U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
LAKE GRIFIN
LAKE COW
FLORIDA
EPA REGION IV
WORKING PAPER No, 254
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•&G.P.O. 699-440
-------
REPORT
ON
LAKE GRIFIN
LAKE COUNTY
FLORIDA
EPA REGION IV
WORKING PAPER No, 254
WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
OCTOBER, 1977
-------
CONTENTS
Page
Foreword i i
List of Florida Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Surmary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 14
VI. Appendices . 15
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs..
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)]5 water
quality criteria/standards review [§303(c)], clean lakes [§314(a»b)j,
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
Ill
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
IV
LAKE NAME
Alligator
Apopka
Banana
Crescent
Doctors
Dora
Last Tohopekaliga
Effie
Eloise
George
Gibson
Gl en ad a
Griffin
Raines
Hancock
Horseshoe
Howe!1
1'stokpoga
Jessie
Jessup
Kissinraee
Lav;ne
Lulu
Marion
Minnehaha
Minneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Serninole
Semi nole
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
Yale
NATIONAL EUTROPKICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Clay
Lake
Osceola
Polk
Polk
Putnam, Vo'iusia
Polk
Highlands
Lake
Pol k
Folk
Semi no!e
Orange, Sentinel e
Highlands
Polk
Seminole
Osceola
Orange
Polk
Polk
Orange
Lake"
Seminole, Volusia
Leon
Glades, llendry, Martin,
Okeechobee, Palm Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas
Hillsborough
Osceola
Lake
Pol k
Lake
-------
Iributary Sampling Site
X Lake 'itunp I in
-------
LAKE GRIFFIN
STORE! NO. 1214
I. CONCLUSIONS
A. Trophic Condition:
Survey data and reports by others (Ketelle and Uttormark, 1971;
Shannon and Brezonik, 1972) indicate that Lake Griffin is highly
eutrophic. It ranked 24th in overall trophic quality when the 41
Florida lakes sampled in 1973 were compared using a combination of
six parameters*. Twenty-one of the lakes had less median total
and dissolved phosphorus, 21 had less and three had the same median
inorganic nitrogen, 28 had less mean chlorophyll a_, and 31 had
greater mean Secchi disc transparency.
The numbers of blue-green algae in all phytoplankton samples
confirm the trophic assessment (see page 7).
B. Rate-Limiting Nutrient:
Due to loss of nitrogen in the sample between the time of col-
lection and the beginning of the algal assay, the results are not
representative of conditions in the lake at the time the sample
was taken (03/14/73).
The lake data indicate phosphorus limitation in March but
nitrogen limitation in September and November.
C. Nutrient Controllability:
1. Point sources — It is calculated that point sources con-
tributed 48.0% of the total phosphorus and 8.2% of the total
nitrogen inputs to Lake Griffin during the sampling year. Agri-
* See Appendix A.
-------
2
cultural sources (muck farm and livestock) collectively contributed
40.1% of the total phosphorus load, the Leesburg wastewater treat-
ment plant contributed 7.8%, and lakeshore septic tanks were esti-
mated to have contributed less than 1%.
Since the Survey sampling year, nearly 34% of the muck farm
pumping capacity (261.2 m3/min) and the Cattlemaster Farms discharge
have been diverted to retention ponds (Wicks, 1977). It is calculated
that these improvements have reduced the Lake Griffin total phosphorus
loading by 7,190 kg/yr and the areal loading from the sampling year
1.41 g/m2 to 1.21 g/m2/yr. When the remaining muck farm pumpage is
retained, the total phosphorus load will be reduced by an additional
13,000 kg/yr, and the areal loading will be reduced to 0.85 g/m2/yr.
Removal of 85% of the effluent phosphorus load at the Leesburg waste-
water treatment plant would further reduce the areal loading to 0.75
g/m2/yr.
While a 0.75 g/m2/yr total phosphorus loading would still exceed
the 0.56 g/m2/yr proposed by Vollenweider (Vollenweider and Dillon,
1974) as a eutrophic loading, the reductions noted above should
result in an improvement in the trophic condition of Lake Griffin
since the critical phosphorus level for the lake may be somewhat
higher than that suggested by Vollenweider (see page 13), and the
Haines Creek contribution probably has been reduced to some degree
from that measured during the sampling year (see discussion below).
2. Non-point sources--It is estimated that 52.0% of the total
phosphorus and 91.8% of the total nitrogen inputs to Lake Griffin
-------
3
were contributed by non-point sources.
Haines Creek contributed 39.8% of the total phosphorus load
and 76.2% of the total nitrogen load, although the nutrient
export rates of this stream were relatively low (12 kg P and 413
kg N per square kilometer of drainage area during the sampling year;
see page 12). However, it is likely that the nutrient exports of
the creek are somewhat less now because of controls instituted
upstream in the Oklawaha Chain of Lakes drainage (e.g., muck farm
pumpage at Lake Apopka*) since the Survey sampling was completed.
* Working Paper No. 244.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
A. Morphometry :
1. Surface area: 35.60 kilometers2.
2. Mean depth: 2.9 meters.
3. Maximum depth: 4.6 meters.
4. Volume: 103.240 X 106 m3.
5. Mean hydraulic retention time: 124 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
Dead River 11.3 0.06
Haines Creek 1,678.3 8.36
Minor tributaries &
immediate drainage - 282.0 1.21
Totals 1,971.6 9.63
2. Outlet -
Oklawaha River 2,007.2** 9.62
C. Precipitation***:
1. Year of sampling: 121.6 centimeters.
2. Mean annual: 132.1 centimeters.
t Table of metric conversions—Appendix A.
tt Morphometry from contour map of Lake Griffin prepared by the Florida Game
and Fresh Water Fish Commission.
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
** Includes area of lake.
*** See Working Paper No. 175.
-------
5
III. WATER QUALITY SUMMARY
Lake Griffin was sampled three times during 1973 by means of a
pontoon-equipped Huey helicopter. Each time, samples for physical and
chemical parameters were collected from three stations on the lake and
from one or more depths at each station (see map, page v). During each
visit, a single depth-integrated (near bottom to surface) sample was
composited from the stations for phytoplankton identification and enumer-
ation; and during the first visit, a single 18.9-liter depth-integrated
sample was composited for algal assays. Also each time, a depth-inte-
/
grated sample was collected from each of the stations for chlorophyll a_
analysis. The maximum depth sampled at each station was 1.2 meters.
The sampling results are presented in full in Appendix D and are
summarized in the following table.
-------
A. SUMMnKY UK HtiYSICAL AND CHEMICAL CHARACTERISTICS FOR LAKE GRIFFIN
SfGRET CODE 1214
PARAMETER
Tf^P (C)
DISS CKY (Mi,/L)
CNDCTVY (HOMOMO)
PH (STA'JL) UNITS)
TuT ALK (M
TOT P (MG/L)
UrtfHO P (MG/
AMMONIA (MG/L)
rfJEL N (MG/L)
INO^G N C-1G/L)
TOTAL N (MG/L)
CHL*PYL A c6.? 25. b
9.1 - ,.3 *.> 9.1
2eb. - ^u. i,d. ^u.
v . 2 - ••» . - v . j 9.3
(-*9. - Io2. luu . loo.
0.09b - C.l')- u.u9-» u.u9?
0.012 - \> . 0 ! j J . 0 1 2 0 . 0 1 £
0 . 1 6 U - o . \ 7 1; j . 1 6 3 0 • 1 b 0
0 . 1 1- 1- ~ 0 . 1 ci j vi . 1 '/ u 0 . i I o
2.?00 - 3.31.J i.fcof i.v-u
u.32u - u.3*i--j 'o.3J5 j.J4u
-.36o - J.u/u- ^.b3, 2.000
12.^ - 5=.J 2i.i 2B.O
U . <* - 0 . r- U . 3 u . b
2iNL) SAMPLING ( 9/
3
KAi\lG£
2^.H - 29.7
a.* - *.i
29^. - 298.
3.9 - 9.0
80. - 98.
U.063 - U.122
O.Oib - 0.030
U. 100 - U.110
0.090 - 0.090
J.bt/0 - 4.000
0. 190 - U.20 J
3. no - 4.110
7n.o - 117.8
C .4 - O.o
SITES
MEAN ,
29. b
6.7
294.
9.0
91.
o.ioo
o.o2y
0.107
u.o90
3.oOO
0.1W
3.907
9... 2
0.5
t>/73)
MEDIAN
29.4
M.b
292.
9.0
88.
0.09o
0.02 /
0.110
0.090
3. BOO
0.200
3.900
10b.9
0.4
3kL)
RANGE
22.1 -
8.8
260. -
8.7 -
98. -
0.116 - 0
0.04/ - 0
0.130 - 0
0.110 - 0
3.000 - 3
0.240 - 0
3.130 - 3
58.2 -
0.3 -
SAMPLING (ll/
3
23.0
9.0
267.
9.0
103.
.157
.060
.170
. 140
.600
.310
.770
94.8
0.5
SITES
MEAN
22.6
9.0
2t>3.
8.8
101.
0.134
0.053
0.143
0.123
3.267
0.267
3.410
78.5
0.4
5/73)
MEDIAN
22.7
8.9
263.
8.9
101.
0.126
0.053
0. 140
0.120
3.250
0.260
3.380
82. b
0.4
-------
B. Biological characteristics:
1. Phytoplankton -
Sampli ng
Date
03/14/73
09/06/73
11/05/73
2. Chlorophyll a_ -
Sampli ng
Date
03/14/73
09/06/73
11/05/73
Dominant
Genera
1. Lyngbya s£.
2. Microcystis sp.
3. Dactylococcopsis sp.
4. Synedra sp.
5. Oscillatoria sp.
Other genera
Total
1.
2.
3.
4.
5.
Lyngbya sp.
Oscillatoria sp.
Achnanthes sp.
Blue-green filaments
Aphanocapsa sp.
Other genera
Total
1. Lyngbya s£.
2. Dactylococcopsis sp.
3. Aphanothece sp.
4. Microcystis sp.
5. Blue-green filaments
Other genera
Total
Station
Number
1
2
3
1
2
3
1
2
3
Algal Units
per ml
65,151
37,360
8,755
2,850
2,647
7,432
124,195
140,350
108,500
13,300
8,400
4,550
25,550
300,650
174,650
20,961
20,300
20,300
18,900
88,430
343,541
Chlorophyll a.
(yg/D
12.4
28.0
28.0
74.0
105.9
117.8
58.2
82.6
94.8
-------
8
C. Limiting Nutrient Study:
There was a loss of about 53% of the inorganic nitrogen in
the algal assay sample during shipment to the laboratory. There-
fore, the assay results are not representative of conditions in
the lake at the time of sample collection (03/14/73).
The lake data indicate phosphorus limitation at all stations
in March but nitrogen limitation at all stations in September
and November. Following is a tabulation of the mean inorganic
nitrogen/orthophosphorus ratios for each of the stations and
sampling times with the indicated limiting nutrient in parentheses.
Station 03/14/73 09/06/73 11/05/73
1 26/1 (P) 7/1 (N) 6/1 (N)
2 27/1 (P) 7/1 (N) 5/1 (N)
3 28/1 (P) 7/1 (N) 5/1 (N)
-------
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v). Sampling was begun in
March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads for unsampled
"minor tributaries and immediate drainage" ("ZZ" of U.S.G.S.) were
estimated using the means of the nutrient loads, in kg/km2/yr, at sta-
tions A-l and B-l and multiplying the means by the ZZ area in km2.
Since the soils, farming methods, and precipitation are very similar
in the two areas (Wicks, 1977), nutrient loads for the Lake Griffin muck
farms were based on estimates of loads in the Lake Apopka** drainage
(.125.7 kg P/day and 340.1 kg N/day; Anonymous, 1971) and the difference
in pump capacities in the two areas; i.e., the combined capacity of the
pumps at Lake Griffin was 44% of the combined capacity of the pumps dis-
charging to Lake Apopka during the sampling year. The nutrient loads
attributed to the Cattlemaster Farms were calculated using nutrient and
pumpage data provided by the Lake County Department of Pollution Control
(Hennessey, 1977).
* See Working Paper No. 175.
** Working Paper No. 244.
-------
10
The operator of the Leesburg wastewater treatment plant provided
monthly effluent samples and corresponding flow data.
A. Waste Sources:
1. Known municipal* -
Name
Pop.
Served
Mean Flow
Treatment
Leesburg 11,000 stab, pond 7,444.6
2. Known industrial - None
3. Known agricultural** -
Name
Cattlemaster
Farms
Eustis Muck
Farms
Knight & Sons
Farms
Lake Land
Farms & } muck farm 1 83.3
Baker Farms
Receiving
Water
Lake Griffin
Type
Waste No.
livestock
pasturing
muck farm
muck farm
Pumps
2
2
7
Capacity
(m3/min)
49.8
94.6
598.0
Receiving
Water (no. pumps)
Lake Griffin (1),,
Haynes Creek (1 )
Yale-Griffin Canal
Lake Griffin (4),,
Haynes Creek (1)
Yale-Griffin
Canal (2)
Yale-Griffin Canal
* Treatment plant questionnaire.
** Hennessey, 1977; Wicks, 1977.
t Discharge downstream from Survey sampling station B-l.
-------
11
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries [non-point load) -
Dead River 215 0.4
Haines Creek 20,030 39.8
b. Minor tributaries & immediate
drainage (non-point load) - 4,370 8.7
c. Known municipal STP's -
Leesburg 3,900 7.8
d. Septic tanks* - 35 <0.1
e. Known industrial - None
f. Known agricultural** -
Muck farms 20,185 40.1
Cattlemaster Farm 10 <0.1
g. Direct precipitation*** - 1,570 3.1
Total 50,315 100.0
2. Outputs -
Lake outlet - Oklawaha River 29,225
3. Net annual P accumulation - 21,090 kg.
* Estimate based on 130 lakeshore dwellings; see Working Paper No. 175.
** See page 9.
*** Brezonik and Shannon, 1971.
-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
Dead River 4,640 0.5
Haines Creek 692,620 76.2
b. Minor tributaries & immediate
drainage (non-point load) - 116,185 12.8
c. Known municipal STP's -
Leesburg 18,210 2.0
d. Septic tanks* - 1,385 0.2
e. Known industrial - None
f. Known agricultural** -
Muck farms 54,620 6.0
Cattlemaster Farm 70 <0.1
g. Direct precipitation*** - 20,650 2.3
Total 908,380 100.0
2. Outputs -
Lake outlet - Oklawaha River 913,825
3. Net annual N loss - 5,445 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
Dead River 19 411
Haines Creek 12 413
* Estimate based on 130 lakeshore dwellings; see Working Paper No. 175.
** See page 9.
*** Brezonik and Shannon, 1971.
-------
13
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezom'k, 1972).
Essentially, Vollenweider's "dangerous" loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would result
in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic loading
would be considered one between "dangerous" and "permissible"
Vollenweider's model may not be applicable to water bodies
with shore hydraulic retention times.
Total Phosphorus Total Nitrogen
To ta 1 Ace umu 1 a ted To ta 1
grams/m2/yr 1.41 0.59 25.5
Accumulated
loss*
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of Lake Griffin:
"Dangerous" (eutrophic loading) 0.56
"Permissible" (oligotrophic loading) 0.28
* There was an apparent loss of nitrogen during the sampling year. This may
have been due to nitrogen fixation in the lake, solubilization of previously
sedimented nitrogen, recharge with nitrogen-rich ground water, or underesti-
mation of the muck farm and/or minor tributary and immediate drainage loads.
Whatever the cause, a similar nitrogen loss has occurred at Shagawa Lake,
Minnesota, which has been intensively studied by EPA's former National Eutro-
phication and Lake Restoration Branch (Malueg et al., 1975).
-------
14
V. LITERATURE REVIEWED
Anonymous, 1971. Oklawaha comprehensive river basin study, first
annual report. East Central FL Reg. Plann. Council, Orlando.
Brezonik, Patrick L., and Earl E. Shannon; 1971. Trophic state of
lakes in north central Florida. Publ. No. 13., FL Water Resources
Res. Ctr., U. of FL, Gainesville.
Hennessey, Wm. K., 1977. Personal communication (muck farming at
Lake Griffin; pumpage and nutrient data). Lake Co. Dept. of
Poll. Contr., Tavares.
Ketelle, Martha J., and Paul D. Uttormark, 1971. Problem lakes in
the United States. EPA Water Poll. Contr. Res. Ser., Proj. #16010
EHR, Wash., DC.
Malueg, Kenneth W., D. Phillips Larsen, Donald W. Schults, and
Howard T. Mercier; 1975. A six-year water, phosphorus, and
nitrogen budget for Shagawa Lake, Minnesota. Jour. Eny. Qual.,
4 (2): 236-242.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between
lake trophic state and nitrogen and phosphorus loading rates. Env.
Sci. & Techn. 6_ (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of the
phosphorus loading concept to eutrophication research. Natl.
Res. Council of Canada Publ. No. 13690, Canada Centre for Inland
Waters, Burlington, Ontario.
Wicks, Ted, 1977. Personal communication (muck farming practices at
Lake Griffin; current pumpage). Lake Co. Dept. of Poll. Contr.,
Tavares.
-------
15
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO BE USED IN HANK INGS
CODE
1201
1202
1203
1206
1207
1204
1209
1210
1211
1212
121"*
1215
1217
1219
1220
1221
122J
122<*
1227
1228
1229
1230
1231
1232
123**
123e
1238
1239
LAKE NAME
ALLIGATOR LAKE
LAKE APOPKA
LAKE BANANA
LAKE CRESCENT
DOCTORS LAKE
LAKE DORA
LAKE EFFIE
LAKE GEORGE
LAKE GIdSON
GLENADA LAKE
LAKE GRIFFIN
LAKE HAINES
LAKE HANCOCK
LAKL HORSESHOE
LAKE HOWELL
LAKE ISTOKPOGA
LAKE JESSUP
LAKE KISSIHMtt
LAKE LULU
LAKE MARION
LAKE MINNErlAHA
LAKE MINNEOLA
LAKE MONROE
LAKE OKEECHOdEE
LAKC POINSETT
LAKE PFEOY
LAKE SOUTH
LAKE TALOUIN
MED UN
TOTAL P
0.b2C
o.ioe
0.660
0.065
0.08<»
0.102
1.483
0.129
0.167
0.134
0.119
0.063
0.772
0.034
1.26C
0.039
0.49?
0.034
l.«90
0.044
0.0 3M
0.018
0.13R
0.063
C.085
0.031
0.074
0.085
MEDIAN
1NOPG N
0.260
0.230
0.260
0.130
0.120
0.240
0.410
0.165
0.115
0.165
U.260
0.115
0.195
0.130
0.285
0.120
0.290
0.145
1.065
0.260
0.080
0.070
0.300
0.185
0.150
0.330
0. 130
0.290
500-
MEAN StC
47<*.000
484. 1 76
482.667
473.889
465.555
482.889
489.000
469.308
470.000
454.167
481.333
462.667
483.500
459.000
46<*.000
464.222
487.000
463.667
483.000
468.833
43b.OOO
40b.333
474.555
<»72.366
"469.000
468.500
464.000
462.167
MEAN
CiLO^A
87.733
4b.6H
208.600
10.211
27.100
59.978
261.433
35.000
19.675
27.667
66.855
26.567
97.900
12.067
54.117
6.59*
7fc.550
2^.142
276.566
29.967
8.733
3.333
14.225
U.524
6.500
3<4.837
23.167
4.483
15- MEDIAN
WIN DO DIbS On'THO
13.100
8.200
3.600
10.200
10.600
7.400
15.000
11.000
10.200
14.700
6.600
10.600
5.600
11.500
9.000
8.600
7.600
8.800
14.300
7.600
7.700
7.400
10.800
9.800
10.600
10.600
9.000
14.^00
0.386
0.019
0.293
0.033
0.028
0.022
0.950
0.063
0.069
0.072
0.038
0.014
0. 158
0.023
1.175
0.010
0.2B8
0.007
1.030
0.016
0.012
0.009
0. 12r:
0.010
0.0>1
0.008
0.028
0.031
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE LAKE NAME
1240 LAKE THONOTOSASSA
I24i LAKE TOHOPEKALIOA
12i»2 TROUT LAKE
1243 LAKE WEOHYAKAPKA
1246 LAKE YALE
1247 LAKE MUNSON
12*8 LAKE SEMINOLE
1249 LAKE LAWNE
1250 LAKE TARPON
1252 LAKE ELOISE
1258 LAKt JESSIE
1261 EAST LAKE TOHOPEKALIGA
1264 PAYNE'S PHAIRIE LAKE (NO
MEDIAN
TOTAL P
0.695
0.246
1.110
0.047
0.027
1.475
0.234
P.56C
0.041
0.486
0.051
0.042
1.260
MEDIAN
INORG N
0.095
0.200
0.650
0.080
0.160
0.925
0.175
1.350
o.oro
0.170
0.030
0.070
0. 140
500-
MEAN SEC
466. 167
472.917
472.000
456.667
441.000
4S6.667
473.833
494.667
400.889
465.333
452.667
440.833
47t>.000
MEAN
CHLOHA
37.700
30.633
76.967
7.767
25.367
140.317
102.000
84.900
6.867
70.233
26.300
5.167
88.200
15-
MIN DO
10.200
10.500
12.900
8.200
7.600
12.200
8.600
10.400
9.000
12.200
10.800
9.400
7.400
MEDIAN
DISS OtUrlO P
0.565
0.152
0.970
0.011
0.014
0.852
0.026
0.117
O.U27
0.339
0.011
0.007
1.210
-------
PERCENT OF LAKES *ITH HIGHER VALUES (NUMBER OF LAivtS WITH HIGHER VALUES)
LAKE
CODE LAKE NAME
1201 ALLIGATOR LAKE
1202 LAKE APOPKA
1203 LAKE BANANA
1206 LAKE CRESCENT
1207 DOCTORS LAKE
1203 LAKE DORA
1209 LAKE EFFIE
1213 LAKE GEORGE
1211 LAKE GIBSON
1212 GLENADA LAKE
1214 LAKE GRIFFIN
1215 LAKE HAINES
1217 LAKE HANCOCK
1219 LAKL HORSESHOE
1220 LAKE HOWELL
1221 LAKE I5TOKPOGA
1223 LAKE JF.SSUP
1224 LAKfc. KISSIMMEE
1227 LAKE LULU
1228 LAKE MARION
1229 LAKL MINNEHAHA
1230 LAKE MINNEOLA
1231 LAKE MONKOE
1232 LAKE OKEECHOdEE
123-* L^KE POINSETT
1236 LAKE KEEDr
1236 LAKE SOUTH
1239 LAKE TALOUIN
MEDIAN
TOTAL P
25
50
23
65
60
53
5
45
40
43
4P
70
18
93
11
85
28
90
3
78
88
100
38
68
58
95
63
55
( 10)
( 23)
( 9)
( 26)
( 24)
( 21)
< 2)
( 18)
( 16)
< 17)
( 19)
( 28)
( 7)
( 37)
! 4)
( 34)
( 11)
( 36)
( 1)
( 31)
( 35)
( 40)
( 15)
( 27)
( 23)
( 35)
( 25)
( 22)
MEDIAN
INORG N
29 (
3P (
29 (
70 (
76 1
35 (
10 (
54 1
81 1
54 1
29 I
81 (
43 <
(Q (
23 i
76
IP
63
3
29
91
^P
15
45
60
13
70
20
10)
15)
10)
; 27)
: 3d
: 14)
: 4)
: 21)
[ 32)
I 21)
1 10)
! 32)
1 17)
I 27)
( 9)
( 30)
( 7)
( 25)
< 1)
( 10)
( 36)
( 38)
( 6)
( IK)
( 24)
( 5)
< 27)
( 8)
500-
MEAN SEC
30 (
10 (
20 (
33 (
60 <
18 I
3 (
48 1
45 1
85 1
23 1
75 I
13 I
dO l
69 1
65 i
5
73
15
53 >
95 '
v8
2«
40
50
55
69
/8
12)
4)
8)
13)
24)
: 7»
1)
: 19)
: id)
; 34)
[ 9)
; 30)
I 5)
: 32)
[ 27)
1 26)
( 2)
t 29,
( 6,
( 21)
( 38)
( 39)
( 11)
( 16)
( 20)
( 22)
( 27)
( 31)
MEAN
C-ILORA
18 (
38 (
5 (
80 (
55 (
33 1
3 1
43 1
70 1
53 l
30 1
58 1
13 l
78 1
35 i
93 i
2b
o5 '
0
bO
85
100
/•i
73
95
^
68
83
7)
15)
2)
32)
22)
! 13)
: l)
; 17)
1 28)
; 21)
I 12)
[ 23)
1 5)
I 3D
I 1*>
1 37)
( 10)
( 26)
1 0)
( 20)
( 34)
( 40)
( 30)
( 291
( 38)
< 10)
( 2»
( 33)
15-
MIN 00
10 (
74 (
100 1
48 1
34 1
90 <
0 1
23 l
48 1
3 i
95 i
34 i
98
20 i
60
69
83
65
8
83
78
90
26
53
34
34
60
5
: 4)
29)
; 40)
: 18)
: 12)
[ 35)
[ 0)
1 9)
I IB)
1 1)
I 38)
1 12)
( 39)
( 8)
I 23)
( 27)
( 32)
( 26)
( 3)
( 32)
( 31)
< 3S>
( 10)
( 21)
( 12)
( 12)
( 23)
( 2)
MEDIAN
OISS ORTHO P
18
70
23
50
56
68
10
43
40
38
48
78
28
65
3
89
25
99
5
73
80
93
33
89
45
95
56
S3
t 7)
( 28)
( 9)
( 20)
( 22)
( 27)
( 4)
( 17)
( 16)
( 15)
( 19)
( 31)
( 11)
( 26)
( 1)
( 35)
( 10)
( J9>
( 2)
( 29)
( 32)
( 37)
( 13)
( 35)
( 18)
( 38)
( 22)
>' 21)
I NUfc. A
NO
1 JU
2«0
200
346
341
297
31
256
324
276
273
396
213
«06
201
477
184
H35
34
366
517
D79
21b
36*
3-42
3J/
3dft
294
-------
PERCENT OF LAKES rflTH hIGHEK VALUES (NUMBLY OK LAKES *ITH HlGHE* VALUES)
LAKE
CODE LAKE NAME
1240 LAKE THONOTOSASSA
12<»1 LAKE TOHOPEKALIGA
1242 TKOUT LAKE
1243 LAKE WEOHYAKAPKA
1246 LAKE YALE
1247 LAKE MUNSON
134H LAKt SEMINOLE
1249 LAKE LAWNE
1250 LAKE TAMPON
1252 LAKE ELOISE
1258 LAKE JESSIE
1261 EAST LAKE TOHOPEKALIGA
1264 PAYNE'S PRAIRIE LAKE (^0
MEDIAN
TOTAL P
20
33
15
75
98
8
35
0
83
30
73
80
11
( 8)
< 13)
( 6)
( 30)
( 39)
( 3)
( 14)
< 0)
( 33)
( 12)
( 29)
( 32)
( 4)
MEDIAN
lNGr?b N
85
40
e
91
58
5
48
0
98
50
88
9fi
65
( 34)
( 16)
( 3)
( 36)
( 23)
( 2)
( 19)
( 0)
( 38)
( 20)
( 35)
( 38)
( 26)
500-
MEAN
58
38
43
83
90
8
35
0
100
fe3
88
93
25
SEC
( 23)
( 15)
( 17)
( 33)
( 36)
( 3)
( 14)
( 0)
( 40)
( 25)
( 35)
( 37)
( 10)
MEAN
CHLO-'A
40
48
23
88
63
8
10
20
90
2rt
6P
98
15
( 16)
( 19)
( 9)
( 35)
( 25)
( 3)
( 4)
( 8)
( 36)
( 11)
( 24)
( 39)
( b)
Ib-
MIN DO
48
40
13
74
83
16
69
43
60
16
26
55
40
( 18)
( 16)
( 5)
( 29)
( 32)
( 6)
( 27)
( 17)
( 23)
( 6)
( 10)
< 22)
( 35)
MEDIAN
DISS 0*Tr!0 f
15
30
a
84
75
13
63
35
bO
20
84
99
0
( 6)
( 12)
t 3)
I 33)
( 30)
( 5)
( 25)
( 14)
< 24)
( 8)
( 33)
( 39)
( 0)
INUEX
NO
2t>6
229
110
495
467
58
2bO
*8
491
207
419
523
c?06
-------
LA
-------
i RANKED ar INDEX NOS.
•
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
-4
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE CODE 1214
LAKE GRIFFIN
TOTAL DRAINAGE AREA OF LAKE(SQ KM)
TRIBUTARY
1214A1
121481
1214D1
1214ZZ
SUB-DRAINAGE
AREA(SO KM) JAN
11.3
1678.3
2007.2
282.3
0.05
7.99
9.40
1.19
FES
0.07
9.49
11.04
1.39
2007,
MAR
0.07
10.39
11.84
1.50
,2
APR
0.06
9.51
10.82
1.36
MAY
0.05
7.50
8.07
1.02
"NORMALIZED FLOwS(CMS)
JUN JUL AUG
0.04
6.65
7.25
0.91
0.05
6.99
8.07
1.02
0.06
8.27
9.60
1.22
SEP
0.06
9.74
10.62
1.33
OCT
0.07
8.86
11.02
1.39
NOtf
0.05
7.70
9.20
1.16
DEC
0.05
7.31
8.58
1.08
MEAN
0.06
8.36
9.62
1.21
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY
1214A1
MONTH YEA»
MEAN FLOW DAY
121461
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
.T*
74
0.03
0.05
0.01
0.03
0.01
0.02
0.03
0.03
0.01
0.02
0.02
0.01
6.07
6.74
2.01
1.03
3.00
13.63
7.45
1.27
2.63
0.99
0.88
0.96
18
8
13
14
8
5
a
14
4
9
6
2
18
8
13
14
8
5
8
14
4
9
6
2
SUMMARY
TOTAL DRAINAGE AREA OF LAKE = 2007.2
SUM OF SUB-DRAINAGE AREAS = 1971.9
TOTAL FLOW IN = 115.65
TOTAL FLOW OUT - 115.50
FLOW DAY
0.02
O.OU
0.01
0.01
0.01
0.03
0.01
0.02
0.01
0.01
0.03
0.01
15.29
b.23
0.17
0.8b
0.91
15.46
11.69
0.85
2.75
O.OB
0.91
0.85
FLOW DAY
FLOW
-------
TRIdUTARY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE CODE
LAKE GRIFFIN
MEAN MONTHLY FLOwS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAH
1214D1
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
7<*
MEAN FLOW DAY
2.92
3.60
2.46
0.65
0.37
18.04
7.90
-0.25
-0.14
3.85
0.65
1.02
0.65
1.13
0.23
0.76
0.23
0.51
0.65
0.68
0.17
0.45
0.48
0.11
18
8
13
14
8
5
8
14
4
9
6
2
18
8
13
14
8
5
8
14
i»
9
6
2
FLOW DAY
4.81
1.30
3.00
0.37
22.80
16.06
0.03
-0.17
16.17
0.37
0.96
0.42
1.98
0.20
0.11
0.17
0.71
0.37
0.51
0.20
0.25
0.76
0.17
FLOW DAY
FLOW
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORET RETRIEVAL DATE 75/03/35
121401
28 50 03.0 081 52 08.0
LAKE GRIFFIN
12069 FLORIDA
DATE
FROM
TO
73/03/14
73/09/06
73/11/05
DATE
FROM
TO
73/03/14
73/09/06
73/11/05
TIME DEPTH
OF
DAY FEET
09 45 0000
11 35 0000
15 25 0000
15 25 0001
15 25 0004
TIME DEPTH
OF.
DAY FEET
09 45 0000
11 35 0000
IS 25 0000
15 25 0004
00010
WATER
TEMP
CENT
25.5
29.7
23.0
23.0
23.0
00665
PHOS-TOT
MG/L P
0.102
0.122
0.128
0.156
00300
DO
MG/L
9.3
8.4
9.6
9.0
32217
CHLRPHYL
A
UG/L
12.4
74.0
58.2
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
30
16
17
290
292
263
263
260
11EPALES
3
00400
PH
SU
9. 40
9.00
9.00
00410
T ALK
CAC03
MG/L
99
86
98
2111202
0005 FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.170
0.090
0.120
00625
TOT KJEL
N
MG/L
3.300
4.000
3.200
00630
N02&N03
N-TOTAL
MG/L
0.170
0.110
0.130
00671
PHOS-DIS
ORTHO
MG/L P
0.013
0.027
0.047
8.90
99
0.140
3.600
0.170
0.052
-------
STORE! RETRIEVAL DATE 75/Od/25
121402
28 50 17.0 081 50 52.0
LAKE GRIFFIN
13069 FLORIDA
DATE
FROM
ro
73/03/14
73/09/06
73/11/05
TIME DEPTH
OF
DAY FEET
10 05 0000
11 20 0000
IS 40 0000
15 40 0001
15 40.0004
00010
WATER
TEMP
CENT
25.5
29.4
22.1
22.1
22.1
11EPALES
00300
00
MG/L
9.1
9.2
9.8
9.2
00077
TRANSP
SECCHI
INCHES
15
16
19
00094
CNDUCTVY
FIELD
MICROMHO
290
298
261
261
260
3
00400
PH
SU
9.30
9.00
8.90
8.90
00410
T ALK
CAC03
MG/L
100
88
100
101
2111202
0005
00610
NH3-N
TOTAL
MG/L
0.160
0.090
0.120
0.120
FEET DEPTH
00625
TOT KJEL
N
MG/L
2.200
3.800
3.300
3.400
00630
N02^N03
N-TOTAL
MG/L
0.160
0.100
0.130
0.150
00671
PHOS-DIS
ORTHO
MG/L P
0.012
0.026
0.055
0.060
0066b 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM UF A
TO DAY F£ET MG/L P JG/L
73/03/14 10 05 0000 0.095 28.0
73/09/06 11 20 0000 0.095 105.9
73/11/05 15 40 0000 0.125 82.6
15 40 OOOt 0.123
-------
STORET RETRIEVAL DATE 75/08/25
121403
28 51 29.0 081 50 58.0
LAKE GRIFFIN
12069 FLORIDA
11EPALES
3
2111202
0005 FEET
DEPTH
DATE
FROM
TO
73/03/14
73/09/06
73/11/05
TIME DEPTH
OF
DAY FEET
10 15 0000
11 05 0000
15 15 0000
15 15 0001
15 15 0004
00010
WATER
TEMP
CENT
?6.2
29.4
22.7
22.7
22.6
00300
DO
MG/L
9.1
8.6
8.8
8.8
00077
TRANSP
SECCHI
INCHES
18
24
13
00094
CNDUCTVY
FIELD
MICROMHO
285
292
267
267
267
00400
PH
SU
9.20
8.90
8.70
8.70
00410
T ALK
CAC03
MG/L
102
98
103
102
00610
NH3-N
TOTAL
MG/L
0.180
0.090
0.110
0.130
00625
TOT KJEL
N
MG/L
2.500
3.600
3.100
3.000
00630
N02&N03
N-TOTAL
MG/L
0.160
0.110
0.130
0.150
00671
PHOS-DIS
ORTHO
MG/L P
0.012
0.030
0.047
0.059
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/14 10 15 0000 0.099 2fl.O
73/09/06 11 05 0000 0.083 117.8
73/11/05 15 15 0000 0.116 94.8
15 15 0004 0.157
-------
APPENDIX E
TRIBUTARY and WASTEWATER
TREATMENT PLANT DATA
-------
STORE! RETRIEVAL DATE 75/08/25
1214A1
28 51 30.0 081 53 00.0
DEAD RIVER
12055 7.5 LEESBURG
T/LAKE GRIFFEN
ST HWY 466A BRDG NEAR LK GRIFFEN ST PARK
IIE^ALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
73/03/18
73/04/08
73/05/13
73/06/14
73/07/08
73/08/05
73/09/08
73/10/14
73/11/0^
73/12/09
74/01/06
74/02/02
00630 00625
TIME DEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
09
09
08
08
09
08
09
13
08
08
10
13
30
15
25
55
35
30
05
30
45
45
15
15
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
017
010K
010K
035
015
042
054
054
092
192
036
088
MG/L
2.730
2.300
3.100
4.100
4.800
1.400
2.700
1.800
2.000
2.000
1.500
1.300
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
oie
016
030
115
090
040
120
072
052
148
170
040
MG/L P
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
034
032
031
028
016
017
020
048
028
028
092
090
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
.180
.130
.140
.100
.095
.085
.070
.095
.110
.100
.160
.150
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 75/08/25
1214B1
28 52 30.0 081 47 00.0
HAINES CREEK
12 7.5 LEESBURG E
T/LAKE GRIFFEN
ST HMY 44 BRDG
11EPALES
2111204
0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/08
73/05/13
73/06/14
73/07/08
73/08/05
73/09/08
73/10/14
73/11/04
73/12/09
74/01/06
08 30
10 15
09 20
09 40
10 35
09 20
09 02
14 30
10 10
09 35
11 10
10630
I&N03
•OTAL
IG/L
0.010K
0.010K
0.026
0.018
0.010K
0.020
0.013
0.025
0.450
0.108
0.064
00625
TOT KJEL
N
MG/L
2.800
2.200
2.900
2.600
3.100
2.400
2.200
2.100
2.300
1.600
3.050
00610
NH3-N
TOTAL
MG/L
0.010
0.022
0.063
0.072
0.044
0.134
0.132
0.440
0.024
0.300
0.470
00671
PHOS-DIS
ORTHO
MG/L P
0.019
0.016
0.013
0.017
0.008
0.029
0.015
0.027
0.016
0.028
0.024
00665
PHOS-TOT
MG/L P
0.105
0.100
0.075
0.075
0.065
0.110
0.052
0.040
0.060
0.060
0.075
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORE! RETRIEVAL DATE 75/08/25
121401
28 29 30.0 081 50 00.0
OK|_A*AHA RIVER
12 7.5 EMERALOA ISL
0/LAKE GRIFFIN
ST H«Y 42 8ROG M OF STARKES FERRY
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/08
73/05/13
73/06/14
73/07/08
73/08/05
73/09/08
73/10/14
73/11/04
73/12/09
74/01/06
74/02/02
10 10
09 45
08 50
09 20
10 10
09 00
09 30
14 00
09 30
09 10
10 45
13 40
i0630
I&N03
OTAL
IG/L
0.011
0.010K
0.010K
0.015
0.024
0.021
0.030
0.010K
0.044
0.014
0.028
0.008
00625
TOT KJEL
N
MG/L
3.500
2.900
3.300
3.500
3.200
3.200
3.900
2.200
1.600
2.100
2.000
1.400
00610
NH3-N
TOTAL
MG/L
0.058
0.052
0.044
0.126
0.105
0.273
0.072
0.220
0.024
0.060
0.100
0.015
00671
PHOS-DIS
ORTHO
MG/L P
0.025
0.024
0.021
0.018
0.010
0.018
0.012
0.025
0.012
0.024
0.020
0.020
00665
PHOS-TOT
MG/L P
0.135
0.115
0.095
0.080
0.065
0.095
0.075
0.095
0.090
0.110
0.080
0.085
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORE! RETRIEVAL DATE 75/08/35
1214EA P01214EA P011000
38 49 00.0 031 52 00.0
LEES6URG
12055 7.5 LEEBURG EAST
D/LAKE GRIFFIN
LAKE GRIFFIN
11EPALES 2141204
4 0000 FEET DEPTH
DATE TIME DEPTH
FROM OF
TO DAY FEET
73/02/05 23 30
CP < T ) -
73/02/06 23 30
73/03/14 23 00
CP(T)-
73/03/15 23 00
73/04/09 23 00
CP < T ) -
73/04/10 23 00
73/05/06 11 00
CP(T>-
73/05/07 11 00
73/06/18 11 30
CP(T)-
73/06/18 23 30
73/07/10 23 00
CP(T>-
73/07/11 23 00
73/08/07 06 00
CP(T)-
73/08/07 23 00
73/09/10 11 00
cpm-
73/09/10 23 00
73/10/21 23 00
CP(T>-
73/10/22 23 00
73/11/18 23 00
CP
------- |