U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
WHITE RIVER RESERVOIR
CROSBY COUNTY
TEXAS
EPA REGION VI
WORKING PAPER No, 667
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
699-440
-------
REPORT
ON
WHITE RIVER RESERVOIR
CROSBY COUNIY
TEXAS
EPA REGION VI
WORKING PAPER No, 667
WITH THE COOPERATION OF THE
TEXAS WATER QUALITY BOARD
AND THE
TEXAS NATIONAL GUARD
MARCH, 1977
-------
CONTENTS
Page
Foreward ii
List of Texas Study Reservoirs iv
Lake and Drainage Area Map vi
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 10
V. Literature Reviewed 14
VI. Appendices 15
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)j, water
quality criteria/standards review [§303(c)], clean lakes [§314(a,b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
m
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGEMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to- the Texas Water Quality Board
for professional involvement, to the Texas National Guard for
conducting the tributary sampling phase of the Survey, and to
those Texas wastewater treatment plant operators who voluntarily
provided effluent samples.
Hugh C. Yantis, Jr., Executive Director of the Texas Water
Quality Board, and John B. Latchford, Jr., Director, and the staff
of the Field Operations Division provided invaluable lake documen-
tation and counsel during the Survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of
this Working Paper series.
Major General Thomas Bishop, the Adjutant General of Texas,
and Project Officer Colonel William L. Seals, who directed the
volunteer efforts of the Texas National Guardsmen, are also grate-
fully acknowledged for their assistance to the Survey.
-------
IV
NATIONAL EUTROPHICATION SURVEY
STUDY RESERVOIRS
State of Texas
NAME
Amistad
Bastrop
Bel ton
Braunig
Brownwood
Buchanan
Caddo
Calaveras
Canyon
Colorado City
Corpus Christi
Diversion
Eagle Mountain
Fort Phantom Hill
Houston
Kemp
Lake O'The Pines
Lavon
Lewisville (Garza-Little Elm)
Livingston
COUNTY
Val Verde
Bastrop
Bel 1, Coryel1
Bexar
Brown
Burnet, Llano
Harrison, Marion, TX;
Caddo Parish, LA
Bexar
Coma!
Mitchell
Jim Wells, Live Oak, San
Patricio
Archer, Baylor
Tarrant, Wise
Jones
Harris
Baylor
Camp, Marion, Morris,
Upshur
Coll in
Denton
Polk, San Jacinto, Trinity,
Walker
-------
Lyndon B. Johnson
Medina
Meredith
0. C. Fisher (San Angelo)
Palestine
Possum Kingdom
Sam Rayburn
Somerville
E. V. Spence
Stamford
Stillhouse Hollow
Tawakoni
Texoma
Travis
Trinidad
Twin Buttes
White River
Whitney
Wright Patman (Texarkana)
Burnet, Llano
Bandera, Medina
Hutchinson, Moore,
Potter
Tom Green
Anderson, Cherokee,
Henderson, Smith
Palo Pinto, Stephens,
Young
Angelina, Jasper
Nacogdoches, Sabine, San
• Augustine
Burleson, Lee, Washington
Coke
Haskell
Bell .
Hunt, Rains, Van Zandt
Cooke, Grayson TX; Bryan,
Johnston, Love, Marshall, OK
Burnet, Travis
Henderson
Tom Green
Crosby
Bosque, Hill
Bowie, Cass
-------
WHITE RIVER RESERVOIR
Tributary Sampling Site
X Lake Sampling Site
^ Drainage Area Boundary
-------
WHITE RIVER RESERVOIR
STORE! NO. 4838
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that White River Reservoir is meso-
eutrophic; i.e., moderately well supplied with nutrients and
productive. Whether nutrient enrichment is beneficial or
deleterious depends on the actual or potential effect on the
uses of the reservoir. In this regard, no nuisance conditions
are known to personnel of the Texas Water Quality Board and
there is little or no impairment of the designated beneficial
uses of this water body.
White River Reservoir ranked eighth when the 39 Texas reser-
voirs sampled in 1974 were compared using a combination of six
water quality parameters*. Six of the water bodies had less
median total phosphorus, ten had less and six had the same median
dissolved orthophosphorus, 14 had less and two had the same
median inorganic nitrogen, four had less mean chlorophyll a_, and
nine had greater Secchi disc transparency. Marked depression or
depletion of hypolimnetic dissolved oxygen occurred at all three
sampling stations in August.
Survey limnologists noted submerged vegetation along much of
the shoreline. This problem was noted in a previous report on
this water body (Bamberg, 1974).
* See Appendix A.
-------
B. Rate-Limiting Nutrient:
Due to significant nutrient losses in the samples during
shipment, the algal assay results are not considered represen-
tative of conditions in the reservoir at the time of sampling.
However, the reservoir data indicate nitrogen limitation at all
v.
stations in March, phosphorus limitation at all stations in May,
and nitrogen limitation at stations 2 and 3 and phosphorus limi-
tation at station 1 in November.
C. Nutrient Controllability:
1. Point sources—Septic tanks serving lakeshore dwellings
were estimated to have contributed 3.3% of the total phosphorus
input during the sampling year, but a shoreline survey would be
necessary to determine the significance of those sources. How-
ever, a municipal point source outside the 40-kilometer Survey
limit* (the City of Plainview) may be a significant contributor
to the total nutrient load during periods of heavy rainfall and
subsequent high-runoff.
The present phosphorus loading of 0.06 g/m2/year is less
than that proposed by Vollenweider (Vollenweider and Dillon,
1974) as an oligotrophic loading (see page 13). Elimination of
septic tank phosphorus loads probably would not result in an
appreciable improvement in the trophic condition of the reser-
voir. Because this water-body has such a long hydraulic reten-
* See Working Paper No. 175, "...Survey Methods, 1973-1976".
-------
tion time, 12.8 years, nutrients would tend to accumulate and
continually recycle within the reservoir after they are washed
out of the drainage basin during heavy rainfall. Further
investigation is needed to determine the nutrient contribution
of the upstream point source during the periods of high runoff.
2. Non-point sources--Non-point sources contributed an
estimated 96.7% of the total phosphorus load during the sampling
year. Although the White River contributed 66.3% of the total
load, the phosphorus export rate of this stream was very low
(see page 12).
-------
II. RESERVOIR AND DRAINAGE BASIN CHARACTERISTICS1"
A. Morphometry :
1. Surface area: 7.32 kilometers2.
2. Mean depth: 6.5 meters.
3. Maximum depth: >11.6 meters.
4. Volume: 47.580 x 10s m3.
5. Mean hydraulic retention time: 12.8 years.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
White River 1,906.2 0.482
Minor tributaries &
immediate drainage - 93.7 0.019
Totals 1,999.9 0.501
2. Outlets -
White River 2,007.2** 0.0**
Water-supply aqueduct 0.0 0.118***
Totals 2,007.2 0.118
C. Precipitation****:
1. Year of sampling: 78.3 centimeters.
2. Mean annual: 53.4 centimeters.
t Table of metric conversions—Appendix B.
tt Latchford, 1974.
* For limits of accuracy, see Working Paper No. 175.
** Includes area of reservoir; minimal outflow during the sampling year.
*** Anonymous, 1974.
**** See Working Paper No. 175.
-------
III. WATER QUALITY SUMMARY
White River Reservoir was sampled four times in 1974 by means of a
pontoon-equipped Huey helicopter. Each time, samples for physical and
chemical parameters were collected from a number of depths at three
stations on the lake (see map, page vi). During each visit, a single
depth-integrated (4.6 m to surface) sample was composited from the
stations for phytoplankton identification and enumeration; and during
the first and fourth visits, a single 18.9-liter depth-integrated
sample was composited for algal assays. Also each time, a depth-
integrated sample was collected from each of the stations for chlorophyll
^analysis. The maximum depths sampled were 11.6 meters at station 1,
7.9 meters at station 2, and 7.9 meters at station 3.
The sampling results are presented in full in Appendix D and are
summarized in the following table (the August nutrient samples were not
preserved properly and were not analyzed).
-------
PARAMETER
TEMP (C)
OISS OXY (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT AUK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02*N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INOHG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AND
1ST SAMPLING ( 3/ 6/74)
3 SITES
CHEMICAL CHARACTERISTICS FOK WrilTE RIVER
STORtT CODE 4838
2ND SAMPLING ( 5/14/74)
3 SITES
RANGE
10.0 - 11.1
9.0 - 9.4
620. - 650.
8.5 - 8.5
190. - 222.
0.009 - 0.013
0.005 - 0.010
0.020 - 0.030
0.020 - 0.030
0.400 - 0.800
0.040 - 0.060
0.430 - 0.830
2.1 - 3.2
1.8 - 3.1
3RD SAMPLING ( 8/ 6/74)
3 SITES
MEAN
10.4
9.3
631.
8.5
204.
0.011
0.008
0.028
0.027
0.620
0.055
0.648
2.6
2.6
MEDIAN
10.2
9.2
630.
8.5
203.
0.011
0.008
0.030
0.030
0.600
0.060
0.630
2.5
2.7
RANGE
21.0
6.8
823.
8.5
228.
0.016
0.002
0.030
0.020
0.300
0.070
0.370
0.8
0.8
- 21.9
7.6
- 844.
8.8
- 246.
- 0.039
- 0.012
- 0.080
- 0.080
- 0.800
- 0.160
- 0.830
1.3
1.7
MEAN
21.5
7.3
833.
8.6
238.
0.022
0.007
0.070
0.060
O.«*60
0.130
0.530
1.1
1.2
MEDIAN
21.6
7.4
831.
8.6
239.
0.020
0.007
0.070
0.065
0.400
0.135
0.480
1.2
1.3
RANGE
18.7
0.0
544.
7.9
caaaaa
*..**.
aftaaaa
aooaaa
aaaaaa
ooooao
aaauou
aaaaaa
7.0
1.5
- 24.3
5.6
- 725.
8.4
MEAN
23.4
4.0
697.
8.2
MEDIAN
24.1
5.2
720.
8.2
.aaaoaaaaaaaaaaaaaaaoaa
*»»««»»»
oo.o.o
-aaaaooauaaoaoaoaaaaaaa
.*..*«..«
«•••••«
******
-aaoaaaaaaoeaaoaaaoaaaa
-oaooaeouaaaaaaaoaoaaaa
.aaaaouaoaaaaoooaaooaaa
-oaeaeuaoaaaaaaaaaoeoaa
9.1
2.1
7.9
1.8
7.6
1.8
-------
PARAMETER
TEMP (C)
OISS OXY (MG/L)
CNDCTVY (MCROMO)
PH .(STAND UNITS)
TOT AUK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02*N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (Ufi/L)
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOR WHITE RIVER RESERVOIR
STO^ET COOE 4836
4TH SAMPLING (10/28//4)
RANGE
17.3 - 17.7
5.6 -
572. - 581.
d.l -
187. - 199.
0.019 - 0.037
0.006 - 0.018
0.050 - 0.060
0.050 - 0.120
0.400 - 1.800
0.100 - O.lfta 0.133 0.120
0.450 - 1.860 0.645 0.550
3.3 - 7.1 5.7 6.8
0.9 - 1.2 1.0 0.9
3 SITES
MEAN
7
0
.
3
1 ^
17
8
0
0
0
17.5
6.8
573.
8.2
190.
0.024
0.012
0.053
0.080
0.592
MEDIAN
17.5
7.2
578.
b.3
189.
0.022
0.012
0.050
0.070
0.500
-------
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/06/74
05/14/74
08/06/74
10/28/74
Dominant
Genera
1. Chlamydomonas sp.
2. Chroomonas sp.
3. Aphanizomenon sp.
4. Fragilaria sp.
5. Oocystis sp.
Other genera
Total
1.
2.
3.
4.
5.
Chroomonas sp.
Chlamydomonas sp.
Ankistrodesmiis sp.
Aphanizomenon sj).
Cosmarium sp.
Other genera
Total
1. Pennate diatoms
2. Aphanocapsa sp.
3. Chroomonas sp..
4. Cryptomonas sp.
5. Anabaena sp.
Other genera
Total
1. Chroomonas sp.
2. Aphanizomenon sp.
3. Cyclotella sp.
4. Melosira sp.
5. Cryptomonas sp.
Other genera
Algal Units
per ml
6,692
689
170
67
42
60
7,720
250
156
125
94
94
62
781
1,326
489
384
209
70
383
2,861
Total
3,377
-------
2. Chlorophyll a_ -
Sampling Station Chlorophyll a_
Date Number (yg/1)
03/06/74 1 3.2
2 2.1
3 2.5
05/14/74 1 1.2
2 0.8
3 1.3
08/06/74 1 7.6
2 7.0
3 9.1
10/28/74 1 3.3 .
2 6.8
3 7.1
C. Limiting Nutrient Study:
The algal assay results are not considered representative of
conditions in the reservoir due to significant nutrient losses
in the samples during shipment from the field to the laboratory.
The reservoir data indicate a combination of limiting nutrients,
Following is a tabulation of the mean inorganic nitrogen/orthophos-
phorus ratios for each of the sampling stations and times with the
indicated limiting nutrient in parentheses.
Station 03/06/74 05/14/74 10/28/74
1 6/1 (N) 15/1 (P) 19/1 (P)
2 7/1 (N) 20/1 (P) 8/1 (N)
3 9/1 (N) 26/1 (P) 9/1 (N)
-------
10
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Texas National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page vi). Sampling was begun
in September, 1974, and was completed in August, 1975.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
the Texas District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were
calculated using mean annual concentrations and mean annual flows.
Nutrient loads for unsampled "minor tributaries and immediate
drainage" ("ZZ" of U.S.G.S.) were estimated using the mean con-
centrations in the White River at station A-2 and the mean annual
ZZ flow.
-------
11
A. Waste Sources:
1. Known municipal - None within the Survey 40-kilometer limit.
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source yr total
a. Tributaries (non-point load) -
White River 305 66.3
b. Minor tributaries & immediate
drainage (non-point load) - 10 2.2
c. Known municipal STP's - ?
d. Septic tanks* - 15 3.3
e. Known industrial - None
f. Direct precipitation** - 130 28.2
Total 460 100.0
2. Outputs -
Lake outlets - White River <5
Aqueduct 60
Total <65
3. Net annual P accumulation - 400 kg.
* Estimate based on 50 lakeshore dwellings (Wyatt, 1976); see Working Paper
No. 175.
** See Working Paper No. 175.
-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
White River 12,115 57.6
b. Minor tributaries & immediate
drainage (non-point load) - 480 2.3
c. Known municipal STP's - ?
d. Septic tanks* - 535 2.5
e. Known industrial - None
f. Direct precipitation** - 7.905 37.6
Total 21,035 100.0
2. Outputs -
Lake outlets - White River 40
Aqueduct 3,485
Total 3,525
3. Net annual N accumulation - 17,510 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km2/yr kg N/km2/yr
White River <1 6
* Estimate based on 50 lakeshore dwellings (Wyatt, 1976); see Working Paper
No. 175.
** See Working Paper No. 175.
-------
13
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Essentially, his "dangerous" loading is
one at which the receiving water would become eutrophic or
remain eutrophic; his "permissible" loading is that which
would result in the receiving water remaining oligotrophic
or becoming oligotrophic if morphometry permitted. A meso-
trophic loading would be considered one between "dangerous"
and "permissible".
Note that Vollenweider's model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m2/yr 0.06 0.05 2.9 2.4
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of White River Reservoir:
"Dangerous" (eutrophic loading) 0.14
"Permissible" (oligotrophic loading) 0.07
-------
14
V. LITERATURE REVIEWED
Anonymous, 1974. Water resources data for Texas, 1974. Part I:
Water records. U.S. Geol. Surv., Austin.
Bamberg, Roy M., 1974. Fisheries management recommendations. Fed.
Aid Proj. F-17-R-10, TX Parks & Wildlife Dept., Austin.
Latchford, John B., Jr., 1974. Personal communication (reservoir
morphometry). TX Water Qual. Bd., Austin.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Pub!. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
Wyatt, Linda B., 1976. Personal communication (number of lakeshore
dwellings). TX Water Qual. Bd., Austin.
-------
VI. APPENDICES
15
APPENDIX A
LAKE RANKINGS
-------
iU dc.
LAKE
CODE LAKE NAME
4801 AMISTAD LAKE
4802 BASTROP LAKE
<»803 BELTON RESERVOIR
4804 BRAUNIG LAKE
4805 BROWNWOOD LAKE
4806 LAKE BUCHANAN
4807 CAOOO LAKE
4808 CALAVERAS LAKE
4809 CANYON RESERVOIR
4810 LAKE COLORADO CITY
4811 CORPUS CRISTI LAKE
4812 DIVERSION LAKE
4813 EAGLE MOUNTAIN LAKE
4814 FT PHANTOM HILL LAKE
4815 GARZA LITTLE ELM RESERVO
4816 KEMP LAKE
4817 HOUSTON LAKE
4818 LAKE OF THE PINES
4819 LAVON RESERVOIR
4820 LIVINGSTON LAKE
4821 LYNDON B JOHNSON LAKE
4822 MEDINA LAKE
4823 LAKE MEREDITH
4824 PALESTINE LAKE
4825 POSSUM KINGDOM RESERVOIR
4826 SAN ANGELO RESERVOIR
4827 SAM RAYBURN RESERVOIR
4828 E V SPENCE RESERVOIR
MEDIAN
TOTAL P
0.013
0.02?
0.016
0.134
0.027
0.036
O.OS5
0.038
0.010
0.042
0.113
0.025
0.024
0.060
0.045
0.023
0.097
0.031
0.063
0.196
0.042
0.010
0.021
0.031
0.023
0.098
0.029
0.036
MEDIAN
IN03G N
0.500
0.090
0.185
0.150
0.100
0.250
0.070
0.060
0.450
0.090
0.130
0.080
0.070
0.105
0.380
0.110
0.260
0.090
0.180
0.555
0.420
0.600
0.070
0.180
0.070
0.140
0.150
0.080
500-
MEAN SEC
371.474
419.917
378.312
461.625
470.375
«>
437.625
463.333
461.667
384.812
473.625
475.187
470.111
469.625
474.909
475.782
455.000
486.187
440.000
485.333
465.469
456.500
403.562
439.312
442.625
419.045
481.000
439.458
462.583
MEAN
CHLOfcA
2.C.2
12.392
8.025
22.762
4.887
8.606
14.808
22.500
2.500
12.675
19.756
15.867
5.662
6.317
14.156
10.217
16.650
12.919
5.400
16.112
8.100
12.944
3.037
10.619
9.495
24.675
6.267
11.775
15-
MIN 00
14.900
15.000
IS. 000
14.800
14.400
15.000
11.400
13.000
14.800
10.200
14.000
9.000
11.000
9.800
14.600
10.400
12.400
15.000
8.800
15.000
14.900
15.000
14.VOO
14.800
15.000
10.200
15.000
15.000
MEDIAN
DISS ORTHO P
0.009
0.007
0.007
0.062
0.007
0.012
0.013
0.007
0.006
0.012
0.050
0.009
0.008
0.022
0.018
0.007
0.036
0.011
0.018
0.128
0.013
0.004
0.009
0.010
0.009
0.011
0.009
0.008
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE LAKE NAME
4839 SOMERVILLE LAKE
4830 STAMFORD LAKE
4831 STILLHOUSE HOLLO* RESEKV
4832 TAWAKONI LAKE
4833 TEXARKANA LAKE
4834 TEXOHA LAKE
4835 TRAVIS LAKE
4836 TRINIDAD
4837 TWIN 8UTTES RESERVOIR
4838 WHITE RIVER RESERVOIR
4839 WHITNEY LAKE
MEDIAN
TOTAL P
0.053
0.073
O.Olb
0*046
0.106
0.042
0.018
0.389
0.029
0.020
0.028
MEDIAN
INOHG N
0.115
O.C60
0.160
0.100
0.120
0.160
0.250
0.110
0.250
0.110
0.120
500-
MEAN SEC
473.833
482.714
406.250
466.417
470.500
451.321
389.913
479.500
454.917
434.500
430.500
I. IAN
CHLORA
24. -91
18.457
3.917
18.246
19.119
12.493
5.595
24.300
8.708
4.333
6.912
Ib-
MlN 00
13.000
10.600
15.000
13.200
12.400
15.000
15.000
10.000
14.800
15.000
15.000
MEDIAN
OISS OrtTrtO
0.013
0.012
0.010
0.013
0.030
0.018
0.007
0.240
0.009
0.009
0.008
-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES *ITH HIGMEK VALUES)
LAKE
CODE LAKE NAME
4801 AMISTAO LAKE
4802 BASTROP LAKE
4803 8ELTON RESERVOIR
4804 BRAUNIG LAKE
4805 BROmlNWOOD LAKE
4806 LAKE BUCHANAN
4807 CAODO LAKE
4808 CALAVERAS LAKE
4809 CANYON RESERVOIR
4810 LAKE COLORADO CITY
4811 CORPUS CRISTI LAKE
4812 DIVERSION LAKE
4813 EAGLE MOUNTAIN LAKE
4814 FT PHANTOM HILL LAKE
4815 GARZA LITTLE ELM RESERVO
4816 KEMP LAKE
4817 HOUSTON LAKE
4818 LAKE OF THE PINES
4819 LAVON RESERVOIR
^
4820 LIVINGSTON LAKE
4821 LYNDON 8 JOHNSON LAKE
4822 MEDINA LAKE
4823 LAKE MEREDITH
4824 PALESTINE LAKE
4825 POSSUM KINGDOM RESERVOIR
<»826 SAN ANGELO RESERVOIR
4827 SAM RAYBURN RESERVOIR
4828 E V SPENCE RESERVOIR
MEDIAN
TOTAL P
95
79
92
5
66
47
26
45
99
39
8
68
71
24
34
76
16
54
21
3
39
99
82
54
74.
13
59
50
( 36)
( 30)
( 35)
( 2)
( 25)
( 18)
( 10)
( 17)
( 37)
( 14)
( 3)
( 26)
( 27)
( 9)
( 13)
< 29)
( 6)
( 20)
( 8)
< 1)
( 14)
( 37)
( 3D
( 20)
( 28)
( 5)
( 22)
( 19)
MEDIAN
IN03G N
5
76
26
42
70
21
91
100
8
76
47
83
91
66
13
61
16
76
29
3
11
0
91
32
91
45
39
83
( 2)
( 28)
( 10)
( 16)
( 26)
( 7)
( 33)
( 38)
( 3)
( 28)
( 18)
( 31)
( 33)
( 25)
( 5)
( 22)
( 6)
( 28)
( 11)
( 1)
( 4)
( 0)
( 33)
( 12)
( 33)
( 17)
( 15)
( 31)
500-
MEAN SEC
100 (
82 (
97 (
50 (
29 (
74 (
42 I
<»7 <
95 (
26 (
18 (
32 (
34 (
21 (
16 (
55 <
0 (
66 (
3 (
39 (
53 (
89 (
71 (
63 (
84 (
8 (
68 (
45 (
38)
31)
37)
19)
11)
28)
16)
18)
36)
10)
7)
12)
13)
8)
6)
21)
0)
25)
1)
15)
20)
34)
27)
24)
32)
3)
26)
17)
MEAN
CHLOHA
IOC
47
68
8
87
63
32
11
97
42
13
29
79
74
34
55
24
39
84
26
66
37
95
53
S3
0
76
50
( 38)
( 18)
( 26)
( 3)
( 33)
( 24)
( 12)
( 4)
( 37)
( 16)
( 5)
( 11)
( 30)
( 28)
< 13)
( 21)
( 9)
( 15)
( 32)
( 10)
( 25)
( 14)
( 36)
( 20)
( 22)
( 0)
( 29)
( 19)
15-
MIN DO
39
17
17
49
58
17
76
67
49
88
61
97
79
95
55
84
72
17
100
17
39
17
39
49
17
88
17
17
( 14)
( 0)
( 0)
( 17)
( 22)
( 0)
( 29)
( 25)
( 17)
( 33)
( 23)
( 37)
( 30)
( 36)
( 21)
< 32)
( 27)
( 0)
( 38)
( 0)
( 14)
< 0)
( 14)
( 17)
( 0)
( 33)
( 0)
( 0)
MEDIAN
DISS OwTHO P
63
92
84
5
84
39
30
92
97
39
8
63
76
16
21
92
11
46
21
3
30
100
63
51
63
46
63
76
( 21)
( 34)
< 31)
( 2)
( 31)
( 14)
( 10)
( 34)
( 37)
( 14)
( 3)
( 21)
( 28)
( 6)
( 7)
( 34)
( 4)
( 17)
( 7)
( 1)
( 10)
( 38)
< 21)
( 19)
< 21)
( 17)
( 21)
( 28)
INDEX
NO
402
393
3U4
159
394
261
297
362
445
310
155
372
430
296
173
423
139
298
258
91
238
342
441
302
387
200
322
321
-------
PERCENT or LAKES WITH HIGHER VALUES (NUMBER OF LAKES KITH HIGHER VALUES*
LAKE
CODE LAKE NAME
4829 SOMERVILLE LAKE
4830 STAMFORD LAKE
4831 STILLHOUSE HOLLOW RESEKV
4833 TAWAKONI LAKE
4833 TEXARKANA LAKE
4834 TEXOMA LAKE
4835 TRAVIS LAKE
4836 TRINIDAD
4837 TWIN BUTTES RESERVOIR
4838 WHITE RIVER RESERVOIR
4839 WHITNEY LAKE
MEDIAN
TOTAL P
29 (
18 (
88 (
32 (
11 <
39 (
88 <
0 (
59 (
84 (
63 (
11)
7)
33)
12)
4)
14)
33)
0)
22)
32)
24)
MEDIAN
INORG N
55
97
37
70
51
34
21
61
21
61
51
( 21)
< 37)
( 14)
( 26)
( 19)
( 13)
( 7)
( 22)
( 7)
( 22)
( 19)
500-
MEAN SEC'
24
5
87
37
13
61
92
11
58
76
79
( 9)
( 2)
t 33)
( 14)
< 5)
( 23)
( 35)
( 4)
( 22)
( 29)
( 30)
MEAN
CHLORA
3
18
92
21
16
45
82
5
61
89
71
( 1)
< 7)
( 35)
( 8)
( 6)
( 17)
( 3D
( 2)
( 23)
( 34)
( 27)
15-
MIN DO
67
82
17
63
72
17
17
92
49
17
17
< 25)
( 3D
( 0)
( 24)
( 27)
( 0)
( 0)
( 35)
( 17)
( 0)
( 0)
MEDIAN
DISS OniTHO P
30 (
39 (
51 (
30 (
13 (
21 (
84 (
0 (
63 (
63 (
76 (
10)
14)
19)
10)
5)
7)
31)
0)
21)
21)
28)
INOEX
NO
20«
259
372
253
176
217
384
169
311
390
357
-------
LAKES RANKED BY INOEx N05.
RANK LAKE CODE LAKE NAME
i 4809 CANYON RESERVOIR
2 4823 LAKE MEREDITH
3 4813 EAGLE MOUNTAIN LAKE
4 4816 KEMP LAKE
5 4801 AMISTAO LAKE
6 4805 3RCMNHOOD LAKE
7 4802 BASTROP LAKE
8 4838 WHITE RIVER RESERVOIR
9 4825 POSSUM KINGOOM RESERVOIR
10 4835 TRAVIS LAKE
11 4803 BELTON RESERVOIR
12 4831 STILLHOUSE HOLLOW RESERV
13 4812 DIVERSION LAKE
14 4808 CALAVERAS LAKE
15 4839 WHITNEY LAKE
16 4822 MEDINA LAKE
17 4827 SAM RAYBURN RESERVOIR
18 4828 E V SPENCE RESERVOIR
19 4837 TWIN 6UTTES RESERVOIR
20 4810 LAKE COLORADO CITY
21 4824 PALESTINE LAKE
22 ^818 LAKE OF THE PINES
23 4807 CADDO LAKE
24 4814 FT PHANTOM HILL LAKE
25 4806 LAKE BUCHANAN
26 4830 STAMFORD LAKE
27 4819 LAVON RESERVOIR
28 4832 TAWAKONI LAKE
INDEX NO
445
441
430
423
402
394
393
390
387
384
384
372
372
362
357
342
322
321
311
310
302
298
297
296
261
259
258
253
-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 4821 LYNDON B JOHNSON LAKE 238
30 4834 TEXOMA LAKE 217
31 4829 SOMERVILLE LAKE 208
32 4826 SAN ANGELO RESERVOIR 200
33 4833 TEXARKANA LAKE 176
34 4815 GARZA LITTLE ELM RESERvO 173
35 4836 TRINIDAD 169
36 4804 BRAUNIG LAKE 159
37 4811 CORPUS CRIST I LAKE 155
38 4817 HOUSTON LAKE 139
39 4820 LIVINGSTON LAKE 91
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 * feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
<
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY FLO* INFORMATION FOR TEXAS
03/16/76
LAKE CODE
WHITE RIVER RES.
TOTAL D°AINAGE AREA OF LAKE(SO KM)
SUB-DRAINAGE
2007.3
TRIBUTARY APEAtSQ KM)
4838A1
<*838A2
2007.2
1906.2
101.0
JAN
0.0
0.017
0.001
FE8
0.0
0.017
0.001
0.0
0.025
0.001
APR
0.0
0.046
0.004
MAY
0.0
1.586
0.054
NORMALIZED FLOWS(CMS)
JUN JUL AUG
0.0
1.699
0.062
0.0
0.623
0.031
0.0
0.122
0.006
SEP
0.0
0.283
0.014
OCT
0.0
0.934
0.040
NOV
0.0
0.057
O.OG3
UEC
0.0
0.2H3
0.014
MEAN
0.0
0.4B2
0.019
SUMMARY
TOTAL DRAINAGE AREA OF LAKE =
SUM OF SUB-DRAINAGE AREAS =
2007.2
2007.2
TOTAL FLOW IN
TOTAL FLO* OUT
5.97
0.0
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAK MEAN FLOW DAY
4838A1
4838A2
4838ZZ.
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
74
74
74
74
75
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.003
0.003
0.003
0.003
0.003
1.416
1.416
0.283
0.028
0.028
0.142
0.028
0.028
1.019
0.425
0.566
0.0
0.142
0.142
0.028
0.0
0.0
0.028
0.0
0.003
0.057
0.028
0.028
0.006
8
15
13
17
10
e
18
8
15
12
8
22
8
16
13
17
10
8
18
8
15
8
FLOW DAY
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.003
0.003
0.003
0.003
0.003
0.0
0.0
0.0
0.028
0.028
0.028
0.028
0.028
0.0
0.057
FLOW DAY
FLOW
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
STOKET RETRIEVAL DATE 76/02/11
483801
33 27 28.0 101 05 15.0
WHITE KI^E* RESERVOIR
48107 in A 4S
11EPALES
3
DATE
FROM
TO
74/03/06
74/05/14
•
74/08/06
74/10/28
DATE
FROM
TO
74/03/06
74/05/14
74/08/06
74/10/28
TIME DEPTH
OF
DAY FEET
11 15 0000
11 15 0005
11 15 0020
11 15 0033
10 ?0 0000
10 ?0 0005
10 20 0015
10 20 0031
12 15 0000
12 15 0005
12 15 0022
12 15 0038
13 05 0000
13 05 0005
13 05 0015
13 05 0025
13 05 0036
TIME DEPTH
OF
DAY FEET
11 15 0000
11 15 0005
11 15 0020
11 15 0033
10 20 0000
10 ?0 0005
10 20 0015
10 ?0 0031
12 15 0000
12 15 0022
13 05 0000
13 05 0001
13 05 0005
13 05 0010
13 05 0015
13 05 0025
13 05 0036
00010
WATER
TEMP
CENT
10.1
10.1
10.1
10.0
21.1
21.1
21.1
21.0
24.2
24.2
24.2
18.7
17.4
17.4
17.3
17.3
17.3
00665
PHOS-TOT
MG/L P
0.011
0.012
0.011
0.009
0.020
0.020
0.020
0.039
0.020
0.019
0.019
0.034
0.022
00300 00077
DO TRANSP
SECCHI
MG/L
INCHES
122
9.2
9.4
9.4
7.
7.
6.
5.
5.
5.
0.
6.
5.
5.
5.
6.
32217
65
2
6
8
6 72
4
4
0
4 48
6
6
6
0
00031
00094
CNDUCTVY
FIELD
MICKOMHO
620
620
620
620
826
826
823
830
718
717
716
544
580
578
578
579
577
00400
PH
su
8.50
8.50
8.50
8.50
8.60
8.50
8.70
8.60
8.40
8.40
8.30
7.90
8.12
8.11
8.11
8.11
8.11
00410
T ALK
CAC03
MG/L
216
214
222
190
242
244
240
236
190
191
188
189
199
2111202
0037 FEET DEPTH
00610
NH3-N
TOTAL
Mii/L
0.030
0.030
0.020
0.020
0.040
0.070
0.060
0.080
0.110
0.120
0.120
0.090
0.120
00625
TOT KJEL
N
MG/L
0.800
0.600
0.700
0.600
0.800
0.400
0.400
0.400
0.600
1.800
0.600
0.500
0.500
00630
N02&N03
N-TOTAL
MG/L
0.030
0.030
0.030
0.020
0.030
0.080
0.070
0.080
0.050
0.060
0.060
0.060
0.060
00671
PHOS-OIS
ORTHO
MG/L P
0.010
0.009
0.010
0.007
0.006
0.009
0.008
0.012
0.007
0.006
0.010
0.009
0.012
CHLRPHYL INCDT LT
A
UG/L
3.
1.
7.
3.
REMNING
PERCENT
2
2
6
1.0
3
.50.0
1.0
-------
STORET RETRIEVAL DATE 76/03/11
483302
33 2e 51.0 101 05 40.0
rfHlTE MIVEP RESERVOIR
48107 TcXAS
DATE
FROM
TO
74/03/06
74/05/14
74/08/06
74/10/28
DATE
FROM
TO
74/03/06
74/05/14
74/08/06
74/10/28
TIME DEPTH
OF
DAY FEET
12 00 0000
12 00 0005
12 00 0020
10 45 0000
10 45 0005
10 45 0017
12 40 0000
12 40 0005
12 40 0019
12 40 0026
12 10 0000
12 10 0005
12 10 0015
12 10 0026
TIME DEPTH
OF
DAY FEET
12 00 0000
12 00 0005
12 00 0020
10 45 0000
10 45 0005
10 45 0017
12 40 0000
12 40 0019
12 10 0000
12 10 0005
12 10 0010
12 10 0015
12 10 0026
00010
WATER
TEMP
CENT
10.3
10.3
10.1
21.6
21.6
21.5
24.3
24.3
24.3
22.0
17.7
17.7
17.6
17.5
00665
PHOS-TOT
MG/L P
0.009
0.010
0.011
0.019
0.020
0.021
0.023
0.020
0.022
0.023
00300 00077
DO TRANSP
MG/L
9.
9.
7.
7.
5.
5.
5.
0.
8.
7.
7.
7.
32217
SECCHI
INCHES
108
4
0
52
4
4
0 84
4
2
0
0 36
4
2
0
00031
00094
CNOUCTVY
FIELD
MICROMHO
630
630
635
833
832
830
725
725
725
668
580
581
580
581
11EPALES
3
00400 00410
PH T ALK
SU
8.50
8.50
8.50
8.60
8.60
8.70
8.40
8.30
8.20
8.00
8.28
8.28
8.28
8.25
CAC03
MG/L
198
190
198
240
228
238
190
189
189
192
2111202
0024 FEET DEPTH
00610 00625 00630
NH3-N TOT KJEL N02&N03
TOTAL
MG/L
0.030
0.020
0.030
0.070
0.070
0.060
0.070
0.060
0.060
0.070
N
MG/L
0.600
0.600
0.400
0.600
0.400
0.300
0.500
0.400
0.500
0.600
N-TOTAL
MG/L
0.030
0.020
0.030
0.080
0.080
0.070
0.050
O.OSO
0.050
0.050
00671
PHOS-DIS
OHTHO
MG/L P
0.009
0.005
0.009
0.006
0.007
0.009
0.018
0.012
0.014
0.014
CHLRPHYL INCDT LT
A
UG/L
2.
0.
7.
6.
REMNING
PERCENT
1
B
0
1.0
8
1.0
-------
STORET RETSIEVAJ. DATE 76/02/11
483603
33 28 30.0 101 04 <*1.0
WHITE RIVEK RESERVUIW
48107
DATE
FROM
TO
74/03/06
74/05/14
74/08/06
74/10/28
DATE
FROM
TO
74/03/06
74/05/14
74/08/06
74/10/28
TIME DEPTH
OF
DAY FEET
12 30 0000
12 30 0005
12 30 0017
11 10 0000
11 10 0005
11 10 0016
13 00 0000
13 00 0005
13 00 0015
13 00 0025
12 35 0000
12 35 0005
12 35 0015
12 35 0026
TIME DEPTH
OF
DAY FEET
12 30 0000
12 30 0005
12 30 0017
11 10 0000
11 10 0005
11 10 0016
13 00 0000
13 00 0014
12 35 0000
12 35 0005
12 35 0010
12 35 0015
12 35 0026
00010
WATER
TEMP
CENT
11.1
11.0
11.0
21.9
21.9
21.9
24.1
24.1
24.0
22.7
17.7
17.6
17.6
17.5
00665
PHOS-TOT
MG/L P
0.013
0.013
0.012
0.019
0.016
0.022
0.026
0.020
0.037
0.022
00300
DO
MG/L
9.2
9.2
7.4
7.2
5.4
5.0
5.2
0.2
7.4
7.4
7.4
7.2
32217
CHLRPHYL
A
UG/L
2.5
1.3
9.1
7,1
00077
TRANSP
SECCHI
INCHES
72
30
60
37
00031
INCDT LT
REMNING
PERCENT
1.0
1.0
00094
CNDUCTVY
FIELD
MICROMHO
644
650
640
844
843
842
722
723
722
653
576
576
574
572
11EPALES
3
00400
PH
SU
8.50
8.50
8.50
8.70
8.70
8.75
8.20
8.25
8.20
8.00
8.30
8.30
8.29
8.29
00410
T ALK
CAC03
Mvi/L
210
200
206
234
232
246
187
189
188
188
2111202
0021
00610
NH3-N
TOTAL
MG/L
0.030
0.030
0.030
0.070
0.020K
0.060
0.060
0.050
0.060
0.050
FEET DEPTH
00625
TOT KJEL
N
MG/L
0.600
0.500
0.800
0.500
0.400
0.400
0.500
0.400
0.400
0.400
00630
N02&N03
N-TOTAL
MG/L
0.030
0.030
0.030
0.070
0.070
0.070
0.050
0.050
0.050
0.050
00671
PHOS-DIS
ORTHO
MG/L P
0.007
0.006
0.007
0.005
0.002K
0.007
0.014
0.011
0.012
0.012
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
APPENDIX E
TRIBUTARY DATA
-------
STORE! RETRIEVAL DATE 7&/03/10
DATE TIME DEPTH i-J026.N03
FROM Of
TO DAY FEET
74/09/08
74/10/15
74/11/13
74/12/17
75/01/10
75/02/08
75/03/18
75/04/08
75/05/15
75/06/12
75/07/08
75/08/22
14
14
11
13
15
10
13
15
11
13
14
15
30
30
45
50
25
00
00
30
47
00
23
25
4838A1
33 27 29.0 101 04 57.0 4
*riITt RIV^M
484S1 7.5 SMITH T4NK
0/wHlTE RIVER K'EStrtVOIR
AT DAM 20.5 MI SE OF CHOSBYTON
11EP4LES 2111204
0000 FEET DEPTH CLASS uO
063C
'S.N03
OTAL
IG/L
0.020
0.032
3.072
0.056
0.072
0.056
0.040
0.610
0.005
0.055
0.010
0.035
00625
TOT KJEL
N
MG/L
1.200
0.600
1.000
1.500
0.900
0.900
0.550
1.150
0.600
0.650
1.100
0.700
00610
NH3-N
TOTAL
MG/L
0.015
0.030
0.050
0.032
0.040
0.032
0.020
0.610
0.015
0.045
0.030
0.040
00671
PhOS-uIS
URTMO
MG/L P
0.015
0.005
0.007
0.005K
0.005
0.008K
0.005K
0.013
0.010
0.005
0.010
0.010
00665
PHOS-TOT
MG/L P
0.040
0.025
0.010
0.020
0.020
0.010
0.010
0.020
0.010
0.010
0.010
0.030
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 76/03/10
DATE TIME DEPTH
FROM OF
TO DAY FEET
74/12/17 14 20
75/01/10 14 20
75/02/08 12 35
75/03/18 14 00
75/04/08 16 10
4838A2
33 34 10.0 101 04 35.0 4
h'HITE RIVFR V
48 7.5 BUNKER HILL
T/WHlTE RIVER RESERVOIR
1000 FT N DIRT RO 3.0 MI SE MCKEN/IE OPT
11EPALES 2111204
0000 FEET DEPTH CLASS 00
00630
iM02«*N03
N-TOTAL
MG/L
0.048
0.048
0.016
0.005
0.020
00625
TOT KJEL
N
MG/L
1.050
0.950
0.500
0.400
0.950
00610
NH3-N
TOTAL
MG/L
0.020
0.080
0.016
0.015
0.030
00671
PHOS-DIS
ORTHO
MG/L P
0.005
0.005
0.008K
0.005K
0.025
00665
PHOS-TOT
MG/L P
0.015
0.015
0.010
0.010K
0.050
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORE! RETRIEVAL DATE 76/03/10
DATE TIME DEPTH N026.N03
FROM OF
TO DAY FEET
74/09/08
74/10/15
74/11/13
75/01/10
75/02/08
75/03/18
75/04/08
75/05/15
75/06/12
75/07/08
75/08/22
11 55
14 45
11 55
15 08
12 10
13 05
15 00
11 47
13 06
14 20
15 10
4838B1
33 27 27.0 101 05 2<».0 4
AQUEDUCT 'DUMP STA)
48 7.5 SMITH TANK
0/WHITE RIVER KESEKVOIR
PUMPING STA 0.5 MI 4 OF DAM •
11EPALES 2111204
0000 FEET DEPTH CLASS 00
0630
6.N03
OTAL
Ili/L
0.008
0.040
0.064
0.056
0.064
C.065
0.025
0.005
0.055
0.020
0.005
00625
TOT KJEL
N
MG/L
1.050
0.900
1.540
1.000
0.700
1.150
1.250
0.400
0.750
0.750
0.400
00610
NH3-N
TOTAL
MG/L
0.050
0.050
0.060
0.040
0.016
0.030
0.045
0.015
0.050
0.050
0.010
00671
PHOS-OIS
ORTHO
MG/L P
0.005
0.005K
0*010
0.005
0.008K
0.005K
0.005
0.010
0.005
0.005
0.005
00665
PHOS-TOT
MG/L P
0.017
0.015
0.010
0.020
0.010K
0.010
0.010
0.010
0.020
0.020
0.030
K VALUE KNOWN TO BE
LESS THAN INDICATED
------- |