United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 78-NHF-1
February 1979
Air
&EPA
Ammonium Sulfate
Emission Test Report
Dow-Badische, Inc.
Freeport, Texas
-------
AMMONIUM SULFATE EMISSION TEST REPORT
Dow-Badische, Inc.
Freeport, Texas
October 3 and 4, 1978
Prepared for the
U.S. Environmental Protection Agency
Emission Measurement Branch
Research Triangle Park, North Carolina 27711
Prepared by
Clayton Environmental Consultants, Inc
25711 Southfield Road
Southfield, Michigan 48075
EMB REPORT NO. 78-NHF-l
Work Assignments 5 and 6
Contract No. 68-02-2817
March 1979
-------
TABLE OF CONTENTS
Page
1.0 Introduction 1
2.0 Summary and Discussion of Results 5
3.0 Process Description and Operation 16
4.0 Location of Sampling Points 17
5.0 Sampling and Analytical Procedures 21
APPENDICES
A. Project Participants
B. Field Data Sheets
B-l. Particulate Test Data Sheets
B-2. Sampling Summary Data
B-3. Particle Sizing Data Sheet
B-4. Visible Emissions Data Sheets
C. Summary of Particulate Weight by
Fraction and Caprolactam Determina-
tions by Fraction
D. Ammonium Sulfate Content in Scrubber
Water and Percent Moisture Determinations
E. Summary of Visible Emissions
F. Gas Chromatograph Data Summary
G. Example Calculations
H. Calibration Data
-------
LIST OF FIGURES
Figure Page
1.1 Fluidized Bed Dryer and Control
System 3
1.2 Control System Schematic/Sampling
Locations 4
4.1 Scrubber Inlet Port and Sampling
Point Locations 18
4.2 Scrubber Outlet Port and Sampling
Point Locations 19
5.1 Particulate Sampling Train-Venturi
Scrubber Inlet 24
5.2 Particulate Sampling Train-Venturi
Scrubber Outlet 25
-------
LIST OF TABLES
Table Page
2.1 Filterable Particulate Concentra-
tions and Emission Rates 6
2.2 Total Particulate Concentrations
and Emission Rates 8
2.3 Particulate Removal Efficiency 9
2.4 Filterable Caprolactam Concentra-
tions and Emission Rates 11
2.5 Total Caprolactam Concentrations
and Emission Rates 12
2.6 Particle Size Distribution 15
-------
1.0 INTRODUCTION
The U.S. Environmental Protection Agency (EPA)
retained Clayton Environmental Consultants, Inc. to
perform a particulate and caprolactam emission study
of the Venturi scrubber at the Dow-Badische, Inc.
plant in Freeport, Texas. The objective of this
study was to determine the particulate and caprolactam
mass loading rates to and from the scrubber,
which controls emissions from the fluidized bed salt
dryer. The results of this study will be used in
research and development efforts for supporting
national New Source Performance Standards. This
study was commissioned as Project No. 78-NHF-l,
Contract No. 68-02-2817, Work Assignments 5 and 6.
The testing program, conducted on October 3 and
4, 1978, included the following:
(1) triplicate particulate samples acquired simulta-
neously at the inlet and outlet of the
Venturi scrubber;
(2) a single determination of the particle size
distribution of the gas stream at the scrubber
inlet;
(3) moisture contents of six ammonium sulfate
samples (three each taken from the inlet and
outlet of the salt dryer);
-------
(4) three scrubber water samples to be analyzed
for percent ammonium sulfate; and,
(5) visible emission observations at the outlet
of the Venturi scrubber for the duration of
each particulate sample run.
Auxiliary data included exhaust gas velocities,
temperatures and flowrates, as determined from the
traverses. Figures 1.1 and 1.2 present schematics
of the process/control system layout as tested.
- 2 -
-------
To atmosphere
Outlet
port
\
Inlet
port
Venturi
throat
Ventur i
scrubber
Fan
Cool air
Dry
(NH4)2S04
Wet
Warm air
Fluidized bed dryer
Figure 1.1. Fluidized bed dryer and control system
- 3 -
-------
Conveyor
enclosure
Unidenti fled
duct
(not sampled)
W
To atmosphere
Bucket
Elevators
Outlet
Ports
Inlet
Voicts
Spray
header
Temporary
Scaffold
Scaffold
Existing
platform
Air Flow
Venturi
throat
Mist
eliminator
Pump
for water
removal
Figure 1.2. Control system schema tic/sampling locations
-------
2.0i. SUMMARY AND DISCUSSION OF RESULTS
Particulate Emissions
Results of the particulate emission study are
presented in Tables 2.1, 2.2, and 2.3. Tables 2.1
and 2.2 present the concentrations and emission rates
for filterable and total particulate, respectively.
Concentrations are expressed as grains per dry
standard cubic foot (gr/dscf) and milligrams per
o
dry standard cubic meter (mg/dsm ). Emission rates
are expressed as pounds per hour (Ib/hr) and kilograms
per hour (kg/hr). Averages are presented for each
sampling location. Table 2.3 presents the particulate
removal efficiency (in percent) of the Venturi scrubber
based on the total particulate emission rate.
From Table 2.1, it is seen that measured filter-
able concentrations at the inlet ranged from 16.5 to
17.7 gr/dscf (37,700 to 40,400 mg/dsm3) and averaged
17.2 gr/dscf (39,400 mg/dsm3). Concentrations at the
outlet ranged from 0.008 to 0.032 gr/dscf (19.1 to 74.1
mg/dsm ) and averaged 0.019 gr/dscf (44.1 mg/dsm3).
Emission rates at the inlet ranged from 5,970 to 6,440
Ib/hr (2,710 to 2,920 kg/hr) and averaged 6,270 Ib/hr
2,850 kg/hr). Emission rates at the outlet ranged from
3.72 to 14.7 Ib/hr (1.69 to 6.66 kg/hr) and averaged
8.73 Ib/hr (3.96 kg/hr). The emission data at both
locations generally show good reproducibility although
- 5 -
-------
TABLE 2.1
FILTERABLE PARTICULATE CONCENTRATIONS AND EMISSION RATES
Sampling
Locat ion
Inlet
Sample
Number
P-l
P-2
P-3
Average
Outlet
P-l
P-2
P-3
Average
Stack Gas
Condit ions
F lowrate
dsc fm
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp .
oF
182
188
188
186
105
110
104
106
Concentration
gr/dscf
17.5
16.5
17.7
17.2
0.017
0.008
0.032
0.019
mg/dsm3
40,000
37,700
40,400
39,400
39.2
19.1
74.1
44.1
Emission Rate
Ib/hr
6,440
5,970
6,410
6,270
7.78
3.72
14.7
8.73
kg/hr
2,920
2,710
2,910
2,850
3.53
1.69
6.66
3.96
-------
there exists a significant difference in inlet/outlet
flowrates for all three sample runs. During the tests,
an extra duct entering the mist eliminator and a drain
pipe at the base of the mist eliminator were noted
(Figure 1.2). These were initially identified as
possible sources of induced air to the system between
the inlet and outlet sampling locations, resulting
in higher measured flowrates at the outlet. However,
Dow-Badische representatives confirmed that the duct
was capped off during the test program and the drain
pipe could not be considered a possible leak source.
Total particulate concentrations and emission
rates at the inlet (Table 2.2) were identical to
those for the filterable particulate fraction at
the same location. Concentrations averaged 17.2
Q
gr/dscf (39,400 mg/dsm->) and emission rates averaged
6,270 Ib/hr (2,850 kg/hr). Total concentrations
at the outlet ranged from 0.010 to 0.036 gr/dscf
(22.0 to 82.4 mg/dsm3) and averaged 0.021 gr/dscf
(48.7 mg/dsm3). Total emission rates at the outlet
ranged from 4.29 to 16.3 lb/hr (1.94 to 7.40 kg/hr)
and averaged 9.62 Ib/hr (4.36 (kg/hr).
Table 2.3 presents the measured particulate removal
efficiency of the scrubber. The removal efficiency
averaged 99.8 percent for the three samples.
-------
TABLE 2.2
TOTAL PARTICULATE CONCENTRATIONS AND EMISSION RATES
I
oo
i
Sampl ing
Locat ion
Inlet
Sample
Number
P-l
P-2
P-3
Average
Outlet
P-l
P-2
P-3
Average
Stack Gas;
Cond it ions
Flowrate
dsc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp.
oF
182
188
188
186
105
1.10
104
106
Concentration
.gr/dscf .
17.5
16. 5
17.7
17.2
0.018
0.010
0.036
0.021
o
mg/ dsm
40,000
37,700
40,500
39,400
41.6
22.0
82.4
48.7
Emission Rate
Ib/hr
6^440
5,970
6,410
6,270
8.26
4. 29
16.3
9.62
kg/hr
2,920
2,710
2,910
2,850
3.75
1.94
7.40
4.36
-------
TABLE 2.3
PARTICULATE REMOVAL EFFICIENCY
1978
S ampling
Date
10/3
10/4
10/4
Sample
Number
P-l
P-2
P-3
Average
Percent
Removal
E f f ic iency
99. 9
99.9
99.7
99.8
- 9 -
-------
Tables 2.4 and 2.5, respectively, present
summaries of filterable and total caprolactam concentra-
tions and emission rates. Inlet filterable concentra-
tions averaged 3.29 ppm (10,900 |ag/dsm3), while filter-
able emission rates averaged 2.46 Ib/hr and 1.12 kg/hr.
Outlet filterable concentrations averaged 0.201 ppm
(948 ng/dsm3)» while filterable emission rates averaged
0.188 Ib/hr (0.085 kg/hr).
Table 2.5 reveals that the majority of the capro-
lactam in the gas stream was present in the vapor phase.
Total concentrations at the inlet averaged 57.8 ppm
(272,000 |_ig/dsm3) and emission rates averaged 43.3
Ib/hr (19.6 kg/hr). At the outlet, total concentra-
tions averaged 6.92 ppm (32,600 (j.g/dsm3) and
emission rates averaged 6.43 Ib/hr (2.92 kg/hr).
Therefore, approximately 94.3 percent of the capro-
lactam was in the vapor phase at the inlet and 97.1
percent was vapor at the outlet. Detailed summaries
of the caprolactam analyses (by GC methods) are
presented in Appendix F.
In a previous study conducted by Dow-Badische,
caprolactam measured at the scrubber inlet existed
in a vapor phase, i.e., the caprolactam was found
in the impinger fractions, while at the scrubber outlet
the caprolactam was primarily in the particulate
(filterable) phase. In the series of tests reported
- 10 -
-------
TABLE 2.4
FILTERABLE CAPROLACTAM CONCENTRATIONS AND EMISSION RATES
Samp 1 ing
Location
Inlet
Sample
Number
P-l
P-2
P-3
Average3
Outlet
P-l
P-2
P-3
Average a
. Stack Gas
Cond it ions
F lowrate
d sc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp .
°F
182
188
188
186
105
110
104
106
Concentration
ppm
1.90
4.67
< 0.350
3.29
0.201
< 0.257
< 0.277
0.201
o
iag/dsm
8,960
22,000
<1,650
10,900
948
<1,210
<1,305
948
Emission Rate
Ib/hr
1.44
3.48
< 0.261
2.46
0.188
< 0.236
< 0.259
0.188
kg/hr
0.655
1.58
< 0.118
1.12
0.085
< 0.107
< 0.117
0.085
'Less than" values are not included in averages.
-------
TABLE 2.5
TOTAL CAPROLACTAM CONCENTRATIONS AND EMISSION RATES
Sampling
Location
Inlet
Sample
Number
P-l
P-2
P-3
Average
Outlet
P-l
P-2
P-3
Average
Stack Gas
Cond it ions
Flowrate
d sc f m
43,000
42,300
42,300
42,500
53?000
52,100
52,900
52,700
Temp .
OF
182
188
188
186
105
110
104
106
Concentrat ion
ppm
49.9
60.3
63.3
57.8
5.64
6.89
8.23
6.92
o
ug/dsm
235,000
284,000
298,000
272,000
26,600
32,500
38,800
32,600
Emission Rate
Ib/hr
37.8
45.0
47.2
43.3
5.28
6.34
7.68
6.43
kg/hr
17.1
20.4
21.4
19.6
2.40
2.87
3.49
2.92
-------
herein, more than 90 percent of the caprolactam in
both the inlet and outlet gas was measured in the vapor
phase.
The most probable explanation for this discrepancy
is that the temperatures maintained in the filter
compartments of the sampling train were quite different
in each study. The test series performed by Dow-Badische
were conducted with filter temperatures approximating the
stack temperatures, 160F (71C), at the scrubber inlet and
about 110F (43C) at the scrubber outlet. The tests reported
herein were performed with filter temperatures
averaging 220F (104C) at the inlet and 200F (93C)
at the outlet of the scrubber. Since the melting
point for pure caprolactam is 70C, one can expect
that a filter maintained at a temperature above
70C would show little caprolactam residual, thus
substantiating the CEC inlet/outlet results and
the Dow-Badische inlet results. It is also reason-
able to expect that caprolactam at the scrubber
outlet (as measured by Dow-Badische) would be
predominantly in the particulate phase since the
stack temperature at this point was below the
melting point of caprolactam, and any tests conduct-
ed with filter temperatures simulating the stack
temperatures should have demonstrated this.
- 13 -
-------
Summaries of particulate and caprolactam fractional
weights are contained in Appendix C.
The single sample taken at the scrubber inlet
to determine particle size distribution resulted in
the size distribution by weight data presented in
Table 2.6. Virtually all particles sized were greater
than 2.74 micrometers (urn) with about 99.3 percent of the
material greater than 8.04 (am* The analyses showed that no
measurable material was captured on stages 2 through 5
of the in-stack cascade impactor.
The ammonium sulfate drier resulted in an average
91.8 percent reduction in moisture content of the
ammonium sulfate material, from analyses of inlet and
outlet samples (Appendix D). Analyses of the scrubber
water samples (also presented in Appendix D) resulted
in an average concentration of 356 gm/1 of ammonium
sulfate.
Visible Emissions
Visible emissions from the scrubber exhaust were
recorded for the duration of each sample run. The
observations were performed in accordance with EPA
Method 9 by a qualified visible emissions observer.
A summary of the visible emission data is presented
in Appendix E, along with a plan view diagram depicting
observer location in relation to the outlet stack.
- 14 -
-------
TABLE 2.6
PARTICLE SIZE DISTRIBUTION
Brink
Impactor
Fraction
Cyclone
Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Back-Up Filter
TOTAL
Character! s t ic
Diameter
of
Particles
Urn
>8.04
2.74-8.04
1.62-2.74
1.10-1.62
0.58-1.10
0.36-0.58
<0.36
Weight
mg
289.2
2.0
<0.1
<0.1
<0.1
0.1
0.06
291.4
'
Size Distribution
by Weight
Percent
99.3
0.7
<0.1
<0.1
<0.1
<0.1
<0.1
100
Cumulative
Percent
100
0.7
<0.1
<0.1
<0.1
<0.1
<0.1
- 15 -
-------
3.0. PROCESS DESCRIPTION AND OPERATION
Supplied and completed by E.P.A.
- 16 -
-------
4.0 LOCATION OF SAMPLING POINTS
The inlet sampling location was a 54 inch (137.2
cm) I.D. duct leading from the ammonium sulfate dryer
to the Venturi scrubber. Two three-inch ports, facing
west and south and approximately 45 feet (13.7 meters)
above ground level, were accessed for sampling. This
sampling location was approximately 7.8 duct diameters
downstream from the fan and two duct diameters upstream
from a 180 degree bend. The duct is represented
schematically in Figure 1.2.
The scrubber outlet is a 54 inch (137.2 cm) duct
with the sampling platform 45 feet (13.7 meters) above
ground level. Two three-inch ports, facing west and
south, were accessed for sampling. This sampling loca-
tion was approximately two duct diameters downstream
of the mist eliminator and approximately two duct
diameters upstream from the outlet. This duct is
also shown schematically in Figure 1.2.
Velocity pressures and temperatures were measured
at 40 sampling points at both the inlet and outlet sam-
pling locations.Figures 4.1 and 4.2}respectively, are
diagrams of the inlet and outlet sampling locations
showing each of the traverse points and their respective
distances from the stack wall.
- 17 -
-------
Ports
To Wet Scrubber
From Salt Drier
Point s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Distance
(inches )
0.7
2.1
3.6
5.2
7.0
8.9
11.0
13.5
16.5
21.0
33.0
37.5
40.5
43.0
45.1
47.0
48.8
50.4
51.9
53.3
(centimeters)
1.78
5.33
9.14
13.2
17.8
22.6
27.9
34.3
41.9
53.3
83.8
95.2
103.
109.
115.
119.
124.
128.
132.
135.
Figure 4.1. Scrubber inlet port and sampling point locations
-------
Ports
o
Gas flow
Scrubber mist
eliminator
54" ID
Points
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Distance
(inche s )
0.7
2.1
3.6
5.2
7.0
8.9
11.0
13.5
16.5
21.0
33.0
37.5
40.5
43.0
45.1
47.0
48.8
50.4
51.9
53.3
(cent ime te r s )
1.78
5.?3
9.14
13.2
17.8
22.6
27.9
34.3
41.9
53.3
83.8
95.2
103.
109.
115.
119.
124.
128.
132.
135.
Figure 4.2.
Scrubber outlet port and sampling point location:
- 19 -
-------
The ammonium sulfate samples, acquired at the
inlet and outlet of the ammonium sulfate dryer,
were taken by Dow-Badische plant process engineers.
Samples of the scrubber water effluent were acquired
similarly.
- 20 -
-------
5.0 SAMPLING AND ANALYTICAL PROCEDURES
Particulate Emissions
Triplicate two hour particulate samples were
extracted simultaneously from the inlet and outlet
of the Venturi scrubber system. Exhaust gases were
withdrawn isokinetically for three minutes at each
of 40 sampling points. During each test, the probe,
Pitot-tube, and impinger assembly were moved to each
sampling point, the velocity pressure and temperature
of the exhaust gas were measured, and isokinetic
sampling flowrates were adjusted accordingly using
an orifice-type meter to indicate instantaneous
flowrates. All field data sheets are included in
Appendix B.
The sampling trains at both sites were checked
for leaks before and after each test in accordance
with the requirement that the initial leak rate shall
3
not exceed 0.02 ft /min at 15 inches of mercury
vacuum and the final leak rate shall not exceed 0.02
o
ft°/min at the greatest vacuum occurring during the
test.
At both locations, an EPA Method 5 sampling train
was used. The sampling train consisted of a sharp,
tapered, stainless steel sampling nozzle, a heated
glass-lined probe, a heated pre-weighed 110 mm Type A
- 21 -
-------
glass-fiber filter, a modified Greenburg-Smith
impinger containing 100 ml of distilled water,
a standard Greenburg-Smith impinger containing
100 ml of distilled water, an empty modified
Greenburg-Smith impinger, a modified Greenburg-
Smith impinger containing approximately 300 grams
of silica gel, a leakless pump with vacuum gauge,
a calibrated dry gas meter equipped with bimetallic
inlet and outlet thermometers, and a calibrated
orifice-type flowmeter that was connected to a zero
to ten inch range inclined (water gauge) manometer.
At the scrubber inlet sampling location, a cyclone
was inserted into the sampling train between the
probe and the glass-fiber filter.
The impinger trains were immersed in an ice bath
to maintain the temperature in the last impingers at
70F or less. All of the sampling train glassware
was connected by ground glass joints, sealed with
stopcock grease, and clamped to prevent leakage. A
calibrated S-type Pitot tube was connected to the
sampling probe and velocity pressures were read on the
inclined manometer. An iron-constantan (I/C) thermo-
couple, attached to the Pitot-probe assembly, was
connected to a calibrated pyrometer. During the
course of testing, the filter temperature was kept
below 250F, but greater than the stack temperature to
- 22 -
-------
prevent filter blinding. Schematic diagrams of the
sampling trains used at the scrubber inlet and outlet
locations are presented in Figures 5.1 and 5.2,
respectively.
At the end of each 120 minute test period, the
sampling train was transferred to a dust free clean-
up area. The volumes of the impinger solutions were
measured and volume increases recorded. The solutions
were placed in glass sample bottles and sealed with
TeflorrS'-lined caps. The silica gel was weighed to
determine the weight gain (as condensate). The probe
and nozzle assembly was thoroughly washed with water,
and the rinsings were collected in a glass sample bottle
with a Teflon^-lined cap. Following the water wash,
the probe and nozzle assembly was then rinsed with
acetone, and the rinsings transferred to a glass sample
bottle and sealed with a Teflon^-lined cap. The
impinger assembly was thoroughly washed with water, and
these water washings were placed with the impinger
solutions., Following the water wash of the impingers,
the entire impinger assembly was then also rinsed
with acetone and these rinsings were placed in a
glass sample bottle and sealed with a Teflori&/-lined
cap.
- 23 -
-------
I
ts)
Heated 110 mm Type A
glass—fiber filter
Heated glass
lined probe
S-type Pitot
tube
*»' Inclined
manometer
Cyclone
with flask
Dry 300 gm
silica gel
Vacuum
line
Main Vacuum
valve gauge
Inclined
manomete r
Vacuum
pump
Dry gas
meter
Figure 5.1. -Particulate sampling train - Venturi scrubber inlet.
-------
Heated
Heated 110 mm Type A
glass-fiber filter
glass-lined probe I
f
S-type Pitot
tube
Inclined
manomete r
100 ml H20
Dry Silica gel
Inclined
manometer
Main Vacuum
valve gauge
Vacuum
pump
Dry gas
meter
Vacuum
line
Figure 5.2. Particulate sampling train - Venturi scrubber outlet.
-------
Therefore, five sample fractions were collected
.(summary presented in Appendix C) for each particulate
sample:
(1) water rinsings of probe and nozzle assembly9
and cyclone contents for inlet tests only;
(2) acetone rinsings of probe and nozzle
assembly;
(3) 110 mm Type A glass-fiber filter;
(4) impinger contents and distilled water
rinsings ; and,
(5) acetone rinsings of impingers.
Fraction 3 was vacuum dessicated, weighed on an
analytical balance to determine particulate capture,
and then analyzed for caprolactam according to proce-
dures supplied by the Emission Measurement Branch,
Test Support Section (Appendix F). Following these
analytical procedures, the filter was placed in a
known volume of water, stirred, and decanted. This
leachate, plus 2 ml portions each of Fractions 1 and
4, were analyzed for caprolactam on a Hewlett-Packard,
Model 5702A gas chromatograph equipped x?ith a flame
ionization detector. The column chosen for this
analysis was a 5-percent Carbowax 20-TPA in Chromosorb
W-AW (six feet x 1/4 inches) maintained at 200C. A
Hewlett-Packard Model 3352B Laboratory Data System was
employed to determine the areas under the peaks. A
- 26 -
-------
four-point calibration for linearity with standards of
caprolactam was performed in the laboratory. A summary
of the GC data, along with the calibration curve and
analytical procedures, is presented in Appendix F.
The remainders of Fractions 1 and 4 were evaporated
to residues at 105C and weighed. Fractions 2 and 5 were
dried with circulating air at 22C until reaching a constant
weight. All weight determinations were performed on an
analytical balance having a sensitivity of 0.1 milligrams.
A summary of particulate and caprolactam weights by
fraction is included in Appendix C.
Particle Size Distribution
A single sample was extracted from the scrubber
inlet duct for particle size distribution determina-
tion. Exhaust gases were withdrawn isokinetically
for six minutes at the stack centerline. A Monsanto
Brinks Cascade Impactor was used for this particle
size sampling method.
The cascade impactor, which was held in-stack,
has five in-line stages arranged in series, each of
which has a jet incorporating a collection cup as an
impaction plate. When the incoming gas stream is
drawn through a jet, those particles with sufficient
inertia impact and remain against a cup. Those
- 27 -
-------
particles with insufficient inertia will pass through
annular slots surrounding the cup periphery and
enter the next jet. The smallest particles which
are not impacted on any plate are caught on a back-up
Type A glass-fiber filter.
Each stage in the impactor assembly was rinsed
and brushed with acetone and the rinsings transferred
to a glass sample bottle with TefloirS^-lined cap. The
glass-fiber filter was placed in its original plastic
petri dish and sealed for transport. In the Clayton
laboratory, the acetone fractions and the glass-fiber
filter were dried in the same manner as the correspond.
ing fractions from the particulate samples, and
weighed. In addition, a bulk density determination
of a sample of dried ammonium sulfate was performed
in conjunction with the particle size determination.
By relating the bulk density of the ammonium
sulfate sample with the size of the jet preceding an
impaction plate, "cut-off" diameters for any given
stage in the impactor were determined.
- 28 -
-------
APPENDIX A
PROJECT PARTICIPANTS
-------
PROJECT PARTICIPANTS
Clayton Environmental Consultants, Inc.
N. Steve Walsh
Timothy V. Mattson
Richard G. Keller
George M. Santorilla
Dusanka Lazarevic
Donna L. Schick
Katherine H, Berry
Cheryl R. Kluk
Gloria J. Kerszykowski
Sandra L.King
Dow-Badische, Inc.
James Martin
Director, Air Resource
Engineering
Group Leader,
Emission Measurement
Environmental Chemist
Environmental Control
Specialist
Environmental Data
Specialist
Environmental Data
Specialist
Environmental Chemist
Laboratory Technician
Laboratory Technician
Laboratory Technician
U.S. Environmental Protection Agency
Dennis P. Holzschuh
-------
APPENDIX B
FIELD DATA SHEETS
B-l. Particulate Test Data Sheets
B-2. Sampling Summary Data
B-3. Particle Sizing Data Sheet
B-4. Visible Emissions Data Sheets
-------
APPENDIX B-l
PARTICULATE TEST DATA SHEETS
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date:
h.
Test Number: O> | ^_
Field Person; foiS
Filter Number:
Barometric Pressure ("Hg); ^ ,
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number; V4 ,Dia. (in. ) ;/7.
Pitot Tube No. J3 , Corr. Factor ;
Meter Box No« &ftt,3, Corr, Factor;
Stack Static Pressure ("H,0) ;
Stack Dimensions: __ *j ' (p "lit
Plume Appearance:
, 7
Ambient Temperature (°F) :
Record all Data Every
Minutes
Meter Isokinetic Factor;
Assumed Moisture (%):
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate f)t Q CFM at
•
// *?
n
"Hg
Trav-
erse
Point
No.
Samp-
ling
(rain)
Time
Clock
,
Velocity
Pressure
("H20)
Stack
Temp
Dry Gas
Volume
(ft3)
InletOutlet
Orifice
Pressure
Differ-
ential
("H20)
Filter
Box
Temp
Last Sampling
Imp. Train
Gas Static
Temp Pressure
("Hg)
5'^-
81 V
. '-01
1-1
5
3. 31
10
V)
no
LI
0,13
to
111. IX
/m
too
10
y\
/
&.
33J
^
310
01
Jin
/.o
\_tf\_
2.11
MO
-y*/
5 -(ft
1,0
l&t
5-
l.o
lot
H)!
l/o
2.10
AVERAGE (TOTAL)
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
Company: ,
Source Designation:
Date:
•P~
Test Number:
Field Person: PL S
Filter Number:
Barometric Pressure ("Hg):
Stack Static Pressure ("H20):
Stack Dimensions:
Plume Appearance:
Ambient Temperature(°F):
Record all Data Every
Minutes
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number: ,Dia.(in.):
Pitot Tube No. ,Corr.Factor:
Meter Box No. ,Corr.Factor:
Meter Isokinetic Factor:
Assumed Moisture(%):
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate CFM at
"Hg
Trav
erse
Poin
No.
Time
Samp-
ling
(roin)
Clock
Velocitj
Pressure
("H20)
Stack
Temp
CF)
Dry Gas Meter
Volume
Temp(°F)
Inlet Outlet
Orifice
Pressure
Differ-
ential
("H20)
Filter
Box
Temp
LastSampling
Imp. Train
Gas Static
TempPressure
("Hg)
5-/1
61
It I
3-1*0
J/n
7?
W
l-
9?
. leto
0.
W
1%
CV
U'
' i
in?,
<$
$
Ifo
HO
loO
ti+
\o\
Uj'ff
(3.0
10
910
M
ofii
310
33d
22CL
(ai
310
WO
o
-7A
03,
iff'
AVERAGE (TOTAL)
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date :
Test Nurabcr:_
Field Person:
ft-
Filter Number:
Barometric Pressure ("Hg):
Stack Static Pressure ("H20) :
Stack Dimensions:
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every
Minutes
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number: ,Dla.(in.):
Pitot Tube No. ,Corr.Factor:
Meter Box No. ', Corr. Factor:
Meter Isokinetic Factor:
Assumed Moisture(%):
Condensate Volume(ml): ;
Silica Gel Weight Gain(g):
Leak Rate CFM at
"Hg
Trav-
erse
Point
No.
V-\(0
t*H1
l*Hfl
P-/1
fc^/1
J!
Time
Samp-
ling
(rain)
(-0*)
10$
i|-
l1/
j-i
3D
Clock
\fao
l%3')
lXty
lift
\M1
It fa
Velocity
Pressure
(MH20)
A M
p,.1f'
Oilfti
OllO*!)
\j i. \jd \/^
.• /L/
AVERAGE (TOTAL)
Stack
Temp
IfO
]1b
H(0
i i^
\i((
i&
Dry Gas Meter
Vo lume
Qtfbfy
3^' $-f)
1 ^~) 1 I "J at
f\f // A *"\ ,
lf^\ **T I/ 'J
/?\ S i L/* /
26%.1'ft
< ,
Temp (°F)
Inlet
lOo
tt)1>
10%
to%
IQ%
Q(.
*
Outle t
V(i
w
^
^
°lj
\
^
Orifice
Pressure
Differ-
ential
("H20)
'{,9J^
f Qa
L7j
Lit
j, %£j
;.3U
Filter
Box
Temp
$33
320
2d6
y.tf
3-2*1
Last
Imp .
Gas
Temp
<^d
•l4
1$
Us
i
T
Sampling
Train
Static
Pressure
("Hg)
0
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
PA -
~ 0
J°
Company:
Source Designation:
Date: 1014 (?$'
t
Test Number:
Field Person:_
Filter Number; ' p-^I4:?.
Barometric Pressure ("Hg
Stack Static Pressure ("
Stack Dimensions: £\- jV*
Plume Appearance:
'/4 ,Dia.(in.);
)
/-/
„,
*•'
Ambient Temperature (°F):
Record all Data Every
Minutes
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number:
Pitot Tube No . £L'$-_t Corr. Factor ; ?-'"
Meter Box No . {<& C -1? , Co r r. F a c t o r; £, <•/£;;
Meter Isokinetic Factor:
Assumed Moisture(%):
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate Qtr, CFM at /5
Y)J? t
"Hg
l,hl m i*4j>uv ^
Trav-
erse
Point
No.
iu-o-
£
.'^
n
;1
<
/..
">
^j,
"l
i .
\?
'V-
F
•:<
)V
\ -
Time
Samp-
ling
(min)
o
p.
u
0
/ J*
/ r- " "
/ .f
/#
.-i/
.•v7'
• * <
,'N, '
'A ;
•^ j-f~.
. • 'v:
^
4->
i<
H
Clock
61 &
Velocity
Pressure
(I!H20)
-0."'f
0.1*
e .' 1 .>-
d.M(\
6 • T v/
L/' . 'f °
o.?/r
r/.>/c
6/,4
h -V 'r
'
(/. s '"1
6. s f
Ot.v;>
o.ri
o,r*>
O.^i
O: I-'!
AVERAGE (TOTAL)
Stack
Temp
K:g^>
or0
-}^
ISO'
f, 5 1
/,vo
(Sc-
[So-
(S,
^•D
( -:> <
.^i)-
f ^
;^-
|-S!T
k<
/y<
Dry G/s"fi;eter
Vo lume
(ft3)
^j^fi
^{.(^
&^:\+
.i
^fc.?'
a^ra?>
3Si-5t
^S'i-1'^
A^ ',' , J>
.^1^,/i?
A^.V
^.T/,-r
£?£J(
^oo..^-
.->,-? o <
,?:'-3-?l
{ >
Temp (°F)
Inlet
i^
^
^
iv7
(>x
(.0 2
/,,S'
(c^(
( 04,
'LOC
Loi,
/ e>6
/0,
/o-'
[o[f.
{ Ov:
t-,L
Outle t
--&©=-
d^
*/' /
v$
^
u'"
^'T'
'-? ov"
T>
?>
',:fy
7 v-
f
^^y
3-o-?
^sr
>^-->-
o o-^-
^X . L T"'
,Z-,'H
^;^
c3'.:il
iA '-X\
Filter
Box
Temp
•£/«
/v / /'
UA ^, ' U-
^ ^ ;
d f ^r
.^ir
' ' s
<2tt
Last
Imp.
Gas
Temp
(. V
;
t--- */•
64
^?
tJ-
'?.-••
•?>
^
Sampling
Train
Static
Pressure
("Hg)
.:3.,
,'^.C '
-4.0
~. i1
.^o
. *\
•fi. • ^ \
,?,6
i
1
'^
(. r.
/. 5"
c^O
P^
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date :
Test Nurabe'r:^
Field Person:_
Filter Number;
Barometric Pressure ("Hg):
I C
Stack Static Pressure ("H20):
Stack Dimensions: A-' L'"
Plume Appearance:
Ambient Temperature (° F) : ^5*''
Record all Data Every +
Minutes
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number: , Dia. (in.) ;'J/
Pitot Tube No . .73 , Corr. Factor ;
Meter Box No. ;.../,.,. -;, Corr,Factor;
Meter Isokinetic Factor:
Assumed Mois ture (7.) :
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate CFM at
"Hg
Trav-
erse
Point
No.
1
•4
: ' ./-'
,-\
™"N
/
3 ~ !-
_>"•>
S-i.
^' v*
<•""*'
D- '
/ '"
-"^
S-1
-n-l,,
* ' i ;
~3'\(
-^ 4 •
Time
Samp-
ling
(rain)
5!.
\ '-•
5 ?
Clock
/• ,- /i'l «M
o-tr
0/t'>
0.-?j
6^?-^
o ,. -;
0,1)
6,^-
xft
1 •:">•->
i-. A i
f,.fb
l'/M:
^' x'..-
L' \
/
A s •>
\S '^'
AVERAGE (TOTAL)
Stack
Temp
(•F)
/^5
\T5
• ••\|.*
<, / . y™.
('"! o
rrfHt;--
(~\ o
tf^'
(.10
i-io
{^o
.f ^~
i.i^
'^u
\*1D
! • ''V>
h >
HO
llo
, /
i ' -.
Dry Gas Meter
Volume
(ft3)
^o.5:fi 5
3o£.,*}-
2/^.^
3i 3. f,r
31 3,1 £
3-/6'^b
•-> i ? ^ ''
^ I b . • •
.^ '! r-v(j-l
-' v-uN.
>J^.fo
3^-. i1/
5>vl;-
^,f,3f
MVK
?a?>L'.^
1 J,0 O'A
'J ? , « <^-'
%-JI 11
J ' 1 s
( )
Temp (°F)
Inlet
[of.
f^-
/ >7C'
Try.;
;.£:;
\fl *
• -jj
l'.6t
l'^
/iD
f^ .
lt-
fv>
i [ ;
f i ;i-
,'/ -\
Outle t
<-M
1 b
<:\>(:
1 *'
I2
••I-''.
/ ";
If r
'•>'•'
iV
e/v
;.o-;' •
(eO
/ oi:
t fct)
JKJ-C
/'<>
/,.::-
"io'-f
, /
1,0^
/ , '
; O"'
Orifice
Pre s sure
Differ-
ential
("H20)
1 P ^
2-l"M$-
Aos
J /,
>' • '- -fr
o* - ^g
.^'^
^•^.
,^. 0
^•^
1 -/.
<"V /uf
,".^'
.^.'t'/
v!.®
1 it *-
.,' L— t-^
!• -j-*
.^•5<
x' /.0-
Filter
Box
Temp
(°F)
^.^
^fo
.-70S"
Last
Imp .
Gas
Temp
(°F)
'J'M-
^1
. ••».•%
/ /
Sampling
Train
Static
Pressure
("Hg)
3 • u
-> r
t^-"Cj
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
\0/4l'
7)L
Company:
Source Designation:
Date :
Test Number:^_
Field person:
Filter Number; ' y ' '•••(fh- i 5
Barometric Pressure ("Hg):
Stack Static Pressure ("H2(
Stack Dimensions: 4-1 (,"' I
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every
O,
Minutes
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number:
,Dia.(in.):
Pitot Tube No. J>; ,Corr. Factor;
Meter Box No . |y; •:.- ~';*. , Co r r. F a c t o r;
Meter Isokinetic Factor;
Assumed Moisture (%): •
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate CFM at
"Hg
Trav-
erse
Point
No.
i-H
5-!-'
*>•(<>
6-ic
5-P
*>•$
^
*.<\
Time
Samp-
ling
(rain)
ii?
W'
10-
10^
|0?
lll:
ii
^•3. «is
35t^S
J? < •'••' '-' C
J-..-J ?..''O
'^,/ ^-;"l
^^•w" •• "
^i:6fy:.
j>(»S OD--
/c-Mo^
( )
Temp(°F)
Inlet
i/^'
/,':,,'
-i"i:
n"^
Kc
/ / ">
' \ -'
IU
t .
.• ' ^f-
/c'-'
Outle t
'f 1 . -
1 O'V-
/'/y..-
ico
/•'•'
/o^
/* 5"
/fc ^
/Ct
'-"r
' •--''
- c » ^
1 - -
•; -'I
Orifice
Pressure
Differ-
ential
("H20)
^.^
^,o ->
^|r
^ V
-•- u/t-
J.6?
if
2A6
,1 ri
. — -.--—--
^.L<
Filter
Box
Temp
(°F)
.&&
Last
Imp.
Gas
Temp
(°F)
H
Sampling
Train
Static
Pressure
("Hg)
"' ' i
-71 <~J
3..0
5.o.
-)
oX t o
V
,,-« 0
^.o
J.o
Clayton Environmental Consultants, Inc
-------
SAMPLING TRAIN DATA
Company: €V $ '\Q-^t (o
Source Designation: \fk., QJL)(
Date :
J0-4"l^ Filter Heater Setting:
Test Number: P~ '^
Field Person: PL."5
Filter Number:
Barometric Pressure ("Hg): ^1 -^
Stack Static Pressure (u.
Stack Dimensions:
*^») : /9. '7 M»,
3
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every
Trav-
erse
Point
No.
>
1
^
4
""?
d
4
tf
1
i
?
ci
I0
if
n
c* O"1"-
H
w
(1
<^~. •
lip
(7
Time
Samp-
ling
(rain }
0
•3
a1
q
l.>
i^>
II
„•?
,?<
f
I
01
T 1
•fO
33
3U-
-^
^
M
^
Clock
|4i^
KI,?
H,^-
H'J1/
1^1
H30
W'tf
\^k
IW
Ml
IW
iM
l^l
iW
Hf)
l4f
1«
\m
^ Minutes
Probe Heater Sett
Nozzle Number ; ///
Pitot Tube No. ^3
Meter Box No.^7/?^
ing:
,Dia. (in.
):O.Z41
, Corr. Factor: £,$2$F
-3, Corr. Fact or: Q.^c-t
Meter Isokinetic Factor:
Assumed Moisture (%) :
Condensate Volume(ml): (yO.Q
Silica Gel Weight Gain(
Leak Rate 0. 0 ) CFM a
Velocity
Pressure
("H20)
0,11
o.l^
o, %*
.. A1
I1«')
|^(P
Dry Gas Meter
Vo lume
(ft3)
5k£. WO
370^9
M.tp
^HtHS
"z-nti
Sfalb
w.W
sn, vo
t%. 1
33,tf
•fl
{01
Outle t
9
'Id
1Q
'io
11
ij
K
lot
g): "31.1
t "Hg
Orifice
Pre ssure
Differ-
ential
("K20)
2H2
J.rf
2- (ti
3^0
J.fa
3.1C)
/
J-fo
3.^0
J.0!/
2M
3,fo
a.tf
3.1?
3.yi
250
3- 3 1
3-W
Filter
Box
Temp
(°F)
d/V
3/0
3I~0
3ft
JI5
215
^a
^^
^,^..2
2M
3M
33c
330
y^
2*>d
tod
£30
Last
Imp .
Gas
Temp
(°F)
fo
n
7J
11
T*>
r$
l(f
7^
Kft
1(*
Ml
n/-
i \-
lu
77
ti
fo
%o
Sampling
Train
Static
Pre ssure
("Hg)
Clayton Environmental Consultants, Inc,
-------
SAMPLING TRAIN DATA
Company: b\ H T~c^> /c c.
Source Designation: 'yhsis<^. f: /•£•> ^L~J^/'
Date :
/,C'-<:/-7# Filter Heater Setting:
Test Number: P~ 3 Oa&t 1
Field Person: '3)Ls5 ' 0
Filter Number:
Barometric Pressure ("Hg): ^ <^. £5"
Stack Static Pressure ('
Stack Dimensions:
H20): ^ 7 i£.
y ^ " / D &
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every
Trav-
erse
Point
No.
i <7
A
(rt
kij
itc\
1,a
.16
1?
$l
N
^0
33
,(,
V
Clock
tff
I ^ *f '/
i^'7
rtfy
ifcj
\*fiu
\^i^/\
\6tf
i(g$
I(B\\
iblt
i (o \ 1
1.
i/flM
l(*z(*
I fa ^
itt^l
^3 Minutes
Probe Heater Setting:
Nozzle Number:
, Dia.
Pitot Tube No. ,Corr.
(in.
):
Factor :
Meter Box No. , Corr .Factor:
Meter Isokinetic Factor:
Assumed Moisture (%) :
Condensate Volume(ml):
Silica Gel Weight Gain(
Leak Rate CFM a
Velocity
Pressure
("H20)
A 6? $
D, ti(D
D, £?7
•^ -i
<-''/
ft 7.^
0,7'f
_bM
/
D/l-51
CJ7
5/1 7
D, ftD
^g^
^^/O
/9/^
oM
0,1 a
i
AVERAGE (TOTAL)
Stack
Temp
lifb
! V t/
/ /) T
/^
/^
/xV
\^'
\$(n
1^
[ ^
I&
[fa
n^
-Lt&L
/
,\ J\ )
i n
n
Dry Gas Meter
Vo lume
(ft3)
mis, i
1 t.- i sf7\
420. 1*1
4-33>-lti
4ft fa
A2%. V6
/i f') \ ^j .
43 ). 30
433, 1<2.
426,3(/.
4.^ ^'l
* /
W,a/
4W.-0
¥a 4
4^V,f/
4^ C/ v1 iO
U-j TV A ! /
,
Temp (°F)
Inlet
hr]
11 0
Hi
ID*)
lit)
I/O
113
lf>0
112
lit
\Cl
11$
lilt
n IP
i/(>
f/v
in
Outle t
fO/
ID!
toO
/£!
Id'-3)
}0^
i&t
iot
0)7
If \ ^^
^ -S
1 r\ /
/ LSI/)
IDif
loie
in-,
Iflb
1
S) :
t "Hg
Orifice
Pressure
Differ-
ential
("H20)
_£./
M
$-K
?.?>4
J. 40
* 2f
2^4
3M
' " i
.3.46
£Je£-
£.1%
P.9v
3.19
A, /) //;
C? t U yJ
^ l£
Filter
Box
Temp
..^30
£30
,930
WO
J30
3?o
2-M
$30
330
205
- 3o5
3-6*>
20$
M5
305
;)0^
Last
Imp.
Gas
Temp
SO
80
w
%Q
¥0
$o
$0
%0
ftd
Xo
77
77
77
77
7/
77
/
Sampling
Train
Static
Pressure
("Hg)
•
i
l
J
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date :
Test Number:
Field Person:
Filter Number;
Barometric Pressure ("Hg):
Stack Static pressure (MH20):
Stack Dimensions:
Plume Appearance:
Ambient Temperature(°F):
Record all Data Every
Minutes
Filter Heater Setting:
Probe Heater Setting:_
Nozzle Number;
Pitot Tube No._
Meter Box No.
Meter Isokinetic Factor:
Assumed Moisture(%) :
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate CFM at
_,Dia. (in. ) :
,Corr.Factor:
_,Corr.Factor:
"Hg
Trav-
erse
Point
No.
I-J
10
11
1.
l°\
IC'\
Time
Samp-
ling
(rain )
/0.3
!$
1 r> #
/ •' '
!\4
I>1
i'^
Clock
/ / s/ O '^J
/ CfcT __/ f
jfa ft
Ml
Hoi*!
llrf'l
It/to
Itofa
Velocity
Pressure
("H20)
0, 96
i
/) (^1^.
0.10
0 ^/'^
/) <^ o
\j ,\ \ t~<.
J.-5./7
AVERAGE (TOTAL)
Stack
Temp
Ifc
Ifa
lift
!$*>
i$5
t K
i*a
Dry Gas Meter
Vo lume
(ft3)
44* 1. c)0
4-b5,3
4- (/? 7 %
410. %l
$1*), If
411 Jj
47^r
(//^••- '•>
Temp(°F)
Inlet
us
/M
l/h?
-A1&
in
1 /
in
i
iM
Outle t
I0(/y
101
/Otf
iDIp
l to*
l!)7
'[-
-1*
Orifice
Pressure
Differ-
ential
("H20)
A \<4-
j,^5
3*lTj
£W
3. c4
• & Of
3- u
Filter
Box
Temp
3 fa
^
£$$
do**
2- 07
Mn
Last
Imp .
Gas
Temp
77
77
77
77
H
11
Sampling
Train
Static
Pressure
("Hg)
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date:
u 4-£. i V$f-£oi;-br,
Test Number;
Field PersonT/^/y/<; / TV/24
Filter Number:
Barometric Pressure ("Hg):
Filter Heater Setting:
Probe Heater Setting:
Nozzle Number: 3/.
fc 0
I
M
. (in, ) ;ff,
Pitot Tube No. ,j^,Corr. Factor ;
Meter Box No • #/)£, ,Corr. Factor; ,
Stack Static Pressure ('^O) : \ //
Stack Dimensions: . A • S" S/'
Plume Appearance: '
Ambient Temperature (°F) :_^
Record all Data Every _^t
Meter Isokinetic Factor: /$
Assumed Moisture(%):
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Minutes Leak Rate
CFM at
2-
"Hg
Trav-
erse
Point
No.
5-^
"TS-
.1
\
s
• (,
"?
f
1
0
U
\i
ft
\f\
c
|l:
1
Time
Samp-
ling
(rain)
O
V
-a.
b
Y
/
> •'
l('
i :
;/t
L '
i
3 ,
y>
96
37
4-
4^
•4-t
Clock
|$<^
Velocity
Pressure
(MH20)
. JC-
/ ,<>
//^
.^ !
i
. ft~
'; •
. "U1
•S(/-
,v'^
,p
/y\
M
i/^
/-5
10
/!
' 1. ci
AVERAGE (TOTAL)
i •
Stack
Temp
7.r
;/,>'
/
7%
7C
"7?
1C
7C"
/-
7f
7C
?r
?r
7S
7:7
1 ^;
7s"
Dry Gas Meter
Volume
(ft3)
316, )T
•i /^ ;'• /
3 7 3X'
•?j'7 - /
*,fT,;x
3V 3, v
"i^ .
~-, C ""? ~^
3i-6,G
:><<• l(v
"3 ^ 3, >
7^zr.-/
>(>6-6
"36S/G
37 1 . T"
37 >J
•57C-'t
^7.^'A
( )
Temp(°F)
Inlet
ft
<\'
y/
q u
c\\
|OD
(Q(
(0\
• ;/
i '' "
//c
Ifu
1(0
I/L
I:A
fw
ite
ir-
Outle t
?l
£> /
J (
/'/
rG
f-C
ru
flY
L-
T->
f 6
f / '
ff
?4
C/S
pf
/^
fc°
Orifice
Pressure
Differ-
ential
("H20)
i )'
/* '*'
6y
/
//;
7^
;i
76
x5^-
?->
7 o
7^
7i
Sampling
Train
Static
Pressure
("Hg)
U - °
& „ o
cJ ( U '
U -o
o .. o
')<£
•? >'~)
€c
-------
SAMPLING TRAIN DATA
Company :
Source Designation: 6*-' 7 ^e( ( 5(-/^ - >- fiS^i^
Date :
Test Nurabe
r :
7 ~ i fe^-vii ^
Field Person: / r f ),; s /~J~|//y]
Filter Number:
Barometric Pressure ("Hg): '~l.tf , % I
Stack Static Pressure ("
Stack Dimensions: -4 , <
Plume Appearance
H20): t //(
;• / ^
/
•
Ambient Temperature (°F) :
Record all Data Every
Trav-
erse
Point
No.
\i
r'
L'-
U-^
9
- 9
' 1-
(J
•)
s
^
(i;
li
- (V
. P;
Time
Samp-
ling
(rain)
L,l
5'1-
\
1. "i
!.'• '"
. -e-
(i'^
/;• <•
'•t
•^ y
-;-S '
7)
} /
84
st
fo
^
ft
Clock
\l'l'-i
"" sTT7
^Jp',(_^
5
Ve loci ty
Pressure
("H20)
!
3/2-
5..'C
^§}l
/
/ r . i
i t
- ,^g
• XI
-•6<
/7^
,/:0'
JC-
*o
\ ^*
\,r
AVERAGE (TOTAL)
Stack
Temp
/r
7C
7<
7f
7 \
-,^
O[-
? r
?r
7f
7-T
7C
7r
7^
^f"
-)S
Minutes
Filter Heater Set
Probe Heater Sett
Nozzle Number '. /I
Pitot Tube No. "^
Meter Box No. J^/JC'
ting: ^c
Ing: J~£
£^,013.
,Corr.
^, Corr
Meter Isoklnetic Factor
Assumed Moisture (7.) :
Condensate Volume
Silica Gel Weight
Leak Rate „ 0 u
Dry Gas Meter
Volume
3<5',S
^H')
3^V. ,Y
3/y. ^
3^ "L
3r/;>
">f >^
'-3H'">
T> ^)' ^ ;. ^
^y/'"1?
^Tl.u
400,1,
A±01±
^6'J?
460/C:
^fcO/>
4/^^
( ,
Temp(°F)
Inlet
(2?
IK"
(\
^
( / :
[ i.^
I/?
/ /(7
V
/c
i/°
/ / ^
I/O
f/o
1 / f
p....
(Its
1
Outle t
/O^
/ ^
f-'i
x^
/C.'/
//£
//^
/^!
//^
// ^")
I/O
I/O
l/c
J!L'
IfC
(1^
Orifice
Pressure
Differ-
ential
("H20)
2.,)
o,^
3 / ^-
l.-C'l-
' //'•"L
xr/
f~~~"*
5"
2o5
lor
•^ ... /'••
^^^
Last
Imp.
Gas
Temp
>>
?>
•;x,
uCc
r
5'C'
?5
-jc
7o
}*
&£/
& /
'•'•7
c-9
/ c?
^.f
Sampling
Train
Static
Pressure
("Hg)
^cQ
<(<£
4,&
ti. c
0 ../ ;
0 , o
£'t O
0 . 6
00
o , a
c',0
='-'-' , <^
^ 0
0f&
//
-------
SAMPLING TRAIN DATA
Company :
Source Designation:
Date :
P~ I
' ,
Test Number;
Field Person:_
Filter Number:
Barometric Pressure ("Hg): ^
Stack Static pressure ("H20) :
Stack Dimensions: "4 f
^,
i.i-
AVERAGE (TOTAL)
Stack
Temp
7f
?r
^\
7 r"
7<7
7\"
?r
105
Dry Gas
Vo lume
^
"«/ v-
h^
4/ 1.^
A ~LC , I
A~ i ^
A 1C&
4"L^-
fti,oy
( : )
Meter
Temp (°F)
Inlet
III
K"
i?
~Q
3°
1 >
p;;
Outle t
/ /L
l/£f
//r
//.s
[ i $
n(
•i /f
Orifice
Pressure
Differ-
ential
("H20)
T, 3
i^-i
i_c7
i / 7
i.$
z ;?
i,f
.- ( —
Filter
Box
Temp
Icf
7A"
la;
7^;;f
^-r
?/;.r
?.c-r
Last
Imp.
Gas
Temp
6f
fa
C/
(C/
6/
6/f
£/
Sampling
Train
Static
Pressure
("Hg)
2^0
L.-<9
1 ,3^-
?.4~
2/r '
^/5~
4^-
-------
SAMPLING TRAIN DATA
Company :
Source
Date :
Designation: '^xL.fi.uhftcS' ( Ou-TUel ^
; {V - 4
Teat Nurabc
~~7 ' &
r : \ ' '- 2—
Field Person: ('V/M /' T(//?1
' ' ' ; '
Filter Number:
Barometric Pressure ("Hg): JL9. ,?^
Stack Static Pressure ("
Stack Dimensions: **\ *
Plume Appearance
H?0): A 75
5" / ^/
*
Ambient Temperature (°F) :
Record all Data Every
Trav-
erse
Point
No.
u:-3v
2.
3
4
c
6
/
1
6
/-.
!/
• 11-
P?
(4
r
^,
(/
Time
Samp-
ling
(rain)
O
"S
6
fi
i'i
;C
\
M
2.4
J?")
>'
^
3t
~'7
4v
/ /•*'"'
4?
Clock
CfS'o
P)
,, i
Velocity
Pressure
("H20)
i - 1-
i , v
;(,; )
,(,]
/ \.
i 6 >
1 ^
t&i
,?7
/7\.
L,V-
/-S"
/,C'
4
(^
^ /xl
z-.o
AVERAGE (TOTAL)
v. '-1
Stack
Temp
7S
?r
?r
7.f
"7S"
?\
•^
7f
'^\~
? r
7C
7T
?)"
7f
"K
?^
7f
Minutes
o
Filter Heater Set
ting: ^. <3P
Probe Heater Setting: ^ £-"'
Nozzle Number ; jy
Pitot Tube N0.3S7
Meter Box
No.^/l^^
,Corr.
"4,Corr
Meter Isokinetic Factor
Assumed Moisture (7.) :
Condensate Volume
Silica Gel Weight
Leak Rate G rO \
Dry Gas Meter
Volume
(ft3)
4 "? / ^ /6%
^33 ")
^3(,,(t^
^\3f'9
^•\v /;,
^46;^
4t-.-6
44)^1
4 4 £f
^^?'C
^4C';;
4 f U ^
4^1,5
4T5>c-
^ 7? ,#
465^"
f4,>^
c )
Temp (°F)
Inlet
7^
?c
°i /
[Qi>
I c/
(o\
ioC
t>
'\\o
It*
ll'J
|/4
//(•
(1C
(K
\IL
M
Outle t
?£'
/^<
/ 2
/6"
^
f^
^
^
f')
M
1A
f/^
^P
/6V/
/i^9
I^L)
f 0 ^
Orifice
Pressure
Differ-
ential
("H20)
/•Iff
i^r
,/?f
/ 3 £••
01
t^\
, rr
"" i
'"/s"
/'/3
1.6
/•f
?-,/
7-"1
2 i
--> "L
^-' 7
Zt
/ vX^1'
(in.
):£>,/ w
o<&
£ , &
0,3
d , £
0
-------
SAMPLING TRAIN DATA
Company :
Sourc
Date :
e Designation: <•'><-£<-•}}/) t ^ ( ocT7- '"/
In -- 4 - 7 ?
Test Number: ' P-("l ($&£(]
Field Person;. ' /^tf/ f / 71//K/
Filter Number: '
Barometric Pressure ("Hg):
Stack Static Pressure ("
Stack Dimensions: ^/ / <
Plume Appearance
H,0) :
) u;
»
•
Ambient Temperature (°F) :
Record all Data Every
Trav-
erse
Point
No.
/'y
/ 1
lc
S ??X
&
"!>
4
6
n
g
li
\u
ff
il
r-7
Time
Samp-
ling
(rain)
S~l
vH
i
£ <-:';
- —
£>
6G
C, Li
'li
1C
7x
f\
fl
c\k
V?
HI
Clock
fi|-:#-
$ : #
*
^
Velocity
Pressure
("H20)
('1
M
/.v
'T'-
»' J *'"'
/)}'
^i "^
/ A / ,'
/^ '' '
jV
. (0
,$(?
/I ^
(y /-.
t$5~
f - f
AVERAGE (TOTAL)
Stack
Temp
?r
~iC
?r
7C
?v"
-?.r
7r
?5"
7 ^1
4^ $*\
477,2-
/f)f ^
4f^-
4H .£
4^'\o
4\x4->
^ffA-
4t^«v
tfi
/ • :
1 /i
! 1-'
I (ji-'
\ n
(U
1 q
\u\
} //i
1 L4
flA
Outle t
fc<\
(c\
lot
I(M
//
f/4
//_//
f/4
( ^4
i H
/ /^
i/4
.////
//4
f /4
//4
Orifice
Pressure
Diff
enti
("H2
er-
al
0)
1 < T
7^<"
2^
;^
/x
/. t
*
• .
/,/
/'/
('1
/•'/
\,1
I'/
(;/
(V/
//x~
- /.
f~~cS' —
*7s.
(ml):
Gain(g):
CFM at 2..O "Hg
Filter
Box
Temp
/?r
t'l C
!cjr
(^
2tfr
%o
110
i/o
y(::
We-
IfO
v/0
^/^
V^J
?,/ ^
Ho
Last
Imp.
Gas
Temp
7/
7/
//
//
^ /
7;
.^ /
/y
?/
//
?/
71
~)(
)/
,>/
/>
Sampling
Train
Static
Pressure
("Hg)
^'6
^ ' O
1*0'
6.0
6,t>
O -O
0,0
6 .- d
0. 0
o . a
o,&
0<.~o
0,0
d,c>
6s e)
0, 1)
*?(« If^^npr, i« T. •»!«,(%-,P. ^ *^n"1
-------
SAMPLING TRAIN DATA
Company :
Source Designation:
\
6-tf S
Test Numbcr:_
Field Person:
Filter Number:
Barometric Pressure
/J
_/-'2C-"> - O
("Hg):
Stack Static Pressure
Stack Dimensions: <
Plume Appearance:
("HoO):
,• A
Ambient Temperature(°F) :
Record all Data Every
Minutes
Filter Heater Setting: £_
Probe Heater Setting: fc
Nozzle Number;.!
,Dla.(in.)iQ,
Pitot Tube No.JJj_f,Corr. Factor:
Meter Box No . Kk."1^, Corr. Factor;
Meter Isokinetic Factor;
Assumed Moisture (%) ; -4.
Condensate Volume(ml):
Silica Gel Weight Gain(g); ,j2 /. (^
Leak Rate £*, U f CFM at 2.& "Hg
Trav-
erse
Point
No.
l(\
(f
(i-
o
ff
Yi
1,0
Time
Samp-
ling
(rain)
ff
A, ^
i,C
/(' \
1 ( '•
HA-
i
I
1
pL,G
Clock
Velocity
Pressure
("H20)
/ '"?'
i
•'
4
,t-
,7
li"^-
1,1
2./^\
AVERAGE (TOTAL)
Stack
Temp
I/O
//o
//6
// ^
//o
f/t)
.33.°!
,-
Dry Gas Meter
Vo lume
(ft3)
^
W*(
^00 £
^0 1 , c/
$b$f!
Sostt'
5(['<\
h\ ).r
Tlb.ri
•' ' '• *
0 i-**/*-i i r<
f JrJt Lx *4* \
Temp (°F)
Inlet
|U
flJ
\]J
>
'-%:
)],
a;6-
7
u,
Outle t
l/'i
114
(lf\
1^
I («
i /4
II Is
C^IMV i3
T'^MM'/M
Orifice
Pressure
Differ-
ential
("H20)
(,(,
//?
2,0
2, , U
l.i"
Z./7
^ /' ^'
u^
Filter
Box
Temp
T/^
VC-
1/6
I/ 6)
"L//.
l/^
^/,;
Last
Imp .
Gas
Temp
(°F)
")/
V
7$
"?y
)-}?
7}
") )7
Sampling
Train
Static
Pre ssur e
("Hg)
to
<.1
,?'C'
?.. 0
3 -6
3' o
z(,c
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date: /,",— ^\- -") (
c- /dc. ft ^
C
Test Number:_
Field Person:
/~li/'-'.n
Filter Number;
/}-
Barometric Pressure ("Hg) : -J, Corr.Factor:
Meter Box No . ffioffi., Co rr.Facto r; //^j_j
Ambient Temperature (°F) :
Record all Data Every _J
Minutes
Meter Isokinetic Factor; /
Assumed Moisture (%); ^ "%•
Condensate Volume(ml): _
Silica Gel Weight Gain (g) : __
Leak Rate fc , Q I CFM at / C
"Hg
Trav
erse
Point
No.
'••"'
IA, (__
'--
";
•':(
<;'
6
(<
i
. j ;_
-
I"'
i L
1 :
\ '
/C
( I'
(I
Time
Samp-
ling
(min ]
' 6
"i
6
Y
i.-
/r
^
'L7
-^
/- :7
'' O'
'V';
W?
"V(
7 L'
' \ *•«•
"r N-
Clock
'\\6
^i$&.
&W>
Velocity
Pressure
("H20)
/, ")
(. >
n?
^i
^c
;?^
7 •'
f '; i
• ,") u
.7^
( • 1;
1/6
,r
• G
\(u
/J
1 ^
AVERAGE (TOTAL) V^X
Stack
Temp
7/;.,
/ii-C
/r-
i ^
/;.<
/cS
/6s"
/of
• /^s
ttf''
'(L'\
!uC
lc\
ior
fcC
/,.r
/6S
Dry Gas Meter
Vo lume
(ft3)
5\g ^ y
5/$,t
^'lo/i
•*,
^M.i-
S"'LC-^
5^tL
5^6,0
^>/.?.,
-^ /
^->1^(
5*3. 7 x€
f)/^
VrlA-
b~1'^-'
c'^t.?
WC4
)
Temp (°F)
Inle
^/L
O/-
cl^
-(Co
l(fy
[(/'--
/£$'
11^
!!u
1/1-
1 14
Ilk
(lc
T.I..
| ¥{
//'c
(f?
Outle t
C(^
Cfl-
'? l^
7^1
^;,
'/f
V c/
Ct{!
/Of--
1 ot-
ic I
\<-[\
\u^
i u~
(fc
[v
Orifice
pressure
Differ-
ential
("H20)
1,4
//^
//?
f. n
, f 2-
r\ ^
.If
,r/
/.f/
'12-
/ , /^
1.0
l>Ll
7./r
Z /^
~Lo
0 ,.C
f) -&
6.&
6 ,o
G,d
f'Q
$,0
2,ti
'i,®
2,4
t-o
^:, O
r" r
-------
SAMPLING TRAIN DATA
Company:
Source Designation:
Date: / {, -•
r,.,l^- /
Test Number:
Field Person:
Filter Number:^ /-/ ~~ =^f ,- 1p (/'t
Plume Appearance:
Ambient Temperature (°F):
Record all Data Every
I
Minutes
c-
£,Dia. (in. ) ;
Filter Heater Setting:
Probe Heater Setting;
Nozzle Number ; -
Pitot Tube No •_'?^"9 Cor r. Factor ;
Meter Box No ./LVfcffia , Co rr. Factor;
Meter Isokinetic Factor;
Assumed Moisture (%) ; -$•%.
Condensate Volume(ml):
Silica Gel Weight Gain(g);J
Leak Rate __/)'.£/ CFM at
"Hg
Trav-
erse
Point
No.
(".';
n
~LL-
S-3
— \
1.
4
C
(,-
^
\
c,
i' (.
1
A,
(v
Time
Samp-
ling
(rain)
^ (
>y+
^1
L-,
~
(,.")
(,.(.
\-(l
^r
Ti
:V'
'< IL/;
V !
Cl i
cin
^
Clock
. . ! /" 1
1 •
Velocity
Pres sure
("H20)
l-i
,1
i
. L
.{£-•-
//f
/
^
« '^;
.' /-H
, i . /
,1)
,7*
/ -P-
tf'i
i'!
AVERAGE (TOTAL)
Stack
Temp
%fc
1 C'S"
/,:s
lit
[r<
/(jC
( ^
/t-.r
/;'. C
/ /- <'7
/ U f
/•t/r
t ^
/CX/
\frf
If S
Dry Gas
Vo lume
(ft3)
6T/7
^.Til-
5-^6.-.?
(yS^ , 0
ST^-
T6 / . /'
9c ^.?
5^-5,1
.yt ;) , ( -•
5"6y.,/
5?/,*j
^ry
.no
^"Ax
•
5'^'X-
5tM
-T9 i • '"-
( )
Meter
Temp (°F)
Inlet
^-/:
-y.
\}j
f V.
n*t
/Zc;-
[7?f
\w
2(-
(
V
PV
/ >^
(3^
(3,.
'•>:
/'./-
Outle t
/A"
/()
• ;'/;
//i'
i
//>
t
(if:
i /.?
////'
/^/
1^
( 7.0
f 7- 0
/ 1. 0
Orifice
Pres sure
Differ-
ential
("H20)
2., 'f
2^
^' ^Y-
/4
\, \
''/
(/ '7
[t'l-
\>l-
(-/
h I-
i / /
h c-
/
/
I
, i—-'
/i
Filter
Box
Temp
U. 5
z/r
1.1 C
Z/ c
'Z/r
°-/,r
?-/.V
. •-» ***
^1 ^-C '
7. W
2. Lc
1-1
It
?c-
"~*l
)r
A-
;v
'?/_
/,•
7o
>V
?c,
?c.
?c-
?C '
?(.'
Sampling
Train
Static
Pre ssure
("Hg)
3,z:
X ^
\ ^ '
@'&
S9$ J^^
n '* • (i
&>6
c . o
6' /r
() ~7—
C: . 7_
(j. (
c.t>
& ' o
0'
OȣL
Clayton Environmental Consultants, Inc.
-------
SAMPLING TRAIN DATA
f - "^ ('
Condensate Volume(ml):
Silica Gel Weight Gain(g):_
Leak Rate f) . O
CFM at
"Hg
Trav
erse
Point
No.
14
(\:
a
r\
. v
(q
V
Time
Samp-
ling
(rain)
Tl
I i v
/ K
' :•?
: ' |
, / 1
]
}^L
Clock
Ve
locity
Pressure
<"H20)
;,>
I , c
I ^5"
l<~)
•%'C-
^J
'^.'?
5t^ ' >
C^7./
Ul-lt-
i'.-YJ )
Temp (°F)
Inle
/V
/X
l>
1>
l^c
f
/ '-^
Outle t
/ CO
^2-c
(fr°
I l-c
l'^
/K-
lo
no
Or i f ice
Pressure
Differ-
ential
("H20)
1^'
1,1
2 , -
2.-^
Cpx'")
'Z./7
./-
Filter
Box
Temp.
S/c
V A-
Z / C:
T /
U ^
7-/ /
Last
Imp .
Gas
Temp
$U
ft
';)(.'•
$c
/•>'•
)'t
,Vt;
Sampling
Train
Static
Pressure
("Hg)
t.c
/s,r
/, .r7'
3ocr
•-V ^:^
3.JT
3,5 "
•
-------
APPENDIX B-2
SAMPLING SUMMARY DATA
-------
TABLE B.2.1
SUMMARY OF STACK GAS TEMPERATURE AND FLOWRATES
Sampling
Location
Inlet
Outlet
S ample
Number
P-l
P-2
P-3
Date
1978
10-3
10-4
10-4
Average
P-l
P-2
P-3
10-3
10-4
10-4
Average
Tempe rature
Op
182
188
188
186
105a
110a
104
106
°C
83
87
87
86
41
43
40
41
Flowrate
dsc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
ac fm
53,100
52,800
52,900
52,900
60,600
59,900
60,500
60,300
dsm3
min .
1,220
1,200
1,200
1,210
1,500
1,470
1,500
1,490
asm3
min .
1,510
1,400
1,500
1,500
1,720
1,700
1,710
1,710
a Due to a malfunctioning pyrometer, these temperatures are estimated based
on the preliminary and subsequent temperature traverses.
-------
Plant Dow-Badische
Sampled Source Ammonium Sulfate - Inlet
SAMPLING SUMMARY SHEET
Location Freeport. Texas
Run
P-l
P-2
P-3
Date
10-3-78
10-4-78
10-4-78
NP
40
40
40
Pm
2.34
2.65
2.68
Pb
29.81
29.85
29.85
Vm
103.630
108.387
110.737
T
•"•m
99
102
104
Vmstd
98. 102
102.272
104.126
Vw
76.7
84.3
91.1
Vwgas
3.61
3.97
4.29
%M
3.5
3.7
4.0
Md
0.964
0.963
0.960
Run
P-l
P-2
P-3
MWd
28.96
28.96
28.96
MW
28.57
28.56
28.51
Pst
+0.7
+0.7
+0.7
Ps
30.51
30.55
30.55
°P
0.828
0. 828
0.828
-V/APSX(TS+460)C
23.28
23.13
23.17
Vs
3343
3320
3329
Ts
182
188
188
Tt
120
120
120
Dn
0.249
0.249
0.249
7.1
88.8
94.1
95. 9
,14-
t-M'.t
0
8.x Cp
IT
* IT» * *M) * v.
ud
;j • _ Ji
t, « lt « P, « H4 I (D,)'
100 x V
I M
<1"-
K. • 100 ; X H
• TO5
Totil No. of Sampling Points
Avengi;J3rlf1c« Pressure
Drop, In. HjO
Birometrlc Prcisure, In. Ij
Absolute
Volume of Dry Gas at H«t«r
s. OCF
Average Kctor Temperaturt,
•F
Volume of Dry (Us at STP,
I DSCF3
Total'll,0 Collected In Iirjin-
gcrsSnd SMIea Gel, «1
Vw Voliro of Viler V«por
V* *t STP, SCF°
X H X Moisture by Vo'lu/m
Md Hole Friction of Dry
X C02 Volume X Dry
X 02 Volun* X Dry
X CO Volume X Dry
X H Volumo X Dry
W. Molecular Velo.nl of Stick GAS,
Dry Datls
M Holcculir Weight of Stick
CU», Vet Bitts
* Dry standard cubic feel it feg F, 29.92 In. llg.
k Stindirj conditions *t^°F. 29.92 tn. llg.
. i
* / tf x U * 460) Is determine* by averaging tho square root of tht
* * pnduct of tha velocity head (&Ps) and tht aitolu
stick tovperitur* frot each ifcupllng point.
F.t Suite Proture of Stick
tt\. In. 11^
Stick Cit Pretiurtt In. Hf
Ab-.blule
Pilot Tube Coefficient.
V Stick Cst Velocity tt Stick
Condition), fpn
SticV Tcwpenlurt
Tt Kit Ilr« of Ttst, His.
Hoiilt
tn«
S I Nrttnt
-------
Plant
Dow-Badi s che
SAMPLING 'SUMMARY SHEET
Location Freeport, Texas
Sampled Source Ammonium Sulfate - Outlet
Run
P-l
P-2
P-3
Date
10-3-78
10-4-78
10-4-78
NP
40
40
40
Pm
1.62
1.59
1.57
Pb
29.81
29.85
29.85
Vm
85.954
86.639
86,780
T
•"•m
107
110
115
Vmstd
80.080
80.394
79.821
vw
109.6
111.6
115.6
Vwgas
5.16
5.26
5.44
%M
6.1
6.1
6.4
Md
0.939
0.939
0.936
Run
P-l
P-2
P-3
MWd
28.96
28.96
28.96
MW
28.30
28.29
28.26
Pst
0.055
0.055
0.055
Ps
29.86
29.90
29.90
CP
0.829
0.829
0.829
vkPsX(Ts+460) c
26.09
25.82
26.04
Vs
3810
3769
3803
Ts
105
110
104
Tt
120
120
120
Dn
0.1875
0.1875
0.1875
%I
103.6
106.3
103.5
18 0
ft
100 x
I «
gas
res
8,x Cp I / tP x U$ *
! . U, * ««» « V
460)
VB
v^
Tottl No. of Sampling PolttS
Aver»gi;J3rlfle» Preuurt
Drop, In. HjO
B»rometrlc Proisure, 1n. 4g
Absolute
Volun* of Dry Gal «t ftetar
T^dltlonj. DCF
Average Hcter Tenptnture,
V
Vo1u«j gf Dry GiS *t STP,
DSCF3
Total'll,0 Collected tn
9ertz*nd Stllca Gel, i!
Vw
S H
Md
xco2
X 0.
X CO
XH2
Wd
Volime. of Water Vapoi
it SIP, 5CF°
X Moisture by Yolint
Hole Fraction of Dry
Volunfl X Dry
Volume X Dry
Volume X Dry
Volumo X Dry
Molecular Voljhl of !
Dry Dalfs
KW Koleculir Ualght of Stick
(Us. Wet Bails
* Dry tUndard cubic fcol *t &JJ f, 29.92 In. llj.
k Standard conditions at^'^t 29.92 tn. Ifcj.
. i
* / eJ> « iT V 460) Is determined by svoragtng tho square root «f tht
'* > pnduct of the velocity Ixud (tPi) and the •VteluU
stick tenperaturo fro* each sampling point.
Ptt Static Pressure of Stack
Cis, In. II]
P. Stack C«s Pretiurt, 1n. Hi
1 Absolute
C* fltot Tube Crefrictent
Y, Stick Cu Velocity it Sticl
Conditions, fpt.
T. Averam Stack Tenptrilurt
1 -r
Tt Kit Tin of Test, Mil.
Dg Sampling Hoiill OlmtUr* !••
S I Nrcint tMklMtle
-------
APPENDIX B-3
PARTICLE SIZING DATA SHEET
-------
Company :_
Source Designation:
Date: /
Test Number: PS - /
£. K.
Field Person:__
Filter Number:
Barometric Pressure ("Hg):
Stack Static Pressure
Stack Dimensions: <
Potentiometer No.J
Ambient Temperature (°F) ; $
Record all Data Every J £?
. fr
: .4 Q, 1
Minutes
Filter Heater Setting:jpA ^J
probe Heater Setting:
Nozzle Number: ,Dia.(in.):
Pitot Tube No.lJ ,Corr.Factor; _j
Meter Box No. & ,Corr .Factor; £
Meter Isokinetic Factor; 14,£>
Assumed Moisture (%): H
Condensate Volume(ml);
Silica Gel Weight Gain(g):_
Leak Rate CFM at
it
Trav-
erse
Point
No.
Cl
Time
Samp-
ling
(min)
4°
10
Clock
1C 1-L
'Ofr
Velocity
pressure
<"H20)
,vs
l*S-
AVERAGE (TOTAL)
Stack
Temp
(°F)
/V-4-
i^f
Dry Gas Meter
Volume
(ft3)
^3^.^3-7
4is\ rc?
c .: - )
Temp(°F)
Inlet
%T
^0
c
Outle t
30
°*1-.
;. -. '
°\ \
Orifice
pressure
Differ-
ential
("H20)
^5
tf
^,sr
, i
Filter
Box
Temp
(°F)
Last
Imp.
Gas
Temp
(°F)
Sarapli
T r a i r
Stati
Pressu
("Hg)
iij t *.^
3.?
SO M /Af/OOT
COM rt&*j-rs
0
/
2.
3
4
7
UP
AFP -
/FP-
AFP-
AFP-
AFP-
^
3
5ACK- UP
A
A.
A_
A_
A_
A.
A
-------
APPENDIX B-4
VISIBLE EMISSIONS DATA SHEETS
-------
SUMMARY
RECORD OF VISIBLE EMISSIONS"
Type of Plant
'.Company Nafr.e f
Plant Address
TJate
•10
' ' \\ f
Jtfk) . .- & rj , JL. > _
// Hours of Observation
Observer f\^' r&
Type of Discharge f
Dischargs Location
OTHER
Height of Point of Discharge^
Observer's Location:
Distance to Discharge Point
Height of Observation Point
35'.
Gtha
usi,
S AJL
Direction from Discharge Point __
Background Description
Color b
Wind Velocity
O
leather-: Clear (dvarcssty Partly Cloudy Other ^
\ . Hind Oirectvcr. £& |A$'
?lu,7:2. Description:
'Detached: Yes
..Color: Black. /1-,'nita Other
Plurr.e Dispersion^Bsh'avior: Looping Coning Fanning
Lofting Funigating Other r
* ' •' -i - / \' —
Estirated Distance Plu.-ne Visible .
^unvnary of Observations:
r * . . *
opacity Aqqreci.3.. te T-'r:e _Q O^nc i ty Opacity Aqnrgg.i to fi:.:e 0 On^ci ty
0-
5
10
.15 .
20
25
•30 •
rni/hr
35
min. sec.
/
55
60
65
70
75
.80
05
90
95
100
-------
Company Name
RECORD OF VISIBLE EMISSIONS
Date
okh
/0
-
Plant Address
.Stack Location
Weather Conditions
l n\ ifl
Obs crve r C\C-i <^1&}QJ}nj~tf-J
ti\HAC&£fc - Od
Observer's
,, location
•CUictfuJ
Fi~\fC& f . i
/UO c:,' -&W^L d^jJJ: hO
AlGui 1VX /T/'. ' ^
i1'' n i
- L*tAu &>*-<-£ PWACa^X, CfaLu
d 0 / 5 ^^ cT
'
V
-------
Company Name _
Plant Address
RECORD OF VISIBLE EMISSIONS
Dote
Stack Location
Heather Conditions
Observer
Observer's
Location
TIME
•COMMENTS
m
-•• ... v
15:%
4'
*:oi
I'CV«
M1N
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
10
10
10
(o
10
10
10
10
/0
10
10
10
I'O
10
10
10
10
10
;0
lo
10
(0
I'Q
1C-
io
\c
lo
^
u
\o-
\3
SECONDS
'15
10
10
lo
/
io
10
lo
10
f@
to
10
10
10
10
10
0
10
10
10
,'r"
10
/o
/o
;r>
10
;C
10
|0
10
10
30
/0
y^?
/^
10
10
iv
IQ
1^,
#
/o
/o
•/o
10
|0
!0
/o
/O
1(1
i'<
1 :"
• \f
(o-
/'o
/o
'0
; r.
/o
|0
(0
10
10
..4
10
Id
10
IQ
10
lc>
1C
io
\Q
10
10
10
10
1C
IO
m
I*
10
10
in
lo
10
ic
.*%
• ;
10
1C
lo
(0.
(0
\o
'• • • v t.'
"
Te'sr ^rp(prcfi(lb^ )
.
'
-------
Company Nome _
Plant Address
RECORD OF VISIBLE EMISSIONS
Date
•Stack Location
Weather Conditions
Observer
Observer's
Location
TIME
COMMENTS
H«
A: : /6
\'o 3>'<
'.' •#)
_ 1 <•-•, yj
1'--
HiN
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
00
b
10
10
10
10
16
10
/c5
10
10
10
iO
10
/o
10
I'd
10
10
10.
10
lo
io
10
10
10
ID
10
]O
0-
0
SECONDS
' 15
(0
10
16
10
/£
10
10
\o
io
10
to
10
10
K)
10
10
10
10
10
in
10
10
/O
10
l&
10
/*
l\>
10
10
30. 4
/c?
10
10
Id
lu
'/D
io
/D
10
10
ID
10
10
b
10
K)
in
in
lo
in
10
/o
10
/D
10
lo
lo
0
\o
io
10
10
(0
10
iO
10
10
10
10
(0
I'O
10
10
fa
10
10
10
In
/O
10
io
JO
JO
10
10
lo
10
10
10
Irt
: , •.'///
StuA*; '*AA/Mt J
.(
-
--•
_.
—
m
V,
A/yyK> X^-n^^iy
//
-------
Company Name
RECORD OF VISIBLE EMISSIONS
Dote
Plant Address
Observer
Stack Location
Heather Conditions
Observer's
Location
TIME
•COMMENTS
MR
M#
J?:ao
mi
\~- \:'
MIN
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48"
49
50
51
52
53
54
55
56
57
58
59
00
10
10
•10
to
10
'0
W
/<7
10
10
10
/
f;
10
10
10
0
If?
10
If)
0
\0
10
iO
M
to
0
A
I/
/(?•
;o
SECONDS
' 15
10
10
/f)
10
10
/o
i(?
(0
10
0
fO
10
'^)
/p
tp
10
0
b
(0
I.')
10
/fl
10
\o
10
10
10
/o
/o
0
30
/o
10
111
iO
'0
'10
10
10
).p
1^
/o
•to
(0
w
10
10
13
ID
(0
10'
\o
10
10
10
10
10
(0.
l<\
10
10
.45
/O
10
/<9
to
(0
10.
1,0
|0
10
/0
ro
ic
/O
If?
\o
10
10
\o
IP
10
[0
/I?
/o
(0
K)
iO
t<9
/o-
10
0
^
C>ni<-e/ .
-------
Company Nome
RECORD OF VISIBLE EMISSIONS
Dote
Plant Address _
Stack Location
Heather Conditions
Observer
Observer's
Location
TIME
DVHENTS
HR
/?.%
(m
1 \ , ;
i v^
:~-y\
• "OD
::;f"
MIN
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
00
0
10
10
10
V
10
10
w
10
\o
w
10
10
10
lo
ID
10
lo
lo
10
fc
6
/o
10
j-a
|o
10
|0
o-
0
stcowos
IS
10
10
l^>
;D
/0
10
10
o
io
la
10
In
i.O
P
10
U3
lo
/.o
^
(o
/c
/O
(0
10
/o
|3
io
ID
10
10
30
10
•IQ
10
P
1,0
'/a
10
K0
JO
10
10
\0
lo.
ID
n
\3
lo
(o
o
/c,
It
45
/o
^
/o
/o
10
10
10
IO
10
0
0
0
ID
10
10
\o
(0
/o.
(0
0>
/O
lo NO
D 1 tO
10
I?
10
lo
(0
10
10
10
|0
10
/o
10-
0
^
V.
_
^ap'"C?sf - SuviWvx djfrs.r^s
Jssi-^Jl r,^i- dmA d.~> ,<^ h-<. *3'\'*^dz (\J^
.. T
-------
Company flame
RECORD OF VISIBLE EMISSIONS
Dote
Plant Address
Stack Location
Heather Conditions
Observer
Observer's
Location
TIME
COWENTS
Mft
vV.(ii
s-;-
;
| ?•.:•"
-
MIN
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
(o
10
•lo
/P
ft
l>
1$
1$
is
is
15
1$
15
15
10
15
15
IS
15
15
15
15
(5
^
1^
/5
/5
15
15'
1*
SECONDS
15
fu
10
to
IS
15
Is
15
fi
15
£
IS
15
15
13
(5
15
15
15
15
15
15
15
15
f-1
tf
15
\*
15
(.-
i
-------
Company Name
RECORD Of VISIBLE EMISSIONS
Date
Plant Address
.Stack location
Weather Conditions
Observer
Observer's
Location
TIME
•COMMENTS
UK
iv»
•
MIN
00
01_
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
00
/-?
15
15
1$
k>
SECONDS
'IS
I6
15
15
IS
30
/5
/5
/sr
/5
4
/5
/5
Is
1$
.
V
•-V--:
-------
Type of Plant _^.
SUMMARY
RECORD OF VISIBLE EMISSIONS'
•' - & 1-iM.^f-
leight of Point of Discharge-:
Observer's Location:
•
Distance to Discharsa Point« s-_
Height of Observation Point
Direction frojn Discharge Point __
Background Description .
eather-r Clear Overcast Partly Cloudy Other A
Hind Directicr, ,N C. Wind Velocity
lume. Description:
•
x \ . •
'Detached: Yes
Color
mi/hr
Color: Black. (Unite Other
Pluir.e Dispersion Behavior: Looping Coning Fanning
Lofting Funi gating Other
Estirrated Distance Plu.ire Visible . / .' ' _
• .
of Observe ticas:
3 city Aggregate Ti.-e Q O^ncitv On? city Agc7reg.T to ri:.:e & Oo2c i ty
0-
5
10
IS
10
25
min
sec
55
60
65
70
75
.80
C5
90
95
100
-------
Company Vams
RECORD OF VISIBLE EMISSIONS
__ Date
Plant Address
Observer
-Stack location
Weather Conditions
Observer's
Location
riiN
TIME
00
15
30
30
31
32
33
34
35
36
37
38
39
40
io
41
42
43
4
t,
44
45
46
47
h
48
49
50
5
51
52
53
54
£
f)
55
•'0
56
n
57
58
59
V
0
-------
Company Nome
RECORD OF VISIBLE EMISSIONS
Dote
Plant Address
-Stack Location
Kealher Conditions
Observer
Observer's
Location
TIME
-COMMENTS
" M "
*
X
MIH
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
^22
23
24
25
26
27
28
29
00
0
4'
/
t>
i)
n
4
*/•
/
7
0
t,
.'
s
(*"!
^
/
"3
t>
S
t,
/
5
2
/'
/
0
''/
r-/
-<)
4
f*
'/>
(?j
r/
h •
r;
$£COMOS
' IS
/)
f.
^
0
0
/?
9
io
,{}'
«i
s
^'\
/
"\
Z
s
1 '/
c
•s'
*i
.^
k"''
s
".1
(;
Ij
0
r;
^
6
£
/
i
'•n
0
•s
' f
s
*)
30
y
'-)
^
^
t,
<>
•P
t- >
6'
'/
t/
,<'
s.
&f
£,
/•
••7
/-•:
X V
l>-
"'>
'(>
: j
f'l
/
r)
s
I
(J
0
fi
v ,*
G
0
h
D
/
i
^
j
4
i/
*?
0
6
0
t,
A
4
<;
^
i^
/
•",•
^
•*•!
r
A
<
s
'•Si
0
tf;
5
^)
/
'•^
$
/
•7
o
*"\
V
4
0-
5
T;
.
1
,
v
-------
Company Name
RECORD OF VISIBLE EMISSIONS
Dote
Plant Address
•Stack Location
Heather Conditions
Observer
Observer's
Location
TIME
•COWENTS
HR
n.". /J ft
o/yt-
•
s
HIM
30
31
32
33
^34
35
36
37
38
39
"40
41
42
43
44
45
"46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
5
/h
U
•V
0
0
0
0
f\
»,x
n
n
r
0
0
D
4
C1
0
o
^
f)
r?
0
0
0
p)
V
S--
'
(]
n
/}•
/>
S£canos
15
/'*
;?
h
0
n
n
0
0
/\
(1
^
0
D
f;
n
i)
C;
n
(j
0
f)
r
\>
0
0
0
(J
f)
D
i \
V
f)
n
f
,s
!•)
i/
3C
0
0
0
o
0
'0
0
V
f)
<• i
(^'
f .
f'^<
L'
f]
h
{'
f"^\
\^i
s-
(J
c<
f'r
n
r.
£
/
0
^
I)
n
n
0
^
"~j
) .45
^
0
T)
0
0
n
/"'
')
0
/•\
/ !
\s
/:
;
y
/>
/ .
1 ,
f)
\ /
0
r,
/ ,
• /•
U'
0
0
0
o
V
0
i
J
F>
0
U.
0
n
.
.
,
.
v
'' >;> ; l(-\^-s^..
•-•
.
•
»
-------
Company Nome _
Plant Address
•Stack Location
Weather Conditions
Date
Observer
Observer's
Location
TIME
-COWENTS
• hA
10
,
\
•
rilw
00
01
02
03
04
05
06
07
08
09
\Q
ii
12
13
14
15
'16
17
18
19
20
21
22
23
24
25
26
27
28
29
i)0
ft
0
•0
•t)
0
0
6
0
0
f)
0
0
V
.*'
0
0
0
0
0
<~\
u
,'/
0
0
/"v
i /
*S
0
n
0
n
0
o-
(")
SECONDS" '
^IS
•ft
0
*)
n
;)
n
0
0
9
0
0
0
0
n
0
f >
i^
r.
/•>
0
0
0
0
0
I)
/;
/">
C-*
^
-<*
0
%
r-
3C
/''
• 0
0
0
0
•';
0
; /
0
r,
f,
X
/;
n.
Q
0
0
^
V
(/
r;
/•;,
0
0
D
0
0
{)
0
s
f",
' /
0,
• ~~\
U
0
0
0
0
0
t>
0
0
(j
0
n
f)
'~^
0
n
•0
n
n
'^
G
0
n
0
0
0
?,
fj
ft
u
•f}
£>kt,>tr 0--^. 3 ".<..'/.;/>;'.?-
'
-
,
\_
"
•
•
-------
Company Name
RECORD OF VISIBLE EMISSIONS
tote
Plant Address
Stack location
Weather Conditions
Observer
Observer's
Location
TIME
COMMENTS
" HIT"
\
\
(0
\
•
A
\
i '-
HIN
30
31
32
33
"34
35
36
37
38
39
^40
41
42
43
44
45
*46
47
48"
49
50
51
;52
53
54
55
56
57
58
59
00
0
/^
, /
•n
0
0
•0
n
/v
/>
V
n
0
r\
'•/
•9
' ,;
TI
/')
• ^
n
n
(S
0
/>
'r-\
u
n
•~s
0
^
s~
"I
0
o-
D
S£tOMOS
n 15
n
0
('/
U
f)
\**'
0
")
Q
0
' )
V
c
/}
'")
r,
't/
&
r.
D
/ x
^,
f
0
n
n
c>
f *
•o
/i
^')
30
n
n
--"\
#
/;
Y;
^
«
d/
/\
,s
/•,
' /
• .9
/•.
6:
o
//
/"*\
— '
^
. /
n
/.•
/")
^
*7
0
/-,
^
'/^.
0
/*\
t
/-'
..4
r;
#
e,
s
0
0
0
/'/
n
f\
u
s
">
?"j
iy
^y
r;
/.)
.9
(o
fj
4
,o
i'*."1
f-
r\
'f \
/ ;
U
0
o
s
•-7
/^
r/.
0
'")
•
t
V
•'
•
'
•
•
-------
SUMMARY
RECORD OF VISIBLE- EMISSIONS"
te of Plant . ^
?Ja.T.e
Plant Address
•—• »• :?."-«•-_ .
/ype of Discharge/STACK )
N—.
'ischargs Location _
TJate
/ •>
/ (/
Hours of Observation
•p D
Observer ^n ^ -
Height of Point of Discharge^
bserver's Location:
Distance to Discharge Point
Height of Observation Point
/M/crU/i<
Direction from Discharge Point
ickground Description
K'ea.ther-: Clear Owrcast ."Partly Cloud
i
Hind Direction
U.T:-^ Description:
' Detached: Yes
Other
V7ind Velocity
Color
^ mi/hr
Color: Black. /White J Other
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Fumigating Other
Estirr>ated Distance Plu.Te Visible .
T."nary of Observations:
r
pacity Aqcireo.a.tg_ Tire Q Opacity On?city Ac
0
5
10
15
:0
, r-
O J
mn
sec
55
60
65
70
75
.80
C5
90
95
100
-------
RECORD OF VISIBLE EMISSIONS
Company Home
Plant Address
.Stack Location
Heather Conditions TJ\^J\
Observer
Observer's
, . 0 Location
Co-'^t- -' -f){i'l,6L - Itr'/lu 1 , w'/v J .
L /)' -0
rv7 rtflAAAUJVL'
-f •-•(/
ifi/xt loS"
y
..- • .'j
COWENTS
' hft
/ft*
1 f '. -^v.
: " ?' )
( :-,< w
X
1 <•> •• >
1 1 -• ^
N.35
K- '•'."
1 \
h —
HlN
00
01
02
03
04
05
^
06
07
08
09
10
11
12
13
14
15
16
17
'l8
19
20
21
22
23
"24
25
26
27
28
29
00
fO
5
P
[0
IG
10
10
5
/o
/o
In
ID
|0
10
|o
10
i-o
10
\o
1C'
-~\
v/
10
10
/o
0
0
10
0
o-
/o
SeCCrtDS
15
/O
/c/
/c7
10
10
10
5
£
(&
10
io
0
10
ft
0
to
/o
/^
10
r
Vy
10
|S>
lo
io
10
10
/o
10
10
10
30
fa
/£
/c?
/O
10
'/0
^T
/n
/ ^
//3
/^
10
io
10.
(o
1C
f o
,' . .-*
(o
10
« ^
.'• 1
O'
•*\ •
vy
0
K?
JO
/o
10
IQ
10
Id
' r*
u
IG
4
r
/
in
10
lo
io
0~
lo
(o
/o
lo
1 ^
i'j
i^
10
i n
1 '-'
|e
lo-
10
IV
10
r-
\J
(0
o
/^
10
^
to
to-
f\
(j
0
£{u/uAv f^ 2^-
f
.
V,
.
•
•
.
/_
-------
Company Home ___
Plant Address
•Stack location
Heather Conditions
RECORD Of VISIBLE EMISSIONS
Dote
Observer
Observer's
Location
TIHf
•COW1ENTS
HfT~
W^
ms1)
:
H<3
[6.^
,"
: '• i
' -'-v
.1-:
riiw
30
31
32
33
34
,35
36
37
38
39
40
41
42
&v
44
/5
46
47
48"
49
50
51
52
53
54
55
56
57
58
59
'JO
10
$'
f?
10
ID
10
10
10
10
5
5
5
IM
6
•5.
S
s
» —
10
10
5
b
5
5
5"
5
5
5-
S
if
is
^
5
5-
lo
10
to
P
lo
10
5
5"
*
5
•^
5
A'"
y
5"
T
1C
/c
^
S
s:
5
5
5
5
5
K
COMOS
30
1?
5
5
10
JO
'ip
lo
1C
/3
5
f
"5
5
X?
,T
5
•f
/••'*
^
5
•s"
ft
5
^
5
5
5
5
o
.4
/O
3"
/O
./O
to
10
/r)
10
$
^
5
5
't^s
.5
5'
5
5
/o
/o
j-
•N
xJ
5
5"
5-.
O
s~
•
'^-•^.~> :Lr.u~^.
L> >'*' ^.;'SiCL.V"("3/y''' v
.
-------
Company Home _
Plant Address
•Stack Location
Heather Conditions
RECORD OF VISIBLE EMISSIONS
Date
Observer
V,f
Observer's
location
TIME
•COWENTS
' wr
p:^
/5-1*
:',0"-N
.!>•'<%
HIM
00
01
02
03
V04
05
06
07.
08
09
;10
11
12
13
14
15
16
17
18
19
20
21
^22
23
24
25
26
27
28
29
00
5
%
5
$
'•^
5
5
5
5
^
5
r"
6
£
5
£T
5
5
.5
4"
*r
/r
s
5
5'
5
5
5
5" '
6»'
5ECOMDS
16
5
5
5
T
5
*s
5
5
5
5'
5*
6*
iT
iT
->
5
,T
5
i;
•S
5'
5
5
5
J"
.<
J"
5
r~
5
rr
30
/r
.s
$
5
5"
'5
5
5"
5
5
5"
. X
^
5 .
5
^
'•\
••*\
_/
5
i>
.•^
;:S
-s
*^T
^ >
5"
5'
5"
•\
•-*•
5'
^
5'
.4
5
5
C.
<
5
5
3"
5
3"
5
5
5
,5"
A
•_/
S"
6
^T
.6"
t^~"
5"
T
<'
^
5
<
<
5
5
^"
5
-
M\(*M.atfiius> 0cn&>
. o a i/
,
\
...
-------
Company Nome -
Plant Address
KECORD OF VISI3LE EMISSIONS
- _ Dote IS /4/ 7$
.Stack Location
Weather Conditions
Observer
Observer's
location
TIME
•COMMENTS
' M
l&fa
;U\
U-^
• f,}-'.
•
/i.3?,
.I -0-= "'.»
M1N
30
31
32
33
34
35
36
37
38
39
So
41
42
43
44
45
'46
47
48
49
50
51
"52
53
54
55
56
57
58
59
00
5
5"
6
5
5~
5
5
5"
5
5
5
•5-
t-~
k-,
«.>
5"
5
£-
-.^
K
5
b
— '
o
5
5
S
5
5
5"
S'
SECONDS
^15"
5
5
4T
5
5
5
Ar"
-»>
^
5
o
5
'•N
-_/
5
."5
5
^--
u.
V.J
5
5"
-------
ur VISIBLE.
Company Name
Plant Address
•Stack Location
Heather Conditions
Date
Observer
Observer's
Location
TIME
-COMMENTS
•••wr
/{*•;#
i'o'";A
M\
jq&a
HIM
00
01
02
03
"04
05
06
07
08
09
"10
11
12
13
.^ .
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
00
6
5
.6
5
5"
5
5
rv
3"
o"
5
•=r
s
5"
5
S£COMD^
IS
5
*)
S
5
£
5
5
z>
c^-
.5
o
5
s
s-
A"
30
A
.5
5
5
5
5
5
5
5
S'
5
•5
5".
5
S'
45
5
5
5
5
5
5
5
5
5
^7
3"
5
5
T
:T
•
-
t
v
•
-------
APPENDIX C
SUMMARY OF PARTICULATE WEIGHT
BY FRACTION
AND
CAPROLACTAM DETERMINATIONS
BY FRACTION
-------
TABLE C.I
PARTICULATE WEIGHT BY FRACTION, GRAMS
Sampling
Location
Inlet
Outlet
Sample
Number
P-l
P-2
P-3
P-l
P-2
P-3
110 mm
Type A
Glass-Fiber
Filter
0.2223
0.2900
0.2542
0.0089
0.0097
0.0096
Front
Acetone
Wash
0.0121
0.0129
0.0080
0.0099
0.0056
0.0093
Front
Water
Washa
110.81
108.57
118.87
0.0701
0.0281
0.1486
Filterable
Particulate
111.04
108.87
119.13
0.0889
0.0434
0.1675
Back
Acetone
Wash
0.0083
0.0069
0.0233
0.0015
0.0049
0.0078
Back
Water
Wash
0.0035
0.0121
0.0113
0.0040
0.0017
0.0109
Total
Particulate
111.06
108.89
119.17
0.0944
0.0500
0.1862
lAlso includes cyclone contents for inlet tests.
-------
TABLE C.2
CAPROLACTAM DETERMINATIONS BY FRACTION, MILLIGRAMS
Sampling
Lo cat ion
Inlet
Outlet
Sample
Number
P-l
P-2
P-3
P-l
P-2
P-3
Front
Water
Rinse3
24.9
63.5
<4.60
2.15
<2.50
<2.70
Filter
<0.25
<0.25
<0.25
<0.25
<0.25
<0.25
Filterable
Portion
24.9
63.5
<4.85
2.15
<2.75
<2.95
Back
Half
Water
627
756
877
58.1
73.9
87.6
Total
652
820
877
60.3
73.9
87.6
Also includes cyclone contents for inlet tests.
-------
APPENDIX D
AMMONIUM SULFATE CONTENT IN SCRUBBER WATER
AND PERCENT MOISTURE DETERMINATIONS
-------
TABLE D.I
AMMONIUM SULFATE CONTENT IN SCRUBBER WATER
Sample
Number
. 1
2
3
Date
10-3-78
10-4-78
10-4-78
Average
(NH4)2 S04
gm/1
320
367
380
356
-------
TABLE D.2
PERCENT MOISTURE IN AMMONIUM SULFATE
Sample
Number
1
2
3
Date
10-3-78
10-4-78
10-4-78
Average
Percent Moisture
Dryer
Inlet
0.96
1.02
1.10
1.03
Dryer
Outlet
0.09
0.09
0.07
0.08
Percent
Moisture
Reduction
90.6
91.2
93.6
91.8
-------
EMISSION MEASUREMENT BRANCH
TECHNICAL DIRECTIVE NO. i
Project Number 78-NHF-2
Contractor Clayton Environmental Consultants
Date 10/12/78
Contract Number 68-02-2817
Work Assignment Number
Technical Manager
Dennis Holzschuh
Verbal Directions Given To
Tim Mattson
Directive: Total of nine (9) samples turned over to Clayton Environmental
10/4/78 for analysis. These samples were taken by process engineer.
On the six (6) samples taken at the inlet and outlet we want the moisture
content of each. These six were from the dryer. Three (3) samples
were also taken from scrubber and are to be analyzed for percent of
ammonium sulfate in the scrubber water.
Technical Manager, EMS'
-------
APPENDIX E
SUMMARY OF VISIBLE EMISSIONS
-------
SUMMARY OF VISIBLE EMISSIONS
Sample No. p_l
Date: 10-3-78
Type of Discharge:
Height of Point of
Wind Direction: _s_E
Color
Part iculate
Discharge:
& NW
55
white
Ammonium Sulfate
of Plume:
Observer No.: pusanka Lazarevic
Distance from Observer to Discharge
Direction of Observer from Discharge
Height of Observation Point: Ground
Description of Background: green elevator shaft
Type of Plant
Location of Discharge: Scrubber Exhaust
Description of
Wind Velocity:
Detached Plume:
Duration
Point:
Point
Sky:
0-5
No
Overcast
mph
of
250'
Observation: 3 hr. 2 min.
East
level
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
Time
Start
1516
1522
1528
1534
5 1540
i
6 1546
7
1552
8 1558
9 1604
End
1521
1527
1533
1539
1545
1551
1557
1603
1609
10 1610 1615
11 j 1616 1621
12 i 1622
13 1628
14 1634
• 15
16
17
18
19
20
1640
1646
1652
1658
1704
1710
1627
1633
1639
1645
1651
1657
1703
1709
1715
Opacity
Sum
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
Average
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Set
Number
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1716
1722
1728
1800
1806
1812
1818
1824
1830
1836
1842
End
1721
1727
1731
1805
1811
1817
1823
1829
1835
1841
1847
Opacity
Sum
240
240
240
240
240
255
360
360
360
360
360
Average
10
10
10
10
10
11
15
15
15
15
15
Sketch Showing How Opacity Varied With Time
10
1516
1800
Time, hours
-------
SUMMARY OF VISIBLE EMISSIONS
Sample No. P-2
Date:
Type of
10-4-78
Particulate
White
Donna Schick
Ammonium Sulfate
Discharge:
Height of Point of Discharge;
Wind Direction: NE
Color of Plume
Observer No.:
Distance from Observer to Discharge
Direction of Observer from Discharge
Height of Observation Point: 55'
Description of Background: Building
10 mpTT
Type of Plant
Location of Discharge:
Description of Sky: Hazy
Wind Velocity:
Detached Plume
Duration
Point:
Point:
Scrubber Exhaust
No
of
60'
Observation:
hr . 19 mm
SE
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
5
6
7
1
8
1 9
10
11
12
13
Time
Start
0840
0846
0852
0858
0904
0910
0916
0922
0928
0934
0940
0946
0952
14 0958
15
16
17
18
19
20
1004
1010
1016
1022
1028
1034
End
0845
0851 «
0857
0903
0909
0915
0921
0927
0933
0939
0945
0951
0957
1003
1009
1015
1021
1027
1033
1039
Opacity
Sum
115
115
90
70
55
95
45
70
50
5
10
0
10
10
15
0
5
0
10
15
Average
4.8
4.8
3.7
2.9
2.3
4.0
1.9
2.9
2.1
0.2
0.4
0
0.4
0.4
0.6
0
0.2
0
0.4
0.6
Set
Number
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1040
1046
1052
1058
End
1045
1051
1057
1059
Opacity
Sum
0
15
45
0
Average
0
0.6
1.9
0
'
Sketch Showing How Opacity Varied With Time:
C3
D.
O
/ n
0904
Time, hours
1058
-------
SUMMARY OF VISIBLE EMISSIONS
Sample No. p_3
Date: 1Q-4-78
Type of Discharge:
Type of Plant: Ammonium Sulfate
Farticulate
Height of Point of Discharge:
Wind Direction: NE
Color of Plume: White
Observer No.: Dusanka Lazarevic
55
Location of Discharge: Scrubber Exhaust
Description of Sky: Partly Cloudy/Hazy
Wind Velocity: 5-10 mph
Detached Plume: No
__ . Duration of Observation: 2 hr. 45
Distance from Observer to Discharge Point: 250'
min
-- _ "-1.-m—.- 11-11. TM-
Direction of Observer from Discharge Point: East
Height of Observation Point: Ground level
Description of Background: green elevator shaft
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time
Start
1415
1421
1427
1433
1439
1445
1451
1526
1532
1538
1544
1550
1556
1602
1608
1614
1620
1626
1632
1638
End
1420
1426
1432
1438
1444
1450
1453
1531
1537
1543
1549
1555
1601
1607
1613
1619
1625
1631
1637
1643
Opacity
Sum
230
215
240
240
240
205
115
120
155
120
120
120
120
120
120
120
120
120
120
120
Average
9.6
9.0
10.0
10.0
10.0
8.5
9.6
5.0
6.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Set
Number
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1644
1650
1656
End
1649
1655
1700
Opacity
Sum
120
120
100
Average
5.0
5.0
5.0
Sketch Showing How Opacity Varied With Time:
20
X-N
£-?
\~S
15*
ij
•H
10
-------
w
bs
X
erver
Road
Conveyor
enc1os ure
Temporary
scaffold
Ladde r
Scaffold
Water
spray
header
Existing
plat form
Figure E.I. Observer location relative to outlet stack.
-------
APPENDIX F
GAS CHROMATOGRAPH DATA SUMMARY
-------
'*
Afo.
Pale or
res-/-
Sample
arax,
Co n Cerrbabtu
iA f
P-l
P-l
w/ef P-3
10-3-18
830
43,552
463
077
"50
\oo
\0
We/ *
/
'bac/C
670m/
10-4-78
10-4 -78
H,6
Kfltf
15474
\\00
I4oo
4^7
f>- 1
10-4-18
HzO
^o
VW)
fcj/P
k If
10
^-3,50
^31.70
10-3-78
lo-4-lg
10-4-78
Lact
505 »»l
"SOS m)
1030^1
(00,^30
US
MO
10-3-7?
10-4-7?
IO-4-1S
1-Z-/A-V7
10
10
0,7.5
P-/
10-4-7?
10-4-78
iS
m
1,3.1?
a
all
blont
e
35 ml
5%
20-TPfl
V^M/
Q.1011%
K
1012.
ooo
10
JOO
10
I
]
J
//o
-------
LOGARITHMIC
3X9 CYCLES
46 7522
«ADI in U.S.A. •
KtUTFCL
C'
,'
^,>
~ .°
C>'!
-------
EMISSION MEASUREMENT BRANCH
TECHNICAL DIRECTIVE NO. • /
/
Date
Project Number
Contractor () /..,,, 7^^> /' ^ - /' o*-/i:,-j/a /
Contract Number
-A^V 7 Work Assignment Number
Technical Manager
.7
X-/c? /^ .3 <: /4 ^ v
Verbal Directions Given To
Directive: // . r
'
^ <-•
L\/<;
/'„
«\>r -• '<- rt > •' \ ,
x-; . ,
^ „• I, .- ,-. /' C UVM ri;J l' ' 'J
, / XT
I , ..... 7 /J ..•/./
X - - - *' '• -•"-' y
C cs
/^ ''-•••;- ^'J .
/ r/
,
•"£ y"
Action Chief, EMB /
Technical Manager, EMB
%*>
'<£ 7>
-------
APPENDIX G
EXAMPLE CALCULATIONS
-------
Nomenclature
Ag = Stack area, inches2
Cf = Front half (probe & filter) particulate concentration,
gr/DSCF
Cp = Pitot tube correction factor, dimens ionless
Ct = Total particulate concentration, gr/DSCF
CMj = Front half (probe & filter) particulate concentration,
CMt = Total particulate concentration,
Dn = Sampling nozzle diameter, inches
ERf = Emission rate of front half particulate, Ib/hr
ERt = Emission rate of total particulate, Ib/hr
ERMf = Emission rate of front half particulate, kg/hr
ERMt = Emission rate of total particulate, kg/hr
Mj = Mole fraction of dry gas, g/g-mole
MW = Molecular weight of wet stack gas
MU-, = Molecular weight of dry stack gas
?k = Barometric pressure, inches mercury
Pm = Average orifice pressure drop, inches water
PS = Absolute stack gas pressure, inches mercury
Pst = Static pressure of stack gas, inches mercury
Qa = Actual stack gas flowrate at stack conditions, ACFM
Qam = Actual stack gas flowrate at stack conditions,
Qm = Dry stack gas flowrate at standard conditions, DSm^/min
Q = Dry stack gas flowrate at standard conditions, DSCFM
s
SWj = Front half sample weight, mg
SU = Total sample weight, mg
T_ = Average meter temperature, °F
-------
Tg = Stack temperature, °F
T£ = Net time of test, minutes
V
m
Volume of dry gas at meter conditions, ft3
V = Volume of dry gas at standard conditions, DSCF
s td
Vg = Stack gas velocity at stack conditions, fpm
Vw = Total condensate collected in sampling train, ml
V-- = Volume of water vapor at standard conditions, SCF
gas
AP = Velocity pressure, inches water
%I = Percent of isokinetic variation, dimensionless
%M = Percent moisture, dimensionless
%?. = Percent of removal efficiency, dimens ionles s
Calculation of Particulate Emissions
The dry volume of sampled gas corrected to standard condi-
tions of 20°C and 760 mm Hg (29.92 in. Hg) is calculated as fol
V 17.65 *
mstd =
T + 460
m
The dry stack gas flowrate corrected to standard conditions is
calculated using the following set of equations sequentially:
100 * Vw
Vm -t- V
mstd wgas
100 - %M
MWd = (%C02 * 44/100) + (%02 * 32/100) + [(7oCO + %N2) *28/10o]
2 -
-------
MW = (MWd * Md) +18(1 - Md)
Ps = Pb + Pst
Qs
= 5120.8 * CP *VAPS * * ~p~~3
0.1225 * Vs * As * Md * Ps
* MW
Ts + 460
Stack gas flowrate may be expressed metrically as dry normal
cubic meters per minute (DNm^/min) and in terms of actual cubic
feet per minute (ACFM) and metrically as actual cubic meters per
minute (Am^/min) with use of the following equations;
Qm = Qs * 0.02832
0.05667 * Qs * (Ts + 460)
Qam = Qa * 0.02832.
The equation employed to determine percent of isokinetic
variation is:
1032 * (Ts + 460) *
%I
Vs * Tt * Ps * Md * (DnH
To determine the concentration of particulate matter in
grains per dry standard cubic foot (gr/DSCF), one of the fol-
lowing equations is used:
SWf
Cf = 0.01543 * — — and
mstd
swt
Ct = 0.01543 * — .
mstd
- 3 -
-------
When metric units are desired, the concentration is calcu-
lated in milligrams per dry standard cubic meter (mg/DSm^) as fol-
lows:
SWf
CMf = (0.02832)(Vm~J~ and
SW,.
CM
t ~ ( 0.0283 2") (Vm )
mstd
Front half particulate concentrations are obtained by summing the
weight of particulate matter collected on the filter and all por-
tions of the train preceding it. Total particulate concentration
includes, in addition, any particulate matter collected in the
impingers .
The emission rate of particulate matter can be calculated
from the filterable or total particulate concentration using one
of the following equations:
ERf = 0.00857 * Cf * Qs and
ERt = 0.00857 * Ct * Qs .
For metric units,
ERMf - (1.70 * 10~6) * CMf * Qs and
ERMt = (1.70 * 10"6) * CMt * Qs .
To avoid rounding errors it is preferable to carry out the calcu-
lation of concentration and emission rate in one operation.
Removal efficiency is calculated using the pounds per hour
emission rate in the following equation:
-------
%R =. ^t inlet ~ ERt outlet
ERt inlet
Example Calculation
Using the data from particulate Test 3 at the inlet
location an example of the calculation of sampled volume
in dry standard cubic feet (DSCF) is as follows:
Given:
Pb = 29.85 in. Hg
Pm = 2.68 in. H20
Tm = 104°F
Vra = 110.737 ft3
Vw = 91.1 ml
and using the first two equations on page 2:
Vw = 4.29 SCF
gas
Vm . . = 104 DSCF
mstd
With the following additional information from the data
sheet one can determine the flowrate in dry standard cubic
feet per minute (DSCFM).
(T + 460) = 23.17
s
Cp = 0.828
Ts = 88°F
2290 sq.in.
Pst
Since no Orsat was run, and using the equations on page 2,
we can determine the following information:
- 5 -
-------
MW, = 28.96
d
Then using the equations on pages 2 and 3, the flowrate
in dry standard cubic feet per minute can be calculated.
%M =4.0
Md =0.960
MW = 28.51
Ps = 30.55 in. Hg
Vs = 3330 fpm
Qs = 42300 DSCFM.
Then using the equations on page 3, flowrate can be expressed
as follows:
Qra = 1200 DNm3/min
Qa = 52900 ACFM
2
Qam = 1500 Am /min.
Having determined sampled volume to be 104 DSCF and the
flowrate to be 42300 DSCFM, the percent of isokinetic
variation can be determined.
Given:
V = 104 DSCF
mstd
Qs = 42300
Tfc = 120 min.
Dn = 0.249 in.
then using the equation on page 3
%I =95.9
- 6 -
-------
The concentration and emission rate can now be
calculated for this particulate test as follows:
Given:
SWf = 119.13 g
SWt = 119.17 g
Using equations on page 3 the concentration of filterable
particulate and total particulate, both in grains per dry
standard cubic foot (gr/DSCF), are as follows:
Cf = 17.5 gr/DSCF
Cfc = 17.5 gr/DSCF
Concentrations may be expressed metrically as follows:
CMf = 40,400 mg/DSm3
CMt = 40,500 mg/DSm3
The emission rates in pounds per hour (Ib/hr), and metrically
as kilograms per hour (kg/hr) are as follows:
ERf = 6410 Ib/hr
ERt = 6410 Ib/hr
ERMf = 2910 kg/hr
ERM = 2910 kg/hr
Removal efficiency can be determined using the pounds per
hour value previously calculated together with the pounds
per hour value calculated for the simultaneous test at
the outlet location and the equation on page 4.
-------
Given:
ER = 15.7
Sutlet
then:
%R = 99.8%
- 8 -
-------
APPENDIX H
CALIBRATION DATA
-------
Pitot Tube Type
s
Pitot Tube No.
Standard Pitot Tube No.
Date: o-c&~~lto Client:
Anticipated
Ar* *
Pstd
0.02
0.04
0.06
0.08
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80
-
APsta
0.
0.
0.
0.
o. Ho
'o. Ill
o. }\0
0.
0.
0.
0.
0.
A
APtest
0.
0.
0.
0.
0.154
o. l£8
o. /58
0.
0.
0.
0.
0.
Acptect
0.
0.
0.
0.
o . $3-7
o. ft30
o. ?£k
0.
0.
o. ' •
0.
o. •
B
APtest
0.
0.
0.
b.
0' 1*5%
0. \(oO
o. /5$
0.
0.
0.
0.
0.
Acptcst
0.
0.
0.
0.
o.S3£
o. $£5
0 . QC/V?
0.
0.
0.
0.
0.
to
Q.
0.90
0.89
0.88
0.87
0.86
0.85
O.SA
0 . 63
tf.82
0.81
0.80
0
-
-
-
-'
-
i
-
":
"-_
~~
I
1
I
i.
-
-
i
!"
•i
•i
--
|j! I
i —
—
i i;;
! :::
.01 0.02 0.
1
i
i! "
---
...
:',: : •
... i ...
03 0.
-
.•:. :::: :
•:::: ijij i
:::::: ::|! :
-:
t •
::•
—
.
~
—
—
-
.,. 1-1-
•:"
"_
— i
—
.!••;•.-
'T-r
-rT:
. t.. 1
- i . 1
!•".
1- :
M^r
~Ti~
• i
i i
iif
-
_-
*.
.
-
•
:
-
"T
-
ii
04 0.06 0.1
A Ptcot <"H20)
...
r !..
.T.
:
7T
!l
i !
1 !
Ji
0.
- -
I
1
~*t
i
t
i
M
2
:'f.
i >
T^J
:r
i ?
_!j
ll"
ij
. I •
•it
I •
i
M j.! T
• ii
''. i \ i
i ;;:
Jj!:
Mir
. • i j
', : i ; I ! i ; .' 1 , , : .
t i i i t
j j J 1 i
i 1 1! i • i
1 1 1 1 ! '• ;
0.3 0.
1 - ! !i
! i !
i
i
1
i
: :.: : 1 :
— — _
• i '• ',
: i :; :
I— 1: •
; i i !i i
4 0.5
• r~
--
i-
: r -r
• 1
i;|i
l.C
-------
C ' „» 0.99
Pteot
Calibrator:
Pitot Tube Type Pitot Tube No.^
Standard Pitot Tube No. S
Date:
7*3 Client:
Anticipated
Pstd
0.02
0.04
0.06
0.08
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80
-
A?Btd
0.
0.
offJ78
0.07&&
o.01?Z
0.
0.
0.
0.
0.
0.
0.
A
APtest
0.
0.
o./#?f
o./370\
V./J&O
0.
0.
0.
0.
0.
0.
0.
Acptect
0.
0.
o. 8Z.&
o.g£^
0.&5/
0.
0.
0.
0.
o. ' •
0.
o. •
B
APtest
0.
0.
o. /380
Q./3&&
o./£o8
0.
0.
0.
0.
0.
0.
0.
Acptest
0.
0.
O.^ol
0.&3C-
0.&33
0.
0.
0.
0.
%
0.
0.
0.
0.
0.90-
0.89
'0.88
0.87
0.86
0.85
« 0.84
£ 0.83
0 0.82
0.01
0.80
0
'-
--
-
-
--
-
.-
-'
:
•'L
—
"ZT
-•
I
t
i:
"
-
.
-
"
T-
I
P
--
~"
.01 0.
"• ' i
- — • — .-
- -
: i :
it " i;
02 0.03 0.04
i 33i£l:
U:i^
|--i— »
.-.!•:•!•
TJ .] .
*
i
- - - ; --K-
. . 1.
i U
0.06 0.1
A Ptcot <
,:
-•
-i i
•_j
i i"
i i
-[]-
-
;..,. L.
r.r.i
1
-
J::'.
!'-
-I!-
* •
TF
ii
"ill
o.
MH20)
1 •
!j-»-!
• -•-
T
i-
|
1 *
t . '
•j .
i
i
L
:
if if [I
4 :n r^
:\l, i
i;
i
r j
:j
1 1
J !
t i .
ii i i
inn
-:i 1 T
:: i
!: 1
:;
;;
- H • -
•: i
ill iiS!
i •
II
• i
-
• .
"ill
::|
. .*
^- -
...
'••i
§ '
: . 4 . .
iii;:-
2 0.3 0.4 0.5
r_
--
f.
-'
-
_£_
i.C
-------
Pitot Tube Type S
Pitot Tube No
Date
Standard Pitot Tube Mo.
e: "S //T? O Client:
Anticipated
A PC t-A
f S CO
0.02
0.04
0.06
0.03
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80
APstd
o.~ •
0.
o.ffS-fc.
0.
o. / Ch
0.
0.
0.
o . ^ *7 /
0.
0.
Qu f>et.t.
A
APtest
0.
0.
Q.01%
0.
o. fst>
0.
0. ••••
0.
0.5^<
0.
0.
«u L^'-j
>»
*•••*'•
0.
0.
o.^Scf
0.
o.ff#
0.
0.
0.
o. ffja
0.
0.
o.^q
B
APtest
0.
0.
o.D7c/
b.
o./ 5-0.
0.
0.
0.
0. £~<^/
0.
0.
tt /, *-/&?
ACptes^.
0.
0.
O. i
iiii
• • * .
i *« '•
III!
i Iiii
i! iiii
:!:":
:;::
::;;
'. LI .'
• t**
::::
IIII
Hi;
IIII
-ri
• «i
III-
lili
.'Ii.
1:11
Illl
|~
!i-
~
:•_
*"•
Illl
III:
HI
III
4 0.5 1
~
:::_
HT:
•
~T
*
•-
:
-'
r~-
—
-~
'
.0
-------
METER AND OR ICE CALIBRATION
Date
Client
Barometric Pressure Pb ("Hg)
Calibrator
Meter Box Number
Gas Meter Number
• .
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
^tart-
Average
Stop
Start
Average
Orifice
Manometer
Setting, Am
(in. H20)
0.5
^9. V9
1.0
cP?- 5£L
2.0
e2 ?• (S O
3.0
J? 7. 6 7
4.0
79. 7^/-
w'
5.0
c29. £^
Gas Volume
Wet Test
Meter
(fS)
.o.-f^ 00
ttXft.nO
(5) £".£>
^"5"^. rtft
t^~5'9J. /)/0
(5) 5,0
. v n!? ^) /v . /9 C^
^ / LJ-f} /) /^
(10) //
^/^//?. ^5
S){aft$.ftC)
jio) /^.2>5
.5//7^. (96>
5/ol ?. 05
(10) / /. ^5
*
gfo^O. 00
ST/c3ti.Ob
(10) /£, 0
Gas Volume
Dry Gas
Meter
(f£)
^/x. 73 /
% L1 10
^,03-1
/ j t ft ^^ ^\
^*i / ^"7 ^j ^J .J
fa. 131
f.ad- 1
163. 755
/ *>4, frfan
JJt.^*?
111-31°)
/dl. 18*+
/0./35
I2L3M14
III. 31 9
/0?.v355
J<^L frbo
j^^. &!<£
J/. /?(*
P » Pv - PW P^ » Pv + Am *
PW Pb TITS' d b T5TF
Temperature
"Wet
Test
Meter
tw
1-5,0
14. n
7^.7$
7-5, 5
15.0
75'2z
71+
H
^^
76?
75 *>
7^.75
7<^
7(o
7te
76, 5
_3Jj>_
7575
o v,
Dry Gas Meter
Inlet
tdi
/6
7 $
X5
%*>
9&
tf5
io^
%5
ir>4
/O3
/o^>
/o^-
Outlet
V0
79
1(0
% 2-
79
jf<5
#*)
90
%£_
9/
9 D
9/
9/
7 J PW
'm Q U Tw Am
Average
td
79-5
?3tf£
27.7^
9oj)jt
31.0
97. 7^
Vacuum
Wet Test
. Meter
pw
(in. H20)
0tfl5
_^^. V-5
^/>5
/#?, */j>
&OS
c?9. ^5
^ /) 5
o29. ^5
/P. ^9^>
^?9, V5
/^L5 5>
^29. 5
Time
6
(min)
;,.,
™
,r^
!//
^
O /) ^?
// ' LA~s
AVERAGE
7
/, 3
A9/«9
/.^
/^•/tf
^95
Q.W
OAfo
,
0,135
'
0.136
A 14%
^
•
^/^/
w*^f / ^/ .^^
Vd Pd (tw +460)
Factor in isoki'netic equation
27.40
27.40
(Km)2 (^
.Clayton Environmental Consultants, Inc
-------
/ METER AND V...IFICE CALIBRATION
ate
r
Client US: EPA
n o !'
.1---CA'/ " i yKOf.SC/-i
arometric Pressure Pb C"Hg)
Meter Box Number
Calibrator ~?"V'A\ Gas Meter Number
. 7$
_ Pw ,
13.6
Gas Volume
Wet Test
Meter
V^
(ft3)
t& 3 \.Oi-O
t>53LO. , 6 CO
(5) 3,000
^14,000.
^531.000
(5) 13,600
//,554k 000
^4.000
do) IP. ,000
O-o •/ 6. 000
/ •.- '• -y -f-f-'f]
i>>O :. s--(0 .:•'•.--'...•'
a.> i i. •••' ]
/ A O 1 / />.\
fr>,J.c--- -IwO
s^^.m-/
•2A.-&-1I
Tempe r a ture
"Wet
Test
Meter
tw
(°F)
^
l^\
te
lo^-
(o^
(^
! /-,
(.-';'<•'•
^0-
1*7-
/ -^
'..O c*—
•''„ " -
a a
41 ,s-
^v.
6i.fi
6,1
/c ! , (o
(^,."6
V
5, = p, + Am Km = — ?
-d b T3T6" 9
Dry Gas Meter
Inlet
tdi
(°F)
.-It
M")4
"?S
1^
7^
-77,5
^
-^
?>]
v^.£r
f? • •
0. 1
%4
%•?
c(kS'
•°/;^
«^
'•>7
?;7<
Outlet
tdo
(°F)
^-)
M-
^^.5
1^-
^-9
70.S
"7 ^
no.
l^.S
a -H-
.../;H
-/3.^
-?S
-1-1-
•14,5
•7S"
1^
• l <
* \l Pw
V TwAm
Average
td
(°F)
70.?
"74-0
"7*0 '^
1?,%
(A^^
W/i
Vacuum
Wet Test
Meter
pw
(in. H20)
0
«?£/?,?
O
J9. 35*
0
^ 9, 3 ^
0
J9.3^
0
ctf.-.tf
0
Time
6
(min)
3.1'ic
>l. 17
D3-'^1
3ta.4*'
\4*.S3
/4,S«
.50:93
^,3S
PS: o^
31^, 10
P^'.47
P-6, -7^
AVERAGE
7
.W
/,ooo
\,00-(o
},0\^
l.OKv
i.on
LOOS
KO '
.'43
J37
1 •*> r^
1 «, ••,
> ' J>~)
.134
./3PL
,'3/
J35T
w
460)
(t
w
460)
Factor in isokinetic equation = 27t4.° -
(Km)2
27.40
Clayton Environmental Consultants, Inc.
-------
METER AND ORiFlCE CALIBRATION
Date
Client
Barometric Pressure Pb ("Kg) Jll'i.L> \
Calibrator -]~VJ\/\
Meter Box Number
Gas Meter Number
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
*v - ^b
Orifice
Manometer
Settirg, Am
(in. H20)
0.5 .)>.,
..-^.GO '
1.0
o^.kS
2.0
•H'Vv
3.0
'} ''; " °, '
4.0
,-}'"} ^0
5.0
_'Jl"1,fi?
Pw ,
13.6
Gas Volume
Wet Test
Meter
VWL
(£#>
6^^7000
b^l.DQO
(5) G. OOQ
&25£ . 000
6.245,000
(5) /.' . ooo
6-aW ,ocr.
6^6-000
(10) y!:. 000
tv^.DDO
(v-^A.C'oo
ao) •••<><.'
6343. &>C>
6:2 ,
Gas Volume
Dry Gas
Meter
H
(ft^)
,^.^
4214.^/4-
5.f/;i'-;
;'l3l,.^-4
3.ra<9. j?43L
IfiMJ
;&ai84
a^i,^4
V': -'.' ,""•
^', ,_. • ^' i: <*. -•
P-74 . %^
c'U-O, i^,^V
i ' . <. -• ' • j
^55. S^
;r74, ^6-y-
-; /, (">':• •
-&%. na-
•sao, 564
/ -.- ' ', •
* • • •*" ..
'*V?b+T375-
Temperature
"Wet
Test
Meter
tw
(°F)
^.-S"
^^
^./C,J<
^7
66.5
6^-)-
a
(,-?
6 r-^
6?i
(^
(, \"
£,%.$
W
'•(•• • ••'•'-'
(^
C$,5
'. 7 i .' k .•
Dry Gas Meter
Inlet
tdi
(°F)
n
i-6
W
~n
Its
Vr
\C%
10 6
110
/OS
//O-
//o
Outlet
cdo
(°F)
U
44
-?4
6^5
S5
'74-
«7
^s
9o
87
?/
9<9
, M Vw I Pw
Q 9 V Tw Am
Average
td
(°F)
(0Z.JS-
1t
?A£~
<; / .-, ..-
1 '.?. .->-»
'i >•:,•/:»
/^O.'-A^
Vacuum
Wet Test
Meter
pw
(in. H20)
0
e^.M
0
^.6 /
o
cP "1. 6 (
n
-'''•Gf
O
^&l if i
•rt
c>\<,-.l
Time
6
(min)
/4i^
/«/-V9
/9i /?
/9, ^A
^:?,i
ji.^
/f:4t
/V/7?
4/:3/
•/.:#•
/5:<5^
/5.t?
AVERAGE
r
/o/s-
l.ozi
/.023
/OSS
/.f)^
/,QA2>
1,023-
Km '
o.t&i
0./3^0
0.13/1
0.{3*is
o./axs
o.tHo
OW.
w
(td + 460)
Factor in isoki'netic equation = —3^*
(Km)'
27.40
(
7
C lav ton En y-f rnnrnpn fa 1 Pnn '^lt^^an^'^ Tnr
-------
METER AND ORIFICE CALIBRATION
Client U<, £f/\
arometric Pressure Pb ("Hg)
Calibrator f VM
Meter Box Number K A
Gas Meter Number
Stop
Start
Werage
Stop
Start
Werage
Stop
Start
\verage
Stop
Start
Werage
;top
Start
Werage
-Stop
5tart
we rage
w = pb
Orifice
Manometer
Settir.g, Am
(in. H20)
0.5
o? cl Lf2
1.0
^9.-/^
2.0
J^.43^
3.0
J}°l.^0
4.0
^q.(01
5.0
4Sk,000
(10) 14.000
U>SC\ ,00^
k(o"7C.OOC
do fl.ono
k~7 ' 0, 0(^o
/ / QQ A/^/^
1/7 fc> QI , UC-'CJ
(10)^.1,000
#>7pd1,ot>o
1.710.000
do) \q.oo(
Gas Vo lume
Dry Gas
Meter
VH
k!5.393
Co9'4-3-l
5.97^
fe^.4-75
4LS- °fl3
I±.,n7,?-
M-p.^^fO
^•475
J4J'3-I5
) Os^ei/OoJi
M^I.^O
J.^.Z.SE
/ O -1 / -v /
U^L.O^S
;il. 5/1 .§
'703, 170
hS';). ^"^'o
19. s^^j
pd -.pb + I^_ »
Temper a ture
"Wet
Test
Meter
U
k/
b/
("nf
fcl
Ul
fcl
4,1
fc)
6/
tl
4>!
4/
fcl
(>/
^'
k\
C.I
. ^
Dry Gas Meter
Inlet
tdl
'' ' 1
/A
left
y;l
74-
51)
u
^x
ci^
\OQ
9/^
^)
104
loo
I o.-J.
!0n
jrA
i 0 5
Outlet
tdo
(,;,^
IV'i
^i1''
70
to
^
14?
7^
'73
80
~7£?
7^>
^'c^
to
T)/
V;5'
NC-.
%? 5
* ./ pw
HI A \| ip Am
Average
td
t.4, ?"
7B.S
?*?.S
^f;
^l-'5
f, •'; -.'
Vacuum
Wet Test
Meter
pw
(in. H20)
O
J_£ ^
6
^?,3^
O
^•^
O
^^.^^
G
9^7. ^1>
^
C
j.9.3^
Time
6
(min)
14:23
14. 55
S'i-'S"
17:55
17,95-
u-J 1
19:^1-
15:57
AVERAGE
7
1.0 10
1,015'
,.«»
IMS
I.W.
.03?.
.01-)
Km
,3*
,.»
,3,
./*
.«7
.«7
,13)
V
w
^ (tu> + 460)
Factor in isoki'netic equation = —?-
* » fv...\f-
27.40
mJ- ( T
Clayton Environmental Consultants
nc
------- |