EMISSION TESTING REPORT
ETB TEST NUMBER 71-MM-06
Emissions From
Wet Process Clinker Cooler
And Finish Mill Systems
at
IDEAL CEMENT COMPANY
HOUSTON, TEXAS
Project Officer
Clyde E. R1ley
ENVIRONMENTAL PROTECTION AGENCY
Office of A1r Programs
Research Triangle Park, North Carolina 27711
-------
PREFACE
The work reported herein was conducted by The Environmental Protection
Agency (EPA), Office of Air Programs, Emission Testing Branch (ETB), Metal-
lurgical and Mechanical Section. Mr. Clyde Riley served as the Project
Officer and directed the ETB field team consisting of Mr. Frederick Maerker
and Mr. Gene Smith. Mr. Philip York served as Project Engineer and Mr. Howard
Crist performed the pollutant analyses at the EPA laboratories.
Approved:
Environmental Protection Agency
' , // >
.-JU_- > CA _ -=>—
Gene W. Smith
Chief, Metallurgical & Mechanical Section
March 29a 1972
-------
I. TABLE OF CONTENTS
II. List of Tables 2
III. List of Figures 2
«
IV. Introduction 3
V. Summary of Results 3
VI. Process Description 7
VII. Location of Sampling Points ':9
VIII. Process Operation 9
IX. Sampling and Analytical Procedures 12
X. Appendices 13
A. Particulate Results and Calculations 13
B. Field Data 20
C. Laboratory Results 52
D. Test Log 55
E, Project Participants and Titles 55
-------
II. LIST OF TABLES
Table-Number Title Page
1 Summary of Results for 5
Clinker Cooler
2 Summary of Results for Finish 6
Mill Grinding System
A-l Particulate Emission Data for 14
Clinker Cooler
A-2 Particulate Emission Data for 16
Finish Mill Grinding System
C-l . Particulate Results, Clinker 52
Cooler
C-2 Particulate Results, Finish 52
Mill Grinding System
C-3 Results of Metals Analysis 53
Clinker Cooler
C-4 Results of Metals Analysis 54
Finish Hill Air Separator
D-l Sampling Log 55
III. LIST OF FIGURES
1 Sampling Locations 4
2 Baghouse Collector on Clinker 10
Cooler
3 Baghouse Collector on No. 2 11
Finish Hill Grinding System
2
-------
IV. INTRODUCTION
Source sampling was conducted at the Houston, Texas wet process plant
of the Ideal Cement Company to determine particulate emissions from the
baghouse stacks of the clinker cooler and the finish mill grinding system.
Three particulate runs v/ere performed at each stack (for a total of 6 runs)
between 18 May and 20 May, 1971. Sampling locations are shown in Figure 1.
EPA Methods 1 and 2, Federal Register, December 23, 1971, were used
to determine the number of required sampling points per stack and the stack
gas velocity and volumetric flow rate. Particulate emissions were determined
using EPA Method 5 of the Federal Register.
V. SUMMARY OF RESULTS
A summary of the particulate emissions data for the No. 2 clinker cooler
and finish mill grinding system is presented in Tables 1 and 2. Clinker
cooler emissions (based on the probec cyclone and filter catches) ranged
from 0.0253 tcO.W48 Ibs/ton of feed. Emissions from the finish mill
grinder baghouse were between 0.0120 and 0.0201 Ib/ton of feed-
-------
Clinker
Cooler #2
M
-------
TABLE I
SUMMARY OF RESULTS FOR CLINKER. COOLER
Run Number
Diste
Percent Excess Air
Percent Isokinetic
Stack Flow Rate - SCFM* dry
Stack Flow Rate - ACFIi v/et
Volume of Dry Gas Sampled - SCF
Feed Rate - tons/hr
Parti cula to s
Probe, Cyclone, £ Filter Catch
mg
gr/SCF* dry
gr/CF @ Stack Conditions
Ibs/hr.
Ibs/ton feed
•*• i- •> r. j.f.\.
mg
gr/SCF* dry
gr/CF Q Stack Conditions
Ibs/hr
Ibs/ton feed
% Impinger Catch
1
5-18-71
NA
102.1
104,057
127,032
101.07
61.8
11.8
0.00180
0.00147
1.561
0.0253
26.3
0.00401
0.00323
3.538
0.0572
55.1
2
5-18-71
1 ; NA
98.5
100,432
.126,664
94.15
62.7
i
,
20.5
0.00335
0.00266
2.812
0.0448
38.1
0.00623
0.00494
5.323
0.0849
46.2
3
5-18-71
NA
98.8
102,165
128,672
96.05
63.7
14.2
0.00228
0.00180
1.941
0.0305
23.3
0.00373.
0.00296
3.269
0.0513
39.1
* 70°F, 29.92" Hg
NA - Not Applicable
-------
TABLE 2
SUMMARY OF RESULTS FOR FINISH HILL GRINDING SYSTEM
Run Number
Date
Percent Excess Air .\
Percent Isokinotic
Stack Flow Rate - SCFM* dry
Stack Flow Rate - ACFM wet
Volume of Dry Gas Sampled - SCF
Feed Rate - tons/hr
Particulates
Probe, Cyclone. & Filter Catch
mg
gr/SCF* dry
gr/CF @ Stack Conditions
Ibs/hr.
Ibs/ton feed
T.-^.-.l fate':
mg
or/ SCF* dry
gr/CF @ Stack Conditions
Ibs/hr
Ibs/ton feed
% Impinger Catch
1
5-19-72
NA
109.0 '
26,360
35,185
140.35
34.6
22.0
0.00241
0.00181
0.527
0.0152
32.9
0.00361
0.00270
0.791
0.0229
33.1
2
5-19-71
NA
102.9
26,252
35,679
131.99
33.9
26.9
0.00314
tL00231
6.683
0.0201
37.8
0.00441
0.00324
0.971
0.0287
28.8
3
5-20-71
NA
98.9
26,244
35,780
126.82
37.2
17.1
0.00208
0.00152
0.446
0.0120
27.9
0.00339
0.00248
0.761
0.0205
38.7
* 70°F, 29.9?" Hg
NA - Not Applicable
-------
VI. PROCESS DESCRIPTION
Clay, crushed oyster shell, and silica sand are brought to the plant
by barge from deposits along the Gulf of Mexico. These materials are ground
and blended ;in two rotating ball mills to form a slurry.
The blended slurry is fed into the upper ends of two sloping, slowly
revolving kilns. These kilns are gas-fired with a capacity of 5,250 bbls.
per day each and are 450 ft. long and 12 ft. in diameter with refractory lining
encased in a steel cylinder. Fuel consumption is 1,300,000 BTU per barrel-
of cement produced. During passage through the kiln; the raw materials are heated
to a temperature of approximately 2800°F .to produce-the element hydraulic calcium
silicates, known "in the trade' a^'*£^7rter'wc, '3Ms -Barbie- si zed clinker material
is then discharged from the lower end of the kilns at temperatures exceeding
2000°F and fed immediately into two air-quenching cooler units which reduce the
temperature of the material to about 150°F. From these coolers, the newly-formed
clinker material is conveyed to storage silos.
A small amount of gypsum (4.45% by weight) is added to the clinker material
and this mixture is fed into two finish grinding mills with a capacity of 47 tons
per hour each. The mixture leaving the grinding mills is fed to two air-separa-
tors or classifiers where the coarse material is returned to the mills and the
finished cement (90% through 325 mesh screen) is pneumatically pumped to storage
silos. Present plant production is approximately 4,000,000 barrels of cement
per year.
The control equipment of interest in this report consists of a Mikro-
Pulsaire baghouse collector ori the No. 2 clinker cooler and a Norblo baghouse
collector on the No. 2 finish mill grinding system.
-------
The Mikro-Pulsaire collector consists primarily of a series of
cylindrical filter elements enclosed in a dust-tight housing. The felted
i
filter media is "Nomex" which is heat-resistant for temperatures up to 425°F
and is supported on a stainless-steel wire frame. Dust-laden air is admitted
to the housing and clean air withdrawn from inside the filter cylinder. As
clinker dust particles accumulate on the filter elements, periodic cleaning
is accomplished by introduction of a momentary jet of high-pressure air through
a venturi mounted above each filter cylinder. A continuous flow of air through
the collector is~maintained, since only a fraction of the total filter area is
cleaned at one time. The dust particles fall by gravity during the cleaning
cycle to the hoppers below where the material is removed by a horizontal screw
conveyor and then conveyed to the clinker storage silos.
The Mikro-Pulsaire unit is designed to handle an air volume of 145,000
ACri! at 2:o°r for a performance of 99.0-:- psrcsnt efficiency. The effective
2
collecting surface area is 189720 ft which gives an air-to-cloth ratio of
7.7:1. The pressure drop across the filter varies from 4 to 6 inches of water.
The collector contains 2,016 bags with a minimum life expectancy of three (3)
years, and each bag costs $12.00. The expected life of the baghouses is 40* years,
and the installed cost in September, 1970 was about $600,000.00 for both col-
lectors.
The basic unit of the Norblo baghouse collectors on the finish mill grinding
systems is a compartment which contains 108 cloth filter bags (6" diameter x
p
8' 3" long) or a total of 1,296 ft of free filtering area. These bags are
arranged in two groups of 54 bags. Each group has its own individual bag holder
and shaker controlled by an electric timer with reversing air flow. Each com-
partment is 10' tall x 8' 6" x 5' above a 6' 6" tall 60° hopper. The particulate
8
-------
matter 1s collected on the Inside of the cloth filter bags (spun "Dacron")
and falls by gravity during the cleaning cycle to the hopper, where the
material (cement) is removed by a horizontal 'screw conveyor.
The Norblo baghouse collector is designed to handle an air volume of
33,000 ACFM at 180°F for a performance of 99.9+ percent efficiency. The
effective collecting surface area of each baghouse which contains 12 compart-
2
ments is 15,552 ft , giving an air-to-cloth ratio of 2i12:1. The pressure
drop across the filter is approximately 3 inches of water. The collectors
each contain 1,296 bags with an average life of five (5) years and each bag
costs $3.65. The baghouses were installed in 1958 and the expected life is
40+ years. Neither the total installed .cost nor the annual operating cost
of this unit were available.
VII. LOCATION OF SAMPLING POINTS
The locations of the sampling ports are shown schematically in Figures
2 and 3. At each stack, sampling was conducted along each of two perpendi-
cular stack diameters. The number of sampling points was dependent upon the
distance of the sampling ports from disturbances in the gas flow, as described
in Method 1 of the Federal Register,, Vol. 36 s No." 247, December 23, 1971. The
number of points sampled was 22 points per diameter (for a total of 44 points)
at the clinker cooler stack,and 12 points per diameter (each point sampled
twice, for a total of 48 points) at the finish mill stack. The sampling time
at each point throughout the testing v/as three minutes.
i
VIII. PROCESS OPERATION
Operating conditions of this continuous process were normal throughout
the testing.
-------
PULSAJRE
COLLECTOR
10
.LEGEND-.
-------
'NORBLO
&AJS HOUSE
COUUECTCR
FROM A»R
SEPARATORS
r« SIDE View WesrSioe
FI6URE. 3 B/\GHoose COLLECTOR ON Mo.S FINISH
FROM
*. X Kt> AFTER
-------
EX. SAMPLING AND ANALYTICAL PROCEDURES
Complete details of the equipment and procedures used for particulate
sampling are described in Method 5, Federal Register, December 23, 1971.
The procedures for analyzing the particulates conform to Method 5
with the added exception of the impinger catch being analyzed for particu-
late residue including organic matter.
Quantitative analyses results of material collected on the glass fiber
filter and in the residue samples are reported in Appendix C.
12
-------
X. APPENDICES
APPENDIX A
'IftSSETS. • Affl)
Complete results of the participate sampling are presented in Tables
A-l and A-2. Example calculations using the data from run Mo. 1 of the
clinker cooler follow the data tables.
13
-------
PARTICULATE EMISSIofToATA FOR CLINKER COOLER
Run No.
Test Date
Dn
Tt
Pb
Vm
Tm
Xta
vw
wgas
X M
Md
X C02
x o2
2- CO
XSJ
9
X EA
^d
MW
V
Ts
N
Pst
V
1
Q '
"a
. ' ""*****--
* I - '
Sampling nozzle diameter, 1n.
Net time of test, min.
Barometric pressure, in.
Hg absolute
Average Orifice pressure
drop, 1n. H20
Volume of dry gas sampled,
ft at meter conditions
Average gas meter temperature, °F
Volume of dry gas sampled at
standard conditions*, SCF
Total H20 collected in Impingers
and silica gel , ml
Volume of water vapor collected
at standard conditions*, SCF
X Moisture 1n the stack gas by
volume
Mole fraction of dry gas
Excess A1r Percent
Molecular weight of stack gas,
dry basis
Molecular weight of stack gas,
wet basis
P1tot tube coefficient
Average velocity head of stack gas,
Average stack temperature, °F
Net sampling points
Static pressure of stack gas in. Hg
Stack gas pressure in. Hg absolute
Stack gas velocity at stack conditions fpsn
2
Stack area, in.
Dry stack gas volumetric. flow rate at
standard conditions*, SCFfl
Stack gas volumetric flow rate at stack
.conditions, ACFM
^Percent 1sok1nstic
• 1
5-18-71
0.193
132
29.82
2.28
107.40
104
101.07
34.5
.*.. 1.64
1.59
0.984
< 1
20.95
78.0
NA
29.00
28.82
0.85
1.44
175
44
0.02
29.84
4493
4072
104,057
127,032
102.1
2_
5-18-71
0.193
132
29.85
2.06
101.95
115
94.15
35.0
1.66
1.73
0.983
20.95
78.0
' NA
29.00
28.81
0.85
1.43
196
44-
0.02
29.87
4480
4072
100,432
126,664
98.5 .
3
5-18-71
0.193
132
29.80
2.15
103.79
113
96.05
34.0
1.61
1.65
0.983
20.95
78.0
NA
29.00
28.82
0.85
1.44
194
44
0.02
29.82
4551
4072
102,. 165
128,672
S3. 3
*.70°F, 29,92 in, Hg 14
NA -• Not Applicable
-------
TABLE A - 1
PARTICULATE EMISSION DATA FOR CLINKER COOLER
Run No.
T.
c
mf
1
mt
'c
Can
Gil
Cao
Cat
Ct L
Cau
C,,,
aw
Cax
Ptf
Unit Feed Rate-
Tons/hr
Partlculate - probe,
and filter, mg
Partlculate - total ,
% Impinger catch
Partlculate - probe,
and filter, gr/SCF*
Particulate - total ,
Partlculate - probe,
and filter, gr/cf at
conditions
Particulate - total ,
stack conditions
Particulate - probe,
and filter, Ib/hr.
Particulate - total ,
Partlculate - probe,
cyclone
mg
cyclone,
gr/SCF*
cyclone,
stack
gr/cf at
-cycltme.
Ib/hr.
cyclone,
1
61.8
11.8
26.3
55.1
0.00180
0.00401
0.00147
.
0.00328
/l^SETI
3.538
0.0253
£
62.7
20.5
38.1
46.2
0.00335
0.00623
0.00266
0.00494
2.812
5.323
0.0448
3_
62.7
14.2
23.3
39.1
0.00228
0.00373
0.00180
0.00296
1.941
••
3.269
0.0305
and filter, Ib/'ton feed
Ptt
Partlculate - total ,
Ib/ton feed
0.0572
0.0849
0.0513
*70°F, 29.92 1n. Hg, dry basis
15
-------
IMDLC M - £.
I f \ i-S W W f\ *-
PARTICULATE EMISSION DATA FOR FINISH MILL GRINDING SYSTEM
Run No.
Test Date
D
n
Tt
P.
b
P
m
V
m
Tm
V
mstd
V
w
V
wgas
% M
Md
% co2
% 0?
Z CO
% N
% EA
MW.
d
MW
c
P
APS
T
s
X
P
Pst
PC
s
Vc
s
Ac
o 1
S '
Qa
% I
Samplina nozzle diameter, in.
Net time of test, min.
Barometric pressure, in.
Hg absolute
Average Orifice pressure
drop, in. hLO
Volume of dry gas sampled,
ft at meter conditions
Average gas meter temperature, °F
Volume of dry gas samnled at
Standard conditions*, SCF
Total H20 collected in impingers
and silica gel , ml
Volume of water vapor collected
at standard conditions*, SCF
% Moisture in the stack gas by
volume
Mole fraction of dry gas
•
Excess Air Percent
Molecular weight of stack gas,
dry basis
Molecular weight of stack gas,
wet basis
Pitot tube coefficient
Average velocity head of stack gas,
Average^stack temperature, °F
Net sampling points
Static pressure of stack gas in. Hg
Stack gas pressure in. Hg absolute
Stack gas velocity at stack conditions
Stack area, in.
Dry stack gas volumetric flow rate at
standard conditions*, SCFM.
Stack gas volumetric flow rate at stack
' . conditions, ACFM
^"Percent isokinetic
1
5-19-71
0.250
144
30.00
3.84
149.51
111
140.35
90.5
4. 29
J2L97
t).-9TO
< 1
20.95
<1
78.0
NA
29.00
28.67
0.85
0.81
229
24
0.04
30.04.
3490
1452
26,360
35,185
109.0
2
5-19-71
0.250
144
30.00
3.29
139.57
106
131.99
81.0
3.84
2.83
0.972
* ^
20.95
<1
78.0
NA
29.00
28.69
0.85
0.81
243
24
0.04
30.04
3539 i
1452
25,252
35,679
102.9
3
5-20-71
0.250
144
30.10
i
2.94
130.70
93
126.82
72.0
3.41
2.62
0.974
< 1
20.95
<1
78.0
NA
29.00
28.71
0.85
0.81
249
24
0.04
30.14
3549
1452
2.6,244
35,780
93.9
* 70°F, 29.92 in. Hg 16
NA - Not Applicable
-------
TABLE A - 2
PARTICULATE EMISSION DATA FOR FINISH MltlT^RINDING SYSTEM
Run No.
v
I
Can
Oil
Cao
Cat
a I
Cau
c,w
av/
Cax
P
ct
ptt
Unit Feed Rate-
Tons/hr
Parti cul 3 te - probe- ,
and filter, mg
Participate - total ,
% impinger
Parti c-jl ate
and filter,
Particulate
Particulate
and filter,
conditions
Particulate
stack condi
Particulate
and filter,
Particulate
Harticd] ate
and filter,
Parti cul ate
catch
- probe,
gr/SCF*
- total ,
- probe,
qr/cf ot
- total,
tions
- probe,
Ib/hr.
- total ,
- probe,
Ib/ton f
- total ,
cyclone
mg
cyclone,
qr/SCF*
cyclone,
stack
gr/cf nt
cyclone,
Ib/hr.
cyclone,
eecl
Ib/ton fee
1 ,
34.6 |
22.0
32.9
33.1
0.00241
0.00361
0.00181 -
;Q,ISB2T€i
*0r527
0.791
0.0152
Cb.0229
0.
i
0.
0.
0.
0.
0.
0.
0.
2
33.9
26.9
37.8
28.8
00314
00441
00231
00324
683
971
0201
0287
0
0
0
0
0
0
0
0
3_
37.2
17.1
27.9
38.7
.00208
.00339
.00152
.00248
.446
.761
.0120
.0205
*70°F, 29.92 in. Ho, dry basis
17
-------
PARTICULATE CALCULATIONS
Example: Run No. 1, Clinker Cooler ^^
1. Volume of dry gas sampled at standard conditions: 70°F. 29.92 in. Hg, SCF
17.7 x Vm (Ph+ ^rn_) 17.7X 107.4(29.82+ *'28
T 3.6
m
!std
TFm + 4W
104* 460J
= 101.07 ft*
2. Volume of water vapor at 70°F and 29.92 in. Hg, SCF
Vw = 0.0474 x Vw = 0.0474 x34.5 = 1.64 SCF
gas
3. Percent moisture in stack gas
100 x V..
% M =
'aas ' 100 xl.64
m
+ V 101.07" 1.64
std wgas
= 1.59
4. Mole fraction of dry gas
= 100 - ?'•'• = TOO -!.$•? = 0.984
' ICO 100
5. Average molecular weight of dry stack gas
HMd * (%C02 x TO
x
(%CO
( 0 x ^ ) + (20.95X T ) + ( 78 x ) - 29.00
6. Molecular v/eight of stack gas
HW = Ml!d x Md + 18 (1 - Md) =29.00 x0.984 + 18 (1 -0.984 )= 28.82
7. Stock gas velocity at stack conditions, fpm
' r _, j1/2
V. = 4,360 x\P>P, x fL +Tt-f:)' (' x T¥ |
5 ^ -- S I— ^ —I
r i ~i1/2
4,360 X30.2..1:.—I—'. £4493 fpm
129.84 "28.82J
18
-------
PARTICULATE CALCULATIONS(Contlnued)
8. Stack g£S volumetric flow rate at standard conditions*, SCFM
0.123 x Vc x Ae x M. x Pc 0.123 :<4493 x 4072 xO. 984x29. 84
n S S U S _ •__•_
__ __ _ _ ___ __
(Ts + 450J ' " ( 175 + 460)
9. Stack gas volumetric flow rate at stack conditions, ACFM
n _^^45 x 0 x...(Tc * £60) .05645 X104»057X( 175+ /ipO) 12; Q32 ACR1
ya " 7 x M " " " "29.84 x 0.984 '
10. Percent isokinetic'
1,032 x (T + 46C) x Vm
td_ = 1.032 x (175 * 460) x 101.07 A
2
Vs x Tt x Ps x Md x (Dn) 4493 x ^32 x 29..84X 0.984x{0.193)
11. Participate: probe, cyclone and filter, gr/SCF* Dry Basis
mf
Cfln = 0.0154 x -yi - = 0.0154 x jn:8_ =0.00180gr/SCF
mstd 101.07
12, Particulate total. nr/SCF* Prv Basis
mt
C_ = 0.0154 x n-—-— = 0.0154 x 26.3 _ft nn.n, /prp
1UO7" "°-00401 gr/SCF
13. Pcrticulate: probe, cyclone and filter, qr/CF at stack conditions
17.7 x Can x Ps x Hd _ 17.7x 0.00180 XJ29.84 x 0.984 = 0<00147 gr/CF
s
14. . • Pa'rticulatc: total, gr/CF at stack conditions
17.7 x Cao x PS x Nd 17.7 x 0.00401 x 29.84 x 0.984
= ~~ " = =
Ccvj = —rr~TTOf = —rr^iFTiEm = = o.00328 gr/CF
15. Particulate: probe, cyclone, and filter, Ib/hr
. C = 0.00357 x C,, x Oc = 0.00357 x 0.00180 x 104,057 = 1.561 Ib/hr
«tw an 'S
16. Particulate: total, Ib/hr . i
C,v = 0.00357 x C x Qr - 0.00357 x 0.00401 x 104,057 = 3.538 Ib/hr
C. /\ '• t* J — *
17, • Pamcul.ate:c probe, cycloncj ?.nd fil"-:r, Ib/ton feed
'* * *6 lb/tonfeed
"v. FdriJLUiuC-..-: total; )b/to» '•'."' .
- pt^_:^_:= 3.538 = Q_0572 1b/lon
--.70'C'FS 29.92 in. H
-------
APPENDIX B
Field Data
20
-------
PRESURVEY - PROCESS INDUSTRY & POWER PLANTS
NAME or COMPANY
ADDRESS
DATE OF PRESURVEY
(P& Ji CITY ^U^Cs^ ___ STATE
-NAME OF CONTACT
T^ A^HONE
PROVIDE FLOW DIAGRAM OF EACH PROCESS TO BE SAMPLED, INCLUDING FEED COMPOSITIONS AND
RATES, OPERATING TEMPERATURES AND PRESSURES, PRODUCT RATES, AMD PROPOSED SAMPLING SITES
COMMENTS:
/I P.
. 1 5
7
21
-------
5.
SCAFFOLDING OR OTHER HEAiiS OF SUPPORT PRESENT?
LJ YES
NO, WHO WILL PROVIDE IT?
"SOURCE OF ELECTRICITY AVAILABLE? /2>fES, MAXIMUM AMPERAGE PER CIRCUIT_
LJ NO
• PI STANCE / D b JH WHO KILL PROVIDE EXTENSION CORDS?
LOCATION OF FUSE BOX
PARKING FACILITIES AVAILABLE FOR TRAILER OR VAN?
SIGNATURE REQUIRED ON PASSES?
NEARBY RESTAURANTS AND HOTELS
WAIVERS?
LIST ANY SPECIAL SAFETY EQUIPMENT OR RULES
22
-------
PRELIMINARY FIELD DATA
Stack Geometry
Plant I<*«ai
Test Mo..
Location
(K>inU
\
v
Dist. from outside
of samnle port, in.
^
**3sA*c-t)
-/
i
23
-------
/
L
3
V
5
6
7
S
n
! *>
I ^-
;/*
3A5"
73.$
85. V
- X
2.5
4^5
io.5
13.6
'5.75
2.2.025
4-5 .7 5
71 , i
.
*•
•3
(o
3/S
'7.6
41
53V*
5-7 78
Go '/4
G3. o
65%
6-7 -'/z,
J>% s/s
•71.%
13 ?/g
'/8
24
-------
VELOCITY TRAVERSE FIELD DATA
Plant
Test
Location ^V)^K(
Date s/n/7i
<^€w\ev\l -
CooUv -
Hrio v* n *' t\ v*- »V\G.£V LL£V Ss tori, 1"^ l*^» * S-V
W p ^, I vi V U ) » — 1 ") /
1
i
i
i
i
i
'
5
.1
4
(
i
1
1
Meter
Clock
T i me
Point
1
2
3
4
5
(j
•7
,H_e£i __•
(D
AP5 Tn7H20
IA .
'
t.4
.
lA
U
/-4
8 1-4
0>
10
II
12
13
,.4
/:5
{)\
p'-' ' Hi
A") -in U fl
"! » 1"» r'-?U
14
15
-10
n
. (6
'9
20
*L
! 22
. |_ -
1
!
!
t.t
/.6
^;5
./.5
/c5
i -,
;.5
(2}_
*'^:, in. H,,0
^-5 ' '
(.1
Stack Ta^pt.cF •
f^G 2.^5
2.^5^ 2.0*5 '.
-------
. VELOCITY TRAVERSE FIELD DATA
Plant J-ciea.1 Ccmevvt
Test-
Location Kli«vc.e<
- C.coVe»- — PoH- ?£
Date 5/'i/-7i
Operator Mae^u-ey. gor.«Vvav Ri.\ey
Meter AH __2^-_o|
Clock.
1 Ills-
i-
1
I
i
i
_
"
D o •? n •••
1 O 1 1 1 v
1
2
3
4
5
G
7
8
lo
U
12.
13
(1)
/ P Tri (-1 n
t»r j III. \\j\J
I.I -
1.4
\&
].(,
).^
t.u
1-0
1.1
; u
rt/'
1.5
f.5
l.l,
iU ;
j^T^jin.fLd"
uP, '
14
15
it .
n
. is
'9
20
21
E2
(2)
in. H00
i.o>
,!,{,
.i.e.
i.V.
1.5
1.5
(.^
(.T'
ill
^APj in. H^.O
;
Stack Tumpt.'F
Ti) 1 "12")
i&5 ; I"i8
i
t / ~1 • "7 n
j
!
t
I
!~?7 | <^5
1
(75 j ("70
ng> | 1^5 ^
• ^ 1 !
(^5 )
r
i
J £iQ
(]}"A!-J in, MpO Average__
,/^r
in, H00 Average
/.. ~
2t)
26
KCAr-^9 (12/07).
-------
II I / •"/ y/ "r" v-~ / *-,
Plant f)L<££*y (&W-.J /V-^t-t&W Date J5 ~~ ( /
Sampling location
A +£> /E*U
!- STACK DATA FOR NOMOGRAPH:
!
!' V. Meter AH oiin H_0
-
no
2. Avg. meter tempt (ambient + 20° '
3. Moisture (volume) •" 2-° %
4. Avg. static press. + Q.3 in. H9OX.073 = HQ.o-^2. in. Hg.
-
j -r« nvy. ^bubi^ pitoo. • - '; ~^ 111. n«v
i . £-
5. Bsr. press sampling point 29. £c) jn.Hg(-b> _ °-02- (static press in.Hg)
in. Hg.
6. Bar press of meter 9-8*) _ in. Hg.
•t
' 7 p /p - 5-_J±lL_ ™- "9
I /. K$/Pm -
C. 2.^.6S> in. Hg
8. Avg. stack temperature ^QO °F.
9. Avg. stack velocity UP) ~i 5 in H20.
C factor (1) 15 (2) /.^?c3
. 27
\
-------
Ho.
1.3
.
-
Pi tot
in. K'>
4P*"
-Af;TICl;!..A'rF FIELD DATA
<^
VERY
td .^^a rsccr=: si the start of
• Giich test po'ir.t .
• r&:sd an-J rcccrd every 5 r.rlnutas. •'
3ar. Press. "Hg 2.^.82
?r,.od Moisture S
'C'. 40 A.M.
T
Haater Bos Setting,
Fr'cbe Tip Dia., In- ,
Probe Length _
Probi Heater Setting
Avq. A P Awg
7 r
Orifice AH
•• .. u r*
! Dry Ga^ Temp, i Vacuum |5-ox
I " T- ! --r. >•/,
1 I .~? ! t.~T ! loo i IOD i S..^ "1 2..2-r"0 j
j^c;
i , r-;T:n
_:!?::* _' _i°to_.. ' ^6 ! 4.O
o
J5_^ j ^ _T_^ '
-------
f> VN
\ iA* v .,
tf'rr^Yits i
:^g4
•'ill
Clock
D-y Gas
Meter, CF
Pilot
in.
AP
Orifice -5
in MoO
Desired j Actual
Dry Gas Temp.
Inlet
Outlet
>}ur,;p
Vacuum
In. Hg
Gauge
Box
Temp.
°F
4.Q
Impinger
Temp
°F
Stack
Press
in. Hq
ion
» 7.
1.
i.55
2.55
H.fl
22,5
'*iK
^ZL
•HT r—
6O
•2.5
•2.1 0
2..
2. -5 -5
tO-7
(03
4.5
2.2.0
1 C~l
4-5
Ll*
.40
-a
•2. IS
X2.
t.-S
•3.2-
05
3.5
2.7,8
05
VT
.7-6
. -7
Z30
05
VL..05
6.4
«•> » i . 4- 1
2 .\
2.46
JU
*-. 1
3, 8
.7
87
-i.. I
C-2.
2.. 15
1 C.3
XZ^
I '.<-5
2.. 3
104-
4.0
2-4
AA
i.5
Ht>
2.^0
ro
«D
~Tp%
2.3,
1.45
2-3
TO
JJ±
(-36
2..1
u»
4.0
i
2.. IS
-7-7
/2
) 17\
"poT"
2... i-6
in
(0-7
4.0
Zio
i .'3:*
2..
« £•<<)
24 B
eo
id
i ob
i-35
2.0
m.
I .35
HI
\ /
c
2fZ $
-------
'.--.-W! •*•(•»V* ftvUCv'tcS.i'" Si-nitkv
V —• •. * >•*»•>! ^
?•• -..I,. V-i. *,'». : 1 _
_••/-!;>!>; C.--A !'.•_>.. -L
•!;.';t«:-r BOV KO. _.^5^L
Xitar i h .JJZ^i.
r Factor -i^- /.Z5
PAsmC.L-.ATE FfaD DATA
i
VERV I^^ORTAM - FILL. IA ^'.L glANKS
Road and record i:-c the start r>f
• each test point.
PATHOLOGICAL InC:f;E?VVTOrri--
read ar.d rc-ccrd i.".try 5 :nir,utes.
JI '. t O A.M.
Ambient Tenp CF
Bar. Press. "Hg
Assrrr.ed Moisture. 3
2.0
f.rr,e
i •. Z.4 P.rA..
RioiaJneS v ! ^_*-* '
-..^£5.
205
__"5 _''!_ '_ '.L? __J_ JLJ
""~
__ 2-? j
'
»8 ...! "-ite... !
3.6 r £5o T fa0 I ! to~
__ ,
s is *~ • • r t ' • -' •* i ^-* *^ L *^ i * * '
Q85~."Z6 T r."65 T J/3 ! zTi I i,"^ I
-------
I
i 0 ", ~A
1 A ' l i/ ..
1 !t_A- -^ v/-
/ v» ^
i Comments
A
- * .9
<9
/ r2^ •
>$. \ >-i
^•22
* ?-^' '.
2
3
4-
.—
C'
•1
e
. 9
iC
It
Vz
13
ij i4
15
IVo
17
•8
19
rzc
L2.2
'i.
"v °
•°
Clock
Time
49
51
- -.-54
87
60
fc'i
.'"> 5
it. 40
33.80 -
Sc-,33
3^ (^95
41,0^-5
43.3 *
4-5. C-i
4-T.925
50. Zi
52-.5'7
54 €5
/ 0 / . 9<)~
,
Pitot
in. H20
iP
(.55
'•5
1.5
1.5
1-5
i .5
0.67
1 . 05
f.i
-"5
.2
.25
. S
.as
(.•bS
1.4-
[ 1.4-5
i.^^
l.(r
i.'a
i.45
(.45
1.4
i.?.'S
1.35
1.4
(.4
1.4"
_jU- >Sw
T^r^^3"
/ . . S13
Orifice
in IU
De-sired
Z.T)
2.20
2.X 5
2.25
2.25
' '2. "2 5
1/15
i-to^
I.T
-^rtJ-(.y
(.85
it <5
'2.0
2.C5
2.05
2.1
2.1
2.4
2.35
2.2
2.1
2..I
2.. O
2.0
Z.o 5
2.1
2./
2.1
3£_J_
AH
Actual
2.5
•2.25
2.25
'^.25
2.25
2.25
1.35
°if i.to
l.l
a^e-i-9
i.&S
t-9
2.0
2.o5
2.. 05
2.1
2-1
2.4
2..S6
2..L
2.1
Z. i
2.. O
2.0
•2. .Co
2.1
2.1
2.1
^^t_j
2~ffib
7
3, 0 (f;
•
Dry Gas
°F
Inlet
/ M
«t
"I
Ml
Ml
III
i i l
( i r
III
H|
lit
II 1
HI
I 1 1
HZ
H2-
M 2.
112
112
1C?.
*' 3
t{>
l'"5
M3
113
113
1,13
i<3
£&*&
\\\,s
a *
\j. —
Temp .
Outlet
117
i.T
• '7
U T
1(7
Hi
t
(i 1
" 7
ill
i'7
uT
in
10
>n
<«p.
«t&
11 i*
110
Hg.
I 17
Ml
.**
3»
"5.9
1^
3.8
"5.^
2.4
1 0
3.0
"3. V
3. i
-b.'i
3 3
•£. S
•?.b-
3.5
3. -5
4-.0
4.0
•5.6
3.5
3.5
3.5
3.<4-
2>.4
3.4
3 4
3.4
"7 tr1
r
dox
Temp.
°F
24o
•255
235
2-* 5
245
245
24-5
245
2^o
!2. 3 o
'
22.5
221^
235
22G
2-3^5
2^0
24-5
245
•Z4O
240
235
230
230
245
24o
<• ,.
•
' Impinger
Temp
&F
TO
Tl
7&
74
•75
7C?.
74
'70
70
7o
Q
<^c~)
c-g
GO
-T 0
TO
'7*
e0
(/C-
'GG
60
fc'7
6-7
66
G9
.r sr
~~
Stack
Press
in. Hcj
Stack
Tenip
°r
i-92
\°)Z.
\°)O
I ^^ ^3
l ^^ V3
is-g
i^-e.
1#2
i ^7 />
104
t ft4
I 84
tee
I2<~>
i^O
2 «-•<>-
2oo -
2CC-
2oO
2oc
2-co
£-00
1^1
1^50
(82
IIS
1^2
'72
•'ifa'V'JL-
lfj'(y
-------
• i 2
No.' .
it ion
PARTICI..ATE FIELD DATA
MBjLI^^IMi - ['IkLlfL^J^^
Pii^d and r?cc.*d :. Ku ;
op
£.j[ _ __
^ | "" )'86~ j I
2.0
; 2.0 !
T~2.r
JLjiiij.
74
•Zoo
235
Z25
_fr_5
j*I.
GG
2._« | 2.1 j M_2 ; HO -5. (, _ 255 \ —11 I { |94
_" ' 2. \ f ^ Z!"i J I[.£ T i_l C> j _._ 3^' } 2J5_i (eb \'~_ ' _Ji_J^2
_^ 2^1 j_ 2_.t ! h_4 j MO j 3.fa j^2.60 J 00 t !_L5.'
^_.j. LJL^Tnili!3 d_M.«._. i 3.c- j ^-3? r o^ : _'_LJL±-
^___212 T" 2.2. J ~M4 [" "MO ! 3~~O j ~2i S i (eQ ~ |~'""""'" ' j J^"£
2.3 j i.J>_ f _J'4 •___!!?_J[. J5J5__! [~~ \ | ij(
2.3^ 1 2.4- f "5 1 "° ! 4^.0 j 22.0 j (ol \ | tti
"2:5
1[£
_?.l
•2 .2."
'go."
2.4-
,2^4_.i..Ji5
2.4 ! M5
2..Z-
T^T
| /;L:A_J !J 1>. l.
*~ """'""^1 " — ""* _ * •" •"* 1—~
MO
'TTp
no_
110
| 4-^ i_2.2.o_j CP_T_ .
4., c> i j ! I
vro~^i4^'j~'~"'j>3)~~.'T IHTj"
•2>.« "i" 2.<5 f -/o" ! """ I"
_
193
-\z.
«.:/•?-••?• (12/67
22
;2O
-------
L' :^
j .!.„.,•_.
'1— ' f. 1
.V
# c
L
l'}5 ?-lXX '
OJ
OJ
c
^ \
1
Kx?->ct
k-
(
^•4 . V
x/vx
""
}/
/f
2£
^y
;?J?
$/
^_
3
^
.5"
(.
i_J2
A
//
/2-
/'?
/5
/<-
17
M£J
/f
£^
i\
Clock
, hy
1 c^f
i _5~T
7^
j3L
r A2f
/ 'VI
Dry Gas
Meter, CF
^•z-.ozo
95. 125
•9T. GO
ioo.es
102.52,5
i o4 .^B
i o '1 . 4o 6
(OT-4O5
1 0<5.2O
f i 1.25
1.3.43
1 1 O « i^"l 5
i <6,O9
tro.^'^
12.Z.62
'25. i^S
127.52.
(i^.«»
1 2> '2 . 1 O
J 34.4 7 5
C3k.f>2 - -
139.1 4
• 4-1.53
• 43, ^5
•4G.43
'43.03
(51.4-4
'Sl),^>io
• 5G.47
I5?.^g5
J C'3 7^.5"
i
Pi tot
in. H20
AP
I.L,
1.65
f, ^
1.55
i.55
1.55
0.6o
i.\
1.2.
1.3
i-35
1.45
(.45
i.45
i-3.6
i.35
.35
.5
. 4-5
.45
• 5
.65
1,53
(,0>
i.6?
1.6
I.U
i. c.
A 4"1-/
Orifice
in Hr>
Desired
2-4
•2.3
Z.4
2.3
•2.3.
2..-S
1.25
(."?
I.S
2.0
Z.i
2/2.
2.2.
2.2-
2. 1
2.0
Z.O
2.2.
2.1
2.1
2.2
2.. 25
2.. '3
2.4
2.4
2.4
2.4
2.4
AH
Actual
2.. 4
2.. 3
•2.4
Z-^
Z.I
2.."^
1.26
i.1
(.9
2..0
2.1
2.2-
2--Z.
2. '2
2. (
2.0
•z.o
2.2.
2.1
2-/.
2.2
?.Z5
2.5
2-.4-
2. A
2.4
2.4
2-4-
•I , / S
.
Dry Gas
°F
Inlet
»I5
"6
H6
.10
!!(,
v \ t>
f/4
H4
(«5
(15
ll«a
(15
MS
11*5
i'5
iiG
ilO>
no.
1(5
"5
"5
(i 5
H5
US
H5
-.15
M5
I/G
// ^f"7
^~
Temp .
Outlet
HI
HI
HI
H2.
VI Z-
t it
(IZ.
* i 2-
1
i
i
1
<
(
i t
I i
ll \
t i 1
ll 1
i l 1
i i I
V I 1
i I >
il t
\ \l
ill
i 1 1
112 j
///.D
~>
3)
X
i'ur.;p
Vacuum
In. Hg
Gauge
4.0
4.0
4.0
•5.0.
3.^
3 3
2. i
2.^
3.0
3- \
3.3
3.0
3.7
'2>.1
3.5
3 5
13.5
?>.5
3.5
3-5
3.T
3.8
4.0
4-.0
4.o
4-0
4.0
Box
Temp.
°F
2|o
2.3O
235
2.2.5
2.4-5
2-10
2.-S5
2bO
2.15
25o
215
2-"35
!_2l6
245
2- "50
2.10
Z-40
'2-20
•
!
' Impinger
Temp
°F
T7
•
1^
TT
71
G9
fo9
&6
C-8
Gl
oe
08
70
'70
6>9
(»"7
6T
67
6g
Stack
Press
in Hg
\
\ .
.
i
1
I
]
/
1
I
1
j
I
I
1
/
,
!
Stack
Tcrr,o
CF
,l9Cj
I^C?
T5>C:
196
•9G
1^6-
101 -
'fe~1
CS'7
^8"T
\€>'l
l^o
'^0
t^C
2iO
2(4 -
2'4
2'4
ZoO
2ofc
202.
(<=)^
i-=5o —
18!
161
ist
181
• 80
Af^—
\9^
-------
PARTICULATE CLEANUP SHEET
Plant: c.H<£&.fjs 63-»u^r/"
Run rumber: /
Operator: C- f /£-&>
Sample box number: / \p-H.&Aj^
Location of sample port: '
Barometric pressure:
Ambient' temperature:
tfiju^ 6^4-v.
M.W
96*
impinger H20 . •
Volume after sampling
implnger prefilled wi
Volurr.e collected
Container No. __//)'_ Ether-chloroform extraction
' of
Extra No.
/ ^m
Impinger v/ater residue /I/,
Impii.gers and back half of
fi"ter, acetone v/asf:~
Contalner No. )J3
Fxtra No. . Wfiiqht,re-suits
Prob'j, cyclone, flask, and
front half of filter,
acetone wash:
Container /no.
l-xtra Mo.-
V'eight results
I D
Filter particulate
weight Q __
Total particulate v;eiqht
nig
Dry probe and cyclone catch:
Container No.
Fxtra Ho. ,•' 'Vfeight results
• /
mg
Filter Papers and Dry i-'ilter Particulate
Filter number Container no. Filter number Container no.
nig
Silica Gel
Weight after test:
V. '
Weight before test: 2$^
Hcisture weight collected:
Container number: 1.
Moisture total
3.
Sample number: .
Metiiod determination:
Corn,ir,£.nts:
Analyze
ni
-------
PARTICIPATE CLEANUP SHEET
Dater
Run number:
Operator: __
2
Samp'ie box number: l_
Plant:
Location of sample port:
Barometric pressure: 2. 9, ,3
Ambient temperature: J'a "*
lmpii>ger
Vo-luiae after sampling
Impinger prefilled wi th££Vjn]
Volume collected
Container Mo.
Kxtra No.
ft
Ether-chloi^oform extraction
• of impinger water
mg
Impinger v/ater residue J J, L. 'ing
Impingers and back half of
filter, acetone
Container' No.
...£x±.ra N^>. ...,.-..
...,., JJeight results
mg
Dry probe and cyclone catch:
Container .No,,_
Extra t!o.
Wei-ght results
mg
Probe, cyclone, flask, and
front half of fliter»
acetone wash:
Container No. A £•-
Extra f!o. V/eight r-esults
mg
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container nc>
/-;?/4 ^p I
Total oarticulate v/eicht
Filter particulate
weight /,_/_ nig
~~ n I mg
Silica Gel
Weight after test:
Wc-ight before test: 2
Moisture weight collected:
Container number: 1.
D
Moisture total 3S-&
gm
2.
Sample number:. .
Analyze for:
Method determination^
' Corrments:
35
-------
Date:
-/;->/
PANICULATE CLEANUP SHEET
Plant:
Run lumber:
Oper.ttor: _
Sample box number: /
Location of sample port:
Barometric pressure:
Ambient temperature:
Impinger H20
Volune after sampling 2 /t( ml Container No.. _5/| Ether-cJhloroform extraction
~
Impinger prefilled W1th2i£,m] Extra No.
Volu.r.e collected / 0 ml
' of 1l
water
Impinger water residue ^ t /
«ng
mg
Impingers and back half of
filter, acetone v/ashr
Container No.
Extra No.
. Weight results_
jng
Dry probe and cyclone catch
Container No,
Extra No.
Weight results
_mg
Probe, cyclone, flask, and
front half of filter,
acetone wash:
Container No.
Extra t!o.
Weight results
Filter Papers and Dry Filter Particulate
F'ilter number Container no. Filter number Container no.
Total particulate weight
mq
Filter particulate
w e i g h t, /"}. ff mg
3 mg
Silica Gel
Walght after test:
Uaight before test: 2£31_-
Moisture weight collected: ij-J__
Container number: 1. 2.
Sample number:.
Method determination
3.
4.
Analyze for:
Moisture total --
"tr
36
-------
PLANT
«if
SAMPLING SUMMARY SHEETS
LOCATION
SAMPLED SOURCE
Train Data
'Run
. No..
';"
t~j
3'
Date
lr-;/7/
,51/S-T/
5V8-7/
Nozzle
dia.
i n .
J90
,/?3
, / £3
Net
time
min.
A3Z
A3Z
;3i
Bar.
pres.
"Hg.
2221-
Uzii.
tf.fo
Orifice
.diff.AH
"H20
£, */
2,tf£
2.IS
Volufiie sampled
meter cond.
cu. ft.
/07,
jfij,?^
/ 03, ?$S
Meter
temp.
oF
JDV
US'
M3
Volume sampled
standard cond.
cu. ft.
/£/,<* 7
3v./S
9t,Cb
Moisture and Gas Data
Run
No.
/
lr
J>
Total
mo'isture
nil.
J?,S
^,D
31/. Z>
Moisture
std. cond.
cu. ft.
J.t>
/.4L,-
J. (t 1
% Moisture
by volume
/,£!>
j ,J3
/, (*£'
Mole
fraction
dry gas
.9*
. $
,93
Molecular
v/t. of dry
stack gas
Z9. *-*
?:1>
Molecular
wt. of moist.
stack gas
2&.J3
Z$,?2
2?,J$
tack Data
Run
No.
;
1
3
Stack
area
in2
t/o>l
l/o 71
L/v?L,
Velocity
head
"H20
/<
/. l
,o 2-
Stack
pi-ess.
"Hg. Abs.
Z9.$,'li/
•^D.H
Stack
velocity fpm
stack cond.
££.-0
U*i 71*
L/^ */•£
Stack ....
gas volume
scfm
A3, 4*5"
99.%$
//)/ >/9
'<••£/: • •'
Percent
i so kinetic
/OJ, 7
^£^ . .
7 /;-, a
-------
PRELIMINARY FIELD DATA
Stack Geometry
Plant oL/Lo^.i ffrnj.^ %
r Test No.
Location
Date
A. Dist. from inside of far wall to outside of
near wall, in., = £/ ?"
B. Wall thickness, in., = 4/
Inside diameter of stack = A-B
3
Stack Area =
Comments:
Sketch of stack cross-section
showing sampling holes
Calculations:
• Calculator
NCAJ'-28 (12/67)
Point
t
7
71
/I
% Dia. for
circular stack
6.7
11.1
9 '7- f
38,
Dist. from outside
of samnle port, in.
7.6
-------
VELOCITY TRAVERSE FIELD DATA
L
Plant
Test .
Location __
Date O V f- X
. \>o,-» A
o. (o _ 30.
"
Me
Operator
.;
i
i
f
j
i
t
1
i
-
•
i
Clock |
\Ai
L _U_
i -3
i
i
5
6
" ~ ~ '
s^
*
1 f
I
\/l-
!
1 _
(D
Ap *7; u o
O-62.
0.0,5
0.-77'
0--74
O.T5
0.-72
o.e^
0.6&
O.b6
.
0.«,5
D.5S
r . ~ "
(i) •
J~ ~\ \' •>' p TT 7T
f -£\ I . i !i j n,jU
- •
,
AP-,
&/
1
3
V
/:-
./.. .
o
?
/"
)'
/i-
121
In. H.,0
0.40
O.G0
. 0.74
. o.11
0.79
0.^4
0.-I3
0. fc'1
O.7I
O.bl
O.G-L
O.SG
' 151
/AP, -In. H00
" ' C " " " '
%.f
Stac!: Tynipt,0F j
0~/_Zl \2) i
/^ b^O i
2££>\Z3& J
i
1 ^y ^^ ^^
y ^^\ 7*\ 1 ^r ^ ^y j
\^i >< j
^^5^) \i \
V2>* " i
/v i» 1
/^ i' !
i
.
» » i
/ , / • i
^a ''r 1
! ' 1
/v
Cor.;n:.)iv:s:
-------
Plant ty^ >^ Date
Sampling location /ttL& V
STACK DATA FOR NOMOGRAPH:
1. Meter AH -rrtffi £.&/ jn H20
f% ""^ •a**"
2. Avg. meter tempt (ambient + 20° / 6S °F
3. Moisture (volume) _ -^ _ %
4. Avg. static press. G , ^ _ in. HOX.073 ^ .. Q & _ ^in. Hg.
5, Bar. press sampling point- ^& VJjj injig •*• .. O ^f (static press in.He;) =
3^}. fit/ in. Hg.
6. Bar press of meter .-5 V, 0 ^- in. Hg.
7. vpn° ?' 1n" Hg -
s m g: __ in. Hg •
. ^". X '
8. Avg. stack temperature ._L_/__
9. Avg. stack velocity (AP) * w> ___ in H^O.
" --- C factor (1) |.2'3 _ (2) A X 7)
40
-------
;'• '• f> / : J-
/'lant /!^Aizf (£'tWrd
FARTICULATE FTfL.D DATA
VERY IMPORTANT - I ILL IK ALL BLANKS
?:ead and record ?.•; cho stavt of
eoc v\
THOL05ZW«. I;-:1:.!-£?,ATOU5-
Bc-.r. Press. "
.o ^.-.jn
'" a r •' to '• Mae r K. e. r?
aater Box Setting, '^_
rc-3u en vecor -2- -s.'- fnnutj
Prcb;; Tio Dia., in.
Prooa Haaxt-r Setting
ry uaf: TOTP . ! V
In'upl ' Uutlet ! Cc;
2*0 _.
. I fr
Ll^ZIZ^lLlIIIZIL
lu («32-
. i _ (
.<^:4c c.ej _j__..^ 4,^ 4--~;^--j
! 4.Z-
8i- !
-------
r^^'j i.
jCo.Tir-srtts
A-i-
73-/-I
vo
i
It
(0
6
7
G
S
• 4
1
- f
-f
•2-
4
6
1
6
9
10
[1
9
CTcc:< '*-
Time
Dry Gas
.Meter, CF
•V~> I n
3t-
_ .
•soz.ir.-2.
—
... ' } -
Jy-f)
AT-
4fi
48
Cjj
S4
" 67
&0
t'6
C-fe
t*5
71.
7i
75
76
g|
54-
£7
'So
3$
36,
#)?)
lot
to*?
l&?>
III
ZoS.e^
—
Zc^.c'-b
Z12..ZA
£_i j ^^4-
•9 j zi C- 'j
£-\ D. f • ,74
O.^<-
o.e"^-
c.e^»
c.^-7
O.f-^
C.f-5
O.:7j
0,^-1;
Q.VO
O.??7
0.^4
0.7&-
e.c-7
e>,c-5?
tf.Si
^.C)^
0.GR
e.Vrt
^,77
o.g/
O.fe4
.?•(*
o.f^
e.87
°.64
,74
7,70. fc«
1(4 1 2.t*
•$.<*
3.-1
3.C-
4, iS
'•6 "JS
4-, 2-5
4.1
4,2.
4.2S
•4.^^
<4j2-
4. 25
4,2
4.0
•6.7S
?.2S
3. "3
2.45
Z."%
3.2,
5.^c,
•5.75
S.i)
4-.O
4.1*5
4.2*5
4-.TL \
A.L
4,O
s\t\
— '
5.^6
3,o
3.6
4,2.
G.'z-Ji 1 4- 7A
O.P.I 1 4;?.
Actua".
._ 3.7
3,
"3.t-
4. 1 ' S
^.5i>
•a.?- -i
4.1
4,2
4,2 -j
4.^5
4.2
4. 2<:?
•4.7-
•4.C-
3.7'i
^ ^c,
^v-i
;^5.*3
r5.6
'^.6'
5.%
4,2
4.2^
.... ,.*.*-.„.».,»
Dry Gas Te:r,p.
°F
Inlet
Mfe
Ufa
—
11 (^
•"— ..
1(7
f 17
, jg,
lift
H^
U«3
JJ-55
il€) .'.-'
H2L '
- — >'
\\ af --i^
*
1 1-7
—
US
f(g
ua
us
Us
U9
u^
—
, (C)
1155
—
f/9
/jg
i i $
1 1 eS\
t ( */
Outlet
!
, —
\&3
' /f<5
HO
liO
IK
id
—
IM
(10
/|O
/I/
i/d
no
/(O
Vacuum
In. Hg
Gauge
7, "5
-7
7
7
7
£>
*&
&
S
^
e
*=-.•=>
B.1^
^5 c^
6
7.S
£,<=,
6-.S
fr.S
*T 2.45^
5
6?
c-
7
7
7<5
7-S
S
s
7.5
~7/=>
7,^
7.6
7
-7
7
7. -5
_6
. ,4?- - - .£. ..
Box
Temp.
op
2^,5
~_
25^,
—
_
Z'-Z.C1
—
ZZ.5
—
"Z~3O
25S
ZZS
—
260
Z4S
2iO
• 2.3(-\
2'2/j
^_-
2iO
2.iO
2 SO
—
zzc?
23P
210
z?o
24O
250
Z10
—
245
24Oj
-
240
240
23O
2 jo
^.^
-
Impir.ger
Temp
7o
_^_
71
. —
, —
"7 »
.
'7O
— .
T |
70
72-
V4
73
73
1"=}
7^
^—
72.
-72-
7 X
—
~7I
'H
10
71
70
70
—
6-e3!
/^^>
—
6V>
6^
6?6
c t
6&
—
Stack
Press
in. Hg
\
/
f
V
~v
)
/
f
\
j
/
I
/
1
\
Stack
Temp
r
' 238
240
230
230
~Z So
2 30
2 ^O
^•^^
2 -^2
2 3 i
Z ^%
-2£~?
2^7
22S
z^s ;
Z^L
<2^£
2^
"Z'Z*?.
2iO
?\l
22-$.
? 24
8.1(0
22C-
ZZB
2i)
2i;
23^
2'i)
1SJ
214
Z3IS
Z5-i
z3'3
Z'li
Z^.3
•2 ^ "> ;
233
-------
j >V.Y\ I'
'
j ^
i Comments
~$>-\-&
Clock
i i rr.s
I2e
'"' "7 0X3
' fo
Itfr
' 12*?
Dry Gas
Meter, CF
i 2/3L 3X
'E.'tM-.C-j
£^7. S3
5oj. T_I
j'$2.| 3 -?#
K4I 38«,/b«
/"~~"\
(jL/fy)
^—^^
/ L/f.^5 }
Pi tot
in. H20
AP
^ • t^w*
/^) ft "^
ev^i
<3>.^C-
<9.3^
i?. "7 5
0 70
0 S4
^^^
(^'
>, ^/55"
j
1
'
'
Orifice AH
in f-UO
Desired
4.J<==>
<4.2^
4.36
^ ,e;
4.0
3 G-
3. IS
'2.C-
(
Actual
•4.\fs
-4, ZS
-4.3.'^
4 i^
4.C
•*> <,,
5. i ^
2.<-
. — L, .. _ „ _ .,^.... .»-
Dry Gas Temp.
Inlet
U©
i ii*^
us
i,?5
uft
118
ifft
U#l
^ !
/
~3 $fy
j
1
1
•
'
//•^>,-5~
•Msr
~}-rh
s=*#
1
1
-••
Outlet
HO
MO
no
(JO
103
IO9
loV
jOCo, X
"p&^-f-
^ x^\
f- (/ / /)
-~^_"
f'urijp
Vacuum
In. Hg
Gauge
!.<=>
£5
^>
-j.c,
7, S
C-, 5
^.^
F5
i
i
Box
Temp .
°F
Z20
Z2S
Zfy
Z~LC*
ZzS
2-'io
Z'iS
24«3
*
Impinger
Temp
CF
<2?fr
fe>6
C.-7
C-'7
6^>
G9.
tr"23
72.
Stack
Press
i n . Hg
I
\
i
Stack i
Tcrr.p
r
23S
?3C,
2135
2"«
zy±
2-a,cr
23^
^35^
^ ^*7
1
i
i
1
-------
rtwtJEaSfL
F:'J."i i>rO,. •
e*r - A/^y^C
PARTICULATf
ihELJ^IO^il - F:LL IN ALL BLANKS
Read ar.d record £•; the ste.rt of
e- r- ;•» A *z.r \ rv^i S *^i '*"
<«/ •- •' U •-.- -1 C w \J • i * ' • •
Afibisnt Ts^p °F
PATHCLCG!:.AL INC.if:L'.R:\TORS-
redd iif.i record s\-;.,-y 5 niinutes.
Gar. Prt-:ss.
Asrunied Moisture 2 Z_
Hsfetc-r Sox Setting, °F
•;b.» Tip Dla.» I^-J^
•'robe Ltii'.oth
Probe He;:1:&v- Settiriq
-------
Clock
Dry Gas
Meter, C-
PI tot
in. H20
Orifice AH
in H00
Dry Gas Temp.
°F
Desired 'J Actua. I
Inl
Outlet
Pur.ip
Vacuum
In. Hg
Gauge
Box
Temp.
CF
•:* s-j
Impinger
Te^ip
°F
Stack
Press
in.
Hg
Stack
Temp
o.-
-i-6 i
-3.4-
G
Tl
.A
40
o.6<)
•54
no
lo4
fo
230
72.
-7 i
-34
110
106
75
2A
117
3. V
/u
J07
J..S"
73
L*
in
. A5"
, /S
. D
£ f
IV5
j.f/y
G't
1,0 X
2. GO
/ f 5
45^.5 ,
~nq:
o:
73f.^7V"
-------
" I": O~" 1 -'"I'' ST" ~\l.'i fl ~\-'~f *
!.",.". ! i 1^ :_'_.-( , L. . 1 CLL> L.V. I f.
r^blent Temp °F 76
Rend .;,,c' record cv the stSf-t of
• each t>:ct po'Jr.t.
PATfiOLC'~ICAl !MCi.*/£RATORS-
1 r«rid and record t-\2^w 5 minutes.
Bar. f;ra3s. "Hg_*k>
Moisture % 71
Heater Box Setting, "F___g
?-rob2 lip D-;a., lX'.OJ&5_
! u*.
J ~ apr&coT-.
Proifr Haste:* Settin
V£cui.::n i3cx
I ry ;:s en-p
I In. H--; iT&nj. Tcnp i Tress
p __ ,__.| ; ___-
3^4= 3.4.
; s.S_ J ^
-------
I
Clock i Dry Gas
CScrcersts" If me J Meter, CF" '
Pi tot
in. H2C
Orifice
in H00
Dosi red " Actual
rpuwp
Dry Gas Temp. Vacuum
°f; In. Hcj
Inlet Outlet
Gauge
Box
Temp
°F
.Impi'nger
Temp
°F
Stack
Press
in. rig
Stack
0.65
3,05
;v "7
Ql 554.42.
S.2.
2.10
54 5Q7.ZS
4
57 J 5jQ. I
3.2.
5.1-5
••3.15
0.60
240
SI8.S4
2-.3G
12
4-
2
SZS.flY
96,
ZiO
5.0
3.0
97
5
-2KL
^£0
tH
3 IS
SI
2-.C
70
0. #
3. IS
_3_i:
LiL.
220
•70
93
b.S
I . gsO
3.J5
94
5.5
^i
r~
f'>"L
f ^ l
l *j
lot
3.0
iOt
S-i-^
^&.
2.r>
"
_L£L
5
B
2S
2.A
id
114
!, 1 1
^L.
7i
V2-3
C. BP
3 l«5
96-
s
3. ?S
0.
3.'.
To »
'5.5
ICO
loj
za?
0.15
tot
•S6. 50
101
2 ,
~R\
-------
Date:
Run number:
Opentor:
PARTICIPATE CLEANUP SHEET
Plant:
&
Sample box number: / /
Location of sample port:
Barometric pressure: j£>. d
Ambient temperature:
dik. ***•&>,
• .. I
i:mpi.iger
Volume after sampling /Off ml
Implnger prefilled withW ml
Volur.e collected ^ I ml
Container No. 7ft- Ether-ch"oroform extractior
Extra No. -' of 1mP':n9,er water ^ m9
Impinger water residue /&,
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container nc.
I
Total particulate weight
3.2,'?
,*-"* **> / /
_mg
Impi
fi
Dry
Prob
fr
ac
nqers and back half of Container No. i/J3
Uer, acetone wash: ' , c^^,.^.. a. . "... Weight results
probe and cyclone catch: •• Cofliaiaer ~SD«.
Extra 'No. rV?evght results
•e, cyclone, flask, and Container No. £/£.
•ont half of filter, ,- H ,, . ,. ,. ) c, 1
t ,,^h. ' txura Ho. . Weight results / 7, ^
t. LUf -C \ ( Go it • '
mg
mg
mg
Filter particylate
wei ght x.%_ mg
mg
SiV:ca Gel
Wuight after test:.
Weight before test:
Moisture weight collected:
6 -
Moisture total *?&
Container number:
Sample number: . L~i
I
Method determination:
1. 2. 3. 4.
---'-- . |
f Analyze for: • .
Coirnitnts: • • •
48
-------
PARTICULATE CLEANUP SHEET
Date:
Run number:
Operator: _
Plant: dHjb*f
S-ample box number: j_
Location of sample pert:
Barometric pressure:
Ambient temperature:
Hu\
Jtnpinger H20
Volume after sampling 2.52 ml
impinger prefilled with.^6^ ml
Volume collected 4$ ml
Container Mo.«,;$/4- Ether-chloroform extraction
• of impinger water O
Extra No.•
25-= T 2-
Impinger water residue /A
jng
mg
Itnpingers and back half of
filter, acetone wash:
Container Mo.5a
Extra No. . Weight results
jmg
Dry probe and cyclone catch: Container No._
Extra No.
Weight results
mg
Probe, cyclone, flask, and
front half of filter,
Container NoJS_C_
Extra Mo.
Vleight results
mg
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container no.
Filter particulate
weight ^ , 7
Total particulate weight
nig
mg
Silica Gel
Weight after test:
Weight before test:
Moisture weight collected:
Container number: 1
2.
3.
4.
. 3,
Moisture total
gm
-Sample number:
Method determination:"'
Comments:
. Analyze for:
49
-------
Date:
PARTICIPATE CLEANUP SHEET
Plant:
Run number:
Operator: _
Semple box number:
Location of sample p
Barometric pressure:
Ambient temperature:
3£> .
•Imping er
Volume after sampling 2-4-7- ml
Impinger prefilled with £fa ml
Volume collected "38ml
Container No.6 n Ether-chloroform extraction
• of impinger water Q
Extra No.
Impinger water residue /£>, 0
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container no.
Total particulate weight
17,9
mg
Impingers and back half of
filter, acetone v/ash:
Dry probe and cyclone catch:
Probe, cyclone, flask, and
front half of filter,
ucetone wash:
Container Mo. [j$
Extra No. Weight results
Container No.
Extra No. 'Wei
-------
SAMPLING SUM.1 WRY SHEETS
PLANT
LO CAT I ON
SAMPLED SOURCE_
•
Train Data
"Run-
No.-
V:
£
o
L Date
5y?-7/
3-I1-7/
5-?b~ii
Nozzle
dia.
in.
,/JTo
,2v5~D
,/JTp
Net"
time
win.
Z^/l
;^v -
^-
Bar.
pres.
"Ho.
3 *, ££
30,0 p
3i>,^^
Orifice
diff.AH
"H?0
jJV
3,tf
l,1tl\
Volume sampled
meter cond.
CO. ft.
r /?. */
JZJ.S?*/'
S3 a 7b
Meter
temp.
Op
///
/b t*
^
Volume sampled
standard cond.
cu. ft.
/^34^
/^2, 0V
/It, tit-
Moisture and Gas Data
Run
No.
/
2-
3
Total
moisture
ml.
w>.s
X/.T)
72,1)
Moisture
std. cond.
cu. ft.
tj.ZI
1,3
Molecular
wt. of moist.
stack gas
28.1?
2t.t>?
21, n
itack Data
Run
No.
(
I
3
Stack
area
iV
/5L
yy,r^
)^I5^
Velocity
lie ad
"H20
0,11
,%l
,SI '
Static
press.
"Hg.
/^>V
, *Lf
. oQ
Stack
press.
"Hg. Abs.
ja, ofy
_30rt>t/
3 0,Dtf
Stack
temp .
oF
ZZ 1
£ t/3
2 Vf
ilocitv and Calculation-Data
!un
_Avera g e
v/ Velocity x temperature °R"
Stack
velocity fpm
.stack cond.
Stack . ..-,.
gas volume
scfm
Percent
isokinetic
34-23
JL£^l3.
3S */'
51
-------
APPENDIX C
LABORATORY RESULTS
Tables C - 1 and C - 2 present a summary of the particulate cleanup
and analysis data. Table C - 3 presents the results of a metals analysis
conducted on the samples from runs no. 3 of the clinker cooler and finish
mill stacks.
TABLE C - 1
PARTICULATE RESULTS. CLINKER COOLER ^
impinger water
probe, cyclone
filter
Total particulates, mg
sample no.
wt. , mg
sample no.
wt., mg
sample no.
wt. , mg
run 1
(1 A)
14.5
(1 B)
11.8
0.0 x
26.3
run 2
(2 Aj
17.6
(2B)
19.4
1.1
38.1
run 3
(3 A)
9.1
(3 B)
13.4
0.8
23.3
Note: v/ater blank: 1.4 mg/500 ml
acetone blank: 1.1 mg/500 ml
TABLE C - 2
PARTICULATE RESULTS, FINISH MILL GRINDING SYSTEH ^] ^
run 1 run 2 run 3
impinger water sample no. (4 AJ (5 A^) (6A,)
wt., mg . 10.9 10.9 10.8
probe, cyclone sample no, (4 B) (5 B) (6BJ .
wt., mg 19.2 20.2 14.1
filter sample no. (4 C) (5 c) (,6C)
wt., mg 2.8 6.7 3.0
Total Particulates, mg 32.9 37.8 27.9
* Several particles of silica gel found in impinger water; removed before analysis
Note: water blank: 1.4"mg7500ml
acetone blank: 1.1 mg/500 ml
(1) Blank values have been substracted from sample results.
52
-------
TABLE C - 3
RESULTS OF METALS ANALYSIS
(a)
Sample: run number
3, clinker cooler
Types of Analyses - S
Analysis
wS?.m{5le No.
wt . , mg
Element
Hg
Be
Cd
As
V
Mn
N1
Sb
Cr
Zn
Cu
Pb
Se
SSMS
3A+3B
22.5
0.01
<0.005
2.
0.3
0.3
5.
100.
0.1
40.
20.
15.
20.
2.
OES
3A-8-3B
22.5
<0.03
<0.02
<2.
<2.
1.
10.
2*00.
<1.
80.
(c)
3.
<0.1
7.
<500.
30.
(c)
(c)
(c)
(c)
(c)
OES
3C
0.8
(c)
(b)
<15
< 2
10
<600
<60
(c)
(c)
(c)
(c)
(c)
(a) All results given in total micrograms per sample.
(b) Not detectable by OES.
(c) Useful determination is precluded by high contribution from blank.
* Glass filters - values given are impurity levels above glass background.
Comments - (1) Estimates of precision are ±25% and ±100% for SSMS.
(2) Where discrepancies in results occur between OES and SSMS, take
the average as being most correct. If greater accuracy is
demanded, the concentrations can be determined by AA9 other
classical chemical techniques and/or bettez standardization of
the OES and SSMS.
(3) High in the SSMS column is given where concentrations ere
found generally greater than 500 ppm. The latitude of the
photographic emulsion prevents obtaining detections to 0,1 pptn
and up to 500 ppm. This would not be a proiblerr. with electrical
detection,
•33
-------
TABLE C - 4
RESULTS OF METALS ANALYSIS^
Sample; run number
3, finish mill air separator
Types of Analyses - Spark Source Mass Spectrograph (SSMS)
Optical Emission Spectrography (QES)
'Analysis
Sample No.
wt. ,mg
Element
Hg
Be
Cd
As
V
Mn
Ni
Sb
Ir
Zn
Cu
Pb
Se
SSMS
6A+6B
24.9
0.02
<0.02
2.
1.
1.
4.
300o
0.3
20*
10.
10.
4.
1.
OES
6A-5-6B
24.9
<0.02
<0.02
<2.
<2.
2,
6.
400.
<1.
40.
<10.
10.
6.
(b)
SSMS
6C
3.0
0,04
<0.005
<0.4
<0.4
<5.
<5.
<15.
0.03
10.
<4.
<0.5
28
<0.3
OES
6C
3.0
<0.6
<60.
<30.
<30.
<6.
<6.
<15,
<30.
<30.
<3,
<15.
(b)
Analysis
Sample Mo.
wt.smg
Element
B
F
Li
Ag
Sn
Fe
Sr
Na
K
Ca
Si
Mg
SSMS
24.9'
40.
0.1
2.
60.
200.
10.
High
High
High
High
High
OES
. 6A*6B
3.0
40.
(b)
<3.
2.
40.
400.
16.
10,000.
10,000.
50,000.
1,500.
100.
SSMS
6C
3.0
(c)
(c)
3.
<0.4
20.
<500.
50,
(c)
(c)
(c)
(c)
(0
OES
6C
3.0
(c)
(b)
<15.
<2.
<20
<600.
< 60.
(c)
(c)
(c)
(c)
(c)
All results given In total microgratns per sample.
(b) Not detectable by OES.
(c) Useful determination is precluded by high contribution from blank.
& Glass filters - values given are impurity levels above glass background.
Comments - (1) Estimates of precision are ±25% ano ir-1007, for SSMS.
(2) Where discrepancies in results occur betwean OES and SSMS, take
the average as being most correct. If grettcr accuracy is
demanded, the concentrations can be determined by kA, other
.. classical chemical techniques and/or better standardization of
the OES and SSMS.
- (3) High in the" SSMS column, is given where concentrations are
found generally greater than f>00 ppr.-.. The latitude of the
photographic emulsion prevents obtaining dite'ctions to 0.1 ppm
and up to 500 ppm. This would not be a problem with electrical
'detection.
-------
APPENDIX D
Test Log
Table D • 1 presents the actual time during which sampling was conducted.
Table D - 1
Sampling Log
(Clinker Cooler)
Ru£
1
2
3
Run
1
2
3
Date
5-18-71
5-18-71
5-18=71
Date
5-19-71
5-19-71
5-20-71
Sampling Port
A
B
A
B
A
B
(Finish Mill
Sampling Port
A
B
A
B
A
B
Began
•08-. 25
09:34
11:10
12:18
14:24
15:35
Grinding System)
Began
10:41
11:54
14:58
16:13
09:17
10:30
Ended
09:31
10:40
12:16
13:24
15:30
16:41
Ended
11:53
13:06
16:10
17:25
10:29
11:42
Elapsed Time (mi n )
66
66
66
66
66
66
Elapsed Time(min)
72
72
72
72
72
72
APPENDIX E
PROJECT PARTICIPANTS AND TITLES
Name
Joe Bazes
Howard Crist
Frederick Maerker
Clyde Riley
Gene Smith
Philip York
Title.
Chemical Engineer, ETB
Analytical Chemist, ETB
Chemical Engir.':^ , F.T3
Technicians ETB
Chemical r.;:gineir, Evu
Chemical u ^•k^y-, j.';2
------- |