ATMOSPHERIC
EMISSION
EVALUATION
U.S.ENVIRONMENTAL PROTECTION AGENCY
Office of AirQuaNty Planning and Standards
Emission Measurements Branch, Field Test Sect ion
Thomas E.Ward, Project Test Officer
Test Number 72-CI-34CGRN)
MAYFLOWER FARMS
GRAIN & FEED MILLING PLANT
PORTLAND, OREGON
Contract No.68-02-0236 Task Order No. 2
VALENTINE, FISHER &TOMLINSON Consulting Engineers
520 Lloyd Building Seattle,Washington 98101 (206) 623-0717
-------
VALENTINE, FISHER & TDMLINSDN
CONSULT ING ENGINEERS
A.D.H.H.A. C., A.A.A.B.. G , A. M. C., 1. 11, B .
S2O LLOYD BUILDING" MAIN3-O71.7
SEATTLE, WASHINGTON s> B i a i
WM. M. VALENTINE, M.E.
ARTHUR K. FISHER, M.E.
GEORGE D. TOMLINSON, E.E.
SR. ASSOCIATES
WAYNE A. HANSON, M.E.
DOUGLAS W. PASCOE. E.E.
P. "CHIC" CICCHETTI
ASSOCIATES:
PHILIP W. WOODRUFF
DENNIS W. FINLAYSON
HENRY L. ROYCE, ILLUM.
THOMAS G. JOHNS. M.E.
WILLIAM T. MCDONALD
DEAN A. H ANNIG
DUANE A. SHOFSTALL
ROGER C. HUNTLEY
WESLEY D: SNOWDEN, A.P.
February 8, 1973
PURPOSE
This atmospheric emission evaluation report is an account of our findings
from stack gas samples taken from the exhaust gases of Attrition and Hammer
Grinders at Mayflower Farms in Portland, Oregon. The evaluation was
conducted at the request of the U.S. Environmental Protection Agency,
Office of Air Programs, Emission Testing Branch under Contract No. 68-02-0236
for the purpose of generating background information to esablish emission
regulations on Grain and Feed Milling plants. EPA and Hi-Vol sampling trains
were used simultaneously for comparison of measured emission.
SUMMARY
The three stack gas samples collected were found to have concentrations of
0.0068, 0.0022, and 0.0023 grains per standard cubic foot from the EPA
sampling train and 0.0036, 0.0022, and 0.0012 grains per standard cubic foot
from the Hi-Vol sampling train. An additional Hi-Vol sample taken during
limited alfalfa pellet milling was found to have a concentration of 0.0163
grains per standard cubic foot. The standard cubic foot is reported at
70°F., 1 atmosphere pressure and dry. Plant production rates during the
evaluations were recorded at 7.8, 4.0, 9.9 and 6.3 tons per hour for
Runs 1, 2, 4 and 5 respectively. Emissions calculated on the basis of pounds
per ton of production are 0.040, 0.010 and 0.015 for Runs 1, 4 and 5
respectively with the EPA-train and 0.020, 0.101, 0.010 and 0.009 for
Runs 1, 2, 4 and 5 respectively with the Hi-Vol train.
Wesley D. Snowden, P.E.
Manager, Environmental Services
WDS/vc
-------
DISCUSSION OF RESULTS
Run #1 included simultaneous samples with the EPA train and the Hi-Vol train.
Run #2 was taken with the Hi-Vol only. Projections based on Runs 1, 4 and 5
on what the EPA train would have recorded for Run #2 indicate that the emission
concentration could be as high as 0.03 grains per standard cubic foot. The
atmospheric emissions during Run $2 were noticeably greater when the plant
was milling alfalfa pellets. Run #3 was terminated when production was curtailed
15 minutes into a desired 108 minute run so run #3 sample was discarded. Run
numbers 4 and 5 included simultaneous EPA and Hi-Vol samples.
The two trains were operated with +10% isokinetic. The Hi-Vol technique did
not consider the changes in orifice pressure deflection due to the presence
of moisture. The actual cubic feet passing through the Hi-Vol filter was
determined by assuming dry air passed through the orifice at 60°F. and then'
adjusting for temperature changes. Hi-Vol standard cubic feet per minute
dry was calculated at standard temperature and pressure, excluding water vapor.
The average actual flow rate for Runs 1, 2,4 and 5 was 5507 acfm. The square
footage of dacron felt fabric was 792 square feet so the air to cloth ratio
was 6.95.
Production rates during sampling were determined to be: Run #1 - 2 tons
of Oats and 12 tons of Barley/108 min. (7.8 tons/hour); Run #2 - 7.2 tons
Alfalfa pellets/108 minutes (4.0 tons per hour); Run #4 - 6 tons of Oats,
9 tons of Corn, and 2 tons of Barley/103 minutes (9.9 tons per hour); and
Run #5 - 7 tons of Corn, 5 tons of Wheat, 6 tons of Oats, 1 ton of Barley/
180 minutes (6.3 tons per hour).
The atmospheric emissions measured with the EPA train per Method //5 of the
Federal Register, Vol. 36, No. 247 averaged 0.0038 grains per standard
cubic foot and 0.0023 grains per standard cubic foot with the Hi-Vol train
(See Table 1). Note in Table I that the EPA train per Method 5 reported
emissions approximately 60% higher than the Hi-Vol sampling train and Run #2
Hi-Vol emissions were 7 times higher than the average when the plant was milling
alfalfa pellets. The inclusion of condenser water hydrocarbon extraction and
water evaporation portions in the total particulate of the EPA train increases
emissions on the average of 24%.
-------
TABLE I
MAYFLOWER FARMS GRAIN & FEED MILLING PLANT
COMPILATION OF EMISSIONS
RUN NO.
1
2
4
5.
1,4 & 5
TOTALS
1,4 & 5
AVERAGES
CONCENTRATION
GRAINS /SCF
EPA-//5*
0.0068
0.0022
0.0023
0.0113
0.0038
EPA-COND.0
0.0080
0.0163
0.0027
0.0029
0.0136
0.0045
HI-VOL
0.0036
0.0022
0.0012
0.0070
0.0023
POLLUTANT MASS RATE
POUNDS /HOUR
EPA-//5*
0.309
0.102
0.097
0.508
0.168
EPA-COND.0
0.364
0.127
0.121
0.612
0.204
HI-VOL
0.159
0.728
0.101
0.055
0.315
0.105
PROCESS WEIGHT RATE
POUNDS/TON
EPA- #5*
0.040
0.010 '
0.015
0.065
0.022
EPA-COND . °
0.047
0.012
6.019
0.0784
HI-VOL.
0.020
0.101
0.010
0.009
0.039
0.013
EPA
RATIO
COND.///5
1.179
1.241
1.312
3.732
1.244
* Total Particulate determined by EPA Method #5 - Federal Register, Vol. 36, No. 247.
Total Particulate by Including Condenser Water Extraction & Evaporation Portions.
-------
PROCEDURE
This atmospheric emission evaluation was conducted simultaneously with
two sets of sampling equipment. The primary set of equipment was designed
by the United States Environmental Protection Agency (EPA) and the comparison
set of sampling equipment was designed by Oregon State University refered to
as the Hi-Vol procedure. The EPA equipment and procedures used on this
evaluation are detailed in the Federal Register, Vol. 36, No. 247, Method 5
and the Hi-Vol equipment and procedures used on this evaluation are partially
described in "A High Volume Stack Sampler", Boubel, R.W., Air Pollution Control
Association Journal, December 1971, Vol. 21, No. 12, pp. 783-787.
The EPA sampling train was started first because a longer sampling time was
established for its use. The Hi-Vol sampling train was started within 15
minutes and located in the sampling port 90° away from the EPA train. The'
EPA train was operated from 2 to 3 hours on each sample and the Hi-Vol train
was operated for 18 minutes on each sample.
The two sampling ports spaced 90° apart were located six diameters above the
last, obstruction (fan outlet) and 2 diameters below the stack outlet. The EPA
train collected its sample from two 18 point traverses (36 points total) and
the Hi-Vol train collected its sample from one six point traverse (limited
number because sample time was short and velocity readings were not as
accurate as with the EPA inclined manometer).
The stack gas velocity was calculated from velocity readings taken during
sampling. Preliminary stack temperature, pressure and velocity readings
were taken to size the sampling nozzle on the EPA train. With moisture
content of 3% determined by wet bulb-dry bulb technique, an EPA-designed nomograph
detailed in the "Specifications for Incinerator Testing at Federal Facilities"
was used to select a 1/4" diameter nozzle. The Hi-Vol nozzle selected from
a group of 4 graphs was a 1.875 inch diameter. The four nozzle and orifice
deflection selection graphs are enclosed in the back of this report. Combustion
products and/or chemicals were not present in the exhaust gases so the
dry weight of the exhaust gases was assumed to be that of air.
Isokinetic velocities were maintained on the Hi-Vol train by establishing a
"C" factor on the EPA-designed nomograph by trial pitot and orifice
deflections. Maximum and minimum pitot tube readings were used in the
4 calibrated Hi-Vol manufacturer graphs to determine maximum and minimum
orifice readings. The two readings crossed the "C" factor line at one place
which established the swivel point between velocity to orifice readings.
Rapid adjustment of the rate meter reading was possible utilizing the
nomograph. • •
Schematics of the EPA designed and Hi-Vol stack gas sampling trains used on
this evaluation project are enclosed in this report. Both trains were
calibrated prior to use on this project. The "S" type pitot tube used on
this project was calibrated and found to be 0.83.
-------
CLEAN-UP AND ANALYSIS
Clean-up of the EPA train was performed by carefully removing the filter
and placing it in a container marked "Run X, Container A". Reagent grade
acetone and brushes were used to clean the nozzle, glass probe and
pre-filter connections. The acetone wash was placed in a container marked
"Run X, Container B" . The volume of water in the impinger and bubblers
(glassware) was weighed in their respective containers to the nearest
0.1 gram. The original weights which included approximately 100 ml in
the bubbler and 100 milliliters in the impinger were then subtracted
and the difference added with the water weight gain of the silica gel
constituted the amount of water collected during the run. The silica
gel was weighed in a bubbler before and after the run. The water from the
glassware and a water rinse of the glassware were placed in a container
marked "Run X, Container C". An acetone rinse of the glassware and •'
all post-filter glassware (not including the silica gel container) was
performed and placed in a container marked "Run X, Container D". i
Analysis of the samples in each container was performed according to the
following: I
Run X, Container A - Transfer the filter and any loose particulate from
the sample container to a tared glass weighing dish and desiccate
for 24 hours in a desiccator or constant humidity chamber containing
a saturated solution of calcium chloride or its equivalent. Weigh
to a constant weight and report the results to the nearest 0.1 milligram.
Run X, Container B - Measure the volume to the nearest 0,1 milliliter.
Transfer acetone washings from container into a tared beaker and
evaporate to dryness at ambient temperature and pressure. Desiccate
for 24 hours and weigh to a constant weight. Report the result to the
nearest 0.1 milligram.
Run X, Container C - Measure the volume to the nearest 0.1 milliliter.
Extract organic particulate from the water solution with three 25 milliliter
portions of chloroform and three 25 milliliter portions of ethyl ether.
Combine the ether and chloroform extracts and transfer to a tared beaker.
Evaporate until no solvent remains at about 70°F. This can be accomplished
by blowing air that has been filtered through activated charcoal over
the sample. Desiccate for 24 hours and weigh to a constant weight. Report
the results to the nearest 0.1 milligram. After the extraction, evaporate
the remaining xvater to dryness and report the results to the nearest
0.1 milligram.
Run X, Container D - Measure the volume to the nearest 0.1 milliliter.
Transfer the acetone washings to a tared beaker and evaporate to dryness
at ambient temperature and pressure. Desiccate for 24 hours and weigh
to a constant weight. Report the results to the nearest 0.1 milligram.
Blanks were taken on the acetone, ether, chloroform, and deionized water
and subtracted from the respective sample volumes. The filter paper used
with the EPA train was a Mine Safety Appliance 1106 BH, heat treated glass
fiber filter mat.
-------
CLEAN-UP AND ANALYSIS
Clean-up of the Hi~Vol sampling train was performed by first carefully
removing the 8" x 10" filter, folding collection side in and placing it
in its tared 6-1/2" x 9-1/2" manila envelope. An acetone rinse and
brushing was performed on the front half of the filter holder, probe and
nozzle and placed in a water-tightly sealed, teflon liner glass jar for
shipment to the laboratory.
Analysis of each sample was performed according to the following
procedure:
/
Filter - Desiccate the sample filter and blanks in their tared envelope to
dryness for at least 24 hours. Weigh the filters in their manila envelope
to a constant weight and report the results to the nearest 0.1 milligram.
Acetone Rinse - Measure the volume to the nearest 0.1 milliliter. Transfer
acetone washings from container into a tared beaker and evaporate to dryness
at ambient temperature and pressure. Desiccate for 24 hours and weight to
a constant weight. Report the result to the nearest 0.1 milligram.
Blanks were taken on the acetone and a proportion of weight based on sample
volume was subtracted from the sample weights. The filter paper used with
the Hi-Vol train was a Mine Safety Appliance 1106 BH, heat treated glass
fiber filter mat.
QUICK
DISCONNECT
COUPLING
FILTER HOLDER ASSEMBLY
PRESSURE AND
TEMPERATURE GAUGES
CONTROL VALVE
FLEXIBLE
HOSE
TEMP.
SUCTION BLOWER
-------
CAP. TO
U
fit/A/Mff.
-------
NOZZLE
"S" Type pitot.
integral with
sampling probe
rHEATED BOX
STACK WALL
' HEATED PROBE-7
K / J
TEMPERATURE
UMBILICAL
CORD
EPA STACK GAS SAMPLING. TRAIN
(PARTICULATE)
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
s^/% G^/rr^wg/?.
PRIWT-OUT OF ATMOSPHERIC EftiiSSSOM DATA
/?-.- /•? ./— *?'2*
.j v La i^ /*\ i»i «^ . ..-•r —
PREPARED BY
ciipifrr-T /?£
9 G > 9 0
30-34
530
569
93.414411
2. * 2 1
2 • 3 1 1 1J50
0-576389
28-95
23-696934
1 • 0 C 4 3 9 9
30-1?
0-995847
Sff£ ^/t/Jsfr&e^
;;J & / £?//# 7,
0-33
! c" f- *•
5 o o
1 3 -5698 1 9
VOLM
PM 0-33
TSTD 558
TM 13-569819
VOLsTD 0-39
r c: o
VOLw 14-765161
M 0'41
559
MF 15 • 139022
W0
0-46
Ww 559
1 6 • C 3 5 5 G 5
CD
PSN 0-49
559
Cs 16-550226
0 • 3 6
559
14-574635
.0-46
• - 557
16-006873
0-46
' • 557
16-006873
0-74
5 5 7
2 0 • 3 0 22 1 6
0 ' 7 7
' ' 557
20-709659
0-?r
55?
c 0 * ? 0 c> 6 5 9
^ ,,..,, APPROVED
0-63.
557
21-50139 5
0-81
557
21-240 16 2
0-81
557
21-240762
0-83
557
21-501395
0-31
557
21-240762
0-75
55?
20-438933
0-3
558
12-938315
.0-365
55.8
14 -271299
* \
0-44
.. 558
15-669077
0-475
558
16-230356
0. C '\
' 3 c.
5 5 7
1?'0 1 6 8 1 3
• 0-53
557
1 7 • 0 1 8 5 1 3
' y
^-^i^jT* & ti s* r-
yj/U <£07?? (fi~
. • 0-56 VH
557 Ts
1 7 • 6 6 i 257
• 0-56 VH
55? Ts
17-973869
0-69 •
- ' '" 5 5 7
19-6043.36
•0-72
556
20-007998
0 • 7 2
5 5 6
o ^ B r ^ 7 G o p
•<- o \j \) t .' s O
0-72
556
20-007998
.0-72
. 556.
20-007998
0-.72
• • 556
?. 0 -007998
0 ! 72
556
20-007998
• 0-68
556
19-444279
0 • 6 4
556
1B« 863721
0>54
556
'I 7 • 3 :''7434
/ rtF 7
1 0 , r -> -, r- -i ,-
1 -.' U - ^ ' I J
0 ' G 3
43-41766 0
2 -132
5684 - 24 OC. 40
530
5 5 7
3 0 " 1 7
5327 - £50428
557
5 3 0
3 C • i ?
1 08
0-000341
45-102932.
103 -.881535
40-2
0 • 006627
,1 2
C •00.6627.
C • 302621
40-2
1 0 G
C ' 0 G 0 3 4 1
C ' 3 ] 4 7 7 ~
C ' 3 0 8 697
1 2
c • o r 6 7 ;\ r
^cTJ
Ka
Vo
As
Qo
TSTD
TS
PSN
Qos
Ts
TSTD
PSN
T
An
Vn
1
PT
C0
N
c
PMRP
PT
1
Ac
"S
T
An
PMRAR
PMRAVC
N
c'
-------
VALENTINE, FISHER &TQMLINS.ON 7
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OP ATMOSPHERIC EMISSION DATA
JOB
PREPARED nv ,< sV APPROVED____ PAGE___=__ OF
'
=L__ OF
72.
2 • 2 M 0 ' 35 VH ' 0'42 VH
C-57COOO MF' ' !'44 TS 550 Ts 1 4 • 4 c ? G 6 3 Ka
13-79555Q 1 5 • 1 9 G 6 C 4 .
30- 17 p . 1-0 CP-
53GTSTD- 0-35 VH • G-33VH 4 2 • G 0 0 5 G 5. Vo
5 4 9 T« ' 5 4? TS ' 5 5 0 TS 2 • 1 G 2 AS
23 -13-636545 .. • 14•456C32
4S.'?6 ACFMK .'r • ' '• „-,, 5498-764930 Qo
C 7 6 • 6 4 l i 4 6 VOLM • 0 • 4 5 ; . :• - u • -> 5 -
' 5 ' ? 5 W0 • 15-732132 '13-874436' . " - 6 'T""
.,," r ^ 's
2C-7C9100- Ww '. . . - . - J"'i't '?™
, '•••'•• ' 5l69-146155n
1 ' G04 156 Co . .•'..' . Uos
3 n « i 7 p
^ v J- ' ' SN . • . .
'•'•-•• .-••'" ' 556 Is
C'99584-7 Cs : ;. - 550 JTD
. • ; , •'. . 30-17 PSN
-'.'-.- -, - ;•.'• '- • . . •: 0 • 0 1 9 i 74 An
. " 4 3 • 3 6 4 2 1 8 Vn
1 03 -245750 '
..' • . - - '• • • •>• 24 7 PT
.--:.;• 0 • 0 0 3 5 2 6 C0
12 '
0-003526 C
0-156218
247 FV
2 • 1 G 2 AS
23 T
0-01 5 174' An
G' 161512 PMRAR
C--158C65 PAARAYC
12
-------
VALENTINE, FISHER & TpMLINSON
CONSULTING ENGINEERS
COMPUTER PRINT-OUTOFATMOSPHERIC EMISSION DATA
J«B N«LME t-s/v v/w r/^s.#srxK- / ^^sr/<->
pRFPAnrn nv rl/f <£< <; J/1/tJ /V/f:'/ ^ 't "y o
16 'T ; . . •
4 4 « 3 o i*^~r '•'IJA o • 4 0 ' •
757 -.64 7E15. VOLM 5 , Z, ;
WD 1 4 • 9 ? 6 4 6 6
..,-,„„,!, PA^F , ,,,/"ni / *—•
c^ _ PAnr --^ <-vp /
0-35 VH .'• ' ;
S 5 7 TS 1 4 - 6 5 D 1 1 7 Ka
'13-962449. - ,
r , i " VM V
u ^ <-> v n 4 - . 4 5 r) c 4 6 °
557 Ts; ?J1C2 As
1 4 • 5 4 G 5 3 9
1
5 5 5 7 • 6 6 4 7 Q n Qo
0 • 33 • j -
rr c -7 — .
J J 7 1530 T5TD .
13 • 557654 ! , T
I -1 ~J I "S
?8•7Q9100
"1 « r ^ / i r /'
i u u M i o p
?3 • 778356 Q
OS
C-G19174 An
38-9P56G4 y
?1 -696360 ,"
r.33-6 p
0-016947 r
. . 13
C • Cl 6947 C.
G • 7 56 7 60 PMRp
£33-8. PT
^ , 1 O •-. A
(- i o (, AS
1 C T '
0-019174
696669
Cv7?77if. PMR
AYC
-------
VALENTINE, FISHER &TOMLINSON
CONSULTING ENGINEERS
COMPUTER PRIHT-QUT OF ATMOSPHERIC EMISSION DATA
JOB NAME /:--//*- <^/r///s*ST£&/K?-/z /TTXy-^o -/w/&/wv(s/f(&a/v nATp / ~/ ~
i// /9 /~* \^&^ //
PBF-p/iRrn BV /y/- -4X - J/£,/35 0--.7S' 0-64 .' ^'^
f; r n . 5^6 546
1-87 VOLw i /; . 4 5 g 33 ? ? C ' 8 06729 18- 6.9 3314. ^ 6 4 ? • 7 ~
1 • 8 3 2 3 6 0 M n . ^ ' o-74'-.'' C ' 6 6
" r^c 548 546 . .' . .
0-981672 MF 1(- .7-,, 132 20 '1375 2 7 19-268627 3
28 • 95 WD
-. . 0.47 0-74 0-64 5395-91
? 8 • 7 4 9 3 0 8 Ww • " „ 548 5 4 7
*' - *J 0
o ^. . -i -? 7 R " 7 15-7104 2 4
' r 16-077935 2i. ' 1- ' -^ '.
1 ' 0 0 3 4 33 D
30-1^ PSN '„ ' 0-66 °"64- 3
n « 4 7 ^ _ . ..-
s / o ^ 4 r
r, t; ^ 0 ^ u
Q . o c 6 ^ M n Cs " ~' ° t G . - n 3 P F r- 18-7104 2 4 D ' 0 0
v'6 . 16-077935^ 1 S ' ^ C ^ «-• t.- ^
'••',, 0'60 47-40
0-54 0 • J J 54? 10^-97
• .._. S 4 £
550 • . ' • " 18-116291
17-233687' 13'447676
0-60 0 ' 00
0-57 O'41' ':• 547
548 . 5 4 8 1 fi • 1 1 6 2 9 1
17-673705 '1.4-^89325
0'60 0-00
r . " n ' 0-47 '547
0 ' o 0 u
'545 546 1 S • 1 1 6 2 9 1 0 • " 5
2G-938003 16-C48675
A r* n
0 -> o A
' M7
0-70 • 0'4G
546 . 510
c. /i f; S 4 f
r, 4 g 5 - o
r ~ ' i <; , -1 •* -> r, 7 c 17- 8^ 1 1 7 9 3
« . * n. n ™ Q ^ 1 >• '*.,<'-• ' -• r. . 1 y,
/
^ ,
^^
7
)
9
w
8
D
p
0
2
0
>J
6
rr
.J
1
<**
cl
«-\
C
1
I
•
(~>
U
-\
1
„
1
1
6
5
5
.
7
r
j
0
.
1
T
_>
3
3
3
1
1
3
~%
i.
1
3
•-\
c
_
O
„
u
7
8
•'-t
3
4
1
6
H
3
1
0
4
5
£
i
0
1
0
9
•
8
0
A
1
~*
(~
-?
J)
tj
z
o
0
f;
3
£.'
O
U
3
6
1
7
>,
7
6
^
t
6
Q
*>
•t
i
c
8
1
3
Ka
CP
V0
As
Qo
TSTD
TS
PSN
Qos
Ts
TSTD
PSN
T
An
Vn
I
I
PT
(^
°
N
C
PMRp
PT
AS
T
1
An
PMRAR
Ft L i «
? 1 . 15939 D
0 ' 78
?C-6 3:68 60 18-72751
0 ' 5 P
5 -^ 7
17-851793
•102336 PMR
i: N
AVG
-------
VALENTINE, FISHER &TOMLINSON
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
JOB NAME
PREPARED BY
SUBJECT-
1 -4 M
C-^£6COC MF
30-13 PSN
5 - 0 TSTD
539 TM
1ST
'• ? • 3 - ACF M
3 C 6- 7 54 7 1.0 VOLM
O r' r; r*
'° ^ Wo
M
fw
1 ' C 0 2 6 5 7
30-
Go
13 p
'
SN
1 4
G-3C VH
-''0 Ts
c-40 VH
54; Ts
0 1 C 0 n 6
0 • 4 3
549
15-364569
C •• 43 VH
5 4 C Ts
1 5
5 4 7
1 4 • 6 C 5 C I G
0-32
54 6
13-218 1 6 5>
5(n Ka
7V40 Q<
•:545 Ts
^ G " 1 .>
t"-'-7-i . ^'ir^-rir Cjr^c
j ^ .,• i ' O i J c .> .J ^-*OS
54 C Ts .
3 C • 1 3 PSN
1C T
c • c: 917 4 An
43-5C6Z'?5 .Vn
1 C L • 7 7 B A 4 1 I
1 ?. 2 • G PT
0 • C 0 21C 1 C0
l? N
G • 0 0 ? 1 fi 1 C
C • Q5S6f. 6
1 ? T • C PT
? • 1 fi 2 As
IC'T
C ' 0 1 ? 3 7 4 An
C- 1C 1134 PMRAVG
i r N
c • corn : cr
-------
VALENTINE, FISHER &TOMLINSON
CONSULTING ENGINEERS
CORSPUTEK PRBWT-QUTOF ATMOSPHERIC EMISSION DATA
-/- ^7^
JOB NAME ^~ ' '//•s/r/f "&£'tCrJs&S*- / "/
^-/w*J
nATir
PREPARED BY ^fr/-^- Wv^' ' W'^&A/' APPROVED k^*y- PAGF
euraiP-r-T &//U ^ 't5~~ -^/^ /%
0 • 2 C
550
1 O « /<"'-/" "7 "?
VOLM J? J'C
-------
VALENTINE, FISHER &TOMLINSON /
CONSULTING ENGINEERS COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
PREPARED BY
1 • 4
C • 9 ?, C 0 0 0
>fc^- f
~/gf^ /^
M
MF
Jt/0*f£>&V
?7? C'/'£ /q?
u'35
550
1 3 • C 7 4 4 3 6
v^x*1^ -7 -7
APPE?nypri -=*f5! PAfSF / r^p /
VH 0-35 VH
Ts ' 550 Ts 14'3l7676Ka
',P ^ ACFM
^ fj ' t C :^VV-r'V1)
794-630359 VOLM
28-796700 W'
0--35 VH
1 4 • 6 4 5 8 1 G
15-C16657
VH
1 4 • 4 5 6 G 3
550
13-266439
530 TSTD
30-14 P
w
SN
1-COP657 C
C • • 9 9 6 3 4 3 Cs
• 5 5 0 Ts
5 3 0 TSTD
30-14 PSN
16 T
C • 0 1 9 1 7 4 An
4 0 • 0 5 1 S 2 7 Vn
96 • 6551C? I
V r. „ PT
6 .3 • f ' T
0 • 0 C 1 2 6 3 Co
N
0 • C 0 1 ? 6 3
626<; PMRP
6 5 • ? pT
. i r ^ i
' 1 ^ <: As
1 8 J
0-019174
6 PMRAR
o PMRAVG
? N
-------
TABLE 1
PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY
VOLm = Dry gas meter volume @ meter temperature and pressure, dry - acf
Pm = Dry gas meter pressure (recorded as inlet deflection accross orifice
meter) - "Hg
Tin = Dry gas meter temperature (average of inlet and outlet)
PSTD = Standard atmospheric pressure (29.92" Hg)
TSTD: = Standard Temperature (520 or 530° R)
VOLW = Volume of water collected (expressed as vapor at standard temperature
and pressure) - scf
M = % water, calculated from amount the train collected in impinger$-
bubblers, and on silica gel
i . . • •
I •
MF = Mole fraction of dry gas
WD = Molecular weight of dry stack gas - Ib/lb mole
Wy = Molecular weight of wet stack gas - Ib/lb mole
Wa = Molecular weight of air - Ib/lb mole
Cp = Velocity correction coefficient for gas density
P gjj = Stack pressure (static + .barometric) - "Hg
Cg = Velocity correction coefficient for stack pressure
VHn = Pitot tube pressure differential - "l^O
Vo = Stack velocity @ stack conditions - fps
Qo = Stack flow rate at stack conditions - acfm „ . •
Tg = Average stack temperature - CR
QQS - Stack flow rate at standard conditions - scfm
T = Time over which sample was collected - minutes
Vn = Velocity of gases inside nozzle during sampling - fps
I = % isokinetic (+ 10% desirable)
CQ = Particulate concentration - grains/scf
N = % CO 2 by volume in stack (12 indicatesno % C02 correction is to
be made)
-------
Page 2
TABLE 1
PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY
C = Particulate concentration corrected to 12% C00
PMRp = Pollutant mass rate - "concentration method" - Ib/hr
PMR.,, = Pollutant mass rate - "area ratio method" - Ib/hr
= Average pollutant mass rate - Ib/hr
C = Particulate concentration corrected for non-isokinetic sampling
condition-grains/scf
Pip = Total Particulate collected by sampling train - mg
As = Area of Stack - FT2
An = Area of Nozzle - FT2
-VH = Velocity head readings for pitot tube - inches water
= Standardized gas that passed through the sampling train -
cubic feet, 70s F,, 1 atmosphere pressure, and dry.
= Velocity correction coefficient for type pitot tube - dimensionless
0.83 to 0.87 for "S" type pitot tube normally and 1.0 for "P"
type pitot tube.
-------
PARTICULATE CONCENTRATION & PMR CALCULATIONS
VOL
(VQLm) (Pm)'(TSTD)
STD'
M
MF
(100)
VOL
STD
100 - M
100
(WD) (MF) + 18 (1-MF)
Wa*
6.
15. PMR,
16.
17. PMR
(Qos> (0.008571)
T~A — (0.000132)
AVG
18. C
* PSTD
"a
= FMRAVG
Q^— Ci4oo;
= 29.92" Hg. |
I
= 28.95 LB/LB MOLE
7. K
n
2.9 (Ka) (Cp) (CD) (CS)
9.
(V0) (As) (60)
,10. Qos
11. V
n
12. I
O (TSTD) (PSN)
(VOLSTD) (PSTD)(TS)
__
(MF) (TSTD) (PSN) (T) (AN) (60)
(100) _J1
13' C0 " VOLi^- (°-0154)
14. C
CQ (12%).
N
-------
HI-VOL PARTICULATE CONCENTRATION & PMR CALCULATION
1. MF = 1 ~ M/100
2. ' VOLSTD = (ACFMm)(T) TSTD PSN (MF)
4.
15.
16. FMRAR
(C0) (Qos) (0.008571)
PT
(0.000132)
PSTD 17.
3. M = (100)(VOLl.7)/(VOLSTD +
6.
7. K
= (WD) (MF) 4- 18 (1-MF)
PMR
'AVG
18. C
T An
PMRp+PHRAR
= —2
= "«AVG
Qb^N ("00)
= 29.92" • Hg.
-•= 28.95 LB/LB MOLE
= Flow through orifice ®
temperature.. • i •
Pg^j assumed equal to orifice
pressure.
n
8.
2.9 (KJ- (Cp) (CD) (CS)
9' Qr
(V0) (As) (60)
10. Qos
11.
n
(VOLSTD) (PSTD)(TS)
(MF) (TSTD) (PS
(AN) (60)
12,
13. C,
14.
0
(100) jn
' J5T
(0.015A)
C0 (12%)
N
-------
VALENTINE, FISHER & TOMLINSON
SEATTLE, WASHINGTON
CI
LC
D.c
01
Rt
EC
FI
JENT
1CATION.
LTE
'SRATOR/S
'N HO.
iUIPMENT
LTER NO.
CLOCK
TIME
/ 3 ; 5, ,r ^"
^^ 6 . ^
f ^ <<:- . T^
9- •?.;•>', 2 7
DRY GAS -TEMP.
I2LET. ,
9 $
£f i
if O'
" c/7
/a z
//>&
/r, c/'
-2/ £
///
/ y d
/'Z Z
/2&
— / "Z- —
/'? £?
niiTr.^T
p •?
$?-
9- i
f, Z.
K>
P ^7-
C- c—
06
5> 7
?tf
3
11
qz
t/a.
q <^-~
••->, -,j
' PUMP
VACUUM
("Hg Ga.
^
-g
-^
"-^ • S~
?/tr
-.1
3
/^ / S
?. s"
{/.
"^
/i , 77
Q, 83
i', t;7
o. 8/
ORIFICE AH
("HpO)
J^ESTRED
rrrn
. // 3
/($. ....
/,5'^.
/< ^.5
/- /'
A^.'5
A_ ^
/, '/-S'
/.-.S"^
/r #5"
,. /££..,
3./&
?. /'
30,-v/ /
''•
«
f<
/,
TA "'T17V
^' Z r\ V J- -L A.
/ / / / ,'
*— /^
•'•
t,
'<
«
-------
CLIENT
VALENTINE, FISHER & TOMLINSON
SEATTLE, WASHINGTON
PARTICULATE FIELD DATA (CONTINUED)
V.F.T./AP1C
-------
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
DATE
H20 CONDENSED IN IMPINGERS, ml (1 ml = 1 gm)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70° F. AND 1 ATM.
0.0474 x TOTAL H20
q 1'
MOISTURE IN STACK GAS,
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
RUN NO. (
LJL3JLL
Final
••21 A 6
% MOISTURE IN STACK GAS -
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
. 100
MOLECULAR WT. .OF STACK GAS - AVG. DRY MOL. WT. OF GAS x MOLE FRACTION +
18 x (1-MOLE FRACTION)
BUBBLER (//I)
IMP ING ER (//?.)
BUBBLER (//3)
. TOTALS
FINAL (gm)
( /
(ml)
__(Dry) -
3,7
(ml)
'Z./,$ (ml)
2 o,
-------
PART IV
VALENTINE, FISHER & TOMLINSON
VELOCITY TRAVERSE DATA SHEET
CLIENT __
DATE 8 'S/- 7Z. TIME
SAMPLING PORT LOCATION
STACK AREA, FT.2
REFERENCE POINT _
OPERATOR
RUN NO. A6*
TYPE PITOT TUBE USED S" ' W SS~//f
BAROMETRIC PRESSURE
, ff J*
STATION
7
2.
-?
-^
&
6,
7
61
Q
/O
//
/z.
/3
/^
/5*
/<&
/7
/g
AVERAGES
DIST. FROM
REF. PT.
0,5-^^^
0, 88
l'S~o
^ ., / 9 '
2 ,^2.
•3;-? 6., •
. ^7& '
,.- 9^ .
7. (*4-
,/Z, 36>
Mo B
/^.-td
/&,z &
/•?, CQ
/7,8Z
/S. 5-o
/^/2
/f, 5^0 *
VH ("H20)
STACK
TEMP(°F)
TS (°R)
STACK PRESS.
("Hg)
VH x TS
*
/VH x Ts
i
*"P" type pitot tube velocity read from velocity tables at stack temperature
and vel. head values using the following equation (Ref. Western Precipitation
• Bulletin WP50): /j
V = 2.9\VVH x Tc
Tg = Absolute Stack Temperature, °R • •
VH = Velocity Head, in.H20 . •
V = Point Velocity (fps)
Velocity correction for; "S" type pitot tube = 0.855 x "P" type, gas density
\/(28.95 Ib/lb mole) air/Mol. Wt. Stack Gas, Stack Pressure Correction =
>/29.92"Hg./Stack Pressure.
T 7~&
VFT/AP2A
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PART ICULATE SHEET
CLIENT
EVALUATION LOCATION
EVALUATION DATE
/5&C/WS DATE OF ANALYSIS
RUN NO. /
CLEAN-UP SET NO.
/
I. EVAPORATION OF
OQ
(ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER. , ' •
FINAL .&86<£2,8 (mg) - TARE &fiO//,Z. • (mg)
-BLANK (( <2, 0/^3- mg/mi) ( ^ O O mp = ^^ mg)
II. FILTER CATCH /$S/$ /^&&/ &J **/&&? (Media Type) '
.FINAL /ST&Q (mg) - TARE / £& , O (mg)
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
/'2',-O
mg.
FINAL ST653. C\ (mg) - TARE ~$'
-------
VALENTINE, FISHER & TOMLINSON
SEATTLE, WASHINGTON . .
CLIENT
7 '•./-• » rriT/"--.T
JJJ^:\.i J.C*<
T\ A r"1
Xy."i. j. £j
OPERATOR/S
PUN NO.
tx- o/c. &<:?
PARIICULATE FIELD DATA
VERY IMPORTANT: FILL III ALL BLANKS
PILTr^-i NO. :..;-.—
AMBISN'T -TEMP.
BAR. PRESSURE
ASSUMED MOISTURE
HEATER BOX SETTI1IG
PROBE NOZZLE DIA.
PROBE LENGTH
PROBE HEATER SETTING
SOQ
3
i CLOCK
! TIME
DRY GAS METER
(CUBIC FEET
[ &"• I 7 I S"_tf - j>(
L_ 8^l€TT_fc£_±i
f ^j"7. £J2..30
GAS TE:MP.
(°F)
2, l^i^LEOI-
L-iZlj^-I^
pi^i?
VACUUJ.l
("h'g Ga.j
~2-±2^
BOX
TEMP.
(°F)
•"? C7-~
«— T>O
IMP:
TEl
• (c
<
I
PITOT A P
POINT
:"HoO)
ORIFICE
.... (!'HpO)
STACK
1
•• ,'"K-) ! '°-)
!\ P'T1!r a T ^ * o ' ? ^ * ' i
...,-„._.y—- ?/~7^/**7*~/"/""ir~7" 7",'A "*/ j/"~^//" "~/~3 7 7'/' '•"*""'
iiTzziir^r
V.F.T./API5
-------
'itMi- " ' i. 1'.' ••'•'iK ic
SEATTLE, WASMI
CLIENT
PARTICULATK FIELD DATA (CONTINUED)
UJ-LIUX
TIME
iM (j.t^> fiLllilV
(CUBIC FEET)
/ o 3. c- /
i-'lvl UAO l!i:vir . |
~'CF.y-- ,
INLET } OUTLET
!
// / 1 P / :
PUMP i BOX
i VACUUM TEMP.
IMPOGER
TEMP.
POINT
:zzz7/::
. 9 • g / ! / 0 Cf • SB \ // Z.
- ^^•^»^'r^T^?'i^"i*r'^ff'7*'^''-T^rtl^Tv«t-1'~-'Ji"'~rT J
^SL42SS-L^-
PITOT/iP i ORIFICE
("H20)
DESIRED j ACTUAL
:2:2rr.7izL
3:>" J. 3 o-
STACK : STACK
PRESS.I TEi-r?
("H») ! (c?.:
H£ztl^,.cll
Jiz.
.....
-
.— .._ —
—{ /j?
<^6
^
pPAcr
CITY
'
! ••?,
_£:^. _._.R. __ r.i.
/ /•} %' T -^tj . i J/ *'
7'\
//
~«--'«----;--— -«•'- ------ -• - «=• — - — -*•
i.5-
1 e<$-
\
TTzz^zisisir
i.d_J t* Sf
./.*/ 4 >vf
H 7_, j? c?_J /_£_£•- 1 %.±^ \ __ ^, £_j
UlifJJL I—'G F~i" "^ ^Ji _Ik"£.T
'/r ri'&M*~: /r^^-t"--"y3c.;r~ ^~tf j
.—...- -_ -,.. ^/_ ., »*_ . • —^.___-...._..,_.„, ^J*™.^_rf^. v.» a... »-» . •1".*-^.-,-,™, J—.-^.HW.-*^
JL2I Jll £_1 __/^ 21 i _ 3^-L -J^^
«££J1££. ' "" "'""""" '"
-*—-g-3_r ^_/f_ r £_r*4x 4 -X d-pi ~j? -j^HCj
§—-^5"-T" ^ .1'^ / ^ /. [-. J./JT^-? _iJtfLj..^.1
j—i; T-~1 i.5b- J,.£j:-£k_ L LJ3L~o/J£:£i.....
Y>'
' ^ ^ ' ' • y^T O^ ' y^^J
^-%t^-«. -<.^w.-.'—tj^j*.^-^--/^•t-^.^ii*j~ •»*•..*•><*<*.. ^**j"* —• j»«-«f^C-« *«t*-^ ^^v • -.
JH_L£JL££-.J 2a^s\-i 3^2-i-
"4 \ 0 .J?J?_ | /l.^l " ' ' '
<*'v- \ ^. :i-
i'.^1 J^L-S;,
J^2IL 3:^jf£L
u.i4-
^•.>i
-j^:
T"
r
i i
—^—q=
!•' AVERAGE
..__X._,™ ^^
a.«-..^.
.
- ,-
t -i t ' '
1
u
/" 7 J ^/_j
,
. "
/ 1 "/ ./'
j
»
£"
-------
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
DATE 8
H20 CONDENSED IN IMPINGERS, ml (1 ml = 1 gin)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70°.F. AND 1 ATM.
0.0474 x TOTAL H20
MOISTURE IN STACK GAS, %
HOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
/
RUN NO.
FxnaT
Jiat.
% MOISTURE IN STACK GAS = 100 x VOL. H20 VAPOR
VOL. DRY GAS -f VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS x MOLE FRACTION +
V . 18 x (1-MOLE FRACTION)
BUBBLER (//I)
FINAL (gm)
3- I
- TARE
IMPINGER(//2)
fJ<<
BUBBLER ()/'3) 3 'O.^'
. TOTALS . / 2 3 3.
NET WATER (gm) (1 gm = 1 ml)
_(W/water) = __ '&, 8 (ml)
_(W/wat:er) = C > Q (ml)
_(Dry) = 6,*2. (ml)
« /5To (ml)
/ i.
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT -'/^-y^d^^'^e^ S _ DATE OF ANALYSIS
EVALUATION LOCATION /V/erZS/S/3 , /P&t^ RUN NO.
_
EVALUATION DATE & ~^ ? 3 " CLEAN-UP SET NO.
I. EVAPORATION OF <£ TO (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
' FINAL 57mg) - TARE // . (mg)
-BLANK (( 4£/;/ymg/ml) (_^5l_ ml) = ^'l5 mg) //, ? mg.
II. FILTER CATCH 4f-S^ //£>£$// <£jt>JS//^£e (Media Type) , •
•FINAL S'^7, / (mg) - TARE / ^5 / / _ (mg) = ^ -0 mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL/j#?57, ? (mg) - TARE 6 ? 9 5" ^ / 7 (mg)
-BLANK ( £> . 9 _ mg) . = 0 ,3 mg.
IV. PARTICULATE FROM EVAPORATION OF fr^ _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL £~83&. (mg) - TARE ^~#<' o, (mg)
-BLANK (( 6f6QS/ mg/ml) ( J* &$~._ _ ml initial-
~ / 5^ ml CONDENSED = ^^^ ml) = / ^ *7 mg) = & '3 mg.
V. PARTICULATE FROM //^ ^ (ml) OE /VG-&&AJ6 RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL ^/f£^5"(mg) - TARE £/f77/^ (mg)
-BLANK («j>dMTing/ml) ( /^ ^ ml) == Z >4' mg) = 2.7 mg
VI. TOTAL PARTICULATE = I + II -f III + IV + V = / 7, O mg
- '3- ? Stz
BLANKS
FINAL ___ mg.
ACETONE = __, _ mg/ _ ml = _< mg/ml TARE __ mg.
ETHER-CHLOROFORM = O , ^ _ mg. (FINAL _ mg - TARE __ mg)
WATER = ; _ mg/ _ ml =• &,Q6$' mg/ml. FINAL __ mg.
TARE ____ mg.
VFT/AP9 A
-------
VALENTINE, FISHER & TOMLINSON
SEATTLE, WASHINGTON
CLIENT
LOCATION
DATS
OPERATOR/S
RUN NO.
EQUIPMENT
FILTER NO.
' VERY IMPORTANT: FILL IN ALL BLANKS
I/
#
*7 sr/,£.**
AMBIENT TEMP.
BAR. PRESSURE
ASSUMED MOISTURE
HEATER BOX SETTING
PROBE NOZZLE DIA.
PROBE LENGTH
PROBE HEATER SETTING
"H*
in.
Ft
CLOCK
TI1-S
/,; oz
// :o 7
DRY GAS IffiTER
(CUBIC FEET)
/ff ;
JLL
/7<77
j&L-ZZ.
//•47
-"-a. .'
/ 8 /. to
g^fV
Z / k
/3-07
"IT- AT.
DRY GAS TEMP.
J2LLE2L
((to
^/£4
J^J^
76
77
PUMP
VACUUI4
("Hg Ga.
65
^L.
BOX
TEMP.
40
*> f
IMPINGER
TEMP.
23-
:3t>
0
POINT
•^
4-
6"
PITOT A P
("H20)
ORIFICE AH
JJISISEir:
..jTuarn ("Hg)
r7777/T7T7T
0 , ? t?
STACK
PRESS
"
__2j
Z, (JO
STACK
TZMP,
REMARKS:
V.F..T.//v?lB
-------
CLIENT
VALENTINE, FISHER & TOMLINSON
SEATTLE, WASHINGTON,
PARTICIPATE FIELD DATA (CONTINUED)
V.F.T./AF1C
-------
STACK MOISTURE CONTENT DATA MID CALCULATIONS
CLIENT
LOCATION
DATE <
~ 2 •$ ~~ 7
KoO CONDENSED IN IHPINGERS, ml (1 ml - 1 gui)
H20 ABSORBED BY SILICA GEL, ml
TOTAL K20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70° F. AND 1 ATM.
0.0474 x TOTAL K20
MOISTURE IN STACK GASS %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
RUN NO.
FilTal
2 a
% MOISTURE IN STACK GAS =- 100 x VOL. H20 .VAFOR
VOL. DRY GAS -f VOL. WET GAS
MOLE FRACTION OF DRY GAS = igOz%_MOISTURE IN STACK GAS '
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS x MOLE FRACTION
18 x (1--MOLE FACTION)
FINAL (gm) - TARE
J* *—~ **~) -L-T,
"BUBBLER (#1) *T-5 // C,
IMPINGER(//2)
BUBBLF.R (//3) 3*2-&f
TOTALS
NET WATER (gm) (1 gm = 1 ml)
_(W/water) = '?> 7 (ml)
_(W/water) = tf'S (ml)
_(Dry) = '^/5^ (ml)
ZO ' O • (ml)
VFT/AP3)]
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL P ARTICULATE SHEET
CLIENT V /r/m/yMf tfeMf DATE OF ANALYSIS e $- - 207 Z
/ T~ — —
f? -,
EVALUATION LOCATION /^yZ/0^ Os?£&<7/J __ _ RUN NO. £> _
EVALUATION DATE ~<-<>CLEAN-UP SET NO.
I. EVAPORATION OF '2 &$ (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 67&<&7, 7 (mg) - TARE 6-78 ?&* ? (mg)
-BLANK ((£>, 6//^"mg/ml) ( Z ^y ml) = S , & mg) = / 7* mg
II. FILTER CATCH /jfffl//fl& Sfl &S?SS/7£££(Ke.& ja Type)
.FINAL /-5"/.Z (mg) - TARE /<&<#<• 7 _ (mg) =
i • ; .
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL ^ £5"^,' 7 (mg) - TARE &Q tt / „ ? (mg)
-BLANK ( Of f _ mg) /' *? mg.
IV. PARTICULATE FROM EVAPORATION OF _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL (mg) - TARE
6 6 ^7, ?- (mg)
-BLANK ((Otd&l mg/ml) ( <£ d _ ml initial
- • "2 £ ml CONDENSED = ^SQ ml) = /* ^ mg) = O,*3 mg.
V. PARTICULATE FROM / ? £* (ml) OF /Vg-gTZAJf RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL <£<^5 //,
' -BLANK ((£,d/6
VI. TOTAL PARTICULATE =
BLANKS /V£/^ /ft/'4'
ACETONE =
ETHER-CHLOROFORM =
WATER =
£(mg) - TARE 6'6&'73.€'
r'uig/ral) ( / 2- 0 ml) - /,
I + II 4- III + IV + V
/ # /
mg/ ml = Osd/tft
Or^ mg. (FINAL
mg/ ml = O'dQ^/
(mg)
- ? mg)
mg -
mg/ml.
. ' &/
= ^8, &
'2 {'.&?(
FINAL
TARE
TARE
FINAL
TARE
mg.
mg.
<#&•'#£
+~
i
mg.
mg.
mg)
mg.
nig.
VFT/AP9 A
-------
VALENTINE, FISHER & TOKLINSON
•HI-VOL PARTICULATS DATA SHEET
7/8
CLIENT £ rtf (e> /y//?^t#^£X' Sr4/?/H s
LOCATION '/'O/ZTZ./JA.'P . &/?&&a/J
DATE &-?>/- 7 2
OPERATOR/
HUN if
FILTER ?
TIMS
2k HR
/ ** ^-^
y/<*f' b"(j
/<£'//
./£'&
/<£>'/ 6
/4:.y?
/<£,' 2£
/ '! 2&
/&zg
S ~*~ J/lr' £ffj£? £A
/
%
CD
°F
82
6s:
fo
f£
<>
#, 35' .
6 ,.35'
^4$
d,<5"
/*5 (jL^\
x*S (L^f
o,5e
^35'
7&&L
-^-
fpra
NOZZLE SIZE ' '° IN.
STACK ARE
WB ^8 °F
DB 7 G °F
A^oV = A.-V- ••--_}•••:*•• •^••••.•••.v"^:*a~-'i> =
J-
-?^'3- '
3?.-&
3 (^ s^1
O 'vP / w.
'5^,o-.
.S?. 6.
s5^ 5^ ;-
.y^;x.' ^' •
3 ,/. '
-sM.T.'-yy a >?i -.-j-v. -t.r -<••«'•
YPE^/^x/cy ///^sj*
'/V'^r©
ORIFICE
FLOW
scfm
ORIFICE
STACK
'PRESS .
63 ^2
.>4-v.;;>r.',.: .•»•.-,,-.- ^ ,. -••. -^-.f-v-i ^-.> .^-">"i* -•-••'•'
! -
.
'
^7/5
21,6.
• $ 7,3
5*2.,^
5?9. (0
. <££,3~
—-—-i-TT-rr—
0iCft
1,10
L 25
1,75
tf , 98
A' C?f--
0.5"
0/S"
A5 '
/•/O
//S6T
o, ^^T
- ---~r ^~
/,2o
,_
^?'^i-
-------
VALENTINE, Pi3HER & TOMLINSON
CLIENT
HI-VOL PART'XGi/LAT•••:DATASHEET
N02ZLE SIZE
/7/s
IN,
LOCATION
ATE
0-2Z-7Z
^
2
DB
OPERATOR /S
STACK AREA
FT2
"•.•f[\O WJK'CiC!
<'i/iUa« racoo e -
.IN. Kg
FILTER
PROCESS TYPE O»
TIME
24 HR
°F ;
TRAV.
VH
"H20
fpra
_ 9 6-
ORIFICE;
FLOW
cfm
i 4-2,&
ORIFICE
FLOW
scfm
ORIFICE
, A?
STACK
PRESS.
sfefiij;
4-
.1.
,/7
^^
.__:
-------
VALENTINE, FISHER & TOMLINSON
^ HI-VOL PARTICULATa DATA SHEET
CLIENT
NOZZLE SIZE
LOCATION
DATE
c9 - ^ S - 7 2
OPERATOR/S
RUN #.
fffij r\
/Ofl^\J i
STACK
ATtfOS
/<£ WB
DB
AREA 20
, PRESS.
/t.,0
V_ - •. ;
f> -(
P T-<
\.f L1 j
,. ,.
frb i
C 5 Cr
O / (
d C:'
-
i
!
_^_ ;
-r_''.. .
T
m
""
„
/ S '
...; .-,
t L i
c. ,
0 0
8-
; ©_|
t ,j / v
cr- -s
X'- (-'
c^
(."•' ^
'""• )
- i
..... :
r:"RAV.
POINT
i
cJ . v^T1
S ff A
C3 ' rO
/-"" f*7 "'
O • ' -"*
. ^
^ , <~ ->
. . . . . .
/) ,3 */
(j ' 5 £••
.
fpm
:-:,. • .'-A.V- •••;
_
1 ORIPIGE
FLOW
cf m
, ~ *,•
t^f f~s '' —
y~" ' / vP
< — / o
•~) ft O-
- c)
•
'
ORIFICE
P
•"<-•• •-•,-v> ;••,>•.<
^s _
') /••-* x
C- t '. > "--^
^0 / C?
^-i ..-,
O -"f <~
0 , ^. 2,
^7^. ^ ,v
J" •
"^
'
•
•
STACK
'PRS3S.
"K?0
^
••.-,. •.•^•?v..->^x.-.-.
-A/I -7X/
^6', J
A
*
Sl
*
e
S
i
1
•-4
i
— . .
— ., /.. ., . . j
// 1 5o5 r
{2C1/-S- ->Qf>^ J. . ,....
a / 1 // / ; - i . - •-.-x/-v..i. ..
i 1
! |
.75 7.7 c ' ?o7 f •"
/f^. .fc/l-_?./__. .i.
I - f
. ..|_ ...^
i I i
i ___ , ;
^^7=.. -ist^'^l
-------
VALENTINE, FISHER & TOMLINSON
CLIENT
LOCATION
DATS
OPgRATOH/S -
FILTER
•HI-VOL PARTICTJLATE DATA SHEET
NOZZLE SIZE
AA&
WB
DB
STACK AREA^a'
n-jrs. PRESS . r^ •. •-.«
PROCESS TYPE
IN.
_F
FT2
JN.. Kg
TIMS '
V± HR
K'lc^
• 7 "?
// ' ^
1 '
//• 26
. ,
_JL?3__
/(*31L
« ?,s*"
/ '* •''ff^
* »^
// • jf§
Ts •
°F
i
-?a
£t
( C>
O A
^f 0
A
~Q
/ u
O/
i 0
Qf
( u
{
1
•
,.,l
Tm TRAV.
°F POINT
^7 '
•
1
OHIFIGE
FLOW
scfm
''J^^-- ~1
t5^>. 0
.* — ,•
_Z '^ ^
s? n
r~O O
'• v x \^j
-S/
^v? / u
,. _
X'--'x ^
.
,., .
ORIFICE
P
"H 0
2
0.7^"
<5d**~
O /o*t>
/*> jS "?
O f Q /
•
<~->' S&r^-
<3 ,"Sr~^
A X O
0
-------
VALENTINE, FISHER & TOML1NSON
111 - VOL
PART1CULATE L^C/.IATORY SHEET
CLIENT
LOCATION-
DATE OF ANALYSIS
JN NO. /
DATE OF SAMPLE
72
CLEAN-UP REFERENCE
RUN
NO.
I
^
4
FILTER I FINAL
NO.
i 678/6,3 j 67 7/4,? /0/>4- j
' ^2,4 i
•2,7
VFT/AP15
-------
vhT IV
VALENTINE, FISHKR & TOML1NSON
VELOCITY TRAVERSE DATA SHEET
SAMPLING PORT LOCATION
STACK AREA, FT.2
REFERENCE POINT JAJ5/pe
OPERATOR
TYPE PITOT TUBE USED
BAROMETRIC PRESSURE
60
/ Ca
- 4---U •"- I— u_i_i
STATION
1
Z.
3
4 _
5"
4- -
AVERAGES
DIST. FROM
REF. ;'PT.
0,88
2,^4
S,96
/ 4, / o
i*l,6(*
Jfb'z
•. ' '
VH ("H20)
STACK
TEMP(°F)
O
TS (°R)
STACK PRESS.
("Hg)
•\
VH x TS
/VH x Ts
"X'"P" type pitot tube velocity read from velocity tables at stack temperature
and vel. head values using the folloving equation (Ref . Western Precipitation
Bulletin WP50): / / - \
V = 2.9^VVH x Ts-Javg.
Tg = Absolute Stack Temperature, °R
VH = Velocity Head, in.H20
V = Point Velocity (fps) . •
Velocity correction for; "S" type pitot tube = 0.855 x "P" type, R&S density =
\/(20.95 lb/.lb mole) air/Mol. Wt. Stack Gas, Stack Pressure Correction =
\/29.92"Hg. /Stack Pressure.
VFT/AP2A
-------
LOGARITHMIC /16 7323
2X8 CYCLES M.oc is u. 5.«. o
KCUFFffL ft E.19CR CO.
o s-
.4 .5 .6 .7 ,8 ,9 1.0
.04 .05 .06 .07 .Oa.09 .
-------
NOZZLELMULB
}:!:f.j.is;::-:-.:-.!-;-:,; HO :^:.j-~-^-i
;: i j.!; r, i.; :'.:.•;.]:.] ij'i f:nn:l..!-!ii |:i:::!"l. i j:! ;.:!t:j:j:rv! |T.!. I ri-jT'iJ.
TFSTACK" " : :'"l'"^'J'':"""!!' ;'"'4":"""']^""11 "^
-ember 197J
-;• t ; -i • -: i • i l r i •
-t ;••'-! M'M -"-••' ••'•'',
Pa KG 16
-------
. rAFER NO. 101r
ORIFICE-nTEMR
J i-i4 20
. H.t M.j_. i ! ;•-;--] f,-H
, • : vnvr :0t I
1 . ! i ! i i i : I j ' • i
: : : i i 7"i'! t i ! I i"! ;~ i" r
.j i . !. i , ;.: i.' -i i • .;-, ; -
-------
UOOAf'ITHMIC
2 X i> C/CLFS
7323
jbi
4. i. i 1. !\ -i 1O.
------- |