United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 80-IBR-4
March 1980
Air
Industrial Boilers
Emission Test Report
General Motors
Corporation
Parma, Ohio
VOLUME I:
Summary of Results
-------
CONTINUOUS SULFUR DIOXIDE MONITORING OF
INDUSTRIAL BOILERS AT THE
GENERAL MOTORS CORPORATION PLANT IN
PARMA, OHIO
by
T. J. Wey
PEDCo Environmental, Inc.
11499 Chester Road
Cincinnati, Ohio 45246
Contract No. 68-02-2811
Work Assignment No. 26
PN 3333-Z
Technical Manager
Winton Kelly
Emission Measurement Branch
U.S. ENVIRONMENTAL PROTECTION AGENCY
EMISSION STANDARDS AND ENGINEERING DIVISION, OAQPS
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
November 1980
-------
DISCLAIMER
This report has been reviewed by the Emission Measurement
Branch, Emission Standards and Engineering Division, Office of
Air Quality Planning and Standards, U.S. Environmental Protec-
tion Agency, and approved for publication. Approval does not
signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute en-
dorsement or recommendation for use.
11
-------
CONTENTS
Figures iv
Tables v
Acknowledgment ix
Conversion Table x
1. Introduction 1-1
2. Summary of Results 2-1
3. Results 3-1
3.1 Performance specification test results 3-1
3.2 Continuous sulfur dioxide data 3-38
3.3 Data capture and data loss 3-44
3.4 Quality assurance 3-48
3.5 Particulate and NO results 3-52
X
4. Process Description 4-1
4.1 Physical plant 4-1
4.2 Background information 4-7
4.3 Process control during test 4-9
5. Continuous Emission Monitoring System Description 5-1
5.1 Sample interface 5-1
5.2 S02 monitor 5-4
5.3 02 monitor 5-4
5.4 Recorders 5-5
5.5 Calibration system 5-5
6. Procedures and Calculations 6-1
6.1 Continous S02 data computations 6-1
6.2 Performance specification testing 6-5
6.3 Determination of factors accounting for
data capture and loss periods 6-13
6.4 Quality assurance 6-15
6.5 J)etermination of CEM output in the field 6-17
Appendix Calibration gas certificates and FGD
information A-l
111
-------
FIGURES
Number Page
3-1 Sampling Locations 3-6
4-1 Process Flow Diagram of a Double Alkali
Scrubbing Unit 4-6
5-1 Layout of the CEM 5-2
5-2 Simplified Schematic of CEM 5-3
6-1 Sample Data Sheet and Equations for the
Determination of Calibration Error 6-7
6-2 Sample Data Sheet and Equations for Deter-
mination of System Response Time 6-9
6-3 Sample Data Sheet and Equations for Deter-
mination of 2-hour Zero and Calibration Drift 6-10
6-4 Sample Data Sheet and Equations for Deter-
mination of 24-hour Zero and Calibration Drift 6-12
6-5 Sample Data Sheet and Equations for Deter-
mination of System Relative Accuracy 6-14
IV
-------
TABLES
Number Page
3-1 Summary of Intial Performance Specification
Results for the S02 Monitor 3-2
3-2 Summary of Initial Performance Specification
Results for the 02 Monitor 3-3
3-3 Summary of Final Performance Specification
Results for the S02 Monitor 3-4
3-4 Summary of Final Performance Specification
Results for the 02 Monitor 3-5
3-5 Initial Test Results for Low-Range (Outlet)
S02 Monitor Calibration Error 3-9
3-6 Rerun Test Results for Low-Range (Outlet)
S02 Monitor Calibration Error 3-10
3-7 Initial Test Results for High-Range (Inlet)
SO2 Monitor Calibration Error 3-11
3-8 Initial Test Results for 02 Monitor Calibra-
tion Error 3-12
3-9 Initial Test Results for Low-Range (Outlet)
S02 Monitor 2-Hour Zero and Calibration
Drift 3-13
3-10 Initial Test Results for High-Range (Inlet)
S02 Monitor 2-Hour Zero and Calibration
Drift 3-14
3-11 Initial Test Results for 02 Monitor 2-Hour
Zero and Calibration Drift 3-15
3-12 Rerun Test Results for 02 Monitor 2-Hour
Zero and Calibration Drift 3-16
-------
TABLES (continued)
Number Page
3-13 Initial Test Results for Low-Range (Outlet)
S02 Monitor 24-Hour Zero and Calibration
Drift 3-18
3-14 Initial Test Results for High-Range (Inlet)
S02 Monitor 24-Hour Zero and Calibration
Drift 3-19
3-15 Initial Test Results for 02 Monitor 24-Hour
Zero and Calibration Drift 3-20
3-16 Initial Test Results for Low-Range (Outlet)
S02 Monitor Response Time 3-21
3-17 Initial Test Results for High-Range (Inlet)
S02 Monitor Response Time 3-22
3-18 Initial Test Results for 02 Monitor Response
Time 3-23
3-19 Initial Test Results for FGD Unit 3 Inlet
Certification 3-25
3-20 Initial Test Results for FGD Unit 3 Outlet
Certification 3-26
3-21 Rerun Test Results for FGD Unit 3 Outlet
Certification 3-27
3-22 Final Test Results for Low-Range (Outlet)
S02 Monitor Calibration Error 3-29
3-23 Final Test Results for High-Range (Inlet)
S02 Monitor Calibration Error 3-30
3-24 Final Test Results for 02 Monitor Calibration
Error 3-31
3-25 Final Test Results for Low-Range (Outlet)
S02 Monitor 2-Hour Zero and Calibration Drift 3-32
3-26 Final Test Results for High-Range (Inlet) S02
Monitor 2-Hour Zero and Calibration Drift 3-33
3-27 Final Test Results for 02 Monitor 2-Hour
Zero and Calibration Drift 3-34
VI
-------
TABLES (continued)
Number 3?age
3-28 Final Test Results for Low-Range (Outlet) S02
Monitor 24-Hour Zero and Calibration Drift 3-35
3-29 Final Test Results for High-Range (Inlet) S02
Monitor 24-Hour Zero and Calibration Drift 3-36
3-30 Final Test Results for 02 Monitor 24-Hour
Zero and Calibration Drift 3-37
3-31 Final Test Results for FGD Unit 3 Inlet
Certification 3-39
3-32 Final Test Results for FGD Unit 3 Outlet
Certification 3-40
3-33 Summary of Results Based on 1-Hour S02 Averages 3-41
3-34 Summary of Results Based on 24-Hour S02 Averages 3-43
3-35 Daily Data Capture and Loss Information on FGD
Unit 1 3-45
3-36 Daily Data Capture and Loss Information on FGD
Unit 3 3-46
3-37 Inlet and Outlet Data Loss 3-49
3-38 Quality Assurance Test Results for FGD Unit 1
Inlet 3-50
3-39 Quality Assurance Test Results for FGD Unit 1
Outlet 3-51
3-40 Quality Assurance Test Results for FGD Unit 3
Inlet 3-53
3-41 Quality Assurance Test Results for FGD Unit 3
Outlet 3-54
3-42 Quality Assurance Moisture Determinations 3-55
3-43 Particulate Test Results 3-56
3-44 Inlet Results of NOV Tests on December 20, 1979 3-57
X
3-45 -Outlet Results of NOV Tests on December 20, 1979 3-58
Vll
-------
TABLES (continued)
Number Page
3-46 Inlet Results of NO Tests on April 23, 1980 3-60
Jv
3-47 Outlet Results of NO Tests on April 23, 1980 3-61
X
4-1 Design, Operating, and Performance Character-
istics of Double Alkali Scrubbing System 4-2
4-2 Analysis of Coal as Received 4-3
4-3 Analysis of Oil as Received 4-4
4-4 Chemical Reactions in FGD System 4-8
Vlll
-------
ACKNOWLEDGMENT
This report was prepared for the Emission Measurement
Branch, Emission Standards and Engineering Division, Office of
Air Quality Planning and Standards, U.S. Environmental Protec-
tion Agency. Mr. Winton Kelly was the Technical Manager. PEDCo
Environmental, Inc., appreciates the direction and review of
procedures and data that he provided.
Mr. William G. Dewees served as PEDCo's Project Director;
Mr. Anthony S. Wisbith and Mr. Thomas J. Wey served as joint
Project Managers. Mr. Wey supervised field operations and data
analysis and was the principal author of the report. Mr.
Stephen J. Howie, Mr. Richard L. Campbell, and Mr. Robert M.
Livingston provided technical and analytical support.
IX
-------
ENGLISH-TO-METRIC CONVERSION TABLE3
To convert
from To Multiply by
lb/106 Btu g/J 4.300
Ib/h kg/h 4.536 x 10"1
106 Btu/h W 2.931 x 105
ft3/h mVh 2.832 x 10"2
ft m 3.048 x 10"l
in. cm 2.540
a For temperature conversions, °C = (°F - 32) T 1.8.
-------
SECTION 1
INTRODUCTION
The primary objective of this project was to collect con-
tinuous sulfur dioxide (S02) emission and removal efficiency
data from two of the four flue gas desulfurization (FGD) units
serving the industrial boilers at the General Motors Corporation
(CMC) plant in Parma, Ohio. The data are to be used to support
development of a new source performance standard for industrial
boilers.
Because the continuous emission monitoring system (CEM)
used gas monitors to collect the data, performance specification
(P/S) tests were conducted at the beginning and end of data
collection to ensure equivalence to manual reference tessts.
Additional reference testing was performed throughout the test
period to provide quality assurance.
Manual tests for nitrogen oxides (NO ) and particulates
*v
were performed to determine what, if any, removal of these
pollutants occurred in the FGD system.
Records of boiler, FGD system, and CEM performance were
kept to account for data loss and excursions from normal opera-
tions, and to provide information regarding operating parameters
for correlation with data.
1-1
-------
Volume I of this report presents the results of all tests
performed and provides background information concerning the
process, equipment, and procedures relevant to the tests.
Volumes II, III, and IV provide detailed listings, instrument
calibration logs, field test data, and process logs relevant to
the results presented in Volume I.
1-2
-------
SECTION 2
SUMMARY OF RESULTS
Continuous S02 data were collected from FGD Units 1 arid 3
from December 11, 1979, to April 25, 1980, with intermittant
data losses caused by CEM failures and process downtime.*
Initial data collection started with FGD Unit 3 on February
4, 1980. Unit 3 went down on February 17 because of a change in
plant load requirements. At this time the CEM sampling inter-
face was changed to FGD Unit 1, and data were collected there
from February 28 to March 17, when plant load requirements were
such that FGD Unit 3 could be restarted. Data collection was
then completed for Unit 3 from March 18 to April 25.
Seventeen days with 18 or more hours of data capture were
obtained on FGD Unit 1. The average inlet emission rate was 3.8
Ib S02/10e Btu, with a daily standard deviation of 11.5 percent;
the average outlet emission rate was 0.32 Ib S02/106 Btu, with a
standard deviation of 26.4 percent; and the average removal
efficiency was 91.5 percent, with a standard deviation of 2.3
percent. Average boiler steam load during the test period was
67,000 Ib/h, which is 67 percent of rated capacity. During this
period Boiler 1 was fired with waste oil containing 0.85 percent
sulfur and coal containing 2.51 percent sulfur.
* Actual -CEM data collection started February 4, 1980. All
scrubbers and support equipment were down throughout January
1980 because of clarifier downtime.
2-1
-------
Twenty-four days with 18 or more hours of data capture were
obtained on FGD Unit 3. The average inlet emission rate was 3.8
Ib S02/106 Btu, with a standard deviation of 18.5 percent; the
average outlet emission rate was 0.30 Ib S02/106 Btu, with a
standard deviation of 71.2 percent; and the average removal
efficiency was 92.2 percent, with a standard deviation of 5.7
percent. Average boiler steam load during the test period was
37,000 Ib/h, which is 62 percent of rated capacity. During this
period Boiler 3 burned coal containing 2.13 percent sulfur.
Initial P/S tests demonstrated that the CEM complied with
U.S. Environmental Protection Agency (EPA) performance stan-
dards* with the exception of the low-range (outlet) S02 monitor
24-hour calibration drift and the 02 monitor 24-hour calibration
f
drift. Final P/S tests demonstrated continued compliance with
performance standards, with the exception of the inlet S02
monitor midrange calibration error determination. Quality
assurance (QA) reference method testing illustrated a continuity
of equivalence in terms of CEM relative accuracy throughout the
test period.
From February 28 to March 17, when the CEM interface was
adapted to monitor FGD Unit 1, QA testing provided system rela-
tive accuracy checks, but a complete repetition of P/S testing
was impractical because of scheduling constraints. Because FGD
Units 1 and 3 are virtually identical and there were no CEM
* Performance Specification 2 and 3, Federal Register, Vol. 44,
No. 197, October 10, 1979.
2-2
-------
alterations between tests, it is expected that the quality of
data is comparable in both cases.
Particulate tests performed December 20, 1979, on Unit 3
showed an average FGD inlet emission rate of 0.50 lb/106 Btu,
outlet emission rate of 0.16 lb/106 Btu, and particulate removal
efficiency of 68 percent.
Nitrogen oxide tests were also performed December 20, 1979,
on FGD Unit 3 and rerun April 23, 1980. December tests showed
an average inlet emission rate of 0.49 lb/106 Btu, and outlet
emission rate of 0.50 lb/106 Btu. The April tests showed an
average inlet emission rate of 0.40 lb/106 Btu, outlet emission
rate of 0.36 lb/106 Btu, and removal efficiency of 10.0 percent.
Nitrogen oxide tests were repeated in April because system pH
during the December tests was outside normal control range and
could have affected results.
The FGD Unit 1 operated normally 100 percent of the time
during the test period (456 hours from 0000, February 28, to
2400, March 17), and CEM operability for Unit 1 was 92 percent
(420 hours of the 456 hours available). The FGD Unit 3 operated
normally 21 percent of the time during test period (623 hours of
normal operations during the 2904 hours from 0000, January 1, to
2400, April 25) and CEM operability for Unit 3 was 78 percent
(483 hours of the 623 hours available)
2-3
-------
SECTION 3
RESULTS
3.1 PERFORMANCE SPECIFICATION TEST RESULTS
Complete P/S tests were performed at the beginning and end
of the test period to ensure equivalence of CEM data to data
from manual reference method tests. Tables 3-1 and 3-2 sum-
marize the results of the initial P/S tests, and Tables 3-3 and
3-4 summarize the results of the final P/S tests.
3.1.1 Initial P/S Test Results
Sampling Locations—
Both inlet and outlet CEM and manual reference method
sampling points were chosen to be representative of the process
streams tested and achieve equivalence between manual method and
CEM samples. This was achieved in all cases by choosing samp-
ling points centrally located in the ducts at the furthest
accessible points downstream from possible process interferences
(Figure 3-1). In FGD Units 1 and 3, inlet and outlet CEM and
manual test samples were taken from points adjacent in the
stacks.
Conditioning Period—
The period starting 1000, December 4, 1979, and ending
1000, December 11, 1979, was the conditioning period for the
3-1
-------
TABLE 3-1. SUMMARY OF INITIAL PERFORMANCE SPECIFICATION RESULTS
FOR THE S02 MONITOR
CO
ro
Test parameter
System relative accuracy
Calibration error3
Zero drift (2-h)a
Zero drift (24-h)a
Calibration drift (2-h)a
Calibration drift (24-h)a
Response time
Conditioning period
Operational period
Required performance
specifications
<20% of the mean value of the
reference method test data in
pounds per million Btu
<5% of each (50% of span, 90% of
span) calibration gas mixture
2% of span
2% of span
2% of span
2.5% of span
15 min maximum
168-h minimum
168-h minimum
Performance
resul
Inlet
Outlet
High Span
range Mid
Low Span
range Mid
High range
Low range
High range
Low range
High range
Low range
High range
Low range'3
High range
Low range
168 h
192 h
testing
ts
11.1%
12.27,
4.0%
2.1%
2.0%
4.5%
0.2%
0.4%
0.2%
0.6%
0.9%
1.1%
1.9%
2.8%
25.9 s
24.9 s
Expressed as sum of absolute mean value plus 95 percent confidence interval of a series of tests.
-------
TABLE 3-2. SUMMARY OF INITIAL PERFORMANCE SPECIFICATION RESULTS
FOR THE 02 MONITOR
u>
I
u>
Test parameter
Calibration error3
Zero drift (2-h)a
Zero drift (24-h)a
Calibration drift (2-h)a
Calibration drift (24-h)a
Operational period
Conditioning period
Response time
Required performance
specifications
<5% of the mean value of the
reference method test data
£0.4%
£0.5%
£0.4%
£0.5%
168-h minimum
168-h minimum
10-min maximum
Performance
resul
High range
Mid range
0.1%
0.5%
0.2%
0.8%b
192 h
168 h
26 s
testing
ts
1.9%
4.0%
Expressed as sum of absolute mean value plus 95 percent confidence interval of a series of tests,
Result failed to meet the required performance specification.
-------
TABLE 3-3. SUMMARY OF FINAL PERFORMANCE SPECIFICATION RESULTS
FOR THE S02 MONITOR
u>
I
Test parameter
System relative accuracy
Calibration error9
Zero drift (2-h)a
Zero drift (24-h)a
Calibration drift (2-h)a
Calibration drift (24-h)a
Operational period
Required performance
specifications
<20% of the mean value of the
reference method test data in
pounds per million Btu
<5% of each (50% of span, 90%
of span) calibration gas
mixture
2% of span
2% of span
2% of span
2.5% of span
168-h minimum
Performance testing
results
Inlet
Outlet
High
range
Low
range
High range
Low range
High range
Low range
High range
Low range
High range
Low range
19.4%
10.1%
Span 1.48%
Mid 3.90%
Span 0.22%
Mid 0.70%
0%
0.17%
0%
0.08%
0.89%
0.94%
1.22%
2.1%
203 h
a Expressed as sum of absolute mean value plus 95 percent confidence interval of a series of tests.
-------
TABLE 3-4. SUMMARY OF FINAL PERFORMANCE SPECIFICATION RESULTS FOR THE 02 MONITOR
i
Ul
Test parameter
Calibration error3
Zero drift (2-h)a
Zero drift (24-h)a
Calibration drift (2-h)a
Calibration drift (24-h)a
Operational period
Required performance
specifications
<5% of the mean value of the
reference method test data
£0.4%
£0.5%
£0.4%
£0.5%
168-h minimum
Performance testing
results
High range 3.
Mid range 3.
0.15%
0.53%
0.24%
0.26%
203 h
0%
7%
Expressed as sum of absolute mean value plus 95 percent confidence interval of a series of tests,
-------
CEM SAMPLING AA"INLET DUCT
POINT
MANUAL
SAMPLING
POINT
GTH,
In.)-
*— 72 1n.— »•
~^^.
»/
/
F »|
t
47.5
1
j L3
SAMPLE
TO CEM
MANUAL
SAMPLING
POINT
BB-OUTLET STACK
•-53 1n.
CEM SAMPLING
POINT
(PROBE LENGTH 32.5 In.)
SAMPLE
TO CEM
SCRUBBED
FLUE GAS
CEM
B OUTLET
SAMPLE
PORT
2ND LEVEL
Figure 3-1. Sampling locations.
3-6
-------
CEM. During this period the CEM was operated in the same manner
as it was during the following test period, with no maintenance,
repairs, replacements, or adjustments other than specified as
routine and required by operation and maintenance manuals or the
manufacturers' representatives.
Operational Test Period—
The initial operational tests were performed from December
11 to December 21, 1979, with no maintenance, repairs, replace-
ment, or adjustment not clearly routine or required as specified
by the manufacturers. On December 21, the boiler and FGD Unit 3
went down because of a drop in plant load requirements during
the holidays. The remaining boilers and FGD units were shut
down from 2400, December 23, 1979, to January 2, 1980. Problems
with Clarifier 2 were responsible for FGD facility downtime
throughout January 1980.
Calibration Gas Certification—
The S02 calibration gases were certified by the vendors to
have values traceable to National Bureau of Standards (NBS)
concentrations. The 02 midrange gas was analyzed by PEDCo using
EPA Method 3 (ORSAT) and found to be within 5 percent of the
vendor's tag value (12% 02), which was the concentration used.
Because ambient air (20.95% 02) was used as the 02 span gas, no
certification was needed. Copies of the certificates of analy-
sis for the calibration gases used are included in the appendix.
3-7
-------
Calibration Error—
Calibration error tests were performed December 21, 1979.
The S02 monitor met the error limitation of less than 5 percent
on the S02 high range (0-5000 ppm), but failed to meet the error
limitation on the S02 low range (0-500 ppm). Therefore, a rerun
of the S02 low range was performed on February 12, 1980, bring-
ing both operating ranges within P/S limits. The 02 monitor met
the same limitation (<_5%) on its single range. Tables 3-5 and
3-6 present the initial and rerun test results for the low-range
(outlet) S02 calibration error, and Table 3-7 presents the
intial test results for the high-range (inlet) S02 monitor
calibration error. The test results for 02 monitor calibration
error are presented in Table 3-8.
2-Hour Zero and Calibration Drift—
The 2-hour drift tests of the S02 and 02 monitors were
performed December 18 through 20, 1979. The results of the low-
and high-range (outlet and inlet) S02 monitor drift tests,
presented in Tables 3-9 and Table 3-10, were within the allow-
able limit of 2 percent of span for zero and calibration drift.
Because the initial 02 monitor drift results (Table 3-11)
failed to meet allowable limits, tests were rerun from February
6 through 12, 1980. The results of the rerun tests (Table 3-12)
were within the allowable limit of 0.4 percent 02 for zero and
calibration drift.
3-8
-------
TABLE 3-5. INITIAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR CALIBRATION ERROR
(ppm S02 except as indicated)
Date
in
1979
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Calibration gas
concentration
(A)
0
472
269
0
269
472
0
472
269
0
269
472
0
472
269
Monitor
reading
(B)
0.4
483.0
280.5
0.4
269.5
485.0
0.4
485.0
273.0
1.3
278.5
484.0
0.0
483.0
235.0
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,9 % A
Arithmetic
difference
(A - B)
Mid
-11.15
-0.5
-4.0
-9.5
-16.0
-8.3
7.6
5.9
Span
-11.0
-13.0
-14.0
-•12.0
-11.0
-12.2
1.6
2.9
Determined as [(|AM| + CIg5) * A] x 100.
3-9
-------
TABLE 3-6. RERUN TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR CALIBRATION ERROR
(ppm SOp except as indicated)
Date
in
1980
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
2/6
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Calibration gas
concentration
(A)
449
269
0
269
449
0
449
0
269
0
449
269
0
449
269
Monitor
reading
(B)
457.5
267.5
0
270
452.5
0
453.0
0
285.0
0
457.5
267.5
0
455.0
264.0
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,9 % A
Arithmetic
difference
(A - B)
Mid
1.5
-1.0
-16.0
1.5
6.0
-1.8
10.21
4.5
Scan
-8.5
-3.5
-4.0
-8.5
-6.0
-6.1
2.96
2.0
Determined as [(|AM| + CIg5) * A] x 100.
3-10
-------
TABLE 3-7. INITIAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR CALIBRATION ERROR
(ppm S02 except as indicated)
Date
in
1979
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Calibration gas
concentration
(A)
0
3338
1778
0
1788
3338
0
3338
1788
0
3338
1788
3338
0
1788
Monitor
reading
(B)
0.9
3470.0
1780.0
0.8
1785.0
3485.0
0.9
3480.0
1785.0
0.9
3480.0
1840.0
3475.0
0.9
1755.0
Arithmetic mean (AM)
95% confidence interval (CIQ5)
Calibration error,3 % A
Arithmetic
difference
(A - B)
Mid
8
3
3
-52
13
-5
33
2.1
Span
-1132
-147
-142
-142
-137
-140
7.1
4.4
Determined as [(|AM| + CIQ5) T A] x 100.
3-11
-------
TABLE 3-8. INITIAL TEST RESULTS FOR 02
MONITOR CALIBRATION ERROR
(% 02 except as indicated)
Date
in
1979
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
12/21
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Calibration gas
concentration
(A)
0.0
12.0
20.9
0.0
20.9
12.0
0.0
12.0
20.9
0.0
20.9
12.0
12.0
12.0
20.9
Monitor
reading
(B)
3.0
12.2
20.5
3.1
20.5
12.4
3.2
12.3
20.5
3.4
20.5
12.3
3.4
12.3
20.5
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,3 % A
Arithmetic
difference
(A - B)
Mid
-0.2
-0.4
-0.3
-0.3
-0.3
-0.3
0.1
3.3
Span
0.4
0.4
0.4
0.4
0.4
0.4
0.0
1.9
Determined as [(|AM| + CIg5) * A] x 100.
3-12
-------
TABLE 3-9. INITIAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR 2-HOUR ZERO AND CALIBRATION DRIFT9
(% of scale except as indicated)
Test-
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1979
12/18
12/18
12/18
12/18
12/18
12/18
12/18
12/19
12/19
12/19
12/19
12/19
12/19
12/19
12/20
Test Time
Start
0815
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
End
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
1415
Zero reading
Start
(A)
1.2
1.0
0.5
0.3
0.3
0.7
0.8
1.1
1.9
0
0.3
0.5
1.0
1.0
1.4
End
(B)
1.0
0.5
0.3
0.3
0.7
0.8
1.1
1.9
0
0
0.5
1.0
l.Q
1.4
1.1
Arithmetic mean (AM)
95% confidence interval (CIg5)
2-hour drift, b %
Zero
drift
(C=B-A)
-0.2
-0.5
-0.2
0
0.4
0.4
0.3
0.8
-1.9
0
0.2
0.5
0
0.4
-0.3
-0.03
0.35
0.38
Span reading
Start
(D)
94.0
94.2
93.4
91.7
92.0
92.0
93.0
91.5
91.7
91.7
91.0
89.4
93.7
93.4
93.0
End
(E)
94.2
93.4
91.7
92.0
92.5
92.5
91.5
91.7
91.7
91.0
89.4
93.7
93.4
93.0
94.1
Span
drift
(F=E-D)
0.2
-0.8
-1.7
0.3
0.5
0.5
-1.5
0.2
0
-0.7
-1.6
4.3
-0.3
-0.4
1.1
Cali-
bration
drift
(G=F-C.)
0.4
0.3
-1.5
0.3
0.1
0.1
-1.8
0.6
1.9
-1.0
1.8
3.8
-0.3
••0.8
1.4
0.29
0.81
1.16
Calibration gas concentration of 449 ppm S0~ and scale from 0 to 500 ppm
so2.
See Subsection 6.2.3 for explanation of units.
3-13
-------
TABLE 3-10. INITIAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR 2-HOUR ZERO AND CALIBRATION DRIFT9
(% of scale except as indicated)
Test-
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1979
12/18
12/18
12/18
12/18
12/18
12/18
12/18
12/19
12/19
12/19
12/19
12/19
12/19
12/19
12/19
Test Time
Start
0815
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
End
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
1415
Zero reading
Start
(A)
0.5
1.0
1.0
1.0
1.1
1.1
0.9
1.0
0.9
0.9
0.5
0.5
1.3
1.1
1.1
End
(B)
1.0
1.0
1.0
1.1
1.1
0.9
1.0
0.9
0.9
0.5
0.5
1.3
1.1
1.1
1.0
Arithmetic mean (AM)
95% confidence interval (CIg5)
2-hour drift,b %
Zero
drift
(C=B-A)
0.5
0
0
0.1
0
-0.2
0.1
-0.1
0
-0.4
0
0.8
-0.2
0
-0.1
0.03
0.16
0.19
Span reading
Start
(D)
70.5
68.0
67.7
68.8
67.9
69.5
69.0
67.0
65.9
67.3
67.0
67.0
67.8
68.0
67.4
End
(E)
68.0
67.7
68.8
67.9
69.5
69.0
67.0
65.9
67.3
67.0
67.0
67.8
68.0
67.4
68.0
Span
drift
(F=E-D)
-2.5
-0.3
1.0
-0.9
1.6
-0.5
-2.0
-1.1
1.4
-0.3
0
0.8
0.2
-0.6
0.6
Cali-
bration
drift
(G=F-C)
-3.0
0.3
1.0
-1.0
1.6
-0.3
-3.0
-1.0
1.4
0.1
0
0
0.4
-0.6
0.7
-0.23
0.75
1.47
Calibration gas concentration of 3338 ppm S09 and scale from 0 to 5000 ppm
S02. *
See Subsection 6.2.3 for explanation of units.
3-14
-------
TABLE 3-11. INITIAL TEST RESULTS FOR 02 MONITOR
2-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1979
12/18
12/18
12/18
12/18
12/18
12/18
12/18
12/19
12/19
12/19
12/19
12/19
12/19
12/19
12/19
Test Time
Start
0815
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
End
1015
1215
1415
1615
1815
2015
2215
0015
0215
0415
0615
0815
1015
1215
1415
Zero reading
Start
(A)
3.5
3.5
3.5
3.5
4.0
3.8
4.0
4.0
3.9
3.7
3.5
3.7
4.0
4.0
4.0
End
(B)
3.5
3.5
3.5
4.0
3.8
4.0
4.0
3.9
3.7
3.5
3.7
4.0
4.0
4.0
4.0
Arithmetic mean (AM)
95% confidence interval (Clgc)
2-hour drift, b %
Zero
drift
(C=B-A)
0
0
0
0.5
-0.2
0.2
0
-0.1
-0.2
-0.2
0.2
0.3
0
0
0
0.03
0.11
0.14
Span reading
Start
(D)
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
69.8
70.0
70.0
End
(F.)
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0
69.8
70.0
70.0
70.0
Span
drift
(F=E-D)
0
0
0
0
0
0
0
0
0
0
0
-0.2
-0.2
0
0
Cali-
bration
drift
(G=F-C)
0
0
0
-0.5
0.2
-0.2
0
0.1
0.2
0.2
-0.2
-0.5
0
0
0
0.05
0.12
0.61
Calibration gas concentration of 20.95% 02 and scale from 0 to 25%
o2.
Determined as (|AM| + CIg5) x 0.25.
3-15
-------
TABLE 3-12. RERUN TEST RESULTS FOR 0? MONITOR
2-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1980
2/6
2/6
2/6
2/7
2/7
2/7
2/7
2/8
2/8
2/8
2/8
2/9
2/11
2/11
2/12
Test Time
Start
1115
1315
1515
0845
1045
1245
1445
0900
1100
1300
1500
1400
0845
1045
0850
End
1315
1515
1715
1045
1245
1445
1645
1100
1300
1500
1700
1600
1045
1245
1050
Zero reading
Start
(A)
4.0
3.9
3.9
4.0
4.3
4.3
4.3
4.4
4.3
4.3
4.3
4.2
3.5
3.4
3.5
End
(B)
3.9
3.9
3.9
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.2
3.5
3.4
3.5
Arithmetic mean (AM)
95% confidence interval (Cine)
2-hour drift, b %
Zero
drift
(C=B-A)
-0.1
. 0
0
0.3
0
. 0
0
-0.1
0
0
0
0
0
-0.1
0
0.00
0.05
0.01
Span reading
Start
(0)
69.6
69.2
69.2
69.7
69.7
69.8
69.8
69.6
69.6
69.6
69.5
69.6
69.6
69.6
69.5
End
(E)
69.2
69.2
69.2
69.7
69.8
69.8
69.8
69.6
69.6
69.5
69.5
69.7
69.6
69.6
69.5
Span
drift
(F=E-D)
-0.4
0
0
0
0.1
0
0
0
0
-0.1
0
0.1
0
0
0
Cali-
bration
drift
(G=F-C)
-0.3
0
0
0.3
0.1
.0
0
0.1
0
-0.1
0
0.1
0
0.1
0
-0.02
0.07
0.02
Calibration gas concentration of 20.95% 02 and scale from 0 to 25%
Determined as (|AM| + CIg5) x 0.25.
3-16
-------
24-Hour Zero and Calibration Drift—
The 24-hour drift tests were performed from December 12
through 18, 1979. The results of the low-range (outlet) S02
monitor 24-hour drift tests, presented in Table 3-13, met the
2 percent zero limit, but not the 2.5 percent calibration drift
limit. Because of time constraints and the relatively small
error (0.3%), the EPA technical manager waived a rerun of the
test. The results of the high-range (inlet) S02 monitor 24-hour
drift tests, presented in Table 3-14, show compliance with the
2 and 2.5 percent limits for S02 monitor zero and calibration
drift. The results of the 02 monitor drift tests, presented in
Table 3-15, show the 02 monitor in compliance with the 0.5 per-
cent zero limit, but the calibration drift failed to meet the
0.5 percent limit by 0.3 percent. A rerun of the 24-hour cali-
bration drift test was waived by the EPA technical manager.
CEM Response Time—
The instrument system response times for the DuPont 460 and
Thermox WDG III gas monitors have been shown by previous testing
to be well within the 15-minute specification. Verification of
this was obtained by tests performed December 21, 1979, showing
the average response time in all cases to be less than 1 minute.
Tables 3-16 and 3-17 show the results of the low- and high-range
(outlet and inlet) S02 monitor tests, and Table 3-18 presents
the results of the 02 monitor tests.
3-17
-------
U)
I
TABLE 3-13. INITIAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR 24-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
Date in 1979
Start
12/11
12/12
12/13
12/14
12/15
12/16
12/17
End
12/12
12/13
12/14
12/15
12/16
12/17
12/18
Test time
Start
0815
0805
0830
0800
0815
0815
0825
End
0805
0830
0800
0815
0815
0825
0800
Zero reading
Start
(A)
0.0
1.0
0.0
0.0
0.5
0.8
0.0
End
(B)
0.0
1.0
0.0
0.0
0.8
0.5
0.5
Airthmetic mean (AM)
95% confidence interval (CIg5)
24- hour drift,b %
Zero
drift
(C=B-A)
0.0
0.0
0.0
0.0
0.3
-0.3
0.5
0.07
0.24
0.31
Span reading
Start
(D)
94.0
90.0
96.0
93.5
94.5
94.7
97.0
End
(E)
90.3
88.0
93.5
94.0
94.7
97.0
97.0
Span
drift
(F=E-D)
-3.7
-2.0
-2.5
0.5
0.2
2.3
0.0
Cali-
bration
drift
(G=F-C)
-3.7
-2.0
-2.5
0.5
-0.1
2.6
-0.5
-0.81
1.95
2.92
Calibration gas concentration of 449 ppm SOp and scale from 0 to 500 ppm SOo.
3See Subsection 6.2.3 for explanation of units.
-------
TABLE 3-14. INITIAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR 24-HOUR ZERO AND CALIBRATION DRIFT9
(% of scale except as indicated)
UJ
»-•
vo
Test
No.
1
2
3
4
5
6
7
Date in 1979
Start
12/11
12/12
12/13
12/14
12/15
12/16
12/17
End
12/12
12/13
12/14
12/15
12/16
12/17
12/18
Test time
Start
0805
0815
0830
0845
0900
0930
0945
End
0815
0830
0845
0900
0930
0945
1000
Zero reading
Start
(A)
1.0
1.0
1.0
1.0
0.8
1.0
1.0
End
(B)
0.7
0.7
1.0
1.0
1.0
1.2
1.2
Airthmetlc mean (AM)
95% confidence Interval (CIg5)
24-hour drift, b %
Zero
drift
(C=B-A)
-0.3
-0.3
0
0
0.2
0.2
0.2
0.0
0.21
0.21
Span reading
Start
(D)
67.8
68.4
69.0
70.0
69.0
70.0
72.0
End
(E)
66.0
65.1
70.0
69.0
70.0
73.5
72.8
Span
drift
(F=E-D)
-1.8
-3.3
1.0
-1.0
1.0
3.5
0.8
Cali-
bration
drift
(G=F-C)
-1.5
-3.0
1.0
-1.0
0.8
3.3
0.6
0.0286
1.9
1.9
Calibration gas concentration of 3338 ppm S02 and scale from 0 to 5000 ppm S0?.
See Subsection 6.2.3 for explanation of units.
-------
TABLE 3-15. INITIAL TEST RESULTS FOR 02 MONITOR 24-HOUR'ZERO
AND CALIBRATION DRIFT**
(% of scale, except as indicated)
U)
I
to
o
Test
No.
1
2
3
4
5
6
7
Date in 1979
Start
12/11
12/12
12/13
12/14
12/15
12/16
12/17
End
12/12
12/13
12/14
12/15
12/16
12/17
12/18
Test time
Start
0805
0815
0830
0845
0900
0930
0945
End
0815
0830
0845
0900
0930
0945
1000
Zero reading
Start
(A)
3.5
3.5
4.0
3.0
3.5
3.5
3.6
End
(B)
3.5
4.0
3.0
3.5
3.5
3.6
3.5
Airthmetic mean (AM)
95% confidence interval (CIg5)
24-hour drift, b % 02
Zero
drift
(C=B-A)
0
0.5
-1.0
0.5
0
0.1
-0.1
0.0
0.47
0.12
Span reading
Start
(D)
70.4
70.4
70.2
70.4
70.3
70.2
70.0
End
(E)
70.4
70.2
70.4
70.3
70.2
70.0
70.0
Span
drift
(F=E-D)
0
-0.2
0.2
-0.1
-0.1
-0.2
.0
Cali-
bration
drift
(G=F-C)
0
-0.7
1.2
-0.6
-0.1
-0.3
0.1
-0.06
0.61
0.75
Calibration gas concentration of 20.95% 02 and scale from 0 to 25%
Determined as (|AM| + CIg5) x 0.25
-------
TABLE 3-16. INITIAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR RESPONSE TIME3
(seconds)
Test No.
1
2
3
Average
Upscale
24.9
24.8
25.0
A = 24.9
Downscalle
21.4
22.5
20.7
B = 21., 5
System response time (slower of A and B) = 24.9
C = (A - B) = 3.4 (must be less than 15% of average or 5 seconds,
whichever is less)
Tests run on December 21, 1979, with span gas concentration of 449 ppm
S02.
3-21
-------
TABLE 3-17. INITIAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR RESPONSE TIME3
(seconds)
Test No.
1
2
3
Average
Upscale
26.0
25.6
26.2
A = 25.9
Downscale
24.3
23.8
24.9
B = 24.3
System response time (slower of A and B) = 25.9
C = (A - B) = 1.6 (must be less than 15% of average or 5 seconds,
whichever is less)
Tests run on December 21, 1979, with span gas concentration of
3338 ppm S02.
3-22
-------
TABLE 3-18. INITIAL TEST RESULTS FOR 02
MONITOR RESPONSE TIME3
(seconds)
Test No.
1
2
3
Average
Upscale
25.5
26.3
26.1
A = 26.0
Downscale
26.0
25.9
26.2
B = 26.0
System response time (slower of A and B) = 26.0
C = (A - B) = 0 (must be less than 15% of average or 5 seconds,,
whichever is less)
Tests run on December 21, 1979, with span gas concentration of 20.95% 02.
3-23
-------
System Relative Accuracy—
Eleven tests of inlet system relative accuracy were per-
formed December 11 and 12, 1979. The results, presented in
Table 3-19, show a relative accuracy of 11.1 percent, complying
with the specified limit of 20 percent.
Thirteen tests of outlet system relative accuracy were
performed December 11 to December 13. The results, presented in
Table 3-20, show a relative accuracy of 35.2 percent, which
failed to meet the specified limit of 20 percent. The cause of
the difference between CEM and manual method tests results was
determined to be temperature fluctuation in the heat-traced
sampling interface. Because the temperature was at times less
than the saturation temperature of the outlet flue gases, un-
known quantities of moisture condensed. A conditioning system
was installed for accurate moisture content determination in the
emission calculations of the CEM. The results of the rerun
outlet tests, presented in Table 3-21, are within the specified
limit of 12.2 percent except those of Tests 16, 18, 20, and 21,
which were not used in calculation of relative accuracy because
of the low bias in the manual method results. The cause of the
bias was found to be the wetting by and retention of a small
amount of hydrogen peroxide on the glass wool between the iso-
propyl alcohol and hydrogen peroxide impingers during initial
leak checks of the sample trains.
3-24
-------
TABLE 3-19. INITIAL TEST RESULTS FOR FGD UNIT 3
INLET CERTIFICATION
Date
in
1979
12/11
12/11
12/11
12/11
12/11
12/12
12/12
12/12
12/12
12/12
Test
No.
SO-1-1
SO-I-2
SO-I-3
SO- 1-4
SO-I-5
SO-I-6
SO-1-7
SO- I -8
SO-I-9
SO-1-10
Test time
Start
1036
1341
1512
1740
1855
1001
1123
1425
1532
1710
End
1106
1411
1542
1810
1925
1031
1153
1455
1602
1740
Averaoe
02, vol. %
RMa
15.20
14.08
14.50
14.50
13.80
11.30
10.50
11.30
11.60
11.30
12.81
Hb
14.67
13.50
14.72
14.42
13.20
10.96
10.05
10.86
10.96
10.96
12.43
S02, ppm
RM8
581
708
581
595
775
1060
1254
1300
1162
1166
918
Mb
595
648
586
631
736
1025
1206
1246
1179
1119
897
Diff.
Ui)
+14
-60
+5
+36
-39
-35
-48
-54
+17
-47
-21
xi2
196
3600
25
1296
1521
1225
2304
2916
289
2209
1558
S02, 1b/106 Btu
RM8
3.43
3.62
3.08
3.13
3.46
3.45
3.96
4.43
4.21
4.08
3.68
Mb
3.21
2.95
3.12
3.20
3.14
3.39
3.65
4.08
3.89
3.70
3.43
Diff.
Ui)
-0.22
-0.67
+0.04
+0.07
-0.32
-0.06
-0.31
-0.35
-0.32
-0.38
-0.25
«12
0.050
0.449
0.002
0.005
0.102
0.004
0.096
0.122
0.102
0.144
0.108
952 confidence Interval (CIg5) = 0.158 lb S02/106 Btu
System relative accuracy * 11.1% of average RM
Reference method value.
Monitor value.
3-25
-------
TABLE 3-20. INITIAL TEST RESULTS FOR FGD UNIT 3
OUTLET CERTIFICATION
Date
In
1979
12/11
12/11
12/11
12/11
12/11
12/12
12/12
12/12
12/12
12/12
12/13
12/13
12713
Test
No.
SO- 0-1
SO-0-2
SO-0-3
SO-0-4
SO- 0-5
SO-0-6
SO- 0-7
SO-0-8C
SO-0-9
SO- 0-10
SO- 0-11
SO- 0-1 2
sn-n.n
Test time
Start
959
1123
1424
1648
1818
922
1044
937
1043
1154
1307
1M7
End
1029
1153
1454
1718
1848
952
1114
957
1103
1214
1327
1517
Averaae
02, vol. %
Rf1a
15.40
14.85
14.85
14.75
15.13
14.60
11.23
13.00
14.10
14.30
13.50
14 ?<;
14.16
Mb
17.34
16.90
18.10
14.70
14.00
15.50
11.50
12.30
13.10
13.20
12.60
11 fin
14.40
S02, ppm
RMa
290
284
212
253
202
250
329
107
193
129
14
Ifil
202
Mb
139
155
63
272
197
145
166
33
145
127
138
Til
159
Diff.
(X1)
-151
-129
-149
+19
-5
-105
-163
-74
-48
-2
+124
•mn
-43
xi2
22,801
16,641
22,201
361
25
11,025
26,569
5,476
2,304
4
15,376
?R,pnn
12.640
S02, lb/106 Btu
RMa
2.17
1.59
1.18
1.39
1.18
1.33
1.15
0.45
0.96
0.66
0.66
n ft?
1.08
Mb
1.52
1.47
0.83
1.68
1.75
0.88
0.58
0.23
1.12
0.97
1.00
i 4Q
1.13
Oiff.
(Xi)
-0.65
-0.12
-0.35
+0.29
+0.57
-0.45
-0.57
-0.22
+0.16
+0.31
+0.94
+n fi?
0.05
*i2
0.422
0.014
0.123
0.084
0.325
0.203
0.325
0.048
0.026
0.096
0.884
n 449
0.250
95? confidence Interval (
System relative accuracy
0.330 1b S02/106 Btu
35.2% of average RM
a
Reference method value.
Monitor value.
C Void.
3-26
-------
TABLE 3-21. RERUN TEST RESULTS FOR FGD UNIT 3
OUTLET CERTIFICATION
Date
in
1979
12/13
12/14
12/14
12/14
12/14
12/14
12/14
12/14
12/14
12/14
12/14
12/14
12/14
Test
No.
50-0-14
50-0-15
50-0-16C
50- 0-1 7
;o-o-iec
SO- 0-1 9
SO-0-20C
50-0-21C
SO- 0-22
SO- 0-23
SO- 0-24
SO-0-25
SO- 0-26
Test time
Start
1717
905
955
1057
1156
1256
1348
1533
1623
1703
1734
1815
1902
End
1739
927
1017
1118
1218
1317
1409
1555
1645
1725
1756
1837
1924
Average
02, vol. X
Rf18
14.60
12.30
13.10
13.30
13.00
12.97
13.10
13.30
13.63
13.53
13.10
13.33
13.40
13.35
Mb
14.10
12.70
12.80
13.00
13.20
13.30
13.10
13.50
13.70
13.56
13.40
13.50
13.60
13.43
S02, ppm
RW8
192
73
19
49
24
49
25
7
43
75
75
100
85
£2
Mb
192
81
39
51
53
53
62
45
55
93
82
95
74
86
Diff.
(xi)
+0
+8
+20
+2
+29
+4
+37
+38
+12
+18
+7
-5
-11
7
xi2
0
64
400
4
841
16
1369
1444
144
324
49
25
121
83
S02, lb/106 Btu
RM8
1.030
0.287
0.083
0.211
0.102
0.206
0.107
0.030
0.200
0.359
0.321
0.447
0.380
0.382
Mb
0.927
0.286
0.155
0.211
0.224
0.231
0.273
0.200
0.251
0.345
0.359
0.420
0.334
0.374
Diff.
(x^
-0.103
-0.001
+0.072
0.000
+0.122
0.025
+0.166
+0.170
+0.051
+0.014
+0.038
+0.027
+0.046
0.011
Xi2
0.011
0.000001
D.005
0.000
0.015
0.001
0.028
0.029
0.003
0.0002
0.0014
0.001
0.002
0.002
95?. confidence interval (Cine)
System relative accuracy
0.035 lb S02/106 Btu
12.2? of average RM
Reference method value.
b Monitor value.
Sample train reagents mixed during leak checks, results not
used to calculate relative accuracy.
3-27
-------
3.1.2 Final P/S Test Results
Calibration Error—
Final calibration error tests were performed on April 29,
1980, and demonstrated compliance with the allowable limits.
Tests results are presented for the low- and high-range (outlet
and inlet) S02 monitor calibration error in Tables 3-22 and 3-23
and for the 02 monitor calibration error in Table 3-24.
2-Hour Zero and Calibration Drift—
Final 2-hour drift tests were performed April 22 through 29
and demonstrated compliance with the allowable limits. Test
results are presented for the low- and high-range (outlet and
inlet) S02 monitor 2-hour drift in Tables 3-25 and 3-26 and for
the 02 monitor 2-hour drift in Table 3-27.
24-Hour Zero and Calibration Drift—
Final 24-hour drift tests were performed April 18 through
25 and demonstrated compliance with the allowable limits. Tests
results are presented for the low- and high-range (outlet and
inlet) S02 monitor 24-hour drift in Tables 3-28 and 3-29 and for
the O2 monitor 24-hour drift in Table 3-30.
System Relative Accuracy—
Final system relative accuracy tests were performed April
23 and 24 and demonstrated compliance with the allowable limits.
3-28
-------
TABLE 3-22. FINAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR CALIBRATION ERROR
(ppm SOp except as indicated)
Date
in
1980
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Calibration gas
concentration
(A)
449
249
0
249
449
0
449
249
0
249
449
0
249
449
0
Monitor
reading
(B)
450
250
-1.1
247.5
450
-1.4
450
250
-1.2
250
450
-1.3
249.5
450
-1-2
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,9 % A
Arithmetic
difference
(A - B)
Mid
-1
1.5
-1
-1
-0.5
-0.4
1.35
0.70
Span
-1
-1
-1
-1
-1
-1.00
0.00
0.22
Determined as [(|AM| + CIg5) T A] x 100.
3-29
-------
TABLE 3-23. FINAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR CALIBRATION ERROR
(ppm S02 except as indicated)
Date
in
1980
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Calibration gas
concentration
(A)
3338
2497
0
2497
3338
0
3338
2497
0
2497
3338
0
3338
2497
0
Monitor
reading
(B)
3325
2400
0
2425
3300
0
3295
2435
0
2450
3300
0
3300
2410
0
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,9 % A
Arithmetic
difference
(A - B)
Mid
97
72
62
47
87
73.0
24.6
3.9
Span
13
38
43
38
38
34
14.8
1.48
Determined as [(|AM| + CIg5) * A] x 100.
3-30
-------
TABLE 3-24. FINAL TEST RESULTS FOR 02
MONITOR CALIBRATION ERROR
(% D£ except as indicated)
Date
in
1980
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
4/29
Test
No.
1
2
3
4
5
6
7
8
9
10
n
12
13
14
15
Calibration gas
concentration
(A)
20.9
12.0
0
20.9
12.0
0
12.0
20.9
0
0
12.0
20.9
12.0
20.9
0
Monitor
reading
(B)
20.3
12.4
3.0
20.3
12.0
3.0
12.3
20.4
3.0
3.0
12.3
20.3
12.3
20.3
3.0
Arithmetic mean (AM)
95% confidence interval (CIg5)
Calibration error,3 % A
Arithmetic
difference
(A - B)
Mid
-0.4
0
-0.3
-0.3
-0.3
-0.26
0.19
0.70
Span
0.6
0.6
0.5
0.6
0.6
0.58
0.06
3.0
Determined as [(|AM| + CIg5) T A] x 100.
3-31
-------
TABLE 3-25. FINAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR 2-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1980
4/22
4/22
4/22
4/23
4/23
4/23
4/23
4/24
4/24
4/24
4/24
4/25
4/25
4/25
4/29
Test Time
Start
0815
1025
1225
0900
1100
1325
1525
0900
1100
1300
1500
0900
1100
1300
1015
End
1025
1225
1435
1100
1325
1525
1725
1100
1300
1500
1700
1100
1300
1500
1215
Zero reading
Start
(A)
-1.5
-1.6
-1.7
-1.7
-1.7
-1.7
-1.7
-1.5
-1.0
-1.2
-1.6
-1.5
-1.0
-1.5
-1.0
End
(B)
-1.6
-1.7
-1.7
-1.7
-1.7
-1.7
-1.7
-1.0
-1.2
-1.6
-1.6
-1.0
-1.5
-1.5
-1.1
Arithmetic mean (AM)
95% confidence interval (CIg5)
2-hour drift, b %
Zero
drift
(C=B-A)
-0.1
-0.1
0
0
0
0
0
0.5
-0.2
-0.4
0
0.5
-0.5
0
-0.1
-0.03
0.18
0.17
Span reading
Start
(D)
90.4
90.0
89.1
89.2
89.1
87.5
90.5
90.2
90.9
90.0
86.5
89.5
90.5
90.0
90.0
End
(E)
90.0
89.1
90.0
89.1
87.5
90.5
90.5
90.9
90.9
86.5
88.9
90.5
90.0
90.0
90.0
Span
drift
(F=E-D)
-0.4
-0.9
0.9
-0.1
-1.6
3.0
0
0.7
-0.9
-3.5
2.4
1.0
-0.5
0
0
Cali-
bration
drift
(6=F-C)
1.2
-0.8
0.9
-0.1
-1.6
3.0
0
0.2
-0.7
-3.1
2.4
0.5
0
0
0
0.13
0.80
0.94
Calibration gas concentration of 449 ppm S02 and scale from 0 to 500 ppm SO-,
See Subsection 6.2.3 for explanation of units.
3-32
-------
TABLE 3-26. FINAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR 2-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1980
4/22
4/22
A/22
4/23
4/23
4/23
4/23
4/24
4/24
4/24
4/24
4/25
4/25
4/25
4/29
Test Time
Start
0815
1025
1225
0900
1100
1325
1525
0900
1100
1300
1500
0900
1100
1300
1015
End
1025
1225
1435
1100
1325
1525
1725
1100
1300
1500
1700
1100
1300
1500
1215
Zero reading
Start
(A)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
End
(B)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Arithmetic mean (AM)
95% confidence interval (CIg5)
2-hour drift,b %
Zero
drift
(OB-A)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.0
0.0
Span readinq
Start
(D)
66.1
66.2
65.7
64.4
63.7
65.5
65.6
64.2
66.0
65.1
67.0
65.0
65.5
66.0
66.0
End
(E)
66.2
65.7
66.0
63.7
65.5
65.6
63.8
66.0
65.1
67.0
63.0
65.5
66.0
66.0
66.0
Span
drift
(F=E-D)
0.1
-0.5
0.3
-0.7
1.8
0.1
-1.8
1.8
-0.9
1.9
-4.0
0.5
0.5
0
0
Cali-
bration
drift
(G*F-C)
0.1
•-0.5
0.3
-0.7
1.8
0.1
-1.8
1.8
-0.9
1.9
-4.0
0.5
0.5
0
0
-0.06
0.83
1.33
Calibration gas concentration of 3338 ppm S02 and scale from 0 to
5000 ppm S02.
See Subsection 6.2.3 for explanation of units.
3-33
-------
TABLE 3-27. FINAL TEST RESULTS FOR 02 MONITOR
2-HOUR ZERO AND CALIBRATION DRIFT*
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Date
in
1980
4/22
4/22
4/22
4/23
4/23
4/23
4/23
4/24
4/24
4/24
4/24
4/25
4/25
4/25
4/29
Test Time
Start
0815
1025
1225
0900
11 00
1320
1525
0900
1100
1300
1500
0900
1100
1300
1015
End
1025
1225
1435
1100
1320
1520
1725
1100
1300
1500
1700
1100
1300
1500
1215
Zero reading
Start
(A)
3.4
3.4
3.4
3.2
3.0
2.8
3.0
3.0
2.9
2.9
2.6
2.5
2.7
3.0
2.9
End
(B)
3.4
3.4
3.5
3.0
2.8
3.0
3.3
2.9
2.9
2.6
3.0
2.7
3.0
2.9
2.9
Arithmetic mean (AM)
95% confidence interval (CIg5)
2-hour drift, b %
Zero
drift
(C=B-A)
0
0
0.1
-0.2
-0.2
0.2
0.3
-0.1
0
-0.3
0.4
0.2
0.3
-0.1
0
0.04
0.11
0.04
Span readinq
Start
(0)
69.2
69.2
69.0
69.0
69.0
69.0
69.0
69.0
69.0
68.9
69.0
69.5
69.5
69.6
69.0
End
(E)
69.2
69.0
69.5
69.0
69.0
69.0
69.1
69.0
68.9
69.0
68.8
69.5
69.6
69.0
69.0
Span
drift
(F=E-D)
.0
-0.2
0.5
0
0
0
0.1
0
-0.1
0.1
-0.2
0
0.1
-0.6
0
Cali-
bration
drift
(G=F-C)
0
-0.2
0.4
0.2
0.2
-0.2
-0.2
0.1
-0.1
0.4
0.6
-0.2
-0.2
0.5
0
0.09
0.16
0.07
Calibration gas concentration of 20.95% Op and scale from 0 to 25%
Determined as (|AM| + CI) x 0.25.
3-34
-------
TABLE 3-28. FINAL TEST RESULTS FOR LOW-RANGE (OUTLET)
S02 MONITOR 24-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
i
u»
en
Test
No.
1
2
3
4
5
6
7
Date in 1980
Start
4/18
4/19
4/20
4/21
4/22
4/23
4/24
End
4/19
4/20
4/21
4/22
4/23
4/24
4/25
Test time
Start
1500
1500
1500
1500
1500
1515
1500
End
1500
1500
1500
1500
1515
1500
1515
Zero reading
Start
(A)
-1.5
-1.5
-1.6
-1.6
-1.6
-1.7
-1.6
End
(B)
-1.5
-1.6
-1.6
-1.6
-1.7
-1.6
-1.5
Airthmetic mean (AM)
95% confidence interval (CIgg)
24-hour drift,b %
Zero
drift
(C=B-A)
0
-0.1
0
0
-0.1
0.1
0.1
0.00
0.08
0.08
Span reading
Start
(D)
90
90
90
89
90
90.5
86.5
End
(E)
90
90
89
90
90.5
86.5
90
Span
drift
(F=E-D)
0
0
-1.0
1.0
0.5
-4.0
3.5
Cali-
bration
drift
(G=F-C)
0
0.1
-1.0
1.0
0.6
-4.0
3.4
0.0
2J
2.3
'Calibration gas concentration of 449 ppm S02 and scale from 0 to 500 ppm S02-
JSee Subsection 6.2.3 for explanation of units.
-------
TABLE 3-29. FINAL TEST RESULTS FOR HIGH-RANGE (INLET)
S02 MONITOR 24-HOUR ZERO AND CALIBRATION DRIFT3
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
Date in 1980
Start
4/18
4/19
4/20
4/21
4/22
4/23
4/24
End
4/19
4/20
4/21
4/22
4/23
4/24
4/25
Test time
Start
1500
1500
1500
1500
1500
1515
1500
End
1500
1500
1500
1500
1515
1500
1515
Zero reading
Start
(A)
0
0
0
0
0
0
0
End
(B)
0
0
0
0
0
0
0
Airthmetic mean (AM)
95% confidence interval (CIg5)
24-hour drift,b %
Zero
drift
(C=B-A)
0
0
0
0
0
0
0
0.0
0.0
0.0
Span reading
Start
(D)
65
65.5
65.5
64.5
66
65.6
67
End
(E)
65.5
65.5
64.5
66
65.6
67
66
Span
drift
(F-E-D)
0.5
0
-1.0
1.5
-0.4
1.4
-1.0
Cali-
bration
drift
(G=F-C)
0.5
0
-1.0
1.5
-0.4
1.4
-1.0
-0.29
0.93
1.83
OJ
Calibration gas concentration of 3338 ppm S02 and scale from 0 to 5000 ppm SO?.
5See Subsection 6.2.3 for explanation of units.
-------
TABLE 3-30. FINAL TEST RESULTS FOR 02 MONITOR
24-HOUR ZERO AND CALIBRATION DRIFT*
(% of scale except as indicated)
Test
No.
1
2
3
4
5
6
7
Date in 1980
Start
4/18
4/19
4/20
4/21
4/22
4/23
4/24
End
4/19
4/20
4/21
4/22
4/23
4/24
4/25
Test time
Start
1500
1500
1500
1500
1500
1515
1500
End
1500
1500
1500
1500
1515
1500
1515
Zero reading
Start
(A)
3.5
3.5
3.5
3.0
3.5
2.6
2.6
End
(B)
3.5
3.5
3.0
3.5
2.6
2.6
2.9
Airthmetic mean (AM)
95% confidence interval (Clgg)
24-hour drift, b % 02
Zero
drift
(C=B-A)
0
0
-0.5
0.5
-0.9
0
0.3
-0.09
0.44
0.13
Span reading
Start
(D)
69.9
69.8
69.8
69.4
69.5
69.0
69.0
End
(E)
69.8
69.8
69.4
69.5
69.0
69.0
69.0
Span
drift
(F=E-D)
-0.1
0
-0.4
0.1
-0.5
0
0
Cali-
bration
drift
(G=F-C)
0.1
0
0.1
-0.4
0.4
0.4
-0.3
-0.01
0.25
0.07
a Calibration gas concentration of 20.95% 02 and scale from 0 to 25% 02-
b Determined as (|AM| + CIg5) x 0.25
-------
The inlet test results, presented in Table 3-31, show a system
relative accuracy of 19.4 percent, and the outlet tests results,
presented in Table 3-32, show a system relative accuracy of 10.1
percent.
3.2 CONTINUOUS SULFUR DIOXIDE DATA
3.2.1 Data Listings
15-Minute Readings—
Computer printouts list complete 15-minute readings showing
the wet basis FGD inlet and outlet S02 and 02 concentrations,
the moisture content of each gas stream tested, and the cor-
rected (dry basis) inlet and outlet S02 and 02 values. Inlet
and outlet emission rates (Ib S02/106 Btu) and FGD system effi-
ciencies are calculated and listed on an hourly basis. These
listings are presented in the appendix.
1-Hour Averages—
The 1-hour averages of inlet and outlet emission rates and
FGD efficiency were averaged for two periods: February 5 to
April 25 and February 28 to March 17. The total averages for
the two periods were calculated from available hourly readings
on days when data were collected for 18 or more hours and are
presented in Table 3-33.
24-Hour Averages—
The 24-hour (daily) averages of inlet and outlet emission
rates and FGD system efficiency were also listed for the periods
3-38
-------
TABLE 3-31. FINAL TEST RESULTS FOR FGD UNIT 3
INLET CERTIFICATION
Date
in
1980
4/23
4/23
4/23
4/23
4/23
4/23
4/23
4/24
4/24
Test
No.
11
12
13
14
15
16
17
18
19
Test time
Start
0905
1030
1145
1220
1450
1605
1730
0915
1030
End
0925
1050
1205
1240
1510
1625
1750
0935
1050
Average
0^, vol. I
RMa
13.2
15.4
12.2
12.6
13.8
13.8
14.2
12.7
12.9
Hb
13.5
13.5
13.0
13.2
14.1
12.8
14.4
13.4
13.4
S02> ppn
RMa
664
675
631
750
660
767
790
644
609
Mb
768
784.5
791.3
734.1
725.7
731
676.4
725.5
685.9
D1ff.
(«l)
104
109.5
160.3
-15.9
65.7
-36
-113.6
81.5
76.9
S02, lb/106 Btu
RM-
2.90
4.13
2.44
3.04
3.13
3.19
3.97
2.64
2.56
3.11
Mb
3.27
3.57
3.37
3.25
3.59
3.04
3.50
3.26
3.08
Diff.
<*,)
0.37
-0.56
0.93
0.21
0.46
-0.15
-0.47
0.62
0.52
0.214
«IZ
0.137
0.314
0.865
0.044
0.212
0.023
0.221
0.384
0.270
951 confidence Interval (CI95) -0.3897 lb S02/106 Btu
System relative accuracy « 19.4% of average RM
Reference method value.
Monitor value.
3-39
-------
TABLE 3-32. FINAL TEST RESULTS FOR FGD UNIT 3 OUTLET CERTIFICATION
Date
in
1980
4/23
4/23
4/23
4/23
4/23
4/23
4/23
4/23
4/23
Test
No.
27
28
29
30
31
32
33
34
35
Test time
Start
0905
1030
1145
1220
1450
1600
1725
0915
1030
End
0925
1050
1205
1240
1510
1620
1745
0935
1050
Average
02. vol. I
RMa
12.8
12.4
12.6
12.4
13.6
13.4
14.0
13.2
13.3
Mb
12.9
13.4
13.0
13.3
14.1
12.8
14.4
13.7
13.6
S02, ppn
RHa
39.2
47.8
33.4
33.7
44.9
50.6
47.0
56.9
55.9
Mb
33.3
40.6
40.0
34.5
47.5
49.5
47.5
49.0
52
Diff.
(»l)
-15
-15
20
2
6
-2.2
1
-14
-7
S02, lb/106 Btu
RM*
0.16
0.19
0.14
0.13
0.21
0.23
0.23
0.25
0.25
0.20
Mb
0.14
0.18
0.17
0.15
0.24
0.21
0.25
0.23
0.24
Diff.
(xt)
-0.02
-0.01
0.03
0.02
0.03
-0.02
0.02
-0.02
-0.01
0.002
Xi2
0.0004
0.0001
0.0009
0.0004
0.0009
0.0004
0.0004
0.0004
0.0001
951 confidence interval (CI95) = 0.018 Ib S02/106 Btu
System relative accuracy = 10.1« of average RM
Reference method value.
Monitor value.
3-40
-------
TABLE 3-33. SUMMARY OF RESULTS
BASED ON 1-HOUR SO, AVERAGES
17 OPERATING DATS
SUMMARY OF RESULTS
USING 1-MOUR
CM AA&JU H»ILCB t
OATEI a-26-60
CHAD E E
IN OUT
• AVERAGES 40Z. 395. 394. 39. 571. 571. 571.
X OF DATA 99. 95. 95. 95.
MINIMUM 3. 2.2a3 .016 Sb.u9b
MAXIMUM 57. 6.730 1.969 99.SZ1
MEAN 37. 3.773 .303 9l.l«l
8TD.DEV. 7. .600 ,2«8 5.997
X STO.OEV. 19. Z1.195 01.646 6.506
30-OAT REMOVAL EFIC1ENCT USING
I
IMEAN) E , E t 91.967*
30 IN OUT
T
MOTES (MEAN) IS PEFINEO AS:
X
THE MEAN FOR X DATS USING T-MOUH AVERAGES
3-41
-------
from February 5 to April 25 and February 28 to March 17. These
listings, presented in Table 3-34, are shown for data days that
met the minimum data capture requirement of 18 hours.
3.2.2 Omitted Data
There were three basic reasons for which data periods did
not appear in the above listings or calculations.
Absence of Data Caused by Process Shutdown or CEM Failure—
During process shutdown or CEM failure, no data were avail-
able for listing. When only one parameter (inlet or outlet
readings) was omitted, the other, if available, was listed.
These instances were caused by failure of the sampling interface
in the case of the affected parameter, but continued operation
in the case of the unaffected parameter. The FGD efficiency
data could not be calculated in such cases.
Unrepresentative Process Operation—
When temporary loss of scrubber feed resulted in loss of
S02 emission control, data were not included in the listings.
Low efficiency data, however, were recorded March 18 and 19 for
FGD Unit 3; these were included in the listings and reflect
process startup following a 1-month shutdown.
Failure to Obtain a Sufficient Data Base for Computation—
At least two 15-minute readings per hour were necessary for
an hourly reading to be computed in the initial data listing,
and at least eighteen 1-hour averages of a parameter were needed
for data to be included in the summaries of 1-hour and 24-hour
results.
3-42
-------
TABLE 3-34. SUMMARY OF RESULTS BASED
ON 24-HOUR S02 AVERAGES
17 OPERATING DAYS
SU*M«RT OF RESULTS
USING 24-HOUR AVERAGES
LOCATION! CM PAfiMA BOILER 1
DATE I 2-20-00
DATE
LOAD
EFF
IN
OUT
U>
I
•Ck
OJ
2-z0?0o
2-29-00
• i-eo
- 2-00
- 3-90
• 4-00
• 9-00
- 6-00
- 7-00
- 0-00
- 9-00
-12-00
lrll-00
-14-00
-15-00
-16-80
-17-00
.J AKEMfiCl
1 OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
1 •TO.DCIf.
TL. 3 .AM
00.
75.
74.
76.
60.
fcL.
60.
66.
56.
53.
71.
*r^
65.
54.
.995
.939
.017
.241
.076
L.070
.579
.205
,657
.049
.091
.JJS
.004
.211
67. 3.616
65. 3.979
L7. 17.
55. 55.
53. 2.070
00. 4.657
67. 3.009
T. .437
It- 11.07?
»*09
.303
.379
.*73
.226
.313
^UJB
.320
.236
.310
.370
.190
^ADl
.492
.311
.253
.315
L7.
55.
.190
,492
.320
.004
2*«*15
00.
90.
«o.
92.
^3.
0«.
92.
90.
<»4.
9J.
90.
95.
19.
07.
92.
93.0
92.1
17.
55.
07.500
95,192
91.535
2.107
2^101
30-DAY REMOVAL EFICIENCV USING
24
(MEANI E , E > 91.5071
39 IN OUT
NOTE! CMEANI IS DEFINED AS:
X
THE MEAN FOR X OATS USING T-HOUH AVERAGES
25 OPERATING DATS
SUMMARY OF UE&ULTS
USING 24-HOUR AVERAbES
LOCATION: GM PARMA BOILER 3
DATES 2- 4-00
DATE
LOAD
EFF
IN
OUT
2- 5-80
2-11-80
2-12-80
2-13-00
2-14-80
2-15-00
2-16-00
2-17-80
-10-00
-19-00
-20-00
-21-00
-22-80
-23-80
- 1-80
- 2-00
- 3-00
-16-00
-17-00
-10-00
-21-00
-22-00
-23-00
-24-00
-25-00
* AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X STO.DEV.
32.
3«.
34.
36.
39.
40.
40.
40.
41.
37.
30.
41.
43.
37.
46.
42.
40.
39.
39.
35.
32.
32.
31.
35.
32.
25.
01.
31.
46.
37.
4.
11.
3.560
2.862
2.909
2.895
2.741
«!.<463
2.980
2.824
.804
.903
.399
.789
.830
.984
.505
.651
.546
.315
.053
.024
.022
.976
.700
.634
3.049
25.
01.
2.741
5.315
3.769
.695
10.453
.144
.150
.103
.161
.107
.170
.007
.092
1.030
.796
.469
.195
.142
.162
.356
.412
.359
.256
.321
.300
.323
.300
.251
.290
.340
25.
81.
.007
1.030
.301
.214
71.193
95.9
94.0
93.7
94.5
93.2
94.1
97.1
96.7
73.7
79.2
09.3
94.9
90.3
95.9
92.2
91.1
92.1
95.1
93.2
92.0
91.6
92.3
93.4
91.0
91.1
25.
01.
73.663
97.093
92.203
5.210
5.650
SO-DAY REMOVAL EFICIENCT USING
24
IKZ&Ki E f E : ?£.C25S
30 IN OUT
NOTE! (MEANI IS DEFINED AS>
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
3.2.3 Process Operations Affecting S02 Emission Rates
Inlet Emission Rates—
Inlet S02 emission rates were affected primarily by the
sulfur content of the coal burned. Because Central Fuel Company
and State Sales Company supplied the coal throughout the entire
test period, the data collected should be considered representa-
tive of a mixture of coals from both vendors.
Outlet Emission Rates—
Outlet S02 emission rates reflected FGD system S02 effi-
ciency, which dependended on many parameters; and fluctuation or
temporary loss of scrubber feed immediately affected S02 re-
moval. Section 4 describes the FGD process and control prac-
tices.
3.3 DATA CAPTURE AND DATA LOSS
Tables 3-35 and 3-36 list the daily hours of data capture
and loss by FGD Units 1 and 3 from February 4 to April 25. The
performance of the FGD system and CEM affected data capture and
are described below.
3.3.1 FGD System Performance
Total operating data showed that FGD Unit 1 availability,
reliability, operability, and utilization were all 100 percent.
For the purpose of the test, however, 1 hour, or less than 1
percent of the total FGD operation was not regarded as represen-
tative of normal process control and was excluded from the data
base.
3-44
-------
TABLE 3-35.
DAILY DATA CAPTURE AND LOSS INFORMATION ON FGD UNIT 1
(hours except as indicated)
u>
.u
Ul
Data
day
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Total 17
Date
In
1980
2/28
2/29
3/1
3/2
3/3
3/4
3/5
3/6
3/7
3/8
3/9
3/10
3/11
3/12
3/13
3/14
3/15
3/16
3/17
456
Total
process
operation
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
456
Process
downtime
(abnormal
operation)
0
0
0
0
0
0
0
4b
0
1.75°
0
0
0
0
0
17f
0
0
0
22.75
Inlet
data
capture
20
24
24
24
24
24
24
24
24
24
24
13
14
24
20
24
24
24
18
421
Outlet
data
capture
20
24
24
24
24
24
24
24
24
23
24
13
14
24
20
24
24
24
18
420
Efficiency
data
capture
20
24
24
24
24
24
24
24
24
23
24
13
14
24
20
24
24
24
18
420
02
monitor
downtime
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S02
monitor
downtime
0
0
0
0
0
0
0
0
0
0
0
11d
10d
0
0
0
0
0
0
21
Sampling
interface
downtime
4a
0
0
0
0
0
0
0
0
0
0
0
0
0
e
0
0
0
0
4
Outlet solenoid problem.
bAutoMt1c pH problem from 0600 to 1000.
cScrubber feed loss from 0600 to 0745.
Tllnor cycle timer out.
"inlet and outlet probes down for repair.
fProblem with pH from 0400 to 2100.
-------
TABLE 3-36. DAILY DATA CAPTURE AND LOSS INFORMATION ON FGD UNIT 3
(hours except as Indicated)
OJ
i
Data
day
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Date
In
1980
2/4
2/5
2/6
2/7
2/8
2/9
2/10
2/11
2/12
2/13
2/14
2/15
2/16
2/17
2/18
2/19
2/20
2/21
2/22
2/23
2/24
2/25
2/26
2/27
3/17
3/18
3/19
3/20
3/21
3/22
3/23
3/24
3/25
3/26
3/27
Total
process
operation
2
20
0
4
17
0
0
19
24
24
24
24
24
21
0
0
0
0
0
0
0
0
0
0
2
24
24
24
24
24
24
10
0
0
0
Process
downtime
(abnormal
operation)
0
0
0
0
3.5a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6d
24e
24f
9.759
0
0
0
0
0
0
0
Inlet
data
capture
2
20
0
4
17
0
0
18
24
24
24
24
24
21
0
0
0
0
0
0
0
0
0
0
2
24
24
24
24
24
24
10
0
0
0
Outlet
data
capture
2
20
0
4
14
0
0
18
22
24
24
24
24
21
0
0
0
0
0
0
0
0
0
0
2
24
24
24
24
24
24
10
0
0
0
Efficiency
data
capture
2
20
0
4
14
0
0
18
22
24
24
24
24
21
0
0
0
0
0
0
0
0
0
0
2
24
24
24
24
24
24
10
0
0
0
monitor
downtime
0
0
0
0
0
0
0
1.25b
1.5C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S02
monitor
downtime
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sampling
Interface
downtime
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(continued)
-------
TABLE 3-36. (continued)
Data
day
No.
15
16
17
18
19
20
21
22
23
24
Total 24
Date
in
1980
3/28
3/29
3/30
3/31
4/1
4/2
4/3
4/4
4/5
4/6
4/7
4/8
4/9
4/10
4/11
4/12
4/13
4/14
4/15
4/16
4/17
4/18
4/19
4/20
4/21
4/22
4/23
4/24
4/25
1968
Total
process
operation
0
0
0
0
23
24
24
0
0
0
0
0
0
0
0
0
0
0
9
24
24
24
0
0
19
24
24
24
21
623
Process
downtime
(abnormal
operation)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
k
k
k
0
0
0
k
67.25
Inlet
data
capture
0
0
0
0
23
23
17
0
0
0
0
0
0
0
0
0
0
0
9
24
24
24
0
0
19
24
24
24
21
614
Outlet
data
capture
0
0
0
0
23
23
17
0
0
0
0
0
0
0
0
0
0
0
9
24
24
24
0
0
19
24
24
24
21
489
Efficiency
data
capture
0
0
0
0
23
23
17
0
0
0
0
0
0
0
0
0
0
0
9
24
24
24
0
0
19
24
24
24
21
489
monitor
downtime
0
0
0
0
0
0
71
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9.75
monitor
downtime
0
0
0
0
0
1h
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.5
Sampling
Interface
downtime
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
e
0
0
0
0
0
0
0
0
CO
I
Scrubber feed loss from 0730 to 1100.
Recorder jas»»
-------
FGD Unit 3 operability, reliability, and availability were
all 100 percent for the data gathering period. Utilization was
only 31.7 percent because of extensive periods of boiler shut-
down.
3.3.2 CEM Performance
CEM Operability—
Total data from February 2 to April 25 show that CEM inlet
operability was 95.9 percent, outlet operability was 84.6 per-
cent, and total system operability (concurrent operation of
inlet and outlet monitors) was 84.6 percent.
CEM Downtime—
Table 3-37 shows data losses caused by CEM failures for FGD
Units 1 and 3.
CEM Problems—
The CEM problems during the test period were minimal. Most
involved electronic component failure and were easily corrected.
3.4 QUALITY ASSURANCE
A quality assurance program was performed to ensure data
accuracy between initial and final P/S testing. The program
consisted of manual method tests of system relative accuracy and
CEM moisture values.
3.4.1 System Relative Accuracy Tests
System relative accuracy tests were performed on a weekly
basis throughout the test period. Tables 3-38 and 3-39 present
3-48
-------
TABLE 3-37. INLET AND OUTLET DATA LOSS8
No. of
hours lost
No. of
occurrences
Cause
Remedy
7
1
21
4
1
1
2
1
Chart drive of 02
recorder stuck
Chart paper out
Air valve stuck
Minor cycle timer stuck
Probe maintenance
Reset paper winding
Added chart paper
Replaced seals
Unstuck timer
Not applicable
All CEM failures affected both inlet and outlet data.
3-49
-------
TABLE 3-38. QUALITY ASSURANCE TEST RESULTS FOR FGD UNIT 1 INLET
Test
No.
SPI-4
SPI-5
SPI-6
SPI-7
SPI-8
SPI-9
Date
3/5/80
3/5/80
3/5/80
3/13/80
3/13/80
3/14/80
Time,
h
1105
1200
1515
1345
1505
1030
S0?, ppm (dry)
RMa
548.5
602.0
566.5
1138.0
c
939
" MD
551.5
572.2
559.3
1037.6
831
881.9
Diff.
3.0
-29.8
-7.2
-100.4
c
-57.1
0,, % (dry)
RMa
12.7
12.4
13.1
11.1
13.2
10.6
Mb
13.4
13.4
13.4
12.3
13.8
11.4
Diff.
0.7
1.0
0.3
1.2
0.6
0.8
S02, lb/10b Btu
RMa
2.25
2.38
2.45
3.95
c
3.07
Mb
2.48
2.57
2.42
4.06
3.94
3.12
Diff.
0.23
0.19
-0.03
0.11
c
0.05
Moisture,
%
4.5
5.0
4.7
0.3
c
4.6
CO
I
U1
o
Reference method value.
Monitor value.
GNo reliable value available because of crack in impinger coupler discovered during final leak check.
-------
TABLE 3-39. QUALITY ASSURANCE TEST RESULTS FOR FGD UNIT 1 OUTLET
Test
No.
SPO-5
SPO-6
SPO-7
SPO-8
SPO-9
SPO-10
Date
3/6/80
3/6/80
3/6/80
3/14/80
3/14/80
3/14/80
Time,
h
0950
1050
1235
1130
1415
1525
S09, ppm (dry)
RMa
27.9
12.3
31.7
81.0
99.0
83.1
*T
29.5
26.1
27.6
91.5
101.3
76.8
Diff.
1.6
13.8
-4.1
10.5
2.3
-6.3
02, % (dry)
RMa
11.0
10.8
11.3
10.3
11.1
12.6
Mb
11.8
11.9
10.2
11.3
12.4
12.8
Diff.
0.8
1.1
-1.1
1.0
1.3
0.2
S00, lb/106Btu
RMa
0.10
0.04
0.11
0.26
0.34
0.34
Mb
0.11
0.10
0.11
0.32
0.40
0.32
Diff.
0.01
0.06
0
0.06
0.06
-0.02
Moisture,
%
6.7
9.4
9.8
11.6
9.5
9.4
w
I
en
Reference method value.
Monitor value.
-------
the results of FGD Unit 1 inlet and outlet tests, and Tables
3-40 and 3-41 show the results of FGD Units 3 inlet and outlet
tests.
3.4.2 CEM Sample Moisture Tests
The CEM moisture values used in calculations were deter-
mined from manual tests and checked to ensure that they did not
exceed the lowest dewpoint before analysis in the 02 and S02
monitors. Tables 3-42 presents the QA moisture values. A
conditioning system was utilized on the outlet sampling inter-
face for accurate moisture content determinations.
3.5 PARTICULATE AND NOV RESULTS
X
Particulate concentration at the FGD system inlet averaged
0.13 gr/dscf with an average emission rate of 0.50 lb/106 Btu.
At the FGD system outlet, particulate concentration averaged
0.04 gr/dscf with an average emission rate of 0.16 lb/106 Btu.
Based on these rates, average FGD system particulate removal
efficiency was 68.0 percent. Table 3-43 presents particulate
test results.
During tests on December 20 average NO concentration at
X
the FGD system inlet was 156 ppm with an average emission rate
of 0.49 lb/106 Btu. At the FGD system outlet, average NOV
J\
concentration was 166 ppm with an average emission rate of
0.50 lb/106 Btu. Statistically there is no difference in the
averages due to measurement scatter. Tables 3-44 and 3-45
present inlet and outlet results of the December NO tests.
X
3-52
-------
TABLE 3-40. QUALITY ASSURANCE TEST RESULTS FOR FGD UNIT 3 INLET
Test
No.
SPI-1
SPI-2
SPI-3
SPI-10
SPI-11
SPI-12
SPI-13
SPI-14
Date
2/11/80
2/11/80
2/11/80
4/3/80
4/3/80
4/3/80
4/18/80
4/18/80
Time,
h
1045
1148
1340
0935
1035
1200
1305
1415
S09, ppm (dry)
RMa '
686.0
528.0
486.0
643.7
523.6
598.6
757.3
665.3
Mb
684.4
.499. 1
460.1
937.2
987.2
1002.1
695.4
676.3
Diff.
-1.6
-28.9
-25.9
293.3
463.6
403.5
-61.9
11.0
0,, % (dry)
RMa
12.3
15.0
16.4
11.7
11.2
11.0
12.9
13.9
Mb
13.4
16.3
16.5
12.7
12.6
12.4
12.7
14.4
Diff.
1.1
1.3
0.1
1.0
1.4
1.4
-0.2
0.5
S00 lb/106 Btu
RM3
2.9
3.0
3.6
2.4
1.8
2.0
3.2
3.2
Mb
3.1
3.7
3.5
3.9
4.0
4.0
2.9
3.5
Diff.
0.2
0.7
-0.1
-1.5
2.2
2.0
-0.3
0.3
Moisture,
%
4.8
3.1
3.1
4.7
2.7
2.8
0.7
1.6
U)
Ul
Reference method value.
Monitor value.
-------
TABLE 3-41. QUALITY ASSURANCE TEST RESULTS FOR FGD UNIT 3 OUTLET
Test
No.
SPO-2
SPO-3
SPO-4
SPO-11
SPO-12
SPO-13
SPO-14
SPO-15
Date
2/12/80
2/12/80
2/12/80
4/3/80
4/3/80
4/3/80
4/18/80
4/18/80
Time,
h
0945
1125
1345
1300
1415
1505
1040
1200
S00, ppm (dry)
RMb
40.6
46.0
37.5
68.5
86.9
88.2
55.2
62.1
" MC
41.0
32.5
29.3
73.9
77. 5
79.0
47.5
54.0
Diff.
0.4
-13.5
-8.2
5.4
-9.4
-9.2
-7.7
-8.1
00, % (dry)
RMb
13.3
13.7
14.1
12.6
12.4
12.8
13.2
13.6
y
13.7
14.3
15.0
13.0
12.8
13.5
13.1
14.0
Diff.
0.4
0.6
0.9
0.4
0.4
0.7
-0.1
0.4
S02 lb/106 Btu
RMb
0.18
0.21
0.19
0.28
0.34
0.37
0.24
0.29
MC
0.19
0.17
0.20
0.33
0.32
0.36
0.20
0.26
Diff.
0.01
-0.03
0.01
0.05
-0.02
-0.01
-0.04
-0.03
Moisture,
%
13.0
13.0
7.9
12.6
13.9
17.7
13.8
13.9
U)
I
in
No reliable values available for the first QA because reagents were mixed in impingers during leak check.
'Reference method value.
"Monitor value.
-------
TABLE 3-42. QUALITY ASSURANCE MOISTURE DETERMINATIONS
Date in
1980
3/5
3/5
3/5
3/13
3/13
3/14
3/6
3/6
3/6
3/14
3/14
3/14
2/11
2/11
2/11
4/3
4/3
4/3
4/18
4/18
2/12
2/12
2/12
4/3
4/3
4/3
4/18
4/18
Inlet
moisture, %
4.5
5.0
4.7
0.3
a
4.6
4.8
3.1
3.1
4.7
2.7
2.8
0.7
1.6
Outlet
moisture, %
6.7
9.4
9.8
11.6
9.5
9.4
13.0
13.0
7.9
12.6
13.9
17.7
13.8
13.9
Test
No.
SPI-4
SPI-5
SPI-6
SPI-7
SPI-8
SPI-9
SPO-5
SPO-6
SPO-7
SPO-8
SPO-9
SPO-10
SPI-1
SPI-2
SPI-3
SPI-10
SPI-11
SPI-12
SPI-13
SPI-14
SPO-2
SPO-3
SPO-4
SPO-11
SPO-12
SPO-13
SPO-14
SPO-15
FGD
Unit No.
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Crack in impinger coupler discovered during final leak check.
Reagents mixed in impingers during leak check.
3-55
-------
TABLE 3-43. PARTICULATE TEST RESULTS
Test No.
GMBI-1
GMBI-2
GMBI-3
Average
GMBO-1
GMBO-2
GMBO-3
Date in
1979
12/20
12/20
12/20
12/20
12/20
12/20
Sampling location
Inlet
Inlet
Inlet
Outlet
Outlet
Outlet
Average
Concentration,3
gr/dscf
0.13
0.12
0.13
0.13
0.04
0.04
0.04
0.04
Emission rate,
lb/106 Btu
0.50
0.45
0.57
0.50
0.16
0.14
0.19
0.16
10
I
U1
(Pi
aDetermined at 68°F and 29.92 in. Hg.
-------
TABLE 3-44. INLET RESULTS OF N0y TESTS ON DECEMBER 20, 1979
Test No.
GMNI-N
GMNI-0
GMNI-P
GMNI-Q
Average
GMNI-R
GMNI-S
GMNI-T
GMNI-U
Average
GMNI-13
GMNI-12
GMNI-9
GMNI-7
Average
Total inlet average
Concentration, ppm
133
145
182
171
158
154
173
163a
102a
163
146
147
176
139
152
156
Emission rates,
lb/106 Btu
0.40
0.44
0.55
0.52
0.48
0.46
0.52
0.49a
0.30a
0.49
0.48
0.49
0.58
0.46
0.50
0.49
Not included in average.
3-57
-------
TABLE 3-45.
OUTLET RESULTS OF NOX TESTS ON DECEMBER 20, 1979
Test No.
GMNO-B
GMNO-C
GMNO-D
GMNO-E
Average
GMNO-F
GMNO-G
GMNO-H
GMNO-I
Average
GMNO-J
GMNO-K
GMNO-L
GMNO-M
Average
Total outlet average
Concentration, ppm
177
170
181
173
175
171
169
148
162
162
155
154
153
177
160
166
Emission rates,
lb/106 Btu
0.51
0.49
0.52
0.51
0.51
0.51
0.51
0.44
0.48
0.49
0.48
0.48
0.48
0.55
0.50
0.50
3-58
-------
During the tests on April 23 average NOV concentration at
X
the FGD system inlet was 192 ppm with an average emission rate
of 0.40 lb/106 Btu. At the FGD system outlet, average NOV
X
concentration was 104 ppm with an average emission rate of 0.36
lb/106 Btu. Based on these rates, NO emissions after the FGD
J\
system were reduced by an average of 10.0 percent. Tables 3-46
and 3-47 present inlet and outlet results of the April NOV
A
tests.
3-59
-------
TABLE 3-46. INLET RESULTS OF NOV TESTS ON APRIL 23, 1980
/\
Test No.
NOI-l-A
NOI-l-B
NOI-l-C
Average
NOI-2-A
NOI-2-B
NOI-2-C
Average
NOI-3-A
NOI-3-B
NOI-3-C
Average
NOI-4-A
NOI-4-B
NOI-4-C
Average
NOI-5-A
NOI-5-B
NOI-5-C
Average
NOI-6-A
NOI-6-B
NOI-6-C
Average
Total inlet average
Concentration, ppm
240
211
207
219
263
211
251
242
260
222
240
241
235
205
237
226
186
63
118
122
108
101
107
105
192
Emission rates,
lb/106 Btu
0.50
0.41
0.40
0.44
0.71
0.57
0.64
0.64
0.44
0.39
0.42
0.42
0.40
0.37
0.38
0.38
0.38
0.14
0.26
0.26
0.25
0.23
0.25
0.24
0.40
3-60
-------
TABLE 3-47. OUTLET RESULTS OF N0¥ TESTS ON APRIL 23, 1980
Test No.
NOO-l-A
NOO-l-B
NOO-l-C
Average
NOO-2-A
NOO-2-B
NOO-2-C
Average
NOO-3-A
NOO-3-B
NOO-3-C
Average
NOO-4-A
NOO-4-B
NOO-4-C
Average
NOO-5-A
NOO-5-B
NOO-5-C
Average
NOO-6-A
NOO-6-B
NOO-6-C
Average
Total outlet average
Concentration, ppm
94
50
63
69
75
120
a
98
a
a
a
134
142
131
136
115
127
98
114
101
108
105
105
104
Emission rates,
lb/106 Btu
0.32
0.26
0.24
0.27
0.24
0.37
a
0.30
a
a
a
0.39
0.43
0.37
0.40
0.43
0.48
0.42
0.42
0.37
0.38
0.42
0.39
0.36
a Below detectable limit.
3-61
-------
SECTION 4
PROCESS DESCRIPTION
4.1 PHYSICAL PLANT
Table 4-1 lists process information.
4.1.1 Boiler System
The steam plant at the CMC Parma plant contains four boil-
ers rated at a total combined steam generating capacity of
320,000 Ib/h, two with a nominal capacity of 100,000 Ib/h and
two with a nominal capacity of 60,000 Ib/h. Each is fired by a
spreader stoker with traveling grates and operates with variable
excess air rates in the 100 percent range. The larger boilers
(1 and 2) are equipped with economizers that lower inlet flue
gas temperatures to £275°F, and the smaller boilers (3 and 4)
operate at an inlet temperature of £575°F. Each boiler is
fitted with mechanical dust collectors for primary particulate
control. Normal burning of medium- to high-sulfur (2 to 3
percent) eastern coal plus occasional firing of low-sulfur waste
oil results in flue gas generally containing 500 to 1300 ppm S02
by volume. During the test period, cool and waste oil were
fired in Boiler 1, whereas Boiler 3 burned coal only. Tables
4-2 and 4-3 present detailed fuel analyses.
4-1
-------
TABLE 4-1. DESIGN, OPERATING, AND PERFORMANCE CHARACTERISTICS OF
DOUBLE ALKALI SCRUBBING SYSTEM
Application
Fuel characteristics
System design
Process mode
Pressure drop
Status
Startup date
Inlet gas conditions
Flow rate
S02
02
Particulate
S02 outlet concentration
S02 removal efficiency
Scrubbing solution characteristics:
PH
Total sodium
Active sodium
Calcium ion
Soda ash makeup
Lime utilization
Filter cake solids
Filter cake disposal
Four coal-fired stoker boilers
Coal: 25,600 to 31,400 J/g (11,000
to 13,500 Btu/lb), 1.5 to 3.0 percent
sulfur (waste oil also burned, but in
small quantities compared with coal)
Four two-stage multiventuri flexi-
tray scrubber modules
Dilute active alkali
25 to 33 cm H20 (10 to 13 in. H20)
Operational
March 1974
30.9 m3/s at 27°C (65,500 acfm at 80°F)
800 to 1300 ppm
Not available
0.7 g/m3 (0.3 gr/scf)(dry)
20 to 130 ppm
90 to 99 percent
5.5 to 7.5
0.58 to 0.96 molar
0.087 to 0.13 molar
305 to 490 ppm
<0.1 mole/mole S02 removed
1.32 to 1.90 mole/mole S in cake
40 to 55 percent
Offsite landfill
Nonsteady-state operations result in makeup rates of 0.028 to 0.05
mole Na2C03-per mole S02 removed.
4-2
-------
TABLE 4-2. ANALYSIS OF COAL AS RECEIVED
Date
Dec.
1979
Jan.
1980
Feb.
1980
Mar.
1980
Apr.
1980
Ash, %
4.95
6.58
6.21
6.17
5.63
Moisture, %
2.27
3.91
3.68
3.29
3.75
Sulfur, %
2.14
2.52
2.50
2.03
2.21
Heating
value,
Btu/lb
13,100
13,000
13,100
13,000
13,000
Tons
on hand
11,789
11,503
10,131
9,462
8,996
Tons
received
2,979
2,612
2,980
3,032
2,487
Tons
used
3,242
3,945
3,613
3,468
2,228
4-3
-------
TABLE 4-3. ANALYSIS OF OIL AS RECEIVED
Date
Dec.
1979
Jan.
1980
Feb.
1980
Mar.
1980
Apr.
1980
Moisture, %
1.625
3.0
2.1
3.3
16.0
Sulfur, %
0.85
0.9
0.8
0.6
0.53
Inert
matter, %
6.0
6.4
3.9
7.8
0.82
Heating
value,
Btu/gal
148,350
147,300
145,050
150,810
149,500
Gal used
42,100
52,950
57,500
44,200
33,800
4-4
-------
4.1.2 FGD System
The FGD system consists of four double alkali scrubbing
units that operate in a dilute mode. Figure 4-1 illustrates the
process flow through each unit, and Table 4-2 lists design,
operating, and performance characteristics of the system.
Flue gases enter through a prequench section at the bottom
of each unit and then flow in countercurrent direction to an
aqueous sodium hydroxide sulfite-bisulfite solution. Each is a
two-tray, impingement-type unit with feed and recycle streams
entering at the top. The absorption trays (Koch) have movable
self-adjusting bubble caps that respond to variations in gas
flow. Pressure drop through each unit is designed at 19 cm (7.5
in.) H20, and the maximum liguid-to-gas ratio is 2.7 liters/m3
(20 gal/1000 ft3). The liquid feed is composed of about 20
percent fresh feed and 80 percent recycle. For control of
entrained liquor, each unit is equipped with a high-efficiency
mist eliminator. Acting as an impingement separator, the mist
eliminator is composed of corrugated profile plates assembled
with phase separating chambers.
A sidestream from the reagent recirculation loop in the FGD
absorber section is constantly fed to the chemical mix tank,
where calcium carbonate (CaC03) slurry is fed for regeneration
of caustic. Overflow from this tank enters another mix tank for
further reaction.
The regeneration solution, with a high concentration of fly
ash and calcium precipitates, flows to two reactor clarifiers in
4-5
-------
NaOH
CHEMIC
MIX TANKl CHEMICAL
NaOH
FILTRATE
PUMP
VACUUM
FILTER
CaS04
CaS03
CaS03
SLURRY
TANK
LIME FEED SODA ASH
PUMP FEED PUMP
SURGE
TANK
SCRUBBER
FEED PUMP
Figure 4-1. Process flow diagram of a double alkali scrubbing unit.
-------
series. In the first clarifier, the solution goes through
additional reaction and solids separation. Liquid effluent, is
then pumped to the second clarifier, where it is softened by
addition of sodium carbonate (Na2C03). Solution from this tank
is recycled to the scrubber recirculation loop. Underflow from
both clarifiers is pumped to the sludge blend tank for batch
processing through a vacuum filter, and cake from the filter is
hauled to a landfill for disposal. Filtrate is returned to the
primary clarifier for recovery of sodium hydroxide (NaOH).
Table 4-4 presents the chemcial reactions that take place
in the system.
4.2 BACKGROUND INFORMATION
4.2.1 Boiler System
The plant contains four spreader stoker boilers rated at a
total steam generating capacity of 320,000 Ib/h. Boilers 3 and
4 came into service in 1946 and Boilers 1 and 2 were in service
by the end of 1948.
4.2.2 FGD System
In 1969 General Motors began pilot operations of a double
alkali SO2 control system to determine the applicability of
scrubbers to its industrial powerhouses. After a 2-year pilot
plant development program, GMC designed and constructed the
present FGD units as a demonstration plant for the Chevrolet
plant in Parma, Ohio. The prototype system was placed in opera-
tion in March 1974. When A. D. Little, Inc., observed and
4-7
-------
TABLE 4-4. CHEMICAL REACTIONS IN FGD SYSTEM
Reaction process
Chemical reaction
Comments
S02 absorption
Regeneration
(chemical mix tank)
Softening
(Clarifier 2)
S02 + H20 •» HS03 + H
NaOH + HS03 + H+
•* 2Na* + SC-a + 2H20
S03 + S02 + H20 -> 2HSC-3
Na2S04 + Ca(OH)2 -> CaS0
+ 2NaOH
Na2S03 + Ca(OH)2
+ 2NaOH
Na2C03 + Ca++ -»• 2Na~H"
+ CaC03i
Some sulfate formed
from oxidation of
aqueous sulfites
and bisulfites
Ca in liquid
in dilute mode
4-8
-------
characterized the facility from August 1974 to May 1976, opera-
tional problems were investigated, and significant improvements
were obtained in both process and mechanical performance.
During this testing, the system demonstrated a consistent 90
percent S02 removal efficiency.
4.3 PROCESS CONTROL DURING TEST
From December 1979 through April 1980, the FGD system was
operated in the same mode as after the 1976 modifications.
Control of FGD performance during normal operations depends
on monitoring parameters of the absorption loop (the S02 removal
phase) and the slurry regeneration system. Individual unit
operational changes directly affect the S02 removal efficiency
and must be closely controlled. Operational changes affecting
slurry regeneration take 1 to 2 days to cause significant
changes in S02 removal capability because of the large amount of
slurry involved. Monitoring on a shift basis is effective in
maintaining adequate slurry regeneration.
In the FGD absorption loop, pH and liquid levels are moni-
tored continuously at the recycle tank. A pH of 6 and a liquid
level of 60 to 70 percent are maintained by an automatic control
loop. As pH and liquid levels fall below set points, the
scrubber feed is increased; this in turn activates blowdowri to
send a portion of the spent slurry in the recycle tank to the
slurry regeneration system. The pH meters are checked and
calibrated on a shift basis, and temperatures of flue gas Into
4-9
-------
and out of the absorption modules are monitored at the boiler
breeching and outlet stacks. Alarms signal excursions in outlet
temperatures only. Pressure drops are monitored across the
absorption module and at the two internal absorption trays, with
continuous readouts in the control room. Increased pressure
drop indicates scaling and plugging, and the need for remedial
actions.
In the slurry regenerative system, addition of water, lime,
and soda ash and removal of waste solids are controlled. Water
addition for cake washing, slaking, and makeup are determined by
the amount lost to waste solids removal and evaporation.
Because this loss cannot be directly measured, cake wash rates
and water added during slaking are held to less than the amount
shown by experience to be lost in the total process. Additional
water makeup is controlled by the surge tank levels, and the
lime feed rate is automatically controlled by a meter that
registers the total feed rates to all modules in operation.
Increases in the total slurry feed rate increase the lime feed
rate. Thus, the lime feed rate is correlated with the rate at
which total slurry is returned from scrubbers. Grab samples are
taken twice a shift from the reaction tanks to determine
hydroxide levels and ensure a proper correlation between the
feed rate and the scrubber feed rate. When major changes in
boiler operation affect the amount of lime required, adjustments
are made. Also, grab samples are taken three to four times per
shift from the underflow of Clarifier 1 to measure sludge
4-10
-------
density, which is maintained at 12 to 18 percent solids by
manually set controls. During sampling, levels of sludge in the
cone are checked to prevent excessive accumulation. Soda ash
feed into Clarifier 2 is controlled by monitoring the slurry in
the overflow surge tank, from which scrubber feed is drawn.
Grab samples are taken once a shift and analyzed for calcium and
sodium concentrations. Calcium concentration is kept between
300 and 400 ppm; higher calcium content can lead to scaling in
the absorption loop, whereas lower calcium content demonstrates
excessive use of soda ash. Sodium concentrations determined
from the grab samples are recorded for each shift.
Control or sensor failure can cause breakdown of the pH
control loop and thus loss of FGD unit efficiency. In such
cases, scrubber feed rates are manually set according to changes
in grab sample pH. This occurred during operation of Boiler 1
FGD system from March 5 to March 14, 1980.
4-11
-------
SECTION 5
CONTINOUS EMISSION MONITORING SYSTEM DESCRIPTION
The CEM consisted of an S02 monitor with an 02 monitor
mounted next to the point where inlet and outlet sample lines
were introduced to the S02 monitor. Additional equipment,
control stations, recorders, and a calibration system were set
on or beside a table behind the S02 monitor cabinet. Figure 5-1
shows the CEM layout, and Figure 5-2 is a simplified schematic
of the CEM. Descriptions of the CEM components are presented
below.
5.1 SAMPLE INTERFACE
The monitoring system utilized a DuPont 460 instrument
system to provide the extractive sample from both sampling
locations. Sample gas is pulled through a stainless steel mesh
filter screen inside the duct, through a probe equipped with a
blowback system, and into a Teflon sample line. Because of the
high moisture content of outlet gases, a conditioning system was
required for accurate moisture content determination in outlet
emission calculations (see Subsection 6.4-2). The system con-
sisted of Vinch stainless steel tubing coiled and immersed in a
thermostatically controlled water bath at 50°F ±5°F. Because of
the low moisture content and stability of inlet gases, no con-
ditioning system was necessary. The samples were drawn 25 feet
5-1
-------
FGD
UNIT 1
FGD
UNIT 2
FGD
UNIT 3
FGD
UNIT 4
OUTLET
ui
I
to
BOOSTER
FAN
MOTOR
INLET
OUTLET
OUTLET
MANUAL
TEST
PORT
SAMPLE LINES DURING
FGD UNIT 1 TESTS ^-
INLET SAMPLE LINE
INLET
INLET
OUTLET
,i*-OUTLET SAMPLE LINE
THERMOX WDG III (02 MONITOR)
DUPONT 460 (S02 MONITOR)
r CALIBRATION GASES
DUPONT 460 CONTROL STATION
LEEDS AND NORTHRUP RECORDERS
DUAL-POINT FOR SO? DATA
SINGLE-POINT FOR 0- DATA)
THERMOX WDG III CONTROL STATION
MANUAL
TEST
PORT
INLET
Figure 5-1. Layout of the CEM.
-------
ANALYSIS SYTEM OF CEM
SHIELDED
316 SS
MESH FILTER
HEAT
TRACING
MANUAL
THREE-WAY
VALVE
-\
I
(IN STACK)
AUTOMATIC
THREE-WAY
VALVE
TWO-WAY SOLENOID
TO OUTLET
PROBE . COOLED OUTLET SAMPLE
T« >u, «rr ASSEMBLY '
•onoEL. HEATED INLET
PKOBt i
ASSEMBLY
TEFLON
TUBING
J, TO
CALIBRATION
GAS
HEATED
SAMPLE
LINE TO
ANALYZER
HIGH-PRESSURE
AIR SUPPLY
PROBE ASSEMBLY
HC*3 -L
fi*l HgH
-tfc 1
<
AT
GAS CYLINDER
CONTROL
VALVES
ION SELECTION
FLOW CONTROL VALVE
SAMPLE
FLOW
CONTROL
VALVES
UV
LIGHT
SOURCE
SAMPLE
SELECT
VALVES
MOISTURE
TRAPS
TO MONITOR CALIBRATION
MONITOR
CONTROL
UNIT
EXHAUST
TO CONTROL «epTBATORfS^
VALVING ASPIRATOR(S)
AND SIGNAL
T
S02 MONITOR
CONTROL UNIT
SINGLE-
POINT
RECORDER
OUAL-
POINT
RECORDER
Figure 5-2. Simplified schematic of CEM.
5-3
-------
to the monitors, which were centrally located between inlet and
outlet ducts on the third deck of the scrubber building. The
differentiation between sampling the two different sample gas
streams was controlled automatically on a 10-minute cycle by the
DuPont monitor. A sidestream sample for the oxygen monitor was
taken from the unit in a flow fashion parallel to the S02 analy-
sis cell. The sample dewpoint was controlled by temperature-
constant mist knockout traps upstream from S02 and 02 moni-
toring. The dewpoints of S02 samples were held at a maximum of
approximately 100°F and 5 in. Hg vacuum.
5.2 S02 MONITOR
The S02 monitor was a DuPont 460 instrument, which measures
S02 by ultraviolet spectrophotometry. This is accomplished by
drawing a sample into a windowed cell, passing ultraviolet light
through the sample, and measuring the photometric output ob-
tained in a wavelength specific to S02 absorption. Inlet and
outlet samples are differentiated by electronic track-and-hold
circuits that are actuated by the timing mechanism that controls
the sample flow. An automatic zeroing system operates on the
sample cycle, correcting for fluctuations and drift every 10
minutes.
5.3 02 MONITOR
The 02 monitor was a Thermox WDG III analyzer, which mea-
sures 02 by electrochemical means across a heated zirconium
oxide cell. Sample gas flow was provided by the DuPont 460
5-4
-------
instrument. The inlet and outlet sample streams were differ™
entated by the occurrence of a purge function in the 10-minute
cycle, which showed as an off-scale spike on the recorder chart.
5.4 RECORDERS
Leeds and Northrup Speedomax recorders were used to collect
the data for the S02 and 02 monitors. A dual-point recorder was
used for the S02 data; a single-point recorder, for the 02 data.
The recorders were located on the table near the monitors.
Time-marked charts were used to simplify data reduction.
5.5 CALIBRATION SYSTEM
A calibration system was used that included certified
calibration gas cylinders and a valving system to facilitate
introduction of gases to the CEM sampling interface. Zero,
midscale (50% scale), and span (90% scale) gas concentrations
were provided for the monitoring ranges (0 to 500 ppm S02, 0 to
5000 ppm S02, and 0 to 25% 02).
5-5
-------
SECTION 6
PROCEDURES AND CALCULATIONS
6.1 CONTINUOUS S02 DATA COMPUTATIONS
Sulfur dioxide data computation was performed with a Hewlett-
Packard 3000 computer system. Raw data were loaded into the
program, and complete listing of emission rates and scrubber
efficiencies were printed out for the entire test period.
6.1.1 Activities Before Computer Run
Keypunch Card Preparation—
Raw data were reduced and transcribed onto load sheets for
keypunching onto computer cards. Additional cards were prepared
to identify the data listings by location and date and to pro-
vide comments explaining cause and duration of data loss.
Comment cards were prepared by reference to CEM operator's
logs and strip charts. Raw data load sheets, containing 15-
minute listings of S02 and 02 data and moisture, calibration
data, and boiler information were prepared in the following
manner:
1. The S02 and 02 data were determined by processing raw
strip charts through the use of a data digitizing
device, which converted recorder deflections to digi-
tal values. The operation was manually performed,
with readings for inlet and outlet S02 and 02 being
obtained and transcribed on a 15-minute basis.
6-1
-------
2. Moisture determinations for each parameter were en-
tered on the basis of availability of test data.
Separate determinations were entered for inlet and
outlet S02 and 02. Separate determinations were also
made for S02 and 02 analysis, because the 02 monitor
operated with an ambient temperature sample line,
which tended to remove some moisture.
3. Changes in monitor calibration caused by 24-hour drift
were compensated for by entering span gas readings for
each parameter on a 6-hour basis. These readings were
interpolated from calibration information.
4. Boiler heat rates were taken from plant operating
records, which contained summarized heat production
rates in terms of 106 Btu/h. These were calculated by
plant personnel as a determination from total boiler
pressure and temperature differentials. The values
were transcribed onto the load sheets on an hourly
basis.
Other Computer Entries—
Calibration entries and boiler heat units were entered into
the program before data runs to differentiate the computation
from runs of other data using different values. Calibration
entries needed were assays of the span gases used to obtain the
readings keypunched with the data. The boiler heat unit entry
signalled the proper heading for the listing of heat rates to be
106 Btu/h.
6.1.2 Computation and Listing of Data
Data computation was performed once the cards were loaded
into the program, and listings were produced. Separate listings
were produced for 15-minute S02 and 02 readings; 1-hour average
inlet emission rate (Ein), outlet emission rate (Eout), and
removal efficiency (Eff); and 24-hour average Ein, Eout, and
Eff. Listings also included total averages for 1-hour and
24-hour Ein, Eout, and Eff.
6-2
-------
15-Minute Listings—
Complete 15-minute listings were prepared from the informa-
tion loaded on the cards. These listings presented the fol-
lowing information:
1. Heading, identifying the source and date on each page
of listings.
2. Raw CEM data, corrected for calibration, but on a wet
basis, presented on a 15-minute basis.
3. Moisture data for each gas stream in percent H20,
presented on a 15-minute basis.
4. Corrected CEM data, calculated by multiplying raw data
by the quantity 100/(100-M), where M equals the mois-
ture percent.
5. Average Ein, Eout, and Eff, calculated on an hourly
basis from average corrected S02 and 02 data. Two
data points per hour were needed for a calculation to
be performed. Equation 6-1 was used to calculate Ein
and Eout; and Equation 6-2, to calculate Eff.
Ib S02/106 Btu = (ppm S02(i )(9820)(1.64 x 10"7 )
Y (20.95) , f ,.
x (20.95 - % 02 dry) (Eq> 6 ^>
where 9820 = bituminous coal factor for
dscf/106 Btu, utilizing ex-
cess air factor*
1.64 x 10~7 = conversion of ppm S02 to Ib
S02/dscf
20 95
= excess air factor
(20.95 - % 02 dry)
The F-factor for Unit 1 data was not corrected for the heat
input value of the waste oil. Although this calculation
generally results in an emission factor error of about +!.!>
percent (+6 percent error is the maximum possible), removal
efficiency results are not affected.
6-3
-------
Eff = EinETnE°Ut x 100 (Eg. 6-2)
6. Boiler information, printed in thousands of pounds per
hour on an hourly average basis.
7. Comments, printed as entered in the appropriate loca-
tions to identify data loss periods,
8. Data loss periods, signified by repetition of previous
listed number, or with the printing of ### symbols.
1-Hour and 24-Hour Listings and Averages—
Hourly averages of Ein, Eout, and Eff and boiler heat rates
were obtained from calculations performed during computation of
15-minute listings. These were compiled to form hourly and
daily listings of data on a 1-hour and 24-hour averaging basis.
Each listing was summarized in a brief statistical format that
listed the data quantity base, minimum and maximum values, mean,
and standard deviation for each parameter. Total test averages
were grouped into time periods determined by a 30-day limitation
on data averaging. The individual listing and averaging pro-
cedures are described below:
1. Hourly listings were compiled for each 24-hour calen-
dar day with statistical determinations performed for
each parameter that had an occurrence of 75 percent or
greater (eighteen 1-hour averages per 24-hour day).
For each parameter that met the condition of 75 per-
cent data capture, the hourly and daily averages were
stored for future computation.
2. The total hourly averages from periods of 75 percent
data per day were run through statistical determina-
tions for each parameter. These computations were
performed for the groupings determined by the 30-day
data computation limitation. For determination of
30-day data, data days were included that listed 18 or
more hours of data capture for any parameter (ex-
cluding heat rates), even if FGD efficiency was not
determined during a particular day.
6-4
-------
3. The 24-hour listings and averages were performed for
the 30-day data groupings described above. All data
representing 18 or more hours of data capture per day
of Ein, Eout, or Eff were listed. Statistical deter-
minations were performed on the 30-day data groupings
independently and presented following each listing.
6.2 PERFORMANCE SPECIFICATION TESTING
The P/S test procedures and calculations were in accordance
with guidelines specified by Performance Specifications 2 and 3
in the Federal Register, Vol. 44, No. 197, October 10, 1979.
Manual Methods 3 and 6 were performed to complete system rela-
tive accuracy tests. In addition to the procedures outlined in
this subsection for the performance of these tests, procedures
were needed to ascertain CEM outputs correctly. The procedures
and calculations used for determining CEM outputs in the field
are outlined in Subsection 6.5.
6.2.1 Calibration Gas Certification
All S02 and O2 calibration gases were traceable to NBS
standards. The procedures for establishing traceability are
outlined below.
Sulfur Dioxide Calibration Gas Certification—
The S02 calibration gases were supplied with certificates
of analysis from the vendors establishing that the gases were
analyzed by an acceptable instrument technigue using calibration
with NBS standards.
Oxygen Calibration Gas Certification—
The 02 midrange (12%) was analyzed by ORSAT (EPA Method 3)
and found to have a value of 12 percent 02. Ambient air was
6-5
-------
used as an 02 span value calibration gas and needed no certifi-
cation testing to establish its oxygen concentration.
6.2.2 Conditioning Period
The conditioning period was noted as beginning once the
complete CEM, as described in Section 5, was determined to be
fully operational. After 168 hours of continuous operation
without modification or maintenance except that specified as
routine and/or necessary by the CEM analyzer manufacturers, the
period was deemed successfully completed.
6.2.3 Operational Test Period
The operational test period immediately followed the com-
pletion of the conditioning period and ran 228 hours. The CEM
thus met the minimum requirement of 168 hours of operation
according to estimated performance specifications with no un-
scheduled maintenance, repair, or adjustment. The QA testing
provided continuity between initial and final P/S testing. The
P/S tests procedures followed during this period are outlined
below.
Calibration Error—
Both operational ranges of the S02 monitor and the single
operational range of the 02 monitor were involved in this test.
Calibration values of midrange and span gases were used as
discussed in Subsection 6.2.1. The individual checks were
performed by running zero, midrange, and span gases in random
order through the monitors until five complete sets (15 data
points) for each operating range were obtained. Figure 6-1
6-6
-------
Run
no.
1
2
3
4
S
6
7
e
9
10
n
12
13
14
15
Calibration e«s
concentration,
ppm
A
NM»ure*cnt tjrttc*
rMdlng,
ppm
1
Arithmetic Ne»n •
Confidence Intervtl •
C«11br«t1on frror •
Arithmetic
tflfftrtncti,
PPM
A.B
Mid
Nigh
Arithmetic Mean (AM) - ~
95S Confidence
Interval (CIg5)
Calibration Error
|AM| + CI
95
RV
where
V0.975
x « arithmetic difference, ppm
n « number of data points
RV • calibration gas concentration, ppm
t value as shown below
na
2
3
4
5
6
t0.975
12.706
4.303
3.182
2.776
2.571
na
7
8
9
10
11
10.975
2.447
2.365
2.306
2.262
2.228
nfl
12
13
14
15
16
10.975
2.201
2.179
2.160
2.145
2.131
Values are already corrected for n-1
degrees of freedom; use n equal to
the number of Individual values.
Figure 6-1. Sample data sheet and equations for the determination of
calibration error.
6-7
-------
presents a sample data sheet and the equations used to determine
the calibration error.
System Response Time—
Both S02 operating ranges and the single O2 operating range
were checked for response time. The procedure entailed alter-
nating the introduction of zero and span gases into the system
and recording the elapsed time between introduction and a stable
reading. During the tests, gases were introduced to the samp-
ling interface at the probe mountings, so that the response time
included any lag caused by the sample line length. Gas flow
rates were consistent with normal sampling procedures. Three
sets of zero-to-span and span-to-zero checks were performed for
each parameter. Response from either span or zero calibration
gas to flue gas was not used because of minute-to-minute varia-
bility of flue gas readings, leading to inconsistent results.
Figure 6-2 presents a sample data sheet and the equations used
to determine system response time.
2-Hour Zero and Calibration Drift—
Both SO2 operating ranges and the single 02 operating range
were tested to determine 2-hour drift. The strategy was to
introduce consecutively zero and span gas at 2-hour intervals
until 15 sets of data were obtained. Figure 6-3 presents a
sample data sheet and the calculations used.
24-Hour Zero and Calibration Drift—
Both S02 operating ranges and the single O2 operating range
were tested to determine 24-hour drift. Initial readings were
6-8
-------
Date
High-level
ppm
Test Run
1
2
3
Average
Upscale,
rnln
A •
DownscalCj
Biln
B •
System Response Time (slower of A and B). • win.
Average
Zx
(Slower*of BA and B) x 10° - 15%; otnerwise retesting is required,
where
x = individual response, minutes
n = number of test runs (3)
Figure 6-2. Sample data sheet and equations for determination of
system response time.
6-9
-------
Bit.
let
no.
1
*
10
11
12
13
U
IS
kU
TIB
fcfln
Ind
Ztre Ug
InU. Fin.
A
1
Arlthnctlc tein
Confidence Inttnril
Xtre Drift
I«ro
drift
c«M "
M1-lt«tl
•dq
Mt. Fin.
D
[
Spin
drlfl
F-l-0
Ctllbritton
C*11b.
drift
t-F-C
drift
Arithmetic Mean (AM) •= 2-
95i Confidence
Interval (Clg5)
Zero or Calibration
Drift (S02 monitor)
Zero or Calibration
Drift (02 monitor)
•mere x
n
Zero RV
Calibration RV
|AM| + Cl
V0.975
0.25
95
RV
x 100
<|AM|
+ C195) x 0.25
individual drift, T
number of data points (15)
total scale. % (100)
calibration gas assay multi-
plied by 100 and divided by
the range, ppm
* t value as shown below
• conversion of t scale to I 0,
n*
2
3
4
5
6
t0.975
12.706
4.303
3.182
2.776
2.571
n*
7
8
9
10
11
10.975
2.447
2.365
2.306
2.262
2.22B
n*
12
13
14
15
16
V975
2.201
2.179
2.160
2.145
2.131
Values are already corrected for n-1
degrees of freedom; use n equal to
the number of Individual values.
Figure 6-3. Sample data sheet and equations for determination of
2-hour zero and calibration drift.
6-10
-------
obtained for each 24-hour period by calibrating each instrument
and recording the zero and span readings after calibration.
Final readings were obtained by recording the precalibration
zero and span readings on the following day. A complete set of
data for 24-hour drift determination consisted of seven consecu-
tive 24-hour drift determinations. Figure 6-4 presents a sample
data sheet and the equations used.
System Relative Accuracy—
System relative accuracy tests consisted of comparing CEM
and reference-method-determined emission rates in pounds of S02
per million Btu. The CEM determinations were obtained by using
integrated averages of monitor output. Reference method deter-
minations were obtained by Methods 6 and 3 for S02 and 02.
Moisture determinations were performed as part of Reference
Method 6 tests to enable comparison of CEM and reference method
results on a dry basis. Guidelines provided by Performance
Specification 2 in the Federal Register, Vol. 44, No. 197,
October 10, 1979, were followed. The steps used to test system
relative accuracy are listed below:
1. Reference Method 6 and samples were collected in an
integrated sampling train from a probe situated in the
same cross-sectional centrpidal area (<5% stack dia-
meter) as the CEM probe tip. Reference Method 3 bag
samples were collected from the same sampling point.
2. Nine concurrent Reference Method 3 and 6 tests were
performed to complete each set of system relative
accuracy data. At any given sampling site (inlet and
outlet of FGD system), no more than one test per hour
was allowed.* The tests were performed when the CEM
* Because of the time lost in trying to alleviate the monitor
moisture correlation problem during intial reference method
testing, the EPA technical manager waived the requirement of
one test per hour and permitted the test team to conduct con-
current tests during the rerun outlet tests.
6-11
-------
Oit<
set
no.
1
2
3
4
S
6
7
Date
T1m
Begin
"
>
End
Zer<
InU.
A
Hdj
F)n.
B
Arithmetic Nean
Confidence Interval
Itro drift
Zero
drift
C'B-A
HI -level
*dg
Inlt.
D
Fin.
I
Span
drift
f«E-0
Calibration
4r«ft
c*iib.
drift
C-F-t
Arithmetic Mean (AM) = —
95% Confidence
Interval (CI
9&
/nl(x2) - (ix)2
Zero or Calibration
Drift (S02 monitor)
Zero or Calibration
Drift (02 monitor)
|AM|
where
RV
x 100
x
n
Zero RV
Calibration RV
••0.975
0.25
• (|AM| + CI95) x 0.25
individual drift, %
number of data points (7)
total scale, % (100)
calibration gas assay multi-
plied by 100 and divided by
the range, ppm
• t value as shown below
• conversion of % scale to S C
nd
2
3
4
5
6
^.975
12.706
4.303
3.182
2.776
2.571
nd
7
8
9
10
11
^.975
2.447
2.365
2.306
2.262
2.228
na
12
13
14
15
16
t0.975
2.201
2.179
2.160
2.145
2.131
Values are already corrected for n-1
degrees of freedom; use n equal to
the number of Individual values.
Figure 6-4. Sample data sheet and equations for determination of
24-hour zero and calibration drift.
6-12
-------
time, or 24-hour calibration tests. Samples were
synchronized with CEM 10-minute sampling cycles to
allow three separate CEM measurements to be averaged
for each test.
3. The CEM data were determined from recorded strip
charts in terms of S02 and 02 concentration on a wet
basis. Three readings of each were averaged for each
test. Reference moisture data were used (after
correction for CEM dewpoint) to convert CEM S02 and 02
readings to a dry basis. Emission rates in terms of
Ib S02/106 Btu were then determined by Equation 6-1.
The CEM and reference method data and calculated
emission rates were recorded, and correlations were
determined on data sheets. Figure 6-5 presents a
sample data sheet and the equations used to determine
system relative accuracy.
6.3 DETERMINATION OF FACTORS ACCOUNTING FOR DATA CAPTURE AND
LOSS PERIODS
6.3.1 FGD Determinations
Operability, reliability, availability, and utilization
represent different facets of FGD system operations, including
excursions, in terms of percentages. The calculations used to
determine them are presented below:
, r.^^^=K. , .+.„ _ hours FGD operated „ ,nr.
1. Operability - hours boiler operated X 10°
2 Reliabilitv = hours FGD operated 100
2. Reliability - hours called on to operate x 10U
3. Availability = hours FGD capable of , operation x 1QO
J hours in period
«• Utilization - * M0
For data capture, only normal operations were considered,
and FGD excursions were excluded. Operability as determined by
this limitation is calculated as follows:
Normal Operability = Operability - [ <" ""^ * 100>
6-13
-------
Run
no.
1
2
3
4
S
6
7
8
9
10
11
12
Date and
tine
Average
so2
.F"
M iniff
ppm
Confidence Interval
Accuracy
°?
CM TM
I
SO,
RM.
M hiff
M$s/OCV
RM - reference method result; M - monitoring system result; and
mass/GVC - mass per gross caloric value, lb/10° Btu.
Average (A)
Ix
n
95* Confidence
Interval (CI
g5
Accuracy
"
95
Rv
x 100
where
"0.975
x = individual result
n * number of data points
RV c average of reference method results
t value as shown below
na
2
3
4
5
6
to. 975
12.706
4.303
3.182
2.776
2.571
na
7
8
9
10
11
to. 975
2.447
2.365
2.306
2.262
2.228
na
12
13
14
15
16
t0.975
2.201
2.179
2.160
2.145
2.131
Values are already corrected for n-1
degrees of freedom; use n equal to
the number of Individual values.
Figure 6-5. Sample data sheet and equations for determination of
system relative accuracy.
6-14
-------
6.3.2 CEM Operability Determinations
Inlet operability represents the capability of the CEM
inlet sampling system to gather data. The determination in-
cludes data capture during periods of excursions and is calcu-
lated as follows:
CEM inlet operability = (^'Fgg ^Jlf * 100
Outlet operability represents the capability of the CEM
outlet sampling system to gather data. The determination does
not consider FGD operation during excursions and is calculated
as follows:
CEM outlet - (hours of outlet data) 1QO
operability " (FGD hours - hours of excursions x 10°
6.4 QUALITY ASSURANCE
The QA procedures were designed to provide the most consis-
tency with P/S procedures that was practicable. The system
relative accuracy tests were performed in the same manner as in
P/S testing.
Moisture determinations were performed in the same manner
as during P/S testing and, because of the wet gas CEM analysis
system, provided a vital data parameter for final data listings.
The QA tests are described below.
6.4.1 System Relative Accuracy Tests
The system relative accuracy tests were performed by
virtually the same test procedures outlined in Subsection 6.2.3.
6-15
-------
6.4.2 Moisture Determinations
Manual Method 6 test moisture data gathered during P/S and
QA testing provided the base for moisture determinations.
Providing accurate values for use in correcting CEM data re-
quired assaying the mositure at the point of analysis; thus,
removal of moisture between extraction from stack and analysis
had to be accounted for. This was done according to the fol-
lowing equations:
percent moisture = lowest of A or B (Eg. 6-3)
where A = stack moisture, percent
B = dewpoint moisture, percent
percent dewpoint moisture = ffTt °.y.%£ '** ' 10°
(Eq. 6-4)
where t = lowest temperature of interface
before analysis point
pressure of
system = 25 in. Hg
Equations 6-3 and 6-4 had to be applied to each monitor as well
as to each gas stream, because the monitor configuration
resulted in different lowest-point temperatures in the 02 and
SO2 sampling interfaces. In all cases the lowest calculated
moisture value was reported. The lowest temperature of the 02
monitor interface was room temperature (68°F) because unheated
lines were used to transfer sample gas to the 02 monitor. The
lowest temperature of the S02 monitor interface was measured on
6-16
-------
a daily basis at the mist knockout traps provided with the
DuPont 460 system and generally exceeded 100°F. System pressure
was assumed to be 25 in. Hg for determining partial pressure of
moisture, based on 5 in. Hg vacuum and 30 in. Hg average atmo-
spheric pressure.
6.5 DETERMINATION OF CEM OUTPUT IN THE FIELD
The values used to convert raw data to final output read-
ings in terms of emission rates had to be determined in the
field to provide data for performance specificaiton and QA. It
was important that the field values be accurately determined and
reflect the values transcribed for the final listings (Subssec-
tion 6.1) in order that field test data reflect the quality of
the final data listings. The procedures used for reducing CEM
data in the field are outlined below:
6.5.1 Reading of Raw Strip Charts
Scale deflection percentages were read from strip charts
and used without conversion to parts per million of S02 or
percentages of 02 for system response and drift tests. For
calibration error and system relative accuracy tests, conversion
of scale deflections to parts per million of S02 and percentages
of 02 was necessary. The scale deflections (averages of three
points for system relative accuracy) were multiplied by the
appropriate span gas assay and divided by the last previous span
gas reading to make this conversion, as indicated by the
following equation:
6-17
-------
ppm S02 or % 02 = reading, % of scale x (Eq. 6-5)
assay of span gas
span gas reading, % of scale
6.5.2 Determination of Dry Concentrations
Dry S02 and 02 concentrations had to be determined to
correlate CEM and manual methods data during system relative
accuracy tests. This was accomplished by multiplying raw data
values by the factor 100/(100 - M), where M is the appropriate
moisture content. The M value for inlet S02 and 02, were deter-
mined as discussed in Subsection 6.4.2.
6-18
-------
APPENDIX
CALIBRATION GAS CERTIFICATION, COAL ASSAY ANALYSES,
1-HOUR DATA LISTINGS, AND DATA
FREQUENCY DISTRIBUTIONS
-------
CONTENTS
Page
Calibration Gas Certificates A-3
1-Hour and 24-Hour Listings for FGD Unit 1 A-ll
Summaries of Results Based on 1-Hour and 24-Hour Listings
for FGD Unit 1 A-30
Frequency and Cumulative Distributions of 1-Hour Listings
for FGD Unit 1 A-34
1-Hour and 24-Hour Listings for FGD Unit 3 A-42
Summaries of Results Based on 1-Hour and 24-Hour Listings
for FGD Unit 3 A-89
Frequency and Cumulative Distributions of 1-Hour Listings
for FGD Unit 3 A-91
Frequency and Cumulative Distributions of 24-Hour Listings
for FGD Unit 3 A-99
A-2
-------
I
UQUID CARBONIC
Su»i<*«rr a/MouHon HHaal Gu CorparMwn
SPECIALTY GAS and CHEMICAL PRODUCTS
CERTIFICATE OF ANALYSIS
/•'edco Environmental
Chester Towers
11499 Chester Road
Cincinnati, Ohio •
Date: .
Ref. #
November 1^, 1979
Oust P.O. f»T- 79-169-3333-X
Gas Mixture
Product
Cyl. Serial
No. _
FGD INFORMATION
Cyl. Serial
No.
Cyl. Serial
No.
Components
«-"
Requested
j.m
Balance
Actual
Actual
Balance
Balance
Actual
. Volume
|GA Valve No.
150 cf
330
Total Cyl. Pressure
2000
•«
|ethod of Analysis:
Varians llodel 3700 Gas Chromatograjh
•using a Chromosil 310 column and
TC ---G tec tor against UR3 3TR '. 661
Certified By:
Victor II Hoy
A-3
FORM 2991 REV. 9/72
It is recommended the above cylinders not be depleted
below 50 psig unless otherwise indicated.
PRINTED IN U.S.A.
-------
I
UQUID CARBONIC
SubiidHnr d Houuan Nitonl Co CorpaHion
SPECIALTY GAS and CHEMICAL PRODUCTS
CERTIFICATE OF ANALYSIS
jo: Pedco Environmental
Chester Towers
1 U+99 Chester Road
Cincinnati, OHIO
Date: .
Ref. #
Cust. P.O. *
1Zf November 79
7q-l6q-5333-X
Product
Cyl. Serial
No.
SGAL 1893
Mi
Cyl. Serial
No.
SGAL 2047
Cyl. Serial
No.
Components
Requested
Sulfur Dioxide 250 pom
Nitrogen
Balance
Actual
269 .-'pm
Balance
Actual
269 ;jm
Balance
Actual
Cyl. Volume
CGA Valve No.
150 Cubic Feet
330
Total Cyl. Pressure
2000 osig
Method of Analysis:
Varian Model 3700 Gas Chromatograph
using a Chromosil 310 column and
TC detector against NBS 3TR 1661
Certif
Vi rtnr H Mov
A-4
It is recommended the above cylinders not be depleted
below 50 psig unless otherwise indicated.
-------
I
LIQUID CARBONIC
Sutiidanf al HouHon Nttml Gil Carpe/tt&i
SPECIALTY GAS and CHEMICAL PRODUCTS
CERTIFICATE OF ANALYSIS
?edco Environmental
Chester Towers
1 1L.Q9 Chester Road
Cincinnati, r"'hio'
Date:
Ref. *
Cust. P.O.
November 14, 1979
79-16J+-3333-X
Product .
Cyl. Serial
No.
;5G/\L 2293
Gas Mixture
Cyl. Serial
No.
Cyl. Serial
No.
(Slmponents
1*
1. fur Dioxide
iMitrogen
Requested
2500 __-
Balance
Actual
263^ J.
Balance
Actual
Actual
Cyl. Volume
iA Valve No.
150 cf
330
Total Cyl. Pressure
2000 osig
of Analysis:
arian Model 3700 Gas Chromatogra.-h
f
sin§ a Chromosil $1® c )luran and
mTC detector against HB3 ."TR 1 66k
CertifisdBy: ^Victor H Moy
A-5
I
It is recommended the above cylinders not be depleted
below 50 psig unless otherwise indicated.
-------
LIQUID CARBONIC
SvbHOart ol Hfutten Htlurtl On Coifaitlion
SPECIALTY GAS and CHEMICAL PRODUCTS
CERTIFICATE OF ANALYSIS
To:
Pedco Environmental
Date: December 12. 1979
Ref. #
Gun. P.O. * PSI79-i6/f-3333-X
Product
Cyl. Serial
No.
SGAL 2291
Gas Mixture
Cyl. Serial
No.
Cyl. Serial
No.
Components
Sulfur Dioxide
Nitrogen
Requested
2500 pom
Balance
Actual
Balance
Actual
Actual
Cyl. Volume
150 cf.
CGA Valve No. 330
Total Cyl. Pressure
2000 osia
Method of Analysis:
Varian Model 3700 Gas Chromatograph
using a chromosil 310 column and
TC detector against NBS Standard
Certified By: * Steven AhrweJler
ORM St-02991 REV. 9/72
It is recommended the above cylinders not be depleted
below 50 psig unless otherwise indicated.
PRINTED IN U.S.A.
-------
I
UQUID CARBONIC
J«»»/*«rr of Mavjran Nuail Cu Capartnan
SPECIALTY GAS and CHEMICAL PRODUCTS
CERTIFICATE OF ANALYSIS
Pedco Environmental
Chester Tov/ers
Date: November 14, 1979
Ref. *
11499 Chester Road
Cincinnati, Ohio' 4.524.6
Cust. P.O. #.
EI 79-164-333-X
Product
Cyl. Serial
No.
SGAL 2111
Gas Mixture
Cyl. Serial
No.
Cyl. Serial
No.
i>mponents
L"Ifur Dioxide
i^trcgen
I
M1
Requested
3400 _vm
Balance
Actual
3333 .'?
Balance
Actual
Actual
Cyl. Volume
>A Valve No.
150 cf
330
Total Cyl. Pressure 200° -'sig
|ethod of Analysis:
rian Model 3700 Gas Chromatograjh
Ising a chromosil J>\Q column and
rC detector against NB3 3TR 1664
Certified, By: _
A-7 O44
Vic ton H M-.iv
It is recommended the above cylinders not be depleted
below 50 psig unless otherwise indicated.
-------
DRY MOLECULAR WEIGHT DETERMINATION
TEST N0_3.
COMMENTS:
SAMPLING TIME (2Wr CLOCK)
SAMPLING LOCATION ^PlD
SAMPLE TYPE (BAG, INTEGRATED, CONTIGUOUS).
ANALYTICAL METHOD ^KJ>Ay
AMBIENT TEMPERATURE
OPERATOR T
"^^^^ RUN
GAS ^^^\
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
COfNET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
O-O
//•?
NET
0,O
//?
2
ACTUAL
READING
D. 0
f'Z.b
NET
o.o
/2^0
3
ACTUAL
READING
o-o
/^.^
NET
OO
fl-l
AVERAGE
NET
VOLUME
0-0
"/*.a
MULTIPLIER
44/100
32/100
a/ioo
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
M,j, Ib/lb-fflole
00
I*.*
,
TOTAL
i
oo
-------
DRY MOLECULAR WEIGHT DETERMINATION
COMMENTS:
.TEST NO
SAMPLING TIME (2Ww CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD _
AMBIENT TEMPERATURE
OPERATOR VT K/£
V
^\^^ RUN
GAS ^^v^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET !S ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (METIS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
06
f2-(
NET
ao
«.|
2
ACTUAL
READING
o.o
ll-to
NET
o.o
fe'Q
3
ACTUAL
READING
a. a
n.*.
NET
.0-6
/^
AVERAGE
NET
VOLUME
o.o
«.(
MULTIPLIER
4Vioo
32/100
2«/ioo
a/!00
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
O- 0
/27
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE ///26/T9
COMMENTS:
TEST HO /
SAMPLING TIME (2Wir CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)
ANALYTICAL METHOD
AMBIENT TEMPERATURE "7
OPERATOR
.Ut?J
4- V- Ct/\A-\.tc
**^^ RUN
GAS ^"^v^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
.'•0.0
/A?
NET
QO
//^
2
ACTUAL
READING
o. o
/J--2-
NET
o.o
/z.i
3
ACTUAL
READING
O. 0
/Z.I
NET
O.O
IU
AVERAGE
NET
VOLUME
0.0
'*/
MULTIPLIER
44/100
32/100
a/ioo
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib/lb-mole
o-o
U-(
TOTAL
M
O
-------
DA1LV SUMMARY OF RESULTS
*] LOCATION: CM PARMA BOILER i
* DATE! 2-28-80
« TIME
• 100
• 200
•ol 300
" 400
": 500
11 " 600
"• 700
'• 800
'• 900
" 1000
'• 1100
'• 1200
10 1 300
" 1400
" 1500
" 1600
" 1700
*• 1800
" J900
" > iooa
" M ?200
*° .2300
11
" • AVEMA6C8
" 1 OF DATA
M MINIMUM
19 MAXIMUM
M MEAN
37 STD.DEV.
" I STO.OEV.
40 24-HOUR REMOVAL
i
" JMEANJ E , f
" t IN
44
" t
LOAD E E
IN OUT
60. 3.212 .458
67. 3.405 .475
63. 3.388 .440
65* 3aill ..<«7»
79. 3.354 .498
88. 3.262 .487
80. 3.202 .4fc9
84. *«•••• ••»•*«
85. •••*•• ••*•«•
??•_. *•••/"•_..* §»»»»
80. .678 .341
79. .698 .347
•2. T*AI , >*•
66. .123 .300
72. .170 .345
.. 73... .40i .403
67. .416 .511
72. .474 .593
72. .417 .569
72. .449 .471
23. 20. 20.
9fc. 81. AI.
60. 3.202 .288
88. 4.474 .593
8. .496 .086
11. 12. ••» I«.I7I
EFICIENCT USIN6
t 88,332.x
OUT
•* NOTE! IMEANI IS DEFINED AS!
47 X
•* THE MEAN FOR ..x... DATS USING T-HUUH
40|
9O
9,
02
34
SS
- -- •-
EFF
*••»*
85.7
86.0
87.0
Ob. 4
85.1
85.1
as .4
**»**
»•*»»
90.7
90.6
92.7
91.7
V0.9
88.4
86.7
87.1
89.4
20.
• 1T
85.056
92.726
2!s29
2.867
AVtRAGES
4»
90
91
II
•4
99
•T
. '*
" ••
TO
ri
71
"»5
74
79
-------
V
22
23
24
29
24
27
U
2*
30
31
32
11
34
39
37"
3*
4O
41
43
44
46
4f
4ft
49
90
9,
92
r
197
DAILY SUMMARY OF RESULTS
LOCATIONS 6M PARMA BOILER 1
DATE! 2-29-80
TIME
0
100
300
400
.500..
600
700
•on
900
1000
1100 ..
1200
1300
1400
1500
1600
1800
1900
•r aooo
M 2100
N> 2200
1300_
• AVERAGES
I or UATA
, MINIMUM
MAXIMUM
MJ AN
STD.DEV.
X STO.DEV.
LOAD E E
IN
65. 4.444
60. 4. 044
*•>. f ?*•
66. 4.856
66. 4.709
. J!5_. ».67i
91. 3.568
88. 3.638
90. 3.618
68. 4.038
87T l!976
65. 3.946
AOT •T?4«
83. 3.964
73. 3.66V
... 77. .. 3.6a9
7«. 3.761
78. 3.786
•S. 1.AI7
61. 3.932
63. 3.936
JJ5. 4.0.9t».
24. 24. 24
100. 100. 100
60. 3.512
96. 4.856
10. .174
12. 9.162 17
OUT
.455
.467
.450
.436
.427
.419
.461
.435
.395
.414
.323
.286
.240
.345
.310
.337
*329
.369
.356
.37ft
.240
.461
.066
.297
24-HOUR REMOVAL EFICIENCY USINS
1
IMEA.NJ E , E : 9V.400*
1 IN OUT
V
NOTES (MEAN! IS DEFINED AS:
X
THE MEAN FOH X WAYS USING
I
1
J
tFF
89.6
66.4
90.7
90.7
90.9
68.2
66.8
ttfr *
88. 0
90.2
90.3
91.9
92.7
93.9
90.6
91.0
91.7
90.6
90.9
90.8
24.
100,
8».56S
93.941
9Q.350
1.626
2.021
-
Y-HUUK *vt«»cts - - -
i ^
a
4
T
ID
II
ta
11
14
IB
17
11
1*
20
ai
aa
23
24
29
a*
27
**
to
11
32
14
39
36
17
1C
M
4O
41
42
43
44
49
46
47
40
DO
91
aa
•3
S4
09
97
98
•0
• 1
•a
•3
en
47
6(1
70
»i
72
7.1
74
79
V
-------
r
DAILY SUMMARY OF RESULTS
ft
1
»
4
T
a
to
1 1
11
1)
*4
)•
I*
1 7
ZO
21
u
u
2«
29
21
2*
t*
JO
SI
3*
33
34
M
37
4O
41
42
«J
44
«0
47
41
ir
v«
•>»•
LOCATION! GM PAHMA BOILER 1
DATE! 3- 1-80
TIME
0
100
too
300
400
600
TOO
•00
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
s> 1900
1 2000
t-1 2100
W 2200
• AVERAGES
X OF DAT*
MINIMUM
MAXIMUM
MEAN
STD.OEV.
I STD.DEV.
LOAD E E
IN OUT
77. .ITT .411
68. .286 .207
80. .172 .279
75. .175 .334
.74... .154 .352
75. .987 .309
78. .908 .377
75. .679 .356
71. .640 .271
70*. ,8JV «
-------
DAILY SUMMARY OF RESULTS
y-
' LOCATIONI 6M PARMA BOILER 1
* DATE! 3- 2-80
3
TIME LOAD E E
* IN OUT
0 79. .74* .335
* 100 7*. .651 . .321
• aoo »•, .*•• ' «•*•»
10 300 BO. .002 .404
" «00 70. .604 .300
I1 500... ....... ..J9,.... .677. .«* .»M
" 900 77. .602 .207
1000 72. .464 .240
"_ 1100 10. . . .1122 . ..246
" 1200 76. .Ill .260
10 1300 68. .067 .250
" fCAA 9>T. .*•>%. . l«1
" 1500 75. .994 .297
" 1600 74. .376 .260
1700 ... 6«l.. .691_ .211
" 1800 72. .091 .238
'* > 190° *9» •08fc •2*b
™ M 2100 70. .320 .263
" ** 2200 70. .180 .224
30 2300 76. 4.066 .273
11
" • AVERAGES 24. 24. 24.
" c nr DATA to*T fflo, too. t
" MINIMUM 67. 2.994 .198
" MAXIMUM 80. 4.320 .404
M MEAN 74. 3.H17 .273
" 8TO.OEV. 4. .295 .046
]' 1 STO.DEV. 5. 7,717 16.775
24-HOUR REMOVAL EFICIENCT USING
1
"' IMEAN1 E i E : 9.B54X
0 1 IN OUT
44
41 y
" NOTE! IMEAN1 IS DEFINED AS:
X
" THE Mt»N FOR X QATS USING Y-HUUK
<»
"l
;j
::
\"
EFF
91.1
91.2 ;
09.6
41 .9
92.2
92.9
91.0
9?. 4
94.4
92.9
93.9
93.5
93.7
-.9*^«_ .. .. .
90.1
92.1
93.5
94.2
94.5
93.9
94.6
93,3
24.
09.597
94.003
92.79? ,
1.436
1.540
AVtRAGtS - —
t
a
i
14
19
17
an
ai
aa
13
24
n
!•
27
29
19
31
33
34
39
39
37
39
4O
41
43
43
44
49
47
49
49
90
91
32
93
94
99
99
97
99
BO
91
91
93
•4
63
97
99
70
71
71
73
74
7S
V
-------
OAILT SUMMARY OF RESULTS
\
1
»
4
•
•
T
•
•
10
1 1
It
"|3
14
II
>•
17
1*
1.
1C
ai
u
2j
24
»
2e
27
2.
2.
30
SI
'32
•91
»4
"
M
37
U
3ft
4O
41
41
4J
44
45
4«
47
,**
•4*
1
'.90
SI
52
'5J
54
H5
,'"
V"
LOCATION! GM PAMMA BOILER 1
DATES 3- 3-80
TIME LOAD I E
IN OUT
0 79. 4.119 .268
100 77. 3.959 .317
200 T7T 1-VHfc T"a
300 60. 3.961 .311
400 63. 3.838 .305
_ 500 70._..JJ.1««| .241
600 91. 3.382 .299
700 63. 3.426 .285
• OA 91. «.4>«M T?PJI
900 83. 3.677 .303
1000 66. 3.912 .218
MOO 66.. ... 3.2?« ,i»5
1200 93. 3.433 .131
1300 82. 3.143 .096
140A •»- i»T«fc% To««
1500 71. 2.635 .097
1600 73. 2.666 .U87
17VQ . **».- 2.506 .U92
1800 65. 2.526 .195
*, 1900 65. 2.543 .157
7 .»000 70. .»T441 TI1I
M 2100 67. 2.505 .279
01 2200 65. 2.431 .279
2300 79. 2.552 .321
. . . . J
EFF
93.0
92.0
- 9L.SL . . _
92.1
92.0
92.4
91.2
91.7
9B^A
92.2
93.9
91.2
96.2
96.9
96^7
96.6
96.7
96.
92.
93.
....92.. . ._•
88.
88.5
07. a
• AVERACES 24. 24. 24. 24.
1 Or DATA 100. 100. 100,. fAO.
MINIMUM 60. 2.431 .087
MAXIMUM 93. 4.296 .324
.MIAN ... 76.. ..3,241 ..22ft
STO.DEV. 10. .630 .067
X STD.OEV. 13. 19.443 36.227
24-MOUR REMOVAL EFICIENCT USIN6
1
IM&A.HL E i E A 93.915*
1 IN OUT
. »
NOTEI IMEANI is DEFINED ASI
X
. THE MEAN FOR. x U«TS..U5lN6 t-HUUH
67.426
96.882
92.903
2.666
2.667
AVERAGES
i S
i
»
•
•
»
•
•
IO
1 1
is
14
!•
I.
IT
1.
1*
70
11
U
23
24
29
2.
rj
2ft
1.
10
31
32
33
34
39
3A
37
3.
3*
4O
41
42
43
44
43
4.
47
4.
4.
SO
SI
»f
S3
94
99
B.
97
1.
>•
•O
1
3
64
5
e
7
«
*
O
1
3
4
rs
V
-------
DAILY SUMMAHV OF RESULTS
LOCATIONS 6M PAKMA BOILER 1
DATEI 3- 4-80
TIME
0
too
300
400
5110 .
600
700
900
1000
1100 _
1200
i 1300
1400
1500
1600
1700
1600
> 190°
M 2100
2300
• AVCRA6EI
1 Of DATA
MINIMUM
MAXIMUM
HE AN.
' STO.DEV.
* STD.DEV.
LOAD E E
IN
55." 2.«S«
60. 2.630
**» ?.**»
64. 2.944
64. 2.875
66__ 2.857.. .
84. 2.992
81. 3.002
62. 3.262
76. 3.266
. 72.. 3.24b
72. 3.187
69. 3.160
44). *TI*S
70. 3.083
67. 3.166
65. 3.021 _
63. 2.920
62. 2.997
•>4- S.IVO
62. 3.233
62. 3.227
6.2. 3.. £2.9
24. 24. 24
too. 100. too
55. 2.630
64. 3.285
66. 3.076
6. .157
12. 5.095 27
OUT
7285
.260
.234
.246
.247
.259
.210
.185
.316
.411
.437
.396
.441
.436
.414
.261
.344
.334
.334
.207
•
tl72
.441
•Jii
.065
.SOS
EFF
90
90
98
92
91
91
91
93
94
90
67
66
87
87
65
66
66
90
86
AN
89
89
91
24.
-LOO.
85.
94.
. JJ9.
2.
2.
24-HOUR REMOVAL EFICIENCY USING
1
. IMEANI E » E s «?t83.Vl
1 IN OUT
y
NOTES fMEANl
X
THE MEAN
t
i
i
r
IS DEFINED AS:
FQH X PATS USING
.0
• •
.0
.4
.3 .... _
.3
.0
.*
.3
.3
.3
.3
.5
.7
.2
.3
.4
.5
.7
.6
.1
694
763
602
896
Y-MUUK AVERAGES - -
r<
a
3
4
7
10
It
13
14
1.
1*
17
It
It
m
XI
XX
X4
29
17
1.
30
31
31
36
37
3.
3*
41
4X
43
44
49
4.
47
4.
4.
90
SI
91
93
94
99
9a
97
9*
9.
•0
• 1
M
63
A4
»•
07
68
7O
71
71
>'3
74
79
V
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PARMA BOILER 1
OATEt 3- 5-80
TIME
0
100
200
300
400
500
600
700
ftOO
900
1000
lluo
1200
1300
1400
1500
1600
|700_
1800
•> HOO
1 2000
M 2100
-J 2200
2300
• AVEMA6C8
I Of DATA
MINIMUM
MAXIMUM
ME AH
3TO.OEV.
K STD.DEV.
24-HOUR REMOVAL
1
. CM.E.ANI £ , E
1 IN
: t
LOAD E E
IN OUT
55. 3.213 .278
56. 3.222 .230
57. 1T2IT ,^<»P
62. 3.161 .254
53. 3.217 .255
60*. 3.^61 ,«!22
76. 3.132 .216
69. 3.121 .197
74T 1TIIT ffO»
71. 2.997 .176
69. 2.9?l .211
6A. 2.7T1 .173
71. 2.662 .154
75. 2.635 .133
73. 2.680 .071
64. 2.654 .067
68. 2.604 .070
.. 70... ^579 ,JQ*
69. 2.538 .127
73. 2.555 .273
68. 2.536 .214
73. 2.601 .358
72. 2.590 .378
63. 2.894 .572
EFF
91.3
92.9
. 90...9
92.0
92.1
93.2
93.1
93.7
9<-<
94.1
92.8
93.8
94.2
95.0
97-1
97.5
97.3
96.0
95.0
89.J
91.6
86.3
85.4
80.2
24. 24. 24. 24.
IflO. 1AO. lftOT 100. ' •
53. 2.536 .067
76. 3.261 .572
V* 2.87V _*2L0
7. .276 .112
10. 9.614 SI. 419
EFICIENCT USING
: 92,409*
OUT
| NOTE< (MEAN! IS DEFINED AS:
"
1 THE MEAN FOK X OATS USING T-HUUH
I
1
J -
f
1
•»
7
80.227
97.483
92.430
3.963
4.288
• • - -- -
" '
AVtRAfitS . .._. _..
t s
a
13
M
n
it
t>
JO
31
»
U
»>
39
111
37
38
3*
«0
41
41
43
44
49
4«
47
48
4V
90
91
91
83
84
93
98
37
98
98
eo
81
82
ft«
65
88
87
88
88
70
71
72
73
74
79
'V
-------
DAILY SUMMARY OF RESULTS
•T
2
3
4
7
IO
1 1
12
11
14
19
16
17
16
20
21
21
it
24
29
26
27
24
M
11
U
13
14
17
36
J«
40
41
43
«
44
49
«•
47
48
40
90
91
92
93
E
»
LOCATION! 6M PARMA BOILER t
DATEI 3- 6-80
TIME
0
too
»OA
300
400
. .... 500
600
TOO
• DO
900
1000
1 100
1300
laoo
1500
1600
... -. »700._
1800
•h, »909
*, aooft
M 2100
00 2200
. . 2300.
• AVERA6E8
t OF DATA
MINIMUM
MAXIMUM
STD.DEV.
S STD.OEV.
24-HOUR REMOVAL
1
I IN ~
LOAD E E
IN
62. 3.141
53. 3.648
«, *.»>«
55. 3.733
56. 3.676
59._.. J.507
74. 3.293
75. 3.252
HI, *,•?•>»•
89. 3.255
82. 3.369
77.. 3.277
83. 3.256
76. 3.530
71, \,fci»«i
67. 3.922
63. 4.028
62.. .4.031
65. 3.872
64. 3.937
OUT
.553
.616
.613
.321
.320
.534
.670
.79*
.455
.121
.lib
.115
.126
..vLli.
.128
.167
.173
.173
.209
65. 3.651 .160
66. 3.618 .170
61, j.66g .159
24. 24. 24.
—loJU—ifla. IPO -
52. 3.|4|
69. 4.031
6.9, J.i79
10. .267
15. 7.467 69
EFICIENCY USING
OUT
NOTEI (MEAN) IS DEFINED AS:
X
_. THE MIAN FOR.K UAY3 USING
.lit
.797
..J2Q
.223
.746
Y-HU
EFF
02.4
03.1
«*.•
83.6
91.3
90.7
83.8
79. •
86.0
96.4
96.5
96.5
96.4
96.7
95.6
95.7 . . .
95.5
94. T
95.1
95.3
95,7
24.
too.
75.582
96.944
6.757
7.439
UK AVERAGES
i ^
i
3
4
T
IO
II
II
11
14
16
17
II
12
23
24
29
26
»7
26
30
31
32
31
34
33
37
361
M
40
41
42
43
44
46
46
47
46
46
SO
Bl
If
63
•4
97
96
6O
61
• I
63
64
69
66
67
8S
66
70
71
72
73
74
n
V
-------
DAILY SUMMARY OF RESULTS
V,
2
»
4
•
•
7
•
•
10
I I
12
t4
19
1*
I 7
"
«.
it
21
"
"
"
"
41
19
JO
Jt
32
93
M
14
W
3/
30
J»
4d
41
41
.1
44
49
46
"
48
4.
50
51
5»
9*
94
.15
5»
57
LOCATION! CM PAHMA HOlLtR 1
DATE: 3- 7-eo
TIME LOAD t t
IN OUT
0 6«. 3.761 .151
100 61. 3.849 .158
200 SB. 5.1102 THl
300 63. 3.827 .132
400 55. 3.754 .152
. ?«0. 61... J.494 .i&q
600 76. 3.588 .200
700 73. 3.59? .205
900 72. 4.016 .250
1000 69. 5.313 .782
1100 74. 5.570 .575
1200 70. 4.981 .328
1300 70. 3.738 .164
J400 73T 1-98* T17Q
1500 63. 4.315 .205
1600 64. 4.197 .182
.1700 63. 4.071 .£29
1800 63. 4.6)1 .240
> 1900 66. 4.613 .224
1 2000 64- 4-«9 -I9fc
^ 2100 62. 4.117 .189
^ 2200 61. 4.532 .232
£390. »4_, 4.55«1 .197
n AvERAcea 24. 24. 24.
t Or OA1A 100. 10U, IAD,. |
MINIMUM 55. 3.494 .131
MAXIMUM 76. 5.578 .782
M{A»t _ 6.6. 4^05 ,i3b_
3TO.OEV. 6. .556 .146
I STD.OEV. 9. 13.216 62.086
24-HOUR REMOVAL EFICIENCV U3IN6
1
IMEANJ I t E : 94.397S
1 IN OUT
Y
NOTEI (MEANI IS DEFINED ASI
K
THE ME.AN FOR X PATS USING Y-HUUN
i
i
»
EFF •
•
T
•
95. •
11' "
96. •«
11' "
95. . . it
94. "
9«. ;:
- 99. .- ... . . _ _ »
93. »'
us "
8Q*
*9- ...... »'
93. «
4e »
*'• ti
.95J „
95.2 «•
95.7 «
94.4 „
94.8 " «
".1 ,1
95J _. „ . «
95.7 «
94.9 »
95.7 ._ «>
41
«•• «
00. 44
8b.275 ~
96.564 „
94.601 «
2.419 '•
2.557 "
99
»3
•4
n
ea
97
81
•0
•0
• 1
•1
•3
AVfAGtS •"
67
00
5=
TO
71
72
73
N 74
79
-I7*
-------
a
4
a
7
to
1 1
ia
u
>»
17
"
tf)
2O
ai
"
»
18
18
3O
31
"
33
M
3»
18
98
40
*"
41
43
44
48
«T
48
49
90
91
91
94
99
'"
97
DAILY SUMMARY OF RESULTS
LOCATION! GM PAHMA BOILER 1
OATEI 3- 6-00
TIME LOAD 1 E
IN OUT
0 52. 4.617 .245
100 59. 4.603 .286
>nn ««. *.VM ,iam
300 53. 4.561 .216
400 57. 5.030 .158
500 SB.. . 5.33h .167
600 53. 4.607 »•*••«
TOO 57. 4.506 .751
900 53. 4.630 .300
1000 54. 4.996 .167
MOO 55.. 4.b2B .209
1200 56. 4.526 .264
1300 56. 4.613 .21?
1500 57. 5.010 .257
1600 54. 5.317 .233
1700 56. ..... .911 .224
1000 55. .364 .211
^ 1900 57. .221 .271
1 2000 SiT ,O 2100 57. .250 .475
0 2200 55. .264 .465
2300 .5.9. 4_.O5 .552
• AVERAGES 24. 24. 23.
I OF OATA 100, 100, 9fcT
MINIMUM 52. 4.031 .156
MAXIMUM 63. 5.336 .751
MEAN 56. 4.657 .318
STO.OEV. 2. .331 .165
1 STO.OEV. 4. 7.114 SI. 695
24-HOUR REMOVAL EFICIENCT USING
1
(MEAN! E • E > 93.161X
1 IN OUT
Y
NOTEI tMEANI IS DEFINED A9I
X
THE MEAN FOR x PAY; USING Y-H.OUR
EFF
94.7 ~"
93.7 v
95.3
96.9
96.9
**»»•
63.3
Aft1 1
93.8
96.7
95.5
94.2
95.3
90.9
95.6
95.4 ..__,_
95.2
93.6
8<>.9 ,
8A.6
D».6
(}7.6
23.
96 .
83.335
96.677
3.925
4.221
i\
14
It
It
17
II
It
1O
11
U
13
14
19
18
17
18
3D
31
31
33
14
33
38
37
38
M
4O
41
41
41
44
49
48
48
48
SO
SI
SI
83
94
83
97
8*
8O
81
81
83
84
88
87
88
7O
71
71
73
74
7«
'•'
-------
DAIir SUMMARY Of HESULTS
LOCATION! CM PAMMA BOILER 1
OATEt 3- 9-80
TIME
0
100
200
! 300
400
. 5»0
600
700
•00
400
1000
1 IlPO
! 1200
1300
1400
1500
1600
|700
1800
1900
•f 2000
NJ 2100
M 2200
£300
* AVERAGES
I Of DATA
MINIMUM
MAXIMUM
; ... MEAN
3TO.OEV.
X STO.OEV.
LOAD E
IN
50. ~ 3.914
S3. 3.179
**,, .TA«
60.
56.
- 55.__ ...
56.
59.
S4T
55.
51.
«.._
59.
54.
«-
55.
49.
«7.__
47.
50.
40.
52.
50.
5_4._ <
.730
.752
.882
.390
.922
U.1UL
.220
.013
.997
.603
.632
U-IAO
.015
.169
.900
.545
.359
L*J8£
.450
.360
U174
24. 24.
100. 100.
47. 3.603
60. «.5«5
. . _53. <».Q«9
4. .276
7. 6.129
E
OUT
.430
.420
.?«!•<>
.364
.358
.£00
.570
.541
Ts«a
.436
.334
.i9b
.321
.345
T«7
.041
.369
. .27^
.339
.333
TP9S
.290
.277
• *?8
24.
100.
.272
.570
.370
.006
as. 107
EFF
09.0
• 9.2
«o.x
90.3
90.4
92. 6
07.0
06.2
_ 87.0
09.7
91.7
92.0
91.1
90.5
90 rS
09.0
91.1
93.2
92.5
92.4
91.1
93.3
93.7
92.9
24.
_LOIU .
06.205
93.652
90.615
2.130
2.355
24-HOUR REMOVAL EFICIENCT USING
I
E , E
1 IN OUT
NOTE> (MEANI IS DEFINED AS:
X
THE MEAN FOH x DATS USING T-HUIIH AVtRAGtS
I
1
IO
II
t]
l»
14
II
I?
I*
It
SI
11
ai
is
2*
Jl
91
n
36
J7
4T
48
4*
SO
91
. V
S3
•4
9S
-s
70
71
72
74
7S
• 9'
-------
DART SUMMARY OF RESULTS
LOCATIONI GM PAHMA BOILER 1
DATE! 3-10-80
TIME
0
100
300
400
400 _ . .
600
TOO
900
1000
1100
1200
1300
1500
1600
17UO_
1800
> 1900
K> 2100
M 2200
1IVP ... .
• AVCRA6E8
t Or DATA
MINIMUM
MAXIMUM
STO.OEV.
X STO.DEV.
LOAD E E
IN OUT
52. ~ 4.0*9 ".324
SO. 4.189 .292
4* M O2191 ?•!
52. 3.952 .234
52. 3.864 .273
57... 4.047 .360
73. 3.582 .457
69. 3.591 .609
*•. T.**» ^°*
67. 4.140 1.353
72. 3.435 1.662
. . 66. 3.691 .941
71. 3.728 1.442
65. ••••»• •*»««•
*•, mmtmmm mmmmmif
53. *•**«• ••*«*•
59. *»•••• ••••••
.62. ftHgft .. fimtt
59. »•*•«• **«•*•
62. *«•••• •••«*«
.M. 2lllflflll91 ••••••
65. ••*••* •*••»«
75. •*••*• ***•«•
_A99 ..IJUff....ffft«ff*
24. 13. 13.
50. 3.435 .234
75. 4.189 1.662
63. ****** *»**••
8. •**•»• *»*•«*
12. »••*•• «**««0
tFF
92.0
93.0
94.1
«»2.9
91.1
87.2
83.1
ff? f
67.3
51.6
74.5
61.3
• *»••
*»•«•
*••«*
*»«*»
• •*•»
• *»•»
• ««••
13.
51.600
94.108
»**•••
*••*«*
24-HOUR REMOVAL EFICIENCV USIN6
1
(MC&NJ E . E I .VQO*
1 IN OUT
«
NOTEI fMEANI
V
THE MEAN
i
IS DEFINED AS:
FOR X UAY3 USING Y-HUUK
AVtRAGtS
20
21
22
29
27
29
X
J2
33
. 3?
ST
M
41
4t
43)
47
49
49
90
91
81
93
94
99
99
92
93
-------
DAILY SUMMARY OF RESULTS
LOCATION! GM PARMA BOILER 1
DATEJ 3-11-00
TIME LOAD t t
IN OUT
0 69. ••••*• «•••*•
100 63. •••*•• •«••••
200 6t». m*»m*m mmmmmu
300 60. ••«•»• ••*•••
400 67. •*•••• ••••»*
; .... . 500 . 71. ..»»***» ******
600 03. •*•••* •••***
700 03. •«*•«• *•«••*
900 06. *0*»»* •*•«*»
1000 09. 3.060 .353
t>00 05. J.160 .300
' 1200 01. 3.637 .627
1300 79. .609 .425
1400 71. .SJfc T«S
1500 73. .436 .244
1600 74. .534 .233
I70Q ... . 7J. . .578. . ..240
1000 77. .609 .232
Sj, 1900 76. .600 .236
1 2000 74, ,J12 T»\k
N> 2100 73. .737 .266
w 2200 73. .010 .209
2300 71. .002 .271
• AVERAGES 24. 14. 14.
1 Or DATA 100. 4B~ U.
MINIMUM 63. 3.060 .232
MAXIMUM 09. 3.010 .627
MEAN. . _. ?6. **•*»* ****««
STO.OEV. 7. *«•*«* **«••«
S STO.DEV. 9. *•*••* ••«•••
24-HOUR REMOVAL EFICIENCY USING
1
(MIAMI E « E > .oovx
1 IN OUT
»
NOTE! IMEANI IS DEFINED AS:
X
THE MEAty FOR X P»T3 USING Y-HUUK
-- •-
tFF
• »••«
• ••»*
• •«•« .... .
»•«•«
*•»*•
*****
*****
*****
• •*««
00.5
90.3
02.0
00.2
,90.5_.. _- .
92.9
93.4
93.3
93.7
93.4
92.9
92.4
92.9
14.
5BT V •
02.761
93.713
»**»*•
«««•**
*•«***
AVERAGES
v
m
21
**
29
2.
IT
18
t*
31
32
3J
39
VI
»7
38
3*
40
41
41
43
4.
49
44
47
48
48
SO
SI
*I
83
S4
BS
BB
97
BB
88
BO
81
81
83
94
BS
88
07
88
8.
TO
72
73
74
7S
V
-------
DAILY
V, •
* LOCATI
* DATES
>
TIME
9
•
7 0
• too
• >no
10 300
aoo
500
600
700
" MOO
16 900
"1 1000
18 1100
"i 1200
'" 1300
ifjaa
"1 1500
"1 1600
"... ... 1700
" 1800
" •& 1900
17 | 2OOO
*• ro 2100
" ** 2200
30 2JO$
11
" • AVERAGES
" C Of DATA
" •. MINIMUM
" MAXIMUM
M MEAN
" STD.DEV.
" I 8TD.OEV.
»
40 24-HOUR REMOVA
1
'' fMEANl E .
" ' 1 IN
"I
** T
" NOTES IMEANI
X
40 THE MEAN
4V
3u'
1
».'
«.
r. j
!l«
•>••!
SUMMAMT OF RESULTS
ONI CM PARMA BOILER 1
3-12-80
LOAD E t
IN OUT
67. 3.728 .224
66. 3.791 .144
•f* * •*• V91
71. 3.887 .055
67. 3.B21 .U4d
72. 3.b5« .UOU
83. 3.732 .U19
80. 3.538 .050
?*. ?i7f* .059
80. 3.487 .070
78. 3.410 .Ofcl
ft6. 3.46V .123
80. 3.951 .062
77. 4.190 .073
">» •^J'l .104
67. 4.408 .113
71. 4.JH .071
63.. 4.200 .097
68. 4.lfcb .132
64. 4.121 .980
fc*T A,aa« fT9-\
65. 3.909 .557
62. 3.799 .367
69. 3.067 .301
24. 24. 24.
iaoT too. IOOT i
60. 3.410 .019
86. 4.408 .980
71* J.*'l .190
7. .282 .241
10. 7.291 MM**0
L EFIClENCt USING
r : QS i24x
UUT
IS DEFINED AS:
FOH X DATS UblNR T-HUUM
t
EFF
94.0
96.2
«7t* , - - ._ -
9«.
98.
98.
99.
98.
98,"
9H.O
98. 2
96.5
9B.4
98.3
QT.fc
97.4
9fl.3
97. 7
96.8
76.2
«?.0-- --
85.7
90.3
92.2
24.
°Q.
7b.227
99.485
95.19?
5.937
6.237
AVtMAGfcS - -
N
^
10
21
12
23
24
29
J«
27
in
t*
10
31
32
13
M
39
36
J»
S«
3*
4O
41
42
43
44
4B
4C
47
4«
4*
SO
91
92
93
94
99
se
97
9«
99
90
et
92
• 3
A4
6?
A«
97
09
e»
70
"
72
=
-------
I
DAILY SUMMARY OF RESULTS
A
i
4
T
to
1 1
tl
14
18
14
ir
!•
1*
20
21
2J
19
ia
26
.17
2«
!•
3O
II
J2
I
14
M
3t
«O
4J
44
•*«
4 r
48
V
92
ij
*.»!
LOCATIONI GM PARMA BOILER 1
OATEi 3-13-60
TIME
0
100
PBfl
300
400
.. ... 500 ..
600
700
AOO
900
1000
1100... _ ...
1200
1300
1400
1500
1600
1066
t, 1900
1 2000
K> 2100
Ul 2200
2300
• AVCRAGE0
1 OF DATA
MINIMUM
MAXIMUM
MEAN ..._.
STD.OEV.
S STD.OEV.
24-HOUR REMOVAL
1
tM^AN] t r F
1 IN
LOAD E t
IN OUT
59. .625 .254
60. .77ft .307
61. .536 .189
64. .509 .255
69.... .523. .340
79. .453 .460
02. .347 .402
• 1. ?T«I ,1QQ
76. •••••* ••••»«
75. *•••»• «•*«••
. 75. /MM** nmmun
76. *•**••• •**•«*
76. 3.949 .645
62. 4.136 .57b
62. 3.947 .419
...62... }.«42. ..351
57. 3.742 .369
56. 3.039 .401
M. 1.971 .196
61. 4.065 .406
56. 3. 998 .443
53,_ 4,070 ,405
2«. 20. 20.
100. 03. S3,
53. 3.341 .109
03. 4.136 .657
67. 3.77S .401
9. .260 .124
14. 6.092 10.099
EFICIENCV USING
OUT
NOTE! (MEANI TS DEFINED AS:
X
THE MfcAN FOR X DAYS USING T-HUUK
EFF
93.0
91.9
94.7
92.7
90.1
06.7
65.6
• ••**
*•*••
03.7
66.1
09.4
90.9
90.1
69.6
90.0
60.9
90.1
20.
03.
03.665
90.667
09.421
2.990
3.352
AVERAGES \
a
*
T
IO
1 1
it
"l
It!
18
IT
18
It
ro
ai
u
a3
14
a«
27
aa
to
31
3a
39
3d
37
30
3*
4O
41
43
44
49
48
47
48
48
90
Bl
§a
83
84
99
B6
B7
B8
88
8O
81
aa
83
A4
69
00
C7
aa
ae
70
71
7a
73
74
79
'•/
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAMMA BOILER I
DATE! 3-14-80
TIME
0
too
200
LOAD
5«.
5T.
•*
IN
,»«Z
.175
300
400
500
600
700
ftOO
51.
55.
56.
71.
79.
• 1.
900
1000
.1100
1200
1300
1400
82.
80.
79.
80.
77.
-I**.
27
»
1500
1600
.1700
1800
> 1900
1 2000
67.
65.
bJ.
53.
52.
57-
to
2100
2200
57.
57.
OUT
.359
.347
977
995
79a
956
991
««!
.293
.479
1.123
1.354
.882
,6Bi
EFF
90.8
91.7
_SiV«-
92.6
88.0
70.1
65.8
77.9
727
298
455
623
833
.313
.323
.413
.399
.872
.059
.127
.248
.210
.169
.507
.424
.317
.438
.417
-*JAO_-
.443
.534
.346
.346
84.B
90.5
90.6
88.6
89.6
_«7»JL-
86.9
89.5
92.3
89.7
90.1
.9.1 .J_
92.2
92.4
92.*
• AVERAGES
i or DATA
34
»
MINIMUM
MAXIMUM
"I**
STD.DEV.
X STO.DEV.
24. 24. 24. 24.
IOOT IOQ. ton. ..too. :
42. 3.298 .285 65.777
82. 4.714 1.354 92.876
_.fc5_. **991 *M2_ _87.5BO
12. .324 .268 7.000
19. 8.083 94.568 7.992
• 2'
I
I
24-MOUR REMOVAL EFICIENCV USIN6
1
E t E « 91.11 1%
I IN OUT
NOTE« IMEANI IS DEFINED AS:
X
THE MEAN FOH x OATS USING Y-HUUH AVEHAGES y-
so'
,,i
II
12
23
24
29
je
27
JO
II
JI
42
43
90
91
• 3
S4
»
M
~ S7
g*
_eo
•2
•3
»*
~ BS
99
70
-------
DAILY SUMMARY OF RESULTS
LOCATION* GM PANMA BOILER 1
DATES 3-15-80
TIME
0
100
200
300
400
500
600
700
• 00
400
1000
1100
1200
1300
1400
1500
1600
JTOO
1800
1900
•? 2000
N> 2100
-J 1200
. 2JOO
0 AVERAGES
1 Of DATA
MINIMUM
MAXIMUM
MEAN. ..
9TO.OEV.
I 8TD.DEV.
LOAD E E
IN OUT
56. .5TT .342
50. .682 .341
*2T TT14 -«T
52. .544 .347
54. .488 .359
._ *>.__. .611 .369
56. .608 .349
58. .3*2 .272
54. .482 .111
54. .340 .289
55. .272 .306
53,_ ,421 .«?«0
53. .015 .279
53. .013 .301
S3. -474 T2fc4
52. .036 .390
49. .076 .278
...._5U_. .050 .33*
53. .930 .302
52. .945 .292
«7. -407 .284
57. .879 .298
57. .834 .248
59. _i.«06_ ,264
EFF
92.5
92.7
.. 9.2-i. .
92.4
9?,0
92. Q
92.4
93.7
..92.
93.
92.
92. _
93.
92.
91-
90.
93.
91.
92.
92.
92.
92.
93.
93.
24. 24. 24. 24.
100. 1AO. 100. 100.
49. 3.806 .248
59. 4.734 .380
..... 5«._ 4.211.. *311..
3. .309 .038
5. 7.117 12.200
90.578
93.739
92.614
.662
.715 ' .
24-HOUR REMOVAL EFICIENCT U3IN6
1
[M££NJ E i t 1 92.60BS
I IN
V
NOTE! IMEAN1
X
THE MEAN
OUT
IS DEFINED ASS
FOR X DATS USING T-HUUR
AVERAGES
1*
i
>
•
•
i
•
•
10
ii
it
i*
14
!«
I.
IT
1.
1*
>O
ai
u
a
14
23
as
17
Z.
n
91
32
34
96
^
M
4O
41
41
43
44
49
44
47
4«
4»
30
Dl
2
3
84
6
•
1
9
9 •
ao
t
s
3 •-
«
9
9
7 -
0
9
0
1 _
]
J
4
n ._
V
-------
DAILY SUMMARY OF RESULTS
11
>J
IS
17
U
s»
11
»
11
n
i»
M
40
41
«»
4J
44
4S
4«
47
40
4.
,0
91
32
93
fI4
"
»
»'
LOCATION! 6M PARMA BOILER 1
DATE! 3-16-80
TIME LOAD E E
IN OUT
0 ST. ,M7 .262
100 53. .840 .232
300 57. .649 .447
•00 81. .413 .277
..._ -5UO 74. .556 .232
600 76. .401 .223
700 75. .353 .213
ADO 19, ,ma;o . |7«,
900 72. .296 .139
1000 69. .426 .107
...... 1100.. „._ 65.. . .557. .465
1200 66. .b00 .207
1300 65. .928 .200
1AOI fcS. T40P .Ml
1500 69. .965 .312
1600 65. .900 .244
17«Q... . 66. _ .6.29 . .219
1800 66. .612 .199
5, 1900 66. .338 .157
", »!»•• **. T.»««S . |00
M 2100 63. 3.343 .213
00 2200 64. 3.«22 .292
-23M._ 6.6.. J.JJ/ ^4.00
• AveRA6C8 24. 24. 24.
x nr DATA ioot |«o. too.
MINIMUM 53. 3.285 .107
MAXIMUM 81. 4.402 .465
MEAN 67. J.616 .251
STO.DEV. 7. .290 .090
S 8TD.DEV. 10. 8.016 35.544
24-HOUR REMOVAL EFICIENCT USING
i
1MEANJ E , I ? 93.«0
-------
s
^
o
i
i
j
4
B
:
•
•
i
22
2J
2*
«
16
27
29
I*
30
Jl
>1
3)
M
n
M
J7
38
»
4O
41
01
4)
44
43
46
47
46
• V
SO
3'
aa
*3
94
39
90
-V
DAILY
LOCATI
DATES
TIME
0
100
200
300
• 00
500 .
600
TOO
• 00
900
1000
1100 . .
1200
1300
1400
isoo
1600
1*00
1SOO
•to. 1*00
i 2000
N> 2\00
*° 2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN.
STO.OEV.
I STO.OEV.
24-HOUR REMOVA
1
(MEANj £ i
1 IN
IT
NOTE! IMEANi
X
THE MEAN
SUMMARY OF RESULTS
ONI 6M PAHMA BOILER 1
3-17-80
LOAD E E
IN OUT
TO. 3.477 .509
67. 3.S4T .33$
fcfc* ST*fc« ,**n
67. 3.350 .330
50. 3.663 .219
S3. . 4.. 351 .222
55. 4.225 .354
63. 4.003 .440
T«, XTS«P ,a\i
T5. 3.430 .195
Tl. 3.459 .IB9
71. 3.994 . .22^
76. 4.613 .566
76. 4.815 .478
T*. «,7fc! T«00
64. H.544 ,fH\
51. 4.181 .818
53. 3.970 ..jqt,
63. 3.890 .229
Itttt •••«*• ••••••
_J«M«. ••••«• Jtltf*
*««•• »«**«» •••»••
••*** *••«»« ••«••*
•»f»« ••**** «*«•«(
19. 19. 19.
79- 79. 7«.
50. 3.350 .189
76. 4.815 .586
65. 3.»'»79 .315_
». .475 .119
14. 11. MO J7.764
L EFICIENCT USING
f : 92_,063S
OUT
IS DEFINED AS:
ml DAYS USING T-HOUK
tFF
85.4
90.5
- 90^ ... .....__...
90.2
94.3
94.9
91.6
88.8
_93-J._. ......
94.3
94.5
94.5
87.3
90.1
9.1^6, . ...
94.7
94.8
93.8
94.1
• **•*
«•«••
«•«»»
**»•*
*••*•
19.
7«.
85.372
9q.897
92.081
2.822
3.065
AVERAGE9
A
t
i
•
•
T
•
•
ie
it
it
i*
14
l>
1*
17
1C
1*
2O
11
11
u
1<
29
ze
27
Zfl
t*
JO
31
31
U
34
39
36
>7
J«
3»
4O
41
41
43
44
43
44
47
4«
4*
90
91
ni
• 3
•4
B<
B7
9*
9*
6O
ei
61
M
04
• 9
M
•7
eg
«•
70
1
2
4
7B
V
-------
17 OPERATING DATS
SUMMARY OF KESULTS
USING 1-HOUR AVERAGES
OATEt
t tFF
OUT
• AVERAGES 402. 395. 394. 394.
I OF DATA 99. 97. 97. 97.
MINIMUM «2. t>.«il .Ul<4 65.777
MAXIMUM 9k. 5.578 1.354 99.485
MEAN »7. 3.607 .318 91.580
II
I*
14
" •IP-am.,
'•I « STO.OEV. 15. 14.728 «9.972 «.5I9
JO-OAT.. REMOVAL EF1CJENCT USING . . . ._ "
t "
IMEANI E , E I 9|.»3kt "
la in nut .... _ »•
3
NOTE? IME«N) IS DEF1NEU AS!
I
> TME MEAN FOR x OAVS USING Y-HOUR AVERAGES
41
41
•O
• I
•a
•i
•o
• i
H
U
>0
ri
71
73
74
-------
r _ _
17 OPERATING UAY3
OF RESULTS
USING 24-HOUR AVERAGES
IQCATIOMI CM PABMA MfllltB f
OATEt 2-26-60
OilE LOAD E £
IN OUT
2.2A-80 J4T 1. 4.4ft ,«flQ
2-29-80 60. 3.995 .363
- 1-60 73. 3.939 .379
- 2-60 7«. 5.017 .273
i - 3-80 76. 3.241 .226
- 4-60 68. 3.076 .313
- 5-80 47- 2.870 .218
j - 6-80 66. 3.579 .32U
- 7-80 66. 4.205 .236
j - 8-80 56.. 4,657 .310
- 9-80 53. 4.049 .370
i -12-80 71. 3.691 .190
1 -13-80 47. 1.775 T4DI
1 -14-60 65. 4.004 .492
^ -15-80 54. 4.211 .311
J -f -16-80 67,. 3.fe|6 .253
U> -I7-»0 45. J.979 .315
M
f AURBAfiCii 17. 17. IT.
( OF DATA 55. 55. 55.
MINIMUM 53. 2.670 .190
MAX|MgM 90. 4,657 .492
MEAN 67. 3.609 .320
STO.OEV. 7. .437 .064
I •TO.DEW. 11. 11.47? 24.214
10-OAY REMOVAL EFICIENCY USING
1 IMEAN1 E , E 1 91.5671
st IN our
1 • T
NOTE I fMEANf IS DEFINEU AS:
g
THE MEAN FOR X DAYS USING Y-MOUK
|
1
i
»
i
•
i
n
»
7|
68.2
90.
90.
93.
69.
90.
94.
9J.
90.
95.
•9-i
67.
92.
93.0
92.1
55.
67.560
95.192
91.535
2.107
2T"I
AVERAGES
— — ••
•
- —
O
i
*
4
•
•
T
•
•
IO
II
it
i*
14
I*
I*
to
ai
u
u
14
13
1.
17
!•
t*
11
12
13
14
W
M
17
M
M
4O
41
4a
4*
44
41
44
47
4.
4.
9O
• 1
• 1
• J
•4
S
.
97
M
•
•O
• 1
•I
• 1
A4
»
•.
07
..
70
71
72
71
74
7S
-------
FREUUENCY DISTRIBUTION
T
17
1*
1*
20
XX
2>
29
»
27
1*
to
Jl
12
14
19
M
17
J6
J.
40
41
• i
• J
44
«?>
««
;'i4
t"'
LOCATION! CM PARMA BOILER 1
STARTING DATE! 2-26-80
OCCURRENCE
PARAMETER RANBE FREUtl£J»£JL .... PEH
2.000 - 2.400 0.; ....
2.600 - 3.200 33.
3.200 - 3.600 62.
3.600 - 4.000 Ull^ .
4.000 - 4.400 69.
4.400 - 4.600 44.
• .ADO • ^TPOO «.
5.200 - 5.600 4.
5.600 - 6.000 0.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 422.
CUMULATIVE DISTRIBUTION
I tncATiriMi an BABM* ani^ra i
MBTU
CtNtAGE
0.
6.
19.
J3.
21.
10.
1.
0.
- •
r .
• *•«
••••••*•*•
**••*»•••»**••*••
•••*•**••••
U> DATE I 2-28-80
1° PARAMETER! t-HOUR EIN, LB/MMBTU
OCCURRENCE
PARAMETER RANGE FREQUENCY PERCENTAGE
2.000 - 2.400 0.
2.000 • 2.600 20.
2. OOQ - 3.200 S3.
2.000 • 3.600 135.
2.000 - 4.000 276.
PT000 v A. 400 ifc«,
2.000 - 4.600 409.
2.000 - 5.200 4|6.
2.000 - 5.600 422.
2.000 - 6.000 422.
•Fvnun MTM/MAV HAMCF 0
TOTAL POPULATION 422.
0.
5.
13.
32.
65.
*fc.
97.
99.
IVO.
IVO.
HISTOGRAM
•*••••
*»*••*»»•••*••••
••*••*• •••*••••••••«••••**•*•••••
• ••••••••••••••••••••••*ft**A*ft9)**9)ft***ft«)ftft*).)*tt4l4l
• ••••**ftftft44*ft«ft;4*tf|ft*ftft*ft1fc*ftft1t*ftftftftft*ftftftflftftftfttlttftft , _
il
1
4
7
10
II
IX
11
14
!•
1.
17
1*
I*
20
XI
XX
X3
24
29
2<
27
21
10
11
J2
*i
14
19
1.
M
40
41
42
41
44
49
47
••
4*
BO
• 1
62
61
64
69
66
97'
96
96
eo
61
62
61
A4
69
67
96
M
70
71
72
73
74
79
V
-------
FMEuUENCT DISTRIBUTION
*
3
4
ft
to
1 1
12
is
14
It
I/
•j
u
13
24
2«
27
!•
10
11
«
33
i4
39
M
37
38
J»
4O
41
.a!
4ji
44
4*
46
47
48
"i
'1
92
;j
M.
"!
LOCATION! GM PARMA BOILER 1
STAKTING OATEl 2-26-00
PARAMETERl 1-HOUR LOG f IN
.300 - .348
-541 - T194
,3«»6 - .444
I»40 - ^568
.586 - .636
OCCURRENCE
FREQUENCY PENCtNTAGE MISTObRAM
0. 0.
I, 0
!«».
20.
" 1191
128.
.664 - .732 9.
.732 - .760 0.
8ETOND MIN/MAX RANGE 1.
TOTAL POPULATION 422.
CUMULATIVE
*T LOCATION!
W OATE< 2-2
w PARAMETERl
PARAMETER RANGE
.300 - .348
.300 - .396
.300 - .444
.300 • .492
.300 - .540
.100 » .568
.300 - .636
.300 - .664
,300 - .732
.300 - .760
•EUMO.JUN/MAI. RAN
TOTAL POPULATION
DISTRIBUTION
BM PARMA BOILER 1
1-HOUR LOG EIN
5. ••
26* •••••••*•••
30. •••••••••••
2. •
0.
OCCURRENCE
FREQUENCY PERCENTAGE HISTOGRAM
0.
1.
20.
40.
10?.
224.
3b4.
«c!ll
6E 1*
422.
0.
0.
_ 5. ... ••
25. •••••••••••
«l«. •••••••••••
64. •••*•••••••
98. •*•••••••••
t vO. ea«»a«««»a«
100. *••*•••••••
XI
21
18
27
II
M
•*•••••••••**•••»*•••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••A
47
48
48
SO
SI
92
sa
88
82
8}
-------
FREUIIENCT DISTRIBUTION
LOCATION! GM PARMA BOILER
STARTING DATE! 2-26-60
1 '
1 ByUMBtll
OCCURRENCE
. .PARAMETER RANGE ZKEUUEJtUL PERCENTAGE HISTOGRAM
.010 - .209 68.
.408 - .607 71.
.607 - .806 |8.
.81)6 -. .1.005 1.
.005 - 1.204 1.
.204 - 1.403 2.
T*01 " I.*"* • .
.602 - 1.801 1.
.801 - 2.000 0.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 421.
21. ••••••••••
*rt, •.^••••^•••^•••^•^•.••••»*»»
17. ••••••••
4. ••
1.
0.
0.
o.
0.
0.
CUMULATIVE DISTRIBUTION
•f inFATfniit cif PA^MA mnttta
00 DATE! 2-26-60
4* PARAMETER! 1-HOUR EOUT,
I
LR/MHBTU
OCCURRENCE
PARAMETER RANGE FREQUENCY PERCENTAGE HISTOGRAM
.010 - .209 68.
.010 • .408 3f>.
.010 - .607 395.
.010 - .606 41].
.010 • .009 414.
.010 • .204 4IT,
.010 - .403 4|4.
.010 • .602 420.
„ tOJO_-. .691 .<•«!.
.010 - 2.000 421.
•FVflMO MIH/MAI BAMBF 0.
TOTAL POPULATION 421.
77. •••••••••••••••*••••••••••••••••••••••
9«. ••••••••••••••••••••••••••••••••••••••••••••fft^ ... .. .
;;: :::::::::::::::::::::::::::::::::::::::::::::::::
100. •••••••»••••••••••••••••••••••••••••••••••••••••••
too. ••••••••«•»•••••••••••••••••••••••••••••••••••••••
••• •- - •
1
3
T
10
II
11
13
14
It
It
IT
It
It
10
11
u
13
14
IT
10
31
31
33
34
30
37
31
3.
40
41
41
43
44
41
4t
4T
41
4t
00
• 1
ta
«3
t4!
ra
Bt
to
81
tl
•3
•4
e.
• T
•a
*•
TO
Tl
71
73
3
-------
>]
12
21
24
29
2*
27
26
30
11
32
31
M
39
36
37
38
39
40
41
42
41
44
43
46
«7
41)
4«
91
FREQUENCY DISTRIBUTION
LOCATION! GM PANMA 00ILER 1
STARTING DATE! 2-26-80
PARAMETER! 1-MOUR L"C FOMT
OCCURRENCE
PARAMETER RANGE FREOUENJ.! . PERCENTAGE
-2.000 - -1.770 0.
-1.540 - -1.310 2.
-1.310 - -1.080 II.
-ItOeo - -.650 ... 25.
-.850 - -.620 90.
-.620 - -.390 195.
-.160 - .0/0 9.
.070 - .300 0.
BEYOND MIN/MAI RANGE 4.
TOTAL POPULATION 421.
0.
0.
3.
6.
21.
46.
20,
o!
-\
HISTOGRAM
•
• •*
•••••••••••
• .•••••.••••••(•••ik**.*
*
CUMULATIVE DISTRIBUTION
1 LOCATION! BM PARMA BOILER t
GO DATE! 2-28-80
01 PARAMETER! 1-HOUR LOG EOUT
OCCURRENCE
PARAMCTC* RANGE FREQUENCY PERCENTAGE
-2.000 - -1.770 0.
-2.000 - -1.540 1.
-2.000 - -1,310 3.
-2.000 - -I.OBO |4.
-2.000 - -.850 3*.
-2.000 » -.620 1P«.
-2.000 - -.390 J«f4.
-2.000 - -.160 409.
-2.000 - .070 4|7,
-2.000 - .300 417.
BEYOND MIN/MAI RANGE 4-
TOTAL POPULATION 421.
!
0.
0.
1. .
3.
9.'
Ji.
77.
97.
99.
99.
HISTOGRAM
•
• •
• *••• • ... . ...
***t***»»t»»»»»»»**ii*t»»»tt»»»**»»***»
A***********. •••*•**•••*««*•.••••*•*••••••*•••**
*»»»•*•*»»»*»»*»»*»•*»*****•**•••»••*••••»»*•••*•*
A
a
a
4
T
10
II
1,
ia
14
IT
18
vn
21
U
23
24
29
26
XT
2*
30
31
32
33
34
39
36
37
38
3*
41
42
43
49
44)
47
48
48
90
91
87
84
BB
8
7
8
6O
2
63
14
66
67
68
68
70
71
72
73
74
78
'V
-------
2
J
4
.
~7
10
II
12
Vi
14
>•
17
20
21
22
21
14
29
2.
It
2*
2»
JO
11
12
14
19
M
17
M
M
4O
41
42
4]
44
43
4.
47
4B
4.
9O
91
92
11
34
33
96
97
FREQUENCY DISTRIBUTION
LOCATION! CM PARMA HOILER
STARTING DATE! 2-28-80
PARAMfTfBl loHOIIB « tff\
PARAMETER RANG.E
40.000 • 63.990
67.980 - 71.970
71.970 - 75.960
. ._ 75.960 T 79.950 _
T9.950 • 83.940
•3.940 - 87.930
•7.910 » tl.920
1
OCCURRENCE
. FBEUlltMCt . PEKCENTAGE HISTOGRAM
*.
1.
2.
1. ...
13.
91.920 - 95.910 182.
95.910 - 99.900 0.
"" BEYOND MIN/MAK RANGE ««.
TOTAL POPULATION 421.
CUMULATIVE
DISTRIBUTION
en PABMA unit ra
0.
°.
0.
0.
1.
3. ••
II. •••*••
o!
i
W DATE! 2-28-80
°* PARAMETER! 1-HOUR X EFFICIENCY
PARANtTfR RANGE
60.000 - 63.990
60.000 - 67.980
40.000 • 75.960
60.000 - 79.950
60.000 • A3. 940
60.000 • 87.930
60.000 - 91.920
60aOOO — 95.9JO
60.000 ""-' 99. 900
•FTtO*in MfN/MAK RAN
TOTAL POPULATION
OCCURRENCE
FREQUENCY PERCENTAGE HISTOGRAM
1.
3.
4.
6.
69.
195.
377.
377.
if-* ••-
421.
0.
1.
1.
1. •
2. •
16. ••••••••
ah. •••••••**»*«•*»••»•••••
90. »...•.»*.*.•».•»•. ..••••••»«t*.^^t«(i«»«t««*#f(
90. •••«•••«•»•••*•*••••»••••••••••••••••••••••••
V
:'<
T
•
"i
11
u
14
19
17
1.
1*
in
21'
21
21
14
1C
11"
tt
31
941
><-'
M-
41
«i
44
49
4.
47
49
4.
BO
• 1
•4
99
96
97
••
9.
•0
• 1
•1
•4
99
96
97
98
9*
70
72
73
74
-------
FREUUENCV DISTRIBUTION
LOCATION! CM PAHMA BOILER t
STARTING DATE: 2-2n-«o
PARAMFTFRl 24-HOUR 1 OB FOUT
OCCURRENCE
PARAMETER RANGE _ .. FREUUENCL ._.. PEKCLNTAGE
•2.000 - -1.770 0. 0.
•1.770 . .1.440 0T 0.
•1.540 - -1.310 0. 0.
•1.310 - •1.000 0. 0.
-1.990 -.. -.eso _ o. o.
•.890 • -.680 4. 24.
-.620 • -.390 11. 65.
•.190 • --IhO 2. |P,
-.160 - .070 0. 0.
.070 • .300 0. 0.
BETONO NIN/MAX RAN6E 0.
TOTAL POPULATION 17.
1
CUMULATIVE DISTRIBUTION
•f LOCATION! GM PARMA MOtLFR 1
OJ DATE! 2-26-BO
-J PARAMETER! 24-HOUR LOG EOUT
OCCURRENCE
PARAMETER RAN6E FREQUENCY PERCENTAGE
-2.000 - -1.770 0. 0.
-2.000 - -1.540 0. 0.
•2.000 .-.-1,310 0. ..;_... .0. ,.
-2.000 • •l.OSO 0. 0.
•2.000 • -.850 0, 0.
•2.000 - -.620 «. 2flT
-2.000 - -.390 15. 66.
-2.000 - -.160 17. 100.
-2.000 - .070 JT. )UO.
-2.000 • .300 17. 100.
BETOND HIM/MAX RANGE 0.
TOTAL POPULATION 17.
i
H1SIOGRAM
•••••••••*••
•••••••••••••••••••••••••••A****
.... •••*** ...... _ .. .
HISTOGRAM
*••**•••••*•
••••••*•• *•*•*••••*•••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••A*
«a«st«««««sa»ft*e»e»«*»ftft»*. •••••*.••••»••••»•••«••
•••••••••••••••••••••••••••••••••••••••••••••••••A
1^
a
IT
!•
!•
?n
11
11
19
14
»
!•
17
?M
»
10
II
92
33
M
3a
3g
37
3*
*Q
41
42
44
48
47
40
4»
SO
91
«
• 3
S4
S
S«
B7
»
»•
ao
• i
•i
«j
04
9
.6
07
as
a*
0
i
i
3
4
a
V
-------
FKEUUENCV DISTRIBUTION
V,... . . .. ... .
^ LOCATION! GM PAMMA BOILER 1
2 STARTING DATE: 2-2a-«o
" Pi*°»fFTFD> J""MOMR 1 EFFICIENCY
4
' OCCURRENCE
• PARAMETER RANGE FHFtJIIF^rr PCUCFNTAGE
* 60.000 - 63.990 0. 0.
10 67.960 - 71.970 0. 0.
" 71.970 - 75.960 0. 0.
" .. . 75.960 - 79.950 .. . fl. 0.
11 79.950 - 63.940 0. 0.
|4 B3.940 • 67.930 1. 6.
'• 91.920 • 95.910 9. 53.
" 95.910 • 99.900 0. 0.
"1
" BEYOND MIN/MAK RANGE 0.
*° TOTAL POPULATION 17.
ai
aa
33
It
" CUMULATIVE DISTRIBUTION
28
" *f lOCATinm CM PABMA MAfLFQ 1
«• U) OATEI 2-26-60
*• oo PARAMETERS 24-nouR s EFFICIENCY
30
11 OCCURRENCE
" PARAMETCR RANGE FREQUENCY PERCENTAGE
14 60.000 • 63.990 0. 0.
" 60.000 • 67.960 0. 0.
16 60.000 • 71.970 0. 0.
" 60.000 - 75.960 0. 0.
" 60.000 - 79.950 0, 0.
*• 60.000 • 63.940 0. 0T
40 60.000 - 67.930 1. 6.
41 60.000 - 91.920 6. 47.
41 60,000 - 95.910 |7. 100.
" 60.000 - 99.900 17. 100.
44
4* BEYOND MIN/MAX RANGE 0.
" TOTAL POPULATION 17.
47
40
•Ju
"1
3JI
• 1
•^
"1
MlSTnirR*M
...
••*......«...«........«...
HISTOGRAM
**.
»•••»•*•••*•••••» ••*••...•••«•••*....•....••......
•.•••.....•.••••...........•..•...•••.••.........•
J
a
I
4
IT
1*
30
ai
aa
a
34
«
37
a*
t»
30
31
32
S3
39
39
39
40
41
4«
43
44
49
4«
47
4*
91
93
>3
94
99
98
97
98
8*
eo
81
83
83
94
19*
89
87
88
8*
ro
n
73
73
74
73
V
-------
FMEUUkNCT DISTRIBUTION
>n
LOCATIONS GM PAWN* BOILER
STARTING DATE! 2-26-00
PARAMETERS 24-HOUR LOGfX
1
ifFJCl£NCIl_ . „
OCCURRENCE
_ PARAMETER RAUiC _ ER-E.UU.EN.CJL ..- PEHCtNTAliE HISTOGRAM
.700 - .730 0,
.710 - .7fcO •-
"T .TfcO - .790 0.
" .790 • .020 0.
;.. .020 ..- .950 ..... 9. .
.090 • .060 0.
.600 - .910 0.
.410 • .940 0.
"I .940 - .970 15.
! .970 • 2.000 0.
1
0ETOND MIN/MAX RANGE* 2.
*° TOTAL POPULATION 17.
11
u
>i
it
tt
16
17
I*
1*
30
>i
U
»
M
96
M
37
I>
3»
40
41
41
4J
44
49
40
47
48
*•»
9O
9 1
92
9J
S4
^
C
0.
0... .
0.
0.
0. . _
0.
0.
66. »••••*•»•*•*•»»•*•»••*•*•*•**»•*•»»»*»»»*»»*
0.
CUMULATIVE DISTRIBUTION
•f LOCATION! CM PARMA BOILER
(A) OATEI 2-20-00
f PARAMETER! 24-HOUR LOt(X
t
EFFICIENCY)
OCCURRENCE
PARAMETER RANGE FREQUENCY PERCENTAGE HISTOGRAM
1.700 - .730 0.
1.700 - .760 0.
1.700 - .790 0.
1.700 • .020 0.
1.700 - .050 •.
l.TAO » -A40 •-
1.700 - .910 0.
1.700 - .940 0.
•.•700 " ,9fO 15.
1.700 - 2.000 15.
'
HEVOMD HIM/MAX RAUBF ff
TOTAL POPULATION 17.
'
0.
0.
0- . .
0.
0.
0T
0.
o.
66. •••••••••••.•••••••••••••»»«J»«4,4,««««J4,4,*4,4>4j<»»
1^
1
n
»
tT
?R
«•
10
31
32
M
38
M
n
M
M
40
41
41
43
44
41
44
47
4«
41
BO
• 1
SI
S3
04
SO
»«
97
8«
••
eo
•1
63
K4
83
e«
67
68
••
O
7J
3
4
7S
V
-------
FREUUENCY DISTRIBUTION
LOCATIONI 6M PARMA BOILER
STARTING DATE! 2-2B-80
1
OCCURRENCE
PARAMETER RANGE FREUUENCV PFHCINTAGF HISIOr.RAM
.010 • 4.009 0.
•Taa« • A.naa «,
8.008 - 12.007 7.
12.007 - 16.006 1.
16.006 - 20.005 0. .
20.00S - 24.004 0.
24.004 • 28.003 0.
2ft. 001 « 19.AA2 • .
32.002 - 36.001 0.
36.001 - 40.000 0.
! BEYOND MIN/MAX RANfiE 0.
TOTAL POPULATION 17.
0.
41. ••»•*»••••»••••••••••
6. •••
0.
0.
0.
".
0.
0.
CUMULATIVE DISTRIBUTION
I i nr*rf nut cu 0*0114 finti FB
rf* DATE! 2-28-80
O PARAMETER! 24-HUUR JOO-1
EFFICIENCY
OCCURRENCE
PARAMETER HAN6E FREQUENCY PERCENTAGE HISTOGRAM
.010 » 4.009 0.
.010 • 8.008 4.
.010 - 12.007 16.
.010 • 16.006 17.
.010 • 20.005 17.
.010 • 2«TAO« |T.
.010 - 28.003 17.
.010 - 32.002 |7.
.010 - 36.001 17.
.010 - 40.000 17.
•rVQMO HIM/MAI RAMBF 0,
TOTAL POPULATION 17.
0.
94. •»• •« ••«*««»«**«^t*» d#»»*»***»*««*»t*»*(»t ^f *••
-------
FREQUENCY DISTRIBUTION
V
1
>
4
a
•
7
•
•
10
1 1
"
13
14
••
"
!•
20
41
u
as
24
*9
It
17
I*
t9
M>
11
U
11
M
M
>•
J?
M
I*
«O
41
41
43
44
43
4«
47
4B
4*
90
9i
92
93
94
95
90
V"
... . _- .
LOCATION! CM PAKMA BOILER 1
STARTING OATEI 3-28-80
PARAMFTFBl 2A.MI1IIB LncflDG.C EFFICIENCY)
OCCURRENCE
... .. PARAMETER RANGE F.REgU.EU£Jt_._l'ERCtNTAGE HISTOGRAM
•2.000 - -1.640 0.
-1.640 . .1.280 0T • •
-1.280 - -.920 0.
-.920 - -.560 0.
.T*56Q . -. -.ZOO ...JU.
-.ZOO - .160 0.
.160 - .520 0.
-«0 - -880 BT
.880 - 1.200 9.
1.240 - 1.600 0.
- .— . . ... .
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 17.
CUMULATIVE DISTRIBUTION
•*" LOCATtHMl CM PARMA HOtl FB 1
£* D*TE« 2-2S-80
M PARAMETERI 24-HOUR LOG(IOV-X
0.
OT •• • ' -
o.
o.
0. . ......
0.
0.
•7. ••••••••••••**•«•••*••*•
53. ••••••••••••••••••••••••••
0.
EFFICIENCY)
OCCURRENCE
PARAMETER RANGE FREQUENCY PERCENTAGE HISTOGRAM
-a. 000 - -1.640 0.
-2.000 - -1.280 0.
-2fOOO - -.920 Ot
-2.000 - -.560 0.
-2.000 - -.200 0,
-2. 000 « .1*0 *i
-2.000 - .520 0.
-2.000 - .880 8.
-2,000 - 1,240 !7.
-2.000 - 1.600 17.
BCTOMH HTM/MAI BAMBF 0.
TOTAL POPULATION 17.
.... ...
o.
0.
0.
0.
0.
0T
0.
47. •••*••••*•••••**••••••••
100. ••••••••••••*•••••»••••••••••••••*»•••••••••••••••
i
i
>
4
•
•
»
•
•
10
II
IJ
14
It
10
!•
t*
m
11
u
»
24
23
1<
IT
tH
SI
32
*4
as
n
M
M
40
41
41
4J
44
4B
4*
47
41
4»
SO
SI
ni
aj
S4
S
se
7
•
•
ao
i
i
3
4
3
_:
7
a
9
o
t
2
3
4
n
V
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PARMA BOILER 3
DATE! 2- 4-80
TIME LOAD E E EFF
IN OUT
0 ***** ****** ****** *****
100 ***** **»«*« ****** *****
200 ***** «•»»»« «*»»*« *««»»
300 ***** ****** ****** «*•*•
400 ***** ****** »»•*«» *****
500 ***** ****** •*•*•» *****
600 ***** «*«*«« »**»•* *****
700 ***** ****** »««*•« *****
600 »•*«« **«««* «»«**« *****
900 ***** ****** ****** *****
1000 ***** *«»**» ****** *****
1100 ««»«* ***«»» ****** •«*««
1200 ***** «**»«* ****** *****
1300 ***** «*««** »»«*«* *****
1400 »**«« »«•*«* «»«**• *****
1500 ***** ****** ****** *****
1600 ***** ****** *«»*«• «««*«
1700 **»»« ****** «»**«0 *****
1800 ***** *»«*»• «»»**« *****
> 1900 ***** «»«•** ****** ««»«*
L 2000 ***** ****** ****** *****
[J3 2100 •»««* «*«»•* ****** *****
2200 36. 3.426 .159 95.4
2300 33. 3.479 .175 95.0
V AVERAGES 2. 2. 2. 2.
S OF DATA 6. 6. 6. 8.
MINIMUM 33. 3.426 .159 94.974
MAXIMUM 36. 3.479 .175 95.364
MEAN ***** ****** ****** »*«*»*
STO.OEV. ***** ****** ****** ******
I STD.OEV. ***** ****** ****** «»»«**
24-HOUR REMOVAL EFICIENCY USING
1
(MEANJ E » E I .OOOX
1 IN OUT
Y
NOTE! IMEANI IS DEFINED ASS
X
THE MEAN FOR X DAYS USING Y-HUUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PARMA BOILER 3
DATE* 2- 5-80
TIME
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
> 1900
I 2000
£ ZtOO
2200
2300
0 AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X STD.DEV.
LOAD
EFF
IN
OUT
33. 3
34. 3
33. 3
34. 3
33. 3
36. 3
40. 3
43. 3
43. 3
41. 3
42. 3
41. 3
42. <
39. 3
38. t
37. 3
37. 3
38. 3
38. 3
38. 3
3. ft
3. HI
3. Ht
3. *l
1.395
1.310
1.340
1.467
(.548
1.530
(.500
1.542
(.510
1.649
1.531
1.550
(.588
(.695
1.439
1.928
t.529
(.295
(.384
».630
I****
I****
l*««*
»*«*«
.141
.148
.152
.219
.226
.185
.181
.160
.097
.101
.149
.139
.140
.144
.165
.109
.116
.145
.104
.050
******
******
«»«*«*
«*»«*«
95.8
95.5
95.4
93.7
93.6
94.8
94.8
95.5
97.2
97.2
95.8
96.1
95.9
96.1
96.3
97.2
96.7
95.6
96.9
98.6
*****
««««*
««««*
*****
24. 20. 20. 20.
100. 83. 63. 83.
3. 3.295 .050 93.644
43. 4.439 .226 90.614
32. 3.568 .144 95.943
14. .251 .041 1.205
43. 7.033 26.763 1.256
24-HOUR REMOVAL EFICIENCV USING
i
[MEAN! E , E I 95.965X
1 IN OUT
NOTE! IMEANI IS DEFINED ASt
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOILER 3
OATEI 2- 6-eo
TIME
0
100
200
300
400
SOO
600
700
SOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1SOO
> 1900
1 2000
2100
2200
2300
* AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STO.OEV.
X STO.DEV.
it*
LOAD
IN
OUT
. »*««««
. *•»***
. «*»*»*
. ******
. >»««*«
. ******
. «***»«
. «*««*»
. ******
. **«»»*
. »*««*»
. **«*«•
. »**«»*
. ******
. ******
. ******
. *»*»«•
. ******
. ******
. »««»*»
. •«*»«•
. «»«•*•
. ««*«*•
. ««***«
••»»«*
«•«*«•
*»**<$»
*••»«(»
*•*«««
nnnuun
nnnnaa
HtHHHU
«*»«««
««**«*
*»•«*»
«»*«*«
*»•**«
**•»«»
**««**
24. 0. 0.
100. 0. 0.
3. ***•«* ******
3. .000 .000
3. «*«*»» ******
0. «**•»* «*»»«»
EFF
«»**«
«•*««
*«**«
*****
««»**
»«**»
*****
«***«
»»«*«
*««««
***«•
*****
«*»»«
*****
*****
*****
«««*«
«***•
*****
*****
*****
*«*»«
»»•*«
»»«*»
0.
0.
*»«*««
.000
******
******
0. »*»«*• *«*«»» ******
24-HOUR REMOVAL EFICIENCY USING
1
[MEAN] E * E : .OOOX
1 IN OUT
NOTE* (MEAN] IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-HOUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATIONS 6M PARMA BOILER 3
DATEJ 2- 7-80
TIME
0
too
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
> 1900
L 2000
2100
2200
2300
LOAD
Iff
IN
OUT
in
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
o.
2.
3.
4.
**«««•
••*»*•
******
«***»•
»*•»«*
*«***«
*««»»*
»•«*•*
******
«•«**»
»««»*«
******
«««*«*
»»**»»
«*«*«*
»**«»*
******
******
*»««»«
•*«***
3.884
4.064
3.927
4.179
******
******
******
******
«*»»«»
******
••**««
******
******
**««**
•»*««*
***«««
«*«»*»
«*»*«*
«*•*««
«»«*««
«*»«»*
*««»««
******
******
.040
.134
.133
.607
*****
*****
*****
*»*»«
*****
«»«»*
*****
*****
*****
*****
*»«»«
*»«**
»*«»*
*****
*****
*****
*»»»•
*****
«»««»
*****
99.0
96.7
96.6
85.5
0 AVERA6E8
X OF DATA
MINIMUM
MAXIMUM
MEAN
9TO.OEV.
X 8TO.OEV.
24-HOUR REMOVAL EFICIENCT USING
1
(MEAN] E r E » .OOOX
1 IN OUT
20.
100.
3.
34.
8.
11.
142.
4.
17.
3.884
4.179
*»»«*«
******
******
4.
17.
.040
.607
******
»*»«»»
«*««««
4.
17.
85.466
98.959
******
******
«»*•*«
NOTEt (MEANI IS DEFINED ASS
X
THE MEAN FOR X DAYS USING Y-HDUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PARMA BOILER 3
DATE! £- 8-60
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
> 1900
• 2000
£ 2100
2200
2300
« AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TO.DEV.
X STD.OEV.
3.
«.
IN
LOAD
33.
31.
40.
33.
34.
36.
39.
41.
41.
41.
39.
41.
43.
41.
40.
39.
36.
36.
36.
37.
36.
36,
36,
36.
24. 17.
100. 71.
31. 2.464
43.
36.
EFF
OUT
3.794
3.675
3.734
3.900
3.907
3.584
3.627
4.709
4.031
3.577
3.471
3.210
3.278
2.464
3.557
3.605
3.656
******
*»*»»*
******
******
««»*»*
»««•»*
******
.129
.155
.118
.135
.102
.127
.162
.159
•»«*«*
**«««*
******
.132
.134
.032
.143
.150
.154
«««*»*
«»«*»»
******
«*»»«•
•*«««*
******
******
96.6
95.8
96.8
96.5
97.4
96.5
95.0
96.6
*****
*****
*****
95.9
95.9
96.7
96.0
95.6
95.6
«•*«*
*****
*****
*****
*****
*****
*****
14.
56.
14.
56.
4.709
******
******
******
.032 94.979
.1«2 98.715
«*«««» «***««
****** ******
«*«««« ******
24-HOUR REMOVAL EFICIENCY USING
i
INEANI E , E < .OOOX
1 IN OUT
NOTE I [MEAN] IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMAHY OF RESULTS
LOCATION: GM PAHMA BOILER 3
OATEI a- 9-80
TIME
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
> 1900
' 2000
5 210°
2200
2300
0 AVERA6ES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
I 9TO.OEV.
LOAD
EFF
IN
OUT
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
»•«»«•
******
*»«»««
«««»«»
******
««**»*
******
»»»*««
******
«•«»**
*•««*•
*««»»»
»*«»»*
«»•«««
»««»**
******
*•**»»
»•*»*»
*»•««*
«««*»«
**«*««
******
******
*»***«(
**«**»
**»•»«
•»«*»«
«»«»««
«»»*«»
»*«*»•
•*««»»
•***«»
«»»*»*
«***••
******
«»•«««
******
******
******
«»•»*»
******
******
«*«»*«
******
******
******
******
**•»•*
*****
«**»»
*****
*****
*****
*»*««
*****
*****
*****
*****
*»»•*
»«»*»
*****
*****
*****
*****
*****
*****
*****
*****
*««»«
»**»«
*****
*****
Z4. 0.
100. 0.
36. ******
36. .000
36. ******
0. ******
0.
0.
******
.000
«*»»»*
**»»»«
0. ****** ******
0.
0.
******
.000
******
******
******
24-HOUR REMOVAL EFICIENCV USING
1
[MEAN] E r E > .0001
1 IN OUT
NOTES IMEAN) IS DEFINED ASt
X
THE MEAN FOH X DAYS USING Y-HUUN AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOILER 3
DATES 2-10-80
TIME
0
100
200
300
400
500
600
700
800
900
1000
1100
1300
1300
1400
1500
1600
1700
iaoo
> 1900
2000
00 2100
2200
2300
9 AVERA6ES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
X STD.OEV.
LOAD
24.
100.
36.
36.
36.
0.
0.
EFF
IN
OUT
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
»*»«»»
******
»»***•
******
«««*«*
******
******
******
•*«»»•
«»««*»
«««**»
******
******
******
******
******
«»*«*»
**««*»
»««*««
******
******
******
******
«««*»*
«»«***
******
«»«*»«
******
•«»»»«
«»«»»*
•*»»«*
»»*»««
«««»«»
»«««**
•««*«*
«»**««
»«**««
******
******
»»«*««
»*«*•*
******
******
******
******
******
******
»»**«*
*****
*«««*
*****
«*«*«
»»«*«
«»«*«
*****
*****
*****
«»»«»
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
«»«*»
*****
0.
0.
******
.000
******
******
«*»**»
0.
0.
******
.000
0.
0.
******
.000
****** ******
»««*«* *««*«»
****** ******
24-HOUR REMOVAL EFICIENCT USING
I
(MEAN) E , E I .0001
1 IN OUT
NOTE: (MEANI IS DEFINED AS:
X
THE MEAN FOR X UATS USING Y-HUUR AVERAGES
-------
vD
OAILT SUMMARY OF RESULTS
LOCATION: CM PAKMA itulLER 3
DATE! 2-11-80
TIME
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
§ AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.OEV.
X STD.OEV.
LOAD
EFF
IN
OUT
36.
36.
36.
36.
36.
34.
35.
32.
36.
37.
40.
43.
35.
30.
30.
22.
30.
31.
32.
32.
34.
33.
35.
32.
*•«*«*
••*««*
•»**«•
«•«••*
*»**•*
2.654
2.664
2.920
3. 108
2.932
2.635
2.666
2.767
2.637
2.935
»«*•*«
2.604
2.676
2.630
2.623
2.624
2.699
3.019
3.075
***•««
•»*»»•
•«*«*•
•••••0
•«•«•«
.046
.076
.132
.124
.106
.056
.076
.134
.176
.260
**«•««
.200
.195
.164
.157
.187
.200
.169
.239
***»«
*00»*
• •**«
• *«**
*«««*
96.2
97.3
95.5
96.0
96.4
97.9
97.2
95.1
93.7
91.2
***«»
92.9
93.2
94.2
94.4
93.4
93.1
94.4
92.2
24. IB.
100. 75.
22. 2.635
48. 3.108
34. e.662
5. .131
14. 4.567
16.
75.
.046
.260
.150
.061
40.418
16.
75.
91.156
98.165
94.792
2.031
2.142
24-HOUR REMOVAL EFICIENCT USING
1
(MEANJ E , E < 94.752X
1 IN OUT
NOTES (MEAN) IS DEFINED AS:
X
rue ue*u ciiu * OATS USING Y-HQUR
-------
DAILY SUMMARY OF RESULTS
LOCATIONS GM PARMA BOILER 3
DATES 2-12-80
TIME LUAD E E EFF
IN OUT
0 32. 2.799 .158 94.3
100 29. 2.625 .149 94.3
200 32. 2.594 .164 93.7
300 32. 2.537 .181 92.9
400 33. 2.539 .183 92.8
500 34. 2.550 .183 92.8
600 35. 2.617 .172 93.4
700 33. 2.712 .166 93.9
600 40. 2.838 .130 95.4
900 38. 2.827 .131 95.4
1000 39. 3.025 .237 92.2
1100 36. 2.929 .170 94.2
1200 35. 3.164 .172 94.6
1300 33. 3.269 .152 95.4
1400 29. 3.25b .187 94.3
1500 26. 3.329 .343 89.7
^ 1600 25. 3.248 .258 92.0
7 1700 33. 3.053 .178 94.2
in 1800 37. 3.142 .172 94.5
O 1900 36. 3.039 .157 94.6
2000 35. 2.982 .156 94.8
2100 31. 3.007 .194 93.5
2200 39. 2.896 .226 92.2
2300 33. 2.833 .166 94.1
f AVERAGES 24. 24. 24. 24.
X OF DATA 100. 100. 100. 100.
MINIMUM 25. 2.537 .130 69.711
MAXIMUM 40. 3.329 .343 95.421
MEAN 34. 2.909 .183 93.725
3TD.DEV. 4. .252 .045 1.317
X STD.DEV. 11. 6.672 24.796 1.405
24-HOUR REMOVAL EFICIENCY USING
1
(MEAN! E » E : 93.719X
1 IN OUT
Y
NOTES (MEAN! IS DEFINED ASS
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: KM PARMA BOILER 3
DATES 2-13-80
TIME
100
200
300
400
500
600
TOO
BOO
900
1000
1100
1200 i
1300
1400
1500
1600
> 1700
61 I»00
M 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TD.UCV.
X 9TO.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
IMEAN1 E , E I 94.4SU
1 IN OUT
NOTE I {MEAN] IS DEFINED ASt
X
THE MEAN FUR X DATS USING Y-HOUR AVERAGES
OAD
34.
26.
33.
31.
32.
33.
33.
44.
42.
46.
46.
41.
41.
39.
37.
32.
27.
27.
36.
36.
37.
37.
43.
36.
24.
100.
26.
46.
36.
6.
16.
E
IN
2.945
2.960
2.980
3.067
3.175
3.156
2.604
2.914
2.004
2.043
2.012
2.836
2.75U
2.704
2.700
2.729
2.761
2.700
3.069
3.165
3.120
2.092
2.703
2.609
24.
100.
2.609
3.175
2.095
.167
5.762
E
OUT
.161
.130
.157
.177
.270
.227
.204
.110
.003
.074
.164
.121
.101
.129
.170
.096
.169
.152
.222
.207
.100
.174
.151
.129
24.
100.
.074
.204
.161
.054
33.567
EFF
94.5
95.3
94.7
94.3
91.5
92.0
90.2
96.2
97.1
97.4
94.2
95.7
96.3
95.2
93.7
96.5
93.9
94.5
92.0
93.5
94.0
94.0
94.4
95.1
24.
100.
90.151
97.407
94.491
1.602
1.700
-------
DAILY SUMMARY OF RESULTS
LOCATION: KM PAKMA BUILER 3
DATE! 2-14-60
TIME LOAD E E EFF
IN OUT
0 36. 2.607 .176 93.3
100 37. £.563 .169 93.a
200 34. 2.565 .134 94.8
300 35. 2.607 .472 61.9
400 35. 2.634 .276 69.5
500 36. 2.642 .206 92.1
600 35. 2.673 .145 94.6
700 36. 2.615 .193 92.6
800 41. 2.610 .162 93.0
900 41. 2.664 .189 93.0
1000 37. 2.756 .153 94.5
1100 36. 3.003 .225 92.5
1200 36. 3.017 .272 91.0
1300 40. 2.695 .191 92.9
1400 41. 2.632 .117 95.5
1500 39. 2.867 .173 94.0
1600 43. 2.704 .166 93.9
•f 1700 41. 2.767 .152 94.5
l/i 1800 42. 2.997 .157 94.7
tO 1900 41. 2.940 .164 94.4
2000 41. 2.922 .154 94.7
2100 39. 2.884 .147 94.9
2200 41. 2.727 .147 94.6
2300 40. 2.666 .123 95.4
0 AVERAGES 24. 24. 24. 24.
I OF DATA 100. 100. 100. 100.
MINIMUM 34. 2.563 .117 81.894
MAXIMUM 43. 3.017 .472 95.537
MEAN 39. 2.741 .167 93.153
STD.OEV. 3. .148 .073 2.785
X STD.DEV. 7. 5.387 38.790 2.969
24-HOUR REMOVAL EFICIENCV USING
1
(MEAN) E » E I 93.1601
1 IN OUT
Y
NOTE! (MEAN) IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOiLtR 3
DATES 2-15-60
TIME
0
100
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
f 1700
i 1600
1900
2000
2100
2200
2300
« AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
8TD.DEV.
X STO.DEV.
LOAD
IN
OUT
42.
39.
39.
40.
40.
41.
40.
41.
41.
42.
41.
40.
41.
40.
40.
37.
39.
39.
39.
41.
40.
43.
40.
39.
2.739
2.766
2.720
2.679
2.721
2.766
2.043
2.676
2.610
2.649
2.736
2.611
2.951
3.077
3.171
3.126
3.069
3.166
3.238
3.163
3.117
3.159
3.252
3.254
EFF
.129
.167
.541
.439
.176
.216
.164
.176
.152
.143
.126
.116
.167
.156
.121
.103
.104
.115
.115
.125
.145
.113
.121
.109
95.3
93.2
80.1
63.6
93.5
92.2
94.2
93.8
94.6
95.0
95.4
95.9
93.7
94.9
96.2
96.7
9b.6
96.4
96.4
96.1
95.4
96.4
96.3
96.6
24. 24.
100. 100.
37.
43.
40.
1.
3.
2.679
3.254
2.963
.204
6.866
24. 24.
100. 100.
.103 60.116
.541 96.710
.170 94.101
.104 4.002
61.194 4.253
24-HOUR REMOVAL EFICIENCY USING
1
(MEAN! E , E > 94.254X
1 IN OUT
NOTE! (MEAN! IS DEFINED AS:
X
THE MEAN FUR X OATS USING Y-HUUR AVEHAbES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PARMA BOILER 3
OATEI 2-16-80
I
l/i
LOAD
IN
TIME
0
100
ZOO
300
400
500
600
700
600
900
1000
1100
1200
1300
1000
1500
1600
1700
isoo
1900
2000
2100
2200
2300
« AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
X STD.DEV.
24-HOUR REMOVAL EFICIENCV USIN6
1
(MEAN) E , E I 97.086X
1 IN OUT
OUT
EFF
36.
41.
39.
39.
40.
40.
40.
40.
37.
40.
40.
40.
39.
39.
40.
40.
42.
37.
41.
36.
39.
41.
40.
40.
24.
100.
36.
42.
40.
1.
4.
3.316
3.224
3.257
3.102
2.966
3.000
3.019
3.132
3.236
3.374
3.376
3.362
3.403
3.253
3.130
3.137
2.930
2.956
2.703
2.524
2.452
2.300
2.305
2.223
24.
too.
2.223
3.403
2.966
.372
12.452
.113
.125
.126
.113
.119
.096
.092
.106
.094
.116
.102
.106
.043
.051
.078
.096
.035
.045
.096
.075
.073
.057
.069
.060
24.
too.
.035
.126
.087
.026
31.754
96.6
96.1
96.1
96.4
96.0
96.7
97.0
96.6
97.1
96.6
97.0
96.9
96.7
96.4
97.5
96.9
96.8
96.5
96.4
97.0
97.0
97.5
97.0
97.3
24.
100.
96.009
96.616
97.093
.797
.621
NOTEI IMEANI IS DEFINED ASl
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: »»M PARMA BOILER 3
OATEI 2-17-60
TIME
LOAD
IN
OUT
24-HOUR REMOVAL EFICIENCY USING
1
(MEAN) E . E : 96.741X
1 IN UUT
EFF
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
> 1700
w »<»oo
Ul 1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X STD.DEV.
36.
41.
42.
41.
42.
40.
42.
40.
41.
42.
40.
42.
41.
42.
39.
39.
30.
39.
40.
40.
41.
00000
00000
00000
21.
do.
38.
42.
40.
1.
3.
2.808
2.875
2.886
2.789
2.799
2.767
2.924
2.880
2.962
2.091
2.837
2.929
2.745
2.737
2.803
2.719
2.766
2.662
2.604
2.872
2.829
000000
•*«•»*
000*00
21.
86.
2.662
2.962
2.624
.076
2.693
.059
.068
.069
.072
.074
.057
.070
.069
.05*
.U80
.065
.054
.064
.081
.131
.235
.159
.144
.110
.099
.095
000000
•00000
000000
21.
86.
.054
.235
.092
.044
47.528
97.9
97.6
96.9
97.4
97.4
98.0
97.6
97.6
98.0
97.2
97.7
98.2
97.7
97.0
95.3
91.4
94.3
94.6
96.1
96.6
96.7
00000
00000
00000
21.
68.
91.369
98.164
96.716
1.638
1.693
NOTE: CMEAN) IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-HUUR AVEKAGfcS
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOILER 3
DATE: 3-17-00
TIME LOAD k E EFF
IN OUT
0 «*«*• «»•*»• ***•«• *****
100 »**•• ****** «»*««* «**0*
200 ***** •**«•• ****** 1*000*
300 ***** ****** »*»*»* »***»
400 *»»»• ****** ****** *****
500 ***** »»•••• ****** *****
600 • *«•• 0»»»«0 0*»«00 «»00»
700 •»••• *•*•»• •••«»• *0«0*
SOO ••«•• •••••* •••*••
900 ••*•• •»0»«* 00000W
1000 ••*•« •*•••* *»•»«• K0000
1100 »00«» ••«*** *000»0 «*«r«0
1200 *«*•* ****** ****** *****
1300 ***** ****** ****** «»«*»
1400 ***** ****** *»«»*» *****
1500 ***** •«««»» «**•«» *****
1600 «•«•* •*«»•» ****** *****
•^ 1700 •»»*• «•«»*» *••««» *****
IP 1600 ***** *•*»•• ****** •**»«
Ch 1900 *•««* «*»*«« «»»»»« *****
2000 ***** ****** ••••*« *****
2100 «»««* ««**»» ****** *****
2200 42. 3.473 .556 64.0
2300 42. 3.396 .664 80.5
0 AVERAKES 2. 2. 2. 2.
x or DATA a. a. a. a.
MINIMUM 42. 3.396 .556 80.457
MAXIMUM 42. 3.473 .664 83.993
MEAN ***** *«*»«* ****** ******
STD.DEV. ***** ****** ****** ******
X 3TU.UEV. *«»»« ****** ****** ******
24-HOUR REMOVAL EFICIENCV USING
1
IMEANi E , E : .0001
1 IN OUT
Y
NOTE: IMEANI IS DEFINED AS:
X
THE MEAN FUR X DAYS USING Y-HUUH AVEKAGtS
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PANMA BOILER 3
OATEI 3-16-80
TIME
LOAD
IN
OUT
Iff
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
v. »600
•f 1700
Ul 1800
-J 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OtV.
X STD.OEV.
42.
42.
42.
42.
42.
42.
42.
54.
53.
52.
56.
43.
44.
40.
36.
35.
33.
31.
30.
31.
33.
39.
41.
42.
.217
.166
.169
.24b
.196
.396
.627
.304
.091
.256
.116
.996
.604
.531
.152
.961
.461
.515
.376
.514
.765
.671
.059
.667
24. 24.
100. 100.
30. 3.169
56. 5.152
41. 3.604
7. .536
16. 14.069
.575
.513
.316
.292
.483
.844
.478
.567
.537
.446
.334
.683
.738
.989
.491
.865
.638
.668
.529
.824
.823
1.186
1.084
1.022
24.
100.
.292
1.989
1.038
.494
47.556
62.1
83.9
90.0
91.0
64.9
75.1
59.3
63.6
62.4
66.0
67.6
57.9
63.8
56.1
71.1
78.2
61.7
61.0
64.3
76.6
78.1
67.7
73.3
72.1
24.
100.
56.096
91.012
73.663
10.181
13.621
84-HOUR REMOVAL EFICIENCY USING
1
IMEAN) E , £ : 72.703X
t IN OUT
NOTE! IMEAN) IS DEFINED AS:
X
7KE MEAN FOR S DAYS USING Y-HUUK AyEMAGES
-------
DAILY SUMMAHY OF HtSULTS
LOCATION: GM HAHMA BOILER 3
DATE: 3-19-00
en
oo
LOAD
IN
TIME
0
100
200
300
000
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
1700
iaoo
1900
2000
2100
2200
2300
» AVERAGES
I OF DAT*
MINIMUM
MAXIMUM
MEAN
STO.OEV.
X STO.OEV.
24-HOUR REMOVAL EFICIENCV USING
1
[MEAN) E , E I 79.610X
1 IN UUT
OUT
EFF
40.
39.
40.
4u.
41.
42.
45.
47.
40.
40.
3t>.
33.
33.
31.
33.
30.
30.
26.
30.
30.
42.
30.
36.
36.
24.
too.
20.
47.
37.
5.
14.
4.10B
3.392
3.504
3.170
3.299
3.274
3.262
5.230
3.102
3.216
3.641
4.219
4.060
4.212
4.266
4.190
4.377
4.222
4.420
4.407
4.405
4.524
4.471
4.460
24.
100.
3.170
4.524
3.903
.520
13.520
.911
.790
.745
.759
.690
.696
.777
.049
.923
.910
.991
.019
.090
.069
.069
.006
.772
.000
.765
.069
.799
.470
.574
.656
24.
100.
.470
.991
.796
.117
14.672
77.0
76.7
70.7
76.1
79.1
70.7
76.2
73.7
71.0
71.7
72.0
00.6
70.1
79.4
79.6
70.9
02.4
00.0
02.7
00.6
02.2
09.4
07.2
05.3
24.
too.
71.010
09.432
79.156
4.503
5.609
NOTES (MEANI IS DEFINED AS:
X
THE MEAN FUR X DAYS USING V-HUUK
-------
DAILY SUMMARY OF- HESULTS
LOCATION: SH PARMA BOiLtM 3
OATEt 3-20-80
TIME
0
100
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
0 AVERA6ES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X STD.DEV.
LOAD
IN
OUT
iff
35.
3b.
35.
35.
34.
37.
44.
45.
47.
46.
41.
44.
43.
42.
38.
36.
31.
29.
27.
30.
34.
36.
37.
37.
.460
.418
.324
.386
.301
.310
.126
.073
.076
.103
.042
.1H4
.367
.424
.632
.459
.733
.777
.790
.683
.536
.554
.435
.372
.630
.550
.489
.491
.667
.505
.450
.499
.612
.493
.367
.372
.435
.301
.421
.401
.311
.293
.482
.352
.433
.351
.484
.784
05.9
87.6
8tt.7
OB. 8
84.5
88.3
09.1
87.7
85.0
88.0
90.9
91.1
90.0
91.4
90.9
91.0
93.4
93.9
89.9
92.5
90.4
92.3
89.1
82.1
24. 24. 24. 24.
100. 100. 100. 100.
27. 4.042 .293 82.059
49. 4.790 .784 93.866
38. 4.399 .469 89.272
6. .225 .117 2.074
16. 5.119 as.019 3.219
24-HOUR REMOVAL tFICIENCY USING
1
IMEAN1 E t E t 09.341S
1 IN UUT
NOTES IMEAN1 IS DEFINED AS:
X
THE MEAN FOR S "AYS USING X-MOUR &VEMGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PAKHA BOILER 3
DATE: 3-21*00
TIME
0
100
200
300
400
500
600
700
000
900
1000
1100
1200
1300
1400
1500
1600
' 1700
, 1000
> 1900
2000
2100
2200
2300
• AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
1 STO.DEV.
LOAD
IN
OUT
37.
36.
30.
35.
36.
37.
45.
44.
45.
53.
49.
46.
47.
49.
49.
42.
44.
.
44.
44.
44.
44.
42.
40.
.486
.422
.463
.405
.32V
.314
.193
.060
.043
.971
.910
.646
.444
.434
.644
.M2
.577
.517
.444
.230
.160
.210
.132
1.160
EFF
.279
.240
.105
.252
.254
.507
.149
.092
.146
.244
.301
.241
.171
.140
.179
.166
.164
.140
.131
.135
.100
.119
.140
.115
93.0
94.6
95.0
94.3
94.1
06.4
96.5
97.7
96.4
93.0
92.3
93.4
95.0
95.7
95.1
95.5
95.4
96.0
96.2
95.0
96.0
96.3
95.3
96.4
24. 24.
100. 100.
5.
S3.
41.
9.
22.
24.
100.
3.132 .092
4.406 .507
3.709 .195
.460 .102
12.351 52.211
24.
100.
06.403
97.736
94.947
2.197
2.314
24-HOUR REMOVAL EFICIENCY USIN6
1
(MEANJ E . E < 94.047*
1 IN OUT
NOTES IMEANJ IS DEFINED A3!
X
THE MEAN FOR X DAYS USING V-HOUR AVERAGES
-------
DAILY SUMMAKV OF RESULTS
LOCATIONS GM PARMA 00ILCR 3
OATES 3-22-80
>
I
CT>
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
» AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TD.DEV.
X 3TD.OEV.
LOAD
IN
OUT
38.
41.
43.
50.
45.
45.
45.
45.
44.
44.
45.
42.
45.
43.
42.
43.
45.
40.
41.
40.
40.
40.
41.
41.
.160
.132
.194
.407
.540
.602
.622
.814
.609
.793
.769
.760
.6)0
.027
.965
.993
.022
.113
.102
.080
.149
.223
.157
.192
tFF
.136
.130
.114
.141
.133
.114
.124
.156
.137
.111
.170
.149
.135
.161
.174
.143
.158
.140
.134
.142
.140
.149
.142
.145
95.7
95.9
95.5
95.9
96.2
97.0
96.7
95.9
96.4
97.1
95.5
96.0
96.5
96.0
95.6
96.4
96.1
96.6
96.7
96.5
96.6
96. 5
96.6
96.5
24. 24.
100. 100.
38. 3.132
50. 4.223
43. 3.630
3. .326
6. 6.523
24. 24.
100. 100.
.111 95.495
.174 97.064
.142 96.270
.015 .458
10.572 .476
24-HOUR REMOVAL EFICIENCT USING
1
(MEAN! E , E I 96.29UX
1 IN OUT
NOTE! (MEANJ IS DEFINED ASI
X
THE MEAN FUK X OATS USING T-HUUK AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOILER 3
OATEI 3-23-80
TIME
LOAD
OUT
EFF
0
100
200
300
400
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
T 1700
cr> laoo
to 1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X STD.DEV.
40.
40.
39.
40.
45.
43.
42.
44.
42.
40.
39.
37.
36.
35.
36.
33.
35.
37.
36.
35.
37.
19.
34.
.155
.230
.250
.262
.185
.878
.666
.611
.875
.844
.948
.953
.990
.060
.148
.298
.538
.377
.884
.726
.720
.587
.703
35. 3.732
24. 24.
100. 100.
19. 3.587
45. 4.538
37. 3.984
5. .264
14. 6.628
.590
.197
.181
.143
.155
.144
.133
.106
.120
.120
.106
.117
.116
.092
.143
.251
.117
.085
.042
.018
.130
.408
.249
.130
24.
100.
.018
.590
.162
.119
73.466
85.8
95.4
95.7
96.6
96.3
96.3
96.4
97.1
96.9
96.9
97.3
97.0
97.1
97.7
96.5
94.2
97.4
98.1
98.9
99.5
96.5
86.6
93.3
96.5
24.
100.
85.811
99.521
95.922
3.004
3.132
24-HOUR REMOVAL EFICIENCY USING
1
IMEAN] E , E I 95.938*
1 IN OUT
NOTES IMEAN1 IS DEFINED AS:
X
THE MEAN FUR X DAYS USING Y-HUUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION* GM PARMA (JUlLtR 3
DATEI 3-24-jJU
I
CT«
CO
TIME
0
100
200
300
400
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
1700
iaoo
1900
2000
2100
2200
2300
9 AVERA6ES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STO.OEV.
X STO.DEV.
LOAD
EFF
IN
OUT
36.
35.
36.
35.
35.
37.
37.
35.
35.
35.
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
3.811
4.074
4.228
4.5««»
4.10V
4.150
4.061
3.996
3.976
5.320
******
******
******
******
******
******
******
******
******
******
******
******
******
******
.098
.114
.095
.121
.227
,08«
.096
.074
.061
.197
******
******
******
******
******
******
******
******
******
******
******
******
******
******
97.4
97.2
97. 8
97.3
94.5
97.9
97.6
98.1
96.5
96.3
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
10. 10. 10. 10.
42. 42. 42. 42.
35. 3.811 .061 94.478
37. 5.320 .227 98.478
***** ****** ****** ******
***** ****** ****** ******
***** ****** ****** ******
24-HOUR REMOVAL EFICIENCV USING
1
[MEAN) E . E t .OOOS
1 IN OUT
NOTEI IMEANJ IS DEFINED AS:
X
THE MEAN FOR X DAYS USING T-HOUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PARMA BOlLtH 3
OATEI a- 1-00
TIME
LOAD
IN
OUT
iff
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
9TD.DEV.
1 8TD.DEV.
00000 01
47. t
so. :
48. 1
39. «
43. :
52.
48.
52.
52.
57.
54.
54.
47.
48.
43.
42.
42.
42.
38.
39.
40.
40.
38. <
23. 2
96. 9
38.
57.
46.
6.
13. 1
• 000
1.977
1.161
1.465
1.756
1.471
.462
.493
.556
.384
.002
.893
.357
.118
.292
.527
.493
.377
.384
.210
.089
.055
.992
».104
I.
b.
S.893
5.758
1.505
.516
1.456
000*00
.533
.478
.519
.581
.489
.326
.314
.321
.361
.319
.310
.349
.237
.291
.278
.286
.291
.311
.309
.331
.310
.304
.331
23.
96.
.237
.581
.356
.094
26.319
• *»•»
B9.3
90.7
90.5
89.9
91.1
92.7
93.0
93.0
91.8
92.0
92.0
92.0
9tt.2
93.2
93.
93.
93.
92.
92.
91.
92.
92.
91.
23.
96.
89.288
94.250
92.194
1.246
1.352
24-HOUR REMOVAL EFICIENCT U9IN6
1
IMEANI E • E I 92.1U7X
1 IN OUT
NOTES IMEANI IS DEFINED A3:
X
THE MEAN FUH X DATS USING Y-HOUk AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATIONS GM PARMA BOILER 3
DATE! 4- 2-60
TIME
LOAD
IN
OUT
24-HOUR REMOVAL EFICIENCY USING
1
(MEAN! E » E > 91.152X
I IN OUT
EFF
0
100
200
300
400
SOO
600
700
BOO
900
1000
1100
1200
1300
1400
1500
>, 1600
, 1700
1800
Ul |900
2000
2100
2200
2300
0 AVERAGES
S OF DATA
MINIMUM
MAXIMUM
MEAN
3TD.OEV.
I STO.OEV.
36.
34.
34.
30.
37.
41.
46.
49.
50.
46.
46. 0
44.
44.
45.
43.
42.
41.
36.
36.
37.
41.
42.
40.
44. «
24. 2.
100. 91
34. i
50.
42. '
5.
11.
.307
.102
.116
.239
.340
.3SI
.337
.349
.526
.276
• *•»
.579
.760
.779
.734
.003
.943
.066
.231
.030
.056
.652
.897
».020
I.
>.
).102
b.231
».65l
.351
f.556
.321
.316
.333
.425
.433
.490
.472
.511
.426
.414
»«•«»•
.654
.373
.298
.301
.452
.431
.443
.450
.394
.333
.313
.273
.330
23.
96.
.273
.654
.412
.117
26.449
92.5
92.3
91.9
90.0
90.0
8B.8
69.1
66.3
90.6
90.3
• •»•*
61.4
92.2
93.6
91.9
91.0
91.3
91.3
91.4
92.2
93.4
93.6
94.4
93.4
23.
96.
61.352
94.421
91.069
2.676
2.940
NOTES (MEAN) IS DEFINED AS:
X
MEAN FOP * 0*V$ USING Y-HUUR AVERAGES
-------
DAILY 3UMMAHY OF RESULTS
LOCATION: SM PAMMA BUILEH 3
OATEt 4- 3-60
TIME
LOAD
IN
OUT
tFF
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
^ 1600
7 1700
O> 1600
O> 1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
8TO.OEV.
X STO.DEV.
36. <
36. «
33. •*
32. 0«
37. »l
41. 0«
49. «l
49. •!
47.
46.
47.
43.
49.
45.
47.
43.
42.
39.
39.
32.
33.
32.
32.
31.
24. 11
100. 7<
31.
49.
40.
6.
16.
».232
1.562
!«*«•
!••••
!»•••
(•••*
l»»»*
)••*»
.342
.363
.344
.3B5
.352
.366
.272
.475
.408
.5«a
.565
.611
.614
.650
.690
.753
».
5.
1.272
&.232
t.546
.234
5.146
.406
.394
••«*«*
•••0««
•••••0
•«•••*
nnnantt
•0*000
.357
.363
.361
.303
.309
.323
.346
.374
.395
.407
.410
.339
.353
.347
.261
.312
16.
75.
.261
.410
.359
.037
10.316
92.2
91.4
im HUM
**••*
•**•«
«0«0*
«*««*
«*«••
91.6
91.7
91.7
91.3
92.9
92.6
91.9
91.7
91.0
91.1
91.1
93.0
92.4
92.5
94.0
93.4
16.
75.
91.037
94.023
92.093
.659
.933
24-HOUR REMOVAL EFICIENCY USIN6
1
IMEAN1 E . E I 92.106X
1 IN OUT
NOTE: (MEAN] IS DEFINED AS:
X
THE MEAN FOR X DATS USING Y-HOUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA BOILEH
DATE: 4- 4-ao
LOAD
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
IbOO
' 1700
, 1600
1 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
X STO.OEV.
24-HOUR REMOVAL EFICIENCY USING
I
IMEANI E » E > .OOOS
1 IN OUT
IN
******
•0000*
**«*•«
0*0*00
0*0*00
*•««»•
•0000*
0000*0
00*00*
«***0«
000000
000000
00*00*
**0000
00000*
•00000
•00000
•00000
00*000
*««»»»
******
OUT
000*00
0000**
0000**
******
EFF
• 00*0
0000*0
******
•000**
0000**
*»•»»*
0000**
00000*
*000«0
«000»»
«*«*««
»**»*•
******
• 000*
00000
00000
**000
00000
00000
00000
00000
00000
00000
00*00
• 000*
0000*
0000*
• 000*
00000
00*00
• 000*
*****
• **»*
*****
24.
loo.
25.
25.
25.
0.
0.
o.
0.
******
.000
******
*«*»»*
«»*«*»
0.
0.
****••
.000
•«****
******
******
0.
0.
******
.000
******
*•••**
«««*«»
NOTE! [MEAN] IS DEFINED ASt
X
THF MFAN FOR X DAYS USING Y-HOUR AVERAGES
-------
I
CT«
00
DAILY SUMMARY OF RESULTS
LOCATION: bM PAHMA DOILEM 3
OATEt 4- S-6V
LUAO
IN
TIME
0
too
200
300
400
SUO
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
IBOO
1900
aooo
atoo
aaoo
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X STD.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
[MEAN] E » E t .OOOX
1 IN OUT
EFF
OUT
as.
as.
as.
as.
as.
as.
2b.
2-3.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
»••»•*
******
*n***»
******
*«««»*
******
******
******
»•*«**
»*««*•
******
******
»«**•«
»»«•««
••*••*
*••»••
*»oa»*
******
»tt***»
«««*««
nnnuntt
*»»»*»
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
24.
100.
25.
as.
as.
0.
0.
0.
0.
******
.000
*»*»a*
******
******
0.
0.
******
.000
*»*»»»
**»»»»
******
0.
0.
»*»»*»
.000
******
******
******
NOTEI (MEAN! IS DEFINED ASS
X
THE MEAN FOR X DAYS USING V-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PARMA BOILED 3
DATE! 4- 6-80
LOAD
IN
TIME
0
100
200
300
400
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
f 1700
L 1800
O 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TO.OEV.
X STD.DEV.
24-HOUR REMOVAL EFICIENCT USING
1
[MEAN] E , E . I .OOOS
1 IN OUT
EFF
OUT
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
******
******
******
******
******
******
******
******
******
*«•«*»
»«*«**
******
»»««••
0«*0»»
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
******
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
24.
100.
25.
25.
25.
0.
0.
0.
0.
******
.000
******
******
******
0.
0.
******
.000
******
******
******
0.
0.
******
.000
******
******
******
NOTE! [MEAN] IS DEFINED ASi
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PAHMA BOILER 3
DATEt 4- 7-bo
LOAD
IN
TIME
0
too
200
300
400
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
IbOO
|» 1700
j 1800
3 1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X STO.DEV.
24-HOUR REMOVAL EFICIENCY USIN6
1
(MEANJ E » E I .OOOX
1 IN OUT
EFF
OUT
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
0*0000
000000
000000
•00*00
000*00
•00000
•00000
••000*
000000
000000
000000
000000
000000
000000
000000
000000
000000
•00000
000000
000000
000000
000000
000000
•00000
000000
•00000
000000
00000*
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
00*000
•00000
000000
•00000
000000
000000
00000
• 0000
• 00*0
00000
00000
00000
00000
• 000*
• 00*0
00000
• 0000
00000
• 000*
00000
00000
0000*
00000
00000
00000
0*000
0*000
00000
00000
00000
24.
100.
25.
25.
25.
0.
0.
0.
0.
••••••
.000
•••000
•••000
0000*0
0.
0.
*•••••
.000
00«»*0
•00000
00000*
0.
0.
•0*000
.000
•••000
•00*00
••*•••
NOTES IMEANI IS DEFINED A3:
X
THE MEAN FOH X DAYS USING Y-HUUR AVERAGES
-------
DAILY SUMMARY OF HtSULtS
LOCATION: CM PAHMA BOILER
DATES 4- 8-60
TIME
0
100
aoo
300
400
500
bOO
TOO
aoo
900
1000
1100
taoo
1300
1400
ISOO
1600
•f 1700
<] 1800
l-> 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X 8TD.DEV.
LOAD
IN
EFF
UUT
as.
25.
25.
25.
as.
as.
25.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
******
**««*«
******
»«***«
******
»«•**»
»»*»•*
f • »*«*
«**»«»
«»**»•
«»«***
***•••
******
*•«»*»
«***»*
»•*»**
*«*»*»
******
*»*••«
»*»•»»
******
**«*»»
*»•**«
******
•*«»*0
»*»»*«
**»»**
******
*«*•**
*»»**«
•**»»*
******
•»»«**
•«•*«»
•000*0
****««
******
*»*«0*
******
******
•0****
******
*»«*«*
******
««•»*«
«»***«
•»*»«*
******
«»«*•
»0**0
*****
***0*
*****
»«*«*
*****
»000»
*****
*0«0*
*****
*****
• **«*
• 0*0*
*****
*«*00
*****
*****
**««»
«*»*«
«•«*»
*«»«*
*****
*****
24. 0. 0. 0.
100. 0. 0. 0.
25. ****** ****** *»«**»
25. .000 .000 .000
25. »«**»» ****** ******
0. ****** «**»«» •««•**
0. ****** ****** »«*««»
24-HOUR REMOVAL EFICIENCY USIN6
(MEANI E , E
1 IN OUT
I
.0001
NOTES IMEAN1 IS DEFINED ASS
X
TUC M£AM FQD X DAYS USING Y-HUIIH AVtHAtitS
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA aulLER 3
OATEI 4- 9-80
Ki
IN
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
0 AVERA6ES
X OF DATA
MINIMUM
MAXIMUM
MEAN
9TD.DEV.
X 9TD.DEV.
24-HOUR REMOVAL CFICIENCV USING
1
IMEANI E , E > .OOOX
1 IN OUT
LOAD
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
OUT
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
0*0000
••0000
000000
000000
000000
000000
000000
000000
tFF
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00*00
00000
00000
00000
00000
00000
24.
100.
25.
25.
25.
0.
0.
0.
0.
0000*0
.000
000000
0*0000
000000
0.
0.
000000
.000
000000
•••000
000000
0.
0.
000000
.000
000000
000000
000000
NOTE! IMEANJ IS DEFINED ASS
X
THE MEAN FUR X DAYS USING V-HUUK AVENAGES
-------
DART SUMMAttV OF HEbULTS
LOCATION: UM PAKMA BOILEH j
OATEI 4-10-80
TIME
0
100
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
IbOO
1700
laoo
1900
2000
2100
2200
2300
0 AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X 3TO.OEV.
-O
U)
LOAD
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
24.
100.
25.
25.
25.
0.
0.
EFF
IN
••000*
•«••••
•0*000
•00000
•00000
000000
00*00*
••0000
•0000*
0*0000
•••••0
•00000
•000**
00*0*0
000000
000*00
•00000
000*00
••0000
0*0000
•00000
•••000
0*0000
0.
0.
000000
.000
**••••
OUT
000*00
•00000
00000*
000000
•00000
••0000
*00000
000000
000*00
0*0*00
0*0000
0000*
00***
0000*
00*00
**000
nautili
00*00
• 00*0
000*0
000*0
0000*0
0*0000
000000
00*000
0000*0
000000
00000
0000*
*000»
*••**
• «•••
00000
• 0000
000000
000000
0*0000
00000
00*00
0.
V.
0.
0.
.000
.000
••••00
*••••«
••»••• ••«••*
24-HOUR REMOVAL EFICIENCY USING
1
IMEANJ Ert t .OOUX
I IN OUT
NOTE: (MEANJ IS DEFINED AS:
X
THE MEAN FUR X DAYS USING Y-HOUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PAKMA BOILEK 3
DATEI 4-11-80
TIME
0
100
200
300
400
500
600
700
SOO
900
1000
1100
taoo
1300
1400
1500
1600
" 1700
, 1800
* 1900
2000
2100
2200
2300
* AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
8TD.DEV.
X STD.DEV.
LOAD
tFF
IN
OUT
as.
25.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
as.
******
******
•»«•*•
******
******
«»***•
******
******
******
******
*««**»
*••«**
»*«**«
**»••«
•*»»»»
******
»•«•»*
******
******
******
******
»»**»•
******
******
«**«»«
*«»**«
««•»«•
««*»«»
******
******
******
«***»»
»»•***
***»*»
*«•*«*
»«•*«»
******
******
******
******
»*•»*«
******
******
******
******
******
******
******
*****
*****
**•«»
*****
*****
»»«**
*****
*****
*****
*****
*****
*****
*****
en***
*****
*****
*»«*«
*****
*****
*****
*****
*****
*****
*****
24. 0.
100. 0.
as. «»»*«*
as. .000
as. *«*«««
o. ******
o. »«*»*«
0. 0.
0. 0.
****** ******
.000 .000
****** ******
****** ******
****** ******
24-HOUR REMOVAL EFICIENCY USING
1
IMEAN1 E . E t .OOOS
1 IN OUT
NOTE! (MEANI IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-HOUH AVERAGES
-------
DAILY SUHMAKV OF RESULTS
LOCATION: GM PANMA HOILER 3
DATEI 4-12-60
TIME LOAD
EFF
OUT
0
100
200
300
400
500
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
> 1700
^, 1800
in 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.OEV.
X STD.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
{MEAN) E , E t .OOOX
1 IN UUT
25.
*5.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
******
******
««•*»»
««•••*
******
***«»«
******
*»**«»
******
******
******
******
*«*«•*
******
*»*•»*
******
******
******
******
••**•»
******
******
«»*«»»
******
»«»«**
«**««*
******
******
•*»»«*
»*»00»
•*»**«
******
»*«•«*
******
******
««*»00
******
•*»«»•
***»«*
******
******
******
******
******
******
******
»»*»**
******
*****
*****
*****
*****
*****
0«*00
*****
*****
*****
0000*
0*0*0
0**00
• »**»
«00»*
***««
*****
*»»00
• 0*0*
00000
• 000*
0000*
0000*
00000
0*00*
24.
100.
25.
25.
25.
0.
0.
0.
0.
000000
.000
******
»»*•«*
000000
0.
0.
00*000
.000
000000
******
000*00
0.
0.
000000
.000
00000*
******
0*0000
NOTE* IMEAN1 13 DEFINED A3:
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: bM HAHMA HOILEM 3
DATEJ 1-13-80
LOAD
IN
TIME
0
100
ZOO
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
j 1800
N 1900
2000
2100
2200
2300
* AVERA6ES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEW.
X 8TD.DEV.
24-HOUR REMOVAL EFICIENCY US1N6
1
IMEAN1 E r E < .OOUX
1 IN OUT
EFF
OUT
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25,
25.
25.
25.
25.
0*0000
000000
000000
0****0
000000
******
000***
000000
•00*00
0*000*
000000
000000
0*00*0
0*0000
000000
0*0000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
0*0000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000*00
000*00
000000
000000
000000
000000
000000
000000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00*00
00000
00000
00000
00000
00000
00000
00***
00000
00000
00*00
00000
00000
00000
00000
24.
100.
25.
25.
25.
0.
0.
0.
0.
000000
.000
0000*0
00000*
000000
0.
0.
000000
.000
000000
000000
000000
0.
0.
000000
.000
000000
000000
000000
NOTES (MEAN] IS DEFINED ASt
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION! GM PAHMA BOILER 3
OATEI 4-14-80
TIME LOAD E E EFF
IN OUT
0 25. »»»**• ****** *****
100 25. *»»»•» «*«»«• *****
200 25. »**»»0 ****** *****
300 25. ****** ««**»* »«»»«
400 25. ****** ****** *****
500 25. ****** *»«»»* «*«««
600 25. ****** »**»»* *****
TOO 25. ****** ****** •*««*
600 25. ****** ****** »•»«*
900 25. *«•*•» ****** *****
1000 25. ****** •*«»»* *****
1100 25. ****** ****** *****
1200 25. »***«» ****** »»«««
1300 25. •»*»«» ****** *****
1400 25. ****** ****** *****
1500 25. »*»•*» ****** **«**
.p 1600 25. ****** ****** «*»»«
I 1700 25. ««*»«* ****»» *****
-J 1600 25. ****** «*»««* *****
~° 1900 25. ****** «*«*»« *****
2000 25. ****** ****** *****
2100 25. ****** «»•»** *****
2200 25. **»*»* ****** *****
2300 25. ****** »*»»»* *****
0 AVERAGES 24. 0. 0. 0.
X OF DATA 100. 0. 0. 0.
MINIMUM 25. ****** ****** «»»***
MAXIMUM 25. .000 .000 .000
MEAN 25. »»*»»* *»»*»« *•«**•
STD.DEV. 0. *»»«»* «**«»« «»*«*«
X STD.DEV. 0. *»•*•» «*»»»» ******
24-HOUR REMOVAL EFICIENCY USING
1
IMEANI E » E < .OOOX
I IN OUT
T
NOTES (MEAN! IS DEFINED AS:
X
THE MFAN FQH x DATS USING T-HOUH
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAKMA BOILEK 3
DATE: 4-15-8U
TIME
0
100
200
300
aoo
500
600
700
800
900
1000
1100
1200
1300
1000
1500
1600
i
>J
00
1800
2000
2100
2200
2300
* AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X 3TO.OCV.
LOAD
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
25.
34.
32.
20.
28.
28.
30.
31.
29.
32.
EFF
IN
•*«*••
•••*»*
•*••••
•»««*•
•••*••
•*•••*
• «*•«*•
*»••*•
***»••
OUT
«••«*«
••••ft*
• 000*
• ••*•
*0«»«0
•••«*•
*•*••*
5.201
5.468
5.613
5.509
5.427
5.353
5.135
4.032
4.690
.359
.368
.372
.420
.377
.340
.328
.295
.268
24. 9. 9.
100. 38. 38.
20. 1.690 .268
34. 5.613 .420
27. *••*•• •••»*»
3. ••«••« •»*»•»
12. •**•»•» •*•*•»
«*«*«
93.1
93.3
93.4
92.4
93.1
93.7
93.6
93.9
94.3
9.
30.
92.372
94.290
••**»•
•*••••
«**•«*
24-HOUR REMOVAL EFICIENCV USING
1
[MEAN) E r E i .OOOX
1 IN OUT
NOTEI IMEAN) IS DEFINED AS:
X
THE MEAN FON X DAYS USING Y-HUUH AVEKAGES
-------
DAILY SUMMAKY OF MESULTS
LOCATION: GM PAKMA BOILER 3
DATES 4-17-80
VD
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STO.DEV.
X STD.DEV.
LOAD
IN
OUT
36.
36.
37.
34.
39.
42.
48.
44.
50.
46.
43.
41.
39.
41.
44.
39.
39.
37.
39.
39.
27.
27.
30.
27.
24.
100.
27.
50.
39.
6.
16.
6.293
6.210
6.157
6.111
5.956
5.733
5.097
4.980
5.036
.773
.406
.451
.735
.730
.375
.222
.209
.202
.133
.960
.383
.161
.012
.144
24.
100.
3.960
6.293
4.853
.791
16.296
EFF
.347
.326
.352
.354
.324
.290
.256
.255
.276
.231
.249
.275
.309
.279
.264
.271
.290
.339
.317
.300
.401
.470
.441
.466
94.5
94.7
94.3
94.2
94.6
94.9
94.9
94.9
94.5
95.2
94.4
93.6
93.5
94.1
94.0
93.6
93.1
91.9
92.3
92.4
90.9
66.7
69.0
66.2
24. 24.
1VO. 100.
.231 66.237
.486 95.165
.321 93.193
.069 2.051
21.514 2.201
24-HOUR REMOVAL EFICIENCV USING
1
{MEAN] E , E : 93.364S
1 IN OUT
NOTE! tMEANJ IS DEFINED ASl
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PAHMA HOILEM 3
DATES 4-16-60
TIME
LOAD
IN
OUT
EFF
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
> 1700
00 »80<>
6 1900
2000
2100
2200
2300
• AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
I STD.DEV.
32.
32.
30.
30.
29.
29.
33.
46.
50.
49.
46.
45.
45.
45.
46.
43.
39.
38.
38.
37.
36.
34.
42.
37.
.581
.604
.614
.617
.595
.154
.902
.953
.950
.265
.792
.204
.411
.630
.861
.352
.497
.720
.730
.266
.641
.629
.284
.254
24. 24.
too. 100.
29. 3.792
50. 6.730
39. 5.315
7. 1.066
17. 20.048
.265
.265
.264
.260
.292
.251
.216
.200
.176
.179
.220
.180
.212
.192
.229
.225
.251
.267
.284
.320
.330
.347
.349
.317
24.
100.
.176
.349
.256
.053
20.722
93.6
94.2
94.3
93.9
93.6
93.9
94.5
94.9
95.5
95.6
94.2
96.4
96.1
96.6
96.1
96.5
96.1
96.0
95.8
94.9
95.0
94.8
94.4
94.9
24.
too.
93.649
96.567
95.102
.945
.994
24-HOUR REMOVAL EFICIENCV USING
1
(MEAN) E , £ I 95.I87X
1 IN OUT
NOTE: (MEAN) IS DEFINED AS:
X
THE MEAN FUR X DAYS USING Y-HOUN AVERAGES
-------
DAILY SUMMARY UF RESULTS
LOCATION! GM PAKrtA bOILEK 3
DATES 4-18-eU
I
00
LOAD
IN
TIME
0
100
ZOO
300
000
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
1900
2000
2100
2200
2300
• AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STO.OEV.
X STO.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
{MEAN! E , E » 9I.934X
1 IN OUT
OUT
EFF
29. 4.173
30. 4.130
30. 3.924
31.
32.
34.
43.
42.
45.
44.
3».
42.
36.
39.
39.
31.
33.
31.
29.
30.
32.
32.
.955
.951
.573
.640
.697
.745
.639
.719
.431
.304
.375
.656
.697
.691
.912
.004
.135
.063
.964
33. 3.926
31. 3.647
24. 24.
100. 100.
29. 3.304
45. 4.173
35. 3.624
5. .236
IS. 6.160
.414
.414
.369
.356
.347
.264
.222
.198
.192
.175
.229
.226
.276
.296
.322
.366
.369
.346
.389
.286
.393
.370
.240
.299
24.
100.
.175
.414
.308
.075
24.373
90.1
90.0
90.1
91.0
91.2
92.0
93.9
94. b
94.9
95.4
93.9
93.4
91. b
91.2
91.2
90. b
90,5
91.1
90.3
93.1
90.3
90.7
93.9
92.2
24.
100.
69.960
95.446
91.970
1.717
1.867
NOTEt (MEANI IS DEFINED AS:
X
TKE KEAK FUR S 0*TS USING Y-rt'JUS AVERAGES
-------
DAILY SUMMARY UF KtSUlTS
LOCATION: GM PANMA BOILER 3
DATE' 4-19-BO
LOAD
IN
TIME
0
100
ZOO
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
h- 160°
•f 1700
00 1800
K) |900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TO.OEV.
X 8TO.DEV.
24-HOUR REMOVAL EFICIENCT USING
1
(MEAN) E » E t .OOOS
1 IN OUT
EFF
OUT
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
******
••»••»
»»«**»
******
******
»»*»*•
**«*»«
••«**»
*»*»*•
•••••0
******
•00000
000000
000000
000*00
000000
000000
000000
000000
000000
000000
000000
000000
000*0*
•000**
»»»«*0
00*00*
•0000*
•0*0*0
•00000
»*«*00
•00000
***»*«
******
00*000
•0*0*0
******
•0*000
000*00
•••••*
*«*0»*
*«***»
******
•0*000
»«*«*»
******
******
***«»0
*****
*****
*****
*****
*****
*****
*****
*****
*****
«***«
*****
«*«**
*****
*•«**
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
24.
too.
31.
31.
31.
0.
0.
0.
0.
******
.000
******
******
««»«**
0.
V.
******
.000
»•**«»
******
******
0.
0.
»*««**
.QUO
******
******
«*»*«*
NOTES CMEANJ IS DEFINED A3:
X
THE MEAN FOR X DAYS USING Y-HOUR AVERAGES
-------
DAILY SUMMAHT OF RESULTS
LOCATION: GH PAMHA BOILER 3
DATE: «-20-»o
TIME
LOAD
EFF
IN
OUT
00
CO
0
100
zoo
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
JfcOO
1700
1800
1900
2000
8100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
8TO.OEV.
X STD.DEV.
24-HOUR REMOVAL EFICIENCT USING
1
IMEAN1 E * E : .OUOl
1 IN OUT
51.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.
•••*•*
000000
*»•*««
000000
******
000000
000000
000000
******
»•*•*»
000000
0*00*0
•**»•*
••*»*»
»**«»*
000000
000*00
•0000*
000000
••«*«•
**»*•«
*•«••*
**»*»«
««**•«
»•*••»
••««**
•*»*««
»»»»*»
•••0«»
«»«•«»
*«•*•»
•*»««•
»*#»••
•*•••«
*••«««
•*»0a0
««•*«*
•••««»
**«•««
*•••«*
•«•*•»
«**0»»
••«««*
•••«*«
•*«••*
«««««*
««*•*•
nnnnnu
nannn
tutnun
*00«»
• 000*
• 0000
00000
00000
00000
• 0000
• 0000
• 000*
00000
• 0000
00000
• 000*
• 00*0
00000
• 0000
• 0000
• 000*
»*»«*
• 000*
00*00
0000*
24.
100.
31.
31.
31.
0.
0.
0.
0.
•••••*
.000
******
«»**««
**••••
0.
0.
*•••*•
.000
••***•
•»***«
«*»»«*
0.
0.
•*«**»
.000
******
»00000
000000
NOTE! (MEAN! IS DEFINED AS:
X
THE MFAN FOH X DAtS USING Y-HUUR AVtkAbtS
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PARMA BOILER 3
DATE! 4-21-60
I
oc
LOAD
IN
TIME
0
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1*00
1600
1700
1SOO
1900
2000
2100
2200
2300
• AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TD.DEV.
X 9TD.DEV.
24-HOUR REMOVAL EFICIENCV USING
I
(MEAN! E t E : 91.553*
1 IN UUT
EFF
UUT
31. *•«*•*
31. •*•«»*
31. *•«*••
31. *»»»*»
31. •*«•»«
25. 3.465
37.
39.
42.
40.
30.
36.
35.
33.
35.
31.
31.
33.
26.
26.
30.
30.
26.
29.
.346
.263
.241
.403
.504
.629
.546
.640
.642
.026
.961
.167
.300
.111
.343
.310
.350
.141
24. 19.
100. 79.
25. 3.241
42. 4.350
32. 3.022
4. .396
13. 10.360
**»•««
»»**•»
•**»»•
•»«*•»
•»«M0«
.108
.124
.6«5
.326
.169
.296
.226
.273
.293
.278
.333
.315
.343
.356
.369
.326
.360
.454
.473
19.
79.
.106
.665
.323
.130
40.206
*«•«•
**•**
*«**«
• •*»«
nantm
96.9
96.3
79.0
89.9
95.0
91.5
93.6
92.3
92.0
92.6
91.7
92.0
91.6
91.7
91.0
92.5
91.2
69.6
66.6
19.
79.
79.002
96.662
91.551
3.669
4.030
NOTEI fMEANl IS DEFINED ASI
X
THE MEAN FUR X DAYS USING Y-HUUK AVERAGES
-------
DAILY SUMMARY UF RESULTS
LOCATION: GM PARMA bOlLER 3
DATES 4-22-80
I
a>
tn
LOAD
IN
TIME
0
too
200
300
400
500
600
700
eoo
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
9 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
3TD.DEV.
X 8TD.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
[MEAN] E » E I 92.258S
1 IN OUT
OUT
EFF
41.
27.
26.
29.
27.
33.
37.
39.
40.
37.
38.
36.
40.
39.
35.
36.
30.
26.
25.
24.
25.
24.
24.
25.
24.
100.
24.
41.
32.
6.
20.
4.232
4.477
4.453
4.519
4.440
4.400
.042
.752
.572
.486
.356
.013
.566
.560
.798
3.939
3.881
4.187
.024
.143
.121
.319
.003
.134
24.
100.
3.013
4.519
3.976
.397
9.9d7
.364
.389
.426
.397
.374
.313
.317
.285
.244
.305
.266
.246
.221
.210
.248
.262
.299
.367
.310
.316
.303
.299
.298
.330
24.
100.
.210
.426
.300
.057
18.392
91.4
91.3
90.4
91.2
91.6
92.9
92.2
92.4
93.2
91.3
92.1
91.8
93.8
94.1
93.5
93.4
92.3
91.2
92.3
92.4
92.6
93.1
92.5
92.0
24.
100.
90.441
94.114
92.291
.921
.998
NOTE! IMEAN1 IS DEFINED AS:
X
THE MEAN FOR X DAYS USING Y-MOUR AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION! GM PARMA BOILER 3
OATEt a-23-80
LOAD
IN
TIME
0
100
ZOO
300
400
500
600
700
SOW
900
1000
1100
1200
1300
1400
1500
1600
7 1700
00 1800
cr 1900
2000
2100
2200
2300
0 AVERAGES
1 OF DATA
MINIMUM
MAXIMUM
MEAN
9TD.OEV.
X 9TO.DEV.
24-HOUR REMOVAL EFICIENCY USING
1
IMEAN1 E , E I 93.351X
1 IN OUT
OUT
tFF
22.
21.
21.
20.
20.
2B.
35.
36.
38.
39.
39.
38.
35.
35.
35.
33.
32.
30.
30.
30.
29.
30.
29.
.150
.787
.892
.971
.951
.297
.519
.379
.291
.253
.440
.396
.513
.465
.716
.997
.712
.765
.242
.179
.221
.339
.235
28. 4.014
24. 24.
100. 100.
20. 3.253
39. 4.339
31. 3.780
6. .350
20. 9.269
.363
.321
.344
.299
.304
.213
.229
.245
.210
.154
.174
.180
.174
.142
.173
.216
.230
.233
.277
.280
.298
.312
.339
.323
24.
400.
.142
.363
.251
.066
26.429
91.2
91.5
91.2
92.5
92.3
93.5
93.5
92.7
93.6
95.3
94.9
9«.7
95.0
95.
95.
94.
93.
93.
93.
93.
92.
92.8
92.0
92.0
24.
100.
91.162
95.916
93.417
1.357
1.453
NOTEt IMEANJ IS DEFINED ASt
X
THE MEAN FOR X DAYS USING Y-HOUH AVERAGES
-------
DAILY SUMMARY OF RESULTS
LOCATION: GM PARMA BOILER 3
DATE: 4-24-eo
TIME LOAD
IN
OUT
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
v, 1600
I 1700
CD 1800
"-J 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X 3TO.OEV.
24-HOUR REMOVAL EFICIENCf USING
1
(MEAN! E , E t 91.6101
1 IN OUT
EFF
33.
33.
33.
33.
34.
33.
43.
42.
42.
36.
37.
36.
36.
42.
39.
26.
31.
32.
34.
30.
33.
33.
32.
32.
.696
.701
.540
.466
.374
.061
.012
.110
.230
.439
.235
.067
.182
.303
.734
.902
.016
.664
.068
.197
.276
.149
.169
.070
24. 24.
100. 100.
28. 3.012
43. 4.276
35. 3.634
4. .425
12. 11.706
.331
.328
.306
.303
.337
.290
.238
.223
.235
.222
.251
.223
.246
.198
.265
.332
.349
.341
.371
.356
.364
.359
.316
.354
24.
100.
.196
.371
.298
.055
16.566
91.5
91.1
91.4
91.3
90.0
90.6
92.1
92.6
92.7
93.5
92.2
92.7
92.3
94.0
92.9
91.7
91.3
91.2
90.9
91.5
91.5
91.4
92.4
91.3
24.
too.
90.021
94.001
91.846
.938
1.022
NOTEi (MEAN) IS DEFINED AS:
X
THE MEAN FOR X U*Y5 UoiNG T-Kulin *V£nAGc3
-------
DAILY SUMMARY OF RESULTS
LOCATION: CM PAKMA UOILE.H 3
DATES 4-25-60
TIME
LOAD
IN
OUT
24-HOUH REMOVAL EFIC1ENCV USING
1
(MEAN) Eft 1 90.950X
I IN OUT
iff
0
100
zoo
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
•f iroo
oo 1800
00 1900
2000
2100
2200
2300
0 AVERAGES
X OF DATA
MINIMUM
MAXIMUM
MEAN
9TD.OEV.
X 3TD.DEV.
28.
27.
29.
30.
32.
34.
39.
41.
42.
40.
40.
36.
39.
35.
33.
33.
27.
26.
24.
27.
2b.
2b.
2b.
26.
24.
100.
24.
42.
32.
b.
18.
4.254
4.045
4.034
4.0b7
0.106
3.551
3.443
3.421
3.236
3.364
3.706
3.911
3.413
3.687
3.738
3.934
4.141
4.315
4.289
4.133
4.U50
******
******
******
21.
88.
3.236
4.315
3.849
.337
8.761
.331
.322
.350
.365
.339
.257
.225
.156
.189
.192
.250
.274
.330
.385
.425
.461
,«87
.526
.543
.560
.349
******
«*•«»*
******
21.
88.
.156
.560
.348
.118
33.996
92.2
92.0
91.3
91.0
91.7
92.8
93.5
95.4
94.2
94.
93.
93.
90.
89.
»».
88.
66.
67.
87.
66.
91.
»*««*
*****
*****
21.
86.
66.447
95.440
91.063
2.542
2.791
NOTES (MEAN) IS DEFINED AS:
X
THE MEAN FOH X DAYS USING Y-HOUK AVERAGES
-------
25 UPtHATlMi OATS
3UMMAKT OF RtSUL'S
USING I-HOUH AVtHAGES
LOCATION: bn HARMA buiLER 3
OATE« 2- 4-50
LUAO l E tff
IN OUT
• AVEHA6ES V»fc. SM. 571. 571.
I OF OATA 99. 95. 95. 95.
MINIMUM 1. 2.223 .Ota 5b.u9b
MAXIMUM 57. 6.MO 1.909 99.521
MEAN 37. 3.773 .303 92.141
9TO.DEV. 7. .600 .248 5.997
K STO.DCV. 19. 21.195 HI.640 6.508
10-DAY REMOVAL EF1C1ENCT USING
1
IMEAN) E , E t 91.9671
30 IN OUT
y
MOTEI IMEAN) IS DEFINED AS:
' K
THE MEAN FOR K DATS USING T-MOUK AVERAGES
-------
25 OPERATING DATS
SUMMARY OF KfcSULlS
USING 24-HOUH AVERAbES
LOCATION: CM PAHMA DOILEH 3
OATEI 2- 4-60
DATE
2- 5-60
2-11-60
2-12-60
2-13-60
2-14-60
2-15-60
2-16-60
2-17-60
3-16-80
3-19-60
3-20-80
3-21-80
3-22-60
3-23-60
S, «- 1-80
*l 4- 2-60
iO 4- 3-60
O 4-16-60
4-17-60
4-16-60
4-21-60
4-22-60
4-23-60
4-24-60
4-25-80
* AVERAGES
I OF DATA
MINIMUM
MAXIMUM
MEAN
STD.DEV.
X 9TO.DEV.
LOAD
IN
uur
Iff
32. J
34. i
34. <
36. <
39. i
• 0. <
40. <
40. <
41. 2
37.
3d.
41.
43.
37.
46.
42.
40.
39.
39.
35.
32.
32.
31.
35.
32.
1.5*6
'.662
!.«»09
S.895
S.741
'.963
!.966
!.024
J.604
.903
.S99
.789
.030
.964
,5U5
.651
,b«(6
.315
.853
.024
.622
.976
.760
.634
.949
.144
.150
.163
.161
.167
.170
.067
.092
1.036
.796
.469
.195
.142
.162
.356
.412
.359
.256
.321
.306
.323
.306
.251
.296
.346
95.9
94.6
93.7
94.5
93.2
94.1
97.1
96.7
73.7
79.2
69.
94.
96.
95.
92.
91.
92.
95.
93.
92.
91.
92.
93.
91.
91.
25. 25. 25. 25.
61. 61. 61. 61.
31. 2.741 .087 73.663
46. 5.315 1.036 97.093
37. 3.769 .301 92.203
4. .695 .214 5.210
11. 18.453 71.193 5.650
50-OAT REMOVAL EFICIENCY USING
24
IMEAN1 E , E I 92.023S
30 IN OUT
NOTE* IMEANI IS DEFINED AS!
X
THE MEAN FOR X DATS USING T-HUUH AVERAGES
-------
FREQUENCY DISTRIBUTION
LOCATION: GM PANMA BOILER 3
STARTING DATE: 2- 4-eo
PARAMETER: 1-HOUH E1N, LB/MMBTU
PARAMETER RANGE
2.000 - 2.400
2.400 • 2.000
2.000 • 3.200
3.200 • 3.600
3.600 - 4.000
4.000 - 4.400
4.400 - 4.000
4.000 • S.200
5.200 • 5.600
5.600 - 6.000
BEYOND MIN/MAX RANGE
TOTAL POPULATION
3.
56.
102.
103.
100.
100.
62.
12!
0.
19.
615.
OCCURRENCE
PERCENTAGE
o.
9.
IT.
17.
16.
23.
10.
3.
2.
0.
HISTOGRAM
• ••••
•*•»•*•*
•«•*•«••
••••*••*
»•**••»••••
••***
•
CUMULATIVE DISTKIBUTIUN
LOCATIONS GM PARMA BOILER 3
DATES 2- 4-BU
PARAMETER: I-HUUR EIN, LB/MMBTU
PARAMETER RANGE
2.000 - 2.400 3.
2.000 - 2.800 59.
2.000 • 3.2UO tbl.
2.000 • 3.600 264.
2.000 • 4.000 364.
2.000 - 4.400 504.
2.000 » 4.000 566.
2.000 • 5.200 504.
2.000 - 5.600 596.
2.000 - 6.000 596.
BEYOND MIN/MAX RANGE 19.
TOTAL POPULATION 615.
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
0.
10.
26.
43.
59.
62.
92.
95.
97.
97.
*************
o********************
A*****************************
ft****************************************
•A********************************************
o**********************************************
A***********************************************
•»*••*••••»•••••*»•*•••*••»•»•••••*•»**•••*«•«•*
-------
FREQUENCY DISTRIBUTION
LOCATION: GH PARMA BOILER 3
STARTING DATE: 2- 4-00
PARAMETERI 1-HOUR LOG EIN
PARAMETER RANGE
.300 -
.348 -
.396 -
.444 -
.492 -
.540 -
.568 -
.636 •
.684 -
.732 -
.346
.396
.444
.492
.540
.580
.636
.684
.732
.780
BEYOND MIN/MAX RANGE
TOTAL POPULATION
1.
4.
49.
78.
97.
91.
159.
89.
22.
0.
25.
615.
OCCURRENCE
FREQUENCY PERCENTAGE HISTOGRAM
0.
1.
6.
13.
16.
15.
26.
14.
4.
0.
• *••
**•••*
•*•*•***
*******
•••A*********
*******
I
vO
CUMULATIVE DISTRIBUTION
LOCATION! CM PARMA BOILER 3
DATES 2- 4»8U
PARAMETERI 1-HOUR LOG EIN
PARAMETER RAN6E
.300 - .348 1.
.300 - .396 5.
.300 - .444 54.
.300 - .492 132.
.300 - .540 229.
.300 - .586 320.
.300 - .636 479.
.300 - .664 568.
.300 - .732 590.
.300 • .760 590.
BEYOND MIN/MAX RANGE 25.
TOTAL POPULATION 615.
OCCURRENCE
FREQUENCY PERCENTAGE
0.
1.
9.
21.
37.
52.
78.
92.
96.
96.
HISTOGRAM
*••*
*•**••*****
A******************
A*************************
•A*************************************
A*********************************************
•A**********************************************
•A**********************************************
-------
FREQUENCY DISTRIBUTION
LOCATIONS GM PARMA HUILER 3
STARTING DATE: 2- «-«o
PARAMETERS 1-HOUH EOUT, LU/MMBTU
PARAMETER RANGE
OCCURRENCE
FHEUUENCT PERCENTAGE
.010
.209
.408
.607
.806
1.005
1.80*
1.403
1.602
1.801
•
•
•
•
•
•
•
•
•
.209
.408
.607
.806
.OOb
.204
.403
.602
.801
i.OOO
8EYONO MIN/MAX RANGE
TOTAL POPULATION
268.
240.
56.
19.
17.
3.
1.
5.
a.
o.
i.
blZ.
44.
39.
9.
3.
3.
0.
0.
1.
0.
0.
HIStUGKAM
**•**•*•****•••*••••**
A*******************
*****
**
to
CUMULATIVE DISTRIBUTION
LOCATION! GM PARMA BOILER 3
DATES 2- 4-80
PARAMETERS 1-HOUR EOUT* LB/MMBTU
PARAMETER RANGE
OCCURRENCE
FREQUENCY PERCENTAGE
.010
.010
.010
.010
.010
.010
.010
.010
.010
.010
•
4»
»
•
•
•
•
9
4*
- ,
.209
.408
.607
.806
.005
.204
.403
.602
.801
i.OOO
BEYOND MIN/MAX RANGE
TOTAL POPULATION
268.
508.
564.
503.
600.
603.
604.
609.
611.
611.
1.
612.
44.
83.
92.
95.
98.
99.
99.
100.
100.
100.
HISTOGRAM
••**•****•••••***••*••
•A********************************************
•A**********************************************
•••••••••••••••••••••••A*************************
••••••••••••••••••••••••••ft**********************
•A***********************************************
A*************************************************
A*************************************************
A*************************************************
-------
FREUUENCY DISTRIBUTION
LOCATION: GM PARMA BOILER 3
STARTING DATE: 2- <*-«u
PARAMETER: I-HOUR LUC EOUT
PARAMETER RANGE
-2.000
-1.770
-1.540
-1.310
-1.000
-.650
-.620
-.390
-.160
.070
BEYOND
TOTAL
- -1.7TO
- -I.S40
- -1.310
- -1.080
- -.850
- -.620
- -.390
- -.160
.070
.300
MIN/MAX RANGE
POPULATION
0.
1.
7.
26.
102.
167.
202.
67.
26.
0.
10.
612.
OCCURRENCE
FREUUENCT PERCENTAGE HISTOGRAM
o.
o.
i.
5.
17.
27.
33.
11.
5.
0.
*
• *
********
**********••*•
A****************
***••
**
>
i
vD
CUMULATIVE DISTRIBUTION
LOCATION! GM PARMA BOILER 3
DATE: 2- 4-ao
PARAMETER: I-HOUR LOG EOUT
PARAMETER RANGE
-2.000 - -1.770
-2.000 - -1.540
-2.000 - -1.310
-2.000 - -1.080
-2.000 - -.650
-2.000 - -.620
-2.000 - -.390
•2.000 - -.160
-2.000 - .070
•2.000 • .300
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0,
1
8
36
136
305
507
574
602
602
10
612
OCCURRENCE
FREQUENCY PERCENTAGE
0.
0.
1.
6.
23.
50.
63.
94.
96.
98.
HISTOGRAM
***
•••*••*****
••ft**********************
***••***»*••*••*•*«*••••*••*•••••••**••«•
A**********************************************
•A***********************************************
•••A*********************************************
-------
FREQUENCY DISTRIBUTION
LOCATION! GM PARMA BORER 3
STARTING DATEI 2- 4-80
PARAMETER: I-MOUR x EFFICIENCY
PARAMETER RANGE
60.000
63.990
67.980
TI.970
75.960
79.950
63.940
87.930
91.920
95.910
BEYOND
TOTAL
• 63.990
• 67.980
- 71.970
• 75.960
• 79.950
- 63.940
- 67.930
• 91.920
- 95.910
• 99.900
MIN/MAX RANGE
POPULATION
3.
3.
3.
5.
15.
16.
16.
114.
290.
0.
147.
612.
OCCURRENCE
FREQUENCY PERCENTAGE
o.
o.
o.
i.
2.
3.
3.
19.
47.
0.
HISTOGRAM
*
*
*
••**••***
A***********************
VD
IT
CUMULATIVE DISTRIBUTION
LOCATIONI 6M PARMA BOILER 3
OATEI 2- 4-60
PARAMETER! 1-HOUH X EFFICIENCY
PARAMETER RANGE
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
BEYOND
TOTAL
• 63.990
• 67.960
• 71.970
- 75.960
• 79.950
• 83.940
• 87.930
• 91.920
• 95.910
• 99.900
MIN/MAX RANGE
POPULATION
3.
6.
9.
14.
29.
«5.
61.
175.
465.
465.
147.
612.
OCCURRENCE
FREQUENCY PERCENTAGE
0.
1.
t.
2.
5.
7.
10.
29.
76.
76.
HISTOGRAM
*
*
**
****
*****
•••••A********
••••••••••••••A***********************
•A************************************
-------
FREQUENCY DISTRIBUTION
LOCATION: bM PARMA BOILER 3
STARTING DATE: 2- o-oo
PARAMETER: I-HOUR LOGO EFFICIENCY)
PARAMETER RANGE
.700
.730
.760
.790
.820
.850
.880
.910
.940
.730
.760
.790
.820
.850
.880
.910
.940
.970
.970 2.000
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
1.
2.
4.
2.
8.
21.
21.
217.
0.
336.
612.
OCCURRENCE
FREUUENCY PERCENTAGE
0.
0.
0.
I.
0.
1.
3.
3.
35.
0.
HISTOGRAM
*
• *
*•
A*****************
>
VQ
CUMULATIVE DISTRIBUTION
LOCATIONS GM PAMMA BOILER 3
DATES 2- 4-80
PARAMETERS 1-HOUR LOGO EFFICIENCY)
PARAMETER RANGE
.700
.700
.700
.700
.700
.700
.700
.700
.700
.730
.760
.790
.820
.850
.880
.910
.940
.970
.700 2.000
EVOND MIN/MAX RANGE
OTAL POPULATION
0
t
3
7
9
17
38
59
276
276
336
612
OCCURRENCE
FREQUENCY PERCENTAGE
0.
0.
0.
t.
1.
3.
6.
10.
45.
45.
HISTOGRAM
*
***
*****
A**********************
**»*•***»****••*•••*•*•
-------
FREQUENCY DISTRIBUTION
LOCATION: CM PARMA BOILER 3
STARTING DATE: 2- 4-00
PARAMETERS 1-HOUH 100-X EFFICIENCY
PARAMETER RANGE
8.
12.
16.
20.
24.
28.
32.
36.
010
009
008
007
006
005
004
003
002
001
.
4,
8,
12,
16,
20,
24,
28,
32,
36,
40,
,009
,008
,007
,006
,005
,004
,003
,002
,001
,000
OCCURRENCE
FREUUENCV PERCENTAGE HISTOGRAM
BEYOND MIN/MAX RANGE
TOTAL POPULATION
141.
2»6.
UO.
lb.
17.
15.
5.
3.
3.
0.
6.
•••••••••••a
47.
20.
3.
3.
2.
I.
0.
0.
0.
••••••aaaa
CUMULATIVE DISTRIBUTION
LOCATIONI 6M PARMA BOILER 3
DATEI 2- 4-80
PARAMETER! 1-HOUR 100-X EFFICIENCY
PARAMETER RAN6E
.010 • 4.009
.010 - B.008
.010 • 12.007
16.006
20.005
24.004
28.003
32.002
.010
.010
.010
.010
.010
.010
- 36.001
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
.010 - 40.000
BEYOND MIN/MAX RANGE
TOTAL POPULATION
141.
427.
547.
563.
560.
595.
600.
603.
60b.
606.
6.
612.
23.
TO.
89.
92.
95.
97.
90.
99.
99.
99.
*•*••*••••**
• •••••••••••
*a*aa*aa****aaaaaa*aaaaaaa*aaaaaaaaaaaaaaaaaa
••••••••••••••••••••••••••••••••••••••••••••••••ft
•aaaaaaaaaaa*a«****aaaaaaaaaaa*************a***a*«
-------
FREUUENCV D1STH18UT1UN
LOCATION: GM PARMA bOiLER 3
STARTING DATE: 2- o-eu
PARAMETER: I-HOUH LOGUOO-X EFFICIENCY)
PARAMETER RANGE
-2.000
-1.640
•1.280
-.920
-.560
-.800
.160
.530
.880
1.240
BEVONO
TOTAL
- -1.640
• -1.280
- -.920
- -.560
- -.200
.160
.520
.880
- 1.240
- 1.600
MIN/MAX RANGE
POPULATION
0,
0
0,
0
1
6
67
315
178
0
45
612
OCCURRENCE
FREQUENCY PERCENTAGE
0.
0.
0.
0.
0.
1.
11.
51.
29.
0.
HISTOGRAM
*****
•••••••••••••A************
A**************
>
I
00
CUMULATIVE DISTRIBUTION
LOCATION! GM PARMA BOILER 3
DATE! 2- 4-80
PARAMETER: I-HUUR LOGUOO-X EFFICIENCY)
PARAMETER RANGE
-2.000
-2.000
-2.000
-2.000
-2.000
-2.000
-2.000
-2.000
-2.000
-2.000
BEYOND
TOTAL
- -1.640
- -1.280
- -.920
- -.560
- -.200
.160
.520
.880
- 1.240
- 1.600
MIN/MAX RANGE
POPULATION
0.
0.
0.
0.
1.
7.
74.
389.
567.
567.
45.
612.
OCCURRENCE
FREUUENCT PERCENTAGE
o.
o.
o.
o.
o.
t.
12.
64.
93.
93.
HISTOGRAM
*
******
A*******************************
••A*******************************************
•A********************************************
-------
FREQUENCY DISTRIBUTION
LOCATION: CM PAHMA BOILER 3
STARTING DATE: 2- o-ao
PARAMETER! 24-HOUR ElN, LH/MHBTU
PARAMETER RANGE
2.000 - 2.400 0.
2.400 - 2.600 I.
2.800 • 3.200 b.
3.200 - 3.600 I.
3.600 - 4.000 II.
4.000 • 4.400 I.
4.400 - 4.600 3.
4.600 • 5.200 1.
S.200 - 5.600 I.
S.600 - 6.000 0.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 25.
OCCURRENCE
FREQUENCY PERCENTAGE HISTOGRAM
0.
4.
24.
4.
44.
4.
12.
4.
4.
0.
**
************
• *
A*********************
*«
******
*•
*•
vO
CUMULATIVE DISTRIBUTION
LOCATIONI CM PARMA BOILER 3
OATEt 2- 4-60
PARAMETER! 24-HOUR EIN, LB/MMBTU
OCCURRENCE
FREQUENCY PERCENTAGE
PARAMETER RANGE
2.000 - 2.400 0.
2.000 • 2.600 I.
2.000 - 3.200 7.
2.000 • 3.600 6.
2.000 » 4.000 19.
2.000 - 4.400 20.
2.000 • 4.600 23.
2.000 • 5.208 24.
2.000 • 5.600 25.
2.000 - 6.000 25.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 25.
0.
4.
26.
32.
76.
60.
100.
100.
HISTOGRAM
**
**•**••*******
•»•••*••**•**•**
••••••••••a***************************
••••A***********************************
•a********************************************
A*************************************************
A*************************************************
-------
FREQUENCY 01SIR1BUTION
LOC4T10NI GM PARHA BOILER 1
STARTING DATE: 2- 4-00
PARAMETER! 24-HOUR LOG ElN
PARAMETER MANGE
.300 • .348 0.
.348 • .396 0.
.396 - .444 I.
.444 - .492 6.
.492 • .540 0.
.540 • .588 9.
.588 - .636 3.
.636 - .684 4.
.684 - .732 2.
.732 • .780 0.
BEYOND MIN/MAX RANGE U.
TOTAL POPULATION 25.
OCCURRENCE
FREUUENCY PERCENTAGE HISTOGRAM
0.
0.
4.
24.
0.
36.
12.
16.
8.
0.
• *
****••***•*•
A*****************
••••*•
•***•*•*
*•**
O
O
CUMULATIVE DISTRIBUTION
LOCATIONS GM PARMA BOILER 3
OATEI 2- 4-80
PARAMETER! 24-HOUR LOG EIN
PARAMETER RANGE
.300 • .348 0.
.300 - .396 0.
.300 • .444 1.
.300 • .492 7.
.300 • .540 7.
.300 - .588 16.
.300 • .636 19.
.300 - .684 23.
.300 • .732 25.
.300 - .780 25.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 25.
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
0.
0.
4.
28.
28.
64.
76.
92.
100.
100.
*•
A*************
**************
A*******************************
A*************************************
*•*«**••»•»*••***••*••***•*••••*•*»•••*•***•••
A*************************************************
-------
FREQUENCY DISTRIBUTION
LOCATION: GM PARMA BOILER 3
STARTING DATEJ 2- 4-80
PARAMETER: 24-nuun tour, LB/MMBTU
PARAMETER RANGE
.010 • .209
.209 -
.408 -
.607 -
.806 -
1.005 -
1.204 •
1.403 •
1.602 -
.408
.607
.806
.005
.204
.403
.602
.801
OCCURRENCE
FREQUENCY PEHCENTAGE
1.801 - 2.000
BEYOND MIN/MAX RANGE
TOTAL POPULATION
11.
10.
2.
1.
0.
1.
0.
0.
0.
0.
0.
25.
44.
40.
8.
4.
0.
4.
0.
0.
0.
0.
HISTOGRAM
aaaa**aaa*aaaaa**aa*aa
aaaai
aaaa
CUMULATIVE DISTRIBUTION
LOCATIONS CM PARMA BOILER 3
DATE! 2- 4-80
PARAMETER! 24-HOUR EOUT, LB/MMBTU
PARAMETER RANGE
OCCURRENCE
FREQUENCY PERCENTAGE
.010 •
.010 •
.010 •
.010 -
.010 -
.010 -
.010 •
.010 -
.010 -
.010 - i
.209
.408
.607
.806
.005
.204
.403
.602
.801
2.000
BEYUND MIN/MAX RANGE
TOTAL POPULATION
II.
21.
23.
24.
24.
25.
25.
25.
25.
25.
0.
25.
44.
84.
92.
96.
96.
100.
100.
100.
100.
100.
HISTOGRAM
•••»••»*•*•••••••*••••
A*****************************************
ft*********************************************
•A**********************************************
A***********************************************
•••A**********************************************
A*************************************************
A*************************************************
*aa**aaa*aaa***aaaaaaaaaaaaaaaa*aa*aaaa*aaa*a*aaaa
-------
FREQUENCY DISTRIBUTION
LOCATION: GM PAHMA BOILER 3
STARTING DATE: 2- a-nu
PARAMETER: 24-HouR LOG EUUT
PARAMETER RANGE
-2.000 • -1.770
-1.770 - -1.540
-1.540
-1.310
-1.080
-.850
-.620
-.390
-.160
.070
-1.31V
-1.080
-.850
-.620
-.390
-.160
.070
.300
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
0.
2.
9.
10.
2.
2.
0.
0.
25.
0.
0.
0.
0.
8.
36.
40.
8.
8.
0.
• •*•
A*****************
A*******************
****
****
CUMULATIVE DISTRIBUTION
LOCATION: GM PARMA BOILER 3
DATE: 2- 4-80
PARAMETER: 24-HOUR LOG EOUT
PARAMETER RANGE
OCCURRENCE
FREQUENCY PERCENTAGE HISTOGRAM
-2.000 - -1.770 0.
-2.000 - -1.540 0.
-2.000 - -1.310 0.
-2.000 - -1.080 0.
-2.000 - -.850 2.
-2.000 - -.620 11.
-2.000 - -.390 21.
-2.000 - -.160 23.
-2.000 - .070 25.
-2.000 - .300 25.
BEYOND MIN/MAX RANGE 0.
TOTAL POPULATION 25.
0.
0.
0.
0.
8.
44.
84.
92.
100.
100.
*••»
A*********************
A*****************************************
A*********************************************
•A************************************************
•••«••**••**••*•*•••••*•*»**•**••*•*•••*»•••••••*•
-------
FREQUENCY DISTRIBUTION
LOCATION: GM PAKIA BOILER 3
STARTING DATE: 2- 4-ao
PARAMETER: 24-HOUR x EFFICIENCY
PARAMETER RANGE
60,
63,
67,
71,
75,
79,
83,
87,
91,
95,
,000
,990
,980
,970
,960
,950
,940
,930
,920
,910
*
63
67
71
75
79
83
87
91
95
99
.990
.980
.970
.960
.950
.940
.930
.920
.910
.900
OCCURRENCE
FREUUENCY PERCENTAGE
BEYOND MIN/MAK RANGE
TOTAL POPULATION
0.
0.
0.
I.
I.
o.
0.
5.
13.
0.
5.
25.
0.
0.
0.
4.
a.
0.
0.
20.
52.
0.
HI3TUGHAM
*•
*•
••••***••*
•••••••••••••••A**********
O
OJ
CUMULATIVE DISTRIBUTION
LOCATIONI GM PARMA BOILER 3
DATE! 2- 4-80
PARAMETER: 24-HOUR s EFFICIENCY
PARAMETER RANGE
60
60
60
60
60
60
60
60
60
60
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
•
•
•
•
•
•
•
•
m
•
63
67
71
75
79
83
87
91
95
99
.990
.900
.970
.960
.950
.940
.930
.920
.910
.900
OCCURRENCE
FREUUENCY PERCENTAGE
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
1.
Z.
i.
2.
7.
20.
20.
5.
25.
0.
0.
0.
4.
8.
8.
8.
28.
80.
80.
HISTOGRAM
*•
• ••*
*•*•
• *••
*•***••*••**••
•A**************************************
A***************************************
-------
FREQUENCY DISTRIBUTION
LOCATION! GM PARMA BOILER 3
STARTING DATE: 2- 4-00
PARAMETERS 24-HOUR LOtiU EFFICIENCY)
PARAMETER RANGE
.700
.730
.760
.790
.820
.650
.000
.910
.940
.970
•
*
•
•
V
•
«•
•
•
.730
.760
.790
.02V
.050
.000
.910
.940
.970
i.OOO
OCCURRENCE
FREUUENCT PERCENTAGE
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
0.
0.
I.
I.
0.
11.
0.
12.
25.
0.
0.
0.
0.
0.
4.
4.
0.
44.
0.
HISTOGRAM
• *
*•
••ft*******************
>
M
O
CUMULATIVE DISTRIBUTION
LOCATIONS GM PARMA BOILER 3
DATES 2- 4-BO
PARAMETERS 24-HOUR L06U EFFICIENCY)
PARAMETER RANGE
OCCURRENCE
FREUUENCV PERCENTAGE
HISTOGRAM
.700 -
.700 -
.700 -
.700 -
.700 -
.700 »
.700 -
.700 -
.700 -
.700 - ,
.730
.760
.790
.020
.050
.000
.910
.940
.970
2.000
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
0.
0.
1.
2.
2.
13.
13.
12.
25.
0.
0.
0.
0.
0.
4.
0.
0.
52.
52.
**
*•**
• *•*
ft*************************
••••••••••ft***************
-------
FREQUENCY DISTRIBUTION
LOCATION: CM HARMA bOltfcR 3
STARTING OA1EJ 2- 4-80
PARAMETER: 24-nuun loo-x EFFICIENCY
PARAMETER RANGE
4
6
12
16
20
24
26
32
36
•
•
•
•
•
•
•
•
•
•
010
009
006
007
006
005
004
003
002
001
•
•
•
•
4
6
12
16
20
24
28
32
36
40
•
•
•
•
•
•
•
•
•
•
009
008
007
006
005
004
003
002
001
000
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
BEYOND MIN/NAR RANGE
TOTAL POPULATION
3.
14.
6.
0.
0.
1.
1.
0.
0.
0.
0.
25.
12.
56.
24.
0.
0.
4.
4.
0.
0.
0.
••*•••
A***************************
•••••**•*••• '
O
tr
CUMULATIVE DISTRIBUTION
LOCATIONS GM PARMA BOILER 3
DATE I 2- 4-80
PARAMETER! 24-HOUR 100-* EFFICIENCY
PARAMETER RAN6E
•
•
•
•
•
•
•
•
*
•
010
010
010
010
010
010
010
010
010
010
•
•
•
4
6
12
16
20
24
28
32
36
40
•
•
•
•
•
•
•
•
•
•
009
006
007
006
005
004
003
002
001
000
OCCURRENCE
FREQUENCY PERCENTAGE
HISTOGRAM
BEYOND MIN/MAX RANGE
TOTAL POPULATION
3.
17.
23.
23.
23.
24.
25.
25.
25.
25.
0.
25.
12.
68.
92.
92.
92.
96.
100.
100.
100.
100.
******
A*********************************
A*********************************************
•a********************************************
A*********************************************
•A**********************************************
A*************************************************
**»•**•»*•***»****•**••*•***•••**»**»•**••*••••***
A*************************************************
*•»»***•**•••**••*•*•***«***•••*•***•*•*»••••••*••
-------
FREQUENCY DISTRIBUTION
LOCATION: UM HAKHA BOILER 3
STARTING DATE: 2- 4-ao
PARAMETER: a«-Muun LOGOOO-X EFFICIENCY)
PARAMETER RANGE
2.000 •
1.640 •
1.280
-.920
-.560
-.200
.160
.520
.800
1.240
» -1.640
• -1.280
-.920
-.560
-.200
.160
.520
.880
1.240
1.600
OCCURRENCE
FREQUENCY PERCENTAGE
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
0.
0.
0.
2.
12.
9.
0.
2.
0.
0.
0.
0.
0.
0.
6.
48.
36.
0.
HISTOGRAM
*•*»
•••A********************
A*****************
I
M
O
CUMULATIVE DISTRIBUTION
LOCATION! GM PARMA BOILER 3
DATES 2- 4-60
PARAMETERS 24-HOUR L06UOO-X EFFICIENCY)
PARAMETER RANGE
-2.
-2.
-2,
-2.
•2,
-2,
•2,
-2,
•2,
•2.
,000
,000
,000
,000
,000
,000
,000
,000
,000
,000
•
-
•
-
•
•
-
-
-
-
-1,
-1,
1
4
4
1,
1,
,640
,280
,920
,560
,200
,160
,520
,660
,240
,600
OCCURRENCE
FREUUENCY PERCENTAGE
BEYOND MIN/MAX RANGE
TOTAL POPULATION
0.
0.
0.
0.
0.
0.
2.
14.
23.
23.
2.
25.
0.
0.
0.
0.
0.
0.
6.
56.
92.
92.
HISTOGRAM
***•
•••••••••••••••••••••A******
A*********************************************
------- |