U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON U\KE MONROE SB1INOLE AND VOLUSIA COUNTIES FLORIDA EPA REGION IV WORKING PAPER No, 267 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA 699-440 ------- REPORT ON LAKE MONROE SEMINOLE AND VOLUSIA COUNTIES FLORIDA EPA REGION IV WORKING PAPER No, 267 o WITH THE COOPERATION OF THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION AND THE FLORIDA NATIONAL GUARD DECEMBER, 1977 ------- CONTENTS Page Foreword i i List of Florida Lakes iv Lake and Drainage Area Map v Sections I. Conclusions 1 II. Lake and Drainage Basin Characteristics 4 III. Lake Water Quality Summary 5 IV. Nutrient Loadings 9 V. Literature Reviewed 14 VI. Appendices 15 ------- ii FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation- wide threat of accelerated eutrophication to freshwater lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that: a. A generalized representation or model relating sources, concentrations, and impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)]» water quality criteria/standards review [§303(c)], clean lakes [§314(a>b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- m Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLEDGMENT The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Florida Department of Environ- mental Regulation for professional involvement and to the Florida National Guard for conducting the tributary sampling phase of the Survey. Joseph W. Landers, Jr., Secretary of the Department of Environ- mental Regulation; John A Redmond, former Director of the Division of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart, Chief of the Bureau of Water Quality, provided invaluable lake docu- mentation and counsel during the survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Henry W. McMillan (Retired), then the Adjutant General of Florida, and Project Officer Colonel Hugo F. Windham, who directed the volunteer efforts of the Florida National Guard, are also gratefully acknowledged for their assistance to the Survey. ------- IV NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF FLORIDA LAKE NAME Alligator Apopka Banana Crescent Doctors Dora East Tohopekaliga Effie Eloise George Gibson Glenada Griffin Haines Hancock Horseshoe Howell Istokpoga Jessie Jessup Kissimmee Lawne Lulu Marion Minnehaha Mtnneola Monroe Munson Okeechobee Poinsett Reedy Seminole Semi no!e South Talquin Tarpon Thonotosassa Tohopekaliga Trout Weohyakapka Yale COUNTY Columbia Lake, Orange Polk Flagler, Putnam Clay Lake Osceola Polk Polk Putnam, Volusia Polk Highlands Lake Polk Polk Semi no!e Orange, Seminole Highlands Polk Seminole Osceola Orange Polk Polk Orange Lake Seminole, Volusia Leon Glades, Hendry, Martin, Okeechobee, Palm Beach Brevard, Orange, Osceola Polk Jackson, FL; Decatur, Seminole, GA Pinellas Brevard Gadsden, Leon Pinellas Hillsborough Osceola Lake Polk Lake ------- LAKE MONROE Tributary Sampling Site X Lake Sampling Site f Sewage Treatment Facility s 10 is Km Mi ------- LAKE MONROE STORE! NO. 1231 I. CONCLUSIONS A. Trophic Condition: Survey data indicate Lake Monroe is eutrophic. It ranked twenty-ninth in overall trophic quality when the 41 Florida lakes sampled in 1973 were compared using a combination of six parameters*. Twenty-five of the lakes had less median total phosphorus, 27 had less median dissolved phosphorus, 34 had less median inorganic nitrogen, ten had less mean chlorophyll a^, and 29 had greater mean Secchi disc transparency. Survey limnologists observed beds of macrophytes near the shore at sampling station 1 in March and at all three stations in September and November. Brezonik et al. (in prep.) have reported improved water quality in Lake Monroe during periods of high flow in the St. Johns River. Two of the three Survey lake sampling visits were made during such periods, so data obtained during those visits may not be representative of normal conditions. B. Rate-Limiting Nutrient: The algal assay results indicate Lake Monroe was nitrogen limited at the time the sample was collected (11/05/73). The lake data indi- cate nitrogen limitation at all sampling stations and times. * See Appendix A. ------- 2 C. Nutrient Controllability: 1. Point sources—During the sampling year, Lake Monroe received a total phosphorus loading about nine times that proposed by Vollenweider (Vollenweider and Dillon, 1974) as a eutrophic loading (see page 13). However, Vollenweider's model probably does not apply to water bodies with short hydraulic retention times, and the mean hydraulic retention time of Lake Monroe is only 10 days. It is estimated that the wastewater treatment plants con- sidered in this report contributed only about 6% of the total phosphorus and 1.5% of the total nitrogen inputs to the lake during the sampling year; and, regardless of the applicability of Vollenweider's model, elimination of phosphorus from these two plants alone probably would not result in a significant improvement in the trophic condition of the lake. However, since some of the nutrient loading to the St. Johns River is contributed by sewage treatment plants discharging to the river upstream from Lake Monroe, to Lake Jessup, and to the Econlockhatchee River, advanced waste treatment or effluent diversion at all of these plants might slow the eutrophication of Lake Monro, but a more intensive study of the impact of the distant point sources is needed to determine the effect of overall point-source nutrient control. ------- 3 2. Non-point sources—The St. Johns River is the primary source of nutrient loading to Lake Monroe and contributed about 91% of the total phosphorus load and 97% of the total nitrogen load to the lake during the sampling year. Much of the nutrient loading to the river results from use of the floodplain as pasture during the annual dry season. ------- II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1" A. Morphometry : 1. Surface area: 35.50 kilometers2. 2. Mean depth: 1.8 meters. 3. Maximum depth: 5.8 meters. 4. Volume: 63.900 x 106 m3. 5. Mean hydraulic retention time: 10 days. B. Tributary and Outlet: (See Appendix C for flow data) 1. Tributaries - Drainage Mean flow Name area (km2)* (m3/sec)* St. Johns River 6,397.3 71.12 Bethel Creek 15.5 0.20 Minor tributaries & immediate drainage - 233.9 3.00 Totals 6,646.7 74.32 2. Outlet - St. Johns River 6,682.2** 74.33 C. Precipitation***: 1. Year of sampling: 125.4 centimeters. 2. Mean annual: 135.5 centimeters. t Table of metric conversions—Appendix B. tt Brezonik et al., (in prep.) * For limits of accuracy, see Working Paper No. 175, "...Survey Methods, 1973-1976". ** Includes area of lake. *** See Working Paper No. 175. ------- 5 III. WATER QUALITY SUMMARY Lake Monroe was sampled three times in 1973 by means of a pontoon- equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from three stations on the lake and from one or more depths at each station (see map, page v). During each visit, a single depth-integrated (near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the third visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll a_ analysis. The maximum depths sampled were 2.7 meters at station 1, 1.8 meters at station 2, and 3.4 meters at station 3. The sampling results are presented in full in Appendix D and are summarized in the following table. ------- PARAMETER TEMP to OISS OXY (MG/L) CNQCTVY (rtCROMO) PH (STAND UNITS) TOT ALK (MG/L) TOT P (MG/L) ORTHO P (MG/L) N02+N03 (MG/L) AMMONIA (MG/L) KJEL N (MG/L) INORG N (MG/L) TOTAL N (MG/L) CHLRPYL A (UG/L) SECCHI (METERS) A. SUMMARY OF PHYSICAL AMD 1ST SAMPLING ( 3/14/73) 3 SITEb RANGE 25.3 - 26.9 4.5 - 7.6 1000. - 1090. 7.6 - 8.0 ttQ, - ^4. 0.183 - 0.367 0.119 - 0.245 0.040 - 0.100 0.060 - 0.^*20 1.200 - 1.900 0.110 - 0.520 1.250 - 2.000 19.4 - 19.7 0.6 - O.B CHEMICAL CHARACTERISTICS FOR LAKE MONROE STORET COOE 1231 2ND SAMPLING ( 9/ 5/73) 3 SITES 3RD SAMPLING (ll/ 5/73) 3 SITES MEAN 26.1 6.3 1021. 7.7 41. 0.229 0.152 0.061 0.157 1.614 0.21s- 1.6/6 19.5 0.7 MtDI AN 25.9 6.5 1000. 7.7 41. 0.198 0.133 O.OSO 0.120 1.700 0.160 1.750 19.5 O.a KANGE 28.3 4.6 1080. 7.1 36. 0.179 O.U7 0.110 0.110 1.800 0.220 1.910 10.8 0.4 - 29.5 6.0 - 1236. 7.5 45. - 0.324 - 0.277 - 0.180 - 0.540 - 2.400 - U.720 - 2.580 - 31.3 0.8 MEAN 28.9 5.3 1142. 7.3 41. 0.214 0.179 0.146 0.264 2.040 0.410 2.186 18.8 0.7 MEDIAN 28.9 5.2 1115. 7.4 41. 0.188 0.160 0.150 0.250 2.000 0.390 2.150 14.2 0.8 RANGE 21.3 4»2 682. 7.1 33. 0.099 0.068 0.140 0.060 1.500 0.210 1.710 3.6 0.4 - 23.4 6.2 - 716. 7.5 45. - 0.234 - 0.120 - 0.220 - 0.240 - 2.800 - 0.390 - 2.960 7.7 0.7 MEAN 22.4 5.2 698. 7.3 37. 0.153 0.097 0.167 0.139 1.829 0.306 1.996 6.1 0.5 MEDIAI 22.5 5.3 700. 7.2 36. 0.153 0.090 0.150 0.150 1.700 0.300 1.850 7.1 0.5 ------- B. Biological characteristics: 1. Phytoplankton - Sampl i ng Date 03/14/73 09/05/73 11/05/73 2. Chlorophyll a_ - Sampling Date 03/14/73 09/05/73 11/05/73 Dominant Genera 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. Lyngbya S£. Melosira sp. Microcystis sp. Nitzschia sp. Scenedesmus sp. Other genera Total Melosira sp. Lyngbya SJD. Cyclotella sp. Fragilaria^ sp. Flagellates Other genera Total Total Station Number 1 2 3 1 2 3 1 2 3 Algal units per ml 1,642 1,318 1,219 672 299 1,119 6,269 4,107 3,850 2,138 2,053 1,283 5,648 19,079 1. 2. 3. 4. 5. Chlamydomonas sp. Microcystis sp. Lyngbya sp. Centric diatoms Dactylococcopsis sp. Other genera 1,759 554 434 313 265 817 4,142 Chlorophyll a (yg/D 19.7 19.4 31.3 14.2 10.8 7.7 7.1 3.6 ------- 8 C. Limiting Nutrient Study: 1. Autoclaved, filtered, and nutrient spiked - Ortho P Cone, (mg/1) Spike (mg/1) Control 0.050 P 0.050 P + 1.0 N 1.0 N 2. Filtered and nutrient spiked - Inorganic N Cone, (mg/1) Maximum yield (mg/1-dry wt.) 0.100 0.150 0.150 0.100 0.252 0.252 1.252 1.252 7.3 7.8 30.3 28.5 Spike (mg/1) Control 0.050 P 0.050 P + 1.0 N 1.0 N Ortho P Cone, (mg/1) 0.096 0.146 0.146 0.096 Inorganic N Cone, (mg/1) 0.228 0.228 1.228 1.228 Maximum yield (mg/1-dry wt.) 4.7 4.8 23.6 36.0 3. Discussion - The control yields of the assay alga, Selenastrum capri- cornutum, indicate that the potential primary productivity of Lake Monroe was high at the time the assay sample was collected (11/05/73). The addition of nitrogen alone or in combination with orthophosphorus significantly increased yields while addition of orthophosphorus alone did not. This indicates nitrogen limitation. The lake data indicate nitrogen limitation at all sampling times; i.e., the mean inorganic nitrogen/orthophosphorus ratios were 4/1 or less at all sampling times and stations. ------- IV. NUTRIENT LOADINGS (See Appendix E for data) For the determination of nutrient loadings, the Florida National Guard collected monthly near-surface grab samples from each of the tributary sites indicated on the map (page v). Sampling was begun in March, 1973, and was completed in February, 1974. Through an interagency agreement, stream flow estimates for the year of sampling and a "normalized" or average year were provided by the Florida District Office of the U.S. Geological Survey for the tributary sites nearest the lake. In this report, nutrient loads for sampled tributaries were deter- mined by using a modification of a U.S. Geological Survey computer program for calculating stream loadings*. Nutrient loads shown are those measured minus point-source loads, if any. Nutrient loads for unsampled "minor tributaries and immediate drainage" ("ZZ" of U.S.G.S.) were summarized from Brezonik et al. (in prep.). The operator of the Deltona wastewater treatment plant provided monthly effluent samples and corresponding flow data. The operator of the Sanford wastewater treatment plant did not participate in the Survey; nutrient loads from this source were estimated at 1.134 kg P and 3.401 N/capita/year, and flows were estimated at 0.3785 m3/capita/day. * See Working Paper No. 175. ------- 10 A. Waste Sources: 1. Known municipal - Name Deltona* Sanford** Pop. Served 9, 22, 000 600 Mean Flow Treatment (m3/d) act. act. sludge sludge 1 8 ,612. ,554. 6 1 Receiving Water Lake Lake Monroe Monroe 2. Known industrial - None * Treatment plant questionnaire. ** Anonymous, 1971. ------- 11 B. Annual Total Phosphorus Loading - Average Year: 1. Inputs - kg P/ % of Source yr total a. Tributaries (non-point load) - St. Johns River 480,250 91.4 Bethel Creek 375 0.1 b. Minor tributaries & immediate drainage (non-point load)* - 11,900 2.3 c. Known municipal STP's - Deltona 5,350 1.0 Sanford 25,630 4.9 d. Septic tanks** - 10 < 0.1 e. Known industrial - None f. Direct precipitation*** - 1,560 0.3 Total 525,075 100.0 2. Outputs - Lake outlet - St. Johns River 543,740 3. Net annual P loss - 18,665 kg. * Brezonik et al., (in prep). ** Estimate based on 34 lakeshore dwellings; see Working Paper No. 175. *** Brezonik and Shannon, 1971. ------- 12 C. Annual Total Nitrogen Loading - Average Year: 1. Inputs - kg N/ % of Source yr total a. Tributaries (non-point load) - St. Johns River 5,534,870 96.7 Bethel Creek 11,735 0.2 b. Minor tributaries & immediate drainage (non-point load)* - 72,700 1.3 c. Known municipal STP's - Deltona 6,670 0.1 Sanford 76,865 1.3 d. Septic tanks** - 360 < 0.1 e. Known industrial - None f. Direct precipitation*** - 20,590 0.4 Totals 5,723,790 100.0 2. Outputs - Lake outlet - St. Johns River 5,760,010 3. Net annual N loss - 36,230 kg. D. Non-point Nutrient Export by Subdrainage Area: Tributary kg P/km2/yr kg N/km2/yr St. Johns River 75 865 Bethel Creek 24 757 * Brezonik et al., (in prep.) ** Estimate based on 34 lakeshore dwellings; see Working Paper No. 175. *** Brezonik and Shannon, 1971. ------- 13 E. Yearly Loads: In the following table, the existing phosphorus loadings are compared to those proposed by Vollenweider (Vollenweider and Dillon, 1974). Note, however, that Florida lakes may be able to assimilate phosphorus at a somewhat higher level than that suggested by Vollenweider (Shannon and Brezonik, 1972). Essentially, Vollenweider's "dangerous" loading is one at which the receiving water would become eutrophic or remain eutrophic; his "permissible" loading is that which would result in the receiving water remaining oligotrophic or becoming oligo- trophic if morphometry permitted. A mesotrophic loading would be considered one between "dangerous" and "permissible". Vollenweider's model may not be applicable to water bodies with short hydraulic retention times. Total Phosphorus Total Nitrogen Total Accumulated Total Accumulated" grams/m2/yr 14.79 loss* 161.2 loss* Vollenweider phosphorus loadings (g/m2/yr) based on mean depth and mean hydraulic retention time of Lake Monroe: "Dangerous" (eutrophic loading) 1.54 "Permissible" (oligotrophic loading) 0.77 * There was an apparent loss of nutrients during the sampling year. This may have been due to nutrient fixation in the lake, solubilization of previously sedimented nutrients, unknown and unsampled point sources discharging directly to the lake, underestimation of the minor tributary and immediate drainage load, or (probably) insufficient sampling in rela- tion to the short hydraulic retention time of the lake. ------- 14 LITERATURE,REVIEWED Anonymous, 1971. Inventory of municipal waste facilities. EPA Publ. OWP-1, vol. 4, Wash., DC. Brezonik, Patrick L., and Earl E. Shannon, 1971. Trophic state of lakes in north central Florida. Publ. No. 13, FL Water Resources Res. Ctr., U. of FL, Gainesville. Brezonik, P. L., J. L. Fox, N. E. Carriker, J. Hand, N. D. Nisson, and T. Belanger (in preparation). Nutrient and oxygen dynamics in the middle St. Johns River system. Rept. to FL Dept. of Env. Reg., Tallahassee. Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between lake trophic state and nitrogen and phosphorus loading rates. Env. Sci. & Techn. 6. (8): 719-725. Vollenweider, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Natl. Res. Council of Canada Publ. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario. ------- 15 VI. APPENDICES APPENDIX A LAKE RANKINGS ------- LAKE DATA TO BE USED IN RANKINGS LAKE CODE LAKE NAME 1201 ALLIGATOR LAKE 1202 LAKE APOPKA 1203 LAKE BANANA 1206 LAKE CRESCENT 1207 DOCTORS LAKE 1208 LAKE DORA 1209 LAKE EFFIE 1210 LAKE GEORGE 1211 LAKE GIBSON 1212 GLENAOA LAKE 1214 LAKE GRIFFIN 1215 LAKE HAINES 1217 LAKE HANCOCK 1219 LAKE HORSESHOE 1220 LAKE HOKELL 1221 LAKE ISTOKPOGA 1223 LAKE JESSUP 1224 LAKE KISSIMMEE 1227 LAKE LULU 1228 LAKE MARION 1229 LAKE MINNEHAHA 1230 LAKE MINNEOLA 1231 LAKE MONROE 1232 LAKE OKEECHOBEE 1234 LAKE POINSETT 1236 LAKE REEOY 1238 LAKE SOUTH 1239 LAKE TALOUIN MEDIAN TOTAL P 0.620 0.102 0.660 0.065 0.084 0.102 1.480 0.129 0.167 0.134 0.119 0.063 0.772 0.034 1.260 0.039 0.492 0.034 1.490 0.044 0.038 0.018 0.188 0.063 0.085 0.033 0.074 0.085 MEDIAN INOHG N 0.260 0.230 0.260 0.130 0.120 0.240 0.410 0.165 0.115 0.165 0.260 0.115 0.195 0.130 0.285 0.120 0.290 0.145 1.065 0.260 0.080 0.070 0.300 0.185 0.150 0.330 0.130 0.290 500- MEAN SEC 474.000 484.176 482.667 473.889 465.555 482.889 489.000 469.308 470.000 454.167 481.333 462.667 483.500 459.000 464.000 464.222 487.000 463.667 483.000 468.833 435.000 406.333 474.555 472.366 469.000 468.500 464.000 462.167 MEAN CHLORA 87.733 46.611 208.600 10.211 27.100 59.978 261.433 35.000 19.675 27.667 66.855 26.567 97.900 12.067 54.117 6.594 76.550 24.142 276.566 29.967 8.733 3.333 14.225 14.524 6.500 34.837 23.167 9.483 15- MIN 00 13.100 8.200 3.600 10.200 10.600 7.400 15.000 11.000 10.200 14.700 6.600 10.600 5.600 11.500 9.000 8.600 7.600 8.800 14.300 7.600 7.700 7.400 10.800 9.800 10.600 10.600 9.000 14.400 MEDIAN OISS ORTHO P 0.386 0.019 0.293 0.033 0.028 0.022 0.950 0.063 0.069 0.072 0.038 0.014 0.158 0.023 1.175 0.010 0.288 0.007 1.030 0.016 0.012 0.009 0.12S 0.010 0.051 0.008 0.028 0.031 ------- LAKE DATA TO BE USED TN RANKINGS LAKE CODE LAKE NAME 1Z<>0 LAKE THONOTOSASSA 1241 LAKE TOHOPEKALIGA 1242 TROUT LAKE 12*3 LAKE WEOHYAKAPKA 1246 LAKE YALE 1247 LAKE MUNSON 1246 LAKE SEHINOLE 1249 LAKE LAWNE 1250 LAKE TARPON 1252 LAKE ELOISE 1258 LAKE JESSIE 1261 EAST LAKE TOHOPEKALIGA 1264 PAYNE'S PRAIRIE LAKE (NO MEDIAN TOTAL P 0.695 0.246 1.110 0.047 0.027 1.475 0.234 2.560 0.041 0.466 0.051 0.042 1.260 MKDIAN INORG N 0.095 0.200 0.650 0.080 0.160 0.925 0.175 1.350 0.070 0.170 0.090 0.070 0.140 500- MEAN SEC 466.167 472.917 472.000 458.667 441.000 486.667 473.833 494.667 400.889 465.333 452.667 440.833 476.000 MEAN CHLORA 37.700 30.633 76.967 7.767 25.367 140.317 102.000 84.900 6.867 70.233 26.300 5.167 88.200 15- MIN 00 10.200 10.500 12.900 8.200 7.600 12.200 8.600 10.400 9.000 12.200 10.800 9.400 7.400 MEDIJ OISS ORTt 0.565 0.152 0.970 0.011 0.014 0.852 0.026 0.117 0.027 0.339 0.011 0.007 1.210 ------- PERCENT or LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES) LAKE CODE LAKE NAME 1201 ALLIGATOR LAKE 1202 LAKE APOPKA 1203 LAKE BANANA 1206 LAKE CRESCENT 1207 DOCTORS LAKE 1208 LAKE DORA 1209 LAKE EFFIE 1210 LAKE GEORGE 1211 LAKE GIBSON 1212 GLENAOA LAKE 1214 LAKE GRIFFIN 1215 LAKE HAINES 1217 LAKE HANCOCK 1219 LAKE HORSESHOE 1220 LAKE HOWELL 1221 LAKE ISTOKPOGA 1223 LAKE JESSOP 122* LAKE KISSIMMEE 1227 LAKE LULU 1228 LAKE MARION 1229 LAKt MINNEHAHA 1230 LAKE MINNEOLA 1231 LAKE MONROE 1232 LAKE OKEECHOBEE 1234 LAKE POINSETT 1236 LAKE REEDY 123« LAKE SOUTH 1239 LAKE TALOUIN MEDIAN TOTAL P 25 50 23 65 60 53 5 45 40 43 48 70 18 93 11 85 28 90 3 78 88 100 38 68 58 95 63 55 < ( ( ( ( ( ( 1 < ( < < ( ( ( < I < ( < ( ( ( ( ( < ( < 10) 20) 9) 26) 24) 21) 2) 18) 16) 17) 19) 28) 7) 37) 4) 34) 11) 36) 1) 31) 35) 40) 15) 27) 23) 38) 25) 22) MEDIAN INORG N 29 1 38 1 29 1 70 1 76 1 35 1 10 1 54 < 81 1 54 1 29 I 81 1 43 I 70 i 23 i 76 i 18 63 3 29 91 98 15 45 60 13 70 20 1 10) ! 15) ! 10) 1 27) ! 30) 1 14) I 4) 1 21) I 32) I 21) 1 10) 1 32) 1 17) 1 27) I 9) I 30) ( 7) I 25) ( 1) I 10) ( 36) I 38) ( 6) ( 18) ( 24) I 5) ( 27) ( 8) 500- MEAN SEC 30 ( 10 ( 20 < 33 ( 60 ( 18 ( 3 ( 48 ( 45 ( 85 ( 23 t 75 » 13 ( 80 ( 69 ( 65 ( 5 ( 73 < 15 ( 53 ( 95 ( 98 ( 28 ( 40 ( 50 ( 55 ( 69 ( 78 ( 12) 4) 8) 13) 24) 7) 1) 19) 18) 34) 9) 30) 5) 32) 27) 26) 2) 29) 6) 21) 38) 39) 11) 16) 20) 22) 27) 31) MEAN CHLORA 18 I 38 ( 5 ( 80 ( 55 < 33 < 3 1 43 ( 70 t 53 ( 30 C 58 ( 13 ( 78 ( 35 ( 93 ( 25 ( 65 < 0 1 50 ( 85 ( 100 ( 75 ( 73 ( 95 I 45 ( 68 ( 83 ( 7) 15) 2) 32) 22) 13) 1) 171 28) 21) 12) 23) 5) 31) 14) 37) 10) 26) 0) 20) 34) 40) 30) 29) 38) 18) 27) 33) 15- MIN 00 10 ( 74 ( 100 1 48 ( 34 ( 90 I 0 1 23 ( 48 < 3 ( 95 ( 34 1 98 1 20 1 60 1 69 I 83 I 65 I 8 1 83 I 78 I 90 I 26 i 53 i 34 34 60 5 ; 4) : 29) : 40) 18) 12) : 35) : 0) ; 9) : 18) : i> I 38) ! 12) I 39) 1 8) 1 23) I 27) 1 32) 1 26) 1 3) 1 32) 1 31) 1 35) I 10) I 21) I 12) 1 12) I 23) 1 2) MEDIAN OISS ORTHO P 18 < 70 < 23 I 50 ( 56 ( 68 ( 10 ( 43 1 40 < 38 1 48 1 78 1 28 1 65 1 3 1 89 I 25 I 99 i 5 i 73 i 80 i 93 i 33 i 89 i 45 i 95 56 53 7) 28) 9) 20) 22) 27) 4) 1 17) ; 16) : IS) ( 19) ( 31) ! 11) 1 26) I 1) I 35) I 10) I 39) 1 2) 1 29) 1 32) 1 37) 1 13) ( 35) 1 18) ( 38) I 22) I 21) INDEX NO 130 280 200 346 341 297 31 256 324 276 273 396 213 406 201 477 184 465 34 366 517 579 215 368 342 337 386 294 ------- PERCENT OF LAKES WITH HIGHER VALUES (NUMBE* OF LAKES *ITH HIGHER VALUES) LAKE CODE LAKE NAME !2<>o LAKE THONOTOSASSA 1241 LAKE TOHOPEKALIGA 1242 TROUT LAKE 1243 LAKE WEOHYAKAPKA 1246 LAKE VALE 1247 LAKE HUNSON 1248 LAKE SEMINOLE 1249 LAKE LAWNE 1250 LAKE TARPON 1252 LAKE ELOISE 1258 LAKE JESSIE 1261 EAST LAKE TOHOPEKALIGA 1264 PAYNE'S PRAIRIE LAKE (NO MEDIAN TOTAL P 20 ( 33 ( 15 ( 75 < 98 1 8 < 35 < 0 ( 63 ( 30 ( 73 ( 80 ( 11 ( 8) 13) 6) 30) 39) 3) 14) 0) 33) 12) 29) 32) 4) MEDIAN INORG N 85 1 40 ( 8 < 91 1 58 1 5 I 48 I 0 < 98 i 50 68 98 65' 1 34) 1 16) I 3) 1 36) 1 23) 1 2) I 19) I 0) I 38) ( 20) ( 35) ( 38) I 26) 500- MEAN SEC 58 ( 38 I 43 < 83 ( 90 ( 8 ( 35 ( 0 ( 100 ( 63 ( 88 ( 93 ( 25 ( 23) 15) 17) 33) 36) 3) 14) 0) 40) 25) 35) 37) 10) MEAN CHLORA 40 48 23 88 63 8 10 20 90 28 60 98 15 ( 16) « 19) ( 9) ( 35) < 25) ( 3) ( 4) ( 8) ( 36) C 11) ( 24) « 39) I 6) 15- MIN DO 48 40 13 74 83 16 69 43 60 16 26 55 90 ( 18) ( 16) ( 5) < 29) ( 32) ( 6) ( 27) ( 17) ( 23) < 61 ( 10) ( 22) ( 35) MEDIAN 01 SS ORTHO P 15 30 8 84 75 13 63 35 60 20 84 99 0 ( 6) < 12) ( 3) ( 33) ( 30) ( 5) ( 25) C 14) < 24) ( 8) ( 33) » 39) < 0) INDEX NO 266 229 110 495 467 58 260 98 491 207 419 523 206 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO I 1330 LAKE MINNEOLA 579 Z 1261 EAST LAKE TOHOPEKALIGA 523 3 1229 LAKE MINNEHAHA 517 4 1243 LAKE WEOHYAKAPKA 495 s 1250 LAKE TARPON 491 6 1221 LAKE ISTOKPOGA 477 7 1246 LAKE YALE 467 & 1224 LAKE KISSIMMEE 455 9 1258 LAKE JESSIE 419 10 1219 LAKE HORSESHOE 406 11 1215 LAKE HAINES 396 12 1238 LAKE SOUTH 386 13 1232 LAKE OKEECHOBEE 368 14 1228 LAKE MARION 366 15 1206 LAKE CRESCENT 346 16 1234 LAKE POINSETT 342 17 1207 DOCTORS LAKE 341 18 1236 LAKE REEDY 337 19 1211 LAKE GIBSON 3?4 20 1208 LAKE DORA 297 21 1239 LAKE TALOUIN 294 22 1202 LAKE APOPKA 260 23 1212 GLENADA LAKE 276 24 1214 LAKE GRIFFIN 273 25 1240 LAKE THONOTOSASSA 266 26 1248 LAKE SEMINOLE 260 27 1210 LAKE GEORGE 256 28 1241 LAKE TOHOPEKALIGA 229 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 29 30 31 32 33 34 35 36 37 38 39 40 41 1231 1217 1252 1264 1220 1203 1223 1201 1242 1249 1247 1227 1209 LAKE MONROE LAKE HANCOCK LAKE ELOISE PAYNE'S PRAIRIE LAKE (NO LAKE HOWELL LAKE BANANA LAKE JESSUP ALLIGATOR LAKE TROUT LAKE LAKE LAWNE LAKE NUNSON LAKE LULU LAKE EFFIE 215 213 207 206 201 200 164 130 110 98 58 34 31 ------- APPENDIX B CONVERSION FACTORS ------- CONVERSION FACTORS - Hectares x 2.471 = acres Kilometers x 0.6214 = miles. Meters x 3.281 = feet Cubic meters x 8.107 x 10 = acre/feet Square kilometers x 0.3861 - square miles Cubic meters/sec x 35.315 - cubic feet/sec Centimeters x 0.3937 - inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = Ibs/square mile ------- APPENDIX C TRIBUTARY FLOW DATA ------- TRIbUTAKY FLOW INFORMATION FOR FLORIDA 8/25/75 LAKE COOE 1231 LAIvt MONRut TOTAL DRAINAGE AREA OF LAKE(SQ KM) JAN FES SUB-DRAINAGE TRIBUTARY AREA(SQ KM) 1231A1 6682.2 46.27 40.15 1231A2 6397.3 *4.49 39.87 123161 15.5 0.11 0.11 1231ZZ 233.1 1.56 1.67 6682. MAR 67.22 63.09 0.20 2.86 ,2 APR 46.81 43.07 0.08 1.39 MAY 14.47 15.46 0.03 0.62 NORMALIZED FLOwS(CMS) JUN JUL AUG 34.01 34.35 0.14 2.15 85.69 81.07 0.31 4.56 91.24 88.60 0.34 4.93 SEP 145.58 141.30 0.51 7.73 OCT 162.03 153.87 0.37 5.49 NOV 94.32 88.66 0.11 1.73 DEC MEAN 61.59 74.33 57.28 71.12 0.08 0.20 1.16 3.00 TOTAL DRAINAGE AREA OF LAKE = SUM OF SOB-DRAINAGE AREAS = MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS) TRIBUTARY MONTH YEAR MEAN FLOW DAY 1231A1 1231A2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 73 73 73 73 73 73 73 73 73 73 74 74 73 73 73 73 73 73 73 73 73 73 74 74 53.66 46.55 25.63 11.81 35.23 67.90 111.85 120.86 95.26 60.54 36.93 10.62 48.42 43.13 24.83 13.88 34.66 65.78 107.49 118.25 89.54 55.93 34.38 11.78 18 8 13 3 7 20 9 IS 4 9 6 2 18 8 13 3 7 20 9 15 4 9 6 2 34.29 50.60 9.97 -5.10 48.45 79.17 155.29 110.29 119.87 25.32 38.03 19.99 33.58 46.72 14.89 2.29 41.43 75.15 144.27 107.77 110.44 33.75 36.33 19.31 SUMMARY 6682.2 6645.9 TOTAL FLOW IN = TOTAL FLOW OUT = 889.37 889.37 (•LOW DAY 25 FLOW DAY -3.51 FLOW 25 5.32 ------- TRIBUTARY FLOW INFORMATION FOR FLOKlDA' 8/25/75 LAKE COOE 1231 LAKE MONROE MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS) TRIBUTARY MONTH YEAR MEAN FLOW DAY 1231B1 1231ZZ 3 ft S 6 7 e 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 73 73 73 73 73 73 73 73 73 73 74 74 73 73 73 73 73 73 73 73 73 73 74 74 0.09 0.08 0.03 0.04 0.12 0.34 0.34 0.24 0.07 0.06 0.05 0.04 1.33 1.27 0.57 0.65 1.73 4.84 5.27 3.51 0.99 0.82 0.74 0.57 16 8 13 3 7 21 9 15 4 9 6 2 18 8 13 3 7 21 9 15 4 9 6 2 25 FLOW DAY 0.07 0.11 0.03 0.04 0.08 0.15 0.54 0.16 0.09 0.06 0.07 0.04 1.02 1.76 0.57 0.59 1.19 2.15 8.13 2.35 1.36 0.76 0.91 0.54 FLOW DAY 0.06 FLOW 25 0.85 ------- APPENDIX D PHYSICAL and CHEMICAL DATA ------- STORE! RETRIEVAL DATE 75/06/25 123101 28 50 02.0 081 IB b6.0 LAKE MONROE 12127 FLORIDA DATE FROM TO 73/03/14 73/09/05 73/11/05 DATE FROM TO 73/03/14 73/09/05 73/11/05 TIME DEPTH OF DAY FEET 15 15 0000 IS 15 0004 15 15 0009 12 40 0000 12 40 0005 10 15 0000 10 15 0005 TIME DEPTH OF DAY FEET 15 15 0000 15 15 0004 15 15 0009 12 40 0000 12 40 0005 10 15 0000 10 15 0005 00010 WATER TEMP CENT 26. a 26.9 26.4 29.5 26.8 23.4 23.2 00665 PHOS-TOT MG/L ft 0.197 0.190 0.198 0.196 0.183 0.124 0.099 00300 DO MG/L 7.6 7.1 6.0 6.2 32217 CHLRPHYL A UG/L 19.7 31.3 7.7 00077 00094 TRANSP CNDUCTVY SECCHI FIELD INCHES MICROMHO 32 1090 1000 1000 31 1193 1236 29 716 712 11EPALES 2111202 3 0013 FEET DEPTH 00400 00410 00610 0062S 00630 PH T ALK NH3-N CAC03 TOTAL SU MG/L Mb/L 7.60 41 0 8.00 40 0 7.90 40 0 7.50 36 0 7.20 41 0 7.20 45 0 7.20 39 0 .120 .060 .090 .160 .110 .080 .070 TOT N KJEL MG/L 1 1 1 2 1 1 1 .800 .200 .300 .000 .800 .700 .500 N02&N03 N-TOTAL MG/L 0.040 0.050 0.050 0.160 0.110 0.220 0.210 00671 PHOS-OIS ORTHO MG/L 0. 0. 0. 0. 0. 0. 0. p 143 133 128 160 147 090, 068 ------- STORE! RETRIEVAL OATE 75/08/25 123102 28 51 20.0 081 16 24.0 LAKE MONROE 12127 FLORIDA DATE FROM TO 73/03/14 73/09/05 73/11/05 TIME OEPTH OF DAY FEET 15 50 0000 15 50 0006 12 25 0000 12 25 0005 11 00 0000 11 00 0006 00010 WATER TEMP CENT 25.9 25.5 29.2 28.3 22.9 22.5 11EPALES 00300 DO MG/L 6.0 5.2 5.0 00077 TRANSP SECCHI INCHES 32 32 18 00094 CNDUCTVY FIELD MICROMHO 1000 1000 1115 1080 700 704 3 00400 PH SU 7.70 7.70 7.50 7.10 7.20 7.10 00410 T ALK CAC03 MG/L 41 41 41 41 36 35 2111202 0010 00610 NH3-N TOTAL MG/L 0.100 0.120 0.250 0.260 0.060 0.150 FEET OEPTH 00625 TOT KJEL N MG/L 1.700 1.500 2.000 2.000 1.700 2.800 00630 N02&N03 N-TOTAL MG/L 0.050 0.070 0.150 0.130 0.150 0.160 00671 PHOS-DIS ORTHO MG/L P 0.119 0.122 0.160 0.150 0.084 0.089 00665 32217 DATE TIME DEPTH PHOS-TOT CHLRPHYL FROM OF A TO DAY FEET MG/L P UG/L 73/03/14 15 50 0000 0.183 15 50 0006 0.198 73/09/05 12 25 0000 0.188 14.2 12 25 0005 0.179 73/11/05 11 00 0000 0.116 7.1 11 00 0006 0.234 ------- STORE! RETRIEVAL DATE 75/08/25 133103 28 48 59.0 081 16 15.0 LAKE MONROE 12117 FLORIDA DATE FROM TO 73/03/14 73/09/05 73/11/05 DATE FROM TO 73/03/14 73/09/05 73/11/05 TIME DEPTH OF DAY FEET 16 30 0000 16 30 0006 11 15 0000 11 10 0000 11 10 0005 11 10 0011 TIME DEPTH OF UAY FEET 16 30 0000 16 30 0006 11 15 0000 11 10 0000 11 10 0005 11 10 0011 00010 WATER TEMP CENT 25.6 25.3 28.9 22.3 21.3 21.3 00665 PHOS-TOT MG/L P 0.272 0.367 0.324 0.172 0.170 0.153 00300 DO MG/L 4.5 4.6 4.2 5.6 32217 CHLRPHYL A UG/L 19.4 10.8 3.6 00077 00094 TRANSP CNDUCTVY SECCHI FIELD INCHES MICROMHO 24 16 15 1010 1050 1086 689 682 683 11EPALES 3 00400 PH SU 7.70 7.60 7.40 7.40 7.30 7.50 00410 T ALK CAC03 MG/L 41 44 45 36 33 33 2111202 0010 00610 NH3-N TOTAL MG/L 0.190 0.420 0.540 0.160 0.210 0.240 FEET DEPTH 00625 TOT KJEL N MG/L 1.900 1.900 2.400 1.800 1.700 1.600 00630 N02&N03 N-TOTAL MG/L 0.070 0.100 0.180 0.140 0.140 0.150 00671 PHOS-DIS ORTHO MG/L P 0.177 0.245 0.277 0.120 0.118 0.113 ------- APPENDIX E TRIBUTARY AND WASTEWATER TREATMENT PLANT DATA ------- STORET RETRIEVAL DATE 75/08/25 1231A1 28 50 30.0 031 19 30.0 ST JOHNS HIVE* 12069 7.5 SANFORD 0/LAKE MONROE SF HWY 600 8ROG .5 MI S OF VALDE2 11EPALES 2111204 4 0000 FEET DEPTH DATE TIME DEPTH N026.N03 FROM OF TO DAY FEET 73/03/18 73/04/08 73/05/13 73/06/03 73/06/25 73/07/07 73/08/20 73/09/09 73/10/15 73/11/04 73/12/09 74/01/06 74/02/02 10 09 10 11 12 11 11 11 11 11 11 11 11 30 50 40 00 15 10 00 10 15 30 10 05 53 (0630 J6.N03 OTAL IG/L 0.062 O.OlOiv 0.010*. 0.022 0.010K 0.012 U.010K 0.380 0.154 0.200 0.176 0.016 0.176 00625 TOT KJEL N MG/L 1.400 1.600 1.400 7.400 5.800 1.600 1.800 0.990 1.450 1.100 2.200 1,300 2.200 00610 NH3-N TOTAL MG/L 0.100 0.046 0.024 1.300 0.130 0.050 0.036 0.098 0.105 0.048 0.088 0.036 0.055 00671 PHOS-OIS ORTHO MG/L P O.lbH 0.147 0.160 0.154 0.210 0.210 0.160 0.210 0.138 0.092 0.104 0.096 0.170 00665 PHOS-TOT MG/L P 0.240 0.220 0.240 0.360 0.320 0.320 0.280 0.210 0.170 0.110 0.125 0.160 0.220 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STORET RETRIEVAL DATE 75/00/.25 1231A2 28 48 00.0 081 12 30.0 ST JOHNS KIVEK 12 7.5 OSTEEN I/LAKE MONROE ST HWY 415 dRDG IN INOIN MOUND' VILLAGE 11EPALES 2111204 4 0000 FEET DEPTH DATE TIME DEPTH N026.N03 FROM OF TO DAY FEET 73/03/18 73/04/08 73/05/13 73/06/03 73/06/25 73/07/07 73/08/20 73/09/09 73/10/15 73/11/04 74/01/06 74/02/02 09 09 09 10 11 10 09 10 12 10 10 11 10 04 55 15 00 10 35 30 37 10 15 23 0630 I4.N03 OTAL IG/L 0.138 0.154 0.060 0.027 0.044 0.014 0.058 0.230 0.077 0.088 0.240 0.112 00625 TOT KJEL N MG/L 1.700 1.540 5.000 4.600 1.300 4.000 2.200 1.300 1.500 1.400 2.100 1.300 00610 NH3-N TOTAL MG/L 0.126 0.060 0.225 0.230 0.160 0.130 0.081 0.078 0.064 0.052 0.120 0.035 00671 PHOS-DIS ORTHO MG/L P 0.126 0.150 0.139 0.189 0.200 0.220 0.180 0.126 0.094 0.100 0.176 0.280 00665 PHOS-TOT MG/L P 0.170 0.200 0.180 0.230 0.250 0.300 0.240 0.155 0.130 0.115 0.220 0.345 ------- STORET RETRIEVAL DATE 75/08/25 1231B1 28 51 00.0 081 13 30.0 BETHEL CREEK 12 7.5 OSTEEN T/LAKE MONROE BRDG .75 MI W OF LAKE BETHEL 11EPALES 2111204 4 0000 FEET DEPTH DATE FROM TO 73/03/18 73/04/08 73/05/13 73/06/03 73/06/25 73/07/07 73/08/21 73/09/09 73/10/15 73/11/04 73/12/09 74/01/06 74/02/02 00630 00625 TIME DEPTH N02&N03 TOT KJEL OF N-TOTAL N DAY FEET 09 09 10 10 11 10 14 10 12 11 10 10 11 55 21 15 45 30 35 30 45 55 00 45 35 40 MG/L 0 0 0 0 0 0 0 0 0 0 0 0 0 .036 .021 .026 .034 .010K .027 .046 .013 .012 .012 .016 .056 .064 MG/L 0. 0. 0. 4. 3. 3. 0. 1. 1. 1. 1. 0. 1. 600 685 920 950 200 080 600 680 750 450 700 700 850 00610 00671 00665 NH3-N PHOS-DIS PHOS-TOT TOTAL ORTHO MG/L 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 040 046 100 280 078 338 046 075 056 054 068 084 100 MG/L P 0.037 0.034 0.030 0.029 0.033 0.037 0.029 0.078 0.060 0.012 0.040 0.040 0.045 MG/L P 0 0 0 0 0 0 0 0 0 0 0 0 0 .045 .045 .045 .040 .035 .050 .045 .170 .120 .015 .045 .055 .045 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STORE! RETRIEVAL DATE 75/08/25 DATE TIME DEPTH FROM OF TO DAY FEET 73/09/19 73/10/24 73/11/16 73/12/20 74/01/21 74/02/20 74/03/19 74/04/22 74/05/20 74/06/19 74/07/22 74/08/19 11 30 11 30 10 00 09 45 11 00 11 00 13 45 11 00 09 30 09 00 13 00 10 00 12310A AS12310A P009000 28 <»/ 30.0 081 15 00.0 OELTONA 12069 7.5 OSTEEN T/LAKE MONROE ST JOHNS RIVER 11EPALES 2141204 4 0000 FEET DEPTH 0630 '&N03 OTAL IG/L 6.000 6.600 3.500 7.000 3.120 6.720 2.000 2.080 7.920 3.360 3.840 0.040 00625 TOT KJEL N MG/L 4.800 4.900 5.600 5.100 6.000 9.200 12.000 7.700 6.350 7.400 7.500 6.700 00610 NH3-N TOTAL MG/L 0.010 0.170 0.048 0.480 0.980 0.980 1.200 0.920 0.050K 0.092 0.180 0.050K 00671 PHOS-DIS ORTHO MG/L P 7.740 9.100 8.900 7.900 7.850 7.800 8.200 12.000 9.200 6.200 8.300 0.120 00665 PHOS-TOT MG/L P 8.200 9.200 8.900 7.900 8.200 8.700 9.000 13.000 9.550 6.900 9.500 9.700 50051 FLOW RATE INST MOD 0.378 U.4<*6 0.399 0.375 0.426 0.416 0.500 0.422 0.444 0.420 0.442 0.440 50053 CONDUIT FLOnl-MGD MONTHLY 0.401 0.436 0.410 0.395 0.408 0.450 0.413 0.430 0.446 0.429 0.434 0.460 K VALUE KNOWN TO BE LESS THAN INDICATED ------- |