PKUJtU INU.
O
m
EMISSIONS FROM AN OIL AND NATURAL GAS
FIELD SULFUR RECOVERY PLANT
AT
-j
EXXON CO. U.S.A.
SANTA ROSA,PLANT
JAY, FLORIDA
FEBRUARY 1976
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Emission Measurement Branch
Research Triangle Park. North Carolina
-------
SET 1497 02 0176
EMB Report No. 75-SRY-9
SOURCE TESTING OF THE
SULFUR RECOVERY UNIT
SANTA ROSA PLANT
EXXON COMPANY
JAY, FLORIDA
Prepared For:
/
United States Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions Measurements Branch
Research Triangle Park, North Carolina 27711
January 1976
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
Plumsteadville, Pennsylvania 18949
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1-1
2.0 SUMMARY AND DISCUSSION OF RESULTS 2-1
2.1 PHASE 1 RESULTS 2-1
2.2 PHASE 2 RESULTS 2-3
3.0 PROCESS DESCRIPTION AND OPERATION 3-1
4.0 LOCATION OF SAMPLING POINTS 4-1
5.0 SAMPLING AND ANALTYICAL PROCEDURES 5-1
5.1 MANUAL PROCEDURES USED BY SCOTT ._ .5-1
5.2 CONTINUOUS MONITORING PROCEDURES USED BY SCOTT 5-1
~ «
5.2.1 Total Hydrocarbon Analyzer 5-1
5.2.2 Oxides of Nitrogen Analyzer 5-1
5.2.3 Carbon Monoxide Analyzers g 5-2
5.2.4 Gas Chromatograph 5-2
5.3 PROCEDURES USED BY EPA 5-2
APPENDIX A
APPENDIX B
APPENDIX C
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
SET 1497 02 0176
1.0 INTRODUCTION
The purpose of this task was to collect background data to develop
New Source Performance Standards for control of emissions produced by Glaus
sulfur recovery plants in oil and natural gas fields as required by §111 of
the Clean Air Act of 1970. The operation of Exxon's Santa Rosa plant provided
a continuous source for evaluation. The test program consisted of two
phases. Phase I studied the performance of the sulfur recovery plant over
a three day period during which the Claus tail gas incinerator and other
units were operated under normal conditions. In Phase II, the efficiency
of the Claus incinerator in removing reduced sulfur compounds was determined
at several incinerator operating temperatures. •._.....
Scott Environmental Technology, Inc. performed source sampling
tests at the Santa Rosa plant of the Exxon Company in Jay, Florida during
the period of June 4, 1975 through June 10, 19.75. Scott's testing was
conducted concurrently with testing by EPA personnel.
The plant processes related to the Claus sulfur plant are shown
in Figure 1 along with the sampling locations and parameters measured by
Scott and EPA. The stack emissions of the incinerator for the Claus
sulfur recovery unit were tested for concentrations of sulfur dioxide (SO-),
oxides of nitrogen (NO ), carbon monoxide (CO), total hydrocarbons (THC),
X
moisture, carbon dioxide (C02), oxygen (0«) and velocity. The inlet gases
to the incinerator were tested for concentrations of hydrogen sulfide
(H_S), S0_, moisture, C0_, 0-, and velocity. In addition, both acid gas
and stripper gas were analyzed for H_S.
Parallel to Scott's testing, the Emissions Measurement Branch
performed sampling and analysis for concentrations of carbonyl sulfide (COS),
hydrogen sulfide (H S), and carbon disulfide (CS_) in the stack emissions
of the incinerator. The incinerator fuel gas was analyzed for the above
components plus SO-, methyl mercaptan (MeSH), and ethyl mercaptan (EtSH).
The EPA sampling was accomplished June 4, 1975 through June 12, 1975. The
arrangement of Scott and EPA analyzers is shown in Figure 2.
SCOTT ENVIRONMENTAL TECHNOIOGY, INC.
-------
HIGH PRE5SOC6
AWD
EPA
Figure 1. PROCESS FLOW AND SAMPLE LOCATIONS, EXXON CO., USA, SANTA ROSA PLANT, JAY, FLORIDA
-------
l/l
O
r~
o
o
ACID
VO
O
ro
FIGURE 2: ANALYZER ARRANGEMENT
Note: Heated Sample Line
FID = Flame lonizatlon Detector
Chemilum = Chemiluminescence Analyzer
NDIR = Non-dispersive Infrared Analyzer
GG/TC = Gas Chroraatograph/Thermal Conductivity Detector
GC/FPD = Gas Chromatograph/Flame
Photometric Detector
-------
1-4
SET 1497 02 0176
The Scott personnel consisted of John Lynch, Zenophon Totnaras,
Fred Lucrezi and Joseph Wilson. The EPA personnel included Winton Kelly,
Charles Sedman, Frank Butler, Gary McAlister, Ray Mobley, Dr. Bill Herget
and Roosevelt Rollins. Exxon's liaison engineer during the entire test
program was Larry Kimball.
SCOTT ENVIRONMENTAL TECHNOLOGY, INC
-------
2-1
SET 1497 02 0176
2.0 SUMMARY AND DISCUSSION OF RESULTS
2.1 PHASE 1 RESULTS
A summary of analyses by Scott and EPA at the incinerator
outlet (Point B) during Phase 1 are shown in Table 2-1. Individual data
points for CO, THC, NO , S09 and reduced sulfur compounds are presented in
3t b
Appendix A, Tables A-l through A-4. All pollutant concentrations in Table
2-1 are corrected to a dry basis. The average moisture content of 27.8%
found in all runs (Phases 1 and 2) was used for all corrections. This
value was believed to be more accurate than data points in individual runs,
especially since data collection periods were not identical for all components
within each run. •
~ *'
The carbon monoxide concentrations in the incinerator effluent were
considerably higher than expected from an incineration unit. It appears
it
likely that insufficient air was present in tKe combustion zone to provide
for efficient burning of the fuel gas. Hydrocarbon emissions from the
incinerator showed large cyclic changes over short periods. During cycles
of approximately 5 minutes the hydrocarbons ranged from 15% to 150% of the
average value. Run to run repeatability was very good. Nitrogen oxide
concentrations of approximately 10 ppm were found in the incinerator outlet.
Readings obtained from the chemiluminescence analyzer with and without
the thermal converter indicated that more than 90% of the total nitrogen
oxides were present as nitric oxide.
The sulfur dioxide measurements of the incinerator effluent by
EPA Method 6 showed substantial variation from sample to sample as compared
to the GC analyses of the undiluted stack gas. The EPA 6 data are likewise
lower than the GC data. Stoichiometric calculations show that adequate
collection reagent should have been available for complete collection of SCL
in the gas volume sampled. However, partial deterioration of the hydrogen
peroxide reagent before or during the sampling may have reduced sample
collection efficiency. In any event, the Method 6 S07 data obtained in these
tests did not match the quality of data obtained by Scott in other Method 6
stack tests.
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
2-2
SET 1497 02 0176
TABLE 2-1 SUMMARY OF RESULTS
Exxon, Santa Rose Plant, Jay, Florida
Sampling Location: Incincerator Outlet (Point B) (Diameter = 39")
Phase: 1
(All concentrations on dry basis - Average Moisture = 27.8%)
Sampling Date
Stack Temperature, °F
Velocity, fpm
Flowrate, dry SCFM
Moisture, Voluae Percent
Incinerator Temperature, F
Carbon Monoxide
(NDIR)
Total Hydrocarbons
(FID)
Sulfur Dioxide
(EPA 6)
Sulfur Dioxide
(GC/TC)
Nitrogen Oxides
(EPA 7)
ppm
Ibs/hr
ppm
Ibs/hr (CH^)
ppm
Ibs/hr
ppm
Ibs/hr
ppm
Ibs/hr (N02)
Kitrogen Oxides ppm
(Chemiluminescence) Ibs/hr (NO.)
Hydrogen Sulfide ppm
(EPA 18) Ibs/hr
Carbonyl Sulfide ' ppm
(EPA 18) Ibs/hr .
Carbon Bisulfide ppm
(EPA 18) Ibs/hr
Total Reduced Sulfur ppm
(EPA 18) Ibs/hr
Carbon Dioxide, % (EPA 3)
Oxygen, % (EPA 3)
Run 1
6/4/75
625
2216.4
5965.8
33.6
1150
5300
137.9
640
9.5
4547
270.5
-•
9.4
0.402
10.8
0.462
24.3
0.768
22.3
1.244
17.2
1.215
81.0
3.227
9.2
5.3
Run 2
6/5/75
640
1861.2
5665.1
23.6
1150
5500V
135.9
610,
8.6-
3430
193.8
6470
365.5
9.8
0.398
9.9
0.402
25.9
0.777
15.3
0.810
12.6
0.845
66.4
2.432'
9.7
4.5
Run 3
6/6/75
640
2023.2
5358.1
33.6
1150
5500
128.6
-
4012
214.4
6970
372.4
6.7
0.257
10.8
0.415
32.3
0.917
21.4
1.072
15.2
0.964
84.1
2.953
9.5
4.2
Average
635
2033.6
5663.0
30.3
1150
5433
134.1
625
9.05
3996
226.2
6720
369.0
8.6
0.352
10.5 .
0.426
27.5
0.821
19.7
1.042
15.0
1.008
77.2
2.871
9.5
4.7
Note;
NDIR = Non-Dispersive Infrared
FID = Flame lonization Detector
GC/TC = Gas Chromatograph/Thermal Conductivity
SCOn ENVIRONMENTAL TECHNOIOGY, INC.
-------
2-3
SET 1497 02 0176
Scott also experienced initial difficulty with low SO data
when gas chromatographic samples were transferred through a sample line
connected to the EPA 10-1 dilution stream. Syringe sampling directly from
.the diluted stream gave similar low results. Undiluted samples, collected
from the bypass THC stream in Tedlar bags, gave values in close agreement
with the plant SO analyses and were more consistant with concentrations
'expected from this type of facility. Bag samples were thus used for gas
chromatographic SO analysis for the balance of the program. The cause
of the low readings obtained from the diluted stream was not determined.
The results of hydrogen sulfide determinations 'on the acid gas
(Point F) and stripper gas (Point E) are shown in Table 2.2. Analyses of
the fuel gas for reduced sulfur compounds are also reported in Table 2.2.
Detailed data on these streams are shown in Appendix A, Tables A-5 and
-------
2-4
SET 1497 02 0176
TABLE 2.2 MISCELLANEOUS AVERAGE RESULTS
Exxon, Santa Rosa Plant, Jay, Florida
(Phase 1)
Date
Location
Hydrogen Sulfide, %
(Tutweiler)
Carbonyl Sulfide, ppm
(GC/FPD)
Hydrogen Sulfide, ppm
(GC/FPD)
Carbon Disulfide, ppm
(GC/FPD)
Sulfur Dioxide, ppm
(GC/FPD)
MeSH, ppm
(GC/FPD)
EtSH, ppm
(GC/FPD)
6/4/75
Strip-
per
Gas
87.5
Acid
Gas
80.9
' 6/5/75
Strip-
per
Gas
80.6
Acid
Gas
78.9
•
»
6/6/75
Strip-
per
Gas
85.0
- —
Acid
Gas
80.5
. _ _.
6/12/75
Fuel Gas
3.1
3.7
1.9
(Trace)
14.9
0.3
Note;
Stripper Gas = Point E
Acid Gas = Point F
Fuel Gas = Point D
GC/FPD = Gas Chromatograph/Flame Photometric Detector
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
2-5
SET 1497 02 0176
TABLE 2.3 SUMMARY OF RESULTS
Exxon, Santa Rosa Plant, Jay, Florida
Sampling Location: Incinerator Outlet (Point B) (Diameter = 39")
Phase: 2
(All concentrations on dry basis - Average Moisture = 27.8%)
; Sampling Date
Stack Temperature, F
Velocity, fpm
Flowrate, dry SCFM
Moisture, Volume Percent
Incinerator Temperature, °F
Carbon Monoxide
(NDIR)
Total Hydrocarbons
(FID)
Sulfur Dioxide
(EPA 6)
Sulfur Dioxide
(GC/TC)
Nitrogen Oxides
(EPA 7)
Hitrogen Oxides
ppm
Ibs/hr
ppm
Ibs/hr (CH4)
ppm
Ibs/hr
ppm
Ibs/hr
ppm
Ibs/hr (NO.)
ppm
(Chemiluminescence) Ibs/hr (NO.)
Hydrogen Sulfide ppm
(EPA 18) Ibs/hr
•Carbonyl Sulfide ppm
(EPA 18) Ibs/hr
Carbon Disulfide ppm
(EPA 18) Ibs/hr
Total Reduced Sulfur ppm
(EPA 18) ' Ibs/hr
Carbon Dioxide, % (EPA 3)
Oxygen, Z (EPA 3)
Bun 2
6/10/75
543
1770
6135.0
21.3
950
6900
184.7
930
14.2
-
3.4
0.149
7.9
0.347
110.5
3.59
52.4
3.01
28.0
2.03
218.9
8.63
8.0
7.3
Run 1
6/9/75
595
1891.8
5775.9
26.7
1050
5900
148.7 *
720
10.4
g
2217
127.7
6440
370.9
4.3
0.178
10.0
0.414
Run 3
6/10/75
5858.0*
1050
5900
150.8
740
10.8
-
—
11.7
0.491
84.4
2.62
39.3
2.15
19.4
1.35
162.5
6.12
Phase I
Average
6/4-6/6/71
• 635
2033.6
5663.0
30.3
1150
5433
134.2
625
8.8
3996
225.6
6720
379.5
8.6
0.349
10.5
0.426
27.5
0.825
19.7
1.04
15.0
1.01
77.2
2.88
9.5
4.7
Run 6
6/11/75
5858.0*
1250
4.7
0.146
4.6
0.252
4.3
0.298
17.9
0.696
* Average of Run 2, Run 1 and Phase 1 Average
Note:
NDIR = Non-Dispersive Infrared
FID = Flame lonization Detector
GC/TC = Gas Chromatograph/Thermal Conductivity
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
2-6 . '; ••
SET 1497 02 0176 !
Analytical data of the Tail Gas at the incinerator inlet (Point
C) are presented in Table 2-4. Detailed data are given in Appendix A,
Table A-9. The Scott S0_ data agree well with data recorded by the plant
instrumentation, considering that these are periodic readings on a stream
with a fluctuating concentration. However, the plant data for H?S was
approximately twice the Scott data for the same periods. Since the SO.
and H_S analyses were done on the same gas chromatographic sample, sample
collection errors should not account for the difference. Some selective
loss of H_S might have occurred through a continuation of the Glaus
reaction or loss in condensed water in the sample bags. However, any
such loss would be expected to be relatively small compared to the
differences found between the plant and Scott instrumentation. In addition,
samples analyzed within 15 minutes after collection and re-analyzed an
hour or more later gave good replication. Scott analyzed the plant
»
calibration standard for H.S, and obtained a value of 1.86% versus the
stated value of 1.88%. This rules out calibration error.
The problem could be pursued through sulfur and carbon balance
calculations on the incinerator inlet and outlet, but not all parameters
needed to perform these calculations were recorded, and some stream
flows and conditions fluctuated rapidly. Therefore it is not possible
to determine which set of H0S inlet readings is most accurate.
t. i
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
2-7
SET 1497 02 0176
TABLE 2.4 SUMMARY OF RESULTS
Exxon, Santa Rosa Plant, Jay Florida
Sampling Location: Incinerator Inlet (Tail Gas) (Point C) (Diameter - 15")
Phase: 2
(All concentrations on dry basis - Average Moisture = 27.3%)
Sampling Date
Stack Temperature, F
Velocity, fpm
Flowrate, dry SCFM
Moisture, volume percent
Sulfur Dioxide
(GC/TC)
Hydrogen Sulfide
(GC/TC)
Carbonyl Sulfide
(GC/TC)
Carbon Dioxide,
Carbon Dioxide,
Oxygen,
ppm
Ibs/hr
ppm
Ibs/hr
ppm
Ibs/hr
% (GC/TC)
% (EPA 3)
% (EPA 3)
Run 1
6/9/75
255
6841.2
4542.4
26.6
3490 (2980)**
158.1 *
3440 (6480)**
82.8
61 I
2.59 !
11.7
12.3
i.o
Run 2
6/10/75
255
7120.8
4664.0 :
28.0 :
3740 (3570)**
173.9
3210 (6980)**
79.3
61
2.66
11.4
12.2
1.2
Run 3
6/10/75
4603.2*
4290 (3800) **
196.9
3240 (6480) **
79.0
60
2.58
11.5
-
-
* Average of Run 1 and Run 2 \' '
** Numbers in parentheses are averages obtained from company process
instrumentation: see data sheets in Section 3.0.
Note; '
GC/TC = Gas Chromatograph/Thermal Conductivity
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
3-1
SET 1497 02 0176
3.0 PROCESS DESCRIPTION AND OPERATION
The Santa Rosa production facility of Exxon (Figure 1)
stabilizes crude oil to the level required for storage at ambient
temperature and atmospheric pressure by removal of hydrocarbon gases.
In the Jay field such hydrocarbon gases contain hydrogen sulfide (H-S)
and carbon dioxide (CO-) , commonly called acid gases . Before these
hydrocarbon gases can be sold for fuel, the acid gases must be removed.
The hydrocarbon gases are treated with an amine solution,
which chemically absorbs essentially all of the lUS and C0_, while
absorbing only traces of hydrocarbon. After treating, the hydrocarbon
gases are compressed as required, dried, and sent to a high pressure
gas transmission line for sales. The rich amine (amine saturated with
H2S and CO-) from the absorber goes to an amine stripper, where it is
heated to drive the H_S and CO- from solution. The lean or stripped
amine is recycled to the absorber for treating additional gases.
H_S and CO- from the amine stripper are fed to a Claus plant,
where the H-S is burned with air to form S00 at a controlled ratio of
!
2 H-S:1 S0_, which is the stoichiometric ratio for conversion to elemental
£• *. _ I
sulfur per the following reaction:
2 H2S + S02
In the 3-stage Claus plant at the Santa Rosa facility, sulfur
recovery is typically 96-97%. Ultimate recovery is limited to the
thermodynamic equilibrium reaction rate between H-S and S0_ and also by
the formation of unrecoverable sulfur as carbonyl sulfide (COS) and
carbon disulfide (CS2) in the partial combustion of the acid gas.
Exhaust gas from the Claus sulfur plant is mixed with air and
fuel gas and incinerated at 1150 F to convert most sulfur species to
SO- before emission out the incinerator stack. A small amount of sulfur
as hydrogen sulfide is also introduced into the incinerator with the
sour water stripper exhaust stream. The sulfur plant efficiency is based
on S02 measured in the incinerator stack. Hence the actual Claus
efficiencies are slightly higher than the reported values, owing to the
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
3-2
SET 1497 02 0176
additional sulfur from the fuel gas and stripper gas being measured in
the stack. Based on the SO^ results from gas chromatographic measurements
durings Runs 2 and 3 of Test Phase 1, the Glaus efficiency averaged 97.7%.
During the test period, the sulfur recovery process operated at
near steady state, except that the concentrations of H_S and S0« in the
tail gas fluctuated rapidly. This is shown in the process data sheets,
Tables 3-1 through 3-9. The numerical entries for gas flow rates shown
in these data sheets are factors that are used in the equations to
calculate actual volume flow rates. Table 3-10 presents the equations
for determining the various gas flow rates.
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
1
TABLE 3-1
cs>
r»
° Date: 6/4/75
5 Place: Jay, Florida
< Observer: Sedman, Herring
JO
o
I Ti me
m
Z
> ! Acid Gas:
m
n
X
Z
O
O
O
Flow
Temp.°F
Press., psig
"z ; Fuel Gas Flow:
O '
Stripper Gas Flow:
Claus Plant:
#1 condenser temp.°F
#1 reactor temp.°F
#2 condenser temp.°F
#2 reactor temp.°F
#3 condenser temp.°F
#3 reactor temp.°F
#4 condenser temp.°F
thermal oxidizer temp.°F
stack port temp.°F
tail gas H2S, ppmv
tail gas S02> ppmv
1115
.72
95
6.0
5.7
4.5
289
446
290
432
289
424
289
1150
666
5280
5440
1145
.72
97
6.0
-
'
290
445
290
432
290
424
289
1150
665
6600
3400
1215
.72
97
6.0
5.7
4.5
289
445
290
432
290
424
288
1150
665
6240
3400
Santa
Phase
1245
.72
100
6.0
- .
-
289
445
290
432
289
425
289
1150
665
7600
3240
Rosa Test
1, Run #1
1315
.72
108
6.0
5.4
4.4
289
445
290
432 .
289
424
289
1150
667
6280
3160
1345
.745
114
6.0
-
-
289
449
291
^432
*289
425
289
1150
669
4880
6100
V
1415
.745
115
6.0
5.5
4.3
289
447
291
432
289
425
289
1150
667
6040
3980
1445
.73
105
6.0
-
-
289
447
291
432
289
425
289
1150
668
7040
3180
1515
,725
103
6.0
5.4
4.5
289
442
291
•432
290
425
289
1150
667
6920
3040
1545
.725
104
6.0
5.3
4.4
289
447
290
431
289
. 424
' 288
1150
667
5680
4000
CO
g
Average
.727
104
6.0
5.5
4.4
1150
667
o
to
r
OJ
-------
I/I
o
O
m
Z
55
O
Z
r»
x
z
O
r"
o
O
Date: 6/5/75
Place: Jay, Florida
Observer: Sedman
Time
Acid Gas:
i
Flow
Temp,°F
Press.,ps1g
Fuel Gas Flow:
Stripper Gas Flow: '
Claus Plant:
#1 condenser temp,°F
#1 reactor temp,°F
#2 condenser temp,°F
n reactor temp,°F
#3 condenser temp,°F
#3 reactor temp,°F
#4 condenser temp,°F
thermal oxidizer temp,°F
stack port temp,°F
tail gas ^S, ppmv
tail gas S02> ppmv
1000
1130
TABLE 3-2
Santa Rosa Test
Phase 1, Run #2
1230
1300
1330
1400
1430
1500
1530
.72 .725
95 99
5.0 6.0
5^
.7
4.3
289
447
291
431
289
425
289
1150
663 663
7200 6080
3400 4620
.73
100
6.0
5.4
4.5
287
447
291
431
289
425
289
1150
663
7200
3020
.72
100
6.0
-
—
289
447
291
43V,
289
425
289
1150
661
6040
4200
.725
101
6.0
5.4
4.5
289
447
291
431
289
425
289
1150
660
6480
4000
.715
97
6.0
'
.
289
447
291
432
289
425
289
1150
661
9680
1520
.72
99
6.0
5.0
4.5
289
447
291
432
289
425
289
1150
662
10840
1420
.72
102
6.0
_
-
289
447
291
' 432
289 .
425
289
1150
663
8640
2200
.72
103
6.0
5.2
4.5
289
447
291
432
289
425
289
1150
662
6800
2960
.722
100
6.0
5.3
4.5
U)
*»
1150
662
-------
trt
n
O
O
z.
m
Z
>
r- •
-4
m
n
z
O
O
O
z
r>
Date: 6/6/75
Place: Jay,'Florida
Observer: Sedman
Time
Acid Gas: ,
Flow
Temp,°F
Press.,pslg
Fuel Gas Flow:
Stripper Gas Flow:
Claus Plant:
#1 condenser temp,°F
#1 reactor temp,°F
#2 condenser temp,°F -•
#2 reactor temp,°F
#3 condenser temp,°F
#3 reactor temp,°F
#4 condenser temp,°F
thermal oxidizer temp,°F
stack port temp,°F
tail gas H2S, ppmv
tail gas S02» ppmv
TABLE 3-3
Santa Rosa Test
Phase 1, Run #3
1000 1030 1100 1130 1200 1230
1300
CO
3
vo
O
O
1330 1400 1430 Average
.70
92
6.0
5.3
4.4
289
447
-291.....
431.--
289
425
288
1150
648
6400
3620
.705
93
6.0
-
-
289
447
.=291 -
431 ~
289
425
288
1150
650
8800
2800
.705
94
6.0
5. ,4
4.1
289
447
..291
^431^
289
425
288
1150
649
5640
5400
.705
95
6.0
-
-
289
447
291
431 :
289
425
288
1150
650
6240
4080
.705
96
6.0
5.3
5.1
289
447
291
"431
289
425
288
1150
651
7040
3600
.71
97
6.0
5.3
4.4
289
447
291
.'.' 431
289
425
289
1150
653
6800
3920
.71
98
6.0
.
•
289
447
291
'431
289
425
289
1150
650
6200
4300
.71
99
. 6.0
5.3
4.3
289
447
291
431
289
425
289
1150
653
6840
3480
.71
100
6.0
-
-
289
447
291
1 431
289
425
1289
1150
653
6800
3860
.71
100
6.0
5.3
4.5
289
447
291
431
289
425
-289
1150
652
6800
3840
.707
96
6.0
5.3
4.5
r
Ul
1150
651
-------
3-6
SET 1497 02 0176
TABLE 3-4
Santa Rosa Test
Phase 2, Run #1
Date: 6/9/75
Place: Jay, Florida
Observer: Sedman
Time
thermal oxidizer temp,°F
stack port temp,°F
acid gas rate
tail gas h^S, ppmv
tail gas S0p> ppmv
fuel gas rate
-1630
1050
602
_.725
6400
3000
~ **
. 4.9
1700
1050
60.1
.725
6560
2960
4.9
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
8
m
Z
35
O
Z
n
x
Z
O
O
O
Z
r»
TABLE 3-5
Santa Rosa Test
Date: 6/10/75
Place: Jay, Florida
Observer: Sedman
i
Time:
Thermal oxidizer temp. °F
Stack port temp. °F
Acid gas rate
Tail gas ^S, ppmv
Tail gas SOp, ppmv
Fuel gas rate
1115
950
567
.725
5680
5180
4.2
1130
950
561
.730
5680
5000
4.1
riiaac &
1145
950
560
.735
7200
3080
4.2
9 i\U 1 IO fc
1200
950
561
.730
8800
2240
4.1
aj
1300
1050
578
.72
6040
3400
4.8
1315
1050
580
.705
6440
5100
4.7
1330
1050
586
.725
9200
2000
4.8
1345
1050
594
.72
6240
3840
4.8
1400
1050
595
.72
6960
3500
4.8
CO
H
O
to
0
M
^J
u>
-------
SET 1497 02 0176
3-8
TABLE 3-6
Santa Rosa Test
Phase 2, Run 4
Date: 6/10/75
Place: Jay, Florida
Observer: Sedman
Time:
Thermal oxidizer temp,
Stack port temp.
Acid gas rate
Tail gas HpS, ppmv
Tail, gas SOg, ppmv
Fuel gas rate
1545
900
548
.72
7200
3200
3.7
1600
900
545
.72
7200
3700
3.Y
1615
900
543
.72
5920
4300
3.7
1630
"900
5.43
.72
5600
5000
3.7
SCOn ENVIRONMENTAL TECHNOIOGY, INC.
-------
SET 1497 02 0176
Date: 6/11/75
Place: Jay, Florida
Observer: Sedman, Mobley
Time:
Thermal oxidizer temp. °F
Stack port temp. °F
Acid gas rate
Tail gas HpS, ppmv
Tail gas S02, ppmv
Fuel gas rate
3-9
TABLE 3-7
Santa Rosa Test
Phase 2, Run 5
1130
1150
\653
.720
8800
2900
5.3
1145
1150
654
.720
16,000
iooo
5.3
1200
1150
658
.720
16,200
1400
5.3-
1215
1150
659
.725
8600
2400
5.3
1230
T150
658
.725
7720
3060
5.3
, 1245
1150
659
.725
6520
4140
5.3
{ } = upset
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
3-10
TABLE 3-8
Santa Rosa Test
Phase 2, Run 6
Date: 6/11/75
Place: Jay, Florida
Observer: Sedman
Time:
Thermal oxidizer temp. °F
Stack prot temp. °F
Acid gas rate
Tail gas H2S, ppmv
Tail gas S02> ppmv
Fuel gas rate
1330
1250
726
.725
5480
5480
1345
1250
737
.725 *
6000
5600
1400
1250'
755
.72
6240
4640
1415
1250
741
.725
7640
3260
1430
1250
733
.72
-
—
7.8
5.8
6.3
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
r»
O
m
Z
35
O
Z
r>
x
O
O
O
z
O
Date: 6/12/75
Place: Jay, Florida
Observer: Mobley ,
Time:
Thermal oxidizer temp. °F
Stack port temp. °F
Aicd gas rate
Tail gas HgS, ppmv
Tail gas S02i ppmv
Fuel gas rate - ..
TABLE 3^
Santa Rosa Test
Phase 2,
830
1150
662
.72
10080
2900
- 5.5
830
1150
662
.72
10080
2800
5:5^
900
1150
662
.72
10400
2700
— 5.5,,-;,
Runs 7,
930
1040
631
.72
9920
2640
4.8
8,9
945
1040
630
.72
8800
2600
4.8
1000
1040
628
.72
9600
2800
4.8 •
1045
950
580
.725
8400
3000
4.1
1100
950
577
.725
9600
2840
'4.1
in
a
0
to
O
1115
950
5.75
.73
4000
4400
4.1
-------
3-12
SET 1497 02 0176
3_10
Formulae to Calculate Gas Flows at Santa Rosa Plant
Acid Gas Flow:
Q(MSCF/D) = 98-8 /P, + 14.65 / 520 "I (10R)
'ag -
Fuel Gas Flow:
Q(HSCF/D) «= 3.851 /P, + 14.65 / 520 . (R)(F )
T V _L Acr\ ' ~ B
Tf + 460
where Fn = /T (G = MW_J
9 G" ' 28.9
Stripper Gas Flow:
Q(MSCF/D) = 0.5459 /P, + 14.65 / 520 (R)CF )
S Ts + 460 *
Q(MSCF/D) = Thousand Standard Cubic Feet Per Day
P = Gage Pressure (pounds per square inch)
T = Temperature (°F)
R = Direct Instrument Gage Readings
MW = Gas Molecular Weight
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
4-1
SET 1497 02 0176
4.0 LOCATION OF SAMPLING POINTS
Sampling locations for the sulfur recovery operations area
are shown in Figure 1. Sampling point "B" at the 145 foot level and
sampling point "G" at the 245 foot level on the incinerator stack are
illustrated in Figure 3. Stack gases were sampled at point "B".
Velocity and temperature measurements had to be made at point "G",
because the gas velocity at the lower level with its larger diameter
was too low to measure accurately.
Tail gas at sampling point "C" was sampled from a 20 foot
high scaffolding adjacent to the sampling valve. Sampling points D,
E, and F were easily accessible at ground level. -
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
4-2
FIGURE 3
INCINERATOR STACK
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
5-1
SET 1497 02 0176
5,0 SAMPLING AND ANALYTICAL PROCEDURES
5.1 MANUAL PROCEDURES USED BY SCOTT
Scott performed velocity and temperature measurements using
an "S" type Pitot tube with a water manometer and thermocouple (EPA 2).
Carbon dioxide, oxygen and carbon monoxide were analyzed by Orsat
apparatus (EPA 3r* Moisture was determined by sampling with a condensing
impinger train (EPA 4)^: Sulfur dioxide (SO.-) was determined by sampling
with an impinger train and analyzed by EPA Method 6. The incinerator
stack gases were also sampled for NO with an evacuated flask and
subsequently analyzed by the phenoldisulfonic acid method (EPA 7) .
The Tutwiler2 method was used to determine hydrogen sulf ide (H_S) in the
acid and stripper gas streams. It is a volumetric redox method.
5.2 CONTINUOUS MONITORING PROCEDURES USED BY SCOTT
5.2.1 Total Hydrocarbon Analyzer
A Scott Model 215 heated THC analyzer with flame ionization •
detector was used for testing stack emissions for hydrocarbons. A
mixture of 60% helium and 40% hydrogen was used as fuel gas. A bypass
sample gas flow rate of 2 SCFM was maintained. A cylinder gas mixture
containing 331 ppm propane in air was used for calibration and hydro-
carbon free air was utilized for zero reference.
5.2.2 Oxides of Nitrogen Analyzer
A Scott Model 125 chemiluminescence analyzer with thermal
converter was used to measure NO . A sample bypass of 2 SCFM was used.
X
A cylinder gas mixture of 426 ppm nitric oxide in nitrogen was used as
the span gas and hydrocarbon free air was used for zero gas.
References
1. Federal Register: 40 CFR 60; 36 FR 24876, December 23, 1971 and
subsequent amendments.
2. Altieri, V. J., Gas Analysis and Testing of Gaseous Materials,
American Gas Association, New York, 1945.
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
5-2
SET 1497 02 0176
5.2.3 Carbon Monoxide Analyzers
A Mine Safety Appliance Model 30 LIRA Infrared Analyzer was
used for concentrations of carbon monoxide greater than 5000 ppm.
Span gases containing 2340 ppm, 5000 ppm and 9.7% carbon monoxide in
nitrogen were used along with hydrocarbon free air as the zero gas.
A Beckman Model 315A Non-dispersive Infrared Analyzer was
maintained to measure concentrations of less than 5000 ppm carbon
monoxide. Since CO concentrations were always greater than 5000 ppm
this instrument read off scale during the entire testing period.
5.2.4 Gas Chromatograph
A Varian Aerograph Model 90-P Gas Chromatograph with a thermal
conductivity detector was used to determine concentrations of S0_, H S, COS
and C02- This unit was located in the EPA van. It had a 5 cc sample loop and
used Helium as the carrier gas. An S0_ calibration gas of 1040 ppm in nitrogen
was utilized. Table 5-1 lists details of the chromatographic method.
Initially the samples were transferred to the GC through a
sample line connected to the EPA 10:1 dilution stream. However, the
S02 data were significantly lower than expected based on Exxon in-
plant instrumentation. Undiluted samples, collected from the bypass
THC stream in Tedlar bags, gave more realistic values. Bag samples
were thus used for GC analysis for the balance of the program.
5.3 PROCEDURES USED BY EPA
The Emissions Measurement EPA mobile laboratory equipment
described for previous sulfur compound analyses was used at the Exxon
Santa Rosa Plant (Method 16, prepared for publication in the Federal
Register; and Method 18, in preparation). Briefly, the gas chromatographic-
flame photometric detector (GC/FPD) is calibrated daily by passing known
quantities of sulfur compounds, generated by permeation tube standards,
through the analytical system and measuring responses. Then the dilution
system is calibrated by combining measured amounts of the above standards
and dried compressed air. Finally source samples are pumped through a
heated sample line, diluted with air, and analyzed. All sample contacts
are either teflon or stainless steel to minimize absorption.
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
5-3
SET 1497 02 0176
TABLE 5-1
GAS CHROMATOGRAPH SPECIFICATIONS
Instrument: Varian Aerograph Model 90-P
Column: 1/8" 9 feet Porapak Q (50-80 mesh) plus 6 feet of 20% Carbowax
20M on Diaport-S (60-80 mesh) plus 6 feet of acid treated silica
gel. (The Carbowax and silica gel columns were added to delay
the elution time of water which interfered with the SO. peak
when the Porapak Q column was used alone.)
Column Temperature: 110°C
Carrier Flow Rate: 60 cc/min Helium
Sample Loop: 5 cc
SCOn ENVIRONMENTAl TECHNOLOGY, INC.
-------
5-4
SET 1497 02 0176
Specific equipment and techniques employed at Santa Rosa
are described briefly in the following paragraphs.
The GC column, purchased from Tracer Instruments, Inc., was
a specially treated silica gel column. It was chosen because S0»
eluted after COS, H.S, and CS-. All four sulfur compounds were present
in incinerator stack gas. The S02 was about 5,000 ppm - a concentration
much higher than that of the other three compounds. The sample gas was
diluted ten to one for optimum analysis of COS, H2S, and CS-. At that
dilution the S0_ concentration was still too high and the GC/FPD was
saturated. If SO- had been other than last for this sample all subsequent
peaks would have been obscured. Analyses of the stack gas were at a
column temperature of 40 C and nitrogen carrier gas flow of 100 cc/min.
Fuel gas at the Santa Rosa Plant was pressurized at greater
than 100 pounds per square inch. Therefore the pressure was reduced
to about 4 pounds per square inch and fuel was delivered through the
sample line to the dilution system, without using the sample pump.
The Tracer column was used for fuel gas. To allow more rapid resolution
of methyl mercaptan the column was heated to 70 C. Otherwise conditions
were as previously stated.
Calibrations were made at start and finish of test runs and
at times during the runs. All continuous analyzer results were readout
on analog recorders. Data are reported as averages over 15 minute
periods.
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
APPENDIX A
COMPLETE GASEOUS RESULTS
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-l
SUMMARY OF CO AND THC ANALYSES - INCINERATOR OUTLET (POINT B)
PHASE I
(All concentrations are in ppm or ppm-CH, on dry basis)
Run 1
Time
1245
1300
1315
1330
1345
1400
1415
1430
1445
1500
1515
1530
Avg.
- 6/4/75
CO By
NDIR
5000
5000
5000
5500
5500
6000
5500
5000
5000
5500
5500
5500
5300
THC By
FID
590
600
640
630
650
660
660
630
660
630
690
670
640
Run 2
Time
1130
1145
1200
1215
1230
1245
1300
1315
1330
1345
1400
1415
1430
1445
1500
1515
Avg.
- 6/5/75
CO By
NDIR
5500
5500
5500
5500
5500
5500
5500
5500
5300
5000
5000
5500
6000
5500
5500
5500
5500
THC By
FID
580
580
560
580
600
660
710
]
1 i
I
I
1
; I
i
1
610
Run 3
Time
1100
1115
1130
1145
1200
1215
1230
1245
1300
1315
1330
1345
1400
1415
1430
Avg.
- 6/6/75
CO By
NDIR
6000
6000
6000
6000
5500
5500
5500
5500
5000
5000
5000
5000
5500
6000
5500
5500
THC By
FID
N
0
V
A
L
I
D
D
A
T
A
Note;
NDIR = Non-Dispersive Infrared
FID = Flame lonization Detector
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-2
SUMMARY OF NO ANALYSES - INCINERATOR OUTLET (POINT B)
X
PHASE I
(All concentrations are ppm on dry basis)
Test 1 - 6/4/75
NOX By
Time EPA-7
1245 18.8
1300
1315
1330
1345
1400 3.0
1415 11.2
1430 5.0
1445
1500 9.4
1515
1530 9.0
Avg. 9.4
NOX By
Chemi
11.1
10.3
11.1
9.9
10.9
10.9
11.0
11.0
10.8
11.1
10.6
11.3
10.8
Test 2 - 6/5/75
NOx By
Time EPA-7
1100
1115 14.1
1130
1145
1200 11.9
1215 5.6
1230
1245 8.8
1300
1315 8.1
1330
1345 10.5
1400
1415
1430
1445
1515
Avg. 9.8
NOx By
Chemi
10.1
10.6
10.6
11.0
9.6
9.2
10.5
10.3
10.1
10.8
9.8
9.9
9.1
9.3
9.3
9.3
9.3
9.9
Test
Time
1030
1045
1100
1115
1130
1145
1200
1215
1230
1245
1300
1315
1330
1345
1400
1415
1430
Avg.
3 - 6/6/75
NOx By
EPA-7
8.6
4.8
6.6
4.2
6.3
6.4
7.7
9.0
6.7
NOx By
Chemi
10.7
8.2
9.7
10.9
11.3
11.5
10.7
10.4
10.6
11.5
10.6
11.3
11.0
11.5
10.8
11.1
11.1
10.8
Note;
Chemi = Chemiluminescence
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-3
SUMMARY OF S02 ANALYSES - INCINERATOR OUTLET (POINT B)
PHASE I
(All concentrations are ppm on dry basis)
Rim 1 - 6/4/75
S02 By S02 By
Time EPA- 6 GC/TC
1231 4300*
1258 5250*
1259 6096
1343 4530*
1424 4390*
1447 2997
1455 4280*
1525 3870*
Avg. 4547 4440*
.
Run 2 - 6/5/75
SO, By
Time EPA-6
1121 4199
1122
1207
1225
1235
1257 2661
1300
1345
1412
1430
1505
Avg. 3430
Plant Data
1430
1430
,
SOo By
GC/TC
3140*
3490*
3600*
6320
6870
5900
2970*
6650
6610
6470
•--'.:•
> 7900
7900
Run 3 - 6/6/75
S02 By
Time EPA-6
1012 .
1030
1036 4923
1100
1130
1135 4573
1200
1215
1230
1245
1300
1315
1320 2983
1330
1345
1400
1415
1442 3429
1459 4152
Avg. 4012
Plant Data
1330
1330
SOo By
GC/TC
6510
6670
7570
7210
6900
6730
7160
7000
6010
7080
7070
7040
7250
7400
6970
6200
6100
* Diluted samples; data believed not valid.
Note;
GC/TC = Gas Chromatograph/Thermal Conductivity
ji.y SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
...__. . TABLE A-4
SUMMARY OF REDUCED SULFUR COMPOUND ANALYSES
PHASE 1
(Parts Per Million. Wet
- INCINERATOR OUTLET (POINT B)
Basis)
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
.13
14
15
16
17
Run No. 1
11 30. 6-4-75
COS
17.2
s
16.7
16.7
16.7
14.9
17.7-
16.2
14.9
16.7
15.7
16.7
15.7
14.9
15.7
15.7
14.9
H2S
18.2
14.1
19.7
19.2
21.2
18.7
20.2
19.1
13.1
15.7
12.1
18.5
21.0
17.7
16.5
16.2
16.3
cs2
15.2
17.0
12.1
13.1
13.0
11.3
9.1
11.1
13.1
14.2.
14.6
-
11.1
10.1
11.1
12.1
9.4,
Run No. 2
nil 6-5-75
COS
8.5
12.3
10.8
11.9
9.4
11.9
11.1
11.9
10.1
11.0
11.7
12.2
12.2
10.5
10.5
10.8
H2S
18.8
16.6
15.9
18.7
15.9
19.6
15.9
18.6
j
15.9
22.4
25.2
18.9
18.7
25.1
16.7
16.7
cs2
7.6
7.4
9.0
7.6
9.0
7.1
8.8
9.0
9.7
7.9
8.8
8.8
8.4
6.0
'V.O
7.2
Run No. 3
1022. 6-6-75
COS
21.2
13.9
16.5
16.8
16.8
14.5
15.5
16.5
15.2
15.5
15.1
14.1
13.9
14.0
14.0
13.7
H2S
37.1
25.8
27.3
25.7
23.7
19.5
22.1
23.7
23.8
24.2
20.1
20.6
20.6
19.8
20/1
18.3
cs2
10.8
16.0
12.4
13.4
10.3
11.5
9.8
10.8
8.2
12.4
8.7
11.3
8.3
10.3
10.8
10.3
-------
SET 1497 02 0176
TABLE A-5
H.S ANALYSES OF ACID GAS AND STRIPPER GAS STREAMS
By Tutweiler
(Concentrations are in % by Volume)
Date
6/4/75
6/5/75
6/6/75
Time
1130
1255
1500
1525
1555
1620
Avg.
0940
1005
1120
1350
1405
1500
Avg.
1040
1055
1130
1255
1355
1405
Avg.
Acid Gcis \ F j » v
GctS CE)
82.0
82.1
88.5
77.1
86.4
82.4
80.9 87.5
i
80.9 j
79.9
80.2
•' /
// ; • 81.2
75.9,
78.6'
78.9 80.6
80.5
85.1
81.1
79.6
84.8
80.6
80.5 85.0
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-6
SUMMARY OF FUEL GAS.ANALYSIS (POINT D)
1 6/12/75; 10:15 AM
ppm
Sample
Number
1
2
3
4
5
Avg.
COS
3.3
2.9
3.2
3.1
3.1
3.1
H2S CS2 S02
3.7 1.3 Trace
3.8 1.8 "
3.6 2.2 "
2.9 2.0 "
I ''•<
! ' -
4.4 2.1 ''
3.7- 1.9 /
MeSH
15.1
12.5
16.9
14.2
16.0
14.9
EtSH
:
.
0.6
. - :
1.0
0.3
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-7
SUMMARY OF CO AND THC ANALYSES - INCINERATOR OUTLET (POINT B)
PHASE II
(All concentrations are in ppm or ppm-CH, on dry basis)
Run
Time
1530
1545
1600
1615
1630
1645
1700
Avg.
1 - 6/9/75
CO By
NDIR
6100
6000
6000
5800
5800
5900
5700
5900
THC By
FID
620
500
500
670
780
960
1030
720
Run 2 - 6/10/75
CO By
Time NDIR
1100 7000
1115 6900
1130 6900
1145 6700
1200 6600
1215 7000
Avg. 6900
THC By
FID
1020
1010
970
900,
840
860
930
Run
Time
1300
1315
1330
1345
1400
1415
1430
1445
Avg.
3 - 6/10/75
CO By THC By
NDIR FID
6000 710
5900 750
5500 770
5800 720
6000
6000
6000
6200
5900 740
Note;
NDIR = Non-Dispersive Infrared
FID = Flame lonization Detector
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
TABLE A-8
SUMMARY OF NO ANALYSES - INCINERATOR OUTLET (POINT B)
PHASE II
(All concentrations are ppm on dry basis)
Run 1 - 6/9/75
NO By NO By
Time EPl-7 Chemi
1530 9.1
1545 10.3
1600 7.0 10.2
1615 1.5 10.4
1630 10.2
1645 9.9
1700 9.9
Avg. 4.3 10.0
0
Run 2 - 6/10/75
NO By NO By
Time EPl-7 Chemi
1100 7.4
1115 3.5 7.6
1130 7.8
1145 3.2 8.2
1200 8.7
Avg. 3.4 7.9
Run 3 - 6/10/75
NO By NO By
Time EP&-7 Chemi
1330 11.6
1345 11.6
1400 11.3
1415 11.5
1430 12.5
Avg. - 11.7
Note;
Chemi = Chemiluminescence
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
1 TABLE A-9
. SUMMARY OF TAIL GAS ANALYSIS (POINT C)
PHASE II
(All concentrations are ppm on dry basis)
Run 1 - 6/9/75
~ ' - H2S by' COS SO
Time GC/TC
1600 3240 79 3960
1773 3630 43_ 301C
Avg. 3440 61 349C
Plant Data
1630 6400 3000
1700 6560 2960
I
-
Run 2 - 6/10/75
H2S COS SO
Time By GC/TC
INLET
1013 2500 41 5150
1047 3130 70 4060
1200 4000 72_ 2020
Avg. 3210 61 3740
Plant Data
1115 5680 5180
1200 8800 2240
6/10
H_S Analysis of Plant
Cal.Std. ,
Plant Scott
1.88% 1.86%
j :
.' . 1 '
•• i.
i
Run 3 - 6/10/75
H2S COS SO
Time By GC/TC
INLET
1307 2850 32 4710
1410 3630 88_ 3860
Avg. 3240 60 4290
Plant Data
1300 6040 3400
1330 9200 2000
1400 6960 3500
Note; " ,
GC/TC = Gas Chromatograph/Thermal Conductivity
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
SET 1497 02 0176
APPENDIX B
FIELD DATA SHEETS
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
TRAVERSE POINT LOCATION & VELOCITY DATA BY J-MJ. '
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
7ffjt
M/-97-'
ziOE
,1
,1
JZ.
.£3£~ S:
l/
::U...,—
:orn-J
Sj
^rir
asffi
i
£Ttrti
HUES
LirHffB
•fill
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4$
46
47
48
_JJkA/vi
.
-
AVERAGE
1 *
*
Cflif-i .'.*> |
f 1
'
•
nonrc
POINTS (indicate direction of flow}"
INSIDE DIMENSIONS OF SAMPLE PLANE
STACK GAUGE PRESSURE in.
NEAREST UPSTREAM DISTURBANCE'
NEAREST DOWNSTREAM DISTURBANCE^
PROCESS & CONTROL EQUIPMENT
DESCRIPTION
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
NOMOGRAPH DATA BY
M$
MOISTURE
ffiPIKGERS
***f)
INITIAL VOLUMF ~~/~O~
2»/» NFTVnillMF f£-ra
3>7 fO$? /Oi (•
"] {6(S^t- <^2i^
x-rvAA&V. £^C3^
t~i>£>2^,l^
ANALYTICAll^TA*
ACETONE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER 1
FINAL
TARE
NET
FILTER NUMBER 2
•'FINAL
TARE
NET
FILTER NljH?,Ff> 3
FINAL
TARE
NET
FINAL
TARE
MET
TOTAL FRONT
(' ml
ml
^ ml
f
t«
BY
mg
mg
mg
mg
mg
mg
ing
mg
mg
mg
mg
mg
mg
mg
SCOTT ENVIRONMENTAL TECHNOLOGY,
SILICA GEL _ '.,
FIHAL WFIfiHT 'A *••<> ' (
iN'Tm yp'^HT ,r » >' > f
NFT WFIftHT / -V i-f
TOTAL MOISTURE 12.. 0 f
W?:l?5 '•£•'
ACETONE BACK WASH
FINAL mg
TARE mg
. NET ' mg
ETHER-CHLOROFORf^ EXTRAC"
FINAL mg
TARE mg
NET mg
WATER EVAPORATION .
FI?>:AL~~ - - ... mg
7 ' TARE ^"""mg
NET ' mg
TOTAL BACK rng
I CERTIFY THAT THE SAMPLES DESCRH EO
BY THIS DATA SHEET WERE COLLECTED IN
ACCORDANCE WITH METHODS OUTLINED 1 V
I FURTHER CERTIFY THAT THE SAMPLE:
WERE III THE POSSESSION OF, OS SEA! EO
FOR SHIPMENT BY COMMON CARRIER SI
MYSELF UNTIL DELIVERY TO A LAQOfiA' ORY
FOR ANALYSIS.
SIGNED DATE
WITNESS DATE
I CERTIFY THAT I RECEIVED THE SAM. LES
: DESCRIBED BY THIS DATA SHEET FROM THE
ABOVE NAKED INDIVIDUAL AND ANALYZ! D
THEM IN ACCORDANCE WITH THE ABOVE
NAMED PROCEDURE.
SIGHED DATE
INC WITNESS . MfE
CALIBRATED PRESSURE DIFFERENTIAL ACROSS
ORIFICE. In. HjO
AVERAGE KCTER TEMPERATURE (AfilBI£NT-»-n*F).*F
PERCENT UOISTURE IH GAS STREAM BY VOLUME
BAROMETRIC PRESSURE AT METER. In. H|.
STATIC PRESSURE IN STACK, In. K|
Pni().073 I STACK GAUGE PRESSURE in In. H2o)
RATIO OF STATIC PRESSURE TO METER PRESSURE
AVERAGE STACK TEMPERATURE, "F
AVERAGE VELOCITY HEAD. in. H20
liAXiHUS VELOCITY HEAD. in. HjO
C FACTOR
CALCULATED NOZZLE DIAMETER. In.
ACTUAL NOZZLE DIAMETER, in.
REFtSEUCEAp.ln. H20
AH.
I'm.
%.
«•.
•\
'•*.
T,
*»«|.
4Pm,.
ORY MOLECULAR WEIGHT
SAMPLING TIME (24-hr CLOCK)
3Y . / / .
SAMPLING LOCATI
SAMPLE TYPE (iiA
ANALYTICAL ivMT!
AfilSitfiT TEKFER,
^>v^ RUN .
GAS ^^^^.
C02
OjlllcT IS ACTUAL 02
REACIKS rKiUS ACTUAL
CO; RaDING)
CO(H£TISACTUALCO
READIKGKNUS ACTUAL
02 fi£Ac::;a
ACTUAL CO REACiSC)
ON
G, INTEGRATED, CQNTMU
-;GD
oaa
liTUSt
1
ACTUAL
READIKG
W <6
i>-s>
tf.}
«ET
tz
fa
.3.
2
Si
f,^
^(,
«n
f'3.
O i A
•>Jl
. 1*^
i .
R*rS
70t^
W
9*H
MET
?<<
5-^
^
AVERAGE
-r.^
5".3
..3
:-.-•
-------
TRAVERSE POINT LOCATION & VELOCITY DATA BY
TRAVERSE
POINT
HUK3EF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
U
18
19
20
21
22
*•*
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
A=FRACTIOH
OF I.D.
•
'
/'/W /
J
^*.Y-Of't
f
/VCJ^UI^
/AA/SJS
• .
AVCRACE
B=AxI.D.
10°
v-y>-r4
j^'j .
; •'
.ftJiTV" i.
'L 6/
•
C'B+NIPPLE
NIPPLE-
*
fte^ JU
'jvjktilr
«Tf>r
/
VELOCITY
HCAO
l\ps), in.H^
,aO
•»H
^2-
,^-6
/ T-f,
/ / ^
f+&iC
,rf <6
rrtf-rt
^(
,^
,t<<
-" ', '•>
• '
•
STACK
TKTtRATURE
|TS). -F
Ota
*
0
( If
£ IL
IL
i
V
•
•
DIAGRAM OF STACK. PORTS, 5 TRAVERSE
POINTS (indicate direction of f1
INSIDE DIMENSIONS OF SAMPLE PLANE
37 ^
STACK GAUGE PRESSURE in. HgtT,,
'NEAREST UPSTREAM DISTURBANCE
NEAREST DOWNSTREAM DISTURBANCE
^•
PROCESS & CONTROL EQUIPMENT
DESCRIPTION
SCOn ENVIRONMENTAL TECHNOIOGY, INC.
-------
NOMOGRAPH DATA BY
MOISTURE
WRINGERS ' ' '
FINAL VOLUME ' «'
INITIAL VOLUME _££.
Nrr vni IIMF . „ , «7-
ANALYTICAL DATA
ACETONE PROMT WASH
FINAL
TARE
NET
• FILTER NUMBER 1
FINAL
TARE
NET
FILTER NUranR 2
; FINAL
TARE
NET
FILTER NW3ER 3
FINAL
TARE
NET
CYCLONE
FINAL
TARE
NET
TOTAL FRONT
Sll
F
^ml "
:, «
^.ffll TO!
*,
&f
BY
mg
mg
mg .
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg.
mg
mg
mg
Sfa.
i\J SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
^t*tw^
JCAGEL , . —
INfll WFIRHT r^»7 » f
«TIAI WFIGHf r/l*" ^
FT WFIRHT / »/ i g ,
rAL MOISTURE /C.^" ' i
-"X» <$ -3 c //-^- .'•
O
«
ACETONE BACK WASH
FINAL m
TARE mg
NET ' mg
ETHER-CHLOROFORM EXTRAIT
FINAL mg
TARE mg
NET mg
WATER EVAPORATION
FINAL -• -"- mg
TARE. "-"rag
NET ' mg
TOTAL BACK mg
.1 CERTIFY THAT THE SAi'fLES DESCR .DEO
BY THIS DAIA SHEET MKE COI.LCCTE ) ?N
ACCOSCANCE WITH METHCfiS OUTLIKEC 3Y
TTURTHtR CERTIFY TKAf~TfiE~3AliPT. 3 '
WERE IN THE POSSESSION OF. OR Sf M.EO
FOR SHIPMENT BY CUWON CARRIER 11,
MYSELF UNTIL DELIVERY TO A LABOIUORY
FOR ANALYSIS.
SIGNED OATI
WITNESS DATI
I CERTlfV Tn/it 1 RfCt7VEO~t'HE S/ S?ITS
DESCRIBED BY THIS DATA SHEET FRI M THE
ABOVE NAMED INDIVIDUAL AND ANAL' ZED
THEM IN ACCORDANCE WITH THE ABO1 E
NAKED PROCEDURE.
SIGNED DAT:
WITNESS DAf
CALIBRATED PRESSURE DIFFERENTIAL ACROSS
ORIFICE, to. H20
AVERAGE KETERTEMPERATURE(AMBIENT+a*n.«F
PERCENT UOISTUHE IN CAS STREAM BY VOLUME
BAROMETRIC PRESSURE AT METER, In. Hj
STATIC PRESSURE IN STACK, In. Hf
P0i£W3 1 STACK GAUGE PRESSURE It la. H2o)
RATIO OF STATIC PRESSURE TO METER PRESSURE
AVERAGE STACK TEMPERATURE. "F
AV ERAGE VELOCITY HEAD. in. HjO
MAXIMUM VELOCITY HEAD, In. HjO
C FACTCR
CALCULATED HOJZLE DIAMETER, In.
ACTUAL NOZZLE OIA.V.ETER. In.
REFERECCE 4p. in. H20
4H,
T-,«.
B.a
%
•
P.
VB
*3Vt.
Af.vj.
A'CM.
,'
DRY MOLECULAR IVSIGHT DETERMINATION
SAMPLING Tlii'-H (24-hr CLOCK) _ _ '
SAMPLING LOCATION
BY
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD '
AMBIENT TEKPERATURE
^"\^^ RUM .
GAS ^^"--^
C02
OjlCET IS ACTUAL 02
RWS.'.'IC MINUS ACTOAl.
C0> CD\5!:f«
CO|N£T IS ACTUAL CO
REAOII.'G IStiW ACTUAL
0; READING)
NiciETisiosimus
ACTUAL CO REAOiKQ
1
ACTUAL
REAOI.1G
-------
/ .'
TRAVERSE POINT LOCATION & VELOCITY DATA ' BY
L
I
I
I
Q
TKAVERS
POINT
NUf.'BE
1
2
3
4
5
6
7
8
9 •
w
11
12
13
14
IS
16
17
IS
19
20
21
22
23
24
~
26
2?
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
47
48
A=FRACTIOfl
OF I.D.
•
*»
u
£V v;*j , C
r
3r>Ci-»vfi>
/A^,'2J£-
• .
'AVERAGE
B=AxI.D.
10=
,"i^7-/.
Vxii , Vt
f f
jCLKnf <1^
7.
C=8*NIPPLE
NIPPLE"
*>
L«fta.
i,jj-61r
£/fc/7!T
* *
VtLOCITY
HtAU
t\psl, in.lliO
.'J1^
./<$
'/a 7
•^
,«i
/»o
j*J
,M
i2ff
,1$
•
STACK
TEKrCRATURE
|TS), 'F
t
-------
NOMOGRAPH DATA BY
MOISTURE
^/ 1 • ^y*jc .' y T'j?
\f6 4 CO INITIAL VOLUMF {(?. e
- • 'NET VOLUMF . ?•£.%
SILICA GEL x-
FIHAL WEIGHT Jyr-QS- j
, INITIfll WFIKHT 5?2.r*Vg
•m, HFTWFIftHT .. .2.0-2- g
.ml TOTAL MOISTURE ^7 ,K"V^ 1
1 9
ANALYTICAL DATA BY
ACETONE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER 1
FINAL
TARE
NET
FILTER NUMBER 2
FINAL
TARE
NET
FILTER NUMBER 3
FINAL
TARE
NET
CYCLONE
FINAL
TARE
NET
TOTAL FRONT
v/^v
ACETONE BACK WASH
mg FINAL mg
mg TARE mg
mg NET ' mg
ETHER-CHLOROFORM EXTRACT
mg FINAL mg
mg TARE . mg
mg NET mg
WATER EVAPORATION
mg FINAL mg
mg- TARE mg
mg NET mg
TOTAL BACK mg
'"S I CERTIFY THAT THE SAMPLES DESCSI ED
BY THIS DATA SHEET WERE COLLECTED IN
mg ACCORDANCE WITH METHODS OUTLINED Y
mg s—-—^
WERE IN TI:E POSSESSION OF, nr< SEA EO
FOR SHIPMENT 3Y COW-ION CARRIER BY
MYSELF UNTIL DELIVERY TO A LASGltA GRY
mg FOR ANALYSIS.
mg SIGNED DATE
WITNESS DATE
"ig I CERTIfTTiP.t 1 RECEIVCD THE SAM ITS
DESCRIBED BY THIS DATA SHEET FROM THE
mg ABOVE iiMED INDIVIDUAL ADD A:IALYZ:D
NAMED PROCEDURE.
SIGNED DATE
^\) SCOn ENVIRONMENTAL TECHNOLOGY. INC. U,TN£SS DAr£
CALIBRATED PRESSURE DIFFERENTIAL ACROSS
ORIFICE, In. HjO
AVERAGE METER TEMPERATURE (AMBIENT + a'Fl.'F
PERCENT MOISTURE IN GAS STREAM BY VOLUME
BAROMETRIC PRESSURE AT METER, In. Hf
STATIC PRESSURE IN STACK. In. H|
Pml(o.0;3 i STACK GAUGE PRESSURE In in. H2o)
RATIO OF STATIC PRESSURE TO METER PRESSURE
AVERAGE STACK TEMPERATURE, "F
AVERAGE VELOCITY HEAD. in. HjO
MAXIM VELOCITY HEAD, In. HjO
C FACTOR
CALCULATED K07ZLE DIAMETER, In.
ACTUAL NOZZLE DIAMETER, in.
REFERENCE Ap, in. H20
AH(
T««»r
BWO
I'm
P«
"*.
*JV{.
4"lVJ.
*fna«.
DRY MOLECULAR WEIGHT DETERMINATION BY _
SAMPLING TIME (24-hr CLOCK)
SWtfLIKG LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) .
ANALYTICAL fi'.ETHOD _ '-
AMBIENT TEMPERATURE _ : _
'^"^-v^^ RUN •
GAS ^^^^
C02
021'JET IS ACTUAL 02
READi.'IG MINUS ACTUAL
C02 Rai/i.'.'GI
COj.'lET IS ACTUAL- CO
R£A3,;;r, :,:IKUS ACTUAL
C2 hEADIl.CI
N2(IIETIS100tll.VJS
ACTUAL CO READING)
1
ACTUAL
RtAOWG
9Q6
?£(?
^rry
IIET
%*
r,o
%'
i
ACTUAL
kf.r.B'.ll£
CID.£
tf'V
&&
NET
10
r,/
^/
i
ACTUAL
!>r;oi:;c
<10.*
&1
?>;
liCT
is-
^
*.,
AVERAGE
lif.T
VC/LL:'.£
tf
$V
o>\
^ -^
-------
TRAVERSE POINT LOCATION & VELOCITY DATA BY
t
I
I
TRAVERSE
POINT
IIUI.'.DEr
1
2
3
4
5
6
7
a
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36.
37
38
39
40
41
42
43
44
45
46
47
48
A'FRACTIOll
OF I.D.
/c '
-3< (a
H.\
M>ri—
h.~l
2<—>
!. 6
*i(
\
-•: - ••'
P '
IXTTX
f-
^•XXOtx
IbJI
r^i .
— J '»«v#^
AVCKACE
B=AxI.D.
ID=
II. QT
if V«-
T
C-tM-f ,
I
Cia/z
•r?
u*
C=B+NIPPLE
HIPPLE=
-N
3
»X I r-
*31S-J\&T
-------
•vt-
\ MOISTURE
~' 5
g^lMPINGERS *
fK ° FINAL VOLUME ' /•
• INITIAL VOLUME/^7- '
NFTVnillKF ')--
ANALYTICAL DATA
ACETOfiE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER )
FINAL
TARE
NET
FILTER HUM3ER 2
FINAL
TARE
NET
FILTER Ni;??5ER 3
FIKAL .
TARE
NET
CYCLONE
FINAL
TARE
NET
TOTAL FRONT
,.*f
ml
£> ml
y ml
BY
mg
mg
mg
mg
mg
mg
rng
rng
mg
mg
mg
mg
mg
mg
mg
mg
£\) SCOn ENVIRONMENTAL TECHNOLOGY,
•SILICA GEL -cin A
FINAI WFIRHT _ >•*• ' f
NFTWFIftHT ^-"^ ,E
TOTAL MOISTURE "7. S"
•
ACETONE BACK WASH
'FINAL mg
TARE . mg
NET mg
ETHER-CHLOROFORM EXTRA( T
FINAL mg
TARE mg
NET mg
WATER EVAPORATION
FINAL ir.g
TARE rng
NET mg
TOTAL BACK mo
I CERTIFY THAT THE SA.V;>L£S or.;,Ci;il ED
BY THIS CATA SHEET U'EKE COLL!:CTt3 lit
ACCORDANCE klTH METHODS OUTLIHEB 1Y
WEUE IK THE POSSESSION OF, OR SiM :.0
FOR SHIPMENT BY COMMON CAIRitR BY,
MYSELF UNTIL DELIVERY TO A LADOR/YI )RY
FOR ANALYSIS.
SIGNED DATE
WITNESS DATE
! CERTIFY ffiJST I RECEIVCOTiiE SA^,P TS
DESCRIBED BY THIS DATA SHEET FROM 'HE
ABOVE NAMED INDIVIDUAL AND ANALYZE!
THEM IN ACCORDANCE WITH THE ABOVE
NAMED PROCEDURE.
SIGNED GATE
INC
• ' WITNESS DAfE
NOMOGRAPH DATA BY
CALIBRATED PRESSURE DIFFERENTIAL ACROSS
ORIFICE, In. HjO
AVERAGE METER TEMPERATURE (AMBlENT + ffl*F).»F
PERCENT MOISTURE IN CAS STREAM BY VOLUME .
BAROMETRIC PRESSURE AT KETER, In. HI
STATIC PRESSURE IN STACK, In. Hj
Pnd$.073 < STACK GAUGE PRESSURE In in. H2o)
RATIO OF STATIC PRESSURE TO tfETER PRESSURE
AVERAGE STACK TEMPERATURE, "F
AVERAGE VELOCITY HEAD, in. H20
MAXIHU'i VELOCITY HEAD, In. HjO
C FACTOR
CALCULATED NOZZLL DIAVETER. in.
ACTUAL NOZZLE DIAMETER, In.
KEF EREliCH if, in. H>0
AH,
T"»»|.
**,
P.
' P.
P'/P0
Tw
4".vt.
*t>cai.
DRV MOLECULAR WEIGHT DETERMINATION
SAMPLING Tir/iE (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (SAG, INTEGRATED, COMTINUOUS).
ANALYTICAL Kr.fKQQ
j\^^ RUN
GAS ^"^-^
[cr72
02!."ETiSACTL'.U02
RE;.L>!KCr.:.1(US ACTUAL
C02 EEAOlNCi
COiNET IS ACTUAL CO
RSADinC MINUS ACTUAL
02 READUC) .
NilStTISUOSWIUS
ACTUAL CO REA3I.SG)
1
ACTUAL
REAbiNC
%?.*>
'%'!
2
uw "^
NET
12ft
&
{-•
'-j
z.
ACTUAL
IIF./.OIHC
'f\\
0 Yf 1
,
(TV'y*
NET
£2
/I
^
, j
t
ACTUAL
REAOIKC
NET
£7. €l IZ>%
$(,•6
H \
.j is * (
K*
~~
'•J
AVERAGE
KcT
VOLUSE
/}_^
/ o
_.
1 tj
-
•
-------
TRAVERSE POINT LOCATION & VELOCITY DATA
BY
I-
<
C
L
c
o
TRAVFRS
POINT
NU.'.3£
1
2
3
4
1
6
7
8
9
10
IX
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
A'FRACTIOfl
OF 1.0.
.
fYtrt
-J
£xxoj ,
/
Sso%v
/^i.
AVERAGE
8=AxI.O.
10=
/,,/-
//(
(ff '
/^?7-
^***i »
/ }
'Vu£tsJL
<*hih\'
1 i
VELOCITY
KCAU
Up,). in.H20
.yv
,i ~?>
i /~- 1>
.it
r^-\
,X/
,0
,0
>(*{
.*?
,^9
.2,0 •
i
2iw
STACK
TEtTtRATUKE
IT,). 'F
j?r
• ••) —
....... -^
!::::}: "-.-I
:::.:!:-:
j. —
:•:::.{.-:::.•
t - — "
::—i^z
...-;.._..
a ' 1 .
^ ^
...i-. (...._..
;•—(;---
•::-i=t~i
.... i ....
— i —
r:rn . .—
:::::::.::
::::!::•::
:.: ::.:: : : :
•:r:il— r:
- -;-i
r^t=r
— *-|-' ' '
T
^T"|^~::
_.-*i—-. .
t— --
..,.up::i
.. — ~i —
.-:^.L^:-:
-T-Ttii.!'.-"";
;;r-i;::f
.... j .....
::::i:;r:
.... » . . _..
• —71- i
}« —
: ::: rtrr: r
.:.. p.—
... , r»—.-.—
..... ^>- r----
:::::i:n;
r~Lfin.
!•- -
••" -r-r— >Tj
u ftc err, ri/
::::{:::;
••'•i
( . . . .
i .-4
i ..
,.:::!....
~t
; t* ; ;-
;.u-.:::::
_.:).::,
3l4iF
Ji/Jt:-:
-~-"i '"•"
::::!::::
[::::;::::
....:....
— i —
. — j . —
::::!:.:::
:r::rr.:.tr
:::vr::.::.
— ).....
-:::•}::;:.
— I — '•
r:::;:".-'
[::::!::::!
::::)::::
. , l- 1 ....
::::).,:::
• — {••-
::::.|-::
— il
iTm
H
u.
"^ttt"
HIT
.:rt~
xr::
;;- —
-.—(„.
-L..;..
jit;
•r* * •
Irh
~---Z] P.-;-'
: rrr
4*n
==:..:-:: ::-.-::r;-, :,n-fF
orvarc t. Tn.v./rocc
POINTS (indicate direction of flow)
INSIDE DIMENSIONS OF SAMPLE PLANE
STACK GAUGE PRESSURE in. H?0 *-,
NEAREST UPSTREAM DISTURBANCE
NEAREST DOWNSTREAM DISTURBANCE_
PROCESS & CONTROL EQUIPMENT
DESCRIPTION
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
NOMOGRAPH DATA BY
MOISTURE
*3
^i^ri
-&*
(&
xi -, U FINAL VOLUME ^^x.
' ' WITIAL V01 UMF_ /£•
ANALYTICAL DATA
ACETONE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER 1
FINAL
TARE
NET
FILTER NUMBER 2
FINAL
TARE
NET
FILTER NUMBER 3
FINAL
TARE
NET
CYCLONE
FINAL
TARE
NET
TOTAL FRONT
2. ml
O.m|
BY
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
SCOTT ENVIRONMENTAL TECHNOLOGY,
SILICA GEL _ ,c,
FINfll WFIRHT * ' f
NFTWFIGHT J-13 g
TOTAL MOISTURE 2-2. 1 4
•
ACETONE BACK WASH.
FINAL mg
TARE mg
NET mg
ETHER-CHLOROFORM EXTRAS!
FINAL mg
TARE . mg
NET mg
WATER EVAPORATION
' FINAL mg
TARE mg
MET .• • mg
TOTAL BACK mg
I CERTIFY THAT THE SAMPLES OESCF?3ED
BY THIS DATA SHEET KcF.!: COLLECTS 1 III
ACCORDANCE '.UTil METHODS OUTLIHEC BY
WERE IN THE POSSESSION OF, OR SE -LED
FOR SHIPMENT BY COMMON CARRIER Ef.
MYSELF UNTIL DELIVERY TO A LABOf \TORY
FOR ANALYSIS.
SIGNED DATE
WITNESS n/'-TI
I CERTI't-TTHTfTTTECElVLO THE SI TPLTS
DESCRIBED BY THIS DATA SHEET FRC1 THE
ABOVE NAMED INDIVIDUAL A»0 ANALWED
THEM IN ACCORDANCE WITH THE ABO\ ;
NAMED PROCE3URE.
SIGNED DATE
. WITNESS 04 H
CALIBRATED PRESSURE DIFFERENTIAL ACROSS
ORIFICE. In. HjO _
AVERAGE METER TEMPERATURE (AMBIENT + 2D*F).*F
PERCENT MOISTURE IN GAS STREAM BY VOLUME
BAROMETRIC PRESSURE AT METER. In. HI
STATIC PRESSURE IN STACK, In. H(
Pro±£.073 1 STACK CAUGE PRESSURE In In. HjO)
RATIO CF STATIC PRESSURE TO KETER PRESSURE
AVERAGE STACK TEMPERATURE, °F
AVERAGE VELOCITY HEAD, In. HjO
MAXIMUM VELOCITY HEAD, in. H20
C FACTOR
CALCULATED IIC7.ZLE DIAMETER, In.
ACTUAL NOZZLE DIAMETER, ia.
REFERENCE a?, in. H20
AH,
'•,„.
B»«
P.
P,
va
V
4»«l.
APma«.
DRY MOLECULAR WEIGHT DETERMINATION BY
S?,?;'PL;;;G TKi{ (24-hr CLOCK)
SA?.TLIJ'.u LGCftT!GH____ '.
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL f.'.ETHOD
ASBIENT TEKi?EFtATU«E
^\^^ Rl'fJ
GAS ^^-\
C02
OliliET IS ACTUAL 02
f!z:.ai:!8 .MI.'IUS ACTUAL
CO^ RLAOIBi)
COlNET IS ACTUAL CO
READIKC .V.INUS ACTUAL
02 READinq
N2INEriSlC3tUKUS
ACTUAL CO fiEAClIIG)
I
ACTUAL
READING
NET
I
ACTUAL
READING
KCT
I
ACTUAL
REAOItiG
NET
AVE?-!CE
titT
VOLUME
-------
TRAVERSE POINT LOCATION & VELOCITY DATA BY
u
1 a
UJ
at
ui
i
H
C
a
a.
TRAVfRS
POINT
IIUf.'.DE
1
2
3
4
S
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
A=FRACTIO!I
OF I.D.
f>n-i
J
£*:•£. o*
'?&*^
pbj>*4
AVERAGE
B=Axl.D.
10=-
m%?-/
Jo—* ,
1 '
G&s>
2,
C=B+NIPPLE
NIPPLE"
3
P//»-«AL
£Jiff,h
t i
VELOCIFY
HEAU
Cips),ln.H20
^T^_
/,&
<
'" • / t
- '
\'
STACK
m'.rinATunc
lTs), -F
zrr
•N.
.
DIAGRAM OF STACK, PORTS, ?, TRAVERSE
pncncctce aireci/iun or now;
INSIDE DIMENSIONS OF SAMPLE PLANE
STACK GAUGE PRESSURE in.
3
NEAREST UPSTREAM DISTURBANCE
NEAREST DOWNSTREAM DISTURBANCE,
PROCESS & CONTROL EQUIPMENT
DESCRIPTION
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
^ o®b -o&-r -
K4O>. &S~ (~
:" MOISTURE
A.
Qt ^ INITIAL VOLUMF /^
NFT Vni IIMF y
ANALYTICAL DATA
ACETONE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER 1
FINAL
TARE
' NET
FILTER NUMBER 2
FINAL
TARE
NET
FILTER NUMBER 3
FINAL
TARE
NET
CYCLONE '
FINAL
TARE
NET
TOTAL FRONT
•2ml
4ml
BY
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
{\) SCOn ENVIRONMENTAL TECHNOLOGY,
SILICA GEL s—,~»
FINAL WIGHT ..5/--
-------
l€
t
UJ
CO
lIlO
TRAVERSE POINT LOCATION & VELOCITY DATA BY
TRAVr.KC
POINT
KUEDEf
1
2
3
4
5
6
7
a
9
10
11
12
13
15
16
17
18
19
20
21
22
4. J
24
25
26
27
28
29
30
31
32
33
34
35
-6
:,7
38
39
40
41
42
43
44
45
46
47
48
A=FRACTIO:i
OF I.D.
fs
<&}
^^-^
- j t: f » U &A
AVERAGE
B=AxI.D.
ly.^-?-/
. V/--A< ^
/-* -'?t'-
* A * *+<.*" K :
tff
~
C=i>fiIPPL£
NIPPLE-
^^ . ^
""-- -i,^.
i5//«/7
7
,
VELOCITY
HEAD
tip,). in.l^O
./T
,7-1
;/-('
r<3
,/J?
r"~
STACK
TEITERATURE
|TS). -F
^
fan
.........
r--!-i
. . . . : -*.~
•—-!•: —
— t— -
t*-—
. ..__j..j__
: r.-U^_
$ J-r-
-
t "]'.,.'.!
lirlff^t
DIAGF
POINT
^rrr
r-:r-:
-J r - - - •(
b^pd
:~"xi~ ".
._
rnr
r.-rr
;x,4 :.::-:
-
--- -
t.... ...
= :u
-. ,.tJ
i— r
^r
^
. — .
t r.
~"7T ' t~IH"*" " *
;;;ip:i
T
*
—rrr-r
i_M.,+_..
=p
j .
:^:>~H.--|
• t*
----t— -
--— rrr :
' rn r ""
•--:::-;.,;
4 i .
— — t— -
.^_
-rr-h—
^
— rfr~ -
-— ; i— I
JAM OF:STACK, PORTS, & TRAVERSE
S (iriidicate direction of flow)
INSIDE
DIMENSIONS OF SAMPLE PLANE
STACK GAU
NEAREST U
NEAREST D
PROCESS &
DESCRIPTI
GE PRESSURE in.
H?O— ;^i/
PSTREAM DISTURBANCE
DWNSTREAM DISTU
CONTROL EQUIPM
DN
RBANCE
ENT
1
1
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
NOMOGRAPH DATA BY
FINAL VOLUME /5"< >3>
'•'' ' INITIAL VOLUME _^0- O
NFTVnillMF fr. ~i
ANALYTICAL DATA
ACETONE FRONT WASH
FINAL
TARE
NET
FILTER NUMBER 1
FINAL
TARE
NET
FILTER NUMSER 2
FINAL
TARE
NET
FILTER NUMBER 3
FINAL
TARE
NET
CYCLONE
FINAL
TARE
NET
TOTAL FRONT
ml
ml
_ffll
BY
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
{V} SCOTT ENVIRONMENTAL TECHNOLOGY,
SILICA GEL r ,—
FINAI WFIfiHT jJ~*lf)t
INITIfll WFIRHT
2_
i
ACTUAL
RC/.DitlG
U 1
bfy
_
-------
Plant:
Location:
Date:
Ambient. Temp. F
Barometric Hq
Meter Stop Volume
Meter Temp. °F
Operator:
7
Remarks:
FIELD DATA
SO SO F
• / j
Project No.
Run 0
Time:
Meter Start Volume <" J)
0
'
<'*
i-i • ' ' V V
V
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
S0» F
Plant: d?^v£rv~N Project No. /7 / / ^"/
Location; 7*^ yQtXc Run $?M<£&r- l-**f ^
Date: &/£(/'? *) Time: (HW (
II
Ambient. Temp. °F
Barometric Hq p. f*_
Meter Start Volume
Meter Stop Volume _
Remarks:
Meter Temp. °F (S3. — /I'D
Operator: \).W' -r-F-.U*'
SCOTT ENVIRONMENTAL TECHNOIOGY. INC.
-------
Plant:
Location;
Date:
7
FIELD DATA
^ SO, F
Ambient, Temp. F
Barometric Hq
Meter Start Volume
Meter Stop Volume
Meter Temp. °F
Operator: r~
Project No. . /y 7 / ^ J
Run 0
Time:
6
7 ^/
Remarks:
SCOTT ENVIRONMENTAL TECHNOIOGY. INC.
-------
Plant:
Location:_
Date: <
U
-
Ambient. Temp. F
Barometric Hq
FIELD DATA
S03 F
Pro j ect No
Run t
Time:
T 7
Meter Start Volume
Meter Stop Volume
Q (^ /,
Meter Temp. °F ~\_±
Operator: y. VV, "f" F-L >
Remarks:
SCOTT ENVIRONMENTAL TECHNOIOGY, INC.
-------
Plant:
Location:
Date:
Ambient, Temp. F
Barometric Hq
Meter Start Volume
Meter Stop Volume _
Meter Temp. °F
Operator: '
FIELD DATA
> A-
C
Project No.
Run 00M"
Time: /O
Remarks:
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
SO, SO. F
Plant: C#>£TV^ J>
Location: t\
Date: £/£/7
-------
Plant:
Location:
Date:
Ambient, Temp. F
Barometric Hq
Meter Start Volume
Meter Stop Volume _
Meter Temp. °F
Operator: '
FIELD DATA
S0« SO, F
"7 .
Project No. /^f /*
Run
Remarks:
SCOU ENVIRONMENTAL TECHNOIOGY. INC.
-------
Plant
7—7
Ambient, Temp. F
Barometric Hq
Meter Start Volume
Meter Stop Volume
Meter Temp. °F
Operator: _______
FIELD DATA
Project No.
1 f
Ttae:
Remarks:
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
Plant :
Location:
Date:
Ambient. Temp . F
Barometric Hq
FIELD DATA
S0 S0 F
Meter Start Volume &fQ\ 0
Meter Stop Volume
Meter Temp. °F
Operator:
Pro j ect No .
Run j Ptft
Time:
-*
Remarks:
i /
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
Plant: £/te2/H-
Location: 4Sfe^
/ /&/ . 1
Date : L?/ l/ /
/
Ambient Temp. F
*•
g>
c- —
tf*f
Project Ho.VTVv
Run # 1
Time: 1^.3^ — /^/^
*
Barometric Hq
Meter Start Volume
Meter Stop Volume
Meter Temp. °F
Operator:
Remarks:
SCOTT ENVIRONMENTAL TECHNOLOGY. INC.
-------
FIELD DATA
NO,. FLASK
Project No.
Location:
Date:
lime:
Initial flask vacuum "Hq Z £
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
73
Final Barometric Pressure
Operator
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No. M T / ~/^ Run #
Location:
Date:
Initial flask vacuum "Hq
Initial flask temp. °F
Initial Barometric Pressure
Flask volume 2
Final Flask Vacuum "Hq
Final Flask Temp. °F
Vrfr
Final Barometric Pressure
Operator
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No. /fr ^7"- /Jb
Location:
Initial flask temp. °F
Initial Barometric Pressure 3. ^> *?
Flask volume 7. 6 4 ?-< 5
Final Flask Vacuum "Hq
Final Flask Temp. °F
Final Barometric Pressure
Operator
3o>
Date: &/ttl^)^ Time: /^/ (
Initial flask vacuum "Hq s~ ^ c i
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No.
Run
Location:
Date: &
Time:
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
J.I/I/, -f J'.U.
\
Operator
>
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project HO.
Run
Location:
: '6/^/7 \
Date:
Time:
Initial flask vacuum "Hq !Z. /. «y
Initial flask temp. F
Initial Barometric Pressure 2- T- ' 3
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F'
Final Barometric Pressure
Operator
rZl
£0 -O
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No. _/£f2=_0
Location:
Date:
Time
Initial flask vacuunr "Hq
Initial flask temp. F
7
o-
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
•J.'iv. -r
Operator
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOY FLASK
A
Project No.
Run
Location:
Date:
6/37? 4
- --
Initial flask vacuum "Hq "2
Time: // /
•
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Jr / 0
Final Flask Vacuum "Hq
Final Flask Temp. °F
k.q
Final Barometric Pressure
Operator
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No.
Location: fi
Date:
Time:
Initial flask vacuum "Hq
Initial flask temp. F
9x°F
Initial Barometric Pressure
.2 I' Q
Final Flask Vacuum "Hq
Final Flask Temp. F
f 0 - Q
M
Final Barometric Pressure
Operator .
f / 0
. J--J L
/ v ~ _
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
FLASK
»
. / f-
Run I
Location:
Date:
Time:
Initial flask vacuum "Hq
«
Initial flask temp. F
^--*
Initial Barometric Pressure
Flask volume
/ < ^
Final Flask Vacuum "Hq
Final Flask Temp. F
Operator
(0m \Q
Final Barometric Pressure _
/ fr. -JL J
-------
FIELD DATA
NOX FLASK
Project N0.
Location:
/3
Date: 6
/l7/
> *>
Time: /Jg
Initial flask vacuum "Hq
I f I S
Initial flask temp. F
Initial Barometric Pressure
/c ^
Flask volume
Final Flask Vacuum "Hq
5A
Final Flask Temp. F
Final Barometric Pressure
Operator
JX-
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
FIELD DATA
NOX FLASK
Project No.
7 — V
Run
Location:
Date:
Time:
/3
Initial flask vacuum "Hq
Initial flask temp. .F
y ,
Initial Barometric Pressure
f
Flask volume 7. d >f°fc
Final Flask Vacuum "Hq
O .
Final Flask Temp. F
//
Z-^/ c 0 -T
Final Barometric Pressure
J. IV -
-------
FIELD DATA
NOX FLASK
*
Location:
Date: 6 /T~i 7
•
Time:
/3
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
T C
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
•71
Operator
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NO,, FLASK
Project No.
Location:
Date:
/4 />
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
f ^2.
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Iw4- ) i
Operator *J " •< s/ •• '—
Run •* '
Time:
"
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NO FLASK
Project No. 1417- f 3
Location: /j>
Date
**
'*"(# J£
: & /<" /~>
Time
Initial flask vacuum "Hq
Initial flask temp. "F
5"",
Initial Barometric Pressure
2- i "
Flask volume
J~0 f (? . f 7
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator si >W «fr- J . L-*
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NO,, FLASR
I 1
Project No.
Location:
Date:
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator
Time:
PPh ^
SCOn ENVIRONMENTAl TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No.
Location:
Date:
Time:
Initial flask vacuum "Hq
Initial flask temp. F
a9.£
Initial Barometric Pressure
y,?y
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
91/fr. "f
Operator
V^. 4-J - U.
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
FIELD DATA
NOX FLASK
Project No.
Location:
Date:
Time:
^ r
Initial flask vacuum "Hq
Initial flask temp. F
3* /* O
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator
2 —
SCOTT ENVIRONMENTAL TECHNOLOGY. INC.
-------
FIELD DATA
NOV FLASK
Project No. Af ??—
Run
Location:
: &/ 6 /~?
Date:
Time:
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
7 * O /
Final Flask Vacuum "Hq
Final Flask Temp. F
7.Q
Final Barometric Pressure
Operator
-------
FIELD DATA
NO,, FLASR
Project No. #f 7-/3
Run
Location:
Date:
* v
Time:
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator J -^". H~ sj.l-.
I
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NIX FLASK
Project No.
Location:
••: k/£/7
Date:
7
Initial flask vacuum "Hq
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator
/??-
Run
Time:
"7- !*•
/P.?
A v "'
. 3x^^t
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No. W i / f ^ Run #
Location:
Date: fif?/7 S Time:
Initial flask vacuum "Hq ^ £,
Initial flask temp. °F
Initial Barometric Pressure ?- !• f Z^
Flask volume " 0 / & ,
Final Flask Vacuum "Hq
Final Flask Temp. °F
° O
Final Barometric Pressur
Operator ._
n
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NOX FLASK
Project No. frf" Y 7
Run :
Location:
Date:
lime:
Initial flask vacuum "Hq
<=><, b-
Initial flask temp. F
^ J
Initial Barometric Pressure
Flask volume / 7 Q 2_, '
Final Flask Vacuum "Hq
Final Flask Temp. F
i.t
Final Barometric Pressure
Operator
SCOn ENVIRONMENTAL TECHNOLOGY. INC.
-------
FIELD DATA
N0_ FLASK
A
Project No. T ~ _ Run
Location:
,/
Date: "^ S Time:
~~ ' ~
Initial flask vacuum "Hq o<" J , Q
Initial flask temp. °F
° /
Initial Barometric Pressure _5 ^r ^
Flask volume /r
Final Flask Vacuum "Hq
Final Flask Temp. °F
/•
I 7
Final Barometric Pressure
-t
Operator
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
FIELD DATA
NO,, FLASK
Project No.
Run 0
Location:
Date:
Time:
Initial flask vacuum "Hq 1 "1 • (0
Initial flask temp. F
Initial Barometric Pressure
Flask volume
Final Flask Vacuum "Hq
Final Flask Temp. F
Final Barometric Pressure
Operator .
J.vv.
J.L.
fT*
SCOn ENVIRONMENTAL TECHNOLOGY, INC.
-------
r at-
5000
£.<>
(33
/-wr
N
N/
3.0
s
-------
/VST .
9-3
5-5*0°
/57>~
-------
.r • • '
*«%'
•/ &&
i/tr
7/>
j^
^>
/ ~ . j—
WlVlf J
OS
\J iV/
r /?-^
/•j
r
£.>"
«
/•££1
WDo
tfiMfbG.
9.- ^"
Q.sT
g.r
9.5-
9.3" .
L"-i'/tio
D.S
-l-o
y /^»
'-•" £/?/fj~
^/7
Ffwir
(,000
Cooo
(nd&S
&OOV
^00
^ .
o.
9-r
9.
/.o
93
2-0
Mi*
•a.
Si
-------
**
SDiEETT
t I ^**^ f^
Ir
v ;y/r J
r /-s-t.
r. ^ t
/-V
331
33.0
/y.2.
33S
32,0 .
7-5-9
/•//*"
31-V
\
7
-------
/ r j
;y/r j
f p
CS.o
v
37.0
P H
(Hi
-
130 0
22.0
9-
0
r
///
**&
•4=^-
-------
J A* fi^
S CHizizir
1//WTJ
r a/*
•$ ty ?.-•;. ".'.£
t?/\M
-5'
12
u
fr
*-
-------
rva- j
" Art
r ;*- ^
O.o
•5/(
90.0
"
&-0
tf
//?<=>
59
ni
0.0
Ft
/J/f
/Z
ry
/3.0
•SY
/' '
0™*-
-------
SCHEEIT
- j
0
1//V/TJ
P? m
V ;:-?/>. '.
\23f
/oy?
Xf>
3AWA
£>*y\±
-------
-7*Y F.
scHEcnr
w i / / -t- j
r &L
/or
HI
£391
®
i
t
y
Of
-------
y"17*/ FuT&^A~s t^tz^ ^rF \ ~5-&-7*
.f^ttlrl. u T - ii : x*
"5T
/v/^^yj/j —
\j t
r
n- i-
V/^/TJ
— 1BILO
/0/2
/wo
9.
02 f9
11 10
_,
13.0*
a oo
'/*• *>
**
f,
'/£.*>
I3.Z&
**
13
UF*
^
-------
: XX
c \
x/T"
77 '/IB
7.x ^ A 0
f ;i//r J
r A^-
". fr i*
Pf
oo
i
to-1)
5". !
I1//*"
MS"
15-00
iris'
£1
-------
SWEET
T/MC
t/ r//r J
r rf-^
PP
Qt-o
/£>,£
la/r
0,
/D.I
/a/
J
f .
3.7
/Y/T
5-00
f .
(r<>
&--
-------
/
JH
t II
V iVl'fJ
r ;i- *.-
r
i/.O
///*
.£>
37-5
*
P-o
#.•£
5
-------
r
9.7
-------
CO
u rv / -
\J ;V/
r r-
PP no
Of
a
a/?
£000
5-30?
£000
£000
•toov
-------
u
T7~
I
r ;*- ^
f/1
1/9
3?-*
/i?
id
O
X
A
-------
rv
r &
r.n-t
~ I.BILO
/&*_
0,0
3V?
to-.
c±
o
-------
— -z.efl.0
573/
Illo
1
1 1
-------
Ti ^- '/ V 'r-
?.*
f^
-------
-f " -. y / rw>
u
\> ;V/r J
r r-i-
— 1BILO
PPtV)
•P XMP I*
O.I
0.1
C-i
JLSL
- <~>
A3
r.
/.o
37- S
-------
TTA SCHEETT
r
Pf>
0/3
9.13
*'
H-L*
I
cog
Vi
txi ?
973
cos
T*
^-A
1200
//£
-
11 -x \
^t
COS
x
?•$"
X
SO
-^r
^»-
SO
-------
-------
GC/FPD Exxon Santa Rosa Plant, Jay, Florida
Run #1
6-4-75. 11^-AM
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
COS
Attenuation
(Amps)
16 x 10"6
„
16 x 10"6
8 x Id"6
8 x 10"6
8 x 10"6
16 x 10"6
8 x 10"6
8 x 10~6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
Peak Height
%
47
=
46
90
90
77
51
85
76
90
80
89
78
77
79
82
76
H2S
Attenuation
(Amps)
16 x 10"6
16 x 10"6
32 x 10"6
32 x 10"6
32 x 10"6
32 x 10"6
32 x 10"6
32 x 10"6
16 x 10"6
16 x 10"6
8 x 10"6
16 x 10"6
32 x 10"6
32 x 10°6
32 x 10"6
16 x TO"6
16 x 10"6
-Peak Height
%
94
55
56
54
62
51
59
53
54
72
90
99
61
46 ''•
40
75
77
cs2
Attenuation
(Amps)
32 x 10~6
32 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
-
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10'6
Peak Height
. %
51
63
69
83
74
66
46
62
87
98
99
-
62
56
62
70
47
i
-------
GC/FPD Exxon Santa Rosa Plant, Jay, Florida
Run #2
6-5-75. ll^
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
COS
Attenuation
(Amps)
64 x 10"7
8 x 10"6
8 x 10°6
8 x 10°6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
Peak Height
%
71
55
42
51
32
50
44
50
37
43
48
54
55
40
40
42
H2S
Attenuation
(Amps)
16 x 10"6
16 x 10"6
8 x 10"6
16 x 10"6
8 x 10"6
16 x 10"6
8 x 10"6
16 x 10"6
8 x 10"6
16 x 10"6
32 x 10"6
16 x 10"6
16 x 10'6
32 x 10"6
8 x 10"6
8 x 10"6
Peak Height
%
53
46
80
54
82
63
93
59
87
78
51
57
53
50 ,)
96
94
cs2
Attenuation
(Amps)
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
Peak Height
%
51
48
69
50
68
45
65
72
80
56
63
63
58
32
42
44
-------
6C/FPD Exxon Santa Rosa Plant, Jay, Florida
Run #3
6-6-75. 10^- AM
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
COS
Attenuation
(Amps)
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10°6
8 x 10"6
8 x 10"6
8 x 10~6
8 x 10~6
8 x 10"6
8 x 10"6
8 x 10~6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
Peak Height
% •
90
42
57
58
58
46
52
53
49
52
48
. 44
42
43
43
41
H2S
Attenuation
(Amps)
32 x 10"6
16 x 10"6
32 x 10"6
32 x 10~6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
32 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
16 x 10"6
Peak Height
%
76
92
51
45
69
49
66
, 70
i
37
80
58
59
61
53 .}
57
44
I CS2
Attenuation
(Amps)
8 x 10"6
16 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
Peak Height
%
58
59
76
89
57
68
52
59
37
73
40
66
38
55
59
55
-------
6C/FPD Exxon Santa Rosa Plant, Jay, Florida
Experimental, Incinerator Temperature Versus
Reduced Sulfur Compounds
Temperature
1050°F 1
6-9-75 2
43° PM3
(Note 1)4
5
6
950°F 1
6-10-75 2
11^ AM 3
(Note 2) 4
1050°F 1
6-10-75 2
lO°-PM3
4
5
1150°F 1
6-11-75 2
11^- AM 3
(Note 3) 4
5
6
COS
Attenuation
(Amps)
16 x 10"6
16 x 10"6
16 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
4 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x 10"6
8 x Id"6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"7
4 x 10"7
4 x 10"7
4 x 10"7
4 x 10"7
4 \ 10"7
Peak Height
64
82
64
77
73
86
75
82
77
72
48
41
54
70
72
70
30 •
53
49
55
69
H?S
Attenuation ; Peak Height
(Amps) %
64 x 10"6
64 x 10~6
64 x 10"6
32 x 10"6
32 x 10"6
32 x 10"6
64 x 10"6
32 x 10"6
64 x 10"6
32 x 10"6
32 x 10"6
32 x 10~6
16 x 10"6
32 x 10"6
32 x 10"6
4 x 10"6
4 x 10"6
4 x 10"6
-
4 x 10"6
8 x 10"7
56
56
57
89
87
96
45
91
45
87
64
57
97
47;
53
80
34
29
-
9
36
cs2
Attenuation
(Amps)
16 x 10"6
16 x 10"6
16 x 10"6
8 x 10"6
8 x 10"6
8 x 10~6
4 x 10"6
4 x 10'6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"6
4 x 10"7
4 x 10"7
4 x 10"7
4 x 10"7
4 x 10"7
4 x 10"7
Peak Height j
77
24
42
38
45
54
68
69
66
66
42
33
21
36
39
44
14
36
40
37
42
-------
GC/FPD Exxon Santa Rosa Plant, Jay, Florida
Experimental, Incinerator Temperature Versus
Reduced Sulfur Compounds
Temperature
Between
1150°F 1
and 1250°F 2
6-11-75
l^P-PM
1250°F 1
6-11-75 2
l^P-PM 3
4
5
6
7
COS
Attenuation
(Anps)
4 x 10"7
4 x 10"7
16 x 10"8
4 x 10"8
4 x 10"8
-
4 x 10"7
4 x 10"8
8 x 10"8
Peak Height
%
31
1
1
4
10
-
10
71
61
H?S
Attenuation
(Amps)
4 x 10"7
4 x 10"7
16 x 10'8
4 x 10'8
4 x 10"8
4 x 10"7
4 x 10"8
4 x 10"8
4 x 10"8
Peak Height
%
10 ;
2
- - -
2
10
19
4
21
29
32
cs2
Attenuation
(Amps)
4 x 10"7
4 x 10"7
16 x 10"8
4 x 10"8
-
4 x 10~8
4 x 10"8
4 x 10'8
8 x 10"8
Peak Height
%
23
31
10
10
-
36
39
25
56
Notes: 1. Doubtful results due to electrometer problem.
2. Used good electrometer starting with these samples,
h
3. Process upset during this sample period.
-------
GC/FPD Exxon Santa Rosa Plant, Oay, Florida
Fuel Gas 6-12-75
Sample
Number
1
2
3
4
5
COS
Attn .
(Amps)
4 x 10"7
8 x 10"8
8 x 10"8
8 x 10~8
8 x 10"8
P.H.
%
14
54
72
60
61
H9S
c.
Attn.
(Amps)
4 x 10"7
8 x 10"8
8 x 10'8
8 x 10"8
16 x 10"8
P.H.
%
17
87
75
51
58
CS9
L.
Attn.
(Amps)
4 x 10"7
8 x 10"8
8 x 10~8
. 8 x 10"8
8 x 10"8
P.H.
%
2
19
31
23
25
SO,
Attn.
(Amps)
Trace
Trace
Trace
Trace
Trace
P.H.
%
Trace
Trace
Trace
Trace
Trace
MeSH
Attn.
(Amps)
8 x 10"7
=8 x 10"7
8 x 10"7
8 x 10"7
8 x 10~7
P.H.
%
49
38
60
48
51
EtSH
Attn.
(Amps)
_
-
4 x 10"8
-
4 x 10"8
P.H.
%
-
-
4
-
12
-------
SET 1497 02 0176
APPENDIX C
INSTRUMENT CALIBRATION DATA
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
-------
12-1 kit
Attenuation
(Amps)
4 x 10
-5
4 x 10
-6
4 x 10
-7
4 x 10
-8
-9
4 x 10
("nil l.oi;.i i i ill in ii . .1 x s
COS Calibration on6/3/75
.... i .._.:.._:._ i_„.),..__• • .. ,. :. '_.. : . -. . i
' -J,
t.i...L LX|J.i._i--.j_N.LL-iJ_i__i, __;-j ;..:.:...|.._' L_|-J-..!^ ,L_L. LA- .1 ':_! -i.~ .}_ l.-.L..j..i. L.l.:.j_._^.._:_
• - r : . j :
--r-p—-j-.-r f—
1.00
Concentration (ppm)
0.01
-------
Attenuation
(Amps)
4 x 10
-5
4 x 10
-6
4 x 10
-7
4 x 10
-8
4 x 10
-9
' H S Calibration on 6/3/75
_.'^M
i:;;!.-:, V;; :yj-. i:;. ;• ••!. h;i-::
_ . . ; , __. _*_, _ ^ • „' _L_ J. ;_„ ' ' . L
10.0
i.oo v '
Concentration (ppm)
lull L«i;.l n l!i 111 Iv , ^ K S
-------
k
CS2 Calibration on 6/3/75
Attenuation
(Amps)
4 x 10
-5
4 x 10
.- [_.;.., i...: .-j :..„„, L_4_ _l..__!
i: i. ii L.Li;.: Lx_.4._i:j. !-!•!-1 --U-1-N:-;-j-^:~;..;{;.
rTTr~Tr" r | .V'T"": """T'-"~"~i
____
;: :]--.:r~T""| i" i I'TT"'
__:_j-i.L:- .j..t..uuL
•-C.L ! • -: i . _! i .
f i i T :" i ' "l
4 x 10
4 x 10
-Q
.1!;.! t.L .: i •
ill! i- :-|-i-i
_.;.LL.LiJ_,.i_L._l
io.o>k- '"•''" "
1..00
Concentration (ppm)
0.01
-------
12-191
COS Calibration on 6/4/75
jfxrrr;
Attenuation
(Amps)
4 x 10
-5
4 x 10
-6
4 x 10
-7
4 x 10
-8
4 x 10
-9
" tl" M:. t-i~ i ^r^iTifc:;!:: d'11 jliiLi te:,:£> L A .';, r!7i • L-I^
I'l- :. .T ".-..'•".ITT". " -- -IV I :" •
j.! !.Li:.!.:;J..!;U.L_U::.±n_ .U...l_U±.Lj:.:_.:_!;_-:._Li.\!:.!__...
ri. .'.'. '. • i _'.'-' ' '
' ' ''' ' ' .• I i !•:.!.•!
'_' i - ; ;_. !
. ._..
10.0
1.00 ' "' " 0,10
Concentration (ppm)
-------
12-191
H S Calibration on 6/4/75
Attenuation
(Amps)
4 x 10
-5
4 :c 10
-6
4 x 10
-7
4 x 10
-8
-9
4 x 10
I'll I I l.dH.II i ill Ml il , < X
- .___:.__ _...- ..... •..- i..
• ' . ;• I . •
*K-i-i
c,i.;.j-4-:!"4^-i~^4:-p-:!
. 1 . . . ; . . V . I . ' j :: J . J - . . . I - t • • :
j . . i , -. . i . : i i i 4 i 1 ' ' ' ' i - •
id.o"
•J U'l i| 'fl
"i';o'di:-:"; "'""*'
Concentration (ppm)
0.10
o.'bi
-------
12-191
CS Calibration on 6/4/75
Attenuation
(Amps)
4 x 10
4 x 10
-6
• •; ; ; ;• i . ! ; -.!-. r.:
i • ! \ i ! , ; ; i t ' ' • \. •'•[•••• |-jr_:
i.. •;.:: !..-;.:-.iV ".::: 1 ! : ! i '•\-"-\-. -I'- l-'-*"~ ' " '
! Ui-LlliEi
r-;
"f'"j'T '"rr;":';'"-~ i' "1 •.'r\".~~''' 77" j" ."'•"•' f~!:-; r".'."': ""•"'".:'''
J i'j.' ["j.f-i.-^"LT:r"~jT::7~'r-";."[".'TTI- T. j VJ.. |~~!'.. :F""_i.TF7-;|T:~^
4 x 10
-7
•I.-I44 ii:L-LJ^:-LJit.M:.i
- •t-r1-:- • -. ' --• I'M.!
"I f ;' I :!~" i';"'" r—,------ . • , ;'f i }• "j"^'".~"r~i •'"[". ""'; i ;"'"["* T T "i~ i "V r '";
I ' • I I I t
rn
.
4 x 10
-8
••j-pi-tr-h-'...:--}- ir-:"-]—-j •-
1 , , I | • • • | •••-•:
4 x 10
-9 ' ; : i ! > i . i ' !
10.0
1.00 0.10
Concentration (ppm)
0.01
-------
COS Calibration on 6/5/75
Attenuation
(Amps)
4 x 10
-5
4 x 10
-6
I : j ::•. i: ••)•;_ ^_| -i i !'• t I i ' -i.-t^j ••:[•:•_
!•
I
MT
4 x 10
-7
...i ..:
•~--f—"-• "i"
-U-:...—J-j-4-^.J- -j,.-^-.^^-. ,...,..j_..^r,[...^..^.-_]._ . .
JJLLli
.___LliL
4 x 10
"='=•• | ; ^ :•• n -|' i\"r'1:.' I""- •"!-.•:! .."(:•:
'."'T:'i":':r"":."
_l_-_j... 'A-.'
~ .I--S . :iiA"i-
:: -Fi-ziijioif n
t : J '
I
"5T
4 x 10
-9
! I • ! I
!!('}•:
.LJ_
^.' in *j ;o ry
.. ..J..L_
-0. ill (-• 'U U) > 5
Concentration (ppm)
-------
• 12-191
H0S Calibration on 6/5/75
Attenuation
.(Amps)
4 x 10
4 x
4 x
4 x 10
4 x 10
: , i ! : ' i
__i ' : i
....... .,...-;---• .,—-—-1
-9
10.0
1.00
Concentration (ppm)
-------
Attenuation
(Amps)
4 x 10
4 x 10
4 x 10
4 x 10
CS Calibration on 6/5/75
• - • y
VTTT-- I-;-"!"-.-----.-: r .;: i !"
r-•L^iiiij±•Ii±!^Zl^
•r~r :t*--—;•—-—• i''\~T~r v ^*r""~i
. _1 • ...... i . ! . . 1 \ , - l
10.0
0.01
Concentration (ppm)
-------
_
IZ-IDI
COS Calibration on 6/6/75 __
Attenuation •
(Amps)
4 x 10
~5
4 x 10
4 x
4 x 10
4 x 10
: . r..
• 1
*- T --y—
.Li.:L-L;-,i:..i-.^^—•-
i j • |: . j ; .r i ::':\':: : :
~i--r--';-
'i....J._U.i!
r,i:.
j.jlj.!:r|:;j.::.!:i..r,;iT_,,.y:i..^.1.
_ _.i._ , 1
10.0
0.01
Concentration (ppm)
l-'ull Lui'.ii M lull if , i x S
-------
H2S Calibration on 6/6/75
Attenuation
(Amps)
4 x 10
4 x' 10
CL;:- -.l~.
jJiil..
_j i..:;-: ••-:;r -- -
r -r-, - •• V--—- -r—-") :- j - ---,--.-•-.— •;
..-.-,..
I !•!.::!: ! ':..! ! •
4 x 10 '-.I j.j-j-t-J-L-^-L^.-^ !; __I -LJ
~" t ' i . i \ '. i ; I i ' ! i
i : ! i
T ....i..:.!.. 1. 4....J
4v TO' :•---'•-
3S AW . ••, .. r, .a trt ^ . m w
10.0
biio
0.01
Concentration (ppm)
lull l.oy.i rith in ii1. ^ x 5
-------
12-191
CS Calibration on 6/6/75
Attenuation
(Amps)
4 x 10
4 x 10 -
! ,1-. .I;;:-:::.(...:!...}:.!-.::.
! I - - -- • '• • | •-
' ! I.J.•[::.:„:'.Lii-_
4 x 10 . ' ., ..!_' .L::
4 x 10
• : i ; : ••••!''!
; ! ! ; , • i ' . ' . j I i
_!.. i..ji,.i _ i i—i 1 _i 1 ; i. . i_ .
- •> • > 0 i: T i'l M —
0.10 0.01
Concentration (ppm)
Itlll l.O^.I I I I ]l Ml M , ^
-------
h
COS Calibration on 6/9/75
Attenuation
(Amps )
4 x 10
,_.....,_,
.;
LI ,. . I . .. i. . I I . . ,
.LL__i_l..j_i_.i_.i.LLi.. 4-'
4 x 10
-9
— 3. to
10.0
• - C- j.) r- 'ii L i
i.oo
0.01
Concentration (ppmO
! nil l.ou.iriilnu ii , f, x s
-------
12-191
Calibration on 6/9/75
Attenuation
(Amps)
4 x 10
-5
4 x 10
4 x 10
«. rf
4 x 10
4 x 10
-9
_... , . . .-..r | .. ..|--::, ..-
ilL-LLbliJ '
tiitiU^iy^
:••!•• ! ' '
10.0
i.oo o.io
Concentration (ppm)
0.01
J---.H '
-------
CS» Calibration on 6/9/75
Attenuation
(Amps)
4 x 10
-5
4 x 10
0-6
4 x 10
-7
4 x 10
-8
4 x 10
-9
•>. i «_' i J * —. . .:
-f : T : I _" j."-.,..•„ i
l:L.Li_}_;'j~.LI--:ii.;.Ji-Ll_;-_!-i.j..i_i. ' '.j-iiLii'—!
L.I !,L.;^ ..•....;..:;:..i-l^;:.j...-.;..L:.;,..;,; : , |!. j.T]Ta ..;,.j -L:,.!
_J.__i L . I .L_L.L_.L..L_L_1
i •. ! i
J. ! . ...i -I
i.bo" • "' ' " •* o.io
Concentration (ppm)
0.01
lull l.og.irillmi u , >,
-------
12-191
COS Calibration on 6/10/75
Attenuation
(Amps)
4 x 10
4 x 10
-6
4 x 10
;rrr.i:
4 x 10
-8
4 x 10
-9
10.0
1.00 ' 0.10
Concentration (pptn)
0.01
-------
12-101
H S Calibration on 6/10/75
Attenuation
(Amps)
4 x' 10
-5
4 x 10
-6
4 x 10
**• *7
4 x 10
•» o
4 x 10
-9
10.0
i.oo o.io
Concentration (ppm)
0.01
Full l.»p,.irilhiti ii , 'i x s
-------
1191
CS0 Calibration on 6/10/75
;pp
Attenuation
(Amps)
4 x 10
4 x 10
4 x 10
4 x 10
I'ull l.ov;.irit!>iM ii . \ x
-9 :
1.00 0.10
Concentration (ppm)
0.01
-------
!2-l9t
COS Calibration on G/l'1/75
Attenuation ':
(Amps)
4 x 10
4 x 10
\ ..j .•:••;. '.\. '•.•-.;:: : . i :! '':.:/.. ;:......', .•;•.•:;•.:: : ' ' ; ' ! ' .! •;
. . . ..
_^ •• i ,i , t .i__. {, ,«i i i : ^.i :
JLJ.^.rJ^^.^-__; _j-.;,_j —I 1 -|-—';.-^j.—.-.—u|—:_—'; : »
H-
; •. . : - i r •, '.: • i ••;••= !••• ;• : •':!'.:
'—4^—u«_t—!.«
J_i 1 I
.—.—p..—i—,—r
•;. • I • ! I
__]__!_!... 4 L: :_—
4_L; j.L .1
n r . i .. "!
J. .
J.-J !_.
4 x 10
-9
! L L
io:b JU1 * '"
1.00
Concentration (ppm)
0.01
-------
M9I
Calibration on 6/11/75
Attenuation
(Amps)
4 x 10
4 x 10
. ...
_ ', i. j, I- I J , *,
'
liLult i .LL ±'L.]1.ULJ:
'
-8_ •! ' .<..„
4 x 10 • rJ-H-HH-rH^
fflU..:..L.l,J 1-...1
•*• U I
10 . Li.i.l.L_l:-
— 0. i- I- O li'l
10.0
0.01
Concentration (ppm)
-------
12-19)
;rrrr'.~n:
c'-- --.i -
r-M ' : __L
CS Calibration on 6/11/75
(.1
-rrr- •"
'" T
' i
xrrirrz
1l±:±L
t
i : i
1 i i i . • i
.I ;•-:—•, - -,---; ~ - | •.— :- ' ;-
Attenuation'
(Amps)
4 x 10
4 x 10
4 x 10
I'ull l.oi;.irilliin \c. > x
-:.\:;:! ! ! j j •l;:::!-"'vlv!"'j::-;i'-:- j : I I j \~~?\y\ ''I •j^J--:^
""t vr7~TT": r "i i i t""1 |"~r:
H^_;.J.,...;.. ;-f^— „._]:...,,-i^
• - • ••
- __ i
1 M i ;••!• ^T^T7^;
,
.1.44:
.-9
10.0
0.01
Concentration (ppm)
-------
12-191
Attenuation
(Amps)
4 x 10
-5
4 x 10
4 x 10
.-7
4 x 10
4 x 10
-9
H S Calibration on 6/12/75
i , • : i • • i
' .,..;...J_4—;_:_ i 1
ui; LJ r'
i— *., ^—i__T^>~t—„..
'
-L. .. _._.!..\ ._!...' | ;-
TP TT"r-"T:
l!:j
0.01
Concentrntion (ppm)
-------
CHSII Calibration on 6/12/75
Attenuation
(Amps)
4 x 10
-5
4 x 10
-6
4 x 10
-7
4 x 10
4 x 10
-9
f i--i-~:
r ~! ~*
nznET^E'ijipni^
..
.!.: . -. .. I i j I'
1 • • '
10.0
i1..;.
- 0 '!i i
1.00 0.10
Concentration (ppm)
li) •! !') . (N
0.01
-------
Calibration Table for Gas Chromatographs
Date
6-3
6-4
6-5
6-6
6-9
Sample
Loop
Size
10 cc
10 cc
5 cc
5 cc
5 cc
COS
Con.
(PPM)
0.22
0.11
0.073
0.044
0.022
0.22
0.044
0.022
0.22
0.073
0.44
0.44
0.22
0.073
0.44
0.22
0.073
Attn.
(Amps)
4 x 10~7
8 x 10"8
4 x 10"8
4 x 10"8
4 x 10~8
4 x 10"7
4 x 10"8
4 x 10~8
16 x 10"8
4 x 10~8
8 x 10"7
8 x 10"7
4 x 10"7
4 x 10"8
8 x 10"7
4 x 10"7
4 x 10"8
Avg. P.M.
%
58 '
74
69
28
10
65
36
13
84
45
68
58
30
44
58 .
32
42
Con .
(PPM)
1.24
0.62
0.41
0.25
0.12
1.24
0.25
0.12
1.24
0.41
2.48
2.48
1.24
0.41
2.48
1.24
0.41
H2S
Attn .
(Amps)
8 x 10~6
32- x 10"7
16 x 10"7
16 x 10"7
8 x 10"3
8 x 10"6
4 x 10"7
15 X 10"8
4 x 10"6
8 x 10~7
16 x 10"6
16 x 10"6
4 x 10"6
8 x 10"7
16 x 10"6
4 x 10"6
4 x 10"7
1 r<:
j CS2
Avg. P.HJ Con,
% ! (PPM)
1
82
56
51
68 <
. . 84
98
89
55
95
51
85
. 86
92
53
78
89
97
0.14
0.070
0.047
0.028
0.014
0.14
0.028
0.014
0.14
0.047
0.28
0.28
0.14
0.047
0.28
0.14
0.047
Attn.
(Amps)
4 x 10"7
16 x 10"8
8 x 10"8
4 x 10"8
4 x 10"8
4 x 10"8
4 x 10"8
P
4 x 10"a
16 x 10~8
4 x 10"8
8 x 10"7
8 x 10"7
4 x 10"7
4 x 10"8
8 x 10"7
4 x 10"7
4 x 10"8
i
Avg. P.H.
%
86
SO
58
44
16
88
55
18
72
43
63
50
26 .
38
51
30
39
-------
Calibration Table for Gas Chromatographs .
Date
6-10
6-11
6-12
Sample
Loop
Size
5 cc
2 cc
1 cc
5 cc
COS
Con.
(PPM)
0.44
0.22
0.73
0.44
0.88
0.44
0.22
Attn.
(Amps)
8 x 10"7
8 x 10"8
4 x 10"8
8 x 10"8
8 x 10"8
4 x 10"8
4 x 10"8
Avg. P.M.
%
83
71
22
86
99
53 .
14
H2S
Con.
(PPM)
2.48
1.24
0.41
2.48
4.96
2.48
1.24
H2S
1.24
0.62
Attn.
(Amps)
16 x 10"6
32 x 10"7
4 x 10"7
32 x 10"7
32 x 10"7
8 x 10"7
16 x 10"8
8 x 10"7
4 x 10"7
Avg. P.H.
%
54
56
53
60
•80
75
73
77
40
cs2
Con.
(PPM)
0.28
0.14
0.047
•=• 0.28
0.56
0.28
0.14
CH.
0.14
0.070
Attn.
(Amps)
8 x 10"7
8 x 10"8
4 x 10"8
8 x 10"8
8 x 10"8
4 x 10"8
4 x 10"8
,SH
j
4 x 10"8
4 x 10"8
Avg. P.H.
%
62
42
15
39
46
24
7
27
i
10
-------
Dilution System Calibration
. COS
Date
6-4
6-5
6-6
6-9
6-10
6-11
6-12
Sample
Loop
10 cc
5 cc
5 cc
5 cc
5 cc
1 cc
5 cc
Nominal
Dilution
10/1
10/1
10/1
10/1
10/1
10/1
Undiluted
'Concentration
(PPM)
0.22 .
0,44
0.44
0.44
0.44
0.88
Attenuation
(Amps)
4 x 10"8
4 x 10"8
4 x 10"8
4 x 10"8
4 x 10"8
4 x 10"8
Average
Peak Height (%)
12
22
^ 18
. 23
11
3.9
Calculated
Dilution
10.5/1
8.8/1
10.2
8.8/1
8.1/1
-
-------
Dilution System Calibration
Date
6-4
6-5
6-6
6-9
6-10
6-11
6-12
Sample
Loop
10 cc
5 cc
5 cc
5 cc
5 cc
1 cc
5 cc
Nominal
Dilution
10/1
10/1
10/1
10/1
10/1
10/1
Undi 1 uted
Concentration
(PPM)
1.24
2.48
2.48
2.48
2.48 •
4.96
. H2S
1.24
'— •--
Attenuation
(Amps)
16 x 10"8
32 x 10"7
16 x 10"8
16 x 10"8
16 x 10"8
4 x 10"8
4 x 10"8
Average
Peak Height (%)
55
82
-cr-
76
80
47
. 50
18
i
Calculated
Dilution
10.1/1
11.3/1
11.3/1
10.5/1
9.7/1
9.1/1
8.9/1
-------
Dilution System Calibration
Date
6-4
6-5
6-6
6-9
6-10
6-11
6-12
r
Sample
Loop
10 cc
5 cc
5 cc
5 cc
5 cc
1 cc
5 cc
Nominal
Dilution
10/1
10/1
10/1
10/1
10/1
10/1
Undiluted
Concentration
(PPM)
G.U
Attenuation
(Anips)
4 x 10"8
0.28
0.28
. 0.28 .
0.28
0.56
CH3SH
0.14
8 x 10"7
4 x 10"8
4 x 10~8
4 x 10"8
4 x 10"8
4 x 10~8
Average
Peak Height (%)
19
-=,-. 21
16
20
9
2.9
1.8
Calculated
Dilution
9.7/1
7.7/1
9.5/1
8.2/1
7.2/1
-
------- |