
5. 2337
4.6548
4.1418
3.6059
2.9264
3.6954
3.8392
3.4427
3.1015
2. 5982
2.7725
3.0097
3. 1*76
3. 7538
3.4114
2.9944
2.4750
2.7775
3.0351
3. O4O2
2.9437
2.8327
3.1373
3.4636
2.6230
2.7375
2.8227
3. 0964
3.5318
2.7575
3. 5423
3. 1527
2.7375
2.5686
2.29*5
2.5883
2.9437
3.1938
2.4162
15.5628
1*.77*9
15.2781
15.8040
16.3595
15.5442
15.3956
14.5255
15.2163
15.7374
0.0
13.3599
13.4271
14.1065
14.8502
15.5354
16.2735
15.3573
15.0791
15.6111
15.9259
16.4479
16.2820
15.9496
15.7832
15.0048
15.4500
15.9496
16.5584
10.1158
15.8017
15.7462
15.8704
15.9629
15.6667
15.2587
16.2770
16.0923
16.0553
15.7406
15.2030
16.2031
15.2030
15.6111
16.1292
16.2955
16.6275
16.2770
15.9259
15.6111
16.5353
99.7325
99.9395
99.8869
99.7659
99.7630
99.8306
99.8588
99.9912
99.99O7 .
99.9750
—
99.9871
99.9919
99.9919
99.9929
99.9920
99.8590
99.9661
99.9652
99.9571
99.8504
99.5589
99.6313
99.7952
99.8714
99.9672
99.9549
99.7351
99.4053
99.5188
99.7819
99.81O9
99.7204
99.5462
99.8974
99.9734
99.2652
99.4422
99.8886
99.9414
99.9798
99.8785
99.9736
99.9131
99.4078
99.0517
98.664O
99.7029
99.8449
99.9280
99.639U
0.9921
0.9862
0.972O
0.9827
0 .9748
0.9701
0.9729
1.0113
0.9956
1.0024
_
.O189
.0249
.0491
.0288
.0560
.0409
0.9212
0.9686
0.9701
0.9833
1.0018
O.9952
0.9577
0.9685
0.9659
0.9935
0.9822
0.9651
0.9760
0.9976
0 .9863
0.9880
O.9882
0.9804
0.9467
1.0225
0.9837
1.0187
0.9772
1.0115
1.0418
0.9602
0.9570
0.9901
1.0014
0.9789
0.9197
0.9246
0.9266
0 .97*7
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HCQ15
CMC15
NXCt/15
C001
0X01
EFFGA
CFRAC
NOTE
29-65A-35
29-65A-36
29-6 5A -3 7
29-65A-38
29-65A-39
29-65A-40
29-6 5A -41
29-65A-42
29-6 5A -43
29-6 6A-1
29-66A-2
29-6 6A-3
29-66A-4
29-66A-5
29-*6A-6
29-66A-7
29-6 6A -8
29-66A-9
29-66A-10
29-66A-11
29-66A-12
29-66A-13
29-66A-14
29-67A-1
29-67A-2
29-6 7A -3
29-67A-4
29-67A-5
29-6 7A -6
29-67A-7
29-67A-8
29-67A-9
29-67A-10
29-67A-11
29-67A-12
29-67A-13
29-67A-14
29-67A-15
29-67A-16
29-67 A -17
29-6 7A -18
29-67A-19
29-67A-20
29-67A-21
29-6 7A -22
29-*7A-23
29-67A-24
29-67A-25
29-67A-26
29-67A-27
29-6 7A -2 8
0.29O2
0.2649
0.2291
0.1967
0.2173
0.2249
0.2411
0.2031
0.1892
0.3332
0.3605
0.3807
0.4105
0.3143
0.2854
0.2616
0.2386
0.3129
0.3418
0.3668
0.3959
0.2921
0.2637
0.2168
0.1946
0.1719
0.1519
0.1277
0.1027
0.1814
0.1637
0.1454
0.1256
0.1044
0.2066
0.1801
0.1517
0.1268
0.1017
0.2115
0.1907
0.1676
0.1770
0.2317
0.2283
0.2047
0.1731
0.1452
0.1619
0.2227
0.1986
0.4533
0.3973
0.4592
0.6689
0.3630
0.3508
0.3272
0.3864
0.4169
0.3158
0.2188
0.0690
O.064O
0.0836
0.0921
0.2009
0.2204
O.0840
0.0769
0.0713
0.0664
0.0900
0.0997
0.3638
0.4053
0.1529
0.1730
0.2058
0.2559
0.0
0.0
0.0
0.0
0.2518
0.0
O.O
0.0
0.2073
0.5169
0.6201
0.5501
0.6259
0.5926
O.3395
0.2296
0.2560
0.7577
1.2657
0.9727
0.1177
0.1320
15.6873
21.9017
51.5454
112.3153
63.7763
75.0604
47.4494
127.2414
154*6267
19.5070
V.6547
7.2V 82
6.3406
20.1109
38.0429
69.4855
116.5339
23.6478
11.2146
7.0584
7.0167
32.1612
84.3523
3».9510
49.20O7
72.8546
137.4499
211.4117
264.7659
140.0177
169.8081
234.7894
347.4614
387.4189
118.1327
149.9384
200.5298
259.4438
236.O916
57.8475
87.6358
139.8535
122.5146
34.7639
40.0207
64.2747
116.3*66
190.0077
145.9985
51.6454
76.5785
115.8874
100.3045
81.1910
111.9409
80. 90 3O
77.5481
91.0378
83.5116
97.1425
49.4689
43.5147
42.7805
44.8475
58.9857
82.8392
138.9182
205.4166
88.0776
70.7657
68.6425
79.8461
108.3825
173.0540
117.1609
111.4461
100.0165
90.7177
106.1967
203.6415
101.8094
101.8977
98.3027
97.3498
163.2786
122.9313
116.1614
109.4635
105.7994
243.O943
45.5111
44.6074
60.9738
49.7356
4O.9O15
117.2426
96.0054
75.9989
112 .9547
76.7524
111.4353
103.9055
3.9319
3.6253
3.2012
2.7906
3.0V53
3. 0450
3. 2468
2.8452
2.7263
4.3053
4.6993
5. 0368
5.3726
4.1359
3.7911
3.4479
3.0964
4.0437
4.493O
4.8796
5.1935
3.8392
3.4584
3.1931
2.9239
2. 6299
2. 3032
1.9793
1. 5993
2.6003
2.3660
2.1165
1.8762
1.6038
2.6892
2. 4096
2.0927
1.8018
1.4766
2.6731
2.3578
2.0391
2.1542
2.8934
3.0199
2. 6*33
2.3189
1.9438
2. 1976
3.3375
3.0300
15.1609
15.5717
16.O55V
16.5390
16.1117
16.1489
15.8512
16.3346
16.4648
14.1906
13.7302
13.0741
12.7358
14.1346
14.4774
14.9057
15.2402
14.1042
13.5617
13.0741
12.5475
14.2162
14.6637
15.8959
16.3372
16.6273
16.9925
17.3840
17.6108
16.5566
16.8306
17.1344
17.3815
17.7116
16.2962
16.738%
17.0891
17.4248
17.8475
16.6056
17.1488
17.4787
17.3234
16.1597
16.0762
16.4893
16.8330
11.2602
16.8965
15.2879
15.9078
99.9797
99.9725
99.9372
99.8645
99.9230
99.9096
99.9424
99.8477
99.8153
99.9756
99.9877
99.9910
99.9921
99.9757
99.9543
99.9165
99.8606
99.9714
99.9863
99.9913
99.9913
99.9613
99.8991
99.9572
99.9403
99.9132
99.8369
99.7497
99.6871
99.8341
99.7990
99.7225
99.5898
99.5425
99.8598
99.8223
99.7628
99.6930
99.720O
99.9292
99.8942
99.8323
99.8529
99.9575
99.9516
99.9229
99.8597
99.7711
99.8240
99.9382
99.9087
0.9607
0.9691
0.9876
1.0021
1 .0062
0.9573
0.9526
O.9903
1.0182
0.9190
0.9286
0.9442
0.9353
0.9348
0.9421
0.9340
0.9197
0.9181
0.9354
0.9430
0.9366
0.9327
0.9299
1 .0394
1.0592
.0777
.O6BO
.0918
.0962
.0120
.0198
.0278
.0556
.0853
0.9202
0.9452
0.9733
1.0028
1.0217
0.8924
0.8727
0.8587
0.8591
0.8826
0.9349
0.9115
0.9449
0.9443
0.9576
1.0587
1.0768
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME tQR
HC015
CM015
NXC015 CDC'l
OXQ1
EFFGA
CFRAC NOTE
29-67A-29
29-67A-30
29-6 7A -31
29-6 8 A -1
29-6 8A -2
29-6 8A -3
29-6 8A -4
29-6 BA -5
29-6 8A -6
29-68A-7
29-*8A-8
29-6 8A-9
29-6 8A -10
29-*9A-l
29-69A-2
29-69A-3
29-69A-4
29-69A-5
29-69A-6
29-69A-7
29-6 9A -8
29-*9A-9
29-69A-10
29-69A-11
29-69 A -12
29-69A-13
29-69A-14
29-69A-15
29-69A-16
29-*9A-17
29-69A-18
29-69 A -19
29-6 9A -20
29-69A-21
29-69A-22
29-69A-23
29-69A-24
29-6 9A -2 5
29-69A-26
29-69A-27
29-69A-28
29-69A-29
29-70A-1
29-70A-2
29-70A-3
29-7OA-4
29-70A-5
29-70A-6
29-70A-7
29-71 A -1
29-7 1A-2
0.1737
0.1492
0.1263
0.1704
0.2221
0.2810
0.3148
0.3578
0.3950
0.2977
0.3390
0.3791
0.3184
0.0772
0.1762
0.2629
0.3650
0.2295
0.2012
0.2642
0.1962
0.1732
0.1790
0.2O93
O.2616
0.2370
0.2776
0.2230
0.19b8
0.1474
0.2040
0.2509
0.2465
0.1380
0.1315
0.1289
0.1334
0.2164
0.1694
0.1825
0.2261
0.1226
0.2429
0.2027
0.1766
0.2878
0.3175
0.3728
0.4311
0.2331
0.2122
0.1509
0.1756
0.4151
0.6409
0.6149
0.6813
0.5209
0.5350
0.1381
0.3668
0.3221
0.3603
0.2572
3.4154
1.0463
0.7010
0.6499
0.9183
1.0473
0.6976
1.0742
1.0645
0.5879
0.1255
0.0
0.2219
0.0947
0.1179
0.2645
0.3567
0.1288
0.0
0.3200
4.0291
1.8031
1.6347
0.9864
0.6080
0.4657
0.4322
0.3489
0.6435
0.0
0.2594
0.2978
O.O
0.0
0.0
0.0
0.2256
0.0
12L.5072
188,9150
25C.4886
59.7080
80.3738
20.7274
10.4318
7.5507
7.8226
12.9919
9.1133
8.6632
1C.9264
206.9904
2584.1375
77.6354
49.7212
137.3094
1110.1824
115.8228
845.0393
4362.3672
3335.2832
958.0417
67.4938
156.2584
J. 9.2694
189.3507
1359.2986
1911.2852
377.1653
0.0
0.0
194.0606
508.72O5
399.6960
404.8333
19.3152
90.3951
128.2155
20.8342
797.1111
5.7093
7.7024
5.8854
12.1281
8.2234
6.5333
6.0567
47.0686
91.0774
99.7758
82.29HB
94.9429
45.7154
222.2449
89.2460
55.4846
43.2886
43.5536
131.8552
100. -.275
106.9059
109.2491
4.0218
6.0781
4.1903
2.9338
3.2461
4.4733
4.^874
5.5371
98.0812
81.9313
16.59O8
10.7099
198.6832
164.2468
75.7100
84.0529
250.0754
94.8285
42.9956
28.1271
341.5737
423.3809
360.5210
297.2791
372.6367
206.7162
217.0396
156.1115
447.1833
204.3343
19-..7761
193.7010
217.8987
241.7932
341.7981
434.3037
39.6913
43.5364
2.6483
2.2412
1.9914
2.0230
2. 7429
3.44O4
3. 8490
4.3361
4.7792
3. 8596
4.5210
4.8677
4.1850
2.3705
5. 1058
7. 1480
9. 9249
6.6116
5.6702
7.1582
5.6551
4.7850
5.1187
5.9520
7. 2094
6.9662
7. 5475
6. 1680
5.3101
4.4781
5. 7668
/. 0997
6.6296
5. 0462
4. 6267
4.6776
4. 9640
7. 3672
5. 5799
5.3147
6.0734
4.0162
3.2476
2.7652
2. 4749
3.7374
4.2022
5.0131
5.8027
3.1501
3.1100
lb.1403
16.7996
17.1100
17.3618
16.3526
15.4760
14.9612
14. 1979
13.6442
14.9230
14.1025
13.5869
14.3506
17.6234
14.6246
12.7406
9.6307
12.9290
13.5504
11.8222
b.O
15.02V9
14.7434
1-..0173
12.6565
12.9046
12.2795
13.5918
14.2566
15.0736
13.8929
12.5534
12.9964
14.8492
15.1802
15.2110
14.9237
12.1833
14.05V5
14.2339
13.8315
15.6461
16.0686
16.6781
17.0607
15.4885
14.7627
13.6O30
12.4740
14.2687
16.0588
99.8556 1
99.776O 1
99.7029 1
99.9267 (
99.9019 C
99.9728 C
99.9857 (
99.9891 t
99.9901 C
9V. 9832 C
99.9680 C
99.9884 C
99.9661 C
99.9565
99.4282
99.9610
99.9866
99.9675
99.7482
99.9718
99.8091
99.0378
99.2605
99.7877
99.9839
99.9642
99.9856
99.9575
99.6931
99.5736
99.9111
-
99.9998
99.9411
49.8546
99.8886
99.8853
99.9934
99.9729
99.9545
99.9920
99.7826
99.9932 (
99.9900 (
99.9920 <
99.9855
99.9902
99.9922
99.9927
99.9433
99.8918
.0752
.0591
.1118
1.8530
I.89O8
>.8854
).8857
1.8804
1.8812
1.9197
).9485
1.9158
1.9338
.0266
.09 76
.0797
.1742
.1121
.0735
.0185
.0093
.0601
.0962
.1O68
.0931
.1585
.0932
.0810
.0195
.1273
.0888
_
.0520
.4524
.3944
.4544
.4847
.4785
.3593
.1027
.0543
.3128
3.9446
1.9614
>.9861
1.9206
1.9401
1.9587
1.9634
B.9555
1.0356
9
9
9
9
9
9
9
9
9
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
tQft
HCQ15
CM315
NXCQ15
C001
OXQ1
EFF&A
CFRAC
NOTE
-J
to
29-71 A -3
29-7 1A-4
29-7 1A -5
29-71 A -6
29-71A-7
29-7 lA-«
29-7 1A-9
29-71A-10
29-71 A-ll
29-7 1A -12
29-7 1A -13
29-7 1A -14
29-71A-15
29-71A-16
29-7 1A -17
29-71A-18
29-71 A -19
29-71A-20
29-71A-21
29-71A-22
29-71A-23
29 -71 A -24
29-71A-25
29-71A-26
29-71A-27
29-71A-28
29-7 1A -29
29-7 1A -30
29-7 W -31
29-71A-32
29-71A-33
29-71A-34
29-71A-35
29-71A-36
29-71A-37
29-71A-38
29-71A-39
29-7 1A -40
29-71A-41
29-71A-43
29-71A-44
29-71A-45
29-71A-46
29-71A-47
29-71A-4B
29-71A-49
29-71A-50
29-71A-51
29-71A-52
29-7 1A-53
29-71A-54
0.1886
0.1587
0.1269
0.2386
0.2574
0.2284
0.1972
0.1646
0.1355
0.1078
0.1046
0.1319
0.1593
O.1856
0.2462
0.2207
0.1949
0.1689
0.1434
0.2640
0.2407
0.2081
0.1748
0.2130
0.1860
0.1569
0.1351
0.1086
0.1718
0.2016
0.1787
0.0990
0.0805
0.0999
O.1017
0.1193
0.1082
0.1140
0.1726
0.2016
0.2346
0.2659
0.2916
0.3276
0.3558
0.1784
0.2120
0.2494
0.2969
0.3212
0.2951
0.0
0.1656
0.0
0.0
0.0
0.1151
0.2666
0.319*
0.3880
0.7316
0.7539
0.1993
0.3300
0.1416
0.3204
0.3574
0.54OO
0.4672
0.5503
0.0995
O.O
0.1263
0.1503
0.2469
0.5656
0.6706
0.9736
1.2117
0.6126
0.3914
0.5887
1.5950
3.6029
2.3750
2.0729
1.7660
1.4601
1.6172
0.0
0.5143
0.0
0.0
0.0
0.0
0.0
0.4357
0.0
0.0
0.0
0.0
0.0
120.1456
114.4769
60.3314
39.7761
29.7528
47.2260
100.9775
211.6655
219.0792
141.8217
106.6125
186.8324
218.6843
197.9047
77.3450
251.9766
*55.1169
482.6416
314.2749
6O.7862
lib. 0701
318.7822
510.0159
200.5353
1154.4539
116O.2231
461.1294
234.8825
623.7004
341.7144
1075.3457
1220.6440
225.0699
335.8179
370.5828
444.9829
426.4419
443.9722
153.8599
333.1541
792.3352
814.O601
411.0071
134.2607
64.4261
273.1157
772.4260
923.6973
681.8230
192.8682
456.1465
60.3505
155.6938
23*. 2844
42.7953
73.6158
71.6012
59.9532
51.5873
73.7296
149.2403
140.4096
62.1772
39.0357
34.7787
33.0484
32.0666
*4.5769
46.6040
216.1376
114.9621
89.0153
71.9544
73.7681
55.8429
53.3970
82.O342
190.1554
356.2866
57. 1*50
73.2267
51.9145
77.4557
673.3137
113.8264
88.4238
60.6644
66.9147
63.9479
289.1628
347.1321
131.1086
62.O633
41.13O2
32.9665
31.5814
437.2539
233.6563
91.1191
51.9556
52.6335
50.0355
2.8178
2.2970
1.8875
3.5525
3.6400
3.3500
2.9261
2.4764
2.1442
1.7323
1.5761
1.9109
2.2600
2.6454
3.3822
3.0113
2.6783
2. 3334
2.0229
3.6381
3.2379
2.8109
2.5223
2.8639
2.5503
2.2181
1.9406
1.6444
2.4027
2.7230
2.3852
1.3778
1.0865
1.3895
1.4128
1.6554
1.5499
1.6936
2.5793
2.9845
3.3571
3.6870
4.1022
4.5447
4.9461
2. 7483
3.1520
3. 5435
3. 8526
4.3493
4.0411
16.9024
17.2874
17.7302
15.3352
15.5024
16.1917
16.1855
16.9521
17.4985
17.6519
17.7626
17.2298
16.8549
16.1723
15.7908
16.5735
16.8400
17.2158
17.3158
15.5132
15.9891
16.4647
16.8071
16.4347
16.8946
17.3113
17.6947
17.8672
16.9087
16.5443
17.1004
18.2161
18.5569
18.2543
18.2121
17.9630
18.0396
17.9247
16.6693
16.0817
15.6034
15.1552
14.5419
13.99O9
13.6104
16.1518
15.6223
15.1742
14.7887
14.2950
14.4090
99.6576
99.8640
99.9286
99.9527
99.9646
99.9435
99.8793
99.7484
99.7399
99.8303
99.8718
99.7787
99.7401
99.7649
99.9069
99.6994
99.4584
99.4270
99.6267
99.9272
99.8595
99.6211
99.3954
99.7610
98.6297
98.6252
99.4520
99.7190
99.2594
99.5932
98.7240
98.5563
99.7231
99.5963
99.5563
99.4690
99.4923
99.47O9
99.8178
99.6030
99.0577
99.0298
99.5093
99.8393
99.922V
99.6750
99.0828
98.9004
99.1857
99.7693
99.4553
.0650
.0198
.0438
.0527
.0008
.0367
.0478
.0625
.1155
.1283
.O569
.0208
.0019
.0080
0.9729
0.9688
0.9793
0.9834
0.9981
0.9764
O.9534
0.9601
1.0272
0.9533
0.9935
1.0216
1.0186
1.0661
0.9990
0.9603
0.9654
1.0O36
0.95O3
0.9819
0.9816
0.9830
.0136
.O516
.0545
.0514
.0303
.0016
1.0075
0.9893
0.9913
1.0905
1.0675
1.0272
0.9372
O.9666
0.9825
-------
CO
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME EQR HCQ15 CMQ15 NXCC15 COQ1 OXQ1 EFFGA CFRAC NOTE
29-7 2A-1
29-72A-2
29-72A-3
29-72A-4
29-72A-5
29-7 2A -6
29-72A-7
29-72A-8
29-72A-9
29-72 A -10
29-72A-11
29-72A-12
29-72A-13
29-72A-14
29-72A-15
29-7 3* -1
29-73A-2
29-73A-3
29-73A-4
29-73A-5
29-73A-6
29-73A-7
29-73A-8
29-73* -9
29-73A-10
29-73A-11
29-73A-12
29-7 3A -13
29-73A-14
29-73A-15
29-73A-16
29-7 3A -IV
29-7 3* -18
29-73A-19
29-73A-20
29-73A-21
29-73A-22
29-7 3A -2 3
29-74A-1
29-74A-2
29-74A-3
29-74A-4
29 -74 A -5
29-74A-6
29-7 4A-7
29-7 4A -8
29-7 4A -9
29-74A-10
29-74A-11
29-74A-12
29-74A-13
0.3564
0.2875
0.2564
0.2179
0.1891
0.1571
0.1227
0.0934
0.2694
0.2307
0.1866
0.1543
0.1145
0.0834
O.O988
0.0656
0.0808
0.0504
0.0359
0.0488
0.0636
0.0820
0.0701
0.0906
0.1029
0.0466
0.0531
0.0677
0.0793
0.0875
0.0929
0.0693
0.0801
0.0873
0.0927
0.0918
0.1130
0.0755
O.1708
0.2029
0.2316
0.2609
0.2910
0.3219
0.3498
0.1763
0.2104
0.2481
0.2852
0.3180
0.3455
0.2213
0.2744
0.1025
0.0
0.0
0.1673
0.4286
0.8447
0.0
0.1139
0.0
0.3407
0.4592
0.9458
0.5322
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.G
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.9249
0.7784
0.4543
0.3023
0.0903
O.b
0.0
0.2982
0.1249
0.1059
0.0
0.0
0.0
40.3892
1O9.1334
141.7212
154.0333
406.44O4
1075.9478
1545.0444
1337.9667
101.2971
173.6843
392.9739
1128.9702
2050.5994
1158.5308
1378.3281
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
a. a
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
148.63O9
213.1071
694.7468
916.9448
745.5066
403.8015
187.8600
221.5706
502.1267
1051.5425
997.2058
830.3252
273.3308
35.0578
31.9695
31.1666
35.2755
31.7794
28.3763
31.2363
101.59i4
131.0396
136.5941
126.4945
79.0535
72.3247
101.1407
7j.l453
116.1877
48.9960
225.6618
184.2576
344.1248
122.2782
O.O
120.3602
46.9961
37.5651
287.7004
338.0684
173.0079
69.4551
44.1162
39.8345
118.4035
58.07i7
44.2035
41.6599
43.7928
43.9302
115.6803
247.0356
339.3306
161.0525
71.7403
39.1278
32.0262
31.8068
400.2603
322.8037
99.8020
53.6539
44.2657
79 . 99O4
4.9837
3.8433
3.3867
3.0431
2.6829
2.2456
1.8271
1.4611
3.3822
3.0885
2.7241
2.2178
1.7710
1.3666
1.5928
0.0
0.0
0.0
0.0
0.0
0.0
1. 1946
1.0232
1.2582
1.4324
0.7611
0. 7964
0.9516
.0771
.1901
.2628
.9740
.1222
.1810
.2810
.2719
.5481
.0996
2.4461
2.71B3
3.1113
3.5175
3.96*1
4. 3926
4.8023
2.5545
2.8534
3. 3365
3.7106
3.8791
4.5774
13.59V1
15.0708
15.8091
16.7256
16.8076
17.3833
17.4415
18.1960
15.5972
16.1529
16.3197
17.0662
17.4502
lb.0246
17.8480
1V.O7O6
18.8790
19.3227
19.5333
19.2173
18.9782
18.7820
18.8591
18.6364
18.3392
19.0260
18.8962
18.6736
18.6550
18.5436
18.4136
18.7664
18.6364
18.5993
18.5250
18.5250
18.1905
18.7478
17.0248
16.6375
16.1141
15.7152
15.3773
14.6812
14.0586
16.6867
16.2399
15.7527
15.489V
15.0201
14.0586
99.9508
99.8688
49.8309
99.8170
99.5181
98.7266
98.1750
98.4212
99.8792
99.7931
99.5341
98.6635
97.5796
98.6332
98.3741
-
-
-
-
-
-
-
-
-
-
—
-
-
-
-
-
-
—
-
-
-
-
-
99.B2O9
99.7445
99.1724
98.9066
99.1097
99.5169
99.7748
99.7365
99.4O34
98.7479
9B.6100
99.0070
99.6725
0.9965
0.9501
0.9377
0.9887
1.0091
1.0307
1 .0820
1.1272
0.8912
0.9494
.O267
.0373
.1339
.1739
.1622
—
-
_
—
-
_
l.Olbi
l.Olbc.
0.9)10
O.V/4i
1-13*4
1.04o2
i».Valb
O.V465
0.95UV
O.Vioi
O .voOo
u.yyyo
0.9455
0.906V
O.Sod5
o.9>9o
l.ul/c.
1.O108
O.9494
0.9658
0.9764
0.9654
0.9795
0.9817
1 .0245
0.9687
0.9/68
0.9469
0.8870
O.9493
3
3
3
3
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EOR
HC015
CM015
NXC01S
C001
OXQ1
EFFGA
CFRAC
NOTE
>
>*»•
29-75*-!
29-75A-2
29-7 5A -3
29-75A-4
29-7 5 A -5
29-75A-6
29-75A-7
29-75A-8
29-75A-9
29-75A-10
29-75A-11
29-75A-12
29-75A-13
29-75A-14
29-7 6A-1
29-7 6A -2
29-76A-3
29-76A-4
29-76A-5
29-76A-6
29-76A-7
29-76A-6
29-76A-9
29-76A-10
29-76A-11
29-76A-12
29-76A-13
29-76A-14
29-7 6A -15
29-76A-16
29-7 6A -17
29-7 6A -18
29-77A-1
29-77A-2
29-77A-3
29-77A-4
29-77A-5
29-77A-*
29-77A-7
29-7 7 A -8
29-77A-9
29-77A-10
29-77A-11
29-77A-12
29-77A-13
29-77A-14
39-7 7 A -15
29-77A-16
29-77A-17
29-77A-18
2 9-7 7A -19
0.1974
0.2313
0.2613
0.3030
0.3350
0.3760
0.4136
0.2068
0.2463
0.2876
0.3284
0.-2662
0.2298
0.1645
0.0952
0.0838
0.0724
O.0541
0.0548
0.0696
0.0852
0.0747
0.0647
0.0515
0.0442
0.0515
0.0629
0.0702
0.0359
0.0493
0.0599
0.0669
0.1394
0.1718
0.2354
0.2948
0.3545
0.4149
0.4453
0.4746
0.5054
0.3504
0.4084
0.4355
0.4658
0.4454
0.5404
0.2973
0.3355
0.2307
0.2790
0.8001
0.4548
0.2012
0.0867
0.0785
0.0
0.0
0.5086
0.2135
0.1828
0.1601
O.0987
0.0
0.1598
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.7215
0.4391
0.2135
0.0
0.0
0.1818
0.0564
0.0529
O.O497
0.2152
0.0615
0.1154
0.1079
0.0564
0.2329
0.2653
0.1567
0.6847
0. 1884
153.0952
506.2153
877.4932
916.8977
875.0732
747.5598
576.79S2
1009.7998
1245.4619
1203.2905
1105.6978
1294.6750
1338.6096
545.8884
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
198.6171
163.9296
148.0527
324.2891
1398.-.062
1804.3938
1818.2471
1723.7864
1618.7964
1003.5804
1792.0073
1878.4719
1756.1038
1836.7866
1331.5781
246.2454
152.5577
353.4675
451.6721
197.4308
153.0164
76.8481
42.6733
32.2937
28.6476
26.5636
97.1445
46.5242
73.4494
99.0146
71.5332
50.8279
155.5758
35.7242
41.5087
68.7377
200.3018
330.0483
70.2554
35.9899
55.9147
117.5184
248.7840
258.7473
241.7872
107.4807
66.2753
160.2145
135.6559
77.6289
49.4058
65.9918
66.1136
134.8315
404.9856
124.9525
36.5827
27.8953
24.7967
25.5681
247.87.26
63.4108
42.7459
40.3314
37.0793
131.8970
48.4784
39.9934
314.7612
74.6690
2.4167
2.8183
3.1929
3.6216
4.0329
4.4197
4. B 797
2.4855
2.8937
3.2800
3.5799
3.0554
2.7183
2.3628
1.3495
1.2081
1.0501
0.8586
0.8233
1.0098
1. 2306
1.0009
0.8896
0. 7749
O. 6699
0. 7486
0.8852
0.9518
0.6134
0. 7048
0.8101
0.9074
i. 1973
2.5941
3.5175
4. 3385
4.9517
5.8047
6.3157
6. 7654
7.5154
4.7748
5.6556
6.1229
6.4982
6. 1636
8.0539
4.6149
5.2254
3.0705
3.9627
17.0763
10.553O
16.0285
15.5029
15. 1644
14.3726
13.6730
lb.5855
15.9535
15.6156
15.0514
15.6719
16.1597
16.5904
lb.2935
18.4788
18.7166
16.9388
18.8675
18.6825
18.3676
16.6425
16.8490
18.9970
19.0894
ltt.9600
16.8120
18.7565
19.1263
19.O709
18.9415
16.8675
17.1553
16.7308
15.4899
14.4241
13.3855
12.0953
11.6764
10.6644
9.6867
13.4233
12.2664
11.5046
11.0850
11.4858
8.9750
If. 3730
13.5235
16.1590
15.1262
99.8157
99.3966
98.9539
98.9042
90.9520
99.1024
99.3057
98.7996
98.5169
98.5632
96.6761
98.4567
98.4086
99.3533
-
—
—
—
-
—
—
-
—
—
-
—
—
-
—
—
-
-
99.7629
99.8044
99.8232
99.6128
98.3234
97.8273
97.8066
97.9165
98.0394
98.7964
97.8436
97.7352
97.8785
97.7842
98.3828
99.7050
99.8166
99.5774
99.4606
0.8661
0.6727
0.6864
0.8710
0.6779
0.6568
O.6573
0.8722
0.8614
0.8383
0.8024
0.8444
0.8685
1.0231
O.S915
1.0GY9
l.O12b
l.lOoi
1.J475
i.6130
1.O096
0 .93 1>4
U.4598
l.U48u
1.0562
1.013;.
O.S627
O.94<<7
l.lbbo
0.9976
a. 9437
O.94I4
1.1105
1.O660
1.0591
1.0514
I .0295
1.0453
1.0617
1.0666
1.1104
0.9948
1 .0345
1.0536
1.0448
1.0375
1.1081
1 . 1O68
1.1110
0.9465
1.0172
12
12
12
12
12
12
12
12
12
12
12
12
12
3
-------
TABLE A-2
EMISSION CONCENTRATION AND GAS ANALYSIS PARAMETER DATA (Continued)
SCHEME
EbR
HCQ15
CHOI 5
CDQ1
0X01
EFFGA
CFRAC
NOTE
29-77* -20 0.3017
29-77* -2 1 0.32*3
29-77A-22 0.347*
29-77A-23 0.3131
29-77A-24 0.206*
29-77A-25 0.16O6
29-77A-26 0.1099
29-77A-27 0.3975
29-77A-28 0.4224
29-77A-29 0.3741
29-77A-30 0.0
29-77* -31 0.0
29-77A-32 0.0
29-77A-33 0.0
NOTE:
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -
0.1743 3V0.7573 47.3988 4.3376 14.5O50 99.5326 1.0297
O.OaiO 292.7578 37.9161 4.8682 13.5613 99.6494 1.0736
0.0757 239.7956 35.7396 5.3G43 13.1642 99.7124 1.0925
0.1679 316.2068 38.74O2 t. 6862 13.9580 99.6214 1 .07O3
0.7579 201.4353 354.3191 2.8338 It,. 0090 99.7583 0.9635
0.8190 65.416S 128.7078 2.2192 16.9080 99.9198 0.9723
1.4376 47.0727 85.0936 1.6447 17.4686 99.9397 1.0494
0.1984 236.3294 37.6880 6.1666 11.8746 99.7152 1.1134
0.12
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION
SCHEME
EOR
BSTl
BST2
BST3
BST4
FASAM
FUA1R
FAOX1
FAOX2
01-0 5A-1
01-0 5A-2
01-05A-3
01-05A-4
01-0 SA -5
01-O5A-6
01-0 6A-1
01-06A-2
01-06* -3
01-074-1
01-07A-2
01-07A-3
01-07A-4
01-07A-5
01-07A-6
01-07A-7
01-07A-6
01-07A-9
01-07A-10
01-07A-11
01-07A-12
01-07A-13
01-O7A-14
01-O7A-15
01-O7A-16
01-O7A-17
01-07A-18
01-07A-19
01-07A-20
01-07A-21
01-07A-22
01-08A-1
01-O8A-2
01-0 8A-3
01-0 8A-4
01-08A-5
01-08A-6
01-08A-7
01-0 8A -6
01-08A-9
01-0 8A -10
01-O8A-11
01-08A-12
01-08A-13
01-0 8A-14
01-O8A-15
01-O8A-16
01-08A-17
01-09A-1
01-09A-2
01-O9A-3
0.0845
0.12*7
0.1753
0.1858
0.1415
0.1095
0.1123
0.1456
0.1780
0.1798
0.2252
0.1463
0.2786
0.3397
O.3896
0.2264
0.1779
0.1206
0.3971
0.1922
0.1431
0.1766
0.2291
0.2749
0.3283
0.3756
O.1489
0.2400
0.3243
0.3611
0. 1690
0.1204
0.1752
0.2284
0.2829
0.3367
0.2295
0.2430
0.2997
0.3538
0.1833
0.2376
0.2953
0.3491
0.3938
0.4069
0.3355
0.1733
0.0934
0.1477
0.2029
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
U.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
652.0000
676.0000
685.0000
679.0000
652.0000
660.0000
722.0000
731.0000
734.0000
617.0000
627.0000
617.0000
634.0000
622.0000
626.OOOO
626.0000
619.0000
6*9.0000
725.0000
592.0000
596.OOOO
614.0000
617.0000
619.0000
621.0000
622.0000
606.0OOO
692.0000
680.0000
685.0000
646.0000
747.0000
898.0000
1128.0000
1204.0000
1229.0000
1128.0000
11112.0000
1126.0000
1190.0000
934.0000
1032.0000
1168.0000
1231.0000
1314.0000
1264.0000
1184.0000
878.0000
662.0000
759.0000
784.0000
619.0000
640.0000
058.0000
653.0000
618.0000
62.8.0000
614.0000
620.0000
624.0000
642.0OOO
665.0000
630.0000
687.0000
068.0000
66O.OOOO
073.0000
646.0000
624.0000
875.0000
602.0000
612.9000
641.0000
660.0000
671.0000
670.0000
667.0000
621.0900
778.0000
828.0000
825.0000
667.0000
640.0000
678.0000
752.0000
798.0000
806.0000
758.0000
704.0000
744.00OO
782.0000
676.0000
708.0000
770.0000
8O4.OOOO
867.0000
855.0000
814.0000
674.0000
590.0000
591.0000
606.0000
542.0000
557. 0000
556.0000
547.0000
538.0000
543.0000
500.0000
501.0000
500.0000
590.0000
588.0000
600.0000
592. 0000
576.0000
580.0000
585.0000
592.0000
590.0000
574. OOOO
576. OOOO
5 8 O. 0000
590.0000
582.0000
583.0000
58 1. OOOO
580.0000
588. OOOO
571.0000
569. OOOO
575.0000
572.0000
624. OOOO
65O.OOOO
667.0000
715.0000
722.0000
686.0000
705.0000
778. OOOO
776.0000
661.0000
7O3.00OO
764.0000
755. OOOO
758.0000
713.0000
746. OOOO
678.0000
616.0000
698.0000
677.0000
0.0056
0.0061
0.0107
O.O117
0.0090
0.0078
0.0073
0.0092
0.0111
0.0116
0.0146
0.0096
0.0177
0.0219
0.0252
0.0151
0.0117
0.0088
0.0268
0.0126
0.0099
0.0121
0.0152
0.0187
0.0217
0.0261
O.O102
0.0176
0.0226
0.0262
0.0130
0.0079
0.0113
0.0147
0.0183
0.0220
0.0149
0.0147
0.0185
0.0220
0.0113
0.0148
0.0185
0.0218
0.0245
0.0251
0.0216
0.0111
0.0065
0.0098
0.0134
0.0058
O.OO86
0.0120
0.0128
0.0097
0.0075
0.0077
0.0100
0.0122
0.0124
0.0155
0.0101 -
0.0192
0.0234
0.0268
0.0156
0.0122
0.0083
0.0273
0.0132
0.0098
0.0122
O.O158
0.0189
0.0226
0.0258
0.0102
0.0165
0.0223
0.0248
0.0116
0.0083
3.0121
0.0157
0.0195
0.0232
0.0158
0.0167
0.0206
0.0243
0.0126
0.0163
0.0203
0.0240
0.0271
0.0280
0.0231
0.0119
0.0064
O.O102
0.0140
0.0
0.0
0.0
0.0
o.o
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
a. o
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0. 0086
0. 0086
0. 0087
0. 0043
C.0044
0. 0046
0.0046
0. 0049
U. O086
0.0
0.0
0.0
0.0
0.0
0.0058
0.0086
0.0120
0.0128
0.0097
0.0075
0.0077
0.0100
0.0122
0.0124
0.0155
0.0101
0.0192
0.0234
0.0268
0.0156
0.0122
O.O083
0.0273
0.0132
0.0098
0.0122
0.0158
0.0189
0.0226
0.0^.58
O.O1O2
0.0165
0.0223
0.0246
0.0116
0.0083
0.0121
0.0157
0.0195
0.0232
0.0158
0.0081
0.0120
0.0157
0.0083
0.0120
0.0157
0.0194
0.0222
0.0194
0.0231
0.0119
0.0064
O.O102
0.0140
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
tOR
bSTl
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
-J
-J
O1-O9A-4
01-O9A-5
G1-09A-6
01-09A-7
01-O9A-6
01-09A-9
01-09A-10
01-09A-11
01-09A-12
01-09A-I3
01-09A-14
01-09A-15
01-09A-16
01-10A-1
01-10A-2
01-10A-3
01-13A-4
01-10A-5
O1-10A-6
01-10A-7
01-10B-6
02-0 1A-1
02-01B-1
02-0 IB -2
02-0 IB -3
02-O1B-4
O2-OIB-5
02-01B-6
O2-O1B-7
02-0 IB -8
02-0 IB -9
02-018-10
02-016-11
02-018-12
02-O18-13
02-O1B-14
03-0 3A-1
03-03A-2
03-0 3A-3
03-O3A-4
03-03A-5
03-04A-1
03-0 4A-2
03-0 4A -3
03-0 4A -4
O3-O4A-5
03-0 4A-*
03-0 5A-1
03-0 5A -2
03-0 5A -3
03-05A-4
0.2580
0.3121
0.3643
0.1195
0,1060
0.1204
0.1734
0.1116
0.2521
0.3109
0.3705
0.1965
0.3021
0.1207
0.1753
0.2297
O.2836
0.3344
0.3636
0.1211
0.3406
0.4672
0.3875
0.3469
0.4062
0.2627
0.2360
0,3624
0.1753
0.1956
0.1669
0.1618
0.1295
0.2699
0.2468
0.2512
0.0819
0.0989
0.1129
0.1272
0.0989
0.0567
0.0737
0.0849
0.0993
0.1130
0.1273
0.0991
O.lli7
0.1266
0.1402
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0-0
0.0
0.0
0.0
0.0
0.0
0.0
1794.0000
1799. OOOO
1732.0000
1305.0000
1401.0000
1423.0000
1208.0000
0.0
0.0
0.0
0.0
652. OOOO
672.0000
698.0000
730.0000
678.0000
646 . OOOO
673.0000
699.0000
718.0000
740.0000
742. OOOO
626.0000
619.0000
716.0000
732.0000
610.0000
878.0000
936.0000
720.0000
679.0000
7O4.OOOO
874. OOOO
792.0000
931.0000
1004.0000
1121.0000
742. OOOO
857.0000
728.0000
844.0000
1016.0000
1138.0000
1507.0000
1354.0000
802.0000
1348.0000
0.0
O.O
0.0
0.0
1528.0000
1544.0000
1507.0000
1226.0000
1280.0000
1293.0000
1102.0000
1185.0000
0.0
O.O
0.0
653. OOOO
679.0000
715.0000
773.0000
683. OOOO
695.0000
740.0000
808.0000
1208.0000
1508.0000
1627. OOOO
0.0
0.0
0.0
0.0
614.0000
629.0000
636.0000
584.0000
590.0000
593.0000
612. OOOO
596.0000
630.0000
649.0000
609. OOOO
599. OOOO
628.0000
585.0000
592.0000
600.0000
598.0000
592. OOOO
604.0000
588.0000
621.0000
0.0
0.0
0.0
0.0
1907.0000
184*. OOOO
1927.0000
1693. OOOO
1857.0000
1839.0000
1506.0000
0.0
0.0
O.O
0.0
829.0000
974.0000
1125.0000
1297.0000
1020. OOOO
784. OOOO
887.0000
968. OOOO
1068.0000
1161.0000
1160. OOOO
842. OOOO
873.0000
1102.0000
1255.0000
675.0000
658.0000
656.0000
650.0000
616.0000
635.0000
73 7. OOOO
732.0000
739.0000
699.0000
675.0000
64O. OOOO
66 3. OOOO
632.0000
650.0000
700.0000
659.0000
645. OOOO
636.0000
642.0000
649.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
652. OOOO
689.0000
725.0000
838.00CO
714.0000
742.0000
823.0000
896.0000
961. OOOO
1042.0000
1109.0000
611.0000
619.0000
987.0000
1199.0000
O.0169
0.0207
0.0240
0.0080
0.0070
0.0078
0.0114
0.0080
0.0181
0.0215
0.0253
0.0126
0.0195
0.0082
0.0116
0.0152
0.0187
O.O22O
0.0238
0.0081
0.0224
0.0299
0.0248
0.0222
0.0260
0.0194
0.0164
0.0210
0.0124
0.0138
0.0132
0.0120
0.0100
0.0192
>>. 0163
0.0157
O.O064
0.0079
0.0092
0.0103
3.0O81
0.0051
0.0062
0.0072
O.O081
O.O088
J.OO99
0.0044
0.0062
0.0095
0.0102
0.0178
0.0215
0.0251
0.0082
0.0073
0.0083
0.0119
0.0077
0.0173
0.0214
0.0255
0.0135
0.02O8
0.0083
0.0121
0.0158
0.0195
0.0230
0.0250
0.0083
0.0234
0.0
0.0
O.O
0.0
0.0168
0.0151
0.0232
0.0121
0.0135
0.0115
0.0111
0.0089
0.0186
0.0170
0.0173
0.0056
0.0068
0.0078
0.0088
0.0068
0.0039
0.0051
O.O058
0.0068
0.007B
0.0088
0.0068
0.0078
0.0087
O.O096
O.O
0.0
O.O
0.0
0.0
O.O
O.O
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0168
0.0151
0.0232
0.0
0.0
o.o
0.0
0.0069
0.0186
0.0170
0.0173
0. 0056
0.0068
O.O078
0.0088
O.O068
0.0039
0.0051
0.0058
O.0068
0.0078
O. 0088
O.OO68
0. 0078
0.0087
0.0096
O.O176
0.0215
0.0251
O.0082
0.0073
0.0083
0.0119
O.OO77
0.0173
0.0214
0.0255
O.0135
0.0208
0.0083
0.0121
0.0158
0.0195
0.0230
0.0250
0.0083
0.0234
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0121
0.0135
0.0115
0.0111
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
o.o
0.0
u.o
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
BST1
BST2
8ST3
BST4
FASAH
FUAIR
FAOX1
FAOX2
03-0 6A-1
03-06A-2
03-06A-3
03-0 6A-*
03-06A-5
03-06A-6
03-0 6A -7
04-O1A-1
04-0 IA-2
04-O1A-3
04-0 1A -4
04-0 2A -I
04-0 2A -2
04-02A-3
04-02A-4
04-O2A-5
04-O3A-1
O4-O3A-2
04-0 3A -3
04-O3A-4
04-04A-1
04-O4A-2
04-O4A-3
04-O5A-1
04-O5A-2
04-O5A-3
04-O5A-4
04-O5A-5
04-05A-6
04-O5A-7
04-O5A-8
04-05 A -9
04-O5A-1O
04-O5A-U
04 -O 5 A -12
04-O5A-13
04-O5A-14
O4-05A-15
04-O5A-16
04-O5A-17
04-O5A-18
04-05A-19
04-O5A-20
04-0 5A -21
04-O5A-22
04-O5A-23
04-O5A-24
04-O5A-25
04-0 5A -2 6
04-O5A-27
04-05A-28
0.0847
0.0533
0.0730
0.0843
0.0984
0.1124
0.0559
0.1030
0.2611
0.2659
0.1101
0.1281
0.3612
0.3253
0.3672
0.1487
0.0648
0.2291
0.1567
0.2113
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
620.0000
620.0000
630. 0000
618.0000
635.0000
625.0000
630.0000
630.0000
620.0000
625.0000
630.0000
620.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
o.o
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
714.0000
680.0000
1145.0000
1273.0000
1438.0000
1567.0000
673.0000
775.0000
614.0000
770.0000
855.0000
975.0000
990.0000
620.0000
940.0000
1480.0000
1240.0000
1160.0000
1215.0000
1270.0000
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
905.0000
724.0000
878.0000
943.0000
1070.0000
1206.0000
739.0000
755 .OOOO
450.0000
575. OOOO
840.0000
920.0000
850.0000
400.0000
845.0000
1345.0>JOO
1130.0000
1180.0000
1350.0000
1595.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
776. OOOO
648. OOOO
722.0000
836. OOOO
948.0000
1018.0000
637.0000
715.0000
665.0000
765.0000
780.0000
815.0000
860.0000
0.0
965.0000
1150.0000
1040.0000
1440.0000
1275.0000
1335.0000
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
O.OO69
0.0039
J.OO59
0.0066
0.0076
0.0086
0.0040
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0058
0.0037
0.0050
O.O058
0.0068
0.0077
0.0038
0.0071
0.0180
0.0183
0.0076
0.0088
0.0248
0.0224
0.0253
O.OIO2
0.0045
0.0158
o.oioa
0.0145
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0058
0. 0037
O. 0050
O.O058
0. 0068
0.00/7
0.0038
0.0071
0.0084
0.0084
0.0076
0.0088
0.0111
0.0084
0.0092
0.0102
0.0045
0.0067
0.0083
0.0081
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
O.O096
O.OO99
0.0
0.0
0.0138
0.0140
0.0160
0.0
0.0
0.0090
0.0025
0.0064
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST4
FASAH
FUAIR
FAOX1
FAOX2
>
CO
04-05A-29
04-05A-30
04-O5A-31
04-0 5A -32
04-0 5A -33
O4-O5A-34
04-O6A-1
04-06A-2
04 -06 A -3
04-0 6A -4
04-06A-5
O4-O6A-6
04-06A-7
04-06A-8
G4-O6A-9
04-O6A-10
04-06A-11
04-O6A-12
04-O7A-1
04-0 7A -2
04 -OTA -3
04-O7A-4
04-0 7A -5
05-01A-1
05-01A-2
05-O1A-3
05-01A-4
05-01A-5
O5-01A-6
05-01A-7
05-01A-B
05-01A-9
05-01A-10
05-02A-1
05-O2A-2
05-02A-3
05-02A-4
05-03A-1
05-0 3A-3
05-O3A-3
05-O4A-1
05-04A-2
05-04A-3
05-04A-4
05-0 4A-1*
05-0 4A -6
05-04A-7
05-0 4A-6
05-O4A-9
05-05A-1
05-05A-2
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1521
0.2189
0.2641
0.3252
0.3806
0.3736
O.3226
0.3753
0.3162
0.2653
0.1644
0.3654
O.3963
0.8092
0.1602
0.3111
0.4208
O.I 698
0.2475
0.3O61
0.2920
0.212B
0.2351
0.2701
0.2819
0.3111
0.2408
O.2190
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.-o
O.O
0.0
0.0
0.0
0.0
7O5.OOOO
880.0000
610.0000
488.0000
485.0000
490.0000
505. OOOO
488.0000
505.0000
510.0000
670.0000
790.0000
833.0000
985.0000
1200. OOOO
1090.0000
1145.0000
62O.OOOO
620.0000
630.0000
638.0000
610.0000
590.0000
590.0000
580.0000
570.0000
620.0000
620.0000
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
615. OOOO
645.0000
645.0000
625.0000
625.0000
630.0000
635.0030
635.0000
638.0000
625.0000
670.0000
783.0000
793.0000
835.0000
805.0000
740.0000
750.0000
622.0000
620. OOOO
630.0000
635. OOOO
61O.OOOO
795.0000
830.0000
825.OOOO
1070.0000
615.0000
615.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
646.UOOO
700.0000
670.0000
618.0000
618. OOOO
620.0000
625. OOOO
620. OOOO
620. OOOO
615.0000
670. OOOO
650.0000
78O.OOOO
795. OOOO
855. OOOO
780.0000
795. OOOO
505.0000
515.0000
510. OOOO
520.0000
500.0000
1045.0000
1000.0000
1100. OOOO
1310.0000
610.0000
610. OOOO
0.0
O. 0
O.O
0.0
0.0
0.0
O. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
670.0000
698.0000
640. OOOO
620.0000
625.0000
630.0000
635. OOOO
628. OOOO
630.0000
622.COOO
800.0000
965.0000
98 5. OOOO
113 5. OOOO
0.0
0.0
0.0
632.0000
650.0000
650.0000
0.0
0.0
650.0000
655.0000
645.0000
660.0000
840.0000
785.0000
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0091
O.OO82
0.0109
O.O120
0.0118
0.0128
O.O096
O.0123
O.OO91
0.0072
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0113
0.0174
0.0205
0.0199
0.0125
0.0124
0.0156
0.0185
0.0196
0.0174
0.0141
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0105
0.0151
0.0182
0.0224
0.0262
0.0257
0.0222
0.0258
0.0218
O.0183
0.0113
0.0251
0.0273
0.0557
0.0110
0.0214
O.O289
0.0117
0.0170
0.0211
0.0201
0.0146
0.0162
0.0186
0.0194
0.0214
O.O166
0.0151
O. 0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0105
0.0151
0.0182
0.0224
0.0262
0.0257
O. 0222
O.0258
0.0218
0.0183
0.0113
0.0251
0.0i73
0.0557
0.0110
0.0214
0.02B9
0.0
0.0
0.0
0.0
0.0
0.0045
0. 0045
O.0044
0.0043
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
0.0
u.o
0.0
O.O
O.O
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
c.o
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
O.O
0.0
0.0
O.O
0.0
0.0117
0.0170
0.0211
0.0201
0.0146
0.0116
0.0141
0.015O
0.0171
0.0166
0.0151
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME EOR BSTl BST2 BST3 BST4 FASAM FUAIR FAOX1 FAOX2
>
8
05-0 5A -3
05-O5A-4
05-O5A-5
05 -05 A -6
05-O5A-7
05-O5A-6
05-O5A-9
05-05B-1
05-O5B-2
O5-O5B-3
05-05B-4
05-0 5B -5
05-O5B-6
05-058-7
05-058-8
05-O5B-9
05-0 5C-1
05-0 5C -2
05-O5C-3
05-05C-4
05-0 5C -5
05-0 5C-*
05-0 5C -7
05-O5C-6.
05-05C-9
05-05C-10
05-05C-11
05-05C-12
05-0 5C -13
05-0 5C -I*
05-0 6* -1
05-O6A-2
05-0 6A-3
05-0 6A -4
05-07A-1
05-O7A-2
05-07A-3
05-O7A-4
05-07A-S
05-07A-*
05-07A-7
05-0 7A -8
05-07A-9
05-07A-10
05-07A-11
05-07A-12
05-07A-13
05-07A-14
05-07A-15
05-0 8A-1
05-09A-1
0.1884
0.1383
0.1631
0.2772
0.1884
0.2469
0.2771
0.0560
0.0691
0.0477
0.0550
0.0697
0.0756
0.0470
0.0551
0.0691
0.1411
0.1963
0.2526
0.2280
0.2800
0.2932
0.2609
0.2420
0.2041
0.199O
0.2450
0.2760
0.3071
0.3153
0.1578
0.1874
0.1871
0.2210
0.2154
0.3103
0.044*
0.3084
0.31O4
0.3358
0.2417
0.3171
0.2898
0.2185
0.1878
0.1564
0.1289
0.0299
0.0157
0.0151
0.0 1O6
623.0000
625.0000
625.0000
625.0000
625.0000
625.0000
62 5 .00 00
630.0000
610.0000
620.0000
605.0000
625.0000
635.0000
620.0000
615.0000
615.0000
615.0000
610.QOOO
620.0000
615.0000
610.0000
615.0000
615.0000
618.0000
62O.OOOO
615.0OOO
640.0000
645.0000
615.0000
625.0000
6OO.OOOO
590.0000
600.0000
620.0000
540.0000
555.0000
550.0000
550.0000
550.0000
550.0000
575.0000
625.0000
560.0000
550.0000
550.0000
550.0000
602.0000
1010.0000
625.0000
680.0000
1190.0000
62O.OOOO
620.0000
620.0000
625.0000
625.0000
620.0000
62O.OOCO
635.0000
635.0000
625.0000
625.0000
665.0000
690.0OOO
645.0000
655.000O
675.0000
610.0000
660.0000
670.0000
665.OOOO
66O.OOOO
710.0000
720.0000
735.0000
750.0000
675 .OOOO
740.0000
760.0000
735.0000
740.0000
6OO.OOOO
'585.OOOO
600.0000
610.0000
605.0000
610.0000
620.0000
595.0000
605.0000
600.0000
615.0000
615.0000
600. OOOO
600.0000
605.0000
605.0000
600.0000
910.0000
6 15. OOOO
860.0000
1265.0000
610.0000
610.0000
615.0000
620. OOOO
61 5. OOOO
615.0000
615. OOOO
810.0000
1100.0000
790.0000
910.0000
1050.0000
1325. OOOO
1000.0000
113O.OOOO
1375.0000
600.0000
655.COOO
650.0000
650.0000
65O.OOOO
775.0000
785.0000
805.0000
850.0000
1190. OOOO
1225.0000
1190.0000
1185.0000
1330.0000
605.0000
595.0000
623.0000
780.0000
625.0000
605.0000
615.0000
595.0000
605.0000
600. OOOO
615.0000
617.0000
600.0000
6OO.OOOO
730.0000
703.0000
625.0000
835.0000
755. OOOO
655.0000
620.COOO
750. OOOO
645.0000
750.0000
870.0000
785. OOOO
865.0000
890. OOOO
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
650.0000
0.0
70 5. OOOO
O.O
1120. OOOO
785. OOOO
0.0
815. OOOO
685.0000
625.0000
635. OOOO
650.0000
665.0000
675.0000
630. OOOO
64O.OOOO
660. OOOO
690.0000
77O.OOOO
1460.0000
630.0000
76 5. OOOO
75 O. OOOO
770. OOOO
750. OOOO
750.0000
715.0000
765.0000
7*5. OOOO
720.0000
685. OOOO
650.0000
655.0000
630.0000
595.0000
C.0120
0.0070
0.0102
0.0223
0.0131
0.0171
0.0169
0.0012
0.0026
0.0012
O.OO19
0.0024
0.0033
0.00*0
O.0025
0.0034
0.0099
0.0102
O.0138
0.0136
0.0156
0.0171
0.0149
0.0132
0.0111
O.0065
0.0070
0.0075
0.0105
0.0083
0.0065
O.0090
0.0076
O.OO98
0.0136
0.0187
O.0017
0.0177
0.0181
0.0196
0.0126
0.0184
0.0177
0.0129
0.0102
0,0079
0.0063
0.0021
O.OO10
0.0000
0.0008
0.0130
0.00*5
0.0112
0.0191
0.0130
0.0170
0.0191
0.0039
0.0048
0.0033
0.0038
0.0048
0.0052
0.0032
0.0038
O.OO48
0.0097
0.0135
0.0174
0.0157
0.0193
0.0202
0.0180
0.0167
0.0140
0.0137
0.0169
0.0190
0.0211
0.0217
0.0109
0.0129
0.0129
0.0152
0.0148
0.0214
0.0031
0.0212
0.0214
0.0231
0.0166
0.0218
0.0199
0.0X1)0
0.0129
O.O108
0.0089
0.0021
0.0011
0.0010
0.0007
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0039
0.0048
O.OO33
0.0038
0.0048
0.0052
0.0032
O.0038
O.0048
0.0
0.0039
0.003V
0.0039
O. 0039
0. 0047
0.0047
0.0047
0. 0048
0. 0048
0. 0048
O. 0046
0.0046
0.0052
0.0
0.0
0.0
0.0
0.0038
0.0037
0.0031
0.0037
0.0037
0.0037
0.0037
0.0021
0.0022
0.0021
0.0021
0.0021
0.0
0.0021
0.0011
0.0010
0.0007
o.ouo
0.0095
0.0112
0.0191
0.0130
0.0170
0.0191
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.b
0.0
0.0097
0.0096
0-0135
0.0118
0.0154
0.0154
0.0132
0.0119
0.0093
O.0089
0.0121
0.0143
0.0165
O.O165
O.O109
0.0129
0.0129
0.0152
0.0111
0.0176
0.0
0.0175
O.O176
0.0194
0.0130
0.0197
0.0178
0.0129
O.0108
0.0087
0.0089
0.0
0.0
0.0
O.O
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
6ST1
6ST2
BST3
BST4
FAS AN
FUAIR
FAOX1
FAOX2
>
OS
05-O9A-2
05-09A-3
05-09A-4
O5-O9A-5
05-O9A-6
05-09A-7
05 -09 A -8
O5-O9A-9
OS-09A-10
05 -09 A -11
05-09A-12
05-09A-I3
05-10A-1
05-1OA-2
05-10A-3
05-10A-4
05-10A-5
05-10B-1 -
05-10B-2
05-10B-3
05-108-4
05-108 -5
O5-1OB-6
05-10B-7
05-108 -6
05-11A-1
05-11A-2
O5-11A-3
05-11A-4
05-1 1A-5
05-11A-6
05-1 1A-7
05-11 A -6
05-llAr9
05-11A-10
05-11 A -11
05-11A-12
05-1 1B-1
05-118-2
05-11B-3
05-118-*
05-118-5
05-11B-6
05-11B-7
05-1 1B-8
05-11C-1
05-1 1C -2
05 -11C -3
05-11C-4
05-1 1C -5
05-11C-6
0.1841
0.1917
0.2191
0.2855
0.3267
0.3203
0.2912
0.2297
0.2046
0.1324
0.1265
0.1439
0.1271
O. 1600
0.2102
O.2684
0.2348
0.0140
0.0174
0.0202
0.0254
0.0313
O.O379
0.0436
0.0487
0.0224
0.0252
0.0135
0.0167
0.0193
0.0221
0.1165
0.1857
0.2379
0.0169
0.1138
0.1121
0.0166
0.2915
0.3191
0.2421
0.1830
0.1583
0.1170
0.1358
0.1357
0.0675
0.1200
0.1773
0.2283
0.2900
995.0000
1185.0000
1115.0000
1070.0000
1015.0000
785.0000
815.0000
8OO.OOCC
835.0000
970.0000
990.0000
825.0000
1037.0000
996.0000
999.0000
732.0000
745.0000
721.0000
716.0000
741.0000
774.0000
825.0000
838.0000
860.0000
774.0000
1537.0000
1585.0000
1428.0000
1463.0000
1450.0000
1296.0000
1437.0000
1436.0000
1527.0000
1099.0000
1113.0000
1101.0000
1546.0000
1499. OTOO
1489. OOOO
1495. GOOD
1480. OOOO
1447. OOOO
1480.0000
1584.0000
1571.0000
1705.0000
1741.COOO
1712.0000
1724.0000
1670.0000
1180.0000
1505.0000
1390.0000
1360.0000
1320.0000
1150.0000
1135.0000
1055.0000
1100.0000
1400.0000
1210.0000
815.0000
1559.0000
1568 .OOOO
1480.0000
1005.0000
996.0000
1129.0000
1242.0000
1312.0000
1281.0000
1269.0000
1274.0000
1004.0000
956.0000
1639.0000
1525.0000
1493.0000
1501.0000
1422.0000
1216.0000
1444.0000
1410.0000
1405.0000
1346.0000
1276.0000
126O.OOOO
1841. OOOO
1872. OOOO
1873.0000
1872.0000
1858. OOOO
1839.0000
172O.OOOO
1230.0000
1776. OOOO
1860. OOOO
1754.0000
1868.0000
1716.0000
1906. OOOO
650.0000
625.0000
630.0000
625. OOOO
620. OOOO
590.0000
625.0000
6^8.0000
685.0000
830.0000
745. OOOO
645.0000
618.0000
606.0000
616.0000
594.0000
593.0000
6 19. OOOO
609.0000
625.0000
634. OOOO
650.0000
671.0000
721.0000
783.0000
1650. OOOO
1573.0000
1561 .OOOO
1531.0000
1445.0000
1305.0000
1595.0000
1580.0000
1603.0000
1525.0000
1505.0000
1498.0000
1637.0000
1634.0000
1648.0000
1616.0000
1599. OOOO
1562.0000
1410. OOOO
926. OOOO
1613. OOOO
1303.0000
1070.0000
1215.0000
1158.0000
1517. OOOO
690.0000
680.0000
695.0000
700.0000
740.0000
695.0000
725.0000
690.0000
680. OOOO
650.0000
635.0000
650. OOOO
639.0000
659.0000
678.0000
695.0000
668. OOOO
603.0000
587.0000
600.0000
603.0000
609.0000
611.0000
620.0000
611.0000
613.0000
640.0000
614. OOOO
631.0000
627.0000
639.0000
616.0000
617.0000
623.0000
627.0000
616.0000
616.0000
641. OOOO
639.0000
646. OOOO
628. OOOO
624. OOOO
624.0000
622.0000
618.0000
618. OOOO
63*. OOOO
621.0000
623.0000
612.0000
627. OOOO
0.0121
0.0124
0.0140
0.0159
0.0194
O.O191 "
0.0168
0.0122
0.0104
0.0055
0.0050
0.00b2
0.0080
0.0072
0.0127
0.0153
0.0132
O.O010
0.0013
0.0014
0.0016
0.0021
0.0023
0.0025
O.O030
0.0011
0.0012
0.0010
0.0011
0.0013
0.0015
0.0080
0.0125
0.0158
0.0013
0.0082
0.0080
0.0013
0.0199
0.0215
0.0165
0.0126
0.0110
0.0083
0.0096
0.0095
0.0052
0.0086
0.0122
0.0156
0.0187
0.0127
0.0132
0.0151
0.0196
0.0226
0.0220
0.0200
0.0158
0.0141
0.0091
O.0087
0.0099
0.0087
0.0110
0.0145
0.0185
0.0162
0.0010
0.0012
0.0014
0.0017
0.0022
0.0026
0.0030
0.0034
0.0015
0.0017
0.0009
0.0011
0.0013
0.0015
0.0080
0.0128
0.0164
0.0012
0.0078
0.0077
0.0011
0.0201
O.O220
0.0167
O.O126
0.0109
0.0080
0.0093
O.O093
O.O046
0.0083
0.0122
0.0157
O.020O
0.0017
0.0022
0.0022
0.0028
0.0030
0.0030
0.0031
0.0031
0.0031
0.0031
0.0027
0.0035
0.0018
0.0018
0.0027
O. OO30
0. 0030
0. OO10
0.0012
0.0014
0.0017
0. 0022
O.O026
0.00 JO
0.0034
0.0015
0.0017
0. 0009
0.0011
0.0013
0.0015
0.0012
0.0012
O. OO11
0.0012
0.0011
0. 00 12
0.0011
O. 0012
0.0012
0.0012
0.0012
O. 00 12
0.0012
0.0012
0. 0009
0.0012
0.0012
O. 0012
0.0012
O.OO12
0.0110
0.0110
0.0129
0.0168
0.0197
0.0191
0.0169
0.0127
0.0110
O.006O
O.OO60
O.OO64
0.0070
O.OOV2
0.0117
0.0155
0.0131
0.0
0.0
O.O
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0069
0.0116
0.0152
0.0
0.0067
O.OO65
0.0
O.O189
0.02O8
0.0155
U.C11*
O.OO97
0.0069
O.0082
0.0064
0.0034
0.0070
O.0110
0.0145
O.0187
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST*
FASAM
FUA1R
FAOX1
FAOX2
05-1 1C -7
05-1 1C -6
05-1 1C -9
05-11C-10
05-11C-11
G5-11C-12
05-11C-13
05-1 1C -I*
05-11C-15
05-11C-16
05 -11C -IT
05-1 1C -18
05-1 1C -19
05 -lie -20
05-11C-21
05-11C-22
05 -11C -2 3
05-11C-24
05-1 1C -2 5
05-11C-26
05-11C-27
05-11C-28
05-1 1C -29
05-1 1C -30
05-11C-31
05-11C-32
05-1 1C -33
05-11C-34
05-1 1C -35
05-1 1C -36
05-12A-1
05-12A-2
05-12A-3
05-12A-4
05-12A-5
05-12A-6
05-12A-7
05-12A-8
G5-12A-9
05-12A-1O
05-12A-11
05-1 2A -12
05-12A-13
05-12A-14
05-12A-15
05-1 2A -16
05 -1 2 A -17
05-12A-18
05-12A-19
05-12A-20
05-12A-21
0.2678
0.1547
0.1811
0.2*17
0.2972
0.2153
0.1044
0.2122
0.0732
0.1288
0.3180
0.0785
0.1501
0.2071
0.2697
0.0650
0.1110
0.2648
0.3295
0.2068
0.1414
0.2358
0.2966
0.0648
0.1435
0.2033
0.2640
0.1747
0.1132
O.2642
O.2012
0.2732
0.3515
0.4883
0.4216
0.3915
O.3526
0.3134
O.2924
0.2764
0.3108
0.4216
0.5742
0.3524
0.2496
O.2143
0.1798
0.1946
0.2138
0.1616
0.1434
1708.0000
1558.0000
1579.0000
1579.0000
1581.0000
1421.0000
1525.0000
1544.0000
1454. OOOO
1454.0000
1460.0000
1848.0000
1920.0000
1933.0000
1941.0000
1950.0000
1860.0000
1910.0000
1933. OOOO
1977.0000
1090.0000
1882.0000
1911.0000
1906.0000
19O4.000O
1879.0000
1891.0000
1906. OOOO
1793.0000
1813.0000
0.0
0.0
0.0
0.0
O.G
0.0
0.0
0.0
0.0
246.0300
301.0000
294.0000
267.0000
307.0000
319.0000
315.0000
323.0000
327.0000
327.0000
326.0000
328.0000
1858.0000
1889.0000
1885.0000
1866.0000
lasa.oooo
1780.0000
1803.0000
1811.0000
1844.0000
1824.0000
1824.0000
1940.0000
1851. OOOO
1941.0000
1909.0000
1928.0000
1975.0000
1989.0000
1943.OOOO
1890.0000
1940.0000
1937.0000
1888.0000
1908 .OOOO
1936.0000
1959.0000
1970.0000
1860.0000
1991.0000
1539.0000
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1429.0000
1640.0000
1605.0000
1661.0000
1619.0000
1629.0000
1567.0000
1570. OOOO
1551.0000
1539.0000
1597.0000
1577.0000
142 3. OOOO
1384.0000
1298.0000
1394.0000
1584.0000
1600.0000
1463.0000
1337. OOOO
1442.0000
1431.0000
1315.0000
1431.0000
1473. OOOO
1513.0000
1531.0000
1332 .0000
1569.0000
1426.0000
678.0000
672.0000
665.0000
642. OOOO
632.0000
639. OOOO
650. OOOO
652.0000
65A.OOOO
381. OOOO
496. OOOO
483.0OCO
479. OOOO
483.0000
504.0000
476.O300
473. OOOO
V/9.0000
488.0000
464. OOOO
658.0000
609.0000
6 30. OOOO
62 1. OOOO
625.0000
622.0000
631.0000
627.0000
616.0000
631.0000
616.0000
617.0000
815.0000
819. OOOO
812.0000
809. OOOO
934. OOOO
816.0000
809.0000
804. OOOO
a 12. oooo
814.0000
804.0000
796. OOOO
811.0000
811.0000
81 1. OOOO
802.0000
805.0000
814.0000
809. OOOO
1O52.OOOO
925.0000
921.0000
8 78. OOOO
933.0000
883.0000
918.0000
901.0000
901.0000
58*. OOOO
842.0000
794. OOOO
686.0000
845.0000
847. OOOO
885. OOOO
853.0000
887.0000
907.0000
779.0000
950.0000
0.0165
0.0110
0.0126
0.0166
0.0199
0.0142
D.OO74
0.0139
0.0058
0.0093
0.0226
O.OO61
O.01O7
0.0144
0.0188
0.0052
0.0083
0.0183
0.0224
0.0147
0.0101
0.0160
0.0200
O.0065
0.01OO
0.0140
0.0180
O.O121
0.0080
0.0176
0.0101
0.0142
0.0186
0.0261
0.0230
O. 0207
0.0187
0.0158
0.0150*
0.0156
0.0150
0.0244
0.0356
0.0199
0.0140
0.0119
0.0098
0.0108
0.0121
O.OO89
0.0078
0.0184
O.01O6
O.O125
0.0166
0.0204
0.0148
0.0072
O.O146
0.0050
0.0089
0.0219
0.0054
O.01O3
0.0143
0.0186
0.0045
0.0076
0.0182
0.0227
0.0142
0.0097
0.0162
0.0204
0.0058
0.0099
0.0140
0.0182
0.0120
0.0078
0.0182
0.0117
0.0159
0.0204
0.0284
0.0245
0.0227
O.O205
0.0182
0.0170
0.0161
0.0181
0.0245
0.0334
0.0205
0.0145
0.0124
0.0104
0.0113
0.0124
0.0094
0.0083
O.OO12
0.0012
O.OO12
0.0012
0.0012
0. 00 12
0. 0012
0.0012
0.0012
0.0012
0. 0003
0.0011
0.0016
0.0015
0.0015
0.0013
0.0013
0.0013
O.OO15
0.0015
0.0015
0.0015
0.0015
0.0014
0.0015
0.0013
0.0013
O.OO15
0.0015
O.OO14
0.0117
O.0159
0.0204
0. 0284
0. 0245
O.O227
0.0205
0.0182
0.0170
0.0161
0.0181
0.0245
0.0334
0.0205
0.0145
0.0124
0.0104
0.0113
0.0124
0. 0094
0.0083
0.0172
O.OO95
O.O113
0.0155
0.0192
0.0136
O.OO60
0.0134
0.0038
0.0077
0.0215
0.0043
0.0088
0.0128
0.0171
0.0032
0.0063
0.0170
0.0212
0.0127
0.0082
0.0148
0.0190
a. 0044
0.0084
0.0126
0.0168
C.0105
0.0063
O.0168
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
O.O
o.c
0.0
0.0
O.G
0.0
0.0
b.O
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
£QR
BST1
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
05-1 2B-1
05-1 28 -2
05-12B-3
05-12B-4
05-128-5
05-1 2B -6
05-1 28 -7
05-1 2B-8
05-128-9
05-12B-10
05-12B-11
05-128-12
05-128-13
05-1 3A -I
05-1 3A -2
05-13* -3
05-13* -4
05-13A-5
05-13A-6
05-13A-7
05-l3A-fl
05-13* -9
05-13A-10
05-1 3A -11
05-13* -12
05-13A-13
05-13* -14
05-13A-15
05-13A-16
05-13A-17
05-1 3A -18
05-13A-19
05-13A-20
O5-13A-21
05-13A-22
05-13* -23
05-13A-24
05-13* -25
O5-13A-26
05-13A-27
O5-13A-29
05-14A-1
05-1** -2
05-14A-3
05-1**-*
05-14* -5
O5-14A-6
05-14A-7
05-14* -8
05-1 4* -9
05-14* -10
0.1896
0.2282
0.2589
0.2948
0.3464
0.4023
0.2109
0.1425
0.1700
0.2494
0.2871
0.3361
0.3789
0.1274
0.1623
0.1603
0.1919
0.2209
0.2809
0.3136
0.4120
0.3540
0.3023
0.2833
O.2389
0.2008
0.1686
0.3504
0.2761
0.1514
0.20O8
0.2203
0.2445
0.2641
0.2851
0.3068
0.3325
0.4O61
0.3590
0.2225
0.2933
0.1417
0.1676
0,2018
0.2392
0.2596
0.2753
0.3102
0.3309
0.3930
0.1256
243.0000
247.0OOO
251.0000
256.0000
259.0000
290.0000
315.0000
321. OOOO
326.0000
325.COOO
333.0000
329. OOOO
332.0000
391.0000
607.0000
610.0000
590.0000
600.0000
598.0OOO
591.OOOO
594.0000
597.0000
6O3.0OOO
600.0000
6OO.OUOO
589.0000
593.OOOO
591.0000
586.0000
804.0000
792.0000
793.0000
796.0000
789.0000
788.0000
789.0000
789.0OOO
787.0000
786.0000
590.0000
598.0000
589.0000
6O1.0000
578.0000
582.0000
590.0000
593.0000
587. OOOO
582.00OO
583.0000
804.0000
589.0000
586.000O
588.OOOO
595.0000
592.0000
592.0000
778.0000
787.OOOO
783.0000
780.0000
784.0000
781.0000
773.0000
940.0000
1275.0000
1356.0000
614.0000
612.0000
6O8.0000
598.0000
657.0000
658.0000
652.0000
648.0000
636.OOOO
622.0000
646.0000
655.0000
635.0000
1535.0000
907.0000
828.0000
827.0000
816.0000
OOV.OOOO
801.0000
794.0000
778.0000
786.0000
628.0000
597.0000
1344.0000
1330.0000
575.0000
569.0000
572.0000
572.0000
566.OOOO
558 .OOOO
556.0000
1559.0000
469.0000
52.6. OOOO
503.0000
536.0000
567.0000
634.0000
520.0000
592. OOOO
671.0000
615.0000
497.0000
675.0000
829.0000
256. OOOO
1537.0000
1356. OOOO
563.0000
564. OOOO
554. OOOO
545. OOOO
540.0000
549. OOOO
562.0000
563. OOOO
567. OOOO
563.0000
573.0000
545.0000
552.0000
1746.0000
766. OOOO
755.0000
755.0000
744.0000
740.0000
736.0000
734.0000
717.0000
726.0000
566.0000
660.0000
650.0000
670. OOOO
571.0000
575.0000
583.0000
584.0000
580.0000
574. OOOO
577. OOOO
883.0000
1007.0000
1205.0000
1010.0000
1315.0000
1185.0000
1250.0000
1350.0000
978.0000
148 8. OOOO
1235.0000
1140.0000
1434.0000
1249.0000
510.0000
542.0000
867. OOOO
994. OOOO
1040.0000
1031.0000
1016. OOOO
98 7. OOOO
973.0000
963.0000
945.0000
939.0000
904.0000
856.0000
961.0000
935.0000
1068.0000
1073.0000
1134.0000
1172.0000
119*. OOOO
1196.0000
1202.0000
1230.0000
1 194. OOOO
1215.0000
1100.COOO
6O7.0000
715.0000
739. OOOO
7O4. OOOO
732.0000
763.0000
780.0000
810.0000
825.0000
859. OOOO
884. OOOO
0.0099
0.0115
0.014O
0.0156
0.0184
0.0214
0.0102
O.OO69
0.0080
0.0126
0.0149
0.0172
0.0196
O.OO67
0.0081
0.0084
0.0100
0.0113
0.0146
3.0167
0.0225
0.0191
0.0166
0.0149
0.0128
0.0107
O.O089
0.0186
0.0147
0.0076
0.0103
0.0115
0.0123
0.0133
0.0146
0.0156
0.0172
0.0215
0.0186
0.0113
0.0146
0.0074
O.O087
0.0107
0.0122
0.0137
0.0148
0.0162
0.0175
0.0208
O.OO69
0.0110
0.0133
0.0150
0.0171
C.0201
0.0234
0.0123
0.0083
0.0099
0.0145
0.0167
0.0195
0.0220
0.0074
0.0094
0.0093
0.0111
0.0128
0.0163
O.0182
0.0239
0.0206
0.0176
0.0165
0.0139
0.0117
0.0098
0.0204
0.0160
0.0088
0.0117
0.0128
0.0142
0.0153
O.O166
0.0178
0.0193
0.0236
0.0209
O.O129
0.0170
0.0082
0.0097
O.O117
0.0139
0.0151
0.0160
0.0180
0.0192
0.0228
0.0073
0.0110
0.0133
0. 015O
0.0171
0.0201
0.0234
0.0123
O.0083
O. OO99
O.O145
0.0167
0.0195
0.0220
0. O074
O. 0094
O. 0093
0.0111
0.0128
0.0163
0.0182
0.0239
0.0206
0.0176
0.0165
0.0139
0.0117
0. 0098
0.0204
0.0160
0.0088
0.0117
O.O128
0.0142
0.0153
0.0166
0.0178
0.0193
O.0236
0.0209
0.0129
0.0170
0.0082
O.0097
0.0117
0.0139
0.0151
0.0160
0.0180
0.0192
0.0228
0.0073
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
05-14A-11
05-14A-12
05-1 4A -13
05-14A-14
05-1 4A -15
05-14A-16
05-1 5*-l
05-15A-2
05-15A-3
05-1 5A-4
05-15A-5
05-15A-6
05-15A-7
05-1 5A-0
05-1 5A -9
05-1 5A -10
05 -ISA -11
05-15A-12
05-1 5A -13
05-15A-14
05-15A-15
05-15A-16
05-16A-1
05-16A-2
05-16A-3
05-16A-4
05-16A-5
05-16A-6
05-16A-7
05-16A-8
05-16A-9
05-17A-1
05-17A-2
05-17A-3-
05-17A-4
05-1 7A-5
05-1 7A -6
05-17A-7
05-1 7A -8
05-17A-9
05-18A-1
05-18A-2
05-18A-3
05-1 8A-4
05-1 8A-5
05-1 8A -A
05-1 8A -7
05-18A-8
05-18A-9
O5-18A-10
05-19A-1
0.1725
O.2059
0.2517
0.2957
0.3415
0.3966
0.1361
0.1703
0.2007
0.2467
O.2875
0.3355
0.3978
0.3566
0.1232
O.I 745
0.2059
0.2459
0.2922
0.3372
0.3902
0.3655
0.1464
0.1355
0.1341
0.1984
0.2269
0.2550
0.2843
0.3091
0.31O6
0.0646
0.0705
0.1293
0.1939
0.2563
0.3248
0.2537
0.3193
0.2561
0.0828
0.0796
0.1396
0.2031
0.2657
0.3226
0.3531
0.0124
0.0786
0.1997
0.0
786.0000
782.0000
787.0000
786.OOOO
78B.OOOO
792.0000
607.0000
575.0000
584.0000
589.0000
588.0000
588.0000
587.0000
585.0000
801.0000
802.0000
788.0000
788.0000
782.0000
780.0000
778.OOOO
779.0000
631.0000
610.0000
613.0000
616.0000
619.0000
617.0000
607.0000
605.0000
608.0000
990.0000
1125. OOOO
1131.0000
1070.0000
1019.0000
619.0000
883.0000
790. OOOO
934.0000
1622.0000
1692.0000
1656.0000
1600.0000
1682.0000
1695. OOOO
1671.0000
1883.0000
1891.0000
1786.0000
556. OOOO
1473.0000
776.0000
764.0000
758.0000
754.0000
741.0000
1335.0000
611.0000
629.0000
674.0000
629. OOOO
612.0000
619.0000
626.0000
1602.0000
1543.OOOO
910.0000
871.0000
849.0000
827.0000
789.0000
822. OOOO
1659.0000
1569.0000
1548.0000
1503.0000
1515.0000
1481. OOOO
1462.0000
1528.0000
1544.0000
678. OOOO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
715. OOOO
762.0000
642.0000
623.0000
631.0000
615.0000
626.0000
1170.0000
785.0000
657.0000
5S2.OOOO
868. OOOO
769.0000
771.0000
768.0000
771.0000
774.0000
1492.0000
562.0000
567.0000
567.0000
567.0000
563.0000
559.0000
557.0000
1314.0000
1545.0000
773.0000
761.0000
749.0000
741.0000
734.0000
736.0000
224.0000
685.0000
678.0000
683.0000
691.0000
676.0000
635.0000
624.0000
64O.OOOO
621.0000
632.0000
61 7. OOOO
607.0000
580.0000
444. OOOO
539.0000
599. OOOO
59O.OOOO
581. OOOO
585. OOOO
6OO.OOOO
761.0000
714. OOOO
661.0000
653.0000
6O3.0000
577.0000
690.0000
549. OOOO
901.0000
903.0000
930. OOOO
949. OOOO
976.0000
1004. OOOO
1075.0000
1002.0000
1085.0000
1156.0000
1212.0000
1230.0000
1172.0000
1204.0000
1208.0000
1314. OOOO
1291.0000
1346.0000
13 74. OOOO
1367. OOOO
1332.0000
1344. OOOO
1200.0000
1197.0000
1172. OOOO
125O.OOOO
1266.0000
1351. OOOO
1428.0000
1468.0000
1514.0000
819.0000
673.0000
694. OOOO
762.0000
833. OOOO
781.0000
741.0000
558.0000
824. OOOO
544. OOOO
565.0000
584.0000
596.0000
635. OOOO
6 73. OOOO
689.0000
566.0000
564.0000
623.0000
5 19. OOOO
0.0090
0.0112
0.0135
0.0158
0.0188
0.0225
0.0076
0.0092
0.0112
0.0133
O.O157
0.0185
0.0220
0.0197
0.0067
0.0090
0.0111
0.0132
0.0153
0.0183
0.0217
0.0197
0.0103
0.0102
0.0102
O.0142
0.0163
0.0177
O.0200
0.0217
0.0217
O.OO60
0.0061
O.OO98
0.0139
0.0176
0.0217
0.0175
0.0209
0.0172
0.0061
0.0060
0.0099
0.0141
O.018O
0.0215
0.0236
0.0009
0.0054
0.0130
O.O
0.0100
0.0120
0.0146
0.0172
0.0198
0.0230
0.0079
0.0099
0.0117
0.0143
O.0167
0.0195
0.0231
0.0207
0.0072
0.0101
0.0120
0.0143
0.0170
0.0196
0.0227
O.0212
0.0101
O.OO93
0.0092
0.0136
0.0156
0.0175
0.0196
0.0213
0.0214
0.0044
0.0049
0.0089
0.0133
O.0176
0.0223
0.0175
0.0220
0.0176
0.0057
0.0055
0.0096
0.014O
0.0183
O.O222
0.0243
0.0009
0.0054
0.0137
O.O
O.0100
0.0120
0.0146
0.0172
0.0198
O.O230
O.O079
0.0099
0.0117
0.0143
0.0167
0.0195
0.0231
0.0207
0.0072
O.OI01
0.0120
0.0143
0.0170
U. 0196
0.0227
O.0212
0.0009
0.0004
0.0003
O.O003
0.0003
0.0003
0. 0003
0.0003
0.0005
0. 0003
0. 0004
O.O003
0. 0003
O.0003
0.0003
0.0003
0.0003
0.0003
O.O009
0.0010
0.0010
0.0010
0.0010
O.OO10
O.OOO9
O.OO09
0. OOO9
0.0008
O.O
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
b.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0092
O.0089
0.0089
0.0133
0.0153
0.0172
0.0192
0.0209
0.0209
0.0041
0.0045
O.0086
0.0130
0.0173
0.0220
0.0171
0.0^16
0.0173
0.0048
0.0045
0.0086
0.0130
0.0173
0.0212
0.0234
0.0
0.0045
0.0129
O.O
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
BST1
BST2
BST3
BST4
FA SAM
FUAIR
FAOX1
FAOX2
05-198-1
05-198 -2
05-19B-3
05-19B-4
05-1 9B -5
05-198-6
05-198-7
05-19B-8
05-20A-1
05-20A-2
05-20A-3
05-2OA-4
05-2 1A-1
05-21A-2
OS-21A-3
05-2 1A-4
05-21A-5
05-2 2A-1
05-22A-2
05-22A-3
05-22A-4
05-22A-5
05-2 3A-1
05-23A-2
05-23B-1
05-23B-2
05-238-3
05-236-*
05-238-5
05-238-6
05-238-7
05-23B-B
05-23B-9
05-2 3B -10
05-23B-1 I
05-238-12
05-23B-13
05-23B-14
05-238-15
05-238-16
05-238-17
05-238-18
05-23B-19
05-23B-20
05-238-21
05-238-22
05-24A-1
05-24B-1
05-24B-2
05-2 5A-1
05-25A-2
0.1369
0.2659
0.3561
0.0865
0.15*9
0.1525
0.1395
0.1899
0*0906
0.1163
0.1489
0.2313
0. 1408
0.1520
O. 1202
0.0984
O.O7O1
0.2087
0.2701
0.3195
0.3708
0.1522
0.0
O.O
0.2168
0.2873
0.3737
0.1550
O.O991
0.1268
0.1811
0.0919
0.1510
0.2000
0.2472
0.2076
0.1574
0.1018
0.4321
0.3039
0.2632
0.3460
0.3678
0.2173
0.1222
0.1674
O.O
0.1245
0.1525
0.1310
0.1669
1454. OOOO
1476. OOOO
1479.0000
1450.0000
0.0
1430.0000
1336.0000
1538.0000
880.0000
933.0000
882.0000
8b8.0000
1242. OOOO
1225.0000
1241. OOOO
1237.0000
1233.0000
940.0000
955.0000
953.0000
974.0000
971.0000
57 6. OOOO
576. OOOO
94>0.0000
945.0000
931.0000
905.0000
867.0000
85O.OOOO
843.0000
951.0000
960. OOOO
972.0000
962.0000
837.0000
851.0000
847.0000
880.0000
885.0000
877.0000
855.0000
835.0000
860.0000
753. OOOO
694. OOOO
0.0
0.0
0.0
0.0
0.0
66O.OOO3
631.0000
624.0000
712.0000
566.0000
655.11000
653.0000
653.0000
655.0000
642.0000
609. OOOO
596. OOOO
65O.OOOO
626.0000
646.0000
676.0000
710.0000
586.0000
584.0000
580.0000
570.0000
607.0000
576.0000
576.0000
589.0000
584.0000
583.0000
607.0000
628.0009
603.0000
597.0000
606.0000
596.0000
592.0000
590.0000
576.0000
596.0000
604.0000
573.0000
576.0000
6OO.OOOO
572.0000
57<..0000
574. OOOO
576.0000
546.0000
0.0
0.0
0.0
1280.0000
1322.0000
620.0000
999.0000
10O3.OOOO
1067.0000
68O.OOOO
645. OOOO
637. OOOO
657.0000
587.0000
611. OOOO
579.0000
581. OOOO
605. OOOO
606.0000
6O5.OOOO
6O7.0000
6O6.0000
577.0000
581. OOOO
576.0000
578.0000
594.0000
524.0000
571.0000
576.0000
578.0000
577.0000
594.0000
591.0000
58 9. OOOO
598.0000
583.0000
683.0000
682.0000
614.3000
571.0000
586.0000
579.0000
574. OOOO
568.0000
569. OOOO
571.0000
573.0000
577.0000
785.0000
784.0000
599.0000
645.0000
635.0000
741.0000
729.0000
662. OOOO
810.0000
882.0000
665.0000
81A.OOOO
798.0000
732.0000
766.0000
890.0000
100 7. OOOO
1097.0000
1303.0000
87O.OOOO
89O.OOOO
851.0000
777.0000
626. OOOO
673. OOOO
708.0000
753.0000
791.0000
631.0000
556.0000
524. OOOO
657.0000
703.0000
739.0000
635.0000
591.0000
604.0000
640.0000
579.0000
615.0000
668.0000
7O8.00OO •
621.0000
610.0000
571.0000
7OO.OOOO
678. OOOO
65 7. OOOO
713.0000
754.0000
648.0000
648. OOOO
809.0000
593.0000
607.0000
608.0000
604. OOOO
600.0000
0.0099
0.0188
0.0204
0.0063
0.0105
3.O105
0.0093
0.0129
O.0066
O.OOB2
O.0102
O.0153
0.0093
0.0101
0.0081
O.O067
O.OO48
0.0144
0.0185
0.0218
0.0253
0.0105
0.0
0.0
0.0154
0.0198
0.0202
0.0110
0.0071
0.0090
0.0125
0.0065
0.0105
0.0136
0.0168
0.0140
0.0106
0.0071
0.0286
0.0203
0.0174
0.0229
0.0252
0.0147
0.0080
0.0123
O.O
0.0089
0.0106
0.0086
0.0110
0.0094
0.0183
0.0245
0.0060
0.0107
O.0105
0.0096
0.0131
0.0062
0.0080
0.0102
0.0159
O.OO97
0.0105
0.0083
O.0068
0.0048
0.0144
0.0186
0.0220
0.0255
0.0105
0.0
0.0
0.0149
0.0198
0.0257
0.0107
0.0068
0.0087
0.0125
0.0063
0.0104
0.0138
O.O170
0.0143
0.0108
0.0070
0.0297
0.0209
O.0181
0.023b
0.0267
0.0149
0.0084
0.0115
0.0
0.0086
0.0105
0.0090
0.0115
0.0009
O.O01O
0.0011
0.0011
0.0011
O.OOO6
O. OOO8
O.0008
0.0011
0.0010
0.0011
0.0023
O.0007
0.0007
0. OOO6
0.0007
O. 0008
O. OOO4
O.OOO4
0. 0004
0.0004
0.0004
0.0
O.O
0.0004
O.OOO4
0.0004
0. OOO4
0. 0004
O. OO04
0.0004
0. OOO3
0.0003
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0. 000*
0. 0004
0.0004
0.0005
O. OO03
0.0004
0.0
0.0004
O. 0004
0.0011
0.0010
0.0085
O.O173
0.0234
0.004U
0.0095
0.0099
0.0088
0.0123
0.0052
0.0070
O.OOV2
O.0136
0.0090
0.0098
O.O076
0.0061
0.00*1
0.0140
0.0182
0.0216
0.0251
0-0101
0.0
0.0
O.0145
0.0194
0.0253
0.0103
0.0064
0.0083
0.0121
0.0060
0.0100
0.0134
0.0167
0.0139
0.0104
0.0066
0.0293
0.0205
0.0177
0.0234
0.0263
0.01*4
0.0081
0.0112
0.0
O.0082
0.0101
0.0079
O.0104
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
ECR
BST1
BST2
BST3
BST4
FASAh
FUAIR
FAOX1
FAOX2
05-25A-3
05-2 5A -4
05-25A-5
05-25A-6
05-2 5A -7
05-2 5A -6
05-25A-9
05-25A-10
05-26A-1
05-2 6A -2
05-2 6A -3
06-01 A -1
06-O1A-2
06-O1A-3
06-O2A-1
06-O2A-2
06-O3A-1
06-O3A-2
O6-O3A-3
06-0 3A-4
06-O4A-1
06-05A-1
06-O5A-2
06-0 5A -3
06-05A-4
06-0 5A-5
06-O5A-6
06-05A-7
06-O5A-6
06-O5A-9
06-O5A-10
06-O5A-11
06-O5A-12
06-05A-13
06-0 5A -1*
06-O5A-1S
06-O5A-16
06-O5A-17
06-O5A-18
06-O5A-19
06-0 5A -20
06-O5A-21
06-0 5A -22
06-O5A-23
06-O5A-24
06-0 5 A -25
06-05A-26
06-O5A-27
O6-O5A-28
06-O5A-29
06-O5A-30
0.4052
0.3518
0.3066
0.2585
0.2143
0.1676
0.1298
0.4058
0.1553
0.2068
0.2617
0.1756
0.2478
0.3071
0.1756
0.2911
0.1724
0.2559
0.0880
0.1183
O.0659
0.0844
0.1190
0.1611
0.2251
0.2786
0.0539
0.0659
0.0783
0.0914
0.1278
0.1393
0.1521
0.1623
0.1911
0.1101
0.1189
0.1567
0.1880
0.2052
0.2192
0.2337
0.1248
O.O766
0.0895
0.1502
0.1331
0.1247
0.1151
0.0612
0.0475
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1040. OOOO
1059.0000
1293.0000
0.0
0.0
0.0
5 78. OOOO
560.0000
579.0000
555.0000
1694.0000
1772.0000
0.0
947.0000
924.0000
645.0000
609.0000
609. OOOO
1105.0000
1188.0000
1100.0000
1078.0000
1070.0000
1089.0000
1076.0000
1069.0000
1040.0000
1021.0000
984.0000
1004.0000
1000.0000
1004.0000
998.0000
1005.0000
998.0000
1060.0000
1030.0000
1040. OOOO
1035. OOOO
1037.0000
1035.0000
626. OOOO
631.0000
1136.0000
1083.0000
1250.0000
1225.0000
1269.0000
1222. OOOO
1111.0000
O.O
O.O
0.0
0.0
1078.0000
1151.0000
1094.0000
1025.0000
1123.0000
770.0000
1615.0000
745.0000
745. OOOO
1662. OOOO
665.0000
682.0000
672.0000
665.0000
673.0000
673.0000
678.0000
686.0000
690.0000
666.0000
670.0000
678. OOOO
683.0000
695.0000
696.0000
657.0000
691.0000
696.0000
693.0000
693.0000
695.0000
696.0000
678.0000
675.0000
673.0000
684.0000
683.0000
675. OOOO
623.0000
628.0000
621.0000
618.0000
626.0000
634.0000
628.0000
647.0000
658.0000
575.0000
1717.0000
1510.0000
1274.0000
0.0
O.O
0.0
574.0000
584.0000
564.0000
567.0000
587.0000
559. OOOO
62 2. OOOO
626.0000
637.0000
624.0000
618.0000
623. OOOO
635. OOOO
634.0000
640.0000
638.0000
697.0000
697.0000
699.0000
701.0000
699. OOOO
632.0000
595.0000
768. OOOO
703.0000
684.0000
683.0000
686.0000
625.0000
625.0000
637.0000
698.0000
724.0000
730. OOOO
714.00OO
663. OOOO
680.0000
593. OOOO
590. OOOO
601.0000
6O3. OOOO
604.0000
603.0000
602.0000
592.0000
O.O
0.0
0.0
608.0000
629. OOOO
659. OOOO
591.0000
624.0000
614.0000
635.0000
61 1. OOOO
628. OOOO
607. OOOO
593. OOOO
614.0000
630. OOOO
655.0000
677. OOOO
586.0000
591.0000
597.0000
598. OOOO
607.0000
60 5. OOOO
6 14. OOOO
613.0000
626. OOOO
605.0000
563.0000
607.0000
612.0000
616.0000
618.0000
625. OOOO
595. OOOO
586. OOOO
602. OOOO
616.0000
62 1. OOOO
624.0000
610. OOOO
586. OOOO
586. OOOO
O.0268
0.0233
0.020*
0.0171
0.0145
0.0111
O.OO87
0.0266
0.0104
0.0139
0.0174
0.0094
O.O134
0.0163
0.0101
0.0154
0.0099
0.0146
0.0051
0.0105
O.OO34
0.0047
0.0059
0.0084
0.0116
0.0140
O.OO42
0.0048
0.0054
0.0060
0.0112
0.0120
0.0127
O.0136
0.0155
0.0072
0.0083
0.0129
0.0157
0.0172
0.0187
0.0201
0.0088
O.OO60
0.0059
0.0120
0.0110
0.0104
0.0095
0.0062
0.0051
0.0279
0.0242
0.0211
0.0178
0.0147
0.0115
0.0089
0.0279
0.0107
0.0142
0.0180
0.0102
0.0144
0.0178
0.0102
0.0169
0.0100
0.0149
0.0051
0.0073
0.0038
0.0049
0.0069
O.O094
0.0131
O.0162
0.0031
0.0038
0.0045
0.0053
0.0082
O.0089
O.0096
0.0102
0.0119
0.0064
0.0069
0.0094
0.0116
0.0128
0.0137
0.0147
0.0072
0.0044
0.0052
0.0094
0.0082
0.0077
O.OO70
O.O042
0.0033
0.0015
0.0011
0.0011
0.0010
0.0011
0.0011
0.0011
0.0013
0. 0008
0.0008
0. 0008
0.0 1O2
0.0144
0.0178
0.0102
0.0169
0.0100
0.0149
O.OO51
0. 0047
0.0038
0.0049
0.0069
0.0094
0.0131
0. 0162
0.0031
0.0038
0. 00*5
0.0053
O. 0030
0.0038
0.0046
0.0053
0. 0068
O.O064
O..0069
0.0071
0.0073
0.0073
0..0073
0.0073
0.0072
0.0044
0.0052
0.0051
O. 0049
0. 0049
0. 0049
0.0
0.0
O.0263
0.0231
O.02CO
0.0168
0.0136
0.0105
O.OO79
0.0266
0.0099
0.0135
C.0172
0.0
O.O
0.0
0.0
0.0
0.0
o.o
0.0
0.0025
0.0
O.O
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
O.OO53
0.0051
0.0051
O.OO49
0.0051
O.O
0.0
0.0023
0.0043
0.0055
O.0065
0.007*
0.0
0.0
0.0
0.0042
0.0033
0.0027
0.0022
0.0042
0.0033
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EUR
BST1
BST2
BST3
BST*
FAS AN
FUAIR
FAOX1
FAOXZ
07-01A-1
07-02A-1
07-O2A-2
07-0 i* -3
07-02*-*
07-O2A-5
07-0 2B-1
07-028-2
07-026-3
07-02B-4
07-028-5
07-028-6
07-0 2B-7
07-028-6
07-02B-9
07-0 3A -I
07-0 3A-2
07-0 3A -3
07-O3A-4
07-0 3A -5
07-O3A-6
07-O3A-7
07-0 3* -6
07-O3A-9
07-O3A-10
07-O3A-11
07-0 3A -12
07-O3A-13
07-03A-14
07-O3A-15
07-03A-16
07-03A-17
07-O*A-1
07-0 5A-1
07-05A-2
07-05A-3
07-O5A-4
O7-O6A-1
07-06A-2
07-O6A-3
07-0 6* -4
07-06* -5
07-06A-6
07-06A-7
07-O6A-8
07-06* -9
07-06A-10
07-06A-11
07-0 6* -12
07-0 6* -13
07-07* -1
0.0
0.207*
0.2251
0.2718
0.2529
0.2210
0.2071
0.170*
0.1661
0.2688
0.2668
0.2369
0.3272
0.2983
0.2044
0.2357
0.2140
0.2419
0.2237
0.2000
O.1789
0. 1920
0.2353
0.2186
0.2012
0.2319
0.2002
0.2013
0.2854
0.2812
0.3065
0.3161
0.2125
0.2529
0.2291
0.2237
0.2165
0.2573
0.2370
0.2154
0.2096
0.2049
0.1966
0.1890
0.1771
0.2625
0.2420
0.2219
0.2009
0.1883
0.2460
582.0000
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
584.000O
560.00OO
564.0000
566.0000
561.OOOO
561.OOOO
556.0000
569.0000
566.0000
572.0000
574.0000
574.00OO
569.0000
566.-OOOO
569.0000
564.0000
566.OOOO
557.0000
562.0000
565.0000
567.0000
567.0000
536.0000
538.0000
559.0000
546.0000
547.0000
556.0000
553.0000
552.0000
538.0000
540.0000
577.OOOO
501.0000
501.0000
499.0000
508.0000
593.0000
580.0000
594.0000
596.0000
59O.OOCO
592.0000
596.0003
593.OOOO
589.0000
585.0000
586.0000
585.0000
585.0000
597.0000
505.0000
C.O
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
o.o
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
561.0000
0.0
O.O
0.0
0.0
0.0
841.0000
791.0000
729.000O
900.0000
870. OOOO
796. 0000
86 5. OOOO
881.0000
806. OOOO
1622.0000
1594. OOOO
1651.0000
1592.0000
1576.0000
1364.0000
1437. OOOO
112 8. OOOO
1096. OOOO
930.0000
1136.0000
936. OOOO
926.0000
772.0000
756.0000
1152.0000
1291.0000
812. OOOO
1118.0000
1009.0000
964.0000
951.0000
140O.OOOO
1400. OOOO
1387.0000
1364.0000
1360.0000
1346.0000
1316.0000
1233.0000
1522.0000
1500. OOOO
1478.0000
1047.0000
1118.0000
O.O
O.O
0.0X50
0.0160
0.0189
O.0179
0.0144
0.0146
0.0127
0.0121
0.0195
0.0172
0.0163
0.0217
0.0203
0.0145
0.0171
0.0157
0.0179
0.0162
0.0149
0.0132
0.0141
0.0162
0.0148
0.0141
0.0161
0.0141
0.0138
0.0197
0.0194
0.02O9
0.0221
0.0149
0.0172
0.0lt>4
0.0155
0.0146
0.0178
O.0167
0.0153
0.0147
0.0142
O.0138
0.0137
0.0125
0.0183
O.0170
0.0155
0.0141
0.0130
0.0173
0.0
0.0143
0.0155
0.0187
O.0174
0.0152
0.0142
0.0120
0.0114
0.0185
O.0184
0.0163
0.0225
0.0205
0.0141
0.0162
0.0147
0.0166
0.0154
0.0138
0.0123
O.O132
0.0162
0.0150
0.0138
O.0160
0.0138
0.0139
0.0196
0.0193
0.0211
0.0217
O.0146
O.O174
0.0158
0.0154
0.0149
0.0177
O.O163
0.0148
0.0144
0.0141
0.0135
0.0130
0.0122
0.0181
O.0166
0.0153
0.0138
0.0130
0.0169
C.O
0.0
0.0038
0.0042
0.00*1
O.OC36
O.O
0.0
O.O
0. 00*5
0. 00*2
0.0042
O.OOb*
O.OOB1
O.O
0.0
0.0
o.c
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.0061
O.0055
0. O056
0.0054
0.0
0.0
O.O
O.O
0.0
O.O
0.0
0.0
0.0
O.O
O.O
o.o
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.G
0.0143
0.0116
Ci.0145
0.0133
0.0117
0.01*2
O.OliO
0.011*
0.0140
0.0141
0.0121
0.0141
0.0124
0.0141
O.O162
0.0147
O.O166
0.0154
0.0138
3.014.3
O.0132
0.0162
O.0150
0.0138
0.0160
0.0138
0.0139
O.0136
0.0136
0.0155
0.0163
0.01*6
0.017*
0.0158
O.O15*
0.01*9
0.0177
0.0163
0.01*8
0.01**
O.01*l
0.0135
0.0130
0.0122
0.0181
0.0166
0.0153
O.0138
0.0130
O.0169
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
BST1
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
07-O7A-2
07-O7A-3
07-O7A-4
07-O7A-5
07-O7A-6
07-O7A-7
07-O7A-6
07-07A-9
07-O7A-10
07-O7A-11
07-0 7A -12
07-O7A-13
07-O7A-14
07-O7A-15
07-07A-16
07-07A-17
07-07A-18
07-O7A-19
07-O7A-20
07-O7A-21
07-07A-22
07-07A-23
07-O7A-24
07-O7A-25
07-07A-26
07-O7A-27
07-07A-28
07-07A-29
07-07A-30
07-07A-31
07-07 A -32
07-07A-33
07-O7A-34
07-07A-35
07-O7A-36
07-07A-37
07-07A-38
07-O7A-39
07-O7A-40
07-07A-41
07-O7A-42
07-07A-43
07-O7A-44
07-O7A-45
07-O7A-46
07-O7A-47
U-OlA-1
11-O1A-2
11-O1A-3
11-02A-1
11-O3A-1
0.2261
0.2038
0.1857
0.2699
0.2469
0.2232
0.1991
0.1997
0.1876
0.1743
0.1668
0.16O3
0.1565
0.2540
0.2277
0.2113
0.2049
0.19O9
0.1748
0.1646
0.1811
0.1731
0.1661
O.1580
0.1516
0.2980
0.2833
0.2588
0.2372
0.2134
0.2046
0.1934
0.1832
0.1727
0.1680
0.1586
0.1459
0.1779
0.1649
0.1523
0.1473
0.1424
0.2344
0.2125
0.1964
0.1334
0.2828
0.3855
0.2497
0.0
0.0067
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.OT
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
d.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
577.0000
574.0000
0.0
585.0000
900.0000
592.OOOO
579.0000
582.0000
589.0000
592.0000
596.0000
587.0000
594.0000
583.0000
587.0000
588.0000
591.000O
590.0000
582.0000
590.0000
593.0000
588.0000
584.0000
590.0000
586.0000
595.0000
583.0000
586.0000
583.0000
583.0000
772.OOOO
776.0000
771.0000
765.0000
766.OOOO
775.0000
778.0000
771.0000
769.0000
772.OOOO
775.OOOO
776.0000
781.0000
778.0000
779.0000
779.0000
775.0000
780.0000
762.0000
770.00OO
774.0000
573.00OO
573.0000
0.0
566.0000
786.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
77B.OOOO
862.OOOO
0.0
558.0000
598.0000
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
1166.0000
1245. OOOO
0.0
561.0000
587. 0000
0.0156
0.0143
0.0127
0.0180
0.0165
0.0148
0.0132
0.0136
0.0128
0.0118
0.0113
O.0108
0.0105
0.0166
O.0147
0.0137
0.0132
0.0123
0.0112
0.0114
0.0125
O.O120
0.0113
O.O110
0.0105
0.0198
0.0188
0.0171
0.0155
0.0139
0.0132
0.0125
0.0118
0.0111
0.0108
0.0101
0.0092
0.012O
0.0111
0.0101
0.0099
O.OO94
0.0151
0.0136
0.0124
O.OOOO
0.0216
O.0288
0.0
0.0
0.0004
0.0156
0.0140
0.0128
0.0186
0.0170
0.0154
0.0137
0.0137
0.0129
0.0120
0.0115
0.0110
0.0108
0.0175
0.0157
0.0145
0.0141
0.0131
0.0120
0.0113
0.0125
0.0119
0.0114
O.0109
0.0104
0.0205
0.0195
0.0178
0.0163
O.0147
0.0141
0.0133
0.0126
0.0119
0.0116
0.0109
0.010O
0.0122
0.0113
0.0105
0.0101
O.O098
0.0161
0.0146
0.0135
0.0092
O.O195
0.0265
0.0172
0.0
O.OOO5
O.O
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
G.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0195
0.0265
0.0172
O.O
0. 0005
0.0156
0.0140
O.C128
0.0186
0.0170
0.0154
0.0137
0.0137
0.0129
0.0120
0.0115
0.0110
O.O108
0.0175
0.0157
0.0145
0.0141
0.0131
0.0120
0.0113
0.0125
0.0119
0.0114
O.0109
O.O104
0.0205
0.0195
0.0178
0.0163
O.O147
0.0141
0.0133
O.O126
0.0119
0.0116
0.0109
0.0100
0.0122
0.0113
0.0105
0.0101
0.0098
0.0161
O.0146
0.0135
O.OO9*
0.0
0.0
0.0
O.O
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOft
BST1
BST2
BST3
BST4
FAS AM
FUAIR
FAOAl
FAOX2
11-O4A-1
11-0 5A-1
11-O6A-1
11-0 6A-2
11-07A-1
11-07A-2
11-08A-1
11-08A-2
ll-OBA-3
11-O8A-4
11-O9A-1
11-09A-2
11-10A-1
11-10A-2
11-10A-3
11-11A-1
11-12A-1
11-12A-2
11-12A-3
14-01A-1
14-O1A-2
14-0 1A -3
14-02A-1
14-0 2A -2
14-02A-3
14-02A-4
14-O2A-5
14-0 2A -6
14-02A-7
14-0 2A -6
16-OIA-1
16-0 1A-2
16-0 1A-3
16-O1B-1-
16-0 2A-1
16-O2A-2
16-0 2A-3
16-0 3A-1
16-0 3A -2
16-0 3A-3
18-01A-1
18-0 1A-2
18-0 1A-3
18-01A-4
18-0 1A -5
18-01* -6
18-0 1A-7
18-01A-B
18-0 IA -9
18-01A-10
18-01A-11
0.0187
0.2132
0.0
0.3372
0.0
0.0
0.13B7
0.1912
0.2497
0.3086
0.0
O.O
0.1578
0.1235
O.0926
0.0262
0.3461
0.3246
0.2969
0.1359
0.1428
0.1326
0.3550
0.2251
0.2805
0.3187
0.3735
0.3059
0.2354
0.3447
0.2684
O.2486
0.2601
0.2483
0.2563
0.2360
0.2183
0.2629
0.2420
0.2171
0.1493
0.2114
0.2779
0.3431
0.3767
0.1493
0.2086
0.3744
0.2492
0.3452
0.3858
1423. OOOO
1250. OOOO
591. OOOO
511. OOOO
65. OOOO
G.O
600.0000
492.0000
464. OOOO
464. OOOO
582.0000
584.0000
639.0000
645.0000
643.0000
997.0000
600.0000
663.0000
665.0000
346.0000
657.0000
676.0000
621.0000
626. OOOO
625.0000
635. OOOO
601.0000
624. OOOO
626.0000
625.0000
579.0000
572.0000
578.0000
580.0000
476. OOOO
496. OOOO
498. OOOO
546. OOOO
543.0OOO
736.0000
O.O
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
691.0000
900.0000
560.0000
549.0000
79.0000
0.0
643. OOOO
557.0000
549.00OO
517.0000
581.0000
582.0000
700.0000
685.0000
687.0000
1265.0000
760.0000
771.0000
759.0000
143. OOOO
470.0000
593.0000
592.0000
593.0000
595.0000
599.OOOO
577.0000
589.0000
589. OOOO
585.0000
664.0000
66O.OOOO
663. OOOO
694.0000
657.0000
691. OOOO
693. OOOO
739.0000
723.0000
906.0000
63 7. OOOO
668.0000
681.0000
686.0000
686.0000
647.0000
661.0000
677.0000
818.0000
875.0000
852.0000
585.0000
600.0000
542. OOOO
704.0000
80.0000
535.0000
1218. OOOO
1441. OOOO
•1481. OOOO
1405.0000
572.0000
571.0000
826.0000
766 . OOOO
733.0000
601.0000
680. OOOO
670.0000
665.0000
201. OOOO
489.0000
548.0000
499.0000
566.0000
530.0000
559. OOOO
489.0000
534.0000
574.0000
543.0000
0.0
0.0
0.0
O.O
0.0
0.0
O.O
O.O
0.0
0.0
642. OOOO
706.0000
740.0000
757.0000
749.0000
651.0000
706. OOOO
756.0000
858. OOOO
947. OOOO
921.0000
576. OOOO
600.0000
5 13. OOOO
43 1. OOOO
80. OOOO
298.00CO
564.0000
556.0000
568. OOOO
574.0000
572. OOOO
0.0
0.0
0.0
0.0
579.0000
1226.0000
1250.0000
1252.0000
660.0000
994.0000
1015.0000
1227.0000
1112.0000
1144.0000
11 64. OOOO
1181.0000
1121.0000
1116.0000
1126.0000
0.0
O. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
574. OOOO
577.0000
568. OOOO
567.0000
569. OOOO
576.0000
573.0000
568.0000
560. OOOO
553.0000
554.0000
0.0008
0.0
O.O
0.0
0.0
0.0
0. 1663
0.2224
J.i939
0.3656
0.0
0.0
0.1619
0.1266
O. 1OO6
0.0012
0.0233
0.0217
0.0195
0.0
O.O
0.0070
0.0213
0.0124
0.0151
0.0178
O.O208
0.0179
0.0130
0.0203
0.0158
O.0144
O.O152
0.0125
0.0188
0.0173
0.0158
0.0170
O.O156
0.0134
0.0099
0.0141
0.0183
0.0229
0.0249
0.010O
O.O135
O.O248
0.0172
0.0243
0.0271
0.0013
0.0147
0.0
0.0232
0.0006
0.0009
0.13b3
0.1907
0.2491
0.3079
O.OOC7
0.0008
0.1574
0.1232
0.0923
0.0018
0.0238
0.0223
0.0204
0.0079
O.OO83
0.0077
0.0206
0.0131
0.0163
0.0185
0.0217
0.0178
0.0137
0.0200
0.0185
0.0171
0.0179
0.0171
0.0176
0.0162
0.0150
0.0181
0.0166
0.0149
0.0103
0.0145
0.0191
0.0236
0.0259
0.0103
0.0144
0.0258
0.0171
0.0238
0.0265
0.0013
O. OO12
O.O
0.0232
0.0006
O.OOOV
0.1363
O. 19O7
O. 2491
0. 3079
O.0007
0.0008
0.1574
0.1^32
O. 0923
0.0018
0.0013
O.0013
0.0012
0.0079
0. O083
C.OOV7
0.0i06
0.0131
0. 0163
O.O185
0.0217
0.0176
0.0137
0.0200
0.0185
0.0171
0.0179
0.0171
O.O 176
0.0162
O. 015O
0.0181
0.0166
0.0149
0.0
0.0
U. 0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0134
O.O
0.0
0.0
0.0
0.0
O.O
O.O
c.o
0.0
O.O
0.0
O.O
o.o
0.0
0.0225
0.0211
O.O192
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
O.O
O.O
O.O
0.0
O.O
0.0103
0.0145
0.0191
0.0236
0.0259
0.0103
0.0144
O.O258
0.0171
0.0238
0.0265
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST4
FAS AM
FUAIR
FAOX1
FAOX2
26-O1A-1
26-02A-1
26-0 2A -2
26-0 2A -3
26-0 2A -4
26-02A-5
26-0 2A -6
26-O2A-7
26-02A-B
26-02A-9
26-02A-10
26-0 3A-1
26-0 3A-2
26-0 3A -3
26-0 3A -4
26-03A-5
26-03A-6
26-0 3A -7
26-03* -6
26-0 3A -9
26-03A-10
28-0 IA-1
28-01A-2
28-0 1A -3
28-0 1A -4
28-01 A -5
28-01A-6
28-0 1A-7
2B-O2A-1
28-O2A-2
28-02A-3
28-02A-4
28-0 2A -5
28-0 2A -6"
28-0 3A-1
28-0 3A -2
28-0 3A -3
28-O3A-4
28-O3A-5
28-O4A-1
28-O5A-1
28-0 5A -2
28-05* -3
28-O5A-4
28-0 5A -5
28-05*-*
28-O5A-7
28-0 5A-B
28-0 5* -9
28-OSA-10
28-05A-11
0*0
0.3700
0.3914
0.4466
0.4658
0.4987
0.4711
0.4193
0.3634
0.4511
0.3921
0.3684
0.2905
0.3382
0.3640
0.2700
0.3677
0.3351
0.2692
0.2864
0.4004
0.1385
0.2315
0.2776
0.3254
0.3726
0.4000
0.4347
0.1698
0.2151
0.2689
0.3225
0.3773
0.4238
0.1773
0.2377
0.2982
0.3593
0.4203
0.0
0. 1649
0.2177
0.2766
0.3334
0.3978
0.1566
0.1998
0.2573
0.3159
0.3734
0.4327
586.0000
556.0000
552.0000
551.0000
548.0000
546.0000
534.0000
557.0000
559.0000
793.0000
808.0000
582.0000
591.0000
592.0000
593.0000
592.0OOO
0.0
0.0
0.0
0.0
0.0
933.0000
911.0000
903.0000
908.0000
924.0000
895.0000
914.OOOO
1325.0000
1286.0000
1261.0000
1247.0000
1244.0000
1282.0000
1281.0000
1290.0000
1286.0000
1298.0000
1291 . OOOO
589.0000
590.0000
588.0000
592. OOOO
583.0000
582.3000
596. OOOO
593.0000
595.0000
5.93.0000
587.0000
579.0000
557.0000
548.0000
54V.OOOO
547.0000
543.0000
543.0000
560.0000
538.0000
539.0000
895.0000
822.0000
623.0000
691.0000
697.0000
713.0000
682.0000
O.O
0.0
0.0
0.0
0.0
696.0000
657.0000
644.0000
654.0000
650.0000
634.0000
638 .OOOO
778.0000
760.0000
726.0000
700.0000
702.0000
690.0000
678.0000
658.0000
629.0000
629.0000
61 B. OOOO
587.0000
607.0000
599.0000
6O6.0000
600.0000
599.00O3
609.0000
608.0000
613.0000
616. OOOO
618.0000
616.0000
551.0000
639.0000
678.0000
693.0000
661. OOOO
688.0000
950.0000
706.0000
653.0000
1498.0000
1155.0000
995. OOOO
1409.0000
1538.0000
1628.0000
1328.0000
0.0
0.0
0.0
0.0
0.0
628. OOOO
605.0000
563.0000
565.0000
553.0000
535.0000
539.0000
619.0000
619.0000
615.0000
613.0000
617.0000
607. OOOO
640.0000
647.0000
656.0000
677.0000
672.0000
570. OOOO
1197.0000
1313.0000
1469.0000
1471.0000
1415.0900
1172.0000
1252.0000
141 3. OOOO
1SOO.OOOO
1V40.0000
1398.0000
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
775. OOOO
956.0000
953.0000
973.0000
1024.0000
1036.0000
1076.0000
131 7. OOOO
1476.0000
1452.0000
1592.0000
1685.0000
1730.0000
1628.0000
1816.0000
1701.0000
1459.0000
1433.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0223
0.0237
0.0268
0.0281
O.O303
0.0306
0.0261
0.0236
0.0267
0.0236
0.0213
0.0154
0.0178
0.0199
0.0136
O.0262
0.0233
0.0193
0.0226
0.0240
0.0094
0.0158
0.0190
0.0223
0.0258
0.0272
O.0302
0.0116
0.0153
0.0189
0.0227
0.0264
0.0293
0.0120
0.0163
0.0201
O.0245
0.0285
O.O
0.0075
0.0108
0.0142
0.0173
0.0215
O.O078
O.OO88
0.0133
0.0167
0.0207
0.0238
0.0
0.0255
0.0269
0.0307
0.0320
0.0343
0.0324
0.0289
0.0250
0.0310
O.0270
0.0236
0.0186
0.0216
0.0233
0.0173
0.0253
0.0231
0.0185
0.0197
0.0256
0.0095
0.0159
0.0191
0.0224
0.0256
0.0275
0.0299
0.0117
0.0148
0.0185
0.0222
0.0260
0.0292
0.0122
0.0164
0.02O5
0.0247
0.0289
0.0
0.0096
0.0126
0.0161
0.0194
O.G231
O.OOV1
0.0116
0.0149
0.0184
0.0217
0.0251
0.0
0.0
0.0
0.0
O.O
0.0
0.0324
0.0289
0. 0250
b.O
O.O
0.0236
0.0186
0.0216
0.0233
0.0173
0.0
0.0
0.0
0.0
O.O256
0.0011
0.0011
C.0011
0.0011
0.0011
O.O011
0.0011
0.0012
0.0012
0.0012
0.0012
O. 00 14
0.0014
0. 0009
0. OOO9
0. 0008
0.0009
0. 0009
0.0
0.0096
O.O126
0.0161
0.0194
0.0231
0.0091
C. 0116
0.0149
0.0184
0.0217
0.0251
0.0
0.0255
0.0269
0.0307
O.0320
O.0343
0.0
0.0
0.0
0.0310
0.0270
0.0
0.0
C.O
0.0
0.0
0.0253
0.0231
O.0185
0.0197
O.O
O.0084
0.0148
0.0180
0.0213
0.0245
0.0264
0.0288
0.0105
0.0136
0.0173
0.0210
0.02*5
0.0277
0.0113
0.0155
0.0197
0.0239
O.0281
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
eoft
BST1
BST2
BST3
6ST4
FASAM
FUAIR
FAOX1
FAOX2
917
918
919
921
922
923
924
925
926
927
928
930
931
932
933
934
935
936
937
938
956
957
95B
959
961
962
963
964
965
966
967
970
971
972
973
974
975
976
978
979
980
981
982
983
984
985
986
988
989
990
991
26-0 5A -12
28-05A-13
28-05A-14
28-0 6A-1
28-0 6A -2
28-06A-3
28-O6A-4
28-O6A-5
2 8 -06 A -6
28-0 6A-7
28-0 6A -6
28-O7A-1
26-07A-2
28-07A-3
28-07A-4
2B-O7A-5
2B-07A-6
28-O7A-7
28-O7A-8
28-0 7A -9
29-01A-1
29-0 1A-2
29-01A-3
29-01A-4
29-0 2A-1
29-02A-2
29-0 2A -3
29-02A-4
29-02A-5
29-02A-6
29-O2A-7
29-02* -8
29-02A-9
29-02A-10
29-0 2A -11
29-02A-12
29-O2A-13
29-O2A-14
29-03A-1
29-0 3A -2
29-O3A-3
29-0 3A -4
29-03A-5
29-03A-6
29-O3A-7
29-0 3A -8
29-O3A-9
29-O3A-10
29-O3A-11
29-O3A-12
2*-03A-13
0.4619
0.4915
0.2002
0.1523
0.1927
0.2480
0.3039
0.3579
0.4131
0.4484
0.3065
0.1518
0.1965
0.2524
0.3091
C.3655
0.4214
0.4465
0.4347
0.1980
0.3242
0-4038
0.2448
0.1832
0.2490
0.1879
0.1482
0.1055
0.0779
0.3040
0.3616
0.2491
0.3081
0.1893
0.1266
O.0778
O.0544
0.1303
0.2104
0.2686
0.3079
0.3465
0.0855
0.1270
0.1712
0.0536
O.1895
0.1913
0.2286
0.26S6
0.3057
574.OOOO
572.OOOO
587.000O
582.0000
590.0000
592.0000
592.0OOO
588.0000
571.OOOO
567.0000
595.0000
596.0000
584.0000
590.0000
586.OOOO
581.0000
569.0000
561.0000
504.000O
587.0000
441.0000
434.0000
460.COOO
49 5.0 JOG
478.0000
503.0000
522.0000
571.0000
595.0000
481.UGOO
464.OOOO
479.0000
468.0000
501.0000
527.0000
578.0OOO
606.0OOO
527.0000
433.0000
414.OOOO
406.0000
4O6.OOOO
501.0000
478.0000
460.0000
590.0000
448.0000
413.OOOO
404.0OOO
394.0000
387.0000
615.0000
617.0000
610.00OO
615.0000
614.0000
620.00OO
623.OOOO
627.0000
615.0000
617.0000
62V. 0000
606.0000
599.0000
606.0000
613.0000
613.0000
605.0000
601.0000
602.0000
6O4.00OO
1117.0000
951.0000
1290.0000
1423.0000
1372.0000
1298.0000
1383.0000
1622. OOOO
1637.0000
1377. OOOO
1226.0000
1422.0000
1277.0000
1362.0000
1499.0000
1595. OOOO
139O.OOOO
1587.0000
1191.0000
999. OOOO
985.0000
938. OOOO
1724.0000
1498.0000
1330.0000
1606. OOOO
14OO.OOOO
945. OOOO
868.0000
824.0000
799.0000
1374.0000
1347. OOOO
1227.0000
1245. OOOO
1338. OOOO
1408.0000
1465. OOOO
1455.0000
1440.0000
1418.0000
1439. OOOO
1361.0000
1387. OOOO
16O1.0000
1705.0000
1691. COCO
1630.0000
1618.0000
1622.0000
1 396 . OOOO
1078.0000
1047.0000
1204.0000
1360.0000
1111.0000
1585.0000
1500.0000
1513.0000
1363.0000
1O14.00OO
885. OOOO
963.0000
875.0000
123V. OOOO
1353.0000
1100.0000
932.0000
1308. OOOO
1007.0000
850. OOOO
755.0000
733.0300
1335.0000
1255. OOOO
1276.0000
1166. OOOO
1232.0000
1O62 .OOOO
966.0000
817.0000
762.0000
0.0
0.0
0.0
0.0
C.O
0.0
0.0
0.0
0.0
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
592.0000
604.0000
587.0000
589.0000
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0260
0.0280
0.0089
0.0079
0.0101
0.0130
0.0159
0.0183
0.0219
0.0241
0.0158
0.0083
O.OO98
O.0134
O.O17U
0.0195
0.0233
0.0255
O.0241
0.01O2
0.0212
0.0267
0.0158
0.0118
O.0167
O.0123
0.0099
0.0074
O.OO60
0.0206
0.0244
0.0164
0.0205
0.0119
0.0088
0.0059
0.004O
O.OO92
0.0146
v.0192
0.0220
O.O248
O.O074
O.OO99
0.012s
0.0046
0.0135
0.0124
0.0152
0.0160
0.0208
0.0268
O.O286
0.0116
0.0089
0.0112
0.0144
0.0177
0.0208
0.0240
0.0261
0.0178
0.0088
O.0114
O.0147
0.0180
0.0212
0.0245
0.0259
0.0253
0.0115
0.0223
0.0278
0.0168
0.0126
O.0171
0.0129
0.0102
0.0073
0.0054
0.0209
O.0249
0.0171
0.0212
0.0130
0.0087
0.0054
O.O037
0.0090
0.0145
0.0185
0.0212
0. 0238
O.OO59
0.0087
0.0118
0.0037
0.0130
0.0132
0.0157
0.0183
0.0210
0.0268
0.0286
0.0116
0.0089
0.0112
0. O144
0.0177
0.0208
0.024O
0.0261
0.0178
0.0088
O.O114
0.0147
O.OlbO
0.0212
0.0245
O.O259
0. O2 53
0.0115
O.O223
O.O276
0.0168
0.0126
0.0171
0.0129
0.0102
0.0073
O. 0054
0.0209
0.0249
0.0171
0.0212
0.0130
O.O067
0.0054
0.0037
0.0090
O.O145
O.Glb5
0.02L2
0.0238
0.0059
O.0087
0.0118
O.OO37
O.uliO
0.0132
0.0157
O.0163
0.0210
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
o.o
O.O
0.0
0.0
0.0
0.0
O.O
0.0
O.O
o.c
O.O
0.0
O.O
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
J.O
O.O
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
6QR
BST1
BST2
BST3
8ST-,
FASAM
FUAIR
FAOXl
FAOX2
29-O3A-14
29-034-15
29-O3A-16
29 -O 3* -17
29-03* -18
29-0 4A-1
29-0 4A-2
29-O4A-3
29-04* -4
29-0 4* -5
29-04* -«
29-04A-7
29-0** -8
29-O4A-9
29-05*-!
29-054-2
29-0 5*-3
29-05A-4
29-05* -5
29-O5A-6
29-0 5»-7
29-O5A-6
29-0 5* -9
29-O6*-l
29-0 6* -2
29-0 6*-3
29-06* -4
29-O6*-5
29-06* -6
29-0 6A-7
29-O6A-6
29-O6A-9
29-06* -10
29-0 6* -If
29-06A-12
29-06* -13
29-O64-14
29-O6*-15
29-0 6* -16
29-0 6* -17
29-06* -18
29-O7*-!
29-07A-2
29-0 7* -3
29-O7*-4
29-07A-5
29-0 8A-1
29-O8A-2
29-O8A-3
29-O8A-4
29-O8A-5
0.3474
0.1397
0.1067
0.0790
0.0551
0.0911
0.1265
0.1635
0.1269
0.1729
0.2098
0.2475
0.2873
0.3220
0.0868
0.1289
0.1735
0.2108
O.2483
0.2861
0.3244
0.3647
0.2258
0.1265
O.17O6
0.2076
0.2442
0.2825
0.3216
0.1297
O.1749
O.2123
0.2497
0.2889
0.3261
0.3663
0.2285
0.1917
0.2388
0.1071
0.2473
0.1767
0.2144
0.2484
0.2902
0.3488
0.1729
0.2096
0.2484
O.2862
0.3297
387.0000
426.0UOO
448.0000
476.0000
505.0000
599.00OO
587.OOOO
5 69. OOOO
578.000O
560.0000
535.0000
504.0000
488.0000
476.OOOO
599.0000
596.0000
592.0000
559.00OO
535.0000
517.OOOO
506.0000
498.0000
532.0000
595.0000
594.0000
593. OOOO
568.0000
558.0000
547.0000
606.0000
603.0OOO
587.0000
571.0000
562.0000
554.0000
538.0000
564.OOOO
587.0000
568.0000
612.0000
563.0000
861.0000
934.0000
975.0000
998.0000
981.0000
585.0000
562.0000
553.0000
539.0000
538.0000
773.0000
951.0000
953.0000
958.0000
1090.0000
1171. OOOO
1261.0000
1400. OOOO
1424.0000
1441.0000
13U3.00GO
1302.0000
1231.0000
1155.0000
1203.0000
1591.0000
1741.0000
1640.0000
1503.0000
1150. OOOO
1091.0000
1365.0000
1214.0000
1616.00OO
1891.0000
19O1.OOOO
1645. OOOO
1512.0000
1226.0000
1825.000O
1905.0000
1815.0000
1678.0000
1559.0000
1575.0000
1433.0000
1716.0000
1823.0000
1634.0000
1768.0000
1578.0000
1403.0000
15OO.OOOO
1526.0000
1492.0000
1412.0000
1841.0000
1744.0000
1583.0000
1393.OOOO
1306.0000
731.0000
848.0000
791.0000
912.0000
1002.0000
1287.0000
1422.0000
1574.0000
1526. OOOO
1542.0000
1503.0OCO
1481.0000
1417.0000
1264.0000
1280.0000
1463.0000
1671.0000
1621.0000
1566.0000
1587. OOOO
1531. OOOO
1375.0000
1574.0000
1484.0000
1609.0000
1566. OOOO
1488. OOOO
1452.0000
138-.. OOOO
1509.0000
1593.0000
1541.0000
1464.0000
1414.0000
1303.0000
1155.0000
1388. OOOO
1503.0000
1*03.0000
1474.0000
1411.0000
1730.0000
1781.0000
1788.0000
1737.0000
1550.0000
1861. OOOO
1789.0000
1749. OOOO
1584. OOOO
1401.0000
O.O
0.0
O.O
0.0
O.O
587.0000
601.0000
621.0000
601.0000
628.0000
643.0000
66O.OOOO
675.0000
671.0000
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
O.O
0.0
O.G
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0237
0.0093
O.O079
0.0063
0.0045
0.0065
0.0084
0.0110
O.OOB9
0.0120
0.0145
0.0171
0.02OO
0.0223
O.0064
0.0091
0.0119
O.O148
0.0174
O.O2O4
0.023*
0.0258
0.0158
0.0087
0.0111
0.0137
0.0165
0.0190
0.0219
0.0090
0.0114
O.0140
0.0166
0.0193
0.0217
0.0243
0.0153
0.0130
G.0160
0.0079
0.0165
0.0112
0.0137
0.0160
0.0190
0.0233
0.0111
0.0134
0.0159
0.0185
0.0210
0.0239
0.0090
O.0073
0.0054
0.0038
0.0063
0.0087
0.0112
0.0087
0.0119
O.0144
0.0170
0.0198
0.0222
0.006O
0.0089
0.0119
0.0145
O.0171
0.0197
0.0223
0.0251
0.0155
0.0067
0.0117
0.0143
O.O168
0.0194
0.0221
0.0089
0.0120
O.O146
0.0172
0.0199
0.0224
0.0252
0.0157
0.0132
0.0164
0.0074
0.0170
0.0122
0.0147
0.0171
0.020O
0.0240
O.O119
0.0144
0.0171
0.0197
0.0227
O.0239
0. 0096
0.0073
0.0054
0.0038
0.0
0.0
O.O
0.0087
0.0119
0.0144
0.0170
0.0198
O.O222
0.0060
0.0089
0.0119
0.0145
0.0171
0.0197
0.0223
0.0251
0.0155
0.0067
0.0117
0.0143
0.0168
0.0194
0.0221
0.0089
O.0120
O.0146
0.0172
0.0199
0. 0224
O.O252
O.0157
0.0132
0.0164
0. 0074
0.0170
0.0122
0.0147
0.0171
0.0200
0.0240
0.0119
0.0144
0.0171
0.0197
0.0227
0.0
0.0
0.0
0.0
o.c
0.0063
0.0087
0.0112
0.0
0.0
c.o
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.G
0.0
0.0
O.O
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
0.0
9.0
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHfcHE
6 OR
BSTl
BST2
BST3
BST4
FASA*
FUAIR
FAOX1
FAOX2
CO
cS
29-08A-6
<;9-08A-7
29-OBA-8
29-O9A-1
29-09A-2
29-09A-3
29-09*-*
29-09A-5
29-09A-6
29-09A-7
29-09A-8
29-09A-9
29-O9A-10
29-G9A-11
29-09A-12
29-09A-13
29-09A-14
29-09A-15
29-O9A-16
29-09A-17
29-O9A-18
29-O9A-19
29-O9A-20
29-09A-21
29-09A-22
29-O9A-23
29-09A-24
29-lOA-l
29-10A-2
29-IOA-3
29-10A-4
29-1 OA -5
29-10A-6
29-1OA-7
29-10A-8
29 -10 A -9
29-10A-10
29-lOA-ll
29-1 OA -12
29-10A-13
29-10A-14
29-10A-15
29-10A-16
29-IOA-17
29-10A-18
29-10A-19
29-1 OA -20
29-1 OA -21
29-10A-22
29-10A-23
29-1 OA -24
0.2290
0.1270
0.0869
0.1715
0.2105
0.2*89
0.2877
0.3270
0.1704
0.1988
0.2553
0.2795
0.3172
0.3550
0.2520
0.2912
0.3321
0.3722
0.2196
0.1877
0.1385
0.1041
0.2052
0.2802
0.3197
0.3586
0.2995
0.1477
0.1814
0.2 154
0.2490
0.2826
0.1673
0.2042
0.2374
0.2733
0.3197
0.2578
0.2923
0.3339
0.2065
0.1716
0.2352
0.2682
O.3090
0.1905
0.2508
C.2957
0.3393
0.2337
0.2123
531.0000
575.OOOO
587.OOOO
472.0000
451.OOOO
440.0000
425.0000
410.0000
547.0000
540.OOOO
521.0000
499 . 0000
478.0000
465.0000
518.0000
498.0000
483.0000
V71.OO.OO
535.0000
560.0000
570.0000
579.0OOO
579.OOOO
544.0000
527.0000
508.0000
531.0000
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
1449. 0000
1845. OOOO
1586.0000
1677.0000
1 58 O. OOOO
1478.0000
1377.0000
1262.0000
17O8.OOOO
1828.0000
1779.0000
1681.0000
1632.0000
1546.0000
1776.0000
1669.0000
1607.0000
1579.0000
1813.0000
1773.0000
1575.0000
1372.0000
1784.0000
17B3.0000
1733.0000
1636.0000
1728.0000
58O.OOOO
567.0000
559.0000
544.0000
533.0000
564.0000
559. OOOO
551.0000
538.0000
518.0000
619.0000
612. OOOO
599.0000
632.0000
666.0000
681.0000
639.0000
624. OOOO
688. OOOO
666.0000
645,0000
622.0000
667.0000
709.0000
1600.0000
1873. OOOO
16b9.0000
1726.0000
173 1. OOOO
1651. OOOO
1*92.0000
1342. OOOO
1645.0000
1949.0000
1873. OOOO
1789.0000
1677.0000
1669.0000
1770.0000
1693.0000
1692.0000
1663.0000
1914.0000
1928.0000
1686.0000
1470. OOOO
1941.0000
188*. OOOO
1815.0000
1747.0000
1816.0000
1693.0000
1616. OOOO
1523. COOO
1422.0000
1283. OOOO
1700.0000
1689. OOOO
1623.0000
1523.0000
1373.0000
1661. OOOO
136 7. OOOO
1399. OOOO
1750.0000
1775.0000
1882. OOOO
1801.0000
1739.0000
1966. OOOO
1844. OOOO
1745.0000
1673. OOOO
1888.0000
1957.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.G
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1654.0000
1694. OOOO
1657.0000
1446.0000
1231. OOOO
1730.0000
1771. OOOO
1609. OOOO
1384. OOOO
1199.0000
1479.0000
1368.0000
1229.0000
1602. OOOO
1734.0000
179 8. OOOO
1739.0000
1720.0000
188 7. OOOO
1771.0000
1691. OOOO
1648.0000
1805.0000
1866.0000
0.0149
0.0091
0.0063
0.0113
O.0142
O.0169
0.0199
0.0224
0.0110
0.0136
O.0163
0.0168
0.0215
0.02*0
0.0164
0.0192
O.O220
0.0246
0.0143
0.0120
O.OO69
0.0067
0.0134
0.0185
0.0214
0.0239
0.0202
0.0101
0.0120
0.0146
0.0168
O.01VO
0.0111
O.0135
O.O164
0.0184
0.0217
0.0171
0.0198
0.0225
O.0140
0.0117
0.0158
0.018S
0.0213
O.O131
0.0165
0.0195
0.0223
0.0153
0.0138
0.0158
0.0087
0.006O
0.0118
0.0145
0.0171
0.0198
0.0225
0.0117
0.0137
O.O176
O.0192
0.0218
0.02*4
0.0173
0.0200
O.O228
0.0256
0.0151
0.0129
0.0095
0.0072
0.01*1
0.0193
0.0220
0.02*7
0.0206
0.0102
0.0125
0.01*8
0.0171
0.0194
0.0115
0.0140
0.0163
0.0188
0.0220
O.O177
O.O2O1
O.Q230
O.O142
0.0118
0.0162
0.0185
0.0213
0.0131
0.0173
0.0203
0.0233
O.O161
0.0146
0.0158
0. 0087
0.0060
0.0
0.0
C.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0173
0.02OO
0.0228
0.0256
0.0151
0.0129
0.0095
0.0072
0.0141
0.0193
0. 0220
0.0247
O.O206
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
o. o
O.O
0.0173
0.0203
0.0233
0.0161
O.0146
0.0
O.O
0.0
0.0118
O.0145
0.0171
0.0198
0.0225
0.0117
0.0137
0.0176
0.0192
0.0218
0.0244
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0102
0.0125
0.014d
0.0171
0.0194
O.0115
O.OltO
0.0163
O.0188
0.0220
O.0177
0.0201
0.0230
0.0142
0.0118
0.0162
O.0185
0.0213
0.0131
0.0
O.O
0.0
O.O
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
8ST3
bST*
FA SAM
FUA1R
FAOX1
FAOXZ
1105
1106
1107
1108
110*
1110
1111
1113
1114
1116
1117
111S
1119
1120
1121
1122
1123
1124
1125
1127
1128
1129
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1155
1156
1157
1158
1159
1160
1161
29-1OA-25
29-10A-26
29-10* -27
29-10* -28
29-10A-29
29-10A-30
29-llA-l
29-118-1
29-118-2
29-12* -1
29-1 2* -2
29-12A-3
29-12A-4
29-12* -5
29-12* -6
29-1 2* -7
29-1 2* -8
29-1 2* -»
29-12* -10
29-13*-!
29-13* -2
29-13A-3
29-138-1
29-138-2
29-13B-1
29-138-4
29-138-5
29-138-6
29-138-7
29-138 -fl
29-138-9
29-138-10
29-14* -1
29-14* -2~
29-l**-3
29-1 4»-4
29-14* -5
29-1** -6
29-14* -7
29-14* -«
29-14* -*
29-14A-10
29-14A-11
29-14* -12
29-15A-1
29-1 5*-2
29-1 5* -3
29-1 5* -4
29-15* -6
29-15* -6
29-15A-7
0.1269
0.1496
0.2025
0.2113
O.2430
0.2504
0.0
0.3567
0.3639
0.2685
0.2847
0.3018
0.3246
0.2578
0.3015
0.2830
0.2683
0.2527
0.3478
0.1687
0.2073
0.2946
0.2452
0.2117
0.1708
0.1275
0.1009
0.1754
0.0894
0.1295
0.2188
0.2597
0.2305
0.1861
0.1647
0.1271
0.2S79
O.1436
0.1735
0.2124
0.2552
0.1822
0.2138
0.2526
0.1647
0.2027
0.2396
0.2764
0.3142
0.2109
0.2500
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
631.0000
644.0000
661.00OO
655.0000
688.0000
694.0000
549.0000
565.0000
561.0000
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
1614.0000
1778.0000
1896.0000
1703.0000
1766.0000
175^.0000
556.0000
.1733.0000
1872.0000
1067. OOOO
969.0000
1295.0000
1157. OOOO
1343. OOOO
1256.0000
1346.0000
1376.0000
1437.0000
1420. OOOO
710.0000
670.0000
632.0000
603.0000
620. OOOO
651. OOOO
646. OOOO
701.0000
607.0000
678.0000
638.0000
608.0000
608.0000
612.0000
603.0000
605.0000
626.0000
572.0000
616. OOOO
619.0000
593.0000
580.0000
649.0000
600.0000
578.0000
620.0000
621.0000
6O4.0OOO
591.0000
579.0000
613.0000
597.0000
1746.0000
1897.0000
1876.0000
1736.0000
1950.0000
1979.0000
547. OOOO
1759.0000
19 18. OOOO
1871.0000
1613.0000
1552.0000
1420.0000
1899.0000
1792.0000
1860.0000
1907.0000
1955.0000
1912. OOOO
1126.0000
1250.0000
1205.0000
1022.0000
1133.0000
14O8.0000
1725. OOOO
1705.0000
1119.0000
1553.0000
1709.0000
1065.0000
898.0000
1279.0000
1527.0000
1604.0000
1537.0000
1288.0000
1576. OOOO
1717.0000
1682.0000
1119.0000
168*. OOOO
1708.0000
1469.0000
1638. OOOO
1662.0000
1610. OOOO
1440.0000
1222.0000
1635. OOOO
1649.0000
0.008'.
0.0100
0.0135
0.0141
O.0162
O.O166
0.0
0.0245
0.0255
0.0188
0.0189
0.0213
0.0229
O.0178
0.0201
0.0188
0.0179
O.0168
0.0232
0.0098
0.0125
0.0188
0.0153
0.0131
O.01O8
0.0084
0.0061
0.0104
0.0059
0.0082
0.0133
0.0155
0.0149
0.012O
0.0108
O.OO85
0.0166
O.0090
0.0109
0.0132
0.0160
0.0113
0.0137
0.0161
0.0109
0.0137
O.0163
0.0188
0.0214
0.0142
0.0168
0.0087
O.O103
0.0139
0.0145
0.0167
0.0172
0.0
O.0245
0.0250
0.0185
0.0196
0.0208
0.0223
0.0177
0.0207
0.0195
0.0185
O.0174
0.0239
0.0116
0.0143
0.0203
0.0169
O.0146
O.0118
0.0088
0.0069
0.0121
0.0061
0.0089
0.0151
0.0179
0.0159
0.0128
0.0113
O.OO87
0.0177
O.OO99
0.0119
0.0146
0.0176
0.0125
0.0147
0.0174
0.0113
0.0139
0.0165
0.0190
0.0216
0.0145
0.0172
0.0087
0.0103
0.0139
0.0145
0.0167
0.0172
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0207
0.0195
0.0185
0.017*
0.0239
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0121
O. 0061
0.0089
0.0151
0.0179
0.0
0.0
O.O
0.0
0.0
0. 0099
0.0119
0.0146
O.O176
0.0125
0.0147
0.0174
0.0
O.O
O.O
0.0
0.0
0.01*5
0. 01 72
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.02*5
0.0250
O.0185
0.0196
O.O2O8
0.0223
0.0177
0.0
0.0
0.0
0.0
0.0
0.0116
0.0143
0.0203
0.0169
O.0146
0.0118
O.0088
0.006V
0.0
3.0
0.0
0.0
0.0
0.015V
0.0128
0.0113
0.008V
0.0177
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0113
O.O139
O.0165
0.0190
0.0216
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST5
BST4
FAS AM
FUAIR
FAOX1
FAO"~
29-1 5A -8
29-15A-9
29-15A-10
29-15A-11
29-15A-12
29-15A-13
29-15A-14
29-15A-15
29-15A-16
29-1 5A -1 7
29-15A-18
29-15A-19
29-16A-1
29-16A-2
29-16A-3
29-16A-4
29-1 6A -6
29-16A-6
29-16A-7
29-16A-6
29-16A-9
29-16A-10
29-16A-11
29-17A-1
29-1 7A-2
29-1 7A -3
29-1 7A-4
29-17A-5
29-1 7A -6
29-1 7A -7
29-1 7A -8
29-17A-9
29-1 7A -10
29-1 7A -11"
29-18A-1
29-18A-2
29-1 8A -3
29-1 8A^4
29-18A-5
29 -ISA -6
29-18A-7
29-18A-8
29-1 8 A -*
29-18A-10
29-18A-11
*9-18A-12
29-1BA-13
29-1 BA -14
29-18A-15
29-18A-16
29-18A-17
0.1924
0.2898
0.1811
0.1792
0.2166
0.2558
0.1*61
0.1450
0.136!)
0.1779
0.2111
0.2493
0.2331
0.2762
0.3163
0.1426
0.2067
0.2467
0.2959
0.2055
0.1540
0.1593
0.1934
0.2131
0.2523
0.2913
0.3208
0.2209
0.2574
0.2368
0.1785
0.1322
0.1277
0.1071
0.2107
0.2621
0.2714
0.2905
0.2641
0.2311
0.1943
0.1948
0.1937
0.1931
0.1264
0.1249
O.1250
0.1227
0.1935
0.2362
0.2357
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
O.O
b.O
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
809.0000
759.0000
729.00OO
701.OOOO
756.0000
743.0000
732.0000
741.0000
703.0000
. 722. OOOO
805.0000
662.0000
651.0000
638.0000
615.0000
676.0000
740.0000
704.0000
733.0000
700.0000
663.00OO
815.0000
677.0000
709.0000
639.0000
673.0000
723.0000
719.0000
615.0000
591.0000
622.OOOO
618. GOOD
603.OOOO
598.0000
682.0000
•624.0000
613. OOOO
607.0000
601.000O
586.0000
587.OOOO
562.0000
569.OOOO
608.0000
604.0000
596.0000
580.0000
603.0000
634.0000
610.OOOO
611.0000
0.0
0.0
0.0
0.0
0.0
0.0
O.o
0.0
O.O
O.O
0.0
1615.0000
1622.0000
1622.0000
16OO.OOOO
1567.0000
1610. OOOO
1596.0000
1566. OOOO
1550. OOOO
1531. OOOO
1454.0000
1419.0000
1472.0000
1338.0000
1524.0000
1578.0000
1565.0000
1615.0000
1383.0000
1640. OOOO
168 5. OOOO
1294.0000
1023.0000
1164.0000
1695.0000
1624.0000
1684.0000
1661.0000
1358.0000
1417. OOOO
1365.0000
1154. OOOO
1390.0000
1286.0000
1441.0000
1329.0000
1447.0000
1554.0000
1473.0000
1502.0000
1643.0000
1683.0000
1677.0000
1593.0000
1629.0000
1657. OOOO
1583.0000
1582.0000
1561. OOOO
1564. OOOO
1565.0000
1522.0000
1572. OOOO
1583.0000
155 7. OOOO
1524.0000
1553.0000
1496.0000
1486.0000
1459. OOOO
1434.0000
1401.0000
1324.0000
1330.0000
1260.0000
1465.0000
1532.0000
1536.0000
0.0127
O.0194
0.0117
O.0115
0.0142
0.0169
O.OO95
0.0094
O.OO89
O.O114
0.0138
0.0165
0.0160
0.0193
O.0222
0.0099
0.0135
0.0166
O.0199
O.0134
0.0102
0.0105
0.0132
O.0137
0.0162
0.0187
O.0215
0.0138
0.0162
0.0148
O.0114
0.0086
O.OO85
O.OO65
0.0134
0.0170
0.0176
O.O188
0.0171
0.0148
0.0122
0.0123
0.0122
0.0122
O.OOBO
0.0079
0.0079
0.0078
0.0122
0.0152
0.0151
0.0132
0.0199
0.0125
0.0123
0.0149
0.0176
0.0101
0.0100
O.0094
0.0122
0.0145
0.0172
0.0160
0.0190
O.0218
O.O098
0.0142
0.0171
0.0204
0.0141
O.O106
0.0110
0.0133
0.0147
0.0174
0.0200
O.0221
0.0152
0.0177
0.0163
0.0123
0.0091
O.OO88
0.0074
0.0145
0.0180
O.O187
J.02CO
O.O182
0.0159
0.0134
0.0134
0.0133
0.0133
0.0087
0.0086
0.0086
O.O084
0.0133
O.O162
0.0162
0.0132
0.01V9
0.0125
0.0123
0.0149
0.0176
0.0101
0.0100
0. 0094
0.0122
0.0145
0.0172
0.0
0.0
O.O
0.0
' O.0142
0.0171
0.0204
0.0141
O.O106
0.0110
0.0
O.O
0.0
O.O
0.0
O.O152
U.0177
0.0163
0.0123
0.0091
0.0088
0.0074
0.0145
0.0180
0.0187
0.0200
0.0-182
0.0159
0.0134
0.0134
0.0133
0.0133
O.O087
0. 0086
0.00&6
O.OOB4
0.0133
0.0162
0.0162
0.0
0.0
0.0
O.O
o. -
O v
0.0
0.0
0.0
0.0
0.0
O.O
0.0160
0.019O
0.0218
0.0098
0.0
0.0
O.O
0.0
0.0
0.0
0.0133
O.O147
0.0174
0.0200
O.O221
O.O
J.O
0.0
0.0
O.O
J.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
a.o
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
bST2
8ST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
2 9-1 8A -18
29-19A-1
29-19A-2
29-19A-3
29-19A-4
29-19A-5
29-19A-6
29-1 9A -7
29-19 A -8
29-1 9A -9
29-19A-10
29-19A-11
29-1 9A -12
29-19A-13
2 9-1 9A -14
29-19A-15
29-19A-16
29-19A-17
29-19A-18
29-19A-19
29-19A-20
29-19A-21
29-19A-22
29-19A-23
29-19A-24
29-19A-25
29-19A-26
29-19A-27
29-19A-28
29-19A-29
29-19A-30
29-19A-31
29-19A-32
29-19A-33-
29-19A-34
29-19A-35
29-19A-36
29-19A-37
29-19A-38
29-19A-39
29-19A-40
29-19A-41
29-19A-42
29-19A-43
29-19A-44
29-19A-45
29-20A-1
29-20A-2
29-20A-3
29-2 OA-4
29-20A-5
0.2359
0.2052
0.205*
0.2073
0.2067
0.2498
0.1732
0.1756
0.1302
0.1741
0.1743
0.1744
0.1741
0.2080
O.2099
0.2491
0.0864
0.0905
0.1255
0.1282
0.1283
0.1258
O.1693
0.2077
0.2457
0.0902
0.0908
0.1275
0.1756
0.2091
0.0947
0.1276
0.1075
0.1496
0.1343
0.1350
0.1522
0.1810
0.2258
0.2200
0.1933
O.1587
0.2109
0.2584
0.2459
0.2075
0.1250
0.1656
0.2052
0.2424
0.2808
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
718.0000
724.0000
730.0000
687.0000
674.0000
747.0000
749.0000
65O.OCOO
724.0000
717.0000
604.0000
677.0000
6*2.0000
766.0000
595.0000
669.0000
647.0000
829.0000
705.0000
698.0000
746.0000
616.OOOO
630.0000
613.000O
590.0000
616.0000
616.00OO
600.0000
556.OOOO
541.0000
571.0000
553.0000
570.0000
550.0000
630.0000
622.0000
631.0000
615.0000
593.0000
637.0000
638.0000
616.0000
705.0000
673.0000
7O8.00OO
730.0000
625.0000
641.0000
643.0000
641 .OOOO
632.0000
1371.0000
1487.0000
1483.0000
1440. OOOO
1365.0000
1440.0000
1467.0000
1349.0000
1338.0000
1393.0000
1376.0000
1385. OOOO
1377.0000
1484.0000
1379.0000
1459.0000
12O3.OOOO
1328.0000
1286.0000
1356.0000
1345.0000
1314.0000
1454.0000
1532.0000
1515.0000
1150.0000
1290. OOOO
1403.0000
1367.0000
1349. OOOO
1325.0000
1346. OOOO
1334. OOOO
1374.0000
1277.0000
1435.0000
1470.0000
1477. OOOO
1324.0000
1468. OOOO
1477.0000
1463.0000
1449.0000
141 4. OOOO
1429.0000
1434.0000
1515.0000
1678.0000
1776.0000
1712. OOOO
1669.0000
1541.0000
1674.0000
1648.0000
1605.0000
1530.0000
1626. OOOO
1644.0000
1521.0000
1504.0000
1686.0000
1666.0000
1665.0000
1661.0000
1842.0000
1720.0000
1823.0000
1470.0000
1568.0000
1622.0000
1636. OOOO
1627.0000
1593.0000
1783. OOOO
1872. OOOO
1872.0000
1458.0000
1588.0000
1720.0000
1711.0000
1648.0000
1586.0000
1669.0000
1576.0000
1620. OOOO
1760.0000
1871.0000
1888.0000
1918.0000
1716.0000
1913.0000
1902.0000
177B.OOOO
1765.0000
1753.0000
1769.0000
1763.0000
1593.0000
1629.0000
1676. OOOO
1650.0000
1573.0000
0.0151
0.0142
0.0138
0.0141
0.0140
0.0171
0.0121
0.0121
0.0095
0.0114
0.0116
0.0116
0.0118
0.0142
0.0145
0.0172
0.0067
0.0069
0.0090
0.0091
0.0090
0.0088
0.0115
O.0139
0.0163
0.0066
0.0065
0.0089
0.0115
0.0139
0.0067
O.O089
O.OO74
0.0102
O.0097
0.0101
0.0114
0.0130
0.0162
0.0153
0.0147
0.0121
0.0152
O.O165
0.0162
0.0140
0.0086
0.0109
0.0135
O.O161
O.0187
0.0162
0.0141
0.0141
0.0143
0.0142
0.0172
0.0119
0.0121
0.0090
0.012O
0.0120
0.0120
0.0120
0.0143
0.0144
0.0171
0.0059
0.0062
O.O086
0.0088
0.0088
0.0087
0.0117
0.0143
0.0169
0.0062
0.0063
0.0088
0.0121
0.0144
0.006S
0.0088
0.0074
0.0103
0.0092
0.0093
0.0105
0.012S
0.0155
0.0151
0.0133
0.01O9
0.0145
0.0178
0.0169
0.0143
O.0086
0.0114
0.0141
0.0167
0.0193
0.0162
0.0141
0.0141
0.0143
O.0142
0.0172
0.0119
0.0121
0.0090
O.0120
0.0120
O.0120
O.0120
0.0143
0.0144
0.0171
0.0059
0.0062
0.0086
0. 0088
0.0088
0.0087
0.0117
0.0143
O.O169
0.0062
0.0063
0.0088
O.0121
O.0144
0.0065
0.0088
O.0074
0.0103
0.0092
O.OO93
0.0105
0.0125
0.0155
0.0151
0.0133
0.0109
0.0145
0.0178
0.0169
0.0143
O. OO66
0.0114
0.0141
0.0167
0.0193
O.O
O.C
0.0
0.0
0.0
O.b
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
J.O
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME tCR" B&T 1 6ST2 BST3 BST4 FASAM FUAIR FAOX1 FAQX2
1271
1272
1273
1274
1275
1276
1278
1279
1280
1281
1281
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1294
1295
1296
1297
1298
1299
1300
1301
1303
1304
1305
1306
1307
1308
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1321
1322
1323
1324
1325
1326
29-2OA-6
29 -20 A -7
29-20A-6
29-20A-9
29-20A-10
29-2OA-11
2 9-21 A -1
29 -21 A -2
29-2 1A -3
29-21A-4
29-21A-5
2 9-2 1 A -6
2 9-21 A -7
29-2 1A -6
2 9-21 A -9
29-21A-10
29-21A-11
29-21A-12
29-21A-13
29-21A-14
29-21A-15
29-2 2 A -I
29-22A-2
29-2 2A -3
29-2iA-4
29-22A-5
29-2 2A -6
29 -2 2 A -7
29-22 A -6
29-2 3A-1
29-23A-2
29-2 3A-3
29-2 3A-4
29-2 3A -5
29-23A-6
29-24A-1
29-2 4A -2
29-2 4A -3
29-24A-4-
29-24A-5
29-24A-6
29-24A-7
29-2 4* -8
29-2 4A -9
29-24A-10
29-4J5A-1
29-25A-2
29-2 5A -3
29-25A-4
29-25A-5
29-25A-6
0.1261
0.1603
0*1965
0.2317
0.2696
0.2876
0.0903
0.1345
0.1798
0.2177
0.1827
0.1610
0.1333
0.1977
0.1119
0.0689
0.0901
0. 1 106
0.1361
0.1616
0.1856
0.1467
O.1751
0.2072
0.2388
0.2703
0.1114
0.1440
0.2075
0.1299
0.1791
0.2149
0.1309
0.1612
0.2118
0.2201
0.2622
0.1854
0.1530
0.1145
0.1201
0.1486
0.1763
0.2102
0.2492
0.1143
0.2255
0.2723
0.3195
0.3691
0.4187
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
Ci.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
623.0000
636.0000
645.0000
6*2.0000
634.0000
635.0000
606.0000
604.0000
592.0000
582.0000
584.0000
584.0000
591.0000
574.0000
597.0000
599.0000
588.0009
584.OOOO
573.00UO
576.0000
568.0000
809.0000
816.OOOO
628.00OO
831.0000
805.0000
776.0000
813.0000
825.3000
331.OOOO
346.0000
328.0000
330.0000
622.0000
588. OOOO
566.OOOO
563.0000
589.0000
590.0000
617.0000
35* .0000
346.00OO
340.0000
336.0000
330.0000
626.OOOO
606.00OO
614.00OO
605.00OO
608.0000
600.0000
1491.0000
1625. OOOO
1778.0000
1703. OOOO
1671.0000
1638. OOOO
1541.0000
1904.0000
1642.0000
139&.0000
1472. OOOO
1542. OOOO
1744. OOOO
1219.0000
1850.0000
1770.0000
1433.0000
1036. OOOO
928.0000
888. OOOO
838.0000
640. OOOO
656. OOOO
679.0000
693. OOOO
691.000C
640. OOOO
651.0000
694.duOO
9BO.OOOO
1529.0000
1465.0000
1480. OOOO
1696.0000
1584.0000
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1537.0000
1623.0000
1661. OOCO
164 5. OOOO
1595. OOOO
1550.0000
1424.0000
1742.0000
1575.0000
1480.0000
1519.0000
1534.0000
1522.0000
1300.0000
1511.0000
1337. OOOO
1411.0000
1602.0000
1681.0000
1636.0000
1498.0000
895.0000
92O.OOOO
1027.0000
1133.0000
1219.0000
807.0000
908.0000
1 604. OOOO
1512.0000
I486. OOOO
1150.0000
1360.0000
1551.0000
1460. OOOO
1197.0000
1186. OOOO
1210. OOOO
1225. OOOO
1233.0000
9 31. OOOO
934. OOOO
952.COOO
956.0000
962.0000
1503.0000
1826. OOOO
1930. OOOO
1905.0000
1864.0000
1812.0000
O.OO87
0.0108
0.0130
0.0155
0.0179
O.0192
O.OO66
0.0091
0.0121
0.0147
0.0124
0.0110
0.0096
0.0136
0.0080
0.0055
O.OO66
O.OO8O
0.0099
0.0113
0.0130
O.OO96
0.0114
0.0137
0.0157
0.0177
0.0077
0.009b
U.0134
0.009V
0.0125
0.0153
0.0100
0.0119
0.0152
O.0164
0.0197
0.0144
O.O126
0.0106
O.O091
0.0114
O.O128
0.0146
0.0172
O.OOB3
O.O149
0.0181
0.0215
0.0244
0.0277
O.OO87
0.0110
O.0135
0.0159
O.0185
0.0198
0.0002
0.0093
0.0124
0.0150
0.0126
0.0111
O.O092
0.0136
0.0077
0.0047
0.0062
0.0076
O.O094
0.0111
0.0128
0.0101
0.0120
0.0143
O.O164
0.0186
0.0077
0.0099
0.0143
0.0089
0.0123
0.0148
O.OO90
0.0111
0.0146
O.O151
0.0180
0.0128
O.0105
0.0079
0.0083
0.0102
0.0121
0.0145
0.0171
O.0079
0.0155
0.0187
0.0220
0.0254
0.0288
O.O
0.0
O.O
0.0
0.0
0.0
O. 0062
0.0093
0.0124
0.0150
O.OU6
0.0111
0. 0092
0.0136
0.0077
O. 0047
C.0062
O.0076
0.0094
0.0111
0.0128
0.0101
0.0120
0.0143
0.0164
0.0186
0.0077
0. 0099
O.0143
O.0089
0.0123
0.0148
O.0090
0.0111
O. 0146
0.0151
O.0180
0.012B
0.0105
0.0079
O.0083
O.O102
0.0121
0.0145
0.0171
0.0079
0.0155
0.0187
0.0220
0.0254
0.0288
O.O067
0.0110
0.0135
0.0159
0.0185
C.019B
0.0
0.0
0.0
0.0
O.O
o.o
o.o
0.0
0.0
0.0
0,0
o.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
BST1
BST2
BST3
BST*
FASAM
FUAIR
FAOX1
FAOX2
29-25A-7
29-26A-1
29-26* -2
29 -2 6 A -3
29-2 7A-1
29-27* -2
29-2 7A -3
29-27A-4
29-2 7A -5
29-2 8A-1
29-2 8A -2
29-28A^3
29-28AT-4
29-28A-5
29-28A-6
29-28A-7
29-28* -8
29-28A-9
29-28* -10
29-28A-11
29-2 8* -12
29 -2 8* -13
29-2 8* -1*
29-28A-15
29 -2 8* -16
29-28A-17
29-28A-18
29-28* -19
29-28A-20
29-29A-1
29-29A-2
29-29A-3
29-29*-4
29-29* -5
29-30A-1
29-30* -2
29-30A-3
29-30* -4
29-30* -5
29-30* -6
29-31 A -1
29-31A-2
29-32*-!
29-32A-2
29-33*-!
29-33* -2
29-33A-3
29-3 3* -4
29-33* -5
29-33* -6
29-33A-7
0.4496
0.2620
0.1699
0.3605
0.2732
0.2760
0.2767
0.3657
0.3477
0.1636
0.2167
0.2656
0.3143
0.361',
0.3888
0.1638
0.1367
0.1100
0.2180
0.1967
0.2479
0.2719
0.2918
0.2838
0.3280
0.3833
0.3556
0.2987
0.2823
0.1285
0.1382
O.1498
0.2043
0.1253
0.2370
0.2793
0.3229
0.3696
0.3686
0.3700
0.3728
0.3552
0.3723
0.2845
0.20S8
0.2547
0.2735
0.2937
0.3195
0.1947
0.2400
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
597.0000
551.0000
570.0000
542.0000
406.0000
485.0000
488.0000
491.000O
498.0000
604.0000
581.0000
570.0000
566.OOOO
558.0000
551.0000
599.0000
599.0000
597.0000
572.0000
577.0000
564.0000
560.0000
559.0000
567.0000
549.0000
541.0000
544.0000
556.0000
559.0000
615.0000
6X9.00OO
619.00OO
636.0000
629.0000
608.0GOO
600.0000
585.OOOO
583.0000
553.0000
545.0000
594.0000
594.0000
524.0000
555.0000
533.0000
544.0000
543.0000
487.0000
440.0000
577.0000
559.0000
0.0
1961.0000
1802. OOOO
194O.OOOO
1702.0000
1789.0000
1569.0000
1921.0UOO
1891. OOOO
1811.0000
2020. OOOO
2041.0000
2021.0000
192 8. MOO
1857. OOOO
1856.0000
1615.0000
1046. OOOO
1935.0000
1919.O-300
1929.0000
1897.0000
1872.0000
2031.0000
1964.0000
1853.0000
1910.0000
2017.0000
2028.0000
1673.0000
1637.0000
1796. OOOO
1956.0000
1075.0000
1861.0000
1820.0000
1761. OOOO
loSl.OOOO
1451.0000
1215.0000
1663. OOOO
1591.0000
1383.0CIOO
1641. OOOO
1872.0000
1810.0000
1725.0000
1590.0000
1491 .0000
1877.0000
1822.0000
1771.0000
1420.0000
1207. OOOO
1459. OOOO
1266.0000
1155.0000
1230.0000
1554.0000
1501.0000
1681.0000
1834.0000
19O8.0000
1883.0000
1840.0000
1821.0000
1668.0000
1561.0000
1445.0000
1707.0000
1764.0000
1730. OOOO
1493.0000
1285.0000
1744.0000
1727.0000
1*24.0000
1374.0000
1654.0000
1758.0000
1585.0000
1500.0000
1638.0000
1805. OOOO
1369.0000
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
939. OOOO
1199.0000
1717.0000
1702.0000
6711.0000
1623.0000
1523.0000
1649. 0006
1664.0000
0.0297
0.0175
0.0113
O.0242
0.0182
0.0181
0.0182
0.0247
O.O233
0.0101
0.0125
0.0155
0.0193
a. 0222
0.0263
0.0116
0.0098
0.0081
0.0148
O.O131
0.0167
0.0182
0.0197
0.0201
0.0228
O.O261
O. 0246
0.0211
0.0196
O.OOttk
0.0097
0.0105
0.0144
0.0088
0.0167
O.0196
0.0227
0.0256
0.0257
0.0256
0.0246
0.0249
0.0261
O.0204
0.0134
0.0163
0.0175
0.0190
0.0204
0.0131
0.0161
0.0309
0.0180
0.0110
0.0248
0.0188
0.0190
0.0190
0.0252
0.0239
0.0113
0.0149
0.0183
0.0216
0.02*9
0.0268
0.0113
0.0094
O.0076
0.0150
O.0135
0.0171
0.0187
0.0201
0.0195
0.0226
0.0264
0.0245
0.0205
0.0194
0.0088
0.0095
0.0103
0.0141
0.0086
0.0163
0.0192
0.0222
0.0254
0.0254
0.0255
0.0256
0.0244
0.0256
O.O196
0.0142
0.0175
0.0188
0.0202
0.0220
0.0134
0.0165
0. 0309
0.0180
0.0110
0.0248
0.01&8
0.0190
0.0190
0.0252
0.0
0.0113
0.0149
0.0183
0.0216
0.0249
0.0268
0.0113
0.0094
0.0076
0.0150
0.0135
0.0171
0.0187
0.0201
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0142
0.0175
0.01U8
0.0202
O.0220
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0239
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0195
0.0226
O.0264
0.0245
0.0205
0.019*
O.OO88
0.0095
0.0103
0.0141
0.0086
0.0163
0.0192
0.0222
0.025*
0.0254
0.0255
C.0256
0.0244
0.0256
0.0196
0.0
0.0
0.0
0.0
O.O
0.0134
0.0165
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
29-3 3A -8
29-33A-9
29-33A-10
29 -3 3 A -11
29-34A-1
29-35A-1
29-35A-2
29-35A-3
29-35A-4
29-35A-5
29-3 5A-6
29-36A-1
29-36A-2
29-3bA-3
29-36A-4
29-36A-5
29-36A-6
29-36A-7
29-36A-8
29-36A-9
29-36A-10
29-3 6A -11
29-36A-12
29-37A-1
29-37A-2
29-3 7A -3
29-3 7A-4
29-37A-5
29-3 7A -6
2 9 -3 7 A -7
29-37A-6
29-37A-9
29 -3 7 A -10
29-37A-11
2 9-3 7A -12
29-37A-13
29-37A-14
29-37A-15
29-37A-16
29-3 7A -17
29-38A-1
29-38A-2
29-38A-3
29-38A-4
29 -3 8 A -5
29-38A-6
29-38A-7
29-38A-8
29-38* -9
29-38A-10
29-38A-11
0.2671
0.2845
0.2573
0.2834
O.O
0.1675
O.196O
0.2606
0.3261
0.3885
0.4153
0.2344
0.2741
0.2963
0.3178
0.3396
0.3519
0.3746
0.2058
0.1873
0.1640
0.1419
0.1201
0.2000
0.2384
0.2563
C.2738
C.2920
0.3111
0.1818
0.1449
0.2066
0.2457
0.2847
0.3049
0.2652
0.3218
0.1882
0.1484
0.0984
0.2245
O.2S96
0.2596
0.2918
0.3117
0.2230
0.2318
0.2685
0.3055
0.2454
0.2728
0.0
0.0
0.0
0.0
628.0000
S71.00OO
556.0000
556. OOOO
533.0000
539.0000
525.OOOO
548.0000
537.OOOO
529.0000
524.0000
520.00Gb
518.0000
509.0000
545.0-JOO
564.OOOO
556.0000
558.0000
563. OOOO
5 •,8.0000
535.JOOO
530.000O
530.0000
522.0000
514.OOOO
54-6. (X>00
587.000O
551.0000
539.0000
525.0000
519.0000
521.0000
503.0000
540.0000
576.0000
579.000O
580.0000
577. JUOO
580.0000
576.0000
580.0000
581.0000
581.0000
575.0000
585.0000
577.00OO
576.0000
546.0000
527.0000
534.0000
508.0000
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
o.o
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
O.O
O.O
0.0
0.0
O.O
0.0
o.o
0.0
0.0
0.0
1729.0000
1595. OOOO
1530.0000
1409.0000
601.0000
1855. OOOO
1953.0000
1934. OOOO
1889.0000
1736. COCO
1604.0000
1912.0000
1728.0000
1559. OOOO
1511.0000
1469.0000
1449. OOOO
1424.0000
1920. OOOO
1925.0000
1822. OOCO
1703.0000
1552.0000
1517.0000
141 2. OOOO
1362.0000
1315.0000
1,. 96. OOOO
1254. OOOO
1301.0000
155 6. .WOO
1506. OOOO
1452.0000
1376. OOOO
1341.0000
1323.0000
12ol.OOOO
1344. OOOO
1764. OOOC
1563. OOOO
18 19. OOOO
1 745 . OOOO
1751. OOOO
1722. OOOO
1684. OOOO
1823.0000
1812.0000
1716. OOOO
1716. OOOO
1711.0000
1719.0000
1611.0000
1519. OOOO
1423. OOOO
1330.0000
600.0000
1661.0000
1774.0000
1886.0000
1941. OOOO
2043.0000
2039.0000
1857.0000
1810.0000
1756.0000
1735.0000
1738.000O
1740.0000
1718.0000
1811.0000
1728. OOOO
162-,. OOOO
1542.0000
1436. OOOO
1741. OOOO
17O6.000O
16 56. OOOO
1520.0000
1429. COCO
1293. OOOO
1731.0000
1634. OOOO
1677. OOOO
1589. OOOO
1427.0000
1333.0000
1484. OOOO
1503.0000
1746. OOOO
160 2. OOOO
1400.0000
1773.0000
1720.0000
1700.0000
1653. OOOO
1632.0000
1757.0000
1754.0000
1666.0000
1666. OOOO
1720.0000
1676.0000
0.0180
0.0195
0.0174
0.0192
0.0
0.0115
0.0134
9.0176
0.0220
0.0262
0.0
0.0160
0.0189
O.O2O5
0.0215
0.0228
0.024U
0.0246
0.0144
O.O129
0.0113
0.0099
0.0086
0.0135
O.0159
0.0171
0.0180
0.0196
O.0205
0.0123
O.0099
0.0133
0.0161
0.0185
O.OlVb
0.01Y4
0.0209
0.0121
0.0095
0.0069
O.OOOO
O.OOOO
O.OOOO
O.OOOO
0.0000
0.0001
0.014b
O.0169
0.0193
0.0156
0.0172
0.0184
O.0196
0.0177
0.0195
0.0
0.0115
0.0135
0.0179
O.O226
0.0267
0.0286
0.0161
O.0189
O.O2O4
U.O219
0.0234
0.0242
0.0258
0.0142
0.0129
0.0113
0.0098
0.0083
0.0138
0.0164
O.0176
0.0188
0.0201
0.0214
0.0125
0.0100
0.0142
0.0169
0.0196
0.0210
0.0182
0.0221
0.0129
0.0102
0.0068
0.0154
0.0179
0.0179
0.0201
0.0214
0.0153
0.0160
0.0185
O.021O
O.0169
O.01&8
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0142
0.0169
O.0196
0.0210
0.0162
O.0221
0.0129
O. 0102
O. O068
0.0
0.0
0.0
O.O
O.O
0.0
0.0160
0.0185
0.0210
O.0169
O.O
0.0184
0.0196
O.0177
0.0195
0.0
0.0115
0.0135
0.0179
0.0226
0.0267
O. 0286
0.0161
0.0189
0.0204
0.021V
0.0234
O.0242
0.0258
0.0142
0.0129
0.0113
0.0098
O.OO83
O.0138
0.0164
O.O176
0.0188
O.O2O1
0.0214
0.0125
O.0100
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0154
0.0179
0.0179
0.02O1
0.0214
0.0153
0.0
0.0
0.0
0.0
O. 016ft
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
6ST1
BST2
6ST3
BST4
FAS AM
FUAIR
FAOX1
FAOX2
1441
1470
1471
1472
1473
1474
1475
1476
1477
1476
1479
1480
1481
1482
1483
1484
1485
1486
1444
1445
1446
1447
1448
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1462
1463
1464
1465
1466
1467
1468
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
29-38A-12
29-3 8A -13
29-38A-14
29-38A-15
29-38A-16
29-38A-17
29-38A-18
2 9-3 BA -19
29-38A-20
29-38A-21
29-38A-i2
29-38A-23
29-38A-24
29-3 8A -25
29-38A-26
29-38A-27
29-38A-28
29-38A-29
29-39A-1
29-39A-2
29-3 9A -3
29-39A-4
29-39A-5
29-40A-1
29-4OA-2
29-40A-3
29-40A-4
29-40A-5
29-4OA-6
29-40A-7
29-40A-8
29-40A-9
29 -40 A -10
29-40A-11"
29-4 1A-1
29-41 A -2
29-41 A -3
29-41 A -4
29-42A-1
29-42A-2
29-42A-3
29-4 3A-1
29—»3A-2
29-43A-3
29-43A-4
29-43A-5
29-434-6
29-43A-7
29-43A-8
29-43A-9
29-43A-10
0.2574
0.2322
0.2672
0.2856
O.3025
0.3219
0.3404
0.2177
0.2434
0.2575
O.2756
0.2929
0.2243
0.2526
0.2679
0.2729
0.2857
0.3016
0.2592
0.2580
0.2713
C.2882
0.3088
0.2902
0.3309
0.3735
0.4761
0.4946
0.5331
0.5749
0.6178
0.2646
0.2455
0.2253
0.5256
0.5427
0.4749
0.4248
0.4248
0.4610
0.5114
0.2426
0.2903
0.3371
0.3629
0.3803
0.4040
0.4199
0.4457
0.4669
O.3076
576.0000
556.OOOO
546.0000
546. OOOO
556.0000
554.0000
556.DOOO
563. OOOO
555.0000
554. OOOO
554.0000
553.OOOO
553.UOOO
548.0000
536.0000
543.0000
537.0000
543.0000
604.OOOO
606.0000
600.0000
588.0000
590.0000
610.0000
629.0000
639.0000
641.0000
635.0000
635.0000
629.0000
628.0000
611.0000
597.0000
607.0000
523.0000
522.0000
537.0000
540.0000
548.0000
542,0300
542.0000
513.0000
512.0000
510.0000
510.0000
511. OOOO
512.0000
504.0000
497.0000
500.0000
500.0000
U.O
0.0
0.0
O.O
0.0
u.o
0.0
O.O
0.0
O.O
O.O
0.0
0.0
0.0
o.o
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
1720.0000
1860.0000
1783.0000
1760.0000
1702.OOOO
1618. OOOO
1606.0000
1848.0000
1811.0000
17B5.0OOO
1749.0000
1705. OOOO
1751. OOOO
1666.0000
1643.0000
1605.0000
1601.0000
1586. OOOO
1285.0000
1255.0000
1275.0000
1300.0000
1347. OOOO
1573.0000
1655.0000
1711.0000
1800. OOOO
1758.0000
1731. OOOO
1709.0000
1658.0000
1514.0000
1423.0000
1396.0000
1752.0000
1716.0000
1655.0000
1679.0000
1874.0000
1899.0000
1862.0000
1665.0000
1856.0000
1742.0000
1729.0000
1731. OOOO
1735.0000
1728. OOOO
1695.0000
1643.0000
1802.0000
1692.0000
1703.0000
1661.0000
1648.0000
1685. OOOO
166i.OOOO
1624. OOOO
1737.0000
1680.0000
1653.3000
1627.0000
1609.0000
1657.0000
1612.0000
1599.0000
1585.0000
158 2. OOOO
1589. OOOO
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
O.O
0.0
O.O
0.0
0.0
O.O
1751.0000
1759.0000
1773.0000
1784.0000
1793.0000
1794.0000
1795.0000
1783.0000
1737.0000
1738.0000
0.0167
0.0154
0.0173
0.0186
0.0198
O.0212
0.0224
0.0144
0.0162
0.0172
0.0184
O.0193
O.0154
0.0176
0.0182
0.0191
0.0197
O.O2O4
0.0166
0.0166
0.0176
0.0186
0.6203
0.0188
0.0213
0.0241
0.0304
0.0313
0.0337
0.0359
0.0389
0.0173
0.0161
0.0150
0.0339
0.0355
0.0310
0.0283
O.0283
0.0304
0.0330
0.0161
0.0191
0.0222.
0.0235
0.0248
O.0260
O.C271
0.0287
0.0300
0.0200
0.0177
0.0160
0.0184
0.0196
0.0206
0.0221
0.0234
0.0150
0.0167
0.0177
0.0190
0.02O2
0.0154
0.0174
0.0184
0.0188
0.0197
0.02O7
0.0178
0.0178
0.0187
O.O198
0.0212
0.0200
0.0228
0.0257
0.0328
0.034O
0.0367
0.0396
0.0425
0.0182
O.0169
0.0155
0.0362
0.0373
0.0327
0.0292
0.02V2
0.0317
0.0352
0.0167
C.0200
0.0232
0.0250
0.0262
0.0278
0.0289
0.0307
0.0321
0.0212
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0150
0.0167
0.0177
0.0190
0.0202
0.0154
0.0174
0.0184
0.0188
0.0197
0.0207
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0212
0.0177
O.016O
0.01B4
0.0196
0.0208
0.0221
0.0234
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
u.o
0.0178
0.0178
0.0187
0.0198
0.0212
O.02OO
0.0228
0.0257
0.0328
0.0340
0.0367
O.0396
0.0425
0.0182
0.0169
0.0155
0.0362
0.0373
0.0327
0.029*
O.O29i
0.0317
0.0352
0.0167
0.0200
0.0232
0.0250
0.026*.
II.O27B
O.O289
0.0307
0.0321
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
BST1
BST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
>
O
1496
1499
1500
1501
1502
1503
1504
1505
1507
1508
1509
1510
1511
1512
1513
151*
1515
1516
1517
1518
1519
1520
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1549
1550
1551
1552
29-43A-11
29-43A-12
29-43A-13
29-43A-14
29-43A-15
29-43A-16
29-43A-17
29-43A-18
29-44A-1
29-4 4A-2
29-44A-3
29-44A-4
29 -44* -5
29-4 4A -6
29-44A-7
29-44A-8
29-44A-9
29-4 4A -10
29-44A-11
29-44A-12
29-4 4A -13
29-»4A-14
29-4 5A-1
29-45A-2
29-45A-3
29-4 5A -4
29-4 5A -5
29-4 5A -6
29-45A-7
29-45A-8
29-4 5A -9
29-45A-10
2:9 -4 5A -11
29-45A-12 -
29-45A-13
29-45B-1
29-4 5B-2
29-4 5B-3
29-4 5B-»
29-4 5B-5
29-45B-6
29-458-7
29-4 58 -6
29-458-9
29-45B-10
29-45B-11
29-45B-12
29-46A-1
29-46A-2
29-46A-3
29-46A-4
0.3501
0.3947
0.4437
0.4134
0.3771
0.3358
0.2955
0.2511
O.1922
0.2275
0.2622
0.2794
O.298O
0.3149
0.3327
0.3506
0.2016
0.2352
O.2726
0.3071
0.3275
0.2920
0.2234
0.2597
0.2764
0.2932
0.3107
0.1880
0.1543
0.1625
0.1961
0.2303
0.2679
0.2865
0.2580
0.189O
0.2234
0.2593
0.2760
0.2932
0.3107
0.3271
0.1968
0.2323
0.2654
0.2863
0.3046
0.1318
0.1715
0.2106
0.2484
509.0000
507.0000
498.OOOO
498.0000
495.0000
493.0000
493.0000
499.CXWO
526.0000
509.0000
496.0000
490 . 0000
487. OOOO
488.0000
488.COOO
487.0000
513.0000
500.0000
.495.0000
484.0000
478.0000
486.0000
615.0000
609.0000
6O3.OOOO
592.0OOO
589.0000
615.0000
618.0000
619.0000
622.0OOO
6O9.OOOO
6O7.0000
600.0000
608.0000
612.0000
6O3.OOOO
597.0000
587.0000
574.0000
569.0000
550.OOOO
615. GOOD
604.UOOO
585.0000
582.0000
566.0OOO
541.0300
536.OOOO
53f.OOOO
530.0000
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
O.O
£.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
O.O
o.o
0.0
1715.0000
1699.0000
1675. OOOO
1709. OOOO
1735. OOOC
1748.0000
1827.0000
1882. OOOO
1670. OOOO
1659.0000
1628. OOOO
1616.0000
1664.0000
1664. OOOO
1667. OOOO
1646.0000
1652.0000
1601.0000
1566.0000
1575.0000
1601.0000
1614. OOOO
1569.0000
1576.0000
1553.0'JOO
1524.0000
1493. OOOO
1496.0000
1380.0000
1403.0000
1522. OOOO
1585.0000
1566.0000
1534.0000
1559.0000
1497.0000
1516.0000
1464.0000
1439.0000
1416.0000
1394.0000
1362.0000
1509. OOOO
1492. OOOO
145O.OOOC
1420.0000
1396.0000
1V57.0OOO
1815.0000
1706.0000
1673. OOOO
1764.0000
1773.0000
1765. OOOO
1802.0000
1806. OOOO
1803.0000
1748.0000
1764.0000
1675.0000
1654.0000
1612.0000
1589.0000
1562.0000
1557. OOOO
1532.0000
1492.0000
1679. OOCO
1633.0000
1603.0000
159 3. OOOO
1563.0000
1573.0000
164 5. OOOO
1891.0000
1908. OOOO
1699.0000
1872.0000
180V. OOOO
1658. OOOO
1679.0000
1827.0000
1841.0000
1857.0000
1850.0000
1664. OOOO
1816.0000
18 16. OOOO
18O9.OOOO
1792.0000
1769. OOOO
1729.0000
1661.0000
1834.0000
18 1O. OOOO
1600.0000
1762.0000
1720. OOOO
1328.0000
1365. OOOO
1335. OOOO
1391. OOOO
0.0229
0.0254
0.0283
0.0265
O.0246
0.0224
0.0196
0.0164
0.0000
0.0000
O.0165
0.0176
0.0187
O.O195
0.0207
0.0217
0.0123
0.0144
0.0167
O.0185
0.0198
0.0178
0.0140
0.0162
0.0172
0.0182
0.0192
0.0119
O.O096
0.0098
0.0125
0.0145
0.0166
0.0163
0.0163
0.0120
0.0141
O.O163
0.0172
O.0185
0.01V4
0.0205
0.0124
0.0147
0.0171
0.0183
0.0194
0.0083
O.O108
O.0131
0.0154
0.0241
0.0272
0.0305
0.0284
0.0259
0.0231
O.O203
0.0173
0.0132
0.0157
0.0180
0.0192
0.0205
0.0217
O.0229
0.0241
0.0139
0.0162
0.0188
0.0211
0.0225
0.0201
0.0154
0.0179
0.0190
O.O202
0.0214
0.0129
0.0106
0.0112
O.0135
0.0158
0.0184
0.0197
0.0178
0.0130
O.O154
O.0178
0.019O
0.0202
0.0214
0.0225
0.0135
0.0160
0.0183
0.0197
0.0210
0.0091
O.O118
O.O145
0.0171
O.0241
0.0272
O.0305
0.0284
0.0259
0.0231
0.0203
0.0173
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
0.0139
0.0162
0.0188
0.0211
0.0225
0.0201
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O. 0 1 12
0.0135
0.0158
0.0184
0.0197
0.0178
0.0
0.0
O.O
0.0.
0.0
0.0
0.0
0.0135
0. 0 lt>O
0.0183
0.0197
0.0210
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0132
0.0157
0.0180
0.0192
O.0205
0.0217
0.0*29
0.0241
0.0
0.0
0.0
0.0
0.0
0.0
0.0154
0.0179
0.0190
O.0202
O.0214
0.0129
0.0106
O.O
0.0
0.0
O.O
0.0
c.o
0.0130
0.0154
O.O178
0.0190
0.0202
0.0214
0.0225
0.0
O.O
0.0
0.0
O.O
0.0091
0.0118
0.0145
0.0171
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQR
8ST1
BST2
BST3
BST4
FAS AM
FUAIR
FAOX1
FAOX2
O
to
1553
1554
1555
1556
1557
1558
1559
1560
1561
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1589
1590
1591
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
29-46* -5
29-46A-6
29-46A-7
29-46A-8
29-46A-9
29-46A-10
29-46A-11
29-46A-12
29-46A-13
29-4 7* -1
29-47A-2
29-47A-3
29-47A-4
29-47A-5
29-47* -6
29-47* -7
29-47A-8
29-47A-9
29-47*-10
29-47A-11
29-47* -12
29-474-13
29-48*-!
29-48* -2
29-48A-3
29-48* -4
29-48* -5
29-48A-6
29-46A-7
29-48* -8
29-48A-9
29-48* -10
29-49A-1
29-50* -1
29-50*-2
29-5O*-3
29-50* -4
29-50* -5
29-50* -6
29-50A-7
29-50A-8
29-50* -9
29-50A-10
29-5 OA -11
29-50A-12
29-50A-13
29-50A-14
29-50A-15
29-50* -16
29-50A-17
29-50A-18
0.1339
0.1803
0.2188
0.1988
0.1556
0.1982
0.1785
0.1344
0.1113
0.2269
0.2620
0.2983
0.3142
0.3332
0.3505
0.2345
0.2723
0.3128
0.3279
0.2902
0.1013
0.1060
0.2086
0.2282
0.1905
0.1718
0.2018
0.0868
0.1635
0.20G5
0.2376
0.1822
0.0
0.2218
0.2769
O.2340
0.2127
0.2624
0.3088
0.36O9
0.2396
0.1900
0.1631
0.1387
0.0999
0.2222
0.1889
0.2435
0.2329
0.2694
0.3196
543.0000
534.0000
527.0000
519.0000
529.0000
526.0000
512.0000
533.0000
543.GOOO
87O.OOOO
848.OOOO
837.0000
826.0000
811.0000
799.0000
847.0000
842.0000
824.OOOO
812.0000
825.0000
732.0000
747.0000
690.0000
691.0000
701.0000
712.0000
699.OOOO
664.000O
710.0000
698.0000
686.0000
698.0000
583.0OOO
586.0000
602.0000
602.0000
617.0000
611.0000
617.0JOO
618.0000
597.0000
599.0000
626.0000
613.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
1859.0000
1779.0000
1537.0000
1522.0000
1640.0000
1482. OOOU
1496.0000
1638.0000
1673.0000
1821. OOOO
1762 .OOOO
1726.0000
1719.0000
1740.0000
1736.0000
1795.0000
1749. OOOO
1710.0000
1705.0000
1739.0000
1444.0000
1495.0000
1753.0000
1672.0000
1770.0000
1873.0000
1772.0000
1588. OOOO
1853.0000
1725.0000
1630.0000
1771.0000
584.0000
1704.0000
1678.0000
1743.0000
1734.0000
1613.0000
1574. OOOO
1490.0000
1602. OOOO
1731.0000
1721.0000
1634.0000
1427. OOOO
1681. OOOO
1722.0000
1610.0000
1611.0000
1547.0000
1522. OOOO
1434.0000
1367.0000
1346. OOOO
131V. OOOO
1390. OOOO
1335. OOOO
1316.0000
1400.0000
1502.0000
166 3. OOOO
1636. OOOO
1585. OOOO
1555.0000
1509.0000
1483.0000
1670. OOOO
16 29. OOOO
1570.0000
1525.0000
1543.0000
1268. OOOO
1298.0000
1430. OOOO
1407.0000
1456.0000
ISO 5. OOOO
1462.0000
1077. OOOO
1531.0000
1464.0000
1434.0000
1460.0000
569.0000
1325.0000
1357.0000
1324. OOOO
1540.0000
1480.0000
1487.0000
1458. OOOO
1374. OOOO
1441.0000
1584.0000
1502.0000
1O82.OOOO
1526.0000
1588.0000
1490.0000
1497.0000
1450.0000
1450. OOOO
0.0086
0.0109
0.0137
0.0122
O.O098
0.0127
0.0111
0.0087
O.OO75
0.0143
0.0163
0.0183
0.0195
0.0205
0.0217
0.0151
O.O167
0.0195
0.0204
0.0180
0.0067
0.0070
O. O127
0.0141
0.0117
O.0106
0.0125
O.OO57
0.0102
0.0126
0.0147
0.0114
0.0
0.0142
0.0182
0.0153
0.0138
0.0169
0.0198
0.0232
0.0157
0.0124
0.0109
0.0092
O.OO64
0.0144
0.0121
0.0159
0.0149
0.0176
O.0205
0.0092
0.0124
0.0151
0.0137
0.0107
0.0136
0.0123
0.0092
0.0077
0.0156
0.018O
0.0205
0.0216
0.0229
0.0241
0.0161
0.0187
0.0215
0.0226
0.0200
0.0070
O.OO73
O.O 143
0.0157
0.0131
0.0118
0.0139
0.006O
0.0112
0.0138
0.0163
0.0125
0.0
0.0153
0.0190
0.0161
0.0146
0.0181
0.0212
0.0248
0.0165
0.0131
0.0112
0.009S
O.0069
0.0153
0.0130
0.0168
0.016O
0.0185
0.0220
0.0092
0.0124
0.0151
0.0137
O.0107
O.0136
0.0123
0. 0092
O.OO77
0.0
0.0
0.0
0.0
0.0
O.O
0.0161
0.0187
0.0215
0.0226
0.02OO
0.0
0.0073
0.0143
0.0157
0.0131
0.0118
0.0139
0.0060
0.0
O.O
0.0
0.0
0.0
O.O153
0.0190
0.0161
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0153
0.0130
0.0168
0.0160
0.0185
0.0220
O.O
0.0
O.O
0.0
u.O
0.0
0.0
c.o
0.0
0.0156
O.018O
0.02O5
0.0216
0.0229
0.0241
0.0
O.O
0.0
O.O
0.0
O.OO70
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.0112
0.0138
0.0163
0.0125
0.0
0.0
O.O
0.0
0.0146
o.oiai
0.0212
0.0248
0.0165
0.0131
0.0112
O.OO95
0.0069
O.O
0.0
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BSTi
BST3
6ST4
FASAM
FUMR
FAOX1
FAOX2
8
29-50A-19
29-51A-1
29-51A-2
29-51A-3
29-51A-4
29-51A-5
29-51A-6
2 9-51 A -7
29-5lA-«
29-5 1A -9
29-51A-10
29-51A-11
29-51A-12
29-51A-13
29-5 1A -14
29-51A-15
29-51A-16
29-51A-17
29-51A-18
29-51A-19
29-5 1A -20
29-52A-1
2 9 -52 A -2
29-52A-3
29-52A-4
29-52A-5
29-52A-6
29-52A-7
29-52A-8
29-5iA-9
29-52A-10
29-52A-11
29-52A-X2
29-52A-13
29-52A-14
?9-52A-15
29-5 2A -16
29-52A-17
29-53A-1
29-5 4A-1
29-54A-2
29-54A-3
29-54A-4
29-54A-5
29-5** -6
29-54A-7
29-54A-8
29-55A-1
29-55A-2
29-55A-3
29-55A-4
0.2337
0.2745
0.2*31
0.1637
0.1*83
0.1091
0.2283
0.1876
0.1621
0.1397
0.1160
0.2072
0.1878
0.1830
0.1375
0.1S85
0.1785
0.1827
0.1991
0.2190
0.2362
0.3159
0.2678
0.2237
0.2781
0.3059
0.3315
0.3513
0.2458
0.2286
0.2002
0.3053
0.2914
O.2626
0.2389
C.2153
0.1920
0.3397
O.O
0.265^
0.2435
0.2175
0.2148
0.2122
0.1980
0.1802
0.1678
0.2506
0.2085
O.1984
0.1792
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
o.o
0.0
0.0
0.0
O.O
O.O
o.o
0.0
O.O
0.0
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
144. OOOO
o.c
0.0
0.0
0.0
0.0
O.O
0.0
o.u
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
i».0
O.O
0.0
0.0
O.O
o.o
0.0
O.O
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1566.0000
1284.0000
120*. OOOO
1285. OOOC
136V. OOOO
1405.0000
1561. OOOO
1655. OOOO
1721.0000
17*7.0000
168(1.0000
1652. OOOO
166O.OOOO
1707. OOOO
1732.0000
1703.0000
1671.0000
1634.0000
1595. OOOO
1554. OOOO
1431.0000
1696. OOOO
1767.0000
lbU4.0OOO
1749. OOOO
1697.0000
1672.0000
lt>21.0OOO
1782.0000
177V. OOOO
1783. OOOO
1658.0000
1714. OOOO
176V. OOOO
17 St. OOOO
1776.0000
1780.0000
1619.0000
161. OOOO
1731.0000
1722.0000
1742.0000
1758.0000
1774. OOOO
1811. OOOO
1836. OOOO
1848. OOOO
1576.0000
1632. OOOC
1638.0000
1650.0000
13 7 a. OOOO
1390.0000
1331.0000
1378.00CO
1357.0000
1354.0000
148 3. OOOO
1435.0000
1493.0000
1542.0000
1546.0000
1439. OOOO
1456. OOOO
1466.0000
1535.0000
1501. COOO
1453.0000
1436.0000
1405.0000
1394.0000
1415.0000
1211.0000
1171.0000
11 09. OOOO
1250. OOOO
1254. OOOO
1279.0000
1279. OOOO
1165. OOOO
1147. OOOO
1097. COCO
1263.0000
1229.0000
1193. OOOO
1142.0000
1111. OOOO
1053.0000
1256.0000
154. 'JOOO
666. OOOO
681.0000
70-.. OOOO
731. OOOO
759.0000
782. OOOO
794.0000
811. OOOO
1249.0000
1326.0000
1339.0000
1359. OOOO
0.0150
0.0177
0.0144
0.0124
0.0111
0.0091
0.0151
0.0122
0.0110
0.0095
O.OO7V
0.0132
O.O123
O.0118
0.0094
0.010*
0.0116
0.0120
O.O129
0.0143
0.0155
0.0200
0.0171
0.0144
O.O183
O.O205
0.0217
0.0233
0.0162
0.0153
0.0135
0.0211
0.0195
0.0177
0.0161
0.0143
0.0128
0.0225
0.0
0.0171
O.0157
O.C 142
O.0139
0.0136
U.013O
0.0122
O.O114
O.0166
0.0148
0.0143
0.0134
0.0161
0.0189
0.0153
0.0113
0.0102
0.0075
0.0157
O.O 129
0.0112
0,0096
0.0080
0.0143
0.0129
0.0126
0.0095
0.0109
0.0123
0.0126
0.0137
O.0151
0.016*
0.0217
0.0184
0.0154
0.0191
0.0210
0.0228
0.0242
0.0169
0.0157
0.0138
0.0210
0.0201
O.0181
0.0164
0.0146
0.0132
0.0234
O.O
O.O183
0.0168
0.015O
0.0148
0.0146
O.O136
0.0124
O.O115
0.0172
0.0143
O.O136
0.0123
0.0101
O. O189
O.O153
0.0113
0.0102
0.0075
0.0157
O.O129
O. 0112
O.0096
0.0080
0.0143
O.0129
O.O126
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0217
0.0184
0.0154
0.0191
0.0210
0.0228
0.0242
O. O169
0.0157
0.0138
0.0
0.0
0.0
O.O
0.0
0.0
0.0
c.o
0.0183
0.0168
0.0150
0.0148
0.0146
O.C136
0.0124
0.0115
0.0172
0.0143
0.0136
0.0123
0.0
O.O
0.0
O.O
G.O
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
O.OO95
0.0109
0.0123
0.0126
0.0137
0.0151
0.0164
C.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
O.O
o.O
0.0210
0.0201
0.0181
0.0164
0.0148
0.0132
0.0234
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
8ST1
BST2
bST3
BST-
FASAM
FUAIR
FAOX1
FAOX2
29-55A-5
29-5 5A -f>
29-55A-7
29-55A-8
29-55A-9
29-55A-10
29-55A-11
29-55A-12
29-55A-13
29-5 5A-14
29-55A-15
29-55A-16
29-55A-17
29-55A-1B
29-55A-19
29-55A-20
29-56A-1
29-56* -2
29-56A-3
29-5 6A -4
29-56* -5
29-56A-6
29-56A-7
29-56* -8
29-56* -«
29-56A-10
29-5 6A -11
29-56A-12
29-56A-13
29-56* -14
29-56A-15
29-57A-1
29-57A-2
29-57A-3
29-5 7* -4
29-57A-5
29-57A-6
29-57A-7
29-57A-6
29-57A-9
29-57* -10
29-57* -11
29-57A-12
29-57A-13
29-58* -1
29-5 8* -2
29-S8A-3
29-58A-4
29-5 8A -5
29-5 8 A -6
29-5 8A-7
0.1499
0.2418
0.2946
0.2206
0.1898
0.2791
0.2408
0.2062
0.1971
0.1801
0.1492
0.3156
0.3402
0.2362
0.1810
0.3923
0.4017
0.3477
0.2852
0.2248
0.2090
0.1953
0.2158
0.2223
0.2780
0.2288
0.1960
0. 1768
0.1646
0.1614
0.1533
0.3155
0.3663
0.3894
0.3703
0.3463
0.3231
0.3449
0.3741
0.3512
O.3593
O.2812
0.2277
0.1671
0.3876
0.3293
0.4065
0.4306
0.4143
0.4054
0.3105
0.0
O.G
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
514.0000
517.0JOO
526.0000
538.0000
546.0000
562.0000
547.0000
535.0000
516.0000
521.0000
530.0000
536.0000
540.0000
535.0000
534.0000
590.0000
578.0000
568.0000
577.0000
576.0000
585.0000
573.0000
565.0000
570.0000
5 68.000O
582.0000
614.0000
623.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
Q.O
0.0
jo.o
0.0
0.0
0.0
0.0
0.0
c.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1773.0000
1558.0000
1550.0000
1548.0000
1588.0000
1562.0000
1572.0000
1643.0000
1660.0000
1636.0000
1679.0000
1403.0000
1333. OOOO
1504.0000
1536.0000
1441.0000
805.0000
831.0000
831.0000
1081.0000
lt24.0OOO
1267.0000
1227.0000
1200. OOOO
869. OOOO
924. OOOO
1127.0000
1210.0000
1208.0000
1168. OOOO
1187.0000
1760.0000
1709.0000
1653.0000
1696. OOOO
1712.0000
1733.0000
1698.0000
1640.0000
1668.0000
1652.0000
1769.0000
1848. OOOO
1671.000C
1832.0000
1824.0000
1804. OOOO
1728. OOOO
1626.0000
1784.0000
1832.0000
141 8. OOOO
1355. OOOO
1328.0000
1256. OCOO
1295.0000
1256.0000
1237.0000
128&.0000
1314.0000
1338.0000
1386.0000
1207.0000
1062. OOOO
1173.0000
1179.0000
1513.0000
742.0000
747.0000
749. OOOO
806. OOOO
860.0000
887.0000
8/9.0000
865. OOOO
768.0000
768.0000
811.0000
848. OOOO
882.0000
889. OOOO
908. OOOO
1428.0000
1374.0000
1342.0000
1360.0000
1380. OOOO
1407.0000
1372.0000
1336. OOOO
1355.0000
1350.0000
1438.0000
1486,0000
1320.0000
1406. OOOO
1447.0000
1424.0000
1380. OOOO
1374.0000
1374.0000
1454.0000
I). 0113
0.0167
0.0199
0.0156
O.0133
0.0176
0.0157
0.0139
0.0136
0.0126
0.0113
0.0197
0.0206
0.0165
0.0132
0.0250
0.0248
0.021U
0.0192
0.0156
0.0141
0.0132
0.0145
0.0149
0.0174
0.0147
0.0128
0.0117
0.0110
U.0107
0.0101
0.0203
0.0231
0.0248
0.0233
O.022O
0.0207
0.0223
0.02*2
0.0228
0.0229
0.0179
0.0147
0.0112
0.0257
0.0222
0.0272
0.0286
O.0278
0.0271
0.0205
O.01O3
O.O166
0.0203
0.0152
0.0131
0.0192
O.0166
0.0142
0.0136
0.0124
0.0103
0.0217
0.0234
0.0163
0.0125
0.0270
O.0276
0.0239
0.0196
0.0155
0.0144
0.0134
0.0146
0.0153
0.0191
0.0157
0.0135
0.0122
0.0113
0.0111
O.O105
0.0217
0.0252
O.O268
0.0255
0.0238
0.0222
0.0237
0.0257
0.0242
0.0247
O.0193
0.0157
0.0115
0.0267
0.0227
0.0280
O.U296
0.0285
0.0279
0.0214
0.0103
0.0166
0.0203
0.0152
0.0131
0.0192
0.0166
0.0142
O.0136
0.0124
0.0103
0.0217
0.0234
0.0163
0.0125
0.0270
0.0276
0.0239
0.0196
0.0155
O.0144
0.0134
0.0148
0.0153
0.0191
0.0157
0.0135
0.0122
0.0113
0.0111
0.0105
O.O
0.0
0.0
0.0
0.0
0.0222
O.0237
0.0257
0.0242
0.0247
0.01*3
0.0157
0.0115
0.0267
0.0227
0.0280
0.0296
0.0285
0.0279
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
G.O
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.C
0.0
0.0
b.O
o.o
o.o
o.o
o.o
0.0
•1.0217
0.0252
0.0268
0.0255
0.0238
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0214
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
tOR
BST1
6ST2
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
29-58A-8
29-58A-9
29-5BA-10
29-58A-11
29-58A-12
29-5BA-13
29-59A-1
29-59A-2
29-59A-3
29-59A-4
29-59A-5
29-59 A -6
29-59A-7
29-59A-6
29-59 A -9
29-59A-10
29-59A-11
29-59A-12
29-59A-13
29-6OA-1
29-60A-2
29-60A-3
29-60A-4
29-6OA-5
29-60A-6
i9-60A-7
29-6 OA-6
29-60A-9
29-60A-10
29-60A-11
29-60A-12
29-61A-1
29-6 1A-2
29-61 A -3
29-61A-4
29-6 1A -6
29-61A-*
29-61 A -7
29-6 1A -8
29-6 IA -9
29-6 1A -10
29-61 A -11
29-61A-12
29-tlA-13
29-61A-14
29-61A-15
29-61A-16
29-6 1A -17
29-61A-18
29-61A-19
i.9-61A-20
0.3614
0.3873
0.4096
0.4344
0.4274
0.4123
0.302!>
0.2769
J.2474
0.2154
0.1929
0.1833
0.2020
0.2889
0.2702
0.2428
0.2114
0.2003
0.1527
0.2827
0.2446
0.2169
0.1863
0.2075
0.2710
0.2388
0.2154
0.1835
0.1533
0.121b
0.2861
0.3045
0.2688
0.2346
0.2159
0.1918
0.2486
0.2310
0.2757
0.2548
0.2199
0.18&9
0.2370
0.2946
0.3004
0.2337
0.2078
0.2446
0.2540
0.2699
0.2397
0.0
0.0
U.l>
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.G
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
O.G
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.0
fc.O
o.o
0.0
c.o
O.O
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1846.0000
1834.0000
1807. 0000
1799.0000
1803.OOOO
1621.0000
1332.0000
1285.0000
1380.0000
1568.0000
1622.0000
1645.0000
1620.0000
1443.0000
1419.0000
1490.0000
1552.0000
1563.0000
1690.0OOO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
1425. OOOO
1573.0000
1671.0000
1696.0000
1795.0000
1658.0000
1663.0000
1603. OOOO
1633.0000
1693.0000
1731.0000
1679.0000
1528. OOOO
1502.0000
1609.0000
171O.OOOO
1645. OOOO
1632. OOOO
1600.0000
1640.0000
1416.0000
14O3. OOOO
1392.0000
1370.0000
134c.OOOO
1340.0000
1227.0000
1212.0000
1226.0000
1281.0000
1311.0000
1342.0000
1347.uOOO
1316.0000
1285.0000
1295.0000
1325.0000
1323.0000
1377.0000
1175.0000
1218. OOOO
1415.0000
1556.0000
1539.0000
1280.0000
1278,0000
1414.0000
1503.0000
1547.0000
1492.0000
1320.0000
1457.0000
1410.0000
1422.0000
1451. OOOO
1523.0000
1448.0000
1459.0000
1412. OOOO
1394. OOOO
1441. OOOO
1494.0000
1395.0000
1363.0000
1584. OOOO
1561.0000
1587.OOOO
1524.0000
1530. OOOO
1500.0000
1511.0000
0.0235
0.0251
0.0264
0.0282
0.0275
O.0266
0.0199
0.0179
0.0158
O.O139
0.0126
0.0119
0.0130
0.0181
0.0170
0.0153
0.0135
0.0126
0.0099
0.0189
O.0159
0.0143
0.0129
0.0134
O.O174
0.0155
(1.0142
O.0119
0.0101
0.0081
0.0180
0.0202
0.0181
0.0160
O.01*7
0.0134
0.0167
0.0159
O.0186
0.0176
0.0150
0.0127
O.0160
0.0198
0.0195
0.0153
O.O 137
0.0158
0.0165
0.0175
0.0156
0.0249
0.0266
0.0282
O.0299
0.0294
O.0284
0.0208
0.0191
0.0170
O.O148
0.0133
O.O126
0.0139
0.0199
0.0186
0.0167
0.0145
0.0138
O.0105
0.0194
a. 0168
0.0149
0.0128
0.0143.
0.0186
0.0164
0.0148
0.0126
O.O105
0.0084
0.0197
0.0209
0.0185
0.0161
0.0149
0.0132
0.0171
0.0159
O.O190
0.0175
0.0151
0.0130
0.0163
0.0203
O.0207
0.0161
0.0143
0.0166
0.0175
0.0186
0.0165
0.0
0.0
O.O
0.0
O.O
o.o
0. 0208
O.0191
0.0170
0.0148
0.0133
0.0126
0.0139
0.0
0.0
0.0
O.O
O.O
0.0
0.0194
0.0168
0.0149
0.0128
0.0143
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0209
0.0185
0.0161
0.0149
0.0132
0.0171
O.0159
0.0190
0.0
0.0
0.0
0.0
0.0
0.0207
0.0161
O.0143
0.0166
0.0175
0.0186
O.O165
0.0249
0.0266
0.0262
0.0299
0.0294
U.O284
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0199
0.0186
0.0167
0.014>
0.0138
0.0105
0.0
0.0
0.0
0.0
0.0
0.0186
0.0164
b.0148
0.0126
O.O1O5
0.0084
O.O197
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0175
0.0151
0.0130
0.0163
0.0203
0.0
O.O
O.O
0.0
0.0
O.O
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
FASAM
FUA1R
FAOX1
FAOX2
—
•8
29-6 IA -2 1
29-61A-22
29-61A-23
29-61A-24
29-61A-25
29-61A-26
29-6 1A -27
29-62A-1
29-62A-2
29-62* -3
29-6 3A-1
29-64A-1
29-6 4A -2
29-6 4A -3
29-6 4A -4
29-64A-5
29-6 4A -6
29-6 5A -I
29-6 5A -2
29-6 5A-3
29-6 5A-^
29-65A-5
29-6 5A -6
29-6 5A-7
29-65A-8
29-65A-9
29-6 5A -10
29-65A-11
29-65A-12
29-65A-13
29-65A-14
29-65A-15
29-65A-16
29-65A-17
29-6SA-18
29-65A-19
29-65A-20
29-6 5A -21
29-65A-22
29-65A-24
29-6 5A -2 5
29-6 5A -26
2 9-6 5A -2 6
29-6 5A -27
29-65A-28
29-6SA-29
29-6 5A -30
29-65A-31
29-65A-32
29-65A-33
29-65A-34
0.2311
0.2761
0.2*62
0.2115
0.1769
0.2284
0.2356
C.2958
0.2608
0.2209
0.0
0.3665
0.3638
0.3151
0.2853
O.2413
O.1987
0.2844
0.2609
0.2511
0.2233
0.1841
0.1978
0.2227
0.2301
0.2753
0.2428
0.2162
0.1828
0.2026
0.2156
0.2183
0.2113
0.2039
0.2263
0.2589
0.1833
0.1984
0.1956
0.2239
0.2469
0.1868
0.2611
0.2331
0.1972
O.1841
0.1689
0.1996
0.2254
0.2440
0.1757
0.0
0.0
0.0
0.0
o.o
o.o
0.0
623.0000
624.0000
618.0000
596.0000
661.0000
678.0000
673.0000
662.0000
639.0000
633.0OOU
o.o •
0.0
O.b
0.0
O.O
o.c
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
593.00OO
1852.0000
1842.0000
1764.0000
1677.000O
1578.0000
1462.0000
1371.0000
149!>.0000
1481.0000
1550.0000
1718.0000
1665.OOOO
1618.0000
1591.0000
1481.0000
1426.0000
1586.0000
1695. OOOO
1616.0000
146 7-0 000
1441.0000
1446.0000
1382.0000
1327.0000
1333.0000
1386.0000
1349.0000
1441.0000
13*7.0000
1361.0000
1374.0000
1374.0000
1311.0000
1298.0000
1344 .OOOO
1457.OOOO
1514.0000
1462 .OOOO
1421.0000
1518. OOOO
1613.0000
1512.0000
1654.0000
1696.0000
1708 .OOOO
1653.0000
1614.0000
1656.0000
1571.0000
1493.0000
588.0000
0.0
0.0
1690.0000
1634. OOOO
1520.0000
1420. OOOO
1163.0000
1195.0000
1202.0000
1233.0000
131 4. OOOO
13O3.OOOO
1278. OOOO
1265.0000
1182.0000
1159.0000
12CI9.0000
13O3.0000
1271.0000
1238.0000
1232.0000
1237.0000
1229.0030
1193.0000
1151.0000
1207.0000
1202.0000
1083.0000
1143. (MOO
1079.0000
1109.0000
1109. OOOO
1123.0000
1121.0000
1164.0000
1234.0000
1039.0000
1053.0000
1062.0000
1O25.0000
1507.0000
1523.0000
1527.0000
1561.0000
166O.OOOO
1527.0000
1517.0000
1332.0000
12 59. OOOO
1181.0000
592. OOOO
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0153
0.0181
0.0159
0.0139
0.0116
0.0148
0.0153
0.0196
0.0173
0.0148
a.o
0.0245
0.0244
0.0218
O.0194
0.0170
O.O139
0.0174
0.0180
0.0162
0.0147
0.0124
0.0132
0.0143
0.0149
0.0176
0.0161
0.0142
0.0119
0.0132
O.O144
0.0144
0.0140
0.0135
0.01*8
0.0163
O.0126
0.0131
0.0134
0.0146
0.0166
0.0131
0.0167
0.0149
0.0131
O.0124
0.0111
0.012.3
G.0139
0.0151
0.0115
O.0159
0.0190
0.0169
0.0146
0.0122
0.0157
0.0162
0.0204
0.0179
0.0152
O.O
0.0252
0.0250
0.0217
0.0196
0.0166
0.0137
0.0196
0.0193
0.0173-
0.0154
0.0127
O.O136
0.0153
0.0158
0.0189
0.0167
0.0149
0.0126
0.0139
0.0148
C.015O
0.0145
D.014O
0.0156
0.0178
0.0126
0.0136
0.0135
0.0154
O.0170
0.0128
0.0180
O.0160
0.0136
O.O127
0.0116
0.0137
0.0155
0.0168
0.0121
0.0159
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0196
0.0193
0.0173
0.0154
0.0127
0.0136
0.0153
0.0158
0.0
0.0
0.0
0.0
O.O
0.0
0.0150
0.0145
0.014O
0.0156
O.0178
O.O126
O.0136
0.0135
0.0154
0.0170
0.0128
0.0180
0.0160
0.0136
0.0127
0.0116
0.0137
0.0155
0.0168
0.0121
0.0
0.0190
0.0169
0.0146
0.0122
O.O157
0.0162
0.02O4
O.O179
0.0152
0.0
0.0252
0.025O
0.0217
O.0196
0.0166
0.0137
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0189
0.0167
0.0149
0.0126
0.0139
O.O148
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
BST4
F-ASAH
FUAIR
FAOX1
FAOX2
>
O
29-65A-35
2 9-6 5A -36
29-6 5A -37
29-65A-38
29-65A-39
29-65A^40
i.9-65A-41
29-6 5A -42
29-6 5A -43
29-6 6A-1
29-6 6A -2
29-66A-3
29-6 6A -4
29-66A-5
29-66A-6
29-66A-7
29-66A-6
29-66A-9
29-66A-10
29-66A-11
29-66A-12
29-66A-13
29-66A-14
19 -6 7 A -1
29-6 7A-2
29-67A-3
29-67A-4
29-67A-5
29-67A-6
29-67A-7
29-67A-8
29-67A-9
29-67A-10
29-67A-11
29-67A-12
29-67A-13
29-67A-14
29-67A-15
29-67A-16
29-67A-17
29-67A-16
29-67A-1V
29-67A-20
29-67A-21
29-67A-22
29-67A-23
29-67A-24
29-67A-25
29-67A-26
29-67A-27
29-67A-28
0.2902
0.2649
0.2291
0.1967
0.2173
0.2249
0.2411
0.2031
0.1892
0.3332
0.3605
0.3807
0.4105
0.3143
0.2854
0.2616
0.2386
0.3129
0.3418
0.3688
0.3959
0.2921
0.2637
0.2168
0.1946
0.1719
0.1519
0.1277
0.1027
0.1814
0.1637
0.1454
0.1256
0.1044
0.2066
0.1801
0.1517
0.1268
0.1017
0.21U
0.1907
0.1676
0.1770
0.2317
0.2283
0.2047
0.1731
0.1452
0.1619
0.2227
0.1986
1507.0000
1428. OOOO
1535.0000
1900. OOOO
1776.0000
1882. OOOO
1811.0000
1855. OOOO
1866.0000
510.0000
511.0000
495.0000
495. OOOO
516. OOOO
525.0000
543. OOOO
564.0000
530.0000
512.0000
507. OOOO
4V5.0000
524.0000
544. OOOO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
c.o
0.0
0.0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
1378.0000
1304.0000
1212.0000
1182. OOOO
1225. OOOO
122B.OOOO
124H.OOOO
1384.0000
1313.0000
1236.0000
1194.0000
1125.0000
1226.0000
1318.0000
739.0000
738. OOOO
739.0000
763.0000
774.0000
712.0000
784.0000
78Q.OOOO
770.0000
758.0000
715.0000
789.0000
830.0000
795.OOOO
772.0000
723.0000
1402.0000
1407.0000
1467. OOOO
1449.0000
1428. OOOO
1469.0000
14O0.0000
1382.0000
1436. OOOO
14O8.0000
1429. OOOO
1486.0000
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
1705.0000
1710.0000
1705.0000
1715.0000
17OO.OOOO
1700.0000
1701.0000
1686.0000
1681.0000
1687.0300
1689. OOOO
1704.0000
1689.0000
1641.0000
1208.0000
1176.0000
1106. OOOO
1054.0000
989.0000
909. OOOO
1117.0000
1053.0000
993.0000
948.0000
899.0000
1191.0000
1148.0000
1026.0000
963.0000
890.0000
1072.0000
1O36.0000
1017.0000
1O28.0000
1124.0000
liar. oooo
1O86.0000
1039.0000
998.0000
1O25.0OOO
1276.0000
1236.0000
0.0
J. 0
O.O
o.o
O.C
0.0
0.0
0.0
0.0
0.0
o'.c
0.0
u. o
o.o
0.0
O.C
O.O
0.0
o.o
0.0
0.0
O.C
0.0
0.0
o.o
o.o
0.0
0. 0
O.G
0.0
J. 0
o.o
0-0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0. 0
o.o
0.0
0.0
0.0185
'J.0171
0.0151
0.0132
0.0146
O.O144
0.0153
0.0135
O.O129
0.0202
0.0220
0.0236
0.0251
0.0194
0.0178
0.0163
0.0146
0.0190
0.0211
0.0228
0.0243
0.0181
0.0163
0.0151
O.0138
0.0124
0.0109
0.0094
O.0076
0.0123
a. 0112
O.O101
0.0090
0.0077
0.0127
0.0114
O.0100
0.0086
0.0071
0.012o
0.0112
0.0097
0.0102
0.0137
0.0143
0.0125
O.O110
0.0093
O.O104
0.0157
0.0143
0.0200
O.O182
O.O158
0.0135
0.015X)
O.O155
0.0166
0.0140
0.0130
0.0229
0.0248
0.0262
0.0282
0.0216
0.0196
0.0180
0.0164
0.0215
0.0235
0.0254
0.0272
0.0201
0.0181
0.0149
a.0134
0.0118
0.0105
0.0088
O.OO71
0.0125
O. 0113
O.O1OO
0.0086
C.0072
0.0142
0.0124
0.0104
0.0087
0.0070
0.0146
0.0131
0.0115
0.0122
0.0159
0.0157
0.0141
0.0119
0.0100
0.0111
0.0153
0.0137
0.0200
0.0182
0.0158
0.0135
O. 0150
0.0155
0.0166
0.0140
0.0130
0.0
0.0
O.O
O.O
0.0
O.O
0.0
0.0
0.0215
0.0235
0.0254
0.0*72
0.0201
O.O181
0.0
0.0
0.0
o.o
0.0
0.0
G.O
0.0
0.0
o.o
0.0
0.0142
0.0124
0.0104
O.0087
0.0070
0.0
0.0
0.0
0.0
O.O
O.O157
0.0141
0.0119
O.01OO
0.0111
0.0
O.O
0.0
o.o
0.0
>>.o
0.0
U.O
0.0
0.0
0.0
O.O229
0.0248
O.O262
0.0282
0.0216
O.O196
O.0160
0.0164
0.0
0.0
0.0
a.o
o.o
0.0
0.0149
0.0134
0.0118
3.0105
0.0088
0.0071
0.0125
0.0113
0.0100
O.OOS6
O.0072
O.O
0.0
0.0
0.0
o.o
0.0146
0.0131
0.0115
0.0122
0.0159
0.0
0.0
0.0
O.O
0.0
O.O153
0.0137
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EQft
BST1
BST2
BST3
BST*
FASAH
FUAIR
FAOX1
FAOX2
29-6 7* -2 9
29-67A-30
29-67A-31
29-68 A -I
29-6 8A-2
29-6 «A-3
29-68*-*
29-6 8* -5
29-6 8* -6
29-68A-7
29-6 SA -6
29-68* -9
29-68A-IO
29-69* -1
29-69A-2
29-69A-3
29-69*-*
29-69* -5
29-69* -6
29-69* -7
29-69* -8
29-69 A -9
29-69 A -10
29-69A-11
29-69 A -12
29-69A-13
29-69* -1*
29-69* -15
29-69A-16
29-69A-17
29-69A-18
29-69A-19
29-69 A -20
29-69A-21
29-6 9A -2 2
29-69* -23
29-69* -2*
29-69A-25
29-69A-26
29-69*. -2 7
29-69A-28
29-69A-29
29-70* -I
29-70A-2
29-70* -3
29-70A-*
29-70* -5
29-70* -6
29-70A-7
29-7 IA-1
29-71*-2
0.1737
0. 1*92
0.1263
0.1704
0.2221
0.2810
0.31*8
0.3578
0.395O
0.2977
0.3390
0.3791
0.3184
0.0772
0.1762
0*2629
0.3650
0.2295
0.2012
0.26*2
0.1962
0.1732
0.1790
0.2093
0.2616
0.2370
0.2776
0.2230
O.19&8
0.1*7*
0.20*0
0.2509
0.2*65
0.1380
0.1315
0.1289
0.133*
0.216*
0.169*
0.1825
0.2261
0.1226
0.2*29
0.2027
0.1766
(T.7878
0.3175
0.3728
O.*311
0.2331
0.2122
0.0
0.0
0.0
85 1.0 WO
937.0000
1009.0000
970.0000
893.0JOO
790.0000
850.0000
786.0000
732.0000
752.0000
693.00OO
1733.0000
1333.0000
799. 0000
1309.0000
1202.6000
13*5.0000
16*1.0000
556.0000
59*. 0000
653.0000
662.0000
591.0000
609.0000
6*O.OOOO
611.0000
616.0000
632.0000
692.0000
685.0000
691.OOOO
695.0000
718.0000
709.0000
687.0000
6B2.000O
678.0000
699.0000
708.0000
1021.0000
9*9.0000
912.0000
1121.0000
1150.0000
1169.0000
1155.0000
1276.0000
1278.0000
1505.0000
1*78.0000
1*39.0000
1*7*. 0000
1667. OOOO
165*. 0000
1583.0000
1*77.0000
1*1*.0000
1*70.0000
1*15.0000
13*9.0000
1339.0000
1135.0000
1292.0000
1003.0000
736.0000
•1062.0000
1200.0000
987.0000
1198.0000
1081.0000
113*.OGOO
1129.0000
1058.0000
1016.00OO
963.00UO
1096.0000
iiiy.oooo
1175.0000
1109 .OOOO
1019.0000
1065. OOOO
12*7.0000
1276.0000
1282.0000
1256.0000
1101.0000
1206.0000
1219.0000
1182.0000
1337.0000
926.0000
665.0000
831.OOGO
1001.0000
1056.0000
1137.0000
1160.0000
1760.0000
1699.0000
1157.0000
106*. OOOO
1011.0000
1253.0000
1386.0000
1380.0000
13it.OOOO
1 235. OOOO
1127. OOOO
1120. OOOO
1050. COCO
996. OOOO
1136.0000
865. OOOO
1181.0000
968.0000
709.0000
1050.0000
1107.0000
978.0000
1121.0000
1070. OOCO
1098.0000
1106.0000
1051.0000
926.0000
919.0000
1072.0000
1103.0000
11*2.0000
1093. 3 JOO
105*. OOOO
1081.0000
0.0
O.O
0.0
O.O
O.O
0.0
o.c
0.0
0.0
' 901. OOOO
8*2.0000
813.0000
963.0000
1023.0000
1107.0000
11*3.0000
169*. OOOO
1687.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o. o
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U. 0
0.0
0.0
0.0
0.0
o.c
77*. OOOO
7*6.0000
726.0000
803. OOOO
827.0000
866.0000
889.0000
O.O
0.0
0.0125
0.0107
0.0095
0.0097
0.0131
0.0163
0.0182
0.0*05
0.0225
0.0181
0.0212
0.0228
0.0196
a. 0871
0.2129
0.3095
0.*799
0.2809
0.2363
0.3103
0.23*5
0.2028
0.2159
0.2637
0.3129
0.3138
0.3317
0.2728
0.2195
0.1906
0.2525
0.3265
0.2812
0.2963
0.269*
0.2862
3.2985
0.*92*
0.3393
0.2326
O.2700
0.2*10
0.0153
0.0131
0.0117
0.0176
U.O197
0.023*
0.0270
0.01*9
0.01*7
0.0119
0.0103
0.0087
0.0116
a. 0151
0.0191
0.021*
0.02*3
0.0269
0.0205
0.0233
0.0261
0.0219
0.0856
0.195*
0.2916
O.*0*8
0.25*5
0.2232
0.2930
O.2176
0.1921
0.1985
0.2*03
0.2901
0.270*
0.3078
0.2563
0.220*
0.1696
0.23*8
0.^895
0.273*
0.19*5
0.186*
0.1879
0.1908
0.3O63
0.2*00
0.2131
0.2618
0.1796
0.0167
0.0139
0.0121
0.0198
0.02 IB
0.0256
0.0297
0.0160
0.01*6
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0205
0. 0233
0.0261
0.0219
0.0856
0. 195*
0.2916
O.*0*8
0. 25*5
0.2232
0. 2930
0.2176
0.1921
0.1985
0.2*03
0.2901
0.270*
O.3078
0.2563
O.220*
0. 1696
0.23*8
0. 2895
0. 273*
0. 19*5
O. 186*
0.1879
0. 1908
0. 3063
0. 2*00
0.2131
O.2618
0. 1796
0.0167
0.0139
0.0121
0.0198
0.0218
0.0256
0.0297
O.O
0.0
0.0119
0.01O3
O.OO87
O.Ollb
0.0151
0.0191
0.021*
0.02*3
0.0269
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
o.o
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0160
l>.01*6
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EUR
esn
BST2
6ST3
6ST*
FAS AM
FUAIR
FAOX1
FAOX2
29-71A-3
29-7 1A-*
29-71 A -5
29-71A-6
29-7 1A-7
29-71 A -8
29-71A-9
29-71A-10
29-71A-11
29-71A-12
29-71A-13
29-7 1A-1*
29 -71 A -15
29-Y1A-16
29-71A-17
29-71A-18
29-71A-19
29-7 1A -20
29-71A-21
29-71A-22
29-71A-23
29-71A-2*
29-71A-25
29-71A-26
2 9-7 1A -2 7
29-71A-28
29-71A-29
29-71A-30
29-71A-31
29-71A-32
29-71A-33
29-71A-3*
29-71A-35
29-71A-36
2 9-71 A -3 7
29-71A-38
29-71A-39
29-7lA-»0
29-71A-41
29-71A-*3
29-71A^**
i.9-71A-*5
29-71A-*6
29-71A-*7
29-71A-*8
29-7lA-*9
29-71A-50
29-7 1A -51
29-7 1A -5 2
29-71 A -53
29-7 1A-5*
0.1886
0.1587
0.1269
O.2386
0.257*
0.228*
0.1972
0.1646
O.1355
0.1078
0.1046
0.1319
0.1593
0.1856
O.2462
0.2207
0.1949
0.1689
0.1*3*
0.26*0
0.2*07
O.20B1
0.17*8
0.2130
0.1860
O. 1569
0.1351
0.1086
0.1718
0.2016
0.1787
0.0990
0.0805
O.O999
0.1017
0.1193
0.1082
U.I 1*0
O.I 72 6
0.2016
0.23*6
0.2659
0.2916
0.3276
0.3558
0.178*
0.2120
0.2*9*
0.2969
0.3212
0.2951
12*0.0000
1136.0000
1068.0000
12*1.0000
128*. 0000
1267.0000
12*0.0000
1179.0000
1190.0000
1069.0OOO
1013. OOOO
1U91.00OO
1201.0000
1203.0000
1036.0000
1O12.0000
1060. OOOO
1117. OOOO
1172.0000
1101.0000
10*2.0000
1O35.0000
1056.0000
1217. OOOO
1202.0000
1283. OOOO
1286.0000
1229.0000
1292.0000
1297.0000
1287.0000
1180.0000
118*. OOOO
1188.0000
1150.0000
1185.0000
1166. OOOO
1196.0000
836.0300
887.0000
92*. OOOO
960.0000
V* 2- 00 00
929.0000
918. MOO
900.0000
911.0000
9V7.0000
956.0000
903.0000
9O7.OOOO
1662.0000
1569.0000
1512.0000
1720.0000
178O.OOOO
1705.0000
1674.0000
1578.0000
15*7.0000
1*75.0000
1*72.0000
1*52.0000
15O8.0000
1511.0000
1750.0000
17OO.OOOO
1716. OOOO
1739.0000
17*1.0000
1665. OOOO
16*8.0000
1727. OOOO
1737.0000
1197.0000
1258.0000
12**. OOOO
1312. OOOO
1278 .OOOO
1224.0000
1150. OOOO
1175.0000
108*. OOOO
1158.0000
11*2.0000
1130.0000
1132. OOOO
110J.OOOO
1130. OOOO
1723.0000
17*4.0000
1786. OCOO
I7a*.oooo
1715.0000
1685.0000
16O6.OOOO
17O9.000O
1733.0000
1755.0000
1711.0000
1588.0000
1639. OJOO
16*0.0000
15*9.0000
1560.0000
1680.0000
1660. OOOO
165*. OOOO
1644.0000
1591.0000
1577.0000
1445.0000
1395. OOOO
1520. OOOO
1622. OOOO
1663.0000
1560.0000
1551.0000
1592. OOOO
1652.0000
165*. OOOO
1602.0000
1550.0000
1519. OOOO
1500. OOOO
1*71. OOCO
1506.0000
1555. OOOO
1618.0000
1615.03OO
1537.0000
1*81.0000
1*9*.OOOO
1301.0000
1565.0000
1608. OOOO
1602.0000
1561.0000
1577.0000
1572.0000
1*89.0000
1*8*. OOOO
1*66.0000
1*35.0000
1392 .OOOO
13*2.0000
1305. OOOO
1499.0OOO
1*72.0000
1*32.0000
1370. OOOO
1302. OOOO
1286. MOO
0.0
0.0
0.0
0. 0
0.0
0.0
o.c
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
u.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
u.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0133
O.O109
0.0090
0.0167
0.0171
0.0158
0.0138
0.0118
0.0102
0.0082
0.0075
0.0091
O.O108
0.0126
0.0160
0.01*3
0.0128
0.0112
0.0097
0.0171
0.0153
0.013*
0.0121
0.0136
0.012*
0.0108
0.0093
U.0073
0.0115
0.0130
O.C116
O.OO67
0.0052
0.0067
0.0068
0.0079
0.007*
O.O081
0.0122
0.01*2
O.0161
0.0177
C.0195
0.021*
0.0232
0.0131
O.0151
0.0171
0.018*
0.0205
0.0192
0.0130
0.0109
O.O087
0.016*
O.O177
O.O157
0.0136
0.0113
0.0093
0.0074
O.O072
0.0091
0.0110
0.0128
O.O 169
0.0152
0.013*
0.0116
0.0099
0.0182
0.0166
0.01*3
0.0120
0.01*7
0.0128
0.0108
0.0093
J.OO75
0.0118
0.0139
0.0123
0.0068
0.0055
0.0069
0.0070
0.0082
0.007*
0.0078
0.0119
0.0139
0.0161
0.0183
0.0201
0.0225
0.02*5
0.0123
0.01*6
0.0172
0.020*
0.0221
O.0203
O.O
O.O
0.0
0.0
0.0177
0.0157
O.01J6
O.O113
0. 0093
0.007*
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
0.0
0. O182
0.0166
0.01*3
0.0120
0.01*7
O. 0128
0.0108
0.0093
0.0075
0.0118
0.0139
0.0123
0. 0068
0.0055
0.0069
0.0070
0. 0082
0.007*
0.0078
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0123
0.01*6
0.0172
O. 020*
0.0221
0.0203
O.0130
0.01O9
O.0087
O.O16*
0.0
0.0
0.0
O.O
O.O
0.0
0.0072
0.0091
j.ouo
O.O128
0.0169
0.0152
0.01i4
0.0116
0.0099
O.O
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0119
0.0139
0.0161
O.0183
0.0201
0.0225
O.02*5
O.O
0.0
O.O
o.o
u.o
o.o
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BST2
BST3
6ST4
FAS AM
FUA1R
FAOX1
FAOX2
2035
2036
2037
2038
2039
2040
2041
2042
2043
204 4
2045
2O46
2047
2048
2049
2077
2078
2079
2080
2081
2082
2084
208 5
2086
2087
2068
2089
2090
2091
2092
2093
2094
2095
2O96
2097
2098
2099
2100
2116
2117
2116
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
29-72A-1
29-72A-2
29-72A-3
29-72A-4
29-72A-5
2 9-7 2 A -6
29-72A-7
29-72A-6
29-72A-*
29-72A-10
29-72A-11
29-72A-12
29-72A-V3
29-72A-14
29-72A-15
29-73A-1
29-73A-2
29-73A-3
29-7 3A -4
29-73A-5
29-73A-6
29-73A-7
29-73A-8
29-73A-9
29-73A-10
29-73A-11
29-73A-12
29-73A-13
29-73A-14
29-7JA-15
29-73A-16
29-73A-17
29-73A-18
29-73A-19
29-73A-20
29-7 3A -2 1
29-73A-22
29-73A-23
29-74A-1
29-74A-2
29-74A-3
2V-74A-4
29-74A-5
29-74A-6
29-74A-7
29-7 4A -8
29-74A-9
29-74A-10
29-74A-11
29-74A-12
29-74A-13
0.3564
0.2875
0.2564
0.2179
0.1691
0.1571
0.1227
0.0934
0.2694
0.2307
0.1866
0.1543
0.1145
0.0834
0.0988
0.0656
0.0808
0.0504
0.0359
0.0488
0.0636
0.0820
0.0701
0.0906
0.1029
0.0466
0.0531
0.0677
0.0793
0.0875
0.0929
0.0693
0.0801
0.0873
0.0927
O.0918
0.1130
0.0755
0.1708
0.2029
0.2316
0.2609
0.2910
0.3219
0.3498
0.1763
0.2104
0.2481
0.2852
0.3180
0.3455
10O4.(M100
1059. OOOO
1034.0000
1158.0000
1124.0000
1127.0000
1102. OOOO
1129.0000
944. OOOO
974.0000
1045.0000
1133.0000
1131.0000
1111.0000
1288.0000
713.0000
701.0000
702.0000
679.0000
732.0000
669.0000
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
837.0000
865.0000
904. OOOO
913.0000
933.0000
961.0000
858.0000
881.0000
905.0000
922.0000
925.0000
893.0000
361.0000
759. OOOO
766.0000
736.0000
686.0000
720.0000
73*. OOOO
762. OOOO
799.0000
727.0000
700.0000
666.0000
693.0000
771.0000
800.0000
815.0000
70 2. OOOO
70G.OOOO
693.0000
671.0000
738.0000
731.0000
1745.0000
1589.0000
1747.0000
1721.0000
1409.0000
1508.0000
162V. OOOO
1670. OOOO
1653.0000
1615.0000
1631.0000
1683.0000
1680. OOOO
1653.0000
1900.0000
1761.0000
1920.0000
1340.0000
1405.0000
1501. OOOO
147u.OoOO
1430.0000
1387.0000
1357.0000
1309.0000
1361.0000
1381.0000
1309.0000
1283.0000
1211.0000
86S.OOOO
853.0000
809.0000
779.0000
839.0000
961.0000
991.0000
108 5. OOOO
951.0000
878.0000
675.0000
925.0000
1266. OOOO
1313. OOOO
1369.0000
1237.0000
1109. OOOO
1158.0000
850. OOOO
911.0000
1065.0000
1633.0000
1618.0000
1660.0000
1638. OOOO
1470.0000
1551.0000
1604.0000
1567.0000
1550. OOOO
1490.0000
1541.0000
1460.0000
1549.0000
1493.0000
1790.0000
1704.0000
1838.0000
1465.0000
1535.0000
1520.0000
1473.0000
1420.0000
1330.0000
127C.OOOO
1454.0000
1467.0000
1437.COOO
1390.0000
1336.0000
1266.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
o.o
0.0
o.o
O.O
0.0
687.0000
880.0000
840.0000
783.0000
873.0000
893. OOOO
1653.0000
1689.0000
1704. OOOO
1680.0000
1538.0000
167U.OOOO
1659.0000
1571.0000
1569.0000
1606.0000
1584.0000
1544. OOOO
1505.0000
1555. OOOO
1780.0000
1692.0000
1792.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0233
0.0161
0.0160
0.0144
0.0128
0.0109
0.0090
O.OO71
0.0160
0.0146
O.O13O
0.01O8
O.OO88
0.0067
0.0078
0.0
0.0
0.0
0.0
o.o
o.o
0.0057
0.0049
0.0060
0.0066
0.0036
O.0036
0.0045
0.0051
0.0057
O.0060
0.0046
0.0053
O.OO56
O.OO61
0.0060
0.0073
O.0052
0.0116
0.0129
0.0149
0.0169
0.0190
0.0208
0.0226
0.0121
0.0136
0.0161
0.0179
O.0187
0.0216
0.0245
0.0198
0.0176
0.015O
0.0130
0.0108
0.0034
0.0064
0.0185
0.0159
0.0130
0.0106
O.0079
0.0057
0.0068
0.0045
0.0056
0.0035
D. 0023
0.0034
0.0044
0.0056
0.0046
0.0062
0.0071
0.0032
0.0037
0.0047
0.0055
0.006O
0.0064
0.0043
0.0055
0.0060
0.0064
0.0063
0.0078
0.0052
0.0117
0.0140
0.0159
0.0160
0.0200
0.0221
0.0241
0.0121
0.0145
0.0171
0.0196
0.0219
0.0238
0.0
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0185
0.0159
0. O13O
0.0106
0. 0079
0.0057
0.0068
0.0
O.O
0.0
O.O
0.0
O.O
o.o
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0121
O.O145
0.0171
0.0196
0.0219
0.0238
0.0245
0.0198
0.0176
a.oiso
0.0130
0.0108
0.008*
0.0064
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0045
O.OO56
0.0035
0.0025
0.0034
0.0044
0.0056
0.0048
0.0062
0.0071
0.0032
O.O037
O.0047
0.0055
0.006G
0.0064
0.0048
0.0055
O.O060
0.0064
0.0063
O.OO76
0.0052
0.0117
0.0140
0.0159
0.0180
0.0200
0.0221
O.O241
0.0
0.0
O.O
0.0
0.0
O.O
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EtR
BST1
BST2
BST3
BST4
(-AS AM
FUAIR
FAOX1
FAOX2
H3j
2131
2132
2133
2134
2135
2136
2137
213B
2139
2140
2141
2142
2143
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
215B
215V
2163
2161
2162
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
218O
2181
2182:
2183
29-75A-1
2V-75A-2
29-75A-3
29-75A-4
29-7 5A -5
29-754-6
29-7 5A -7
29-7 5A-8
29-75A-9
29-75* -10
2V-75A-11
2 9-7 5 A -12
29-75A-13
29-75A-14
29-76A-1
29-76A-2
29-76A-3
29-76A-4
29-76A-5
29-Y6A-6
29 -7 6 A -7
29-76A-8
29-7 6A -9
29-76A-10
2V-76A-11
29-76A-12
29-V6A-13
29-76A-14
19-76A-15
29-76A-16
29-76A-17
29-76A-18
29 -7 7 A -1
2*-77A-2
29-77A-3
29-77A-4
29-77A-5
29-77A-6
29-77A-7
29-77A-6
29-77A-9
29-77A-1O
29-77A-11
29-77A-12
29-77A-13
29-77A-14
29-77A-15
29-77A-16
29-77A-17
29-77A-18
29-77A-19
0.1974
0.2313
0.2613
0.3030
0.3350
0.3760
0.413B
0.2066
0.2463
C.2B76
0.3264
0.2662
0.2298
O.1645
0.0952
0.0838
0.0724
0.0541
0.054B
0.0696
0.0852
0.0747
O.O647
0.0515
O.O442
0.0515
0.0629
0.0702
O.0359
0.0493
0.0599
0.0669
0.1394
0.1718
0.2354
0.2948
O.3545
0.4149
0.4453
0.4746
0.5054
0.3504
0.4084
0.4355
0.4658
0.4454
0.5404
O.2973
0.3355
0.2307
0.2790
833.0000
868. GOOD
872.0000
BBO.OOOO
916.0000
917.0000
680.0000
857.000O
940 . 0000
972.0000
913.0000
85B.OOOO
938.0OOO
928.0000
0.0
0.0
O.O
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
O.O
0.0
623.0000
638.0000
677.0000
669.OOOO
636.0000
616.0OOO
601.0000
580.0000
568.0000
647. OOOO
618.OOOO
612.OQOO
600.0000
594.0000
564.OOOO
535. OOOO
518.0000
621.0000
584.0000
1264.0000
1353.0030
1434.0000
IsOi.OOOO
1582.0000
1619.0000
1479.0000
1403.0000
1416.0000
1433.0000
1337.0000
1469.0000
1478.0000
143.C.OOOO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
b.O
0.0
0.0
O'.O
0.0
1365. OOOO
1420.0000
1546.0000
1654.0000
1671.0000
1613. OOOO
1577.0000
1548.0000
151V. OOOO
1664.0000
16 14. OOOO
1567.0000
1551.0000
1 56 3. OOOO
1455. OOOO
151-..0000
1662.0000
1610.0000
1564.0000
1633.0000
165 3. OOOO
1655.0000
16*3-0000
1614.0000
1522.0000
1363.0000
1572. OOOO
1594.0000
1584.0000
14-46. GOOO
1353.0000
1376.0000
1588. OOOO
1570.0000
1652.0000
1652. OOOO
1619.0000
1621. OOOO
1650. OOOO
1682.0000
1500. OOCO
1543.0000
1494.0000
1404.0000
1450. OOOO
1494. OOOO
1*71.0000
1204. OOOO
1275.0000
13O5.0OOO
1091.0000
1231.0000
1347.0000
1564.0000
1722.0000
1668.0000
1596. OOOO
1534. OOOO
1469.0000
1305. OOOO
1658.UOOO
1543. OOOO
1467.0000
1322.0000
13 11. OOOO
1208.0000
1 -.89. OOOO
1596. OOOO
1655.0000
1558.0000
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
1509.0000
1541.0000
1550.0000
1694.0000
165
-------
TABLE A-3
COMBUSTOR LINER TEMPERATURE DATA AND FUEL AIR RATIO INFORMATION (Continued)
SCHEME
EOR
BST1
BSTi
BST3
BST4
FASAM
FUAIR
FAOX1
FAOX2
*9-77A-20
29-77A-21
29-77A-22
29-77A-23
29-77A-24
29-77A-25
29-77A-26
29-77A-27
29-77A-28
29-7 7A -29
29-77A-30
29-77A-31
29-77A-32
29-77A-33
0.3017
0.3243
0.3*7*
0.3131
0.2084
0.1606
0.1099
0.3975
0.4224
0.3741
0.0
0.0
0.0
0.0
563.0000
549.UOOO
525.0000
530.0000
627.0000
637.0000
619.0000
532.0000
516.0000
505.0OOO
0.0
0.0
0.0
0.0
1510.0000
1483.OOOO
1538.0000
1564. OOOO
1584.0000
1451.0000
1234.0000
1436.0000
1201.0000
1238. OOOO
O.O
0.0
0.0
0.0
1514.0000
1464.0000
14O2.0000
1524.0000
1633. OOOO
1380.0000
1122.0000
1445. OOOO
1361.0000
1312.0000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
O.O
O.O
0.0
0.0
0.0
0.0205
0.0229
0.0249
0.0221
0.0134
0.0105
0.0078
0.028B
0.0302
0.0268
0.0
0.0
O.C
0.0
0.0208
0.0223
0.0239
0.0215
0.0143
0.0111
0.0076
0.0273
0.0291
0.0257
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0206
0.0223
0.0239
0.0215
0.0143
0.0111
0.0076
0.0273
0.0291
0.0257
0.0
0.0
0.0
0.0
to
-------
TABLE A-4. SPECIAL PARAMETERS — HEAT EXCHANGER INFORMATION
Scheme
5-14A-1
5-14A-2
5-14A-3
5-14A-4
5-14A-5
5-14A-6
5-14A-7
5-14A-8
5-14A-9
5-14A-10
5-14A-11
5-14A-12
5-14A-13
5-14A-14
5-14A-15
5-14A-16
5-15A-1
5-15A-2
5-15A-3
5-15A-4
5-15A-5
5-15A-6
5-15A-7
5-15A-8
5-15A-9
5-15A-10
5- ISA- 11
5-15A-12
S-1SA-13
5-15A-14
5- ISA- 15
S-15A-16
5-17A-1
5-17A-2
S-17A-3
S-17A-4
S-17A-5
S-17A-6
S-17A-7
5-17A-8
5-17A-9
S-18A-1
5-18A-2
S-18A-3
S-18A-4
5-18A-5
5-18A-6
5-18A-7
S-18A-8
5-18A-9
WH20
2671.0000
2677.0000
2672.0000
2736.0000
1688.0000
2714.0000
2714.0000
2708.0000
2713.0000
3040.0000
3041.0000
3042.0000
3032.0000
3034.0000
3031.0000
3029.0000
2700.0000
2701.0000
270S.OOOO
2712.0000
2711.0000
2711.0000
2709.0000
2715.0000
2702.0000
2702.0000
2703.0000
2700.0000
2704.0000
2701.0000
2700.0000
2706.0000
4815.0000
4081.0000
4794.0000
5S50.0000
5880.0000
5280.0000
6422.0000
7137.0000
6002.0000
5105.0000
3924.0000
4413.0000
4901.0000
4997.0000
4982.0000
5007.0000
4107.0000
4878.0000
TBCI
84.0000
84.0000
84.0000
84.0000
84.0000
85.0000
86.0000
85.0000
84.0000
85.0000
85.0000
85.0000
86.0000
85.0000
86.0000
86.0000
85.0000
86.0000
86.0000
86.0000
86.0000
86.0000
86.0000
86.0000
87.0000
87.0000
87.0000
87.0000
87.0000
87.0000
87.0000
87.0000
74.0000
79.0000
78.0000
77.0000
76.0000
75.0000
76.0000
76.0000
77.0000
75.0000
78.0000
78.0000
77.0000
77.0000
77.0000
78.0000
81.0000
76.0000
A-113
TBCO
117.0000
116.0000
110.0000
108.0000
120.0000
108.0000
108.0000
106.0000
105.0000
121.0000
118.0000
114.0000
114.0000
113.0000
113.0000
113.0000
119.0000
122.0000
126.0000
130.0000
132.0000
132.0000
132.0000
132.0000
126.0000
132.0000
135.0000
138.0000
140.0000
142.0000
142.0000
142.0000
110.0000
119.0000
120.0000
120.0000
122.0000
126.0000
119.0000
117.0000
123.0000
106.0000
122.0000
124.0000
124.0000
121.0000
121.0000
121.0000
130.0000
130.0000
HEAT
24.4842
23.7956
19.2978
18.2400
16.8800
17.3394
16.5855
15.7967
15.8258
30.4000
27.8758
24.5050
23.5822
23.5978
22.7325
22.7175
25.5000
27.0100
30.0555
33.1467
34.6405
34.6405
34.6150
34.6917
29.2717
33.7750
36.0400
38.2500
39.8089
41.2653
41.2500
41.3417
48.1500
45.3444
55.9300
66.2917
75.1333
74.8000
76.7072
81 .2825
76.6922
43.9597
47.9600
56.3883
63.9853
61.0744
60.891 1
59.8058
55.9008
73.1700
FTHR
0.0894
0.0738
0.0494
0.0394
0.0337
0.0327
0.0277
0.0247
0.0208
0.1397
0.0921
0.0684
0.0539
0.0459
0.0383
0.0329
0.0972
0.0812
0.0773
0.0(595
0.0(525
0.053(5
0.0451
0.0503
0.1367
0.111(5
0.1008
0.089(5
0.0783
0.0703
0.0(50(5
0.0(549
0.3874
0.3345
0.2238
0.17(55
0.1517
0.1194
0.156(5
0.1321
0.1549
0.2747
0.3122
0.2098
0.1(530
0.1194
0.0971
0.0874
1 .2068
0.2454
-------
TABLE A-4. SPECIAL PARAMETERS — HEAT EXCHANGER INFORMATION (Continued)
Scheme
5-18A-10
5-19A-1
5-19B-1
5-19B-2
5-19B-3
5-19B-4
5-19B-5
5-19B-6
5-19B-7
5-19B-8
5-20A-1
5-20A-2
5-20A-3
5-20A-4
5-21A-1
5-21A-2
5-21A-3
5-21A-4
5-21A-5
5-22A-1
5-22A-2
5-22A-3
5-22A-4
5-22A-5
5-23A-1
5-23A-2
5-23B-1
5-23B-2
5-23B-3
5-23B-4
5-23B-5
5-23B-6
5-23B-7
5-23B-8
5-23B-9
5-23B-10
5-23B-11
5-23B-12
5-23B-13
5-23B-14
5-23B-15
5-23B-16
5-23B-17
5-23B-18
5-23B-19
5-23B-20
5-23B-21
5-23B-22
WH20
4827.0000
5820.0000
6905.0000
6911.0000
6900.0000
7111.0000
7193.0000
7294.0000
7202.0000
7008.0000
2528.0000
2294.0000
2296.0000
2256.0000
4852.0000
5037.0000
5005.0000
5091.0000
5051.0000
8385.0000
8373.0000
8350.0000
8366.0000
8355.0000
8571.0000
8033.0000
2243.0000
7230.0000
7238.0000
7238.0000
7235.0000
7216.0000
7205.0000
7715.0000
7456.0000
7482.0000
7450.0000
9127.0000
9101.0000
9116.0000
9105.0000
9068.0000
9141.0000
9123.0000
9114.0000
9097.0000
7693.0000
7633.0000
TBCI
76.0000
65.0000
65.0000
66.0000
66.0000
65.0000
65.0000
66.0000
66.0000
67.0000
80.0000
80.0000
79.0000
80.0000
82.0000
83.0000
82.0000
82.0000
82.0000
79.0000
79.0000
78.0000
79.0000
79.0000
82.0000
82.0000
77.0000
79.0000
79.0000
79.0000
76.0000
76.0000
76.0000
78.0000
78.0000
80.0000
91.0000
80.0000
81.0000
80.0000
82.0000
80.0000
80.0000
80.0000
80.0000
79.0000
76.0000
76.0000
TBCO
144.0000
81.0000
84.0000
87.0000
88.0000
98.0000
95.0000
95.0000
102.0000
108.9000
105.0000
105.0000
110.0000
119.0000
105.0000
105.0000
105.0000
105.0000
105.0000
100.0000
103.0000
103.0000
101.0000
101.0000
87.0000
90.0000
105.0000
105.0000
103.0000
103.0000
101.0000
101.0000
103.0000
110.0000
119.0000
120.0000
122.0000
101.0000
101.0000
99.0000
99.0000
100.0000
101.0000
101.0000
101.0000
100.0000
116.0000
121.0000
HEAT
91.1767
25.8667
36.4431
40.3142
42.1667
65.1842
59.9417
58.7572
72.0200
79.8133
17.5555
15.9306
19.7711
24.4400
30.9989
30.7817
31.9764
32.5258
32.2703
48.9125
55.8200
57.9861
51.1255
51.0583
11.9042
17.8511
17.4455
52.2167
48.2533
48.2533
50.2430
50.1111
54.0375
68.5778
84.9155
83.1333
64.1528
53.2408
50.5611
48.1122
42.9958
50.3778
53.3225
53.2175
53.1650
53.0658
85.4778
95.4125
FTHR
0.1200
0.0
0.1374
0.0785
0.0614
0.1756
0.0894
0.0904
0.0934
0.0760
0.1120
0.0799
0.0771
0.0615
0.1275
0.1173
0.1537
0.1911
0.2661
0.1206
0.1070
0.0939
0.0714
0.1739
0.1739
0.1739
0.0415
0.0936
0.0669
0.1616
0.2626
0.2040
0.1538
0.2218
0.1665
0.1244
0.0771
0.1327
0.1652
0.2425
0.0514
0.0852
0.1041
0.0792
0.0707
0.1263
0.1896
0.1668
A-114
-------
TABLE A-4
SPECIAL PARAMETERS - HEAT EXCHANGER INFORMATION
(Continued)
Scheme
TIN1
WHXA
TOUT
5-24A-1
5-24A-2
5-24A-3
5-25A-1
5-25A-2
5-25A-3
5-25A-4
5-25A-5
5-25A-6
5-25A-7
5-25A-8
5-25A-9
5-25A-10
5-26A-1
5-26A-2
5-26A-3
580.0000
634.0000
643.0000
625.0000
627.0000
639.0000
640.0000
647.0000
647.0000
642.0000
632.0000
624.0000
645.0000
594.0000
592.0000
593.0000
26.1000
26.1000
26.1000
27.9000
27.9000
27.9000
27.9000
27.9000
27.9000
27.9000
27.9000
27.9000
27.9000
21.2000
21.2000
21.2000
789.0000
834.0000
904.0000
PARAMETERS
WH20 — Heal exchanger water flow rate (pph)
TBCI — Heat exchanger water inlet temperature (°F)
TBCO — Heat exchanger water exit temperature (°F)
HEAT — Heat rate removed from combustor and gained hy heat exchanger water
(Btu/sec)
FTHR — Heat removed from combustor by heat exchanger as a fraction of total
heat released
TIN1 — Cooling air temperature entering heat exchanger tubes (°F)
WHXA — Heat exchanger airflow (rr of total airflow)
TOUT — Cooling air temperature exiting heat exchanger tubes (°F)
A-115
-------
TABLE A-5
SPECIAL PARAMETERS — PRESSURE DROP AND
AIRFLOW RATE DATA
Scheme
14-1A-1
14-1A-2
14-1A-3
14-2A-1
14-2A-2
14-2A-3
14-2A-4
14-2A-5
14-2A-6
14-2A-7
14-2A-8
Scheme
29-9A-1
29-9A-2
29-9A-3
29-9A-4
29-9A-5
29-9A-6
29-9A-7
29-9A-8
29-9A-9
29-9A-10
29-9A-11
29-9A-12
29-9A-13
29-9A-14
29-9A-15
29-9A-16
29-9A-17
29-9A-18
29-9A-19
29-9A-20
29-9A-21
29-9A-22
29-9A-23
29-9A-24
29-10A-1
29-10A-2
29-10A-3
29-10A-4
29-10A-5
29-10A-6
29-10A-7
29-10A-8
29-10A-9
29-10A-10
WBOOST
0.7291
0.7288
0.7299
0.7594
0.7597
0.7620
0.7637
0.7708
0.5636
0.5641
0.5646
WAPRI
0.125
0.120
0.120
0.118
0.119
0.199
0.219
0.218
0.218
0.219
0.219
0.219
0.220
0.219
0.222
0.223
0.223
0.223
0.222
0.272
0.274
0.275
0.273
0.275
0.116
0.117
0.116
0.116
0.116
0.113
x 0.113
0.113
0.112
0.112
A-116
DPMAN
58.00
53.00
48.00
25.00
25.00
25.00
25.00
25.00
13.50
13.50
13.50
-------
TABLE A-5
SPECIAL PARAMETERS — PRESSURE DROP AND
AIRFLOW RATE DATA (Continued)
Scheme
29-10A-11
29-10A-12
29-10A-13
29-10A-14
29-10A-15
29-10A-16
29-10A-17
29-10A-18
29-10A-19
29-10A-20
29-10A-21
29-10A-22
29-10A-23
29-10A-24
29-10A-25
29-10A-26
29-10A-27
29-10A-28
29-10A-29
29-10A-30
29-11A-1
29-11B-1
29-11B-2
29-12-1
29-12-2
29-12-3
29-12-4
29-12-5
29-12-6
29-12-7
29-12-8
29-12-9
29-12-10
WAPRI
0.110
0.109
0.109
0.110
0.109
0.210
0.211
0.209
0.212
0.210
0.210
0.209
0.211
0.210
0.427
0.423
0.291
0.216
0.310
0.228
0.138
0.315
0.376
0.404
0.417
0.414
0.413
0.421
0.416
0.417
0.402
0.402
0.536
PARAMETERS
WBOOST — Boost Dilution Airflow Rate (pps)
DPMAN — Boost Dilution Airflow Pressure Drop (psid)
WAPRI — Primary Zone Airflow Passing Through Premix Tube (pps)
A-117
-------
TABLE A-6
SPECIAL PARAMETERS - LOW-
Btu GAS TEMPERATURE
Scheme
29-69A-21
29-69A-22
29-69A-23
29-69A-24
29-69A-25
29-69A-26
29-69A-27
29-69A-28
29-69A-29
TG3
802.0000
813.0000
852.0000
855.0000
774.0000
788.0000
800.0000
832.0000
870.0000
PARAMETERS
TG3 — Low Btu gas temperature entering rig (°F)
A-118
-------
TABLE A-7
SPECIAL PARAMETERS — COOLING SCHEME
DATA
Scheme
29-73A-7
29-73A-8
29-73A-9
29-73A-10
29-73A-11
29-73A-12
29-73A-13
29-73A-14
29-73A-15
29-73A-16
29-73A-17
29-73A-18
29-73A-19
29-73A-20
29-73A-21
29-73A-22
29-73A-23
29-76 A- 1
29-76A-2
29-76A-3
29-76A-4
29-76A-5
29-76A-6
29-76A-7
29-76A-8
29-76A-9
29-76A-10
29-76A-11
29-76A-12
29-76A-13
29-76A-14
29-76A-15
29-76A-16
29-76A-17
29-76A-18
DPCO
1.0000
0.9000
1.0000
1.0000
1.0000
1.9000
2.0000
2.0000
2.0000
2.0000
2.8000
2.8000
2.8000
2.8000
1.3000
1.2000
1.2000
0,9000
0.9000
' 0.9000
0.9000
1.3000
1.3000
1.1000
2.0000
2.0000
2.0000
2.0000
2.7000
2.6000
2.4000
2.0000
2.0000
2.0000
2.0000
DPSW
1.5000
1.4000
1.5000
1 .5000
1.5000
2.4000
2.5000
2.5000
2.5000
2.5000
3.2000
3.2000
3.3000
3.2000
1.9000
1.8000
1 .8000
PARAMETERS
DPCO — Total to static pressure differential within cooling passage (in. Hgl
DPSW — Plenum total to primary zone static pressure differential (in. Hg)
A-119
-------
TABLE A-8
SPECIAL PARAMETERS — AERO/THERMAL FLOW MODELING DATA
Scheme
29-77A-30
29-77A-31
29-77A-32
29-77A-33
DPS4
1.9000
3.0000
4.0000
1.7000
DPSW
2.3000
3.7000
4.8000
2.1000
DPDI
2.7000
4.1000
5.3000
2.3000
DPDU
3.9000
6.3000
8.3000
3.5000
PARAMETERS
DPS4 — Plenum total to static pressure differential at station 4 (in. Hgl
DPSW — Plenum total to static pressure differential at station 1 (in. Hg)
DPDI — Plenum total to static pressure differential at station 2 (in. Hg)
DPDU — Plenum total to static pressure differential at station H (in. Hg)
FO 184306
A-120
-------
TABLE A-9
SPECIAL PARAMETERS
SMOKE DATA
Scheme
29-32A-2
29-33A-5
29-33A-10
29-33 A- 11
29-37A-13
29-71A-34
29-71A-36
29-71A-38
Smoke
3.0
3.7
0.3
2.3
5.7
3.5
3.3
1.8
PARAMETERS
Smoke — VonBraun Smoke Number
A-121
-------
APPENDIX B
LOW-BTU GAS EXPERIMENTS
Several configurations of the bench-scale combustor were tested while firing low-Btu
gaseous fuel. The initial tests were performed in the evaluation of Concept No. 1, Low Intensity
Flame. Scheme 1-4B, shown in figure B-l, was utilized in an initial series of shakedown tests to
verify proper functioning of the rig. Systems and burner components. Highlights of the program
conducted were as follows:
1. Low-Btu gas tests were conducted successfully at ambient pressure condi-
tions and at 200 psia.
2. Successful functioning of the low-Btu gas heat exchanger was not achieved
due to inadequate flame stability characteristics of the liquid fuel fired heat
exchanger combustor. Hence, all tests with low-Btu gas were conducted with
ambient temperature fuel gas. A revised heat exchanger combustor con-
figuration was designed, based on diagnostic tests conducted during the test
program, and used in later testing.
3. The first batch of low-Btu gas was prepared in the modified, roadable, high-
pressure tube trailer. Each constituent gas was added until its partial
pressure satisfied the desired molar composition in the final mixture. The
mixture was then allowed to equilibrate until a homogeneous system was
achieved. The approach of the mixture to equilibrium was measured by
periodically measuring the composition of carbon dioxide. When the
composition of this "tracer" gas remained constant for a series of consecutive
analyses, the gaseous system was considered to be completely mixed.
The molar composition of the first low-Btu gas mixture, by gas chromato-
graphy, is shown in Table B-l.
In subsequent parts of the bench-scale program, further tests were conducted with low-Btu
gaseous fuel, in conjunction with Concept No. 11, Distributed Flame, and Concept No. 29, Rich
Burn/Quick Quench. Discussions of these tests may be found in sections 3.3.11 and 3.3.29.
Improvements in the functioning of the heat exchanger were completed to allow the final tests to
be conducted with heated gaseous fuel. Limited experimentation in the final test series was also
carried out using heated low-Btu gas with ammonia.
Table B-L Low-Btu Gas Composition
Molar Concentration
Constituent (Percent)
H2 13.17
CO 22.60
CH4 0.63
CO2 7.85
N2 55.75
B-l
-------
LB
27.50
AREF
19.09
L/D
5.56
VGLREF
305.4
ACDSUM
STATION
A
Al
A2
6
El
C
D
E
AX
1.331
19.079
19.079
1^.0/V
19.&V*
19.079
ACD
1.099
0.0
0.0
0.162
U.O
0.97^
1.173
0.241
Figure B-l. Bench-Scale Combustor Scheme 1-4B
B-2
-------
APPENDIX C
As part of EPA Contract 68-02-2136, Pratt & Whitney Aircraft, Government Products
Division, agreed to experimentally test a platinum-coated catalytic burner developed by Acurex
Aerotherm under EPA contract. Under the terms of the agreement, Acurex provided all of the
burner hardware including the fuel injectors, premix section, and catalytic burner. P&WA agreed
to test this catalytic burner in the bench-scale test facility and also to provide an alternative fuel
injection/premixing system.
The purpose of testing at P&WA was to obtain emission data at pressures of three, five and
ten atmospheres using gaseous propane, No. 2 distillate fuel oil, and No. 2 fuel oil with pyridine
(simulating 0.5% fuel bound nitrogen). The emission data was used to determine the pressure
effect on the catalytic burner and also used to verify previous data obtained by Acurex, thereby
advancing the development of catalvtic burners in general.
TEST HARDWARE
The ceramic honeycomb structure of the catalytic burner was fabricated into sections
approximately one inch thick. Six of the five-inch diameter honeycomb structures were cemented
together into a stacked arrangement (see Figure C-l of this Appendix) so that the cell size of each
successive honeycomb segment decreased in the downstream direction. This gave an overall
burner length of six inches. The ceramic structure was coated with platinum which served as the
catalyst for the combustion process. Three catalytic burners were provided by Acurex during the
duration of the test program.
The fuel injection section consisted of seven diffuser tubes (to facilitate the atomization of
liquid fuel) mounted in a stainless steel plate. Two modes of fuel injection were provided: axial
injection for gaseous propane and radial injection for liquid fuel. In both modes the fuel was
injected at the entrance of the tubes. This scheme was selected because it equally distributes the
fuel and air so that a uniform premixed mixture can enter the catalytic burner. Some of the
details of this part can be seen in Figure C-2 of this Appendix.
The premixing passage consisted of a five-inch diameter stainless steel section. The
catalytic burner was installed at the downstream end of the premixing section.
The P&WA alternative injection/premix section is presented in Figure C-3. It consisted of
an annular swirler, radial fuel injectors downstream of the swirler, a converging annulus to reduce
the possibility of flameholding, and a long premixing conical diverging section (half angle of 2.5
degrees). This concept had been tested previously as Scheme 26-3A with the results indicating
that this was a very uniform premixed system.
C-l
-------
FC 38584
Figure C-l. Photograph of Acurex/Aerotherm Catalytic Burner Hardware
C-2
-------
Figure C-2. Acurex/Aerotherm Catalytic Combustor (Scheme 2-1A/B)
Al
I
Figure C-3. P&WA Alternate Injection — Fremix Scheme 26-3A
C-3
-------
TEST RESULTS
The data obtained from the catalytic burner are presented in Tables C-l, C-2, and C-3 of
this Appendix, and also are tabulated in Appendix A. Test point 2-1A-1 was taken with the first
catalyst. Test points 2-1B-2 through 2-1B-7 were with the second catalyst and the third catalyst
was used for the remainder of the points. All emissions reported were corrected to 15% O2.
TABLE C-l
CATALYTIC BURNER DATA
(Flow Conditions)
Inlet
Test Air Inlet
Point Pressure Air
No. psia °F
2-1A-1
2-1B-2
2-1B-3
2-1B-4
2-1B-5
2-1B-6
2-1B-7
2-1B-8
2-1B-9
2-1B-10
2-1B-11
2-1B-12
2-1B-13
2-1B-14
2-1B-15
46.0
45.0
73.0
73.0
99.5
147.5
45.5
44.0
44.5
76.5
103.0
42.5
45.0
74.5
699
703
722
711
723
829
679
894
901
819
681
881
778
754
99.5 746
Test No.
'Approximate Flow: 2-1A-1 — •
2-1B-2
thru 4 and
NOTE: No. 2 Fuel W/Pyridine
Combustor Fuel
Air Flow AP Flow
Ibjsec psid lbm/hr
0.1916 0.4
0.2240 0.1
0.2288
0.2290
0.2561
0.5964
0.1945
0.4098
0.4148
0.9150
1.2804
0.3931
0.4146
0.8014
2.5*
16.5*
15.1*
18.6*
14.87
27.24
13.75
11.8
13.7
27.5
38.5 '
7.7
20.9*
34.0
0.9938 - 43.0
Questionable
13 — Determined from ideal O2 Curve
contains 0.5% Nitrogen by Weight
Fuel
Temp
°F
228
154
154
162
134
162
98
75
76
78
78
78
67
69
69
Fuel
Air Equivalence Fuel
Ratio Ratio Type
-
0.0205
0.0183
0.0226
0.0161
0.0127
0.0196
0.0080
0.0092
0.0083
0.0084
0.0054
0.0140
0.0118
0.0120
-
0.3203
0.2859
0.3531
0.2516
0.1984
0.3063
0.1163
0.1337
0.1206
0.1221
0.0785
0.2035
0.1715
0.1744
Propane
Propane
Propane
Propane
Propane
Propane
Propane
No. 2
No. 2
No. 2
No. 2
No. 2W/
Pyridine
No. 2W/
Pyridine
No. 2W/
Pyridine
No. 2W/
Pyridine
C-4
-------
TABLE C-2
CATALYTIC BURNER DATA
(Emissions)
Test
Point
No.
2-1A-1
2-1B-2
2-1B-3
2-1B-4
2-1B-5
2-1B-6
2-1B-7
2-1B-8
2-1B-9
2-1B-10
2-1B-11
2-1B-12
2-1B-13
2-1B-14
2-1B-15
* Corrected
FA
.
0.0205
0.0184
0.0226
0.0161
0.0127
0.0196
0.0080
0.0092
0.0083
0.0084
0.0054
0.0140
0.0118
0.0120
to 15% 0,
UHC*
PPMV
2.9**
0.6
0.3
0.0
0.4
0.0
0.6
187.8
71.3
54.4
500.8
-
108.1
39.1
24.6
CO,
PCTV
6.15
5.16
4.60
5.41
4.00
3.38
4.28
2.57
2.92
2.65
2.23
1.88
4.18
3.42
3.27
CO*
PPMV
12.0**
9.2
9.2
8.4
129.1
34.2
8.7
2823.2
1458.6
3625.2
4954.5
6510.0
110.7
2058.1
2145.2
0, NO**
PCTV PPMV
11.4
13.5
14.3
12.7
15.7
16.2
14.9
16.9
16.3
16.0
16.2
16.7
15.2
16.0
16.2
281.0**
2.2
1.2
1.8
0.8
1.0
0.2
7:3
10.3
7.7
5.9
155.4
195.3
118.8
107.4
conversion
81%
99%
62%
56%
**Uncorrected Values
TABLE C-3
CATALYTIC BURNER DATA
(Temperatures)
Test
Point
No.
2-1A-1
2-1B-2
2-1B-3
2-1B-4
2-1B-5
2-1B-6
2-1B-7
2-1B-8
2-1B-9
2-1B-10
2-1B-11
2-1B-12
2-1B-13
2-1B-14
2-1B-15
Down-
Stream
1" Behind
Burner
°F
2155
.
.
.
-
-
-
.
.
-
-
.
-
.
-
Down-
Stream
12" Behind
Burner
°F
1570
1800
1700
1820
1420
1660
1610
1030
1090
1070
950
930
1080
1050
1070
Catalyst
Bed
Temp
1
°F
„
.
.
.
.
.
.
1226
1280
1293
1102
1185
.
.
-
Catalyst
Bed
Temp
2
°F
_
.
_
.
.
.
.
1305
1401
1423
1208
.
.
.
-
Catalyst
Bed
Temp
3
°F
_
.
.
.
-
.
1693
1857
1839
1506
.
.
.
-
C-5
-------
The following points are the major conclusions drawn from testing the Acurex catalytic
combustor at P&WA:
1. Emission data were obtained with propane at three, five, seven and ten
atmospheres of pressure at catalytic bed temperatures around 2000°F. Low
emission values of NO,, CO and UHC were generally recorded (less than 10
ppm corrected to 15% O2).
2. Because of upstream flameholding problems, emission data with No. 2 Fuel
Oil were obtained only at pressures of three, five and seven atmospheres. The
airflow required to eliminate upstream flameholding was so large that the
catalytic burner was only partially reacting. Bed temperatures were
somewhat on the low side (less than 1850°F). This resulted in high CO and
UHC emissions. NO, emission values remained low (less than about 10 ppmv
corrected to 15% 02).
3. Similar problems occurred with the No. 2 Fuel Oil with pyridine. Emission
data were obtained at three, five and seven atmospheres at relatively low bed
temperatures (less than 1850°F). High CO and UHC emissions were
recorded. The percent of fuel bound nitrogen converted to NOX was affected
by burner pressure, reaching a low value of 56% at 100 psia, as seen in Figure
C-4 of this Appendix.
4. The P&WA premix section was successfully tested without the catalytic
burner at the reduced airflows required by the catalytic burner (see results of
Scheme 26-3A). Because of time limitations, it was not tested with the
catalytic burner. It appears to be a promising concept especially in view of
the upstream flameholding encountered in this program.
100
X
2 80
c
§" 60
§ 40
m
M—
O
.2 20
>
o
O
Conversion of Bound Nitrogen to NOV as a Function of Pressure
/\
0
20
40 60
Pressure, psia
80
100
FD 177315
Figure C-4. Conversion of Bound Nitrogen to NO* as a Function of
Pressure
C-6
-------
APPENDIX D
SI UNITS CONVERSION TABLE
English
op
in.
cu ft
ft/sec
in. Hg
lbn/sec
lbra/hr
gal
Btu/hr/atm/ft3
psi
SI
°K
cm
ma
m/sec
N/m2
kg/sec
kg/hr
m3
J/hr/(N/m2)/m3
N/m2
Multiply
K = (5/9) (F
2.54
0.0283
0.3048
3.3863
0.4535
0.4535
0.003785
0.03675
6894.7572
By
+ 459.67)
D-l
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA- 600/7 -80-017b
2.
3. RECIPIENT'S ACCESSION NO.
4 TITLE AND SUBTITLE Advanced Combustion Systems for
Stationary Gas Turbine Engines: Volume 2. Bench
Scale Evaluation
5. REPORT DATE
January 1980
6. PERFORMING ORGANIZATION CODE
7. MJTHOR(S)
R. M. Pierce,'S. A. Mosier, C.E.Smith, and
B.S.Hinton
8. PERFORMING ORGANIZATION REPORT NO.
FR-11405
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Pratt and Whitney Aircraft Group
United Technologies Corporation
P.O. Box 2691
West Palm Beach, Florida 33402
10. PROGRAM ELEMENT NO.
INE829
11. CONTRACT/GRANT NO.
68-02-2136
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 9/76 - 1/78
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTES IERL-RTP project officer is W.S.
541-2432.
Lanier, Mail Drop 65, 919/
is. ABSTRACTThe repOr^s describe an exploratory development program to identify, eval-
uate, and demonstrate dry techniques for significantly reducing NOx emissions from
stationary gas turbine combustors. (Volume 1 documents the research activities lea-
ding to selection of 26 combustor design concepts which could potentially meet the
program goals.) Volume 2 documents the Phase II bench-scale evaluation of those
concepts to experimentally evaluate their emission reduction potential. Results from
the testing program identified two design approaches capable of significant emission
reduction. A staged centertube design, relying on burner operation near the lean
blowout limit, gave low NOx and CO emissions on clean No. 2 fuel oil, but was inef-
fective for fuels containing bound nitrogen. A rich-burn/quick-quench (RB/QQ) de-
sign, producing a fuel-rich primary zone and quickly quenching the effluent from
that region to the high overall excess air conditions required by the gas turbine cy-
cle, successfully controls NOx from both thermal and fuel-bound sources while main-
taining low CO emissions for high thermal efficiency. Tha RB/QQ concept was selec-
ted for scaleup to full size hardware in Phases III and IV.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
Pollution
Gas Turbine Engines
Stationary Engines
Nitrogen Oxides
Carbon Monoxide
Hydrocarbons
C ombus tion
Combustion Cham-
bers
Flammability
Pollution Control
Stationary Sources
Unburned Hydrocarbons
Combustor Design
Staged Combustion
Dry Controls
Nirrrxrpn
c. COSATI Field/Group
13B
21E
2 IK
07B
07C
21R
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLTASS (ThisReport)
Unclassified
21. NO. OF PAGES
350
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
E-l
------- |