U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
U\KE MONROE
SB1INOLE AND VOLUSIA COUNTIES
FLORIDA
EPA REGION IV
WORKING PAPER No, 267
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
699-440
-------
REPORT
ON
LAKE MONROE
SEMINOLE AND VOLUSIA COUNTIES
FLORIDA
EPA REGION IV
WORKING PAPER No, 267
o
WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
DECEMBER, 1977
-------
CONTENTS
Page
Foreword i i
List of Florida Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 14
VI. Appendices 15
-------
ii
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)]» water
quality criteria/standards review [§303(c)], clean lakes [§314(a>b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
m
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
IV
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
LAKE NAME
Alligator
Apopka
Banana
Crescent
Doctors
Dora
East Tohopekaliga
Effie
Eloise
George
Gibson
Glenada
Griffin
Haines
Hancock
Horseshoe
Howell
Istokpoga
Jessie
Jessup
Kissimmee
Lawne
Lulu
Marion
Minnehaha
Mtnneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Seminole
Semi no!e
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
Yale
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Clay
Lake
Osceola
Polk
Polk
Putnam, Volusia
Polk
Highlands
Lake
Polk
Polk
Semi no!e
Orange, Seminole
Highlands
Polk
Seminole
Osceola
Orange
Polk
Polk
Orange
Lake
Seminole, Volusia
Leon
Glades, Hendry, Martin,
Okeechobee, Palm Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas
Hillsborough
Osceola
Lake
Polk
Lake
-------
LAKE MONROE
Tributary Sampling Site
X Lake Sampling Site
f Sewage Treatment Facility
s 10 is Km
Mi
-------
LAKE MONROE
STORE! NO. 1231
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate Lake Monroe is eutrophic. It ranked
twenty-ninth in overall trophic quality when the 41 Florida
lakes sampled in 1973 were compared using a combination of six
parameters*. Twenty-five of the lakes had less median total
phosphorus, 27 had less median dissolved phosphorus, 34 had less
median inorganic nitrogen, ten had less mean chlorophyll a^, and
29 had greater mean Secchi disc transparency.
Survey limnologists observed beds of macrophytes near the
shore at sampling station 1 in March and at all three stations
in September and November.
Brezonik et al. (in prep.) have reported improved water quality
in Lake Monroe during periods of high flow in the St. Johns
River. Two of the three Survey lake sampling visits were made
during such periods, so data obtained during those visits may not
be representative of normal conditions.
B. Rate-Limiting Nutrient:
The algal assay results indicate Lake Monroe was nitrogen limited
at the time the sample was collected (11/05/73). The lake data indi-
cate nitrogen limitation at all sampling stations and times.
* See Appendix A.
-------
2
C. Nutrient Controllability:
1. Point sources—During the sampling year, Lake Monroe
received a total phosphorus loading about nine times that
proposed by Vollenweider (Vollenweider and Dillon, 1974) as
a eutrophic loading (see page 13). However, Vollenweider's
model probably does not apply to water bodies with short
hydraulic retention times, and the mean hydraulic retention
time of Lake Monroe is only 10 days.
It is estimated that the wastewater treatment plants con-
sidered in this report contributed only about 6% of the total
phosphorus and 1.5% of the total nitrogen inputs to the lake
during the sampling year; and, regardless of the applicability
of Vollenweider's model, elimination of phosphorus from these
two plants alone probably would not result in a significant
improvement in the trophic condition of the lake.
However, since some of the nutrient loading to the St. Johns
River is contributed by sewage treatment plants discharging
to the river upstream from Lake Monroe, to Lake Jessup, and to
the Econlockhatchee River, advanced waste treatment or effluent
diversion at all of these plants might slow the eutrophication
of Lake Monro, but a more intensive study of the impact of the
distant point sources is needed to determine the effect of overall
point-source nutrient control.
-------
3
2. Non-point sources—The St. Johns River is the primary
source of nutrient loading to Lake Monroe and contributed about
91% of the total phosphorus load and 97% of the total nitrogen
load to the lake during the sampling year. Much of the nutrient
loading to the river results from use of the floodplain as pasture
during the annual dry season.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
A. Morphometry :
1. Surface area: 35.50 kilometers2.
2. Mean depth: 1.8 meters.
3. Maximum depth: 5.8 meters.
4. Volume: 63.900 x 106 m3.
5. Mean hydraulic retention time: 10 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
St. Johns River 6,397.3 71.12
Bethel Creek 15.5 0.20
Minor tributaries &
immediate drainage - 233.9 3.00
Totals 6,646.7 74.32
2. Outlet -
St. Johns River 6,682.2** 74.33
C. Precipitation***:
1. Year of sampling: 125.4 centimeters.
2. Mean annual: 135.5 centimeters.
t Table of metric conversions—Appendix B.
tt Brezonik et al., (in prep.)
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
** Includes area of lake.
*** See Working Paper No. 175.
-------
5
III. WATER QUALITY SUMMARY
Lake Monroe was sampled three times in 1973 by means of a pontoon-
equipped Huey helicopter. Each time, samples for physical and chemical
parameters were collected from three stations on the lake and from one
or more depths at each station (see map, page v). During each visit, a
single depth-integrated (near bottom to surface) sample was composited
from the stations for phytoplankton identification and enumeration; and
during the third visit, a single 18.9-liter depth-integrated sample was
composited for algal assays. Also each time, a depth-integrated
sample was collected from each of the stations for chlorophyll a_
analysis. The maximum depths sampled were 2.7 meters at station 1,
1.8 meters at station 2, and 3.4 meters at station 3.
The sampling results are presented in full in Appendix D and are
summarized in the following table.
-------
PARAMETER
TEMP to
OISS OXY (MG/L)
CNQCTVY (rtCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02+N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AMD
1ST SAMPLING ( 3/14/73)
3 SITEb
RANGE
25.3 - 26.9
4.5 - 7.6
1000. - 1090.
7.6 - 8.0
ttQ, - ^4.
0.183 - 0.367
0.119 - 0.245
0.040 - 0.100
0.060 - 0.^*20
1.200 - 1.900
0.110 - 0.520
1.250 - 2.000
19.4 - 19.7
0.6 - O.B
CHEMICAL CHARACTERISTICS FOR LAKE MONROE
STORET COOE 1231
2ND SAMPLING ( 9/ 5/73)
3 SITES
3RD SAMPLING (ll/ 5/73)
3 SITES
MEAN
26.1
6.3
1021.
7.7
41.
0.229
0.152
0.061
0.157
1.614
0.21s-
1.6/6
19.5
0.7
MtDI AN
25.9
6.5
1000.
7.7
41.
0.198
0.133
O.OSO
0.120
1.700
0.160
1.750
19.5
O.a
KANGE
28.3
4.6
1080.
7.1
36.
0.179
O.U7
0.110
0.110
1.800
0.220
1.910
10.8
0.4
- 29.5
6.0
- 1236.
7.5
45.
- 0.324
- 0.277
- 0.180
- 0.540
- 2.400
- U.720
- 2.580
- 31.3
0.8
MEAN
28.9
5.3
1142.
7.3
41.
0.214
0.179
0.146
0.264
2.040
0.410
2.186
18.8
0.7
MEDIAN
28.9
5.2
1115.
7.4
41.
0.188
0.160
0.150
0.250
2.000
0.390
2.150
14.2
0.8
RANGE
21.3
4»2
682.
7.1
33.
0.099
0.068
0.140
0.060
1.500
0.210
1.710
3.6
0.4
- 23.4
6.2
- 716.
7.5
45.
- 0.234
- 0.120
- 0.220
- 0.240
- 2.800
- 0.390
- 2.960
7.7
0.7
MEAN
22.4
5.2
698.
7.3
37.
0.153
0.097
0.167
0.139
1.829
0.306
1.996
6.1
0.5
MEDIAI
22.5
5.3
700.
7.2
36.
0.153
0.090
0.150
0.150
1.700
0.300
1.850
7.1
0.5
-------
B. Biological characteristics:
1. Phytoplankton -
Sampl i ng
Date
03/14/73
09/05/73
11/05/73
2. Chlorophyll a_ -
Sampling
Date
03/14/73
09/05/73
11/05/73
Dominant
Genera
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
Lyngbya S£.
Melosira sp.
Microcystis sp.
Nitzschia sp.
Scenedesmus sp.
Other genera
Total
Melosira sp.
Lyngbya SJD.
Cyclotella sp.
Fragilaria^ sp.
Flagellates
Other genera
Total
Total
Station
Number
1
2
3
1
2
3
1
2
3
Algal units
per ml
1,642
1,318
1,219
672
299
1,119
6,269
4,107
3,850
2,138
2,053
1,283
5,648
19,079
1.
2.
3.
4.
5.
Chlamydomonas sp.
Microcystis sp.
Lyngbya sp.
Centric diatoms
Dactylococcopsis sp.
Other genera
1,759
554
434
313
265
817
4,142
Chlorophyll a
(yg/D
19.7
19.4
31.3
14.2
10.8
7.7
7.1
3.6
-------
8
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P
Cone, (mg/1)
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
2. Filtered and nutrient spiked -
Inorganic N
Cone, (mg/1)
Maximum yield
(mg/1-dry wt.)
0.100
0.150
0.150
0.100
0.252
0.252
1.252
1.252
7.3
7.8
30.3
28.5
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Ortho P
Cone, (mg/1)
0.096
0.146
0.146
0.096
Inorganic N
Cone, (mg/1)
0.228
0.228
1.228
1.228
Maximum yield
(mg/1-dry wt.)
4.7
4.8
23.6
36.0
3. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum, indicate that the potential primary productivity
of Lake Monroe was high at the time the assay sample was
collected (11/05/73). The addition of nitrogen alone or in
combination with orthophosphorus significantly increased
yields while addition of orthophosphorus alone did not.
This indicates nitrogen limitation.
The lake data indicate nitrogen limitation at all sampling
times; i.e., the mean inorganic nitrogen/orthophosphorus
ratios were 4/1 or less at all sampling times and stations.
-------
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v). Sampling was begun in
March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("ZZ" of U.S.G.S.) were summarized from Brezonik et al. (in
prep.).
The operator of the Deltona wastewater treatment plant provided monthly
effluent samples and corresponding flow data. The operator of the Sanford
wastewater treatment plant did not participate in the Survey; nutrient
loads from this source were estimated at 1.134 kg P and 3.401 N/capita/year,
and flows were estimated at 0.3785 m3/capita/day.
* See Working Paper No. 175.
-------
10
A. Waste Sources:
1. Known municipal -
Name
Deltona*
Sanford**
Pop.
Served
9,
22,
000
600
Mean Flow
Treatment (m3/d)
act.
act.
sludge
sludge
1
8
,612.
,554.
6
1
Receiving
Water
Lake
Lake
Monroe
Monroe
2. Known industrial - None
* Treatment plant questionnaire.
** Anonymous, 1971.
-------
11
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries (non-point load) -
St. Johns River 480,250 91.4
Bethel Creek 375 0.1
b. Minor tributaries & immediate
drainage (non-point load)* - 11,900 2.3
c. Known municipal STP's -
Deltona 5,350 1.0
Sanford 25,630 4.9
d. Septic tanks** - 10 < 0.1
e. Known industrial - None
f. Direct precipitation*** - 1,560 0.3
Total 525,075 100.0
2. Outputs -
Lake outlet - St. Johns River 543,740
3. Net annual P loss - 18,665 kg.
* Brezonik et al., (in prep).
** Estimate based on 34 lakeshore dwellings; see Working Paper No. 175.
*** Brezonik and Shannon, 1971.
-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
St. Johns River 5,534,870 96.7
Bethel Creek 11,735 0.2
b. Minor tributaries & immediate
drainage (non-point load)* - 72,700 1.3
c. Known municipal STP's -
Deltona 6,670 0.1
Sanford 76,865 1.3
d. Septic tanks** - 360 < 0.1
e. Known industrial - None
f. Direct precipitation*** - 20,590 0.4
Totals 5,723,790 100.0
2. Outputs -
Lake outlet - St. Johns River 5,760,010
3. Net annual N loss - 36,230 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
St. Johns River 75 865
Bethel Creek 24 757
* Brezonik et al., (in prep.)
** Estimate based on 34 lakeshore dwellings; see Working Paper No. 175.
*** Brezonik and Shannon, 1971.
-------
13
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider's "dangerous" loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would result
in the receiving water remaining oligotrophic or becoming oligo-
trophic if morphometry permitted. A mesotrophic loading would
be considered one between "dangerous" and "permissible".
Vollenweider's model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated"
grams/m2/yr 14.79 loss* 161.2 loss*
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of Lake Monroe:
"Dangerous" (eutrophic loading) 1.54
"Permissible" (oligotrophic loading) 0.77
* There was an apparent loss of nutrients during the sampling year. This
may have been due to nutrient fixation in the lake, solubilization of
previously sedimented nutrients, unknown and unsampled point sources
discharging directly to the lake, underestimation of the minor tributary
and immediate drainage load, or (probably) insufficient sampling in rela-
tion to the short hydraulic retention time of the lake.
-------
14
LITERATURE,REVIEWED
Anonymous, 1971. Inventory of municipal waste facilities. EPA Publ.
OWP-1, vol. 4, Wash., DC.
Brezonik, Patrick L., and Earl E. Shannon, 1971. Trophic state of
lakes in north central Florida. Publ. No. 13, FL Water Resources
Res. Ctr., U. of FL, Gainesville.
Brezonik, P. L., J. L. Fox, N. E. Carriker, J. Hand, N. D. Nisson,
and T. Belanger (in preparation). Nutrient and oxygen dynamics
in the middle St. Johns River system. Rept. to FL Dept. of Env.
Reg., Tallahassee.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between
lake trophic state and nitrogen and phosphorus loading rates. Env.
Sci. & Techn. 6. (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of the
phosphorus loading concept to eutrophication research. Natl.
Res. Council of Canada Publ. No. 13690, Canada Centre for Inland
Waters, Burlington, Ontario.
-------
15
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE LAKE NAME
1201 ALLIGATOR LAKE
1202 LAKE APOPKA
1203 LAKE BANANA
1206 LAKE CRESCENT
1207 DOCTORS LAKE
1208 LAKE DORA
1209 LAKE EFFIE
1210 LAKE GEORGE
1211 LAKE GIBSON
1212 GLENAOA LAKE
1214 LAKE GRIFFIN
1215 LAKE HAINES
1217 LAKE HANCOCK
1219 LAKE HORSESHOE
1220 LAKE HOKELL
1221 LAKE ISTOKPOGA
1223 LAKE JESSUP
1224 LAKE KISSIMMEE
1227 LAKE LULU
1228 LAKE MARION
1229 LAKE MINNEHAHA
1230 LAKE MINNEOLA
1231 LAKE MONROE
1232 LAKE OKEECHOBEE
1234 LAKE POINSETT
1236 LAKE REEOY
1238 LAKE SOUTH
1239 LAKE TALOUIN
MEDIAN
TOTAL P
0.620
0.102
0.660
0.065
0.084
0.102
1.480
0.129
0.167
0.134
0.119
0.063
0.772
0.034
1.260
0.039
0.492
0.034
1.490
0.044
0.038
0.018
0.188
0.063
0.085
0.033
0.074
0.085
MEDIAN
INOHG N
0.260
0.230
0.260
0.130
0.120
0.240
0.410
0.165
0.115
0.165
0.260
0.115
0.195
0.130
0.285
0.120
0.290
0.145
1.065
0.260
0.080
0.070
0.300
0.185
0.150
0.330
0.130
0.290
500-
MEAN SEC
474.000
484.176
482.667
473.889
465.555
482.889
489.000
469.308
470.000
454.167
481.333
462.667
483.500
459.000
464.000
464.222
487.000
463.667
483.000
468.833
435.000
406.333
474.555
472.366
469.000
468.500
464.000
462.167
MEAN
CHLORA
87.733
46.611
208.600
10.211
27.100
59.978
261.433
35.000
19.675
27.667
66.855
26.567
97.900
12.067
54.117
6.594
76.550
24.142
276.566
29.967
8.733
3.333
14.225
14.524
6.500
34.837
23.167
9.483
15-
MIN 00
13.100
8.200
3.600
10.200
10.600
7.400
15.000
11.000
10.200
14.700
6.600
10.600
5.600
11.500
9.000
8.600
7.600
8.800
14.300
7.600
7.700
7.400
10.800
9.800
10.600
10.600
9.000
14.400
MEDIAN
OISS ORTHO P
0.386
0.019
0.293
0.033
0.028
0.022
0.950
0.063
0.069
0.072
0.038
0.014
0.158
0.023
1.175
0.010
0.288
0.007
1.030
0.016
0.012
0.009
0.12S
0.010
0.051
0.008
0.028
0.031
-------
LAKE DATA TO BE USED TN RANKINGS
LAKE
CODE LAKE NAME
1Z<>0 LAKE THONOTOSASSA
1241 LAKE TOHOPEKALIGA
1242 TROUT LAKE
12*3 LAKE WEOHYAKAPKA
1246 LAKE YALE
1247 LAKE MUNSON
1246 LAKE SEHINOLE
1249 LAKE LAWNE
1250 LAKE TARPON
1252 LAKE ELOISE
1258 LAKE JESSIE
1261 EAST LAKE TOHOPEKALIGA
1264 PAYNE'S PRAIRIE LAKE (NO
MEDIAN
TOTAL P
0.695
0.246
1.110
0.047
0.027
1.475
0.234
2.560
0.041
0.466
0.051
0.042
1.260
MKDIAN
INORG N
0.095
0.200
0.650
0.080
0.160
0.925
0.175
1.350
0.070
0.170
0.090
0.070
0.140
500-
MEAN SEC
466.167
472.917
472.000
458.667
441.000
486.667
473.833
494.667
400.889
465.333
452.667
440.833
476.000
MEAN
CHLORA
37.700
30.633
76.967
7.767
25.367
140.317
102.000
84.900
6.867
70.233
26.300
5.167
88.200
15-
MIN 00
10.200
10.500
12.900
8.200
7.600
12.200
8.600
10.400
9.000
12.200
10.800
9.400
7.400
MEDIJ
OISS ORTt
0.565
0.152
0.970
0.011
0.014
0.852
0.026
0.117
0.027
0.339
0.011
0.007
1.210
-------
PERCENT or LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE
CODE LAKE NAME
1201 ALLIGATOR LAKE
1202 LAKE APOPKA
1203 LAKE BANANA
1206 LAKE CRESCENT
1207 DOCTORS LAKE
1208 LAKE DORA
1209 LAKE EFFIE
1210 LAKE GEORGE
1211 LAKE GIBSON
1212 GLENAOA LAKE
1214 LAKE GRIFFIN
1215 LAKE HAINES
1217 LAKE HANCOCK
1219 LAKE HORSESHOE
1220 LAKE HOWELL
1221 LAKE ISTOKPOGA
1223 LAKE JESSOP
122* LAKE KISSIMMEE
1227 LAKE LULU
1228 LAKE MARION
1229 LAKt MINNEHAHA
1230 LAKE MINNEOLA
1231 LAKE MONROE
1232 LAKE OKEECHOBEE
1234 LAKE POINSETT
1236 LAKE REEDY
123« LAKE SOUTH
1239 LAKE TALOUIN
MEDIAN
TOTAL P
25
50
23
65
60
53
5
45
40
43
48
70
18
93
11
85
28
90
3
78
88
100
38
68
58
95
63
55
<
(
(
(
(
(
(
1
<
(
<
<
(
(
(
<
I
<
(
<
(
(
(
(
(
<
(
<
10)
20)
9)
26)
24)
21)
2)
18)
16)
17)
19)
28)
7)
37)
4)
34)
11)
36)
1)
31)
35)
40)
15)
27)
23)
38)
25)
22)
MEDIAN
INORG N
29 1
38 1
29 1
70 1
76 1
35 1
10 1
54 <
81 1
54 1
29 I
81 1
43 I
70 i
23 i
76 i
18
63
3
29
91
98
15
45
60
13
70
20
1 10)
! 15)
! 10)
1 27)
! 30)
1 14)
I 4)
1 21)
I 32)
I 21)
1 10)
1 32)
1 17)
1 27)
I 9)
I 30)
( 7)
I 25)
( 1)
I 10)
( 36)
I 38)
( 6)
( 18)
( 24)
I 5)
( 27)
( 8)
500-
MEAN SEC
30 (
10 (
20 <
33 (
60 (
18 (
3 (
48 (
45 (
85 (
23 t
75 »
13 (
80 (
69 (
65 (
5 (
73 <
15 (
53 (
95 (
98 (
28 (
40 (
50 (
55 (
69 (
78 (
12)
4)
8)
13)
24)
7)
1)
19)
18)
34)
9)
30)
5)
32)
27)
26)
2)
29)
6)
21)
38)
39)
11)
16)
20)
22)
27)
31)
MEAN
CHLORA
18 I
38 (
5 (
80 (
55 <
33 <
3 1
43 (
70 t
53 (
30 C
58 (
13 (
78 (
35 (
93 (
25 (
65 <
0 1
50 (
85 (
100 (
75 (
73 (
95 I
45 (
68 (
83 (
7)
15)
2)
32)
22)
13)
1)
171
28)
21)
12)
23)
5)
31)
14)
37)
10)
26)
0)
20)
34)
40)
30)
29)
38)
18)
27)
33)
15-
MIN 00
10 (
74 (
100 1
48 (
34 (
90 I
0 1
23 (
48 <
3 (
95 (
34 1
98 1
20 1
60 1
69 I
83 I
65 I
8 1
83 I
78 I
90 I
26 i
53 i
34
34
60
5
; 4)
: 29)
: 40)
18)
12)
: 35)
: 0)
; 9)
: 18)
: i>
I 38)
! 12)
I 39)
1 8)
1 23)
I 27)
1 32)
1 26)
1 3)
1 32)
1 31)
1 35)
I 10)
I 21)
I 12)
1 12)
I 23)
1 2)
MEDIAN
OISS ORTHO P
18 <
70 <
23 I
50 (
56 (
68 (
10 (
43 1
40 <
38 1
48 1
78 1
28 1
65 1
3 1
89 I
25 I
99 i
5 i
73 i
80 i
93 i
33 i
89 i
45 i
95
56
53
7)
28)
9)
20)
22)
27)
4)
1 17)
; 16)
: IS)
( 19)
( 31)
! 11)
1 26)
I 1)
I 35)
I 10)
I 39)
1 2)
1 29)
1 32)
1 37)
1 13)
( 35)
1 18)
( 38)
I 22)
I 21)
INDEX
NO
130
280
200
346
341
297
31
256
324
276
273
396
213
406
201
477
184
465
34
366
517
579
215
368
342
337
386
294
-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBE* OF LAKES *ITH HIGHER VALUES)
LAKE
CODE LAKE NAME
!2<>o LAKE THONOTOSASSA
1241 LAKE TOHOPEKALIGA
1242 TROUT LAKE
1243 LAKE WEOHYAKAPKA
1246 LAKE VALE
1247 LAKE HUNSON
1248 LAKE SEMINOLE
1249 LAKE LAWNE
1250 LAKE TARPON
1252 LAKE ELOISE
1258 LAKE JESSIE
1261 EAST LAKE TOHOPEKALIGA
1264 PAYNE'S PRAIRIE LAKE (NO
MEDIAN
TOTAL P
20 (
33 (
15 (
75 <
98 1
8 <
35 <
0 (
63 (
30 (
73 (
80 (
11 (
8)
13)
6)
30)
39)
3)
14)
0)
33)
12)
29)
32)
4)
MEDIAN
INORG N
85 1
40 (
8 <
91 1
58 1
5 I
48 I
0 <
98 i
50
68
98
65'
1 34)
1 16)
I 3)
1 36)
1 23)
1 2)
I 19)
I 0)
I 38)
( 20)
( 35)
( 38)
I 26)
500-
MEAN SEC
58 (
38 I
43 <
83 (
90 (
8 (
35 (
0 (
100 (
63 (
88 (
93 (
25 (
23)
15)
17)
33)
36)
3)
14)
0)
40)
25)
35)
37)
10)
MEAN
CHLORA
40
48
23
88
63
8
10
20
90
28
60
98
15
( 16)
« 19)
( 9)
( 35)
< 25)
( 3)
( 4)
( 8)
( 36)
C 11)
( 24)
« 39)
I 6)
15-
MIN DO
48
40
13
74
83
16
69
43
60
16
26
55
90
( 18)
( 16)
( 5)
< 29)
( 32)
( 6)
( 27)
( 17)
( 23)
< 61
( 10)
( 22)
( 35)
MEDIAN
01 SS ORTHO P
15
30
8
84
75
13
63
35
60
20
84
99
0
( 6)
< 12)
( 3)
( 33)
( 30)
( 5)
( 25)
C 14)
< 24)
( 8)
( 33)
» 39)
< 0)
INDEX
NO
266
229
110
495
467
58
260
98
491
207
419
523
206
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
I 1330 LAKE MINNEOLA 579
Z 1261 EAST LAKE TOHOPEKALIGA 523
3 1229 LAKE MINNEHAHA 517
4 1243 LAKE WEOHYAKAPKA 495
s 1250 LAKE TARPON 491
6 1221 LAKE ISTOKPOGA 477
7 1246 LAKE YALE 467
& 1224 LAKE KISSIMMEE 455
9 1258 LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECHOBEE 368
14 1228 LAKE MARION 366
15 1206 LAKE CRESCENT 346
16 1234 LAKE POINSETT 342
17 1207 DOCTORS LAKE 341
18 1236 LAKE REEDY 337
19 1211 LAKE GIBSON 3?4
20 1208 LAKE DORA 297
21 1239 LAKE TALOUIN 294
22 1202 LAKE APOPKA 260
23 1212 GLENADA LAKE 276
24 1214 LAKE GRIFFIN 273
25 1240 LAKE THONOTOSASSA 266
26 1248 LAKE SEMINOLE 260
27 1210 LAKE GEORGE 256
28 1241 LAKE TOHOPEKALIGA 229
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29
30
31
32
33
34
35
36
37
38
39
40
41
1231
1217
1252
1264
1220
1203
1223
1201
1242
1249
1247
1227
1209
LAKE MONROE
LAKE HANCOCK
LAKE ELOISE
PAYNE'S PRAIRIE LAKE (NO
LAKE HOWELL
LAKE BANANA
LAKE JESSUP
ALLIGATOR LAKE
TROUT LAKE
LAKE LAWNE
LAKE NUNSON
LAKE LULU
LAKE EFFIE
215
213
207
206
201
200
164
130
110
98
58
34
31
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS -
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles.
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 - square miles
Cubic meters/sec x 35.315 - cubic feet/sec
Centimeters x 0.3937 - inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIbUTAKY FLOW INFORMATION FOR FLORIDA
8/25/75
LAKE COOE 1231
LAIvt MONRut
TOTAL DRAINAGE AREA OF LAKE(SQ KM)
JAN FES
SUB-DRAINAGE
TRIBUTARY AREA(SQ KM)
1231A1 6682.2 46.27 40.15
1231A2 6397.3 *4.49 39.87
123161 15.5 0.11 0.11
1231ZZ 233.1 1.56 1.67
6682.
MAR
67.22
63.09
0.20
2.86
,2
APR
46.81
43.07
0.08
1.39
MAY
14.47
15.46
0.03
0.62
NORMALIZED FLOwS(CMS)
JUN JUL AUG
34.01
34.35
0.14
2.15
85.69
81.07
0.31
4.56
91.24
88.60
0.34
4.93
SEP
145.58
141.30
0.51
7.73
OCT
162.03
153.87
0.37
5.49
NOV
94.32
88.66
0.11
1.73
DEC
MEAN
61.59 74.33
57.28 71.12
0.08 0.20
1.16 3.00
TOTAL DRAINAGE AREA OF LAKE =
SUM OF SOB-DRAINAGE AREAS =
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
1231A1
1231A2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
53.66
46.55
25.63
11.81
35.23
67.90
111.85
120.86
95.26
60.54
36.93
10.62
48.42
43.13
24.83
13.88
34.66
65.78
107.49
118.25
89.54
55.93
34.38
11.78
18
8
13
3
7
20
9
IS
4
9
6
2
18
8
13
3
7
20
9
15
4
9
6
2
34.29
50.60
9.97
-5.10
48.45
79.17
155.29
110.29
119.87
25.32
38.03
19.99
33.58
46.72
14.89
2.29
41.43
75.15
144.27
107.77
110.44
33.75
36.33
19.31
SUMMARY
6682.2
6645.9
TOTAL FLOW IN =
TOTAL FLOW OUT =
889.37
889.37
(•LOW DAY
25
FLOW DAY
-3.51
FLOW
25
5.32
-------
TRIBUTARY FLOW INFORMATION FOR FLOKlDA'
8/25/75
LAKE COOE 1231
LAKE MONROE
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
1231B1
1231ZZ
3
ft
S
6
7
e
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
73
73
73
73
73
73
73
73
73
73
74
74
0.09
0.08
0.03
0.04
0.12
0.34
0.34
0.24
0.07
0.06
0.05
0.04
1.33
1.27
0.57
0.65
1.73
4.84
5.27
3.51
0.99
0.82
0.74
0.57
16
8
13
3
7
21
9
15
4
9
6
2
18
8
13
3
7
21
9
15
4
9
6
2
25
FLOW DAY
0.07
0.11
0.03
0.04
0.08
0.15
0.54
0.16
0.09
0.06
0.07
0.04
1.02
1.76
0.57
0.59
1.19
2.15
8.13
2.35
1.36
0.76
0.91
0.54
FLOW DAY
0.06
FLOW
25
0.85
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORE! RETRIEVAL DATE 75/06/25
123101
28 50 02.0 081 IB b6.0
LAKE MONROE
12127 FLORIDA
DATE
FROM
TO
73/03/14
73/09/05
73/11/05
DATE
FROM
TO
73/03/14
73/09/05
73/11/05
TIME DEPTH
OF
DAY FEET
15 15 0000
IS 15 0004
15 15 0009
12 40 0000
12 40 0005
10 15 0000
10 15 0005
TIME DEPTH
OF
DAY FEET
15 15 0000
15 15 0004
15 15 0009
12 40 0000
12 40 0005
10 15 0000
10 15 0005
00010
WATER
TEMP
CENT
26. a
26.9
26.4
29.5
26.8
23.4
23.2
00665
PHOS-TOT
MG/L ft
0.197
0.190
0.198
0.196
0.183
0.124
0.099
00300
DO
MG/L
7.6
7.1
6.0
6.2
32217
CHLRPHYL
A
UG/L
19.7
31.3
7.7
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
32 1090
1000
1000
31 1193
1236
29 716
712
11EPALES 2111202
3 0013 FEET DEPTH
00400 00410 00610 0062S 00630
PH T ALK NH3-N
CAC03 TOTAL
SU MG/L Mb/L
7.60 41 0
8.00 40 0
7.90 40 0
7.50 36 0
7.20 41 0
7.20 45 0
7.20 39 0
.120
.060
.090
.160
.110
.080
.070
TOT
N
KJEL
MG/L
1
1
1
2
1
1
1
.800
.200
.300
.000
.800
.700
.500
N02&N03
N-TOTAL
MG/L
0.040
0.050
0.050
0.160
0.110
0.220
0.210
00671
PHOS-OIS
ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
p
143
133
128
160
147
090,
068
-------
STORE! RETRIEVAL OATE 75/08/25
123102
28 51 20.0 081 16 24.0
LAKE MONROE
12127 FLORIDA
DATE
FROM
TO
73/03/14
73/09/05
73/11/05
TIME OEPTH
OF
DAY FEET
15 50 0000
15 50 0006
12 25 0000
12 25 0005
11 00 0000
11 00 0006
00010
WATER
TEMP
CENT
25.9
25.5
29.2
28.3
22.9
22.5
11EPALES
00300
DO
MG/L
6.0
5.2
5.0
00077
TRANSP
SECCHI
INCHES
32
32
18
00094
CNDUCTVY
FIELD
MICROMHO
1000
1000
1115
1080
700
704
3
00400
PH
SU
7.70
7.70
7.50
7.10
7.20
7.10
00410
T ALK
CAC03
MG/L
41
41
41
41
36
35
2111202
0010
00610
NH3-N
TOTAL
MG/L
0.100
0.120
0.250
0.260
0.060
0.150
FEET OEPTH
00625
TOT KJEL
N
MG/L
1.700
1.500
2.000
2.000
1.700
2.800
00630
N02&N03
N-TOTAL
MG/L
0.050
0.070
0.150
0.130
0.150
0.160
00671
PHOS-DIS
ORTHO
MG/L P
0.119
0.122
0.160
0.150
0.084
0.089
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/14 15 50 0000 0.183
15 50 0006 0.198
73/09/05 12 25 0000 0.188 14.2
12 25 0005 0.179
73/11/05 11 00 0000 0.116 7.1
11 00 0006 0.234
-------
STORE! RETRIEVAL DATE 75/08/25
133103
28 48 59.0 081 16 15.0
LAKE MONROE
12117 FLORIDA
DATE
FROM
TO
73/03/14
73/09/05
73/11/05
DATE
FROM
TO
73/03/14
73/09/05
73/11/05
TIME DEPTH
OF
DAY FEET
16 30 0000
16 30 0006
11 15 0000
11 10 0000
11 10 0005
11 10 0011
TIME DEPTH
OF
UAY FEET
16 30 0000
16 30 0006
11 15 0000
11 10 0000
11 10 0005
11 10 0011
00010
WATER
TEMP
CENT
25.6
25.3
28.9
22.3
21.3
21.3
00665
PHOS-TOT
MG/L P
0.272
0.367
0.324
0.172
0.170
0.153
00300
DO
MG/L
4.5
4.6
4.2
5.6
32217
CHLRPHYL
A
UG/L
19.4
10.8
3.6
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
24
16
15
1010
1050
1086
689
682
683
11EPALES
3
00400
PH
SU
7.70
7.60
7.40
7.40
7.30
7.50
00410
T ALK
CAC03
MG/L
41
44
45
36
33
33
2111202
0010
00610
NH3-N
TOTAL
MG/L
0.190
0.420
0.540
0.160
0.210
0.240
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.900
1.900
2.400
1.800
1.700
1.600
00630
N02&N03
N-TOTAL
MG/L
0.070
0.100
0.180
0.140
0.140
0.150
00671
PHOS-DIS
ORTHO
MG/L P
0.177
0.245
0.277
0.120
0.118
0.113
-------
APPENDIX E
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA
-------
STORET RETRIEVAL DATE 75/08/25
1231A1
28 50 30.0 031 19 30.0
ST JOHNS HIVE*
12069 7.5 SANFORD
0/LAKE MONROE
SF HWY 600 8ROG .5 MI S OF VALDE2
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N026.N03
FROM OF
TO DAY FEET
73/03/18
73/04/08
73/05/13
73/06/03
73/06/25
73/07/07
73/08/20
73/09/09
73/10/15
73/11/04
73/12/09
74/01/06
74/02/02
10
09
10
11
12
11
11
11
11
11
11
11
11
30
50
40
00
15
10
00
10
15
30
10
05
53
(0630
J6.N03
OTAL
IG/L
0.062
O.OlOiv
0.010*.
0.022
0.010K
0.012
U.010K
0.380
0.154
0.200
0.176
0.016
0.176
00625
TOT KJEL
N
MG/L
1.400
1.600
1.400
7.400
5.800
1.600
1.800
0.990
1.450
1.100
2.200
1,300
2.200
00610
NH3-N
TOTAL
MG/L
0.100
0.046
0.024
1.300
0.130
0.050
0.036
0.098
0.105
0.048
0.088
0.036
0.055
00671
PHOS-OIS
ORTHO
MG/L P
O.lbH
0.147
0.160
0.154
0.210
0.210
0.160
0.210
0.138
0.092
0.104
0.096
0.170
00665
PHOS-TOT
MG/L P
0.240
0.220
0.240
0.360
0.320
0.320
0.280
0.210
0.170
0.110
0.125
0.160
0.220
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 75/00/.25
1231A2
28 48 00.0 081 12 30.0
ST JOHNS KIVEK
12 7.5 OSTEEN
I/LAKE MONROE
ST HWY 415 dRDG IN INOIN MOUND' VILLAGE
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH N026.N03
FROM OF
TO DAY FEET
73/03/18
73/04/08
73/05/13
73/06/03
73/06/25
73/07/07
73/08/20
73/09/09
73/10/15
73/11/04
74/01/06
74/02/02
09
09
09
10
11
10
09
10
12
10
10
11
10
04
55
15
00
10
35
30
37
10
15
23
0630
I4.N03
OTAL
IG/L
0.138
0.154
0.060
0.027
0.044
0.014
0.058
0.230
0.077
0.088
0.240
0.112
00625
TOT KJEL
N
MG/L
1.700
1.540
5.000
4.600
1.300
4.000
2.200
1.300
1.500
1.400
2.100
1.300
00610
NH3-N
TOTAL
MG/L
0.126
0.060
0.225
0.230
0.160
0.130
0.081
0.078
0.064
0.052
0.120
0.035
00671
PHOS-DIS
ORTHO
MG/L P
0.126
0.150
0.139
0.189
0.200
0.220
0.180
0.126
0.094
0.100
0.176
0.280
00665
PHOS-TOT
MG/L P
0.170
0.200
0.180
0.230
0.250
0.300
0.240
0.155
0.130
0.115
0.220
0.345
-------
STORET RETRIEVAL DATE 75/08/25
1231B1
28 51 00.0 081 13 30.0
BETHEL CREEK
12 7.5 OSTEEN
T/LAKE MONROE
BRDG .75 MI W OF LAKE BETHEL
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
73/03/18
73/04/08
73/05/13
73/06/03
73/06/25
73/07/07
73/08/21
73/09/09
73/10/15
73/11/04
73/12/09
74/01/06
74/02/02
00630 00625
TIME DEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
09
09
10
10
11
10
14
10
12
11
10
10
11
55
21
15
45
30
35
30
45
55
00
45
35
40
MG/L
0
0
0
0
0
0
0
0
0
0
0
0
0
.036
.021
.026
.034
.010K
.027
.046
.013
.012
.012
.016
.056
.064
MG/L
0.
0.
0.
4.
3.
3.
0.
1.
1.
1.
1.
0.
1.
600
685
920
950
200
080
600
680
750
450
700
700
850
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
040
046
100
280
078
338
046
075
056
054
068
084
100
MG/L P
0.037
0.034
0.030
0.029
0.033
0.037
0.029
0.078
0.060
0.012
0.040
0.040
0.045
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
0
.045
.045
.045
.040
.035
.050
.045
.170
.120
.015
.045
.055
.045
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORE! RETRIEVAL DATE 75/08/25
DATE TIME DEPTH
FROM OF
TO DAY FEET
73/09/19
73/10/24
73/11/16
73/12/20
74/01/21
74/02/20
74/03/19
74/04/22
74/05/20
74/06/19
74/07/22
74/08/19
11 30
11 30
10 00
09 45
11 00
11 00
13 45
11 00
09 30
09 00
13 00
10 00
12310A AS12310A P009000
28 <»/ 30.0 081 15 00.0
OELTONA
12069 7.5 OSTEEN
T/LAKE MONROE
ST JOHNS RIVER
11EPALES 2141204
4 0000 FEET DEPTH
0630
'&N03
OTAL
IG/L
6.000
6.600
3.500
7.000
3.120
6.720
2.000
2.080
7.920
3.360
3.840
0.040
00625
TOT KJEL
N
MG/L
4.800
4.900
5.600
5.100
6.000
9.200
12.000
7.700
6.350
7.400
7.500
6.700
00610
NH3-N
TOTAL
MG/L
0.010
0.170
0.048
0.480
0.980
0.980
1.200
0.920
0.050K
0.092
0.180
0.050K
00671
PHOS-DIS
ORTHO
MG/L P
7.740
9.100
8.900
7.900
7.850
7.800
8.200
12.000
9.200
6.200
8.300
0.120
00665
PHOS-TOT
MG/L P
8.200
9.200
8.900
7.900
8.200
8.700
9.000
13.000
9.550
6.900
9.500
9.700
50051
FLOW
RATE
INST MOD
0.378
U.4<*6
0.399
0.375
0.426
0.416
0.500
0.422
0.444
0.420
0.442
0.440
50053
CONDUIT
FLOnl-MGD
MONTHLY
0.401
0.436
0.410
0.395
0.408
0.450
0.413
0.430
0.446
0.429
0.434
0.460
K VALUE KNOWN TO BE
LESS THAN INDICATED
------- |