TEST NO. 72 - CI - 23
CARGILL CORN TRANSFER
ELEVATOR
TUSCOLA, ILLINOIS
MARCH 20-22, 1972
Test Conducted By:
Midwest Research Institute
-------
TEST MO. 72 - CI - 23
CARGILL CORN TRANSFER
ELEVATOR
TUSCQLA, ILLINOIS
MARCH 20-22, 1972
Test Conducted By:
Midwest Research Institute
-------
I. Table of Contents
Page No.
II. Introduction 2
Figure 1. Flow Diagram of Systems Sampled ......,..;. 3
III. Summary of Results 4
;-..- Table!. Summary of Emissions ;..i..... 5
IV. Location of Sampling Points 6
Figure 2. Truck Dump System 7
Figures. Truck Transfer Leg System 8
V. Process Description 9
" , . . " ' -M *
VI. Process Operation... 10-11
Table 2. Process Data - 12
VII. Sampling and Analytical Procedures 13
Appendix ' -
A. Testing Data and Sample Calculations
' B. Lab Clean Up Sheets
C. Federal Register Test Methods
- ' ; ' <
D. Lab Data ' '":
E. Test Log - . -
F. Process Data
G. Participants
-------
II. INTRODUCTION v:;<
A test of the outlet emissions of two fabric filter control systems
was made at the corn transfer facility of Cargill, Inc. in Tuscola,
Illinois, on March 20 through 24, 1972. Three test runs for particulates
were made at each control system outlet by the EPA method 5. As an
experiment these systems were also sampled with a high volume source
sampler for particulates. The truck dump control system was sampled
first and was designated as site two and the truck transfer leg control
system was sampled next and designated as site three. Site one was not
tested in this study. The emissions from these processes were controlled
with relatively new Carter Day Fabric Filters. Figure 1 shows a block
diagram of the process. This testing was performed by Midwest Research
Institute under contract to the Applied Technology Division of the
United States Environmental Protection Agency as a portion of the emission
characterization of the Grain and Feed Industry.
-------
Sample Point #2
Truck
Delivery
of .'..':
Corn
-------
III." .SUMMARY OF RESULTS V.V :;/'; ;^ ::;;:, : : ;^ ^ ; "
Tests for participates only were conducted in accordance with EPA
method 5 on the outlets of two Carter Day Fabric Filtration systems.
These systems served to control emissions from the materials transfer of
corn. The air exiting these units was observed to be clean with-no -
visible emission and -upon testing it was found that the exit concentration
did not exceed 0.005 grains per standard cubic foot. Table 1 shows the
concentration data for each system classified by filter and total sampling
train catch. The majority of the particulate found in these samples was
located in the acetone wash of the walls of the probe. This implies that
the particulate was an oily type material that attached to the probe wall.
Very little material, a maximum of 1.7 milligrams of particulate, was '
caught on the filter. ; ; '....
A high volume source sampler was also used to sample these emissions.
These samples gave emissions which were an approximate order of magnitude
lower than those of the EPA train. However, this difference is not
significant because the mass of material collected in both samplers
approached the limit of the precision with which field samples can be
analyzed. .;
High volume tests were also made on the inlet to the control equip-
ment of the truck transfer leg system. These tests while not collected
under ideal isokinetic sampling conditions do show emissions in excess
of 10 grairs per standard cubic foot.
From this limited inlet data it may be concluded that the Carter
Day fabric filters are capable of a 99.9 percent efficiency.
-------
TABLE 1. SUMMARY OF.EMISSIONS ' ?.
Cargi11, Tuscola, Illinois
Site 2 - Truck Dump System
Probe and Filter Portion Average 0.00294 gr/scf
Probe, Filter and Impinger Portion Average 0.00343 gr/scf
Site 3 - Truck Transfer Leg System
Probe and Filter Portion Average 0.00094 gr/scf
Probe, Filter and Impinger Portion Average 0.00146 gr/scf
-------
IV. LOCATION OF SAMPLING POINTS '
Two outlet points were sampled at Cargill in Tuscola, Illinois.
These were site 2, the Truck Dump System, and site 3, the Truck Transfer
Leg System. Figures 2 and 3 show schematic diagraro of these points.
Both points required the construction of stack extensions so that repre-
sentative emission-measurements could be taken.
-------
E. SL
~:y ":---, r-:
' e.Q . di 3.. .^
mini
j*ซ
a
-------
_....:. -//
.,-_ Ir-, --A
^ :>7*^T - -----^:~---:...r...
_.__. ..re&T'
L;:^.._.;_-.:..:/
_ ___
~ - -/,
L_ ' ::_:;_L:^_:/
r --.'". .--: /.
/ 'Ji /a,//
-------
V. PROCESS DESCRIPTION -"^ '',/'- ; >,:'::' -'
: The Tuscola elevator is a transfer facility where corn and soybeans
are brought from country elevators within a 15 mile radius and transferred
to rail cars for shipment. Grain was received in loads ranging from
13,000 pounds to 56,000 pounds each.'- Two receiving hoppers are enclosed
:by a common shed with bifold doors at the entrance to each receiving bay.
Only one hopper was used during the testing program. The bifold doors
were closed behind each truck before it was dumped. The grate over the
hopper is about 14 feet x 16 feet with swinging baffles underneath to
reduce the open area. Dust laden air is sucked from below the grate at
13,270 cfm and discharged through a Carter Day fabric filter. The grain
is held in the hopper and weighed before it is conveyed to the storage
tanks.- . ' ... ''"''. ... _._, ' .- ''.."
The receiving belt system aspirates dust from the point where the
hopper discharges grain onto the receiving belt and where the belt
discharges into the boot of the truck receiving leg. The dust is collected
in a Carter Day fabric filter handling about 5,000 cfm.
-------
;";-;;-.;:.,,/:' 10 - " '^''^':'
VI, PROCESS OPERATION -" - ' K-V-'"/:.
Corn was being received from nearby country elevators during this
test period. The percent foreign matter and moisture content were
recorded for each truck load received, along with the weight of that load.
Truck-Dump Pit ' ""' ' v" ,',".>-/,'-^'.;"- '' ' ' ." -/V'.''v;v-- '. - .':'-. ':;-'.:
Test -run .#2-1.. March ,20...1972 ;;:'"-> . .; -,; V; , >'.;; : : .; ; v
When this test run was started there were few trucks available for
dumping. Since it takes less than two minutes to dump a load it was
decided to allow one load to be dumped every six minutes. A five minute
sample was run at each traverse point.while one truck was dumped. There
were no visible emissions from the truck shed or the filter during the test.
Test run ง2-2. March 21, 1972 ' ', , ;v :' :
The procedures used in run #2-1 caused lengthy delays for a few
trucks. During this run it was decided to sample 10 minutes at each
traverse point and allow one or more trucks to dump during this period.
The sample train was shut off if no truck was available at the start of
the 10 minute sample period. There were no visible emissions during the
test. Chaff and beeswings that settled out around the receiving pit were
blown out of the.shed when the bifold doors were opened. Wind blowing
through the shed was very strong on the 21st and 22nd.
Test run #2-3.. March 22, 1973 . ...
The same procedures were used during this run as during run #2-2.
The number of trucks bringing grain increased, however, and it ,
-------
was not necessary to interrupt the traverse. There were no visible
emissions during this test.
Receiving Belt - Location #3
Sampling was continuous during all three testruns at location #3.
-Sampling was for 15 minutes at each-traverse point and one or more
trucks were dumped during this period. "There.were no visible emissions
from the filter during the tests. . :
Conclusions .
, Some fugitive dust did escape the truck receiving area although
the concentration was not great enough to constitute a visible emission.
Some of this fugitive dust could be eliminated by hanging a piece of
canvas from the top of the shed exit down to the truck height which
would further reduce the open area. The bifold doors at the entrance
are opened immediately after the truck has been dumped. This is
unnecessary since the hopper must be emptied before the next truck is
dumped. Keeping the doors shut for another one or two minutes would
allow more of the dust to settle.
-------
12
TABLE 2. PROCESS DATA
Test -Run -Number
Material
Average Average
FM Moisture
Truck Dump
2-1 corn
2-2 corn
2-3 corn
Truck Transfer
Leg
3-1 corn
3-2 corn
3-3 corn
14.
14.
14.
14.
13.
14.
'-"'- --.
5%
5% ;'..
6% ::
5%. ;
9% . :
5%
1.4%
1.4%
1.8%
-...-.
: 1.6%
2.0%
. 1.3% .
Process Weight
753,380 Ib.
1,026,320 Ib..
1,136,110 Ib.
1,443,130 Ib.
1,740,610 Ib.
2,036,050 Ib.
-------
-;; - --v: :~:."... . .:;-;: .--,;.': - is - * * *; -
VII. SAMPLING AND ANALYTICAL PROCEDURES
The sampling procedures for the contractor supplied testing were
in accordance with the guidelines given by the United States Environmental
Protection Agency in the Federal Register for methods 1 and 5. Tests
for particulate were also made with a special design high volume source
--sampler. This device sampled the gas at approximately 20 CFM. This
sampler was used because it is simpler to operate and for the dry
particulate which is emitted from these processes the high volume sampler
should give as accurate results as the EPA sampler. ;x, . , " ;.
-------
APPENDICES
-------
APPENDIX A
Testing Data and Sample Calculations
-------
N'AMc "
ON
TT
pr,
PM
VM
TN-
VMSTD
V1-.'
V'/.'V -
PMOS
MD
'PC02-
P02
CO
o \ i -ป
H jM *
I 'i V; Q
y.w
x* -s
cp
DPS
TS
Nr
PST
PS
V S " ~~-~-
AS
QS
OA
PERI
q
J..-IJT.-
MT
*V
CA>J
CAO
CAT
CAU ~ '
/
C A X.
I'JWTP
-NTT
""DESCRIPTION""" -;-.
OATE OF RUN
PROBE TIP DIAMETER '
NET TL-1E OF RUM
3 ;; R 0 r1 E T~R I C" P R i.:. S S U R ฃ ' " ' ~ ~~ ~
AVG ORIFICE PRES DROP
VOL ORY GAS-METER CONO :
AVG-GA3-; METER ' TEMP ~
VOL ORY GAS-STD COND.
TOTAL --ZQ COLLECTED
1 VOL' H20 VA;JOR-STD COMD '
PERCENT MOISTURE BY VOL
MOLE FRACTION DRY GAS
-PERCENT-COS- BY VOL* DRY '
PERCENT 0.2 8Y VOL? DRY
CONC 0" CO 9 ORy
. r~ - n " \ i -r4 v i ,^ ป \y 1 * r\ i ' i~\ .** \f
i"** it. IX tv t~. :\ I t 'J ^ O T V 0 L- 9 iv X Y
MOLECULAR WT-DRY STK GAS
MOLECULAR WT-STK GAS
-* i -i *~ /-, "~ " V /-ป T -*!ป*
PIT 01 TJi.!u wOc-l" r 1 Cl wiv'T :~"
AVG "STK VELOCITY HEAD'
AVG STACK TEMPERATURE
N' ^- "V ~> * * J l~\ t T *. *ป f '^ / \ '/* t. i T <**
. ;c I "bAMPL'INb' POINTS"" "'
STATIC PRES OF STACK
STACK PRESSURE, ABSOLUTE
AVo. STACK -GAS- VELOCITY;
STACK AREA
STK FLOV/RATE? OKY-,STO CN
ACTUAL STACK FLOi'/RATE "~"
PERCENT ISOKINE.TIC
'AMISO CORRECTION FACTOR.
PARTIC'JL^TE WT-PAFJTIAL" -
PARTICJL^TE WT-TOTAL
PERC I'iPlNGER'CATCH
'pAKTi -i.OAD-PTL.STO- CM -
PART. LGAO-TTLปSTO-CN
PART. LOAO-PTL,STK CN
PAftTi---LOfiO-TTLปSTK "CM '
PART 1C EHIS-PARTIAL '
PARTIC EMIS-TOTAL-
La/ 1000 TONS CORN, PTL *"""
LB/1000 TONS CORN, TL .
-UNITS
IN
M I N
IN.HG
IN.H20
'OCF
- DEG.F--'
DSCF
ML-
-- -SCF; '
, PPM '
~ - - -----
IN.H20
DEG.F;
IN.HG
INoHG
- FPM
IN2
OSCFM
ACF-M
MG ;
MG .
GR/OSCF-
GR/OSCF
GR/ACF .
GR/ACF '
LB/HR
L3/HR
*-' -
.
1: 2-1
3-20-72
.250
9 n . o
29.40'
6ol2B
119.39'
- 84 o 9
115.34
3.2
-- "- .15-
c 1
.999
0'
.
'21.0
. 0 .
""* d f\
~ " ( v * U
28.84
28,83
- '.830
1.431
66.1
7 O
i o
o06
29ป 46
4002
.485
13357
-- 13486
93.9
loOOO
-.- 41*ov'
41.5
'"0,5
' 0.0054S
: 0,00552
.0.00535
' 0.00545
0.628
0.628
-5.00 X 1.71
2-3
3-22-72
.250
160.0
' 29.08'
6.333
233.55
: 62. 1
239.10
0.0
o.oo
0.0
.1.000
o.o
21.0
0. '
79.0
,2B084
' 2B.84
-'-:-'. ,3"30
1.50.0
"40.0
--- ia
ซ06
29.14
/ A A O
*+ U U *
' 485
.13944
13512-
'.92.7
1.000
22,6
33,5
32.5
0.00146
0.00216
0.00150
0.00222
.0.167
0.251
Qv827-~,
~V;-24- /
3-1
3-22-72
.250
iao.o
-. - -29.08
5.608
220.56
71.3
216.33
1.6
-- .08-
.0
1.000
0.0
21.0
''..- 0 ซ..;
--79.0-
28,84
23i'84
' .830
1.979:
45.0
12
.02
29,10
4635
202
6620
64H9
73.7'
1.000.
" ' ; 20,4:
30.2.
32.5'
0.00144
0.00214
0.00147
0.00219
0.0794
0.119
?? 0-.-72-1- r-
,31 -i-,08- .ft
3-2
3-23-72
.250
180.0
29.35
7.233
251.20
77.9
.247.13
0.0
-. o.oo
0 e 0
1.000
G c 0
21.0
>.::'' o.
70 A
( 7 0 U
: 28084
, :>; 28*84:
.,.,.:.., 0830
':' 1.975
51. tj
..:..-.:.: !2
.02
" 29ซ37
- . 4638'
"." ':. 202
..'. "'; 6599
- : 64^3
83. -9
i.o od
'.- ;-'' 17.4
27.2
36,0
0.00108
0.00169
0.00110
0.00172
0.0594
0.0924
5^ 0.204 :
tf : 0.318 ...
3-3
\
.250
130.0
--' '29,50
"''7.400
.'248.73.
64.3
252.41
2.0
" .09
.:' .0'
. i.ooo
0.0
21.0,
' .0. ':
*- 79.0
-'. : .28.84
;: ''':" -: 28.84
'; . :. - .330^:
-. 1.950
'40.0
-: -, 1 2
';': '-./.. 02
29.52 .
. :.. .4549 .
;, ..,,;', 202
6657
-./ .6369
.'."" 35,0
Uooo
. 5eO
: 9^3
16.0
0.000305
-. 0.000567
: 0.000318
' O.G00592
0.0133
,0.0266
0.039
0,078
-------
PARTICIPATE DATA AND CALCULATED VALUES
RUM-
2-1
DfTE- 3-2C-72
ATMOS
T c. ivi P
(DG.F) (
<0ซ0
,PORT~
x POINT
<
1 1
_ -^ ฃ__.
1 3
1 4
ป "
1 *'
1 6
2 1
2 -2 -
2 3
2 4
2 --5
2 6
3 1
_ ^ r,
3 3
3 4
---3 5
ta*> T)
ATMOS STACK
PRfiS VAC--
I.HG)
29 . 4 r
S&MP
TIME
MlM}-
5.0U
5 . 0 0 '
5.00
5.00
-5-.-00-
5,00
5,00
5*00-
5.00
5,00
5 . C 0 -
5,00
5.00
5.00-
5,00
5.00
5-.-00-
5,00
(I.H20:
) --.-65-
METER
VOL
(flCFy-
373.99
36 0.31
386.92
393.55
-- 4 00 24
406.95
413.10
-419,54
426.10
432.88
439.0V'
446.73
453. y6
45^.74
466.65
473.68
4^o.b3
487.47
H2Q
-"COND
) -,(ML)
DELTA
P
U;-H 2:0 )~~{
1.150
- 1.300
1.450
1.450
-- 1.45Q
1.450
1*200
1*300
1.400
1.500
- 1ซ 55 o
l.bSo
1.2.50
- 1.450
1.55o
1.5'oo
1,609 -
1 ป o 0 0
PARTIC
vJT-PTL
(MG)
--- i.oo
DELTA
H
I.H20) -
5.000
5 . 7 0 0
6.200
6.20.0
6.200
6.200
5.200
5.700
6.000
6 .400
6.600
6.6QO
5.400
6.300
6.600
6.600
-6.7QO
6.700
PARTIC STACK
WT-TTL AREA
(MG)
TEMP
"IN
(D.F)
80.0
88,0
95.0
98.Q
102.0
102.0
86.0
97e 0
100.0
102.0
.10.2
102.0
93.Q
100.0
103*0
104.0
104.0
102.0
1.00
TEMP
OUT
-;(D.F)
70.0
72.0
72.0
72.0
76.0
77.0
76,0
77,0
78.0
BO.O
8o.O
BO.O
7B.Q
79 oO
80.0
80.0
- BO.O
80.0
(FT2)
3.37
TRAIN
VAC
:.(I.HG
16.0
17.0
18.0
18.0
18.0
17.5
13*0
15.0
16.0
18.0
18.5
18.5
14.0
16.5
18*5
18.5
- 18,5
18.5
INIT
VOL
(DCF)
-366.08
STACK
TEMP
) (D.F)
70.0
:- 65.0
6()cO
60.0
60.0
60.0
65.0
70.0
.. 70.0
70.0
- 60. 0
70*0
65<> 0
70.0
70*0
65.0
70.0
70.0
PERC P
02
DRY
21.0 -
TEMP
(O.F)
75.0
75.0
75.0
75.0
80.0
60.0
70.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
So.O
8 0 . 0 :
80.0
ERC PERC PITOT
C02 CO TUBE :-.' -
DRY
0.0
PROBE
T'DIA
(IN)
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
-.25u
.250
DRY COEF
0 oou * r " '""."" ?
- , '.'-.''.,- ' :
'' VEL- ' ./' '';: .. . ';...
; ;'. - ,.. '- ":... . :
3977.6 .-; ..--.-. ' , ' :;".-
4117.4
4145.8 ' -.:. r- -.-- - - :-.
4105.5 . .. ::
3740.9
4048.2
4185.5 . > -,
4165.7 ;,
4252.5. - y.- .'--. ---,
4252.5
-------
PARTICIPATE DATA AND CALCULATED VALUES
RUM- ,\2-2:__ DATE- 3-21-73
ATMOS ATMQS STACK H20 PARTIC PARTIC STACK INIT PERC PERC PERC PITQT
-TEMP PRES- VAC COND - "WT-PTL- ' WT-TTU AREA VOL 02 C02 CO TU3E
(DG.F) (I.HG) (I.H20) (ML) (MG) (MG) (DCF) DRY DRY DRY COEF
-60T1} 29.-OtJ -vSC24;6 1.00~~ "1.00" -3.37 "4-87.58 21.0 0.0 0.0 .830
PORT- SAMP
POINT TIME
tPITNT"
METER DELTA DELTA
VOL P' H
-(DCF) -(T.H20)-(1.H20)
3 1
-32-
3 3
3 4
~3
3
2
-5-
6
1
-22-
2 3
2 4
2 5"
2 6
1
T
1
1
1
-2-
3
4
10.00
lo.oo-
10.00
10 0 0"
10 i'O IT
10.00
10.00
lOiOO'
10.00
10.00
lovoo-
10.00
10.00
roToo-
10.00
10.00
51U7&-
524.12
536.54
-54-ei:93
561.45
573.86
' 5 86.41 :
599.96
611.35
-6 23 v 85
636. 2<+
648.79
673.73
1.250
1.450
1,550
1.550
.7QO
.660
1 0 0
.300'
.350
.55Q
.600
.45Q
.15Q
.250
1.450
1.450
5.000
5.600
5.500
5.400
5.400
5.400
-5.400 .
5..4QO
5.400
1 & 10.00 711.32 1.450
5,400
5.400
5.400
5.400
5.400
5.400
5.400
TEMP
IN
(D.F)
.82.0
76,o
77o'o
75.0
84,0
85ซ0
76.0
6200
72.0
86.0
86.0
78.0
62.0
"86 ."0
88,0
TEMP TRAIN STACK SOX PROBE
OUT VAC TEMP TEMฐ T DlA
(D.F)- (I.HG) (O.F) (D.F) (IN)
80.0
- 60.0
60.0
62,0
-64.0
64,0
64.0
"65.0
65.0
62.0
62.0-
60.0
64ซ0
- 66,0
65.0
66.0
-66iO
67.0
16.5
19.5
19.5
19.5
-19.5
19.5
19.5
- 19.5
19.0
19.0
19.0'
19*0
19.0
19.0
19.0
19.0.
19.0-
19.0
50.0
50.0
50.0
55.0
60-0
60.0
6oซ0
55.Q
55.0
55.0
55.0
50.0
55.0
55.0
60.0
60.0
60.0
55.0
55.0
60.0
65.0
65.0
60.0
60.0
65.0
65.0
65.0
65.0
70.0
65.0
65.0
65.:0
65.0
65.0
65.0
65.0
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
VEL
(FPM)
3716.4
4002.7
4138.4
4158.6
4376.3
431l.S
3520.3
38Q6.5
3681.1
4158.6
4225.2
4002.7
3582.1
3734.6
4041.7
4041.7
4041.7
4022.3
-------
PARTICULATE DATA AND CALCULATED VALUES
.' "" '= !: : ':' '"'" RUM- 2-3. DATE--
\
ATMOS ATMOS STACK
TE
(DG
f rt
6Q
Mr. rKto
.F) (I.HG)
-,-t) 29vO-e
PORT- SAMP
POINT TIME
1
1
1
1
1
JL
1
2
2
2
2
..
2
3
3
3
3
3
1 10.00
2 10.00"
3 10.00
4 10,00
H20
VMU LU^U
;(I.H20) (ML)
> ** / b
METER
VOL
(OCF) (I
723.04
7 -^ rr ' *-,
Yjb.s*::- -
743.49
761.87
5 lO.OO " f r j ป 'T vi
6 10.00 788.97
1 10.00 300*30
7 1 in "; * """ "' ^
3 10.00
4 10.00
b 1 U .00
6 10.00
1 10*00
~ 2~10ป 00
3 10.00
4 10.00
y~~ 1 0.00"
6 10.00
o icป t ->
825.97
839,78
8rv -j -7-7
2 3 ซ 77 "
867.84
379.84
Ci Q O O ^3
by Je cc -
907.30
921.54
^ 'J C ' C. -b
- "93b. b3
950.14
u. u
DELTA
P :
vH20) -
1.35o
1.4QO
i.Soo
1.550-
1.3QO
1.600
1.650-
1.650
1.200
1.7 no
1.750
1.650
3-22-72
PARTIC PARTIC STACK
WTP l L- WI-TTLr
(MG) '(MG)'
i UU
DELTA
H
(I .H20)
4.900
5, 7 00
6,000
6.400
---6.500
6.4QO
4.5QO
5ฃ* r\ -\
. t>00
6.200
7.000
7.000
5.100
- 6.500
7.400
7.300
7.300
7.300
TEMP
IN
-(D.F)
50.0
72.0
80.0
84,0
60.0
83.0
66ปo
75 n
( ฃt> 0
74.0
70,0
- 76.0
84.0
669 o
-74.0
66.0
80.0
-82.0
83.0
I. UU
TEMP
. OUT
(D.F)
38.0
-42.0
46,0
50.0
-52.0
54,0
50.0
50.0
50.0
46.0
-48,0
52.0
50.0
-50.0
50.0
52.0
54.0
MKC.H
(FT2)
3 "57 ...
. J f
TRAIN
VAC
11.0
13.0
14.0
15.0
15.0-
15.0
10. 0
10 P
1 c . 0
15.0
17.0
17.0 -
17.0
11.0
-15.0
18.0
18.0
-is.'o-
18.0
INIT
1 W r\i
VOL "
(DCF)
711*59--
STACK
TEMP
- '_ป \
(r rMi ;
3520.4 i
3B14. 3 - .-.-:: .-..-,-y.
3884. 3C;T-, ':i::;-':::^;: / V-. '
4020.6.; -: .; ;/
4020.6 ;/; .':: ; :;, .. v
3363.9 / . : >.-'
3743.oV:.Vi-v-:-:::-r-i- -' "
3953.0 -.V :;.:;: \- -'.'^ , ,--,
4 152. 5 :". ..-,- .:'; :-.
A pi A Q ._-.-. : I:_L-.,_ .
4216.9 . - :-' ' '
3596.1 .': :
4087.1 -.-wi.i :. :'.,.;-,
4280.3:.:.. :: -- ,.'. ':-
4342.8 :
4404.4 - ---.-' ----
4465.1, ':v.-.. : ...' :
-------
PARTICIPATE DATA AND CALCULATED VALUES ; ..
. RUN- J3-l____ DATE_3-22-72 ______
ATMOS ATMOS STACK H20 PARTIC PARTIC STACK INIT PERC PERC PERC PlTOT
--TEMP PRES VSC' " -COND - WT-PTL "WT-TTLr ""AREA -'VOL' - 02 ~; C02 CO' TUBE
(DG.F) (I.HG) (I.H20) (ML) (MG) (MG) (FT2) (DCF) DRY DRY DRY COEF
- 5OvO- 29 70 S --.-2 S~lli 6" 1 ~i 0 0 ~1 .'0 Q~l .40 916 -. 8 2 21. 0 0 0 0.0 .830
PORT-. SAMP
POINT TIME
1
i
2
METER DELTA
VOL ' P
-CDCFr-(T.H20)
1 15.00
2 "15.00"
3 15.00
4 15.00
5-lST
6 15.00
1 15.00
-2 2-lSvOO-
2 3 15,00
2 4 la.00
-2S-15ru0-
2 6 15.00
933.
-953.
97l,
99Q,
85
.15
.76
ป30
.'"0 0"
.77
,95
1063.0^
1031.43
1100.03
1137.38
1027
1.700
1.
2,
C. e
1.
1.'
lc
1.'
950
150
050"
9qo
650
700
800
2.250
2
-------
PARTICIPATE DATA AND CALCULATED VALUES
ATMOS
-TEMP
RUM-
3-2
STACK H20
VftC CONO
DATE- 3-23-72
(DG.F) (I.HG) ,; (I.H20) (ML)
-5'QT-Q291-35- -v28 o 0
PART ic
1VT-PTL:-
( MG )
PARTIC
--' Wf-TTL"
' ' (MG) '
STACK
' A*EA
(FT2)
I NIT
VOL -
(DCF)
PERC
02
DRY
PERC
C02.
DRY
PERC
CO
DRY
PITOT
TUBE .- -
COEF
- "I.-00"" 1.00 - Ii4() - 137.68 21.0 0.0 0.0
830
PORT- SAMP
POINT TIME.
2 1.15.
2 lb.
2 3 15.
2 4 15.
s lb .
2 6 ID.
1 1 15.
C. 13.
1 3 15.
1 4 15.
1 6 15.
M;
00
00
00
00
METER DELTA
VOL P'
(DCF) :('I-.'H20) (
155.53 1.400
196.95
218.22
*"ป -1 >. ~7 rt
00' c 3 v . / u
00 26]. .20 '
00 261.56
00 303.00 ---
00 324.33
00 345.8?
00 367*39
00 383.83
1.900
2*150
ซ4bO
1,950
l*9So
1.95Q
2.000
2*000
1.850
DELTA
H
I.H20):-
5,800
-7.000 -
7.300
7.300
7.400
7.400
7.4QO-
7.400
7.400
7.400-
7.600
'TEMP.
IN
(D.F)-
52,0
92.0
98,0
104.0
106.0
76.0
90.0
98.Q
102.0
104*0-
102.0
TEMP 1
OUT
(D.F) ~-(
40.0
C 'D n
ode 0~-
62.0
68.0
T3 A
1 d . 0
74.0
48.0
- 54 ป0
62.0
66.0
i 0 . 0"
70.0
FRAIN
VAC
13.0
is.'o
18.0
18.0
-18*0
18.0
16.0
18.0
18.0
18.0
18. 0-
18.0
STACK
TEMP
(D.r )
50.0
D0ซ 0
55.0
60.0
D 0 . 0
65.0
50.0
- 50.0
50.0
.50.0
40*0.
40.0
BOX
TEMP
-(.D.F)"-
55.0
6o.O
60,0
60.0
-60.0 :
60.0
55.0
55.0
55.0
60.0
55.0 -
55.0
PROBE
T DIA
(IN)
.250
.250
.250
.250
.250
.250
.2.50
.250
.250
.250
.250
.250
VEL
3907.2
4241.7
4574.0
4889.2
.5244*2.
4611.2
4611.2
4611.2
4670.0
4447 . 2
-------
P.ARTICULATE DATA AND CALCULATED VALUES
A.TMOS
TEMP
S 6
W 1
*/ 2
. 'ซ 3
W 4
W 5
W 6
SAMP
TIME
15,00
"15.00
15.00
15.00
- 1 5 - o 0
15.00
15.00
"15.00"
15.00
15.00
-15. "00"
15.00
METER
VOL
(DCF)
413,29
433.63
454.22
474.85
495.67
516.66
537.42
-558,26
579,20
600.09
-621.14
642.23
RUM- 3-3
HHO
COND--
) (ML)
2 0
DELTA
p
(I.H20)-
1-.75Q
-1.900
1.950
1.950
2ซ000
1.850
-1.800
1.650
2,350
PART ic
-WT-PTL-:
(MG)
1.00
DELTA
H
(KH20r <
7.400
( ,400
7,400
7,400
7.400""
7.400
7.400
7,400
7,400
7.400
-- 7,400 """
7,400
DATE-
PAP
--WT-
(M
1
TEMP
IN
52ป0
70.0
73.0
80.0
90-0
72.0
84.0-
86.0-
86,0
90.:0
TIC
TTL-
G>
0 0
TEMP
OUT
(D.F)
30.0
36.0
44,0
46.0
48,0
52*0
48,0
50.0
54.0
52.0
54.0
55.0
3-24-72
STACK
(FT2)
1.40 .
TRAIN
'VAC
-(I.HGy
18.5
18.5.
18.5
--18.5--
18,5
18.0
- 18.0
18.0
18.0
18.0 -
is.'o
INIT
^VOL:
(DCF)
393.50
STACK
TEMP
"(D.F)
35.0
-35.0
40". 0
40.0
"40.0
40.0
40.0
40.0
40.0
40.0
45. 0
45.0
PERC F
02
DRY
21.0
BOX
TEMP
(D.F) -
50.0
50.0
50.0
50.0
50.0 ~
50. 0
50.0
-50.0
50.0
50.0
50.0"
50.0
'ERC PERC PITOT
C02 CO TUBE
DRY DRY COEF
0.0 0.0 .830
PROBE
T DIA
(IN)
.250
-.250
.250
,250
" .250
.250
,250
.250
.250
.250
.250
- - .
VEL
(FPM) ': " ' " ::
4292.9 . :.,| :' .";' ' ...
4S54U . : .
46 1 2 . 4
4435.1 - ,- / .
4189.4 ~"r-[
4375. 7 ;':"-' '-- - --
4436.1
4732.3 ; :
4bol,7
5024.7
-------
EXAMPLE PARTICULATE CALCULATIONS
1. VOLUME OF CKY GAS SAMPLED AT STANDARD CONDITIONS
17.71*VM*(P3 + PM/13.6)
._._ -VMSTO___.. . _
TM+460.
r7v7T*n9.39* (29.40+ 6. 128/13. 6)
= _ -. 115.84 DSCF
84.9+460,
2. VOLUME OF WATER VAPOR^AT STANDARD CONDITIONS
VWV = 0.0474"VW = 0.0474* 3.2 = .15 SCF
3. PERCENT MOISTURE IN STACK GAS . __
100.*VWV 100.* ,15
PT'tOS -' --------------=----- - =: , i PERCENT
VrtSTO+VWV 115.84+ ,15
4. MOLE FRACTION OF DRY STACK GAS
IOO.-PMOS loo.- .1
y,D = * = .999
~ ^nroT ~ 10 cr i-~~~
"57KVER-AGE-WOtectJImR-'rfEl'GHT OF^ORY' STACK'"GAS- " - ~
MWD = (PC02 * 44/100} + (P02 * 32/100)
: 7+"TPM2+"PCO~ป~28/100) "
= ( 0.0 * 44/100) + (21.0 * 32/100)
. _FT?9vl}._%- 2B7100)
= 28.64
6. MOLECULAR WEIGHT OF STACK GAS
M'4 = MWD*MD + 18*(1-MD)
^_ 23. bo .9'99"~+""r3* CT- .999) ' =. 28.63" "
-------
7. STACK GAS VELOCITY AT.STACK CONDITIONS
VS = 4360* SQRT 1 +46t) " " ""
. '"''. = 13357 DSCFM
9. STACK GAS VOLUMETRIC FLOW-.AT STACK CONDITIONS
QS *. (TS + 460)
QA = .'
_ . . . J.^^-J-^.^pg-.^^ ^Q : _._-
13357*< 66,1+460) ,
,l_ _ _^.-.i.-^^-*---*..--*.-- -~~s:"13486-ACFM
17.71*29.46*'.999
10. PERCENT ISOKINETIC AMD ANlSO CORRECTION FACTOR
1032*(TS+460)*VMSTD
PERI = - --"
: " VS*TT*PS*MO*
-------
ii. PARTICIPATE LOADING PROBE, CYCLONE, AND FILTER
__ __ (Ar"STANQARP CONDITIONS)' " "
=----/}-Q154-ซ (MF/VMSTD) ป: B " :~:~ ;"" ---=
= 0.0154*< l.OO/ 115.84)*!.000 = .00014 GR/DSCF
o O tT7#
12. PARTICIPATE LOADING TOTAL
_.. . fAT~STANDARD' CONDITIONS)
l.OO/ 115.84)^1.000 = .00014 GR/DSCF
13. PARTICULATE: LOADING PROBF., CYCLONE, AMD FILTER
ONS j ---------- - -- -------------
CA'T =" ----- ---- ;--
' TS+460
rO'0'0 1*29 . 46-ป'". 9997
.00013 GR/ACF
______ 1.
14. PARTICULATE LOADING TOTAL
_ -tAT"ST:ACK -COND IT IONS')'
_ I7T7T* C"A 0 * P S*
CAU = ----------
TS-t-460'
17.71* .0001*29.46* .999
... = .00013 GR/ACF
~~ '" 66ซ1 +460'~~ ""' '. n~
-------
15. PARTICIPATE EMISSION RATE
NE, "AND FILTER
-= 0TOOBS7*CAN*QS " " "~ ' """ " ""
= 0.00857*- .0001* 13357 = . .02 LB/HR
: " / v-. ci IA.V-.. , P-?6
/ '- ^
16. PARTICJLATE EMISSION RATE "
: 'TOTAL " "" "
3
= 0.00857* .0001* 13357 a- .02 LB/HR
17. PERCENT EXCESS AIR AT SAMPLING POINT
100. * (P02-0.5*PCO)
. o.264*PN2-P02+0.5#PCO'
wtx_Hl.tg 1-rO-0r5-ป-0-i 0) r
= . . ; = -14583.3 PERCENT
0.264*79.0-21.0+0.5* 0.0
-------
- APPENDIX B
Lab Clean Up Sheets
-------
C-ftป/ni IT IP CH*'<'/ApV C'f~fI" C
SAr'PLlI/o bUi'i.-i.'.lvi or.LLl b
S.
PLANT
LOCATION
SAMPLED SOURCE_
Train Data
i
Run
No. ! Date
^ 1
a.--X
^-^
3-30-'%.
3-21-91
Nozzle
dia.
in.
'/v
'/y
?vซ'92] '/V
!
Net
time
mi n .
7ฐ
/?o
/go
Bar.
pres.
"Hq..
29, V*
?3.i>o-
-tf.D?
Orifice j Volume sampled
diff.AM
"H?0
^ ^ . o
^57y
X-^ X~> yj
meter cond.
cu. ft.
//?.3?
2^3-^y
2.3ฃ\ 5T"
Meter j Volume sampic
temp.
Op
^ ^c
/P- ^^
^ 7tD
standard ccr.a
cu. ft.
Moisture and Gas Data
Run
No.
2.-J
2-2.
2-3
Total
moisture
ml.
3. a
^ y. ^
o -
Moisture
std. cond.
cu. ft.
5$ Moisture
by volume
Mole
fraction
dry gas
Molecular
v/t. of dry
stack gas
Molecular
wt. of inoist
stack qas
Stack Data
Run
No.
X-/
3-- 2
^--3
Stack
area
in2
v^9^"
V^
y^""
Velocity
..head
"H2'0
^ /. y
^ /, y
^ /. y
Static
press.
"Hg. '
-f-O.$5~"d*.Q
'+ ฃ>. &G "/4-t>
+ D.-?5~"'/*J5
Stack
press.
"Hg. Abs.
Stack
temp .
Op
/$ 'xj-? jb /"e- -? 7^-
-X ^ ฃ, */=-
^66
^ S~&
)lGJ.9_ci!-.>-/._^ri_c'S^-] Clil'"'liP1) Data
Run
Averaqo
No. x/ Velocity x temperature ฐIl
Stack
velocity fpm
stack cond.
Stack
gas volume
scfrn.
Percent -
isokinetic
-------
,ปL/;,\I
ฃ1x7/g 6 /
LOCATION
Run
! Bar.
cJla.
in.
j Orifico i .Volu;;vs sa;r.pu.'d~i i-leicr .) Volume ฃ=;:.:.
pres. 'diff.Aii { meter ccnci:. I tcv.p. j stanciarci c
";!g. ! "H?p |
cu. ft.
ฐF
- 7
cu.
-J _
3-
O 1 ^ a^- -r?.2
*C_ i i " ' *
ITkT^zr
> |^ -^ /- VX
J i ..
. i
li~\
/v
/ 2> LJ \ A7- "3 ^
j ^-^/r ^&\ !
/fo U.5-o! i ^H5, ^7.3 | !
j
j 1
i 1 !
Moisturo find Gr;;: Hata
Run-
r;o.
3 -/.
3 ~ 2..
3-3
Total
moisture
rr,l .
-f /,d
-^ -*
4-^.5
Moisture
std. cond. ;
cu. ft.
% Moisture
by volume
. Mol e
fraction
dry. oas
Molecular
v.'t. of dry
stack CUTS
.
^ i
< :u ; e^u ; i.r
.V,'!:. CV :;.OVit .
stack ";?.?
Stack D;vu
Run
Mo.
* .. y
? ")
7, - n-,
"r.l.T--
i- t. i Uw
.,
uUM
i.i,.
;\0 .
) _ /
3 - ^
_-^'' _,.*
S "C c( C :\
CA 4 L- C*
^^,0
2-0
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. PRELIMINARY CALCUIATIONS
EMISSION TEST
Sample Date .S-
Duct Identification^'/^- Z.. _
Project KoJ^y^^^ TEST N0.(
Recorded "by
Assisted "by
A. Sketch of Duct or Stack Cross-Section (Also, Sketch of Extensions-) ^/'T^ET 2-
Number "Diameters"
)"% ฃ #5 ;/% l&/ tf'i. 1. Downstream . ฃlฃ.
2. Upstream
(See Test
B. Rectangular
1. Number of Sampling Points
Cross-sectional area
(ft2)
< 2
2-L2
> 2
Number of
test points
4
6-24
> 24
Comments:
Each equal area should
be s 0.5 ft2, and
approximately square in
shape.
2. Location of Sampling Points
C.
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and shape requirement, (if possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
Circular
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
Number of Areas
2
3
4
5
6 or more
-------
PRELIMINARY CALCULATIONS
EMISSION TEST
Project 3
Test Team
STJfy to /**
/e,c.7--fi
1 Sample Date
ฃ-ซ" Test No. 2
-3 --^o ~->^
2. Location of Sample Points
Percent of Diameter from Inside Wall to Traverse Point
Point
Number
1
2
3
; 4
5
6
7
8
9
10
11
12
Number
2 3
6.7 4.4
25.0 14.7
75.0 29.5
93.3 70.5
85.3
95.6
of Areas
4
3.3
10.5
19.4
32.3
67.7
80.6
89.5
96.7,
5
2.5
8.2
14.6
22.6
34.2
65.8
77.4
85.4
.91.8
. 97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
USE
ftj in.
Number the points proceeding "from" the port.
(See Test )
D.
Barometric Pressure
Temperature = 70ฐF
Altitude
in Feet
0
500
1000
1500
2000
2500
Relative
Density
1.00
6.981
0.964
0.947
0.930
0.913
Barometric
Pressure
29.92
29.38
28.85
28.33
27.82
27.31
Altitude
in Feet
3000
3500
4000
4500
5000
5500
Relative
Density
0.896
0.880
0.864
0.848
0.832
0.816
Barometric
Pressure
26.81
26.32
25.84
25.36
24.89
24.43
Calculations:
(See Test
-------
PRELIMINARY DATA
. EMISSION TEST
</-? ICL.LJI i *-*or~
Pro.lect 3~ฃ J ' *- ' Sample Date
Test Team g-O" a p. v^ Test Ho. ^- - /
A. Moisture Content
1. Vet/Dry Bulb Method
= ฐF, Ts (vet) = EF
Moisture content = _____ _ jo by volume
2. Condenser Method .
ym = x/7.39 cu. ft. T = -^90 ฐF V = ~$ ' 2- ml.
= .p.(atmo) -= >L9.. V .In. of ,
Moisture content = ~P~V = ฎ' ^^^j j> by vol.
^urm
1 + 375 -7
(See Test ) /
B. Velocity Profile (Ap = velocity pressure, in. EpO)
Measuring instrument (convert to s-shaped)
Ap: max. = _ , min. = __ _ , avg. =
See Test
C. Temperature Profile (Ts)
Measuring instilment
_ _
TS(ฐF): max. - _ , min. = __ _ _, avg.
See Test .
D. Nomograph Settings
' of H2ฐ^ Tm =
H20" = /-^ _ , Ps/Pm = _ // O
C = _ /, g 5" _ , Ap = values from G above
'
T = ^o _ ฐP, D * ? _ in.
S ซ.r_._ -- -. - ---- --. ' ----- _- - U -----
,,.^^^..^^,^
-------
PRELIMINARY DATA
MISSION TEST
Project 3-
Test Team
Sample Date
72- tr Test No.
E. Orsat Data
1. Field Run: CO
2. Lab Run: CO
, C02 _
(lab calculations using bulbs)
-ป ฐ2
-> ฐ2 -
"F. "
Measuring inst:
Inches HpO L
rument V />'>ฃ/ /^^>A^ 3 " ^
^,ฃr^ r^.^r- ( )
(See Test )
G. Probe Tip Diameter
Inches.
H. Define Sample Train
1. Impingers
No. 1
No. 2
No. 3
No. 4
Normal
Initial
Final
ISO-mi.
Dry
Silica Gel
Difference
}.OO
/ "~
V /"7 2.
^
>k 6 4 . 6
- 2.^.'
jO a i ^
_)
-------
/
Mr* SAMPLE DATA
T EMISSION TEST
Project &*>'
Test Team #-
'zt* '.*-*-- Sample Data 3 ^-<^ - 7 T-.
ซ->- /?/= Test NO. ^L- / 72 <- 7^
Point
No.
RAG
Filter
No.
ample
Time
Min.
Start
Time
Pitot
in.
Probe
in.H20
Vacuum
in. Hg
Meter
ft3
Meter
Temp. ฐF
Left
Right
Stack
Temp.
F
S. Gel
Temp.
ฐF
Probe
Temp.
/r?
>*}ซ
1
D'7)
3
92,
A
(oO
9o
r.o
>jo
-70
99
07
-70
3
L .
H*
V
-
70
6,. 6.0
0
//
/,
?o
5"
'66.^^/63
y
V73.4.T
/.bo
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. PRELIMINARY CALCULATIONS
EMISSION TEST
Sample Date 3-3-1-7 2. Project
Duct Identification T-^^<-/- ^->~
Project Nc
TEST NO. I
Recorded by
Assisted by
A. Sketch of Duct or Stack Cross-Section (Also., Sketch of Extensions)
Number "Diameters"
(^*
1. Downstream. ^ '
. " ' . ' 2. Upstream 2
(See Test
B. Rectangular
1. Number of Sampling Points
Cross-sectional area
(ft2)
< 2
2-12
> 2
C.
Number of
test points
4
6-24
> 24
Comments: Each equal area should
be ฃ 0.5 ft2, and
approximately square in
shape.
2. Location of Sampling Points
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and shape requirement. (If possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
Circular
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
Number of Areas
2
5
4
5
6 or more
-------
PRELIMINARY CALCULATIONS
EMISSION TEST
Project
Test Team
Sample Date "5 - 2. j - n o_
. Test No. 2. - 2-
2. location of Sample Points
Percent of Diameter from Inside Wall to Traverse Point
Point
Number 2
1 6.7
2 25.0
3 75.0
-,4 .33.3
5
6
7
8
9
10
11
12
Number
3
4.4
14.7
29.5
,70 .5
85.3
95.6
of Areas
4
3.3
10.5
19.4
.32.3
67.7
80.6
89.5
96.7
5
2.5
8.2
14.6
.22.6
34.2
65.8
77.4
85.4
91.8
97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
USE
ft; in.
Number the points proceeding "from" the port.
(See Test )
D. Barometric Pressure
Temperature = 70 ฐF
Altitude
in Feet
Relative
Dens ity
Barometric
Pressure
Altitude
in Feet
Relative
Density
Barometric
Pressure
0
500
1000
1500
2000
2500
1.00
6.981
0.964
0.947
0.930
0.913
29.92
29.38
28.85
28.33
27.82
27.31
3000
3500
4000
4500
5000
5500
0.896
0.880
0.864
0.848
0.832
0.816
26.81
26.32
25.84
25.36
24.89
24.43
Calculations :
(See Test
;#.?
*?, yj""^ .-ซ>-?.
3- 2L/--72
-------
PRELIMINARY DATA
EMISSION TEST
Project Sample Date ~? - 2. ' -
Test Team A^-T ฃF~' Test Ho. O-.
A. Moisture Content /o _ o q .o
~~ '~,-^- _L _
1.. Wet/Dry Bulb Method ' ^
Ts (dry) = aF, Ts (vet) EF
Moisture content = $ "by volume
2. Condenser Method
-cu. -ft. ,Tm = __________ฐF Vc = __ml.
= p(atmo) = in. of
Moisture content = ฃ~y- % by vol.
1 + 375'71
(See Test 2.
B. Velocity Profile (Ap = velocity pressure, in.
Measuring instrument (convert to s-shaped)
"~ + i- --r- in- i j_-_. j_j_i_-r_ _ -i- "- . __ _ ^.
Ap: max. = / ^ , mln. = /- ^ } avg. = ' x
See Test ;x ; .
C. Temperature Profile (Ts)
tf rr-> l}*-^ t-?T~^
Measuring instrument __
TS(ฐF): max. = , min. = , avg. & ฃ>
See Test *2~ - I
Nomograph Settings
{f, ) -/- .2-"
= 1.84 in. of HoO, Tm =
, Ps/Pm =
C = /, / O , Ap = values from G above
T = <<~ O ฐF, D = /'/ in.
C mu-m11.-T L*"_- . -_i ' ' -|_-- --I.T- ' II i i ' i " ! ""
s
-------
PRELIMINARY DATA
EMISSION TEST
Project
Test Team
Sample Date 3 -.2.) - *7'
Test No.
E. Qrsat Data
1. Field Ruff?
2. Lab Ruri:/ CO
C02
(lab calculations using bulbs)
-p. 'Stack-Pressure
Measuring instrument
Inches H20
J - C
(See Test -2-- ' )
G. Probe Tip Diameter
Inches.
H. Define Sample Train
1. Impingers
No. 1
(tip) No. 2
No. 3
No. 4 Si:
2. Probe length
3. Special: /^
Normal Initial Final Difference
3j5Q~~Eil. / o o 7 2
l&Oliil. /
' 6- y- -?c-?. ->? '
.,^y--:- ^-o ,-...z,
i>;-?>/ s>S,
-------
i.
jr. SAMPLE DATA
P, EMISSION TEST
Project
Test Team
Sample Data
Test NO.
- xj - o
Point
No.
RAG
Filter
No.
Sample
Time
Min.
Start
Time
Pitot
in. H20
Probe
in.H20
Vacuum
in. Hg
Meter
Meter
Temp. ฐF
Left Right
Stack
Temp.
ฐF
S. Gel
Temp.
ฐF
Probe
\/
Temp.
ฐF '.
'
omment
T2--
i t>
/O
Co
"3
' 5^5*0
'7-
1'
60.
/no
O. i
,0 '
-- *"* / -' / v
^ '-ซJ // "/ J
*^ -iv y
i ป V
3
, 0
/. 60
-70
,1
7.
.'7
V
/ . '-/ .-
v
/ 7
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. PRELIMINARY CALCULATIONS
EMISSION TEST
Sample Date 3-J2V*-
Duct Identification
Project No. s
- <-? TEST N0.
Recorded
Assisted by
A. Sketch of Duct or Stack Cross-Section (Also, Sketch of Extensions)
Number "Diameters
1. Downstream
2. Upstream
(See
B. Rectangular
1. Number of Sampling Points
Cross-sectional area
(ft2)
< 2
2-12
> 2
Number of
test points
4
6-24
> 24
Comments; Each equal area should
be ฃ 0.5 ft2, and
approximately square in
shape.
2. Location of Sampling Points
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and shape requirement. (If possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
C. Circular
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
Number of Areas
2.
3
4
\ 5
6 or more
-------
PRELIMINARY CALCULATIONS
EMISSION TEST
Project
Test Team
Sample Date
Test No.
-^^y^n^-
2- 0,
2. Location of Sample Points ,
Percent of Diameter from Inside Wall to Traverse Point
Point
Number 2
1 6.7
2 25.0
3 75.0
JL .93.. 3
5
6
7
8
9
10
11
12
Number
3
4.4
14.7
29.5
7,0.5
85.3
95-6
of Areas
4 .
3.3
10.5
19.4
-32.3
67.7
80.6
89.5
96.7 ,
5
2.5
8.2
14.6
22.6
34.2
65.8
77.4
85.4
91.8
97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
USE
ft; in.
Number the points proceeding "from" the port.
(See Test )
D. Barometric Pressure
Temperature = 70ฐF
Altitude
in Feet
0
500
1000
1500
2000
2500
Calculations:
(See Test 2-"" ' )
Relative
Density
1.00
6.981
0.964
0.947
0.930
0.913
Barometric
Pressure
29.92
29.38
28.85
28.33
27.82
27.31
Altitude
in Feet
3000
3500
4000
4500
5000
5500
Relative
Density
0.896
0.880
0.864
0.848
0.832
0.816
Barometric
Pressure
26.81
26.32
25.84
25.36
24.89
24.43
-------
'
PRELIMINARY DATA
EMISSION TEST
Project
Test Team
Sample Date 3 - 2rf* ^ "^
Test No. 2.- ,3
A. Moisture Content
1.. Wet/Dry Bulb Method -.
Ts (dry) = ฐF/ Ts (wet) = EF
Moisture content = % by volume
2. Condenser Method
cu. ft. T_ = _ฐF Vc = ml.
^ = p(atmo) = in. of
Moisture content = ^~~Z= ^ ^ by vol.
i rn *m
1 + 375 "71
(See Test
B. Velocity Profile (Ap = velocity pressure, in.
Measuring instrument (convert to s-shaped)
Ap: max. = // ^2-. , min. = // <^> , avg. =
See Test 2--/
C. Temperature Profile (Ts)
Measuring instrument
TsC'F)- max' = ) ปiin. = _, avg.
See Test .
D. Nomograph Settings
ฐF
AH Af = 1.84 in. of HoO, Tm = ^ฐ
% H|O' = O , Ps/Pm = ..._"_/._g_
C = /, 0 5_ , Ap = values from G above
ฐF, D = '/ in.
-------
PRELIMINARY DATA
EMISSION TEST
Project
Test Team
Sample Date 3 -
Test No.
2--
E. Orsat Data
1. Field Run: CO
2. lab Run: CO
CC2
-> ฐ
(lab calculations/using bulbs)
I/
F. .Stack .Pressure
Measuring instrument
Inches H^O Q / "?
(See
+ (_
G. Probe Tip Diameter
Inches.
H. Define Sample Train
1. Impingers
Normal
2. Probe length
3. Special:
Initial
Final
Difference
No. 1
(tip) No. 2
No. 3
No. 4
"ISO ml. /ฃ>C>
Dry oฃ^7
Silica Gel s-3^ 6?
S~~v5"
9 to
~^
*? f jf~~* C^
X-i, /^ ^"^ ^7
- V5"
x/
/- 3. 7
r- -V.T-. 3
-------
SAMPLE DATA
.EMISSION TEST
Project ^-. ,~, r
Test Teanf77^-.v-<
Sample
NO.
r;
v * . '/
unn-Jj
Point
No.
RAC
Filter
No.
Sample
Time
Min.
Start
Time
Pitot
in.
Probe
in.H20
Vacuum
in. Kg
Meter
ft5
Meter
Temp. ฐF
Left
Right
Stack
Temp.
F
S. Gel
Temp.
ฐF
Pro&e
Temp"'.
/D
V, Jo
02.'?. 0V
'72.
yo
r
/.'/o
/y
6,.
-?(,/.
5"2_
.'/ Q
/.
10
/fro. ^
a
a.
//?..
6*0
ti
7/
0
ID '.ft".
7, oo
3
"~) . o o
2
2
tno
7,
(yO
2.
/,7s
il '. 10
6
l/'.^O
60
3
3
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. PRELIMINARY CALCULATIONS
EMISSION TEST
Sample Date -2
72L. Project c..-
Duct Identification T7-r< )
//- --..- /;-
Project No.v"-"r--v' TEST N0.[
Recorded by ' ^^^-.
> ' A- :..
Assisted by ^/'//: '> >>
Sketch of Duct or Stack Cross-Section (Also, Sketch of Extensions) ^/ "^\
.-, S -\ Number "Diameters"
1. Downstream
2. Upstream
(See Test
B. Rectangular
1. Number of Sampling Points
Cross-sectional area Number of
) test noints
4
6-24
> 24
< 2
2-12
> 2
2. Location of Sampling Points
Comments: Each equal area should
be ฃ 0.5 ft2, and
approximately square in
shape.
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and shape requirement. (if possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
C.
Circular
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
3 9, V
Number of Areas
4
5
6 or more
7 / / ฐ
/ a ? / ฃ=
-------
PRELIMINARY CALCULATIONS
EMISSION TEST
Pro.lect
Test Team
Sample Date
Test No.
-3 -
-, ~H"
-V
r~, -
2. Location of Sample Points
Percent of Diameter from Inside Wall to Traverse Point
Point
Number
1
2
5
: A
5
6
7
8
9
10
11
12
Number
2 <, 5^-
6.7 4.4
25.0 14.7
75.0 29.5
93.3 70-5
85.3
95 . 6
of Areas
4
3.3
10.5
19.4
,32, ,3 ,
67.7
80.6
89.5
96.7
.5
2.5
8.2
14.6
22. -6
34.2
65.8
77.4
85.4
91.8
97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
'^7"
n, 3 r
y, yJ~'
//, 21"
/3 . &5~~
/ .5T 3 ฃ>
USE,,
ft;dn.J.
/ .
^-Vr
y Vv
// x
/3^
/,5
Number the points proceeding "from" the port.
(See Test )
D.
Barometric Pressure
Temperature = 70ฐF
Altitude
in Feet
0
' 500
1000
1500
2000
2500
Relative
Density
1.00
6.981
0-. 964
0.947
0.930
0.913
Barometric
Pressure
29.92
29.38
28.85
28.33
27.82 .
27.31
Altitude
in Feet
3000
3500
4000
4500
5000
5500
Relative
Density
0.896
0.880
0.864
0.848
0.832
0.816
Barometric
Pressure
26.81
26.32
25.84
25.36
24.89
24.43
Calculations:
(See Test
N
y
>..': ^
-------
PRELIMINARY DATA
EMISSION TEST
Project_ __Sample Date "5 -
Test Team Test No.
A. Moisture Content :
1. Wet/Dry Bulb Method
Ts (dry) = _ฐF, Ts (vet) = EF
Moisture content = __$ by volume
2. Condenser Method ' , . . .
Vm = cu. ft. Tm = ;ฐP Vc = ml.
^ = p(atmo) = in. of Eg
O
Moisture content = ^"7;= (^ Jb by vol.
mm
1 + 375 -7
(See Test
B. Velocity Profile (Ap = velocity pressure, in.
Measuring instiniment (convert to s-shaped)
Ap: max. = , min. = '_ , avg. =
See Test 0
C. Temperature Profile (Ts)
Measuring instrument
'
TS(ฐF): max. = , min. = , avg. =
See Test .
D. Nomograph Settings
AHref = 1.84 in. of HgO, Tm ^7^ ฐF
% H20' = ^ , Ps/Pm = /.
C = I, > , Ap = values from G above
T '- TO ฐF. D = /V in.
-------
PRELIMINARY DATA
EMISSION TEST
Project
Test Team
~2 ^s. -_
JSample Date_3jl2ฑl^Z
Test No.
3 ~
E. Orsat Data
1. Field Run:r^CQ
2. Lab Run: CO
C02
CO,.
(lab calculations using bulbs)
F. Stack Pressure
Measuring instrument
Inches HgO &>
(See Test )
^ >
350-fiiI. /D&
Dry cvlsi^j
Silica Gel 9-^y/.ฃ>
<^6>
/c3 2
5"
?.^
f>
'"''7 ''
y.J-A
-------
SAMPLE DATA
EMISSION TEST
Project ฃi>"v '
Test
- Sample Data -3 ~
^ Test NO.
C
Port
1*-.
Point
No.
RAG
Filter
No.
S ample
Time
Min.
Start
Time
Rltot
n.
Probe
in.H20
Vacuum
in. Hg
Meter
ft3
j Meter
Temp. ฐP
Left
Right
Stack
Temp.
ฐF
S. Gel
Temp.
ฐF
Erob
Te
n
-ฃ=?
52)
/9
60
y
JS
$.70
. do
/oo
: o c,
/.Jo
2-
h-'
to
/ 7
3
3
YO
/, Ta
/or/. ^3
n
1 100.1
'7
D.
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. PRELIMINARY CALCUIATIONS
EMISSION TEST
Sample Date 3-Q3-/'Z
Duct Identification 7T- ^5- A
Project No.?r/.
TEST NO.I
Recorded by"7l7?,ฃ-g~7 Assisted by /^A /*/
A. Sketch of Duct or Stack Cross-Section (Also, ^Sketch of Extensions)
Number "Diameters"
1. Downstream
2. Upstreajn
(See Test-5 /)
B. Rectangular
1. Number of Sampling Points
Cross-sectional area
(ft2)
< 2
2-12
> 2
Number of
test points
. 4
6-24
> 24=
Comments: Each equal area should
be ฃ 0.5 ft2,, and
approximately square in
shape.
2. Location of Sampling Points
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and sha,pe requirement, (if possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
C. Circular
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
Number of Areas
2
3
' '-.. 4
5
6 or more
35\ฃ V?
"} S~l ~ ฐ
x4-
-------
PREUMINARY CALCULATIONS
EMISSION TEST
Project
Test Team
Sample Date 3 -a "3 - '
Test No. 3~ -2_
? 2..
2. Location of Sample Points
Percent of Diameter from Inside Wall to Traverse Point
Point
Number
1
2
3
4
5
6
7
8
9
10
11
12
Number
2 3
6.7 4.4
25.0 14.7
75.0 29.5
93.3 70.5
-85.3
95.6
of Areas
4
3.3
10.5
19.4
32.3
67.7
80.6
89.5
96.7
5
2.5
8.2
14.6
22.6
34.2
65.8
77.4
85.4
91.8
97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
USE
ft; in.
Number the points proceeding "from" the port.
(See Test 1-1 )
D. Barometric Pressure
Temperature = 70 ฐF
Altitude
in Feet
0
500
1000
1500
2000
2500
Relative
Density
1.00
6.981
0.964
0.947
0.930
0.913
-Barometric
Pressure
29.92
29.38
28.85
28.33
27.82
27.31
Altitude
in Feet
3000
3500
4000
4500
5000
5500
Relative
Density
0.896
0.880
0.864
0.848
0.832
0.816
Barometric
Pressure
26.81
26.32
25.84
25.36
24.89
24.43
Calculations:
2-9,
(See Test ^ - / )
-------
PRELIMINARY DATA
EMISSION TEST
Project
Test Team
Sample Date "3 - 2_"D> -^"^_
Test No. 3 - X
A, Moisture Content
1. Wet/Gry Bulb Method
TS (dry) = ฐF, Ts (vet) = EF
Moisture content = % "by volume
2. Condenser Method
= p(atmo) =
cu. ft. Tm = _ฐF Vc = ml.
Moisture content = ^~^ = jo "by vol.
mm
1 + 375 -7
(See Test ^j-- ) )
B. Velocity Profile (Ap = velocity pressure, in. HpO)
Measuring instrument (convert to s-shaped)
Ap: max. = , -min. = , avg. = ^ // <3
See Test 3- I e
C. Temperature Profile (Ts)
Measuring instrument __^
TS(ฐF): max. = , min. = , avg. = ___j__j_2_
See Test "b - /
D. Nomograph Settings
AH - =ป 1.84 in. of HpO, Tm = /O F
? = O Ps/Pm = /, O
C = /. Of , Ap = values from G above
T = ^O ฐF. D = /V in.
S ij r - - -- ' "" ~
-------
PRELIMINARY DATA .
EMISSION TEST
Project
Test Team
Sample Date "> - 2,~i> - O "2...
Test No. "} - "2-
E. Qrsat Data
1. Field Run
2. Lab Run
(lab calc1
-F-. -Stack 'Pre-ssure
Measuring instrument
Inches EgO ^
r
(See Test3 H )
G. Probe Tip Diameter
Inches.
H. Define Sample Train
1. Impingers
Normal
Initial
Final
Difference
No. 1
(tip) No. 2
No. 3
No. 4
1^0 ml. /OO
ISO ml. /GO
Dry cv^v-;
Silica Gel ^.^'3/5 - 4>
^S
/OJ
(o
a96. o
Cl i
-/- S7
V- <~> . 6.
-/- -V<9 - -'/
2. Probe Length
3. Special:
o
,
- /
e^is r-^ Y i
,4-
.,,.,
'
V-. ./ /") )--. 1 y. -
-------
SAMPLE DATA
EMISSION TEST
Project
Test Team
Sample Data
Test NO. ~
^
Point
No.
RAG
Filter
No.
Sample
Time
Min.
tart
Time
Pitot
in.
Probe
in.H20
Vacuum
in. Hg
Meter
Meter
Temp. ฐF
Left Right
Stack
Temp.
F
P
S. Gel
Temp.
ฐ
ffl-
Probe
72
"7.
92.
r
//
7. 3 B*J
7,90
9,/e
a a.
'bo
. .'. v r
/o , o
It
./&
o
f.'O
1
ft
33
7
r
y
6
P
0 0
f.V
I?
/&'/
-7.
-------
MIDWEST RESEARCH INSTITUTE
Air Pollution Source Testing Forms
I. [PRELIMINARY CALCULATIONS
EMISSION TEST
SampLs Date
oj e ct ฃ-
Duct Identification ซ,',
Project No.55y^
TEST N0.|
Recorded by i
Assisted "by
y p
A. Sketch of Duct or Stack Cross-Sect ion (Also,___ Sketch of Extensions)
Number "Diameters"
1. Downstream.
2. Upstream
(See Test3^/_)
B. Rectangular
1. Number of Sampling Points
Cross-sectional area
(ft2) '
< 2
2-12
> 2
Number of
test points
4
6-24
> 24
Comments: Each equal area should
be ฃ 0.5 ft2, and
approximately square in
shape.
2. Location of Sampling Points
After selecting the number of sample points, select the number of traverses
needed to satisfy the 0.5 ft area and shape requirement. (if possible, use
existing ports.) Calculate the distance to each equal area and record in the
above sketch. Number the points proceeding from the port.
C. Circular (-,'/ 9 .2.3
1. Number of Equal Areas
Diameter (ft.)
1 or less
1-2
2-4
4-6
over 6
Number of Areas
2
3
4
5
6 or more
-------
PRELIMINARY
EMISSION
CALCULATIONS
TEST
Project
Test Team
Sample Date "
Test No. 3-
i --3-V- n i~
"^
2. Location of Sample Points
Percent of Diameter from Inside Wall to Traverse Point
Point
Number
1
2
3
: 4
5
6
7
8
9
10
11
12
Number
2 3
6.7 4.4
25.0 14.7
75.0 29.5
93.3 70.5
85.3
95.6
of Areas
4
3.3
10.5
19.4
32.3
67.7
80.6
89.5
96.7
5
2.5
8.2
14.6
22.6
34.2
65.8
77.4
85.4
91.8
97.5
6
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
97.9
Diameter
in. x percent
USE
ft; in.
Number the points proceeding
(See Test 3;/)
"from"
the port.
D.
Barometric Pressure
Temperature = 70ฐF
Altitude
in Feet
0
500
1000
1500
2000
2500
Relative
Density
1.00
6.981
_ 0.964
'0.947
0.930
0.913
Barometric
Pressure
29.92
29.38
28.85
28.33
27.82
27.31
Altitude
in Feet
3000
3500
4000
4500
5000
5500
Relative
Density
0.896
0.880
0.864
0.848
0.832
0.816
Barometric
Pressure
26.81
26.32
25.84
25.36
24.89
24.43
Calculations:
(See Test
-------
PRELIMINARY DATA
EMISSION TEST
Eroject_
Test Team
.SampLs Date 3 "
Test No. 3 ~~/
A. Moisture Content
1.. Wet/Dry Bulb Method
Ts (dry) =
Moisture content
2. Condenser Method
= p(atmo) =
Moisture content =
(See Test'^_( )
, Ts (wet) =
by volume
. ft.
in. of
375
p v
tmvm
EF
Vc=
by vol.
ml.
B. Velocity Profile (Ap = velocity pressure, in.
Measuring instrument (convert to s-shaped)
^p: max. =
See Test
, min. =
avg.
C. Temperature Profile (Ts)
Measuring instrument
See Test
, min. =
avg. =
D. Nomograph Settings
~ = 1.84 in. of HgO,
*
C =
T
/ . O
STO
, Ap = values from G above
in.
-------
HffiLIMINARy DATA
EMISSION TEST
Project^
Test Team
_Sample Date 3- 2-1/
Test No. 3 <- "^>
E. Or sat Data
1. Field Run: CO
2. Lab Run: CO
C02/
Kr
, 0,
(lab calculations using bulb's)
\
F. Stack Pressure
Measuring instrument
Inches EgO SJ>
(See Test )
G- Pro"be Tip Diameter
Inches.
H. Define Sample Train
1. Impingers
No. 1
(tip) No. 2
No. 3
No. 4
2. Probe length
Normal Initial
Final Difference
150 ml. /ฃ><ฃ)
150 ml. i o e>
Dry ol^
Silica Gel Z3 ^ 5"'
'-/^ fS'
^V ฃ
/S /-/O
p^F.s- y-^^-.o
y-^3 &
,#-"3 / bo* # ~5 u>ซ-,i. -
-------
SAMPLE DATA
EMISSION TEST
Project
Test Team
Sample Data 3-jrf-
Test NO. 72,->
Point
No.
RAG
Filter
No.
Sample
Time
Min.
Start
Time
Pitot
in.
Probe
in.H20
Vacuum
in. Pig
Meter
f^t3
Meter
Temp. ฐF
Left Right
Stack
Temp.
ฐF
S. Gel
Temp.
ฐF
Protie
Tdmp.
F
ommen
93.50
. A?
O-
133,63
.36
V/V. 2-2
'fa
-V6
/.
y sซ./f-i/
>$
2,
7, y
V
-------
PARTICULATE CLEANUP SHEET
Date: 3 -
ฐ.yn number:
Operator: _^~
Plant:
_, /==/'
Sample box number: C3>
Location of'sample port5
Barometric pressure:
Ambient temperature:
i'rcpmger
Volume after sampling ^*?^- ml
Impinger prefilled v/ith^OQml
Volume collected 2.^ ml
Container
Extra No.
Ether-chloroform extraction
Impinger v/ater residue
n'g'crs 'aiTd 'back -half-of
filter, acetone v/ash:
-Container No.
Extra No.
Weight result:
-^-T^rtr-
Bry probe and ey^efte catch:
Contaj.rier Nor
Extra No.
Height resul
lo M
Probe, ryrloac, "t^a-s^ and
; front half of filter.
acetone v;ash:
Container No.^
Extra No.
V/eight results
Filter Papers and Dry Filter Parti art ate
Filter number Container no. Filter number Container no,
\ ____________ ' __
Total narticulate v/einht
,- Filter particulate
weqht
Silica Gel -f
V'eight after test:
Height before test: ^3^ V
Moisture v.'eight collected:-^-3//
Container number:
Sample number:
thod determination^
Co;T,,v.erits:.
Analy^o for:
Moisture total
-------
Date:
PAPJIC.ULATE CLEANUP SHEET
''"' Plant: ^-^W. l) ;zr//. '
^.un number: _
Operator: _J2
Samnle box number:
r t
.Location of sample port: ' g.?
ro!"iecr"ic pressure:
' Ambient temperature:
XVv~^I/<
7 ./f /
~r
Volume after sampling 'ฃ> / ml
Impinger prefilled y/1 th 2Q& ml
Volurr.a collected
Container No.,
Extra No.
Ether-chloroform extraction
-Impinger water residue.
Irnpingers and back half of
filter, acetone v/ash:
Container
Extra No.
Weight results
' ' S
Dry probe\and cycloner catch
Contaj.ner No,
Extra No.
Weight results'
Probe, eyc 1 ofr^-^^fes-k-, and
front half of filter,
acetone v/ash:
Container
Extra Mo.
Weight results
Filter Papers and Dry Filter Par Lieu!ate
Filter number
9 a -
Container no. Filter number Container no.
t .
- Filter particulate
-Total particulate v/eight
Silica Gel -f
V'einht after test:
. Height before test:
Moisture weight collected:-^-3_
Container number: 1.^
3.
Moisture total
Somole number:
Analyze for:
thod determination:
-------
Date: 3 - *2~
ฐ.un number: "P-
Operator: _j^
PARTICULATE CLEANUP SHEET
-' ' '*' Plant: ^
Sample: box number:
Location of sample port: ^x\Ul 2.
Barometric pressure:
Ambient temperature: :
Inipinger
Volume after sampling / ^' nil Container No..
Ifii?incj2r prefillcd with^oom] Extra No.
Volume collected
ml
Ether-chloroform extraction '
~"of impinger v/ater
Impinger v/ater residue^,
Irnpingers and back half of
filter, acetone v/r.sh:
Container
Extra No.
V.'eight results
Dry
catch:
Container No.
Extra No.
Weight result
Probe 5 eye lone ^4*54^, and
." .front half of filter, .......
acetone v/ash:
Container
Extra Mo.
V/eignt results
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container no,
' 3
Total parti cul ate v/eioht
- Filter particulate
\veu;ht
ilica Gel .+
:Height after test:
'Weight before test:
Moisture weight collected: +'^-
Container number: \^^'
Se.-npl c number:
thod deterniination:
Comments:.
Analyze for:
Moisture total
-------
">
nr n*rTrMr r, v*
r/u\! luUt.M! L
n -.-'.,.
i^u cO .
3
; /__t> s '<- N^t
-------
Date:
PARTICULA7E CLEAiiUP SHEET _
\ '" Plant: d.->~ -~ s /' l ) ,
ฐJP. ilU-bj
.- X,
Jnorator:
S.- . ... *\ - * . f ซ/ --^11 -. : * -, S-*
^ili!^ i u' iju.\ ;ซ>.....J^l .
>-s
5 <.
Location of sar.iplc port/ _j$_r
Barometric pressure:
. 3
S /")
^ *'
ted.
*7 -^ ^
Extra Ho
nccrs and beck half of
acetone
Container No.
Extra Ho.
Height results
r\' nrcbe and cyclonXcatch: ' Container No.
^ * ** ; S ' ^-^
Extra Mo.
Weight results
P r o b e 5 cy c 1 o n e ., fraVr:, and
front half of filter,
acetone v;ash:
Container Ko.
Extra No.. ..
V/clght results
Filter Papers and Dry Filter Particulate
Filter number Container no. Filter number Container no,
^-' I
>-r?;*~/ป&"?> oy;o ซ
iota i parti cu la'ce w
i-"; tter partTCu
I *> >" <~, ซ-* t^\ i * i f ' * ซ
oUIi t-Ci ป i id .ปiji.iu-J i .
Analyze for
t'r>-* r -r-.M*->
i\o; o i. j) e
-------
3
PARTICULATi; CLฃA.'iUP SliESIT
~ "' ' Plant: Co. *-<> ;V
-^ _ -V
Operator: ./j^
* * - * ^
>ar,"v; i sj i->u/
Location of sample port: .5 r'-v^.
Barometric pressure: . ^)-^l. S
Ambient temperature: .
6=> O
\' ^. "i 11---i - -''" *ป c~)^-'-^~ 'r-1 / ^ / / r^"^ P'N-^ *^-o ^ T1 ". v^ ?-'A C/
VOiUi.:C Ci i i-'Ji .jci.^pi illj / ' / In i Uu. I >,c. 11 ic I IvU..
^ioinoer ^refilled vnth^-^Anl txtra No.
Vo' un'.e CG i 1 ee'ce^
^ Ether-chloroforni extractii
Iniinger v/ator residue:
iff.pincers and back half of
f-i'Ucr;. acetone wash:
Container i'io.
Extra No.
W
eght results
Dr probe ai
catch
Contaj.ner No.
V,
Extra No.
Weight results
Probe, cyclone,
'front half of
acetone v;ash:
-ei3
ycle no, f-t^s-k, and
f filter^
Container No.
Extra i!o.
V/eight resul
Filter Papers and Dry Filter ParLiculate
Filter number Container no. Filter number Container no.
- Filter particulat
Total Darticulate v;eicht
.:,eio;ia.avcer oes^:
V!eight before test: 3^^---
Moisture v:eigl^t collected: 7-6"3L
4.
foi
o cie'cernrinac"ion:
-------
APPENDIX C
Federal Register
Test Methods
-------
APPENDIXTEST METHODS
I.5ETHOD 1SAMPLE AND VELOCITY TRAVERSES
FOB STATIONARY SOURCES
1. Principle and applicability.
1,1 Principle. A sampling site and the
number of traverse points are selected 10
aid in the extraction of a representative
sample.
1.2 Applicability. This method should be
applied only when specified by the test pro-
cedures for determining compliance with.
-------
Bourca Performance Standards. This
method Is not Intended to apply to gas
streams other than those emitted directly to
the atmosphere without further processing.
2. Procedure.
2.1 Selection of a sampling site and mini-
mum n'unber of traverse points.
3.1.1 'Select a sampling site that la at
least eight, r.tack or duct diameters down-
stream. ii!:tl two diameters upstream from
any flow ril/iturbance such BS a bend, expan-
sion, contraction, or visible flame. For a
rectaปKuUv cross section, determine an
equivalent diameter from the following
equation:
..... t or(length)(width)l
equivalent diameter=2| -.VCTT.\
. L lcngth+width J
i- ' equation 1-1
2.1.3 V/lisn the above sampling cite cri-
teria can ho met, the minimum number of
traverea points Is twelve (12).
3.1.8 801110 sampling ettu&tJoas roa&w 4hs '
above sampling alts criteria impractical.,
When thla la the caso, choose ft conwclsnt .
sampling location mid u.-.a jj'lgura 1-1 to
determine- tho minimum number oJ traverse
points.
2.1.4 To use Figuro 1-1 Krat mcftswo the) .
distance from the chosen sampling location
to tho nearest xipatreivm and down&woam
disturbances. Determine tho corresponding'
number of traverse points for each dlatttnca
from Figure 1-1. Select the higher of the, two
numbers of traverso points, or a greater value, '
such that for circular stacks t'ne number i3
a mviltlpio of lour, and for rectangular stacks
the number follows tho criteria of section
2.2.2.
3.2 Cross sectional layout and location, of
travorso points. '
3.2.1 For circular stacks locate tho traverse
points on two perpendicular diameters
-------
Table 1-1. Location of traverse points in circular stacks
(Percent of stack diameter from inside wall to traverse point)
Travorso
' point
number
ens
diamotar
.. 1
2
3
4 I
5 I
6 (
7
3
9
10
11 '
-12 .
13
14
IB '
IS
17 .
18
19
20
21
: 22
23
24
Number of
68 10
/4A 3.3 2
'14.7\ 10.5 8
29.5 19.4 14
70.5 1 32.3 22
85.3/ 67.7 34
95. GJ 80.6 ' 65
./ 89.5 77
SG.7 85
91
97
: . ' .
'*
' ' >
V S
.5
.2
.6
.6
.2
.8
.4
.4
.8
.5
i
12
2.1
6.7
11.8
17.7
25.0
35.5
64.5
75.0
82.3
88.2
93.3
-97.9
traverse
14
1.
5.
9.
14.
20.
26.
36.
63.
73.
79.
85.
90.
94
98.
8
7
9
C
1
9
G
4
1
9
4
1
3
2
points
16
1.6
4.9
8.5
12.5
16.9
22.0
28.3
37.5
62.5
71.7
78.0
83.1
87.5
91.5
95.1
93.4 .
on
a
18
1
4
7
10
14
18
23
29
33
61
70
7G
81
85
89
92
95
98
.4
.4
.5
.9
.6
.8
.6
.6
.2
.8
.4
.4
.2
.4
.1
.5
.6
.6
diameter
20
1.3
3.9
6.7
9.7
12.9
16.5
20.4
25.0
30.6
38.8
61.2
69.4
75.0
79.6
83.5
87.1
90.3
93.3
S6.1
98.7
22
1.1
3:5
6.0
8.7
11.6
14.6
18.0
21.8
26.1
31.5
39.3
60.7
68.5
73.9
78.2
82.0
85.4
S8.4
91.3
94.0
S6.5
S8.S
24
1.1
3.2
5.5
7.9
10.5 ...
13.2
16.1
19.4
23.0
27.2
32.3 ;,.
39.8
60.2 :.
67.7
72.8
77.0
80.6
83.9 '
86.8
89.5
92.1 '"
94.5 "',
36.8
S8.9
not be used In tho case of nondlrectlorial
flow.
2. Apparatus/.i {<
2.1 Pltot tubeType S (Figure 2-1), or
equivalent. .
2.2 Differential pressure gaugeInclined
manometer, or equivalent, to measure ve-
locity head to within 10 percent of the mini-
mum valve.
2.3. Temperature gaugeThermocouples,
bimetallic thermometers, liquid filled sys-
tems, or equivalent, to measure stack tem-
perature to within 1.5 percent of the mini-
mum absolute stack temperature.-
2.4 Pressure gungeMorcury-flHed U-tube
manometer, or equivalent, to measure /stack
pressure to within 0.1 In. Hg.
2.5 BarometerTo measure atmospheric
pressure to within 0.1 In. Hg.
2.8 Gas analyzerTo analyze gas compo-
sition for determining molecular weight/
3.7 Pilot tubeStandard type, to cali-
brate Type's pilot tube.
3. Procedure. .
3.1 Set up the apparatus as shown In Fig-
ure 2-1. Make suro all connections are tight
and leak free. Measure the velocity head at
the traverse points specified by Method 1.
3.2 Measure the temperature of the stack
gas. If the total temperature variation with.
time Is less than 50ฐ P., a point measurement
will suffice. Otherwise, conduct a tempera-
ture traverse.
3.3 Measure the static pressure In tho
stack.
3.4 Determine the stack gas molecular
weight by gas analysis and appropriate cal-
culation as Indicated la Method 3.
PIPE COUPLING
TUBING ADAPTER
- 2.2.2. For rectangular stacks divide the
cross section Into as many equal rectangular
arena its traverse points, such that the ratio
of the U'litjf.h to the width of the elemental
arena Is between one and two. Locate the tra-
vcrae points at the centrold of ouch equal
area according to Figure 1-3.
3. RelKrcnces. Determining Dust Concen-
tration In a Gas Stream. ASME Performance
Test Codu #27. New York. 1957.
Devorkln, Howard, et al. Air Pollution
Source T':utU)j{ Manual. Air Pollution Con-
trol District. Los Angeles. November 19C3.
Method;) for Determination of Velocity,
Volume, inuiL f.r.d Mist Content of Gases.
Western 1'reclpILatlon Division of Joy Manu-
facturing Co. Los Angeles. Bulletin VVP-50.
1009.
Standard Method for Sampling Stacks for.
Partlculate Matter. In: 1971 Book of ASTM
Standards, Part 23. Philadelphia, 1971. ASTM
Designation D--2928-71,
METHOD 2DETERMINATION OS1 STACK OAS
VELOCITY (TYVE E PITOT TUBE)
. 1. Principle and applicability
1,1 Principle. Stack gas velocity Is de-
termined from the gas density arid from
measurement of the velocity head using a
Type S (Stauscheibe or reverse typs) pltot
tube.
1.2 Applicability. This method should be
applied only when specified by the test pro-
cedures for determining compliance .with
New Source Performance Standards. Being a
directional instrument, a pltot Uibe should
O
o
O
ya
C
5
2
O
Figure 2-1. Pitof tubs - manometer assembly.
4. Calibration. '
4.1 To callbratฉ the pltot tube, measure
the velocity head at some point In a flowing
gas stream with both a Type S pltot tube and
a standard type pltot tube with known co-
cfllclent. The velocity of the flowing ga"
stream should be within the normal working
range.
FEDERAL REGISTER, VOL 36, NO. 159TUESDAY1, AUGUST 17, 1971
-------
4.2 Calculate the pitot tube coeScient
using Equation 21.
,..,= <
APwซt equation 2-1
where:
C,,,,, = F!tot tube coefficient of Type 5
pitot tube.
Cป.,4=Pltct tube coefficient of standard
type pitot tube (if unknown, use
0.99).
AP,td=Velocity head measured by stand-
ard type pitot tube.
. AP,Mt=Velocity head measured by Type S
pitot tube.
43 Compare the coefficients of the Type S
pitot tube determined first with one leg and
PROPOSED RULE MAKING
then the other pointed downstream. TTse the
pitot tube only If the two coefficients diilcr
by no more than 0.01. :'
5. Calculations. j
Use Equation 2-2 to calculate the stack gas
velocity. --
w here:
P.-M,
equation 2-2
V, = Stack gos Telocity, feet per second (f.p.s.).
_ ft. / Ib. \W when thesซ units
kp=&5.48^^- ^jk' j-jQi^ej^ J are-used.
Cp = Pitot tube coefficient, dimcnsior-less.
Tซ=Absolute stock ฃ03 temperature, 'JH.
A,=Velocity head of stack eas. in 11:0 (see fig. 2-2).
P8=Abฃoiute stcKjk cas prrssxire, in Li?.
M,=Molecuiar weight oi stack gas, Ib./lb.-mole.
KANT
DATE '
RUN NO.
STACK DIAMETER, in._
BAROMETRIC PRESSURE, in. Hg._
STATIC PRESSURE IN STACK (Pg), in. Hg._
OPERATORS ;
: ""'"^^-''V^ 15711
Figure 2-2 shows a sample recording sheet
for velocity traverse data. Use thr aT-eraeea in
the la-st two columns of Figure 2-2 to deter-
mine the average stacic gas velocity from
Equation 22. _ '
6. References.
Mark, L. S. Mechanical Engineers' Hand-
book. McGraw-Hill Book Co., lac.. New York.
1951.
Perry, J. H. Chemical Engineers' Handbook.
McGraw-Hill Book Co.. Inc., New York; 1960.
Shlgehara, P.. T., W. F. Todd, and W. S.
Smith. Significance of Errors in Slack Sam-
pling Measurements. Paper preseni-ed at the
Annual Meeting of the Air Pollution Control
Association, St. Louis, Mo., June 14-19. 1970.
Standard Method for Sampling Stacks for
Particulate Matter. In: 1971 Book of ASTM
standards, Part 23. Philadelphia, 1971. ASTM
Designation D-2928-71.
Vennard, J. K. Elementary Fluid Mechanics.
Jonn Wiley and Sons, Inc., New York, 1947.
SCHEMATIC Of STACK
CROSS SECTION
Traverse point
number
Velocity head,
in. H2O
Stack Temperature
AVERAGE:
Figure 2-2. Velocity traverse dala.
FEDERAL REGISTER, VOL 36, NO. 159TUESDAY, AUGUST 17, 1971
3*0.159PtH 3
-------
METHOD 5. - DETERMINATION OP FARTICtJUVTE
EMISSIONS FEOM STAT1ONAHY SOCKCES
' 1. Principle and a
i.l Principle. Paniculate matter is with-
drawn isokiuetically from the source and its
vreight is determined gravimetricaily after
removal of uncombined water.
1.2 Applicability. This method is applica-
ble for the determination of particuiate
emissions from stationary sources only when
specified by the test procedures for deter-
mining compliance with New Source Per-
formance Standards.
2, Apparatus.
2.1 Sampling train. The design specifica-
tions of the particuJate sampling train used
by EPA (Figure 5-1) are described in AFTD-
0581. Commercial models of this train are
available.
2.1.1 Nozzle Stainless steel (316) with
sharp, tapered leading edge.
2.1.2 Probe Pyrex i glass with a heating
system capable of maintaining a gas tempera-
ture of 250ฐ F. at the exit end during
sampling. When temperature or length
limitations are encountered, 316 stainless
steel, or equivalent, may be used, as approved
by the Administrator.
-------
15714"
2.1.3 Pitot tubeType S, or equivalent,
Bttached to probe to monitor stack gas
velocity.
2.1.4 Filter holdtrPyres1 glass with
heating system capable of maintaining any
temperature to a maximum of 225* F.
2.15 ImpingersPour Lmpingers con-
nected in series with glass ball Joint fittings.
The first, third, and fourth Impingers axe of
the Greenburg-Smith design, modified by re-
PROPOSED RULE MAKING
. - . \
placing the tip with a %-inch ID glass tubs .
extending to 54-inch from the bottom of the j
flask. The second impinger is of the Green- '
burg-Smith design with "the standard tip.
2.1.6 Metering systemVacuum gauge,
leak-free pump, thermometers capable of
measuring temperature to within 5ฐ P.. dry
gas meter with 2 per,cer.t accuracy, and re-
lated equipment, or ec.v-ivalent. as required
to maintain an Isokinetlc sampling rate and
.to determine sample volume.
HEATED AREA
\
FILTER HOLDER
PROBE
REVERSE-TYPE
PITOT TUBE
PITOT MANOMETER
ORIFICE
CHECK
^VALVE
VACUUM
LINE
\VACUUM
GAUGE
MAIN VALVE
DRY TEST METER
AIR-TIGHT
PUMP
Figure 5-1. Particulafe-sampling train.
2.1.T BarometerTo measure atmospheric
. pressure to ฑ0.1 in. Hg.
2.2 Sample recovery.
22.1 Probe brushAt least as long as
probe.
2.2.3 Glass wash bottlesTwo.
2.2.3 Glass sample storage containers. .
. 2.2.4 Graduated cylinder250 ml.
2.3 Analysis.
2.3.1 Glass weighing dishes.
2.3.2 Desiccator.
2.3.3 Analytical balanceTo measure to
iO.l mg.
2.3.4 Beakers250 ml.
-'Trade name.
2.3.5 Seoaratory funnels500 ml. and
1,000 ml.
2.3.6 Trip balance300 g. capacity, to
measure to ฑ 0.05 g.
2.3.7 Graduated cylinder25 ml.
3. Reagents.
3.1 Sampling .
3.1.1 Filter.-,Glass fiber, MSA 1103 BH,
or equivalent, numbered for identification
and preweighed.
3.1.3 Silica .gelIndicating type, 6 to 16
mesh, dried at 175* C. (350' F.) for 2 hours.
3.1.3 WaterDeloiiized, distilled.
3.1.4 Crushed ice.
.--Si Sample recovers'
3.2.1 waterDeionized, distilled.
3.2.2 AcetoneReagent grade.
3.3 Analysis
3.3.1 WaterDeionized, distilled.
3.3.2 ChloroformReagent grade.
3.3.3 Ethyl etherReagent grade.
1 3.3.4 DesiccantPrierite,1 indicating.
;. 4. Procedure.
' 4.1 Sampling.
4.1.1 After selecting the sampling site and
the minimum number of sampling points.
determine the stack pressure, temperature,
moisture, and range of velocity head.
4.1.2 Preparation of collection train.
Weigh to the nearest gram approximately
200 g. of silica gel. Label a filter of proper
diameter, desiccate3 for at least 24 hours
and weigh to the nearest 0.5 mg. in a room
where the relative humidity is less than
50 percent. Place 100 ml. of water in each of
the first two impir.gers. leave the third irh-
pinger empty, and place approximately 200
g. of preweighed silica gel in the fourth im-
pinger. Save a portion of the water for use
as a blank in the sample analysis. Set up the
train without the probe as in Figure 5-1.
I/eak check the sampling train at the sam-
pling site by plugging the inlet to the filter
holder and pulling a 15-in. Hg vacuum. A
leakage rate not in excess of 0.02 c.f.m. at a
vacuum of 15-in. Hg is acceptable. Attach
the probe and adjust the heater to provide a
gas temperature of about 250ฐ F. at the
probe outlet. Turn on the filter heating sys-
iem. Place crushed ice around the irnpingers.
Add. more ice during the run to keep the tem-
perature of the gases leaving the last im-
. picger at 70 ฐ F. or less.
4.1.3 Particulate train operation. For each
run record, the data required on the example
sheet shown in Figure 5-2. Take readings
at each sampling point at least every 5 min-
utes and when significant changes in stack
conditions necessitate additional, adjust-
ments in flow rate. To begin sampling, po-
sition the nozzle at the nrsc traverse point
with the tip pointing directly into the gas
stream. Immediately start the pump ar.ct Ed-
just the flow to isokinetic conditions. Main-
tain isokiaetic sampling throughout the
sampling period. Nomographs are available
which aid in the rapid adjustment of the
sampling rate without -other computations.
AFTB0576 details the procedure for using
these nomographs. Turn o. the pump at the
concl us-ion of each run and record the final
readings. Bemove the probe and nozzle from
the stack and handle in accordance with the
sample recovery process described In section
4.2.
JJDry using Drierite1 at 70'ฑ10' F.
FEDERAL REGISTER, VOl. 36, NO. 159-TUESDAY, AUGUST 17, 1971
-------
PROPOSED RULE MAKING
15715
LOCATION.
OPERATOR.
DATE
RUN N0.__
SAMPLE BOX NO^.
KETERBOXNO._
AMBIEMT TEMPERATURE.
BAROMETRIC PRESSURE.
ASSUMED MOISTURE.!
HEATER BOX SETTING.
PROBE LENGTH, in.
NOZZLE DIAMETER, irt..
PROBE HEATER SETTING.
C FACTOR
SCHEMATIC OF STACK CROSS SECTION
tRAVKSe POINT
NUMBER
-- . . ^ ^
TOTAL
SAMPLING
71;,'=
(9), relit.
AVERAGE
STATIC
PRESSURE
(Ps), in.Hg.
STACK
TEMPERATURE
-------
15716
PROPOSED RULE MAKING
PLANT.
DATE_
RUN NO..,
CONTAINER
NUMBER
^1
2
_3aป
3-b'ป
5
TOTAL
WEIGHT OF PARTICULATE COLLECTED.
mg
FINAL WEIGHT
-
,!>~
-------
stack pas velocity to standard conditions
(29.92 In. Hg, 530" R.) as follows:
3 \ in. Hg/V. T. / equation 5-5
M where:
I Vปjl(1Stack gas velocity at standard con-
ditions, ft./sec.
Ma A.
M. 1 An
where:
c< Concentration of participate matter
In tlie stack gas (Ratio of Area
Method), gr./s.c.f.
Mซ = Pซrtlculate mass flow rate through
the- stack (standard conditions),
mass/time.
Q. = Volumelrlc flow rate of gas stream
through tho stack (standard con-
ditions), volume/time.
V.=Stack gas velocity calculated by
Method 2, Equation 2-2, ft./scc.
Pซ=Absolute stocSe gaa pressure, In. Hg.
P.i4=Absoluto pressure at standard con-
tlons, 29.'J2 in. Kg.
T,,..= Absolute temperature at standard
conditions, 530ฐ R.
Ti=Absoluto stack gas temperature
(average), "K.
6.2.2 Concentration.
Ma=Total amount ot partlculate matter
collected by train, mg.
0:= Total sampling time, mln.
A. = Cross-sectional area of a tack, sq. ft.
Aซ=:CroEs-soctlonal area of nozzle, sq. ft.
V.,tJ"Stack gas velocity at standard con-
. . tlHlons, ft./seo.
S.3 Isoklnetlc variation.
c'ป = Concentration of partlculate matter
In. the stack gas (Sample Concentra-
tion Method), gr./s.c.f. ,
7. References.
Addendum to Specifications for Incinerator
Testing ut Federal Facilities. PHS,'NCAPO.
Dec. 0, I8C7,i
Martin, Robert M. Construction Details of
Isoklnctlc Source Sampling Equipment. En-
vironmental Protection Agency, APTD-0581.
Rom, Jerpme J. Maintenance, Calibration,
and Operation of Isoklnetlc Source Sampling
Equipment. Environmental Protection
Agency, APTD-057G.
Smith, W. S.; R. T. Shlgehara, and W. P.
Todd. A Method of Interpreting Stack Sam-
pling Data. Paper presented at the (J3d
Annual Meeting of the Air Pollution Control
Association, St. Louis. June 14-10, 1970.
Smith. W. S., et al. Stack Ciis Sampling Im-
proved find'Simplified with New Equipment.
APCA Paper No. 07-110.1907.
'Specifications for Incinerator Testing at
' Federal Facilities. PUS, NCAPC. 19C7.
/X100=ป--1
c.'
nVHsoR ,V,a
Ll[~Mu,0 + f;
:AHY|
13.0/
-X100 =
g-cu. ft.\v v. / ^AHX-)-; ., -.'.
F;ฐR yv''+Tro rb" i3.e;J lo ' ;'.;
0V.P.A." ' equation 5-7
where:
. I = percent of IsoklnetJo sampling.
Ci = Concentratlon of particulAte matter
in the stack pas (Ratio of Area
Method), gr./s.c.f.
C 3 ^Concentration of partlcuiate matter
in tho stack K"s (Sample Concen-
tration Method), gr./s.c.f.
Vi0 = Tdtal volume or liquid collected In
Implngers and silica yel (see Fig-
ure 5-3), ml.
OH..o = Denslty of water, 1 g./ml.
R=Idt:iU gas constant, 21.83 In. Hg-cu.
. ' ft./lb. mole-ฐR.
MH3o = Moloculur weight of water, 18 Ib./lb.
mole.
Vm = Volume of giia sample through the
dry t;afl meter (meter conditions),
cu. ft.
To. = Absolute itvcrnge dry gas meter tem-
perature (see Figure 6-2), ฐR.
Pb.,;=Baromt!Lrlc prtssura at sampling
site, in Hg.
AH=Average pressure drop across the ori-
fice (see Figure 5-2), In H..O.
Ti Absolute average stack gas tempera-
ture (see Figure 6-2), ฐR.
ป=Total sampling time, mln.
V. = Stack gas velocity calculated by
Method 2, Equation 2-2, ft./sec.
P. i= Absolute stack gas pressure, In. Hg.
Au~ Cross-sectional area of nozzle, sq. ft.
6.4 Acceptable results. The followlng;
range sols the limit on acceptable leoklnctlc
sampling results:
If 82 percent
-------
APPENDIX D
Lab Data
-------
ฃ ซJi\l
^- "':' '" Office of Air Programs
Research Triangle Park, North Carolina
2771'
A ttป of:
Subject:
To:
:Date- PAY IG 1372
Results of mass analysis of grain and feed samples from Cargill
Industries : ''
.Thomas Logan, Chemical Engineer
The following is a tabulation of results of the mass analysis
performed on the particulate samples from Cargill Grain and Feed.
I. Standard EPA Particulate Samples:
Run No.
2-1
2-2-
2-3
3-1
3-2
3-3
Fracti
0400
0401
0402
0403
0404
0406
0407
0408
0409
0410
041 2
0413
0414
041 5
0416
0418
0419
0420
0421
0422
0424
0425
0426
0427
0423
0430
0431
0432
0433
0434
on No.
?robe
Filter
C&E extraction
Impinger water
Wash acetone
Probe
Filter
C&E extraction
Impinger water
Wash acetone
Probe
Filter
C&E extraction
Impinger water
Wash acetone
Probe
Filter
C&E extraction
Impinger water
Wash acetone
Probe
Filter
C&E extraction
Impinger water
Wash acetone
Probe
Filter
C&E extraction
Impinger water
Wash acetone
Sample Wt. (mg)
41.3
0.0
0.0
0.0
0.2
24.9
1.7
- 0.0
0.0
10.6
21.7
0.9
0.0
0.7
10.2
19.1
1.3
0.0
0.1
9.7
16.8
0.6
0.1
0.8
8.9
4.5
0.5
0.0
0.4
3.9
-------
Run No.
Entire Train
loial
Frorr; Half Total
J09-
Back Half Total
a
K
2-1
2-2
2-3
3-1
3-2
3-3
.41.5
37.2
'V 33.5
30.2
27.2
9.3
41.3
26.6
22.6
20.4
17.4
5.0
99.5%
71.5%
67.5%
67.5%
64,0%
54.0%
0.2
10.6
10.9
9.8
9.8
4.3
0.5%
28.5%
32.5%
32.5%
36.0%
46.0%
II. Hi-Vol Particulate Samples:
1. Probe acetone wash - this fraction was washed into a tared
250 ml. beaker and weighed according to the usual procedure.
jar.
2. Filter - Tests 1 through 4 had only a filter in a sample
Filters were desiccated and weighed using no tared containers.
Tests 5 through 7 had a filter and dry, loose, sample material in a sample
jar. Filter and loose material was transferred-dry, into a tared 400 ml
beakers desiccated and weighed. The sample jar was washed with acetone
and the washings added to the probe acetone wash fraction.
3. Dry material in paper wipers in a sample jar (tests 6&7 only)
Wipers and dry material was transferred-dry, into a tared 400 ml. beaker,
desiccated and weighed. Sample jar was washed with acetone and washings added
to the probe acetone fraction.
4. Blank paper wipers (6 in number) - all were desiccated
and weighed together; from this I computed an average weight per wiper and
subtracted this weight for each wiper in any of the sample fractions.
James T. Kelly
Chemist
-------
APPENDIX E
Test Log
-------
MIDWEST RESEARCH INSTITUTE
Sampling Task -J^rS-J^
9 Recorded By: /P ^"~~7~77:> <; ซ v i
p; ; ... - . . / '
Date
Run
Location
Port
Z~^ A- i U//, ^
3 " ?-t -
72-
s- sa-
2- ^
. 2- - 3
?;:t."$f3 - 1
-"5.3- -}_ _. n
- "5. 4- -^> -^
i
1
l
i
i
f.../"A= 3
Pollutant
/)-..-y. ^~, /y
1 Clock Time ! r, ,
. .. : ciaosod
| Began .
Ended Time(Min
~~, ~~ -.... r _^
i
Scrnpis
No.
i
J 1 (ir.--. >LJ* 1 A ^-^" y-( ( ,
. j *ฃyT J ? \^ G-->'ฃ>fcS' j
/ f 0 ^ -S ฃ) *>2r>~*}'" C^/O^t
}. / i
i
'/ ft',D$~S>r^7
."
|
"
"_
i
t
1
\
.
fl/Vrtr^
//;/o /)/^7
?:c9ป^
> 3>\e>6*, ;fo^^/0^; \
//Jio^
3^/ S"-
9; SI, 4V
3:^0^
y/;/r^
1
1
-,f0 >*-,'**>'' 7
TO S'.'tr,? Ltj O'/D, ^,
1
!
1
ซ0 V 3 o i
i
i
i
i
!
i
i
I
i
j !
!
MR! - Form (3/72)
-------
APPENDIX F
Process Data
-------
PROCESS WEIGHT
Run 1 Truck Dump
1 2 3,0 0 0 0 . ;-
1 2 3.0 0 0 0 --
3 5.3 0 0.0 0 0 0 +
2 -/.'y 9 0.0 0 0 0 +
2 1. "I D 0.0 u 0 0 +
30.J3 0,0 0 0 0 +
2 7.3 'j 0.0 0 0 0 .r
' 1 6. :> "I 0,0000 +
.1 3,1 6 0.0 000 .+
- 3 3.4 :) 0.0 0 0 0 -t-
4 :'.' 10 0.0 00 0 +
1 ;> 0 0.0 0 0 0 +'
3"j 37 0.0 0 0 0 t
7.0 0 0 0 C
47.0300 0 0 0 t
5 0. 6 d 0.0 0 0 0 +
5 -! 1 4 0.0 000 +
"7 5 3,.i,; 0.0 00 0 '".0.
Time = 1 1/2 hr. test
Tons = 376.7
TPH = 251
-------
Run 2 Truck Dump
Test time = 3 hr.
2 VI ^0.0 000
35.^9 0.0 00 0
30.43 0.0 GO;)
29.5 3 0.0 000
3 i>.73 0.0 000
3 0,43 0.0 000
4 7,2 7 00 0 0 0
3 O.D 0.0.0 000
5 1.1 4 0.0 00 0
3 5.0 -j 0.0 0 0 0'
2 ?.4 6 0.0 00 0
4 7.6-6 0,0 0 0 0
5549 0.0 0 0 0
2 o.l >-0.0 00 0
3 o; i 4 o.o o 0 o
u.U U ij U
2 > 3 1 0,0 0 0 0.
1 :;,y 3 0.0 0 0 0
27,7 3 0.0 0 0 0
3 1 0 i (3.0 0 (}"'()!
^ i.o y o.u oo o
,0 ฃ "\o 'd 0,0 0 0 sj
+"
-t-
Tons =
TPH =
513.2
171.1
-------
Run 3 Truck Dump
2 7.2
50,5 1 0,0 0 0 0 ' +
3-0.20 0,0.00.0.. ;-:
23.4 o 0.0 000 v
2 .->. 57 0.0000 -;-
'-17.20 0;000 0 .-.+ .
5 5.0 6 0,0 000 +
"2 0.2 3 0.0 000.4-
.27,2700000 -i-
3 1.4 6 0.0 00 0 -)
1 0.2 1 0.0 000 +
1 6,0 2 0.0 00 0 )
27.oo 0.0 000 +
4 7, o 4 0.0 0 0 0 -r-
2 7.4 o 0.0 000 -!-
51,640.0000 V
1 7.d 2 0,0 0 00 *
i.O 000 4-
-.0000 ...-;-
'.0 000 +
!.0 000 -s-
kO 0 00 ?-
2-^ 'MO 0000 *
1 77 0 0.0 00 0 +
16.7 1 0.000 0 f
5 1. :> 3.0,0 0 0 0 -*
2 7.1900000 +
1 474 0.0 0 0 0 +
. t> 0,3 ~- 0.0 0 0 iJ +
27.060,0000 +
1 4,3 1 0.0 000 -i-
15--''! 0.0 0 0 0 -f-.
2 7.0 6 0.0 000 -!
I 5.d 9 0.0 000 +
.4 6.2 0 0.0 000 +
. 2 7. U 4 0.0 00 0 +
'! '3.9 1 0.0 000 4-
27.9 6 0.0 00 0 +
1 3,0 6 0.0 000 +
-14.900.0000 +
1 8.0 0 0 0 C
1 6,8 2 0.0 000 *
52.140.0000 +
~T^^^^,.yฃ*.i ">*?ซ ft->'l'-JJf ('j *'ซ*-.,. -f.
";>T---i -": i.; : J't ! '-;"* v-"'i"V'" '4-
Test time = 3 Fir,
Tons =
TPH =
568.05
189,34
-------
Run 1 Transfer Conv. Leg
Time = 3 hr.
Tons = 721.56
TPH = 240.52
s~
-ฃ ' '. "'"
1443130 T
-------
Run 2 Transfer Conv. Leg
4 .'2 T 6,0-0'0 0-
5.0 4 0.0 0 0 0
5.37 2.000 0
5.1 30.0 000
2,7 6 5,0 0 0 0
5.00 8,000 0
1.6 6 3,0 00 0
1.5 4 0.0 000
5.00 8.000 0
f'.. o 9 -C.. 0 0 0 0
2.9 3 7.000 0
1.56 2.0 000
3.0 3 7.0 0 0 0
5.0 5 7,0 000
4,3 7 9.0 0 0 0
2.9 8 6.000 0
5.04 2,0 0 0 0
l.c 0 2.0 000
5.29 1.0 00 0
5.0 9 7.0 000
1,4 6 5.0 000
2.o 7 3.000 0
4.9 1 1,0 00 0
Test tijne = 3 hr.
1 6 v 5.0 000
53340000
4.9 5 6.0 000
4722'OOOG
4.8 1 9.000 0
1.4 6 4.000 0
2. o 6 1.0 0 0 U
2 92 3,0'00 0
5.1 1. 4.0 000
4.57 4,0 0 0 0'
4,9.5 3.0 0 0 Q.
5.0 1 2.0 00 0
3.1 3 3.000 0
' - 5.0 6 3.0 000
2.7 1 3.000 0
3.04 4.0:00 0
'1,4 o 6.0 0 0 0
4, 4 2 6.0 000-
5,1 0 7,0 0 0 0
5.1 6 1.0 000
-T74.06 -1.0*00 0
+
+
. +
i-
+
-r
-i-
+
Tons =
TPR ' =
870.3
290.1
-------
Run 3 Transfer Leg Conv.
3.0 u b.O 000-
:.>. 1 ci 4,U 'J (j 0
4.6 1 8.0 0 0 0
5.08 8.000 0
. 4.7 86.00 0.0
5.4 3 3.0 000
1.693.0000
5.403.0000
5.1 7 3.0 000
2.33 4,0 000
2.404.0000
. 3.109.0000
2.950.0000
' 2.9 3 1.0 00 0"
1.820.0000
2.795.0000
5.225.0000
2.79 8.0 00.0
5.1 3 7.0 0 0 0 '
5.1 3 9.0 000-
; 4.7 9'9,0 000
*:. 9 1 2.00 00
2.874.0000
4.600.0000
5.46'0.0000
2.7.97.0000
2.7 3 7.0 0 0 0
5.334,0000
. 4.697.0000
5. 1 1 2.0 0 0 0 C
5.1 1 5,0 000
3.1 1 8.0 000
5.1 0 0.0 00 0
4,866,0000
3.029.0000
3.0 2 2.0 00 0'
4,96 7.000 0
5.1 1 4.0 000
' 4.7 4 4,000 0
2.82 0.0 00 0
4,750,0000
5.352.0000
2.73 2.0 0 0 0
4.9 4 7.0 0 0 0
' 4,560.0000
5.4 9 3.0 00 0
4 9.5 2 0.0 0 0 0
4 9,5 2 0.0 000
4.9 5 2.0 Q 0 0 '
5.1 5 9.0 0 0 0
295 1.0 00 0
4S6POOOO
Test time = 3 hr.
Tons =
TPH =
1018.0
339.3
1018 tons
3.6-p 5.0.00 0 0
-------
APPENDIX G
Participants
-------
Kenneth R. Woodard, Industrial, AID, SSPCP, EPA
Thomas J. Logan, Emission Testing Branch, ATD, SSPCP, EPA
Edward L. Drye, Emission Test Branch, ATD, SSPCP, EPA
Bob Tussey, MRI
Reed Flippin, MRI
------- |