United States
            Environmental Protection
            Agency
           Office of Air Quality
           Planning and Standards
           Research Triangle Park NC 27711
EMB Report 78-NHF-1
February 1979
           Air
&EPA
Ammonium Sulfate

Emission Test Report
Dow-Badische,  Inc.
Freeport, Texas

-------
    AMMONIUM SULFATE EMISSION TEST REPORT
              Dow-Badische,  Inc.
               Freeport,  Texas
            October  3  and  4,  1978
               Prepared  for  the

     U.S. Environmental  Protection Agency
         Emission Measurement  Branch
Research Triangle Park,  North  Carolina  27711
                    Prepared  by
     Clayton Environmental  Consultants, Inc
              25711  Southfield  Road
          Southfield,  Michigan    48075
             EMB  REPORT  NO.  78-NHF-l

            Work  Assignments   5 and 6

            Contract  No.   68-02-2817
                   March 1979

-------
                   TABLE  OF  CONTENTS


                                              Page

1.0    Introduction                            1

2.0    Summary and Discussion  of  Results       5

3.0    Process Description  and  Operation      16

4.0    Location of Sampling  Points            17

5.0    Sampling and Analytical  Procedures     21


APPENDICES

A.     Project Participants

B.     Field Data  Sheets

       B-l.   Particulate Test  Data  Sheets

       B-2.   Sampling Summary  Data

       B-3.   Particle Sizing Data Sheet

       B-4.   Visible Emissions Data  Sheets

C.     Summary of  Particulate Weight  by
       Fraction and Caprolactam Determina-
       tions by Fraction

D.     Ammonium Sulfate  Content in Scrubber
       Water and Percent Moisture Determinations

E.     Summary of Visible Emissions

F.     Gas Chromatograph Data Summary

G.     Example Calculations

H.     Calibration Data

-------
                   LIST OF FIGURES
Figure                                       Page

  1.1     Fluidized Bed Dryer and Control
         System                                3

  1.2     Control System Schematic/Sampling
         Locations                             4

  4.1     Scrubber Inlet Port and Sampling
         Point Locations                      18

  4.2     Scrubber Outlet Port and Sampling
         Point Locations                      19

  5.1     Particulate Sampling Train-Venturi
         Scrubber Inlet                       24

  5.2     Particulate Sampling Train-Venturi
         Scrubber Outlet                      25

-------
                   LIST OF TABLES
Table                                           Page

 2.1      Filterable Particulate  Concentra-
          tions and Emission Rates               6

 2.2      Total Particulate Concentrations
          and Emission Rates                     8

 2.3      Particulate Removal Efficiency         9

 2.4      Filterable Caprolactam  Concentra-
          tions and Emission Rates               11

 2.5      Total Caprolactam Concentrations
          and Emission Rates                     12

 2.6      Particle Size Distribution             15

-------
                  1.0  INTRODUCTION




     The U.S. Environmental Protection Agency  (EPA)




retained Clayton Environmental Consultants,  Inc.  to




perform a particulate and caprolactam emission  study




of the Venturi scrubber at the Dow-Badische, Inc.




plant in Freeport, Texas.  The objective of  this




study was to determine the particulate and caprolactam




mass loading rates to and from the scrubber,




which controls emissions from the fluidized  bed salt




dryer.  The results of this study will be used  in




research and development efforts for supporting




national New Source Performance Standards.   This




study was commissioned as Project No. 78-NHF-l,




Contract No. 68-02-2817,  Work Assignments 5  and 6.




     The testing program, conducted on October  3 and




4, 1978, included the following:




     (1) triplicate particulate samples acquired simulta-




         neously at the inlet and outlet of  the




         Venturi scrubber;




     (2) a single determination of the particle size




         distribution of  the gas stream at the  scrubber




         inlet;




     (3) moisture contents  of six ammonium sulfate




         samples (three each taken from the inlet and




         outlet  of the salt  dryer);

-------
     (4) three scrubber water samples to be analyzed




         for percent ammonium sulfate; and,




     (5) visible emission observations at the outlet




         of the Venturi scrubber for the duration of




         each particulate sample run.




     Auxiliary data included exhaust gas velocities,




temperatures  and flowrates, as determined from the




traverses.   Figures 1.1 and 1.2 present schematics




of the process/control system layout as tested.
                        - 2 -

-------
To atmosphere
           Outlet
            port
         \
Inlet
port
             Venturi
             throat
   Ventur i
   scrubber
Fan
                                         Cool air
                                     Dry
                                  (NH4)2S04
                                                                    Wet
                                  Warm air
                  Fluidized  bed dryer
  Figure 1.1.  Fluidized bed dryer  and  control  system
                             - 3  -

-------
  Conveyor
enclosure
Unidenti fled
    duct
(not  sampled)
                   W
                           To atmosphere
                                                                          Bucket
                                                                         Elevators
                        Outlet
                         Ports
                                                                Inlet
                                                                Voicts
 Spray
header
                Temporary
                 Scaffold
                                                                    Scaffold
                                             Existing
                                             platform
                                                                         Air Flow
                                         Venturi
                                          throat
                                      Mist
                                   eliminator
  Pump
for  water
 removal
        Figure  1.2.   Control  system schema tic/sampling locations

-------
        2.0i.   SUMMARY AND  DISCUSSION  OF  RESULTS


Particulate Emissions


     Results  of  the particulate  emission  study  are


presented  in  Tables 2.1,  2.2,  and  2.3.  Tables  2.1


and 2.2 present  the concentrations and  emission rates


for filterable and total  particulate, respectively.


Concentrations are expressed as  grains  per  dry


standard cubic foot (gr/dscf)  and milligrams  per

                                 o
dry standard  cubic meter  (mg/dsm ).  Emission rates


are expressed as pounds per hour (Ib/hr)  and  kilograms


per hour (kg/hr).  Averages are  presented for each


sampling location.  Table 2.3  presents  the  particulate


removal efficiency (in percent)  of the  Venturi  scrubber


based on the  total particulate emission rate.


     From  Table  2.1, it is seen  that measured filter-


able concentrations at the inlet ranged from  16.5 to


17.7  gr/dscf (37,700 to 40,400  mg/dsm3)  and  averaged


17.2 gr/dscf  (39,400 mg/dsm3).   Concentrations  at the


outlet ranged from 0.008 to 0.032 gr/dscf (19.1  to 74.1


mg/dsm ) and  averaged 0.019 gr/dscf  (44.1 mg/dsm3).


Emission rates at the inlet ranged from 5,970 to 6,440


Ib/hr (2,710  to  2,920 kg/hr) and averaged 6,270  Ib/hr


2,850 kg/hr).  Emission rates  at the outlet ranged from


3.72 to 14.7  Ib/hr (1.69 to 6.66 kg/hr) and averaged


8.73 Ib/hr (3.96 kg/hr).  The emission data  at both


locations  generally show  good  reproducibility although
                          - 5 -

-------
                          TABLE 2.1




FILTERABLE  PARTICULATE  CONCENTRATIONS AND EMISSION RATES
Sampling
Locat ion

Inlet

Sample
Number
P-l
P-2
P-3
Average

Outlet

P-l
P-2
P-3
Average
Stack Gas
Condit ions
F lowrate
dsc fm
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp .
oF
182
188
188
186
105
110
104
106
Concentration
gr/dscf
17.5
16.5
17.7
17.2
0.017
0.008
0.032
0.019
mg/dsm3
40,000
37,700
40,400
39,400
39.2
19.1
74.1
44.1
Emission Rate
Ib/hr
6,440
5,970
6,410
6,270
7.78
3.72
14.7
8.73
kg/hr
2,920
2,710
2,910
2,850
3.53
1.69
6.66
3.96

-------
there exists a significant difference in inlet/outlet


flowrates for all three sample runs. During the tests,


an extra duct entering the mist eliminator and a drain

pipe at the base of the mist eliminator were noted


(Figure 1.2).  These were initially identified as


possible sources of induced air to the system between


the inlet and outlet sampling locations, resulting

in higher measured flowrates at the outlet.  However,


Dow-Badische representatives confirmed that the duct


was capped off during the test program and the drain


pipe could not be considered a possible leak source.


     Total particulate concentrations and emission


rates at the inlet (Table 2.2) were identical to


those for the filterable particulate fraction at


the same location.  Concentrations averaged 17.2

                      Q
gr/dscf (39,400 mg/dsm->) and emission rates averaged


6,270 Ib/hr (2,850 kg/hr).  Total concentrations


at the outlet ranged from 0.010 to 0.036 gr/dscf

(22.0 to 82.4 mg/dsm3) and averaged 0.021 gr/dscf


(48.7 mg/dsm3).  Total emission rates at the outlet


ranged from 4.29 to 16.3 lb/hr (1.94 to 7.40 kg/hr)

and averaged 9.62 Ib/hr (4.36 (kg/hr).


     Table 2.3 presents the measured particulate removal


efficiency of the scrubber. The removal efficiency


averaged 99.8 percent for the three samples.

-------
                                                    TABLE 2.2
                             TOTAL PARTICULATE CONCENTRATIONS AND  EMISSION  RATES
I
oo
i
Sampl ing
Locat ion

Inlet

Sample
Number
P-l
P-2
P-3
Average

Outlet

P-l
P-2
P-3
Average
Stack Gas;
Cond it ions
Flowrate
dsc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp.
oF
182
188
188
186
105
1.10
104
106
Concentration
.gr/dscf .
17.5
16. 5
17.7
17.2
0.018
0.010
0.036
0.021
o
mg/ dsm
40,000
37,700
40,500
39,400
41.6
22.0
82.4
48.7
Emission Rate
Ib/hr
6^440
5,970
6,410
6,270
8.26
4. 29
16.3
9.62
kg/hr
2,920
2,710
2,910
2,850
3.75
1.94
7.40
4.36

-------
           TABLE  2.3




PARTICULATE REMOVAL EFFICIENCY
1978
S ampling
Date
10/3
10/4
10/4
Sample
Number
P-l
P-2
P-3
Average
Percent
Removal
E f f ic iency
99. 9
99.9
99.7
99.8
                - 9 -

-------
     Tables 2.4 and 2.5, respectively, present




summaries of filterable and total caprolactam concentra-




tions and emission rates.  Inlet filterable concentra-




tions averaged 3.29 ppm  (10,900 |ag/dsm3), while filter-




able emission rates averaged 2.46 Ib/hr and 1.12 kg/hr.




Outlet filterable concentrations averaged 0.201 ppm




(948 ng/dsm3)» while filterable emission rates averaged




0.188 Ib/hr (0.085 kg/hr).



     Table 2.5 reveals that the majority of the capro-




lactam in the gas stream was present in the vapor phase.




Total concentrations at the inlet averaged 57.8 ppm




(272,000  |_ig/dsm3) and  emission  rates  averaged  43.3




Ib/hr  (19.6 kg/hr).  At  the outlet,  total  concentra-




tions averaged 6.92 ppm  (32,600 (j.g/dsm3) and




emission  rates averaged  6.43  Ib/hr  (2.92 kg/hr).




Therefore,  approximately  94.3  percent  of  the  capro-




lactam was  in  the vapor  phase  at  the  inlet  and  97.1




percent was vapor at the  outlet.   Detailed  summaries




of  the caprolactam analyses  (by GC  methods) are




presented in Appendix  F.




      In a previous study  conducted  by  Dow-Badische,




caprolactam measured at  the scrubber  inlet  existed




in  a vapor phase, i.e.,  the caprolactam was found




in  the impinger  fractions, while  at  the  scrubber  outlet




the caprolactam was primarily in the particulate




(filterable) phase.  In the series of  tests reported










                          -  10  -

-------
                                    TABLE 2.4




              FILTERABLE CAPROLACTAM CONCENTRATIONS  AND EMISSION RATES
Samp 1 ing
Location

Inlet

Sample
Number
P-l
P-2
P-3
Average3

Outlet

P-l
P-2
P-3
Average a
. Stack Gas
Cond it ions
F lowrate
d sc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
Temp .
°F
182
188
188
186
105
110
104
106
Concentration
ppm
1.90
4.67
< 0.350
3.29
0.201
< 0.257
< 0.277
0.201
o
iag/dsm
8,960
22,000
<1,650
10,900
948
<1,210
<1,305
948
Emission Rate
Ib/hr
1.44
3.48
< 0.261
2.46
0.188
< 0.236
< 0.259
0.188
kg/hr
0.655
1.58
< 0.118
1.12
0.085
< 0.107
< 0.117
0.085
'Less  than" values are not included in averages.

-------
                      TABLE  2.5




TOTAL CAPROLACTAM CONCENTRATIONS AND EMISSION RATES
Sampling
Location

Inlet

Sample
Number
P-l
P-2
P-3
Average

Outlet

P-l
P-2
P-3
Average
Stack Gas
Cond it ions
Flowrate
d sc f m
43,000
42,300
42,300
42,500
53?000
52,100
52,900
52,700
Temp .
OF
182
188
188
186
105
110
104
106
Concentrat ion
ppm
49.9
60.3
63.3
57.8
5.64
6.89
8.23
6.92
o
ug/dsm
235,000
284,000
298,000
272,000
26,600
32,500
38,800
32,600
Emission Rate
Ib/hr
37.8
45.0
47.2
43.3
5.28
6.34
7.68
6.43
kg/hr
17.1
20.4
21.4
19.6
2.40
2.87
3.49
2.92

-------
herein, more than 90 percent of the caprolactam  in




both the inlet and outlet  gas was measured  in  the vapor




phase.




     The most probable explanation for this discrepancy




is that the temperatures maintained in the  filter




compartments of the sampling train were quite different




in each study.  The test series performed by Dow-Badische




were conducted with filter temperatures approximating the




stack temperatures, 160F (71C), at the scrubber inlet and




about 110F  (43C) at the scrubber outlet.  The  tests  reported




herein were performed with filter temperatures



averaging 220F  (104C) at the inlet and 200F (93C)




at the outlet of the scrubber.  Since the melting




point for pure caprolactam is 70C, one can  expect




that a filter maintained at a temperature above




70C would show little caprolactam residual, thus




substantiating the CEC inlet/outlet results and




the Dow-Badische inlet results.  It is also reason-




able to expect that caprolactam at the scrubber




outlet (as measured by Dow-Badische) would  be




predominantly in the particulate phase since the




stack temperature at this point was below the




melting point of caprolactam, and any tests conduct-




ed with filter temperatures simulating the  stack




temperatures should have demonstrated this.
                         - 13 -

-------
     Summaries of particulate and caprolactam fractional




weights are contained in Appendix C.




     The single sample taken at the scrubber inlet




to determine particle size distribution resulted in




the size distribution by weight data presented in




Table 2.6.  Virtually all particles sized were greater




than 2.74 micrometers (urn) with about 99.3 percent of the




material greater than 8.04 (am*  The analyses showed that no




measurable material was captured on stages 2 through 5




of the in-stack cascade impactor.




     The ammonium sulfate drier resulted in an average




91.8 percent reduction in moisture content of the




ammonium sulfate material, from analyses of inlet and




outlet samples  (Appendix D).  Analyses of the scrubber




water samples  (also presented in Appendix D) resulted




in an average  concentration of 356 gm/1 of ammonium




sulfate.




Visible Emissions




     Visible emissions from the scrubber exhaust were




recorded for the duration of each sample run.  The




observations were performed in accordance with EPA




Method 9 by a  qualified visible emissions observer.




A summary of the visible emission  data is presented




in Appendix E, along with a plan view diagram depicting




observer location in relation to the outlet stack.
                           -  14  -

-------
         TABLE  2.6
PARTICLE SIZE DISTRIBUTION

Brink
Impactor
Fraction
Cyclone
Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Back-Up Filter
TOTAL
Character! s t ic
Diameter
of
Particles
Urn
>8.04
2.74-8.04
1.62-2.74
1.10-1.62
0.58-1.10
0.36-0.58
<0.36


Weight
mg
289.2
2.0
<0.1
<0.1
<0.1
0.1
0.06
291.4
'
Size Distribution
by Weight
Percent
99.3
0.7
<0.1
<0.1
<0.1
<0.1
<0.1
100
Cumulative
Percent
100
0.7
<0.1
<0.1
<0.1
<0.1
<0.1

            - 15 -

-------
3.0.   PROCESS DESCRIPTION AND OPERATION







Supplied and completed  by  E.P.A.
                     - 16 -

-------
          4.0  LOCATION OF  SAMPLING  POINTS




     The inlet sampling location was a 54 inch  (137.2




cm) I.D. duct leading  from  the ammonium  sulfate  dryer




to the Venturi scrubber.  Two three-inch ports,  facing




west and south and approximately 45  feet (13.7 meters)




above ground level, were accessed  for sampling.   This




sampling location was  approximately  7.8  duct diameters




downstream from the fan and two duct diameters upstream




from a 180 degree bend.  The duct  is represented




schematically in Figure 1.2.




     The scrubber outlet is a 54 inch (137.2 cm)  duct




with the sampling platform  45 feet  (13.7 meters)  above




ground level. Two three-inch ports,  facing west  and




south, were accessed for sampling.   This sampling  loca-




tion was approximately two  duct diameters downstream




of the mist eliminator and  approximately two duct




diameters upstream from the outlet.  This duct is




also shown schematically in Figure 1.2.




     Velocity pressures and temperatures were measured




at 40 sampling points at both the  inlet  and outlet sam-




pling locations.Figures 4.1 and 4.2}respectively,  are




diagrams of the inlet and outlet sampling locations




showing each of the traverse points and  their respective




distances from the stack wall.









                         -  17 -

-------
                                              Ports
       To  Wet  Scrubber
From Salt Drier
Point s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Distance
(inches )
0.7
2.1
3.6
5.2
7.0
8.9
11.0
13.5
16.5
21.0
33.0
37.5
40.5
43.0
45.1
47.0
48.8
50.4
51.9
53.3
(centimeters)
1.78
5.33
9.14
13.2
17.8
22.6
27.9
34.3
41.9
53.3
83.8
95.2
103.
109.
115.
119.
124.
128.
132.
135.
Figure 4.1.  Scrubber inlet port and sampling point locations

-------
         Ports
               o
                        Gas flow
                       Scrubber  mist
                        eliminator
    54" ID
Points
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Distance
(inche s )
0.7
2.1
3.6
5.2
7.0
8.9
11.0
13.5
16.5
21.0
33.0
37.5
40.5
43.0
45.1
47.0
48.8
50.4
51.9
53.3
(cent ime te r s )
1.78
5.?3
9.14
13.2
17.8
22.6
27.9
34.3
41.9
53.3
83.8
95.2
103.
109.
115.
119.
124.
128.
132.
135.
Figure 4.2.
Scrubber outlet port and sampling point location:
                  -  19 -

-------
     The ammonium sulfate samples, acquired at the




inlet and outlet of the ammonium sulfate dryer,




were taken by Dow-Badische plant process engineers.




Samples of the scrubber water effluent were acquired




similarly.
                        -  20  -

-------
      5.0   SAMPLING AND ANALYTICAL  PROCEDURES


Particulate Emissions


     Triplicate two hour particulate  samples were


extracted simultaneously from the inlet  and outlet


of the Venturi scrubber system.  Exhaust  gases  were


withdrawn isokinetically for three  minutes at each


of 40 sampling points.  During each test, the probe,


Pitot-tube, and impinger assembly were moved to  each


sampling point, the velocity pressure and temperature


of the exhaust gas were measured, and isokinetic


sampling flowrates were adjusted accordingly using


an orifice-type meter to indicate instantaneous


flowrates.   All field data sheets  are included  in


Appendix B.


     The sampling trains at both sites were checked


for leaks before and after each test  in  accordance


with the requirement that the initial leak rate  shall

                  3
not exceed 0.02 ft /min  at 15 inches of mercury


vacuum and the final leak rate shall not exceed 0.02

  o
ft°/min at the greatest vacuum occurring during the


test.


     At both locations, an EPA Method 5  sampling train


was used.  The sampling train consisted of a sharp,


tapered, stainless steel sampling nozzle, a heated


glass-lined probe, a heated pre-weighed  110 mm  Type A





                       - 21 -

-------
glass-fiber filter, a modified Greenburg-Smith




impinger containing 100 ml of distilled water,




a standard Greenburg-Smith impinger containing




100 ml of distilled water, an empty modified




Greenburg-Smith impinger, a modified Greenburg-




Smith impinger containing approximately 300 grams




of silica gel, a leakless pump with vacuum gauge,




a calibrated dry gas meter equipped with bimetallic




inlet and outlet thermometers, and a calibrated




orifice-type flowmeter that was connected to a zero




to ten inch range inclined (water gauge) manometer.




At the scrubber inlet sampling location, a cyclone




was inserted into the sampling train between the




probe and the glass-fiber filter.




     The impinger trains were immersed in an ice bath




to maintain the temperature in the last impingers at




70F or less.  All of the sampling train glassware




was connected by ground glass joints, sealed with




stopcock grease, and clamped to prevent leakage.  A




calibrated S-type Pitot tube was connected to the




sampling probe and velocity pressures were read on the




inclined manometer.  An iron-constantan (I/C) thermo-




couple, attached to the Pitot-probe assembly, was




connected to a calibrated pyrometer.  During the




course of testing, the filter temperature was kept




below 250F, but greater than the stack temperature to






                          -  22 -

-------
prevent filter blinding.   Schematic  diagrams  of the




sampling trains used at  the  scrubber inlet  and  outlet




locations are presented  in Figures 5.1  and  5.2,




respectively.




     At the end of each  120  minute test  period, the




sampling train was transferred to a  dust  free clean-




up area.  The volumes of the impinger solutions were




measured and volume increases recorded.   The  solutions




were placed in glass sample  bottles  and  sealed  with




TeflorrS'-lined caps.  The silica gel  was weighed to




determine the weight gain  (as condensate).   The probe




and nozzle assembly was  thoroughly washed with  water,




and the rinsings were collected in a glass  sample  bottle




with a Teflon^-lined cap.  Following the  water  wash,




the probe and nozzle assembly was then  rinsed with




acetone, and the rinsings  transferred to  a  glass sample




bottle and sealed with a Teflon^-lined  cap.   The




impinger assembly was thoroughly washed  with  water, and




these water washings were  placed with the impinger




solutions.,  Following the  water wash of  the  impingers,




the entire impinger assembly was then also  rinsed




with acetone and these rinsings were placed  in  a




glass sample bottle and  sealed with  a Teflori&/-lined




cap.











                       - 23 -

-------
I

ts)
                                         Heated 110 mm Type A
                                          glass—fiber filter
               Heated glass
                lined  probe
              S-type  Pitot
                 tube
            *»' Inclined
             manometer
                                Cyclone
                               with flask
                                                             Dry   300 gm
                                                                 silica gel
                                                                                            Vacuum
                                                                                             line
                                                                     Main  Vacuum
                                                                     valve   gauge
                  Inclined
                 manomete r
                                                         Vacuum
                                                          pump
                                        Dry gas
                                         meter
Figure 5.1.  -Particulate sampling train  -  Venturi  scrubber  inlet.

-------
              Heated
                                             Heated 110 mm Type A
                                             glass-fiber filter
         glass-lined  probe I
f
         S-type  Pitot
             tube
          Inclined
         manomete r

                                       100 ml H20
    Dry  Silica gel
        Inclined
       manometer
                                                               Main  Vacuum
                                                              valve   gauge
Vacuum
 pump
                                Dry gas
                                 meter
                                                                              Vacuum
                                                                               line
    Figure 5.2.  Particulate sampling train - Venturi scrubber outlet.

-------
     Therefore, five sample fractions were collected




.(summary presented in Appendix C) for each particulate




sample:




     (1) water rinsings of probe and nozzle assembly9




         and cyclone contents for inlet tests only;




      (2) acetone  rinsings of probe  and nozzle




         assembly;




      (3) 110 mm Type A glass-fiber  filter;




      (4) impinger contents and distilled water




         rinsings ; and,




      (5) acetone  rinsings of impingers.




     Fraction 3 was vacuum dessicated, weighed on  an




analytical  balance to determine  particulate  capture,




and then analyzed for caprolactam according  to proce-




dures supplied by the Emission Measurement  Branch,




Test  Support Section  (Appendix F).   Following these




analytical  procedures, the filter was  placed in  a




known volume of water, stirred,  and  decanted.  This




leachate, plus 2  ml portions each of Fractions 1 and




4, were analyzed  for  caprolactam on  a  Hewlett-Packard,




Model 5702A gas chromatograph equipped x?ith  a flame




ionization  detector.  The column chosen  for  this




analysis was a 5-percent  Carbowax 20-TPA in  Chromosorb




W-AW  (six feet x  1/4  inches) maintained  at  200C.   A




Hewlett-Packard Model 3352B Laboratory Data  System was




employed to determine the areas  under  the peaks.   A











                       -  26 -

-------
four-point calibration for linearity  with standards  of




caprolactam was performed in the laboratory.  A summary




of the GC data, along with the calibration curve and




analytical procedures, is presented in Appendix F.




     The remainders of Fractions 1 and 4 were evaporated




to residues at 105C and weighed.  Fractions 2 and 5 were




dried with circulating air at 22C until reaching a constant




weight.   All weight determinations were performed on an




analytical balance having a sensitivity of 0.1 milligrams.




A summary of particulate and caprolactam weights by




fraction is included in Appendix C.





Particle Size Distribution




     A single sample was extracted from the scrubber




inlet duct for particle size distribution determina-




tion.  Exhaust gases were withdrawn isokinetically




for six minutes at the stack centerline.  A Monsanto




Brinks Cascade Impactor was used for this particle




size sampling method.




     The cascade impactor, which was held in-stack,




has five in-line stages arranged in series, each of




which has a jet incorporating a collection cup as an




impaction plate.  When the incoming gas stream is




drawn through a jet, those particles with sufficient




inertia impact and remain against a cup.  Those
                    - 27 -

-------
particles with insufficient inertia will  pass  through




annular slots surrounding the cup periphery  and




enter the next jet.  The smallest particles  which




are not impacted on any plate are caught  on  a  back-up




Type A glass-fiber filter.




     Each stage in the impactor assembly  was rinsed




and brushed with acetone and the rinsings  transferred




to a glass sample bottle with TefloirS^-lined  cap. The




glass-fiber filter was placed in its original  plastic




petri dish and sealed for transport.  In  the Clayton




laboratory, the acetone fractions and the  glass-fiber




filter were dried in the same manner as the  correspond.




ing fractions from the particulate samples,  and




weighed.  In addition, a bulk density determination




of a sample of dried ammonium sulfate was  performed




in conjunction with the particle size determination.




By relating the bulk density of the ammonium




sulfate sample with the size of the jet preceding an




impaction plate,  "cut-off" diameters for  any given




stage in the impactor were determined.
                      - 28 -

-------
     APPENDIX  A
PROJECT PARTICIPANTS

-------
                 PROJECT PARTICIPANTS
Clayton Environmental  Consultants, Inc.
N. Steve Walsh


Timothy V. Mattson


Richard G. Keller

George M. Santorilla


Dusanka Lazarevic


Donna L. Schick


Katherine H, Berry

Cheryl R. Kluk

Gloria J. Kerszykowski

Sandra L.King


Dow-Badische,  Inc.

James Martin
Director, Air  Resource
Engineering

Group Leader,
Emission Measurement

Environmental  Chemist

Environmental  Control
Specialist

Environmental  Data
Specialist

Environmental  Data
Specialist

Environmental  Chemist

Laboratory Technician

Laboratory Technician

Laboratory Technician
U.S. Environmental  Protection Agency
Dennis P. Holzschuh

-------
            APPENDIX B
         FIELD DATA SHEETS
B-l.  Particulate Test Data  Sheets
B-2.  Sampling Summary Data
B-3.  Particle Sizing Data Sheet
B-4.  Visible Emissions Data  Sheets

-------
        APPENDIX  B-l
PARTICULATE TEST  DATA SHEETS

-------
                            SAMPLING  TRAIN DATA
Company:	
Source Designation:
Date:
                                       h.
Test Number:	O> |	^_
Field Person;          foiS
Filter Number:	
Barometric Pressure  ("Hg);   ^ 
-------
                            SAMPLING TRAIN DATA
Company:	,
Source Designation:
Date:
                   •P~
   Test Number:	
   Field Person:	PL S
   Filter Number:	
   Barometric Pressure ("Hg):	
   Stack Static Pressure ("H20):
   Stack Dimensions:	
   Plume Appearance:	
Ambient Temperature(°F):
Record all Data Every
                                  Minutes
                                       Filter Heater  Setting:	
                                       Probe Heater  Setting:	
                                       Nozzle Number:	,Dia.(in.):
                                       Pitot Tube  No.	,Corr.Factor:
                                       Meter Box No.	,Corr.Factor:
                                       Meter Isokinetic Factor:	
                                       Assumed Moisture(%):	
                                       Condensate  Volume(ml):	
                                       Silica Gel  Weight  Gain(g):	
                                       Leak Rate          CFM at
                                              "Hg
Trav
 erse
Poin
 No.
            Time
        Samp-
         ling
        (roin)
          Clock
Velocitj
Pressure
 ("H20)
Stack
Temp
CF)
                                Dry Gas Meter
                              Volume
Temp(°F)
                                      Inlet Outlet
Orifice
Pressure
Differ-
 ential
 ("H20)
Filter
 Box
 Temp
LastSampling
Imp.  Train
Gas  Static
TempPressure
     ("Hg)
 5-/1
         61
                        It I
                         3-1*0
                  J/n
              7?
      W
                                            l-
                                            9?
                           . leto
                  0. 
-------
                             SAMPLING TRAIN DATA
Company:	
Source Designation:
Date :
Test Nurabcr:_
Field Person:
                    ft-
Filter Number:	
Barometric Pressure ("Hg):	
Stack Static Pressure ("H20) :
Stack Dimensions:	
Plume Appearance:	
Ambient Temperature (°F) :
Record all Data Every
                               Minutes
Filter Heater Setting:	
Probe Heater Setting:	
Nozzle Number:	,Dla.(in.):
Pitot Tube No.	,Corr.Factor:
Meter Box No.	', Corr. Factor:
Meter Isokinetic Factor:	
Assumed Moisture(%):	
Condensate Volume(ml):	;
Silica Gel Weight Gain(g):
Leak Rate         CFM at
"Hg

Trav-
erse
Point
No.
V-\(0
t*H1
l*Hfl
P-/1
fc^/1










J!

Time
Samp-
ling
(rain)
(-0*)
10$
i|-
l1/
j-i
3D











Clock
\fao
l%3')
lXty
lift
\M1
It fa











Velocity
Pressure
(MH20)
A M
p,.1f'
Oilfti
OllO*!)
\j i. \jd \/^











.• /L/
AVERAGE (TOTAL)
Stack
Temp
IfO
]1b
H(0
i i^
\i((












i&
Dry Gas Meter
Vo lume
Qtfbfy
3^' $-f)
1 ^~) 1 I "J at
f\f // A *"\ ,
lf^\ **T I/ 'J
/?\ S i L/* /
26%.1'ft











< ,
Temp (°F)
Inlet
lOo
tt)1>
10%
to%
IQ%











Q(.
*
Outle t
V(i
w
^
^
°lj











\
^
Orifice
Pressure
Differ-
ential
("H20)
'{,9J^
f Qa
L7j
Lit
j, %£j












;.3U
Filter
Box
Temp
$33
320
2d6
y.tf
3-2*1













Last
Imp .
Gas
Temp
<^d
•l4
1$
Us
i
T












Sampling
Train
Static
Pressure
("Hg)
0

















                                   Clayton Environmental Consultants,  Inc.

-------
                  SAMPLING TRAIN DATA

PA  -
     ~ 0
J°
 Company:	
 Source Designation:
 Date:     1014 (?$'
              t
 Test  Number:	
 Field  Person:_
 Filter Number;   '  p-^I4:?.
 Barometric Pressure  ("Hg
 Stack  Static Pressure  ("
 Stack  Dimensions:   £\- jV*
 Plume  Appearance:	
                                             '/4  ,Dia.(in.);
             )
     /-/
                          „,
                          *•'
 Ambient Temperature (°F):
 Record all Data Every
Minutes
Filter Heater  Setting:
Probe Heater  Setting:
Nozzle Number:
Pitot Tube No . £L'$-_t Corr. Factor ;  ?-'"
Meter Box No . {<& C -1? , Co r r. F a c t o r; £, <•/£;;
Meter Isokinetic  Factor:
Assumed Moisture(%):	
Condensate Volume(ml):
Silica Gel Weight  Gain(g):	
Leak Rate   Qtr,    CFM  at    /5
                                                              Y)J? t
                                                              "Hg
l,hl m i*4j>uv ^
Trav-
erse
Point
No.
iu-o-
£
.'^
n
;1
<
/..
">
^j,
"l

i .
\?
'V-
F
•:<
)V
\ -
Time
Samp-
ling
(min)
o
p.
u
0
/ J*
/ r- " "
/ .f
/#
.-i/
.•v7'
• * <
,'N, '
'A ;
•^ j-f~.
. • 'v:
^
4->
i<
H
Clock
61 &
















Velocity
Pressure
(I!H20)
-0."'f
0.1*
e .' 1 .>-
d.M(\
6 • T v/
L/' . 'f °
o.?/r
r/.>/c
6/,4
h -V 'r
'
(/. s '"1
6. s f
Ot.v;>
o.ri
o,r*>
O.^i
O: I-'!
AVERAGE (TOTAL)
Stack
Temp
K:g^>
or0
-}^
ISO'
f, 5 1
/,vo
(Sc-
[So-
(S,
^•D
( -:> <
.^i)-
f ^
;^-
|-S!T
k<
/y<

Dry G/s"fi;eter
Vo lume
(ft3)
^j^fi
^{.(^
&^:\+
.i
^fc.?'
a^ra?>
3Si-5t
^S'i-1'^
A^ ',' , J>
.^1^,/i?
A^.V
^.T/,-r
£?£J(
^oo..^-
.->,-? o <
,?:'-3-?l
{ >
Temp (°F)
Inlet
i^
^
^
iv7
(>x
(.0 2
/,,S'
(c^(
( 04,
'LOC
Loi,
/ e>6
/0,
/o-'
[o[f.
{ Ov:
t-,L

Outle t
--&©=-
d^
*/' /
v$
^
u'"
^'T'
'-? ov"
T>
?>
',:fy
7 v-
 f
^^y
3-o-?
^sr
>^-->-
o o-^-
^X . L T"'
,Z-,'H
^;^
c3'.:il
iA '-X\

Filter
Box
Temp

•£/«
/v / /'
UA ^, ' U-
^ ^ ;
d f ^r
.^ir
' ' s
<2tt










Last
Imp.
Gas
Temp


(. V
;
t--- */•
64
^?
tJ-
'?.-••
•?>





^




Sampling
Train
Static
Pressure
("Hg)


.:3.,
,'^.C '
-4.0
~. i1
.^o
. *\
•fi. • ^ \
,?,6
i

1
'^
(. r.
/. 5"
c^O
P^


-------
                             SAMPLING TRAIN  DATA
Company:
Source  Designation:
Date : 	
Test Nurabe'r:^	
Field Person:_
Filter  Number;
Barometric Pressure  ("Hg):
                          I C
Stack Static Pressure  ("H20):
Stack Dimensions:	A-' L'"
Plume Appearance:	
Ambient Temperature (° F) :  ^5*''
Record all Data Every     +
                                Minutes
Filter Heater Setting:	
Probe Heater Setting:	
Nozzle Number:	, Dia. (in.) ;'J/
Pitot Tube No . .73 , Corr. Factor ;
Meter Box No. ;.../,.,. -;, Corr,Factor;
Meter Isokinetic  Factor:	
Assumed Mois ture (7.) :	
Condensate Volume(ml):	
Silica Gel Weight  Gain(g):	
Leak Rate          CFM at
"Hg
Trav-
erse
Point
No.
1
•4
: ' ./-'
,-\
™"N
/
3 ~ !-
_>"•>
S-i.
^' v*
<•""*'
D- '
/ '"
-"^
S-1
-n-l,,
* ' i ;
~3'\(
-^ 4 •
Time
Samp-
ling
(rain)
5!.
\ '-•
5 ?
Clock



/• ,- /i'l «M
o-tr



0/t'>
0.-?j
6^?-^
o ,. -;
0,1)
6,^-
xft
1 •:">•->
i-. A i
f,.fb
l'/M:
^' x'..-
L' \
/
A s •>
\S '^'
AVERAGE (TOTAL)
Stack
Temp
(•F)
/^5
\T5
• ••\|.*
<, / . y™.
('"! o
rrfHt;--

(~\ o
tf^'
(.10
i-io
{^o
.f ^~
i.i^
'^u
\*1D
! • ''V>
h >
HO
llo
, /
i ' -.

Dry Gas Meter
Volume
(ft3)
^o.5:fi 5
3o£.,*}-
2/^.^
3i 3. f,r

31 3,1 £
3-/6'^b
•-> i ? ^ ''
^ I b . • •
.^ '! r-v(j-l
-' v-uN.
>J^.fo
3^-. i1/
5>vl;-
^,f,3f
MVK
?a?>L'.^
1 J,0 O'A
'J ? , « <^-'
%-JI 11
J ' 1 s
( )
Temp (°F)
Inlet
[of.
f^-
/ >7C'

Try.;

;.£:;
\fl *
• -jj
l'.6t
l'^
/iD
f^ .
lt-
fv>
i [ ;
f i ;i-
,'/ -\

Outle t
<-M
1 b
<:\>(:
1 *'
I2
••I-''.
/ ";

If r
'•>'•'
iV
e/v
;.o-;' •
(eO
/ oi:
t fct)
JKJ-C
/'<>
/,.::-
"io'-f
, /
1,0^
/ , '
; O"'

Orifice
Pre s sure
Differ-
ential
("H20)
1 P ^
2-l"M$-
Aos
J /,' • '- -fr


o* - ^g
.^'^
^•^.
,^. 0
^•^
1 -/.
<"V /uf
,".^'
.^.'t'/
v!.®
1 it *-
.,' L— t-^
!• -j-*
.^•5<
x' /.0-

Filter
Box
Temp
(°F)

^.^









^fo


.-70S"



Last
Imp .
Gas
Temp
(°F)

'J'M-









^1


. ••».•%
/ /



Sampling
Train
Static
Pressure
("Hg)








3 • u



-> r
t^-"Cj





                                   Clayton Environmental Consultants, Inc.

-------
                   SAMPLING TRAIN DATA
\0/4l'

7)L
Company:
Source Designation:
Date :
Test Number:^_
Field person:	
Filter Number;    ' y ' '•••(fh- i 5
Barometric  Pressure  ("Hg):
Stack Static Pressure  ("H2(
Stack Dimensions:   4-1 (,"' I
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every 	
                      O,
                     Minutes
Filter Heater  Setting:
Probe Heater Setting:
Nozzle Number:
                                                 ,Dia.(in.):
Pitot Tube No. J>; ,Corr. Factor;
Meter Box No . |y; •:.- ~';*. , Co r r. F a c t o r;
Meter Isokinetic  Factor;
Assumed Moisture (%):	•
Condensate Volume(ml):	
Silica Gel Weight  Gain(g):	
Leak Rate          CFM at
                                                          "Hg
Trav-
erse
Point
No.
i-H
5-!-'
*>•(<>
6-ic
5-P
*>•$
^
*.<\









Time
Samp-
ling
(rain)
ii?
W'
10-
10^
|0?
lll:
ii
^•3. «is
35t^S
J? < •'••' '-' C
J-..-J ?..''O
'^,/ ^-;"l
^^•w" •• "
^i:6fy:.

j>(»S OD--







/c-Mo^
( )
Temp(°F)
Inlet
i/^'
/,':,,'
-i"i:
n"^
Kc
/ / ">
' \ -'
IU
t .
.• ' ^f-









/c'-'
Outle t
'f 1 . -
1 O'V-
/'/y..-
ico
/•'•'
/o^
/* 5"
/fc ^
/Ct
'-"r
' •--''
- c » ^








1 - -
•; -'I
Orifice
Pressure
Differ-
ential
("H20)
^.^
^,o ->
^|r
^ V
-•- u/t-
J.6?
if
2A6
,1 ri
. — -.--—--








^.L<
Filter
Box
Temp
(°F)




.&&













Last
Imp.
Gas
Temp
(°F)




H













Sampling
Train
Static
Pressure
("Hg)
"' ' i
-71 <~J
3..0
5.o.
-)
oX t o
V
,,-« 0
^.o
J.o











                         Clayton Environmental Consultants,  Inc

-------
SAMPLING TRAIN DATA
Company: €V $ '\Q-^t (o
Source Designation: \fk., QJL)(
Date :
J0-4"l^ Filter Heater Setting:
Test Number: P~ '^
Field Person: PL."5
Filter Number:
Barometric Pressure ("Hg): ^1 -^
Stack Static Pressure (u.
Stack Dimensions:
*^») : /9. '7 M»,
3
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every

Trav-
erse
Point
No.
>
1
^
4
""?
d
4
tf
1
i
?
ci
I0
if
n
c* O"1"-
H
w
(1
<^~. •
lip
(7
Time
Samp-
ling
(rain }
0
•3
a1
q
l.>
i^>
II
„•?
,?<

f
I
01
T 1
•fO
33
3U-
-^
^
M
^
Clock
|4i^
KI,?
H,^-
H'J1/
1^1
H30
W'tf
\^k
IW
Ml
IW
iM
l^l
iW

Hf)
l4f
1«
\m

^ Minutes
Probe Heater Sett
Nozzle Number ; ///
Pitot Tube No. ^3
Meter Box No.^7/?^
ing:
,Dia. (in.
):O.Z41
, Corr. Factor: £,$2$F
-3, Corr. Fact or: Q.^c-t
Meter Isokinetic Factor:
Assumed Moisture (%) :

Condensate Volume(ml): (yO.Q
Silica Gel Weight Gain(
Leak Rate 0. 0 ) CFM a

Velocity
Pressure
("H20)
0,11
o.l^
o, %*

.. A1
I1«')
|^(P

Dry Gas Meter
Vo lume
(ft3)
5k£. WO
370^9
M.tp
^HtHS
"z-nti
Sfalb
w.W
sn, vo
t%. 1
3fl
{01

Outle t
9
lot

g): "31.1
t "Hg

Orifice
Pre ssure
Differ-
ential
("K20)
2H2
J.rf
2- (ti
3^0
J.fa
3.1C)
/
J-fo
3.^0
J.0!/
2M
3,fo
a.tf
3.1?
3.yi
250
3- 3 1
3-W

Filter
Box
Temp
(°F)
d/V
3/0
3I~0
3ft
JI5
215
^a
^^
^,^..2
2M
3M
33c
330
y^
2*>d
tod
£30

Last
Imp .
Gas
Temp
(°F)
fo
n
7J
11
T*>
r$
l(f
7^
Kft
1(*
Ml
n/-
i \-
lu
77
ti
fo
%o

Sampling
Train
Static
Pre ssure
("Hg)


















      Clayton Environmental  Consultants, Inc,

-------
SAMPLING TRAIN DATA
Company: b\ H T~c^> /c c.
Source Designation: 'yhsis<^. f: /•£•> ^L~J^/'
Date :
/,C'-<:/-7# Filter Heater Setting:
Test Number: P~ 3 Oa&t 1
Field Person: '3)Ls5 ' 0
Filter Number:
Barometric Pressure ("Hg): ^ <^. £5"
Stack Static Pressure ('
Stack Dimensions:
H20): ^ 7 i£.
y ^ " / D &
Plume Appearance:
Ambient Temperature (°F) :
Record all Data Every

Trav-
erse
Point
No.
i <7
 A
(rt
kij
itc\
1,a
.16
1?
$l
N

^0
33
-lti
4ft fa
A2%. V6
/i f') \ ^j .
43 ). 30
433, 1<2.
426,3(/.
4.^ ^'l
* /
W,a/
4W.-0

¥a 4
4^V,f/
40
112
lit
\Cl
11$
lilt
n IP
i/(>
f/v
in

Outle t
fO/
ID!

toO
/£!
Id'-3)
}0^
i&t
iot
0)7
If \ ^^
^ -S
1 r\ /
/ LSI/)
IDif
loie
in-,
Iflb
1

S) :
t "Hg

Orifice
Pressure
Differ-
ential
("H20)
_£./4
J. 40
* 2f
2^4
3M
' " i
.3.46
£Je£-
£.1%
P.9v
3.19
A, /) //;
C? t U yJ
^ l£

Filter
Box
Temp
..^30
£30
,930
WO
J30

3?o
2-M
$30
330
205
- 3o5
3-6*>
20$
M5
305
;)0^

Last
Imp.
Gas
Temp
SO
80
w
%Q
¥0
$o
$0
%0
ftd
Xo
77
77
77
77
7/
77
/

Sampling
Train
Static
Pressure
("Hg)


•













i
l
J

-------
                             SAMPLING TRAIN DATA
Company:
Source  Designation:
Date :
Test Number:
Field Person:
Filter Number;
Barometric Pressure  ("Hg):	
Stack Static pressure  (MH20):
Stack Dimensions:
Plume Appearance:
Ambient Temperature(°F):
Record all Data Every
Minutes
Filter Heater Setting:
Probe Heater Setting:_
Nozzle Number;
Pitot Tube No._
Meter Box No.	
Meter Isokinetic Factor:	
Assumed Moisture(%) :
Condensate Volume(ml):
Silica Gel Weight Gain(g):
Leak Rate         CFM at
                          _,Dia. (in. ) :	
                          ,Corr.Factor:
                          _,Corr.Factor:
"Hg
Trav-
erse
Point
No.
I-J
10
11
1.
l°\
IC'\











Time
Samp-
ling
(rain )
/0.3
!$
1 r> #
/ •' '
!\4
I>1
i'^










Clock
/ / s/ O '^J
/ CfcT __/ f
jfa ft
Ml
Hoi*!
llrf'l
It/to
Itofa










Velocity
Pressure
("H20)
0, 96
i
/) (^1^.
0.10
0 ^/'^
/) <^ o
\j ,\ \ t~<.










J.-5./7
AVERAGE (TOTAL)
Stack
Temp
Ifc
Ifa
lift
!$*>
i$5
t K











i*a
Dry Gas Meter
Vo lume
(ft3)
44* 1. c)0
4-b5,3
4- (/? 7 %
410. %l
$1*), If
411 Jj
47^r










(//^••- '•>
Temp(°F)
Inlet
us
/M
l/h?
-A1&
in
1 /
in
i










iM
Outle t
I0(/y
101
/Otf
iDIp
l to*
l!)7










'[-
-1*
Orifice
Pressure
Differ-
ential
("H20)
A \<4-
j,^5
3*lTj
£W
3. c4
• & Of











3- u
Filter
Box
Temp
3 fa
^
£$$
do**
2- 07
Mn












Last
Imp .
Gas
Temp
77
77
77
77
H
11












Sampling
Train
Static
Pressure
("Hg)


















                                   Clayton Environmental Consultants,  Inc.

-------
    SAMPLING  TRAIN  DATA

Company:	
Source  Designation:
Date:
u 4-£. i  V$f-£oi;-br,
Test Number;	
Field PersonT/^/y/<; / TV/24
Filter Number:	
Barometric  Pressure  ("Hg):
                      Filter Heater  Setting:
                      Probe Heater Setting:
                      Nozzle Number:  3/.
                                         fc 0
I
     M
                                       . (in, ) ;ff,
                                         Pitot Tube  No. ,j^,Corr. Factor ;
                                         Meter Box No • #/)£,  •'
l('
i :
;/t
L '
i
3 ,
y>
96
37
4-
4^
•4-t
Clock
|$<^
















Velocity
Pressure
(MH20)
. JC-
/ ,<>
//^
.^ !
i
. ft~
'; •
. "U1
•S(/-
,v'^
,p
/y\
M
i/^
/-5
10
/!
' 1. ci
AVERAGE (TOTAL)
i •
Stack
Temp
7.r
;/,>'
/
7%
7C
"7?
1C
7C"
/-
7f
7C
?r
?r
7S
7:7
1 ^;
7s"

Dry Gas Meter
Volume
(ft3)
316, )T
•i /^ ;'• /
3 7 3X'
•?j'7 - /
*,fT,;x
3V 3, v
"i^ .
~-, C ""? ~^
3i-6,G
:><<• l(v
"3 ^ 3, >
7^zr.-/
>(>6-6
"36S/G
37 1 . T"
37 >J
•57C-'t
^7.^'A
( )
Temp(°F)
Inlet
ft
<\'
y/
q u
c\\
|OD
(Q(
(0\
• ;/
i '' "
//c
Ifu
1(0
I/L
I:A
fw
ite
ir-

Outle t
?l
£> /
J (
/'/
rG
f-C
ru
flY
L-
T->
f 6
f / '
ff
?4
C/S
pf
/^
fc°

Orifice
Pressure
Differ-
ential
("H20)
i )'
/* '*'
6y
/
//;
7^
;i
76
x5^-
?->
7 o
7^
7i

Sampling
Train
Static
Pressure
("Hg)
U - °
& „ o
cJ ( U '
U -o
o .. o
')<£
•? >'~)
€c

-------
SAMPLING TRAIN DATA

Company :
Source Designation: 6*-' 7 ^e( ( 5(-/^ - >- fiS^i^
Date :
Test Nurabe
r :

7 ~ i fe^-vii ^
Field Person: / r f ),; s /~J~|//y]
Filter Number:
Barometric Pressure ("Hg): '~l.tf , % I
Stack Static Pressure ("
Stack Dimensions: -4 , <
Plume Appearance
H20): t //(
;• / ^
/
•
Ambient Temperature (°F) :
Record all Data Every

Trav-
erse
Point
No.
\i
r'
L'-

U-^
9
- 9
' 1-

(J
•)
s
^
(i;
li
- (V
. P;
Time
Samp-
ling
(rain)
L,l
5'1-
\
1. "i
!.'• '"
. -e-
(i'^
/;• <•
'•t
•^ y
-;-S '
7)
} /
84
st
fo
^
ft
Clock




\l'l'-i



"" sTT7
^Jp',(_^









">f >^
'-3H'">
T> ^)' ^ ;. ^
^y/'"1?
^Tl.u
400,1,
A±01±
^6'J?
460/C:
^fcO/>
4/^^
( ,
Temp(°F)
Inlet
(2?
IK"
(\
^
( / :
[ i.^
I/?
/ /(7
V
/c
i/°
/ / ^
I/O
f/o
1 / f
p....
(Its
1
Outle t
/O^
/ ^
f-'i

x^
/C.'/
//£
//^
/^!
//^
// ^")
I/O
I/O
l/c
J!L'
IfC
(1^


Orifice
Pressure
Differ-
ential
("H20)
2.,)
o,^
3 / ^-

l.-C'l-
' //'•"L
xr/
f~~~"*
5"
2o5
lor
•^ ... /'••
^^^


Last
Imp.
Gas
Temp
>>
?>
•;x,

uCc
r
5'C'
?5
-jc
7o
}*
&£/
& /
'•'•7
c-9
/ c?
^.f

Sampling
Train
Static
Pressure
("Hg)
^cQ
<(<£
4,&

ti. c
0 ../ ;
0 , o
£'t O
0 . 6
00
o , a
c',0
='-'-' , <^
^ 0
0f&
//
-------
                             SAMPLING TRAIN  DATA
Company :	
Source Designation:
Date :
                 P~ I
                 ' 	,
Test Number;	
Field Person:_
Filter Number:	
Barometric Pressure  ("Hg):	^
Stack Static pressure  ("H20) :
Stack Dimensions:	"4 f 
^,

i.i-










AVERAGE (TOTAL)
Stack
Temp
7f
?r
^\
7 r"
7<7
7\"
?r










105

Dry Gas
Vo lume
^

"«/ v-
h^
4/ 1.^
A ~LC , I
A~ i ^
A 1C&
4"L^-
fti,oy









( : )
Meter
Temp (°F)
Inlet
III




K"
i?
~Q
3°
1 >
p;;











Outle t
/ /L
l/£f
//r
//.s
[ i $
n(
•i /f











Orifice
Pressure
Differ-
ential
("H20)
T, 3
i^-i
i_c7
i / 7
i.$
z ;?
i,f










.- ( —
Filter
Box
Temp
Icf
7A"
la;
7^;;f
^-r
?/;.r
?.c-r











Last
Imp.
Gas
Temp
6f
fa
C/
(C/
6/
6/f
£/











Sampling
Train
Static
Pressure
("Hg)
2^0
L.-<9
1 ,3^-
?.4~
2/r '
^/5~
4^-












-------
SAMPLING TRAIN DATA
Company :
Source
Date :
Designation: '^xL.fi.uhftcS' ( Ou-TUel ^
; {V - 4
Teat Nurabc
~~7 ' &
r : \ ' '- 2—
Field Person: ('V/M /' T(//?1
' ' ' 	 ; '
Filter Number:
Barometric Pressure ("Hg): JL9. ,?^
Stack Static Pressure ("
Stack Dimensions: **\ *
Plume Appearance
H?0): A 75
5" / ^/
*
Ambient Temperature (°F) :
Record all Data Every

Trav-
erse
Point
No.
u:-3v
2.
3
4
c
6
/
1
6
/-.
!/
• 11-
P?
(4
r
^,
(/
Time
Samp-
ling
(rain)
O
"S
6
fi
i'i
;C

\
M
2.4
J?")
>'
^
3t
~'7
4v
/ /•*'"'
4?
Clock
CfS'o

















P)
,, i
Velocity
Pressure
("H20)
i - 1-
i , v
;(,; )
,(,]
/ \.
i 6 >
1 ^
t&i
,?7
/7\.
L,V-
/-S"
/,C'
4
(^
^ /xl
z-.o
AVERAGE (TOTAL)
v. '-1
Stack
Temp
7S
?r
?r
7.f
"7S"
?\
•^
7f
'^\~
? r
7C
7T
?)"
7f
"K
?^
7f

Minutes
o
Filter Heater Set
ting: ^. <3P
Probe Heater Setting: ^ £-"'
Nozzle Number ; jy
Pitot Tube N0.3S7
Meter Box
No.^/l^^
,Corr.
"4,Corr
Meter Isokinetic Factor
Assumed Moisture (7.) :
Condensate Volume
Silica Gel Weight
Leak Rate G rO \

Dry Gas Meter
Volume
(ft3)
4 "? / ^ /6%
^33 ")
^3(,,(t^
^\3f'9
^•\v /;,
^46;^
4t-.-6
44)^1
4 4 £f
^^?'C
^4C';;
4 f U ^
4^1,5
4T5>c-
^ 7? ,#
465^"
f4,>^
c )
Temp (°F)
Inlet
7^
?c
°i /
[Qi>
I c/
(o\
ioC
t>
'\\o
It*
ll'J
|/4
//(•
(1C
(K
\IL
M

Outle t
?£'
/^<
/ 2
/6"
^
f^
^
^
f')
M
1A
f/^
^P
/6V/
/i^9
I^L)
f 0 ^


Orifice
Pressure
Differ-
ential
("H20)
/•Iff
i^r
,/?f
/ 3 £••
01
t^\
, rr
"" i
'"/s"
/'/3
1.6
/•f
?-,/
7-"1
2 i
--> "L
^-' 7
Zt
/ vX^1'

(in.
):£>,/ w
o<&
£ , &
0,3
d , £
0
-------
SAMPLING TRAIN  DATA
Company :
Sourc
Date :
e Designation: <•'><-£<-•}}/) t ^ ( ocT7- '"/
In -- 4 - 7 ?
Test Number: ' P-("l ($&£(]
Field Person;. ' /^tf/ f / 71//K/
Filter Number: '
Barometric Pressure ("Hg):
Stack Static Pressure ("
Stack Dimensions: ^/ / <
Plume Appearance
H,0) :
) u;
»
•
Ambient Temperature (°F) :
Record all Data Every

Trav-
erse
Point
No.
/'y
/ 1
lc

S ??X
&
"!>
4

6
n
g
li
\u
ff
il
r-7
Time
Samp-
ling
(rain)
S~l
vH
i
£ <-:';
- —
£>
6G
C, Li
'li
1C
7x

f\
fl
c\k
V?
HI
Clock



fi|-:#-
$ : #










*


^

Velocity
Pressure
("H20)
('1
M
/.v

'T'-
»' J *'"'
/)}'
^i "^
/ A / ,'
/^ '' '
jV
. (0
,$(?
/I ^
(y /-.
t$5~
f - f
AVERAGE (TOTAL)
Stack
Temp
?r
~iC
?r

7C
?v"
-?.r
7r
?5"
7 ^1
4^ $*\
477,2-
/f)f ^
4f^-
4H .£
4^'\o
4\x4->
^ffA-
4t^«v
tfi
/ • :
1 /i
! 1-'
I (ji-'
\ n
(U
1 q

\u\
} //i
1 L4
flA

Outle t
fc<\
(c\
lot

I(M
///
/>

Sampling
Train
Static
Pressure
("Hg)
^'6
^ ' O
1*0'

6.0
6,t>
O -O
0,0
6 .- d
0. 0
o . a
o,&
0<.~o
0,0
d,c>
6s e)
0, 1)

                 *?(« If^^npr, i« T. •»!«,(%-,P. ^  *^n"1
-------
                             SAMPLING TRAIN DATA
Company :
Source Designation:
               \
               6-tf S
Test Numbcr:_
Field Person:
Filter Number:
Barometric Pressure
/J
_/-'2C-"> - O
                     ("Hg):
Stack Static Pressure
Stack Dimensions:	<
Plume Appearance:	
                       ("HoO):
                        ,• A
Ambient Temperature(°F) :
Record all Data Every
                                Minutes
Filter Heater Setting:	£_
Probe Heater Setting:	 fc
Nozzle Number;.!
                   ,Dla.(in.)iQ,
Pitot Tube No.JJj_f,Corr. Factor:
Meter Box No . Kk."1^, Corr. Factor;
Meter Isokinetic  Factor;
Assumed Moisture (%) ;   -4.
Condensate Volume(ml):	
Silica Gel Weight  Gain(g);   ,j2 /. (^
Leak Rate  £*, U f CFM  at   2.&   "Hg
Trav-
erse
Point
No.
l(\
(f
(i-
o
ff
Yi
1,0










Time
Samp-
ling
(rain)
ff
A, ^
i,C
/(' \
1 ( '•
HA-
i
I
1
pL,G









Clock

















Velocity
Pressure
("H20)
/ '"?'

i

•'
4
,t-
,7
li"^-
1,1
2./^\










AVERAGE (TOTAL)
Stack
Temp
I/O

//o
//6
// ^
//o
f/t)









.33.°!
,-
Dry Gas Meter
Vo lume
(ft3)
^
W*(
^00 £
^0 1 , c/
$b$f!
Sostt'
5(['<\
h\ ).r
Tlb.ri









•' ' '• *
0 i-**/*-i i r<
f JrJt Lx *4* \
Temp (°F)
Inlet
|U
flJ
\]J
>
'-%:
)],
a;6-
7









u,
Outle t
l/'i
114
(lf\
1^
I («
i /4
II Is










C^IMV i3
T'^MM'/M
Orifice
Pressure
Differ-
ential
("H20)
(,(,
//?
2,0
2, , U
l.i"
Z./7
^ /' ^'










u^
Filter
Box
Temp
T/^
VC-
1/6
I/ 6)
"L//.
l/^
^/,;











Last
Imp .
Gas
Temp
(°F)
")/
V
7$
"?y
)-}?
7}
") )7











Sampling
Train
Static
Pre ssur e
("Hg)
to
<.1
,?'C'
?.. 0
3 -6
3' o
z(,c











                                   Clayton Environmental Consultants, Inc.

-------
                              SAMPLING TRAIN DATA
Company:	
Source Designation:
Date:     /,",— ^\- -") (
                       c- /dc. ft  ^
                                                                      C
Test Number:_
Field Person:
                      /~li/'-'.n
Filter Number;
                   /}-

Barometric  Pressure ("Hg) :  -J, Corr.Factor:	
Meter Box No . ffioffi., Co rr.Facto r; //^j_j
Ambient Temperature (°F) :
Record all Data  Every  _J
                                Minutes
Meter Isokinetic  Factor; /
Assumed Moisture (%);  ^ "%•
Condensate Volume(ml): _
Silica Gel Weight  Gain (g) : __
Leak Rate fc , Q  I   CFM at   / C
                                 "Hg
Trav
erse
Point
No.
'••"'
IA, (__
'--
";
•':(
<;'
6

(<
i
. j ;_
-
I"'
i L
1 :
\ '
/C
( I'
(I
Time
Samp-
ling
(min ]
' 6
"i
6
Y
i.-
/r
^
'L7
-^
/- :7
'' O'
'V';
W?
"V(
7 L'
' \ *•«•
"r N-

Clock
'\\6













^i$&.
&W>

Velocity
Pressure
("H20)
/, ")
(. >
n?
^i
^c
;?^
7 •'
f '; i
• ,") u
.7^
( • 1;
1/6



,r
• G
\(u
/J
1 ^
AVERAGE (TOTAL) V^X
Stack
Temp
7/;.,
/ii-C
/r-
i ^
/;.<
/cS
/6s"
/of
• /^s
ttf''
'(L'\
!uC
lc\
ior
fcC
/,.r
/6S

Dry Gas Meter
Vo lume
(ft3)
5\g ^ y
5/$,t
^'lo/i
•*,
^M.i-
S"'LC-^
5^tL
5^6,0
^>/.?.,
-^ /
^->1^(
5*3. 7 x€
f)/^
VrlA-
b~1'^-'
c'^t.?
WC4
)
Temp (°F)
Inle
^/L
O/-
cl^
-(Co
l(fy
[(/'--
/£$'
11^
!!u
1/1-
1 14
Ilk
(lc
T.I..
| ¥{
//'c
(f?

Outle t
C(^
Cfl-
'? l^
7^1
 ^;,
'/f
V c/
Ct{!
/Of--
1 ot-
ic I
\<-[\
\u^
i u~
(fc
[v

Orifice
pressure
Differ-
ential
("H20)
1,4
//^
//?
f. n
, f 2-
r\ ^
.If
,r/
/.f/
'12-
/ , /^
1.0
l>Ll
7./r
Z /^
~Lo
0 ,.C
f) -&
6.&
6 ,o
G,d
f'Q
$,0
2,ti
'i,®
2,4
t-o
^:, O

                                                                         r" r

-------
                              SAMPLING TRAIN DATA
Company:	
Source  Designation:
Date: 	/ {, -•
r,.,l^- /
Test Number:
Field Person:
Filter Number:^	/-/ ~~ =^f ,- 1p  (/'t
Plume Appearance:	
Ambient Temperature (°F):
Record all  Data  Every
I
Minutes
                                                                    c-
                           £,Dia. (in. ) ;
     Filter  Heater  Setting:
     Probe Heater  Setting;
     Nozzle  Number ; -
     Pitot Tube  No •_'?^"9 Cor r. Factor ;
     Meter Box No ./LVfcffia , Co rr. Factor;
     Meter Isokinetic  Factor;
     Assumed Moisture (%) ;   -$•%.
     Condensate  Volume(ml):
     Silica  Gel  Weight  Gain(g);J
     Leak Rate __/)'.£/  CFM at
                                                                          "Hg
Trav-
erse
Point
No.
(".';
n
~LL-

S-3
— \
1.
4
C
(,-
^
\
c,
i' (.
1
A,
(v
Time
Samp-
ling
(rain)
^ (
>y+
^1
L-,
~
(,.")
(,.(.
\-(l

^r
Ti
:V'
'< IL/;
V !
Cl i
cin
^
Clock




. . ! /" 1
1 •












Velocity
Pres sure
("H20)
l-i


,1



i
. L
.{£-•-
//f
/
^
« '^;
.' /-H
, i . /
,1)
,7*
/ -P-
tf'i
i'!
AVERAGE (TOTAL)
Stack
Temp
%fc
1 C'S"
/,:s

lit
[r<
/(jC
( ^
/t-.r
/;'. C
/ /- <'7
/ U f
/•t/r
t ^
/CX/
\frf
If S

Dry Gas
Vo lume
(ft3)
6T/7
^.Til-
5-^6.-.?
(yS^ , 0
ST^-
T6 / . /'
9c ^.?
5^-5,1
.yt ;) , ( -•
5"6y.,/
5?/,*j
^ry
^
(3^
(3,.
'•>:
/'./-

Outle t
/A"
/()
• ;'/;

//i'
i
//>
t

(if:
i /.?
////'
/^/
1^
( 7.0
f 7- 0
/ 1. 0

Orifice
Pres sure
Differ-
ential
("H20)
2., 'f
2^
^' ^Y-



/4
\, \
''/
(/ '7
[t'l-
\>l-
(-/
h I-
i / /
h c-
/
/
I

, i—-'
/i

Filter
Box
Temp
U. 5
z/r
1.1 C

Z/ c
'Z/r
°-/,r
?-/.V
. •-» ***
^1 ^-C '
7. W
2. Lc
1-1
It
?c-

"~*l
)r
A-
;v
'?/_
/,•
7o
>V
?c,
?c.
?c-
?C '
?(.'

Sampling
Train
Static
Pre ssure
("Hg)
3,z:
X ^
\ ^ '

@'&
S9$ J^^
n '* • (i
&>6
c . o
6' /r
() ~7—
C: . 7_
(j. (
c.t>
& ' o
0'
OȣL

                                    Clayton Environmental Consultants,  Inc.

-------
                              SAMPLING TRAIN DATA
                f - "^ (' 
Condensate Volume(ml):	
Silica Gel Weight  Gain(g):_
Leak Rate  f) . O
                                                            CFM at
"Hg
Trav
erse
Point
No.
14
(\:
a
r\
. v
(q
V










Time
Samp-
ling
(rain)
Tl
I i v
/ K
' :•?
: ' |
, / 1
]
}^L









Clock

















Ve
locity
Pressure
<"H20)

;,>
I , c
I ^5"
l<~)
•%'C-
^J
'^.'?
5t^ ' >
C^7./
Ul-lt-









i'.-YJ )
Temp (°F)
Inle


/V
/X
l>
1>
l^c
f









/ '-^
Outle t
/ CO
^2-c
(fr°
I l-c
l'^
/K-
lo










no
Or i f ice
Pressure
Differ-
ential
("H20)
1^'

1,1
2 , -
2.-^
Cpx'")
'Z./7










./-
Filter
Box
Temp.
S/c
V A-
Z / C:
T / 
U ^
7-/ /











Last
Imp .
Gas
Temp
$U
ft
';)(.'•
$c
/•>'•
)'t
,Vt;











Sampling
Train
Static
Pressure
("Hg)
t.c
/s,r
/, .r7'
3ocr
•-V ^:^
3.JT
3,5 "









•


-------
    APPENDIX B-2
SAMPLING SUMMARY DATA

-------
                                 TABLE  B.2.1
               SUMMARY OF  STACK GAS  TEMPERATURE  AND  FLOWRATES
Sampling
Location


Inlet


Outlet
S ample
Number
P-l
P-2
P-3
Date
1978
10-3
10-4
10-4
Average
P-l
P-2
P-3
10-3
10-4
10-4
Average
Tempe rature
Op
182
188
188
186
105a
110a
104
106
°C
83
87
87
86
41
43
40
41
Flowrate
dsc f m
43,000
42,300
42,300
42,500
53,000
52,100
52,900
52,700
ac fm
53,100
52,800
52,900
52,900
60,600
59,900
60,500
60,300
dsm3
min .
1,220
1,200
1,200
1,210
1,500
1,470
1,500
1,490
asm3
min .
1,510
1,400
1,500
1,500
1,720
1,700
1,710
1,710
a Due to a malfunctioning pyrometer,  these  temperatures  are  estimated based
  on the preliminary and subsequent  temperature  traverses.

-------
   Plant    Dow-Badische
   Sampled  Source    Ammonium  Sulfate  -  Inlet
                                                        SAMPLING  SUMMARY  SHEET


                                                         	                Location    Freeport.  Texas
Run
P-l
P-2
P-3

Date
10-3-78
10-4-78
10-4-78

NP
40
40
40

Pm
2.34
2.65
2.68

Pb
29.81
29.85
29.85

Vm
103.630
108.387
110.737

T
•"•m
99
102
104

Vmstd
98. 102
102.272
104.126

Vw
76.7
84.3
91.1

Vwgas
3.61
3.97
4.29

%M
3.5
3.7
4.0

Md
0.964
0.963
0.960

Run
P-l
P-2
P-3

MWd
28.96
28.96
28.96

MW
28.57
28.56
28.51

Pst
+0.7
+0.7
+0.7

Ps
30.51
30.55
30.55

°P
0.828
0. 828
0.828


-V/APSX(TS+460)C
23.28
23.13
23.17

Vs
3343
3320
3329

Ts
182
188
188

Tt
120
120
120

Dn
0.249
0.249
0.249

7.1
88.8
94.1
95. 9

 ,14-
t-M'.t
                0
8.x Cp
                        IT
         * IT» * *M) * v.
                        ud
;j • _	Ji
    t, « lt « P, « H4 I (D,)'
                                   100 x V
                            I M
                                         <1"-
                             K. • 100 ; X H
                              •      TO5
 Totil No. of Sampling Points
 Avengi;J3rlf1c« Pressure
   Drop,  In. HjO

 Birometrlc Prcisure, In. Ij
   Absolute

 Volume of Dry Gas at H«t«r
           s. OCF
 Average Kctor Temperaturt,
    •F

 Volume of Dry (Us at STP,
I    DSCF3

 Total'll,0 Collected In Iirjin-
    gcrsSnd SMIea Gel, «1
                                                                                 Vw     Voliro of Viler V«por
                                                                                  V*     *t STP, SCF°

                                                                                 X H    X Moisture by Vo'lu/m

                                                                                 Md     Hole Friction of Dry

                                                                                 X C02  Volume X Dry

                                                                                 X 02   Volun* X Dry

                                                                                 X CO   Volume X Dry

                                                                                 X H    Volumo X Dry
                                                                                  W.    Molecular Velo.nl of Stick GAS,
                                                                                           Dry Datls

                                                                                  M     Holcculir Weight of Stick
                                                                                           CU», Vet Bitts
                                                 * Dry standard cubic feel  it feg F, 29.92 In. llg.

                                                 k Stindirj conditions *t^°F. 29.92 tn. llg.
                                                 .    i
                                                 * / tf  x U * 460)  Is determine* by averaging  tho square root of tht
                                                      *     *        pnduct of tha velocity head (&Ps)  and tht aitolu
                                                                    stick tovperitur* frot each ifcupllng point.
F.t  Suite Proture of Stick
        tt\.  In. 11^
     Stick Cit Pretiurtt In. Hf
        Ab-.blule

     Pilot Tube Coefficient.
                                                                                                                                       V    Stick Cst Velocity tt Stick
                                                                                                                                               Condition),  fpn
                                                                                                                                                   SticV Tcwpenlurt
                                                                                                                                       Tt   Kit Ilr« of Ttst, His.
                                                                                                                                                    Hoiilt
                             tn«
                                                                                                                                       S I   Nrttnt

-------
    Plant
Dow-Badi s che
                                                        SAMPLING 'SUMMARY  SHEET


                                                        	     Location    Freeport,  Texas
    Sampled  Source    Ammonium  Sulfate  -  Outlet
Run
P-l
P-2
P-3

Date
10-3-78
10-4-78
10-4-78

NP
40
40
40

Pm
1.62
1.59
1.57

Pb
29.81
29.85
29.85

Vm
85.954
86.639
86,780

T
•"•m
107
110
115

Vmstd
80.080
80.394
79.821

vw
109.6
111.6
115.6

Vwgas
5.16
5.26
5.44

%M
6.1
6.1
6.4

Md
0.939
0.939
0.936


Run
P-l
P-2
P-3


MWd
28.96
28.96
28.96


MW
28.30
28.29
28.26


Pst
0.055
0.055
0.055


Ps
29.86
29.90
29.90


CP
0.829
0.829
0.829


vkPsX(Ts+460) c
26.09
25.82
26.04


Vs
3810
3769
3803


Ts
105
110
104


Tt
120
120
120


Dn
0.1875
0.1875
0.1875


%I
103.6
106.3
103.5

             18 0
ft
                                   100 x
                             I «
                                          gas
                                    res
8,x Cp I / tP  x U$ *




! . U, * ««» « V
                             460)
                                                    VB

                                                    v^
                                        Tottl No. of Sampling PolttS
                                        Aver»gi;J3rlfle» Preuurt
                                           Drop, In. HjO


                                        B»rometrlc Proisure,  1n. 4g
                                           Absolute

                                        Volun* of Dry Gal «t  ftetar
                                           T^dltlonj. DCF

                                        Average Hcter Tenptnture,
                                           V

                                        Vo1u«j gf Dry GiS *t  STP,
                                           DSCF3

                                        Total'll,0 Collected tn
                                           9ertz*nd Stllca Gel, i!
Vw
S H
Md
xco2
X 0.
X CO
XH2
Wd
Volime. of Water Vapoi
it SIP, 5CF°
X Moisture by Yolint
Hole Fraction of Dry
Volunfl X Dry
Volume X Dry
Volume X Dry
Volumo X Dry
Molecular Voljhl of !
Dry Dalfs
                                                                                          KW     Koleculir Ualght of Stick
                                                                                                   (Us. Wet Bails
                                         * Dry tUndard cubic fcol *t &JJ f, 29.92 In. llj.

                                         k Standard conditions at^'^t  29.92 tn. Ifcj.
                                         .    i
                                         * / eJ>  « iT  V 460)  Is determined by svoragtng tho square root «f tht
                                             '*    >        pnduct of the velocity Ixud (tPi) and the •VteluU
                                                            stick tenperaturo fro* each sampling point.
                                                                                                                              Ptt  Static Pressure of Stack
                                                                                                                                      Cis, In. II]

                                                                                                                              P.   Stack C«s Pretiurt, 1n. Hi
                                                                                                                               1      Absolute

                                                                                                                              C*   fltot Tube Crefrictent


                                                                                                                              Y,   Stick Cu Velocity it Sticl
                                                                                                                                      Conditions, fpt.


                                                                                                                              T.   Averam Stack Tenptrilurt
                                                                                                                               1      -r


                                                                                                                              Tt   Kit Tin of Test, Mil.


                                                                                                                              Dg   Sampling Hoiill OlmtUr* !••


                                                                                                                              S I  Nrcint tMklMtle

-------
        APPENDIX B-3
PARTICLE  SIZING DATA SHEET

-------
Company :_	
Source Designation:
Date:    /
Test Number:    PS - /
                   £. K.
Field Person:__
Filter Number:	
Barometric Pressure  ("Hg):
Stack Static Pressure
Stack Dimensions:    <
Potentiometer No.J	
Ambient Temperature (°F) ;  $
Record all Data  Every    J £?
                                .  fr
                             :  .4 Q, 1
                                Minutes
Filter Heater Setting:jpA ^J
probe Heater Setting:	
Nozzle Number:	,Dia.(in.):
Pitot Tube No.lJ  ,Corr.Factor; _j
Meter Box No. &    ,Corr .Factor; £
Meter Isokinetic  Factor; 14,£>
Assumed Moisture (%):	H
Condensate Volume(ml);
Silica Gel Weight  Gain(g):_
Leak Rate          CFM  at
                                                                          it
Trav-
erse
Point
No.
Cl





Time
Samp-
ling
(min)
4°
10




Clock
1C 1-L
'Ofr




Velocity
pressure
<"H20)
,vs
l*S-




AVERAGE (TOTAL)
Stack
Temp
(°F)
/V-4-
i^f





Dry Gas Meter
Volume
(ft3)
^3^.^3-7
4is\ rc?




c .: - )
Temp(°F)
Inlet
%T
^0




c
Outle t
30
°*1-.



;. -. '
°\ \
Orifice
pressure
Differ-
ential
("H20)
^5
tf
^,sr




, i
Filter
Box
Temp
(°F)







Last
Imp.
Gas
Temp
(°F)







Sarapli
T r a i r
Stati
Pressu
("Hg)
iij t *.^
3.?





        SO M      /Af/OOT
                                                                COM rt&*j-rs
    0
    /
    2.
    3
    4
    7
  UP
      AFP -
      /FP-
      AFP-
      AFP-
      AFP-
   ^
   3
                                    5ACK- UP
A
A.
A_
A_
A_
A.
A

-------
        APPENDIX B-4
VISIBLE EMISSIONS DATA  SHEETS

-------
                                 SUMMARY
                       RECORD OF VISIBLE EMISSIONS"
Type of Plant

'.Company Nafr.e f

Plant Address
                                                   TJate
                                                              •10
                         '       '  \\  f
                Jtfk) . .- & rj , JL. > _
                                              //   Hours of Observation
                                                   Observer   f\^' r&
Type of Discharge f

Dischargs Location
                              OTHER
Height  of Point of Discharge^	

Observer's Location:

    Distance  to Discharge Point

    Height of Observation Point
                                   35'.
                                      Gtha
                                         usi,
                                             S AJL
    Direction from  Discharge Point __

Background Description 	
                                                                   Color b
                                             Wind Velocity
                                                                  O
leather-:  Clear   (dvarcssty  Partly Cloudy    Other ^

\     .   Hind  Oirectvcr.       £& |A$'

?lu,7:2. Description:

   'Detached:   Yes

   ..Color:  Black.  /1-,'nita    Other

    Plurr.e Dispersion^Bsh'avior:   Looping    Coning    Fanning

                                 Lofting    Funigating    Other  r
             *                                              '   •' -i  -   / \' —

    Estirated Distance  Plu.-ne Visible    .	

^unvnary of Observations:
                                              r         *  .             .    *
opacity    Aqqreci.3.. te T-'r:e _Q  O^nc i ty    Opacity    Aqnrgg.i to fi:.:e 0 On^ci ty

   0-
   5
  10
  .15 .
  20
  25
  •30 •
                                                                        rni/hr
  35
min. sec.
/
55
60
65
70
75
.80
05
90
95
100

-------
Company Name
RECORD OF VISIBLE EMISSIONS
                   Date
okh
                                                  /0
                                                   -
Plant Address
.Stack Location
Weather Conditions

l n\ ifl
Obs crve r C\C-i <^1&}QJ}nj~tf-J

ti\HAC&£fc - Od

Observer's
,, location
•CUictfuJ

Fi~\fC& f . i
/UO c:,' -&W^L d^jJJ: hO
AlGui 1VX /T/'. ' ^
i1'' n i
- L*tAu &>*-<-£ PWACa^X, CfaLu
d 0 / 5 ^^ cT
'




V





















-------
Company Name _

Plant Address
RECORD OF VISIBLE EMISSIONS

                     Dote
Stack Location
Heather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                    •COMMENTS
m

-•• ... v








15:%
4'






*:oi




I'CV«







M1N

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

00
10
10
10
(o
10
10
10
10
/0
10
10
10
I'O
10
10
10
10
10
;0
lo
10
(0
I'Q
1C-
io
\c
lo
^
u
\o-
\3
SECONDS
'15
10
10
lo
/
10
;C
10
|0
10
10
30
/0
y^?
/^
10
10
iv
IQ
1^,
#
/o
/o
•/o
10
|0
!0
/o
/O
1(1
i'<
1 :"
• \f
(o-
/'o
/o
'0
; r.
/o
|0
(0
10
10
..4
10
Id
10
IQ
10
lc>
1C
io
\Q
10
10
10
10
1C
IO
m
I*
10
10
in
lo
10
ic
.*%
• ;
10
1C
lo
(0.
(0
\o
'• • • v t.'










"






Te'sr ^rp(prcfi(lb^ )
.




'








-------
Company Nome _

Plant Address
RECORD OF VISIBLE EMISSIONS

                     Date
•Stack  Location
Weather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                    COMMENTS
H«

A: : /6








\'o 3>'<




'.' •#)
_ 1 <•-•, yj














1'--
HiN

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

00
b
10
10
10
10
16
10
/c5
10
10
10
iO
10
/o
10
I'd
10
10
10.
10
lo
io
10
10
10
ID
10
]O
0-
0
SECONDS
' 15
(0
10
16
10
/£
10
10
\o
io
10
to
10
10
K)
10
10
10
10
10
in
10
10
/O
10
l&
10
/*
l\>
10
10
30. 4
/c?
10
10
Id
lu
'/D
io
/D
10
10
ID
10
10
b
10
K)
in
in
lo
in
10
/o
10
/D
10
lo
lo
0
\o
io
10
10
(0
10
iO
10
10
10
10
(0
I'O
10
10
fa
10
10
10
In
/O
10
io
JO
JO
10
10
lo
10
10
10
Irt
: , •.'///

StuA*; '*AA/Mt J
.(
-
--•
_.
—


m
V,




A/yyK> X^-n^^iy
//















-------
Company Name
RECORD OF VISIBLE EMISSIONS

          	    Dote
Plant Address
                     Observer
Stack Location
Heather Conditions
                     Observer's
                      Location
    TIME
                    •COMMENTS
MR


M#












J?:ao


mi











\~- \:'
MIN

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48"
49
50
51
52
53
54
55
56
57
58
59

00
10
10
•10
to
10
'0
W
/<7
10
10
10
/ni<-e/ . 
-------
Company Nome
RECORD OF VISIBLE EMISSIONS

                     Dote
Plant Address _

Stack Location
Heather Conditions
                    Observer
                    Observer's
                      Location
    TIME
                    DVHENTS
HR

/?.%




(m
1 \ , ;




i v^



:~-y\
• "OD




::;f"








MIN

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

00
0
10
10
10
V
10
10
w
10
\o
w
10
10
10
lo
ID
10
lo
lo
10
fc
6
/o
10
j-a
|o
10
|0
o-
0
stcowos
IS
10
10
l^>
;D
/0
10
10
o
io
la
10
In
i.O
P
10
U3
lo
/.o
^
(o
/c
/O
(0
10
/o
|3
io
ID
10
10
30
10
•IQ
10
P
1,0
'/a
10
K0
JO
10
10
\0
lo.
ID
n
\3
lo
(o
o
/c,
It
45
/o
^
/o
/o
10
10
10
IO
10
0
0
0
ID
10
10
\o
(0
/o.
(0
0>
/O
lo NO
D 1 tO
10
I?
10
lo
(0
10
10
10
|0
10
/o
10-
0
^











V.



_

^ap'"C?sf - SuviWvx djfrs.r^s
Jssi-^Jl r,^i- dmA d.~> ,<^ h-<. *3'\'*^dz (\J^
.. T













-------
Company flame
RECORD OF VISIBLE EMISSIONS

                     Dote
Plant Address
Stack Location
Heather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                    COWENTS
Mft

vV.(ii


s-;-





;














| ?•.:•"




-
MIN

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

00
(o
10
•lo
/P
ft
l>
1$
1$
is
is
15
1$
15
15
10
15
15
IS
15
15
15
15
(5
^
1^
/5
/5
15
15'
1*
SECONDS
15
fu
10
to
IS
15
Is
15
fi
15
£
IS
15
15
13
(5
15
15
15
15
15
15
15
15
f-1
tf
15
\*
15
(.-
i
-------
Company Name
RECORD Of VISIBLE EMISSIONS

             	    Date
 Plant Address
.Stack  location
Weather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                   •COMMENTS
UK




iv»

























•
MIN

00
01_
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

00
/-?
15
15
1$
k>

























SECONDS
'IS
I6
15
15
IS


























30
/5
/5
/sr
/5


























4
/5
/5
Is
1$




































.
V



















•-V--:

-------
Type  of Plant _^.
                                 SUMMARY
                       RECORD OF VISIBLE EMISSIONS'


                       •'  -    & 1-iM.^f-
 leight of Point of  Discharge-:

 Observer's Location:
     •
    Distance to Discharsa  Point«	s-_

    Height of Observation  Point	

    Direction frojn  Discharge  Point __

Background Description 	.
 eather-r  Clear    Overcast    Partly Cloudy    Other	A


          Hind Directicr,	,N C.	 Wind Velocity

 lume. Description:
                                •
                      x  \              .              •
   'Detached:  Yes
                                                                  Color
                                                                        mi/hr
    Color:  Black.  (Unite    Other
    Pluir.e Dispersion Behavior:  Looping    Coning    Fanning

                                Lofting    Funi gating    Other

    Estirrated Distance Plu.ire Visible    .  / .'    ' _
     •                                                   .
        of Observe ticas:
  3 city    Aggregate Ti.-e Q O^ncitv    On? city    Agc7reg.T to ri:.:e & Oo2c i ty
  0-
  5
 10
 IS
  10
 25
                min
sec
 55
 60
 65
 70
 75
.80
 C5
 90
 95
100


-------
  Company Vams
                   RECORD OF VISIBLE EMISSIONS

                              	__   Date
  Plant Address
                                     Observer
 -Stack location
  Weather Conditions
                                     Observer's
                                      Location
riiN
     TIME
     00
     15
          30
30
31
32
33
34
35
36
37
38
39
40
io
41
42
43

    4
         t,
44

45

46
47
             h
48
49
50
    5

51
52

53
54
£
       f)

55
                  •'0
56
        n
57
58
59
    V
             0

-------
Company Nome
RECORD OF VISIBLE EMISSIONS

                     Dote
Plant Address
-Stack Location
Kealher Conditions
                     Observer
                     Observer's
                      Location
    TIME
                   -COMMENTS
" M "





*






















	 X


MIH

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
^22
23
24
25
26
27
28
29

00
0
4'
/
t>
i)
n
4
*/•
/
7
0
t,
.'
s
(*"!
^
/
"3
t>
S

t,
/
5
2
/'
/
0
''/
r-/
-<)
4
f*
'/>
(?j
r/
h •
r;
$£COMOS
' IS
/)
f.
^
0
0
/?
9
io
,{}'
«i
s
^'\
/
"\
Z
s
1 '/
c
•s'
*i
.^
k"''
s
".1
(;
Ij
0
r;
^
6
£
/
i
'•n
0
•s
' f
s
*)
30
y
'-)
^
^
t,
<>
•P
t- >
6'
'/
t/
,<'
s.
&f
£,
/•
••7
/-•:
X V
l>-
"'>
'(>
: j
f'l
/
r)
s
I
(J
0
fi
v ,*
G
0
h
D
/
i
^
j
4
i/
*?
0
6
0
t,
A
4
<;
^
i^
/
•",•
^
•*•!
r
A
<
s
'•Si
0
tf;
5
^)
/
'•^
$
/
•7
o
*"\
V
4
0-
5
T;




.



1

,
v





















-------
Company Name
RECORD OF VISIBLE EMISSIONS

                     Dote
 Plant Address
•Stack  Location
Heather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                   •COWENTS
HR





n.". /J ft
o/yt-














•







s


HIM

30
31
32
33
^34
35
36
37
38
39
"40
41
42
43
44
45
"46
47
48
49
50
51
52
53
54
55
56
57
58
59

00
5
/h
U
•V
0
0
0
0
f\
»,x
n
n
r
0
0
D
4
C1
0
o
^
f)
r?
0
0
0
p)
V
S--
'
(]
n
/}•
/>
S£canos
15
/'*
;?
h
0
n
n
0
0
/\
(1
^
0
D
f;
n
i)
C;
n
(j
0
f)
r
\>
0
0
0
(J
f)
D
i \
V
f)
n
f
,s
!•)
i/
3C
0
0
0
o
0
'0
0
V
f)
<• i
(^'
f .
f'^<
L'
f]
h
{'
f"^\
\^i
s-
(J
c<
f'r
n
r.
£
/
0
^
I)
n
n
0
^
"~j
) .45
^
0
T)
0
0
n
/"'
')
0
/•\
/ !
\s
/:
;
y
/>
/ .
1 ,
f)
\ /
0
r,
/ ,
• /•
U'
0
0
0
o
V
0
i
J
F>
0
U.
0
n
.
.






,

.
v










'' >;> ; l(-\^-s^..
•-•
.
•




»


-------
Company Nome _
Plant Address
•Stack Location
Weather Conditions
                                               Date
                                               Observer
                                               Observer's
                                                Location
    TIME
                                              -COWENTS
• hA

10
,

























\

•
rilw

00
01
02
03
04
05
06
07
08
09
\Q
ii
12
13
14
15
'16
17
18
19
20
21
22
23
24
25
26
27
28
29

i)0
ft
0
•0
•t)
0
0
6
0
0
f)
0
0
V
.*'
0
0
0
0
0
<~\
u
,'/
0
0
/"v
i /
*S
0
n
0
n
0
o-
(")
SECONDS" '
^IS
•ft
0
*)
n
;)
n
0
0
9
0
0
0
0
n
0
f >
i^
r.
/•>
0
0
0
0
0
I)
/;
/">
C-*
^
-<*
0
%
r-
3C
/''
• 0
0
0
0
•';
0
; /
0
r,
f,
X
/;
n.
Q
0
0
^
V
(/
r;
/•;,
0
0
D
0
0
{)
0
s
f",
' /
0,
• ~~\
U
0
0
0
0
0
t>
0
0
(j
0
n
f)
'~^
0
n
•0
n
n
'^
G
0
n
0
0
0
?,
fj
ft
u
•f}


£>kt,>tr 0--^. 3 ".<..'/.;/>;'.?-
'

-




,
\_



"







•



•





-------
Company Name
RECORD OF VISIBLE EMISSIONS

                     tote
Plant Address
Stack location
Weather Conditions
                     Observer
                     Observer's
                      Location
    TIME
                    COMMENTS
" HIT"




\





\
(0




\



•

A





\

i '-
HIN

30
31
32
33
"34
35
36
37
38
39
^40
41
42
43
44
45
*46
47
48"
49
50
51
;52
53
54
55
56
57
58
59

00
0
/^
, /
•n
0
0
•0
n
/v
/>
V
n
0
r\
'•/
•9
' ,;
TI
/')
• ^
n
n
(S
0
/>
'r-\
u
n
•~s
0
^
s~
"I
0
o-
D
S£tOMOS
n 15
n
0
('/
U
f)
\**'
0
")
Q
0
' )
V
c
/}
'")
r,
't/
&
r.
D
/ x
^,
f
0
n
n
c>
f *
•o
/i
^')
30
n
n
--"\
#
/;
Y;
^
«
d/
/\
,s
/•,
' /
• .9
/•.
6:
o
//
/"*\
— '
^
. /
n
/.•
/")
^
*7
0
/-,
^
'/^.
0
/*\
t
/-'
..4
r;
#
e,
s
0
0
0
/'/
n
f\
u
s
">
?"j
iy
^y
r;
/.)
.9
(o
fj
4
,o
i'*."1
f-
r\
'f \
/ ;
U
0
o
s
•-7
/^
r/.
0
'")





•




t
V







•'



•
'
•




•


-------
                                 SUMMARY
                      RECORD OF VISIBLE- EMISSIONS"
   te of Plant  .  ^

        ?Ja.T.e

Plant Address
              •—• »•	  :?."-«•-_ .

/ype of Discharge/STACK )
                 N—.	
 'ischargs Location _
                                                   TJate
                                                              / •>
                                                              / (/
                                                   Hours of Observation
                                                                •p    D
                                                   Observer   ^n  ^ -
Height of Point of Discharge^

 bserver's Location:

    Distance to Discharge  Point

    Height of Observation  Point
                                     /M/crU/i<

    Direction from Discharge Point

 ickground Description 	
K'ea.ther-:  Clear    Owrcast ."Partly Cloud
i
          Hind Direction

  U.T:-^ Description:

   ' Detached:  Yes
                                                 Other
                                            V7ind  Velocity
                                                                  Color
                                                                      ^  mi/hr
    Color:   Black. /White  J Other
    Plume Dispersion Behavior:  Looping    Coning    Fanning

                                Lofting    Fumigating    Other

    Estirr>ated Distance Plu.Te Visible    .	

 T."nary of Observations:
                                             r
 pacity    Aqcireo.a.tg_ Tire Q Opacity    On?city    Ac
   0
   5
  10
  15
  :0
  , r-
 O J
                 mn
                           sec
 55
 60
 65
 70
 75
.80
 C5
 90
 95
100

-------
                           RECORD OF VISIBLE EMISSIONS
Company Home
Plant Address
.Stack Location
Heather Conditions TJ\^J\

Observer
Observer's
, . 0 Location
Co-'^t- -' -f){i'l,6L - Itr'/lu 1 , w'/v J .

L /)' -0
rv7 rtflAAAUJVL'
-f •-•(/
ifi/xt loS"
y
                                                      ..- • .'j
                                               COWENTS
' hft

/ft*




1 f '. -^v.
: " ?' )





( :-,< w
X




1 <•> •• >
1 1 -• ^


N.35


K- '•'."
1 \





h —
HlN

00
01
02
03
04
05
^
06
07
08
09
10
11
12
13
14
15
16
17
'l8
19
20
21
22
23
"24
25
26
27
28
29

00
fO
5
P
[0
IG
10
10
5
/o
/o
In
ID
|0
10
|o
10
i-o
10
\o
1C'
-~\
v/
10
10
/o
0
0
10
0
o-
/o
SeCCrtDS
15
/O
/c/
/c7
10
10
10
5
£
(&
10
io
0
10
ft
0
to
/o
/^
10
r
Vy
10
|S>
lo
io
10
10
/o
10
10
10
30
fa
/£
/c?
/O
10
'/0
^T
/n
/ ^
//3
/^
10
io
10.
(o
1C
f o
,' . .-*
(o
10
« ^
.'• 1
O'
•*\ •
vy
0
K?
JO
/o
10
IQ
10
Id
' r*
u
IG
4
r
/
-------
Company Home	___
Plant Address 	
•Stack location 	
Heather Conditions
RECORD Of VISIBLE EMISSIONS
                     Dote
                     Observer
                     Observer's
                      Location
    TIHf
                    •COW1ENTS
HfT~

W^




ms1)
:

H<3
[6.^



,"

: '• i





' -'-v





.1-:


riiw

30
31
32
33
34
,35
36
37
38
39
40
41
42
&v
44
/5
46
47
48"
49
50
51
52
53
54
55
56
57
58
59

'JO
10
$'
f?
10
ID
10
10
10
10

5
5
5
IM
6
•5.
S
s
» —
10
10
5
b
5
5
5"
5
5
5-
S
if
is
^
5
5-
lo
10
to
P
lo
10
5
5"
*
5
•^
5
A'"
y
5"
T
1C
/c
^
S
s:
5
5
5
5
5
K
COMOS
30
1?
5
5
10
JO
'ip
lo
1C
/3
5
f
"5
5
X?

,T
5
•f
/••'*
^
5
•s"
ft
5
^
5
5
5
5
o

.4
/O
3"
/O
./O
to
10
/r)
10

$
^
5
5
't^s
.5
5'
5
5
/o
/o
j-
•N


xJ
5
5"
5-.
O
s~




•





'^-•^.~> :Lr.u~^.
L> '*' ^.;'SiCL.V"("3/y''' v







.













-------
Company Home _
Plant Address 	
•Stack Location	
Heather Conditions
                      RECORD OF VISIBLE EMISSIONS
                                           Date
Observer
                                                       V,f
                                           Observer's
                                            location
TIME
                                              •COWENTS
' wr

p:^


/5-1*

















:',0"-N





.!>•'<%


HIM

00
01
02
03
V04
05
06
07.
08
09
;10
11
12
13
14
15
16
17
18
19
20
21
^22
23
24
25
26
27
28
29

00
5
%
5
$
'•^
5
5
5
5
^
5
r"
6
£
5
£T
5
5
.5
4"
*r
/r
s
5
5'
5
5
5
5" '
6»'
5ECOMDS
16
5
5
5
T
5
*s
5
5
5
5'
5*
6*
iT
iT
->
5
,T
5
i;
•S
5'
5
5
5
J"
.<
J"
5
r~
5
rr
30
/r
.s
$
5
5"
'5
5
5"
5
5
5"
. X
^
5 .
5
^
'•\
••*\
_/
5
i>
.•^
;:S
-s
*^T
^ >
5"
5'
5"
•\
•-*•
5'
^
5'
.4
5
5
C.
<
5
5
3"
5
3"
5
5
5
,5"
A
•_/
S"
6
^T
.6"
t^~"
5"
T
<'
^
5
<
<
5
5
^"
5




-
M\(*M.atfiius> 0cn&>
. o a i/



,
\







...













-------
Company Nome    -

Plant Address
                          KECORD OF VISI3LE EMISSIONS

                                 - _    Dote    IS /4/ 7$
.Stack Location
Weather Conditions
                                               Observer
                                              Observer's
                                               location
    TIME
                                             •COMMENTS
' M

l&fa


;U\





U-^





• f,}-'.



•

/i.3?,





.I -0-= "'.»


M1N

30
31
32
33
34
35
36
37
38
39
So
41
42
43
44
45
'46
47
48
49
50
51
"52
53
54
55
56
57
58
59

00
5
5"
6
5
5~
5
5
5"
5
5
5

•5-
t-~
k-,
«.>
5"
5
£-
-.^
K
5
b
— '
o
5
5
S
5
5
5"
S'
SECONDS
^15"
5
5
4T
5
5
5
Ar"
-»>
^
5
o
5
'•N
-_/
5
."5
5
^--
u.
V.J
5
5"

-------
                                  ur  VISIBLE.
Company Name
 Plant  Address
•Stack  Location
Heather Conditions
 Date
 Observer
 Observer's
  Location
    TIME
-COMMENTS
•••wr

/{*•;#


i'o'";A





M\




jq&a















HIM

00
01
02
03
"04
05
06
07
08
09
"10
11
12
13
.^ .
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

00
6
5
.6
5
5"
5
5
rv
3"
o"
5
•=r
s
5"
5















S£COMD^
IS
5
*)
S
5
£
5
5
z>
c^-
.5
o
5
s
s-
A"















30
A
.5
5
5
5
5
5
5
5
S'
5
•5
5".
5
S'















45
5
5
5
5
5
5
5
5
5
^7
3"
5
5
T
:T















•




-




t
v











•









-------
         APPENDIX  C
SUMMARY OF PARTICULATE  WEIGHT
        BY FRACTION
            AND
  CAPROLACTAM DETERMINATIONS
        BY FRACTION

-------
                                                TABLE C.I
                                 PARTICULATE WEIGHT BY FRACTION, GRAMS

Sampling
Location

Inlet


Outlet


Sample
Number
P-l
P-2
P-3
P-l
P-2
P-3
110 mm
Type A
Glass-Fiber
Filter
0.2223
0.2900
0.2542
0.0089
0.0097
0.0096

Front
Acetone
Wash
0.0121
0.0129
0.0080
0.0099
0.0056
0.0093

Front
Water
Washa
110.81
108.57
118.87
0.0701
0.0281
0.1486

Filterable
Particulate
111.04
108.87
119.13
0.0889
0.0434
0.1675

Back
Acetone
Wash
0.0083
0.0069
0.0233
0.0015
0.0049
0.0078

Back
Water
Wash
0.0035
0.0121
0.0113
0.0040
0.0017
0.0109

Total
Particulate
111.06
108.89
119.17
0.0944
0.0500
0.1862
lAlso  includes cyclone contents for inlet tests.

-------
                                  TABLE C.2
            CAPROLACTAM DETERMINATIONS  BY FRACTION, MILLIGRAMS
Sampling
Lo cat ion

Inlet


Outlet

Sample
Number
P-l
P-2
P-3
P-l
P-2
P-3
Front
Water
Rinse3
24.9
63.5
<4.60
2.15
<2.50
<2.70
Filter
<0.25
<0.25
<0.25
<0.25
<0.25
<0.25
Filterable
Portion
24.9
63.5
<4.85
2.15
<2.75
<2.95
Back
Half
Water
627
756
877
58.1
73.9
87.6
Total
652
820
877
60.3
73.9
87.6
Also includes cyclone contents  for  inlet tests.

-------
                APPENDIX D
AMMONIUM  SULFATE  CONTENT IN SCRUBBER WATER
   AND PERCENT  MOISTURE DETERMINATIONS

-------
               TABLE  D.I
AMMONIUM SULFATE CONTENT  IN  SCRUBBER WATER
Sample
Number
. 1
2
3
Date
10-3-78
10-4-78
10-4-78
Average
(NH4)2 S04
gm/1
320
367
380
356

-------
               TABLE  D.2
PERCENT MOISTURE  IN  AMMONIUM SULFATE
Sample
Number
1
2
3
Date
10-3-78
10-4-78
10-4-78
Average
Percent Moisture
Dryer
Inlet
0.96
1.02
1.10
1.03
Dryer
Outlet
0.09
0.09
0.07
0.08
Percent
Moisture
Reduction
90.6
91.2
93.6
91.8

-------
                        EMISSION MEASUREMENT  BRANCH

                          TECHNICAL DIRECTIVE NO. 	i
Project Number    78-NHF-2

Contractor        Clayton Environmental Consultants
        Date     10/12/78
Contract Number    68-02-2817
   Work  Assignment  Number
Technical Manager
                        Dennis Holzschuh
Verbal Directions Given To
Tim Mattson
Directive:      Total of nine (9) samples turned over to Clayton Environmental
    10/4/78 for analysis.  These samples were taken by process engineer.
    On the six (6) samples taken at the inlet and outlet we want the moisture
    content of each.  These six were from the dryer.  Three (3) samples
    were also taken from scrubber and are to be analyzed for percent of
    ammonium sulfate in the scrubber water.
                                               Technical  Manager,  EMS'

-------
          APPENDIX E
SUMMARY OF  VISIBLE EMISSIONS

-------
                          SUMMARY OF VISIBLE EMISSIONS

                                 Sample No. p_l
   Date:    10-3-78
   Type  of Discharge:
   Height of  Point of
   Wind  Direction: _s_E
   Color
                    Part iculate
                   Discharge:
                    &  NW
55
                   white
                                                     Ammonium Sulfate
      of Plume: 	
Observer No.:  pusanka  Lazarevic
Distance from Observer to Discharge
Direction of Observer  from Discharge
Height of Observation  Point:   Ground	
Description of Background: green  elevator  shaft
 Type of Plant  	
 Location of Discharge: Scrubber Exhaust
 Description of
 Wind Velocity:
 Detached Plume:
 Duration
Point:
 Point
Sky:
 0-5
 No
                           Overcast
                           mph	
                                                 of
                                               250'
                   Observation: 3 hr. 2 min.
                                               East
                                         level
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
Time
Start
1516
1522
1528
1534
5 1540
i
6 1546
7
1552
8 1558
9 1604
End
1521
1527
1533
1539
1545

1551
1557
1603
1609
10 1610 1615
11 j 1616 1621
12 i 1622
13 1628
14 1634
• 15
16
17
18
19
20
1640
1646
1652
1658
1704
1710
1627
1633
1639
1645
1651
1657
1703
1709
1715
Opacity
Sum
240
240
240
240
240

240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
Average
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Set
Number
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1716
1722
1728
1800
1806

1812
1818
1824
1830
1836
1842









End
1721
1727
1731
1805
1811

1817
1823
1829
1835
1841
1847









Opacity
Sum
240
240
240
240
240

255
360
360
360
360
360









Average
10
10
10
10
10

11
15
15
15
15
15









   Sketch  Showing How Opacity Varied With Time
10

    1516
                                    1800
                                Time, hours

-------
                        SUMMARY OF VISIBLE  EMISSIONS
                              Sample No. P-2
 Date:  	
 Type  of
           10-4-78
Particulate
                 White
                 Donna  Schick
                                 Ammonium Sulfate
        Discharge:
Height of Point  of  Discharge;
Wind Direction:  NE
Color of Plume
Observer No.:
Distance from Observer  to  Discharge
Direction of Observer  from Discharge
Height of Observation  Point:   55'
Description of Background:	Building
                                                       10  mpTT
 Type of Plant  	
 Location of Discharge:
 Description of Sky:   Hazy
 Wind Velocity:
 Detached Plume
 Duration
Point:
 Point:
                                        Scrubber Exhaust
                                  No
  of
60'
Observation:
                                             hr . 19 mm
                                              SE
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
5
6
7
1
8
1 9
10
11
12
13
Time
Start
0840
0846
0852
0858
0904
0910
0916

0922
0928
0934
0940
0946
0952
14 0958
15
16
17
18
19
20
1004
1010
1016
1022
1028
1034
End
0845
0851 «
0857
0903
0909
0915
0921

0927
0933
0939
0945
0951
0957
1003
1009
1015
1021
1027
1033
1039
Opacity
Sum
115
115
90
70
55
95
45

70
50
5
10
0
10
10
15
0
5
0
10
15
Average
4.8
4.8
3.7
2.9
2.3
4.0
1.9

2.9
2.1
0.2
0.4
0
0.4
0.4
0.6
0
0.2
0
0.4
0.6
Set
Number
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1040
1046
1052
1058

















End
1045
1051
1057
1059

















Opacity
Sum
0
15
45
0

















Average
0
0.6
1.9
0

'















 Sketch  Showing How Opacity Varied With Time:
C3
D.
O
  / n
                     0904
           Time, hours
                                                           1058

-------
                        SUMMARY  OF  VISIBLE  EMISSIONS
                              Sample  No.  p_3
Date:      1Q-4-78
Type of Discharge:
                  Type of Plant:    Ammonium Sulfate
Farticulate
Height of Point of Discharge:
Wind Direction:   NE	
Color of Plume:   White	
Observer No.:  Dusanka  Lazarevic
            55
                                      Location  of  Discharge:  Scrubber Exhaust
                                      Description  of  Sky:  Partly  Cloudy/Hazy
                                      Wind  Velocity:     5-10  mph	
                                      Detached  Plume:    No	
              __	.     	   Duration  of  Observation:  2  hr.  45
Distance from Observer to Discharge  Point:   250'
                                                                        min
                                           -- _ "-1.-m—.- 11-11. TM-
Direction of Observer  from Discharge  Point: East
Height of Observation  Point:    Ground  level	
Description of Background:	green  elevator shaft
SUMMARY OF AVERAGE OPACITY
Set
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time
Start
1415
1421
1427
1433
1439
1445
1451
1526
1532
1538
1544
1550
1556
1602
1608
1614
1620
1626
1632
1638
End
1420
1426
1432
1438
1444
1450
1453
1531
1537
1543
1549
1555
1601
1607
1613
1619
1625
1631
1637
1643
Opacity
Sum
230
215
240
240
240
205
115
120
155
120
120
120
120
120
120
120
120
120
120
120
Average
9.6
9.0
10.0
10.0
10.0
8.5
9.6
5.0
6.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Set
Number
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Time
Start
1644
1650
1656

















End
1649
1655
1700

















Opacity
Sum
120
120
100

















Average
5.0
5.0
5.0

















Sketch Showing How Opacity Varied With Time:
20
X-N
£-?
\~S
15*
ij
•H
10
-------
                                                 w
bs

 X
erver
              Road
                         Conveyor
                         enc1os ure
                                         Temporary
                                         scaffold
                                               Ladde r
                                                                                                 Scaffold
                                                             Water
                                                             spray
                                                             header
                                                                     Existing
                                                                     plat form
                    Figure E.I.   Observer location  relative  to outlet stack.

-------
          APPENDIX F
GAS CHROMATOGRAPH DATA SUMMARY

-------
                                                  '*

   Afo.
              Pale  or
               res-/-
                            Sample

                                      arax,
                                                Co n Cerrbabtu
                                       iA f
     P-l
     P-l
w/ef P-3
              10-3-18
                           830
         43,552
                                            463
                                       077
 "50
 \oo
  \0
We/ *
/
             'bac/C
670m/
              10-4-78
              10-4 -78
                          H,6
                   Kfltf
        15474
\\00
I4oo
4^7
       f>- 1
              10-4-18
                          HzO
                          ^o
                          VW)
                   fcj/P
                  k If
                         10
                                    ^-3,50
                                    ^31.70
              10-3-78
              lo-4-lg
              10-4-78
                              Lact
                          505 »»l
                          "SOS m)
                         1030^1
                                                    (00,^30
                       US
                       MO
             10-3-7?
             10-4-7?
             IO-4-1S
                                                      1-Z-/A-V7
                                                   10
                                                   10
                                                                                 0,7.5
      P-/
              10-4-7?
              10-4-78
                                            iS
                                              m
                                                       1,3.1?
 a
 all
                              blont
                                       e
                                             35 ml
5%
                                  20-TPfl
                                                              V^M/
                                             Q.1011%
                   K
                            1012.
                    ooo
                    10
                               JOO
                               10
                                I
                                                            ]
                                                           J
                                  //o

-------
              LOGARITHMIC
              3X9 CYCLES
                                                      46 7522
                                                      «ADI in U.S.A. •
                                      KtUTFCL 
C'
,'
^,>
                                     ~ .°
                                     C>'!

-------
                         EMISSION  MEASUREMENT BRANCH
                           TECHNICAL DIRECTIVE NO. •     /
                                       /
                                                 Date
Project Number
Contractor     () /..,,, 7^^>      /' ^ - /' o*-/i:,-j/a /
Contract  Number
                                -A^V 7      Work Assignment  Number
Technical  Manager
                               .7
                                         X-/c? /^ .3 <:  /4 ^ v
Verbal Directions Given To
Directive:      //   .  r
                                  '
                                     ^ <-•
                                           L\/<;
                                                                                 /'„
         «\>r -•  '<-  rt > •' \ ,
        x-;        .                  ,
        ^ „• I, .- ,-.  /' C UVM   ri;J l' ' 'J
                             ,     /   XT
                     I , ..... 7    /J ..•/./
        X  -  - -   *' '• -•"-' y
                                                                  C cs
                                                    /^ ''-•••;- ^'J .
                                                   /    r/
                                                              ,

                                                      •"£   y"
                                                 Action  Chief,  EMB /
                                                 Technical Manager, EMB

                                                       &#%*>
                                                      '<£  7>

-------
     APPENDIX  G
EXAMPLE CALCULATIONS

-------
Nomenclature



Ag    = Stack area,  inches2



Cf    = Front half  (probe  &  filter)  particulate  concentration,

        gr/DSCF



Cp    = Pitot tube  correction  factor,  dimens ionless



Ct    = Total particulate  concentration,  gr/DSCF



CMj   = Front half  (probe  &  filter)  particulate  concentration,
CMt   = Total particulate concentration,



Dn    = Sampling nozzle diameter,  inches



ERf   = Emission rate of front half particulate,  Ib/hr



ERt   = Emission rate of total particulate,  Ib/hr



ERMf  = Emission rate of front half particulate,  kg/hr



ERMt  = Emission rate of total particulate,  kg/hr



Mj    = Mole fraction of dry gas,  g/g-mole



MW    = Molecular weight of wet  stack gas



MU-,   = Molecular weight of dry  stack gas



?k    = Barometric pressure, inches mercury



Pm    = Average orifice pressure drop,  inches water



PS    = Absolute stack gas pressure, inches  mercury



Pst   = Static pressure of stack gas, inches mercury




Qa    = Actual stack  gas  flowrate  at stack conditions, ACFM



Qam   = Actual stack  gas  flowrate  at  stack conditions,



Qm    = Dry stack gas flowrate  at  standard conditions, DSm^/min



Q     = Dry stack gas flowrate at  standard conditions, DSCFM
 s


SWj   = Front half sample weight,  mg



SU    = Total sample weight, mg



T_    = Average meter temperature, °F

-------
Tg     =  Stack temperature, °F



T£     =  Net  time  of test, minutes
V
 m
Volume of dry gas at meter  conditions,  ft3
V      =  Volume of dry gas at standard conditions,  DSCF
  s td


Vg     =  Stack gas velocity at stack conditions,  fpm



Vw     =  Total condensate collected in sampling train, ml



V--     =  Volume of water vapor at standard  conditions, SCF
  gas


AP     =  Velocity pressure, inches water



%I     =  Percent of isokinetic variation, dimensionless



%M     =  Percent moisture, dimensionless



%?.     =  Percent  of removal  efficiency, dimens ionles s






Calculation  of Particulate Emissions
     The dry  volume  of sampled gas corrected to standard  condi-



tions of 20°C and  760 mm Hg (29.92 in. Hg) is calculated  as  fol
     V         17.65  *

      mstd = 	
                         T   + 460
                         m



The dry stack  gas  flowrate corrected to standard conditions  is



calculated using  the  following set of equations sequentially:
                100  * Vw
              Vm    -t-  V

               mstd    wgas
               100 - %M
     MWd   = (%C02 * 44/100)  + (%02  * 32/100) +  [(7oCO + %N2) *28/10o]
                                2 -

-------
     MW    = (MWd * Md) +18(1 - Md)


     Ps    = Pb + Pst
     Qs
= 5120.8 * CP *VAPS *   *  ~p~~3



  0.1225 * Vs * As * Md * Ps
                                                      *  MW
                      Ts + 460
     Stack gas  flowrate  may  be  expressed metrically as dry normal

cubic meters per minute  (DNm^/min)  and in terms of actual cubic

feet per minute  (ACFM) and metrically as actual cubic meters per

minute (Am^/min) with  use  of the  following equations;

     Qm    = Qs *  0.02832

             0.05667 * Qs  *  (Ts + 460)



     Qam   = Qa *  0.02832.

     The equation  employed to determine percent of isokinetic


variation is:

             1032  *  (Ts  +  460)  *

     %I
             Vs * Tt  *  Ps  *  Md  *  (DnH


       To determine  the  concentration of particulate matter in

  grains  per dry standard cubic  foot (gr/DSCF), one of the fol-

  lowing  equations  is used:

                           SWf
       Cf    = 0.01543 * —	—   and
                           mstd

                           swt
       Ct    = 0.01543 * —	  .

                           mstd
                                - 3 -

-------
     When  metric units are desired, the  concentration  is calcu-


 lated  in milligrams per dry standard cubic meter  (mg/DSm^)  as fol-


 lows:


                     SWf

     CMf    =  (0.02832)(Vm~J~   and


                     SW,.
     CM
        t    ~  ( 0.0283 2") (Vm   )
                          mstd
Front half  particulate concentrations are obtained by summing  the


weight  of particulate  matter collected on the filter and all por-


tions of the  train  preceding it.  Total particulate concentration


includes, in  addition, any particulate matter collected in the


impingers .



     The emission rate of  particulate matter can be calculated


from the filterable  or total particulate concentration using one


of the  following equations:


     ERf =  0.00857  * Cf *  Qs   and


     ERt =  0.00857  * Ct *  Qs  .


For metric  units,


     ERMf -  (1.70 *  10~6)  * CMf  * Qs   and


     ERMt =  (1.70 *  10"6)  * CMt  * Qs  .



To avoid rounding errors it  is preferable  to carry out the calcu-


lation of concentration and  emission rate  in one operation.


Removal efficiency is  calculated  using  the pounds  per  hour


emission rate in the following equation:

-------
      %R    =.  ^t	inlet  ~   ERt outlet
                 ERt  inlet
Example Calculation
      Using the data from particulate Test  3  at  the  inlet
location an example of the calculation of sampled  volume
in dry standard cubic feet (DSCF) is as  follows:
      Given:
      Pb        = 29.85 in. Hg
      Pm        = 2.68 in. H20
      Tm        = 104°F
      Vra        = 110.737 ft3
      Vw        = 91.1 ml
and using the first two equations on page 2:
      Vw        = 4.29 SCF
        gas

      Vm . .     = 104 DSCF
       mstd
With the following additional information from the data
sheet one can determine the flowrate in  dry standard  cubic
feet per minute (DSCFM).
              (T  + 460)        = 23.17
                s
      Cp        = 0.828
      Ts        = 88°F
                  2290 sq.in.
      Pst
Since no Orsat was run, and using the equations on  page  2,
we can determine the following information:
                        - 5 -

-------
      MW,   = 28.96
        d


Then using the equations on pages  2 and 3,  the  flowrate



in dry standard cubic feet per minute can be calculated.



      %M    =4.0



      Md    =0.960



      MW    = 28.51



      Ps    = 30.55 in. Hg




      Vs    = 3330 fpm




      Qs    = 42300 DSCFM.



Then using the equations on page 3, flowrate can be expressed



as follows:



      Qra    = 1200 DNm3/min



      Qa    = 52900 ACFM


                     2

      Qam   = 1500 Am /min.



      Having determined sampled volume to be 104 DSCF and the



flowrate to be 42300 DSCFM, the percent of  isokinetic



variation can be determined.



      Given:



      V     = 104 DSCF
       mstd

      Qs    = 42300



      Tfc    = 120 min.



      Dn    = 0.249 in.



then using the equation on page 3



      %I   =95.9
                         - 6 -

-------
      The concentration and emission rate can  now  be




calculated for this particulate test as follows:




      Given:




      SWf       = 119.13 g




      SWt       = 119.17 g




Using equations on page 3 the concentration of  filterable




particulate and total particulate, both in grains  per  dry




standard cubic foot (gr/DSCF), are as follows:




      Cf        = 17.5 gr/DSCF




      Cfc        = 17.5 gr/DSCF




Concentrations may be expressed metrically as  follows:




      CMf       = 40,400 mg/DSm3




      CMt       = 40,500 mg/DSm3




The emission rates in pounds per hour (Ib/hr),  and metrically




as kilograms per hour (kg/hr) are as follows:




      ERf       = 6410 Ib/hr




      ERt       = 6410 Ib/hr




      ERMf      = 2910 kg/hr




      ERM       = 2910 kg/hr




Removal efficiency can be determined using the  pounds  per




hour value previously calculated together with  the pounds




per hour value calculated for the simultaneous  test at




the outlet location and the equation on page 4.

-------
      Given:
      ER         = 15.7
        Sutlet
then:

      %R         = 99.8%
                        - 8 -

-------
   APPENDIX H
CALIBRATION DATA

-------
Pitot Tube Type
                                                   s
Pitot Tube No.
                                Standard  Pitot  Tube No.




                           Date: o-c&~~lto   Client:
Anticipated
Ar* *
Pstd
0.02
0.04
0.06
0.08
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80
-
APsta

0.
0.
0.
0.
o. Ho
'o. Ill
o. }\0
0.
0.
0.
0.
0.

A
APtest
0.
0.
0.
0.
0.154
o. l£8
o. /58
0.
0.
0.
0.
0.


Acptect
0.
0.
0.
0.
o . $3-7
o. ft30
o. ?£k
0.
0.
o. ' •
0.
o. •

B
APtest
0.
0.
0.
b.
0' 1*5%
0. \(oO
o. /5$
0.
0.
0.
0.
0.


Acptcst
0.
0.
0.
0.
o.S3£
o. $£5
0 . QC/V?
0.
0.
0.
0.
0.

to
Q.
0.90
0.89
0.88
0.87
0.86
0.85
O.SA
0 . 63
tf.82
0.81
0.80
0
-
-

-

-'

-


i
-







":
"-_





~~





I
1
I
i.

-




-


i
!"
•i
•i


--


|j! I




i —
— 	

i i;;
! :::
.01 0.02 0.
1
i

i! "

---
...
:',: : •
... i ...
03 0.






	 -
.•:. :::: :
•:::: ijij i
:::::: ::|! :

-:






t •

::•
—


.
~
—



—





-




.,. 1-1-
•:"
"_
— i
—


.!••;•.-
'T-r
-rT:
. t.. 1
- i . 1
!•".
1- :
M^r
~Ti~
• i
i i
iif
-
_-
*.

.



-

•
:

-

"T




-



ii
04 0.06 0.1
A Ptcot <"H20)
...
r !..
.T.
:
7T





!l
i !
1 !
Ji
0.
- -
I
1
~*t
i
t

i

M
2


:'f.
i >
T^J
:r
i ?
_!j
ll"
ij
. I •
•it
I •
i
M j.! T
• ii
''. i \ i
i ;;:
Jj!:
Mir
. • i j
', : i ; I ! i ; .' 1 , , : .
t i i i t
j j J 1 i
i 1 1! i • i
1 1 1 1 ! '• ;
0.3 0.
1 - ! !i
! i !
i
i
1
i
: :.: : 1 :
— 	 — _
• i '• ',
: i :; :
I— 1: •
; i i !i i
4 0.5
• r~
--
i-
: 	 r -r
	

• 1
i;|i
l.C

-------
C   ' „» 0.99
 Pteot
Calibrator:
     Pitot Tube Type	Pitot  Tube No.^




     Standard Pitot Tube No.	  S
Date:
                                     7*3 Client:
Anticipated
Pstd
0.02
0.04
0.06
0.08
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80
-
A?Btd

0.
0.
offJ78
0.07&&
o.01?Z
0.
0.
0.
0.
0.
0.
0.

A
APtest
0.
0.
o./#?f
o./370\
V./J&O
0.
0.
0.
0.
0.
0.
0.


Acptect
0.
0.
o. 8Z.&
o.g£^
0.&5/
0.
0.
0.
0.
o. ' •
0.
o. •

B
APtest
0.
0.
o. /380
Q./3&&
o./£o8
0.
0.
0.
0.
0.
0.
0.


Acptest
0.
0.
O.^ol
0.&3C-
0.&33
0.
0.
0.
0.
%
0.
0.
0.

                                                                  0.
0.90-
0.89
'0.88
0.87
0.86
0.85
« 0.84
£ 0.83
0 0.82
0.01
0.80
0

'-
--
-
-


--
-

.-
-'



:
•'L


—
"ZT

-•


I
t
i:



"
-
.
-



"
T-
I
P


--
~"
.01 0.
"• ' i

- — • — 	 .-


	 - -
: i :
it " i;
02 0.03 0.04
i 33i£l:
U:i^
|--i— »
.-.!•:•!•
TJ .] .
*
i
- - - ; --K-
. . 1.
i U
0.06 0.1
A Ptcot <

,:
-•


-i i
•_j
i i"
i i
-[]-


-



;..,. L.
r.r.i
1


-
J::'.
!'-

-I!-
* •
TF
ii
"ill
o.
MH20)
	 1 	 • 	
!j-»-!
• -•-
T
i-
|
1 *
t . '
•j .
i
i
L
:
if if [I
4 :n r^
:\l, i
i;
i
r j
:j
1 1
J !
t i .
ii i i
inn
-:i 1 T
:: i
!: 1
:;
;;
- H • -
•: i
ill iiS!
i •
II
• i

-
• .
"ill
::|
. .*
^- -
...
'••i
§ '
: . 4 . .
iii;:-
2 0.3 0.4 0.5
r_
--
f.
-'
-
_£_
	
i.C

-------
     Pitot  Tube Type  S
                                                            Pitot Tube No
Date
                                  Standard  Pitot Tube Mo.

                                e:  "S //T? O  Client:
Anticipated
A PC t-A
f S CO
0.02
0.04
0.06
0.03
0.10
0.12
0.16
0.20
0.30
0.50
0.70
0.80

APstd

o.~ •
0.
o.ffS-fc.
0.
et.t.

A
APtest
0.
0.
Q.01%
0.
o. fst>
0.
0. ••••
0.
0.5^<
0.
0.
«u L^'-j

>»
*•••*'•
0.
0.
o.^Scf
0.
o.ff
-------
                                  Pitot Tube  Type    S    Pitot Tube Mo.^
                                  Standard  Pitot Tube No,

                             Date: //- 9-7g   Client:  jfS-
Anticipated
Ap *. j
rs td
0.02
0.04
0.06
0.08
0.10
0.12
0.16
0.2Q
0.30
0.50
0.70
0.80

APstd

0.
0.
0.
0.
o.^H
0. ^
o. ^7
0.
0.
0.
0.
0.

A
APtest
0.
0.
0.
0.
^ I.4Q
o. U4O
%.I.V>
0.
0.
0.
0.
0.


Acptest
0.
0.
0.
0.
o. ,833
o. %3o
o. Q^-"7
0.
0.
0.
0.
0.

B
APtest
0.
0.
0.
0.
TM.43L-
.£.1.39
^ f.4l
0.
0.
0.
0.
0.


Acptest
0.
0.
6.
0.
o.^a?
o.gp.B
O.'&U
0..
0.
0.
0.
0.

4J
n
0.9O
0.89
'0.88
0.87
0.86
0.85
0.84
0.83
0.82
0.81
0.80
0.
-






-


-
-
-
--


-



•'•
,"


-

'r~

-
:





•i

-



- -












01 o.
	 	 1 —
"7

•-. -







. . ..*
— » •
.[
_ .
* *
I:
•|
j|
ii
1
i
::
ii
ii
* *
**
ii
n
:;
02 0.03 0.
::::
::::
IIII
IIII


IIII
:~
:::: r.i :
:::.:
IIII - ~
IIII -
||||
'.".'.

|||: |
mi :
... ( .
r.: :- ::::
IIII
illl
;iii
mi
;ii;

i mi
I ::::
| || ||||
.:::

iiii
ii;i
in
iii;

mi
3:£±£
TiTirrrr.
•_:-
vj:
-•[•-
...
..:' '
ir
?
i
"^


'•"-



-
-


:
'.',


•'-


i 1"
1 1
1 !
irr.— :
::t'T7-r
ir.urr
'-. • •






-•


i
iiii
}^?H
..; J * .
;T±I
i »
• t '
-
.1
•i
ii
i jj
ij[ i
1 1 ' 1 i'
i"r ,::
"i H
— : J
f •
t •
	 ", *-- -.
* r
• t
!|
; t
• .
i 'I
i i!
if
ii
::
||


'.
H
i!
04 0.06 0.1 0.2 0.3 0.
APtcet <"H20)
;•'.:
!;!•:
nil
:!::
1
::i:
:::':
'•'•'.'•
^1
iiii
....

::::
||||

•I:: ii
""» : '•
:-r-\
T- it::
•!••
• i*!
; ^> i
iiii
• • * .
i *« '•
III!
i Iiii
i! iiii
:!:":
:;::
::;;
'. LI .'
• t**
::::
IIII
Hi;
IIII
-ri
• «i
III-
lili
.'Ii.
1:11
Illl
|~
!i-
~
:•_
*"•
Illl


III:
HI

III
4 0.5 1
~
:::_
HT:
•
~T
*
•-
:
-'

r~-
—
-~
'


.0

-------
                                      METER AND OR  ICE CALIBRATION
Date
Client
Barometric Pressure  Pb  ("Hg)
                        Calibrator
Meter Box Number
Gas Meter Number
• .
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
^tart-
Average

Stop
Start
Average

Orifice
Manometer
Setting, Am
(in. H20)
0.5

^9. V9
1.0

cP?- 5£L
2.0

e2 ?• (S O
3.0

J? 7. 6 7
4.0

79. 7^/-
w'
5.0

c29. £^

Gas Volume
Wet Test
Meter
(fS)
.o.-f^ 00
ttXft.nO
(5) £".£>
^"5"^. rtft
t^~5'9J. /)/0
(5) 5,0
. v n!? ^) /v . /9 C^
^ / LJ-f} /) /^
(10) //
^/^//?. ^5
S){aft$.ftC)
jio) /^.2>5
.5//7^. (96>
5/ol ?. 05
(10) / /. ^5
*
gfo^O. 00
ST/c3ti.Ob
(10) /£, 0

Gas Volume
Dry Gas
Meter
(f£)
^/x. 73 /
% L1 10
^,03-1
/ j t ft ^^ ^\
^*i / ^"7 ^j ^J .J
fa. 131
f.ad- 1
163. 755
/ *>4, frfan
JJt.^*?
111-31°)
/dl. 18*+
/0./35
I2L3M14
III. 31 9
/0?.v355

J<^L frbo
j^^. &!<£
J/. /?(*

P » Pv - PW P^ » Pv + Am *
PW Pb TITS' d b T5TF
Temperature
"Wet
Test
Meter
tw
1-5,0
14. n
7^.7$
7-5, 5
15.0
75'2z
71+
H
^^
76?
75 *>
7^.75
7<^
7(o
7te

76, 5
_3Jj>_
7575

o v,
Dry Gas Meter
Inlet
tdi
/6
7 $

X5
%*>

9&
tf5

io^
%5

ir>4
/O3


/o^>
/o^-


Outlet
V0
79
1(0

% 2-
79

jf<5
#*)

90
%£_

9/
9 D


9/
9/



7 J PW
'm Q U Tw Am
Average
td


79-5


?3tf£


27.7^


9oj)jt


31.0



97. 7^

Vacuum
Wet Test
. Meter
pw
(in. H20)
0tfl5

_^^. V-5

^/>5
/#?, */j>

&OS
c?9. ^5

^ /) 5
o29. ^5

/P. ^9^>
^?9, V5


/^L5 5>
^29. 
-------
                                    / METER AND V...IFICE CALIBRATION
ate
                        r

             Client  US:  EPA
             n     o   !'
             .1---CA'/ " i yKOf.SC/-i
arometric Pressure  Pb C"Hg)
               	 Meter Box Number

Calibrator  ~?"V'A\    Gas Meter Number
53LO. , 6 CO
(5) 3,000
^14,000.
^531.000
(5) 13,600
//,554k 000
^4.000
do) IP. ,000
O-o •/ 6. 000
/ •.- '• -y -f-f-'f]
i>>O :. s--(0 .:•'•.--'...•'
a.> i i. •••' ]

/ A O 1 / />.\
fr>,J.c--- -IwO
s^^.m-/
•2A.-&-1I

Tempe r a ture
"Wet
Test
Meter
tw
(°F)
^
l^\
te
lo^-
(o^
(^
! /-,
(.-';'<•'•
^0-
1*7-
/ -^
'..O c*—
•''„ " -
a a
41 ,s-
^v.
6i.fi

6,1
/c ! , (o
(^,."6

V
5, = p, + Am Km = — ?
-d b T3T6" 9
Dry Gas Meter
Inlet
tdi
(°F)
.-It
M")4
"?S
1^
7^
-77,5
^
-^
?>]
v^.£r
f? • •
0. 1
%4
%•?
c(kS'
•°/;^

«^
'•>7
?;7<

Outlet
tdo
(°F)
^-)
M-
^^.5
1^-
^-9
70.S
"7 ^
no.
l^.S
a -H-
.../;H
-/3.^
-?S
-1-1-
•14,5

•7S"
1^
• l <


* \l Pw
V TwAm
Average
td
(°F)


70.?


"74-0


"7*0 '^


1?,%


(A^^



W/i

Vacuum
Wet Test
Meter
pw
(in. H20)

0
«?£/?,?

O
J9. 35*

0
^ 9, 3 ^

0
J9.3^

0
ctf.-.tf


0


Time
6
(min)
3.1'ic
>l. 17
D3-'^1
3ta.4*'
\4*.S3
/4,S«
.50:93
^,3S
PS: o^
31^, 10

P^'.47
P-6, -7^

AVERAGE
7
.W
/,ooo
\,00-(o
},0\^
l.OKv

i.on

LOOS
KO '
.'43
J37
1 •*> r^
1 «, ••,
> ' J>~)
.134
./3PL

,'3/

J35T
      w
                 460)
(t
             w
                 460)
Factor in  isokinetic equation =   27t4.°  -
                                   (Km)2
                                                                     27.40
                                                      Clayton  Environmental Consultants,  Inc.

-------
                                       METER AND  ORiFlCE CALIBRATION
Date
Client
Barometric  Pressure Pb  ("Kg)   Jll'i.L> \
                         Calibrator  -]~VJ\/\
Meter Box  Number
Gas Meter  Number

Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average
Stop
Start
Average

Stop
Start
Average

*v - ^b
Orifice
Manometer
Settirg, Am
(in. H20)
0.5 .)>.,
..-^.GO '

1.0
o^.kS

2.0
•H'Vv

3.0
'} ''; " °, '

4.0
,-}'"} ^0


5.0
_'Jl"1,fi?


Pw ,
13.6
Gas Volume
Wet Test
Meter
VWL
(£#>
6^^7000
b^l.DQO
(5) G. OOQ
&25£ . 000
6.245,000
(5) /.' . ooo
6-aW ,ocr.
6^6-000
(10) y!:. 000
tv^.DDO
(v-^A.C'oo
ao) •••<><.'
6343. &>C>
6:2 ,

Gas Volume
Dry Gas
Meter
H
(ft^)
,^.^
4214.^/4-
5.f/;i'-;
;'l3l,.^-4
3.ra<9. j?43L
IfiMJ
;&ai84
a^i,^4
V': -'.' ,""•
^', ,_. • ^' i: <*. -•
P-74 . %^
c'U-O, i^,^V
i ' . <. -• ' • j
^55. S^
;r74, ^6-y-
-; /, (">':• •

-&%. na-
•sao, 564
/ -.- ' ', •
* • • •*" ..

'*V?b+T375-
Temperature
"Wet
Test
Meter
tw
(°F)
^.-S"
^^
^./C,J<
^7
66.5
6^-)-
a
(,-?
6 r-^
6?i
(^
(, \"
£,%.$
W
'•(•• • ••'•'-'

(^
C$,5
'. 7 i .' k .•


Dry Gas Meter
Inlet
tdi
(°F)
n
i-6

W
~n

Its
Vr

\C%
10 6

110
/OS


//O-
//o


Outlet
cdo
(°F)
U
44

-?4
6^5

S5
'74-

«7
^s

9o
87


?/
9<9



, M Vw I Pw
Q 9 V Tw Am
Average
td
(°F)


(0Z.JS-


1t


?A£~


<; / .-, ..-
1 '.?. .->-»


'i >•:,•/:»



/^O.'-A^

Vacuum
Wet Test
Meter
pw
(in. H20)

0
e^.M

0
^.6 /

o
cP "1. 6 (

n
-'''•Gf

O
^&l if i


•rt
c>\<,-.l

Time
6
(min)
/4i^
/«/-V9
/9i /?
/9, ^A
^:?,i
ji.^
/f:4t
/V/7?
4/:3/
•

1,023-
Km '

o.t&i
0./3^0
0.13/1
0.{3*is
o./axs

o.tHo

OW.
       w
             (td + 460)
                                    Factor in isoki'netic  equation = —3^*
                                                                       (Km)'
                                                         27.40
                                                        (
               7
                                                        C lav ton En y-f rnnrnpn fa 1	Pnn '^lt^^an^'^	Tnr

-------
                                     METER AND ORIFICE CALIBRATION
                        Client   U<,  £f/\
arometric Pressure Pb  ("Hg)
                                            Calibrator f VM
Meter Box  Number K A

Gas Meter  Number

Stop
Start
Werage
Stop
Start
Werage
Stop
Start
\verage
Stop
Start
Werage
;top
Start
Werage

-Stop
5tart
we rage

w = pb
Orifice
Manometer
Settir.g, Am
(in. H20)
0.5

o? cl Lf2
1.0

^9.-/^
2.0

J^.43^
3.0

J}°l.^0
4.0

^q.(01

5.0

4Sk,000
(10) 14.000
U>SC\ ,00^
k(o"7C.OOC
do fl.ono
k~7 ' 0, 0(^o
/ / QQ A/^/^
1/7 fc> QI , UC-'CJ
(10)^.1,000

#>7pd1,ot>o
1.710.000
do) \q.oo(

Gas Vo lume
Dry Gas
Meter
VH
k!5.393
Co9'4-3-l
5.97^
fe^.4-75
4LS- °fl3
I±.,n7,?-
M-p.^^fO
^•475
J4J'3-I5
) Os^ei/OoJi
M^I.^O
J.^.Z.SE
/ O -1 / -v /
U^L.O^S
;il. 5/1 .§

'703, 170
hS';). ^"^'o
19. s^^j

pd -.pb + I^_ »
Temper a ture
"Wet
Test
Meter
U
k/
b/
("nf
fcl
Ul
fcl
4,1
fc)
6/
tl
4>!
4/
fcl
(>/

^'
k\
C.I

. ^
Dry Gas Meter
Inlet
tdl
'' ' 1
/A
left
y;l
74-
51)
u
^x
ci^
\OQ
9/^
^)
104
loo
I o.-J.

!0n
jrA
i 0 5

Outlet
tdo
(,;,^
IV'i
^i1''
70
to
^
14?
7^
'73
80
~7£?
7^>
^'c^
to
T)/

V;5'
NC-.
%? 5


* ./ pw
HI A \| ip Am
Average
td


t.4, ?"


7B.S


?*?.S


^f;


^l-'5



f, •'; -.'

Vacuum
Wet Test
Meter
pw
(in. H20)

O
J_£ ^

6
^?,3^

O
^•^

O
^^.^^

G
9^7. ^1>
^

C
j.9.3^

Time
6
(min)
14:23
14. 55
S'i-'S"
17:55
17,95-
u-J 1
19:^1-

15:57

AVERAGE
7
1.0 10
1,015'
,.«»
IMS
I.W.

.03?.

.01-)
Km
,3*
,.»
,3,
./*
.«7

.«7

,13)
V
      w
         ^ (tu> + 460)
                                  Factor  in  isoki'netic equation = 	—?-
                                                   *    »            fv...\f-
           27.40
                                                                 mJ-      (     T

                                                 Clayton Environmental  Consultants
                                                                                           nc

-------