74-VAR-?
(REPORT NUMBER]
AIR POLLUTION EMISSION TEST
Fuller-O'Brien
(PLANT NAME]
Paint Company
South San Francisco, California
(PLANT ADDRESS)
U. S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Water Programs
Office of Air Quality Planning and Standards
Emission Standards and Engineering Division
Emission Measurement Branch
Research Triangle Park, N. C. 27711
-------
Emission Testing Report
EMB Report No.: 74-VAR-2
FULLER-O'BRIEN
Paint and Varnish
South San Francisco, California
Project Officer:
Carl D. Bell
-------
TABLE OF CONTENTS
Page Number(s)
I. INTRODUCTION 1
II. SUMMARY AND DISCUSSION OF RESULTS 2-5
TABLE II - Summary of Complete Test Data .... 3
Definition of Terms 4
Sample Calculations 5
III. PROCESS DESCRIPTION 6-9
TABLE III - Kettle 1 (1000 gallons) 7
TABLE IV - Kettle 2 (1250 gallons) 8
TABLE V - Kettle 3 (2900 gallons) 9
IV. SAMPLING AND ANALYTICAL PROCEDURES 10-12
Figure 1 - Schematic Diagram of Source
1 Sampling Equipment 12
V. SAMPLING PORT LOCATIONS " 13
APPENDIX A
APPENDIX B
APPENDIX C
APPENDICES
Test Log
Test Participants
Field Data Sheets
-------
INTRODUCTION
Under the Clean Air Act, as amended, the Environmental Protection
Agency is given the responsibility of establishing performance standards
for stationary sources that contribute significantly to air pollution.
A performance standard is established using the best emission reduction
systems which have been shown to be operable and economically feasible.
In order that realistic performance standards can be set, accurate
data on pollutant emissions must be gathered from the stationary source
under consideration. The Fuller-O'Brien Paint Company in South San
Francisco, California, was considered a well-controlled stationary source
in the paint and varnish industry and was, therefore, selected by the
Office of Air Quality Planning and Standards (OAQPS) for the emission
testing program.
The emission testing was conducted at the inlet and outlet of a
thermal afterburner which served as a pollution control device for three
cooking kettles at the plant. These sites were sampled for total hydro-
carbons, NO , and methane. The sampling was conducted by personnel from
/\
Scott Research Laboratories and the Environmental Protection Agency on
August 28 and 20, 1973.
-------
SUMMARY AMD DISCUSSION OF RESULTS
One continuous ten-hour run was made for NO and total hydrocarbons.
y\
Grab samples were collected for methane and orsat analysis. The run was
made during a typical batch cook and the plant was running normally
throughout the test.
The equipment performed very well during the test with only a few
slight delays for minor repairs.
The flow at both the inlet and outlet was constant during the
test as expected.
Results recorded in PPM for total hydrocarbons, NO, NO , and
/\
methane may be found in Table II,
-------
TABLE II
SUMMARY OF COMPLETE TEST DATA
INLET
Readings Clock Time
R.»Rf
l-r,
1-2
13-19
20-:!6.
27-:53
34-40
AVERAGE
*i ls •
1130 1245
1300 1415
1430 1600
1615 1745
1800 1930
1945 2115
1130 2115
MW,
28.98
28.84
28.84
28.87
28.85
28.82
28.87
MW .
28.43
28.30
28.30
28.32
28.30
28.28
28.33
TS°R
540
548
540
540
541
520
538
(in. we
.204
.156
.173
.221
.201
.205
.193
Vs
) (fpra)
1579
1394
1457
1646
1571
1557
1534
(dscfm)
2030
1766
1873
2116
2016
2079
1980
Qg
(acfm)
2204
1945
2033
2301
2192
2173
2141
THC
ppmC Ib/hr
1458 6.01
1768 6.43
2112 8.03
1535 6.60
1581 6.48
1916 7.78
1728 6.92
NO
ppm Ib/hr x 10
(-) (-)
.445 4.05
.469 4.46
.275 2.96
.340 3.48
.295 3.00
.365 3.65
N0v as AO,
X £. •*
ppm Ib/hr x 10
.50 7.9
.458 6.38
.536 7.81
.297 4.90
.340 5.34
.302 4.70
.406 6.23
CH4
ppm .Ib/hr x 10"
6 0.33
6 0.29
4.5 0.23
1.5 0.086
2 0.11
1 0.054
3.5 0.187
OUTLET
1-6
7-' 2
13-19
20-
-------
DEFINITION OF TERMS
Term
Units
APs
T
s
PQ
s
MW
V.
s
n
in. H20
°F
in. Hg.
Ibs/lb-mole
fpm
,-_ 2
H.
PPM
M
in.
acfm
dscfm
parts/million
Ibs/lb-mole
Definition
Velocity head of stack
Stack temperature
Stack pressure—absolute
Molecular weight of stack gas (wet basis)
Velocity of"stack gas
Area of the stack
Mole fraction of stack gas
Flow rate of stack gas actual wet basis
Flow rate of stack gas
Parts per million of pollutant measured, dry
Molecular wefiqtit of carrier gas to be
converted
Ib/hr
Ibs/hr
PMR on actual! wet stack conditions
-------
SAMPLE CALCULATIONS
In each reading group in Table II, the following values
represent the average value of the continuous data within that group:
Clock time
T °R
ppm C
ppm NO
ppm NO
A
ppm CH4
The following group values were derived from these average values:
MW
V
"s
"a . .
lb. C/hr. (actual)
Ib. NO/hr. (actual)
lb. N0x/hr. (actual)
Ib. CH4/hr. (actual)
1. MW - MWd x Md + 18(l-Md) Ib/lb-mole
2. Vc = 4360(AF x (T/R)15 (Pc x MW)"33 fpm
5 5 o o
3. Qs = (0.123 x Vs x A$ x Md x PS)(TS°R)"1 dscfm
4. Qa = (.05645 x Qc x (T°R)} (P x M.)"1 acfm
a S S S u
5. lb. pollutant/hr - PPM x M x QS x 60 x (385.1 x 10"6)
-------
PROCESS DESCRIPTION
The direct flame afterburner is the control device for three reactors
or kettles. Each reactor is vented through a water cooled condenser,
caustic scrubber and then to the afterburner. Characteristics of the
reactors are as follows:
Size: 1000 gal.
1250 gal.
3000 gal.
Batch Time: 6 to 30 hours
4-5 batches per 24 hours for 3 reactors
Operating temperature of afterburner: 1500 F
i
The exhaust gas passes through a steam generator and part of the ex-
haust is used to heat an oven that warms drums of high viscosity raw
materials for easy pouring. The afterburner unit is gas fired and the
gas flow is regulated to maintain 1500°F. The fuel is supplemented by
the fuel value of the emissions.
Following are tables showing the ingredients added to and the tem-
peratures of the three kettles during the time of the test.
-------
TABLE III. Kettle 1 (1000 gallons)
Material:
3320 pounds Soya Oil
680 pounds Pentaerythritol
Heat to 450°F
1305 pounds Phthalic Anhydride
Cooking on azeo with 22 gallons zylo refluxing through condenser
at 480°F.
Time Temperature Activity
11:30 480°F
12:00 480°F None
13:00 480°F None
13:30 480°F None
14:00 480°F None
14:30 480°F None
15:00 480°F None
15:30 480°F None
16:00 480°F None
16:30 480°F None
17:00 480°F None
17:30 480°F None
18:00 480°F None
18:30 480°F None
19:30 480°F None
20:00 . 475°F Thinning wtltfr. 50 gallons mineral spirits.
Full cool img..
20:20 350°F Pushing out to thin out tank. Kettle
empty wash -ibwn with 260 gallons of
mineral spiriits.
21:00 150°F Kettle stilH beina washed out.
-------
V
TABLE IV. Kettle 2 (1250 gallons)
Oil Free Polyester
Material :
2000 pounds Hexahydro phthalic anhydride
1280 pounds Neophentyl glyeol
Heat slowly to 265°F
Time Temperature Activity
11:30 250°F None
12:00 260°F None
12:30 260°F None
13:00 350°F None
13:30 ( 340°F None
14:00 340°F None
14:30 340° F None
15:00 340°F None
15:30 340°F None
16:00 340°F None
16:30 340°F None
17:00 340°F None
17:30 340°F None
18:00 350°F None
18:30 360°F None
19:00 360°F None
19:30 360°F None
20:00 380°F None
20:30 380°F None
21:00 390°F None
8
-------
TABLE V. Kettle 3 (2900 gallons)
Note:
Material
Time
11:30
12:00
13:00
13:30
13:53
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:17
17:30
18:00
18:30
19:00
19:30
20:00
20:30
2J:00
: Inert
: Latex in proci
Temperature
200°F
200°F
150°F
130°F
110°F
100°F
140°F
130°F
140°F
140°F
190°F
195°F
195°F
195°F
195°F
195°F
200°F
gas is N9 (in em
Activity
None
None
20 gallons Glycol added.
None
Push latex out to thin down tank
Emptying kettle
Wash out tank with water
Add: 76 gallons demineralized water
19 pounds ammonium persulfate
640 gallons demineralized water
100 pounds cellosise
Heat to 130°F.
None
Add:
246 pomds Igepal
38 pourods Serapen
49 pounds Tergitol
20 pounds 13 oz. sodium bicarbonate
17 pounds 8 oz. ammonium persulfate
Add: 118 gallons
Steam on
Add:
mix
Monomer mix foaming operation
Adding 1070 gallons mix at 19.5
gal/hr (requires 4 hrs. - 5 minutes
to add)
None
None
None
None
None
None
None
C02 used).
-------
SAMPLING AND ANALYTICAL PROCEDURES
The gases emitted from this process were measured with
several continuous monitor type devices (see Figure 1).
The hydrocarbons at both the inlet and outlet were measured with
a Scott Model 215 heated flame ionization detector. The hydrocarbon
analyzer was spanned with a propane in air standard. The flame formed
when pure hydrogen or hydrogen diluted with an inert gas, burns in air
contains an almost negligible number of ions. Introduction of mere traces
of hydrocarbons into such a flame, however, produces a large amount of
ionization. This effect is the basis of the flame ionization method.
The PPM was printed directly onto a strip chart.
>
A Scott Model 215 chemiluminescence analy/zer and thermal converter
were used for nitric oxide and total oxides off nitrogen. EPA Method 7 was
not used due to the low concentrations of NO and the need for a 10-hour
Ai
continuous sample. PPM for both NO and NO was printed directly onto a
A
strip chart.
Carbon monoxide, carbon dioxide and oxygen were measured using an
Orsat analyzer according to Method 3 of the Jtecember 23, 1971, Federal
Register. Samples were taken about every twn> hours.
Grab samples were taken at the inlet and outlet and analyzed with a
Beckman flame ionization detector with a gas ehromatograph for methane.
This was done specifically to see how much methane was added to the exit
gas by the natural gas fuel used in the afteirfeurner.
10
-------
Inlet and outlet stack velocity patterns and temperatures were
measured with an "S" type pitot tube and an iron-constanton thermo-
couple and calibrated pyrometer.
11
-------
Heated
line
Filter ;lrrr
holder ---
Flame
lonizatioi
Detector
(Total
hydro-
.carb,)ns.).
Vacuum Pump
:lame -
:ion Detector'1"
(Total hydro-
Thermal Afterburner
Heated line
Filter holder
Thermal Converter
Analyzer
I Thermal Converter
Vacuum Pump
Figure 1. Schematic Diagram of Source Sampling Equipment
at Fuller-O'Brien Paint Company, San Francisco, CA
-------
V
SAMPLING PORT LOCATIONS
The inlet sampling port was located about two feet from the
nearest upstream disturbance (bend) and about two feet from the nearest
downstream disturbance (control unit). The outlet port was located about
three feet from the nearest upstream disturbance (duct entrance) and about
three feet from the nearest downstream disturbance (duct entrance).
It was found that these disturbances had little or no effect on the
flow at the inlet or outlet.
13
-------
\
APPENDICES
-------
TEST LOG
August 28, 1973:
8:00--Pick up equipment at airport.
9:00--Arrive at plant to begin setup.
20:00--Setup of all gas monitoring equipment is completed.
August 29, 1973:
8:00--Arrive at plant and begin calibration of equipment.
11:00--Sampling begins.
13:00--Everything running well.
21:00--Sampling completed with no major problems. Results should
'.) be good. Scott Research will pick up equipment tomorrow.
14-1
-------
TEST PARTICIPANTS
Scott Research
Tony Souza - Crew Chief
Derral Smith
Dyrle Quick
Jim Ross
Tom Caldwell
Oscar Hell rich
Environmental Protection .Agency
Doug Bell - Project Officer
John Floyd - Report Reviewer
14-2
-------
FIELD DATA SHEETS
15
-------
-1
2
3
4
S
9
10
12
—
13
14
15
15
17
13
.L9
20
21
22
23
24
25
! '55
2040
1/35
79:
C45
1 320
1830
1734
0145
1935
2040
234°:
2145
1530
1830
1325
1530
1326
- '"
45
•>.-•*.
. £0
.52
.49
^ i
• vO
.63
,r.5
.45
.21
37
.14
,38
TABLE I. PPM
,43
,45
,52
.39
, DJ
.52
.5'J
,55
.71
. w •
.53
.29
.37
Z-2
,16
.38
M
Jo
2o4
•;-.?
liii:*
20.6
-.-
22. C
"•./',
32 .^'U
'36.
2o.
25.
24.8
7^
18.8
19.4
19.3
19.3
2.1 ^0-
21.5
22,5
t
»
•»
PI"! n TA '.""•>
l,/\l n !M.- ^il
Aucust 23 . 19?';
Pa'j-i 1 of Z
l££El IfSlil
2
2
,1 58 2
1
1
1
1
28 1
2
U 2
2
2
70 2
2
2
1
90 1
1
1
1 -
2
1 93(76) 2
O
c.
2
1 ^* 1 2
i »J i *•
-------
FULLER-O'BRIEN
' • August 29, 1973
Page 2 of 2
TABLE I (Continued)
IMLET
OUTLET
Read
No.
26 .
^. — • —
27
28
29
30
31
32
33
34
35
36
37
38
39
40
THC
1530
1395
'1425
1425
1446
1830
1965
2040
1995
2040
2190
2040
1530
1575
.NO
.26
.34
.34
.48
.34
.26
.28
.32
.35
.20
.29
.31
.30
1 §A r •
1'IL. <->'! .
.26 2
.34
.34
.48
.34 2
.26
.28
.32
.35 1
.22
.29
.31
.32
THC
216
220
228
240 #'
216
208
252
192
1809*'
208
204
195
i^i
4.5
4.9
4.9
" 5.0
5.5
5.5
5.8
4.7
t 8.3
7.8
7.
NOX
20
20
21
.21
20.1
20.5
22.5
22.5
'_23.33
23.1
22.8
26.
CH, j:r:,e
81 2
2
2
1
1
77
1
1
75(69) 1
2
. A
2
2
2
2
*Values in parenthesis are the values obtained from laboratory analysis.of the
same bag samples at Scott's P1 erasteadviTie laboratory five days later.
-------
FRELIi-IINAHY VtLGCIT* TRAVERSE
PLANT i
DATE
LOCATION.^.
STACK l.D.
BAROMETRIC PRESSURE, in. H?.
STACK GAUGE PRESSURE., in. H
OPERATORS.
tfi,
I'L
'
/
/^,
' ""7
-^ff
3
SCHEMATIC OTRAVERSE POINT LAYOUT
EPA (Dui> 233
4/72
IL
n
TRAVERSE
POINT
KUKBIR
r,
D
f
A.
£_
VELOCITY
HEAD
STACK
TEMPERATURE
(T,), °F
-TJ =
HMJL
30
JUJ
-------
PRELIMINARY VELOCITY TRAVERSE
l/>
PLANT
DATE
LOCATION
STACK i.D.
BAROMETRIC PRESSURE, in. Hg__
STACK GAUGE PRESSURE, in. H20.
OPERATORS DtP kt- o«- ',
SCHEMATIC OF TRAVERSE PO'-NT LAYOUT
TRAVERSE
POINT
NUMBER
lJt===
6
C
b
t
F
D
f
^L
)
e
VELOCITY
HEAD
&ps),in.H2C
ML
STACK
TEMPERATURE
(T » ot:
V l n '
WO
a
ILL
&tia
a ft
{0
IfL
AVERAGE
jrl 233
4/72
firt<
v
i>
£0 /.
TRAVERSE
POINT
NUMBER
A
D
A
c.
r
VELOCITY
HEAD
(ips), in.H20
STACK
TEMPERATU
(I). °F
b'V
0, c-
JLLSi
(0.
O.rt
AVEi/tGE
3 o
>
^ ..... '/
*> *fO f
-
JT3 ,"
to
17
-------
ELIMIttAnr VELOCITY TRAVERSE
PLANT.
BATE.
LOCATION
STACK I.D.
BARO.Y.ETRIC PRESSURE, in. Hg_
STACK GAUGE PRESSURE, in. H?0.
OPERATORS
SCHEMATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
A-
R
c.
A)
<
f>
A-
B
-
C1,. t^ '3
C^u>/?
c?.^r
0 . f^'
O, 9v-
0i -^
.r i J-^^
^~^-^
S~H~o
3 ^f c>
3>(>
-i- 4^0
-f^j — "
^5"C
iT-TS
-— —j—
i~ r^
Pfl
$0
6 e X
^v, /c;v
^ -/ -v
^ /r. ' /
f r' /f' v""
_J-° j"~
rj\
T)
'/ •
/'
TRAVERSE
POI-NT
NUfSER
AVIMGE
VELOCITY
HEAD
(Aps), in.H20
STACK
TEMPERATURE
(Ts), °F
1
^
1
EPA (Dur) 233
4/72
IB
-------
*"}"*> \ *PI Ar^\*?'\* v'~N f. * M~r*c*""
Ri VuL.CC! 1^ !.A/\vhRSc.
U
PLANT
DATE
LOCATION._
STACK I.D.
BAROMETRIC PRESSURE, in. Hg
STACK GAUGE PRESSURE, in. H20
OPERATORS
SCHEf/IATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POiHT
NUMBER
D
f
TT
P>
r/
JL
e
e
^-
L
AVERAGE
EPA (Dur) 233
4/72
VELOCITf
HEAD
Cip,.), t!i.K20
44*
1 f
<9?y
ft. 7.3
STACK
TEMPERATURE
(Ts), °F
Sfo
jgjs.
br>
_k£_
0
TRAVERSE
POINT
NUMBER
. —
I \;nj;yi\r-c
(iVLiiXmVu..
VELOCITY
HEAD
' &ps),in.H20
/
STACK
TEMPERATURE
(Ts), °F
b
.-I
i
i
1
i
i
•
T9
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT :VLL£jK-€?f>Kl£/J
CA1F. *'/7?/-7>
SAMPLING TIV.E (24 hr CLOCK) 1 '
SAViFLKiG LOCATION BO> 6
SAMPLE TYPE (SAG, INTEGRATED
ANALYTICAL METHOD 0&$i
A?:!Br£NT TEi.rERATUyJE ' . ^
CPERATOR fPW
PA/I.
I -• fo-C
1/7.
, CONT!
f\T
10 a
K^#
f'9Df^^
fiUOUS)
r ^>
"2,
Gac,* i
COMMENTS:
'^^^^ RUN
GAS ^^^"--^
C02
0;,.-;ET!G ACIU/-.L02
READ1.IG .01.-UJ5 ACTUAL
C0? READifIG)
CO-J.CT IS ACTUAL CO
•.:e^::{Gi:.if-:us ACTUAL
°2 ^^ACL.G)
-
,t
ACTUAL CO fvEADlfiG)
1
ACTUAL
READING
?9.0
79. T-'
'.U
NET
t
1.&
>,«,*
\/o
2
ACTUAL
READING
9'9.o
•71..
^.v
NET
i.'
*.*
•D.^
3
ACTUAL
READING
*^"7 O **^
/ O * ^^
NET
l.o
,0.3
,.*
\<>
AVERAGE
NET
VOLUME
MULTIPMER
44/100
32/100
L" '11
a/ioo
28/lGO
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
MJ, lb/lb-mo!e
«.H4
.*>
,4
9.1.^
TOTAL ^8^2
i
EPA (Our) 220
4,72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE _
COMMENTS:
SAMPLING T!iV,E (24-hr CLOCK)
SA;-;.rjLii!G LOCATION
' *' *>
"V
SAMPLE TYPE (HAG, INTEGRATED, CONTINUOUS).
Ar-::.LYT!CAL tft FKOD Oil
A!,i3:Ef!TTLr.?Eil
-\<\
2
ACTUAL
READING
fdV,0~
Ifo
^o
NET
•;.<>
fi:<1
o>
T\
3
ACTUAL
READING
n^
NET
AVERAGE
NET
VOLUME
^,0
10.^
oA
l^.o
MULTIPLIER
44/ioo
1. 1ZI
32/100
L~" J
22/100
28/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
h'^, lb/lb-mo!e '
0.0
(?,66
.ot
aiO..11
1« ,8^
TOTAL
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLAKT
DATE y/v1/73
COMMENTS:
SAMPLING TIHE(Z4-hf CLOCK)
SA:f.PLi:-C LOCATION
SAMPLE TYPE (BAG, IfiTEGRATED, CUliTIHUOUS) &
ANALl'TL'.M [/.LTHOD /) KS AT
OPERATOR ^
^\ RUN
GAS ^\^
C02
C^v'NET IS ACTUAL 02
fiZADitic, iv,;;-:ijs ACTUAL
C02 n^ADiilG)
CJCIETIS ACTUAL co
READ l?JGr.:iNUS ACTUAL
02 READING)
^l^'i'lSttQi.iiNUS
ACTUAL CO READING)
1
ACTUAL
READING
Ico.o
1^
^
NET
c?.o
!?n
0>
«t
-^,,
2
ACTUAL
READING
ffo.o
7^
^
MCT
1QU. 1
5,0
50/6
Q^
•\^v
3
ACTUAL
READING
11/L
NET
•10,8
1?-
AVERAGE
NET
VOLUME
0>°
p\0'%
' 0'°
1%^
MULTIPLIER
44/100
L_LZ
32/100
"';.]
23/ioo
28/!00
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole .
<9.C
ft.fct
0,0
ai.W
ia.«^
TOTAL
to
EPA(!Jur)2iO
4/72
-------
f
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE _
COMMENTS:
SAMPLING TK/1E (24-hr CLOCK) _.
SAMPLING LOCATION A///
ifi/(,er
~
SAMPLE TYPE (BAG, INTEGRATED CONTINUOUS) /) 4- 6
ANALYTICAL METHOD £
A"3IENT TEMPERATURE
OPERATOR ^
^^^^ RUN
GAS ^\
co?
02 (KETlS ACTUAL 02
F(E7f'.9!H» MINUS AGTUAk
G02 HEABiilB)
CO(NiTISnCTUALCO
READING f.'INUS ACTUAL
C2 SEALING)
?«2('!ETISlQQfi1!NUS
ACTUAL CO READING)
1
ACTUAL
READING
qtjQ
•^o
-)f.O
NET
o-\
iJ)-^
0-°
T\
2
ACTUAL
READING
w
11,0
11^
NET
o>'
xo,%
tfA
T^A
3
ACTUAL
READING
nr
lio
1W
NET
n.O
\^' '
vo.%
0^
n?ci
AVERAGE
NET
VOLUME
o.t
9.0 ,«
' (? A
1%,CI
•
MULTIPLIER
44/ioo
L__7~
3?/100
C~"ll
28/ico
28/100
MOLECULAR WEIGHT OF.
STACK GAS (DRY BASIS)
Md, Ib/lb-mole .
0,01
6Afc
O.o^
a3,oq
TOTAL ^'^
——.—.-. ...... .. .,, , — ^_ _J
ro
EPA (0:;r) 230
4/72
-------
10
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION.
SAMPLE TYPE (BAG, INTEGRATED/tONTiNUOUS).
ANALYTICAL l.!E'iliOD 00$AT
^A.
^ 3r
TEMPERATURE
OPERATOR
COMMENTS:
r^:
ec
^-v^^^ RUN
GAS ^^-^
C02
0?(;icT IS ACTUAL 02
READING ?,WJS ACTUAL
CU2 REAOi.'ju)
CG;NF.T IS ACTUAL CO
READ!f!GK!i;US ACTUAL
02 READING)
N2(fiETisioaM!rius
ACTUAL CO READING)
1
ACTUAL
READING
(00-0
l^b
^0
NET
b#
-\
^
\e
0'
A°V>°
2
ACTUAL
READING
^v).°-
s^y
^°\-°
NET
"o,^
.0'^
c-
o>
1T°
3
ACTUAL
READING
—
n^
-^
NET
^
AVERAGE
NET
VOLUME
c?:o
ao^
(9-4
11.°
MULTIPLIER
^/100
i ;_::r
32/109
i~" :i
28/ioo
28/100
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lfa-mole '
o.o
b.SI
0^
00- i1-
TOTAL i*'*5'
EPA (Dun Z30
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
FULL££ -
F/lS/73 o>p
J.'IGK.-E (24-hr CLOCK) i^'^o p^-r^F
IKG ! CiCATiCfl \>LP& ^ "*- tV^T"
.E Tv. P? (SAG. ii:7EGRAT.ID. CONTINUOUS) fi^C,
VTICAL fr'.ET!iOD «°'?$47
>
\
4-2,
'NT fEHPERATURE %1o°t7
ATOR ( \ ^ |4-
COMMENTS:
"\^^ RUN
GAS ^\
CC2
C 2 (KETiS ACTUAL 02
fi-r./.:i:;.'c; u.;mj ACTUAL
"°2 '•-":;I"G)
CO (NET IS ACTUAL CO
RF.ADIHG r,!!KU3 ACTUAL
-,2KL,^.,b,
ACTUAL CO READING)
1
ACTUAL
READING
%l
^.6
?/.y
NET
•>^-
,s>
r\
,» 1 VJL
ACTUAL
READING
hi
J/.(,
«/.v
?
NET
-i>
l^-a
0.0-
'4\.^
ACTUAL
READING
%i
US
Ut
i
NET
7 O.
^•3
o.»
?vi
AVERAGE
NET
VOLUME
3>
,*.»-
' 0.1
^
-
MULTIPLIER
44/ioo
3.2/l(!0
1 j
28/ioo
2S/10fl
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/ib-mole .
MI
^.««.
'""
«.^
iM*
to
EPA (Di!i) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT_.
DATE
COMMENTS:
SAftfLIKG TIME (24-hr CLOCK)
? A"PL!!,G LOCATION
/?
>-7
~ (
SAMPLE TYPE (BAG, INTEGRATED, (OTINUOUS).
AUVuYTiCAL .METHOD _
AMBiENT TEMPERATURE
OPERATOR ' /(
\^ RUM
GAS ^\^
C02
0'2 (NET IS ACTUAL 02
nE.-.n!,'.!-, :.iii;ys ACTUAL
~U2 ••••^'••L'':'a)
COif!ET IS ACTUAL CO
READING ,V,lf iUS ACTUAL
°2 S^AOi.iG)
ACTUAL CO READING)
1
ACTUAL
KEADiriG
^.-/
So.V
fo.o
MET
».t
\IJ»
fl'A
'<5°
2
ACTUAL
READING
QI1
lo^
Ko.o
NET
\.«.
\«.v
o>
>^
3
ACTUAL
READiMG
?w
Uo
^o.o
MET
i>
i^
o.o
^O
AVERAGE
NET
VOLUME
»
.*V
0>
fs I ] [/
D ^^ *
MULTIPLIER
44/ioo
32/100
..1
28/ioo
22/IOO
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
,-\o
S.I-L
D-0(°
aa.4c
iS(1«
EPA (Dur) 230
4/72
-------
DRY MOLECULAR IVEIGHT DETERMINATION
PLANT.
DATC_
COMMENTS:
21.
SAi,;PL!!!G T'fAE (24-hr CLOCK)_rjc
SA.Y.PLIMG LOCATION _
23-
SA'.IPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD &_L
OF-F.!?ATOR
_
7 P/j-
ro
01
"\. RUM
GAS ^\
C02
02CIET IS ACTUAL 02
R£/ ,
N2(KET!SiGL!ftimUS
ACTUAL CO READIKG)
1
ACTUAL
READING
ftl <0
^J I I ^
?\ \ i \y
X
^1 •
MET
J>
/• v
v
'? « "
}
*.\%-\
2
ACTUAL
READING
/ u7 * y
t\ I *^
^
o!
NET
3>
/ ^_
^ \
V
./
3
ACTUAL
READING
I*,"*
AVERAGE
MET
VOLUME
*A
,^.a
.
(V'l
^
MULTIPLIER
4Vioo
32/100
)__ j
28/iCO
28/109
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
fild, Ib/lb-mala
«.«/
1*
0,0^
OfcW-
TOTAL ^^
EPA (Our) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
SAMPLING TS.V.F. (24-hr CLOCK)^ l(jLh.d\^-
SAMPLING LOCATION I'M/Y^ */X $4*/
>^ Z4
AMPLING LOCATION M/>j /
SAf.:."L£ TYF-E (CAG, IKTEGRAT^D, CONTIGUOUS) /3/)gV ^ 7
(
V
AiJALYTICAL METHOD _
AMBlZriT TEMPERATURE
Of'ERAroR
^^-^^^ RUM
GAS ^^\^
C02
02(f.'F.T IS ACTUAL 02
r-tAD!f)Gri!NUS ACTUAL
C.Q2 r^.-V.'!,!^
C9(«;ET iS ACTUAL CO
REARING f.iif^S ACTUAL
02 REA9INC)
i''2a:cT!S!co;:,!?;us
ACTUAL CO READING)
1
ACTUAL
READIKG
W
\\4
^
NET
}.v>
^?
ft.°
•>A
2
ACTUAL
READING
%^
1\*
\\*
MET
^ U
_^<-
^•b
o-°
%\A
3
ACTUAL
READING
1^0
0'^>
«)'^
•
MULTIPLIER
44/10Q
l...."~
32/lGO
i *" "*
1
28/ino
23/100
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-niole
1,56
M.«c
d).°
ja.is
TOTAL Wl
to
EPA (Cur) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE_
COMMENTS:
T5:;i£ (2!ir CLOC!0
SA.'T'Li;;G LOCATION
A
,
2 (
SAf.iPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD _
AMBIENT TEMPERATURE
OPERATOR
\. RUN
GAS ^\^
C02
0 ? (NET IS ACTUAL 02
RiiAn::;u ;,;:f;us ACTUAL
i.
OQ.;'j£T!S ACTUAL CO
FiF.A'JiNG IV.-m ACTUAL
Cy SEAD'.fiGj
ACTUAL CO READING)
1
ACTUAL
READING
C\t,jj
^
W4
NET
3>A
.v\,0
y
/; \ J^
2
ACTUAL
READING
1 ( fi \V
\/ 1 ^£)
T/,6
f^ET
^\
^
o-°
b\^
3
ACTUAL
READING
%k.
tl-t
NET
Vf
\*>
H-77
'^
«.«r
HL<
EPA (Durj 230
4/72
------- |