U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
LAKEHOWELL
SEMINOLE COUNTY
FLORIDA
EPA REGION IV
WORKING PAPER No, 257
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•&G.P.O. 699-440
-------
£' REPORT
f' ON
- LAKEHOWELI
£ SEMINOLE COlinY
£ FLORIDA
^ EPA REGION IV
WORKING PAPER No, 257
o
WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
DECEMBER, 1977
-------
CONTENTS
Page
Foreword i i
List of Florida Lakes iv
Lake and Drainage Area Map . v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 14
VI. Appendices 15
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed..
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)j, water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)]5
and water quality monitoring [§106 and §305(b}] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
m
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
LAKE NAME
Alligator
.Apopka
Banana
Crescent
Doctors
Dora
East Tohopekaliga
Effie
Eloise
George
Gibson
Glenada
Griffin
Raines-
Hancock
Horseshoe
Howe!1
Istokpoga
Jessie
Jei>sup
Ktssimmee
Lawne
Lulu
Marion
Minnehaha
Mi'nneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Semi nole
Semi no!e
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
Yale
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Clay
Lake
Osceola
Polk
Polk
Putnam, Volusia
Polk
Highlands
Lake
Pol k
Polk
Seminole
Orange, Seminole
Highlands
Polk
Seminole
Osceola
Orange
Polk
Polk
Orange
Lake
Seminole, Volusia
Leon
Glades, Hendry, Martin,
Okeechobee, Pal in Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas.
Hillsborough
Osceola
Lake
Polk
Lake
-------
Tributary Sampling Site
X. Lake Sampling Site
• Sewage Treatment Facility
1/2 i 11/2 Km.
-------
LAKE HOWELL
STORE! NO. 1220
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Lake Howell is highly eutrophic.
It ranked 33rd in overall trophic quality when the 41 Florida
lakes sampled in 1973 were compared using a combination of
six parameters*. Thirty-five of the lakes had less and one
had the same median total phosphorus, 39 had less median ortho-
phosphorus, 31 had less median inorganic nitrogen, 26 had less
mean chlorophyll a^, and 12 had greater and one had the same
mean Secchi disc transparency.
Survey limnologists did not report any algal blooms but
observed rooted aquatic vegetation in the shoreline shallows.
B. Rate-Limiting Nutrient:
The results of the algal assay indicate that the primary
productivity of Lake Howell was limited by nitrogen at the
time the sample was collected (03/15/73). The high inorganic
nitrogen and orthophosphorus levels in the lake at all sampling
times suggest in situ limitation by factors other than those two
nutrients, but the ratios of inorganic N to inorganic P, which were
considerably below 1 to 1 at all sampling times, confirm potential
* See Appendix A.
-------
2
nitrogen limitation in the lake
C. Nutrient Controllability:
1. Point sources—It is estimated that known point sources
accounted for 38.1% and 58.2% of the total phosphorus and total
nitrogen loads, respectively, to Lake Howell during the sampling
year. The City of Winter Park contributed 26.5% of the phosphorus
load and 40.6% of the nitrogen load; the City of Maitland contrib-
uted 10.9% and 16.7% of the total phosphorus and total nitrogen
loads, respectively; and Howell Park and septic tanks serving
lakeshore dwellings collectively contributed an estimated 0.7%
and 1.3% of the phosphorus and nitrogen loads, respectively.
The sampling year phosphorus loading of 58.51 g/m2 is 56 times
the eutrophic loading proposed by Vollenweider (Vollenweider and
Dillon, 1974). Although Vollenweider's model may not be applic-
able to lakes with short hydraulic retention times, the level of
primary productivity and the abundance of macrophytes in the
lake indicate the loading is excessive.
Lake Howell was markedly nitrogen-limited during Survey
sampling primarily as a result of very high orthophosphorus
levels (median concentration = 1.175 mg/1) which indicates
nitrogen control might reduce the rate of eutrophication of
the lake. However, emphasis during the Survey was on the con-
trollability of phosphorus, and a more intensive study of the
nitrogen budget of Lake Howell is needed to assess the probable
effects of point-source nitrogen control.
-------
3
2. Non-point sources—It is estimated that non-point
sources contributed 59.1% of the total phosphorus input and
32.6% of the total nitrogen input to Lake Howell, with Howell
Creek accounting for 58.9% of the phosphorus load and 32.1% of
the nitrogen load.
The nutrient export rates of Howell Creek and Unnamed Creek
B-l were very high during the sampling year (see page 12). The
1970 photorevised U.S.G.S. Casselberry quadrangle map indicates
there are extensive urban areas in both drainages which likely
accounts for the excessive nutrient exports of the two streams.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
A. Morphometry :
1. Surface area: 1.60 kilometers2.
2. Mean depth: 2.5 meters.
3. Maximum depth: 4.0 meters.
4. Volume: 4.000 x 106 m3.
5. Mean hydraulic retention time: 30 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
Howell Creek 57.2 1.29
Unnamed Creek B-l 0.8 0.02
Minor tributaries &
immediate drainage - 12.1 0.22
Totals 70.1 1.53**
2. Outlet -
Howell Creek 71.7*** 1.53
C. Precipitation****:
1. Year of sampling: 123.5 centimeters.
2. Mean annual: 130.5 centimeters.
t Table of metric conversions—Appendix B.
tt Surface area obtained from Brezonik et al. (1976); depths estimated
from soundings reported in Appendix D.
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
** Sum of inflows adjusted to equal outflow.
*** Includes area of lake.
**** see Working Paper No. 175.
-------
5
III. WATER QUALITY SUMMARY
Lake Howell was sampled three times during 1973 by means of a
pontoon-equipped Huey helicopter. Each time, samples for physical
and chemical parameters were collected from one or more depths at
two stations on the lake (see map, page v). During each visit, a
single depth-integrated (near bottom to surface) sample was composited
from the stations for phytoplankton identification and enumeration;
and during the first visit, a single 18.9-liter depth-integrated
sample was composited for algal assays. Also each time, a
depth-Integrated sample was collected from each of the stations for
chlorophyll a_ analysis. The maximum depths sampled were 3.4 meters at
station 1 and 1.8 meters at station 2.
The sampling results are presented in full in Appendix D and are
summarized in the following table.
-------
PARAMETER
TEMP (C)
OISS OXV (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02+N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AND
1ST SAMPLING ( 3/15/73)
2 SITES
RANGE
24.3 - 25.0
11.4 - 11.6
240. - 2bO.
10.0 - 10.2
65. - 73.
1.120 - 1.240
0.915 - 1.120
0.050 - 0.070
0.050 - 0.080
1.100 - 1.400
0.100 - 0.150
1.150 - 1.470
37.7 - f7.8
1.0 - 1.2
CHEMICAL CHARACTERISTICS FOR LAKE HOWELL
STORET CODE 1220
2ND SAMPLING ( 9/ 5/73)
2 SITES
3RD SAMPLING (ll/ 5/73)
2 SITES
MEAN
24.6
11.5
250.
10.1
70.
1.157
0.990
0.057
0.065
1.225
0.122
1.282
42.7
1.1
MEDIAN
24.5
11.6
250.
10.1
71.
1.135
0.962
0.055
0.065
1.200
0.120
1.255
42.7
1.1
RANGE
28.3
6.8
260.
7.6
59.
1.220
1.170
0.150
0.060
1.600
0.210
1.B30
65.4
0.7
- 29.7
- 10.2
- 265.
8.7
61.
- 1.290
- 1.210
- 0.230
- 0.090
- 1.800
- 0.320
- 1.980
- 90.5
0.8
MEAN
29.1
8.5
262.
8.3
60.
1.250
1.187
0.187
0.073
1.700
• 0.260
1.887
77.9
0.7
MEDIAN
29.2
8.5
260.
8.7
59.
1.240
1.180
0.180
0.070
1.700
0.250
1.850
77.9
0.7
RANGE
22.3
6.0
243.
7.5
66.
1.280
1.140
0.350
0.050
1.200
0.410
1.570
39.5
0.9
- 23.7
- 11.2
- 250.
8.7
72.
- 1.470
- 1.390
- 0.510
- 0.260
- 1.600
- 0.770
- 2.020
- 43.8
0.9
MEAN
23.2
8.8
245.
8.2
68.
1.368
1.240
0.402
0.108
1.420
0.510
1.822
41.6
0.9
MEDIAN
23.4
9.2
244.
8.3
67.
1.320
1.190
0.370
0.070
1.500
0.470
1.850
41.6
0.9
-------
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/15/73
09/05/73
11/05/73
2. Chlorophyll a_ -
Sampli ng
Date
03/15/73
09/05/73
11/05/73
Dominant
Genera
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
Lyngbya s£.
Golenkinia sp.
Raphidiopsis sp.
Anabaena sp.
Cryptomonas sp.
Other genera
Total
Dactylococcopsis sp.
Synedra sp.
Cyclotella sp.
Golenkinia sp.
Scenedesmus sp.
Other genera
Total
Flagellates
Cyclotella sp.
Scenedesmus sp.
Merismopedia sp.
Dactylococcopsis sp.
Other genera
Total
Algal Units
per ml
8,043
7,
7,
2,
1,
754
681
681
884
6.812
34,855
8,470
7,
5,
3,
1,
957
133
080
440
10.108
36,188
21,
4,
2,
1,
Station
Number
1
2
1
2
1
2
560
004
772
848
1,540
8.624
40,348
Chlorophyll a
47.8
37.7
65.4
90.5
39.5
43.8
-------
8
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Spike (mg/1)
Ortho P
Cone, (mg/1)
Inorganic N
Cone, (mg/1)
Maximum yield
(mg/1-dry wt.)
Control
0.050 P
0.050 P + 1.0
1.0 N
2. Filtered and
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0
1.0 N
0.680
0.730
N 0.730
0.680
nutrient spiked -
Ortho P
Cone, (mg/1 )
0.750
0.800
N 0.800
0.750
0.406
0.406
1.406
1.406
Inorganic N
Cone, (mg/1)
0.407
0.407
1.407
1.407
15.0
16.1
22.2
35.5
Maximum yield
(mg/1 -dry wt.)
12.7
11.9
40.3
36.5
3. Discussion -
The control yield of the assay alga, Selenastrum capri-
cornutum, indicates that the potential 'primary productivity
of Lake Howell was very high at the time the sample was
collected (03/15/75). Also, both assays indicate nitrogen
was limiting at that time. Increased levels of orthophosphorus
did not result in increased yields, but inorganic nitrogen
alone and in combination with orthophosphorus resulted in
large increases in yields.
The lake data also indicate nitrogen limitation; i.e.,
the mean inorganic nitrogen/orthophosphorus ratios were less
than 1/1 at all sampling times.
-------
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v), except for the month
of December when two samples were collected. Sampling was begun
in March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were
determined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("ZZ" of U.S.G.S.) were estimated using the nutrient loads,
in kg/km2/year, at station B-l and multiplying by the ZZ area in km2.
The operators of the Maitland, Winter Park, and Howell Park waste-
water treatment plants did not participate in the Survey; nutrient
loads for these sources were estimated at 1.134 kg P and 3.401 kg
N/capita/year, and flows were estimated at 0.3785 m3/capita/day.
* See Working Paper No. 175.
-------
A. Waste Sources:
1. Known municipal -
Name
Pop.
Served
Maitland* 9,000
Winter Park** 21,895
Howell Park** 550
10
Treatment
Mean Flow
(m'/d)
act. sludge 3,406.5
act. sludge 8,287.3
stab, pond 208.2
Receiving
Water
Lake Howell
Howell Creek
Lake Howell
2. Known industrial - None
* Treatment plant questionnaire.
** Anonymous, 1971; population shown is 1970 Census.
-------
11
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries (non-point load) -
Howell Creek 55,110 58.9
Unnamed Creek B-l 170 0.2
b. Minor tributaries & immediate
drainage (non-point load) - 2,585 2.8
c. Known municipal STP's -
Maitland 10,205 10.9
Winter Park 24,830 26.5
Howell Park 625 0.7
d. Septic tanks* - 15 < 0.1
e. Known industrial - None
f. Direct precipitation** - 7Q_ < 0.1
Total 93,610 100.0
2. Outputs -
Lake outlet - Howell Creek 66,375
3. Net annual P accumulation - 27,235 kg.
* Estimate based on 48 shoreline dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source y_r total
a. Tributaries (non-point load) -
Howell Creek 58,885 32.1
Unnamed Creek 1,005 0.5
b. Minor tributaries & immediate
drainage (non-point load) - 15,325 8.3
c. Known municipal STP's -
Maitland 30,610 16.7.
Winter Park 74,465 40.6
Howell Park 1,870 1.0
d. Septic tanks* - 510 0.3
e. Known industrial - None
f. Direct precipitation** - 930 0.5
Total 183,600 100.0
2. Outputs -
Lake outlet - Howell Creek 92,470
3. Net annual N accumulation - 91,130 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
Howell Creek 963 1,029
Unnamed Creek B-l 212 1,256
* Estimate based on 48 shoreline dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
13
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider's "dangerous" loading is one
at which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would
result in the receiving water remaining oligotrophic or
becoming oligotrophic if morphometry permitted. A mesotrophic
loading would be considered one between "dangerous" and
"permissible".
Vollenweider's model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated" Total Accumulated
grams/nrVyr 58.51 17.02 114.8 57.0
Vollenweider phosphorus loadings
(g/m2/yr) based on estimated mean depth and
hydraulic retention time of Lake Howell:
"Dangerous" (eutrophic loading) 1.04
"Permissible" (oligotrophic loading) 0.52
-------
14
V. LITERATURE REVIEWED
Brezonik, Patrick L. and Earl E. Shannon, 1971. Trophic state of
lakes in north central Florida. Publ. No. 13, FL Water Resources
Res. Ctr., U. of FL, Gainesville.
Brezonik, P. L., J. L. Fox, N. E. Carriker, J. Hand, J. D. Nisson,
and T. Belanger; 1976. Nutrient and oxygen dynamics in the middle
St. Johns River system. Rept. to FL Dept of Env. Reg. (in
preparation).
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between
lake trophic state and nitrogen and phosphorus loading rates. Env.
Sci. & Techn. 6. (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Publ. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
-------
15
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO 81 USED IN RANKINGS
LAKE
COOE
1301
1303
1303
1306
1307
1208
1309
1210
1211
1312
131-.
1315
1317
1219
1220
1331
132J
1234
1237
1228
1329
1230
1331
1333
123*
1236
1338
1239
LAKE
NAME
ALLIGATOR LAKE
LAKE
LAKE
LAKE
APOPKA
dANANA
CPESCENT
DOCTORS LAKE
LAKE
LAKE
LAKE
LAKE
DORA
EFFIE
GEORGE
GIdSON
GLENAOA LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
GRIFFIN
HAINES
HANCOCK
HORSESHOE
HOKELL
ISTOr^POGA
JESSUP
KISSIMMEE
LULU
MARION
MINNEHAHA
"INNEOLA
MONROE
OKEECHOdEE
POINSETT
PFEDV
SOUTH
TALOUIN
MEDIAN
TOTAL P
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
c
0
0
0
.b2C
.103
.660
.065
.084
.103
.480
.129
.167
.134
.119
.063
.772
.034
.360
.039
.493
.034
.490
.044
.03H
.018
.138
.063
.0*5
.033
.074
.085
MEDIAN
0.3tO
O.?30
0.360
0.130
0.130
0.340
0.410
0.165
0.115
0.165
0.360
0.115
0.195
0.130
0.285
0.120
0.390
0.145
1.06S
0.260
0.080
0.070
0.300
O.ldS
0.150
0.330
0.130
0.290
500-
MEAN SEC
474.000
484.176
483.667
473.889
465.555
483. 889
489.000
469.308
470.000
454.167
481.333
462.667
483.500
459.000
464.000
464.223
487.000
463.667
483.000
468.833
43S.OOO
406.333
474.555
472.366
-69.000
468.500
464.000
462.167
MEAN
87.
40.
208.
10.
27.
59.
361.
35.
19.
27.
66.
26.
97.
12.
54.
6.
76.
34.
376.
29.
a.
3.
14.
14.
6.
34.
33.
4.
733
611
600
311
100
978
433
000
675
667
855
567
900
067
117
594
550
143
566
967
733
333
325
534
500
837
167
483
15-
MIN DO
13.
8.
3.
10.
10.
7.
15.
11.
10.
14.
6.
10.
5.
11.
9.
8.
7.
8.
14.
7.
7.
7.
10.
9.
10.
10.
9.
14.
100
200
600
300
600
400
000
000
200
700
600
600
600
500
000
600
bOO
800
300
600
700
400
800
800
600
bOO
000
400
MEDIAN
OISS OrlTHO
0.386
0.019
0.393
0.033
0.028
0.032
0.950
0.063
0.069
0.073
0.038
0.014
o.isa
0.033
1.175
0.010
0.388
0.007
1.030
0.016
0.012
0.009
0.13M
0.010
0.03)
0.008
0.038
0.031
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE
1240
1241
1242
1243
1246
1247
1248
1249
1250
1252
1258
1261
1264
LAKE
LAKE
LAKE
TROUT
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
EAST
PAYME
NAME
THONOTOSASSA
TOHOPEKALIGA
LAKE
WE.OHYAKAPKA
YALE
MUNSON
SEMINOLE
LAWNE
TARPON
ELOISE
JESSIE
LAKE TOHOPEKALIGA
-------
PERCENT OF LAKES HITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE
CODE
1201
1202
1203
1206
1207
1208
1209
1210
1211
1212
1214
1215
1217
1219
1220
1221
1223
1224
1227
1228
1229
1230
1231
1232
1234
1236
1238
1239
LAKE
NAME
ALLIGATOR LAKE
LAKE
LAKE
LAKE
APOPKA
BANANA
CRESCENT
DOCTORS LAKE
LAKE
LAKE
LAKE
LAKE
DORA
EFFIE
GEORGE
GIBSON
GLENADA LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKt
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
GRIFFIN
HAINES
HANCOCK
HORSESHOE
HOWELL
ISTOKPOGA
JESSUP
KISSIMMEE
LULU
MARION
MINNEHAHA
MINNEOLA
MONROE
OKEECMOBEE
POINSETT
«EEDr
SOUTH
TALOUIN
MEDIAN
TOTAL P
25
50
23
65
60
53
5
45
40
43
4P
70
18
93
11
85
28
90
3
78
88
100
38
68
58
95
63
55
( 10)
I 20)
I 9)
1 26)
( 24)
( 21)
< 2)
I 16)
( 16)
( 17)
( 19)
( 281
< 7)
( 37)
I 4)
( 34)
< 11)
I 36)
( D
( 3D
( 35)
I 40)
( 15)
( 27)
( 23)
( 3S)
.( 25)
( 22)
MEDIAN
INORG N
29 (
38 (
29 <
70 (
76 (
35 1
19 1
54 1
81 1
54 {
29 1
81 1
43 1
10 1
23 I
76 <
1« -
63
3
29
91
98
15
45
60
13
70
20
10)
15)
10)
27)
30)
14)
: 4)
: 21)
; 32)
: 21)
; 10)
: 32)
; 17)
1 27)
I 9)
I 30)
1 7)
( 25)
! 1)
I 10)
( 36)
I 38)
( 6)
( 1H)
( 24)
( 5)
< 27)
( 8)
500-
MEAN SEC
30
10
20
33
60
18
3
48
45
85
23
75
13
dO
69
65
5
73
15
53
95
98
28
40
50
55
69
78
1 12)
( 4)
1 8)
( 13)
1 24)
( 7)
I 1)
( 19)
< iai
( 34)
I 9)
( 30)
( 5)
( 32)
( 27)
( 26)
( 2)
( 29)
< 6)
( 21)
( 38)
( J9)
( 11)
( 16)
( 20)
( 22)
( 27)
( 31)
MEAN
CHLORA
18
38
5
80
55
33
3
43
70
S3
30
58
13
78
35
93
25
t>5
0
bO
85
100
/b
73
95
4b
68
83
1 7)
( 15)
I 2)
I 32)
( 22>
I 13)
I 1)
< 17)
( 28)
( 21)
I 12)
( 23)
( 5)
1 3D
( 14)
( 37)
( 10)
( 26)
I 0)
( 20)
( 34)
1 401
( 30)
( 29)
( 38)
( 18)
I 27)
( 33)
15-
MIN DO
10
74
100
48
34
90
0
23
48
3
95
34
98
20
60
69
83
65
8
83
78
90
26
53
34
34
bO
5
( 4)
( 29)
( 40)
( 18)
( 12)
( 35)
I 0)
( 9)
( 18)
( 1)
I 38>
( 12)
( 39)
( 8)
( 23)
( 27)
( 32)
( 26)
( 3)
( 32)
( 31)
( 35)
( 10)
( 21)
( 12)
( 12)
( 23)
( 2)
MEDIAN
D1SS ORTHO V
18
70
23
50
56
68
10
43
40
38
48
78
2*
65
3
89
25
99
5
73
80
93
33
89
45
95
56
53
( 7)
( 28)
I 9)
( 20)
1 22)
( 27)
I 4)
( 17)
( 16)
1 15)
( 19)
( 31)
( 11)
( 26)
( 1)
( 35)
( 10)
( 39)
( 2)
( 29)
( 32)
( 37)
( 13)
( 35)
( 18)
< 381
( 22)
( 21)
INOE*
NO
130
280
200
346
341
297
31
256
324
276
273
396
213
406
201
477
184
435
34
366
517
579
215
368
342
33 /
3d6
294
-------
PERCENT OF LAKES 4ITH HIGHER VALUES (NUMBED OF LAKES «ITH HIGHER VALUES)
LAKE
CODE
1240
1241
1242
1243
1246
1247
1248
1249
1250
1252
1258
1261
126o
LAKE NAME
LAKE THONOTOSASSA
LAKE TOHOPEKALIGA
TROUT LAKE
LAKE WEQHYAKAPKA
LAKE YALE
LAKE HUNSON
LAKE SEMINOLE
LAKE LAWNE
LAKE TARPON
LAKE ELOISE
LAKE JESSIE
EAST LAKE TOHOPEKALIGA
PAYNE'S PRAIRIE LAKE (MO
MEDIAN
TOTAL P
20 (
33 (
15 (
75 (
9B <
8 (
35 (
0 <
83 <
30 I
73 (
80 (
11 (
8)
13)
6)
30)
39)
3)
!<>>
01
33)
12)
29)
32)
41
MEDIAN
IN03G N
as
40
8
91
56
5
48
0
98
50
88
98
65
( 34)
( 16)
( 3)
( 36)
( 23)
( 2)
( 19)
( 0)
( 38)
( 20)
( 35)
( 38)
( 26)
500-
MEAN SEC
58 (
38 (
03 (
83 (
90 I
8 (
35 (
0 (
100 (
63 (
88 (
93 (
25 (
23)
15)
17)
33)
36)
3)
14)
0)
40)
25)
35)
37)
10)
MEAN
CHLOWA
40
48
23
88
63
8
10
20
90
28
60
98
IS
< 16)
( 19)
I 9)
I 35)
( 25)
( 3)
1 4)
I 8)
I 36)
I 11)
( 24)
( 39)
( 6)
15- .
HIM 00
48 (
40 1
13 (
74 (
83 (
16 (
69 (
43 I
60 I
16 I
26 I
55 (
90 (
18)
16)
SI
29)
32)
6)
27)
17)
23)
6)
10)
22)
35)
MEDIAN
OISS OHTHO P
IS I
30 (
a i
84 (
75 (
13 (
63 (
35 (
60 (
20 (
84 (
99 (
0 <
6)
12)
3)
331
30)
5)
25)
14)
24)
8)
33)
39)
0)
INDEX
NO
266
229
110
495
467
58
260
V8
491
207
414
523
206
-------
LAKES RANKED BY INDEX NOS.
BANK LAKE CODE LAKE NAME INDEX NO
i 1330 LAKE MINNEOLA 579
2 1261 EAST LAKE TOriOPEKALIGA 523
3 1229 LAKE MINNEHAHA 517
4 12*3 LAKE WEOHYAKAPKA 495
5 1250 LAKE TARPON 491
6 1221 LAKE ISTOKP06A 477
7 1246 LAKE YALE 467
8 1224 LAKE KISSIMMEE 455
9 1258 LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECH08EE 368
14 1228 LAKE MARION 366
15 1206 LAKE CRESCENT 346
16 1234 LAKE POINSETT 342
17 1207 DOCTORS LAKE 341
18 1236 LAKE REED! 337
19 1211 LAKE GIBSON 324
20 1208 LAKE DORA 297
21 1239 LAKE TALOUIN ?94
22 1202 LAKE APOPKA 280
23 1212 GLENADA LAKE 276
24 1214 LAKE GRIFFIN 273
25 1240 LAKE THONOTOSASSA 266
26 1248 LAKE SEMINOLE 260
27 1210 LAKE GEORGE 256
28 1241 LAKE TOHOPEKALIGA 229
-------
LAKES RANKED 8Y INDEX NOS.
R4NK LAKE CODE LAKE NAME INDEX NO
29 1331 LAKE MONROE 315
30 1217 LAKE HANCOCK 313
31 1353 LAKE ELOISE 307
33 1364 PAYNE'S PRAIRIE LAKE (NO 306
33 1330 LAKE HOWELL 301
34 1203 LAKE BANANA 200
35 1233 LAKE JESSUP 18*
36 1201 ALLIGATOR LAKE 130
37 1342 TROUT LAKE 110
38 1349 LAKE LAMNE 98
39 1347 LAKE MUNSON 58
40 1337 LAKE LULU 34
41 1209 LAKE EFFIE 31
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS -
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles.
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 ~-^-= acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 - cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE CODE 1220
TRIBUTARY
1220A1
1220A2
132081
1220ZZ
LAKE HOWELL
,INAGE AREA OF LAKE(SQ KM)
DRAINAGE
A(SO KM) JAN
57.2
71.7
o.e
12.2
1.56
1.84
0.02
0.03
FEB
1.53
1.81
0.02
0.03
71.
MAR
1.39
1.64
0.02
0.03
7
APR
0.71
0.85
0.01
0.01
MAY
0.31
0.40
0.00
0.01
NORMALIZED FLOWS (CMS)
JUN JUL AUG
0.40
0.48
0.00
0.01
1.33
1.59
0.02
0.03
1.53
1.81
0.02
0.03
SEP
1.95
2.32
0.03
0.04
OCT
1.87
2.21
0.03
0.04
NOV
1.50
1.78
0.02
0.03
DEC
1.36
1.61
0.02
0.03
MEAN
1.29
1.53
0.02
0.03
TOTAL DRAINAGE AREA OF LAKE = 71.7
SUM OF SUB-DRAINAGE AREAS = 70.2
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR
1220A1
MEAN FLOW DAY
FLOW DAY
1220A2
3
4
5
6
7
8
9
10
11
12
1
2
3
<»
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
0.34
0.42
0.22
0.34
1.13
0.88
1.08
0.93
0.34
0.19
0.27
0.14
0.59
0.74
0.40
0.59
1.84
1.50
2.01
1.53
0.62
0.37
0.51
0.34
17
7
13
17
7
4
8
3
8
12
2
17
7
13
17
7
4
8
3
8
12
15
0.34
0.45
0.24
0.40
0.71
0.96
0.99
0.34
0.16
0.31
0.20
0.59
0.79
0.42
0.68
1.13
1.70
1.76
0.62
0.34
0.57
0.31
15
15
15
2
SUMMARY
TOTAL FLOW IN = 15.94
TOTAL FLOh OUT = 18.35
FLOW DAY
FLOW
0.16
0.14
0.34
0.40
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE CODE 1220
LAKE HOWELL
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR
1220B1
1220ZZ
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
MEAN FLOW DAY
0.03
0.03
0.01
0.02
0.08
0.09
0.22
0.07
0.01
0.02
0.02
0.03
0.19
0.24
0.13
0.18
0.57
0.48
0.62
0.48
0.19
0.12
0.16
0.10
17
7
13
17
7
4
8
3
8
12
15
17
7
13
17
7
4
8
3
8
12
15
FLOW DAY
FLOW DAY
0.02
0.03
0.01
0.01
0.01
0.15
0.14
0.02
0.02
0.02
0.01
0.19
0.25
0.13
0.21
0.34
0.54
0.54
0.20
0.11
0.18
0.10
15
2
15
2
0.02
0.01
0.11
0.12
FLOW
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORET RETRIEVAL DATE 75/08/25
122001
28 38 25.0 081 18 15.0
LAKE HOWELL
12117 FLORIDA
DATE
FROM
TO
73/03/15
73/09/05
73/11/05
DATE
FROM
TO
73/03/15
73/09/05
73/11/05
TIME DEPTH
OF
DAY FEET
13 45 0000
13 45 0004
13 45 0008
14 35 0000
14 35 0010
12 15 0000
12 15 0005
12 15 0011
TIME DEPTH
OF
DAY FEET
13 45 0000
13 45 0004
13 45 0008
14 35 0000
14 35 0010
12 15 0000
12 15 0005
12 15 0011
00010
WATER
TEMP
CENT
24.7
24.4
24.3
29.2
28.3
23.5
23.4
22.9
0066S
PHOS-TOT
MG/L P
1.120
1.130
1.140
1.240
1.220
1.320
1.320
1.280
00300
DO
MG/L
11.4
11.6
6.8
9.2
11.2
32217
CHLRPHYL
A
UG/L
47.8
65.4
39.5
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
48 250
250
240
29 260
260
35 244
244
245
11EPALES
3
00400 00410
PH
SU
10.10
10.10
10.00
8.70
7.60
7.50
8.40
8.30
T ALK
CAC03
MG/L
72
70
65
59
59
66
66
67
2111202
0012 FEET DEPTH
00610 00625 00630
NH3-N
TOTAL
MG/L
0.070
0.050
0.060
0.060
0.090
0.060
0.050
0.100
TOT
N
KJEL
MG/L
1
1
1
1
1
1
1
1
.300
.100
.100
.7-00
.600
.500
.300
.200
N02&N03
N-TOTAL
MG/L
0.060
0.050
0.050
0.150
0.230
0.350
0.360
0.370
00671
PHOS-DIS
ORTHO
MG/L P
0.985
0.915
0.940
1.180
1.170
1.140
1.190
1.190
-------
STORET RETRIEVAL DATE 75/08/25
122002
28 38 20.0 081 18 56.0
LAKE HOWELL
12117 FLORIDA
DATE
FROM
TO
TIME DEPTH
OF
DAY FEET
73/03/15 14 15 0000
73/09/05 14 45 0000
73/11/05 12 35 0000
12 35 0006
00010
WATER
TEMP
CENT
25.0
29.7
23.7
22.3
11EPALES
3
00300
DO
MG/L
11.6
10.2
6.0
00077
TRANSP
SECCHI
INCHES
40
30
34
00094
CNDUCTVY
FIELD
MICROMHO
260
265
250
243
00400
PH
SU
10.20
8.70
8.70
8.30
00410
T ALK
CAC03
MG/L
73
61
69
72
2111202
0005 FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.080
0.070
0.070
0.260
00625
TOT KJEL
N
MG/L
1.400
1.800
1.600
1.500
00630
N02&N03
N-TOTAL
MG/L
0.070
0.180
0.420
0.510
00671
PHOS-DIS
ORTHO
MG/L P
1.120
1.210
1.290
1.390
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/15 14 15 0000 1.240 37.7
73/09/05 14 45 0000 1.290 90.5
73/11/05 12 35 0000 1.470 43.8
12 35 0006 1.450
-------
APPENDIX E
TRIBUTARY DATA
-------
STORET RETRIEVAL DATE 75/08/25
1220A1
28 38 00.0 081 19 00.0
HOWELL CREEK
12117 7.5 CASSELRERRY
I/HOWELL LAKE
ST HHY 436 BROG DOWNSTREAM MAITLAND STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/17
73/04/07
73/05/13
73/06/17
73/07/07
73/08/04
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/02
14 50
11 20
10 20
09 30
10 00
15 15
14 30
09 45
09 50
11 00
11 05
0630
6.N03
OTAL
G/L
1.720
2.900
0.980
1.020
0.900
0.590
0.510
2.500
2.640
2.640
0.336
0.252
00625
TOT KJEL
N
MG/L
.600
.200
.760
.700
.150
0.960
3.780
1.400
2.600
2.600
1.600
1.000
00610
NH3-N
TOTAL
' MG/L
0.240
0.510
0.305
0.370
0.160
0.115
0.430
0.132
1.500
1.560
0.520
0.085
00671
PHOS-OIS
ORTHO
MG/L P
3.300
1.700
4.700
2.400
1.100
Oi680
0.600
3.100
1^.140
1.160
0.616
1.350
00665
PHOS-TOT
MG/L P
3.400
1.800
4.980
2.500
1.100
0.730
0.660
3.150
1.300
1.250
0.660
1.500
-------
STORET RETRIEVAL DATE 75/08/25
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/17
73/04/07
73/05/13
73/06/17
73/07/07
73/08/04
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/15
15 15
11 00
10 00
09 10
09 45
10 30
14 45
15 00
10 10
10 00
11 30
10 40
1220A2
28 18 30.0 081 17 30.0
HOWELL CREEK
12 7.5 CASSELBERRY
0/HOWELL LAKE
BANK FROM RO .25 MI NE OF CAMP SAN PEDRO
11EPALES 2111204
4 0000 FEET DEPTH
10630
'5.N03
OTAL
IG/L
0.036
0.020
0.074
0.056
0.076
0.120
0.071
0.390
0.450
0.440
0.168
0.008
00625
TOT KJEL
N
MG/L
3.150
7.200
2.100
2.400
1.540
1.680
1.260
1.650
1.300
0.800
1.800
1.100
00610
NH3-N
TOTAL
MG/L
0.091
0.140
0.073
0.100
0.132
0.078
0.198
0.100
0.080
0.088
0.100
0.010
00671
PHOS-DIS
ORTHO
MG/L P
1.400
1.500
0.340
1.020
1.580
1.280
1.050
1.080
1.560
1.560
1.600
0.015
00665
PHOS-TOT
MG/L P
1.450
1.710
0.525
1.250
1.720
1.590
1.150
1.275
1.800
1.700
2.000
0.040
-------
STORE! RETRIEVAL DATE 75/08/25
122061
28 39 00.0 081 19 00.0
UNNAMED CREEK
12 7.5 CASSELBERRY
T/HOHELL LAKE
RED BUG LK RD BRDG .25 E JCT ST HWY 436
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
73/03/17
73/04/07
73/05/13
73/06/17
T3/08/04
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/15
00630 00625
TIME DEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
15
10
10
09
10
14
14
10
18
11
11
00
55
10
25
20
15
45
10
45
15
10
MG/L
0
0
0
0
0
0
0
0
0
0
0
.150
.154
.015
.084
.270
.168
.510
.216
.192
.080
.004
MG/L
3.
4.
0.
0.
0.
3.
1.
1.
0.
0.
1.
900
300
670
930
980
100
150
300
500
900
500
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
430
390
050
093
115
054
108
120
092
156
010
MG/L
0.
0.
0.
0.
0.
1.
1.
0.
0.
0.
0.
P
029
030
021
048
008
000
010
064
052
075
005K
MG/L P
0.100
0.070
0.040
0.090
0.140
1.150
1.050
0.115
0.085
0.677
0.030
K VALUE KNOWN TO BE
LESS THAN INDICATED
------- |