Test No. 71-CI-36
C.F. Chemicals, Inc.
Wet Process Phosphoric Acid
Bartow, Florida
December 14-15, 1971
f»nrinmmvntnl <>nijhn>4>rin
-------
Table of Contents Page No.
List of Figures ii
List of Tables ii
Introduction 1
Summary of Results 1
Process Description 8
Process Operation 11
Location of Sampling Points 12
Sampling and Analytical Procedures 18
Appendices 23
A. Emission Calculations and Results
B. Field Data
C. Standard Analytical Procedures .
D. Laboratory Results
E. Project Participants
-------
List of Figures
Page
1. Flow Diagram and Sampling Stations 3
2. Scrubber Design 10
3. Port Location - Station C 14
4. Port Location - Station D 15
5. Port Location - Station E 16
6. Port Location - Station F 17
7. Moisture Sampling Train 19
8. Fluoride Sampling Train 21
List of Tables
1. Summary of Results - Station C ' 4
2. Summary of Results - Station D 5
3. Summary of Results - Station E 6
4. Summary of Results - Station F 7
5.. Sampling Points 13
ii
-------
INTRODUCTION
Emission tests were conducted by Environmental Engineering, Inc.,
under the direction of EPA at the C.F. Chemicals, Inc., wet process
phosphoric acid plant No. 3 located in Bartow, Florida. Three test runs
were conducted on December 14-15, 1971. The purpose of the tests was to
obtain data to be used by both the Industrial Studies Branch and the
Performance Standards Branch.
Measurements for total fluorides were made in the inlet ducts and outlet
stack of the cocurrent scrubber. Three inlets, those leading from the attack
tank, filter, and barometric condenser hot wells, were sampled. Numerous
grab samples of the process reactants and products were taken and analyzed for
fluorides and PpO,- content. A schematic diagram of all sampling locations is
given in Figure 1.
Pertinent results of the tests are listed in Table 1; complete test
results are given in Appendix A.
SUMMARY OF RESULTS
The scrubber inlet from the attack tank showed fluoride emissions ranging
from .452-.907 Ib/ton P00.. fed. At the inlet from the filtration system, the
C. 0
fluoride emissions ranged from .0025-.0042 Ib/ton P,,05 fed, while emissions at
the inlet from the condenser ranged from .005-.006 Ib/ton P205 fed. It should
be noted that for the first run of the tests taken at the inlet from the con-
denser, no emission data are available for insoluble fluorides. Some of the
test samples were lost and the results of this test run are reported as soluble
fluorides and not total fluorides (see Table 3). At the scrubber outlet, total
-------
fluoride emissions ranged from .011-.064 Ib/ton P20,- fed. Compared to
the other two test runs, the value obtained for the first run (.064 #/ton
P^Oc fed) is extremely high. This irregularity is unexplainable, except
for the possibility that the sample for run 1 was contaminated. Scrubber
efficiency was calculated and ranged from 93.0% to 98.7%. For a complete
summary of the test results see Tables 1-4.
-------
Water from Pond
H2S04
Phosphate roc
Pond Water (A)
Attack
C J Stack Sample
f ) Grab Sample
To Atmosphere
t
Scrubber
/*»
(B) To. Pond -
Barometric condenser hot wells, and
miscellaneous
yv
Filtration
(i)
Gypsum,
to
Pond
1
Evaporation
(J)
Water
, to
Pond
(H) Phosphoric
Acid
Schematic Flow Diagram with Locations of Sampling Stations
Acid Plant No. 3, C.F. Chemicals, Incorporated
Figure 1
-------
TABLE 1
SUMMARY OF RESULTS
FLUORIDES
STATION C — SCRUBBER INLET FROM ATTACK TANK
Run No.
Date
Barometric pressure, inches Hg
Stack pressure, inches Hg
Stack gas moisture, % volume
Average stack gas temperature, °F.
Stack gas flow rate @ S.T.P., SCFM
Vol. gas sampled @ S.T.P. , SCF
Fluoride, water soluble, mg
Fluoride, total , mg
Fluoride, water soluble, gr/SCF
Fluoride, total , gr/SCF
Fluoride, water soluble, gr/CF stk. cond.
Fluoride, total, gr/CF stk. cond.
Fluoride, water soluble, Ib/hour
Fluoride, total, Ib/hour
PpOj- Fed, tons/hour
Fluoride, water soluble, Ib/ton P?0,- Fed.
Fluoride, total, Ib/ton P205 Fed.
Scrubber efficiency, %
1
12-14-71
30
30
12.6
132
23,146
106.758
1000.0
1001.3
0.1443
0.1444
0.1131
0.1132
28.61
28.65
31.6
0.906
0.907
2
12-15-71
30
30
13.0
130
24,303
110.567
890.0
891.9
0.1242
0.1245
0.0973
0.0975
25.87
25.93
31.6
0.819
0.821
3
12-15-71
30
30
14.2
113
23,657
114.580
523.0
523.9
0.0703
0.0704
0.0559
0.0560
14.25
14.27
31.6
0.451
0.452
Dry, 70°F., 29.92 inches Hg.
-------
TABLE 2
SUMMARY OF RESULTS
FLUORIDES
STATION D — SCRUBBER INLET FROM FILTRATION SYSTEM
Run No.
Date
Barometric pressure, inches Hg
Stack pressure, inches Hg
Stack gas moisture, % volume
Average stack gas temperature, °F.
Stack gas flow rate @ S.T.P.*, SCFM
Vol. gas sampled @ S.T.P. , SCF
Fluoride, water soluble, mg
Fluoride, total , mg
Fluoride, water soluble, gr/SCF
Fluoride, total, gr/SCF
Fluoride, water soluble, gr/CF stk. cond.
Fluoride, total, gr/CF stk. cond.
Fluoride, water soluble, Ib/hour
Fluoride, total, Ib/hour
PJDj- Fed, tons/hour
Fluoride, water soluble, Ib/ton P,,05 Fed.
Fluoride, total, Ib/ton P,,05 Fed.
Scrubber efficiency, %
1
12-14-71
30
30
3.4
93
2,446
•70.246
.16.7
16.72
0.0037
0.0037
0.0034
0.0034
0.08
0.08
31.6
0.0024
0.0025
2
12-15-71
30
30
4.6
92
2,533
64.483
18.0
18.1
0.0043
0.0043
0.0039
0.0039
0.09
0.09
31.6
0.0029
0.0029
3
12-15-71
30
30
3.6
92
2,364
57.130
24.0
24.0
0.0065
0.0065
0.0060
0.0060
0.13
0.13
31.6
0.0042
0.0042
Dry, 70°F., 29.92 inches Hg.
-------
TABLE 3
SUMMARY OF RESULTS
FLUORIDES
STATION E -- SCRUBBER INLET FROM CONDENSER, HOT WELLS, ETC.
Run No.
Date
Barometric pressure, inches Hg
Stack pressure, inches Hg
Stack gas moisture, % volume
Average stack gas temperature, °F.
Stack gas flow rate @ S.T.P.* SCFM
Vol. gas sampled at S.T.P.*, SCF
Fluoride, water soluble, mg
Fluoride, total , mg
Fluoride, water soluble, gr/SCF
Fluoride, total, gr/SCF
Fluoride, water soluble, gr/CF stk. cond.
Fluoride, total, gr/CF stk. cond.
Fluoride, water soluble, Ib/hour
Fluoride, total, Ib/hour
P20r Fed, tons/hour
Fluoride, water soluble, Ib/ton P20r Fed.
Fluoride, total, Ib/ton P205 Fed.
Scrubber efficiency, %
1
12-14-71
30
30
3.1
94
7,090
98.809
21.9
No Data**
0.0034
No Data**
0.0032
No Data**
0.21
**
No Data
31.6
0.007
**
No Data
2
12-15-71
30
30,
2.7
92
7,204
97.715
15.0
15.0
0.0024
0.0024
0.0022
0.0022
0.15
0.15
31.6
0.005
0.005
3
12-15-71
30
30
3.2
92
7,647
102.166
18.0
18.1
0.0027
0.0027
0.0025
0.0025
0.18
0.18
31.6
0.006
0.006
**
Dry, 70°F., 29.92 inches Hg.
Emission samples missing
-------
TABLE 4
SUMMARY OF RESULTS
FLUORIDES
STATION F -- SCRUBBER OUTLET
Run No.
Date
Barometric pressure, inches Hg
Stack pressure, inches Hg
Stack gas moisture, % volume
Average stack gas temperature, °F.
Stack gas flow rate @ S.T.P., SCFM
Vol. gas sampled @ S.T.P.*, SCF
Fluoride, water soluble, mg
Fluoride, total , mg
Fluoride, water soluble, gr/SCF
Fluoride, total, gr/SCF
Fluoride, water soluble, gr/CF stk. cond.
Fluoride, total, gr/CF stk. cond.
Fluoride, water soluble, Ib/hour
Fluoride, total, Ib/hour
P^Or Fed, tons/hour
Fluoride, water soluble, Ib/ton P,,05 Fed.
Fluoride, total, Ib/ton P00C Fed.
(L D
Scrubber efficiency, %
1
12-14-71
30
30
3.8
85
34,327
92.137
41.0
41.2
0.0069
0.0069
0.0064
0.0065
2.02
2.02
31.6
0.064
0.064
2
12-15-71
30
30
4.1
85
33,384
89.849
7.2
7.2
0.0012
0.0012
0.0012
0.0012
0.35
0.35
31.6
0.011
0.011
3
12-15-71
30
30
3.8
84
34,635
93.493
12.0
12.0
0.0020
0.0020
0.0019
0.0019
0.59
0.59
31.6
0.019
0.019
Dry, 70°F., 29.92 inches Hg.
-------
PROCESS DESCRIPTION
The first step in the basic process Involves mixing phosphate rock,
sulfuric acid, and water to form a reaction slurry.
The basic reaction is the acidulation of tricalcium phosphate in the
rock with sulfuric acid and water to produce phosphoric acid and calcium
sulfate di hydrate (gypsum). The reaction is:
Ca3(P04)2 + 3H2S04 + 6H20 + 2H3P04 + 3CaS04 * 2\\fl
Hydrogen fluoride gas (HF) is produced by a side reaction between the fluorine
in the rock and sulfuric acid. HF subsequently reacts with the silicates in
the digesting slurry to form fluosilicic acid as follows:
CaF + HS0 + 2H0 + CaS0 .2H0 4- 2HF
2
4
6HF + Si00 + H0SiFc + 2H00
c. f. o c.
The fluosilicic acid in turn can decompose:
H2SiF6 + Heat and/or Acid + SiF4 + 2 HF
The reactor consists of a series of tanks with the slurry alternately
overflowing and underf lowing from one compartment to the next. The multi-
compartment design allows temperature and agitation to vary throughout the
reaction sequence as slurry recirculates through the tank arrangement.
The acidulation or digestion step is a highly exothermic reaction requiring
considerable apparatus for cooling. A vacuum flash cooler maintains tempera-
ture in the reactor and degasifies1 the recirculated slurry of dissolved air,
carbon dioxide, and fluorides.
-------
The acid slurry from the last attack compartment of the reactor is
pumped to a rotating-tilting-pan filter where the phosphoric acid is
filtered from the gypsum. The byproduct gypsum is repulped and pumped to
a nearby pond. The product acid is pumped to a storage vessel and then to
vacuum evaporators in which the acid can be concentrated from 30 to 54% Pp°5'
The cocurrent scrubber design has a primary scrubbing section consisting
of countercurrent sprays of gypsum pond water. The gases then pass through
a section of irrigated baffles before flowing through the packing in the
secondary scrubbing section.
-------
C,F,
5£^- WET PROCESS PHOSPHORIC AC«D
Ol
I I
. .
FED Bf FbwO HiO ?ON\J>
i 1
FUN\E6
FROM
I I/I I
111 ' FUMPS FRft'.i
I ?t FILTCR" '
I t I CllTRA
< | 5EAl TAMi-.S
(Hi
'H1 ^ Hi..
Of
i -
:;
' °;
i
.,_ , n>~ ^Ae^ FLOV^
To FAfJ
AMD F.>>V A>0t3
5TAC 1C
Sul'vAP
TO p>ot-jO
ELEVATioM
Figurs 2
-------
PROCESS OPERATION
Run I was begun at 5:20 p.m. on December 14, 1971. Filtration was
very good. All pans were dumping dry. Process conditions were very stable
and only a few minor adjustments had to be made during the run. Excellent
filtration continued throughout Runs II and III with no upsets. Other process
conditions remained essentially unchanged.
CFCI had previously replaced pressure gages and manometers on the
scrubber. Scrubber conditions remained unchanged throughout Runs II and III.
11
-------
V. LOCATION OF SAMPLING POINTS
The sampling sites and number of traverse points were
selected as per "Method I - Sample and Velocity Traverses for Sta-
tionary Sources, Part 60, Subchapter C, Chapter 1, Title 40," Federal
Register. No. 247-Pt. II-l.
The above method suggests using two perpendicular diameters
of traverse points per sampling station, however, on-site conditions
necessitated the use of only one traverse diameter. The suggested
number of traverse points per diameter was used where possible without
sampling within one inch of the inner wall. Table 5 summarizes the
suggested and actual number of traverse points for each sampling site.
Figures 3 through 6 are schematic diagrams of the stack
configurations near the sampling location, and the sampling points
traversed during the emission tests.
12
-------
TABLE 5
DESCRIPTION OF SAMPLING POINTS
Plant
C. F. Chemicals, Inc.
Wet Phosphoric Acid
- Plant No. 3
co
Sampling Point
Description
Attack Tank Effluent
Filtration Tank Effluent
Barometric Condenser,
Sampling Point
Identification
C
D
E
Suggested No.
of Traverse
Points
24
16
14
Actual No.
of Traverse
Points Used
22
10
10
Stack
Diameter
(ft)
3.0
2.0
1.9
Hot Wells and Miscella-
neous Effluents
Exhaust Stack
4.3
-------
INNER STACK DIAMETER = 36 in.
Sampling Port
Sampling
Point
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
FIGURE 3
•^
LOCATION OF PORT AND SAMPLING POINTS,
STATION C
C. F. CHEMICALS, INC.
14
Distance From
Inner Wall (in)
1/8
3/4
3/4
43/4
5 3/4
7
8 1/4
9 3/4
11 5/8
14 5/16
21 5/8
24 3/8
26 3/16
27 1/4
29
30 3/16
31 1/4
32 1/4
33 1/8
34
34 3/4
-------
Sampling Port
INNER STACK DIAMETER = 24 in.
4 V
Sampling
Point
1
2
3
4
5
6
7
8
9
10
Distance From
Inner Kail (in)
1 5/8
2 7/8
4 1/2
6-
8 1/2
15 1/2
18
19 5/8
21 1/8
22 3/8
FIGURE 4
LOCATION OF PORT AND SAMPLING POINTS,
STATION D
C. F. CHEMICALS, INC.
15
-------
( \ INNER STACK DIAMETER = 22^ in.
Sampling Port
Sampling
Point
1
2
3
4
5
6
7
8
9
10
Distance From
Inner Wall (in)
2 1/2
3 1/2
4 3/4
6 1/4
8 3/8
14 1/8
16 1/4
17 3/4
18 7/8
19 7/8
FIGURE 5
LOCATION OF PORT AND .SAMPLING POINTS,
STATION E
C. F.'CHEMICALS, INC.
16
-------
FAN
INNER STACK DIAMETER = 52 in.
Sampling Port
Sampling
Point
1
2
3
4
5
6
Distance From
Inner Wall (in)
2 1/4
7 5/8
15 5/16
36 11/16
44 5/16
49 3/4
FIGURE 6
LOCATION OF PORT AND SAMPLING POINTS,
STATION F
C. F. CHEMICALS, INC.
17
-------
. SAMPLING AND ANALYTICAL PROCEDURES
A. Preliminary Moisture Determination
The preliminary moisture content of the stack gases at each
sampling site was determined by Method 4 of the Federal Register
(Volume 36, Number 247, Part II, December 23, 1971).
The only significant difference between F.R. Method 4 and the
method used was the configuration of the sampling train (See Figure 7).
The sampling train used in these tests consisted of the first two midget
impingers with 5 grams of distilled-deionized water followed by two dry
midget impingers in place of a silica gel cartridge.
After completing the moisture run, the total impinger liquid plus
water rinsings of the probe tip through the fourth impinger were placed in
an 8 ounce polyethylene container. The samples were held by EPA personnel
for further analyses.
Field data sheets are contained in Appendix B.
B. Preliminary Velocity Determination
Method 2 of the above referenced Federal Register was used as a
guide in determining the preliminary stack gas velocity for each source
tested. The major difference was that only the maximum and minimum velocity
heads across each stack area were determined so that a proper nozzle size
could be selected. During each of the three fluoride emission tests, velocity
head readings were taken at points selected by using Method 1 of the Federal
Register.
Stack pressure and temperature measurements were also made during
the preliminary velocity determinations.
18
-------
• 1. Heated Glass Probe
2. Glass Connector
3. Ice Bath
4. Midget Impinger With
5. Midget Impinger With
6. Midget Impinger, Dry
7. Midget Impinger, Dry
3. Flexible Sample Line
9. Vacuum Gauge
10. Main Control Valve
_,!"!. By-Pass Control Valve
vol2. Air Tight Vacuum Pump
13. Dry Test Meter
14. Thermometer
15. ' Calibrated Orifice
16. Inclined S^nnmster
17. S-Type Pi; t lube
Figure "7
MOISTURE SAMPLING.TRAIN
-------
C. Sampling for Fluoride Emissions
The sampling procedure used for determining fluoride emissions
was similar to Method 5 of the Federal Register. The major difference
between the two methods was the configuration of the sampling train. The
sampling train described in the Federal Register has a heated box containing
the filter holder directly following the glass probe. The sampling train
used in these tests contained no heated box and the filter holder was placed
between the third and fourth impingers (between dry impinger and silica gel
impinger) to prevent sample carry-over. Figure 8 is a schematic diagram of
the sampling train used.
After the selection of the sampling site and the minimum number of
sampling points per Method 2 of the above mentioned Federal Register, three
separate test runs were performed. For each run, the required stack and
sampling parameters were recorded on field data sheets. They are included
in Appendix B. Readings were taken at each traverse point at least every
five minutes, and when significant changes in stack parameters necessitated
additional adjustments to maintain an isokinetic flow rate. Nomographs were
used to aid in the rapid adjustment of the sampling rate. The traverse points
were selected to maintain at least one inch from the inner stack wall.
After each run, the liquid volume in the first three impingers was
measured volumetrically and the silica gel was reweighed. The impinger
liquid, the filter, plus the water washings of the probe and other sampling
train components up to the silica gel were placed into polyethylene containers.
During some runs the different sample fractions were placed in separate
containers, while during others, all of the recovered sample was placed into
one container (see Appendix (D)).
Field data sheets are included in Appendix B.
20
-------
1.
2.
3.
4!
5.
6.
7.
3.
9.
10.
11.
12.
13.
14.
15.
16.
17.
13.
19.
Stainless Steel Nozzle
Heated Glass Probe
Glass. Conns-Ctc1"
Ice Bath
vnth
with
, Dry
-.vith
100 ml
100 ml
H^O
hLO
(Modified
180
with
Irnpinger
Impinger
Impinger-
Irnpinger
Filter Holder
Thermometer
Flexible Sample Line
Vacuum Gauge
[•lair, Control Valve
By-Pass Control Valve
Air Tight Vacuum Pump
Dry Test Meter
Calibrated Orifice
Inclined Manometer
S-Type Pi tot Tube
(Modified
(Standard Tip)
Tip)
Silica Gel
Figure 8
FLUORIDE SAMPLING TRAIN
-------
D. Liquid and Product Grab Samples
Periodically, during each test run, grab samples of the raw
materials, finished product, and scrubber liquid were taken, and the tem-
perature and pH were determined at the site. On some occasions, the samples
were split with the plant personnel so that comparative analyses could be
performed.
E. Laboratory Analysis Procedures
Water soluble fluorides were done by a sulfuric acid distillation
followed by the SPADNS-ZIRCONIUM LAKE METHOD. Water insoluble fluorides
were first fused with NaOH followed by a sulfuric acid distillation then
by the SPADNS-ZIRCONIUM LAKE METHOD.
P205 analysis of the stack effluent was done by EPA personnel. All
other PpOg analyses were done by plant personnel.
For more details of exact method used see Appendix C.
22
-------
APPENDICES
23
-------
APPENDIX A
Emission Calculations and Results
-------
NOMENCLATURE FOR SOURCE SAMPLING CALCULATIONS
PB
PS
AS
TS
TM
H.
AH
AN
CP
VM
VC
vwv
VSTPD
VT
W
FDA
FMOIST
MD
MS
GS
EA
IJ
QS
QD
QSTPD
VI
PISO
PSIOi
PSI02
H20
Barometric pressure, inches Hg
Stack pressure, inches Hg
Stack area, sq. ft.
Stack temperature, °R
Meter temperature, °R
Average square root of velocity head, /inches
Average meter orifice pressure differential, inches
Sampling nozzle area, square feet
S-type oitot tube correction factor
Recorded meter volume sample, cubic feet (meter conditions)
Condensate and silica gel increase.in impingers, milliliters
Pressure at the dry test meter orifice, ( PB + AH ^ inches Hg
H20
13.6
Conversion of condensate in milliliters to water vapor
Volume samples, cubic feet (dry, 70°, 29.92 inches Hg)
Total v/ater vapor volume and dry gas volume sampled, cu
Moisture fraction of stack gas
Dry gas fraction
Assumed moisture from preliminary check
Molecular weight of stack gas, lbs/lb-mole
stack gas, Ibs/lb-mole
stack gas, referred to
in cu. ft.
. ft.
of
of
Molecular weight
Specific gravity
Excess air, %
Stack gas velocity,
Stack gas flow rate
Stack gas flow rate
Stack gas flow rate
(dry conditions)
(stack conditions)
air
feet per minute
, cubic feet per minute
, cubic feet per minute
, cubic feet per minute
Isokinetic sample volume, cubic feet (dry, 70°F, 29.92 in. Hg)
Percent isokinetic volume sampled
Percent isokinetic volume sampled
Percent isokinetic volume sampled (method described in Federal Register
(stack conditions)
(dry conditions)
(dry, 70°F, 29.92 in.
J12.)
-------
EQUATIONS FOR CALCULATING FLUORIDE EMISSIONS
VWV « (0.0474) x (VC)
VSTPD = (17.71) x (VM) x (PB + ^|^-) 4 TM
VT = (VWV) + (VSTPD)
w = (vwv) ; (VT)
FDA = (1.0) - (W)
FMOIST = Assumed moisture fraction
MD = (0.44 x % C02) + (0.32 x % 0£) + (0.28 x % NZ) + (0.28 x % CO)
MS = (MD \ FDA) + (18 x W)
GS = (MS) v (IS.99)
EA = ((100) x (% 02 - ^-)j 4 ((0.266 x % Ng) - (% 0£ -
U. = (174) x (CP) x QD x /(TS x 29.92) 4 (GS x PS)
QS = (U) x (AS)
QD = (QS) x (FDA)
QSTPD = (530) x (QD) 4 (TS) -
VI = (530) x (U) x (AN) x (FDA) x (Time) 4 (TS)
PISO = (100) x (VSTPD) * (VI)
PIS01 = (5.626 x TS x VM) * (U. x Time x PS x FDA x AN)
PIS02 = [fo.00267 x VC x TS) + (PQ x TS x VM * TM)] * [(Time x U. x PS x AN)]
Fluoride Emissions:
MG = Milligrams of fluoride from lab analysis
Grains/SCF = (0.01543) x (MG) -i VSTPD
. Grains/CFs Stack Cond. = (17.71) x (PS) x (FDA) x (Grains/SCF) -J (TS)'
Lbs/hour = (Grains/SCF) x (0.00857) x (QSTPD)
PgOg Fed = Tons/hour, determined from plant data
Lbs/ton P205 Fed = (Ibs/hour) t (Tons/hour P205 Fed)
-------
SOURCE TEST DATA
J.P.A. TEST NO.
NAME OF FIRM C. F. CHEMICALS
NO. OF RUNS 3
LOCATION OF PLANT BARTOl-l FLORIDA
•l-l PE OF PLANT WET ?#£. Cf't/3 /..-'/ C /?{/.& /V/W/~
CONTROL EQUIPMENT &C,f"JBFF&
SAMPLING POINT LOCATION ™T P710S ACID ATTACK INLET-STATION C
POLLUTANTS SAMPLED F£UOx/D£$
DRUM NO.
2)DATE
3) TIME BEGAN
H)TIME END
^BAROMETRIC PRESSURE, "Hg ABSOLUTE
b)METER ORIFICE PRESSURE DROP, "H20
7)VOL DRY GAS Q METER CONDITIONS, ft3
B)AVERAGE GAS METER TEMPERATURE, °F
9) VOL DRY GAS Q S.T.P.*, ft3
1Q)TOTAL U-20 COLLECTED, ml
1DVOL WATER VAPOR COLL. Q S.T.P., ft3
.12)STACK GAS MOISTURE, %VOLUME
13)ASSUMED STACK GAS MOISTURE, %VOLUME
14)% CO-
£.
16)% CO
17)% //2
18)% EXCESS AIR
19) MOLECULAR WT. OF STACK GAS, DRY
20)MOLECULAR WT. OF STACK GAS, STACK COUD.
2DSTACK GAS SP. GRAVITY, REF. TO AIR
22)AVG~VVEL. HEAD OF STACK GAS , "H20
23)AVERAGE STACK GAS TEMPERATURE ,° F
2H)PITOT CORRECTION FACTOR
25)STACK PRESSURE, "Hg ABSOLUTE
2§)STACK GAS VEL @ STACK COND., fpm
2DSTACK AREA,- ft2
2Q)STACK GAS FLOW RATE @ S.T.P., scfm
29) NET TIME OF TEST, min.
30)SAiJPLING NOZZLE DIAMETER, in.
3 1) PER CENT ISOKINETIC
1
12/14/71
17: 50
19:40
30
2. 72
109. 361
00
106.750
325. 3
15.42
12. 6
5
0
20. 5
0
79. 5
3168
28. 82
27. 45
0.95 .
11 P 1
* 1 D J.
132
0.83
30
4185.8
7r\ *7
. 07
23146
110
00 r
.25
86.7
32)FLUORIDE - WATER SOLUBLE, MG j 1000
33)FLUORIDE - TOTAL, MG 1001.3
3H)FLUORIDE - WATER SOLUBLE, GR/SCF 0.1443
35)FLUORIDE - TOTAL, GR/SCF 0.1444
3G)FLUORIDE - 1120 SOL.+ GR/CF STACK COND 0.1131
37)FLUORIDE - TOTAL, GR/ CF STACK COUD. 0.1132
3Q)FLUORIDE - WATER SOLUBLE , LB J ' HOUR 28.6139
33)FLUORIDE - TOTAL, LB/HOUR 28.6511
HO)FLUORIDE - WATER SOLUBLE, LB/TON P205 0.9055
^DFLUORIDE - TOTAL, LBS/TON P205 FED
0. 9067
2
1 2 / 15 / 7 1
9:40
11: 30
30
3. 18
112. 515
85
110. 567
349 .1
Ib. 55
13
5
0
20. 5
0
79. 5
3168
28. 02
27. Hi
0. 95
1O O 1
• /. 2 1
130
0.03
30
4400.2
7.07
24303
110
0.25
05.5
8 9O
2. 79
0. 0001
0. 0004
0. 0001
0. 0003
0. 0258
0. 0809
0. 0008
0. 0026
3
12/15/72
15 : 15
17:05
30
3.25
117. 9 9 3
9 1 . G
114.58
400.0
1'J
14. 2
5*0
1. G
20
0
' 78. 4
23'':!
2 9 . 0 G
2 7 . 4 0
0.95
1.19
113
0. iJ3
30
4210.2
7.07
236 5 7
110
0.25
n -t
J j-
' 523'
523.85
0.0703
0.0704
0. 0559
0. 0 56
14. 2513
14. 2744
0.451
0.4517
"DRY; 70 °F. 29.92 In
-------
SOURCE TEST DATA
E.P.A. TEST NO.
NAME OF FIRM C. F. CHEMICALS
NO. OF RUNS 3
LOCATION OF PLANT /?/1,77Y)f/ FT.O^TDA
TYPE OF PLANT ,'-'.=T /^o /^/ v^ •/}£/& /^^A/'T
CONTROL EQUIPMENT ' ^^ A ''.ifttffZf.'
SAMPLING POINT LOCATION STATION D UFT PJWS Arm r^.pT
POLLUTANTS SAMPLED /=Z///V ''/'.^Mi'
1)RUN NO.
2) DATE
. 3) TIME BEGAN
•OZT/-/2 ElID
S)BAROMETRIC .PRESSURE, "Hg ABSOLUTE
•' &)METER ORIFICE PRESSURE DROP, "\\2®
T)VOL DRY GAS Q METER CONDITIONS, ft3
t) AVER AGE GAS METER TEMPERATURE, °F
9) VOL DRY GAS Q S.T.P.*, ft3
1Q)TOTAL 7/20 COLLECTED, ml
ll)VOL UATER VAPOR COLL. @ S.T.P., ft3
.12)Si^CX C/45 MOISTURE, ^VOLUME
13) ASSUMED STACK GAS MOISTURE, |VOLUME
14)2 CO-
o r\
16)| CO
17)% 7/2
18)2 EXCESS AIR
19)MOLECULAR UT. OF STACK GAS, DRY
2Q)UOLECULAR UT. OF STACK GAS, STACK COND.
2DSTACK GAS SP. GRAVITY, REF . TO AIR
22)AVG-VVEL. HEAD OF STACK GAS , "H20
23) AVER AGE STACK GAS TEMPERATURE ,°F
2H)PITOT CORRECTION FACTOR
2S)STACK PRESSURE, "Hg ABSOLUTE
2&)STACK GAS VEL Q STACK COND., fpm
2DSTACK AREA, ft2
2Q)STACK GAS FLOU RATE Q S.T.P.f scfm
29) UET TIME OF TEST, min.
3Q)SAMPLING NOZZLE DIAMETER, in.
31)PERCENT ISOKINETIC
32)FLUORIDE - UATER SOLUBLE, MG
33)FLUORIDE - TOTAL.MG
^FLUORIDE - UATER SOLUBLE, GR/SCF
35)FLUORIDE - TOTAL, GR/SCF
3S)FLUORIDE - 1120 SOL.-* GR/CF STACK COND
ZT)FLUORIDE - TOTAL, GR/ CF STACK COND. ••
3Q)FLUORIDE - UATER SOLUBLE, LB / HOUR j;
391FLUORIDE - TOTAL, LB / HOUR
"HOIFLUORIDE - UATER SOLUBLE, LB/TON P205 \
HDFLUORIDE - TOTAL, LBS/TON P205 FED \
1
12/14/71
17: 51
10:51
30
1 .22
75.057
110.3
70.240
52
2 . ^r G
3.4
3.4
0
20. 1
0
79.9
1743
28. 8
28.44
0. 98
Of" O "1
.521
93
0. 83
30
1784.3
1.48
2446
120
0. 25
103.7
16. .7
16. 722
0. 0037
0. 0037
0 . 0034
0. 0034
0.0767
0.0768
0.0024
0.0025
2
12/15/71
9:40
11:40
30
0.81
09. 004
109. 8
64.483
05
3.08
4.0
5
0
20. 3
0
70.7
2255
28.81'
28. 32
0. 08
0.545
92
0.83
30
f .°4C87 ' 2
2533
120
0. 25
01 . 0
18
18.13
0. 0043
0. 0043
0. 0039-
0. 004
0.0933
0.094
0.0029
0.0029
3
12/15/71
15 : 15
17: 15
30
0.75
02.4
121. 5
57.13
44.0
2.13
3.G
5
0
20.8
0
79. 2
7784
28. G3
28. 44
0. 98
0.505
92
0.83
30
. 1725.0
1.48
2364
120
0. 25
87.2
24
24
0.0065
0. 0065
0. 006
0.006
0.1311
7.0042
7.0042
"DRY* 70 °F. 29.92 in. UK
-------
SOURCE TEST DATA
E.P.A. TEST 110.
NAME OF FIRM C. F. CHEMICALS
NO. OF RUNS 3
LOCATION OF PLANT BARTOW FLORIDA
TYPE OF PLANT ''''/"?' f"'-f> f- r* -'.'.•> f" C. /}£/£> /"^./-V/7"
CONTROL EQUIPMENT •' " V ''' •'•'•'• '/:V
SAMPLING POINT LOCATION STATION E - WET PHOS ACTD TNLF.T
POLLUTANTS SAMPLED tttfC't 7&f-~£
DRUM no.
2)DATE
3) TIME BEGAN
• H)TIME END
' S)BAROMETRIC PRESSURE, "Hg ABSOLUTE
f>)METER ORIFICE PRESSURE DROP, "I^O ,
T)VOL DRY GAS Q METER CONDITIONS, fta
*) AVER AGE GAS METER TEMPERATURE, °F
9) VOL DRY GAS @ S.T.P.*, ft3
1Q)TOTAL H-iO COLLECTED, ml
11) POL WATER VAPOR COLL. @ S.T.P., ft5
.12)S2VtCK C45 MOISTURE, ^VOLUME
IS) ASSUMED STACK GAS MOISTURE, ^VOLUME
14)% C02
15)% 02
16 )& CO
17)% 7/2
18)% EXCESS AIR
19)MOLECULAR WT. OF STACK GAS, DRY
20)MOLECULAR UT. OF STACK GAS, STACK COND .
2DSTACK GAS SP. GRAVITY, REF . TO AIR
22)AVG~VVEL. HEAD OF STACK GAS , "H20
23)AVERAGE STACK GAS TEMPERATURE ,° F
2^)PITOT CORRECTION FACTOR
25)STACK PRESSURE, "Hg ABSOLUTE .
26)STACK GAS VEL Q STACK COND., fpm
2DSTACK AREA, ft2
28)5^/1^ GAS FLOW RATE @ S.T.P.f scfm
29) NET TIME OF TEST, m I n .
ZQ)SAMPLING NOZZLE DIAMETER, in.
3DPERCEHT ISOKINETIC
32)FLUORIDE - WATER SOLUBLE ,MG
33)FLUORIDE - TOTAL, MG
3H)FLUORIDE - WATER SOLUBLE, GR/SCF
35)FLUORIDE - TOTAL, GR/SCF
3&)FLUORIDE - 1120 SOL.-*- GR/ CF STACK COND
37)FLUORIDE - TOTAL, GR / CF STACK COND.
3B)FLUORIDE - WATER SOLUBLE, LB / HOUR
39)FLUORIDE - TOTAL, LB /HOUR
HO)FLUORIDE - WATER SOLUBLE, LB/TON P205
HDFLUORIDE - TOTAL, LBS/TON P20S FED
1
12/14/71
17:20
19:20
30
2.3
101.321
88
98. 809
67.6
3.2
3.1
400
0
20
0
80
1563
28.8
28. UG
0. 98
0. 809
94
0.83
30
2771. 2
2.76
7090
120
0. 25
93.8
2/.
/Uo DATA
2
12/15/71
9:45
11 :45
30
2.26
100. 027
87
97.715 i
56.6
2.68
2.7
400
0.2
20. 7
0
79.1
6078
28. 8G
28.57
0.99
0. 818
92
0.83
30
2792.1
2.76
7204
120
0.25
91.3
15
15
0. 0024
0. 0024
0. 0022
0. 0022
0. 146
0. 146
0. 0046
0. 0046
3
12/15/71
15 : 30
17: 30
30
2.4-2
105.06
93.9
102. 1GG
71. 1
3. 37
3.2
4
0. G
20
0
70.2
1 (', 7 4
28.93
28.58
0.99
OO *7 1
. 0 / J
92
0.83
30
2979.4
2 . 7G
7G47
120
0.25
o o n
00.9
18
18. 073
0. 0027
0. 0027
0. 0025
0. 0025
0.1778
0.1785
0. 0056
0. 0056
.... • . L • ''
DRY. 70 °F. 29.92 in
-------
SOURCE TEST DATA
E.P.A. TEST NO.
NAME OF FIRM C. . F. nJllPJ.1TnAT.fi
NO. OF RUNS 3
LOCATION OF PLANT BARTOU FLORIDA
TYPE OF PLANT ME.T P^C6 P^Of'';c /ULtb /=>
-------
/
c
ATTACK
23,146 USCFM
28.65 Total Fluoride #/HR
D
FILTRATION
^44o -/
,08
E
CONDENSER
7,090
.21
32y682
— O
w i
28.94
C.F. Chemicals
Wet Acid
Run 1 i
Pond
H20
SCRUBBER
Pond
H20
F
OUTLET
34.327
2.02
Efficiency: 93.0%
-------
c
ATTACK
24,303 DSCFM
25.93 Total Fluoride
. #/HR
D
FILTRATION
2,533
.09
CONDENSER
7,204
.15
^r
34,040
s
26.17
C.F. Chemicals
Wet Acid
Run 2
_
Pond
H20
.SCRUBBER
Pond
-£-
A
F
OUTLET
33,384
Efficiency 98.7%
-------
c
ATTACK
23,657 DSCFM
14.27 Total Fluoride
#/HR
D
HLTRATION
2,364
.13
CONDENSER
7,647
.18
33,668
-
14.58
C.F. Chemicals •
Wet Acid '
Run 3
o
Pond
SCRUBBER
Pond
F
OUTLET
34,635
.59
*-»•
Efficiency 95.9%
-------
APPENDIX B
Field Data
-------
PRELIMINARY CHECK FOR STACK GAS
MOISTURE CONTENT AND SPECIFIC GRAVITY
Plant - • I. tf€MI C@ . MP> Stack/£r)0£./r£/
'J <<' "»"
/ && Fraction Of Dry Air, FDA_
Moisture, Content — "ethcd 2
Dry Bulb Temp. IF Wet Bulb Temp. ^F Dew Point Temp..
Vapor Pressure Of H20 3 DP "Kg Stack Pressure
Moisture Fraction, h^O _ Fraction Of Dry Air, FDA
Date /£- /4- 7/ Sample Time /36& - /3f& Barometric Pressure 3& "Kg
Average Meter Orifice AH \ Qt @3& "HgO
Sampling Rate Jg0 ffi LPM
Condensate Volume / ml
Water Vapor Volume @ ?0 °F, 29,92 "Kg £. O$7 Ft-
Specific Gravity
Dry Molecular Weight, Md = [o.W-(^C02^] +J0.32(£02_)] +J0.28(^N2 + CO)] = _
Molecular Weight § Stack Conditions, Ms = [(Md)x(FDA)] + |Jl8)x(H2ol] =
Specific Gravity (Referred to air), Gs = (Ms) -f- (28*99) = _
-------
PRELIMINARY CHECK FOR STACK GAS
MOISTURE CONTENT AND SPECIFIC GRAVITY
stack""
Date /^ - /J> / Ft3
Initial Dry Test Meter Reading
Dry Test Meter Volume Sampled
Average Meter Tempsrature ,
Average Meter Vacuum
Average Meter Orifice AH C/_» 0 ~) "H-jO
Sampling Rate ; ^e / LFM
Barometric Pressure © Meter Orifice 3& "Fs?
T T . LL- ' - *"|*^ "^^ O
Dry Gas Volume Sampled @ 70 °F, 29-92 "Kg &* 9 7/ Ft3
Condensate Volume ^> / ml
Water Vapor Volume © 70 °F, 29,92 "Hg £?
Moisture Fraction, HoO O* O 3 Fraction Of Dry Air, FDA 0* 9 "7
Moisture Content — Method 2
Dry Bulb Temp. 9/ °F Wet Bulb Temp, 87 °F Dew Point Temp,
Vapor Pressure Of H20 '9 DP /. Z £> "Hg Stack Pressure >^^> "Hg
Moisture Fraction, H20 Q* O4- Fraction Of Dry Air, FDA ^. 9&
Specific Gravity
Dry Molecular Weight, Md = [o.WK;oC023] +J0.32(^02)j +J0.28(#N2 + Co]] =
Molecular Weight S Stack Conditions, Ms = [(Md)x(FDA)] + [OL8)x(H20_)] = _
Specific Gravity (Referred to air), Gs = (Ms) -7- (28.99) =
-------
•PRELIMINARY CHECK FOR STACK GAS
MOISTURE CONTENT AND SPECIFIC GRAVITY
f\XctnT> \T*rfjP_t fli&'PJ^f^ ffpS'£ to* ft/ £v^ -ft *ed^>?_TT''f I *"* *^*-*^**\ *"^ ^T"tEr»-r jfLn-fS^fr^*^'''* f-fi^ffj^.-^' -fr.r
^^ ^
Stack Afef WtoS. /fatff,
Date /Z- /4- ?/ Sample Time /3$?~ /3/& Barometric Pressure 3O "H
Moisture Content — Method 1
Final Dry Test Meter Reading 2/<^. 72" 2
r ^
Initial Dry Test Meter Reading &*f /a / C, 2 Ft3
Dry Test Meter Volume Sampled Jjf, $7^&
Ft3
Average Meter Temperature , • § £^ °p
Average Meter Vacuum """" "Hjr
Average Meter1 Orifice AH £/» U §
Sampling Rate ^5, jf/
Barometric Pressure @ Meter Orifice 3dP
Dry Gas Volume Sampled ® ?0 °F, 29.92 "Hg ^. ? ^-/
"H-;0
LFM
"He
Condensate Volume / inl
Water Vapor Volume 3 ?0 °F, 29,92 "Hg O» O$J Ft3
Moistui'e Fraction, HoO p?o ^?^ Fraction Of Dry Air. FDA
O.9&
Moisturs Content — Method 2
Dry Bx0.b Temp. 9& °F Wet Bulb Temp. °¥ Dew Point Temp,
Vapor Pressure Of H20 Q DP /•> /B "Hg Stack Pressure S^> "Kg
Moisture Fraction, HoO &* C& Fraction Of Dry Air, FDA . &»
Specific Gravity
Dry Molecular Weight, Md = J0.^4(^C021] +^.32(^02)j +|o.28(^N2 + 03))=
Molecular Weight ® Stack Conditions, Ms = [(Md)x(FDA)] + [fl3)x(H2ol] =
Specific Gravity (Referred to air), Gs = (Ms) -f (28.99) =
g
-------
PRELIMINARY CHECK FOR STACK GAS
MOISTURE CONTENT AND SPECIFIC GRAVITY
Plant T ewtC.8& 0C. Stack "
Moisture Contsnt •— Method 1
Final Dry Test Meter Reading
Initial Dry Test Meter Reading
Dry Test Meter Volume Sampled /^
Average Meter Temperature , •
Moisture Fraction, HoO £>, Q& Fraction Of Dry Air, FDA
Moisture Content — Nethod 2
Dry Bvilb Temp. _ IF Wet Bulb Temp. _ ^F Dew Point Temp.
Vapor Pressure Of H20 3 DP _ "Hg Stack Pressure
Moisture Fraction, HoO _ Fr-action Of Dry Air, FDA
Specific _ Gravity
Date /£~ /$•'?/ Sample Time /308 Barometric Pressure 3& "Kg
Average Meter Vacuum -""* "Hg
Average Meter Orifice AH & 0^ "H^O
Sampling Rate •"""• LPM
Barometric Pressure •§ Meter Orifice 30 "Hg
Dry Gas Volume Sampled S ?0 °F, 29.92 "Hg / £&& Ft3
Condensate Volume / nil
Water Vapor Volume 9 ?0 °F, 29,92 "Hg
Dry Molecular Weight, Md = [o.W-^CO,^ + J0.32(',b02j +^«28(^12 + CO)] =
Molecular Weight 3 Stack Conditions, Ms = [(Md)x(FDA)] + [TlSj
Specific Gravity (Referred to air), Gs = (Ms) -f- (28.99) =
-------
Sajnpling Location_
Date
Run No,
Time Start
Time End /
Sampling Time/Point
DB/2.? °F> WB
Moisture
l,FDA^7^Gas DensityFactor_
Barometric Press;$j
Weather
°F, VF @ DP
•Gas Dens it
"Hg, Stack
"Hg
Temp
Sample Box No.
Meter
W/S
Meter Bex
Pitot Corr. Factor^
Nozzle Dia, /y' in,, Probe Length X" ft
Probe Heater Setting __ _
Stack Dimensions: Inside Diameter^ 6 in *
Inside Area •/,£, "ft 2
Height __ ' £t
Sketch of Stack
Mat'l Processing Rate
Final Gas Meter Reading / /3, Z<<
Initial Gas Meter Reading po3, ?
Total Condensate in Impingers
Moisture in Silica Gel ftgy.8 \ 3^>J
Silica Gel Container No. jJ Filter No.
Orsat: C00 O
°2
CO
Excess
Air
a
Test Conducted By:
Remarks:
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Kfeter
Reading
Stack
Velocity
Head
("H20)
Meter
Orifice
Press.Diff.
("H90)
Calc.'
Actual
Stack Gas
Temp.
C°FJ
Gas Sample
Temp.@ Dry
Gas Meter
f°F)
In
Out
Sample
Box
Temp..
Last
Impingar
Teiip.
Vacuum
on
Sample
Train
("Hg)
/.
3L3L
JL3JL
^JZ.
. 7
/33
&./0
£j23^3_
MJL.
1-
- 0
si
/
-------
Pci c and
Traverse
Point No.
/€>
//-
/*.-
| M.
i : • /?
;jf
'/£
/7
/*
/?
2*,
^
2^.
Distance
from End
of Port
(in)
// w
H £/!£
•21&?
2* 3/g
a£ 3//t>
^7 '//
27"
3*-*fe
3/^y
32. Y*/
33 Ye
3+1
^ 3/4
Clock
Time
C$5
6-1&
£.35
£-f*
f.ss
7.^
Gas Meter
Reading
(ft3)
66?-$
3?£-£
&7. O
1/0-
//J.i^S
Stack
Velocity
Head
C"H2°)
-2.,&
J.5'
&•*/
/).3S
&-3S
&.3t>
6*3o
0.35
6.36
0-1
fo 3&
6-3
&>3
Meter
Orifice
Press. Diff.
. .C'H20)
Cal.
6-8
S.&
/•3S
1.1.0
l.lo
/•O .
!-o
I.™
1.2&
135
Lo
/•O
/•O
Actual
?-5-
<*•/.£
/.3S
l-^o
/. 2.0
/:0
/••&
l.i-o
l-^G
1.35
3L.O
/•O
/, ^
Stack Gas
Temp,
(°F)
J3o
130
A5"V
f<3^>
13-2-
/3*-
134
13*-
132.
/<32-
J3 2_
/v3^
/J3
Gas Sample
Temp.@ Dry
Gas Meter
(°F)
In
7?
7?
7?
$1
SS
$B
\B%
t$
$S
SB
3$
^7
^7
Out
/
?-2-
<13
1^
°ll
*!V
%t
$1
87
$7
$6
B7
$ /
Sampte
Box
Temp.
(°F)
Last
Impinger
Temp,-
(°F)
..f^- ., .
?^
&7
$7
<^2_
f/
-------
SOURCE SAMPLING FIELD DATA SHEET
Plant f^ /r f~sHf.m{C a.A5
Sampling Location /5?7T2iC/^ C~T ^Jef^
Date /2/
/5/7 / Run No. ^-
Time Start ^^O Time End //3D
Sampling Time/Point ^ .^^^ Ho • •-*'•'
DB °F,
Moisture_,j£
Barometric
Weather /-
WB °F, VF @ DP "Hg
' % , FDA^'^5", Gas Dens ity Fac tor
PressJ? "Hg,
/*+-
Stack I
3ress3^Hg
Temp. $ °F, W/D , W/S
Sample Box
Meter £ H@ /
\To. Meter Box
No.-^"
£% Pitot Corr. Factor^^"
Nozzle Dia, fa in=, Probe Length <^ ft
Probe Heater Setting
Stack Dimensions: Inside Diameterv^^" in
Inside Area
ft^
Height ft
Port and
Traverse
Point No.
' ' /
•2S—
_5
*/
<5f
(e
9
3
9
Distance
from End
of Port
(in)
Ity
2.
Clock
Time
.*jo
1-. o&-
fa. 03
10. /
/ 0./-J5
/& ~)-£)
Sketch of Stack
Mat'l Processing Rate
Final Gas Meter Reading 2. 2- .5". £
Initial Gas Meter Reading / J3./£i
SI ft3
£ ft3 t
*"\ t'i V
Total Condensate in Impingers^ 33 & ml'j^^T
Moisture in Silica Gel 2£.
{->/$?
r/^./ gn/^
Silica Gel Container No./g>$ Filter No,72-"^>i-5"
Orsat: C02
CO
' N2
Excess
Air
0
£A ^
' *J
) 33, &
I3 . g
—
/v5"2.
A^"^- ^
)£ £» 0
I 7^.6
Stack
Velocity
Head
("H20)
5-^-
3-v5
2y.<5
^y. /?
vJ. J"
3 «. o
3-
J<3o
J<30
/
• r
t/*rf
SO. t
Gas Sample
Temp.g Dry
Gas Meter
f°F'l
In Out
79 ?
#0 71
V / 7
-------
Port and
Traverse
Point No.
/*
•//
•/z-
' /3
Jt
}5
•1'to
i7
H
11
10
7-1 \
13-
&
Distance
from End
of Port
(in)
h*/f
}*i£/li?
-2-1 */?
2-1 */g
-z£3/j£
•z^y?
2.?
3o3//&
ji y*f
3^ fy
33 '/$
37
3*t3fy
Clock
Time
/£>.?£
/*.&
(&.B$
1&.3D
VM$\
^1^50
Gas Meter
Reading
(ft3)
/ 7 f . /
/ $&. 6
/y-z. o
/5'&
/$ 7
2.<5/.
le. ££"\ 2.0&' 0
J/.tr
If. ts
II-/0
)(•/£
//- 2-^
//-^
//. 30
2^^". 2.
2- //. ^2.
ZU?- 9
2/^^
2-2.2-, /
-2.2S.£&/
Stack
Velocity
Head
.C"H20)
2..^
Z*£
I.S*
0-3
&~ 3
e>.3
&. 3
'&. ^
a. 3
&. *J
& 4
®- i5
Q.3&
Meter -
Orifice
Press. Diff.
. .. C"H20)
Cal.
7- 3
^.<5
£•0
/•o
/•a
S-o
/•o
/,
i-o
(-35
1.3^
J-6?
A/7
Actual
^-.75
^. 75
^.74-
r>&
l- V
/• 0
/. 0
!-€?
/• 0
/.8£
A3^
/•frf
'•/?
Stack Gas
Temp, .
(°F)
130
13&
/3€>
1.3 'o
J3&
/ 3 &
/3o
/C?V
/3&
/So
;3
13&
/<30
1
Gas Sample
Temp.S Dry
Gas teter
(°F)
In
*?
<=?0
f0
&
?T
2°}
€%
£8
£
-------
SOURCE SAMPLING FIELD DATA SHEET
Plant £ f
£- n %,FDA^-2£Gas DensityFactor
Barometric Press "Hg, Stack Press "Hg
Weather H~(f{
Temp.^tf
Sample Box
Meter AH@_/_
Nozzle Dia.
°F
No.
t-
W/D , W/S -""
Meter Box
No. 5"
Pitot Corr. Factor &.$3
/"/in., Probe Length £, ft
Probe Heater Setting •
Stack Dimensions: Inside
Inside
Height
Port and
Traverse
Point No.
/
2^
J£
Y
JT
£
7
f
Distance
from End
of Port
(in)
i'
(r
SO?^?*-
u
j
; Diameterv5^ in
; Area
ft^
: " ft
Clock
Tijne
37 *-l ft3
Initial Gas Meter Reading 2_2-^T. (^^ ^ ft3
Total Condensate in Impingers / &O-~ ml \ „
Moisture in Silica Gel
Silica Gel Container No.
Or sat: C02
CO
N2
Excess
Air
/• &
' ^jfr. ? s4£v
2.o2> Filter No. ?2r ^2-
2.0
Test Conducted By: (^- _ -V'-J
Remarks :
Gas Meter
Reading
(ft3)
. — .
•<^ *^^ ^X "^2
**£v_^ 2? »• *™"*^
^v^-. r
—
^5-^ . v3"
-2-<^^ . /
-2-73-0
2_7 f . ^
2.^. Y
Stack
Velocity
Head
C'H20)
3. o
3. 0
-5"
,1?.^
7?- ^
3-«5"
^- <^
J. <9
"2.-^
•'" " " • " . -
Meter
Orifice
Press. Diff.
r"H,Ol
Calc/ Actual
- ^. s ^^
j2/ &
^3 \<&
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
Meter
Orifice
Press. Diff.
("H2p)
Cal. Actual
Stack Gas
Temp,
Gas Sample
Temp.@ Dry
Gas Meter
In
Out
Sample
Box
Temp;
C°F)
Last
Impinger
Temp,-
C°F)
Vacuum
on
Sample
Train
C'Hg)
10
7/3
U
12,
&.-
1L?L
LL3L
if 3
U3
16
3/1.. 7
/ 2-0
17
- 7
1$
r/
7J?
6.0
33 1- /
I
}J3
13
I. I
// 3
"73
A 7
If 3
16
-------
SOURCE SAMPLING FIELD DATA SHEET
PlantC.
Sampling Location
) Sketch of Stack
Run No.
Time Start|7.'S\ Pfl Time End (_"*?* 51
Sampling Time/Point 2£/w^tL%^^s''
°F, WB °F, VF @ DP
DB
Nfoisture3-^%,FDA_.%£Gas DensityFactor_
Barometric Press "Hg, Stack Press_
Weather
Temp.
"Hg
i de--
W/D
W/S
Sample Box No. __ Meter Box No.
Motor AH@ /;?2- Pitot Corr. Factor
Nozzle Dia, _y^r in. , Probe Length
Probe Heater Settinc
ft
Stack Dimensions: Inside Diameter
Inside
Height
i.^'J? /#\S~
Mat'l Processing Rate
Final Gas Meter Reading '/.. 4 ''•, l-.l-\
Initial Gas Meter Reading 1 7 v
ft3
"ft3
Total Condensate in Impingers
Moisture in Silica Gel
Silica Gel Container No. \\
Orsat: C02
°2
CO
N2
Excess
Air
e?
Test Conducted By:
.-. L
Remarks :
fjf€Ki
_
Port and
Traverse
Point No.
/
2.
3
4
5
(*
7
f
Distance
from End
of Port
(in)
\s/$
7-1/3
4 V2-
fff
% '/2-
1 v^X a ^*
'1%
19% .
Clock
Time
^-
—
—
. —
>^.
.—.
i—-
j™~
Gas Meter
Reading
(ft3)
.^ .
—- "— — —
/7 -2. .66,4-
"~ i v <*5 " &
| ^5 / *
3£q, a.
2.23 . i
Stack
Velocity
Head
("H20)
i
h/evajwz.
pffj&t,^^
^~ 5
O*.~z&
&- ?-$
@*2.$
&.2PI
Meter
Orifice
Press. Diff.
r"H«01
Calc/
1
Actual
f-2*
i.2-5-
/. 2.5
\ .3&
Stack Gas
Temp.
(°F)
93
*? :^-
? -f.
^2-
Gas Sample
Temp.g Dry
Gas Meter
In
-
^5
\e»_s*
1 -*> ^i
\3o
Out
^3
f ^
jgj^,
) 7
Sample
Box
Temp .
(°F)
- —
—
—
•»-*• '
Last
Impingar
Temp.
(°F)
6?3
&3
fe4-
- fetf
Vacuum
on
Sample
Train
("Hg)
3 p
3.O
3,o
3.5
-------
Port and.
Traverse
Point No.
?
lo>
i
fl
?
!
*'j
.$-
c/
'7
1
'•
' i
• -
• •
;
Distance
from End
of Port
(in)
z/'/V
2*f*
Clock
Time
Gas Meter
Reading
(ft3)
22.3.1
235^
^M^2d—
I
m:
Stack
Velocity
Head
.C"H20)
^,2-9
^.25"
Meter
Orifice
Press. Diff.
. C"H2°)
Cal.
Actual
\,z&
1' IG>
Stack Gas
Temp,
C°F)
^?
i ''
^^2
Gas Sample
Temp.@ Dry
Gas Meter
(°F)
In | Out
\3&
HZ
12-^
(31
Sample
Box'
Temp.
(°F)
^;
>6
7
Last
Impinger
Temp,-
(°F)
63
^3
Vacuum
on
Sample
Train
C'Hg)
3,5
3-S
-------
SOURCE SAMPLING FIELD DATA SHEET
/•/
"V
Plant <£\ P.. C\\
Mat'l Processing Rate
Sampling IxjcationM^P^WA*'- \ '«&•($)
Date Pec. I5i\°ni Run No. 2L
Time Start '4 o Av\ Time End | \' $0 hft
Sampling Time/Point "2.0^^^ d> fa- ['ZZ?**^
DB °F, WB °F, VF @ DP "Hg
Moisture %,FDA ,Gas Density Factor
Barometric Press "Hg, Stack Press "Hg
Weather \^s>\X^
Temp. "&9'^0F, W/D — - , W/S — "
Sample Box No. Meter Box No.
Meter AH8 /.72~- Pitot Corr. Factor
Nozzle Dia, /^ in. , Probe Length fa ft
Probe Heater Setting
Stack Dimensions: Inside Diameter ^<~f in ~
Inside Area j.4-8 ^•^a.
Height ft
Sketch of Stack
^
X \
-/ ' (? - b \s-z_— H-f{<'c.Ti i/e
^*^^ (-X ^JsS-"
"^>
Final Gas Meter Reading v3 I&.ZO^' ft3
Initial Gas Meter Reading 2--4
Total Condensate in Impingers |>,,
Moisture in Silica Gel |, ^/^
3,2.00 ft3
-*f TO nil ^^y
,^-iw tf*/
Silica Gel Container No. 2 ^7 Filter No.72<3^^
Orsat: ' C00 0 '•
Oo 103
co o
No
Excess
Air
Test Conducted By: £/., ^ 13(.^r L,
':;•'- ','...,. j..
Remarks: Pff/nts / -tAri, 4 ^
V€/flft ftj 4 s/itS
J
/ -9 /iSeraTlVe..
J
Port and
Traverse
Point No.
5
f*
1
<$
f
(0
Distance
from End
of Port
(in)
c>
2.1*0 - /
^7/,5-
2^3,3
2. 75 -7.
J/t>6>,^
3/ ^.. Z^^
Stack
Velocity
Head
C"H20)
.Z9
0.31
&~.%o
0..3O
e.'So
&< 2#
Meter
Orifi
Press
H'H
-, L "2
Calc/
.
ce
.Diff.
0}
Actual
o.fj.
\.00
tf^y
Ml
0.11
04t
Stack Gas
Temp.
(°F)
9^9
10
°il
tl
f>
72-
Gas Sample
Temp.g Dry
Gas Meter
f°Fl
In
-------
SOURCE SAMPLING FIELD DATA SHEET
Plant
"/>'
Ma't'l Processing Rate
Sampling Location \fJeitt os.kf>*ir*/k\A -|n)^
Date Det-15, J«r71 Run No. 3
Time Start ^'i*l:; ( .'/..Time End / 7/ '5"
Sampling Time/Point 2 ft3
Initial Gas Meter Reading 3/#
Total Condensate in Impingers fj
Moisture in Silica Gel \^A-
.4 A 4 ft3
^ 33 mlv,
^4-y,* gi/
Silica Gel Container No. \0^'* Filter 'NO. 22.0^?
Orsat: C00 0
CO (9s
No fl£
Excess
Air
Test Conducted By: |?^.- B\3c.l^
^*\\ J,,m"
^.
— .,*• _
tfo77>/Tt ^''Gf)
Remarks: p^^-fe [ i'Aru' ^- ^3<
Ve,\or ift. hmA
\
/ i
•H 9 ft rn^l \v^.
J "
Port and
Traverse
Point No.
5
(o
7
%
1
to
Distance
from End
of Port
(in)
SVa,
j^ y-x.
1^
17 -f^
7-1 fo
22%
Clock
Time
—
' __
_
—
—
—
Gas Meter
Reading
311.A44-
32$. 0
<2 ~Z. O /**
j j D ' *@
341^2-
3. 7^9 ,_3
3 #£, # 4r4'-
Stack
Velocity
Head
("H20)
0-Z3
0.2-1
0*1-1
& 2,7
^-23-
Meter
Orifice
Press. Diff.
f'H^
Calc/
Actual
#.&7
O-l^i
O'T^
0^°t
0*7*1
0'! , (P ^
Stack Gas
Temp.
^7 3
^ 3
^? 2—
^2-
91 -2-
^/
Gas Sample
Temp.@ Dry
Gas Meter
In
1*
12$.
- Lfl Q
iniA
~JjV4
Out
C\&
\&1*
I 1 O
\lc
/"2.#
1^0
Sample
Box
Temp.
(°F)
—
*>~
—
—
—
—
—
=-
Last
Impin^r
Temp.
C°F)
/%•
bb
fflo
& 3
( fr
Vacuum
on
Sample
Train
("Hg)
2--O
^.^
"2 5"
J.£>
^,<^>
3. <^>
-------
SOURCE SAMPLING FIELD DATA SHEET
'lant O'M LtltMlC/7^ r/v w-.v,
)atg /
'imo Start
/ i /*7/*
J-~"~li— // , Hun No. /
\*\>" 2.D . Time End //.'
2,<^5
^anpling Timo/Point /£> /i&J*^ £2 /^f^u** 1Z /P-Cl'y
~Q -) 0_ ,
)3 / -fc- F. '
loisturej
leather
•ro^°F. DF
Press. fGas Density Factor*?' 9^
"H^. Stack Press. ^2
*O "llK
//K5/<£)£ fithfc'
fcmp. "7.5" °F. W/D • . W/S
Sample DDK
•ir>t nr A Ha
"tozzlo Dia
Probe Heat
Stack Dime
."V-\"
Port And
Traverse
Point No.
,.-,-•:. I
0-
3
H
K o . / ,
/<»yv Pilot
• 'i ir
er Settinp
nsions i In:
In:
Hei
- ' ' i /'
. . :. • ^. ^
Distance
From End
Of Port
(in)
l^//9
2>V/6
3>3-
^
Meter I
, Corr. I
i » , Prob«
!of*
;ide Diar
side Are,
Leht / //•
?ox No. /
j Length ^ ft
-,b
6:32.
£'-<3i>
5 1 i| ^
^'.5o
5'.^?
^'.7-
Gas Meter
Reading
(ft3)
xJ5^&-. ^
J3o^*"2.
3'11-D
JS!^^
31<7.q
5^5-. \
"3«S^* 'i.
^>*. 0tf c^S^s
Sketch
c.
i^**^.
_ -ft — '
;
Stack
Velocity
Head
("H20)
I'.Ov
1 • ffif
®'*4£
fe-^B
b< £>&
o*6&
o.ZS
Of Stack i
/ v
^^r
p /
))
" ' y r~ "^
Meter
Orifice
Press. Diff.
C'H?0)
Calc.
3-^£)
3 tfo
\.
4o
?0
/•%
2,^55
"2^i<9
O ,£>& ! -7-*35
Actual
'Z'CfO
"Z-^O
I *vCs
I &D
[>°(b
~2..£?5
-2.*'LO
•Z-35
Mat1! Proc
Final Gas
Initial G<
Total Cone
Moisture '.
Silica Gel
Orsat t (
{
(
1
I
Test Condi
Remarksi
A
I!
Sin ,
Stack Gas
Temperature
or)
<^-7
*7 "2-
*? X
^ -2-
cz^-
^3
^3
^3
sessing
Meter
is Mete
[ensate
En Sili
L Conta
:o2
32 •
:o
^2
Sxcess
Air
acted B
Rate
~ ' *^
ileadinp • '-' f '' ' • ft-'
r Read
In Im
ca Gel
iner N
y«
£~r j?& ' z
O/ >o ' /OA
-' - /?//
Gas Sample
Temp. @ Dry
Gas Motor
In
/%>
3*1
$%
^O
T /
I£?i
^^L
°H^-
Out
•^H
^'2-
#3
^
^3
^3
in
Pi
* J? £'/, 0/5 rt3
neers V / j ml
//<.«a 7 A . fe \ em
D./"'/.Filtei
a
JXc?
O
r No . /'- • ^••J3~.
\
./'•: ' • • -•///'
T
1 /i/ -.-^ /-
5" Pl/(0/Z / (^
'. '/9 A/7~
•••:
Sample
Box
Temp.
(F)
. — .
—
«—
<—
—
—
•^ _) f
^j^^t
j? %"^
_>
Last
Impinger
Temp.
(F)
35
(
I
\
i
Vacuum On
Sample Train
("Hg)
2-2., 5~
2.2.^5-
//. 5
*??• o
\b-~2-.
10-tf
10*5
-------
r'ort And
. Traverse
. Point No.
s
.._:..._._ 6
7
^
1
,^HTv..
Distance
From End
Of Port
(in)
7*
l&ZSL.
IS
l&%-
I7W
...JMH..
• • •
Clock
Tine
b\*
<£r:Z£>
j&>Je.
6l&-
6'*<3Z
6MH
&Sv
<$:-5b
-7'."2-
3L&L
7LML.
~7: -5-t>
Gas Meter
Reading
Cft3)
31-*- V
346.3
_./?<£^7
,-Tc5&9
.36I--2-
<3&£.l
371*3
37.6 V
c^;-5-
<3&b*S
•311-b
316. 6* 6>
•
•
Stack
Velocity
Head
("H20)
fr.&O
0*6O
#.65
&*G&
GiGf
&*&$
&-6V
&"7H
0.~7&
&>.'7o
<*>'~7c>
&• ~*7G
.
Meter
Orifice
Press. Diff.
("H20).
Calc.
>.c^5
'Z.SF
^.^
-Z.J5&
-**tt
Z-&&
^7<2
^75
^13
ZL-Tf
^75
2.-7cT
Actual
2^,3cT
^.35-
2,-ar
">-3S
2..C25"
z-aT
"2-30
^-c?^j
•^.^
^^5
12..-3g
aa5-
Stack Gas
Temperature
CT)
^5
^3
VH
76"
-------
Plant
SOURCE SAMPLING FIELD DATA SHEET
Mat'l Processing Rate
Sampling Location pft-/?Cf^T^JJ(L^ C6fl&fk~t
'1 "^ / -^ !^** f T>_ \ I ^^^
Date ./ £. /O"~ // Run No. -C^~*
Time Start 7-'^5" Time End I / WS
Sampling Time/Point /<^n^^/?/Vw^;/2d
DB <^2, °F» ™ — °F'» VF @ DP "Hg
Mo i st urefy&a , FDA^^Gas Dens ity Fac \crcp fl$
Barometric PresSy3^"Hg, Stack PresaSO'Hg •
Weather //tiStdgL /&tt&r
Temp. *%$ °F, W/D — , W/S •""""•
Sample Box No. / Meter Box No. /
Meter AH@ /* "7^" Pitot Corr. Factor^/^O
Nozzle Dia. ^J^ in,, Probe Length •'y ft
Probe Heater Setting . —— j
.oKGtCfl Oz oucLCJC
UL}£J%J£,&. Sto J^&
' ' ^
/»*^i*
/ t
; i
- ' ., '. ' /
Final Gas Meter Reading Lf ^, ]T & J ft3
Initial Gas Meter Reading <3 ^^ '^7 ^- ft3
Total Condensate in Impingers O* ~/ ml
Moisture in Silica Gel£o£<£ —/#3,0 =2Z<4ra
Silica Gel Container No. Z// Filter No. "72. <:
Orsat: C00
0,
CO
N,
^,2,[
2«5/7
,
Excess
Air
./^ /**\
Test Conducted By: /C -fJcs/ZtfltoU
l> (t)i>0 rrC
Inside Area_ ~ ft2
Height )4&u
Remarks:
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
C"H20)
Meter
Orifice
Press.Diff.
Calc
"H201
Actual
Stack Gas
Temp.
Gas Sample
Temp.@ Dry
Gas Meter
f°F
In
Out
Simple
Box
Temp ,
Last
Impi
Temp
Vacuum
on
Sample
Train
("Hg)
0,75"
IQ'.oS
2S
84
•2.-Z.S
3.
y&is
£>.£>£>
vS
2,
2..Z&
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
("H20)
Meter
Orifice
Press. Diff.
Cal. Actual
Stack Gas
Temp,
C°F)
Gas Sample
Temp.Q Dry
Gas Meter
In Out
Sample
Box
Temp.
Last
Impinger
Temp.-
Vacuum
on
Sample
Train
C'Hg)
0.70
'ZJS
-22,5
o '.51
162,0
•-9-2.
•z.%
92.
2.75
92.
93
X
o* 70
•22.5
2,75
92.
2. sr
6.61
lo
I j
92.
97
-------
SOURCE SAMPLING FIELD DATA SHEET
Plant rr.F, CHEniCfiLS'&AtroyFt.
Sampling Location ^5/?(£« £d/UP< -&T&)6(JU$-
Date / 2- ~f&~'? / Run No. 3
Time Start 3. '3 & Time End ^5 ,'3 O
Sampling Time/Point /^jQ^t^d^/^^r^ ~/=
DB ^S °F, WB — °/, VF @ DP — "Hg
MoistureT'DSijFDA^/^Gas Density Factory .9 9
Barometric Pressv3o"Hg, Stack Press^xJJHg
Weather //0<5f£>& <$Ljt£»-'
Temp. *?g °F, W/D , W/S
Sample Box No. / Meter Box No, /
,"7^ Pitot Corr. Factor^; 51?
Nozzle Via.' l/fyin,, Probe Length t-f- ft
Probe Heater Setting """"•
f) -
Cly-^-f-y-^y* f\f Q't'Qr'V
,-C>ApLi,il UX OLdCK
(llj'&(i-
>0/1*>~*
• f ;
Mat'l Processing Rate _
Final Gas Meter Reading 6 O ?
2Lft3
t 7 7 "2^.
Filter No. ^2. O //
Initial Gas Meter Reading^
Total Condensate in Impingers_
Moisture in Silica GelZZl.l-ff&O -s.3 'I, I
Silica Gel Container No.
Or sat: C0?
y^,^«. *
ztll?.^2
1% co
3TD N2
Excess
Air
ml
Test Conducted By:
Stack Dimensions: Inside DiameterZ-
Inside Area Ft 2
ft
Remarks:
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
Stack
Velocity
Head
("H20)
Meter
Orifice
Press.Diff.
,01
Stack Gas
Temp,
Gas Sample
Temp.O Dry
Gas iMeter
f°F
Sanrple
Box
Temp,
Last
Impingjr
Temp.
Vacuum
on
Sample
Train
l^aL.
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
Stack
Velocity
Head
.C"H20)
Meter
Orifice
Press. Diff.
C"H20)
Cal. Actual
Stack Gas
Temp,
C°F)
Gas Sample
Temp.@ Dry
Gas Meter
In Out
Sampfe
Box
Temp:
Last
Impinger
Temp,-
Vacuum
on
Sample-
Train
C'Hg)
_Qy_6o_;:
O.
Z?^J&?CJ
^ n t */J c
2.7Z
"2,74
17?
,
/B
_Q^2S.
a
0. 75
9*
92-
fft
5i
22, 5
22, v^1
22.$
/o?
22.5
-------
SOURCE SAMPLING FIELD DATA SHEET
piant c»n Che
*^LO«-L5 »— U*U1<
" • «T ^ "^
Sampling Location|^£t v t\QS- (tG*id~" Outlefc
Date 12.-H-7/
Time Start /7^2>
Run No. i.
Time End / 9 4*2~>
Sampling Time/Point £2D ftun/Pt,u£fa£=-/2&^
DB @5" °F,
Moisture*^
Barometric
Weatlier C
WB °F,
VF @ DP "Hg
£l,FD.40,9^Gas Density Factor
Press30"Hg, Stack Press3C)'Hg
'^saf
Temp. 78 °F, W/D
Sample Box
No. '•*•*
g , W/S
Meter Box
No, ^
Meter AH@ /„ 7O' Pitot Corr. Factor ^-^3
Nozzle Dia,
d/2Sin. ,
Probe Length 6 ft
Probe Heater Setting
Stack Dimensions: Inside
Inside
; Diameter •32. in
5 Area /-?, ^TTt2
Height ft
Port and
Traverse
Point No.
/
/
1
z.
-z.
•z
-2.
Distance
from End
of Port
(in)
2&-t"4-
'
73fa+t
^
Clock
Time
/7/Z
/747
/7L52-
/7£7
78^2.
/
Mat'l Processing Rate
Final Gas Me
Initial Gas 1
Total Conden
UJc = -23() ,£
Moisture in
Silica Gal C
mrr
Or sat: C02
°2
CO
N2
Excess
Air
ter Reading / & ^S^/ ft3
^eter Reading O/ 3 » 7^O ft
sate in Impingers -44^ ml
Silica Gel 23^,51. 2^54, .5T = ^ X^ gm
ontainer No. 2ZO Filter No.^Zoc?^ ^
t^lo
Test Conducted By: ^J* JDo//^r
Remarks :
Gas Meter
Reading
(ft3)
8/3, 7
""
&2./.S
^ZSr "§T
S3o, o
S3<:?^O
§ 3^ t ^
S4--Z., 9
- ,^47^*3
Stack
Velocity
Head
("H20)
o.gg?
0.3S
O'&Q
0.70
Oi£
Of 6^
€?,^
^
Meter
Orifice
Press. Diff.
Calc/ Actual
^./<^ ^.>O
2, ^? ^.O
^^5 Zttf
2*,^ ^.o
2,^ "2,^
"2L55 "2,^5
^,^5 21.35:
^..^.^ 2-A&
Stack Gas
Temp.
OS
f&+^^
^2> £^
^5 *^-?
S5"
8^5
B«:
«^» DtLsGn
Gas Sample
Temp.@ Dry
Gas Meter
f°F)
In Out
g>o -79
y7^ C75
•7^ ^*^
•75 T7^
7<^ ^T"
^79 77
79 7
7? 7X
Samnle
Box"
Temp.
<_»
^-,
. —
—
«— .
».
-_
-— .
Last
Impinger
Temp.
•7^.
72.
7^
x7 e^
7"^
7^
y7^
Vacuum
on
Sample
Train
("Hg)
4^'£
^-2.
-^» 21
-4- ,ZL.
?,£
4-.Q
4 ,8
^-•^
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
Meter
Orifice
Press. Diff.
..C"H20)
Stack Gas
Temp,
C°F}
Gas Sample
Temp.@ Dry
Gas Meter
Sample
Box
Temp,
Last
Impinger
Temp.-
Vacuum
on
Sample
Train
C'Hg)
-------
SOURCE SAMPLING FIELD DATA SHEET
Plant^e/% C/]€/fl/C£zJ($ JL>Y]CL~
Sampling Location/^tT fi>i[cl<>« /{&&-' Oyjtlet
Date /Z-AS-7/ Run No. ££>
Time Start Q^^jLi Time End f/t4''2~
Sampling Time/Point^^^/^/^/^tlE^r/^Q)
DB °F,
WB °F, VF @ DP "Hg
Moisture %,FDA ,Gas Density Factor
Barometric
Weather
Press "Hg,
Stack Press "Hg
Temp. / 4 °F, W/D , E-S'in. , Probe Length ^ ft
Probe Heater Setting •
Stack Dimensions: Inside Diameterv^"2L in
Inside Area /fc'jVL ft^
Height ft
Port and
Traverse
Point No.
/
/
/
/
2
s4
^^
2
2,
Distance
from End
of Port
(in)
Zfyf 4-
~7s/g /• 4
Clock
Time
Q*ffl>
^$7
o^&Z-
^ftf&7
0362.
£00?
/0f2»
JOI7
101.2s
• Sketch of Stack
Mat'l Processing Rate
Final Gas Meter Reading ^J'7-*9^O ft3
Initial Gas Meter Reading 9&& *
7G>O ft3
Total Condensate in Impingers v5"t£T ml)L\ (*
Moisture in Silica Gel 2/3, / — /^/f
Silica Gel Container No.y
Orsat: C02
°2
CO
N2
Excess
Air
^A:
Z
VX 1 *
"* ~f\: S S lO
> ^ -*-fe?/.fegm \
$P-fl3 Filter No. -72^7
Test Conducted By: ^A Z-Xc3> tfar'
Remarks :
Gas Meter
Reading
7^/ 7
ej/0 , 2~
Q / ^ ^•T'
/ /^7 v3
^/T-^7, g»
tfyty 9
729,2-
e/3'<3, 4
^^S7 , &
Stack
Velocity
Head
("H20)
0.44
0 $$
034
0,67
& £7
0.6'?
Meter
Orifi
Press
f\ 10
^ H2
Calc/
//52.
A,«
/,52.
A 52.
-2.2$
2,Z^
2.25"
ce
.Diff.
0)
Actual
A 52
/xS2L
^«i5"2.
^,5"2.
2,2^
2-, 2^
2..Z5
2.J2&
Stack Gas
Temp.
&
*B>g
§S
^« &>V/vSO/
Gas Sample
Temp . @ Dry
Gas Meter
(-op
In
rs
"7&
°77
-7ff
79
- ffd
9>®
% J
Out
73
?
73
74
7y
7^
5
7vS
Sample
Box
Temp,
. —
, —
—
—
— *
_
—
•)
Last
Impingpr
Temp.
7J*
7
7
?
4
'75'
7$
g&
%3
^3
Vacuum
on
Sample
Train
("Hg)
*2,%
"Zi8
•g,%
-2.3
3.6
3.<£
3-4
3t^
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
C"H20).
Meter
Orifice
Press. Diff.
. C'H20)
Cal. Actual
Stack Gas
Temp,
Gas Sample
Temp.e Dry
Gas Meter
In Out
Sample
Box
Temp-.
C°F)
Last
Impinger
Tempi
Vacuum
on
Sample
Train
C'Hg)
3
{£32.
,3-
95
$3
3
0.7$
4/0
4
4
4
4
. 0
3,8
963, G
0,6-2-
L3.
7%
1,9
as
U
-------
SOURCE SAMPLING FIELD DATA SHEET
PI ant J^f <^tt£/n 1 CJttS J-AX1~
•< is"
p Sampling Lo
Date /£-/.
cation (jdgb MOS. /4^5t~ QdJefc
5-'?f Run No. 3
Time Start /£ t $ Time End /f/&
Sampling Time/Point ^O/wu^/pf? (To}8$-/2£>^
DB °F,
TO °F, VF "DP "Hg
Moisture %,FDA ,Gas Density Factor
Barometric
Weather
Press "Hg,
Stack Press "Hg
Temp. #2- °F, W/D ^> , W/S
Sample Box
No. Meter Box
No. ^21.
Meter AH@ /^^ Pitot Corr. Factor 0,- 03
Nozzle Dia^'25?in., Probe Length & ft
Probe Heater Setting
Stack Dimensions: Inside
Inside
Height
Port and
Traverse
Point No.
/
/
/
*^7
^^^~
^^**
^.
j^in —
Distance
from End
of Port
(in)
^Y^^^T
^•^•^"^
1 Diameter <^>"2_ in
i Area /-^ 7^/ "ft 2
^ ft
Clock
Time
fB/3
/^23
/^ZJ?
/f^33
1^3%
r&4-3
IZ&&
l£$3
ITSB
Sketch of Stacl
i \^
/^m
<
• T
JL
\
Mat'l Processing Rate
Final Gas Meter Reading /f.O d. L, A:/^
Remarks :
Gas Meter
Reading
(ft3)
9?% 9^0
&32<£3
&0& f. rf
/3^&, &
S)/3,
0J %, ~2—
G'Z'2.^
OZ6.9
Stack
Velocity
Head
("H20)
O,£S
O,£5
O,55
o.&s
£>,£%
£>,£%
#.£%
&.£ y
A- . L>-s f t- so A^
Meter
Orifice
Press. Diff.
Caic," Actual
/ 92- ^92.
/,^ /,q?
/^Z. A^2-
•-)•-»- *? 3
^— » v_^ £~-/-^->
Z..3 -2.. 3
2.,3 Z>3
o ^ -7 ^
2L
^ ^7
^2-
o ^.
yz.
^ -s-
^£~
Gas Sample
Temp.@ Dry
Gas Meter
r°F
In Out
c^7 O O **y
c? ^3 ^^ /
98 ^6
ss* yg
Sample
Box
Temp.
- —
-
. —
— -
- —
—
—
— ~-
Last
Impinger
Temp.
&£?'
&**-}
&J?
&3
S3
^3
®3
8/
Vacuum
on
Sample
Train
("Hg)
&«*?
Jv^
^S'
£~>&~~
(£f£^
£>, &
&*$
(^•^
-------
Port and
Traverse
Point No.
Distance
from End
of Port
(in)
Clock
Time
Gas Meter
Reading
(ft3)
Stack
Velocity
Head
C"H2Q).
Meter
Orifice
Press. Diff.
. .C"H20)
Cal.
Actual
Stack Gas
Temp,
C°F)
Gas Sample
Temp.Q Dry
Gas Meter
C°F)
In Out
Sample
Box
Temp-.
Last
Impinger
Temp.-
Vacuum
on
Sample
Train
("Hg)
3
24
3
#,70
2,4
81
7,0
M.
8
o
2*1
7,3
/.$
t
/•*
AP
So
1433
&
44% */
88
80
So
6- 6V .
OH2^L.
S9
78
3* /
O,
_J*
:z
0,40
•ssr
&&.
17 if
013.729
/.to
-------
APPENDIX C
Standard Analytical Procedures
. i
-------
ENVIRONMENTAL PROTECTION AGENCY
Research Triangle Park, North Carolina 27711
Reply to
Altn of: ~ ,
Dale: 12-21-72
Subject: Summary of Fluoride Analysis
T
°' R* Neulicht, EMB, IRL
This memorandum is in response to your request for a brief
summary of our SPADNS-Zirconium Lake procedure for determination
of fluoride in stack emission samples.
Samples received in our laboratory are filtered through
fluoride free paper filters to yield water soluble and water insoluble
portions. The water insoluble particulate collected on the filter
is rinsed throughly to be sure that all water soluble fluoride is
rinsed through. The water soluble fraction is distilled from sul-
furic acid to a maximum temperature of 180 C. If chloride is suspected
in the sample Ag So. is added to the still. SPADNS solution is added
to an aliquot of the distillate and the absorbance is read at 570 nm.
The concentration of the sample is determined from a calibration curve
prepared from standard fluoride solutions. It is very important that
the temperature of the samples be the same as that of the standards
when absorbances are recorded.
The water insoluble fraction of the sample is evaporated to dry-
ness in the presence of a slurry of CAO, and then fused with NAOH. The
fusate is dissolved with distilled water, neutralized with dilute H So.,
distilled and analyzed as described for the soluble portion.
Paper filters containing particulate are cut into small pieces,
suspended in a slurry of CAO, evaporated to dryness and ashed prior
to the alkali fusion and distillation.
If you have any questions about this procedure, let me know.
Howard L. Crist
Chief, Source Sample Analysis Section
SSFAB, QAEML
cc: R. E. Lee
-------
APPENDIX D
Laboratory Results
-------
ENVIRONMENTAL PROTECTION AGENCY
Research Triangle Park, North Carolina 27711
Reply to
Attnof: Dat(; 2/4/72
Subject: Fluoride Analysis Central Farmers Chemical Inc.
To: .Mr. Jerome J. Rom
Emission Testing Branch
Division of Apolied Technology
THROUGH: Mr. Howard Crist
SSAS, SSFAB, DP.S
Attached is the Fluoride Data for the Central Farmer
Chemical Inc. The weter soluble fluoride was done by
sulfuric acid cisti lie-tie n followed by the SPADNS-ZIRCONIUM
Lake Method.
The products vere fussefl uith NaOH followed by sul-
furic acid distillation then by the SP*DNS-ZIRCOMIUM Lake
Method.
lien E. Riley
irci Sample Analysis
Section, SSFAB, DAS
Attachment
cc: R. Lampe
J. McGinnity
J. Reynolds
D. von Lehnden
R. E. Lee, Jr.
-------
FLUORIDE DATA
Central Fanner Chemical
156 PF
157 "
158 "
159 "
160 "
161 "
162 "
163 "
164 " ^
165 "
166 " 3
167 " ^
168 "
230 "
170 "
229
172
232 "
178 "
179 "
180 "
181 "
182 "
183 "
184 " ^
185 " ^
186 " X
187 PF
238 "
189 "
234 "
Scrubber H O Inlet
2
" " Outlet
Flask cooler H 0
2
Hotwell Evap. HO
Coke
Rock
30% Phos. Acid
54 % "
HO Blank
Probe Wash
Impingers
Filter
v_x
Total Sample!
Filter J
Total Sample")
Filter gone J
Total Sample
p.
Filter
e")
^
J
Scrubber HO Inlet
Scrubber H2O Outlet
Flask Cooler HO
Hotwell Evap. HO
Cctke
Rock
30% Phos. Acid
54 % "
H 0 Blank
Total Sample ~)
Filter f
v^X
Total Sample /
Filter
PH
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.7
J
9.2 g/L
8.8 g/L
9.6 g/L
9.7 g/L
11.5 mg/g
35.8 mg/g
29.8 g/L
11.8 g/L
.25 ng/150 ml
1.0 g/Sample
16.7 mg/Sample
21.9 mg/Sample
41 mg/Sample
7.5 g/L
7.6 g/L
7.8 g/L
8.3 g/L
8.7 mg/g
36.1 mg/g
29.3 g/L
8.0 g/L
36 p.g/100ml
0.89 g/Sample
18.0 mg/Sample
-------
-2-
FLUORIDE DATA
Central Farmer Chemical
PH
191 PF
192 " M
193
194 " ^
237 "
200 " ~~
201 "
202
203
204
205
206
207 "
208 " VA
209 " s.!
236 " v
? 1 1 " "^
212
213
214
215
216
235
218 "
»
233 " '
224 ""j^
225 " §
i,
226 "-t1
227 "Jl
^ ST"A-T/c./v
Probe Wash
T >>,-/,
Impingers hr h
Filter
Total Sample j ^ fl
Filter f
^j
Scrubber HO Inlet 1.8
Scrubber HO Outlet 1.8
Flask Cooler HO 1.8
Hotwell Evap. HO 1.7
Cake
Rock
30 % Phos. Acid
54 % "
H 0 Blank
Total Sample ") ^ /? "
Filter J
Probe
1st. Impinger
^X N "
2nd. Impinger r" ^
3rd. Impinger
Filter J
Total Sample / ^ _,,
kr* fc
Filter J
Total Sample "\ ^
Filter J
Gaseous F C''
M H R.
>
A
^ ii H C ''
A 1 A—'
II II ^ ^ ''
15 mg/Sample
7.2 mg/Sample
7.8 g/L
8.3 g/L
7.6 g/L
9.7 g/L
9.8 mg/g
36.8 mg/g
31.0 g/L
10.5 g/L
^6 M.g/211 m|
523 mg/Sample
24 mg/Sample
18 mg/Sample
12 mg/Sample
26 M.g/Sample
155 p.g/ Sample
13 jig/Sample
25 M-g/Sample
-------
Reply to
ENVIRONMENTAL PROTECTION AGENCY
Research Triangle Park, Korth Carolina 27711
: 2/15/72
Fluoride £2u: lysis, Central Farmer Chemical Inc.
To: .Mr. Jerome J. Rom
Emission Tenting Brsnch
Division of Applied Technology.
- " THROUGH: Mr. Hov.'ard Crist
SS^.S, S3FA3, DAS
Attached is the fluoride data for Central Farmer
Chemical Inc. The v.-ater insoluble v:ere first fussed
with NaOK follov:ed by sulfuric scid distillation then
by the S??:Dl>TS-ZIRCONIUM Lake 'Method.
Attachinent
cc: R. Lmpe
J. McGinnity
. J. Reynolds
D. von Lehmdsn
R. Lee, Jr.
I-!. Crist
Section,
DAS
-------
CENTRAL FARMER
Insoluble Fluoride
. INC.
165, 166, 167
160, 230
PF
170, zc-
172, 232
187, 238
IS" 234 PF
19l! 192, 193 PF
194, 237
209, 236
211, 212, 213
214, 215
216, ?35
P
PF
PF
PF
1.3 rag/Sample
missing ;
Sample
mg/S5inple
mg/5aiaple
213,
233
0.16
1>9
0.13
0
21
0>85 jng/ sample
0
73
0
-------
APPENDIX E
Project Participants
-------
PROJECT PARTICIPANTS
Environmental Engineering, Inc.
Name
John Dollar, E.I.T., M.S.
Dennis Falgout, E.I.T., M.S.
A. L. Wilson, M.S.
Ray Black, B.S.
Bob Durgan, Tech.
George Allen, Tech.
Eric Johnson, Tech.
Larry Wurts, Tech.
Mike Jackson, Tech.
Jim Tscherfinger, Tech.
Title
Project Manager
Environmental Engineer
Environmental Engineer
Environmental Engineer
Environmental Specialist
Environmental Specialist
Environmental Specialist
Environmental Specialist
Environmental Specialist
Environmental Specialist
Environmental Protection Agency
Name
Jerome J. Rom
John Reynolds
Phil K. York
Title
Project Test Officer
Project Engineer
Project Engineer
------- |