U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
TROUT LAKE
LAKE COW
RJJRIDA
EPA REGION IV
WORKING PAPER No, 278
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•&G.P.O. 699-440
-------
REPORT
ON
TROUT LAKE
LAKE COUNTY
FLORIDA
EPA REGION IV
WORKING PAPER No, 278
WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
AND THE
FLORIDA NATIONAL GUARD
DECEMBER, 1977
-------
CONTENTS
Page
Foreword i i
List of Florida Study Lakes iv
Lake and Drainage Area Map v
Sections
L Conclusions 1
II. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Summary 4
IV. Nutrient Loadings 8
V. Literature Reviewed 13
VI. Appendices 14
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
V
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
Ill
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, I). S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.
-------
iv
LAKE NAME
Alligator
Apopka
Banana
Crescent
Doctors
Dora
East: Tohopekaliga
Effie
Eloise
George
Gibson
Glenada
Griffin
Haines
Hancock
Horseshoe
Howel1
Istokpoga
Jessie
Jessup
Kissimmse
Lawne
Lulu
Marion
Minnehaha
Minneola
Monroe
Munson
Okeechobee
Poinsett
Reedy
Seminole
Seminole
South
Talquin
Tarpon
Thonotosassa
Tohopekaliga
Trout
Weohyakapka
Yale
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
COUNTY
Columbia
Lake, Orange
Polk
Flagler, Putnam
Clay
Lake
Osceola
Polk
Polk
Putnam, Volusia
Polk
Highlands
Lake
Polk
Folk
Semi nole
Orange, Seminole
Highlands
Polk
Seminole
Osceola
Orange
Polk
Polk
Orange
Lake
Seminole, Volusia
Leon
Glades, Hendry, Martin,
Okeechobee, Palm Beach
Brevard, Orange, Osceola
Polk
Jackson, FL; Decatur,
Seminole, GA
Pinellas
Brevard
Gadsden, Leon
Pinellas
Hillsborough
Osceola
Lake
Polk
Lake
-------
8V40
8V38
TROUT LAKE
® Tributary Sampling Site
X Lake Sampling Site
Sewage Treatment Facility
Lake
Blanchester
28'52 —
-------
TROUT LAKE
STORET NO. 1242
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Trout Lake is hypereutrophic.
It ranked 37th in overall trophic quality when the 41 Florida
lakes sampled in 1973 were compared using a combination of six
lake parameters*. Thirty-four of the lakes had less median total
phosphorus, 37 had less median dissolved phosphorus and median
inorganic nitrogen, 31 had less mean chlorophyll a_, and 23 had
greater mean Secchi disc transparency.
Survey limnologists observed extensive beds of water
hyacinth along the shoreline.
B. Rate-Limi ting Nutrient:
The algal assay results indicate that Trout Lake was nitrogen
limited at the time the sample was collected (03/12/73). The
lake data indicate nitrogen limitation at the other sampling
times as wel1.
C. Nutrient Controllability:
1. Point sources—It is estimated that the Eustis wastewater
treatment plant contributed about 38% of the total phosphorus
input and 39% of the total nitrogen input to Trout Lake during
the sampling year. However, Trout Lake has no defined tribu-
taries, and drainage non-point nutrient contributions were esti-
* See Appendix A.
-------
2
mated from the measured outlet loads (i.e., outlet loads
minus point-source and precipitation loads = drainage loads;
see page 8).
The estimated sampling year phosphorus loading of more than
43 g/m2 is about 60 times that proposed by Vollenweider (Vollen-
weider and Dillon, 1974) as a eutrophic loading. However,
Vollenweider's model probably is not applicable to water bodies
with short hydraulic retention times, and the estimated mean
hydraulic retention time of Trout Lake is only 13 days.
Advanced treatment or diversion of the Eustis effluent
would reduce both the phosphorus and nitrogen inputs to the
lake. However, because of the high concentrations of both nutrients
in the lake during Survey sampling (see page 5 and Appendix D),
it does not appear likely that point-source control would reduce
the in-lake nutrient levels enough to result in a significant
improvement in the trophic condition of Trout Lake.
2. Non-point sources—The estimated contributions of non-
point sources amounted to nearly 62% of the total phosphorus
and 61% of the total nitrogen inputs to Trout Lake.
The 1966 Eustis and Umatilla U.S.G.S. quadrangle maps indi-
cate that swampland and urban drainage probably contribute
significant amounts of nutrients to Trout Lake.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1
A. Morphometry :
1. Surface area: 0.41 kilometers2.
2. Mean depth: 1.5 meters.
3. Maximum depth: 2.7 meters.
4. Volume: 0.615 x 106 m3.
5. Mean hydraulic retention time: 13 days (based on outflow)
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Name
(None sampled)
Minor tributaries &
immediate drainage -
Totals
2. Outlet -
Unnamed Stream A-l
C. Precipitation****:
1. Year of sampling: 121.6 centimeters.
2. Mean annual: 132.1 centimeters.
Drainage
area (km2)*
62.2
62.2
62.6***
Mean flow
(m3/sec)*
**
0.53
t Table of metric conversions—Appendix B.
tt Surface area from U.S.G.S. Eustis quadrangle map; depths estimated from
soundings reported in Appendix D.
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
** Indeterminate seepage; see page 9.
*** Includes area of lake.
**** see Working Paper No. 175.
-------
4
III. WATER QUALITY SUMMARY
Trout Lake was sampled three times during 1973 by means of a
pontoon-equipped Huey helicopter. Each time, samples for physical
and chemical parameters were collected from one or more depths at a
single station on the lake (see map, page v). During each visit, a
single depth-integrated (near bottom to surface) sample was collected
for phytoplankton identification and enumeration, and a similar sample
was collected for chlorophyll a^ analysis. During the first visit, a
single 18.9-liter depth-integrated sample was taken for algal assays.
The maximum depth sampled was 1.8 meters.
The sampling results are presented in full in Appendix D and are
summarized in the following table.
-------
PARAMETER
TEMP (C)
OISS OXY (MG/L)
CNOCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02+N03 (MG/D
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
RANGE
22.7 - 25.5
2.1 - 2.1
200. - 205.
7.9 - 8.6
23. - ?3.
1.190 - 1.200
1.040 - 1.050
0.580 - 0.650
0.250 - 0.410
2.300 - 2.600
0.900 - 0.990
2.880 - 3.250
38.3 - 38.3
0.8 - 0.8
OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOR
STORET CODE 1242
NG (
TES
MEAN
24.1
2.1
203.
8.2
23.
1.195
1.04S
0.615
0.330
2.450
0.945
3.065
38.3
0.3
3/12/73)
MEDIAN
24.1
2.1
203.
8.2
23.
1.195
1.045
0.615
0.330
2.450
0.945
3.065
38.3
0.3
2ND SAMPLING ( 9/
I
RANGE
29.1
9.2
214.
7.9
34.
1.110
0.970
0.060
0.080
2.800
O.ltO
2.860
135.8
0.6
- 29.1
9.2
- 214.
7.9
34.
- 1.110
- 0.970
- 0.060
- 0.080
- 2.800
- 0.140
- 2.860
- 135.8
0.6
SITES
MEAN
29.1
9.2
214.
7.9
34.
1.110
0.970
0.060
0.080
2.800
0.140
2.860
135.8
0.6
TROUT LAKE
6/73)
MEDIAN
29.1
9.2
214.
7.9
34.
1.110
0.970
0.060
0.080
2.800
0.140
2.860
135.8
0.6
3RD
RANGE
22.2 -
4.2 -
178. -
6.8 -
33. -
0.886 - 0
0.710 - 0
0.270 - 0
0.180 - 0
2.300 - 2
0.460 - 0
2.570 - 2
56.8 -
0.8 -
SAMPLING (ll/
1
23.2
7.2
178.
7.0
34.
.934
.860
.280
.380
.300
.650
.580
56.8
0.8
SITES
MEAN
22.9
5.7
178.
6.9
34.
0.910
0.785
0.275
0.280
2.300
0.555
2.575
56.8
0.8
5/73)
MEDIAN
23.2
5.7
178.
6.9
34.
0.910
0.785
0.275
0.280
2.300
0.555
2.575
56.8
0.8
-------
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/12/73
09/06/73
11/05/73
2. Chlorophyll a^ -
Sampling
Date
03/12/73
09/06/73
11/05/73
Dominant
Genera
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
Melosira sp.
Oocystis sp.
Dictypsphaerium SJD,
Microcystis s^.
Cyclotella sp.
Other genera
Total
Melosira sp.
Flagellates
Centric diatoms
Chroococcus SJD.
Gloeothece sj>.
Other genera
Total
Centric diatoms
Flagellates
Melosira ^p.
Microcystis sp.
Chroococcus sp.
Other genera
Total
Station
Number
1
1
1
Algal Units
per ml
2,391
1,413
1,304
1,159
1,087
3,226
10,580
29,668
6,568
,963
,624
,397
3:
3:
3:
23,267
70,487
4,
3,
2,
2,
1,
287
810
699
064
667
11,001
25,528
Chlorophyll a_
(yg/i)
38.3
135.8
56.8
-------
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Ortho P
Cone, (mg/1)
1.040
1.090
1.090
1.040
Inorganic N Maximum yield
Cone, (mg/1) (mg/1-dry wt.)
0.974
0.974
1.974
1.974
30.5
30.7
54.9
51.9
2. Filtered and nutrient spiked -
Ortho P
Cone, (mg/1)
Inorganic N Maximum yield
Cone, (mg/1) (mg/1-dry wt.)
1.040
1.090
1.090
1.040
0.964
0.964
1.964
1.964
26.5
25.4
48.5
46.6
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0 N
1.0 N
3. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum, indicate that the potential primary productivity
of Trout Lake was very high at the time the algal assay
sample was collected (03/12/73). No significant growth
response occurred in either assay when only orthophosphorus
was added. However, the addition of only nitrogen resulted
in yields significantly greater than those of the controls.
These results indicate nitrogen was limiting at the time
of sample collection.
The lake data also indicate nitrogen limitation; i.e.,
mean inorganic nitrogen to orthophosphorus ratios were
less than 1 to 1 at all sampling times.
-------
8
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples when possible from the
outlet site indicated on the map (page v). Sampling was begun in
March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of'sampling and a "normalized" or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
outlet.
In this report, nutrient loads for the outlet were determined
by using a modification of a U.S. Geological Survey computer pro-
gram for calculating stream loadings*.
No streams flow directly into Trout Lake. An ungaged stream-canal
system draining swampland discharges into a marshy area about 0.8 km
north of the lake. From that point on, the channel becomes undefined,
and the water reaches the lake by seepage. Therefore, the nutrient
contributions of the drainage were estimated from the measured outlet
loads, with the assumption that the total nutrient inputs were at least
equal to the loads leaving the lake; i.e., the outlet loads minus the
point-source and precipitation loads equal the drainage loads.
The operator of the Eustis wastewater treatment plant provided
monthly effluent samples and corresponding flows.
* See Working Paper No. 175.
-------
A. Waste Sources:
1. Known municipal* -
Name
Eustis
2. Known industrial - None
Pop.
Served
8,200
Treatment
trickling
filter
Mean Flow
(m'/d)
2,996.5
Receiving
Water
Canal to
Trout Lake
* Treatment plant questionnaire.
-------
10
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries (non-point load) -
None
b. Minor tributaries & immediate
drainage (non-point load) - 10,995 61.4
c. Known municipal STP's -
Eustis 6,895 38.5
d. Septic tanks* - < 5 < 0.1
e. Known industrial - None
f. Direct precipitation** - 2Qi 0.1
Total 17,910 100.0
2. Outputs -
Lake outlet - Unnamed Stream
A-l 17,910
3. Net annual P accumulation - ?
* Estimate based on four shoreline dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
11
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
None
b. Minor tributaries & immediate
drainage (non-point load) - 36,245 60.6
c. Known municipal STP's -
Eustis 23,260 38.9
d. Septic tanks* - 45 < 0.1
e. Known industrial - None
f. Direct precipitation** - 240 0.4
Total 59,790 100.0
2. Outputs -
Lake outlet - Unnamed Stream
A-l 59,790
3. Net annual N accumulation - ?
* Estimate based on four shoreline dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.
-------
12
D. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider's "dangerous" loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his "permissible" loading is that which would
result in the receiving water remaining oligotrophic or
becoming oligotrophic if morphometry permitted. A meso-
trophic loading would be considered one between "dangerous"
and "permissible".
Vollenweider's model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m2/yr 43.68 ? 145.8 ?
Vollenweider phosphorus loadings
(g/ro2/yr) based on estimated mean depth and
hydraulic retention time of Trout Lake:
"Dangerous" (eutrophic loading) 1.22
"Permissible" (oligotrophic loading) 0.61
-------
13
V. LITERATURE REVIEWED
Brezonik, Patrick L. and Earl E. Shannon, 1971. Trophic state of lakes
in north central Florida. Publ. No. 13, Water Resources Res.
Ctr., U. of FL, Gainesville.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between
lake trophic state and nitrogen and phosphorus loading rates. Env.
Sci. & Techn. (5 (8): 719-725.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Publ. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
-------
14
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
LAKE DATA TO 8E USED IN RANKINGS
LAKE
CODE
1201
1202
1203
1206
1207
1201
1209
1210
1211
1212
121i
1215
1217
1219
1220
1221
122J
122*
1227
1228
1229
1230
1231
1232
123-
1236
1238
1239
LAKE
NAME
ALLIGATOR LAKE
LAKE
LAKE
LAKE
APOPKA
8ANANA
CSESCENT
DOCTORS LAKE
LAKE
LAKE
LAKE
LAKE
DORA
EFFIE
GEORGE
GIdSON
GLENAOA LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
GRIFFIN
HAINES
HANCOCK
HORSESHOE
HOKELL
1STOKPOGA
JESSUP
KISSIMMEt
LULU
MARION
MINNEHAHA
MINNEOLA
MONROE
OKEECHOdEE
POINSETT
PEEDY
SOUTH
TALQUIN
MEDIAN
TOTAL P
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
c
0
0
0
.b2C
.102
.660
.065
.08".
.102
.480
.129
.167
. 134
.119
.063
.772
.03*.
.260
.039
.49?
.03*.
.'•90
.044
.03."
.01?
.1S9
.063
.065
.033
.074
.Ob5
MEDIAN
INO>JG N
0.260
0.230
0.260
0.130
0.120
0.240
0.410
0.165
0.115
0.165
0.260
0.115
0.195
0.130
0.285
0.120
0.590
0.145
1.065
0.260
0.080
0.070
0.300
o.ias
0.1 SO
0.330
0.130
0.290
500-
MEAN StC
474.000
484.1 76
482.667
473.88-i
465.555
482.889
489.000
469. 30H
470.000
454.167
481.333
462.667
483.500
459.000
464.000
464.222
487.000
463.667
483.000
468.833
43b.OOO
406.333
474.555
472.366
469.000
468.500
464.000
462.167
MEAN
ClLOWA
67.
4b.
208.
10.
27.
59.
261.
35.
19.
27.
66.
26.
97.
12.
54.
6.
76.
24.
276.
29.
8.
3.
14.
14.
6.
34.
23.
9.
733
611
600
211
100
978
433
000
675
667
855
567
900
067
117
594
550
142
566
967
733
333
225
524
500
837
167
483
15-
MU, 00
13.
8.
3.
10.
10.
7.
15.
11.
10.
14.
6.
10.
5.
11.
9.
8.
7.
8.
14.
7.
7.
7.
10.
9.
10.
10.
9.
14.
100
200
600
200
600
400
000
000
200
700
600
600
600
500
000
600
600
800
300
600
700
400
800
800
600
600
000
400
ME DUN
DISS O^TiO P
0.236
0.019
0.293
0.033
0.02B
0.022
0.950
0.063
0.069
0.072
0.038
0.014
0.1SB
0.023
1.175
0.010
0.288
0.007
1.030
0.016
o.oi<;
0.009
o. 12e
0.010
O.Ool
O.OOb
0.028
0.031
-------
LAKE DATA 10 BE USED IN RANKINGS
LAKE
CODE
1240
1241
1242
1243
12*6
1247
1248
1249
1250
1252
12SB
1261
1264
LAKE
LAKE
LAKE
TROUT
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
LAKE
EAST
PAYNE
NAHE
THONOTOSASSA
TOHOPEKALIGA
LAKE
WEOHTAKAPKA
TALE
MUNSON
SEMINOLE
LArfNE
TARPON
ELOISE
JESSIE
LAKE TOHOPEKALIGA
'S PWAIFME LAKE (NO
MEDIAN
TOTAL P
0
0
1
0
0
1
0
?
0
0
0
0
1
.695
.246
.110
.047
.027
.475
.234
.560
.041
.486
.051
.042
.260
MEDIAN
INORG N
0.095
0.200
0.650
0.080
0.160
0.925
0.175
1.350
0.070
0.170
0.090
0.070
0.140
500-
MEAN SEC
466.167
472.917
472.000
458.667
441.000
486.667
473.833
494.667
400.889
465. J33
452.667
440.833
476.000
MEAN
CHLOWA
37
30
76
7
25
140
102
84
6
70
26
5
88
.700
.633
.967
.767
.367
.317
.000
.900
.867
.233
.300
.167
.200
15-
MIN DO
10
10
12
8
7
12
6
10
9
12
10
9
7
.200
.500
.900
.200
.600
.200
.600
.400
.000
.200
.800
.400
.400
MEDIAN
DISS OrtTHO P
0.565
0.152
0.970
0.011
0.014
0.852
0.026
0.117
O.U27
0.339
0.011
0.007
1.210
-------
PERCENT OF LAKES *ITH HIGHER VALUES (NUMBER OF LANES »ITH HIGHER VALUES)
LAKE
CODE
1201
1302
1203
1306
1307
1308
1309
1219
1211
1312
121«
1215
1317
1219
1330
1231
1323
1224
1227
1228
1229
1330
1331
1332
123*
1236
123S
1339
LAKE NAME
ALLIGATOR LAKE
LAKE APOPKA
LAKE BANANA
LAKE CRESCENT
DOCTORS LAKE
LAKE DORA
LAKE EFFIE
LAKE GEORGE
LAKE GIBSON
GLENAOA LAKE
LAKE GRIFFIN
LAKE HAINES
LAKE HANCOCK
LAKE HORSESHOE
LAKE HOWELL
LAKE ISTOKPOGA
LAKE JESSUP
LAKE KISSIMMEE
LAKE LULU
LAKE MARION
LAKt MINNEHAHA
LAKE MINNEOLA
LAKE MONROE
LAKE OKEECHOBEE
LAKE BOINSETT
LAKE KEEOY
LAKE SOUTH
LAKE TALOUIN
MEDIAN
TOTAL P
25
50
23
65
60
53
5
45
40
43
4P
70
18
93
11
85
28
90
3
78
84
100
38
68
58
95
63
55
< 10)
( 30)
I 9)
( 26)
( 24)
( 31)
( 3)
( 18)
( 16)
1 17)
( 19)
< 28)
( 7)
1 37)
( 4)
( 34)
( 11)
( 361
C 1)
< 3D
( 35)
( 40)
I 15)
( 37)
( 33)
( 36)
.( 351
( 221
MEDIAN 500-
INOPG N MEAN SEC
29
38
39
70
76
35
10
54
61
54
29
31
43
70
23
76
IB
63
3
39
91
98
15
45
60
13
70
30
( 10)
( IS)
( 10)
( 27)
( 30)
( 14)
( 4)
( 21)
( 33)
( 31)
( 10)
( 33)
( 17)
( 27)
( 9)
( 30)
( 7)
( 25)
( 1)
( 10)
( 36)
( 38)
( 6)
< 18)
( 24)
( 5)
( 27)
( 8)
30
10
20
33
60
IB
3
4H
45
85
23
75
13
oO
69
65
5
73
15
53
95
98
3a
40
50
55
69
78
( 12)
< 4)
I 8)
( 13)
1 34)
( 71
( 1)
( 19)
( 18)
< 34)
( 9)
( 30)
( 5)
( 32)
( 27)
( 26)
( 2)
( 291
( 6)
< 21)
< 38)
( J9>
( 11)
< 16)
( 20)
( 23)
( 27)
( 31)
MEAN
CHLORA
18
38
5
80
55
33
3
43
70
S3
30
58
13
78
35
93
25
OS
0
50
85
100
f>
73
95
t5
68
83
( 7)
( 151
( 2)
( 32)
( 22)
( 13)
( 1)
< 17)
( 28)
( 21)
( 12)
( 33)
( SI
( 31)
( 14)
( 37)
( 10)
( 26)
I 0)
1 20)
I 34)
( 40)
I 30)
( 29)
( 38)
< lo)
( 27)
( 33)
15-
MIN 00
10
74
100
48
34
90
0
23
48
3
95
34
98
20
60
69
83
65
8
83
78
90
26
53
34
34
60
5
( 4)
( 291
( 40)
I 18)
( 12)
< 35)
I 0)
( 9)
I 18)
I D
( 38)
( 13)
( 39)
( 8)
I 23)
( 271
( 32)
( 36)
( 3)
( 32)
( 31)
( 35)
( 10)
I 21)
( 12)
( 131
( 23)
( 2)
MEDIAN
OISS OrtTHO P
18
70
23
50
56
68
10
43
40
38
48
78
2ti
65
3
89
25
99
5
73
80
93
33
89
45
95
56
S3
( M
( 28)
( 9)
( 30)
I 22)
( 27)
( 4)
1 17)
( 16)
( 15)
< 19)
< 31)
( 11)
( 26)
( 11
( 35)
( 10)
( 3S»
( 31
( 29)
( 321
( 37)
< 13)
( 35)
I 18)
( 38)
( 22)
( 21)
INJE*
NO
1JO
280
200
346
341
297
31
256
324
276
273
396
313
406
301
477
Ib4
43S
34
366
517
i79
215
368
342
33f
346
294
-------
PERCENT OF LAKES *ITH HIGHER VALUES < OK LAKES *ITH HIGHER VALUES)
LAKE
CODE
1240
1241
124?
12*3
1246
1247
12*8
1249
1250
1252
1258
1261
126".
LAKE NAME
LAKE THONOTOSASSA
LAKE TOHOPEKALIGA
TROUT LAKE
LAKE WEOHYAKAPKA
LAKE YALE
LAKE MUNSON
LAKE SEMINOLE
LAKE LAWNE
LAKE TARPON
LAKE EL01SE
LAKE JESSIE
EAST LAKE TOHOPEKALIGA
PAYNE'S PRAIRIE LAKE (NO
MEDIAN
TOTAL P
20
33
15
75
9B
8
35
0
83
30
73
eo
11
( 8)
( 13)
( 6)
< 30)
I 39)
( 31
( I'll
< 0)
( 33)
( 12)
( 29)
( 32)
( 4)
MEDIAN
INOriG N
85
40
8
91
58
5
-.8
0
98
50
88
98
65
( 3<>)
( 16)
< 3)
( 36)
( 23)
( 2)
( 19)
( 0)
( 38)
( 20)
< 35)
( 38)
( 26)
500-
MEAN SEC
58
38
43
83
90
8
35
0
100
63
88
93
25
( 23)
< 15)
( 17)
< 33)
( 36)
( 3)
( 14)
I 0)
( 40)
( 25)
( 351
( 37)
I 10)
MEAN
CHLUXA
40
48
23
88
63
a
10
20
90
28
60
98
15
I 16)
( 191
( 9)
( 35)
( 25)
( 3>
( 4)
( 8)
( 36)
I 11)
I 24)
I 39)
( 6)
15-
MIN UO
48
40
13
74
83
16
69
*3
60
16
26
55
90
I 18)
( 16)
I 5)
( 29)
( 32)
( 6)
( 27)
( 17)
( 23)
( 6)
( 101
( 22)
( 35)
ME01AN
OISS OHTHO P
15 (
30 (
8 I
84 t
75 (
13 I
63 (
35 (
60 I
20 <
84 (
99 (
0 (
6)
12)
3)
33)
30)
5)
25)
14)
24)
8)
33)
39)
0)
INJEX
NO
266
229
110
495
467
58
260
98
491
207
419
523
206
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
1 1230 LAKE MINNE&LA 579
2 1261 EAST LAKE TOHOPEKAL1GA 523
3 1229 LAKE M1NNEHAMA 517
4 1243 LAKE WEOHYAKAPHA 495
5 1250 LAKE TARPON 491
6 1221 LAKE ISTOKPOGA 477
7 1246 LAKE YALE 467
8 1224 LAKE KISSIMMEE 455
9 1258 LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECHOUEE 368
14 1228 LAKE MARIOU 366
15 1206 LAKE CRESCENT 346
16 1234 LAKE POINSETT 342
17 1207 DOCTORS LAKE 341
18 1236 LAKE REEDl 337
19 1211 LAKE GIBSON 3?4
20 1208 LAKE DORA 297
21 1239 LAKE TALUUIN 294
22 1202 LAKE APOPKA 260
23 1212 GLENAUA LAKE 276
24 1214 LAKE GRIFFIN 273
25 1240 LAKE THONOTOSASSA 266
26 1248 LAKE SEMINOLE 260
27 1210 LAKE GEORGE 256
28 1241 LAKE TOHOPEKALIGA 229
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1331 LAKE MONROE 315
JO 1317 LAKE HANCOCK 313
31 1352 LAKE EL01SE 307
33 1364 PAYNE'S PRAIRIE LAKE (NO 206
33 1330 LAKE HOWELL 301
34 1303 LAKE BANANA 200
35 1333 LAKE JESSUP 18*
36 1201 ALLIGATOR LAKE 130
37 1243 TROUT LAKE 110
38 1249 LAKE LAWNE 98
39 1247 LAKE MUNSON 58
40 1337 LAKE LULU 34
41 1209 LAKE EFF1E 31
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 - cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLOW INFORMATION FOR FLORIDA
LAKE CODE 1242 TROUT LAKE
TOTAL DRAINAGE AREA OF LAKEfSQ KM) 63.2
8/25/75
SUB-DRAINAGE
TRIBUTARY AREA(SO KM)
JAN
FE8
MAR
APR
MAY
NORMALIZED FLOWS(CMS)
JUN JUL AUG
SEP
OCT
NOV
DEC
MEAN
1242A1
1242ZZ
62.2
0.0
0.40
0.0
0.51
0.0
0.
0.
79 0.57
0 0.0
0.17
0.0
0.17
0.0
0.42
0.0
0.74
0.0
1.02
0.0
0
0
.79 0.48
.0 0.0
0.34 0.53
0.0 0.0
SUMMARY
OTAL
>UM OF
DRAINAGE AREA
SUB-DRAINAGE
OF LAKE =
AREAS =
62.2
0.0
TOTAL FLOW
TOTAL FLOW
IN =
OUT =
0.0
6.40
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
1242A1
FLOW DAY
FLOW DAY
FLOW
3
4
5
6
7
8
9
10
11
12
1
2
73
73
73
73
73
73
73
73
73
73
74
74
0.33
0.42
0.06
0.14
0.11
0.29
0.46
0.37
0.08
0.15
0.17
0.07
17
8
20
18
15
9
6
3
0.25
0.71
0.04
0.05
0.0
0.09
0.24
0.08
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORET RETRIEVAL DATE 75/08/25
134201
28 51 58.0 081 40 59.0
TROUT LAKE
12069 FLORIDA
11EPALES
3
2111202
0009 FEET
DEPTH
DATE
FROM
TO
73/03/12
73/09/06
73/11/05
DATE
FROM
TO
73/03/12
73/09/06
73/11/05
TIME DEPTH
OF
DAY FEET
15 15 0000
15 15 0005
11 50 0000
14 57 0000
14 57 0001
14 57 0006
TIME DEPTH
OF
DAY FEET
15 15 0000
15 15 0005
11 50 0000
14 57 0000
14 57 0006
00010
WATER
TEMP
CENT
25.5
22.7
29.1
23.2
23.2
22.2
00665
PHOS-TOT
MG/L P
1.190
1.230
1.110
0.886
0.934
00300
DO
MG/L
2.1
9.2
7.2
4.2
32217
CHLRPHYL
A
UG/L
38.3
135.8
56.8
00077
TRANSP O
SECCHI FIELD
INCHES M]
30
22
32
94
TVY
t
iMHO
205
200
214
178
178
178
00400
PH
SU
8.60
7.90
7.90
7.00
6.80
00410
T ALK
CAC03
MG/L
23
23
34
33
34
00610
NH3-N
TOTAL
MG/L
0.250
0.410
0.080
0.180
0.380
00625
TOT KJEL
N
MG/L
2.600
2.300
2.800
2.300
2.300
00630
N02&N03
N-TOTAL
MG/L
0.650
0.580
0.060
0.280
0.270
00671
PHOS-DIS
ORTHO
MG/L P
1.050
1.040
0.970
0.710
0.860
-------
APPENDIX E
TRIBUTARY and WASTEWATER
TREATMENT PLANT DATA
-------
STORET RETRIEVAL DATE 75/08/25
1242A1
28 52 OOoO 081 41 00,0
UNNAMED TRIBUTARY
12097 7»5 EUSTIS
0/TROUT LAKE
ST HWY 19 BROGo
11EPALES 2111204
4 0000 FEET
DEPTH
TIME DEPTH
DATE
FROM OF
TO DAY FEET
73/03/17 09 15
73/04/08 13 50
73/05/20 10 30
73/06/18 10 30
73/09/15 09 00
73/12/09 10 40
74/01/06 11 05
74/02/03 14 20
00630
N02kN03
N-TOTAL
MG/L
0.300
0.315
0.160
0«036
0.020
2.760
0.700
1.120
00625
TOT KJEL
N
MG/L
2.800
2.700
2o300
70700
2.100
1.200
2.300
1.200
00610
NH3-N
TOTAL
MG/L
0.220
0.105
0.054
0.160
0.044
0.024
Oo200
0.360
00671
PHOS-DIS
ORTHO
MG/L P
0.645
Oo840
0.740
Oo700
0.900
0.970
1.100
1»150
00665
PHOS-TOT
MG/L P
0.860
1.050
0.890
C.880
1.010
1.050
1.250
1.325
-------
STORET RETRIEVAL DATE 75/08/25
1242DA TF1242DA
28 51 30.0 031 40 40.0
EUSTIS
12097 7.5 EUSTIS
0/TROUT LAKE
TROUT LAKE
11EPALES 2141204
0000 FEET
P008200
DEPTH
DATE
FROM
TO
73/02/22
73/03/30
73/04/30
73/05/31
73/06/29
73/07/31
73/08/31
73/09/30
73/11/30
73/12/28
74/01/31
74/02/28
TIME DEPTH
OF
DAY FEET
11 00
10 15
10 30
14 50
10 15
11 00
14 20
16 20
16 00
11 30
09 00
10 15
00630
N02S.N03
N-TOTAL
MG/L
3.300
4.300
5.500
1.580
1.800
3.000
3.800
4.300
4.600
0.440
5.040
00625
TOT KJEL
N
MG/L
38.000
28.000
15.600
16.800
9.700
11.500
13.800
12.800
20.000
21.000
13.000
13.000
00610
NH3-N
TOTAL
MG/L
17.400
14.800
7.400
11.500
5.100
6.800
5.900
7.300
9.300
9.600
0.670
7.500
00671
PHOS-DIS
ORTHO
MG/L P
5.700
5.450
5.580
4.100
2.950
3.200
3.800
4.500
4.400
4.700
5.000
5.000
00665
PHOS-TOT
MG/L P
7.500
6.600
6.600
6.300
4.700
4.400
5.500
6.100
8.200
7.400
6.400
6.200
50051
FLOW
RATE
INST MGD
0.811
0.780
0.712
0.725
0.850
0.789
0.850
0.870
0.752
0.802
0.034
0.800
50053
CONDUIT
FLOw-MGD
MONTHLY
0.808
0.783
0.781
0.732
0.765
0.779
0.868
0.884
0.707
0.797
0.802
0.793
------- |