U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
LAKE GEORGE
AND WLUSIA COUNTIES
FLORIDA
EPA REGION IV
WORKING PAPER No, 251
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•&G.P.O. 699-440
-------
REPORT
ON
LAKE GEORGE
PUTTW1 AND WLUSIA COUNTIES
FLORIDA
EPA REGION IV
WORKING PAPER No, 251
WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
DECEMBER., 1977
-------
i
CONTENTS
Page
Foreword i i
List of Florida Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions . 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5-
IV. Nutrient Loadings 11
V. Literature Reviewed 15
VI. Appendices 16
-------
ii
L £ R. i W 0 R. £
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
iii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to.assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
IV
LAKE NAME
Alligator
Apopka
Banana
Crescent
Doctors
Dora
East Tohopekaliga
Effie
Eloise
George
Gibson
Glenada
Griffin
Haines
Hancock
Horseshoe
Howe!1
Istokpoga
Jessie
Jessup
Ktssiinmee
Lawne
Lulu
Marion
Minnehaha
Minneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Seminole
Semi nole
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Cl&y
Lake
Osceola
Polk
Polk
Putnam, Volusia
Polk
Highlands
Lake
Pol k
Polk
Semi no!e
Orange, Samiriole
Highlands
Polk
Semi no!e
Osceola
Orange
Polk
Polk
Orange
Lake
Seminole, Volusia
Leon
Glades, Hendry, Martin,
Okeechobee, Palm Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas
Hillsborough
Osceola
Lake
Polk
Lake
-------
o
&
Lake
DeLancy
LAKE GEORGE
Tributary Sampling Site
X Lake Sampling Site
o 2 4 e a Km.
0 2 3 A 5 Ml.
Scale
Map Location
DeLand STP
9.5 km
-------
LAKE GEORGE
STORE! NO. 1210
I. CONCLUSIONS
A. Trophic Condition
Survey data indicate that Lake George is eutrophic. It
ranked twenth-seventh in overall trophic quality when the 41
Florida lakes sampled in 1973 were compared using a combina-
tion of six water quality parameters*. Twenty-two of the
lakes had less median total phosphorus, 23 had less median
dissolved phosphorus, 18 had less and one had the same median
inorganic nitrogen, 23 had less mean chlorophyll a_, and 21
had greater mean Secchi disc transparency.
Survey limnologists reported abundant growths of hyacinths,
particularly along the shoreline.
B. Rate-Limi ting Nutrient:
The results of the algal assays indicate the primary
productivity of Lake George was limited by nitrogen at the times
the samples were collected (03/10 & 14/73). The lake data
indicate nitrogen limitation at all sampling times.
C. Nutrient Controllability:
1. Point sources—At the time of the Survey, no known
wastewater treatment plants discharged directly to Lake George.
However, the lake is on the main channel of the St. Johns
* See Appendix A.
-------
2
River which receives sewage effluents from several communities
upstream from the lake. DeLand, about 23 kilometers upstream,
is closest and accounted for a little over 2% of the total phos-
phorus load and less than 1% of the total nitrogen load to the
lake during the sampling year. The nutrient contributions of the
more-distant municipal point sources were not determined.
The sampling year phosphorus loading of 3.36 g/m2 is four
times that proposed by Vollenweider (Vollenweider and Dillon,
1974) as a eutrophic loading; and, although the critical level
for Florida lakes may be somewhat higher than that suggested by
Vollenweider (see page 14), the level of primary productivity
and the abundance of macrophytes in the lake indicate the loading
is excessive.
The persistent nitrogen limitation during Survey sampling,
resulting from a combination of relatively low inorganic nitrogen
concentrations (median = 0.165 mg/1) and rather high orthophos-
phorus levels (median = 0.063 mg/1), indicates nitrogen control
might reduce the rate of eutrophication of the lake. However,
emphasis during the Survey was on the controllability of phos-
phorus, and a more intensive study of the nitrogen budget of
Lake George and an evaluation of the impact of the more-distant
point sources are needed to determine the probable effects of
point-source nitrogen control.
2. Non-point sources—It is estimated that non-point sources
contributed nearly 98% of the total phosphorus and over 99% of
-------
3
the total nitrogen inputs to Lake George during the sampling
year.
The St. Johns River was the largest source of nutrients
reaching the lake and accounted for about 89% of the total
phosphorus and 91% of the total nitrogen inputs. Some of
the nutrients in the river are contributed by wastewater treat-
ment plants discharging upstream from Lake George, and there are
non-point-source contributions resulting from the use of flood
plains as pasturelands during the annual dry season.
-------
4
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS'1"
4**4*
A. Morphometry .
1. Surface area: 186.16 kilometers2.
2. Mean depth: 3.0 meters.
3. Maximum depth: 4.5 meters.
4. Volume: 558.480 x 106 m3.
5. Mean hydraulic retention time: 58 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
St. Johns River 8,831.9 102.20
Minor tributaries &
immediate drainage - 720.3 8.41
Totals 9,552.2 110.61
2. Outlet -
St. Johns River 9,738.4** 110.61
C. Precipitation***:
1. Year of sampling: 128.7 centimeters.
2. Mean annual: 136.8 centimeters.
t Table of metric conversions—Appendix B.
tt Morphometry from U.S. Coast and Geodetic Survey Navigational Map No. 687,
"St. Johns River—Dunns Creek to Lake Dexter".
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods
1973-1976".
** Includes area of lake.
*** See Working Paper No. 175.
-------
5
III. WATER QUALITY SUMMARY
Lake George was sampled three times during 1973 by means of a
pontoon-equipped Huey helicopter. Each time, samples for physical
and chemical parameters were collected from two or more depths at
five stations on the lake in the spring and summer and from three
stations in the fall (see map, page v). During each visit, a single
depth-integrated (near bottom to surface) sample was composited from
the stations for phytoplankton identification and enumeration; and
during the first visits, two 18.9-liter depth-integrated samples
were composited for algal assays from stations 1-3, and one sample
was composited from stations 4-5. Also each time, a depth-integrated
sample was collected from each of the stations for chlorophyll a_
analysis. The maximum depths sampled were 1.8 meters at station 1,
4.0 meters at station 2, 3.0 meters at station 3, 2.4 meters at
station 4, and 2.1 meters at station 5.
The sampling results are presented in full in Appendix D and
are summarized in the following table.
-------
A. bUMMARY OF PHYSICAL AND
CHEMICAL CHARACTERISTICS FOK LAKE GEORGE
STORET CODE 1210
PARAMETER
TEMP (C)
DISS OXY (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/D
TOT P (MG/L)
ORTHO P (MG/L)
N02*N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
1ST SAMPLING ( 3/1C/73)
5 SITES
RANGE
20.3
5.*
1020.
7.4
46.
0.070
0.036
0.040
0.060
0.900
.). 100
0.950
10.9
0.8
- 21.9
7.2
- 1200.
- 7.9
64.
- 0.15H
- 0.105
- 0.070
- 0.1 20
- 1.300
- o.i ac
- 1.370
- 19. to
0.9
MEAN
21.0
fa.b
1121.
7.7
53.
0.106
0.056
0.055
O.u92
1.058
0.147
1.113
15.2
U.9
MEDIAN
20.9
7.1
1115.
/.7
53.
0.0*5
O.U4a
0.055
0.095
1.000
0.150
1.060
16.1
0.9
2ND SAMPLING ( 9/ 1/73)
5 SITEb
RANGE
27.6
4.0
119b.
7.3
51.
O.Ottb
0.032
0.080
O.OoO
1.400
0.160
1.500
22.4
0.9
- 28.1
6.2
- 1468.
8.0
56.
- 0.179
- 0.124
- 0.110
- 0.140
- 2.300
- 0.250
- 2.390
- 92.7
- 0.9
MEAN
27.9
4.9
1279.
7.5
54.
0.136
0.066
0.094
0.116
1.830
0.210
1.924
56.6
0.9
MEDIAN
27.9
5.0
1244.
7.5
54.
0.136
0.057
0.095
0.120
1.850
C.215
1.945
51.7
0.9
3RD SAMPLING (ll/ 8/73)
3 SITES
RANGE MEAN MEDIAN
21.2 - 21.8 21.4 21.3
6.8 - 7.2 6.9 6.8
108. - 977. 609. 743.
7.3 - 7.6 7.4 7.4
47. - 52. 50. 50.
0.142 - 0.206 0.184 0.190
0.092 - 0.115 0.101 0.099
0.030 - 0.170 0.088 0.060
0.050 - 0.100 0.065 0.055
1.700 - 2.000 1.860 1.900
0.080 - 0.270 0.153 0.110
1.660 - 2.040 1.932 1.930
19.8 - 40.6 32.0 35.6
0.4 - 0.5 0.4 0.5
-------
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/10/73
09/01/73
11/08/73
2. Chlorophyll a_ -
Sampling
Date
03/10/73
Dominant
Genera
1. Coscinodiscus sp.
2. Cyclotella sp_.
3. Melosira sp.
4. Nitzschia sp.
5. Lyngbya sp.
Other genera
Total
1. Cyclotella sp.
2. Oscillatoria sp.
3. Anabaenopsis sp.
4. Dactylococcopsis sp.
5. Lyngbya spT"^
Other genera
Total
1. Oscillatoria sp.
2. Flagellates
3. Raphidiopsis sp.
4. Cyclotella sp.
5. Melosira sp.
Other genera
Total
Station
Number
1
2
3
4
5
Algal units
per ml
648
617
555
247
170
1,081
3,318
8,408
5,205
5,005
3,604
3,403
13.614
39,239
9,907
8,006
3,235
1,415
1,415
12,007
35,985
Chlorophyll a
(yg/D
19.6
16.7
16.1
12.6
10.9
-------
8
C. Limiting Nutrient Study:
1. Stations 1, 2, and 3* -
a. Autoclaved, fil
(1) Sample 1 -
Control
0.050 P
0.050 P + 1.0 N
1.0 N
(2) Sample 2 -
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Station
Number
1
I
2
L.
3
4
5
1
2
3
4
5
A\i •
ay.
d 3* -
iltered, and
Ortho P
Cone, (mg/1)
0.082
0.132
0.132
0.082
? _
Ortho P
Cone. (mg/H
0,168
0.218
0.218
0.168
--
nutrient spiked -
Inorganic "N
Gone'.' (mg/1)
0.148
0,148
1.148
1.148
Inorganic N
Cone ._j mg/1)
0.206
0.206
1.206
1.206
uniui u|Jiiy i i d
(ug/i )
22.4
92.7
66.8
51.7
49.5
-
19.8
—
40.6
35.6
Maximum yield
(mg/1 -dry wt.)
4.2
3.8
19.9
18.1
Maximum yield
(mg/1 -dry wt.)
4.8
5.1
21.6
20.1
March 10, 1973; sample #2 collected on March 14, 1973.
-------
2.
b. Filtered and nutrient spiked -
(1) Sample 1 -
Spike (mg/1)
Ortho P
Cone, (mg/1)
Inorganic N
Cone, (mg/1)
Maximum yield
(mg/1-dry wt.)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
(2) Sample
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Stations 4 & 5*
a. Autoclaved,
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
b. Filtered and
Spike (mg/1)
Control
0.050 P
0.050 P + 0.5 N
1.0 N
0.077
0.127
0.127
0.077
2 -
Ortho P
Cone, (mg/1)
0.140
0.190
0.190
0.140
-
filtered, and
Ortho P
Cone, (mg/1)
0.063
0.113
0.113
0.063
nutrient spi
Ortho P
Cone, (mg/1 )
0.063
0.113
0.113
0.063
0.104
0.104
1.104
1.104
Inorganic N
Cone, (mg/1)
0.160
0.160
1.160
1.160
nutrient spiked -
Inorganic N
Cone, (mg/1)
0.165
0.165
1.165
1.165
ked -
Inorganic N
Cone, (mg/1)
0.151
0.151
1.151
1.151
3.1
3.2
19.7
18.5
Maximum yield
(mg/1 -dry wt.)
3.8
3.8
19.2
21.0
Maximum yield
(mg/1 -dry wt.)
2.3
2.7
13.1
11.4
Maximum yield
(mg/1 -dry wt. )
1.9
2.3
11.7
11.6
* Sample collected March 10, 1973.
-------
10
3. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum, indicate that the potential primary productivity
of Lake George was moderately high at the time the assay
samples were collected (March, 1973). Also, the lack of
significant change in yields with increased levels of ortho-
phosphorus and the increases in yield with increased levels
of nitrogen indicate that nitrogen was the limiting nutrient
at that time. The results for both samples, composite #1
(stations 1-3) and composite #2 (stations 4 and 5), were
similar, as were the series in which the samples were both
autoclaved and filtered before nutrient spiking and the
series in which the samples were only filtered before nutrient
spiking.
The lake data also indicate nitrogen limitation; i.e.,
the mean inorganic nitrogen/orthophosphorus ratios were 6/1
or less at all stations and sampling times, and nitrogen
limitation would be expected.
-------
11
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grap samples from each of the
tributary sites indicated on the map (page v). Sampling was begun
in March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("IT1 of U.S.G.S.) were estimated using the nutrient loads,
in kg/km2/year, at station B-l and multiplying by the ZZ area in km2.
The operator of the DeLand wastewater treatment plant provided
monthly effluent samples and corresponding flow data.
* See Working Paper No. 175.
-------
12
A. Waste Sources:
1. Known municipal -
Name
DeLand*
Pop.
Served
Treatment
Mean Flow
(m'/d)
12,000 tr. filter 4,603.6
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
Source
kg P/
yr
a. Tributaries (non-point load) -
St. Johns River 557,155
b. Minor tributaries & immediate
drainage (non-point load) - 45,380
c. Known municipal STP's -
DeLand 14,100
d. Septic tanks** - 45
e. Known industrial - None
f. Direct precipitation*** - 8,190
Total 624,870
2. Outputs -
Lake outlet - St. Johns River 561,005
3. Net annual P accumulation - 63,865 kg.
Receiving
Water
St. Johns River
% of
total
89.1
7.3
2.3
< 0.1
1.3
100.0
* Treatment plant questionnaire.
** Estimate based on 156 lakeshore dwellings; see Working Paper No. 175.
*** Brezonik and Shannon, 1971.
-------
13
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
St. Johns River 11,585,910 91.4
b. Minor tributaries & immediate
drainage (non-point load) - 945,035 7.5
c. Known municipal STP's -
DeLand 35,200 0.3
d. Septic tanks* - 1,665 < 0.1
e. Known industrial - None
f. Direct precipitation** - 107,975 0.8
Total 12,675,785 100.0
2. Outputs -
Lake outlet - St. Johns River 6,865,460
30 Net annual N accumulation - 5,810,325 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
St. Johns River 63 1,312
* Estimate based on 156 lakeshore dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
14
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider's "dangerous" loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would result
in the receiving water remaining oligotrophic or becoming
oligotrophic of morphometry permitted. A mesotrophic loading
would be considered one between "dangerous" and "permissible".
Vollenweider's model may not be applicable to water bodies
with shore hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m2/yr 3.36 0.34 68.1 31.2
Vollenweider phosphorus loading
(g/m2/yr) based on mean depth and mean
hydraulic retention time of Lake George:
"Dangerous" (eutrophic loading) 0.84
"Permissible" (oligotrophic loading) 0.42
-------
15
V. LITERATURE REVIEWED
Brezonik, Patrick L., and Earl E. Shannon, 1971. Trophic state
of lakes in north central Florida. Publ. No. 13, Water
Resources Res. Center, U. of FL, Gainesville.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships
between lake trophic state and nitrogen and phosphorus loading
rates. Env. Sci. & Techn. 6^ (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Publ. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
-------
VI. APPENDICES
16
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO BE USED IN RANKINGS
LA^E
CODE LAKE NAME
1201 ALLIGATOR LAKE
1202 LAKE APOPKA
1203 LAKE BANANA
1206 LAKE CPESCENT
1207 OOCToas LAKE
120H LAKE DORA
1209 LAKE EFFIE
1210 LAKE GEORGE
1211 LAKE GIdSON
1212 GLENADA LAKE
121". LAKE GRIFFIN
1215 LAKE HAINES
121? LAKE HANCOCK
1219 LAKE HORSESHOE
1220 LAKE HOKELL
1221 LAKE ISTOKPOGA
122J LAKE JF.SSUP
1224 LAKE KISSIMMLt
1227 LAKE LHLU
1229 LAKE MARION
1229 LAKE MINNEHAHA
1230 LAKE MINNEOLA
1231 LAKE MONROE
1232 LAKE OKEECHOdEE
123-. LAKE POINSETT
1236 LAKE PEEOY
1238 LAKE SOUTH
1239 LAKE TALOUIN
MEDIAN
TOTAL P
0.62C
0.102
0.660
0.065
0.084
0.102
1.480
0.129
0.167
0.134
0.119
0.063
0.772
0.034
1.260
0.039
0.492
0.034
1.490
0.044
0.03."
0.01P
0.13*
0.063
0.085
0.033
0.074
0.085
MEDIAN
0.260
0.230
0.260
0.130
0.120
0.240
0.410
0.165
0.115
0.165
0.260
0.115
0.195
0.130
0.285
0.120
0.290
0.145
1.065
0.260
0.080
0.070
0.300
0.185
0.150
0.330
0.130
0.290
500-
MEAN StC
474.000
484.176
482.667
473.889
465.555
482.889
489.000
469. 30H
470.000
454.167
481.333
462.667
483. SOO
459.000
464.000
464.222
487.000
463.667
483.000
468.833
43b.OOO
406.333
474.555
472.366
••69.000
468. SOO
464.000
462.167
MEAN
87.733
46.611
208.600
10.211
27.100
59.978
261.433
35.000
19.675
27.667
66.855
26.567
97.900
12.067
54.117
6.594
76.550
24.142
276.566
29.967
8.733
3.333
14.225
14.524
h.500
34.837
23.167
9.483
15-
MIN 00
13.100
8.200
3.600
10.200
10.600
7.400
15.000
11.000
10.200
14.700
6.600
10.600
5.600
11.500
9.000
8.600
7.600
8.800
14.300
7.600
7.700
7.400
10.800
9.800
10.600
10.600
9.000
14. 400
MEDIAN
DISS 0«THO P
0.386
0.019
0,293
0.033
0.028
0.022
0.950
0.063
0.069
0.072
0.03d
0.014
0.158
0.023
1.175
0.010
0.288
0.007
1.030
0.016
o.ou
0.009
0.12H
0.010
0.0^1
O.OOd
0.028
0.031
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE
1240
1241
i2«.z
1243
1246
1247
1248
12*9
1250
1252
1258
1261
1264
LAKE
LAKE
LAKE
TROUT
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
EAST
NAME
THONOTOSASSA
TOHOPEKALIGA
LAKE
WEOHYAKAPKA
YALE
MUNSON
SEMINOLE
LArfNE
TARPON
EL01SE
JESSIE
LAKE TOHOPEKALIGA
PAYNE'S PHAIRIE LAKE (NO
MEDIAN
TOTAL P
0
0
1
0
0
1
0
?
0
0
0
0
1
.6*5
.246
.110
.047
.027
.475
.234
.560
.041
.466
.051
.042
.260
MtOIAN
INORG N
0.095
0.200
0.650
0.080
0.160
0.925
0.175
1.350
0.070
0.170
0.090
0.070
0.140
500-
MEAN SEC
466.167
472.917
472.000
458.667
441.000
486.667
473.833
494.667
400.889
465.333
452.667
440.833
476.000
MEAN
CHL08A
37
30
76
7
25
140
toe
84
6
70
26
5
SB
.700
.633
.967
.767
.367
.317
.000
.900
.867
.233
.300
.167
.200
15-
MIN DO
10
10
12
8
7
12
0
10
9
12
10
9
7
.200
.500
.900
.200
.600
.200
.600
.400
.000
.200
.800
.400
.400
MEDIAN
DISS 0«THO P
0.565
0.152
0.^70
0.011
0.014
0.852
0.026
0.117
O.U27
0.339
0.011
0.007
1.210
-------
PERCENT OF LAKES *ITH HIGHER VALUES (NUMBER OF LAKES »ITH HIGHER VALUES)
LAKE
CODE
1201
1202
1203
1206
1207
1208
1209
1210
1211
1212
121*
1215
1217
1219
1220
1221
1223
1224
1227
1228
1229
1230
1231
1232
123*
1236
1238
1239
LAKE NAME
ALLIGATOR LAKE
LAKE APOPKA
LAKE BANANA
LAKE CRESCENT
DOCTORS LAKE
LAKE DOHA
LAKE EFFIE
LAKE GEORGE
LAKE GIBSON
GLENAOA LAKE
LAKE GRIFFIN
LAKE HAINES
LAKE HANCOCK
LAKE HORSESHOE
LAKE HOWELL
LAKE ISTOKPOGA
LAKE JESSuP
LAKE KISSIMMEE
LAKE LULU
LAKE NARION
LAKE MINNEHAHA
LAKE MINNEOLA
LAKE MONROE
LAKE OKEECH08EE
LAKE POINSETT
LAKE KEEOr
LAKE SOUTH
LAKE IALOUIN
MEDIAN
TOTAL P
25
50
23
65
60
53
5
45
40
43
48
70
18
13
11
85
28
90
3
78
88
100
38
68
58
95
63
55
( 10)
( 29)
( 9)
1 26)
( 241
I 21)
( 2)
( 18)
( 16)
( 17)
( 19)
( 26)
( 7)
( 37)
( 4)
( 34)
< 11)
( 36)
( D
( 3D
( 35)
( 40)
< 15)
( 27)
( ?3>
( 38)
( 25)
( 22)
MEDIAN
INORG N
29
38
29
70
76
35
10
54
81
S4
29
81
43
70
23
76
IS
63
3
29
91
98
15
45
60
13
70
20
( 10)
( 15)
( 10)
( 27)
( 30)
( 14)
( 4)
I 21)
( 32)
< 21)
I 10)
< 32)
( 17)
( 27)
( 9)
( 30)
( 7)
( 25)
I 1)
( 10)
( 36)
< 38)
I 6)
( 18)
( 24)
( 5)
( 27)
( 8)
500-
MEAN SEC
30 I
10 (
20 <
33 (
60 (
18 (
3 (
48 (
45 I
8S <
23 (
75 (
13 (
BO <
69 (
65 (
5 (
73 (
15 (
53 (
95 <
98 (
2a (
40 (
50 (
55 (
69 (
78 (
12)
4)
8)
13)
24)
7)
1)
19)
18)
34)
9)
30)
5)
32)
27)
26)
2)
2V)
.6)
21)
38)
J9)
11)
16)
20)
22)
27)
31)
MEAN
CHLORA
18
38
5
80
55
33
3
43
70
S3
30
58
13
78
35
93
2S
OS
0
bO
85
100
IS
73
95
45
68
83
( 7)
( 15)
( 2)
( 32)
< 22)
( 131
I 1)
< 17)
( 28)
I 21>
( 12)
( 23)
( 5)
( 31)
( 14)
( 371
( 10)
( 26)
( 0)
I 20)
( 34)
( 40)
1 30)
I 29)
( 38)
( Id)
( 27)
I 33)
15-
MIN DO
10
74
100
48
34
90
0
23
48
3
95
34
98
20
60
69
83
65
8
83
78
90
26
53
34
34
60
5
( 4)
1 29)
( 40)
( 18)
( 12)
( 35)
I 0)
I 9)
( 18)
I 1)
1 381
< 12)
( 39)
I 8)
( 23)
< 27)
( 32)
( 26)
( 3)
( 321
< 31)
( 35)
( 10)
( 21)
( 12)
< 12)
( 23)
( 21
MEDIAN
DISS OrtTHO V
18 (
70 (
23 <
SO •
56 (
68 (
10 (
43 I
40 (
38 (
48 (
78 (
2S I
65 (
3 (
89 (
25 (
99 (
5 (
73 (
80 (
93 I
33 (
89 (
45 (
95 (
56 (
S3 (
7)
28)
9)
20)
22)
271
4)
17)
16)
15)
19)
31)
11)
26)
1)
35)
10)
39)
2)
29)
321
37)
13)
35)
18)
38)
22)
21)
INQE*
NO
1JO
280
200
346
341
297
31
256
324
276
273
396
213
"»06
201
477
lt)4
435
34
366
S17
579
215
368
342
33/
3
-------
PERCENT OF LAKES >
( 0)
( 33)
( 12)
( 29)
( 321
<
500-
MEAN SEC
58
38
43
83
90
8
35
0
100
63
88
93
25
( 23)
( 15)
( 17)
( 331
( 36)
( 3)
< 141
( 0)
( 40)
( 25)
( 35)
< 37)
( 10)
MEAN
CHLOWA
40
48
23
dB
63
B
10
20
90
2d
60
98
15
< 16)
( 19)
( 9)
( 35)
< 25)
( 3)
( 4)
( 8)
I 36)
I 11)
( 24)
1 39)
I 6)
15- .
MlN DO
48
40
13
74
83
16
69
43
60
16
26
55
90
( 18)
1 16)
( 51
( 29)
I 32)
( 6)
< 27)
( 17)
1 23)
( 6)
1 10)
( 22)
( 3S)
MEDIAN
OISS OMTHO P
15
30
8
84
75
13
63
35
60
20
84
99
0
I 61
( 12)
( 3)
( 33)
( 30)
( SI
( Z5>
( 14)
( 24)
( 8)
< 331
( 39)
( 0)
INDEX
NO
26b
239
110
495
467
58
260
9B
491
207
419
523
2U6
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
i 1330 LAKE MINNE&LA 579
Z 1261 EAST LAKE TOriOPEKALIGA 523
3 1229 LAKE MINNEHAHA 617
4 1243 LAKE HEOHYAKAPKA 695
5 1250 LAKE TARPON 491
6 1221 LAKE ISTOKPOGA 477
7 1246 LAKE TALE 467
8 1224 LAKE KISSIMMEE 455
9 1258 LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECHUBEE 368
14 1228 LAKE MARION 366
15 1206 LAKE CRESCENT 346
16 1234 LAKE POINSETT 342
17 1207 DOCTORS LAKE 341
18 1236 LAKE «EED» 337
19 1211 LAKE GIBSON 3?4
20 1208 LAKE DORA 297
21 1239 LAKE TALUUIN 294
ZZ 1202 LAKE APOPKA 280
23 1212 GLENADA LAKE 276
24 1214 LAKE GRIFFIN 273
25 1240 LAKE THONOTOSASSA 266
26 1248 LAKE SEMINOLE 260
27 1210 LAKE GEORGE 256
28 1261 LAKE TOHOPEKAL1GA 229
-------
LIKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
39 1231 LAKE MONROE 215
30 1217 LAKE HANCOCK 213
31 1252 LAKE EL01SE 207
32 1264 PAYNE'S PRAIRIE LAKE (NO 206
33 1220 LAKE MOKELL 201
31 1203 LAKE BANANA 200
35 1223 LAKE JESSUP 18*
36 1201 ALLIGATOR LAKE 130
37 1242 TROUT LAKE 110
38 1249 LAKE LAMNE 98
39 1247 LAKE MUNSON 58
40 1227 LAKE LULU 34
41 1209 LAKE EFFIE 31
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles.
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 ~4 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 - cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
8/35/75
LAKE CODE 1210
LAKE GEORGE
TOTAL DRAINAGE AREA OF LAKE(SQ KM) 9738,
TRIBUTARY
1210A1
1210A2
1210ZZ
SUB-DRAINAGE
AREA (SO KM) JAN
9738.4
8831.9
725.2
95.74
85.72
7.05
FEB
76.03
76.43
6.29
MAR
93.45
84.02
6.91
,4
AHR
88.32
79.97
6.57
MAY
50.26
50.94
4.19
NORMALIZED FLOWS (CMS)
JUN JUL AUG
59.24
53.26
4.39
100.27
91.49
7.50
98.00
112.42
9.23
SEP
136.91
136.32
11.19
OCT
201.70
133.46
15.06
NOV
194.85
158.09
13.00
DEC
MEAN
130.37 110.61
112.42 102.20
9.23 8.40
TOTAL DRAINAGE AREA OF LAKE = 9738.4
SUM OF SUB-DRAINAGE AREAS = 9557.1
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
1210A1
1210A2
1210ZZ
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
FLOW DAY
SUMMARY
98.94
91.44
43.07
32.45
62.58
109.78
145.61
148.52
151.07
121.59
64.48
22.37
88.21
67.96
42.28
35.68
64.05
107.92
136.32
132.10
129.63
94.44
59.95
30.58
7.25
5.58
3.48
2.94
5.27
8.86
11.19
10.85
10.65
7.76
4.93
2.52
18
14
0
16
16
16
14
13
17
20
21
15
18
13
18
15
15
19
18
16
15
20
21
3
18
14
18
16
16
18
14
13
17
20
21
15
136.29
100.47
0.0
-0.79
148.72
74.70
239.16
136.40
189.89
57.82
79.03
129.92
92.43
99.17
40.75
39.42
68.61
94.44
141.78
141.27
118.56
83.19
52.95
39.73
7.59
8.41
3.37
2.38
6.46
8.13
12.40
11.75
10.39
6.82
4.36
4.33
13
15
15
19
18
16
15
3
14
16
16
18
14
13
17
15
13
15
15
19
16
16
15
3
*9.00
69.43
155.88
97.18
50.46
211.10
225.52
50.04
102.37
28.77
78.69
96.94
151.33
143.11
126.46
52.70
8.16
3.26
5.64
7.76
11.64
11.61
9.74
3.26
TOTAL FLOW IN = 1325.14
TOTAL FLOW OUT = 1325.14
FLOW DAY
FLOW
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORET RETRIEVAL DATE 75/08/25
121001
29 12 55.0 081 34 50.0
LAKE GEORGE
12127 FLORIDA
DATE
FROM
TO
73/03/10
73/09/01
TIME DEPTH
OF
DAY FEET
09 50 0000
09 50 0004
11 15 0000
11 15 0006
00010
WATER
TEMP
CENT
21.8
21.7
28.1
28.0
00665
DATE TIME DEPTH PHOS-TOT
FROM OF
TO DAY FEET MG/L P
73/03/10 09 50 0000 0.158
09 50 0004 0.153
73/09/01 11 15 0000 0.179
11 15 0006 0.168
11EPALES 211
3 0008
00300
DO
MG/L
5.4
4.2
4.0
32217
CHLRPHYL
A
UG/L
19.6
22.4
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
36 1150
1150
35 1196
1197
00400
PH
SU
7.50
7.40
7.30
7.30
00410 00610
T ALK NH3-N
CAC03 TOTAL
MG/L MG/L
46 0.080
46 0.100
54 0.130
54 0.120
1202
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.000
1.300
1.500
1.400
00630
N02&N03
N-TOTAL
MG/L
0.050
0.070
0.100
0.100
00671
PMOS-DIS
ORTHO
MG/L P
0.105
0.102
0.124
0.111
-------
STORE! RETRIEVAL DATE 75/08/25
121002
29 15 00.0 081 35 00.0
LAKE GEORGE
12127 FLORIDA
DATE
FROM
TO
73/03/10
73/09/01
73/11/08
TIME DEPTH
OF
DAY FEET
10 35 0000
10 35 0004
10 35 0007
11 00 0000
11 00 0013
08 30 0000
08 30 0006
00010
WATER
TEMP
CENT
20.9
20.9
20.9
27.6
27.6
21.4
21.3
11EPALES
00300
00
MG/L
7.0
7.1
6.2
6.0
7.2
00077
TRANSP
SECCH1
INCHES
36
34
15
00094
CNDUCTVY
FIELD
MICROMHO
1115
1115
1200
1221
1222
742
743
3
00400
PH
SU
7.60
7.60
7.60
8.00
7.80
7.40
7.30
00410
T ALK
CAC03
MG/L
50
50
51
51
56
50
47
2111202
0011
00610
NH3-N
TOTAL
MG/L
0.060
o.oao
0.070
0.090
0.080
0.100
0.080
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.000
1.000
0.900
2.100
2.100
1.700
00630
N02&N03
N-TOTAL
MG/L
0.040
0.050
0.050
0.090
0.080
0.170
0.170
00671
PriOS-OlS
ORTHO
MG/L P
0.062
0.067
0.064
0.064
0.058
0.108
0.100
0066S 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/10 10 35 0000 0.113 16.7
10 35 0004 0.124
10 35 0007 0.096
73/09/01 11 00 0000 0.167 92.7
11 00 0013 O.lbl
73/11/08 08 30 0000 0.142 19.8
-------
STORET RETRIEVAL DATE 75/08/25
. 121003
29 24 30.0 081 36 10.0
LAKE GEORGE
12127 FLORIDA
DATE
FROM
TO
73/03/10
73/09/01
DATE
FROM
TO
73/03/10
73/09/01
TIME DEPTH
OF
DAY FEET
11 00 0000
11 00 OOOb
11 00 0009
10 40 0000
10 40 0010
TIME DEPTH
OF
DAY FEET
11 00 0000
11 00 0005
11 00 0009
10 40 0000
10 40 0010
00010
WATER
TEMP
CENT
20.3
20.4
20.3
28.0
27.9
00665
PHOS-TOT
MG/L P
0.092
0.091
0.095
0.131
0.141
11EPALES 2111202
3 0013 FEET DEPTH
00300 00077 00094 00400 00410 00610 00625 00630 00671
DO TRANSP CNDUCTVY PH T ALK NH3-N TOT KJEL N02&N03 PHOS-OIS
SECCHI FIELD CAC03 TOTAL N N-TOTAL ORTHO
MG/L INCHES MICROMHO SU MG/L MG/L MG/L MG/L MG/L P
7.2
7.1
4.8
4.0
32217
CHLRPHYL
A
UG/L
16.1
66.8
30 1100 7.80 64 0.100 1.200 0.050 0.036
1090 7.80 52 0.110 1.200 0.060 0.036
1100 7.70 53 0.120 1.000 0.060 0.040
34 1264 7.50 52 0.110 2.300 0.090 0.056
1263 7.40 54 0.140 1.600 0.100 0.054
-------
STORET RETRIEVAL DATE 75/08/25
121004
29 20 00.0 081 36 20.0
LAKE GEORGE
12127 FLORIDA
DATE
FROM
TO
73/03/10
73/09/01
73/11/08
TIME DEPTH
OF
DAY FEET
13 25 0000
13 25 0005
10 25 0000
10 25 0008
09 00 0000
09 00 0006
00010
WATER
TEMP
CENT
20.6
20.5
28.1
28.1
21.3
21.2
00300
00
MG/L
7.1
5.1
5.0
6.8
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
34
36
19
1020
1020
1467
1468
977
976
11EPALES
3
00400
PH
SU
7.90
7.90
7. SO
7.50
7.50
7.60
00410
T ALK
CAC03
MG/L
57
59
52
53
50
52
2111202
0009
00610
NH3-N
TOTAL
MG/L
0.100
0.100
0.090
0.120
0.050
0.060
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.100
1.000
2.000
1.600
1.900
2.000
00630
N02&N03
N-TOTAL
MG/L
0.060
0.060
0.080
0.090
0.030
0.040
00671
PHOS-DIS
ORTHO
MG/L P
0.043
0.040
0.032
0.036
0.092
0.095
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/10 13 25 0000 0.095 12.6
13 25 0005 0.070
73/09/01 10 25 0000 0.086 51.7
10 25 0008 0.097
73/11/08 09 00 0000 0.183 40.6
09 00 0006 0.200
-------
STORE! RETRIEVAL DATE 75/08/25
121005
29 19 15.0 081 39 10.0
LAKE GEORGE
12127 FLORIDA
DATE
FROM
TO
73/03/10
73/09/01
73/11/08
TIME DEPTH
OF
DAY FEET
14 00 0000
14 00 0006
09 55 0000
09 55 0007
08 45 0000
08 45 0006
00010
WATER
TEMP
CENT
21.9
21.8
27.8
27.9
21.8
21.7
00300 00077 00094
00 TRANSP CNDUCTVY
SECCHI FIELD
MG/L INCHES MICROMHO
6.8
5.0
5.0
6.8
36
36
18
1190
1200
1242
1245
108
108
11EPALES
3
00400
FH
SU
7.80
7.80
7.70
7.40
7.40
7.30
00410
T ALK
CAC03
MG/L
55
55
56
54
49
49
2111202
0010
00610
NH3-N
TOTAL
MG/L
0.090
0.090
0.140
0.140
0.050
0.050
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.000
1.000
2.000
1.700
1.900
1.800
00630
N02&N03
N-TOTAL
MG/L
0.050
0.060
0.100
0.110
0.060
0.060
00671
PHOS-DIS
ORTrtO
MG/L P
0.046
0.051
0.079
0.049
0.115
0.099
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/10 14 00 0000 0.087 10.9
14 00 0006 0.099
73/09/01 09 55 0000 0.129 49.5
09 55 0007 0.098
73/11/08 08 45 0000 0.206 35.6
08 45 0006 0.190
-------
APPENDIX E
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA
-------
STORE! RETRIEVAL DATE 75/03/25
1210A1
29 23 00.0 081 38 30.0
ST JOHNS RIVER
12105 PUTNAM CO HWY MA
0/LAKE GEORGE
AT FERRY LANDING IN GEORGETOWN
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/1*
73/06/16
73/07/16
73/08/18
73/09/14
73/10/13
73/11/17
74/01/21
74/02/15
16 30
15 00
13 30
11 15
11
11
10
11
30
15
45
30
15 30
0630 00625
&N03 TOT KJEL
OTAL N
G/L MG/L
0.120 3.700
0.018 1.300
0.010K 3.600
0.026
0.010*
0.010K
0.063
0.076
0.120
0.004
.400
.000
.900
.700
.650
.400
.400
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L MG/L P MG/L P
0.130
0.064
0.054
0.032
0.035
0.098
0.110
0.040
0.095
0.015
0.093
0.079
0.035
0.044
0.046
0.082
0.175
0.104
0.064
0.055
0.165
0.135
0.280
0.115
0.100
0.160
0.190
0.175
0.145
0.130
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET WETRIEVAL DATE 75/08/25
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/13
73/05/18
73/06/15
73/07/15
73/08/19
73/09/18
73/10/16
73/11/15
14 15
10 45
16 10
12 00
07 07
07 25
12 00
11 15
12 50
1210A2
29 10 00.0 081 31 30.0
ST JOHNS RIVER
12 VOLUSIA CO HVIY M
I/LAKE GEORGE
ST HWY 40 BRDG IN VOLUSIA
11EPALES 2111204
4 0000 FEET
•0630
!&N03
OTAL
IG/L
0.084
0.013
0.014
0.100
0.011
0.010K
0.176
0.147
0.12<*
00625
TOT KJEL
N
MG/L
1.600
3.000
2.650
5.100
2.200
1.050
7.350
4.600
4.000
00610
NH3-N
TOTAL
MG/L
0.057
0.830
. 0.120
0.126
0.066
0.027
0.380
0.273
0.168
00671
PHOS-DIS
ORTHO
MG/L P
0.110
0.087
0.110
0.075
0.147
0.160
0.180
0.131
0.096
00665
PHOS-TOT
MG/L P
0.150
0.135
0.165
0.165
0.220
0.210
0.220
0.175
0.145
DEPTH
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 75/08/25
DATE TIME DEPTH
FROM OF
TO DAY FEET
73/04/17
CP-
73/0^/17
73/05/30
CP(T)-
73/05/30
73/07/10
CP(T)-
73/07/10
73/08/30
CP < T) -
73/08/30
73/13/05
74/01/31
74/04/01
74/07/09
74/08/13
CP(T)-
74/08/13
74/09/09
-74/10/04
74/11/01
74/12/10
08 00
24 00
08 00
22 00
00 00
16 00
08 00
12 00
10 00
14 00
09 00
10 00
08 00
22 00
14 00
09 00
12 00
09 15
0630
!&N03
OTAL
IG/L
0.240
0.891
0.600
0.022
3.200
1.480
1.000
0.080
0.160
1.600
0.200
0.400
0.240
00625
TOT KJEL
N
MG/L
27.000
23.100
22.000
27.000
19.300
26.000
9.200
16.000
20.000
7.500
20.000
30.000
14.000
00610
NH3-N
TOTAL
MG/L
12.200
7.350
5.700
4.500
10.300
7.000
0.160
3.400
8.800
5.750
14.000
8.400
00671
HOS-DI
ORTHO
MG/L P
8.400
7.530
8.300
7.000
6.700
7.600
2.800
7.000
6.500
6.000
5.800
5.900
1210AA TF1210AA P012000
29 00 00.0 081 05 00.0
DELANO
12105 VOLUSIA CO HWY M
T/LAKE GEORGE
ST JOHNS RIVER
11EPALES 2141204
4 0000 FEET DEPTH
00665 50051 50053
OS-TOT FLOW CONDUIT
RATE FLOW-MGD
G/L P INST MGD MONTHLY
10.000
9.300
10.000
10.500
8.225
8.700
8.800
3.700
8.500
7.500
7.500
7.600
8.800
1.200
1.200
1.200
1.200
1.200
1.200
1.120
1.200
1.100
1.200
1.200
1.300
1.300
1.200
1.200
1.200
1.200
1.200
1.200
1.210
1.200
1.200
1.200
1.200
1.300
1.300
------- |