U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
CALAVERAS U\KE
BEXAROMTIY
TEXAS
EPA REGION VI
WORKING PAPER No, 638
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
699-440
-------
REPORT
ON
CALAVERAS LAKE
BEXAR COUNTY
TEWS
EPA REGION VI
WORKING PAPER No, 638
WITH THE COOPERATION OF THE
TEXAS WATER QUALITY BOARD
AND THE
TEXAS NATIONAL GUARD
FEBRUARY, 1977
-------
CONTENTS
Page
Foreward ii
List of Texas Study Reservoirs iv
Lake and Drainage Area Map vi
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 11
V. Literature Reviewed 16
VI. Appendices 17
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
m
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGEMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Texas Water Quality Board
for professional involvement, to the Texas National Guard for
conducting the tributary sampling phase of the Survey, and to
those Texas wastewater treatment plant operators who voluntarily
provided effluent samples.
Hugh C. Yantis, Jr., Executive Director of the Texas Water
Quality Board, and John B. Latchford, Jr., Director, and the staff
of the Field Operations Division provided invaluable lake documen-
tation and counsel during the Survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of
this Working Paper series.
Major General Thomas Bishop, the Adjutant General of Texas,
and Project Officer Colonel William L. Seals, who directed the
volunteer efforts of the Texas National Guardsmen, are also grate-
fully acknowledged for their assistance to the Survey.
-------
IV
NATIONAL EUTROPHICATION SURVEY
STUDY RESERVOIRS
State of Texas
NAME
Amistad
Bastrop
Bel ton
Braunig
Brownwood
Buchanan
Caddo
•
Calaveras
Canyon
Colorado City
Corpus Christi
Diversion
Eagle Mountain
Fort Phantom Hill
Houston
Kemp
Lake O'The Pines
Lavon
Lewisville (Garza-Little Elm)
Livingston
COUNTY
Val Verde
Bastrop
Bell, Coryell
Bexar
Brown
Burnet, Llano
Harrison, Marion, TX;
Caddo Parish, LA
Bexar
Comal
Mitchell
Jim Wells, Live Oak, San
Patricio
Archer, Baylor
Tarrant, Wise
Jones
Harris
Baylor
Camp, Marion, Morris,
Upshur
Collin
Denton
Polk, San Jacinto, Trinity,
Walker
-------
Lyndon B. Johnson
Medina
Meredith
0. C. Fisher (San Angelo)
Palestine
Possum Kingdom
San Rayburn
Somerville
E. V. Spence
Stamford
StilIhouse Hollow
Tawakoni
Texoma
Travis
Trinidad
Twin Buttes
White River
Whitney
Wright Patman (Texarkana)
Burnet, Llano
Bandera, Medina
Hutchinson, Moore,
Potter
Tom Green
Anderson, Cherokee,
Henderson, Smith
Palo Pinto, Stephens,
Young
Angelina, Jasper
Nacogdoches, Sabine, San
Augustine
Burleson, Lee, Washington
Coke
Haskell
Bell
Hunt, Rains, Van Zandt
Cooke, Grayson TX; Bryan,
Johnston, Love, Marshall, OK
Burnet, Travis
Henderson
Tom Green
Crosby
Bosque, Hill
i3owie, Cass
-------
iffIS'
Diversion
from .
/ San Antonio
River
29" 25—
29'20'—
CALAVERAS LAKE
(^Tributary Sampling Site
XLake Sampling Site
"^ Drainage Area Boundary
Electric Plant
4Km.
i . . 2 Mi.
Scale
-------
CALAVERAS LAKE
STORE! NO. 4808
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Calaveras Lake is eutrophic; i.e.,
well supplied with nutrients and quite productive. Whether nutrient
enrichment is beneficial or deleterious depends on the actual or
potential effect on the uses of the lake. In this regard, the
Texas Water quality Board has indicated that there is little or
no known impairment of the designated beneficial uses of this lake.
Calaveras Lake ranked fourteenth in overall trophic quality
when the 39 Texas reservoirs sampled in 1974 were compared using a
combination of six water quality parameters*. Twenty-one of the
reservoirs had less median total phosphorus, two had less and five
had the same median dissolved orthophosphorus, none of the others
had less but one had the same median inorganic nitrogen, 34 reservoirs
had less mean chlorophyll a_, and 20 had greater mean Secchi disc
transparency.
Survey limnologists noted emergent macrophytes along the
shoreline at station 1 in August and at stations 2 and 3 in Novem-
ber.
See Appendix A.
-------
B. Rate-Limiting Nutrient:
The algal assay results are not considered representative of
conditions in the lake at the time the samples were collected due
to a significant change in nutrient concentrations during shipment
of the samples from the field to the laboratory.
The lake data indicate nitrogen limitation at all sampling times.
C. Nutrient Controllability:
1. Point sources—No point sources were known to discharge to
the Calaveras Lake drainage basin during the sampling year. How-
ever, the phosphorus load in the diversion from the San Antonio River
accounts for almost the entire load to the lake, and it is likely
that the wastewater treatment facilities at San Antonio contribute
to the enrichment of Calaveras Lake. It is reported that in water
year 1975 (10/01/74-09/30/75) the San Antonio Salado Creek and Rilling
Road plants discharged 21,993,126 m3 (60,255 m3/day) and 114,393,860
m3 (313,408 m3/day) of sewage effluent, respectively, to the San
Antonio River at points 12.1 and 24.9 km upstream from the point of
diversion to Calaveras Lake (Anonymous, 1976).
The present phosphorus loading of 0.76 g/m2/year is over six
times that proposed by Vollenweider (Vollenweider and Dillon, 1974)
as a eutrophic loading (see page 15). Improvement of the present
trophic condition is dependent upon the reduction of the load in
the San Antonio River. Minimization of point-source phosphorus
could result in persistent phosphorus limitation of primary pro-
ductivity in the lake.
-------
2. Non-point sources—The apparent non-point-source
phosphorus contribution accounted for all of the total phos-
phorus load during the sampling year. Calaveras Creek
contributed 1.4%, Chupaderas Creek contributed 0.6%, Unnamed
Stream C-l contributed 0.4%, and the San Antonio River diversion
contributed an estimated 92.2%. The ungaged minor tributaries
and immediate drainage contributed an estimated 3.1%. However,
as noted above, much of the load in the diversion from the San
Antonio River is contributed by upstream point sources rather
than non-point sources.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
A. Lake Morphometry :
1. Surface area: 13.96 kilometers2.
2. Mean depth: 5.5 meters.
3. Maximum depth: >9.1 meters.
4. Volume: 76.780 x 106 m3.
5. Mean hydraulic retention time: 20 years (based on outflow).
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Name
Calaveras Creek
Chupaderas Creek
Unnamed Stream C-l
San Antonio River diversion
Minor tributaries &
immediate drainage -
Drainage
Mean flow
area (km2)ttt (m3/sec)ttt
Totals
32.9
20.7
6.7
100.3
160.6
0.040
0.030
0.010
0.183*
0.150
0.413
2. Outlet -
Generating plant diversion
Calaveras Creek
Total
C. Precipitation****:
1. Year of sampling: 94.0 centimeters.
2. Mean annual: 70.0 centimeters.
174.6**
174.6
0.122
0.000 (inter-
mittent flow)
0.122***
t Table of metric conversions—Appendix B.
tt Latchford, 1974.
ttt For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
* Yost, 1976.
** Includes area of lake.
*** Outflow adjusted to equal sum of inflows minus evaporation; see page 11.
**** See Working Paper No. 175.
-------
III. LAKE WATER QUALITY SUMMARY
Calaveras Lake was sampled four times in 1974 by means of a pontoon-
equipped Huey helicopter. Each time, samples for physical and chemical
parameters were collected from a number of depths at three stations on
the lake (see map, page vi). During each visit, a single depth-integrated
(4.6 m or near bottom to surface) sample was composited from the stations
for phytoplankton identification and enumeration; and during the first and
last visits, a single 18.9-liter depth-integrated sample was composited
for algal assays. Also each time, a depth-integrated sample was collected
from each of the stations for chlorophyll a^ analysis. The maximum depths
sampled were 9.4 meters ct station 1, 4.3 meters at station 2, and 4.9
meters at station 3.
The sampling results are presented in full in Appendix D and are
summarized in the following table (the August nutrient samples were not
[•roperly preserved and were not analyzed).
-------
PARAMETER
TEMP (C)
OISS OXY (MG/L)
CNOCTVY (MCHOMO)
PH (STAND UNITS)
TOT ALK (MG/L>
TOT P (MG/L)
ORTHO P (MG/D
N02»N03 (MG/D
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AND
1ST SAMPLING ( 3/13/74)
3 SITES
RANGE
15.2 - 23.7
3.2 - 8.6
MEAN MEDIAN
21.0 21.0
8.2
7.5
487.
8.3
127.
0.034
486.
a.4
127.
0.032
0.009 0.006
0.045 0.040
440. - 510.
7.7 - 8.6
1?5. - 129.
0.024 - 0.043
0.005 - 0.017
0.020 - 0.120
0.020 - 0.090 0.036 0.030
0.600 - 0.400 0.790 0.800
0.040 - 0.210 0.081 0.070
0.630 - 1.020 0.835 0.840
12.1 - 13.8 13.0 13.0
0.6 - 1.2 0.9 0.*
CHEMICAL CHARACTERISTIC., FOK CALAVLWAS LAKE
STOHET CODE 4*08
2ND SAMPLING ( 5/23/74)
3 SITES
RANGE
25.5 - 30.7
2.0 - 8.0
561. - 620.
7.6 - 8.5
117. - 130.
0.030 - 0.055
0.003 - 0.010
0.020 - 0.070
0.020 - 0.080
0.600 - 0.800
0.040 - 0.150
0.620 - 0.870
13.1 - 55.4
0.9 - 1.2
MEAN MEDIAN
28.3 28.5
4.8
590.
8.1
125.
0.036
5.0
585.
8.0
125.
0.033
0.006 0.005
0.032 0.020
0.034 0.030
0.718 0.700
0.065
0.750
32.5
1.1
0.050
0.720
28.9
1.1
3RD SAMPLING ( 8/16/74)
3 SITES
KANGE MEAN MEDIAN
28.6 - 32.9 30.2 29.9
3.2 - 7.8 6.0 6.5
b29. - 696. 648. 631.
8.0 - 9.0 8.7 8.9
_««««*««»««««*««»*•«»»«
- o t> o tnnnnnnnnxnnnnt o o »oo
_ (nnxnj o «o oeoo o oo oooo o o o
OOOOOU - OOOUIHHHJ O O O O i> »O O O O »!> O O
o»o
-------
A. SUMMARY OF PHYSICAL AND CHEMICAL CHAKACTERIST ICS FOR CALAVEKAS LAKE
STORET CODE 4806
4TH SAMPLING
5/74)
PARAMETER
TEMP (C)
OISS OXY (MG/L)
CNOCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02»N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INOHG N (MG/L)
TOTAL N (MG/L)
CHLSPYL A (UG/L)
SECCHI (METERS)
RANGE
33.8 - 37.1
6.6 -
528. - 563.
8.2 -
114. -
0.057 - 0.164
0.009 - 0.055
0.020 - 0.040
0.004 - 0.060
0.400 - 1.000
0.034 - 0.100
0.420 - 1.030
15.3 - 27.5
0.7 -
J
1
0
6
i4
15
0
iO
0
0
'0
5
2
SITES
MEAN
25.1
7.6
540.
8.4
121.
0.078
0.021
0.029
0.035
0.710
0.064
0.739
22.4
0.8
MEDIAN
24.8
7. fa
538.
8.4
121.
0.067
0.017
0.030
0.035
0.700
0.070
0.740
24.5
0.7
-------
8
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/13/74
05/23/74
08/16/74
11/05/74
Dominant
Genera
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
Merismopedia sp.
Chroomonas sp.
Dactylococcopsis sp.
Nitzschia SJD.
Cryptomonas sp.
Other genera
Total
Dactylococcopsis sp.
Nitzschia sp.
Merismopedia sp.
Anabaenopsis sp.
Melosira sp.
Other genera
Total
Oscillator) a sp.
Lyngbya sp.
Rapnidiopsis sp.
Merismopedfa sp.
Anabaenopsis sp.
Other genera
Total
Oscillator! a sp.
Dactylococcopsis sp.
Centric diatoms
Raphididpsis sp.
Pennate diatoms
Algal Units
per ml
3,032
2,592
2,298
1,467
1,320
9.488
Other genera
20,197
3,190
1,202
1,110
833
832
6.288
13,455
2,950
2,397
1,696
1,217
1,107
7.192
16,559
7,756
3,283
938
649
577
2,202
Total
15,405
-------
2. Chlorophyll a_ -
Sampling Station Chlorophyll a_
Date Number (yg/1)
03/13/74 1 12.1
2 13.8
3 13.0
05/23/74 1 13.1
2 28.9
3 55.4
08/16/74 1 26.0
2 28.0
3 12.4
11/05/74 1 27.5
2 24.5
3 15.3
C. Limiting Nutrient Study:
The algal assay results are not considered representative of
conditions in the lake at the time the samples were taken (03/13/74
and 11/05/74) due to significant changes in nutrient concentrations
during shipment of the samples from the field to the laboratory.
The lake data indicate nitrogen limitation. The mean inor-
ganic nitrogen to orthophosphorus ratios were 11 to 1 or less at
all sampling times, and nitrogen limitation would be expected.
Nitrogen limitation, as indicated by the algal assay or by
in-lake nitrogen to phosphorus ratios, does not necessarily mean
-------
10
that the trophic condition of the lake can be improved by con-
trolling nitrogen inputs. In many cases, the apparent condition
of nitrogen-limitation results from excessive phosphorus input
from point sources and is often accompanied by a corresponding
increase in primary production. In such cases, the reversal of
the enriched condition depends upon phosphorus control, not nitro-
gen control.
-------
11
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Texas National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page vi), except for the high
runoff months of April and May when two samples were collected at one
of the sites. Sampling was begun in September, 1974, and was completed
in July, 1975.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Texas District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
The water level of the lake is maintained by pumping water from
the San Antonio River. Diversions to the lake during the sampling
year amounted to 5,785,068 m3 (0.183 m3/sec). Water is taken from the
lake and used in the cooling towers of an electric plant. Withdrawal
of up to 45,639,130 m3 per year is authorized (Anonymous, 1976; Yost,
1976).
In this report, nutrient loads for sampled tributaries were cal-
culated using mean annual concentrations and the mean annual flows.
Nutrient loads for the diversion from the San Antonio River were cal-
culated using the mean nutrient concentrations measured at the U.S.G.S.
water-quality sampling station (08181800 - 518 meters downstream from the
pumping station) and the mean annual flow (Anonymous, 1976). Nutrient
-------
12
loads in the diversion to the electric plant were calculated using the
mean nutrient concentrations measured at lake sampling station 3 and
the estimated annual flow.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("ZZ" of U.S.G.S.) were estimated using the mean concentrations
in Chupaderas Creek at station B-l and the mean annual ZZ flow.
A. Waste Sources:
1. Known municipal - None in immediate drainage.
2. Known industrial - None.
-------
13
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source ^r total
a. Tributaries (non-point load) -
Calaveras Creek 145 1.4
Chupaderns Creek 65 0.6
Unnamed Stream C-l 40 0.4
San Antonio River diversion 9,730 92.2
b. Minor tributaries & immediate
drainage (non-point load) - 325 3.1
c. Known municipal STP's - None
d. Septic tanks - None
e. Known industrial - None
f. Direct precipitation* - 245 2.3
Total 10,550 100.0
2. Outputs -
Lake outlet - Generating plant
diversion 175
Calaveras Creek - Jintermittent flow)
Total 175
3. Net annual P accumulation - 10,375 kg.
* See Working Paper No. 175.
-------
14
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source y_r total
a. Tributaries (non-point load) -
Calaveras Creek 1,535 2.8
Chupaderas Creek 1,155 2.1
Unnamed Stream C-l 410 0.7
San Antonio River diversion 31,520 56.8
b. Minor tributaries & immediate
drainage (non-point load) - 5,765 10.4
c. Known municipal STP's - None
d. Septic tanks - None
e. Known industrial - None
f. Direct precipitation* - 15,070 27.2
Total 55,455 100.0
2. Outputs -
Lake outlet - Generating plant
diversion 3,245
Calaveras Creek - (intermittent flow)
Total 3,245
3. Net annual N accumulation - 52,210 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/kma/yr kg N/km2/yr
Calaveras Creek 4 47
Chupaderas Creek 3 56
Unnamed Stream C-l 6 61
* See Working Paper No. 175.
-------
15
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Essentially, his "dangerous" loading is
one at which the receiving water would become eutrophic or
remain eutrophic; his "permissible" loading is that which
would result in the receiving water remaining oligotrophic
or becoming oligotrophic if morphometry permitted. A meso-
trophic loading would be considered one between "dangerous"
and "permissible".
Note that Vollenweider's model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulate"? Total Accumulated
grams/m2/yr 0.76 0.74 4.0 3.7
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of Calaveras Lake:
"Dangerous" (eutrophic loading) 0.12
"Permissible" (oligotrophic loading) 0.06
-------
16
V. LITERATURE REVIEWED
Anonymous, 1976. Water resources data for Texas: Parts 1 and 2_
U.S. Geol. Surv., Austin.
Dougherty, John P., 1975. Evaporation data in Texas. Report #192,
TX Water Devel. Bd., Austin.
Latchford, John B., Jr., 1974. Personal communication (lake mor-
phometry). TX Water Qual. Bd., Austin.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophicaHion research.
Natl. Res. Council of Canada Publ. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
Yost, I. D., 1976. Personal communication (diversions to and from
Calaveras Lake). U.S. Geol. Surv., Austin.
-------
17
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME
1 4809 CANVON RESERVOIR
? 4833 LAKE MEREDITH
3 4813 EAGLE MOUNTAIN LAKE
4 4816 KEMP LAKE
5 4801 AMISTAD LAKE
6 4805 BROaNWOOD LAKE
7 480? BASTROP LAKE
8 4838 WHITE RIVEH RESERVOIR
9 4825 POSSUM KINGDOM RESERVOIR
10 4835 TRAVIS LAKE
11 4803 8ELTON RESERVOIR
12 4831 STILLHOUSE HOLLOW RESERV
13 4812 DIVERSION LAKE
14 4808 CALAVERAS LAKE
15 4839 WHITNEY LAKE
16 4822 MEDINA LAKE
17 4827 SAM RAYBURN RESERVOIR
18 4828 E V SPENCE RESERVOIR
19 4837 TWIN 8UTTES RESERVOIR
20 4810 LAKE COLORADO CITY
21 4824 PALESTINE LAKE
22 4818 LAKE OF THE PINES
23 4807 CADOO LAKE
24 4814 FT PHANTOM HILL LAKE
25 4806 LAKE BUCHANAN
26 4830 STAMFORD LAKE
27 4819 LAVON RESERVOIR
28 4832 TAWAKONI L.AKE
INDEX NO
445
441
430
423
402
394
393
390
387
384
384
372
372
362
357
342
322
321
311
310
302
298
297
296
261
259
258
253
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 4821 LYNDON B JOHNSON LAKE 236
30 4834 TEXOMA LAKE 217
31 4829 SOMEHVILLE LAKE 208
32 4826 SAN ANGELO RESERVOIR 200
33 4833 TEXAHKANA LAKE 176
34 4815 GARZA LITTLE ELM RESERVO 173
35 4836 TRINIDAD 169
36 4804 BRAUNIG LAKE 159
37 4811 CORPUS CRIST1 LAKE 155
38 4817 HOUSTON LAKE 139
39 4820 LIVINGSTON LAKE 91
-------
OF LAKES WITH HIGHER VALUES (NUMBEP OF LAKES WITH HIGHER VALUES*
LAKE
CODE LAKE NAME
<«801 AMISTAO LAKE
4b02 8ASTROP LAKE
4803 8ELTON RESERVOIR
4804 8RAUNIG LAKE
4805 BROWNWOOD LAKE
4806 LAKE BUCHANAN
4807 CAOOO LAKE
4808 CALAVERAS LAKE
4809 CANYON RESERVOIR
4810 LAKE COLORADO CITY
48H CORPUS CRISTI LAKE
4812 DIVERSION LAKE
4813 EAGLE MOUNTAIN LAKE
4814 FT PHANTOM HILL LAKE
4815 GARZA LITTLE ELM RESERVO
4816 KEMP LAKE
4817 HOUSTON LAKE
4818 LAKE OF THE PINES
4819 LAVON RESERVOIR
4820 LIVINGSTON LAKE
4821 LYNDON B JOHNSON LAKE
4822 MEDINA LAKE
4823 LAKE MEREDITH
4824 PALESTINE LAKE
4825 POSSUM KINGDOM RESERVOIR
4826 SAN ANGELO RESERVOIR
4827 SAM RAY8URN RESERVOIR
4828 E V SPENCE RESERVOIR
MEDIAN
TOTAL P
<55 (
79 (
92 (
5 (
66 (
47 (
26 (
45 (
99 (
39 (
8 (
68 (
71 (
24 (
34 (
76 <
16 (
54 (
21 (
3 (
39 (
99 (
82 (
54 (
74 (
13 (
59 (
50 (
36)
30)
35)
2)
25)
18)
10)
17)
37)
14)
3)
26)
27)
9)
13)
29)
6)
20)
8)
1)
14)
37)
3D
20)
28)
5)
22)
19)
MEDIAN
INORG N
5
76
26
42
70
21
91
100
8
76
47
83
91
66
13
61
16
76
29
3
11
0
91
32
91
45
39
83
( 2)
( 28)
( 10)
( 16)
( 26)
( 7)
( 33)
( 38)
( 3)
( 28)
( 18)
( 31)
( 33)
( 25)
( 5)
( 22)
( 6)
( 28)
( ID
( 1)
( 4)
( 0)
( 33)
( 12)
( 33)
( 17)
< 15)
( 31)
500-
MEAN SEC
100 (
82 (
97 (
50 (
29 (
74 (
42 (
47 (
95 (
26 (
18 (
32 (
34 (
21 (
16 (
55 (
0 (
66 (
3 <
39 (
53 <
89 (
71 (
63 <
84 (
8 (
68 (
45 (
38)
31)
37)
19)
11)
28)
16)
18)
36)
10)
7)
12)
13)
8)
6>
21)
0)
25)
1)
15)
20)
34)
27)
24)
32)
3)
26)
17)
MEAN
CH|_0*A
100
47
68
8
87
63
32
11
97
42
13
29
79
74
34
55
24
39
84
26
66
37
95
53
58
0
76
50
( 38)
( 18)
1 26)
< 3)
( 33)
( 24)
( 12)
( 4)
( 37)
( 16)
( 5)
( 11)
( 30)
< 28)
< 13)
( 21)
( 9)
( 15)
( 32)
( 10)
( 25)
( 14)
( 36)
( 20)
( 22)
< 0)
( 29)
( 19)
15-
MIN DO
39
17
17
49
58
17
76
67
49
88
61
97
79
95
55
84
72
17
100
17
39
17
39
49
17
88
17
17
( 14)
< 0)
( 0)
< 17)
( 22)
( 0)
< 29)
( 25)
( 17)
( 33)
( 23)
( 37)
( 30)
( 36)
( 21)
( 32)
( 27)
( 0)
( 38)
( 0)
( 14)
( 0)
( 14)
( 17)
( 0)
( 33)
( 0)
( 0)
MEDIAN
DISS OHThO P
63
92
84
5
84
39
30
92
97
39
8
63
76
16
21
92
11
46
21
3
30
100
63
51
63
46
63
76
( 21)
( 34)
< 31)
( 2)
( 31)
( 14)
( 10)
( 34)
( 37)
( 14)
( 3)
( 21)
( 28)
( 6)
< 7)
( 34)
( 4)
( 17)
( 7)
( 1)
( 10)
( 38)
< 21)
( 19)
< 21)
( 17)
( 21)
( 28)
IN06.X
NO
402
393
364
159
394
261
297
362
<»45
310
155
372
430
296
173
423
139
298
258
91
238
342
441
302
387
200
322
321
-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES *ITH HIGHER VALUES)
LAKE
CODE LAKE NAME
4829 SOMERVILLE LAKE
4830 STAMFORD LAKE
4831 STILLHOUSE HOLLO*
4833 TAWAKONl LAKE
4833 TEXARKANA LAKE
4834 TEXOMA LAKE
4835 TRAVIS LAKE
4836 TRINIDAD
4837 TWIN BUTTES RESERVOIR
4838 WHITE RIVER RESERVOIR
4839 WHITNEY LAKE
MEDIAN
TOTAL P
29
18
88
32
11
39
88
0
59
84
63
( 11)
( 7)
( 33)
( 12)
( 4)
( 14)
( 33)
( 0>
( 22)
( 32)
( 24)
MtDIAN
INO^G N
55
V7
37
70
51
34
21
61
21
61
51
( 21)
1 37)
( 14)
( 26)
( 19)
( 13)
( 7)
( 22)
( 7)
( 22)
( 19)
500-
MEAN SEC
24
5
87
37
13
61
92
11
58
76
79
( 9)
( 2)
( 33)
( 14)
f 5)
( 23)
( 35)
( 4)
t 22)
( 29)
( 30)
ML-N
CHLORA
3
18
92
21
16
45
82
5
61
89
71
1 1)
( 7)
( 35)
( 8)
( 6)
( 17)
( 3D
( 2)
( 23)
( 34)
( 27)
15-
MIN oo
67
82
17
63
72
17
17
92
49
17
17
( 25)
( 3D
( 0)
( 24)
< 27)
( 0)
( 0)
( 35)
( 17)
( 0)
( 0)
MEDIAN
DISS OKTHO H
30 (
39 (
51 (
30 (
13 (
21 (
84 (
0 (
63 (
63 <
76 (
10)
14)
19)
10)
5)
7)
3D
0)
21)
21)
28)
1NUEX
NO
200
259
372
2b3
176
217
384
169
311
390
357
-------
LAKES RANKED BY INDE* NOS.
RANK LAKE CODE LAKE NAME INDEX NO
i 4809 CAMVON RESERVOIR 445
2 4823 LAKE MEREDITH 441
3 4813 EAGLE MOUNTAIN LAKE 430
4 4816 KEMP LAKE 423
5 4801 AMISTAO LAKE 402
6 4805 BROoNMOOD LAKE 394
7 4802 BASTROP LAKE 393
8 4838 WHITE RIVER RESERVOIR 390
9 4825 POSSUM KINGDOM RESERVOIR 387
10 4835 TRAVIS LAKE 384
11 4803 8ELTON RESERVOIR 384
12 4831 STILLHOUSE HOLLOW RESERV 372
13 4812 DIVERSION LAKE 372
14 4808 CALAVERAS LAKE 362
15 4839 WHITNEY LAKE 357
16 4822 MEDINA LAKE 342
17 4827 SAM RAYBURN RESERVOIR 322
18 4828 E V SPENCE RESERVOIR 321
19 4837 TWIU 60TTES RESERVOIR 311
20 4810 LAKE COLORADO CITY 310
21 4824 PALESTINE LAKE 302
22 4818 LAKE OF THE PINES 298
23 4807 CADOO LAKE 297
24 4814 FT PHANTOM HILL LAKE 296
25 4806 LAKE BUCHANAN 261
26 4830 STAMFORD LAKE 259
27 4819 LAVON RESERVOIR 258
28 4832 TArfAKONI LAKE 253
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INOEX NO
29 <.621 LYNDON B JOHNSON LAKE 238
30 4834 TEXOMA LAKE 217
31 4829 SOMERVILLE LAKE 208
32 4826 SAN ANGELO RESERVOIR 200
33 4833 TEXARKANA LAKE 176
34 4815 GARZA LITTLE ELM RESERvO 173
35 4836 TRINIDAD 169
36 4804 BRAUNIG LAKE 159
37 4811 CORPUS CRIST1 LAKE 155
38 4817 HOUSTON LAKE 139
39 4820 LIVINGSTON LAKE 91
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
-4
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
FLO* INFORMATION FO»
CuuE 4o03
TOTAL O^AI
CALAVAf-AS
LAr<.E(5U KM)
174.6
„ NORMALIZED
M';r J'JN J'JL
SE?
•JCT
NUV
DEC
?0.7
MEAN MONTHLY FLOWS AND OAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW JAY
FLOW OAT
FLOW DAY
FLOW
<.808A2
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
b
7
8
74
74
74
74
75
75
75
75
75
7S
75
75
74
74
74
74
75
75
75
75
75
73
7S
75
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.62
0.74
0.0
O.C
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
O.L
0.0
0.0
7
7
7
7
7
6
7
7
b
11
7
13
7
7
7
7
7
6
7
7
u
LI
Ib
13
0.0
0.0
0.0
0.0
0.0
O.C
0.0
0.0
0.0
0.0
0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.C
O.C
f.G
G.O
0.0
23
22
23
22
0.0
0.0
0.0
0.0
MEAN
0.30
0.0-.
0.03
0.01
0.13
0 . (i 0 0.00
0.03 0.02
0.02 0.01
0.01 0.00
C.ll O.OS
u.OO
0.05
0.03
0.01
0. 15
0.00
0.0^
0.06
0.02
C.31
0.00
O.Ob
0.04
0.01
0.21
0.00
U.02
0.01
0.00
0.06
0.00
0.01
0.01
0.00
0.04
0.00
0.11
0.07
0.02
0.40
0.00
0.06
0.0*
0.01
0.2
-------
TRIBUTARY FLO«' INFC-^aT ION FOR TEXAS
LAKE CODE. <*808
CAL4VARAS
MEAN MONTHLY FLO*S 4NO OAILY FLOwS(CMb)
TnlduTARY MONTH YEA^ MEAN FLOW OAT
"•8U8H1
9
10
11
12
1
2
3
^
S
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
?
3
4
5
6
7
8
7<.
7-»
7<*
7^
75
75
75
75
75
75
75
75
7<»
7<»
74
74
75
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
1.33
0.0
0.11
0.00
0.0
0.03
0.0
0.0
0.10
0.37
0.00
0.0
0.0
O.C
0.0
0.0
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
1.19
0.59
1.30
1.08
1.13
6.46
1.36
0.74
3.14
1.76
0.91
0.40
7
7
7
7
7
6
7
7
8
11
Ib
13
7
7
7
7
7
b
7
7
8
11
15
13
r L J *'
FLU*
0.0
u.G
0.0
0.01
0.0
0.28
0.3
0.0
0.08
1.25
0.0
u.G
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
23
23
22
0.0
0.0
u.O
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STORE! RETRIEVAL DATE 76/02/1)
480801
29 io 44.0 098 18 21.0
CALAVtuAS _AKt
4802V TEXAS
DATE
FROM
TO
74/03/13
74/05/23
74/08/16
74/11/05
DATE
FROM
TO
74/03/13
74/05/23
74/08/16
74/11/05
TIME DEPTH
OF
DAY FEET
14 20 0000
14 20 0006
14 20 0015
14 20 0030
13 15 0000
13 15 0005
13 15 0015
13 15 0020
13 15 0031
10 15 0000
10 15 0005
10 15 0015
10 15 0020
14 55 0000
14 55 0005
14 55 0015
14 55 0030
TIME DEPTH
OF
DAY FEET
14 20 0000
14 20 0006
14 20 0015
14 20 0030
13 15 0000
13 15 OOOb
13 15 0015
13 15 0020
13 15 0031
10 15 0000
10 15 0011
14 55 0000
14 55 0005
14 55 0015
14 55 0030
00010
WATER
TtMP
CENT
21.3
20.8
20.6
15.2
29.5
28.5
27.4
26.9
25.5
29.0
28.8
28.6
28.6
25.1
24. «,
24.8
24.8
00665
PHOS-TOT
MG/L P
O.P32
0.024
0.028
0.032
0.031
0.033
0.030
0.032
0.031
C.057
0.064
0.068
0.164
00300 00077
DO TKANSP
SECCHI
MG/L INCHES
48
8.6
8.4
3.2
48
8.0
5.2
2.0
2.0
7.0 48
6.6
6.4
6.2
8.0 48
7.8
7.4
7.4
32217 00031
ChLRPHYL INCUT LT
A REMNING
UG/L PERCENT
12.1
13.1
26.0
1.0
27.5
00094
CNDUCTVY
FIELD
MICROMHO
485
475
480
440
595
591
585
576
561
636
631
630
630
539
538
538
538
11EPALES
3
00400
PH
su
8.00
8.00
8.00
7.70
8.45
8.35
8.05
7.60
7.60
9.00
9.00
8.90
8.90
8.46
8.41
8.31
8.23
00410
T ALK
CAC03
MG/L
127
125
125
129
123
122
125
128
128
117
116
117
118
21112U2
0034
00610
NH3-N
TOTAL
MG/L
0.040
0.030
0.020
0.090
0.040
0.020
0.020
0.030
0.030
0.004
0.050
0.050
0.060
FEET DEPTH
00625
TOT KJEL
N
MG/L
0.800
0.700
0.800
0.900
0.800
0.700
0.600
0.600
0.600
0.500
0.500
0.400
0.600
00630
N026.N03
M-TOTAL
MG/L
0.040
0.040
0.030
0.120
0.050
0.020
0.020
0.020
0.020
0.030
0.030
0.030
0.040
00671
PHOS-UIS
OR THO
MG/L P
0.006
0.005
0.012
0.017
0.007
0.005
0.003
0.004
0.005
0.017
0.019
0.033
0.055
-------
STORET RETRIEVAL DATE 76/02/11
480502
29 1-) 19.0 098 Ib 15.0
CALAVc.*AS ' AKE
43029 TEXAS
DATE
FROM
TO
74/03/13
74/05/23
74/08/16
74/11/05
DATE
FROM
TO
74/03/13
74/05/23
74/06/16
74/11/05
TIME DEPTH
OF
DAY FEET
14 50 0000
14 50 0006
14 50 0014
13 30 0000
13 30 0005
13 30 0014
09 55 0000
09 55 0005
09 55 0014
15 10 0000
15 10 0005
15 10 0010
TIME DEPTH
OF
DAY FEET
14 50 0000
14 50 0006
14 50 0014
13 30 0000
13 30 0005
13 30 0014
09 55 0000
15 10 0000
15 10 0005
15 10 0010
00010
*ATER
TEMP
CENT
21.1
21.0
20.4
29.1
28.2
27.2
30.0
30.0
29.9
24.1
24.1
23. B
00665
PHOS-TOT
MG/L P
0.043
0.038
0.041
0.037
0.039
0.037
0.066
0.097
0.077
00300
DO
MG/L
8.2
7.8
8.0
5.4
7.8
7.6
7.0
8.0
6.8
7.0
32217
CHLRPHYL
A
UG/L
13.8
28.9
28.0
24.5
00077
TRANSP
SECCnl
INCHES
24
42
36
26
00031
INCDT LT
REMNING
PERCENT
00094
CNDUCTVY
FIELD
MICROMHO
490
490
485
583
577
575
629
629
630
535
530
528
HEP ALES
3
00400 00410
PH T ALK
SU
8.55
a. so
8.40
8.50
8.45
8.20
9.00
8.90
8.90
6.53
8.48
8.36
CAC03
MG/L
127
127
127
117
124
124
114
127
124
2111202
0018 FEET DEPTH
00610 00625 00630
NH3-N TOT KJEL N02NN03
TOTAL
MG/L
0.030
0.020
0.030
0.030
0.020
0.020
0.020
0.020K
0.030
N
MG/L
0.900
0.900
0.800
0.800
0.700
0.700
0.400
1.000
1.000
N-TOTAL
MG/L
0.030
0.020
0.040
0.020
0.020
0.020
0.020K
0.020K
0.020K
00671
PHOS-OIS
ORTHO
MG/L P
0.014
0.013
0.006
0.004
0.005
0.006
0.015
0.016
0.020
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STOKIT RETRIEVAL OATE 76/02/11
460=03
29 Id 37.0 098 20 04.0
CALA^E^AS _AKŁ
4*02^ TEAAS
OATE
FROM
TO
74/03/13
74/05/23
74/08/16
74/H/05
TINT
OF
OAt
15 30
15 30
15 30
13 45
13 45
13 45
10 40
10 40
10 40
15 30
15 30
15 30
DEPTH
FEET
0000
0006
0011
0000
0005
0016
0000
0005
0010
0000
0005
0010
00010
WATEP
TEMP
CENT
23.7
22.9
22.8
30.7
29. to
2B.6
32.9
32.6
32.0
27.1
26.6
25,8
00300 00077 00094
00 TR4NSP CNlOUCTVt
SECCHl FIELD
MG/L INCHES
8.6
8.0
4.8
3.2
3.2
4.0
3.8
7.8
7.4
8.0
36
36
42
26
510
509
505
618
614
620
696
689
684
562
551
543
HEP/
3
00400
PH
su
3.60
8.60
8.60
8.00
7.90
7.75
8.00
8.20
8.20
8.53
8.56
8.39
00410
T ALK
CAC03
MG/L
126
126
126
127
127
130
126
126
126
211
0015
00610
NH3-N
TOTAL
MG/L
0.040
0.030
0.030
0.030
0.050
0.030
0.030
0.040
0.050
1202
FEET DEPTH
00625
TOT KJEL
N
MG/L
0.800
0.700
0.600
0.800
0.800
0.800
0.900
0.800
1.000
00630
N02t>N03
N- TOTAL
MG/L
0.060
0.040
0.030
0.020
0.070
0.070
0.040
0.040
0.020
00671
HHOS-D1S
URTHO
MG/L P
0.006
0.006
0.006
0.006
0.010
0.007
0.009
0.011
0.017
DATE
FROM
TO
74/03/13
74/05/23
74/08/16
74/1 1/05
00665 32217 00031
TIME DEPTH PHOb-TOT CHLRPHYL 1NCDT LT
OF A REMNING
DAY FEET
15
15
15
13
13
13
10
10
15
15
15
30
30
30
45
45
45
40
40
30
30
30
0000
0006
0011
0000
0005
0016
0000
0009
0000
0005
0010
MG/L P
0,
0,
0,
0,
0,
0,
u,
U c
u,
.032
.034
.033
.055
,033
.042
.Q^S
,061
,06t;
UG/L
13
55
12
15
PEKCENT
.0
.4
.4
1.0
.3
-------
APPENDIX E
TRIBUTARY DATA
-------
ST>ET
L OATE 7c/03/10
46jeAl
29 16 25.0 0
-------
STOREf RETRIEVAL DATE 76/03/10
48G3A2
29 20 i.0.0 098 21 30.0 4
CALAVAPAS v-HEEK
<*8 l.S ELMENOOHF
LAKE
:sr
-------
STORE! RETRIEVAL DATE 76/03/10
46C8B1
29 22 06.0 098 17 20
CHUPADERAS CREEK,
48 7.5 ELMENUOrtF
T/C*LAVAh(AS LAKE
STUART RO bRDG .3 MI S
11EPALES
0000 FEET DEPTH
0 4
OF JCT US H7
2111204
CLASS JO
DATE
FROM
TO
74/09/07
74/10/07
74/11/07
74/12/07
75/01/07
75/02/06
75/03/07
75/04/07
75/04/23
75/05/08
75/05/22
75/06/11
75/07/15
00630 00625
TIME OEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
10
09
10
14
10
10
11
09
10
10
11
10
11
05
10
20
20
10
15
40
25
20
40
00
30
45
MG/L
0
0
0
0
0
0
0
•0
0
0
0
0
0
.312
.448
.088
.232
.104
.448
.005
.170
.125
.610
.700
.100
.560
MG/L
1.
0.
0.
1.
0.
1.
0.
0.
0.
1.
0.
1.
0.
000
400
600.
700
eoo
000
950
900
650
350
800
100
700
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
• o.
0.
0.
0.
165
045
035
168
040
048
030
165
110
260
200
065
105
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
P
015
005K
015
015
005K
152
010
005K
010
015
020
100
005
MG/L P
0.040
0.020
0.030
0.030
0.010
0.210
0.060
0.040
0.030
' 0.020
0.050
0.300
0.060
K VALUE KNOHN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 76/03/10
DATE TIME OEPTH
FROM OK
TO DAY FEET
75/02/06 10 00
75/05/22 10 10
75/06/11 10 15
29 21 20.0 098 16 38.0
UNNAMED ST:'EAM
48 7.5
T/CALAvAkAS LArvE
COOKSEY *)Q BROG 1
11EPALES
3 MI S OF JCT US 87
2111204
0000 FEET OEPTH CLASS 00
00630
N02^N03
N-TOTAL
MG/L
0.152
0.280
0.130
00625
TOT KJEL
N
MG/L
0.600
1.500
1.250
00610
NH3-N
TOTAL
MG/L
0.048
0.325
0.090
00671
PHOS-OIS
ORTHO
MG/L P
0.024
0.032
0.105
00665
PHOS-TOT
MG/L f>
0.070
0.090
0.230
------- |