EMB REPORT NO. 75-GAS-3
CD
-
o
EMISSIONS "FROM GASOLINE MARKETING^
OPERATIONS AT
EXXON RETAIL STATION
HAYWARD, CALIFORNIA
APRIL 1975
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Emission Measurement Branch
Research Triangle Park. North Carolina
-------
EMB REPORT NO. 75 GAS 3
EMISSIONS FROM GASOLINE MARKETING
OPERATIONS AT
EXXON RETAIL STATION
HAYWARD, CALIFORNIA
TASK 3, CONTRACT NO. 68-02-1407
B.E.E. PROJECT NO. 00-4659-01
APRIL 1975
Submitted by: ,
Approved by:
^
James IK Geigef*
Assistant Project Engineer
Peter R. Charringtot
Senior Project Engineer
William P. May, P.E.
Project Manager
D.N. Bibbol F.t.
Executive Vice President
-------
TABLE OF CONTENTS
PAGE NO.
I. INTRODUCTION l
II. SUMMARY OF RESULTS 2
A. Determination of Potential Emissions
B. Determination of Actual Vapors Recovered
C. Underground Tank Emissions
D. Calculation of Average Volumetric Recovery Factors
and Recovery Efficiencies.
E. Apparent Outlying Points
F. Vehicle Summary
G. Explosimeter Readings
H. Fueling Difficulties
I. RVP, 02, N2 and ASTM Distillation Results
III. PROCESS DESCRIPTION AND OPERATION 19
A. Station Description
B. Process Operation
IV. SAMPLING LOCATIONS 22
V. SAMPLING PROCEDURES 28
A. General
B. Instrumentation Problems
-------
APPENDICES
A. Test Re.su I I s
B. Calculated Data
C. Laboratory Report
D. Daily Log Sheets
E. Project Participants
-------
I. INTRODUCTION
Under Section 110 of the Clean Air Act of 1970, as amended, the States are re-
quired to submit implementation plans for the control of pollutants for which a
national primary and/or secondary ambient air quality standard has been established.
Since such standards have been established for hydrocarbons, and because it has
been determined that hydrocarbon emissions during vehicle fueling can contribute
significantly to the ambient hydrocarbon concentrations, information is required
concerning the effectiveness of the various source control techniques applicable
to retail gasoline marketing operations.
An EXXON COMPANY retail station at 390 W. Jackson St., Hayward, California, is
equipped with devices for hydrocarbon emission reduction and was selected for an
emission testing program by the Office of Air Quality Planning and Standards. Test-
ing was conducted by BETZ ENVIRONMENTAL ENGINEERS, INC. personnel during July 30 to
August 2, 1974.
This retail station employs the vapor balance or displacement approach to hydrocar-
bon emission control. The gasoline vapors normally displaced by the liquid gas-
oline and lost to the atmosphere during vehicle refueling are returned to the under-
ground fuel storage tanks for subsequent recovery by displacement during bulk gaso-
line delivery. The design employed at this location uses OPW-7VN dispensing nozzles
on all product dispensers. The vapor return piping for the three product grades is
manifolded at the dispenser islands with a common return to the storage tanks. All
three underground storage tanks are manifolded together and are vented to atmosphere
through one common riser. No pressure-vacuum control valve is used in this system
design.
-------
Testing was performed during 236 vehicle refuelings to determine potential hydro-
carbon emissions, actual hydrocarbon emissions, and the vapor recovery efficiency
of the control system. A bulk gasoline delivery was not monitored during the test
program.
II. SUMMARY OF RESULTS
The field data for the vehicle refuelings are compiled chronologically in Appendix
A. This listing includes aJ1 data. The
-------
and special procedures were followed to ensure that all the hydrocarbon vapors were
displaced through the vapor return system. To accomplish this, all atmospheric vents
on the vehicle fuel tank were blocked and special care was taken to ensure a tight,
leak-free f illpipe-nozzle interface. If there was no leakage at the interface (as
detected by an explosimeter) and the vehicle fuel tank proved leak-free during a
subsequent leak check, the vehicle fueling was termed as baseline and the cal-
culated results were used to formulate a potential emission relationship. A lin-
ear relationship was assumed to exist between the volume of vapor returned to vol-
ume of liquid dispensed ratio versus the difference between the vehicle tank liquid
temperature and the dispensed liquid temperature. For the baseline data obtained
during this test, this relationship by least squares is:
(V/L) potential = 1.014 - 0.015 ,
vd
where:
(V/L) potential = volume of vapors returned to volume of liquid dispensed
ratio, (ft3/ft3).
/\T , = difference between inital vehicle tank liquid temperature and the dis-
pensed fuel temperature.
A comparison of the baseline results to the predicted equation is given in Figure 1.
The calculated results are listed in Appendix B, pages Bl - B4.
B. Determination of Actual Vapors Recovered
For the vehicles that were designated as non-baseline or test fuelings, no special
-------
procedures were followed during testing. The attendant fueled the vehicle accord-
ing to normal, routine practices.
The calculated results of testing are presented in Appendix B, pages B5 - B8.
All the results are presented, and, in the cases where necessary data were miss-
ing, that fueling was not included in any further calculations. These cases are
noted in the results tabulation in Appendix B. Most of these deletions were caused
by the inability to obtain an initial fuel tank temperature because of anti-siphon
devices installed in the vehicle fill-pipe.
The results are presented in Figures 2 to 5 on a daily basis, and are summarized in
Figure 6. These figures compare the actual emission data to the potential emis-
sions predicted from the baseline correlation.
C. Underground Tank Emissions
For testing purposes, a valving system was installed on the underground tank atmos-
pheric vent. The system was designed so that when the pressure in the underground
tank became greater than +0.15 "H~0 gage, the tank would vent to atmosphere through
a dry-gas meter. No such venting was measured during the entire test period, there-
fore the emission from the tank vent was zero.
The system also allowed the underground tanks to draw air unrestricted into the
tanks in the event that the pressure became less than -0.15"H~0 gage. Such in-breath-
ing occurred during testing but the volume was not measured.
-------
D. Calculation of Average Volumetric Recovery Factors and Recovery
Efficiencies.
The average potential volumetric emission factor for the test car data set based
3 3
on the correlation developed from the baseline vehicles, is 0.978 ft /ft . The
3 3
average volumetric recovery for the test car data is 0.650 ft /ft . The difference
between the average potential emission and the average recovery is the average emis-
3 3
sion to the atmosphere at the vehicle, which is 0.328 ft /ft . The ratio of the
average recovery to the average potential emission results in an average volumetric
recovery efficiency at the vehicle of 66.4%. The above averages are weighted and
are not a simple median of the individual vehicle factors and efficiencies. The
weighting mechanism is basically the amount of fuel dispensed for the individual
fuelings. This procedure prevents a very large or a very small fueling from having
a disproportionate impact on the calculated averages.
Since the emissions from the underground tanks were zero during the test period, the
total, system emission factors and recovery efficiencies are the same as those cal-
culated at the vehicle.
There are two factors introduced for testing purposes that could possibly have an
effect on the measured performance of the vapor recovery system. Firstly, the dry
gas meters which were installed to measure the volume of vapors returned added a sig-
nificant pressure drop in the vapor return piping system. This pressure drop ranged
from 0.15 to 0.25 "H_0, depending on the flow rate. This increased resistance to
flow would increase the pressure at the nozzle-fillpipe interface and provide a
larger driving force for leakage at the interface.
-------
The second factor would be the pressure-vacuum valving system used to measure un-
derground tank venting. This system is designed so that the underground tank vent
is closed when the pressure is between -0.15 and +0.15 "H_0 gage. The normal vent
configuration consists of a capped 2" pipe with a 1/2" opening to atmosphere. Un-
der non-flow conditions, the normal vent configuration would maintain the underground
tanks at atmospheric pressure. With the P-V system installed, a pressure in the
range -0.15 to +0.15 "tUO is maintained in the underground tanks. When the under-
ground tank pressure is between -0.15"H._0 gage and atmospheric, there is an addition-
al driving force present which might partially offset the added flow resistance con-
tributed by the dry gas meter. However, the simultaneous operation of a tested and
a non-tested dispenser could tend to yield higher recoveries at non-tested dispensers
and possibly lower recoveries at the tested dispenser. This would happen because
the meter-less line would be the path of least resistance to flow.
In the case where the underground tank pressure is between atmospheric and +0.15"H90
gage, a back pressure could be set up in the recovery system and tend to increase
losses at the vehicle.
No quantitative estimates can be made regarding the magnitude of the effect on the
recovery system efficiency by the above two factors, either alone or their inter-
acting affects.
-------
8/2.A-II ©I 1.91
__ t
X
>o
V.
X
\
X
®
•J
y
E>
nfi
c
(
10
4-
r>
P
a
0
. i
Q;
O
a.
>
<^
**
(
.6
1.4
1.2
0
P)
i.q
i
.8
.6
.4
.2
i
AT
-®-
(
^
y^i
w
vd
> ©
^
sj
fe)
!)*
xj
SAi/
9
§
^
D®
s
8/l,A-l8
(°F
1
-)
0
X
x
X
s
s
^\
X*
/I
STATION EXXON
X
k
—EXXON BASELINE CURVE
2
y/L= 1.014 -0.015 A Tvn
0
3
0
4
0
FIGURE I - EXXON STATION BASELINE DATA
7
-------
S
-20
\
\^
X
\
^
^
x
<
0
(BH3)
:B-3)
-10
N
r
©
)
^
<
^
V/LrVAPOR LIQUID RATIO (ft^t3)
fi=
C
1.6
.4
12
1.0
S"
>
.8
©
.6
0
.4
.2
f)
^ <
s
©
D
©
/
f
)
X
(B-
X
-15]
(B-4)
>
AT
s
G)
10
vd
CF
\
)
STA
X
\
©
o
riON- EXXON 1
S
20
N,
/.
s^
/
x
/
^
V3<
s,
^
3/7
\s
4
\
-BASELINE CURVE
3<
D
40
—
Ol-.46(A-7)
FIGURE 2-NON BASELINE DATA 7/30/74
8
-------
-2
0
\
O
X
G
-
Js
G
X
°n
o
o
o
D
3 (
Nl
o
D (
7\
»•
(^
£i
(B-16)
id
-10
^"
a
O
D
a
rr
0
Q, .
_T-
^
C
1.6
1.4
.2
>
1.0
X
0
9,
&
.
0
4
.2
)
3
\
\
c
f
k
)
i
\
^
G
x
10
AT.., (°F)
\J
)
N
G
-«:
STATION-EXXON 7/31/7^
\
s
^^
s
•""
NS^
^,
\
^"
\
>
<
s
— BASELINE CURVE
20
30
s
s
4r(
D
FIGURE 3- NOW BASELINE DATA y3l/74
-------
2.49 (R-16)
©
-74
(B-31)
-20
[X
X
V
s
-10
s
X
e
&
X
c
o
H-
ac
o
nr
U
tr
0
0.
^"
1.6
.4
.2
IJO
S"
0
.8
)
.6
.4
.2
0
\
D
J (
U
O
o
ATvrt (
c
o
X
)
o
o
j
0
^
0
,,
r
O
\
0— i
W0
0
10
«F)
D
s
/
a
-y ^
x
J
)
o
X
OS
/I
STATION -EXXON
S
r
-^
20
^
\
ss
^
X
^
O
V
\
^-
-BASELINE
D
^
,
30
x
^>
8/1/74
X
^
CURVE
4
0
FIGURE 4- NON BASELINE DATA 8/1/74
10
-------
-2
0
>
X
\
(A
t
7)
-1
x
©
-8)
>
0
D
\
•\
(
O
D
D
j\
G
1
O
X
•30
O
i
I
<
1.6
1.4
12
1.0
\
.8
.6
.4
O
2
i
)
S^
T\
D
x^
G
)
AT
\
K
/d
\
O
3
(°F]
s
©
N
X
1
STATION -EXXON
\
Z
20
s
/
\
/
x
/
X
\
8/2/74
X
^v
BASELINE CURVE
30
40
Of-237 (A-30)
FIGURE 5-NON BASELINE DATA 8/2/74
11
-------
© t 2/49
-74
1
-20
X
X
o
G
-1C
1
(
X
G/
6
<
j
©
3
S
) s
r
w
°0
G
)
)
c
Q
X
1
I7)
©
C
G
00
w
G
i ^
)
i ^
%
Q
s&
c
!" (T
3
c
r
^
c
ft
.4
n (
.0
X
8
'8
©
Q
Q
.6
0
©
4
.2
©
)
)
0
}
:\
t
^^
C
)
J c
/"
5,
G
uc
•) f
©
©
©
f
c
n
O
X,
©
©
1°
f
J
^
G
-^
^
fT
l(
O
x
f7)
©'
w©
0
)
ATyd(«F)
D
s r
^
c
c
Vr
X
©
©
©
x
©
T\
G
r
©
20
STATION -EXXON
D
s
s
>s
/
/
x
/
f
JK
x
s
X
^BASELINE CURVE
p
3
Q
3
x
40
>~o : © -2 67
^
FIGURE 6- NON BASELINE DATA (TOTAL)
-------
E. Apparent Outlying Points
1. Baseline Data - The baseline data contains three (3) apparent, outly-
ing points (7/31, A-12; 8/1, A-18; and 8/2, A-ll) indicated in Fig-
ure 1. Point 7/31, A-12 was probably due to an instance when the
dry gas meter ran backwards without being noticed. Point 8/1, A-18
was probably due to the misreading of the dry gas meter index although
the same results could have been produced if the dry gas meter had run
backwards. Allowing for a misreading, point 8/1, A-18 would have a V/L
ratio of 1.117. The occurrence of point 8/2, A-ll has no ready explana-
tion unless a dry gas meter reading had been recorded incorrectly. If
that were the case, then point 8/2, A-ll would have a V/L ratio of 0.873.
2. Non-Baseline Data - Because the data point scatter was so great, there
were only two instances that could definitely be considered as appar-
ent outlying points.
Those points were 7/30, A-7 and 8/1, B-16. Only the first point can be
identified as definitely outlying because for this vehicle the dry gas
meter was observed to be running backwards.
Two other known problems occurred with point 7/30, B-4 (dry gas meter
running backwards) and with point 7/30, B-13 (kinked vapor return line).
Additionally, the following points had occurrences of spit back: 7/30,
B-3; 7/30, B-15; 7/31, B-16; and 8/2, A-8.
13
-------
F. Vehicle Summary
Below is a summary of the vehicles tested and under which category each falls.
Date
7/30/74
7/31/74
8/1/74
8/2/74
Vehicles
Tested
54
62
85
35
Baseline
13
15
21
6
Non-Baseline
30
37
48
26
Attempted
Baseline
11
10
16
3
Total 236 55 141 40~
G. Explosimeter Readings
Explosimeter readings for non-baseline automobiles are summarized below. The aver-
age would be 68% of the lower explosive limit.
Percent LEL 05 10 15 25 30 35 40 60 80 100
No. of Vehicles 31 3 51212232 89
H. Fueling Difficulties
There were five (5) occurrences of spitback of varying amounts, four (4) occurring at
pump B. It is unknown why spitback occurred, but it may have been due to the con-
figuration of the automobile fill pipes.
There were only two difficulties encountered that were due to the recovery system.
One was being able to latch the vapor return sleeve so that the nozzle remained in
the automobile fill pipe without assistance on certain models of automobiles. The
14
-------
other difficulty was keeping the liquid and vapor return hoses from tangling. These
difficulties did not present major problems however.
I. RVP, Distillation, 00 & N0 Results
z i.
The Reid Vapor Pressure (RVP) of volatile nonviscous petroleum products differs
from the true vapor pressure of the sample due to some small sample vaporization
and the presence of water vapor and air in the confined space. RVP samples were
taken from 42 automobiles and from the underground storage tanks. RVP samples were
taken in accordance with ASTM method D270-65 and determinations were made in accor-
dance with ASTM method D323-72. Briefly, gasoline was withdrawn into a glass bottle,
the bottle tightly capped, and then stored in an ice bath until delivery to the
laboratory.
A frequency plot of Reid Vapor Pressures is shown in Figure 7. The data is listed
in Table 1 as abstracted from Appendix C, pages Cl - C4. The mean vehicle fuel
RVP was between 7.5 and 8.0. The Exxon "Regular" gasoline had an average RVP of
8.65 psi.
Distillations were performed on samples of underground storage tank contents as per
ASTM method D86-67. The results of the distillations are included in Appendix C,
pages C5 - C6.
Dissolved oxygen and dissolved nitrogen determinations were made by gas chromato-
graphy as per ASTM method D2504-67. These results are listed in Table 2 as abstract-
ed from Appendix C, page C7.
All analyses were performed by the CHARLES MARTIN INSPECTORS OF PETROLEUM, INC.,
Richmond, California.
15
-------
RVP
-------
LICENSE NO.
CAL. 999KTP
CAL. Q30014
CAL. 55676H
CAL. 077CVO
CAL. C71170
CAL. 972BWL
CAL. ZPN472
CAL. AGH326
CAL. SDT582
CAL. 140FIW
CAL. 287JAR
CAL. 181CMC
CAL. 193BOF
CAL. XPU480
CAL. WDK111
CAL. 960KDV
CAL. 353EZC
CAL. 941GTS
CAL. MKB050
CAL. HOE171
CAL. VAA970
CAL. VSL292
CAL. 393GTA
NY 223YYJ
CAL. UCW618
CAL. UBW517
CAL. 703LBI
CAL. 377LDG
CAL. 27629W
CAL. 042DGZ
CAL. BZV648
CAL. 388525
RVP
PUMP
DATE
7.9
8.1
3.0
6.9
7.2
8.1
7.5
8.0
7.8
8.2
7.9
7.9
8.4
8.0
8.1
7.9
7.4
7.2
7.3
7.9
7.5
6.5
7.5
7.8
7.8
4.3
7.9
7.6
7.2
6.7
7.1
7.8
A-03
A-05
s
A-15
A-17
A-19
A-22
A-27
B-05
B-10
B-14
B-25
A-01
A-03
A-06
A-12
A-16
A-21
B-04
B-09
B-15
B-21
B-27
B-30
A-05
A-13
A-18
A-23
B-12
B-15
B-17
B-19
B-23
7/30
7/30
7/30
7/30
7/30
7/30
7/30
7/30
7/30
7/30
7/30
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
8/1
8/1
8/1
8/1
8/1
8/1
8/1
8/1
8/1,
TABLE 1 RVP ANALYSIS RESULTS
17
-------
LICENSE NO.
CAL. VXE295
CAL. 137FSM
CAL. 411CPL
CAL. 980BYX
CAL. DKL015
CAL. 42OLEJ
CAL. 09483V
CAL. 57294L
CAL. 690JTC
EXXON REGULAR
EXXON REGULAR
EXXON REGULAR
EXXON REGULAR
RVP
PUMP
DATE
EXXON REGULAR 02 &
7.5
7.2
7.4
7.3
7.8
7.0
7.4
7.3
8.0
8.7
8.7
8.8
8.4
B-27
B-29
B-34
B-39
B-44
A-01
A-09
A-18
A-26
8/1
8/1
8/1
8/1
8/1
8/2
8/2
8/2
8/2
TABLE 1 (CON'T)
ANALYSIS
DATE
TIME
DISSOLVED 00 (ppm)
7/31/74
8/1/74
8/2/74
8:00 PM
12:30 PM
/. —
< 10
<10
< 10
DISSOLVED N2 (ppm)
58
57
58
TABLE 2 DISSOLVED OXYGEN & NITROGEN RESULTS
18
-------
III. PROCESS DESCRIPTION AND OPERATION
A. Station Description
The Exxon retail station at 390 W. Jackson St., Hayward, California has two groups
of covered pump islands as illustrated in Drawing 1. Due to the gasoline shortage
of 1973, the group of pumps designated as Group I were shut down and are no longer
used. The islands designated as Group II were modified for vapor recovery during
1974. There are two dispensers for each of the three grades of gasoline (regular,
premium, unleaded) sold at this station. The vapor return lines for all six dis-
pensers are manifolded together at the island and return to the storage tank area
through a common line. At the storage tanks, all three are manifolded together.
All three tanks are then vented to atmosphere through one two-inch riser. This
riser is equipped with a cap with a 1/2" hole for atmospheric breathing by the un-
derground tanks. The piping layout is shown in Drawing 2.
Each underground tank is equipped with a connection for vapor recovery during bulk
deliveries.
For vapor collection during automobile fueling, each dispenser is equipped with an
OPW-7VN vapor recovery nozzle. This nozzle uses a bellows (boot) arrangement for
flexibility in mating at the vehicle fill-pipe. To prevent vapor losses while the
dispenser is not in use, a mechanical check valve arrangement is used. The design
is such that when the dispenser is not in use, the annular opening in the face of
the rubber boot will seat against a collar on the liquid spout. When the nozzle
19
-------
spout is forced into a vehicle fillpipe, the boot is forced back from the collar
and the vapor return path is opened.
B. Process Operation
While all dispensers were equipped with vapor recovery equipment, testing was per-
formed on only two regular grade dispensers. The pump attendants during the test-
ing were the normal station attendants who followed regular procedures except when
instructed otherwise. The attendants had approximately two weeks experience with
the nozzles prior to testing. If the automobile being fueled were to be classed as
an attempted baseline, the pump attendant was instructed to hold the dispensing noz-
zle in such a way so as to provide intimate contact between the automobile fill pipe
and the vapor return bellows (force fit). On all other automobiles the nozzle was
inserted to the "latched" position and was left unattended while the attendant per-
formed his ancillary duties, or hand-held when nozzle configuration or the amount of
fuel to be dispensed made it impractical to latch the nozzle. It was noticed that
the performance of some of these duties, such as windshield cleaning, caused the
automobile to rock, which in turn occassionally caused intermittent gaps at the fill
pipe/bellows interface.
Usually the dispenser was set at the middle notch with a rate of approximately five
(5) gallons per minute. However, other dispensing rates were sometimes used.
20
-------
During the periods that testing was performed, the total gasoline sales in gallons
were as follows:
Date Regular Unleaded Extra Total
7/30
7/31
8/1
8/2
Total
78A.6
853.7
914.8
465.8
3018.9
37.4
26.7
10.7
29.9
104.7
228.4
249.6
366.6
110.6
955.2
1050.4
1130.0
1292.1
606.3
4078.8
The ambient temperature at this location varied from the low to mid 50's in the
early mornings, rising to the mid 70's by middle afternoon, and then cooling to the
60's around sundown. Testing was scheduled as follows in order to obtain data dur-
ing each temperature condition.
Date Test Time
7/30 11:00 am - 5:30 pm
7/31 9:30 am - 3:30 pm
8/1 12:50 pm - 7:45 pm
8/2 8:00 am - 12:00 noon
The weather conditions were generally the same for the four days of testing.
21
-------
UJL_.
IP
I
rl
OO
O^
BBTZ BMVmOMMBNTAl. eiSiaiNEERB. tna.
Om fiiuimm •.»««« n«n . n/»iatt M«min. p».ixn
untoveoer
DRAW NO
OO- '
-------
/2"OPEN VENT ._
BETZ ENVIRONMENTAL ENGINEERS, Inc.
One Plymouth Meeting Mall • Plymouth Meeting, Pa. 19462
TOR
_F£OTEC-
DRAWN BY A,.\_.
APPROVED BY
SCALE
MOME
DATE
DRAW NO
. CO: - 4-fc b^
-Crt-02
-------
IV. SAMPLING LOCATIONS
Sampling locations are indicated in Drawing No. 3. Sampling locations were at
the two regular grade gasoline dispensers and at the atmospheric vent of the un-
derground storage tanks. The other group of pump islands remained closed.
24
-------
F'g.o-i-Gc: -i-1 .
APPROVED er
IZ-10-74
-------
V. SAMPLING PROCEDURES
A. General
RADIAN CORPORATION was responsible for customer relations. Once a customer con-
sented to the test, the car would be directed to one of the two testing locations.
The testing procedures followed were essentially identical to those used in earlier
EPA testing in the San Diego, California area . These procedures are summarized be-
low:
1. Record name of station, date, pump number, license number, make of auto-
mobile, model and year for every car sampled. Record also whether the
automobile was recently driven in local traffic or on highways and the
approximate number of miles driven prior to entering the station.
2. Measure and record the vehicle tank liquid temperature prior to filling.
3. Record the initial dry gas meter reading in the vapor return line.
4. Obtain liquid samples for R.V.P. analysis from every fifth automobile
tested.
5. Monitor and record during vehicle filling the hydrocarbon concentration
in the vapor return line. Also monitor around fillneck with the explosi-
meter and record reading.
6. Monitor and record the returned vapor temperature and the dispensed gas-
Celine temperature.
7. Measure and record the time required for dispensing of gasoline — start-
ing when the nozzle is turned on and ending when the nozzle automatically
shut off. Record any event of spillage or spitback.
Test evaluation of gasoline transfer vapor recovery system, November 1974, Report
No. 74 GAS 1 prepared by TRW, Inc. under EPA Contract No. 63-02-0235.
26
-------
8. Record the total number of gallons dispensed for each automobile.
9. Monitor and record the pressure in the vehicle tank after filling for
every other automobile, if possible.
10. After filling the automobile, record the final dry gas meter reading in
the vapor return line.
If the automobile were to be considered as a potential baseline automobile, as de-
termined by RADIAN CORPORATION, additional testing was performed. The philosophy
of "baseline" is those automobiles for which 100% of the potential vapors are re-
turned. To be considered as baseline a vehicle must have had no leaks in its fuel
system and must have had a tight fill pipe/nozzle interface. To obtain a leak free
fuel system, any known vents were plugged prior to fueling. To obtain a tight fill
pipe/nozzle interface, the nozzle was force fit. If an explosimeter check revealed
no leakage around the fill pipe/nozzle interface, the vehicle was directed to another
area where a leak check would be performed to determine any leakage in the automobile's
fuel system. The leak check procedure is outlined as follows (See Drawing No. 6):
1. Connect flow valve to nitrogen tank so that flow can be controlled by
manipulation of valve. Mount on mounting board.
2. Attach 12" piece of Tygon tubing to outlet of valve and the other end to
one leg of "T".
3. Mount 12" glass tube on the mounting board with clamp and attach top of
glass tube to "T" with small piece of Tygon tubing.
27
-------
4. Use 2' piece of Tygon tubing to connect remaining leg of "T" to the in-
let of the Rotameter. Mount meter on board.
5. With remaining Tygon hose, connect outlet of flow meter and the rubber
seal for the vehicle fillneck connection. Mount the flow meter in a
vertical position.
6. Fill liquid holding tank to at least 6" depth with water.
7. Place glass tube open end beneath the surface of the water in the hold-
ing tank and measure the "H". (See Drawing 6), For the tests make one
run with the H at 2" or whatever the maximum H was when determining ve-
hicle pressure tank conditions. Mount tube with clamp on board.
8. Plug known fuel system vents.
9. Place rubber seal over open fillneck and hold firmly to avoid leaks at
the seal.
10. Allow nitrogen to flow by opening the valve until bubbles appear at the
open end of the tube submerged in the holding tank.
11. After 30 seconds, record flow rate from flow rate meter.
12. If no flow at meter, vehicle considered "baseline".
13. If flow, vehicle considered "attempted baseline."
If a leak were found around the fill pipe/nozzle interface, no leak check would
be performed and the automobile would be considered as "attempted baseline".
Attempted baseline vehicles were not used in any calculations.
28
-------
The testing equipment for the gasoline dispensers is shown in Drawing No. A. Noz-
zles use'd in the testing were manufactured by the DOVER CORPORATION, OPW DIVISION.
The underground tank vent testing equipment is indicated in Drawing No. 5. The
vent was modified to allow unrestricted inbreathing by a pressure switch set for
-0.15 in. H?0 which controlled a normally closed solenoid valve which opened to
the ambient atmosphere. Alternatively, a pressure switch set for +0.15 in. H~0
controlled a normally closed solenoid valve which vented through the sampling train.
29
-------
Co
O
\
K-XI
^
I
\
cz:
es»x
K_^| £
u v
>ce>v
^~-«=_
=r | — {
\J
A^
~T
—^•£3*
— r~-*~\
-K
— —
2>a
./
\^
*^P=»
\
^\
— i — c
-**^
=> — r>*-
N*»J ^"^i^.
_, |__| f—
--—-( .g— •
Oni tlimiiitk Kallpj M.U
*°* ^KJ^-'lCSOlsJ KX< F
mu <=> A.i^ie=»-,
*^> CHI-M ^ I^^A ^>
0*»»ntV1^f^Si ^=^ rJT,
APPROVED BT
««,0«,OE=
• n>«M«ti>M<«t««.p«.iMe
loJTXi^l— F*(^i»-
i h^lr-=.
_— T" 1 <=•=.( P-^"-^«=
QAIt
/i! - /C-74
DAAMT MO
OO-405'j-Cl-t.'i
-------
-------
B. Instrumentation Problems
While the instrumentation was not complex, there were some problems. Most of
these difficulties can easily be avoided in the future with simple precautions,
while some are not easily solved. The parameters measured were pressure, temper-
ature, volume, and, indirectly, mass of hydrocarbons:
1. Pressure - Two pressures were of interest; one, the system pressure,
was obtained at the outlet of the dry gas meter, (it was recorded for
every automobile) and the other, the automobile tank pressure, was re-
corded for baseline automobiles only and was usually obtained at the
vehicle carbon cannister inlet.
A possible alternative for determining the system pressure, would be
through the use of a pressure transducer because the manometer, being
located at the gasoline pumps, was subject to jarring, thereby causing
a loss of level. The rubber connecting tubing was also easily pinched
or pulled off. It might even be better if the pressure were obtained
at the underground tank vent. This would give a much closer measure-
ment of system pressure because the negative influences of dry gas
meter, sample pump, and mechanical problems would be eliminated.
Since the automobile tank pressure was obtained only for baseline auto-
mobiles, it was subject to the fluctuations of a hand held nozzle. De-
pending on the time expended in pumping the gasoline, the rate of pump-
ing, the constancy of the rate of pumping, the firmness of the forced fit,
32
-------
and the relative temperatures of the dispensed gasoline and the ve-
hicle tank, a steady pressure state may not have been reached. Us-
ually the maximum pressure was recorded. If a real time analysis of
this pressure were desired, a pressure transducer with recorder should
be substituted.
2. Temperature - Four temperatures were of interest: underground tank,
vehicle tank, dispensed gasoline, and returned vapor. The underground
tank and vehicle tank temperatures were obtained with a digital pyro-
meter of high accuracy and repeatability.
The inputs for the dispensed gasoline and returned vapor recording pyro-
meters were provided by resistance bulbs located at the gasoline dis-
pensing nozzle. The sensing elements extended about three (3) inches
above the nozzle and were quite prone to bending during normal gasoline
dispensing operations. Additionally, the connecting wires were constant-
ly under strain and in some instances were broken, even though every
effort was made to keep the strain off the wires and probes. There were
times when the recording pyrometers gave obviously erroneous readings.
The suspected cause of these bad readings was the above mentioned strain.
It is possible, although unknown, that this strain could have caused
less obvious erroneous readings. It is proposed that these temperatures
be sampled at other points, specifically that the returned vapor temper-
ature be sampled at the dry gas meter and that the dispensed gasoline
33
-------
temperature be sampled at the base of the pump. It is felt that
there are two distinct advantages to this change: Firstly, it will
eliminate equipment abuse thereby insuring more accurate readings
and preventing down time. Secondly, by taking temperature readings
physically closer to the volume measurement points, a better temper-
ature/volume correlation is possible . The disadvantage is that these
temperatures can no longer be considered as nozzle temperatures. How-
ever, it is doubtful that there is a significant temperature gradient
in the hose lines but rather that a steady state zero gradient condi-
tion would be quickly reached.
3. Volume - No problems were encountered with the dry gas meter per se.
However, there were two (2) times when the dry gas meter was observed
running backwards. Both occurrences were on July 30, tests A-7 and B-4.
Various theories for this anomaly exist, but to B.E.E.'s knowledge, no
solution has been proposed. It is unknown how often this phenomenon
occurred undetected.
4. Mass of Hydrocarbons - The mass of hydrocarbons in the vapor return line
and vent was to be determined from the percentage of hydrocarbons on a
volume basis. This percentage was measured with a Beckman Model 400 Hy-
drocarbon analyzer, using the flame ionization principal. To eliminate
the need for a complicated dilution system (required because of the ex-
pected high concentrations, 50-75% by volume, of hydrocarbons), a longer
34
-------
sample capillary was installed in series with the existing capillary
prior to instrument use. The length of this column was recommended
by BECKMAN INSTRUMENTS, INC., to be approximately twenty (20) feet
with the theory being that by increasing the length of the capillary
and by decreasing the sample pressure,a smaller sample will be deliver-
ed to the flame ionization detector (FID) thus allowing samples of very
high concentrations to be determined without flame saturation. Normally,
the BECKMAN 400 Unit as shipped can be used to determine concentrations
only as high as 0-4% by volume before flame saturation occurs.
Propane was chosen as the calibration gas becuase its molecular weight
is close to that of gasoline. The propane calibration gas was obtained
in cylinder sizes comparable to those of methane. Unfortunately, the
quantity of propane in the cylinders was insufficient due to the fact
that propane liquifies at about 100 psi. The compressed gas supplier
could not deliver sufficient quantities of propane quickly enough and
methane, which was more easily supplied, was substituted as the calibra-
tion gas.
Both speed and magnitude of analyzer response are affected by the type
of hydrocarbon in the sample. Magnitude of the analyzer response to
an atom of carbon depends on the chemical environment of this atom in
the molecule. The characteristic response of a given type of atom may
be expressed approximately by a value designated as the "effective car-
35
-------
bon number". The effective carbon number of a particular type of
carbon atom is defined as the ratio of the instrument response
caused by an atom of that type and the instrument response caused
by an aliphatic carbon atom. To determine the exact effective car-
bon number of propane it is necessary to perform a calibration of
methane versus propane. Because of supply problems, it was decided
to perform this calibration in our laboratory.
When this calibration was attempted, completely erroneous data was
obtained. The data indicated that the instruments were operating in
a saturated condition, that is, an increase in sample concentration
did not cause an increase in analyzer response. However, there was
no immediate explanation of why saturation was encountered. A thorough
overhaul by BECKMAN INSTRUMENTS, INC. revealed that the polarizing elec-
trodes had corroded. With no electric field guiding the ions to the
collector, the ions migrated at random, thereby giving the analyzer an
almost flat response.
The primary reason that this condition was not discovered during the
sampling program was the fact that only a single gas was used for cal-
ibration. A secondary reason was unfamiliarity with the use of the
longer capillary and lower sample pressures. It is recommended that
calibrations be performed with two (2) widely separated concentrations
of calibration gases.
36
-------
7
51'
U)
N II
I
<
mm eiwmaMMeMTAi. ENCIINEBRB. ino.
c-»T g^ TI g-fv.-
APPROVED Br
-------
TEST RESULTS
APPENDIX A
-------
STATION. EXXON
DATE- 7/30X74
AVE. UNDERGROUND TANK I£KP- 69.0 F
PUVF
A-G1
A-02
A-03
A-04
A-05
A-06
A-07
A-08
A-09
A-10
A-l 1
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A- 21
A-22
A-23
A-24
A-25
A-26
A-27
9-01
8-02
B-03
B-04
B-05
B-06
B-07
B-08
B-09
fi-10
8-11
9-12
B-13
B-14
B-15
B-16
s-n
B-1B
P-J9
P-20
B-21
B-22
8-23
B-24
8-25
B-26
B-27
TI*E
11 J 17 AM
11 122AM
1H31AM
111 55 AM
12103PM
12: 10PM
11 I224M
12147PM
11 11PM
l:30PM
2 i 32PM
3: 12PM
3132PM
. 3I33PM
3:59?"
4: 12PM
4»22PM
0; OOAM
4137PM
OlOOAM
4155PM
5104PM
5: I^PM
5123PM
5134PM
5138PM
5147PM
11 100 AM
11 J40AM
11 155AM
12130PM
12145PM
12155PM
1 104PM
H45PM
1 157P.M
?; 00PM
2: 10PM
?> 40PM
3106PM
3 115PM
3|30PM
3155PM
4100PM
4: lOpM
4J15PM
4130PM
4130PM
415CPM
4155PM
5105PM
5120PM
5125PM
5130PM
LIC. ffO.
CAL -78BFJN
C»L -12169M
CAL -999KTP
CALF-MKT4B8
CAL -030014
CAL -115VPY
CBL -YHW771
CAL -KKS*a9
ClL -rfGN-845
CAL -MML-539
CAL -504JYF
CftL -YJU-2S5
CAL -30731J
CAL -020571
CAL -55676-ri
CAL -473-JK*
CAL -077-CVO
CAL -NJV-296
CAL -C71-170
CAL -498-DGY
CAL -41-970-R
CAL -972-B'*L
ARIZ-PR6-9tj2
CAL -093-JVT
CAL -404-ERT
CAL -DJP-460
CAL -ZPN-472
WASH-PA4444
CAL -9133155156
CAL -YKM82S
C6L -547CLB
CALF-AGH326
CAL -26888S
CAL -617HKS
CAL -35bLCP
CAL -717KIZ
CAL -SDT582
CAL -UPA601
ILL -GF1449
CAL -178-CSF
CAL -140FIW
TEX -FS9151
CAL -603JUJ
CAL -76J41S
CAL -97814U
CAL -ASH892
CAL -25037P
CAL -333FCO
CAL -CLB045
CAL -136JIX
CAL -77CGQF
CAL -2S7JAR
C&L -269X1G
CAL -977GMY
MAKE
CHEV
DODGE
74 FORD
65 Vvi
CHEV
70 POUTIAC
69 VW
BU1CK
FOrD
65 OLDS
73 fOPD
69 FORD
72 FORD
67 FORD
69 DATSUM
73 VW
72 DATSUN
65 PLYMOUTH
62 CHEV
71 TOYOTA
59 CHEV
70 CHEV
69 CHtV
72 VW
72 FORD
60 FORD
69 CHEV
FOPD
63 CHRYSLER
68 CADILLAC
62 CADILLAC
65 VW
74 CHEV
73 MERCURY
73 DODGE
74 FORD
66 CHEV
66 FORD
67 VW
73 Vlv
73 FORD
73 CMC
74 FORD
74 DODGE
72 FoRD
64 OLDS
73 DODGE
71 CHEV
62 MEHCURY
73 Vv)
73 MAZDA
71 PLYMOUTH
74 TOYOTA
72 OLDS
MJUEL
MONTE CARLO
72 TRADESMAN
PINTO
BUG
EL CAMINO
FIREBIRD
BUG
LE 6AbHt 400
COUNTRY SCUIRE
CUTLASS
SPAN TOKINO
ECOttOLINE
250 TRUCK
100 CAKPER
1600 TRUCK
BUG
122
SATELLITE
10-TRUCK
COROLLA
APACHE 31
CAMARO
NUVA
SGUAKEBACK
MAVERICK
RANCH WAGON
NOVA
71 CUSTOM
IMPERIAL
FLEETwOOD
COUPE DE VILLE
BUG
CHEYENNE/10 •
MONTEGO V»AGON
CHARGER
PINTO
CHEVELLE
THUNDf.RBIPD
BUG
HATCHBACK
GALAXIE SUO
CUSTOM 15000
PINTO
-T-* iDESMAN
COURIER
F-8b
& 200
KINGSrtOOD
MONTEREY
BUG
ROTARY WAGON
SATELLITE
COROLLA
CUTLASS
TYPE OF
DRIVING
LOCAL
LOCAL
LOCAL
HIGHWAY
LOCAL
HIGHWAY
LOCAL
LOCAL
LOCAL
HIGHWAY
HIGHWAY
HIGHWAY
HIGHWAY
hlGHkAY
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
LOCAL
LOCAL
HIGHWAY
LOCAL
LOCAL
HIGHWAY
HICHnAX
HIGhrtAY
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
LOCAL
LOCAL
HIGHWAY
HIGHWAY
HIGHWAY
HIGHWAY
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LOCAL
HIGHWAY
DISTANCE
TRAVELLED
O.Mi.
O.KI.
O.MI.
26. MI.
O.MI.
10. Ml.
2. MI.
l.MI.
l.MI.
30. MI.
l.MI.
15, MI.
6. MI.
12. MI.
l.MI.
200. MI.
20. MI.
l.MI.
l.MI.
15. MI.
l.MI.
20. MI.
i.va.
20, MI.
2. MI.
l.MI.
250. MI.
O.MI.
217. MI.
l.MI.
9. MI.
100. MI.
10, MI.
O.MI.
10. MI.
O.MI.
2. MI.
l.MI.
20. MI.
12. Ml.
15. MI.
15, MI.
l.MI.
5. MI.
3. MI.
4. HI,
l.MI.
30. MI.
3. MI.
30. Ml.
10. MI.
l.MI.
2. MI.
10. MI.
LK CHK
RESULT
PS-SSL
NO-AIB
PS-ESL
NO-NBL
PS-tiSL
NO-ATB
NO-NBL
NO-ATB
NO-NbL
NG-Nfab
PS-tSL
NO-AXb
NO-NeL
ftO-NoL
NO-NBL
ftO-fiiiL
NO-NdL
NO-NBL
NO-ATb
NO-NBL
NO-NBL
NO-NBL
NO-NBL
NO-NBL
PS-cSL
NO-NBL
NO-NBL
NO-NBL
NO-NtsL
NO-NbL
MO-NbL
NO-NBL
NO-ATB
PS-bSL
NO-AIB
PS-BSL
NO-NBL
FL«ATa
f5-6SL
NU-lihL
NO-ftbL
NO-WBL
NO-AI6
NO-rtbL
«0-(*i3L
PS-BSL
PS-Alb
PS-b&L
PS-bSL
NO-A'JB
NO-NBL
PS-bSL
NO-NfaL
FS-BSL
RVP
0,0
0.0
7.9
0,0
S.I
0,0
0,0
0.0
0,0
0,0
0,0
0,0
0,0
0,0
3.0
0,0
6,*
0,0
7,2
0,0
0,0
8.1
0,0
0.0
0,0
0,0
7.5
0,0
0,0
0.0
0.0
8.0
0,0
0,0
0.0
0,0
7.B
0,0
0,0
0,0
B.2
0,0
0,1
0,0
0,0
0,0
0,0
0,0
0.0
0,0
0.0
7,9
0,0
0,0
EXPLOS.
o.u
0.0
0.0
100.0
0.0
100.0
100.0
100.0
0.0
5.0
0.0
100.0
100.0'
60.0
35.0
0.0
100.0
100.0
100.0
60.0
100\0
10.0 .
60.0
100.0
0.0
100.0
100. 0
100.0
100.0
100.0
0.0
0.0
60.0
0.0
lOO'.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
0,0
O.o
0.0
0.0
0.0
100.0
0.0
100.0
0.0
NOZZLE
Hi
FOF.CL
»'0?.CE
FORCE
ycofr
FORCE
FORCE
GOOL
FORCi.
GOOD
GOOD
FuRCE
KuFCt
Gi-Oi
GC»'D
GCCii,
scm
CC.S.'
GCOZ>
FC.-Ci
c :•-•:•
PCUp
5CS2
(.;-J3
f uur.
FurCE
rCGR
f-'JUR
iwOL-
OwC'L.'
rOir.
?•-'&«
GCOD
FurCE
FC.-Cc.
fZStL
Fur-Ci'
GC^2
F'-.-.C£
F..-Ci
5; ii
C-C*
FCC .-.
f -:.-Ci
G^C:
GC.CJ
FC«Ct
i ', .- ~ •
f C.«C£
FC.-Ci
FC.-Ci
P* - *."
FC.'Ct.
r .if.
F:.-CE
SPIIBACK
NO
NO
HO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
HO
NO
NO
MO
YES
NO
NO
YtS
MO
NO
NO
NO
ftO
NO
NO
YES
NO
NO
NO
NO
i*0
NO
NO
NO
NO
NO
NU
NO
-------
STATIC
PUMP
A-21
A-32
A-33
A-24
A-?5
A- 3 6
A-Z7
A-:S
A-?9
* - * ,1
H ±ii
A-ll
A-12
A-13
* - i c
- i •-
A-li5
A-16
A-17
A-15
A-19
A_ n ">
£••
A-21
A-2.r
A-<3
A-2<-
A-25
A-2*
A-27
9-3i
B-1'2
B-33
B-34
B-C5
B-36
e-37
B-38
3-25
B-i;-'
3-11
3-12
8-13
3-14
B-15
8-16
0-17.
6-1*
6-19
B-28
8-21
9-22
B-23
B-24
3-23
y-26
3-27
NH tXXO
TI^E
11 = 17
11:22
11:31
li:55
12:^3
12S10
li:?2
12:47
lill
1 » '; i
i i On
2:22
3:12
. 3:J2
1 • t U
• O « v. O
Z : •.•• 5
4 : 12
4! 22
? : •.••£!
4:37
.',• * .r» «
i i j
4 :55
5 : . 4
5:14
5:23
5:34
5:10
5: 47
11: 'M
11 : 4?
li:55
12:33
12:45
12:35
i:.-!4
1:45
U57
2 : -JO
2: 13
2:43
3:36
3:i5
3:33
3: -35
4:0K;
4:ii3
4!1P
4:30
4:33
4:50
4;?5
5: .'5
5:23
5:25
5130
DATE- 7/30/74
AVE, UNDERGROUND TANK TEMP- 69,8 f
VEHICLE
TASK TEMP
(DEC, F>
61,3
6i,e
66.0
63,3
63,3
34, f!
7-1,3
77,2
73.2
91.2
72, e
75. u
75 ,^
74,D
77.0
71,3
74,3
74,0
66,3
76,0
73,?!
01,3
72,3
72,3
73,3
73,3
33,0
73,0
93.0
69,3
83.S
67,3
77,3
73,0
65,3
73,3
76,3
72,0
68.2
73,3
75.0
S3, 2
«,2
73,0
63.3
74,0
76,2
83,3
77,3
72,3
79,3
74,3 -
74,3
75,0
VEHICLE
TANK PKESS
(IN. H20)
2,4
1,3
2,4
0,0
0,^
3 , .'-•
a.-'
e,;-
0, 3
e.K
0,c
0,3
0,3
0,0
0,0
0,3
0,i!
0.3
3,3
0,4
0.?
0,2
0,fi
0,0
-0,0
0,9
0,5
0,6
0.8
0,0
a,!'
0,n
0,3
0.;.)
0,5!
0.3
0.0
a.'i
0,3
0,0
GAS
DISP
(GALS)
10,3
5,4
0,9
8,0
5,4
5.4
5,4
5,4
5.4
17.3
5,4
15,5
10.7
9.1
5.4
9,7
5,4
11,2
7,2
8,2
7,2
7,8
5.4
9,2
12,5
10.6
13.3
5.5
14,3
16,0
16,7
5,4
11,7
18,1
12.2
5.7
13,3
5,3
5,4
8,3
8,8
13.2
5, V-V-
7,2
9.4
8.0
15,9
14,3
9,7
9.4
12,6
16.6
8,6
7,5
DISP
TIME
(MID. >
2,2
1,3
1,9
1.6
1,1
1.1
0.2
1,1
1.1
5.3
1,2
2.1
1.2
0.0
1,2
2.3
1.3
2.4
1,5
1,7
1,5
1.6
2.7
2,3
1.4
2.3
2.8
1,2
2.9
3.2
3.3
0,6
2,7
9,5
2.4
1.3
2.1
0,0
1.1
2.0
1,8
0,0
- 1,1
1,2
1,3
1,8
1,9
1,8
1,5
3,0
2,6
3,5
1,9
1,5
OISP
TEMP
(OEG F)
73,3
72.0
73,3
70.0
73.3
72.3
73.3
72,3
73,0
72,3
75.3
76.0
72.3
74.3
74.3
72,3
75.3
74.3
71,3
71,3
72.3
72, a
74,0
72.0
71,3
71,3
72,3
72.3
71.3
74.3
75,3
73.3
74,13
76.3
76,0
83,3
78,3
76.3
75,0
77,3
77,3
76,2
73,3
73,3
79.0
78,3
74,0
74.0
77,0
74,3
74,0
77.0
75, a
79,0
RET VAPOR
TEMP
(OEG F)
69,3
73.0.
68,3
71,0
70.0
73,0
71,0
72,0
72,3
76,3
78,0
78.3
76.0
77.3
78,3
79,0
83,0
76,3
74-, 3
74,0
79,0
76,3
78,0
78,0
74,3
76,0
73,0
66,0
• 68,0
70,0
70,0
71,0
71,3
72.0
74,0
76,3
77,0
75,0
75,0
74,3
75.0
76,0
63,0
76,0
78,0
78,0
72,0
72,0
76,3
73,0
73.0
77,0
74,0
75,0
INITIAL
VOLUME.
42,366
43,499
43.817
45,171
46,767
47,795
48,948
48,672
48,951
49,426
54,142
57,149
57,397
' 58.143
58,179
58,988
60,229
63.234
61,289
61,526
64,653
64,664
65,566
66,318
67,352
69,328
70,007
53,732
54,562
55,937
56,044
56,374
56,937
58,413
61,538
63,161
64,167
65,235
66,167
67,235
67,176
68,415
68,794
69,525
73,541
71,320
72,448
74,317
76,090
77,355
78,715
73,735
81,018
84,463
FIf.'AL
VOLUME
(FT3>
43,489
43.817
45.171
46,767
47,795
48,948
48,613
43,949
49,423
53.600
55,214
57.395
53.143
59.158
55,693
63.223
62,233
61.287
61,526
62,614
64.761
65.566
66,318
67,393
69.328
7Z.C27
71,332
54,272
55,852
55.954
56,375
56,937
53.438
61,402
63,128
64.183
65.255
66,162
67,?12
67.174
63,423
63.783
69,510
73,541
71.320
72,443
74,317
76,084
77.343
73,712
78,735
8l,?l7
81,040
85,335
HYDCRSN
CCN'C.
63. ?.%
45.5%
56. ex
51. 5X
58, ex
59. 5%
61, 9X
61, ?X
58. ZX
54. 5X
55. ?X
53, ?•»
53.:%
59.es
93, ?X
e. ex
z.zx
z.ex
51, ?X
61, 2X
49, ?X
49. '/%
64. ZX
53.PX
53. 5X
55. «X
57, 'X
43, 5X
41. 5X
0.2X
40, ex
. 40. ex
4Z.7*
39. ?X
4^.2^
? *» -
39. *l
39. 5S
3S.?X
35. Ti
39. 5*
4?.? s
41. ZX
41, ?X
41. Z%
4i, ex
4i. ex
42,5%
42, «X
43, 5X
38.??
41. ZX
39.52
41. ex
RET LINE
PRESS
(IN K20)
0,243
0,060
3,070
-S,?2P
-3,233
-•3,333
-2,?33
0,223
-.3.283
-3, -372
3 , 2 « 2
-a.Dtz
•2, lie
.2,272
2,3?2
3,363
3,273
0,123
-3.383
-•3,153
-3.242
-1,"?2
0,132
3. 063
3,123
-3.CS3
-2, 222
3,083
-•2. 353
-3,252
-0,280
3,263
3,223
0,152
2,223
0,232
3,010
3.352
3 , 2 4 2
3.152
3,?5e
C.232
e.C33
0.C42
0,328
3,050
0,?20
0,132
0,250
3,162
0,163
2,ei3
3,050
0.262
-------
STATION. EXXON
DATE- 7/31/74
AVE. UNDERGROUND TANK TEMP- 68.& f
PUMP
A-01
A-02
A-03
A-04
A-05
. A-06
A-07
A-08
A-09
A-10
A-n
A-12
A-13
A-14
A-15
A-16
A-17
A-19
A-19
A-20
A-21
A-22
A-23
> A-24
w A- 25
A-2b
A-27
A-28
A-29
A-30
A-31
3-01
B-02
B-03
B-04
B-05
B-06
B-07
B-09
B-09
B-10
B-lt
B-12
B-13
B-14
B-15
B-16
• B-17
B-13
B-19
B-20
TIKE
9i344M
9t «S1M
9: 58 AM
10: 07AM
10122AM
10154AM
11 J59AM
11 :33AV
1 * 10 0PM
11 :5*AM
i ?: 15PM
!2l?5PH
1283SPM
12 J 48PM
12:55PM
1 :0<)p«
l : IOPM
1 J47PM
1S55PH
2:05PM
2115PM
2J25PM
2I30PM
2150PM
3 «02P«
3:lCPM
3t20P".
3 t 30PM
3I33PM
3s40PM
3145PM
9t3G
NO
NO
NO
NO
YES
HO
NO
NO
NO
-------
STATION- EXXON
DATE- 7/J1/74
AVE. UNDERGROUND TANK TEMP. 68.5 F
PU^P
B-21
P-?2
B-23
B-24
B-25
B-26
B-27
B-2*
3-29
B-30
B-31
TI«E
1 I SOPM
2: 95p-i
2:30?,*
?! 40PM
2:55TM
3:05PH
3MOFM
3: ?O?M
3: 3?P«
3: 35PM
2: IOPM
LIC. NO.
CAL.-VAA970
CAL.-HJZ111
CAL.-SWP674
CaL.-ICH:341
C4L.-77C02C
CJL. -0720452
CAL -VSL292
CAL.-588DP.N
CAL.-199KNZ
CAL.-393GTA
GOVT-G1143142
MAKE
67 FORD
t>5 CHEVROLET
66 Vw
6<4 VW
69 CHEV.
74 CMC
68 CHPYSLES
OPF.L
VW
FORD
69 CHEV.
hODEL
T-BIPD
WAGON
SfcD.AN
TPUC-<
VANDUhA
Nfc'i YURKEH
1971 Sw
1974 SEDAN
1973 PIfJTO
CHEVELLE
TKPE Of
URIVlf.'G
LOCAL
LOCAL
LOCAL
LOCAL
HIGHWAY
HIGHWAY
HIGHWAY
HIGnhAY
LOCAL
LOCAL
rilGHrtAy
DISTANCE
TRAVELLED
1 . K I .
5. Mi.
1 0 . Ml .
8. Ml.
14. MI.
35. MI.
50. MI.
22, Ml .
20. Ml.
28. MI.
25. MI.
LK CrtX
HEiJULI
MJ-NDL
NU-NtJL
NU-A'ib
NO-ATb
NU-NBL
P5-bSL
MO-nbL
PS-bSL
.NO-NdL
NO-ATS
NO-NbL
RVP
7.5
0.0
0.0
0.0
0.0
0.0
6.5
0.0
w f w
0.0
V f V
7.5
0,0
EXPLOi.
100.0
100.0
0.0
0.0
100.0
0.0
100.0
0.0
V ( W
5 0
W » V
55. 0
100.0
NOZZLE
FIT
GOOD
GOGO
FORCE
FO*CE
FOUR
FOpCE
GOOD
Fnsr?
^ W ~ W b
CiUOO
fORCi
GOOD
SP1IBACK
NO
liC
t»U
NO
hC
.NO
NO
*j r
« \t
IV 0
;iO
-------
STATIOV-
DATE- 7/31/74
AVE, UNDERGROUND TANK TEMP- 68,5 P
VEHICLE:
PCM?
A-01
A-32
A-23
A-24
A-25
A-33
A-£7
A-aa
A-2-9
A-12
A-I;
A-12
A-12
A-14
A-13
A-1&
A-17
A-1S
A-19
A-22
A-21
A-2*
> A-23
o. A'24
A-25
A-26
A-97
A-2:
A-2:?
A-3.5
A-31
3-C!l
T
9
9
9
12
1'.'
^ -y
± .
11
11
IS
11
12
12
"f-i
12
12
*
1
1
1
2
^
2
2
2
3
3
3
3
3
3
3
9
H:E
:o4
:4S
:56
:.'7
122
:54
: ;> a
: 33
:>:;0
: 33
:i3
: ^5
: ip
:i3
: =55
t - IS
:ia
:47
: 55
::':5
:15
: 2s
:33
:53
::2
:13
:>-':i
:-S?
:33
:43
: 4 5
:33
TA.-'.'X TEW.
(OtG, F)
64.2
73.3
64,0
62, Pi
63.3
62.. 1
67.3
3,3
71, S
73 , ?i
63.3
65,3
73.3
63.3
69.3
7?. a
74,3
55,3
79,3
81,2
51,0
76,3
83,3
69,3
76,3
72.2
as.s
75,?
32,0
73,3
77.3
61,3
8-27
B-23
9-11
8-12
3-13
8-1*
8-15
B-16
B-17
3-15
B-19
l..':35
1 '? \ ~ "•
113:55
llil?
12M.J
12: if
12:15
12:25
12:33
12:25
12:53
l!v?fl
i:33
63.^
67,3
67. •/
69.3
65,3
73,3
69,3
71.0
68,3
75.5
67,3
66, 3
72,3
74,3
73,3
73,3
76,2
VE-ilCLE
AUK P3ESS
H. M?0)
0,P
0.K
0,?
2.?.
S.J
i)./,
«.<'
0.3
e,"
0..';
K.;'
£.'s
0 , :••
0,r
B , 3
2,"
8. a
3,0
0,?
0,0
0,K
0,0
0,«
0,3
0,.^
0.3
• 0.C:
0.i.f
0,?
0,8
2 , m
0,f
C!,1
0.':
P . >!
8 . '':
0,3
3.G
0 . ;•!
0.C
0.0
0,'-
C.vT
2.5
0.:i
e.r.
0.G
3.f
3,0
** •
0 , S
GAS
DISF
(GALS)
ia.pi
5,0
8,7
5.4
9,3
7,1
10.5)
5,9
12.5
11.0
5.4
7,4
5.4
9,2
5,4
5,4
9. B
5.4
8,6
14.7
5.4
9,0
3,5
14,7
5,4
9.0
5.4
5,4
14,3
13,2
10,7
12.0
17.3
8.9
9.8
5,3
5.4
18,1
1Z.7
5,4
5.4
5.4
4.?-~
12.3
14.5
14,5
6.9
11.4
5,4
5.4
10, P
CIS?
TIME
(MIN.)
1.9
1,3
1.9
0,0
1.1
1,3
2.9
1.3
2.3
2.4
1.0
1.3
1.0
2.2
1.1
1.1
1.1
1,2
1.3
0,3
1.1
1.9
H.9
3,1
1.1
1.3
1.1
1.1
3.0
1.3
0,0
1.4
3.6
1,3
2.1
1.2
1.3
2.5
2.2
1.1
1.2
1.1
«.- - 1.2
1,7
3.1
3.0
1.5
?,z
1.3
1.1
2,2
OISP
TEMP
(DES F)
72, a
63,0
63.0
63.0
66.3
62. a
69.3
72,0
73.0
73,3
72.3
72.3
73.3
74,3
73.2
72.3
73.3
76 ,'3
75.0
73,3
73.3
73, ' 1
74.3
73,3
71.3
74.3
75.2
77.3
74,3
76.3
77.3
73.3
69. H
70.3
72.2
73,2
73.2
73.3
72.3
72.3
74,:?
74.3
74,3
76.3
73.3
73.3
73,3
73,3
73.3
73,3
75,3
RET VAPOR
TE^.P
(DEC F)
63.0
66,0
66,0
64,0
64,0
67.0
67,0
69.0
71,0
76.3
72.3
71,0
72.3
72.0
72,0
72.0
74.3
76,0
74,0
74,0
73,3
76.0
76.0
74.0
74.3
72.0
75,0
76,0
76,0
76,0
78,0
64,0
66.0
64.3
64,0
64,3
63,3
63,0
67,0
73,3
70,0
7C.3
72,0
74,0
72,3
72.0
72,0
72,0
73,0
76,0
75.0
INITIAL.
VOLUME
(FT3)
37,435
87,839
88,152
89,244
90,278
91,411
92,192
94,249
95,139
96,472
97,752
98,361
98,337
99,121
100,214
103, 34 a
101,026
102,022
102,519
124,793
1B6.755
108,739
1?9,847
113,437
111,427
112,288
113.555
114,133
114,947
116,398
116,743
102,021
123,425
1?7,615
1S8.325
138,664
113.26?!
113.991
115,253
117,176
117,899
117,699
119,112
119,608
121,331
123,435
125,543
128,193
128,972
129,577
130,343
FH'AL
VOLUME
(FT3)
87,692
63,152
89.344
93,277
91.411
92.189
92.637
95.182
96.434
97,752
98.358
93.307
99.121
133,314
103,343
131,236
131,972
102,515
103.622
136,552
127,363
139,846
113.239
111,427
112.285
113.565
114.133
114.947
116.398
116.738
117,538
133.425
125.664
123.124
1 2- 3 . S 5 fi
['29.565
113.991
115.252
116. S35
117.899
115.697
119.112
119, 6Z7
121,331
123.435
125.543
125,900
128.972
129,570
133,340
131,596
HYDCRBN
CON'C.
27. 0X
24, ?X
29. 0X
24. ex
53. SX
54, 5X
56. fX
52. 5X
6i. ax
61. ?X
57.2?;
51.5%
55.3%
5S.P-X
53. 5X
53. ?X
56, 5X
64. 5X
66, ex
65. Z%
54. 5X
56.7%
56. 2%
60. 5X
52, ?X
58. 0X
63. 0X
64..?%
65. 5X
• 66. 6X
55. ?X
61. CX
61. 5X
6C.'T%
6C.:-*
6 s . •;• x
59. 5X
65.2%
55.5*
55. ?X
53,2%
5£.i?X
57. 5X
58. 0X
58. ?X
53. 2X
57, 0X
58, 0X
57.0%
34. CX
57, 2X
RET LIN-E
PRESS
d\' H?Q>
0,122
0,162
0,043
0.013
0,123
3,043
-2,032
0,012
3,122
3.023
^.i1-!?
-:,;?5:
2,?23
1 O "J T
V | L' w C
-2.! 22
-3,ri?
e,360
3,22?
c.c?z
2,372
?,£33
-3,?42
0,24?
-2.292
0,253
2.142
0,-:22
3,352
3,12?
2.23-3
0,332
-3,163
s, es
• ^ * ~
-<; , r:
2 . ?*
"? **, '
i.* t - -
1 '. 1
U | ~ J
2,22
Tl •"* ^ '
" •-• i £. <
2.C4
3.C22
2,23?
3,2?3
3,260
0,033
-3,020
0.243
Z.23I?
0,1?3
0,223
-------
STATIC^ EXXOM
DATE- 7/31/74
AVE, UNDERGROUND TANK TEMP- 68,5 P
PUN?
B-21
B-22
3-23
B-24
B-25
6-26
8-27
B-23
B-2*
B-3*
8-31
TIKE
i:50
2:J5
2:32
2:'.?
2:55
3:^5
3:10
3:20
3:33
3:35
VEHICLE
TANK TEMP
(DEC, F>
72,0
77,3
73,3
7.1,3
72.3
76,2
93,0
79,3
73.3
76,3
VEHICLE
TA.'.'K P^ESi
(IN. H20)
0,C
0,:-'
3. :i
0.R
a, •.:•
2.C<
3,:i
0.'.:
GAS
DISP
(GALS)
14.3
5.4
8,3
5,4
16,1
5.4
17.8
5,4
5.4
5.4
10,2
DISP
TIME
( M I N . >
3,0
2,7
1,6
0,7
3.1
1.7
3.6
1,3
1.1
1.2
2,2
OISP
TEMP
(OEG F)
75,2
75.3
75.0
75.3
75. 3
72,3
75,0
75,0
75,!?
75,0
74, a
RET V4POR
TEMP
(OEG F>
75.3
75.0
75,0
75,0
75,0
74,0
75,0
75.0
75,0
75.0
75,0
INITIAL
VOLUME
(FT3)
131,590
132,935
136,493
137,533
138,278
138,233
138,968
140,910
141,672
142,555
135,754
FINAL
VOLUME
(FT3>
132.910
133,540
137.533
138.268
138.282
138.962
140,892
141,670
142,555
143.343
136.475
HYDCRBN
CQK'C,
56, ex
52. 5X
55. 0X
54. 0X
53, 0X
53, Z%
53. 2X
50. 5X
50, ex
50, 5X
55, dX
RET LINE
PRESS
(IN H20)
0.Z20
-s,ie0
0.040
-0,023
0,'220
0,020
0,060
0,050
0,040
0,163
-0,040
-------
STATION- EXXON
1/74
AVE. UNDERGROUND TANK TEMP- 68.3 ?
PU'-.P
4-01
A-02
A-03
A-04
A-05
A-0*
A-07
A-06
A-09
A-10
A-ll
A-12
A-13
A-14
A-15
A-1 6
A-17
A-18
A-19
A-20
A-2i
A-22
A-23
A-24
A-2S
A-26
A-27
A-28
A-25
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-?7
A-38
A-39
B-01
B-02
B-03
B-04
B-05
E-06
B-07
B-OS
B-09
B-10
B-ll
B-12
TIME
12 JSO?M
1 JOOPM
H04PM
1 JlOPM
1 J15PM
1 135PM
1MOPM
2:io?.i
2:20Prf
2J2SPM
2l30?M
2;45?M
2:55P4
•3: 15PM
3: 30PM
3135PM
3 J 55PM
4: 15PM
4:25PM
4 { 35PM
4: 40PM
4: 50PM
4 J55?M
5105PM
5j 10PM
S:20PM
5120PM
5:35P«
SJ50PM
5J55PM
6JOOPH
6:05PM
6: 15PM
*: 20PM
6: 40PM
ft :45PM
6: 55PM
7:iOik(
7125AM
12130PM
12:44PM
12:47PM
12:53PH
1 1 20PM
U35PM
i. :43PM
1 :48PM
2tO«PM
2120PM
2t33?M
2150PM
IIC. NO.
CtL. -10527V
COL.-TF-329
CAL.-6YN287
CAL -ZET-165
N.Y.-223YYJ
CAL. -268885
CAL.-12109M
CAL.-379-GFE
CAL.-624LBF
CAL.-407EOD
CAL.-BSOKOY
CAL. -97490*
C.aL.-'JO'fctS
CAL.-023-HKK
CAL.-CHW-632
CAL.-245S3H
C»L.-BSA-114
CAL.-UBW517
CAL.-665-CLY
CAL.-TLZ-429
CAL.-787-DGJ
C4L.-A9Y947
CAL.-703LBI
CAL.-VLM962
CAL.-611AZR
CAL.-402-CLO
CAL.-775S6S
CAL.-65044M
CAL.-U33-380
CAL.-617HKS
CAL.-310KDG
CAL.-33624P
CAL.-575FXO
CAL. -206 DEM
CM,.-YJfirjlO
CAL.-244GQS
CAL.-ZIC-002
CAL.-SPP573
CRL.-XJX-438
CAL.-21t£DV
CAL.-VAH682
CAL.-276FIV
CAL.-l?y' iiGO
PINTO WAGON
NOVA
1973 M.MADOR
TRUCK
T. BIRD
KETEUR
FIREBIRD
TYPE Of
DRIVING
LUCAL
LOCAL
LOCAL
HIGHWAY
HICHMAY
LOCAL
LOCAL
LOCAL
LOCAL
HIGHWAY
LUCAL
HIGrfV-AY
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LUCAL
LUCAL
LUCAL
LOCAL
HIGHWAY
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LOCAL
LOCAL
LUCAL
HIGHWAY
HIGHWAY
LOCAL
HIGHWAY
LUCAL
LUCAL
LOCAL
LOCAL
LUCAL
LOCAL
HIGHWAY
HIGHWAY
LUCAL
HIGhnAY
HIGHWAY
HIGHWAY
LOCAL
HIGHWAY
LOCAL
LOCAL
LUCAL
HIGHWAY
DISTANCE
TRAVELLED
2. Hi.
2. Ml.
3. MI.
4. MI.
8. MI.
5. Ml.
1.M1.
3. MI.
2. MI.
42. MI.
2, MI,
10. HI.
15, MI.
40. MI.
6. MI.
l.MI.
4. MI.
4. MI.
15. MI.
4. MI.
10. MI.
3. MI.
100. MI.
50. MI.
3. MI.
2. MI.
5. MI.
2. MI.
5. MI.
100. MI.
2. MI.
20. MI.
6. Ml.
O.MI.
l.MI.
2. Ml.
10. MI.
6. MI.
400. MI.
35. MI.
l.MI.
15. MI.
10. Ml.
10. MI.
40. MI.
3. MI.
3. MI.
l.MI.
O.MI.
Ib.MI.
8, MI.
LK CHK
HESULT
FL-ATS
NU-ATb
NO-iNBL
NO-ATB
NO-ATB
uO-NclL
NO-HBL
NO-NBL
NO"NBL
NO-NbL
PS-BSL
NQ-fJbL
NO-fJBL
iNO-N^L
NO-NtsL
(,0-NBL
NO-UBL
PS-BSL
NO-N8L
NO-NBL
NO-NbL
NO-NbL
NO-AXB
NO-NBL
«0-A'fB
PS-BSL
NO-fcBL
NO-NBL
NO-NbL
PS-BbL
f'L-NBL
NO-NBL
IVO-NBL
NO-NbL
PS-63L
PS-BSL
NO-NbL
NO-NHL
NO-i\ibL
NO-NbL
NO-NdL
NU-NBL
FL-AT3
PS-bSL
PS-6SL
PS-BSL
NO-NfaL
NO-ATB
NO-NBL
PS-BSL
PS-BSL
RVf
0.0
0.0
0.0
0,0
7.B
0.0
u.o
0,0
0,0
0.0
0.0
0,0
7,8
0.0
0,0
0.0
0,0
4,3
0,0
0.0
0.0
0.0
7.9
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0,0
o.c
0,0
0,0
0.0
0.0
0.0
0,0
0,0
0.0
7.6
LXPLOS.
0.0
0.0
40.0
100.0
100.0
10.0
100.0
100.0
30.0
0.0
0.0
100.0
luo.o
100.0
100.0
0.0
0.0
0.0
3S.O
0.0
100. 0
0.0
100.0
100.0
100.0
0.0
100.0
0.0
40.0
0.0
o-.o
0.0
100.0
0.0
0.0
o.o
15.0
100.0
100.0
100.0
60.0
100.0
0.0
0.0
0.0
0.0
100.0
5.0
100.0
o.o
0.0
NOZZLE
Flf
FORCE
JOHCE
GOOD
fOKCE
FORCE
GOOD
GQOD
GOOD
GOOD
GOOD
FORCE
PGOrt
GOCC
GOOD
PCOK
GC05
GOOD
FORCE
GOUD
GOOy
GOOD
GOOD
FORCE
POOR
FORCE
FORCE
POOR
GOOD
GOOD
FCPCt
GOOD
GuOD
POOR
GOOD
FaHCE
FORCE
GOOi)
GOOD
fuiR
GOUD
GOOD
iOQD
FORCE
hORCt
FORCE
FOSCE
' GOOD
FORCE
GOOD
FORCE
FURC£
SP1IBACK
•SO
NO
NO
NO
NO
NU
NO
NO
NO
NO
NO
NO
f«0
;»o
MO
.SO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
ftO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
-------
STATION- EXXON
DATE- 8/ 1/74
AVE. UNDERGROUND TANK TEMP- 68.5 F
PUMP
B-J3
B-14
B-15
B-16
B-17
B-16
B-19
B-2C
B-21
B-22
8-23
B-24
B-25
R-26
B-27
B-?S
8-29
B-30
B-31
B-32
B-33
B-34
B-35
> B-36
oo B'37
B-38
B-39
8-40
B-ll
B-42
B-43
B-44
B-45
B-46
TIME
3:04?M
3J06PM
3:16PM
3:22PM
3135PM
3l*9pM
3: 58PM
4: 15PM
4125PM
4;32PM
4:3SPM
4 ! 45PM
4 j53py
. SIOOPM
5 t 05P«
5 J 1 7PM
5: 29PM
5 J 33PM
5:45PM
5:52PM
6:OOPM
6:07PM
5:17pM
6 J28PM
6 |33PM
6 J 39PM
6145PM
7:OOAM
~i 1 06AM
7: 15 AH
7J23AM
7:34AM
7135AM
7|42A«
LIC. NO.
CAL.-CCNISo
CAL.-T64010
CAL-.-276219W
CAL.-690JTC
CAL.-042-OGZ
CAL.-994FI*
CAL.-8ZV648
CiL,-960K.DV
CAL. -10870V
CAL.-102GGC
CAL.-3?S525
CAL.-*PT174
CAL.-46bA*T
CAL.-DKJ506
CAL.-VX.F295
CAL.-OY2C21
CAL.-137FS.M
CAL.-CNZ966
CAL. -0720452
CAL.-OLA191
CAL.-9IZ484
CAL.-411CPL
CAL. -63) 97V
CAL.-251CMO
CAL.-30111L
CAL.-973GUX
CAL.-980BYX
CAL.-133EVQ
CAL -919JTT
CAL.-567FHU
CSL -491FRN
CAL.-DKL015
ORE.-BHW810
CAL.-DKZ207
MAKE
19o3 FOHD
1965 FORD
1967 FORD
1974 CMC
1960 PONTIAC
l'»72 8UICK
1964 FORD
DODGE
CH£V.
FORD
DATSUN
CHEV.
CHEV.
CHEV.
DODGE
MEHCEDES
BUICK
PONTIAC
CMC
VW
CHEV.
FOFD
FORD
MERCURY
CHEV.
OLDSMOSILE
FORD
PLYMOUTH
1973 CHEV.
DODGE
1971 CHEV
FORD
1969 TOYOTA
DODGE
MODEL
FALCON
VAN
VAN 1
SIERRA
CATALINA
SW
GAL, 500
1974 DART
1961 CORVAIR 95
1973 PINTO
1970 P.V.
1968 MALIBU
1970 IMPALA
1963 NOVA
1968 CHARGER
1961 22058
1972 RIVERA
1965 BONNEVILLE
1974 VAN
1964 SEDAN
1955 CHEV.
1970 PINIO
1974 VAN
1971 CAPRI
1972 P.U.
1974 CUTLASS
1968S*
1972 SATELLITE
VAN
1972 Sft'INGER
NOVA
1964 GALAXIE
CORONA 1600
1965 DART
TYPE OF
DRIVING
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
HIGHWAY
LOCAL
LOCAL
LOCAL
HIGHwA'i
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
LOCAL
HIGHWAY
HIGHWAY
HIGHWAY
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
LOCAL
LOCAL
HIGHWAY
HIGHnAY
LOCAL
LOCAL
HIGHWAY
HIGHWAY
LOCAL
LOCAL
DISTANCE
TRAVELLED
20. MI.
5. MI.
2. MI.
2. MI.
2. MI.
25, MI.
O.MI.
2. MI.
3. MI.
40. MI.
3. MI.
8. MI.
5. MI.
10. MI.
l.MI.
2. Ml.
25. MI.
5. MI.
50. MI.
4. MI.
O.MI.
2, MI.
25. Ml.
l.MI.
O.MI.
8. MI.
15. MI.
70, MI.
2, MI.
2. MI.
8. Ml.
15. MI.
l.MI.
l.MI.
LK CHK
RESULT
NU-f,uL
NO-NoL
FL-ATB
NO-NriL
NO-NflL
FL-ATB
NO-ATB
PS-SSL
PS-faSL
PS-bSL
NO-iNdL
NO-NbL
NO-McL
NO-ATB
NO-fJob
rtU-NBL
NO-AT8
NO-NbL
NO-f
-------
STATIC.'-:- FXXlK
DATE- 3/ 1/74
AVE, UNDERGROUND TANK TEMP- 68,5 P
PU« =
A-J1
A-32
A-i-3
A-34
A -05
A-36
A-27
A-0o
A-39
A-l '
A-ll
4-12
A-li
A-l*
A.-lr
A-li
A-17
A - i •'-'
A-l-/
A-2-'
A-21
H-22
> A-23
vo A"2*
A-2i
A-c =
A - 2 /'
A-2a
A-2 5
A-3<:-
A-ll
4-j;1
A-3^
A-34
A-33
A-36
A-37
A - .3 ;"
A-3v
5- .21
3-'"1?
B-33
B-24
8-H5
B-7.6
B-37
B-ze
E-:?
= -12
S-ll
9-12
TT-;£
12:50
1 : '.'> ft
i:24
i:i3
i:i5
i:35
1:40
2 = 13
2:?0
2:25
2:3?
2:4?
. 2:^5
3:i5
3:3ii
3: J5
3:^5
4:j,5
4:25
4:35
4:-!3
4:50
4:55
5 : >!5
5:j0
5:<;.3
5: 2w
5:35
5 : "50
5:55
o : ..' e
o : '•' 5
o : i5
6 :v?;J
6: 40
6! 45
6:>5
7:i3
7:?p
12: JS
12:14
12:47
12:53
1:20
1:35
1143
1:48
2:34
2:20
2:33
2:53
VEHICLE
TA^K TEMP
(DEC. F)
33,2
77,2
74,3
83,2
62,2
79,3
73,3
82,?
96.?
1S2.T
7<,0
&7,;.
1S5.3
3,. "5 '
85, 3
,i?
63,?
o;'.,3
93.0
95.3
95,?
73,0
94, fl
104,3
87.?
83,3
66,?
21,3
61,0
84, S
81,0
83,0
85.3
79.3
92. C
65.0
95,3
75.3
68,0
7'?,?
75,3
73.3
75.3
Q4.3
02.3
86,3
«3,0
fll,3
71,3
81.0
97,2
VEHICLE
TAMK P'VESS
UN'. H20)
0."
0 . :-'!
3,-"
S,-'
0."
0,"
e.s
0.C1
e.--
3 . "
Z."
•»>
•-' • '
--» •:
<*' t '
?.,•':.
Z , ::
0.C!
fl * ' '
e . •';
0,n
0 , i.1
0,!'!
S , :-:•
0,3
C.L!
e.-!
0,5
- 2,f
0,;<:
3,f
3,4
0.;;
B.-3
0,'
2 . ':•
e.a
2 , :;
0,3
C!.S
3,'i
0,f:
0,3
3..?
0.0
0,6
0,3
0,0
0,3
0,i5
0,?
?,n
Jl.f
GAS
D!SP
(GALS)
5.4
5.4
9.2
5.4
5.4
5,4
5,5
9.0
11.3
5,4
7.3
2T.fi
1C, 7
20.6
9,4
9,51
5.4
9.6
7.2
5,4
15.2
5.6
17.3
5.4
7.1
9,3
14.3
14,4
5.4
10,7
7.2
9.0
5,4
5.4
9,3
5,4
5.9
14,6
13,9
5.4
5.4
5.4
5,1-,- -
18.6
5,4
14,1
4,5
5.4
5,4
5,4
15,6
DISP
TIME
( M I N . )
1.0
1,3
1,6
1,2
1.5
1.2
1,2
1,9
2.3
1.2
1.6
3.2
2.4
3,6
1.7
2,2
1,3
2,2
1,5
0,8
3,4
1,3
3,3
1.2
1.5
1.8
3.1
3.4
1.3
2,4
3.3
2.3
1,0
1,1
1.4
1,3
1.3
2.8
2.8
1.2
1.1
1.2
1.2
4,1
1.0
1.5
0,8
1.1
1.1
1,1
3.4
DIS?
TEMP
72,3
73,3
77,0
74,3
73,3
73.3
73.2
69,0
73.3
7?. 3
73.2
75.3
73.2
75,3
73.3
73.0
75.3
75,3
75.9
75.3
73,2
74.3
72.0
73. a
73.2
76.3
73.3
73, a
73.0
71,0
72.3
74.3
72.3
73,0
71.3
73.3
72.3
71. 3
72,3
74. (A
74.0
75,3
74, 0
75, a
75.3
75.3
75,0
75,3
75,3
75.0
75,0
RET VAPOS
TEMP
(OEG F)
72,0
73.0
76.0
74.0
75,0
72,0
72,0
74,0
76.0
75.0
75,0
7 £ . S
77.3
79.0
77.0
76,0
79.3
77.3
79,0
83.3
76.0
e,a
78,0
75,3
0.0
73.3
75, -3
73.0
74.3
76,0
75,0
76.0
75.3
75.3
75,0
75,3
75.3
74,0
73,3
75.0
75,0
76,0
76.0
75,0
75,0
75,0
75,0
83,0
75,0
75,0
85,0
INITIAL
VOLUME
CFT3)
153,473
151,132
153,785
151,942
152,283
152,429
153,157
155,363
156,625
157, 7«5
157,953
159,360
159,288
159,642
161.354
161,589
164,739
165,734
166,137
166,670
166,8=9
163,172
163,509
169,969
169,969
177,, 290
171,296
171,314
173, C38
174,047
175,364
175,991
176,993
177,319
173,189
17«,978
179,692
183, 4?2
131,332
179,333
179,899
183,563
181,135
182,695
165,462
186,153
187,854
190,090
192,585
191,065
191,602
FINAL
VOLUME
(FT3)
151.132
3,P:03
151,942
152,283
152,288
153.156
153,647
156,625
157.745
157.625
159,266
159.2SS
159.642
161,354
161.509
162.761
165.704
166,137
166,670
166,852
168,172
163.617
169,969
173,985
173,29?
171,296
171,314
173.^38
174.343
175,364
175.991
176.993
177,319
178,113
178,978
179.573
179.983
181.322
182.357
179,899
163.562
181.135
161,693
185,462
186,153
187,853
168,223
193,576
l9l,£8l
191.799
193,466
HYOCRBN
CONC,
54.?,%
46. 2X
49, 5X
52. ZX
35. ex
46, 5X
44. 5X
82. 5X
93. ZX
77,?%
76.5%
73.7S
34.2%
92.2%
45.5%
73.5%
6 4 . C %
"2 O . 'i %
58.5'X
55, 5X
75, 0K
3?. ZX
69.0)i
62. e%
56.5%
56. ex
51.5%
61.5%
53. CX
• 28. ZX
67. 2X
67.3%
62.3%
69. Z%
57.5%
69. Z%
33.2%
47. 5*
5.9%
56.?%
55.;:%
54.5%
54. 0X
53. 5X
5C.5X
50. 5X
50. 0X
43. CX
48, 5X
49..?%
73, ZX
RET LINE
PRESS
UN H20>
3,393
-3,370
0.040
-8,333
-2,153
3,040
-3,010
3.23Z
-3,323
-3,?:;
J.35-3
-3.323
3.21?
3,313
-2,053
3.352
3.4*3
-3.142
-2,123
-3.143
-3,123
Z,?13
-2.7*2
-3.393
-3. ess
3,315
-0,322
2,323
3,392
-3,383
-3,ei»5
_ t -1,1
«P* | b • v
-3,:i2
2,333
-3,213
-3,313
-:.?22
-Z,?S2
•? y 5 i
«•• • t a if
•j 4 •* •-»
** i j. <•' <•*
-3, ?!S3
-?.ei2
-2,212
-3,163
-3,363
-2,193
-3,180
-3,133
-2.233
-2,173
0.200
-------
STATION- EXXOf-J
DATE- 8/ 1/74
AVE, UNDERGROUND TANK TEK'P- 65,5
VE UCLE
B-13
8-1*
B-13
6-16
8-17
B-l?
£-1'
D-21-1
B-21
9-22
3-2-3
B - 2 '-
8-23
3-26
8-27
£-2i
B-2*
B-3-J
8-31
6-32
R-33
3-34
> S-35
,_, 3-3*
o e-37
9-3B
S-3^
3-4 .
9-4-.
3-4?
8-43
B-44
9-45
E3-45
3:»4
3:06
3:i6
3:22
3:35
3:43
3 : ?S
4:i5
4125
4:32
4:33
4 : -J5
. 4:53
a : /-• Z
5 : '5
5:17
5:29
5:33
5:45
5:52
o : .ifl
6 : «.' 7
5:i7
6 : ?.:>
6:33
6 : .59
6 : •'• 5
7:.;?
7:. 6
7 : i5
7:23
7:34
V!35
7 : -J2
9^,3
66,0
92,0
66,3
66.3
96.3
92,3
86,2
P6 , 3
S5.0
06,3
?:••, s
9 J . 3
64.-?
&6 , f!
88,3
1 ft 3 , 2
65.2
0 , 0
8^,2
81,3
66,2
81,2
'85.3
78,3
85,3
62,2
61,3
75,2
62,3
82, S
78,3
74,0
79,3
VEHICLE
TANK P-~ESS
UN, HZO)
0', ?.
91, •:;
0,0
00
0,«
0,0
0.5
0. '•:.
1,2
0!a
1,4
0.1
e!s
0.5
0! ::
5,3
0,5
0,3
3,2
0,1!
GAS
DISP
(GALS)
12.3
5.4
5.4
5.4
16.4
17.4
5.4
5.4
5,4
5,4
7.7
5,4
5,4
11,3
5,4
8.9
8,9
5,4
5.4
5.4
8,9
5,4
8,9
5,4
5.4
10.4
12,5
5.4
3.9
5.4
7,2
5,4
13.1
3,9
0; s°
TIME
< M I N . )
•3, 7i
1,5
1,2
1,1
3,6
3,7
1,1
1,2
1,1
1,8
1,2
1,2
1.2
2.4
1.2
1.1
1.1
0,7
1,2
1.9
1,1
1,2
1,3
1.8
1.2
2,4
2.7
e.3
0,2
1.1
1,5
1.2
2,2
2,0
DIS?
TE«P
(OEG F)
75. a
75,3
76.0
75.0
75. a
75, a
75,0
75,3
78.0
78,0
77,3
75.3
75.3
76.3
75.0
75.0
75.3
75,3
75.53
75,0
75, a
75.3
75. ii
75,3
75,0
75.0
75,3
75.3
75.3
75.0
74.0
74.2
74,0
74,0
RET VAP03
TEMP
(DEC F)
85.0
85,3
86.3
85,0
85,0
85,3
85,0
85.0
85,0
85.0
85.0
85.0
85.3
85.3
85,0
84.0
85.3
84.3
85.3
63.0
84,0
80,3
80,0
83,3
63,3
82,3
80,0
8? , 3
83,3
82,2
74,3
73,0
74.0
73,0
INITIAL
VCLU'-E
(FT3)
193,473
194,325
194,438
194,653
196,45(5
193,22?
199, 960
200,244
200,913
201,648
232,153
223,235
3 . 0 ? 2
224,457
236.624
207.762
208,672
209.155
229,162
2?. 9, 659
213,396
211,0?^
211,669
212,425
213,045
213,635
214,635
216,365
216,938
218,038
213,713
219,465
219,736
221,155
FU-AL
VOLUME
(FT3)
194.324
194.428
194.650
196.450
198,198
199,98?
233.105
233,913
221.644
202.148
223. K35
223.473
2.C30J
235.468
227,165
223.373
2G9.150
2-39,160
239,645
213,394
211.CS9
211.663
212,423
213.345
213.635
214.604
216.364
216,935
213,233
213,712
219,464
219,736
221.158
222, 050
HYOCK5N
CON'C.
77. SX
76. EX
63. PX
72. ?X
75. 7.%
76. 2X
75. 2X
76, 0X
76, ZX
73. 5X
73. ex
72. ex
71 . CS
73. ZX
71, <»X
73. 5X
70, 0X
72. CX
72, 3X
72,5%
73. ex
69. Z%
69. 5X
71, SX
73. ex
71.5%
69. 5X
79, 0X
69. ?X
68,571
63, 2X
77, °:X
66.0%
68. OX
9ET LINE
P = ES5
UM "20>
-0,?.23
-0.24Z
-0,160
3,430
-0,060
-3,260
-0,040
-a, 030
0.020
-0,063
-3.3S3
.3,12-2
-3.222
-3,343
-3,343
-3,260
-0,310
-3,122
-1,233
-3,242
0.1 ?C
-(5,389
- f , 1 B 0
3,343
-0.Z40
-3,388
-3,243
-3.343
-0,223
-3,133
-0,100
-e.aia
2.323
2 , -Z 4 3
-------
- EXXON
DATE- 3/ 2/74
AVE, UNDERGROUND TANK TEHP- 72,3 F
PUMP
TIME
A-01
A-22
A-33
A-J4
A-;5
A-Z6
A-27
A A ~
-Oc
A-3-;
A-13
A-ll
A-12
A-13
A-14
A-15
A-10
A-17
A-lS
A - 1 '•>
A-2-"?
A-21
A-22
A-23
A-2<»
A-25
4-26
A-27
A-23
A-29
A-3?
A-31
A-3
A-33
A-34
A-35
3:i0
8:i>e
8:25
8:42
8:45
8:50
b:55
9* >' ffll
• fity
9:17
9:i8
9:i5
9:37
. 9! 4 5
9:49
iw:;'fl
0: .'0
!>?: 12
Io:2i3
1S:P7
I5i : 35
1HJ43
11150
10:55
li:J0
i'133
11:10
li:20
11:22
J:'Ji3
11:28
li:33
11:35
li:27
3:. 'JS
11M5
VEHICLE
TANK TEMP
(DEC, F)
75,0 •
66,3
3,3
72,3
66,3
67.0
65,0
67, C
69.2
73.2
£7,3
69,0
62,0
66.3
63. 3
73,2
68.3
68,3
66.?
75.3
73,0
70,0
72,3
76,3
72.3
77.3
75,3
73.2
88,3
78,3
72,2
73,3
66,2
fl^. "
o -.; , %j
85,3
VEHICLE
TANK PRESS
(IN. H20)
0,4
1.1
0.M
0,2
0 . '.;
l.R
0,P
0,C
2,'"1
1.5
5,u
0,v
0.0
5.'?
3,i
0.?
0,e
0,?
0.0
•2,2
0,fl
0,
-------
STATION- EXXON
DATE- %/ 2/74
AVE. UNDERGROUND TANK TEMP- 70.0 F
PUMP
A-01
A-02
A-03
A-04
A-05
A-06
A-07
A-09
A-09
A-10
A-ll
A-12
A-13
A-14
A-15
A-U
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-?5
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
TII*E
SllOAM
8120AM
8125AM
8140AM
8|45AM
8150AM
8J554M
9JOOAH
9J17&H
9|18AM
9:35AM
9:37AM
9|45AM
. 9J49AM
1 0 1 0 •> 4 H
0 J004H
10:lOAM
10:20AM
10:27HM
10|35AM
10140AM
1U50AM
10I55AM
1 1 SOOAM
0 JOOAM
1 : tOAM
U20AM
1122AM
0;OOAH
1 1 2$AM
l:30AM
U3SAM
H37AM
OlOOAM
1U45AM
LIC. NO.
CAL.-420-LBJ
GOVT-Gll-49367
CAL.-23654L
CAL.-25233P
CAL.-1GP459
CAR.-36P-F.RN
CAL. -030014
CAL.-110CVH
CAL. -09453V
CAL.-459BIM
CAL.-33099R
CAL.-4S9KN*
C»L.-fi'iV575
C&L.-270GVC
CAL.-545DOZ
CAL.-WG8214
CAL.-APK672
CAL.-57294L '
CAL.-MJC109
CAL.-39aCSQ
C4L.-K2K685
CAL.-166-GFD
CAL.-RLY589
CAL. -1069953
CAL.-623bYM
CAL.-690JTC
CAL.-393GTA
CAL.-YIN876
CAL.-417-ERZ
OL.-063-GTS
CAL.-TTA-688
CAL.-WNK827
CAL.-SDU351
CAL.-999KIP
CAL.-36013W
MAKE
DODGE
71 FORD
72 CHEV
73 CHEV.
68 PONTIAC
72 CHEV.
67 ChEV.
70 FORD
72 DATSUN
70 CHEV.
73 DODGE
DODGE
VW
FORD
CHEV.
FORD
DODGE
CHEV.
PLYMOUTH
FORD
CHEV.
73 FORD
36 FORD
74 VW
70 PLYMOUTH
74 GMC
73 FORD
65 CHEVY
68 FORD
73 DODGE
56 CHEV.
1964 PLYMOUTH
1962 CHEVY II
74 FORD
74 GMC
MODEL
74 CHARGER
CUSTOM
CUSTOM/10
CHEVY VAN 10
L£ MANS
MONTE CARLO
EL CAMINO
PINTO
600 PICKUP
CHEVELLE
100
1974 DART
190t> VAN
1973 PINTO Srt
1967 IMPALA
196H MUSTANG
1955 V8
1972 LUV
1964 FURY S.>.
1970 TORINO 5«
1957 SW
PINTO
SEDAN
BUS
SATELLITE
TRAVELALL
PINTO
IMPALA
MUSTANG
CHALLENGER
WAGON
VALIANT
NOVA
PINTO fcAGON
VAN
TYPE OF
DRIVING
HIGHWAY
LOCAL
LOCAL
HIGHWAY
LOCAL
HIGHnAY
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
HlGHhAY
LOCAL
LOCAL
LOCAL
HIGrt*AY
LOCAL
LOCAL
LOCAL
HIGhr.AY
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
HIGhnAY
LOCAL
LOCAL
LOCAL
DISTANCE
TRAVELLED
15. MI.
' 4. Ml.
O.MI.
62. Ml.
2. MI.
4. MI.
O.MI.
5. MI.
l.MI.
l.MI.
3. Ml.
l.MI.
O.MI.
l.MI.
l.MI.
18. MI.
l.MI.
l.MI.
14, MI.
11. HI.
l.MI.
2. MI.
2. Ml.
7. MI.
l.MI.
5. Ml.
6. MI.
l.MI.
8. MI.
2. MI.
2. MI.
5. MI.
l.MI.
10. MI.
12. MI.
LK CHK
RESULT
PS-aSL
PS-bSb
NO-NBL
NO-ATB
NO-NBL
PS-BSL
NO-NBL
NO-NBL
NO-fttiL
PS-BSL
PS-SSL
NC-NBL
NO-NBL
PS-BSL
NO-NBL
nU-NBL
NO-NBL
NO-NBL
FL-ATB
NO-NBL
NO-NBL
NO-fvBL
NO-f.bL
NO-NBL
NO-NBL
fiG-AIb
NO-NbL
NO-NBL
NO-NBL
NO-NbL
NO-JiBL
NO-i\BL
NO-NBL
NO-NBL
NO-NBL
RVP
7.0
0.0
0.0
0,0
0.0
0,0
0,0
0,0
7,4
0,0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
7,3
0.0
0.0
0,0
0.0
0.0
0,0
0.0
tt.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
EXPLOS.
0.0
0.0
100.0
s.o
100.0
0.0
100.0
100.0
0.0
0.0
0.0
0.0
100.0
0.0
100.0
100.0
100.0
100.0
0.0
100. 0
100.0
100.0
0.0
100.0
0.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
1.022LE
FIT
FORCE
FORCE
GOOD
FORCE
GOOD
FORCE
GOOD
GOOD
GOOD
FORCE
FORCE
GOOD
POOR
FORCE
GOOD
GOOD
GOOD
POOR
FORCE
' GOOD
POOR
GOOD
GOOD
PUO*
GOOD
FORCE
GOOD
CiUOD
GOOD
GOOD
GOOD
COOR
GOOD
GOOD
GOOD
SPIXfiA
NO
NO
NO
HO
MO
50
NO
YES
NO
NO
NO
NO
hC
NO
NO
ftO
NO
NO
NO
f.0
.SO
NO
ftO
NO
NO
.NO
NO
NO
NO
NO
-------
CALCULATED DATA
APPENDIX B
-------
EXXON JATE-
AVE UUDCRD TANK TEMP- 69, v) F W
PUMP
AiiCl
A«03
A.ff5
A«*ll
A«25
B»07
B«09
B«12
B*19
B«21
B*22
B*25
B«27
TIME
111 17AM
11531AM
12J03PM
2532PM
5;34PM
1504PM
1557PM
2540PM
4J15PM
4530PM
4 J 50PM
5520PM
5530PM
RET VAPUK
VOLUME
(FT3)
1,423
1,354
1,028
0,872
1,938
2,99?
1,019
0,845
1,120
1,767
1,253)
2,282
0,873
'/AP/U-
RATIO
1,065
1,138
1.424
1,208
1,160
1,237
1,337
1,171
1,047
0,924
0,964
1,028
0,868
U I b I1
RAH
(G/MJN)
4.651
4,768
4,985
4.500
9,036
1.90?
4,442
4,836
4,486
7,900
6,467
4.766
5,000
UNijC^VEH
TANK TMP
(DEC F)
-3,000
-3,000
"I ,000
3,000
4,000
1,000
4, 000
-1,000
5 • 000
19,000
8,000
5,000
6, 000
^ISPuVEH
TANK TMP
(DEC F)
-9,000
-4,000
"2,000
-3,000
2,000
-6,000
«7,000
-7,000
-4,000
14,000
0,000
-3,000
0 , 000
EFF OF
CQLLCt
(VOL)
B 1
-------
STATIONt EXXHN
AVF. UNCG^D TANK UMP. b8,5 F
3 Ait II NT
PUMP
A«12
A* 13
A, 16
Aal8
A»19
An21
A»23
• • _ •
Am27
8*02
B»05
B«09
&*13
8-14
B.26
B«28
TIME
12J25PM
12133PM
1J00PM
1S47PM
1J93PM
2U5PM
2130PM
3U0PM
9i40Af1
10J35AM
1U45AM
12J15PM
12125PM
3105PM
?{20PM
RET VAPOR
vm,urit
(FT3)
0,026
0,734
0,66C
0,493
1,103
0,605
0,392
0,548
2,439
0,701
0,723
1,723
2,104
0(679
>,760
VAP/LIO
RATIO
C.026
1,017
0,914
0,683
C.959
0,838
tf.838
P.759
1.055
0,989
l,tf®2
1,04B
1.086
0,941
1,053
DJSP
RATE
(G/f'-JN)
4.150
5.311
4.909
4.696
4,691
4,76'5
3,889
4.909
4,950
4,609
4,336
7.455
4,754
3,115
4.101
UNQG,VEH
TA:-j« TMP
(DtG F)
-0,500
4,500
10,500
16,500
10,500
12,500
14,500
19,500
0(500
-1,500
4,500
6,500
-1,500
7,500
10,500
DISP.VEH
TANK TMP
(DEC F)
m4 ,000
«• 000
9 " W "
7,000
9,000
4,000
8,000
9,000
13,000
0m 00ffl
p »* w
n>3 | 000
1 1 000
^ p " w **
** 1 . 000
J, P vr w w
mtt • (HfflO)
^ *^ w if*
4,0(90
4,000
EFF OF
COUCT
(VOL)
B 2
-------
STATION" EXXON
UNDGP.D TANK TEMP- 68,5 F
1/74
PUMP
A«30
A«33
8*05
B006
B«07
B*20
B*22
8*32
B*40
B«42
TIME
2130PM
4U5PM
5; 20PM
5; 55PM
6J40PM
6145PM
U35PM
2133PM
2J30PM
4J13PM
4J25PM
5I3ZPM
6J07PM
6139PM
7; 15AM
7J23AM
7J35AM
RET VAPOR
(FT3)
1,078
1,006
1,317
0.789
0.595
2,567
0,691
1,700
0,714
0,669
0,731
0,500
1,735
0,659
0,969
0,573
BASELINH
1,422
RATIO
1,105
8,337
0,836
5,921
0,656
C.824
1.Q32
0,957
0,902
C.989
0,798
«,927
1,013
0,693
1,018
0,913
0,69?
0,794
0,945
0,780
1,053
DISP
RATE
(G/MIN
4,515
4,881
4,909
4,490
6,667
5,536
4,974
5,143
9,097
4.985
4,611
4.629
4.765
3,000
2.842
5,684
4,333
5.062
4,747
4,626
TA.1K TMP
(OKG p>
5,500
11,500
14,500
15,500
23,500
16,500
15,500
13,500
17,500
12,500
28,500
17,500
17,500
16,500
11,500
17,500
16,500
12,500
13,500
13,500
5,500
DISPiVEH EFF OF
TANK TMP coi^CT
" (VOD
(DEC F)
1,000
4,000
7,000
13,000
21,000
12,000
9,000
7,000
11.000
6,000
22,000
11,000
8,000
7,000
5,000
11,000
10,000
6,000
7,000
8,000
0, 000
B 3
-------
TOfr EXXnN
AVE UNHG^D TANK TEMP- 70,0 F
TIME
RET
VOLUME
(FT3)
9U8AM
9;33AH
3,725
1.801
1,94P
!MTEn
BASELINE
a/ 2/74
RATIO
1,017
1,086
1,004
0.976
1,912
OISP
RATE
(G/MJN)
IHOG,\/EH
TANK TMP
(DEC F)
3.492
4.652
4.454
-3 000
£.000
-3,050
TANK TMP
(DEC F)
7.000
-6 000
wfe
,3'
.9
EFF OF
COLI.CT
(VQL)
B 4
-------
STATION* EXXON
AVE UNDGRO
PUMP
A«09
A»10
A«13
A«23
A»24
A«27
&"»01
8*02
9.15
B«24
Bi»26
TIME
11I53AH
US 22AM
U11PM
T&MP- 69,0 F
RE.T VAPOR
VOLUMr
(FT3)
1,595
-Ji.335
7/3d/74
3138PM
4JUPM
4 J22PM
P.; 00AM
5; 14PM
5147PM
U 190AM
1U40AM
UJ55AM
12:45PM
2;00PM
3515PM
3130PM
4510PM
5; 25PM
Iil74
0,719
1|315
1,053
1,080
0,752
l.«72
•^»679
1,325
0,563
a. 139
1,224
0,363
1,015
^AP/LIC
R AT T n
Is <\ I 4 U
1,492
m£ A6>&
F */ | »t VJ *f
0,654
0,508
0,522
(3 m 1 o
r i y> L t,
0,996
1,014
C.006
0,703
0,993
0,107
0,865
1.042
0,872
C',479
w,745
0,734
0,675
0,008
0,148
0,780
0,021
J*r*T*V ^^|^^
4,43*?
4,850
4.320
4,699
4,777
4,966
4,776
7,535
4.678
4.576
4,694
4.714
4,931
4.923
5.010
9,529
4.80®
4.150
4.689
*****$**
6.P-00
7,139
4,909
4.526
u'i;)ii-vEH
TANK IMP
(D^:G F)
-6,000
1,000
4,000
22,000
6,000
5,000
0,000
2t00tt
5,000
5,003
7»0(A2)
4,030
12,000
3,030
3,000
4,000
14,07)0
4 , 000
21,000
0 ,000
11,000
"2t000
7,000
4,000
6, 000
11,000
4,000
14,000
ltf,00<5
5,000
niSPoVEH
TANK TMP
(DgG F)
"7,000
0 ,000
3,000
19,000
3,000
0,000
3,000
"1,00®
"1,000
0,000
5,000
1,000
9,000
"2,000
0 , 000
2,000
11,000
1,000
19,000
"»5 .000
5,000
"6,000
"2,000
"4,000
"2,000
4, 000
"5 . 000
4.000
5,000
"1,000
EFF OF
COLLCT
(VOL)
133.045
"45.755
67.533
70.231
53.867
1.216
102. 8?3
98.496
0.538
69.342
1*5, 87J,
10.713
98.739
99.692
85.9^0
48.719
88.J52
73.526
93.387
0.729
15.915
70.^94
78,603
11.667
99.571
28.3^4
96.754
65.060
1.267
1.859
B 5
-------
STATION- EXXOfl
UNDGSD TANK
TEMP, 68.5
OATE* 7/31/74
'IOn-.--ASEl.lNE
PUMP
A«01
A*02
A«03
A»04
A«05
A«06
A<»08
***
At* A
w09
A«10
Anil
A«14
A?»17
An20
A«24
Aw26
A* o
•928
A -,29
Aw30
A-31
B*C1
A M "1
Bw03
B«06
8«»07
B*08
Bnll
8«15
B*16
B*17
B»18
B«19
Bn20
a 01
B«Z 4
Bn22
A A (9
B«25
B*27
B»29
&_* ^ i
D«3 1
TIME
?;34AM
9 | 48AM
9; 58 AM
1C. 5 07AM
10522AM
10J54AM
11133AM
THE PREVIOUS
1H|00PM
11158AM
12J15PM
12148PM
1110PM
2105PM
2150PM
3110PM
3* *i <• n ti
530PM
3J33PM
3540PM
3145PM
9530AM
10512AM
10J45AM
10J55AM
11110AM
12500PM
12530PM
12J25PM
12550PM
1JP0PM
1S30PM
1543PM
1* c ftt. n ' t
550PM
2505PM
2;55PM
3J10PM
3;30PM
2* i A n 14
{10PM
RET VAPOR
vnL'JKr
(FT3)
0,257
n,343
1,192
1,033
1,133
0,778
0,933
AUTOMOBILE
1,245
1,280
8 ,606
0,89?
0,964
1,759
0,990
1,297
l,rtl4
1,451
a, 34?
0,795
1,404
0,709
0,731
1,261
1,582
1,213
2,108
0,357
0,782
••3,590
0,763
1,253
1,327)
0,605
0,004
1,924
0,685
0, 721
OISP
vAp/mr? RATP
RATIO (G/MIN
0,192
0.513
1,025
1,431
0,911
0.820
1,183
,-JAS NOT i
0,745
0,871
0,840
0,726
0,801
0,895
0,504
1,078
1,126
0,759
0,193
0,556
0,875
0,596
1,013
0,934
1,106
1,68Q
1,088
0.3B7
0,513
0.828
1,057
0,937
?,fcrn
0,838
0,0^2
0.809
1,226
0,529
S,?63
5,? 00
4,661
108,000
8,719
3,325
4.597
ISED IN THE
5,515
4.415
5.492
4.182
9.438
********
4,691
5.800
5.P62
4,82®
10,025
********
8,889
6,fr75
5,143
4,fl40
4,901
4,336
4,807
4.452
********
4.154
4.765
4,444
4.714
7,902
5.138
5,314
4,765
4,708
IJ: A , ? f W
81.676
*'*§**» *^
104.212
93.834
65.124
85.211
• w ^ w
0.175
103.133
126.624
68.792
B 6
-------
STATION* EXXON
AVE UNDG^Q TANK TEMP- 68,5 F
1/74
NON—n
PU^P
A«03
A»06
Ai-07
Aw03
An09
A" 10.
Awl2
A. 13
A«14
*** THE
Anl5
A-16
*.** THE
A«17
A«19
A*i20
A-21
At,22
A«24
A«27
A* 2 8
*»* THE
A.29
A*31
A -.3 2
A«33
A>34
Aif37
A«38
A-39
Bin
B«02
B«C3
&»08
B*10
B«13
B«14
6«16
B«17
B«23
Bw24
B«25
B«27
B«28
B»30
B«3i
*** THF.
B.33
6*33
t»3*
•*»)*
N&
TIME
1J04PM
1J35PM
1J40PM
2S10PM
2S20PM
2125PM
2I45PM
2J33PM
3115PM
PREVIOUS
3 J 30PM
3;35PM
^REVIOUS
3J55PM
4J25PM
4;35PM
4J40PM
4530PM
5|05"M
5J20PM
5J35PM
PREVIOUS
5 1 50PM
ft 100PM
6J05PM
6J15PM
6j20PM
6J55PM
7110AM
7I23AM
12130PM
12J44PM
12147PM
1148PM
2 1 20PM
3104PM
3J06PM
3522PM
3J35PM
4;38PM
4143PM
4|33PM
3J03PM
5J17PM
5|33PM
5|45PM
PREVIOUS
6|00PM
5117PM
6|*5PM
7 J 34 AM
7H2AM
RET VAPO"
VOLUME
(FT3)
1,157
0,727
0,493
1,262
1,12?
fl»08fl
0,222
0,354
1,712
AUTOMOBILE
7). 155
1,252
AUTOMOBILE
0,965
ft, 533
0,182
1,313
0,445
1,016
0,018
1,724
AUTOMOBILE
1,005
0,62?
0,999
0. 329
0,794
">,291
9,92(?
1.025
0,566
0,663
fl,972
1/3,369
0,496
0,854
0,103
1,800
1,748
0,882
0,438
® ,001
0,361
1,088
0,005
0,483
AUTOMOBILE
0,613
0,754
1,759
0,271
0,892
VAP/U
RATIO
0,941
1,097
0,666
1,049
o.?n
0,111
0,080
0,248
0,622
.-/AS NOT
0.123
1,041
.•'AS NOT
1,337
0,554
0,252
0,646
0,594
1,408
C',009
0,896
»IAS NOT
1,392
0,651
8,830
• 0,456
1,100
,369
0,471
0,552
0,784
0,919
0.792
0,613
0,687
0,519
0,143
2,494
0,797
0,857
0,607
0 ,000
0,500
0,915
0,007
0,669
DISP
o RATE
(G/NIN
5.972
4.563
4.459
4.655
4.678
4,629
6,534
4,367
3,749
USED IN THE
5,423
4.Q30
USED IN THE
3,000
4,696
6,750
4.406
4,364
4,563
4.613
4.174
iJSSD IN THE
4,050
********
4.615
5.400
4,765
4,658
5.214
4,935
4.629
4,836
4.629
6,000
4,765
********
3,484
4.909
4,535
6.507
4,696
4.3CiO
4,696
7.353
7.535
4.629
4AS NOT USED IN THE
0,515
0,634
1,053
0,375
C',750
B
7.333
<3.3vj8
4.?45
4.433
4.564
7
UNHG-VErt OISPwVEH EFF OF
TANK TMP
) (DEC F)
5,500
10,500
4,500
11,500
27,500
33,500
18,500
36,500
********
CALCULATIONS
16,500
********
CALCULATIONS
14,500
24,500
26,500
26.500
9,500
35,500
17,530
********
CALCULATIONS
12,500
15,500
14,500
19,500
10,500
26,500
6,500
19,500
10,500
6,500
9,500
14.500
2.500
21,500
17,5(50
17,500
17,500
17.500
21,500
21,500
17,500
19,500
16,500
********
CAUSATIONS
I2i500
12,500
13,530
9,500
10,500
TANK TMP COLLCT'
(DEC F
"3,000
6,000
0,000
11,000
23,000
30 ,000
12,000
32,000
********
) (VOL)
88.725
109.212
65.708
124.075
112,134
20.013
9.619
47.316
DUE TO INSUFFICIENT
12,000
********
DUE TO I
8,000
18,000
20,000
22,000
4,000
31,000
13,000
********
DUE TO I
8,000
12,000
. 9,005)
16,000
6,000
23.000
4,000
16,000
5,000
1,000
3,000
8,000
-4,000
15,000
11,000
11,000
11.000
9.000
15,000
15,000
11.000
13.000
10,000
********
14,860
NSUFFICIENT
149.937
75.0*1
35,648
95.511
62,383
261. 4U
1.136
NSUFFICIENT
156.173
78.4801
94.776
59,293
119.277
55.801
49.4T0I
71.765
83.634
91.945
81.841
68.809
63.878
66.247
16,877
294,930
94.312
97,804
77.392
0. 000
59.134
• • •
112.246
0.805
DUE TO INSUFFICIENT
6,000
6,000
7,000
4,000
5,000
55.873
68.7Z4
116.085
39.399
• *^
79.971
-------
STATION-,
AVE UN1G10 T
TEMP- 70,0 F
NON-BASELINE
RET VAPOR
VOLUME
(FT3)
2,291
*** THE PREVIOUS AUTOMOBILE
AW05 3
PUMP
TIME
A«07
.2
A*13
A«15
A*16
Awl 7
9;17AM
9: 37AM
9J45AM
>M
iM
J42AM
A«23
A-2J
A«29
Aw 3d
Ar-31
A«32
A-33
li:23AM
11530AM
11J35AM
0,779
0,49?
0.879
1,413
^,075
•9,192
a. 533
1,415
0 , '7) 1B
1,719
0,419
1,292
0,674
CS 714
1,367
">,757
0.692
3,286
3,17?
VAP/LI3
RATIO
.•/AS NOT ;JSED
1.18*
1,079
0.773
0,304
2,352
1,017
0,934
0,663
0,7*7
0,79 a
T,575
€.754
tf,954
0,03tf
0,301
C. 134
0.7&G
C',662
DISP U'iC
RATE TANK IMP
(G/MJN) (DEC F)
4,699 ********
I?! THE CALCULATIONS
4.696 -4»000
4,029 -5,300
2.963 -3,00®
3.944 -2,000
4.336 -1,000
7.343 -3,000
6.490 -7
4.629 . 0
4,541 -2
12.973
d.754
4.711
5,226
4,324
4.632
9.467
3.795
4.576
4.208
5.757
4.222
6.C.03
9,191
5,000
3,000
0 , ft ft v>
2,000
6,000
2.000
5,000
3,000
13,000
2,000
3,000
-4,000
10,07*0
15,000
DISP«VEH EFF OF
TANK TMP CQLLCT
(DEC F) (VOL)
*****#**
DUE TO INSUFFICIENT
105.591
94.9©6
38.524
88.627
96,263
8.669
22.777
68.256
70.8J8
2.223
^7.000
-2,
-;•'..-
3,000
-2,000
3,000
5,0(D0
14,000
6, 000
3 ,00(5
1.00®
-7,000
7,000
11,000
33,702
95,949
90,684
68.956
75.287
82,377
61.331
94.282
103.473
3.005
30.166
11.934
34.707
78.285
B 8
-------
STATION* EXXON
AVE UNDGRD TANK
TIME
111 22AM
12U0PM
A*06
TEMP- 69,0 F
A»19 4
B*06 12155PM
&«09 H45PM
&«11 2110PM
&*16 3J55PM
**+ THE PREVIOUS
4130PM
4;55PM
RET
VOLUME;
(FT3)
0,32R
Iil53
0,277
0,246
0,237
1,471
1,590
0.877
01716
AUTOMOBILE
1,877
1,357
OATE* 7/30/74
ATMPID BASELINE
AP/Un
RAJIO
(» /. «R J.
* l H-'t
1,597
0,384
©,U9
0,246
0,941
0,975
1,238
0,992
RATE
(G/MIN)
/. ^ L. •>
«* , ?-O 3
4.765
4, '309
7.440
4.645
4.388
4.980
********
5,362
DISP«VPH
TANK TMP
(DE.G F)
FFP 0
COLIC
TA'JK TMP
(DEC F)
"8,000
15,000
3,000
6,000
-3,000
8,000
16,000
3,000
*«*#****
/'AS NOT ySED IN THE CALCULATIONS DUE TO INSUFFJCIEN
C,883 8.296 7,000 2,000
1,080 #*##*##* 3,000 w2,000
12,000
5,000
"1(000
f»5,000
3,000
9,'
«4,i
B 9
-------
STATION- EXXON DATE*. 7/31/74
AVE UNOCRO TANK TEMP- 68.5 F ATMPn BASELINE
KtT VAPCH oi SP UNiHi-VEH DISPwVtH t?P Of
VOLJME VAP/LJ3 RATE T<\NR TMP TANK TMP COUC1
TIME (FT3) RATIO (C/MIN) (DEC F) (DEC P)
-------
STATION,
AV6 WORD TANK
- 68,5 F
OATE, a/
ATMPIP BASEL
PUMP
A*n
A»92.
A«04
A IB 5) 5
A. 2 3
A«23
8*04
8e09
8*13
8«l8
&»19
&«26
B.29
8*?*
8*37
8t»«l
TIM?
12J50PM
1100PM
1IUPM
1115PM
4J53PM
3U0PM
12133PM
2J04PM
3U6PM
3J48PM
3158PM
5S00PM
3?29PM
6 J 28PM
6;?3PM
7I06AM
RET VAPOR
VOLUME
(FT3)
0,654
•151,132
•3,341
0,005
1,46«
0,321
0.75S
0,486
0,212
1,78®
fl«U5
1,011
0,278
0,62?
0,593
1,092
VAP/UJT
RATIO
0,906
«2^9.37^
0,472
0,0 11
0,642
0,338
1,050
0,673
0,294
0,765
•••IT?
0,688
®,234
0,859
0,817
C,9i8
DI5P
RATE
(G/MJN)
3,143
4,263
4.696
3.322
5.075
4,581
4,696
4,765
4,629
4.724
4,765
4,490
7,853
3.057
4,629
********
UNQGwVEH
TANK TMP
(OtG F)
14,500
8,500
14,500
13,500
25,500
18,500
6,500
12.500
23,500
27,500
23,500
15.500
34,500
16,500
9,500
6,500
DISPBV6H
TANK TMP
(D|fi F)
11,000
4,000
9,000
9,000
22,000
14,000
1,000
6,000
16 , 000
21,000
17,000
8,000
23,000
10,000
3,000
0,000
EFF OF
B 11
-------
STATION-! EXXON DATE* -V 2/7't
AVE UNTGPD TAMK TEMP- 70.C F ATM? ' D BASEL IN?;
RET VAPOR UISP UM[)G~VEH PISPnVEH EFF C
VOLUME VAP/L1Q RATt TANK TMP TANK TMP
PUMP TIME (FT3) RATIO (r,/,viN) (PEG F) (DEC F)
A«04 8;<>cAM '»,71? C.9R4 5,H3 2,
A«19 17>!27AM Ii3^° «,878 /«.51-J -2
B 12
-------
Sample Calculations
I. Nomenclature
V = net returned vapor volume, ft
r 3
V- = final meter reading in vapor return hose, ft
3
V, = initial meter reading in vapor return hose, ft
L, = dispensed liquid volume, gallons
33
V/L = vapor volume to liquid volume ratio, ft /ft
t = fill time, min.
R, = gasoline dispensing rate, gal/rain
T = vehicle tank liquid temperature, F
T = underground tank temperature, F
T, = dispensed liquid temperature, F
d
T = returned vapor temperature, F
II. Calculations
A. For each vehicle used in testing, calculate:
1. Volume of returned vapors:
V = V, - V.
r f i
2. Volume to liquid ratio
V/L = V x 7.481
3. Dispensing rate
RJ = L^
d d
t
4. Vehicle tank liquid - dispensed liquid temperature difference
^ T T _ T
vd v d
B 13
-------
B. For vehicles qualifying as baseline tests; determine :
the potential emission base Line 'correlation
where
(V/L) = potential volume returned to liquid dispensed ratio
a, b = correlation constants.
Numerical least squares techniques are used with AT , as the in-
dependent variable and (V/L) as the dependent variable.
C. For each non-baseline vehicle calculate: (Delete all baseline and attempted
baseline tests from further calculations)
1. V , actual vapors returned (from A.I)
2. ^T ,, vehicle tank liquid temperature - dispensed liquid temp.
difference (from A. 4)
3. V , potential volume returned, based on baseline correlation:
V _ = (a + b^T ) L,
pot v vd d
7.481
D. Average recovery factors and efficiencies
1. Average Potential Emission Factor
= n
z:
i
i = 1
where i = number of normally filled vehicles in data set
B 14
-------
2. Average Recovery Factor
1 = 1
n
1 = 1
3. Average actual emission factor at the vehicle
(v7i)e - (v7L)pot - (v/L)r
4. Average Volumetric Recovery Efficiency
Ev = r (100%)
pot
B 15
-------
LABORATORY REPORT
APPENDIX C
-------
HOUSTON LABORATORY I fj SJ & /iMLlff///!/ / ELIZABETH. N J . LABORATORY
1 2 13 DUMBLE STREET \J/IU&.J Hill MJJ t C . BAYWAY TERM INAL BUILDING
*' f i
" >*' * f 5 > s ** - ' ^ f
^Sft •,.»/..•<.' ". ,•
• '
CORPUS CHHISTI LABORATORY <_.,—•• / NEW ORLEANS LABORATORY
2618 WEST BROADWAY , /> / / •' 8139 OLEANDER STREET
SAN PEORO LABORATORY JAMES J. MULLIN • APPROVED AND CHICAGO LABORATORY
823 MIRAFLORES Aye. LICENSED BY NEW YORK PRODUCE EXCHANGE ARCO. ILLINOIS
NDt CALIFORNIA
AUGUST'S?",
TO BET2 Ja-IVIRONMENTAL /£N3R. » INC o
1 PLYMOUTH MEETING MALL
PLYMOUTH MEETING, I.A 19462
ATTNl Po Ho CHARIUNGTON
SENIOR PROJECT ENGRr ^
REPORT OF LABORATORY ANALYSIS PAGK ? QF
SAMPLE IDENTIFICATION*
- - - - -~~~ • VAPOR^P:
CA £20 DHT
CA VMJ 863
CA O4;.' DGZ
CA 27629 W
C,A .UBW 517
DKL 01 !>
CA <»9O JTC
CA 386 ERV
CA AB"/ 947
CA ;?8<> BYS
CA 41 'J CPL
CA 703 LSI
1137 FSM
P A *lAH -^P*?
V» Th ? W ' J .^ *" '' J
CA 57294L
CA HZIJ 648
CA 09 48 3V
4.2Q LBJ
VCIt' 618
377 LOG
CA Q30014
CA 63899M
CA VJN 624
CA 30877 B
UNDIiRWROUN;J LOW LEAD 8/8/74
UND?SR4
7 o 9
7 o ?•
7.S
**y «^
i 0_>
7.1
7.4
7,0 .
7 c B
T o 6
a o v
7,9
8 „ 0
To ;;
/ o ^^
^ •; j ^
!i o ,.•'
r; <•)
i o t-
6.4
tf 0 0
6,7
3 o 4
. 7,4
600
7.2
7-8
C 1
DEPUTY INSPECTOR OF PETROLEUM
APPROVED BY NEW YORK PRODUCE EXCHANGE
-------
HOUSTON LABORATORY
1215 OUMBLC STREET
CORPUS CHRIST! LABORATORY
26 1 8 WEST BROADWAY .
SAN PEDRO LABORATORY
825 MlRAFLORES AVE.
JAMES J. MULLIN • APPROVED AND
LICENSED BY NEW YORK PRODUCE EXCHANGE
RICHMOND, CALIFORNIA
AUGUST 27 9 1974
T0 BETi, SSSrVIRONMSNTAL EWGR0, INC,
1 PLYMOUTH MESTXKG KALI,
PLYMOUTH MEETING, FA 19462
ATTN8 Po R* CHARRINGTOJi
SENIOR PROJECT ENGR.
REPORT OF LABORATORY ANALYSIS
ELIZABETH. N J ., LABORATORY
BAYWAY TERMINAL BUILDING
NEW ORLEANS LABORATORY
8 1 39 OLEANDER STREET
CHICAGO LABORATORY
AHGO. ILLINOIS
E 2 '-*' **
SAMPLE IDEKTIFICATIOW 5
CA £.5^:- JVC
CA 94t GIS
CA 3f.PU 48O
CA 3'540^-
CA "VAJV 970
CA MKI5 050 7/.3VV4
CA ?7'-! B¥X.
CA :'-.5f»75 •!
CA YJ:-., 292 7/3^/7:*
CA C r'117O
CA $>9!? X7? A-3
CA 07V CVO
CA S87 JAP.
CA 'i9J BOF 7/3*/74
CA 14O .?!¥
NY 22') YYJ
CA 1102 171 7/3V74
C 2
GASOLINE
Sol
7 o s
8 nO
7->9
7,-, 4
7-3
.<' rt
I.) i, O
6,6
6 .-, 8
6 ,,9
7 08
6.7
7-0
BY
P.oiSolo
DEPUTY INSPECTOR OF PETROLEUM
APPROVED BY NEW YORK PRODUCE EXCHANGE
-------
HOUSTON LABORATORY
1215 DUMBLE STREET
QatMMffl '
CORPUS CHRISTI LABORATORY
26 1 6 WEST BROADWAY
BAYWAY TERMINAL BUILDING
NEW ORLEANS LABORATORY
8 i 39 OLFANDER STREET
SAN PEDRO LABORATORY
625 MlRAFLOMES AVE.
JAMES J. MULLIN • APPROVED AND
LICENSED BY NEW YORK PRODUCE EXCHANGE
RICHMOND , CALIFORNIA
AUGUST 27, 1974
CHICAGO LABORATORY
ARCO. ILLINOIS
TO BETZ ENVIRONHEKTAL ENtfR. , INC,
1 PLYMOUTH MEETING MALL
PLYMOUTH MEETING. PA
ATTN: P, Ro CH/VRRIWGTON
SENIOR PROJECT
REPORT OF LABORATORY ANALYSIS PA'JE ^ ? i>4
SAMPLE IDENTIFICATIONS. ^AirO.'uAiVJt:
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
Uo
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CO
CA
CA
CA
AGK 326
SET 382
13? CMC 7/3i/74
393 GTA
¥i:if. 1 1 1
VXE 293
139 ART1
544 CLI
936 EF2
193 HCJ
06009 u
tfBH 8^6
MICE. 322
158 JWY
63951 M
S0 GOVERNMENT G1 1702 12
VY2 927
904 HLE
YLZ 244
342 juc
JTAM 267
77;:6 El
YQK 3^3
009 KEY
654 JVG
WMJf. 56.'»
021 FXO
VA 6 I^D:
237 J]JQ
688 HE-S3
WPT 476
033 DXV
624 GIM
LX 8060
IV 24
STARR 1
366 HBZ
lAT^^PilESSUE.E^Ji:
8
7
7
7
3
7
7
c
6
6
6
?'
6
6
6
7
7
7
?'
7
6
8
7
7
7
S
7
6
6
7
7
7
7
7
7
8
7
S**"v* S"3
C ^f^^ *""""1
3S5-§ JL'2 °J:l'l£j-£laSal. i.
.0
,3
c9
c5
c 1
.5
,0
<>3
p 4
.9
«5
c2
.6
.8
e3
o2
d
«0
«3
c.2 '
.4
.3
.8
c2
.S
.2
<(6
.7
<.3
o S
cO
o7
.8
.7
.5
.0
W.^:'^,~V
DEPUTY INSPECTOR OF PETROLEUM
APPROVED BY NEW YORK PRODUCE EXCHANGE
C 3
-------
HOUSTON LAHORATORY
1215 DUMBLE STREET
?0£
CORPUS CHRrSTI LABORATORY
26 1 8 WEST BROADWAY
SAN PEDRO LA80HATOHY JAMES J. MULLIN • APPROVED AND
625 MlRAFLORES AVE. LICENSED BY NEW YORK PRODUCE EXCHANGE
RICHMONDf CALIFORNIA
AUGUST 27, 197^
T0 BET2 ENVIRONMENTAL KKGR0, IHC c
1 PLYMOUTH MEETING MALI,
PLYMOUTH MEETING, J»A
SENIOR PKOJ:;C:T EP
ELIZAFU.TH. N J . lABOWATORY
BAYWAY TCRMINAL BUILDING
NtW ORLEANS LABORATORY
8 i 39 OLEANotR STREET
CHICAGO LABORATORY
ARGO. ILLINOIS
REPORT OF LABORATORY ANALYSIS PAGE ** rs' ''*
SAJSPI.S
CA S33 KUA
CA 389 EEU
CA B 71 060
CA 70;) DXP
TLZ 2kk
MEXICO VM VAN
CA Tf95369
CA -357 FMU
CA •J.5.521 N
CA 230 LBH
GASOJ/tNK
VAPOR vRKSSURfcc R.ir.3 & tf-:-:?...
e
'}
BY
DEPUTY INSPECTOR OF PETROLEUM
APPROVED BY NEW YORK PRODUCE EXCHANGE
C 4
-------
HOUSTON LABORATORY
1215 DUMBLE STREET
PITH. N J , lARORATOHY
MAYWAY TtHMINAl (Ulll (II NT.
26 18
SAN PEORO LABORATORY
62S MIRAFLORES AVE.
T°
JAMES J. MULDN • APPROVtO ANU
LICENSED BY NEW YOHK PRODUCE EXCHANGE
RICHMOND, CALIFORNIA
AUGUST 27, 197*»
BETZ ENVIRONMENTAL EWGR., INC,
1 PLYMOUTH MEETING MALL
PLYMOUTH MEETING, FA 19*4 6 2
ATTNi Po R. CHAHRINGTON
SENIOR PROJECT ENGRo
REPORT OF LABORATORY ANALYSIS
i«)C*UO L ABviHA I i»N Y
AHGO. ILLINOIS
SAMPLE IDENTIFIC AT J. ON:
GASOLINE
EXXON UNDERGROUND RECUL.-i3 TANK
VAPOR PRESSURE, RI1-JD ® 100eFos PSI
DISTILLATION*
INITIAL BOILING POINT, 6F0
556 RECOVERED, «F .
1iO$ RECOVERED, °F«,
50^0 RECOVERED, ®F0
9056 RECOVERED „ ^Fo
91i^ RECOVERED „ °F«,
EWD POINT, «F0
RECOVERED, VGLUMI.:S %
RESIDUE, VOLUMEp %
LOSS, VOLUME, %
136
370
397
1*03
97.0
BY
Cgf
C 5
DEPUTY INSPECTOR OF PETROLEUM
APPROVED BY NEW YORK PRODUCE EXCHANGE
-------
HOUSTON LAnORATORY / fj/jf /I/ILIif /I/V / ELIZABETH. N J . LABORATORY
1213 OUMBLE STREET {j/lllv.Jr/jt/MjJr " RAYWAY TTRMINAL BUILDING
CORPUS CHRISTI LABORATORY . - .'' tn w UIU.IAN'. IAIJOMA1OMY
28 1 8 WEST BROADWAY H i 39 On ANDEN STMI tT
SAN PEDRO LABORATORY JAMES J. MULLIN • APPROVED AND CHICAGO LABORATORY
825 MlHAFLOHES AVE. LICENSED BY NEW YORK PRODUCE EXCHANGE AHOO, ILLINOIS
RICHMOND, CALIFORNIA
AUGUST 2?9 1974
T0 BET2 ENVIRONMENTAL EriGR., INCo &tfft?$$M?&g&3F
V PLYMOUTH MEETING MALL
PLYMOUTH. MEETING, I'A 19^62
ATTN: Pu R. CHARRiiNGTON
SENIOR PROJECT ENGR.
REPORT OF LABORATORY ANALYSIS
SAMPLE IDEMTIFIC ATION s GASOLINIS
EXXON REGULAR UNDERGROUND TANK
VAPOR PRESSURE,, RIJSD ® 100*F., PSI 8,8
DIS'CILLATIONj.
INITIAL BOILING POINT, eF0 93
yj> RECOVERED, »F. 121
RECOVERED , °F0 D32
RECOVERED , °F«, 21?
RECOVERED,, "J-1. 338
95% RECOVERED „ °F. feOO
END POINT, °F. ^12
RECOVERED, VOLUME , % 96 . 5
RESIDUE, VOLUME, $ 1.5
LOSS, VOLUME, $ 2..0
BY
DEPUTY INSPECTOR OF PETROLEUM
C 6 APPROVED DY NEW YORK PRODUCE EXCHANGE
-------
.UNA IC«»» unonATonr
31 NC'ITH TATA* STBCCT
^MPUS CMnisti LAOonAiOflr
2010 WCST UBOADWAY
£AN PCDRO LAOORATORY
025 MlRAFLORES AVC.
C/iasJ/MM
CUIAntTH. N J . LABORATORY
UAYWAY TftwiNAt DUILOIMC
NCW OnttANS LAOOnATOAY
8 1 39 OLCA.NDCII STHL'CT
U J. MULLIN - Pncr.mi NT
lNPI.fl.NOl NT l.ltr.NCI[> INM'KCI ll'H CllMI'ANV
Ml MIII KG OF AGTM ft Af'l
CHICAGO l.ADOflAlOnv
A'
-------
DAILY LOG SHEETS
APPENDIX D
-------
STATION NAME
LOCATON
UViU. STATION UA1IY DATA SIILE'f
7/30/74
Time
Pump No.
A
_jC
o
PUMP METER READINGS • •
Initial Vol. Final Vol.
ti:oo n
26979. /- ^93Z7 ^
45476*. Z 45^j2^S
e>&(#223 8b(*50.l
4i44t*.9 4/448.5"
NOTES
DATE
UNDERGROUND TANK TEMPERATURE READINGS
Tank No. IH.liJjLL „ Final_
^°F 7Q °F
OF 7o OF
68 °F 10 op
Time
UNDERGROUND TANK VOLUME READINGS
Tank No. Initial Final
.-**"
Gal.'-SS'V Gal.
Gal. 73"
Gal.
Gal.
Gal.
Gal .
Gal .
Time
VENT OUTLET VOLUME READINGS
Vent No. Initial Final
,
A
ft- ceo,// ft
ft3
ft3
ft
ft
Time
VENT OUTLET HC READINGS
Vent No. Initial .Final Average
D 1
-------
STATION KAHE_
LOCATON
SEKVIUI STATION DAILY DATA SIILI".
DATE
Time
Pump No.
/?
C
62.
PUMP MI:TER READINGS • •
Initial Vol. Final Vol.
O&OO
/55-sr
•2-9-779,3.
^6/03 c 7
4I4&4.I
79/73.7
7935P'7
NOTES
UNDERGROUND TANK 'I LMITJtATURE READINGS
Tank No. lD.jJi/)J.. _Final
1 _M__°F
69 OF
°
Time
/5'
UNDERGROUND TANK VOLUME READINGS
Tank No. Im'tial Final
Gal.
Gal .
Gal
Gal.
Gal
Time c&oo
VENT OUTLET VOLUME READINGS
Vent No. Im'tial Final
/4
,// ft3
ft3
n
3
ft
ft
ft
Time
VENT OUTLET HC READINGS
Vent No. Initial .Final Average
A
%
%
%
Time
D'2
-------
M-KVIl.'i. blAI IUM UA1I.Y HTlA Ir.iiU '[
STATION
LOCATON
Time
Pitiip No.
C
PUMP MI:TER READINGS : •
Initial Vol. Final Vol
/22.0
3020.2-
3 0753.
of/ *~f/ f
fito /(olo •
nws.i
NOTES
UNDITvGKOIINI) TANK 11 Mil KA'I \\\\\. KI.ADINGS
Tank No. Jni t.i.i'l Final
°F
67
OF
OF
~°F
Time
OS'
UNDERGROUND TANK VOLUME READINGS
Tank No. Im'tial Final
_Gal.
Gal.
Gal
Gal
Time
2-oi_o
VENT OUTLET VOLUME READINGS
Vent No. Initial Final
,// ft3 .// ft3
ft
ft
_ft*
ft:
Time
2 0
VENT OUTLET HC READINGS
Vent No. Initial .Final Average
% -e- %
Time /3oo
D 3
-------
SFUVICL STATIOM DAILY DATA SIILL7
DATE
LOCAION
Time
PUMP MKTER READINGS • •
Initial Vo_l_. Lin_alJ'oJ_.
/2-2^
Pump, rip.
folK-l
NOTES
UNDERGROUND TANK TEMPERATURE READINGS
Tank No. Initial _Final
°F
69 OF
Or
°
72- °F
73 OF
Ti me
UNDERGROUND TANK VOLUME READINGS
Tank No. Initial Final
.O
Gal.
Gal.
Gal.
Gal
Time
/-z
VENT OUTLET VOLUME READINGS
Vent No. Initial Final
,// ft3 ,// ft3
ft3
"ft3
ft
ft
Time #80O
VENT OUTLET HC READINGS
Vent No^ Initial .Final Average
Time
ft £10
D 4
-------
PROJECT PARTICIPANTS
APPENDIX E
-------
The following individuals were present during all or part of the testing:
B.E.E.
P.R. Charrington - Senior Project Engineer
F.J. Boinski - Assistant Project Engineer
J.H. Geiger - Assistant Project Engineer
R. Smith - Assistant Project Engineer
G.W. Bainton - Engineering Technician
R. Lamb - Engineering Technician
W. Schultz - Engineering Technician
E.P.A.
W.E. Kelley - FTS, EMB (Task Project Officer)
P.R. Westlin - RSS, EMB
R. Vong - FTS, EMB
RADIAN CORPORATION
J. Dickerman - Associate Engineer
EXXON
B.K. Tom - Staff Engineer
L. Hageman - Station Manager
OPW
R.C. Carl - V.P. Engineering
E 1
------- |