U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
LMNELAKE
ORANGE OXJNIY
FLORIDA
EPA REGION IV
WORKING PAPER No, 262
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
699-440
-------
C-
REPORT
t ON
v LAWNELAKE
i ORANGE COUNTY
5? FLORIDA
s EPA REGION IV
WORKING PAPER No, 262
WITH THE COOPERATION OF THE
FLJDRIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
DECEMBER, 1977
-------
CONTENTS
Page
Foreword ii
List of Florida Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 10
V. Literature Reviev/ed 15
VI. Appendices 16
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
• a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)]5
and v/ater quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
iii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
LAKE NAME
Alligator
Apopka
Banana
Crescent
Doctors
Dora
East Tohopekaliga
Effie
Eloise
George
Gibson
Glenada
Griffin
Raines
Hancock
Horseshoe
Howe!1
Istokpoga
Jessie
Jessup
Kissimmee
Lawne
Lulu
Marion
Minnehaha
Minneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Semi no!e
Semi no!e
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
Yale
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Clay
Lake
Osceola
Polk
Pol k
Putnam, Volusia
Polk
Highlands
Lake
Polk
Polk
Semi no!e
Orange, Semi no!e
Highlands
Polk
Seminole
Osceola
Orange
Polk
Polk
Orange
Lake
Seminole, Volusia
Leon
Glades, Hendry, Martin,
Okeechobee, Palm Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas
Hillsborough
Osceola
Lake
Polk
Lake
-------
LAWNE LAKE
Tributary Sampling Site
Lake Sampling Site
Sewage Treatment Facility
1 11/2 Km.
Mi.
Fla.
Map Location
-------
LAWNE LAKE
STORE! NO. 1249
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Lawne Lake is highly eutrophic. It
ranked thirty-eighth when the 41 Florida lakes sampled in 1973
were compared using a combination of six parameters*. All of the
other lakes had less median total phosphorus, 26 had less median
dissolved phosphorus, all the rest had less median inorganic nitro-
gen and greater mean Secchi disc transparency, and 32 had less mean
chlorophyll a_.
Dredging operations were in progress during the year of sampling
resulting in changes in the water quality as shown by the decrease
in Secchi disc transparency, chlorophyll a^ levels, and phytoplankton
counts (see data summary, page 6). High concentrations of sediments
were noted in the September and November phytoplankton samples indi-
cating very high turbidity that most likely suppressed primary pro-
ductivity.
An alum treatment after dredging reduced the turbidity from
about 600 Jackson turbidity units (JTU) to less than 70 JTU, and
the Secchi disc transparency increased significantly (Gabor, 1975).
B. Rate-Limiting Nutrient:
Algal assay results indicate that primary productivity in Lawne
See Appendix A.
-------
2
Lake was limited by nitrogen at the time the sample was collected
(03/14/73). The lake data indicate phosphorus was the limiting
nutrient at the other two sampling times; however, as noted above,
primary productivity probably was light-limited at those times.
C. Nutrient Controllability:
1. Point sources—At this time, no known wastewater treatment
plants impact Lawne Lake. As of November, 1973, sewage formerly
treated at the Lawne Lake Shores wastewater treatment plant was
diverted to the City of Orlando treatment facilities. An estimated
4.3% of the total phosphorus and 5.1% of the total nitrogen inputs
were contributed by the Lawne Lake Shores plant during six months of
discharge in the Survey sampling year.
The sampling year phosphorus loading of 15.02 g/m2/year is over 23
times that proposed by Vollenweider (Vollenweider and Dillon, 1974)
as a eutrophic loading. On the basis of Survey data, it is calculated
that diversion of the Lawne Lake Shores effluent reduced the loading to
14.37 g/m2/yr; and even though the eutrophic level for Florida lakes
may be higher than that suggested by Vollenweider (see page 14), it
does not seem likely that the effluent diversion will result in a
significant improvement in the condition of the lake.
2. Non-point sources—It is estimated that the gaged tributaries
contributed over 68% of the phosphorus and nearly 59% of the nitrogen
reaching the lake during the sampling year.
The phosphorus export rate of Canal B-l was an exceptionally
-------
3
high 1,052 kg/km2 during the sampling year (page 13) and may have
been the result of urban runoff. The 1970 U.S.G.S. Orlando West
quadrangle map indicates the canal drains predominantly urban areas.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
A. Morphometry .
1. Surface area: 0.63 kilometers2.
2. Mean depth: 1.1 meters.
3. Maximum depth: 1.8 meters.
4. Volume: 0.693 x 106 m3.
5. Mean hydraulic retention time: 36 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Name
Canal B-l
Canal C-l
Canal D-l
Minor tributaries &
immediate drainage - 3.6 0.07
Totals 10.1 0.22**
2. Outlet -
Canal A-l 10.7*** 0.22
C. Precipitation****:
1. Year of sampling: 123.5 centimeters.
2. Mean annual: 130.5 centimeters.
Drainage
area (km2)*
5.8
0.3
0.4
Mean flow
(m3/sec)*
0.12
0.01
0.02
t Table of metric equivalents—Appendix B.
tt Anonymous, 1972.
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1975".
** Sum of inflows adjusted to equal outflow.
*** Includes area of lake.
**** See Working Paper No. 175.
-------
5
III. WATER QUALITY SUMMARY
Lawne Lake was sampled three times during 1973 by means of a
pontoon-equipped Huey helicopter. Each time, a near-surface sample
for physical and chemical parameters was collected from one station
on the lake (see map, page v). During each visit, a single depth-
integrated (near bottom to surface) sample was collected for phyto-
plankton identification and enumeration; and a similar sample was
collected for chlorophyll a^ analysis. During the first visit, a single
18.9-liter depth-integrated sample was taken for algal assays. Only
near-surface samples were taken.
The sampling results are presented in full in Appendix D and are
summarized in the following table.
-------
PARAMETER
TEMP (C)
DISS OXY (MG/L)
CNDCTVY (MCP-OMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02»N03 (MG/L)
AMMONIA (MG/D
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (MtFERS)
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOK
STOHET CODE 1249
1ST SAMPLING <
26.8
,**»*»
265.
9.7
72.
1.140
0.600
0.130
0. 120
4.400
0.250
4.530
2t0.6
0.4
1
KANGE
- 26.8
-.«....«
- 265.
9.7
72.
- 1.140
- 0.600
- 0.130
- 0.120
- 4.400
- 0.250
- 4.530
- 240.6
0.4
SITES
MEAN
26.8
>»„*«.
265.
9.7
72.
1.140
0.600
0.130
0.120
4.400
0.250
4.530
240.6
0.4
3/14/73)
MEDIAN
26.8
..*..**.
263.
9.7
72.
1.140
0.600
0.130
0.120
4.400
0.2SO
4.530
240.6
0.4
2ND
KANGE
29.3 -
4.6 -
203.
6.8 -
32. -
2.560 - 2
0.044 - 0
1.070 - 1
0.260 - 0
3.700 - 3
1.350 - 1
4.7/0 - 4
10.9 -
0.0 -
SAMPLING ( 9/
1
29.3
4.6
203.
6.8
32.
.560
.044
.070
.280
.700
.350
.770
10.9
0.0
SITES
MEAN
- 29.3
4.6
203.
6.8
32.
2.560
0.044
1.070
0.280
3.700
1.350
4.770
10.9
0.0
LAKE LAWNE
5/73)
MEDIAN
29.3
4.6
203.
6.8
.32.
2.560
0.044
1.070
0.280
3.700
1.350
4.770
10.9
0.0
3RD SAMPLING (ll/
R
22.2
6.4
225.
7.3
24.
4.550
0.117
1.990
0.200
5.100
2.190
7.090
3.2
0.0
1
ANGE
- 22.2
6.4
- 225.
7.3
24.
- 4.550
- 0.117
- 1.990
- 0.200
- 5.100
- 2.190
- 7.090
3.2
0.0
SITES
MEAN
22.2
6.4
225.
7.3
24.
4.550
0.117
1.990
0.200
5.100
2.190
7.090
3.2
0.0
7/73)
MEDIAN
22.2
6.4
225.
7.3
24.
4.550 en
0.117
1.990
0.200
5.100
2.190
7.090
3.2
0.0
-------
Sampl i ng
Date
03/14/73
Dominant
Genera
1.
2.
3.
4.
5.
Kircheriella sp.
Scenedesmus sp.
Flagellates
Raphidiopsis sp.
Microcystis sp.
Other genera
B. Biological characteristics:
1. Phytoplankton -
Algae units
per ml _
20,000
17,143
12,857
10,714
7,500
29,643
Total 97,857
09/05/73* - No cells found in sample.
11/07/73* 1. Flagellates 713
2. Phacus sp. 267
3. Euglena sp. 89
4. Synedra sp. 89
Other genera _ -__
Total 1,158
Chlorophyll ia -
Chlorophyll a_
(yg/D
Sampl ing
Date
03/14/73
09/05/73
11/07/73
Station
Number
1
1
1
240.6
10.9
3.2
* The September and November phytoplankton samples had very heavy concen-
trations of sediments which apparently resulted in reduced numbers of
phytoplankton.
-------
8
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Ortho P
Inorganic N Maximum yield
Cone, (mg/1) Cone, (mg/1) (mg/1-dry wt.)
0.430
0.480
0.480
0.430
0.318
0.318
1.318
1.318
18.9
18.6
35.1
29.6
2. Filtered and nutrient spiked -
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Ortho P
Inorganic N Maximum yield
Cone, (mg/1) Cone, (mg/1) (mg/1-dry wt.)
0.384
0.434
0.434
0.384
0.276
0.276
1.276
1.276
26.7
25.2
45.9
37.9
3. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum, indicate that the potential primary productivity
of Lawne Lake was very high at the time the sample was col-
lected (03/14/73). The lack of significant change in yields
with increased levels of orthophosphorus until nitrogen was
also added indicates that the lake was nitrogen limited
when sampled. Note that the addition of nitrogen alone
produced a yield significantly greater than that of the con-
trol.
The lake data indicate phosphorus was the limiting nutrient
in September and November; i.e., the mean inorganic nitrogen to
-------
9
orthophosphorus ratios were 19 to 1 or greater, and phosphorus
limitation would be expected. However, because of dredging and
the resulting turbidity, primary productivity probably was light
limited at those times.
-------
10
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v), except for December
when two samples were collected. Sampling was begun in March, 1973,
and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were
determined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings.* Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("ZZ" of U.S.G.S.) were estimated using the means of the
nutrient loads, in kg/km2/year, at stations B-l, C-l, and D-l and multi-
plying the means by the ZZ area in km2.
The operator of the Lawne Lake Shores wastewater treatment plant
provided monthly samples and corresponding flow data for part of the
sampling year. Nutrient loads shown are based on six months of discharge
after which time sewage was diverted to the Orlando treatment facility.
See Working Paper No. 175.
-------
11
A. Waste Sources:
1. Known municipal* -
Pop. Mean Flow Receiving
Name Served Treatment (m3/d) Water
Lawne Lake 1,360 act. sludge 29.0 Canal C-l
Shores**
2. Known industrial - None
* Treatment plant questionnaire.
** Effective November, 1973, sewage was diverted to the Orlando treatment
facility.
-------
12
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries (non-point load) -
Canal B-l 6,100 64.5
Canal C-l 150 1.6
Canal D-l 225 2.4
b. Minor tributaries & immediate
drainage (non-point load) - 2,540 26.8
c. Known municipal STP's -
Lawne Lake Shores 410 4.3
d. Septic tanks* - 5 0.1
e. Known industrial - None
f. Direct precipitation** - 30_ Q.3
Total 9,460 100.0
2. Outputs -
Lake outlet - Canal A-l 2,830
3. Net annual P accumulation - 6,630 kg.
* Estimate based on 10 lakeshore dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
13
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
Canal B-l 18,225 51.8
. Canal C-l 1,195 3.4
Canal D-l 1,245 3.5
b. Minor tributaries & immediate
drainage (non-point load) - 12,285 34.9
c. Known municipal STP's -
Lawne Lake Shores 1,805 5.1
d. Septic tanks* - 85 0.2
e. Known industrial - None
f. Direct precipitation** - 370 1.1
Total 35,210 100.0
2. Outputs -
Lake outlet - Canal A-l 16,220
3. Net annual N accumulation - 18,990 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
Canal B-l 1,052*** 3,142
Canal C-l 500 3,983
Canal D-l 562 3,112
* Estimate based on 10 lakeshore dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
*** Unusually high export rate is indicative of urban runoff.
-------
14
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider's "dangerous1 loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would
result in the receiving water remaining oligotrophic or
becoming oligotrophic if morphometry permitted. A mesotrophic
loading would be considered one between "dangerous" and "per-
missible".
Vollenweider's model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m2/year 15.02 10.52 55.9 25.7
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of Lawne Lake:
"Dangerous" (eutrophic loading) 0.64
"Permissible" (oligotrophic loading) 0.32
-------
15
V. LITERATURE REVIEWED
Anonymous, 1972. Lawne Lake proposed restoration plan. Orange Co.
Poll. Contr. Dept. and Orange Co. Eng. Dept., Orlando.
Brezonik, Patrick L. and Earl E. Shannon. 1971. Trophic state of
lakes in north central Florida. Publ. No. 13, Water Res. Research
Ctr, U. of FL, Gainesville.
Gabor, Andy. 1975. Personal conmunication (Lawne Lake restoration
activities). Orange Co. Poll. Contr. Dept., Orlando.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between
lake trophic state and nitrogen and phosphorus loading rates. Env.
Sci. & Techn. ^ (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of the
phosphorus loading concept to eutrophication research. Natl.
Res Council of Canada Publ. No. 13690, Canada Centre for Inland
Waters, Burlington, Ontario.
-------
VI. APPENDICES
16
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO BE USED IN RANKINGS
LAME
COOE
1301
1302
1303
1206
1207
1208
1209
1210
1211
1212
121*
1215
1217
1219
1220
1331
1323
1234
1227
1238
1339
1230
1231
1232
123-.
1236
1238
1239
LAKE
NAME
ALLIGATOR LAKE
LAKE
LAKE
LAKE
APOPKA
BANANA
CRESCENT
DOCTORS LAKE
LAKE
LAKE
LAKE
LA"KE
DORA
EFFIE
GEORGE
GItJSON
GLENAOA LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
GRIFFIN
HAINES
HANCOCK
HORSESHOE
HOKELL
ISTOKPOGA
JESSUP
KISSIMME.E
LULU
MARION
MINNEHAHA
"INNEOLA
MONROE
OKEECHOdEE
POINSETT
PEEDY
SOUTH
TALOUIN
MEDUN
TOTAL P
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
c
0
0
0
.62C
.103
.660
.065
.084
.103
.480
.129
.167
.134 •
.119
.063
.773
.034
.260
.039
.4*3
.034
.490
.044
.038
.018
.138
.063
.085
.033
.074
.085
MEDIAN
1NOHG N
0.260
O.?30
0.260
0.130
0.120
0.240
0.410
0.165
0.115
0.165
0.260
0.115
0.195
0.130
0.385
0.120
0.390
0.145
1.065
0.360
0.060
0.070
0.300
0.185
0.150
0.330
0.130
0.290
500-
MEAN StC
474.000
484.1 76
483.667
473.889
465.555
482.889
489.000
469.308
470.000
454.167
481.333
462.667
483.300
459.000
464.000
464.323
487.000
463.667
483.000
468.833
43S.OOO
406.333
474.555
472.366
'•69.000
468.500
464.000
462.167
C
87
46
308
10
27
59
361
35
19
27
66
26
97
12
54
6
76
34
376
29
8
3
14
14
6
34
23
9
MEAN
.733
.611
.600
.311
.100
.978
.433
.000
.675
.667
.855
.567
.900
.067
.117
.594
.550
.142
.566
.967
.733
.333
.225
.534
.500
.837
.167
.483
15-
M1N DO
13
8
3
10
10
7
15
11
10
14
6
10
5
11
9
8
7
8
14
7
7
7
10
9
10
10
9
14
.100
.200
.600
.200
.600
.400
.000
.000
.200
.700
.600
.600
.600
.500
.000
.600
.600
.800
.300
.600
.700
.400
.800
.600
.600
.600
.000
.400
MEDIAN
OISS O^ITrtO f>
0.386
0.019
0.293
0.033
0.02B
0.022
0.950
0.063
0.069
0.072
0.038
0.014
0.1S8
0.023
1.175
0.010
0.288
0.007
1.030
0.016
0.012
0.009
0.138
0.010
0.051
0.008
0.038
0.031
-------
LAKE DATA TO BE USED IN RANKINGS
LA^E
CODE
1240
1241
1242
1243
1246
1247
1248
1249
1250
1252
1258
1261
1264
LAKE
LAKE
LAKE
TROUT
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
EAST
MEDIAN
N4V
-------
PERCENT OF LAKES HITH HIGHER VALUES (NUMBER OF LAKES KITH HIGHER VALUES)
LAKE
CODE
1201
130 a
1203
1206
1207
1208
1209
1210
1211
1212
121*
1215
1217
1219
1220
1221
1223
122*
1227
1228
1229
1230
1231
1232
123*
1236
1238
1239
LAKE NAME
ALLIGATOR LAKE
LAKE APOPKA
LAKE BANANA
LAKE CRESCENT
DOCTORS LAKE
LAKE DORA
LAKE EFFIE
LAKE GEORGE
LAKE GIBSON
GLENADA LAKE
LAKE GRIFFIN
LAKE HAINES
LAKE HANCOCK
LAKE HORSESHOE
LAKE HOHELL
LAKE ISTOKPOGA
LAKE JESSUP
LAKE KISSIMMEE
LAKE LULU
LAKE MARION
LAKE MINNEHAHA
LAKE MINNEOLA
LAKE MONROE
LAKE OKEECHOdEE
LAKE POINSETT
LAKE KEEOY
LAKE SOUTH
LAKE TALOUIN
MEDIAN
TOTAL P
25
SO
23
65
60
53
5
45
40
43
4P
70
18
93
11
as
28
90
3
78
88
100
38
68
58
95
63
55
< 10)
( 20)
( 9)
I 26)
( 24)
( 21)
( 2)
( 16)
( 16)
( 17)
( 19)
( 281
( 7)
1 37)
( 4)
( 34)
1 11)
( 36)
( D
( 31)
< 351
I 40)
( 15)
( 27)
( 23)
( 38)
( 25)
( 22)
MEDIAN
INORG N
29
38
29
70
76
35
10
54
81
54
29
SI
43
70
23
76
1«
63
3
29
91
98
15
45
60
13
70
20
( 10)
( 15)
( 10)
( 27)
< 30)
( 14)
( 4)
( 21)
( 32)
( 21)
< 10)
< 32)
( 17)
( 27)
( 9)
( 30)
( 7)
( 25)
I 1)
( 10)
( 36)
( 38)
( 6)
( 18)
( 24)
( 5)
< 27)
( 8)
500-
MEAN SEC
30
10
20
33
60
IB
3
4B
45
85
23
75
13
aO
69
65
5-
73
15
53
95
98
28
40
50
55
69
78
( 12)
I 4)
I 8)
( 13)
( 24)
( 7)
( 1)
( 19)
( 18)
( 34)
I 9)
( 30)
( 5)
( 32)
( 27)
( 26)
( 2)
( 29)
( 6)
( 21)
( 38)
( J9)
( 11)
< 16)
( 20)
( 22)
( 27)
( 31)
MEAN
CHLORA
18
38
5
80
55
33
3
43
70
S3
.30
58
13
78
35
93
25
05
0
bO
85
100
/5
73
95
4S
68
83
( 7)
( 15)
( 2)
( 32)
( 22)
( 13)
( 1>
I 17)
( 28)
( 21)
I 12)
( 23)
( 5)
I 31)
( 14)
< 37)
( 10)
( 26)
( 0)
I 20)
( 34)
( 40)
I 30)
( 29)
( 38)
I IB)
( 27)
( 331
15-
MIN 00
10
74
100
48
34
90
0
23
48
3
95
34
98
20
60
69
83
6S
8
83
78
90
26
53
34
34
60
5
< 4)
( 29)
( 40)
( 18)
( 12)
( 35)
1 0)
( 9)
( 18)
I D
( 38)
( 12)
( 39)
( 8)
( 23)
( 27)
( 32)
( 26)
( 3)
( 32)
1 31)
( 35)
( 10)
( 21)
( 12)
( 12)
< 23)
( 2)
MEDIAN
OISS OtiTHO P
18
70
23
50
56
68
10
43
40
38
48
78
2
-------
PERCENT OF LAKES «ITH HIGHER VALUES (NUMBED OF LUKES *iTn HIGHEH VALUES)
LAKE
CODE
1240
12*1
12*2
1243
1246
12*7
12*8
1249
1250
1252
1258
1261
1264
LAKE NAME
LAKE THONOTOSASSA
LAKE TOHOPEKALIGA
TROUT LAKE
LAKE HEOHYAKAPKA
LAKE rALE
LAKE MUNSON
LAKE SEMINOLE
LAKE LAWNE
LAKE TARPON
LAKE ELOISE
LAKE JESSIE
EAST LAKE TOHOPEKALIGA
PAYNE'S PRAIRIE LAKE I NO
MEDIAN
TOTAL P
20
33
15
75
98
a
35
0
83
30
73
80
11
1 8)
( 131
( 6)
< 30)
( 39)
( 3)
( 14)
( 01
( 33)
1 12)
( 29)
( 32)
( 41
MEDIAN
INOriG N
85
40
8
91
58
5
48
0
98
50
d8
98
65
( 34)
( 16)
( 3)
( 36)
( 33)
( 2)
( 19)
I 0)
1 381
( 20)
1 351
( 38)
( 26)
500-
MEAN SEC
53
38
43
83
90
8
35
0
100
63
88
93
25
( 23>
< 151
( 171
( 3J)
( 361
( 31
< 14)
( 0)
( 40)
( 25)
( 351
( 37)
( 10)
MEAN
CHLO-IA
40
48
23
88
63
ti
10
20
90
23
60
98
15
( 16)
I 19)
( 9)
( 3S)
( 2S>
I 3)
( 4)
( 8)
( 36)
I 11)
( 24)
( 39)
1 6)
15-
MIN 00
48
40
13
74
83
16
69
43
60
16
26
55
90
( 18)
( 16)
( 5)
( 29)
( 321
( 6)
( 27)
( 17)
I 23)
( 6)
( 10)
( 22)
< 3b>
MEDIAN
OISS OHTriO P
is
30
a
84
75
13
63
35
60
20
84
99
0
I 61
( 12)
( 3)
( 33)
( 30)
( 5)
( 25)
( 14)
( 24)
( 8)
( 33)
( 39)
( 0)
INDEX
NO
266
229
110
495
467
58
260
vu
4*1
207
4H
S23
206
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
i ia30 LAKE MINNEGLA 579
a 1261 EAST LAKE TOHOPEKALIGA 533
3 1229 LAKE M1NNEHAHA 517
4 1243 LAKE WEOHYAKAPKA 495
5 1250 LAKE TARPON 491
6 1221 LAKE ISTOKPOGA 477
7 1246 LAKE YALE 467
8 1224 LAKE KISSIMMEE 455
9 135B LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECHUBEE 368
14 1228 LAKE MARION 366
15 1206 LAKE CRESCENT 346
16 1334 LAKE POINSETT 343
17 . 1207 DOCTORS LAKE 341
18 1336 LAKE »tED» 337
19 1211 LAKE GIBSON 3?*
20 1208 LAKE DORA 397
21 1239 LAKE TALOUIN 394
22 1202 LAKE APOPKA 280
23 1212 GLENAOA LAKE 276
24 1214 LAKE GRIFFIN 373
25 1240 LAKE THONOTOSASSA 266
36 1348 LAKE SEMINOLE 360
27 1310 LAKE GEORGE 356
38 1241 LAKE TOHOPEKALIGA 229
-------
LAKES RANKED 8r INOEA NOS.
R4NK LAKE CODE LAKE NAME INDEX NO
39 1331 LAKE MONROE 215
30 1317 LAKE HANCOCK 313
31 1353 LAKE ELOISE 307
33 1364 PAYNE'S PRAIRIE LAKE (NO 306
33 1330 LAKE HOKELL 301
34 1303 LAKE BANANA 300
35 1333 LAKE JESSUP 18*
36 1201 ALLIGATOR LAKE 130
37 1343 TROUT LAKE 110
38 1349 LAKE LAHNE 98
39 1347 LAKE MUNSON 58
40 1327 LAKE LULU 34
41 1309 LAKE EFFIE 31
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 "^ = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 - cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE CODE 1249 LAWNE LAKE
TOTAL DRAINAGE AREA OF LAKE(SQ KM)
10.7
SUB-DRAINAGE
TRIBUTARY AREA(SQ KM>
1249A1
1249B1
1249C1
1249D1
1249ZZ
JAN
FE8
MAR
APR
MAY
NORMALIZED FLOWS(CMS)
JUN JUL AUG
SEP
OCT
NOV
DEC
MEAN
10.7
5.8
0.3
0.4
3.5
0.17
0.09
0.01
0.02
0.05
0.20
0.11
0.01
0.02
0.06
0.31
0.17
0.01
0.03
0.09
0.23
0.12
0.01
0.03
0.07
0.10
0.05
0.01
0.02
0.02
0.09
0.05
0.01
0.02
0.02
0.18
0.10
0.01
0.02
0.05
0.28
0.16
0.01
0.03
0.08
0.40
0.22
0.02
0.03
0.12
0.31
0.17
0.01
0.03
0.09
0.20
0.11
0.01
0.02
0.06
0.15
0.08
0.01
0.02
0.04
0.22
0.12
0.01
0.02
0.06
TOTAL DRAINAGE AREA OF LAKE = 10.7
SUM OF SUB-DRAINAGE AREAS = 10.0
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR
1249A1
MEAN FLOW DAY
1249B1
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
0.14
0.18
0.05
0.08
0.07
0.13
0.19
0.16
0.06
0.09
0.09
0.06
0.08
0.10
0.03
0.04
0.04
0.07
0.10
0.09
0.03
0.05
0.05
0.03
18
7
13
17
7
5
8
3
8
12
2
18
7
13
17
7
5
8
3
8
12
2
FLOW DAY
0.11
0.26
0.05
0.05
0.07
0.17
0.12
0.07
0.06
0.11
0.05
0.06
0.14
0.03
0.02
0.03
0.09
0.07
0.03
0.03
0.06
0.03
15
15
SUMMARY
TOTAL FLOW IN
TOTAL FLOW OUT
FLOW DAY
FLOW
0.07
0.03
2.61
2.63
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
a/25/75
LAKE CODE 1249
LAWNE LAKE
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
1249C1
124901
1249ZZ
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.04
0.05
0.00
0.01
0.01
0.03
0.05
0.04
0.01
0.01
0.02
0.01
18
7
13
17
7
5
8
3
8
12
2
18
7
13
17
7
5
8
3
8
12
2
18
7
13
17
7
5
8
3
8
12
2
FLOW DAY
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.08
0.00
0.0
0.01
0.05
0.03
0.01
0.01
0.02
0.00
FLOW DAY
FLOW
15
0.01
15
0.02
15
0.01
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORE! RETRIEVAL DATE 75/08/25
124901
28 33 47.0 081 26 13.0
LAKE LAWNE
12095 FLORIDA
00010
. DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
73/03/14 15 30 0000 26.8
73/09/05 15 20 0000 29.3
73/11/07 15 05 0000 22.2
00300 00077 00094
DO TRANSP CNOUCTVY
SECCHI FIELD
MG/L INCHES MICROMHO
4.6
6.4
15
1
0
265
203
225
11EPALES
3
00400
PH
SU
9.70
6.80
7.30
00410
T ALK
CAC03
MG/L
72
32
24
2111202
0004 FEET
DEPTH
00610
NH3-N
TOTAL
MG/L
00625
TOT KJEL
N
MG/L
00630
IM02&N03
N-TOTAL
MG/L
00671
PHOS-DIS
ORTHO
MG/L P
0.120
0.280
0.200
4.400
3.700
5.100
0.130
1.070
1.990
0.600
0.044
0.117
-------
STORET RETRIEVAL DATE 75/08/25
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/14 15 30 0000 1.140 240.to
73/09/05 15 20 0000 2.560 10.9
73/11/07 15 05 0000 4.550 3.2
124901
28 33 47.0 081 26 13.0
LAKE LAWNE .
12095 FLORIDA
11EPALES
3
2111202
0004 FEET
DEPTH
-------
APPENDIX E
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA
-------
STORET RETRIEVAL DATE 75/08/25
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/07
73/05/13
73/06/17
73/07/07
73/08/05
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/02
09 05
10 10
09 20
09 30
09 45
09 45
15 05
14 20
11 30
12 00
10
1249A1
28 34 30.0 081 26 00.0
UNNAMED CREEK
12103 7.5 ORLANDO WEST
0/LAWNE LAKE
ST HWY 438 BROG
11EPALES 2111204
4 0000 FEET DEPTH
11
45
14
10630
I&N03
OTAL
IG/L
0.034
0.058
0.066
0.023
0.315
0.120
0.010K
0.230
0.028
0.024
0.088
0.240
00625
TOT KJEL
N
MG/L
4.050
1.470
1.760
1.400
4.100
1.900
2.940
1.450
1.000
2.500
2.000
1.800
00610
NH3-N
TOTAL
MG/L
0.086
0.140
0.160
0.096
0.210
0.240
0.040
0.220
0.042
0.072
0.116
0.113
00671
PHOS-DIS
ORTHO
MG/L P
0.500
0.120
0.154
0.132
0.130
0.056
0.019
0.048
0.020
0.028
0.075
0.020
00665
PHOS-TOT
MG/L P
1.200
0.375
0.377
0.290
1.000
0.090
0.045
0.290
0.050
0.083
0.532
0.490
-------
STORE! RETRIEVAL DATE 75/08/35
124981
28 34 00.0 081 26 00.0
UNNAMED STREAM
12 7.5 ORLANDO WEST
I/LAWNE LAKE
BRQG .25 MI E OF LAWN LAKE
11EHALES 2111204
4 0000 FEET
DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/07
73/05/13
73/06/17
73/07/07
73/08/05
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/02
08 55
09 55
09 15
09 23
09 35
09 25
15 15
14 15
10 30
11 30
10 35
11 08
0630
'&N03
OTAL
G/L
0.016
0.016
0.015
0.010K
0.034
0.026
0.012
0.021
0.048
0.076
0.704
0.560
00625
TOT KJEL
N
MG/L
7.100
5.000
2.720
3.200
5.500
1.890
2.100
8.050
6.000
5.500
4.600
3.100
00610
NH3-N
TOTAL
MG/L
4.800
2.600
1.000
1.470
2.400
0.310
0.150
1.700
3.800
4.100
0.241
0.740
00671
PHOS-DIS
ORTHO
MG/L P
1.600
0.730
1.050
1.260
0.830
0.063
0.147
0.330
1.580
1.700
0.379
0.800
00665
PHOS-TOT
MG/L P
1.800
0.840
1.350
1.300
0.980
0.150
0.200
3.670
2.000
1.880
2.200
2.500
-------
STORET RETRIEVAL DATE 75/08/85
1249C1
28 33 30.0 081 26 30.0
UNNAMED CREEK
12 7.5 ORLANDO WEST
T/LAwNE LAKE
DIRT RD BRDG DOWNSTREAM OF PINE HILL STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/07
73/05/13
73/06/17
73/07/07
73/08/05
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/02
35
15
08
09
09 04
09 10
09 30
09 40
14 50
14 05
09 30
13 00
10 25
11 00
0630
I&N03
OTAL
IG/L
1.160
0.990
0.074
0.060
0.014
7.400
0.058
0.340
0.760
0.756
0.368
0.036
00625
TOT KJEL
N
MG/L
1.980
2.400
1.800
1.540
7.350
3.150
3.800
0.750
1.200
1.100
0.500
0.500
00610
NH3-N
TOTAL
MG/L
0.720
0.730
0.210
0.250
0.730
0.930
0.058
0.056
0.088
0.176
0.016
0.045
00671
PHOS-OIS
ORTHO
MG/L P
0.078
0.240
0.099
0.300
0.063
0.850
0.033
0.044
0.208
0.232
0.024
0.025
00665
PHOS-TOT
MG/L P
0.168
0.460
0.440
1.200
0.330
0.920
0.180
0.050
0.490
0.440
0.090
0.065
-------
STORET RETRIEVAL DATE 75/08/25
124901
28 34 00.0 081 26 30.0
UNNAMED CREEK
12 7.5 ORLANDO WEST
T/LAWN LAKE
BANK FROM ONE OF THE ROS W OF THE LAKE
11EPALES 2111204
it 0000 FEET DEPTH
DATE TIME DEPTH N02&N03
FROM OF
TO DAY FEET
73/03/18
73/04/07
73/05/13
73/06/17
73/07/07
73/08/05
73/09/08
73/11/03
73/12/08
73/12/15
74/01/12
74/02/02
09 20
10 25
09 30
09 40
09 50
09 35
15 00
14 35
10 00
11 30
10 50
11 25
0630
&N03
OTAL
G/L
0.090
0.066
0.024
0.011
0.075
0.069
0.210
0.100
0.216
0.208
0.016
0.016
00625
TOT KJEL
N
MG/L
0.660
0.540
0.540
0.940
3.500
3.200
1.300
0.800
1.100
0.400
2.500
3.000
00610
NH3-N
TOTAL
MG/L
0.054
0.010
0.040
0.040
0.204
0.354
0.770
0.094
0.080
0.069
0.012
0.150
00671
PHOS-OIS
ORTHO
MG/L P
0.021
0.028
0.022
0.032
0.069
0.240
0.126
0.053
0.320
0.312
0.052
0.060
00665
PHOS-TOT
MG/L P
0.045
0.035
0.030
0.120
0.130
0.430
0.200
0.090
0.660
0.455
0.680
0.650
-------
STORET RETRIEVAL GATE 75/08/25
1249BA AS 12498A P001360
28 37 20.0 081 26 20.0
LAKE LAWNE SHORES
12103 7.5 ORLANDO
T/LAWNE LAKE
UNNAMED CREEK
11EPALES 2141204
4 0000 FEET DEPTH
DATE
FROM
TO
1/05/0'
i/oe/i;
>(T>-
TIME DEPTH
OF
DAY FEET
+ 11 00
1 08 30
00630
N02^N03
N-TOTAL
MG/L
0.660
3.300
00625
TOT KJEL
N
MG/L
28.400
15.500
00610
NH3-N
TOTAL
MG/L
5.500
3.900
00671
PHOS-DIS
ORTHO
MG/L P
7.840
2.100
00665
PHOS-TOT
MG/L P
9.000
2.500
50051
FLOW
RATE
INST MGO
0.120
0.120
50053
CONDUIT
FLOW-MOD
MONTHLY
0.120
0.100
73/06/12 Ib 30
73/07/09 10 00
CP < T >-
73/07/09 14 00
0.190
21.000
10.400
3.570
4.100
0.120
0.120
------- |