xvEPA
United States
Environmental Protection
Agency ;-..--•
•,.
Environmental M.pnitpring
Systems Laboratory
RO. Box .15027 ''..'"-.
Las Vegas NV 89114,5027 '
EPA 600/7-84-088
September 1984
•'.'. Research and Development
Monitoring Approaches
for Assessing Quality
of High Altitude Lakes:
Colorado Flat Tops
Wilderness Area
Project Report
-------
MONITORING APPROACHES FOR ASSESSING QUALITY OF HIGH
ALTITUDE LAKES: COLORADO FLAT TOPS WILDERNESS AREA
by
Barry P. Baldigo and John R. Baker
Environmental Programs
Lockheed Engineering and Management Services Co., Inc.
944 East Harmon Avenue
Las Vegas, Nevada 89109
Contract No. 68-03-3050
Project No. 32.04
Technical Monitors
Wesley L. Kinney
Advanced Monitoring Systems Division
Enviornmental Monitoring Systems Laboratory
Las Vegas, Nevada 89114
and
Denis Nelson
Environmental Services Division
Region 8
Environmental Protection Agency
Denver, Colorado 80295
ENVIRONMENTAL MONITORING SYSTEMS LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
LAS VEGAS, NEVADA 89114
-------
NOTICE
The information in this document has been funded wholly or in
part by the United States Environmental Protection Agency under Contract
Number 68-03-3050 by Lockheed Engineering and Management Services Company,
Inc. It has been subject to the Agency's peer and administrative review and
has been approved for publication. Mention of trade names or commercial
products does not constitute endorsement or recommendation for use.
-------
ABSTRACT
Three high altitude lakes were sampled to investigate their acidification
potential and to develop monitoring approaches for assessing lake sensitivity
to acid deposition. Sampling of Ned Wilson, Oyster and Upper Island lakes in
the Flat Top Wilderness Area of Colorado was conducted in 1982 and 1983. These
lakes are representative of the range of lakes sensitive to acid deposition in
the area.
Data collected show the three study lakes are biologically and chemically
similar. Available literature suggests biological communities of the study
lakes are sensitive to acidification, with major impacts expected as pH drops
below 5.5. Lack of acidity sensitivity data for most species of organisms
inhabiting the study lakes precludes concise predictions of biological response
to acidification. However, annual sampling for community changes and indicator
species of phytoplankton, zooplankton and macroinvertebrates populations is
recommended. Data on fish population structure and maintenance mechanisms are
needed before fish community information can be used for monitoring, but metal
concentration data for fish tissue and sediments should be collected for residue
levels. A suite of nineteen physical and chemical water quality parameters,
including eight metals, is recommended for annual scans.
iii
-------
IV
-------
TABLE OF CONTENTS
Page
Figures viii
Tables ix
Section
1. Introduction 1
2. Study Area 3
3. Sample Locations and Dates 6
New Wilson Lake 6
Oyster Lake 6
Upper Island Lake 6
4. Methods and Materials 10
Field 10
Phytoplankton 10
Peri phy ton 10
Zooplankton 10
Macroinvertebrates 10
Fish 11
Chlorophyll Ł 11
Sediments 11
Water Quality 11
Laboratory 11
Phytoplankton 11
Zooplankton 12
Macroinvertebrates 12
Fish 13
Chlorophyll Ł 13
Sediments 13
Water Quality 13
5. Results and Discussion 15
Phytoplankton 15
Relative Abundance and Distribution 15
Ned Wilson Lake. 15
Oyster Lake 15
Upper Island Lake 16
Confidence in Data and Monitoring Value 16
Sensitivity to Acidification 26
Peri phy ton 27
Zooplankton 27
Relative Abundance and Distribution 27
Confidence in Data 30
Sensitivity to Acidification 30
-------
CONTENTS (Continued)
Section Page
5. Macroinvertebrates 31
Relative Abundance and Distribution 31
Ned Wilson Lake 31
Oyster Lake 39
Upper Island Lake 39
Lake Diversity 39
Confidence in Data 40
Sensitivity to Acidification 42
Macroinvertebrate Community Indicies 44
Sensitivity of Indicies to Acidification 45
Salamanders 47
Distribution and Sensitivity to Acidification 47
Fish 47
Distributions 47
Sensitivity to Acidification 47
Tissue Metal Concentrations and Metal Toxicity 48
Metals in Sediments 48
Metal Concentrations 48
Acidification Effects 51
Water Quality 51
Lake Characteristics 51
Acidification Effects 53
6. Monitoring Requirements 57
Monitoring Alternatives 57
Threat of Acid Deposition 57
Effects of Acidification 58
Biological Monitoring 58
Chemical Monitoring 60
Lake Sensitivity 60
7. Conclusions 62
8. Literature Cited 65
Appendix A. Phytoplankton Cell Abuandance Data from Flat Tops Lakes
Surveyed During 1982 A-l
Appendix B. Phytoplankton Cell Abuandance Data from Flat Tops Lakes
Surveyed During 1983 A-21
Appendix C. Zooplankton Counts from Flat Tops Lakes Surveyed
During 1983 A-57
Appendix D. Raw Quantitative Invertebrate Sample Data from Colorado
Flat Tops Study Lakes, 1982 A-68
-------
CONTENTS (Continued)
Page
Appendix E. Raw Quantitative Invertebrate Sample Data from Colorado
Flat Tops Study Lakes, 1983 A-79
Appendix F. Raw Qualitative Invertebrate Sample Data from Colorado
Flat Tops Study Lakes, 1982 A-92
Appendix G. Raw Qualitative Invertebrate Sample Data from Colorado
Flat Tops Study Lakes, 1983 A-98
Appendix H. Invertebrate Counts from Ned Wilson Lake 10-rock, Basket
and Hester-Dendy and Upper Island 10-rock Special Samples . . A-107
Appendix I. Raw Qualitative Invertebrate Sample Data from Ned Wilson
Spring, August 18, 1982 A-113
Appendix J. Digested Tissue Data from Ned Wilson Lake and Upper
Island Lake Fish Collected during 1982 and 1983 A-116
Appendix K. Digested Sediment Metal Concentrations from Colorado
Flat Tops Lakes, 1982 and 1983 Surveys A-118
Appendix L. Water Chemistry Data from Composite Samples Taken at
Colorado Flat Tops Lakes, August 1983 A-120
Appendix M. Water Chemistry Data from Depth Profiles Taken at Ned
Wilson Lake, Oyster Lake and Upper Island Lake,
Colorado Flat Tops, August 1983 A-122
Appendix N. Total Metal Concentrations from Flat Tops Lake Samples
Collected August 1983 A-127
vii
-------
FIGURES
Figure Page
1 Map showing location of Flat Tops Wilderness Area in
Colorado 4
2 Sketch of Ned Wilson and sites sampled during August 1982
and August 1983 7
3 Sketch of Oyster Lake and sites sampled during August 1982
and August 1983 8
4 Sketch of Upper Island Lake and sites sampled during
August 1982 and August 1983 9
5 Temperature and dissolved oxygen depth profiles from Flat
Tops lakes sampled August 1983 52
viii
-------
TABLES
Number Page
1 Watershed Characteristics and Alkalinity of the Three
Flat Tops Wilderness Area Study Lakes 5
2 Sample Sizes, Preservation and Analysis Methods for Physical
and Chemical Water Quality Parameters Measured from Flat
Tops Lakes, August 1983 14
3 Phytoplankton Species Composition, Total Cell Abundance
(Cells/ml), Species Richness and Relative Cell Abundance
in Ned Wilson Lake, Colorado, 1982 16
4 Phytoplankton Species Composition, Total Cell Abundance
(Cells/ml), Species Richness and Relative Cell Abundance
in Oyster Lake and Upper Island Lake, Colorado, 1982 18
5 Phytoplankton Species Composition, Total Cell Abundance
(Cells/ml), Species Richness and Relative Cell Abundance
in Ned Wilson Lake, 1983 20
6 Phytoplankton Species Composition, Total Cell Abundance
(Cells/ml), Species Richness and Relative Cell Abundance
in Oyster Lake, 1983 22
7 Phytoplankton Species Composition, Total Cell Abundance
(Cells/ml), Species Richness and Relative Cell Abundance
in Upper Island Lake, 1983 24
8 Zooplankton Relative Abundance in Ned Wilson Lake
(1982-1983) 27
9 Zooplankton Relative Abundance in Oyster Lake (1982-1983) .... 28
10 Zooplankton Relative Abundance in Upper Island Lake
(1982-1983) 29
11 Relative Abundance of Benthic Macroinvertebrates in
Colorado Flat Tops Lakes Ekman Samples 32
12 Macroinvertebrates Observed in Colorado Flat Tops Lakes
and Ned Wilson Spring (Qualitative Samples) and Relative
Abundance of Each Taxon 35
IX
-------
TABLES (Continued)
Number Page
13 Mean Values and Results of Selected ANOVA and Student Newman
Kuels Test of Ranges (SNK) for Flat Tops Lakes Macroinvertebrate
Community Parameters 46
14 Digested Tissue Metal Concentrations from Ned Wilson Lake
(S. fontinalis) and Upper Island Lake (S_. clarki) Fish
Collected During 1982 and 1983 49
15 Digested Total Metal Concentrations from Sediments Collected
During 1982 and 1983 Flat Tops Lakes Surveys 50
16 New Wilson Lake, Upper Island Lake, and Oyster Lake Water
Chemistry, Excluding Metals 53
17 Mean Total Metal Concentrations from Water Samples Collected
During 1983 Flat Tops Lakes Surveys 54
-------
INTRODUCTION
The Environmental Monitoring Systems Laboratory-Las Vegas, Nevada (EMSL-
LV) assisted the Agency's Region 8, Environmental Services Division, in a joint
EPA and U.S. Geological Survey (USGS) investigation of the acidification poten-
tial of selected lakes in the Flat Tops Wilderness Area of Colorado. A second
objective was to assist in developing a monitoring program suitable for appli-
cation to regional high altitude lakes. The results of sampling conducted
during 1982 and 1983 on three Flat Tops index lakes are reported here together
with an evaluation of monitoring methods which could be applied to long term
monitoring programs for assessing lake acidification.
The Flat Tops Wilderness Area is located in the White River National
Forest of northwestern Colorado. This unique recreation resource contains
numerous lakes, many higher than 3300 m in elevation, accessible to the public
only by foot or horseback. Nevertheless, the area receives considerable use by
hikers, campers, and fisherman during the summer. Brook trout (Salvelinus
fontinalis), rainbow trout (Salmo gairdneri), cutthroat trout (Salmo clarki)
and cutthroat rainbow trout hybrids are present in many lakes. Additionally,
some fishless lakes in the region contain dense populations of tiger salaman-
ders, Ambystoma tigrinum. Wilderness designation requires the U.S. Forest
Service to protect the Flat Tops from unacceptable adverse impact as identified
by the Clean Air Act amendments of 1977.
Approximately 370 lakes within the Flat Tops Wilderness Area are con-
sidered to be very sensitive to acidification (Turk and Adams 1983). All have
alkalinities, either predicted or measured, less than or equal to 200 ueq/1
CaC03; some as low as 70 ueq/1 CaCOs (Turk and Adams 1983). The high sensitiv-
ity of these lakes results principally from the small amounts of calcarious
sediments in their watershed because of the basalt caprock underlying the high
altitude lake beds and watersheds (USDA, Forest Service 1981). Additionally,
small watershed-to-lake surface area ratios reduce the water/soil contact time,
hence dissolved CaC03, during runoff.
NOX and S02 contaminated wet fallout has been reported to produce low
levels of acid precipitation on the western slope of the Colorado Rocky Moun-
tains (Lewis and Grant 1980). The pH of rain equilibrated with atmospheric C0Ł
should average near 5.6 or slightly greater (McColl 1980). However, the average
pH of summer and winter precipitation events between the summers of 1980 and
1983 were 4.61 and 4.79 near Gothic, Colorado, 100 km south of the Flat Tops
(Harte et al. 1984). Precipitation with pH values of 3.6 has been recorded
near Boulder, Colorado (Lewis and Grant 1980).
The severity of acid precipitation impacts in the Flat Tops could increase
due to expansion of the oil shale industry. Expansion of synfuels (including
1
-------
oil shale) production and coal-fired power plants on the Rocky Mountain western
slope "Energy Belt" may increase hydrogen ion concentrations in wet and dry
deposition. Releases of S02 and NOX from a single 1-million-barrel-per-day oil
shale retort were conservatively estimated at 1,800 ton/yr and 30,000 ton/yr,
respectively (U.S. Department of Interior 1973). Oil shale developmental
activities in western Colorado and eastern Utah have declined in number and
rate during recent years. When large scale commercial development resumes,
shale retorts, oil refineries, power plants, transportation and population
gains will undoubtedly contribute increasing amounts of S02 and NOX to the
atmosphere. Additionally, because the prevailing winds are westerly in western
Colorado and eastern Utah (V.T.N. Colorado Inc. 1979), the first significant
contiguous mountain range that air masses from the oil shale industry areas
would encounter is the Flat Tops. As a result, a major portion of moisture and
projected pollutants within these masses could be deposited upon the wilderness
area.
Historical information on characteristics of lakes within the Colorado
Rockies, such as those of the Flat Tops Wilderness Area, is limited (Lewis
1982). Chemical and biological inventories of selected index lakes within the
Flat Tops have been initiated by the U.S. EPA, Forest Service and USGS to
generate baseline information. These surveys are being conducted to provide
historical data which will help both to quantify expected ecological disturb-
ances associated with lake acidification (temporal changes) and to develop a
monitoring program. The lack of historical biological and chemical baseline
data in acidified lakes of the northeastern U.S. and Europe has hindered at-
tempts to demonstrate quantitative changes over time. Ecological damage, for
the most part, has been assessed by comparing acidified and non-acidified lakes
with similar morphological features and watershed characteristics.
Unique sampling problems are encountered in wilderness areas. Because
the Flat Tops are normally accessible only by foot or horseback, severe
restrictions are placed on the use of the cumbersome and/or fragile equipment
used in more conventional studies. Additionally, sampling is restricted to
summer (ice free) months due to a heavy snowpack most of the year. It is hoped
that monitoring approaches and techniques tested in the lakes of the Flat Tops
will help identify techniques best suited for these conditions. Attempts have
been made to incorporate recommendations of the Aquatic Effects Task Group,
(Bricker et al. 1983) in terms of chemical parameters identified for inclusion
in the National Sampling and Analysis Protocol for Chemical Characteristics of
Lakes and Streams Sensitive to Acidic Deposition. However, because the work
reported here focuses on regional lakes with unique characteristics and mon-
itoring requirements, some deviations from, and expansion of, the national
protocol are necessary. A national biological protocol is available only in
draft stage at this writing (Cornell University, 1983). This draft protocol
was also consulted in development of a high altitude lakes monitoring program,
and key elements have been incorporated.
The data presented in this report provide a basis to substantiate future
acid impacts and their severity. Future monitoring of the three Flat Tops
lakes may provide early warning of disruptions to lake ecosystems of the
region.
-------
STUDY AREA
The Flat Tops Wilderness Area is located in northwestern Colorado on the
White River Plateau, north of Glenwood Springs and east of Meeker (Figure 1).
The basaltic cap overlying the limestone and dolomite formation has been dis-
sected in places by streams and glacial action, exposing the softer materials
to erosive forces. Erosion of these softer materials has caused the numerous
steep canyons common to the area.
Much of the White River Plateau is at an elevation of nearly 3350 m, with
occasional peaks reaching about 3650 m. Annual precipitation in the area aver-
ages over 76 cm, with over two-thirds occurring as snowfall. Snowpack melt
during the summer contributes much of the flow to the White River which has
its headwaters in the Flat Tops. Specific geochemical information is available
from Turk and Adams (1983).
The three lakes selected as index lakes are Ned Wilson, Oyster, and Upper
Island. These represent a gradient of susceptible lakes found in the Flat
Tops. Summary data on watershed characteristics of the three lakes are
presented in Table 1.
-------
106'
COLORADO
PICEANCE
BASIN
0
1
50
1
100 KILOMETERS
I
Figure 1. Map showing location of Flat Tops Wilderness Area in Colorado
(from Turk and Adams 1983 with permission).
-------
TABLE 1. WATERSHED CHARACTERISTICS AND ALKALINITY OF THE THREE FLAT TOPS
WILDERNESS AREA STUDY LAKES (From Turk and Adams 1983).
PARAMETER
Latitude
Longitude
Elevation (m)
Exposed Bedrock (%)
Surface Area (ha)
Mean Depth (m)
Max. Depth (m) approx
Drainage Area (ha)
Alkalinity (ueq/1)
Note1 - Estimated
NED WILSON
39°57'43"
107°19'25"
3388
0
1.0
3.7
5.3
50
70
OYSTER
39°55'18"
107°24'26"
3241
100
6.4
2.0l
3.0
130
200
UPPER ISLAND
39°55'35"
107810'06"
3413
100
7.9
6.4
15.8
90
100
-------
SAMPLE LOCATIONS AND DATES
Ned Wilson Lake
The smallest lake sampled, Ned Wilson Lake (Figure 2), contained four lim-
netic sites from which zooplankton, phytopiankton, benthic macroinvertebrates,
(quantitative) physical chemical profiles, sediments and water chemistry samples
were obtained. Ned Wilson site 1 (NW1) was located in the center of the mouth
of the south cove, east of the rock cliffs; maximum depth was approximately
4.3 m. Ned Wilson site 2 (NW2) was located in the lake's center. Maximum
depth was approximately 5.3 m. Ned Wilson site 3 (NWS) was located at the
center of the mouth of the north cove equidistant to rock points on the east
and northwest shore; maximum depth was approximately 2.5 m. Ned Wilson site 4
(NW4) was located approximately 100 m lakeward from the shoreline of the
shallow cove at the west end of the lake, west side of rock cliffs; maximum
depth was approximately 5.0 m. Periphyton and special invertebrate sample
sites are identified in Figure 2.
Oyster Lake
Oyster Lake did not contain rock substrates, hence no rock or periphyton
samples were collected. Oyster Lake (Figure 3) site 1 (OLD was located about
one-third distance from the west end, approximately equidistant from three
shores. Maximum depth was approximately 3 m. Oyster Lake site (2) (OL2)
was located about one/third the distance from the east end, nearly equidistant
from all shores of the east cove; maximum depth was 2.5 m.
Upper Island Lake
Upper Island (Figure 4), the largest lake sampled, contained only one site
with soft substrate; macroinvertebrate Ekman samples were collected only at
this site. Upper Island site 1 (UI1) was located in the western end of the
lake, equidistant from three shores; maximum depth was 3.5 m. During 1982,
UI1 was located within a small cove, which during 1983 was separated from the
main lake. Upper Island site 2 (UI2) was erroneously located in 1983 midway
between the island and the south shore near the inlet; maximum depth was
approximately 4.5 m. In 1982, UI2 was located midway between the island and
the point on the northwest shore. Upper Island site 3 (UI3) was located midway
between the island and the rock point on the southwest shore; maximum depth was
approximately 7.3 m. Upper Island site 4 (UI4) was located in the eastern
basin, midway between the island and the east shore; maximum depth was approx-
imately 15.8 m.
Each of the three lakes was sampled during the latter half of August in
1982 and 1983. All 1982 samples were collected from Ned Wilson, Oyster and
-------
North
launch
camp
Scale
0.05 km
Figure 2. Sketch of Ned Wilson Lake and sites sampled during August 1982
and August 1983. Qualitative (dip net) Invertebrate sites are
noted by Q#s, quantitative Invertebrates (Ekman), phytopiankton,
zooplankton, sediment and water quality sites are noted by NW#s,
periphyton sites by P#s, Hester-Dendy sites by H#s, basket sites
by Bis and 10-rock sits by R#s.
Upper Island Lakes on August 17, 18 and 20, respectively, except where other-
wise noted. During 1982, the three lakes were sampled during August 25 and 26,
23 and 24 and 27 and 28, respectively, unless otherwise noted.
-------
North
Figure 3. Sketch of Oyster Lake and sites sampled during August 1982
and August 1983. Qualitative (dip net) invertebrate sites are
noted by Q#s, quantitative invertebrate (Ekman), phytopiankton,
zooplankton, sediment and water quality sites are noted by
OUs.
-------
North
Scale
launch
camp
Inlet
Figure 4. Sketch of Upper Island Lake and sites sampled during August
1982 and August 1983. Qualitative (dip net) invertebrate sites
are noted by Q#s, quantitative invertebrate (Ekman), phyto-
plankton, zooplankton,, sediment and water quality sites are
noted by Ulte, perfphyton sites by Pis and 10-rock sites are
noted by R#s.
-------
METHODS AND MATERIALS
FIELD
Phytoplankton
Phytoplankton samples were obtained from the limnetic sites using a 2-
liter Van Dorn bottle. Single samples were taken near the surface (0.5 m
depth), near the bottom (1 m above floor) and in the metalimnion, if present.
Samples from all depths at each site were composited in a bucket and subsampled
(1000 ml) for laboratory analyses. In addition, at the deep Upper Island Lake
station (UI4), discrete samples were obtained from the epilimnion, metalimnion
and the hypolimnion. All 1983 samples were preserved with Acid-Lugol's solution
(Vollenweider 1969). Samples collected in 1982 from Oyster Lake and Upper
Island Lake and October collections from Ned Wilson Lake were preserved with
Acid-Lugol's solution (Vollendwider 1969). Samples collected from Ned Wilson
Lake in August 1982 were preserved with 5-percent Formalin solutions.
Periphyton
Periphyton (attached algae) growths were collected from submerged rocks
usually taken at depth of less than 2 m. Three replicate rocks from each site
were selected, measured (length, width and height) and scraped within a
sampler area formed by placing a flexible rubber ring (3772 mm^) over the rock.
The attached algae were rinsed off the scraped area into a shallow enamel pan
and the algae and liquid were then rinsed into a 125-milliliter Nalgene bottle.
Acid-Lugol's preservative was added to each sample to produce a final concen-
tration of 1 to 5 percent depending upon algal biomass present.
Zooplankton
Three (vertical net tow) depth integrated samples were taken at each lake
site to collect zooplankton. A standard, 80-micrometer, Wisconsin plankton net
was lowered to the bottom then raised to the surface. All samples were preserved
in a 5-percent formalin solution.
Macroi nvertebrates
Macroinvertebrates were sampled in soft sediment zones from each lake with
an Ekman dredge. Sediments and organisms were separated in the field using a
570-micrometer, sieve bottom bucket. All macroinvertebrates were preserved in
plastic Whirlpak bags with 10-percent formalin. Invertebrates in the littoral
zone (shore to a depth of 1 meter) were sampled qualitatively with a 570-micro-
meter mesh triangular dip net. Ten rock samples were collected from sites
noted in Ned Wilson and Upper Island Lakes (Figures 2 and 4) by scraping the
10
-------
entire surface of the individual rocks (into a white pan and condensing into
Whirlpaks). The three dimensions of the rocks were recorded to enable rock
area and standing crop estimation. Additionally, basket samplers and Hester-
Dendy samples deposited by J. Turk approximately one month prior to this survey
were retrieved, rinsed and sample debris preserved in 10-percent formalin.
Fish
Fish were collected for analyses of heavy metal content of whole fish
tissues. During 1982, John Turk (USGS) used a gill net to collect six brook
trout from Ned Wilson Lake. In 1983, six additional fish were collected in
Ned Wilson Lake and two in Upper Island Lake using hook and line. Specimens
were placed in ethyl alcohol and/or on ice or snow when available.
Chlorophyll a
Chlorophyll Ł samples were taken from depth integrated composite samples
obtained for phytoplankton analyses. Triplicate 1-or 2-liter samples were
filtered through GF/C filters pretreated with two drops of saturated MgCOs
solution. Filters were stored on ice in the field until they could be frozen.
Although immediate freezing is recommended (APHA 1980), this was not possible,
and data should be interpreted accordingly.
Sediments
One sediment sample was collected at each Ekman site and split into three
replicates at the surface. Sediments were placed in Whirlpak containers on ice
or in cold water and returned to Lockheed-EMSCO (LEMSCO) for metal analysis.
Water Quality
Three depth-integrated replicates were collected from all limnetic sites
for analyses of parameters listed in Table 2. A hand pump was used to vacuum
water through 0.45-micrometer Nucleopore membrane filters to obtain dissolved
fractions. Samples were preserved appropriately for each parameter according
to U.S. EPA (1983) and APHA (1980) methods. Samples were placed in Nalgene
containers and, with the exception of total and dissolved organic carbon (TOC
and DOC), returned to LEMSCO, Las Vegas for analysis. TOC and DOC water sam-
ples were shipped to Dr. A. Lingg at the University of Idaho, Moscow for
analyses. Some parameters, as noted, could not be processed within the time
limit suggested for storage by U.S. EPA (1983). Field measurable parameters
were analyzed on site with a Hydrolab 8000 (pH, temperature, conductivity and
dissolved oxygen), by titration (alkalinity), or by use of the platinum-cobalt
scale (color). The two latter parameters were measured with Hach kits.
LABORATORY
Phytoplankton
Phytoplankton enumeration and taxonomic identification were performed
using an Olympus IMT inverted microscope and the procedures of Utermohl (1958).
11
-------
Phytoplankton were concentrated by segmenting ten or fifty ml of sample for
24 hours. Nanoplankton (cells less than 64 urn) were counted at 400X magnifi-
cation in strips across the entire diameter of the plate chamber. Net plankton
were counted at either 100X or 200X magnification.
Counting and identification procedures included two steps. One subsample
was acid-cleaned for diatom species identification and proportional counts
under 1000X magnification using methods recommended by Weitzel (1979). The
second subsample was examined with an inverted microscope at 100 to 400X
magnification to count and identify non-diatoms (greens, blue-greens, eugle-
noids, cryptomonads, chrysophytes and dinoflagellates) and to obtain a total
count of all viable diatom frustules to convert proportional diatom counts
to cells per mm^. Specific calculations may be obtained from La Point et al.
(1983) or Baldigo et al. (1983).
Zooplankton
Each zooplankton sample was thoroughly mixed and a one ml subsample
removed with a large bore Stempel pi pet and placed into a Sedgewick Rafter
counting chamber. Enumeration was done under 40X magnification. The entire
chamber was counted for each of three replicate 1-milliliter subsamples. Cope-
pods were dissected and mounted in Hoyer's mounting media to aid in species
identification. Counts were converted to relative abundances based on five
abundance classes [abundant (61-100%), very common (31-60%), common (6-30%),
occasional (1-5%) and rare (
-------
There are two components of diversity: richness and evenness. Evenness, V,
(Pielou 1977) is defined as:
Richness simply is the number of taxa sampled.
A fourth commonly used index of community diversity is Simpson's Dominance
(D) (Simpson 1949). It is the probability of selecting two specimens from the
same species when sampling randomly from a community. More specifically, dom-
inance is defined as:
D = 1 - Z (pf)2
Fish
All fish were frozen upon return to Las Vegas, and length and weight re-
corded. They then were liquefied and the aliquots were freeze dried. Lockheed-
EMSCO personnel analyzed all fish tissue samples: Be, Cr, Zn, Ni, Cu and Ag
via Inductively Coupled Plasma (ICP) Atomic Emission Spectrometric Method for
Trace Element Analysis (U.S. EPA 1979, Alexander and McAnulty 1981); As, Se,
Tl, Sb, Pb and Cd via Atomic Absorption Spectrophotometry (AA). Metal concen-
trations were equilibrated to tissue levels as mg/kg.
Chlorophyll a
Chlorophyll Ł was analyzed at the University of Nevada, Las Vegas (UNLV)
by Dr. L. Paulson, Department of Biological Sciences, using the methods of
Strickland and Parsons (1972). Results are reported as uncorrected chlorophyll
Ł (ng/1) because very low levels precluded correction for phaeophytin.
Sediments
Sediment samples were acid digested following procedures in U.S. EPA
(1981). Metal concentrations, except arsenic and selenium, were measured by
ICP; arsenic and selenium were measured by AA. Results were reported as mg of
metal per kg of sediment.
Water Quality
Chemical parameters determined in the laboratory and analytical techniques
are provided in Table 2. Sensitivity, detection limits, precision and accuracy
of the techniques utilized are presented in U.S. EPA (1983).
13
-------
TABLE 2. SAMPLE SIZES, PRESERVATION AND ANALYSIS METHODS FOR PHYSICAL
AND CHEMICAL WATER QUALITY PARAMETERS MEASURED FROM FLAT TOPS
LAKES, AUGUST 1983 (U.S. EPA 1983-approved methods).
Parameter
Sample
Size (ml)
Preservation
Method
Analysis
Temperature, pH
Conductivity and D.O. NA
Alakalinity 100
Color 50
DOC (filtered) 25
TOC 25
Total Phosphorus 50
Nitrate 25
Nitrite 25
Ammonia 50
Sulfate 50
Chloride 50
Fluoride 50
Chlorophyll Ł 2000
Total Metals 100
Al, Zn, Cu, Cr, Ca
Cd, Pb, Se, As
Mn, Mg, Ag, Fe, Ni
NA Hydro!ab 8000
NA Hach-titration
H2S04 to pH<2, 4°C Hach-Platinum/Cobalt
H2S04 to pH<2, 4°C P-0, Spec1
H2S04 to pH<2, 4°C
H2S04 to pH<2, 4°C
H2S04 to pH<2, 4°C
H2S04 to pH<2, 4°C
H2S04 to pH<2, 4°C
4°C
4°C
4°C
and 4°C
HN03 to pHŁ2
P-0, Spec
P-0, Spec
P-0, Spec
P-0, Spec
Tech AA, Color2
Tech AA, Color
Tech AA, Color
Tech AA, Color
Spectrophotometri c
ICP and AA as:
AA-F1ame3
AA-Furnace4
ICP5
Note 1. Persulfate-Oxydation (Spectrophotometric).
Note 2. Technicon-Auto Analyzer (Colormetric).
Note 3. Atomic Absorption-Flame Technique.
Note 4. Atomic Absorption-Furnace Technique.
Note 5. Inductively Coupled Plasma Atomic Emission Spectrometric Method
for Trace Element Analysis.
14
-------
RESULTS AND DISCUSSION
This section presents the results of the 1982-83 Flat Tops lakes sampling
efforts and discusses the findings in terms of parameter distributions, con-
fidence in data and sensitivity of various parameters to acidification. Based
on these findings, individual parameters are discussed in terms of their
appropriateness for inclusion in monitoring programs designed to depict and
quantify changes in high altitude lakes.
PHYTOPLANKTON
Relative Abundance and Distributions
Relative abundance of phytoplankton species are given in Tables 3 and 4,
for 1982 and Tables 5, 6 and 7 for 1983. Species cell abundance are presented
in Appendices A and B.
Ned Wilson Lake-
Ned Wilson Lake was sampled five times in 1982 (July 2 through September 3)
and nine times in 1983 (April 4 through September 28). In both years, species
richness was high in Chlorophyta (green algae) and Bacillariophyceae (diatoms)
(Tables 3 and 5). Species richness was low for all other algal divisions.
Chlorophyta were numerically dominant throughout 1982 with Monoraphi'di'um seti-
forme, Sphaerocystis schroeteri, Elakatothrix gelatinosa and Dictyosphaerium
ehrenbergianum the most common species. Pyrrhophyta (dinoflagellates),
Cryptophyta (cryptomonads), Chrysophyceae (yellow-brown algae), Bacillario-
phyceae (diatoms) and Cyanophyta (blue-green algae) species were generally
rare. Species assemblages were quite different in 1983 with Chlorophyta and
Chrysophyceae being co-dominant for most of the time period. Principal Chloro-
phyta species were Sphaerocystis schroeteri, Dictyosphaerium ehrenbergianum,
Nephrocytium sp. and Ki'rchneriella spp. Principal Chrysophyceae species
were Chrysochromulina~parva and "DTnobryon cylindricum.
Oyster Lake--
Oyster Lake was sampled once in 1982 (August 18) and three times in 1983
(August 19 through September 30). Species richness was high in Chlorophyta and
Bacillariophyceae and low in the other algal divisions (Tables 4 and 6).
Tetraspora lacustris (Chlorophyta) and Chrysochromulina parva (Chrysophyceae)
were numerically co-dominant in 1982. In 1983, Spaeroz'oma vertebra turn, Sphaer-
ocystis schroeteri (Chlorophyta) and Chrysochromulina spp. were numerically
most abundant.
15
-------
TABLE 3. PHYTOPLANKTON SPECIES COMPOSITION, TOTAL CELL ABUNDANCE (Cells/ml).
SPECIES RICHNESS, AND RELATIVE CELL ABUNDANCE IN NED WILSON LAKE,
COLORADO, 1982. A = Abundant (61-100%), VC = Very Common (31-60%),
C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
07-211
Chlorophyta
Ankistrodesrms nannoeelene
Chlamydomonas sp. (<5m)
C. dinobryonii,
ChloTogoni-im sp.
Cosmarium suec-Loum
Cruci,gen-la rectangularis
Dictyosphaerium
ehrenbergianum
Elakatothrix gelatinosa
Euastrwn sp.
Kirchneriella contorta
K. obesa var. major
Mier'aeteriaB sp.
Monoraphidium setiforme VC
Nephrocytium agardhianum
Pedinomonas minuti-ssima
Seenedesmus bijuga
S. quadriaauda
Selenastrum minutum
Sphaeroaystis schroeteri
08-04
"nr~
0
C
C
0
C
R
0
0
VC
08-17-82
NW1
R
0
C
VC
R
0
C
0
C
NW2
R
C
VC
0
R
C
0
VC
NW3
R
R
C
C
0
0
R
C
R
R
C
NW4
R
0
C
VC
0
0
C
0
C
09-10
~nr-
0
c
R
R
R
VC
c
10-032
R
0
VC
C
0
0
C
Pyrrhophyta
Gyrmodinium sp. R R
G. ordinatum Q
Peridinium willei R
Cryptophyta
Cryptomonas erosa R
Katablepharis oval-is 0
Khodomonae minuta R
Chrysophyceae
Chrysochromulina parva R R 0
Di-nobryon d-Lvergene R R 0 R
Kephyrion sp. R
PBeudokephyrion sp. R
Peeudopedinella erkeneie 0
Oahromonas sp. 0
continued
16
-------
TABLE 3. Continued.
07-211 08-04 08-17-82 09-10 10-032
NWINWZNW3NW4
Bacillariophyceae
Cyclotella sp. R R R R
C. pseudostelligera
C. etelligera 0
Cymbella minuta R R
Fragilaria crotoensie R
F. sonstruens var. venter R
Navicula notha 0 R
N. radioed var. parva R R R
N. minima
Nitsschia kutsingiana R
Pinnularia sp. R R
Staur>oneis anaepte var.
graeilis ' R
Synedra spp. R
Tabellaria flocculosa R
Cyanophyta
Dactylococcopsie
irregularie VC
Meriemopedia tenuissima 0
Spirulina sp. R
Misc.
Monads (<5 urn) C
Total Cell Abundance
(cells/ml) 20 357 1906 2166 2864 2616 3530 2869
Species Richness 2 17 12 11 20 13 8 19
Note 1. Depth or site is noted below each date.
Note 2. All samples preserved with formalin except on 10/03/82.
17
-------
TABLE 4. PHYTOPLANKTON SPECIES COMPOSITION, TOTAL CELL ABUNDANCE (cells/ml),
SPECIES RICHNESS, AND RELATIVE CELL ABUNDANCE IN OYSTER LAKE* AND
UPPER ISLAND LAKE, COLORADO, 1982. A = Abundant (61-100%), VC = Very
Common (31-60%), C = Common (6-30%), 0 = Occasional (1-5%) and R =
Rare (<1%).
Oyster Lake
OL1 OLZ
Chlorophyta
Ankyra judayi
Ankietr>odesmus nannoselene
Chlamydomonas sp. C
Chlorogonium sp. 0
Cruaigenia reetangularis C
Dictyosphaerium ehrenbergianum
Elakatothrix gelatinosa
Monoraphidium pusillum
Ooayetis laeustris 0
Ped-Lastrum bor>yanum
Scenedesmus bijuga
Spirogyra sp.
S 't auras t rum sp.
Tetraepora lacustris C A
Pyrrhophyta
Gymnodinium sp.
Peridinium willei
Cryptophyta
Cryptomonas sp.
C* pyrenoi-difer'a
C. reflexa 0
Katablepharis ovalis C
Rhodomonas minuta 0
Chrysophyceae
ChryBOchromulina parva VC
Ochromonas sp.
Ull
VC
0
0
R
C
R
R
0
C
C
Upper Isl
UIZ
VC
0
C
C
0
R
R
0
R
R
R
R
C
C
R
and Lake
UI3
R
VC
R
C
0
R
R
R
R
0
C
C
U14
C
R
0
C
C
R
R
R
R
VC
Baci11ariophyceae
Aehnanthes lanceolata var. dubia R
A. lanceolata var.
lanaeolatoides R
Cyclotella sp. R
C. stelligera 0 R 0 0
Cymbella minuta R R
Diatoma hiemale var. mesodon R
continued
18
-------
TABLE 4. Continued.
Bacillariophyceae (Cont.)
Fragilaria pinnata
Gomphonema sp.
G. gibba
Meridian circulare var.
constriction
Navicula sp.
N. notha
N. pupula var. rectangularis
N. radiosa
#. atomus
N. minima
Nitzschia sp.
N. acicularis
N. kutzingiana
Pinnularia sp.
Synedra spp.
5. radians
Tabellaria flocculosa
Stauroneis ancepts
Oyster
OL1
R
R
R
R
R
R
R
R
Lake Upper Island Lake
OL2 UI1 UI2 UI3 UI4
R
0
R
R
R
R R
0
R
R
0 R R
R
R
0 00
R 0
R
R
Cyanophyta
Anabaena sp.
Oscillatoria sp.
0. lirmetica
Misc.
Monads (<5 pro)
R R R
R
R 0 0
Total Cell Abundance (cells/ml) 964 670 762 1049 580 678
Species Richness 17 18 14 23 20 13
Note 1. See Appendix A for dates.
19
-------
TABLE 5. PHYTOPLANKTON SPECIES COMPOSITION, TOTAL CELL ABUNDANCE (cells/ml), SPECIES RICHNESS AND
RELATIVE ABUNDANCE IN NED WILSON LAKE, 1983. A = Abundant (61-100%), VC = Very Common
(31-60%), C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
PO
o
Taxon
Chlorophyta
Chlamydomonas spp.
Coemarium nanum
Cruaigenia rectangularis
Dietyosphaer'ium so.
Dictyosphaerium ehrenbergianum
Elakatothrix gelatinosa
Golenkiriia sp.
Kirehneriella spp.
Nephrocytium sp.
Oedogonium sp.
Oocystis borgei
Pediastrum spp.
Pediastrum boryanum
Schaerocystis schroeteri
Schroederia eetigera
Staurastrum prdboseidiwn
Xanthidium smithi
04-14 06-28 07-20 07-29 08-12 08-17
R R 0 C
R
R
A C VC
C
0
0 VC C C
A
R R
0
08-25-83
NW1 NW2 NW3 NW4
-
0
C C VC VC
0 R 0
0 R
R
R
R R
R
R
R
09-10
VC
C
0
C
0
C
09-28
C
A
R
Euglenophyta
Traohelomonae robueta
Pyrrhophyta
Ceratium sp.
Glenodinium gyrmodinum
Glenodinium oaulatum
Gyrmodinium spp.
Gymnodinium ordinatum
Peridinium quaridene
Cryptophyta
Crytomonae erosa
Rhodomonas minuta
R
R
0
R
C
R
continued
-------
TABLE 5. Continued.
Taxon
Chrysophyceae
Chrysochromulina sp.
Chryeochromulina parva
Dinobryon cylindricum
Oahromonae spp.
Badllariophyceae
Cocaoneie diminuta
Cyclotella Spp.
Cymbella spp.
Fragilafia spp.
Gomphonema anguetatum
Hantzxchia spp.
Navicula spp.
Navicula cryptocephala
Nitsschia spp.
Nitseahia kutzingiana.
Nitssohia palea
Tabellaria sp.
Tabellaria flocculosa
Tabellarn-a feneetrata
Cyanophyta
Anabaena sp.
Meriemopedia tenuiseima
Phormidium mucicola
Total Cell Abundance
04-14 06-28 07-20 07-29 08-12 08-17 NW1
0
VC C C VC
0 VC VC VC
C
VC
R
R
0
0 R
R 0 R
R R
R R
R R R
R
0 R
37500 11230 2494 429 976 660 2392
08-25-83
NW2 NW3 NW4 09-10 09-28
C
C C CO
VC VC VC 0 R
R
R R
R R
R R
R
R
R R
R
0 R
R
R R 0 R
1623 1564 2598 2580 6438
Species Richness
6 11 11 11 7 12 8 12 16 13
-------
TABLE 6. PHYTOPLANKTON SPECIES COMPOSITION, TOTAL CELL ABUNDANCE (cells/ml),
SPECIES RICHNESS AND RELATIVE CELL ABUNDANCE IN OYSTER LAKE, 1983.
A = Abundant (61-100%), VC = Very Common (31-60%), C = Common (6-30%),
0 = Occasional (1-5%) and R = Rare (<1%).
Taxon
Chlorophyta
Arikistrodesmue epiralie
Chlamydomonas sp.
Cosmarium spp.
Crucigenia reotangularie
08-19
buoy^
R
C
08-23-83
OL1 OL2
0
0 C
09-1
buoyl
R
0
Dictyoephaerium ehrenbergianum
Elakatothrix gelatinoea
Gonatosygon sp.
Ooaystis borgei
Pedinomonas minutieeima
Quadrigula sp.
Spaerosoma verbratum
Sehroederia setigera
Spaerocystis sehroeteri.
Staurastrum spp.
Staurastrum graeile
Tetraepora sp.
Pyrrhophyta
Gyrmodinium spp.
Peridinium quaridens
Cryptophyta
Cryptomonas erosa
Katablepharis ovalis
Khodamonas minuta
0
A
C
R
C
R
R R
R
0 C
VC
0 R
R
C C
0
R
A
R
0
0
R
R
C
C
09-30
buoy*
R
C
C
R
R
C
C
C
R
0
R
C
Chrysophyceae
Chrysochromulina sp. 0 0 VC
Chrysochromulina parva 0 VC
Bacillariophyceae
Amphora ovalis R
Cyclotella spp. R R R
Cymbella spp. R R R
Cymbella minuta 0 0
Fragilaria Spp. R
Frustulia vulgaris R
Navicula spp. R R R
Navieula bacillum 0
Naviaula cryptocep'hala R
continued
22
-------
TABLE 6. Continued.
08-19 08-23-83 09-1 09-30
Taxon buoy1 TO DT7 buoy1
Bacillariophyceae (continued)
Navicula pupula R
Navioula radioed . R
Nitzschia palea 0 0
Synedra spp. R R
Synedra delicatissima R
Tabellaria sp. R
Tabellaria flocculoea R R
Cyanophyta
Andbaena sp. R C
Fhormidium spp. R
Total Cell Abundance 1486 606 1409 2778 1988
(cells/ml)
Species Richness 15 14 17 16 17
Note 1. USGS buoy approximately mid lake, between Oil and 012.
Upper Island Lake--
Upper Island Lake was sampled once in 1982 and five times in 1983 (August
10 through September 21) at two-week intervals. As in the other lakes, species
richness was highest in Chlorophyta and Bacilloriophyceae. Ankistrodesmus
nannoselene (Chlorophyta) and Phodomonas minuta (Cryptophyta) were thenumer-
ically co-dominant species in 1982 (Table 4).Dactylococcopsis raphidiodes, a
blue-green algae (Cyanophyta), was numerically dominant on August 10, 1983, but
was succeeded by Elakatothrix gelatinpsa (Chlorophyta), which remained dominant
from August 24 through September 21, 1983 (Table 7).
Confidence in Data and Monitoring Value
Phytoplankton identifications were made by different individuals in 1982
and 1983, and part of the yearly differences in species assemblages in all three
lakes may be due to taxonomic uncertainties. Species identification confir-
mations were not made between phycologists participating in the study, there-
fore, confidence in species identifications is not known.
23
-------
TABLE 7.
PHYTOPLANKTON SPECIES COMPOSITION, TOTAL CELL ABUNDANCE (Cells/ML), SPECIES RICHNESS AND
RELATIVE CELL ABUNDANCE IN UPPER ISLAND LAKE, 1983. [A = Abundant (61-100%), VC = Very
Common (31-60%), C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<%)].
INJ
08-27-83
Taxon
08-10 08-24
UI1
UI2
UI3
UI4
09-08 09-21
Chlorophyta
Coermrium SPP«
Dictyosphaer'ium ehr>enber>gianum
Eldkatothrix gelatinosa
Gonatosygon s P •
Kirchneriella spP'
Oedogonium SP-
Pedinomonas SP-
Pedinomonas minutissima
Schr>oederia eetiger>a
Sphaerocyetis schroeteri
Selenastrum minutum
Staurastrum SPP'
Staurastrum gracile
Staurastrum paradoxm
Staur-astrum proboscidium
Tetraedr>on regulare
Pyrrhophyta
Peridinium cine turn
Peridinium willei
Cryptophyta
Cryptomonas erosa
Katablepharis ovalis
Ffaodomonas minuta
Chrysophyceae
Chryeodhromulina parva
Ochromonae spP*
R
0 VC A A A A
R R
R
R 0 R R
C
R 0
C C 0 R 0
R
R R
R
R
R R R R R
00 0000
R 0 0 R 0
R
R
A
R
R
0
R
R
R
R
0
0
A
R
0
R
0
R
R
R
C
continued
-------
TABLE 7. Continued
ro
en
Taxon
Badllarlophyceae
Asterionella formosa
Cyclotella sp%
Cymbella sp.
Fragilaria brevistr>ata
Fragilaria crotonensie
Gomphonema gibba
Melosira islandica
Navicula pupula
Nitzeehia Spp%
Nitzeehia holsatica
Nitzschia palea
Opephora sp.
Pinnularia borealis
Synedra SDP.
Tabellaria flocculosa
Cyanophyta
Anaoaena SD>
Daotyloaoooopeis raphidiodes
Lyngbya sp>
Oscillator>ia spp<
Raphidopsie curvata
Total Cell Abundance (cells/ml)
Species Richness
08-27-83
08-10 08-24 UI1 UI2 UI3 UI4 09-08
R
C R R
R R R
R
R R R
R
R R
R R
R
R
R
R
R
R
R R R 0
C C
R
R R
R 0 0 R
6164 4370 7443 9805 6302 9533 16,630
7 11 16 11 16 16 17
09-21
R
R
R
9550
15
-------
Between-station variability in phytopiankton assemblages were noted within
each of the three lakes (Tables 3-7). These differences were largely restric-
ted to rare species. Dominant and co-dominant species were generally consistent
among stations within each lake.
Vertical variations in phytoplankton assemblages were also found. Dis-
crete samples were taken at depths of 1, 5 and 10 m from Upper Island Lake on
August 27, 1983. Phytoplankton assemblages were somewhat different at these
depths with higher species richness and cell abundance at 1 m (Appendix B).
Again, dominant and co-dominant species were similar at each depth, but there
were shifts in the abundance and occurrence of rare species.
Quantification of rare phytoplankton species, for any one period, would
require analyses of a large number of samples, collected at various depths and
locations. This would not be feasible in future routine monitoring of these
lakes. However, it does appear that replicate (3 to 5) analyses of a compos-
ite sample consisting of depth integrated samples collected from various areas
of a lake will characterize the major components (dominant and co-dominant
species) of the phytoplankton communities for any single time period. Number
of sampling areas used in the composite sample should be further investigated,
but two to four areas appear to be sufficient based on results from the three
Flat Tops lakes.
Of greater concern, is the high seasonal and annual variation (Tables
3-7) exhibited by the phytoplankton in each of these lakes. It is obvious that
any one sampling period, at turnover (spring or fall) or during thermal strat-
ification, will not be adequate in characterizing phytoplankton occurrence,
abundance or species richness relative to potential changes from acidifica-
tion. It is also obvious that phytoplankton will be better represented with
more frequent sampling. Subjectively, biweekly or monthly sampling periods
over the ice free period may be adequate, but this will require further inves-
tigation. However, even if monthly sampling proves to be sufficient, sampling
at this frequency may not be possible in routine monitoring programs.
Sensitivity to Acidification
Reported effects of acidification on phytoplankton vary, but decreases
in species richness and diversity are typical in most lakes undergoing acid-
ification (Tonnessen 1984, Conway and Hendrey 1982, Van 1979, Van and Stokes
1978, Kwiatkowski and Roff 1976). Chlorophyta and Bacillariophyceae species
are generally very acid sensitive and marked reduction in species richness
occurs in these groups in the range of pH 5.0 to 6.0 (Conway and Hendrey 1982).
Dinophyceae (Pyrrhophyta) species usually increase in species richness and
abundance, and dominate in acid lakes. However, species of Chrysophyceae and
Cyanophyta have become dominant in some lakes (Conway and Hendrey 1982,
Kwiatkowski and Roff 1976).
In the Flat Tops lakes, Chlorophyta are generally the most abundant and
diverse algae. Their abundance would likely decrease with acidification.
Chrysophyceae, at times, are numerically dominant in these lakes, and they may
become of greater importance with acidification. Primary indicator species
26
-------
increasing in abundance with acidification will probably be in the division
Pyrrhophyta, (Conway and Hendrey 1982).
PERIPHYTON
Periphyton analysis at present is incomplete. These data will be available
upon completion by contacting W. Kinney, EMSL-LV or B. Baldigo, Lockheed-EMSCO.
Responses of the periphyton community to acidification have been documented
(Stokes 1984) and appear to be potentially useful monitoring parameters for
high altitude lakes.
ZOOPLANKTON
Relative Abundance and Distributions
Relative abundance of zooplankton species found in Ned Wilson, Oyster,
and Upper Island Lakes for 1982 and 1983 are presented in Tables 8, 9 and 10,
respectively. Quantitative data for individual taxa analyzed in 1983 are given
in Appendix C.
TABLE 8. ZOOPLANKTON RELATIVE ABUNDANCE IN NED WILSON LAKE (1982-1983).
A = Abundant (61-100%), VC = Very Common (31-60%),
C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
Ned Wilson Lake
08-17-82 08-25-83
Taxon NW1 NW2 NW3 NW4 NW1 NWZ NW3 NW4
Cladocera
Holopedium gibbeman OORO ORRO
Ceriodaphnia quadrangula R
Daphnia pulex R
Copepoda
Diaptomus coloradensis 0000 0000
(adult)
Copepodid 0 R 0 0 0 R
Nauplius RRRR COOO
Rotifera
Keratella cochlea-rie
Conoch-LluB unieormis
Polyanthra spp.
A
0
A
VC
A
C
R
A
VC
R
VC
VC
R
A
C
R
VC
VC
R
A
C
R
#/m2 x 1000 All taxa1 (1983) 2108 2138 1950 2108
Note 1. Quantitative data unavailable for 1982.
27
-------
TABLE 9. ZOOPLANKTON RELATIVE ABUNDANCE IN OYSTER LAKE (1982-1983).
A = Abundant (61-100%), VC = Very Common (31-60$),
C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%),
• ——• — ————» — — •»••—— — — — —•«•• — —• — — — — — — — — —.• — — — — ——— — — — ^ — — ——— —— — -..—-^•^—••• — —.••——».
Oyster Lake
Taxon
08-18-82
OL1
OL2
08-23-83
OL1
OL2
Cladocera
Holopedium gibberum
Daphnia put ex
Copepoda
Diaptomus color>adensis
(adult)
Diaptomus shoshone
(adult)
Copepodid
Nauplius
Rotifera .
Keratella cochleares
Polyanthra spp.
Conochilus un-icornis
R
0
0
C
0
0
C
C VC
C 0
VC VC
0
0
R
C
VC
VC
R
C
0
0
C
VC
VC
R
C
#/m2 x 1000 All taxa1 (1983)
Note 1. Quantitative data unavailable for 1982.
343
599
During both years rotifers were the dominant group both in species rich-
ness and numbers in all lakes. Keratella cochlearis and Conochilus unicorm's
were the numerically co-dominant species in all lakes. Polyarthra spp. were also
abundant in Upper Island Lake. Zooplankton species richness was highest in
Upper Island Lake due to the occurrence of three rotifers, Keratella quadrata,
Filinia terminal is and Asplanachna periodonta, which were not found in the
other lakes.
Copepods were the most depauparate zooplankton group. Only one species,
Diaptomus coloradensis, was found in Ned Wilson Lake, and Diaptomus arapahoem's
was the only copepod found in Upper Island Lake. Two copepods were found in
Oyster Lake, Ł. coloradensis, and the very large species, Diaptomus shoshone.
The latter was found only during 1982. Relative abundance for all species was
low except for the common occurrence of J). arapahoem's in Upper Island Lake and
the relatively high abundance of immature stages (copepodids and nauplii) in
Oyster Lake.
Species richness and abundance of cladocerans were also low in all lakes.
Three species were found in Ned Wilson and Upper Island Lakes and two species
28
-------
TABLE 10. ZOOPLANKTON RELATIVE ABUNDANCE IN UPPER ISLAND LAKE (1982-1983),
A = Abundant (61-100%), VC = Very Common (31-60%),
C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
Upper Island Lake
08-20-82
Taxon
UI1 UI2 UI3 UI4
08-26 - 27-83
UI1 UI2 UI3 UI4
Cladocera
Daphnia rosea
Ceriodaphnia quadrangula
Chydorus sphaericus
Copepoda
Diaptomus arapahoensis
(adult)
Copepodid
Nauplius
C
0
C
0
0
R
#/m2 x 1000 All taxal (1983)
================================================:
Note 1. Quantitative data unavailable for 1982.
R
C
R
0 0
0
C
0
C
0
0
R
R
R
0
0
0
Rotifera
Keratella cochleares
Keratella quadrata
Filinia terminalis
Asplanachna periodonta
Polyanthra spp.
Conochilus unicornis
0
0
0
R
A A
0
R
R
A
R
0
R
A
C
R
C
A
C
R
C
VC
C
R
VC
VC
0
C
0
R
0
C
44 233 223 546
in Oyster Lake (Tables 8, 9, and 10). There was only one relatively abundant
cladocern, Ceriodaphnia quadrangula, found in Upper Island Lake. Other clado-
cerns were Holopedium gibberum and Daphnia pulex found in both Ned Wilson and
Oyster Lake's^Daphnia rosea and Chydorus sphaericus were restricted to Upper
Island Lake.
Annual differences in zooplankton community structure were very slight
and were primarily related to the occurrence or absence of rare species. Rela-
tive abundance for dominant and co-dominant species in 1982 and 1983 were very
similar in each of the lakes. The only exception was Upper Island Lake where
there were some shifts in rotifer species abundance between years.
Zooplankton numbers were highest in Ned Wilson Lake (Table 8) and no sig-
nificant difference (a >_ 0.05, ANOVA) was found in numbers at stations sampled
in 1983. Total numbers of zooplankton were similar in Upper Island and Oyster
Lakes (Tables 9 and 10), but were substantially lower than in Ned Wilson Lake.
Zooplankton numbers were significantly different between stations in both
Upper Island and Oyster Lakes. In Upper Island Lake, species richness and
29
-------
numbers were highest at the deepest station (Station UI4). Only one additional
species was found at the other stations, but it was rare. Oyster Lake was
shallow, and differences in total numbers were not due to depth. However,
species richness was identical at both stations in Oyster Lake. Relative to
all three lakes, replicate depth integrated samples taken at a single station
located at the deepest point of the lake would probably characterize the zoo-
plankton community with little or no loss of information.
All zooplankton species found in the Flat Tops lakes have a wide geograph-
ical distribution except the three copepod species, I), arapahoenis, D_. colora-
densis and I), shoshone. These species are restricted to high altitude lakes
in the Rocky Mountains of Canada and the United States (Edmondson 1959).
Dodson (1982) and Sprules (1972) have described crustacean zooplankton (cla-
docera and copepoda) assemblages in Mexican Cut Nature Preserve lakes. These
authors found two distinct species associations related to lake depth and
predator prey relationships. Daphm'a rosea, D. colpradensis and Chaoborus
spp. were found in large deep lakes; whereas,~D. pulex, D. coloradensis and
Branchinects spp. were found in shallow lakes. Similar species assemblages
were found in the Flat Tops lakes, except Chaoborus spp. and Branchinecta spp.
were absent. Also, ]). arapahoensis rather than D. coloradensis was found in
Upper Island Lake, a relatively deep lake (maximum depth 16 m) and ]). shoshone
was absent from Ned Wilson Lake, which was intermediate in depth (maximum depth
5 m). Species richness in the Flat Tops lakes was low, but crustaceans were
similar to those reported by Dodson (1982) and Sprules (1972). Rotifer species
were not reported by those authors.
Confidence in Data
Confidence in species identifications was high. All zooplankton
identifications were based on keys in Edmondson (1959) and confirmations were
by Gene Wilde, UNLV. There was apparently more than one species of the
rotifer, Polyarthra, but these could not be distinguished. Daphm'a pulex was
the only questionable species having characteristics of both D. pulex and Ł.
middendorffiana. Dodson (1982) and Sprules (1972) found simiTar mixed char-
acteristies for specimens from high altitude Colorado lakes in the Mexican Cut
Nature Preserve. Specimens from the Colorado Flat Tops had characteristics
that were closest to Ł. pulex.
Sensitivity to Acidification
Malley et al. (1982) have suggested the following possible factors
affecting zooplankton communities in acidified lakes:
1. increased temperatures as a result of increased transparency,
2. changes in food abundance and/or quality as a result of algal species
shifts,
3. hydrogen ion toxicity,
4. metal toxicity,
5. changes in predator-prey relationships,
6. changes in zooplankton competition with the loss of competing species.
30
-------
Consequently, effects are very complex and are interrelated throughout the
entire aquatic ecosystem.
Very little information on acidification effects on zooplankton exists
for the Western United States; however, effects of lake acidification on crus-
tacean zooplankton in Canada and Northeastern United States have been well
documented (Confer et al. 1983, Malley et al. 1982, Van and Strus 1980, Roff
and Kwiatkowski 1977, Sprules 1975). Effects on rotifers have largely been
neglected and have only been reported by Tonnessen (1984) and Roff and Kwiat-
kowski (1977). The most evident effect of acidification in all lakes was a
decrease in species richness associated with increased acidification. Major
reductions in species richness occurred when pH decreased below 5.5 (Malley et
al. 1982). Species richness in the Flat Tops lakes was naturally low and could
not be compared to Eastern lakes. However, the few zooplankton species found
will provide baseline data for future monitoring of these lakes. Sensitive
species that may be lost with acidification are the two cladocerns, Ł. pulex
and t). rosea (Malley et al. 1982). The other cladocerns, H. gibberum, C.
quadrangula and C_. sphaericus are tolerant to low pH (Malley et al. 1987,
Fryer 1980). Sensitivity of the three copepod species (Diaptomus spp.) is not
known. All rotifer species found in the Flat Tops lakes have been reported in
acid lakes (Roff and Kwiatkowski 1977); however, Tonnessen (1984) reported
decreased rotifer abundance in short term microcosm experiments in Sierra
Nevada, California lakes. The numerically dominant rotifer communities in the
Flat Tops lakes, may therefore, decrease in abundance with acidification.
MACROINVERTEBRATES
Relative abundance estimates for each taxon identified from quantitative
(Ekman) samples from both 1982 and 1983 surveys are provided in Table 11.
Qualitative sample, relative abundance estimates for each taxon are listed in
Table 12. Quantitative raw data for 1982 and 1983 and qualitative data for 1982
and 1983 are provided in Appendices D, E, F and G, respectively.
Relative Abundance and Distributions
Ned Wilson Lake-
Quantitative samples from the benthos of Ned Wilson Lake during both 1982
and 1983 yielded 35 taxa with the pelecypoda, Pi sidiurn sp., the most abundant
single species (Table 11). The shoreline invertebrate community was much more
diverse, yielding 46 taxa, 20 of which were not collected with the Ekman, with
no single genus very common (Table 12). Among the shoreline fauna, the chir-
onomids were the most diverse group, however, other orders not present in deep
benthos occurred occasionally (Table 12). Species restricted to the shoreline
included the caddisfly, Psychoglypha subbprealis; water mite, Lebertia sp.;
mayfly, Callibactis coloradensis; damsel fly, Enallagma boreale; and many beetle
larvae and adults and species of midges, (Tables 11 and 12).One fish gut,
taken from a Ned Wilson Lake brook trout collected August 17, 1982, was also
examined. It contained approximately 50-, 40-, 5- and 5-percent Simuliidae
(Diptera), Hymenoptera, Homoptera and Coleoptera, respectively. All individuals
within the trout gut were winged and most likely obtained while surface feeding.
31
-------
TABLE 11. RELATIVE ABUNDANCE OF BENTHIC MACROINVERTEBRATES IN COLORADO FLAT TOPS LAKES
EKMAN SAMPLES. A = Abundant (61-100%), VC = Very Common (31-60%),
C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
Taxon
Ned Wilson Lake
HJFT
Oyster Lake
1982
1983
Upper Island Lake
1982
T9B3
CO
ro
Ephemeroptera
Callibaetis aoloradensis
Caenis sp.
Chironomidae
Chironomidae - all
Chironomidae - Tanypodinae
Ablabesmyia sp.
Procladius sp.
Chironomidae - Chironomini
Ch-ironomue sp. 1
ChironomuB sp. 2
Cryptochironomus sp.
Dierotendipes sp.
Miorotendipes sp. 1
Polypedilum sp.
Peeudochironomus sp.
Pagastiella sp.
Phaenopsectra 5 p.
Cladopelma sp.
Chironomidae - Tanytarsini
Tanytarsue sp.
Corynocera. sp.
Lens-Leila $p.
R
R
R
R
R
R
C
C
R
0
C
R
0
0
0
0
C
R
0
C
0
R
VC
0
0
R
R
0
C
0
R
C
C
VC
R
0
VC
R
C
R
R
R R
continued
-------
TABLE 11. Continued.
Taxon
Ned Wilson Lake
1982
T983
Oyster Lake
T953
Upper Island Lake
T98T
T58I
00
oo
Chlronomidae - Orthocladlinae
Corynoneura sp.
Heterotriseoeladius sp.
PeectroaladiuB sp. 2
Synorthocladius sp.
Ch1ronom1n1 - Dlameslnae
Pseudokiefferiella sp.
Ceratopogom'dae
Palpomyia sp.
Coleoptera
Hydroporus sp. 1
Deronectes griseostriatus
Cladocera
Latona eetifera
Holopedium gibberum
Daphnia pulex
Ceriodaphnia quadrangula
Ostracoda
Candona eaapuloea
Eucypris affinis hirsuta
Copepoda
Diaptomue coloradensie
Diaptomus arapahoensie
Diaptomus shoehone
Macroeyclops albidue
Cyclops vernalis
R
R
R
R
0
R
R
R
R
R
R
R
continued
-------
TABLE 11. Continued.
Ned Wilson Lake
Taxon
1982
1983
Oyster Lake
1982
1983
Upper Island Lake
1982
1983
GO
Amphipoda
Hyalella azteca
Gammarus lacustr-is
Nematoda
Nematoda - all
Oligochaeta
Oligochaeta - all
Naldidae - all
Nais spp.
Uneinais uncinata 0
Lumbriculidae - all 0
Immature Tubificidae WOCC C
Immature Tubificidae WCC R
Lirnnodrilus epiralis 0
Ilyodrilus templetoni
Enchytraeidae, all R
Hirudinea
Nephelopsis obseura
GloGsiphonia aomplanata
Helobdella stagnalie R
Pelecypoda
Pieidium sp. VC
R
R
R
R
0
C
R
R
0
R
R
R
R
0
R
R
0
R
R
R
R
R
R
C
0
0
0
VC
C
C
VC
-------
TABLE 12. MACROINVERTEBRATES OBSERVED IN COLORADO FLAT TOPS LAKES AND NED WILSON SPRING (QUALITATIVE
SAMPLES) AND RELATIVE ABUNDANCE OF EACH TAXON. A = Abundant (61-100%), VC = Very Common
(31-60%) C = Common (6-30%), 0 = Occasional (1-5%) and R = Rare (<1%).
Ned Wilson Lake
Oyster Lake
Upper Island Lake
CO
tn
Taxon 1982 1983 Spring
Ephemeroptera
Callibaetie coloradensis 0
Cloeon ingene
Caenis sp.
Odonata
Enallagma boreal e R
Hemiptera
Arctocorisa eutilis
Cenoaorixa wileyae
Gerrie sp.
1982
C
R
C
1983 1982 1983
C
R
R
R
0
R
0
Tricoptera
Lirmephilus externue
Lirmephilue sp.
Immmature Limnephilidae
Peychoglypha eubborealie
Peychoronia costalis
Chironomidae -Tanypodinae
Ablabesmyia $p.
Procladius sp.
Chironomidae - Ch1ronom1ni
Cryptochironomoue sp.
Dicrotendipes sp.
Glyptotendipes $p.
Microtendipee sp. 1
0
R
R
0
0
0
R
C
R
R
R
R
0
R
R
R
0
continued
-------
TABLE 12. Continued.
CO
Ned Wilson Lake Oyster Lake Upper Island Lake
Taxon
1982 1983 Spring 1982
1983 1982
1983
Chironomidae - Chironomini (continued)
Microtendipes sp. 2
Pseudochironomus sp.
Stictochironorms sp.
Pagastiella sp.
Phaenopsectra sp.
Cladopelma sp.
Chironomidae - Tanytarsini
Tany 'tarsus sp.
Paratanytarsus sp.
Corynoaera sp.
Lens-Leila sp.
Chironomidae - Orthocladinae
Corynoneura sp.
Criaotopue spp.
Cricotopus /Orthocladius
Criootopus flavocinctus
Cricotopus laricomalis
Heterotrissocladius sp.
Parametriocnemus sp.
Psectrocladius sp. 1
Thienemanniella sp.
Synorthocladius sp.
0
0
C
R
0
R R
R 0 R C
C R
C
0 0
C C C
0
R
R R
0
0 R
R
0
C
0
R
C
R 0
0
R
0 C
R
0
R
R
R C
0
0
0
0
Chironomidae - Diamesinae
Pseudodiamesa sp.
Pseudokiefferiella sp.
Ceraptopoginidae
Palpomyia sp.
continued
-------
TABLE 12. Continued.
Taxon
Ned Wilson Lake
1982 1983 Spring
Oyster Lake
1982
1983
Upper Island Lake
1982 1983
Syrphidae
Eristalis sp.
Lepidoptera
Lepidoptera - all
Coloeptera
Acilus abbreviates
Hydrovatus sp.
Rhantus sp.
Dytiscus sp.
Agabue sp. 1
Agabus sp. 2
t*» Agabus sp. 3
^ Eydroporus sp. 1
HydroporuB sp. 2
Ilybiue sp.
Deronectee griseoetriatus
Helophorus sp.
Hydracarina
Lebertia sp.
^rrenurwe sp.
Hygrobates sp.
Fiona sp.
Lirmeeia sp.
Cladocera
Daphnia pulex
Scapholeberis kingi
R
R
0
R
R
C
R
R
R
R
0
R
0
R
0
0
0
C
0
C
0
C
R
R
R
continued
-------
TABLE 12. Continued.
Ned Wilson Lake Oyster Lake Upper Island Lake
Taxon 1982 1383Spring T552 IMS T98~21983
Ostracada
Candona ecapulosa R C
Euaypris affinis hirsuta 0
Copepoda
Diaptomus eoloradensis R C
Diaptomus ar>apahoensis C
Diaptomus shoehone 0 CO
Macrocyelope albidus 0
Amphipoda
Hyalella azteca 0 C C
Gammarue laeustris VC 0 C
Nematoda
c*> Nematoda - all OR R C
00
Oligochaeta
Oligochaeta - all R
Nias spp. 0 R R 0
Uncinais uncinata OR R
Lumbriculidae - all C C R 0 VC
Immature Tubificidae WOCC 0 0
Immature Tubificidae WCC R
Lirmodr>ilu8 epiralie 0 R R
Enchytraeidae - all R
Hirudinea
Nephelopeie obscura R 0 R
Gloesiphonia complanata R
Helobdella etagnalie 0 C 0
Pelecypoda
Pisidium sp. C 0 C C 0
-------
Oyster Lake—
Oyster Lake Ekman samples produced 35 taxa, dominated by the relatively
large chironomid, Pseudochirpnomus sp., during 1982 and the small chironomid,
Tarytarsus sp., during 1983 (Table 11). The shoreline invertebrate community,
as in Ned Wilson Lake, was more diverse than the deeper sites yielding 48 taxa,
24 of which were unique to the shoreline. No single taxon predominated shore-
line fauna (Table 12). Oyster Lake contained little benthic rock habitat; the
bottom was mostly ooze and organic detritus. The shoreline community supported
diverse assemblages of Ephemeroptera, Hemiptera, and Hydracarina; two species
of amphipods, Gamrnarus lacustris and Hyalella azteca; and, two species of
Hirudinea, Nephelopsis obscura and Glossiphom'a complanata.
Upper Island Lake--
Upper Island Lake deep benthos was less diverse than either of the other
study lakes. Quantitative sampling produced 15 taxa, while qualitative shore-
line collection yielded 22. Six taxa were common to both areas. The low
diversity may be a consequence of sampling only one deep site (UI4). The most
abundant organisms in 1982 were the large chironomid, Chironomus sp. 2. An
immature Tubificidae (without capilliform chaetae, probably Limnodrilus
spiral is), was the most abundant organism during 1983. The shoreline community
exhibited genera similar to Ned Wilson Lake (Table 12). Noticeably absent from
all samples in Upper Island Lake were specimens of Pisidium sp. The lake floor
is almost entirely rock/rubble; consequently, unsuitable habitat may be the
limiting factor.
Lake Diversity--
Chironomidae and Oligochaeta appeared to be the most diverse and, depend-
ing upon the lake, the most abundant groups within the benthic invertebrate com-
munities of the Flat Tops lakes (Table 11). Fifty-four macroinvertebrate taxa
were encountered in quantitative (Ekman) samples from all lakes; eight were at
the family level or higher, and all likely included more than one genus. Qual-
itative shoreline sampling collected 83 taxa; 42 of which were not found in the
Ekman Samples. These data indicate that the shoreline-littoral zone contains
the most diverse invertebrate communities within the study lakes. Alterna-
tively, more rare taxa may be encountered when sampling shallow littoral areas
because greater area and diversity of habitat can be sampled.
Species lists for each lake can be more than doubled by collection of
qualitative samples and this practice should be continued. Additionally, a
unit effort should be recorded for each sample collected; e.g. man hours dip
netting and field or laboratory sorting, to assist future survey comparability.
Times were not recorded during our surveys; however, between 10 and 16 man-
hours were probably involved in each lake's qualitative sampling. This included
three to four separate collection locations per lake (Figures 2, 3, and 4).
Additional data on Hester-Dendy and basket samples taken from Ned Wilson
Lake and 10-rock samples taken from both Ned Wilson and Upper Island Lakes are
provided in Appendix H. Of these sampling methods, only the 10-rock method
consistently provided more than 100 organisms and the greatest diversity in
taxa collected. However, the supplemental information provided by the 10-rock
sampling method is minor and probably does not justify inclusion of this
technique in future sampling programs.
39
-------
Invertebrate results from a dip net sample, collected from a small spring
approximately 100 m north of Ned Wilson Lake (August 18, 1982), are provided
in Table 12 and Appendix I. The spring community near Ned Wilson Lake during
1982 was dominated by some typical stream invertebrates; e.g., caddisflies,
Limnephilus externus and Psychorom's costal is; both amphipod species, as well
as many other species located along the shoreline of Ned Wilson Lake. Surpris-
ingly, some species (N_. obscura, (5. lacustri's and H_. azteca) found in the other
two lakes, but not Ned Wilson Lake, were also encountered in the spring samples.
The usefulness of this spring community to monitor changes associated with
acidification is limited because it was dry in 1983. However, other springs
and small streams of the Flat Tops may be very responsive to acid deposition
because condensed pollutants released with early snowmelt will most strongly
impact these communities. Water in the entire system may be quickly acidified
during periods of runoff. Lake communities are more resilient to changes in pH
because spring runoff may slowly dilute or contribute fractionally to the
lake's total water volume.
Confidence in Data
Except as noted below, confidence in all taxa is considered high. Ephem-
eroptera were initially identified to genus using Edmunds et al. (1976). Con-
firmation was done by C. Evan Hornig, Moscow, Idaho, who identified Callibaetis
sp. as probably Ł. coloradensis Banks. Cloeon sp. were also given a probable
species, C_. ingens McDunnough, because no other species have been described from
Colorado. Confidence in generic identification for Ephemeroptera is high;
species confidence is moderate. C. Evan Hornig also confirmed Odonata, non-
chironomid Diptera, Coleoptera, and Hydracarina. Enallagma sp. were identified
as probably Ł. boreale (Selys) using a few larvae and three adults (Needham et
al. 1972); confidence is moderate. Corixids, Arctocorisa sutilis (Unler) and
Cenocorixa wileyae (Hungerford), were identified by Russ Biggam using Hungerford
(1948); confidence is high. Gerris sp. specimens were immature and difficult
to distinguish; however, as no other genera of Gerridae have been reported in
Colorado; confidence is moderate. Original generic identification for Hemiptera
and Odonata utilized Usinger (1974). Generic keys of Pennak (1978) were used to
identify Hydracarina.
Palpomyia sp. were identified from mature larvae originally classified
as Palpomyia group (Johannsen 1937); confidence is moderate to high. Only one
species of Acilius is known from Colorado (A. abbreviatus Aube), thus, con-
fidence is moderate. Three species of Agabus and two species of Hydroporus
were distinguished based on size, setation, and coloration of adults. All
Coleoptera were keyed to genera using Usinger (1974). Hydroporus species may
be lake specific (Tables 11 and 12). Deronectes grisepstriatus"were the only
adults identified which associate with larvae originally called Deronectes/
Oreodytes. Larvae can only be keyed to the genus complex and larvae encoun-
tered were assumed to be associated with adults. This assumption is weak, and
confidence is moderate for larvae, but high for adults. Rhantus sp. identifi-
cation was questionable; hence, confidence is low to moderate.
Trichoptera were originally keyed to genus with Wiggins (1977). David
Ruiter, Denver, Colorado, confirmed Trichoptera genera identifications and
noted P_. costal is as the species of Psychorom'a found in Ned Wilson Spring;
40
-------
confidence is high. Mature Limnephilus larvae were identified as L. externus;
confidence is high. Wiggins (1977) notes only one species of PsycTToglypha,
(IP. subborealis) with specific characters that fit those collected. D. Ruiter
notes that there are two species of Psychoglypha in Colorado with unassociated
larvae; the confidence in species may therefore be only moderate. A few adults
collected at Oyster Lake, not included in counts, were identified by D. Ruiter
as Agrypm'a deflata and Mystacides interjecta; no larvae were encountered.
Chironomidae were originally keyed to genus using Oliver et al. (1978)
and Ferrington (1984). Confirmations were done by Dr. L. Ferrington, Kansas
Biological Survey, University of Kansas (1982 collections) and James Pollard,
UNLV, (1983 collections). Unless otherwise noted, confidence in Chironomidae
identifications is high. Chironomus sp. 1 possesses ventral tubules; Chironomus
sp. 2 had none. J. Pollard noted Di'crotendipes sp. probably were near Ł.
neomodestus as described in New York by Simpson and Bode (1980); however, it
has not been included as a species. Microtendipes sp. 2 was distinguished from
sp. 1 in that sp. 2 has visibly anteriorly directed (L-shaped) anal tubules
whereas sp. 1 has normal anal tubules. Additionally, the mentum of sp. 2 does
not possess the small first laterals common to sp. 1. Tanytarsus appears to
consist of more than one species; hence, Tanytarsus spp. may be more appropriate.
Lenziella sp. (Ferrington 1984) keys only to Cladotanytarsus sp. in Oliver et
al. (1978) and other keys. Some question exists in this genus, further exam-
ination is under way, but confidence can only be stated as moderate. Only one
specimen of many Pseudokiefferiella sp. exhibited the difficult to distinguish
annulations on the third segment of its antenna which places the organisms in
Diamesinae (Ferrington 1984). Otherwise, all key well to Cricotopus laricomalis
(Oliver et al. 1978, Hirvenoja 1973). One large Ł. laricomalis was'found in
Ned Wilson Spring in 1982, however, only small (early instars) larvae were col-
lected in Ned Wilson Lake during 1983. These specimens will be further studied;
currently, confidence in Pseudokiefferiena sp. is low. Our Psectrocladius
sp. 2 does not fit Ferrington's (1984) key well, but it keys readily in Oliver
et al. (1978). Ferrington's key identifies Psectrocladius sp. 2 as Limnophyes
sp., hence, Psectrocladius sp. 2 confidence currently is low; additional study
will be undertaken.
All zoobenthic crustaceans listed were identified using Edmondson (1959);
confidence is high. However, one exception should be noted. Ostracods listed
as Candona scapulosa possessed difficult characteristics; hence, our confidence
in their identification is low. These will be sent to a specialist for confirma-
tion. Other specimens were confirmed by Gene Wilde, UNLV. Amphipods were
originally keyed using Holsinger (1972) and later confirmed in a discussion
with J. Holsinger; confidence is high.
Specimens of Hirudinia were identified using Klemm (1972) and later con-
firmed by D. Klemm; confidence is high. Oligochaetes have also been offered to
D. Klemm for confirmation. Wesley Kinney did original oligochaete identifica-
tions using keys of Brinkhurst and Jamieson (1971), Hiltunen and Klemm (1980)
and Stimpson et al. (1982); confidence is moderate to high for all oligochaetes.
One noteworthy observation should be mentioned. The immature Tubificidae
without capilliform chaetae (W.O.C.C.) are likely immature Limnodrilus spiral is,"
and those with capilliform chaetae (W.C.C.) immatures of Ilyodrilus tempietoni.
Because reproductive organs are not developed in"these individuals, they cannot
41
-------
be positively identified as species of either. No other mature tubificial
species were isolated and therefore it is likely that they belong to no other
species.
The pelecypoda, Pisidium sp., was confirmed by J. Landye, (Arizona Game
and Fish) and W. Pratt, (UNLV); confidence is high. Additionally, W. Pratt
notes that all specimens are likely from a single species.
Sensitivity to Acidification
Many macroinvertebrates of the class Insecta are generally classified as
tolerant to acidic waters. Corixidae and Gerridae (Hemiptera), Coleoptera,
Odonata and many Diptera are considered very tolerant of acidifying conditions
in reviews by Roback (1974) and Singer (1982). Although various life stages
and species within larger groups may be more sensitive than others, most adult
stages are very tolerant. Tolerance results principally from the lack of fila-
mentous gills or presence of gills which obtain oxygen at the surface and a
heavy integument. The most sensitive insect order is probably Ephemeroptera
(Harriman and Morrison 1980, Fiance 1978, Singer 1982). Decreased abundance
of Ephemerella funeral is in an experimentally acidified stream section related
strongly to lowered pH (Fiance 1978). Hendrey et al. (1980) also noted con-
spicuous mayfly absences in acidified lakes. Very few mayflys were obtained
from the study lakes, (Appendices D, E, F and G); however, Caenis sp. and
Callibaetis coloradensis occurred regularly in Oyster Lake samples (Tables 11
and 12).Loss of these taxa would suggest severe water quality changes.
Coleoptera, Odonata and Corixidae (Hemiptera) often profilerate in acidified
lakes and streams. The trend has usually been associated with fish population
losses at pH values well below 6.0. Many species of the three groups can
expand with losses of fish predators because they are top insect predators.
Fish population changes probably would be noted prior to correlated insect
population changes. Predatory larval and adult insects usually occurred in
only qualitative samples; rarely were any found in Ekman dredges (Tables 11 and
12). Predatory insect population proliferation, in conjunction with or without
fish losses, could imply acidifying conditions.
Chironomidae and Oligochaeta taxa constitute the majority of organisms
collected in benthos of all study lakes (Table 11). Responses of larval
chironomids to lake acidification has been suggested by various studies which
compare acidified and neutral lake benthic communities. The use of chiron-
omigenera as indicators may be possible in the near future; however, little
detailed information is currently available. Wiederholm and Eriksson (1977)
noted Tanytarsus spp. was often absent or reduced in density in acidified
lakes.Beck's (1977) comprehensive review of chironomid literature does not
isolate genera or species present in Flat Tops lakes which might be consistent
indicators of changing pH conditions. Uutala (1981) noted an acidified lake
(South Lake, New York) had lower chironomid densities, higher annual mean
standing crop and higher annual production than a neutral lake (Deer Lake,
New York). .South Lake, with an alkalinity of 2-10 ug/1 (Mitchell et al. 1981)
and pH of 4.6-5.7, has undergone acidification and recent fishery losses
(Pfeiffer and Festa 1980). Deer Lake has not undergone noted acidification
(alkalinity 90-124 ug/1 and pH 5.9-6.8; Mitchel 1981). Thirty-three chironomid
genera were collected in nonacidified Deer Lake, with Procladius sp. dominant.
42
-------
Acidified South Lake chironomid communities were dominated by Chironomus spp.
and Phaenospectra spp. and contained 12 genera (Uutala 1981). Surveys by
Wiederholm and Ericksson (1977) noted chironomid community differences asso-
ciated with depth. Because sample depths within Uutala's (1981) study lakes
were different, conclusions are somewhat weakened. In an Ontario survey,
Collins et al. (1981), found minor benthic invertebrate abundance and biomass
differences between acidic and neutral lakes. Collins et al. (1981) attributed
the lack of impact to sediment buffering. Infauna, such as chironomids, oligo-
chaetes and pelecypodas, inherently are somewhat protected by the medium they
inhabit. Chironomids may also avoid pollutants by moving substantial distances
through sediments (Wentsel et al. 1977). Chironomid mobility within sediments,
sediment buffering capacity, and depth variability probably reduce infauna
population alterations associated with lake acidification. Additionally,
literature concerning chironomid responses to acidic waters is rare and the
taxonomy is poorly known. The effects of increased H+ ion concentrations and
increased heavy metal content within waters and sediments of Flat Tops lakes,
however, are likely to produce some community changes. Few specific taxon
effects can be predicted; however, community alterations; e.g., changes in
number of taxa, abundance, diversity, biomass (standing crop), and productivity
can be expected (Wiederholm and Eriksson 1977, Uutala 1981). Future monitoring
of macroinvertebrates should assess chironomid richness and density. Addition-
ally, should one or more study lakes be impacted, chironomid community altera-
tions, if documented, would prove invaluable because few prior and post acidi-
fication comparisons exist.
Benthic crustaceans, especially the amphipod, Gammarus lacu_str_1_s, found in
many lakes have been identified as indicator species. In high mountain lakes
of Norway, G. lacustris is not found in waters with pH values less than 6.0
(Oakland 19BO)~Oakland (1980) also noted in his survey of 1000 lakes, that
Ł. 1acustris does not occur in lowland lakes with pH values less than 6.6. Few
cfata are available concerning Hyalella azteca. However, it was considered to
be a very sensitive species during an experimental stream channel acidification
(Zischke et al. 1983). Although less affected at pH 6.0 (its drift increased
drastically initially), density was significantly reduced at pH 5.0 during
periods of acidification. Chronic effects of acidifying conditions on H^.
azteca populations may be substantial. Both amphipods were encountered in Ned
WiIs on and Oyster Lakes, and losses may be indicative of acidification.
In general, Oligochaeta are tolerant of many polluted conditions (Hart and
Fuller 1981), but their sensitivity to acidified conditions may be substantial.
Seasonal and depth variation in oligochaete community composition may produce
very different results within and between lakes (Raddum 1980). Wiederholm and
Eriksson (1977) and Raddum (1980) observed lower oligochaete densities and
biomass in acidic lakes. One species, Limnodrilus hoffmeisteri, has been
observed to dominate the benthic community of an acidic lake (Orciari and Hummon
1975). Limnodrilus spiral is, a species very similar to L_. hoffmeisteri, occurs
commonly in Ned Wilson and Upper Island Lakes and rarely in Oyster Lake (Table
11). Should L_. spiral is populations become the dominant invertebrate in the
lakes, changes in water quality could be a factor. Like chironomids, however,
many factors contribute to sediment-inhabiting invertebrate population changes.
Therefore, observed changes within oligochaete communities by themselves may
43
-------
not be well defined indicators of water quality changes. Future alterations
may be quantifiable because current data are available.
The effects of acidification on leech (Hirudinea) communities common to
the study lakes are potentially significant. Nephelopsis obscura individuals
have been observed in waters with pH values between 6.3 and 10.0; Glossiphonia
complanata in waters exhibiting pH values only as low as 5.5.; and Helgbdella
stagnalfs~in very polluted waters and waters with pH values down to 5.0 and
4.0 (Sawyer 1974). Although community changes would not be expected until mean
water pH values approximate 6.0, pulse events; such as, snowmelt, could pre-
cipitate temporary alterations before the entire lake acidifies permanently.
The only difficulty encountered in sampling Hirudinea is that, except for H_.
stagnalis, those present inhabit the littoral vegetated zone (Sawyer 1974).
Absence or presence may be difficult to verify using qualitative sampling
methods. In general, losses of N_. obscura and 6. complanata (both sampled only
from Oyster Lake) or proliferation of H. stagnaTis (sampled from Ned Wilson and
Upper Island Lakes) could indicate acidifying conditions.
Losses or absences of shaeriid molluscs from acidified lakes has been
documented (Singer 1981). Most species of Pi sidiurn are not found in waters
with pH values less than 6.0 (Oakland 1980)TIn acidified lakes, molluscs and
gastropods are characteristically reduced in density or absent (Wiederholm and
Eriksson 1977, Singer 1982). Molluscs, being part of the sediment infauna, may
be subject to less perturbation due to changes in water quality than epifauna.
Aside from direct toxicity, shell dissolution and reduced CaC03 available for
shell secretion in low alkalinity-acidic waters may be chronically harmful.
Singer (1981) noted that shells of Anodonta grandis (Unionidae) taken from
acidified lakes were "half as thick as any of the other shells (from neutral
lakes), heavily eroded, overlain with organic material and crumbly. . .."
Although not considered in the present study, future investigations may be able
to utilize this source of information. See Rhoads and Lutz (1981) for further
shell study details. Pi sidiurn sp. were not collected from Upper Island Lake,
hence, usefulness as an indicator of problems in Upper Island Lake is null. In
both Ned Wilson Lake and Oyster Lake, Pi sidiurn sp. is abundant to very common
(Tables 11 and 12). Population reductions or losses would be strongly indica-
tive of water quality alterations.
Macroinvertebrate Community Indices
At one time, the concept of indicator species, groups, or parameters had
great expectations as a basic tool to monitor changing water quality. The
goal of many biological monitoring programs has been to isolate and record
changes in indicator species or taxa. Very often, taxonomic groups as high
as the family level are used to specify pollutant tolerances (Roback 1974,
Hall et al. 1980, Eilers et al. 1984). Species and population sensitivity
ranges, interactions with varying community assemblages, and differing quality
of waters result in a multitude of organism responses. Additionally, specific
responses of vertebrates, macroinvertebrates, zooplankton, periphyton,
and phytoplankton to acidifying waters are relatively unknown and, when
available, are often contradictory. Presence or absence of indicator species
may be due to: 1) water chemistry, 2) availability of a colonization species
44
-------
pool, 3) season of collection, 4) stream flow or lake stratification regimes
and 5) chance (Roback 1974). Hence, actions based upon alterations within
community indicator species or assemblages may be precarious. Biological
data used as baseline information, however, are invaluable. Specific indices
can be useful when referenced along with available community structure and
function information.
Oyster Lake contains the most dense (>14000 individuals/m^) and most
species rich (18 taxa per sample) benthic invertebrate populations (quanti-
tative data, Table 13). Diversity in Oyster Lake is also higher than the other
lakes at 2.92 and 2.85 for 1982 and 1983, respectively (Table 13). Except for
NW3, evenness and dominance is usually similar between sites and years for each
lake (Table 13). Ned Wilson site 3 is unique because it is very shallow and
contains some gravel and rock debris. Significant differences (a<0.05, ANOVA)
exist in the number of taxa and number of organisms collected between 1982 and
1983 from Ned Wilson Lake, but no differences are noted between years in Oyster
Lake (Table 13). Site differences from Ned Wilson Lake (1983 survey) appear
minimal. Only site 3 (NW3) contained significantly fewer taxa than site 4
(NW4). No station by itself was different from the pooled data for 1983 for
any index tested (Table 13). Indices of diversity, evenness and dominance
appear less variable than the more direct indices (number of organisms and
number of taxa sampled). The evidence suggests that one station alone or more
than one station (pooled) would provide similar results.
Sensitivity of Indices to Acidification
Typically, acidification of the environment results in: 1) reduced number
of taxa or richness (Hendrey et al. 1980, Arnold et al. 1981, Raddum and Saether
1981, Zischke et al. 1983); 2) reduced density or abundance (Sutcliffe and
Carrick 1973,, Wiederholm and Eriksson 1977, Fiance 1978, Friberg et al. 1980,
Burton et al. 1982, Zischke et al. 1983); 3) reduced diversity and conversely
increased dominance (Herricks and Cairns 1976, Tomkiewicz and Dunson 1977,
Wiederholm and Eriksson 1977, Friberg et al. 1980, Hall et al. 1980, Vangenech-
ten 1983, Zischke et al. 1983); and 4) usually, but not always, a reduction in
standing crop, biomass, and productivity (Leivestad et al. 1976, Tomkiewicz and
Dunson 1977, Collins et al. 1981, Uutala 1981, Danell and Andersson 1982). The
alteration in one or more index may suggest changes in Flat Tops lakes' water
quality. Evidently, sampling from only one deep site is sufficient to enumer-
ate benthic invertebrate community structure from detritus/ooze bottom lakes.
Annual differences between the number of taxa and organisms collected, however,
suggest seasonal or annual differences can be substantial in Ned Wilson Lake.
Unless natural variation in invertebrate populations is understood, meaningful
conclusions cannot be drawn from even drastic alterations. Most indices vary
seasonally and yearly in response to natural cues and species' circadian or
innate rhythems; e.g., spring pupal emergence, reproduction and ecolosion (egg
hatching). A series of benthic surveys during ice free periods for a minimum
of one year could elucidate natural seasonal variation. Annual variation could
be ascertained in a few years of samplings. Although neither variation can be
entirely quantified, additional surveys can aid management decisions when
community alterations are observed.
45
-------
TABLE 13. MEAN VALUES AND RESULTS OF SELECTED ANOVA AND STUDENT NEWMAN KUELS TEST OF RANGES (SNK) FOR
FLAT TOPS LAKES MACROINVETEBRATE COMMUNITY PARAMETERS. ANOVA designated differences are
Isolated by SNK tests; significant differences noted as o = 0.05; parentheses delineate
test limits. Mean density estimates (#/m2) can be calculated by multiplying counts (mean
number collected) by 43.1.
Parameter
Number of Organisms
Collected
Number of Taxa
(Richness) v
Shannon-Welner
Diversity
Evenness
Dom1 nance
7
SNK
SNK
7
SNK
SNK
7
SNK
7
SNK
7
SNK
Ned Wilson Lake Oyster Lake Upper Island Lake
1982 1983
Sites Sites 1983 1983 1983 1983 1982 1983 1982 1983
1, 2, 3, 4 1, 2, 3, 4 Site 1 Site 2 Site 3 Site 4 Sites 1, 2 Sites 1, 2 Site 4. Site 4
139 102 93 94 83 138 317 334 240 175
( )
( ) ( ) ( )1
10 13 13 13 10 15 18 18 10 7
(
( ]
I |
2.5024 2.622 2.831 2.827 2.003 . 2.829 2.9208 2.8466 2.2942 1.9605
( )
0.7497 0.7177 0.7643 0.7668 0.6154 0.7242 0.7013 0.6839 0.6817 0.7180
( )
0.7589 0.7592 0.8036 0.8149 0.6145 0.8042 0.7858 0.7778 0.6987 0.6857
( )
Note 1. ANOVA not usable due to lack of variance homogeneity; Kruskell-Wailace Test results.
-------
SALAMANDERS
Distributions and Sensitivity to Acidification
Only Oyster Lake contained a population of salamanders, Ambystoma tigrinum.
Population surveys or tissue analyses were not conducted. An attempt to charac-
terlze the Oyster Lake A_. tlgn'num population size may be warranted. Addition-
ally, heavy metal analysis of tissues could help expand the data base for the
salamander which is the only vertebrate inhabiting waters of Oyster Lake.
Ambystoma tigrinum is one of the most widely distributed salamanders
occurring in the United States (Sexton and Bizer 1978), and the only salamander
on the western slopes of the Colorado Rockies (J. Harte 1984, personal commun-
ication). Ambystoma tigrinum is normally the largest aquatic vertebrate present
in high altitude ponds devoid of fish. The introduction of fish results in
elimination of viable populations (Sexton and Bizer 1978). Ambystoma tigrinum
populations in Oyster Lake can be visibly censused. Its appropriateness as an
indicator species in mountain regions of the west may be substantial. Salaman-
ders breed in temporary, as well as permanent, pools that develop from spring
snowmelt (Rough 1976), and pH sensitive early life stages are potentially sub-
jected to a concentrate of acidic runoff. High egg mortality and embryonic
abnormalities have been observed in Ambystoma maculatum temporary acidic ponds
and laboratory experiments (Rough 1976, Rough and Wilson 1977). Certain other
species of Ambystoma appear more tolerant (Rough 1976). No information exists
relative to A_. tigrinum responses to acidifying conditions. Clearly, more
data would be required prior to utilization of A. tigrinum as an indicator
species.
FISH
Distributions
Population demography and reproductive extent of sal mom" ds inhabiting Ned
Wilson and Upper Island Lakes are not known. Brook trout (Salvajinus fontinal1s)
occur in Ned Wilson Lake; rainbow trout (Salmo gairdneri), cutthroat trout
(Salmo clarki) and hybrids occur in Upper Island Lake. No fish were observed
in Oyster Lake. All salmonids presumably were stocked. Whether natural repro-
duction is occurring could not be determined.
Sensitivity to Acidification
If natural reproduction occurs in these lakes, the potential for acid-
induced population changes would be significant. Gametogenesis, eggs, larvae,
and fry of salmonids have been shown to be very sensitive to effects of acid-
ification (Kwain 1975, Schofield 1976, Chakoumakos et al. 1979, Van et al.
1979, Sevaldrud et al. 1980, Haines 1981). Experimental and actual field data
suggest reproduction of brook, rainbow and cutthroat trout is chronically
impacted at pH values between 5.5 and 6.5 trout (McKim and Benoit 1971, Kwain
1975, Menendez 1976, Sevaldrud et al. 1980). Mature fish often suffer acute
effects of acidification only after pH values are reduced below 5.5 (McKim and
Benoit 1971, Huckabee et al. 1975, Falk and Dunson 1976, Schofield 1976, Haines
47
-------
1981, Baker and Schofield 1982). Consequently, early signs of acidification
probably would not be discerned by changes in an artificially maintained sal-
monid population. A reproducing population would show effects of early acidi-
fication by changing population age and growth structure. Determination of
fish population structure in all study lakes containing reproducing populations
would be a critical component of a long-term monitoring program. Because
variation in annual recruitment may be substantial, two to five years of data
would be vital.
Tissue Metal Concentrations and Metal Toxicity
Mean metal concentrations of whole fish and gills from brook and cutthroat
trout from Ned Wilson and Upper Island Lakes, respectively, are presented in
Table 14. Appendix J contains raw data. Metal concentrations in brook trout
taken from Ned Wilson Lake during 1982 were typically very low. Zinc (Zn) con-
centrations in whole bodies of brook trout showed only a slight increase during
1983, whereas Cu and Ni levels were elevated several fold. The 1983 data,
however, were derived from analysis of only two trout, whereas six trout collec-
ted in 1982 were digested and analyzed. No trout were collected from Upper
Island Lake for tissue analyses during 1982, but two cutthroats were collected
and homogenized for whole body analyses during 1983. Concentrations of Cu, Ni
and Zn were approximately an order of magnitude higher in these specimens than
the highest values observed in Ned Wilson Lake brook trout. It must be empha-
sized that the sample size was very small (2 specimens) and these data must be
interpreted with this in mind. Additional sampling and analyses of Upper
Island Lake cutthroat trout of various age classes should be conducted to
further examine metal concentrations in fish tissues. Very little literature
is available comparing tissue metal concentrations of fish from acidic and neu-
tral lakes. Increased mobilization of mercury (Hg), aluminum (Al), lead (Pb),
iron (Fe), manganese (Mn), nickel (Ni), cobalt (Co), magnesium (Mg), zinc (Zn),
copper (Cu) and other metals have been associated with acidifying conditions
and fish toxicity (Freeman and Everhart 1971, McKim and Benoit 1971, Huckabee
et al. 1975, Merlini and Pozzi 1977, Norton 1977, Chakoumakos et al. 1975, Van
et al. 1979, Jackson et al. 1980, Baker and Schofield 1982). Although direct
toxicity from metals can occur, concentrations currently in these lakes' water
would have to increase many times to reach toxic concentrations. Tissue metal
concentrations, however, may be increased in conjunction with further acid
deposition and metal mobilization. Of particular concern in the Flat Tops may
be increasing concentrations of aluminum from the oil shale industry. Freeman
and Everhart (1971) note that the recovery process releases aluminum from
certain types of oil shale (Dawsonite). Increases in tissue metal concentra-
tions may be indicative of altered water quality and well in advance of whole
lake acidification. Future study should entail tissue metal determinations.
METALS IN SEDIMENTS
Metal Concentrations
Mean metal concentrations within Flat Tops study lakes' sediments are
provided in Table 15. Raw data are available in Appendix K. Aluminum is the
most abundant metal in sediments, with concentrations between two and three
48
-------
TABLE 14. DIGESTED TISSUE METAL CONCENTRATIONS FROM NED WILSON LAKE {S. fontlnalls) AND UPPER ISLAND
LAKE (S. clarkl) FISH COLLECTED DURING
Lake/Date
Ned Wilson
07-06-82
Ned Wilson
08-25-83
Upper Island
08-27-83
parentheses
Sampl e
S. font 1 nails
(Whole)
S. fontl nails
(Whole)
S. fontl nails
(Gills)
S. clarkl
(Whole)
S. clarkl
~ (Gills)
below
As
<0.08
(0)
<0.05
(0)
<0.08
<0.05
(0)
<0.05
1982 and 1983. Stanoard deviations are noted 1n .
each mean.
Se
3.3
(0.24)
0.8
(0)
<0.08
0.3
(0.19)
1.6
Fe
N/A
<5
(0)
<5
<5
(0)
<5
Mn Pb
N/A 1.4
(0.50)
<2.5 44
(0) (0.7)
<2.5 19
<2.5 89
(0) (4.2)
<5 3
Element
Be Cd
0.3 0.9
(0.15) (0.27)
N/A 0.7
(0)
2.7
N/A 0.6
(0.01)
0.8
t
(mg/kg)
Cr
2.7
(1.12)
3.5
(0.7)
<3
3.5
(0.7)
<3
Zn
116
(29.6)
174
(0.7)
102
978
(18.4)
65
N1 Cu
1.9 5.2
(1.88) (0.47)
94 142
(2.1) (1.4)
<8 6
11.82 1078
(24.7) (25.5)
<3 11
Ag
<0.001
(0)
<2.5
(0)
<2.5
<2.5)
0
<2.5
Al Hg
N/A N/A
83 <38
(3.5) (0)
383
<50 <38
(0) (0)
<50
Mg
N/A
<25
(0)
<25
<25
0
<25
-------
TABLE 15. DIGESTED TOTAL METAL CONCENTRATIONS FROM SEDIMENTS COLLECTED DURING 1982 AND 1983 FLAT
TOPS LAKE SURVEYS. Concentrations are mg/kg except Al (g/kg). Standard deviations are
noted in parentheses below each mean.
in
o
Lake/Date
Ned Wilson
8-25-83
Oyster
8- 18-82
Upper Island
8-27-83
Sample
Sediments
(NW4)
Sediments
(0.6)
Sediments
(UI4)
As
a 016
(0.001)
a 009
(0)
a 020
(0.007)
Se
-------
percent (sediment weight) occurring in all lakes (Table 15). This is not sur-
prising, however, because aluminum averages near six percent in surrounding
watershed soil (J. Turk unpublished data). Concentrations of other metals in
lake sediments are well within the range expected for unimpacted Western U.S.
waters.
Acidification Effects
The importance of lake sediments as a sink for heavy metals in the water
column is well known (Oschwald 1972, Wentsel et al. 1977). However, increases
in aquatic metal concentrations have been related to increased leaching from
soil and benthic sediments as a result of acid deposition and runoff (Beamish
1975, Malmer 1976, Wright and Gjessing 1976, Schofield 1976, Norton 1977,
Cronan and Schofield 1979, Jackson et al. 1980, Schindler et al. 1980). The
potential for metal concentration changes due to acidification is significant.
Certain metals (Hg, Al, Mn, Zn, and Fe) have been shown to decrease in sediment
concentration or rate of incorporation into sediments when water pH is reduced
(Jackson et al. 1980, Schindler et al. 1980). Other elements (Ba, Se, Cs, and
V) either increase concentrations within sediments or are not affected by water
pH changes (Schindler et al. 1980). Specific changes in solubility, predom-
inant species, receptor sites, sediment and water quality, and degree of acid-
ification affect metal sources, sinks, pathways and rates of transfer. Hence,
each metal surveyed from Flat Tops lake sediment will likely behave differently
from other metals. Aluminum, for instance, is known to increase in solubility
as pH deviates either upwards or downwards from pH 5.5 (Freeman and Everhart
1971). Consequences of increased concentrations of metals in the water column
(due to enhanced soil leaching and industry inputs), associated with acidifi-
cation, could have a variety of effects on metal concentrations in sediments.
These effects can not be predicted by the authors. Future monitoring of sedi-
ment metal chemistry will be valuable. Currently, its only value is as base-
line data because alterations in metal concentrations in the sediment cannot be
accurately foretold. One to three years of baseline data should delineate the
natural variation, which is expected to be low.
WATER QUALITY
Lake Characteristics
In 1983, temperature structure in both Ned Wilson and Oyster Lakes was
isothermic due to the shallow depth of these lakes (Figure 5). Dissolved oxy-
gen concentrations in these lakes were below saturation and exhibited a clino-
grade oxygen profile. Upper Island Lake was deeper and thermal stratification
was well developed with a thermocline depth between 8 and 10 m. Dissolved
oxygen concentrations in Upper Island Lake exhibited a positive heterograde
oxygen profile which was associated with thermal stratification. Dissolved
oxygen concentrations were near saturation or super saturated in the epilimnion
and metalimnion; however, oxygen depletion had occurred in the hypolimnion and
dissolved oxygen concentrations were below saturation. Temperature structure
and oxygen profiles were similar in 1982 (Baldigo et al. 1983).
51
-------
14 15 16 17 18
20
1-
I2
1 3"
4-
• 5-
I J"
H
I \
i
I '
I i
45678
Dixsotved Oxygen (mg/Q
Oyster
Temperature °C)
14 15 16 17 18 19 20
45678
Dissolved Oxygen (mg/Q
10 11 12 13 14 15
I
5
l
678
Dissolved Oxygen (mg/l)
Figure 5. Temperature
and dissolved oxygen (A A) depth
profiles from Flat Tops lakes sampled August 1983. Each data
p'oint represents mean values from all sites at similar depths
within a given lake.
Physical and chemical parameters measured in the Flat Tops lakes (Table
16) were typical of lakes in this region of.Colorado (Harte et al. 1984, Turk
and Adams 1982, Dodson 1982). Ion concentrations (conductivity), alkalinity,
sulfate and chloride concentrations were lowest in Ned Wilson Lake (Table 16).
These parameters were only slightly higher in Oyster Lake but were approximately
two times higher in Upper Island Lake (Table 16). Metal concentrations were
low and were all well below toxic concentration (Table 17). Mean pH values for
Ned Wilson, Oyster and Upper Island Lakes were 6.8, 8.2 and 6.3, respectively
(Table 16). Measurements of pH with the instruments used in this survey were
questionable because of the low ionic strength of the water (personal communi-
cation Hydrolab Corporation, Gallaway et al. 1982). However, pH values were
52
-------
TABLE 16. NED WILSON LAKE, UPPER ISLAND LAKE, AND OYSTER LAKE WATER CHEMISTRY,
EXCLUDING METALS. Data were generated from composite samples
collected during August, 1983.
Ned Wilson
Parameter
Temperature2 (°C)
Dissolved Oxygen2 (mg/1)
pH2 (units)
Conductivity2 (umho/cm)
Alkalinity (ueq/1)
Color (NTU)
TOC (mg/1)
DOC (mg/1)
Sulfate (ug/D
Chloride (ug/D
Fluoride (ug/1 )
Total Phosphorus (ug/D
Nitrate (ug/1 )
Nitrite (ug/D
Ammonia (ug/D
Chlorophyll a3 (ug/D
Y
16.1
6.1
6.8
64.2
78.2
0
2.61
2.86
522.8
123.8
<60.0
15.9
<164
<7.2
29.5
1.3
SD
0.4
0.3
0.3
8.3
11.4
0
1.30
1.39
38.2
20.0
0
0.3
0
0
3.3
0.1
Oyster
Y
18.5
6.2
8.2
112.5
216.0
0
5.07
0.321
777.0
178.7
<60.0
18.2
<164
<7.2
46.5
1.2
SD
0.3
0.1
0.1
4.6
8.5
0
0.81
0.28
40.8
16.7
0
0.4
0
0
6.4
0.1
Upper Island
Y
14.6
7.3
6.3
68.9
96.0
0
2.32
0.671
559.6
139.2
<60.0
13.5
<164
<7.2
29.5
1.1
SD
0.2
0.6
0.2
3.2
3.3
0
0.79
0.89
38.5
46.8
0
1.2
0
0
15.8
0.2
Note 1. Resultant means and standard deviations incorporate detection limit
data; actual mean is likely less than presented.
Note 2. These data were generated from 0, 1, and 2 meter depth samples;
i.e., surface readings only.
Note 3. Strickland and Parsons (1972) uncorrected chlorophyll Ł; phaeophytin
correction results in unreliable negative values.
within reported ranges for these lakes (USGS unpublished data). Nutrient
concentrations were relatively high (Wetzel 1975) with total phosphorus concen-
trations greater than 13 ug/1 and ammonia concentrations greater than 29 ug/1
in all study lakes (Table 16). Although nutrient concentrations were relatively
high, phytoplankton biomass was low in all lakes; chlorophyll Ł concentrations
normally were less than 1.4 ug/1. Organic carbon concentrations were also
low (Wetzel 1975) and did not contribute to color in these lakes (Table 16).
Acidification Effects
Various physical and chemical water quality parameters have been shown to
deviate in neutral lakes and streams upon acidification. Most of the chemistry
trends related to acidification presented in this report are from the experimental
acidification of Lake 223 in the Canadian Shield area (Schindler and Turner
1982, Schindler et al . 1980).
Obviously, increased acid inputs result in reduced pH and alkalinity and
an increase in ionic concentrations. Change in lake alkalinity is the best
53
-------
TABLE 17. MEAN TOTAL METAL CONCENTRATIONS FROM WATER SAMPLES COLLECTED DURING 1983 FLAT TOPS LAKES
SURVEYS. Less than values are included in calculations whenn other data are available,
hence some means are likely over estimated. Standard deviations are noted in parentheses
below each mean.
Element (ug/1)
en
-c*
Lake/Date Al Cd Zn Cu Cr Pb Se As Ca Ni Fe Mn Mg Ag
Ned Wilson 102 0.4 55 10 <50 6 <0.5 1.0 1401 <50 105 <50 <500 <50
8-25-83 (19.3) (0.25) (14.3) (3.6) (0) (3.2) (0) (0) (374) (0) (18.8) (0) (0) (0)
Oyster 102 0.3 52 10 <50 5 <0.5 1.3 1525 50 103 <50 946 <50
8-24-83 (0)
(23.5) (0.10) (7.6) (4.2) (0) (1.7) (0) (0.47) (182) (1.2) (5.3) (0) (200) (0)
Upper Island 107 0.4 67 14 <50 9 <0.5 1.0 2667 55 115 <50 <500 <50
8-27-83 (16.8) (0.48) (22.3) (4.5) (0) (2.8) (0) (0) (52) (16.7) (52.5) (0) (0) (0)
-------
indication of early acidification. As alkalinity is reduced in response to
acid inputs, a point is reached where the neutralizing capacity is exceeded.
As a consequence, pH can rapidly decrease and significant, often irreversible,
chemical and biological perturbations occur.
Acidification can reduce color by reducing total and dissolved organics
and, thus increase transparency and Secchi depth (Malley et al. 1982, Schindler
and Turner 1982, Van 1983). However, these parameters in the Flat Tops lakes
would be altered very little as all lakes are oligotrophic and color was not
detected. The Secchi disc was visible on the bottom at all lake sites except
one. Upper Island site 4 (UI4) had a Secchi depth of 9.5 m. Only at UI4 could
changes in transparency be associated with acidification.
Acidification effects on nitrogen cycling are complex. Reductions in
pH may inhibit bacterial decomposition and alter nitrification. Consequently,
an increase in ammonia and decrease in nitrite and nitrate could occur. Alter-
natively, urban areas contribute nitrates from auto emissions to precipitation.
Lewis and Grant (1980) determined nitrate contamination within precipitation in
Colorado was responsible for rainfall pH reductions. Therefore, increased
levels of nitrate could occur in the Flat Tops lakes with little or no altera-
tion in nitrite or ammonia. Nitrate monitoring would appear to be most inform-
ative of the nitrogen species and is recommended for future surveys. Because
all nitrate data are below detection, a technique which provides lower detec-
tion limits is recommended. Ammonia was the principal nitrogen species in
these lakes and should also be monitored.
Effects of lake acidification on phosphorus cycling appears minimal.
Schindler and Turner (1982) found no correlation between lake acidification
and total and dissolved phosphorus. Estimates of total phosphorus in our study
lakes, however, appear high and further monitoring could provide valuable
information.
Changes in chlorophyll a concentrations due to acidification within the
study lakes would appear to Fe of little consequence. x In general, chlorophyll
a decreases are anticipated with lake acidification and oligotrophication
TAlmer et al. 1974, Grahn et al. 1974). Schindler and Turner (1982) reported
increased chlorophyll Ł content with pH reduction. They related the unexpected
increase to a phytoplankton bloom associated with greater water transparency.
Perturbations due to a pH change would not be expected because the study lakes
exhibit very clear water and chlorophyll a_ concentrations are naturally low.
The components of water chemistry of utmost concern are heavy metals
which may reach toxic concentrations in lakes undergoing acidification. Acid-
ification increases metal leaching from soils and lake sediments. Although
conflicting data have been reported, trends can be generalized. Aluminum, Ca,
Co, Na, Fe, Mn, Ag, Cr, Zn, Pb, Cu, Cd, Ni and other metals have been reported
to increase in acidified stream and lake waters (Beamish 1976, Wright and
Gjessing 1976, Beamish and Van Loon 1977, Norton 1977, Cronan and Schofield
1979, Schindler et al. 1980, Schofield and Trojnar 1980, Schindler and Turner
1982). Metal solubility varies with specific water quality and the degree to
which acidification effects solubility varies substantially between elements.
Aluminum, Hg, and Fe are probably the most difficult metals to predict
55
-------
alterations caused by acidification. Aluminum, for example, increases solu-
bility below and above pH 5.5. Mercury becomes less soluble as water pH is
reduced; however, transferal rates to sediment are reduced. Metal concentra-
tions most likely to respond to pH changes are Al, Mn, Zn, Fe and Ni. Iron
(Fe), Al, Mn and Zn are released from sediments and increase solubility with
reduced pH (Schindler et al. 1980). Norton (1977) identified Al, Fe, Mn and Ni
as metals most susceptable to increased soil leaching during acidic runoffs.
Additionally, aluminum is highly concentrated in Flat Tops lakes sediments and
surrounding watershed soils. Water concentrations of these metals, especially
aluminum, should be monitored frequently to ensure toxic levels are not achieved
should acid deposition rates increase.
56
-------
MONITORING REQUIREMENTS
Monitoring Alternatives
A monitoring program designed to detect and quantify the extent of acid-
related disturbances to Flat Tops lakes should incorporate biological and chem-
ical components on an integrated basis. Biological monitoring is essential
to identify the nature and magnitude of changes to aquatic ecosystems, and
chemical monitoring is necessary to identify reasons for the changes. Bio-
logical monitoring is particularly useful for detecting episodic or infrequent
acidification impacts which are not detected with chemical monitoring. Unless
continuous automated samples or monitors are employed, chemical sampling would
not register temporarly water quality perturbations occurring in remote areas.
Biological monitoring is expensive in terms of manpower requirements, and the
results are frequently difficult to interpret because of the high natural var-
iability in communities, spatially, seasonally and annually. Owing to this
high variability, intensive surveys are required to adequately characterize
the distribution, abundance and seasonal patterns of the various lake community
assemblages. Because the biota respond to all external and internal factors
influencing the ecosystem, several years of baseline data may be required to
document the range of natural conditions (for example, community standing crop,
species composition and relative abundance). Chemical monitoring requirements
are typically less manpower intensive than biomonitoring requirements, but
required frequencies of measurement are generally greater because of the high
degree of temporal variability in some water quality parameters. For example,
in poorly buffered lakes, idle periods of photosynthetic activity and respira-
ation may cause pH changes of several units. Similarly, seasonal changes in
many water quality parameters (for example, dissolved oxygen, macro and micro
nutrients) occur in response to natural temperature regimens, increases or
decreases in level of biological activity or pulses associated with periods of
snowmelt or rainstorm events.
Threat of Acid Deposition
The threat of acid deposition to the Flat Tops Wilderness Area is
apparently real. Although no precipitation data are available from the Flat
Tops, monitoring stations on the western slopes of the Rockies have recorded
precipitation pH values between 3.0 and 4.0 (Lewis and Grant 1980, USDA Forest
Service 1981, Harte et al. 1984). Average pH of summer and winter precipita-
tion events averaged 4.81 and 4.79, respectively, between mid 1980 and mid 1983
(Harte et al. 1984). Large areas in the Northeast and Europe where lake acid-
ification is occurring receive precipitation with pH averaging between 4.0 and
4.4. Natural rainfall pH averages approximately 5.65. The Flat Tops are
clearly receiving precipitation less acidic than areas where severe impact has
been documented, but more acidic than is expected naturally.
57
-------
The underlying geology of the Flat Tops, in many areas, is unreactive (low
carbonate content) (USDA Forest Service 1981) and, as a result, surface waters
are poorly protected against acid perturbation (Norton et al. 1982, Omernik and
Powers 1982). Study lake waters, with alkalinity ranging from 70 to 200 ueq/1,
can be considered moderately to highly sensitive to acid deposition (Omernik
and Powers 1982).
Effects of Acidification
Vertebrate and invertebrate population reductions that can be attributed
to complex changes in water quality may be due both to direct and indirect
effects associated with acidification. Toxic effects of high H+ ion concentra-
tions result directly from physiological stress. Osmo-regulation is affected
by sodium, calcium, and chlorine imbalances; oxygen utilization is affected by
respiratory obstruction; and physiological activities stressed by internal
fluids pH changes (Leivestad and Muniz 1976, Ultsch 1978, Havas 1981 and Havas
and Hutchinson 1982). Leaching of heavy metals from soil and aquatic sediments
can reach toxic concentrations (Schofield 1976, Beamish and Van Loon 1977,
Raddum 1980, and Schofield and Trojnar 1980). Direct effects of increases in
both H+ ion and heavy metals concentrations may invoke chronic responses. Re-
production inhibition or failure has been a well documented chronic effect
(Beamish 1976, Fiance 1978, Carrick 1979, and Lee and Gerking 1980). Indirect
effects result from predator population and food base changes. Loss of predator
populations can result in increased numbers and larger body sizes of former
prey species as well as proliferation of former competitors (Eriksson et al.
1979, Friberg et al. 1980, Hendrey et al. 1980, Henrikson 1980, and Singer
1982). Last, and perhaps most importantly, are indirect effects of a changing
food base. Nutrient cycling is drastically inhibited when pH levels drop
sufficiently to cause microbial decomposer disfunction (Hendrey et al. 1980,
Schindler et al. 1980). Fungi, filamentous algae, and occasionally Sphagnum
replace bacterial decomposers (Grahn et al. 1974, Grahn 1977, Hendrey et al.
1980, and Schindler and Turner 1982). Reorganization of the food pyramid base
(primary producers) and associated primary and secondary consumers ensues.
Alterations of the macroinvertebrate community functional groups (consumer
groups) during acidification have been documented (Sutcliffe and Carrik 1973,
Friberg et al. 1980, Hall et al. 1980, and Zischke 1983). Although not anal-
yzed in the present study, consideration of invertebrate functional classes
in the future may signal changing lake chemistry.
Biological Monitoring
Each community or group investigated by this report possess positive and
negative aspects that reflect their proficiency as monitoring standards.
The phytoplankton community has been shown to respond quickly (short-term)
to experimental pH reductions. Long-term changes in community structure have
been documented under natural lake acidifications. Consequently, their value
as indicators of past acid pulses and permanent water quality (pH) alteration
is known. Most data, however, suggest community changes occur only after water
pH falls below 5.5. Additionally, seasonal succession occurs quickly within
plankton assemblages and masks water quality induced perturbations. Because
species taxonomic differences and seasonal variation can be significant, it is
58
-------
suggested that higher taxonomic levels from samples taken during similar periods
each year be routinely compared. This practice will help alleviate taxonomic
inadequacies and provide sufficient data to identify currently recognized
community changes.
The zooplankton communities of Flat Tops study lakes were somewhat unique
and characterized by very low diversity. Only two species of Daphm'a were col-
lected. The species were [). pulex and Ł. rosea. Additionally, one very large
copepod species, Ł. shoshpne, was prominent in Oyster Lake. Other Diaptomus
species often present include Ł. coloradensis and ID. arapahoensis. The unique
species assemblages confined to high elevation lakes in the Rockies elicit
monitoring possibilities. Should the acid sensitivity of the assemblage and/or
each component be determined (for example, toxicity testing either in situ or
in a laboratory) acidification responses could be predicted. Although few data
are currently available, future use of the unique zooplankton communities of
the study lakes could provide invaluable monitoring tools.
Acute and chronic acidification effects upon macroinvertebrate population
structure would be evident for longer periods than effects on plankton. This
would occur because succession (resulting from emergence [loss] and reproduc-
tion [gain]) is generally much slower in macroinvertebrates than the plankton.
Additionally, a few genera of macroinvertebrates that occur in the study lakes
have been shown to be either pH sensitive or tolerent at values of 6.5 and
lower. Although responses of these genera (for example, N_. obscura and G.
lacustris) may be quite different in these particular systems, changes would be
suggestive. Finally, because benthic macroinvertebrates and their terrestrial
adults constitute a major food source for game fish (trout) of the lakes,
population changes could prove disasterous for fish stocks. For these reasons,
the macroinvertebrates should be included in monitoring plans.
No data were gathered concerning salamander populations in the one study
lake (Oyster) that contained a dense population. This species may serve as an
indicator of acidifying conditions because it breeds in ponds subject to concen-
trations of snowmelt pollutants. Once pH sensitivity limits are determined,
Ambystoma tigrinum could prove to be a useful monitoring tool. However, at
present, we can only suggest recording salamander observations. Intense
population studies might be useful should perturbations occur, but such
surveys are time and cost intensive.
Fish tissue and sediment metal concentrations are highly variable,
reducing their value for routine monitoring. However, baseline data should
be determined for non-stressed fish tissue and sediments metal concentration
in others to document effects of large scale perturbations if they should
occur.
Fish population protection is probably of utmost importance. We have
access to no current data, but some may be available from State agencies.
Population surveys, although time intensive, are often necessary to quantify
population changes. Alternative data sources for trout from the study lakes
and similar lakes in the wilderness areas of Colorado may be utilized. Creel
surveys and license questionaires could be used to assess fish population
status from any region of interest.
59
-------
Chemical Monitoring
Exclusive use of water chemistry monitoring as a tool to detect early
signs of lake acidification should be avoided. Although pH and alkalinity,
sulfate, and nitrate may be the most responsive parameters, instantaneous
measurements may not record pulse events of short duration. This drawback can
be overcome, however, by more frequent sampling at selected times of the year.
Annual data collection during spring snowmelt would likely determine signifi-
cant deposition and water quality trends in acidity. In such remote areas, the
strategy not only would be difficult, it could be dangerous. Consequently, the
practice is seldom carried out. Key water quality parameters to be included
in monitoring program include various nitrogen species (for example, N02, N03
and NHj), sulfates, pH, conductivity and alkalinity. These parameters are all
directly influenced by acid inputs. Total phosphorus is a highly desirable
parameter because of its importance to phytoplankton and periphyton crops.
Similarly, dissolved oxygen and temperature profiles should be recorded at deep
sites to assist in the interpretation of biological data. Organic carbon, both
total and dissolved, should be monitored because of its potential for interac-
ting with metals in the water column. Dissolved inorganic carbon measurements
should also be included, if possible, because of the important relationship
between carbon dioxide, pH and biological activity. Because several potenti-
ally toxic metals are associated with native bedrock and soils within these
watersheds, it is suggested that annual scans be conducted for total and dis-
solved aluminum, copper, lead, nickel, silver and iron. Calcium and magnesium
should also be monitored yearly because of their mitigating effects on the
toxicity of other metals.
Lake Sensitivity
The three Flat Tops lakes, from which data are summarized in this report,
are biologically and chemically similar. Minor differences occur that affect
each lake's sensitivity to acid deposition. Ned Wilson, possessing an alka-
linity of less than 80 ueq/1, obviously is the most sensitive chemically,
whereas Oyster Lake is least sensitive. Available literature suggests the
biological communities of the study lakes are sensitive to acidification, with
major impacts expected as water pH drops below 5.5. Toxicity testing of unique
high mountain species or assemblages and intensive lake surveys could provide
sensitivity and distribution data lacking at present. When more data are
available, precise lake biological sensitivity can be better determined.
Although more specific information would be required to assess the actual
order of lake biological sensitivity, certain points can be presented. Sal-
monid populations of Ned Wilson Lake and Upper Island Lake probably will not be
affected by acidification unless natural reproduction is occuring and lake pH
drops to 5.5 or less. Other biota likely will be affected prior to trout
population depletion. The order of biological community components (species)
lost and pH levels at which they are lost can not be accurately predicted at
present. Community structural changes, however, have been documented around
the country and in Europe which suggest group trends within each community
during acidification. Monitoring for these community perturbations and corres-
ponding basic chemical and physical parameters should detect early signs of
ecosystem disruption. This report provides a baseline data set and standard
60
-------
sampling methodologies which will hopefully assist management decisions and
proper protection of the unique lakes of the Flat Tops Wilderness Area and
other areas of the Rocky Mountains.
61
-------
CONCLUSIONS
Components of the Flat Tops lakes zooplankton, phytoplankton and fish
communities are subject to alterations as the pH of water approaches 5.5, and
certain macroinvertebrate species are known to be sensitive to waters with
pH values of 6.0 to 6.5. Once these levels are reached, disruptions will be
expected in the biotic communities of the study lakes. Currently, summer
daytime pH levels in all three study lakes are typically above 6.0.
Within-lake differences in phytoplankton assemblages were apparent in all
lakes. However, between-station and depth related variability were largely
attributable to rare species with dominant and co-dominant species relatively
uniformly distributed throughout each lake. Discrete samples taken at 1, 5 and
10 m from the deep site on Upper Island Lake yielded slightly more diverse
assemblages at 1 m than at 5 and 10 m. The majority of taxa collected at the
various strata were present in the 1 m sample, suggesting that a near surface
sample taken from a stratified lake will collect most of the more common phyto-
plankton species.
Annual and seasonal variability of the phytoplankton community were high
in all lakes. Also, between-lake differences in the composition and abundance
of phytoplankton communities were apparent in samples collected on approxi-
mately the same dates. Because of differences in the succession patterns of
the phytoplankton assemblages in the various lakes, and because different
assemblages were noted in individual lakes during mid August of two successive
years, it seems unlikely that once-a-year sampling will provide adequate data
to depict long term changes in phytoplankton assemblages in the various lakes.
Differences in succession patterns need to be further investigated during the
open water period. It is recommended that near-surface {1-1.5 m), quantitative
samples be collected and composited from 3 to 4 sites per lake at two week
intervals in order to examine succession patterns. In addition, replicate,
discrete, quantitative samples should be taken at three depths (such as 1.5,
5 and 10 m) during a period of strong stratification and again, during iso-
thermal conditions, to examine distribution throughout the water column.
Zooplankton species richness in the three Flat Tops study lakes is low and
changes in diversity will probably not be useful in future monitoring. However,
permanent changes in community composition (acid sensitive and acid tolerant
species) can be indicative of acidification. Sensitivity to acidification of the
copepod species (Diaptomus spp.), having distributions restricted to high
altitude lakes, are not known and their sensitivity should be determined for
possible use in future monitoring.
Annual zooplankton differences within individual lakes, based upon August
sampling during successive years, were minor. Differences that were noted were
62
-------
attributable principally to occurrences of rare species. Because within-lake
variability between sites was also low, it appears that replicate, depth-
integrated samples collected at a single deep site during the period of strong
stratification would be adequate to characterize the zooplankton communities
of the study lakes for purposes of showing differences between lakes and
changes occurring over time.
Seasonal variability and succession patterns of zooplankton communities
were not addressed in this study, consequently no conclusions or recommenda-
tions can be made regarding optimal sampling frequencies or seasons. Sampling
at a single deep site at two-week intervals during the open water period would
provide considerable information on succession patterns of zooplankton assem-
blages. Knowledge of these patterns would aid in the design of long-term
monitoring programs with respect to required sampling frequencies and optimal
sampling periods (for example, stratified vs. non-stratified lake conditions).
Different macroinvertebrate communities occupied the littoral (shoreline)
and profundal (deep) zones of the three Flat Tops lakes. Qualitative sampling
in the littoral zone yielded more diverse assemblages than were found in
quantitative grab samples from the profundal zone. To adequately characterize
macroinvertebrate communities of individual lakes it is essential that both
zones be sampled. Because the acidification sensitivity of individual taxa is
not well known, it is important to examine entire assemblages occupying various
habitats using changes in indices of community structure, (such as diversity,
richness and density) when possible.
Annual differences in various study lake's macroinvertebrate communities
indices were significant, hence, frequent (yearly) sampling may be necessary
to access annual variability. Because recruitment and emergence affect "sea-
sonal" species population size, temporal variation during ice free periods
should be determined at least once. Except for one shallow Ned Wilson Lake
site, between-site macroinvertebrate community indices were not significantly
different in any lake during either year, hence, replicate samples from one
deep site should adequately assess the status of profundal invertebrate assem-
blages in these index lakes during future monitoring.
Salamanders in Oyster Lake may serve as useful monitors because they breed
in pools subject to influx of snowmelt pollutants. Sensitivity of various
A. tigrinum life stages to acidification are not presently known, and should be
determined for use in future monitoring. Increased acidification of Oyster
Lake could result in decreased population or loss of salamanders.
Limited sampling and visual observations revealed the presence of sal-
monids in two of the three study lakes. It is not known whether trout in these
lakes are reproducing naturally or whether they are the result of repeated
stocking. Because early life stages are more sensitive to acidification and
associated effects (such as metal releases) than are adults, artificially
maintained populations would not be good monitors of acidification induced
changes. On the other hand, naturally reproducing populations would likely be
affected by any reduction in ambient pH levels, or by additional releases or
mobilization of metals because of the high vulnerability of egg and larval
stages. Determination of fish population structure and maintenance mechanisms
63
-------
is an Initial essential step toward incorporation of fish surveys into a
monitoring program.
Metal concentrations in whole homogenized brook trout were low in Ned
Wilson Lake during both 1982 and 1983. Two specimens of cutthroat trout col-
lected from Upper Island Lake during 1983 yielded levels of copper, nickel and
zinc on order of magnitude higher than were found in Ned Wilson Lake brook
trout. Concentrations in gills of fish from both lakes were much lower than in
whole fish. Because these metals are biocumulative, it is recommended that
analyses of whole fish (such as three specimens per lake) be conducted, once
annually, to monitor tissue residue levels.
Concentrations of metals within sediments of the study lakes are within
expected ranges for unimpacted Western U.S. water bodies. Because changes
in sediment metal chemistry may occur as a result of increased metal inputs
or changes in water chemistry, annual collection and analysis of sediment sam-
ples for metal content should be an integral component of a long-term monitor-
ing program.
Physical and chemical water quality data for the study lakes were similar
to those reported for other lakes in this region of Colorado. Mean alkalinity
values were less than 100 ueq/1 in two of the Takes, but exceeded 200 peq/l
in one lake. The pH levels in the low alkalinity lakes were 6.3 to 6.8, where-
as pH in the third lake exceeded 8.0. Conductivity levels were typically low
(64-112 umhos/cm), reflecting the low concentration of dissolved substances in
the water. Concentrations of total metals were also low, with aluminum, iron,
calcium and magnesium being the most abundant metals. Toxic metals were not
measured in concentrations that pose any hazard to aquatic life.
Key water quality parameters recommended for monitoring include the nitro-
gen species (N02, N03, and NH3), sulfates, pH, alkalinity, conductivity, total
phosphorus, temperature, dissolved oxygen, total and dissolved organic carbon
and dissolved inorganic carbon. Annual scans of total recoverable and dis-
solved aluminum, copper, lead, nickel, iron, silver, calcium and magnesium
should also be included.
Lack of acid sensitivity data for most species of organisms inhabiting the
study lakes preclude concise predictions of biological response to acidifica-
tion. Testing for acid sensitivity of certain potentially indicator species
assemblages and whole lake ecosystems may help formulate accurate predictions
of acid deposition effects on biota of high altitude lakes.
64
-------
LITERATURE CITED
Alexander, G. V., and L. T. McAnulty. 1981. Multielement analysis of plant
related tissues and fluid by optical emission spectrometry. J. Plant
Nut. 3(l-4):51-59.
Aimer, B., W. Dickson, W. Ekstrom, E. Hornstrom, and U. Miller. 1974.
Effects of acidification on Swedish lakes. AMB10 3:30-36.
APHA. 1980. Standard Methods for the Examination of Water and Wastewater,
15th ed. American Public Health Association (APHA/AWWA/WPCF).
Washington, D. C. 1134 pp.
Arnold, D. E., P. M. Bender, A. B. Hale, and R. W. Light. 1981. Studies
on infertile, acidic Pennsylvania streams and their benthic communities,
pp. 15-33. In: R. Singer (ed.), Effects of Acidic Precipitation on
Benthos: Proceedings of a Symposium. Hamilton, NY, U.S. EPA/North
Carolina State Acid Rain Program, NABS.
Baldigo, B. P., J. J. Janik, and T. W. LaPoint. 1983. Colorado Flat Tops
Lake Sensitivity Preliminary Study. Interim Report, unpublished data
report, U.S. EPA, EMSL-Las Vegas. 54 pp.
Baker, J. P., and C. L. Schofield. 1982. Aluminum toxicity to fish in acidic
waters. Water, Air, and Soil Pollution, 18:289-309.
Beamish, R. J. 1975. Acidification of lakes in Canada by acid precipitation
and the resulting effects on fishes, p. 479. In: L. S. Dochinger and
J. A. Seliga, eds., Proceedings of the First International Symposium
on Acid Precipitation and Forest Ecosystems, Columbus, Ohio. USDA
Forest Service and Ohio State University. (Abstract Only).
Beamish, R. J. 1976. Acidification of lakes in Canada by acid precipitation
and the resulting effects on fish. Water, Air and Soil Poll. 6:501-514.
Beamish, R. J., and J. C. VanLoon. 1977. Precipitation loading of acid and
heavy metals to a small acid lake near Sudbury, Ontario. J. Fish. Res.
Bd. Can. 34:649-658.
Beck, W. M. 1977. Environmental Requirements and Pollution Tolerance of
Common Freshwater Chironomidae. U.S. EPA, EMSL-Cincinnati, OH. 261 pp.
65
-------
Bricker, 0., G. Hendrey, R. Herrmann, U. Kennedy, H. Olem, C. Powers,
A. Schipper, and K. Schreiber. 1983. Sampling and Analysis Protocol
for Chemical Characteristics of Lakes and Streams Sensitive to Acidic
Deposition. U.S. EPA draft report (in press). U.S. EPA, ERL-Corvallis,
OR. 12 pp.
Brinkhurst, R. 0., and B. G. M. Jamieson. 1971. Aquatic Oligochaeta of the
World. University of Toronto Press, Toronto, Canada. 860 pp.
Burton, T. M., R. M. Stanford, and J. W. Allan. 1982. The effects of acidif-
ication of stream ecosystems, pp. 202-235. In: F. M. D'itri (ed.),
Acid Precipitation: Effects on Ecological Systems. Ann Arbor Sci.
Ann Arbor, MI.
Carrick, T. R. 1979. The effect of acid water on the hatching of salmonid
eggs. J. Fish Biol. 14:165-172.
Chakoumakos, C., R. C. Russo, and R. V. Thurston. 1979. Toxicity of copper
to cutthroat (Salmo clarki) under different conditions of alkalinity,
pH, and hardness. Environ. Sci. Tech. 13(2):213-219.
Collins, N. C., A. P. Zimmerman, and R. Knoechel. 1981. Comparisons of benthic
infauna and epifauna biomass in acidified and non-acidified Ontario lakes,
pp. 35-48. In; R. Singer (ed.), Effects of Acidic Precipitation on
Benthos: Proceedings of a Symposium. Hamilton, NY. U.S. EPA/North
Carolina State Acid Rain Program, NABS.
Confer, J. L., T. Kaaret, and G. E. Likens. 1983. Zooplankton diversity and
biomass in recently acidified lakes. Can. J. Fish & Aq. Sci. 40:36-42.
Conway, H. L., and G. R. Hendrey. 1982. Ecological effects of acid precipi-
tation on primary producers, pp. 277-295. In: F. M. D'itri (ed), Acid
Precipitation: Effects on Ecological Systems. Ann Arbor Sci., Ann Arbor,
MI.
Cornell University. 1983. Sampling and Analysis Protocol for Biological
Parameters in Lakes Sensitive to Acid Precipitation, pp. 1-32. The
Aquatic Effects Task Group Interagency Task Force on Acid Precipitation.
Cronan, C. S., and C. L. Schofield. 1979. Aluminum leaching response to
acid precipitation: effects on high-elevation watersheds in the
Northeast. Science 204(20):304-306.
Danell, K., and A. Andersson. 1982. Dry weight loss and colonization of
plant litter by macroinvertebrates: plant species and lake types
compared. Hydrobiologia 94(l):91-96.
Dodson, S. I. 1982. Chemical and biological limnology of six west-central
Colorado mountain ponds and their susceptability to acid rain. Amer.
Midi. Nat. 107(1):173-179.
66
-------
Edmondson, W. T. 1959. Fresh-water Biology, 2nd edition. John Wiley and
Sons, Inc. New York, NY. 1248 pp.
Edmunds, G. F. Jr., S. L. Jensen, and L. Berner. 1976. Mayflys of North
and Central America. University of Minnesota Press, Minneapolis,
MN. 330 pp.
Eilers, J. M., R. G. Berg, and G. J. Lien. 1984. A review of aquatic
organism distribution in acidic environments. Draft report, U.S.
EPA-Duluth, MN. 39 pp.
Eriksson, M. 0. G., L. Henrikson, B. Nilsson, G. Nyman, H. G. Oscarson,
and A. E. Stenson. 1979. Predator-prey relations important for the
biotic changes in acidified lakes. AMB10 9(5):248-249.
Falk, D. L., and W. A. Dunson. 1977. The effects of season and acute sub-
lethal exposure on survival times of brook trout at low pH. Water
Research, 11:13-15.
Ferrington, L. C. 1984. Key to the Chironomidae of North America, pp. 00-00.
In: R. W. Merritt and K. W. Cummins (eds.), An Introduction to the
A"quatic Insects of North America, 2nd Edition, Prepublished manuscript.
Fiance, S. B. 1978. Effects of pH on the biology and distribution of
Ephemerella funeral is (Ephemeroptera). OIKOS, 31:332-339.
Freeman, R. A., and W. H. Everhart. 1971. Toxicity of aluminum hydroxide
complexes in neutral and basic media to rainbow trout. Trans. Am. Fish.
Soc. 100:644-658. '
Friberg, F., C. Otto, and B. S. Svensson. 1980. Effects of acidification
on the dynamics of allochthonous leaf material and benthic invertebrate
communities in running waters, pp. 304-305. In; D. Drabloes and A. Tollon
(eds.), Ecological Impact of Acid Precipitation, SNSF Project, Norway.
Fryer, G. 1980. Acidity and species diversity in freshwater crustacean
faunas. Freshwater Bio. 10:41-45.
Galloway, J. N., B. J. Cosby, Jr., and G. E. Likens. 1979. Acid precipitation:
measurement of pH and acidity. Limnol. Oceanogr. 24(6):1161-1165.
Grahn, 0., H. Hultberg, and L. Lander. 1974. Oligotrophication - A self
accelerating process in lakes subjected to excessive supply of acid
substances. AMBIO 3(2):93-94.
Grahn, 0. 1977. Macrophyte succession in Swedish lakes caused by deposition
of airborne acid substances. Water, Air and Soil Poll. 7:295-306.
Haines, T. A. 1981. Acidic precipitation and its consequences for aquatic
ecosystems: A review. Trans. Am. Fish. Soc. 110(6):669-707.
67
-------
Hall, R. J., 6. E. Likens, S. B. Fiance, and G. R. Hendrey. 1980. Experi-
mental acidification of a stream in the Hubbard Brook Experimental
Forest, New Hampshire. Ecology 61(4):976-989.
Harriman, R., and B. Morrison. 1980. Ecology of acid streams draining
forested and non-forested catchments in Scotland, pp. 312-313.
In: D. Drabloes and A. Toll en (eds.), Ecological Impact of Acid
Precipitation. SNSF, Norway.
Harte, J., G. P. Lockett, R. A. Schneider, H. Michaels, and C. Blanchard.
1984. Acid precipitation and surface water vulnerability on the Western
slope of the high Colorado Rockies. Prepublished draft manuscript.
Havas, M. 1981. Physiological response of aquatic animals to low pH,
pp. 49-65. In: R. Singer (ed.), Effects of Acidic Precipitation on
Benthos: Proceedings of a Symposium, Hamilton, NY, U.S. EPA/North
Carolina State Acid Rain Program, NABS.
Havas, M., and T. C. Hutchinson. 1982. Effect of low pH on the chemical
composition of aquatic invertebrates from tundra ponds at the Smoking
Hills, N.W.T., Canada. Can. J. Zool. 61:241-249.
Hendrey, G. R., N. D. Van, and K. J. Baumgartner. 1980. Responses of fresh-
water plants and invertebrates to acidification. Brookhaven Nat. Lab.,
Upton, NY. 33 pp.
Hendrey, G. R. 1982. Acid Precipitation Effects on Algal Productivity and
Biomass in Adirondack lakes. U.S. Dept. of Interior Report PB83-173203.
12 pp.
Henriksen, A. 1980. Acidification of freshwaters - A large scale titration,
pp. 68-74. In: D. Drabloes and A. Tollan (eds.), Ecological Impact
of Acid Precipitation. SNSF Project, Norway.
Herricks, E. E., and J. Cairns, Jr. 1976. The recovery of stream macrobenthos
from low pH stress. Revista De Biologia 10(1-4):1-11.
Hiltunen, J. K., and D. J. Klemm. 1980. A Guide to the Naididae (Annelida:
Clitellata:01igochaeta) of North America, EPA-600/4-80-031. U.S. EPA/
EMSL-Cincinnati, Ohio. 48pp.
Hirvenoja, M. 1973. Revision der Gattung Cricotopus van der Wulp und.
ihrer Verwandten (Diptera, Chironomidae). Ann. Zool. Fennici 10:1-363.
Holsinger, J. R. 1972. The Freshwater Amphipod Crustaceans (Gammaridae)
of North America, I.D. Manual #5. U.S. EPA/EMSL-Cincinnati, Ohio. 89 pp.
Huckabee, J. W., C. P. Goodyear, and R. D. Jones. 1975. Acid rock in the
great Smokies: Unanticipated impact on aquatic biota of road con-
struction in regions of sulfide mineralization. Trans, Am. Fish. Soc.
104(4):677-684.
68
-------
Hungerford, H. B. 1948. The Corixidae of the Western Hemisphere (Hemiptera).
Univ. Kans. Sci. Bull. 32:5-827.
Jackson, T. A., G. Kipphut, R. H. Hesslein, and D. W. Schindler. 1980.
Experimental study of trace metal chemistry in softwater lakes at
different pH levels. Can. J. Fish. Sci. 37:387-402.
Johannsen, 0. A. 1937. Aquatic Diptera, Part 5. Cornell University Press,
Ithaca, NY. 80 pp.
Klernm, D. 0. 1972. Freshwater Leeches (Annelida:Hirudinea) of North America,
I.D. Manual #8. U.S. EPA/EMSL-Cincinnati, Ohio. 53 pp.
Kwain, W. 1975. Effects of temperature on development and survival of
rainbow trout, Sal mo gairdneri. in acid waters. J. Fish. Res. Bd. Can.
32:493-497.
Kwiatkowski, R. E. and J. C. Roff. 1976. Effects of acidity on the phyto-
plankton and primary productivity of selected northern Ontario lakes.
Can. J. Bot. 54:2546-2561.
LaPoint, T. W., S. M. Melancon, B. P. Baldigo, J. J. Janik, and M. K. Morris.
1983. Investigation of Methods for Site Specific Water Quality Assess-
ment: Prickly Pear Creek, Montana. U.S. EPA/EMSL-Las Vegas, 226 pp.
Lee, R. M., and S. D. Gerking. 1980. Sensitivity of fish eggs to acid stress.
Water. Res. 14:1679-1682.
Leivestad, H., G. Hendrey, I. P. Muniz, and E. Snekuik. 1976. Effects of
acid precipitation on freshwater organisms, pp. 87-111. In: F. H.
Braekke (ed.), Impact of Acid Precipitation on Forest ancTFreshwater
Ecosystems in Norway. Research Report 6/76, SNSF Project, Oslow, Norway.
Leivestad, H., and I. P. Muniz. 1976. Fish kill at low pH in a Norwegian
river. Nature 259:391-392.
Lewis, W. M., Jr., and M. C. Grant. 1980. Acid precipitation in the western
United States. Science 207:176-177.
Lewis, W. M., Jr. 1982. Changes in pH and buffering capacity of lakes in
the Colorado Rockies. Limnol. Oceanogr. 27(1):167-172.
Mai ley, D. F., D. L. Findlay, P. S. S. Chang. 1982. Ecological effects of
acid precipitation on zooplankton, pp. 297-327. In; F. M. D'itri (ed.),
Acid Precipitation: Effects on Ecological Systems. Ann Arbor Sci.
Ann Arbor, MI.
Malmer, N. 1976. Acid precipitation: chemical changes in the soil.
AMBIO 5(5-6):231-234.
McColl, J. G. 1980. A survey of acid precipitation in northern California.
ARB Contract A7-149-30, Sacramento, CA. 94 pp.
69
-------
McKim, J. M., and D. A. Benolt. 1971. Effects of long-term exposures to
copper on survival, growth, and reproduction of brook trout (Salvelinus
fontinalis). J. Fish. Res. Bd. Canada 28:655-662.
Menendez, R. 1976. Chronic effects of reduced pH on brook trout (Salvelinus
fontinalis). J. Fish. Res. Board Canada 33:118-123.
Merlini, M., and G. Pozzi. 1977. Lead and freshwater fishes: Part I - lead
accumulation and water pH. Exotoxicology and Environmental Safety
3:36-38.
Mitchell, M. J., and G. B. Lawrence, D. H. Landers, and K. A. Stucker. 1981.
Role of a benthic invertebrate Hexagenia, in affecting sulfur and
nitrogen dynamics of lake sediments, pp. 67-76. In: R. Singer (ed.),
Effects of Acidic Precipitation on Benthos, Proc.Tymp. Acidic Precipi-
tation on Benthos. Hamilton, NY. NABS.
Needham, J. G., J. R. Traver, and Y-C Hsu. 1972. The Biology of Mayflies.
E. W. Classey LTD, Hampton, Middlesex, England, 759 pp.
Norton, S. A. 1977. Changes in chemcial processes in soils caused by acid
precipitation. Water, Air, and Soil Poll. 7:389-400.
Norton, S. A., J. J. Akielaszek, T. A. Haines, K. L. Stromborg and
J. R. Longcore. 1982. Distribution of Surface Waters Sensitive to
Acidic Precipitation: A State Level Atlas. (NC-141) U.S. Fish and
Wildlife and University of Maine, Orono. Final report 71 pp.
Oakland, K. A. 1980. Mussels and crustaceans: studies of 1000 lakes in
Norway, pp. 324-325. In: D. Drabloes and A. Tollan (eds.), Ecological
Impact of Acid Precipitation. SNSF Project, Norway.
Oliver, D. R., D. McClymont, and M. E. Roussell. 1978. A Key to Some
Larvae of Chironomidae (Diptera) from the Mackenzie and Porcupine River
Watersheds. Fish & Marine Ser. Tech. Report #791. Dept. of Fisheries
and Enviroment, Winnipeg, Manitoba, Canada.
Omerik, J. M. and C. F. Powers. 1982. Total Alkalinity of Surface Waters --
A National Map. Draft report, U.S. EPA, Corvallis. 6 pp.
Orciari, R. D., and W. D. Hummon. 1975. A comparison of benthic oligochaete
populations in acid and neutral lentic environments in Southeastern
Ohio. Ohio J. Sci. 75:44-49.
Oschwald, W. 1972. Sediment-water interactions. J. Environ. Qua!. 1:360-366.
Pennak, R. W. 1978. Freshwater Invertebrates of the United States, 2nd
Edition. John Wiley and Sons, Inc. New York, NY. 803 pp.
Pfeiffer, M. H. and P. J. Festa. 1980. Acidity Status of Lakes in the
Adirondack Region of New York in Relation to Fish Resources. New York
State/Dept. of Environ. Conservation Report.
70
-------
Pielou, E. C. 1977. Mathematical Ecology. John Wiley and Sons, Inc.,
New York, NY.
Rough, H. F. 1976. Acid precipitation and embryonic mortality of spotted
salamanders, Ambystoma maculaturn. Science 192:68-70.
Rough, H. F., and R. E. Wilson. 1977. Acid precipitation and reproductive
success of Ambystoma salamanders. Water, Air, and Soil Poll. 7:308-316.
Raddum, G. G. 1980. Comparison of benthic invertebrates in lakes with
different acidity, pp. 330-331. ^n_: D. Drabloes and A. Tollan (eds.),
Ecological Impact of Acid Precipitation. SNSF, Norway.
Raddum, G. G., and 0. E. Saether, 1981. Chironomid communities in Norwegian
lakes with different degrees of acidification. Verh. Int. Verein.
Limnol. 21:367-373.
Rhoads, D. C., and R. A. Lutz. 1981. The MolTuscan Shell: Biological Record
of Environmental Change. EPA-600/S3-81-019, U.S. EPA, ERL-Narragansett.
3 pp.
Roback, S. S. 1974. Insects (Arthropoda:Insecta), pp. 314-376. In: Hart
and Fuller (eds), Pollution Ecology of Freshwater Invertebrates.
Academic Press, New York, NY.
Roff, J. C. and R. E. Kwiatkowski. 1977. Zooplankton and zoobenthos com-
munities of selected northern Ontario lakes of different acidities. Can.
J. Zool. 55:899-911.
Sawyer, R. T. 1974. Leeches (Annelida:Hirudinea), pp. 81-142. In: C. W.
Hart, Jr. and L. H. Fuller (eds.), Pollution Ecology of Freshwater
Invertebrates. Acacemic Press, New York, NY.
Schindler, D. W., R. Wagemann, R. B. Cook, T. Ruszczynski, and J. Prokopowich.
1980. Experimental acidification of Lake 223, Experimental Lakes Area:
background data and the first three years of acidification. Can. J.
Fish. Aquat. Sci. 37:342-354.
Schindler, D. W. and M. A. Turner. 1982. Biological, chemical and physical
responses of lakes to experimental acidification. Water, Air, and Soil
Poll. 18:259-271.
Schofield, C. 1976. Acid precipitation: effects on fish. AMBIO 5:228-230.
Schofield, C. and J. Trojnar. 1980. Aluminum toxicity to fish in acidified
waters, pp. 341-366. jn: T. Toribara, M. Miller and P. Morrow (eds.),
Polluted Rain. Plenum Press, New York, NY.
Sevaldrud, I., I. Muniz, and S. Kalvenes. 1980. Loss of fish populations
in southern Norway. Dynamics and magnitude of the problem, pp. 350-351.
In: D. Drabloes and A. Tollan (eds.), Ecological Impact of Acid
"PTecipitation. SNSG, Norway.
71
-------
Sexton, 0. J., and J. R. Bizer. 1978. Life history patterns of Ambystoma
tigrinum in Montane Colorado. Am. Midi. Nat. 99(1):101-118.
Shannon, C. E., and W. Weaver. 1949. The Mathematical Theory of Communica-
tion. University of Illinois Press, Urbana, IL. 117 pp.
Simpson, E. H. 1949. Measurement of diversity. Nature. 163:688.
Simpson, K. W., and R. W. Bode. 1980. Common larvae of Chironomidae (Diptera)
from New York State Streams and Rivers. Bull. #439, New York State Museum,
Albany, NY. 105 pp.
Singer, R. 1981. Notes on the use of shells of Anodonta grandis Say
(Bivalvia:Unionidae) as a paleoecological indicator of trophic status
and pH, pp. 103-112. In: R. Singer (ed.), Effects of Acidic Precipi-
tation on Benthos, HamTTton, NY, U.S. EPA/North Carolina State Acid
Rain Program, NABS.
Singer, R. 1982. Effects of acidic precipitation on benthos, pp. 329-363.
In: F. M. D'itri (ed.), Acid Precipitation: Effects on Ecological
Systems, Ann Arbor Sci. Ann Arbor, MI.
Sprules, W. G. 1972. Effects of size-selection predation and food competition
on high altitude zooplankton communities. Ecology 53(3):375-386.
Sprules, W. G. 1975. Midsummer crustacean zooplankton communities in acid-
stressed lakes. J. Fish. Res. Bd. Can. 32:389-395.
Stimpson, K. S., D. J. Klemm, and J. K. Hiltunen. 1982. A Guide to the
Freshwater Tubificidae (Annelida:C1itellata:01 igochaeta) of North America.
EPA-600/3-82-033. U.S. EPA/EMSL-Cincinnati, Ohio. 61 pp.
Stokes, P. M. 1984. pH-related changes in attached algal communities of
softwater lakes, pp. 43-62. In: G. R. Hendrey (ed.), Early Biotic
Responses to Advancing Lake AcTdification. Butterworth Publishers,
Boston, MA. 173 pp.
Strickland, J. D. H., and T. R. Parsons. 1972. A Practical handbook of
Seawater Analysis. 2nd ed., Bulletin of the Fish. Res. Bd. of Can.,
No. 167, Ottawa, Canada. 311 pp.
Sutcliff, D. W., and T. R. Carrick. 1973. Studies on mountain streams in
the English Lake District. II. Aspects of water chemistry in the River
Duddon. Freshwater Biol. (3):543-560.
Tomkiewicz, S. M., and W. A. Dunson. 1977. Aquatic insect diversity and
biomass in a stream marginally polluted by acid strip mine drainage.
Water Res. 11:397-402.
72
-------
Tonnessen, K. A. 1984. Potential for aquatic ecosystem acidification in
the Sierra Nevada, California, pp. 147-170. In: 6. R. Hendrey (ed.),
Early Biotic Responses to Advancing Lake AcidTFication, Butterworth
Publishers, Boston, MA. 173 pp.
Turk, J. T., and D. B. Adams. 1983. Sensitivity to acidification of lakes
in the Flat Tops Wilderness Area, Colorado. Water Resources Research
19(2):346-350.
Ultsch, G. R. 1978. Oxygen consumption as a function of pH in three species
of freshwater fishes. Copia, 1978:272-279.
U.S. Environmental Protection Agency. 1979. Inductively Coupled Plasma
(ICP) Optical Emission Spectrometric Method for Trace Element Analysis
of Water and Wastes. Proposed Rules. Appendix IV, Federal Register
44 (233):69559-69564.
U.S. Environmental Protection Agency. 1981. Interim Methods for Sampling
and Analysis of Priority Pollutants in Sediments and Fish Tissue.
EPA-600/4-81-055. U.S. EPA/EMSL-Cincinnati, Ohio. 460 pp.
U.S. Environmental Protection Agency. 1983. Methods for Chemical Analysis
of Water and Wastes, Revised Edition. EPA-600/4-79-020. U.S. EPA/-
EMSL-Cincinnati, Ohio. 440 pp.
USDA, Forest Service. 1981. Symposium on Air Quality, Oil Shale, and Wilder-
ness in Glennwood Springs, CO, Jan. 13-15, 1981. USDA Forest Service,
Fort Collins, CO. 90 pp.
U.S. Department of Interior. 1973. Final Environmental Statement for the
Prototype oil Shale Leasing Program (six volumes), Washington, D. C.,
Regions VIII and IX. Vol. 1 Regional Impacts of Oil Shale Development.
Usinger, R. L. 1974. Aquatic Insects of California. University of California
Press, Los Angeles, CA. 508 pp.
Utermohl, H. 1958. Zur Vervollkommnung der quantitativen phytoplankton
methodik. Mitt Int. Verein. Limnol. 9:1-38.
Uutala, A. J. 1981. Composition and secondary production of the chironomid
(Diptera) communities in two lakes in the Adirondack Mountain Region,
New York, pp. 139-154. In: R. Singer (ed.), Effect of Acid Precipi-
tation on Benthos, Proceedings of a Symposium. Hamilton, NY, U.S. EPA/
North Carolina State Acid Rain Program, NABS.
Vangenechter, J. H. D. 1983. Acidification in west European lakes and
physiological adaptations to acid stree in natural inhabitants of
acid lakes. Water Quality Bulletin 8(3):150-155.
Vollenweider, R. A. (ed.). 1969. Primary Productivity in Aquatic Environ-
ments. IBP. Handbook #12. Blackwell Scientific Publications. Oxford,
England. 213 pp.
73
-------
V.T.N. Colorado, Inc. 1979. Final Environmental Baseline Report, Federal
Prototype Oil Shale Leasing Program. Tracts U-a and U-b, Utah, White
River Shale Project: air resources, pp III-I to 111-55.
Wetzel, R. 6. 1975. Limnology. W. B. Saunders and Co., Philadelphia, PA.
743 pp.
Weitzel, R. L. 1979. Periphyton Measurements and Applications. In: Methods
and Measurements of Periphyton Communities: A Review, pp. 3-33,
Chapter 1. R. L. Weitzel, (ed.), ASTM STP 690, American Society of
Testing and Materials.
Wentsel, R., A. Mclntosh, and V. Anderson. 1977. Sediment contamination
and benthic macroinvertebrate distribution in a metal impacted lake.
Environ. Pollut. 14(1977):187-193.
Wiederholm, T., and L. Eriksson. 1977. Benthos of an acid lake. OIKOS
29:261-267.
Wiggins, G. B. 1977. Larvae of the North American Caddisfly Genera
(Trichoptera). University of Toronto Press. Toronto, Canada.
401 pp.
.Wright, R. J., and E. T. Gjessing. 1976. Acid precipitation: changes in
the chemical composition of lakes. AMBIO 5(5-6):219-223.
Van, N. D., P. Stokes. 1978. Phytoplankton of an acidic lake, and its
response to experimental alterations of pH. Env. Conser. 5:93-100.
Van, N. D. 1979. Phytoplankton community of an acidified heavy metal-con-
taminated lake near Sudbury, Ontario:1973-1977. Water, Air, and Soil
Pollut. 11:43-55.
Van, N. D., R. Giravd, and C. LaFrance. 1979. Survival of Rainbow Trout,
Sal mo gairdneri, in Submerged Enclosures in Lakes Treated with Neutral-
izing Agents Near Sudbury, Ontario. Ontario Min. Environ. Tech. Report
LTS 79-2, Rexdale, Canada.
Van N. D., and R. Strus. 1980. Crustacean zooplankton communities of acidic,
metal-contaminated lakes near Sudbury, Ontario. Can. J. Fish. Aquatic
Sci. 37:2282-2293.
Van, N. D. 1983. Effects of changes in pH on transparency and thermal
regimes of Lohi Lake near Sudbury, Ontario. Can. J. Fish. Aquatic
Sci. 40:621-626.
Zischke, J. A., J. W. Arthur, K. J. Nordlie, R. 0. Hermanutz, D. A. Standen,
and T. P. Henry. 1983. Acidification effects on macroinvertebrates
and fathead minnows (Pimpephales promelas) in outdoor experimental
channels. Water. Res. l/:4/-b3.
74
-------
APPENDIX A. PHYTOPLANKTON CELL ABUNDANCE DATA FROM FLAT TOPS LAKES
SURVEYED DURING 1982.
A-l
-------
PA«
ACU mi" rnojec* f*») IMRAI N*D
si 11 TON i ci"t«p or MOUTH or NOPTM cnvr din
HAPPIER TlPtl NCN APPLICA"br (Ot
NUftrp or PEPLtcifMi < fif.it KicinctaTt NEB RINNPT («)
NCTEl NOT »PFLICA*L* (0)
HUSO* ute (ii)
BtTKl JUIT II, IMJ
aUBSTITIO"! 9
PIN D»T»
tst um
ro
CHtO*0»HTT»
m
NO»O»»PHIDIU'* acTironnr
I • t
T»ntt»nt» rtorcuios* CTISIOI
l • t
to.
o.
a.
to.
Tom ran s».
10.
o.
o.
10.
TRTM. rop 4
TOT»t rnp t
i IT NCPLTCITFI
4 SPECIFSI
I • i
20,
10.
-------
MCI I
»cic »»i" "cnjrcT («*>
8iiTto«t CE»TM or "out" nr NORTH co»r rain
8ANPLE* TfPII NCN »PPtIC»RLf fOl
"u«8KR or "SPitc'TRS! i FI»IO
«CTtl HOT *PPlKft*lC (0)
NF.D ML80N LAKE (lit
MK8 VINNP.T (§)
»UCU8T «, lift]
aUB9t«ttO"l 10
p*H DITI
tar tttit
j*c
CHtO»OPMTt»
>n
8PH*CliOCT8Tt8
COUNTS
to
8tlIN«HTBU«
DICTTOHPNtr
CPl'CICENIA prCT»NCI'L«llI8 (18410)
(18*70)
8PP. O2110)
T»»ELL»»I» rt.orci'tnsi
N««1CUL* NlNtPI
HAVICUL* N
Pl»l"IL»Pt»
(1HTO)
E (11800)
14010)
(140101
01
1INHK (17}«fl)
(18410)
)
214701
JI10)
H. (64110,
08SO)
570)
01
1 - t 144.
I • 1 12.
1-1 2.
1 • 1 12.
1 • 1 8.
1 • 1 102.
1 • 1 24.
1 • 1 12.
1-1 «.
1-1 2.
1 - t 10.
1 • t 0.
1 - t 0.
1-1 0.
I - 1 0.
1-1 8.
1-1 0.
TOTAL FOR 8P.
144.
12.
1.
11.
8,
ioa.
14.
12.
4.
3.
10.
0.
0.
0.
0.
8.
0.
TOTAL rOK 17 BfT.rir.a BY REPLTCATKl 1 -
TOTAL rip I RfPUrmS. 17 8PEC1E8I
-------
MOjten icIB MI* MOJRCT
si IT to" i ei«TtR or »OUTH nr NORTH covr
TIPII NCH •PPticmr (0)
or PtPitcmai i nr.Lti
NOTII NOT APPlICmC (0)
M(fl
I>*Kt (II)
n*Tti tueoii IT, itti
auMtitiom i
RIH DITI TAfllM
I IT lEVIt, *IPB*t"Ce
mo
SCHPOIT«»I ((1170)
COMTUTRPTI f 141701
ACARDHllNttN (15010)
CPUCtCENIA nrCT»Ngill,»Pt8 (11410)
(21470)
BPP.
(j«iioi
PP1MNC8IALC8
CM»t80CH»OHULIH» PtPV* (tit 10)
(T«0«0)
I • t
I4J.
J.
144.
90.
• 61.
4.
0.
4.
I.
cnuwta
tot»t ro* ap.
142.
>.
144.
so.
JM.
4«.
9«t.
4.
0.
4.
«.
tot»t rop »1 aPtft*:a IT PCPLictTiti t • i n«t.
rot i PCPLirmn, ta a»ceieai i««*.
-------
>
cn
PPfiJKTl 1C1D H»I» MOJKCT (••)
St»TTO"l CINTt* 0' IMS (>Jt)
8»HPMB T|M I NCN »PPUC»«tr (0)
*U*B*H or B|Pitc«Ttgi t
NCTtl NOT IPPlICItHLC (0)
}**D
IRS*I NED MI180" t»«t (lit
»1NHPI (S)
HIM om
04TII ADCUIT ITt tffl
8UiaT*TtON| I
COUNTS
CONTUTP*!! <1«M01
lta* ««». M*jnp ft
mPH»OClT|UN »rt»»OMHI«l)H (ISOIO)
(1T960)
>
(3HKM
nirTTo«PH»';p!U"
enuctcenu
CLIKITOTHMtX
CRTPTOOHTt*
• HCOOMOHtS HlNtlt* (4*410)
CHP180»Ht1»
Ig»U188TK» (»«OtO)
i • t
t - t
i • t
4M.
la.
81.
III.
ao.
1010.
1.
24.
TOTAL rO» SP.
II.
I.
144.
91.
JTJ.
10.
1010.
Ton it •Ptrtei BY «iPLtc»Tn
TDT»I rnp t pgpt,ir*Tin, u
i • t m«.
lit*.
-------
PAGl t
PPOJP-CTl ICTO P>I" PPOJUCT (»•)
8tATto«i ei'TtP or MOUTH or IOUTH cnvt
SAMPLES tini HCN APPiiCA*Lr. m
nu»Br.R or RiPttcmBi i firm
NOTCI MOT
nr.o ntso*
(31)
n*Tti »ucnfT IT, it*]
aUB81»ttON| I
PIN D»T»
lit
I
CTl
CMlOpOCCCCALIfl
apc*epncT«Tiii
KlPCHNI«tCLU CONTUTP'TI (14ITO)
HI*H"OCI1IUH ACAPDHtlNUP (ISOtfl)
811CNA8TRUM KlNUTUf (l«0]01
OlCTtOBPNAfHIUM rHP««8rpCl»NIIK (ITJ60)
CPUCTCr.NI* PCCTM6IILIPT8 (IB4I9)
ou»DPjr»uo» (liiio)
Cr.L»lTN08» (214701
aoceiau*
»lCR»8TtBI»8 SB. (11000)
B»ClM,lPIO»HlCC«t
«PP. (*4tflO)
«AR. VfNTt" (YOT401
NIVTCUL*CCAC
MAVICULA MOTHA (TT«IO>
NAUCULA PIDIOAA VIP. PARKA (7»o«»o)
PIRNULAPTA SPP. (7R«70)
8TIUROMCI8 Atcrpta VAR. cpACUta (79«sni
CtlNOMITA
MtRlltA (11910)
•«ni*CHI» ruTXTNCIINA (14210)
RfPtlCATtR
COUNTS
I • I
144,
IS8.
1 •
1 •
t •
1 •
1 •
1 •
t •
t .
1 •
1 •
t -
1 •
1 •
1 •
1 •
1 •
1 •
1
t
1
1
1
1
t
1
1
1
t
t
t
1
1
t
1
M.
AM.
28.
16(«
*.
8.
844.
10.
o.
1.
o.
a.
• •
0,
0.
o.
o.
TOTAL fOR 8P,
144,
I.
8.
• 44.
10.
0.
I.
0.
0.
».
0.
0.
0.
o.
8pP. («4«IOO)
I - I
-------
PACt I
pnojrcti ictc MI» PROJECT »»•) ARP.AI urn bTLflOH LAKE (U) nitu »UCUIT it. i«u
ftmio«i rfTtn or "0'iTH nr SOUTH cnvt mj) •UBaTittom I
urn ippitrnmr m
or ntPitciTcai i rmo iiomcTin DCS RINHKV (s>
NOT •0PtIC*«Lf (0)
HIM DM* TAILRI
tsr LE«ti nrtniNCt
INC irvi prrmrurt PCPLICITES cnunta TOTAL ro* »P,
CCII"
T"T»L rop 90 apcrir.s BT PIPLTCKTRI t • i
TOTAL rOP 1 RmiCATM, 70
-------
MCI t
1CIC P»I» PPOJKCT f»*I tnr»| NKD
si IT to" i ton •cTcoa OUT r»u« r»st END or tm (j|4)
8»"ni» TIPII MCN »ppur»»t» (o)
tiu*a»:p or PtPitcmai i nr.io Moiootati NIB RIUNRY (9)
HCTII NOT »PPIIC»«IC (0)
t,m (11)
O»TII tncuii 17. mi
4
PIN D«TI
lit
]«o
CKNUR/SPCCTED
CHtOMOPNTTI
CC
CHI 0*000* tUM «»P, (1010)
I
00
nc»«i>niTi»i
COHTOTR»I» (141101
OB»6» V»B. Nljnp M«R|fl)
*ICPHROCITIIIH «C*RDHI»NIIN (UOJOI
Btlt"»»t»UM MiHUTUM (1*0101
nicTTospMjrRiuM KHREMBORCIINIIII
-------
ACTB Hi* ppnjrc' (»«•)
et»TPR or MOUTH or NINTH COVP fjtn
SAMPLER TT»CI WCN APPLKAPLr »o>
•UJMRKP OP PiPUCATEii I rirtn
NOTII NOT *optlC»BLK (0)
• BMt
HII.80M LAKE (11)
PIM DDT* TAILF8
PACE I
0*111
8IIBBT4T1QHI I
LCVIL p'pp.p.p.Nre
CHt,0»OPNtt»
CONT01PPT1 (14IY01
nert* »»". P«JO
•r,»»pHt»HUK (tSOIQI
(t*OJ01
P»CT»>«CUL«BT8 (1D410)
C»L»TTN08» (11470)
ClCLOULLft 8»P. (44JOO)
I • I
I - 1
I*.
J04P.
St4.
no.
TOT»l POR 8P.
II.
1041.
»T«.
T«0.
TOTAL POR I •Ptrtri BY RCPLTCmi 1 - 1 1910.
TOTAL POR 1 RtPMCATM, I 8PECIF8I
-------
r»ot
icto mi* MOJKCT
81*110*1 CI»IM Of «OHTH w NOPTM cnv* f 2»n
I»II NCN *PPlICI»l>r (01
Pimcmsi t man
MOTH NOT »i»ptic*Bi,e
IP.**| NCO MH80* U*e (II)
MCI
BATII oeiOMI li IMI
•UBITltlONl I
om
IIT urn •iri«E*cc
2*0 irviL ftrritr.net
VOLVOCktlS
riC|N
CHtAM
CHt»"TnO«MnN»8
(4AI)
(1OO)
(ISIO)
DICTToaPM«mTUH
(IBOIO)
(1*0101
(ITItO)
(2100)
DTNOKONTte
CI»KODt»tU«
CHTPTQVHT1*
CHDISO'HTII
. (4J110)
t«*TUM/t
NTUIt (44910)
KP.nl! (41(10)
(4IVIO)
8P.P. (B<*«0)
(PP. (1*110)
(S«0}01
8PP.
"ISC
(«J1JO)
CKLQTELIA 8PP. (»4inoi
(»9<00)
I • 1
I • 1
I - I
1 • I
I • I
I • t
I • t
I • 1
I • I
I • I
t • t
40.
4.
40.
10.
too.
1410,
(0.
9.
9.
0.
a.
ao.
120.
too.
ao.'
it.
*.
COUNTS
TOTAL ro» sp.
40.
4.
40.
00.
100.
I49».
I.
•o.
0.
to.
no.
1*0.
T.
ao.
4.
0.
-------
PAOI
»cic
eiimo o' MOUTH or NORTH COT* ram
8ANPLIR TTPH NCN APpuenae ro)
nu-srp a' BE»iTc>Ttit i 'mo
MOTCI NOT •PPUC»UE (0)
let
2ND
"I8C
Qcnua/spcctrs
"CHAOS («S
(S)
DAT* TABlfl
MHICAT18
I •
OATtl OCTOBll* I. 1ft]
•UDSTAItONi I
cnuiTi
TOTAL POD 8P.
a«a.
TOT»L FOR II 8PCCIC8 8T RtPLtCATRI 1 - t
THTAt, IQP t RtPLICATIS, II SPEC 1*8 1
]!««.
-------
PACE 1
ACU MI*
ON' THIRD DISTANCE MO» PAST E*D (J4J)
8ANPLEN TtPI I NCN AFPUCAKb* (VI
"linen or «Pitc»T«»i t rtrio ntninctBTt HER KINNV;Y
NOTtl NOT A'PUCm* fO)
IHr*l OTSTtP LAKE (741
nmi tutvti it,
•IJBSTtllCNi 1
RIM D»T»
h^
r\3
IIT
2*D LtVtL
C»lO|lOCCCC»LtS
oociitu 8
CWOCI6CNTA
HIVTCULICC»E
H»Dt08»
(tt«10)
0i>. (7*1)0)
GO»PHO'
-------
PAGE I
PPOJKCTI ACtC Ml* PP.CJKCT (A*)
8TATIONI P*E TMIPO niSTANCB MU* HEAT END (14t)
aAMpt.rn TTPH NCN APPLICA*LP tot
HUMBFM OP PEPITCMCBI i fifin PtoLnctsTi MIS KIDNEY
10TEI NOT APPL1CA«LK (0)
QT«TIO LAKE (141
OAtll AUCUit II. Iff!
•UBmttO"! I
PIN 0»T» TAHICI
iaT um
IND irvrt
cmus/sprc'E"
CMLOP-OPNTI*
vnvocaiia
CMl»Mtt)OHoN»fl 8PP.
L»C'!»TPTI
CPTPTOPHT1*
NTNII1* (4W4I01
^IR
»»I»HLIPH»PI» omii (41110)
1»»ICUL» RlOtOft* C»T«60)
8PP. (•4000)
PFPLIC»Tt»
»NIB»E"* IP. (080JO)
I - I
t.
COUNTS
TOTAL POP IP.
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 -
1 •
1
1
t
1
t
1
1
1
t
»ss.
1*0.
10.
1C.
too.
lltt
1.
1.
1.
391.
1.0,
10.
•0.
too.
1ST.
t.
1.
1.
TOTAL POP 10 aPerir.f af "EPLTCATP.I 1 • I 147.
rnp i prpMCATt% 10 a»eneat 441.
-------
PAGk I
ICIO Ml* PROJKC' (»•)
co»i IN No"THM*8T FND nr imr. rain
8ANPU* T|Pl I NCR APPUfAM.* (01
NU»Brn or PEiatcmai i ririr MOLOCTSTI
NOTE I NOT A'PtlCAHB (0)
AP.KAI UPPKH ISLAND LAKE (IS)
NE8
RATH AU6U8T ID, 1911
1
WIN DITI
tit
]«D
•39
I
TfIH»iPOP|
CPTPTOPHTtl
»o"i8T»an«)iNOi
KOPOtUPHTDIU* PU81LLUN (14010)
(LIRITOTHRIX Cei»TTN08» O147Q)
(31120)
NTLUI (443101
CP1PTQKCNA8 SPP. ( 47400)
CPTPTOMOMAS HtPlCXI (47f401
PHCDOMONIB NINIIII <4Mio)
CHP180PH»T«
P«PV»
N*VICUt« MOTH* (77910)
HTIKfCHIACCIt
HMZ8CHH KUTCTNCIINI (»oooi
I • 1
I • I
COUNTH
7.0TAV
8P.
1
1
1
1
1
1
1
1
1
1
• 1
• t
• t
• 1
• 1
• t
• t
• 1
• 1
• 1
41'.
*.
l«.
0.
0.
4.
tl.
147.
61.
1.
o.
41.
41*.
a.
14.
0.
0.
4.
11.
141.
1.
4.
0.
TOTAL POP 11 aPErira at
TOTAL roc i p.rpt.ir»Tfc8, u
i • t
7ji.
7ji.
-------
PPOJP-CTt »C'0 P»l» PPIWKCT (ftP)
STtTiODi «o"iNii|T run nr b
S»"PLEP T1PII ftCN *PPfir»«Lir (0)
HUNBfP QP PIPLtCmai I
NCTtl NOT *PPtlC«*U (0)
»P«:M UPPKP
NIK
lint
P*CI i
nmt «iicu8T 10. t««i
PIH D«T»
HT UVIl f>|PC»|HCI
]MD tcvrL nerriieiicc
GINUB/ftPECII*
COUNTS
torn POM SP,
3>
I
t—•
tn
»nt»cc»ti§
gfP. (11101
NONOKtPHIDIUM PUSltLUK (MOJO)
h»i»«rpfii«HUN nmo)
np». d 8*1.0 >
DI.IUOA (IRITO)
PEtl»8THUH BnHT*NUC V*R. (?OT)0)
OCtltlTNCBI (J14701
CHPTBOPMtll
8P1POCTRI 8pP. (JTJJO)
STIUPJIBTVUM 8PP. (11)20)
MTLttI (4<9IO)
(47*401
r4*4io)
(MHO)
CBTPT0MO»»S
BHCDOHONIB
§PP.
8TULtCP.PI (64110)
•'»VICUL» 8PP. (7TS70)
1 •
1 -
1 •
I •
t •
1 •
1 •
1 -
1 •
I •
1 -
1 •
1 •
1 •
1 -
1 -
1 •
1 •
1 •
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
92.
400.
13.
92.
ft.
4.
(,
•o.
42.
2.
0.
to.
191.
4.
1.
100.
It.
4.
«,
91.
400.
II.
«J.
0.
4.
*.
• 0.
4J.
2.
10.
191.
4.
a.
100.
II.
4.
-------
»CIC
81ITIQNI NGPlRtMT Run Of UK«!
SAMPLER TIP!I NCH »PPlIC««Le (0V
4UXBEP OP »|PltC*TP8l I flflf RlOinCTSTl mn K1HNKY (9)
notn NOT tppuemr. (o)
(75)
lit tivii •tri*iNcc
]«D LKVtL
NTTt«CHI«C|*l
NITZ8CHII i»P, (14000)
NITISCNII
«I8C
rtaooo)
HkN OIK
i • i
i - i
i • t
i - i
i • t
11.
ao.
9.
10.
COUNTS
n»Tti tucutT Jg, I9»2
8UBST»TtON| 7
TOT»l POR SP.
la.
ao.
9.
10.
TOT»t rCR 34 flPCCtrs BT RCPLTCITCl
TOT«L FOP t PFPLICms, J4 8»T.r.lfH
t - I !04«.
|04«.
-------
PAGI i
MOJCCTI ACIC MI* »Rnj*c* (*•) »P*AI
8TATIOKI MT»«* HQUTN KNO fl» 1811110 AND POINT ON N« SHURK
SAHPU* TTPII NCN APPUCA'Lr (01
NUMKR OP RtPLiCAteai i rmn •iniocTari MM KINNRY
NOTII NOT APPLICABLE (0)
ISLAND f,»«(
OATH AU6UIT 70, IM2
i
HAM DATA TABIEB
tir Lttit »irt*i»cr
2*0 LCVCL PKr»BB»CI
I
I—"
~J
fOl«CC»tI8
rHtA»TOO»«0>«A8
CNLO*ncCCC*L(8
AMI"* JUOAfl (10010)
AN*18TP
HPPttCATtfl
I • I
COUNTS
1.
rar HL*IORTA LTMNETICA
1 «
1 •
1 •
1 •
1 •
1 •
t •
1 •
t •
t •
1 •
» •
1 •
1 -
1 •
1 •
1 •
1 •
1
1
1
1
1
1
t
1
t
1
1
1
1
t
1
1
1
t
1.
lit.
!«.
M.
0.
0.
0.
o.
ai.
i.
• 44.
S7.
10.
«.
4.
to.
1.
0.
TOTAL POP SP.
a.
a.
it!
it.
0.
0.
0.
0.
71,
1.
144.
S3.
10.
• .
4.
10.
2.
0.
-------
P«GE
PPOJCCtl »C'C fill* PROJECT (»») »P»»| UPPrP l«L»t-n
8TiTiONi PEfiirr* SOUTH run nr i.n,»*n INH POINT ON NM HHOP*
TfPtl HCN »PPt|C»«I,|r (01
or PtPiicnrai < nrLO nioincTsti NER
NOTCI NOT APFUCABL* (Ot
n»T|l tUGUBT 30. lit]
• UBSmtO"! J
I
!-•
00
PIN 0»T» TAflLfl
tat ttm
1*0
pr.rrpr.iiri
NOBTCCAtE*
IN»B*CM* 8P. (49010)
(«MOO)
I • I
I • 1
I - t
COUfTS
TOT«b POP. 8P.
I*.
TOT»L rnp 12 BPtriM BT nePLTc«TRi t • t sit.
mm rnp i nrptic»Ti8, jj SPCCIRII ii«.
-------
P»Cl I
PPOJP.C'I KtD MM" PROJECT f»")
SIilTOMi »(TkKiK 8o"TH run nr tat»nn »Nn
*»«PttI> TtPH HCK ftPPlIC»*b? (0)
NUMBRP OP PIPL1OTK8I I MP.ID HiniOQT8t| M|8 »I«NtT
NI/TH NOT
IPCM UPPM I8t»»1 t »«l (IS)
aHOpr (]M)
n»Tti IUCUIT Jo, if«2
8UI8tllIO*l 4
imt
irvrt
I
t—'
VO
CHtO«OPHtT»
vnivocAica
Chl*»IDO»0»»« 8»P. CtttOl
CHLopqccccttea
(tl«00)
(t«nanj
»o»o»»PHiotu>«
OICTT08PHARHI
Cl,«R*TOTHHU QrilTTNCIk (31410)
t*
-------
P»CI 1
•CtC Ml" PP.OJBCT (*«) IHr*| UPPrp l8LAhn I,»M (IS) CITII AUCtlBT 10« IMI
8I»TTON| *(T**CM SOUTH RNn nr KUMP tNR HOtlTM HHflPf (2^4) 8UB8t»TIO»l 4
Slt'PUP TlPtl NCN tPPHCARLe (U)
NUMirp OP "iPHc»T^fi i PIPLO »iotncT8T| MEM riiNrr m
NOTIi NOT »PPLIC»«Lt (0)
P»» D«T»
IST LCVIL »irr»E»ci
COUNT! Tom POD IP,
RtNua/spEcTrn
I
ro
o
TOT»I POP is iPerir.B BY nntcitn t • t «TT.
rnp t p.r.piir*Tts. is
-------
APPENDIX B. PHYTOPLANKTON CELL ABUNDANCE DATA FROM FLAT TOPS LAKES
SURVEYED DURING 1983.
A-21
-------
«crc WIN PPCJtct <»P) APEM Ken ruse* tw m>
HCIIKI, TUM'S HOUt» CIPTH 9.11* (3J3>
mil »»N CORN CP»* (in
cr PiPiiciuii t rim nciccisit FPINU PCPPIS res)
NCTtl NOT (PFUCtHLt (0)
»UP«T»TIPNI
14, 1111
tit tnu
I
ro
ro
ttvti
Ct»U8/6PICIIS
VCIVCCAU8
CHlt»*TDOIiOk»l Btt. (1I7C)
CHlC»COtfC»Ll8
JPMIPOC18TIS 8CHPCI1IP1 (lino)
ClkCUCWIIIt
6V»NCCINIUM 8PP. (42220)
CPIPTOPHT1*
CPVP1CMCN»C*CI«r
PMCDOOM8 »INUT* C4I41C)
B»ClLllPICPH)CI»t
ClVCILLICKtf
cnetiit MI»UT* (nisio)
CTINOPMtl*
CHPCCCCCC»U8
TINUt88II>« (I90IC)
COUNTS
rnp IP.
1 •
1 •
1 •
1 •
1 •
1 •
1
I
1
1
1
t
2C.OO
J734C.OO
2C.OO
2C.OO
4C.OO
t«e.oc
20.00
17140.no
20.00
20.00
40.1*0
180.00
torn FOP « mem ei ntFtiroTii i • i nsoc.
TOIDL ro» i PtPtictita, • sprcitat i7soe.
-------
FICt I
KIC MI* pPCJtct (»P) »PE»t NET MiacN IMF »3J>
MCIIKI, 1UM«8 BOUT I CEPtH S.JN (212)
urn V.M con. GMK
-------
p»G»
PUJOtCJi *eic PUN PPCJtrt (»M
PICUM, TUBK'S RPUTr miH 4.1K f2J2>
urn V»N CUBH CMB rjl)
cr PiPticiTtai i nuc DimciMi uncfl a»"pi i»c
NC1II KOt IFFIICIIIC (0)
tat itvri
mil wrr M'srn L»M
run
Ct»U8/8PECII5
TO'IN'8
mcHcmu
vctvcckira
CNIIMDOCO
••riHpCCTl!
CVNCCINl"
CUNCC1UX
.., CPtPtCWt*
1 Cf>mC»C*»riCl»
ro CPIPirMGM
MIS app. (H70) t •
* anicrpi neteo>
UK 8P. (M0001
N ODDTNdUP (42230)
OCULAIU' (440IC)
rY»NCCtkUI> (44020)
CU*PIDf*8 (448)01
I
8 (P08» (474IC) 1 «
PPmtSHLtS
CMFiarCHPOMl'LIM P«PVI (MIJ01 1 •
B»CILl»PKPH>Cl«I
CIk1F*li8
CTCtCTlU»
oaciiitioptkies
PHCPNIOIUM
8PP. (84100) 1 •
»ucicet» (*io4C) i •
2 o'.on itn.no
C^lfl n.no
c.or i2n.no
C a 0 ^ 11^«^0
3, id n.«o
C,2r n.no
C.4r n.no
2 o'.or 3n.no
2 O'.or 77n.no
2 C'.Ofl n4ff.no
2 C'.OC in.no
1I*.*0
n.«o
I2n.no
tin.no
>.»o
n.»o
n.4o
in.no
iin.no
M4n.no
in.no
TQ1KI rC* II 8FPC1C8 *
TOTAL PC* 2 PIPLICITtS, II BP»CT18|
1-2 4. 2««r.
7444'.
-------
PIG» I
PPCJIC1I Kit »*IN PPCJlfT <»P) mil *ir
MCllKt. TURK'S BOUT | tPMH *.1» f}JJ>
imi »»» roni GFAP ill)
ci FimcMkfi 2 rule etctreiMi u.«ca
NC1II KOI »ftllC»Btl (0)
L»»» (31)
cpt«
CM»| .10»T
181
I
ro
tn
7NC
crms/sptcns
CHICRCOI.CCILI6
IP. f|flJ8C1
sp. nscoci
COE»*Rtl'» NINO* (79140)
MMHIDIU* ifll»jl (1JOOC)
OPOtMIUK (4J7IO)
PfMClNlU- CU»BlCf».S (44910)
CKPTSCF^IT*
DI»C«R10k CfLINCptCUV (!«C10)
cnrYSccHPOMVLiNi P»»V» rdiioi
BICIU»MCPHtrt»E
ut»ce»r
t-«VTCl)L» fPYPTOf|PH»l»
1 .
1 .
1 •
1 •
1 •
1 •
t -
1 .
1 .
1 •
1 .
2
2
2
]
2
2
2
2
2
2
2
C.O"
C'.Of
t'.sr
(,10
C.C"
t'.or
c'.io
t'.tt
t'.Qf
e'.2«
e'.of!
11". 00
l«.no
16«.00
o.oo
1"."0
40.<>0
o.oo
A.OO
60. og
o.oo
in.no
tM»t PfP IP.
rout rep it (ircTES PI mtirmi '
TOUT PC" J P|fttC»l»S, II .«P'CTE»|
9'.
420.
-------
PKJICTl Kit MM PPCJtCT (IP) »PEM Ktn MtSfN IMF fJJ)
ai«1tCN| P1CUKI, 1UP»««, HOUTl EIPTH S.IK (]]])
1TPH »»» COP* GPAB (11)
cr PiFiiCMtai a nut BKICCIMI u«s a»mm c*m
Hem hoi ipritcieit (o>
cnn lueun it,
8U»8T»TtCNI I
M» CAT* lltllt
18T Itlll
ro
en
itvti Pirimcr
cr»ua/aPicifa
CUtCKOCCCUH
HlfHPCCYlIUf 8P. (19000)
ELIHttUlMRlX
lUCLINCfHll*
tVCLINftlta
IPJCHtLOVONia DCP.U81* (11010)
PTMHOFHT1«
CI»CPCN1*(
C1»NC01«IUM ORD1M1UC (41210)
ocfi>ci>c»*c»i(a
ca»oi>oN«8 app. (50120)
CTkCBPYOK CYLtNCPlCUP (SfOJO)
B»C1LUP!CPH!C(«I
NIVICUL»Ctll
VIP.
CTMOFK1T*
NC8UCA1I8
»»>tn»ii sr. (9SOJO
PtPtICITK8
lent rnp. 8P.
i • a
ctiNUp (paeo) i - a
((•410) i • a
(ai470) i • a
ioio) i . a
aaio) i • a
i - a
lojo) i > a
. imvMiri* (Tito i . a
C940) 1 . a
t • a
SO. 00
an. on
c.oo
«0.on
to. oe
10.00
HO. 00
ISO. 00
1C. 00
1C. 00
c.oe
P. (10
0.00
J.40
o.no
n.oo
0.00
0.00
127. CO
0.00
O.flfl
«.»o
SO. 00
170.no
J.40
• 0.00
ifl.no
10.00
• 0.00
471.00
ie.no
10.00
».»•
torn rep ii arrctia 11 Prpiic«tti i • a tsc. ta«.
TOIAL rep i PtpiTcma. n aprctEai «7t.
-------
PIGf I
PtCJ'CTl Kit MM PROJECT OF) »REI| Krr Mt.SRN L»«r (2))
81»11CN| HCtIM, TURMS BOUY| CfFTH 9. Jf (213)
mil «IN C0»k CM* (11)
cr RmieiTtti 2 rim BKI.CCIIII uses «»MPLINC CUM <«M
HC1II ItOT »PFltC*eil (0)
RUM E»T»
I
ro
i8t um
JKC
•IPttCIT'8
CUCFCOC CCittS
8P. (11000)
CHRT8CPKT1*
OCkRt»C»»CILI8
CTCOFRTCN CYLINCRICU" (SfOlO)
(1T3«0)
8»CILl«RKPH)CI»t
iLkFUCEt
i»ttLi»Rik rioccuica* (13570
P»Lt« (840SO)
HC81CCMI8
tNIMEM 8P. (9S03C)
COUNTS
1 •
1 •
1 •
1 •
1 •
1 •
1 •
a
2
2
3
a
i
2
e.tf
G.OO
307.00
0.00
C.IO
C.10
2.20
90.no
240. OC
TO. 00
90.00
0.00
0.00
0.00
trm iOR «P.
«e.«o
140.00
JTt.OO
SO.00
0.10
0.10
T(H*L rCR T 8FICII8 ft PrttlCATII I • 2 Jit. 490.
Tom rep i PtFLiciiis. i SPICIEBI tec.
-------
PPGJICTl Kit DUN PPCJtCT (»P) »«»| HIP MtBCN IMf (23)
8imCk| tCUIOftm } 8NOPt8*8( CCVEl CEPMH 4.IP (211)
s»mrp tmi vi» ropN CP*§ nil
NtrrtP cr pmieiitsi 2 rtttc eutreisii uncs MWPIIKG CPIW r«c)
MCTIl 4.0,2.9,0.9 I* CONPCSITt CtPIH (f)
P»CP
as,
C»T» HUMS
ro
oo
tat um HFMPINCI
mi uvu
cri>us/sFtcii»
CHioPcotcciita
aofPcrotPt* tttictPi rto«oo)
HtfMPCrtTIU*1 BP. (190001
CICTlCaPNKEFtUC IHFIKRERCKNUH (t1I«C)
OChFC»CMC»Ll»
CUCCPYON CUINCP1CUV (91010)
CHF18CCHHONULINI P«PV» (tJIJO)
B«CIll»PIiCPHlC(»E
rmeu»pu BPP.
1»FELIRISI»
CCCCCNE18 DIMlNHtl (14IIC)
NUICUL* 8PF. (71930)
Mlt(Cfl»CI»t
H»MI8CHI» gPP, (I14]0)
NI1Z8CHU P»l(l (14090)
CttHOPHItl
NCITCCftlEa
*MIB*EN« 8P. (49010)
PfPtlCIIfS
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
a
a
a
a
a
a
a
a
a
a
a
i. or.
c.ce
4f .tO
!9f.4C
0.00
C.20
l.SP
c.oo
C.10
C.10
c.or
an.no
lo.no
9tn.ro
610.00
410.00
0.00
0.00
10.00
n.oo
n.oo
to.ro
t • a
i.oe
o.no
tern POP «P.
ao.no
io.no
•04.«0
1M.40
410.00
0.90
1.10
10.00
0.10
0.10
10.00
ll.no
Tom rcP 12 BFECIE8 PI PfFtlC»t||
Tom FCP 1 FlFLtCMia. 12 8PfCTE8|
] 27].
2142.
-------
PFCJECTI tcit PUN PPCJICT (ip>
81I1KNI MflAkEt lUPP'S BOUT» CFFTN S.3X (212)
SlfFLFP tmi V»» CODI) CP»B ()1)
NIHEP CF PEFtlCME8l 2 riflC BICtCCI81| U8C8
NCTEl I.S.I.SiO.S » CCMPCaill Ct»lH (1)
IPEH NCR niam LIKP (si)
js,
C»T» TIBIEB
ro
vŁ>
in
Ptrmtuct
Ct»U«/8PICII8
CKlClsCOCCCtLf8
DICTYCBPHtCVIUH
I14MTOTHRII
HH10)
CftOIMON CtLINCPlCUl* (5IOJO)
(1T]«C)
CHF18CCHVQHUL1NI M«V* (ClllQ)
•IC111»»ICPH)CI»C
rioccutcai
N*\ICUL» CPIPTOCI»H«1» (77610)
C1»MU«CIU
CT>BIH» 8PF. (tUOO)
C1«*OPH11I
t»C8TCC»lll
»N»(tlNt 8P. (9SOIO)
P(PLtClTt8
I • 1
c.oo
«.7fl
Kill FOP 8P.
1 •
1 •
1 •
1 -
1 •
1 •
1 •
2
2
2
2
a
I
2 •
loc.oe
70.00
700.00
140.00
70.00
G.OO
0.00
19S. «0
'.10
711.10
0.00
O.JO
1.00
0.70
4H.IO
21.10
tit. 10
140.00
10.10
l.flO
0.70
• .TO
TOTAL PC* ( 8FECIC8 P.1 PEfllCATtl I • 3 MIC. 441.
TOUL fCP 2 PtFLICHf8, I 8PECU8I ItJl.
-------
pier
CFP1H 2.SP
PFOJECIl Kit Pit* PPC.IECT (»P>
ICU1CIMMT 1 8HORE«-»
im V»N tOPN GMR (II)
nui>m or MFiiemat 2 riuc eicicciait
NCTEl J. 0,1.5,0,9 C CCNPC8I1I CEPTH (||
mil DEO OltSCN LIKt fjl)
uses MHPIIKG CPI* tun
IUCU8T J1, 1411
]
181 LIVIL PrflPtNCt
JNC tEVIL
cr»u8/8PEcita
mcpcmi*
cHiopcoccciita
8cvpctDf»i»
(iotooi
u>
o
FE VIC. (30710)
ELM»T01HB1> CE1HINC8« (31OO)
(9«eio)
CHFt8CCHPOtltIlINI IF.
BICILLIPICFHKEIk
Ct*1Mll8
CTClClIltl SPP. (84100)
TftEELtlPU HOCCltC8« (12310)
CPIPTOCIFHIl.* (IliJO)
NIII«CNJ»CI»I
KIU8CHI* Pltll (I40SO)
NI1J8CHI* KCTXIHCIAN* (14210)
NCITCCMI8
>K»»»|H» SP. (99020)
P»PLTCHE8
CCIINT8
1 •
t •
1 .
1 «
1 •
1 •
1 •
1 •
1 .
t •
2
2
2
2
2
2
2
2
2
2
2
c.oo
us. so
C.DC
1.20
m.»c
O.OC
C.40
C.20
C.90
0.00
e.io
10.00
400.00
n.oo
0.00
120.00
470.00
n.oc
0.00
0.00
10.00
0.00
tern rrp BP.
O.PO
«IO.iO
470.flO
0.40
0.70
0.90
to.no
0.10
I •
4.20
0.00
Tom re* 12 stFcm cj PFFIKKTEI i • 2 154. 1210.
T01IL FCP 7 PtFLtC»1C8, 17 8PFCTE8I tS«4.
-------
PFOOICTl »CIC MIN PPCJECT (»P) »PM| HER MISCN LllcF (JJ)
•1A1ICNI ICC* rPPSNOPE-i" SH»ltCk CCVI f CEPU ».0» (2J4)
BIPPIFP mil V»N COP* GMB (ID
nuctt* cr piPtieiiiii a ritit BKICGI8H urea s»*put.c c"*"
NC1II NOT mifCteit (0)
CI1F|
P»CF |
21. MM
PM CAT* TtPlCS
t«i u m
Cf»US/8PlCTI8
CHLCPCFK11I
CHlCPCOCCCdtf
ect«oFptPiA atTicip* (ictec)
KKHPCCVIIUK SP. (1SOOO)
CKTOSPNICFilUli 8F. (PJSC)
DIC11CSPH»EPIUH IHPimUClMUl'
(PP. (30T1D)
C(l*T|NC8» (21410)
OICCCCNMltS
CHOCCHIUM fJSJOC)
co
p»c(08ciciuir
8P. (4UJO)
CNPtscpvm
QCI-F>CI'0»»C»LE8
CUCBPYON CTtlNtPtCUf (9«C1Q)
CHM8CCHPOMULINI 8f. (6J1301
CIMMLIS
CKLCItltk 8PP. (44100)
H»VICUKCl»t
NtUCULk 8PF. (11S30)
NI1Z8CNII 8PP. (14000)
NI1Z8CHU PILt* t'40SO)
NCIKC»1I8
IMP.tlNI 8P. (9803C)
PEPLTCItlS
cct'Hia
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
t •
t .
1 •
1 •
1 -
1 •
1 •
a
a
a
a
2
2
a
a
2
2
2
a
a
2
a
1C. 00
ic.cn
MC.OO
c.oo
c.oo
9C.OC
c.oo
C.Of
c.oo
94C.OO
i«c.oe
1C. 00
c.oe
c.oo
1C. 00
(I. 00
0.00
0.00
74.40
0.40
1.40
1.40
P. 10
J1.»0
»J.*0
o.eo
O.fO
I.'O
1 ,f 0
0.00
Kill FTP BP.
20.00
l«."0
•«A.no
14. «0
A. 40
31.40
0.10
JI.HO
100.00
17.40
ito.no
io.oo
t.KO
in. oo
1J7.40
-------
pier 7
PRCJteit ffijc»eie (0)
RIM cm tiBtii
IBT tivn
um REMRtRct RtPLicma couNta icin rn* BP.
TOTAL rcR i* mem pt RrrtiriTu i « a JHC. to*.
TOTIL rCR 2 PEFlICIira. X BPECIE8I 7Stl.
I
CO
f\>
-------
PPGJECTl Kit *M« PDC.ieCT (IP) »•!*! »En MTSfN L»K» (Jl)
81«T1CN| MCUM, TOM'S BOUT | C»PTH 9.1»> (213)
8»XPIIP tlfl| 1IN CORK CP»H (11)
NumtP cr PiFiieiTESi 2 rtitc BICICGUII uacs s«mi«c CPI« 'en
NCTd *C1 »PF1IC*BIC (0)
c»i?i
P*CP
10.
CO
CO
lit triit HrrtHiNct
2KC 1EVIL PtPIREkCr
Cr»U8/8PICII8
VCIVCCMP8
Pt>t INCHCM8 8P, (4«0)
CHlCPCOCCCfLia
8RMt«OC18TI8 8PP. (|1|«C1
CCCV8TI8 8PP. (IS1IO)
DlCTYCBPHlCPtUP ENFmilKCKNUN (|1]AC)
tllRtT01HP.ll CtUIINCf* (JHK)
PIRPNOFHTIt
OlWCPCKItl
CimODl»IU« 0*Clli»1UI' (4J7)«)
CPTPTCmi»
CP1P1CMCNIC»CC»C
CP1P10NCNK8 IDDII (41*IC)
CCHPCCOMOKH
CHUBCCHpONttlNI If.
BICIUIPICPHKMt
rP»Cll»Fl»CEIf
tftltlttRfk PLOCCUIC8* O3S70)
08Clllk10»l»ltt
PHCPOIDIUM IPP. (4}00«)
NCCTCCMEI
8P. (»JOJC)
PrPtTC«t»8
COUNTS
TCTIL rnp 8P.
1 .
1 •
1 .
1 .
1 «
1 .
1 .
1 .
1 •
1 .
1 •
I •
2
2
2
2
2
2
1
2
2
2
2
2
C.OO
0,01
0.00
c.or
0.00
c.oe
c.oo
«T.9fl
O.or
c.oo
0.00
»«.20
ito.no
lTO.no
41.10
M61.10
tl60.no
2n.no
20.no
1.10
190.00
41.10
751.10
0.10
ltn.no
ITA.flO
4n.no
Mto.no
tuo.no
10.00
lo.no
• T.,0
isn.no
40.00
»90.no
2*. »0
TOTkl PC* I? 8FPCTC8 PY RIFtlCATEl
TOTtl PCP I PEFLtCim. II 8PPCtE8|
1 • 2 194. J«2«.
4C44.
-------
PPCJECll Kit HIN PPCJECT (ID) »PE»I HED HI8C1. LINP (JJ)
I1«11CN| PICUM, IUPIMB linilYt CEMH 9.IP (312)
aiNFLIP TTFEl V»» fOPN GMB (11)
NIKE* cr ptPiiemii 2 rinc mctccmi uses SIPFIING CHIN (BO
NCTII NOT IPKKIBIE (0)
PICt I
CHP| *IM?»PIP 1C, 1181
p*w t»t» ttnit
irvu
JUt LIVIl
COUNTS
CHLOPCFMT1I
CHicpcoccciLta
riictPi (teteo)
ICHPCIKPt (MPO)
KlKHftEPULlft 8PP. (I4I«C)
CCCT8T16 BQPGII (1SJ30)
DICUCSPHIEPtUM IHPttiHPC!»NU»
tL»*«TOTHRII Ctt»1I«C8» (21470)
PKPPHOPMflA
>
CO
C«I»NODIN1UN OPDIkflUP (43110)
CP.R110PH11*
OCPPCHC»»CILIS
OUORPlCk C1lINCFtCU»> (150)0)
CHMiCCHPOHUtH* P*»VI ((1110)
ttCIUIFKPMKtlt
rp»cu*ri*ce»i
THtllAPl* 8P. (1JS80)
NIVICULICI*!
N»\KUL» 8Pf. (T7»3fl)
CV»Kll* 8PF. (81900)
CYIKOPMTI
KC8TCCMI8
*N»e*tN« 8P. (11010)
1 -
1 •
1 .
t •
1 •
1 .
1 •
3
2
2
2
2
2
2
2
c.oo
0.00
c.oo
o.on
C.on
c.oo
0.00
98. kO
o.oe
c.in
c.co
c.oo
(.20
170.00
70.00
40.no
100.00
llao.no
120.no
10. OU
0.00
I70.no
o.no
10.00
10,00
o.oc
inn. inn IP.
170.00
70.00
40.no
700.flO
Il80.no
130.no
10.00
s*.*o
170,00
0.10
I0.no
to.no
- T01*L *CP 11 8HCU8 *1 PtftlC»TII t • 3 61. 2MO.
TOI*L rep i pmiema, n sprcuai 3t4i.
-------
p»c»
I
CO
in
PFCJlCtl Kit »»!». PPCJkCt t»H)
81«1ICNI MCl«*if TIPPN'S prUY» CFFTH
8INFIFP TTFII »>K COPK CF*R (J1)
NUCFEC rr nrrtioTiBt 2 nut
NCIII NOT mitcmt (0)
181
um
act-pcrorpi*
ricecoi
DKT1C8PH»CP1UM
PTPPHCFK1T*
rucuc'iu
ClfNCtlNIUM 8PP. (02)0)
CT»ORPVCN C1LINtPtCUI>
litSKlta
CKM8CCHPONIJLIM »«PV» ((11101
U*GR
C*IN r«<*>
DIN r»t»
fOI'N'8
i • 2 e,or jo.oo
1 • 2 C,OC 4490.0(1
1 •
1 .
1 •
1 -
1 .
2
2
2
2
2
11.90
O'.Of
O'.IO
e.or
c'.ao
I*20.0()
10.00
0.00
70.00
0.00
irtu rrn a».
IP. 00
lfl.ro
T01»L PCP 1 8FICTE8 PY PFftIf»TU
T01AI FCP 1 PIFlICIlta. •» HprCTE8l
1 . J II. MJfl.
«4Jl'.
-------
Kit MUM MCJICT (in IPEII empp IMP
87I7ICNI ICUICIIUNT 1 St-OPEBKk tftC| CIPTH l.flp (HM
sim"> mil «IN com GPAB til)
tump cr MPiitiiMi i rific eiciccicn uses summ CPE* fit)
NCTII NOT iprucmc to
PIGP 1
CI7P| IllfUei 19, HOt
em mm
tit itm
me
Ct»U8/6PICII8
CHtOPCH-TII
VCt»CC»tII
PKINOHOMRI HtNU11ISII>* (461)
CMlCPCOCCCliri
IKMHDOC18TU 8CH»CITtPl (1WO)
CPICICIN1* P(CT*NC(ll«P18 (11410)
CCIMPW srp.
8tlUR»8TPUM 8PP. (11110)
CPTPtCPHll*-
CPlPlCMCN»C*CI«t
PHCCO»ON*8 DINU1* (41410)
CHPiacmi*
PPIKII81AIE8
CH»f8CCHIIOHllI*» 8P. (lino)
CHPlSrCHPOMVlIN* PIPVI ((3110)
B*CILL«PICPHtCt*E
8PP. (Y016Q)
CP.01CMCN8I8 (70ISO)
1AIELLAPU riOCCltOII (72910)
MIlCULICttf
CY»tllLICE»t
IffHOP* CVAII8 (11040)
NMf8CHItC[«E
NtliaCHI* Pitt* (84090)
CtMOPMII
NC8TCC»IE8
*NIRIEN» 8P. (99020)
PEPITCHC8
1 • 3
9C.OO
a.oo
1 •
1 •
1 .
1 -
1 •
1 •
1 •
t •
1 •
1 •
1 •
t •
1 •
1 •
2
3
3
3
3
3
3
3
3
3
3
3
3
3
180
no
(70
0
1C
31C
80
7C
1C
C
0
C
C
3C
.on
.00
.00
.00
.00
.00
.00
.on
.00
.on
.00
.00
.00
.00
9.40
31. «0
0.00
0.10
I.PO
0.00
0.00
0.00
0.00
0.00
i.eo
0.20
0.10
0.00
1 • 3
0.00
19.00
iciii re* IP.
SO.(10
U9.«fl
m.«o
870.AO
0.10
II.PC
110.00
80.00
30.00
10.00
O.ftO
t.eo
0.90
o.io
30.00
if.no
-------
PFCJICTl Kit MIX PPCJECT (It ft
BTiiiCNi ieimim*T j
8»«PtlB TlFli »M COPk CUB
NIKBIP or pmicMtai 2 rate etciccitu uses
NClll NOT milCMU (0)
m»l tlfttt UM (24)
j.o» mn
cpt« teo
111 urn
]KC IEVIL
CC»U8/8PICIia
PtPUCUta COUNTS
TOTAL PCP It SHCIIS U mtirmt t • 2 IOC. 6«.
TOTAL rCP 2 PEPLtCHta, l« 0PPCTE8I Hit.
lUfUM M, |tl)
IUP8TITKPI |
irm rnp IP.
-------
MCI I
PPCJlCIl *CIC MTN PPCJICT (IP) »*E»| CTflTFP LIKI fJ4)
lt*1ICN| ItUlCIMMT } SCOBS 8K" CKC| tfPTH 1.0* (2 GMCUt (11)10)
I
w
CX5
CPYPlCMCNADACIkE
PHtDO«ONI8
8lClLl»MCPHKl»r
CIMKLI8
CTClOttllk (PP. (84100)
rP»C]L»>I«Ct*(
STMDP* 8PP. (TJI10)
NtVICULICEtr
NRtlCUL* BkClLLUf (7|IOfl)
C1PBILUCCIE
CT»BILLI 8PF. (ItSOO)
CT»BEIL*
NT1I8CHI* PILE* (14090)
C1ANOPMT*
NCI1CCMP8
AMBAIN* SP. (19CJO)
t .
1 •
1 •
t •
1 .
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
2
2
2
2
2
2
2
2
2
2
2
2
2
2
o.oe
!oo
.10
.00
.60
0.00
C.10
C.IO
c.oo
C.10
0.00
c.oo
0.00
jn.no
I2o.no
10.00
0.00
io.no
0.00
30.00
0.00
0.00
in. eo
n.oo
20.00
JO. 00
un.no
Kt»t IPP. IP.
10.00
110.00
ii.no
o.to
lo.no
BO.00
0.10
0.10
in.no
o.io
20.00
10.00
T01ftl rCP 14 BFtCttC tl HPFUCMtl 1-2 «. 800.
T01»t KP 1 PIFITOTEB, 14 8PtCTE!| tOt.
-------
PPOJtHl »Clt Ml* PPCJECT (»P)
81I1TCNI ICUIOfTAMT ] 8POP.I8>rat CC«I|
mil UN COM GMB (II)
or pmiriTiai i ruic eicicciaii
NC1II MOT milCmr. (0)
«PIII
J.5P (747)
U8C8 8»PPtING
FICF I
oiiPi lueuai 31. H8i
t8i
m u»«t
Cr»U8/BPICII8
CUUNT8
1CHL
8P.
CNLCROFfTI*
CMICFCOCCCIU8
8PMIPCCT8T18 8CMPCITIP! (I1HO)
*ici»neui«»i8
CtUCPIGUl* IP. (30SOO)
ILJKHOTHPIJ CIK1INC8* (2H70)
tTCH|»»1*LII
CO»I1CITCON 8P. (1«300)
•tlUP»8TPUN 8PP. (11120)
CP1P10PK11*
I
CO
PHCCOPONI8 PINUT* (41410)
CNFmCHPONULIM P««V« (I1UO)
BICIlllPICFHtCtlE
rp»cu»n«cc»i
6TCICP* 8PP. (77110)
iMiiiKPit rtoccutci*
N»tlICUL«Ctie
fPieiULU TULCIP1I (T««Se)
NM1CUII SPf. (77930)
H»>ICUL» PUFUlt (77990)
N»>ICULI RtCIOII (77««0)
CIPBIlLICKt
C1»BEIL« 8PP. (11900)
PHCPPIDIU* 8PP. (9JOOO)
1 •
1 •
1 «
1 •
1 •
1 •
1 •
1 • 3
1 • 3
1 •
1 .
1 .
1 .
1 •
1 •
1 • 3
1 • 3
11. OC
0.00
71. OP
1 ,tt
C.40
C.JO
2.70
0.00
c.oe
.«f
Isa
.11
.10
.00
.10
C.30
0.60
740.00
«n.no
780.00
0.00
fl.no
0.00
n.oo
710.00
910.00
10. CO
O.flO
0.00
0.00
io.no
0.00
0.00
0.00
771.00
to.no
)0*.PO
l.*0
e.«o
0.70
7to.no
910.00
10. »0
0.70
0.10
o.*o
Ifl.flO
o.to
n.7o
e.«o
T07AL rcP 17 8FECIE8 PT PFrtlCkTII
T01»L rCP 7 PfFtTCHFS, |7 flPECTt8l
*«. 1140.
140?.
-------
ncr t
PKJECtl 1C It MM MCJCCT (Id) »Pl»l
81*1 1C Nt ICUICMtINT I BPORtaM mi CIPTH l.fl» (HI)
8»miP tin I VIN COM CPIB (JJ)
WIKEP cr PiFiiciTkBi 2 rmc BKICCIBH trmt PCPMB
NC1II N07 miUmE (0)
t»Kf H4)
8UPSTATICNI
PIN CUT* 1l«tl(
ui um
I
-t>
O
Ptnmci
Ct»U8/8PICllB
(P. (1970)
CMICPCOCCC»LI8
ao»*ciDtPi« acirctM (totco
BfiffiPociaTis arHPctitm (lino)
ctemia nopcri (isjjfl)
CKICICENI* PEC1jmCtllJIPI8 (IMIO)
CCfHAPlUV BPP. (]«J}0)
8T»UP»STPU» 8PP. (UI30)
P1PPHCIMT1I
ClNCfCNItl
CVMCCINIUN 8PP. (42220)
PUICIN1UN CUHP1CIN8 (443101
cpmcmit
CPlP1CMN»C*CI»t
CP1P1CNCNM IPOB* (471IC)
HHCCCKCN»8 VINU11 (4I41C)
H«1ttlllHIPIDICe*l
MimtPMRia C»»tll (48710)
CXP180FKT1I
P»PV*
ante** ceLiciii88i»» (72iso
1»IELl«PI» 8P. (729*0)
MVKULICtte
CBTPTOCIPNtll (77(JO)
Ptpitcma
2f.OO
COUNTS
n.flo
t •
1 •
1 •
1 •
1 -
1 -
1 •
1 •
1 •
1 •
1 •
1 •
1 •
2
2
2
2
2
2
2
2
2
2
2
2
2
2
ic. oo
2C1C.OO
inc. oo
c.oo
C.OO
c.oo
1C. or
c.on
10.00
24C.OC
I7C.OO
70.00
1C. 00
C.OP
O.flO
44.40
O.flO
41.40
0.10
J.JO
o.no
n.to
C.oo
fl.no
0 9 flQ
0.00
o.no
0.70
icm
SP.
1 • 2
1C.00
o.no
2«.00
10.00
2094.40
100.00
41.40
0.10
10.00
e.to
10.00
240.00
170.00
70.00
jo.no
O.JO
10.00
TOTAL rep te arEciEB tt prFiirmi i • 2 Je»«.
TOTAL FC» 3 PtFttC»m. 1* 0PFCTE8I ?71t.
-------
pPCJtcit Kit
S7A7ICNI ICtlCtfTANT J 8»"OPI8*» PKC| C»PtH 1.0"
aimip mil VIM COP* CP*R cm
•IPBIP cr PiPiiemai 2 rutc eictceiflii
NCTII NOT *PFLtC*BlE (0)
m»i
uses A«»PIIKG c"r« r«ri
pier i
10. !••}
PIM
IIT irvii PPMPINCI
]DC t|VH
PIPITCITPS
CHLCPCfPII*
VCIVCCMI8
PBCINOXOkll NtNUIItSlI'* (461)
CHlll>1PO|iON«8 IPP. (II7C)
ChlOFOPCCCILia
ac»PciDrpt* aeiictpi tietro)
8Pf»I»OC»8TI8 8CMPCCirPT (UUO)
CCCY81I8 8PF. (ISJIO)
FDCIA8TPUM 8PP. (10110)
ILMIIOTHPII CEII1INC8* CJHTO)
81F»UP»81PUI> CPKUt (11J1C)
8Tf»UP»B1PU» PAPIDOIO (11140)
ppcpcaciciun time)
CPYP10»CN«CftCE»e
CPIPICHONkB C*oa» (47410)
PHCCOCM8 PINU1I VIP. HINNCPl«NCTin (484]fl)
CKMarCHPOMVLINI P«PVI («ll)01
BKIlllPICPNlCtft
N»VKOL»C1»I
8PF. (T7S20)
CY»PML» BPF. (11900)
CVrtflL* MUUTt t«H10)
C1IMCPM1TI
Ncaiccktia
8P. (9)0>0)
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
•
•
•
•
•
•
•
•
•
• •
.
•
•
•
•
0
0
0
c
c
0
I
c
11
1 C
) 0
1 0
1 C
> c
1 C
1 C
I C
.or
.00
,ot
.00
.ee
.oe
'tr
,00
.1(1
.i«
.20
.oe
.00
.10
.10
.00
.J«
20!
140.
420.
0.
110.
".
«.
20.
O.
0.
0.
710.
«70.
0.
•».
20.
O.
00
00
00
00
00
00
00
00
00
00
00
00
Ofl
00
00
00
00
PHP ap.
170.00
20.00
140.00
420.00
O.*0
110.00
1.70
10.00
I'.'O
0.70
110.00
»70.00
0.10
0.10
20.00
0.10
-------
P»C» }
ppcJtCTi tcit mm p*c.itfT (IP) A»i!ii nsipp IMP fjo tun UMPPPM 10,
81A1ICNI ICU1CTMANT J 8HQR[8|kk |MC| CIP^H 1.0" (3<11 PU»8t»Ttri(| |
8»C»HP mil VM COPN CP*M (11)
HI CUP cr piPticiTtii 2 rtnc etcicenii unca AII'FIINC CPIN fin
NCIII NOI tppircieic co>
PAN CAT! HHt8
in irm prrtPiNci
JHC itvii PtriPikcr ptPLTCAirs roi'NTs tent rnp IP.
Cr»U8/8PICtl8
TOTAL PCP II 8FPC1E8 PI PrflKATII I • 2 II. 1470.
TOTAL rCP 3 PIFL1CA1I8. II BPrCTlSl 1911.
i
-o
ro
-------
PFOJICTl »CK MI" PPCJKCT (IF)
ii mem MtriaiN'iit eiBii, na
SINPUP TTPII tin COP* CF»« on
Nturcp or PiPiicMisi 2 ritic ticiccidi usca
NC1II 10 FIT! DKP (II)
IPIH Vfflt T8T MD MM (35)
orpin t«i.«c (jj4)
CHIN rtn
IUCUP.I
t»T» TIBltf
5>
OJ
111 LIVIt PIMPINCI
m icvit PIPIKCKCI
Ct»U8/BPICII8
VCLVCCMI8
PKINOMCNtS 8P. (460)
CHLCFCOCCCILfl
tLIMIOTHPD CIL«11NC8» (3I4TO)
CPTPTCFMIt*
RKDCPOMS HtNUTl (4I4IC)
BICILltFICFHICtlt
CYCtCmi* 8PP. («4IOO)
PPICIl»PI» CR01CNni8I8
CKNOPN11I
CHPOCCCCCAtl*
DlClllOrCCCCPSlt pMPICKIDta (11930)
HC8KCMI8
»HlB»rNI SP. (99020)
pmrcms
COUNTS
icin rep M.
1 •
1 •
1 •
1 «
1 •
1 •
1 •
2
J
2
2
2
2
2
4C.OO
9C.OC
34C.CO
4IC.OC
JC.OP
S2BC.OO
C.OO
O.OC
0.00
n.OO
O.PO
0.00
n.no
«.«o
40.00
to. eo
740.00
410.00
10.00
S1IO.OO
«.«0
T01»t tCP 1 SHCIEB «1 PIFtlCRTII I • 2 CICC.
Tom »CP 2 PimoTia, 7 BPFCIEBI «i
-------
P»GP t
mjtcti ACIT MIN mjtcT (IP>
8TATICNI MClAIM-tll BASH
lAMPllP T1PII V»» CO»N GPAB Ml)
NUUMP CP PiPiiciTisi i pitic BicicGiBTi
NClll NOT «PFlK«eit (0)
APEH vtfit isitoo LUC?
BClt» DP.FTN IS. «K (334)
URCB 8»»>piiiic CMN rio
Clltl lUrUfl 94* Ifll
•UMTlVtCMi 4
in trvu *rPiPiNCi
tut urn
cr»ua/aPiciia
CHLOPCPHYY*
vcivcekies
PKINOMCNDB MINVTIItlCI (4*1)
CH1CPCO(CC»LI3
aotpccotpi* sriicfPi (iotro>
8PH1POC18TU 8CHPCC1CPI
ILIKITOTHPIl Ctl«TlKC8« (3H7D
pmrcma
i>
-Ł»
GGM1CZ1CON 8P. (ItlOC)
CPIPTCPH71*
CP1P1CNCN«C«CI*I
cumcMCKia moi* (Ofio
PHtCO*CN«8 CIHU1I (41410)
MimtlH»PID*CCII
UlllBlIPHtRia OVIII8 (41110)
CMRtaOPHTI*
P«PV* (61110)
B»ciii»PtcPHKrtr
(tl1I«CHIICI»l
NlltaCNIt PILtl (14050)
C1INOPH11I
CM»CCCCCC*tI8
CHCTTIOCCCCCP8I8 PMtPIDIC ICI8 (II!JO)
1 •
1 •
1 •
1 -
1 •
1 •
1 •
1 •
1 •
1 •
2
2
2
2
2
2
2
2
2
2
2
e.oo
o.oc
o.oo
e.oo
c.to
c.cn
c.on
e.oo
0.00
e.oo
c.on
170.00
20.00
940.00
2710.00
0.00
ao.no
iin.oo
61.00
10.00
10.00
410.00
trut IPR
170.00
10.00
940.no
9110.00
a.to
10.00
110.00
10.00
in.oo
10.00
4in.no
TOTAL PCP it atrctea PT RP.FIICATII t • 2 c. 4170.
TOTAL PCP 3 PIPLICITP8. II BPPCTE8I 4)?C.
-------
**dt 1
PFCJEC1I Kit P*l* PPCJICT (*H)
aiHtCm ttUICU1*Nl J SPOF>EB>»N* CtVI
a*PFl|P tlFII V.M DUPN GMb (Ji)
MIP-HF cr Pipucmfii i rinc euncisii
HC11I N01 tVflKtdl (0)
\ifVlt
L«M.
J.SP US1)
uaia s»rpu»-(. c»t« m>
»UdUkl ill »»»J
ttbB»l«lKli| I
CM CM* lADLki
111
]NC LIV.IL
ct»ua/8Piciia
CUUN'ttt
>
tr
CMICHOPH11I
CHICPCO(.CC«_IS
•ptitPoctsTia acHPCdlHi 111170)
tLIK»101HRIl CEL«IINCa* (JH7CJ
CICCCCMJAI.il
CKCbONIUN (J9JOO)
I1CNI)>*1*LI»
ai*UP«aiPU» app. (iiuo)
P1Pf>HOF»<11»
BUCUCNlAt
FLMGIMIUM klLLIl (44S1C)
PUC1NIUM ClNCItH (44S20)
CPIP10PHTK
CHP1CBCNA8 IHC8* (479IC)
PHCDCPOMS C1NU1* (414101
CMPI80PH11*
VIHV* (tJUO)
e»CUL»HCPK»CE«t
CID1FILI8
"blOSlK* talAKOK* (I1I«C)
CULOTtLLA IPP. (M100I
8l»tCP* IPP. (73110)
l»tCLLAFl« ILOCCUIC8II (72870)
CI*NOFHI1«
NllZBCMl* H(LS*11C* (I414C)
t»HC8t» SP, (91000)
htl1CC»ll8
i)»»HIClOF3II CUI
-------
I
-P»
CTi
MCJtCtl fCIC Mtf PfrCJCCT («CI »HH bfm m*HU KCt US)
liril »>* CUDN Gk«H (111
Nii'itu or nmc»ti8i 2 rate HKUGI&II usia s»t-ni».(,
NCTII N01 miK«BLt (0)
D«k t»l»
1ST urn Dirm*ct
JNC IIVIL PtMRtMCt HH.KMI& CUUN'ld 11.1*1. i(j» bf,
Cl»US/8PICII8
T01*t rCK It SFkcaS tt Rkl-LlCOtl t • v 7JS«.
T01»t IOP 2 DtFLlC*lkC« It mCUSI 744J.
-------
ppcJieii icic RUN pPCJtct CAP)
fliAiiCNi MCMI mrick TC tsituci CIFI^ 1.90
BAPFLFP mil »IN COPk CFAB (II)
NimP CF PIFlICtllBl 2 FltlC BICUflMl
MC1II I.J.J, » CCPP08ITI
APF.AI UPPIP IBUKD IMF fj«)
FPANp *CPPI8 (69)
CHF|
31, Kit
3
SAM CAT* UPtEB
111 tlVIt PFFIPFNCI
3»C IIVII
Cr»UB/«FICtF8
CHIOPCFH11A
VCt»CC»llS
PHIMOHCNkB 8P. (4*0)
CHICFCOCCCALI8
8PH!POCI»TI8 trMF>CI1FPT (MHO)
lUKAlOTHRlli CIKIIMCBA (3H10)
CPfPTCfPIIA
CPIPICMCMADACIAC
CPlPlCMCtiAS IPOJA («7ftO)
PHCCO»CN«8 ftNUIA (41410)
CHPtSCFHtlA
ppmtimra
CNFIIOCHPOKULIM* P»PV* («)I10)
BAClLtAPICPHKlAI
CIMFAU8
CTClCltlLA IPP. (64100)
FPACIIAMACIAI
FRICUAPJA CPOTCNIRSIfl (K850)
ClPBILLICtAI
CT»BIILI 8PF. (IISOO)
CtAMOPKlTA
CaCItl»10PIAlEa
CaCILLATOMIl aPP. (13000)
xcatcckita
P»FHICIOFait CUPVtIA (9YCCO)
FlPlTCAtfS
1 •
COUNTS
m.oo
o.ro
1 •
1 •
1 •
1 •
1 •
1 •
1 -
1 •
1 •
1 •
3
3
3
3
3
3
3
3
3
3
41C.OO
•14C.OO
1C. 00
300.00
130.00
3C.OO
1C.OC
0.00
c.on
tic. or
44.10
fl t flfl
0.00
o.ro
O.flO
0.00
1.00
0.10
0.10
0.00
tent re* BP.
110.00
914.10
M4A.OO
10.00
700.00
130.00
30.no
11.00
0.10
0.10
iio.no
T01AL FCP II 8FICIIB Cl MFtlfATll 1 • 3 <1«C.
T01AL FCP 3 PIFlICMtS, II BPFCtlFl ««09.
49.
-------
PPCJtCTl »Clt MIN MCJCCT (»P>
81A7ICNI HCMT I81*NC TC 2NC «l.>8k tfCPtl flPTN
8«»PUP TIPIl »»» COPM GMR (]])
NvntiP cr PiPtitimi 2 rinc etcicemi tinea
NCTII NOT IPKICmt (0)
»PM|
7.JK (7SJ)
TSl»»0
cpr« (er>
(J«)
curt
P»C» 1
27. fill
4k
00
tat Ltm
}KC UVIl PtriPERCt
Cr»U8/8PICtf8
CMICPCPMYK
trui rr« •*.
PPCTNCMCk** 8P. (4(0)
emopoocccuta
•cMiciDtPt* snietpt tto«coi
Tf1P«tDPCN PIGUIIPI V»P. CPINULITI fJUJOl
8Rt»tPOCl8Tl8 aCHPCritPt (11PO)
IL»|i*TOTHP.Il CfllYINCB* (JH70)
Stf»VJP»81I»U» GDICllt (31110)
CPTPTOmi*
CPIPICMCIIOAHH
CPIPICMCNkB IP08» («7«IC)
PHCDOPONI8 »1NU1« (4I4IC)
CHMSCCHPOMl'LINI PlPVI ((JI10)
BICtLtlPtCPHlCC*!
«>1fPICNIllf POPP1C8* («I990)
N»\ICUL» PUPUL* (T7990)
PI»NUl«PI« IOPIIIII (71110)
CtMILUCIlt
CYMIU» 8PP. (IUOO)
NI1flCH|«cr*P
»nZ8CHI« 8PP. (I400C1
CltNOPKlTI
IMMtM 8P. (9SC70)
P»fHICJCP8I8 CUPVI1* (97CCO)
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 -
1 •
1 •
1 •
1 •
1 •
1 •
1 .
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
o.on
e.oo
c.ie
»C.JO
c.or
C.20
0.08
e.or
0.00
c.ie
C.20
0.18
C.20
c.4r
c.oo
c.oo
10.80
718.80
A. 80
8.80
9K98.ro
8.PO
jn.OO
18.80
98.80
8.80
8.80
8.80
0.80
8.80
7o)no
o.io
• 1.10
9MO.OO
o.io
J8."0
10.00
9fl.no
n.io
o.»o
o.io
0.90
0.40
4A.no
70.no
-------
ACIt »HN MCJBCT (AM A«»| I.'PP(» T8tA»D tlM fj?) CH'I
aiATICNI MC»»T I8LANC TC }Nt M..IU «KC*ll TIPTH 1.1»> (791)
8»»PltF> liril VM CUCN C'»W (II)
NtKPtP tr HIPIICITUI 2 MILE BUITGIMl U»CH C»>-Ft JUG CK" fir)
NCTII N01 tPFltCIBlE (0)
DIM CATI HP.tEf
tai LCVIL
itm PEFint«ce *iPLic>TPa COUNTS
CMU8/8PICH8
TOTAL VC* 16 8FFCII8 PT RrPllCATIi I • 2 83.
TOTAL FC* 7 MPttCMFS, It RPrctC8| «J(12.
-pi
ID
-------
p«cr t
«PCI| UPPIP ISU&0 t»K» (3!)
ecu? CIPTH ts.ic (?5«)
MCJtCll Kit HIIN PPCJtCT (IP)
siMicNi ncMiin-nt Mam,
aiNFLtP TIPIl VIN CO*N CMB (]])
nump c» RiPiiciTiai 2 rate BKiceiaii rp»NK KCRPIB res)
NClll I0,»,t K COOP0111E (It)
«uruM
C»T»
i
01
o
tn urn
20C 1IVIL PCPIHEItCC
er»ui/spicits
VC1VCCMII
PrtlNOHCkkB 8P, (4*0)
CHlOPCOtCCfLI8
ICMCCDtPI* ItltCIPI (Ifl(CO)
8flMtPOC18TT8 8CHPC(1(PI (tJPO)
tLMATOlMRII C(tMINCB» (3I47C)
COfPHPIUM •IQCOllllH f». CIPRF88I (21190)
8TMUP.»8TRUI> CRICILt (ItllO)
CP1P1CNCMC»CI»I
CP1P1CNO»»8 CR08* (4T«tO)
PMCCOPONta CINUTI (41410)
BICILL»PICPHICE»E
rp»eu»n»«»i
VP.ICIIAP1* CPOTCMKS18 (10ISO)
CT»ROPHV1»
NCITCCMt8
p»rHICOPal8 8P. (17010)
40.00
COUNTS
0.00
1 •
t -
1 •
t •
1 •
1 •
1 .
1 •
1 •
2
2
2
2
2
2
2
3
2
(00.00
2K.OO
me. on
0.00
1C. 00
2C.OO
110.00
c.oo
IK. 00
0.00
6).*0
0.00
fl.»0
i ,*o
0.00
0.00
1.10
0.00
tem
».
40.ro
•eo.oo
14).*0
21«fl.OO
9.70
11.90
20.00
110.00
1.10
120.00
TOUl rCR 10 BFPCII8 Pi RtFlICATII 1 • 2 «I«C.
TOIlt PCP 2 PIPLICMF8, 10 8PrciE8l 4307.
-------
pier, i
PNJJICTl Kit M1N PPCJECT (AP) APF.AI UpPtP TBtA*D LAM
8TATICNI »IDIA8I»«« P.A8I*. TUPIH8 BCtT» OFPTM 13.If (714)
SAPPUP mil «IN CORk GMB (11)
NI>IIP or Ptrueimi 2 rim etciccmt uses SAPPLING cm* (to
NC1II I » ClIP -tUCPIlt (12)
cnn turuPi if*
4
r«T* Ttetca
iai irvri
2»c tivri
Ct»US/8PICII8
PIPIIC>TE8
VCIVCCMI8
PHINOMOkIS 8P. (460)
ChtOPCOCCCILI8
8Rf»IRUCY8T18 8CMPOI1I*!
CKIICSPHftCPIUM
GILillNCS* (2H10)
(11110)
tn
COtMCZlCQN 8P. (2«200)
JtMUPHllBUC GDtCIlt (11130)
8TFAUPA81RUC PPCIC8C1C1UK (ll)SO)
CPTPTCFP.il*
CPTPTCNCM*B»CI*f
CPlP1CMOk«8 IPC8I (41118)
PHCCCVOM8 fINU1« (41410)
CMPT8CPP11*
P^lfNISlllIB
CHFTSrCHPONVLINA P**V< (131)0)
B*CJLt»PlCPH>CI»I
FPieiL»FI»CE»I
ri>»Gll*PIA CHOTCNtH818 (1CISO)
rP.|GIl»PI» RPIVI8TPI1I (10900)
CPIPHCPI SP. (11110)
CTINOPMTT«
CCCUU1CPIALIS
CeCttlMCBI* 8P». (4200C)
kOTCCAltS
IMRMNI 3P. («S020)
l"»fHItlOP5II CUPVI1I (91CCO)
c.oo
COUNTS
10.00
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
•
•
•
•
•
•
•
•
•
•
•
•
-
•
•
2
2
2
2
2
2
2
2
2
It
0
C
c
C
c
0
0
t
0
t
t
•
»
*
•
•
S)
*
•
•
•
t
•
•
90
SO
00
10
90
10
00
00
00
40
90
00
10
on
00
100
0
S100
0
0
0
60
130
140
0
0
20
0
0
l«
.no
.no
.00
.00
.PO
.00
.00
.no
.00
.00
.o«
.00
.00
.00
.00
rep SP.
so.no
its.»o
sioo|no
n.io
o|io
•o.no
120.00
140.00
0.40
0.90
20.00
0.10
t.oo
is.oo
TOTAL rep 16 srrciti PY PFFUCATEI 1*2 91. »«i«,
TOTAL FCD 1 PfFLICATIR, 1C SPFCIF.gl 4J11.
-------
PPCJIClt Kit MIN PPCJICT (IF)
81I11CNI PICPIBIN'M P.I81N, TIPP'8 Btll|
aimiP IIPII «IN roPk GP*B ni)
NliPBtP tr PIFUCmat ] MILE tlClCGlgll F»m PCPR1* fa!)
NCTII S M CIICMTI (14)
IPKIl rpPE* TBIAftD IMF f}«)
* (a54)
PICF |
CMFI iueup.1 a'»
nt» mite
IIT LtVIl PrttMNCI
2»t llfll PtPHtCNCC
Ct«Ua/8PICIE8
mopcrpm
VClVCCklll
PFtlNOMOHM NIKITISSII'I (4ft1)
mCFCOCCCILtl
8RMIPOC18TI8 8CNPCI1tP1 (I1ITC)
ILI«I10TNP.11 CIIIT1NC8I OI4TO)
I1CNIVI1ILI8
COIVIPtUP 8PP. (M1JO)
8THUPI81PUK CPICIll (Jt)lO)
CP1PTCPP.11*
i
en
ro
CP1PTCMCKI8 EP08I (47«|8)
PHCCOfCNIS HINU1I (4I4IC)
CNP18CFKH*
PPl»>lll81ILr8
CHfl8CCHPOMVllN» PIPY! 1111)0)
• ICILllFUPHtCEII
CpOTC»«N8ia (1CI90)
tRpviaipni (io«oo)
rtoccutcai OJSTO)
NlflCliUCEIC
NIIDIUH IRICI8 PI. VIPMktlB
C1INOPM1TI
cicuimnmia
CaCULITCMI* 8PP. (1JOOC)
PIPLTCITP.8
t • a
c.oo
CCUNT8
ngo.no
Td»t rep. BP.
P»FHICIOF8ia CUPVITI (9TCOO)
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1 •
1 •
1 •
a
a
a
a
a
a
a
a
a
a
a
a
a
isi.se
c.oo
C.10
c.in
C.40
c.oc
i.se
t.io
t.in
c.se
C.l«
C.IO
c.oc
isan.oo
»ss.oo
n.ro
n.no
n .00
iar. oo
• 0.00
o.oc
o.ro
0.00
0.00
ft. 00
Jjn.ro
»8«.no
A.10
0.10
9.40
130.00
11.90
MO
0.10
O.«0
0.10
0.10
7an.no'
TOTAL rep i« arrcua ri prrnciTii i • a ist. JIT*.
TOTAL FCP a PtFiicma, H aptcicai J333.
-------
Mcjten ictt MIR PRCJKT (IP) mil
amitNi HetMiM.Ri PMIN. UPMS *eit| n»HH u.iu
SMPltP ItPil *»N COR* CM B (11)
MIMIP cr pmtcmai 2 rmc eictcciaii FRANK
NC1II 10 P OltCMII (19)
rppi* m»M> L»r
pier i
CH'l IUCUR1 2', HI)
em imi«
I
in
oo
ill UVIL
2NC IIVIL PtriMCMCE
CF»U8/SPICI(8
vcivccun
PKIHOMOhAfl SP. (4*0)
CHICFCOCCCILI8
8CfPOiorPi« arircip* (io«co)
IPI>«IPOCT8TI8 8CMPCI1IPI (11170)
IL»*ITOTHRI» CCII11NC8* (JH7O
ciccecumia
cetOCOHlUN (29)00)
ITCII|P*1llt8
8IHUP»81PU> CRICHI (11)10)
CWTP1CPHT1I
CPIP1CNCN»C*C(»C
PHCDCPON18 PINUTI (41410)
CHRTICPP11I
PP1PkI81ll(8
CM»f8CCMPOHULIN» PIPVI (Ol)Ol
IICILLIPICPMICIII
CKtciiii* iiiiiieiRi («4t)n)
C1ANCPM11I
C8CIIL*1CP|*LI8
C8CILIATCP1I 8PP. («}OOC)
NC«TCC»ll«
DtlHIClCPslC CUPVMI («1CtO)
I - J
o.oe
o.io
1 •
1 .
1 •
1 .
1 •
1 •
1 -
1 •
1 •
1 .
2
2
2
3
2
2
2
2
2
2
10.00
toc.oo
mo. oo
0.0"
0.00
2*0.00
lie. on
cc.oe
c.oo
I4C.OO
0.00
0.10
0.00
9.«0
1.*0
n.no
o.no
0 1 CO
n.io
n.no
tout rep
o.io
10.00
•00.10
nto.oo
no.no
no. no
•o.oo
o.io
140.00
torn rep it BFtctE8 PI miiemi i • t use.
T01*L rOR I PEPLICITta, 11 8PrCTE8l 4I«I.
R.
-------
PK» 1
Mcjrcti «ctt MIN ppcjrct 11*
mvcckita
PI'tlNONCNkS HlNUIliaiV* (4*1)
CHtOFOOCCC»l!«
aotucfDtPi* sciicrpi tieero)
(PMIPOCT8TI8 ICH*CnrPI MlllO)
HIKHNrPirtt* 8PP. (I48CC)
DtCl«C8PI>«I»tUli (NP!NM*C!«NUI' (PJfiCl
ILIRtTOlHPII Clt»1IKC8» (?10C)
ctccccumrs
(39JOC)
8PP. (]«1>0>
CPKPTOFfll*
EP08I
HHCCO»Cf»8 DlNUla (4I4IC)
>»l«BtIPH»PI8 0»»tl8 (4«1«0t
CO>PO»OH»8 8PP. (91130)
»i8i*ira
CKFmCHPOMtlim »»P>» ftJIJO)
PF. (11S20)
PP. (R1900)
app. (MOOO
CltNOPHYTt
Ndiccma
«K»B»rN» 8P. (9SC2C)
MIVTCULI
CKCBIlLICtlt
CVMttlt
NMIICHIICt*!
*IPttC»Tffi
TMU
fp.
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1 -
1 •
1 •
1 •
1 •
a
a
2
2
2
2
2
2
2
2
2
2
2
2
2
2
24C.OC
9C,00
PC. Of
sc.or
C.Ofl
H99C.OO
c.oe
c.oo
U, on
ijc.cn
I7C.OO
1C. 00
64C'.00
IC'.OP
10.00
1C. 00
o.no
n.no
n.no
fl ,flQ
l?.«0
o.no
1.10
fl.20
n.no
n.no
n.no
o.no
o.no
n.oo
n.no
o.no
740.no
9fl.no
lfl.no
sn.oo
I4«ic|no
0.10
n.»o
lfl.no
I2fl.no
I7fl.no
in.no
«sn.no
tn.no
an.no
io.no
w.cn
•MO
1*7.10
-------
P»CP
I
en
en
Kit MIN Mcjtei (»P>
SlkllCNl HCPMIMMI P»8tM.
a»npiti> tin i «m COP* CPAI
NDORIP cr pmicmat 2 ritic
NCKI KOI miicmi to)
MEH UPPIP teium L»K»
BCtVi DtMH t ()S4|
o»tfi
t. if*i
uses
CPI* riot
**«
lit irvti
]»C tlVIt PIPIREKCr
PIPLTCI1F8 TOtiNTS
T01»l PCP I? BMCtEJ It PrftIC»Tll I . 3 JM1C. JO.
T01»t PC* 2 PIPITCMI8. H 8PfCTK8l l«tU.
T01II POR M.
-------
PPCJECTl ICIC MI* PUCJrCT (IP) »Pt»l I'PPIP fBt*KD Lttt
81«1ICN| PimBIN'NI M8IN, TUPK'8 PCltl DIP1H 19.8P (134)
SmilP mil »»N CO»N GP»B (II)
NtKPtP Of PIPUClTtBl J Milt M'ClCCISll U8C8 8INPL1NG C*(N (80
NCltl HOI fPFUCmt (0)
C*IPI
SUPSTftTICNI
P«CI 1
II. (181
PIN CMI HBlIf
I8T LtVIl PritMNCC
me iivii PtFi
ce»u8/8Picita
ctacucmi*
VCl»CC»U8
PI>tIMCNGK«8 HINU1188II'* (461)
CHtCPCOCCC»Lf8
8CKPOFDIPI* 8C11CIP* (10(00)
8Kf IIPOCYSTIS SCHPCI1IPI (I11YO)
8KIINI8TPUM PIHUIUP (I403C)
CimcSPHMPIUP IMPINitRCUHU*1 (1Y2801
ILfUDTOTHPII CIl«1tNC8* (11470)
ZICNIPITKLtB
CCHUtTCOH NO*C1»I«IUM (19110)
8tMUP*81P.UP P»P»CO«>- (1IJ40)
P1PPHCPH11*
I
cn
pttemup CINCTUP (44920)
IP08* (4T«tO)
PHCDOPONIS PINU1* «tl>. H»HNOPt»»CTIC» (41430)
CHPT80PH1H
CHM8CCHIIONUITM P*P1» (dllU)
BICIlllPICPHtCtlE
CIBII (801901
ClPBILUCtir
CV^etLLI MI»
-------
APPENDIX C. ZOOPLANKTON COUNTS FROM FLAT TOPS LAKES SURVEYED DURING 1983.
A-57
-------
net i
PPOJIC1I »C»t MI* PPCJICT (1*1 *PtH NEC MtBCN LIKE fj!)
am ic* i tctiiDiMMt i axopEa-at covti OCPPIH 4.1* (2m
SlfPLIP ttPM •( PICPC MI8CON8IN Hit VEPTICtl TC« J.5 » (76)
wimp cr PimeMtai i rittc ticiccian BIPRI nfintco on
NClfl NUftlP/l'2 X 1000 (6)
CIIFl IUCU81
TIPtC8
tn
oo
IIT tivtt
7»t iivii
Cr»UI/8PICtI8
CKDOCIP*
HCtCPIOIOItl
NOICPtDtOM CliBEPlf (11721)
CCPIPCCH
RKPIIU8 (1*010)
COfOFCITI DIAP1CPU8 (K01S)
CkllPCK*
DtiPiopoi ccio*»cmiia
pctiripi
M»cmono»i
KEFITfLK CCCHIIAPII (S4270)
ITRCKtrilDtE
POtl»PTHP» 8PP. (S97CO)
CCKCCMIUD*!
CO»OCMUUB
COUHT8
1C1H PCD at.
1 •
1 .
1 •
1 -
1 •
1 •
i •
1
1
1
1
1
1
1
1.
to.
71.
1001.
4.
40t.
9.
M.
11.
2..
not.
4.
941.
12.
M.
12.
2«.
4P.I.
7.
424.
in.
71.
2«M.
1171.
toi»t PCP 7 »rtciea ti PPPUC»TH t . 3 tsis.
T01IL PCP 1 PIPLICITtS. 7 SPfCIKl 4«C.
I'M.
IOJS.
-------
p»cr
»M»I NID K1L8CN IMF (JJ)
»cit Kim PPCJKT
atmcm PiciftRi, tupMa BOUTI omn 9.1*
imi •( ficpc NiaeoPBiN xrt »n>Tie»t TO* 4.9 » (77)
or PtPiiciTiai » rittc atctcciaii B»P»I r.Htiec on
NCTtl NUCCIP/C} X 1000 tl)
CM'I lUCUPl 29(
9UP8TIT1CNI C
PUN CUT*
lit inn
JNC
cr»ua/aPteita
CtlCOCIP*
HClCFtClCM
HOUPCDIOM CIRIIPUO (11T2I)
CCHPOCI
cctcpcm
C»l»ROK»
PCttriP*
(PtCHIOMCHt
PCMTtlM CCCNIKPia (3«JTO)
PC1TIPTNP* 8PP. (997(0)
CCUCCNllIDM
co»ocMiiua
piPitcitra
COUNT8
1 •
I •
1 •
1 •
1 •
1 •
1 •
1
1
1
1
1
1
1
13.
101.
1C.
It.
1211.
1.
999.
*.
117.
4».
21.
I'll.
14.
927.
1.
116.
1«.
17.
1911.
6.
4«4.
tent rnp IP.
too.
21.
IM*.
rom rep 7 aricice ci Pmtemt i • i i*<7. 2221. 2219.
torn rep i pmicim, 7 gprcusi «4ti.
-------
P»C» I
PPOJICTl 1C It MID PPCJKCt (*») HflH NCR MtBC* HKF f JJ)
BmiCNl rcUIOlfltMT J SPOPtB-H COVIl DIP1H 2.9» M2JJ)
aiNPltP mil tC HCPC "I8COH8III Ml VlPtlCtt TCk 3.0 f (7!)
NUPFEI or Pirncittai i rmc BKICCISH BIPPT BILDICO on
NCTII MUKtlP/f] X 1000 («)
c»i»i iueum a?, 1111
C
• IN C»T»
I
cr>
c
in tint
JKC tint
cruua/BPtctta
CIICOCIP*
HClCFIDlDkt
HOtCPIOIUN CIMCPOP (11721)
CCPIPOCI
unptiui
COfOPClTI
CIIIP.CK*
cciopicinaia
pciiriP*
BP«CM10»ie*t
ntniu.it
(S
PGUAPTHpk |PP. (9S7«0)
CCKCCHHIDIE
CO^OCHItUB UNICCPNUa (S«4«l)
PIPttCITPB
COUNTS
TCUL PPM BP.
1.
4.
1 -
1 .
1 •
1 •
1 •
1 •
1
1
1
1
1
1
»4.
22.
1.
711.
9.
TT7.
(1. .
10*. 9CI.
Ml.
2194.
Tom PCP i BFtcica PI PtmeiTti i • i i»i2. MO;. 7277.
T07»t PCP i Ptmcme. 7 BPtcieai 9191.
-------
FICt I
ictc KIIH PPCJICT (»P> MEH mn mtatN im mi
loo" CM8WOM-* amuo* cc»t» DIPIH s.o* cm)
••CPU* tmi tc NICPC NISCCNSIN t>ti »n>tic»t io« 4.9 " r?7)
NUflEP Cr PIPtlCITIBl 1 MttC BKtOCISlI B»PPT BHPICO (II)
NClfl NU»HP/»J X 1000 (•)
011*1
ai.
0
MM DRT« TIP.U8
PtrtPtNci
jut inn
cnua/apiciia
CUCOCIPI
,, HOICFEDIDU
I HOlCFfDIU* •CmtPUW (1P72)
en DIPHMME
i-1 t«H«I» PULtX (11710)
CCPtPOC*
MVlPLtua (18090)
CCfOPCITt OUP1CK08 (16019)
C»l»(OK»
OllPIOCUa CCLOPHCEP8I8 (1709«)
CCCHLtlRll (94210)
8i»cn»mo»i
fOtT»PTHP» 8PP. (SS1IO)
CCKCCMlllCIf
COOOCHtLUS UNICCPNU8 (9M«J)
PIPlICMtS
fOdNTB
trut
SP.
1 •
I •
1 •
1 .
1 •
1 •
1 •
1 •
1
J
1
1
1
1
1
1
12.
0.
148.
11.
2«.
1448.
1.
in.
21.
0.
161.
H.
11.
1**4.
l>.
W.
19.
1.
109.
6.
39.
1992.
«.
2«1.
4«.
1.
4JS.
11.
tl.
4864.
24.
8JT.
TOI»I rc* • stteits PI prnicnTii i . } inc.
TOItl POP 1 PIPllOKB. * 8PP.CIE8I (11).
2911. I91J.
-------
PICt 1
Kit P»I» MCJICT (»P) IPE»I CWIP
•1»1ICN| ICU1D1I1MT 1 aHOPtakk |NC| ttPTH 1.0* (241)
aiPPitP mil •( MICRO NiacottiiN MI vrPMCti io» i.s •> (?«)
NUMIP cr MPtie»mi i rinc sic teem i IIPPY PUDICO on
NC1II NUMIP'P) X 1000 («)
no
CUffl IUCU01 JJ, 1111
flUPSTJItKNI U
CITI
I
en
tit inn prnpi»ci
m tt«ll PtPIHtRCI
Ct»OOCIP»
C»PHHIC»I
C»IHH1« PULfX (11TIO)
CCPIPCtl
COfCPDITI DlkPTCPDa (1«<)H)
CAIMCKA
Ct»P10»«l CtLOPJtlKiH
»CPHIPCt»
TIlITPfttt
NTIttlL* ftZIECI (».
0. 1.
0. 1.
101. 12*.,
C. 1.
11. 127.
torn rep « Bitcica PI Ptpuritu i . i 219.
TOIU rep i PiPiiciiia. t aptcteei (c:«.
-------
net i
ppootcii »eit MIH PPCJICT <»p> *pt»t cmrp IMF. no
aimcNi tcuiDMimT i anoPtC'tat CCTII OBPIP j.s» (7O>
0imtP mil •( PICPC Wl SCQUIN Nil VtPTICU 10k J.O * (Tl)
num* cr PiFticiTiai i rtnc graccim B»PPI B»IOICO
NCTtl MUPtIR/1'I X 1000 (I)
tun
21, i«ii
C
RUN r»T»
tat
0>
to
7«t tt«tl PtrtMPCt
ct»ua/aPici(B
CLIOOCIPt
OIFHP1CII
CKMNIk »UU» (11110)
COIOFCITI OI»P1CPOI (1<0)9)
c»t*pcrt*
Ct»PTONUa CCLOP*ClNail (1709«)
DUPICMUa 8H08HCHF (JTO«I)
•PVMIKC*
HtllClt* «C1KC» (410(0)
•PICHIO»tCII
CCCNLIDPtl (SOTO)
aiiCHirncit
POlltPTHP* iPP. (S1T«0)
CCRCCNlllDIC
CO^CCHIlUS UNTCOPNU8 (S««I)
P|PtIC»Tf8
1 • 1
COUNTS
*.
4.
1 •
1 •
1 -
1 .
1 •
1 •
t •
1 •
1
1
I
1
1
I
1
J
an.
».
ta.
c.
e.
IM.
1.
11.
a4P.
9S.
ta.
i.
••
an.
i.
S5.
a«i.
11.
ia.
i.
i.
1C).
0.
it.
tCHt FPP 8P.
H.
1.
4.
T01AL PCP < 8PFC1I8 M PFFLiemt I - J 410. «H. Ml.
torn PCP i PiniciTia. « appcieat M«C.
-------
ppcJKTt Kit HUN PPCJICT (MI »PC»I UPPJP TSIAND
81I1ICNI (CU1D1ITINT 1 8POPE8.HM COVItOtPIH J.3K (2M)
8**PLIP TUM •( MCPO NI8CCN8IN Hit VtPlICM TQk J.O * f7S)
NUf>cii> or PtPiiciTtai i rittc erctcciaii BICPY B»tnico
HCIII NUPeM/1'2 X 1000 («)
r?s)
*ueu«i
IMJ
cm mm
ist tnit
IKt tl«ll MrtRCNCt
ctn)8/«picirs
ClADOCIPI
CIPNRlDIt
CCMOCAPHN1I QUIOtRGUl) (1IOY5)
CCPlPOt*
NHIPLIU8 (J60JO)
COfCVetTt DUP1CK08 O601S)
DIIPTCMU8 AMMRGIN818 (]10<0)
•P lemon ID it
KCPIIILl* CCCHUIPI8 (34110)
Qt»DB»l» (S«10C)
PClt»PTNP» 8PP. (S9160)
CCKOCNUIDM
CCfcOCHUUS CNlCOPRUa (9«4«J)
PrPLlCITIS
3.
i.
1
1
1
1
I
1
I
•
•
•
•
•
•
•
J
3
J
I
J
J
}
2
C
2
C
C
2
13
•
•
•
•
•
t
•
1.
0.
1.
1.
1.
«.
27.
0.
1.
2.
B.
0.
a.
49.
1C1IL rPD 8P.
H.
1.
1.
80.
rep « 8Ftci(8 ti pmiemt i •
torn rep i pmtcitra, a apreuat
US.
-------
FIG' I
»cit MI« MtJBfT <»» APEH
PICMT iwriok TC istmct OIPTK i.9P (»sj)
TIFIl tC »ICPC Wisconsin Hit VfPTICAl TO* 1.0 f fT9)
m»p.tp or MFitciTtsi i rmc eictccitu BIPDI BILDICO
NCTtl NU»t(R/C2 I 1000 (•)
T«I»NO tint
OMfl IUCU91 21,
o
HIM cm
i
0)
en
in um WCMHCI
i»c ti»it
Ct«VI/8PtCIIS
eticoeiM
CIFHKIDII
C»FNMI» P0tl« (111(9)
ceriociPMNi* QUICPINCOLI (J7o?S)
CH10CPKII
CHICOPUa SPMtPICUl (11JI8)
COPIPOCI
COfCPCITt D1AP1CPUI (1(019)
CILIKCKI
D1IPTCMUI APmttCtMIS (1TO(0)
PCTIPIPI
BP«CM10»1C»C
OCCHIIHRII (847TO)
ovkDPiii (S4JCO
•UCMMIDIl
POITIPTHPI (PP. (997(0)
CC»CCH1UD»C
COtOCHllUS UNICCP«U8 (9<4«1)
PEPLKlTP.a
COUNTS
1
1
1
1
1
1
1
1
1
1
•
•
•
•
•
•
•
»
•
*
1
1
1
1
1
1
1
1
1
1
c.
7.
C.
1.
1.
e.
«.
c!
«2.
«c.
i.
11.
e.
o.
i.
11.
21.
«.
10J.
*01.
0.
II.
1.
1.
0.
11.
11.
1.
92.
t».
TCTIL FCP (P.
JI9.
TOTAL rCP 10 SfCCtCS PI PEFIICATII I • 1
TOTAL PCP 1 MPIICITI8, 10 SP'CItSt
CM.
191.
227.
-------
pier
PPOJtCTl IC1C Mill PPCJtCt t»P) IRCH WIP IBIARD LIM fJ9)
81*1 KM PICM1 I8tm TC INC M.-IK SHORCl CIPTtl 7.JM (»9S)
S»miP ttPM •( KICPO HT8COM1N NIT HtPTICH TO" (.0 K Ml)
NU»itP or ptFiiciust i ritic entccitii BIPPY BUCKO (in
NCTII NUMEIP/PI x tooc («)
CMfl IUCUB1
1«M
RUM CUT*
^
f"
0>
01
I8T mil RtftHIIICt
me tim
Cr»U8/8PECII8
Ct»OOCIP»
CIPNR1DIC
D»FHN1» PORtt (1IT«9)
CtHOD»PHHI« OU»CP»HCUl» (}>0791
comoci
COfOPCITI DItPTCPVI (}«0)9)
C»t»ROKD
CtlPTOMOl «R«P»HCIRIII (17060)
PCTIPIPI
•PICRlOtlDtt
HtMTIUI CCCHtlMU (94370)
RCPtllLl* gt*DP»H (94JOC)
•iRCP»nio»t
PClItPTHRA 8PP. (99760)
CCNOCNllIDlt
COkOCHUUS (INtCOPRUI (9««1)
R|PLtC»TK8
COONT8
1 •
1 •
i •
1 •
1 •
1 •
1 •
1 •
1 •
J
1
1
1
1
1
1
1
1
t.
II.
3.
1.
17.
n.
i.
** t
14.
J,
19.
1.
1«
20.
II.
o.
91.
4*.
4.
1*.
9.
0.
10.
11.
0.
«}.
• 7.
tfl»l PPR 6P.
77.
1.
TOIU rep « ertcnt ti pmicMtt i . j 291.
T01»t PCP 1 PIPLTOtfS, • 8PtCTC8| (««.
-------
MoJtcn DCK am ppcjict (M) IPEH UPPIP TSIIND LIPP
•iMicm Pie«»«iii-»i ctaiN, lupma »ciii DIFTM is.in os<)
8MPIIP mil •( HCPC M18CON8IN KIT VIPTICU TON 14.0 Ą (1«)
Hump or RiPticiiiti i ritic BKICCUII PUPPI P.HPJCO (?n
NCTH NUCItP/O} 1 1000 («)
lueuri j»,
0
C»T» T»»tI8
lit
m n«(i
CHUI/8PICII8
CIKDOCIP*
CTi
C»fH»l» P08I* (IIYIS)
crncc»»H»i»
CCPI'OC*
•nrnoi dioto)
COFCPDltt DIIPTCHUI (HOIS)
CIltCCKI
OlIPtOMOl »PftP»Ctll8I8 (H060)
•ctirtpi
•p*cmo»ieii
Kt»llILl» OCCHIUPH (94)10)
OCAOR*1I (9410C)
»Bft»»»CHIi» PP1CCCN1I (S96«0)
POtltPTNP* 8PP. (99TIO)
T(8TIOI»ILLIO«C
rUlN1» UPM«»118 (9«0(9)
CCKCCMUlOtt
COkCCHItUS ON1CCPKU8 (96461)
PtPlTCfTtS
COUNTS
1 •
1 •
1 •
t .
1 .
1 •
1 .
I •
1 •
1 •
1 •
1
1
1
1
1
1
1
1
1
1
1
It.
•1.
It.
11.
111.
c.
64.
0.
16.
1.
241.
P.
M.
11.
16.
16«.
«».
16%
4.
JO.
«.
HI.
1.
tl.
6.
1.
IM.
«.
in!
0.
It.
It.
141.
rrp sp.
10.
J6T.
rep ti 8ftem P.I PtfitciTu
TOTDL PCP i pmicmB, n
i . i «is.
in.
911.
-------
APPENDIX D. RAW QUANTITATIVE INVERTEBRATE SAMPLE DATA FROM COLORADO
FLAT TOPS STUDY LAKES, 1982.
A-68
-------
IICI I
MOJICTl ICU PM» PPCJtCT (IP)
siiiicNi tcvicieiifti i aHOPira
MCltl NOt IPFIKAP.LL (0)
iPtll NCO KI18CN LMf (JJ)
Olltl IOCOI1 11, till
auiatmc'i i
PAN DMl Tlltll
tit
}«c
PtriPtNct
r»n periM»ct
ef«ua/8Ptcii8
coutti
D1P1CM
CHII»C»C»IO»«.
PRCCL»DI08 IP. (10*30)
CHl»CHO>K»l,
cHiPOKonua ep. i
CP1P10CHIROKOPU8 8P. (12110)
P»C»S1IIIL» 8P. (IIJJO)
CUOOPUM IP. di«qC)
CCP1NOCIPA IP. C1HOC)
IfMItLlI 8P. (llf«0)
OITPICCCI
CTPP1CH
CIKOCN* icopuinii tuioo)
oucocKin*
l
UNCINIH csioai)
lU»BPlCUtlDlt . Ill (SI040)
ttitiricicit
TUBtricicM • n.c.c.c. dooooi
Tuetrtcioit • n.c.c. tiooio)
ii»NCD"iiua Horr»iiaTiPi (»PiP»ii8 rcp») <«oojo)
PIIICTPCCI
8FH»|PI1D*t
8P. (6SOJSI
1
1
1
1
1
1
1
1
1
I
1
1
1
•
•
•
•
•
•
•
•
•
•
•
•
•
a
a
a
a
a
a
a
a
a
a
a
a
a
i.
1C.
i.
4.
0.
1.
l«.
aa.
«.
9.
1.
1.
a.
i.
9.
0.
o.
a.
ii.
is.
ai.
0.
i.
4.
0.
o.
44.
41.
tent ro» •»,
t,
is.
I.
4.
}.
II.
14.
IT.
4.
I.
«.
i.
j,
17.
torn rep t4 ipiciea et MPiicmi i • a lai.
torn FOP 2 Ptpuema, H apieieai 241.
in.
-------
Pact i
PFCJCCTl Kit Ml* PPCJCCT (»P)
MCtMl, TUPR'8 «OUII ttFIM 5.J"
IMl ECHO*" CPtCCt ICY10" GPIP. (60)
cr PtPiicMtai i nut eiciccmi ura
NCTII NOT mtlCIPlE (0)
»P*II NKO
(S)
Linr us)
IOCU81 n,
aurSTITTCNl ]
PUN cm tmtt
I
-^l
O
IIT urn PIMPINCI
7»t HVIt
CI»Ug/8P!CIIS
PCPtlCITta
COUNT8
iciit row ap.
CfIPt«0»IC»l, ••M'tll TIMTPCCtNIt
POCCltDIVf «P. (10130)
CN1»CNO»IC*C. TBJO
CHiPONOfua IP. i
cPipiocxiPONCPua IP. (iai*o)
PBIUCOCHIPOHONUS gP. (11JSO)
p»(»aiuii<» IP. (iiisc)
CLICCPILPJt IP. (l]400)
CMi»c»onr»it turn
i*ni»p«ua IP,
connect** IP.
tt»21tU» 8P. (11440)
C»IPCP"CMn»t, S'tt
8T»OB1HCCL»CIU8 8P. (ItOIC)
OITPtCCCt
C1PPICU
c»«cc»» icorutoai (ii«oo)
oticocMirii
N«JC1C»I
uneiN»t»
tUMPKUtIO»I . Ill (9904C)
IDIIf IC1CII
cicaatPPcmtDit
uttcrem*
PtllCIPCD*
i
PIMCIUPi 8P. (ISOJ51
(«ooco>
fen*) («oojo)
t .
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1 .
1 •
1 •
1 •
1
1
3
3
3
1
3
3
3
3
3
3
1
3
3
3
,
«.
H.
1.
C.
c.
9.
«.
1C.
«1.
1.
-------
PPC.ir.CTl Kit MIR PPCJRCT (IP)
SltllCM PICIMI, TUPd'8 BOTITi ttMW 9.JO
aimip Tim ICHMN CRCCCI ecticp CPK
nu»et» cr Pirttciifsi i
NCtll KOI IPFtlClflt (0)
lit
PICE 7
CMIl IUCU81 II, Ml?
WIS
(5)
m itvit
Ct»Ua/SPICTI8
pmieitM
Tom rtp I? SFEflta tl PtniCtTEl 1 • 1 J53.
TOTIl tCt 1 PEH1CHI8, 11 8P(CIEBl S4(.
TCTH rOP SP.
1»«.
I9«.
-------
P»CI
PPOJICTl Kit Ml« PPCJICT (••)
aitltOHl tClCimut I •HO«8-» Ce»t| CtPIH 1.9)1
tirn ICM.M csiccr tciTo" GP»B (to)
or HPttCMrii i rmr Bicicctan NEB RINHET
NCTII HOI »PFlKmC (0)
»PMl NtD MUCK Lm
Dim »ucuai 17,
1
in um
IRC .ttVtt KPIHtNCI
GMUI/SPICIIS
PIPtTCITIS
tucciioios it.
TP1BI CNl»ONCNt*l
CP1P10CN1ROROMQI I*. (IllfO)
IP
COPTNOCIP* IP. (IJlOO)
LIPIttU* IP. MH»fl)
OIIPICftCD
C1PPIBII
c»»oon» acoputioti
OLtCOCRiril
NUCICIt
LOPBPlCl'ltOM
IU»IRICUIID*C • »tt (M04C)
TUItriCICII
tuBirieicn • n.c.c.c.
POP») («ooj
-------
Met i
MOdtCTi Kit MM MOJECT (»*)
8U11C N| tflO» CrUHOHf.X 8H|UC" CO»I| DtPTH 9.OP
8»»PUP. Wll ICH»»N DKIDCI (OTTO* OMB (CO)
NVMICP cr PtPilciTtsi J rirto eiciccmi «ia M»«T (S)
HCTII NOT miKMU (oi
nee »uac« im tju
IUCUBT n,
4
MM CM* TIBltl
IIT ii»n
a»c n»it
CE»U8/8P(CIt8
rtmente
COUNTS
I
^1
Co
CHlNHOMDM
CN1HONONIOM (lit) CI09IO)
CHl»CKO»IC»tf ••M1IL1 Tm'OClMC
FHccnDt08 tr.
CNI»CMO»IO»t, TMIBt
CNIHOMONU8 tr. I (12218)
OICDOItNClMS 8». (13410)
pkCMimiA «r. tnno)
CL»COPELI>* 8>. (11400)
C*lPC**0»ICIt» TM|8t I»NT7»P81III
COHKOCIM It. (t]«00)
LCMttLlI SP. (llttO)
CtMlCPCGCNICU
MlPCftll it. (UolO)
08TPICOCI
C1M1DAI
CHOCK* scomtoi* (i)»oo
OttCOCRtCI*
MID1CH
UMCIM18 UNCIMt* (S10J3)
LOKtMCtltOM
lU'BRlCulIDH • »ll (S104C)
rvitricictc
IHM1UHI tUBt'lClC»I • k.C.C.C. (COOCO)
LiMCo'itua HOrri>ti8TiPi
VttlCIKB*
St. (IJCJS)
(60020)
1 •
1 •
1 .
1 •
t •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
t •
J
1
I
]
1
i
1
J
1
»
J
J
1
1
c.
n.
1C.
c.
c.
1.
10.
11.
1.
H.
e.
2.
8.
1.
e.
8.
11.
0.
0.
2.
8.
11.
0.
0.
0.
0.
9.
1.
4.
«.
II
1
2
2
«
18
0.
2S.
t.
).
8.
0.
TOTAL rO» B».
4.
IS.
98
t
1
8
IT
41
I.
40.
1.
S.
II.
S.
144.
TOTU rcn is sficiKt n
rop ) Mnic»ti8, is
i • i
117.
184.
-------
Kit Mm ppCJtct <»PI
81 MIC* I ICUIttlTMT ] 8WOi»rl*ll«> tNCl CKPTW J.CN
tun ICM»* cfttcct FCTIOC GP»P ceo
or pmicimi i ritic micGiiii «ta KINNIT
Htm KOI iPtitcmt (0)
»PMl CTSUP IMt (74)
CMM IUCU81 l», IM7
«Ut8Tf11CHl I
cm imct
lit Hilt WIMNCI
J«t IIVII PCMMKCl
Cl»U«/8PfCII,1
t>tPlIC»1t8
ICIlt POP SP.
CIINlDkt
omep*
(IMC)
•>P»HHT
P*CCL»DIV8 If. (10«50)
Ef TPIRt CHtPOMCMIk]
OICPOTENCIPI8 tt. (174IC)
"KPcUNcma SP. i (IJS3!)
P01TPIDIIUM SP. «2«OI)
PIIUDOCNIROPOHUI IP. (I17SC)
P«C»8TXttb» IP. (IJJ30)
IP. (IJ40C)
TPIRI 1l«1T»PflIHI
(P. (|)10t)
8P. (ll<«0)
ClP»1CPCCONIDft
P»IPC»IH SP. (ll«)0)
COLIOfTtRI
ciTueu»t
HJCPOPOPliS 8P. I (70460)
ClIOOCIPI
8ICIC*I
II10M* IITIftP* (}|««S)
OITPtCCCI
CTP»1C»I
CMOCNI ICOPULOI* (1JIOC)
IPMIPCC*
•INITOC*
(4IO«0)
ItL (Sfl(IO)
Nt»«1CO»
OUCOCNIMI
NliriCM
LNCINH8 UNCIHI1I (1407S)
1 . 1
1 • 3
1 - J
t • 3
1 • 1
1 • J
1 • 1
1 • 3
1 • 3
'•
II.
j.
4
1
«3
31
1
1
C
13.
1.
1.
1.
,..
7.
7.
".
37.
33.
10.
1.
91,
0.
II.
3.
3.
0.
o.
0.
is.
fl.
4.
30.
14.
34.
t .
1.
70.
14.
0.
«.
0.
1C.
0.
C.
0.
13.
1C.
1*.
41.
74.
4*.
30.
3.
1*7.
701.
1.
71.
».
34.
1.
1.
1.
41.
17.
74.
-------
Pier j
ppcjtcti Kit pun ppcorei (»PI
aiiiic*i icuieiMiNT i avonta^* INCI emu i.c»
a*»PiiP TUMI ICHMN CMFGE pcttc* CHIP «ie)
Nii»«t» cr Ptpitcitiai i fir it Mctecten «ia RIMNPY
NC1II ROT IPftlCMie (0)
IPVII CTBltP UK! (14)
CITCI lUCUai II, HI]
i
imts
nt um PIPIPIMCI
INC tITIL PCriMCHCI
Gt»U8/BPtCIta
OltCOCHItl*
TUP.TIIC1CHI
5>
^i
tn
turirtcieii
runncic"
».c.c.
(«eojo)
IKCHTlP»llD»t . Ml (HOOC)
HIP.UOIIII
IPPCICBlllOM
OBSCUP* («jsij)
<«7S<»C)
f«ooeo)
cucaaiPHCNt*
PHICIPCCI
IPMIIPltCK
COUNTS
1 • 1
1 • }
1 • }
1 • J
t • }
1 • 1
c.
J.
1.
JC.
J.
1.
1.
o.
1.
0.
1.
0.
0.
1.
J.
19.
1.
3.
tcm rop ap.
s.
4.
19.
(6SOJ3)
I •
11.
torn KP 34 mem P.T PiPticitu i • j j?3.
torn rep i pirtic»Ti«, J4 epteieai in.
14).
-------
PPCJICTI IClt MIN PPCJECT (IP)
81I11CIM KUICIMMT ] SHOPtS-MI C(Wl DEPTH 1.9C
SfPPUP TTF«I ECU*** tP-ECGl BCTTCf GP«B (60)
Ntngtp cr PEPUCMrBi J FIFLC RKLCCTBTI MES «mtT
Ndtl fcOl milCMLt (0)
IPCH CTfltEP t»KI (14)
(9)
PIM CM* ttnrt
met i
o*tti lucuBi it,
(UP.BTMKNI I
1ST tITIt
7»c
PEPtlCITfB
COUNTS
Ct»U|/8PICII8
ttHtPMCMtM
IIIT1CM
C»IITB»IT18 COLCPltmitl (111?)
CMNta IP. (2TIO)
OIPTtPI
8-r»Niit
PPCCl«DIV8 8P, (tO«SO)
CH1PCNO»IC»I» TPIBE CHlPOHCPIPI
CKPCTENCIPI8 8P. (1)4101
PICPCICMCtPIS 8P. I MJSJS)
poiTprouuN sp. ciiton
PBIUDOCHlPONOfua 8P. (13190)
P»C»8THtL» «P. (M190)
CL'COPll** 8P. (1}44«)
CtHPCNO»lD*C, TRIBE TM1IM8INI
7»MT»P8U8 IP. (IJ70C)
IE>ZICLL» 8F. (ll««0)
CV*»1CPCCCNIDIC
PklPCPTU 8P. (HfllO)
• PPHIPOO
HTUELL* »ZTCC» (4lO«0)
m
ONC1II»I8 UNCIRtT* C310JS)
t«PP.PICtlIO»l
tUPP.PTCUlinit . Ill (Sf«4C)
iuttricio»t
IMflTUPI TUCirtCtttE • k.C.C.C. (600CO)
tX»»TUPE TIKirtCtnlE • f.C.C. (lOCIO)
morpiius
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1
3
3
3
3
3
3
3
3
3
1
3
3
3
3
3
3
3
)
c.
1.
1.
11.
9.
c.
94|
0.
14.
C.
«.
1.
9.
C.
C.
I •
1.
1.
o.
3.
12.
19.
1.
1.
191.
93.
0.
19.
3.
3.
4.
3.
4.
0.
0.
4.
0.
1.
14.
19.
14.
1.
c.
If 1 .
47.
1.
4.
1.
'•
4.
1.
1.
It.
J.
C.
3.
ictit rop BP.
1.
1*.
M.
11.
«.
I.
«M.
u«.
1.
11.
4.
II.
«.
IB.
s.
II.
1.
5.
4.
-------
PPCJICTI »ctc MI« PPCJCCT (Mi IPFH rtaiip lint
ICQICtfttNT } anOPr.a«P.8l COVIl OCPTH J.5P
TtPII teMIN DRCCCE PCTYO* CDIt («C)
cr BiPticMni i rttic eiciccten ma mmitT (5)
NCTtl NOT IPFIKMU (0)
HIM cm titiea
PEPIICITK8
187 llflt
INC urn
ctoua/aptciia
oticocmri*
IP.CN11P»IID»I
IRCHTTRttlDII
HIPUOI»I»
ippomumt
Ill (I10CO)
I • 3
ClCAflPKNIlDIt
e
PILCCTPCD*
P
PtflDIUP IP. (6903?)
I • 1
tl.
0.
t.
H.
COUNT8
1.
I.
I.
at.
piet ?
cm i *ucuai la. tiaa
o.
J.
e.
X.
TCIIt POP 8P.
1.
I.
It.
TQ1U PCP 31 8PECK8 (1 PIPLICITtl I • 1 JOI. )37.
POP i pmiema, J3 sptcieat icn.
-------
MCI
ppcjtcn »c« Rim MOJCCI
•1I11CNI PlCMeilUllt l*81«l, tUM'l ftGOIl DIMH IS.
a»mi» ttui ICM»» C"KBCI lotto* OP*B (to)
wee* or PiPiic'Uii i ruiiD iictocnTi uta m««t (8)
NCIII not »mic«tit (0>
U»M» IHMD UKI (is)
0»TII tVCUII 10,
auiitiiicni «
MN Dim T»«lll
tat tint »tim»ci
IRC irvtt ptrtoinct
ccnoa/avtctia
OIPTt»«
CKlK»OI>ItMt B-r»«
VKCLtDIOa IP. (le«BC)
TRIHI CNl«ONOIit*t
IP. I (II1SII
CMlPOHOMUa BP. I (IJJS4)
P*C«aTIItU 8P. tlJISO)
PH»INOPIICTP.» IP. (I1J60)
cikooctm
COMNCCtM IP. (1HOO)
00»C»M6Ut» (12Q19)
CaTMCCC*
CTPPie*!
C«»DOM acopotoa* diioo)
COPIPODI
nnicutt
I • J
cupto"0i »p»p»HO(»au tnoio)
oiicocp.»ri»
M10ICM
oRcmtia UNctmii (iiois)
roitricicii
raitrtctex • N.C.C.C. doocot
tUBtPlCIC*! • k.C.C. (40010)
iiMoo«iiua Horr*iiaiiPi (SPmtii FCPNJ
IlTOOPILUa TeNPllTCMl (100)0)
tout row H tPtcica ti prutcmi
TOP i prruema, H atteieii
1C.
couNta
14.
II.
t •
1 •
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1
1
)
1
3
1
1
1
3
1
)
1
3
1
1.
• 0.
1.
e.
c.
c.
94.
M.
e.
ti.
it.
ii.
).
2t4.
111.
t.
109.
0.
1.
2.
1.
si.
11.
1.
«•.
12.
14.
2.
101.
1.
11.
0.
0.
2.
0.
0.
0.
0.
t.
t.
8.
1§
122.
torn pop ap.
IT.
Ml.
I.
I.
1.
lot.
at.
I.
117.
I*.
10.
I.
-------
APPENDIX E. RAW QUANTITATIVE INVERTEBRATE SAMPLE DATA FROM COLORADO
FLAT TOPS STUDY LAKES, 1983.
A-79
-------
PICI i
PPCJCCTI ICIC P»I» PPCJtCt («P) IPtM HtC
•micNi (CtiiciMiPt i iHOPri'ic CCUi CIPIP 4. IP
•»I>PIIP 11PII ICM»N CRICGE ROTlOP GP»I (60)
•limp cr nmiciirai ) Mftc Mcicciaii IAPPT MLDICO tan
NCTII HOI milCmt (0)
IME (31)
Dltll IOCUI1 29, till
ai)l8t«TtCN| I
MM C«t»
lit
i*c i* vt i
CI»U8/BP(CII8
PtPLlClTH
COUNT!
I
00
o
IP.
D1P1CPI
CHlPCDO»10»t» •-PKHIL1 1«*lPOClP»t
-------
PICE 7
MOJICTt Kit MIN PPCJECt (*•) IPttl NID M18C* L*«E (21) dill POCUI1 19, t«M
•1 HICK i tcuitiMipt ] aHOPE8>iE cc»ii riPtH «.jc auaat»iiCNi i
8IMPIEN UPEl IC»*»H CRICCE ICTTOf GMt (60)
NUHREP or PEPtic*i(8i i rttie aiciociaii B*PPI KIIDICO (3D
NC1EI KOI IPPLICtflt (0)
MM Ckll THVIE8
18T tltlt •tri«|NCI
IRC itvti PtrtMCNCE PEfticitta COUNTS torn POP at.
TOTtl rOp II IFtClII IT PIPLtCITti I • J 7). 119. Tl.
f" TOItL POP 1 PfHIC»TE8, II 8PECICBI 371.
00
-------
MCI I
PPOJECTl ICU PUN PttJr.fi (»P)
8TMICNI P1CIIM, TUSH'S MOtlll CIP1H 9.IP
SIMPLER TlPEl ECM»" CRECGE P.C1TOP «P« («0)
nun IP cr PEPUCME8I i M*te
NC1II HOI tPFUCMLE (0)
10*11 NEC ML8CN L»KE (JJ)
BIPPt
(at)
dill ItKOIT 39, Mil
lUISUtlCKl I
HIM CUT* IKtllt
00
ro
I8T irvii
JM ItVIL PtFtPCNCI
CI»U8/8PtCII8
DIP1CP*
CHI»C»OMC»I, ••rtNUl TINTPCCINII
IBKPtaflU 8P. (|0«1I)
PBCCL»DIU8 IP. (IO«SC)
CMlPCNC»IC»t, TPJUl CMfPONCPlRI
CHIPCNOPUS |P. I (I235S)
"KPCltPtlPIS 8F. I (I39IS1
P»C»81IIIL* BP. (IllSO)
CLlCOPClf* IP. (11400)
CPiPCNo»iD*t, mm iiNiiiPsiNi
COPlNCCIP* 8P. ItlfOC)
U»IIfl>L« St.
cpipc"c»ic»t, i-rt
HI1IPDTPlS8cCL>CIt)8 If. (14110)
TRIRt Cl|»>t81Nlt
tr.
OBTplCet*
PEPtlClTlg
icoputoi* (JJ600)
CCPtPCC*
ctctcpcie*
C1CLCP8 iCPNklta (1I2SO)
NEMMOO*
OIICOCNMI*
(90IIC)
UNCINIIII UNCINIII (110)9)
LUPPPIClllD»t
tUMPICttlBJI . HI (9«OIO)
Ttlf 1MC1OI
|M»*TUPI TUBiFTC|C»E - k.C.C.C. (60000)
H1PUOI»I»
I • J
I • 1
1 • 1
I • 1
I • 1
1 • 1
I • 1
I
9
I*
3
0
I
I.
0.
I.
c.
c.
1.
>.
J.
COUNTS
I
I
14
9
I
I
a
11
o.
i.
IT.
0.
o.
0.
a.
i.
i.
o
9
19
0
0
1
4
T
It.
0.
4.
I.
1.
0.
a.
Tom rop BP.
a
ii
41
T
I
4
I
ai
i.
i.
41.
I.
I.
I.
1.
S.
-------
FPOJtCTl »CTC
aniiCNi »ICI»M. Tupp'8
a**mp TiPii
nu»eip or PtPiioTtii i
NCTtl NOT IPFIKMLE (01
lit
me
nticipce*
m»i
tint) 9.i»
TO" GP»B «
riitc picicctaTi BIPPT motco (in
PIN cm TiBita
MISCN lm (21)
I
00
OJ
PIMtlUP ap. («80J9)
ICP il aficita ei PCPLICITCI
T01IL FOP } PfPtIC»T|8, It
1-1
I • J
».
M.
III.
MCI 1
•oeaat >i, mi
COUNTS
31. 11.
IT. II.
ioi«i row
-------
P»GI I
MOJICTI
8TM1CMI
icic MI* ppcjeet (iP) iprti »rc
tCtCIHINT ) 8MC*tl>N CG'tl BIPTH J,5f
TIPtI ICIP»H CP.CCCI BCTIOP CPIP. («0)
CP PiPiioiiii 3 PIELC iicirgtui BUPPV P»IDICO tan
NCTEl NOT miKIP.Lt (0)
LMC (23)
OITIl •UCOI1 IS, III]
0UISTITTCHI 1
DIM CM* imri
IIT
00
PIMHI1CI
evii PtriR
Ct»U«/8FICII8
COUNTS
PPCCtlDIO* |p.
TPIBI
CHIPONOPV8 IP. | (I7JSJ)
P1CPCTCNC1PI8 IP. t (I35J8»
PCC»|llllLI IP. tllJSO)
CL»CCP«l"» IP. <1}400)
CHIPCNC»tD»t. TPIBI TlNfTIPIIMI
COMNOCIPA IP. (I]90C)
ll»IIILt» IP.
OITPACOC*
ClPPICM
COPIPOO
CYCUPCICI
"KPCCtCtOPI AtltOUl (HMO)
OltCOCMffl*
IVPPPlClltD*!
PILtClPCCI
IPKIIPIID*!
»tt (S10IC)
• >tt (3*040)
TUlI'ICIC*t . k.C.C.C. (10000)
8P. (6SO]«)
I • I
1.
c
4
1
0
1
1
1*3 I.
1 • 3 1.
1*3 1.
1*3 I.
1*3 1.
1 • 3 SC.
1.
IS.
0.
o.
«.
t.
1.
c.
0.
s.
1.
46.
0
14
9
t
S
13
0.
o.
0.
1.
1.
«.
TOTIL POP M.
10.
1.
41.
IJ.
II.
1.
I.
I.
10.
I.
140,
TOTtL POP |1 IPIflEI tl PtFllClTM
TOTIl FOP I PmiCIIK, II
1 • 1
72.
II.
-------
P»CI I
»M»I NED UI.8CR L»KK (Jl)
PROJECT| ICU RMR MCJKC1 (»•)
81*1ICN| 10Of 0»rSHOP»-t» 8HUIC* CCVtl ttPIP 9.0"
TIFH ICRMN CRECGI PCTIO" cp»e c»o
0' MPlIC'TEBI I MELD PlClCGim MRRT BUDICO (31)
NCTII HOT mtlCMtt (0)
CMIl tUCUfT J3. H«l
4
DIN t«T»
i8i
3»c itvtt
R(pLIC*1E|
T0l»l
I
00
01
IP. (io«sot
TP.1BI C^lPOUCflU
IP. I (IJ2S4)
C»'1PKCHIROKOtlUI IP. (13)10)
VKPClENClPia IP. I (17933)
CL»COPUM BP. (ti«oo)
CHlPCNOI>IO*e> TPIRI 1INTTIP8U1
IP. (moo
ap. (ti««o)
a-rtH CPTHOCIICIIIKE
CGF1PONIUR* IP (14419)
CHH»C»C»lC«e, TRtRl CIlffBIMIt
FstUCOKIirPlplCLLt |P. (1690S)
CoitnpTip*
CtFONtCTta C»IBtCSTRl»TU8 (30411)
HCl'CftCIC*!
HOtCPEDtUN CIt«IPll»
08TPICCO
RIMtTCC*
8CopUL0|l (13600)
• HI (90«1C)
OLICOCR»I1»
NllCICtl
N»10IO»I • HI (9«010)
N»18 8PP, (99031)
IINClN»I8 UNCTMkl* (91079)
>tt (9404C)
«.
1.
H.
t.
7.
c.
a.
14.
1*1 C.
1 • 1 C.
i • i e.
i • J i.
l • i «.
1 - J C.
1-1 i.
i • J i.
1 - J C.
i.
10.
30.
o.
1.
3.
4.
41.
0.
1.
e.
>.
n.
0.
0.
0.
0.
0
9
39
3
10
1
7
14
1.
0.
1.
4.
39.
1.
0.
0.
7.
1 • 1
1.
7.
7.
3.
37.
9*.
3.
II.
9.
I.
I.
«.
I.
1.
i.
3.
T.
-------
PKI
PPCJICTl Kit Ml* PPCJECt (»»1
aiiiicm ioof crrmonfN BH»LIC* co»n riPin s.op
simi* tin i tcn»*i CHCCCE ecnoc cc»» (so
NU»itii cr PiPLic»Tisi j nut
nctti HOI iprncieii (0)
mAl M.C KIL80N
(JJ)
o»in loeuit is,
8UB8T»1tCN| 4
RtN CUT*
I
CD
CTl
i8t imt
a*c trvn nenneiict
Cl>U8/8PICII8
OtlCOCKItl*
Tuttrieiour
IMPltUM TUIiriClDII • k.C.C.C. (40000)
tIMCD»ItUB HOrri'tllfl'l (8PIPKI8 rCPF) («0020)
MPIICIT18
eicsiirvcmiDii
piiicmc*
«T«CN*H8 (42410)
BP. (6BO)S)
COUNTB
1 -
1 •
1 •
1 •
1
3
I
1
B.
1.
1.
41.
to.
1.
0.
41.
1,
e.
0.
».
TOTAt POM
14.
a.
i.
tat.
T01AL ftp I] BFICIP.8 Bt REPUOTCl
TOTAL rep 1 MFUCAU8, 92 BPtCIEBl
i • i
IOT.
184.
-------
MGt
PPOdtCII IClt Pllll PPdJECT (IP) IPPM C181IP
simom icuicmim 3 SHOPM-K* met CIPYH i.ei>
B»»PlfP TTPII IC«»»N CP-CCGt PC110P CPIE (6C)
ninttp OP PtPiicMirai 3 »mc picicctaii BIPPI pnoteo
NCltl NOl IPmCItU (0)
0*111 »ueu§i 14, ifii
SUBSTIUCNI 1
PIN t»t» imea
iat tim
uvu
cikua/artcna
00
C*I"ICH
OlPttPI
mcnoiut IP. (i
CHIPC"CMC»l, TPIRI CM
ar.
8P.
PCtlPIDllUM 8P. (|1«OI)
P8HJCOCNIRONONU8 |P. (1
P»C»8lIItL» SP. (IllSO)
CCIPCHC,»JD»l, IPlBt
l»Mt»»8U8 BP.
lEHftCLlI 8P.
CtpllCPCCCNlDlb
PklPCPTII 8P. (llQ)O)
CCUOFHM
CLKDOCIP*
LIION* atTtrtui (ii«09)
08TP»CCt»
ClMICftl
CCPCPCC*
tPPHIPCCt
ri«P1CMUa
jiptlciTia
COUNT*
idMta (1112)
mirccmt
i«0»
oniif*itf f M f
pgncr I" I
1 (12939)
1(01)
P. (11290)
1190)
11*P81fl
100)
>«0)
10)
1P1I1UB (20413)
11109)
«0)
(11«00)
Naia (31099)
(31061)
1 • 3
1 • I
1 . 1
1 . 1
1 • 1
1 • 3
1 • 3
1 • 1
1 • 1
1 • 1
1 • 1
1 • 1
1 • 1
t - 3
1 • 1
1 • 1
1 • 1
C.
t.
13.
•7.
* .
C.
31.
33.
99.
3.
«.
1.
e.
i.
0.
c.
C.
1.
».
34.
a«.
K.
C.
22.
39.
an.
4.
to.
0.
0.
0.
1.
0.
0.
1.
12.
19.
104.
32.
t.
24.
)».
111.
2.
1C.
0.
4.
C.
0.
4.
1.
torn
ap.
i".
91.
I.
",
104,
III.
AZ1RCI (410(0)
J.
3.
3.
4.
I.
t.
-------
MCI 2
Kit MIP MtJect
suit cm tcuieiciiNT 3 sunPtj-nt. met ttttv i.o*
a*»PUP TlPIl ICRU" tmCGI (C110» CPIP (60)
Cr PIPUCMfBI 1
not imicmt (0)
mil CWIP. L«R| (74)
HHC MCLCCI81I »»PPT PMOIGC (21)
D»Tll
24, 1MJ
i
PUN
in ttm
00
00
GIP*IPtt*|
LKCU8TFK H1J>«)
*l»»TCD» • lit
OLICOCMtl*
micttut
**IOIC*f • HI (9«02C)
MI8 8PP. (99021)
I'NCIMII UNC1NI1I (9*029)
lupppicumt
lU>BplCuLID*C • 'tt (9f04C)
lUttHCICIt
TUP.l'|Cie»l • k.C.C. (60010)
> HI (61000)
tPFCtRtUICH
NtFHtLOpaia oiactip* (62932)
PILIClPCCt
COOW8
torn TOP
P1CIC1UP SP. (630J5)
1 •
1 •
1 •
t •
1 .
1 •
1 •
1 •
1 •
t •
3
1
3
3
3
3
3
3
3
3
c.
1.
1.
3.
e.
t.
0.
3.
1.
11,
1.
B.
1.
0.
o.
0.
2.
t.
o.
IB.
0.
4.
e.
2.
3.
e.
3.
0.
0.
H.
1.
lit
1.
9.
3.
1.
9.
«•
1.
91.
rep 2B artcita (T PIPLICITH
tout POP 3 mticMiB. 21 aprcieai
1 • 3 269. 48*.
1203.
4B2.
-------
MCI
PPCJICtl ICIC Ml* PPOJBCt (IP) IPfll CT8HP LIKI (14)
•urnHI PSUICIMMT j anoPca»i«f cotti DEPTH j.s»
SMPLIP IYPII tctMN CP.ECGI ecuov CP»I («n
minetp c» mitciiiBi i rmc gicicctaii B»PPI MIOICO (it)
•cm HOI miicmc »oj
Dltll IUCU81 34, MM
i
PtM D«Tt TJtttei
CD
VO
in urn »r»m«ci
j»t irvii *tri
ci»ua/aptcita
BIITKAI
c»uiB»iua
C»IN|I IV. (1TIO)
••r*"tLT
mctioiuB IP. (io»so
CMt*ORC«II|
8P. (IJ410)
. (|ii9o>
iamT»patRi
IP. (I}70C)
UtlttLLI BP. (Il«t0)
CtP»1CPCCCNIDIC
Pkipccii» SP. (Hole)
»rrwa
CYP»10»I
COPIPOC*
Clll»CK»
CKWPClOl
»uic«« ciatie)
AZftC* (4IOaO)
C»P»*PIC»I
C»»l>lpll8 LICUlTPll MIJJ6)
»1>»TOD» • III (10*10)
OLIGOCMIMl
COURTI
tout POP IP.
1 •
1 •
1 •
1
1
1
1
1
I
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 -
1
1
1
1
)
1
1
1
1
1
1
1.
1.
11.
".
n!
64 .
11.
• «.
«•
8.
1.
1.
1.
1.
a.
11.
e.
>. e.
>. o.
ti. to,
ia. 71
«. a
a*. o
|C. 7
4a, a«
«. >
a. to.
o. e.
0. 0.
o. o.
• . *.
i. a.
). i.
0. J.
i,
i.
»a.
tit.
IB.
HI.
11.
aai.
ii.
aa.
a.
i.
a.
l«,
9.
17.
J.
-------
not
mjtcti Kit run rpcject (»»> IPCH ctatip t»*i (j«)
miicpi rcuieitim i aHOPr.a>tH covti OEM* a.9*
a«miP tin i tcp»»ft tPtcoi acim c«»e («o>
or piPLicMfai i rittc niriccmi *»»PT tiiDtco (Ji)
NCI mncme (01
I
vo
O
\8t urn PtrtPmci
j»c itvii
CI»U8/8t>fCIfS
OLICOCMiril
PIIC1CH
PttlClKD*
tNCNT1P*IIO*l • Ht («IOOO)
OMCVPI (•ism
PlIIDlUP «P. («90]S)
P»N
PIPLICITIS
COUNTB
1 • }
1 • 1
1 • }
t • 1
i.
a.
i.
it.
i.
14.
1.
12.
«t
«•
e.
4.
tout rop •».
I.
IT.
torn rop it mem IT PtPitcttti
tout rop i Ptrnc»Tig, ji aptcieai
I • I 111. 149.
100.
27*.
-------
ICU P»I* PPCJBCT (IP)
81*110*1 Pinmt I«PIOI> TC isi»»e» OCPIN 1.91*
•IPPLIP 1TPII ECMI» CPECCE COTTQP GMB (6C)
WU»BKP or ptPiKMtsi i rrric eicicctati BIPPT Mtotco tt\i
MC1II NOl IPIIKIPIE (0)
ttm
CHI 1ACLC8
PIGI t
CITII »UCU«t II,
IUB8t«t*CH| 4
I8T
I
VO
act irvit PcriRENCi
i-ri»nt
PDCCIIDIUI M. (tO«90l
CNt»C TRIHI CWl»0»0»I»l
CH1PONOPU8 IP. I (IIJS9)
CHIPONOPU8 IP. I <1JJJ«)
CMIOCNOkieilt TP.IP.I 1IH11IPSINI
COP1NOCIPA 8P. (IHOO)
CMIPCNC'teit, 8.MN CPtNOCLIClIN»I
P8IC1POCIAOIU8 8P. 2 (I9«0t)
08TPACCCI
8COPDL08I (11400)
OlICOCMJtll
1UHMCKII
nnicnta
tuctrtcteit • k.c.e.c. («ooec)
">.C.C. («OOIO)
(SPiPiiia repp) («oojo>
counti
1
1
1
1
1
1
1
1
1
•
•
*
•
•
•
•
•
•
1
}
1
1
1
1
1
1
1
9.
C.
41.
1.
0.
c.
91.
».
17.
».
0.
91.
1.
1.
0.
93.
IT.
a.
it.
l.
94.
0.
0.
1.
19.
91.
24.
totit POP ap.
19.
I.
I.
I.
1.
101.
Tom POP 9 8FECICI M RIPLICItCl 1 • 1
ram POP i ptFiiciTia, 9 apfcteai
ll«.
171.
141.
-------
APPENDIX F. RAW QUALITATIVE INVERTEBRATE SAMPLE DATA FROM COLORADO
FLAT TOPS STUDY LAKES, 1982.
A-92
-------
P»Ct I
PPOJICTI »Clt PM» PPCJICT (»P)
miicm 8«epruM/inTopu 10 i P emu
IMPIIP Wli ClniUllVt DIP Hit 8»»Plt (40)
Him* CF PtPUCMKBI 9 Pjttt CICLOGtail Ht8 HNNtf (9)
MCTII »0t IPHK«Bte (0)
iPttl ktC klLSC* lm (Jl)
tmi ftucuat 11, t«i]
1
P»N em imri
urn
J«C .ItVtl PEPIRHCI
10
CO
ODOMTI'tlCOMlPA
CCt»»CPlCPID»t
rN»Ll«OPI BCPIIII (1401)
1PICHCP1IP*
DtPltPI
PnCNOCllPNI
(»«00)
(lOtlC)
TPIRI CDlPOHCPlKl
IP. (11410)
p*ciaimu ap.
cucoptii1* ap.
C*lPCMOI>10«t> TPIflt
i»»n*patia ap, niieo)
COPlNCCtP* IP. (tltOC)
LlMItLLI SP. (ll««0)
(I44IS)
(p. (J4iio
a». (Uieo)
ap. I (iscoo)
(ItOIC)
CIPHOPCCCH1CIE
p»tpcptii ft. (taolo)
CCl|0»T|*»
omacKti
OLICOcH»(1»
NflOICKI
K*II BPP.
UNCINI1I
(ItOJS)
iu»iRicuiioic
luru icicn
ptpuema
COUNT*
IOTIL POP ap.
».c.c.c. («ooeo)
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
9
8
9
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
C.
0.
0.
C.
C.
e.
c.
o.
c.
1.
c.
c.
1.
c.
c.
c.
c.
c.
f .
c.
1.
«.
1.
0.
0.
0.
0.
10.
0.
0.
0.
Of
9.
1.
I.
2.
2.
«.
10.
0.
0, 1
1.
1.
t.
1.
0.
t.
1.
0.
9.
1.
1.
0.
c,
3. 1
0. <
0. (
1. (
9. I
C. <
>. o.
1. 0.
1. 0.
o.
o.
o.
«.
o.
o.
o.
o.
«.
o.
o.
o.
). o.
). e.
>. >.
i. i.
i. i.
i.
ii.
u.
i.
i.
i.
i.
2!
12.
t.
2.
t.
2.
a.
».
I.
10.
24.
1.
-------
I
vo
PPOJtCtl Kit tun MCJect (•'!
aiiiicNi 8nr.pr.iiNt/Liitopu ic i » em*
atmtp mil ot»tjT»ii»i ojr art atxrir
IUIMIP cr PiPiicnr.81 s rme MCIOCIIII NIC M»»IT
NC1II HOI miJCMU (0)
NED DIL8CN l»Kt (31)
lit
IRC tcm
CI»UB/8VICIt«
WIN Ctll Itlltl
PtPlIC«Tl8
oticoci"»ri»
Toiinctctt
WMUM TUIiriClBUI • K.C.C. (tOfllO)
HIWUDINI*
HBtOBOtLt*
*
8PMII*ttDII
CCUNT8
net a
CMIl IUCU81 IT, 1M1
TOtlt POD •».
1 *
1 •
1 .
1 •
9
9
9
9
0.
e.
i.
i.
o.
0.
0.
I*.
e,
o.
i.
9.
0. I.
0. «.
I. 0.
•. o.
1.
«.
II.
tout rep ]« 8ficit8 11 MPticmi 1.9 at.
tout rap 9 PtPticiiia, a« iptctcsi m.
IB.
H.
-------
P»G1 I
PPOJICtl Kit PUN PPCJCCT (»P)
INCPUIM/U170ML 1C 1 *
71P1I Ol»tIT»11V| DTP «rt
er MP-itcHtii 2 »mc
NCtll HOI imiCmE (0)
tlMC
OT811P tKI (14)
(4C)
NIB K1NMT (9)
CMII IUCU81 II, l»«2
9
C»T» T»Bttl
I
VO
01
lit lint
JPt tl»ll KFIMNCI
Ct»U8/8PtCII8
C*UU •». (1710)
PlPttC»TC8
COUNTS
COIM»CPIC1IO«I
l»»lt»CN> BOMKlt (S402)
CCPUIOII
»PC10CO»1«» •UTlttS (6811)
CIP1KPI
|XT|P»0| (*9(J)
8P. (fit?)
P8KHQGUPHI SIIBfcSt'lIS (9«00)
TP1BI
«P. (I74IC)
PBtUCCCHIPODOHM fP. (1)130)
MTIdOCHlROPOCUa «P. (IJ)CC)
CH1PC"0»IC*C« rPI*C 1*PTT*P8lKI
T»'n»»8i'8 IP. tmon
P»*l1»NlT«HaUI IP. (D79C)
LE»IICLLI 8F. (1)«90)
CPl»C«C»IC*t, 8-MC OpiHOClieilM
PBlClpoCt»CIU8 8P. I (I9CCO)
CUtOMIM
CllllCKDt
icitiui IBMC*I«TOC
(P. (20489)
N10PICIPU*
ai
tlM|ai* 8P. (JH70)
(}04D)
CCPIPCt*
CILINCIt*
8Ma8Hc»t (37061)
t •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 .
1 -
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
«.
C.
M.
1.
C.
4.
C.
1.
f.
19.
1.
2.
1.
1.
0.
7.
C.
'.
2.
1.
«.
0.
2.
I.
2.
2.
0.
0.
o.
o.
o.
o.
1.
*•
2.
o.
10111 POD 8P.
I.
I.
19.
I.
2.
9.
2.
9.
I.
19.
I.
2.
1.
I.
1.
II.
2.
I.
-------
P*C( 1
ppcoicTi ic it MI« PPCJECT (»P) mil ctsup
aitiicm iHCPtiiPi/iiiTiopii ic i P eiviN
TWl QlniTMlVt DIP nrt 8»CPt* (40)
OP PiPiiciiiii a rine ^ictccieii HK KINMIT (S)
MClll HOI »PriICIPlE (0)
(?«)
Cltll IUCU81 II, til]
9
PIX 0*11 imti
in tint
2IC ItVIL
»mC» (410*0)
C»»HIPU8 L»CU8TPI8
»tt
NIMITOC*
OtlCOCMitll
ic
••it IPP. (atom
IPPOIDklLIDAI
NtfHttOPSlS 0»8CUp» (63517)
piiicmni
8PH»I»I1C*I
8P. «90JS)
PIPLICITIg
counts
TCHt POP 8P,
1 •
1 .
1 .
1 •
1 .
1 •
1 «.
a i.
i i.
i i.
a «.
a i.
i.
a.
o.
o.
i.
i.
t.
i.
i.
i.
T.
|f
T01U POP 14 8PICIE8 PI PEFLICMM I • a
Tom POP a pmicim, a< SPICIKBI
131.
-------
MCI 1
MCJICTI ICK Klin rVOJICt
iMOPiuM/utTopia tc i » DI»TP
tmi guuiTiim DIP m imit (io
cr Rmicmai j rjitt eiciccnn
noil i not IPPUCMLI (0)
(MM UPPIl 1BUNO t»M (35)
OIMI8 NtL8C* (9«)
CMII IUCUI1 20, l*|]
lUBBTtlKNl I
CM* mtu
IIT urn
n»ii pcrtMici
COUNTS
J>
VO
8>. (11710)
••r»»itt
os •?.
CNI»CNO»ln*l, THIil
»*»M«M1ttlltUI
eon»oci»» iv.
-rin
CO»t»C»IOI«l 8P
C»1COTOrU*/OH1IICCt*DIU8 (14470)
VdCTPOClkDIUf 8*. I- (I8«OC)
8t»OPTHcCt»OtU| If. moid)
TMIIC OIH>(8tNII
»ilUCODIIHEI» IF. (11900)
COllOPtlll
ciiiicicn
mioropoi IP. i (3o4«o)
DIPOHICTIS CBl8tO|Tpt»TUI (10411)
H10P»CI»1RI
teii
M. (1I4|0)
IP. (1|710)
•INITODI
NIVITOO* - III (3Q«IO)
oitcocmrn
io»«pietiio«i
»tt (14040)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
•
•
•
9
•
•
•
•
•
•
•
•
•
•
1
1
1
1
)
i
3
1
1
1
1
1
1
1
C.
1.
c.
1C.
c.
1*.
1.
1.
I.
1.
c.
1.
s.
c.
1.
1.
1.
1.
1.
o.
o.
0.
o.
o.
..
o.
0.
0.
1.
1.
e.
0.
o.
e.
e.
e.
c.
0.
0.
I.
1.
I.
roc ir.
i.
i.
11.
i.
ii.
i.
1.
i.
i.
i.
0.
I.
roiai, POP 14 mciei n PtPitemi i •
tout rop ) MKieim. i« aeteieii
41.
11.
i.
-------
APPENDIX G. RAW QUALITATIVE INVERTEBRATE SAMPLE DATA FROM COLORADO
FLAT TOPS STUDY LAKES, 1983.
A-98
-------
MGl
PPOJEC1I
SlitlCNl
Kit PUN PPCJEC1 (M)
SHCPILIM/UITOPAl 10 I * DIM*
ommim DTP «ti umi «o)
•IHBEP cr pivitCMiai « rmo BICICCIBII
NC1II HOI IPFL1CII>U (0)
IPCM NEC »IL80N Lint (II)
DIMI8 M18CN (9«)
Cllll tOCUfl 19, Itli
«
HIM C»t» TlltCI
IIT um
1»C
GE»u8/Bpiciia
vo
VO
tFHt»tPCP1IM
BI11ICM
CkUmtltS COLCMCCMtB Mill)
TPtCHQPKP*
LIPRIPHUIDU
IMM1UM UPHIPHltlOH (»988)
PB1CMOCL1PH* 8QBBCPHLIB («600)
OIP1IPI
IBtlP.t8M1I« BP. (|0«JH
PPCCIIDIU8 |P. (IflHO)
C«IPC»OHC»«.. TPIHC CNlPONC"!*!
*>ICPCTK*C1PI8 8P. I (1)913)
PKPOUNCIPEB 8P.1 (13916)
CLICCPCLPA |P. (I140C)
PI^I 1l|l1T*Pir»e. TRIBE riiMEeii«t
pBiuromirrtRiriii SP.
CIKIIOKCONIDIC
•IIPCM1* 8P. (I«0l0)
CCt(OPIM)
C11l.«Ctt»t
HtCPC»»H8 IP. (lOltC)
ICIBUB 8P. 1 (10491)
»C»iU8 BP. 1 (10491)
MICPOPOPU8 BP. 1 (104*1)
CtFCMCTtS CP18E081PIITU8 (10411)
H1CPCPMILID*E
IP. (10«1C)
PEPLICITE8
1 • 4
0.
COONTI
1.
1.
0.
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 •
I •
1 '
1 •
1 •
1 •
1 •
1 •
1 •
1 -
1 •
1 •
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0.
C.
c.
9.
9.
0.
1.
1.
1.
1.
C.
0.
1C.
c.
c.
e.
0.
e.
e.
j.
o.
i.
9.
9.
2.
0.
2.
1.
12.
1.
0.
2.
0.
o.
0.
0.
0.
0.
tl.
4,
0.
2.
1.
0.
o.
2.
4.
4.
2.
'•
1.
0.
9.
1.
1.
1.
J,
0.
1.
0.
9.
1.
1.
0.
0.
I*.
0.
0.
o.
0.
2.
0.
0.
0.
0.
9.
TCtlt, POD BP,
I.
II.
1.
I.
II.
IB.
I.
I.
I.
14.
1.
I.
II.
I.
8.
a.
i.
i.
B.
I •
e.
o,
i.
0.
-------
MCI I
IPCII NED HIL8CN LAKE (21)
MOJtCtl Kit PMP MCJCCt (IP)
81*110*1 MCPIllM/tllTOPU 10 1 P CIP1H
MttPlI* TIPII QtlllTlllVt DIP HIT SIPPLt (40)
•VM8ip or PiPiicntot 4 rnii) eiciccian oipnta NIIBCN (9«)
NCTII HOI milC»l>Ll (0)
eiiit iucu8i is, mi
OtlMTlTICNi I
HIM CHI TIBUI
tit tun
2RC
PEPtlClTlS
o
o
CIRUI/SPICtlS
counts
torn POP 8p.
M1DHACIPTII*
LtllPUlOtl
IMIMTII IP. (11410)
CUCOCCPI
OlPMRIC»l
C»fH«ll PUUI (IITfO)
•C»PHOLItlR18 HI»Cl (11190)
OI1MCCCI
C1PPIOM
C*HOCM* ICOPULOI* (11*00)
COPIPOC*
OHPTOM08 iH08HCHI (POOl)
C1CI/CP01DI
flCPCCKlOM »t»tcOI (10110)
ni»*ioe*
•l»»TOD» . ILL (SOOIO)
OlT60CN*t1»
NI1C1CM
UdCIMU UNCINIT* (9«0»)
IU»8RICUL1D*( • *Ll (5«04C1
TOItriCIOal
lt»NCDPUU8 HOprHfI8TtPt (8PIPUII fCPfJ (00010)
l«CMlTPIItO»l
INCHITMtllnil . «Lt (810CO)
HIPUOKI*
HttOVDtll*
PILICIPCCI
8PM(PIIDIt
8P. («SO]3)
1 •
1 •
1 •
1 •
1 «
1 •
1 •
1 •
1 •
t •
1 •
1 •
t •
1 •
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0.
C.
0.
0.
c.
c.
1.
0.
c.
14.
C.
0.
1).
«.
1.
o.
1.
1.
0.
o.
i.
••
o.
7.
0.
1.
J.
9.
1.
0.
o.
o.
1.
o.
9.
0.
1.
1.
o.
e.
0.
c.
9.
1.
0.
o.
0.
1.
o.
0.
o.
t.
1.
o.
1.
i.
1.
t.
1.
1.
T.
t.
I.
11.
I.
I.
If.
II.
-------
MGC I
PPOJICtl ICtt «MP MCJCC* (»») IP»»I NtC »H8CN UK( (21) Ctlll IUCUI1 IS, |f|}
aUCFtllNt/llTTOPM, 10 I » OIP1H IUH1ITICNI f
lPIl Ol'tlltdlVI DIP HIT a»"FlK (40)
NU*ICF cf Pipticuiii 4 riue eioiociaii DtNNia HILSCN (3*)
ten i not miicine (o>
HIM CITI tmea
IBT inn PCFIPINCI
7»c ti»ii ptriPmci ptPitciTta couNta rot»t POP ap,
Ct»U8/8P(CII8
PC* is apicica IT PtPitciTti 1-4 «J. TO. to. IT.
T01U FOP 4 MPLlcma, 35 Bfldltt 2S1.
-------
»ctt P»I» MCJCCI
81 kit CN| 8HemiM/U1TOPkL 1C I f
8»I>FI.ER mil Ot»tlT|1IV| DTP H«T
mirttr cr pmiciirai J nrte
NCTII N01 mllCme (0)
(4fl)
cteiiP IMC
OINNI8 NIISCN (59)
0*U| «UCUat 14, till
«
PAN cm i»me
I8T tun »rri»t*cv
}»c I^VI
CE»U8/BP(CII8
counta
ar.
CAUtMttlS COtiCMCIMIB (1713)
CbCECN INCEM (ll|31
CMNIOM
CftlKll 8P. (37|fl)
OCONM»«TICOFT|P»
CCINICPICNIDM
lk»tl»GK» BCP-tllC (9401)
COPIIICM
»PClcCOPI8» aUTlt 18 («011)
CtPPICAl
ctppia ap. (Alto
IPICNOPUF*
UMCpHiius EMiPnua MSCD
PaiCHOGUPH* 8UBPCPCIMS (9600)
DIPItp)
ccii>CNo»ic*et a-MMtti i»»tPctiK»t
ppcctAoiua aP. dotsoi
CP1P1cCHIPOpoi>U8 8P. (11)90)
CKPCllNCms SF. (17410)
•ICPfltitClPla 8F. 1 (17579)
P8tUCOCMI«OI.OMi)8 ft. (I17SO)
8TICTOCNIRONCMU8 8P. (DlCfl)
F*C»8TUtl,» 8P. (|])90)
CMIRC'CMC'l' TP1P.I llNlTtPIIKl
t»Ml»l»8U8 8P. (IJ70C)
P«F11*N1Y«P.8U8 IP. (DT9C)
U»ZIILL* 8P. (l]«40)
CCFTNCNlUP* 8P (14415)
CPICCIOPl'B «PP. (t<4«01
1 •
1 -
1 .
i •
1 •
1 -
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 -
1 •
1
)
1
J
1
J (
1 1
J
1
J
)
)
]
1
J
]
I
]
)
B. 11.
c. ).
t. 1.
:. i.
c. i.
C. 9.
:, i.
I. 0.
:. 10.
. o.
t 2 •
0.
. 45.
33.
. 1 «
13.
. 1.
. 1.
9.
0.
17.
0.
1.
t.
31.
1.
0.
4.
17.
1.
t.
1.
19.
3.
0.
3).
0.
0.
«.
1.
St.
).
1.
1.
11.
I.
1.
37,
1.
1.
I.
IB.
14.
t.
M,
1.
I.
ta.
i.
-------
P»CI J
IPMI CtSTfP L*M (24)
mjICTl Kit MI* PPCJCCT (IP)
ailllCHI 8HeMtlNE/UTtOML 1C t » CEP1V
aimip Tim omnrnvt DIP NET e»rm
WEEP CP PIPIICHMI i PIEIC picirctaii CENNIB MIBCN (!«)
HCTll N01 IPFIKMLE (0)
(ucuai 14, t«ii
aUBBTMKNl *
imea
o
CO
tit tim PtriPtnci
2«C ttVtl
GUU»/SP!C11S
DIPIEM
CHJpC»0»IC»l, B-MP
CPICCTOFUa rL»1CCl*CTU8 (149101
PMtl'IIPlUCMEI'Ua gP. (IJICO)
PIICTPUCLKDIU8 8P. I (15600)
CIP»10PCCCK10»l
PHIPCCTI* 8P. (IIOlO)
8TPPH1C*!
EHiaill.18 8P. (1«|«Q)
COtlOPIIPI
DTT1«C1>C»I
PHumua IP. (aeiui
rimrua ap. (io«48t
»C»PU« IP. 1 (J04J5)
uieiua CP. (2o4«s)
CtPCMEClia C"18IC8lPIITUe (10411)
N10P*C*P1»I
ItltPIIlD*!
KMflTl* BP. (11410)
8p . (Jt«CO)
ptpLICITtfl
COUNTS
PICN1CM
BP.
CUCOctPI
CIFHMtlt
CCPIPOC*
ap.
ccio«*C(iiai8 (11099)
tIIPTC"U8 SM08HCH| (J70«11
*|iPHtPCC*
t»L11Plt»»
HY'L*LL* AZTKC* (410(0)
i •
I •
1 •
1 •
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 •
t •
1 •
t •
1 -
t .
3
3
3
J
3
3
3
3
3
1
3
3
3
3
3
3
3
t.
0.
C.
c.
c.
c.
t ,
c.
c.
e.
c.
c.
c.
c.
c.
c.
c.
o.
I.
0.
I.
0.
1.
1.
2.
0.
7.
0.
4.
0.
9.
6.
I*.
»!
0,
0.
B.
t.
I.
4.
0.
3.
1.
4.
t.
a.
4.
4.
t.
14.
1.
ro» at.
i.
i.
St
1.
1.
B.
I.
I.
1.
II.
I.
I.
4.
«.
T.
40.
t.
1 • 3
1.
9.
-------
»cu "'I* PPCJEC*
flHrmiHt/LmOML 1C I 0 CtMH
BfFUR TIFH Cllimim DIP NET S»»Ht (40)
nt»ert. cr »micii*8i j
NCTII kOI *rFlK«RLt (0)
IPMI CW|P LMl (241
(ueuai 14, ifti
BUB8TD1ICNI f
PIM CITI Tmt8
I8T
t
t—»
o
3»e
ClM)8/8f!CIU
• »«PHIPtC»
cir»
oncocmii*
b»CU81Pta (41JJ8)
P*. fS»0?l)
UNCI»»I8 UNCINRll (JfOJS)
LU»BPICULID*I • *tl (3404C)
MIHUD1RII
CDFCICtlLIDII
OBflCUM (•29121
COI>PIIII*I»
BPHIIP110II
f K1C1 UK 8P.
T0t»t POD IP.
I -
1 •
1 .
1 •
1 •
1 •
1 •
3
3
3
3
3
3
3
e.
f.
0.
e.
c.
c.
o.
1».
0.
0.
i.
2.
1.
T.
1.
0.
2.
e.
t.
0.
i.
i«.
lt
2!
i.
i.
i.
14.
Tom rep 49 amiea BT PimciTti 1*3
TOIAI rep i PiPticiTia, 4S aptcieai
MS.
300.
221.
-------
MCI I
PROJECT! Kit R»IN PRCJEC1 (»*)
•11110*1 iHCPiiiM/utrnpii 10 i P oiPiH
IIMFLER 11PM eiltlTlim OIF NCI 8l»Fll (40)
RUHBER or REFtioirsi ) FIELD piciccini DEHMII NELSON
NC1II KOI IPFUCIPLK (0)
UPPER nti»o nm (is)
Oltfl ItfCUfl 27, 1111
«
PIN Dill KRLEI
I8i um
7»t um
CtKU8/8PECtt3
DEPtlC*TE8
counts
IOIH row IP.
:> ccptiioiE
JL. . CE»ceoRM» ktlei*E («OI8)
O 1PICNCP1ER*
Oi LIMIPH1L10M
INPMURI LIPNIPMItlOII t<9ll)
PlICHOCtlPH* •IIBRCMHI8 t«IOO)
CHIP'CNQP ICAEy 8*FiN;lL1 1AN1PQCINAI
PpCCLADlUI |P. (iQfSO)
CHIRCNOP ICIE* TRIBE 1l«11IR8!Nl
PMI1»NI1*R«UI IP. (IJ1JO)
CH1*C1CIE| 1-rAX CRTNOCLICIINIC
CRICOtUPUS/CRIHOCllDlUa (14410)
lltORIHOCLACIUl Ip. (160101
COLIOF1IR*
DlltfCit'E
RHINTUI IP. (10411)
HtCROPORUS IP | (I04IQ)
RU|trei"Ct*8 eB*8ECi1Rt*TU8 ta«4IJ)
LCtrFIIlDIE
lErtplll |P. (JHlO)
N1CRCM1ICM
NyCPOBAIES IP. (J|HO)
OlTRlCCtl
CTFPICM
EUCIPRll tPr|N]l nlRIUll (lltOO)
ccpipoe*
ClUOOItl
CllplonUI ARIPINOERItS (J10IO)
OLicocHir.ii
CLICOCHMT* . lit (9«OIC)
lU'-BntCUt IOIE • »lt (9404C)
1 • 1
1 • 1
1 • J
1 • 1
1 • 1
1 • 1
1 • 1
1 • 1
1 • »
1 • >
1 • 1
1 • 1
1 • J
1 • 1
1 • 1
1 - J
c.
c.
e.
i.
o.
e.
e.
c.
'4.
0.
1.
c.
c.
11.
1.
c.
0.
o.
1.
10.
1.
o.
0.
1.
o.
o.
1.
o.
o.
II.
0.
II.
1.
1.
I.
4t
1.
1.
a.
e.
i.
i.
IS.
1.
4.
l«.
0.
««.
1.
1.
4,
II.
1.
1.
1.
t.
II.
1.
II.
1.
4.
90.
1.
57.
-------
P»GI I
PPCJICTl 1C ft MI" PPCJECT (IP)
81111011 8HCMlJH»/LI1TOP»t, 1C I P CMTH
SINPIIP tmi Gt»tiT»im DIP »tt aicpit («oi
nif»tp or PtPiic»ir«i i PIKLC pioicctaii OESRJS MILSCH (9«)
NC1II M01 IPFtlCI'Lt (0)
lit tmt
1»E
PtrtMERCI
0111 tmei
PtPLtClttS
COUUTI
i
i—•
o
HttOtDCLLA ITAC*»t» (tlllO)
0»tfl »OCU8T 27, Ifll
lUIITltfC*! «
i • J «. 7. a,
TOTAL POP 17 apictea IT RIPIICITH t • i «e. 44. tot.
rout rep i nnicntii, IT
TOT»t POP IP.
t.
-------
APPENDIX H. INVERTEBRATE COUNTS FROM NED WILSON LAKE 10-ROCK, BASKET AND
HESTER-DENDY AND UPPER ISLAND 10-ROCK SPECIAL SAMPLES.
A-107
-------
• PMl MP kltSCN LIM fJJ)
PPCJtCTl Kit PUN PPC.IECT (»P1
SlIIICDl tPCPtllM/LMTOPAL 1C I P CIITH (214)
ii n Fccuretconi iNCtvtcu»t sc»»n
or PiPticMisi j nut mtccmi B»PPT mnifo (2i)
NC1II NOl »PFLIC*(LE (0)
T»8tt8
O
CO
lit um
2KC lt«ll
Cr«U6/8PICII8
CHlPCNO»ie»f TPHI CP.tPOPCI'Tkl
PKPClENCtPtl 8P. 1 (12939)
CNlPCHOMD»fc, TP18C T»»11»»flrHI
T»»T1*PfV8 CP. (11700)
PAM1INY1M8U8 8P. (11190)
CH1PCNOMC*!, 8>P«H CP1HOCLACIINII
ccrmcNiup.* ap (14419)
8T»OP1HCCt*CIU8 IP. (1*0101
CMPCNO'ICIt, TBISC DI»Pt8IN»I
pstUDcmrrrmtu* »t. (i«909)
CCIIOP1IPI
nittcmi
HHPOPOPU8 (P. I (204(01
08TP»COC»
C1FPICM
C»»DCN* 8COFU108* (1KOO)
CCPIPOtl
CKtCPClO*
PICPOCTCLOP8 lt(ICU8 (1(1 10)
NIXI10C*
»Lt (SOtIO)
PILICIPCC*
BPMIPIIDIt
PtllOIUP 8P. (69C2S)
I • 1
I.
COIIN1S
1.
icm
1 •
' •
1 •
t •
1 »
1 •
1 •
1 •
1 •
1 •
1
1
1
1
1
1
1
1
1
1
1.
121.
C.
C.
M.
C.
C.
1.
1.
4.
I.
104.
o.
e.
24.
1.
'•
*.
•.
0.
0.
1(7.
1.
1.
11.
C.
0.
c.
0.
0.
«>
»»«.
t.
n.
1.
1.
'.
1.
4.
T01II PCP It 8PICIE8 tl BfFtir»TM 1 - ] |9I.
ro» i fituctirs, it RPtcitei 121.
IIP.
119.
-------
ptcr
ppcjicii ictc m* PDC.IKCT on
81MICNI 8KFEUNl'L11TOPja 1C I K CtflH (JJ«)
mti Ktci*NcutAp B»BMI oeii.s INCCES
or MFiiCMtsi 5 rttic eiciccmi B»m eitotec
NCIM NOI IPUICIP.IC (0)
Kin ntstN i»«r
IUCUM
ttl*
i«t inn
]KC
GIHJ8/SPICIU
PEPtTC»Tr8
COUWTB
IP.
o
<Ł>
CflUCNOMDII
CHIPONOI'IDM • III (IOIIC)
CHIKHOIC*!!, 8«r»MItl TIIITPOCINIII
*B1MI8»1U 8P. (10691)
PKCCLIDIU9 IP. (10990)
CH1PCHOMCII, TRIIf CMIPCNCIiI»l
CHIPCMOVUS 8P. I (1I2SSI
PICPCTCNCIPII 8P. I (12929)
CMIPCHOMCIEt TRIBE 1I*1YIP8IM
mtiipsua IP. (Dioo)
P»f»1»NT1»P8U8 8P. (IJ19O
CVtPCHOMD»l, 8-f»o CP1HCCl»Cim»t
CCH»CNEUR» 8P (H4I9)
CHIPtPOMDIE, TRIBE C1IPI8IPII
BP.
IIIEP1IIDAI
UtEPTl* 8P. (21410)
CtlCOCEP*
HClCFtClCtl
CCPIPOtt
C1CLCPCID*
MCPGCICIOP8 »LHC18 (11110)
OUCOCtilll*
lU»CPlCUttD*R • *U (9I04C)
NtHUOIkll
Guscmoimoie
NflOBClLLA ITICKltll («2(IO)
8P. (69CI9)
8FMIPI1DII
1 .
*
•
.
•
.
•
1 .
1 •
1 •
f •
1 .
'•
I •
i •
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
0.
1.
I.
0.
c.
c.
c.
2.
C.
1.
c.
4.
1.
C.
c.
1.
fl.
o.
o.
«.
o.
o.
«.
0.
o.
a.
20.
1.
1.
0.
4.
0.
0.
0.
0.
0.
0.
1.
0.
c.
0.
It.
0.
1.
1.
e.
e.
i.
0.
1.
J.
1.
0.
1.
1.
e.
20.
«.
0.
0.
0.
0.
0.
1.
0.
0.
9.
0.
0.
0.
1.
••
0.
0.
0.
*.
1.
*.
1.
1.
J.
«.
1.
1.
>.
1.
...
».
4.
1.
-------
pier 2
PPCJtCIl Kit Ml* PKJICT f»P) »PE»| *lfi kUSCN IMF (3J) CMM
ailllCNl BKMUHt/UITOPU 1C I P CfFIM (?3<)
BIPPIIP TTFII RICItNGULAP PIBIIIt 4X«I7.9 IOCHI8 (20)
Nvfptp cr pipticiTtai s ritic BKtcciait R»PPI Piieiro (Jii
Ncttt HOI ipriictBie (o>
IBT tHll PfHPINCI
]NC IIVPl PiriMtPCf PrPtTC*TF8 ' COUNTS 1C1IL rOP IP
cirMja/aPtexta
rep 19 tttciis n PppticiTii 1-9 ic. aj. Jo. 3«. u.
TOIML rep 9 PttiiciTra, is
-------
PFCJtCTl Kit Ml* PPCJCCT (»P1 ftPEH Nil
81I1ICNI aKmiM/LMTOPIl TC I * CtFTM IJJ4)
SIKPIIP mil M.111PU Pl*TI atPPttP • ME8TIP CCHCT (IT)
Ntkttp or piPticMtsi 4 rtiic ercicci8ii B»PPT Bunco
MC1M »0t »PriK»BlK (0)
M18CN l*KF fj!)
lueuri 19,
CUT* TIBIC8
ut um
me tun
Cr»U8/8PtCttS
otritp*
CNl»CKO»IDie
CNIPONOflDftl • Hit MOSIC)
CMIKf>0»IC»I, TRIBt T»mi«»81»I
r»r»t!NT1»P8U8 if. (I17SC)
CHlPCNOMDIt. 8-MM CPTNCClUCIlMtl
COriNCNCU** 8F (H4IS)
HlftOOlM*
ClC881R»CliIIDII
HtilOBCILl* 8TieK»tl8 (»J«tO)
•mrcitrs
i.
COUNTS
1 • 4
1 • 4
1 • 4
C.
1.
1.
1.
0.
».
0.
0.
t.
p.
o.
1.
0.
n.
tern re*
p.
I.
torn re* 4 arrctEa FT MFtie»Ttt 1-4 13.
tout re* 4 Pipttcitra, 4 srrcirsi 1«.
4.
1.
-------
p»cr
ppoJten it it MIII PPCJCCT (M>
•limit encMtiM/imop»L ic i r DI-MM (i9«)
aiNPltP mil It PCCKMCTPODl l»CtVICUIl 8CPIU
mcptp or PIPIICMCSI j fine irctecimi BIPPT Minicc (it)
NClll HOT IPFLICIP.il (0)
I PPM T8t»»D IMP fj!j
r»t»
tat urn RrtCRtMCt
2NC ll«l
cr»ua/8Ptciia
TPICHCPllP*
1M»*1UPE
OlPltPI
CHlPCHOMCIt, TRIBE IMIIMITM
P»H1llTt»P8U8 St. (I1T9C)
cnipc»o>ieie, S-FIH >CPINCCI»CIIHI
CCHKCNHJRI 8P (14419)
•TtCPTNOCLACIUB 8P. (IIOIC)
H1DMCM1M
H»tP»C»PIN»
IIMP1IIOI
LtrtPiu sp.
ClIDOCIPI
(7HOC)
C»fH»I» PULIX (JI7«0)
COPIPOD*
CILMOKI
CfClCPCIt*
CTCLOP010 CCPCPCD1C (MOJO
NtctlCCI
NPJPI1CO* • ILL (90*10)
NIICICM
N»iBicit • ILL
CCWNT8
re»
1 •
1 •
I •
1 .
1 •
1 •
1 •
1 •
1 •
1 •
1 •
}
1
}
3
J
1
1
J
I
1
1
C.
.2.
I.
2.
0.
C.
C.
1.
C.
2.
1.
«. 9.
*. 0.
C. C.
(. 1.
0. 1.
«. 4.
I. 0.
*. to.
t. 1.
?. 1.
P. 0.
'•
7.
1.
3.
1.
4.
».
24.
»•
<•
I.
T01M. PC* It 8PrCtE8 CY PPFlIClTd I . 1
T01AL PCP J PIPLIC11F8. It flPFCteCl
93.
1).
-------
APPENDIX I. RAW QUALITATIVE INVERTEBRATE SAMPLE DATA FROM NED WILSON
SPRING, AUGUST 18, 1982.
A-113
-------
MOJICTl Kit MIK PPCJCCT (»P)
•imoNi iMi'd too" * »eo fit act. nor
aimtp TTFII cutnmti DIP «t i*m* MO)
or piPiicmai .1 rmc MCLCCIHI
NOT iPFiKMit (')
IPVAI NIC ktLBCN LMr (JJ)
PICI
Cult I IUCUI1 II,
Mh C«1» Ttlttf
>
I
IST um «nt»i"ci
j»c tivit ncrtupct
CI»U9/8PfCtU
TPtCNOPltP*
ItPNIPHUtBAI
llfRtPHUUf IMIMOI (1511)
8*. (f3l7)
cosnni
PIPIICITII
COURTS
t»lM CHlPORO*tlll
0P. (121*0)
IP. (I34IC)
. (11900)
PHMNOPStCTP* St. (I1JCO)
TRI8I l»RlTIP81lll
8P. (11700)
»P (I44IS)
CP1COTOPU* tlPfCOxllia (14960)
lHUHr»A»NIiLll 8p. (HOOC)
IIPIOOP1CP*
iipieopttp.» • tit
HIOP»C«P!M
LEKPIIIDII
IKFtPlI* »P. (IHIO)
08TP»CCC»
CTPPICM
C*»OON* acoputoi*
(410<0)
1ILT1«tt»I
NtMITOC*
«LL (90*10)
•.•IS 8PP. (!«0?l)
t •
1 •
1 •
t •
t •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
1 •
t •
1 •
1 •
1 •
1
1
1
1
1
t
t
1
1
1
t
1
1
1
1
1
1
1
27.
1.
1.
1.
1.
I.
If.
1.
It.
t.
1.
1.
>•
44.
14.
119.
1.
S.
TCIH ron IP.
17.
I.
1.
I.
I.
I.
It.
1.
It.
I.
t.
1.
1.
44.
14.
IIS.
1.
9.
-------
PPCJECTI Kit MlN PPCJKT (AP) IPEAl NEC klLSCN
amiCNI 8FPINC. toon M NED »U80» LAM
aiNPlIP TlFII OlAlIIMlVE CtP HIT Btftlt (40)
NUfitp cr piPiioTrai i ritic PICLCCISTI »i« mmitT (S>
NCTII NOT fPFllCIPLE (0)
HIM cm time
tat
itvti
CI»U8/8PKII8
OlICOCMiri*
tuctricioii
NlDUDKIt
IfFR
rtiicmo*
Tunrtcieii • K.C.C.C. <«ooeo) i •
(BPIPktll rCP«) (60010) I •
OBaCU»» (tISII)
. («SOJS»
count*
Cllll »UCUI1 II, I«I2
SUtlttlXCNI I
T0l»t ro» M.
1
1
1
1
11.
1.
1.
111.
IT.
1.
1.
lit.
TOTAL rop ii iPiciea it PIPLTCITH i - i
TOTAL FOP I PtPLICUta, 1] BPECIEII
SOI.
-------
APPENDIX J. DIGESTED TISSUE DATA FROM NED WILSON LAKE (S.. fontinalis) AND
UPPER ISLAND LAKE (S.. clarki) FISH COLLECTED DURING 1982 and 1983.
A-116
-------
Lake/Date
Sample
Element (mg/kg)
As Se Fe
Pb Be Cd Cr Zn
N1
Cu
Ag Al
Hg
Ned Wilson
07-06-82
S. fontlnalls
Whole No. 1
S. fontlnalls
Whole No. 2
S. fontlnalls
Whole No. 7
S. fontlnalls
Whole No. 4
S. fontlnalls
Whole No. 5
S. fontlnalls
Whole No. 6
<0.08 3.4 N/A N/A 1.2 (<1.2) 1.2 2.3 75 0.2 4.6 <0.001 N/A N/A N/A
<0.08 3.6 N/A N/A 2.4 0.3 1.2 0.6 157 2.0 5.0 <0.001 N/A N/A N/A
<0.08 3.3 N/A N/A 1.0 0.5 0.6 3.5 96 1.9 4.9 <0.001 N/A N/A N/A
<0.08 3.1 N/A N/A 1.5 0.4 1.0 3.3 128 5.5 5.2 <0.001 N/A N/A N/A
<0.08 3.3 N/A N/A 1.2 <0.15 0.7 3.4 105 1.0 5.7 <0.001 N/A N/A N/A
<0.08 2.9 N/A N/A 1.3 <0.15 0.7 3.2 135 0.9 5.0 <0.001 N/A N/A N/A
Ned Wilson
08-25-83
S. fontlnalls
Whole No. 1
S. fontlnalls
Whole No. 2
S. fontlnalls
GUIs No. 2
<0.05 0.8 <5 <2.5 45 N/A 0.7 4 173 93 141 <2.5 85 <38 <25
<0.05 0.8 <5 <2.5 44 N/A 0.7 3 174 96 143 <2.5 80 <38 <25
<0.05 0.08 <5 <2.5 19 N/A 2.7 <3 102 <8
6 <2.5 388 N/A <25
Upper Island
08-27-83
S. clarkt
Whole No. 1
S. cUriel
Whole No. 2
S. clarkl
Gills No. 3
<0.05 0.2 <5 <2.5
N/A 0.6 3 965 (1164) 1060 <2.5 <50 <38 <25
<0.05 0.4 <5 <2.5 92 N/A 0.6 4 991 (1199) 1090 <2.5 <50 <38 <25
<0.05 1.6 <5 <2.5 3 N/A 0.8 <3 65 <3
11 <2.5 <50 N/A <25
-------
APPENDIX K. DIGESTED SEDIMENT METAL CONCENTRATIONS FROM COLORADO FLAT
TOPS LAKES, 1982 and 1983 SURVEYS. Concentrations are mg/kg,
except Al (g/kg).
A-118
-------
Repl 1 -
Lake
Ned Wilson
Oyster
Upper Island
Site cate
NH2 1
2
3
OL2 1
2
UI4 1
2
3
Date Al »
8/25/83 24. 21
28. 24
27. 23
8/18/82 18. 18
18, 17
8/27/83 37, 31
25, 22
36. 30
Cd
a 352
a 385
0.379
a 555
0.347
0.180
0.120
a 225
In
84
68
74
59
53
73
83
1M
Element (mg/kg)
tn
22
16
21
19
15
20
(1216)2
(925)2
Cr
42
45
60
34
36
30
26
36
Pb
25
29
22
37
27
20
36
50
Se
<0.025
< 0.025
-------
APPENDIX L. WATER CHEMISTRY DATA FROM COMPOSITE SAMPLES TAKEN AT
COLORADO FLAT TOPS LAKES, AUGUST 1983. Concentrations
are pg/1 unless otherwise noted.
A-120
-------
ro
Lake
Ned HI 1 son
Oyster
Upper (stand
Site
NW1
NW2
NW3
NU4
OL1
OL2
Ull
UI2
UI3
U14
Rep.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
C1
126
153
122
140
141
150
117
128
118
93
100
98
174
204
152
178
1R2
182
72
92
107
168
192
198
122
189
200
122
106
102
so,
484
503
502
482
458
535
584
546
523
528
568
560
735
764
764
761
854
784
551
565
559
526
538
532
521
532
532
624
619
616
"°3
<164
<164
<164
<164
<164
<164
<164
<164
<164
<164
<164
-------
APPENDIX M. WATER CHEMISTRY DATA FROM DEPTH PROFILES TAKEN AT
NED WILSON LAKE, OYSTER LAKE, AND UPPER ISLAND LAKE,
COLORADO FLAT TOPS, AUGUST 1983.
A-122
-------
wed Wilson Lake
Time /Site
NW1
0830 Hrs.
mi
1015 Hrs.
NW3
1230 Hrs.
NW4
1500 Hrs.
Depth
On)
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
2.5
0
1
2
3
4
5
Temp.
Cc>
15.6, 15.7
15.6, 15.7
15.6, 15.6
15.6, 15.6
15.6 -
15.6, 15.6
15.9, 15.8
15.9, 15.8
15.9, 15.8
15.9, 15.8
15.8, 15.8
15.8, 15.8
16.7, 16.4
16.3, 16.1
16.2, 16.1
16.1, 16.1
16.9, 16.8
16.8, 16.5
16.5, 16.3
16.4, 16.2
16.2, 16.2
16.2, 16.2
D.O.
(ing/*)
6.4, 6.0
6.2, 6.2
6.6, 6.5
6.6, 6.5
6.8 -
6.8, 6.9
6.3, 6.2
6.0, 5.9
6.0, 5.9
6.2, 6.0
6.0, 6.0
6.1, 6.0
5.9, 6.3
5.9, 6.6
5.9, 6.5
5.8, 5.8
5.7, 5.8
5.6, 5.8
6.0, 5.7
6.0, 5.8
6.1, 6.0
6.3, 6.2
COND.
(ymho/cm)
70, 70
80, 80
90, 70
70, 70
80 -
70, 70
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
60, 60
PH
7.3, 6.9
7.2, 7.0
7.2, 7.0
7.1, 7.0
7.0 -
7.1, 6.9
6.8, 6.8
6.8, 6.8
6.8, 6.8
6.8, 6.8
6.8, 6.8
6.8, 6.8
6.8, 6.8
6.9, 6.8
6.9, 6.8
6.9, 6.9
6.4, 6.4
6.4, 6.5
6.4, 6.5
6.4, 6.5
6.4, 6.5
6.5, 6.5
A-123
-------
Oyster Lake
Site/Time
OL1
1715 Hrs.
OL2
0930 Hrs.
Depth
(m)
0
1
2
3
0
1
2
3
Temp.
(°C)
19.1
18.9
18.4
18.3
18.2
18.3
18.3
18.3
D.O.
(ing/*)
6.4
6.1
6.2
6.2
6.0
6.2
6.2
6.2
COND.
(ymho/cm)
110
110
120
120
110
110
110
110
pH
8.3
8.2
8.2
8.2
8.1
8.2
8.2
8.2
A-124
-------
Upper Island Lake
Site /Time
UI1
1100 Mrs.
UI2
1230 Hrs.
UI3
1440 Hrs.
Depth
(n)
0
1
2
3
C2
0
1
2
3
3.5
0
1
2
3
4
5
6
6.5
Temp.
rc)
14.8, 14. 71
14.8, 14.5
14.6, 14.4
14.3, 14.2
14.6, 14.5
14.6, 14.5
14.4, 14.2
14.3, 14.2
14.2, 14.2
14.5
14.5
14.5
14.4
14.2, 14.2
14.2
14.1
14.1
D.O.
(ng/A)
7.1, 7.4
7.6, 7.3
8.0, 7.3
8.4, 8.5
7.7, 7.4
7.8, 7.6
7.9, 7.9
8.1, 7.7
7.9, 7.7
7.7
7.7
7.8
7.8
7.8, 7.6
7.8
7.8
7.8
COND.
(ymho/cm)
70, 70
70, 70
70, 70
80, 70
70, 70
70, 70
70, 70
70, 70
70, 70
70
70
70
70
70, 70
70
70
70
pH
5.8, 6.2
6.0, 6.2
6.1, 6.2
6.1, 6.2
6.23
6.4, 6.5
6.4, 6.5
6.4, 6.5
6.5, 6.5
6.5, 6.5
6.5
6.5
6.5
6.5
6.5, 6.6
6.6
6.6
6.6
Note 1. Duplicate readings usually signify both downward and
retrieval measurements.
Note 2. C designate a composite sample 1 meter below surface and
1 meter above bottom.
Note 3. Beckman portable pH meter reading.
Note 4. Secchi depth 9.5 m.
A-125
-------
Upper Island Lake
Site/Time
UI4
1700 Hrs.
Depth
Cm)
0
1
2
3
4
5
7
7
8
9*
10
11
12
13
14
15
16
Temp.
(°C)
14.8
14.8, 14.4
14.8
14.7
14.6
14.4, 13.2
14.4
13.2
11.5
8.5
8.0, 7.1
7.0
6.5
6.3
6.2, 6.0
6.0, 6.1
6.0
D.O.
(mg/A)
6.0
6.0, 7.6
6.0
6.0
6.1
6.1, 8.6
7.8
8.4
8.5
9.5
9.7, 7.7
9.6
9.0
8.8
7.8, 4.8
5.6, 4.8
4.8
COND.
(ymho/cn)
7.0
60, 60
70
70
70
70, 60
70
60
70
60
70, 70
70
70
70
70, 80
80, 80
80
PH
6.3
6.3, 6.3
6.4
6.4
6.5
6.6
6.7, 6.2
7.2
7.3
7.2
7.1, 5.9
6.8
6.7
6.7
6.4, 5.9
6.3, 6.0
6.1
A-126
-------
APPENDIX N. TOTAL METAL CONCENTRATIONS FROM FLAT TOPS LAKES SAMPLES
COLLECTED AUGUST 1983. Aberrant data is suggested by
values In parentheses. Less than signs indicate values
below detection limits.
A-127
-------
ro
oo
Lake
Ned Wilson
Oyster Lake
Upper Island
Site
1
2
3
4
1
2
1
2
3
4
Repl 1 -
cate
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
All
<90
<90
<90
99
123
<90
<90
153
110
107
93
<90
95
113
101
<90
137
104
94
<90
124
<90
113
<90
<90
<90
<90
168
96
<90
Element
Cd
0.3
0.2
-
0.3
1.1
0.3
0.4
0.4
0.3
a2
0.3
0.3
0.3
1.3
0.2
0.2
as
-
0.4
0.3
0.5
0.2
0.2
(20)
0.2
0.2
0.2
0.4
0.3
0.3
Zn
64
39
42
44
81
52
53
78
68
44
54
45
69
105
52
50
61
(152)
38
45
62
53
54
(158)
47
51
55
65
49
49
Cu
5
12
6
8
15
11
15
13
11
5
11
9
13
20
8
13
17
(59)
15
10
16
7
7
(64)
<5
8
7
14
14
25
Cr
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
(95)
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
<50
Pb
7
5
-
5
15
6
6
8
5
4
(27)
4
11
12
6
6
8
-
4
5
7
4
4
(81)
5
5
3
9
7
6
Se
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
------- |