EMISSION TESTING REPORT
ETB TEST NUMBER 71-MM-04
Emissions From
Wet Process Cement K11n
And Finish Mill Systems
at
IDEAL CEMENT COMPANY
CASTLE HAYNE. NORTH CAROLINA
Project Officer
Clyde E. Rlley
ENVIRONMENTAL PROTECTION AGENCY
Office of A1r Programs
Research Triangle Park, North Carolina 27711
-------
PREFACE ,
r '
The work reported herein was conducted by ThejRoy F. Weston Company,
>•!•
pursuant to a Task Order issued by the Environmental Protection Agency
(EPA), under the terms of EPA Contract No. CPA 70-132 Task Order 1. Mr.
Tom Cadv/allader served as the Project Engineer and directed the Weston '.
field team consisting of: Messrs. Howard Schiff, Brent Cowan, Larry
Johnson, and Charles Mattocks. Mr. Schiff and Mr. Cowan performed the
pollutant analyses at the Weston laboratories. Roy F. Weston submitted
to EPA a draft document from which EPA personnel prepared the final re-
port (Test No. 71-MM-04).
Approved:
Environmental Protection Agency
U, ^.
Gene II. Smith
Chief, Metallurgical and Mechanical Section
March 31, 1972
11
-------
TABLE OF CONTENTS
LIST OF TABLES 2
LIST OF FIGURES 3
SUMMARY 4
INTRODUCTION ' .8
PROCESS DESCRIPTION 9
DISCUSSION OF TESTING AND RESULTS 13
APPENDIX A - Schematics of Test Locations 24
APPENDIX B - Sampling and Analytical Procedures 28
APPENDIX C - Field Data and Notes 34
APPENDIX D - Sample Calculations 55
APPENDIX E - Test Log • 57
-------
LIST OF TABLES
Table No. Illle. Page
1 Summary of Particulate Data for;:No. 1 Mill 5
Air Separator Stack A
2 Summary of Particulate Data for No. 1 Mill 6
Air Separator Stack B
3 Summary of ".Particulate Data for No. 1 Mill 7
Grinder and Dust Collector
4 Design Data of Finish Mill Grinding System 12
Collectors
5 Particulate Emissions Data for No. 1 Mill 15
Air Separator Stack A
6 Particulate Emissions Data for No. 1 Mill 17
Air Separator Stack B
7 Particulate Emissions Data for Mo. 1 Mill 19
Gr'niJt.-!* Uriel Dust. Col 1 tclui11
8 Summary of Mercury Testing 21
9 Summary of Sulfur Dioxide Data Recorded 22
from the Dynascience Instrument
10 Nitrogen Oxide Data Comparing the Phenold- 23
isulfonic Acid Method vs. the Dynascience
Instrument
B-l Results of Sample Recovery Procedure for 29
Air Separator Stack A
B-2 Results of Sample Recovery Procedure for 30
Air Separator Stack B
B-3 Results of Sample Recovery Procedure for 31
Mill Grinder and Dust Collector
E-l Sampling Log 57
-------
LIST OF FIGURES
' r •
Figure No. Title Page
1 Diagram of No. 1 Finish Mill ^
Grinding System
A-l Sampling Location for No. 1 Mill 25
Grinder and Elevator Dust Collector
i
A-2 Sampling Locations for Air Separator 26
Stacks A and B
A-3 Schematic of Kiln Stack Cross Section 27
B-l Hg Sampling Train' 32
-------
SUMMARY
The Office of Air Programs of the Environmental Protection Agency
contracted with Roy F. Heston, Inc. to conduct GAP emission sampling
tests on three stacks which vent the air separators and mill grinder
systems of the Castle Hayne, North Carolina plant of the Ideal Cement
Company.
The sampling results demonstrated that particulate concentrations
in the stacks were low. Baghouse dust collectors controlled the emis-
sions from each stack. Particulate emissions ranged from 0.0130 to
0.0255 Ib per'ton of feed (taking into account the probe, cyclone and
filter catches only). A summary of the particulate data is presented
in Tables 1-3.
Mercury concentrations collected at the kiln stack ranged from
0.0047 to 0.0082 pSTt^/^sr-orilTfc^.'^pm) %,v.atume.
Concentrations of. ^0,. and-NO.,-also collected at the kiln stack
C A
were between 24 and 78 ppm and 8 and 212 ppm, respectively.
-------
Tab!a 1
RY of PARjjcjjLAiLPATA FOP_r;CL_i_
MILL AIR SEPARATOR STACK A
Run Number 1
Date . 4-13-71
Percent Excess Air —
Percent Isokinetic 96.9
Stack Flow Rate - SCFM* dry 14,478
Stack Flow Rate - ACFM wet 17,554
Volume of Dry Gas Sampled - SCF* 56.931
Feed Rate - tons/hr 30.0
2
4-14-71
100.8
14,876
17,636
60.857
28.6
4-14-71
14,453
16,677
54.777
30.1
Particulates
Probe, Cyclone, & Filter Catch
mg
gr/SCF* dry
gr/CF (a Stack Conditions
Ibs/hr.
Ibs/ton feed
Total Catch
mg
gr/SCF* dry
gr/CF @ Stack Conditions
Ibs/hr
Ibs/ton feed
% Impinger Catch
11.8
0.00319
0.00263
0.391
0.0130
24.1
0.00652
0.00537
0.796
0.0265
51.0
22.9
0.00579 '
0.00488
0.729
0.0255
34.0
0.00860
0.00725
1.086
0.0380
32.6
21.4
0.00602
0.00521
0.737
0.0245
35.8
0.01010
0.00871
1.243
0.0413
40.2
70°F, 29.92" Hg
-------
$[
Run Member
Date
Pe-cent Excess Air
Percent Isoklnetic
Stack Flow Rate - SCFM* dry
Stack Flow Rate - ACFM wet
Volume of Dry Ras Sampled - SCF*
Feed Rate - tons/hr
1
4-13-71 '
90.7
11,700
13,484
74.277
30.0
2
4-14-71
94.6 '
11,664
13,554
77.276
28.6
3
4-14-71
f
— 1
95.4
11,727
13,474
75.106
30.1
Participates
Probe, Cyclone, & Filter Catch
mg
gr/SCF* dry
gr/CF @ Stack Conditions
Ibs/hr.
Ibs/ton feed
Total Catch
mg
gr/SCF* dry
gr/CF (a Stack Conditions
Ibs/hr
Ibs/ton feed
% Impinger Catch
31.2
0.00647
0.00561
0.643
0.0214
58.8
0.0122
0.0106
1.217
0.0406
46.9
23.9
0.00476
0.00409
0.467
0.0163
39.3
0.00783
0.00673
0.781
0.0273
39.2
24.2
0.00496
0.00431
0.493
0.0164
38.9
0.00798
0.00693
0.797
0.0265
37.8
* 70°F, 29.92" Hg
-------
-
^^^
Run number
Date
•Percent Excess"Air
Percent Isokinetic
Stack Flow Rate - SCFM* dry
Stack Flow Rate - ACFM wet
Volume of Dry Gas Sampled - SCF*
Feed Rate - tons/hr
Particulates
Probe. Cyclone, & Filter Catch
mg
gr/SCF* dry
gr/CF 3 Stack Conditions
Ibs/hr.
Ibs/ton feed
Total Catch
mg
or/SCF* dry
gr/CF (a Stack Conditions
Ibs/hr
Ibs/ton feed
% Impinger Catch
1
4-15-71
103.5
5853
6827
65.059
31.1
2
4-15-71. • •
100.1
6087
7073
65.470 '
30.7 .
3
4rl5-71
10078—
5727
6739
61.995
31.7
35,5
0.00840
0.00719
0.421
0.0135
54.2
0.0128
0.0110
0.638
0.0205
34.5
33.7
0.00793
0.00681
0.408
0.0133
54.6
0.0128
0.0110
0.669
0.0218
38.3
34.9
0.00867
0.00736
0.424
0.0134
56.0
0.0139
0.0118
0.682
0.0215
37.7
* 70°F, 29.92" Hg
-------
Under the clean air act, as amended, the Environmental Protection
Agency is charged with the establishment of performance standards for new
installations or modifications of existing installations in stationary
source categories which may contribute significantly to air pollution.
In the cement industry, eight plants exhibiting well controlled operation
were selected for the emission testing program. This report presents the
emissions data for the Castle Hayne, North Carolina plant of the Ideal
Cement Company.
Between April 13 and 15, 1971, Roy F. Weston, Inc. conducted source
sampling at the kiln stack and finishing mill stacks of the Castle Hayne
plant. The kiln calcines the raw materials (which are fed to the kiln in
the form of a slurry) in this v/et process operation. The finish mill grinds
the coarse cltnker{the main constituent of cement) and gypsum mixture} yield-
ing finished cement. . The finish mill section is controlled by baghouse units,
Roy F. Weston, Inc. conducted nitrogen oxides grab sampling at the kiln
stack and particulate sampling at the finish mill stacks. In addition,
Emissions Testing Branch personnel tested for gaseous mercury, sulfur dioxide
and oxides of nitrogen at the kiln stack. Analysis for NOX and S02 was ac-
complished by continuous monitoring electrochemical reaction - sensing
analysers obtained from Dynasciences*, Inc. The oxides of nitrogen samples
collected by Weston personnel were analyzed via wet chemical methods, pro-
viding an opportunity for comparison of the two sampling procedures.
*Mention of a specific company or product does not constitute endorsement
by EPA. 8
-------
PROCESS DESCRIPTION . '
Clay and limestone are trucked to the plant from an open pit quarry
about 1/4 mile east of the plant. The limestone is relatively soft (less
than 4 on the Mohs scale); size reduction is accomplished by wet grinding
to form a slurry. Large sand particles are removed from the wet clay in
the bottom of a classifier and the clay and fine sand slurry overflows in-
to a launder. Both the clay and limestone slurries are pumped into large
storage tanks where these materials are subsequently blended with shale and
pyrite to form the kiln feed.
The blended slurry is fed into the upper end of one of two sloping
(3/8 inch per foot), slowly revolving (one revolution per minute) kilns.
These oil-fired kilns are 375 feet long by 12 feet inside diameter with
refractory lining encased in a steel cylinder. The fuel oil (no. 6) con-
tains approximately 2% sulfar... During, passage through the kiln (about 4
hours), the raw materfaTs are nested to a temperature of about 2800°F to
produce the element, hydraulic calcium silicates,,, known in the trade as
"clinker". This marble-sized clinker material is then discharged.from the
lower end of the kiln at temperatures exceeding 2000°F and fed immediately
into air-quenching cooler units which reduce the temperature of the mate-
rial to about 150°F. From these coolers, the newly-formed clinker material
is conveyed to a storage silo.
-------
A small amount cf gypsum (4.45% by weight) is added to the clinker
material and this mixture is fed into the finish mill grinding system.
The mixture leaving the grinding mill is fed to an air-separator or clas-
sifier where the coarse material is returned to the mill and the~Tinished
cement (90% through 325 mesh) is pneumatically pumped to storage silos.
Present plant production is approximately 3,500,000 barrels of cement per
year.
The control equipment of interest in this report consists of three
Norblo baghouse collectors on the No. 1 finish mill grinding system. Tv/o
of these collectors are on the air separator and the third is on the mill
(see Figure 1).
The basic unit of the baghouse collector is a compartment which con-
tains 78 cloth filters (6" dia. x 8' 3" long) for a total of 936 ft2 of
filtering area. These Dacron bags are arranged in two groups of 39 bags
and each group has its own individual bag holder and shaker controlled by
an electric timer with reversing air flow. Each compartment is 9' tall x
8' 6" x 5' with a 60° hopper below. The particulate matter is collected
on the inside of the cloth filter bags and falls to the hopper below where
the material is removed by a screw conveyor.
The design data of these collectors is indicated in Table 4.
10
-------
MILL
BAGHOUSE
COLLECTOR
SAMPLE PORTS
SAMPLE PORTS
B SEPARATOR
BAGHOUSE
COLLECTOR
.
1
, , , . , r „/"
AIR SLIDE \
VERTICAL
CONVEYOR
•\ . , ,r
MIL
.err .... ... .. .. J
F
\
f
I
~Un A
L t c
AIR SLIDE
SAM PL £
lA SEPARATOR
8AGHOUSE
COLLECTOR
AIR SEPARATOR
AIR
AIR SLIDE
CLINKER & GYPSUM
FIGURE I DIAGRAM OF No. I FINISH MILL GRINDING SYSTEM
TO BULK
STORAGE
KEY
SOLID
EXHAUST AIR
—-VACUUM
-------
Table 4
DESIGN DATA OF FINISH MILL GRINDING SYSTEM COLLECTORS1
Number of Area Gas Flow Rate £P
Collector Compartments (ft^) (CFM) (in V.W.G.)
Mill
No. 1A
No. IP
4 .
7
7
3,744 9,000
6,552 1Q.275
i f ' ' •
6,552 17,500
10.9
10.4
10.6
Temp.
150
150
250
Cleaning
cycle
15 sec. shake with reverse
air flow every 3.5 min.
15 sec. shake with reverse
air flow every 3.5 min.
15 sec. shake with reverse
air flow every 2.0 min. .
overall air to filter cloth ratio i 1s 2.18 CFM/ft2 for the entire mill grinding system.
-------
DISCUSSION OF TESTING AND -RESULTS
Source sampling data were collected at four points at the Ideal Cement
Company plant, Castle Hayne, North Carolina. A description of the test per-
formed at the four plant locations follows:
Sampling Points • Tests Performed
1. Air Separator Stack A 3 Particulate Runs
2. Air Separator Stack B 3 Particulate Runs
3. Grinder and Elevator 3 Particulate Runs
Dust Collector
4. Kiln Stack 3 gaseous mercury samples
13 NOX samples, plus con-
tinuous monitoring of NO
and S02
The first three sample locations are shown in Figures A-l and A-2,
Appendix A. The kiln stack sampling point was located approximately 150
feet up the kiln stack (see Figure A-3). Detailed dimensions of the sam-
c.
ling points may be found in the field notes presented in Appendix fr.
A detailed description of the particulate sampling procedures and
equipment may be found in Method 5 of the Federal Register (December 23,
1971), Vol. 36, No. 247.
A summary of the data collected from the air separator stacks A and
B an.d the grinder and elevator dust collector is presented in Tables 5-7.
Equations used for particulate calculations are presented in Appendix
D. Also shown are example calculations for run No. 1 of the air separator
stack A.
13
-------
iD-.urJ the end of Run 3 on th> Air Separator Stacks A and-8, the re-
spective stack temperatures began to fall. Ninety-two minutes into the 96-
;r!nuts run the draft fans were turned-off for normal maintenance: and both
sampling trains were shut down immediately thereafter. Field representa-
tives from Ideal Cement Company, OAP arid Roy F. Weston, Inc. did not feel
that the shutdown would adversely affect the results from this run. The
average isokinetic ratios for the three stacks ranged from 93.5 on Stack ;
B to 101.4 on the Grinder and Elevator Dust Collector stack. The range of
isokinetics for all the runs was 90.7 to 103.5.
Gaseous mercury emissionswere determined by bubbling the kiln stack
effluent through midget impingers containing an acidic solution of iodine
monochloride. Sampling and analytical procedures pertaining to gaseous
mercury sampling maybe found in Method 1, December 7, 1971, Federal Register
(Vol. 36, Mo. 235). The results of the three mercury tests ere prcrcntsd
in Table 8.
Continuous mo.nttoring.of sulfur dioxide and oxides of nitrogen were
conducted at the kiln stack using electrochemical reaction sensing analyzers.
Readings were taken approximately every 3-6 minutes. Sulfur dioxide and
oxides of nitrogen emissions data are presented in Tables 9 and 10.
In addition to the continuous monitoring of NOX, thirteen evacuated
flask NOX samples were collected and analyzed using the phenoldisulfonic
acid method, in an attempt to compare the two analysis techniques. The re-
sults are presented in Table 10 and demonstrate fair agreement between the
two methods.
14
-------
TABLE 5
PARTICIPATE EMISSIONS DATA FOR MO. 1 MILL AIR SEPARATOR STACK A
Run No.
Test Date
°n
T.
P
Pm
Hi
V
m
Tm
Vm
mstd
V
V
wgas
% M
Md
% co2
% o2
% CO
% N2
% EA
MWd
\1
MW
C
D
'%
Ts
"p
Pst
Ps
V5
5
As
Qs
s
Q
3
% I
* 70°F, 29.
Sampling nozzle diameter, in.
Net time of test, min.
Barometric pressure, in. - - -
Hg absolute
Average .Orifice pressure
drop, in. FLO
Volurae of dry gas sampled,
ft at meter conditions
Average gas meter temperature, °F
Volume of dry gas sampled at
standard conditions*, SCF
Total Mj,0 collected in impingers
and sfl ica gel , ml
Volume of wster vapor collected
at standard conditions*, SCF
% Moisture in the stack gas by
volume
Mole fraction of dry gas
Excess Air Percent
Molecular weight of stack gas,
dry basis
Molecular weight of stack gas.
wet basis
Pi tot tube coefficient
Average velocity head of stack gas,
Average stack temperature, °F
Net sampl ing points
Static pressure of stack gas in. Hg
Stack gas pressure in. Hg absolute
Stack gas velocity at stack conditions fpm
2
Stack area, in.
Dry stack gas volumetric flow rate at
standard conditions*, SCFM
Stack gas volumetric flow rate at stack
conditions, ACFM
Percent isokinetic
92 in. Hg 15
1
4-13-71
0.193
96
29.90
1.28
61.768
116
56.931
2.3
0.109
0.191
0.998
^1
20.95
il
79.0
—
29.00
28.98
0.85
0.94
182
16
0.05
29.95
3643
694
14,478
17,554
96.9
2 -
4-14-71
0.193
96
29.87
1.45 —
65.263
109
60.857
9.0
0.427
0.696
0.993
^1
20.95
•4
79.0
—
29.00
28.92
0.85
0.98
164
16
0.05
29.92
3660
694
14,876
17,636
100.8
3.
4-14-71
0.193
92
29.90
~ 1.34
58.700
109
54.777
2.0
0.0948
0.173
0.998
^.1
20.95
1
79.0
—
29.00
28.98
0.85
0.90
151
16
0.05
29.95
3461
694
14,453
16,677
97.4
-------
Table 5 (concluded)
r/^TICl'.LATt EKISSIOIIS DATA FOR NO. 1 PILL AIR SEPARATOR STACK A
Run No.
Tc
\r
ir i
mt
Ic
Can
an
Cao
c,t
a L
Cau
c_w
aw
Cax
ptf
"tt
Unit Feed Rate-
Tons/hr
Particulate
and filter.
Particulate
% impinqer
Particulate
and filter,
Particulate
Particulate
and filter,
conditions
Particulate
stack condi
Particulate
and filter,
Particulate
Particulate
and filter,
Particulate
- probe
mq
- total
catch
- probe
gr/SCF*
- total
- probe
, cyclone
, mg
, cyclone,
, qr/SCF*
, cyclone,
30.0
11.8
24.1
51.0
0.00319
0.00652
0.00263
L
28.6 /
1
22.9
34.0
32.6
0.00579
0.00860
0.00488
' 3
30.1
21 .4
35.8
40.2
0.00602
0.01010
0.00521
qr/cf at stack • . .
- total
tions
- probe
Ib/hr.
- total
- probe
Ib/ton
- total
, or/cf at
, cyclone,
, Ib/hr.
, cyclone,
feed
, Ib/ton feed
0.00537
0.391
0.796
0.0130
0.0265
0.00725
0.729
1 .086
0.0255
0.0380
0.00871
0.737
1.243
0.0245
0.0413
*70°F, 29.92 in. Hg.,-..dcy basis
16
-------
: TABLE 6
PARTICULATE EMISSIONS DATA FOR NO. 1 MILL AIR SEPARATOR STACK B
Run No.
Test Date
Dn
Tt
P.
• .
Pm
III
\
Tm
Vm
mstd
Vw
If
V
gas
% M
Md
% co2
%o2
% CO
% N2
% EA
MWd
U
MW
c
P
A P.
5
Ts
NP
Pst
Ps
Vc
s
As
Q.
S
Qa
a
% I
* 70°F, 29.
Sampling nozzle diameter, in.
Net time of test, min.
Barometric pressure, .in.
Hg absolute . v
Average Orifice pressure
drop, in. H^O
Volune of dry aas sampled,
ft at meter conditions
Average gas meter temperature, °F
Volume of dry gas sampled at
standard conditions*, SCF
Total fUO collected in impingers
and silica gel , ml
Volume of water vapor collected
at standard conditions*, SCF
% Moisture in the stack gas by
volume
Mole fraction of dry gas
Excess Air Percent
Molecular w&ighL,.oJ s,tack gas,*
dry basis.
Molecular weight of stack gas,
wet basis
Pitot tube croerffcrerrt^
Average velocity head of stack gas,.
in. H20
Average stack temperature, °F
Net sampling points
Static pressure of stack gas in. Hg
Stack gas pressure in. Hg absolute
Stack gas velocity at stack conditions fpm
2
Stack area, in.
Dry stack gas volumetric flow rate at
standard conditions*, SCFM
Stack gas volumetric flow rate at stack
conditions, ACFM
Percent isokinetic
92 in. Hg 17
1
4-13-71
0.250
96
29.90
2.39
81.345
123
74.277
0.4
0.019
0.026
0.999
-A
20.95
-cl
79.0
—
29.00
28.99
0.85
0.62
150
16
0.01
29.91
2877
675
11,700
13,484
90.7
2
4-14-71
0.250
96
29.87
2.55
84.391
121
77.276
8.1
0.384
0.494
0.995
^
20.95
*•!
79.0
—
29.00
28.95
0.85
0.62
152
16
0.01
29.88
2892
675
11,664
13,554
94.6
3
4-14-71
0.250
92
29.90
2.62
81.502
118
75.106
5.0
0.237
0.315
0.997
^.1
20.95
.;!
79.0
—
29.00
28.97
0.85
0.62
147
16
0.01
29.91
2875
675
11,727
13,474
95.4
-------
Table 6 ''(concluded)
PARTICULATE EMISSIONS DATA FOR NO. 1 HILL AIR SEPARATOR STACK B
Run No.
T
C
mf
1
mt
Ic
can
an
C
ao
Cat
at
Cau
C,u
aw
c
ax
p
p
Unit Feed Rate-
Tons/hr
Particulate
and filter,
Particulate
% impinger
Particulate
and filter,
Particulate
Particulate
and filter,
conditions
Particulate
stack condi
Particulate
and filter,
Particulate
Particulate
and filter,
Particulate
- orobe
mg
- total
catch
- probe
gr/SCF*
- total
- probe
, cyclone
, mg
, cyclone,
,'qr/SCF*
, cyclone,
3"0.'0
31.2
58.8
46.9
0.00647
0.0122
0.00561
. . 2_
28.6
23.9
39.3
39.2
0.00476
0.00783
0.00409
3_
30.1
24.2
O O • .7
37.8
0.00496
0.00798
0.00431
qr/cf at stack
- total
tions
- probe
Ib/hr.
- total
- orobe
lb/ ton
- total
, qr/cf at
, cyclone,
, Ib/hr.
, cyclone,
feed
, Ib/ton feed
0.0106
0.643
1.217
0.0214
0.0406
0.00673
0.467
0.781
0.0163
0.0273
0.00693
0.493
0.797
0.0164
0.0265
*70°F, 29.92 in. Hg, dry basis
18
-------
J''un_ Kp_.
Tsst Date
Dn
m <
m
m
m
std
w
gas
% M
% CO,
% o2
% CO
% EA
HW
MW
CP
AP,
t
TM.LL 7
•J:Ci:L."-r. ^ISSJOflS DATA FOR flC. 1 MILL GRINDER AND DUST COLLECTOR.
Samp!inn nozzle diameter, in.
Net time of test, min.
Barometric pressure, in.
Hg absolute
Average Orifice pressure
drop, in. HpO
Volume of dry gas sampled,
ft at meter conditions
Average gas meter temperature, °F
Volume of dry gas sampled at
standard conditions*, SCF
Total H^O collected in impingers
and silica gel, ml
Volume of water vapor collected
at standard conditions*, SCF
% Moisture in the stack gas by
volume
Mole fraction of dry gas
'a
% I
* 70°F, 29.
Excess Air Percent
Molecular weight of stack. gas*
dry basts"
Molecular weight of stack gas,
wet basis .
Pitot tube coefficient
Average velocity head of stack gas,
in. H20
Average stack temperature, °F
Net sampling points
Static pressure of stack gas in. Hg
Stack gas pressure in. Hg absolute
Stack gas velocity at stack c
2
Stack area, in.
Dry stack gas volumetric flow rate at
standard conditions*, SCFM
Stack gas volumetric flow rate at stack
conditions, ACFH
Percent isokinetic
92 in. Hg 9
1
4-15-71
0.193
112
30.15
1.15
67.328
°F 94
65.059
s 34.2
1.62
2.43
0.976
20.95
79.0
29.00
28.73
0.85
gas, 0.77
149
14
. Hg 0.04
ute 30.20
ditions fpm 3213
306
ate at 5853
2
4-.1J5-71"
0.193
112
i
30.04
1.23
68.624
99
65.470
25.8
1.22
1.83
0.982
20.95
79.0
29.00
28.80
0.85
0.83
148
14
0.04
30.08
3329
306
6087
1 3
4-15-71
0.193
112
30.02
1.12
65.391
102
61.995
i
33.9
1.61
2.53
0.975
20.95
79.0
29.00
28.72
0.85
0.75
151
14
0.04
30.06
3172
306
5727
6827
103.5
7073
100.1
6739
100.8
-------
Table 7 (concluded)
PARTICULATE EMISSIONS DATA FOR NO. 1 GRINDER AND DUST COLLECTOR
Run No.
T
c
mf
i
mt
!c
Can
an
Cao
Cat
o u
Cau
c
aw
Cax
Ptf
ptt
Unit Feed Rate-
Tons/hr
Particulate - probe
and filter, mg
Particulate - total
% impinger catch
Particulate - probe
and filter, gr/SCF*
Particulate - total
Particulate - probe
-
, cyclone
, mg
, cyclone.
, ar/SCF*
, cyclone,
1
3V. V
35.5
54.2
34.5
0.00840
0.0128
0.00719
2
.30.7
33.7
54.6
' 38.3
0.00793
0.0128
0.00681
3
31.7
34.9
56.0
37.7
0.00867
0.0139
0.00736
and filter, gr/'cf at stack
conditions
Particulate - total
stack conditions
Particulate - probe
and filter, Ib/hr.
Particulate - total
Particulate - probe
and filter, Ib/ton
Particulate - total
, or/cf at
, cyclone,
, Ib/hr.
, cyclone,
feed
, Ib/ton feed
0.0110
0.421
0.638
0.0135
0.0205
0.0110
0.408
0.669
0.0133
0.0218
0.0118
0.424
0.682
0.0134
0.0215
*70°F, 29.92 in. Hg, dry basis
20
-------
Table 8
SUMMARY OF MERCURY TESTING '
Sampling Location: Kiln Stack
Sampling Date: April 13, 1971
Sampling Time,
24 hour clock
1255-1355
1440-1540
1620-1720
Hg emissions,
ug .
4.053
2.597
4.559
Sample Volume,
cu. ft.1
2.400
2.445
2.467
Concentration,
ppMV2
0.0076
0.0047
0.0082
1. Corrected to 70°F, 29.92 in. Hg.
2. Parts per million by volume dry basis, calculated by the equation
ppNV Hg = 2.399 x IP"4 x (ug Hg) • (Tm + 460)
Vm x Pm
Where:
Hg - weight of Hg. in sample
Tm - Temperature of meter
Via- -:-Volume, cf (meter cond.)
Pm - Pressure of meter
21
-------
TABLE 9
SUMMARY OF SULFUR DIOXIDE DATA RECORDED FROM THE DYNASCIENCE INSTRUMENT
Sampling Location:
Date
i .
4-14-71
4-14-71
4-14-71
4-14-71
4-14-71
, 4-14-71
4-14-71
Remov
4-14-71
4-14-71
4-14-71
4-14-71
4-14-71
Kiln Stack
Time
14:35
14:40
14:45
14:55
15:05
15:15
15:30
ed glass fiber filter fr
15:50
16:00
16:10
reris:.
T6:Z0
Reading 1 » 2, 3
68
76
70
74
78
68
54
ftm sampling Tin*5
30
24
46
46
46
1. Dynascience readings recorded at 60°F, 30.OZ'in. Hg
2. All values are in ppm 503, dry basis.
3. Sample was drawn through a stainless steel tube.
22
-------
TABLE 10 - '
NITROGEN OXIDE DATA COMPARING THE PDS1 METHOD vs. THE DYMASCIENCE INSTRUMENT 2» 3
Sampling Location:
Date
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
4-15-71
Kiln Stack
Time
14:30
14:40 '.
14:50
14:56
15:00
15:03
15:10
15:20
15:25
15:28
T5:30
15:40
15:45
15:48
15:50
15:52
16:00
16:10
16:24
16:27
16:30
PDS Method
—
—
8
164
180
186
129
98
118
115
100
131
199
208
Dynascience
85
96
96
—
107
107
117
75
75
64
64
75
117
1. PDS = Phenoldisulfonic Acid
2. Dynascience readings recorded at 60°F, 30.02 in. Hg; all values are in
ppm NOX dry basis.
3. Concentration of D£ during sampling ranged from 0.4% to 1.5%.
23
-------
APPENDIX A
SCHEMATICS OF TEST LOCATIONS
24
-------
I IDEAL CEMENT COMPANY
1 CASTLE HAYNE, NORTH CAROLINA
SAMPLING LOCATION FOR NO. 1. MILL GRINDER AND ELEVATOR DUST COLLECTOR
ROOF
FROM 4 UNIT
DUST COLLECTOR
PORTS IN
4" EDGE TO CENTER
NOTE: NOT DRAWN TO SCALE,
DIMENSIONS ARE APPROXIMATE
FIGURE A-1
-------
IDEAL CEMENT COMPANY * . ~
CASTLE HAYNE, NORTH CAROLINA
SAMPLING LOCATIONS FOR AIR SEPARATOR STACKS A AND B
ROOF-
26
NOT DRAWN TO SCALE;
DIMENSIONS ARC APPROXIMATE
FIGURE A-2
-------
ro
^"SAMPLING
PORTS
FIGURE A-3
IDEAL CEMENT COMPANY
CASTLE HAYNE, NORT.-I CAROLINA
SCHEMATIC OF KILN STACK CROSS-SECTION
NOTE: INCHES, INSIDE STACK,
DENOTE THE DISTANCE FROM
THE INSIDE WALL TO THE
SAMPLING POINT.
-------
APPENDIX. B
SAMPLING AND ANALYTICAL PROCEDURES
For particulate sampling the train specified in Method 5 of the
Federal Register, "Standards of Performance For New Stationary Sources"
(December 23, 1971) with impingers as described was used.
The equipment and procedures used for collecting and analyzing
the nitrogen oxide samples at the kiln stack are described in Method 7
of the Federal Register.
The procedures for analyzing the particulates conform to Method 5
specified in the Federal Reg i s ter . In addition, the impinger catch was
analyzed for particulate residue including organic matter. These results
B-i— B-3
are presented in Tables-B-9-. For a description of the sampling and .ana-
lytical procedures used for the SOg and NOX samples please refer to the
December 23, 197T Federa? Regfster €gglw.3gt No. 247), Methods 6 and 7.
For gaseous i?£r^ry.:3amp:lf?r§y-:a. gas-tr;ain similar to the particulate
train was used, with the following modifications. The cyclone and filter
were omitted from the train since particulate matter was not being collected.
Instead of the Greenburg-Smith impingers, four midget impingers, three of
which contained 15 ml of an acidic iodine monochloride solution (IC1) were
utilized in the train (see Figure B-l). The fourth was dry. A rotameter
was used to monitor the sampling rate, which was adjusted so that the sample
velocity at the nozzle was proportional to the stack gas velocity. Mercury
was collected (in the mercuric state) in the impinger solutions.
28
-------
Table B-l
RESULTS OF SAMPLE RECOVERY PROCEDURE \
Impinger
H20Wash Imp.
Connectors and
Back half filter-
holder.
Impinger, conn.
back \ filter-
holder (Acetone Wash)
Probe, conn.
front half
fi1ter holder
(Acetone wash)
Filter
AIR SEPARATOR STACK A
RFW #
Beaker #
Net Wt. mg
RFW #
Beaker #
Net Wt. mg
RFW #
Beaker #
Net Wt. mg
RFW #
Filter #
Net wt. mg
Run 1
1510
106
7.1
1509
103
5.2
1508
101
8.3
1511
F162
3.5
Run 2
151^
109
4.3
1513
212
6.8
1512
107
11.9
1515
F159
11.0
Total Particulates
mg
24.1
34.0
1517
206
9.9
1516
113
12.4
1519
Fi6o
9.0
35.8
29
-------
Table B-2
RESULTS OF SAPP<_E RECOVERY PROCEDURE
AIR SEPARATOR STACK B
Impinger h^O +.
H20wash Imp.
Connectors and
Back half filter-
holder.
Impinger, conn.
back 5 filter-
holder (Acetone Wash)
Probe, conn.
front half
filter holder
(Acetone wash)
Filter
Total Particulates
mg
RFW #
Beaker #
Net Wt. mg
RFW #
Beaker #
Net Wt. mg
RFW #
Beaker #
Net Wt. mg
RFW #
Filter #
Net Wt» mg -
Run 1
1522
119
16.2
1520
117
.11.4
1521
118
24.4
1523
F161
6.8
58.8
Run 2
1526
122
3.0
1525
121
12.4
1524
120
18.7
1527
WSF9
5.2
39.3
Run 3
1530
'.125
6.3,
1529
124
8.4
1528
M23
17.5
1531
-F158
6.7
38.9
30
-------
Table B-3
RESULTS OF SAMPLE RECOVERY PROCEDURE
Impinger H20 +
H20wash Imp.
Connectors and
Back half filter-
holder.
Impingers, conn.
back 2 fi1ter-
holder (Acetone Wash)
Probe, conn.
front half
fi1ter holder
(Acetone wash)
Filter
MILL GRINDER
RFW #
Beaker #
Net wt. mg
RFW #
Beaker #
Net wt. mg
RFW #
Beaker #
Net wt. mg
RFW #
Filter #
Ret i-it., mgr
AND DUST COLLECTOR
Run 1
1534
128
3.9
1533
127
14.8
1532
-126
29.5
1535
• F163 -. •
6vOf
Run 2
1538 •
131
8.0
1537
130
12.9
1536
'129
25.9
1539
F157
7.8
Total Particulates
54.2
54.6
Run 3
1542
•7.3
.1541
13.8
1540
' 132
24.8'
1543
- WSF10
10.1
56.0
31
-------
PROBE
TYPE S PITOT TUBE
CO
STACK WALL
ACID ABSORBING TUBE
MIDGET IMPINGERS
PITOT MANOMETER
ICE BATH
DRY GAS METER ROTAMETER
Figure B- 1 H9 Sampling Train
— ^PUMP
I*
_ ; x
-------
T'.re-.; mercury sampling runs v;r,ve performed, all at the same point with-
in the kiln stack, approximately 12 to.16 in. from the inside wall. A gas
sampling flow rate of 2 CFM vac used to obtain a sample volume of 2.4 to 2.5
cu. ft. (meter conditions). After each run, the first three impingers were
washed with 50 ml of 0.1 N ICL, and the washings and original solutions were
placed in storage bottles and transported to the lab for analysis. Sampling
and analytical procedures pertaining to gaseous mercury sampling may be found
in Method 1, December 7, 1971, Federal Register (Vol. 36, No. 235).
Continuous monitoring of S02 and NOX was conducted at the kiln stack by
operating electrochemical reaction sensing analyzers manufactured by Dynascience,
Inc. for each gas simultaneously. The S02 sampling train consisted of a probe,
ice-cooled condenser jar, pump, glass fiber filter, bleed off valve and rota-
meter, all connected to the instrument. Sulfur dioxide concentrations were
directly read from the analyzer scale.
A similar gas train was used for continuous monitoring of, oxides of nitro-
gen using a second Dynas-ciences instrument. Operation was identical to that
for the SOg monitoring, with the exception that a scrubber was included in the
train before tte bleed-off valve to remove sulfur dioxide which interfered with
the NOX instrument.
33
-------
APPENDIX C
FIELD DATA AND NOTES
34
-------
PRESURVEY - PROCESS INDUSTRY &. POWER PLANTS
flAME OF COMPANY
ADDRESS
,77
TITLE
DATE OF PRESUSVEY /<•/-<£ -
STATE
—
. . PHONE
TS"--
•TAME OF CONTACT
~P~~
PROVIDE FLOW DIAGRAM OF EACH PROCESS TO BE SAMPLED, INCLUDING FEED COMPOSITIONS AND
RATES, OPERATING TEMPERATURES AMD PRE'SISURHS, PRODUCT RATES, AND PROPOSED^SAMPLING SITES:
^
W*
COMMENTS:
35
-------
2.
: [JlAG-Wi 0!" EACH SAMPLING SITE. INCLUDE THE FOLLOWING INFORMATION:
DIMENSIONS TO NEAREST OBSTRUCTION IN ALL DIRECTIONS FROM SAMPLING,
COMPLETE DESCRIPTION OF ALL PORTS INCLUDING ALL DIMENSIONS. DESCRIPTION
OF ANY UNUSUAL FEATURES ABOUT ENVIRONMENT; HEIGHT, ODORS, TOXIC CONDITICMS,
TEMPERATURE, DUST, ETC.
U/Ali
j
@
36
-------
3.
-------
SCAFFOLDING OR OTHER HEADS OF SUPPORT PRESENT?
, WHO WILL PROVIDE IT?
SOURCE OF ELECTRICITY AVAILABLE? /^YES, MAXIMUM AMPERAGE PER CIRCUIT^
DISTANCE:
WHO WILL PROVIDE EXTENSION CORDS?
LOCATION OF FUSE BOX
*wt^
\
-PARKING FACILITIES AVAILABLE FOR TRAILER OP. VAN?
SIGNATURE REQUIRED ON PASSES?_
NEARBY RESTAURANTS AND MOTELS
WAIVERS?
£ (, 7o
LIST ANY SPECIAL SAFETY EQUIPMENT OR RULES
COMMENTS:
SURVEY BY
38
-------
CO
PU-fJ-
^ _ M. j $^jJ> n^> (s
-13U
c
c
A.
"A".
AW
;/
I'f)"
,£$ ,
1 1 ., i
•2 3 -f
- -2. -
-------
PU-fJL
A,UU - N*. i 3^*1 ytit (s.
MJL
LT U
3«».o
c
r
A-
/ixru— dUjWft:
"A:
-z 3
'271
-------
VELOCITY TMVCME FIELD DMA
'•&£ fes?* M **•
f?uvn VkV fz& 7>^ V Z .193 I1}. 17 *H (,5.K.3> 10? ;.^5
©3, ,/?.3 **-/'0 72- S8.?ao 109 y.3^
/£Lx» Vce Vc-P Vcy /?c?^ v
>o ig.93. l"i"~
)0 ^/. ^7 7
[i:
TAJT
1 97
? /O^.tf
1on ^u^ ^ZgAtz^oUT-^ y^' ' ' ' ftf*p]lr\&
tor
All. .../._«>_ _ "
17TIIO 0> -''?' -!:'! ' ' '' " '
1.1- 11 . ?V " /^^.
LI : L. ._ j.2f4_
/ ^ i/ 5A
.^ l' 5;_ ,...,l^._ !
< C*" y *J "V •
i^2 I i? 7^- //•>
t ;:.... "'..
i
!;! " '"' " J/7 'W"^":~/7: /7 D
1 Plant
i/
STACK DATA FOR NOMOGRAPH:
i ~J « "<«. *™» H B. Hall thickness, In.. • 3^
Inside diameter of stack • A-B -3
Stack Area •
Cements :
Sketch of stack cross-section
showing sampling holes
Calculations: £ [
(T^) &c
r
yi " ' Point t>#tt>. for Dist. from
ci»Mlm stack of samnle p
, ,.JfV5' / Si ^3'E = 5"
X j'^Z. ^ 7 '' = /O
H|ir /t -3 //
, / V V4
^ 5- a
-, if t 3
'I fUff ~j ~y
. 73
n "? *
/•/,./ v
Calculator ( C IKjL
\J
•-2K (12/67)
-3 '• - is
A * - Al
i ' -= ^! " = 3*-
rf '• c 3?
. - Z. A.u
4. Avg
outside
ort, in.
•3
^ 6. Bar
i
5 7. P,/
J
. meter teqjt (ambient t 20* / f>(> 'F
sture (volume) % t
. static press. 0) *j£ .W In. H.OX.073 • « .d?5" 1n. Ha.
in- H9«
press of meter 2J./b in. Ha.
. 5._ 1n. Hg n
o z 1=— cr" /.OD
5. 8. Avc. stack temoerature /&$ "F
i
9. Ava. stack velodtv (AP) . "XQtj in u n
C factor (1) 1.1 (})
41
-------
j heCO u,.& i ;;CC. C
: • eich t^st uoint.
rejc1 and record avtry ^ nir.utas.
oV
lister .', I. IJ1
CE2Cll./JiaL_!_Cl(je.J_
! 7?1$ri ,if> . te-i •• _
- ) '. on ill Ti? Tc^i "
ii^iiii^L^^F^^izii^^'zi^U^-L^|.!ifeii:^i:^
i ft^t j ^FB i ~i|?^t-! ^L^l T?L i 14V' yS> • ^?l' '"-^^i !!^r'"
i*i.i
Pitot I Crn'ice ill
uin tfiox i I.T.pir.{;cr jSVtck 'Stick i
iln. Kg iTc.T.5. 7C-.J3 iPrjss YC-.JJ
! Actual ! in'.it i Outlat ICiajo I 'f • 'f !in. Mti •? ;
in. «20 __ 1n li,0
Tf3 i / oir : S- 0.1;
42
-------
Pi ir.'.IJ C.44
Run Ko. ' fl -
Lo:aticn /
j iVHTlCUlWE FlcLD DATA
! .
! .'rear lypci'T/.';- - FSIL :» ALL <
Operator '•^
i^-r yy^.i'1. i ?>?^
-ir
«-f|p
in-fHa a/.
»tTijRV' ^EE:
V^Tl /.fTD
?e-.< |M3o v/E. TO V.'a
Jbi
ipT
/./o i
^•'y1/ I '^'- I /fr!
?r^7. /./o i /.g?
f' f-'i I.is TTE^v
-/.-<£7-
^PM—-$$3£\ <''* i ^'^Z
»gtt!
^j i $'£- i'?^1
/-< JaH-1
.or
3-
g. i1
^*p o £
3 £ 3 s I
' 3
1 S
B, I',
-
-1
S.<*
w & •*• " ^i f •
£••£. ^ i c !• ... *• [ . "",..j. .- s.- i
*"-fi~''--* • -i'- •••"•!?'• """;* " ' s?"
j; O o. TT T T, ^
.£ >
•s.1 = i5
E o a o
§*.
O 1<
iZ I
o o u
£ 2
•« a
ia u «
c "° ^2
|=^i
-------
•PHnt
-'Sun Ho. ! i A ~ 3
Location
Date
- Operator ' :
rjju=?le Box llo. I • li$fIt-J
"Sstor Box Ho. ; /fl.01/
Meter A H
••-C Factor
| PMTICULATE FIELD OAT* '
.KM IMitniKi - FILL HI ALL 6LA.\'KS
'Retd end record at the ittrt of '
•each test point.
;PATHOLOGICAL INCIKERATOSS- '
!road find record every 7o1nutos.
fcibient Tc-inp *F
Bar. Press. 'Ha 29. ft
AstUn-ad Koisture I1 • • i-
-Kc««r Box Setting, 'F
' Probi T
-------
/V7
11. 11
i!
Sketch of stack cross-section
showing sampling holes
Calculations:
Calculator
S&.--S8 (12/67)
Stack Geometry
Test n..
Loc«ti on
Date
A. Dlst. from inside of far wall to outside of
near wall, in., - _ £/ Q _
if
B. Uall thickness. In.. •
InslTlfcdi^Kiter of itcck • A-ff~_
SUcfcSrM«_
Cccnents:
III
/ti
Si
DIM. from outside
of «mtrte port, Inr
.?) iP% 1n. l^il Avpr^qt- . _
/
consents:
Plant
Date, 4^ -/ 3 - >/
Sampling location
• STAC* DATA FOR I
1. Heter tH /, $ if
2. Avg. meter tempt (ambient + ?0* / O b ^*F
3. Moisture (volume) ^ \
4. Avg. static press. « >3fi 1n. H,OX.073 • *_
1n. Kg.
5. Bar. press sampling point }9.ft> In.Hc^Q ,j)f (static press 1n.Hg) i
_ J ?. f / In. Hg.
6. Bar press of meter 2?.9t> In. Hg.
_1n. Kg"
8. Avg. stack temperature
•F,
9. Avg. stack velocity UP)
C factor (1) /, /
(J)
-n-
45
-------
•Ru-v li'o.
Location.
. Date
Cptrator . . '
" Scsple Oox Ho. !_2-.
• Dox No.
tteter .\ II :
C riictor _ 1,(6'
PiltTlCULATE riELD DATA
. v;ay IH?C:IT;:;T - fin :n ALL SIAXKS
' Rt£d end rsccrj! at the start of
• eich tes.t point.
i PATHOLOGICAL WCICESATOSS- '.
'mi tan record every *tiiiw;tas.'
Ambient Tc.^p 'r
Bar. Press. "Hg "2.TtTW
Asic..rid Hoistura S "2^ * ^
Kectjr Sox Settir.;.' V_
*e^.»-(w67^"tlU::Q^ •z-f':'"*- -i ,, 5^"—ta -
'"' ; :: y«l j^i.c^kji . f\y.,,; •.. -;r •
... .. _ „ S*."1 • J» «• * •»- *• - - 1 . '
Pitot
(O
Orifice 4H j Dry Gas Temp. ! v.-.cuuri !3ox j Imnir.tjer [Specie [ Sticx j '
.Clock Dry Gas I in. HzO I in lj.,0 . I *F ! I^/VHg '.'£i$c "j A;tu;l | inict i Outlet IC^TQtl T I 'f !in. !lo I *'
46
-------
PUnt^ ^ fj^J*. |
Location
Ddte
P^7;CU!.A7E FIELD DATA
Opsretor
Scjr.plc Box Ho. [_
'Mater Cox No. j_
Ncter .\ II
C. Factor
V£SY IKWITK." - FILL IH All BLANKS
! ' Kcad and re-cord at the star'; of
: L e£Ch tsist pains. •
PATHOLOGICAL -.'JCI.VMATO
'read and record <
A-Mfaient Tc.Tip *F_
Ear. Press. "Hg_ _
Asiu..:3d KoisturC 2
Heeler 8cx Settir.;, "F
Prclre Tip Ofi.. In.
Probe L-.-.cfi _
Probe Ho::cr Sc-ttinj _£^ _
/vg. i p __ AV:T. A'; ___
~
b Clock
'loir.t Tir,=
i i
Pi to:1
Dry Cas i in. HjO .
Orifice an
in H«n
Dry C:i
°F
TC.V.J .
j\V-;>
''^V
1 InX.
Ir-y. Clo:k
Oi*y Gas
Miter. CF
-j^gp^y r. | ,Li r,t/-
01 i
1 onoO\ 7;*. 1.1
1 /vtaSi 1 17. .'3
in. HjO
• iP |
1
1
1
/tU^
ill.
in li,0
DiKrcc •}
Icrual inlet 1 Ouv
\ 1
l i
2, 1C 1 Z.ie ' ;JZ- 1 //
^i7O J. 1o ^tV ' ///
i (i™,? 72; oil ! • &* ,".sr>
i — 0^/3 — 'ivr '*7 —
»_( : fa /S l la*, to
S-f ' «« /SI 1TI.T.S
fl-f | $0 £1 \ 7\"*.9(.
••** :| 00 fiu I T»u.^^
fl^ t?# #V i V e(. i V
i B-J, 1 C<» 3<7 TV}.. -5'S
' »->• • (V 3^ "IMI .fv
fl-a ^tfJ* Is'p.t^
O-I " Cp -A ! -?i"^.7.-i
^0/-l 00 <•'* \ 7i -r 1ST
V t^ffliffl ' "?^r.Mi
.fti 1
i
1 ' .
i\ i
'.; ' t4
•T*
"\ S 0
1,
-t
r
SQ
§r
~
N
1
2. • •
ill
" Si |
•5 u |
] & c ^ M
'! R "c *« o £'
'.i 3 E 5 S £
j L^- uj .
!'•§
:i i
.(
t
i:-' <
.•i * —
.I.'- ^
!
,
H
r'
r3
l
^
11
t> •• O
•8 fe -°
. : ' . oj ~ C 'a
'•'. • % § o. .S
,' ' Q « 0 VI
.*
=
*-• ^
El
O
O C
'•Sf
5 °
U( '
3|2
. d
'
tt
•kfe
C*t
2 >0 ! /Ji i /tf
J,-,f ifo I
T -SO 1 "L ?^ o
/y.,5 i i
^ \ lf.fi \
ti» i i (;^ i iii< t ~~
O.ts' l~s*" KX] l
o ie.3 lff.7
,
' f t
. —
_ ._-.
b
,1.1 -!,ti- I -L.M' lU\ I ,l^ \.? '
I
|
I
i1
«
*i
•0
L.
f»^
1U1
•U
. fL
.fc3
i ' f.
i /")
"i.s v 7--^' |t-'^1 '
-1 -~1*' \ j 7S~ 1 (14 *\ 1
i "7p ! "t .^o : iy \ 1
•1.1-; 175 1 IKO 1 1
I.To 170 IS'w '
•*.i'i' irs" mi i
T..10 1 T..7J ' «(V 1
i.7i- I.Tc, 1 tU« i i
S II. r 1
IP ;,^ -r i
iv ts,1 :
\% , /c.r 1130 ! K
1 V C..O I
l~\»l !0.»/ 1
i-i_ it.risio s
3
i / ^ ft !r.T
/.?^ ito.y
rSn'^
1 /Tb U«
! /3^ U.O
--tZS-
/ <^
/^S"
i I4Y
t^!<
10
M.7
n.f
»r
M.I
)«.!
' /?? «.«
o .01 ; 'SB
i «*>! we. ! -rf*. i l
S
fc
?
£
:|
Iv °'
'Sfo
Ei Ei si
*sn
c* "5
r-
e
Ul
O <-
~ ^
»? W
III
J
= 1
O
w
•?
j
o
u
•>
I
VI
'_
L.
"3
:z
^
o
1 1
i
0
Ss
*l
s
I
u
IP
l_
T*-1
ll-l F
• r
*5
' ^
.1
^
o
? *•
E
U
'.
rj
^
*5
O
5£
SIX
1*
O
S
i
C w
5'°-=
s*|
/>. otl
. w
i_
c
"i
r." 1 fc H
1
^
!
£
3
. 'I
10i\* .
]l
J1.C
I
•r
1
m
V'7,^, ». ~
•i-^v,i
aa^ .
L
.. *J *C
4J Wl VJ
O> fc» 4
1. i- ••-
S £ 8
..
oi
i. ~£
g
— e Ji 01 a
& *. ~ ~
" •§, -s, t
•f
a
1 - S S £ C3
1 vi
•
i-
C(
X
1
i
b *
li •
,
U
o -v) c
•£ r Si
3-iJ
1
i
'•
|
47
-------
PUnt
lotitlon Ql" .vyon Ttt
Djte
Operator ^
Simple Box Ho. !.
lister Bo» No. _
Iteter .1 II _: .
C Fcctoi
PMTICULATE FIELD DATA
. v;i» IK?CPT.';;T - FJLL ;« ALL BLAXR
Reed ir.tf rcco.-d ii the start of
• ci.ch t^st point.
Ambient Temp *r_
Bar. Press. "Hg_
u.
.
: read And rcccrd every r^
AsiUi.;:d Hoisture 1_
Hester 3ox Setting. °~t
Proba Tio Disi. In. Q. 2fO '
Probs Lc-r.jt.'i .
48
-------
PBELIHINARV FIELD DATA
Stack Geometry
A. 01st. from Inside of far «all to outside
near nail. In.. . . 3 £ f,
B. Kail thickness. In.. • 3 1n. Hg.
. S.3Q.ZO m. Hg
(?) 4P, in. ll0 Average
9. Avg. stack velocity (tP) . 97
C factor (1) J.jf
-SA-
K»-» (1.V67)
-31-
49
-------
PUnt
50
-------
Run 1,'u. 2.
PA'VriCL'HTf FIELD DATA
IMICT;;;- - FILL ;« ALL, BLANKS
3 er.ri record £•; the start of
: | • each test point.
fcibient Tcrap *F ?O _ _
Bar. Press. 'Kg 39. 15 0 4
PATHOLOGICAL II{
Optrator "^Su^ \ q«A*^_? L^o»li<*. | j • rsad and reccrd every S ntr.utes.
$£.^ple Eox llo.'
^Mst'ir Box No.
Iteter .1 II ^
.r. ractor^/.jS', ! t'^.t^^ZH^
•U'* ' Asiu..:sd Koisturo 'i l_
Ks:ter Box Scttir.c, 'F
I
Probs Tip 0!:., In. 0. l<) 3
Probe Lcr.st.'i V
Probo Hioter Sc-tting 'Iff >X
Avo. J ?_/ Avj. .«.H_/_iJ
51
-------
nt'U^t KL^l
"fluft No.
' Loiation
Date
' .Opsrator
;.rsc:?le Box Ho. i J3.
'"fetcr Cox NO. i
' Hater A II : &//•
C Factor
I P/.RT1CULATE FIELD DATA
. VS3Y !H?CPTA.VT - FILL IN ALL SLAKES
' Read ir.d record at the start of '
• i each test point.
.PATHOLOGICAL INCICEWTOaS-
•read and record every 9n1r,i:t£s.
Ambient Tcsip °r
Bar. Press. "Hg
Assured Hoistura S /
11 o
f
Hcoter Box Settir.j, 'F_
Probe. Tip Die.. In. .
Probe Ler.sUi il (.
Probe Hjster Sc-ttinn a(l
ff
•"•r-
Avg. i p
Avg. A!
i^' Clock
i I'oir.t Tira
PUot1
Cry Ca; in. HjO
fe«.-, c; I jp i
Ori-.'icc iH
[UO
I
I Cry Css Te.v.?. |V,
_L V 1
~ rs^t
. '<°^ i-?g r
1
i^^ut^ Hv
TV? Press If..w I T
I S.t- I IIP I "jfo
'
I -70
•«• Hsa i '
-'-i£Q_"
J_L£2_ln.o
ro ! n.c
MT
1.1(1
•54
3F
-f^H
• B-l
'•ir !.•/
UK
-iflV I.
i /si- in.r
Comments:
NCAP.
1 \f •* I
'-37'(U/6?> i A/0 (lv«l
., I. !.Tnev
CorjnentS j'
Ory Gas
Moter, Cr
Pi tot
In. H20
• 4P
Dry G|l Temp. jVicuuni •'.
iii_JU5__j I *F i Irf^ijg Tg
DR%)VC'C__1_Avj-ugV"1 InTcf T'OutT^t~j_Gi|iise *
52
-------
w
Sketch of stack cross-section
showing sampling holes
Calculations:
TREL1H1NA5Y FIELD DATA
Stack Gecwtry
A.
B.
Loc
Dat
Dlst. f
near wa
Mall th
Inside
at Ion yfc^*. -WCWLCA-
e lj- 13- "?/
roro Inside of far wall to outside of
11 In . -?3/ 70T
OXIDES OF H1TROGEH FIELD OATA
I* Date ^//£ hi
Flint TAjJ? (^^^. jf~ " ' C« S \^d>
Soiplc Collected By L-^rj •
"«n l!o.
Ickness, In.. . HI." fewer St.t Setting
diameter of stack
' *-6 J^- W fleW data
^
Stack Area • 2 7& 9 3"
Com
ments :
Point
.
i.
3
t,
JJ*-p£t--
\ Die. for
circular stack
ii.it
3:/ ^
—~^~'
Dlst. from outside
of sample port. In.
^ / • , ^^^
Xfl. • -Jt>l* .
:iock tine
Hask number
.'olu;;.' of flash 1m»
*i T j, I fivmi . , i^H^
'ressurs before st-rpUng
in Ho. -^
/ A i r»-(
Re«rks:
J^l
J.P
/
foil
jlJ
• 01 ••
-i/k -
(1
•*»~l
•2-
J\*°
2'lt
.0-7
Infa
(,1
i i
i --• —
3.0°
3-
2/n
21.+
.OT
6i
5 ^
Y
n$
.0?
~s
S.WI
//
Jtff
?7.Z~-
K-°7
r|*
0 ol "\/\fr
Plant .
Test
Location
VELOCITY TRAVERSE PIELO DATA
^^ r^Lf,
OXIDES Of. UlTRQCril F1EJ.O DATA
Plani .fjQfJ?
Opcrjto:-
Stirplc Collected By
Run No.
Power Stat Setting
a..
Clock
^;76
|
feint
(LI
i
2
^
<; ,
i.
*
V
(1)
.ill
bl
.(/Z
.37
..22-
. -5d
-------
OXIDES OF NITROGEN FIELD DATA
Date
V//S/7I
p"iant
' ' / )
.U-^A- G;.
Sample Collected By
Run No.
/!&
Pov.'er Stat Setting
Field Data
Clock time
Flask number
Volufiia of flask 4e£=s-»
Pressure before strap! ing
in Hg. ""**
Vessure after sampling
in Hg. J^>
Flask temperature, °F -
, -.«-,.- • ' .(""/> '-JL
£&
$
2-111-
n4
•
:ir
j-d
r*
P.K
n4
.ol
•$
y/2-7
&
w*
^
o-l
$
...
NCAP-35 (12/07)
54
-------
APPENDIX D
PARTICULATE CALCULATIONS
Example: ! Run No. 1 on No. 1 Mill Air Separator Stack A (For Data,.see Table 5)
"1. Volume of dry gas sampled at standard conditions: 70°F, 29.92 in. He, SCF
17.7 x V (P.-f 'm ) 17.7 x 61.768 (29.90
m b T375 ' ---
1.Z8
56.931
:n
std
n.
4 GO;
Tfi6 +TO
2. Volume of water v?por at 70°F and 29.92 in. Kg. SCF
V - O.C474 x V(I = 0.0474 x 2.3 = 0.109-' ',;SCF
''gas w . .
3. Percent moisture in stack
100 x V
% M =
r/as _ 100 XQ.1Q9_
_, Tn-77n" 0.191
+ \/ 56.931 -'0.109
mstd wgas
4. flole fraction of dry gas
_-
100
100
^0.998
5. Average molecular v/eight of dry stack gas
« (SC0 x
x
( 0 x )
x v ) = 29.0
6. Molecular v/eight of stack gas
MW = HHd x Md + IS (1 - Md) =29.0 xO.998 + 18 (1 -0.998 ) = 28.98
7. Stack gas velocity at stock conditions, fpm
V = 4,360 xvj^P x~(T + 4CO)
o > *> j '
' "0 /Wif 1 ^-3
i j ^ *^ ! I V /^u t% 1 ~* S
! * *.' w \J y. XV^y*O 1 J
|?Q QK A"?R Oft
1
PT x !1W
*— " .. .-
543 fpm
55
-------
PARTICULATE CALCULATIONS, Run No. 1, No. 1 Mill Air Separator Stack A (continued)
8. Stack gas-volu'r-ritric flow rate at sUncic.rr! CGritlUioris*, sr.Rl
0.1513 x \'s x .% x i1d x PS 0.123 x3643 .x 694 x.0.998 x 29.95 . $f
9. Stsck gns volff-Gtric flc;/.! rate at stack conditions, ACFM
0 - _J^G1!> :Llis_l_fT^_J_^p) - .05645 X14.478 x(l8,2.+.£60_) _ ._ Frj ACFM
a PS x"Md 2~9.95X 0.998
10. Percent isokinetic • - ;
1,032 x (T + 460) x V
5 mstd .. 1,032 x (182 + 460) X56.931
Vs x Tt x Ps x Md x (Dn) 3643 x 96 x 29.95X 0.998 x (0.193)2
11. Particulate: probe, cyclone and filter, gr/SCF* Dry Basis
mf
Can = °-015'; x T - = 0<0154 x J-l^8- =0.0031 9^r/SCF
mstd 56.931
12, Particulate tpt.n'i , or/SCF* Dry Basis
m*
c,n = 0.0154 x v-±— = 0.0154 x 24.1 gr/SCF
mstd 56.931. =0-00652
13. Particulate: probe, cyclone and filter, gr/CF st stack conditions
r = U>? X Ca" X Ps X Md - 17.7 x 0.00319 x 29.95 x fls998. = 0. 00263 gr/CF
Lat • (Js + 460) " ~ 7182 + 460T
14. Particulate: total, gr/CF at stack conditions
17.7 x C x P x M. 17.7 x 0.00652 x 29.95 x 0.998
' — ' — " ' - -- ^-o0537
cau — [Ts 460)
15. Particulate: probe, cyclone, and filter, Ib/hr
Cail = O.OOG57 x C x Qe = O.OOOD7 xO. 00319x14.478 =0.391 Ib/hr
a\v an s *
16i Particulate: total, Ib/hr
Cav = 0.00857 x C x Qc = 0.00357 xO. 00652x14.478 =0.796 Ib/hr
ax uO s *
17. Particulate:,. probe, cyclone, find filter, Ib/t.on feed
"tT —r" * - 0.0130 "IVtn
'16. Fcfvicu'iatc:- it/.-ul, Ib/uosi
C
Ptt = -t"-X~- « 0.796 8 0>0265 , 1b/ton feed
£ 0 U • U
* 70°F, .29.92 in. Hg 56
-------
APPENDIX E
IES1_LOG
Table E-1 presents the actual time during which particulate sampling was
conducted.
Table E-1
SAMPLING LOG
(No. 1 Hill Air Separator Stack A)
Run
1
2
3
1
2
3
1
2
3
Date
4-13-71
4-14-71
4-14-71
4-13-71
4-14-71
4-14-71
4-15-71
4-15-71
4-15-71
Sampling Port
A
B
A
B
A
B
(No. 1 Mill
A
B
A
B
A
B
(No. 1 Mill
A
B
A
B
B
A
Began
15:50
17:17
09:59
10:53
14:58
16:00
Air Separator
15:50
17:17
09:59
10:53
14:58
16:00
Ended
16:38
8:05
10:47
11:41
15:46
16:44
Stack B)
16:38
18:05
10:47
11:41
15:46
16:44
Elapsed
Time (min)
48
48 '
48
48 .
48
44
48
48
48
48
48
44
Grinder and Dust Collector)
10:32
11:34
13:57
14:57
16:20
17:21
11:28
12:30
14:53
15:53
17:16
18:17 -
56
56
56
56
56
56
57
-------
|