SERA
United States
Environmental Protection *"
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 79-RBM-1
June 1910
Air
Rubber Products -
Tire Production
Emission Test Report
Armstrong Rubber
Company
Eastern Division
West Haven, Connecticut
-------
VOLATILE ORGANIC CARBON EMISSION TESTING AT
ARMSTRONG RUBBER COMPANY, EASTERN DIVISION,
WEST HAVEN, CONNECTICUT
EPA Technical Manager: R. Terry Harrison
Contract No.: 68-02-2812
Report No.: 79-RBM-l
Work Assignment No. 63
Prepared for
U. S. Environmental Protection Agency
Emission Standards and Engineering Division
Emission Measurement Branch
Research Triangle Park;' North Carolina 27711
TRW
Environmental Engineering Division
Post Office Box 13000
Research Triangle Park, North Carolina 27709
-------
TABLE OF CONTENTS
Section Page
1.0 INTRODUCTION 1
2.0 SUMMARY AND CONCLUSIONS 2
3.0 DISCUSSION OF RESULTS 6
4.0 SAMPLING METHODS AND ANALYTICAL PROCEDURES 12
APPENDIX A - SAMPLE CALCULATIONS A-l
APPENDIX B - FIELD DATA SHEETS B-l
APPENDIX C - TGNMO ANALYTICAL DATA SHEETS C-l
APPENDIX D - HYDROCARBON ANALYZER (FID) DATA REDUCTION
TRS80 MINICOMPUTER D-l
APPENDIX E - VOC METHOD COMPARISON E-l
APPENDIX F - RADIAL VS. NON-RADIAL COMPARISON F-l
APPENDIX G - CAPTURE EFFICIENCY DATA G-l
APPENDIX H - GAS STANDARD CERTIFICATION
HYDROCARBON ANALYZER COMPARISON
RESPONSE FACTOR DETERMINATION H-l
APPENDIX I - PROJECT PARTICIPANTS 1-1
-------
LIST OF TABLES
Number Page
2-1 Summary Carbon Adsorption System 3
2-2 Summary of Undertread Cementing Results 4
3-1 Undertread Cementer Data 8
3-2 Undertread Cemented Data 8
3-3 Carbon Adsorber Efficiency by TGNMO Method 9
3-4 Volumetric Flowrate Data 10
3-5 Statistical Analysis for Volumetric Flowrates 11
4-1 Direct Flame lonization Analyzer Operating Con-
ditions 13
E-l Summary of TCA Data --
F-l Nonradial Tread Data --
F-2 Radial Tread Data --
G-l Capture Efficiency --
G-2 Capture Efficiency --
H-l Response Factor Determination Data --
LIST OF FIGURES
Number ,- Page
4-1 TGNMO Dual Sampling Apparatus 15
4-2 TGNMO Analyzer Schematic 17
4-3 Sample Location Schematic 18
4-4 S - Type Pi tot Manometer Assembly 19
4-5 Cement Usage Equipment 21
H-l Hydrocarbon Analyzer Comparison --
H-2 Solvent Standard Preparation System --
-------
1. INTRODUCTION
The U.S. Environmental Protection Agency, Office of Air Quality
Planning and Standards, Emission Measurement Branch contracted TRW to
perform measurements of the volatile organic compound (VOC) emissions
from the application of solvent based cement to tire undertreads at the
Armstrong Rubber Company's facility in New Haven, Connecticut. This
plant employs a carbon adsorption system to control solvent emissions
from an undertread cementing operation. The results of this test program
will be used by the Environmental Protection Agency (EPA) in the develop-
ment of a new source performance standard (NSPS) for this industry. The
test program was conducted during the week of January 22 through 26, 1979.
The program objectives were to determine the VOC removal efficiency
of the carbon adsorption system, the cement usage at the undertread
operation, and to compare two test methods for VOC measurement.
Process data was collected by EPA personnel. One of the VOC test
methods (TGNMO) was performed by Pollution Control Sciences, Inc., under
subcontract to TRW. Program coordination, additional test procedures,
and data evaluation were performed by TRW personnel.
-------
2. SUMMARY AND CONCLUSIONS
2.1 SUMMARY OF RESULTS
Table 2-1 summarizes the results of the test program conducted on
the carbon adsorption system which served the undertread cementer at the
Armstrong Rubber Company's West Haven facility for VOC. Table 2-2 sum-
marizes the cement usage results at the undertread cementer.
The carbon adsorption system VOC inlet results were determined from
three one day tests at the carbon adsorption system. The average VOC
concentration was 8.7 x 10 ppmv as carbon for the test period as deter-
mined by the flame ionization detection (FID) method. The carbon adsorption
system VOC outlet results were determined from three one day tests at
the carbon adsorption system. The average VOC concentration was 1.06 x 10
ppmv as carbon for the test period as determined by the FID method. The
VOC removal efficiency as determined by the FID method was 87.9 percent
for the three days of testing.
The carbon adsorption system VOC removal efficiency was also determined
by the TGNMO procedure (proposed EPA Method 25). The mean of five (2
hour) sampling runs was 87.6 percent with a range of 82.1 to 91.9 percent
(Table 3-3).
The mean amount of VOC on a mass basis per area of tread cemented
at the inlet to the carbon adsorption system was 61.3 milligrams as
dean
.2
o
carbon per square centimeter (mg/cm ) of tire tread cemented. The mean
VOC value for the outlet of the carbon adsorption system was 6.84 mg carbon/cm
The removal efficiency for VOC of the carbon adsorption system on a mass
basis was 88.8 percent.
Cement usage results were determined from two tests at the undertread
cementer, and resulted in a mean usage rate of 46.2 milligrams of cement
2~
used per square centimeter (mg/cm ) of tire tread cemented. The cement
2 2
usage for the two test periods ranged from 60.6 mg/cm to 31.8 mg/cm .
-------
Table 2-1. SUMMARY CARBON ADSORPTION SYSTEM
INLET
OUTLET
Date
Total tread
Area cemented
during test
period
(m2)
1/23/79
1/24/79
1/25/79
Mean
884
2,221
2,760
1,955
vocb
concentration
(ppmv)
as carbon
9,067
8,033
8,965
8,688
VOC massc
per area
of tread
cemented
2
(mg/cm )
76.7
61.0
46.2
61.3
vocb
concentration
(ppmv)
as carbon
983
908
1,274
1,055
VOC massc
per area
of tread
cemented
2
(mg/cm )
7.49
6.86
6.18
6.84
Removal
efficiency
Removal6
efficiency
(«) (%)
89.2
88.7
85.8
87.9
82.1
89. lf
89. Of
87. 6g
aEquation A-l and process data (confidential)
FID data - Appendix D
°Equation A.2 - Equation A.3
Based on FID data - Equation A.4
eBased on TGNMO data - Table 3-3 Equation 1.4
Mean of Sampling run
9Mean of five sampling runs
-------
Table 2.2. SUMMARY OF UNDERTREAD CEMENTING RESULTS
Date
1/24/79
1/25/79
Mean
Mass ofa
cement
(kg)
439.8
790.4
615
Mass ofb
cement per
area of
undertread
cemented
(mg/cm2)
.096
.154
.125
Inletc
VOC mass
per mass of
cement used
(kg/kg)
3.08
1.61
2.35
Outlet0
VOC mass
per mass of
cement used
(kg/kg)
0.35
0.22
0.28
Appendix B - undertread cementer data
Equation A.5 - Tables 3.1 and 3.2
°Equation A.6
-------
2.2 CONCLUSIONS
The reported removal efficiencies of the carbon adsorption system
for VOC by the two test methods agreed closely. Additional discussion
of the two VOC test methods may be found in Appendix E.
Daily cement usage measurements at the undertread cementer showed a
wide variation between measurement periods. The method employed may
provide an acceptable means of estimating an average cement usage rate
provided that the tests are conducted over a sufficient number of days.
Additional days of testing would be expected to significantly increase
the reliability of the reported results. One process variable which
appeared to affect the cement usage rate was the type of undertread
being cemented (radial versus nonradial). This process variable was not
controlled during the test program. A review of the limited data indi-
cates, however, that the cementing of radial undertreads resulted in an
average of 58.3 milligrams cement used per square centimeter undertread
cemented, while nonradial undertreads resulted in an average of 41.0
2
milligram per square centimeter (mg/cm ) undertread cemented.
-------
3. DISCUSSION OF RESULTS
Tables 3-1 and 3-2 list the information used to determine the
undertread cementer usage results. Table 3-3 lists the analytical
results from the TGNMO method. Table 3-4 tabulates the volumetric
flowrate data used to support the VOC mass usage calculations.
The individual tire tread run material balance data presented in
Tables 3-1 and 3-2 are not considered reliable. For example, some of
the tread runs were of short duration and the level of cement in the
undertread cementer tank could not be accurately determined. A small
imprecision in this measurement made a large error in the "apparent"
weight of cement used over a short period of time. However, over a
longer period of time, the effect of this imprecision was minimized
because the cement usage was determined by subtracting from a known
amount of cement and not by summing the "apparent" weights used for each
tread run.
The TGNMO values presented in Table 3-3 were consistent throughout
the five sampling runs. The carbon adsorption removal efficiency derived
from the TGNMO-determined values correspond well with the FID-derived
removal efficiency (87.6 percent vs 87.9 percent).
The volumetric flowrate data (Table 3-4) showed discrepancies
between the calculated valves of the inlet and the outlet. The volumetric
flowrates were conducted at the inlet and outlet of the carbon adsorption
system at the beginning and end of each test day. A statistical analysis
of the 12 data points (Table 3-5) showed no greater than a 8.0 percent
deviation from the mean, which is well within acceptable limits for this
measurement. The reason inlet volumetric flowrates were higher than
that of the outlet was due to difficulties in accurately conducting a
velocity traverse at the outlet location. The fact that the velocity
-------
port was larger than necessary to accomodate the pitot tube made sealing
of the port difficult. It is considered that inadequate sealing of the .
velocity port in the presence of positive pressure caused the discrepancy
between the individual inlet and outlet flowrates.
-------
Table 3-1. Undertread Cementer Data (1/24/79)
TRW Tread Code0
Cement Mass
(kg)
Tread Area
(m2 )
Elapsed Time
(min.)
F2/G2
H2
J2
K2
L2
TOTAL
.4
7
230.
104.
32.0
28.1
44.6
439.8
264.4
250.1
62.0
46.1
102.9
725.5
51
40
10
10
20
Table 3-2. Undertread Cementer Data (1/25/79)
TRW Tread Code a
B3
C3
D3
E3
F3
G3
H3/J3
*
TOTAL
Cement Mass
(kg)
60.6
35.3
91.5
206.1
73.9
101.4
91.5
130.1
790.4
Tread Area
(m2 )
46.8
300.0
244.2
748.6
634.8
419.8
91.2
NDd
2485.7
Elapsed Time
(min. )
10
40
40
65
61
44
ND
*Miscellaneous Cement Addition
a) Key-Tire Tread Code - Located in ESED confidential files
b) Appendix B - Cementer Raw Data
c) Equation A.I
d) ND - Not determined
-------
Table 3-3. CARBON ADSORBER EFFICIENCY BY TGNMO METHOD0
Run
#
1
2
3
4
5
AVERAGE
Inlet concentration
(ppmv Cj as carbon)
4,314
8,845
4,623
5,592
8,614
6,398
Outlet concentration
(ppmv Ci as carbon)
774
917
534
779
702
741
Removal
efficiency
(%)
82.1
89.6
88.5
86.1
91.9
87.6
a) Appendix C
b) Equation A.4
-------
Table 3-4. VOLUMETRIC FLOW RATE DATA"
Date
1/23/79
1/24/79
1/25/79
Inlet
Outlet
Inlet
Inlet
Outlet
Outlet
Inlet
Inlet
Outlet
Outlet
Inlet
Inlet
Outlet
Outlet
Molecular
Weight ofh
stack gas /TP
(MS)
30.16
30.16
29.32
29.32
29.81
29.81
29.32
29.32
29.88
29.88
29.35
29.35
(Avg)
0.450
0.455
0.456
0.453
0.440
0.418
0.479
0.480
0.425
0.423
0.447
0.449
Stack
Temp
-------
Table 3-5. STATISTICAL ANALYSIS FOR
VOLUMETRIC FLOWRATES (dscf/hr)
Date
1/23/79
1/24/79
1/25/79
Inlet
Outlet
Inlet
Inlet
Outlet
Outlet
Inlet
Inlet
Outlet
Outlet
Inlet
Inlet
Outlet
Outlet
Volumetric
flowrate
(dscf/hr)
218756
221039
198655
197148
215041
204246
208226
208685
202254
201404
189364
190297
Percent9
Deviation
(%)
6.9
8.0
2.9
3.6
5.1
0.2
1.8
2.0
1.1
1.6
7.4
7.0
MEAN 204593 dscf/hr
Standard deviation 10238 dscf/hr
a) Equation A. 11
11
-------
4. SAMPLING METHODS AND ANALYTICAL PROCEDURES
Several types of sampling methods and analytical procedures were
utilized during the West Haven testing. The purpose of this section is
to describe both sampling and analytical procedures. This section
discusses the continuous monitoring by flame ionization method, the
total gaseous non-methane organic (TGNMO) sampling method and analytical
procedure, the velocity measurement method and the cement usage deter-
mination procedure.
4.1 CONTINUOUS MONITORING BY FLAME IONIZATION
The instruments used to monitor total hydrocarbons at Armstrong's
West Haven facility were the Beckman 402 and the Horiba OPE-405. The
Beckman was used to monitor the inlet and the Horiba was used to monitor
the outlet. Sample lines were run from the centroid of the stack, both
inlet and outlet, directly to each instrument. Since the process operated
at ambient temperatures no heating of sample lines was necessary.
The instruments were calibrated three times daily with certified
standards. The certified standards used for calibration gases were
supplied and certified by Scott Environmental Technology, Inc. The zero
calibration gas was hydrocarbon free (HCF) air and certified to contain
less than one-tenth (0.1) parts per million (ppm) total hydrocarbons
(THC). The span gases were two cylinders of propane. The low span was
a concentration of four hundred (400) ppm as propane (C-Hg). The high
span was a concentration of eight hundred (800) ppm as propane (C,Hg).
The balance gas for both cylinders was air. The combustion gases for
the analyzers were forty percent (40%) hydrogen (Hp) in helium (Hg) with
less than one (1) ppm total hydrocarbons and HCF with less than one
tenth (0.1) ppm total hydrocarbons. A copy of the certification is
provided in Appendix H.
12
-------
The two hydrocarbon analyzers operate on the principle of flame
ionization. The mode of operation of each unit is slightly different
(see Appendix H - Comparison Beckman vs Horiba). The operating conditions
are specific for each unit and were determined beforehand by previous
consideration and prior operating experience. The operating conditions
are highlighted in the following table.
Table 4-1. DIRECT FLAME IONIZATION ANALYZER OPERATING CONDITIONS
BECKMAN 402 HORIBA OPE - 405
FUEL 20 pounds per 10 pounds per
square inch square inch
AIR 10 pounds per 10 pounds per
square inch square inch
SAMPLE 2 pounds per 5 liters per
square inch minute
The only significant difference in the sampling arrangement between
the inlet and outlet FID sampling locations was the use of a condensation
coil at the outlet location. The carbon adsorber had two beds in parallel.
While one bed was adsorbing the other bed was desorbing. For a brief
period after switching adsorption beds, there was a surge of latent
moisture at the outlet, which resulted from the steaming of the carbon
bed during the desorption cycle. A total of less than thirty milli-
liters (30 ml) of condensate was collected over the course of the week.
This amount of condensation is insignificant and had no discernable
affect upon the responsiveness of the ..instrument.
4.2 TOTAL GASEOUS NON-METHANE ORGANIC (TGNMO) PROCEDURE
4.2.1 Sampling
The proposed EPA standard Method 25 was used to determine the total
non-methane organics (TGNMO). The principle of the procedure is to
Guideline Series = Measurement of Volatile Organic Compound, EPA Office
Air Quality Planning and Standards. Research Triangle Park, North Carolina
27711, EPA - 450/2-78-041. OAQPS No. 1.2 - 115, Revised 9/79.
13
-------
draw an emission sample anisokinetically from the stack through a heated
filter and a chilled condensate trap by means of an evacuated gas collection
tank. The capacity of the gas collection tank is 6 liters, which at the
designed flow rate would allow for collection of a one hour sample.
Therefore, two gas collection tanks were used for each run in combination
t
with a single condensate trap. The probe and condensate trap were
constructed as one assembly and precleaned by baking in the laboratory
prior to shipment to the field. The condensate trap was chilled with
dry ice during collection. The regulators were checked for contamination
and were calibrated to a flowrate of approximately sixty (60) centimeters
per minute (cc/min) with a rotameter prior to field shipment. Figure 4-1
is a generalized sketch of the sampling train. Since all the gas collection
tanks are evacuated prior to the sampling run, a leak check must be
performed before and after the sampling run. All tanks were leak checked
and measured against a mercury U-tube manometer. All leak checks were
negative. Tank pressure was monitored every ten (10) minutes and recorded
on field data sheets, which are contained in Appendix B of this report.
After sample collection the condensate traps are recapped and stored in
dry ice for shipment to the laboratory and subsequent analysis.
This procedure as specified in the CTG was utilized with several
minor modifications during the West Haven testing program. The ambient
conditions present in the ducts allowed for the elimination of a heated
probe, filter and heated sample lines.
4.2.2 Analysis
Total gaseous non-methane organics (TGNMO) are determined by combining
the analytical results obtained from independent analyses of the condensate
trap and evacuated tank fractions. After sampling is completed, the
organic contents of the condensate trap are oxidized to carbon dioxide
which is quantitatively collected in an evacuated vessel; a portion of
the carbon dioxide is reduced to methane and measured by a flame ionization
detector (FID). A portion of the sample collected in the gas sampling
tank is injected into a gas chromatographic (GC) column to achieve
separation of the non-methane organics from carbon monoxide, carbon
14
-------
« LITER TJNK —
Swagelock
Cap
CARRYING/SUSPENSION
APPARATUS -.
COMPENSATE TRAP INSULATED
THERMOS
(crusted try let)
Figure 4.1. Total gaseous non-methane organic (TGNMO)
dual sampling apparatus.
15
-------
dioxide and methane, and measured by a FID. Pollution Control Sciences,
Inc. performed the analysis on all the TGNMO sample collected. Their
analytical report is attached as Appendix C to this report. Figure 4.2
is the basic diagram of the TGNMO analyzer. For more detailed speci-
fication of the analytical procedure, the Control Techniques Guideline
should be consulted.
A quality assurance check was performed in the field, to verify
the contamination level of the TGNMO sampling apparatus. A set of
tanks and a regulator were checked for contamination in the field by
means of the continuous hydrocarbon analyzers. This field check demon-
strated no appreciable contamination of the sampling apparatus.
4.3 VELOCITY MEASUREMENT
Velocity measurements were performed at both the inlet and outlet
ducts of the carbon adsorber utilizing EPA Methods 1 and 2. These loca-
tions were different from those where the continuous monitor and TGNMO
samples were taken. The specifications of EPA Method 1 (which was
followed) prescribed locations further downstream than the sampling
locations. Figure 4-3 indicates the locations where the velocity
measurements were taken relative to the sampling locations and the
control unit. The velocity inlet port was located fourteen (14) feet
downstream and eight (8) feet upstream from the nearest flow disturbance
in a duct measuring twelve (12) inches by thirty (30)inches. The ports
for the outlet velocity measurement were located in a straight run of
duct work 4.8 equivalent diameters upstream from the nearest flow
disturbance. Figure 4-4 illustrates the Type S pitot tube/manometer
assembly. Velocity measurements were taken twice a day. Velocity field
data sheets are in the Appendix B.
4.4 CEMENT USAGE DETERMINATION PROCEDURE
The cement usage was monitored during the West Haven testing to
determine the capture efficiency of the control system serving the
undertread cementer. The procedure used to measure the cement usage involved the
Guideline Series = Measurement of Volatile Organic Compound, EPA Office
of Air Quality Planning and Standards. Research Triangle Park, North
Carolina 27711, EPA - 450/2-78-041. OAQPS No. 1.2 - 115, Revised 9/79.
16
-------
SAMPLE'
E
o
i
'CARRIER CAS
Y
SEPARATION
COLUMN
JL SACKFLUSH
IL VALVE Q4-« CARRIER
I 8AS
• • j .
CO
t
CH4
|
C02
•«' I.
OXIDIZING
CATALYST
'
TGNMO
BACKFLUSH
-
WATER
TRAP
CONTROL VALVE
REDUCTION
CATALYST
FID
* r
• COMBUSTION AIR FUEL
-Figure 4.2> Total gaseous non-methane organic (TGNMO) analyzer schematic.
17
-------
00
UNDER TREAD CEMENTER
ENCLOSURE ABOUT
TAKE-A-WAY
CONVEYOR
Figure 4.3. Sample location schematic,
-------
iJN-U4.nl*
I O
T
•f TEMPERATURE SENSOR
LEAK-FREE
CONNECTIONS
SUGGESTED (INTERFERENCE FREE)
riTOT TUBE • THERMOCOUPLE SPACING
F-hjure 4.4. S-type pitot manometer assembly.
19
-------
measurement the solvent on a gravimetric basis during various tread runs.
Normally the cementer is automatically supplied with cement from a
central storage tank with the cement level in the cement trough main-
tained with an automatic float. During the measurement period the valve
connecting the cementer to the central storage tank was shut off. The
level of cement in the cementer trough was maintained manually utilizing
a makeshift sight stick. Figure 4-5 is a schematic of the system used
to measure the cement usage. In order to measure the cement, a portable
scale was used to weigh the additions to the cement from a drum of
cement. The cement was kept at the proper application consistency by
means of a stirring agitator.
20
-------
ro
J I
RWER. FliltJBLWE
SERVICE ACCESS
X
PWVASITMTOK
ASSEMBLY
\
TO CARBON ADSORBER
AUTOMATIC FLOAT CUTOFF
OPERATOR ACCESS
DOOR — • — .
--------- P.
U C
CEMENTER BASE TANK
CGNENT LEVEL
Figure 4.5. Cement usage equipment.
-------
APPENDIX A
SAMPLE CALCULATIONS
-------
SAMPLE CALCULATIONS
To exemplify our calculation procedure, data taken on the day
1/24/79 will be used below.
A.I AREA OF UNDERTREAD CEMENTED
AT = TW (Tread Width) x BS (Belt Speed) x t (Time)
EXAMPLE INFORMATION* TW = 47 cm = 0.472 m
BS = 24 m/min.
t = 35 min.
9
AT = 0.47 m x 24 m/min. x 35 min. = 395 m
*Actual information located in ESED confidential files.
A.2 MASS OF VOC EMISSIONS DURING TEST INTERVAL
VOCm = Qstd x cone, ppmv x 1.89 x 10"9 x t
where Qstd = volumetric flowrate of stack gas, dscf/hr
t = duration of test (min.)
1.89 x 10"9 = D x 0.454 (kg/lb) x 1/60 (hr/min.) x 10"6
D = 0.251 Ib/ft density of HC vapor at STP based on an average
MW ur= 8.95g
HC mHU
outlet Qstd = 208685 dscf/hr
Cone. = ppmv = 908
t = 426 min.
VOCm = 208685 x 908 x 1.89 x 10"9 x 426
VOCm = 152.4 kg
A.3 MASS OF VOC PER AREA OF UNDERTREAD CEMENTED
VOCm = 152.4 kg Area = 2221 m2
vocm = T52.4 kg = 0.0686 kg/m2 =6.86 mg/cm2
Area 2221 m2
-------
A.4 REMOVAL EFFICIENCY (RE)
INLET CONCENTRATIONppniv - OUTLET CONCENTRATION,^
RE = INLET CONCENTRATION
8033ppmv " 908ppmv
8033ppmv
A.5 MASS OF CEMENT PER AREA OF UNDERTREAD CEMENTED
AREA OF UNDERTREAD = 725.5m2
MASS OF CEMENT = 439.8 kg
439.8 kg (IP6 mg/kg) =60.6 mg/cm2
725.5 m2 (104 cm2/m2)
A.6 VOC MASS PER MASS OF CEMENT USED
VOCmass=354-3k9'
CEMENT mass = 439.8 kg
VOC mass = 354.3 kg = 0.81 kg/kg
CEMENT 439.8 kg
mass
A.7 MOLECULAR WEIGHT OF HYDROCARBON VAPOR
Effective Carbon Number = n = 6.25
2n + 2 = Number of hydrogens on non-cyclic alkane hydrocarbon.
#H's = 2(6.25) + 2 = 14.5
MWHC = 6.25 x 12 g/mole + 14.5 x 1 g/mole
= 89.5 g/mole
-------
A. 8 MOLECULAR WEIGHT OF STACK GAS (Ms)
Ms = MWair (1 - X) + MWHC (X)
where MW . = 28.89 g/mole
Oil I
MWHC =89.5 g/mole
X = Fraction of stack gas that is not air
= 7.1 x 10"3 @ outlet
Ms = 28.89 (1-0.0071) + 89.5 (0.0071)
Ms = 29.32 g/mole
A. 9 VELOCITY OF STACK GAS
KPCP
where Kp = pitot tube constant 85.49 ft. sec x /tWlb-mole) (in Hg)
S (°R) (in H20)
Cp = pitot tube coefficient = 0.85 for S-type pitot tube
AP (avg) = average pressure differential across pitot tube
Ts (avg) = average temperature of stack gas (°R)
Ps = pressure of stack gas (in. Hg)
Ms = molecular weight of stack gas
outlet Ms = 29.32 g/mole
(avg) = 0.480
Ts (avg) = 80°F (540°R)
Ps = 30.04 in Hg
Vs = 85.49 x 0.85 x 0.480
30.04 x 29.32
Vs (ft/sec) = 27.31
Vs (m/sec) = 27.31/3.28 = 8.32
-------
A.10 VOLUMETRIC FLOWRATE OF STACK GAS
Qstd = 3,600 (1-Bwo) Vs
As /Tstd \/Ps \
(Ts(avg)J(Pstd/
where Bwo = water vapor in stack gas on volume basis
Vs = velocity as described in A.5
2 2
As = cross sectional area of stack, m (ft )
Tstd = standard absolute temperature, 293°K (528°R)
Ts (avg) = average temperature of stack gas, K (°R)
Ps = absolute pressure of stack gas, mmHg (in. Hg)
Pstd = standard absolute presure, 760 mmHg (29.92 in. Hg)
outlet Bwo = 0.0172
Vs = 27.31 ft/sec
As = 2.2 ft2
Ts (avg) = 80°F = 540°R
Ps = 30.04 in. Hg
Qstd = 3,600 (1-0.0172) x 27.31 x 2.2 x 528 30.04
540 X 29.92
Qstd (dscf/hr) = 208685
Qstd (dscm/hr ) = 208685. =
35.29
A. 11 PERCENT DEVIATION
*D =
X-Y
x 100
X
X = Basis of comparison
Y = Value being compared
A.12 PPMV AVERAGING (SEE APPENDIX D FOR DATA POINTS)
Cone. PPMV
X = X +
N
where X = continuous sum of fractional averages
N = number of data points to be averaged
-------
APPENDIX B
FIELD DATA SHEETS
• VELOCITY TRAVERSE
• TOTAL GASEOUS NON-METHANE ORGANIC (TGNMO)
0 CEMENT USAGE MEASUREMENTS
• PROCESS DATA (CONFIDENTIAL)
-------
TRW/
,
'0/VWOW
PLANT
DATE
RoftgJg-
/ulEfT 'i
RUN NO. 7l-EB/>i-l
STACK DIAMETER. In.
— 3,o,i?
BAROMETRIC PRESSURE. In. Hg.
STATIC PRESSURE IN STACK (Pg), 1n. Hg. 4.(,"H>D
OPERATIONS
SCHEMATIC OF STACK
CROSS SECTION
TRAVERSE POINT
NUMBER
VELOCITY HEAD.
In. H20
OiB
STACK TEMPERATURE
(T), ftF.
A--1
AD
.WVT-
A-3
AiiL
.i«?
A-4,
A-T-
.10
-Wfeo
.USD
e-3
I J.
.IV
e-5"
.u
.Mlfc,
•I'?
tTr
.HSfe
Msi
-------
fl/WT
DATE TTXU.lllULN/ 4 3. 1C 7«J
IT*
IARI
STA
OPE
1 ' * %
CK DIAMETER * 1«. JVlJ " E/ *
OMETRIC PRESSURE. 1n.
TIC PRESSURE IN STACK
RATIONS Cftftpt^j A
. CPB). In. Mo^i l^" 1^)
BSftR.PTit*J -Ti«.*nMe6Ao cf^fejrec
TRAVERSE POINT
UMBER
A -1
4,-J-
±- 3
A- *}
A-i
B —\
G-'d-
ft- ^
6- *f
B-fi"
VELOCITY HEAD.
In. HjO
.A/ .21
.ay .^M
.J/7 Ao
,20 -W*
-fl/5 .^C>
.*/ a. I
ar .ie
.40 .If
tAt .t|
.A* •!•!
JKf
'•
i
(X'
SCHEMATIC OF STACK
CROSS SECTION
*F
.MSI .MM
Mr« . .UvR-
.M»J> .MlM
.M»4> .M*
-------
PLANT.
LOCATION
STACKI.O _l
BAROMETRIC PRESSURE, in H| _
STACK GAUGE PRESSURE, in. H;0
OPERATORS
PRELIMINARY VELOCITY TRAVERSE
!JUv
A :
SCHEMATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
A-/
A-}
y-^
A-^f
>-T
*-'
fc.v
Ar-^?
A-if
A--5*"
^ AVERAGE
VELOCITY
HEAD
Upsl. m.H^O
A*.
,AJL
r/7
.aa.
•/1
.16
• 19
vo
. ife
.(>
^jir
STACK
TEMPERATURE
(T$), -F
9a~
to'
ttc"
8>'
ffa'
^tlftlCftfiS
•"
w -•
TRAVERSE
POINT
NUMBER
J?-|
B-a.
p. -3
fl-M-
R-.T
'S-(
8-^
R-5
e_u.
S-S^
AVERAGE
VELOCITY
HEAD
Ups>. in.HjO
^
/?
,L
It
.IL
--
./8
J3L.
•'6
-ils
... _
7jf^*_ "
STACK
TEMPERATURE:
&'
-8s °
9*'
. _ . _ .
. .
—
.. fe' -.'-1
EPA(Duti233
472
-------
PRELIMINARY VELOCITY TRAVERSE
tu»t Jiff: .*&(.
IOCATNM
SfACKLD ___ £&*
•AROBEtRK PRESSURE. •. Nf
•STACX GAUGE PRESSURE
- ^T f»?-
TRAVERSE
POINT
RUMBER
A--I
f.^-
1^-3
P.-4
A-^
• A--L
l_^->
' fir*
4-t
fi-\
A-3
A-u
4-j
yu.
yi.7
yi-«
"AVERAGE
VELOCITY
MEAD
U^l.ii.MjO
.VI
.LI
.Ifi
\«\
.10
.«
.10
-, 1
,1\
.1<\
.la
\^
•M
.rt
Al
«pl
.v>
STACK
TEMPERATURE
(T,l. f
A< -
•
*
B
\
SCHIMIIC OF mvtfat POINT LAYOUT
A
TRAVERSE
POINT
MUKBER
JbZ.
AVERAGE
VFLOCITY
HEAD
.13
-^t l_
ie_
JB_
STACK
472
-------
PRELIMINARY VELOCITY TRAVERSE
IOCATIOK CASfiWL t&Sot** - _Ut£F. .-.
SI ACK 1.0. .OfcN. *..J^
BAROMETRIC PRESSURE, in HI 1<\.*>-tf.»*
•STACK CAIKE PRESSURE, m. HjO — L>f*
SCHEMATIC OF fRAVtRSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
sx
\
4?
AVERAGE
EPA (Dun 733
472
VELOCITY
HEAD
Up,t. ».H20
Jh
iJE"
STACK
TEMPERATURE
a,). *F
TRAVERSE
POINT
NUMBER
8-
6-3
R-3.
ft-3
AVERAGE
VFLOCITY
HEAD
.4JL.
.IS
J7
J7-
STACK
rEMPtHATURE
nsi. -F
-------
PRELIMINARY VELOCITY TRAVERSE
StACXLD._£0?
•AROK1RC PRESSURE. •. 1% _
•HAW CAUCE PRESUME, it
tftmntm
SCHEMATIC OF (NAVtRSE
IAYCMIT
TRAVERSE
roiNi
KMBER
A3
AVERAGE
472
VELOOTV
*£AD
HICK
TEMPERATURE
90
*
K>
TRAVERSE
POINT
•UMBER
R-)
R-i
B-5
R-l
B-4
8-'
R-v
A-5"
AVERAGE
vriocrrr
MEAD
^a./
2T
.23
13
SUCK
MT
». -r
-------
VOLATILE ORGANIC CARBON
Facility Qrw^nftrv^.MJULgr- Sample Location Treoci £emenW -Tr\le4-
Location iO. UAX/CV\L C"p Operator &.Ul-ppU.
Run Number DCT-IA
Date
Tank Nunber
Trap Number
Sample ID Number
K
2. 4-3
Barometric Pressure
Temperature
Leaf Rate: Pretest *Yio
*•
Post Test
Tank Vacuum (Inch Ng): Pretest (manometer) ytS* irtfl » 2QA (gauge),
Post Test (manometer) (&7*>/3<4 • \5 \ (gauge) Jf=?- I?
Tank Pressure:(manometer,Inch Hg)_
Time
Clock/sample "_
I35"e> 1 Oy
14 II flail
Nil 25
It Li 31
H^l ^
1 «• S^ £g
v
i*4 2^
23
20
11-
2QA
2.t|
2t>
l^
.-
-
'Rotameter Setting
(^Q
STbP
. .
'
"V "'
Comments
"Vwt'3^ 2^^ ^JTZ^jU-
To^L'Sft 2^,8 "u-iku^
3i 3o.o 2^^/J^-
. 3-) 2^£ O
7"10 TotA 5^-<^l/
-------
WDLATILE OMWtlC C/IRBOM
Location
fete
Staple location "Triwi £Vmcr»Wr-Tr\l*4-
Operator &. Ulpp\<>-
fcmHunber
TankNuater
Trap Buster
Staple 10 Muster
&*ao40r ti».
23 •*- 3ft
laraaetrfc Pressure
Teaperature
:t
U«f Rate: Prttest
Post Test
a
Tank Vacuun (Inch Kg): Pretest (manomter)
Post Test
Tank Pressure: (wnowter.lnch Hg),
fq«uoe)
SB-fL-r :
(giuge.psl).
TlK
Clock/sample fj^
\DtfO O
i*v\\ is
|47^\ 31
jtJMf »^>
1^5^. £fe
1 ^«^?^1
\5^ •>?
1^2.^ 6b
106 Oft
i«4 j la)
*
•
Gauge Vacuum
(Inch Kg)
2Q
Q.4
20
l^j
l^
2^5
2&
1\
n
"Rotaneter Setting
i
100
STc?>
f
••
Coanents
2A*P"WUjcL SlruJtC
:
•
-------
VOLATILE ORGANIC CARBON
Facility
Location
Date
C.T
H"-
Sample Location
Operator
Run Number
fVRft- I A
Tank Number
Trap Number
Sample 10 Number
5
Barometric Pressure
Temperature
Stack Taiperature
LeaVRate: Pretest
Post Test
Tank Vacuum (Inch Hg): Pretest (manometer) >4-<\ »lift
Post Test
Tank Pressure:(manometer,Inch Hg)
(gauge)
(gauge).
(gauge,psi)_
Time
lock/sample
Gauge Vacuum
(Inch Hg)
'Rotameter Setting
Comments
3o
(ffO
38
JLL
*3.f>
o
Lo
/„
6,0
to
r 6
37.0
to
/ zr *;*/
t.0
it
a&o
to
L*
fanAfe/ -/
-------
VOLATILE ORGANIC CARBON
Facility HrrwfrH-ona
location
%WVv»r
tote
t<3-
Seaple Location
Operator
Run Number
- fa 4jr_4-
TankNueber
Trap Runber
Sample 10 Muaber
Baromtric Pressure 3&.LL
Teaperature
leakfeate: Pretest
'>
L>rlL
Post Ten
Tank Vacuun (Inch Hg): Pretest faanoaeterl i«<^lU^ « f\£> (gauge)
Post Tost
Tank Pressure: (aanooeter, Inch Hg)
(gauge ,ps1)_
T1oe
Clock/simple
Gauge Vacuum
(Inch Hg)
"Rotaaeter Setting
foments
27.7
Lo
AT.Sf
L o
Lo
*3.0
Ji*.
to
to
£0
/a. 0 6
to
Sff.lf'
to
Le>
rz
Lo
30.0
16
g.&f
t.o
to
Id
-------
VOLATILE ORGANIC CARBON
Facility tVw^S
Location UX
Date
Tank Number
Trap Number
Sample ID Number
Tvt=rf\A ItsW&e*^
LUi9/ n
l6"LtX 23
103^? / £&
1
ICX/Z/ ^D
IO52./ kO
If^Cyj ~)lL
Il3l//
73.^
[a £
VL.O
3r>,o
21. 0
2S. 0
t^>.D
.
"Rotameter Setting
i
LOL^
[00
'
-
Comments
i
'•7^0^ 5? / 29.ft
/
SIlCMkA TffiS^C- L>P/4tUOjUJ^l
5fer* '
1
-------
VOLATILE OR6MUC CARBON
location
•ate
Tank
. CT
Saaple Locitlon
Operator
Run Number
41
•arometrlc Pressure
Temperature
ID Number
iMk Rate: Pretest
Stack ftncerataire
Post Test
Tank Vacuun (Inch Ng): Pretest (Mnoneter).
(oauoe)
Post Test (manometer) 4*7-
Tank Pressure:(manometer.Inch Kg)
(gauge ,p$1}_
Tine
Clock/sanple
fiauge Vacuum
(Inch Ng)
Rotaneter Setting
Comments
loot, f
i
23 S
/
50
-------
VOLATILE ORGANIC CARBON
Facility.
Location UO . H6
Date
we* , CT
Sample Locatlon^WjCJ.
Operator
Run Number
Tank Number
Trap Number
10
Barometric Pressure
Temperature
10 Number
Stack Tatperature
Leak Rate: Pretest
*1
«•
1O_
Post Test
rli]
Tank Vacuum (Inch Hg): Pretest (manometer)_
Post Test (manometer).
Tank Pressure:(manometer.Inch Hg)
(gauge),
(gauge) 2£"-/4.6/?t/
(gauge,ps1)_
Time
lock/sample
Gauge Vacuum
(Inch Hg)
Rotameter Setting
Comments
/ /oi,;*
o.
J9.0
-^
-------
VOLATILE ORGANIC CttBOM
Facility
Location
Date
t
Saaple Location
Operator
Run Runber
Tank Hiaber
ip Nunber
1 ± 33
taronetrfc Pressure
Tenperiiture
lONunber
Leak Rate: Pretest
*'lto
Tank Vacuum (Inch Hg): Pretest (i
Stack taqpexature
Post Test ^_
iter)
(9«uge)___J2£Sl
Post Test faanaaeter) Ml-12-1 /33-l2.-2fQiuoe)4l- II ki -12-
/ ~^
Tank Pressure:(nanometer,Inch Hg) (gauge,psl)
Tine
Clock/sample
Gauge Vacuum
(Inch Hg)
"Rotaneter Setting
Comments
29-7
6* -
29.fi
34
(It?
I-St
3*
3D (?
q.t>
//.t
-------
Facility
Location
Date
^
VOLATILE ORGANIC CARBON
Sample Location'trgftP
2,4
Operator
Run Number
Tank Number
Trap Number
31/.
ID Number
Barometric Pressure ^
Temperature
Stack
Leak Rate: Pretest C f/p H*. p0st Test
Tank Vacuum (inch Hg): Pretest (manometer) &O.O
(gauge)
Tank Pressure:(manometer,Inch Hg)
Post Test (manometerW3-\S.Ul>4-tS.1' (gauge)^-l4-.c>
f / j \ /
(gauge,ps1)_
Time
Clock/sample
q:zO
^.'ZS C«4S"H/^
U;^
Q <;<-)
\b-o&
\t>-l^
\b."b^
(o'%
i/;p?
\V-i%
//•'3o
,
Gauge Vacuum
(inch Hg)
24.0-
?^-.o
7^.0
13 0
•2-1.0
^^>
U.o
ID. t?
l^-D
I9.9b>^
i^ ^
/5?<.-
"Rotameter Setting
""-"(aft
Comments
IAOK: 34 / 29.7
/
-------
VOLATILE ORGANIC CARBON
Facility
TankKwber
Tap Number
.- XA
BarooKtrlc Pnssure
Tflopiriiture
Itepezatute
LMk Rate: Pretest
Post Test
Tank Vacuum (Inch Ma): Pretest (manometer) ?^.P> . (gauge) ^?-S
Tank Pressure :(manomi
' Time
Clock/sample
fevft
I'-^tD
1^10
«H1&
i»Mk
iM<41
I5e»3 •
/r2
/S"J«/-
/C-tf/
, •
-
Post Ttst (manometer) 2&-\2,lfas- ll
tter.lnch Kg)
R (oauge)2B-IO.^/Sr-rJ.^
(oauae.Dsl)
fiauge Vacuum
(Inch Hg)
£T
2.1.^5-
^.00
/M-O
(D^Jftf^^ '
2-^.6
ai. r
1^.5"
/io
ILStfr
'Rotaneter Setting
(t£>
•
Conwnts
sTbp
•iyop "TfcJL
^tfi*4^^^^^
V 1 PHSv'i
-
•^ ( ^N " 1 C1 ^^^f^^
^
-------
Facility AnAO
Comments
i
i
ST&P
^ AJD ^TIWC
STwfT
ttOP ~TtsT"
-------
Facility
Location LO
VOLATIU ORGANIC CARBON
; SaapU Location "£ed
Tank Number
n Nuaber
Operator
tun Nunber
iarometrlc
Temperature
ID Number
Rate: Pretest ^'Ito Hq Post Test
Tank Vacuum (Inch Kg): Pretest (manometer)
(gauge 1 «.
Post Test (aanojpeter).ScHM /l/ /ST\1
/ • I
Tank Pressure:(manometer,Inch Hg) • (0auge,ps1)_l
Time
Clock/sample
Gauge Vacuum
(Inch Ng)
Rotanetcr Setting
Comments
•• 51
2? (f
K^7 /
"7D
-------
VOLATILE ORGANIC CARBON
Facility
Location IP.
Date
. C.T
Sample Location
Operator "RlS
Run Number
Tank Number
ip Number
Barometric Pressure
Temperature
10 Number
Leak Rate: Pretest
Stack Tenperature
Post Test
Tank Vacuum (Inch Hg]
Tank Pressure:(manome
Time
Clock/sample
\4o4/ o
/c/12.7 /ft
1 ifr&'l 3 \
\*)OC>I S<*
I
^oZ/
15 1 (J) ~~>o
\'S*L?'I Qo
/^4( / n<^
'
,
: Pretest (manometer) 29.^5" (gauge) !?•?
Post Test (mancw
ter.lnch Hg)
neter) 5^-l4.f /SB -K< (gauge) 5V -tf5/SB - /?
(gauge. PS 1)
Gauge Vacuum
(Inch Hg)
2<1
?<4
91
I4,<
29. o
25.5
2&^
\f\
.••
'Rotameter Setting
;^c>; '• '• '
(j/J
.
•'
•
Comments
"FfP^^C ruucJe^Xt-^ :
I V^^^
*7Z)A)ykil 58 " 5T^^T<£A
ST2p
-------
facility
location UP
•ate I
CT
VOLATILE ORGANIC CARBON
>± Saaplo Location
_ Operator
Run NuBber
"kf»J &»€U,W 'I^V ieV
Tank Muattr
Nuabtr
ID Ruaber
larowtHc Prtssurt
TtBptratur* •
suck
Leak Rate: Prttest
Post Ttst
Tank Vacuum (Inch Hg): Protest (a»ndfcater)
(gauge)22.
Fost Ttst (Btnoaeter)22-l2^WM.2,
Tank Prtssure: (nanoneter.lnch Hg) (gauge.psl)
Time
Clock/sample
m in / r\
' " * / L*^
ORo4 '/ /"")
}£>m y 2."?
DB50 i ^S
9gt | / 451
pfy- o7 Sx
OFW*/ /
nfts? 7 7^>
O^oS/ 7ft
ft?z/ ^/ G i|
Qflf5
Gauge Vacuum
(Inch Hg)
9fl
^•1
27 .<
^>
\l^
12
11
2/j ^"
^o
iPi
1^1
(0.^
'Rotaaeter Setting
/A
txf
;."
Coanents
7
^T^t^A ^1^ (J-&\ / ^t^^ Git
iriv^^l^M ^*Cff ^ri * "^^
/
f
-------
Facility flr**5nof\6
Location
Date
VOLATILE ORGANIC CARBON
Sample Location
___ Operator
Run Number
Tank Number
Trap Number
20*49
10 Number
Barometric Pressure
Temperature
Leak Rate: Pretest
Stack Tsnperature
Post Test
Tank Vacuum (Inch Hg): Pretest (manometer) 2ff.U> (qauge) x*S>
Post Test (manon
Tank Pressure: (manometer. Inch Hg)
Time
Clock/sample
0-741 1 0
cf&\' in
&P)ld 'I 2-~?
!>p3oy
2B1- 1 n$t\
DDC3 1 SU>
^c/ay^
0857/ 70
meet) ?8
CP\1\) 3*4
tMl&U \ \
1
,
reter) ^> iS.'t/a'i -J/,,7) (gauaeO^O • 1 ^ /j^.r I* <
i 1 '
(gauae.DsD
Gauge Vacuum
(Inch Hg)
*2A
22.5"
2.Q
Tb
\1.< •
12.
2B
2?^
Ik
'»•/.<
'Rotameter Setting
L^C>
Comments
, /
"fiAvJ/^ 7^/ 29,^
/
'
-------
VOLAHLE ORGANIC CARBON
Tank Number
•p Number
ID Ibjober
Leak Rate: Pretest
H H
Post Tast
Tank Vacuum (Inch Hg)
Tank Pressure :(manomc
Time
Clock/sample
&7:ro/
CB'Oo / x)~;,
\ os:/o / 0.0*.:*
\ y
1 o f:* o / so *,,v
1 • /
\fiS.3 O/ Uo^.W
|*r.v*/jEj^,;(
\ e t^f/^j-^:^
\ JI/KjlZtk.
Off.Tr/&-*4
of:»r /rr^
Gf^f/fJ^:^
01 *:*r/ fsm,'*/
o?-jj- / (fr~,'*
,
.;.
: Pretest (mantnal
Post Test (manot
ter.lnch Hg)
ter) /R, (0 (oauoe) zfi. ^
•eter)a.-»o.4/2i>'|3^ («auoe)^-//^/E5)-/i3
(aauoe.Dsl)
Gauge Vacuum
(Inch Hg)
29^
«2^T^
J2.a^
/*:o&
/7.7f
/a.o
/l.t)
39 (,
a£o
£3.0
3 o.O
/£,..*
J3.0
'Rotameter Setting
(cO
"'. •
I onments
•t^li^ /
W f/ • '
V ' !
A
/•A
^Xf^ftf^/ f+*t£ o s&-f
'
.
T3V^^ 2_^ / "Z.^ /
'
• •
-------
VOLATILE ORGANIC CARBON
Facility ftrMSWe*v( kL1
Location U). l/QV£V\ . £T
Date
•4-
Sample Location
Operator rCS
Run Number
Tank Number
Trap Number
(o\4- [
\ L>
Barometric Pressure
Temperature
2fj.^4
I0 Number
Leak Rate: Pretest
I/O
a-
Post Test
Tank Vacuum (Inch Kg): Pretest (manometer)
(qauge)
Post Test (manometer
Tank Pressure:(manometer,Inch Hg)
-1,-
(gauge,psl).
Time
Clock/sample
t
Gauge Vacuum
(Inch Hg)
Rotameter Setting
Comments
mi I 3-7
n
T2S7
-------
VQUTILE ORGANIC CARBON
Facility
Location J^
Bate
ClT
Sample Location
Operator
Bun Hunber
Tank Number
Trap Number
ID Nuber
*
larometrlc Pressure
Temperature
2^T.3*T
go
Uak Rate: Pretest
Post Test
Tank Vacuum (Inch Hg): Pretest (aanoneter) 2&6
Tank Pressure: (nanowter,Inch Hg)
Post Test («anoneterlfcS -G-UM -IS Agauqel L3- B/^4 -
• » « * *
(gauge.es1)_
Tine
Clock/sample
fiauge Vacuum
(Inch Hg)
'Rotaaeter Setting
Cooments
»-.'
11.4"
,T7
50
*
T-
-------
VOLATILE ORGANIC CARBON
Facility _tLd
Location LO. feJoVev\ CT
Date l[2s/7=j
Tank Number
Tjsap Number _
Sample Location
Operator
Run Number
I
Barometric Pressure
Temperature
10 Number
Leak Rate: Pretest
I j "
-fa-
Stack Tenperature
Post Test
\0
Tank Vacuum (Inch Hg): Pretest (manometer) "2SQ (gauge) v'?
/ / . _
Post Test (manometer)^ -/I rZ- A^~ 13. £(gauge)£,7-/I.C> /kAi-(3-O
Tank Pressure: (manometer. Inch Hg)
Time
Clock/sample
Il'-So
/a:&* / ' ,**.:»>
l%:se>/ ao^.'Ai
/ 3' *0 /30*'*
/2'30/^-a^^
/S^tfo/JV*:!,
/ifyj'/ Tf^ v
/a&&/ 1**;^
&&d/7Q+:*/
/3J6 /ffd*.:*
/3:sa /to~.v
&' W/«S ^'./
tettt S,*r\*-*,
I (gauge .ps1) '
Gauge Vacuum
(Inch Hg)
2=}
a.r.j-
JZ.G
ftf Q
if.f
Sl.f
//.o
34.0
Ht.s
JVzf
JJ 04,
/F.6
/*<>
r^.o
"Rotameter Setting
L00
\ '.
Comments
• • !
-;
-------
Facility
forixJ-
VOUTILE ORGANIC CARBON
Saaple Location
Operator
Run Nunber
Tank NuBber
top Number
taraoetrlc Pressure "2^ -
Teapeniture
Stack
Uak Rite: Pretest
Tank Vacuun (Inch Kg): Pretest (i
Post T
-------
CEMENT USAGE DATA (WDERTREAD CEMENTER)
-------
PROCESS DATA
This information has been claimed to
be confidential. All process infor-
mation subjected to confidential
claims have been summarized and have
been included with original copies in
Emission Standards and Engineering
Division's confidential files.
-------
APPENDIX C
TGNMO ANALYTICAL DATA SHEETS
(PCS)
-------
POLLUTION CONTROL SCIENCE, INC.
•015 Manning Road. Mlamlaburg, Ohio 45542 • 513 • M6-S908
March 7, 1979
Mr. Robert F. Jongleux
TRW ENERGY SYSTEMS GROUP
201 N. Roxboro Street
Suite 200
Durham, NC 27701
Dear Mr. Jongleux:
Enclosed are the analytical results of the Total Carbon
Analysis (TCA) and Total FID analysis of the VOC samples
collected at Armstrong Rubber, W. Haven, CT.
The barometric pressures used for the calculation of sample
volumes were those obtained from the U.S. Weather Station in
New Haven. These values are reflected on the TCA Analytical
Sheets only and were not changed on the field data sheets.
I hope you will need no further information regarding this
data, but feel free to call me if you have any questions.
Sincerely,
POLLU
GDH/bs
Enclosures
103-2
Prafttlionof EimVoninMfo/ Jtrvien and S)rlf«m« for Induttry, Uunicifolitit* and Government
-------
SUMMARY OF TCA DATA
SAMPLE
ID
AfO-lA
ARO-1B
ARO-2A
ARO-2B
ARD-3A
ARO-3B
ARO-4A
ARO-4B
ARO-5A
ARO-5B
AFW-1A
AM-lfl
ARI-2A
ARI-2B
ARI-3A
ARI-3B
ARI-4A
AR1-4B .
ART-5A
A7I-5B
* Average
1st Tank
ppnCi
517
557
678
653
342
379
488
466
523
526
1439
1377
1461
1466
1371
1024
2536
-
987
1083
of Two Tank
2nd Tank
ppnCx
474
337
1120
1120
591
450
618
730
457
611
1422
1765
3204
1663 .
1499
1498
1206
770
1166
1598
Concentrations
TRAP
ppnCi
in
531
46
47.3
142
73
343
74
139
205
3035
2629
6639
7162
3207
3345
2605
3629
7987
6845
Plus Trap
TOTAL*
ppmCj.
543
978
945
934
603
488
896
672
629
774
4465
4200
8971
8726
4C42
4606
4476
4399
9063
8135
TOTAL MASS
mg GI
1.423
2.722
2.333
2.180
1.462
0.952
2.432
1.428
1.617
1.629
12.90
9.697
25.16
20.47
15.50
11.40
13.89
10.33
19.90
18.48
TOTAL
SAMPLE
VOL.
LITERS
5.203
5.491
S.086
4.768
5.017
3.968
5.497
4.293
5.132
4.245
5.853
4.711
5.691
4.761
6.021
5.017
5.322
4.468
4.463
4.595
*
mgCj/
LITER
0.273
0.496
0,459
0.457
0.291 .
0.240
0.442
0.333
0.315
0.384
2.204
2.058
4.421
4.300
2.574
2.272
2.610
2.312
4.459
4.022
NCO
tIEN
-------
POLLUTION CONTROL SCIENCE, INC.
•015 Manning Road. Miamlaburg, Ohio 4S342 • S13 • M6-5908
April 17, 1979
Mr. Robert F. Jongleaux
TRW Energy Systems Group
201 N. Roxboro Street
Suite 200
Durham, NC 27701
Dear Mr. Jongleaux:
Recently, Mr. Roy Neulicht brought to our attention several
errors which appeared in the analytical results for Total Carbon
Analysis of the VOC samples collected at Armstrong Rubber, West
Haven, CT enclosed in a letter dated March 7, 1979.
First, for Sample ID'S AIR-4A and ARI-4B, the 2nd Tank ppro C,
results are incorrect. The correct values are:
2nd Tank
ppm Ci
ARI-4A 2801
ARI-4B 2280
Secondly, as noted in the footnote, the results for total ppm Cj
were based on the arithmetic average of the two tank concentrations
plus the trap concentration. Since the sample volumes and/or
sampling times for the two tank samples for each test were not
equal, the weighted average of the two separate tank samples should
have been used. Enclosed are the correct Total ppm C^ based on the
weighted average of tank samples.
If you have any questions about the corrected data please feel
free to call me. We're very sorry for the inconvenience.
Sincerely,
LLUTION CONTROL SCIENCE, INC.
•A:
. Hayden/fh.D., F.E.
Presider
PH/bs
Enclosures
103-2
Environntnlof Services end Sjriltms for fnrfustrv. Munfcipafifici onrf Cev*rnm*nf
-------
Clint - *m
location -
103-2
trong Bobber
TOTAL FID ANALYSIS
SAMPLE
ID
ARO-2A
ARO-2A
ARO-3A
ARO-3A
ARO-3B
ARO-3B
ARI-2A
ARI-2A
ARI-3A
ARI-3A
ARI-3B
ARI-3B
TANK
MO.
44
52
57
50
54
58
41
33
28
55
si
56
TOTAL *
FID
ppm
PROPANE
91
188
78
69
49
58
119
257
138
176
68
114
TCA
ppm
678
1120
591
342
379
450
1461
3204
1371
1499
1024
1498
RATIO
FID/TCA
0.403
0.504
0.396
0.605
0.388
0.387
0.244
0.241
0.302
0.352
0.199
0.228
Average of Duplicate Analyses
POLLUTION CONTROL SCIENCE, INC.
-------
Mr. R. F. Jongleaux
Page 2
April 17, 1979
Corrected VOC Data
SAMPLE
ID
ARI-1A
ARJ-1B
ARI-2A
ARI-2B
ARI-3A
ARI-3B
ARI-4A
ARI-4B
AJU-5A
ARI-5B
ARO-1A
ARO-1B
ARO-2A
ARO-2B
ARO-3A
ARO-3B
ARO-4A
ARO-4B
ARO-5A
ARO-5B
TOTAL
ppm Cx
4464
4164
8962
8728
4643
4602
5274
5909
9059
8168
547
1001
920
914
586
481
891
667
632
772
POLLUTION CONTROL SCIENCE.INC.
PCS PN
1103-2
-------
TCA SAMPLE ANALYTICAL SHEET
*£ fc
CLIENT
PROJECT NO..
TEST NO. l00)-tfi
DATE TRAP ANALYSIS
DATE TANK ANALYSIS / /?/ /7?
ANALYST f)A/6 H
TANK INITIAL
TRAP NO. ^ TANK NO. 32-
TANK FINAL
m Hg
Pr/n m 757 roHg
1 Initial Vacuum
(Pre-Test)
SAMPLE VOLUME
PT(3)
T
."" H9
im Hg - Post-Test Vacuum
«m Hg - Final Pressure
°F
. [PB(2) " PT(2)I ' [PB(l)-PT(li]
(T +460) X 0.299
S [( 7b )+460j X 0.299
Vs • 3..iLI?> sample volume - liters
TANK ANALYSIS
Sample
Loop
5
Backflush
Area
3/7
Attn.
4 -SOD
-------
TCA SAMPLE ANALYTICAL SHEET
CUENT
fWJECT NO.
TEST*.
HATE TRAP ANALYSIS
TRAP NO.
BATE TANK ANALYSIS l/'*?/'7ff
ANALYST fffl. /£ L]
TANK NO. 57
~~
TANK INITIAL
TANK FINAL
THft
*'Initial Vacuum
(Pre-Test)
Hit? •> Hg - Post-Test Vacuum
at^ •> Hg - Final Pressure
SAMPLE VOLUME
*S " IT + 4W; X 0.299
7» 7
5 [( 76 ) +460J X 0.299
V$ • /.
- aeasured
LPT(3) 4
['•(«- '
)] - [(7^ )-(7>-7 j]
'
PP»
MASS OF CARBON IN TANK
x 10"
« 76°
voc(i) '
arbon 1n Ttnk
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. _3
Volume of Collection Vessel i.wo liters - V
CV(1)
PCV(2)
7
•» Hg - Initial Vacuum
nn Hg - Final Pressure
cv
MASS OF CARBON COLLECTED
VQC(4)
as C0
F 1
"n VOC(2) " CVOC(4) X IPCV(2) + PCV(1)|
— -J
n(2)
3-467 X IP"4 X VCy
T(°F]
n i
1+ 460
["3.467 X 10"
4 (l-oo
0 ) '
L ( 7r 4 460)
-]
MnT « /. 4^^? mg Carbon
ng Carbon/liter - -^ B ( ^
t 5.
ao>
ng Carbon/DSCF - mg Carbon/liter X 28.32
= "). If
POLLUTION CONTROL SCIENCE, INC.
-------
aiENT
PROJECT NO.
TEST NO.
TCA SAMPLE ANALYTICAL SHEET
-fl» DATE HAP ANALYSIS
U-.1
-It
TRAP NO.
DATE TANK ANALYSIS.
ANALYST
TANK NO. 31
*- /H
//3X/79
TANK INITIAL
TANK FINAL
•757 •• Hq
nitial Vacuum
(Pre-Test)
s
'
Hg
•» Mg - Post-Test Vacuum
•» Hg - Final Pressure
*F
SAMPLE VOLUME
• PT(2JI " [PB(n
(T + 460) X 0.299
" P
T(1
J)
- (
)]
S [( ?t i + 46Qj X 0.299
V, • "Z. 5 £6 sample volume - liters
TANK ANALYSIS
Sample
Loop
$•
Backflush
Area
^-/(f
Attn.
4_ - r> OC>
U
Std.
Area
2&0
Attn.
ft r.^fT-
y
Std. Cone.
(ppm)
At-*l
Sample Cone.
DPffl
2*-
ppm as C02 • "easured
LPT(3) * PB(2)1
'•(«- 'Td'BtD
['•(«-
r
VOC{1)
,
as C02 «• sample
MASS OF CARBON IN TANK
*4
Cvoc(2) X 4.996 X 10* • 0-7 ?Y M/l (68«F. 760 an Hg)
vocd ) ••
1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
CLIENT
PROJECT NO.
TEST NO. dfo >,
TRAP NO.
TANK INITIAL
PB(1)
TCA SAMPLE ANALYTICAL SHEET
•Ffo DATE TRAP ANALYSIS_
DATE TANK ANALYSIS_£
ANALYST _
TANK NO. 35"
VCKJ
TANK FINAL
757 m
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
•nHg
Hg
PB(2) Ttt ""Hg
PT(2) _lJl^_ mm Hg - Post-Test Vacuum
PT(3) •L^'l nn Hg - Final Pressure
T
« n [PB(2) " PT(2)1 " [PB{D ' PT(lJ
"S (T + 460) X 0.299
372.
7tt,
757
- - - .
[( % ) + 460J X 0.299
V. » £.lt-.T sample volume - liters
TANK ANALYSIS
Sample
Loop
5-
Backflush
Area
/37
Attn.
4 -.5 <-O
(/
Std.
Area
Z39
Attn.
or = 5 0 0
iT
Std. Cone.
(ppm)
acV
ccvocn;
Sample Cone.
ppm
//7
CVOC(1) //7 PP"1 as C02 ' measured
[PT(3) * PB(2)1
.. r
VOC(1)
r_
l(7^/ % )-{ 3<7-5L )J -
CVOC(2) * 337 ppm as CO. - sample
MASS OF CARBON IN TANK
CVOC{3) " CVOC(2) X 4>996 X 10"4 " Q'l
/
. 760 mm Hg)
VOC(l) ' CVOC(3) X VS ' O^t "9 Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TMP AMM.YSIS
Collection Vessel No.
wK of Collection Vessel 614? liters -
fl % H> • Hg - Final Pressure
"p 7Y%/=
I»SS OF CARBON COLLECTED
SOC(4) -2-2
, . f 3.467 X 10^ >VCV
% VOC(2) " ^00(4) X PCV(2) * PCV(1) L J('f)r 46° 1
r nj 3.467 X 10"* ( g
n VOC(2) . ,,.?* I _IL ( ^i/ * ^60)
^Oj *Mn(2)
(1.110 ) * (»
"9
•g Cirbon/liter • *"* • (S-'/aa ) •
^,7 T?^ r
•g Carbon/DSCF • *g Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO.
TEST NO. 4ft'-.
TANK INITIAL
TRAP NO. 12.
TANK FINAL
"n Hg
DATE TRAP ANALYSIS -' /W7/
DATE TANK ANALYSIS~3/ H 4
ANALYST
TANK NO. 4
flfl./6-f
«m Hg
«"> Hg - Post-Test Vacuum
nltlal Vacuum
(Pre-Test)
SAMPLE VOLUME
PB(2)
Hg PT(2)
^T(3) A-H t mi Hg - Final Pressure
T 7i- °F
[PB(2) " PT(2)1 " Kp) " PT(1]3
;(T +460) X 0.299
[(
)J '
5 ^ ) + 460] X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
_>
Backflush
Area
in^
w"
..ffifor..
" 3o<
Attn.
'i '; o O
,r
Std.
Area
?-v/
Attn.
>3
CVOC(2) "
ppm as C02 - sample
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X
Mn VOC(l) " CVOC(3) X VS "
(68°F> 76° m Hg)
mg Carbon In Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO.
1ESTNO.
e.
DATE TRAP ANALYSIS
TANK INITIAL
TRAP NO. /Z>
TANK FINAL
DATE TANK ANALYSIS i /.
ANALYST
TANK
"•-fir
Hg
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
'**1 m "9 * Post-Test Vacuum
A3"^» •» Ha - Final Pressure
T ?fc *F
. [PB(Z) "_PT(2)1 " _fPB(11 ' P
(T * 460) X 0.299
[( 7fe ) * 460J X 0.299
'•> f>? sample volume • liters
TANK ANALYSIS
Sample
Loop
y
Backflush
Area
4*7
Attn.
« ;^PO
0
Std.
Area
2-3^
Attn.
« * <• f^o
^
Std. Cone.
(ppm)
S.O'4
Sample Cone.
Dpm
401^
is M " •6>sured
T(3) * PB(2)1
SoC{2) " I17'® PP" ts C02 * *anp1e
MASS OF CARBON IN TANK
^00(2} x 4-996 x 10"
VOC(l) ' SflCO) X VS • — ^l£L»9 Carbon In Tank
* 76° "" H9)
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. */
Volume of Collection Vessel f.EQO liters - Vcv
PCV(1) ?*/ % •" Hg - Initial Vacuum
Pry(2) £H>'3~ «n Hg - Final Pressure
T' 7*u
HASS OF CARBON COLLECTED
cvoc(4) |7£— ppm « co2
r i f3-467 x 10'4 x vcy]
"n VOC(2) " CVOC(4) X PCV(2) * PCV(1)| |_ TrF)+ 46° J
*• - -I —Pi 1C-, « ,n~4 / , _,,r, ,-* \ ~]
3.467 X 10 q (
"nVDC(2) • ^"^ '* [»*f^ 1*1 ' ™ j||_ ( 75- + 460)
Mn(2)" ^-//^ "9
n/.> n/.>
nig Carbon
ng Carbon/liter = _f!L. ' (? -?3^| . /9.
VJV ti.P^io J
mg Carbon/DSCF - mg Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
BATE TRAP ANALYSIS -2.
/»/7f
PROJECT NO.
TEST DO.
TANK INITIAL
W. Z-t
TANK FINAL
DATE TANK ANALYSIS
ANALYST
TANK NO.
.,
nitial Vacuum
(Pre-Test)
SAMPLE VOUHE
1*^
. m Hg - Post-Test Vacuum
•B Hg - Final Pressure
(T + 460) X
fl -
- (7iO
[( -? fc ) + 460J X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
2?/
Attn.
tj.- 5u&
*
Std.
Area
-Z.fi
Attn.
a.- 5t>o
0
Std. Cone.
Z-OH-
Sample Cone.
ppm
:r//
Cvnrfn IT/. w» as CO. - Measured
LPT(3) 4 PB(2)1
X/ "*•
I «»I
pp» as C02 • sample
MASS OF CARBON IN TANK
C¥OC(3) "
\ VOC(l) "
3eF, 760 MR Hg)
Urbon 1n Tank
over
POUUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO.
TEST NO.
DATE TRAP ANALYSIS
DATE TANK ANALYSIS~/73//7?
ANALYST 0R/S-H
TANK INITIAL
TRAP NO. "Z-f TANK NO. 3&
TANK FINAL 2"
"n Hg
"TOJ
nltlal Vacuum
(Pre-Test)
m Hg
•m Hg
^1(2} S93 am Hg - Post-Test Vacuum
PT(3) -2- V^> mm Hg - Final Pressure
T Tfc °F
SAMPLE VOLUME
. [PB(2) " PT(2)1 ' [PB(D
(T +460} X 0.299
- (-37?
[( -J(a ) + 460] X 0.299
.H-5 sample volume - liters
TANK ANALYSIS
Sampl e
Loop
f>
Backflush
Area
•€?*•&/
(T
Attn.
<•! - C,C&
L/
Std.
Area
zyT
Attn.
q - 5«=c
<7
Std. Cone.
(ppm)
1 0'\
Sample cone.
ppm
3iV
cyoc(t)
ppm as CO, - Measured
r LPT(3) * PB(2)1
CVOC(2) :
CVOC(2) *
ppm as C02 - sample
MASS OF CARBON IN TANK
CVOC(3) * CVOC(2) X 4'996 X
^ VOC(l) " CVOC(3) X VS "
C*rbon 1" T"nk
» 76° nin
over
POLLUTION CONTROL SCIENCE, INC.
-------
IMP AIDU.YSIS
Collection Vessel No.
VoluM of Collection Vessel /CrO liters - Vcy
.OB Ng - Initial
Pressure
MftSS OT CARBON COLLECTED
_PP» «
E,
fcv{2) * PCV(1)|
*• _ J
/
• ""(I) *
" J.f g *g Carbon
•g Carbon/liter - *L. * [ *-/^ [
"jy I /• /£• <> /
•g Cirbon/DSCF • *g Carbon/liter X 28.32
.467 X 10'* X Vcy 1
^K 4 4C*f W 1 A*^
• 3.467 XlO-4( /.oro )1
_ ( 7 (. + 460) J
POLLUTION CONTROL SCIENCE. WC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT /?e**7*>*X fotef -&* DATE TRAP ANALYSIS SL/%/77
DATE TANK ANALYSIS • /Si < /7f
ANALYST Dfi A/M
TANK NO. 57
PROJECT NO. /«-2.
TEST NO.
TRAP NO.
TANK INITIAL
TANK FINAL
PB(2) 7V?
Hq
nltlal Vacuum
(Pre-Test)
Hg
PT(2) _f£ii2__iim H9 ' Post-Test Vacuum
PT(3) 3-5^ urn Hg - Final Pressure
T 7 £ °F
SAMPLE VOLUME
" PT(2)I ' [PB(D • PT(lJ
(T -f 460) X 0.299
5 [( 7f ) + 460] X 0.299
VS * 3~0t7 sample volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
Z/5"
Attn.
/i Cfl- DO
6
Std.
Area
zz6
Attn.
i- ^-/r'^'
C^ "
Std. Cone.
(ppm)
3Lft
ccVOC(li
Sample Cone.
ppm
/?/
CVOC(1)
as CO- - measured
r
CVOC(2)
T(3) *
VOC(1)
X (
CVOC(2) " S7?/ ppm as C02 - sample
MASS OF CARBON IN TANK
CVOC(3) * CVOC(2) X 4'996 X 10"4 " 6 •?-*** mg/1 (68°F> 76° m Hg)
'V VOC(l) " CVOC(3) X VS " —^OSL.'ng Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT 4t****c &*»-v-tfH BATE TRAP ANALYSIS
PROJECT NO. JP3-2. BATE TANK ANALYSIS / A/ /7eJ
TEST NO. dRo-34 ANALYST
TRAP NO. y TANK NO.
TANK INITIAL
TANK FINAL
nitial Vacuum
(Pro-Test)
SAMPLE VOLUME
•«Hq
3-^7 • Hg - Post-Test Vacuum
«B Hg - Final Pressure
V . [PB(2) " PT(2JI " fBH) " P
*S (T * 460) X 0.299
V$ • 2.f70
[( 7t ) +460] X 0.299
- liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
205-
Attn.
€L *• 5L?O
V
Std.
Area
2.5" (e
Attn.
OL- 5~O&
V
Std. Cone.
(ppm)
iLC/'f
Sample Cone.
ppm
lit'l
CVOC(1 )
•* C0 • "easured
T(3) 4
CVOC(2) "
PP"
- sample
MASS OF CARBON IN TANK
°VOC(3) "
*V VOC{1) "
76° "*"
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. 1
Volume of Collection Vessel i ^i-=> liters - Vcv
•ev{l) T-f* m Hg " In1t1a1 Vacuum
*t ^ '7 >m Hg " f1na^ Pressure
MASS OF CARBON COLLECTED
Cvoc(4) Til PP" «s C02
r i f 3'!6! * ™'!x Vcv
Mn VOC(2) " CVOC(4) X PCV(2) * PCV(1) |_Tl°F)+ 460J
I" "IM.467 X TO'4 ( 0-V1-? ) |
MnyoC(2) B ( r// )X f */*/7 )+C7Y> j|_ (-7^ +460) J
Mn(2)
Mn_ * Mn
_ * Mn/, , +
mg Carbon
ng Carbon/liter
sv 5-. o' 7
mg Carbon/DSCF « mg Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
fROJECT IP. /C3--J,
TEST NO.
TRAP NO.
DATE TRAP ANALYSIS 9-
DATE TANK ANALYSIS.
ANALYST j
TANK NO. ST
¥•
7
TANK INITIAL
TANK FINAL
nitial Vacuum
(Pre-Test)
SAMPLE VOLUME
•Ho
» Hg - Post-Test Vacuum
«m Hg - Final Pressure
*F
. [PB(2) "_PT(2JI _ " JPBM) " PT(]i3
(T * 460} X 0.299
V
f(
* 460 X 0.299
VS ' f.feC-4 *««p1e volume - liters
TANK ANALYSIS
Sample
Loop
jr
Backflush
Area
ts~s~
Attn.
a.*5P&
a
Std.
Area
ZV^P-
Attn.
rt^,; /f C'O
IT
Std. Cone.
(ppni)
^0^
Sample Cone.
opm
/^
ppm «s C02 - Measured
T(3)
* P
CVOC(2)
^00(2) '
[(/*•£> )
)]
•$ C02 - sample
MASS OF CARBON IN TANK
" °VOC(2) X 4'996 X
VOC(l) " ^00(3) X VS "
(68'F. 760 no Hg)
•« Carbon In Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT Amtiflv* &*TP -EPA DATE TRAP ANALYSIS
PROJECT NO.y03-2-
TEST NO. JtgQ-3R
TRAP NO. T:
DATE TANK ANALYSIS / A/ A"?
ANALYST
TANK NO.
/ A/ A
/9/1 /6
TANK INITIAL
TANK FINAL
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
Hg
Hg
PB(2)
rc"1 Hg - Post-Test Vacuum
"" Hg - Final Pressure
°F
(T + 460) X 0.299
1)
[( '/£'" ) + 460J X 0.299
V- = a 3 f.5" sample volume - liters
J — — — —
TANK ANALYSIS
Sample
Loop
/^
Backflush
Area
^ /sY
Attn.
r $f;p
t/
Std.
Area
2-Z-?
Attn.
/- -- •? I'C'
^"
Std. Cone.
(ppm)
'^cL
rcvoc(n
SampT^ Cone.
ppm
/37
cwnrm /^7 ppm as CO, - measured
r
CVOC(2)
CVOC(2) *
T(3) * PB(2)
ppm as C02 - sample
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X
'Vt VOC(l) " CVOC(3) X VS "
mg
(68°F, 760 mm Hg)
1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
IMP AMMTSIS
Collection Vessel No. "3
Volwe of Collection Vtssel iron liters • V£y
*?-*"•* • HB • Initial Vicuurn
• Hg - Final Pressure
MASS OF CARBON COLLECTED
»
3.
SOC(4) - 2
.
, . .467 X10-4XVcy
¥OC{2) ' ^00(4) X fcV(2)CV(l)| L TrFJr* 46° A n
467 X IP'4 ( / 0 g'O ) I
( 7f 4460) J
"9
4Mn(2)
4 ( c-jv 3 )
2. mg C«rt>on
•g Carbon/liter • !3_ • j f ''*£*
T^7 » 3 ^ S
•g Urbon/OSCF • *g Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT XJRtflSTgtfiAG-gP/4 DATE TRAP ANALYSIS.
PROJECT NO..
TEST NO.
DATE TANK ANALYSIS.
ANALYST
TRAP NO. 5" TANK NO.
VOC(2)
as C0 " samPle
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X
Mn VOC(l) ' CVOC{3) X VS "
mg/1 (68°F> 76° n¥n Hg)
Carbon 1n Tank
over
POLIUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO. 103'
TEST NO.
— e?P4 BATE TIAP ANALYSIS
TRAP NO.
DATE TANK ANALYSIS ft. // H
flNALYST 0 fi /l-
TANK NO. Z3
TANK INITIAL
frn) 7S7 •Hg
Pj/1% I*** m Hg
* Initial Vacuum
(Pre-Test)
SAMPLE VOLUME
TANK FINAL
«n Hg - Post-Test Vacuum
•• Hg - Final Pressure
*F
. [PB(2) "/nzJ " htn "P
IT + 460) X O.Z99
737
5 [( 7&) * 460J X 0.299
Vs • a.$vf> sample volume - liters
TANK ANALYSIS
Sample
Loop
S~
Backflush
Area
aae
Attn.
*~- fOrt
Q
Std.
Area
/«2O
Attn.
4. - S f>c)
0
Std. Cone.
(ppm)
SLO'j
Sample Cone.
DPin
•±*s-
ts
isured
['•(!)-
c
VOC(1)
)
(
X_.,«r
- [(737 )-(73
" C i9 ppm as C02 - sample
MASS OF CARBON IN TANK
Cunrm • Cynrf?! x 4-"6 X ID'4 • Q.3P1 W/1 (68eF. 760 m Hg)
VUwVJj WOV»\c|
^•r KVBm-i6*s
voc(i) Soc(3) * vs n-iv*
Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
*f
Collection Vessel No. »"L
Volume of Collection Vessel /.oc*O liters - Vcv
PB(2) ~1&"/ "" Hg
PCV(1) 7r> 6^ an Hg - Initial Vacuum
Ppy/2) 1 Ad an Hg - Final Pressure
T~ ~?>~"F-
MASS OF CARBON COLLECTED
Cunr/«\ '"^ I & PPI" aS CO-
VU(.(4; —•—' r i
r f3.467 X 10"^ X VCV 1
Mn VOC(2) " CVOC(4) X PCV(2) 4 PCV(1) L TrF)r* 46° J
J -'3.467 X TO'4 ( /Coo
M"VOC(2) " <"'fe ) X
Mn_ • ^n/i\ * "n/_,
MnT - (t.so*} + 0.717 )
MnT « 2.M 32- mg Carbon
ng Carbon/liter - ""T - ( ^-*j•» 2- ) - d.
« \ -* • i I ( I
mg Carbon/DSCF « mg Carbon/liter X 28.32
• 72. .5
-------
TCA SAMPLE ANALYTICAL SHEET
CLIEWT
fWWECT NO. J03~ 2~
TEST NO.
TRAP NO.
— gPtf «ATE WAP ANALYSIS
DATE TANK ANALYSIS
ANALYST
TANK -NO.
.TANK INITIAL
737 •
730 »
nltlal Vacuum
(Pro-Test)
SAMPLE VOLUME
TANK FINAL
.ty?)
t-
••Ha
«• Hg - Post-Test Vacuum
•» Hg - Final Pressure
*F
_
(T 4 460) X 0.299
737
[( -?6» ) * 460J X 0.299
Mmple volume - liters
TANK ANALYSIS
Sample
Loop
j
Backflush
Area
11 ^
Attn.
» * $OO
0
Std.
Area
nF
Attn.
G'~ 5 UO
)
Std. Cone.
(ppm)
Hfj<-(
ccvocn;
Sample Cone.
ppni
11 <*
is ra * •ea$ured
r
SfOC(2)
LPT(3) * PB(2)1
c
VOC(1)
^00(2) "
ppn as C02 • sample
MASS OF CARBON IN TANK
C¥OC(3) • C¥OC(2) X «.W6 X 10
'4
X ( Ibt )
VOC{1)
•g/1 (68"F, 760im Hg)
Ctrbon 1n Unk
over
POLLUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO..
TEST NO.
TANK INITIAL
«m Hg
nitial Vacuum
(Pre-Test)
SAMPLE VOLUME
«m Hg
DATE TRAP ANALYSIS .
DATE TANK ANALYSIS &.
ANALYST
TRAP NO. 10 TANK NO.
TANK FINAL ?
n A >U H
PB(2)
h"(3)
T
«n H9
mm Hg - Post-Test Vacuum
urn Hg - Final Pressure
"F
» [PB(2) ' PT(2)1 " [PB(D " PT(lJ
(T +460) X O.E99
[(
) - ( +05 )] - [( 737 ) - (7 30 )]
[(76 ) + 460] X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
5
Backflush
Area
Xt'l
Attn.
fl "•ft70
J?
Std.
Area
/t-f
Attn.
<|u- ^ro
tf
Std. Cone.
(ppm)
50^
Sample cone.
ppm
2>K
PP01 as CO - measured
CPT(3) *
X C
VOC(1)
V 3 )
)]
CVOC(2) " 73O
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X
X (
PP"1 as W - sample
(68°F> 76°
Mn VOC(l) " CVOC(3) X VS " 0-?f? "9 Carbon In Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TUP Amirs is
'.«)
Collection Vessel No. «f
Voluw of Collection Vessel /.OOP liters - V£y
"V^? ^3 • Hg - Initial Vacuum
*CV(2) 3L-^"Q •• Hg - Final Pressure
MASS OF CARBON COLLECTED
CVOC(4) 3-^
, .
VOC{2) ' CVOC(4) X PCV(2) * PCV(1)1
3.467 X
"nvocW*3-3? )x l( *f0 W7^3
. «s
io"4 x vcv1
«TBI5J
3.467 X 10'^ (1.0 CO ) "1
L ( 7y *460) J
*Hn(2)
* (0-I54> )
mg Carton
•g Carbon/liter - *?"* m | /-Vag ) . fl.
AT
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT ;fei*froiMvt
DATE TRAP ANALYSIS fl
/fe/77
PROJECT NO. #3-2-
TEST NO.
TRAP NO.
DATE TANK ANALYSIS / /"*>/ /~7cj
ANALYST OK /fr h
TANK NO.
TANK INITIAL
PB(I) 737 mi Hg
.
nital Vacuum
(Pre-Test)
TANK FINAL *"
PB(2) *^jt ""Hg
_ mm Hg - Post-Test Vacuum
_ mm Hg - Final Pressure
°F
PT(3)
T
SAMPLE VOLUME
. [PB(2) * PT(2)1 " m " PT(lJ
(T + 460) X 0.299
-3.7 ?-
73. f(
_ .
' [( > S ) + 460J X 0.299
Vr " 1.1 ?H sample volume - liters
TANK ANALYSIS
Sample
Loop
t>
Backflush
Area
7.CO
Attn.
a •• ». t:> O
f
Std.
Area
z4^
Attn.
a - * f.'O
() -
Std. Cone.
(ppm)
^-ofi
Sample Cone.
ppm
w
CVOC{1~) ^ ppin as C02 " IBasured
PT(3) * PB(2)1
Lvoc(2) rp.
[PB(2) -
- PT,,0 X CVOC(1)
"TOJ
ppm as C02 - sample
CVOC(2)
CVOC(2) *
MASS OF CARBON IN TANK
^OCO) " CVOC(2) X 4'996 X 10"4 " _0ilii_ mg/1 (68°F, 760 mm Hg)
Mn VOC(l) " CVOC(3) X VS " °'S^ "» Carbon in Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CllENT JJBnjraM*Kjto-fiP,ff BATE TRAP ANALYSIS
WOJECT NO. /Ol'Z BATE TANK ANALYSIS / 7*7
TEST NO. -4RO-&A ANALYST
TANK NO.
//
TRAP NO.
TANK INITIAL
TANK FINAL
.,
Initial Vacuum
(Pre-Test)
SAMPLE VOLUME
**T(3)
T 7j
•» Hg - Post-Test Vacuum
Kg • Final Pressure
F
__
(T + 460} X 0.299
V, •
[( 7$ ) *46pJ X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
303
Attn.
A- .< t'c"'
(7 -_
Std.
Area
Wl
Attn.
n,- .1OCJ
IT
Std. Cone.
(ppm)
S-C>4
,cvoc(n
Sample Cone.
ppm
i&
SOC(I) Z*l P»" >s M2
LPT(3) 4 PB(
P^~£P""^~T|~~i
Dl9\ *T/9«
- Measured
SoC(2) "
MASS OF CARBON IN TANK
CVOC(3) " °VOC(2) X 4'996 X
PP» •* C0 • sample
76° "*
VOC(l) ' SOC(3) X VS
Carbon 1n
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. /
Volume of Collection Vessel I. fr O D liters - Vcy
PB(2) -7FI ^Hg
PCV(1) 7<"/y "" H9 • In1t1al Vacuum '
PCV(2) ^ ^^ *" Hg " F1na1 Pressure
r-
MASS OF CARBON COLLECTED
Cvoc(4) 3l> PPn> »s C02
VOC(2) ' CVOC(4) X [PCV(2) * PCV(1)1
MnVOC(2)
0. "i>5/ mg
MnTBMn(l)+Mn(2)
MnT « / 6/7 mg Carbon
ng Carbon/liter « |j"T "
H?^
mg Carbon/DSCF - mg Carbon/liter X 28.32
3.467 X 10'4 X
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
>&/n!-ne>* VuM*~Cfit BATE TRAP ANALYSIS_J
PWJECT NO./43-2. DATE TANK ANALYSIS J
TEST NO. tftG-frt ANALYST
TANK NO.
Oft /(*
TRAP NO.
TANK INITIAL
TANK FINAL
nUTal Vacuum
(Pre-Test)
SAMPLE VOLUHE
• Hg
***** •» Ng - Post-Test Vacuum
&&«3. MB Hg - Final Pressure
T 75 *F
v . [PB(2) " PT(?)I " [PB(D " PT(1)3
*S (T + 460) X 0.299
o
) - ( ?6 O j]
[( TjT ) 4 460J X 0.299
suple volume - liters
TANK ANALYSIS
Sample
Loop
*•
Backflush
Area
/yj)
Attn.
» " * °°
fl
Std.
Area
Zf7
Attn.
S-~ ,^t>C>
p
Std. Cone.
(ppm)
16-4
Sample Cone.
ppm
l-Tf
LPT(3) 4
c
CVOC(1)
SfOC(2)
SfOC(2) '
- [(757 H
is
MASS OF CARBON IN TANK
Cyoc(2) X 4.996 X 10"4 • 0.305" maf} (68"F, 760
¥OC{1) " X V " A_£fc2L"9 Carbon 1n Tank
mmHg)
X VS "
over
POLLUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT >femrrBn.Ve %Wp -EPfi DATE TRAP ANALYSIS
PROJECT NO. tiS-i, DATE TANK ANALYSIS*"^"/?/
TEST NO.
TANK INITIAL
ANALYST
TRAP NO. 5"2- TANK NO. ££
TANK FINAL
I (?H
1*8(1) 737 «ro Hg
"" Hg
PB(2)
Hg
nltial Vacuum
(Pre-Test)
PT(2) _iif?L_ Inm H9 ' Post-Test Vacuum
PT(3) _ii£__lim Hg - Final Pressure
T 75" °F
SAMPLE VOLUME
" PT(2)1 * [PB(D ' PT(lJ
(T +460} X 0.299
[(
) 4 460] X 0.299
Vs - a.ar"7 sample volume - liters
TANK ANALYSIS
Sample
Loop
A
./
Backflush
Area
l*H
Attn.
•i ' 5 0 O
0
Std.
Area
\b?>
Attn.
o. • 6 00
3
Std. Cone.
(ppm)
zoi
ccvocn;
Sample Cone.
ppm
/3fT
CVOC(1)
ppm as C02 " measured
r LPT(3) * PB(2)1
CVOC(2) [PB(2, .PT
VOC(1)
CVOC(2) *
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996
Mn VOC(l) ' CVOC(3) X VS "
- [
(737
as
(68°F, 760 nn Hg)
Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE. INC.
-------
TIAP AMLYS1S
Collection Vessel No.
Voluae of Collection Vessel i.Qtsr> liters - V£y
Vacuum
PCV(2) 3Lf < » Hg - Final Pressure
MUSS OF CARBON COLLECTED
,
VOC(2) ' CVOC(4) X FCV(2) * PCV{1)
1 VOC(2)
t 1
[J-fb M75-> J
Vcv I
3.467 X 10' ( /
( 75- * 460)
Carbon
•g Carbon/liter - -"2L. • {^?^ I • /)
" I*/. 3. 7.^ )
jy
•g Carbon/DSCF • *g Carbon/liter X 28.32
SPIFNCF INP
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT HO.
DATE TRAP ANALYSIS,
DATE TANK ANALYSIS,
ANALYST
TEST NO. 'igZ-//? ANALYST Qfj/f, /-I
TRAP NO. Z(e TANK NO. 3?
TANK INITIAL
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
Hg
Hg
TANK FINAL
PB(2)
PT(2)
PT(3)
T
«i" Hg
ran Hg - Post-Test Vacuum
mm Hg - Final Pressure
°F
V - CPB(2) " PT(2)1 • PB(1) ' PT(1l3
*S (T +460) X 0.299
)-(
)] -
)-( 7.5-7
[( -7(y ) 4 460J X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
3
Backflush
Area
43%
Attn.
a -5"0O
17
Std.
Area
yfeer
Attn.
a. "• 5 oo
0
Std. Cone.
(ppm)
ft 0
CVOC(11
as C02 " ™easured
PB(2)1
°C(2)
^VOC(2) B
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X
\ VOC(l) " CVOC(3) X VS * -
»s C02 - sample
- M7.T7
X { 5
(68°F, 760 mm Hg)
""9 Carbon In Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CUENT de*tr*Ue PuflgR-a* PATE TRAP ANALYSIS
PROJECT NO. VP3-2> DATE TANK ANALYSIS ft / /7f
TEST NO. ARI- iM ANALYST M //: d
TANK NO.
TRAP NO.
TANK INITIAL
751 m Hg
Initial Vacuum
(Pra-Test)
TANK FINAL
*B(2) 74* m Hg
I*T(2) ^7Z- •" Hg - Post-Test Vacuum
^T(3) *-5'^ •• Hg - Final Pressure
T ~
SAMPLE VOLUME
" P
T(Z
WS (T + 460) X 0.299
[( 7*V
Sample cone.
DPtn
tO1-!
PP» «s C02 - BKasured
T(3
r
M
Soc(2) "
J]
ppn as C02 • Maple
MASS OF CARBON IN TANK
x 10
"4
(68"Ft 7M iin Hg)
•V, WC(1) '
1n
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. t,
Volume of Collection Vessel / PoO liters - Vcv
PB(2) 151 """9
PCV(1) ^ ^ ""' Hg " In1t1al v«cuum
Prv(2) 3-5 £~ mi Hg - Final Pressure
7-
MASS OF CARBON COLLECTED
CVOC(4) )"3>35? ppm as
r f 3. 467 X 10'^ X VCV]
Mn VOC(2) " CVOC(4) X PCV(2) * PCV(1) [_ T("FJ+ 460 J
r . -il 3.467 X IP"4 ( / -OOP ) I
- J
( 75- +460)
Mn{2) • {.7?f -9
MnTeMn(l)+Mn(2)
MnT • J'i.cfQ mg Carbon
mg Carbon/11 ter « [|nT • (/3.9C* ) .
V$v l*.*i-s )
mg Carbon/DSCF • mg Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
HHUECT NO. /»>-»•
-C* BATE TRAP ANALYSIS 3-
TEST NO. /3?T -lg
DATE TANK ANALYSIS 3L
ANALYST
'
TANK INITIAL
TRAP NO. /9 TANK NO. 33
TANK FINAL "
« «9 '8(2) _Z
Initial Vacuum
(Pit-Test)
SAMPLE VOLUME
£/3| •« Hg - Post-Test Vacuum
*< 3» «B Hg - Final Pressure
T ?fc 'F
. fPB(2) " PT(2JI " fBCD ' PT
'• (1 * 460) X 0.299
Vc "
0 ?
[( 74» ) + 460J X 0.299
r^ 1. sample volume - liters
TANK ANALYSIS
Sample
Loop
r—
5-
Backflush
Area
f tL.
>iD
Attn.
/u* ''TOd
U
4 e>i ID
Std.
Area
/fc.t{
/3/
. Attn.
<.-^on
-^^
Std. Cone.
^ o*/
2.1H
Sample Cone.
ppnt
5-^? 7
V9«
Cwnrn l -<•*> PP" •« ^ ' "MSurtd ^ s "**" »*> 5" *' 3
LPT(3) * PB(2)I
c
VOC{1)
.
U)
H
* M"p1e
MASS OF CARBON IN TANK
Soc(j) " ^00(2) x 4-"6
*V VOC(l) * CVOC(3) X VS
10"
"9
M75V Jj
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT /fed
PROJECT NO.
fisrfo^c 'kin
TEST NO. AKf-lS
TANK INITIAL
PT(1) , 7^
TRAP NO.
mm Hg
mm Hg
11 Initial Vacuum
(Pre-Test)
JSFP-fWDATE TRAP
DATE TANK
ANALYST
/? TANK NO
TANK FINAL
Pp{9) 7^4?
PT(3J ?<52.
T 7f^
ANALYSIS
ANALYSIS
. 29
ran Hg
mm Hg -
mm Hg -
°F
3^///77
/)/? //J /-/'
Post-Test Vacuum
Final Pressure
SAMPLE VOLUME
„ . [PB(2) " PT(2)1 "
¥S (T +460} X 0.29
)J -
F
[( .' fc ) + 460J X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
6
Backflush
Area
3TH
Attn.
•i ~ ^'OO
j
Std.
Area
n<\
Attn.
^i •'•VOO
d
Std. Cone.
(ppm)
3i o-l
Sample Cone.
ppm
5t; (-
CVOC{1)
VOC(2)
_ ppm as C02 - measured
T(3) * PB(2)I
- P
T(1J
CVOC(2) "
as C02 - sample
MASS OF CARBON IN TANK
"4
CVOC(3) * CVOC(2) X 4'996 X 10" " -^
Mn VOC(l) " CVOC(3) X VS " /-c" ^ "^ Carbon 1n Tank
(68'F. 760 mm Hg)
over
POLLUTION CONTROL SCIENCE. INC.
-------
TKAP AHMTS1S
Collection Visstl No. b
VolMt of Colltctlon Vtssel /.ftpQ liters - YCV
•• Hg - Fliwl Pressure
OF CARBON COLLECTED
•s C02
.
_
~ - .«D/ » m (I.D0& ) I
( -7 6 * 460) J
Carbon
•9 Carbon/liter • *T •
•9 Carbon/OSCF • *g Carbon/liter X 28.32
DILUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO. dP3->-
TEST NO.
DATE TRAP ANALYSIS
TRAP NO. 23
DATE TANK ANALYSIS f /3 / /7 cl
ANALYST
TANK NO. 4t
TANK INITIAL
TANK FINAL
PB(1)
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
Hg
PT(3)
T
««n "9
mi Hg - Post-Test Vacuum
ran Hg - Final Pressure
°F
- [PB(2) ' PT(2)1 " [PB(D " PT(lJ
(T +460) X 0.299
- -
[( 7& ) + 46QJ X 0.299
Vj « 3 . o o
t : $ oc>
Std.
Area
:^nt^
\ '/H
Attn.
J " 5 r°
A • f'l>O
Std. Cone.
(ppm)
^.oH-
^cy
Sample cone.
ppm
f.-7'l
I-T^
x- ' i/ fl / -» *
ctfnrn~l _!i?~L>, ..,.„ PP"1 as co? ' measured <*>> <• '?
U~^o
r
SfOC(2)
LPT(3) * PB(2)1
- r
CyQQ/2\ * /4 (.. i ppm as CO. - sample
MASS OF CARBON IN TANK
CVOC(3) ' CVOC(2) * 4'996 * 10~4 ' -«
°Ff 76° Im
Mn VOC(l) ' CVOC(3) * VS " ? W* m* Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
aiENT
PROJECT HO.
IEST HO.
mMet •&* MTE TRAP ANALYSIS
TRAP HO.
BATE TANK ANALYSIS JL /
ANALYST
TANK HO.
TANK INITIAL
TANK FINAL
-757 »Hg
Initial Vacuum
(Pre-Test)
PT(2)
•B Hg - Post-Test Vacuum
•n Hg - Final Pressure
•F
SAMPLE VOLUME
' P
T(2
J
(T
) X
0
[( 7fc ) 4460J X 0.299
swple volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
•73t
Attn.
^, - 3* c/
t/
Std.
Area
/?>0
Attn.
c-3^0
c^
Std. Cone.
(ppm)
2r-/
Sample cone.
ppm
/ / .6" <"
ppm as C02 - Measured
•
CPT(3) * *
r
VOCO)
t. -
CyoC(2) "
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) * 4'996 X
- SOC(3) X VS •
f
M7.T7 3
ppm as C02 - sample
Cftrbon 1n
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. S
Volume of Collection Vessel f.Do o liters -
PB(2) ~T—
PryM) "^ *^k "*" H9 ' Initial Vacuum
Pruf2) 3-b~7 •" Hg - Final Pressure
T--WF
MASS OF CARBON COLLECTED
as C00
M67 X 10"* X JfcyJ
VOC(2) ' CVOC(4) X [PCV(2) * PCV(1)| |_ Tl'FJ* 460
^ _ J _l 1 Jl£T V 1A*" / / *-.*~ /-^ X j
MnVoc{2) ' <^.a»> x - _ ( + 46£))
r4
w
3.467 X 10"* ( /.,
"n(2)
» Mn,. . + Mn,_\
Big Carbon
ng Carbon/liter • *!"T " | if.lt> \
»sv t >t7< r
mg Carbon/DSCF « mg Carbon/liter X 28.32
POLLUTION CONTROL SCIFNCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT _
PROJECT NO. 103-1-
BATE TRAP ANALYSIS
IESTNO. xfer-z-B
TRAP NO.
TANK INITIAL
P»M) -7/42. • Ho
BATE TANK ANALYSIS ^
ANALYST nA
TANK NO. 43
nitial Vacuum
(Pre-Tcst)
TANK FINAL /5f~
P»(») 7V fl •Ho
•» Kg - Post-Test Vacuum
_"" Hfl - M»«l Pressure
T ?^, "F
SAMPLE VOLUME
v . fPB(2) ' FT(2JI ' JPB(1) " PT(lJ
WS (T + 460) X O.Z99
[( 7*9 )-(37lL
) - (
J]
[( 7t ) + 46p] X 0.299
swaple volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
3 x P
Attn.
« - 3^O
d
Std.
Area
'/«?
Attn.
a- 3 *?0
i/
Std. Cone.
(ppm)
1 C'f
SampTd Cone.
ppm
5.6 ii
PP»
sured
CPT(3) * PB(2)I
CW -
)]
H
ppo as C02 - sample
MASS OF CARBON IN TANK
4-996 x 10"4 *
*B/I (6B°Ft 76° •"
VOC(l) "
Carbon 1n
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT A^srtMe &**>
PROJECT NO. /«3-t-
DATE TRAP ANALYSIS
TEST NO. ARZ-2,R
DATE TANK ANALYSIS £ // /"?
ANALYST
/) fl
TANK INITIAL
PB(1)
nltial Vacuum
(Pre-Test)
SAMPLE VOLUME
TRAP NO. ;& TANK NO.
TANK FINAL
n Hg PB(2)
Hg PT(2)
/-
Hg
** / urn Hg - Post-Test Vacuum
2. ^"7 Bini H9 ' f^nal Pressure
76 »F
[PB(2) "_PT(2Ji ' LPB(1) " PT(lJ
(T * 460) X 0.299
) - ( 36 / )J - [(
V- « 3.
- .
[( 7 ^ ) + 460J X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
IT
Backflush
Area
f^=- Slf
0
Attn.
-• 35O
J
Std.
Area
i*~)
Attn.
CL • >5 O
y
Std. Cone.
(ppm)
ar-«/
Sample cone.
ppm
f -«y
CVOC(1)
PP"1 as
LT(3) *
VOC(2)
CVOC(2) *
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X 1
Mn VOC(l) " CVOC(3) X VS * *-
T
( 367 )J -
ppm as C02 - sample
(68°F, 760 mm Hg)
"9 Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE. INC.
-------
HUP
^Collection Vessel No. "5
VolMe of Collection Vessel X t9od liters • Vcv
_e»Hg
"W3 • Mg - Initial Vacuum
^7^ • Mg - Final Pressure
MASS OF CARBON COLLECTED
•%-• r / •> _
t . f 3-^7 X 10'4 X VCy I
VOC(2> ' ^00(4) X fcv(2) * PCV{1)| L 1('f)r 46° \ n
T "I' 3.467 X IP'4 ( t.CQO ) 1
J
t.CQO
*460)
• 2'O.H-J my Carton
•g Carton/liter - *IL • L2M2-L
v$v i */ 7n r
•g Carbon/DSCF • mg Carbon/liter X 28.32
POUUnON CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO./B3-2.
-SPA DATE TRAP ANALYSIS
TEST NO. AKT-:
TANK INITIAL
TRAP NO.
Hg
DATE TANK ANALYSIS *L/1
ANALYST
TANK NO. 28
TANK FINAL
PB(2)
PT(I) . ?.ff7 mm Hg
1 Initial Vacuum
(Pre-Test)
71
mi Hg
urn Hg - Post-Test Vacuum
""" H9 " F9 Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
A»my*%d* f*Mct> .EH BATE TRAP ANALYSIS
PROJECT NO. J63-2.
TEST NO.
DATE TANK ANALYSIS 3.
ANALYST
TANK INITIAL
TRAP NO. /? TANK NO.
TANK FINAL
nltlal Vacuum
(Pre-Test)
SAMPLE VOLUME
• Hg
*T(2)
T(3
T
.MI Hg
•a Hg - Post-Test Vacuum
•K Hg - Final Pressure
. fPB(2) '_PT(?ii " fPB(D ' PT(lJ
(T + 460) X 0.299
f(
) - ( -7/7 )]
5 [( 7t>) +460J X 0.299
"5 * 3.1^7 sample volume - liters
TANK ANALYSIS
Sample
Loop
£"
Backflush
Area
tc-tilH
V
Attn.
1 - -4$~O
d
Std.
Area
;i3
Attn.
Q •= ^5"C>
y
Std. Cone.
(ppm)
2 0*4
i
Sampld tone.
ppm
T3C,
" •ea$ur*d
[( *
(
CL/3 )] - [(7*2 )-(^'7 )]
ppn as CO. - sample
^00(2) "
MASS OF CARBON IN TANK
°VOC(2) * 4-"6 X
VOC(l) "
. over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP
ANALYSIS^ **
Collection Vessel No. CL,
Volune of Collection Vessel I.QoO liters - Vcy
"" Hg
PCV(1) ~!Lf- m H9 ' Initial Vacuum
Pry(2) **-£^ mi Hg - Final Pressure
MASS OF CARBON COLLECTED
CVQC(4) ytj, ^ //r"^ ppm as C02
f f 3-467 X IP'4 X VCV1
Mn VOC(2) " CVOC{4) X IPCV(2) * PCV(1)| |_ TI-FJ+ 460 J
- '4 ( /.rco ) 1
;460) - LJ
3.467 X TO'4
Mn^ « Mn,. . + "n/?)
Mny - ( *.c/^ ) + (f 1& )
MnT " l^-Sb nig Carbon
mg Carbon/liter - ""T - ( /?.&> ) .
^ TT5*7 r
mg Carbon/DSCF « mg Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
KA SAMPLE ANALYTICAL SHEET
CLIENT
HOJECT NO. >P?-7.
1ESTNO.
WtK INITIAL
TRAP NO.
.MHg
DATE TRAP ANALYSIS.
DATE TANK ANALYSIS.
ANALYST •
TANK NO.
,.
nital Vacuum
(Pre-Test)
SAMPLE VOLUME
TANK FINAL
TYR mto
» Hg - Post-Test Vacuum
•• Hg - Final Pressure
T 7(> *F
. ^B(2) T-PT(?L ! J Pgj^ "PT
(T + 460) I 0.299
7V* ) - ( ?.•».<• fl -
V$ »
[( 74, ) * 460] X 0.299
sanple volume - liters
TANK ANALYSIS
Sample
Loop
f
Bacfcflush
Area
^tf
Attn.
*'55n
J
Std.
Area
/£.«»
Attn.
a-s3»'0
l>
Std. Cone.
(ppm)
^'JLOLt
W
Sample Cone.
ppm
IJI~*
PP» •* C0 - •easured
r LT(3)
^00(2) FB2>
LPT(3) 4 PB(2)1
[FB(2)T(2fB(l)-pT(lj
PP« •$ C0 - sample
MASS OF CARBON IN TANK
4-996 x 10
"4
VOC(l)
Carbon 1n
•, 760 m Hg)
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. 5
Volume of Collection Vessel /.Pop liters - Vcy
PB(2) 75 ^ mm Hg
PCV(1) "7^"* ma Hg - Initial Vacuum
Pry/?) £l*/y «n Hg - Final Pressure
MASS OF CARBON COLLECTED
CVOC(4) /*"? ?** PP*«*C02
, 3.467 X 10 - X VCV
VOC(2) ' CVOC(4) X [PCV(2) * PCV(1)J
M"VOC(2)
3.467 X 10'
-CCO
• Mn,.. + Mn,_.
// */D mg Carbon
ng Carbon/liter - (!nT • ( //•'rO )
v * S-o/ J
sv
mg Carbon/DSCF • mg Carbon/Hter X 28.32
POLLUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO./B-2.
TEST NO.
TRAP NO.
DATE TRAP ANALYSIS.
DATE TANK ANALYSIS.
ANALYST
TANK NO. _52__
J // /7 9
fa H
TANK INITIAL
TANK FINAL
Ho
*0) . 7^ •" ""
11Initial Vacuum
(Pre-Test)
SAMPLE VOLUME
^(2) 3c"/ • H9 - Post-Test Vacuum
PJ^J) a*/t| m Hg - Final Pressure
T -?£ *F
- km-'TdJ
_ _
JT + 460) X 0.299
- f(
* [( 7t, ) + 46pJ X 0.299
Vs • 3.*>-7/ sample volume - liters
TANK ANALYSIS
Sample
Loop
r
Backflush
Area
3?4
Attn.
q - 3 y o
u
Std.
Area
/!>|
Attn.
rv = ? 5" r)
^7
Std. Cone.
(ppni)
^ » */
Sampld Cone.
DPfli
^74
" •Msured
SOC(2) "
pp« «s C02 - sample
MASS OF CARBON IN TANK
4'996
76°
wed) •
Urbon 1n
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT NO.
TEST NO. xter-»w
-EPA DATE TRAP ANALYSIS
DATE TANK ANALYSIS .g // /7 Hg
mm Hg - Post-Test Vacuum
mt Hg - Final Pressure
T It) "F
PB(2)
PT(2) •'^
. tPB(2) ' PT(2JI " [PB(D " PT(1J]
(T + 460) X 0.299
)J -
- . -
[( 7 ^- ) + 460J X 0.299
3 . j>5 CL sample volume - liters
TANK ANALYSIS
Sampl e
Loop
S~
Backflush
Area
*£?:L
Attn.
4 •- 3.0 O
•• .7
V
Std.
Area
J3.4
Attn.
* - ~~'? O
tf
Std. Cone.
(ppm)
&C><-\
ccvocni
Sample Cone.
ppm
/ / r> ~->
CV\)C(1")
VOC(2)
as C0 " measured
LPT(3) * PB(2)I
VOC(1)
Cyo .
L(-7'/3 )-O'/ )J - ( 7
Soc(2) * ^-5 3C-. ppm as C0» - sample
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X 10~4 " '• ft *°n mq/1 (68°Ff 76° "" Hg)
"n VOC(l) ' CVOC(3) X VS "
Carbon 1n Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
PROJECT NO. /03- X.
TEST NO.
TANK INITIAL
*BfD_
BATE TRAP ANALYSIS.
DATE TANK ANALYSIS.
ANALYST
TRAP NO. *.f TANK NO. 4/f
TANK FINAL 2"
DC
(Pre-Test)
SAMPLE VOLUME
• Ng - Post-Test Vacuum
•• Hg - Final Pressure
. tPB(2) "_PT(?) " 1PBO) " PT(1
S (T + 460) X 0.299
- ft "7
- - - .
[( 76 ) + 460| X 0.299
VS ' *-*>~n ««np1e volume - liters
TANK ANALYSIS
Sample
Loop
r
Backflush
Area
•>io_
Attn.
£i •• > C" P
c^
Std.
Area
i-^H
Attn.
a - 3*,r>
V
Std. Cone.
(ppm)
2-O^
Sample Cone.
ppcn
/ar.t
PP" •« C02 - Measured
LPT(3) * PB(2)I
)]
)] - [(737 M
^00(2) " HG PP" •*
MASS OF CARBON IN TANK
" cvoc(2) x 4-996 x 10"4 " JLilL— "9'1 (M"F» 76° •"
VOC(l) " X V * "3 73V>M Carbon 1n Tank
X VS * "3
over
POLLUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel No. 3.
Volume of Collection Vessel ).QOD liters -
PCV(1) 7^.1? an Hg - Initial Vacuum
PCV(2) ^ 5/ nn Hg - Final Pressure
'"
MASS OF CARBON COLLECTED
CVOC{4) /Q i M ppm as C02
.
VOC(2) " CVOC{4) X PCV(2) * PCV(1)| [ T("FL*
3.467 X IP'4 X VCy
M
3. 467 X IP"4 ( /.
nyoc{2) l"V*ft' ' * [v ^^ ' IV 7 pi7 JL ( 7iT + 460)
Mn(2) ' -
Mn
_ » ^n/i \ * "n/o\
MnT " !1- %Cl "9 Carbon
ng Carbon/liter - j*"T - ( 13.91 \
v tr. 32S^ )
sv
ng Carbon/DSCF • ng Carbon/liter X 28.32
F inr
-------
TCA SAMPLE ANALYTICAL SHEET
ttlENT >ltJHSTtfliAC--gP>4 BATE WAP ANALYSIS f) li
HKWECT NO. \0&- 2* BATE TANK ANALYSIS SL // /7 ?'
TEST NO. AKT-Jff ANALYST pt(/+t1
TRAP »• 31 TANK NO. V?
TANK INITIAL TANK FINAL ^"^
737 • Hg PB(?} 1W-V m Ho
^(2) ^^ •» Hg - Post-Test Vacuum
•B Hg - Final
•F
nUial Vaciiun
(Pre-Test)
SAMPLE VOLUME
" PBM) ' PT(l
J
(T * 460) X 0.299
- [C737
)J
[( 76 ) *46pJ X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
5"
Backflush
Area
•if*,
Attn.
Q-'-SSP
V
Std.
Area
•iD
Attn.
a.- 350
V
Std. Cone.
(ppm)
Z-C'-i
Sample Cone.
Opm
770
°VOC(2) "
" •6asured
. [(737 H^SO
M7?P
CVOC(2) " ^
MASS OF CARBON IN TANK
X 4.996 X 10"4 • / f 3*1 M/l <6BeF. 760 m Hg)
I$ C02 *
voc(i) "
over
POLIUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT /hMSTft0riG--£F
PROJECT NO. |03~ 2*
TEST NO. >Jf?r-«4F
TRAP NO.
TANK INITIAL
PBM) "737 •» HQ
PT(n 730 "nHg
"initial Vacuum
(Pre-Test)
SAMPLE VOLUME
v - [PB(2) ' PT(2)1 ' [PB(1
# DATE TRAP
DATE TANK
ANALYST
3( TANK NO
TANK FINAL
Pp(?) fit
Py(2) 35"5U
PT/3) ir7
T 7fc
•^
ANALYSIS
ANALYSIS
•n Hg
•m Hg - Post-1
•m Hg - Final
•F
rest Vacuum
Pressure
'S (T + 460) X 0.299
[( ?Y3 ) - ( 352 fl - [( 7*7 ) - ( 750 j]
[( 7^, ) + 460J X 0.299
« ^.3 *7fc sample volume - liters
TANK ANALYSIS ^^^\.f^i ln^+^ -
VOC(2) r -I r
CVOC(2) * PP"1 as c^2 " samPle
MASS OF CARBON IN TANK
CVOC(3) ' CVOC(2) X 4-996 X 10~4 "*" <<*°f> H0
Mn VOC(l) ' CVOC(3) X VS ' ** Carbon 1n Tank
nn Hg)
over
POLLUTION CONTROL SCIENCE, INC.
-------
TKAPAMITSIS
Collection Vassal No. /
Valuta of Collection Vessel ftgg liters • Vcy
m Hg - Initial Vacuun
*CV(2) 3,/ a» Mg - Final Pressure
OF CARBON COLLECTED
SoC(4) fi
3.467 X 10"4X Vcv|
TfF.*460 J
3
, .
WC(2) ' ^(4) X PCV(2) * PCV{1)| . _
- .467 X IP'4 (^.gyS" ) 1
(r *460) J
MC(2)
"9 Carbon
•g Carbon/liter - *"T • ( /P .>"> ) - 3.
v I *.*«?'
$v
•g Carbon/DSCF • ag Carbon/liter X 28.32
wr
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT /WrfOA* Ptttegp -fPH DATE TRAP ANALYSIS Si
PROJECT NO./fr?-2- DATE TANK ANALYSIS a. A. /7 ?
TEST NO. /fa.-?£& ANALYST 7 Ofi/C-H
TRAP NO. 2- TANK NO.
TANK INITIAL
PB(1) 737 m Hg
, ,
nitial Vacuum
(Pre-Test)
SAMPLE VOLUME
TANK FINAL ^
PB(2) 7V"^ inn Hg
Pf(2\ *fc?O MB Hg - Post-Test Vacuum
PT(3) A"7/ wn Hg - Final Pressure
T 1.& °F
u . [PB(2) ' PT(2)1 ' LPB(1) ' PT(lJ
VS (T +460) X 0.299
46pJ X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
i—
Backflush
Area
f1^>
Attn.
d- - 3SO
T
Std.
Area
2.6 k
Attn.
rt - 3-< O
^
Std. Cone.
(ppm)
^ O'-/
ccvocn;
SampT£ Cone.
ppm
54^
CVOC(1)
rc ppm as C02 " Ineasured
LPT(3) * PB(2)1
., r
W>
CVOC(2) * /5"1^ ppm as C02 - sample
MASS OF CARBON IN TANK
CVOC(3) " CVOC(2) X 4'996 X 10"4
mg/1 (68°F, 760 m Hg)
VOC(l) " CVOC(3) X VS " -L2J-2— m9 Carbon In Tank
over
POLLUTION CONTROL SCIENCE, INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT 4t*ilrPo«s R*B*-fPA HATE WAP ANALYSIS
«OJECT m.JI>3'*. DATE TANK ANALYSIS ^ A /yf
TEST NO. ART-SB ANALYST
TRAP NO. Z> TANK NO.
TANK INITIAL
•737 mHa
TANK FINAL
l»Ttn .
% Initial Vacuum
(Prc-Test)
SAMPLE VOLUME
•• Hg - Post-Test Vacuum
3Y*/ M Hg - Final Pressure
• tPB(2) "_PT(2J_ ' [PB(D 'PT
(T + 460) X 0.299
- f( 737
- .
[( 75" ) + 460J X 0.299
sample volume - liters
TANK ANALYSIS
Sample
Loop
5~
Backflush
Area
tVT-
Attn.
6^'AfO
3
Std.
Area
3L3.?
Attn.
<. - 3*0
V
Std. Cone.
(PPm)
ary
1
SampU Cone.
ppni
M2^
•$
sured
r
SfOC(2)
r . -
CVOC(2)
LPT(3) 4 PB(2)I
M 3
MASS OF CARBON IN TANK
voc(i)
aH/1 (68*Ft 76° "" H9)
in
over
POUUTION CONTROL SCIENCE, INC.
-------
TRAP ANALYSIS
Collection Vessel Ho. J
Volume of Collection Vessel o gt3> liters - Vcy
PCV(1) T^\ m H9 • In1t1al
PCV(2) 3- (-•& •*" Hg - Final Pressure
MASS OF CARBON COLLECTED
CVOC(4)
r i .
VOC(2) " CVOC(4) X PCV(2) +PCV(1)| |_ T("F
I _ J —
3.467 X 1Q'4 X
J+460
M"VOC(2) " (tyQc-d
Hn(2) « lf.tr «9
Mn_ » Mn,. . + Mn,.\
MnT « l.y- ) "I
_ ( 7 V + 460) J
POLLUTION CONTROL SCIENCE. INC.
-------
TCA SAMPLE ANALYTICAL SHEET
CLIENT
PROJECT IP.
TEST NO.
BATE TRAP ANALYSIS ft
BATE TANK ANALYSIS
ANALYST
flfi /£, hi
TANK INITIAL
nitial Vacuun
(Pre-Ttst)
SAMPLE VOLUHE
TRAP NO. 4lt TANK NO.
TANK FINAL
• Mg P«(>) -j«
-------
TCA SAMPLE ANALYTICAL SHEET
TEST NO. ARC-31
CLIENT jfemrnote Engage -effi DATE TRAP ANALYSIS
PROJECT NO./P3-Z _ _____ WTE TANK ANALYSIS a. A A?
__ __ ANALYST
TRAP NO. id TANK NO. 6/
0A/6 U
TANK INITIAL
-737
PT/,» 72? a
1 initial Vacuum
(Pre-Test)
TANK FINAL
PB(2)
Pf(2\
?T(3) "
T
/$
«m Hg
mm Hg - Post-Test Vacuum
nn H9 ' fina' Pressure
°F
SAMPLE VOLUME
• PT(2)1 '
(T +460) X 0.299
4 )-( 365" )J -
- -
[( "75" ) + 460] X 0.299
V$ • 3.3'A/ sample volume - liters
TANK ANALYSIS
Sample
Loop
JT
Backflush
Area
-------
WWU.YSIS
Collection Vtssel Ho.
VolUM of Colltctlon Vtsstl /.Qo O liters - Vcy
•* - Inltitl Vacuun
•• "9
WSS OF CARBON COLLECTED
WC(2) " SfOC(4) * [CV(2) * PCV(1)
3.467 X 10"^ X Vcy]
^K! 4 A f^ W ^ A*"
.•9
""r ' ""(i) * ""(2)
(a MO) + (n.5"/>
<*?• T(j »9 Carbon
•g Carton/liter - -f!L. • ( /? ^O ) - Jfj/£
' *T'Vt5 '
$V
•g C*rbon/DSCF • ag Carbon/liter X 28.32
POLLUTION CONTROL SCIENCE, INC.
-------
APPENDIX D
HYDROCARBON ANALYZER (FID)
DATA REDUCTION TRS-80
MINICOMPUTER
-------
Day 1
1 of 4
{CARBON ADSORBER EFFICIENCIES I
RRHSTRONC RUBBER COMPANY
EASTERN DIVISION
NEST HflVEN, CONNET1CUTT
fPBTE: 1/23/791
FID HVDROCARBON ANALYSIS
INLET SCALE FACTOR X25888
OUTLET SCALE FACTOR X3888
CONCENTRATION
CHART DIVISIONS
REF t
1
2
3
4
5
6
7
8
9
ie
11
12
13
14
15
16
17
18
19
28
a
22
23
24
25
26
27
28
29
36
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
TIME
1245
1246
1247
1248
1249
1258
1251
1252
1253
1254
1255
1256
1257
1258
1259
1386
1301
1362
1383
1384
1385
1386
1387
1388
1389
1318
1311
1312
1313
1314
1315
1316
1317
1318
1319
1328
1321
1322
1323
1324
1325
1326
1327
1328
1329
1338
INLET
27
27
27
27
61.5
65
63
65
38
27
25
25
24
23
23.5
23
23
22.5
68
62
68
68
52
57
68
35
35
25
23
23
22
22
a
a
a
a
28
28
58
67
69
73
72
38
25
23
OUTLET
4Z5
41
48
39
38.5
38.5
39
48.5
42
42.5
42.5
41.5
48.5
39.5
39
38.5
38
37.5
36.5
36
36
36.5
37
38
39
48
41
41.5
41.5
48.5
39.5
38.5
37/5
36
35
34.5
33.5
33
32
32
32.5
33.5
35
35.5
36.5
36.5
» (ppn ts CO
INLET
6758
6758
6758
6758
15375
16258
15758
16258
7588
6758
6258
6258
6888
5758
5875
5758
5758
5625
15888
15588
15888
15888
13888
14258
15888
8758
8758
6258
5758
5758
5588
5588
5258
5258
5258
5258
5880
5888
14588
16758
17258
18258
18888
7588
6258
5758
OUTLET
1275
1238
1288
1178
1155
1155
1178
ias
1268
1275
1275
1245
1215
1185
1178
1155
1148
1125
1895
1888
1888
1895
me
1148
1178
1288
1238
1245
1245
1215
1185
1155
1125
1888
1858
1835
1885
998
968
968
975
1885
1858
1865
1895
1895
ADSORBING
EFFICIENCV
81.1111
817778
82. 2222
82.6667
92. 4878
92.8923
92. 5714
92.5231
83.2
811111
79.6
88.88
79.75
79. 3913
88.8851
79.9131
68. 1739
88
92.7
93.8323
92.8
92.7
91.4616
92
92.2
86.2857
85.9429
88.86
78.3478
78.8696
78.4546
79
78.5714
79.4286
ee
88.2857
79.9
88.2
93. 3793
94.2687
94. 3478
94. 4932
94.1667
85.8
82.48
68.9565
-------
47 1331
46 1332
49 1333
98 1334
SI 1335
52 1336
S3 133?
S4 1338
99 1339
96 1346
87 1341
SB 1342
99 1343
CB 1344
61 1345
62 1346
€3 1347
64 1348
65 1349
66 1356
67 1351
68 1352
69 1353
78 1354
71 1355
72 1356
73 1357
74 1358
75 1359
76 i4ee
77 1461
78 1402
79 1403
88 1404
81 1405
82 1406
83 1407
84 1408
85 1409
86 1410
87 1411
88 1412
89 1413
98 1414
91 1415
92 1416
93 1417
94 1418
95 1419
96 1420
97 1421
98 1422
99 1423
180 1424
181 1425
182 1426
183 1427
184 1428
185 1429
186 1430
22
21
22
68
78
75
75
76
74
75
75
73
71
80
75
76
77
78
77
75
88
79
78
77
83
88
85
82
83
82
82.5
78
74
70
25
22
20
62
40
2*
25
33
34
28
19
17
20
22
18
16
16
14
13
13
27
26
35
68
66
68
15
34
33 5
33
32
32
32 -
33
34
35
37
38
39
40.5
42
43
44
45
46
47
48
49
56
51
56.5
666.66
54
76
45
36.5
31
28
25.5
24
23
21
26.5
26
28.5
28.5
26
19.5
19.5
19.5
19.5
19
19
18.5
18.5
18.5
18
18
17.5
17.5
17.5
17.5
17.5
17.5
18
19.5
9986
9256
9588
15000
17986
18758
18756
19806
18500
18758
18750
18250
17756
OWW%AA
CMWU
18750
19006
19250
19500
19250
18756
OfMkACi
mXfoWQ
19750
19500
19256
28750
9OOCkfl
mx^ytyo
21256
28506
26758
28566
20625
19506
18506
17566
6250
5566
5860
15500
18800
6006
6250
8250
8500
5806
4750
4250
5860
5566
4500
4006
4060
3566
3250
3256
6756
7000
6756
15000
16500
17000
1050 .
1828
1885
998
966
968
966
998
1820
1850
me
1140
1170
1215
1260
1290
1320
1350
1380
1410
1440
1470
1506
1530
1515
19999.6
1626
2100
1350
1095
930
840
765
720
690
630
615
666
615
615
606
585
585
585
585
570
570
555
555
555
540
540
525
525
525
525
525
525
540
585
Day 1
2 of 4
68.9891
68.5714
61.7273
93.4
94.5143
94.88
94.88
94.7895
94.4865
94.4
94.88
93. 7534
93.4885
93.925
93.28
93. 2185
93. 1429
93. 0769
92. 8312
92.48
92.8
92.557
92.3077
92.8519
92.6988
9. 96894E-04
92. 3765
89.7561
93.494
94.6585
95.490S
95. 6922
95.8649
95.8857
88.96
88.5455
87.7
96.129
93.65
89.75
90.4
92.9091
93. 1177
88.3
87.6842
86.5882
88.6
89.9091
87.6667
66.125
86.5
84. 5714
83.8462
83. 8462
32.2222
92.5
94
96.5
96.7273
96.5588
-------
Off
i0e
189
tie
in
112
113
114
115
116
117
118
119
126
121
122
123
124
125
126
127
126
129
130
131
132
133
134
135
136
137
138
139
146
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1458
1451
1452
1453
1454
1455
1456
1457
1458
1459
1508
1501
1562
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
C8
C8
C8
C5
25
20
16
15
14
25
50
35
27
25
23
17
15
15
13
12
12
11
10.5
10
10
9
9
9
8.5
8
8
8
8
7.5
6.5
7
7
7
7
6.5
7
7
6
6
6.5
6
6.5
15
18
15
13
12
15
22
22
21
21
20
19
20
18
19.5
20.5
22
23
24.5
25
25.5
25
25
24
23.5
23
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 5
22
22
21.5
21
21
20.5
20
20
19.5
19.5
19.5
19
19
18.5
18.5
18 5
18
18
17.5
17.5
17.5
17
17
16.5
16.5
16
16
15.5
15.5
15 '
15
15
15
15
15
15
15
15
15
15
15
14.5
14
17000
17006
17090
16250
6250
5900
4000
3750
3500
6250
12500
8750
6750
6250
5750
4256
3750
3756
3250
3006
3006
2750
2625
2506
2566
2250
2256
2250
2125
2000
2006
2066
2068
1875
1625
1756
1750
1756
1750
1625
1750
1756
1506
1568
1625
1506
1625
3750
4566
3756
3256
3006
3750
5508
^^ftn
99W
5256
5256
5086
4750
5066
4500
4875
615
660
696
735
750
765
750
750
720
785
€90
675
675
675
675
675
675
675
675
660
666
645
636
630
615
606
606
585
585
585
578
576
555
555
555
546
546
525
525
525
516
516
495
495
486
486
465
465
456
456
456
456
450
450
450
456
456
456
456
456
435
426
96.3824 Day 1
96. 1177 3 Of 4
95.9412
95.4769
88
64.7
81.25
80
79.4286
88.72
94.48
92.2857
90
89.2
88.2609
64.1177
82
82
79.2308
78
78
76. 5455
76
74.8
75.4
73. 3322
73. 3333
74
72.A796
70.75
71.5
71.5
72.25
70.4
65.8462
69. 1429
69. 1429
70
70
67.6923
70.8572
70.8572
67
67
70.4616
68
71.3846
87.6
96
88
86. 1539
85
88
91.8182
91.8182
91.4266
91.4286
91
90.5263
. 91
90.3333
91.3846
-------
169 1533
170 1534
171 1535
172 1536
173 1537
174 1538
175 1539
176 1546
177 1541
176 1542
179 1543
188 1544
19 14
19 14
19 156.33
19 13
a 75
22 56
56 37
56 36
66 26.5
63 24
64 23
€2 22
INLET
PPT1V CONCENTRfiTION
9866.67
4756 426 911579 9** A
4756 426 M. 1579 4 of 4
4756 4749. 9 2. 1B732E-43
4756 396 91.7895
5256 2256 57. 1429
5566 1566 72.7273
14566 1116 92. 3448
14566 966 93. 7931
15666 795 94.7
15756 726 95. 4266
16666 696 95.6875
15566 666 95. 7419
HVERftGES
EFFICIENCY
85.665?
OUTLET
PPHV CQNCENTRRT10N
983. 249
-------
Day 2
1 of 8
ICTRBON BDSORBER EFFICIENCIES!
ARMSTRONG RUBBER COPflNV
ERSTERN DIVISION
HEST HRVEN, CONNETICUTT
IDRTE: 1/24/791
FID HVDROCflRBON RNRLVSIS
INLET SCALE FACTOR X25888
OUTLET SCflLE FACTOR X3886
CONCENTRATION
REF •
1
2
3
4
5
6
7
8
9
18
11
12
13
14
15
16
17
16
19
28
21
22
•23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
TIME
845
846
847
848
849
858
851
852
853
854
655
856
857
856
859
988
981
982
983
984
985
986
987
988
989
918
911
912
913
914
915
916
917
918
919
928
921
922
923
924
925
926
927
928
929
938
CHART DIVISIONS
INLET OUTLET
64
64
65
65
63
65
65
65
65
65
66
65
66
65
66
66
65
48
15
14
13
11
18
18
18
9
6
8
8
28
28
16
18
18
18
35
54
57
57
66
62
63
68
68
62
72
48
48
48
48
48.5
41
42
43
44
45
45.5
46
47
49
51
51
52
53
54.5
49
45
42
39
37
35
33
32
31
29.5
28.5
27.5
27
27
27
27
26.5
26
26
29
38.5
33
35
37
38.5
48
42
(ppwf «1
INLET
16888
16888
16258
16258
15758
16258
16258
16258
16258
16258
16588
16258
16588
16258
16588
16588
16258
18888
3758
3588
3258
2758
2588
2588
2588
2258
2888
2888
2888
5888
7888
4588
4588
4588
4588
8758
13588
14258
14258
16588
15588
15758
15888
15888
15588
18888
OUTLET
1288
1288
1288
1288
1215
1238
1268
1298
1328
1358
1365
1388
1418
1478
1538
1538
1568
1598
1635
1478
1358
1268
1178
me
1858
998
968
938
885
855
625
818
818
818
818
795
788
788
878
915
998
1858
1118
1155
1288
1268
ADSORBING
EFFICIENCY
92.5
92.5
92. 6154
92. 6154
92.2857
92.4388
92.2462
92.8616
91. 8769
91. 6923
91. 7273
91.5877
91. 4546
98.9539
98. 7273
98. 7273
98.4
1 84.1
56.4
58
58.4615
54.1818
53.2
55.6
56
56
52
53.5 '
55.75
62.9
88.2143
62
82
82
82
98.9143
94.2222
94.5263
93.8947
94.4546
93. 6129
93. 3333
92.6
92.3
92.2581
93
-------
47 931
46 932
49 933
M 934
SI 935
52 936
S3 937
54 938
55 939
56 948
V 941
56 942
59 943
C6 944
£1 945
62 946
63 947
64 948
65 949
66 950
67 951
68 952
£9 953
78 954
71 955
72 956
73 957
74 956
75 959
76 ieee
7? 1861
78 1862
79 1862
68 1884
81 1885
62 1886
83 1687
84 1688
65 1689
66 1618
67 1811
88 1812
69 1613
96 1614
91 1615
92 1616
93 1617
94 1618
95 1619
96 1628
97 1621
98 1622
99 1623
168 1824
161 1625
162 1626
163 1627
164 1828
165 1629
186 1636
C7
68
68
69
76
46
23
24
22.
25
24
P
21
21
26 5
26.5
25
48
48
42
47
44
41
44
43
42
42
43
43
43
47
44
45
45
23
26
19
19
18
18
18
28
48
46
48
52
46
47
45
47
45
46
46
46
47
47
46
46
45
45
44
45
46.5
48
58
91
58
47
45
268.33
58
38
23
18
15
13
12.5
12.5
12.5
12.5
12.5
13
13
13
14
15
17
16
19
19.5
19.5
19.5
19
18.5
18
18
17.5
17.5
16
19
28
21
22
23
24
24.5
•25
26
26.5
27
27.5
28
28.5
29
29.5
38
38.5
31
31.5
32
16756
17668
17866
17258
17568
16668
5758
6668
5568
6258
6668
5758
5258
5258
5125
5125
6258
16686
12806
16588
11758
11686
16256
11886
16758
16586
16586
18756
18756
18756
11756
11886
11256
11256
5756
5688
4758
4758
4568
4586
4586
7686
16888
11588
12888
13686
11586
11758
11258
11758
11258
11588
11588
11586
11758
11758
11586
11586
11256
11258
1326
1356
1395
1446
1568
1536
1588
1416
1356
6249.9
1568
988
696
548
458
398
375
375
375
375
375
396
396
398
428
458
518
548
576
585
585
585
578
555
548
548
525
525
548
578
686
638
666
698
728
735
758
768
795
818
625
848
855
878
685
988
915
938
945
966
Day 2
2 of 8
92.1194
92.6568
91.7941
91.6522
914266
64.7
73.913
76.5
75.4546
166156E-63
75
84. 3478
66.8571
69. 7143
912195
92.3982
94
96.25
96.875
96.4286
96.8885
96.4546
96.1951
96.4546
96.693
95. 7143
95. 1429
94. 9766
94. 6977
94.5581
95.8213
94.6816
94. 9333
95.6667
98.6667
89 2
68.9474
88.9474
88
87.3333
66.6667
91
93.4
94
94
94.3462
93. 4763
93. 3617
92. 9333
93.1664
92.6667
92.6957
92.5652
92. 4348
92. 4661
92.3484
92. 8435
91.9131
91.6
914667
-------
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
156
159
168
161
162
163
164
165
166
167
168
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1058
1051
1052
1053
1054
1055
1056
1057
1058
1059
1106
1161
1182
1182
1184
1165
1186
1187
1188
1189
1116
1111
1112
1113
1114
1115
1116
1117
1118
1119
1126
1121
1122
1123
1124
1125
1126
1127
1128
1129
1138
1131
1132
45
45
45
45
45
45
45
45
45
45
45
45
45
47
47
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48
46
48
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
44
44
44
44
44
44
44
44
44
44
32-5
32.5
33
13. 5
34
34
34
34
34
34
34
34
34
36
37
37
37.5
38
38.5
38.5
39
39
48
48.5
48.5
41
41.5
42
42.5
42.5
42.5
43
43
43
43
43
43
43
43
43
43
43
43
43.5
43.5
43.5
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
11250
11250
11258
11250
11258
11250
11250
11256
11258
11258
11250
11258
11258
11758
11758
11756
11756
12086
12086
12886
12866
12886
12006
12066
12086
12006
12866
12066
12666
12066
12066
12066
11566
11566
11586
11566
11506
11506
11506
11506
11506
11506
11566
11506
11506
11588
11586
11586
11586
11566
11586
11586
11086
11068
11868
11666
11066
11068
11008
11060
11088
11008
975
975
990
1005
1020
1028
1028
1028
1020
1026
1028
1026
1028
1086
1118
me
1125
1146
1155
1155
1176
1176
1206
1215
1215
1236
1245
1266
1275
1275
1275
1296
1296
1296
1296
1298
1296
1296
1298
1298
1298
1296
1296
1385
1305
1385
1328
1326
1328
1326
1326
1326
1328
1326
1328
1328
1328
1326
1320
1320
1326
1320
913333
913333
912
910667
90.9333
90.9333
90.9333
90 9333
90.9333
90.9333
90.9333
90.9333
90. 9333
90.8885
90.5532
98.5532
90. 4255
90.5
90.375
90.375
90.25
98.25
96
89.875
89.875
89.75
89.625
89.5
89.375
89.375
89.375
89.25
88.7826
88.7826
88 7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.6522
88.6522
08.6522
88.5217
88.5217
88.5217
88.5217
88.5217
88.5217
88
88
88
88
88
88
88
88
88
08
3 of 8
-------
169
170
171
172
173
174
175
176
177
176
179
188
181
182
183
184
185
186
187
168
189
198
191
192
193
194
195
196
197
198
199
zee
281
282
203
284
285
286
287
288
289
218
211
212
213
214
215
216
217
218
219
228
221
222
223
224
225
226
227
228
1133
1134
1135
1136
1137
1138
1139
1148
1141
1142
1143
1144
1145
1146
1147
1148
1149
use
1151
1152
1153
1154
1155
1156
1157
1158
1159
1200
1261
1292
1283
1284
1285
1286
1287
1288
1289
1218
1211
1212
1213
1214
1215
1216
1217
1218
1219
1228
1221
1222
1223
1224
1225
1226
1227
1228
1229
1238
1231
1232
43
42
47
46
47
41
46
18
18
18
18
18
18
18
18
18
18
18
18
19
28
31
34
35
37
48
25
38
17.5
16.5
15.5
15
15
15
15
15
34
37
38
38
45
41
48
35
48 •
44
41
41
41
41
41
41
41
41
41
42
42
43
43
43
44
44
44
44
44
44
44
158
85
51
37
38
26
23.5
21
19
15.5
15.5
15
14.5
15
16.5
18
18.5
19
28
28.5
28.5
28 5
28
28
19.5
19
19
19.5
28
21
22
23
24
25
25.5
26
26.5
27
28
28.5
29
29.5
38
38.5
31.5
315
32
33
33.5
34
34.5
35
36
16758
18588
11758
11588
11758
18258
11588
4588
4588
4588
4588
4588
4588
4588
4588
4588
4588
4588
4588
4758
7888
7758
-------
229
238
231
232
233
234
235
236
237
238
239
248
241
242
243
244
245
246
247
248
249
256
251
252
253
254
255
256
257
256
259
zee
261
262
263
264
265
266
267
268
269
278
271
272
273
274
275
276
277
278
279
288
281
282
283
284
265
266
267
288
269
1233
1234
1235
1236
1237
1238
1239
1248
1241
1242
1243
1244
1245
1246
1247
1248
1249
1258
1251
1252
1253
1254
1255
1256
1257
1258
1259
1386
1381
1382
1383
1364
1385
1366
1367
1368
1389
1318
1311
1312
1313
1314
1315
1316
1317
1318
1319
1326
1321
1322
1323
1324
1325
1326
1327
1328
1329
1338
1331
1332
1333
44
45
49
45
45
45
45
45
45
45
45
41
38
37
43
43
43
43
36
18
17
16
16
16
16
16
16
16
33
37
38
49
42
41
46
46
28
25
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
36.5
37
37.5
38
38 5
39
39.5
48
48,5
41
41
41
41
41 5
42
4£5
42.5
42
46.5
39
38
37
36
35
35
34
33.5
34
34.5
36
37
38
39
39.5
46
46
39
38.5
37.5
36.5
36
35
34.5
34
-33.5
33
32.5
32
32
32
315
31
31
38.5
38.5
36
36
29.5
29.5
29
29
ueee
11258
11258
11258
11256
11258
11256
11258
11256
11258
11258
18256
9588
9256
10758
18756
16756
18756
9eee
4566
4256
4666
4866
4666
4666
4866
4886
4880
8256
9256
9566
12256
16568
18256
18866
18866
7668
6258
5756
5756
5758
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
5756
1895
me
1125
1146
1155
1178
1185
1286
1215
1238
1238
1238
1238
1245
1266
1275
1275
1266
1215
1176
1148
1118
1886
1656
1656
1826
1865
1826
1835
1886
me
1146
1176
1185
1266
1286
1176
1155
1125
1895
1888
1856
1835
1826
1865
996
975
966
966
966
945
936
936
915
915
966
966
885
885
876
876
Day 2
98. 8455 5 Of 8
98.1333
98
89.8667
89.7333
89.6
89.4667
89.3333
89.2
89.8667
89.8667
88
87.8526
86.5465
88.2791
68.1395
88.1395
88.2791
86 5
74
73. 1765
72.25
73
73.75
73.75
74.5
74.875
74.5
87. 4546
88.3243
88. 3158
96. 6939
88.8572
88.439
68
88
83.2857
81.52
88. 4348
88.9565
81.2174
81.7391
82
62.2689
82.5217
82.7826
83.8435
83.3843
83.3843
83.3843
83.5652
83 8261
83.8261
84.887
84.887
84. 3478
64. 3478
84.6687
84.6887
84.6696
64.8696
-------
298
291
292
293
294
295
296
297
298
299
388
381
382
383
384
385
386
387
388
389
318
311
312
313
314
315
316
317
318
319
328
321
322
323
324
325
326
327
328
329
338
331
332
333
334
335
336
337
338
339
348
341
342
343
344
345
346
347
348
349
358
351
1334
1335
1336
1337
1338
1339
1348
1341
1342
1343
1344
1345
1346
1347
1348
1349
1358
1351
1352
1353
1354
1355
1356
1357
1358
1359
1488
1481
1482
1483
1484
1485
i486
1487
1488
1489
1418
1411
1412
1413
1414
1415
1416
1417
1418
1419
1428
1421
1422
1423
1424
1425
1426
1427
1428
1429
1438
1431
1432
1433
1434
1435
23
23
23
23
16
16
16
13
13
13
13
13
26
25
24
24
24
16
16
16
16
16
16
16
16
16
16
19
19
19
19
28
21
21
21
21
21
21
21
16
16
16
14
14
14
14
14
15
15
15
15
15
15
15
18
28
21
21
21
21
21
21
28.5
28.5
28.5
28
28
27.5
27
26.5
188.33
78
43
38
28
15
14
13
12
12
12
12
12
12
12
12
12
12
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11.5
12
13
13
14
14
14
14
14
14
14
14
14
14
14
14 -
14
14
14
14.5
15
15
15
15.5
16
16
16
16
16
5758
5758
5758
5758
4888
4888
4888
3258
3258
3258
3258
3258
6588
6258
6888
6888
6888
4888
4888
4888
4888
4888
4888
4888
4888
4888
4888
4758
4758
4758
4758
5888
5258
5258
5258
5258
5258
5258
5258
4888
4888
4888
3588
3588
3588
3588
3588
3758
3758
3758
3758
3758
3758
3758
4588
5888
5258
5258
5258
5258
5258
5258
855
855
855
848
848
825
818
795
3249.9
2188
1298
988
688
458
428
398
368
368
368
368
368
368
368
368
368
368
345
345
345
345
345
345
345
345
368
398
398
428
428
428
428
428
428
428
428
428
428
428
428
428
428
428
435
458
458
458
465
488
488
488
488
488
85.1384 "
85.1384 °
85.1384
85.3913
79
79.375
79.75
75.5385
3. 87242E-83
35.3846
68.3877
72. 3877
98. 7692
92.8
93
93.5
94
91
91
91
91
91
91
91
91
91
91.375
92.7368
92 7368
92.7368
92.7368
93.1
93. 4286
93. 4286
93. 1429
92. 5714
92. 5714
92
92
89.5
89.5
89.5
88 .
88
88
88
88
88.8
88.8
88.8
88.8
88.8
68 4
88
98
91
91. 1429
98.8571
98.8571
98.8571
98.8571
98.8571
-------
352 1436
353 1437
354 1438
355 1439
356 1448
357 1441
358 1442
359 1443
368 1444
361 1445
362 1446
363 1447
364 1448
365 1449
366 1458
367 1451
366 1452
369 1453
378 1454
371 1455
372 1456
373 1457
374 1458
375 1459
376 1588
377 1581
378 1582
379 1583
388 1584
381 1S85
382 1586
383 1587
384 1588
385 1589
386 1518
387 1511
- 388 1512
'389 1513
398 1514
391 1515
392 1516
393 1517
394 1518
395 1519
396 1528
397 1521
398 1522
399 1523
488 1524
481 1525
482 1526
483 1527
484 1528
485 1529
486 1538
487 1531
488 1532
489 1533
418 1534
21
21
21
21
21
21
21
21
21
21
21
21
15
15
15
13
13
13
14
15
16
16
16
16
16
28
23
23
23
29
22
22
22
22
22
22
22
22
22
21
21
21
21
21
a
21
22
22
22
22
22
22
22
22
22
23
23
23
23
165
16.5
17
17
17
17
17
17.5
17.5
17.5
18
18
18
18
18
18
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17 5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17
17
17
17
17
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
3758
3758
3758
3258
3258
3258
358EI
3758
4888
4888
4888
4888
4888
5888
5758
5758
5758
7258
5588
5588
5588
5588
5588
5588
5588
5588
5588
5258
5258
5258
5258
5258
5258
5258
5588
5588
5588
5588
5588
5588
5588
5588
5588
5758
5758
5758
5758
495
495
518
518
518
518
518
525
525
525
548
548
548
548
548
548
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
518
518
518
518
518
Day 2
7 of 8
•8.5714
M.5714
90.2857
98.2857
98.2857
98.2857
98.2857
98
90
98
89. 7143
89. 7143
85.6
85. 6
65. 6
83.3846
83.8462
83.8462
85
86
86. 875
86.875
66.875
86.875
86.875
69. 5
98.8696
98.8696
98.8696
92.7586
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98
98
98 .
98
98
98
98
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98. 7273
91.1384
91.1384
91.1384
91.1384
-------
411 1535
412 1536
413 1537
414 1538
415 1539
416 1548
41? 1541
418 1542
419 1543
428 1544
421 1545
422 1546
423 154?
424 1548
425 1549
426 1558
23
23
23
23
23
23
23
24
24
24
23
23
23
16
16
16
17
17
17
17
17
17
17
288
288
68
48
29
25
28
18
16
5758
9758
5758
5758
5758
5758
5758
518
518
518
518
518
518
518
5758
5758
5758
4888
4888
4888
6888
1888
1288
878
758
688
548
488
91.1384
911384
91.1384
91.1384
911384
91.1384
911384
8
e
78
79.1384
64.8696
86.9565
85
86 5
Day 2
B of 8
INLET
PPMV CONCENTRftTION
8832 56
flVERftGES
EFFICIENCY
' 86.6454
OUTLET
PPflV CONCENTRfiTION
988.356
-------
[CARBON ADSORBER EFFICIENCIES!
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
IDBTE: 1/25/79"!
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25888
Day 3
1 of 7
CHART DIVISIONS
REF t TIME
1 745
2 746
3 747
4 748
5 749
6 758
7 751
8 752
9 753
18 754
11 755
12 756
13 757
14 758
15 759
16 688
17 881
18 882
19 683
20 884
21 885
.22 886
23 887
24 888
25 889
26 818
27 811
28 612
29 613
38 814
31 815
32 816
33 817
34 818
35 819
36 828
37 821
38 822
39 823
48 824
41 825
42 826
43 827
44 828
45 829
46 838
INLET
22
23
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
16
16
16
15
15
15
15
15
15
OUTLET
77
68
41
32
27
23
21
19
18
18
17
17
17
16
16
28
28.5
28.5
28.5
28.5
28.5
28.5
28.5
21
21
21
21
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
23
23
(ppav as tjj
INLET
5588
5758
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5580
5586
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5588
5758
5758
5758
5758
4888
4888
4888
3758
3758
3758
3758
3758
3758
OUTLET
2318
1888
1238
968
818
698
638
578
548
546
518
518
516
488
548
688
615
615
615
615
615
615
615
638
638
638
638
668
668
668
668
668
668
668
668
668
698
698
698
698
698
698
698
698
698
698
ADSORBING
EFFICIENCY
58
68.6957
77.6364
82.5455
85. 2727
87.4546
68.5455
89.6364
98.1818
98.1818
98. 7273
98. 7273
98. 7273
91. 2727
98.1816
69.8989
88. 8162
88. 8182
68.8162
88.8182
88. 8162
86. 8182
88. 8162
88.5455
86.5455
88.5455
88.5455
88
88
68
88
88
88
88.5217
68.5217
68.5217
88
82.75
82.75
62.75
81.6
81.6
81.6
816
616
816
-------
Day 3
4? 631 26 22 seee we ee e 2 of 7
48 832 20 22 9606 660 66.0
49 033 20 22 9000 660 96.0
90 034 20 22 9000 660 06.0
91 835 21 23 9250 690 06.0571
92 636 21 23 9250 690 86.6571
93 837 21 23 9250 690 86.0571
94 830 21 24 9250 720 66.2657
95 639 21 24 9250 720 66.2057
96 840 21 24 9250 720 86.2657
97 641 21 24 9250 720 66.2857
96 842 21 24 9250 720 66.2857
99 643 21 24 5250 720 06.2857
66 844 21 24 5250 720 86.2857
61 645 21 25 5250 750 85.7143
62 646 21 25 9250 750 65.7143
63 647 21 25 5250 750 85.7143
64 848 22 25 5500 756 66.3636
65 849 22 25 5500 756 66.3636
66 850 16 25 4000 756 01.25
67 051 16 25 4000 756 81.25
60 852 16 26 4006 706 805
69 853 16 26 4006 780 80.5
70 054 16 25 4006 756 8125
71 855 15 25 3750 756 86
72 656 15 25 3750 750 86
73 857 15 25 3756 756 80
74 858 15 25 3756 756 80
75 659 15 25 3756 756 06
76 906 15 25 3756 756 86
77 901 15 25 3756 756 06
78 962 24 25 6066 756 87.5
79 963 25 25 6256 756 88
00 904 26 25 6566 756 88.4615
81 905 26 27 6506 816 87.5385
82 906 26 28 6500 846 87.0769
83 907 16 28 4006 046 79
84 908 16 29 4006 070 78.25
65 909 15 28 3750 846 77.6
86 910 15 27 3750 010 78.4
87 911 14 27 3506 010 76.8572
88 912 14 26 3506 786 77.7143
89 913 14 26 3566 788 77.7143
90 914 14 26 3500 786 77.7143
91 915 16 25 4000 750 01.25
92 916 19 24 4750 720 84.8421
93 917 19 24 4750 720 84.8421
94 918 22 24 5506 720 66.9091
95 919 22 24 5506 720 86.9091
96 920 22 24 9506 720 66.9091
97 921 22 24 5506 720 86.9091
98 922 22 24 5506 726 66.9091
99 923 22 24 5506 720 86.9091
100 924 22 24 9566 720 86.9691
101 925 22 24 5500 726 86.9691
102 926 22 24 5566 726 66.9091
103 927 23 24 5750 720 87.4783
104 928 23 24 5756 720 87.4783
105 929 23 24 5750 720 87.4783
106 930 24 24 6006 726 88
187 931 24 24 6800 720 88
-------
Day 3
** 932 24 24 6888 728 88 3°f?
S09 9X3 24 24 6888 726 86
118 934 24 24 6880 728 88
Ui 935 24 24 6888 728 88
112 936 24 24 6888 728 88
113 937 24 24 6888 728 88
114 938 24 24 6888 728 88
115 939 24 24 6888 728 88
116 948 24 24 6888 728 88
117 941 24 24 6888 728 88
118 942 24 24 6888 728 88
119 943 24 25 6886 758 87.5
128 944 24 25 6886 756 87.5
121 945 23 88 9758 2488 582689
122 946 23 68 5758 1886 68.6957
123 947 23 38 5756 1148 88.1739
124 948 23 29 5756 878 84.8696
125 949 23 23 5756 698 88
126 956 22 26 5586 686 89.8989
127 951 22 17 5586 516 98.7273
128 952 22 16 5586 486 91.2727
129 953 22 15 5586 456 91.8182
138 954 22 14 5586 428 92.3636
131 955 22 14 5586 426 92.3636
132 956 22 14 5586 426 92.3636
133 957 22 14 5566 426 92.3636
134 958 22 13 5566 396 92.9691
135 959 22 13 5566 396 92.9891
136 1886 22' 13 5586 396 92.9891
137 1881 23 13 5758 398 93.2174
138 1862 23 14 5756 426 92.6957
139 1882 23 15 5756 456 92.1739
146 1864 23 16 5758 486 916522
141 1885 23 16 5758 486 91.6522
142 1886 23 16 5756 488 91.6522
143 1887 23 16 5756 488 91.6522
144 1888 23 16 5756 488 91.6522
145 1889 23 16 5758 486 91.6522
146 1816 23 16 5756 486 91.6522
147 1811 23 16 5758 488 916522
148 1812 23 16 5756 486 91.6522
149 1813 23 16 5756 486 916522
156 1814 23 16 5756 488 916522
151 1815 13 17 3256 518 84.3877
152 1816 13 17 3256 516 84.3877
153 1817 13 17 3256 516 84.3877
154 1818 13 17 3256 516 84.3877
155 1819 13 17 3256 516 84.3877
156 1826 13 17 3256 516 84.3877
157 1821 13 17 3256 516 84.3877
158 1822 13 17 3258 518 84.3877
159 1823 44 18 11888 546 95.8989
168 1824 42 19 18586 578 94.5714
161 1825 41 28 18256 688 94.1463
162 1826 56 21 12586 638 94.96
163 1827 47 22 11756 668 94.383
164 1826 47 23 11756 698 94.1277
165 1829 47 24 11756 728 93.8723
166 1838 47 25 11756 758 93.617
167 1831 47 26 11758 788 93.3617
168 1832 48 27 12886 818 93.25
-------
169 1633 46 28 12886 646 93 5*yA
176 1634 46 29 12688 676 92.75 4 Of 7
171 1635 48 38 12688 968 92.5
172 1636 46 38 12888 968 92.5
173 1637 U 96 7758 1568 66.6452
174 1638 31 98 7758 1588 66.6452
175 1839 32 91 6668 1538 66.675
176 1648 33 91 6258 1538 61.4546
177 1641 33 49 6258 1478 62.1818
178 1642 34 48 6588 1448 63.6588
179 1643 35 47 6758 1418 83.885?
188 1644 36 48 9888 1448 64
181 1645 37 49 9258 1478 64.1661
182 1646 38 58 9588 1588 64.2185
183 1647 39 58 9758 1588 84.6154
184 1648 46 51 16888 1538 84.7
185 1649 46 91 16888 1538 84.7
IK 1658 41 52 16258 1568 84.7885
187 1651 42 52 16588 1568 65.1429
188 1652 43 52 18758 1568 85.4884
189 1653 44 53 11888 1598 85.5455
198 1654 45 53 11258 1598 65.8667
191 1655 46 54 11588 1628 85.9131
192 1656 47 54 11758 1628 86.2128
193 1657 48 54 12868 1628 66.5
194 1656 58 55 12588 1658 86.8
195 1859 51 55 12758 1658 87.6588
196 1188 52 56 13888 1668 87.8769
137 1181 52 54 13888 1628 87.5385
198 1182 52 52 13888 1568 88
199 1183 53 58 13250 1588 68.6793
268 1184 53 58 13258 1580 88.6793:
281 1185 53 58 13258 1566 88.6793:
282 1186 54 58 13588 1588 88.8889
283 1187 55 51 13758 1538 88.8727
264 1188 56 52 14888 1568 88.8572
285 1169 57 52 14258 1568 89.6526
266 1116 58 52 14588 1568 89.2414
26? 1111 59 51 14758 1538 69.6271
288 1112 59 51 14758 1538 89.6271
269 1113 59 51 14758 1538 89.6271
218 1114 59 58 14758 1588 89.8385
211 1115 59 58 14758 1588 89.8385
212 1116 59 58 14756 1588 89.8385
213 1117 59 58 14758 1588 89.8385
214 1118 59 58 14758 1586 89.8385
215 1119 99 98 14758 1588 89.8385
216 1128 99 58 14758 1588 89.8365
217 1121 59 58 14756 1588 89.8385
218 1122 59 58 14758 1586 89.8365
219 1123 59 58 14758 1588 89.8385
228 1124 59 58 14756 1586 89.8385
221 1125 55 51 13756 1536 88.8727
222 1126 55 51 13758 1538 88.8727
223 1127 95 51 13758 1538 68.8727
224 1126 55 51 13756 1538 88.8727
225 1129 55 51 13758 1538 68.8727
226 1138 55 51 13756 1538 88.872?
227 1131 95 51 13758 1538 88.8727
228 1132 55 51 13758 1538 888727
229 1133 95 51 13758 1538 68.8727
238 1134 95 51 13758 1538 68.8727
-------
231 1135
232 1136
233 1137
234 1138
215 1139
236 1148
237 1141
238 1142
239 1143
248 1144
241 1145
242 1146
243 1147
244 1148
245 1149
246 1156
247 1151
248 1152
249 1153
256 1154
251 1155
252 1156
253 1157
254 1158
255 1159
256 1286
257 1261
258 1282
259 1263
268 1284
261 1285
262 1286
263 1267
264 1268
265 1289
266 1216
267 1211
268 1212
269 1213
278 1214
271 1215
272 1216
273 1217
274 1218
275 1219
276 1228
277 1221
278 1222
279 1223
288 1224
281 1225
282 1226
283 1227
284 1228
285 1229
286 1236
267 1231
288 1232
289 1233
296 1234
55
55
55
55
55
48
57
55
55
55
55
55
72
65
66
57
55
55
55
56
56
56
56
56
56
56
57
57
57
57
58
58
58
58
58
58
57
57
57
57
57
58
58
58
58
58
59
59
59
59
59
33
38
28
26
25
25
25
56
51
51
51
52
52
53
S3
54
55
56
57
59
458
686
98
68
43
31
28
26
25
25
25
25
25
25
25
29
31
32
33
34
35
36
37
38
39
46
41
42
44
46
47
48
49
58
56
52
53-
53
53
54
54
52
56
48
47
46
44
44
45
13756
13759
13756
13750
13756
12666
14256
13756
13756
13756
13756
13756
18668
16256
15666
14256
13756
13756
13756
14666
14666
14666
14668
14686
14666
14666
14256
14256
14256
14256
14566
14566
14566
14566
14586
14566
14256
14256
14256
14256
14256
14566
14566
14586
14586
14566
14756
14756
14756
14756
14756
6256
7566
7666
£566
6256
6256
6256
12566
12756
1538
1538
1566
1566
1996
1596
1626
1656
1688
1718
1778
13746
18666
2786
1688
1298
938
846
788
756
756
756
756
756
756
756
878
936
966
996
1826
1856
1886
me
1148
1176
1286
1238
1266
1328
1386
1416
1446
1476
1586
1586
1566
1596
1596
1598
1626
1626
1566
1566
1446
1416
1386
1328
1326
1356
Day 3
5 of 7
•8.8727
88.8727
88,6546
88.6546
88.4364
86.75
88.6316
88
87.7818
87.5636
87.1273
.8727273
6
83.3846
88
98.9474
93.2364
93.8969
94.3273
94.6429
94.6429
94. 6429
94.6429
94.6429
94.6429
94.6429
93.8947
93. 4737
93.2632
93.8526
92.9655
92.7586
92.5517
92.3448
92.1379
91.931
91.5789
913684
91. 1579
98.7368
98. 3158
98. 275S>
96.869
89.8621
89.6552
89.6552
89.4237
89.2263
89.2283
69. 2263
89.817
88.3636
79.2
78.5714
77.8462
77.44
77.92
78.88
89.44
89.4118
-------
291 1235 91 46 12756 1388 89.1765 Day 3
292 1236 91 47 12756 1410 88.9412 6 Of 7
293 1237 92 48 13866 1446 88.9231
294 1238 92 49 13866 1478 88.6923
295 1239 92 96 13866 1566 88.4615
296 1246 93 92 13256 1566 88.2264
297 1241 93 93 13256 1596 68
298 1242 93 94 13256 1628 87.7736
299 1243 93 95 13256 1656 87.5472
386 1244 93 97 13256 1716 87.8943
381 1245 93 98 13256 1746 86.8679
382 1246 93 99 13256 1776 86.6415
383 1247 93 66 13256 1886 86.4151
384 1248 93 61 13256 1836 86.1887
385 1249 53 61 13256 1836 86.1887
386 1256 95 62 13756 1866 86.4727
387 1251 55 62 13756 1866 86.4727
388 1252 95 63 13756 1896 86.2545
389 1253 52 63 13866 1896 85.4616
316 1254 56 64 12566 1926 84.64
311 1255 Si 64 12756 1926 84.9412
312 1256 51 65 12756 1956 84.7859
313 1257 51 65 12756 1956 64.7859
314 1258 51 66 12756 1986 84.4786
315 1259 51 66 12756 1986 84.4786
316 1386 51 66 12756 1986 84.4766
317 1381 52 67 13866 2816 84.5385
316 1382 52 67 13868 2816 84.5385
319 1383 52 67 13686 2816 64.5365
328 1384 52 68 13666 2846 64.3677
321 1385 52 68 13886 2846 84.3677
322 1366 52 69 13668 2676 84.8769
323 1387 52 69 13660 2676 84.6769
324 1388 53 76 13258 2186 84.1569
325 1389 53 78 13256 2166 84.1589
326 1318 53 71 13256 2136 83.9245
327 1311 93 71 13256 2136 83.9245
328 1312 93 72 13256 2166 83.6961
329 1313 S3 72 13256 2166 83.6981
338 1314 53 73 13256 2196 83.4717
331 1315 94 73 13566 2196 83.7778
332 1316 26 71 7886 2136 69.5714
333 1317 25 69 6256 2878 6688
334 1318 24 67 6868 2816 66.5
335 1319 24 63 6666 1898 68.5
336 1328 23 63 5756 1696 67.1364
337 1321 23 61 5756 1836 66.1739
338 1322 23 59 5756 1776 692174
339 1323 22 .58 5566 1748 68.3636
346 1324 22 ' 57 5566 1716 68.9691
341 1325 22 56 5566 1686 69.4546
342 1326 22 55 9586 1656 76
343 1327 21 54 5256 1626 69.1429
344 1328 45 53 11256 1596 85.8667
345 1329 52 52 13868 1566 88
346 1338 52 51 13866 1536 882368
347 1331 24 53 6668 1596 73.5
348 1332 22 54 5568 1626 78.5455
349 1333 22 54 5568 1626 785455
356 1334 22 53 5586 1596 71.8969
351 1335 26 52 5866 1566 68.8
352 1336 26 51 5866 1538 69.4
-------
353 1137
354 1338
355 1339
356 1348
357 1341
338 1342
359 1343
368 1344
361 1345
362 1346
363 1347
364 1348
365 1349
366 1358
367 1351
366 1352
369 1353
376 1354
371 1355
372 1356
373 1357
PPflV
28 49
28 48
28 47
28 46
19 45
19 44
18 43
'58 43
58 45
58 47
SB 49
98 416.667
22 416. 6
22 -49. 93
22 68
24 48
28 29
28 24
19 a
58 19
58 19
INLET
CONCENTRATION
6964.48
5888 1478
seee 1448
5888 1418
5888 1388
4758 1358
4758 1328
4580 1298
14588 1298
14588 1358
14588 1418
12588 1478
12588 12588
5588 12498
5588 -1497. 9
5588 1888
6888 1288
5888 878
seee 728
4750 638
14580 578
14588 578
flVERRGES
EFFICIENCY PPHV
84.7763
78.6 Day 3
71 2 7 of 7
Tie
72.4
71579
72.2185
713333
911834
98.6897
98.2759
88. 24
-7. 8125E-85
-127.236
127.235
67.2727
88
82.6
85. 6
86.7368
96.865*
96.869
OUTLET
CONCENTRRT10N
1273.9
-------
APPENDIX E
VOC METHOD COMPARISON
CONTINUOUS FLAME IONIZATION DETECTION METHOD (FID)
vs.
TOTAL GASEOUS NON-METHANE ORGANIC METHOD (TGNMO)
-------
Two methods which measure volatile organic compounds (VOC) were
employed at West Haven. The continuous flame ionization detection (FID)
procedure is an alternative method for the analysis of source level
hydrocarbons, while the gaseous non-methane organic (TGNMO) procedure is
a proposed method. This section was developed in an attempt to compare
these VOC methods from data collected at West Haven.
The TGNMO sampling times were extended from one to two hours to
coincide with the adsorption cycle of the control equipment. Table E-l
tabulates the results of the two test procedures. The values listed for
each TGNMO sampling run represents the average concentration of dupli-
cate runs, derived from the PCS analytical report (Table E-2). The
results from the continuous FID monitor were reduced from the continuous
monitoring stripcharts by a TRS80 minicomputer (attached). The FID
value reported is an average concentration during the TGNMO sampling
run. The percent difference was calculated for both TGNMO and FID, with
the values are expressed as ppm (vol) of methane.
The two methods appear internally consistent with the exception of
sampling run ARO-5, where the results of the FID analysis indicate
higher concentration at the outlet of the carbon adsorber. The concen-
tration was more than double the concentration during other outlet runs.
The TGNMO procedure did not record a comparable increase in concentration.
On the basis of the test data, a comparison of the two test methods
was inconclusive. The test results indicate that the FID method was
consistently higher than the TGNMO method at the inlet sampling location
where higher VOC concentrations are present in the 5,000-20,000 ppm
range. On the other hand the TGNMO method yielded higher results than
the FID method at the outlet of the carbon adsorption system where the
concentrations are within the 400-1,000 ppm range. Further testing is
necessary to further evaluate the comparison of the two methods.
-------
Table E-l. VOC METHOD COMPARISON
Run
ARI-1
ARI-2
ARI-3
ARI-4
ARI-5
ARO-1
ARO-2
ARO-3
ARO-4
ARO-5
aAverage
b.
Average
cPercent
I = Inlet
0 = Outle
Adsorbing
bed
A
A
A
B
B
A
A
A
B
B
Total gaseous non-methane organic method
(TGNMO)3
as ppmC,
4,314
8,845
4,623
5,592
8,614
774
917
534
779
702
Flame ionization
detector method
(FID) as ppmC,
6,501
10,921
4,861
5,055
11,889
681
967
471
705
1,561
Percent
Difference
+50.7
+23.5
+ 5.1
- 9.6
+38.0
-12.0
+ 5.4
-11.8
- 9.5
+122.4
of duplicate runs - Summary of TCA data.
concentration during TGNMO sampling run - TRS80 data.
t
FID - TGNMO 10Q
TGNMO X 1UU
-------
'SAMPLE
ID
ARO-1A
ARO-1B
APD-2A
ARO-2B
ARO-3A
ARD-3B
ARO-4A
ARO-4B
ARO-5A
APD-5B
ARI-1A
ARI-1B
ARI-2A
ARI-2B
ARI-3A
ARI-3B
ARI-4A
ARI-4B
ARI-5A
ARI-5B
* Average
1st Tank
. 517
557
678
653
342
379
488
466
523
526
1439
1377
1461
1466
1371
1024
1
2536'
-
987
1083
of Two Tank
, 2nd Tank
474
337
1120
1120
591
450
618
730
457
611
1422
1765
3204
1663-'
1499
1498
2801
2208 •
1166
1598
Concentrations
TRAP
47.3
531
46
47.8
142
73
343
74
139
205
3035
2629
6639
7162
3207
3345
2605
3629
7987
6845
Plus Trap
TOTAL*
547
1001
\
. 920
914
586
481
' 891 -
667
632
772
4464
\ 4164
8962
8728
4643
4602
. 5274
5909
9059
8168
TOTAL MASS :.
mg Ci
1.423
2.722
2.333
2.180
1.462
0.952
2.432
1.428
1.617
1.629
12.90
9.697
25.16
20*47
15.50
11.40
13.89
10.33
19.90
18.48
TOTAL
SAMPLE
VOL..
LITERS
5.203
5.491
5.086
4.768
5.017
3.968
5.497
4.293
5.132
4.245
5.853
4.711
5.691
4.761
6.021
5.017
5.322
4.468
4.463
4.595
LITER
0.273
0.496
0.459
0.457
0.291
0.240
0.442
0.333
0.315
0.384
2.204
2.058
4.421
4.300
2.574
2.272
2.610
2.312
4.459
4.022
(1) Supplied by PCS - revised 4/17/79
TABLE: E.-2 - SUMMARY OF TCA DATA1
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN, OONNETICUrr
REF (
74
75
76
77
78
79
BB
81
82
63
84
85
86
87
88
89
98
91
92
93
94
95
96
97
98
99
iee
lei
182
183
184
185
186
187
188
189
ue
ill
112
113
114
115
116
117
118
[TGM10 VS FID COMPARISON
FID
INLET
OUTLET
CHART DIVISIONS
INLET
82
83
82
82.5
78
74
78
25
22
26
62
48
24
25
33
34
26
19
17
28
22
18
16
16
14
13
13
27
28
35
68
66
68
68
68
68
65
25
28
16
15
14
25
58
35
OUTLET
78
45
36.5
31
28
25.5
24
23
21
28.5
28
28 5
28.5
28
19.5
19.5
19.5
19.5
19
19
18.5
18.5
18.5
18
18
17.5
17.5
17.5
17.5
17.5
17.5
18
19.5
28.5
22
23
24.5
25
25.5
25
25
24
23.5
23
22.5
DATE: 1/23/79
HYDROCARBON ANALVSIS
SCALE FACTOR X2588B
SCALE FACTOR X3880
CONCENTRATION
(ppwv u t.)
INLET OUTLET
28588 2188
20756 1356
28586 1895
28625 938
19586 846
18586 765
17586 728
6256 696
5566 636
5606 615
15588 686
18006 615
6666 615
6250 686
8256 585
6500 585
5860 585
4756 585
4256 576
5880 576
5506 555
4580 955
4880 555
4880 548
3566 540
3256 525
3256 525
6756 525
7886 525
8758 525
15880 525
16586 948
17886 585
17886 615
AfvvD DvO
17886 690
16258 735
6250 750
9880 765
4806 758
3756 758
3580 728
6250 785
12500 690
8750 675
1 (
ADSORBING
EFFICIENCY
89.7561
93.494
94.6565
95.4969
95. 6923
95.8649
95.8857
88. 96
88.5455
87.7
96.129
93.85
89.75
98.4
92.9091
93. 1177
88.3
87.6842
66.5882
88.6
89.9891
87.6667
66.125
86.5
84.5714
83.8462
83.8462
92.2222
92.5
94
96.5
96.7273
96.5568
96.3824
96.1177
95.9412
95. 4769
88
84.7
8125
88
79.4286
68.72
94.48
92.2857
-------
119
126
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
13£
137
138
139
146
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
176
171
172
173
174
175
176
177
27
as
23
17
IS
15
13
12
12
11
18.5
10
18
9
9
9
as
8
8
8
8
7.5
6.5
7
7
7
7
6.5
7
7
6
6
6.5
6
6.5
15
18
15
13
12
15
22
22
21
21
28
19
28
18
19.5
19
19
19
19
21
22
58
SB
68
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22
22
215
21
21
28.5
28
28
19.5
19.5
19.5
19
19
18.5
18.5
18.5
18
18
17.5
17.5
17.5
17
17
16.5
16.5
16
16
15.5
15.5
15
15
15
15
15
15
15
15
15
15
15
15
14.5
14
14
14
158.33
13
75
58
37
38
26.5
C758
C258
97S8
4258
3758
3758
3258
3888
3888
2758
2625
2588
2588
2258
2258
2258
2125
2888
2888
2880
2880
1875
1625
1750
1750
1750
1758
1625
1750
1750
1580
1580
1625
1580
1625
3758
4588
3758
3258
3880
3750
5580
5500
5250
5250
5888
4750
5888
4580
4875
4758
4750
4758
4750
5250
5580
14588
14580
15880
675
€75
675
675
€75
€75
€75
€68
€68
€45
€30
€38
615
€80
€88
585
585
585
578
570
555
555
555
540
540
525
525
525
510
510
495
495
480
480
465
465
450
450
458
450
450
450
450
458
450
450
450
450
435
420
420
420
4749. 9
390
2250
1580
1110
980
795
M
89.2
88.2689
84.1177
62
82
79.2388
78
78
76.5455
76
74.8
75.4
73. 3333
73.3333
74
72.4786
78.75
71.5
71.5
72.25
78.4
65.8462
69. 1429
69. 1429
78
78
67. 6923
78.8572
78.8572
67
67
78.4616
68
71.3846
87.6
98
88
86.1539
85
88
91.8182
91.8182
91.4286
91.4286
91
98.5263
91
98.3333
91.3846
911579
911579
2. 18732E-83
91.7895
57. 1429
72.7273
92.3448
93.7931
94.7
2 of 3
-------
IHET
CONCEMTWniON
csu.2
RVERRGES
EFFICIENCY
8173
OUTLET
CONCENTOflTlON
C81.153
3 Of 3
-------
CflRBON flDSORBER EFFICIENCIES -
RRHSTRONG RUBBER COWflNY . . .
EftSTERN DIVISION ' OT *
WEST HftVEN, CONNET1CUTT
| TGNMO VS FID COHPRR1SON
DflTE: 1/24/79
FID HYDROCflRBON RNflLYSlS
INLET SCRLE FfiCTOR X25000
OUTLET SCflLE FRCTOR X3e08
CONCENTRATION
CHflRT DIVISIONS
REF «
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
INLET
48
42
47
44
41
44
43
42
42
43
43
43
47
44
45
45
23
28
19
19
18
18
18
28
40
46
48
52
46
47
45
47
45
46
46
46
47
47
46
46
45
45
45
45
45
45
OUTLET
12.5
12.5
12.5
13
13
13
14
15
17
18
19
19.5
19.5
19.5
19
18.5
18
18
17.5
17.5
18
19
20
21
22
23
24
24.5
25
26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
32.5
32.5
33
33.5
Ippmy as C^)
INLET
12000
10506
11750
11000
10250
11000
10750
10500
10500
10750
10750
10750
11750
11000
11250
11250
5750
5006
4750
4750
4500
4500
4500
7000
10000
11500
12000
13000
11500
11750
11250
11750
11250
11500
11500
11500
11750
11750
11500
11500
11250
11250
11250
11250
11250
11250
OUTLET
375
375
375
390
390
390
420
450
510
540
570
585
585
585
570
555
540
540
525
525
540
570
600
630
660
690
720
735
750
780
795
810
825
840
855
870
885
900
915
930
945
960
975
975
990
1005
ADSORBING
EFFICIENCY
96.875
96. 4286
96. 8065
96. 4546
96. 1951
96. 4546
96. 093.
95. 7142
95. 1429
94. 9768
94. 6977
94. 5581
95. 0212
94. 6818
94. 9333
95. 0667
90. 608?
89.2
88. 9474
88. 9474
88
87. 3333
86.6667
91
93.4
94
94
94. 3462
93. 4783
93. 3617
92. 9333
93. 1064
92. 6667
92. 6957
92. 5652
92. 4348
92. 4681
92. 3404
92. 0435
91. 9131
91.6
91. 4667
91. 3333
91. 3333
91.2
91. 0667
-------
Ill
112
114
45
45
45
45
34
34
34
34
11256
11250
1125e
11258
1828
1020
1620
1020
90. 9333
9e. 9333
90. 9333
90. 9333
2 Of 4
INLET
PfW CONCENTRRTION
10280
flVERRGES
EFFICIENCY
92. 8058
OUTLET
PPMV CONCENTRRTION
700.5
-------
CARBON ADSORBER EFFICIENCIES jjpj.o
ARMSTRONG RUBBER COHPANV 3 of 4
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
ITONHO vs FID COMPARISON!
DATE: 1/24/79
FID HVDROCARBON ANALVSIS
INLET SCALE FACTOR X25086
CHART DIVISIONS
REF •
119
126
121
122
123
124
125
126
127
128
129
136
131
132
133
134
135
136
137
138
139
146
141
142
143
144
145
146
147
148
149
156
151
152
153
154
155
156
157
158
159
166
161
162
163
164
165
INLET
45
47
47
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
44
44
44
44
44
44
44
OUTLET
34
36
37
37
37.5
38
38.5
38.5
39
39
48
46.5
46.5
41
41.5
42
42.5
42.5
42.5
43
43
43
43
43
43
43
43
43
43
43
43
43.5
415
43.5
44
44
44
44
44
44
44
44
44
44
44
44
44
(pp» U C,}
INLET
11256
11756
11756
11756
11756
12686
12666
12666
12066
12686
12006
12666
12666
12006
12006
12006
12066
12666
12666
12006
11566
11506
11566
11500
11566
11506
11566
11566
11566
11568
11566
11588
11566
11568
11566
11506
11506
11506
11566
11506
11006
11006
11006
11066
11666
11666
11066
OUTLET
1026
1886
1118
me
1125
1148
1155
1155
1176
1176
1266
1215
1215
1236
1245
1266
1275
1275
1275
1296
1298
1296
1296
1298
1296
1296
1296
1296
1296
1296
1296
1365
1365
1365
1326
1326
1326
1326
1326
1326
1326
1326
1326
1326
1326
1326
1326
ADSORBING
EFFICIENCY
98.9333
98.8685
98.5532
98.5532
96.4255
96.5
96.375
98.375
98.25
90.25
98
89.875
89.875
89.75
89.625
89.5
89.375
89.375
89. 375
89.25
88.7826
88.7826
68.7826
68.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7626
88.6522
88.6522
88.6522
88.5217
88 5217
88.5217
88.5217
88.5217
88.5217
88
88
88
88
88
68
88
-------
166
167
ueee
iieee
1329
1KB
4 Of 4
INLET
CONCENTRflTION
11576.5
AVERAGES
EFFICIENCY
89.1167
OUTLET
PPHV CONCENTRATION
1257.55
-------
CARBON ADSORBER EFFICIENCIES
/WD-2
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION 1 of 5
HEST HAVEN, CONNETICUTT
frONMO VS FID COMPARISON]
DATE: 1/24/79
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25666
CHBRT DIVISIONS W"» •» fOSORBING
REF • INLET OUTLET INLET OUTLET EFFICIENCY
36 35 26.5 6756 795 96.9143
37 54 26 13588 766 94.2222
38 57 26 14258 788 94.5263
39 97 29 14250 876 93.8947
46 66 36.5 16566 915 94.4546
41 62 33 15566 996 93.6129
AVERRGES
INLET
PFHV CONCENTRfiTION EFFICIENCY
13791. 7 93. 6642
OUTLET
PPHV CONCENTRATION
855
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPAMV
ER5TERN DIVISION
EST HBVEH CONNETICUTT
'
2 Of 5
1 TGNHO VS FID
COHPARISONJ
DfiTE: i/%4/79
FID HVDROCARBON ANALYSIS
INLET SCALE FACTOR X25888
OUTLET SCALE FflCTOL X3888
CONCEN1
'RATION
CHRRT DIVISIONS
-------
ill
45
34
11258
1029
96.9333
3 Of 5
IHLET
CONCENTRRTION
10218.1
AVERAGES
EFFICIENCY
92.9254
OUTLET
PPMV CONCENTRfiTION
688.107
-------
CROON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER CQHPflNV
EASTERN DIVISION
HAVEN. CONHETICUTT
TONHO VS FID COMPARISON 1
DATE: 1/24/79
FID HYDROCARBON flNHLVSIS
4 Of 5
INLET SCALE FACTOR X2S086
*"^ ™*' •"•".fK.'r. w^..'^^L^i^f A
CHART DIVISIONS W» ** t^l
REF •
114
115
116
117
116
119
126
121
122
123
124
125
126
127
126
129
13C
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
156
151
152
153
154
155
156
157
158
159
166
161
INLET
45
45
45
45
45
45
47
47
47
47
48
48
•48
48
48
48
48
48
48
48
48
48
48
48
48
46
46
46
46
46
46
46 •'
46
46
46
46
46
46
46
46
46
46
46
46
46
44
44
44
OUTLET
34
34
34
34
34
34
36
37
37
37.5
38
38.5
38.5
39
39
48
46.5
46.5
41
41.5
42
42.5
42.5
42.5
43
43
43
43
43
43
43
43
43
43
43
43
43.5
43.5
43.5
44
44
44
44
44
44
44
44
44
INLET
11258
11256
11256
11256
11256
11256
11756
11756
11756
11756
12666
12666
12866
12666
12686
12666
12666
12666
12666
12666
12066
12066
12066
12066
12066
11506
11566
11566
11566
11566
11560
11506
11566
11566
11566
11566
11566
11566
11506
11566
11566
11500
11506
11566
11566
11000
11000
11000
OUTLET
1026
1026
1026
1026
1026
1026
1086
1110
1110
1125
1140
1155
1155
1176
1176
1266
1215
1215
1230
1245
1260
1275
1275
1275
1296
1296
1296
1296
1296
1296
1296
1298
1298
1298
1296
1298
1365
1365
1365
1320
1320
1320
1320
1320
1320
1320
1320
1320
ADSORBING
EFFICIENCY
90. 9333
90. 9333
90. 9333
90. 9333
90. 9333
90. 9333
90.8085
90. 5532
90.5532
90.4255
90.5
90.375
90.375
90.25
90.25
96
89.875
89.875
89.75
89.625
89. 5
89.375
89.375
89.375
69.25
68.7826
88.7826
68.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
88.7826
68.7826
88 6522
88.6522
88.6522
88.5217
88.5217
88.5217
88.5217
88.5217
88.5217
68
88
88
-------
162
163
164
169
166
new
ueee
line
ueee
ueee
1326
132B
1329
1328
1320
5 Of 5
INLET
CONCEMTRRTION
11556. fi
AVERAGES
EFFICIENCY
89.3092
OUTLET
CONCENTRflTION
1233.96
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPRNV
EASTERN DIVISION ' of 3
HEST HBVEN, CONNETICUTT
ITGNHO vs FID caipflRisoNl
DRTE: 1/24/79
FID HVDROCflRBON flNHLVSIS
INLET SOLE FACTOR X2S880
CHRRT DIVISIONS
-------
349
358
351
352
353
354
355
356
357
358
359
368
361
362
363
364
365
366
367
368
369
378
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
366
387
368
389
390
391
^^*
392
393
394
395
396
397
398
399
488
481
482
483
484
485
486
487
488
489
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
15
15
15
13
13
13
14
15
16
16
16
16
16
28
23
23
23
29
22
22
22
22
22
22
22
22
22
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
23
23
23
16
16
16
16.5
16.5
17
17
17
17
17
17.5
17.5
17.5
18
16
18
18
18
18
17-5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
•'17. 5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17
17
17
17
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
5258
3758
3758
3758
3250
3250
3250
3588
3758
4880
4888
4880
4888
4888
5800
5750
5750
5758
7250
5500
5500
5580
5500
5500
5508
5588
5500
5580
5258
5258
5258
5250
5258
5258
5250
5500
5500
5580
5508
5580
5500
5500
5580
5500
5756
5758
5758
488
488
488
495
495
516
518
516
518
518
525
525
525
548
548
548
540
540
540
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
510
518
518
518
98.8571
98.6571
98.6571
98.5714
96.5714
96.2857
96.2857
96.2857
96.2657
98.2857
98
98
98
89.7143
89. 7143
65.6
85.6
85.6
83.3846
63.8462
63.8462
85
66
86.875
66.875
66.875
66.875
86.875
69.5
98.8696
98.8696
98.8696
92.7586
98.4546
98.4546
98.4546
98.4546
98.4546
98.4546
96.4546
98.4546
96.4546
98
98
98
90
90
98
98
98.4546
98.4546
96.4546
98.4546
98.4546
98.4546
98.4546
98.4546
98.7273
911384
91.1304
91.1384
2 of 3
152
-------
418
411
412
413
414
415
416
417
23
23
23
23
23
23
23
23
17
17
17
17
17
17
17
17
5758
5758
5758
5758
5758
5758
5758
5758
518
518
518
518
518
518
518
518
91.1384
91.1384
911384
911384
911384
911384
911384
911384
3 Of 3
INLET
CONCENTRATION
4868.62
AVERAGES
EFFICIENCY
98.8656
OUTLET
CONCENTRATION
471.372
-------
CH80N flDSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPflNY
EASTERN DIVISION
HEST HRVEN. CONNETICUTT
I TBNHO VS FID COHPRRISONJ
D8TE. 1/25/79
FID HYDROCARBON ANALYSIS
1 of 3
INLET SCALE FHCTOR X25000
CHART DIVISIONS
REF •
3
J
4
5
g
7
6
10
12
13
14
15
*•*
16
17
18
AW
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
J^
36
37
38
39
40
41
42
43
44
45
4£
47
48
INLET
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
16
16
16
15
15
15
15
15
15
20
20
OUTLET
41
32
27
23
21
19
18
18
17
17
17
16
18
20
20.5
20.5
20.5
20.5
20.5
20.5
20.5
21
21
21
21
22
22
22
22
22
22
22
'22
22
23
23
23
23
23
23
23
23
23
23
'22
22
(pfMV M C,)
INLET
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
5500
n&d
WOv
5750
5750
5750
5750
4000
4000
4000
3750
3750
3750
3750
3750
3750
5000
5000
OUTLET
1230
960
610
690
630
570
540
540
510
510
510
480
540
600
615
615
615
615
615
615
615
630
630
630
630
660
660
660
660
660
660
660
660
660
690
690
690
690
690
690
690
690
690
690
660
660
ADSORBING
EFFICIENCY
77.6364
82.5455
85. 2727
87. 4546
88.5455
69.6364
90.1818
90.1818
90.7273
90.7273
90.7273
91.2727
90.1818
69.6909
68.8182
88.8182
88.8182
88.8182
88.8182
68.8182
68. 8182
68.5455
68.5455
88.5455
68.5455
88
88
68
88
88
88
88.5217
88.5217
88.5217
88
82.75
82.75
82.75
81.6
81.6
61.6
81.6
81.6
61.6
66.8
86.8
-------
49
96
91
92
93
94
95
96
97
98
99
66
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
66
87
68
89
90
91
92
93
94
95
96
97
98
99
168
161
182
183
184
165
186
187
168
169
26 22
26 22
21 23
21 23
21 23
21 24
21 24
21 24
21 24
21 24
21 24
21 24
21 25
21 25
21 25
22 25
22 25
16 25
16 25
16 26
16
16
15
15
15
15
15
15
15
24
25
26
26
26
16
16
15
15
14
14
14
14
16
19
19
22
22
22
22
22
22
22
22
22
23
23
23
24
24
24
24
«o
25
25
25
25
25
25
25
25
25
25
25
27
26
28
29
28
27
27
26
26
26
25
24-
24
24
24
' 24
24
24
24
24
24
24
24
24
24
24
24
24
24
9680 '
9688 <
9258 1
9250 '
9250
9250
9258
9258
9258
9250
9258
9250
9250
5250
9250
9560
9560
4880
4880
4600
4680
4600
3750
3750
3750
3750
3758
3750
3750
^f^r^n
6600
6250
6508
6500
6500
4600
4880
3758
3758
3560
3568
3580
3500
4688
4758
4750
5500
5500
5500
9500
5500
5500
9500
5500
5500
5750
5750
5750
6000
6800
CCttR
ovxw
6880
too
560
E96
698
698
728
728
728
728
728
726
720
750
750
750
750
750
750
750
780
788
758
758
750
750
750
750
750
750
750
• «^P
750
750
818
840
840
870
648
618
810
788
780
780
750
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
86.8
86.8571
86.8571
86.8571
86.2857
86.2857
86.2657
86.2857
66.2857
86.2657
86.2857
85. 7143
65.7143
85.7143
86.3636
86.3636
81.25
81.25
68.5
88.5
81.25
88
88
88
80
88
88
60
87.5
88
88.4615
87.5385
87. 6769
79
78.25
77.6
78.4
76.8572
77.7143
77.7143
77. 7143
81.25
84.8421
84.8421
86.9091
86.9891
86.9891
86.9091
86.9891
86.9891
86.9091
86.9091
66.9891
87.4783
87. 4783
87.4783
88
68
68
68
2 of 3
-------
ue
111
24
24
24
24
720
720
86
INLET
OMCENTRftTION
3855.84
MEMOES
EFFICIENCY
85.5162
OUTLET
CQNCENTOflTION
785.551
3 of 3
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER CONPflNV
EASTERN DIVISION
HRVEN, CONNETICUn
•QNHO VS FID COMPARISON]
DATE. 1/25/79
m
FID HYDROCARBON ANALVS1S
1 Of 3
INLET SCALE FACTOR X25666
REF •
246
247
248
249
256
251
252
253
254
255
256
257
258
259
266
261
262
263
264
265
266
267
268
269
276
271
272
273
274
275
276
277
278
279
286
281
282
283
284
285
286
287
288
289
296
CHART DIVISIONS
INLET OUTLET
57 43
55 31
55 28
55 26
56 25
56 25
56
56
56
56
56
57
57
57
57
58
58
58
58
58
58
57
57
57
57
57
58
58
58
58
58
59
59
59
59
59
33
36
28
26
25
25
25
56
51
25
25
25
25
25
29
31
32
33
34
35
36
37
38
39
46
41
42
44
46
47
48
49
58
56
' 52
53
53
53
54
54
52
56
48
47
46
44
44
45
IJP«V 1
INLET
14256
13756
13756
13756
14666
14666
14666
14888
14666
14086
14666
14256
14256
14256
14256
14566
14586
14566
14506
14568
14506
14256
14256
14256
14256
14256
14566
14566
14566
14566
14586
14756
14758
14756
14756
14756
8256
7566
7008
€566
6256
6256
6250
12506
12750
IS Cj)
OUTLET
1296
936
846
786
756
756
756
756
756
756
756
676
938
966
996
1626
1656
1086
me
1146
1176
1206
1236
1266
1326
1386
1416
1440
1476
1566
1506
1566
1596
1596
1596
1626
1626
1566
1566
1446
1416
1388
1326
1326
1356
ADSORBING
EFFICIENCY
90.9474
93.2364
93.6909
94.3273
94. 6429
94.6429
94.6429
94.6429
94.6429
94.6429
94.6429
93.6947
93. 4737
93.2632
93.0526
92. 9655
92.7586
92.5517
92.3448
92.1379
91.931
91.5789
91.3684
91.1579
90.7368
90.3158
90.2759
90.069
69.8621
89.6552
69.6552
69.4237
69.2263
89.2263
69.2263
89.017
68.3636
79.2
78.5714
77.8462
77.44
77.92
78.88
69.44
69.4118
-------
291 91 46 12796 1388 89.1765
292 91 47 12756 1416 68.9412 . . -
293 92 48 13866 1446 88.9231 Z Of 3
294 92 49 13866 1476 88.6923
295 92 96 13866 1966 86.4615
296 93 92 13256 1966 88.2264
297 93 53 13256 1598 88
296 93 94 13256 1626 87.7736
299 93 95 13256 1656 87.5472
386 93 97 13256 1716 87.8943
381 93 96 13256 1746 86.8679
382 93 59 13256 1776 66.6415
383 93 66 13256 1866 864151
364 93 61 13256 1836 86.1887
385 93 61 13256 1836 86.1887
386 95 62 13756 I860 86.4727
387 55 62 13756 1866 86.4727
388 55 63 13756 1898 86.2545
389 52 63 13660 1896 85.4616
316 56 64 12560 1920 84.64
311 51 64 12756 1926 84.9412
312 91 65 12756 1956 84.7659
313 51 65 12756 1950 84.7859
314 51 66 12756 1986 84.4766
315 51 66 12756 1980 84.4786
316 51 66 12756 1980 84.4766
317 52 67 13660 2816 84.5385
318 52 67 13680 2616 84.5385
319 52 67 13660 2616 84.5385
326 52 68 13660 2648 84.3677
321 52 68 13660 2640 84.3677
322 52 69 13860 2676 84.6769
323 52 69 13600 2676 84.6769
324 53 76 13250 2160 84.1569
325 53 76 13256 2160 84.1569
326 53 71 13256 2136 83.9245
327 53 71 13250 2130 83.9245
328 53 72 13256 2160 83.6981
329 93 72 13256 2166 83.6981
336 53 73 13256 2190 83.4717
331 54 73 13560 2190 83.7778
332 28 71 7860 2138 69.5714
333 25 69 6256 2678 66.68
334 24 67 6860 2616 66.5
335 24 63 6660 1890 68.5
336 23 63 5750 1890 67.1384
337 23 61 5756 1836 681739
338 23 59' 5756 1776 69.2174
339 22 98 9568 1748 68.3636
346 22 57 5566 1716 68.9691
341 22 56 5566 1688 69.4546
342 22 55 5566 1658 76
343 21 54 9258 1626 69.1429
344 45 53 11256 1596 85.8667
345 52 52 13888 1566 88
346 52 51 13666 1530 88.2388
347 24 53 6600 1590 73.5
348 22 54 5560 1626 78.5455
349 22 54 5560 1626 78.5455
356 22 53 5566 1598 71.8969
351 26 52 5888 1566 68.8
-------
iurr
CONCEHTRRTION
11889.2
flVERRGES
EFFICIENCY
84.8579
OUTLET
CONCEKTRRTION
156142
3 Of 3
-------
APPENDIX F
RADIAL vs NON-RADIAL
VOC EMISSION COMPARISON
-------
In order to retain the confidential nature of the process information
collected at Armstrong Tire and Rubber, a substitute code has been
introduced. The coding key is on file at the Emission Standards and
Engineering Division's confidential files.
-------
RADIAL VS NONRADIAL
During the field testing an observation was made that the type of
tread cemented (radial vs nonradial) had an effect on the inlet VOC
concentration as measured by FID. A review of the data (Table F-l and F-2)
indicated that nonradial treads were responsible for significantly
greater inlet VOC concentrations. The inlet concentration averaged
14474 and 7254 ppm C, for nonradial and radial treads respectively. The
2
cement usage data indicates 51.8 mg/cm used for radial treads and
2
41.0 mg/cm used for nonradial treads. However, because of the limited
data collected and the range of individual results these data are of
limited use.
A better parameter to compare nonradial versus radial tire treads
was the mass of solvent (as measured by FID at the inlet to the carbon
adsorber) per area of tread cemented. This parameter assumes that FID
response to the solvent was proportional to the reported effective
carbon number of solvent and that the capture efficiency of the hooding
system was constant. Although these solvent mass emission rates were
used to access the relative difference between types of tread utilizing
the same solvent, the solvent mass emission rates reported should not be
considered to represent true mass emission rates because the response
factor of the FID instrument to solvent vapor has been assumed and was
not empirically determined because of analytical problems. See
Appendices G and H for a more detailed discussion of these two assumptions.
This comparison showed that nonradial treads averaged 21.6 milligrams
of solvent per square centimeter of tread processed while radial treads
averaged 41.9 milligrams of solvent per square centimeter of tread
processed. The carbon adosrber showed little variance in removal efficiency
for nonradial and radial tire treads (90.5% and 89.4% respectively).
-------
TRH
TIRE
TREAD
CODE
Al
Bl
Cl
Dl
Fl
Gl
A2
B2
E3
F3
G3
H3
J3
AVERAGE
TIME
(m1n)
5
9
5
31
10
6
19
17
65
61
44
3
5
21.5
CONCEN-
TRATION
(ppmv as
Cl)
14225
13361
16950
19157
13825
15208
15903
15147
12131
13643
12500
12417
13700
14474
INLET
(b)
SOLVENT
MASS
(kg)
29.56
49.96
35.22
246.77
57.45
37.91
119.75
102.05
300.85
317.52
209.84
14.21
26.14
119.02
SOLVENT
MASS
RATE
(kg/m1n)
5.91
5.55
7.04
7.96
5.75
6.32
6.30
6.00
4.63
5.21
4.77
4.74
5.23
5.80
CONCEN-
TRATION
(ppmv as
CD
1191
1133
990
1821
592
812
1350
1144
1360
1808
1900
1560
3604
1482
OUTLET
(b)
SOLVENT
MASS
(kq)
2.23
3.81
1.85
21.12
2.21
1.82
10.10
7.65
31.73
39.58
30.00
1.68
6.47
12.33
SOLVENT
MASS
RATE
(kq/mln)
0.45
0.42
0.37
0.68
0.22
0.30
0.53
0.45
0.49
0.65
0.68
0.56
1.29
0 55
\J • +JtJ
(c)
CARBON BED
EFFICIENCY
(X)
90.7
91.0
94.1
90.7
95.2
94.6
91.4
92.3
88.4
86.8
84.0
81.4
90.1
90 5
y\j • +j
(d)
TREAD
AREA
(m2)
200.3
722.1
706.5
58.1
50.4
963.3
398.1
159.3
748.6
634.2
419.8
34.5
57.6
IQfi A
O-7O • *T
SOLVENT (e
MASS PER
TREAD
AREA
(ma/cm'l
14.8
6.9
5.0
424.7
114.0
3.9
30.1
64.1
40.2
50.1
50.0
41.2
45.4
co c
uo • 3
•(f)
CEMENT
APPLIED
fkal
ND(9)
NO
ND
ND
ND
ND
ND
ND
206.1
73.9
101.4
91.5
I
CEMENT
PER TREAD
AREA
(m^/crn?)
ND
ND
ND
ND
ND
ND
ND
ND
27.1
22.7
24.2
100.6
I
Al n
*f 1 .U
(a) Based on FID Results - Appendix D.
'bj Equation - A.2.
c) Equation - A.4.
d) Process Data - Equation A.I.
(e) Equation A.3.
(f) Appendix B.
(g) NO - NOT DETERMINED
TABLE F-l: NON RADIAL TREAD DATA3
-------
TRW
TIRE
TREAD
CODE
El
C2
D2
E2
F2
G2
H2
J2
K2
L2
M2
A3
B3
C3
D3
AVERAGE
TIME
(m1n)
6
17
47
40
8
43
40
10
10
20
51
38
19
40
40
29
INLET
CONCEN-
TRATION
[pprnv as
Ci)
9083
10926
11495
11350
8125
10419
6512
4000
5025
5200
5485
5534
5224
4694
5744
7254
JbJ
SOLVENT
MASS
(kg)
22.63
73.60
214.11
179.93
25.76
177.55
103.26
15.90
19.92
41.21
110.86
80.24
37.87
71.62
87.66
84.14
SOLVENT
MASS
RATE
( kg/ml n)
3.77
4.33
4.56
4.50
3.22
4.13
2.58
1.59
1.99
2.06
2.17
2.11
1.99
1.79
2.19
2.87
OUTLET
CONCEN-
TRATION
(ppmv as
Ci)
600
473
989
1308
555
1017
988
359
356
496
786
721
710
758
640
717
SOLVENT5
MASS
(kq)
1.34
3.17
18.31
20.61
1.75
16.03
15.57
1.42
1.40
3.92
15.78
9.83
4.84
10.88
9.18
8.94
SOLVENT
MASS
RATE
(kq/m1n)
0.22
0.19
0.39
0.52
0.22
0.37
0.39
0.14
0.14
0.20
0.31
0.26
0.25
0.27
0.23
0.27
(c)
CARBON BED
EFFICIENCY
(2)
92.7
95.7
91.4
88.5
93.0
90.3
84.1
91.0
92.9
90.4
85.9
86.9
86.4
83.1
88.9
89.4
(d)
TREAD
AREA
(m2)
68.9
73.5
264.5
284.2
35.7
229.2
256.5
62.0
46.1
93.6
NO
273.8
46.8
300.0
244.2
162.8
SOLVENT (e
MASS PER
TREAD
AREA
(ma/qn2)
32.8
94.4
80.9
63.3
72.2
77 5
40.3
25.6
43.2
44.0
NO
29.3
80.9
23.9
35.9
53.2
CEMENT
APPLIED
(ka)
(9)
ND
ND
ND
ND
230.4
104.7
32.0
28:1
44.6
ND
ND
60.6
35.3
91.5
CEMENT
PER TREAD
AREA
(mg/cm2)
ND
ND
ND
ND
86.97
40.8
51.6
60.95
47.65
ND
ND
129.5
11.8
37.5
58.3
(a) Based on FID Results - Appendix D.
(b) Equation - A.2.
(c) Equation - A.4.
(d) Process Data - Equation A.I.
(e) Equation - A.3.
(f) Appendix B.
(g) ND - NOT DETERMINED
TABLE F-2 - RADIAL TREAD DATA3
-------
CflRBON ADSORBER EFFICIENCIES
MWSTKMG RUBBER COMPANY
EASTERN DIVISION
tCST HAVEN, CONNET1CUTT
__
TE: 1/23/79
FID HYDROCARBON HNRLVSIS
Day 1
NON RADIAL
INLET SCALE FflCTOR X25888
CHART DIVISIONS
REF • INLET OUTLET
1249 5
6
7
8
1253 9
61 5 38. 5
65 38.5
63 39
65 48.5
38 42
INLET
PPHV CONCENTRATION
14225
(ppnv u Cj)
INLET OUTLET
15375 1155
16258 1155
15758 1178
16258 1215
7588 1268
QUCnQfiCC
nVcKnutb
EFFICIENCY PPHV
98.7349
ADSORBING
EFFICIENCY
92.4876
92. 8923
92. 5714
92. 5231
83.2
OUTLET
CONCENTRATION
1191
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HflVEN, CONNETICUTT
ITRU CODE:B1 i
DATE. 1/23/79
FID HYDROCARBON ANALYSIS
NON RADIAL
CHART DIVISIONS
1303
-
1311
REF *
19
28
a
22
23
24
25
26
27
INLET
68
62
68
68
52
57
68
35
35
OUTLET
36.5
36
36
36.5
37 '
38
39
48
41
INLET SCALE FACTOR X25888
OUTLET SCALE FACTOR X3888
CONCENTRATION
(ppmv •( Cj)' ADSORBING
INLET OUTLET EFFICIENCY
15888 1895 92.7
15588 1888 93.8323
15888 1888 92.8
15888 1895 92.7
13888 1118 91.4616
14258 1148 92
15888 1178 92.2
8758 1288 86. 2857
8758 1238 85.9429
INLET
PPHV CONCENTRATION
13361.1
AVERAGES
EFFICIENCY
918136
OUTLET
PPMV CONCENTRATION
1133.33
-------
Day 1
CARBON ADSORBER EFFICIENCIES
RUBBER COMPANY
EASTERN DIVISION
MEST HAVEN, CONNETICUTT
CODE:C1 1
DATE. 1/23/79
FID HVDROCARBON ANALVSIS
NON RADIAL
INLET SCALE FACTOR X23000
OUTLET
CHART DIVISIONS
REF *
1323 39
40
41
42
1327 43
INLET
56
67
£9
73
72
OUTLET
32
32
32.5
33.5
35
ts C,)
INLET OUTLET
14500 966
16750 960
17250 975
18250 1605
18000 1050
ADSORBING
EFFICIENCY
92. 3793
94. 2667
94. 3476
94. 4932
94.1667
INLET
PPMV CONCENTRATION
16950
n»c*nuti
EFFICIENCY
94. 1311
OUTLET
PPMV CONCENTRATION
990
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN. CONNETICUTT
1TRU COOE:D1|
DATE: 1/23/79
Day 1
NON RADIAL
FID HYDROCARBON ANALYSIS
1334
INLET SCALE FACTOR X25888
OUTLET SCRLE FACTOR X3880
CONCENTRATION
1404
CHART DIVISIONS
REF t
se
51
52
53
54
55
56
57
58
59
66
£1
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
76
79
88
INLET
68
78
75
75
76
74
75
75
73
71
88
75
76
77
78
77
75
88
79
78
77
83
88
85
82
83
82
82.5
78
74
78
OUTLET
33
32
32
32
33
34
35
37
38
39
48.5
42
43
44
45
46
47
48
49
58
51
58.5
666.66
54
78
45
36.5
31
28
25.5
24
(ppmv as C,)
INLET
15888
17588
18758
18758
19888
18588
18758
18758
18258
17758
28888
18758
19888
19258
19588
19258
18756
28888
19758
19588
19258
28758
28888
21258
28588
28758
28588
28625
19588
18588
17588
OUTLET
998
968
968
968
998
1828
1858
1118
1148
1178
1215
1268
1298
1328
1358
1388
1418
1448
1478
1588
1538
1515
19999.8
1628
2188
1358
1895
938
848
765
728
ADSORBING
EFFICIENCY
93.4
94. 5143
94.88
94.68
94.7895
94.4865
94.4
94.88
93. 7534
93. 4885
93.925
93.28
93. 2185
93. 1429
93. 8769
92. 8312
92.48
92. 8
92.557
92.3877
92. 8519
92.6988
9. 96894E-84
92. 3765
89.7561
93.494
94.6565
95.4989
95. 6923
95.8649
95.8857
INLET
PPMV CONCENTRATION
19157.3
AVERAGES
EFFICIENCY
98.6586
OUTLET
PPMV CONCENTRATION
1828. 96
-------
CARBON ADSORBER EFFICIENCIES
Day 1
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
tTRH CODE:El I
DATE: 1/23/79
FID HYDROCARBON ANALYSIS
RADIAL
INLET SCALE FACTOR X25888
OUTLET SCALE FACTOR X3800
CONCENTRATION
CHART DIVISIONS (PP"» •* Cj)
REF • INLET OUTLET INLET OUTLET
1408 64
85
86
87
88
1413 89
£2 20
48 28.5
24 28.5
25 28
33 19.5
34 19.5
INLET
PPMV CONCENTRATION
9883.33
15588 €88
18808 615
6888 615
6258 688
8258 585
8588 585
AVERAGES
EFFICIENCY PPMV
92.6926
ADSORBING
EFFICIENCY
96.129
93.85
89.75
98.4
92.9891
93. 1177
OUTLET
CONCENTRATION
688
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
[TRW CODE.Fil
DATE: 1/23/79
FID HYDROCARBON ANALYSIS
NON RADIAL
INLET SCALE FACTOR X25880
OUTLET SCALE FACTOR X3000
CONCENTRATION
CHART DIVISIONS
1425
1434
REF «
101
102
103
104
185
186
187
188
189
118
INLET
27
28
35
68
66
68
68
68
68
65
OUTLET
17.5
17.5
17.5
17.5
18
19.5
28.5
22
23
24.5
(ppnv «s C,)
INLET
6750
7800
8758
15800
16500
17000
17880
17888
17008
16258
OUTLET
525
525
525
525
548
585
615
668
690
735
ADSORBING
EFFICIENCY
92.2222
92.5
94
96.5
96.7273
96.5568
96.3824
96. 1177
95.9412
95. 4769
INLET
PPMV CONCENTRATION
13825
AVERAGES
EFFICIENCY
95. 2427
167
OUTLET
PPMV CONCENTRATION
592.5
-------
Day 1
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPANV
ERSTERN DIVISION
MEST HAVEN, CONNETICUTT
[TRU COOE:G1]
DATE: 1/23/79
FID HVDROCARBON ANALYSIS
NON RADIAL
INLET SCALE FACTOR X25860
REF
1539 175
176
177
178
179
1544 188
OUTLET SCfiLE FRCTOR X3886
CONCENTRATION
CHART DIVISIONS (PP"» « C.)
• INLET OUTLET INLET OUTLET
58 37
58 38
68 26.5
63 24
64 23
62 22
INLET
PPW CONCENTRRTION
15288.3
14588 1118
14588 988
15888 795
15758 728
16888 698
15588 668
AVERAGES
EFFICIENCV PPMV
94.616
ADSORBING
EFFICIENCV
92. 3448
93. 7931
94.7
95.4286
95.6875
95. 7419
OUTLET
CONCENTRflT
812.5
-------
Day 1
CARBON ADSORBER EFFICIENCIES
flRHSTRONG RUBBER COHPflNY
ERSTERN DIVISION
WEST HRVEN, CONNETICUTT
1JRU CODE:
MTE: 1/24,
S3
1/79
WON RADIAL
FID HVWaXflRBON RNRLVSIS
INLET SCflLE FRCTOR X2S8ee
OUTLET SCflLE FRCTOR X3668
CONCENTRATION
OC/15
9C2
CHRRT DIVISIONS
REF •
1
2
3
4
5
6
7
8
9
ie
11
12
13
14
15
16
17
16
INLET
64
64
65
65
63
65
65
65
65
65
66
65
66
65
66
66
65
46
OUTLET
46
46
46
46
46.5
41
42
43
44
45
45.5
46
47
49
51
51
52
53
(ppBV IS C^
INLET
16666
16668
16256
16256
15756
16256
16256
16256
16256
16256
16566
16256
16566
16256
16566
16566
16256
16666
OUTLET
1266
1266
1266
1266
1215
1236
1266
1296
1326
1356
1365
1386
1416
1476
1536
1536
1566
1598
RDSORBING
EFFICIENCY
92.5
92.5
92.6154
92. 6154
92.2857
92.4368
92. 2462
92.6616
918769
91.6922
91. 7273
91.5677
91.4546
96.9539
96. 7273
96. 7273
96.4
84.1
INLET
PfttV CONCENTRRTION
15962.8
ftVERRGES
EFFICIENCY
91.3568
OUTLET
PPMV CONCENTRATION
1356
-------
Day 1
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPANV
EASTERN DIVISION
HEST HAVEN, CONHETICUTT
fTRM CODE:B2l
DATE: 1/24/79
FID HYDROCARBON fMRLVSIS
NON RADIAL
INLET SCALE FRCTOR X25008
OUTLET SCflLE FACTOR X3888
CONCENTRATION
920
936
REF •
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58
51
52
CHART DIVISIONS
INLET OUTLET
35
54
57
57
66
62
63
68
68
62
72
67
68
68
69
70
46
26.5
26
26
29
30.5
33
35
37
38.5
40
42
44
45
46.5
48
50
51
(ppwv as Cj )
INLET ' OUTLET
8750
13508
14250
14250
16508
15508
15758
15088
15000
15508
18888
16758
17008
17000
17258
17580
10000
795
780
780
870
915
990
1050
1110
1155
1208
1268
1328
1358
1395
1448
1588
1530
ADSORBING
EFFICIENCV
90.9143
94.2222
94.5263
S3. 8947
94.4546
93. 6129
93. 3333
92.6
92.3
92.2581
93
92.1194
92.0588
91.7941
91. 6522
91. 4286
84.7
INLET
PPMV CONCENTRATION
15147.1
AVERAGES
EFFICIENCV
92.2864
OUTLET
PPHV CONCENTRATION
1143. 53
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPANV
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
I TRU CODE.C2 |
DATE: 1/23/79
FID HVDROCARBON ANALVSIS
Day 1
RADIAL
948
1004
INLET SCALE FACTOR X25888
OUTLET SCALE FACTOR X3888
CHART DIVISIONS
REF • INLET OUTLET
64
€5
66
67
68
69
78
71
72
73
74
75
76
77
78
79
88
46 12.5
48 12.5
42 12.5
47 12.5
44 13
41 13
44 13
43 14
42 15
42 17
43 18
43 19
43 19.5
47 19. 5
44 19.5
45 19
45 18. 5
INLET
PPMV CONCENTRATION
18926.5
CONCENTRATION
(ppnv ts Cj) -
INLET OUTLET
18888 375
12888 375
18588 375
11758 375
11888 398
18258 398
11880 398
18758 428
18588 458
18588 518
18758 548
18758 578
18758 585
11758 585
11888 585
11258 578
11258 555
aucoofycc
fTTCJVrHJCD
EFFICIENCV PPMV
95.6678
ADSORBING
EFFICIENCV
96.25
96.875
96. 4286
96.8885
96.4546
96.1951
96.4546
96.892
95. 7143
95. 1429
94. 9768
94. 6977
94.5581
95. 8213
94. 6818
94. 9332
95.8667
OUTLET
CONCENTRATION
472.941
-------
CARBON ADSORBER EFFICIENCIES
Day 2
ARMSTRONG RUB8ER COMPANY
ERSTERM DIVISION
HEST HRVEN, CONNETICUTT
1012
1054
|TRHCODE:D2| RADI
DBTE. 1/24/79
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25680
^^ ^/r'SBPrtJS908
CHART DIVISIONS
REF t
88
89
96
91
92
92
94
95
96
97
98
99
188
161
182
183
184
165
186
167
168
169
lie
111
112
112
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
136
INLET
28
48
46
48
52
46
47
45
47
45
46
46
46
47
47
46
46
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
47
47
47
47
48
48
48
48
48
48
48
OUTLET
21
22
23
24
24.5
25
26
26.5
27
27.5
28
28.5
29
29.5
38
38.5
31
31.5
32
32 5
32.5
33
33.5
34
34
34
34
34
34
34
34
•34
36
37
37
37.5
38
38.5
38.5
39
39
48
46.5
(*>•» IS Cy)
INLET
7660
16888
11500
12600
13680
11588
11758
11258
11750
11250
11500
11500
11500
11750
11758
11580
11500
11258
11250
11250
11250
11258
11258
11258
11258
11250
11250
11250
11250
11250
11250
11258
11758
11750
11750
11758
12680
12600
12000
12888
12000
12080
12880
OUTLET
638
668
690
720
735
750
788
795
810
625
848
855
870
885
see
915
936
945
968
975
975
990
1685
1626
1628
1628
1820
1828
1628
1628
1626
1620
1680
1110
me
1125
1146
1155
1155
1176
1176
1260
1215
ADSORBING
EFFICIENCY
91
93.4
94
94
94.3462
93. 4783
93.3617
92. 9333
93. 1064
92.6667
92.6957
92.5652
92. 4348
92.4681
92. 3404
92.6435
91.9131
91.6
91.4667
91.3333
91. 3333
91.2
91.6667
90. 9333
90. 9333
90. 9333
90. 9333
90. 9223
96. 9333
96.9333
96. 9333
98. 9333
98.8885
98.5532
98.5532
98.4255
98.5
98.375
96.375
96.25
96.25
98
89.875
-------
131
132
133
134
135
48
48
48
48
48
48.5
41
41.5
42
42.5
12086
12886
12886
12886
12886
1215
1238
1245
1268
1275
89.875
89.75
89.625
89.5
89.375
Day 2
INLET
CONCENTRflTION
11494.8
AVERAGES
EFFICIENCY
91.4889
OUTLET
PPMV CONCENTRRT10N
989.863
-------
Day 2
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPRNV
EASTERN DIVISION
MEST HAVEN, CONMETICUTT
[TRH CODE:E2 I
DATE. 1/24/79
FID HVDROCflRBON ANALYSIS
RADIAL
INLET SCALE FACTOR X25888
OUTLET SCALE FACTW.
CONCENTRATIC
1110
1139
CHART DIVISIONS
REF •
136
137
118
139
146
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175
INLET
48
48
48
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
44
44
44
44
44
44
44
44
44
44
43
42
47
46
47
41
46
OUTLET
42.5
42.5
43
43
43
43
43
43
43
43
43
43
43
43
43.5
43.5
43.5
44
44
44
44
44
44
44
44
44
44
44
44
44
44.-
44
44
44
44
44
44
44
44
44
tpp«IV U C, J
INLET
12088
12888
12888
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11588
11880
11888
11888
11888
11888
11888
11888
11888
11888
11888
18758
18588
11758
11588
11758
18258
11588
OUTLET
1275
1275
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1385
1385
1385
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
1328
ADSORBING
EFFICIENCY
89.375
89.375
89.25
88.7826
88.7826
88.7826
86.7826
88.7826
88.7826
88.7826 .
88.7826
88.7826
88.7826
88. 7826
88.6522
88.6522
88.6522
88.5217
88.5217
88.5217
88.5217
88.5217
88.5217
88
88
88
88
88
88
88
88
88
88
87.7289
87. 4286
88.766
88.5217
88.766
87.122
88.5217
INLET
PFHV CONCENTRATION
11358
AVERAGES
EFFICIENCY
88.4635
OUTLET
PPMV CONCENTRATION
1387.63
-------
CARBON ADSORBER EFFICIENCIES
Day 2
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN, CONNETICUTT
[TRH CQDE.F2 I
DATE: 1/24/79
FID HYDROCARBON ANALYSIS
RADIAL
1153
1200
INLET SCALE FACTOR X25008
REF
189
198
191
192
193
194
195
196
OUTLET SCALE FACTOR X3088
CONCENTRATION
CHART DIVISIONS (pP«V »* C,)
« INLET OUTLET INLET OUTLET
26 IS
31 16.5
34 18
35 18.5
37 19
46 20
25 20.5
38 26.5
INLET
F1W CONCENTRATION
8125
7008 458
7758 495
8588 548
8758 555
9258 578
10800 £08
£258 £15
7508 £15
AVERAGES
EFFICIENCY PPMV
93.0358
ADSORBING
EFFICIENCY
93. 5714
93.6129
93. 6471
93. 6571
93. 8378
94
90.16
91.8
OUTLET
CONCENTRAT
555
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
MEST HAVEN. CONNETICUTT
fTRU CODE.G2I
DATE: 1/24/79
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25000
—* i**Ana
Day 2
RADIAL
REF •
1209 205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
l
1
CHRRT DIVISIONS J
INLET OUTLET M
Mnbtnirv" »w..
arvnv AS' C* I
Ft"1* ma *• 1 *
. fr OUTLET
Lt 1 *Ar ' ^^ *
^CACt £^B
•*A >l O*WW -~~
% % 9258 660
?Z g 9500 690
2 S 9500 720
* £ 11250 750
« §5 18250 765
£ S 18000 TO
48 26 ?95
35 26.5
40 27
44 28
41 28.5
41 29
41 29.5
41 30
41 30.5
41 31. 5
41 31.5
41 32
41 33
42 33.5
42 34
43 34. 5
43 35
43 36
44 36.5
230 45 37
231 45 37.5
232 45 38
233 45 38. 5
234 45 39
235 45 .-39.5
236 45 40
237 45 40.5
238 45 41
239 45 41
240 41 41
241 M £ .
242 37 41. 5
243 43 42
244 43 _42._5.
245 43 425
246 £ £5
1251 247 36 48 .3
INLET
PPKV CONCENTRATION
104* 6 6
10000 810
11000 840
1B250 855
18250 870
10250 885
10250 900
18250 915
10250 945
10250 945
10250 960
10250 990
10500 1885
10500 1820
10750 W35
10750 1850
10750 1880
11000 1095
11250 1H8
11250 H25
U250 1140
11250 H55
11250 H70
11250 H85
11250 1208
11250 1215
11250 1230
11250 1230
10250 «30
9500 1238
9250 1245
10750 1260
18750 1275
10750 1275
10750 1260
9800 1215
AVERAGES
EFFICIENCY
, 90.2544
ADSORBING
EFFICIENCY
92. 5882
92.8649
92.7368
92. 4211
93. 3333
92. 5366
92.2
90. 9143
91.9
92.3636
91.6585
91. 5122
91.3659
91.2195
91. 0732
90.7805
90.7805
90. 6342
90. 3415
90.4286
90.2857
90. 3721
90.2326
89.9535
90.0455
90. 1333
90
89.8667
89.7333
89.6
89.4667
89. 3333
89.2
89.0667
89.0667
88
87. 0526
86.5405
88. 2791
88. 1395
88.1395
88.2791
86.5
OUTLET
PPMV CONCENTRBTION
1017. 21
-------
Day 2
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
tCST HAVEN. CONNETICUTT
ITRU CODE:
DATE: 1/24/79
FID HYDROCARBON flNALVSIS
INLET SCALE FACTOR X25888
OUTLET SCALE FACTOR X3888
CONCENTRATION
RADIAL
CHART DIVISIONS
REF •
1301 257
258
259
268
261
262
263
264
265
266
267
268
269
278
271
272
273
274
275
276
277
278
279
288
281
282
283
284
285
286
287
288
289
298
291
292
293
294
295
1340 296
INLET
33
37
38
49
42
41
48
48
28
25
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
16
16
16
OUTLET
34.5
36
37
38
39
39.5
48
48
39
38.5
37.5
36.5
36
35
34.5
34
33.5
33
32.5
32
32
32
31.5
31
31
38.5
38.5
38
38
29.5
29.5
29 .
29 '
28.5
28.5
28.5
28
28
27.5
27
(ppnv as C, )
INLET
8258
9258
9588
12258
18588
18258
18888
leeee
7888
6258
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
4888
4888
4888
OUTLET
1835
1888
1118
1148
1178
U8S
1288
1288
1178
1155
1125
1895
1888
1858
1835
1828
1885
998
975
968
968
968
945
938
938
915
915
988
988
885
885
878
878
855
855
855
848
848
825
818
ADSORBING
EFFICIENCY
87.4546
88.3243
88. 3158
98.6939
88.8572
88.439
88
88
83.2857
81.52
88. 4348
88.9565
81.2174
81.7391
82
82.2689
82.5217
82.7826
83.8435
83.3843
83.3843
83.3843
83.5652
83.8261
83.8261
84.887
84.887
84. 3478
84. 3478
64.6887
84.6887
84.8696
84.8696
85.1384
85.1384
85.1384
85.3913
79
79.375
79.75
INLET
PPHV CONCENTRATION
6512.5
AVERAGES
EFFICIENCY
84.1428
OUTLET
PPMV CONCENTRATION
988.125
-------
Day 2
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN. CONNETICUTT
CODE.JZ i
DATE: 1/24/79
RADIAL
FID HYDROCARBON ANALYSIS
OUTLET SCALE FACTOR X3888
CONCENTRATION
1351
1400
REF •
307.
388
389
310
311
312
313
314
315
316
CHART DIVISIONS
INLET OUTLET
16
16
16
16
16
16
16
16
16
16
12
12
12
12
12
12
12
12
12
11.5
(pp*V IS C.)
INLET OUTLET
4888
4888
4888
4AAA
m/u
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
ERSTERN DIVISION
HEST HAVEN, CONNETICUTT
I TRW CODE:K2 I
OflTE: 1/24/79
Day 2
RADIAL
FID HYDROCARBON ANRLVSIS
INLET SCALE FACTOR X25808
OUTLET SCALE FACTOR X3888
CONCENTRATION
REF
1401 317
316
319
328
321
322
323
324
325
1410 326
CHART DIVISIONS
« INLET OUTLET
19 11.5
19 11.5
19 11. 5
19 11.5
28 11.5
21 11.5
21 11.5
21 12
21 13
21 13
INLET
PPMV CONCENTRATION
5625
(ppmv as C,)
INLET OUTLET
4758 345
4756 345
4758 345
4758 345
5688 345
5258 345
5258 345
5258 368
5258 398
5258 398
RUCDOfiCC
nvdMiut^^
EFFICIENCY PPHV
32. 919
ADSORBING
EFFICIENCY
92. 7368
92. 7368
92. 7368
92. 7366
93.1
93. 4286
93. 4286
93. 1429
92. 5714
92. 5714
OUTLET
CONCENTRAT
355.5
-------
CARBON ADSORBER EFFICIENCIES
Day 2
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
UEST HAVEN, CONNET1CUTT
ITRU CODE:L2 I
RAE
DATE: 1/24/79
FID HYDROCARBON ANALVSIS
INLET SCALE FACTOR X25680
OUTLET SCALE FACTOR X3060
CONCENTRATION
CHART DIVISIONS (PP«IV « C^)
REF * INLET OUTLET INLET OUTLET
1428 344 18 15 4566 450
345 26 15
346 21 15. 5
347 21 16
348 21 16
349 21 16
358 21 16
351 21 16
352 21 16. 5
353 21 16. 5
354 21 17
355 21 17
356 21 17
357 21 17
358 21 17
359 21 17. 5
360 21 . 17. 5
361 21 17. 5
362 21 16
1447 363 21 18
INLET
PPMV CONCENTRATION
5260
5600 450
5250 465
5250 480
5250 480
5250 480
5250 480
5250 480
5250 495
5250 495
5250 510
5250 510
5250 510
5250 510
5250 510
5250 525
5250 525
5250 525
5250 540
5250 540
AVERAGES
EFFICIENCY PFflV
96. 4214
ADSORBING
EFFICIENCY
90
91
91. 1429
96.8571
90. 8571
90. 8571
98.8571
98.8571
90. 5714
90. 5714
90. 2857
90. 2857
90. 2857
98. 2857
90. 2857
90
90
90
89. 7143
89. 714Z<
OUTLET
CONCENTRAT
498
-------
Day 2
CflRBON RDSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPflNY
ERSTERN DIVISION
HEST HRVEN, CONNETICUTT
1 TRW CODE:
KM
RAI
DflTE: 1/24/79
FID HYDROCARBON flHHLYSIS
INLET SOTLE FRCTOR X25086
OUTLET SCftLE FRCTOR X3688
CONCENTRATION
REF •
1500 376
377
378
379
386
381
382
383
384
385
386
387
388
389
396
391
392
392
394
395
396
397
398
399
466
481
482
463
464
465
466
467
468
469
416
411
412
413
414
415
416
417
418
419
CHHRT DIVISIONS
INLET OUTLET
16
26
23
23
23
29
22
22
22
22
22
22
22
22
22
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
23
23
23
24
24
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17
17
17
17
17
17
17
17
17
17
17
17
zee
266
(ppw as C,)
INLET OUTLET
4666
5066
5756
5756
5756
7256
5568
5568
5568
5568
5568
5568
5568
5568
5566
5258
5256
5258
5256
5256
5256
5256
5566
5566
5588
5566
5568
5568
5588
5568
5586
5758
5758
5756
5756
5756
5756
5758
5756
5756
5758
5758
6668
6668
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
525
518
516
510
518
518
518
516
516
510
516
516
518
6666
6686
RDSORBING
EFFICIENCY
86.875
89.5
98.8696
98.8696
98.8696
92.7586
96.4546
96.4546
98.4546
98.4546
96.4546
98.4546
96.4546
98.4546
96.4546
98
96
98
96
96
96
96
98.4546
98.4546
98.4546
98.4545
98.4546
98.4546
98.4546
98.4546
98.7273
91.1364
91.1384
911384
91.1384
91.1384
91.1304
91.1304
91.1304
911384
911364
911384
8
6
-------
Day 2
420
421
422
423
424
425
1550 426
24
23
23
23
16
16
16
48
29
25
28
18
16
6886
5758
5758
5758
4888
4888
4888
1688
1288
878
758
688
548
488
78
79.1384
84.8696
86.9565
85
86.5
INLET
PPHV CONCENTRflTlON
5485.29
RVERRGES
EFFICIENCY
85.9429
OUTLET
PPMV CONCENTRflTlON
786.471
-------
Day 3
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
ERSTERN DIVISION
HEST HRVEH CONNETICUTT
JTRH CODE:A3 |
DATE: 1/25/79
FID HVDROCflRBON ANALYSIS
RADIAL
INLET SCALE FACTOR
OUTLET SCALE. FACTOR
X25868
CHART DIVISIONS
REF •
0745 1
2
3
4
5
6
7
8
9
16
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
36
31
32
33
34
35
36
0821 37
INLET
22
23
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
OUTLET
77
66
41
32
27
23
a
19
18
18
17
17
17
16
18
26
26.5
26.5
26.5
26.5
26.5
26.5
26.5
21
21
21
21
22
22
22
22
22
22
22
22
22
23
(pp»v as C, )
INLET
5566
5756
5566
5566
5566
5566
5566
5568
5566
5568
5566
5566
5566
5566
5566
5568
5568
5566
5566
5566
KBAA
33uo
ftKOtQ
93W
5568
5566
5568
5588
5566
5566
5568
5586
5568
5568
5566
5758
5756
5758
5756
OUTLET
2316
1886
1236
968
818
£98
638
578
548
548
518
516
516
486
548
666
615
615
615
615
615
615
615
636
638
636
636
666
666
668
668
666
668
668
668
666
698
ADSORBING
EFFICIENCV
58
68.6957
77.6364
82.5455
85. 2727
87. 4546
88.5455
89.6364
96.1818
96.1818
98.7273
96. 7273
96. 7273
91. 2727
96.1818
89.8969
88. 8182
88. 8182
88. 8182
88.8182
88.8182
88.8182
88.8182
88.5455
88.5455
88.5455
88.5455
88
88
88
88
88
88
88.5217
88.5217
88.5217
88
INLET
PPMV CONCENTRATION
5533.78
AVERAGES
EFFICIENCV
86.9825
OUTLET
PPMV CONCENTRATION
721.216
-------
Day 3
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COHPANV
EASTERN DIVISION
HAVEN. CONNET1CUTT
ITRU CODE:B3|
DATE: 1/25/79
RADIAL
FID HYDROCARBON ANALVSIS
INLET SCALE FACTOR X25688
OUTLET sca^EjrFjjij^TDo(prT(j<3e8e
CHART DIVISIONS
REF « INLET OUTLET
0831 47 28 22
48 26 22
49 26 22
58 26 22
51 21 23
52 21 23
53 21 23
54 21 24
55 21 24
56 21 24
57 21 24
58 21 24
59 21 24
68 21 24
61 21 25
62 21 25
63 21 25
64 22 25
0849 65 22 25
INLET
PPMV CONCENTRATION
5223. 69
vviibkiii nni ivil
(ppmv as C^ ADSORBING
INLET OUTLET EFFICIENCY
5866 666
5866 666
5666 666
5868 666
5258 696
5256 698
5258 698
5258 726
5258 726
5258 728
5256 726
5256 726
5256 726
5256 728
5256 758
5256 756
5256 756
5588 758
5586 758
AVERAGES ,
EFFICIENCY
86. 4622
66.8
66.8
86. 8
66.8
66. 8571
86. 8571
66. 8571
86. 2857
86. 2857
86. 2857
66. 2857
86. 2857
86. 2857
86. 2857
85. 7143
65. 7143
85. 7143
86. 3636
86. 3636
OUTLET
PFtIV CONCENTRATION
718. 526
-------
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN. CONNETICUTT
Day 3
1 TRW CODE:C3 1
DATE: i/25,-79
RAD I A
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25800
OUTLET SCALE FACTOR X3000
CONCENTRATION
CHART DIVISIONS
REF « INLET OUTLET
0850 66 16 25
67 16 25
68 16 26
69 16 26
70 16 25
71 15 25
72 15 25
73 is 25
74 15 25
75 15 25
76 15 25
77 15 25
76 24 , 25
79 25 25
88 26 25
81 26 27
82 26 28
82 16 28
84 16 29
85 15 28
86 15 27
87 14 27
88 14 26
89 14 26
90 14 26
91 16 25
92 19 24
93 19 24
94 22 24
95 22 24
96 22 24
97 22 24-
98 22 24
99 22 24
iee 22 24
161 22 24
192 22 24
102 23 24
164 23 24
0929105 23 24
INLET
PPMV CONCENTRATION
4693.75
(ppmv as C-,)
INLET OUTLET
4060 750
4006 750
4000 780
4000 780
4000 750
3750 750
3750 750
3750 750
3750 756
3750 750
3750 750
3750 750
6000 750
6250 750
65b0 750
6500 810
6500 840
4000 840
4800 870
3750 840
3750 810
3500 810
3500 780
3500 780
3500 780
4000 750
4750 720
4750 720
5500 720
5500 720
5500 720
5500 720
5500 720
5500 720
5500 720
5500 720
5500 720
5750 720
5750 720
5750 720
AVERAGES
EFFICIENCY PPMV
83. 0532
ADSORBING
EFFICIENCY
81.25
81.25
80.5
80.5
81.25
80
80
80
80
80
80
80
87.5
88
88. 4615
87. 5385
87. 0769
79
78.25
77.6
78.4
76. 8572
77. 7143
77. 7143
77.7143
81.25
84 8421
84.8421
86. 9091
86.9091
86.9091
86.9091
86.9091
86.9091
86.9091
86.9091
86.9091
87. 4782
87. 4783
87. 4782
OUTLET
CONCENTRATION
757.5
-------
CftRBON HDSORBER EFFICIENCIES
HWSTRONG RUBBER COMPflNV
ERSTERN DIVISION
HEST HftVEN, CONNETICUTT
Day 3
( TRW CODE:D3 1
DATE: 1/25/79
RA1
FID HYDROCARBON RNflLVSIS
INLET SCALE FRCTOR X25868
OUTLET SCRLE FACTOR X3688
REF
0935 ill
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
1014 156
CHRRT DIVISIONS
t INLET OUTLET
24 24
24 24
24 24
24 24
24 24
24 24
24 24
24 24
24 25
24 25
23 88
23 68
23 38
23 29
23 23
22 28
22 17
22 16
22 15
22 14
22 14
22 14
22 14
22 13
22 13
22 13
23 13
23 14
23 15
23 16
23 16
23 16."
23 16
23 16
23 16
23 16
23 16
23 16
23 16
23 16
INLET
PPMV CONCENTRRTION
5743. 75
CONCENTRATION
(ppmv as C,)
INLET OUTLET
6668 726
6688 726
6688 728
6688 726
6668 726
6688 728
6660 728
6660 726
6688 756
6686 756
5758 2486
5758 1888
5758 1148
5758 878
5756 698
5560 660
5588 516
5588 480
5588 450
5588 428
5588 426
5588 426
5568 428
5586 396
5560 396
5568 398
5756 398
5756 426
5756 456
5758 488
5758 480
5756 486
5758 488
5758 488
5756 486
5756 486
5756 488
5758 488
5758 486
5756 488
EFFICIENCV PPMV
88. 9688
ADSORBING
EFFICIENCV
88
88
88
88
88
88
88
88
87.5
87.5
58. 2689
68. 6957
88. 1739
84. 8696
88
89. 6989
98. 7273
91. 2727
91. 8182
92. 3636
92. 3636
92. 3636
92. 3636
92. 9691
92. 9891
92. 9691
93. 2174
92. 6957
92. 1739
91.6522
91. 6522
91.6522
91. 6522
91. 6522
91. 6522
91. 6522
91. 6522
91. 6522
91. 6522
91. 6522
OUTLET
CONCENTRRT
639. 75
-------
CARBON flDSORBER EFFICIENCIES
Day 3
RRHSTRONG RUBBER COMPflNY
EASTERN DIVISION
HEST HRVEN, CONNET1CUTT
I TRW CODE:E3 I
DflTE: 1/25/79
NON RADIAL
FID HYDROCRRBON HNRLYSIS
INLET SCRLE FRCTOR X2S880
OUTLET SCRLE FRCTOR X3888
CONCENTRATION
CHRRT DIVISIONS
REF «
1023 159
168
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
198
191
192
193
194
195
196
197
198
199
280
INLET
44
42
41
58
47
47
47
47
4?
48
48
48
48
48
31
31
32
33
33
34
35
36
37
38
39
48
48
41
42
43
44
45
46
47
48
58
51
52
52
52
53
53
OUTLET
18
19
28
21
22
23
24
25
26
27
28
29
38
38
58
58
51
51
49
48
4?
48
49
58
58
51
51
52
52
52
53
53
54
54
54
55
55
56
54
52
58
58
(pprav
INLET
11888
18500
18258
12588
11758
11758
11758
11758
11758
12880
12880
12888
12888
12888
7750
7758
8880
8258
8250
8580
8758
9888
9250
9580
9750
18880
18888
18258
18508
18750
11888
11258
11588
11758
12888
12588
12758
13880
13800
13000
13250
13258
as C^
OUTLET
540
578
688
638
668
698
728
758
788
818
848
876
900
988
1588
1588
1538
1538
1478
1448
1418
1448
1470
1588
1588
1538
1538
1568
1560
1560
1598
1598
1628
1628
1628
1658
1658
1688
1628
1568
1580
1580
ADSORBING
EFFICIENCY
95.8989
94. 5714
94. 1463
94.96
94.383
94. 1277
93. 8723
93. 617
93. 3617
93.25
93
92.75
92.5
92.5
88.6452
88. 6452
88.875
81.4546
82. 1818
83. 8588
83.8857
84
84.1881
84.2185
84. 6154
84. 7
84.7
84.7885
85. 1429
85. 4884
85.5455
85.8667
85.9131
86.2128
86.5
86 8
87. 8588
87. 8769
87. 5385
88
88. 6793
88. 6793
-------
201 53 30
262 54 58
283 55 51
284 56 52
285 57 52
206 58 52
287 59 51
208 59 51
209 59 51
218 59 58
211 59 58
212 59 58
213 59 58
214 59 58
215 59 58
216 59 58
217 59 58
218 59 58
219 59 58
228 59 58
221 55 51
222 55 51
1127 223 55 51
INLET
PPMV CONCENTRRTION
12138. 8
13258 1508
13588 1588
13758 1538
14008 1568
14258 1568
14588 1568
14758 1538
14758 1538
14758 1538
14758 1588
14758 1588
14758 1588
14758 1588
14750 1588
14758 1588
14750 1580
14758 1588
14758 1588
14758 1588
14758 1588
13758 1530
13758 1530
13758 1538
RVERflGES
EFFICIENCY
88. 4265
Day 3
NON RADIAL
OUTLET
PPMV CONCENTRRTION
1359. 6S
-------
CARBON ADSORBER EFFICIENCIES
Day 3
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
WEST HAVEN, CONNETICUTT
1130
|TRU CODE
:F3 1
NON 1
DATE. 1/25/79
FID HYDROCARBON ANALYSIS
INLET SCALE FACTOR X25000
OUTLET SCALE FACTOR X3000
CONCENTRATION
CHART DIVISIONS
REF «
226
227
228
229
236
231
232
233
234
235
236
237
236
239
248
241
242
243
244
245
246
247
246
249
256
251
252
253
254
255
256
257
258
259
268
261
262
263
264
265
266
267
268
269
270
INLET
55
55
55
55
55
55
55
55
55
55
48
57
55
55
55
55
55
72
65
6e
57
55
55
55
56
56
56
56
56
56
56
57
57
57
57
58
58
58
58
58
58
57
57
57
57
OUTLET
51
51
51
51
51
51
51
52
52
53
53
54
55
56
57
59
458
680
96
68
43
31
28
26
25
25
25
25
25
25
J25
"29
31
32
33
34
35
36
37
38
39
48
41
42
44
(ppmv
INLET
13758
13758
13756
13758
13758
13758
13758
13758
13750
13750
12088
14258
13758
13758
13758
13750
13750
18808
16258
15086
14250
13758
13758
13750
14800
14860
14000
14006
14000
14000
14000
14250
14250
14250
14250
14500
14500
14506
14566
14586
14508
14258
14256
14258
14258
as C,)
OUTLET
1536
1536
1536
1536
1538
1526
1536
1566
1568
1598
1598
1626
1656
1680
1716
1776
13748
18886
2706
1800
1296
938
840
780
750
750
750
750
750
750
756
876
936
966
996
1020
1050
1086
1110
1140
1178
1260
1230
1260
1320
ADSORBING
EFFICIENCY
88. 8727
88. 8727
88. 8727
88. 8727
88. 8727
88. 8727
88. 8727
88.6546
88.6546
B8. 4364
86.75
88. 6316
88
87. 7818
87. 5626
87. 1273
. 0727272
0
83.3846
88
96.9474
93. 2364
93. 8969
94.3273
94.6429
94.6429
94.6429
94.6429
94.6429
94.6429
94.6429
92.8947
93. 4737
93. 2632
93. 0526
92. 9655
92. 7586
92. 5517
92. 3448
92. 1379
91.931
91. 5789
91. 3684
91. 1579
90.7368
-------
Day 3
1230
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
57 46
58 47
58 48
58 49
58 58
58 58
59 52
59 53
59 53
59 53
59 54
33 54
38 52
28 50
26 48
25 47
INLET
PPNV CONCENTRATION
13643.4
14256 1388
14580 1418
14580 1448
14580 1470
14580 1500
14500 1500
14750 1560
14750 1590
14750 1590
14750 1590
14750 1620
8250 1620
7500 1568
7880 1500
6500 1440
6258 1410
AVERAGES
EFFICIENCY
86.7646
90. 3158
98.2759
90.069
89.8621
89.6552
89.6552
89. 4237
89.2203
89.2203
89.2283
89.017
88.3636
79.2
78. 5714
77.8462
77. 44
OUTLET
PPMV CONCENTRATION
1807. 87
NON RADIAL
-------
CARBON ADSORBER EFFICIENCIES
Day 3
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HRVEN, CONHETICUTT
ITRM CODE:021
DATE: i/25/79
FID HYDROCARBON ANALYSIS
NON RADIAL
1236
1319
INLET SCALE FACTOR X25000
OUTLET SCALE FACTOR X3006
CHART DIVISIONS
REF • INLET OUTLET
292 51 47
293 52 48
294 52 49
295 52 50
296 53 52
297 53 53
298 53 54
299 53 55
386 53 57
301 53 58
382 53 59
303 53 60
364 53 61
305 53 61
306 55 62
307 55 62
308 55 63
309 52 63
310 56 64
311 51 64
312 51 65
313 51 65
314 51 66
315 51 66
316 51 66
317 52 67
318 52 67
319 52 67
320 52 68
321 52 68
322 52 69
323 52 69
324 53 '70
325 53 70
326 53 71
327 53 71
328 53 72
329 53 72
330 53 73
331 54 73
332 28 71
333 25 69
334 24 67
335 24 £3
INLET '
PPMV CONCENTRATION
.12506
CONCENTRATION
(ppmv as C,)
INLET OUTLET
12750 1410
13806 1440
13006 1470
13000 1500
13250 1560
13250 1590
13250 1620
13250 1650
13250 1710
13250 1740
13250 1770
13250 1800
13250 1830
13250 1830
13750 I860
13750 1860
13750 1890
13060 1890
12566 1920
12750 1926
12750 1950
12750 1950
12750 1986
12756 1986
12756 1986
13006 2016
13066 2016
13666 2616
13006 2646
13006 2640
13066 2676
13066 2076
13256 2166
13250 2106
13250 2130
13256 2130
13250 2166
13256 2166
13256 2196
13566 2190
7006 2136
6250 2070
6006 2010
6880 1890
AVERAGES
EFFICIENCY PPMV
83. 9923
ADSORBING
EFFICIENCY
88.9412
88. 9231
88. 6923
88. 4615
88. 2264
88
87. 7736
87. 5472
87. 0943
86. 8679
86.6415
86. 4151
86. 1887
86. 1887
86. 4727
86. 4727
86.2545
85. 4616
84.64
84.9412
84.7059
84. 7059
84. 4706
84. 4766
84. 4706
84. 5385
84. 53B5
84. 5385
84. 3077
84. 3077
84. 0769
84. 0769
84.1509
84.1509
83. 9245
83. 9245
83. 6981
83. 6981
83. 4717
83. 7778
69. 5714
66.88
66.5
68.5
OUTLET
CONCENTRATION
1900.23
-------
Day 3
CflRBON RDSORBER EFFICIENCIES
RRMSTRONG RUBBER COMPRNV
ERSTERN DIVISION
HEST HRVEN. CONNETICUTT
TRU CODE:H3 I
DflTE: 1/25/79
FID HYDROCRRBON RNRLVSIS
NON RADIAL
INLET SCRLE FRCTOR X25000
OUTLET SCRLE FftCTOR X3008
CHRRT DIVISIONS
REF 1 INLET OUTLET
1328 344 45 53
345 52 52
1330 346 52 51
INLET
PPMV CONCENTRRTION
12416. 7
CONCENTRATION
(ppmv as C,)
INLET OUTLET
11250 1590
13000 1560
13800 1530
RVERRGES
EFFICIENCV PPMV
87. 3658
RDSORBING
EFFICIENCV
85.8667
88
88. 2308
OUTLET
CONCENTRRTION
1568
CRRBON RDSORBER EFFICIENCIES
RRMSTRONG RUBBER COMPRNV
ERSTERN DIVISION
HEST HRVEN. CONNET I CUTT
FTRU
DflTE: 1/25/79
FID HVDROCRRBON RNRLVSIS
NON RADIAL
CHRRT DIVISIONS
13/14
1348
REF «
360
361
362
363
364
INLET
58
58
58
50
50
OUTLET
43
45
47
49 •'
416. 667
INLET SCRLE FRCTOR X25880
OUTLET SCHLE FRCTOR X3000
CONCENTRATION
(ppmv as C^ RDSORBING
INLET OUTLET EFFICIENCV
14500 1290 91.1034
14580 1350 90.6897
14500 1410 90.2759
12500 1470 88. 24
12580 12580 7. OiaBC 05 •
INLET
PPMV CONCENTRRTION
13700
RVERRGES
EFFICIENCV
OUTLET
PPMV CONCENTRRTION
3604
-------
APPENDIX G
CAPTURE EFFICIENCY DATA
-------
An attempt was made during the test period to gather enough data
from the undertread cementer and the continuous hydrocarbon analyzers to
determine the capture efficiency for volatile organic carbon (VOC) of
the hooding system leading to the carbon adsorber. The capture efficiency
as determined from the data collected is presented in Tables G-l and G-2.
The average capture efficiency for the test interval conducted on 1/24/79
was 84 percent while the capture efficiency for the test interval conducted
on 1/25/79 was 122 percent. The capture efficiency for individual tread
runs varies greatly due to measurement difficulties.
The accuracy of the capture efficiency data as generated is questionable
for two major reasons. First the capture efficiency calculations assumes
the response of the FID to solvent is proportional to the reported
effective carbon number of the solvent. The empirically determined
solvent response factor determination performed in the laboratory proved
to be inconclusive and therefore was not used. Second, the measurement
of cement used during various test intervals was at best an approximation.
The quantity of cement used was determined by refilling the cementer
tank to a reference level and weighing the amount of cement required to
accomplish this. A slight imprecision in refilling the tank to the
reference level would introduce a large percentage error in the "apparent"
weight of cement used during that short period of time. The cement
measurement over a several hour period was thought to be more representa-
tive of the actual cement usage. The total cement used was not a sum of
individual tread runs, but a running total of the cement used during the
measurement period, which was determined by subtracting from a known
amount of cement. Therefore the imprecision in refilling the tank
resulted in a smaller percentage error in the cement usage rate as the
quantity of cement used increased over a larger period of time.
-------
ARMSTRONG RUBBER COMPANV
NEST HAVEN, CONNETICUTT
SUMMRRV OF CAPTURE EFFICIENCIES DURING VRRIOUS TEST INTERVRLS
DRTE: 1/24/79 RVG. INLET FLOW RflTE 163181 DSCF/HR
REF • TRW DURRTION HRSS (KG) AVERAGE PPMV SOLVENT CAPTURE
INTERVAL CODE (MIN) CEMENT CONCENTRATION MASS (KG) EFFICIENCY (%/
F2/G2 51 236.4 10849 158.861 72.2135
H2 48 184.7 6512 88.3352 88.7673
J2 18 32 4886 12.3365 48. 5885
K2 18 28.1 5825 15.4977 58.8547
L2 28 44.6 5286 32.8749 75. 7818
TOTAL CEMENT 175 439.8 6565 354.327 84.8857
TABLE G-l. CAPTURE EFFICIENCY
-------
ARMSTRONG RUBBER COMPANY
MEST HAVEN, CONNET1CUTT
SIMIRRV OF CAPTURE EFFICIENCIES DURING VRRIOUS TEST INTERVALS
DATE: 1/25/79 RVG INLET FLOW RRTE 168341 DSCF/HR
REF • TRU DURATION HRSS (KG) AVERAGE PPMV SOLVENT CAPTURE 0/ \
INTERVAL CODE (HIM) CEMENT CONCENTRATION MASS (KG) EFFICIENCY (Jo)
1 B3 16 66.6 5224 15.821 27.4988
C3 46 35.3 4692 56.8875 169.626
D3 40 91.5 5744 69.6275 88.1007
E2 65 206.1 12121 238.955 122.044
F3 61 72.9 13643 252.201 359.235
G2 44 101.4 12500 166.674 172.024
H3/J3 8 91.5 13058 31.6572 36.419
TOTAL CEMENT 318 790.4 9554 920.781 122.616
TABLE 6-2 CAPTURE EFFICIENCY
-------
1 of 4
CARBON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN/ CONNETICUTT
l.TRH CODE:TOTftL CEMENT
DATE: 1/24/79
FID HVDROCflRBON ANALYSIS
INLET SCALE FACTOR X2S888
CHART DIVISIONS
REF •
iH
191
192
193
194
195
196
197
198
199
288
281
282
283
284
285
286
287
288
289
218
211
212
213
214
215
216
217
216
219
228
221
222
223
224
225
226
227
228
229
238
231
232
INLET
9
34
35
37
48
25
38
17.5
16.5
15.5
15
15
15
15
15
34
37
38
38
45
41
48
35
48
44
41
41
41
41
41
41
41
41
41
42
42
43
43
43
44
45
45
45
OUTLET
Ji.5
18
18.5
19
28
28.5
28.5
28 5
28
28
19.5
19
19
19.5
26
a
22
23
24
25
25.5
26
26.5
27
28
28.5
29
29.5
38
38.5 .
31.5
31.5
32
33
33.5
34
34.5
35
36
36.5
37
37.5
38
(ppov IS Cj)
INLET
7756
6588
8758
9258
18888
6256
7588
4375
4125
3875
3756
3758
3756
3758
3756
8588
9258
9588
9588
11258
18258
18888
8758
18886
11886
18256
18258
18258
18256
18258
18258
18258
18258
18256
18586
18586
18758
18758
16758
11886
11258
11258
11258
OUTLET
456
495
548
555
578
688
615
615
615
686
686
585
578
576
585
686
636
666
698
728
758
765
768
795
818
846
855
876
885
988
915
945
945
968
996
1885
1826
1835
1856
1886
1895
1116
1125
1148
ADSORBING
EFF1C1ENCV
93. 5714
93. 6129
93. 6471
93. 6571
93. 8378
94
98.16
91.8
85.9429
85.4546
84. 5161
84.4
84.8
84. 8
64 4
84
92.5882
92.8649
92.7368
92. 4211
93. 3333
92. 5366
92.2
98.9143
91.9
923636
91.6585
91.5122
91.3659
91.2195
91.8732
98.7885
98.7885
98 6342
98 3415
98.4286
98.2857
98. 3721
98.2326
69.9535
98.8455
98.1333
98
69.8667
-------
233
234
235
236
237
238
239
248
241
242
243
244
245
246
247
248
249
2se
251
252
253
254
255
256
257
256
259
266
261
262
263
264
265
266
267
266
269
270
271
272
273
274
275
276
277
278
279
288
281
262
283
284
285
286
287
268
289
298
291
292
293
294
45
45
45
45
45
45
45
41
38
37
43
43
43
43
36
18
17
16
16
16
16
16
16
16
33
37
38
49
42
41
48
48.
28
25
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
16
38.5
39
39.5
48
46.5
41
41
41
41
41.5
42
42.5
42.5
42
48.5
39
38
37
36
35
35
34
33.5
34
34.5
36
37
38
39
39 5
48
48
39
38.5
37.5
36 5
36
35
34.5
34
33.5
33
32.5
32
32
32
31.5
31
31
38.5
38.5
38
38
29.5
29.5
29
29
26 5
28.5
28.5
26
26
11258
11258
11258
11258
11258
11258
11258
18258
9588
9258
18758
18756
18758
18758
9888
4588
4258
4888
4886
4886
4886
4886
4888
4888
8256
9258
9588
12258
18588
18258
18886
18866
7886
6258
5756
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5756
5756
5756
5756
5758
5758
5758
5758
5758
5758
4888
1155
1178
1185
1288
1215
1238
1238
1238
1238
1245
1268
1275
1275
1268
1215
1178
1148
1118
1886
1856
1856
1826
1885
1826
1835
1888
1118
1148
1178
1185
1286
1286
1176
1155
1125
1895
1888
1856
1835
1828
1885
998
975
968
968
968
945
938
938
915
915
986
986
885
885
878
878
855
855
855
648
648
89.7333
69.6
68.4667
89.3333
89.2
89.6667
89.6667
88
67.6526
86.5485
68.2791
88.1395
88.1395
88.2791
86.5
74
73. 1765
72.25
73
73.75
73.75
74.5
74. 875
74.5
87. 4546
88.3243
68.3158
98. 6939
88.8572
88.439
88
88
83.2857
81.52
88. 4348
88.9565
81.2174
81.7391
82
82.2689
62.5217
82.7826
83.8435
83. 3843
83.3843
83.3843
83.5652
83.8261
83.8261
84.887
84.687
64. 3478
64. 3478
84. 6867
84.6887
84.8696
84. 869b
65. 1364
85.1384
85.1384
85. 3913
79
2 of 4
-------
295
296
297
296
299
388
381
382
383
384
385
386
387
388
389
316
311
312
313
314
315
316
317
316
319
320
321
322
323
324
325
326
327
326
329
338
331
332
333
334
335
336
337
338
339
348
341
342
343
344
345
346
347
348
349
356
351
352
353
354
355
16
16
13
13
13
13
13
26
25
24
24
24
16
16
16
16
16
16
16
16
16
16
19
19
19
19
26
21
21
21
21
21
21
21
16
16
16
14
14
14
14
14
15
15
15
15
15
15
15
18
28
21
21
21
21
21
21
21
21
21
21
27.5
27
26.5
188.33
78
43
38
28
15
14
13
12
12
12
12
12
12
12
12
12
12
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11.5
12
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14.5
15
15
15
15 5
16
16
16
16
16
16.5
16.5
17
17
4888
4886
3258
3258
3258
3258
3256
6586
6256
€886
6886
^*W*l%
IMWV
4886
4860
4886
4eee
4866
4886
4886
4880
4886
4888
4756
4756
4756
4756
seee
5256
5256
5256
5256
5256
5256
5256
4866
4868
4888
3588
3586
3588
3588
3586
3756
3756
3758
3756
3756
3758
3756
4see
5888
5256
5256
5256
5256
5256
5258
5250
5256
5256
5258
625
818
795
3249.9
2188
1298
986
686
456
426
396
366
366
366
368
366
366
366
360
360
360
345
345
345
345
345
345
345
345
368
338
390
420
426
420
426
420
420
420
420
426
420
420
420
420
426
426
435
458
456
458
465
486
486
486
486
486
495
495
518
518
79.375
79.75
75.5385
3.67242E-83
35.3846
68.3877
72.3877
98.7692
92.8
93
93.5
94
91
91
91
91
91
91
91
91
91
91375
92.7368
92. 7368
92. 7368
92.7368
93.1
93. 4286
93. 4286
93. 1429
92. 5714
92. 5714
92
92
89.5
89.5
89.5
88
88
88
88
88
88.8
88.8
88.8
88.8
88.8
88.4
88
96
91
91. 1429
96.8571
96.8571
90.8571
90.8571
98.8571
98. 5714
98.5714
98.2857
98.2857
3 of 4
-------
4 of 4
336
397
396
399
366
361
362
363
21
21
21
21
21
21
21
21
17
17
17
17.5
17.5
17.5
18
IB
5258
5256
5256
5256
5256
5256
9256
5256
516
916
916
925
925
925
946
946
98.2857
96.2857
98.2857
96
96
'96
89. 7143
89. 7143
INLET
PPHV CONCENTRATION
6564.99
AVERAGES
EFFICIENCY
86.8659
OUTLET
PfHV CONCENTRATION
-------
ORSON ADSORBER EFFICIENCIES
ARMSTRONG RUBBER COMPANY
EASTERN DIVISION
HEST HAVEN. CONNETICUTT
TTRU CODE.CEMENT TOTAL 1
DATE: 1/25/79
FID HVDROCARBON ANALVSIS
1 Of 6
INLET SCALE FACTOR X25000
CHART DIVISIONS
REF •
47
48
49
50
51
52
53
54
55
56
57
58
59
66
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
60
81
82
83
64
85
66
67
68
89
90
INLET
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21
22
22
16
16
16
16
16
15
15
15
15
15
15
15
24
25
26
26
26
16
16
15
15
14
14
14
14
OUTLET
22
22
22
22
23
23
23
24
24
24
24
24
24
24
25
25
25
25
25
25
25
26
26
25
25
25
25
25
25
25
25
25
25
25
27
28
28
29
28
27
27
26
26
26
-------
91
92
93
94
95
96
97
98
99
180
181
102
103
104
185
106
187
108
109
110
Hi
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
14?
148
149
150
151
152
16 25
19 24
19 24
22 24
22 24
22 24
22 24
22 24
22 24
22 24
22 24
22 24
23 24
23 24
23 24
24 24
24 24
24 24
24 24
24 24
24 24
24
24
24
24
24
24
24
24
24
23
23
23
23
23
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
23
23
23
23
23
23
13
13
24
24
24
24
24
24
24
25
25
88
68
38
29
23
20
17
16
15
14
14
14
14
13
13
13
13
14
' 15
16
16
16
16
16
16
16
16
16
16
16
17
17
4880
4750
4750
9500
•VAA
yyev
9500
9500
9500
9500
9508
9500
9508
9758
5758
9750
6008
6800
6688
6008
6088
6088
6008
6088
6088
6088
6008
6008
6088
6008
6088
5758
5758
5758
5758
5758
9588
5508
5508
5580
5508
9508
5508
5588
5588
5508
5500
5750
5758
5758
5758
5758
5758
5758
5758
5758
5758
5758
5750
5758
5758
3258
3258
790
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
728
728
728
720
728
728
720
728
728
728
728
758
758
2488
1888
1148
878
698
688
510
488
458
428
428
428
428
398
398
398
398
428
458
488
488
488
488
488
488
488
488
488
488
480
910
910
8125
84.8421
84.8421
86.9891
86.9091
86.9091
86.9891
86.9091
86.9091
86.9091
86.9891
86.9091
67. 4783
67. 4783
87.4783
88
88
88
88
88
68
BO
DO
88
88
88
88
oo
DO
88
87.5
87.5
58.2689
68.6957
88. 1739
84.6696
88
89.8909
90. 7273
91. 2727
91.6182
92.3636
92.3636
92. 3636
92. 3636
92. 9091
92.9091
92. 9091
93.2174
92.6957
92.1739
91.6522
91 6522
91.6522
91.6522
91.6522
91.6522
91.6522
91.6522
91.6522
91.6522
91 6522
84.3077
64.3077
2 of 6
-------
153 13 17 3258 518 84.3077 3 of 6
194 13 17 3250 516 64.3877
155 13 17 3256 910 84.3077
156 13 17 3230 910 84.3077
157 13 17 3250 510 84.3077
156 13 17 3250 910 84.3077
159 44 18 11000 940 95.8909
160 42 19 18500 570 94.5714
161 41 20 10256 600 94.1463
162 90 21 12500 630 94.96
163 47 22 11750 660 94.383:
164 47 23 11750 690 94.1277
165 47 24 11750 720 93.8723
166 47 25 11750 750 93.617
167 47 26 11750 780 93.3617
168 48 27 12066 810 93.25
169 48 28 12008 848 93
170 48 29 12008 870 92.75
171 48 30 12088 908 925
172 48 38 12008 908 92.5
173 31 58 7758 1508 806452
174 31 50 7758 1508 886452
175 32 51 8008 1538 80.875
176 33 51 8258 1538 81.4546
177 33 49 8258 1478 82.1818
178 34 48 8508 1448 83.0588
179 35 47 8758 1418 83.8857
188 36 48 9086 1448 04
181 37 49 9258 1476 84.1081
182 38 50 9586 1586 84.2185
183 39 58 9758 1588 84.6154
184 40 51 10886 1536 84.7
185 48 51 10886 1536 847
186 41 52 18256 1566 84.7885
187 42 52 10588 1566 85.1429
188 43 52 10758 1566 85.4884
189 44 53 11086 1598 85.5455
190 45 53 11250 1598 85.8667
191 46 54 11508 1628 85.9131
192 47 54 11750 1628 86.2128
193 48 54 12000 1626 86.5
194 98 55 12508 1650 86.8
195 51 55 12750 1650 87.8588
196 52 56 13886 1688 87.0769
197 52 54 13886 1626 07.5385
198 52 52 13006 1568 88
199 53 58 13256 1506 88.6793
208 53 50 13258 1588 88.6793
201 53 .50 13258 1508 88.6793
202 54 ' 50 13506 1506 88.8889
283 55 51 13758 1538 88.8727
204 56 52 14088 1566 88.8572
285 57 52 14256 1568 89.0526
206 58 52 14506 1566 89.2414
207 59 51 14750 1530 89.6271
208 59 51 14758 1530 89.6271
209 59 51 14758 1538 89.6271
210 59 50 14750 1500 89.8305
211 59 50 14758 1500 89.8305
212 59 58 14750 1508 89.8305
213 59 50 14758 1508 89.8385
214 59 56 14750 1500 89.8385
215 59 50 14758 1500 89.8385
-------
216
21?
218
219
220
221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237
238
239
246
241
242
243
244
245
246
247
248
249
258
251
252
253
254
255
256
257
258
259
266
261
262
263
264
265
266
267
268
269
278
271
272
273
274
275
276
277
99
89
99
99
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
48
97
95
95
95
55
55
72
65
68,
57
55
55
55
56
56
56
56
56
96
96
57
57
57
57
58
98
58
-98
98
98
57
57
57
57
57
58
58
98
98
98
99
98
98
98
98
98
91
91
91
91
91
91
51
51
51
91
51
51
52
52
53
53
54
55
56
57
59
458
680
98
68
43
31
28
26
25
25
25
25
25
25
25
29
31
32
33
34
35
36
37.-
38
39
48
41
42
44
46
47
48
49
58
58
52
4 Of 6
14758
14758
14758
14758
14758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
13758
12888
14258
13758
13758
13758
13758
13758
18888
16258
15888
14258
13758
13758
13758
14888
14888
14888
14888
14888
14888
14888
14258
14258
14258
14258
14588
14588
14588
14588
14588
14588
14258
14258
14258
14258
14258
14588
14588
14588
14588
14588
14758
1588
1988
1588
1988
1988
1538
1538
1538
1538
1938
1538
1538
1538
1538
1538
1538
1538
1568
1568
1598
1598
1628
1658
1688
1718
1778
13748
18888
2788
1888
1298
938
648
788
758
758
758
758
758
758
758
878
938
968
998
1828
1858
1888
me
1148
1178
1288
1238
1268
1328
1388
1418
1448
1478
1588
1588
1568
69.8385
•9.8385
89.8385
89.8385
89.8385
88. 8727
88. 8727
88.8727
88.8727
88.8727
88.8727
88. 8727
88. 8727
88.8727
88. 8727
88. 8727
88. 8727
88.6546
88 6546
88 4364
86.75
88. 6316
88
87. 7816
87. 5626
87. 1273
. 8727273
8
83.3846
88
98.9474
93. 2364
93.8985
94.3273
94.6429
94.6429
94.6429
94.6429
94.6429
94.6429
94.6429
93.8947
93. 4737
93. 2632
93.8526
92.9655
92.7586
92.5517
92.3446
92.1379
91.931
91.5789
91 3684
91.1579
98 7368
98. 3156
98.2759
98.869
89.8621
89.6552
89.6552
89.4237
-------
5 of 6
278 59 S3 14758 1596 89.2283
279 99 S3 14750 1590 69.2263
2BO 59 53 14750 1590 892283
281 59 54 14758 1620 8981?
282 33 54 8258 1628 883636
283 38 52 7580 1568 79.2
284 28 58 7888 1580 78.5714
285 26 48 £580 1440 77.8462
286 25 47 6250 1410 77.44
287 25 46 6250 1380 77.92
288 25 44 6250 1320 78.88
289 58 44 12580 1320 8944
298 51 45 12750 1350 89.4118
291 51 46 12750 1380 89.1765
292 51 47 12750 1410 88.9412
293 52 48 13880 1440 889231
294 52 49 13880 1470 886923
295 52 58 13880 1586 88.4615
296 53 52 13250 1560 88.2264
297 53 53 13258 1590 88
298 53 54 13250 1620 87.7736
299 53 55 13258 1650 87.5472
388 53 57 13250 1718 87.8943
381 53 58 13250 1740 86.8679
382 53 59 13250 1770 86.6415
383 53 60 13250 1888 86.4151
384 S3 61 13250 1838 66.1887
385 53 61 13250 1838 86.1887
386 55 62 13750 1860 86.4727
387 55 62 13758 1868 86.4727
386 55 63 13750 1890 86.2545
389 52 63 13880 1898 85.4616
318 58 64 12500 1920 84.64
311 51 64 12750 1920 84.9412
312 51 65 12750 1950 84.7859
313 51 65 12750 1950 64.7859
314 51 66 12758 1988 84.4786
315 51 66 12758 1988 84.4706
316 51 66 12758 1988 84.4786
317 52 67 13888 2818 84.5385
318 52 67 13888 2818 84.5385
319 52 67 13888 2818 84.5385
328 52 68 13800 2040 64.3077
321 52 68 13888 2840 64.3877
322 52 69 13800 2870 64.8769
323 52 69 13888 2878 64.8769
324 53 78 13258 2100 641509
325 53 78 13258 2188 84.1589
326 53 71 13250 2130 83.9245
327 S3 71 13250 2130 83.9245
328 53 72 13258 2160 83.6981
329 53 72 13250 2160 83.6981
338 53 73 13250 2190 834717
331 54 73 13580 2198 83.7778
332 28 71 7880 2130 69.5714
333 25 69 6250 2870 66.88
334 24 67 6880 2818 66.5
335 24 63 6800 1898 68.5
336 23 63 5758 1898 67.1384
337 23 61 5758 1830 68.1739
338 23 59 5750 1778 69.2174
-------
6 of 6
239
M6
Ml
242
243
244
245
246
247
248
249
2M
251
252
253
254
255
256
257
258
259
260
261
262
263
264
22
22
22
22
21
45
52
92
24
22
22
22
26
26
26
26
26
26
19
19
18
56
58
58
56
56
SB
57
56
55
54
52
52
51
53
54
54
53
52
51
49
48
47
46
45
44
43
43
45
47
49
416. 667
5566
5586
5566
5566
5256
11256
12666
12666
6666
5566
5566
5966
5666
5688
5666
5686
5666
seee
4756
4756
4566
14566
14560
14560
12568
12568
1746
1716
1688
1656
1626
1596
1566
1536
1596
1628
1628
1598
1568
1538
1476
1448
1418
1386
1358
1328
1298
1298
1358
1418
1478
12568
€8.2636
68, 9891
69 4546
78
69.1429
85.8667
88
88.2388
73.5
76.5455
76.5455
71.6989
68.8
69.4
76.6
712
71.8
72.4
71.579
72.2185
71. 3333
91. 1634
96.6897
98.2759
88 24
-7. 8125E-65
BVERRGES
INLET OUTLET
CONCENTRATION EFFICIENCY PPHV CONCENTRATION
9554.26 85.1289 1336. 2
-------
APPENDIX H
GAS STANDARDS CERTIFICATION
Hydrocarbon Analyzer Comparison
Experimental Response Factor Determination
-------
Scott Environmental TedinokDgy Inc
015H
013IM44C2S
SPECIALTY GAS DIVISION
, CA
(7M) ft7-S71
lit. 19T9
Date:
Our Project No.: 3062??
Your P.O. No.: "^
TRW
BOO Fo.11 In Line
Vienna. VA 22180
Attn: Bob leoglenx
Gentlemen:
Thank you for choosing Scott for your Specialty Gas needs. The analyses for the gases ordered, as
reported by our laboratory, are listed below. Results are in volume percent, unless otherwise indicated.
Tyl Nn A-U05
Component
PROPANE
ACT
ANALYTICAL REPORT
Analytical
Accuracy ±2%
Concentration
BALANCE
Cyl.N
Component
KH-lg96
IBOPAlffi
AIR
Analytical
Accuracy ±2%
Concentration
600
BALAHCE
Component
TOTAL HYDROCARBOH
HYDROGEN
HELIUM
Analyst
Analytical
Arfiirary
Concentration
<1.0 vtfa
BALANCE .'
OEORGE BEAN
>No..
iponent
TOTAL ETDROCARBON
HYDROGEN
HELIUM
Approved By
Accuracy
Concentration
<1.0 ppm
BALANCE
ROBERT DENYSZYH
•tomtbra*
ACUBLEND®* CALIBRATION & SPECIALTY GAS MIXTURES • PURE GASES
ACCESSORY PRODUCTS • CUSTOM ANALYTICAL SERVICES
-------
ANALYTICAL REPORT - cont'd
February 1»>. 1979
Our Project M« • 306259
Your P.O. No.:_J°§501.
Cyl No A-79te
Component
Analytical
Aeriinry
Concentration
TOTAL HTDROCARBOH
<0.1 mm
HTOROCARBOH FREE AIR
BALANCE
Cyl. M«
Component
Analytical
Accuracy
Concentration
_TOTAL
<0.1 pom
HYDROCARBON TREE AIR
BALAHCE
Cyl. No.
Component
Analytical
Accuracy
Concentration
Cyl. No
Component
Analytical
Accuracy'
Concentration
Cyl. No.
Component
racy___
Concentration
Cyl. No
Component
Analytical
Accuracy
Concentration
Analyst
•'&»>--
GEORGE BEAR
By lv>M»AJ <-Kj
BOBERT DENYSMN
Approved
SCOTT ENVIRONMENTAL TECHNOLOGY, INC.
SPECIALTY GAS DIVISION
f kr »t
-------
COMPARISON OF FID ANALYZERS
BECKMAN 402
vs.
HORIBA OPE 405
-------
During the sampling at West Haven an instrument response comparison
under field conditions was conducted. The Beckman 402 and Horiba OPE 405
hydrocarbon analyzers were compared side by side at the outlet sampling
location. The purpose of the comparison was to determine if either
instrument produced biased data in determining the removal efficiency of
the carbon adsorption emission control system. Both hydrocarbon analyzers
operate on the principle of flame ionization. However, the mode of
operation of two analyzers is slightly different. For the example, the
Beckman instrument utilizes an external unheated sample pump. Therefore,
a comparison was conducted to insure the quality of the efficiency data
generated. Attached is a copy of the strip chart recordings during the
comparison period.
The results of the comparison were favorable. The Beckman 402
recorded a concentration of 760 parts per million (ppm) as methane,
compared to concentration of 706 parts per million (ppm) as methane
recorded by the Horiba OPE 405. The response difference between the
instruments was 7.6 percent, which is within acceptable limits per EPA
technical directive #2. (attached as reference)
-------
-------
EMISSION MEASUREMENT BRANCH
TECHNICAL DIRECTIVE NO.
Project Nunber
Contractor
I
Contract Nunber fo -03 - 3& \ *)
Technical Manager
to
Date I
Work Assignment Number 3G
Verbal Directions Given Toi^>d b "3a>««J r
Directive:
(lo -,ao«uv, )
Technical Ytfhager, EMB
Section Chief. EMB
-------
Experimental Response Factor Determination
-------
PRINCIPLE
The specific gravity of the process solvent sample is determined.
Standard vapor-in-air samples are prepared from the process solvent
sample and the flame ionization analyzer response is determined; the
solvent response is correlated with the propane calibration response.
Three samples (approximately 15-20 milligrams each) of the solvent are
used to prepare standard vapor-in-air samples according to the procedure
which follows.
PROCEDURE FOR PREPARATION OF VAPOR-IN-AIR STANDARDS
1. Assemble the equipment as shown in the attached sketch (Figure H.2).
The dry gas meter should be verified as to accuracy and/or calibrated
against a spirometsr. The charcoal adsorber can be any suitable device
(packed tube, modified impinger, etc.) capable of removing all back-
ground hydrocarbons from the ambient air or pump or meter generated
hydrocarbons. The pressure gauge is a simple water manometer. All
®
connections should be glass, Teflon , brass or stainless steel.
End-to-end connections using overlapping tygon or brass tubing fitting
can be used. The midget impinger and syringe are standard equipment.
Following assembly, the system should be checked for the presence of
leaks.
®
2. Fabricate or purchase a Tedlar bag of approximately 100 liter
size to provide sufficient sample for subsequent standard evaluation. A
®
stainless steel, brass, glass or Teflon valve should be incorporated
to close off the inlet connection.
3. Connect the bag to the pump inlet, start the pump and evacuate
the bag completely. Shut off the bag valve and connect the bag to the
discharge of the midget impinger. Open the bag valve and turn on the
pump, filling the bag with hydrocarbon-free air. When filled, shut off
the pump, close the bag valve and disconnect it from the impinger outlet.
-------
PRESSURE
Charcoal
Adsorber
•*— Syringe
TEMPERATURE
^•Wet Test Meter
Boiling
Water
Bath
*— Septum
\
4- Midget
Implnger
Hot Plate
t
Pump
Tedlar Bag
Capacity
Uter
FIGURE H.2 SOLVENT STANDARD PREPARATION SYSTEM
-------
Re-evacuate the bag again as described above and close off the inlet
valve.
4. Bring the water bath to boiling. Reconnect the bag, with inlet
valve closed, to the impinger outlet.
5. Record the initial meter reading (M.), open the bag inlet valve
and start the pump. Adjust the filling rate to permit complete bag
filling in approximately 15 minutes. Record meter pressure (P ), temperature
(T ) and local barometric pressure (Ph,_).
HI Dai
6. Fill the syringe to the desired liquid volume (L ) with the
material to be evaluated. Place the syringe needle into the impinger
inlet using the septum provided and inject the liquid into the flowing
air stream. A needle of sufficient length to permit injection of the
liquid below the air inlet branch of the tee should be used. Remove the
syringe.
7. Complete filling of the bag, noting and recording the meter pressure
and temperature over regular intervals, preferably one minute.
8. When the bag is filled, stop the pump and close the bag inlet
valve. Obtain and record the final meter reading (NL).
9. Disconnect the bag from the impinger outlet and set aside for
at least one (1) hour to equilibrate. The sample should be analyzed
within 4 hours of sample preparation.
10. Average the -meter temperature (T ) and pressure (P ) readings
over the bag filling time.
11. Measure the solvent liquid density at room temperature by
accurately weighing a known volume of the material on an analytical
balance to the nearest 1.0 milligram. Care should be taken during the
weighing to minimize volatilization of the material. A ground glass
stoppered specific gravity bottle is suitable for weighing. Calculate
the result in terms of grams/ml.
12. Calculate the concentration of material in the sample in mg/£
(milligrams per standard liter of air) as follows:
2594(Lv) (e) (273 + y
-------
where C .._ , = Standard solvent concentration, (mg/std. liter)
e = Liquid density, in gm/ml at room temperature (20°C)
LV = Liquid volume injected, in ml
T = Meter temperature, in °C
Hi
P = Meter pressure, in mm Hg (gauge)
P. = Local barometric pressure, in mm Hg absolute
Mf,M.j = Final and initial meter reading, in liters
Each standard solvent sample is then analyzed for equivalent propane
(C ..-CO on the instrument used during the field survey. The instrument
must be operating at the same conditions as during the field study and
must be calibrated with propane. The solvent response factor is then
calculated from the ratio of the measured concentration of the standard
in terms of propane to the calculated concentration based on the known
quantities of materials used.
td-sol
gm
where RF = Sovlent response factor,
Mgm Solv.
C td_C3 = Standard solvent concentration as equivalent
5 propane (mg/std- liters)
C . . C, = Standard solvent concentration as solvent
sia" d (mg/std- liters)
DISCUSSION AND CONCLUSIONS
The response factors as experimentally determined in the laboratory
were inconclusive and can not be utilized to determine instrument response
for the solvent (Texol) under investigation. The procedure for determining
the solvent response factor as outlined above may be inadequate. Studies
have shown that complicating factors may impose a bias on the data
generated by this method. Volatile organic compounds Cg and greater may
show rapid degradation with time at high concentrations and condensation
-------
on the interior surface of the sample bags used to prepare the solvent
standards.
Because the solvent response factors for either FID instrument were
not accurately determined, the FID data can only be used to access the
relative concentrations of the organic compound (Texol). This was done
in determining the removal efficiency of the carbon adsorption system
(Section 2.0).
-------
Table H-l. EXPERIMENTAL RESPONSE FACTOR DETERMINATION DATA
Parameter
Liquid volume injected (ul)
Density (mg/ul)
Meter temperature (°C)
Barometric pressure (mm. Hg)
Meter pressure (mm. Hg)
Meter volume (£)
Concentration solvent
standard (mg/£)
HORIBA OPE-405
Concentration equivalent
Propane (mg/£)
Response factor
BECKMAN 402
Concentration equivalent
Propane (mg/£)
/
Response Factor
Run
#1
9.25
0.686
21
747.6
7.503
114.0
56.218
125.714
80.816
2.236
1.437
179.592
OO TIC.
yu. //b •
3.195
1 "7C7
Run
#3
9.5
0.686
23
747.6
7.503
100.0
63.872
215.510
215.510
3.374
3.374
202.041
01 c tin
£l3. DlU
3.163
•3 i~in
Run
#4
18.0
0.686
23
747.6
7.503
103.75
125.162
341. 224
350.204
2.726
2.729
317.267
OOQ TOO
o^y. iyz
2.535
o csn
Run
#5
4.0
0.686
22.5
747.6
7.503
110.0
24.914
152.653
156.224
6.127
6.271
141.878
5.695
-------
APPENDIX I
PROJECT PARTICIPANTS
-------
PROJECT PARTICIPANTS
Mr. Robert F. Jongleux (TRW) Field Team Coordinator
Mr. Thomas Hurst (TRW) Instrument Specialist
Mr. Mack Webster (TRW) Team Member
Mr. George May (TRW) Data Reduction
Mr. Gary Hippie (PCS) TGNMO Sampling
Mr. R. Terry Harrison (EPA) Technical Manager
Mr. Roy Neulight (EPA) TGNMO Sampling Coordinator
Mr. Joseph Bujalski (ARMSTRONG) Plant Representative
Mr. Frank Luysterborgh (ARMSTRONG) Principle Contact
-------
|