APTD-1494
October 1973
               EXHAUST EMISSIONS
FROM  UNCONTROLLED VEHICLES
       AND RELATED  EQUIPMENT
                  USING INTERNAL
            COMBUSTION ENGINES
                             PART 5:
            FARM,  CONSTRUCTION,
        AND  INDUSTRIAL ENGINES
        U.S. ENVIRONMENTAL PROTECTION AGENCY
           Office of Air and Waste Management
        Office of Mobile Source Air Pollution Control
           Emission Control Technology Division
              Ann Arbor, Michigan  48105

-------
                                          APTD-1494

             EXHAUST  EMISSIONS
     FROM UNCONTROLLED VEHICLES
         AND RELATED EQUIPMENT
USING INTERNAL COMBUSTION ENGINES
     PART 5:   FARM,  CONSTRUCTION,
         AND INDUSTRIAL  ENGINES
                        Prepared by

                Charles T . Hare and Karl J . Springer

                   Southwest Research Institute
                      8500 Culebra Road
                   San Antonio, Texas 78284



                    Contract No. EHS-70-108



              EPA Project Officer: William Rogers Oliver



                        Prepared for

               ENVIRONMENTAL PROTECTION AGENCY
                Office of Air and Waste Management
              Office of Mobile Source Air Pollution Control
                Emission Control Technology Division
                   Ann Arbor, Michigan 48105

                        October 1973

-------
This report is issued by the Environmental Protection Agency to
report technical data of interest to a limited number of readers.
Copies are available free of charge to Federal employees, current
contractors and grantees, and nonprofit organizations - as supplies
permit - from the Air Pollution Technical Information Center,
Environmental Protection Agency,  Research Triangle Park, North Carolina
27711, or from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia  22151.
This report was furnished to the Environmental Protection Agency by
Southwest Research Institute, San Antonio,  Texas in fulfillment of
Contract No. EHS 70-108.  The contents of this report are reproduced
herein as received from the Southwest Research Institute. The
opinions, findings, and conclusions expressed are those of the
author and not necessarily those of the Environmental Protection
Agency. Mention of company or product names is not to be considered
as an endorsement by the Environmental Protection Agency
                    Publication No. APTD-1494
                                11

-------
                             ABSTRACT

        This  report is part 5 of the Final Report on Exhaust Emissions from
Uncontrolled Vehicles and Related Equipment Using Internal Combustion
Engines,  Contract EHS 70-108.  The engine categories covered in this
report are heavy-duty gasoline and diesel engines used in farm,  construc-
tion,  and industrial applications.   Exhaust emissions from twelve engines
were measured,  including eight diesels and four gasoline engines.

        The four  gasoline engines were a Ford G5000,  a Hercules G-2300,
a J. I.  Case  159G, and a Wisconsin VH4D.  The eight diesel engines tested
were an Aliis-Chalmers 3500, a Caterpillar D6C, a Detroit Diesel 6V-71,
an International D407, a John Deere 6404,  a Mercedes-Benz OM636, an
Onan DJBA,  and a Perkins 4. 236. The engines were tested using well-
accepted  steady-state procedures for gaseous  emissions measurement,
and in addition, the Federal procedure for smoke  certification was used
for testing the diesel engines (except the Onan).  Some gaseous emissions
were measured during transient  operation of most of the engines, and
particulate and smoke measurements were made  during some of the same
modes used for gaseous emissions sampling.

        The analysis techniques which were used included FIA for total
hydrocarbons; NDIR for CO, CO2, and NO; chemiluminescence for NO and
NOX; electrochemical analysis for O-,;  gas chromatograph for light hydro-
carbons;  the  MBTH method for total aliphatic aldehydes (RCHO) and the
chromotropic acid method for formaldehyde (HCHO); an experimental
dilution-type sampling device for particulate; and the PHS full-flow  smoke-
meter for smoke (diesels only).   Hydrocarbons were also measured by
NDIR for tests on the gasoline engines,  and the FIA was heated to 160°F
for tests  on gasoline  engines, but to about 360°F  for diesel engine tests.

        The twelve engines were  operated on eddy-current stationary dyna-
mometers, the largest of which had provision for the extra inertia  required
for Federal smoke tests.  One of the dynamometers had motoring capability
for closed-throttle modes on gasoline engines,  so the three larger  gasoline-
fueled units were operated on this dynamometer.   The emissions results
obtained in this study, as well as data obtained from other sources, were
used in conjunction with information on engine population and usage  to
estimate  emission factors.   Estimates of emission factors were made using
emissions data developed on as broad a range of engines as possible,  taking
into account that  several of the engines tested under this contract (as well
as others on  the market) are widely used in more than one of the three
areas of application treated in this report (farm,  construction,  and  indus-
trial).  National impact was  estimated  separately for each of the three
engine applications,  based on population and usage information developed
independently for each application.
                                  iii

-------
                             FOREWORD

       The project for which this report constitutes part of the end product
was initiated jointly on June 29,  1970,  by the Division of Motor Vehicle
Research and Development and the Division of Air Quality and Emission
Data, both divisions of the agency known as NAPCA.  Currently, these
offices are the Emission Characterization and Control Development Branch
of the Office  of Mobile Source Air Pollution Control,  and the National
Air Data Branch of the Office of Air Quality Planning and Standards,
respectively.  Both  offices are within the Office of Air and Water Programs,
Environmental Protection  Agency.   The subject contract number is
EHS 70-108,  and the project is identified within Southwest Research
Institute as 11-2869-001.

       This  report  (Part 5) covers the heavy-duty farm,  construction, and
industrial  engine portion of the  characterization work only; and the six other
items in the  characterization work have been or will  be covered by six other
parts of  the final report.  In the order in which the final reports have been
or will be  submitted, the seven parts  of the characterization work include:
Locomotives and Marine Counterparts; Outboard Motors; Motorcycles;
Small Utility Engines; Farm, Construction, and Industrial Engines; Gas
Turbine  "Peaking"  Power Plants and  Snowmobiles.  Other efforts which
have been  conducted as separate phases of Contract EHS 70-108 include:
measurement of gaseous emissions from a number of aircraft turbine
engines; measurement of crankcase drainage from a  number of outboard
motors;  and investigation of emissions control technology for locomotive
diesel engines;  and those phases either have been or  will be reported
separately.

       Cognizant technical personnel for the Environmental Protection
Agency are currently Messrs. William Rogers Oliver and David S. Kircher,
and past Project Officers include Messrs.  J.  L. Raney, A. J.  Hoffman,
B. D.  McNutt,  and G.  J. Kennedy.  Project Manager for Southwest Research
Institute has been Mr.  Karl J. Springer, and Mr. Charles T.  Hare has car-
ried the  technical responsibility.

       The offices of the sponsoring agency (EPA) are located at 2565
Plymouth Road, Ann Arbor, Michigan 48105 and at Research Triangle Park,
North Carolina  27711.  The contractor (SwRI) is located at 8500 Culebra
Road,  San Antonio,  Texas 78284.

       The assistance of several corporations, groups,  and individuals has
contributed materially to the success  of the farm, construction, and indus-
trial engine portion of this project.  Appreciation is  expressed to:  Allis-
Chalmers  (Mr.  William Hamilton);  Caterpillar Tractor Co.  (Mr. Don
Henderson and Mr.  Duane E. Evans); Detroit Diesel  Allison Division,
General Motors  Corp. (Mr.  David F. Merrion and Mr.  John W. Caradonna);
                                    iv

-------
The General Motors Environmental Activities Staff  (Mr.  George Hanley);
Ford  Tractor Operations (Mr. John H. Zich); Hercules Engine Division,
White Engines, Inc. (Mr.  Robert L. Bodnar); International Harvester Com-
pany  (Mr.  Charles R.  Hudson); J. I. Case Co. (Mr. Don  Shelton and Mr.
John  Crowley); John Deere (Mr. Robert Parker); Mercedes-Benz of North
America, Inc. (Mr. Gerhard Langhans and Mr. K. H. Faber); Onan (Mr.
J. C. Hoiby); Perkins Engines, Inc. (Mr. Neville Hartwell); and Teledyne
Wisconsin Motor (Mr. John A.  Gresch).

       Thanks are also  expressed to the OAP Emissions  Survey Subcommittee
of the Emissions Standards Committee, Engine Manufacturers Association.
This  group is composed largely of the  gentlemen listed above (with their
company affiliations),  and it contributed a great deal in recommending
engines to be tested and in supplying other technical information on usage
and duty cycles.  Until recently,  the chairman of this subcommittee was
Mr. John Crowley, and  his substantial efforts over a period of more than
two years are very much appreciated.

       The SwRI personnel involved in the farm, construction, and indus-
trial  engine tests included Russel T. Mack, lead technician; Joyce McBryde
and Joyce Winfield,  laboratory assistants; and Orville Davis, William P.
Jack, Ernest Krueger, and Nathan Reeh,  technicians.  These people all
made major  contributions to the research effort which are sincerely ap-
preciated.

-------
                         TABLE OF CONTENTS
                                                               Page
LIST OF ILLUSTRATIONS                                      viii

LIST OF TABLES                                               xii

I.      INTRODUCTION                                          *

II.     OBJECTIVES                                              2

III.     TEST DOCUMENTATION,  INSTRUMENTATION,
       AND PROCEDURES                                        3

       A.   Engine Specifications and Descriptions                 3
       B.   Instrumentation and Measurement Techniques          8
       C.   Emissions Test Procedures and Fuel Specifications    11
       D.   Estimation of Unmeasured Emissions                 19

IV.     EMISSION  TEST RESULTS                               22

       A.   Results of Gaseous Emissions Tests                  22
       B.   Results of Particulate Emissions Tests               40
       C.   Results of Diesel Smoke Tests                        41
       D.   Emissions Data from  Other  Sources                  44

V.     ESTIMATION OF EMISSION FACTORS AND NATIONAL
       IMPACT FOR HEAVY-DUTY ENGINES USED IN FARM
       APPLICATIONS                                          47

       A.   Analysis of Population and Usage for Heavy-Duty
            Farm Engines                                       47
       B.   Development of Emission Factors for Farm
            Engines                                             59
       C.   Estimation of National Emissions Impact for
            Farm Engines                                       63
                                 vi

-------
                      TABLE OF CONTENTS (Cont'd)

                                                               Page

VI.    ESTIMATION OF EMISSION FACTORS AND NATIONAL
       IMPACT  FOR HEAVY-DUTY ENGINES USED IN
       CONSTRUCTION APPLICATIONS                         69

       A.   Analysis of Population and Usage for Heavy-Duty
            Construction Engines                                69
       B.   Development of Emission Factors for Construction
            Engines                                             72
       C.   Estimation of National Emissions  Impact for
            Construction Engines                                78

VII.    ESTIMATION OF EMISSION FACTORS AND NATIONAL
       IMPACT  FOR HEAVY-DUTY ENGINES USED IN
       INDUSTRIAL APPLICATIONS                            87

       A.   Analysis of Population and Usage for Heavy-Duty
            Industrial Engines                                   87
       B.   Development of Emission Factors for Industrial
            Engines                                             90
       C.   Estimation of National Emissions Impact for In-
            dustrial Engines                                     92

VIII.   SUMMARY                                               96

LIST  OF REFERENCES                                        10Z

APPENDIXES

       A.   Graphical Presentation of Emissions from Diesel
            Engines Used in Farm, Construction, and Industrial
            Applications
       B.   Data from Federal Smoke Tests on Diesel Engines
            Used in Farm,  Construction,  and Industrial
            Applications
       C.   Tabular Performance  and Emissions Data on
            Diesel Engines Used in Farm, Construction,  and
            Industrial Applications
       D.   Computer-Generated Data Printouts  and Calculation
            of Brake Specific Emissions for Diesel Engines
            Used in Farm,  Construction,  and Industrial Applications
       E.   Graphical Presentation of Emissions from Gasoline
            Engines  Used in Farm, Construction, and Industrial
            Applications
                                  vii

-------
                           TABLE OF CONTENTS (Cont'd)

APPENDIXES (Cont'd)

            F.   Tabular Performance and Emissions Data on
                Gasoline Engines Used in Farm, Construction,
                and Industrial Applications
            G.   Computer-Generated Data Printouts and Calcu-
                lation of Brake Specific Emissions for Gasoline
                Engines Used in Farm, Construction, and
                Industrial Applications
            H.   States Included in Northern, Central, and Southern
                Regions for the Purpose of Regional Mass
                Emissions Analysis
                                      viil

-------
                       LIST OF ILLUSTRATIONS

Figure                                                        Page

  1        Allis-Chalmers  3500 Diesel Engine                     5

  2        Caterpillar D6C Diesel Engine                          5

  3        Detroit Diesel 6V-71 Diesel Engine                     5

  4        International Harvester D407 Diesel Engine              5

  5        John Deere 6404 Diesel Engine                         6

  6        Mercedes-Benz  OM636 Diesel Engine                   6

  7        Onan DJBA Diesel Engine                              6

  8        Perkins  4. 236 Diesel Engine                           6

  9        Ford G5000  Gasoline Engine                            7

  10        Hercules G-2300 Gasoline Engine                       ?

  11        J. I. Case 159G Gasoline Engine                        7

  12        Wisconsin VH4D Gasoline Engine                       7

  13        Instrumentation  used for Measurement _of
           Gaseous  Emissions from Diesel Engines                 9

  14        Instrumentation used for Measurement of
           Gaseous  Emissions from Gasoline Engines              9

  15        500-hp Capacity Eddy-Cur rent Dynamometer
           used for  Tests of Large Diesel Engines                 9

  16        250-hp Capacity Eddy-Current Dynamometer
           used for  Tests of Smaller Engines                      9

  17        FLA Oven/Detector Unit  Used for Hydrocarbon
           Analysis                                             10
                                   lx

-------
                   LIST OF ILLUSTRATIONS (Cont'd)

Figure                                                         Page

 18        Flo-Tron Fuel Flow Measurement Device of
           the Type Used During Most Emissions Tests           1®

 19        PHS  Light Extinction Smokemeter                     10

 20        Experimental Dilution-Type Particulate
           Sampler                                              10

 21        Experimental Population Models for Farm
           Tractors                                            50

 22        Comparison of Known and Calculated  Values
           for Market Percentage of Diesel Farm Tractors,
           1950  Through 1971                                   53

 23        Usage as a Function of Rated Engine hp for
           Various Categories  of Construction Equipment         71

 24        Value of Industrial Engines as a Function  of
           Engine Rated Horsepower                            88

-------
                          LIST OF TABLES

                                                              Page

          Specifications of Test Engines                           4

          Description of Steady-State Gaseous Emissions
          Test Procedures                                       13

 3        Operating Speeds Used During Emission Tests          14

 4        Values of Constants in "Carbon Balance" Mass
          Emission Equations                                    16

 5        Federal Emissions Test  Fuel Requirements
          and Typical Specifications of Fuels Used                19

 6        Data on Light Hydrocarbon Emissions from
          Heavy-Duty Diesel Engines Used in Farm,
          Construction, and Industrial  Applications               23

 7        Data on Light Hydrocarbon Emissions from
          Heavy-Duty Gasoline Engines Used in Farm,
          Construction, and Industrial  Applications               25

 8        Mass Emissions and Brake Specific Emissions
          of Major Gaseous Pollutants  and Aldehyde  Con-
          centrations for an Allis-Chalmers 3500 Diesel
          Engine                                                27

 9        Mass Emissions and Brake Specific Emissions
          of Major Gaseous Pollutants  and Aldehyde  Con-
          centrations for a Caterpillar D6-C  Diesel Engine        28

10        Mass Emissions and Brake Specific Emissions of
          Major Gaseous  Pollutants and Aldehyde Concen-
          trations for a Detroit Diesel  6V-71 Diesel  Engine       29

11        Mass Emissions and Brake Specific Emissions
          of Major Gaseous Pollutants  and Aldehyde Con-
          centrations for  an International Harvester  D407
          Diesel Engine                                          30
                                  xi

-------
                   LIST OF TABLES (Cont'd)

Table                                                           Pag*

 12        Mass Emissions and Brake Specific Emissions
           of Major Gaseous  Pollutants and Aldehyde Con-
           centrations for a John Deere 6404 Diesel Engine        31

 13        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations for a Mercedes-Benz OM636 Diesel
           Engine                                                32

 14        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde Con-
           centrations for an Onan DJBA  Diesel Engine           33

 15        Mass Emissions and Brake Specific  Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations for a Perkins 4. 236 Diesel Engine          34

 16        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations for a Ford G5000 Gasoline  Engine          35

 17        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations for a Hercules G-2300 Gasoline
           Engine                                                36

 18        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations fora  J. I.  Case 159G Gasoline
           Engine                                                37

 19        Mass Emissions and Brake Specific Emissions
           of Major Gaseous Pollutants and Aldehyde  Con-
           centrations for a Wisconsin VH4D Gasoline
           Engine                                                38

 20        Cycle Composite Brake  Specific Gaseous
           Emissions from Eight Farm, Construction, and
 •         Industrial Diesel Engines  (On-Highway Weighting
           Factors)                                              39
                                 xii

-------
                     LIST OF TABLES (Cont'd)

Table                                                          Page

 21        Cycle Composite Brake Specific  Gaseous
           Emissions from Four Farm, Construction,
           and Industrial Gasoline Engines (On-Highway
           Weighting Factors)                                    40

 22        Particulate Concentration Data on F,  C, & I
           Engines                                               42

 23        Mass and Brake Specific Particulate Emissions
           from F,  C, & I Engines                               43

 24        Summary of Federal Smoke Test Results               43

 25        Average Steady-State Smoke from Diesel Engines       44

 26        Emissions Data on Diesel Engines Developed by
           Other Sources, Based on  13- or 21-Mode
           Procedures

 27        Average Brake Specific Emissions from Diesels
           by Engine Type, Test Engines Compared to
           Data from Other Sources

 28        Data on the U.  S. Farm Wheel Tractor Population       48

 29        Comparison of Data Calculated by Survival Models
           to Known Facts about the Farm Tractor Popula-
           tion                                                  4
-------
                    LIST OF TABLES (Cont'4)

Table                                                           P^i

 34        Two Independent Estimates of Annual Usage
           of Tractors as a Function  of Tractor Age               57

 35        Major U. S. Crop Acreage (1970) and Estimated
           Machine Hours Required for Harvesting                58

 36        Farm Tractor Mode Weighting Factors for the
           13-Mode Gaseous Emissions  Procedure                60

 37        Farm  Engine Mode Weighting Factors for the
           21-Mode (23 for Gasoline Engines) Procedure
           and the (Special 7-Mode) Particulate Measure-
           ment Procedure                                       61

 38        Composite Mass and Brake Specific Emissions
           for Test Engines Weighted to  Simulate Farm
           Tractor and Farm Non-Tractor Applications           62

 39        Computation, of Composite  Brake Specific
           Emission Factors for Farm Tractor and Non-
           Tractor Applications of Heavy-Duty Diesel
           and Gasoline Engines                                  64

 40        National Emissions Impact Estimates for Heavy-
           Duty Farm Engines                                    65

 41        Information Pertinent to Evaporative Emissions
           from Heavy-Duty Gasoline Farm Engines               66

 42        Comparison of Heavy-Duty Farm Engine
           Emissions Estimates with  EPA Nationwide Air
           Pollutant Inventory Data                               67

 43        Computation of Average Years of Service for
           Several Categories of Construction Equipment          70

 44        Typical Total Yearly Shipments and Domestic
           Shipments  over  Computed Average Life  for
           Construction Equipment                                72
                              xiv

-------
                     LIST OF TABLES (Cont'd)

Table                                                           Page

 45        Summary of Manufacturers ' Construction
           Equipment Duty Cycle Data Based on 13-Mode
           Cycle                                                74

 46        Mode Weighting Factors for Characterization of
           Emissions from Construction Equipment               76

 47        Composite Mass and Brake Specific Emissions
           for Test Engines Weighted to Simulate Four
           Types of Construction Usage                          77

 48        Computation of Category Composite Brake
           Specific Emission  Factors for Heavy-Duty
           Engines Used in Construction Applications             79

 49        National Emissions Impact Estimates for
           Heavy-Duty Construction Engines                      81

 50        Comparison of Heavy-Duty Construction Engine
           Emissions Estimates with EPA Nationwide Air
           Pollutant Inventory Data                               83

 51        Comparison of Emission Estimates for Gasoline-
           and Diesel-Powered Equipment with a  Previous
           Emission Estimate                                   83

 52        Estimate of Seasonal, Regional, and Urban-Rural
           Distribution of Emissions from Construction
           Equipment                                            84

 53        Computation of Industrial  Gasoline Engine
           Average Horsepower Based on Assumptions
           about Double-Classification of Small Utility
           Engines                                              90

 54        Computation of Composite Brake Specific
           Emission Factors  for Industrial Applications of
           Heavy-Duty Diesel and Gasoline Engines               91

 55        National Emissions Impact Estimates for
           Heavy-Duty Industrial Engines                        93
                                 xv

-------
                     LIST OF TABLES (Cont'd)

Table

 56        Comparison of Heavy-Duty Industrial Engine
           Emissions Estimates with EPA Nationwide Air
           Pollutant Inventory Data                               93

 57        Estimate of Seasonal,  Regional,  and Urban-Rural
           Distribution of Emissions from Industrial Engines      94
                                 xvi

-------
                         I. INTRODUCTION

        The program of research on which this report is based was initiated
by the Environmental Protection Agency to (1) characterize emissions from
a broad range of internal combustion engines in order to accurately set
priorities for future  control, as required, and (2) assist in developing more
inclusive national and regional air pollution inventories.  This document,
which is Part 5 of what is planned to be a seven-part final report, concerns
emissions  from farm, construction, and industrial engines and the national
impact of these emissions.

        Emissions data on some of the  engines considered to be important to
the heavy-duty farm, construction, and industrial engine categories have
been developed outside the  subject contract, and where possible these data
will be considered in developing emission factors.  Although the procedures
used to acquire data  in the  subject program were related to those used (or
proposed) for emissions certification,  it should be noted that they were used
in this project for research purposes only.  No  consideration has been
given to the potential usefulness of the procedures used for anything except
research purposes.

       The testing portion of the work on  farm,  construction, and industrial
engines began about February  1,  1972,  and extended until about February 1,
1973.  The engines tested,  then,  were representative of production prior
to testing dates, and may not have incorporated all the latest emission
control technology.  This extended test period reflects the  scheduling of
numerous other  tests during the same time period,  including both those
applying to the subject contract (outboards, motorcycles, locomotives,
etc. ) and some applying to other contracts.  All the tests were performed
in the SwRI Emissions Research Laboratory.

-------
                         II.  OBJECTIVES

       The objectives of the heavy-duty farm, construction,  and industrial
engine part of this project were to obtain emissions data on a variety of
engines, and to use these and other available emissions data  in conjunction
with information  on engine population and usage to estimate emission factors
and national impact.  The emissions to be measured for all the engines
included hydrocarbons by FIA; CO,  COz, and NO by NDIR: NO and NOX by
chemiluminescence; Q£ by electrochemical analysis; light hydrocarbons by
gas chromatograph; aldehydes by wet chemistry; and particulate by gravi-
metric analysis.  In addition, hydrocarbons were to'be measured by NDIR
for gasoline engines,  and smoke by the PHS full-flow smokemeter for diesel
engines.  These emission measurements are essentially the  same as those
made on all the other categories of engines tested under this  contract.

       Emission measurement procedures  for engines similar to those tested
(but for highway applications only) had already been given a great deal of
consideration when the subject tests began, so it was not necessary to develop
procedures from scratch.  It became a secondary objective, however,  to
determine  how the on-highway procedures should be modified (if, indeed,
they should be modified at all) to better represent off-highway applications
of the engines tested.

-------
                   in.  TEST DOCUMENTATION,
              INSTRUMENTATION, AND PROCEDURES

       This section of the report includes descriptions and photographs
of the test engines, descriptions and photographs of the instrumentation
systems used,  and explanations of the test sequences and calculation
methods employed.  In brief, the engines were chosen to be as represen-
tative as possible of those used in the field, but no attempt was made to
use a national probability sample or any similarly  structured group due
to the extremely small number of engines to be tested.   The test proce-
dures used for gaseous emissions were similar to the "Federal 13-mode"
test^1) or the "EMA-California 13-mode" test<2),  except that some of
them had 21 modes (diesel) or 23 modes (gasoline).  The instrumentation
used was representative of state-of-the-art practice, although occasional
instrument downtime did prevent the acquisition of some data during a
few runs.

       A.  Engine Specifications  and Descriptions

       In order to show the extent to which available  diesel and gasoline
engines for F,  C, & I (farm, construction, and industrial) applications
were represented by those  chosen for testing under this contract, the
major specifications of the test engines have been assembled to form
Table 1.  Power outputs ranged from under 15 hp to over 200 hp  for diesels
(almost 300 hp if it is assumed that the  6V-71 is representing an 8V-71),
and from 30 hp to about 85 hp for spark-ignition engines.  In major design
features, the gasoline engines were  similar to each other  except for the air
cooling and "Vee" block design of the Wisconsin VH4D.  In contrast, the
diesel engines were of a variety of types.  The single 2-stroke engine tested
had open combustion chambers and used blower  scavenging; and the 4-stroke
engines included turbocharged models with both open  and precombustion
chambers, and naturally aspirated models  with both open and precombustion
chambers.  In addition,  one of the two naturally aspirated  4-stroke engines
with prechambers was air cooled, while the other was water  cooled.   It
 should be noted that the test engines were representative of production
prior to 1972 models (generally),  and that they may not have incorporated
the latest in emission control technology.  The engines were supplied on
loan by their manufacturers, and were  assumed to be correctly adjusted
 and ready to operate unless their performance indicated otherwise.

       The primary applications  of the  engines tested are  distributed  quite
evenly among the farm,  construction, and industrial  categories.  This dis-
tribution holds  within the diesel group and within the gasoline group as well
as the entire sample of engines.  It is also obvious that an effort was made
to test products of as many different manufacturers as possible, since no
two test engines were made by the same company.

-------
                TABLE  1.  SPECIFICATIONS OF TEST ENGINES
         Diesel

 Mfr. & Model
 displacement, in
 cyls.  (arrangement-no. )
 cycle
 aspiration
 comb, chamber
 rated hp @ rpm
 rated torque (ft Ibf) @ rpm
 cooling medium
 weight, Ibf
 injection system

         Diesel

 Mfr. & Model
 displacement, in^
 cyls.  (arrangement-no.)
 cycle
 aspiration
 comb, chamber
 rated hp @ rpm
 rated torque (ft Ibf) @ rpm
 cooling medium
 weight, Ibf
 injection system

        Gasoline

 Mfr. & Model
 displacement, in^
 cyls.  (arrangement-no.)
 rated hp @ rpm
 rated torque (ft Ibf) @ rpm
 cooling medium
 weight,  Ibf
 carburetion
 * measured or otherwise acquired, but not from mfr's. data
AC 3500
426
1-6
4-stroke
Turbo
open
157 @ 2200
438 @ 1700*
water
1300*
Simm's pump
J D 6404
404
1-6
4-stroke
Turbo
open
129 @ 2200
340 @ 1500
wate r ..
*
approx. 1500
Roosa-pump
Ford G5000
256
1-4
71 @ 2100
206 @ 1100
water
860
IV updraft
Cat D6C
638
1-6
4-stroke
Turbo
pre-cup
149 @ 1900*
486 @ 1400*
water
2000*
own -pump
M-B OM636
108
1-4
4-stroke
Natural
pre-cup
29 @ 2400
60 @ 2000
water
388
Bosch-pump
Here. G-2300
226
1-4
84. 5 @ 2400
205 @ 1400
water
590
IV updraft
D D 6V-71
426
V-6
2-stroke
Blower
open
208 @ 2100*
557 @ 1600*
water
I960*
own-unit
Onan DJBA
60
1-2
4-stroke
Natural
pre-cup
14.6 @ 2400
36 @ 1800
air
270
Bosch-pump
J I Case 159G
159
1-4
48 @ 2100
131 @ 1200
water
approx. 600*
IV updraft
Int D407
407
1-6
4-stroke
Natural
open
112 @ 2400
274 @ 1800*
water
approx. 1600*
Roosa-pump
Per 4.236
236
1-4
4-stroke
Natural
open
80 @ 2500
197 @ 1300
water
596
C. A. V. -pump
Wise VH4D
108
V-4
30 @ 2800
66 @ 1700
air
310
IV updraft
        To provide better visualization of the test engines,  photographs
of them appear as Figures 1 through 12.  These  photos also show  some
of the mechanical equipment and exhaust  systems, as well as air and
fuel flow measuring instrumentation.

-------
Figure  1.   Allis-Chalmers 3500
        Diesel- Engine
Figure 2.   Caterpillar D6C
      Diesel Engine
Figure 3.  Detroit Diesel 6V-71
      Diesel Engine
 Figure 4.   International
 Harvester D407 Diesel
         Engine

-------
Figure 5.   John Deere 6404
       Diesel Engine
Figure 6.  Mercedes-Benz
    OM636 Diesel Engine
Figure 7.   Onan DJBA Diesel
          Engine
Figure 8.   Perkins  4. 236
    Diesel Engine

-------
  Figure 9.   Ford G5000
      Gasoline Engine
Figure 10.   Hercules  G-2300
     Gasoline Engine
Figure 11.  J. I.  Case 159G
    Gasoline Engine
          Figure 12.  Wisconsin
          VH4D Gasoline Engine
        (Photo Supplied by Teledyne-
             Wisconsin Motor)

-------
       B.  Instrumentation and Measurement Techniques

       The types of instrumentation used for measuring emissions during
tests on the F,  C, & I engines have already been mentioned, but in this
section they will be described in more detail.  The nondispersive infrared
analyzers used for measurement of CO,  CO^, and NO (plus hydrocarbons
for gasoline engines)  were Beckman 315A's and 315B's,  and the electro-
chemical oxygen analyzer was a Beckman model 715.  For tests on the
four gasoline engines and on the Onan DJBA, the chemiluminescent NOX
analyzer used was a Thermo-Electron unit.  For tests on the other diesel
engines,  the chemiluminescent instrument used was one of several fabri-
cated by SwRI for use in the Emissions Research Laboratory.  The flame
ionization analyzers used for total hydrocarbon measurements during all
the tests were units fabricated in and for the Emissions Research Labora-
tory.   These FIA units have temperature capability from room temperature
to 400 °F,  and they use positive-pressure detectors and Keithley 417K
chromatograph electrometers. Readout  for all the instruments except NDIR
NO, O2,  and NDIR hydrocarbons  (when used) was provided by either  a Texas
Instruments 4-pen or a  Rikadenki 6-pen recorder.

        The instrumentation package used for gaseous emissions measure-
 ments on all the diesel engine tests except those on the Onan DJBA is
 shown in Figure  13,  and the package used for the remaining tests is shown
 in Figure 14.  Figure 15 shows the 500  hp-capacity eddy current dyna -
 mometer used  for tests on the larger diesel engines  (Allis-Chalmers,
 Caterpillar, Detroit Diesel,  International Harvester, and John Deere),
 including the inertia wheel under the guard in the background which was
 coupled to the dynamometer for Federal smoke tests.  Figure 16 shows
 the 250 -hp capacity eddy current dynamometer used  for testing of the other
 water-cooled engines (Mercedes-Benz,  Perkins,  Ford, Hercules, and J.
 I. Case), including the 50 hp  electric motor used to "motor" the gasoline
 engines at closed throttle.  The gearbelt and pulleys, covered by a guard
 when in operation,  were changed as necessary to provide the required
 crankshaft speeds.  The two smallest engines were air-cooled  (Onan and
 Wisconsin), and were operated on a 50 hp-capacity eddy current dyna-
 mometer (not shown).  This 50 hp unit did not have motoring capability,  so
 the rated and intermediate speed modes  run at closed throttle were deleted
 from the Wisconsin's operating schedule.

       A detailed view of the  FIA oven/detector assembly is shown in Figure
 17, including the apparatus for aldehyde and light hydrocarbon  sampling.
 The aldehyde bubblers are on the side of the oven, and a bag is shown at the
 rear of the oven being filled for light hydrocarbon analysis.  The methods
 employed for batch sampling were  the MBTH method^3' for total aliphatic
 aldehydes (RCHO) and the chromotropic acid method^4) for formaldehyde
 (HCHO).  The chromatograph employed  for light hydrocarbon analysis used

-------
Figure 13.  Instrumentation Used
  for Measurement of Gaseous
     Emissions from Diesel
            Engines
Figure 14.  Instrumentation
  Used for Measurement of
  Gaseous Emissions from
     Gasoline Engines
Figure 15.  500-hp Capacity
Eddy-Cur rent Dynamometer
  Used for Tests of Large
      Diesel Engines
Figure 16.  250-hp Capacity
Eddy-Current Dynamometer
 Used for Tests of Smaller
          Engines

-------
Figure 17.   FIA Oven/Detector
  Unit Used for Hydrocarbon
         Analysis
Figure 18.   Flo-Tron Fuel
Flow Measurement Device  of
the Type Used During Most
      Emissions Tests
Figure 19.   PHS Light Extinction
        Smokemeter
 Figure 20.  Experimental
 Dilution-Type Particulate
          Sampler
                                 10

-------
a 10 ft by 1/8 inch column packed with a mixture of phenyl isocyanate and
Porasil C, and a 1 inch by 1/8 inch precolumn packed with 100-120 mesh
Porapak N.   This chromatograph analysis was sensitive to seven compounds
(methane through butane),  although in many cases one or more of the
seven compounds was not present in measureable amounts.

        Figure 18 shows one of three Flo-tron fuel mass flow measuring
devices which were employed during the subject tests (another is shown
in Figure 4 with the International Harvester D407 engine).  These devices
were used for tests on most of the  engines, and a weight-time system
(using a scale and stopwatch) was used for the remaining tests.  Air flow
measurements on all the diesel  engines except the Detroit Diesel and the
Onan were taken using one or a  combination of the long radius nozzles
mounted in the plenum shown in Figure 4.  Air flow to the Detroit Diesel
was measured with a laminar flow  element, and no air  flow data were
acquired on the Onan.

        Smoke measurements on the diesel engines were made using a
PHS light extinction  smokemeter such as the one shown in Figure 19.   This
instrument, or a substantial equivalent,  is  required by Federal law for
smoke  certification^  '. and in all cases readout was provided by a strip
chart recorder.   Exhaust particulate  was measured under steady-state
conditions by the experimental dilution-type sampling device  shown in
Figure 20.  This device was developed to meet the objective of measuring
particulate at atmospheric pressure and 85°F, and it uses  primary filters
having  a mean flow pore  size of 0,45  micron (1.77 x 10  in).  The sampler
has continuous flow indication which permits adjustment of the sample  rate
within ± 2% of the desired value, and this rate is set as near  isokinetic as
possible.  It is recognized, however,  that the best the  system can do is to
match probe entrance velocity to exhaust bulk velocity,  rather than match
the instantaneous velocity vector as required for true isokinetic  sampling.
The hot exhaust  sample is cooled and diluted by a known flow of prepurified
dry compressed air  (metered via a critical orifice)  before being filtered,
then mixed flow  is totalized by a Rootsmeter.   Total exhaust sample flow
over the sampling period (5 to 10 minutes) is determined by subtracting
the dilution gas flow  from the total (mixed) flow.  Filters are preweighed
(clean)  and then  weighed after use (a minimum of four independent weighings
both before and after)in a humidity-controlled environment,  and  the final
two weights must be  within 0. 2 mg of each other.  Particulate amounts
collected during tests on th^ F,  C, & I engines  ranged  from about 10 mg
to over  100 mg,  and  the electronic balance used to weigh the  filters had
an accuracy of ± 0. 1 mg.

        C.   Emissions Test Procedures and Fuel Specifications

        Nearly all the gaseous and particulate emissions tests conducted
                                    11

-------
on the  F,  C,  & I engines were composed of a number of steady-state con-
ditions run in a  prescribed sequence.  In these steady-state procedures,
no attempt was made to compute emissions during transients (while engine
load and/or speed were changing).   The test procedures are all based
on the  EMA-California ARB  13-mode procedure'^) with variations to
accomodate the  needs of the  subject program.  A few additional runs were
made with continuous readouts of engine rpm, HC,  CO, and NOX, to
determine whether emissions during transients were  sufficiently different
from emissions  during steady-state operation to warrant their inclusion
in calculations leading to emission factors.  It was  found that excursions
of emission values beyond normal limits did occur in some cases,  but
that these excursions did not combine in magnitude  and duration to
make any significant change  in the  overall emissions  picture.

       The only other tests involving transients were the  Federal smoke
tests on the diesel engines,  which are composed almost solely of accel-
erations  and  lug-downs(^).  The steady-state gaseous emissions test
procedures used for diesels  had either  21 or  13 modes, and those used
for gasoline engines had either  23 or 13 modes (the 13-mode tests were
identical for  diesel and gasoline engines).  These procedures  are descri-
bed in  Table  2,  which gives engine speed and percent of full load at that
speed by mode.  The notes following Table 2,  especially (c), are important
to prevent confusion when referring to Appendixes F and G for data  on
the gasoline engines.  To elaborate on the point made in note (c),  the
computer program used to calculate brake specific  emissions required
mode data in the order shown in Table 2.  It is obvious from inspection
of Figure 16  that the engine and dynamometer had to be stopped to change
closed-throttle "motoring" speeds,  because belts and pulleys  were removed
and replaced to  accomplish speed changes.  Therefore, the test sequence
could not be run in the order required for computer input without mid-test
shutdowns, and  it was decided to defer  the closed-throttle modes until the
remainder of the tests had been conducted.  The belt  connecting the dyna-
mometer  to the  electric motor was removed for all the non-motored con-
ditions to prevent possible frictional losses.

       Reiterating another point made earlier, no closed-throttle "motoring"
data were acquired on the Wisconsin VH4D engine because it was operated
on a smaller dynamometer which did not have motoring capability.  Absence
of the closed-throttle data also made it impractical to obtain composite
brake specific emissions on  the Wisconsin by  corr puter, so no computer
data appear for  this engine in Appendix G.

       The 13-mode  procedures (performed in addition to 21- or 23-mode
tests,  and at different speeds) were run to provide a better basis for
"mapping" emissions from the test engines according to speed and load,
and thus  they were termed "mapping runs" and given  designations such
                                   12

-------
as M-l, M-2, and so on.  At least two  13-mode runs were made on each
engine except the Caterpillar D6C, the  exception being made because this
engine's assumed operating speed range was very narrow (1400 to 1900
rpm) and because its emissions were observed not to vary significantly

            TABLE  2.  DESCRIPTION  OF STEADY-STATE
              GASEOUS EMISSIONS TEST PROCEDURES
Mode

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23

Notes:
21-Mode (Diesel)
Engine rpm
Low Idle
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Low Idle
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Low Idle
Load
%
0
0
12.
25
37.
50
62.
75
87.
100
0
100
87.
75
62.
50
37.
25
12.
0
0


5

5

5

5



5

5

5

5


                                 13-Mode (Gasoline
                                    and Diesel)
Engine rpm
Low Idle
Speed No. 3
Low Idle
Load
00
00
25
50
75
100
0
100
75
50
25
0
0
                                                       23-Mode (Gasoline)
Engine rpm
Low Idle
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Inte rmediate
Low Idle
Intermediate
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Low Idle
Rated
Load
0
0
12.5
25
37. 5
50
62. 5
75
87. 5
100
0
CT(C)
100
87. 5
75
62. 5
50
37. 5
25
12. 5
0
0
CT
        (a)rpm lower than Speed No. 4, either above or below Intermediate,
          as needed.
        (b)rpm between Rated and Intermediate, generally closer to
          Rated than Intermediate
        (C)CT means "Closed Throttle" or "motored" conditions   the order
          of conditions shown was used for computer setup only  (Appendixes
          D and G) - actual run sequence and tabular data (Appendixes C
          and F) had non-motored Rated speed modes as 12-20,  followed
          in order by Low idle, Intermediate CT, and Rated CT
                                 13

-------
with operating speed (see Figures A-2, A-10, and A-18 in Appendix A).
These  13-mode tests were run using Speed No., 3 in place of Intermediate,
and Speed No. 4 in place of Rated, as  shown in Tables 2 and 3.  Note
that speed  No.  3 was chosen below normal intermediate for  the 6V-71
and the Onan because they were assumed to have some  applications
utilizing these lower speeds.

        The speeds chosen as "rated"  and "intermediate" were manufacturer's
 rated  speed, and either peak torque speed or 60% of rated speed  (whichever
 was higher), respectively.   For convenience, the operating speeds used for
 test purposes are summarized in Table 3.  This information in conjunction
 with that in Table 2 yields full descriptions of all'the steady-state operating
 conditions used for measurement of gaseous emissions.  Particulate
 measurements were generally conducted at seven steady-state conditions
 only,  due to their large time requirements.   These conditions -were; low
 idle; 100%, 50%,  and zero load at intermediate  speed; and 100%,  50%, and
 zero load at rated speed.  Each particulate condition was repeated several

  TABLE 3.  OPERATING SPEEDS USED DURING EMISSIONS TESTS
                                        Engine rpm at Condition
         Engine
Inter-
mediate
Rated
Speed
No. 3
Speed
No. 4
Low Idle
1500
1400
1600
1800
1500
1400
1800
1450
2200
1900
2100
2500
2200
2400
2400
2400
1700
-
1200
2100
1700
1700
1500
1700
2000
_
1800
2300
1900
2100
Z100
2100
800
640
440
700
800
700
*1500
620
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Harvester D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236

Ford G5000
Hercules G-2300
J. I. Case 159G
Wisconsin  VH4D
^Minimum ungoverned speed - governed 1000 rpm idle used for two
 of the four 13-mode runs conducted
times to check on the repeatability of the results, and to provide reasonably
accurate averages.  The gaseous emissions acquired by batch sampling,
namely aldehydes and light hydrocarbons (by gas chromatograph),  were'
measured at Z5% power increments during the 21-mode and 23-mode runs
1400
1450
1400
1700
2100
2400
2100
2800
1600
1750
1600
2000
1900
2100
1900
2400
660
600
490
920
                                   14

-------
only.  In addition, these batch-sampled emissions were also measured
during the motored closed-throttle conditions on the Ford G5000 and
Hercules G-2300 engines (modes 12 and 23 of the 23-mode procedure
shown in Table 2).

       Computation of mass-based emissions by mode from concentration
data,  fuel flow,  and (in some cases) air flow was performed by one of two
techniques.   The first method was  substantially equivalent to that outlined
in the EMA-California ARB  13-mode diesel emissions measurement
procedure, using the following basic equations for each mode.  The third
equation was originally written in terms of NO rather than NOX, but
otherwise they are  the same as the original ones.  The NOX concentration

    grams HC per hour = 0.0132  (ppmC) (exhaust flow, lbm/min)
    grams CO per hour = 0. 0263  (ppm CO)  (exhaust flow,  lbm/min)
    grams NOX (as  NO2) per hour = 0. 0432 (ppm NOX)  (exhaust flow,
                                   lbm/min)

in the third equation was that obtained from the chemiluminescent analyzer.
These equations were used in the computer program to generate mass
emissions data on all the diesel engines except the Onan DJBA,for which
no air flow data were taken.   They were also used to generate the tabular
data given in Appendix C for the  Caterpillar,  International Harvester, and
John Deere engines.  Brake  specific emissions data by mode were ob-
tained by simply dividing the mass emissions results  by power output.
All exhaust flow and  concentration  data used in these equations,  as well
as throughout the remainder of this report, are on a "wet" basis.  The
computer data (Appendixes D and G) have been corrected for removal of
combustion water only, but all the  other data have been corrected for
removal of atmospheric moisture as well.

        The assumptions inherent in the three conversion equations above
 are that (1) the molecular weight of the exhaust gases is the same as that
 of air (28. 97), and (2)  the atomic hydrogen/carbon ratio of the exhaust
 hydrocarbons is 2.00.   In a later section of the report, mass emissions
 of aldehydes  and particulate will be presented.  They were computed using
 the following basic equations, which are consistent in assumptions with
 the three already given.

   grams RCHO (as HCHO) per hour = 0. 0282  (ppm RCHO) (exhaust flow,
                                     lbm/min)
   grams particulate per hour =  0. 802 (particulate concentration,  mg/SCF)
                                (exhaust flow, lbm/min)

        The second method of computing mass emissions  by mode from con-
 centration data was a fuel-based technique, sometimes called the "carbon
                                    15

-------
balance" method.   The principal advantage of this method is that air flow
measurement is not required,  which helps to assure that emissions
(especially from gasoline engines) are not being upset by the measure-
ment process.  The basic equation for conversion of hydrocarbon con-
centrations to mass emissions is the same for gasoline and diesel engine
emissions, but the constants in the equations for the other constituents
are not the same for gasoline and diesel engines.  The following general
equations apply to both gasoline and diesel emissions, providing that the

   grams HC per hour = 0.0454 (ppmC) (fuel rate, lbm/hr)/(total carbon)
   grams CO per hour = Kco (ppm CO) (fuel rate, lbm/hr)/(total carbon)
   grams NOX (as NO2) per hour = KNQX (ppm NOX) (fuel rate,  lbm/hr)/
                                 (total carbon)
   grams RCHO (as HCHO) per hour = KRCHO (ppm RCHO) (fuel rate,
                                     lbm/hr)/(total carbon)
   grams particulate  per hour = Kpart (particulate concentration,
                               mg/SCF) (fuel rate,  lbm/hr)/(total carbon)

   and total carbon = %HC (as C) + %CO +%CO2

applicable  constants are selected from Table 4.
       TABLE 4.  VALUES OF CONSTANTS IN "CARBON BALANCE"
                       MASS EMISSION EQUATIONS

                                                Type of Fuel	
          Constituent           Constant      Gasoline     Diesel
              CO              KCO            0.0916     0.0906
          NOX as N02          KNOX           0. 150      0. 149
          RCHO as HCHO      KRCHO         0.0982     0.0971
          Particulate           KPart.          2- 79       2.76


       The principal assumption inherent in this second computation method
is that exhaust hydrocarbons have the same atomic hydrogen/carbon ratio
as fuel hydrocarbons (1. 85 for gasoline and 2. 00 for diesel fuel).  An ad-
ditional assumption was made for calculation of particulate rate, namely
that the exhaust molecular weight was equal  to that of air.  All the species
concentrations used in the "carbon balance"  equations were on a wet basis.
This second set of equations,  with constants as shown in Table 4, was used
in the computer program  to generate mass emissions data on all the
gasoline engines except the  Wisconsin.   They were also used to  calculate the
tabular values in Appendix F for all the gasoline engines,  and  the tabular
                                    16

-------
values in Appendix C for five diesels (Aliis-Chalmers, Detroit Diesel,
Mercedes-Benz, Onan, and Perkins).  Computer runs were not made for
the Onan and Wisconsin engines because in each case some required data
were missing.

       The initial computation of composite brake specific emissions on the
F,  C,  & I  engines  was  performed using mode weighting factors originally
specified for on-highway engines.  These factors for diesels were 0. 20/3 =
0.0667 for idles, and 0. 8/18  - 0.0444 for all the other modes.  For gasoline
engines, the factors were 0. 20/3 = 0. 0667 for idles, and 0. 8/20 = 0. 04 for
all the other modes.  Computation using these factors was a convenience,
since the computer programs had incorporated them, but this use does not
preclude the possibility of using other factors later in the report when
emission factors and impact  are calculated.  Determination of reasonable
mode weighting factors will be discussed in more detail  for each application
category following section IV (section V for farm engines, section VI for
construction, and section VII for industrial  engines).

       Once mass emissions by mode have  been determined by one of the
methods outlined above, the definitions and  equations below can be used to

       M^ =  individual mode  emissions, g/hr
       W^ -  individual time-based mode weighting factor
       hp^ = individual mode  power, hp
       n = number of modes  (13,  21,  or 23)
                        n
cycle composite g/hr =  \
                       i=l
                             n
Z
                                M.W.
                                  1  !
cycle composite g/bhp hr =
                             n
calculate  cycle composite emissions based on whatever weighting factors
are deemed appropriate for the particular application.

       After the  composite emissions were calculated for diesels, a "cor-
rection factor" taken from Federal  regulatiohs(l) was applied to the £IOX
results, and it is shown below.   The quantity "H" is humidity of intake air
            diesel NOX correction factor =
                                          1 -0.0025 (H-7.5)

                                    17

-------
in grains water per pound dry air, and the equation is designed to revise
NO  emissions to the value which would have occurred had the humidity
during the test been 75 grains water per pound dry air.  Federal emissions
regulations  for gasoline engines include different correction factors for
light-duty and heavy-duty engines, so it is not really clear which factor
should be used for the F, C, and I engines.  The computer results in Ap-
pendix G do not include a correction factor at all, nor do  any  data presented
(for gasoline or diesel engines) on a mode-by-mode basis in either the Appen-
dixes or the text.   Only  cycle composite NOX emissions have been corrected
to 75 grains humidity.

       It would seem logical on the surface that the heavy-duty factor should
be applied,  since the F,  C, & I  engines are of the heavy-duty type, but
consideration should be given to the derivation of this factor.  The original
work(5) shows derivation of the factor only on the basis  of complete  9-mode
Federal (heavy-duty) truck tests,  using a  set of mode weighting factors
required through 1973.   These weighting factors give a composite load
factor between 0.45 and  0. 5, whereas those which will become effective
in 1974  yield a load factor between 0. 2 and 0. 25.  On the other hand, the
light-duty factor does not seem applicable to the test engines,  because it
applies  to low-load factor road route operation.

       Comparison 01 the HD and LD correction factors shows agreement
within approximately 1% from 75 grains down to  about 30 grains,  but also
a rapid  divergence above 75 grains.  At 101 grains, for instance  (highest
humidity recorded during gasoline engine tests), the LD factor is 1. 139 and
the HD factor only  1.068.  In the absence of a humidity correction factor
derived especially for the 23-mode procedure, a somewhat arbitrary de-
cision must be made, and that decision is  that the heavy-duty factor^) (shown
below) will be used.  The data in Appendixes E,  F, and G  have not been

  gasoline NOX correction factor = 0.634 = 0. 00654 H - 0. 0000222 H2

corrected to 75 grains, nor have the mode data in the text,  but the cycle
composite results in the text have been corrected

       Fuels used in performing tests on the F,  C,  & I engines met the
requirements for emission test fuels  as listed in Federal regulations(1).
The diesel fuel used was number 2 grade,  and the gasoline was a leaded
type.  Federal fuel requirements are listed in Table 5, along with typical
specifications of the fuels used for testing. The hydrogen/carbon ratios of
the fuels were not measured, but rather they were assumed when necessary
to be  2.00 for diesel fuel and 1. 85 for gasoline.  These assumptions, as
mentioned earlier in this section,  are consistent with the practice used
in formulating Federal calculation procedures.
                                   18

-------
        D.  Estimation of Unmeasured Emissions

        A number of important exhaust constituents were measured during
tests under the subject contract, but a few measurements of less important
emissions had to be neglected due  either to time and financial constraints
or the lack of a reliable analysis method.  Using these criteria, it was
decided to estimate emissions of sulfur oxides (SOX), evaporative hydro-
carbons,  and crankcase (blowby) hydrocarbons rather than attempt to
measure  them.

        Taking the oxides of sulfur first, instrumentation for the measure-
ment of this pollutant in raw exhaust has not been developed to the same


     TABLE 5. FEDERAL EMISSIONS TEST FUEL REQUIREMENTS
            AND TYPICAL SPECIFICATIONS OF FUELS USED

                                                            Gasoline
No. 2 Diesel Fuel

Property
Cetane
IBP, °F
10% pt. , °F
50% pt. , °F
90% pt. , °F
EP, °F

Gravity, °API
Sulfur, %
Aromatics, %
Flash Point, °F

Viscosity, cs.
Federal
Require-
ment
42-50
340-400
400-460
470-540
550-610
580-660

33-37
0.2-0.5
27 (Min)
130 (Min)

2.0-3.2
Typical
Specifi-
cation
45.5
392
439
520
582
648

33.8
0.32
36.7
180

2.5
Federal

(1973) Typical
Require- Specifi-
Property
Octane, Res.
Lead, g/gal

IBP, °F
10% pt. , °F
50% pt. , °F
90% pt. , °F
EP, °F
Sulfur, %
Phosphorus
RVP, psi
Olefins, %
Aromatics, %
ment
100 (Min)
3. 1-3.3

75-95
120-135
200-230
300-325
41 5 (Max)
0. 10
0
8.7-9.2
10 (Max)
35 (Max)
cation
102
3.2

90
126
216
311
360
0.01
0
9.0
0.6
28.6
point as that for other common combustion products,  so it has become more
or less accepted practice to calculate sulfur oxide emissions based on fuel
sulfur  content.  The assumption is usually made for convenience that all the
                                   19

-------
sulfur oxidizes to SC>2, and thus the mass emission rate of SOX is taken to
be 2. 00 times the rate at which sulfur is entering the engine in the fuel
(2. 00 is the ratio of the molecular weight of SC>2 to the atomic weight of S).
This technique is fairly accurate for 4-stroke gasoline engines and all
diesels, in which substantially all the fuel is burned. Emission rates will
be calculated and included in section IV,  based on assumed fuel sulfur con-
tents of 00043% by weight for gasoline and 0. 22% for no. 2 diesel fuel\ '.

       Regarding emission of hydrocarbons due to evaporation, it will
first be assumed that evaporation of diesel fuel is negligible, although
doubtless  some spillage losses do occur.  Evaporation of gasoline includes
spillage losses, running losses from fuel tank and carburetor,  "hot soak"
losses from fuel tank and carburetor, and diurnal breathing losses from
the fuel tank.   Spillage and venting during tank filling is probably  significant,
but analysis of these losses is  beyond the intended scope of the subject work.
All losses from the  carburetor will be neglected due to  lack of  information,
but it is probable that these losses are not large because the carburetors
most commonly used are updraft types,  located well to the side of the engine
and (as much as possible) out of the path of natural convection heat transfer
from the engine block.

       Although fuel tanks on tractor-type equipment are located directly
over the engine in many  cases, no information is  available on running or
hot soak losses from them. It is possible, however,  to estimate diurnal
breathing  losses.  In the case of engines  used for industrial purposes, the
end usage is so varied that an estimate for fuel tank  size will have to be
made, but better  data will be available on this point for  tractors and similar
equipment.  Diurnal losses are primarily functions of fuel vapor pressure,
vapor space in the tank,  and the range of tank temperatures during the day.

       The best available information on gasoline  evaporative emissions^'
°» 9, 10) was developed for passenger cars, and consequently no specific
data are given for fuel tanks exposed to direct sunlight or positioned directly
over the engine.  Comparison of shaded and unshaded storage tank losses
has been made, however, indicating that 4 times as much evaporation can
occur from an unshaded  tank as from a shaded oneUO).  This comparison
study was based on a 4-week observation period of 300-gallon tanks,  each
initially full, with removal of 75 gallons of fuel at  the end of each week.
It seems apparent that the  evaporative loss factor  for tractor-type equip-
ment and power units having their tanks  over the engine and at least par-
tially exposed to sunlight should be higher than that for units having protected
fuel supplies.   Determining the fractions of power units in each of the two
groups (exposed tank and protected tank)  will be done later in the  report.

       The diurnal emission rate which seems most reasonable for auto-
mobiles,  assuming a fuel Rvp (Reid vapor pressure)  of 9.0 psi(6), is
                                   20

-------
about (2. Og hydrocarbons)/(gallon tank volume day)(?. 8, 9, 10).  This rate
means that a car with a 20 gallon tank would lose 40 g/day, or that one
with a 10 gallon tank would lose 20 g/day, and so on.  This factor is based
on a temperature swing of 25°F to 30°F, with a  maximum of 85°F to 90°F.
An increase in the maximum temperature would cause greater evaporation,
of course,  and it is  felt that the conditions encountered by tractor fuel tanks
would include these  higher maximum temperatures.  A conservative esti-
mate for unprotected tanks,  based on available information(9), would be
about (4. Og hydrocarbons)/(gallon tank volume day),  or double the rate for
a protected tank.  Should better information on evaporative losses from off-
road equipment become available, the estimates can be revised.  For the
present, however, the factors of  2g and 4g per gallon tank volume day will
be used for protected and unprotected tanks,  respectively.  Some seasonal
and regional variations in evaporative emissions undoubtedly occur, and
attempts to include these variations will be made when  emissions impact
is estimated.

       Emissions from automobile crankcases have been controlled
for some time by positive crankcase ventilation  (PCV) systems, but
there has been no general requirement for control of crankcase
emissions  from engines operated off-road.  Consequently, most of
the F,  C,  & I category heavy duty gasoline engines do not employ
crankcase  emission controls as standard equipment,  although they
are generally available as an option.  Of the four gasoline engines
tested under this part of the  contract, only the Wisconsin employed
a crankcase emission recirculating system.

       Prior to legislation requiring PCV systems and other controls
on automobiles, several studies were done to determine the amount
and composition of crankcase emissions from 4-stroke gasoline en-
gines^   '  '.   The best-supported generalization which can be derived
from the results of these studies is that crankcase hydrocarbon emissions
amount to about 20% of those in the exhaust, and that emission of other
common pollutants is  negligible.  This estimate will be used to deter-
mine hydrocarbon emission factors for gasoline  engines later in the
report,  with attempts to take into account fractions of production sold
with,and without control systems.  The discussion on crankcase emissions
applies only to gasoline engines, of course, since those fromdiesels are
considered negligible.
                                   21

-------
                     IV.  EMISSION TEST RESULTS

       Most of the raw emissions data which form the basis for this section
of the report are given in the Appendixes,  with the exceptions of aldehyde,
particulate, and light hydrocarbon concentrations,  and steady-state smoke.
The data not included in the Appendixes will be presented in this section of
the text.  Appendixes A through D provide data on the eight diesel engines
tested,  while Appendixes E through G do the same  for the four gasoline
engines tested.

       The emission results are broken up into four subsections,  with
gaseous emissions first and particulate second.  A subsection on smoke
(from diesels  only) follows, and the fourth division includes emission data
contributed by manufacturers and that obtained from other sources outside
the subject contract.

       A.  Results of Gaseous Emissions Tests

       Complete basic gaseous emissions data (except aldehydes, light
hydrocarbons, and particulate) are given in Appendix C for the diesel en-
gines and in Appendix F for the gasoline engines.   In addition, graphs
showing emission concentrations (HC, CO,  and NOX only) as functions of
load with  speed as parameter are given in Appendix A for diesel engines
and in Appendix E for gasoline engines.    The data in Appendixes C and
F can be  used to assess repeatability, giving an indication of variation
inherent in engine operation and  the test procedures used.

        This subsection contains  concentration data on aldehydes and light
hydrocarbons, as well as data on a mass basis and on a brake specific
basis for  the major gaseous pollutants (HC,  CO, NOX, aldehydes, and SOX).
The  light  hydrocarbon analysis was sensitive to seven compounds,  from
methane through butane, although in many instances  not all  the compounds
were present  in measurable amounts (0. 1  ppm or more).  The  light hydro-
carbon concentrations which will be given in this report are on a wet basis,
and are expressed as ppm of the compound,  not ppm C.

        Table  6 gives light hydrocarbon data on the diesel engines tested,
and only 5 compounds are  shown because neither propane nor butane was
found in any of the diesel exhaust samples.  Table 7 presents corresponding
data on the gasoline engines,  but with all seven compounds represented.
The  data were taken during operation on the 21-mode procedure (diesels)
or the 23-mode procedure (gasoline engines), at 25% power increments plus
two idle modes and (in the case of the gasoline engines only) closed throttle
modes.

        The primary usage of the light hydrocarbon data would occur in at-
tempting  to describe the combustion processes taking  place, but such an

                                  22

-------
           TABLE 6. DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
      DIESEL ENGINES USED IN FARM, CONSTRUCTION,  AND INDUSTRIAL APPLICATIONS
 Condition
Speed    Load

Idle       0

Inter-     0
mediate  25%
         50%
         75%
         100%
Rated
 0
 25%
 50%
 75%
100%
  Condition
         Load
          0
Inter-     0
mediate   25%
          50%
          75%
         100%
Rated
 0
 25%
 50%
 75%
100%
          ppm Concentrations, A-C 3500 Engine
CH4
15.
11.
9.4
10.
13.
15.
8.9
6.8
4.8
5.2
6. 3
ppm
CH4
3.9
4. 0
2.6
2. 0
3. 0
2. 7
1. 7
1. 8
2.2
1. 8
1. 7
C2H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H4
11.
10.
3.8
9.6
14.
6.8
7.2
4. 2
4.0
9.9
12.
Concentrations, D.
C2H6
0. 0
0.0
0. 0
0. 0
0. 0
0. 0
0.0
0. 0
0. 0
0.0
0. 0
C2H4
1.4
1.5
0.4
0. 0
0. 2
3. 7
2. 7
0.6
0.2
0. 1
2.6
C2H2
0.0
0.0
0.0
0.6
2. 3
1. 7
0.0
0.0
0.0
2.6
0.5
D. 6V-71
C2H2
2.8
0. 0
0. 0
0. 0
0. 0
0. 5
0. 0
0. 7
1. 1
2.3
2.6
C3H6
0.0
0. 0
0.0
0. 0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
0. 0
0. 0
0. 0
0. 0
0.0
0.0
ppm Concentrations, Cat. D6-C Engine
CH4
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
ppm
CH4
4. 2
4. 7
3. 8
4. 2
7. 1
43.
3.6
4.0
3. 4
4. 1
8. 5
C2H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
C2H4
7.9
4. 3
2. 1
4.9
4.8
6.0
4.8
2.2
5.8
5.7
5. 2
Concentrations, I.
C2H6
0.0
0.0
0.0
0.0
0.2
0. 5
0.0
0.0
0.0
0.0
0.4
C2H4
5.0
11.
7.4
6.8
12.
56.
8.6
9.6
7.4
9.9
34.
C2H2
3.3
2.0
1.0
2.6
2.6
3.7
2. 2
1.2
3. 3
3. 3
3.0
H. D407
C2H2
1.0
1.8
1.4
1.4
2.0
12.
1.4
2.0
1.4
1.4
3.0
C3H6
2. 3
2.0
0.6
1. 5
2. 2
1.9
1. 7
0.6
2. 1
2.0
1.6
Engine
C3H6
0.6
2.0
1. 0
1. 0
3.2
6.8
1.4
1.6
1.0
2.4
12.

-------
         TABLE 6 (Cont'd).  DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
         DIESEL ENGINES USED IN FARM,  CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
   Condition
 Speed   Load
 Idle
  0
Inter-    0
mediate  25%
          50%
          75%
         100%
Rated    0
          25%
          50%
          75%
         100%

  Condition
Speed   Load
Idle
 0
Inter-    0
mediate   25%
          50%
          75%
         100%
Rated
 0
 25%
 50%
 75%
100%
          ppm Concentrations, J. D.  6404 Engine
CH4
7. 1
18.
9.0
7. 1
6.4
16.
8.2
5.4
2.8
3.8
5. 1
ppm
CH4
3.4
4. 8
2. 7
3.2
4.6
22.
6.0
6.0
4.6
1.9
4. 1
C2H6
0. 1
1.0
0. 2
0. 1
0. 3
0.0
0.0
0.0
0.0
0. 3
0.3
C2H4
18.
55.
23.
14.
35.
32.
21.
9.0
15.
41.
35.
C2H2
3.0
8.0
5. 1
2.2
1. 7
7. 3
3.6
1.4
0.0
1.3
2. 7
Concentrations, OnanDJBA
C2H6
0.0
0.0
7.9
0.0
0.0
0.6
0.0
0. 2
0. 1
0.0
0.0
C2H4
9.2
12.
0.0
8.8
8.0
17.
16.
16.
7.6
6.2
8.2
C2H2
0. 7
1.6
0.0
0.7
1.6
8.6
2. 3
5.9
9.6
0.6
1. 3
C3H6
0. 5
12.
2.7
1. 5
6.9
1.4
1. 3
0.0
2.6
7. 7
1.4
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
2. 7
2. 1
1. 7
1.4
0.0
0.0
ppm Concentrations, M-B. OM636 Engine
CH4
3. 1
3.8
3.4
3.8
2.9
3.4
4. 2
4. 5
5. 3
3.6
4. 1
C2H6
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0. 0
0.0
0.0
C2H4
3.8
5.7
7. 4
6.4
5. 2
8.9
9.0
14.
21.
12.
8. 1
C2H2
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
ppm Concentrations, Perkins 4. 236
CH4
5. 1
9.0
4.5
2.3
2.8
28.
5.6
7. 8
1. 7
3.0
13.
C2H6
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
C2H4
5.2
6.8
5. 1
2.9
5.4
22.
8.2
6.6
4.6
5.4
17.
C2H2
0.0
0.0
0.0
0.0
0.0
5.3
0.0
0.0
0.0
0.0
3.2
C3H6
0.0
0. 0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 0
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
          C ondition
   TABLE 7.  DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
GASOLINE ENGINES USED IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS


   ppm Concentrations, Ford G5000 Engine
                                                                                                                    ine
CO
Ul
Speed Load
Idle 0
Inter- CT
mediate 0
25%
50%
75%
100%
Rated CT
0
25%
50%
75%
100%
Condition
Speed Load
CH4 i
512
1210
1850
595
465
378
476
1320
1010
535
386
376
300
ppm
CH4
C2H6
28
197
46
28
21
18
23
203
42
30
21
18
17
C2H4
162
583
365
181
135
107
95
741
279
183
135
117
101
C3H8
0.0
1.0
0.0
0.0
0.0
0.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
Concentrations, J. I.
C2H6
C2H4
C3H8
C2H?.
186
504
861
177
134
94
75
582
393
161
111
92
71
Case
C2H2
C3H6
56
171
106
69
55
43
49
189
77
65
50
42
43
C4H10
0.0
158.
0.0
0.0
0. 0
0.0
0.0
122.
0.0
0.0
0.0
0.0
0.0
159G Engine
C3H6
C4H10
CH4
924
555
370
315
192
239
323
149
366
284
219
303
226
ppm
CH4
C2H6
26
67
27
22
10
12
7
27
17
16
12
13
10
C2H4
259
271
243
175
86
104
97
98
170
138
105
126
98
Concentrations
C2H6
C2H4
C3Hg
0.0
3.6
0.0
0.0
0.0
0.0
1.8
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
741
364
189
119
61
82
85
79
190
99
67
83
69
C3t
70
93
*6 C4H10
0.0
66.
58 0.0
109
32
44
59
32
38
44
41
52
41
, Wisconsin VH4D
C3H8
C2H2
C3K
0.0
0.0
0.0
0.0
41.
0.0
0.0
0.0
0. 0
0. 0
Engine
[6 C4H10
         Idle
                           558
         14
140   0.0
209
39
0.0
298
13
93
0.0
                                                                                                      174
                                                                                                             46
0.0
Inter-
mediate




Rated





CT
0
25%
50%
75%
100%
CT
0 "
25%
50%
75%
100%
-
865
550
348
357
296
_
305
476
286
369
488
-
23
12
8
8
8
_.
12
14
12
13
16
-
216
128
84
77
74
_
97
122
91
103
137
' -
0.0
0.0
0.0
0.0
0.0
_.
0.0
0.0
0.0
0.0
0.0
-
326
169
99
91
75
_
84
152
86
106
168
-
57
32
22
20
25
_
45
46
35
41
52
-
0.0
0.0
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0
-
755
265
151
396
323
_
408
478
314
262
272
-
17
9
2
17
9
_
22
22
13
12
24
-
189
82
42
111
73
_
138
173
90
88
112
-
0.6
0.0
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0
-
405
123
66
127
107
_
185
201
90
94
79
-
75
39
46
29
81
_
52
103
81
57
41
-
0.0
5.3
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0

-------
investigation is outside the intended scope of this project.  Likewise,  it
would serve no real purpose at this point to ct>mpute light hydrocarbon
emissions on a mass or brake specific basis, so they appear only as
concentrations.

      The most comprehensive body of processed data to be  presented in
this subsection is the mode-by-mode summary of mass emissions (g/hr) and
brake specific emissions (g/hp hr) for the twelve test engines.  This  sum-
mary makes up Tables 8 through  19, and includes aldehyde concentrations
as well as the mass-based data.   The data can be weighted on a mode-by-
mode basis  to compute composite mass and brakfe specific emissions, as
was discussed in section III. C. ,  and the first attempt at such a computation
will utilize the weighting factors commonly used for on-highway engines
(see section III. C. ).  The use of these factors gives a uniform basis for
comparison of data generated under the subject program to a large body  of
existing data on other engines, but it does not carry with it the assertion
that the on-highway factors necessarily apply to farm, construction,  or
industrial applications.  The mode NOX data  have not been corrected  for
humidity, so if other composites are calculated,  they will  have to be
corrected individually.

      Subject to the foregoing qualifications,  then,  the composite  brake
specific emissions from the eight diesel engines  tested are presented in
Table 20, and those from the gasoline engines are shown in Table 21.  The
data on the diesels show considerable variation from engine  to engine,
depending on induction  system, injection system, combustion chamber
design, and so forth.  Variation among  the gasoline engines  was much
less pronounced than among the diesels, and had the J.  I.  Case been  run
with lower intake and exhaust restrictions the variation would probably
have been smaller  still.  Note that operation of the Case engine (which
was the first gasoline engine tested in the F, C,  & I category) at high
intake and exhaust restrictions was the  result of the contractor's  mis-
interpretation of  information received regarding upcoming Federal test
procedures  for heavy-duty gasoline engines.   The mistake was rectified
prior to testing the other gasoline engines, but it rendered the Case
data less usable than that for the other gasoline  engines.   The correct
precedents  for  setting intake and exhaust restrictions were utilized on
all  the engines except the J. I. Case,  namely the EMA-California ARB
procedure(2) for  diesels, and the  new Federal regulations  on gasoline
engines' •*•).

      Aldehydes were not measured for every mode, so the value for  the
average idle was  given its normal weight (0. 2) and data for the other
modes were given the weights 0. 8/n, where n was the number" of modes
during which data were taken. Later in the report,  the brake specific
data (with other weighting factors, if necessary)'from test engines and
those from outside sources will be used to estimate emission factors.
                                  26

-------
     TABLE 8.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
           AND ALDEHYDE CONCENTRATIONS FOR AN ALLIS-CHALMERS 3500 DIESEL ENGINE
Condition
Concentrations,
    ppm
                                         Mass Emissions, g/hr
Specific Emissions, g/bhp hr
Speed
Idle
1500








1700




2000




2200








Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
RCHO
42
44
-
28
-
33
-
20
-
23
_
-
-
-
-
-
-
-
-
-
20
-
18
-
18
-
25
-
27
HCHO
'27
29
_
22
-
32
-
16
-
23
.
-
-
-
-
.
-
-
-
-
18
-
16
-
16
-
23
-
25
HC
20.9
31.7
27.3
31.4
38.3
41.6
40. 3
39.0
26.5
13.3
35.5
34.4
36.5
39.7
15.8
30.0
32.9
33.4
36.9
31.6
40.0
37.9
42.8
42.3
42. 1
44.2
46.7
47.5
45.8
CO
130.
170.
130.
100.
87.2
110.
200.
300.
920.
1880.
160.
'99.2
100.
280.
1420.
140.
98. 5
110.
190.
820.
130.
130.
110.
110.
103.
130.
160.
250.
430.
NOX
65.6
120.
290.
460.
630.
780.
1090.
1115.
1260.
1260.
150.
460.
790.
1230.
1430.
170.
470.
850.
1330.
1580.
180.
310.
450.
620.
820.
1030.
1280.
1510,
1680.
RCHO
7.4
12.
-
9.4
-
12.
_
8.
-
10.
_
-
.
-
-
_
-
-
-
-
9.3
-
9.1
-
10.
-
16.
-
19.
SOX
5.0
9.5
19.6
28.7
38. 5
49.5
60.5
72.0
84.6
98.0
14.
33. 1
55.7
79.6
107.
18.
39.1
63.3
88.8
117.
22.4
31.9
43.5
55.7
68. 5
80.6
93.8
108.
120.
HC
-
_
1.82
1.05
0.860
0.696
0.539
0.437
0.255
0. 113
_
1.02
0.54
0.39
0. 12
.
0.89
0.45
0.33
0.22
_
2. 03
1. 08
0.755
0.564
0.474
0.418
0.363
0.319
CO
-
_
8.55
3. 13
2. 15
1.83
2.64
3.49
8.76
15.81
_
2.92
1.52
2.72
10.55
.
2.67
1.53
1. 71
5.51
_
5.82
2.78
1.97
1.68
1.46
1.47
1.92
2.98
NOX
-
_
19.1
15. 3
13.9
13.0
12.5
12.4
12. 0
10.6
_
13.6
11.7
12. 1
10.6
_
12.7
11.5
11.9
3. 7
_
16.6
11.4
11.2
9.92
11.0
11.4
11.5
11.7
RCHO SOX
-
_ —
1.30
0.31 0.958
0.858
0.20 0.828
0.808
0.09 0.801
0. 846
0.09 0.817
- .
0.974
0.819
0. 796
0.821
_
1.06
0.855
0.807
0.780
_
1.71
0.24 1.17
0.994
0.14 0.916
0.867
0.15 0.853
0.834
0.13 0.797

-------
                   TABLE 9.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
                         AND ALDEHYDE CONCENTRATIONS FOR A CATERPILLAR D6-C DIESEL ENGINE
              Condition
ts)
00
Concentrations,

    PPi"
Mass Emissions, g/hr
Specific Emissions,  g/bhp hr
Speed
Idle
1400








1900








Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
RCHO
26
24
-'
14
-
13
-
13
-
9
12
-
7
-
10
-
11
-
10
HCHO
12
12
.
4
-
5
-
7
-
5
5
-
6
-
3
.
8
-
5
HC
7.31
11.09
7.68
6.56
5.36
5. 17
5.30
5. 15
5.03
4.43
14. 80
7.70
6.99
6.71
7.22
6.67
6.15
5.84
6.48
CO
57. Z
120.
76.9
40.4
29. 4
23.8
33.6
36.3
37. 3
51.0
150.
196. 1
73.7
63.4
63.8
50.9
52.8
60.6
73.2
NOX
20.9
52. 2
110.
190.
300.
390.
440.
440.
440.
450.
82.4
130
210.
300.
400.
490.
550.
590.
620.
RCHO
5.6
11.
-
6.4
-
6.2
-
6.5
-
5.
7. 1
-
4.
-
5.8
-
7.2
-
7.4
SOX
6.2
15.2
23.4
31.9
40. 9
48. 7
60. 7
71.7
84.0
97. 0
25. 3
33. 5
44.5
54.3
64.5
77.6
89.8
103.
118.
HC
-
.
0.479
0.206
0. Ill
0. 081
0. 659
0.053
0.044
0.034
_
0.412
0. 185
0. 118
0. 109
0.070
0.054
0.044
0.043
CO
-
_
4.57
1.26
0.61
0.37
0.42
0. 38
0.33
0.39
-
5. 17
1.97
1. 13
0. 85
0.54
0.47
0.46
0.49
NOX
-
_
6.61
5. 84
6. 11
6. 16
5.46
4. 58
3.89
3.46
_
7. 02
5.49
5.43
5.42
5.24
4.92
4.52
4. 18
RCHO
-
_
-
0.20
-
0. 10
-
0.07
-
0.04
.
-
0. 1
-
0. 08
-
0.06
-
0.05
sox
-
_
1.46
1.00
0.849
0.762
0.756
0. 748
0.764
0.746
-
1. 
-------
TABLE 10.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
      AND ALDEHYDE CONCENTRATIONS FOR A DETROIT DIESEL 6V-71 DIESEL ENGINE
             Concentrations,
                                    Ma sa Em i a a ions,  g/hr
Specific Emissions, g/bhp hr
Speed
Idle
1200




1600








1800




2100








Load
0
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5
S0%
62. 5%
75%
87.5
100%
RCHO
12
_
-
-
-
-
23
-
14
-
13
-
7
-
11
„
-
-
-
-
10
-
8
-
7
-
9
-
10
HCHO
7
_
-
-
-
-
13
.
7
-
8
_
4
-
7
_
-
-
.
-
5
-
5
-
4
-
6
-
7
HC
12.3
24.5
31.2
33.7
39.7
41. 1
40. 8
39.7
41.3
46.0
46.5
48.7
53.5
64.2
65.5
62.9
59.9
55.8
58.6
63.8
95.1
87. 7
81.4
79.5
79.7
76.9
80.4
83.7
86.7
CO
54.6
140.
56.8
30.0
100.
3810.
150.
92.5
59.3
47.3
40.6
39.1
69.3
440.
2350.
130.
55.0
38.6
84.8
2170.
150.
110.
90.5
81.6
81.2
72.3
78.8
180.
760.
NOX
100.
170.
781.
1410.
2070.
1650.
310.
660.
1040.
1580.
I960.
2510.
2970.
3120.
2770.
430.
1190.
2000.
3210.
3250.
-730.
1120.
1620.
2070.
2680.
3250.
4030.
4330.
4180.
RCHO
3.0
_,
-
-
-
-
22.
-
14.
-
14.
-
7.
-
12.
_
-
-
-
-
16.
-
12.
-
10.
-
13.
-
14.
SOX
5.6
13.4
36.7
59.5
83.2
118.
22.4
34.7
47. 1
59.7
75.4
88.4
104.
124.
143.
27.5
53.7
83.2
120.
161.
36.5
48.7
63.9
78.2
96.6
110.
135.
155.
175.
HC
-
_
0.969
0.513
0.405
0. 317
„
1.77
0.964
0.715
0.539
0.449
0.415
0.428
0.386
.
1.31
0.603
0.421
0.342
.
3.51
1.58
1.03
0.768
0.593
0.519
0.440
0.417
CO
-
_
1.76
0.457
1.01
29.30
_
4. 14
1.38
1.07
0.471
0.361
0. 537
2.93
13.83
_
1.20
0.416
0.608
11.7
_
4.49
1.76
1.06
0.783
0.556
0.509
0.960
3.65
NOX
-
_
24.3
21.4
21. 1
12.7
.
29.5
24.4
24.5
22. 7
23.2
23. 1
20.8
16.3
_
25.9
21.6
23. 1
17.5
.
44.9
31.4
26.8
25.9
25. 1
26.0
23.7
20. 1
RCHO SOX
-
.
1. 14
0.904
0. 849
0.906
-
1.55
0.34 1.10
0.927
0.16 0.875
0.804
0.6 0.803
0.828
0.07 0.842
-
1. 17
0.898
0.858
0. 847
_
1.95
0.2 1.28
1.02
0.1 0.966
0. 849
0.09 0.898
0.862
0.06 0.834

-------
TABLE 11 .  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF..MAJOR .GASEOUS POLLUTANTS
  AND ALDEHYDE CONCENTRATIONS FOR AN INTERNATIONAL HARVESTER D407 DIESEL ENGINE
            Concentrations,
Condition
Speed
Idle
1800








2100




2300




2500








Load
0
0
12.5%
25%
37.5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%'
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
22
29
-
20
-
15
-
13
-
24
_
-
-
-
-
_
-
-
-
-
14
-
23
.
32
-
18
.
16
HCHO
16
13
.
10
-
9
-
7
-
10
.
-
-
-
-
_
-
-
-
-
13
-
V
.
17
-
8
.
7
HC
34.
109.
93.
99.
92.
100.
98.
121.
148.
120.
139.
118.
120.
141.
153.
148.
134.
131.
139.
204.
145.
139.
145.
139.
149.
143.
144.
162.
202.

67
4
0
0
0
2
0
8
3
9
5
5
5
0
5
5
5
0
5
0
0
4
5
8
8
5
0
8
5
Mass Emissions, g/hr
CO
34.
112.
111.
100.
109.
111.
146.
304.
799.
2340.
138.
135.
154.
288.
2246.
149.
140.
162.
300.
1903.
175.
177.
169.
164.
162.
190.
244.
410.
815.

05
5
3
6
5
3
8
5
8
5
0
5
0
5
5
0
0
5
5
5
5
0
8
3
8
0
8
0
NO
33.
46.
86.
145.
201.
277.
383.
474.
584.
624.
59.
172.
343.
619.
749.
81.
206.
375.
786.
963.
97.
135.
210.
291.
415.
563.
724.
900.
5 1008.
X
87
8
0
5
5
3
5
8
3
5
9
0
0
5
5
9
5
5
5
5
0
8
3
0
8
3
3
0
8
RCHO
3. 1
10
-
7. 0
-
5.2
-
4.5
-
8.3
.
-
-
-
-
_
-
-
-
-
6.5
-
18.
-
15.
-
8.3
-
7. 5
SOX
2.8
11.
18.
24. 1
31.7
38.3
46. 1
56. 5
66.5
77.2
14.
28. 5
46. 1
63.9
87.2
17.
31.3
48.7
63.7
91.8
20.2
26. 1
34.3
41.5
49.7
59.5
67.5
77.6
88.0
                                                                       Specific Emissions, g/bhp hr
                                                                      HC
                                                                     7.85
                                                                     4. 13
                                                                     2.56
                                                                     2. 09
                                                                     1.64
                                                                     1.69
                                                                     1.77
                                                                     1.26
 CO
 9. 38
 4. 19
 3.04
 2. 32
 2.45
 4.23
 9.53
24.4
                                                                     10. 4
                                                                      5.26
                                                                      3. 40
                                                                      2.73
                                                                      2.09
                                                                      1.74
                                                                      1. 68
                                                                      1. 85
13.26
 6. 12
 4. 00
 2.97
 2.77
 2.95
 4.23
 7.44
NO,,
 7.26
 6.06
 5.60
 5.78
 6.39
 6.59
 6.96
 6.49
                                                                                          RCHO   SO..
                                                                     4.46    5.10   6.47
                                                                     2.30    2.94   6.54
                                                                     1.80    3.68   7.90
                                                                     1.46   21.4    7.14
                                                                     4.88    5.08   7.48
                                                                     2.37    2.95   6.81
                                                                     1.69    3.63   9.50
                                                                     1.86   17.31   8.76
10. 17
 7.59
 7. 10
 7.59
 8.22
 8.74
 9.31
 9.31
0. 29
0.11
0.062
0.086
0.65
0.27
0. 101
                                                                                           0. 068
1.5
1.01
0.881
0.798
0.768
0. 784
0. 791
0.803
                      1.07
                      0.878
                      0.815
                      0.831
                      1. 14
                      0.882
                      0.769
                      0.835
1.96
1.24
1.01
0.907
0.868
0.814
0.803
0. 804

-------
TABLE 12 .  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
         AND ALDEHYDE CONCENTRATIONS FOR A JOHN DEERE 6404 DIESEL ENGINE
             Concentrations,
Condition
Speed
Idle
1500








1700




1900




2200








Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
112
209
-
177
.-
137
-
138
-
Ill
_
-
-
-
-
_
-
-
-
-
139
-
86
-
74
-
142
-
102
HCHO
62
141
-
128
-
95
-
97
-
66
_
-
-
-
-
_
-
-
-
-
60
-
51
-
49
-
83
-
68
                                 HC

                                 65.4

                               280.
                               230.
                               180.
                               180.
                               190.
                               200.
                               210.
                               210.
                               180.

                               180.
                               150.
                               170.
                               210.
                               230.

                               160.
                               140.
                               180.
                               230.
                               270.

                               190.
                               170.
                               150.
                               240.
                               200.
                               230.
                               240.
                               260.
                               280.
                                        Mass Emissions,  g/hr
CO
 NO,
 78. 5  20. 7
450.
280.
140.
140.
140.
170.
220.
490.
900.

320.
210.
150.
230.
580.
 23.6
 45.0
 91.4
140.
190.
250.
290.
430.
500.

 14. 9
 77.4
180.
350.
670.
240.   33.5
180.  100.
130.  230.
220.  450.
440.  900.

250.   57. 3
200.  120.
170.  160.
110.  250.
100.  330.
110.  470.
160.  630.
260.  880.
350.  1190.
RCHO   SO,
          19.2   5.0
 64.2
 58.9
 50.9
 55.6
 48.2
          63.5
          44.
          43.
          91.7

          72.5
 15.
 20.6
 28.3
 35.9
 45.3
 53. 1
 60. 7
 72.6
 80. 6

 17.
 32.5
 50.5
 69.7
 91.2

 20.
 35.9
 57.5
 76.2
 98.4

 24. 3
 36.7
 44.9
 55.9
 67. 1
 79.4
 89.6
102.
112.
                                 Specific Emissions, g/bhp hr
          HC
17.8
 6.86
 4.46
 3. 55
 3.09
 2.67
 2.25
 1.79
                  8.74
                  4. 50
                  4. 73
                  2.81
                  2.60
                  2.34
                  2. 15
                  2. 06
        CO
21.9
 7. 15
 3.48
 2.65
 2.53
 2.75
 5.33
 9.05
                  5.96   8.36
                  3.30   2.84
                  2.81   2.97
                  2.27   5.75
                          4.46   5.78
                          2.87   2.11
                          2.37   2.32
                          2.15   3.49
       10.2
        4.90
        2. 10
        1.44
        1.25
        1.53
        2. 13
        2.55
       NO,
3.52
3.49
3.54
3. 55
3.89
4.22
4.67
5.04
               3. 07
               3. 44
               4.63
               6. 58
                               3. 22
                               3.61
                               4. 72
                               7. 10
        6.41
        4.63
        4.87
        4. 83
        5.46
        6. 12
        7.28
        7.29
      RCHO
                                     2.26
                                     0.969
                                     0. 713
                                     0.468
                                              1.27
                                              0.62
      0. 917
      0. 517
1.61
1.09
0.919
0.861
0.813
0.778
0.797
0.783
                     1.29
                     0.986
                     0.917
                     0. 894
                            1. 14
                            0.905
                            0.803
                            0.781
1.82
1.31
1.08
0.973
0.916
0.896
0. 848
0.802

-------
                  TABLE 13.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
                       AND ALDEHYDE CONCENTRATIONS FOR A MERCEDES-BENZ OM636 DIESEL ENGINE
             Condition
                    Load
            1400
ro
            1700
            2100
           2400
   0
 12.5%
 25%
 37. 5%
 50%
 62. 5%
 75%
 87. 5%
 100%

   0
 25%
 50%
 75%
 100%

   0
 25%
 50%
 75%
 100%

  0
 12.5%
 25%
37. 5%
 50%
62. 5%
 75%
87. 5%
 100%
Concentrations,
RCHO
24
27
-
24
_
23
.
26
-
26
_
-
.
-
-
_
.
-
-
-
34
-
35
-
29
-
28
-
22
HCHO
18
21
_
19
_
21
_
24
-
25
.
-
-
-
-
_
-
-
-
-
27
-
26
-
22
.
22
-
19
HC
3.59
6.50
6.59
6.50
6.73
6.88
6.60
5.85
5.92
8.68
8.44
9.81
11.7
7.43
7.71
8.48
26.7
10.4
7.43
9.74
20.7
26.5
28.4
23.6
20. 7
17. 1
12.6
10.9
7.7
Mass Emissions, g/hr
CO
14. 4
27. 8
18.4
18.6
18.0
18.3
18.7
19. 4
24.0
87. 7
32.4
31.4
32.8
23.6
13.0
23.0
42.5
37.6
33.0
200.
69.9
44. 0
39.1
41.6
51. 3
36.9
49. 1
98.8
250.
NOX
12.8
11.5
20.7
26.6
32.3
38. 1
38.9
37. 5
35.9
42.4
15. 7
28.0
42.2
51.2
44.3
13.5
30.3
43.7
58.9
59.9
19.0
23.3
31.7
40.7
54.6
64.7
70.6
67.6
63.4
RCHO SOX
1.1 2.4
2.2 4.2
6.2
2.0 7.2
8.4
1.8 10.
11.
2.0 13.
15.
2.1 17.
5.8
9.2
12.
16.
20.8
6.0
11.
16.
21.4
28.3
5.3 8.4
11.
4.7 13.
15.
3.9 18.
20.6
3. 7 23. 2
26.7
2.9 30.3
                                                                   Specific Emissions, g/bhp hr
HC
3.22
1.59
1. 09
0. 84
0.64
0.47
0.41
0.53
1.89
1. 12
0.48
0.37
4.05
0. 79
0.38
0.37
7.68
3.94
2.39
1.44
0.97
0.58
0.44
0. 27
CO
8.99
4.56
2.91
2.24
1.83
1.60
1.68
5. 37
6. 04
3.15
1. 51
6.21
6.44
2.87
1.68
7.64
13.0
5.44
4.23
3.58
2.91
2.28
3.93
8.81
NOX
10. 1
6.50
5.22
4.66
3.78
3.86
2.50
2.60
5.39
4.05
3.28
2. 13
4.59
3.34
3.00
2.29
6.80
4.40
4.09
3.80
3.63
3.27
2.70
2. 21
RCHO SOX
2.9
0.48 1.8
1.4
0.22 1.2
1.1
0.17 1.0
1. 1
0.13 1.0
1.8
1.2
1.0
0.998
1. 7
1.2
1.08
1.08
3.2
0.65 1.8
1.5
0.27 1.2
1. 15
0.17 1.07
1.07
0.10 1.06

-------
                 TABLE 14.
MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR AN ONAN DJBA DIESEL ENGINE
                              Concentrations,
                                 PPt"
                        Mass Emissions, g/hr
Specific Emissions, g/bhp hr
UJ
Speed
Idle
1500




1800








Z100




Z400








Load
0
0
25%
50%
75%
100%
0
12. 5%
Z5%
37. 5%
50%
6Z.5%
75%
87. 5%
100%
0
Z5%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
RCHO
ZO
_
_
-
.
t»
iz
_
iz
_
17
.
36
.
7
.
-
-
_
-
33
-
19

13
-
9
_
12
HCHO
IZ
_
_
-
-
-
6
_
7
_
7
.
32
.
6
^
-
.
.
-
16
_
11
-
6
-
7
-
9
HC
6.87
6.92
6.99
4.99
5.95
8.75
9.90
9. 34
9.47
7.89
7.38
6.84
7.32
7,81
9.68
20.9
11.7
7. 11
5.52
9.33
20. 2
16.6
12.9
9.64
10.2
7.43
7.25
7.18
11.1
CO
31. 1
33. 1
12.9
12.3
20.6
49.3
58.2
28.7
18.8
15.7
13.9
13.4
14.9
19.8
50.7
66.7
32.2
19.6
14.8
41.2
70.3
40.5
33.6
26. 4
23.3
18.5
17.8
15.2
31.8
NOX
11. 1
11.5
29.3
43.3
56.1
30.3
11.5
23.6
36. 1
46.5
49.9
50.6
46.9
40.4
32.9
14.3
30. 1
48. 1
47.7
38.7
-15-1
22.9
33.7
50.9
46.1
50.9
48.8
43.3
43.6
RCHO
0.79
_
.
.
-
-
0.62
.
0.65
_
0.89
-
1.9
-
0.37
_
-
-
-
-
2.3
-
1.3
-
0.91
-
0.62
-
0.87
sox
2.1
2.5
3.8
5.1
8.2
8.7
3.0
4. 1
4.8
5.5
6.4
7.2
8.3
9.5
11.
3.8
5.5
7.0
9.0
13.
4.4
5.3
6.6
7.5
8.7
9.6
11.
12.
15.
HC
-
_
3.88
1.20
0.97
1.03
_
6.93
3.50
1.96
1.38
1.02
0.91
0.83
0. 91
_
4.00
1.25
0.66
0.77
_
10. 2
3. 94
1.96
1.55
0.91
0. 74
0.62
0.88
CO
-
_
6.31
2.95
3.33
5.74
_
21.3
7.01
3.90
Z.61
1.99
1.86
2. 11
4.79
_
11.5
3.51
1.80
3.35
.
24.9
10.2
5.38
3.55
2.26
1.81
1.32
2.51
NOX RCHO
-
_ .
14. 1
10.3
9.12
3.67
.
17.5
13.4 0.24
11.6
9.30 0.17
7.54
5. 82 0. 24
4.30
3.10 0.035
.
10.8
8.55
5.79
3.26
_
14. 1
10.3 0.41
10. 3
7.03 0.14
6.24
4.96 0.063
3.77
3.50 0.069
sox
-
_
1.8
1.2
1.3
1.0
_
3.0
.8
.4
.2
. 1
.0
1.0
1.1
.
1.9
1.2
1.1
1. 1
_
3.3
2.0
1. 5
1.3
1.2
1.1
1.0
1.2

-------
TABLE 15.   MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
           AND ALDEHYDE CONCENTRATIONS FOR A PERKINS 4. 236 DIESEL ENGINE
             Concentrations,
Condition
Speed
Idle
1450








1700




2100




"2400








Load
0
0
12. 5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
-37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
31
39
-
25
-
43
-
23
-
30
m
-
-
-
-
_
-
-
-
-
34
-
53
-
51
-
19
-
37
HCHO
16
24
-
13
-
35
-
12
-
22
_
-
-
-
-
..
-
-
-
-
21
-
34
.
34
-
10
-
26
HC
8.
23.
19.
18.
17.
17.
14.
12.
14.
11.
29.
26.
25.
25.
17.
32.
28.
25.
21.
13.
35.
30.
24.
19.
18.
14.
12.
16.
6.
47
1
7
3
3
9
2
5
9
0
7
7
1
2
6
5
6
0
8
5
7
9
5
8
8
5
3
0
69
Mass Emissions, g/hr
CO
14.
46.
52.
53.
42.
30.
26.
36.
145.
820.
55.
59.
36.
29.
970.
54.
64.
53.
34.
820.
73.
87.
96.
89.
69.
58.
56.
170.
770.
4
4
4
9
4
8
6
2


2
9
5
2

7
9
0
4

2
3
0
6
4
3
2


NOX RCHO SOX
8.65 1.8
25. 9 7.3
54. 1
99.5 4.4
170.
260: 7.9
350.
450. 4. 1
500.
480. 5.5
33.4
120.
310.
530.
540.
51.0
140.
330.
670.
740.
38. 8 8. 2
72. 1
120. 14.
190.
310. 14.
450.
700. 5.4
790.
770. 10.5
1.
5.
8.
12.
15.
20.
24.
28.
33.
40.
4.
13.
22.
31.
45.
8.
17.
25.
37.
55.
10.
15.
20.
25.
30.
36.
43.
50.
60.
5
6
8


2
5
9
7
7
6
6
4
3
9
8

5
5
3


4
7
9
7
7
3
7
                                                                       Specific Emissions, g/bhp hr
                                                                     HC     CO     NOX   RCHO  SO
                                                                      91
                                                                      40
                                                                      89
                                                                    0.68
                                                                    0. 50
                                                                    0. 32
                                                                    0.33
                                                                    0.25
                                                                     1.69
                                                                     0. 87
                                                                     0.59
                                                                     0.30
                                                                    0.20
                                                                    0.43
                                                                    0.74
                                                                    1.68
                                                                       14
                                                                       27
                                                                    0.69
                                                                    0.50
                                                                    0.26
                                                                    0.21
                                                                    0. 24
                                                                    0. 17
 7.75
 4. 14
 2.19
 1. 17
 0. 81
 0. 93
 3. 15
16.2
 9. 00
 5. 00
 3. 14
 1.81
 1.22
 1.16
 2.57
10.2
 8.01
 7.63
 8.74
 -9.89
10. 7
11.4
10.9
 9.43
 4.19   8.30
 1.27  10.6
 0.68  12.5
16.6    9.32
 3.-81   8.50
 1.58   9.86
 0.67  13.0
11.9   10.8
 7.43
 6.24
 6.68
 7.99
 9.51
14.7
11.9
10. 2
      1. 3
0.34  0.91
      0. 79
0.30  0.766
      0. 748
0.10  0.740
      0.738
0.11  0.803
              0.95
              0. 776
              0. 734
              0. 786
             0.99
             0.760
             0.970
             0. 804
      1.6
      1.06
      0.903
      0.806
      0.770
0.09  0.760
      0.754
0.14  0.803
0.80
0. 37

-------
TABLE 16.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
          AND ALDEHYDE CONCENTRATIONS FOR A FORD G5000 GASOLINE ENGINE
            Concentrations,
Condition
Speed
Idle
1400









1600




1900




2100









Load
0
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
84
192
71
-
71
-
70
-
77
-
82
_
-
-
-
-
.
-
-
-
-
194
84
-
70
-
76
-
63
-
63
HCHO
57
126
46
-
49
-
49
-
56
-
64
_
-
-
-
-
_
-
-
-
-
129
58
-
49
-
57
-
46
-
48
                                  Mass Emissions, g/hr
                               HC

                               87.2

                              434.
                              260.
                              130.
                              150.
                              180.
                              190.
                              180.
                              200.
                              200.
                              230.

                              265.
                              161.
                              205.
                              208.
                              236.

                              182.
                              160,
                              302.
                              236.
                              275.

                              538.
                              180.
                              170.
                              180.
                              190.
                              210.
                              230.
                              220.
                              220.
                              250.
 CO

 549.

 625.
2770.
3110.
3610.
4320.
4740.
3940.
4770.
4810.
5640.

2100.
3970.
5160.
5280.
6040.

2360.
4380.
5380.
6380.
6940.

 667.
3040.
3740.
4790.
5220.
5610.
5810.
5950.
5900.
5150.
                           Specific Emissions,  g/bhp hr
                          HC     CO    NOV   RCHO  SO,
  0.406  6.73   1.3
 10. 7
 48.5
110.
170.
210.
340,
410.
460.
720,
 5. 3
 7.3
11,
13.
 3.6
 4.8
 6.05
 7.29
 8. 54
 9.67
11.5
.12. 2
13. 7
                         19. 8
                         11.0
                          8. 80
                          7. 00
                          5. 38
                          5. 05
                          4. 21
                          4 . 21
18. 9
10.0
 7.43
 5. 91
 5.20
 4.23
 3. 57
 3.51
                       470.
                       270.
                       220.
                       180.
                       150.
                       120.
                       100.
                       110.
                         11.1   272.
                          6. 54  166.
                          4.60  116.
                          3.95  101.
                          9.50  260.
                          8.82  158.
                          4.53  123.
                          4. 09  104.
430.
280.
200.
160.
110.
110.
100.
 70.
                       2.61
                       3. 04
                       3.98
                       4.26
                       4.61
                       5.79
                       6. 90
                       6.05
                              2.62
                              3.75
                              5.28
                              5. 20
                              2.52
                              4. 12
                              5.07
                              5.72
 5.52
 6.06
 6.64
 7. 37
 7. 76
 7. 77
 7.48
10. 1
                     0.40
                     0. 30
                     0. 30
                     0.28
                                     0.42
0.32
0. 25
                                      0.22
                      0. 53
                      0. 324
                      0. 277
                      0. 244
                      0. 223
                      0.212
                      0.203
                      0. 186
                                       0.337
                                       0. 223
                                       0. 198
                                       0. 188
                                       0.297
                                       0.218
                                       0. 200
                                       0. 199
0. 545
0. 347
0. 281
0.243
0. 221
0.220
0. 198
0. 193

-------
TABLE  17. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
       AND ALDEHYDE CONCENTRATIONS FOR A HERCULES G-ZSOO GASOLINE ENGINE
Concentrations,
Condition
Speed
Idle
1450









1750




Z100




2400









Load
0
CT
0
1Z. 5%
25%
37. 5%
50%
62. 5%
75%
87.5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
41
149
18
-
21
-
29
-
37
-
21
.
-
-
-
-
_
-
-
-
-
141
31
-
35
-
45
-
33
-
45
HCHO
2-8
96
9
-
12
-
22
-
29
-
15
_
-
-
-
-
_
-
-
-
-
81
19
-
21
_
30
-
21
-
28
                            Mass Emissions, g/hr
Specific Emissions, g/bhp hr
HC
65.6
620.
71. 3
110.
150.
190.
200.
220.
230.
260.
310.
85.3
170.
2ZO.
240.
260.
95.3
164.
230.
270.
290.
640.
100.
150.
180.
200.
220.
250.
270.
290.
290.
CO
1200.
740.
1310.
2410.
4950.
5540.
5890.
6460.
7610.
12800.
1249.
1680.
4790.
6770.
8260.
13180.
2500.
5490.
7640.
9820.
12620.
280.
3140,
4680,
5760.
6650.
7460.
8480.
9090.
10130.
9130.
NOX RCHO
0.
0.
4.
14.
33.
57.
81.
100.
130.
210.
120.
8.
40.
120.
200.
200.
6.
49.
150.
240.
250.
0.
8.
22.
42.
83.
120.
140.
220.
360.
440.
993 0. 85
403 3.84
46 0. 75
3
6 1.7
0
8 3.6
.
5.7
_
4.3
32
9
-
-
-
93
9
-
-
-
359 4.43
90 2.1
5
9 4. 1
1
7.4
-
7.2
-
12.
SOX
1.
1.
2.
3.
4.
6.
7.
8.
9.
10.
13.
3.
5.
8.
10.
13.
3.
6.
9.
12.
14.
1.
3.
5.
6.
8.
9.
11.
12.
14.
15.
2
3
4
6
92
48
29
11
21
6
0
0
54
15
7
8
3
28
32
0
6
0
9
54
98
54
71
2
6
4
4
HC
-
-
16.
11.
9.
7.
6.
5.
5.
5.
_
10.
6.
5.
4.
.
8.
6.
4.
4.
_
-
14.
9.
7.
6.
5.
4.
4.
3.


9
1
26
49
61
59
42
74

7
93
06
17

94
35
99
00


9
17
21
04
40
88
45
89
CO
-
-
360.
230.
240..
200.
170.
160.
160.
240.
_
300.
210.
170.
210.
_
300.
200.
180.
180.
_
-
480.
300.
240.
200.
180.
170.
150.
120
NOX RCHO


2.
2.
2.
3.
3.
3.
4.
2.

2.
3.
4.
3.

2.
4.
4.
3.


2.
2.
3.
3.
3.
4.
5.
5.
•
.
14
43 0. li
78
01 0. 13
04
29 0. 14
46
26 0. 08
.
59
87
12
15
_
54
29
52
53
„
.
30
56 0.22
45
37 0. 20
35
19
43
81 0. 17
SOX
-
-
0. 54
0. 356
0. 316
0. 269
0. 240
0. 228
0. 225
0. 242
_
0.351
0.257
0.226
0.220
_
0. 347
0.261
0.224
0. 205
_
-
0.565
0. 364
0. 304
0.258
0. 238
0.224
0. 218
0. 204

-------
TABLE 18.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
          AND ALDEHYDE CONCENTRATIONS FOR A J. I.  CASE 159G GASOLINE ENGINE
            Concentrations,
Condition
Speed
Idle
1400









1600




1900




2100









.Load
0
CT
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
„„. ppm
RCHO
112
_
111
-
154
-
114
-
114
-
139
-
-
-
-
-
-
-
-
-
-
.
104
-
106
-
114
-
107
-
124
HCHO
61
_
72
-
90
-
64
-
66
-
80
_
-
-
-
-
_
-
-
-
-
_
64
-
79
-
58
-
66
-
71
                                HC
Mass Emissions, g/hr
  CO
                                54.4   1090.
                               547.
                               130.
                               120.
                                28.8
                               140.
                               150.
                               150.
                               160.
                               170.
                               180.

                               136.
                               154.
                               174.
                               195.
                               196.

                               132.
                               145.
                               170.
                               253.
                               20'0.

                               908.
                               210.
                               110.
                               120.
                               140.
                               160.
                               200.
                               130.
                               180.
                               190.
                            Specific Emissions, g/bhp hr
                          HC     CO    NO,,   RCHO   SO,,
  732.
 2780.
 3260.
 3920.
 4410.
 4930.
 5220.
 5630.
 5970.
 6530.
  0.42
  2.60
  4.66
  9.24
 14. 3
 19.7
 41. 4
 48. 4
 95. 7
 79.5
 2700.   2. 1'f
 4600.   9.61
 5960.  20.6
 6740.  48.0
 6700. 170.

 3390.   3.68
 5570.  11.8
 6500.  48.6
 7300.  75.0
 6770. 198.
  477.
 3920.
 4790.
 5140.
 5430.
 6080.
 6870.
 7480.
 8040.
 8100.
  0. 32
  8 ,.49
  9. 59
 16.0
 37.6
 53.4
 54. 5
 65. 1
100.
145.
  3.98
  8.24
  9.05
 10.4
 17. 1
  6.3
 7.84
11.4
13.3
19. 0
1. 2
2.2
2.7
3.4
3. 94
4.95
5.23
5.81
6.55
6.98

2.2
3.8
5.34
6.51
8.74

2.7
4.68
6.20
7.49
9.09

1.2
3.7
4. 14
4. 64
5. 27
6.09
6.83
7.57
8.54
9.21
30. 1
14. 9
11. 1
 9.26
 6. 14
 6.63
 6.35
 5. 73
20. 5
11.7
 8.90
 7.23
 8.01
 5.52
 5.06
 4.65
800.
480.
300.
300.
260.
230.
220.
200.
                          18.3   548.
                          10. 1   347.
                           7.22  250.
                           5. 83  200.
                          13.9   535.
                           7.75  295.
                           8.01  231.
                           5.06  171.
930.
490.
350.
280.
270.
240.
220.
200.
  14
  14
  18
  23
                                 1. 14
                                 1.19
                                 1.78
                                 5.07
                                 1. 13
                                 2.21
                                 2.38
                                 5.01
  88
  63
  40
  46
  12
  11
  76
                                        1.02
                                        0.558
2.02
1.97   0.423
3.48
2.47
                                        0. 532
                                        0.739
0.545
0.431
3.51   0.461
        0.65
        0. 42
        0. 323
        0.306
        0. 256
        0. 236
        0. 231
        0.218
                             0.46
                             0.311
                             0. 241
                             0.260
                             0.450
                             0.282
                             0.237
                             0. 230
0. 80
0.438
0. 340
0. 293
0. 265
0.245
0.235
0.223

-------
                  TABLE 19.  MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
                         AND ALDEHYDE CONCENTRATIONS FOR A WISCONSIN VH4D GASOLINE ENGINE
oo
Concentrations,
Condition
Speed
Idle
1700








2000




2400




2800








Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
ppm
RCHO
32
28
-
23
-
25
.
30
-
23
_
-
-
.
-
_
-
-
.
-
23
.
27
-
23
-
21
.
26
HCHO
18
13
-
9
-
12
.
16
-
13
_
-
-
-
-
_
-
-
-
-
12
-
14
-
12
_
12
-
14
Mass Emissions, g/hr
HC
64.2
110.
82.6
84.4
110.
110.
120.
120.
110.
120.
89.8
91.8
120.
110.
120.
78.4
110.
130.
120.
140.
120.
120.
150.
150.
150.
150.
150.
150.
190.
CO
1069.
2044.
2277.
2166.
2823.
3362.
3685.
3735.
3999.
4865.
2083.
2573.
3829.
4522.
4784.
1969.
3495.
4285.
5088.
5241.
2636.
3278.
4050.
4554.
5041.
5544.
5625.
5050.
5497.
NOX RCHO
1.04 0.5
2.03 0.8
3.67
11.9 1.0
22. 1
29.5 1.5
43.5
67. 0 2. 0
160.
110. 2.2
3. 19
17.9
47.9
120.
180.
4.43
19. 4
67.9
170.
230.
6.83 1.1
11.4
22.0 2.5
35.2
71.1 2.1
130.
180. 2.5
300.
270. 3. 7
5Oy
1.0
1.8
2. 1
2.7
3. 1
3.6
4. 1
4. 41
5.19
5.81
2.0
2.9
4.29
5. 31
6.44
2.2
3.5
4.88
6.20
7.29
2.8
3.4
4. 14
4. 72
5.46
6.40
6.87
7.26
8.00
Specific Emissions, g/bhp
HC
-
_
3K 7
14. 9
12. 5
10. 1
8.79
6.82
5. 73
5.37
_
14. 1
9.24
5.72
4.42
-
14. 3
8.68
5.60
4. 70
-
30.4
18. 3
14.5
9.74
7.42
6.21
5.48
6. 04
CO
-
_
805.
380.
332.
297.
260.
336.
202.
215.
-
396.
295.
232.
184.
-
472.
290.
230.
177.
-
821.
507.
440.
320.
281.
237.
182.
174.
NOV RCHO
-
_
1.29
2.09 5.5
2.60
2.60 7.6
3.07
3.94 0.12
8. 15
4.96 0.10
_
2.76
3.68
6. 30
6. 94
-
2.62
4.60
7.74
7.83
-
2.85
2.75 0.31
3.39
4.51 0.50
6.55
7.64 0.10
10.9
8.64 0.37
hr
SOX
-
_
0.75
0.48
0.37
0.32
0.29
0.259
0.262
0.256
_
0.44
0. 330
0.272
0_. 248
-
0.47
0. 329
0.279
0.246
-
0.85
0. 52
0.450
0.346
0. 323
0.290
0.262
0.253

-------
TABLE 20.  CYCLE COMPOSITE BRAKE SPECIFIC GASEOUS EMISSIONS
  FROM EIGHT FARM, CONSTRUCTION, AND INDUSTRIAL DIESEL
          ENGINES (ON-HIGHWAY WEIGHTING FACTORS)

                        Composite Brake Specific Emissions, g/bhp hr
Engine
Allis-Chalmers
3500
Caterpillar
D6C
Detroit Diesel
6V-71
International
Harvester
D407
John Deere
6404
Mercedes-Benz
OM636
Onan DJBA
Perkins 4. 336
Run
1
2
3
4
5
6
Avg.
1
5
6
Avg.
3
4
5
Avg.
4
5
6
7
Avg.
1
2
3
5
Avg
1
2
3
4
5
6
7
Avg
2
3
4
Avg.
1
2
3
4
5
6
HC
0. 577
0.629
0. 590
0.668
0.631
0. 595
0.615
0.046
0. 175
0. 154
0. 125
0.776
0.745
0.586
0. 702
2.74
2.93
2.63
2.51
2.70
3.94
3.65
3.64
3.72
3. 74
1.02
1.22
1. 52
1.34
1. 24
1. 12
1.03
1. 21
1. 72
2. 12
1. 84
1.89
0. 576
0. 585
0.645
0.651
0.739
0. 757
CO
4.91
4.77
4.46
4. 82
4.38
4.94
4.71
1. 00
1.22
1. 17
1. 13
2.57
3.09
3.22
2.96
7. 80
7. 52
6.92
7. 20
7.36
4.63
3.82
4. 75
4.99
4. 54
5.36
5.30
5.94
5.80
4.28
4. 18
4. 58
5. 06
6.51
6.01
6.21
6.24
4.98
5. 12
4. 94
4. 71
5.29
4.71
NOx
11.9
11.9
10.6
12. 1
11. 5
11. 2
11.5
5.12
5. 18
5.28
5.19
20.4
19.6
20.5
20.2
8. 12
8. 30
8. 19
8. 13
8. 18
5.45
5.97
5.60
6.07
' 5. 77
3.64
3.29
3. 52
3.43
2.96
3. 19
3. 23
3. 33
6. 72
6.61
6.60
6.64
10. 7
10.4
10. 6
11. 1
10. 5
11. 1
HC+NOX
12.5
12. 5
11. 2
12.8
12.2
11.8
12.2
5.16
5.35
5.43
5.31
21.2
20.4
21. 1
20.9
10.9
11.2
10. 8
10.6
10.9
9. 39
9.62
9. 24
9. 79
9.51
4.66
4. 51
5.04
4.78
4.20
4.32
4.27
4. 54
8. 44
8. 73
8.44
8. 54
11.3
11. 0
11. 3
11. 7
11. 2
11.9
*RCHO *SOX
	
	 	
0.20 0.920



0.12 0.891

	 	
0.15 0.958




0. 19 0. 914

	 	
1.1 0.960


0.30 1.33
	
0.21 1.40
	
	
                Avg.   0.659   4.96   10.7
11.4
0.27   0.848
"•Computed from average emissions and power, not from individual run values
                                 39

-------
 TABLE 21.   CYCLE COMPOSITE BRAKE SPECIFIC GASEOUS EMISSIONS
   FROM FOUR FARM,  CONSTRUCTION, AND INDUSTRIAL GASOLINE
             ENGINES (ON-HIGHWAY WEIGHTING FACTORS)
                           Composite Brake Specific Emissions, g/bhp hr
     Engine       Run

 Ford G5000        1
                    2
                    3
                    4
                    5
                  Avg.

  Hercules          2
  G-2300            3
                    4
                    5
                  Avg.

tj.L Case          3
   159G             4
                    5
                    6
                  Avg.

  Wisconsin         1
   VH4D            2
                    3
                    4
HC
8.92
8.80
8.91
8. 89
8.78
8.86
8. 16
8. 82
9.08
9.86
8.98
11. 5
12. 8
14.6
14.5
13.4
15.6
8. 11
9. 58
9.66
CO
171
155
157
153
159
210
201
210
333
326
316
300
321
301
315
NOX
6.36
6.94
6.78
6.73
6.68
6.
4.
4.
4.
3.
4.
2.
2.
1.
2.
2.
5.
5.
5.
5.
70
07
32
89
08
55
73
15
20
10
50
28
21
HC+NOX *RCHO *SOX_
15.
15.
15.
15.
15.
15.
12.
12.
13.
13.
13.
15.
16.
15.
20.
13.
14.
14.
3 	
7 	
7 	
5 	
6 0. 34
9 	
4. 	
o

1 0. 17
a 	
4 	
3 	
f.

5 **0.67
7 	
6 	
Q
9 	
	
	
	
0.259
	


0. 278
	

0.316
	
                  Avg.**  10.7     309    5.27        16.0      0.15   0.355
  *computed from average emissions and power, not from individual run values
  thigh intake and exhaust restrictions used on this engine during tests
 **does not include  CT modes at intermediate and rated speeds


 These estimates will be made separately for the farm, construction,  and
 industrial applications, taking into account the different duty cycles
 encountered in each application.

       B. Results  of Particulate Emissions Tests

       Particulate emissions  from the F,  C, & I engines were measured by
 the experimental dilution-type sampling device already described in section
 III.  Since sampling was as near  isokinetic as possible, and since no cor-
                                  40

-------
rections for retention of particles in the sampling system upstream of the
filter were made, it is felt that the normal experimental  error was in the
direction of low concentrations.   Thus,  it seems logical that the particulate
results should tend to be  conservative rather than high, which is preferable
to error in the other  direction when making impact assessments based on
small samples.

        The particulate results represent 308 tests (208 on the diesels and
 100 on the gasoline engines),  and all the individual run data will be presented
 to document the repeatability of the procedure.  This full presentation of
 data should permit independent assessment of the data on each  engine, and
 it will be obvious that repeatability differed considerably from  engine to
 engine.  The amounts of variation due to engine and to procedure have
 not  been determined.  Sampling was limited to seven conditions on each
 engine (0, half,  and  full  loads at intermediate and rated  speeds, plus low
 idle) to  prevent using an inordinate amount of analysis time.

        The individual mode and average mode particulate concentration
 data on  each  engine are given in  Table  22, and if the specific crankshaft
 speeds used are of interest,  they can be obtained from Table 3.  Particu-
 late levels for the diesels correlated to some  extent with visible smoke,
 especially at high smoke levels,  but sometimes a considerable amount of
 particulate was measured under  conditions where smoke was barely
 readable.  Invariably, however,  high visible  smoke was  measured as a
 high particulate level.

        Making  the assumption that exhaust molecular weight was equal to
 that of air, mass and brake specific particulate rates were calculated for
 each of the engines,  and these data appear in Table 23.   For these compu-
 tations, average  idle modes were weighted 0. 2, and the  other six modes
 were weighted 0. 8/6  = 0. 133.  These weighting factors yield a  load factor
 for  the composite cycle of 0.4, just like those used,for gaseous emissions
 data.  The weighting factors can be revised to reflect other operating cycles,
 if necessary.

        C.  Results of Diesel Smoke Tests

        Smoke tests consisting of accelerations and lug-downs as required
 by Federal Regulations^  ' were performed on  seven of the  eight diesel en-
 gines tested.  The exception was the Onan DJBA engine,  which was operated
 on a small dynamometer having no extended inertia capability.   The Federal
 smoke evaluation data are given  in full in Appendix B,  and the results are
 summarized  in Table 24.  Several of the engines which should have been
 operated with 3 inch exhaust pipe for the smoke tests had already been fitted
 with 4 inch pipe for gaseous emissions tests,  so it was left in place for the
 smoke tests and the  results were "corrected" by Bouguer's Law(13> ^).
 The "c factor" is the average of  the nine highest 1/2-second opacity readings
 during both the accelerations and the lug-downs,  and  its computation will


                                   41

-------
            TABLE 22.  PARTICULATE CONCENTRATION DATA ON F, C, & I ENGINES
  Condition       Particulate Results,  mg/SCF
Particulate Results, mg/SCF
 Idle     0
 Inter.   0
 Inter,  half
 Inter,  full
 Rated   0
 Rated  half
 Rated  full
 Idle     0
 Inter.   0
 Inter,  half
 Inter,  full
 Rated   0
 Rated  half
 Rated  full
Idle     0
Inter.   0
Inter,  half
Inter,  full
Rated   0
Rated  half
Rated  full
Idle     0
Inter.   0
Inter,  half
Inter.,  full
Rated   0
Rated  half
Rated  full
Idle     0
Inter.    0
Inter,  half
Inter,  full
Rated    0
Rated  half
Rated  full
Idle     0
Inter.    0
Inter,  half
Inter,  full
Rated    0
Rated  half
Rated  full
Run 1
Run 2 Run 3 Run 4
Avg.
Allis-Chalmers 3500,
6.07
3.82
3.65
16.5
2. 54
3.46
3.50

0.57
0. 17
0. 53
0. 68
0.22
0.84
0. 56

4.00
6.90
6.04
21. 5
4.89
2.90
4.22

5.84
4.56
3. 31
5. 17
5.46
7. 75
7.96

2. 81
2.97
3.55
2.56
2.52
1.19
6.27

1.07
0.85
0. 50
5. 57
1. 14
1.00
5.93
4.65 4.70 5.28
3.24 3.75 3.60
4.94 3.54 3.81
18.9 16.2 17.8
3.16 2.45 2.35
3.26 3.44 3.39
3.84 3.43 3.69
Detroit Diesel 6V-71
0.79 0.54 1.59
0.43 0.38 0.30
0.38 0.78 0.56
0.53 0.59 0.63
0.24 0.10 0.32
0.64 0.61 0.43
0.82 0.77
John Deere 6404
4. 44 4. 40 4. 67
8.40 6.39 7.27
7.42 7.09 8.23
22.0 22.3 23.6
2.48 3.54 3.76
3.60 4.81 4.02
6.55 7.67 6.30
*Onan DJBA
6.34 7.41 6.18
4.62 4.60 4.18
4.43 3.19 3.63
4.69 5.33 5.69
5.46 5.48 5.56
8.41 9.60
8.71 7.55
Ford G5000
1.26
2.61 2.73
3.48
2.60 2.17 2.65
2.55
1.43 1.49 .1.87
3.74 4.25 3.72
J. I. Case 159 G
1.47 1.94 1.99
0.87 1.11 1.19
0.50 1.06 0.82
4.30 4.07 4.51
0.91 0.70 0.81
0.87 0.66 0.84
3.09 2.95
5. 18
3.60
3.98
17.4
2.62
3.39
3.62

0. 87
0.32
0.56
0.61
0.22
0.63
0.72

4. 50
7.24
7. 2C
22.4
3.67
3.84
6. 18

6.44
4.49
3.64
5.22
5.49
8.59
8.07

2.04
2.77
3.52
2.50
2.54
1.50
4.49

1.62
1.01
0. 72
4.61
0.89
0. 84
3.99
Run 1
Run 2
Run 3
Caterpillar
2.
0.
1.
1.
1.
1.
2.
31
90
11
59
44
96
35
2.
1.
1.
1.
0.
2.
2.
38
22
09
62
44
73
45
2.
0.
1.
-
0.
2.
-
43
60
41
-
62
09

International
2.
4.
6.
19.
5.
6.
10.
50
01
53
5
65
40
5
4.
2.
10.
21.
7.
7.
11.
81
39
2
8
13
28
8
3.
5.
7.
19.
5.
5.
11.
yu
04
28
3
62
47
6
Run 4
D6C
-
-
-
-
-
1.
-

-
-
-
-
-
36
-
Avg.

2.
0.
1.
1.
0.
2.
2.

37
94
20
60
83
04
40
D407
6.
5.
8.
18.
6.
9.
14.
94
87
52
4
05
42
3
4.
4.
8.
19.
6.
7.
12.
b4
33
13
8
11
14
0
Mercedes-Benz OM636
2.
3.
5.
10.
8.
9.
10.
48
54
26
4
93
93
8
4.
3.
5.
8.
9.
6.
6.
bi
31
80
27
42
70
43
i.
3.
5.
9.
8.
7.
6.
Perkins
0.
0.
0.
11.
11.
9.
12.
83
34
82
7
6
03
4
1.
0.
1.
11.
9.
11.
9.
31
86
23
8
43
5
54
0.
1.
1.
11.
10.
7.
11.
J/
32
60
74
47
14
25
-
-
-
9.
-.
-.
11.



19


5
3.
3.
5.
9.
8.
7.
8.
12
39
55
40
94
92
74
4.236
93
81
61
6
0
33
0
1.
1.
0.
11.
8.
-.
7.
41
12
99
3
04

24
1.
1.
1.
11.
9.
9.
10.
12
26
16
6
77
29
0
Hercules G-2300
1.
4.
1.
1.
2.
1.
1.
09
30
33
87
13
58
84
3.
2.
0.
1.
1.
1.
2,
94
29
90
88
03
35
66
3.
1.
0.
2.
2.
2.
2.
06
82
63
00
30
34
02
-.
3.
1.
2.
-.
-.
2.

68
56
38


67
2.
3.
1.
2.
1.
1.
2.
70
02
10
03
82
76
30
Wisconsin VH4D
3.
2.
3.
5.
2.
2.
2.
17
79
78
74
87
76
57
4.
4.
5.
4.
3.
2.
3.
58
47
19
00
40
58
42
3.
3.
3.
4.
2.
3.
2.
27
98
97
36
98
35
47
3.
5.
4.
2.
-.
3.
3.
70
06
36
47

34
15
3.
5.
4.
4.
3.
3.
2.
68
43
32
14
08
01
90
"idle values  shown are at low (1000 rpm) idle --at 1500 rpm (ungoverned idle), values
 were  3. 92,  4.04, 4.46, and 4. 20 (average 4. 16)
                                          42

-------
             TABLE 23.  MASS AND BRAKE SPECIFIC PARTICULATE
                    EMISSIONS FROM F,  C,  & I ENGINES
                   Engine
 Diesels      Allis-Chalmers 3500
             Caterpillar D6C
             Detroit Diesel 6V-71
             International D407
             John Deere 6404
             Mercedes Benz  OM636
             Onan DJBA
             Perkins 4. Z36

 Gasoline    Ford G5000
             Hercules G-2300
             J. I. Case 159G
             Wisconsin VH4D
                 Mass Rate, g/hr
                      66. 1
                      23. 2
                      16. 1
                      90.6
                      91.4
                      20. 0
                      10. 0
                      39.5
                       9.72
                       6.86
                       5.52
                       6.56
Brake Specific,
   g/hp hr

      1. 23
      0.42
      0. 21
      2. 20
      1. 89
      2. 22
      2. 12
      1. 54

      0. 44
      0. 29
      0.41
      0.61
         TABLE 24.  SUMMARY OF FEDERAL SMOKE TEST RESULTS
       Engine
 Allis-Chalmers 3500
 Caterpillar D6C
 Detroit Diesel 6V-71
 International D407
 John Deere 6404
 Mercedes-Benz OM636
 Perkins 4. 236
Exhaust Pipe
Diameter,  in

    4*
    4*
    4
    4*
    4*
    2
    2
                                           Smoke Intensity, % Opacity
Factor (a) Factor (b)
37. 2(29. 5)F** 29. 7(23.2)
4.7(3.5) 2.4(1.8)
1.9 1.2
17.5(13.4) 18.8(14.5)
64.2(53.7) 25.0(19.4)
9.5 10.5
5.6 8.5
Factor (c)
45.9(36.9)
8.6(6.5)
3. 5
28.4 (22. 2)
82.4 (72. 8)
14. 0
10. 1
 *standard diameter from Federal procedure is 3 inches
**numbers in parentheses corrected to 3 inch diameter by Bouguer's Law
                                  43

-------
 be  required for certification of on-road diesel engines beginning with the
 1974 model year.

        Smoke from the diesel engines was also measured during steady-
 state conditions, which were the same speed/load conditions used for par-
 ticulate sampling.  Average values for steady-state smoke are given in
Table 25, showing an extremely wide  range from engine to engine.  The
condition which produced  the greatest smoke intensity from most of the en-
gines was full load at intermediate speed, perhaps not surprisingly since

 TABLE 25.  AVERAGE STEADY-STATE SMOKE FROM DIESEL ENGINES
    Engine
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International D407
John Deere 6404
Mercedes OM636
Onan DJBA
Perkins 4. 236
Exhaust Pipe
Diameter,  in.

    4
    4
    4
    4
    4
    2
    2
    2
Smoke Intensity in % Opacity at Condition
           Load at           Load at
Low    Inter. Speed^        Rated Speed
Idle

0. 5
2. 3
0. 5
1. 2
2. 0
1. 0
0. 5
1. 0
0
1. 0
2. 0
0. 8
1. 0
1.9
1. 5
0. 8
1. 0
half
2.8
3. 0
1. 0
4. 5
7. 3
1. 5
2. 0
1. 0
full
31. 5
4. 5
1. 0
20. 0
25. 5
8. 5
2. 5
10. 3
0
1. 2
3. 2
1. 0
1. 0
2. 2
2. 0
1. 0
1. 7
half
5. 0
2. 3
1. 0
4. 0
5. 5
1. 5
1. 0
1.4
full
7. 3
2.7
1.5
9.2
6.0
8. 0
3.0
7. 7
this point is at a boundary of the operating envelope.  The smoke intensities
in Table 25 correlate only roughly with the average particulate rates shown
in Table 22, yielding an index of determination of 0. 66 for the relationship
y   -1. 04 + 1. 11 x , where y is smoke (% opacity) and x is particulate (mg/
SCF).  The program on which the curve fit was obtained did not include trial
of a basic equation of the form predicted by theory (x  A In y^—11 Qft).  so no
index of determination was obtained for  that form.

       D.  Emissions Data from Other Sources

       The number of engines -tested under the subject program was limited
by cost and time considerations, and this restrictioa  was reasonable in view
of the relatively low priority that F,  C,  & I engines >~ave  in the total air
pollution picture.  The  rather limited program scope did,  however, make it
necessary to obtain as much information on engines not tested as possible,
and several sources were very helpful(15> *6, 17, 18, 19)_  Data on diesel
engines from all these sources is presented as Table 26,  but  model desig-
nations have been withheld in several instances to avoid releasing confidential
data.   The weighted averages at  the bottom of each category were calculated
by weighting the emission data points according to the number of engines
represented by each point (assumed  to be 1 if number of engines was not
available).
                                    44

-------
    TABLE 26.  EMISSIONS DATA ON DIESEL ENGINES DEVELOPED BY
       OTHER SOURCES,  BASED ON 13- OR 21-MODE PROCEDURES
        Engine
Number of
           Brake Specific
         Emissions,  g/hp hr
Type
4SNADI












Mfr. & Model
Cat. /Ford 1145
Cat. /Ford 1145
Cat. /Ford 1150
Cummins NH-220
Cummins NH-220
Cummins V-378
Cummins V-504
Cummins V-555
Cummins V-903
Cummins V-903
CM DH-478
Int. DV550B
(Note 1)
Engines
5
1
5
6
1
1
1
1
5
1
4
1
6
Tests
10
N. A.
10
N. A.
1
1
1
1
10
1
8
2
N. A.
Weighted Averages
4STCDI







Cummins NTC-335
Cummins NTC-335
Mack ENDT 673B
Mack ENDT 675
Mack ENDT 675
Mack ENDT 864
(Note 1)
(Note 2)
4
1
2
2
1
1
2
N. A.
8
1
4
4
4
1
N. A.
N. A.
HC
3.09
2.16
3.37
0.35
0. 36
1. 14
1.2
0.90
3.81
0.83
2. 8)
3.52
2.33
2.34
0.46
0. 13
2.27
1.61
1. 18
2. 00
2.85
1.7
CO
5.91
7.40
6.62
9.05
7.44
6.25
5. 70
4.28
5.30
4.37
5.59
6. 32
6.03
6.41
2.78
2. 30
3.25
4,80
5.37
4. 47
4.40
3.4
NOY
11.68
5.52
9.97
6.71
8.53
10.76
10.08
7.22
6. 81
6. 70
7. 24
8.21
11. 38
8.86
10. 21
10. 39
14. 30
12. 29
10.66
12. 1
14. 75
17.3
     Weighted Averages

 4SNAPC   (Note 2)
N. A.
N. A.
                  1.45
                  0.4
     Weighted Averages
                                                   1.24
                  3.68
                 2.4
                           8.45
12.43
 5.6
4STCPC


Cat.
(Note
(Note
1674
2)
1)






1
3
1
6
N. A.
N. A.
Weighted Averages
2SBSDI




Det.
Det.
Det.
Det.
(Note
Die.
Die.
Die.
Die.
1)
6V
6V
8V
8V

-53
-71
-71
-71

5
10
5
1
1
10
20
10
N. A.
N.A.
0.
0.
0.
0.
1.
1.
0.
2.
0.
21
34
3
31
64
17
82
59
7
1.
2.
2.
2.
8.
9.
7.
6.
6.
54
41
3
21
76
39
09
58
1
4.82
5.91
6. 1
5.73
18. 12
13.91
16. 54
18.57
14.7
                          15.71
.Note 1;  from reference 16
 Note 2:  withheld to avoid disclosure of confidential information
 Abbreviations:  4S and 23 mean 4-stroke and 2-stroke, respectively;  NA means
                naturally aspirated; TC means turbocharged; BS means
                blower-scavenged; DI means direct injection; PC means
                pre-combustion chamber injection
                              45

-------
      The averages were generally quite close to those for similar engine
types tested under the contract, as shown in Table 21.  Differences which
were most significant were NO^ on the 4STCDI category,  and in this case
the engines tested under the program simply emitted  relatively low NOX.
Both CO and  NOX showed considerable differences for the 2SBSDI category
(Detroit Diesel engines),  in this case presumably due to the use of older
injection systems in some of the engines from which the "other sources"
data were obtained.  Since the  correlation between data obtained under the
subject contract and those obtained from outside sources  is reasonably
good, the former will be used in computing factors and impact
except where such use would compromise accuracy.   The reason for
preference of data developed under this program is simply that it is fully
documented,  whereas some of  the other data must be  accepted at face
value with little knowledge of how it was obtained.
  TABLE 27.  AVERAGE BE^KE SPECIFIC EMISSIONS FROM DIESELS
          BY ENGINE TYPE,  TEST ENGINES COMPARED
                 TO DATA FROM OTHER SOURCES
                HC,  g/hp hr
CO,  g/hp hr
NOX,  g/hp hr

Engine Type
4SNADI
4STCDI
4SMAPC
4STCPC
2SBSDI
Test
Data
1. 68
2. 18
1. 55
0. 12
0. 70
Outside
Data
2. 34
1.45
0.4
0. 31
1. 24
Test
Data
6. 16
4.62
5. 65
1. 13
2.96
Outside
Data
6.41
3.68
2.4
2. 21
8.45
Test
Data
9. 44
8.64
4. 98
5. 19
20. 2
Outside
Data
8. 86
12.43
5.6
5. 73
15. 71
                                  46

-------
      V.   ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
        FOR HEAVY-DUTY ENGINES USED IN FARM APPLICATIONS

       This report section will treat farm engines as a category apart from
the construction category and the industrial category.  The idea behind this
approach is that emission results for all three categories  should be drawn
from  as many sources  as possible,  but that emission factors and impact
estimates should be treated separately due to  differences in duty cycles and
makeup of the categories with regard to engine type  and  size.  Sections  VI
and VII will treat construction and industrial engines,  respectively.

       A.  Analysis of Population and Usage for  Heavy-Duty Farm  Engines

       In contrast to several of the other engine  categories being studied under
the subject contract, a good deal  of information is available on farm equipment
production and populationl^O, 21)-  Some  of these statistics are presented in
Table 28, and they form the basis for the farm tractor population analysis
which is a necessary input to emission factor  computation.  The major items
of information which do not appear to be  available in published statistics are
the sizes and types (gasoline and  diesel)  of machines which constitute the
present population,  so  estimates  will have to be made based on the data in
Table 28 and some reasonable assumptions.  Wheel  tractors will be handled
first, and other farm machinery afterward.

       The most complex problem requiring solution in  order to get a true
picture of the present population is  selection of a mathematical population
model which is consistent with known facts.  That is,  it  is necessary to know
how many units produced in each  of the prior years  is still in service in 1972,
because this knowledge will lead to accurate breakdowns by engine size and
by type of fuel used.  The function used to attempt a definition of the farm
tractor population was

                         -n
where Si = number of units surviving in 1972 out of the Ni units produced in
year  i (age = A^), k - l/An ,  and n - an exponent greater than zero.   The
constant Ac is called the "characteristic age",  and both it and the exponent
"n" must be determined by trial and error.   If a value for n is assumed first,
successive approximation will yield a value for k = 1 /A£ to complete the
relationship

       i=52        i=52
             Si ~   Y]    Nie~]f:Ain   = 4. 469xl06 (1972 population)

       i = 0         i-0

This equation is the "first check",  assuring that the selected function will  in
                                   47

-------
         TABLE 28.  DATA ON THE U. S. FARM WHEEL TRACTOR POPULATION


Year
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
I960
1959
1958
1957
1956
1955
1954
1953
1952
1951
1950
1949
1948
1947
1946
1945
1944
1943
1942
1941
1940
1939
1938
1937
1936
1935
1934
1933
1932
1931
1930
1929
1928
1927
1926
1925
1924
1923
1922
1921
1920

Age
.Aj
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Sales =
NJ, Units
xlO-3
157
132
136
144
158
177
185
162
157
155
153
138
124
215
194
186
167
268
203
315
334
442
402
430
422
334
197
171
220
101
152
256
206
166
166
166
166
145 (a)
22 (a)
oU)
0(a)
47 (a)
145 (a)
140
140
140
140
140
10o(a)
128(a)
105(a)
55 (a)
182 (a)
Total
Units in
Use xlO-3
4469
4562
4619
4712
4766
4786
4783
4787
4786
4778
4763
4743
4688
4673
4620
4570
4480
4345
4243
4100
3907
3678
3399
3123
2821
2613
2480
2354
2215
2100
1885
1675
1545
1445
1370
1230
1125
1048
1016
1019
1022
997
920
827
782
693
621
549
496
428
372
343
246
Avg. Wheel
Tractor PTO
hp Sold
.
76.6
72.4
72.8
69.5
68.2
65.9
63.1
59.3
57.5
55.3
51.6
47.7
45.6
45.9
44.9
41.0
39.8
38.8
34.8
30.9
29.4
29.0
28.4
27.0
26.1
26.2
26.6
27.4
27.6
.
.
-

_
_
_
_
_
_
_
.
-

_
_
_
_
_
_
_
^
_

Avg. Belt
hp in Use
.
45.2
45.0
42.2
40.8
39.3
38.2
36.7
35.8
34.8
33.9
33.0
32.6
31.3
30.5
29.7
29.3
29.0
28.3
28.0
27.7
27.6
27.4
_
-
»
_
.
_
_
_
.
-

_
„
_
.
.



-

.
_
.

.
—
_
_^
_
                                                                  % Wheel Tractors
                                                                         Sold
Gasoline
24.3
28.5
30. 2
29.1
33.3
39.8
40.6
42. 2
47.2
52.9
49. 1
55.4
64.6
71.7
78.2
82.5
83.9
86.7
93.1
94.3
Diesel
75.7
71.5
69.0
69.3
65.5
58.1
56.6
54.1
48.5
42.7
46.8
40.8
30.6
23.2
16.3
12.5
12.6
11.4
5.6
5.7
'a'estimated from change in population for following year

                                   48

-------
 fact compute the correct present population when applied to known sales
 data.   The next step is  to apply the same model to previous years and
 determine whether or not it still calculates  the correct number.   Some of
 the models tried are plotted in Figure 21, to show the effect of variation
 in the exponent  n.

     Intuitively,  the curves for n=2 and n = 3 seem  to approximate the fraction
 of wheel tractors surviving in the expected way, but mathematical checks
 are a more accurate way of determining the correctness of the models.
 The two  checks  employed were  (1) calculation of populations for prior
 years based on  the survival models with comparison to known values,  and
 (2) calculation of average horsepower of tractors in the field with checks
 against a known value.   The results of these checks  are shown in Table 29,
 and it is apparent that none of the models  is without flaws.   The model  with
 n= 1 calculates both population and horsepower values which are too low,
 and the model with n = 3 calculates very high populations and a slightly low
 horsepower value.   The model with n • 2 calculates moderately high populations


TABLE 29.  COMPARISON OF DATA CALCULATED BY SURVIVAL MODELS
   TO KNOWN FACTS ABOUT  THE FARM WHEEL TRACTOR POPULATION

                                          Percentage Prediction Error for Model
       Statistic           Known Value  n=l.Ac=27.55 n=2.Ac=25.40   n=3.Ac=24. 54

1972 Tractor Population    4.469xl06        +0.1           +0.2            0.0
1965 Tractor Population    4.787xl06        -5.7           +1.4          +4.8
I960 Tractor Population    4.688x10°        -2.4           +8.3         +11.6

1971 Average Horsepower     45.2        -12.3           -5.5          -3.3
 and a moderately low horsepower value.   Conceding that it is a compromise
 the model with n - 2 will be used to determine the age distribution of tractors
 in  use.   Calculations with this model lead to an average age for tractors in
 use of about 15 years,  and an average service life of about 22 years, both of
 which seem quite reasonable in light of available  information.   The average
 age is
          *

      i=52
      i = 0
   ~                   the average service life is calculated by
      i = 0
                                     49

-------
1.0
0. 0
                                                             25.40
              10
                    30
                    40
          50
    1970
I960
 I           I
1950       1940
 Calendar Year
1930
1920
      FIGURE 21. EXPERIMENTAL POPULATION MODELS
                    FOR FARM TRACTORS
                            50

-------
          52

   ^R =
The values apply only to the population at the end of 1972, structured as
assumed by n=2,  Ac = 25.40.

    In order to arrive at accurate emission factors for tractors, it is also
necessary to determine the fraction of the present population powered by
diesel engines  (as opposed to gasoline engines).   This task would not be
so difficult if average power and fraction of tractors sold with diesel  engines
had been relatively constant in the past, but over the past 20  years  the
average horsepower of tractors sold has more than doubled,  and the market
share of diesels has risen from essentially zero to more than 75%.    As
a minimum, it is necessary to determine the fraction of each power category
equipped with  diesel engines for each year over which data are available.

        Performing such a calculation requires a set of assumptions based on
the best available information,  and if the assumptions  are  reasonable,  then
the calculated overall percentage of each year's production powered by diesels
should be the  same as the known value. The basic data on production by power
category are given in Table 30(20), an(j a  set of assumptions which permit
computation of the fraction of diesel-powered tractors in each model year/
power classification is summarized below.  These assumptions are based on

        1.   100% of tractors produced having 80  PTO hp or more were
           diesels

        2.  in the size range 35 to 79 hp, and for the years 1962-1971,

           % diesels - [45 + 0.47 (median hp in category)] (model year   1952 <


        3.  in the size range 35 hp and up, and for the  years  1952-1961

           % diesels =  100 (model year  1952)
                                 20
        4.   10% of tractors produced having less than 35 PTO hp were
           diesels

the ideas that very large tractors  are predominantly diesel,  that very small
tractors are predominantly gasoline, and that the percentage of diesels in the
mid-size ranges varies directly with power output and the number  of years
since the diesel market percentage was essentially zero.  The overall
                                      51

-------
ts)
                        TABLE 30. CLASSIFICATION OF FARM TRACTOR PRODUCTION BY
                                    PTO HORSEPOWER,  1952 THROUGH 1971

                                    Percent of Market by PTO Horsepower Class(20)

Year
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959
1958
1957
1956
1955
1954
1953
1952

to 34
6.5
5.8
5.6
6.2
6.3
5. 1
7.2
12.2
13.2
12.0
12.2
16.9
22.8
21. 1
28.9
34.5
35.8
48.4
62.2
77.4

35-39 40-49*
14.9 4.5
17.7 4.0
16.0 4.7
16.0 6.2
15.9 8.2
15.9 10.1
15.4 12.9
13.5 17.3
11.8 22.5
17.7 20.0
36.8
36.9
34.5
40.9
42.2
45.2
45.3
37.5
15. 1
22.6

50-59*
12. 1
13.0
13. 3
14.0
14.0
14. 1
9.5
12.8
11.9
15. 1
60.0
46.2
42.6
38.0
28.8
20.2
18.9
14. 1
22.6
-

60-69
11.2
13.9
14.4
12.4
11.0
16.6
17. 1
14.0
15. 3
17.2
-
-
-
-
-
-
-
-
-
-


70-79* 80-89
5. 1
5.7
7.3
9.2
10.2
6.2
9.6
8.7
15.
'8.0
-
-
_
-
-
-
-
-
-
-
3.2
3.9
3.3
3. 1
3. 7
4. 3
3.6
4.4
7
-
-
-
-
-
-
-
-
-
-
-
100- 110- 120-
90-99* 109* 119 129
17.4 6.0 8.9 1.9
17.2 8.5 3.5 2.9
18.1 17.3
23.7 9.2
23.1 7.6
22. 2 5. 5
22. 5 2. 3
15.0 2.1
9.6 -
_
_
_
_
_
-
_
_
-
_
_
130- 140
139 up
6.2 1.9
3.0 1.0
_
-
-
-
-
-
-
-
-
-
_
-
-
-
-
-
-
-
      *Values in these columns which terminate lines are understood to include all higher
       horsepower values not classified for those years.

-------
  100
Q
   80
 ra
 1*
 o
4->
 CJ
 n)
 E
 f-i
 a
 S  60
V
60
rt

1  40

o
^
4)
DH
•u
0)
J<



I  20
                               Calculated Value
               Known Value
                                  I
    1950
1955          I960

       Tractor Model Year
1965
1970
   FIGURE 22.   COMPARISON OF KNOWN AND CALCULATED

   VALUES FOR MARKET PERCENTAGE OF DIESEL FARM

              TRACTORS,  1950 THROUGH 1971
                              53

-------
 percentages of production using diesel engines calculated on the basis of the
 assumptions (1971-1963) are not exactly the same as the known figures,  but
 are reasonably close,  as shown in Figure 22.  Now if it is further assumed
 that the mean  PTO horsepower for gasoline and diesel engines is the same
 within each power category,  it becomes possible to estimate the overall percent-
 age of farm tractor horsepower which is diesel and that which is  gasoline.

        The mean PTO horsepower for tractors sold in each power category
 back to  1964(2°) is given in Table 31, along with the values which will be used
 for calculations  in earlier years leading to an estimate of the present popula-
 tion.  For earlier years, it is also necessary to assume values for categories
 such as "90 hp and up", "70 hp and up", and  so  forth.  In each case, the value
 assumed for these latter categories  is 10  horsepower above the lower boundary
 of the category.   Although it  is probably a weak assumption, it will also be
 assumed that the average service life of diesel and gasoline tractors in all
 power categories is the same.
        TABLE 31.  MEAN FARM TRACTOR PTO HORSEPOWER BY
                   POWER CATEGORY FOR 1964-197l(20)
Hp Class

up to 35
 35-39
 40-49
 50-59
 60-69
 70-79
 80-89
 90-99
                Mean PTO Horsepower by Year
1964
30. 0
37.0
45. 1
57.7
65. 1
76.4
85.0
91.9
05. 1
1965
30.0
37.0
45.0
55. 0
65.0
73. 2
87. 0
92. 0
105.0
1966
32.0
38.0
46. 0
54. 0
65.0
74. 0
87.0
92. 0
118.0
1967
32.0
38. 5
46. 0
56.0
65. 5
75. 0
87. 0
92.5
119.0
1968
30. 5
37.5
46.5
55.0
66.0
76. 0
87.0
94.6
111. 7
1969
30. 8
38. 0
46. 5
53. 5
66.8
76. 0
86. 1
94.9
118. 1
1970
30. 8
37. 5
45. 0
55.0
65. 0
75.0
85.0
95.0
117. 7
1971
31.0
38. 0
43. 3
53. 0
65. 0
73. 5
85. 0
94. 0
121. 3
Assumed for
Earlier Years'
Calculations

    30
    37
    45
    55
    65
    75
    85
    95
        Based on all the foregoing discussion and qualifications,  Table 32
 presents an estimate of the structure of the farm tractor population as of
 December 31, 1972.  Summing the columns on the  right yields approximately
 206 x 1Q6 tractor PTO hp in use, with 111x10° hp in gasoline engines and
 95. 4x106  hp in diesels. A comparable estimate of total hp in use based on U. S.
 Statistical Abstracts is also  206xlo6 hp(21).   Using  data from  Table 32, the
 average PTO horsepower of gasoline farm tractors is calculated to be 35. 6 hp,
 and that for diesels  is calculated to be 69. 7 hp.  These summaries pertain only
 to tractor hp in  the field, and probably do not represent the correct  ratio of
 horsepower-hours used because usage undoubtedly Varies with both machine
 size and age.
                                     54

-------
     TABLE 32.  ESTIMATED STRUCTURE OF THE FARM TRACTOR
                       POPULATION AS OF 12/31/72
               Units Surviving x 10
Hp of Units Surviving x 10
                                                                       -6
Year
1972**
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
I960
1959
1958
1957
1956
1955
1954
1953
1952
1951
1950
1949
1948
1947
1946
1945
1944
1943
1942
1941
1940
1939
1938
1937
1936
1935
1934
1933
1932
1931
1930
1929
1928
1927
1926
1925
1924
1923
1922
1921
1920
Total
157
132
135
142
154
170
175
150
142
137
131
114
99
165
143
131
112
171
123
188
180
223
190
189
173
127
69
55
65
27
38
58
42
31
28
25
22
17
2
0
0
3
9
8
7
6
5
5
3
3
0
1
3
Gasoline
31
32
38
43
45
57
70
61
60
65
69
56
55
107
103
102
92
143
107
168
.170
223
190
189
173
127
69
55
65
27
38
58
42
31
28
25
22
17
2
0
0
3
9
8
7
6
5
5
3
3
0
1
3
Diesel*
126
100"
97
99
109
113
105
89
82
72
62
58
44
58
40
29
20
28
16
12
10
.
-
_
-
-
.
.
.
.
.
-
-
_
-
.
.
-
-
.
.
-
-
_
-
-
.
-
-
-
-
-
-
Total
12.2
10.1
9.77
10.3
10.7
11.6
11.5
9.47
8.42
7.88
7.24
5.88
4.72
7.52
6.56
5.88
4.59
6.81
4.77
6.26
5.56
6.56
5.51
5.37
4.67
3.31
1.81
1.46
1.78
0.75
0.95
1.45
1.05
0.62
0.56
0.50
0.44
0.34
0.04
0.00
0.00
0.06
0. 18
0.16
0. 14
0.12
0.10
0.10
0.06
0.06
0.00
0.02
0.06
Gasoline
1.22
1.31
2.03
1.86
2.25
2.81
3.08
2.93
3.20
3.43
3.83
2.89
2.61
4.86
4.70
4.60
3.79
5.71
4.14
5.83
5.24
6.56
5.51
5.37
4.67
3.31
1.81
1.46
1.78
0.75
0.95
1.45
1.05
0.62
0.56
0.50
0.44
0. 34
0.04
0.00
0.00
0.06
0. 18
0.16
0. 14
0. 12
0. 10
0. 10
0.06
0.06
0.00
0.02
0.06
Diesel
11.0
8.80
7.74
8.41
8.45
8.79
8.42
6.54
5.22
4.45
3.41
2.99
2.11
2.66
1.86
1.28
0.80
1. 10
0.63
0.43
0.32
.
-
.
-
-
-
-
-
.
.
-
-
_
-
_
.
.
-
.
_
.
-
.
_
_
_
-
.
.
_
.
.
* includes LPG-powered units,  estimated to total about 4% of the population
**e8ti mated
                                 55

-------
       Compared to that for farm tractors,  only a small amount of information
ii available on other heavy-duty engines used on farms.  The major uses of
these engines other than tractors include self-propelled  combines and forage
harvesters, and engines used on irrigation pumps and as auxiliary engines on
pull-type combines and balers.  A tabulation of engine applications and some
characteristics of the machines which will be assumed typical for the purposes
of this report is given in Table  33.  It is  conceded that these assumptions have
little basis except availability of the machines in the current market(20), but
such estimates are necessary in lieu of comprehensive data.  Summing the
estimated horsepower of tractors and other  powered farm machines yields
approximately 319x10^ hp, which compares  quite well with the 301x106 hp figure
from Statistical Abstracts'").

       Having arrived at a structure for  the population of heavy-duty engines
used in farm applications,  the next step is to determine  representative annual
usage rates for the various categories of machines.   Once again,  the best data
available are on tractors, with  one broadband estimate of 550 hours per year
for "grain belt" usage(^3).  Another estimate is  "almost a linear relationship
to tractor horsepower ranging from 450 hr for a 50 hp tractor to 800 hr for a
140 hp tractor'^S), or in other words, usage in hours = 450  + 3. 89 (hp-50).
The latter estimate weights usage somewhat more heavily toward newer
tractors,  since the newer units  have higher  average power ratings,  but it is

            TABLE 33.  APPLICATIONS OF HEAVY-DUTY ENGINES
              ON FARMS (OTHER THAN TRACTORS) AND  ASSUMED
                 CHARACTERISTICS OF THE APPLICATIONS
Units in service
 x 10-3(20)
% using engines
Typical size

Typical hp
% gasoline
% diesel
Application
Combine,
Self-
Propelled
434
100
14 ft

110
50
50
Corn Pickers
Combine,
Pull Type
289
25
8 ft

25
100
0
& Picker-
Shellers
687
-
2-row

-
-
-
Pick-up
Balers
655
50
6 ton/hr

40
100
0
Forage
Harves-
ters
295
10
12 ft or
3- row
140
0
100

Other
(Misc)
1205
100
-

30
50
50
 based on relatively new (in-warranty) units.   To account for decreased usage
 with age, the further assumption will be made that usage decreases linearly
 with age to 50 hours per year for the few 1920 model units still in service.
 The complete usage equation can then be written

             (usage in hours)i = 450 + 3. 89 (hpi-50) -  5. 45 (A})
                                      56

-------
for any year,  and the average usage (separately for gasoline and diesel
units) is calculated by

                                          52
                                450 (53) + £  3.89 (hp^SO) -  5.45  (A^
       average usage in hr/yr =           1-
                                     Number of Units in Service

This computation yields mean usages of 490 hours/year for diesel tractors
and 291 hours/year for gasoline tractors.  One independent appraisal of the
accuracy of these estimates can be obtained using data from yet another
       (p r V
	"'.  These data indicate that the annual usage of tractors is
quite heavily weighted in the direction of newer models, as  shown in the
second column of Table 34.  Using average horsepower sold (Table  28)

     TABLE 34.  TWO  INDEPENDENT ESTIMATES OF ANNUAL USAGE
            OF TRACTORS AS  A FUNCTION OF  TRACTOR AGE

                 	Percent Total Tractor Hours Used by Age Group
Tractor  Age,                            Calculated from Tables  28  and 32
up to (years)     First Estimate^^)       (and Usage Equation Above)

      2                    8                           12.4
      5                  25                           27.0
      9                  50                           45.2
     16                  75                           66.?
     27                  95                           95.4

and units surviving (Table 32) in conjunction with the  power-age-usage rela-
tionship  presented  above, the figures in the third column of Table 34 were
calculated  for comparison.   Part of the disagreement for the younger groups  of
tractors  may be due to inconsistency in the definition of tractor age (for
example, the "first estimate" may assume that only tractors of age 1 are in-
cluded in the "up to 2"  category, whereas the  calculated values assume that
all tractors up to and including  age 2 are covered by the "up to 2" category).
In any case, the two age-usage  relationships are quite similar overall, and
the usage estimate resulting in  the calculated  values described above (third
column of Table 34) will be assumed adequate  for the  purposes of this report.

       Annual usage of other farm implements which employ heavy-duty engines
is not as readily available as that for tractors, so a different approach will be
used to estimate their annual operating time.  Usage  of specific-purpose imple-
ments is controlled primarily by total crop acreage for which they are required,
and documentation of acreage is available^24'.  Table 35 shows acreage  of  major
crops^4' harvested by the machines listed in  Table 33, as well as  estimates  of
total machine hours required for harvesting by powered and non-powered
machines(26).  Summing the operating hours for the machine categories (with
                                    57

-------
      TABLE 35.   MAJOR U. S. CROP ACREAGE (1970) AND ESTIMATED
          MACHINE HOURS REQUIRED FOR'HARVESTING(24> 26)
      Crop
U.S. Acreage    Powered Machine &      Non-Powered Machine
                 Required hours xlO"6    & Req'd. hours xlO"6
xlO'
Corn                 57.4


Wheat                44. 3


Oats                 18.6


Sorghum             13.8


Barley                9.6


Rye                   1. 5
Other Grains,       *25
Seeds, &  Legumes

Hay, Straw,  &      **70
 Forage
                 pull combine - 0. 76
                 s-p combine - 6.45

                 pull combine  1.17
                 s-p combine -' 9. 96

                 pull combine - 0. 49
                 s-p combine - 4. 18

                 pull combine - 0. 37
                 s-p combine - 3. 10

                 pull combine - 0. 25
                 s-p combine   2. 16

                 pull combine - 0. 04
                 s-p combine   0. 34

                 pull combine - 0. 66
                 s-p combine - 5.62
                                     corn-picker - 19. 1
                                     pull combine - 2. 28

                                     pull combine - 3. 51


                                     pull combine   1.48


                                     pull combine   1. 10


                                     pull combine   0. 76


                                     pull combine   0. 12


                                     pull combine - 1. 98
                 pick-up baler   7.83     pick-up baler - 7.83
                 forage harvester-3.53   forage harvester-3.53
 *only that portion of crops assumed harvested by combine is listed
**assuming 80% of hay acreage is baled or cut by field forage harvesters,
  and that 17.8x10  acres of straw  or other forage is harvested.
  engines), pull combines account for about 3. 74x10^ hours per year,  self-
  propelled combines for about 31. 8 xlO", balers for about 5. 22x10  ,  and self-
  propelled forage harvesters  account for about 3. 53xlO& hours annually.  These
  figures translate into annual usage per (motorized) machine of 52 hours for
  pull-type combines, 73 hours for self-propelled combines,  24 hours for
  balers, and 120 hours for self-propelled forage harvesters.  All these
  annual usage figures seem low from an economic  standpoint,  so the
  situation must be that a wide range of usage occurs for each type of
  machine, depending on farm size and use of custom operations.

      No data are available on the miscellaneous (Table 33) heavy-duty
  engines used on farms,  although their existence is documented by  census
                                     58

-------
figures (24).   For the purposes of this  report, usage of these engines
will be assumed to average 50 hours per year, which is about the mini-
mum  usage which would justify having the engine at all.   It is assumed
that the miscellaneous engines  include irrigation pump engines (which
would have high usage),  and those used  on welders,  large compressors,
and auxiliary generators (which probably have low usage).

    B.  Development of Emission Factors for Farm Engines

    Having compiled estimates for the population and annual usage of
heavy-duty farm  engines in the previous section, it now becomes
necessary to assign emission factors to that population.  This task
requires examination of farm engine duty cycles to determine how the
mode emissions data in  Section IV should be weighted for each applica-
tion,  and  it requires the determination of which test engines  should be
assumed to represent each application.    The first part of this task
was referred to in section II, Objectives, as  a modification of the
calculation procedures already discussed in sections III. C.  and IV. A.
Fortunately, there is a good representation of farm  engines among the
test engine group, with at  least 5 of the  8 diesels and 3  of the 4 gasoline
engines tested being used in  farm equipment.

    Farm tractor duty cycles have been researched by several investi-
gators for different purposes (23), and  the results of some  of these
studies are shown in Table 36.   In addition,  a "consensus" weighting
factor schedule is given in Table 36, differing only slightly  from the
average of factors from sources A through D.   This "consensus"
schedule will be used to recompute cycle composite  brake specific
emissions from the test engines which are used in the farm tractor
application.   Most of the  mode emissions data were generated on
21-mode (or 23-mode  for  gasoline engines)  procedures, or in the
case  of particulate,  on procedures having only 7 modes.  Weighting
factors for the procedures having 21 (23 for  gasoline engines) or 7
modes (derived from the ones given above for the 13-mode procedure)
are shown in Table 37.   These factors  yield a composite load factor
of about 0. 57 for farm tractors, which is somewhat higher than that
for many  other applications  of heavy-duty engines.   Since no data are
available  on the normal  speed-load schedule  of heavy-duty farm engines
used  in applications other  than  tractors, the  factors shown in the four
right-hand columns of Table 37 will be  used.   These factors are based
on the ideas that most non-tractor farm engines are governed at or near
rated speed, and that they spend little time at idle.   The composite
load factor resulting from these latter weighting factors is about 0. 52,
which is lower than that for  tractors but higher than that expected  for
on-road engine usage.   Note also that the closed-throttle modes (12
and 23) of the gasoline schedule have been given zero weight because
they are assumed largely  inapplicable to farm operation.
                                  59

-------
TABLE 36.  FARM  TRACTOR MODE WEIGHTING FACTORS FOR THE
         13-MODE GASEOUS EMISSIONS PROCEDURE^1' 23)
Mode(s)

1+7+13

  2
  3
  4
  5
  6

  8
  9
 10
 11
 12

Sources:
  Mode Weighting Factors by Source	
Source A    Source B   Source C   Source D
  0.079
0.058
0.07
0.00
 Consensus
For Report

   0.06
0.022
0.059
0.060
0, 056
0.005
0.057
0.092
0.076
0.061
0.021
0.01
0.02
0.035
0.40
0.00
  0. 158
  0.256
  0. 160
  0.097
  0.048
0. 132
0.205
0. 151
0. 113
0.034
A.

B.
C.
D.
0.01
0.02
0.035
0.40
0.00
0.00
0.40
0.035
0.02
0.01
use -
0.00
0.0014
0.0040
0.0956
0.0127
0.0249
0.4395
0.3519
0.0231
0.0469
Agricultural
0.03
0.05
0.05
0. 11
0.01
0. 10
0.32
0. 17
0.06
0.04
Engineering,
               Feb.  1969
               general farm use - John Deere data
               Allis-Chalmers data
               Detroit Diesel  - Allison data - hard plowing alfalfa
     To arrive at cycle composite gaseous emissions with mode weighting
factors as described in Tables 36 and 37,  the average mode mass emissions
from Tables 8-19 were used rather than going back to each individual run.
Particulate emissions were computed in the same way,  using data on
individual mode mass  emissions which do  not appear explicitly in the
report.   Composite mass and brake specific NOX emissions were
corrected for humidity using the factors given in  section III. C.   ^hese
reweighted composite  data are given in Table 38 for both farm tractor
and farm  non-tractor applications.   The engines  omitted from the
tractor weighting schedule (Cat.  D6-C, M-B OM636, Onan DJBA,
Here.  G-2300,  and Wise. VH4D) are assumed not to be used in farm
tractors,  so their emissions will not be used in computing  emission
factors for farm tractor applications.

    Having developed  brake specific emissions for a number of farm
tractor and farm  non-tractor engines, it remains to combine them in
such a way that they form a reasonable representation  of machines used
in the field.  This task requires the assumption of a fraction of total
diesel tractor horsepower hours for each  of the five diesels listed at
the top of Table 38,  and corresponding assumptions for the two gaso-
line engines used in  tractor service.  It further requires the assumption
of fractions of total non-tractor horsepower hours for all 12 engines
                                  60

-------
TABLE 37.   FARM TRACTOR MODE WEIGHTING FACTORS FOR
   THE 21-MODE (23 FOR GASOLINE ENGINES) PROCEDURE
        AND THE (SPECIAL 7-MODE) PARTICULATE
               MEASUREMENT PROCEDURE
   Tractor Mode Weighting
    Factors by Procedure
  Weighting Factors by Procedure
for Applications other, than Tractors
.lode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Particulate*
0.06
0.055
0.13
0.065
0.07
0.36
0.26
-

.
-
.
-
.
.
.
-
.
-
.
.
.
_
21 -Mode
0.02
0.0225
0.02
0.025
0.025
0.025
0.04
0.055
0.03
0.0075
0. 02
0.075
0.105
0.16
0.1225
0.085
0.0575
0.03
0.025
0.03
0.02
.
-
23-Mode**
0.02
0.0225
0.02
0.025
0.025
0.025
0.04
0.055
0.03
0.0075
0.02
0.00
0.075
0.105
0. 16
0. 1225
0.085
0.0575
0.03
0.025
0.03
0.02
0.00
Particulate*
0.04
0.06
0.09
0.09
0.12
0.42
0.18
-
-
.
-
.
.
.
.
-
-
.
-
-
-
-
-
13 -Mode
0.0133
0.035
0.04
0.055
0.055
0.055
0.0133
0.11
0.16
0.25
0. 13
0.07
0.0133
_
.
-
-
-
-
-
-
-
-
21-Mode
0.0133
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.0133
0.06
0.06
0.06
0.14
0.14
0. 14
0.04
0.04
0.04
0.0133
-
-
23-Mode**
0.0133
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.0133
0.00
0.06
0.06
0.06
0.14
0. 14
0. 14
0.04
0.04
0.04
0.0133
0.00
  ^sequence of conditions as shown in Table 22
 **sequence as shown in Table 2
                            61

-------
to
                  TABLE 38.  COMPOSITE MASS AND BRAKE SPECIFIC EMISSIONS FOR TEST ENGINES WEIGHTED
                         TO SIMULATE FARM TRACTOR AND FARM NON-TRACTOR APPLICATIONS

                                     Mass Emissions  in g/hr,  Tractor  Weighting   Specific Emissions in g/hphr, Tractor Weighting
Engine
Allis-Chalmers 3500
Detroit Dies. 6V-71
International Har. D407-
John Deere 6404
Perkins 4. 236
Ford G5000
J. I. Case 159G
HC
40.7
69.5
136.
216.
15.8
202.
150.
CO
Z14.
168.
284.
196.
130.
4860.
5980.
NOX
874.
2630..
518.
432.
432.
269.
49.4
RCHO
13.
12.
9.0
64.
7. 8
11.
11.
SOX
70.5
102,
52.4
67. 1
32.2
8. 62
6.05
Particulate
64.5
21.9
108.
91.3
57.2
13.6
6.86
HC
0.505
0.615
2.23
2.93
0.392
5.36
6.73
CO
2.66
1.49
4.67
2.66
3.22
129.
268.
NOV
10.8
23.3
8.51
5.86
10. 7
7. 14
2. 22
RCHO
0. 16
0. 11
0.15
0.88
0. 19
0.28
0.50
SOX
0. 875
0.903
0.862
0. 910
0.799
0. 229
0. 271
Particulate
0.792
0. 195
1.77
1.22
1.42
0.355
0. 307
                                              Mass Emissions
                                      in g/hr, Farm Non-Tractor Weighting
                                           Specific Emissions
                                   in g/hphr, Farm Non-Tractor Weighting
Engine
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
HC
39. 8
6.88
71.3
136.
213.
15.2
9.59
17.4
CO
231.
66.3
183.
304.
198.
55.6
26.4
137.
NOX
780.
353.
2380.
449.
368.
42.
39.
354.
RCHO
12.
6.3
12.
10.
57.
2 3.4
8 1.0
9.4
SOX
65.3
64.0
93.8
49.0
62.7
16. 3
8. 30
29.6
Particulate
67.3
30.6
21.3
106.
91.2
26.9
13.4
59.7
HC
0. 550
0.093
0.706
2.49
3.21
1.03
1.50
0.428
CO
3. 19
0.897
1.81
5.56
2.98
3.76
4. 13
3.81
NOX
10. 8
4. 78
23.5
8.22
5.54
2.85
6.23
9.83
RCHO
0. 16
0.084
0. 12
0. 19
0.86
0.26
0. 16
0.26
SOX
0.905
0.866
0.929
0.897
0. 944
1. 10
1.30
0.823
Particulate
" 0.902
0.404
0.207
1.90
1.34
2.01
2. 08
1.63
            Ford G5000             200.   4870.
            Hercules G2300        214.   6820.
            J. I.  Case 159G         154.   5770.
            Wisconsin VH4D        137.   4330.
232.   10.    8.07    11.4       5.91  144.
141.    5.9   9.23     8.82      5.96  190.
 44.5 11.    5.77     6.01      7.66  287.
 80.0  2.1   5.02     7.89      9.26  293.
6.85  0.30   0.238   0.327
3.93  0.16   0.257   0.240
2.21  0.55   0.287   0.293
5.41  0.14   0.339   0.512

-------
with emissions computed on the farm non-tractor operating schedule
(bottom of Table 38).  Without question these assumptions will be
arbitrary, but lacking a complete census of engines in the field,  they
are necessary.  The assumptions made for the purpose of this report
are listed in Table 39,  along with the contribution of each engine to the
composite factors and the co.mposite factors themselves.  The composite
emission factors thus generated appear reasonable, but they could be
computed more  precisely by the same methods if more comprehensive
data on the farm engine population becomes available.

       C. Estimation  of National Emissions Impact for Farm Engines

       Calculation of total  exhaust emissions  (or "national impact") from
farm tractors is relatively straightforward at this point,  using the
composite emissions factors from Table 39 and the  tractor horsepower
and hours usage from section V. A.   Assuming that (flywheel hp/PTO hp) =
1. 15 and that the tractor load factor is  0. 57, a typical calculation would be

       —  Diesel Farm Tractor Exhaust HC  -  95.4 x 1 O6 PTO hp
        yr
                x *' 15 fly_wheel hP x 0. 57 hp used
                    1. 00 PTO  hp   X  flywheel hp
                X490 hr operation x 1. 70 g HC
                        yr             hp hr
                  1.10  x10-6 ton             3
                x —	  = 57.3 x 10J ton/yr,
                        g

and this  result is  shown along  with corresponding results for other
tractor engine types and pollutants in Table 40.   Crankcase (blowby)
hydrocarbon emissions from gasoline engines  were  estimated at 20%
of exhaust hydrocarbons according to the rationale developed in section
III. D.

       Total horsepower hours for the  farm non-tractor  applications
were calculated using the assumptions in Table  33 and usage informa-
tion  later in  section V. A.   Engine power in Table 33 was assumed to
be flywheel power, and the co.mposite load factor of 0. 5Z was used
uniformly to calculate emission loadings as given in Table 40.
Evaporative  emissions  from gasoline-powered machines  were  com-
puted by arriving  at fuel tank volumes with enough capacity for about
8 hours' normal operation.  These volumes and other information
pertaining to evaporative emissions computation are summarized in
Table 41.  For the purposes of this report, the  U.S. was divided into
three regions (Northern, Central,  and Southern), and the states  included
in each region are shown in Appendix H. The Northern region is ap-
proximately  between 49° and 43° north  latitude,  the Central region between
43° and 37°,  and the Southern  region  between  37° and 31°.  Adoption of
these arbitrary  regions permitted computation of average days per year
during which each machine was ready for use,  by assuming the number of

                                 63

-------
 TABLE 39.  COMPUTATION OF COMPOSITE BRAKE SPECIFIC EMISSION FACTORS FOR FARM TRACTOR
       AND NON-TRACTOR APPLICATIONS OF HEAVY-DUTY DIESEL AND GASOLINE ENGINES
Engine Type
                               *Assumed Fraction of     Contribution to Composite Emission Factor,  g/hp hr
and Application Engine
Diesel Farm Allis-Chalmers 3500
Tractor
Detroit Diesel 6V-71
Category hp hrs
0.
0.
International Harv. D407 0.


*
John Deere 6404
Perkins 4. 236
Category Composite Emission
Gasoline Farm Ford G5000
Tractor
\ •
J. I. Case 159G
Category Composite Emission
0.
0.
Factors =
0.
**0.
Factors =
25
05
35
25
10

90
10

HC
0.
0.
0.
0.
0.
1.
4.
0.
5.
126
031
780
732
039
71
82
673
49
0.
0.
1.
0.
0.
3.
116.
26.
143.
CO
665
074
63
665
322
36

8

NOV
2.70
1. 16
2.98
1.46
1.07
9.37
6.43
0.22Z
6.62
RCHO
0. 04
0.006
0. 052
0. 22
0. 019
0. 34
0.25
0. 050
0. 30
SOX Particulate
0.219
0. 045
0. 302
0.228
0. 080
0. 874
0. 206
0. 027
0.233
0. 198
0.010
0. 620
0.305
0. 142
1. 28
0. 320
0.031
0. 351
Diesel Farm
   Non-Tractor
      £
        Allis-Chalmers 3500          0.15
        Caterpillar D6C               0.02
        Detroit Diesel 6V-71          0.05
        International Harv. D407      0. 36
        John Deere 6404              0. 15
        Mercedes-Benz DM636        0.02
        Onan  DJBA                   0. 05
        Perkins 4.236                 0. 20
= Category Composite Emission Factors =
                    0.082    0.478   1.62    0.024   0.136   0.135
                    0.002    0.018   0.096   0.002   0.017   0.008
Gasoline Farm
   Non-Tractor
       £
        Ford G5000
        Hercules  G2300
        J. I. Case  159G
        Wisconsin VH4D
  0.30
  0. 30
**0.05
  0.35
= Category Composite Emission Factors :
0.
0.
0.
0.
0.
0.
1.
1.
1.
0.
3.
7.
035
896
482
021
075
086
68
77
79
383
24
18
0.
2.
0.
0.
0.
0.
4.
43.
57.
14.
103.
218.
091
00
447
075
206
762
08
2
0
4


1.
2.
0.
0.
0.
1.
9.
2.
1.
0.
1.
5.
18
96
831
057
312
97
03
06
18
110
89
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
006
068
13
005
008
052
30
090
048
028
049
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
046
323
142
022
065
165
916
071
077
014
119
281
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
010
684
201
040
104
326
51
098
072
015
180
365
     *assumptions are arbitrary and do not reflect actual market on population percentages - see discussion p. 61
    **low weights given the Case engine's emissions because it was erroneously run with high restrictions - see
      discussion p.  26

-------
     TABLE 40.
NATIONAL EMISSIONS IMPACT ESTIMATES FOR
 HEAVY-DUTY FARM ENGINES
  Pollutant

HC (Exhaust)
Engine Application/Type

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
HC (Evaporative)  Tractor/Gasoline
                  Non-Tractor/Gasoline
HC (Crankcase)
HC (Total)
CO
NOX as N02
RCHOas HCHO
so,
Particulate
Tractor/Gasoline
Non-Tractor/Gasoline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gas-oline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline

Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non -Tractor /Gasoline
g/unit yr
xlO'3
38.3
37.3
3.2
9.0
15.6
2. 1
7.5
1.8
38.3
60.4
3.2
12.4
75.2
971.
7.9
275,
210.
45.2
17.4
6.6
7.6
2.0
0.6
0.3
19.6
1.6
1.8
0.4
28.7
2.4
2.9
0. 5
ton/yr
xlO"3
57.6
128.
3.0
12.2
52.7
2.9
25.6
2.4
57.6
206..
3.0
17.5
113.
3330.
7.4
369.
316.
155.
16.3
8,9
11.
7.0
0.5
0.4
29.5
5.4
1.7
0.5
43. 1
8.2
2.7
0.6
Total for Pollutant
 ton/yr x 10'3
                                                                    201.
                                                    55.6
                                                                     28.0
                                                                    284.
                                                                   3820.
                                                                    496.
                                                                      19.
                                                                     37. 1
                                                                     54.6
                                    65

-------
days available for outdoor (tractor) work in each region (180 days for the
Northern region, 225 for the Central, and 270 for the Southern region).

       The assumed days available for tractor work were weighted by
the fractions of units in each region to arrive at the average tractor
"usage"  (days),  and ratios of annual machine usage in hours were
used to compute corresponding "days  of usage" for the other applica-
tions.  As an example,  "days of usage" for self-propelled combines
were  calculated by
       days of usage (S-P combines) = 229 days pc

                         73 S-P combine hr/yr
                     J£  ...i •	 _•—-. —.—    -~ --    .If I I I
                       291 gasoline tractor hr/hr
                  = 57 days
Note that this computation is used only to estimate the number of days
per year during which fuel can evaporate from the tanks.

       The evaporation factors in the last column of Table 41 were
chosen on the basis of discussion in section III. D. The higher factor
(for "unprotected" tanks) was deemed appropriate for tractors due to
tank location and temperature extremes encountered, and it was
assumed that half the engines in each other application had unpro-
tected tanks (4.0 g HC/gallon tank volume day) and the other half had
protected tanks  (2,0 g HC/gallon tank volume day).   A typical
computation is evaporative hydrocarbons from gasoline farm tractors,
which is  performed


   (g/unit  yr) gasoline farm tractor evap. HC ~ 229 	*-x—:	=r--—x 17 gal
                                                  yr   gal vol day
                       = 15.6 x 10-3 g/unit yr.
     TABLE 41.  INFORMATION PERTINENT TO EVAPORATIVE
     EMISSIONS FROM HEAVY-DUTY GASOLINE FARM ENGINES
                Assumed
                  Tank
  Application    Vol, gal
  Fraction of
Units in Region
Tractor            17
S-P Combine       40
Pull Combine       10
Baler              15
Miscellaneous      11
North
0.207
0.245
0.245
0.267
0.277
Central
0.495
0.576
0.576
0.571
0.441
South
0. 298
0.179
0.179
0.162
0. 282
Average
Usage*   Evap. Factor,
days/yr   g/gal vol.  day
                        229
                         56
                         40
                         18
                         39
               4.0
               3.0
               3.0
               3.0
               3.0
       •* Number of days on which engine is assumed to be in
         use or ready for use, and thus to have fuel in the tank.
                                66

-------
       To put emissions from farm machinery in perspective, Table 42
shows them compared to revised 1970 EPA Air Pollution Inventory
data^  '.  Note that this use of revised 1970 Inventory data is a departure
from the practice followed in the previous final reports under the subject
contract.  The revised figures were not available for inclusion in the
previous reports.  In some cases,  the estimated emissions from farm
equipment make a small but significant contribution to the national totals
from mobile sources,  which is not unexpected due to  the high usage and
relatively large population of this equipment.

TABLE 42.   COMPARISON OF HEAVY-DUTY FARM ENGINE EMISSIONS
        ESTIMATES WITH EPA  NATIONWIDE AIR POLLUTANT
                          INVENTORY DATA
                  1970 EPA Inventory Data,
                  106 tons/yr(27) (Revised)
Heavy-Duty Farm Engine
    Estimates as % of
All Sources
27.3
100.7
22.1
33.4
25.5
Mobile Sources
15.2
78.1
11.0
1. 0
0.9
All Sources
1.04
3.79
2.24
0.11
0. 21
Mobile Sources
1.87
4.89
4.51
3. 7
6.1
  Pollutant

Hydrocarbons
CO
NOX
S0x
Particulate
       For farm machinery,  the seasonal factors involved in usage are
quite complex, so no attempt will be made to construct a seasonal
emissions  breakdown.  A breakdown into urban and rural usage seems
unnecessary,  since most agriculture, involving powered implements is
performed in  rural areas.  A regional breakdown is possible,  however,
with the result thaf some 16% of emissions from  heavy-duty farm engines
appear to occur in the Northern region, 49% in the Central region,  and
35% in the  Southern region (states in each region shown in Appendix H).
It should be noted, of course, that emissions from farm equipment do
not generally  occur in areas where air pollution problems are severe,
so their impact should be considered in view of this factor,

       In summary, the major assumptions made in computation of
national emissions impact for farm equipment were:

       1.  The 1972 farm tractor population (4.469 x 106) and the
           populations of other major items of equipment (combines,
           balers, etc.) are correct as given in the literature,  (see
           pp. 47, 48, 54, & 56)

       2.  Tractor usage in  hr/yr can be approximated by
           450 + 3.89 (hp-50) -  5.45 (A^ for tractors of given
           horsepower and age.  (see pp. 54  & 55)
                                 67

-------
3.  Total operating time for equipment such as combines
    and balers can be estimated from total U. S. crop
    average,  (see pp. 57 & 58)

4.   The fraction of tractors of a given age A^ still surviving
    can be approximated by the function Fi = Si/Ni =e-()-00155Ai
    (see pp.  49,  50 & 55)

5.  Diesel and gasoline  horsepower in the field can be
    approximated using  the following considerations;
    (see pp.  49,  51-54)
    a.    large tractors are predominantly diesel
    b.    small tractors (considering entire population) are
         predominantly gasoline
    c.    diesel market penetration is proportional to
         machine size and is increasing linearly with
         time.

6.  Engine operating cycles can be  estimated from
    manufacturers' operating data,  and from consideration
    of  the type of operation each type of engine undergoes
    in  the field,  (see pp. 58-60)

7.  Emissions from heavy duty farm engines can be
    estimated by combining results of tests conducted
    under the subject program in a  reasonable way.
    (see pp.  61-63)
                           68

-------
VI.  ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
       FOR HEAVY-DUTY ENGINES USED IN CONSTRUCTION
                          APPLICATIONS

     The construction applications of heavy-duty engines are treated
in this section as a category separate from the farm and industrial
applications.   The reason for this approach is to utilize emissions
data from the greatest number of engines in determining emission
factors, while still separating the applications from one another
along logical lines such as load factors anH duty cycles.

     A.   Analysis of Population and Usage for Heavy-Duty Contruction
Engines

     Compared to the farm engine category, relatively few data are
available on sales and population of construction equipment.   The
scarcity of information is partially due to the industry's general
policy of not releasing production statistics,  but also to the compara-
tively small amount of government record-keeping  which is done on
the construction industry.  The major  sources of data  on construction
equipment^19'  21> 28'  29' 30' 31)include useful generalizations on
horsepower (total) in use, load factors  and duty cycles for the larger
machines,  annual usage, and limited information on unit shipments by
year.   They do not include, however, any specific population data by
machine type and manufacturer (or engine type), so  estimates of this
type (necessary to computation of emission factors and impact) will
have to be made in lieu of factual information.

     The usage of construction equipment is high and severe, as
documented by several sources '  ''    '   '    '    ', so the  useful life
of the machines (in years) is correspondingly short. ^Since comprehensive
population data are not available for construction equipment,  estimates
will have to be made  based on what is known about useful life of the
various equipment items (in total operating hours), their annual usage,
and  shipments  of each type of machine over the years.   The  total
number of operating hours which heavily-loaded machinery  will endure
appears to be 10, 000  to 15, 000 hours, with the failure  point being
defined as the number of hours at which maintenance expense and down-
time become prohibitive.   Depending on the  type of operation required
by a given owner,  a machine may undergo high-load operation constantly
until it  is traded in, or its degree of usage may be tapered off as it
ages to extend its life.

     To determine life (in years) of each major equipment category,  it
will be  assumed for the purpose of this report that  track tractors and
                                   69

-------
track loaders are good for 10, 000 hours, and that all other categories
of mobile construction equipment will last 12,-000 hours.   It is now
necessary to estimate annual usage for the various types of machines
so that life (in years) can be calculated.

     Several sources of annual usage information are available '  '    '   '    '
and a synopsis of this information is provided in Figure 23.    No  clear
consensus on usage as a function of power can be drawn, especially
when the Caterpillar data are included, but the relationship  shown on
the graph (arrived  at by trial and error),

             usage (hr/yr) = 0.1  (hp)1<8 + 500,

provides a reasonable estimate for most of the smaller machines.   The
points for large  scrapers and off-highway trucks (upper right  portion
of graph) are the only data available for these categories, so they will
both be assigned a usage value  of 2000 hr/yr on an arbitrary basis.
The  same usage will be assumed for wheel dozers.   Note that 2080
hr/yr corresponds  to working a 40-hour week all year long.

     Data  on the categories of mobile construction equipment necessary
to computing average life (in years) are given in Table 43, along  with
the computed value itself (last column).  This value  for the life  of
each type of construction equipment should provide some idea  of the
number of years' shipments which  are still  in service, with corrections
still to be made for exports.

TABLE 43.   COMPUTATION OF AVERAGE YEARS OF SERVICE FOR
       SEVERAL CATEGORIES OF CONSTRUCTION EQUIPMENT
Category
Assumed
 Service
 Life, hr
Assumed
-Avg.  hp
Tracklaying Tractors
Tra.cklaying Shovel Loaders
Motor Graders
Scrapers
Off-Highway Trucks
Wheel  Loaders
Wheel Tractors
Rollers
Wheel Dozers
10, 000
10, 000
12, 000
12, 000
12,000
12,000
12,000
12, 000
12, 000
120
65
90
475
400
130
75
75
300
 Annual
Operation
  hr/yr

  1050
  1100*
   830
  2000
  2000
  1140
   740
   740
  2000
Computed
 Life, yr
                                    9..5
                                    9. 1
                                   14.5
                                    6.0
                                    6.0
                                   10.5
                                   16.2
                                   16.2
                                                               6.0
Compromise between data from references  12 & 30  and usage vs.  hp
model above.
                                  70

-------
  2000
   1600
0)
c
o
a
be
rt
rt
d
  1200
   800
   400
                 I           I


                 	40 hr/week
           G  G
                                Usage (hr/yr)-0. 1 (hp)1' 8+ 500
                                              Caterpillar
                                              Other Data (S
                                              Confidential)
                                             © John Deere
                                                              ce
                            I
                                       I
                100
                           200        300

                          Rated Engine hp
400
500
FIGURE 23.  USAGE AS A FUNCTION OF RATED ENGINE HP FOR
     VARIOUS CATEGORIES OF CONSTRUCTION EQUIPMENT
                               71

-------
       Shipments of most types ;of construction machineryV^Si 29; have
not shown steady increases over the past 10 to 15 years, but rather
they have shown variation about a more-or-less central or "typical"
value.   The generalization holds best for equipment items which are well-
established and not undergoing major changes in sales, but this  des-
cription applies well to almost all the categories of equipment.   Based
on this idea, a typical value has  been arrived at for total yearly  ship-
ments of machines in each category over the period of its computed
average  life, and these values are given in Table 44.    The table also
gives estimates of domestic shipments (total shipments x 90%) over
the computed average  life for each category, which will be assumed
for the purposes  of this report to be the present population of machines
in each category.

     There are many other types of mobile and semi-mobile machines
used in construction, including belt loaders, cranes,  excavators,
compressors,  pumps, mixers,  pavers,  trenchers, vibratory compactors,
and generators.   Most of these machines are not broken out separately
in available statistics, but a review of the machines  currently available
(33,  34)  indicates that a typical unit may have an engine of 120 hp and
a usage of perhaps 1000 hr/yr.   It is  estimated that at least 100, 000
such machines are currently in use.

TABLE  44.   TYPICAL TOTAL  YEARLY SHIPMENTS AND DOMESTIC
      SHIPMENTS OVER COMPUTED AVERAGE  LIFE FOR
                  CONSTRUCTION EQUIPMENT

                              Typical Total    Domestic Shipments over
Category	     Annual Shipments   Computed Average  Life

Tracklaying Tractors             23,000               197,000
Tracklaying  Shovel Loaders      10,500                86,000
Motor Graders                    7, 300                95, 300
Scrapers                         5,000                27,000
Off-Highway Trucks               3, 850                20, 800
Wheel Loaders                   14,200               134,000
Wheel Tractors
(incl. loader-backhoes)           30,000               437,000
Rollers                           5,600                81,600
Wheel Dozers                       500                 2, 700

    B.   Development of Emission Factors for Construction Engines

    Emission factors for construction engines depend  on the  composition
of the population by size and type of engine,  as well as the duty cycle on
which the engines  are run.   Addressing the latter topic first, a good
                                72

-------
deal of information is available on duty cycles for heavy machinery
such as scrapers, tracklaying tractors, wheel loaders, and off-
highway trucks  ' 9'  21,  30,  31).   Information on duty cycles of
rollers,  wheel tractors,  and motor graders,  however,  is very
scarce.   The available data  on duty cycles are summarized  in
Table  45 in terms of weighting factors for the 13-mode  cycle  (see
Table  2 for 13-mode cycle description if necessary).   It should
be noted that the composite load factors shown are not based on
fuel usage,  but  that  they are  calculated by
                                         13
               composite load factor    \~^    w- IT- •
                                        LJ      *  i(
                                        i=l
where
               W^ - time-based  mode weighting factor,  and

               Fi = fraction  of maximum load at the speed for that mode.

This  calculation gives a  good approximation of a fuel-based load
factor, whereas a similar calculation based on fraction of maximum
(mode 8) horsepower will uniformly yield a factor which is lower than
the fuel-based factor.   In addition to the data in Table  45, composite
load factors are given in the  Caterpillar data  v^O) for wheel loaders
(0.55), off-highway  trucks (0.45), motor graders (0.50), and track
loaders (0. 65).

    In assessing the validity of the data in Table 45, it  should be noted
that the Allis-Chalmers  information (code B) was supplied not as  shown,
but as total factors at each power increment for both operating speeds.
It is quite possible that the factor for,  say, modes 6 and 8 for track
tractors (supplied as 0. 70) should have been  split something other than
50-50  , but  no additional information was given to indicate what the split
should be.   Another point, first  raised by Mr. John Crowley  of the
EMA-OAP Emissions Survey Subcommittee t"'. is that the Allison
data include very little time for warm  up and  idling,  which would not
necessarily be  the case in practice.

    The approach taken in order to develop logical duty cycles was
to m'odify the Detroit Diesel - Allison data such that idles were weighted
0. 15 for track tractors,  scrapers, and off-highway trucks, and 0. 10 for
wheel  loaders.   The weighting factors for modes 2-6 and 8-12 were then
multiplied  by 0. 85 -r (1. 0-original idle weight)  for the first three appli-
cations above or by  0. 90-f- (1. 0-original idle  weight)  for wheel loaders,
so the'sum  of weighting factors in each case was still 1. 0.   The modi-
fied Allison data for track tractors and scrapers were then averaged
with the Caterpillar data for  track tractors and scrapers, respectively,
                                   73

-------
TABLE 45.   SUMMARY OF MANUFACTURERS'  CONSTRUCTION EQUIPMENT
              DUTY CYCLE DATA BASED ON 13 -MODE CYCLE
                              {see Table 2)
Mode(s)   Application
                        Factors by Source
                       ~~ABC&f
Application
                                                          Factors by Source
                                                       ~A     B     B
0.02
0.03
0.04
0.04
0.07
0.25
0.20
0. 10
0.05
0.05
0.59
0
0
0.035
0.10
0.35
0.35
0. 10
0.035
0
0
0.88
0.013
0.007
0.020
0.033
0.009
0.466
0.230
0.077
0.091
0.047
0.75
                                                      0.03   0.015  0.015 0.044
                                                      0.05     0      0    0.158
                                                      0.05   0.010  0.075 0.185
                                                      0.05   0.225  0.15   0.008
                                                      0.07   0.15   0.25   0.054
1,7.13   Tracklaying   0.15   0.03   0.006  Scraper '0.15   0.02   0.02   0.001
           Tractor
   2
   3
   4
   5
   6

   8
   9
  10
  11
  12
Composite Load Factor
0.
0.
0.
0.
0.
0.
10
15
15
10
10
46
0.
0.
0.

0.
0.
15
225
10
0
015
74
0.
0.
0.

0.
0.
25
15
075
0
015
80
0.
0.
0.
0.

0.
201
198
112
039
0
60
Mode(s)   Application
                      Factors by Source
1. 7, 13

   2
   3
   4
   5
   6

   8
   9
  10
  11
  12
          Wheel
          Loader
0.05   0.016
0.02
0.03
0.15
0. 15
0. 125
0. 125
0. 15
0. 15
0.03
0.02
0.64
0.002
0.064
0. 171
0
0
0.209
0.349
0. 144
0.046
0
0.66
Application

 Off-
 Highway
 Truck
 Factors by Source
  B(e*  C

0.035  0.113
                                                     0.038
                                                     0.060
                                                     0. 162
                                                     0.122
                                                     0.100

                                                     0. 100
                                                     0.122
                                                     0. 162
                                                     0.060
                                                     0.038
                                     0.038
                                     0.035
                                     0.013
                                     0.009
                                     0.029

                                     0.447
                                     0.075
                                     0..110
                                     0.014
                                     0.117
Composite Load Factor  0.64   0.66                   0. 58   0.62

Source A is Caterpillar <19-  30), Source B is Allis-Chalmers <31), Source C is
Detroit Diesel-Allison*31'

*a'average of 9 usage cycles  ^b' self-loading scraper  (c) elevating scraper
(«) average of 6 usage cycles   (e) average of 2 truck types
                                      74

-------
to obtain the consensus factors for these two applications.   Likewise,
the Allison data for wheel loaders and off-highway trucks were
averaged with corresponding Allis-Chalmers data to obtain consensus
factors on these two  latter applications.

    The results  of these procedures are given in Table 46, and it
will be assumed  that  motor graders operate on the scraper cycle,
that wheel tractors and wheel  dozers operate on the track tractor
cycle and that track loaders operate on the wheel loader cycle.
For brevity, the track tractor cycle has been denoted C-l, the
scraper  cycle C-2, the wheel  loader cycle C-3, and the off-highway
truck cycle has been  denoted C-4.   In addition, it will be assumed
that the "on-highway" 13-mode weighting factors apply to roller
operation (0. 20 for sum of idles,  0. 08 for  other modes),  and that
the weighting factors developed for farm non-tractor operation (semi-
mobile) apply to the miscellaneous category of construction engines
(Table 37).   This- latter cycle will henceforth be called "general
purpose", with either "construction" or "industrial" added to denote
the category of engines for which it is used in each instance.   As
stated in section V. B. , the general-purpose factors were ". . . based
on the ideas  that most  (of these) engines are governed at or near
rated speed, and that they spend little time at idle, "  and these  ideas
hold equally well for  miscellaneous construction engines.  The con-
sensus factors in Table 46 yield composite (calculated) load factors
of about  0. 61 for C-l,  0. 49 for C-2, 0. 62  for C-3,  and 0. 58 for C-4.
The composite load factor for  the 13-mode  "on-highway'1 schedule
is 0.40,  and that for  the general purpose  construction  schedule is
about 0. 52.   Development of new composite  cycles was considered an
important secondary  objective of the project,  and the above discussion
shows one of the ways in which this objective was met.

    Computation of cycle composite mass  emissions with mode weights
as given in Table 46 followed the same  procedure outlined in section V.
These reweighted data are presented in Table 47, noting that the com-
posite emissions based on the  13-mode  "on-highway" factors appear
in Tables 20, 21, and 23, and that those based on the general purpose
construction schedule are given in Table 38 (under farm  non-tractor
heading).  One outstanding feature of the data in Table 47  is the
relatively small  variation in composite specific emissions from one
weighting schedule to another.   This insensitivity of the specific
emissions to the schedule reinforces the idea that errors in the
weighting factors probably have a relatively weak effect on the overall
emissions results.

    To arrive at category  composite emission factors for construction
equipment,  it is  now  necessary to assume a distribution for each
category  composed of test engines in some combination.   These
attempts are not estimates of the  actual category compositions,  but
rather combinations  which should  produce reasonable category com-
posite emission  factors.   The assumptions will be arbitrary, but they

                                     75

-------
TABLE 46.   MODE WEIGHTING FACTORS FOR CHARACTERIZATION OF
           EMISSIONS FROM CONSTRUCTION EQUIPMENT
Procedure
Particulate(b)







23-Mode(c'























(a)C-l is for
C-2 is for
C-3 is for
C-4 is for
Mode C - 1
1 0. 150
2 0.028
3 0. 046
4 0.061
5 0. 094
6 0. 171
7 0.450

1 0.050
2 0.009
3 0. 009
4 0.010
5 0.013
6 0.016
7 0.017
8 0.019
9 0.020
10 0.022
11 0.050
12 0.000
13 0.186
14 0. 150
15 0.114
16 0.081
17 0.048
18 0.042
19 0.037
20 0.031
21 0.026
22 0.050
23 0.000

C-2
0. 150
0. 102
0. 145
0.069
0.096
0. 195
0.242

0.050
0.018
0.034
0.050
0.053
0.056
0.036
0.015
0.023
0. 031
0.050
0.000
0.074
0.081
0.087
0.077
0.067
0.051
0.036
0.032
0.027
0. 050
0.000

C-3
0.075
0. 044
0. 193
0. 109
0.036
0.225
0. 317

0.025
0.006
0.015
0.023
0.052
0.081
0.060
0.040
0.036
0.033
0.025
0.000
0.085
0. 106
0. 126
0. 101
0.076
0.048
0.019
0. 012
0. 005
0. 025
0.000

track and wheel tractors and
C-4 Procedure
0.092 13-Mode
0.069
0. 126
0. 106
0.097
0. 194
0. 314

0.031
0.020
0.023
0.026
0.037
0.047
0.042 21 -Mode
0. 036
0. 035
0. 035
0.031
0.000
0. 153
0. 105
0.056
0.067
0.078
0. 049
0.021
0.032
0.044
0.031
0. 000

wheel dozers
scrapers and motor graders
wheel loaders
and track loaders
Mode C-l
1
2
3
4
5
6
7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0.050
0.016
0.018
0.028
0.034
0.039
0.050
0.324
0.198
0.083
0.064
0.045
0.050

0.050
0.009
0.009
0.010
0.013
0.016
0.017
0.019
0.020
0.022
0.050
0. 186
0. 150
0. 114
0.081
0.048
0.042
0. 037
0.031
0.026
0. 050
C-2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
050
034
092
104
028
058
050
136
159
122
066
050
050

050
018
034
050
053
056
036
015
023
031
050
074
081
087
077
067
051
036
032
027
050
C-3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
025
Oil
044
153
075
062
025
158
234
141
036
010
025

025
006
015
023
052
081
060
040
036
033
025
085
106
126
101
076
048
019
012
005
025
C-4
0.031
0.037
0. 047
0.087
0.066
0.064
0.031
0.264
0.097
0. 134
0.036
0.075
0.031

0.031
0. 020
0.023
0.026
0.037
0. 047
0. 042
0.036
0.035
0.035
0.031
0. 153
0. 105
0.056
0.067
0.078
0.049
0.021
0.032
0.044
0.031
off-highway trucks
("'sequence of conditions as
'c'sequence of conditions as
shown
shown
in Table 22
in Table 2
                                76

-------
TABLE 47.
             COMPOSITE MASS AND BRAKE SPECIFIC EMISSIONS FOR TEST ENGINES WEIGHTED TO SIMULATE
                               FOUR TYPES OF CONSTRUCTION USAGE

Engine
Allis -Chalmers
3500


Caterpillar D6-C



Detroit Diesel
6V-71


International
Harvester
D407
John Deere 6404



Perkins 4.236


Ford G5000
(G256)

Hercule* G-2300


J. I. Case 159G


Weighting
Schedule*
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-l
C-2
C-3
C-l
C-2
C-3
C-l
C-2
C-3
Wisconsin VH4D C-3
Mass Emissions in g/hr
HC
39.5
37. 1
39.6
38.7
6. 70
6.70
6.22
6.75
68. 3
60.9
65.5
66.9
137.
121.
130.
210.
195.
210.
210.
14. 1
15.7
14.7
212.
185.
199
220.
197.
225.
148.
136.
148.
CO
262.
234.
261.
282.
65.9
61.8
53.9
64.9
276.
211.
227.
284.
375.
294.
338.
220.
201.
209.
233.
222.
139.
153.
4530.
4250.
4810.
6Q80.
6060.
7130.
5930.
5200.
5910.
133. 4270.
NOV
908.
730.
900.
856.
384.
321.
395.
365.
2650.
2130.
2620.
2450.
568.
418.
519.
521.
350.
434.
447.
461.
338.
433.
313.
213.
268.
20R.
138.
174.
58.
41.
50.
101.
RCHO
14.
12.
13.
13.
6.6
6.4
6.5
6.6
12.
12.
12.
12.
8. 1
8. 3
8.2
61.
56.
61.
58.
7.9
7. 5
7.5
11.
9.3
11.
6.0
5. 1
6.2
4 12.
1 10.
3 12.
2.2
SO* Part.
73.4 66.1
58. 7 60. 1
71.0 72.7
68.5 70.5
71.8 34.9
58.0 27.9
73.1 31.9
67.4 30.9
106. 21.6
85.2 18.8
102. 21.6
99.4 20.4
54.1 115.
44.0 96.8
52.9 115.
69.6 97.0
55.8 87.0
66.7 105.
64.5 102.
34.4 59.5
26.6 46.1
32.1 52.6
8.81 17.6
7.30 12.6
8.60 15.6
10.0 11. I
8. 30 8. 29
9.79 10.0
6.16 9.59
5.21 6.40
6.03 8.28
5.17 8.56
Specific
HC CO
0.465 3.09
0.563 3.55
0.483 3.19
0.492 3.59
0.078 0.767
0.099 0.916
0.073 0.630
0. 084 0. 806
0.578 2.33
0.661 2.29
0.565 1.96
0.608 2.58
2.16 5.90
2.42 5.88
2.07 5.38
2.68 2.81
3.24 3.35
2.79 2.78
2.92 3.24
0. 330 5. 19
0.483 4.29
0.361 3.75
5.26 112.
6.00 138.
5.15 125.
5.17 164.
6.07 186.
5.52 175.
6.30 253.
7.46 286.
6.45 258.
7.81 251.
Emissions in g/hphr
NO,,
10.7
11.1
11.0
10.9
4.46
4. 75
4.65
4. 55
22.4
23. 1
22.6
22.2
8.95
8. 36
8.25
6.67
5.83
5. 75
6.21
10.8
10.4
10.6
7.75
6.91
6.94
4.8"
4.23
4.27
2.48
2.26
2. 20
5.91
RCHO
0. 15
0. 17
0. 15
0. 16
0.074
0. 092
0.074
0.079
0. 094
0. 12
0.099
0. 11
0. 12
0. 16
0. 13
0.75
0. 91
0. 78
0. 78
0. 18
0.22
0. 18
0.26
0.29
0. 27
0. 16
0. 15
0. 15
0. 50
0. 56
0.50
0.12
SO,,
0.864
0.890
0.866
0.871
0.835
0.860
0. 861
0.839
0.895
0.924
0.884
0.904
0.852
0.880
0. 841
0.890
0.928
0.885
0.897
0.806
0.818
0.789
0.218
0.237
0.223
0. 235
0.255
0. 240
0.262
0.286
0.263
0.304
Part.
0.732
0.886
0.817
0.862
0.383
0'. 404
0.351
0. 371
0. 172
0. 199
0. 174
0.141
1.72
1.91
1.72
.16
.40
.29
.36
. 33
.39
. 32
0.413
0.397
0.376
0. 247
0.249
0.230
0.387
0.344
0.339
0.470
    C-2 applies to scrapers and motor graders
    C-3 applies to track loaders and wheel loaders
    C-4 applies to off-highway trucks

-------
are also necessary because the distribution of engines in service is
simply not known.   With these qualifications, the assumptions made
for the purposes  of this report are given in Table 48, along with the
assumed contribution of each engine to the category composite factors
and the  composite factors themselves.   These factors appear reason-
able,  but confidence in them could certainly be strengthened if more
data were available  on engines operating in the field.

    C.   Estimation of National Emissions  Impact for Construction
Engines

    Proceeding along  a course parallel to that us"ed on farm equipment
in section V, impact estimates have been calculated for the various
categories of construction equipment,  and they appear in Table 49.
The numbers on which the estimates are based were taken  from Tables
43, 44,  and 48, and a  sample calculation for hydrocarbons from  track-
laying tractors is

    (ton/yr)track tractor HC =  197, 000 units x !2_££ x 0.61
                                               unit
                          0  HC    i  i rw i n-6 ton
    x 1050 hr/yr x  0. 685 f-^1  x *• IUx lu	 =  11,400 ton/yr.
              }           hphr         g

It was assumed that diesel engines produce negligible crankcase vent
losses,  and that all the gasoline  engines used in construction have
uncontrolled crankcase vents.   It was  also assumed that evaporation
of diesel fuel is negligible, that  gasoline evaporated from unprotected
tanks  (wheel tractors,  motor graders,  and  half the tanks used on rollers
and miscellaneous engines) at the rate  of 4g/(gallon tank volume day);
and that gasoline  evaporated from protected tanks (half of those used
on rollers and miscellaneous engines) at the rate  of 2g/(gallon tank volume
day).

    The average  length of the construction  season (in days) was computed
by assuming a 7-month season in the Northern region (down to 43°  north
latitude),  an 8-month  season in the Central  region (43° to  37°), and a
9-month season in the  Southern Region (37°  and further south).   These
seasons were weighted by the distribution of contractors' work (excluding
homebuilding) (35) as of October  1972,  which was  9. 2% in the Northern
region,  51. 7% in  the Central region,  and 39. 1% in the Southern region.
The result was a  weighted mean  season of 249 days,  which is the period
over which the evaporative emissions were assumed to occur.   The
fuel tanks on the  gasoline-powered equipment were assumed to be ade-
quate  for 8 hours of normal  operation,  and their volumes were then calcu-
lated  using fuel consumption figures for the  test engines.

    To place emissions from construction equipment in perspective,
Table 50 shows them compared to revised 1970 EPA Air Pollution
                                78

-------
TABLE 48.   COMPUTATION OF CATEGORY COMPOSITE BRAKE SPECIFIC  EMISSION
   FACTORS FOR HEAVY-DUTY ENGINES USED IN CONSTRUCTION APPLICATIONS
                                  *As8umed
                                  Fraction of
                                   Category   Contribution to Category Emission Factor, g/hp hr
Application Engine hp hrs
Tracklaying Allis-Chalmers 3500 0
Tractor Caterpillar D6C 0
(C-l) Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
Perkins 4. 236 0
} =Category Composite Emission Factors
Wheel Allis-Chalmers 3500 0
Tractor International Har. D407 0
(C-l) John Deere 6404 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G ** 0
\ =Category Composite Emission Factors
Wheel Allis-Chalmers 3500 0
Dozer Caterpillar D6C 0
(C-l) Detroit Diesel 6V-71 0
John Deere 6404 0
^ =Category Composite Emission Factors
Scraper Allis-Chalmers 3500 0
(C-2) Caterpillar D6C 0
Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
y =Category Composite Emission Factors
Motor Grader Caterpillar D6C 0
(C-2) Detroit Diesel 6V-71 0
International Har. D407 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G **0
y =Category Composite Emission Factors
Wheel Loader Allis-Chalmers 3500 0
(C-3) Caterpillar D6C 0
Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G* 0
_ Wisconsin VH4D 0
y=Category Composite Emission Factors
Continued on next page.
. 10
.45
. 15
. 10
. 10
. 10
•
.20
.25
.20
. 25
.06
.03
.01
•
. 10
.40
.40
. 10
=
.20
.20
. 30
. 10
.20

. 50
. 25
. 10
. 10
.02
.02
.01

. 10
'.20
.20
. 12
. 10
. 12
.07
.07
.01
.01


*assumptions are arbitrary and do not reflect
percentages - see discussion p. 74

HC
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*•
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.

046
035
087
216
268
033
685
093
540
536
082
316
155
063
78
046
031
231
268
576
113
020
198
242
648
22
050
165
242
048
120
121
075
821
048
015
113
298
279
043
360
386
064
078
63

actual


CO NOX
0.
0.
0.
0.
0.
0.
2.
0.
1.
0.
1.
6.
4.
2.
18.
0.
0.
0,
0.
1.
0.
0.
0.
0.
0.
2.
0.
0.
0.
0.
2.
3.
2.
11.
0.
0.
0.
0.
0.
0.
8.
12.
2.
2.
28.

309
345
350
590
281
519
39
618
48
562
30
72
92
53
1
309
307
932
281
83
710
183
687
588
670
84
458
572
588
429
76
72
86
4
319
127
392
646
278
450
75
2
58
51
3

market or

**low weights given the Case engine's emissions because it

was
1.
2.
3.
0.
0.
1.
9.
2.
2.
1.
2.
0.
0.
0.
9.
1.
1.
8.
0.
12.
2.
0.
6.
0.
1.
12.
2.
5.
0.
1.
0.
0.
0.
10.
1.
0.
4.
0.
0.
1.
0.
0.
0.
0.
10.

07
01
36
895
667
08
08
14
24
33
70
465
147
025
05
07
78
96
667
5
22
950
93
836
17
1
38
78
836
04
138
085
023
3
10
930
52
990
575
27
486
299
022
059
3

RCHO
0.015
0.033
0. 014
0.012
0.075
0. 018
0. 17
0.030
0. 030
0. 15
0. 045
0.016
0. 005
0.005
0. 28
0.015
0.030
0.038
0. 075
0. 16
0. 034
0.018
0.036
O.Olf
0. 18
0.28
0. 046
0.030
0. 016
0.022
0. 006
0.003
0.006
0. 13
0.015
0.015
0.020
0. 016
0.078
0.022
0.019
0. 010
0.005
0. 001
0.20

_SOX
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

086
376
134
085
089
081
851
173
213
178
202
013
007
003
789
086
334
358
089
867
178
172
277
088
186
901
430
231
088
082
005
005
003
844
087
172
177
101
088
095
016
017
003
003
759

Part.
0.073
0. 172
0. 026
0. 172
0. 116
0. 133
0.692
0. 146
0.430
0. 232
0.332
0.025
0.007
0. 004
1. 18
0.073
0. 153
0. 069
0. 116
0.411
0. 177
0. 081
0. 060
0. 191
0. 280
0. 789
0.202
0. 050
o. 191
0. 139
0. 008
0. 005
0.003
0. 598
0. 082
0.070
0.035
0. 206
0. 129
0. 158
0.026
0.016
0. 003
0.005
0.730

population






erroneously
    run with high restrictions - see discussion p.  26
                                            79

-------
TABLE 48.   (Cont'd.)  COMPUTATION OF CATEGORY COMPOSITE BRAKE SPECIFIC
                EMISSION FACTORS FOR HEAVY-DUTY ENGINES USED
                         IN CONSTRUCTION APPLICATIONS
                                  *As8umed
                                  Fraction of
                                              Contribution to Category Emission Factor, g/hphr
Application Engine
Tracklaying Allis-Chalmers 3500
Loader (C-3) Caterpillar D6C
International Har. D407
Perkins 4. 236
hp hrs
0
0
0
0
y =Category Composite Emission Factors
Off-Highway Allis-Chalmers 3500
Truck (C-4) Caterpillar D6C
Detroit Diesel 6V-71
John Deere 6404
0
0
0
0
y =Category Composite Emission Factors
Roller Detroit Diesel 6V-71
(13-Mode Mercedes-Benz OM636
On-Highway) Perkins 4. 236
Ford G5000 (G256)
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
0
0
0
0
0
**o
0
. 15
.65
. 10
. 10
s
.20
. 15
.50
. 15
a
.20
.05
.05
.30
.30
.02
.08
y =Category Composite Emission Factors "
Miscellaneous Allis-Chalmers 3500
(General Caterpillar D6C
Purpose Detroit Diesel 6V-71
Const. ) International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
Ford G5000 (G256)
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
0
0
0
0
0
0
0
0
0
0
**0
0
.05
.05
.40
. 10
.05
.08
.02
. 10
.04
.08
.01
.02
HC
0.072
0.047
0.207
0.036
0.362
0.098
0.013
0. 304
0.438
0.853
0. 140
0.060
0.033
2.66
2.69
0.268
0.857
6.71
0.028
0.005
0.282
0. 249
0. 160
0.082
0.030
0.043
0.236
0.477
0.077
0. 185
CO
0.
0.
0.
0.
1.
0.
0.
1.
0.
2.
0.
0.
0.
47.
63.
6.
24.
193.
0.
0.
0.
0.
0.
0.
0.
0.
5.
15.
2.
5.
478
413
538
375
80
718
121
29
486
62
592
253
248
7
0
32
7

159
045
724
556
149
301
083
381
76
2
87
86
NOx
1.
3.
0.
1.
6.
2.
0.
11.
0.
14.
4.
0.
0.
2.
1.
0.
0.
8.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
65
02
825
06
56
18
682
1
932
9
04
166
535
01
22
176
422
57
540
239
40
822
277
228
125
983
274
314
022
108
RCHO
0.022
0.048
0.013
0.018
0. 10
0.032
0. 012
0.055
0. 12
0.22
0.030
0.015
0.014
0. 10
0.051
0.013
0.012
0. 24
0.008
0.004
0. 048
0. 019
0.043
0.021
0. 003
0.026
0.012
0.013
0. 006
0.003
SOX
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
130
560
084
079
853
174
126
452
135
887
192
066
042
078
083
006
028
495
045
043
372
090
047
088
026
082
010
021
003
007
Part.
0. 123
0.228
0. 172
0. 132
0.655
0. 172
0.056
0.070
0. 204
0. 502
0. 042
0. Ill
0. 077
0. 132
0.087
0.008
0.049
0.506
0.045
0.020
0.083
0. 190
0.067
0. 161
0.042
0. 163
0.013
0.019
0. 003
0.010
 ) =Category Composite Emission Factors
1.85   32.1
                13.3
                                                                       0.21
0.834   0.816
   *assumptions are arbitrary and do not reflect actual market or population
    percentages   see discussion p. 74
  **lbw weights given  the Case engine's emissions because it was erroneously
    run with high restrictions - see discussion p. 26
                                           80

-------
TABLE 49.
Pollutant
HC (Exhaust)
NATIONAL EMISSIONS IMPACT ESTIMATES FOR HEAVY-DUTY
            CONSTRUCTION ENGINES
HC
(Evaporative)
 HC
 (Crankcase)
 HC (Total)
 CO
 Engine Application

 Tracklaying Tractor
 Wheel Tractor
 Wheel Dozer
 Scraper
 Motor Grader
 Wheel Loader
 Tracklaying Loader
 Off-Highway Truck
 Roller
 Miscellaneous

 Wheel Tractor
 Motor Grader
 Wheel Loader
 Roller
 Miscellaneous

 Wheel Tractor
 Motor Grader
 Wheel Loader
 Roller
 Miscellaneous

 Tracklaying Tractor
 Wheel Tractor
 Wheel Dozer
 Scraper
 Motor Grader
 Wheel Loader
 Tracklaying Loader
 Off-Highway Truck
 Roller
 Miscellaneous

 Tracklaying Tractor
 Wheel Tractor
 Wheel Dozer
 Scraper
 Motor Grader
 Wheel Loader
 Tracklaying Loader
 Off-Highway Truck
 Roller
 Miscellaneous
(g/unityr)
Gasoline

121.
-
-
154.
275.
-
-
205.
254.
22.9
24.9
33.9
20.9
25.4
24. 1
30.8
54.9
41.1
50.7
168.
.
-
210.
364.
.
-
267.
330.
3200.

-
4560.
8050.
-
-
4500.
7720.
x 10"3
Diesel
52.6
49.7
211.
568.
20.5
96.6
16.0
396.
18.3
71.4
-
-



-
.
52.6
49.7
211.
568.
20.5
96.6
16.0
396.
18.3
71.4
184.
720.
670.
1320.
81. 1
286.
79.8
1220.
61.8
188.
ton/yr Total for Pollutant,
xlO'3 ton/yr x 10'3
11.4
29.0
0.3
16.9
3.2
22.1
1.0
4.5
13.4
12.7 114.
1.7
0.2
1.5
1.3
0.7 5.4
1.7
0.2
2.4
2.6
1.3 8.2
11.4
32.4
0.3
16.9
3.6
26.0
1.0
4.5
17.3
14.7 128.
39.9
295.
0.8
39.2
43.8
383.
4.9
14.0
285.
220. 1330.
 Continued on next page.
                                       81

-------
TABLE 49. (Cont'd.)
         NATIONAL EMISSIONS IMPACT ESTIMATES FOR HEAVY-
          DUTY CONSTRUCTION ENGINES
 Pollutant
NOX as NO2
RCHO as
 HCHO
SOX as SO2
Particulate
Engine Application

Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous

Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous

Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous

Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
(g/unit
yr) x ID'3
Gasoline Diesel
.
144.
.
-
120.
268.
-
-
121.
187.

5.9
-
-
7.3
11.

-
5.6
9.0
.
5.2
-
-
6.3
12.1
-
-
6.2
10.6
_
8. 1

-
7.8
15.4
-
-
8.7
11.7
698.
334.
4580.
5630.
397.
1240.
291.
6910.
351.
1030.
13.
10.
59.
130.
4.6
21.4
4.4
102.
5.5
13.9
65.4
30.3
317.
419.
32.4
94.1
37.8
412.
22.6
64.7
53.2
45.5
150.
367.
23.0
88.8
29.0
233.
16.8
63.2
ton/yr Total for Pollutant,
x 10~3 ton/yr x 10~3
151.
147.
5.6
167.
39.5
140.
18.0
79.4
17.1
91.3 856.
2.8
4.6
0. 1
3.9
0.5
2.7
0.3
1.2
0.5
1.4 18.
14.2
12.8
0.4
12.4
3.2
10.3
2.3
4.7
1.0
5.7 67.0
11.5
19.2
0.2
10.9
2.3
9.9
1.8
2.7
1.0
5.6 65.1

-------
TABLE 50.  COMPARISON OF HEAVY-DUTY CONSTRUCTION ENGINE
        EMISSIONS ESTIMATES WITH EPA NATIONWIDE AIR
                  POLLUTANT INVENTORY DATA
                1970 EPA Inventory Data,
                106 tons/yr(27) (Revised)
All Sources
27. 3
100. 7
22. 1
33.4
25. 5
Mobile Sources
15. 2
78. 1
11. 0
1. 0
0.9
Heavy-Duty Construction
Engine Estimates as % of
All Sources
0. 469
1. 32
3. 87
0. 20
0.26
Mobile Sources
0.842
1. 70
7.78
6.7
7.2
Pollutant

Hydrocarbons
CO
NOX
SOX
Particulate
Inventory data \'i.   Construction engines appear to make relatively
small contributions to total hydrocarbons and CO, but more significant
contributions to totals of the other emissions.   The emissions impact
values presented here differ sharply, in some cases, with previously-
published values for construction equipment, and the reason for the
differences is primarily the inclusion of some gasoline-powered
machinery in the subject estimates.   The influence of the gasoline
engines is illustrated by Table 51, which compares the results of a
previous study'  ' with those of the  subject work.   While the agreement
between the earthmoving machinery  contribution from this study and
the total  of the previous  work is not  perfect, it shows few basic dis-
agreements.    If SOX were calculated for the previous  study by the
same method used for this report, for instance, the resulting figure
would be about 62, 800 tons rather than the 107, 000 tons shown.   On
the particulate values, it can only be said that the emission factors
used were substantially different.

TABLE 51.   COMPARISON OF  EMISSION ESTIMATES  FOR GASOLINE-
      AND  DIESEL-POWERED EQUIPMENT WITH A PREVIOUS
                       EMISSION ESTIMATE
                                          Estimated Ton/yr xlO"3
Coverage of Estimate/Source

All Const.  Equpt. /this report
Gasoline Const. Equpt. /this report
Diesel Const.  Equpt. /this  report
Earthmoving Equpt. */this report
Earthmoving Equpt.
HC
128.
55.
72.
63.


2
8
3
CO
1330.
1110.
220.
176.
NOX
856.
35.6
820.
583.
SOX Particulate
67.
1.
65.
46.
0
6
4
6
65.
2.
62.
38.
0
2
8
4
44.0   223.    625.   107.
                   20. 0
*does not include any gasoline-powered equipment or any rollers, wheel
dozers, wheel tractors (except scraper tractors), or miscellaneous engines
                                 83

-------
    Some of the information required to summarize emissions  from
construction equipment on a seasonal/regional basis has already been
developed, namely the assumed operating seasons and fractions of the
engine population in the three regions.   No data are available,  however,
on the distribution of construction activity between urban/suburban
and rural areas,  so it will be estimated that 75% of the activity  is in
urban/suburban areas.  These simplistic assumptions permit the
compiling of Table 52, which gives valuable  results  even though it is
necessarily quite heavily qualified.   The analysis estimates that some
20% of emissions from construction equipment occur in the winter
months,  about 30% in the summer months, and that spring and fall
each account for about 25%.   It also estimates that about 8% of
emissions from construction equipment occur in the Northern region,
50% in the Central region, and 42% in the Southern  region, (states
included in regions shown in Appendix H).
TABLE 52.   ESTIMATE OF SEASONAL, REGIONAL, AND URBAN-RURAL
       DISTRIBUTION OF EMISSIONS FROM CONSTRUCTION
                         EQUIPMENT
.Percentage of Annual Nationwide Emissions by Season
Urban/Suburban Areas
Region
Northern
Central
Southern
Dec-
Feb
0. 83
7. 01
7. 06
Mar-
May
1.46
9.34
7.95
Jun-
Aug
2. 09
11.68
8. 83
Sep-
Nov
1.46
9. 34
7.95
Rural Areas
Dec-
Feb
0. 28
2. 34
2. 35
Mar-
May
0.49
3. 11
2.65
Jun-
Aug
0. 70
3. 89
2. 94
Sep-
Nov
0.49
3. 11
2.65
Subtotals
7.80
49.82
42.38
Subtotals  14.90  18.75  22.60   18.75   4.97   6.25   7.53   6.25
Totals
75.00
25. 00
100.00
        In summary, the major assumptions made in computation of
 national emissions impact for construction equipment were:

        1.   The service life of construction machinery is 10, 000 to
            12, 000 hours, as shown in the tabulation at the  end of
            this summary; and the average horsepower of machines
            in several categories is as shown in the same tabulation
            (see pp.  68 & 69)

        2.   Annual operating time for construction machines can be
            approximated by

                   usage (hr/yr) = 500 + 0. 1 (hp) 1'8;
                                    84

-------
    except for tracklaying shovel loaders,  off-highway trucks,
    and scrapers,  for which other data are available,  (see
    pp. 69 & 70)

3.   The life of construction equipment (in years) computed
    from  service life (in hours) and usage  (in hours/year),
    can be used with typical annual shipments to estimate
    number of units in  service, as shown in the tabulation
    on the next page, (see pp. 69 &; 71)

4.   Emissions from heavy  duty construction  engines can be
    estimated by combining results of tests conducted under
    the subject program in a reasonable way.  (see pp. 78 & 79)

5.   Engine operating cycles can be estimated from manufacturers'
    operating data,  (see pp.  71-77)
                            85

-------
                      TABULATION OF PERTINENT ASSUMPTIONS AND COMPUTED VALUES
00
               Category
Assumed             Annual
Service   Assumed  Operation, Computed
Life,  hr  Avg. hp    hr/yr     Life, yr
Typical Total
  Annual
Shipments
^Domestic Shipments
 Over Computed
 Average Life
Track Tractors
Track Shovel Loaders
Motor Graders
Scrapers
Off-Hwy. Trucks
Wheel Loaders
Wheel Tractors
Rollers
Wheel Dozers
General Purpose
10,000
10, 000
12, 000
12, 000
12, 000
12,000
12, 000
12, 000
12, 000
-
120
65
90
475
400
130
75
75
300
120
1050'
1100
830
2000
2000
1140
740
740
2000
1000
9.5
9. 1
14. 5
6.0
6.0
10.5
16. 2
16.2
6.0
-
23, 000
10, 500
7,300
5,000
3, 850
14, 200
30, 000
5, 600
500
-
197,000
86, 000
95, 300
27, 000
20,800
134,000
437, 000
81, 600
2, 700
100,000
       ^including assumption of 10% exports

-------
VII.   ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
         FOR HEAVY-DUTY ENGINES USED IN INDUSTRIAL
                         APPLICATIONS

    This section treats industrial engines as a category separate from
farm and construction engines for purposes of estimating emission factors
and national emissions impact.   This approach permits utilization of
emission data from  the largest number  of engines in determining emission
factors, while still retaining separation between the application  categories,
Some of the engine applications included in the  industrial classification
are: fork lifts;  mobile refrigeration units; auxiliary engines  for hy-
draulic pump service on  garbage trucks and other large vehicles;
generator and pump service for utilities,  airports,  and state mainte-
nance  organizations; logging; mining; quarrying; oil field operations;
and portable well-drilling equipment.

    A.   Analysis of Population and Usage for Heavy-Duty Industrial
Engines

    Of the three application categories  for heavy-duty engines which are
discussed in this report,  the industrial  category is the most difficult to
define.   The attempt made here is to include the engine applications
named above while excluding applications such as agriculture, construc-
tion, railway motive power,  marine propulsion, miscellaneous  small
engine applications, and others covered by separate  reports under the
subject contract.   The greatest difficulties occur in separating  engines
classified as "miscellaneous 4-stroke  small utility  engines"^") and
engines designed for railway motive  power from available production
and shipment statistics^''.

    As averages over the past 10 years, shipments  of industrial gasoline
engines have averaged about 1. 1 million,  and industrial diesel engine
shipments have  averaged about 50, 000.   No data are available on the
size distribution of this particular group of engines, but data are given
regarding the value  of the engines at the manufacturer's plant.   For
the years 1969-1970, the average value of gasoline  engines was  about
$120, and that for diesel  engines  was about $1900 (excluding  engines
for railway motive power).    In order to interpret these values in terms
of engine horsepower,  other tables in the Bureau of the Census data *  '
were consulted, with the  results  shown in Figure 24.   These data
indicate  that the average horsepower of gasoline engines shipped was
about 10,  and that the average horsepower of diesel engines shipped
was about 125.

    Considering the detail with which applications of diesel engines
(other  than industrial) have been dealt under the subject contract, the
value of 50, 000  engine shipments per year can probably be assumed
                                 87

-------
10,
  1000,0
     O4
    o
    O
    h
  lOOto
   10
      1. 0
                      4  5 6 7 8 9 10
                               10                        100


                               Engine Rated Horsepower
4 &  6 7 B 9 10

        1000
    FIGURE 24.   VALUE OF INDUSTRIAL ENGINES AS A FUNCTION OF

                    ENGINE RATED HORSEPOWER <37)
                                         88

-------
to exclude most of the unwanted applications.   For gasoline engines,
however,  the average horsepower estimate of  10 indicates  that a
large number  of engines already treated in the Part 4 Final Report (
on small general utility engines are showing up in the industrial gasoline
engine shipment figures.   These engines made their appearance under
the "miscellaneous 4-stroke" category in that report,  and the current
population of the category was estimated at 6. 38 million.   The category
was assumed to include industrial applications  of small utility engines,
so duplication must be avoided here.

    The average rated horsepower  of engines in the "miscellaneous
4-stroke" category'   ' was assumed to  be 3. 86 hp, so if the  fraction
of gasoline engines classified "industrial" in the statistics^  ' which
are actually in the  small  engine category were known, a new  average
horsepower and unit  value could be computed.   The fraction  of ship-
ments currently double-classified is not known, but an increasing
series of fractions can be assumed, and the  subsequent calculations
should show what fraction is reasonable.   This computation is outlined
in Table 53, and it is apparent that  a substantial number of engines
classified industrial are actually in the  small engine group, judging
by the computed average  horsepower  values.

    Estimation of a reasonable average  horsepower for gasoline  in-
dustrial engines is not straightforward,  but a look through listings of
engines available over the past  years '   ' indicates a horsepower
range from under  20  hp to over 250 hp for n on -auto motive* engines.
Considering that the industrial rating of  most engines is very conserva-
tive,  that is, it may be only around half  the maximum  (intermittent)
rating,  55 hp  (continuous rating) seems  like a  reasonable average.
This engine might have a maximum (intermittent) rating of  75 to 80
hp, but it will be considered as rated on a continuous basis  for this
report.   The  result of this computation, then,  is that  an estimated
132,000 industrial gasoline engines are  shipped each year,  with the
remainder of  those classified "industrial" in the Bureau of the Census
data (^) assumed  included with other small  engines in an earlier
report (36)(that is,  88% of the gasoline engines  classified "industrial"
will be assumed to be small utility engines).

  *  Usage of industrial engines  is another unknown, but for the pur-
poses  of this report it will be assumed as approximately one-half
that predicted  for comparably-sized construction engines by the
relationship shown in Figure 23.   These values would be 600 hours
for diesels and 300 hours  for gasoline engines.  Useful service life
for-industrial  engines probably depends  to a large extent on type of
operation, but since no positive  information is available, the values
of 5000 hr for diesel  engines and 2500  hr for gasoline  engines will be
used.   These figures result in  population estimates of 417.000 for
                                 89

-------
TABLE 53.   COMPUTATION OF INDUSTRIAL GASOLINE ENGINE
      AVERAGE HORSEPOWER BASED ON ASSUMPTIONS
            ABOUT DOUBLE-CLASSIFICATION OF
                 SMALL UTILITY ENGINES

Assumed Fraction
Industrial Gasoline     Computed Industrial
Engines Currently      Gasoline  Engine           Average Value,
Double-Classified      Average Horsepower       Dollars (Fig. 24)

       0                      10                      120
    0.10                      11                      120
    0.20                      12                      170
    0.30                      13                      200
    0.40                      14                      220
    0.50                      16                      280
    0.60                      19                      370
    0.70                      24                      510
    0. 80                      35                      400
    0.85                      45                      420
    0.88                      55                      450
    0.90                      65                      480
    0.92                      81                      520
    0.94                     106                      600

industrial diesel engines (where imports and exports are assumed to
balance) and 990, 000 for industrial gasoline engines (where 10% of
production is assumed to be exported).

    B.   Development  of Emission Factors for Industrial Engines

    The duty-cycles of industrial engines are undoubtedly of many
types, but no specific information is available on them which would
permit computation of emission factors  on a rigorous basis.   In the
absence of data,  a duty cycle termed "general purpose industrial"
will be used, with weighting factors as shown on the right side of
Table 37 and composite emissions as  shown at the bottom of Table 38
(called the "farm non-tractor" schedule in Tables 37 and 38).  The
general purpose industrial cycle is the same as both the farm non-tractor
and general purpose construction cycles, with basis as discussed in
section V. B.   This cycle development was the final effort involved in
achieving the secondary objective of modifying existing procedures,
which was mentioned in section II.

    Composite emissions for the  category of industrial engines were
determined by weighting emissions from each of the test  engines  as
shown in Table 54.   This weighting procedure is not an attempt to
reconstruct the industrial engine  population,  but is rather  intended to
compute reasonable emission factors  only.   These category composite
                                  90

-------
TABLE 54.   COMPUTATION OF COMPOSITE BRAKE SPECIFIC EMISSION FACTORS
            FOR INDUSTRIAL APPLICATIONS OF HEAVY-DUTY DIESEL
                           AND GASOLINE ENGINES

                                  *Assumed
                                  Fraction of
                                  Category Contribution to Category Emission Factor, g/hphr
Engine Type
Industrial
Diesel






1 Category
Industrial
Gasoline
Engine hp hours
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
0.08
0.05
0.40
0.15
0.07
0.05
0.05
0.15
Composite Emission Factors -
Ford G5000 (G256)
Hercules G-2300
0.35
0.40
J. I. Case 159G **0.05

> - Category
Wisconsin VH4D
0.20
Composite Emission Factors =
HC
0.
0.
0.
0.
0.
0.
0.
0.
1.
2.
2.
0.
1.
6.
044
005
282
374
225
052
075
064
12
07
38
383
85
68
CO
0.
0.
0.
0.
0.
0.
0.
0.
3.
50.
76.
14.
58.
199.
255
045
724
834
209
188
206
572
03
4
0
4
6

NOX
0.864
0.239
9.40
1.23
0.388
0. 142
0.312
1.47
14.0
2.40
1.57
0. 110
1. 08
5. 16
RCHO
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
013
004
048
028
060
013
008
039
21
10
064
028
028
22
SOX
0.072
0. 043
0.372
0. 135
0.066
0.055
0.065
0. 123
0.931
0.083
0. 103
0.014
0.068
0.268
Part.
0.072
0.020
0.083
0.285
0. 094
0. 100
0. 104
0. 244
1.00
0. 114
0.096
0.015
0. 102
0.327
 *assumptions are arbitrary and do not reflect actual market or population
  percentages - see discussion p.  87
**low weight given the Case engine's emissions because it was erroneously run
  with high restrictions -  see discussion p.  26
                                          91

-------
factors could be  made much more rigorous if more data were available
on the makeup of the population of industrial ergines in service.

    C.   Estimation of National Impact for Industrial Engines

    Using essentially the same methods as used for farm and construc-
tion engines,  impact estimates have been  made for emissions from
industrial engines.  The same assumptions on crankcase  vent and
evaporative losses were made for industrial engines as were made
for construction engines (section  VI. C. ),  except that all industrial
engines were assumed to have evaporative losses  of 3g/(gallon  tank
volume day).   This latter factor  is the same as assuming  that half
the gasoline  engines had protected tanks and the other  half had unpro-
tected tanks.  In addition, the annual days of usage for industrial
engines was  assumed to be the same as  for construction engines in
each  region.  When combined with the assumption that industrial  engines
are distributed in proportion to population (9. 4% in the Northern region,
55. 6% in the Central, and 35. 0% in the Southern region) ^38\ the weighted
mean season for  use is 248 days,  which is the period over which evapora-
tive emissions were assumed to occur.   For gasoline engines averaging
55 hp, the nominal fuel tank volume computed was 25 gallons.

    Impact estimates based on the assumptions and data presented
alone are given in Table 55.  Gasoline engines appear  to dominate the
hydrocarbon and  (especially) the CO  emissions, while the  diesels  produce
considerably more NOX.   Table 56 gives a comparison of  industrial
engine emissions to revised 1970  EPA Air Pollution Inventory Data ^  ',
indicating  that industrial  engines make small but significant contribu-
tions  only  to national totals of CO and NOX.   Industrial engine contribu-
tions  to hydrocarbons,  SOX, and particulate appear to  be minimal.

    To develop a breakdown of emissions from industrial  engines on
a seasonal, regional, and urban/rural  basis,  it will be  necessa.yto
make several assumptions.   First, it will be assumed that industrial
engines are distributed in proportion to population.  It will also be
assumed that the distribution of annual operating time  follows that
developed for estimation  of evaporative emissions,' and that  the engine
distribution among urban/suburban and rural areas is proportional to
the (urban + suburban) and rural  populations, respectively.

    The results of this analysis are given in Table 57,  indicating that
about 74% of emissions from industrial engines may occur in urban/
suburban areas.   The table also  shows that about 20% of industrial
engine emissions occur in winter, 30% in the summer,  and 25% each

-------
TABLE 55.   NATIONAL EMISSIONS IMPACT ESTIMATES  FOR
            HEAVY-DUTY INDUSTRIAL ENGINES
Pollutant
HC (Exhaust)
              g/unit yr  ton/yr
Engine Type    x IP"3    x 10"3
 Diesel
 Gasoline
HC (Evaporative) Gasoline

HC (Crankcase)  Gasoline
 HC( Total)
 CO
 NOX as
  Diesel
  Gasoline

  Diesel
  Gasoline

  Diesel
  Gasoline
 RCHO as HCHO  Diesel
                 Gasoline
 SOX as SO2
 Particulate
  Diesel
  Gasoline

  Diesel
  Gasoline
  43. 7
  57. 3

  18.6

  11. 5

  43. 7
  87. 4

 118.
1710.

 546.
  44. 3

   8. Z
   1. 9

  36. 3
   2. 3

  39. 0
   2. 8
  20. 1
  62. 5

  20. 3

  12. 5

  20. 1
  95.3

  54. 3
1860.

 251.
  48. 3

   3. 8
   2. 1

  16. 7
   2. 5

  17.9
   3. 1
                    Total for Pollutant
                      ton/yr x 10~3
82.
20.
12.
6
3
5
115.
1910.
299.
5.
19.
21.
9
2
0
TABLE 56.   COMPARISON OF HEAVY-DUTY INDUSTRIAL ENGINE
      EMISSIONS ESTIMATES WITH EPA NATIONWIDE AIR
                POLLUTANT INVENTORY DATA
Pollutant

Hydrocarbons
CO
NOX
SOX
Particulate
                1970 EPA Inventory Data,
                106 tons/yr(27) (Revised)
All Sources
27. 3
100. 7
22. 1
33. 4
25. 5
Mobile Sources
15. 2
78. 1
11.0
1.0
0.9
                                  Heavy-Duty Industrial
                                 Engine Estimates as % of
All Sources
0.421
1. 90
1.42
0. 06
0. 08
Mobile Sources
0. 757
2.45
2. 72
1.9
2. 33

-------
in fall and spring.  On a regional basis,  about 8% of these emissions
occur in the Northern region,  54% in the Central region, and 38% in
the Southern region (regions defined in Appendix H). Compared to the
distribution of population quoted earlier, the emission estimates are
weighted less heavily toward the north and more heavily toward the
south due to the graduation of assumed working season length from
north to south.

TABLE 57.   ESTIMATE OF SEASONAL,  REGIONAL, AND URBAN-RURAL
       DISTRIBUTION OF EMISSIONS FROM INDUSTRIAL ENGINES
Percentage of Annual Nationwide
Urban/Suburban Areas
Region
Northern
Central
Southern
Dec-
Feb
0. 72
7.66
6. 16
Mar-
May
1. 25
10. 21
6.92
Jun-
Aug
1.79
12. 76
7.69
Sep-
Nov
1. 25
10.21
6.92
Dec-
Feb
0. 42
2.44
2. 32
Emissions by Season
Rural
Mar-
May
0. 74
3. 26
2.61
Areas
Jun-
Aug
1, 06
4. 07
2. 90

Sep-
Nov
0. 74
3. 26
2. 61
Subtotals
7.97
53.87
38. 13
Subtotals  14.54  18.38  22.24  18.38    5.18   6.61   8.03   6.61
Totals
73. 54
26.43
99.97
       In summary, the major assumptions made in computation of national
emissions impact for industrial engines were:

       1.   Engine shipments as reported by the Bureau of the Census^'),
            the total value of such shipments,  and the values of the
            engines shipped according to power output can be used to
            estimate the average power output of industrial engines.
            (see pp. 84-86)

       2.   A high percentage of gasoline engines  classified "industrial"
            in the Bureau of the Census statistics  are actually  in the
            light-duty engine category covered by  an earlier report^"/.
            (see pp. 86 & 87)

       3.   Annual usage of industrial engines is approximately one-
            half that of construction engines of similar power output,
            and service life is 2500 hr  for gasoline engines and 5000
            hr for diesel engines.  Population of industrial engines
            can be estimated using the  Bureau of the Census shipment
            figures and the service life and annual usage  estimates
            just given,  (see pp.  86 & 87)
                                    94

-------
4.  Emissions from heavy duty industrial engines can be
    estimated by combining results of tests conducted under
    the subject program in a reasonable way.  (see pp.  87-89)

5.  Engine operating cycles- can be estimated by considering
    the type of operation most industrial engines undergo in
    the field,  (see pp.  58  &  59)
                             95

-------
                          VIII.  SUMMARY

    This report is the end product of a study on emissions from heavy-
duty diesel and gasoline  engines used in farm, construction,  and
industrial applications.   It is Part 5 of a planned seven-part final
report on "Exhaust Emissions from  Uncontrolled Vehicles and Related
Equipment Using Internal Combustion Engines,"  Contract EHS  70-108.
The report includes test data,  documentation, and discussion on detailed
emissions characterization of eight diesel engines and four gasoline
engines, as well as estimated emission factors and national  emissions
impact for each of the three applications  separately.   Asa part of the
final report on the characterization phase  of EHS 70-108, this report
does not include information on aircraft turbine emissions, outboard
motor crankcase drainage,  or  locomotive  emissions control technology.
As required by the contract, these three latter areas have been  or will
be reported on separately.

    Emission measurements on the twelve heavy-duty engines were
conducted in the Emissions Research Laboratory, utilizing several
electric engine dynamometers.   Most of the data were acquired by
operating the engines on the "21-mode"  or "23-mode" mapping proce-
dures or some variation thereof, with the  exception of "transient"
smoke data acquired by using the Federal  smoke test procedure.
Gaseous emission measurements were  also acquired during transient
operation,  but the results did not justify a detailed analysis.

    The exhaust products measured  included total hydrocarbons  by  FIA;
CO,  CC>2. NO, and hydrocarbons (HC for gasoline engines only) by NDIR;
O2 by electrochemical analysis; light hydrocarbons by gas chromatograph;
aldehydes by wet chemistry; particulate by gravimetric analysis; and
smoke (diesel engines only) by the PHS light extinction smokemeter.
Evaporative losses of gasoline, crankcase vent hydrocarbon  emissions
from gasoline engines, and SOX emissions were calculated rather than
being measured.   Emission factors and national  impact were computed
(separately for each of the three applications) for total hydrocarbons,
CO,  NOX,  RCHO  (aldehydes),  particulate, and SOX.

        Reiterating qualifications given earlier in the text, the major
assumptions made in computation of national emissions impact for farm
equipment were:

        1.   The 1972 populations of farm tractors  and other major
            items of powered farm equipment are correct as given
            in  the literature,   (see pp.  47,  48, 54 & 56)

        2.   Tractor usage in hr/yr can be approximated by
            450 + 3.89 (hp-50) -  5.45 (age, yr).  (see pp.  54  & 55)

        3.   Total operating time for equipment except tractors


                                    96

-------
           can be estimated from total U. S. crop average
           (see pp.  57 & 58)

       4.   The  fraction of tractors of age A^ still surviving can
           be approximated by Fj = S^N- = e~0-00155A i.  (see
           pp. 49, 50, & 55)

       5.   Diesel and gasoline horsepower in the field can be
           approximated using the following considerations;
           (see pp.  49, 51-54)
           a.   large tractors are  predominantly diesel
           b.   small tractors (considering entire population)
                are  predominantly  gasoline
           c.   diesel market penetration is proportional to
                machine size and is increasing linearly with time.

       6.   Engine operating cycles can be estimated from
           manufacturers'  operating  data,  and from consideration
           of the  type of operation each type  of engine undergoes
           in the  field,  (see pp. 58-60)

       7.   Emissions from heavy duty farm engines can be
           estimated by combining results of tests conducted
           under  the subject program in a reasonable way.
           (see pp.  61-63)

       The major assumptions made in computation  of national emissions
impact for construction equipment were:

       1.  The service life  of construction machinery is 10, 000 to
           12, 000 hours, and the average horsepower of machines
           in several categories is as shown on the next page.
           (see pp.  68 & 69)

       2.   Annual operating time for  construction machines can
           be approximated by

                         usage (hr/yr) = 500 + 0. 1 (hp) 1-8;

           except for  tracklaying shovel loaders,  off-highway trucks,
           and scrapers, for which other data are available,  (see
           pp. 69 & 70)

       3.   The life  of construction equipment (in years), computed
           from service life (in hours) and usage, can be used with
           typical annual shipments to estimate number of units in
           service,  as shown on the next page, (see pp. 69 & 71).
                                  97

-------
       TABULATION OF PERTINENT ASSUMPTIONS AND COMPUTED VALUES FOR CONSTRUCTION EQUIPMENT
--O
00
             Category
Assumed             Annual                Typical Total
Service   Assumed Operation,  Computed    Annual
Life,  hr  Avg. hp     hr /yr     Life, yr     Shipments
^'Domestic Shipments
 Over  Computed
 Average Life
Track Tractors
Track Shovel Loaders
Motor Graders
Scrapers
Off-Hwy. Trucks
Wheel Loaders
Wheel Tractors
Rollers
Wheel Dozers
General Purpose
10, 000
10, 000
12, 000
12, 000
12, 000
12, 000
12, 000
12, 000
12, 000
-
120
65
90
475
400
130
75
75
300
120
1050
1100
830
2000
2000
1140
740
740
2000
1000
9.5
9. 1
14, 5
6.0
6.0
10. 5
16. 2
16.2
6.0
-
23, 000
10, 500
7, 300
5, 000
3, 850
14, 200
30, 000
5, 600
500
-
197, 000
86, 000
95, 300
27, 000
20, 800
134, 000
437, 000
81, 600
2, 700
100, 000
        *including assumption of 10% exports

-------
          4.   Emissions from construction engines can be estimated
              by combining results of tests conducted under the
              subject program in a reasonable way.  (see pp. 70 & 79)

          5.   Engine  operating cycles can be estimated from
              manufacturers' operating data, (see pp.  71-77)

          The major assumptions made in computation of national
emissions impact for industrial engines -were:

          1.   Engine  shipments as reported by the Bureau of the Census^-*'*
              the total value of such shipments,  and the values of the
              engines shipped according to power output ca.n be used
              to estimate the average power output of industrial
              engines, (see pp.  84-86)

          2.   A high percentage of gasoline engines  classified "industrial"
              in the Bureau of the Census statistics  are actually  in the
              light-duty  engine category covered by an earlier  report(->").
              (see pp. 86 & 87)

          3.   Annual usage of industrial engines ie approximately
              one-half that of construction engines of similar povver
              output,  and service life is 2500 hr for gasoline tnginas
              and 5000 hr for diesel engines.  Population  of industrial
              engines can be estimated using the Bureau of the
              Census shipment figures and the  service life and annual
              usage estimates just given,  (see pp= 86 & 87)

          4.   Emissions from industrial  engines can be estimated
              by combining results of tests conducted under the
              subject program in a reasonable way.  (see pp. 87-89)

          5.   Engine  operating cycles can be eotimated by considering
              the type of operation most industrial engines undergo
              in the field,  (see pp. 58 & 59)
          The estimates of total emissions impact made in this report
are on the basis of engine  populations, annual usage, and engine size
and type,  rather than on the basis of fuel consumed by the category as
a whole.  The decision to base estimates on work output was made for
two major reasons. First, assumptions such as annual usage and popula-
tion composition are easier to deal with in  terms of personal experience
than a number for overall  fuel consumption which is nearly impossible
to check.  It is also more  straightforward to check the  smaller
                                     99

-------
 assumptions statistically,  should it be considered desirable at some
 point to generate more accurate impact estimates. Second,  the validity
 of overall fuel usage data is very much in doubt.   The Bureau of Mines
 off-highway diesel fuel estimates^3?' 40), for instance,  do not include
 any heating oil used in off-highway equipment, and all diesel fuel sold
 by distributors who sell less than 420, 000 gallons of distillate fuel
 annually is not reported at all.  Furthermore, considering any sort of
 realistic need on the part of agriculture,  construction,  and industry,
 the Bureau of Mines off-highway diesel fuel usage estimates simply
 seem unreasonably low.

        Data on gasoline usage by the Department of Transportation^1)
 seem closer to fact, but even these estimates of off-highway gasoline
 usage are undoubtedly low because.

         1.  Gasoline used in lawn,  garden,  and recreational engines,
            outboard motors,  and off-road vehicles is largely
            purchased through normal retail outlets.  Such fuel
            is taxed and  included with on-road fuel estimates.

         2.  Construction  and  industrial concerns which operate
            both highway  and  off-highway equipment often buy
            fuel for all uses at once, and do not go to the trouble
            of securing tax exemption  for the (sometimes
            relatively small)  amounts used in off-highway
            equipment.  The part used off-highway is thus taxed,
            and included with on-road fuel estimates.


     For clarity,  estimated emissions from F, C, & I  engines as per-
centages of revised 1970 national totals from all sources and mobile
sources  are presented in the following tabulation.   As shown above,

National Total Used                Percent of National Total for Pollutant
  for Comparison      Application      HC    CO  NOX  SOX    Part.

All Sources   1970     Farm           1.0    3,8  2.2   0.11    0.21
  (Revised)            Construction   0.47   1.3  3.9   0.20    0.26
                       Industrial      0.42   1.9  1.4   0.06    0.08
Mobile Sources   1970  Farm           1.9    4.9  4.5   3.7     6.1
  (Revised)            Construction   0.84   1.7  7.8   6.7     7.2
                      Industrial      0.76   2.4  2.7   1.9     2.3

these estimates  are highly qualified, and should be used only with full
knowledge  of the  accuracy of data and assumptions used in arriving at
them.  In the regional order Northern-Central-Southern, emissions from
farm engines are estimated to  be  distributed l6%-49%-35%, those from
construction engines 8%-50%-42%, and those from  industrial engines
8%-54%-38%.  It  is also estimated that 75% of construction equipment


                                    100

-------
emissions and 74% of industrial engine emissions occur in urban/suburban
areas, while virtually all emissions from farm equipment occur in rural
areas.

    The categories of engines covered in this report appear to make
some significant,  but not major, contributions to national pollutant totals
from  man-made  sources.   It should be recognized, however,  that the
estimates are based on many assumptions and data items which are un-
proven, but as reasonable as possible.   If more precise  estimates are
to be  made, a great deal of quantitative information on engine population
and usage must be gathered as a prerequisite.
                                   101

-------
                         LIST OF REFERENCES
 1.  Federal Register,  Vol.  37,  No. 221 Part II, Subparts Hand J,  November
     15,  1972.      ~

 2.  R. G. Bascom and G. C. Hass, "A Status Report on the Development
     of the 1973 California Diesel Emissions Standards." SAE Paper No.
     700671,  1970.

 3.  Sawicki, E. ,  et al,  The 3-Methyl-3-benzathiazalone Hydrazone Test,
     Anal,  Chem.  33:93,  1961.

 4.  Altshuller, A. P. , et al, Determination of Formaldehyde in Gas Mixtures
     by the Chromotropic Acid Method, Anal,  Chem.  33:621, 1961.

 5.  S. R.  Krause, "Effect of Engine Intake-Air Humidity, Temperature,
     and Pressure on Exhaust Emissions. " SAE Paper No. 710835, 1971.

 6.  Petroleum Products  Survey No. 73,  U.S. Department of the Interior,
     Bureau of  Mines,  January 1972.

 7.  D. T. Wade,  "Factors Influencing Vehicle Evaporative Emissions."
     SAE Paper No.  670126,  1967.

 8.  P. J.  Clarke,  et al,  "An Adsorption-Regeneration Approach to the
     Problem of Evaporative Control."  SAE Paper No. 670127,  1967.

 9.  Edwin E. Nelson, "Hydrocarbon Control for Los Angeles by Reducing
     Gasoline Volatility. "  SAE Paper No. 690087,  1969.

10.  Marvin W. Jackson and  Robert L.  Everett, "Effect of Fuel Composition
     on Amount and Reactivity of Evaporative Emissions. " SAE Paper No.
     690088,  1969.

11.  P. A. Bennett,  et al, "Reduction of Air Pollution by Control of Emis-
     sions from Automotive Crankcases, " Paper No. 142A presented
     January I960  at the SAE Annual Meeting.

12.  G. M. Heinen, "We've Done the Job - What's Next?"  SAE Paper No.
     690539,  1969.

13.  Optical Properties and Visual Effects of  Smoke-Stack Plumes,  A co-
     operative study:  Edison Electric Institute and U.S. Public Health
     Service, Publication No. 999-AP-30, Cincinnati,  1967.
                                   102

-------
                    LIST OF REFERENCES (Cont'd)
14.  John O. Storment and Karl J.  Springer, "Evaluation of Diesel Smoke
    Inspection Procedures and Smokemeters. "  Final Report by South-
    west Research Institute to the  Environmental Protection Agency on
    Contract EHS 70-109, July 1972.

15.  Confidential Emissions Data From Three Manufacturers Submitted
    to C.  T. Hare of SwRI at the Request of the Project Officer.

16.  W. F. Marshall and R. D. Fleming, "Diesel Emissions Reinventoried. "
    Report of Investigations 7530 by the U.S. Department of the Interior,
    Bureau of Mines,  1972.

17.  John O. Storment and Karl J.  Springer, "A Surveillance Study of
    Smoke from Heavy-Duty Diesel-Powered Vehicles   Southwestern
    U. S. A. "  Final Report to  the Environmental Protection Agency on
    Contract EHS 70-109, June 1973.

18.  Data Submitted to Karl J.  Springer by A. H. Glasenapp, Experimental
    Engineering Section of Engineering Division, Truck and Coach Division
    of General Motors Corporation.

19.  R.  D.  Henderson,  "Air Pollution and Construction Equipment. "  SAE
    Paper No. 700551, 1970.

20.  Implement & Tractor  magazine, Statistical Issues from 1964 through
    1972,  "Red Book" Specification Issues,  and Others.

21.  Information on Farm Tractor and Industrial Equipment Population
    and Usage Sent to SwRI by Mr.  James W.  Walker (John Deere),  Chair-
    man of the EMA-OAP Emissions Survey Subcommittee.  Sources
    Referenced Include SAE Papers, EPA Reports, Manufacturers'  Data,
    Implement (k Tractor  magazine, and Statistical Abstracts of the United
    States.

22.  Implement &c Tractor  magazine, April 7, 1967.

23.  Information on Farm Tractor Duty Cycles and Annual Usage Sent to
    C.  T.  Hare by Mr. John H.  Crowley (J. I.  Case), Past Chairman
    of the  EMA-OAP Emissions Survey Subcommittee.  Sources Refer-
    enced  Include Agricultural Engineering (May 196l and February 1969),
    Detroit Diesel-Allison Division of General  Motors Corporation,  and
    John Deere Company.
                                  103.

-------
                    LIST OF REFERENCES (Cont'd)
24.  Statistical Abstracts of the United States,  1971.

25.  Implement & Tractor magazine, February 7, 1973, Referencing an
     ASAE Paper, "A Projection of New Problems and Opportunities for
     Tractor Safety, " by Prof. Richard G. Pfister, Michigan State Uni-
     versity.

26.  Bainer, et al, Principles of Farm Machinery,  John Wiley & Sons,
     New York,  1955.

27.  1970 EPA Air Pollution Inventory Estimates (revised),  1973 Annual
     Report of the Council on Environmental Quality.

28.  Automotive Industries  Statistical Issues,  1960-1973.

29.  Current Industrial Reports, Construction Machinery 1970 (and Other
     Years), Series  MA-35D(70)-1, U.S.  Department of Commerce,
     Bureau of the Census.

30.  R.  D. Henderson,  "Digging Into Air Pollution Problems--An Earth-
     mover's Viewpoint. "  SAE Paper No.  720609,  1972.

31.  Information  on Construction Equipment Duty Cycles Sent to  C. T.
     Hare by Mr.  John  H.  Crowley (J.  I.  Case),  Past  Chairman of the
     EMA-OAP Emissions Survey Subcommittee.  Sources Referenced
     are Allis-Chalmers and Detroit Diesel-Allison Division of General
     Motors Corporation.

32.  Confidential Sales  Data from a Manufacturer, Submitted to C. T. Hare
     of SwRI.

33.  Construction Methods & Equipment, November and December 1972.

34.  Construction Equipment, February 1973.

35.  Construction Methods & Equipment, December 1972.

36.  Charles T.  Hare and Karl J. Springer, "Exhaust  Emissions from
     Uncontrolled Vehicles  and Related Equipment Using Internal Com-
     bustion Engines. "  Final Report Part 4,  Small Air-Cooled Spark
     Ignition Utility Engines,  Contract EHS 70-108 with the Environmental
     Protection Agency, May 1973.
                                  104

-------
                    LIST OF REFERENCES (Cont'd)
37.  Current Industrial Reports,  Internal Combustion Engines 1971 (and
    Prior Years to 1964), Series MA-35L(71)-1, U. S. Department of
    Commerce,  Bureau of the Census.

38.  The World Almanac, 1972 Edition,  Luman H. Long (ed), Newspaper
    Enterprise  Association, Inc., New York, 1971.

39.  Sales of Fuel Oil and Kerosine in  1965 (1966, 1968,  1969, 1970),
    Mineral Industry Surveys, U. S. Department of the Interior,  Bureau
    of Mines.

 40. (form for reporting of) Fuel Oil and Kerosine Sales and Inventories
    (by individual companies), U. S. Department of the Interior,
    Bureau of Mines.

 41. State Motor-Fuel Tax Receipts, Table MF-1 (1968-1971); Motor-
    Fuel Consumption, Table MF-2 (1968-1971); Analysis of Private
    and Commercial Use of Gasoline for Nonhighway Purposes,
    Table MF-24 (1968-1971); U.  S. Department of Transportation,
    FHA,  Bureau of Public Roads.
                                   105

-------
                      APPENDIX A

             GRAPHICAL PRESENTATION OF
         EMISSIONS FROM DIESEL ENGINES USED
IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
                          A-l

-------
                                                                                              1900 rpi
                                                                                                                        1900 rprr
                         25         50         75
                           Percent of Full Load
                                                                                                         Percent of Fall Load
FIGURE A-l.HYDROCARBON EMISSIONS FROM AN ALLIS-CHALMERS
   3500 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
  FIGURE A-2. HYDROCARBON EMISSIONS FROM A CATERPILLAR
       D6C ENGINE AS A FUNCTION OF LOAD AT TWO SPEEDS
                                    I          I
                         25         50         75
                           Percent of Full Load
FIGURE A-3. HYDROCARBON EMISSIONS FROM A DETROIT DIESEL
   6V-71 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                     5OO


                                                                                       O
                                                                                                       Z5        SO        75        IOO
                                                                                                       PERCENT  OF FOUL LQM>
            . HYDROCARBON EMISSIONS FROM  AN
HARVtSTER 0401 EN&IME AS A FUNCTION OF LOAD AT FOOR
                                                                    A-2

-------
                          PERCENT  OF FOL-U  LOAD
        E  A-£ HYDROCAfc&ON  EMISSIONS  FROM  A  JOKN DEE.RE
        E^friNt.  ftt A.  FUMCT'CN)  Of  LC^D  /ST FOUR SPEEDS.
                                                                                                2400 rp-
                                                                                                               I           I
                                                                                                                                  2100 rpir
                                                                                                                                                  1 700 rprr
                                                                                                              25         50          75
                                                                                                                Percent of Full Load
 FIGURE A-6,   HYDROCARBON EMISSIONS FROM A MERCEDES-
BENZ OM636 ENGINE AS A FUNCTION OF  LOAD AT FOUR SPEEDS
                                                                                                                            2400 rpi
                          25          50         7
                             Percent of Fall Load
                                                                                                                25         50          75
                                                                                                                   Percent of Full Load
FIGURE A-7.  HYDROCARBON EMISSIONS FROM AN ONAN DJBA
      ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
       FIGURE A-8. HYDROCARBON EMISSIONS FROM A  PERKINS
         4. 236 ENGINE AS A  FUNCTION OF LOAD AT FOUR SPEEDS

-------
                                                                                                                                 50
                                                                                                                             nt of Full Load
   FIGURE A-9. CARBON MONOXIDE EMISSIONS FROM  AN ALLI3-
 CHALMERS 3500 ENGINE AS A  FUNCTION OF LOAD AT FOUR SPEEDS
FIGURE A-10. CARBON MONOXIDE EMISSIONS FROM A CATERPILLAR
         D6C  ENGINE AS A  FUNCTION OF LOAD AT TWO SPEEDS
                              Purc«nt of Full load
 FIGURE A-JJ CARBON MONOXIDE EMISSIONS FROM A DETROIT
DILSJtL fiV-7 1 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                                                    25         SO         -75
                                                                                                                   PE.RCENT  OF FOUL LOftO
     A-12 . CARfcON  MONOXIDE EMISSIONS.  FROM  AN  1 NTE-RNAT IQNftL
    &STER  D4O7 ENGrlNE AS A FUUCT10N OF  LOAD  AT FOUR SPEEDS

-------
A.   1200

O
0   10OO


     600


     600


     400
                           25         50         75
                           PERCENT  OF FULL  LOAD
     RC- M3. CARBON  ttONOXIDE EMISSIONS  FROM  A  JOHN OEtRt
     W04- EN&INL  A5  A FUNCTION  OF  LOftD  AT FOUR  SPEEDS
                                                                                          1800

                                                                                          1600


                                                                                          1-100


                                                                                          1200
                                                                                      g   800
                                                                                      a
                                                                                      I
                                                                                                               Percent of Full Load
                                                                                FIGURE A-14.  CARBON MONOXIDE EMISSIONS FROM A MERCEDES-
                                                                                  BENZ OM636 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                             0 rpnr
                                                           00 rpnr
                          Z5         50         75
                            Percent of Full Load
FIGURE A-I5. CARBON MONOXIDE EMISSIONS FROM AN ONAN
   DJBA ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                                                                                 450 rptr
                                                                                                                                                 2-100 rprr
                                                                                                                                                400 rprr
                                                                                                               ZS        '50          75        100
                                                                                                                 Percent of Full Load
                                                                                   FIGUREA-16.   CARBON MONOXIDE EMISSIONS FROM A PERKINS
                                                                                      4. 236 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                         A-5

-------
  2200


  2000


  1800


  1600
E
a
  1400


5 1200


2 1000
                                                        /OOO rptr
                         Percent of Full Load
                                                                                                            Percent of Full  Load
FIGURE A-17.  OXIDES OF NITROGEN EMISSIONS FROM
  AN ALLIS-CHALMERS 3500 ENGINE AS A FUNCTION
               OF LOAD AT FOUR SPEEDS
                                                                                    FIGURE A-18. OXIDES OF NITROGEN EMISSIONS FROM A
                                                                               CATERPILLAR D6C ENGINE AS A  FUNCTION OF LOAD AT TWO SPEEDS
   2200


   2000


   1800

 a.
 ^ 1600
 x
 O
 •z.
 — 1400
 c

 o
 i 1200
 z

 ° I00°
 TJ
 I  800


    600


    400
                                                     2100 r£n
                                  50         75
                              at at Full Load
 FIGURE A-19.  OXIDES OF NITROGEN EMISSIONS FROM A
 DETROIT DIESEL 6V-71 ENGINE AS A FUNCTION OF LOAD
                    AT  FOUR SPEEDS
                                                                             FIWREV20.OX.IOEi OF NITRO&tN  EMliilONS FROM AN \NTERNATIONM-
                                                                              HMWESTE.R MOT EN&INE Ai  f, FUNCTION OF LOAD AT FOUR. SPEtDS
                                                                    A- 6

-------
                           25        SO         75
                           PE.RCENT  OF FULL LOAD
               MDFS  CF  NlTfiQGLN EMISSIONS  FROM  A JOHN
                ENC-1NL  AS A FUNCTION  OF  LOAD M FQOR SPtE
                                                                                                  I           I
                                                                                                           1400 rpi
FIGURE A-22.  OXIDES OF NITROGEN EMISSIONS FROM A MERCEDES-
  BENZ OM636 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
    ^  300
    O
                          25         50         7
                             Percent of Full Load
FIGURE A-E3.OXIDES OF NITROGEN EMISSIONS FROM AN ONAN
   DJBA ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                                                Percent of Full Load
                                                                                 FIGURE A-Zt.  OXIDES OF NITROGEN EMISSIONS FROM A PERKINS
                                                                                     4. 236  ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS

-------
                  APPENDIX B

      DATA FROM FEDERAL SMOKE TESTS
      ON DIESEL ENGINES USED  IN  FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
                       B-l

-------
                 FEDERAL SMOKE TRACE EVALUATION
                             Date  I \ /ii/72.
Vehicle  	
Engine Model ALUS -C ftAUM ERi 3SOO
                                                  Evaluated by  J. IA> .
                                                  Run No.       1
Accelerations
    First Sequence            Second Sequence          Third Sequence
Interval No.    Smoke %   Interval No.    Smoke %   Interval No.    Smoke %~
1
2
3
4
5
Q>
7
B
<)
\0
I t
I 1
\ 3
h \ 4
1 £
2.-J.5
38. S
43.3.
4-0..0
44-0
36-S
3fc.O
2>fe.O
31.0
31.5
51.0
40.0
2,4.0 1
51-5
27.5
1
2
3
4-
S
G
7
B
>
.0
i I
1 1
IS
14-
15
Z7.0
17.2
3&.0
41. S
4-0-0
40.5
3fo.S
35,0
33.S
3S.O
2L8.5
44 .5
38-0
23>£
Zfl.S
1
2
3
4-
S
G
7
8
9
0
1
2
5
4
5
Z9.0
3
Factor (a)
                                   V.
                                                                    580.2.
               45
Lugging
	First Sequence
Interval No.    Smoke  %   Interval No.    Smoke %   Interval No.    Smoke %
                              Second Sequence
                                                        Third Sequence
1
z
3
4
5
Total Smoke
Z<).0
2.9.0
2.V.2
^9.0
•2L9.S
% >4-"l.l
1
Z
3
4-
S

2^.0
Z8.S
i9.0
Z8.5
30. S
»44.S
I
2.
3
4-
S

2.0.0
^6.s
2.9.5
31.0
3Z,0
153.0
Factor (b)
44S.Z
2^.1 %

15
Peak Readings
First Sequence
Interval No.
j 	 \\ A
4A J
SA.
Sm oke %
SI.O
44r.O
44.0
Total Smoke % >4i.O
Factor (c) -

413.0
9
Second Sequence
Interval No. Smoke %

4 A 41.ST I
C, A 40.S "J
I -Ld.S
45.9 %
B-2
Third Sequence
Interval No. Smoke %
»2_A 4.9.Q "1
sA 4ft. S\
4- A 46.0 J
I4S.5


-------
                 FEDERAL SMOKE TRACE EVALUATION
veiiicie - 	
Engine Model CATERPILLAR
Accelerations
First Sequence
JJate i / iu / I*.
D6C
Second Sequence
Evaluated by O. UJ.
Run No. 1
Third Sequence
Interval No.   Smoke %   Interval No.   Smoke %    Interval No.   Smoke %
1
2.
3
4
5

7
6
9
10
1 1
12.
>3
14-
IS
6.5
9.0
6.4
fc.0
fc.S
3.5
3.0
3.0
3.2
3,£
3,4
2.1
2.0
2.C,
2.1
1
2
3
4-
5
fe
1
6
9
10
I 1
12
13
14
15
9.0
10,0
r 9.2
7.0
4,5
4.1
3.0
4,0
3,0
4.5
3.5
4,5
3.B
2.4
2,0,
Total Smoke %   70.5
             (o4.8
             "75. I
Factor (a) -   2 I O . 4-
4.1 %
               45

Lugging
	First Sequence
Interval No.   Smoke %   Interval No.   Smoke %    Interval No.   Smoke %
Second Sequence
Third Sequence
1
2
3
4
5
a.s
2,2
2.4-
Z.9
2.3
1
z
3
4
S
2.5
2.5
2.7
2.Q,
2. 1
1
2.
3
4
5
2,2
2.4-
5.0
l.fc
2.2
Total Smoke  %   12,3
             12.4-
             l 1.4
Factor (b) -
3
-------
                 FEDERAL SMOKE TRACE EVALUATION
Vehicle J^^3^^^3^^^_
Engine Model DETROIT DIESEL
                                   10/I2./72L
Evaluated by    0. IA].
Run No.       1
Accelerations
    First Sequence
                              Second Sequence
      Third Sequence
Interval No.   Smoke %   Interval No.   Smoke %   Interval No.    Smoke %
1
2.
3
4
5
 i
\i
\ z
\ 4
\ S
2.0
2.8
3.O
5.2
2.. 5
».9
1.3
1. 1
o.?
o.b
0-7
0.7
O.Q.
o.fc
O.fo
1
2.
3
4-
5
-8
1.2-
1.)
1.0
0.9
0-9
o-9
0.9
OJ_
Total Smoke  %
                                           2.2.7
Factor (a) 79.
7 = 1.3 y.

45
Lugging
First Sequence Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No.
1
2.
3
4
5
Total Smoke %
Factor (b) H
Peak Readings
1.7 I 1
1.3 2 \
1.3 3 (
I.C. 4
1.4- S
• 1 1
.-L 2
>.) 3
3.? 4
D.J S
1.3 S.I
!> .S = I.Z %
Smoke %
2.0
1. 1
1.0
>.o
1.0
G.\

15
First Sequence Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No.
2_A
iA
4-A
4.0 | 4-A '.
3.3 3A s
3.Z I 2A 2
i.2 2.A
i.O 3A
-.8 4-A
Total Smoke % tO.S 9.Q
Factor (c) - Z> 1

.& - s.sy.
9

Smoke %
4.3
4.3 j
3.1
12.. 3,

                                B-4

-------
                 FEDERAL SMOKE TRACE EVALUATION
Vehicle            	
Engine Model I. \-\. D4-Q7
Date  5/2-4-/7Z
Evaluated by   J • k).
Run No.   I
Accelerations
    First Sequence
Interval No.   Smoke %   Interval No.    Smoke %   Interval No.    Smoke  %
 Second Sequence
      Third Sequence
1
1
i
4
£

2.1.0
IT. £
15.3
15.0
I2.Q,
14. Z
1 3.S
M,3
I 3.4
1 2,5
1 1.4
12. 1
1
2
3
4
5

-------
Vehicle _—-;———————-
Engine Model DE.LRE. fe4O4

Accelerations
    First Sequence
 FEDERAL SMOKE TRACE EVALUATION

	   Date    3/8/72
Evaluated by
Run No.   |
J.U.
             Second Sequence
      Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
1
2
3
4
5
6
7
8
<=>
10
I 1 1
I 1
\ 3
I 4
l 6
80.0
77.5
75. <}
69. 2>
G7.0
72.5
67.7
G7.8
G4.8
59.0
59.l
71.0
59.0
5O.O
44.0
44.5
49.0
42.5
1
2
3
4
5
(o
7
&
9
vO
\ \
\ 2
1 3
\ 4
1 5
75.0
84.0
19.3
8


-------
Vehicle               	
Engine Model MERCEDES
                 FEDERAL SMOKE TRACE EVALUATION

                	    Date   1 /ZG. /73
Evaluated by   1
Run No.     ~T"
                                     .  H.
Accelerations
    First Sequence
Interval No.    Smoke  %   Interval No.    Smoke %    Interval No.   Smoke %
Second Sequence
                                                       Third Sequence
1
z
2)
4-
5
fo
1
8
9
10
\ 1
12
13
14
IS
12.. 0
18. S
8-5
6.6
9.0
T-2>
7.G, j
9.5
1.5
0.0 3 »0.4
4 lO.S 4 \3,0
5 9.5 5 13.5
4-8-8 51,9
IO.S/0

Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke %
2 A 14.S I IA \9.0
1 A 12.S 5L 13.5
i2A \Z.Q 1 4L 13.0
2.9.O 45. S
14,0%
B-7

-------
                 FEDERAL SMOKE TRACE EVALUATION


Engine Model pE,R.Ktf
Accelerations
First Sequence
	 D -i f r> \

OS 4.22>Co
Second
0 /fo /-?2_
Sequence
Evaluated by
Run No.
J.vO.
I
Third Sequence
Interval No.    Smoke %   Interval No.    Smoke %   Interval No.    Smoke
I
2.
3
4
5
Q>
7
6
9
i 0
i I
i ^
I T>
\ 4-
1S
15.0

7
ft
9
0
>
Z
3
4
5
ia.s
8.5
4-8
S.I
-8
                                           61.B
                               S.4 %
                                      80.3
               45
Lugging
     First Sequence
Interval No.
                              Second Sequence           Third Sequence
                          Interval No.   Smoke %    Interval No.   Smoke
1
2
3
4
5
&.S
9.5
6.5
8.5
6-9
1
2
3
4
5
9.0
8.5
6.5
9.5
9.5
i
•2.
3
4
5
-).(o
fc.S
6.2
->.3
8.5
Total Smoke %  43. 9
Factor (b)
               12.7.3
                 15
                                          4-S.O
B.S
                                     58.4-
Peak Readings
First Sequence
Second Sequence
Interval No. Smoke % Interval No. Smoke %
! 1 A
i ZL
1 5L
15. 0
%s
6-9
4L
5L
IL
9.S 1
9-S 1
Third Sequence
Interval No. Smoke %
IA
2A
9.0 t~ 'sL -
\a.S
6.5
6.5
Total Smoke
Faclor (c)
                33. 4-
               90,9
                                          aa.o
                                B-i

-------
                   APPENDIX C

     TABULAR PERFORMANCE AND EMISSIONS
     DATA ON DIESEL ENGINES USED IN FARM,
CONSTRUCTION,  AND INDUSTRIAL APPLICATIONS
                          C-l

-------
o

MODE
1
2
3
4
5
<0
7
8
9
1 0
1 1
I Z
I 3
1 4-
1 5
1 6
I 7
16
\ 9
ZO
2.1
EMfrlNE
SPEED,
RPM
800
\Soo
IS£>0
\SD&
I5"OO
ISOD
I SOB
15-00
tsoo
Isoo
Bo&
2Z0e>
ZI-Oo
i^0o
2.1,00
2iOO
tl.00
fiOO
^^oo
^00
Boo
OBSERVED
POWER,
lit




is. 5
30,5-
4s:o
t>0.0
ns.o
9o.o
!OS.O
iy~o.o


\4°i o
130.0
lll.o
6~.l>
I3-2.
l*-4
/•/
EXttAUST
LnHa
0.0
O.i.
O.i
0-3
-0.3
0-4
o.C
6.1*
o. k_
O.^
^0
/-9
/.«•
I'S"
1.3
J.I
M
* ft

o,^
o.o
F\A
HO,
la^rnC
240
/88
iff 8
IBB
Z28
^40
)S^
Mb
131.
5-t,
Z4@
IT.T,
IS-0
I4B
/48
/rt
I kO
no
/5Tfc
;7z
300
ND\R
CO,
t>H
T?4
5^
J94
3/4
3.61
342-
S2.0
687
Z.S'/f
4"? /T
8^3
7/4
^98
3fl5"
i7/
ifco
23fl
2«
267
34fc
8-Jo
ND^R
C02,
%
|.3&
4.38
S.72.
4.^8
4-/8
3.U
Z..2Z
1.33
NOR
MO,
)pf>.n
23Z
273
i,3t
97^
/i94.
/S-62.
;92-2.
AOtS
£,204
2088
233
\lo°ll
/(,&£>
/4lo
U33
I0Z3
643
640
443
11° 1
111
C.L.
NO,
*>*>">
zoz
ZZI
5-it
694
I2Z/
<4SS
/t>'8
/«9g
/95-fi
/8ff9
zn
Ibot
IS3S
(3^3
ll-to
9fc6
7^4
to 7
sxi
i-J/
IT
C.L.
N0»^
^t>-
Z20
2.48
4/o
938
/2-M
iei I
/fc>04
/9ff3
/96C
/^/i
i44
lfc>34
/s9o
/34'7
//£-f
180
799
424
S"4 4>
2.47
Z23
°*,
X
	






	
	 : 	
	








	
	
	
	 	


	






	
     ENGINE-
     R.UN  /
                                  3SOO
DAT E //
As/
              72.
BAROME/TE R , c
                   WET
                   DRy BQL& TEMP.,

-------
n

MODE
1
2
3
4
S
44
i,t,z
lolB
706
133
7-73
Qii,
&41
3
43-0
49-7
2.fe
hi.!
^•t,
47.5*
47.0
34-
3.1.4
Ik.C
II. IP
l.lo
TEHPERA.TURE^F
^nftKE
MR
'/Z
fli
72.
'//
7Z.
72-
73
72.
73
73
T3
73
7J
73
73
-7^
^
^
m.
m.
73
FUEL
u
74
7Z
rlo
10
ID
It
72.
74
IS
97
73
76
77
77
77
77
76
78
78
7?
EX.H-
ftUST
3/2.
339
•fS'l
S5^
t,S8
7748
9^.7
88^
7
b.O
fe-Z
fe-8
7-2.
8-Z.
^-2-
/o.t
/./
2--J.S-
J7-4
i.£>
'4-3
/?.2-
/•i-
EXHAUST
L"HA
0.0
0.1.
0,t-
o.S
0-3
<5'3
c-4
^.C
0.1
o,g
0.0
1.1
/.7
l-S
I- 3
l.o
o.t
01
0.4
0,5-
o.o
F\A
HC,
i^r«C
2,88
2.40
I1&
2.14
2S4
2-S-&
248
zzo
//4
bZ
l°li
14-1
IS~2
I bo
Iti
IS&
;7Z
/64
/7g
/£fc
32<3
ND\R
cox
^K
333
l»30
-H^
340
m
2/9
S»
2.070
zool
2.ZS-
Ib2l
IS52.
Wl
II8&
95-B
?72
£//
42-7
2-1 B
>&(o
C.L.
NO,
t>t"«
;5-9
^OS"
492.
8 of
/P57
/z93
/48&
/t,&i
IBo2
/4.9S"
2.44
/363
;3?£-
/iot
IDSI
311
111
£37
39o
1/8
;5"/
c.u.
NO*,
^t>-
ZO^
2s-x
^9
gs£
;/42-
7335"
/S-S4.
7742.
ye?o
P49
^70
/493
1417
U47
7007
8S£T
7iO
£•^0
39?
if*
2.02.
°^
%















	










	












        ENG1N E-
        P.UN   2.
                                                                       D/\T£
WET
DRY  BUL&  TEMP.,

-------
o

MODE
1
2
3
4
5
<6
7
8
9
1 0
1 I
\ 2.
\ 3
1 4-
1 5
1 £>
1 7
15
\ 9
2O
21
ENGINE
SPEEt>
RPM
&00
ISoo
ISOO
ISOO
ISOO
IS 00
IS oo
ISoo
ISOO
ISOO
&00
2200
Z.ZOO
ZiOO
ZZOO
Zioo
ZZOO
2.1.00
2.200
2.100
BOG
OBSERVED
POWER,
K>




1^0
3o.O
4S-0
loO.O
HG.t)
10-Q
IDS.O
116-0


>£•£>. 0
IZ2.0
ll^.o
14 6
is-.s
si.s-
38-1
11.1




AIR
FLOVJ,
Ib /
m/V\r
343
loll
M5
k72
673
lOlo
7/6
77S
79(,
8/6
331
/Be"*
/337
/a 8J.
//98
// 30
/o78
fOt£-
°IT)
<*13
M3
FUEL
FUOVJ,
Ib /
W/K»
-2.6
S.I
9. a
Hi
i?-4
iS./
50.5"
56-4
43.5-
491
^.4
6t>.£
S4-£
48-0
4l-ff
^4-s"
.2.8.2.
23,0
li.2.
II. S
Z-4
TEMPER ftTURE/F
INTAKE
AIR
73
73
74
73
72
72.
1}
73
74
74
73
73
74
7S
74
74
72.
73
74
74
74
FUEL
^
74
H
73
1*
75-
77
78
7?
"»?
83
77
^
S/
80
ft/
8J
8|
81
81
82.
EXH-
hUS.T
25-3
3/7
4'*
S24
(L44
77?
W
101-Z
IIS3
I3ffo
-79
ti7
x.sz
4.BL
4-U
5.11
Z>><)
i.ll
ND1R
MO,
Ip^tn
J9X
212-
£"27
7f9
10^0
13 it
ISIO
/Gil
/982-
;9/i
^56
/S-4.3
'494
'3J3
//27
9A4
7fcS
£-9 2
432L
i£-»
/9/
C.L.
NO,
*>»>">
2ZO
Zlb
SiS
735"
losb
,ii£
>484
/fct2.
/«4^
nos"
J.SB
I31S
13 bo
)/78
\0\°l
95-4
703
S23
^79
2;z

C.L.
NOS
f}*
2.41
ZSZ
573
84 i
;o99
li&l
/S-/3
/7o3
/87Z.
/73^
i^3
/413
^388
liok
/o-CV\ALN\E.RS
DAT E  // /A&/72-
                                                                                . 47
                               WET
                               DRY  BULB TEMP..,

-------
o


NODE
1

•7

3,







~r



Q

1 0



I 2.

l _>
1 A-

1 5

1 (o

\ i

1 6

l 9

2O

L \
EW&INE
SPEEI>
RPM

800

is'oo

15~OO

I5OO

IS'OO



IS~OP




ISOO

oOO

L£OD

J-LUP
2.ZOO

Z.Z00

aoo

1.7-0 Q

22.00


•5 7 Qft


Boo
OBSERVED
•POWER,
^





15". O

.29.S1

44.0

S9.D

94,0

89.o

\oq.o
II 9.0



/44 0

IE /.O
III. 0

4

74. 1

5-5.7

K..1

/&-3




AIR.
FLOJ,
lb~A,

-344

kz^

£>42.

£>S"O

6.72.

lOta

HZ

"58

78k
83Z

332.

/388

/ 33*7
/3-S3

M49

f/3 1

(Ob7

/pl^

•Ifc?

954

j)4o
FUEU
FUOVJ,
lb»/K.

2. la

5". 4

to

/4>o

'8-8

-M-t

^-9-8

35--4

4/1- S"
tf.^

2.4

fco-3

£•4-0
4b9

40.4

JM.o

i'/.1?

Z2..I

b. /
i / ,*
''•I

J-'^
TEMPE
INTAKE
AIR

73

74-

74

11

73

93

72-

?t

74
"jr

93

74

^4
75

7/

73

74

7/

73

75"

75"
.RATU

FUEL

87

8^

8/

l°l

W

Bo

82-

92

84
B£T

83

8S^

36
87

.87

87

8"

87

8t>

&7

B8
^E,°F
EXH-
WJST

Ji4

J5"0

440

5-34

!<, SO

773

90Z

1 Oil

//43
;a08

4-Z*

y/ B&

// 2-7
toco

1U



If)

6?9

s^/

49^

-84
RESTR
INTAKE
UHjO

/•3

^••4

5-.%

£-.9

fe.o

6-S

•S

8-0

4.0
10. 1

l.o

Z°I.O

J7-5"
44.3

22- O

/9-8

11-S

fp.O

/4-S"

/3.0

'. 2.
1CTIOH5
EXV\AOST
L" V\^

f'.O

o.;

n \

G.-L

0.3

0-4

O,^

O.lc.

0.1
0-8

0.0

l.°i

l>t>
i.r

'•3

It

t>'"l

o,7

o.f

o,^


F\ A.
HC,
»^^mC

ZkQ

Z24

iBto

201

2-4°

ZE4

z<9 o

2.33

/£~4
9Z

Z2O

ILo

/4>g
172.

174

/7fe

/84

Zoo

190

i ii.

340
NDVR
CO,
^^m

V5^

645"

4*>7

3feo

^98

^5^3

5"44

925"

iz?4
45-7"

fei f

ii77

4/0
2^

Z2.3

22.5

US

22f

24 Z

Z9i

823
NDtR
C02,
%

I.St>

1.12-

2.03

4.06

5"-44

6-49

T-t^

S-S'e

9.43
1 O.Ob

1.33

• II

0-72
^-98

^'5-2

S".7d

S.oS

4.1^

3-lt

2-19
• -) /
l.2b
ND1R
WO,
Iplptv,

ZOI

3.S2.

Sill

88^

1213

/44^

/&&/

;887

jofcS"
me

•XVS"

/t>33

/S"4 b
»3bO

// 84

979

8^4

t/7

43(

i^J

Z£>2
C. L.
NO,
*>!"«

IBS

2.1k

S^i

6S6

// 5/
1 5 Ck O
/3"7

95 (1

07

/Sia
/B34

2^4

)S27

/^*7
;32t

1 31

vSx



to/ to

4/2-

2.Z8

<>T
c.u.
NO^
^™

ZZ3

2fel

59;

3JJ.

lion

I^S"i

1 loQ-S

^814

H^O
/%74

2.93
^-^
/5?£"

ISOQ
I3k&

inn

180

V9O

...£'7.

_4-*4

^-5"S
9 I O
•2.' /
p,
zx
7
/o







i. .










	






	














       ENGINE-   ALUS
                                                3SOO
DAT E  // A6 A 2-               WET  e,OLE> Tt.MP., °f _££_



              R , i.« VU   ,g^.44   DRV  BULB TEMP., °F _1L_

-------
o

NODE
1
2
3
4
5
 1
I Z
I ?>
\ 4-
I 5
1 6
1 7 •
16
\ 9
20
2 1
ENG-INE
SPEEI5
RPM
Boo
15-00
15-00
ISOO
ISoo
IS~oo
ISoo
!S~00
IZO&
ISOO
"boo
Zloo
2.2.00
HOO
ZlOO
•3.1.00
ZiOO
ZiOO
2.2.0O
Zloo
Boo
OBSERVED
POWER,
kit




/4-o
Jo-o
4.s:s
to.o
7s-. o
QO.S
lf>4 0
1*0.0


14k. 0
130.0
II 1-0
92.4
14.1
££,n
3t>.7
18.2>




AIR
FLOW,
lb~A,
35-5-
t24»
fc49
45S
4.7?
7i?
737
7fc7
8//
8 so
343
<353
ill 0
/ 2.5-5-
N
6.0
t.5"
7.0
ao
7.5-
9-0
ID.O
1.0
2.0.0
i^.O
A4-O
A/. £•
/^.s-
11. 0
is:o
9-0
7.5"
I-O
EXHAOST
L«HA
0-^
C-i
0-i
0.3
0-4
0.4
0,5"
c.S
0*
0*
o-z.
l.°l
/.&
I.S
i-Z
I.I
0.8
o.t
a.?
0-4
o.X
F\A
HC,
^^mC
Z9Z-
2.14
IB*
204.
24 1,
254
240
208
132-
-S-4
2-4,4
/42-
ISZ.
IS- 2.
/s-fc
/to
/fc8
/&2-
;78
/9fc
35i
NDVR
CO,
V>^
8^9
£-40
3fe6
277
-2Zfc
282.
107
773
A024
4/4.7
7*7
^/fi
54i
233
211
201
110
Z04
ill
3-.ni
BS-I
ND\R
coa/
%
M3
1.12.
2.92.
4. IL
S.4S
4,.4fc
7-tff
8-tS-
9.44
10. IS
/.33
7.98
7-72.
6,98
6.4^
^••73
4-92.
4./2,
3,20
2-24
/.33
ND1R
MO,
^^w
zo/
Z74
st>m
nf
i30
£-t>Q
Bid
im
/484
lle^.f
1911
/9fcZ
Hoo
7fo3
1511
'48/
/324
l/Zfc
939
782.
S89
4ZZ
Z33
It4
C.L,
NO^
\V~
2-lla
JLT!
(olS
94 /
/279
ISU
/t>71
i9S3
2-001.
/9Z7
792-
/5"?a
)So8
/3S4
//S"4
^^3
7^1
S99
431
ifc4
118
°».
X






	


















	














       ENGINE-   ALL1S - CHALMERS  3SOO
       RUN  5-
'it.
WET e^ULB TEMR, °F_££_
DRY BULB TEMP., °F  7 Z

-------
O

MODE
1
2
3
4
5
<0
7
8
9
1 0
l l
~)
i)
1 A-
1 5
I £
I 7
1 6
t 9
ZO
2 1
EW&INE
SPEED
RPM
BOO
1500
ISOO
ISoo
ISoo
iroo
TOO
IS~00
15-00
ISOO
boo
22_#3
2.2.0 fj
2.2.00
2.3.00
Z2-00
2-200
^^.oo
2.2-^e
72.00
QOQ
OBSERVED
POWER,
tit




/5.S-
30-0
4£~,0
4o.o
74.S"
9o.O
/os.o
J/9.0


143.0
130.0
il/.O
91-4
74.8
^.-7
34-7
n.(




i
AIR
FLOK),
Ib /
"Vht
3fet
fcSt,
£47
!*(*(*
tBi
t<»4
72Z
vs?
820
8So
332.
.136-?
'33fc
/3S3
//78
M3fc
/o73
/o/t.
^4?
9^4,
3£TS
FUEL
Ft- OH
Ib /
""/K»
2-6
s-.sr
lo.o
/4-S"
/9.C
^4-4
?D.O
ss.s
•n.°i
Sl-t
3-0
s?.o
S3.S-
4fc-4
39,?.£•
n-o
t6t> /^-o
S3o ;4-o
•••^ -mi '•-'
73 11 2'>? !•<>
EXI\AUST
i« V\3
0.0
02-
«• *
0-3
.?•<>
0-4
0-i,
O-'l
J,.g
1:0
0.0
1,1
l,°l
1.1
(.4
_rz.
1,0
D 8
5 5"
c C
/>•€>
FV ^
HC,
|p|^n>0
^t.8
Z*b
ns
CJ6
i.3fc
13 b
2iZ
/^fe
'2-4
50
A48
/z&
i44
H4,
'48
JS-2.
IS8
11"-
!!»&>
(78
3»fc
:-iD»R
cox
^^>m
8t2
kll
4-45-
33?
205-
342-
521
&6Z.
3-£~0(*
44S-4
8Z3
fo/7
41!
2<}3
3rlO
MB
2'IQ
?'-•$
2 '-. 3
'j - •'
&77
Nom
C02/
V
/o
I.4O
1.12-
2.gt
4-n
£T.^2-
&-4S-
7 73
0.fc<.
9-ff/
/O-I4
1.33
&-I3
7.73
7. or
fo.S2.
ff.T)
S.OS
4.11
^•^l*
'•11,
i 33
NDIR
MO,
W"
(82.
^32.
^7
394
nn
/47<
^33
,'?j'/
304 2.
/95S"
^43
yr7t"*
/T?
HO
4«i
B/fc
/oey
/33/
IZlQ
/fc97
/799
'74 1
J^7
/194
m.i
;AO;
/oza
C.L.
N0^y
lf.^m
2.2-3
a4/«
S'BO
863
//22
;2£-S
ir-i
ns'i
iBSl
nfc8
211
iqll
I^OD
1230
ll>q\.
8fc3 873
feU 704
532. ^4 i
564.
: ;/
U4
*• "5 '*=
^3i
> ^ / ri/
°».
%








	










	
	 _


_ _
_._ —
	 	
	








         ENGINE-
                             US-  C
                                                           iSOO
DAT
- r,!-'
VJET
DRY

-------
o
00

MODH
i
2
3
4
5
G
7
8
9
SO
! 1
i, Z
13
ENGINE
SPES.D,
RPM
goo
IH DO
/?
11 OO
noo
I'JOO
Boo
ZGOQ
Zooo
Zoos
iot>&
Zvoo
800
03SEPNED
POWER,
hS»




3"4 0
68.0
/£>2.0
135.0


/48-0
II/.O
74,0
36.9




A ! R
FLOW.
»»«,/.
/(n-








__ 	
















?UEL
FUNvJ,
5b /
/Vv^
2.fe
t-7
ifc-S"
i'.'.fo
39.*

i3.7
2.4
<-«>;r
44- s"
3/.7
Jl^_
n .
/•O
*'f
TEMPERATORE,°p JR.tSTRICTiOMS
WTAK.E
AIR
T»
^
T2.
12
"B
74 	
•7^
73
74
^
91
73
V-?
FUEL
81
^a
•'?*,
75-
7<"
•?s
3?,
73
S<
3Z
83
83
S4
£XH-
AOST


	




	
















SMTA'^t
i-rx^Q
1.0
7.0
0.2
•?.£-
i' 3
)£•-?.
U-4
10-2.
I.I
£X!JAOST
in«a








	
















FiA
HC,
t'f'wC
240
18-3.
I 74-
130
l?fe
ffk
I&O
I£>4
/3Z.
I3fc
)£•£>
/fc4
2T4
ND1R
C-O,
*>^
755
4So
277
ill
£24.
19/9
434
/a 4 4
BSI
zzr
•LI°I
3^1
79s
ND1R
C02,
X
/.14>
.'.72-
4./1
4.39
6-38
t»m
233
.2.4.3
Slo
nsz
i f: 7 (
/9B4
i9r
1131
/S-69
/^£-6
70S-
ibi
2.0Z
C.I,.
NO,
\.\>™
Z20
2 3 1
7Si
li^/
/T4
m?
284
)597
1472.
/Oto
fcSTfe
140
/84
C..U.
NO^,
V>K
241
2W.
•797
1201
(7*9
'840
3sz
;ts~/
/5T/3
/088
tfcC
Zff/
^'^
o,,
«/
/o








	
















      E NG- 1 N
                        M-i
DATE
                               WET SULE.TEHR/F S7
BAROMETER^ U B*,  2^.37    DRY  BULB TEMR, °F_7£_

-------
O

MODE
1
2,
3
4
5
EN&INE
SPEED,
RPM
800
noo
I'lOO
\noa
11 GO
6 \noo
7
8
9
SO
Boo
iooo
2.C&&
2.30®
5| 2*0.30
j 2 \'LO.on
\ 3 \&oo
OBSERVED
POWER,
ht>




54-0
k3.o
loz.o
l$4-e


I-1&.0
ni-o
•~,4.o
31,3




AIR
FLOW,
'Vh,


























FUEL
FUBVO,
Ib /
"/W
2.S-
6.6
Jfo.<7
18-2.
45; 2,
TEMPERATURE, °F
INTAKE
MR
74
74
7Z
IT,
n
£LfLi 94-
^•4 L74
isS<&
?J
4^S I 74
31,1
!=).$
1.0
2.$
V^f
91
I—, .-.
/' J?
V^'J'
FUEL
8/
18
Ik
Iff
1b
7B
Si
IB
81
82
83
§3
94
EXH-
^OST








— __
















RESTRICTIONS
>MTAKt
i-nttiO
/•O
T,0
6-3.
^,i
lf'3
14.0

/.^
a,%

!8-i
(£•.2.
/?-4
lo.l-
/• 1
EXHAOST
in H^






— —


















FIA
HC,
S>f>mC
2^2
Z32U
2./0
2<3^
/•9Z
7/0
/9&
/OS
.' ^ ^
-T{>
/^2.
I Si*
/t4
2feo
ND1R
CO,
*>?>•*
SS'o
f88
2.T7
283
44-4
J."5U
fo4Z.
I3S9
S 5"/
J.?4
^'y?
" -' "t-
8So
NDIR
C02,
•y
/o
/.;?
/.•?i
4-'a
&.s^
8-2S"
•?. ,^
/•2?
8.72.
7.38
5.9*
4.»2.
M-?
/.;-?
NDIR
NO,
f>f>m
//^
C.L.
NO,
^*»
/rs
22.1
741
I2-S"/
/4.?7
/?37
^ &4
1532.
1-^31
H.-&I
b££
^3i>
/73
C.L.
NO^,
^H
202.
ifoO
V77
/Z7-?
/7/S
/7?8
^04
!ffl2
i-j-rs
ID1S
(,'^0
2.5-1
Z02-
<\
%


























                   ALL1S-
                                            'iSO O
                                                                          72,
WET BrJLBTEKR,°F S"?
                                                          BAROMETER.,  Ln  Ho,  29-3?    DRY  BULB TEMR, "F_V£_

-------
'- ;ODE
1
"-
i 3
A-
i 5
6
7
^
c,
>0
1 1
12
,3
1 	
! 14
15
__!C3
57
\&
19
20
Zl
ENCIfJE
SPEED
RPM
GSO
! 400
1400
1400
1400
1400
1400
1400
14-00
1400
GSO
8900
\%0
!9C&
',900
IS 00
nco
I\e

.


»5.<)
51.3
4-7.6
Q>3.0
79. a
94.3
M 0 . G
12-7.9


144.3
li I. 9
'•05,9
9 i.a
"72.2
53.8
3 'o.7
I&.4


"

'MR.
FLOW,
>b-A»
4-SG
911
95G
974
991
9R9
(005
1010
1047
1061
4-53
1539
1430
I35G
I33.O
12S2
1255
mi
12 SO
1 2 2,4
4 SQ>
FUEL.
FLOW},
>!>„/
/Uti-
3.4-
7.3
1 2.Z
lCo.0
20. 4
24.1
50.5
35,2
40. &
4S. G
3.5
58.S
SO.&
44. 0
3&.E.
85
73
77
77
7?
81
62
85
91
94
92
32
94-
95
95
94-
c/2
91
.J^
&G
8£
FUEL
&0
80
7&
78
77
78
78
77
73
80
80
7G
73
70
o
&0
60
GO
73
77
77
78
E.MY
PR E-
TOR60
27--V
288
552
411
508
593
&?5
795
O1)"
1017
454
935
959
902
&OS
"*33
t.Si
55G
47 &
400
2r0£
E^H.
POs^-
TOP.BO
•Z45
2GG>
323
354
454
535
G33
73&
6 C, 3
1007
4-1 1
90G
6tfc
7a&
ro&9
GIG
537
4-7 0
4 ! 4
RESIRICHOMS
iNTAtCt,
t« rijO
! .5
Z.5
2.5
4.0
4.0
4.0
4-0
4.0
4.0
4.0
1.5
7,0
7,0
5. 5
s.s
£7 i~
5,5
4.0
4,0
3-5 (c j 4-0
2 32


FXHAUiT
t« Hi
o.o
0, 1
0.1
0,2
0,3
0,4
0,5
O.Q,
0,7
0,8
0.0
1.4
1.3
1. 1
1.0
0,9
0,S
0,7
0&
0.5
O.O
F\ A
HC,
t>v™c
it
^4
(c,
\
8
8
\0
\^
\ 2
10
1 2
&
G
4
&
_ _
7G
NDlR
CO,
Vt>«
2^r9
Z75
155
102.
7(5
SO
74-
8fc
73
97
Z22.
98
73
74
2S
Q6_
89
\ 14
14 1
23,4
302
NDIR
C02/
y.
1.2G
1.53
2.4S
3.5\
4.24
5,\7
(b.10
fo.90
7.5fc
&,49
1,44
7,(o5
7, l&
fe.5,,0
5.84-
5,10
4.2-4
3.Q.4-
?-.Gf-
1.98
1 , ! 9
NblR
h40x
t>j5v«
5G
(o4
i SO
2-7 9
438
548
G-15
GtO
570
553
93
5i4
573
SfcS
521
448
^5?
^47
150
&3
SG
C. L.
MOS,
t>]p«
5<
G3
144-
Zt3
40 Cb
52,3
593
585
55 G
533
&7
529
545
SS4-
502
4-50
3S1
2.ZA
141
84
44
c ,u.
M Ox
(pjpv^
45
59
119
2SS
4-OG
533
593
586
S5€>
533
85
5\0
527
554
488
4-40
3ZI
^3J4
14-1
84
41
POLKS.
°>,
%
\&. 1
\l.b
it. 3
15.3
11,7
l 2.4
10.7
9.5
6. 5

7.2
18,0
&.S
0.5
1O.3
n.2>
12,4"
13,5
I4.G
15,9
16.9
i&.l
ENi C \ ME.
ROM       l
&AROMETEB,  i
                            ?. 2O
lot T
DC.Y
                                                                                                                    °F

-------
n

MODE
1
2
3
4
5
6
7
6
9
10
1 1
12.
13
14
15
_l_<0_
17
16
19
ZO
21
ENCIME
SPEED
RPM
G>40
1400
1400
1400
1400
1400
1400
1400
1400
1400
40
mo
1900
1900
1900
IS 00
1900
1900
1900
1900
640
OBSERVED
POU)tR,
^




15.")
31,7
41,6
G3,5
1 9,8
94.1
i 1 i. 1
130.2


152. O
131.7
M 4.0
95.0
76.0
51.0
31.4
1 6.4-




ftlK.
FLOUJ,
lb~A,
4U
9sa
<>5<)
959
S57
975
991
1023
1055
\\ 16
43)
1505
1406
»338
12.85
125")
1235
1230
1224
1242
42>£
FUFU
FLOlO,
'V>>/
/h»
3.O
7,5
11.5
15. &
20. 0
24.4
2.9.8
34,1
41. 6
SO.Q
3.0
60.0
51. t
4S.S
3^.0
55.0
Z7.2
21. G
IG.5
12,5
3.0
TE.MPERATURt , «f
INTAKE
A\K.
81
IB
11
_!].
T)
19
61
&4
ftt
59
93
&5
92.
92
92
9)
&&
&1
85
62
&\
FUEL
90
SO
9i
9G
100
102
104-
ioa
106
106
102
no
106
106
I03.0
12.0
M.b
U.2
U. 0
11.0
U.O
1.5
EXrtAOiT,
'« Hs
O.O
O.2
O.2
0.3
0.4
0.4
0.5
O.fc
0.7
0.9
0.0
1,5
1.4
I.Z
1-0
0,9
0.&
0,7
O.G
0.5
O.O
Fl A
HC/
l?y«C
72
64
(06
56
36
3G
5G
32
30
28
82.
2G
24
iG
30
34
34
3G
40
7G
l\4
ND>R
COX
I>1P«
Z7fc
275
166
90
G3
*>-
4&
(b4
1 60
219
417
59&
64O
G4?
60s
550
G4
606
6,34
60\
5&1
48 \
36 1
269
169
1 I \
64
C. L.
NO*,
HP"
13
80
153
262
403
539
S&9
570
547
530
68
566
SfeP
545
SlG,
432.
331
229
»47
95
62
c .u.
NO,
IPK
34
50
125
23_8
384
506
557
S5(b
519
503
43
557
SfcO
527
493
413
312
210
1 24-
60
28
POLNR.
°b,
%







	
















	















               CATER PILL AR.  P&C
DATE 2./IQ/12.
     RUN
BAROMETER, tv\
                     . 34
WET EjOLb T 6N\e, "F    59




DR.Y 8ULB TEMP.X O
                                                  74

-------
o


MODE







4-



6




Q


'0



1 L

1 3

14

1 O

Ivo

7

o
i Q
I 7

2O

21
ENCIME
SPEED
RPM

(o4O
\ A t\r\


1400

1400

1400

1400

1400
1 A f\ A
I'UlV)

iH-Ovl

IH-UU
C^AC\

i Q c\r\
1 7UU

190O

1900
i onn

l Qftfi


1 ?UU
1 Q C\(\

i o r\n


1^00

. t)
-7/r A
'O. *t-
c "7 n
£> /. U
2.Pi fl
oo, U
l Q f\
1 7" u.^.
a n
i.v
^ a r"
57. D

5Z.5

45.4
2.^ 7
37. i-
a-i /•
OZ ,^o
1 ~l K.

790

no


1 /.o
2r\
. 7
TEf
INTAKE
A(K.

(9
-7 Q
' 7
T<1
/ 7

BU

19

so
& 1
D 1
ftc
Dt>
ft fl
DO
ftft
7U
aa
Do
TQ
'7
0 C"
85

c>9
QQ
O7
AR
DO
BC:
0^>
ai
Ol
Q/N
OiJ

19

80
VIPERS


CiR
7O
.
7t>

1 U L

1 Oto

1 QO

I 10

1 I 0
i i n
1 1 U
i r\f
1 Olo

1 U^
Q .
7 0

1 1 O

I 0

l OQ,
l r\A
1 UT-
1 HT

1 AA
1 UU
i r\r\
1 UU
1 1\(\


100

01
auRt
EX.B.
TOR 60
^ aa
/-O7

173
0 r/\
3bU

430

52|

G\3

/ \4

o3Q)

741
i rtC.1.
lutsj
^RO
iOO
<^nc
705

10 1 0

914
R4I
OH(

/=> 1

(o5(o
c:';"?
i>o (
Ain


402

24&
,»F
&AH.
TOR.6O

Z5^l-

/.7t>
7, O Q
->Z7

59 /

414

511

    REST(^\C IWWit, c«M1o .5 b.5 fo.^ fo.o /, 0 .0 .5 O,0 8/- .s Q r- 7.5 l-S IS. 5 i A c. 14. 5 »B>.0 U^ \ I. b i, & i i rv II . U 1 \ O I 1. U 11. 0 1.5 ,-noios EXH/KOiT tM ^i> .O .2 .2. O.3 0.3 0.4 O.S ,6 0,1 On -V On l.(o ,4 1.2 i /\ I- U •9 '& Or ,6 0,6 0,0 FlA HC, IP r** *«* 84 10 36 30 28 2.0) 24 2.2. 20 4- Ryl O^- 24 24 30 3O 3Q, 34- 1 r ovo >» f\ 4-AJ 64 0(o ND»u; CO, tt*. 355 3 1 4- ^ZO 90 63 ~IB 74 62 85 S7 o-ir 21 fM -> / J:D 4bl 3cJ2 o r, -i 231 \ 0 Q 1 ^ 1 02 4C, C. L. NOX/ ^« r rx to to Q £- Do i C-Q 1 S7 26 o 423 / S42 A C ^-±> A Q 1 4-7 1 S4O 534 zr APi tDUU 41 \ 320 •? nft l O A 1 ^.T- GO 2-1 POLM?. 0,, % RON CATERPILLAR D&C DATE. _Z_/^_/2^. WtT buLfc TEMR, <>F _GJ &AR.ONU T t R, i»\ H^. 2-9.32. DRV BULB TEMP.X °F 7
    -------
    
    MODE
    1
    2
    3
    4
    5
    o
    440
    OBSERVED
    POWER,
    
    
    
    
    22-1
    42,7
    t.1.0
    86-4
    /£>$. 3
    I2.9.S
    141- 1
    /ta.5-
    
    
    205". 8
    702. 0
    /s-4.7
    /as.©
    /«.£
    77.0
    .5,2. jT
    •24.£-
    
    
    
    
    AIR
    FLOVJ,
    5-S-S-
    ^z/3
    2Z/3
    ^273
    i/7^
    2.11 S
    Z'Ole
    z^0
    **• * ' -^
    A/?3
    Sit
    Z87S"
    2844
    ^S ^to
    -2. "? ^1
    ^44
    C.L.
    234
    £.12.
    44r
    474
    ?*1
    /i C 0
    1 fo &&
    /^'4
    /73
    /^4
    /^3fe
    /i*r
    ^4^
    M3
    •474
    Jg^
    470
    WET &ULE, TEMR^°
    2,?. S6 DRY BULB TEMP.^ °
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    	
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    — 	
    f >S8
    F 7/
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    00
    ItoOO
    lloOO
    440
    Zioo
    HOO
    3.100
    it oo
    2.1 00
    il 00
    1/00
    i/ DO
    1JOD
    440
    OBSERVED
    POWER,
    
    
    
    
    21-1
    41.7
    ks.i
    d. c~ Q
    D ~> , /
    108.3
    in-t,
    141.7
    no. 7
    
    
    ioB.L
    1 &Z, 7
    /•S"4-7
    /A9.S-
    /OS.O
    Tl.O
    £-1.1
    AS.i
    
    
    
    
    AIR
    FLOVJ,
    S(,0
    i/74
    J>/94
    2.112.
    zne.
    z,si
    ZlSZ
    2.IS-&
    2.1 S'O
    2.111.
    
    2.<)S&
    2t43
    1B4L
    ^83/
    i
    37.0
    44-0
    S2.£
    tl.£
    1*.1>
    a.ff
    S7-S-
    78.0
    M.o
    54.0
    S3.ff
    39..?
    3l.f
    AM>
    H.O
    3.0
    TEMPER AT URE/F
    INTAKE
    AIR
    74
    73
    72.
    74
    7/
    74
    7Z
    72.
    1L,
    72
    75-
    75"
    77
    74
    74
    73
    74
    73
    74
    75"
    72.
    FUEL
    K4
    /1 9
    (14
    /^S
    /Jlfe
    fV?
    /27
    ;^7
    /2T
    ;z-7
    }^^
    »»4
    /3/
    /54
    /55"
    ;3t>
    /3-;
    /3-»
    /37
    ;37
    >2.s
    o.S
    11.5
    II. 5"
    IO.O
    to- s"
    (0.0
    II. 0
    ll. £"
    11. 0
    O.Z
    L" H^
    o.»
    /•7
    /•9
    ^.o
    a.l
    2.S-
    X.5-
    3.5
    3.0
    3-4
    i>.l
    5-.0
    s-.o
    4^4.
    4.'
    4,3
    3.8
    3.5;
    3-3
    ^>.J
    FlA
    HC,
    88
    "74
    54
    84
    86
    ^
    loo
    lit
    /2B
    13 Z.
    /og
    /-fi-
    /3z-
    '30
    '3o
    /te
    111.
    lite
    ND\R
    CO,
    2-/D
    /72.
    I/O
    73
    48
    48
    47
    83
    
    4447
    224
    6f&
    ls-3
    £•&
    48
    ~~o
    73
    99
    /8fo
    NDIR
    V
    /o
    1 ,00
    1.00
    I-S3
    1.0-S
    5,71
    3-3/
    3.ge
    478
    S-,5-/
    6.af
    0.7f
    ffi4g
    S.il
    4^5
    3.79
    i.St
    ),91
    !• 00
    O.fcO
    NDIR
    MO,
    2t4
    i/2.
    3S/
    S78
    719
    loll
    ago
    /sst
    !!><)<,
    isu.
    211
    /?»3£T
    /BO
    394
    fc/S"
    5SD
    1103
    14 o<)
    H>94
    /778
    /s^r
    227
    *743
    )eoe
    /fc/4
    /384
    Uld
    ^
    443
    A??
    22_l
    C.L.
    Z54
    Z02.
    4/3
    44<1
    897
    //T£"
    ;s-«
    /g?fi
    /^^t
    /fc8o
    A so
    /&&!
    /1*t
    <770
    /484
    11*0
    -~^
    4fc7
    ^9S
    3LS7
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    	
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    
          ENGINE-  DETKQiT  OlESEL
          RUN  4
    DATE :o /2.
    -------
    o
    
    
    MODE
    
    
    7
    
    a.
    
    
    
    
    
    
    
    
    
    
    
    1 L
    \ "\
    
    1 A_
    
    
    \ _>
    1 (-
    I lo
    
    i /
    i e>
    l Q
    1 7
    
    zo
    
    2 1
    EIMG-INE
    SPEED
    RPM
    
    44 °
    
    /4>O
    1 1 r\n
    lloOO
    
    llfOO
    
    
    
    Iboo
    
    llfOO
    It* nn
    
    
    
    iL.no
    
    
    44O
    
    2/ £>O
    
    2.1 DO
    
    
    
    3.1 OO
    
    ynoo
    
    2. IOO
    0.100
    
    OLIOO
    
    2.1 DO
    
    44^
    OBSERVED
    POWER,
    hj.
    
    
    
    
    
    ^-2,^
    
    43.2.
    
    Io4 • &
    
    ot>- 4
    
    1 vo .3
    
    />• B. S
    
    ISO.1)
    
    
    
    
    
    2. OQ. fc
    
    
    
    
    
    / 30 - 7
    
    / £> 3,t>
    
    77. 0
    s-/. /
    
    J S". Z_
    
    
    
    
    AIR.
    FLOK),
    Ib /
    ™/V\r
    
    ^47
    
    •Z-2/ S
    
    2 Z2-8
    
    2I1S
    
    
    
    a. (? 7
    
    2. /4 7
    ' /«-»
    ^~ ^ ••
    
    --/ S~b
    
    Z 1 e>4
    
    5"^ I
    
    ^ »34
    
    -^- D 3 /
    
    •2- 7O7
    
    J.74 4
    
    i 73^
    
    -2-775-
    i777
    
    3.68O
    
    ^^^4
    
    5-68
    FUEU
    fUOH
    lb«/
    
    ^-4
    
    //• 2.
    
    l&.l
    
    3-4 '2-
    
    3/ '2-
    
    38.S
    
    4=-O
    <"/ ^
    
    , «
    t>3. 0
    
    7>t. /
    
    ^•2.
    
    o8«i
    
    78-5
    
    bfaO
    
    S7,0
    
    47.7
    
    39.2.
    J^.5-
    
    i4,l
    
    183
    
    3.5
    TEMPf
    INTAKE
    AIR
    
    75
    
    72-
    
    73
    
    fi
    
    7/
    
    7^
    
    73
    
    / 9
    
    73
    
    74
    
    72.
    
    7/
    
    1 £
    
    
    
    73
    
    ' 4
    
    1 0
    74
    
    7Z
    
    7/
    
    73
    iRATU
    
    FUEL
    
    99
    
    1 Bl
    
    1 J (e
    
    '/9
    
    / A /
    
    / 2 2.
    
    /2.2-
    
    1 2~^t
    
    I'J-i
    
    12- :>
    
    1 ^ i
    
    /' t>
    
    12.$
    
    1 3-7
    
    16 1
    
    
    
    1 41.
    >3i
    
    ' ~J ~j
    
    I- S
    
    /? i
    RE,°F
    EXH-
    AUST
    
    310
    
    3.S2.
    
    jL^O
    —
    3&I
    
    ? ' '
    
    487
    
    5'5?
    
    to SO
    
    72 7
    
    82fc
    
    J'O /
    
    34. £°
    
    S^Z.
    
    7/8
    
    428
    ** r *
    - , <<»
    
    *(70
    7X£T
    
    3^1
    
    '37
    
    7 74
    RESTR
    INTAKE
    C-nHjO
    
    O.£T
    
    7.0
    
    7-2.
    
    1-0
    
    *> . o
    
    t.£
    
    t 4
    
    b. (»
    
    t.fc
    
    t-7
    
    O.S"
    
    )7.5"
    
    //- 5"
    
    l/.o
    
    10.^
    
    IC'1
    
    II, t>
    ll.l
    
    II-O
    
    i/.B
    
    o 5"
    VCT V f}M5
    EXrtAOST
    L«HA
    
    0 /
    
    7.9
    
    2 .0
    
    i-o
    
    • i
    
    P -3
    
    J.S"
    
    x '8
    
    3.o
    
    3.4
    
    0.0
    
    Q.°l
    
    £. 2 —
    
    4 - fc
    
    4. z
    
    ^. 9
    
    5- a
    J.5"
    
    .?- ^-*
    
    -" '-3
    
    £>: 0
    FV A
    HC,
    ^^mC
    
    1 la
    
    Bo
    
    1T-
    
    74
    
    74
    
    78
    
    »2.
    Q-7
    
    
    
    
    
    
    So
    
    /C 8
    
    7*8
    
    78
    
    IPO
    
    
    
    
    ,02.
    
    
    
    I/O
    
    94
    ND\R
    cox
    V>f>m
    
    2.10
    
    J4-T
    
    ^ 7
    
    4 /
    
    48
    
    48
    
    4-i
    o »
    o j
    
    4"'
    
    J.SOI
    
    J-3b
    
    tblf
    
    /S 3
    
    8 3
    
    77
    
    72.
    
    
    73
    
    H(p
    
    ' '°
    
    ZZ3
    ND\R
    C02/
    %
    
    (3-'r?3
    
    O.1?1?
    
    1 52.
    
    Z.li.
    
    3 .1 1
    
    -31
    
    3. "7 7
    . _ .
    T **
    
    
    
    b-XB
    
    
    
    S,7fc
    
    -S"'2 o
    
    4.^0
    
    J- /O
    
    
    
    iiisn
    Ili
    „
    l'3i
    
    [.OO
    
    0-lalo
    r401R
    MO,
    Iplprn
    
    242-
    
    ' 2_
    
    4»3
    
    fcoi.
    r* , a
    B/7
    
    /t>7i
    4
    /3 £7
    
    
    
    /7fo
    i L i 1
    
    
    
    
    /' T*
    
    /7i O
    
    7faO'
    
    I4ot-
    
    
    
    94>Z
    ^44
    
    44 /
    
    ne
    
    3-S~4
    C. L.
    NO,
    »*"«
    
    2 '4
    
    / 7*7
    
    393
    
    4/3
    R^J >»
    044
    
    
    /4J./
    /*f z/
    ...
    o^ w
    
    7742.
    
    1*47
    
    227
    
    ngo
    
    '0T '
    . .
    /ow *»
    
    745-2.
    
    7/4 1»
    
    8?7
    6^e
    
    437
    
    2fc8
    
    .23.5"
    C.U.
    NOK/
    \>t>~-
    
    2 4Z
    
    3.0 s
    
    
    
    fc£"2.
    oa o
    07 /
    
    
    
    Is 4^
    7787
    
    
    
    
    /fc32-
    
    •^
    
    / 7 / 7
    ,. ga
    
    
    
    
    7^52-
    
    / J-O3
    q
    732.
    69Z-
    All
    474.
    
    ^98
    
    347
    
    2'
    X.
    
    
    1
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
          ENG1N E-
                                      (oV - 'I /
                                                      DATE
    WET e>oi.e, TEMP.,
                                                                                  DRV BUL& TEMP., °F ?/
    

    -------
    o
    JMODE.
    8
    2
    3
    4
    5
    G
    7
    8
    9
    10
    1 1
    1 2
    1 3
    EN&INE
    SPEED,
    RPM
    440
    HOO
    13.00
    liOO
    12.00
    /loo
    440
    i boo
    >&ot>
    l&oo
    iQoo
    iQoo
    440
    OBSERVED
    POWER,
    h^
    
    
    
    
    2.4-. o
    49- 2.
    13.i
    98.1
    
    
    140.0
    IOS-0
    bt.3
    54 '2-
    
    
    
    
    AIR
    FLOW
    ""vW
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLOVU,
    'Vh,
    2-fe
    6.3
    /8.S-
    29.5
    4/-S"
    jg-9.0
    2.fc
    0(?.&
    t/-9
    4'. 6
    A7.0
    /3.<)
    ^•9
    TEMPERATURE, °F
    INTAKE
    AIR
    74
    74
    V3
    TL
    10
    74
    7s:
    01
    73
    n
    n
    7;
    7t
    FUEL
    Ml
    ni
    til
    no
    no
    12.0
    no
    lie
    '24
    H6
    I3o
    \lo
    i y '>
    EXH-
    AOST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRICT\ONS
    IMTAKE
    CwttjO
    0.7
    j.s-
    4-0
    4-0
    4.o
    3.Q
    0.7
    9-0
    8-7
    fi.S"
    8.r
    8.7
    o.s-
    E^HAOST
    in Ha
    0-1
    f.f
    l-o
    1.1-
    '-4
    1.7
    O.I
    4.0
    3-7
    3.1
    3L..L
    1-3
    P./
    FIA
    HC,
    ^^n^C
    70
    80
    84
    90
    704
    /Ob
    83
    lOla
    102.
    loo
    102.
    It*
    82.
    ND1R
    CO,
    ^f^m
    20?
    it,0
    72
    3k
    n&
    So^g
    333
    /8fct
    82.
    a.-*
    37
    no
    210
    KOIR
    C02,
    %
    /.O4
    0-926
    2-25-
    ^-64
    4.94,
    t.S-3
    /,78
    t./S-
    4^6.
    3.5-X
    2./J
    OA1I,.
    O-bko
    NDlR
    1HOX
    ^t>m
    Ito
    '41-
    5793
    "?97
    /"jsrS'
    (37i
    2.72
    /5~2.fe
    /s-ac
    /o<»3
    6/4
    2.42.
    2.33
    C.L.
    NO,
    t^"
    224
    /Si
    lain
    11 1/
    1^73
    /271?
    22/
    /£T38
    IL.HZ.
    1081
    4/3
    '^
    /ft
    C.L.
    NO*,
    H-
    ZH
    /8o
    ^£•6
    HI I
    m4
    ^334
    Z42
    /^i^
    '6/a
    //£-t
    647
    22.J
    21)
    o,.
    y
    /'o
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ENG-INE.
                               DIFSFL  t>V-ll
                      RUN   /H-f
    DATE
    23
                 /72.
    BAROMETER, Ln
    2.9-
                  BQLBTEKP/F
                                                                                    DRY  BUUBTEMR^'F  *7 2.
    

    -------
    O
    
    MODE.
    1
    2
    3
    4
    5
    €>
    7
    8
    9
    10
    1 1
    1 2
    1 3
    ENG-INE
    SPEED,
    RPM
    44 £>
    /Zoo
    (7-00
    17.00
    17.00
    1100
    44o
    I Boo
    IQoo
    I0oo
    l&oo
    19 00
    440
    OBSERVED
    POWER,
    ht>
    
    
    
    
    i43
    49.-S"
    7-'. 3
    96.8
    
    
    /40. o
    /O4. O
    bl-B
    34. (e
    
    
    
    
    AIR
    FLOW
    lb-A,
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLtwO,
    'Vh.
    -2-7
    •?./
    /S.3
    So.-L
    4'-«
    5^.o
    2-6
    8o.S-
    58-4
    t>»c
    la
    ^o
    8&
    ^fc
    m.
    iii-
    IDO
    113
    ie&
    /OQ
    110
    IZZ.
    Illo
    NDIR
    CO,
    *>|>m
    2.ZZ
    23S-
    65"
    47
    /S3
    Soi^
    2.IO
    /<»<,/
    7o
    4&
    61
    72-3
    /"?7
    NDIR
    CO2,
    V
    So
    l./i
    A/2.
    i.3)
    3.78
    3-^9
    ^.tr
    /.£>£•
    4-27
    4-77
    J.S/
    2./8
    A/1
    1.00
    NDIR
    NO,
    *>t>r«
    )6/
    U/
    SSI
    IIL
    /44^
    /194
    ^12.
    /48C
    /5/4
    /oz7
    5^7 1
    /ei
    y^i
    C.L.
    NO,
    *>>>•"
    /V9
    /sz
    fc/;
    104.6
    ISlcl
    /Z49
    i/4
    '4^4
    /s-4.3
    I OSlo
    .5-43
    111
    x/7
    C.L.
    NO*,
    V-H
    2>0
    IQI
    fcST
    ;is-s
    '707
    /33/
    ^37
    /5"47
    /terKoi r
    DATE
                  72-
          MAPPING-  RUN   M-2.
    BAROMETER^ Ln
                         Z?
    WEF BOLBTEKR/F (,O
    DRY BULB TEMR, T_72-_
    

    -------
    n
    i
    i—'
    
    00
    
    
    MODE
    
    
    O
    
    
    
    
    
    
    5
    
    
    
    
    
    
    
    
    
    0
    
    1 I
    
    2.
    
    I 3
    
    4-
    
    5
    
    1 (o
    
    \ 1
    
    o
    
    1 y
    
    ZO
    
    1
    ENG-INE
    SPEED
    RPM
    ~7 r\r\
    1 uu
    i o r\r^
    \ DUO
    1 Q/NfN
    1 DUU
    i or\/\
    1 o*JO
    i Qr>r\
    I O'-'1-'
    i ft.AA
    \ QUU
    1 QPiCl
    1 ouu
    i Q /Nf\
    i ouu
    i Q r\r\
    1 cAMJ
    i o.r\n
    1 O^H.l
    
    
    1 /TAA
    2 fJL)
    
    25OO
    
    250O
    
    25<_O
    
    2500
    
    25OO
    
    2500
    
    2500
    
    25OO
    -7/NP\
    /uu
    OBSERVED
    POWER,
    M>
    
    
    
    
    1-1 r
    1 f- , -0
    
    /4 .O
    -3 /- r\
    _->
    
    
    
    lO(o.
    
    •) 1.7
    
    79.1
    
    *Q^I>»vJ
    
    52.5
    
    40.0
    
    2S.8
    
    1 3. i
    
    
    
    
    AIR
    FLOVJ,
    """Ar
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLOVJ,
    'Vk..
    I (
    U*o
    
    
    
    5.9
    
    12.0
    
    IS-7
    
    1 /• /
    
    Z.3.O
    
    27. 0
    
    ^2.o
    
    39.0
    
    
    
    43. e>
    
    oO-/>
    
    33. \
    
    2.O.5
    
    2^. /
    
    1 - L
    
    ICo.O
    
    13. /.
    
    10.0
    
    .(D
    TEHPf
    INTAKE
    AIR
    QO
    7Z_
    „
    O /
    Q Ci
    OO
    QQ
    O7
    
    " /
    BO
    o;
    R<1
    O/
    
    ^o
    Qf\
    89
    C\f\
    70
    
    
    
    DO
    
    i>
    
    35
    
    &7
    Q
    o /
    ftr
    06
    A~7
    ft/
    
    HP>
    
    DO
    „ .
    ' 1
    LRATU
    pt \cr i
    
    ~
    /O
    00
    /v'
    ^ '
    / '>
    
    /'-
    Qf
    VL,
    }-.
    /
    C)A
    /fj
    A n
    9y
    
    I 00
    
    01
    
    
    
    02
    
    1 05
    
    1 0(<%
    r\ «
    )^
    
    
    
    
    
    102
    
    / -
    
    Jvf
    
    
    RE/F
    EXH-
    AUST
    ^ -10
    o /3
    
    zgu
    
    347
    
    17
    
    T / O
    r
    — '' Vf)
    l~ 1
    <^.O
    Q 1 1
    0 1 1
    
    731
    
    1 0>o2
    
    
    
    933
    
    "24-
    
    o OQ
    
    750
    
    677
    
    570
    
    518
    
    442
    
    -)7o
    
    Z79
    RESTR
    INTAKE
    U^O
    v Qi
    1-7
    
    1 1. /.
    
    I 0. •)
    
    0 . J
    
    . 1 . i
    
    \ O.r,
    i r\ -7
    1 U. /
    . fv C
    1 O.b
    
    10.7
    
    7- /
    
    
    
    I 9«7
    
    1 7iO
    
    \ 7-7
    _ _
    1 7. 7
    
    20.Z
    
    Z.O.4
    
    20.6
    
    20.4
    
    20.2
    „
    1- /
    IC.TVOM5
    EXftAOST
    L«Ha
    r\ r»
    4O
    c.Qr>
    t> V1-1
    ftcrv
    05O
    
    IO4O
    
    oZO
    
    
    
    1080
    
    825
    
    740
    
    OlU
    
    790
    
    / /O
    
    /oO
    Q \ r\
    o»o
    
    onO
    r ~j.r\
    fciO
    ND(R
    CO,
    (>*»«
    
    X>O7
    
    — «O
    
    34 \
    
    007
    o f>/-
    ^ /to
    1 A~I
    34 /
    /I Q Q
    4 O/
    
    103o
    
    25 3o
    
    '5OO
    
    
    
    1 81 y
    Q \/r
    7lb
    
    501
    
    4 1 3
    
    371
    .
    3/4
    
    3 07
    
    403
    
    4/06
    
    26;
    ND1R
    C02/
    %
    
    Kb 1
    1 /* Q
    1.107
    
    •to5
    
    .50
    
    .4 1
    
    .44
    
    to. 41
    —Iff
    /-fob
    
    O. ti 1
    
    7"T\5
    
    
    
    .37
    
    7-51
    
    t>.55
    r
    o-7 1
    
    •70
    4-7 fi
    •*-)
    
    ,5O
    
    .83
    
    2.12
    
    . 51
    NOIR
    MO,
    V>\p^
    i QT
    1 7 1
    \ r\*7
    1 t>/.
    
    1 / /
    *} TO
    i. 1 L
    1T1
    o /3
    
    4-9 1
    "7r»"7
    /o /
    Q -TO
    0 \L
    9Qn
    ol
    
    103Z
    
    
    
    1 184
    
    1 015
    
    o7s
    r ftr
    (oofo
    
    oO^
    2. On
    3oO
    
    A 5) 7
    
    1 60
    
    86
    
    1Z7
    C.L.
    NO,
    )>(»«
    1 \ r
    
    
    54
    ,
    1 _>^>
    0 « /\
    2AO
    _ .
    oA^>
    A (A Q
    •4-VO
    71 O
    12
    (\ /\rv
    900
    
    1045
    
    IQ>
    
    
    
    13i8
    
    17 1
    
    95g
    
    /3fc
    
    ^43
    o o'Q
    oob
    
    249
    
    147
    
    81
    
    1 1 5,
    C.L.
    NOS
    ^J>-
    
    1 b5
    Q Q
    7Q
    
    92
    
    2,7 Z
    
    4~O 1
    
    544
    
    I4?
    C\ O 1
    ^13
    
    1017
    
    \ OO
    
    
    
    1405
    
    12 o/
    
    1003
    -|Q 'I
    I02
    r 0-7
    5^3
    ^ A O
    ^+48
    
    1 i
    
    103
    
    IS1
    
    H8
    
    °*.
    y.
    
    1 O-O
    \ o r
    ' a.(o
    
    .0
    
    5. \
    
    13-8
    
    12.2
    . *. c
    10. o
    8r
    .(D
    
    6.7
    
    4-5
    
    
    
    *O-7
    
    . 1
    
    7.«
    
    1 1.2
    
    12.2
    
    13.5
    
    14. /
    
    15.7
    
    16-fc
    
    17.4
          EN&INE-
    
          R.ON   Z
                      INTERNATIONAL.
    DATE  S/q/72.
                                    WET  &OL&
    
    
                                    DRY  BOLB
    72
    
    
    8O
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    :>
    01
    95
    91
    '3V
    ?PJ
    37
    •XiH
    rl4
    ^S'5
    
    \02
    '}•)
    95
    57
    99
    ^7
    95
    93
    EXH-
    AUST
    2%
    2(oO
    333
    409
    41) 2
    :/)8
    fe?0
    6\':l
    ^72
    \B58
    £55
    -3, [)0
    '' • . " . ;i
    &£t
    •?9<)
    702
    (oB
    G3\
    459
    5fo^
    27^
    RESTRICTION
    INTAKE
    un HZO
    !.-)
    n.Q,
    1 1.3
    II- 0
    n.i
    \o.9
    %0. 7
    \1.1
    10.7
    10. 0
    2.1
    a&
    19-1
    *%8
    \%?
    19.9
    20.2
    20.2
    20.0
    201
    1.9
    EXHAUST
    L"H3
    0.0
    0.2
    0.4
    0,1-
    0.3
    0.4
    0.5
    0-1
    0,9
    0-9
    0,0
    K5
    l.S
    K4
    1.3
    1.2.
    l. \
    o,-)
    O.B
    •^.?
    <";, 0
    Fl A
    HC,
    fc>t>mC
    465
    S95
    520
    505
    ^BO
    535
    5£-0
    710
    905
    800
    
    •DS-O
    940
    7 IS
    665
    710
    7t>5
    Cc-70
    fef-O
    t')0
    7ZO
    SPf.
    ND»R
    cox
    ^t>sn
    2.5?.
    35)
    33fo
    297
    318
    337
    457
    93!
    2265
    fo5<3 0
    2Eol
    *4?,8
    7B
    532
    379
    32fc
    sn
    32O
    334
    3fcO
    \90
    t4D!R
    C02/
    %
    I.4O
    I.Toi
    2.5G
    3.4b
    A. 42
    5,32
    6.42
    l.foO
    &.7I
    5.95
    1-47
    8.71
    7.1T*
    7.I&
    6.28
    S.18
    4-&7
    3,81
    3,04
    ^-24
    \.£\
    NDIR
    MO,
    V>'P^
    12-1
    G.O
    S34-
    273
    3&G
    4(o?
    4Z
    I14E,
    1055
    927
    7ia
    532
    402
    207
    14-0
    73
    100
    C.L.
    NO,
    t>f>m
    108
    53
    12&
    221
    341
    482
    foB^
    S92.
    IG5S
    i\o?
    135
    1314
    IU3
    ^43
    706
    5S8
    3B3,
    245
    »47
    &G
    IOG
    C.L.
    NGu,
    \>^m
    I(o2
    91
    179
    288
    333
    G>20
    74b
    92G
    10&9
    1153
    154
    1*3 P>5
    \)13
    9B6
    7S2
    £54
    429
    30 1
    104
    !44
    IS4
    °*.
    X
    16.9
    18.7
    17.2
    ifo.o
    14.2
    12.8
    \\.2_
    9.0
    7.2
    4.8
    \B,&
    7.3
    8,7
    10,0
    u.s
    \2,9
    14.0
    iS.I
    IG-3
    n.fe
    »8.Q)
         EN&iN E.  INTERN AT jQM
                 3
    D40"i
    DATE
                BAROMErER
                      V-U
    29.
    WET &ULE. TEMR, °F _G8_
    DRY SUL& TEMP.y °F  7G
    

    -------
    0
    
    ro
    o
    
    \r^
    
    
    -j
    t.
    3
    4
    C.
    6
    7
    6
    9
    10
    
    
    1 2
    I 3
    1 A-
    1 5
    1 6
    I 7
    1 6
    1 9
    
    2O
    
    2 1
    t"7-i:iE
    ^o.
    «PH
    
    
    i Q fx f\
    
    IftOO
    IROO
    IfsOD
    IBOO
    !600
    !g>00
    1800
    1800
    
    / u u
    2500
    2500
    2500
    250O
    2500
    2500
    2SDO
    2500
    
    /suu
    
    70O
    •j
    
    
    
    
    
    I2.O
    24.O
    3k. 0
    4&.O
    50.0
    7'1.0
    84.0
    9fc.Q
    
    
    ! \ i .
    i 00.
    6S.5
    71.7
    56.7
    42.5
    29.2
    14.2
    
    
    
    
    *.1P.
    
    
    21>S
    
    722
    728
    72k
    710
    715
    104
    110
    708
    693
    
    293
    945
    944
    9£0
    9C6
    9S&
    958
    961
    9,
    
    1.7
    
    ~. /
    M
    1 5 , ?
    1 C, . ~
    1 ') . 2
    ^- _! . 'r
    1-7.°,
    3 H .4
    'i?, .2
    
    1 •_'
    4fB.G>
    40.7
    34 .£
    10. r<
    2£.l
    21. 1
    17.0
    13.5
    
    1 0. 1
    
    1 -7
    TF-MPf
    ,-M/-
    At R
    
    o4
    Cl
    o 1
    80
    "19
    71)
    -;'}
    30
    
    80
    R2
    -
    0 /
    M
    rr>2
    B2
    ft 4
    84
    82
    81
    SI
    Cj I
    nl
    ^
    HO
    
    FU'tL
    
    "O
    
    )O
    90
    90
    90
    91
    92
    92
    9?.
    95
    Ck 1
    7 1
    95
    98
    100
    100
    91
    90
    93
    9£
    
    ) -
    C\ 1
    V 1
    RE °F
    EXH-
    ftOST
    '!
    ^— 'T'O
    
    ^45'
    3^9
    4 OP,
    5)3
    GOO
    fc79
    796
    \0lfc
    1 Ofct
    
    475
    931
    9£>7
    8B3
    788
    697
    ColO
    52i
    454
    
    -• J'l
    
    2. .'<;
    RESTR
    INTAK.E
    U H,0
    
    2 . 1
    
    \ 1 . 4
    U.&
    U.5
    li.O
    \\.'i
    \ \.\
    i 1.3
    1\.2
    10.6
    i (\
    K l->
    \<).9
    19.1
    »%9
    20.2
    203
    20.2
    20.3
    20.5
    
    2 ". /
    r
    
    ItVlOMS
    K^
    
    J.O
    
    o. z
    0,4
    0.5
    0.5
    n.fc
    0.&
    i,0
    ».o
    1.0
    f\ Pi
    0 . U
    S. £
    \.£
    1.4
    1. 3
    1.2.
    1.0
    L_0.5
    0,0
    
    C:. ]
    
    c, ,o
    Ft A
    H C,
    
    4fcS
    
    toOb
    S55
    520
    5 10
    545
    580
    HO
    9!5
    870
    	
    5-i-i>
    \04-0
    8
    NDiR
    CO,
    t» b EYl
    
    ^-O±>
    a ~7/r
    D /O
    371
    322
    3!9
    372
    481
    10 !0
    ZfaSfo
    7198
    
    j-^>i
    ^163
    1 »3O
    G&3
    50fo
    4\B
    434
    448
    47fc
    
    4oO
    
    3) /
    N D \ K
    coa/
    /o
    1 Z5 1
    
    \ zr /-
    1 . 0(0
    2.£l
    3.35
    4.24
    5.20
    6. IS
    7.24
    8.24
    9.28
    
    1 -4- I
    8-73
    7.78
    6.81
    
    303
    205
    
    1 IS
    
    74
    r\
    i
    "> o
    S 7 . 2
    . Q
    I Q.O
    17.5
    lt.\
    14. fc
    13.0
    H.4-
    
    7.2 I
    4.CJ
    ^ .
    l o> to
    6.3
    B.l
    9,7
    1 1. I
    12. Q>
    13.8
    15-1
    Kb. 2
    
    n.s
    t Q ^3
    1 0. 3
         EN&IN E-  INTEKNM
    
    
         R.OM   4
    D407
    DATE
                                                           TEHR,
                                          . 17  DRY BOLB TEMP., °F _74_
    

    -------
    
    
    MODE
    1
    
    7
    
    3
    4
    5
    <&
    1
    8
    9
    1 0
    
    
    1 Z
    I 3
    1 4-
    1 5
    1 6
    1 7
    1 6
    1 9
    
    2O
    
    i
    ENG-IKE
    SPEED,
    RPM
    ~i r\ f\
    
    \ 2 ./
    534
    415
    50Z
    595
    702
    819
    920
    107|
    
    b32
    990
    346
    S70
    / \D /
    *O / /
    Q>19
    535
    472
    
    40fc
    T >^/l
    2/4
    RESTR
    INTAKE
    un^O
    
    . /
    
    \ l.lo
    1 1.4
    \1.4
    1 1.2
    11.8
    11.5
    \\-(o
    11.5
    10.4
    
    1 . 7
    n.&
    20,3
    20. (c
    20.2
    20.7
    2.0.7
    2.0.&
    20.5
    •-
    / i . . n
    
    •.- * •
    ICT\OU5
    EXeiAOST
    L«HA
    r\ /^\
    L).U
    
    . X.
    0.3
    0.4
    0.3
    0.3
    0.5
    0.6
    \.o
    0-8
    
    •U
    1-Z
    \. \
    1.0
    0.9
    0.5
    O.fc
    n.t
    O.t
    
    '. . (f
    
    
    FVA
    HC,
    t>^mC
    
    A!5
    
    575
    545
    570
    55O
    Sf.0
    (biO
    7fcO
    980
    800
    
    540
    1050
    830
    720
    7fcO
    7fcS
    750
    725
    740
    -{*•>[
    /o'_,
    ^ -
    f v.(
    NDIR
    CO,
    t>t»">
    •7 /LR
    2 TO
    
    32^
    314
    28&
    29fc
    32fc
    435
    9t>7
    2819
    7133
    
    57
    1837
    fe95
    548
    42G
    384-
    37 G
    390
    40S
    
    40o
    ' ' C 0
    ^L O /-
    ND\R
    coz/
    %
    1 4 1
    1 4\
    
    1 -Co 1
    2.S&
    3.59
    4.5G
    5.47
    6.51
    7.78
    9-10
    10. %
    
    .13
    8.57
    7.fc2
    
    £•?£
    5.13
    4.43
    3.^4
    2.89
    
    / , o
    . c
    -^2
    NO\R
    MO,
    ^™
    A ^>
    ' ^7
    
    '3
    141
    258
    38&
    533
    779
    913
    M09
    1141
    I O -A
    1 34
    1337
    1222
    1011
    757
    577
    435
    295
    188
    
    13
    1 A 1
    1 "t-2.
    C.L.
    NO,
    >t>m
    i 1 )
    
    
    53
    \24
    227
    337
    4G4
    68h
    B3G
    1 045
    1094-
    
    1 44
    I3fo£"
    H99
    984
    7SG
    558
    408
    284
    i (j (^i
    
    I Ob
    Q~7
    O /
    C.L.
    NO*,
    ^t>^
    \ t,r>
    I tovj
    
    "y_
    158
    219
    393
    £19
    743
    581
    10&9
    112.7
    I Q -7
    i 57
    1410
    1244
    !0l7
    784
    £9£
    422
    iOZ
    209
    
    54
    i r n
    1 vo 7
    
    2'
    X
    \ Q 1
    
    
    ' O.O
    17.5
    l£.8
    14.2
    \2.7
    11.0
    9.\
    (o.b
    4.5
    \ ~i n
    1 '. 0
    7.2
    8.2
    9-5
    11.1
    12 -4
    13.5
    \S. 1
    15.7
    
    1 Co .7
    1 T 0)
    1 / . 7
    ENGINE-.
           5
                 INTER MAT 10NAL   D407
    DATE
    9 /72
                        WET
                            29. 12   DRY  BULB TEMP., °F  77
    

    -------
    
    MODE
    1
    2
    j
    4
    5
    
    
    
    
    
    12.0
    24.0
    3fc-0
    -feOO! 4S.O
    BOO
    IQ'70
    1800
    \aoo
    "700
    2500
    2500
    2500
    2500
    ZSOO
    2SOO
    2500
    2500
    2500
    700
    feO.O
    12.0
    84.0
    9fe.O
    
    
    \09.
    %.7
    82.5
    fo&.3
    55.0
    41.7
    27.5
    13.3
    
    
    
    
    AIR
    FLOW,
    Ib /
    ™/hf
    304
    740
    1 12.
    730
    73G
    12 Co
    730
    711
    724
    712-
    Z9I
    950
    960
    955
    %5
    %S
    976
    967
    9
    &ftl
    (b09
    514
    444
    3d 2
    2(^4
    RESTRICT i OKIS
    INTAKE
    UHp
    2.0
    \ t.(o
    n.9
    n.7
    n,x
    \\.7
    n . -
    U.5
    11,4
    10.?
    O
    20. »
    20.0
    2.0.2.
    20.4
    20, <)
    ZO.l
    2^.R
    If-.1?
    2 ^ 7"
    I. T
    EKHAUST
    lnH3
    o.o
    O.3
    0 4
    O.S
    o.fc
    O.'i
    o,».
    ..0
    1.7
    I. 1
    0. 1
    L4
    i-3
    1.2
    t.2
    I. t
    1.0
    ^•?
    0,F>
    O.G
    - _ \
    FIA
    HC,
    l?|3mC
    4fo4
    &9I
    513
    55Z
    553
    fell
    133
    fell
    521)
    730
    5^2
    8 Be.
    711
    701
    |>««
    170.
    339
    33fc
    322
    307
    331
    '"3
    ci44
    Z\0&
    fcfc3O
    258
    !72
    247
    ND1R
    coz/
    %
    1.41
    I.(b7
    2.«
    m
    73
    !34
    239
    351
    5.44,! 477
    5
    C.L.
    NO,
    Ipfim
    135
    72
    9)
    250
    300
    4fe3
    C.L,
    NOR/
    ^»t>«.
    119
    67
    143
    2.5
    V7.9
    18.£
    1?.0
    EN&1N E-  INTERN AT ION M-  D407
          
    -------
    o
    
    MODE
    
    
    7
    
    3
    4
    5
    <0
    1
    8
    9
    1 0
    1 1
    
    1 2
    1 3
    1 4-
    1 5
    1 G
    1 7
    I 5
    i 9
    
    20
    
    i. \
    fH.-.1(-e
    RPM
    
    /oo
    \ Rr\r>
    
    \&00
    l&OO
    l&OO
    l&OO
    l&OO
    l&OO
    IbOO
    l&OO
    ~i r\r\
    1 UU
    2500
    2500
    250O
    2500
    2500
    2500
    2500
    2500
    
    25 00
    ~~i r\r\
    ;uu
    nr-^ *.«=&
    PfMOFR
    
    
    
    
    12.0
    24.0
    3(o.O
    4ft, 0
    i>0.0
    12,0
    R4.0
    9(o.t
    
    
    10&.
    95.8
    &2.S
    (LI. 5
    54.2
    40.0
    27.5
    12.5
    
    
    
    
    AIR
    FLC.V. '
    l°™/
    
    _ ) O- 1
    
    140
    712.
    130
    13k
    726
    129
    113
    72G
    712
    
    -i. 72.
    950
    959
    956
    966
    %5
    911
    9(bt
    964
    
    972
    
    2.80
    F'..-|.
    Ft i"l1,l-
    **/!-,*.
    . ,
    • ^>
    r ,
    — ' .'i
    B.I
    12.3
    15, P,
    19.0
    23.4
    27.5
    32.5
    39-2
    
    . I
    43.4
    40.2
    33.7
    29.2
    24,1
    20. Q,
    \8.l
    12.2
    
    1 0 .YJ
    1 r
    1 . (o
    T-;-,rr
    
    2<>('
    fpESTP.
    INTAKE
    
    .2
    -
    \ 1 . 7
    1 1.4
    1 1.7
    11.1
    U.5
    H.2
    11.2
    11.4
    \1.2
    ^
    ' • 7
    20. Z
    20.3
    20. Z
    20.7
    20.7
    21.0
    20.7
    207
    
    20.7
    ,.
    I. J
    icrvws.
    EXV\A'JLT
    
    . 1
    
    '--)- D
    0.4
    0.5
    0.5
    O.fc
    0.7
    0,9
    1,1
    1,2
    
    . I
    1,4
    1,3
    1,2.
    1, 1
    1.0
    0-&
    0,7
    0.7
    
    0 .(c
    
    o. \
    f ', A
    HC
    
    53
    Q O Q
    ty 2- /
    491
    150
    Gi2
    750
    (b ^ I
    &4 9
    3(c9
    592
    
    434
    130
    582
    £33
    513
    553
    474
    £43
    454
    
    o 12.
    
    434
    r * o i- R
    ro.
    
    27 1
    
    3L2
    2G 1
    3 1 1
    422
    339
    410
    323
    2147
    1035
    
    248
    1711
    848
    524
    403
    350
    353
    35 L
    ; i D \ R
    < .O ,
    
    1 • 2 /
    1 4T
    1 . ^ /
    2.35
    3.24
    4.18
    5.13
    (b.30
    1.32
    d.4O
    9-44
    1 i O
    !• 6 z.
    6,32
    7,55
    6.87
    5.88
    5.07
    4.24
    3.52
    2.G7
    
    2 .03
    C I
    1 . to i
    H O * R
    MO,
    pprn
    
    I Lo
    
    '-D /
    149
    274
    365
    545
    737
    b~M
    I0t»7
    1\89
    1 /^ O
    l^-/.
    1418
    mi
    9SO
    74-9
    544
    375
    273
    Ifcl
    9->
    3
    A Q
    I 4/
    C, L.
    NO,
    PP"-
    i r\^7
    1 O /
    A Q
    TO
    125
    218
    334
    464
    111
    S97
    10P,(b
    1169
    
    1 2
    -------
    o
    tNJ
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    6
    9
    10
    ! 1
    1 2
    \ 3>
    ENG-INE
    SPEED,
    RPM
    700
    2JOO
    2100
    2100
    1100
    2100
    700
    2300
    2300
    2300
    2300
    2300
    700
    OBSERVED
    POWER,
    ht>
    
    
    
    
    Zfc.G
    52.5
    78.4
    105.
    
    
    \ 10.
    82.8
    £5.2
    27.0>
    
    
    
    
    AIR
    FLOW
    lk-A,
    301
    858
    040
    838
    82>G
    818
    294-
    835
    894
    907
    891
    898
    306
    FUEL
    FUvJ,
    ib /
    •"/W
    1.1
    fc.7
    14.5
    23,8
    S1.9
    43. a
    \. 1
    4(o.2
    2.2.6
    24,0
    15.2
    8.4
    1.5
    TEMPERATURE, °F
    INTAKE
    AIR
    95
    92
    91
    90
    91
    92
    )4
    92
    93
    94
    92
    92
    93
    FUEL
    109
    10)
    99
    99
    100
    103
    103
    90
    91
    93
    95
    ^7
    iOO
    EXH-
    AUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRICTIONS
    INTAKE,
    i-n HjO
    2.3
    15. S
    IS.G
    16.3
    15-2
    14.3
    i-9
    H.2-
    17.7
    n.9
    n.7
    \7.&
    2.2
    EXHAOST
    InH^
    0.0
    O.3
    O.fc
    O.(b
    0.9
    0.8
    0.0
    1.2
    I, 1
    0-8
    0-7
    0.5
    0.0
    FIA
    HC,
    ^-C
    550
    7fcO
    (o£0
    f>«.
    271
    385
    367
    428
    743
    5793
    2%
    4241
    (o83
    405
    355
    3&4
    2.47
    NDIR
    C02,
    %
    1.41
    1-82
    3.59
    5.47
    7.09
    9.54
    ^.47
    9-47
    7-32
    5.40
    3.70
    2.03
    1.5Z
    NDIR
    NO,
    ^*>"
    \ \
    9Q,
    12
    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    G
    7
    8
    9
    10
    1 1
    1 2
    1 3
    ENG-INE
    SPEED,
    RPM
    700
    2.100
    2100
    2.100
    2160
    2100
    100
    2300
    23&0
    2300
    230G
    2300
    100
    OBSERVED
    POWER.,
    ht>
    
    
    
    
    2(r,.G>
    £2.5
    78-4
    IOS.
    
    
    1 10.
    82. a
    55.2
    21. (b
    
    
    
    
    AIR
    FLOW
    fc«/hr
    322?
    82>7
    841
    845
    83Z
    808
    328
    875
    692.
    90G
    9 IO
    905
    285
    FUEL
    FLOVJ,
    'V*.
    I.G
    7.0
    14.2
    22.4
    32. I
    43. (o
    1. 1
    4S. 9
    M.I
    24-9
    l 6-3
    8.3
    1.4
    TEMPERATURE, T
    MTA»;E
    AIR
    95
    9Z
    9°
    91
    9\
    •)2
    05
    •)3
    ^3
    33
    94-
    72
    03
    FOEL
    lot
    99
    too
    104
    99
    ^5
    •)7
    98
    101
    101
    !OZ
    »o'z
    %
    EXH-
    AOST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRICTIONS
    INTAKE
    UH20
    2.2,
    15.2
    is,4
    \s.4
    \S. |
    (4-4
    2-4
    n.o
    n.&
    n.8
    »8-3
    ^8.2
    »-9
    EXHAOST
    in Ha
    0.0
    0.4
    0.5
    0.7
    \-\
    \.o
    0-0
    \.z
    1.0
    0.8
    0-1
    0.6
    0.0
    FIA
    HC,
    *>f-«C
    560
    fc^O
    fclO
    G30
    740
    790
    500
    IOZO
    fcfcO
    G1S
    G55
    120
    5fc5
    ND1R
    CO,
    ^»f>«,
    27)
    3t>">
    14Z
    93
    173
    foOG
    \019
    1155
    no
    V540
    127S
    G2J
    306
    107
    149
    C.L.
    NO,
    t^*»
    IOZ
    58
    Z>7
    SOI
    317
    1175
    155
    \397
    1131
    545
    259
    10&
    »25
    C.L.
    NO*,
    H~
    145
    \OI
    274
    5i6
    940
    1185
    119
    I4£Z
    \\54
    5S4
    2>0fc
    125
    130
    Q..
    V
    /o
    18.6
    1B.2
    15.4
    \?.5
    9.2
    4-9
    i&.fc
    S.3
    9.\
    12.2
    15.1
    11,7
    16.3
         ENG-INE.  INTERNATIONAL-  D401
         MAPPING-  ROM   K-2
    DATE
    5/ 9 /72
                                WET BOLBTEMR,°F_fc7
    BAROMETER, Lrv H.,  29.08   DRY BULB TEHR, °F__/S_
    

    -------
    o
    
    
    MODE
    1
    1
    
    
    
    A
    
    1 c
    1 to
    ' /
    
    I O
    
    '7
    
    20
    
    Zl
    ENCIfOE
    SPEED
    RPM
    
    oOO
    
    1SOO
    
    \50O
    \soo
    
    150O
    1SOO
    
    ISOO
    
    
    
    
    
    150O
    
    oOO
    
    
    
    220O
    
    2200
    
    z^oo
    
    ^LZOO
    
    2200
    
    2.20O
    
    220O
    
    8
    
    3?. O
    52.5
    
    b5.O
    
    7 O-^
    a i t~
    7 !•_>
    
    
    
    
    
    
    
    1 ZQ. 3
    
    1 O3. "4-
    
    Ofc>-5
    t>o. 2
    O i. 1
    20-7
    oo, /
    
    1 Ato
    
    
    
    
    AIR
    FLOW,
    lb"A*
    
    i 'D
    
    (o44
    
    G>7 1
    7 IB
    
    147
    184
    
    ?3
    Q/l o
    O42
    
    07 7
    
    ofc 7
    2,-j o
    i 'O
    
    1453
    
    14 15
    
    1 351
    
    1 -D1(J
    MO/
    
    
    \ UoO
    
    1 033
    
    953
    
    359
    FUEL
    FLOlO,
    lb~/,.
    o. r\
    O.\J
    
    7, ft
    
    
    14, d
    
    1 O.4
    ? 2,O
    
    2fc.2
    
    / 7. ^f
    
    ifc. 3
    
    07. to
    
    . 0
    
    5t>. U
    
    5 1. G
    
    44- (o
    
    07. o
    2. -2 /-^
    6^»vJ
    o~7 r
    
    
    z2.t>
    
    . o
    
    1 Z.U
    
    2.fc>
    TEHPE
    INTAKt
    A\R.
    
    
    O/1
    7^4-
    O A
    7^-
    QT
    7 /
    QQ
    77
    „ ,
    7M3
    
    9 '
    <\^
    )5
    oy\
    7^
    <\ ft
    74-
    OC
    7O
    C\A
    ?4
    f\ A
    94
    f\ n
    93
    0^2
    93
    E,°F
    
    TUR60
    
    2,
    74 1
    
    034
    (X A -J
    74 /
    1 pi i r»
    
    
    IVJ 7U
    cic\
    
    (\ Q-i
    77 /
    1 QA
    7 7L)
    C\/\ /*
    7H'+
    RQ^
    O7— '
    ft. 1C\
    o/u
    -7.1C.
    
    CCA
    fo(o4
    P- Q/-
    5ofc
    
    475
    ^
    3(o2
    BOOST
    '/
    i-rtj
    Or\
    
    
    0.1
    
    1-0
    , 4
    
    5.5
    . 1
    
    1 0.0
    i -\ -i
    
    
    * to. 2
    i ft r
    i O.io
    
    .S
    1 ( <^,
    
    
    2.4,0
    
    
    I Q A
    1 O.-'t
    \4 ^2,
    \H . i>
    v \ r>
    \ \> u
    -1 -J
    /• /
    
    b.^
    
    • o
    
    .0
    RES1R1C
    iWftHf.
    ,« M^O
    1 ft
    1, Q
    
    4 ,o
    
    .5
    CD. 2
    r ^
    to-^
    /. /
    -j /i
    /-4
    8 a
    i3
    cs n
    7'W
    Q A
    
    i -7
    
    
    
    
    Z.O.— >
    o i o
    
    on A
    t /I -7
    1 ^ ^
    
    1-3 -I
    1 i- /
    1 0 £L
    
    
    1 0. /
    
    1 .7
    .TlOMS
    tXHAOST
    '« Hs
    A r\
    
    
    • 2
    
    0,2
    ,2
    
    . ±)
    ,4
    
    .i>
    Ot
    
    
    • O
    r\ Q
    0-7
    
    .O
    
    Z. /
    
    ?.s
    
    .2
    Q
    	
    1 A
    
    | O
    I- L
    
    .c.
    
    .fc
    
    0.0
    P 1 A
    HC,
    P>™ C
    
    1 i5(o
    
    3100
    
    /4UU
    1 A Q Q
    \ T DO
    \ 1* \ O
    
    I ^-7fci
    
    totSo
    
    O7Z
    
    /Os-
    
    /va8
    
    792
    
    \00&
    ND1R
    CO,
    ^VM
    
     1
    454
    
    4oo
    C (t~l
    
    
    i 6 o Z
    
    /.^u^
    r: Q -A
    OO^
    4Q-1
    •^toO
    
    4v^
    -7 -2f
    
    ,
    l £T f\
    I OU
    I C-.A
    
    
    SS
    
    o^o
    
    537
    
    445
    N DIR
    C02,
    y.
    
    i.bi
    
    I. ^o
    
    5, 1 t
    • 1 0
    C \ Q
    ->. 1 O
    .Ob
    
    (O. D(O
    ~1 ^R
    
    
    ,^4-
    
    • ' /
    \ c.-T,
    
    ~J QO
    '• 7Z_
    
    . fco
    f' IQ
    (o- 1 7
    r 4C
    5-10
    • 'O
    4<^Q
    .77
    4 A f
    • 'Ko
    
    3.5^
    
    .55
    
    1. 53>
    NO\ P,
    MO,
    ^^
    4-f
    *°
    
    9
    
    45
    1 7 G>
    
    278
    37G
    
    4o2_
    C Q A
    b 74-
    
    07
    
    lo(o
    
    
    1 1 £- 0
    M D Z
    
    Ofc2
    ^ /I"!
    (o'H /
    £;^.n
    JOU
    c? /- r
    O4
    
    55
    C. L.
    NO,,
    i>y>«
    
    oS
    
    42
    
    1 10
    204
    
    Z ^O
    3So
    
    47 1
    r p. o
    v>U O
    ~l n r\
    1 0 /
    oOt)
    *) T~l
    
    
    1 Q>7
    
    9Z
    
    89
    C.L.I
    NO,
    Mr-
    3 "7
    _) 2.
    
    1 (o
    
    G2
    1 7 (o
    
    2(oG
    349
    
    4(o(o
    C QQ
    b V 7
    
    I 1 1
    
    ((o /
    
    1 1 z_
    Q 1 "1
    7 1 '
    
    03 /
    ft
    Co t>2
    
    55 1
    3o2
    252
    
    200
    
    43
    
    58
    
    4J
    
    Pi,
    /o
    
    
    
    
    
    - --
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         EMC\ ME-  JOHN
         R.ON     1
                 /72
    BAC.OMC
    WET tULL TEMR,"F   54-
    DRV BULB TEMP.X °
                                                            7 I
    

    -------
    O
    IXJ
    
    MODE
    1
    2
    3
    4-
    5
    G
    7
    6
    9
    10
    1 1
    1 1
    13
    14
    15
    _Jfc_
    17
    \B
    19
    20
    Zl
    ENCIME
    SPEED
    RPM
    800
    I5OO
    1500
    I50O
    I50O
    ISOO
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    800
    OBSERVED
    POUJER,
    ut>
    
    
    
    
    13.0
    20,. O
    30.0
    52,5
    £5.0
    18. 0
    91,0
    \03 5
    
    
    13,4.9
    lll.O
    104.1
    B(o.£
    (o9.7
    51.3
    34.5
    21.9
    
    
    
    
    'MK.
    tLouj,
    lb~A,
    310
    (o(o3
    (o
    1050
    I03G
    97rt.
    TURBO
    412
    413
    45&
    541
    (L3|
    141
    837
    916
    m
    1014
    G30
    94 S
    993
    951
    &97
    833
    154
    673
    G2S
    4^7
    Z.41)
    BOOST
    Pf^ESS^
    L« H^
    0.4
    >.2
    1-8
    3.5
    t.O
    1.2
    9.G
    (2,4
    IS. 7
    13. S
    0,5
    23.2
    23.S
    20.1
    \7.2
    14.4
    10.5
    7. 1
    5.9
    3. 1
    0.0
    REST RICT \ONlS
    INTAKE
    >n ^0
    1,5
    5,0
    5,3
    6,3
    G.O
    fc.S
    1,0
    B.O
    9.0
    ^.S
    1.5
    25.0
    2_2.5
    20,5
    \8.5
    17. S
    \s,o
    '3,0
    12.5
    \\.S
    >. S
    EXrtAUSl
    C" U$
    0.0
    0,2
    0,2
    0,2
    0,4
    0.5
    o,t
    O.tt
    1.0
    \.'L
    0.0
    5.0
    2.1)
    2.(o
    2.1
    2.0
    \.7
    1.4
    1.2
    0.9
    0.0
    F\/\
    HC/
    ip>« c
    1 1R4
    lllfo
    I4SC,
    nth
    1058
    \0&ft
    \\20
    lld>8
    \li<0
    9tO
    6t4
    600
    &\G
    184
    130,
    104
    t>40
    fc40
    fcSfc
    BIG
    784
    ND)R
    COX
    VlP1^
    301
    ")44
    /72
    474
    302
    300
    551)
    483
    vOhO
    O&fc
    353
    4fci
    320
    \S9
    ^9
    87
    138
    43fc
    4S4
    50>2
    5(o7
    N D\R
    C02/
    V.
    1.52
    1 11
    2.1)!
    4.03
    4.95
    5-75
    (b.fol
    7.34
    8,00
    e.38
    
    1. 69
    9.ofe
    7.34
    fc.78
    fe.lS
    5. 75
    4,l)(c
    4.30
    3.SO
    2.S3
    2.50j
    ND\R
    NOX
    t>lp~
    91
    37
    73
    i t5
    2t2>
    3(o4
    4 Co 6
    561
    fc97
    &48
    1 11
    1240
    ^43
    (oCoC,
    517
    440
    294
    2\3
    V56
    83
    83
    C. L.
    NO*,
    t^jp^
    57
    87
    95
    183
    2S5
    329
    431
    S31)
    0)43
    783
    7&
    1155
    549
    (o03
    444
    3^)0
    28)
    Z02
    163
    79
    80
    c ,u .
    NO,
    MP«
    73
    ~i c
    o-,n
    149
    234
    31G
    427
    530
    fciP,
    744
    73
    \ H8
    835
    fc.03
    444
    390
    281
    193
    n?
    5}
    5?
    POLKK.
    P./
    %
    
    
    
    
    -1
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    	
    -
    	
    
    
    
    
    
    
    
    E N C \ M E-   JOHN    DeEKE-
    R.UN      Z
                                                                      3 / 
    -------
    n
    
    M
    00
    
    
    MODE
    1
    1
    
    
    
    
    
    
    
    
    
    
    
    
    
    Q
    
    
    '0
    
    1
    
    I 2.
    
    1 3
    
    14
    
    15
    
    I fc>
    
    i 7
    
    O
    
    • 7
    
    20
    
    Zl
    ENC.IME
    SPEED,
    R.PM
    
    tjOL)
    
    1 5 00
    
    1 5 O O
    
    
    
    1 500
    1 z>u O
    i a r\c\
    
    
    I oOU
    i c. nr\
    
    
    
    
    oOO
    
    22OO
    
    220O
    
    220O
    
    220O
    
    2200
    
    220U
    
    L /DO
    
    22OD
    
    2 100
    
    boo
    O&SEKVED
    POU3E.R,
    UJ,
    
    
    
    
    
    I 2. 5
    9 / r\
    
    
    A ^ Pi
    _>c. u
    r /~ c;
    
    ~i~ir
    
    °l 1 Pi
    
    i p. -> /r
    I Uz.o
    
    
    
    1 6 4 , 5
    
    /_ 1 . U
    
    03.4
    
    o 7o
    
    too. 9
    
    52. 1
    a/\ £:
    OMO
    i -7 /~
    1 /.to
    
    
    
    
    MR.
    FLOW,
    lb~A*
    „
    o:>7
    
    Co4O
    
    to4-(o
    " ft Q.
    Q? 0 O
    -i o A
    / .54
    "7 flr
    ;o(o
    T3 c
    
    
    oW
    D^ A
    o(o4
    Q.Q. 1
    DO 1
    2. r-O.
    555
    
    14 (oft
    
    1393
    
    1 32 /
    1 O Q^~
    12 05
    
    1 1 /4
    
    1115
    
    1 Olo2
    
    IU i /
    Q 1r
    TD(O
    
    o49
    FUEL.
    F-LOUO,
    (b-Vh,
    ^ ^
    ^ , ~
    
    • 8
    
    I U.U
    I ^ ?>
    
    IT R
    1 /. O
    •7 ^k 9
    
    5 r ^r
    Z \o, b
    0 (-S /-
    oU. (o
    1 r 0
    
    41 A
    
    
    . o
    
    SG.4
    
    5 ' • O
    
    44'fc
    
    59. tt
    
    3)^.0
    0 r\ O
    ^7- /
    7 7 A
    
    i -7 o
    1 /. O
    1 1 A
    1 I , O
    
    . 5
    TE.MPE
    INTAKE
    AIR.
    
    /(J
    
    b 7
    
    / 1
    -jf\
    /O
    
    (0
    H> 7
    f Q
    tc 7
    
    /t>
    "Ift
    |U
    -7 i
    1 1
    
    10
    
    70
    C c\
    (o )
    
    (c ;
    ~l A
    /o
    
    (o7
    
    70
    "in
    /D
    ~i n
    /L>
    TA
    
    -7 p.
    /U
    KATUR,
    
    
    r-vrx
    VO
    
    )0
    
    )0
    (\p.
    V
    r\ r.
    90
    ^
    ) I
    GO
    yz
    C\o
    J*-
    
    
    £,°F
    
    TOR.60
    , _ Q
    4 DO
    
    4O I
    
    4 (LI —
    ^^n
    
    
    (o55
    /oo
    
    B34
    
    93 1
    
    
    
    100 ^>
    
    507
    r\ r 0
    950
    Q~!C
    7 /5
    O, y^ ^
    7At
    AQO
    O 7/.
    Q 0 >t
    D'^'H
    
    
    
    (o / 1
    r u r\
    _>Vv)
    
    4 0*1
    
    . 'o
    BOOST
    PRESS,
    L«^
    
    0-3
    
    0. ft
    
    1. 5
    
    5,2
    
    5, I
    , 1
    
    
    
    12 .(o
    
    lb-7
    
    ' D. 0
    
    0.3
    
    25.^
    
    /4 .1
    o 1 O
    
    
    ' 0. ->
    1 ''L, R
    
    , f> f
    
    -i n
    
    
    \ • }
    
    
    
    " '~
    RESTRIC
    >mAKE
    irt tA^O
    
    1 .7
    
    • 5
    
    b U
    
    . /
    C r*
    (o,0
    ~7 0
    /. /.
    -7 A
    /,T-
    50
    ,/
    8-7
    , /
    Q C
    
    i -7
    1 ' /
    1 A £Z
    24- ,-i
    
    
    o r\ ~i
    
    0 T
    ' 7- /
    i ( C
    
    1 £^ Pi
    
    i c? 2
    1 D. O
    
    1 / .5
    
    ' . o
    
    1 - tj
    _T\OK)S
    EXKAVJST
    ;« HJ,
    Or\
    
    
    .2
    
    • /.
    OT
    • o
    
    UA
    A
    
    u.±>
    
    ,5
    Or
    • b
    A ~)
    U. /
    0/^v
    • O
    
    3,0
    o -7
    /• /
    
    .(o
    
    
    1 r\
    -^.U
    i r
    I. to
    
    1 .4
    
    I. Z
    
    •0
    
    .0
    FIA
    HC/
    py™ c.
    
    7
    ~1 C~l
    1-iZ
    
    IcOO
    "7 AA
    
    ~7CO
    
    q
    'JOA -
    -/ [• n
    'c4
    ND1R
    CO,
    H>«
    
    ^h^Z
    
    1 1 3o
    r\ 0-7
    L3o /
    
    to 1 2-
    
    4-35
    ~>7^-
    . 0 .
    A ^ *
    
    O7 ^>
    l O 2, ^
    
    0 o -7 Ci
    
    
    337
    
    ioO
    
    452
    
    007
    
    2o
    
    2.07
    -i i A
    3. 1 4
    All
    
    
    •17
    r T d
    
    ~7 f\T
    
    
    '. / 1
    &c;n
    
    O| PiA
    
    
    LOU
    ~1 Q/"
    /, 7(0
    ~I 7. \
    (,O 1
    ,
    (o. /fc>
    , - .
    (o. olo
    /r -/A
    
    5-7 ,.
    • '4
    /\ ^t £T
    ^.-JD
    a r; c:
    :x_O
    -7 /• a
    /.(oO
    
    • 54
    NWR
    NO,
    »>*>«
    
    5lc
    
    
    
    •=> /
    
    1 _> o
    
    
    61 ^
    A
    A \ o
    
    S I (r
    f ^ \
    
    
    927
    Q/l
    o4
    
    
    Ci/-Q
    o5o
    rA i
    O^t 1
    ^ 1 \
    
    0 Q \
    30 1
    T Q -J
    3o3
    o r\-i
    xiU /
    
    1 49
    
    '4
    
    (o5
    C. L.
    NO*,
    PV>«
    Q Q
    OD
    
    37
    
    85
    
    1 / 4
    
    250
    a, o a.
    ~> ^- D
    Ann
    4-Z.i
    
    1 2
    r a c
    VODO
    -J Q Q
    70^
    Qfi
    7O
    
    1 IBS
    
    847
    r i A
    to 1 ^1-
    -
    4 /fo
    1 1 i.
    d>(oD
    
    oVo5
    1 Q C
    1 i5
    
    1 oGi
    
    /fo
    
    (08
    C.L.
    NO,
    flP"*
    r o
    loo
    
    25
    
    5 /
    
    
    
    /HU
    a 9 o
    O'i ±1
    A n O
    
    51 o
    1 J-
    f *2C
    
    ~1C*^
    
    1^2.
    7O
    
    1 130
    Q -, £-
    Doo
    /" 1 A
    (O 14-
    
    4-9 1
    
    i5o
    -i /- i
    0(0 1
    Q9
    i ;Z
    
    129
    
    52
    
    45
    POLKK.
    03/
    %
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
                                                 G4O4
                   G  /72.
          R.UN
    BAROMtTF R, ;
                                                                                                                 DRY  BULB
                                                                     .X  °F
                                                                                                                                                   7G
    

    -------
    O
    
    MODE
    1
    2
    3
    4-
    5
    G
    7
    6
    9
    '0
    1 1
    \2.
    13)
    14
    15
    IG
    »7
    l&
    19
    zo
    Zl
    NCIWE
    SPEED
    K.PM
    800
    1500
    1500
    1500
    1500
    ISOO
    1500
    1500
    1500
    ISOO
    BOO
    2100
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    800
    OBSERVED
    POUJER,
    v,y»
    
    
    
    
    12.5
    2G.O
    Z9.0
    SI. 5
    GS.S
    _J8.o
    91.0
    102.5
    
    
    I3(o.4
    I 19.S
    104.1
    8fc.S
    G6.9
    5 1.3
    34,5
    n. G
    
    
    
    
    ME.
    FLOW/
    b~A,
    359
    (544
    GG 1
    103
    718
    74B
    820
    633
    6-87
    859
    3k 9
    !4
    22.4
    27.G
    i\.2
    Z(c.. ft
    39.8
    2.Q>
    5(o.4
    50. (o
    45.4
    40-4
    42.
    )&9
    9&2
    9SO
    890
    8i2
    _7f9
    (o75
    590
    478
    Z.42
    BOOST
    PRESS^
    L" ^
    0.2
    1.0
    1.6
    i.4
    5,2
    7.fc
    10. C,
    13.1
    \fc.G
    18.0
    0.4
    2C,.0
    23. &
    20.9
    18.1
    14.2
    10. G
    7.3
    4.1)
    2.(o
    ( .1
    RESTRICT* QMS
    NTAICt,
    >n rt^O
    1.7
    5.2
    5.5
    G.O
    r0.3
    fc.&
    8.0
    &.3
    ^.2.
    8.7
    1.7
    15. 0
    22.8
    10.7
    10.0
    17.3
    14.3
    13.3
    12.3
    \\.o
    1-7
    rXWAOiT
    '" ^2>
    0.0
    O.I
    O.I
    0.2
    0.3
    0.4-
    0.5
    0.&
    0.7
    0.7
    o.o
    2.8
    2.7
    2.G
    2.1
    1.9
    i.G
    1.3
    l.l
    0.8
    0.0
    F> A
    HC/
    py« c
    T(o8
    1392
    1 152
    97(o
    &9fc
    944
    1008
    1040
    lOSfc
    IOO&
    944
    (02.4
    944
    328
    8ftO
    784
    720
    lit
    751
    8fo4
    7£,ft
    ND\I?
    CO,
    HP«
    S23
    1 IfcO
    983
    G&O
    480
    487
    508
    S79
    1154
    132&
    4-75
    5?0
    45Q>
    331
    255
    248
    289
    3G&
    4G1
    598
    499
    N D1R
    C07/
    y.
    l.d.3
    2.03
    2,95
    4.14
    5.04
    G.ll
    G.18
    7.S7
    8.22
    8.88
    0.8t
    7.8Z
    7.18
    fo.9l
    G.38
    5.71
    5.07
    4-.2.l
    3.4ft
    2.41
    1.38
    ND>R
    NOX
    V-lp-
    B3
    27
    G>3
    I 45
    24\
    22,9
    433
    540
    (ofcfc
    8?.1)
    84-
    i igs
    883
    (o71
    513
    5
    -------
    n
    OO
    o
    
    MODE
    1
    2
    3
    4
    5
    G
    7
    &
    9
    10
    J 1
    1 2
    1 3
    ENGINE
    SPEED,
    RPM
    680
    1100
    noo
    noo
    noo
    noo
    870
    i°>OQ
    1SOO
    1<)00
    noo
    1900
    650
    OBSERVED
    POWER,
    ht>
    
    
    
    
    25.5
    Si,5
    7G.5
    (01.0
    
    
    1 2.7(o
    iZ32>
    ibll
    1002
    &<)0
    811
    357
    FUEL
    FLOW,
    lb~/h.
    2.5
    R.2
    IG.O
    25,2
    34. t
    4L.4
    2.4
    4-9,0
    38.8
    29.2
    16.4
    <).&
    2.4
    TEMPERATURE, °F
    INTAKE
    AIR
    "71
    1 1
    72
    72
    7 3
    7 'i
    74
    72
    "Ji
    74
    73
    73
    73
    FUEL
    %
    %
    97
    98
    ^)
    iOO
    100
    101
    100
    98
    ^8
    31
    •)&
    EXH.
    PRE-
    TORBO
    517
    4G7
    5")£
    778
    905
    I0\7
    SfcO
    976
    954
    &57
    702
    504
    4\4
    BOOST
    PRESS,,
    in H3
    0.2
    i.(b
    3,9
    ^.o
    14,3
    7\.2
    O.E
    21.^
    n.3
    l).8
    5.9
    2.4
    0.2
    RESTRICTIONS
    INTAKE,
    In^O
    1.7
    ^c
    (088
    \ 120
    6^2
    848
    944
    %0
    720
    ^fcO
    928
    800
    704
    8~
    GG
    2(o
    139
    2-71
    435
    847
    12
    957
    SS&
    300
    150
    44
    44
    C.L.
    NO,
    Ft>«
    (b3
    14
    1 12
    2(o2
    4&0
    841
    (ol
    944
    £.58
    295
    14)
    40
    3
    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    G
    7
    &
    9
    1 0
    J 1
    1 2
    \ 3
    ENGINE
    SPEED
    RPM
    ato
    noo
    noo
    \'/00
    noo
    r/oo
    810
    1900
    1900
    1900
    l<)00
    i9oo
    850
    OBSERVED
    POVJER,
    ht-
    
    
    
    2S.O
    51.0
    15.5
    \02.0
    
    
    175.4
    •)5.o
    i
    S>4
    92
    ^4
    94
    r)l
    94
    ()Z
    92
    EXH.
    P RE-
    TURBO
    44G
    422
    SfcS
    742
    P.P-&
    \o^o
    (ol2
    995
    95(o
    B(oO
    723
    540
    4»9
    BOOST
    PRESS,,
    in \\3
    0.2
    I 3
    5.8
    8.6
    \S.O
    20. 7
    O.i
    2 2 .-?
    n.2
    11.4
    5.7
    2.5
    0.2
    RESTRICTIONS
    INTAKE,
    in^O
    1.7
    fc.S
    7.5
    9,0
    M.3
    12.7
    1.7
    \7.5
    \3,7
    11.7
    •)-&
    P.. 3
    1.7
    EXHAUST,
    on M^
    0.0
    0.2
    0.5
    O.G
    o.b
    1.2
    0.0
    i.e.
    1.2
    0.^
    o.t,
    0,4
    0.0
    FIA
    HC,
    t^Hc
    /04
    U20
    816
    &(o4
    ^92
    ^(c.0
    7 SI
    oto
    ")Z8
    &l8
    30")
    4G,<)
    G50
    &04
    NDIR
    C02x
    %
    l.&,3
    2. 1C,
    4.13
    S.1)!
    7.22
    6.52
    \.17
    8.22
    7.IG
    5,97
    4.40
    2-42
    I.Sfc
    NDIR
    NO/
    n>«
    55
    27
    13^
    30&
    518
    ^lO
    &3
    I07\
    fe24
    3SO
    174
    foi
    £4
    C.L.
    NOX/
    V^~
    71
    42
    154
    284
    494
    854
    ^G
    982.
    571
    32U
    173
    71
    11
    C.L.
    NO,
    H»w
    55
    25
    \2A
    2B4
    4&5
    844
    82
    ^55
    553
    12C,
    IG6
    54
    t4
    P0iy\(?.
    °»,
    %
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
                  JOHN  DELRL  (o4 04
        MAPPING-
    DATE
    BAROMETER, i«\
    WET  &OL& TE.MR, °F _^2_
    DRY BULB TE^R, °F  78
    

    -------
    o
    
    NODE
    )
    2
    3
    4
    5
    6
    7
    8
    9
    1 0
    1 I
    t Z
    1 3
    I 4-
    1 5
    1 6
    1 7
    16
    I 9
    20
    2.1
    EKJG-INE
    SPEEt)
    RPM
    fc&o
    \qoo
    \4oo
    \Qoo
    1400
    I4oo
    \%00
    HOO
    \AOO
    1400
    nco
    •i-QOO
    2403
    2^fffo
    facs
    2-400
    2-100
    •J.4 f^>
    2Jr^
    "•1 '. J
    '103
    OBSERVED
    POWER,
    h*
    
    
    
    
    2-0
    4.0
    6>.l
    8-0
    iff'l
    /*•'
    14 ••
    tk.l
    
    
    JZ*.Z-
    3-4.Z
    3./.L
    n-s
    /
    74
    vs
    73
    73
    7^
    74
    74
    74
    7*
    7k
    7-7
    77
    T7
    T)
    77
    "'' 7
    EXH-
    ftUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRvC-TVOHiS
    INTAKE
    UHjO
    0-8
    S-3
    'V-B
    4-4
    •S-i
    4-s-
    4-3
    4-2.
    5.9
    ^.r
    ;.8
    /a.o
    ?.fc
    9-i
    ?.o
    1.1.
    9.5-
    //. 8
    I/.'?
    I3.f
    ;-2
    EKftAOST
    LnH^
    o. )
    0.3
    0.4
    0.4
    0.5-
    o.S
    o.s
    o.s
    t*.i*
    o.S
    O.I
    ).t>
    1.1
    l.i.
    1-4
    1.*
    /.o
    l.o
    0.9
    o.°i
    o-l
    F»A
    HC,
    t>t>mC
    ;jfl
    ue>
    '47
    ISB
    \tf
    •ztf
    (U
    '7S"
    140
    -24/
    //»
    /&4
    id
    A-St*
    32&
    /K
    4 (S--
    32i
    Alf
    ii3
    ifez
    3U?
    .18*
    297
    ^-l>5
    1.81
    S.tfc
    /*,Z2.
    2.5-0
    /P. 70
    S.&4
    S-24
    t.7fl
    S-.TI
    «.w
    ^.38
    S.7/
    i.ot.
    s .^-a
    NDIR
    MO,
    ^V»"
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    C.L.
    NO,
    l>t>*
    ZZ7
    4.T
    179
    AlO
    A74
    A«>8
    a<»7
    3/ 2.
    ^Of
    J-4T
    a/;
    3/o
    3£T4
    Si/
    323
    Z2fc
    y^o
    us
    S3
    -^
    /5-?
    C.L.
    N0»,
    »>»>«>
    4ii
    <.t
    Ml
    133
    3oo
    3zo
    3/6>
    3/9
    3/4
    2£-S~
    a. 23
    2/7
    Ss-4
    '7Z
    325
    2L»S-
    /91
    /fi-4
    /ii.
    7?
    /99
    ^
    y.
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         ENGINE-.
         RON   /
    DATE   ' /4 A 3
    WET  C.OL& TEMRJ°F
    DRV  BULB TEMP.y °
    

    -------
    o
    
    w
    u>
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    8
    9
    1 0
    1 I
    1 Z
    I 3
    I 4-
    1 5
    1 6
    1 7
    1 6
    l 9
    ZO
    2. \
    ENGINE
    SPEED
    RPM
    100
    1400
    (4 00
    14.00
    1400
    tAoo
    (400
    14 00
    1400
    14 oa
    7oo
    2400
    2400
    2-4 Oo
    3-qoo
    2 4 06
    3*00
    24 f>n
    2100
    i«J 00
    ','f'O
    OBSERVED
    POWER.
    K).
    
    
    
    
    2.. o
    4.0
    fc./
    8.0
    I 0. I
    I i I
    /«•'
    lt>. I
    
    
    20.1
    3.4.5
    S-l'i
    I1'3
    14-1
    ct. 1
    T.o
    3.2.
    
    
    
    
    AIR.
    FLOVJ,
    lb~/.
    A\r
    9^
    ir/r
    /or
    /•?i
    m
    iii
    lb&
    /fcS
    111
    tb<*
    11
    281
    2 So
    2&S
    1.8S-
    uet?
    3*1.
    112.
    111
    x"?2-
    e^
    FUEL
    FLOX),
    VK»
    '•4
    2-1
    3.2-
    3 S"
    4-'^
    f .4
    5-.T
    ^.4
    78
    36.
    (.4
    y.T.'
    /? /
    n. t.
    10. 1
    &•'!
    '' 1
    io.lo
    5-.4
    40
    '•4
    TEHPERATURE^F
    INTAKE
    MR
    77
    73
    14
    11
    11
    11
    10
    ID
    75
    75"
    7<^
    ^4
    78
    71
    11
    'IB
    '/&
    11
    7fo
    75"
    'H
    FUEL
    101
    loo
    °>t,
    94
    ^^
    15
    INTAKE
    i.nHzO
    / 3
    48
    4-S-
    4 '
    4»
    3.9
    3.fc
    3-4
    ^
    29
    /.(,
    10-0
    1-0
    90
    ^.1
    9.4
    (0-J
    :D."
    ;i '
    I" ?
    > i'
    EXHAUST
    L« UA
    0-<
    o-3
    o-3
    0,4
    0,4
    D-S-
    0-£
    o.L
    o.t,
    O.I*
    01
    /.9
    / 8
    1.'?
    i.S
    '•4
    /./
    ro
    l.o
    C'.'-l
    3 1
    F\A
    HC,
    >f>mC
    ii-?/
    Ib4
    /49
    1^0
    •':,?
    hlc
    /?r
    172-
    Iho
    ^54
    /ti.
    /3o
    /fct
    /40
    i98
    j/t
    37t
    599
    J^-2
    2"i
    14^
    ND\R
    CO,
    t^rrv
    feo'
    i-7?';
    /•?••-'
    ^'r|
    ^»5
    Zter
    Z92-
    3/4
    4l£T
    /4«.t
    4/9
    /t79
    44^
    3^5
    4b2-
    3?'
    =;(!,/
    ffpr
    367
    4fcc)
    ?^rz
    ND\R
    C02/
    %
    J? -3;
    " fc2.
    ?.?/
    ^."'0
    ,"ir
    S".97
    7.ofe
    7-74
    9.3?
    .' " S' O
    ; az
    /'P.? -3
    ^ .*
    (M
    41
    '45"
    »t4
    £2g
    AS-S"
    i8£-
    JTT
    Jfco
    12 &
    Z4^
    Zg£
    j"!!
    ^23
    294
    ^44
    /5Z
    J/J
    v^
    21
    \ 4 1
    C.L.
    NO*,
    H>«
    z^a
    /04
    /00
    itt,
    Zfc9
    i79
    Jc-8
    "07
    Zfci
    ? 5 ^
    --J ~
    ;BT
    -T2-2-
    3 * '•!
    .-'84
    i^T/
    /47
    .M7
    ' ? '
    t7
    ;7&
    °*.
    X.
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         EN&)N E-
    DATE  I /4  A.
                                                 &/\ROME.TE R , i«
    WET EAJLe>TEMR,0F
    
    
    DRY BULB TEMP., °F
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    <0
    7
    8
    9
    1 0
    1 !
    1 Z
    1 3
    \ 4-
    1 5
    1 6
    1 7
    16
    1 9
    20
    2. 1
    ENG-INE
    SPEED
    RPM
    100
    1400
    IQQO
    1^00
    14.00
    1400
    1400
    1400
    1400
    14QO
    100
    2.400
    £400
    2400
    £400
    24.00
    3*400
    1400
    2400
    2400
    100 ,
    OBSERVED
    POWER,
    ^
    
    
    
    
    z.o
    4.0
    &>.!
    8-0
    I 0-1
    1Z.I
    H-l
    It,. 1
    
    
    3_%.T-
    54.5
    3.1-7.
    ii.i-
    14.1
    9-/
    i.i
    3-1
    
    
    
    
    AIR
    FLOKt
    'Vht
    9£
    m
    J7Z
    194.
    171
    /fo9
    /t>7
    /fe0
    14-9
    Ifol
    
    101
    IOT.
    103
    lOi
    'Jo
    1r>
    92.
    fc
    EXH-
    ftUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRlCTiOUS
    INTAKE
    UHjO
    /-3
    ^.^
    5,9
    4-.*
    3.1
    3+
    3,3
    3.1
    3.0
    23
    1.0
    9.5-
    8.1
    1.0
    9.3
    <)-4
    IP-2
    1-&
    °I.S
    1°>
    l-l
    EUVViUST
    «-«HA
    (3,1
    C.2
    »-3
    0-4
    0,4
    O.g
    &.S
    C/.&,
    £>.b
    i'.le.
    O.I
    1.1
    /.g
    1.9
    ;.a
    /•4
    /•Z.
    /./
    1.0
    1.0
    o-t
    FIA
    HC,
    t>|3mC
    •2.10
    3S8
    Ai7
    J^,&
    237
    24&
    2.3fe
    iifo
    a/?^
    33%
    /£•*
    II&
    111.
    zto
    aea,
    4<»0
    440
    .T/?.
    ^•04
    -"It
    /7I
    ND\R
    CO,
    *>t>™
    45-V-
    5-^7
    ai. i
    •2S2,
    an
    2.24
    231
    3.^3
    3C7
    /5-fco
    191
    3fc Zfc
    IS>o!»«
    /38
    4&
    /3o
    C?fo
    iii
    38^
    J»4
    ^02-
    i9g.
    JS3
    4»fc
    J/o
    3o3
    311
    3t>£
    ass
    /8Z
    ^3?
    82.
    39
    /3->
    C.L.
    NO^
    v>*>™
    »7fc
    9f
    no
    I-JCT—
    1-43
    4/5-
    J^^s-
    5^4
    At1?
    AS3
    if/
    3/6
    3oJ
    Ji^-
    30£-
    Z&6
    I6&
    /se
    /Zo
    13
    ns
    Q*,
    Y«
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
          EN&IN E-
    DATE.   I
    /1 3
    BAROMETER, i.«
                                                                                              2.1, /£
                        WET  £>OUe>
                        DRY  BULB TEMP., °F
    

    -------
    o
    
    Ijj
    IJ1
    
    MODE
    1
    2
    3
    4
    5
    
    
    
    
    
    z.o
    4.0
    (b.l
    8.0
    10-t
    li, \
    M.I
    ft.l
    
    
    -28.2.
    A4.f
    i/.X
    /as
    /4.I
    9./
    7./
    3.2.
    
    
    
    
    AIR.
    FLOVJ,
    "Vw
    9/
    nz-
    ns-
    ni
    it«>
    /fcfc
    )L1
    Ih4
    lt>^
    HE
    F<5
    i17
    ins
    2.74
    273
    /»3
    191
    tsZ
    103
    104
    104
    104
    10 S
    lot,
    /Pi
    /P7
    ;ot
    /ot
    '04
    iff,
    EXW-
    KUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	 	
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    RESTRVtnoMS
    INTAHE
    LnHjO
    o.-?
    s.7
    4-8
    4-4
    4.0
    .3.8
    3-1
    3-4
    3-3
    3,<
    /./
    I.L,
    8-6
    9.4
    3.4
    9.f
    S.I
    .£•
    £>.£•
    0.S-
    0.4,
    fl.fe
    «.7
    0-»
    /•9
    1.8
    t.1
    l.i
    '•4
    /.l
    l-o
    |.0
    0.^
    fl. 1
    F\A
    HC,
    JjjJmC
    }iO
    13$
    IbZ.
    /e>3
    /B5"
    iOfc
    /"?4
    /*4
    3.»o
    J-fcO
    /3/
    111,
    172.
    /•?6
    i82-
    ^00
    43d
    ss-t
    4Bo
    s^e
    /03
    ND\R
    CO,
    t>)>M
    B7&
    a?4
    ifco
    ^foi.
    ^44
    i.78
    279
    as-t
    45-^
    IAS8
    334
    i4B5-
    722.
    405
    445
    465-
    3fc?
    312
    2k3
    4*3
    580
    NDIH
    coz/
    %
    A.SS
    ^.Cl
    J.97
    4-t-S
    5~.5/
    fc-42-
    7-2.2.
    S-34
    9.5-i
    (a.4^
    .2.54-
    /a- 84
    •J.94
    8.T7
    7.4i
    6.94
    £-.40
    *89
    J.96.
    -Z.44
    -2.tT
    ND\R
    NO,
    \>V«n
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    C.L.
    NO,
    \>t>m
    /s-
    /^
    lt£-
    io?
    ^4f
    ^tr
    ^8?
    S. S3
    ^44,
    '2.3
    Z05
    3/0
    326
    S0 /
    A7fi
    yes
    r36
    67
    •9'
    '16
    C.U
    NOR/
    ^t»m
    m
    is
    >fc4
    /•??
    444
    28/
    i83
    A7
    /
    °^
    y.
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
          ENGINE-
    
    
          RON   4
                                                OHt,3
    -------
    o
    I
    UO
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    8
    9
    1 0
    1 I
    I 2.
    I 3
    1 4-
    1 5
    1 G
    1 7
    16
    I 9
    ZO
    2 I
    ENG-IHE
    SPEEI5
    RPM
    T60
    I40o
    1400
    \460
    1400
    1400
    1400
    1400
    1400
    1400
    noo
    S.4CO
    2.400
    5.400
    2.400
    1400
    2.400
    i-J-00
    Moo
    2.4 OO
    700
    OBSERVED
    POWER,
    lit
    
    
    
    
    1..I
    4-*
    £-3
    5-4
    (f>5
    IZ.l,
    /4.?
    /fc.s
    
    
    A
    TEMPERKTURE/F
    INTAKE
    AIR
    S-6.
    ^4
    S3
    £2.
    si-
    s'*
    rr ff
    -'^
    £•(>
    &(.
    S"l
    kZ
    72-
    12
    72.
    7/
    7o
    fcf
    4.6
    :7
    ^4
    FUEL
    a1?
    8^
    sa
    87
    88
    8ft
    B1?
    <»/
    95-
    •»4
    ?<.
    17
    let
    '»4
    /04
    fP4
    1 04
    tc2
    io2
    ,'02-
    (02.
    EXH-
    AUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    RESTRlC.T\t>MS
    INTAtE
    UHp
    J.P
    5-.T
    S-.o
    4-4
    4.0
    3.8
    3.r
    3.3
    3.0
    ^.8
    /.o
    /£>.0
    8.7
    
    ! • .'.">
    EXWAUST
    L»\\&
    l.o
    5.1
    -£T.0
    44
    ^.0
    3.8
    3.S
    3-3
    3. £?
    i.&
    /.o
    10:0
    9.1
    14
    il-l
    ll.J.
    IT..S
    li-<}
    I2..&
    I l.o
    1.0
    F\A
    HC,
    t>f»mC
    i8o
    io4
    177
    /fcS-
    186
    '74
    /ta
    MO
    MO
    200
    /oe
    /20
    MO
    Zt>o
    i.kC
    111
    31k
    5"oo
    4t3
    a^2.
    /4S-
    ND\R
    CO,
    t>f>m
    474
    547
    2H
    '73
    m
    H.&
    n»
    /gfc
    (95-
    77/
    334
    /74&
    5-«4
    3SV
    J75
    3a^
    J.86
    i93
    2.SS
    446
    J47
    ND»R
    coix
    »/
    /o
    i.4.7
    a..4r
    S.4*-
    •4.0'
    ^-./o
    -r.ta
    6.41
    ?.7o
    8.4.3
    •?.^
    i.40
    IV'fS1
    ^,4.3
    7.59
    t.,8/
    A? 3
    ^•.C'7
    4-28
    3.42-
    J.t7
    a. 4°
    ND1R
    MO,
    t>t»»
    2Z6
    84
    /s-9
    20?
    2.25"
    27t>
    323
    3.<*&
    I"!-?
    S.f7
    It/
    24>
    370
    J>m
    l&o
    4-2-
    lt>1-
    l&l
    ZZ4
    it?
    J94
    isa
    J8Z
    i34
    11.1
    3ol
    311
    344
    i»4
    A/8
    '££
    //7
    70
    35-
    1 10
    C.L.
    NO*,
    >f.m
    114
    -78
    /40
    i/7
    its-
    i>4
    3/7
    id9
    2^6
    ^5?
    y?z
    3 04
    32.4
    344
    Sot
    232-
    20o
    /44
    '
    DATE   /
    BAROME-VER, i-v,
    WET  &OL& TEHR, °F
    
    
    DRY 6UL& TEMP.,
    

    -------
    o
    
    MODE
    1
    2
    3>
    4
    5
    6
    7
    6
    9
    1 0
    1 1
    I 1
    15
    1 4-
    1 5
    1 G
    1 7
    16
    l 9
    20
    2 1
    ENGINE
    SPEC I)
    RPM
    TOO
    1400
    (40O
    1400
    14,00
    (400
    /400
    '400
    1400
    1*00
    TOO
    3.400
    3.400
    2.400
    24.00
    2400
    Z40o
    2-400
    3-400
    2.400
    loo
    OBSERVED
    POWER,
    Kt>
    
    
    
    
    Z.I
    4-1-
    6-3
    fi.4
    10. S
    /a <•
    /4-/7
    ;&.8
    
    
    i-7-4
    AS-.fl
    2.2.-'
    19,. S
    14-1
    II. 1
    1-4
    st>
    
    
    
    
    AIR
    FLOVJ,
    "v-Xht
    X
    4.2-
    ^2-
    4i
    fcs
    t.7
    t,B
    11
    7t
    8/
    3'
    a/
    9o
    7S
    78
    77
    It,
    7£
    FUEL
    .<
    FlA
    HC,
    |af>mC
    /03
    /«>9
    133
    131
    I4o
    (SI
    I3Z
    1-3-0
    us-
    144
    104
    9fr
    I4i
    ie>o
    HfO
    3ot>
    404
    S2lo
    S3i
    3.DO
    /3o
    ND\R
    CO,
    v>^
    4iO
    5o6
    i«»5
    il.4.
    ^47.
    i£-9
    A40
    ^77
    us
    en
    4-1.1.
    1548
    5"63
    34"\
    361
    33o
    3iS
    ne
    3*o
    311
    2ZI
    ND\R
    C02/
    o/
    /o
    5-41
    2.5%
    J-47
    f.S'J
    4*3
    fc.o/
    6-5-0
    «./7
    8.33
    ie->l
    2-SS
    lo-lo
    9-ftl
    8.44
    0.27
    £.«J
    S--34
    448
    s.ns
    i-7g
    i.40
    ND\R
    MO,
    ^w,
    /S-O
    11
    Itf
    i»n
    usi
    34.5
    3&1
    3St>
    3S1
    26S
    llo
    34.1
    311,
    4/00
    342.
    3lo
    13i
    1^
    7S
    3t>
    /3-T
    C.L.
    tMO,
    M>m
    I3l
    fcl
    III
    ISi
    2ZO
    3.11
    3/7
    327
    504
    J77
    no
    33S-
    3£1
    374
    335-
    ^70
    ay^
    /3i
    a?
    -fS"
    124
    C.L.
    NO^
    ^t>«
    /54
    96
    (S3
    /
    3t>Z
    J74
    340
    ^90
    •Z2S"
    JSS
    //9
    74
    740
    °«.
    %
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
          ENGINE-
          R.UN  (o
    DATE  / /
    -------
    o
    
    NODE
    1
    2
    3
    4
    5
    6
    7
    8
    9
    1 0
    I I
    1 Z
    \ 3
    1 4-
    1 5
    1 6
    I 7
    16
    l 9
    20
    2.1
    ENGINE
    SPEED
    RPM
    loo
    1400
    1400
    1400
    1400
    1400
    (4 00
    lAOo
    1400
    1400
    100
    JL-JOO
    2-4 0°
    Moo
    2400
    14 oo
    3.4 00
    3-400
    3.400
    24 ?o
    100
    OBSERVED
    POWER,
    M>
    
    
    
    
    y-,\
    4'T-
    ^-3
    8.4
    10. £
    li.L.
    M-7
    /fc.g
    
    
    j2.9'4
    3.S-.8
    2-Z.I
    19,. S.
    14-1
    II- 1
    1-1
    3-3
    
    
    
    
    AIR
    FLOVJ,
    'b~/ht
    &\
    /73
    ;73
    I 70
    It9
    C70
    ;67
    iiar)
    /£>&>
    lt><»
    89
    A7t
    2?4
    i8o
    260
    *8t
    i84
    28fe
    .23
    IP4
    IP4
    IP3
    r?4
    IP^
    ;t>4
    /f4
    104
    /£<;
    10^
    104
    EXH-
    AUST
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RESTRICT i OMS
    INTAKE
    C-nHjO
    l'2-
    5-7
    £ 1.
    44
    4*4
    4-1-
    4-0
    3-7
    3-7
    3.£-
    /./
    9.7
    5A
    8e
    R^
    9.^
    II. 0
    IZ.Z
    /;.?
    0.7
    I.I
    EXttAUST
    L"Ha
    o.'
    0-3
    f -3
    £>-4
    P-4
    o.S'
    0.5-
    0-S-
    o.S-
    O.L
    O.I
    i. a
    /•8
    /•t
    /.-?
    /./
    I.D
    Dfl
    i-1
    0.&
    ,«, t
    FlA
    HC,
    Js^C
    Tl
    ;/0
    ;zs
    I3S-
    I4L,
    1.5-0
    13 i
    132.
    J2fc
    2fZ
    lOT.
    84
    I/O
    /So
    ^3X
    194
    S91
    -?4t>
    4t>8
    ^54
    /44
    ND\R
    CO,
    V>H
    3to
    572
    ^<)r
    ^4=4
    ifo4
    J-TZ
    ^£•0
    aeo
    i9f
    92.7
    3^
    lS3o
    S9i
    ^Z3
    4H
    39.*
    360
    i/8
    367
    44>o
    509
    ND1R
    C02/
    %
    2-3Z
    s.-^S
    3-t,o
    4-Z9
    4.<»i
    4. .03
    V.06
    7.9 /
    9.34
    to. IS
    y. 53
    (o.b9
    ;o-of
    s-^
    •7.1/
    6-43
    5-.1S-
    4.5-4
    5-73
    4'?4
    A- 46
    ND1R
    MO,
    y»ipm
    lt,i>
    6^
    \S2.
    1-50
    ZVj
    338
    389
    3S^
    J.9i
    3JT/
    /62.
    34?
    34,1
    -^84
    -J94
    3tr
    3. ^35
    ^^i
    /P7
    *J
    /37
    C.L.
    NO,
    t>t>m
    /fc3
    44
    131
    114
    i3l
    2-&0
    3z(.
    33C>
    3-13
    SLS?
    /t9
    3il
    ^25
    JS-6
    J5-0
    307
    ^»7
    »3fc
    78
    ^/
    //7
    C.L.
    NOR/
    ^^«,
    n 2.
    10*?
    >4,s-
    Z2-7
    is-8
    J^>4
    344
    33?
    i93
    -s?
    /ao
    3iS
    33^
    /
    -------
    n
    
    MODE
    1
    z
    3
    4
    5
    6
    7
    8
    9
    IO
    1 1
    1 2
    1 3
    ENGINE
    SPEED,
    RPM
    loo
    1100
    IIDo
    11 00
    ! 700
    ' '! 0 0
    'ic-
    ^ 5,
    ZiOJ
    3-100
    2 ! !>O
    7-100
    7 oo
    OBSERVED
    POWER,
    h|>
    
    
    
    
    S.Z-
    10-4
    15. It,
    2o,B
    
    
    2^.7,
    l°>.1
    13.1
    t,.<*
    
    
    
    
    AIR
    FLOW
    lb«vW
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLO\^
    lbv*.
    J 2-
    2. °<
    4,5-
    .5:0
    "• C>
    /:>.4
    /. z
    14. Z.
    IP.'?
    '!•">
    C.I,
    ' e>
    /.z.
    TEHPERATORE,°F
    INTAKE
    AIR
    V4
    no
    lo°l
    60
    t,Q
    10
    11
    n
    '!-•
    ^
    FUEL
    9C
    K
    id
    I0i
    /rz
    lr>q
    If*
    II 0
    I/O
    no
    110
    1 ' '
    1 r>-*
    EXH-
    /SOS.T
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    RESTRICTIONS
    INTAKE.
    uH2o
    l.o
    rt.'l
    ir.*
    {..4
    fo.o
    ,^/>
    2 °
    n.1
    t\.'L
    &.0
    &.0
    8.0
    1-Z.
    EXHAOST
    in H«
    O.I
    D.ff
    0. S
    D.I,
    0-8
    0-1
    O.I
    1.4
    I 3
    I.Z.
    O.°l
    0 %
    ' ,
    FIA
    HCX
    t>F»C
    3e+
    ^i-ft
    ^ (?f?
    Ait
    no
    I£-D
    9i
    M
    95-
    ND1R
    CO,
    Ipfm
    i?^
    -*4fr
    ^ !,? --
    set
    zri*
    IZOIt,
    472.
    /5-Zt>
    SH
    ~ r^^
    C1 Q^J
    • 0 1
    / ">i"
    2 9J
    NDIR
    C.02^
    %
    S.-S4
    2. 52
    ^.i7
    -T.5?
    7.86
    /o.4l
    ^.75
    '°'-??
    8-E-»
    •« 1-7
    •H0
    ^.?o
    i.4>
    NDIR
    NO,
    ^^>r«
    /74
    "?2.
    > ^ ^
    5 ('i
    502-
    339
    ii>^»"
    /5"4
    7 /
    ; _""9
    - ^- (^
    334
    3\l
    l°ll
    ?2.-1
    ': ' t*
    " f.
    lt*r
    (.7
    '-?6
    C.L.
    NO*,
    »>!>«
    /77
    ^f
    Iff
    ;Q
    345-
    311
    X05
    Z-Z.1
    ?1~
    z-fa
    i^
    ^t
    /T(o
    ^.
    y
    /o
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        ENG-l N£  HERCEDfcS- BE ME  OMb'^fe
        CAPPING- ROM  )M-i
    DATE  i  / 10 /73
                Ln
    WET BULB TEKR,°F_IT_
    DRy BULB TEMR, °F_^_
    

    -------
    o
    I
    4^
    O
    
    MODE.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    1 1
    1 2
    13
    ENG-INE
    SPEED
    RPM
    loo
    /7PO
    1*100
    noo
    1100
    n eo
    10t>
    3.10®
    JUO£>
    $.100
    3LI00
    ZIDO
    *100
    OBSERVED
    POWER,
    ht>
    
    
    
    
    -S-.2-
    /0'4
    /5-.fc
    3-0 •&
    
    
    Zt>.2,
    19.7
    I3./
    b.6
    
    
    
    
    AIR
    FLOW
    '"-/hr
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FL6VO,
    Ib /
    -
    L-3
    d-l
    lt>-4
    o.f
    yf.z
    /p. 4
    *•/
    s-.fe
    j-4
    '•4
    TEMPERATURE, °F
    INTAKE
    AIR
    79
    It.
    74
    7;
    7Z.
    73
    73
    74
    77
    79
    7&
    7?
    75*
    FOEL
    ^2-
    95-
    95-
    9s-
    9fc
    •*
    FIA
    HC,
    f>f>r«C
    ^^
    //^>
    Z20
    232.
    ISO
    too
    se
    J14
    /3o
    114
    fr/t
    I&6
    /10
    NDIR
    CO,
    ^f=m
    445"
    3Z?
    -?/3
    J44
    55-4
    n^4
    Jf>m
    111
    
    i^o
    /0Z
    83
    £-{, 1
    C.L.
    NO,
    \>l*
    IS<)
    7/
    /4I
    ^38
    3i3
    i
    -------
    o
    
    
    MODE
    
    
    •7
    
    *
    
    
    4
    
    5
    /o
    S-.951
    
    ^»44
    
    4.74>
    
    ^•44
    
    J-8/
    5-13
    
    5. So
    
    2..IL
    
    /<**)
    TEMPE
    INTAKE
    /MR
    
    72.
    
    73
    
    73
    
    74
    
    74
    ?4
    
    74
    
    '/•f
    
    74
    
    74
    
    74
    
    48
    74
    
    /&
    
    7&
    
    / ^
    
    74
    7fc
    
    r)t>
    
    74.
    i
    ! ' fo
    -RATU
    
    rut L
    
    7Z
    
    74
    
    8i
    
    84
    
    84
    88
    
    ^o
    
    
    
    *?4
    
    *?.S~
    
    7^
    
    7^
    S3
    
    9 /
    
    9fe
    
    v 4
    
    97
    /03
    
    ; oo
    
    f oo
    
    1 oo
    RE./F
    EXH-
    AUST
    
    2.^ O
    
    ^> o o
    
    J fe>O
    
    42.0
    
    4
    £•£-0
    
    4&o
    
    7 70
    
    9/o
    
    < D&Q
    
    40O
    
    J2 3 o
    /030
    
    .370
    
    y&o
    
    fe /O
    
    0/0
    5-AO
    
    4^S~o
    
    3 7O
    
    23.2-
    
    f-3
    ^3, 3
    
    0-i
    ,
    ^2.
    .
    
    
    £). /£"
     .'£"
    
    <9. Z-
    F\A
    HC,
    ^f^mC
    
    3-^5-
    
    45"o
    
    4i-?
    
    42?
    
    -S-S'O
    J96
    
    244
    
    -IfoST
    
    ili
    
    32b
    
    .234
    
    
    ^£•8
    
    i7O
    / a
    »1*>T
    
    333.
    
    -2.t>4
    410
    
    oi-3
    
    ^SU
    
    -5'-'0
    ND\R
    CO,
    ft»"
    
    9^fl
    
    /X44
    
    ^>44
    
    4fco
    
    506
    J64
    
    i8o
    
    35"fr"
    
    9/
    
    4 1
    
    / 54
    
    3s^
    
    41? 7
    £78
    
    A/7
    
    ^e>o
    
    ^Z4
    
    4.0 o
    
    /2 3
    
    j4 =
    44 i
    
    447
    
    <^-S~4
    
    *tO 1
    
    30o
    
    
    1 SI
    
    ^
    
    '04
    C.L. |
    NO*, ''
    ^/
    
    1 fff 1^,0
    
    /38 I5~.1
    
    2lf-o '47
    
    4 3 / J /J. S
    
    S7Z y 2 i J
    t
    
    £45" 9- /
    ,
    ^3.4 V-4 '
    
    
    
    4/8 3.0
    
    202. /£"•&,
    
    34T -=.3
    f4'i i-2-
    
    4 » 7 /'O
    
    494 9-2.
    
    444 /«-•?
    I
    401? 1 //. 7
    32i\ iZ-.l
    ~~ '
    ^ *^ /3- 7
    
    /4O /5"-S
    
    ' 8 3 1 5"- 4
    £ ^4 G I N E-
                   2-
                          O TO ^ ,-/  p J 3
                                                                   & ARCH si
    WET  iibL2> TEHh^
    
    
    
    DRY  SOLB TEMP.^
    

    -------
    o
    
    MODE
    1
    •7
    L.
    3
    4
    5
    03
    i • l <-J
    5,'i.k,
    
    o^lo
    •1-33
    a, - .'2.
    ?.7'.'i
    3-34
    2.?;
    2 . .1 '-S
    ;.2o
    TEKlPERATURF_/P
    INTAKE
    MR
    •73
    73
    74
    74
    '74
    7f
    74
    .71
    ?r
    ?r
    75-
    74
    7^
    ?fc
    77
    77
    77
    -?4
    75-
    7£T
    '7^
    FUEL
    68
    It*
    82.
    &£
    SB
    3
    EXH-
    AUST
    310
    3OD
    370
    430
    S~0<5
    58o
    690
    Wo
    > 3
    tf.r
    .!
    <9-2.
    <3.2_
    0.Z-
    O.T-
    0 - 2,
    0- 1
    ^-7.
    •T 7 ,-) "7
    -;- i— dX ' ji»=
    3 tOr> /. i>
    £>.Z-
    Fl A
    HC,
    (D^imC
    ^Z^
    4^4.
    =i,fc
    J^.6
    ^/2
    3^5"
    793
    324
    3 1 5
    40O
    iOI
    3io
    230
    221
    ^30
    32C
    35Z-
    4^(0
    <^^^
    i>0&
    7 S3
    ND\R
    CO,
    IP^
    073
    1/4^
    ^70 O
    2:11
    353
    21Z
    ZBI
    i?a
    -1^0
    9CZ
    8/3
    3-S2.
    5£-
    ^•08
    J?"./2.
    4.4-2-
    3.5-9
    y.&i
    i-^q
    NDIR
    MO,
    \>^rn
    ;aT
    /SO
    «i4fe
    3^3
    5--??
    £22
    &?7
    £91
    £~/0
    3&1
    73
    448
    4f)5
    488
    49/
    4ii
    ^^^
    302.
    2^3
    !0tf
    '42-
    C.L.
    NO,
    V>t»rr,
    lo&
    1°!
    i3^
    3^7
    526
    s-^-s
    S86,
    £>S
    ^?&/
    38^
    "4
    422.
    42-4
    44S
    42-^
    3@4
    3ZS
    0-40
    H5-
    7i
    ^7
    C.L.
    NOS
    V>1^-
    ;ss
    IS la.
    y-bi
    4ss-
    bo°l
    634,
    fc^-ff
    ssn
    4&1
    4o&
    /6t
    42S"
    438
    4S-8
    46.3
    4^4.
    -370
    3 04
    i<3
    /34
    ^7_
    °^
    '%
    Ik-O
    Ik-o
    /4-7
    13.6
    /J.-?
    lo.-)
    tj.O
    ?, S"
    £". i,
    * a
    — ' • *.
    IS 1
    *5,(c,
    I*.*
    •7.9
    9-2-
    10. s:
    1Z.O
    / 3 • ^ I
    /"}-3
    »5". »
    /i.O
           EN&IN E.
    DAT E  /f   / L / T
                                              WET
                                                                                                               f. /£"   DRV  BULB  TEMP., °F _7_2-_
    

    -------
    O
    
    MODE
    1
    2
    5
    4
    5
    6
    7
    8
    9
    1 0
    1 1
    I Z
    I 5
    1 
    RPM
    (£"00
    l&oo
    /8<50
    '800
    ;8^o
    J8oo
    /8&o
    J8oo
    /3ao
    )&£>0
    IS~oe>
    i-1 oo
    2400
    J- 4 oo
    24 ff
    ^•< PO
    2/)C^
    .-.jw
    zqoo
    •2. 4 ot>
    / ^ r1 o
    OBSERVED
    POWER,
    h>
    
    
    
    
    M4
    .2.fc&
    3-9?
    -SV32.
    fe.tr
    7.97
    q.BI
    10.1
    
    
    H'l
    II: t
    ^.60
    1.°)S
    L, 36
    4- 76
    3.11
    /,S8
    
    
    
    
    AIR
    FLOVv),
    ^Ar
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FOEL
    FUOX),
    VK»
    /•'3
    /.„!
    yVC',1
    2.32.
    2-i.i.
    J-Z6
    3-SS
    1 il
    4-Tf-
    S-io
    1.03,
    7-iS-
    t>,os~
    £••3°!
    1.86,
    4.11
    3.74
    3-7
    ^.--3
    2 H
    1.10
    TEMPER ATURE/F
    INTAKE
    AIR
    73
    74
    74
    vr
    7£T
    75
    7ff
    7S"
    7^
    7^r
    f'C"
    is
    It,
    71,
    7^
    95-
    75"
    7^
    7^
    '/£-
    7£~
    FUEL
    74
    73
    So
    3:^
    97
    8?
    93
    9t
    ??
    f7
    loo
    88
    07
    9s-
    97
    96
    f>0
    lo^
    103
    107-
    1 O O
    EXH-
    AUST
    33o
    3/o
    3^:o
    ^1O
    4^0
    5-^0
    6SO
    Iko
    8Bo
    noo
    ?2o
    HID
    ID 10
    870
    7to
    fc'/o
    -"•Jt'>
    ^-^O
    ^fcO
    31°
    2-)0
    RESTRICTION
    INTAKE
    UHp
    1.0
    /•sr
    /••^
    / 2-
    (.2-
    ;.*
    /.£>
    /.O
    ,.0
    /,0
    1.0
    i-s-
    i.-}
    ;•&
    /.^
    2.0
    ;.^
    2-0
    2.2_
    ^•3
    1.0
    EXrtAOSl
    L"HA
    C-l
    0. /
    o-i
    0<
    01
    02-
    0-2.
    o-3
    o 3
    0.4
    0-2.
    0-3
    0.2
    ff 5
    *'o
    #-z
    0 2.
    ^•i-
    ? 'i.
    -1 7.
    /5, 7_
    F\A
    HC,
    J^l^mC
    JSt
    3r1
    ;a&
    3iS"
    ^"38
    3oi
    576
    30!
    2B£
    4SO
    ^4&
    J£"4
    226.
    IBS'
    l°>t
    31*1.
    ^k,°l
    3o°i
    4^B
    ST&S-
    ^let
    ND\R
    CO,
    *>H
    S^8
    118,2.
    $o°l
    31*>
    l°iS
    1&1-
    2S7
    291
    31 &
    ioqo
    823
    4>&
    2£t>
    2*18
    3 01
    -548
    1'?
    492.
    <^fc4
    10 11
    I0<\\
    ND\R
    C02/
    %
    i-^
    2.-80
    3-44
    4-34
    ^.03
    ^•,04
    ^.S8
    7.6f
    8.^4
    10-44
    231
    IO-4F
    °l.lk,
    777
    6.7/
    ^.^
    NDJR
    MO,
    *>f>««
    (2.0
    /'3
    i4S-
    406.
    .yd'
    6/S"
    £-94
    -£T4t
    47?
    321
    ion
    335
    377
    •790
    se<7
    4 OB
    343
    Ib4
    /4fc
    &C.
    64
    C.L.
    NO,
    >t»m
    ?£
    73
    ^/4
    3^
    46^
    547
    -S-88
    5a3
    484
    38^
    Il3
    31<)
    430
    jit,
    131
    371
    2J1
    ±47
    /Si
    82.
    3/
    C. L.
    NOS
    ^t»m
    /5?
    /43
    A6/
    4/4
    5"4Z-
    6^3
    loll.
    SSI
    Sob
    372-
    705-
    311
    43o
    <$S&
    401
    4/£T
    347
    300
    a/3
    '45-
    /5"3
    °».
    X
    /^-/
    15.1
    I4..G
    13-4
    l2,o
    to. 7
    1-4
    7.6
    £.0
    3.'
    /5"-7
    44
    ^./
    7.1
    1.4
    ID- L
    //•8
    IZ7
    13.1
    14-7
    /5.4
          ENG1N E-
    DAT E  //
                                                                                'Ti.
                                                                                                  WET
                                                                                         31.24.   DRY  BULB TEMP., °F  72-
    

    -------
    o
    
    MODE.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    I 1
    1 Z
    \ 3
    EN&INE
    SPEED.
    RPn
    IS~00
    
    
    ISO a
    ISOO
    ISOO
    I£TOO
    IS-00
    2.1 OO
    •3.100
    xi oo
    7 1 OO
    2/00
    IS 00
    OBSERVED
    POWER,
    ht>
    
    
    
    
    2-/4
    4 2^>
    fc.43
    B.I')
    
    
    12. <
    8.70
    S.tl
    2.10
    
    
    
    
    AIR
    FLOW
    lb«vW
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLOVU,
    Ib /
    •Yhr-
    /-23
    
    
    z.oi
    2.14
    3-3o
    4-6S-
    1.13.
    (,.<.(.
    4.72.
    S-46
    2.fo3
    /.ft/
    /.Z7
    TEMPERATUREX°F
    IMTAK.E
    MR
    ^S"
    
    
    Tfe
    T7
    ?T
    75
    74
    73
    ?3
    73
    '•f
    ^
    14
    FOEL
    &o
    
    
    84
    8^
    84
    05-
    8S>
    82.
    as
    ?4
    11
    11
    %
    EXH-
    ftOST
    Z.DO
    
    
    310
    41o
    IcIO
    1040
    loo
    &S&
    %oe>
    Uo
    SGQ
    3kO
    2°IO
    RESTRICTIONS
    IK1TA
    I-S
    /.$
    hS
    i.l
    /.8
    /•Z
    EXHAOST
    lnHa
    5-2.
    
    
    0. 2.
    C.Z.
    tf-2.
    0-3
    c-z.
    tf-4
    0-3
    0-3
    o-i
    D.T,
    0.1-
    FIA
    HC,
    >>fmC
    SIS
    
    
    4fc4
    3^1
    J2-?
    774
    482.
    4SV>
    2?2-
    ^f5
    /86
    482-
    3+1
    NDIR
    CO,
    t>f»«
    9/3
    
    
    Jz8
    400
    t>m
    ;/?
    
    
    ^*s-
    4/£-
    fc^Z
    393
    /33
    J33
    SIT-
    4i^
    it4
    n
    j/9
    C.L.
    NO,
    t'^'"
    8/
    
    
    4/0
    ^A?
    ^$r
    33&
    9?
    33T
    475-
    4^4
    i4 /
    ks-
    *?0
    C.L.
    NO^
    H"
    ISS
    
    
    444
    fc«fft
    ASS1
    349
    '?A
    344
    ^04
    444
    i9TEKRy°F fefi
    Zl.OT-   DRY  BULB TEHR, "F 74
    

    -------
    o
    
    MODE.
    1
    z
    3
    4
    5
    fc
    
    /
    8
    CJ
    SO
    1 5
    1 2.
    r( 3
    i *->
    ENG-INE
    SPEED,
    RPM
    \S~oo
    
    
    IS~oo
    iffOO
    1^0 a
    t$00
    ISOO
    3,1 00
    2 1 50
    2,1 CO
    2-160
    2.1 Od
    IS0O
    06SEPNED
    POWER,
    hi-
    
    
    
    
    2.16
    4.S4
    £.72.
    5.79
    
    
    11. 7
    9 17,
    6-/£~
    3-06
    
    
    
    
    AIR
    FLOW,
    fc«/hr
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    _ —
    
    
    
    
    
    
    FUEL
    FLIWO,
    'V*.
    /./£
    4.1,9
    3.U
    2.3!
    /.9t
    US
    TEMPERATURE, °F
    INTAKE
    AIR
    w
    
    
    11
    n
    17
    n
    n
    n
    n
    11
    ig
    IB
    n
    FOEL
    8x
    
    
    85"
    86
    86
    
    t-7
    I.O
    EXHAUST
    inMa
    O.I
    
    
    O.I
    0,1$
    0-2.
    o,3
    0.2.
    0.3
    D.I.
    0.2-
    o.i.
    &,/
    0.1
    FIA
    HC,
    t>t>mC
    Sfl?
    
    
    340
    110
    lt>S
    437
    210
    111
    /s|>«*
    840
    
    
    Z30
    23?
    3oo
    /21&>
    7/2.
    393
    ££7
    50?
    5^3
    IP$Z
    141
    NDIR
    C.O2,
    V
    /o
    2,7/
    
    
    4-4/
    S-.S9
    7-38
    10,15
    2.^
    ^rr.
    /46
    
    
    i-3f
    747
    778
    4/Pi
    /s-g-
    ^30
    S1??
    432-
    ^04
    101
    II 4
    C.L.
    NO,
    t,^^
    0?
    
    
    4<»a
    9/S
    647
    59/
    /Z8
    474
    i'Sff
    ^(,7
    ^02.
    e$
    ^
    C.L.
    NO^,
    frj>-
    /SB
    
    
    579S-
    ^70
    ^?£~
    394
    20Q
    3-BS
    £!,L
    50^
    3b°l
    llsO
    i&9
    P..
    y
    A>
    /£.e
    
    M.I
    /l.S
    B.n
    4.0
    I&-S-
    S--4
    8,2
    U'O
    /3.g
    ttf.O
    It,. 4,
          LT-lGr 1 N £   QftJ^.'O
          -IAPPIN.CT
    DATE _»  I 2- / 72,
    BAROMETER, In
    WET BOLE. TEMP, °F^
    DRV BULB TEMR, T_
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    G
    7
    8
    9
    10
    1 1
    1 Z
    13
    ENG-INE
    SPEED,
    RPfA
    IOOO
    ISOO
    lS~Oo
    ISao
    IS 00
    /SOD
    lOOQ
    JUoo
    Z/oo
    3-1 0?
    2/00
    2./06
    icoa
    OBSERVED
    POWER,
    ht>
    
    
    
    
    /.?/
    J.^4
    esis
    1.1,7
    
    
    ll.B
    <). S3
    (,.40
    $.!&
    
    
    
    
    AIR
    FLOW
    lb-A,
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FUWO,
    lb-/
    "Vhf
    0-95"
    A/6
    A86
    2.52.
    S.f7
    3-7-7
    «?.9d
    d.^4
    4.84
    3.^2
    ^•8-7
    /.g/
    (P. 83
    TEMPERATURE, °F
    INTAKE
    AIR
    7^
    ''IB
    79
    7^
    7^
    79
    7*
    79
    79
    79
    79
    79
    79
    FUEL
    79
    So
    83
    £:$-
    8?
    92
    92.
    9£T
    9^
    97
    99
    /<9^
    I0i>
    EXH-
    AOST
    ^'iO
    ?$o
    '• "So
    470
    feio
    SS-<3
    ZS-o
    /Ids
    130
    1 10
    (olD
    3 Bo
    230
    RESTRICTIONS
    IKJTAK.E
    IrvHjO
    (9 5"
    /.£>
    .5-9
    M
    c.S
    -4
    »-8
    o.s~
    EXHAOST
    inHa
    O./
    0.2.
    0.1.
    <9<2
    D-2-
    0'-2-
    0-1
    0.4
    D.t>r«C
    ^-ST?
    38S"
    irs
    ^.big
    atz.
    £04
    ^4 S
    45-0
    220
    2^2.
    9flo
    /.T9<3
    3fo
    NWR
    CO,
    l>f>m
    l-to
    9'Z
    444
    3.11
    343
    •4^4
    r?t>7
    /43r«
    ^/7
    C^
    55-9
    S<)o
    (,47
    Stol-
    93
    i^.4
    ^"23
    4^7
    ZZ7
    I3),m
    IL.S-
    11
    311
    5-47
    4.08
    >5"/9
    12.7.
    BS-o
    114
    423
    A07
    /zt
    /3?
    C.L.
    N0^x
    t>h«
    .230
    /49
    38o
    ^2?
    646
    -T2Z
    /7S"
    3S7
    449
    462.
    2-29
    't>£~
    111
    Q..
    %
    it,. 4
    lt>.'4
    I4J
    li.2.
    ?.?
    L.1
    /i-9
    1.3
    7.3
    //•a
    !$.£•
    /4.S
    /6.^
         ENG-l NE  .  ONflN   DJ 6 .-i
    DATE
         MAPPING-  RUM   /Vl-3
    BAROKETER Ln
    WET BOLBTEMR,°F_68_
    DRY  BOUB
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    fc
    7
    8
    9
    IO
    1 1
    1 2
    I 3
    ENGINE
    SPEED,
    RPM
    1000
    1 5 do
    iSoo
    1500
    1500
    IS~00
    /ooo
    3.100
    Z/0&
    1.IO&
    1-1 00
    Zl 00
    /ooo
    OSSERMED
    POWER.,
    ht>
    
    
    
    
    Z.D(,
    4.01
    &•/£•
    8.11.
    
    
    II- 2.
    lt>A4
    4-21
    2./i
    
    
    
    
    AIR
    FLOW
    lb"VW
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    	
    
    
    FUEL
    FLOVO,
    lb /
    ~/W
    o.Ql
    1.3.2.
    /•83
    J-4B
    ,M3
    4'DO
    o.nn
    s-.<)/
    5.75"
    293
    a,s?
    /.9fc
    «3.8'
    TEMPERATURE., °F
    IMTAK.E
    AIR
    1i>
    77
    77
    97
    ?7
    77
    76
    78
    78
    ?3
    78
    70
    ?-?
    FOEL
    62.
    ?3
    75-
    78
    8/
    0?
    4
    9o
    EXH-
    /\OST
    3.^0
    jLlt>
    3 BO
    •S'OO
    ls£0
    880
    loo
    los-o
    73^
    ^0
    4L,0
    3&o
    J-VO
    RESTRICTIONS
    INTAKE
    tntt^O
    O.S"
    1.0
    1.0
    o.B
    0.8
    o.B
    o.S"
    l.$
    '•4
    /.4
    I.B
    0.5-
    EXHAOST
    in Ha
    0-1
    6-T-
    0-2-
    6.2.
    fl.'t.
    o.z.
    O.I
    0.4
    0-3
    r>.±
    0-2.
    D Z.
    0. 1
    FIA
    HC,
    w^c
    251
    305
    24-0
    196
    iho
    1-10
    US'
    2.-2.0
    >t>9
    its
    22.2.
    372-
    112.
    ND1R
    CO,
    *>)>«,
    (oOl
    73'}
    JL^B
    3o7
    35-8
    £.12.
    &SI
    3-85
    271
    310
    ^oo
    /tiB
    (>£"!
    NDIR
    C02,
    %
    2.41
    2~U
    3*4
    £"•47
    fc.77
    8-32
    2.30
    m
    20ZT
    ;ss
    4&Z.
    579
    (>?0
    £-13
    111
    447
    SIT.
    3?2.
    3-40'l
    Ilk
    C.L.
    NO,
    »>>>•"
    /fi^-
    -2.S3
    /9£-
    f33
    632.
    6^3
    S-37
    224
    466,
    sn
    41B
    272.
    HS
    •Z'4
    °*.
    %
    It. 3
    13.3
    14.0
    I/.4
    9.3
    6-2-
    /*-3
    5"' 2
    ID-8
    IZ.1
    /4'S-
    ts.s
    11*. 1
                     DrV/^/V  DJ60
    DATE
                 /72-
         MAPPING-  RUM  M-4
    BAROMETER, Ln H»,
    WEF BULE,TEKR,°F_.S7_
    DRY BULB TEMR, °F_7^_
    

    -------
    
    MODE
    S
    ! '~'
    o
    4
    5
    •o
    i 7
    L§_
    1 9
    1 0
    1 1
    I Z
    1 3
    1 4-
    1 5
    1 6
    1 7
    16
    l 9
    20
    2 1
    EN&INE
    SPEED,
    RPM
    too
    !4D"
    (4S"0
    l^iTO
    1450
    H£-O
    Hi~<2
    14 So
    * S) F* r*.
    i4;ov
    MS-o
    4>
    
    
    
    
    L.9
    13-0
    f?.&
    2S-/7
    32.0
    AIR.
    FLOVJ,
    lb~A
    ' V\v
    ;s-v
    S&S'
    3 8s-
    FUEL
    FUOH
    VK.
    0.7
    
    3.i>
    «?-2.
    3Si 1 fc.O
    2-7 ?
    u-^73
    37J
    5C/'^ 3t4
    45-. 5
    -5Z>- 4
    
    
    7S-.4,
    64,6
    57-0
    it- 8
    J-7.S
    28-2.
    /&.*>
    9-i
    
    
    
    
    ifc/
    2>S-7
    /s^
    5^80
    &7S-
    ^7£-
    -S-97
    «5-7^
    S80
    S7")
    ^60
    £Bo
    '14
    t.9
    ?,fc
    12.2.
    13. 1
    11. S,
    ZP-lo
    o.£
    3C.Z
    2S-.1,
    2/-3
    n.?
    /5-S-
    I2.S-
    IO.Z
    5-1
    s-.r
    o-?
    TEMPERATURE, °F
    INTAKE
    AIR
    l?/
    S7
    3?
    8?
    9o
    "90
    t>
    loOb
    738
    ©3f
    loqq
    me
    5o7
    tztf
    /o9?
    93 r
    eos
    7l?
    (iZ/
    S-3S
    ^xri
    233
    25-i
    RESTRICTVOM5
    INTAK.E
    en HjO
    2-0
    «/-0
    -H.O
    1^.5-
    lo.s
    /0-S"
    /o.s
    (0.3
    ;p. o
    >P.<3
    2.0
    (9-5-
    /9-S
    /v.s
    H.5-
    20. 0
    20-0
    2.0-O
    Zo-o
    ZO.Q
    2.0
    EXHAUST
    L«H3
    D-0.Sfe
    0-34
    0.51
    o.s?
    0-kC
    0-kl
    &•&,£
    0-07
    /.So
    /•32
    i.n
    i-t>t>
    t-oo
    0.94
    09(.
    0-83
    ^•er
    o.oi
    F4A
    HC,
    t)^mC
    J2.SO
    Z33
    /44
    tile
    162
    Ho
    US
    !32
    H2
    7S
    25-i
    38
    96
    18
    109
    131
    141,
    I&O
    236
    3Z»
    324
    ND»R
    CO,
    £f>t«
    163. -
    ^4?
    266
    3; i
    .250
    /se
    ND\R
    coix
    %
    i./B
    I-:--!
    -£- / ^
    3.Pf
    <9-sB
    
    o. /4
    /S<5 i £..4^
    C7f
    fo4l
    45-i 5"
    221
    3365*
    740
    2,/f
    210
    1S<)
    322
    350
    340
    331
    **&
    7.4S-
    •?.3=
    10.32,
    L /-/ft
    •m
    3.7o
    7-38
    lf.17.
    ^.33
    4.^.
    5-55-
    ^.70
    l. to
    l.ll
    ND1R
    KiO,
    ^>1pw
    f2
    101
    IIS
    330
    Stl
    808
    K&B
    I4SO
    Ittt
    t^o3
    ill
    /87S"
    1624-
    tSU
    1023
    7iS"
    524
    338
    2/t
    131
    IffZ
    C.L.
    NO,
    ^>t=m
    / •>
    ttf (L.
    tn
    }Sg
    3! 3
    ssg
    814
    ItH.
    (483
    fjsi
    Ik 52
    78
    /779
    /838
    /s/z
    •»T?
    701)
    48 /
    21*4
    tst
    83
    tb
    C.L.
    NO*,
    ^^m
    74
    84
    /??
    53?
    ^83
    837
    /•224
    ?r/i>
    Ig/C-
    Ite*6,
    e^
    H93
    /8*r
    l£3e>or)
    723
    OU& TEMR,
    DRY  BULB TEMP., »F  7.T
    

    -------
    O
    
    
    MODE
    
    
    0
    
    a,
    
    
    
    
    
    s~
    to
    7
    
    
    
    Q
    
    i r>
    
    i i
    
    
    1 Z
    i 2>
    
    1 A-
    ' T-
    i cr
    1 D
    
    1 (o
    I -T
    1 /
    
    1 O
    
    \ V
    
    ZO
    
    2 1
    ENGINE
    SPEED
    RPM
    
    taOD
    r~
    I3 -> °
    
    (4£"o
    
    \^f~O
    
    M £"°
    
    ' T £""
    ^
    / *? .- '
    
    ! 
    
    / -".SO
    
    f. -t '3
    
    fe£>0
    OBSERVED
    POWER,
    m>
    
    
    
    
    
    4 ..6
    
    '3-4
    
    / 9- 2
    
    2^.5"
    
    3 2 . fc
    
    
    
    4 5". 7
    '
    5"o. 8
    
    
    
    V 5". o
    
    6& 6
    
    -S"7. O
    
    47-4
    
    -?7- 8
    
    28 2
    
    /9. 2
    
    7> 6
    
    
    
    
    AIR
    FLOVJ,
    lk~/
    
    / 5"fc
    
    377
    
    i S/
    
    ^J-i) i.
    
    211
    
    ? 49
    
    i 4fi»
    
    J?6-f
    
    2 6> '
    
    3 £"9
    
    / 1> P
    
    S7 7
    
    .57 /
    
    S7 '
    
    Sit °l
    
    S 1 1
    
    S7 /
    
    £•73
    
    S'7'7
    
    ^T 7 ^
    
    /4^
    FOEU
    FUOH
    VK.
    
    08
    
    2.7
    
    4-2
    
    to.O
    
    *7'4
    
    9-4
    
    1 1 • 1
    
    /3- 7
    
    17 • 0
    
    20 0
    
    o .6
    
    3o-o
    
    24'2
    
    2 /• 6
    
    / &-3
    
    '4-5"
    
    /2. 2
    
    • 4
    
    ^>'3
    
    /?.S"
    
    0.4
    TE.HPE
    INTAKE
    AIR
    
    93
    
    9 3
    
    9o
    
    93
    
    93
    
    93
    
    94
    
    97
    
    93
    
    ^4
    
    
    
    9s
    
    / 0 i
    
    
    
    10 2.
    
    /o /
    
    /5 .'
    
    / ' ?
    
    9&
    
    97
    
    97
    = RATU
    
    FUEL
    
    87
    
    86
    
    8t
    
    84
    
    87
    
    7
    
    87
    
    87
    
    87
    
    87
    
    S7
    
    88
    
    89
    
    90
    
    92.
    
    92
    
    92
    
    "/x.
    
    ii.
    
    -tz.
    
    Z
    ^E/F
    EX.H-
    AUST
    
    Z76
    
    2Sg>
    
    3 7
    
    4^9
    
    50 /
    
    b/ 6
    
    /2o
    
    546
    
    /O / 2.
    
    / / £"3
    
    288
    
    /2.3 6
    
    /o7 4
    
    96/
    
    827
    
    7/5-
    
    (• 2<^
    
    S"44
    
    4s^
    
    389
    
    25-;
    RESTR
    INTAKE
    J.nH20
    
    Z.Z
    
    II 0
    
    II • O
    
    II 0
    
    I0-f>
    
    10- 5"
    
    /O '5
    
    ID'S
    
    10-S
    
    ! 0 ' O
    
    2" S
    
    ,'9 s
    
    / 7 3
    
    /9-s
    
    /T. s
    
    / 9' ?
    
    ZO :O
    
    
    
    20 O
    
    2. 0 O
    
    2. -9
    ICTVOU5
    EXhAUST
    «-"Ha
    
    O.OZ
    
    0^4
    
    o. i.6
    
    0-28
    
    0-^2
    
    0. £"O
    
    O -Si
    
    O.fcfe
    
    0.^4
    
    ^•68
    
    0.04
    
    '•42
    
    /•32
    1 /£)
    '•'7
    
    
    
    o 9?
    
    0.94
    
    O.87
    
    0-8S"
    
    0'86
    
    O.o2
    FVA
    HC,
    ^r>mc
    
    320
    
    2.S-0
    
    2O6
    
    / 9E
    
    /78
    
    /tfe
    
    /5"2.
    
    /30
    
    '34
    
    loo
    
    2.64
    
    S"O
    
    7g
    
    1o
    
    
    
    I2&
    
    
    
    
    
    226
    
    2.92.
    
    288
    ND\R
    CO,
    \?H
    
    So'?
    
    283
    
    5o5"
    
    327
    
    263
    
    /87
    .
    ' »2
    
    2/8
    
    loot
    
    Q-l £5
    
    2-1 1
    
    3504
    
    6/0
    
    2.bl
    
    24-5
    
    2 £7
    
    323
    
    3£O
    
    3ie>
    
    294
    
    2 -ft
    ND\R
    C0±,
    %
    
    /./9
    
    '•32
    
    2-3O
    
    3-30
    
    404}
    
    5.33
    
    6 '46
    
    7.73
    
    I'll
    
    lO'jL 1
    
    I-2.Z
    
    9-9^>
    
    .4?
    
    .50
    
    fc f o
    
    5". 34
    
    i 35
    
    
    
    2 77
    
    2. o4
    
    /•/9
    ND»R
    MO,
    V^m
    
    fc>4
    
    83
    
    / 79
    
    339
    
    .fro 4
    
    806
    
    / ? 7^
    
    / 127
    
    ( 966
    
    1 ft93
    
    /s;
    
    /92S"
    
    /63O
    
    / b/ '
    
    (/4S
    
    793
    
    i37
    
    832
    
    2/7
    
    /40
    
    loZ
    C.L.
    NO,
    >(>m
    
    6g
    
    74
    
    ns
    
    342
    
    53*
    
    5*8
    
    1 1 ^ ^
    
    /5"76
    
    / 7 9 /
    
    ' »84.
    
    6?
    
    nzo
    
    1 903
    
    IS20
    
    1 OTIo
    
    1/0
    
    4 s~o
    
    2 34
    
    1 62-
    
    92
    
    t>5
    c. u.
    NO^
    *>*>">
    
    86
    
    Bo
    
    Z02.
    
    380
    
    S79
    
    p96
    
    / 2 27
    
    /e 3/
    
    ' 35"6
    
    1123
    
    95"
    
    /773
    
    / 8 7o
    
    /5"74
    
    / / 8
    
    724
    
    469
    
    293
    
    !&/
    
    loft
    
    Bf
    
    *'
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
          ENGINE-
                   2-
    WET
    DRY  BULB TEMP., °F
    

    -------
    o
    
    MODE
    1
    2
    3
    4
    5
    
    Z4oo
    2400
    2400
    24,00
    2400
    bW
    OBSERVED
    POWER,
    hi.
    
    
    
    
    fc-
    
    
    
    
    AIR
    FLOVJ,
    lb~/W
    /r
    /fct,
    5?^
    S-^2-
    F94
    ^94
    S^Z
    ^98
    S'JS
    S- "5 8
    bo 3
    /£-/
    FUEL
    FUOH
    VK.
    i.o
    z.&
    47
    5-. 9
    s.o
    ?-8
    /2-3
    1-9-3
    n-o
    ZO-2.
    o.&
    ZQ.'i
    " f~ 2
    ;?;.«
    /8-4
    /5-.S-
    /3.0
    10.4
    8-0
    i-.ft
    o.fl
    TEMPER ATURE/F
    INTAKE
    AIR
    69
    04
    83
    83
    34
    84
    82-
    85"
    86
    87
    90
    88
    93
    OT
    99
    90
    87
    87
    87
    S.
    8fc
    FUEL
    76
    78
    7?
    79
    79
    T?
    7?
    80
    80
    80
    Bo
    9»
    8'
    9/
    82
    82
    9Z
    B/
    a/
    9/
    a/
    EXH-
    ftUST
    373
    213
    341
    4»2
    S-/8
    bit
    734
    8STO
    902
    liSo
    Z13
    IZZO
    /079
    9^3
    825"
    7/9
    fc21
    T34
    ^47
    .^8fc
    2J8
    RESTRICT\OM5
    INTAKE
    i-nV^O
    2.0
    n-o
    10-ff
    10. t,
    10.4.
    10. £
    ID'le
    \t>.£
    ID- I
    10.2.
    i.o
    II. B
    (9-3
    }°>- 3
    \<\.o
    i<).o
    lo.o
    ,?0.£-
    20.0
    lO.q-
    1 7
    EHrtAUST
    L«H3
    O.07
    O.Z9
    0.29
    0-31
    0-37
    o.s;/
    O.fcO
    0.42
    O'hl
    o.fcS
    0.08
    /•38
    /.S4
    /,2S~
    /./S
    /.ol
    1-03
    o.n
    t>.ss
    0.97
    0 O^
    FlA
    HC,
    t>f>mC
    3/4,
    226
    224
    221
    a oo
    zoa
    /49
    148
    154
    too
    272
    60
    /3Z
    9o
    98
    /*2
    /44
    /84
    240
    J?og
    3^4
    ND\R
    cox
    t>t>™
    2£~S.
    270
    330
    3s-/
    ^42
    200
    /75
    201
    £32
    4487
    284.
    2<)S7
    tS-4
    ^2
    Z33
    283
    37Z
    401
    379
    J?3/
    Ji?4
    ND\R
    C02/
    V
    /o
    /.3Z
    (.45-
    2-3^
    ^•/7
    4-2.9
    5,lfl
    6-fc/
    7-4,6
    S.98
    10-40
    i-IB
    1 O,l£
    S.S^
    7.3Z
    £>. 34
    S-34
    442
    3-34
    1.11
    l.°ll
    LIZ
    ND\R
    MO,
    V>)pm
    83
    83
    /98
    298
    538
    82/
    IZOh
    /534.
    nto
    1^10
    lit
    /98T
    /85T'
    /s-«3
    1142
    807
    5-5 6
    ^40
    zt&
    140
    111
    C.L.
    NO,
    *>!"«
    90
    84-
    /8/
    3^8
    5"93
    84/7
    //IS"
    ISSI
    nsz
    H33
    82
    nss
    >0o3
    1242
    883
    U8
    37/
    224
    /34
    7fi
    52
    C.L.
    NOS
    H>«<
    9T
    102.
    HI
    3U
    t20
    898
    I/TO
    lt>32
    iBZIo
    n&s
    90
    n<)4
    lb&4
    ,2S5-
    1 10
    fc37
    376
    231
    I4S-
    to
    no
    °»,
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
          ENGINE.
    DATE
                                                                                   2OLe. T&MR. °F  64
    DRY BULB TEMP.. °F   73
    

    -------
    o
    
    MODE
    I
    2
    5
    4
    S
    Cb
    7
    8
    9
    1 0
    I l
    1 Z
    EN&INE
    SPEEI;
    RPH
    640
    H^o
    /4S-0
    1-4 5"0
    Jf.5"(3>
    (4S-0
    /4^P
    (45"0
    MS-O
    /4£"o
    MO
    2400
    ! b ?4C«>
    1 Jr
    1 5
    1 £
    1 7
    1 &
    1 9
    2O
    2 1
    i^C'O
    2.400
    2400
    •2.400
    2400
    24^^
    2400
    640
    OBSERVED
    POWER,
    ht-
    
    
    
    
    6.4
    13.1
    /?.«.
    ;u./
    J3-o
    3/
    98
    98
    9b
    9?
    9fc
    FUEL
    8)
    82
    8?
    8£
    &i
    33
    83
    04
    8f
    8^
    as-
    0^
    p,;-
    &t
    &fc
    S7
    8?
    S7
    87
    S?
    3?
    EXH-
    AUST
    z^3
    ZloZ
    33S
    1-34
    6"48
    fo/o
    nB
    ©S1?
    9^2.
    //H.S"
    i8?
    IMS'
    f o S 2
    ?7£-
    Slf
    7Z0
    fc44
    S&S
    ^68
    394
    247
    RESTKlCT\OUS
    INTAKE
    ^•\ HjO
    2.0
    1 !•°>'f
    I9.S-
    /^.s-
    J.0.0
    20.0
    ?. 0-0
    ?-^>^"
    ^.r
    EHWAOST
    i« HA
    O.M
    a,2/a
    
    &.3/
    0.34
    0-3S
    0-44
    0-£"4
    C».5"7
    O.t^
    o.tt
    o ,oV
    /•37
    Mfc
    /./6
    l./o
    (.06
    0-97
    0,11
    0.07
    ^,8^
    o.P4
    FVA
    HC,
    bKC
    32.0
    zto
    fee
    Hto
    /&^
    2-09
    2640
    M<*
    X4i
    233
    Z1Z
    3BS-
    40J
    566
    332
    ^84
    ND\R
    C02/
    %
    /.2S
    /•44>
    2. (8
    3-24
    Ub
    S.i°!
    fo-4fc
    7.^8
    9-20
    /i>.4J
    i.yf
    16.10
    8.60
    7.&Z
    6.48
    S-41
    4-Sfc
    J.&3
    ^.04
    2.04
    hl°!
    NO\R
    KJO,
    ip^m
    ffZ
    92
    ?90
    30S"
    fo4/
    94^
    /3^8
    Kill
    /f>m
    9fc
    73
    (to
    323
    S7S
    Q7Z
    HB7
    ;^99
    /'V^S'
    /fofcfc
    BO
    /6?6
    C.L.
    NORx
    V|>rn
    5'i /i?j ~~ —
    /034
    74^
    4. t£~
    28S"
    /?4
    101
    10
    ;ofc3
    ??•?
    4?o
    A99
    /89
    Ilk
    9/
    
    
    
    
    — __
    
    
    
    
    
    
    	
          ENGINE-
          RUN   4
    DAT E
    BAROMETER , L
                            ^,26   DRY  BULB TEMP., °F
    

    -------
    o
    
    MODE
    1
    2
    5
    4
    5
    6
    7
    8
    9
    1 0
    1 \
    \ z
    13
    I 4-
    1 5
    1 6
    1 7
    16
    1 9
    20
    21
    ENGINE
    SPEED
    RPiM
    &4o
    /4S-0
    \OfSO
    14? a
    iqs-o
    iqs-o
    /4£~o
    14^0
    KS-Q
    I45~0
    Mo
    £400
    I4"o
    2.3,00
    Zqoo
    24-00
    24°o
    2400
    2400
    2.400
    t>40
    OBSERVED
    POWER,
    ht-
    
    
    
    
    h.s
    ,'3,4
    /9.Z
    its,.£
    32,3
    38-1
    0
    kiz
    HB
    657
    lt>24
    lit,/
    227
    /z/3
    /ofc3
    947
    836
    727
    629
    5-3 /
    41^
    JSfc
    i34
    RESTRICTION
    INTAKE
    U HZ0
    X..O
    II- S'
    H.5"
    f/.O
    11-0
    II 1
    no
    10. 9
    II- 0
    10- 3
    2.0
    ZI.O
    2o. B
    ZI-O
    2.1-0
    2I.S-
    2.2.0
    x/.r
    21-5
    21-5
    2.0
    EKrtAUST
    "•"Hi
    O'OS
    0,Z7
    (5.2 0
    0.22.
    O.37
    0.5-/
    O.feo
    m
    270
    2.81
    32?
    354
    i73
    /4>3
    IS-o
    2-3-0
    IZ^Z
    £733
    -Z44
    52/3
    5fl l
    a.76
    2/7
    /•25T
    ND1R
    MO,
    ^.ym
    64
    73
    /i-7
    J24-
    535-
    Bli
    lis-5-
    15-11
    >84S~
    I&I&
    III
    )1b<)
    1722
    /4o?
    //OS
    74"?
    49a
    306
    m
    u^
    92
    C.L.
    NO,
    lPt>m
    &e
    70
    lid.
    369
    fe£f
    ^*?
    /3?1?
    /t?6
    1830
    nss
    8/
    /7&3
    (83?
    /q.68
    lib'?
    7S3
    46'
    283
    (T
    loo
    Hi
    C.L,
    TsiOx/
    >&>«<
    13
    101
    2.14
    407
    ?£>2,
    If 2.7
    icoa
    f]1O
    l&td
    n^o
    f 3
    182"?
    I1'8
    l£~3t>
    IZOB
    111=
    soo
    J.^7
    /•?4
    /2/
    9t
    °^
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    	
    
    
    
    
    	
    	
    
    
    	
    	
          ENGINE-
    DATE /g / /6/7Z.
    B/\ROMEVER, L« V
    VJET  e>OL&  TEHR.
    fa 8
                                                                                        ^q,/'9     DRY  BULB TEMP., °F  74
    

    -------
    o
    
    
    MODE
    I
    
    7
    
    z
    
    A
    
    
    
    
    
    -f
    
    a
    
    Q
    
    l r\
    
    
    
    
    
    I ^,
    
    i A_
    
    
    t 5
    
    1 £
    
    1 7
    
    1 &
    
    1 9
    
    20
    
    
    EN&IKE
    SPEEI5
    RPM
    
    
    
    
    
    
    
    
    J * ~-_
    
    
    
    
    
    rf
    
    
    
    
    
    ^ •3.&
    
    45-- 7
    
    
    
    
    
    75"- <»
    
    £.7-2
    
    
    
    48-0
    
    57. g
    
    38.2.
    
    If- 2
    
    ?. 6
    
    
    
    
    AIR
    FLOVO,
    'b~A,
    
    / £•/
    
    330
    
    3&L,
    
    397
    
    390
    
    37k
    
    37'
    
    3kg
    
    ? fc£>
    
    ^5?
    
    1 i>T-
    
    S7?
    
    -£•^6
    
    S"t 2-
    
    SBo
    
    >seo
    
    £88
    
    sio
    
    £-?4
    
    A"? 4
    
    /^/
    FUEL
    FUOVO,
    Ib /
    */K»
    
    c.a
    
    i.te
    
    4.4
    
    
    
    • 8
    
    yo-9
    
    
    
    
    
    11.5
    
    Zo 7
    
    0-i,
    
    3 P. 5
    
    JS-7
    
    
    
    J3-S
    
    llo-O
    
    n.&
    
    10. h
    
    7.0
    
    -5-6
    
    (9 8
    TEHPE
    INTAKE
    /MR
    
    84
    
    84
    
    94
    
    S3
    
    fl£~
    
    35"
    
    94
    
    
    
    fo
    
    °iZ
    
    81
    
    
    
    9fc
    
    
    
    94
    
    14
    
    10
    
    39
    
    37
    
    67
    
    rf-T
    _RATU
    
    
    
    Qo
    
    
    
    Qo
    
    BO
    Q s\
    BO
    
    Qo
    f-\ —
    QO
    o /^
    
    
    8'
    a /
    
    /i /
    9/
    Q /
    8/
    Q i
    
    Q 9
    
    
    82
    
    ^
    82.
    
    82
    
    83
    
    84
    
    94
    
    83
    RE,°F
    EXH-
    ftUST
    
    Z0£
    
    2,£4
    
    34 fe
    
    4i 6
    
    ^£"/3
    
    420
    
    949
    A r &
    8S7
    
    102.1
    
    IlkS"
    
    2.32.
    . « . /
    
    
    \0°l1
    Q L »
    
    
    S33
    
    726
    
    s>/9
    
    5-43
    
    4^
    
    
    
    
    RESTR
    INTAK.E
    LnHjO
    
    2.O
    
    ;i.s"
    
    11-4
    I/ 3
    
    
    
    
    II.O
    
    . „
    II- O
    
    11.2.
    
    II.O
    
    10. &
    
    J.,0
    
    3-1,0
    
    21, 0
    
    
    
    21,0
    
    i/..5~
    
    ^ ;-5"
    
    Zi.S
    
    2i.&
    i 'i f\
    
    
    1:0
    \CTIOU5
    EXrtAUST
    L« H3
    
    o o3
    
    o 27
    
    0-i9
    /, o j
    t>'34-
    n *i t>
    0-38
    
    0..S"3
    
    O'bl
    
    0-71
    
    0-73
    
    0.43
    
    o-s9
    
    /'40
    
    1.27
    
    
    
    l-llo
    
    \.0°l
    
    1.03
    
    0,<)£
    
    O.^l
    
    P- 83
    
    0.04
    FXA
    HO,
    V>^C
    
    3/L,
    
    21B
    
    
    
    
    
    254
    
    ZS6
    
    2.46
    
    11%.
    
    ^54-
    
    \ Tto
    
    ZiZ,
    
    hi
    
    1 loO
    
    
    
    fL2
    
    ISO
    
    'fco
    
    208
    
    270
    
    3'O
    
    3/4
    ND\R
    CO,
    |pt>m
    
    2S8
    
    270
    
    329
    
    338
    
    ZtZ
    
    107
    
    /73
    
    
    
    12-02.
    
    52 SI
    
    2.45"
    
    I&IO
    
    787
    1 O O
    
    « ^ a
    
    
    xs~d
    •> ^ >t
    334
    
    273
    
    340
    
    3o*
    
    3.1O
    ND\R
    C02,
    %
    
    C-^
    
    /•3»
    
    2-23
    4 .. -.
    J.C8
    
    4-0/
    
    S.7.0
    
    6-44
    
    7-89
    
    9.20
    
    /0.35"
    
    /-^4
    
    
    
    3-74
    /7 T /
    
    
    fc-37
    
    ST38
    
    4.27
    
    3.S4
    *) / 4
    J.fcS
    
    /.03
    
    0.9f
    ND1R
    WO,
    ^V"-n
    
    fc4
    
    64
    
    it?
    4 d O
    j-ty
    C, M
    514
    n . /
    90&
    
    /2?4
    i / /> *
    
    
    19 '2.
    I rt A »
    
    
    /2 /
    
    /9/4
    
    /75 '
    / ^* £T2
    
    
    
    
    003
    
    £~0/
    
    348
    
    J2./6,
    
    
    Oi
    12.
    C.L.
    NO,
    l>^m
    
    jT8
    
    <>(
    
    /»4
    
    32-2.
    
    b 92.
    
    897
    
    / / T^
    
    
    
    fe7b
    
    1 5 ko
    
    73
    
    IS12.
    
    I 7 '/
    
    O TO
    
    \03I
    
    t>94
    
    42.'
    
    Z7J
    
    <5"4
    
    T5D
    
    >53
    C.U.
    NO^
    >l>-
    
    8/
    
    84
    
    2JS
    
    5fe
    
    t>34
    
    760
    
    1 3 1 O
    
    1 1 i£
    
    i 7S4
    
    /fo£.7
    
    77
    
    /fc5"8
    
    ISo4
    
    'T-; ^-
    
    1 O&S
    
    72.2-
    
    4?r
    
    217
    
    174
    
    %
    
    78
    o
    2,
    X
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
           ENGINE-
                                                                       DATE  10
    WET &ULB
    DRY BOLE, TEMP.,  °F  75"
    

    -------
    o
    
    ttODE.
    I
    2
    3
    4
    5
    6
    7
    6
    9
    IO
    1 1
    1 2
    1 3
    EN&INE
    SPEED,
    RPn
    loO^
    i 100
    1100
    inoo
    1100
    60S
    2/00
    2100
    2100
    2100
    2IOo
    2100
    iaOS
    OBSERVED
    POWER,
    ht>
    
    
    
    
    14'4
    Z&.1
    42.1
    57. 8
    
    
    40. S
    SI. ^
    23 -la
    ll».9>
    
    
    
    
    AIR
    FLOW
    fc-Ar
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FUVJ,
    Ib /
    "Vhf
    
    0-51
    o.£S
    O.BC
    0.0-}
    i.ot
    0-9^
    c.as
    0.7fe
    D'k°l
    O'Ol
    FtA
    HO,
    ^"•C
    30X
    302.
    no
    234
    24l>
    /48
    2-49
    lib
    zio
    3M
    3^2.
    */o O
    2iO
    ND\R
    CO.
    H>w
    ^^r
    210
    315-
    11,3
    141
    Si 41
    183
    3S-4I
    /83
    307
    3 oi
    zst,
    3.OQ
    ND1R
    C02,
    %
    ;./9
    /•4s
    3.i>9
    S".2?
    7-4 S
    /o-36
    l-ii
    tO-S'Z
    7.11
    £"•13
    3-4f»m
    fo4
    83
    330
    347
    1 1> n
    /«43
    in
    ZObO
    n&3
    <*'b
    313
    /49
    IIS.
    C.L.
    NO,
    t>>>^
    fe/
    73
    3^
    6/3
    ,'5~24
    t£4£-
    76
    /79S1
    '5-97
    8/4.
    3/7
    I0\
    t>1
    (L.L.
    NO^,
    H-
    a/
    93
    ?4-7
    sr-?
    Ib33
    t*1&
    8?
    ;&o8
    (ferr
    Sf4
    43S
    /i3
    
    -------
    o
    I
    Ln
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    6
    9
    10
    1 1
    1 Z
    \ 3
    EN&INE
    SPEED,
    RPM
    loOS
    1100
    ilov
    iloo
    noo
    noo
    loOS
    2,1 00
    2100
    2,100
    ZlOo
    2100
    6of
    06SERVED
    POWER,
    hl>
    
    
    
    
    14-0
    .28.9
    ^•C
    £-£•2.
    
    
    68.2.
    &>.<)
    J4-'
    r/.s
    
    
    
    
    AIR
    FLOW
    lk"A,
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FL5VO,
    ^/^
    o-k
    3.?
    6-7
    //.a
    /SMJ
    i-'8
    o-fc
    3Vfc
    /8-t
    /X. 8
    .9.5-
    4-1
    tf.7
    TEMPERATURE, °F
    INTAKE
    A\R
    9Z
    88
    85"
    87
    87
    8?
    94
    88
    94
    9Z
    8?
    57
    83
    FUEL
    88
    88
    88
    88
    80
    89
    90
    39
    89
    8^
    3^
    3}
    90
    EXH-
    MJST
    Z3&
    Z90
    4/7
    439
    62^
    mi
    ifc9
    U99
    943
    907
    5-2 /
    336
    .221
    RESTRICTIONS
    INTAKE
    i-«WjO
    Z.0
    /3,^
    /3.7
    n.z
    13.0
    )3.0
    2,0
    ;?,r
    /7-0
    n-s
    16.0
    \t>.0
    2.0
    EXHAOST
    in H^
    ^-03
    0.47
    0.4£-
    0,5-;
    O.S7
    0.81
    0,0^
    /.07
    /5-.1??
    O,g7
    o.is
    fi.tf
    0.03,
    RA
    HC,
    t>t»«c
    ^io
    57£
    3/6
    ^94
    304
    /fcft
    3/8
    //e
    /8o
    2/0
    76(3
    3io
    31,8
    NDIR
    CO,
    ^[>m
    ZS'Q
    307
    338
    /B7
    111
    4Z77
    ^4^"
    Jfc/r
    J2.5-
    2/2.
    ZB8
    2.Sh
    134
    NDIR
    CO2^
    7o'
    1-24
    /•S8
    3-3.T
    ^40
    7.S9
    /0-44
    /.^
    IO.S2.
    1.SI
    S.il
    3.tf
    /•84
    /.»s
    NDIR
    NO,
    ^f»rn
    b4
    64
    J4^
    m
    iu>i
    IB8S
    III
    2038
    Ib8f>
    8+6
    371
    ISO
    &*
    C.L.
    NO,
    t^m
    fc7
    73
    331,
    89/
    15-bl
    te'to
    SOS
    nzf
    1*37
    800
    3/7
    m
    it,
    C.L.
    NO*,
    i>^-
    9-9
    98
    J«
    933
    /fcs-?
    Ibll
    97
    nst,
    /(,!&
    8/4
    33fc
    Ji7
    84
    Q..
    y
    /o
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         ENG-l NE.
    DATE
         MAPPING-  RUN
    '72-             WET BOLBTEHR,°F_k£_
    
    
    , In Ho,  21. IZ   DRY 6ULB TEMR, °F  73
    

    -------
    O
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    1 1
    1 2
    1 3
    ENGINE
    S.PEE.D,
    RPM
    40£-
    11 00
    noo
    lisa
    noo
    n OD
    loOS
    ZIOO
    ZIOO
    Zloo
    Zioo
    ZIOO
    boS
    08SERMED
    POWER,
    ht>
    
    
    
    
    /4-4
    5.^-9
    4:2-5"
    £-9.1
    
    
    &q.&
    Si.O
    33- i,
    /7-3
    
    
    
    
    AIR
    FLOW
    lb-A,
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    FUEL
    FLOVJ,
    lb~/w
    0-&
    34
    £•7
    II- i
    IS.S
    23-3
    o.q
    2<&.0
    It.D
    IZ.t*
    8-4
    4-S-
    0-1
    TEMPERATURE, °F
    INTAKE
    AIR
    ^'J
    at
    81
    84
    87
    89
    ?£•
    M
    9S-
    ^4
    93
    8?
    80
    FUEL
    ^9
    79
    79
    T?
    •?9
    8/
    31
    82.
    a^.
    83
    83
    93
    32
    EXH-
    AOSy
    Z21
    i?4
    s^r
    343
    •23?
    RESTRICTIONS
    INTAKE
    i.n HaO
    2-C
    /?.9
    /3.£"
    /3-7
    13- 3
    /J-.0
    J-3
    /7-3
    /7-4
    '7-8
    '8.0
    /8-3
    5.O
    EXHAUST
    in Ha
    0.04
    0-44
    04 1
    ^.5;
    0.5"!
    O.lto
    0.07
    1,01
    0.97
    0.gr
    0.8'
    0.7/
    /?.o4
    FIA
    HC,
    t>t>«c
    22.S
    13fl
    2.10
    ^ot>
    21+
    /86
    i56
    /£)g
    /4B
    /5f
    ;&8
    zz^
    i44
    ND1R
    CO.
    t>t»»
    ^4T
    AT/
    J29
    A/J
    >kl
    £211
    22£-
    $312.
    ;?4
    23ft
    292.
    2-f)
    5L34
    NDIR
    C02,
    V
    /o
    ;-2t
    /.s-3
    3.11
    ^..2.4
    4.96
    9-70
    /'/Z
    9-4*7
    U3
    4-^7
    2.9/
    /•£T9
    tf.998
    NDIR
    NO,
    ^f>m
    4,4
    t>4
    ^99
    786
    /4fto
    /76t
    93
    /944
    Is-fS"
    00+
    5-48
    HI
    •74
    C.L.
    NO,
    ^^.^
    95
    39
    ?
    /853
    /08
    ZOIO
    /959
    9*0
    3S8
    /5"4
    /Ofc
    °*.
    %
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         ENG-l NE
         r«\APPING-  RUM M-3
    DATE
    72-
    BAR.OKETER  Ln
    WET
    DRy BULB TEMR, "V
    

    -------
    O
    
    MODE
    1
    Z
    3
    4
    5
    6
    7
    6
    9
    10
    1 1
    1 Z
    \ 3
    ENGINE
    SPEED,
    RPM
    t,os-
    1100
    1100
    11 00
    1100
    \100
    bOS"
    ZIOO
    2.1 05
    2100
    it 00
    2/00
    bos
    OSSEPNED
    POWER.,
    ht>
    
    
    
    
    ,4.4
    Z&.€
    4*'9
    ^&.ie
    
    
    be-z
    so-i
    33-1
    Id 8
    
    
    
    
    AIR
    FLOW
    *"/•,,'
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    	
    
    
    
    
    
    
    
    
    FUEL
    FLtWd,
    lb-A.
    0.1
    *-4
    '1.0
    //•4
    /£•/?
    X3.0
    0.7
    ;?';.fe
    / 3. '7
    /*.«
    5-4
    4-S
    (,
    0.01
    1.01
    0.17
    OSS'
    &.&I
    0,11
    0.04
    FIA
    HC,
    f'^C
    234
    264
    232
    ir8
    i76
    ^I2
    270
    1/2
    /U
    /74
    3-0 (e
    2lo
    m
    ND1R
    CO,
    ^
    /97
    iS-9
    *9/
    /ts1
    /26
    Soil
    ^35"
    J548
    //£"
    m
    is-4
    io9
    m
    NDIR
    C02>
    %
    /./«
    I'S3
    3.31
    £.30
    n.so
    10.2$
    1.32
    ;o.4t
    7-S4
    5-. /7
    J-44
    MB
    M^m
    04
    ^Z
    59fc
    9^9
    Ibsl
    zioo
    IS!
    2/23
    I1S7
    "in
    1*9
    ;9o
    /5Z
    C.L.
    NO,
    t^m
    90
    8fc
    582
    ^//
    ;t>98
    /4>9/
    /07
    ^42
    /714
    8S7
    J62
    /3/
    05
    C.L.
    NO*,
    ^.^
    94
    /o9
    1*s
    ??<"
    /T?4
    into
    IOB
    /<>&/
    1112.
    1/2.
    3&J
    If/
    1 D2.
    °».
    y
    /o
    
    
    	
    
    
    
    
    
    
    	
    
    
    
    
    	
    
    
    
    
    
    
    
    
                          K INS.
    ENG-INE.
         CAPPING-  RUN  M-4
    DATE  /Q//9 /7Z
    BAROMETER./ Ln
    WEF BULB TEMP,
    DRY BUUB TEMR,
    

    -------
                        APPENDIX D
    
         COMPUTER-GENERATED DATA PRINTOUTS
    AND CALCULATION OF BRAKE SPECIFIC EMISSIONS
          FOR DIESEL, ENGINES USED IN FARM,
    CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
                            D-l
    

    -------
    PROJECT1  Il-28b9-01
    ENGINE'  AC 3500
    DATE OF TEST1  11-28-72 TEST NO.l
    SERIAL NO.1  3D-173tt
    MODE
    
    
    1
    2
    3
    t
    5
    b
    ?
    B
    9
    10
    11
    12
    13
    It
    15
    Ib
    17
    18
    1=1
    20
    21
    rtODE
    
    1
    2
    3
    t
    S
    b
    7
    8
    9
    10
    11
    12
    13
    It
    IS
    Ifa
    17
    18
    19
    2n
    21
    CYCLE
    
    
    
    ENGINE
    SPEED
    RPM
    800
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    800
    HC
    PPM
    240
    188
    158
    188
    228
    2tO
    18fa
    19b
    135
    Sb
    248
    122
    150
    14-8
    its
    15b
    IfaO
    170
    ISfa
    172
    300
    TORQUE POWER
    
    LB-FT BMP
    0.0 0.0
    1.8 .5
    54.3 15.5
    10b.8 30.5
    157. b 45.0
    210.1 bO.O
    2b2.b 75.0
    315.1 90.0
    3b?.fa 105.0
    420.2 120.0
    1.8 .3
    355.4 Its. 9
    309.9 129.8
    2bt.t 110.7
    218.8 91.7
    l?b.8 74.1
    133.1 55.7
    87.5 3b.7
    f 3.8 18.3
    1.8 .7
    0.0 0.0
    CO + NO-H-
    PPM PPM
    801 21b
    571 255
    397 593
    31b 912
    2b3 120b
    343 Itb7
    521 Ifa88
    888 1908
    237b 2033
    t883 1915
    830 217
    715 ISfat
    tOO 1558
    30b 132b
    272 1145
    2b2 951
    210 785
    25t 59b
    270 413
    350 245
    899 179
    COMPOSITE BSHC =
    
    
    
    BSCO+ =
    BSN02++=
    BSHC + BSN02tt=
    FUEL
    FLOfl
    LB/MIN
    .05
    .09
    .lb
    .2t
    .32
    .t2
    .50
    .bl
    .b9
    .80
    .Of
    1.01
    .87
    .77
    .bS
    .5b
    .ts
    ,3b
    .2h
    .18
    .Ot
    WEIGHTED
    BHP
    0.00
    .02
    .fa8
    1.34
    1.S8
    2.bt
    3.30
    3.9b
    t.b2
    5.28
    .02
    b.55
    5.71
    t.87
    t.03
    3.2b
    2.t5
    l.bl
    .81
    .03
    0.00
    .577
    t.908
    ll.SSb
    12.tfa3
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    b.04 b.09
    10.51 lO.faO
    10. b3 10.79
    11.00 11.21
    11.09 11. tl
    11. t? 11.89
    12.02 12.52
    12.77 13.38
    12.98 13. b8
    13.21 It. 01
    5.8b 5.90
    22. t8 23. t9
    21.lt 22.01
    20.20 20.97
    19.09 19.75
    18. t9 19.05
    17. 3t 17.79
    Ib.Sb lb.92
    15. b8 15. 9t
    19.92 20.10
    5.85 5.89
    BSHC BSCOt
    G/HP HR G/HP HR
    ft K
    52.b3 318.78
    l.tS 7.28
    .
    -------
    PROJECT1  ll-28faq-01
    ENGINE1  AC 3500
                         DATE OF TEST'  11-28-75  TEST NO.2
                         SERIAL NO.1  3D-173ff
    MODE
    1
    2
    3
    f
    5
    fa
    7
    a
    q
    10
    11
    12
    13
    It
    IS
    Ifa
    17
    18
    11
    20
    21
    ENGINE
    SPEED
    RPM
    8no
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    800
    TORQUE
    LB-FT
    1
    1
    52
    105
    15?
    210
    2b2
    315
    3b7
    fib
    1
    3bO
    315
    271
    225
    180
    13f
    SI
    f 5
    1
    1
    .8
    .8
    .5
    .0
    .b
    .1
    .b
    .1
    .b
    .7
    .8
    .b
    .1
    .f
    .8
    .3
    .8
    .0
    .5
    .8
    .8
    POWER
    3HP
    
    
    15
    30
    f 5
    bO
    75
    SO
    105
    US
    
    151
    132
    113
    Sf
    75
    5b
    38
    IS
    
    
    .3
    .5
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .3
    .1
    .0
    .?
    .b
    .5
    .5
    .1
    .1
    .7
    .3
    FUEL
    FLOW
    LB/MIN
    .05
    .10
    .Ifa
    .25
    .33
    .f e
    .51
    .bl
    .72
    .83
    .Of
    1.02
    .SI
    .7S
    .b8
    .58
    .f f
    .37
    .27
    .IS
    .Of
    AIR
    FLOW
    LB/MIN
    5.
    10.
    10.
    11.
    11.
    11.
    12.
    12.
    13.
    If.
    5.
    23.
    22.
    21.
    IS.
    18.
    17.
    17.
    Ib.
    15.
    5.
    S2
    51
    73
    03
    21
    77
    21
    8S
    bO
    05
    73
    Ifa
    77
    f 2
    Sf
    Sb
    SS
    Of
    20
    b2
    73
    EXHAUST
    FLOW
    LB/MIN
    5.
    10.
    10.
    11.
    11.
    12.
    12.
    13.
    If.
    If.
    5.
    2f .
    23.
    22.
    20.
    IS.
    18.
    17.
    Ib.
    15.
    5.
    S7
    bl
    8S
    28
    5f
    IS
    72
    SO
    32
    88
    77
    18
    b8
    21
    b2
    Sf
    f 3
    f 1
    f 8
    81
    77
    FUEL
    AIR
    RATIO
    .008
    .DOS
    .015
    .022
    .02S
    .035
    .Of S
    .Of 7
    .053
    .05S
    .008
    .Off
    .Of 0
    .037
    .03f
    .031
    .025
    .022
    .017
    .012
    .008
    MODE
    HC
           PPM
    CO +
                   PPM
    WEIGHTED  BSHC
    BSCO+   BSN02t+
                   PPM
                                  BHP
                          G/HP HR  G/HP HR  G/HP HR
    1
    2
    3
    f
    5
    b
    7
    8
    q
    10
    ll
    12
    13
    If
    IS
    Ib
    17
    18
    IS
    20
    21
    CYCLE
    
    
    
    288
    2fO
    1S8
    21f
    25f
    25b
    2f 8
    220
    llf
    b2
    1S2
    If2
    152
    IbO
    Ib2
    158
    172
    18f
    178
    18b
    320
    S37 17b
    b2f 2f5
    ff8 Sf7
    3fl 8b7
    275 llbO
    320 Ifff
    533 Ibf3
    825 18fl
    2f?f 1SSO
    f2b2 ISIS
    bS3 27b
    fa?S ISbO
    f38 1500
    2Sf 1301
    2f8 Ilf8
    237 S35
    22S 75b
    2f2 5S8
    257 flS
    2S7 2f3
    85b 18b
    COMPOSITE BSHC =
    
    
    
    BSCO+ =
    BSN02++=
    BSHC t BSN02++=
    .02
    .02
    .bb
    1.32
    1.S8
    2.bf
    3.30
    3.Sb
    f .b2
    5.2f
    .02
    b.bS
    5.81
    5.00
    f .Ib
    3.32
    2.f 8
    l.bB
    .8f
    .03
    .02
    .b2S
    f .773
    11.S13
    12.5f2
    85.08 551.80
    b?.21 3f8.25
    l.SO 8.55
    I.Ob 3.37
    .Bfa 1.85
    .bS 1.71
    .Sb 2.38
    .ff 3.25
    .21 8.87
    .10 If. 02
    5f.87 3Sf.7S
    .30 2.8b
    ,3b 2.07
    ,fl 1.51
    .f? I.f2
    .5f I.b2
    .7f 1.S7
    1.11 2.S1
    2.03 S.8f
    52. Sf IbS.bS
    Sl.fS f87.32
    GRAM/BHP HR
    GRAM/BMP HR
    GRAM/BHP HR
    GRAM/BHP HR
    170.51
    22f .53
    17.15
    If .08
    12.85
    12. b?
    12. Of
    11. S3
    11.72
    10. 3b
    258. 3fa
    10. ?S
    11. b3
    10. ss
    10.81
    10. fS
    10. bb
    11.80
    15. bf
    228. 7S
    17f .02
    
    
    
    
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LB. DRY AIR
    
                              D-3
    

    -------
    PROJECT1  Il-28b9-01
    ENGINE'  AC 350H
    DATE OF TEST1 11-28-72  TEST NO.3
    SERIAL NO.'  3D-17311
    MODE
    
    
    1
    a
    3
    i
    5
    b
    7
    8
    9
    10
    11
    12
    13
    It
    IS
    Ib
    1?
    in
    IS
    20
    21
    MODE
    
    1
    2
    3
    1
    5
    b
    7
    8
    9
    10
    11
    12
    13
    it
    15
    Ib
    17
    18
    11
    20
    21
    CYCLE
    
    
    
    ENGINE
    SPEED
    RPM
    800
    1500
    IbOO
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2?no
    2200
    2200
    2200
    800
    HC
    PPM
    272
    221
    180
    19b
    231
    232
    221
    20b
    112
    b8
    212
    128
    lib
    152
    150
    128
    IbO
    178
    170
    178
    300
    TORQUE POWER
    
    LB-FT BMP
    0.0 0.0
    1.8 .5
    52.5 15.0
    105.0 30.0
    157. fa 15.0
    210.1 bO.O
    2b2.b 75.0
    315.1 90.0
    3b7.b 105.0
    411.9 118.5
    1.8 .3
    357.1 149. b
    315.1 132.0
    271.1 113.7
    225.8 94. b
    180.3 75.5
    134.8 5fa,5
    91.0 38.1
    45.5 19.1
    1.8 .7
    1.8 .3
    CO+ NO++
    PPM PPM
    842 175
    b!2 194
    435 482
    341 730
    287 995
    307 1200
    49b 1424
    788 Ibb2
    21b5 1792
    44b9 1722
    SbO 280
    b43 1404
    389 13b2
    24b 1195
    212 1025
    214 842
    204 b99
    218 512
    233 39b
    272 230
    775 17fa
    . COMPOSITE BSHC =
    
    
    
    BSCOt =
    BSN02-H- =
    BSHC + BSN02++=
    FUEL
    FLOW
    LB/MIN
    .01
    .09
    .Ib
    .21
    .32
    .12
    .51
    .bl
    .71
    .83
    .01
    1.01
    .91
    .80
    .b9
    .57
    .17
    .3?
    .27
    .19
    .01
    WEIGHTED
    BMP
    0.00
    .02
    .bb
    1.32
    1.98
    2.b4
    3.30
    3.9b
    4.b2
    5.21
    .02
    b.58
    5.81
    5.00
    4.1b
    3.32
    2.48
    I.b8
    .84
    .03
    .02
    .590
    1.1b2
    10.b03
    11.194
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.72 5.7b
    10.40 10.49
    10.71 10.87
    11.20 11.44
    11.21 11.53
    11.77 12.19
    11.97 12.18
    12. 9b 13.57
    13. 2b 13.97
    13. bO 11.13
    5.54 5.58
    23.15 24. Ib
    22.28 23.19
    21.37 22.17
    19. 9b 20. b5
    18.83 19.40
    17. 9b 18.43
    lb.92 17.29
    lb.29 lb.5b
    15.72 15.91
    5.72 5.7b
    BSHC BSCO+
    G/HP HR G/HP HR
    R R
    b2.0b 337. b4
    1.72 8.30
    .99 3.43
    .79 1.94
    .b2 I.fa4
    .49 2.17
    .41 3.12
    .25 7.57
    .11 11.31
    58.59 308.12
    .27 2.73
    .31 1.7S
    .39 1.2b
    .43 1.22
    .43 1.45
    .b9 1.75
    1.07 2.bO
    1.S5 5.32
    50.98 155.33
    85.54 110.27
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .008
    .009
    .015
    .022
    .029
    .03b
    .012
    .017
    .053
    .Obi
    .008
    .011
    .041
    .037
    .035
    .031
    .02b
    .022
    .017
    .012
    .007
    BSN02++
    G/HP HR
    R
    175. bl
    lb.10
    12.04
    11.01
    10.53
    10.24
    10.82
    10.30
    9. Ob
    253.35
    S.80
    10.33
    10.07
    9.bb
    9.35
    9.85
    10. bl
    11.84
    215.32
    Ib3.91
    
    
    
    
     +   CONVERTED  TO  WET  BASIS
     t+  CONVERTED  TO  WET  BASIS  AND  CORRECTED  TO 75  GRAINS
        WATER  PER  LB.  DRY AIR
    
                             D-4
    

    -------
    PROJFCT'  Il-28b9-01
    ENGINE1  AC  3500
    DATE OF TEST1  11-28-72  TEST  NO.f
    SERIAL NO.1  3D-173**
    MODE
    
    
    1
    2
    3
    *
    5
    b
    7
    8
    q
    10
    ll
    12
    13
    1*
    IS
    Ib
    1?
    18
    IS
    20
    21
    MODE
    
    1
    2
    3
    *
    5
    b
    ?
    8
    9
    10
    11
    12
    13
    11
    15
    Ib
    17
    18
    11
    20
    21
    CYCLE
    
    
    
    ENGINE TORQUE POWER
    SPEED
    RPM
    800
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    800
    HC
    PPM
    2b8
    22*
    18b
    202
    2 + 0
    25*
    2*0
    230
    ISb
    92
    220
    IbO
    Ib8
    172
    17*
    17b
    18*
    200
    ISO
    192
    3*0
    
    L8-FT BMP
    0.0 0.0
    0.0 0.0
    52.5 15.0
    103.3 29.5
    15*. 1 **.0
    20b.b 59.0
    259.1 7*.0
    311. b 89.0
    3fa2.* 103.5
    *13.2 118.0
    0.0 0.0
    355.* 1*8.9
    311. b 130.5
    2bb. 1 111.5
    220. b 92.*
    17b. 8 7*. 1
    133.1 55.7
    87.5 3b.7
    *3.8 18.3
    3.5 1.5
    0.0 0.0
    CO+ NO++
    PPM PPM
    9bb 197
    b52 2*7
    *7* 5b2
    3b7 875
    300 1188
    35fa 1*20
    5*7 Ib38
    928 1837
    2273 200*
    *S** 1909
    bb7 2fa9
    b80 1592
    *13 1510
    271 1329
    225 1158
    22? 957
    21b 78b
    231 b03
    2*5 *22
    285 2*5
    830 198
    COMPOSITE BSHC =
    
    
    
    BSCO + =
    BSN02++=
    BSHC + BSN02++=
    FUEL
    FLOW
    LB/MIN
    .0*
    .09
    .Ib
    .23
    .31
    .*!
    .50
    .59
    .b9
    .82
    .0*
    1.00
    .90
    .78
    .b?
    .57
    .*b
    .37
    .27
    .19
    .n*
    WEIGHTED
    BMP
    0.00
    0.00
    .bfa
    1.30
    1.9*
    2.bO
    3.2b
    3.92
    *.55
    5.19
    0.00
    b.S5
    5.7*
    *.90
    *.o?
    3.2fa
    2.*5
    l.bl
    .81
    .Ob
    0.00
    .bb8
    *.817
    12.109
    12.777
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.73 5.77
    10. *0 10. *9
    10.70 10. 8b
    10.8* 11.07
    11.20 11.51
    11. 7b 12.17
    12.0* 12.5*
    12. b* 13.23
    13.10 13.79
    13.87 I*.fa9
    5.5* 5.58
    23.1* 2*.l*
    22.29 23.19
    21.38 22. Ib
    19.98 20. b5
    18. 8b 19. f3
    17.81 18.2?
    17.15 17.52
    lb.12 lb.39
    15.57 15. 7b
    5.72 5.7b
    BSHC BSCO+
    G/HP HR G/HP HR
    R R
    R R
    1.78 9.03
    1.00 3. b?
    .83 2.07
    .b9 1.93
    .5* 2.**
    .*5 3.b3
    .27 7.9b
    .15 1*.88
    R R
    .3* 2.90
    ,39 1.93
    .*S l.*2
    .51 1.32
    .bl l.Sfa
    .80 1.8b
    1.2b 2.90
    2.2* 5.75
    27.23 80.51
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .008
    .009
    .015
    .022
    .028
    .035
    .0*1
    .0*7
    .053
    .059
    .007
    .0*3
    .040
    .037
    .03*
    .030
    .02b
    .021
    .017
    .012
    .007
    BSN02++
    G/HP HR
    R
    R
    17.59
    1*.19
    13. *3
    12. b5
    11.99
    11.80
    11.5*
    10.27
    R
    11. Ib
    11.59
    11. *2
    11.18
    10.85
    11.13
    12. *5
    lb.31
    113.88
    R
    
    
    
    
     +  CONVERTED TO WET BASIS
     t+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
       WATER PER LB. DRY AIR
                             D-5
    

    -------
    PROJECT1  Il-28fa9-01
    ENGINE'  AC 3500
    DATE OF TEST'  11-29-72 TEST NO.5
    SERIAL NO.1  30-17311
    MODE
    
    
    1
    2
    3
    *
    S
    b
    7
    8
    9
    10
    11
    12
    13
    It
    IS
    Ib
    17
    18
    IS
    20
    21
    MODE
    
    1
    2
    3
    1
    5
    b
    7
    8
    q
    10
    11
    12
    13
    It
    15
    Ib
    17
    18
    19
    20
    21
    CYCLE
    
    
    
    ENGINE
    SPEED
    RPM
    BOO
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2POO
    2200
    2200
    son
    HC
    PPM
    292
    221
    181
    201
    2tb
    251
    210
    208
    132
    51
    2b1
    112
    152
    152
    15b
    IbO
    Ib8
    182
    178
    lib
    332
    TORuUE POWER
    
    LB-FT BHP
    1.8 .3
    1.8 .5
    19.0 11.0
    105.0 30.0
    15S.3 15.5
    210.1 bO.O
    2b2.b 75.0
    31b.9 90.5
    3b5.9 101.5
    121. S 120.5
    5.3 .8
    318.1 115. 9
    309.9 129.8
    2bb.l 111.5
    220. b 92.1
    17b.8 71.1
    133.1 55.7
    87.5 3b.7
    13.8 18.3
    5.3 2.2
    0.0 0.0
    CO+ NO++
    PPM PPM
    859 18b
    559 253
    372 551
    291 900
    227 1135
    285 1391
    b97 153b
    775 1791
    2022 1912
    1189 1881
    775 221
    519 1182
    3fa8 1157
    231 1251
    213 llOfa
    202 902
    1S2 711
    20b 557
    221 109
    272 211
    857 177
    COMPOSITE BSHC =
    
    
    
    BSCOf =
    BSN02t+=
    BSHC + BSN02-H- =
    FUEL
    FLOW
    LB/MIN
    .03
    .09
    .Ib
    .02
    .32
    .11
    .bO
    .bO
    .71
    .77
    .01
    .99
    .77
    .78
    .b?
    .57
    .Ib
    .3b
    .2b
    .18
    .01
    WEIGHTED
    BHP
    .02
    .02
    .b2
    1.32
    2.00
    2.b1
    3.30
    3.98
    l.bO
    5.30
    .05
    b.12
    5.71
    1.90
    1.07
    3.2b
    2.is
    l.bl
    .81
    .10
    0.00
    .b31
    1.380
    11.525
    12.15fa
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.91 5.91
    10. bO lO.fal
    10.82 10.98
    10.91 10.93
    11.28 11. bO
    12.12 12.53
    12.28 12.88
    12.78 13.38
    13.51 11.22
    11.17 11.91
    5.72 5.7b
    22.55 23.51
    21.83 22.faO
    20.92 21.70
    19.92 20.59
    19.00 19.57
    17.83 18.29
    lb.85 17.21
    15.95 lb.21
    15.12 IS.bO
    5.91 5.95
    BSHC BSCO +
    G/HP HR G/HP HR
    85.90 503. b3
    fa3.23 311. Ib
    1.90 7.b7
    .98 2.79
    .83 1.52
    .70 l.Sfa
    .51 3.15
    .tl 3.01
    .21 7.21
    .09 13. bb
    25.10 lib. 71
    .30 2.20
    .35 I.fa9
    .39 1.20
    .tfa 1.25
    .Sfa 1.1Q
    .73 l.fas
    1.13 2. 51
    2.08 5.13
    18.35 50.80
    « R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .OOb
    .009
    .015
    .002
    .028
    .031
    .019
    .017
    .052
    .055
    .007
    .011
    .035
    .037
    .031
    .030
    .02b
    .021
    .Olfa
    .012
    .007
    B3N02-H-
    G/HP HR
    179.50
    233.19
    18.75
    11. Ib
    12.50
    12.57
    11.10
    11.11
    11.21
    10.08
    b9.faO
    10.33
    10.9fa
    10.52
    10. bS
    10.30
    10.51
    11.30
    15. b3
    73.92
    R
    
    
    
    
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LB. DRY AIR
    
                              D-G
    

    -------
    PROJECT1  Il-28b9-01
    ENGINE"  AC 3500
    DATE OF TEST1  11-29-72
    SERIAL NO.'  3D-17344
    TEST NO.fa
    MODE
    
    
    1
    2
    3
    4
    5
    b
    7
    8
    9
    10
    11
    12
    13
    14
    15
    Ifa
    17
    18
    19
    20
    21
    MODE
    
    1
    2
    3
    4
    5
    b
    7
    8
    9
    10
    11
    12
    13
    14
    15
    Ib
    17
    18
    19
    20
    21
    CYCLE
    FNGlNE
    SPEED
    RPM
    800
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1SDO
    800
    2200
    2200
    2200
    2200
    2200
    2200
    2200
    2?00
    2200
    800
    HC
    PPM
    2fa8
    21fa
    178
    198
    23b
    23b
    222
    19fa
    124
    50
    248
    128
    144
    14b
    14R
    152
    158
    172
    Ibfa
    178
    31b
    TORQUE
    POWER
    FUEL
    FLOW
    LB-FT
    0.
    1.
    54.
    105.
    157.
    210.
    2bO.
    315.
    3b7.
    41b.
    1.
    341.
    309.
    2bb.
    220.
    178.
    133.
    87.
    45.
    •5.
    5.
    CO +
    PPM
    870
    b25
    448
    341
    288
    344
    522
    8fa4
    2507
    4422
    827
    fa21
    413
    294
    272
    250
    240
    255
    282
    33b
    884
    
    0
    8
    3
    0
    fa
    1
    8
    1
    fa
    7
    8
    4
    9
    1
    fa
    fa
    1
    5
    5
    3
    3
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BHP
    0.0
    .5
    15.5
    30.0
    45.0
    faO.O
    74.5
    90.0
    105.0
    119.0
    .3
    143.0
    129.9
    111.5
    92.4
    74.8
    55.7
    3fa.7
    19.1
    2.2
    .a
    NO + +
    PPM
    Ib8
    215
    48fa
    827
    HOfa
    1358
    1547
    1774
    1875
    1781
    223
    1459
    1428
    1223
    10b5
    878
    718
    559
    390
    232
    Ib8
    LB/MIN
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    .04
    .09
    .17
    .24
    .32
    .41
    .50
    .59
    .71
    .85
    .05
    .95
    .89
    .77
    .fab
    .57
    .4fa
    .3b
    . ?b
    .18
    .04
    WEIGHTED
    BHP
    0
    
    
    1
    1
    2
    3
    3
    4
    5
    
    b
    5
    4
    4
    3
    2
    1
    
    
    
    COMPOSITE BSHC =
    BSCO+ =
    BSN02+t=
    BSHC + BSN02-H-S
    4.
    11.
    11.
    .00
    .02
    ,b8
    .32
    .18
    ,b4
    .28
    .9fa
    .62
    .24
    .02
    .29
    .71
    .10
    .07
    .29
    .45
    .bl
    .84
    .10
    .05
    595
    940
    24fa
    842
    AIR
    FLOW
    LB/MIN
    fa. 10
    lO.faO
    10.81
    11.10
    11.38
    11.57
    12.03
    12. b2
    13. b?
    14.17
    5.53
    23.13
    22. 2b
    20.88
    19. b3
    18.94
    17.89
    lb.94
    lb.ll
    15.44
    S.91
    BSHC
    G/HP HR
    R
    bO.9?
    l.bb
    . 19
    .81
    .62
    .49
    .38
    .22
    .08
    68.50
    .28
    .34
    .37
    .43
    .62
    .69
    1.07
    1.88
    16.69
    31.03
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LB/MIN
    6.14
    10. b9
    10.98
    11.34
    11.70
    11.98
    12.53
    13.21
    14.38
    15.02
    5.58
    24.08
    23.15
    2l.fa5
    20.29
    19.51
    18.35
    17.30
    lb.37
    15. b2
    5.95
    BSCO +
    G/HP HR
    R
    351.49
    8.34
    3.40
    1.97
    1.81
    2.31
    3.33
    9.03
    14.68
    455.00
    2.75
    1.94
    1.50
    1.57
    1.71
    2.08
    3.16
    6.38
    62.72
    173.03
    HR
    HR
    HR
    HR
    FUEL
    
    
    AIR
    RATIO
    .007
    .009
    .015
    .022
    .029
    .035
    .042
    .047
    .052
    .060
    .009
    .041
    .040
    .037
    .034
    .030
    .026
    .021
    .016
    .012
    .007
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    B3N02-H-
    G/HP
    
    198
    14
    13
    12
    11
    11
    11
    11
    9
    201
    10
    11
    10
    10
    9
    10
    11
    14
    71
    54
    
    
    
    
    
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    *
    •
    •
    •
    •
    
    
    
    
    HR
    R
    21
    88
    50
    43
    71
    24
    25
    01
    71
    95
    62
    00
    27
    10
    89
    21
    39
    45
    17
    07
    
    
    
    
     t  CONVERTED  TO  WET  BASIS
     •H- CONVERTED  TO  WET  BASIS AND CORRECTED TO 75 GRAINS
       WATER PER  LB.  DRY  AIR
    
                            D-7
    

    -------
    PRIMECT •
           'CAT PbC
    HATE UP TEST'2-1-72     rEST  NO.l
         L M.:.' 1A481P
    MfU'E PNGINE TORNUE POWER
    SI-EEL'
    
    1
    ,-1
    ;-i
    M.
    L,
    I,
    7
    f;
    q
    10
    ii
    12
    1:)
    1.^
    Iti
    Ib
    IV
    in
    I'l
    en
    2J
    MU'JE
    
    1
    2
    3
    4
    5
    b
    7
    8
    S
    in
    11
    12
    13
    14
    15
    Ib
    1?
    18
    14
    20
    21
    CYCLE
    
    
    
    RPM
    bbt,
    1 S- Q G
    I'rOn
    1 4 0 U
    1400
    1 'r 0 0
    14QO
    14 CO
    If 00
    1 «• n n
    hbO
    14 [iO
    14L-0
    HOD
    1 4 n i. i
    l s n n
    1 4 t . 0
    ISnp
    14i.Mj
    1400
    b5il
    HC
    PPM
    2b
    24
    b
    4
    8
    8
    10
    12
    12
    10
    IP
    b
    b
    4
    3
    b
    t
    +
    4.
    20
    7b
    L*-KT BHP
    u . o o . n
    [i . 0 0 . 0
    5 H . 5 1 5 . S
    117.3 31.3
    17H.b 47. b
    2 3 b . 3 b 3 . 0
    247. h 74.3
    3 5 3 . h S t . 3
    41U.S ll'J.b
    4 7 4 . ? 1 2 7 . H
    i). i.l >1.0
    4- U 4 . ^ 1 4 b . 3
    3 5 H . b 127.4
    3 0 L . 1 1 U d . 4
    2 5 .H . 8 S I . 8
    1 4 S . b 7 = . 2
    1'1U.H 5 3. a
    1 n .1. . b 3 b . 7
    5 1 1 . R H . 4
    :1. 0 J . n
    n.n .i.d
    CU+- NO + +
    PPM PPM
    252 54
    278 b2
    15? 14b
    103 271
    77 427
    50 535
    75 5S8
    B8 5S3
    74 553
    S8 537
    224 SI
    SS 51S
    74 557
    75 54S
    25 507
    8S 45b
    SO 330
    115 240
    143 14b
    237 81
    3 0 b 54
    COMPOSITE BSHC =
    
    
    
    BSCO+ =
    BSN02+t=
    BSHC + BSN02++=
    FUEL
    FLOW
    Lh/ I!N
    .'ib
    .13
    . PU
    .27
    . 34
    . 40
    .51
    ,54
    . hB
    . ^b
    . 'Tb
    . 47
    . -It
    . 73
    . ^4-
    .52
    . 45
    . 34
    . JH
    . P2
    .'Ib
    WEIGHTED
    BHP
    0.00
    0.00
    .70
    1.38
    2. OS
    2.7?
    3.4S
    4.15
    4.87
    5.b3
    0.00
    b.44
    5.b3
    4 . 7S
    4.04
    3.18
    2.37
    I.b2
    .81
    O.OQ
    0.00
    .04b
    .SSS
    S.llb
    5.1b2
    AIR EX^AUSI
    FLO^ FLO*^'
    L B / ^ I "^ LB/MIN
    7.bO 7. bb
    1 b . 2 8 15.41
    1 b . 4 3 1 b . 1 3
    lh.23 lb.50
    Ib. 52 lh. 8b
    lfa.48 lb.88
    lb.75 17. 2b
    17.00 I 7 . 5 S
    17.45 1«. 13
    17. bH IB. 44
    7.55 7.bl
    2S.bS 2b.b2
    P 3 . H 3 P ^ . b 7
    22. b f) 23.33
    PP.17 22. «1
    2M.H7 21.34
    P , 1 . 4 2 21.37
    L 4 . 5 2 14.41
    2H.5D 20.78
    P U . b 7 2 U . 7 4
    7.b<» 7.KS
    BSHC BSCO+
    G/HP HR G/HP HR
    R H
    R R
    .08 4.20
    .03 1.44
    .04 .71
    .03 ,3b
    .03 .43
    .03 .43
    .03 .3£
    .02 .37
    R R
    .01 .47
    .02 .38
    .01 .42
    .03 .17
    .02 .70
    .02 .S4
    .03 I.fa4
    .Ob 4.25
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .OTJ7
    .OOS
    .013
    .Olb
    .021
    .024
    .030
    .035
    .034
    .043
    . 01)9
    .038
    .035
    .032
    .024
    .1)25
    .021
    .020
    . 0 1. 4
    .nil
    .007
    BSN02++
    G/HP MR
    K
    R
    b.41
    b.17
    b.53
    b.lS
    S.fa2
    4.78
    3. SI
    3.34
    H
    4.08
    4 ,b4
    6.08
    5.44
    5.83
    S.bS
    5.bl
    7.11
    R
    R
    
    
    
    
        CONVERTED TU ^ET BASIS
        COlMVERTEO TO WET BASIS AND CORRECTED  TO  75  GRAINS
        f
    -------
       'CAT obC
    IMTE UK TtST'a-?-?
    SfcHI AL NO. '  1A*H1B
                                                   TEST NO.
    MODE ENGINE Ti.)Wi4UC P. HEW
    SPEED
    
    .1
    d
    3
    *
    s
    b
    7
    H
    S
    1U
    U
    IS
    1^
    lu
    IS
    lh
    1"'
    1H
    H
    2.
    0.
    i).
    cut
    PPM
    333
    3**
    228
    1*2
    115
    b3
    88
    be
    18
    13*
    253
    111
    125
    113
    12V
    128
    1*1
    IbB
    822
    277
    332
    COMPOSITE
    
    
    
    
    
    BSHC +
    •-MP
    0 O.n
    u o.n
    3 lh.3
    5 33.7
    i * i; . B
    8 bS.d
    1 88. b
    * 18.5
    4 US. 3
    2 13H. 7
    it o.n
    h 131. .5
    •1 1 1 't . K
    I 1*1.8
    3 8 J . ti
    i b*. 1
    h >»"•.*
    U 3c? . 1
    .-1 i > . J
    0 0 . 0
    1 1 1 • . ')
    NO + +
    PPM
    3b
    53
    125
    251
    310
    *15
    53*
    581
    501
    520
    71
    *85
    t18
    *81
    *U2
    3*b
    2b7
    200
    13*
    71
    3b
    BSHC s
    BSCO* a
    BSN02++S
    HSN02++S
    FUEL
    f-'LOrt
    LH/-IIN
    .05
    ..!.*
    .80
    .88
    ,.}b
    .*5
    .5*
    . b3
    .?t
    .88
    .05
    . S5
    .78
    .hi
    .1.0
    .50
    . * 3
    . Tb
    . ?q
    . ^i
    ."5
    WEIGHTED
    BHP
    0.00
    0.00
    .72
    1.**
    2.1*
    2.10
    3.b3
    *.33
    5.07
    5.75
    0.00
    5.7*
    5.0*
    *.35
    3,b5
    2.10
    2.17
    l.*5
    .75
    0.00
    0.00
    .110
    1.385
    *.71S
    ».82*
    AIR tXHAUST
    FLO1^ FLOW
    LB/MIN LB/MIN
    ?.*8 7.*?
    15. 1h lb.10
    lb.1 1 Ib. 31
    1 h . 1 .1. i b . 3 1
    lb.2b Ih.b2
    1 b . S 0 J. b . 1 S
    Ib. 71 17.85
    1 7 . ?S 1 7 . 8 8
    18.05 1 H . 7 1
    18.80 11. b8
    b . 1 H b . S 7
    23. 85 2*. 70
    c-a.7d 83 . ^b
    88.87 8a.1b
    81.58 28. 1H
    81.15 8 I . b b
    8 0 . 7 a r- 1 . 1 S
    80.50 ? n . 8 b
    80.55 80. Ht
    80.52 80.73
    b . 1 i h . H H
    BSHC BSCO+
    G/HP HR G/HP HR
    H H
    R R
    .53 5.8*
    .2* 1.87
    .1* 1.03
    .18 -*3
    .U* ,*8
    .03 .30
    .03 .*8
    .0* .53
    R R
    .Ob .55
    .05 .b?
    .Ob .bl
    .Ob .81
    .08 1.10
    .08 1.51
    .18 2.80
    .21 7.10
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .OOb
    .001
    .013
    .017
    .oa a
    .087
    .038
    .037
    .0*1
    .'J**
    * 0 0 7
    ,03b
    .03*
    . 0 3 I
    . 0 8 U
    .0?*
    .081
    .0). H
    .01*
    . 0 1 0
    . un ;
    BSN02-H-
    G/HP HR
    H
    R
    5.*1
    S.b8
    5.7b
    5.50
    *.82
    *.15
    3.53
    3.38
    R
    3.17
    *.*2
    *.H
    5.57
    *.12
    *.13
    5.*8
    7.07
    R
    H
    
    
    
    
    COWVEKTEO TU XfcT BASIS
    CONVEKTEO TO WET BASIS AND CORRECTED TO 75 GRAINS
    WATER HEX Lb. OHf AIM
    

    -------
                                                     TEST NU.3
    ENGINL
    •CAT
    DbC SERIAL NO. ' 1 A481H
    MOPE ENGINE TORUUE
    P 1 1 iv E H
    SPEEQ
    
    i
    ,?
    3
    t
    s
    t.
    ->
    !3
    ')
    ID
    U
    If
    1 1
    It
    IS
    Ib
    1 >
    Irt
    I'l
    2h
    2.1
    MODE
    
    1
    2
    3
    t
    5
    b
    7
    8
    S
    10
    11
    12
    13
    It
    15
    Ib
    1 ?
    18
    IS
    20
    21
    CYCLE
    KPN
    btO
    1400
    1400
    1400
    1400
    ItOO
    14-00
    It 00
    itro
    14-00
    bHO
    1 H 0 0
    isnu
    1SOO
    1 S[MJ
    ISO 0
    1SOU
    1SOO
    ison
    isnu
    htn
    HC
    PPM
    ?b
    bb
    48
    48
    4t
    tt
    tt
    tt
    t2
    to
    80
    22
    20
    18
    18
    20
    2t
    2t
    28
    b2
    108
    LB-FT
    0.0
    0.0
    bt . 8
    15b .0
    18S.1
    253.8
    3ih.q
    381. b
    1 1 L . 2
    tSi.S
    li. U
    378.1
    330. S
    281. S
    23t .b
    187.3
    143. b
    St. 5
    45.5
    0.0
    0.0
    CO +
    PPM
    332
    318
    315
    SI
    7b
    b3
    75
    fa2
    S8
    15S
    253
    b2
    4S
    25
    25
    38
    2fa
    51
    117
    IS?
    27S
    rlHP
    O.fl
    0.0
    17.3
    3J.b
    5 0 . t
    b?.7
    8t.5
    101.7
    117. b
    131.1
    .1.0
    13b.H
    1 1 S . 7
    102.0
    8t . S
    b7.8
    51. S
    3t.3
    l'i . S
    u.n
    1! .0
    N0t +
    PPM
    17
    34
    112
    ass
    42S
    Sbb
    fa05
    588
    5bl
    5b8
    34
    575
    5SO
    583
    SIS
    427
    32fa
    212
    130
    b8
    34
    COMPOSITE BSHC =
    BSCOt =
    BSNOa++=
    BSHC + BSNUa-H-s
    FUb'L
    FLOW
    LB/I-1IN
    .05
    .13
    .20
    .27
    .3b
    . tt
    .52
    .H3
    . Id
    .81
    .us
    .se
    .HI
    .71
    .be
    .52
    . tt
    . 3b
    .2H
    . ?2
    ."5
    WEIGHTED
    BHP
    0.00
    0.00
    ,7b
    1.48
    2.2e
    e.sa
    3.?e
    4.48
    5.17
    5.77
    0.00
    b.oa
    s. a?
    4.4S
    3.73
    e.ss
    e.as
    1.50
    .72
    0.00
    0.00
    .its
    -S53
    5.123
    5. 28S
    AIR EXHAUST
    FLO'4 FLOW
    LB/MIN Ub/MlN
    7.S7 8.02
    It. 03 Ib.lb
    lb.01 lb.?l
    lb.00 lb.27
    It. 03 lb.3S
    lb.23 Ib.b7
    lh.53 17.04
    17.03 17. bb
    17.82 18. 54
    18.30 IS. 11
    7.3d 7.37
    2t.es 25.17
    23.10 2 3. Ml
    22.22 22. S3
    ?i.fa2 ee.at
    21.33 2 1 . 8 b
    21.00 21.44-
    20. b2 PQ.S8
    2 0 . b S 20.^3
    £ 0 . S 3 2 .1 . 1 S
    7.15 7.17
    8SHC BSCOt
    G/HP HR G/HP HR
    R R
    R R
    ,5S 7.78
    .a? i.ib
    .IS .bS
    .14 .41
    .13 .40
    .10 .as
    .OS .tl
    .08 .bl
    R R
    .05 .30
    .05 ,2b
    .05 .15
    .Ob .18
    .OS .33
    .13 .38
    .IS .83
    .47 3. SO
    R R
    R R
    GRAM/BHP HR
    GHAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .007
    .008
    .012
    .01?
    .022
    .027
    .032
    .037
    .041
    .Ott
    .01)7
    .038
    .035
    .032
    . OdS
    .025
    .021
    . 01 >
    . U 1 1
    . 0 .L 1
    . 0 ii 7
    BSNOa+t
    G/HP HR
    R
    R
    4.55
    5.43
    b.02
    b.03
    5.28
    4.41
    3.82
    3.57
    R
    4.57
    5. OS
    5.bb
    5.88
    5.S4
    5.81
    s.ba
    7. ia
    R
    R
    
    
    
    
    +  CONVERTED  TO  WET  BASIS
    ++ CONVERTED  TO  WET  BASIS AND CORRECTED TO 75 GRAINS
       W41ER  PER  LB.  DRY  AIR
    
                            D-IO
    

    -------
    PKi)JECT'll-28b9-01
           'CAT  DbC
    UATE OF TEST'2-i-72
    SERIAL NO.'
    TEST NO.*
    MODE ENGINE
    SPEED
    
    .1
    2
    J
    4
    s
    b
    V
    K
    'i
    11!
    1!
    id
    n
    IV
    Ih
    lh
    1?
    1«
    1«
    21)
    g.i
    ilUUE
    
    1
    2
    3
    *
    5
    b
    7
    8
    1
    10
    11
    12
    13
    It
    15
    Ib
    17
    18
    11
    20
    ei
    CYCLE
    
    
    
    RPM
    b*0
    1*00
    1* OU
    I1- 00
    i*ou
    1*00
    1 * 0 f I
    1*00
    IU'0
    1*00
    b*u
    i s o u
    i 4 n u
    1 H IJ U
    I'lOO
    1^00
    I'lOO
    moo
    i H n u
    1 ^ 0 IJ
    b*U
    HC
    PPM
    12
    faO
    58
    32
    32
    32
    3b
    3*
    3*
    32
    12
    32
    32
    3*
    3b
    38
    38
    3b
    *2
    bO
    9b
    T 0 R CJ U £ P 0 W E H
    LH-KT i>HP
    a. n o.o
    o.o o.n
    bi.3 lb.3
    12d.5 3?.?
    1 8 -J . 8 t 4 . 0
    2*8. b bb.3
    3HM.S H2.h
    3 b '1 . * 4 H . 5
    M-3i:.4- IIS. 3
    tH(l.2 130.7
    D.D C.O
    37H.S 137. t
    33^. b 120.3
    2 8 f! . S 1 0 H . 5
    2 3 H.I 8h.l
    18S.1 b8.*
    1*1.8 51.3
    S*.5 3*. 2
    * "' . 3 1 V . 1
    u . o e . o
    l. i . 0 C.O
    Ct)+ NO + +
    PPM PPM
    30b 35
    252 52
    1 3 J 1*0
    51 2bO
    2b **0
    2b 555
    12 bOb
    25 bOO
    37 573
    bl 557
    1*5 52
    111 Sfat
    112 57S
    112 5*9
    127 *87
    1*0 385
    1*1 31b
    Ib8 175
    lib 103
    277 51
    30fa 52
    COMPOSITE BSHC =
    
    
    
    BSCO+ =
    BSN02++S
    BSHC •(• BSN02 + + =
    FUEL
    FLUW
    LB/HIN
    .1)5
    ..13
    .11
    .37
    .33
    -*2
    .ra
    .hi
    .71
    .82
    .05
    .13
    .H£
    ,'n
    .hO
    .52
    .*3
    .3b
    .28
    .22
    .05
    WEIGHTED
    BHP
    0.00
    0.00
    .72
    1.**
    2.1b
    2.92
    3.b3
    *.33
    5.07
    5.75
    0.00
    b.05
    5.21
    *.bO
    3.79
    3.01
    2.2b
    1.50
    .75
    0.00
    0.00
    .185
    1.082
    S.Obf
    5.2*1
    AIR EXHAUST
    FLOW FLOW
    LH/MIN Lrt/MIN
    8.02 8.07
    15.92 lb.05
    15.93 lb.12
    15.92 lb.11
    15.10 lfa.23
    lb.17 lfa.59
    lfa.*5 Ib.lb
    17.02 17. b3
    17.10 18. bl
    18.82 11. b*
    7 . * b 7 . S 0
    2*. 52 25. *5
    23.20 2*.U2
    22.30 23.01
    21.88 2?.*8
    21. *2 21.9*
    20.18 21. * 1
    20.82 21.18
    20.82 1 1 . HJ
    21.07 21.21
    7.35 7.*0
    BSHC BSCO+
    G/HP HR G/HP HR
    R R
    R R
    .7b 3.39
    .21 .b?
    .1* .23
    .11 .17
    .10 .07
    .08 .12
    .07 .Ib
    .Ob .2*
    R R
    .08 .5*
    .08 .51
    .10 .bS
    .12 .87
    .Ib 1.18
    .21 1.55
    .29 2.7*
    .b8 b.35
    R R
    R R
    GKAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .OOb
    .008
    .012
    .017
    .021
    .02b
    .031
    .03b
    .0*0
    .0**
    . DU7
    .038
    .035
    .032
    .028
    .02*
    . 02)
    .017
    ,UJ>
    . nj o
    .0(17
    BSN02++
    G/HP HR
    R
    R
    5.97
    5.5b
    b.30
    b.Ol
    5.38
    t.b*
    *.oo
    3.b2
    K
    *.S1
    *.99
    5.22
    5.50
    5.33
    5.71
    *.b8
    5.*8
    R
    R
    
    
    
    
        CONVERTED TU WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LB. DRY AIR
    
                             D-l I
    

    -------
    PROJECT1 J.l-28bS-01
    tNUINh 'CAT  UfaC
    DATE OF TEST'2-10-72   IEST
    SERIAL NO.1  1 A1818
    MUUE
    
    
    J.
    2
    t
    'I.
    h
    h
    f
    H
    1
    10
    J. t
    Ir?
    1 *
    la
    IS
    Ih
    IV
    1H
    1^
    20
    2 i.
    MODE
    
    1
    2
    3
    f
    5
    b
    7
    8
    S
    10
    11
    12
    13
    If
    15
    Ih
    17
    18
    IS
    20
    21
    CYCLE
    
    
    
    H N G I N E
    SPEED
    KPM
    BID
    lino
    1*00
    1*00
    1 1 [1 o
    HOO
    nou
    1100
    J 1 0 U
    i^no
    h4-U
    1SOO
    1 H r i u
    1 S 01)
    i s o o
    IS (JO
    1 H U U
    1HOO
    1HOCI
    1HOO
    htU
    HC
    PPM
    72
    fat
    bb
    58
    38
    3b
    3b
    32
    30
    28
    82
    2b
    21
    2b
    3D
    31
    31
    3b
    id
    7b
    114
    TORiglJE POWER
    
    LB-h'T BMP
    d.o a . o
    (1.0 U . 0
    54. 5 15. S
    1 1 ci . n 31.?
    1 7 li . b t V . b
    2 3 H . 1 b 3 . 5
    2SCI. f 71. b
    355. t S^.?
    til..? 1 ] j. . J
    tHH.t 13U. 2
    ii.n o.n
    t2IJ.2 ISr-'.O
    Sb1*.! 131.7
    sih.i 11^ .n
    2bH.b SS.Q
    21H.1 7b.n
    1 5 7 . b 5 V . n
    1 0 J . 3 3 7 . t
    bil . H 18. t
    11 .0 U . f)
    ( i . n ii . 0
    CU+ NO-H-
    PPM PPM
    27S tf
    27S fal
    170 152
    SI 2bfa
    fat 3S7
    b t 570
    75 blO
    88 b!7
    7t S7b
    10S 52t
    225 bl
    110 575
    99 b02
    112 571
    12b 553
    139 t57
    Itl 3tt
    Ib8 25b
    222 Ibl
    330 IQfa
    359 fa 1
    COMPOSITE BSHC =
    
    
    
    BSCO-f =
    B3N02+t=
    bSHC t BSN02++=
    FUEL
    FLOW
    LB/MIN
    .(15
    .12
    .IS
    .2b
    .33
    .^1
    .50
    .67
    .b^
    .R3
    .U5
    i.na
    . 8b
    .7fa
    . bS
    .55
    ."S
    .^b
    .?7
    .21
    .('5
    WEIGHTED
    tiHP
    0. 00
    0.00
    .70
    l.fO
    2. OS
    2.7S
    3.51
    t.17
    t ,8S
    5.73
    0.00
    b.bS
    5.80
    5.02
    t.18
    3.3t
    2.51
    l.bt
    .81
    0.00
    0.00
    .175
    1.225
    5.178
    5.353
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    7.78 7.83
    15. S7 Ib.OS
    15. S8 lb.17
    15. SB lfa.2t
    15. SS lh.28
    lb.25 Ib.bb
    lb.52 17.02
    17.05 17. b2
    17.58 18.27
    18. bO IS.tS
    7.18 7.23
    25.08 ?fa.08
    23. t 7 £t. 33
    22.30 23. Ob
    21.12 22.07
    ? Ci . S 8 21.53
    20.58 21.03
    2 n . 5 n 2 0 . B b
    2 1 1 . t 0 e n . h 7
    2i'i.?n 20. HI
    7.2S 7.30
    BSHC BSCU+
    G/HP HR G/HP HR
    K R
    R R
    .8S t.55
    .3S 1.22
    .17 .58
    .12 .tt
    .10 .12
    .08 -t3
    .07 .32
    .Ob .t3
    R R
    .Ufa .50
    .Ob ,f8
    .07 ,5S
    .OS .77
    .13 l.Ot
    .17 1.3b
    .27 a.fb
    .5S b.57
    K R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GKAM/BHP HR
    FUEL
    AIR
    RATIO
    ,orib
    .008
    .012
    . Olfa
    .051
    .025
    .030
    .033
    .031
    .015
    . i"J 1 1 7
    . u -.- n
    .037
    .031
    .050
    .0?b
    . oes
    .018
    o i ) .1 3
    . IJ 1 n
    . 0 : i 7
    3 s M '_ .; -t- +
    G»^HF hR
    K
    
    b , V _
    s , ,; M
    S , ;., vj
    b . T'
    S.brt
    1 , Sb
    t .01
    3.38
    H
    t., eb
    1 , 80
    4. SH
    5,55
    5 .''.=}
    5 . 'f Q
    fa , i S
    7,8^
    K
    K
    
    
    
    
        COINVEPTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND  CORRECTED  TO  75  GRAINS
        WATER  PER  L6.  DRY  AIR
                             D-IZ
    

    -------
    PROJECT'Il-£8b9-01
    ENiJIiMF. 'CAT ObC
    DATE OF  TEST'£-10-
    
    S F R 1 A L NO.1  1 A t H 1 H
    TFST  NO.b
    MODE
    
    
    l.
    2
    1
    t
    s
    h
    i
    H
    H
    in
    u
    .' e
    I'J
    I1*
    .n
    lh
    1 >
    1H
    1-1
    £n
    2'
    MODE
    
    l
    c
    j,
    t
    5
    b
    7
    8
    4
    10
    1.1
    12
    13
    It
    15
    Ib
    17
    18
    IS
    20
    21
    CYCLE
    
    
    
    F. N G I N
    SPEED
    RPrl
    btO
    1100
    itoo
    1100
    lino
    IIQO
    1 1 0 0
    itoo
    It 00
    HOD
    blO
    1900
    1 H 1 1 1 1
    19QO
    i H n n
    1900
    J 9 0 i.i
    1900
    1HUU
    isno
    bt 0
    HC
    PPM
    81
    70
    3b
    30
    £8
    2b
    £1
    22
    20
    It
    Bt
    £i
    £1
    30
    30
    3b
    31
    3b
    to
    bt
    lOfa
    E TORIjUt PlliiER
    
    Lfl-FT
    1).
    (J.
    bl.
    1E2.
    IBS.
    £1b .
    3 Ob.
    3bS .
    t 3t .
    t 90 .
    (J.
    1 13 .
    Jb7.
    313.
    ?bt .
    £08.
    15 ).
    10S.
    52.
    I.
    n.
    CO*
    PPM
    3bO
    318
    223
    91
    bt
    7b
    75
    b£
    8b
    98
    £79
    111
    111
    75
    113
    lit
    115
    129
    Ib9
    £fat
    319
    COMPOSITE
    
    
    
    
    
    BSHC +
    
    bHP
    0 0.0
    0 d.O
    3 lb.3
    5 32.7
    b 19.5
    1 b5.3
    t 81.7
    1 98.5
    £ 115.7
    £ 130.7
    n u . o
    2 1 1 9 . 5
    b 1 3 3 . n
    t 1 1 H . 1
    1 °5 . b
    3 75.1
    b 57.0
    0 38.0
    5 19.0
    B .fa
    li H . (i
    N0t +
    PPM
    3b
    b£
    115
    290
    t57
    bit
    faSt
    b3t
    591
    bOl
    51
    550
    Sfal
    592
    537
    t53
    370
    229
    125
    99
    tt
    BSHC =
    BSCO+ =
    BSN02++=
    BSN02-H- =
    FUEL
    FLOW
    LB/IUIM
    .Pb
    .12
    . J. S
    .27
    . MS
    . il
    . <-,?
    . hi
    .73
    .8t
    .US
    . HS
    . I-' V
    .7b
    . »>b
    - '-it
    . ub
    . 47
    .SB
    . £1
    .ns
    WEIGHTED
    bHP
    0.00
    0.00
    .72
    l.tt
    2.18
    2.87
    3.59
    f.33
    5.09
    5.75
    0.00
    b.58
    5.85
    t.99
    t.21
    3.32
    2.51
    l.fa?
    . 8t
    .03
    0.00
    .ISt
    1.170
    5.275
    S.t29
    AIf< EXHAOSI
    FLOW FLOW
    LR/MIN L H / M I N
    7.92 7.97
    15.95 lb.07
    15.95 lb.lt
    16.93 lb.£G
    lb.2 - Ib. bO
    ib.53 Ib.St
    Ib.HB 17.50
    17.3? 17. 9b
    IB. 08 IP. HI
    19.08 19.92
    7.35 7.10
    25 . H-2 £b. 11
    £3.90 £ t . ? 7
    £?.78 23.51
    £ i . 7 0 £ 2 . 3 b
    £ J . 1 _J £ 1 . b 7
    2n. H? £1.33
    2H.72 21.09
    £0.73 £ 1 . U 1
    £0.98 2J . 19
    7. 7R 7.83
    BSHl bSCO-t-
    G/HP HR G/HP HR
    R R
    R R
    .1? 5.78
    .20 1.18
    .12 .57
    .09 .52
    .07 .t2
    .05 .30
    .Ot .37
    .03 .38
    R R
    .Ob .51
    .Ob .5t
    .OB .n
    .09 .b9
    .If .8b
    .17 1.13
    .2b 1.88
    .58 t.92
    28. 2b 231.98
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .Odfa
    .OU8
    .012
    .01?
    . 0£2
    .025
    .030
    .037
    .011
    .ott
    . nil?
    .039
    . U 3 V
    . 03'-l
    . U;HU
    .0£b
    .022
    .CUR
    .011
    .niu
    . Uflb
    BSN02++
    G/HP HR
    K
    H
    b.21
    b.2Q
    b.b2
    b.88
    b.Ofa
    5.00
    t . 17
    3. 9fa
    R
    t.20
    t ,5t
    5.31
    5.f3
    5.b2
    5.98
    5.50
    5.99
    It3. 35
    R
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND  CORRECTED  TO  75 GRAINS
        WATER  PER  LB.  DRY  AIR
                             D-13
    

    -------
    PROJECT1  Il-28b1-01
    ENGINE1  UM hV-71N
    DATE OF TEST1  10-21-72  TEST NO.3
    SERIAL NO.1  00000
    MODE
    
    
    i
    2
    3
    1
    5
    b
    7
    8
    1
    10
    11
    12
    13
    11
    15
    Ib
    17
    18
    IS
    20
    81
    Mf.Dt
    
    I
    2
    3
    1
    5
    h
    7
    H
    
    7.0 2.?
    3.5 .3
    CO+ NO+- +
    PPM PPM
    22b 18t
    162 Ibt
    87 32t
    t9 507
    37 73b
    5t 1032
    et 1310
    ta i5t?
    3S1 Ibb2
    21t3 153b
    162 28t
    t5S Ib15
    15 1701
    3b 1571
    t8 1218
    t8 1081
    tl 85t
    fa2 bb2
    7t t53
    11 283
    187 253
    TE BSHC =
    BSCO+ =
    BSN02++=
    BSHC + BSN02++=
    FUEL
    FLOW
    LB/MIN
    .ot
    .20
    .30
    .31
    .t?
    .63
    .73
    .88
    1.03
    1.17
    .01
    i.ts
    1.27
    1.1?
    .88
    .73
    .65
    .53
    .38
    .28
    .05
    WEIGHTED
    bHP
    .03
    .05
    1.01
    1.88
    2.82
    3.8n
    t.7b
    S.bb
    b.51
    7.t2
    .02
    I.Ob
    8.01
    6.81
    5.67
    1.17
    3.31
    2.31
    1.08
    .12
    .02
    .77b
    2.572
    20.135
    21.211
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    1.25 1.21
    36.88 37.08
    3b.88 37.18
    36.88 37.27
    36. 33 36.71
    36.25 36.88
    36.77 37.50
    37. bb 38.51
    3fa.22 37.25
    Sb.aa 37.31
    8.7b 8.80
    17.11 tS.36
    17. 8a 11.01
    lb.12 17.51
    18.11 11.87
    15.77 1b.50
    16.11 1h. 71
    16.75 17.28
    11.03 H.11
    11.08 11. 3b
    1.51 1. bt
    BSHC 6SCO+
    G/HP HR G/HP HR
    2b.?fa 125.11
    11.05 118.31
    2.10 3. hi
    1.15 1.12
    .71 .Sb
    .bO .27
    .53 .22
    .t8 .38
    -t8 2.bl
    .tb i2.51
    t1.3b 128.11
    .tfa 2.10
    -tl .fa?
    .51 .21
    .61 .11
    .75 .58
    .«"» .78
    I.t5 1.16
    3.35 3.S8
    30.72 15.83
    tS.bl 161.65
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .DOS
    .005
    .008
    .011
    .013
    .017
    .050
    .023
    .021
    .032
    .005
    .030
    .027
    .025
    .018
    .016
    .011
    .011
    .008
    .OOb
    .005
    BSN02++
    G/HP HR
    167.16
    216.10
    22.66
    11.15
    18.27
    11.03
    11. bl
    20.01
    17.85
    11.72
    3fa?.53
    17.57
    11.11
    20.18
    21.72
    21.31
    22.12
    25.77
    31.51
    215.50
    351.55
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND CORRECTED TO 75 GRAINS
              PER  LB.  DRY  AIR
                            D-I4-
    

    -------
    PROJECT-  u-28bs-oi
    ENGINE1  GM bV-71N
    DATE OF TEST"  10-21-72   TEST  N0.1
    SERIAL NO.'  00000
    MODE ENGINE TORQUE PO^ER
    SPEED
    
    1
    2
    3
    1
    5
    b
    7
    8
    9
    10
    11
    12
    13
    11
    15
    lb
    1?
    18
    is
    20
    21
    MODE
    
    1
    2
    3
    4
    5
    h
    7
    R
    q
    in
    11
    12
    1?
    1 1
    15
    lb
    17
    18
    IS
    20
    21
    CVCLE
    RPM
    iin
    ibno
    ibnn
    IbOO
    IbQO
    ibuo
    IbOO
    IbOO
    IbOO
    IbOO
    iin
    2100
    210IJ
    2100
    2100
    2100
    2100
    2101)
    2100
    2100
    11 LI
    HC
    PPM
    88
    SI
    81
    81
    88
    SI
    100
    lib
    138
    132
    108
    112
    132
    130
    130
    130
    128
    128
    131
    138
    lib
    LB-FT
    5.
    3.
    71.
    110.
    213.
    281.
    355.
    125.
    191.
    5bO.
    3.
    521.
    15b.
    38b.
    323.
    2b2.
    192.
    127.
    b3.
    7.
    3.
    COt
    PPM
    213
    171
    111
    73
    19
    18
    18
    81
    17^
    21b9
    22b
    b23
    155
    59
    18
    bO
    faO
    b 1
    71
    9S
    187
    COMPOSITE
    
    3
    5
    8
    1
    b
    S
    1
    1
    q
    2
    5
    7
    q
    S
    q
    b
    b
    8
    n
    0
    5
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    HHP
    .1
    1.1
    21. q
    12.7
    bS.l
    as. q
    108.3
    129. fa
    119. S
    170.7
    .3
    208. b
    182.7
    151.7
    12S.5
    105.0
    77.0
    51.1
    25.2
    2.8
    .3
    NO-t-t
    PPM
    252
    203
    3b1
    551
    711
    S81
    1221
    11b5
    Iblb
    11S1
    2b2
    lb2S
    IblO
    llbb
    1270
    1055
    822
    b35
    1fa2
    2qi
    252
    FUEL
    FLOW
    LB/MIN
    
    
    
    
    
    
    
    
    1
    1
    
    1
    1
    1
    
    
    
    
    
    
    
    WEI
    .01
    .17
    .27
    .38
    .50
    .b2
    .73
    .87
    .02
    .20
    .01
    .lb
    .30
    .10
    .S3
    . 8S
    .bb
    .52
    .13
    .32
    .05
    GHTED
    BHP
    
    
    
    1
    2
    3
    1
    5
    b
    7
    
    q
    8
    b
    5
    1
    3
    2
    1
    
    
    BSHC =
    BSCO+ =
    
    
    
    
    
    BSHC +
    BS
    B!
    iN02++=
    5N02 •*••*• =
    3.
    iq.
    20.
    .03
    .05
    .9b
    .88
    .8b
    .78
    . 7b
    .70
    .59
    .51
    .02
    .18
    .01
    .81
    .70
    .b2
    .31
    .25
    .11
    .12
    .02
    715
    087
    b15
    38S
    AIR
    FLOW
    LB/MIN
    S.31
    3fa.23
    3b.57
    3b.20
    3 b . 3 0
    35.89
    35. Sb
    35. Sb
    35.83
    3b.27
    9.22
    17.81
    17.75
    1b.2b
    1b.2b
    19.05
    lb.50
    17.89
    19.01
    18. Sb
    S.bO
    BSHC
    G/HP HR
    21.77
    12.35
    1.87
    .15
    .bb
    .53
    .*s
    .tl
    ."*5
    .38
    15.01
    .11
    .*7
    .53
    .b3
    .82
    1.03
    1 . bn
    3.*7
    32. Ob
    50.37
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    
    LB/MIN
    9.38
    3b.10
    3b.81
    3b.S8
    3b.80
    Sfa.51
    3b.faq
    3b.83
    3b.85
    37.17
    q . 2b
    19.30
    19.05
    17. =lb
    17. iq
    19.91
    17. lb
    18.11
    19.11
    IS. 28
    S.bS
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSCO +
    G/HP
    119.
    I5b.
    1.
    1.
    •
    •
    „
    •
    3.
    11.
    187.
    3.
    1.
    .
    •
    •
    •
    1.
    3.
    t5.
    Ibl,,
    HR
    HR
    HR
    HR
    HR
    IS
    15
    S3
    bb
    72
    51
    13
    b3
    Ob
    2b
    b2
    87
    OS
    18
    lb
    75
    q?
    51
    80
    faq
    82
    
    
    
    
    FUEL
    AIR
    RATIO
    .001
    .005
    .007
    .011
    .011
    .017
    .020
    .021
    .O2q
    .033
    .005
    .030
    .027
    .021
    .020
    .018
    .011
    .011
    .ooq
    .OOb
    .nus
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSN02+t
    G/HP
    232.
    2qs.
    2b.
    20.
    18.
    18.
    17.
    1?.
    17.
    It.
    357.
    lb.
    19.
    19.
    20.
    21.
    21.
    25.
    39.
    221.
    358.
    
    
    
    
    HR
    53
    92
    52
    12
    18
    07
    87
    qs
    17
    11
    01
    b3
    03
    39
    00
    bS
    7b
    98
    12
    59
    23
    
    
    
    
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED  TO  75  GRAINS
        WATER PER LB. DRY AIR
    
                             D-15
    

    -------
    PROJECT1  ll-28b9-Ul
    ENGINE'  b M  b V - 7 1 N
    DATE OF TEST1  10-25-72   TEST  NO.5
    SERIAL NO.'  nonon
    Mflpt
    
    
    1
    2
    3
    4
    5
    b
    7
    8
    9
    10
    11
    12
    13
    14
    15
    Ib
    17
    18
    19
    20
    21
    Mr,Mt
    
    1
    i?
    3
    4
    5
    b
    7
    ^
    q
    in
    11
    .1?
    1.3
    14
    IS
    Ib
    1 7
    1 H
    1 9
    20
    21
    CYCLE
    EN.= IM
    SPEED
    RPM
    440
    ibnn
    IbOU
    IbOU
    IbOO
    ibon
    1 b lj 1.1
    l K 1 1 n
    Ibnrj
    IbOO
    44IJ
    2100
    2 L n u
    2100
    21fJli
    210H
    2 inn
    2 1 U 0
    2 mo
    2100
    44[J
    HC
    PPM
    7b
    80
    72
    74
    74
    78
    82
    92
    108
    104
    80
    108
    98
    98
    10U
    100
    102
    1112
    104
    110
    94
    •_ TDkiJL
    >E
    P 0 if E K FUEL
    FLOW
    LB-FT
    3.
    3.
    73.
    141.
    211).
    283.
    355.
    421.
    495.
    558.
    3.
    521.
    45b.
    388.
    327.
    259.
    192.
    127.
    b3.
    7.
    3.
    CO +
    PPM
    213
    149
    98
    t-2
    49
    48
    48
    84
    498
    2531
    238
    b?3
    155
    84
    72
    72
    73
    73
    87
    112
    225
    COMPOSITE
    
    5
    5
    5
    8
    1
    b
    4
    9
    4
    5
    5
    7
    9
    b
    4
    1
    b
    8
    0
    0
    5
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BHP
    .3
    1.1
    22.4
    43.2
    b4.0
    8b. 4
    108.3
    128.5
    150.9
    170.1
    .3
    208. b
    J82.7
    155.4
    130.9
    103. b
    77.0
    51.1
    25.2
    2.8
    .3
    NO+- +
    PPM
    237
    207
    394
    587
    800
    1049
    129b
    1535
    1708
    1577
    247
    1701
    1713
    1595
    13b4
    1080
    840
    b48
    449
    287
    247
    LB/MIN
    
    
    
    
    
    
    
    
    i
    i
    
    i
    i
    i
    
    
    
    
    
    
    
    WEI
    .04
    . lq
    .30
    .40
    .52
    ,b4
    .75
    .8b
    .05
    .21
    .05
    .47
    .31
    .11
    .95
    .79
    .b5
    .54
    .40
    .31
    .Ob
    GHTCn
    BHP
    
    
    
    1
    2
    3
    4
    5
    b
    7
    
    q
    8
    b
    5
    4
    3
    2
    1
    
    
    BSHC =
    BSCO + =
    BSN02-H- =
    
    
    BSHC t
    BS
    JNQP + .).-
    3.
    20.
    2L.
    .02
    .05
    .99
    .90
    .82
    .80
    .7b
    .bb
    .b4
    .49
    .02
    .18
    .ot
    .84
    .7b
    ,5b
    .39
    .25
    . 11
    .12
    .02
    58b
    223
    539
    12b
    AIR
    FLOW
    LB/MIN
    9.12
    3b.88
    37.14
    3b.S8
    37.51
    3b.29
    35.79
    35.89
    35.94
    3fa.0b
    9.01
    47.24
    47.18
    48.99
    45.73
    45.57
    4b.5fl
    4b.28
    48.00
    48.73
    9.47
    BSHC
    G/HP H R
    31.33
    3b.7Q
    1.59
    .B4
    .58
    .44
    .37
    .35
    .35
    .30
    32_b3
    .33
    .34
    . t2
    . t 7
    .59
    .83
    1.23
    2 . b4
    25.43
    40.30
    GKAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/bHP
    EXHAUST
    FLOW
    LB/MIN
    9.1b
    37.07
    37.44
    3b.9R
    38.03
    3b.93
    3b.54
    3b.75
    3b . 99
    37.27
    9. Ob
    f P. 71
    48.49
    50.10
    4b. b8
    4b. 3b
    47.23
    4b . 8?
    48.40
    49.04
    9.53
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSCO-t-
    G/HP
    175.
    13fa.
    4.
    1.
    a
    a
    „
    «
    3.
    14.
    193.
    t .
    1.
    •
    a
    a
    1.
    1.
    4.
    51.
    192.
    HR
    HR
    HR
    HK
    HR
    03
    bl
    32
    39
    7b
    54
    43
    b3
    21
    58
    52
    .13
    08
    71
    b7
    85
    18
    77
    37
    38
    38
    
    
    
    
    FUEL
    AIR
    
    
    RATIO
    .004
    .005
    .008
    .011
    .014
    .018
    .021
    .024
    .029
    .034
    .OOb
    .031
    .028
    .023
    .021
    .017
    .014
    .012
    .on 8
    .onb
    .nob
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSN02++
    G/HP
    319.
    310.
    28.
    21.
    20.
    19.
    18.
    18.
    18.
    14.
    329.
    17.
    19.
    22.
    21.
    20.
    22.
    25.
    37.
    217.
    345.
    
    
    
    
    HR
    b4
    81
    41
    72
    54
    37
    89
    95
    08
    92
    27
    Ib
    b4
    21
    02
    88
    27
    b3
    27
    41
    99
    
    
    
    
        CONVERTED  TO WET BASIS
        CONVERTED  TO WET BASIS AND CORRECTED TO 75 GRAINS
        *MER  PER  LB. DRY AIR
    
                            D-IG
    

    -------
    PROJECT1  Il-28b9-01         DATE  OF  TEST1  5-09-78
    ENGINE'  INTERNATIONAL D*O?  SERIAL  NO.'  5*725
                                               TEST NO.*
    MODE
    1
    2
    3
    *
    5
    b
    7
    8
    9
    10
    11
    12
    13
    1*
    15
    Ib
    17
    Ifl
    IS
    20
    21
    ENGINE
    SPEED
    RPM
    700
    1800
    ItfOO
    IB 01)
    1800
    1800
    1ROO
    1800
    1800
    1800
    700
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    700
    TORQUE
    LB-FT
    0
    0
    35
    70
    105
    1*0
    175
    210
    2*5
    280
    0
    238
    210
    180
    150
    1J S
    8S
    bl
    2H
    0
    0
    .0
    .0
    .0
    .0
    .0
    .1
    .1
    .1
    .1
    .1
    . 0
    .1
    .1
    .3
    .b
    .0
    . 3
    .3
    .8
    .0
    .0
    POWER
    BHP
    0
    0
    12
    2*
    3b
    *8
    bO
    72
    fl*
    Sb
    0
    113
    100
    85
    71
    Sb
    *2
    2S
    1*
    0
    0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .0
    .3
    .0
    .a
    .7
    .7
    .5
    .2
    . ?
    .0
    .n
    FUEL
    FLOW
    LB/MIN
    .03
    .OS
    .15
    .20
    .25
    .32
    .38
    .*b
    .5b
    .b*
    .02
    .78
    .b8
    .57
    .51
    . *2
    .35
    .28
    . ?2
    .1?
    .03
    AIR
    FLOW
    LB/MIN
    *.
    12.
    12.
    12.
    11.
    U.
    11.
    11.
    11.
    11.
    *.
    15.
    15.
    15.
    15.
    15.
    15.
    Ib.
    Ib.
    Ifa.
    *.
    S7
    02
    13
    10
    8*
    92
    73
    8*
    80
    55
    89
    7*
    73
    82
    S3
    9*
    97
    02
    Oh
    08
    b9
    EXHAUST
    FLOW
    LB/MIN
    5
    12
    12
    12
    1?
    12
    1?
    12
    12
    12
    *
    Ib
    Ib
    Ib
    Ib
    Ib
    Ib
    Ib
    Ib
    Ib
    *
    .00
    .11
    .28
    .31
    .09
    .2*
    . J 1
    .30
    .3b
    .19
    .91
    .52
    .*!
    .39
    .**
    ,3b
    .32
    .30
    . ?8
    .25
    .72
    FUEL
    AIR
    RATIO
    .OOb
    .008
    .013
    .017
    .022
    .027
    .032
    .039
    .0*7
    .055
    .00*
    .0*9
    .0*3
    .03fa
    .032
    .02b
    .022
    .018
    .01*
    .010
    .OOb
    M 0 0 E
    HC
           PPM
    COt
            PPM
    NO++  WEIGHTED   BSHC
              BSCO +
           PPM
            BHP
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED  TO  75  GRAINS
        WATER PER LB.  DRY AIR
    
                             D-17
    BSN02++
    G/HP HR  G/HP  HR   G/HP  HR
    1
    2
    3
    *
    5
    b
    7
    8
    S
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    19
    20
    21
    CYCLE
    
    
    *b5
    b05
    555
    520
    510
    5*5
    580
    710
    915
    870
    5*5
    10*0
    8faO
    700
    705
    730
    700
    700
    730
    780
    575
    COMPOSI
    
    
    289
    382
    378
    328
    325
    37H
    4-90
    102*
    2b79
    7253
    2bb
    220*
    11*2
    b73
    51*
    *25
    **2
    *57
    *85
    *89
    32*
    TE
    
    
    BSHC +
    Ib5
    90
    183
    29*
    397
    5b5
    730
    933
    1123
    1239
    171
    1*71
    1319
    1091
    8b3
    b2*
    *3b
    313
    212
    119
    180
    BSHC =
    BSCO+ =
    BSN02++=
    BSN02++=
    0
    0
    
    1
    1
    2
    2
    3
    3
    *
    0
    *
    *
    3
    3
    2
    1
    1
    
    0
    0
    2.
    7.
    8.
    10.
    .00
    .00
    .53
    .Ob
    .58
    .11
    .b*
    .17
    .70
    .22
    .00
    .99
    .*0
    .78
    .15
    .*9
    .87
    .28
    .b2
    .00
    .00
    7**
    80*
    115
    859
    
    
    7.
    3.
    2.
    1.
    1.
    1.
    1.
    1.
    
    2.
    1.
    1.
    2.
    2.
    3.
    5.
    11.
    
    
    R
    R
    50
    52
    2b
    83
    5*
    bO
    78
    *b
    R
    00
    8b
    7b
    13
    78
    55
    Ib
    Q8
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    
    
    10.
    *.
    2.
    2.
    2.
    *.
    10.
    2*.
    
    8.
    *.
    3.
    3.
    3.
    *.
    b.
    1*.
    
    
    HR
    HR
    HR
    HR
    R
    R
    18
    *3
    87
    5*
    bO
    bO
    3b
    22
    R
    *S
    S3
    38
    10
    23
    *b
    72
    bb
    R
    R
    
    
    
    
    
    
    8.
    b.
    5.
    b.
    b.
    b.
    7.
    b.
    
    9.
    S.
    9.
    8.
    7.
    7.
    7.
    10.
    
    
    
    
    
    
    R
    R
    08
    50
    77
    23
    3fa
    8S
    1*
    79
    R
    2b
    35
    00
    55
    78
    23
    55
    51
    R
    R
    
    
    
    
    

    -------
    PROJECT1  Il-28b1-01         DATE OF TEST'  5-9-72   TEST NO.5
    ENGINE'  INTERNATIONAL DID?  SERIAL NO.'  54725
    MODE ENGINE TORQUE
    SPEED
    
    1
    2
    3
    4
    5
    b
    7
    8
    S
    10
    11
    12
    13
    It
    Ib
    Ib
    17
    18
    11
    20
    21
    MODE
    
    1
    2
    3
    4
    5
    b
    7
    8
    q
    10
    1 1
    12
    13
    It
    15
    Ib
    17
    18
    IS
    20
    21
    CYCLE
    RPM
    700
    1800
    1800
    1800
    1800
    1800
    1800
    1800
    1800
    1800
    700
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    25UO
    700
    HC
    PPM
    415
    575
    545
    570
    550
    5bO
    blO
    7bO
    180
    800
    540
    1050
    830
    720
    7bO
    7b5
    750
    725
    740
    785
    bOO
    LB-FT
    0.0
    0.0
    33.3
    70.0
    105.0
    140.1
    175.1
    210.1
    245.1
    280.1
    0.0
    225.8
    117.8
    lhl.8
    140.1
    112.0
    84.0
    5b.O
    28.0
    0.0
    0.0
    CO +
    PPM
    254
    335
    320
    214
    302
    333
    443
    18b
    28b1
    7232
    2bb
    18bt
    110
    557
    434
    312
    383
    318
    413
    41b
    281
    POWER
    BHP
    o.n
    0.0
    11.4
    24.0
    3b.O
    48.0
    bo.n
    72.0
    84.0
    Ifa.O
    0.0
    107.5
    14.2
    80.8
    bb.7
    53.3
    40.0
    2b.7
    13.3
    o.n
    0. 0
    NO-H-
    PPM
    Ibb
    15
    Ib3
    281
    407
    53b
    7h7
    110
    1123
    1157
    lib
    1448
    1281
    1047
    801
    fa!5
    437
    312
    217
    151
    17b
    COMPOSITE BSHC =
    BSCO+ =
    BSN02-H-S
    
    
    BSHC + B
    SN02 + -t- =
    FUEL
    FLOW
    LB/MIN
    .02
    .01
    .14
    .20
    .2b
    .33
    .31
    .4b
    .5b
    .b4
    .02
    .73
    .bt
    .55
    .48
    .41
    .3H
    .21
    .22
    .Ib
    .02
    WEIGHTED
    BHP
    0.00
    0.00
    .50
    I.Ob
    1.58
    2.11
    2.b4
    3.1?
    3.70
    4.22
    0.00
    4.73
    4.14
    3.5b
    2.13
    2.35
    1.7b
    1.1?
    .51
    0.00
    0.00
    2.127
    7.520
    8.215
    11.222
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.13 5.15
    12. Ib 12.25
    12. Ob 12.20
    12.01 12.21
    12.04 12.30
    11.11 12.32
    12. Ob 12.45
    11.71 12.25
    11.88 12.44
    11.40 12.04
    4.81 4. SI
    15.81 Ib.St
    15.18 Ib.b2
    15. 7b lb.31
    Ib. 12 Ib.bO
    lb.10 lb.51
    Ib.lb lb.50
    ib.ia ih.47
    lb.2b lb.48
    Ib.lb Ib. 32
    5.25 5.27
    BSHC BSCOt
    G/HP HR G/HP HH
    R R
    R R
    7.70 1.01
    3.B3 3.13
    2.48 2.72
    1.10 2.25
    l.b? 2.42
    1.71 4.41
    1.12 11.18
    1.32 23.8fa
    R R
    2.13 7.54
    1.13 4.22
    1.12 2.Sb
    2.50 2.84
    3.13 3.11
    4.08 4.1fa
    5.11 fa. 47
    12.07 13.44
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .005
    .008
    .012
    .Olb
    .022
    .02?
    .033
    .031
    .04?
    .05b
    .004
    .04b
    .040
    .035
    .030
    . 02b
    .021
    .018
    .014
    .oin
    .004
    BSN02-H-
    G/HP HR
    R
    R
    7.54
    fa. 35
    b.OO
    b.14
    b.87
    b.bl
    7.18
    fa. 27
    R
    l.faS
    1.7?
    1.13
    8.70
    8.22
    7.78
    8.34
    11.57
    R
    R
    
    
    
    
     t  CONVERTED TO WET BASIS
    
     t+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LH. DRY AIR
    

    -------
    PROJECT1  ll-28bS-01         DATE OF  TEST1  S~10»?2   TEST  NO.fa
    ENGINE1  INTERNATIONAL D107  SERIAL NO.1  51725
    MODE
    
    
    1
    2
    3
    1
    5
    b
    7
    8
    S
    10
    11
    ie
    13
    11
    15
    Ib
    17
    18
    IS
    20
    21
    MODE
    
    1
    2
    1
    1
    5
    b
    7
    8
    S
    10
    11
    12
    13
    11
    15
    Ib
    17
    18
    IS
    20
    21
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    1800
    1800
    1800
    1BOO
    1800
    1800
    1800
    1800
    1800
    700
    2500
    2500
    2500
    2500
    2500
    250H
    2500
    2500
    2500
    700
    HC
    PPM
    Ibl
    bSl
    513
    5S2
    553
    b!2
    533
    b71
    82S
    730
    5S2
    888
    711
    701
    bSl
    701
    big
    711
    bbl
    553
    3H5
    TORQUE
    
    LB-FT
    0.0
    0.0
    35.0
    70.0
    105.0
    110.1
    175.1
    210.1
    215.1
    ?80.1
    0.0
    22S.3
    2 U 3 . 1
    173.3
    1 1 3 . b
    115.5
    87.5
    57.8
    28.0
    0.0
    0.0
    COt
    PPM
    a??
    317
    311
    317
    311
    311
    13?
    8ba
    213b
    b7?l
    2b5
    i?sa
    sne
    511
    iei
    3Sb
    3bO
    38b
    38S
    3bB
    esi
    POWER
    
    BHP
    0.0
    0.0
    12.11
    ai.o
    3b.O
    18.0
    bO.O
    ?a.o
    81.0
    Sb.n
    0.0
    los.a
    9b.7
    82.5
    b8.3
    55.0
    11.7
    a?. 5
    13.3
    0.0
    0.0
    NOtt
    PPM
    188
    SI
    151
    2b8
    3bl
    sao
    ?ia
    8SS
    1058
    118b
    Ib3
    1181
    1331
    1071
    831
    bll
    113
    32?
    aio
    ibi
    153
    COMPOSITE BSHC =
    BSCO+ =
    
    
    
    
    BJ
    BSHC + B£
    5N02 •*••»• =
    5N02++=
    FUEL
    FLOW
    LB/MIN
    .03
    .OS
    .15
    .21
    . ?b
    .32
    .38
    .18
    .58
    . bb
    .03
    .73
    .b5
    .57
    .IS
    .12
    .35
    .28
    .23
    .17
    .02
    WEIGHTED
    BHP
    0.00
    0.00
    .53
    I.Ob
    l.Sfl
    2.11
    a.bi
    3.17
    3.70
    1.22
    0.00
    1.80
    1.25
    3.b3
    3.01
    a. 12
    1.83
    1.21
    .59
    0.00
    0.00
    2.b32
    b.S22
    8.18b
    10.818
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    I.Sb 1.SS
    12.17 12. 2b
    12.33 12.18
    12. Ib ia.37
    12.1? 12. bS
    11.87 12. IS
    11.79 12.17
    12.07 12.55
    12.0? 12. bO
    11. bb 12.32
    5.05 5.08
    15.82 lb.55
    15. Rb lb.51
    15.93 lb.50
    lh.02 lb.51
    lb.18 Ib.bO
    lfa.2b Ih.bl
    lb.?b lb.51
    lb.08 Ib . 31
    lb.32 Ib.lS
    1 . 8b 1.88
    BSHl BSCOt
    G/HP HR G/HP HR
    R R
    R R
    7.01 9.39
    1.03 1.29
    2.57 2.91
    2. US 2.30
    1.13 2.31
    1.51 3.95
    l.bl 8.13
    1.21 aa.bs
    R R
    1.78 7.15
    l.bO 1.08
    1.85 8.8b
    a. oe a.be
    2.7S 2.83
    3.38 3.77
    5. faS b.ll
    10. b? 12.50
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .005
    .007
    .012
    .017
    .021
    .027
    .03?
    .010
    .018
    .OSb
    .005
    ,01b
    .011
    .03b
    .031
    . 02b
    .022
    .018
    .011
    . oin
    . nni
    BSN02+t
    G/HP HR
    R
    R
    b.7b
    5.97
    5.51
    5.71
    fa.ei
    b.77
    b.85
    b.57
    R
    9.70
    S.81
    s.as
    8.71
    8.01
    7.12
    8.38
    11. OS
    R
    R
    
    
    
    
     +  CONVERTED TO WET BASIS
     •(•+ CONVERTED TO WET BASIS AND CORRECTED  TO  75  GRAINS
        WATER PER LB. DRY AIR
    
                             D-19
    

    -------
    PROJECT1  Il-28b9-01          DATE OF TEST1 5-11-72  TEST NO.?
    ENGINE1  INTERNATIONAL  D107   SERIAL NO.1 51725
    MODE
    
    
    1
    2
    3
    1
    5
    b
    7
    H
    9
    10
    11
    12
    13
    11
    15
    lb
    17
    IB
    19
    ?n
    21
    MUDF
    
    1
    a
    B
    i
    5
    b
    ?
    R
    S
    in
    1 1
    12
    13
    11
    15
    lb
    17
    IS
    IS
    20
    21
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    1800
    1800
    1800
    1800
    180U
    1800
    18DO
    1800
    1800
    700
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    2500
    700
    HC
    PPM
    553
    829
    bSl
    750
    b32
    750
    hSl
    819
    8bH
    59?
    131
    730
    588
    533
    513
    553
    171
    513
    151
    572
    131
    TORQUE
    POWER
    FUEL
    FLOW
    LB-FT
    0.
    0.
    35.
    70.
    105.
    110.
    175.
    210.
    215.
    281.
    0.
    22?.
    201.
    1?3.
    111.
    113.
    81.
    57.
    2b.
    0.
    0.
    CO +
    PPM
    277
    358
    3b?
    317
    130
    315
    178
    938
    2181
    710b
    251
    1739
    858
    531
    111
    357
    3bO
    3b?
    39n
    3S1
    288
    COMPOSITE
    
    0
    0
    0
    0
    0
    1
    1
    1
    1
    9
    D
    b
    3
    3
    8
    8
    0
    8
    3
    0
    0
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BHP
    0.0
    0.0
    12.0
    21.0
    3b.O
    18.0
    bO.n
    72.0
    81.0
    9b.b
    0.0
    108.3
    S5.8
    82. S
    b7.5
    51.2
    10.0
    27.5
    12.5
    0.0
    0.0
    NO + +
    PPM
    Ibl
    SO
    179
    275
    395
    515
    781
    939
    1158
    12b8
    Ib2
    1122
    1259
    1017
    7b5
    570
    109
    281
    159
    129
    151
    BSHC =
    BSCO + =
    BSN02+t=
    
    
    BSHC +
    8SN02++=
    LB/MIN
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    .03
    .09
    .11
    .20
    ,2b
    .32
    .39
    .lb
    .51
    .b5
    .02
    .72
    .b?
    .5b
    .19
    .11
    ."SI
    .30
    .20
    .18
    .09
    WEIGHTED
    BHP
    0
    0
    
    1
    1
    2
    2
    3
    3
    1
    0
    1
    1
    3
    2
    2
    1
    1
    
    0
    0
    2.
    7.
    8.
    10.
    .00
    .00
    .53
    .Ob
    .58
    .11
    .bl
    .17
    .70
    .25
    .00
    .77
    .22
    ,b3
    .S7
    .38
    .7b
    .21
    .55
    .00
    .00
    509
    195
    133
    hll
    AIR
    FLOW
    LB/MIN
    5.07
    12.33
    11. 8b
    12.18
    12.2?
    12.10
    12.15
    11.88
    12.10
    11.87
    I.Bb
    15.81
    15.98
    15.93
    lb.09
    lb.09
    lb.28
    lb.10
    lb.0?
    lfa.19
    l.b?
    BSHC
    G/HP HR
    R
    R
    9.13
    5.11
    2.90
    2.5b
    1.91
    1.12
    1.73
    1.01
    R
    1.*?
    1.33
    i.n
    l.bb
    2.22
    2. bO
    1.27
    7.80
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    
    LB/MIN
    5.10
    12.12
    12.00
    12.38
    1P.53
    12.12
    1P.51
    12.31
    12. bl
    12.52
    *.88
    lb.5b
    Ib.bS
    lb.19
    lb.58
    lb.50
    Ib.b2
    lb.10
    lh.27
    lb.37
    1. 70
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSCO +
    G/HP
    
    
    9.
    1.
    3.
    2.
    2.
    1.
    8.
    21.
    
    b.
    3.
    2.
    2.
    2.
    3.
    5.
    13.
    
    
    HR
    HR
    HR
    HR
    HR
    R
    R
    b5
    30
    93
    35
    b3
    23
    b3
    23
    R
    99
    92
    80
    b5
    8b
    91
    b8
    35
    R
    R
    
    
    
    
    FUEL
    AIR
    RATIO
    .005
    .008
    .01?
    .017
    .021
    .02b
    .032
    .039
    .015
    .055
    .001
    .Olfa
    .012
    .035
    .H30
    .02b
    .021
    .019
    .013
    .Oil
    .onb
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BSN02++
    G/HP
    
    
    7.
    b.
    5.
    b.
    7.
    b.
    7.
    7.
    
    9.
    9.
    8.
    8.
    7.
    7.
    7.
    8.
    
    
    
    
    
    
    HR
    H
    R
    72
    11
    93
    09
    05
    95
    53
    10
    R
    10
    15
    78
    12
    50
    35
    32
    93
    R
    R
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TU  wET  BASIS AND CORRECTED TO 75 GRAINS
        WATER  PER  Lb.  DRY  AIR
                            D-ZO
    

    -------
    PROJECT'u-28bs-cii
    ENGINE 'JOHN DEERE bllll
    DATE OF TEST'3-3-72    TEST NO.l
    SERIAL NO. ' TR03-311102
    MODE ENGINE TUKQUE
    PUWEH
    SPEF.O
    
    1
    2
    3
    1
    5
    b
    7
    B
    q
    10
    11
    Id
    13
    It
    Ib
    Ib
    IV
    1H
    14
    2:)
    21
    MUDK
    
    1
    2
    3
    1
    "5
    b
    7
    8
    q
    10
    11
    ie
    13
    It
    15
    Ib
    1?
    18
    .1 S
    20
    21
    CYCLE
    RPM
    you
    1500
    1500
    1500
    1 S l) 0
    IS 00
    1500
    IbOO
    IbllU
    1 5 0 Ll
    800
    2?on
    S S 0 0
    2200
    £200
    2200
    2200
    2200
    2 2 U 0
    2 200
    SflU
    MC
    PPM
    125b
    3200
    2100
    14-88
    1312
    12Sb
    1280
    1072
    ?3b
    592
    528
    b5b
    falO
    b5b
    faB8
    blO
    5q2
    701
    Vb8
    qq2
    1008
    Lb-f- T
    0 . 0
    0 . 0
    15.5
    S2.8
    1 3b.b
    183.8
    22V. b
    271 .9
    320. 1
    357.1
    0.0
    323. q
    287.1
    2lb. B
    20b. b
    Ib2.8
    121 .3
    80. b
    12.0
    n.o
    0.0
    Cut
    PPM
    bSS
    1320
    1072
    blO
    t51
    t5q
    tst
    b?3
    13f 8
    2215
    5SO
    188
    111
    239
    138
    152
    Ibb
    258
    351
    513
    153
    BMP
    0.0
    0.0
    13.0
    2b.5
    sq.o
    52.5
    b5.0
    7H.5
    SI. 5
    102.0
    0.0
    135.7
    120.3
    103.1
    8b.5
    b8.2
    52.1
    33.7
    17.b
    0.0
    n.o
    N0t +
    PPM
    12
    8
    11
    ifaa
    253
    317
    115
    550
    b51
    b71
    H2
    lObl
    79b
    SS7
    ISO
    337
    271
    1S8
    115
    SS
    51
    COMPOSITE BSHC =
    BSCOt =
    BSN02+t=
    BSHC + BSN02++=
    FUEL
    FLOW
    LB/MIN
    .05
    .13
    .18
    .25
    .31
    .38
    .11
    -IS
    .bl
    .bb
    .05
    -S3
    ,8b
    .71
    .bb
    .55
    .Ib
    .38
    .30
    .20
    .01
    WEIGHTED
    BMP
    0.00
    U.OO
    .57
    1.17
    1.72
    2.31
    2.8b
    3.15
    1.03
    1.1S
    0.00
    S.S7
    5.2S
    1.55
    3.81
    3.00
    2.2S
    1.18
    .77
    0.00
    0.00
    3.S3S
    l.bSb
    5. IIS
    S.387
    AIR tXriAUSr
    FLOW FLOW
    LB/MIN LB/MIN
    b.30 b.35
    10.71 10.87
    11. IS 11.37
    11. Sb 12.21
    12.15 12. 7b
    13.07 13.15
    13.22 13. bb
    ll'.03 11.52
    11. b5 IS.Sb
    11.15 15.11
    b.30 b.35
    21.21 25.11
    23. SS 21.15
    22.51 23.25
    21.81 22.50
    1S.7S 20.31
    IS. 02 IS. 18
    18.00 18.38
    17.21 17.51
    is. as ib.os
    5.S8 b.02
    BSHC B3CU+
    G/HP HR G/HP HR
    K K
    R R
    27.70 21. b5
    S.OS 7.7b
    5 . b b 3.88
    1.38 3.10
    3.55 2.73
    2.b2 3.2B
    i.faa 5. si
    l.lb 8.75
    R R
    l.bO 2.38
    1.72 2.22
    1.S5 1.11
    2.3b -SI
    S.52 1.1S
    2.S2 I.b3
    5. Ob 3.bS
    10.08 S.1S
    R R
    R R
    GKAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .008
    .012
    .Olb
    .021
    .025
    .02S
    .033
    .035
    .012
    .Olfa
    .007
    .D3S
    ,03b
    .033
    .030
    .028
    .021
    .021
    .017
    .013
    .007
    BSNlia-H-
    G/HP HR
    R
    R
    1.57
    3.23
    3.5?
    3.81
    1.01
    1.10
    1.71
    'KSO
    R
    8.50
    b.SS
    5.80
    5.50
    «*.35
    1.3S
    l.bb
    b.21
    R
    R
    
    
    
    
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER L8. DRY AIR
    
                             D-21
    

    -------
    PROJECT ' Il-28b9-01
    ENGINE 'JOHN DEERE  b404
    OATE OF TEST'3-b-72    TEST NO.8
    SERIAL NO.'TR03-311102
    MODE
    
    
    1
    a
    3
    4
    b
    b
    7
    8
    q
    11J
    11
    12
    13
    I*
    15
    Ib
    IV
    19
    IS
    20
    21
    NUDE
    
    1
    a
    3
    4
    5
    b
    7
    8
    q
    10
    1 1
    18
    i •)
    It
    IB
    Ib
    17
    ia
    is
    20
    21
    CYCLE
    
    
    ENGINE
    SPEED
    KP'1
    800
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    1500
    800
    edOO
    22no
    8500
    a a no
    2200
    221)0
    22110
    a?uu
    ?aou
    800
    HC
    PPM
    1184
    177b
    145b
    llfaB
    1088
    1088
    1120
    llbB
    113b
    qbo
    8b4
    800
    81b
    784
    ?3b
    704
    b40
    b40
    b5b
    81fa
    784
    COMPOSI
    
    
    I'JRiJUE PUHEK
    
    LB-FT BHP
    0.0 0.0
    0.0 0.0
    45.5 13.0
    HI .0 ab.o
    13b. b 39.0
    183.8 Sa.5
    227. b bS.O
    273.1 78. 0
    318. b qi.O
    3ha . f 103.5
    0.0 0.0
    325.1 1 3 1 . S
    ?88 .S 121.0
    a^80 b lOt.l
    aob.b 80.5
    Ibb. 3 bH. 7
    152, b 51.3
    ae.a 3'f.s
    b b . b a v . s
    0.0 0.0
    o.u u.o
    CU+ NOt-f
    PPM PPM
    sob qn
    S5b 3b
    783 71
    tai ibi
    307 a5b
    30t 35t
    3fab 45b
    4-Bq 5bt
    1094 b?7
    aoia sat
    3ss ioq
    4?b laas
    sas si?
    iba b5a
    100 504
    89 42S
    140 30b
    454 aiq
    4ea ibi
    570 80
    453 ba
    TE BSHC =
    BSCO+ =
    BSN02++=
    BSHC t 6SN02++=
    FUEL
    KLOH
    LB/MIN
    .04
    .12
    .17
    .23
    .30
    .37
    .44
    .51
    . bO
    .b8
    .04
    .q4
    .85
    .75
    .b5
    .58
    .4?
    .37
    .34
    .21
    .04
    WEIGHTED
    BMP
    0.00
    0.00
    .57
    1.14
    1.72
    2.31
    a.8b
    3.t3
    4.00
    4.55
    0.00
    5.S4
    5.33
    4.58
    3.81
    3.07
    2.2b
    1.52
    i.23
    0.00
    0.00
    s.bsa
    3.820
    5.S72
    S.b24
    AIK EXHAUST
    FLOW FLOW
    Lfl/MIN LB/MIN
    b.17 b.21
    11.05 11.17
    11.14 11.31
    11.23 11.4fa
    12.1? 12.47
    12.50 12.87
    12. 97 13.41
    13.57 14.08
    14.50 15.10
    15.37 lb.05
    5.83 5.87
    24.10 25.04
    aa.sa 23. b?
    21. qa a2.b?
    ao.qq ai.b4
    20.51 21. OS
    18. S3 1S.40
    17.50 17.87
    17.27 17. bl
    Ib.ab lb.47
    5.bb 5.70
    6SHC BSCU-f
    G/HP HR G/HP HR
    K K
    R R
    ib.72 17. qa
    b.80 5.58
    4.bq a. 58
    3.5a l.Sfa
    3.U5 1.98
    2.78 2.32
    2.49 4.78
    1.S7 8.20
    R R
    l.^b 2.32
    2.11 l.b?
    2.25 .93
    2.43 .bb
    2.8i .71
    3.19 1.39
    4.38 b.19
    5.47 8.01
    R R
    K R
    GRAM/BHP HR
    GRAM/bHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .007
    .011
    .015
    .021
    .025
    .029
    .034
    .037
    .041
    .044
    .007
    .039
    .037
    .034
    .031
    .028
    .025
    .021
    .oao
    .013
    .007
    BSNOa++
    G/HP HR
    K
    R
    a.bb
    3. Ob
    3.54
    3.75
    4.07
    4.40
    4.8b
    5.52
    R
    9.82
    7.75
    b.13
    5.44
    S.bl
    5.00
    4.90
    4.40
    H
    R
    
    
    
    
     t  CONVtRTED  TO  HET  BASIS
     ++ CONVERTED  TO  WET  BASIS  AND  CORRECTED  TO  75 GRAINS
        WA1ER  PER  LB.  DRY  AIR
                             D-22
    

    -------
    PROJFCT1ll-5Hb1-01
    ENGINE  'JOHNJ  DEERE  blOl
    DATE OF TEST'3-fa-72     TEST  NO.3
    SERIAL NO.'TR03-311102
    MUDfc" F.N&lNt rURUUE PUviER
    SPEEO
    
    1
    2
    3
    1
    5
    b
    7
    8
    q
    1U
    U
    15
    1 J
    11
    15
    lb
    17
    13
    11
    20
    51
    MUDE
    
    j.
    2
    3
    1
    S
    b
    7
    8
    •-)
    J.U
    11
    12
    13
    11
    J.5
    lb
    17
    18
    11
    50
    21
    CYCLE
    
    
    
    RPH
    sou
    1500
    15 LIU
    150U
    1500
    15 Oil
    150 U
    1500
    1500
    1500
    SOU
    520 U
    d20U
    5200
    22DIJ
    2500
    5500
    5500
    5500
    5500
    8 0 IJ
    HC
    PPM
    7b8
    1108
    113b
    IbO
    128
    S7fa
    1072
    1152
    1200
    105fa
    115
    81b
    880
    818
    81b
    755
    b88
    701
    755
    880
    781
    LB-FT HHP
    0.0 0.0
    0.0 0.0
    13.8 15.5
    11.0 5 b . 0
    138.3 31.5
    185. b 53.0
    551.3 b5.5
    571.1 77.5
    318. b 11.0
    358.1 105.5
    0.0 0.0
    325. 1 131.1
    588.1 151.0
    51b.8 103.1
    508.3 87.3
    Ibl.b b8.1
    151.3 55.1
    85.3 31.5
    15.0 17. b
    0.0 0.0
    0.0 0.0
    CUt NO+t
    PPM PPM
    115 5b
    113b 1
    181 3b
    bll 137
    138 221
    311 312
    111 115
    512 515
    1510 b35
    5525 81b
    311 81
    553 1111
    152 818
    310 b31
    5b5 5U7
    5fa? 377
    511 513
    375 205
    181 118
    b21 73
    521 bl
    COMPOSITE BSHC =
    
    
    
    BSCOt =
    BSN02t+=
    BSHC t BSN02tt=
    FUEL
    FLOW
    LB/MIN
    .01
    .13
    .17
    .23
    .30
    .31
    .11
    .51
    .bO
    .bl
    .01
    .11
    .85
    .71
    . bb
    .55
    .11
    .37
    .30
    .20
    .01
    WEIGHTED
    BHP
    0.00
    0.00
    .55
    1.11
    I.?*
    2.33
    5.88
    3.11
    1.00
    1.51
    0.00
    5.11
    b.32
    1.55
    3.81
    3.03
    2.21
    1.52
    .77
    0.00
    0.00
    3.b15
    1.717
    5.5SS
    1.211
    AIR EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.11 fa. 03
    10. bb 1U.71
    10. ?b 10.13
    11.17 11.70
    15.53 15.53
    13.10 13.11
    13.55 13. bl
    13. b5 11.13
    11.10 15.00
    11. b8 15.37
    5.11 b.03
    51. 5b 55.20
    23.51 51. Ob
    22.11 25.85
    21.15 25.08
    11.57 50.15
    18.58 11.07
    17.70 18.0?
    lb.15 17.55
    15. bO 15.80
    5.85 5.8b
    BbHC BSCUt
    G/HP HR G/HP HR
    R R
    R R
    13.11 55.75
    5.70 7.57
    3.88 3.bb
    3.28 5.b1
    5.1b 5.71
    2.77 5.81
    5.bl 5.38
    2. US 8.78
    R R
    2.21 2.71
    2.31 2.37
    2.17 1.17
    2.73 1.77
    2.10 2.05
    3.33 2.83
    1.87 5.18
    1.73 12.18
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIH
    RATIO
    .007
    .012
    .015
    .020
    .051
    .030
    .033
    .03?
    .015
    .017
    .007
    .031
    .037
    .031
    .o:-ii
    .058
    .02b
    .051
    .018
    .013
    .Ou?
    BSN05tt
    G/HP HR
    R
    R
    1.3?
    5.b?
    3. Ob
    3.13
    3.75
    1.03
    1.55
    5.21
    R
    1.03
    7.21
    b.05
    5.51
    1.75
    1.b3
    l.bS
    b.25
    R
    R
    
    
    
    
     t   CONVERTED  TO  WET  BASIS
     t+  LONVtRTEO  TO  WET  BASIS  AND  CORRECTED  TO  75 GRAINS
            R  PER  LB.  DRY  AIR
    
                             D-Z3
    

    -------
    PROJECT'll-28b9-01
    ENGINE 'JOHN DEERE bioi
    DATE OF TEST'3-b-72    TEST N0.1
    SERIAL NO.'TR03-3J.1102
    M U 0 E
    
    
    1
    2
    3
    1
    b
    b
    7
    B
    9
    1G
    li
    12
    13
    It
    15
    Ib
    17
    18
    14
    20
    21
    nUDt
    
    1
    2
    3
    1
    5
    b
    ?
    8
    q
    10
    11
    12
    13
    It
    IS
    Ib
    1?
    18
    IS
    20
    21
    CYCLE
    
    
    
    FNGINE
    SPEED
    RPM
    800
    isnn
    1SOO
    1500
    IbOO
    1500
    1500
    1500
    1500
    isno
    800
    2200
    2200
    2200
    2200
    2200
    2200
    220U
    2200
    2200
    KOO
    "C
    PPM
    7b8
    13=12
    1152
    47b
    84fa
    911
    1008
    1010
    105b
    1008
    411
    1021
    911
    128
    880
    781
    720
    73fa
    752
    Bfal
    7b8
    1UKUUE POWER
    
    LB-FT 6HP
    0.0 0.0
    0.0 0.0
    13.8 12.5
    Hl.O 2b.O
    13b.b 39.0
    183.8 52.5
    224.3 b5.5
    273.1 78.0
    318. h 91. tl
    358.9 102.5
    0.0 0.0
    325. b 13b.1
    2H5.1 119.5
    218. b 101.1
    20b. b 8b.S
    Ibl.b b8.9
    122.5 51.3
    82.3 31.5
    12.0 17. b
    o.n o.o
    0.0 0.0
    COt NO + +
    PPM PPM
    535 8b
    1180 28
    1003 b5
    b95 151
    190 219
    197 351
    520 tt8
    592 559
    1281 b8S
    2371 8bS
    t81 8b
    bOt 1228
    fb5 S13
    33S 700
    2b5 532
    25t f08
    295 291
    375 210
    171 152
    blO bS
    510 57
    COMPOSITE BSHC =
    
    
    
    BSCO+ =
    BSN02++=
    BSHC + BSN02t+=
    FUEL
    FLOW
    LB/MIN
    .0*
    .12
    .17
    .2t
    .30
    .3?
    .tb
    .52
    .bl
    .bb
    .Ot
    .9t
    .81
    .?b
    .b7
    .5b
    .tb
    .37
    .29
    .21
    .01
    WEIGHTED
    BHP
    0.00
    0.00
    .55
    1.11
    1.72
    2.31
    2.88
    3.13
    1.00
    1.51
    0.00
    b.OO
    5.2b
    1.58
    3.81
    3.03
    2.2b
    1.52
    .77
    0.00
    0.00
    3.719
    1.98b
    b.073
    9.792
    AIK EXHAUST
    FLOW FLOW
    LB/MIN LB/MIN
    5.98 b.02
    10.71 lO.Bfa
    11.02 11.19
    11.72 11. 9b
    11.97 12.27
    12.1fa 12.83
    13. b7 11.13
    13.89 11.11
    11.79 15.10
    11.31 11.97
    b.15 b.19
    21.13 25.37
    23.18 21.02
    22.08 22.81
    21. b2 22.29
    19.70 20. 2b
    18.55 19.01
    17.fa2 17.94
    lb.93 17.22
    lb.20 lb.11
    b.15 b. 19
    BSHC BSCO+
    G/HP HR G/HP HR
    K K
    K R
    13. bl 23. b2
    5.H2 8.10
    3.72 I.Ob
    3. US 3.20
    2.87 2.95
    2.51 2.88
    2.3b 5.70
    1.41 4.11
    R R
    2.51 2.95
    2.5U 2.1b
    2.b9 1.9b
    2.99 1.80
    3.01 l.Sb
    3.52 2.87
    5.07 5.15
    9.71 12.13
    R R
    R R
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/HHP HR
    FUEL
    AIR
    RATIO
    .007
    .011
    .015
    .020
    .025
    .030
    .031
    .037
    .011
    .Olb
    .007
    .038
    .03b
    .031
    .031
    .028
    .025
    .021
    .017
    .013
    .nob
    BSN02++
    G/HP HR
    K
    R
    2.50
    2.49
    3.39
    3.71
    1.1?
    l.lb
    5.01
    B.lfa
    R
    9.87
    7.92
    b.b3
    5.92
    5.18
    f.bS
    1.75
    b.11
    R
    R
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND  CORRECTED  TO  75  GRAINS
        WA1ER  PER  IB.  DRY  AIR
                             D-2.4
    

    -------
    PROJECT' 11-23'j^
    ENGINE1 MERC€0'£S  OHbSb
    DATE 0? TEST'  l-Of-73    TEST  NO.l
    SERIAL MQ.1 fa3t> . 1*l-011b2S
    MODE
    
    
    1
    2
    3
    *
    5
    b
    7
    8
    1
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    11
    20
    21
    ENGINE
    SPEED
    RPM
    b80
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    700
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    700
    MODE HC
    
    1
    2
    3
    *
    5
    b
    7
    8
    q
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    11
    20
    21
    PPM
    138
    138
    1*7
    158
    isq
    2oq
    lib
    17b
    1*0
    2*1
    118
    18*
    202
    25b
    328
    lib
    20fa
    230
    22*
    Ibl
    81
    CYCLE COMPOS
    
    
    
    +
    +.+
    
    
    
    
    B
    CONVERTED
    CONVERTED
    WATER PEP
    
    TORQUE
    
    L3-FT
    0.
    0.
    7.
    15.
    22.
    30.
    37.
    *s.
    52.
    bO.
    0.
    bl.
    53.
    *b.
    37.
    30.
    11.
    15,
    7.
    0.
    0.
    CO+-
    PPM
    *18
    337
    22?
    21b
    2bb
    27*
    285
    211
    303
    1*31
    3*8
    2*28
    **b
    *03
    *18
    *5*
    211
    31?
    315
    *2*
    307
    J.TE
    
    
    M,C t
    10 WE
    10 WE
    
    
    0
    0
    b
    1
    7
    2
    8
    3
    q
    *
    0
    7
    b
    3
    q
    q
    8
    5
    i
    0
    0
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    pnwE"
    
    BHP
    0.0
    0.0
    2.0
    *.o
    b.l
    8.0
    10.1
    12.1
    1* . 1
    lb.1
    0.0
    28.2
    2*.E
    31.2
    17.3
    1*. 1
    1.1
    7.1
    3.2
    0.0
    0.0
    ND-H-
    PPM
    213
    b*
    ibq
    iqq
    2b2
    283
    281
    2q5
    212
    233
    iqq
    2q2
    333
    3*0
    30*
    213
    151
    111
    78
    50
    1*8
    BSHC =
    F)S
    8J;
    (.0+ •-
    M02++-
    8SM02++-
    l'
    i
    1 Ei. DRY
    
    
    1 A S I S
    BASIS .'
    AIR
    D
    FUEL
    FLOW
    LB/MIi'J
    .02
    .03
    .05
    .Ob
    .0?
    .07
    .01
    .11
    .12
    .1*
    .02
    .2b
    .20
    .11
    .Ib
    .15
    .11
    .10
    .01
    .0?
    .02
    WEIGHTED
    BHP
    0.00
    0.00
    .01
    .18
    .27
    .35
    .**
    .53
    .b2
    .71
    0.00
    1.2*
    1.08
    .13
    . 7b
    .b2
    .to
    .31
    .1*
    0.00
    0,00
    J. . 0 1 1
    ?.358
    3 „ b * 2
    * . b fa 1
    
    -ID CORM.t.
    
    '15
    AIR
    FLOW
    LB/MIP'
    1.55
    2. q
    -------
    PROJECT'  ii
    ENGINE'  MERCEDES OMfa3b
    DATE OF TEST1  l-Of-73   TEST NO.2
    SERIAL NO.'  b3b.9fl-019b25
    MODE
    
    
    1
    2
    3
    f
    5
    b
    7
    8
    9
    10
    U
    12
    13
    It
    15
    Ib
    17
    18
    19
    20
    21
    MODE
    
    1
    2
    3
    1
    5
    b
    7
    B
    9
    in
    ll
    12
    13
    If
    15
    Ib
    17
    ie
    19
    20
    21
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    1*00
    1*00
    IfOO
    IfOO
    ifoo
    ifoo
    ifoo
    1*00
    1*00
    700
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    700
    HC
    PPM
    231
    Ib*
    1*9
    1*7
    Ibl
    17b
    175
    172
    IfcO
    25*
    Ib2
    130
    Ibb
    198
    298
    31b
    37b
    399
    353
    272
    1*0
    COMPOSI
    TORQUE
    
    LB-FT
    0.0
    0.0
    7. fa
    15.1
    22.7
    30.2
    37.8
    *5.3
    52.9
    bO.*
    0.0
    bl.7
    53. b
    *fa.3
    37.9
    30.9
    19.8
    15.*
    7.1
    0.0
    0.0
    C04-
    PPM
    bOb
    *01
    281
    2b*
    270
    271
    29fa
    318
    *21
    1*85
    *23
    1701
    *55
    *01
    *b8
    397
    3bb
    380
    372
    *7b
    353
    POWER
    
    BMP
    0.0
    0.0
    2.0
    *.o
    b.l
    8.0
    10.1
    12.1
    If .1
    lb.1
    0.0
    28.2
    2*. 5
    21.5
    17.3
    l*.l
    9.1
    7.0
    3.2
    0.0
    0.0
    NO+ +
    PPM
    15*
    b*
    137
    15*
    21b
    2*1
    2b8
    2bO
    2*5
    22*
    229
    2fa7
    303
    30*
    2b?
    230
    1*3
    10b
    70
    30
    138
    TE BSHC =
    BSCOf =
    BSN02++=
    BSHC + BSN02++=
    FUEL
    FLOW
    LB/MIN
    .02
    .0*
    .05
    .Ob
    .07
    .08
    .09
    .11
    .13
    .1*
    .02
    .25
    .22
    .19
    .17
    .1*
    .12
    .11
    .09
    .07
    .02
    WEIGHTED
    BHP
    0.00
    0.00
    .09
    .18
    .27
    .35
    .**
    .53
    .*?
    .71
    0.00
    1.2*
    1.08
    .93
    .7b
    .b2
    .*0
    .31
    .If
    0.00
    0.00
    1.221
    5.297
    3.28fa
    f .SOfa
    AIR
    FLOW
    LB/MIN
    1.5*
    2.91
    2.92
    2.88
    2.85
    2.85
    2.80
    2.80
    2.88
    2.7b
    1.51
    *.b8
    f .bb
    f.75
    *.75
    *.7b
    *.8fa
    *.8b
    *.87
    *.87
    l.*8
    BSHC
    G/HP HR
    P
    R
    2.89
    l.*2
    1.08
    .85
    .bb
    .55
    .*5
    .bO
    R
    .30
    .ff
    .bl
    1.12
    l.*S
    2.73
    3.73
    7.11
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LB/MIN
    l.Sb
    2.95
    2.98
    2.9f
    2.92
    2.93
    2.90
    2.91
    3.01
    2.90
    1.53
    f .93
    f .88
    f .95
    f .92
    f .90
    f .98
    *.97
    *.9b
    *.9*
    1.50
    BSCO +
    G/HP HR
    R
    R
    10. 8b
    5.07
    3.f3
    2.59
    2.2f
    2.01
    2.3b
    7.03
    R
    7.82
    2.38
    2,fb
    3.50
    3.b3
    5.30
    7.08
    If .95
    R
    R
    HR
    HR
    HR
    HR
    FUEL
    AIR
    RATIO
    .015
    .013
    .018
    .020
    .025
    .029
    .03*
    .038
    .0*5
    .052
    .015
    .05*
    .0*7
    .0*1
    .035
    .030
    .025
    .OP9
    .018
    .01*
    .Olb
    BSN02++
    G/HP HR
    R
    R
    8.b?
    *.87
    *.51
    3.80
    3.33
    2.70
    2.2b
    1.7*
    R
    2.02
    2.bl
    3. Ob
    3.28
    3.*b
    3.3*
    3.25
    f.bl
    R
    R
    
    
    
    
     +  CONVERTED TO WET BASIS
     +t CONVERTED TO WET BASIS AND CORRECTED TO 75  GRAINS
        WATER PER LB.  DRY AIR
    
                             D-26
    

    -------
    PROJECT' ll-28bS-OOl
    ENGINE' MERCEDES OMfa3b
                         DATE OF TEST1 1-05-73   TEST NO.3
                         SERIAL NO.' b3b.S*l-01Sb25
    MODE
    1
    2
    3
    *
    5
    b
    7
    8
    q
    10
    11
    15
    13
    If
    15
    Ib
    17
    18
    IS
    80
    21
    ENGINE
    SPEED
    RPM
    700
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    700
    a*oo
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    21+00
    2*00
    700
    TORQUE
    LB-FT
    0.0
    0.0
    7.b
    15.1
    22.7
    30.2
    37.8
    *5.3
    52. S
    bO.*
    0.0
    bl.7
    53. b
    *b.3
    37.7
    30. S
    IS. 8
    15.5
    7.1
    0.0
    0.0
    POWER
    BMP
    0.0
    0.0
    2.0
    *.o
    b.l
    8.0
    10.1
    12.1
    l*.l
    lb.1
    0.0
    28.2
    2*. 5
    21.2
    17.2
    l*.l
    S.I
    7.1
    3.2
    n.o
    0.0
    FUEL
    FLOW
    LB/MIN
    .02
    .03
    .05
    .Ob
    .07
    .08
    .OS
    .11
    .12
    .1*
    .02
    .25
    .23
    .20
    .17
    .15
    .12
    .11
    .OS
    .07
    .02
    AIR
    FLOW
    LB/MIN
    1.5*
    2.87
    P. 87
    2. SO
    2.85
    2.82
    2.78
    2.80
    2.78
    2.b8
    1.53
    *.5*
    *.bb
    *.70
    *.bS
    *. 70
    *.70
    *.8*
    * .83
    *.88
    i.sn
    EXHAUST
    FLOW
    LB/MIN
    l.Sfa
    2. SO
    ?.S2
    2.Sfa
    2.S2
    2. SO
    2.87
    2. SO
    2. SO
    2.82
    1.S5
    4.7S
    *.8S
    *.8S
    *.87
    *.85
    *.82
    *.S5
    *.S2
    *.SS
    LSI
    FUEL
    AIR
    RATIO
    .013
    .010
    .017
    .021
    .025
    .028
    .032
    .038
    .0*5
    .052
    .013
    .055
    ,0*S
    .0*2
    .037
    .033
    .02b
    .023
    .01S
    .01*
    .01?
     MODE
    HC
           PPM
    NO-n-  WEIGHTED  BSHC
              BSCO +
                    PPM
                   PPM
            BMP
     +  CONVERTED TO WET  BASIS
     + •)• CONVERTED TO WET  BASIS  AND  CORRECTED  TO  75  GRAINS
        WATER PER LB.  DRY  AIR
                             D-2.1
                                                    BSN02-H-
    G/HP HR  G/HP HR  G/HP HR
    1
    2
    ^
    f
    5
    b
    7
    8
    q
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    IS
    2n
    ?1
    CYCLE
    
    
    
    270
    338
    2h7
    2b8
    237
    2*0
    23b
    21b
    20b
    332
    152
    13b
    1S2
    210
    252
    *00
    **0
    512
    501
    32b
    .171
    *b*
    557
    ?bb
    273
    220
    228
    23b
    258
    321
    1581
    2S*
    2*27
    1027
    *72
    *0b
    **5
    383
    3*3
    3S5
    *23
    ?S8
    COMPOSITE
    
    
    
    
    
    BSHC f
    133
    *7
    12t
    171
    205
    377
    305
    2S3
    287
    2*5
    20S
    273
    2S4.
    310
    2S5
    2*S
    177
    135
    sn
    38
    130
    BSHC =
    BSCO+ =
    BSN02++=
    BSN02++=
    0
    0
    
    
    
    
    
    
    
    
    0
    1
    1
    
    
    
    
    
    
    0
    0
    1.
    5.
    3.
    5.
    .00
    .00
    .OS
    .18
    .27
    .35
    .**
    .53
    .b2
    .71
    .00
    .2*
    .08
    .S3
    .?b
    ,b2
    .*0
    .31
    .1*
    .00
    .00
    521
    S37
    521
    0*2
    
    
    5.
    2.
    1.
    1.
    •
    •
    •
    •
    
    •
    •
    •
    •
    1.
    3.
    *.
    10.
    
    
    R
    R
    07
    bO
    51
    1*
    8S
    bS
    Sb
    77
    R
    31
    51
    b*
    S*
    82
    OS
    73
    10
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    
    
    10
    5
    2
    2
    1
    1
    1
    7
    
    10
    5
    2
    3
    *
    5
    b
    15
    
    
    HR
    HR
    HR
    HR
    R
    R
    .05
    .2S
    .7S
    .Ib
    .77
    .fa3
    .7*
    .2S
    R
    .85
    .*0
    .87
    .02
    .02
    .3b
    .31
    .7b
    R
    R
    
    
    
    
    
    
    7
    S
    *
    5
    3
    3
    2
    1
    
    2
    2
    3
    3
    3
    *
    1
    5
    
    
    
    
    
    
    R
    R
    .8*
    .*3
    .27
    .8b
    .75
    .0*
    .55
    .8b
    R
    .00
    .5*
    .OS
    .bO
    .70
    .07
    .OS
    .23
    R
    R
    
    
    
    
    

    -------
    PROJECT1  Il-28fa9-001
    ENGINE1  MERCEDES OMb3fa
    DATE OF TEST"  1-05-73   TEST NO.*
    SERIAL NO.1  fa3fa.9*l-019b2S
    MODE
    
    
    1
    2
    3
    *
    5
    b
    7
    8
    9
    10
    11
    12
    13
    11
    15
    Ib
    17
    18
    19
    20
    21
    MODE
    
    1
    2
    3
    *
    "5
    b
    7
    8
    q
    10
    11
    12
    13
    It
    15
    Ib
    17
    18
    19
    20
    21
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    700
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    700
    HC
    PPM
    120
    133
    Ib2
    183
    185
    20fa
    19*
    Ib*
    200
    2bO
    131
    112
    172
    198
    29?
    380
    *88
    55b
    *80
    358
    103
    TORQUE
    
    LB-FT
    0.0
    0.0
    7.b
    15.1
    22.7
    30.2
    37.8
    *5.3
    52.9
    bQ.*
    0.0
    bl.7
    53. b
    *fa.3
    37.9
    30.9
    19.8
    15.5
    7.1
    0.0
    0.0
    cot
    PPM
    385
    279
    2b5
    2b7
    P*8
    28*
    28*
    2bl
    *70
    l*8b
    339
    2*75
    735
    *13
    *53
    *9b
    373
    379
    3b9
    *91
    38b
    POWER
    
    BMP
    0.0
    0.0
    2.0
    *.o
    b.l
    8.0
    10.1
    12.1
    l*.l
    lb.1
    0.0
    28.2
    2*. 5
    21.2
    17.3
    l*.l
    9.1
    7.1
    3.2
    0.0
    0.0
    Nfl-n-
    PPM
    15*
    bO
    128
    Ib*
    205
    2*8
    2b3
    287
    252
    2**
    181
    277
    307
    325
    298
    277
    18b
    13b
    8b
    *1
    1*7
    COMPOSITE BSHC =
    BSCO + =
    BSN02++S
    BSHC t BSN02++=
    FUEL
    FLOW
    LB/MIN
    .02
    .03
    .05
    .Ob
    .07
    .08
    .10
    .11
    .12
    .15
    .02
    .25
    .22
    .1H
    .17
    .15
    .12
    .11
    .09
    .Ob
    .02
    WEIGHTED
    BHP
    0,00
    0.00
    .09
    .18
    .27
    .35
    .**
    .53
    ,b2
    .71
    0.00
    1.2*
    1.08
    .13
    .7b
    .b2
    -*0
    .31
    .1*
    0.00
    0.00
    1.3*5
    5.802
    3.*3?
    *.777
    AIR
    FLOW
    LB/MIN
    1.52
    2.87
    a. si
    5.85
    ?.81
    2.7b
    2.78
    2.7*
    2.70
    2.88
    l.*9
    *.b2
    *.59
    *.S7
    *.57
    *.57
    *.58
    *.b8
    *.fa9
    *.b9
    1.39
    BSHC
    G/HP HR
    R
    R
    3.12
    1.7*
    l.lb
    .Ib
    .73
    .51
    .53
    .b5
    R
    .2b
    .*5
    .59
    1.0?
    I.b8
    3.3*
    *.97
    9.35
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LB/MIN
    1.5*
    2.90
    2.9b
    2.91
    P. 88
    2.8*
    2.87
    8.85
    2.83
    3.03
    1.50
    *.87
    *.B1
    *.77
    *.7*
    *.72
    *.70
    *.79
    *.7B
    *.?5
    l.*l
    BSCO+
    G/HP HR
    R
    R
    10.17
    5.07
    3.10
    2.b*
    2.13
    1. b2
    2.*7
    7.3b
    R
    11.25
    3.80
    2.**
    3.?b
    *.3b
    5.09
    b.75
    1*.32
    R
    R
    HR
    HR
    HP
    HR
    FUEL
    AIR
    RATIO
    .012
    .011
    .018
    .021
    .025
    .028
    .035
    .039
    .0*5
    .051
    .01?
    .055
    .0*9
    .0*?
    .037
    .032
    .027
    .023
    .020
    .01*
    .01*
    BSN02++
    G/HP HP
    R
    R
    8.0*
    5.12
    *.22
    3.78
    3.23
    2.93
    2.18
    1.98
    R
    2.07
    2.bl
    3.1b
    3.51
    *.oo
    *.17
    3.99
    S.*8
    R
    R
    
    
    
    
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LB. DRY AIR
                             D-28
    

    -------
    PROJECT1  Il-28b1-001
    ENGINE'  MERCEDES OMbSb
    DATE OF TEST'  1-08-73   TEST NO.S
    SERIAL NO.1  b3b.9*l-019b25
    MODE
    
    
    1
    2
    3
    *
    5
    b
    7
    8
    9
    10
    11
    12
    13
    1*
    15
    Ib
    1?
    18
    11
    20
    21
    MODE
    
    1
    2
    3
    *
    5
    b
    7
    8
    q
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    19
    20
    51
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    700
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    700
    HC
    PPM
    280
    20b
    17?
    IbS
    188
    17*
    Ib8
    1*0
    1*0
    200
    108
    120
    1*0
    200
    2bO
    *32
    37b
    500
    *b3
    2*2
    1*5
    COMPOS
    TORQUE
    POWER
    FUEL
    FLOW
    LB-FT
    0.
    0.
    7.
    IS.
    23.
    31.
    31.
    *7.
    55.
    b3.
    0.
    b*.
    Sb.
    *8.
    *0.
    32.
    2*.
    Ib.
    8.
    0.
    0.
    cru
    PPM
    *77
    3*7
    23b
    173
    192
    Ib8
    180
    18b
    19b
    77*
    335
    1752
    58b
    352
    380
    38*
    289
    29*
    357
    **8
    3*9
    ITE
    
    0
    0
    9
    8
    b
    5
    
    -------
    PROJECT1  ll-38fa9-OUl
    tNGINE'  MEKCEDES
    DATE OF TEST'  1-09-73    TEST  NO.fa
    SERIAL NO.'  fa3h.9tl-019fa35
    MODE
    
    
    1
    g
    3
    t
    5
    b
    7
    8
    q
    10
    11
    12
    13
    It
    IS
    Ib
    17
    Id
    19
    an
    81
    MODE
    
    1
    a
    3
    t
    5
    b
    7
    8
    9
    10
    11
    13
    13
    It
    15
    Ib
    17
    18
    19
    en
    31
    CYCLE
    ENGINE
    SPEED
    RPM
    700
    itoo
    itOO
    it on
    itoo
    itoo
    itoo
    itoo
    iton
    itoo
    70U
    2 1 0 0
    at no
    atoo
    atou
    atoo
    a t n o
    a ton
    aton
    atou
    700
    HC
    PPM
    103
    109
    133
    132
    ito
    151
    132
    120
    115
    Itt
    lot
    9b
    It2
    180
    2faO
    300
    tot
    53b
    ssa
    300
    130
    TORuUE
    
    LB-FT
    n.o
    0.0
    7.9
    15.8
    23. b
    31.5
    39. t
    t7.3
    55.1
    bd.O
    n.o
    bt.3
    Sb.S
    t6.3
    to. t
    3a. a
    at. 3
    lb.1
    8.3
    0.0
    li. 0
    CO +
    PPM
    tia
    310
    29t
    2bt
    3t3
    3faO
    2t8
    280
    2fab
    827
    t3S
    1557
    58b
    351
    383
    333
    317
    379
    331
    373
    333
    POwEK
    
    BHP
    n.o
    0.0
    3.1
    t.a
    fa. 3
    R.t
    10.5
    13. b
    It. 7
    Ib. R
    o.n
    29.4-
    25.8
    32.1
    18. S
    It. 7
    11.1
    7. t
    3.8
    o.n
    0.0
    NO + +
    PPM
    lib
    55
    98
    13t
    195
    239
    279
    391
    3b8
    c!tt
    151
    39b
    31?
    331
    29b
    239
    189
    121
    77
    to
    109
    COMPOSITE BSHC
    BSCO+ =
    
    
    
    
    BS
    BSHC + 83
    N02++=
    N02++=
    FUEL
    FLOW
    LB/MIN
    .02
    .Of
    .05
    .Ob
    .07
    .09
    .10
    .11
    .13
    .It
    .ne
    .as
    .a?
    . 1 9
    .17
    .IS
    .1?
    .11
    .f!9
    .07
    .0?
    WEIGHTED
    BHP
    0.00
    0.00
    .09
    .18
    .28
    .37
    .tb
    .55
    .bS
    . ?t
    0.00
    1.29
    l.lt
    -97
    .81
    .bS
    .t9
    .32
    .17
    0.00
    0.00
    1.119
    t.180
    3.198
    t.317
    AIR
    FLOW
    LB/MIN
    l.Sb
    a. 93
    2.92
    2.93
    3.89
    3.87
    3.87
    3.82
    2.R.I
    a. ?3
    i . sa
    t.R9
    t.57
    t .b?
    t.b7
    t.fa?
    f .78
    t.78
    t . 79
    t . 89
    l.f 5
    BSHC
    G/HP HR
    R
    R
    3.t9
    1.3t
    .87
    .70
    . t9
    .37
    .30
    .33
    R
    .31
    .35
    .53
    -90
    1.30
    2.3b
    t . b9
    9. Ob
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LB/MIN
    1.58
    3.97
    3.98
    2.99
    3.9b
    3.9fa
    3.97
    3.93
    2.93
    3.88
    1.5t
    t.8t
    t. 79
    t .fib
    t.8t
    t.82
    t .91
    f .89
    t .88
    t .9b
    l.t?
    BSCOt
    G/HP HR
    R
    R
    10. 9b
    t.9t
    3.00
    3. tl
    i . at
    1.71
    1.39
    3.73
    R
    b. 7t
    2.8b
    3.03
    2.bt
    3.8b
    3.b8
    t.Bfa
    10.91
    R
    ^
    HR
    HR
    HR
    HR
    KUfcL
    AIR
    RATIO
    .013
    .013
    .018
    .033
    .025
    .031
    .03t
    .Otl
    . OH 5
    . Ob 1
    .013
    .055
    .Ot9
    .Otl
    . n 3 fa
    .031
    ,03b
    .022
    . ni9
    . n ). s
    .nit
    BSN02t+
    G/HP HR
    ft
    ft
    b.02
    t.ll
    3.95
    3.bt
    3. tO
    3.92
    2.31
    1.80
    R
    3.10
    2.5t
    3.15
    3.35
    3.38
    3.bl
    
    t.39
    R
    R
    
    
    
    
        CONVERTED  TO  KET  BASIS
        CONVERTED  TO  WET  BASIS  AND CORRECTED TO 75 GRAINS
        WATER PER  LB.  DRY  AIR
                            D-30
    

    -------
    PROJECT1  ll-28bS-001
    ENGINE"  MERCFDFS OMb3b
                         DATE OF TEST1  1-09-73   TEST NO.7
                         SERIAL NO.1  b3b-sti-oiSb2S
    MODE
    1
    2
    3
    1
    5
    b
    7
    8
    S
    10
    11
    12
    13
    It
    15
    lb
    17
    18
    IS
    20
    21
    ENGINE
    SPEED
    RPM
    700
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    1*00
    700
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    2*00
    e*oo
    700
    TORQUE
    LB-FT
    0.0
    0.0
    7.S
    15.8
    23. b
    31.5
    3S.*
    *7.3
    55.1
    b3.0
    0.0
    b*,3
    Sb.S
    *8.3
    *0.*
    32.2
    2*. 3
    lb.1
    8.3
    0.0
    0.0
    POWER
    BMP
    0.0
    0.0
    2.1
    *.2
    b.3
    8.*
    10.5
    15. b
    1*.7
    lb.8
    0.0
    2S.*
    25.8
    22.1
    18.5
    1*.7
    11.1
    7.*
    3.8
    0.0
    0.0
    FUEL
    FLOW
    LB/MIN
    .02
    .0*
    .05
    .Ob
    .07
    .ns
    .10
    .11
    .13
    .1*
    .02
    .25
    .23
    .IS
    .lb
    .15
    .13
    .11
    .OS
    .07
    .02
    AIR
    FLOW
    LB/MIN
    l.*S
    2.88
    2.88
    2.83
    2.81
    P.83
    2.78
    2.78
    2.77
    2.77
    1 .*8
    *.bO
    *.57
    *.bb
    *.bb
    *.7b
    *.7b
    *.77
    *.8B
    *.8S
    l.*5
    EXHAUST
    FLOW
    LB/MIN
    1.51
    2. SI
    2. S3
    2.8S
    2.88
    ?.S2
    2.88
    2.88
    2. SO
    2. SI
    1.50
    *.8S
    *.80
    *.85
    *.82
    *.S1
    *.8S
    *.87
    *.S7
    *.Sb
    l.*7
    FUEL
    AIR
    RATIO
    .013
    .013
    .01S
    .022
    .02*
    .031
    .035
    .03S
    .0*7
    .052
    .015
    .05*
    .051
    .0*0
    .035
    .031
    ,0?7
    .022
    .018
    .01*
    .01*
    MODE
    HC
           PPM
    ND + +  WEIGHTED  BSHC
                     BSCO+
            PPM
    PPM
    BHP
        CONVERTED TO WET BASIS
        CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
        WATER PER LB. DRY AIR
                             D-31
    G/HP HR  G/HP HR  G/HP HR
    1
    2
    3
    *
    5
    b
    7
    8
    S
    10
    11
    12
    13
    1*
    IS
    lb
    17
    18
    IS
    20
    21
    CYCLE
    
    
    
    71
    113
    128
    135
    l*b
    150
    132
    132
    13b
    202
    102
    8* 1
    110
    180
    232
    2S*
    372
    **0
    *08
    30*
    1**
    COMPOSITE
    
    
    BSHC
    3bO
    373
    2S?
    2faS
    2bS
    ?7*
    2bO
    281
    300
    S31
    35S
    8*2
    53b
    *2b
    *17
    3S7
    3b3
    220
    3bS
    *b2
    30S
    
    
    
    +
    1*5
    5S
    117
    172
    20b
    2*S
    2S1
    302
    2bl
    230
    1*S
    287
    288
    317
    312
    27*
    IS*
    122
    faS
    3b
    103
    BSHC =
    BSCO + =
    BSN02++=
    BSNOa-n-s
    0
    0
    
    
    
    
    
    
    
    
    0
    1
    1
    
    
    
    
    
    
    0
    0
    1.
    *.
    3.
    *.
    .00
    .00
    .OS
    .18
    .28
    .37
    .*b
    .55
    .b5
    .7*
    .00
    .2S
    .1*
    .S7
    .81
    .b5
    ,*S
    .32
    .17
    .00
    .00
    033
    57S
    23*
    2fc>7
    R
    R
    2.3b
    1.23
    .88
    .bS
    .*8
    -*0
    .35
    .tb
    R
    .18
    .27
    .52
    .80
    1.30
    2.1b
    3.8*
    7. OS
    R
    R
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    
    
    10.
    *.
    3.
    2.
    1.
    1.
    1.
    *.
    
    7.
    2.
    2.
    2.
    3.
    *.
    3.
    12.
    
    
    HR
    HR
    HR
    HR
    R
    R
    SO
    7S
    IS
    sn
    87
    bS
    5b
    2*
    R
    SS
    b2
    *b
    8b
    *R
    20
    82
    77
    R
    R
    
    
    
    
    
    
    7.
    5.
    *.
    3.
    3.
    2.
    2.
    1.
    
    2.
    2.
    3.
    3.
    3.
    3.
    3.
    3.
    
    
    
    
    
    
    R
    R
    05
    13
    08
    7*
    **
    SS
    22
    72
    R
    0*
    32
    01
    52
    SS
    b8
    *7
    S2
    R
    R
    
    
    
    
    

    -------
    PROJECT1  ll-2BhS-(H
    ENGINE1  PERKINS t.?3b
    OATE UP TEST'  10-11-78   TEST  NO.l
    SERIAL NO.'23bUElS43
    MODE ENGINE TORQUE POWER
    SPEED
    
    1
    2
    3
    4
    5
    b
    7
    8
    q
    10
    11
    12
    13
    14
    15
    Ib
    17
    18
    IS
    20
    21
    Mf.n,-
    
    1
    P
    3
    4
    5
    b
    7
    8
    M
    in
    1 1
    1 2
    13
    It
    15
    ] S
    17
    in
    1 4
    r-n
    2 I
    r r r L E
    KPM
    btO
    ItSil
    1450
    1450
    lt5H
    1450
    145H
    If 50
    It 50
    If Sn
    btll
    2tQu
    2 toe
    2 tOO
    2 f n u
    2 t n 1 1
    2tnn
    2 1 n u
    2tno
    2*0d
    htr]
    HC
    PPM
    280
    238
    l qt
    17b
    152
    ito
    138
    132
    112
    78
    252
    3P
    8b
    78
    108
    132
    1th
    180
    238
    328
    324
    LB-FT
    2.b
    2.b
    24 . q
    47.3
    70. q
    S3. 2
    HS.b
    143.1
    Ibf.l
    182.5
    2.b
    Ib5. 4
    1*5.7
    124.7
    1PP.4
    62.7
    bl.7
    40.7
    21.0
    2. b
    1.3
    CO +
    PPM
    187
    248
    273
    321
    ?5b
    1S2
    153
    175
    bbl
    4b21
    227
    3431
    754
    223
    214
    2b4
    32S
    35?
    347
    337
    2b4
    BHP
    .3
    .7
    b. s
    13.0
    IS.b
    25.7
    33. U
    3S. c«
    45.3
    50.4
    .3
    75. b
    bb.b
    57.0
    tb.8
    37.8
    28.2
    18. h
    S.b
    1.2
    .2
    NO + +
    PPM
    S7
    lOb
    187
    34b
    5S]
    847
    1245
    1550
    ISIS
    1877
    138
    ISbb
    1S11
    Ibll
    1073
    803
    551
    355
    227
    14b
    107
    COMPOSITE BSHC =
    RSCO+ =
    
    
    BS
    N02+f =
    BSHC + BSN02++=
    FUEL
    FLOW
    L8/MIN
    .01
    .Ob
    .07
    .10
    .11
    .Ib
    .20
    .23
    .2S
    .34
    .01
    .50
    .43
    .35
    .2S
    .2b
    .21
    .17
    .13
    .OS
    .01
    WEIGHTED
    BHP
    .02
    .03
    .30
    .57
    .8b
    1.13
    1.45
    1.74
    l.SS
    2.22
    .02
    3.33
    2. S3
    2.51
    2. Ob
    l.bb
    1.24
    .82
    .42
    .05
    .01
    .57b
    4.S7b
    10.b?S
    11. 2S5
    AIR
    FLOW
    LB/MIN
    ?.bi
    b.41
    b.41
    b.37
    H.28
    b.21
    b.lS
    b.Ob
    b.Ol
    5.S<5
    2.5b
    S.b7
    S.5S
    S.5S
    S.b2
    S.bS
    S.h7
    S.b5
    S.b7
    S.b7
    2.43
    BSHC
    G/HP HR
    30.28
    28.03
    2.41
    1.15
    .bfa
    .4b
    .35
    .28
    .21
    .13
    2b.70
    .07
    .17
    .18
    .30
    .4b
    . b8
    1.25
    3.21
    35.22
    b5.18
    GKAM/BHP
    GRAM/8HP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LB/MIN
    2.b2
    b.47
    b.48
    b.*7
    h. 3S
    b.37
    b.3S
    t>. as
    b.30
    b.2S
    2.57
    1C.1?
    .in. 02
    q q i|
    s.si
    q. si
    q. 88
    q. pa
    Q. Rl
    S.7b
    2. t*
    BSCO +
    G/HP HR
    40. 3b
    58.28
    fa. 75
    4.18
    2.20
    1.25
    .78
    .73
    2.42
    15.18
    47.81
    12.14
    2.S8
    1.02
    1.1S
    1.82
    3.03
    4.Sb
    S.32
    72.20
    105.88
    HR
    HR
    HR
    HR
    FUEL
    AIR
    RATIO
    .004
    .DOS
    .011
    .Olb
    .018
    .02b
    .033
    .03R
    .048
    .058
    .003
    .052
    .Oft
    .037
    .031
    .027
    .022
    .018
    .flit
    .OOS
    .003
    BSN02++
    G/HP HR
    3t.2b
    40. 8b
    7.bO
    7.40
    8.35
    S.05
    10.42
    10. bb
    11.52
    10.13
    47.82
    11.43
    12.42
    12.14
    S.82
    s.os
    8.34
    8.10
    10.01
    51.40
    70. 5S
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND CORRECTED TO 75 GRAINS
        «* FER  PER  LB.  DRY  AIR
                             D-3Z
    

    -------
    PROJECT-  n-28bq-oi
    ENGINE'  PERKINS 0
    DATE OF TEST1  10-11-78
    SERIAL NO. ' 23hUEJ St3
    TEST NO.2
    MODE ENGINE TOPQl'E
    POWER
    SPFED
    
    1
    2
    3
    t
    5
    b
    7
    t'
    q
    10
    11
    12
    13
    It
    IB
    lb
    17
    18
    IS
    20
    21
    HOOF:
    
    i
    ?
    3
    't
    s
    b
    7
    ti
    q
    1U
    1 1
    12
    13
    It
    15
    lb
    17
    18
    i q
    2.0
    ? l
    CYCLE
    RPM
    btO
    ItSO
    It 50
    itsu
    It 511
    ItSO
    It 50
    1 1 5rj
    It50
    ItSO
    Sto
    at oo
    at no
    2 tno
    atou
    2 ton
    aton
    atoo
    a too
    ?. t on
    btn
    HC
    PPM
    320
    250
    20b
    1S2
    178
    Ibb
    152
    130
    13t
    150
    2fat
    50
    78
    70
    100
    128
    132
    170
    aab
    asa
    288
    LR-f-'T
    a.b
    a. b
    at . q
    t?.3
    ?u . s
    S3. a
    us. s
    1 1 3 . .1
    Ibt.i
    i fa . s
    a.b
    IbS. t
    its. ?
    12t . 7
    ina.t
    82.7
    hl . 7
    to. 7
    21.0
    2.b
    1.3
    CO +
    PPM
    315
    288
    311
    33t
    3b8
    1S1
    IbS
    323
    1018
    tsis
    27?
    3357
    b22
    2faS
    2tS
    abs
    33S
    358
    33b
    302
    esa
    BHP
    .3
    .7
    b. S
    13.0
    IS.b
    as.?
    33.0
    3 q . s
    t 5 . 3
    50. t
    .3
    75. b
    fab. b
    57.0
    tb. 8
    37. 9
    28 . P
    18. b
    S. b
    1.2
    .2
    NO + +
    PPM
    b5
    85
    182
    338
    515
    835
    1205
    Ifab3
    300t
    1S33
    15t
    ISbl
    Ifafa?
    Ibbt
    Ilb8
    55?
    stq
    3S2
    323
    Itt
    105
    COMPOSITE BSHC =
    BSCOt =
    BSN02-H- =
    
    
    BSHC •(• BS
    N02++=
    FUEL
    FLOW
    L B / M I N
    .01
    .Ot
    .07
    .10
    .12
    . lb
    .18
    .23
    .as
    .33
    .01
    .50
    .to
    .3b
    .30
    .at
    .20
    .lb
    .10
    .ot
    .01
    WEIGHTED
    BHP
    .02
    .03
    .30
    .57
    .8b
    1.13
    1. 15
    1.7t
    l.sq
    a. 22
    .02
    3.33
    a. sa
    a. si
    a. ob
    l.bb
    i.at
    .83
    .te
    .05
    .01
    .585
    5.125
    lO.tl?
    n.ooa
    AIR
    FLOW
    LH/MIN
    a.bo
    b . 28
    b. 35
    b. 7b
    b.28
    b.15
    b.13
    b.07
    b.Ol
    s.sq
    2.71
    S.b3
    S.52
    S.52
    " e T "
    ".52
    S.52
    S. 55
    S.b2
    S. b5
    a.t3
    BSHC
    G/HP HR
    St.bO
    28. ?q
    2.53
    1.33
    .77
    . st
    .38
    .37
    .as
    .as
    3S. b2
    .OS
    .15
    .lb
    .as
    .tt
    .fad
    1.17
    s.oe
    31.13
    57. SO
    GRAM. /BHP
    GRAM/BMP
    GRAM/BHP
    GRAM/BHP
    EXHAUST
    FLOW
    LR/MIN
    P.fal
    hisa
    b.t?
    b.8h
    b. tO
    fa. 31
    b.31
    b. 30
    b . as
    b.32
    
    10.12
    s . S2
    q. sa
    q. ?s
    q. ?b
    S.?2
    S.71
    q. 72
    ° . b H
    2. tt
    BSCO +
    G/HP HR
    b?.bO
    bb.Ot
    7.fa2
    t.be
    a. si
    i.as
    .83
    .S3
    3.73
    15. SO
    bl.Sl
    11.83
    a.tt
    1.33
    1.37
    1.80
    a.ss
    t.Sl
    S.Sfa
    fat. as
    100.78
    HR
    HR
    HR
    HR
    FUEL
    AIR
    RATIO
    .005
    .007
    .011
    .015
    .020
    .oeb
    .030
    .038
    .Ot?
    .05b
    .out
    .052
    .Ot2
    .038
    .032
    .025
    .021
    .Olb
    .011
    .ont
    .003
    BSN02t+-
    G/HP HR
    23.10
    32.03
    7.3t
    7. b?
    7.28
    8. 7t
    S.Sb
    11. tb
    ia.oa
    10. ta
    Sb.bt
    11. 3t
    10.73
    12. tb
    10. Sfa
    b.ei
    8.18
    8.83
    S. 7t
    50.28
    b8.87
    
    
    
    
        CONVERTED  TO  WET  BASIS
        CONVERTED  TO  WET  BASIS  AND  CORRECTED TO 75 GRAINS
        «ATER  PER  LB.  DRY  AIH
    
                             0-33
    

    -------
    PROJECT1 11-
    ENGINE1 PFrJK
    MODE
    
    
    1
    2
    3
    4
    5
    b
    7
    S
    S
    10
    11
    12
    13
    14
    15
    Ib
    17
    18
    IS
    20
    ?l
    MOilP
    
    J
    2
    ?
    4
    5
    b
    7
    H
    q
    1 fi
    1 1
    J 2
    1 3
    J 4
    15
    Ib
    17
    1 3
    1H
    20
    PI
    CV( L
    F N r, i ,\ p.
    SPEED
    KHM
    ^40
    1450
    145"
    1450
    1450
    145U
    1 4 5 U
    1450
    1450
    14 5 U
    b4ll
    2400
    24 OU
    2 4 0 LI
    2400
    2400
    240(1
    240H
    2*00
    24(Ju
    K4n
    HC
    PPM
    31fa
    228
    224
    222
    2nn
    208
    148
    148
    184
    100
    272
    bO
    132
    so
    S8
    142
    14b
    184
    240
    308
    304
    28bS-01
    INS 4.23b
    TORQUE
    
    LB-HT
    a.b
    2.b
    24. q
    4b.O
    73.5
    S5.8
    118.2
    143.1
    Jb5.4
    18b.4
    2.b
    lbb.8
    145.7
    12b.O
    105.0
    85.3
    b3.0
    43.3
    21.0
    3.1
    ?.b
    cot
    PPM
    2b3
    275
    33b
    35S
    2b7
    204
    177
    210
    541
    47b8
    28S
    3001
    bbS
    24b
    237
    289
    37S
    408
    385
    337
    302
    DATE OF TEST1 10-13-72 TEST NO. 3
    SERIAL NO.' 23bu&ii43
    POWEK
    
    BHP
    .3
    .7
    h . q
    12.7
    20.3
    2b.5
    32. b
    3S.5
    M-5 . 7
    SI. 5
    . 3
    7b.2
    bb. b
    57. b
    48.0
    3S.O
    28.8
    11.8
    S. b
    1.8
    •^
    NO + +
    PPM
    85
    85
    201
    304
    548
    837
    1228
    1470
    178S
    1143
    124
    2014
    1887
    1531
    Ilb8
    823
    53b
    34b
    221
    142
    104
    .E COMPOSITE BSHC =
    BSCO-t- =
    BSN02++=
    
    
    BSHC + BS
    N02++=
    FUEL
    FLOW
    LR/MIN
    .02
    .05
    .08
    .10
    .13
    .Ib
    .20
    .24
    .28
    -34
    .01
    .51
    .42
    .3b
    - SI
    .2b
    .22
    .17
    .13
    .10
    .01
    WFir,HTEH
    BHP
    .02
    .03
    .30
    ,5b
    .81
    l.lb
    1.44
    1.7*
    2.01
    2.2b
    .02
    3.35
    2.13
    2.53
    2.11
    1.72
    1.27
    .87
    .42
    .08
    .02
    .b45
    4.S44
    10.b21
    11. 2b?
    AIR EXHAUST
    FLOW FLOW
    L8/MIN LB/1IN
    2.b5 2. b7
    b.47 b.52
    b.49 b. 57
    b.5b b.bfa
    b.33 b.4b
    fa.2b b.42
    b.24 b.44
    b.21 b.45
    b.15 b.43
    fa. 13 (-.47
    2. 7b 2-77
    S . 5 8 1 n . o 1
    s . 8 7 10.21
    s . S 0 1 n . 2 b
    q. so m . ?i
    q . H 7 1 n . 1 3
    s . s b i n . 1 8
    s . s b l n . 1 3
    s . q b J. o . n s
    10.00 10.10
    2.52 ?-53
    BSHC BSCO+
    G/HP HR G/HP HK
    3^.?b 57.57
    27.05 bS.OO
    2.H2 8.42
    1.54 4.S5
    .84 2.24
    .b? 1.30
    .31 -12
    .32 .SO
    .34 2.00
    .17 15.75
    31.12 bS.11
    .10 10.45
    .27 2.72
    .21 l.lb
    .28 1.33
    .4S l.S?
    .b8 3.52
    1.24 5.50
    3.33 10. bb
    22.81 49.7?
    31.77 b2.83
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    GRAM/BHP HR
    FUEL
    AIR
    RATIO
    .nob
    .007
    .012
    .015
    .021
    .02h
    .033
    .038
    . 04b
    .055
    .OUb
    . 051*
    . 04?
    .037
    .(.131
    .02b
    .022
    .017
    .013
    .010
    .005
    BSN02-H-
    G/HP HR
    30.57
    32.11
    8.28
    b.88
    7.54
    8.78
    10.48
    10. 3b
    10.81
    10.55
    4fa.35
    11.53
    12. bO
    11.78
    10.73
    1.23
    8.18
    7.b4
    10.03
    34. 4b
    35.53
    
    
    
    
    +  CONVERTED  TO WET  BASIS
    t-f CONVERTED  TO WET  BASIS  AND  CORRECTED  TO  75  GRAINS
       WATER PER  LB.  DRY AIR
                            D-54
    

    -------
    PROJECT'  ll
    ENGINE1  PERKINS t.?3b
    DATE OF TEST' 1.0-13-72  TEST NO.t
    SERIAL NO.' ?3bUElSt3
    MODE
    1
    2
    3
    4
    5
    b
    7
    8
    q
    10
    11
    12
    13
    It
    15
    lb
    .17
    18
    IS
    20
    ?1
    E^f.-I'ME
    S P F E U
    bin
    It 5Q
    It 511
    l*5n
    1 1 b U
    It50
    It 50
    It50
    It 50
    It 50
    btO
    2 1 0 0
    2tQO
    2t(jO
    2 1 o 0
    2 too
    2*1)0
    2 t Q u
    2tnu
    2tnn
    Ml,
    Tiiw.gu
    LB-FT
    2.
    2.
    2t .
    t7.
    70.
    St.
    US.
    It3.
    Ibb .
    .165.
    2.
    Ib1*.
    It 5.
    127.
    105.
    85 .
    b3.
    t 2 .
    22.
    2.
    2.
    E P n *' E R
    6HH
    b
    b
    q
    3
    q
    5
    5
    1
    8
    1
    b
    1
    7
    4
    0
    3
    1.1
    n
    3
    b
    b
    
    
    b
    13
    l s
    2b
    33
    39
    tb
    51
    
    75
    bb
    58
    ts
    3S
    28
    1 s
    10
    1
    
    .3
    .7
    . q
    .0
    .b
    .1
    .0
    .5
    .0
    .1
    w 3
    .0
    .b
    .2
    . 0
    .0
    . fl
    .2
    .2
    .2
    .3
    FUEL
    FLOW
    LH/MIN
    .01
    .Ot
    .07
    .09
    .13
    .lb
    .18
    .23
    .25
    .3t
    .01
    .51
    . t3
    .38
    .31
    .25
    .22
    .18
    . 13
    .OS
    .01
    AIR
    FLOW
    LB/MIN
    2
    b
    b
    (,
    b
    b
    b
    b
    b
    b
    2
    q
    s
    q
    q
    q
    q
    q
    q
    q
    2
    . bb
    .tb
    . sq
    .39
    .31
    .2t
    .17
    .17
    .Ob
    .01
    .b2
    .71
    .52
    .b2
    .Sb
    .52
    .b2
    .b2
    .b7
    .b5
    .SO
    EXHAUST
    FLOw
    2.
    b.
    h.
    b.
    b.
    b.
    b.
    b.
    b.
    b.
    2.
    10.
    q.
    10.
    9.
    s.
    9.
    s.
    Q ^
    9.
    2.
    b7
    50
    tb
    t8
    tt
    to
    35
    + 0
    31
    35
    b3
    22
    95
    00
    8?
    77
    Rt
    MO
    BO
    ?t
    51
    FUEL
    AIR
    RATIO
    .OOb
    .OOb
    .011
    .Olt
    .021
    .02b
    .029
    .038
    .nti
    .05?
    .DOt
    .052
    .Of;
    .otn
    .03.?
    .02?
    .Or>3
    .(.UP
    .nit
    .009
    .005
    Mil OF
           PPM
                                WFir,HTFD  BSHC
                       BSCU +
                               BSN02++
                   PPM
                          PPM
      BMP
    G/HP HH  G/HP hk  G/HP HR
    1
    ?
    3
    4
    S
    b
    7
    fl
    4
    in
    11
    J2
    13
    ) t
    15
    A b
    17
    IS
    IS
    en
    21
    CYCLE
    
    
    
    320
    2hn
    1RB
    19b
    ISt
    202
    ISt
    Itb
    182
    15b
    2tO
    32
    12t
    8b
    130
    Ibh
    IbO
    198
    2tO
    318
    320
    250
    838
    2bO
    2Sb
    231
    155
    130
    Ib3
    559
    t?tt
    213
    2890
    b5t
    2t5
    237
    27b
    39?
    tQ7
    373
    338
    289
    COMPOSITE
    
    
    
    
    
    BSHC +
    101
    SI
    197
    38.3
    b57
    9tl
    130b
    Ih57
    1998
    1989
    121
    1972
    2027
    1751
    1183
    815
    5tS
    3t7
    22b
    139
    92
    BSHC
    BSCO+ =
    8SN02t+- =
    BSN08 + 4- =
    
    
    
    
    
    1
    1
    1
    2
    2
    
    3
    2
    2
    2
    1
    1
    
    
    
    
    .
    t .
    11.
    11.
    .02
    .03
    .30
    .57
    .Hb
    .15
    .t5
    . 7t
    .03
    .25
    .02
    .30
    .S3
    .Sb
    .11
    .72
    .27
    .8t
    .t5
    .05
    .08
    bSl
    70 b
    059
    710
    35.
    30.
    2.
    1.
    .
    m
    m
    1
    ^
    *
    2b.
    .
    .
    *
    s
    a
    ^
    i.
    3.
    3t.
    33.
    31
    78
    33
    29
    8t
    b5
    tq
    31
    33
    2b
    US
    Ob
    2t
    20
    35
    55
    72
    33
    Ot
    07
    18
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    55
    5b
    b
    3
    2
    1
    
    
    2
    15
    tb
    10
    2
    1
    1
    1
    3
    5
    q
    78
    59
    HR
    HR
    HR
    HR
    .00
    .11
    .t2
    .87
    .00
    .00
    .bb
    .bS
    .01
    .51
    .09
    .35
    .57
    .11
    .28
    .82
    .58
    .t7
    .t2
    .Ob
    .b7
    
    
    
    
    3b
    35
    7
    8
    q
    q
    10
    U
    U
    10
    t2
    11
    13
    13
    10
    8
    8
    7
    S
    t8
    31
    
    
    
    
    .58
    .tt
    .Sb
    .21
    .33
    .S8
    .8b
    .bl
    .83
    .3b
    .St
    .bl
    .08
    .00
    .51
    .83
    .Ot
    ,bt
    .38
    ,b8
    .11
    
    
    
    
     +   CONVERTED TO WET BASIS
     ++  CONVERTED TO WET BASIS AND CORRECTED 10 75 GRAINS
        wAIER  PER LB.  DRY AIR
                              D-35
    

    -------
    PROJECT1 11-
    ENGINE
    MODE
    
    
    1
    2
    3
    4
    5
    b
    7
    8
    q
    10
    11
    12
    13
    1*
    15
    Ib
    17
    18
    19
    20
    21
    nr,.,h
    
    i
    •5
    ^
    *
    5
    b
    7
    S
    u
    in
    1 1
    12
    J 3
    1*
    1 5
    Ib
    1 ?
    Ltf
    1 ^
    2>1
    2 I
    CYCLE
    ' p^f
    FNGINI
    "PEED
    RPM
    h*u
    1*50
    1 * 5 U
    1*50
    l*mi
    1*50
    l*5n
    1*50
    1*50
    1*50
    b*U
    cf *OU
    2*011
    2*00
    2*nn
    2*on
    2*00
    2*nn
    2*00
    2*00
    b*0
    Hf
    PPM
    320
    302
    2?h
    272
    ?bb
    2bO
    25*
    150
    2lb
    1*8
    250
    bO
    150
    9*
    110
    152
    Ib*
    198
    2bO
    320
    32*
    •28b9-U]
    
    DATE OF
    TEST1 10-18-72 TEST NO. 5
    
    -------
    PROJECT' u-?8bq-oi
    ENGINE
    MOPE
    
    
    l
    2
    3
    f
    5
    b
    7
    M
    q
    10
    u
    12
    13
    If
    15
    Ib
    17
    18
    IS
    20
    ?1
    M 0 0 t
    
    1
    2
    q
    1
    5
    b
    7
    H
    q
    1')
    1 1
    1 ?.
    1 -»
    If
    14
    Ib
    17
    18
    iq
    en
    g I
    CYCLE
    HE*K]
    F N r; i ^ E
    SPEED
    RpV:
    bf u
    If 511
    1>*50
    If 5ll
    If 50
    If 50
    If 5n
    If 5il
    If 50
    1 f 5 U
    bti'
    2f on
    2 f n u
    c'f nu
    2f no
    2 f fin
    2t nn
    2 f n u
    2 f n f,
    2 f o r>
    bf i)
    HC
    PPM
    31b
    2S8
    272
    2b2
    25f
    25b
    2f b
    1S2
    25f
    lib
    232
    b2
    IbO
    108
    122
    150
    Ib8
    208
    270
    310
    31f
    COMPOS
    :NS f.a
    '3b
    
    T n P a U E P n h E R
    
    
    LB-FT
    2.
    2.
    2f .
    f b .
    b8.
    Sb .
    US.
    If 0.
    Ib5.
    181.
    1.
    Ib5.
    If ?.
    127.
    105.
    P2.
    bi.
    f2.
    21.
    3.
    ?-
    CO +
    PPM
    2b3
    275
    33b
    3f b
    2b8
    isn
    175
    303
    1227
    532b
    251
    18f b
    801
    233
    213
    2bf
    3f 1
    382
    3f 8
    312
    27b
    ITE
    b
    b
    q
    0
    3
    8
    5
    5
    ^
    2
    9
    a
    1
    ^
    0
    7
    7
    U
    0
    q
    b
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    BHP
    -?
    .7
    b. S
    12.7
    18.8
    2b . 5
    33.0
    38.8
    fS.7
    50. 0
    .2
    75. b
    b?.2
    58.2
    f 8. n
    37.8
    28.2
    1 S. 2
    q . fa
    J. . R
    .3
    N 0 + 1
    PPM
    b8
    b8
    i?q
    317
    5f 8
    85f
    1305
    1778
    2038
    issi
    130
    203S
    2023
    Ibb8
    1217
    857
    53f
    372
    231
    if q
    qs
    BSHC =
    BSCOf =
    BSN02-H- =
    bSHC +
    RSN02++=
    DATE OF
    SERIAL
    FUEL
    FLOW
    L B / M 1 N
    .01
    .Of
    .07
    . 10
    .13
    .18
    .23
    .2b
    . 2S
    .3f
    .01
    .51
    .f3
    .37
    .31
    .27
    .21
    .18
    .13
    . HS
    .OJ
    ^ E I f, H T E 1
    BHP
    .02
    .03
    .30
    .5b
    .83
    l.lb
    I.f5
    1.71
    2.01
    2.20
    .01
    3.33
    2 . Sb
    2.5b
    2.11
    l.bb
    1.2f
    .8f
    .f2
    .OB
    .0?
    .757
    f .712
    11.112
    11.870
    TEST1 10-
    NO.' 23bUE
    AIR
    FLUW
    L R / M I M
    2.52
    b.50
    b.f 3
    b.f 5
    b. 3f
    b.27
    b.18
    bl If
    b.10
    5.q?
    2.70
    q. bi
    S. 27
    q. 37
    S. b?
    q . b?
    S.80
    s. 83
    q . qn
    q.qo
    P. 51
    ;> bSHC
    G/HP HR
    33.02
    35.50
    3 . 3S
    i . 7q
    1.15
    .82
    .b3
    . f 2
    . l+7
    .32
    51.fe7
    .11
    .30
    .21*
    .33
    .52
    . 7S
    1 . f 3
    3.72
    22. 72
    32. b8
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    GRAM/BHP
    18-72 TEST NO.b
    iqf 3
    EXHAUST
    (•LOW
    LB/MIN
    2.53
    b.5f
    
    b.55
    b.f?
    b.f5
    b.fl
    b. f 0
    b . 3S
    b . Pb
    2.71
    10.12
    q. ?o
    q . 7f
    R. qs
    ° . qf
    J n . n i
    1 o . n i
    1 o . n 3
    q . qq
    P.5P
    BSCU +
    G/HP HR
    Sf .80
    b5.3f
    8.35
    f .70
    2.f2
    1.22
    . 8S
    1.31
    f.52
    17. 5f
    11J.H7
    b.50
    3. Of
    1.03
    1.17
    1.82
    3. IS
    5.23
    S.55
    f 5.5b
    57.25
    HR
    HR
    HR
    HR
    
    FUEL
    AIR
    R A T I C
    .005
    .007
    .011
    .Olb
    .021
    . O2q
    .037
    .Of 2
    .Of 8
    .058
    .OOf
    .053
    .Of b
    .osq
    .032
    .028
    .022
    .018
    .013
    .ooq
    .005
    
    
    
    l
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    B3N02++
    G/HP
    23.
    2b.
    7.
    7.
    8.
    8.
    10.
    12.
    12.
    10.
    Sf .
    11.
    12.
    12.
    10.
    S.
    8.
    8.
    10.
    35.
    33.
    
    
    
    
    HR
    32
    52
    PS
    Ob
    12
    SS
    S5
    b7
    32
    77
    81
    7S
    bl
    05
    S3
    73
    20
    3b
    f 2
    bf
    f f
    
    
    
    
    CONVERTED TO ^ET BASIS
    CONVERTED TO ^ET BASIS AND CORRECTED  TO  75  GRAINS
    txAIER PER LB. DRY AIR
                         D-37
    

    -------
                           APPENDIX E
    
                  GRAPHICAL PRESENTATION OF
            EMISSIONS FROM GASOLINE ENGINES USED
    IN FARM,  CONSTRUCTION,  AND INDUSTRIAL APPLICATIONS
                              E-l
    

    -------
                                                                                            .1
                             PEPCE.AJT OF TULL LOAD
                                                                                                                 PERCENT OF FU LL LOAD
      iC-.'Jf'V  t-1 HVDROChPLON  EM ISSlOMC   FROM  A  FORD  G-500O
       EN T-. INC  AS A  FUNCTION OF  LD PiD  AT FOUR  ^PEE OS,
    FIGURE E-Z. HYDROCARBON EMISSIONS FROM A HERCULES G-2300
           ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
    cJ  6OOO  -
    £  50CO  -
                              PERC.EMT OF  FULL LOAD
                                                                                                  2400 rp
                                                                                                                                          2000 rprr
       ENGlNL  AS  A FUNCTION  OF  LOAD  AT   FOUR
                                                                                                                           50         75
                                                                                                                   Percent of Full Load
                                                                                         FIGURE E-4.HYDROCARBON EMISSIONS FROM A WISCONSIN
                                                                                           VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                          E-2
    

    -------
                           ^s        so
                           PE.RCEWV  OF FULL
     is
    LOKD
            --. C*\RE,ON. MONOXJOt  EMISSIONS   FSOK1  A FORD OSOOO
           E-  ft- A.  FUKJCTlOtO OF LX)AD  ftT   FQOH SPEEDS
                                              .1
                                                                                                                    50         75        100
                                                                                                            PERCENT OF FULL LOAD
                                  FIGURE E-6. CARBON MONOXIDE EMISSIONS FROM A HERCULES G-2300
                                           ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                       S  5
                                                                                          3  -
    
    
                                                                                          .1
                                                                                                                                          2000 rprr
                           25        50        76
                           PERCENT OF FOUL LOKD
                                                                25         50        75
                                                                  Percent of Full Load
    FIGUREEi CARCON MONOXIDE  EMISSIONS FROM  A  j.i,
    159 G  EM&iWE ftS  A VUKCTlON  OF LOAD  AT FOUR
                                        FIGURE E-8.  CARBON MONOXIDE EMISSIONS FROM A WISCONSIN
                                            VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
    

    -------
         ^<-  h
                              25         SO         75
                             PEKCEMT OF  FULL LOA.&
                                  E. M  EMllHOKJi,  FROKl  A  FOP-,0
                                   Oti  Or LO/SL  AT  FOUR  SfEEDl
                                                                                                                              50          75          100
                                                                                                                      PERCENT  OF FULL LOAD
    FIGURE E-10.OXIDES OF NITROGEN EMISSIONS FROM A HERCULES G-230
               ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
                                                                                            S JOOO -
                                                                                                                                     2800 rprr
                                                                                                                                 2400  rprr
                             25          50
                             PERCENT OF  FULL.
                                                                                                                                                      000 rprn
                                                                                                                      Percent of Full Load
    Fir.nPt E II OMDEs OP NiTROCrfM  EH\SS\ONS,  FROM  ft J.I. C
    15^0 trJGlNL Al  ft FUNCTION  OF LOhD ftT  FOOR  SPLE.D3
                                                                                      FIGURE E-12.  OXIDES OF NITROGEN EMISSIONS FROM A WISCONSIN
                                                                                              VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
    

    -------
                       APPENDIX F
    
     TABULAR PERFORMANCE AND  EMISSIONS DATA
          ON GASOLINE ENGINES USED IN FARM,
    CONSTRUCTION,  AND INDUSTRIAL APPLICATIONS
                          F-l
    

    -------
    
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    &
    9
    I 0
    1 I
    1 2
    1 3
    1 4
    1 S
    1 &
    I 7
    I 8
    l 9
    2O
    2 \
    Z 2
    2 3
    LNCINE
    SPEED
    RPM
    G15
    140O
    1400
    1400
    1400
    1400
    1400
    1400
    1400
    1400
    dfcO
    210O
    2 100
    2100
    2100
    2100
    2 100
    2100
    2 100
    2K.O
    G.45
    1450
    ZISO
    O&SERVED
    PQVJER,
    ut>
    
    
    
    
    &.S
    l 3,0
    i 8.0
    25. &
    il.8
    i&,2
    44.4
    52. a
    
    
    70.4
    58. &
    50,4
    47.0
    2,'-- .(.
    73.2
    IG.8
    8.4
    
    
    
    
    
    
    
    
    FUEL
    FLOiX),
    lb-A.
    3.2
    7.3
    10. Z
    1 -9
    15-1
    17.4
    19.4
    22.3
    25.4
    2R.6
    2.1
    L7.7
    30.7
    2S.5
    2S.I
    20. 4
    18.4
    10. &
    12.0
    9-7
    3.2
    3.3
    3.3
    TEMR, °F
    INTAKE
    A>R
    Gh
    72
    11
    IB
    &o
    1C-
    !
    1164
    1112
    10^5
    9&9
    923
    ft&2
    life
    42 C
    413
    RESTRICTIONS
    INTAKE,
    Lw V\.0
    0.0
    0.2
    0.4
    0.5
    O.I
    1. \
    1.4
    1.5
    l.H
    2-8
    Q. 1
    4. ft
    3.S
    3.0
    2.2
    1.8
    1.3
    0.')
    "«(£,!
    j*\ (-A
    0.1
    O.O
    O.O
    EXHAUST
    it\ Ha
    3.0
    0,0
    0,0
    o.o
    0.0
    0.0
    o.o,
    O.I
    o.i
    0.2
    0.0
    0.4
    0,2
    0.2.
    O.I
    0.1
    O.I
    0.1
    (• r,
    O.o
    o.o
    o.o
    
    MANIFOLD
    VACUUM,
    in l-\,- 0^
    r ••/•!"
    ND^R
    HC,
    ^«cfe
    33(o
    584
    313
    199
    105
    13G
    I2t
    US
    9fc
    6C,
    264
    147
    73
    8S
    9^
    ns
    I3U
    13£
    1?G
    179
    320
    Z .'*0
    ." -C
    ND>R
    CO,
    %
    1.^5
    (o.52
    5.41
    6.42
    5.18
    4.(oO
    4.S9
    3.B4
    5.1C,
    2.)?
    ?.n
    2.:?
    3.03
    3.42
    3.R7
    4-08
    4.S9
    4-BI
    4.93
    ^.08
    2.71
    2.I&
    Ml
    ND1R
    co,,
    
    9.t8
    l.SO
    9.02
    ft. 93
    9.12.
    9,(D9
    0 ti O
    / - O 7
    10. so
    10.13
    10.75
    10. tS
    11.39
    10-74
    lO.tl
    10.47
    >o.i&
    9.ft7
    9.75
    9.4 ft
    ft.&O
    9.6V
    G.Ol
    4.0O
    ND1R
    NO,
    l*~
    \95
    122
    3\1
    4 It
    4C,(»
    (c.75
    P'9h
    1139
    1234
    l 1 12
    123
    noi
    ! d 1 0
    1SOO
    1495
    I2fc4
    1013
    782
    3tQ,
    ISG
    B9
    33
    23
    e.L.
    MO,,
    t-J"*
    72
    to
    245
    344
    440
    0.45
    327
    990
    11 C0£
    Ufc^
    10
    I94t
    1490
    1379
    1310
    1140
    5f.&
    &9
    -------
    
    
    MODE
    1
    2
    3
    4
    5
    G
    7
    6
    __ 9
    1 0
    1 \
    1 2.
    1 3
    1 4
    1 S
    1 G
    I 7
    I 6
    1 9
    2O
    2 \
    Z 2
    2 3
    E.NC.INE
    SPEED
    RPM
    (bio
    1400
    400
    1400
    1400
    1400
    1400
    1400
    14.0ft
    1400
    600
    2100
    2100
    2100
    2100
    2100
    2100
    2100
    2'<00
    2100
    fefci
    1450
    2150
    OE6ERN/ED
    POVJER,
    U|>
    
    
    
    
    (o.G
    13.3
    20,0
    2
    33.2
    3?.9
    4fc..C.
    52. 8
    
    
    70.9
    (f 2.0
    £3.0
    44.1
    1.5.2
    2'o.B
    '7.8
    8.9
    
    
    
    
    
    
    
    
    FUEL
    FLOlM,
    lb-A»
    30
    7.1
    ft.')
    M.I
    \4.4
    lfe.2
    l5
    \2l7
    744
    1101
    \?£9
    1199
    1164
    1 10G
    1053
    973
    899
    P.7I
    &bb
    436
    40|
    RESTRICT 10 MS
    NlAW
    L«rtzO
    a >
    o.r
    •O.i
    14
    O.H
    O.1)
    1. ?•
    l.G,
    / . £
    7 -7
    Q.\
    4 8
    3.8
    2.1)
    7.2
    i-7
    1.3
    o.?,
    O.Cr
    .'!.!
    O.I
    3.0
    0,0
    EXHAUST
    Lh Ho
    r).o
    0.0
    -, r-
    fl ;'
    O/;
    ^
    "• ;
    i
    o.\
    o.l
    0.0
    0.1
    ' _
    07
    0.?
    .•• -,
    0.1
    C.. 1
    O.r
    f; r
    C, f
    f .r
    r."
    MANIFOLD
    VACUUM,
    l" ^
    19.4
    19.4
    11.9
    ifc.i
    13.9
    M.9
    9.3
    7.2
    4.7
    2.0
    \9.7
    3.1
    ..0
    8.1
    vo,9
    13.4
    14.8
    lfe-9
    *&.&
    2<\0
    '').',
    -.''.4
    '> \ 4
    HA
    HC,
    J.HC-
    G550
    11,100
    wo
    4400
    1900
    r,T/;.
    ' w
    i 000
    ;f.^
    :(,00
    CcOOO
    I1) {TO
    ?100
    MD\R
    HC,
    ^-C6
    It?
    290
    ?43
    '7?,
    15-
    117
    12C-
    1 16
    9fe
    ^fc
    Z2G
    76
    7&
    ~" 1 "~
    2700
    2900
    3100
    3SSO
    G900
    7000
    P4C'0
    3ft, SOO
    2&.50Q
    8S
    95
    U4
    135
    ISO,
    244
    405
    2G.3O
    4040
    ND(R
    CD,
    %
    2.52.
    G.34
    6.4C,
    L.05
    •1 .7 I
    4.4?
    4.04
    Z.U
    3,0ft
    3.03
    2.35
    2.21
    2-93
    3.15
    3.G.9
    4.01
    4.3C,
    4,7?
    4 .t^
    s.n
    2.70
    2.SG
    1-94
    NDIR
    C02,
    y0
    9, P>3
    7.55
    8.t3
    R.U
    B.94
    9.12
    9.35
    9.73
    in.B
    n.ii
    9.93
    U.IS
    \0.46
    10.09
    10.07
    >0.04
    9.t.4
    9.55
    9.Zfi
    &.41
    9.4t
    5.70
    3.84
    ND1R
    NO,
    t>K
    89
    3R
    2 1 1
    219
    G9C
    fo2\
    950
    1205
    133&
    ',0^1
    69
    i?B|
    ''97
    £> ^
    I4iol
    12 tt
    1071
    CcM
    440
    132
    89
    93
    1\
    CA.
    NO,,
    \>K
    10
    58
    i&9
    348
    503
    5ft?
    755
    UO
    1220
    1\23.
    70
    1&T?
    1397
    »iil
    I3\0
    mi
    ^84
    i20
    SH
    10S
    59
    10.9
    8.2
    C. L.
    MO,
    tt"
    3
    45-9
    3&G
    9(c
    5G
    7.2
    4.7
    P5LAR.
    0^
    /O
    2.3
    1.9
    1.5
    l.G
    1.5
    1.&
    1.5
    1.4
    1. 1
    0.9
    1.7
    0,8
    0.7
    7
    0.1
    0.7
    0.7
    0-7
    0,9
    1.7
    2,3
    7.8
    10. 2
    ENGl
    RUN
    NE
          FORD
    -SOOO
                    DATL
       2.
    u  U,  29.04
    WEI
    DRY
    &UL& TE MP.
    BULB TEM R,
                                                                   72.
    

    -------
    
    
    MODE
    1
    2
    3
    4
    5
    6
    7
    6
    9
    1 0
    I \
    \ 2.
    I 3
    1 4
    ! 5
    1 G
    _ I 7
    \ 8
    I 9
    2O
    2 \
    Z 2.
    2 3
    tNClNE
    SPEtfc
    RPt-1
    (oSS
    14-00
    1450
    1400
    1400
    1400
    1400
    1400
    1400
    1400
    GSS
    2.1OO
    210O
    2\00
    2. 10O
    2.100
    ZtOO
    Z\00
    2100
    2 \00
    &S5
    145O
    215O
    OBSERVED
    P&VJER,
    Ut>
    
    
    
    
    6,90
    442
    4^>9
    RESTRICTIONS
    INTAKE,
    in W20
    O. \
    0.2
    O.Z.
    0.4
    0-7
    \.o
    1.4
    \.7
    1.9
    2.7
    o.i
    4.Q,
    3.9
    2-&
    2.3
    \-8
    1.2
    0.9
    O.G
    0.3
    O.I
    n.c
    Ci.O
    EXHAUST
    i>v H3
    o.o
    0.0
    0,0
    0.0
    o.o
    0.0
    0.1
    0,1
    o.i
    0.2
    0.0
    0.4
    0.3
    0.3
    0,2
    0.2
    M
    O.I
    0.0
    0.0
    o.o
    0.0
    r .r
    MANIFOLD
    VACUUM,
    in l-Vj
    \9.7
    w.&
    l&.S
    It.S
    14.0
    12.2
    10-2.
    7.7
    5.1
    2.4
    v%9
    1.2.
    5-9
    8-9
    H. 1
    12,9
    »&.o
    \(o-9
    »8-2
    20.1
    20.|
    ;'\.4
    2;.G
    Ft A\
    HC,
    ^-C
    «)000
    12,700
    4950
    4300
    4000
    3550
    2950
    2.850
    2.700
    2fcSO
    8950
    2200
    2150
    1300
    IfcSO
    2&SO
    3300
    3500
    3700
    fcsoo
    9000
    2>(o,000
    34,CC\0
    ND\R
    HC,
    tt>~C6
    zaO>
    4 SO
    sio
    »97
    !<<,£>
    \55
    13£
    1\5
    105
    9S
    2>\G
    9t
    7t
    4.40
    3.94
    3.39
    2.84
    3.25
    2.\S
    2.17
    3.0\
    3.30
    3.51
    3.9S
    4.45
    4.Q>&
    4.90
    5.1G
    2.88
    2.47
    2.li
    NDIR
    coa/
    %
    10.40
    7.60
    9.20
    9.fc8
    9.79
    10.00
    103?
    I6.fe4
    11.07
    10-94
    10. £0
    11. S3
    10.93
    10. (o5
    10.43
    10.21
    S.99
    9-t.l.
    *).5I
    b.t,5
    9.79
    G.OS
    3.&3
    NDIR
    NO,
    t>t»»
    e.9
    S7
    211
    43>7
    SfcS
    (o9C.
    8&>2
    1 IM-
    1308
    c>80
    ft9
    103.5
    140T
    \47£
    1413
    1157
    992-
    779
    475
    145
    77
    Co9
    71
    CA.
    MO,,
    1?K
    78
    55
    191
    2>83
    518
    751
    789
    lOfeO
    11 &5
    I0fe9
    C>8
    190S
    \450
    1371
    1317
    1154
    &95
    (i>40
    42C,
    1 15
    <0\
    \0.0
    6.S
    C, L.
    MO,
    n»-
    70
    43
    H3
    383
    5\|
    (o4.8
    757
    103.7
    \2\0
    940
    fc4
    1&5\
    \4«7
    1339
    1251
    till
    &52
    G30
    2.64
    \10
    50)
    G.8
    S.O
    POLAP.
    oa/
    %
    2.1
    1-7
    1.0
    1. 1
    1. 1
    1. 1
    1. 1
    M
    KO
    0-9
    2-i
    0.7
    O.C,
    O.b
    o.t
    0.1,
    07
    0.7
    0.8
    l.(o
    2.5
    7.8
    9.7
    ENGI
    RUN
               FORD   G-SOOO
    DATE  -'/3O/72
    
    BAROME.TER,  L«
                     TEMP.
    28.99   DRV BULBTE.MR
    74
    

    -------
    
    
    MODE
    1
    
    
    3
    4
    5
    6
    7
    6
    9
    i 0
    
    1 1
    1 1
    1 3
    i 4
    1 5
    1 G
    ! i7
    i 'i
    r
    L_L?
    
    1 O
    !
    '- ''
    
    
    
    - ;
    E.NCINE
    SPEED
    RPM
    ~) r\r\
    
    
    \ 4OO
    1400
    1400
    14-00
    1400
    1400
    1400
    1400
    1400
    ftT
    (oo-}
    2100
    2100
    2100
    2100
    2100
    2100
    2100
    2 1 00
    
    2 1 00
    
    i£>-;C
    
    
    
    ^TTT;
    OftStRVtD
    POWER,
    tvt»
    
    
    
    G.G
    14.0
    20.0
    Z7.0
    33.2
    "2 G 0
    4-(o. v)
    53.9
    
    
    72.4
    &>2.0
    53.0
    44.1
    35.2
    2t.3
    n.8
    8.9
    
    
    
    
    
    
    
    	
    FUEL
    FLOvJ,
    lb~A,
    0 o
    3. 2
    
    .^
    8.7
    1 1,1
    13.5
    iG.t
    \b.9
    20.7
    23.8
    27.2
    
    3. 1
    55. .1
    31.2
    17,4
    24,ft
    22.1
    \9.3
    15,5
    12.9
    
    7,0
    
    ~AJ
    
    -5. L
    
    3,5
    TEMT
    INTAKE
    AIR
    r^-i
    
    •a
    
    INTAKE,
    i.* WjO
    
    ti. I
    
    o,/
    0-7
    o.1)
    1.3
    l.fc
    1.8
    2-8
    
    . 1
    4.8
    3.7
    2.8
    7.3
    \.&
    1-2
    v-),1)
    o.o
    
    n> !•
    
    0 . \
    
    
    
    
    CTIOMS
    EXHAUST,
    l« Ha
    p. r\
    
    
    O. O
    0.0
    o.o
    o.o
    0.0
    o.o
    0,1
    0. 1
    0.3
    
    .0
    0.5
    0.4
    0.3
    0.1
    0.1
    o.i
    o.l
    o.o
    
    c.c
    
    0. i>
    r r
    
    
    11 '^
    MANIFOLD
    VACUUM,
    in A5
    ' T •}
    '. /. — '
    
    \Pl.l
    14,3
    n-9
    •).•)
    7.S
    5.1
    2.1
    
    > 7- o
    3-1
    Q>.2
    9,0
    11.4
    17.9
    \L.O
    10,. 7
    JB.(r.
    
    
    
    iO.O
    .
    
    
    •;'. i , 7
    FIA
    HC
    I>HC.
    
    8^00
    
    50OO
    4400
    4000
    3700
    3000
    2850
    2 £50
    2500
    
    oleOO
    2200
    2300
    ?S50
    2BOO
    3000
    3200
    3^00
    3700
    
    tiOoo
    
    i_00
    
    
    
    41,000
    ND\R
    HC,
    ^•"Cc
    
    T-J-I
    
    523
    210
    ns
    I3G
    137
    iot
    9&
    7fc
    
    1 o2
    It
    *>«
    
    1 O 1
    
    213
    440
    581
    7 1C,
    ?>74
    991
    liOfc
    1080
    Qr\
    7U
    19&I
    1549
    1497
    1424-
    1257
    1038
    12G
    3G5
    
    132
    
    89
    
    7 "S
    
    71
    C.L.
    NO,,
    \=K
    
    (.r/
    
    o
    113
    4-99
    
    jftn
    \37?
    136C,
    1285
    1144
    897
    (o42
    384
    
    103
    
    (oO
    
    10,0
    
    6.8
    C, L.
    MO,
    I>H
    
    5S
    
    I(o4-
    343
    473
    (o03
    700
    9o&
    y\2s
    ^H
    f«f\
    
    1&45
    \ D 7fo
    1333
    \2B5
    1047
    BS4
    (o21
    331
    
    9 v>
    
    54-
    
    7 |
    
    S.I
    POLAR.
    o,,
    7.
    •^ r
    i. to
    
    2. 3
    \ i
    i . _j
    1.4
    \,2
    1.3
    \,1
    I- 1
    0,9
    
    ./.
    0.9
    0.8
    0,6
    O.b
    0.&
    0.&
    0.&
    1.0
    
    '•7
    
    2.-S
    
    '• /
    
    9.2
    cvsoo
                    e>,-,RO
    

    -------
    
    
    MODE
    
    
    
    Z
    3
    4
    5
    fe
    7
    S
    9
    I 0
    
    1 1
    1 Z
    1 3
    1 4
    1 5
    _A 7
    1 9
    
    1O
    
    z \
    
    z z
    
    z 3
    E NCI ME
    SPEED
    RPM
    ~7 r\p>
    
    
    l/LUO
    1400
    1400
    1400
    1400
    1400
    1400
    '.4,00
    14 DO
    
    / uu
    2100
    2100
    2100
    2100
    2_\00
    2100
    r-oo
    
    I ['0
    
    (o 7r>
    
    145O
    
    
    ObSERMT D
    POWER.
    'oVf
    
    
    
    1 i.3
    20.0
    2(o.(o
    33.2
    39-9
    4 ^
    
    " ^
    •n. /
    P..4
    13.7
    n.7
    2\.0
    23.8
    2R.2
    .j _
    _>. 2
    34.4
    32.2
    27.2
    24.4
    22.5
    18- 9
    \2-l
    
    / • 2-
    7 0
    -J • /-
    
    3.3
    
    , 3
    TEMT
    IN1AK-
    AIR
    ^
    >--
    
    72
    /4
    7\
    7 1
    70
    
    / 0
    79
    77
    77
    7C
    7'4
    74
    
    
    
    /4
    
    o2_
    
    /4-
    3, °F
    
    
    ' ' r
    .' Z --
    
    792
    02-1
    i OS. Pi
    1 1 32
    1 i n -}
    \ \ -1 Q
    f ? n
    ^jU
    1274
    1231
    \17£
    1126
    092
    939
    K4
    
    ;nl
    
    Slo
    4-j -i
    i 1
    
    \ v>
    RE5"VR\
    IN1AKE
    "Hi°
    
    
    
    0.2
    0.2
    o.ft
    1 .2
    I.C,
    ?. 1
    n r)
    
    . i
    4.7
    3.7
    2.9
    \.&
    1.7
    I.I
    0.9
    O.C
    
    ' •-•
    
    '.VI
    r
    <>.'
    
    
    CTlOMS
    EXHAUST
    ih H.I
    
    
    
    0.0
    C.I
    0. 1
    0,1
    0.7-
    0.3
    0.4
    0.4
    
    • i. 0
    O.fc
    0.4
    0.3
    0.2.
    0.2
    0. \
    0. \
    D.O
    
    0- C
    
    
    ,t
    • ^
    
    
    MANIFOLD
    VACUUM,
    in K3
    
    ^ <•), j
    
    12.4
    10,2
    7.C,
    c.o
    2.(c
    
    0. 0
    l 1.4
    13,4
    17.0
    \ h. (r.
    
    / 0.. 2
    
    W-fi
    -,
    ^ m
    , .-
    
    FIA
    HC,
    )>»»«. C-
    
    / 2O(j
    
    >4 ,4 00
    4700
    4000
    3 (.00
    3300
    2800
    2700
    2200
    2300
    
    (ooUO
    2200
    24SO
    2700
    3000
    3300
    3750
    4050
    4300
    .
    vj 1 00
    
    1 0 , 000
    
    
    
    
    NDIR
    HC,
    tt-Cs
    /rr_ \
    
    
    121
    12S
    10£
    9£
    tQ, 1
    c
    ^/ _^
    &5
    95
    1 IS
    1 \5
    145
    \99
    .
    o 14
    
    4 1 2
    
    ^-OHU
    
    'H bD
    NDIR
    CO,
    V
    /o
    7 1C!
    
    ( RQ
    b.CS.7
    (p. U
    ^l9
    3,8\
    3.3\
    2.80
    2.97
    
    • i> 1
    2.27
    3. OS
    3.31
    3. S3
    4.10
    4.4k
    4.84
    4. IS
    
    5.7 i,
    
    I. tot>
    
    .42
    
    Z.O(o
    NDIR
    CO,,
    V
    /o
    
    
    
    e-,73
    9.22
    9. £3
    »0.23
    10.47
    10. &9
    \6.t&
    
    9-75
    l\-3Z
    10. (o7
    \o.47
    (0.44
    10.02
    9. SI
    ^.27
    
    O.5 7
    
    7. -jS
    5 a o
    ://-
    
    3.^2
    NDIR
    NO,
    I**
    &Q
    O7
    ,
    / ^,
    \ Q A
    (o7|
    923
    11  Z
    144
    34]
    5(2
    G4I
    803
    mo
    \2fc7
    1053
    -Irt
    
    1720
    142&
    I3S3
    1079
    C97
    3fc8
    
    "(p
    
    x>3
    
    
    
    /•Co
    C. L.
    MO,
    f>H
    rr- 7
    — ' '
    A -2
    \44
    491
    
    i. 1
    1 2
    1. 1
    \.2
    M
    1.0
    0.9
    \.o
    •7 r
    y,U
    0.7
    0.7
    0.7
    0.8
    0.8
    0.6
    0.9
    
    2.0
    
    3. 1
    
    .O
    
    7- O
    ENGINE
    RUN	
               FORD   0-5000
    Df\TL
    BAROME.TER,
    VOET
    DRY
    BULB TEMP.
    BULB TEMR,
    

    -------
    
    MODE
    1
    Z
    3
    4-
    5
    6
    7
    8
    9
    1 0
    I 1 1
    hi"
    ! 3
    ENGINE
    SPEED
    RPM
    (oSO
    ItOO
    It 00
    IfcOO
    it no
    ItrOO
    (bSO
    l^OQ
    \900
    1900
    mo
    1900
    G50
    OBSERVED
    POVJER,
    bV,t>
    
    
    
    
    14.4
    11. G
    4£.G
    tO. 4
    
    
    G7.9
    52.2
    3'4 .Z
    It.t
    
    
    
    FUEL
    FLOvJ,
    V*
    3.2
    7.3
    \2.8
    it. 3
    20.9
    27.5
    3.3
    35.4
    25. ">
    16.3
    10. £
    5.4
    3.3,
    TEMP, °F
    INTAKE
    AIR
    74
    7G
    1G
    11
    78
    19
    78
    P>4
    B2
    hi
    13
    74
    74
    EXHAUST
    G99
    £55
    780
    9(o7
    1 I \J
    \ia&
    R?0
    i ? 7.0
    123
    7-B
    3.2
    20.2
    3.7
    &.Z
    ^3.Z
    '.L-7
    \9.4
    0 0 0 . 0 ' '1 £
    FIA
    HC,
    t-KC.
    Q><)00
    8400
    4foOO
    z,tco
    2^00
    2700
    1100
    2£,00
    ?ftOO
    2,£00
    4 ISO
    L ? SO
    7400
    ND\R
    I\C,
    M«»C6
    ?25
    247
    19B
    n?
    i2£
    105
    ^S8
    UE,
    05
    05
    1 55
    I5G
    NDIR
    CO,
    %
    2.1Q,
    G.34
    5.31
    4.41
    3.49
    NDIR
    eo2,
    Vo
    9.&2
    9.43
    a.fc?
    9.45
    10.15
    3.3| 10.25
    2.48
    3.05
    3.48
    4 .3£
    5. C.8
    4.92
    NDIR
    NO,
    H"
    B9
    .B?
    351
    C.L.
    NOX/
    k-K
    0>8
    54
    281
    7^2 Co4l
    107Z j 975
    C.L.
    NO,
    *>)»«•
    G>1
    S3
    273
    P01/\R.
    °a,
    %
    3.0
    3.0
    1,4
    ^24 | 1.1
    92 1
    1072 9^4 I 953
    10.05 11! 8G
    10. 4k
    10.24
    9. fol
    8^7
    8.69
    \42S 9B7
    1231 S5G
    778
    2SG
    98
    739
    200
    5G
    70,
    ?22
    ft 13
    1.0
    0.9
    *.&
    °: B
    G.B
    14 C, 0.8
    "78 i'u
    52. ! 2-0
    2'J5 2.80 9.^0 58 52 41} : 3.0
    ENGINE
                         GrSOOO
    DATE
    hAAPPlNCr  RUN
    BAROMETER, i.n
                                                                          9.03
    WET  BUL& TtHF... °F    'r 8
    DRY  BOL8 TEKiP.,, " F    7t
    

    -------
    
    MODE
    I
    2
    3
    4-
    5
    6
    7
    8
    ~~ 9
    I 0
    i i
    I 2
    1 3
    ENGINE
    SPEED
    RPM
    0,50
    KoOO
    KoOO
    Kb 00
    KoOO
    KoOO
    £.50
    noo
    \900
    »<}00
    .900
    OOO
    CD SO
    OBSERVED
    POVJER,
    bK^
    
    
    
    
    14.8
    30.4
    44.8
    S8.8
    
    
    (o(o.£S
    51-8
    34.2
    \1.\
    
    
    
    FUEL
    FLOW,
    Sk
    3,2
    7.7
    12. £
    11- \
    2S,0
    2-?.$
    3.0
    ?>2..l
    2~!.£
    19.9
    15.1
    ft.(o
    i.l
    TEMP, °F
    INTAKE
    AIR
    74
    74
    ~1

    9.5 2.4 __7.8 U-3 \t.O ^•4- 1^.8 FIA HC, J>J>«C BIOO 14 ,000 44OO 2,fe50 2100 2350 ?> 13£ \>S 329 5C, 7S \03 \24- 147 501 NOIR COX % \.as &•" 3? ^b 2,60. (5(o7 1010 V07I 100 13S(o io9ft 8S7 511 U9" 3.l3i \00 C.L. NOX/ H>- 54 52 314 0>27 9fe2 1037 S-4 109 1 1002 (»&)8 4I€ ^ 44- C.L. NO, t-H 5\ 47 2.6 29.Oft DRY 6DLB TE.MR, °F


    -------
    
    MODE
    1
    2
    3
    4-
    5
    G
    7
    8
    9
    10
    I I
    IZ
    13
    14
    15
    \(o
    17
    18
    19
    2.0
    2.1
    Z2
    23
    ENGINE
    SPEED,
    RPtl
    GOO
    1450
    1450
    1450
    1450
    I4SO
    1450
    1450
    1450
    1450
    (boo
    2.400
    2400
    Z400
    2400
    2.400
    2.400
    2.400
    2400
    2400
    £>OO
    1400
    2450
    OBSERVED
    POVIER,
    Ut>
    
    
    
    
    (b.9
    \3.7
    20.3
    27-0
    33.4
    39.4
    45.8
    55.3
    
    
    75.G
    fe4.8
    5G.4
    45. G
    37.2.
    27. 1
    16.5
    9.0
    
    
    
    
    
    
    
    
    FUEL
    FLOW,
    Vw
    2.8
    (o.3
    8.8
    12.8
    15-5
    n.3
    I1). 9
    24.8
    2fc.S
    33.2
    2.7
    38.1
    35.G
    32.1
    27.3
    23.?
    22.0
    IB. 2
    14.1
    10.0
    2.4
    2.6
    2.6
    TEMR,°F
    INTAKE
    AIR
    8fo
    8&
    87
    85
    87
    88
    88
    87
    87
    85
    64
    8S
    88
    87
    87
    6?
    8?
    88
    86
    86
    64
    80
    91
    EKH-
    AOST
    549
    59\
    1099
    U09
    475
    1 22k
    1235
    1188
    1147
    U30
    10fc3
    \009
    94(0
    913
    5
    2.3
    2.4-
    2.2
    !.&
    1.4
    \.Z
    O.b
    O.fo
    0-3
    O.O
    0.0
    EXttAUST
    l« Ha
    O.O
    0.0
    0.0
    0.0
    0.0
    0.0
    O.I
    O.I
    O.I
    o.i
    0.0
    0.)
    o.i
    O.J
    O.I
    0-!
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0-0
    M*N»FOLD
    VACUUM,
    iw IX,,
    19. »
    19.3
    \8.7
    >9.0
    21.0
    20. S>
    FIA
    WL,
    H.»C
    5900
    3500
    3900
    3800
    3750
    3feOO
    3500
    3200
    3050
    2850
    9fcOO
    1BSO
    2050
    Z200
    2200
    2500
    2450
    2700
    ZfcSO
    2700
    7000
    S4,000
    43,800
    NDIR
    Y£f
    H-c^
    \
    32\
    71
    80
    8?
    98
    9&
    98
    80
    71
    fc?
    27(o
    3538
    2I9G
    ND\R
    to,
    y.
    5.17
    3.2?
    4-52
    4.94
    5.03
    4-90
    4.&
    7-11
    G.59
    3.54
    4,13
    4.53
    4.59
    4.83
    4,82.
    5.4fc
    5.20
    5.28
    5.7G
    2.G.1
    0-94
    NE>\R
    C02,
    %
    b.O?
    io.0.5|
    10.44
    9.79
    %1?
    10-^8
    10.2.0
    9.12
    9.22
    \0.14
    7.28
    3.85
    2.&2
    ND\R.
    NO,
    W
    39
    79
    145
    Z59
    325
    392
    449
    1084
    89 I
    70S
    G(bG
    551
    531
    238
    I7<8
    106
    39
    52
    42.
    C.L.
    N0*x
    H>~
    34
    72
    »3G
    255
    3Z4
    40 (i.
    44>7
    590)
    190
    380
    25
    1015
    914
    703
    ~
    29
    70
    »32
    23&
    303
    394
    44G
    58G
    747
    35?
    18
    982
    892
    (o7l
    575
    458
    459
    23B
    145
    90
    24
    1.8
    3.1
    POLKR.
    °*,
    %
    2.5
    1. 1
    0.8
    0.&
    0-9
    0-8
    0.6
    O.fc
    0.&
    0.9
    3. \
    0,5
    0.4
    0-4
    o.t
    0.4
    0.4
    0.4
    0.5
    I.Z
    2-7
    10. 
    -------
    
    MODE
    1
    2
    ! ^
    4-
    5
    6
    ! 7
    8
    9
    10
    1 1
    12
    13
    14
    15
    Ifc
    U
    18
    19
    2.0
    2.1
    Z2
    23
    ENGINE
    SPEED,
    RPM
    (bOO
    1450
    1450
    !4SO
    1450
    !4SO
    S4SO
    14-50
    J4SO
    1450
    (bOO
    2400
    2400
    2400
    2400
    2400
    2400
    2400
    2400
    2.400
    00
    1400
    2450
    OBSERVED
    POVJER.
    kKV
    
    
    
    
    (o.9
    13.9
    20.3
    2.7.0
    34.1
    40. fc
    47.4
    54.0
    
    
    7fc.Z
    Gfc.O
    56, .4
    48.0
    37.8
    28.8
    \%2
    IO.Z
    
    
    
    
    
    
    
    
    FUEL
    FLOW,
    VK,
    3.Z
    5-5
    9.5
    52.5
    Ifc.t
    I 9-1
    21.4-
    22.£
    17.&
    33.8
    3.0
    39.5
    37.5
    33.2
    28.5
    24.2
    21.8
    lfc.8
    \4.)
    10.0
    3.2
    3.3
    2.
    (072.
    135
    821
    &1)!
    ^55
    9? 7
    104-3
    HOG
    1095
    550
    \2fcB
    122.4
    l\9t
    1155
    n 12
    \0fc7
    10»4
    941
    9M
    .0
    8.1
    10.3
    \2.0
    \4.l
    >G.O
    18-3
    18.8
    20.9
    20.^
    FIA
    HC,
    H»»C
    5750
    3850
    4250
    4350
    4000
    3500
    3450
    3050
    3150
    3350
    7400
    2300
    2700
    Z800
    3050
    3150
    32.00
    3400
    3foOO
    1000
    7000
    53,fcOO
    i7,ZOO
    NDIR
    V\C,
    ^HCfc
    \5(o
    8&
    90
    155
    \£5
    125
    145
    99
    97
    >05
    X07
    (ol
    70
    80
    88
    97
    97
    5^
    70
    5Z
    19&
    3(»49
    2335
    ND\R
    COX
    X
    5.83
    3.8\
    4.23
    4-90
    5.03
    5.0i
    4.fc7
    4.fc3
    4.S4
    (b.G4
    \R
    C02,
    %
    8.05
    \0.fo5
    1033
    10.10
    9.9!
    \0-lfe
    10. I 1
    jo. 48
    \0.(b8
    9.24
    7.7Z
    \0.&&
    10.53
    \0.4I
    \0.\3
    10.25
    10.10
    10.09
    9.54
    9.40
    7.87
    4.\9
    3.\~
    57
    90.
    \ SG
    179
    333
    38Q>
    457
    511
    503
    341
    3&
    1217
    \OOI
    831
    714
    549
    479
    279
    185
    105
    4S
    71
    42-
    C.L.
    NO*,
    ^«
    33
    G4
    153
    22>2
    3>S3
    37?
    571
    523
    &0|
    35fc
    3>0
    \I2G>
    995
    794
    G14
    51G
    422.
    2L49
    IGI
    85
    33
    8.7
    (b.fc
    C.L.
    NO,
    ^^^
    2.7
    G>3
    145
    2.15
    2&3
    3 It.
    437
    494
    71&
    314
    \9
    >030
    931
    740
    583
    4
    »2.7
             HERCULES Q-23QO
          
    -------
    
    
    MODE
    i
    i
    •7
    i.
    3
    4-
    5
    6
    1
    8
    9
    10
    
    \ I
    12
    I ?-
    14
    15
    16
    U
    18
    19
    
    20
    •? *
    /- 1
    Z/i
    2.
    20
    3
    ENGIhJE
    SPEED,
    RPM
    r r>r\
    tO^-'vJ
    i A a r\
    1450
    1450
    1450
    1450
    1450
    1450
    1450
    1450
    1450
    r r\ r\
    (£>v) vJ
    2.400
    2400
    2400
    2400
    2400
    2400
    2400
    2400
    
    2400
    
     P\ p
    
    
    
    
    to « i
    13.8
    20. (o
    27. 2,
    33.7
    40. (o
    47. S
    53. G
    
    
    14.1
    &» 2.
    38.8
    37,5
    Sl.G)
    29.0
    25.0
    22.2
    *&7
    14.1
    
    1 0- O
    2/-
    .(«>
    
    3.5
    
    • O
    TEM
    INTAKE
    AIR
    
    o3
    
    83
    84
    83
    51
    SI
    90
    &9
    oo
    C\ I
    Q ft
    07
    95
    93
    95
    99
    101
    10O
    97
    9C»
    « ,
    7«>
    r^r-
    75
    
    *33
    RT
    O /
    R,°F
    EX.H-
    AOST
    
    T-\£> /
    
    (030
    74-4
    810
    900
    959
    1003
    10fc3
    1087
    1089
    
    527
    1240
    ^.4fc
    I17G
    1\40
    11 12
    1070
    10 13
    9«s5
    
    9 '6
    
    500
    
    4-20
    -1 g- £-
    /55
    RtSTR
    INTAKE
    i^l^O
    
    .O
    
    O.4
    0.5
    0.5
    0-7
    1.0
    1.5
    l.t
    l.fe
    o.o
    
    . 0
    |,0
    2,0
    2.3
    2.0
    1.7
    1.4
    \.\
    07
    
    0-5
    
    ,0
    
    .0
    
    , 0
    a lows
    EXUAOST
    l«Ha
    
    .0
    
    0.0
    o.o
    0.0
    0.0
    o.o
    0.0
    0.0
    0.0
    0.0
    
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    
    0.0
    
    0.0
    
    o.o
    
    . 0
    MANIFOLD
    VACUUM.
    i« U5
    
    ' O. I
    
    19.'
    17.5
    14. (o
    12.2
    9.9
    7.5
    5.2
    3.3
    1.7
    
    ' 6 • /
    1.\
    ?. f.
    J.Vp
    fc.4
    7.9
    tO-3
    12.1
    14,1
    (6,3
    
    8.5
    
    o.o
    
    /0.9
    
    1 ,\J
    FIA
    (AC,
    J»HC
    
    (o400
    
    3400
    3550
    3950
    3700
    3500
    3300
    3000
    2900
    3100
    
    oooo
    2350
    2300
    2800
    2950
    3100
    3100
    3300
    3450
    
    3300
    
    8400
    
    48,800
    , ,,,.,.
    4fo, 0
    ND1R
    HCx
    ^KCfc
    
    12-9
    
    1
    89
    118
    \TJ
    118
    \27
    11
    &9
    88
    ,
    1 k>(o
    81
    1\
    80
    80
    89
    89
    89
    W
    D \
    O I
    A ^1
    44-
    
    /./33
    _ _ «
    ^1/7
    ND1R
    to,
    °/
    5/ Q
    .toO
    
    .10
    3.fc?
    4-72
    5.51
    4.83
    4.43
    4.47
    4.47
    fo.22
    
    '. Zp
    3.9|
    4.3$
    4.1^
    5.34
    5.06
    4-97
    5.22
    5.4\
    
    • oZ,
    STJ
    • 12.
    
    .2 /
    
    •0 /
    ND\R
    C02^
    %
    7*7 f
    ./(o
    
    10. 1Q
    \0.12
    9.07
    9.03
    9.14
    9-53
    9.foO
    9.51
    8.53
    
    G>79
    9.2Z
    9.02
    S73
    &.
    154
    321
    40J
    4-37
    491
    544
    789
    445
    
    27
    %9
    1051
    
    -------
    RODE
    .
    1 z
    a
    4-
    5
    fc
    7
    8
    9
    to
    1 !
    12
    15
    14
    15
    16
    U
    18
    19
    2.0
    2.1
    Z2
    23
    EMGiNE
    iPEEI>
    RPM
    £,00
    5450
    !4SO
    145Q
    1450
    1450
    1450
    1450
    1450
    1450
    GOO
    2400
    2400
    2400
    2400
    2400
    2400
    2400
    2.4-00
    2400
    (bOO
    1400
    2450
    OEoERMEb
    POvJEK
    bV,^
    
    
    
    
    (0,5
    \3.a
    20>7
    2.7.2
    33-9
    41.0
    47-1
    54.0
    
    
    75. G
    66.0
    57.0
    47.4
    37.8
    28.2
    0.2
    9..&
    2.8
    TEMP,DF
    INTAKE
    A IF;
    78
    18
    80
    80
    5!
    fcl
    81
    63
    82
    83
    82
    82.
    87
    90
    92.
    93
    90
    88
    88
    8?
    8&
    92
    85
    EX.tt-
    AUST
    435
    G27.
    IfoO
    82 S
    92)
    9G,8
    1021
    1081
    1120
    1104
    52,8
    \275
    12.41
    II&7
    1144
    ino
    \071
    1013
    949
    B92
    fc30
    420
    528
    RtSTRlCnOWS
    WTP,XE
    i.v\ HjO
    o.o
    0.4
    0.4
    0.5
    0.7
    \.o
    1.4
    1.7
    1-7
    0.0
    0.0
    1.0
    2.1
    2.1
    2.0
    l.ft
    1.5
    1.0
    0-7
    0.5
    0.0
    0.0
    0.0
    EXHAUST
    i« H&
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    o.o
    0.0
    o.o
    o.o
    o.o
    o.o
    o.o
    0.0
    o.o
    o.o
    0-0
    o.o
    o.o
    h-'iKH'.fOLD
    VACUUM,
    Iw Us
    16.7
    16.9
    lfc.4
    14.6
    12.2
    9.9
    7-9
    5.|
    3.4
    1.7
    t8.fc
    2.1
    3.5
    5.5
    7.fc
    9-8
    »2.1
    14.3
    \fe.l
    \8.4
    18.7
    20-9
    20.9
    F1A
    KC,
    H-c
    7300
    4000
    4300
    4000
    4050
    3750
    3950
    3450
    MOO
    3700
    &IOO
    2700
    3)00
    3100
    MOO
    3150
    3300
    3500
    3700
    3fcOO
    8400
    51,200
    48,000
    KJD1R
    'hC.
    ^KCfe
    1Q.S
    97
    115
    134
    144
    153
    143
    144-
    \0(o
    1 15
    237
    52
    
    I0(b
    (ol
    208
    30t>5
    2074
    ND)R
    ^v
    %
    
    2.8
    ^2
    4i
    C.L.
    HO^
    fp^
    34
    Q>&
    IfcO
    252
    353
    514
    44|
    5B7
    Q>73
    323
    30
    iot>9
    7fo3
    fc57
    442
    518
    361
    2-49
    13?
    77
    33
    12
    8.1
    L.L.
    NO ,
    f>t»*
    2?
    (o&
    147
    235
    302
    4b3
    410
    545
    
    

    -------
    
    MODE
    1
    2
    3
    4-
    5
    <0
    7
    8
    9
    1 0
    i i
    I 2
    1 3
    ENGINE
    SPEED
    RPM
    (oOO
    1750
    nso
    »7£0
    nso
    nso
    52
    &«7
    970
    1056
    U34-
    5^0
    \»90
    H4-3
    JOH
    9&9
    8fo2.
    455
    RESTRICTIONS
    INTAKE^
    i« l\20
    0.0
    0.5
    0-7
    M
    2.0
    1.0
    0.0
    M
    2.Z
    KG
    0.6
    0.4
    0,0
    EWAUST,
    in \\^
    0.0
    o.o
    0.0
    o.o
    o.o
    0-0
    0.0
    o.o
    o.o
    0-0
    o.o
    0.0
    0.0
    MANIFOLD
    V^UUM,
    *.« ^
    19.0
    \9.0
    14-7
    <0.3
    5.9
    2.0
    \B.B
    2.1
    s-9
    «o.S
    \5.0
    18. ft
    I&.9
    FIA
    HC,
    ^«C
    5200
    3200
    5550
    3200
    2BOO
    2300
    (b900
    2200
    2550
    2850
    2.I5O
    3200
    (bOOO
    NDIR
    HC,
    W»«C6
    129
    90
    UB
    127
    127
    107
    \7?
    98
    108
    6Z
    &0
    90
    150
    NDIR
    C-0,
    %
    5.79
    3.03
    5.09
    4,79
    4.72
    5.72.
    7.31
    4.97
    4.74
    4.8G
    S.24
    4.16
    5. 4S
    NDIR
    CO,,
    Yo
    fc.54
    9.5fc
    &.7I
    9.07
    9.15
    6-99
    !>•«
    58
    128
    315
    593
    7 S3
    -
    34
    99
    274
    5£~
    27
    91
    2(oS
    534
    598
    508
    2.1
    (003
    728
    557
    2S3
    71
    23
    POLAR.
    o,,
    %
    3-1
    1.5
    0.9
    o.?
    o.&
    O.Q>
    2.2
    O.fc
    0.7
    0.&
    0.7
    1.9
    3-7
    ENGINE  HE-RCULES  G-23OQ
    MAPPING-
    DAT E  6/20/72.
    BAROMETER, i
          WET BUL&
    29.03  DRY  &OLB TE.MR, 4F
                                                    7S
    

    -------
    
    MODE
    1
    2
    3
    4-
    5
    6
    7
    8
    9
    \ 0
    i i
    1 2
    I 3
    ENG-INE
    SPEED
    RPM
    GOO
    1750
    1750
    1750
    1750
    \~15O
    (bOO
    2-100
    2100
    2100
    2100
    2100
    (bOO
    OBSERVED
    POVIER,
    bkj>
    
    
    
    
    15.8
    31,5
    47. Z
    G3.0
    
    
    70.9
    £3.5!
    83.5
    974
    1074
    II \9
     o
    0.4
    0-6
    1.4
    1-9
    0.5
    0.0
    1.0
    2.1
    1.6
    0.9
    0.4
    0.0
    EXHAUST,
    Lvx ^
    0,0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.0
    o.o
    0.0
    0.0
    MANIFOLD
    VA.CUUM,
    tn %
    18.7
    19.1
    14.7
    10.3
    fc.l
    2.1
    18.8
    2.2
    5.3
    10-3
    14.7
    19.0
    19-1
    F1A
    we,
    H>«C
    6000
    3150
    3900
    3300
    2800
    2500
    7300
    2£00
    2.800
    2350
    3200
    3200
    M£0
    NDIR
    HC,
    W>-ct
    99
    109
    *98
    178
    Ifcl
    147
    ze&
    12&
    105
    128
    »2>7
    72.
    189
    NDIR
    CO,
    o/
    /o
    it-75
    3.S4
    5.37
    5.H
    4-81
    (b.20
    fc.53
    5.3\
    4.98
    4.B)
    5.23
    4-14
    5.9b
    NDIR
    CO,,
    V.
    fc.S5
    9.00>
    8.4«>
    8.48
    8.75
    6.0B
    |>M
    58
    tO
    304
    535
    750
    484
    38
    G>2>3
    723
    0.2.4
    349
    98
    48
    C.L.
    N0»,
    n>-
    35
    86(b
    (oOl
    SOB
    fc4
    34
    C.I.
    NO,
    *>H
    28
    83
    2.44
    52(b
    (o77
    42>7
    i|
    558
    _ DRY  BOLB TLMfi, *F
                                                       7S
    

    -------
    
    MODE
    1
    i
    3
    4
    5
    6
    7
    6
    9
    I 0
    1 t
    1 2
    1 5
    1 4
    I 5
    _l &
    __l 7
    I 8
    1 9
    2O
    z \
    z. z
    23
    ENCiNE
    SPEtD.
    RPM
    350
    1400
    1 400
    1400
    I 400
    1 400
    1400
    1400
    1400
    \400
    470
    Z| 00
    2100
    210O
    2\OO
    2100
    210O
    2100
    2100
    2\00
    500
    
    r
    
    
    0&5LKVLD
    POWER,
    U|>
    
    
    
    4.Z
    8,2
    \2.t,
    1<0. I
    20.3
    _ Mi5_
    28.2
    32.7
    
    
    42.0
    3fe.8
    5\.2
    2G.2
    2i.3>
    IL.&
    10,2
    S.O
    
    
    
    
    
    
    
    
    FUE L
    f LOvJ,
    IbvV
    2.7
    ~1 1
    8. 1
    9.5
    l 1.4
    12.5
    >3.&
    IS-1
    \(o,3
    18.2
    2.G
    24.1
    23.0
    19.7
    l(o.7
    15.8
    1^.2
    12.3
    11.3
    10. &
    2.4
    
    
    
    
    TEMP, ° F
    NiAva
    A»K
    &1
    (o1)
    74
    &2
    8(0
    8G
    8&
    &9
    6^
    91
    <) 1
    88
    8&
    9<
    9Z
    92
    96
    •)1
    
    
    
    
    
    E^H^UM
    315
    (oG5
    729
    801
    84:8
    892
    9fo5
    998
    1028
    lOfcl
    l
      0 O.I 0 MANIFOLD VACUUM, in (Atj 1C..C, 17.0 Ifc.S 14.8 12.6 1 1.1 9.4 7. 1 4-7 2.4 18. G S.S >^C. 1250 B'^'-O 5400 4900 48SO 4700 4150 3900 3850 3350 3200 3300 3500 3700 3 BOO 3800 3B50 36SO 3") 00 S5SO NmR HC, ^-cfe 19Q> 273 273 28& 310 310 2<)& 2R7 287 2H 4t 40, 93 »47 ife9 224 37 \ 349 470 424 580 42& 32 0> 340 319 239 IfcO IfoO i(b9 no C.L. N0», IPK 16 76 64- 85 1 13 li& 254 2&>3 3t5 349 C. L. MO, tt" 75 75 54 84 ^ 13 ^2>4- 2.50 2(o3 3
      -------
      
      MODE
      i
      2
      3
      4
      5
      6
      7
      6
      9
      1 0
      1 \
      1 2.
      1 3
      1 4
      1 5
      _) 6
      __\_7
      I 8
      I 9
      ZO
      z \
      zz
      23
      ENG.INE
      SPEED
      RPtl
      47O
      14-00
      1400
      1400
      1400
      1400
      1400
      1400
      1400
      1400
      490
      ZIOO
      11 00
      2(00
      2100
      2100
      ZIOO
      2100
      ZIOO
      2\00
      510
      I18£-
      ZOfoO
      OBSERVED
      PC.VJE?,
      tv^
      
      
      
      4.2
      8.Z
      12. Z
      lfc.4
      20,3
      24.5
      2B.4
      32.4
      
      
      __4rl.l
      3G.8
      51.5
      2(b.l
      21,0
      l&~8_
      10.5
      £.2
      
      
      
      
      
      
      
      
      FUEL
      F LO'A),
      'SC
      2.(o
      (b.l
      1.0
      9.2.
      10,2.
      U.fc
      12.9
      14.7
      1G.3
      11.7
      Z.G
      22.9
      21. &
      18. 8
      n.2
      14-8
      I2>. 0
      1 \.1
      \\. \
      10.4
      2.4
      2.9
      3, 1
      TEMP. °F
      INHALE
      A\R
      &4
      61
      81
      80
      82.
      83.
      52
      83
      87
      88
      90
      84
      87
      86
      89
      9I~
      91
      W.
      &3
      \088
      1045
      1014
      963
      95&
      H7
      741
      411
      354
      RE_3TVR \CT\OMS
      INTAKE,
      t« \\£i
      1.4
      2,2
      3.1
      4,5
      5.C.
      (b.8
      8.1
      9.9
      12.7
      14. S
      1.3
      13. 1
      19.1
      l<..3_
      11. (o
      10.1
      8.8
      6.8
      5.1)
      5.J-C-
      4900
      59 00
      5550
      4200
      5900
      5«
      e>7
      73
      100
      >32
      \&9
      Z4fo
      38"?
      313
      • 63
      134-
      121
      ^7
      36
      6fc
      t.L.
      NO,,
      lf^
      44
      (o7
      77
      >13
      \(oS
      178
      383
      380
      644-
      458
      45
      fc2-9
      48t
      383
      345
      574
      -3\5
      no
      »03
      93
      4-5
      13
      8
      C. L.
      MO,
      H»*
      41
      G4
      74
      119
      »(ol
      176
      319
      359
      
      0,7
      o.ft
      0.8
      O.ft
      0.&
      0.6
      0.&
      0.9
      2.1
      9.
      -------
      
      MODE
      i
      2
      3
      4
      5
      6
      7
      6
      9
      1 0
      1 \
      I 2
      1 i
      I 4
      1 5
      _l Q>
      _l 7
      \ 8
      I 9
      2.0
      2 \
      Z2.
      Z3
      ENGINE
      SPEED
      Rpn
      4-90
      \40O
      1400
      1400
      1400
      1400
      1400
      (400
      1400
      1400
      510
      2100
      2.100
      2\00
      2\00
      2100
      2100
      2100
      2\00
      2\oo
      4-90
      1400
      2080
      Of,5ER^ED
      POVJER,
      U|>
      
      
      
      4.0
      8.0
      i 2.2
      Kb. \
      20.5
      24.7
      18.4
      32.4
      
      
      4-1.6
      3fc-8
      31.5
      it. 2
      2\,0
      16.0
      IO.&
      4.1
      
      
      
      
      
      
      
      
      FUEL
      F LOVO,
      'Vw
      2.6
      G.3
      7,5
      8-9
      10.2
      11.4
      13. 4
      14-6
      \0
      9Z
      91
      30
      88
      &1
      85
      ..§.7.
      86
      90
      8
      0.4
      0.3
      0.1
      0.2
      0
      0
      O
      MAMIFOLD
      VACUUM,
      in ^
      16.1
      n-9
      \G.7
      15.1
      13.6
      11.6
      9.1
      1,0
      4.8
      2.S
      0.1
      S.5
      7.5
      8,8
      10,4
      12.)
      133
      15,3
      It., 3
      lfc.5
      19.1
      20.C
      20.^
      F|/\
      HC,
      I>KC-
      5000
      GIOO
      5(oOO
      4£SO
      4400
      4200
      3750
      3500
      3400
      3100
      5100
      2900
      3050
      3150
      3250
      3100
      3200
      3200
      2350
      3300
      49£0
      52,80G
      84,0,00
      ND\R
      HC,
      bl'-Ct
      85
      I85
      134
      155
      *35
      155
      155
      93
      115
      134
      114
      134-
      125
      104
      104
      n0
      69
      134
      1C.8
      208
      391
      404
      104
      5H
      43
      10\
      5O9
      401
      3GI
      3&2
      403
      I&5
      105
      lOfc
      47
      5
      3
      POLAR.
      o,,
      7.
      2.4
      1.5
      l. I
      9J
      1 .5
      0.9
      0.9
      1. 1
      1. 1
      0.&
      i- a
      0.8
      0.1
      0.1_
      0,&
      0.6
      o,&
      O.ft
      0.6
      0.9
      2.0
      9.6
      13.9
      EMGl
      RUN
      NE
        4
            1. CALL  159 &•
            2/1 \
      BAROME.TERX
      VJET
      DRY
      BUL& TEMP.
      BULB TEMR,
                                                                                 5&
      >F   72.
      

      -------
      
      MOCE
      1
      2
      3
      4
      5
      6
      7
      6
      9
      I 0
      1 1
      I 2
      1 3
      I 4
      1 5
      _JJ>_
      __L7
      \ 8
      1 9
      ZO
      z \
      Z Z
      z i
      ENCiNE
      SPEED
      RPM
      4&0
      1400
      1400
      1400
      1400
      1400
      1400
      1400
      14-00
      1400
      510
      2[00
      2100
      2100
      2 \00
      1100
      2100
      2100
      2 1 GO
      2100
      500
      1405
      20&O
      05SERMED
      POvJtR.
      fcVJ>
      
      
      
      4.2
      6.2
      12.1
      Ife.l
      10. 5
      24.G
      28.4
      2.1.8
      
      
      4-2.0
      3.2
      2-1.3
      15.6
      10.&
      5.B
      
      
      
      
      
      
      
      
      FUEL
      F LO.4
      8.1
      9.G
      lt.9
      13.9
      15. G
      n.s
      n,9
      2.1
      2.4.0
      22.8
      »%8
      11,5
      IG>.2
      13:A
      '-'.•.7
      10.3
      a. i
      2.2
      3.1
      3, I
      TEMR, °F
      INTAKE
      AIR
      90
      90
      69
      &9
      91
      91
      95
      9i
      %
      95
      97
      °>\
      95
      99
      95
      96
      %
      ?&
      %
      95
      95
      80
      9Z
      EXH^ST
      (oO4
      48
      ~n(<>
      820
      8&4
      9i(o
      ^83
      102\
      1051
      Bfol
      11 'AS
      H(o4
      11 13
      1051
      1052
      1012
      959
      _9l2
      901
      122
      337
      42Z
      RESTRICT 10 US
      IN1AW,
      c«HzO
      1,1
      2.1
      2,4
      4.3
      5.Q)
      1.5
      W
      10. &
      \3.5
      \(o.3
      1.3
      24.8
      n.?
      1 3. a
      U.3
      9.
      5-7
      43
      3. 1
      1.3
      0.4
      0.4
      EXHAUST
      IK H3
      o
      O
      O.I
      O.I
      0.1
      0.3
      0.4
      0.5
      0.1
      o.b
      0. 1
      l.fe
      1.4
      1. 1
      o.^
      o.t
      0.4
      0.3
      0.1
      O.|
      C
      O
      C
      MANIFOLD
      VACUUM,
      in !-\3
      ii.e
      1 8,0
      11.3
      |4.5
      |2, 8
      10. (o
      8.4
      fo.\
      3-8
      2.2.
      >e.(o
      4.0
      5.B
      6.3
      \o.o
      1 1.4
      13.3
      14. a
      l(o.5
      (ft. 4
      20.1
      20. (o
      > 1.2
      FI/\
      HC,
      i>j--c.
      G>500
      »o,zoo
      6100
      5700
      5100
      5SOO
      4^50
      4450
      4200
      40SO
      £200
      2200
      2300
      2530
      42-00
      4200
      4250
      4800
      4tOO
      11,000
      CtlOO
      52,800
      h"/,2()0
      ND\R
      HC,,
      J>»>«C6
      ZOI
      \°>b
      ^Qa^
      1 ?_T
      2.18
      zi •)
      142
      195
      m
      i%i
      loo
      115
      115
      I45
      H6
      166
      Itjo
      11 fc
      145
      12- (06
      2.11
      2,945
      t^35
      NDlR
      CO,
      %
      &.9I
      8,^
      9.01
      6.13
      fc.31
      6.04
      1.55
      1.05
      fc.35
      _6
      1.00
      1.-2.5
      8.31
      b.47
      1.22
      (b.04
      3.42
      2. fcO
      NDlR
      C04/
      %
      Cb.^T
      (b.Ofo
      fc.lt>
      G.<)9
      1.15
      1.54
      l.<)\
      8.01
      8.54
      6.52
      7. It
      9.11
      8.&9
      6.1&
      8.10
      1.^5
      1J5
      1.15
      1.00
      fc.58
      (b.BI
      4.t»-
      (si
      4"«
      46
      36
      4(o
      83
      104
      132
      100
      24ft
      4fcr
      310
      50
      55fc
      410
      290
      Z(c5
      2^1
      231
      85
      77
      87
      42
      15
      9
      C. L.
      MO,
      ft"
      43
      28
      59
      &l
      100
      118
      l%
      247
      4(o2
      2,07
      44
      55(o
      447
      2 &(o
      246
      2-1?
      231
      &5
      12
      61
      35
      7
      4
      POLAR.
      o,,
      y.
      2.4-
      1.8
      1.3
      1.0
      I.O
      0.9
      ».o
      1. 1
      I.O
      o.1)
      2.0
      0.&
      O.(o
      0,1
      0.6
      0.8
      o.&
      O.1)
      0.9
      1.5
      3-7
      8.3
      12.^
      EMGl
      RUN
      J.I.
                               BAROME.TLR,
                                                 28.c
      VJET  &UL& TEMP., °F  57
      DRV  BULBTEMR, ° F  7G
      

      -------
      
      MODE
      1
      z
      3
      4
      5
      00
      2100
      2100
      500
      140O
      ZO&5
      0&SE.RVI.D
      POVOE1?,
      U|>
      
      
      
      4.0
      ft.O
      (2. I
      ',fc.3
      20.3
      24. G
      26.5
      31.8
      
      
      39.1
      54 _.C,
      2 8. 9
      24.4
      zo.o
      14.4
      10.2
      5.0
      
      
      
      
      
      
      
      
      FUEL
      F LOV),
      lb-/C
      /Vw
      Z.fc
      4. 1
      S
      ()4t
      ')'-;£,
      \04I
      >OSi
      841
      » Iftfi
      H4t
      1 104
      lot')
      10-11
      1002
      950
      9?lc
      b7\
      fcfci
      5(tfc
      414
      RESTRICTIONS
      INTAKE,
      i« WZ0
      l.i
      1.9
      2.G
      3.^
      5.4
      fc.5
      P.4
      »o.\
      li.O
      15.8
      1.4
      23.^
      16.1
      IS. 8
      12.1
      1.0, I
      5.0
      fc.i
      5.0
      Z.1)
      1.4
      0.4
      0.4
      EXHAUST
      u H3
      0
      0
      0, I
      0,1
      0,2
      0.2.
      0,4
      O.fc
      0,8
      0.3
      0
      1.5
      1.2
      1.0
      0.&
      O.(o
      0.4-
      0,2
      o.\
      0.1
      0
      o
      o
      MANIFOLD
      VACUUM,
      in A^
      19. fo
      \f].2
      17.4
      15.C,
      I'i.C
      1L2
      V)
      £
      )24
      134
      165
      155
      \54
      134
      134
      783
      Jt7
      45 3O
      7235
      ND>R
      CO,
      7o
      7
      ND1R
      co,y
      %
      (o.fe3
      (b.45
      (b.&4
      7.29
      7-fc4
      7.&1
      ft.50
      8.51
      8.&1
      9-03
      &.80
      8.87
      8.50
      8.24-
      §.lfe
      8.40
      M4^
      7.63
      7.31
      fo.lO
      6.77
      4.19
      2.51
      NDtR
      NO,
      (>^
      54
      60
      80
      i ao
      1 fc2
      l 90
      328
      247
      593
      454
      55
      C.I.
      NO,,
      H>«"
      40
      39
      Q>7
      lOfc
      14V
      IBS
      341
      350
      591
      458
      4F 74-
      

      -------
      ^
      o
      
      MODE
      1
      z
      3
      4
      5
      G
      7
      8
      9
      1 0
      1 1
      1 2
      1 3
      EN&INE
      SPEED
      RPM
      00
      700
      OBSERVED
      POVOER,
      bm>
      
      
      
      
      8.4
      it. 8
      24.6
      33. Q>
      
      
      59.9
      31.6
      22.3
      10.0
      
      
      
      
      FUEL
      FLOW,
      V*
      3.0
      
      96
      96
      100
      EXHAUST
      4SZ
      A
      we,
      t>KC
      fc(b50
      B300
      5500
      4tOO
      4000
      2100
      blOO
      2550
      3300
      3400
      4000
      (LOGO
      7100
      NDIR
      HC,
      W»C6
      212.
      30&
      (b.75
      7,&4
      8. OS
      £.78
      NDIR
      coz/
      Yo
      G.4-5
      -
      41
      4-G
      101
      118
      10G
      506
      41
      411
      210
      148
      94
      G>0
      47
      C.L.
      NOX/
      H>*
      39
      4C,
      10?
      I4Z
      174
      ta\
      31
      785
      4\9
      312.
      10
      -------
      
      MODE
      1
      2
      3
      4
      5
      6
      7
      8
      9
      I 0
      i \
      \ ^
      1 3
      EN&INE
      SPEED
      RPM
      (o40
      1600
      1600
      KbOO
      IfoOO
      IfcOO
      800
      I9OO
      1900
      1900
      l<)00
      1900
      7
      
      
      
      
      8.4
      17,6
      ZG.O
      33. \
      \xoo
      \0<)Q
      1020
      892.
      803
      525
      RESTRICTIONS
      INTAKE
      i«R20
      O.4
      1.4
      3.4
      1. 1
      \3-2.
      ZO. 1
      0.4
      2.1.5
      Ifc.Z
      10.5
      S.S
      2.1
      0.4
      EXHAUST,
      In \\A
      0.0
      0.0
      0,3
      0.3
      O.fo
      l.Q,
      o.o
      l.fc
      0-9
      0.5
      0.1
      0.0
      0.0
      MANIFOLD
      N/KCUUM,
      C-v l\^
      19.8
      i<).9
      IS. 5
      12.1
      7.2
      3.5
      19.5
      3.^c
      9000
      8000
      £400
      4250
      3800
      2900
      fc450
      2<)00
      5500
      3800
      4400
      7000
      6900
      ND\R
      \\C,
      W"-Ct
      324
      427
      299
      2U
      2fc5
      222
      183
      233
      196
      IG.5
      l&(o
      2\9
      295
      NDIR
      to,
      %
      3.33
      7,58
      8.18
      7.59
      G.GO
      4,49
      S.7&
      4.24
      G.45
      G.&9
      6,15
      8.57
      G.n
      NDIR
      CO,,
      Vo
      8.05
      6.91
      7.31
      1.49
      8.2fc
      9.79
      G.74
      9.11
      8,45
      ND1R
      NO,
      y>t>-
      46
      *
      52
      31
      9&
      n I
      307
      19k
      43
      841
      37t
      31 1
      I0|
      50
      38
      C.L.
      NO,
      »>H
      4-5
      2^
      90
      153
      2-99
      752.
      55
      798
      35?
      303
      98
      4t
      POLAR.
      °a,
      %
      4,0
      2.1
      1.7
      0.8
      o.a_
      O.G
      3.5
      O.S
      O.fc
      0.1
      0.6
      1. 1
      32 3.5
      EN&INE   J.I. CASE   159 &
      DATE  3/11/12
      MAPPING-  RUN
      BAROMETER, i-«
      WET  BUL& TEMP.X °F   56
      DRY  BOLB TEMP.X  °F   13
      

      -------
      
      MODE
      1
      2
      2.
      4-
      5
      6
      7
      8
      9
      10
      1 1
      12
      13
      14
      15
      \<0
      \1
      18
      19
      2.0
      2.1
      22
      23
      ENGINE
      SPEED,
      RPM
      890
      noo
      1700
      1700
      1700
      ("700
      1700
      1700
      1100
      (700
      900
      2800
      2800
      2800
      2800
      2500
      2600
      Z&OO
      2800
      ZftOO
      900
      
      
      
      
      OBSERVED
      POVJER,
      LV^
      
      
      
      
      2-8
      5-7
      5.5
      » 1-3
      14.2
      17-0
      19- R
      22.7
      
      
      32.7
      28. fc
      Z4.S
      20.4
      l
      73
      74
      74-
      74
      
      
      
      
      EX.H-
      AOST
      G^O
      7 SO
      795
      690
      950
      1010
      IOBS
      1 1 10
      1200
      \2.0S
      IR
      C02,
      V
      /o
      &>.Z2
      (b.35
      7.24
      9.07
      &.&7
      9-0«
      23
      I 2.
      Z?
      I(o9
      25(b
      527
      39&
      (oOB
      1144
      73&
      47
      1X28
      1477
      104-3
      824
      53 B
      342
      Z46
      157
      !Z
      -------
      
      
      MODE
      \
      1
      7
      
      2
      
      A.
      
      c;
      
      f.
      
      7
      
      0
      o
      Q
      
      I r\
      1 O
      
      1 1
      1 9
      I 2
      . _
      1 D
      1 A
      1 4
      1 C
      I t5
      
      1 
      
      nr>n
      
      \~it\f\
      
      \~i r\f\
      
      Q 7 £T
      7/.O
      7P i\n
      AOUU
      
      ZoOU
      
      2oOO
      
      /.OU U
      
      2800
      
      2-BDO
      •? oftn
      /.O^U
      
      2.QOO
      •7 DA r\
      /-OUU
      
      V50
      
      
      
      
      OBSERVED
      POVJER..
      Ut
      
      
      
      
      
      • O
      
      • 7
      8CT
      .tj
      1 1 ^
      
      1 /I 0
      
      i T r\
      I /.U
      -
      * />0
      
      22.7
      
      
      -> * -7
      o). /
      
      /-A8
      
      2i<&
      
      1 7. 6
      
      15.9
      
      1.0
      
      •9
      
      4-0
      
      
      
      
      
      
      
      
      FUEL
      FLOW,
      'Vw
      
      .4
      
      •4
      ,e 
      7 A
      
      q A
      
      ir\ f«
      
      \ 1 /A
      1 1 .°t
      14 ft
      
      ,r C
      lOO
      
      • 3
      
      Z.O. l_
      
      6.4
      
      1 /.(o
      i f ~i
      \\i>./
      
      14-t)
      ,
      1 L.\o
      
      1 • 1
      
      O. 7
      
      . 3
      
      2.5
      
      
      
      
      TEM
      NTAK.E
      AIR
      
      /to
      
      /fo
      
      /O
      ~}D
      /O
      Tfl
      /O
      -to
      
      -Ib
      / 7
      T 0
      / 7
      f\ 1
      O 1
      61
      1
      
      1
      61
      1
      81
      1
      1
      D"
      81
      '
      81
      1
      
      1
      61
      1
      Q 1
      01
      O 1
      Ol
      81
      1
      
      
      
      
      R,°F
      EKrt-
      AOST
      
      fo4O
      
      you
      
      ooO
      
      070
      Q/l f\
      /^R)
      i r\ t c\
      
      ir\ Q r\
      IUOU
      
      \ \4O
      \ 1 \ C\
      
      \i cr\
      |i.t>U
      
      7^0
      i "3\~ir\
      
      
      looU
      
      ) oOL)
      \ O CTk
      
      
      i /.DO
      
      ) 1 10
      
      10 SO
      
      JOOO
      
      980
      
      70O
      
      
      
      
      RESTRA
      INTAKE
      i.*iy)
      
      . 1
      
      .2
      Oa
      . O
      
      .4
      0-7
      . /
      ft <)
      u.y
      
      
      t ^v
      1' ^
      0 A
      z-u
      2Q
      • O
      
      . 1
      
      . I
      
      •2
      
      »3
      20
      • O
      
      ., 1
      
      .5
      
      1-2
      
      •8
      
      .(o
      
      O. l
      
      
      
      
      CTIOUS
      EXWWST
      «rta
      
      .u
      
      4V)
      
      .0
      Of\
      . u
      rv A
      
      Ot\
      • U
      01
      
      01
      . i
      00
      . 2
      
      . 2
      
      • 0
      O.A
      .*f
      
      .^f-
      
      .6
      OOL
      .O
      Of)
      .2
      
      . 2
      
      • 2
      Or\
      .O
      
      .O
      
      ,O
      
      
      
      
      MANIFOLD
      VACUUM.
      In V\a
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      FIA
      HC,
      t>^c
      
      (o'WO
      
      4^VOO
      
      D^V^L)
      
      ^700
      n -~IQC\
      
      9~j^n
      
      - , ori
      
      
      24i.t)
      \ R ?V\
      1 D*JU
      
      1 /OU
      
      ^400
      i —ll~r\
      1 /oU
      , f~ f r\
      1 C3/.U
      •JAHH
      i.Uo'-'
      
      ^-> 1 U
      •j \ p /\
      31 DO
      
      oZ«0
      
      *n uu
      
      4-200
      
      4oOO
      
      oOOO
      
      
      
      
      NDIR
      l\C,
      ^KCfc
      
      Z^tA
      
      1/7
      
      llO 7
      „
      1 5 7
      i f f\
      1 v>\J
      i cr<»
      lt>7
      \cr\
      lou
      i a a
      I3o
      1
      1 1 /
      
      10?
      
      321
      i l fi
      
      O 7.
      73
      q i
      7 1
      Q i
      J 1
      
      0 /
      
      25
      
      1 2?
      
      1 27
      o
      1 (07
      
      27fo
      
      
      
      
      NDIR
      CO,
      °/0
      
      
      
      
      SD ft
      • 00
      
      • /o
      c: ^9
      
      ^ \c*
      *O • "X)
      5-> Q
      - '/
      
      • C>^t
      4 Oft
      •70
      
      .54
      
      /.zs
      4/1 9
      .'t-/.
      
      '^•7
      
      S, Db
      ^: C,^
      
      6l\ O
      .UZ.
      jC ^2 r\
      VO.OU
      - ..
      o.4fe>
      fo/^^
      .AV>
      
      .03
      
      7.2fe
      
      
      
      
      NE.1R
      CO.,
      %
      
      . B2
      of
      o. .pip
      8RC
      
      
      ,0i>
      8t^
      Q A Q
      /•47
      9O C
      .Zi>
      
      . /2
      q -14
      
      ~i t»c-
      /.7->
      9 rift
      .DO
      9 A I
      ,UI
      &/- -)
      .to /
      Q Af~
      D.^o
      81.-)
      .O /
      81 1
      .LI
      6Af\
      .TV
      
      7.fc>4
      
      
      
      
      ND\R
      NOX
      ^«
      
      —"7
      S3.
      Oo
      i r\-j
      ID /
      
      1 ?4
      „,
      /- r x>
      1 \ *l
      ^J I-*
      
      ^H> /
      
      574
      ,
      i *-l)io
      
      i3Q
      
      41
      \O *7 1
      
      
      1 40 o
      QAt»
      
      7ftcr
      
      y| /^ »
      4v> 1
      •7 Q Q
      Z7 7
      O f\~J
      
      
      l J> 1
      O^C
      7^-5
      
      4-7
      
      
      
      
      C.L.
      N0»x
      ^«
      -20
      OO
      cq
      07
      Oft
      7"
      i -JT
      1 / /
      -jrft
      
      an -7
      
      Ar\O
      t> If-
      n Oft
      1 1 7O
      1 DO
      (ot)/-
      
      4i
      ft 1
      1 1 D 1
      1 A 1 *Z
      
      ^c:^.
      7oj
      -7f\Q
      /U7
      Acre
      TOO
      
      2^0
      
      1 7"H
      
      1 <-. /-
      ft r\
      90
      
      4O
      
      
      
      
      C.L.
      NO,
      ^-
      
      1
      £;l
      ^7
      Ok ^
      7 0
      
      1 / /
      •j^fi
      *-*•* v
      ^.n-j
      
      /1A cr
      
      CT)
      
      . QJJ
      1 1 7Q
      G.R?
      
      2,C
      
      1 1 "7 1
      M / 1
      l An "z.
      
      Q ^. 1
      7-> 1
      T AQ
      /(J7
      44-4.
      T-T-T"
      7 ft 1
      
      1 
      
      •*ri
      OLT
      • to f
      .
      Ov /b
      
      . 64
      
      
      
      
      WISCONSIN  VH4D   DATE H/27/72.
                                                               WET
      RUN
      BAROMETER/^
                                               Z6.9O  DRY BUUB TEMP., T  74
      

      -------
      
      MODE
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      1 1
      12
      13
      14
      15
      16
      17
      15
      19
      zo
      2.1
      Z2
      23
      EN&IME
      SPEED,
      RPM
      9OO
      1700
      noo
      1700
      1700
      1700
      1700
      noo
      noo
      noo
      900
      2800
      2800
      2800
      2800
      2.800
      280O
      2800
      2800
      2&00
      900
      
      
      
      
      OBSERVED
      POVIER.
      kK>
      
      
      
      
      2.8
      5.7
      8.5
      \ 1.3
      14.1
      17.0
      H.&
      22.7
      
      
      31.0
      27. Z
      23.3
      19.4
      15.4
      9.3
      7.9
      4.0
      
      
      
      
      
      
      
      
      FUEL
      FLOW,
      VH,
      2, .4
      4-2
      5.Z.
      fc.O
      7-7
      9-1
      10.3
      1 1.3
      13.1
      14-7
      2.4
      2.0.4
      18- fc
      17.2
      Kc.Cc,
      14.0
      II. 8
      9-7
      6.8
      «>.?
      2.fc
      
      
      
      
      TEMP,°F
      INTAK.E
      AIR
      75
      75
      75
      7k
      7fc
      7fc
      7fc
      7fe
      77
      77
      77
      77
      -??
      79
      79
      79
      79
      79
      -/)
      19
      79
      
      
      
      
      EXH-
      AUST
      (oSO
      7 2O
      800
      870
      930
      1010
      1070
      (130
      1200
      1250
      0
      2450
      2fo50
      3320
      4OOO
      4110
      42SO
      5300
      TfoOO
      
      
      
      
      ND1R
      HC,
      >KCfe
      Ztfe
      279
      »70
      \fcl
      170
      1 10
      12?
      12?
      no
      91
      2-10
      i 1 1
      92
      92
      91
      130
      130
      13?
      150
      '61
      27 &
      
      
      
      
      ND1R
      to,
      y.
      fc.BO
      fo.&4
      (b.OS
      5.26
      S.77
      8
      854
      503
      309
      2.15
      I2\
      108
      41
      
      
      
      
      C.L.
      NOV
      ft"
      47
      47
      8-
      30.
      3fc
      82
      2.00
      305
      34(
      4£fc
      
      -------
      
      MODE
      1
      2
      3.
      4
      5
      e,
      7
      8
      9
      10
      1 1
      12
      15
      14
      15
      16
      U
      15
      »9
      2.0
      2.1
      22
      23
      ENGINE
      SPEED,
      RPM
      900
      noo
      uoo
      noo
      \700
      \700
      1700
      noo
      \700
      noo
      \ooo
      2-800
      2.800
      1800
      2800
      2.800
      Z800
      2BOO
      Z800
      2800
      1000
      
      
      
      
      OBSERVED
      POVJER,
      Ut>
      
      
      
      
      2.8
      5.7
      8-5
      U.3
      14-2
      17.0
      19- &
      21.1
      
      
      31-0
      2/7.3
      23.3
      15.4-
      15.4
      9.3
      1-9
      4.0
      
      
      
      
      
      
      
      
      FUEL
      FLOW,
      VK,
      2.7
      4.3
      5-.t>
      15.0
      2.6
      £0.3
      16.7
      il. &
      Ib.l
      13.3
      ii. s
      10.8
      8-7
      7.79
      179
      !~
      31
      49
      63
      Z04
      302
      351
      453
      0,18
      H70
      
      -------
      t\J
      cr-
      
      MODE
      1
      2
      3
      4
      5"
      <0
      7
      8
      9
      1 0
      i i
      1 2
      1 3
      ENGINE
      SPEED,
      RPr-i
      IOOQ
      zooo
      2000
      2000
      ZOOO
      ZOOO
      1000
      24OO
      2.400
      2400
      2400
      2400
      »000
      OBSERVED
      POVJER,
      bK(>
      
      
      
      
      -Cfe
      27(0
      109
      io>3
      I(o9
      159
      129
      254
      14-9
      138
      »7?
      2.31
      2S4
      512
      NDIR
      to,
      %
      fc.93
      t.84-
      5.81
      S.82
      s.\o
      4.70
      
      63
      29
      C.L.
      NO,,
      H»-
      43
      fcS
      252
      447
      9il
      VMS
      49
      (252
      1080
      552
      2>?
      62
      4\
      C.V..
      NO,
      »>»>-
      39
      (oO
      24ft
      440
      3IC,
      \\\S
      4-1
      )20S
      I07fe
      S4«
      2-19
      &0
      34
      POLAR.
      o,,
      %
      O.B3
      0.59
      O.fc3
      o.s(»
      0.43.
      0.34-
      0.50
      0.3t
      O.M
      O.iS
      O.lfc
      0.5?
      O.fcS
                     WISCONSIN  \ HAD
      DATE U/29/-I2
          MAPPING-
      
      BAROMETER,
             WET  BUL6 TEMP, °F _-5_4_
      
      Z9.4O  DRV  BULB  TtMR, %F  ~>Q
      

      -------
      
      MODE
      1
      2
      3
      4-
      5
      6
      7
      8
      9
      1 0
      i i
      t 2
      1 3
      ENGINE
      SPEED
      RPM
      900
      2.000
      ZOGO
      2000
      ZOOO
      2.000
      (000
      2400
      2400
      Z400
      Z.400
      2.4-00
      1000
      OBSERVED
      POVJER,
      bKf>
      
      
      
      
      b.s
      13.0
      19.5
      2-t.O
      
      
      29.fc
      Z2.Z
      14. &
      7.4
      
      
      
      
      FUEL
      FLOW,
      Vhr
      Z.fc
      5.3
      7.S
      10.8
      13,7
      lfc.2.
      2.7
      i&-9
      15.?
      12.5
      S.fc
      S,
      3.1
      0.1
      4.3
      21
      l.<0
      0.8
      O.S
      O.i
      EXHAUST,
      i* ^
      o.o
      0.)
      OJ
      o.\
      o.z
      5.3
      o.o
      0.4
      0.3
      0.2
      o.»
      o.\
      o.O
      ^PiN\FOLD
      VKCUUM.
      C« ^
      
      
      
      
      	
      
      
      
      
      
      
      
      
      
      
      	
      
      
      
      
      
      
      
      
      FtA
      we,
      n>~c.
      Id.fcOO
      fe,280
      4,^9 D
      3,58G
      2,4)80
      2,^90
      !2,8t>0
      2,480
      2,fcSO
      3,4fcO
      3,750
      4,500
      1,400
      ND\R
      «Cx
      H-Cfc
      299
      22.1
      180
      IS?
      147
      1X9
      321
      )SQ
      12J
      lb>
      \79
      It)
      300
      ND1R
      tOx
      %
      1.98
      fc.92
      5.>o
      S.&3
      (o.25
      4.15
      fo.bS
      4.1^
      5.23
      5.15
      6.31
      5.95
      (o.4?
      NDIR
      coz/
      Yo
      1.22
      8.2-t
      &.B8
      8.98
      9.5?
      9.93
      8.27
      IO.O&
      9.9
      47
      lZfc3
      UZ&
      574
      233
      83
      35
      C.L.
      NO,,
      V-K
      37
      0,3
      Z44-
      435
      94-3
      1048
      51
      1ZOO
      ion
      557
      233
      63
      41
      C.L.
      NO,
      *>*>»•
      27
      to
      235
      43S
      9Zk
      1044
      4-!
      12.00
      1061
      SSI
      2B.I
      15
      3(o
      POLAR.
      °2,
      %
      0.49
      O.OB
      0.01
      0>09
      O.Oi
      o.os
      0.08
      0.01
      0.03
      0.03
      0.03
      0-01
      0.09
      ENGINE  WISCONSIN  VH4J?
      MAPPING-
      DATE  '> A?/72-
      BAROMETER, i"
      2.3-
      WET BOL& TEMP.. °F
      DRV  &ULB TEMP.,  *F
                                                          12.
      

      -------
                         APPENDIX G
      
          COMPUTER-GENERATED DATA PRINTOUTS
      AND CALCULATION OF BRAKE SPECIFIC EMISSIONS
           FOR GASOLINE ENGINES USED IN FARM,
      CONSTRUCTION, AND  INDUSTRIAL APPLICATIONS
                               G-l
      

      -------
       b n H i  b N b I N b NO E1 8 8 b 5 3
      )F  ti-'ISSIONS TEST   KUN 1
      
      I'OL'E
      J
      f
      H
      t
      b
      b
      7
      b
      b
      in
      .1 i
      id
      J 3
      It
      lb
      lb
      1?
      lb
      14
      dl
      ?\
      d?
      5;i
      
      HODb
      1
      P
      4
      t
      b
      h
      V
      i'
      9
      U
      11
      12
      1 j
      It
      J b
      lb
      17
      IB
      ] 4
      PC.
      2J
      ap
      2J
      CYCLE
      
      
      
      
      
      bPttP
      bSli
      1 t (i Li
      1*01'
      1*111'
      l * n 1 1
      it mi
      .1 * n i.'
      J. * LI L:
      i * 1 1 f."
      itiiii
      bbh
      i'-rin
      P inn
      dllH>
      d 1 (J 1 1
      f.MllL
      d J U 1 1
      d 11 i 1 '
      P. 1 n 1 1
      c' 1 l 1 1 i
      d 1 LHi
      bSh
      dinn
      L
      A L D b .
      II. f.
      n.n
      i ' . '
      i1 . i
      ".i
      <'.'
      n . i
      i' . ii
      1 1 . f
      n . I.
      U . 1'
      P.I'
      l. . i
      C.l'
      M . i.
      1 1 . i '
      i1 . (.'
      fi . C
      n . n
      ( . i'
      h . i
      n . i .
      i:. I.
      L.I..I-
      
      
      
      
      UYNA ,
      L n A o
      n.fi
      o.n
      IB.fj
      37.0
      b*.n
      7 3. fj
      41.0
      104.0
      127.0
      lb J . U
      0.0
      0 . 0
      1 .H t . 1 1
      1 J P . U
      Hb.D
      K n . u
      b*. n
      t f< . n
      32.11
      J h.O
      n . c
      n.ri
      ii.ii
      
      HP
      0
      0
      b
      13
      19
      db
      32
      38
      **
      53
      D
      0
      70
      59
      5U
      *P
      3*
      2b
      17
      8
      U
      0
      Ij
      h A IM . FUtu R A "1 t
      
      VAC. L6/HK GM/HR ALDt.
      19. U 3.2 1*52
      19. 2 7.2 32*8
      17.9 10.2 *b22
      15.9 11.4 5343
      13.8 15.1 b85*
      11.9 17.5 7415
      4.8 14.* 881)4
      ?.* 22.3 ICUOb
      5.1 25. * 115U3
      P.I 28. b 1P455
      14.3 3.1 1397
      21.* 3.3 1*79
      3.1 37.7 17119
      7.1 30.7 13935
      4.11 28.5 1241*
      11.2 25.1 11385
      13.1 20.* 42b3
      15.* 18.* 83b*
      lb.5 15.8 71*9
      1«. 5 12.0 5*52
      IS. 8 9.7 >+>+0*
      19.7 3.2 l*bl
      21.3 3.3 1*88
      -0
      -0
      -U
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      aLCOLATLO GRAM/HK WT.
      HL
      HO. 7
      dS*.2
      1 1 J, . b
      L 5 d . l
      1 98 . b
      1 S 7.b
      c1 1 1 U . t
      Pl'1.5
      i >.; i . H
      P P 9 . b
      h 2 . n
      * 13. 1
      P b b . b
      ddb . 3
      dlS.b
      P 2 V . b
      195.5
      187.4
      1. 7 1 . 1
      .1 J 4 . 2
      1 b 2 . ll
      7b. *
      *«4.b
      L'SITE
      
      
      
      
      cu
      *bt
      2812
      3395
      3498
      tfib 7
      5025
      53*2
      5*3*
      5 2 n 2
      bb'M 7
      *bb
      5b8
      57U2
      blbS
      b253
      h 0 R 7
      S23b
      52**
      *b5*
      3b87
      31*3
      boa
      b47
      HC
      CO 1
      N02
      AIDE
      riSFC
      N02 FAC. HP
      a. 8 ,ob? o.o
      *. 3 .0*0 0.0
      2b.a .0*0 .3
      t 1. 7 .0*0 .5
      b8 . 0 .0*0 .8
      115.8 .0*0 l.Q
      1 b 5 . b .0*0 1.3
      230.3 .0*0 1.5
      315.* .0*0 1 .8
      358.4 .0*0 2.1
      2 . * .Ob? 0.0
      .5 .0*0 fl . 0
      795. b .0*0 2.8
      *91.0 .0*0 P.*
      tit .2 .0*0 2.0
      338. 3 ,0*U 1.7
      atu.b .0*0 1.3
      Ibl.l .0*0 1 .0
      110.7 .0*0 .7
      *2.2 .OtO .3
      1 3.P .0*0 0.0
      P. 2 .Ob? 0.0
      .3 .0*0 0.0
      8.41b GRAM/BHP HR
      70. RO* GRAM/BMP HR
      7.353 GRAM/BMP HR
      0.000 GKAM/BhP HR
      .705 LR/BHP HR
      ALDE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0,0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      WET
      HC
      b900
      12000
      *bOO
      *200
      *300
      3500
      3350
      2900
      2250
      2500
      bOOO
      32500
      2200
      2300
      2*50
      2950
      3100
      3350
      3bOO
      3250
      5000
      7000
      30500
      CONCENTRATION
      
      i
      b
      5
      5
      5
      *
      *
      3
      3
      3
      2
      2
      2
      3
      3
      3
      *
      t
      t
      *
      5
      a
      2
      WEIGHTED
      
      5.
      10.
      5.
      fa.
      7.
      7.
      8.
      8.
      7.
      9.
      *.
      lb.
      10.
      9.
      8.
      9.
      7.
      7.
      b.
      *.
      b.
      5.
      19.
      
      
      
      
      
      HC
      38
      17
      bb
      08
      4*
      51
      02
      Ob
      28
      14
      1*
      52
      7*
      05
      79
      10
      82
      52
      8*
      77
      08
      10
      58
      
      
      
      
      
      CO
      ,9b2
      .572
      .*bO
      ,*fa5
      .21?
      ,b37
      ,*21
      .872
      .18b
      .017
      .18*
      .21*
      .312
      .101
      .*50
      .407
      .110
      .b29
      .8*8
      .97?
      .119
      .728
      .1*9
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      coe
      4.75
      7.5fa
      4.04
      9.01
      9.20
      9.77
      4.97
      10.38
      10.82
      10.8*
      10.73
      b.17
      11. *9
      10.83
      10.70
      10. Sb
      10.2?
      9. 45
      4.83
      9.5b
      8.8?
      9.95
      *.o?
      NO
      73
      bl
      2*7
      3*b
      ***
      bSO
      83*
      948
      1175
      1177
      70
      11
      19b3
      1503
      1391
      1321
      11*4
      8bb
      702
      3*b
      131
      bd
      S
      GRAM/HR
      
      30
      112
      135
      159
      14*
      201
      213
      217
      208
      223
      30
      22
      228
      2*b
      250
      2*3
      209
      204
      18b
      1*7
      125
      *0
      27
      
      
      
      
      
      CO
      .4
      .5
      .8
      .4
      .?
      .0
      .7
      .*
      .1
      .9
      .*
      .7
      .1
      . b
      .1
      .5
      .*
      .8
      .2
      .5
      . 7
      .1
      .4
      
      
      
      
      
      NU2
      .a
      .2
      1.0
      1.7
      2.7
      *.b
      b.b
      9.2
      12. b
      1*.*
      .2
      .0
      31.8
      19. b
      Ib.b
      13.5
      9.b
      b.*
      *.*
      1.7
      .5
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                     G--2
      

      -------
      FORD bSCHiQ ENGINE NO E188b53
      23-MODE fMSSIMNS TEST   RUN 2
                                       3/21/72
      
      MOl'E
      1
      ?
      3
      4-
      c,
      b
      7
      8
      q
      in
      11
      12
      13
      It
      15
      Ib
      J 7
      18
      1=1
      20
      21
      22
      23
      
      SPEED
      b50
      itno
      It 00
      It 00
      item
      It OCi
      It Q(i
      item
      1 1 0 0
      It 0(i
      bso
      Iton
      510 0
      a IOC:
      2101'
      2100
      elOL
      2 inc.
      2100
      elOLi
      2100
      fa SO
      2 lor
      UYMA,
      LOAD
      0.0
      n.o
      iq.o
      38.0
      57.0
      ?b.O
      15. 0
      1 1 1 . 0
      133.0
      151.0
      o.rj
      0.0
      ist.o
      118.0
      101.0
      8t .0
      b?.0
      51.0
      3t .0
      17.0
      n.o
      n.o
      LI. 0
      MAN. FUEL KATE.
      HP
      0
      0
      7
      13
      20
      2?
      33
      to
      t?
      53
      0
      0
      70
      ba
      53
      tt
      35
      2?
      18
      q
      0
      0
      0
      VAC. LB/HR GM/HR
      11.1 3.
      11. t 7.
      17. 1 8.
      lb.1 11.
      is. q it.
      11. q ib.
      1.3 18.
      ?.? ea.
      t. ? at.
      2.0 27.
      11.7 3.
      21. t 3.
      3. a St.
      b.O 31.
      8.7 27.
      10. q at.
      13. t 21.
      it. 8 iq.
      ib.q it.
      18.5 la.
      ao.o q.
      11.8 3.
      21. t 3.
      CALCULATED GKAM/HR
      MODE
      1
      2
      3
      |+
      5
      b
      7
      fc
      q
      10
      J 1
      12
      13
      It
      15
      J fa
      1 ?
      18
      11
      ?n
      2J
      22
      23
      CYCLE
      
      
      
      
      AL OE .
      (1.0
      n.c
      O.l
      0 . ('
      O.l'
      o.n
      0.0
      0.0
      0.0
      O.fJ
      o . n
      n. (i
      0 .0
      0.0
      0.0
      0.0
      n.(<
      0 . 0
      0.0
      0.0
      0.0
      0.0
      0.0
      COHPl
      
      
      
      
      HC
      70.7
      235.0
      1 3 2 . fa
      153.5
      i?i.e
      142.1
      18b. 3
      221. t
      211.8
      eat .H
      b2.8
      177. b
      223.3
      213.8
      eut.i
      201.7
      1M8.0
      18b. 7
      Ibl.fa
      251. b
      lib. fa
      18. S
      ttO.fa
      iSITE
      
      
      
      
      CO
      5bl
      27tq
      sosq
      3 fa (i 8
      tt35
      t785
      tan
      5t52
      5131
      5b01
      503
      b52
      517S
      bll?
      5721
      58bl
      Sb03
      5381
      tt7t
      3511
      2180
      bSl
      bit
      HC
      CO
      Noa
      ALDE
      BSFC
      i itat
      i seib
      i tota
      1 5035
      t bStl
      a 73fab
      i saio
      5 10117
      5 11122
      i iae?t
      0 13b5
      3 isao
      7 1572b
      s ita?i
      s latbi
      t 11015
      s lies
      3 8750
      8 bb15
      1 5t8t
      0 tOfal
      t 1551
      0 13t7
      WT.
      N02 FAC.
      2.5 .
      t.a .
      17. t
      to. 8
      77.8
      103.0
      150.3
      238. t .
      33t.S .
      Stl.O
      a. 5 .
      .5 .
      733. a .
      515. 1
      t!7.S .
      ate.t
      370. b
      IIS. 7
      95.0 .
      ti.o .
      i.s .
      e.t
      • t .
      8.7S5
      151.207
      7.078
      0.000
      .bSl
      Ob? 0
      oto o
      nto
      oto
      oto
      oto i
      oto i
      oto i
      oto i
      OtO 2
      Ob7 0
      oto o
      oto a
      oto a
      oto a
      OtO 1
      OtO 1
      OtO 1
      oto
      oto
      oto o
      Ob7 0
      oto o
      GRAM/BHP
      GRAM/BHP
      GRAM/BHP
      GRAM/BHP
      LB/BHF1
      ALDE.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      HP
      .0
      .0
      .3
      .5
      .8
      .1
      .3
      .b
      .1
      .1
      .0
      .0
      .8
      .5
      .1
      .8
      .t
      .1
      .7
      . t
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      
      ALOE.
      0. 0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      WET CONCENTRATION
      HC
      b550 2.
      11100 b.
      teso s.
      ttOO 5.
      3100 t.
      3700 t.
      3150 t.
      3000 3.
      abOQ 3.
      eboo 3.
      booo a.
      38500 2.
      1150 2.
      2100 2.
      2300 3.
      2700 3.
      2100 t.
      3100 t.
      3550 t.
      blOO t.
      7000 5.
      8 1 0 0 3 .
      28500 1.
      WEIGHTED
      HC
      t.72
      q. to
      5.31
      b.lt
      7.17
      7.b1
      ?.ts
      8.8b
      8.17
      1.37
      t.11
      11.10
      8.13
      8.55
      8.1b
      8.31
      7.12
      7.1?
      b.tb
      10.18
      7.8b
      b.bO
      17. b3
      
      
      
      
      
      CO
      573
      127
      S3?
      Ill
      778
      5b2
      013
      b57
      111
      0?b
      380
      bOl
      231
      171
      112
      73b
      Ob3
      tai
      8b5
      ?ba
      asa
      738
      Ifa?
      coa
      q.ib
      7.faS
      8.7b
      8.87
      1.07
      1.25
      q. t?
      1.8b
      10.28
      10.28
      10.07
      5.80
      11.30
      10.81
      10. b3
      10. ea
      10.18
      q. ?q
      q.tq
      q.ti
      8.53
      q.si
      3.10
      NO
      71
      51
      112
      353
      510
      517
      7bS
      173
      1237
      1131
      71
      11
      1103
      152b
      1117
      1328
      1111
      S11
      fa21
      too
      IQfa
      bO
      8
      GRAM/HR
      CO
      37.1
      101.1
      iaa.3
      111.3
      177.1
      111.1
      115. b
      ais.i
      aos.s
      aat.i
      33. b
      2b.l
      207. a
      211.7
      228.8
      231.5
      221.1
      215. b
      178.1
      112.0
      111.2
      13.1
      at.b
      
      
      
      
      
      N02
      .a
      «2
      .7
      l.b
      3.1
      1.1
      b.O
      1.5
      13.1
      13. b
      .a
      .0
      28.1
      20. b
      lb.7
      13.7
      10.8
      8.0
      3.8
      2.0
      .1
      .2
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                          G-3
      

      -------
      FOkD (.-Bono ENGINE NO E188b53
      23-MdDt thissiohs TEST   RUN  3
      3/30/72
      
      MUUE
      ]
      2
      3
      t
      5
      h
      7
      8
      q
      in
      U
      le
      1 H
      it
      IS
      lb
      17
      IK
      1Q
      2u
      51
      5S
      23
      
      H Out
      1
      e
      3
      4
      S
      h
      7
      8
      q
      10
      11
      It'
      13
      It
      1?
      lb
      17
      lb
      is
      50
      ?J
      
      -------
      FUKD t,5nno ENGINE NO 11 8 8 b 5 3
      23--.ni)F. EMISSIONS TEST   HUN  4
                                        3/3)772
      
      !• ODt
      J
      2
      3
      t
      5
      b
      7
      8
      9
      in
      11
      12
      13
      14
      15
      Ib
      1 7
      IK
      J4
      2n
      21
      22
      23
      
      •" 0 L< t
      1
      c
      ~3
      it
      t,
      h
      >
      H
      q
      ll-
      11
      12
      13
      1 t
      15
      1H
      17
      IK
      J H
      20
      £1
      22
      23
      rvc it
      
      
      
      
      
      S P E E" 0
      bSU
      14 on
      140U
      1 4 f j ( ,
      .1 4on
      1400
      l frui
      1 1 o n
      1 1 fj L,
      It nil
      h50
      1 ton
      2100
      2100
      2 .1 0 0
      2 J 0 1 1
      2) mi
      2 1 0 0
      21 no
      21 or
      2101
      bSl
      2 1 n (•
      c
      i L i; t .
      n . n
      II . 1
      '"-' . ' '
      n . o
      0 . L.
      0 . U
      n . o
      II . C'
      n . n
      M.I
      M . i
      P. . f
      [I . M
      0.0
      • \ . c
      n , r.
      " . !•
      0 . M
      n . U
      n.o
      o . o
      o.n
      n . n
      C C M-
      
      
      
      
      UYNA ,
      LOAL-
      n.o
      0.0
      14.0
      3H.O
      b?.U
      -"b . 0
      45.0
      114.0
      133.0
      154.0
      0.0
      0 .0
      1 3 R . 0
      118.0
      101.0
      84.0
      b 7 . U
      5i .n
      34 . n
      17.0
      0 . U
      0. 0
      0.0
      
      HP
      0
      0
      7
      13
      20
      27
      33
      to
      47
      54
      0
      0
      72
      K2
      53
      44
      35
      27
      18
      9
      0
      0
      0
      r-1 A l\l . h
      UtL
      VAC. LB/HR
      19.3 3
      19.5 b
      18.1 8
      Ib. 3 11
      14.3 13
      11.4 Ib
      9,4 18
      7.5 20
      5.1 2 j
      2.2 c7
      19.8 3
      21.4 3
      3 o 1 35
      b.2 31
      9.0 27
      11.4 ^4
      12.4 22
      15.0 18
      Ib. 7 15
      18 . b 12
      20,0 9
      20.0 3
      21,7 3
      ,2
      .4
      . 7
      . 1
      . 5
      .b
      . q
      . 7
      . a
      . 2
      . 1
      . 2
      . 3
      . 2
      . 4
      .4
      . 1
      .3
      , S
      „ q
      . 1
      . 0
      .5
      K A T t
      C- M / H R
      1433
      3112
      34bO
      5017
      b!37
      7534
      8555
      4344
      1 C 7 4 b
      12352
      140b
      14Sb
      15444
      14148
      12429
      11272
      10038
      8287
      7044
      58b5
      4105
      13E3
      1574
      IN t 1 C U N C (7 N T R A i 1 G N
      ALDt.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      "0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      - U
      -0
      -0
      HC
      8tOO 1.
      12bOO fa.
      5000 5.
      440U 5.
      t 0 0 0 4 .
      3700 4.
      - 3000 3.
      2850 3.
      2550 3 .
      2 5 0 U 3 ,.
      BbOO 2 .
      24000 2.
      2200 Co
      2300 3 .
      2550 3.
      2800 3.
      3000 4 .
      3200 4 .
      3 b 0 0 v> ,
      3700 S „
      bOOO 5.
      7500 £0
      41000 2 „
      ALCULATEuGRArVh^ w T . uhltjHTEiJ
      HC
      48.8
      253.4
      134.1
      152.3
      172.3
      147.3
      IPb . 4
      1 4 7 . b
      2 n 4 . d
      223.8
      9b . ?
      371 . /
      2^5 . b
      2 3 1 . 0
      224.5
      210.4
      2 n 5 . 7
      .174.7
      1 73. U
      14b . d.
      1 71. b
      7b. 7
      b24.3
      C-SI 1 F
      
      
      
      
      CO
      4bO
      2794
      3034
      3499
      4158
      4844
      4970
      5001
      5057
      5947
      537
      bSl
      47b2
      b!21
      5752
      57S1
      57b7
      5075
      4b?5
      40b5
      29bt
      54b
      b55
      hC
      CU 1
      NOc
      ALDt
      6SFC
      N02
      2 ., t
      3.3
      15 . b
      42,0
      72, 3
      112,8
      148,5
      217,1
      3 0 b . ?
      305,4
      2 . "
      e v
      733.7
      472.5
      t i 0 . 0
      337.5
      2b4 . c
      Ib4 . h
      103.8
      51.1
      q D 4
      2.1
      .5
      8,843
      57,325
      b „ 7bc
      0.000
      .b54
      F AC „
      .087
      .040
      .040
      . 040
      .040
      .040
      .040
      ,040
      .040
      .040
      . Ob7
      .040
      ,040
      . 040
      ,040
      .040
      .040
      .040
      .04(1
      .040
      .040
      .Ob?
      .040
      C-K*
      
      0
      0
      
      
      
      1
      1
      1
      1
      2
      0
      0
      2
      2
      2
      1
      1
      1
      
      
      0
      0
      0
      f '/ b H P
      GRAM/bHP
      GKA
      GKA
      n/bHP
      M/BHP
      LB/6HP
      HP
      .0
      .0
      . 3
      .5
      .8
      . 1
      .3
      .b
      .4
      .2
      .0
      ,0
      .4
      . 5
      . 1
      , 8
      . 4
      .1
      . 7
      . 4
      .0
      c 0
      .0
      HR
      HR
      h'R
      MR
      HR
      ALL'S,
      0.0
      0.0
      0.0
      0.0
      o .n
      0 . 0
      o.o
      0, 0
      0.0
      0.0
      0 ,0
      0 .0
      0. 0
      0.0
      0.0
      0.0
      U . 0
      0.0
      U. U
      0. 0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      b.54
      1 0 . 1 b
      5.3b
      b.D4
      b. 89
      7.89
      7.4?
      7.90
      3ol7
      8.45
      b, 45
      14.8?
      10.22
      9.24
      8.48
      8. 74
      8.23
      7.14
      b. 92
      5.85
      b.6b
      5.11
      25.17
      
      
      
      
      
      co roi-
      933 ",^1
      8bt 7.3d
      599 8 . b b
      003 4.05
      778 9.07'
      5 U 3 3 ., i b
      950 XM8
      571 i , b i
      125 i 0 ., 0 ~
      284 10,.-'
      3 b 5 T . c M
      51b 5., ' '-
      024 11
      017 1 0 .„ b
      234 10. h J
      fa 7 5 10. T- 0
      1 b 3 10.1?
      471 4 , L> \j
      815 4 , ':• S
      043 9 „ 3 P
      132 H. fcP
      b 4 5 1 J 1 u
      112 '1.07
      G R A H / H !•;
      C 0 N u ;:
      30.7 .2
      111.8 ,1
      121.4 , b
      134,9 U 7
      1 b b . 3 2 , '-1
      144,0 M , 5
      148,8 5,4
      200,0 P. '
      202.3 ,17.7
      237.4 i I , r?
      35.8 J
      2b.i
      190,5
      2 4 4 o 9 •. * .-
      230,1 Ib ':
      2 3 1 . b l-o 5
      230.7 10, b
      2 0 2 o 9 t, „ 8
      187.0 'J „ ?
      1 b 2 , b 7- . 0
      1 1 8 o t. . H
      3 b . 4 „ i
      2b,2 ; !i
      
      
      
      
      
      I'!,
      b -
      'I-
      175
      3b:
      !f. '7 i:
      L 7- .
      " ' f
      , M ;
      i ^
      '
      c '
      _1 ,
      ; : 0 i
      < ' -
      ) ",• 0 -
      J 3 >J :
      } } b '
      •' 1 1.
      L" .. i
      -: i_
      t
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                           G-5
      

      -------
      F U h1 •_) bb n Ii G  t N G IN E NO E 1 8 8 b b 3
      Pd-MfH)t (-MISSIONS TEST   HUN  S
                                         3/31/75
      NODE
      j
      c
      d
      t
      b
      b
      7
      t
      c
      1L
      11
      ve
      13
      It
      Ib
      Ib
      1?
      18
      IS
      S\:
      P.I
      aa
      ^
      u Y N A .
      SKEO. LOAO
      hSO
      it (l(i
      it no
      i t uti
      i too
      i1* in
      it i.n,
      It ||[.
      i tn(,
      1 t f. f!
      hbO
      1 tQI,
      aim.
      ainii
      a j mi
      a INI.
      31 PR
      51MO
      31 no
      aim.
      a j 1 1 1
      F-b'l.'
      a j n o
      0 . 1.1
      n.o
      IS.fi
      38.0
      57.U
      ?h.O
      SS.O
      1 1 "• . 0
      .133.0
      1 b 1 . U
      0.0
      0.0
      ] 3 7 . n
      118.0
      1U1.0
      at .0
      b?.IJ
      5J .0
      3t . u
      17.0
      0 . 0
      o.o
      o.u
      HP
      0
      0
      7
      13
      ao
      a?
      33
      to
      t?
      b3
      0
      0
      ?a
      ba
      53
      tt
      35
      a?
      18
      q
      C
      0
      0
      fiAN. FUEL RATE
      VAC. LB/HR GM/HR ALOE.
      30.5 3.
      IS. 8 b.
      18. b 8.
      Ib. 3 10.
      It. 5 13.
      15. t 15.
      10. a i?.
      ?.b 51.
      5.0 53.
      a. h aa.
      a n.o 3.
      31. t 3.
      3.b at.
      b.a 33.
      S.3 27.
      11. t at.
      13. t aa.
      15. n IB.
      17.0 15.
      18. b 13.
      30.3 S,
      IS. 8 3.
      31.5 3.
      i itat
      S 3130
      t 3810
      fa t855
      ? blSfa
      b ?OSt
      ? 8038
      0 S53b
      8 107Sb
      2 15787
      a itsb
      3 ltS7
      t 15b23
      a itssa
      1 15315
      t nots
      5 101S?
      S 8555
      8 71tS
      1 5503
      a tibs
      a it?n
      3 ItS?
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      CALCULATED Gf
      h
      4
      H.
      1 1
      id
      1 H
      I1!
      J C.
      ] b
      17
      If
      1 u
      51
      a i
      a a
      s'-
      (. YC LE
      
      
      
      
      Al. l)h
      n.o
      n.i
      o . f
      '•• . I
      0 . r
      o . l
      O.I
      n .(
      i1 . (
      0 . 0
      P.I'
      I' . 1
      (i . 1
      1 ' . !
      n . n
      0 . I
      0 . 0
      n . i
      o.o
      n.o
      " . '
      i' . 0
      n . o
      L C ••
      
      
      
      
      ML
      77.1
      a 7 3 . H
      ] 15 . 5
      1 i1 ? . S
      1 tH . S
      IbS . li
      1 bt . 8
      J HO . b
      Ib8 . 5
      a n a . a
      7b . b
      t ? a . b
      Ptb. 1
      asa . a
      533 . *
      a t1 8 . B
      a?s . t
      a .1 5 . B
      1 4 3 . b
      Ibl. t
      ISO . b
      life. ?
      S3a.H
      H t: S I T F.
      
      
      
      
      CO
      5ea
      a?ba
      3U78
      3t38
      t08b
      *3U +
      tsab
      tstu
      ttoi
      bb3a
      53b
      bdb
      5503
      btt S
      S8bS
      bb3H
      58t 7
      bebb
      t 755
      3bbb
      30tb
      tub
      b?l
      HC
      cu
      Noa
      ALOE
      HSFC
      rjoa F
      a. 3
      3.t
      11. S .
      3 b . 7
      71. H
      lot .u
      1*8.5
      3b3. 3
      3 3 b . 3 .
      351. S .
      a. 7
      .S
      b t b . t
      tSt . b
      343. b
      3at . b
      aba . b
      Ibb.b .
      sh . a
      tb.b .
      ci.a
      a. b
      .t .
      8.777
      IbB.bati
      b. b7b
      o . r.: o o
      . b53
      AC.
      Ob? 0
      oto o
      oto
      oto
      oto
      oto j
      uto i
      oto i
      uto i
      oto a
      Ob? 0
      oto o
      oto a
      oto a
      oto a
      oto i
      oto i
      o*n i
      uto
      oto
      oto n
      Ob? 0
      oto n
      GRAM/BhP
      GPAM/bMP
      GHAM/BHP
      GRAM/bHF
      LB/6HP
      HP
      .0
      .0
      .3
      .5
      .8
      .1
      .3
      .b
      . S
      .1
      .0
      .0
      .S
      .5
      .1
      .8
      .t
      .1
      .7
      .t
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      ALOE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      Q.O
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      u.o
      0.0
      0.0
      0.0
      
      
      
      
      
      rtET CONCENTRATION
      HC CO C03
      7500 5
      ItOOO b
      t?00 fa
      tOOO 5
      3bOO t
      3300 t
      5800 3
      e?oo 3
      3300 3
      3300 3
      faSOO 5
      3t 000 5
      5300 3
      3t50 3
      5700 3
      3000 3
      3300 t
      3750 t
      t050 t
      t300 t
      b?00 5
      1 0 U 0 0 1
      33faOO 3
      WEIGHTED
      HC
      5. It
      10. HS
      t .bl
      5.13
      b.OO
      b.3b
      b. IS
      7.35
      b. 73
      8.35
      5.11
      17.lt
      S. 81
      10. OS
      S. 3t
      S.1S
      S.18
      8.b3
      7.7*
      b. tb
      7.b5
      7.S3
      31.33
      
      
      
      
      
      ,t!5
      . S8S
      .51t
      .353
      .857
      .t21
      .873
      .3bl
      .850
      .017
      .350
      .tbl
      .313
      .101
      .3bl
      .588
      .Ib3
      .52S
      .8SO
      .830
      .303
      .bSl
      .OSb
      10. Ib
      7.bl
      8.8b
      S.3b
      S.bb
      S.S7
      10.38
      10. bl
      11.05
      10. Bt
      S.SO
      b.03
      11. tS
      10.83
      lO.fal
      10. SH
      10.17
      S.Sb
      S.bb
      S.tl
      8.bS
      S. bS
      3.S8
      NU
      bS
      53
      l*b
      3tfa
      51S
      bbO
      80S
      118b
      1385
      lOfaB
      71
      11
      17tb
      itta
      1371
      1382
      loss
      dbb
      bOb
      373
      S8
      bt
      8
      GRAM/HK
      CO
      at. s
      110.5
      133.1
      137. S
      Ib3.t
      173.5
      173.0
      181. fa
      17b.O
      331.3
      35.7
      3S.1
      308.1
      358.0
      eat. 8
      551.3
      533. S
      510. b
      188. S
      ltb.3
      131.8
      37.0
      3b.S
      
      
      
      
      
      N02
      .5
      .1
      .5
      1.5
      3.S
      t.a
      5.S
      10.5
      13.1
      12. S
      .a
      .0
      55.8
      IS. 8
      15.7
      13.0
      10.1
      b.b
      3.8
      l.S
      . t
      .a
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                            &-e
      

      -------
      HERCULES fi-asoo ENGINE NO  33i92b3
      P3-MOQE EMISSIONS TEST   RUN  2    b/lb/72
      
      MODE
      i
      a
      3
      t
      5
      h
      7
      H
      9
      in
      11
      12
      13
      It
      15
      Ib
      17
      18
      19
      2n
      21
      22
      ?-
      
      OYNA
      SPEED LOAD
      bOO
      It50
      It50
      It 50
      It 50
      itso
      It50
      It5 0
      It50
      It 50
      hOO
      It50
      at no
      2 1 0 0
      atoo
      atoo
      at oo
      atoo
      aton
      atoo
      atoo
      bOO
      aton
      o.o
      n.o
      19.0
      37.0
      5b.O
      7t.O
      92.0
      10R.O
      lae.o
      its.o
      o.n
      o.o
      12b.O
      108.0
      9t.O
      7 b . 0
      b2.0
      ts.u
      31.0
      15.0
      0.0
      n . o
      n.o
      
      HP
      0
      0
      7
      13
      20
      27
      33
      39
      tb
      5t
      n
      0
      7b
      b5
      5b
      tb
      37
      2?
      19
      9
      0
      0
      0
      MAN.
      FUEL RATE
      VAC. LB/HR GM/HR
      19.1
      19.3
      lb.9
      It. 5
      12.3
      10.1
      8.1
      b.2
      3. 7
      1.5
      18.9
      21.0
      2.3
      t.2
      b.2
      8. t
      10. t
      12. b
      It. 3
      Ib. t
      18.7
      19.0
      21.0
      2.8 iabi
      b.3 28tO
      8.8 397t
      12.8 5788
      15.5 70t9
      17.3 7838
      19.9 9031
      2t.8 112b3
      2b.5 12025
      33.2 150b9
      2.7 1207
      2.8 12bl
      38.7 175b8
      35.h lb!35
      32.1 It579
      27.3 1237t
      23.9 10859
      22.0 99bl
      18.2 82t2
      It. 2 bt59
      10.0 tS18
      2.t 1089
      ?.b llbl
      HET CONCENTRATION
      ALDE.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      CALCUIATED r,KAM/HH ^T.
      MODE
      1
      2
      3
      *
      5
      b
      7
      8
      q
      10
      11
      12
      13
      It
      m
      ib
      17
      18
      iq
      2n
      21
      22
      ?3
      CYCLE
      
      
      
      
      ALDE
      n.n
      o.o
      n.n
      o.o
      n . n
      o.n
      n.o
      o.n
      O.n
      o.o
      n.o
      o.o
      n.o
      o.n
      n.o
      o.o
      o.n
      n .11
      n . o
      o.o
      n.o
      n.o
      n.n
      HC
      52. b
      b9.7
      inl.f
      ltb.2
      177.9
      190.5
      207.5
      2 1 1 . 0
      2t9.3
      2h8.3
      79.7
      5b7.8
      22t . b
      P.20.2
      P17.1
      183. b
      I7b.2
      Ibt.b
      It?. 7
      1 1 1 . 8
      Ht . 7
      St.?
      bia.H
      COMPOSI TE
      
      
      
      
      
      
      
      
      CO
      9b3
      1319
      atos
      390?
      t889
      531b
      5711
      b9qh
      781t
      13h81
      1121
      5bb
      8R33
      9099
      91?b
      7858
      b9tO
      bR19
      b!2t
      tb22
      30t?
      923
      273
      HC
      cn
      N02
      ALDE
      HSFC
      Noa
      1.0
      t.?
      11.9
      33.1
      51.8
      72.3
      93.3
      151.3
      21 ?. b
      120.2
      . 7
      .3
      t 15. b
      330.8
      233.9
      170. b
      110. b
      Bb.R
      t7.0
      ?2.t
      9.1
      .8
      .t
      8.157
      209.708
      3.811
      0.000
      . 70b
      FAC.
      .Ob? n
      .oto o
      .oto
      .oto
      .oto
      .oto i
      .oto , i
      .oto i
      .oto i
      .Of 0 2
      .Ob? 0
      .oto o
      .Of) 3
      .OtO 2
      ,otn a
      .oto i
      . n t n i
      .oto i
      .oto
      .oto
      .oto o
      .Ob? 0
      .Of 0 0
      GRAM/BHP
      GRAM/BHP
      GRAM/BHP
      GHAM/aHP
      L6/BHP
      HP
      .0
      .0
      .3
      .5
      .8
      . 1
      . 3
      .b
      .9
      .1
      .0
      .0
      . 0
      .b
      .3
      .8
      .5
      . 1
      .7
      .t
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      ALDE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0. 0
      0. 0
      0.0
      0.0
      0.0
      0.0
      o.n
      n.o
      o.o
      o.n
      o.o
      o.o
      o.o
      o.o
      o.n
      o.o
      o.o
      
      
      
      
      
      HC
      5900 5
      3500 3
      3900 t
      3800 5
      3750 5
      3bOO t
      3500 t
      3200 t
      3050 t
      2850 7
      9bOO b
      5tOOO 2
      1850 3
      2050 t
      2200 t
      2200 t
      2500 t
      etso s
      e?oo s
      2b50 5
      2700 t
      7 n n o 5
      t3800
      WEIGHTED
      HC
      3.51
      2. 79
      t.05
      5.85
      7.12
      7.b2
      8.30
      9.bt
      9.97
      10.73
      5.32
      22.71
      8.98
      8.81
      H.b8
      7.3t
      7.05
      h.58
      5.91
      t.59
      3.39
      3.b5
      at. 75
      
      
      
      
      
      CO
      .3tt
      .e??
      .587
      .022
      .101
      .973
      .7b9
      .bOO
      .732
      .195
      ,b81
      .bb?
      ,b02
      .19t
      .bOt
      .bb2
      .875
      ,02b
      .Stl
      .282
      .807
      .853
      .955
      C02
      8.20
      10.be
      10.31
      9.b5
      9.38
      q.ta
      10.12
      10. Of
      9.b7
      8.53
      b.89
      3.93
      10. b8
      10. b2
      9.95
      9.95
      10.28
      9. 5b
      9.25
      9.3b
      9.32
      7.39
      2 . R8
      NO
      35
      71
      138
      259
      329
      t!2
      t?t
      b05
      802
      385
      25
      8
      1031
      928
      71t
      bib
      t?3
      389
      259
      15b
      8 f
      31
      B
      I;KAM/HR
      CO
      bt .2
      52.8
      9b. 3
      15b. 1
      195. b
      212. fa
      228. t
      279.8
      312. b
      5t?.2
      7t.7
      22.7
      353.3
      3 h t . 0
      3b?.0
      31t . 3
      277. b
      272.8
      2t5.0
      18t.9
      121.9
      bl.b
      10.9
      
      
      
      
      
      N02
      .1
      .2
      .5
      1.3
      a.i
      e.9
      3.7
      b.l
      8.7
      t.8
      .0
      .0
      Ib.b
      13.2
      9.t
      b.8
      t . t
      3.5
      1.9
      .9
      .t
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                         G-7
      

      -------
      HtRCULfS G-2300 ENGINE NO 331S2b3
      23-MODE EMISSIONS TEST   RUN 3   b/19/72
      
      MODE
      i
      a
      3
      1
      5
      b
      7
      R
      q
      in
      11
      12
      1 i
      11
      ib
      lb
      17
      18
      11
      20
      21
      2?
      23
      
      0 V N A .
      SPEED LOAD
      bOO
      1150
      1150
      1150
      1150
      H50
      1150
      1150
      1150
      H50
      boo
      1150
      2100
      2100
      2100
      2100
      510(1
      2100
      2100
      2100
      2100
      bOO
      2100
      0.0
      0.0
      1=1.0
      38.0
      bb.O
      71.0
      S1.0
      112.0
      130.0
      H8.0
      0.0
      0.0
      127.0
      110.0
      S1.0
      80.0
      b3.0
      1H.O
      32.0
      17.0
      0.0
      0.0
      n. n
      •
      HP
      0
      0
      7
      11
      20
      27
      31
      11
      17
      51
      0
      0
      7b
      bb
      Sb
      18
      38
      29
      iq
      10
      0
      0
      0
      MAN.
      FUEL RATE
      VAC. LB/HR GM/HR
      18. b
      is. q
      Ib.b
      11.1
      12.3
      s.q
      7.5
      5.1
      3.2
      1.1
      18.1
      20. q
      2.0
      3.7
      b.n
      8.2
      10.3
      12.0
      11, i
      lb.0
      18.3
      18.8
      20. q
      CALCULATED GRAM/HR
      MODt
      1
      ?.
      3
      4
      5
      h
      7
      H
      q
      in
      11
      12
      13
      11
      15
      It.
      17
      Ifi
      19
      20
      21
      5?.
      ?3
      CYCLE
      
      
      
      
      ALDE
      0.0
      0.0
      n.n
      0.0
      n. n
      n. o
      0.0
      0.0
      0.0
      0.0
      0.0
      o.o
      0.0
      0.0
      o.o
      0.0
      0.0
      0.0
      n.n
      o.o
      n.n
      o.n
      o.o
      HC
      5b. 1
      b8 .1
      120.1
      157. U
      193. b
      190.1
      217. ?
      201.8
      2iq.q
      312.7
      b5.1
      b32.b
      277.5
      302.5
      271.8
      258. 7
      222. b
      203. b
      ihi.a
      119. 7
      q2.8
      72.7
      519.9
      COMPOSITE
      
      
      
      
      
      
      
      
      cu
      llfaS
      1393
      21b3
      3b38
      500H
      5b08
      bOb?
      bl St.
      7101
      12551
      1207
      735
      8b20
      9181
      8851
      795,9
      b782
      b258
      500b
      1123
      3031
      120b
      273
      HC
      cn
      N02
      ALDE
      HSFC
      N02
      1.1
      3.S
      11. b
      28.3
      51.1
      hq.b
      121.7
      115. b
      211.1
      112.1
      .9
      .3
      159.0
      37b.8
      2b3.0
      175. S
      123.1
      qo.7
      10. 7
      22. b
      8.S
      1.2
      .3
      8. 81b
      2 0 0 . q 1 7
      3.S23
      0.000
      .710
      3.2 1138
      5.S 2b85
      q.S 1318
      12.5 5bbS
      Ib.b 7552
      1S.1 8b1b
      21.1 S71b
      22.5 1020b
      27. b 12533
      33.8 1530q
      3.0 135b
      3.3 1501
      3S.5 178qq
      37.5 17001
      33.2 15055
      28.5 12911
      21.2 1098?
      21. H 9902
      lb.8 7blh
      11.1 b378
      10.0 1551
      3.3 1501
      2.b llbl
      WT.
      FAC.
      .Ob? 0
      .010 n
      .010
      .010
      .010
      .010 1
      .010 1
      .010 1
      .010 1
      .010 2
      ,0b7 0
      .010 0
      .010 3
      .010 2
      .010 ?
      .010 1
      .010 1
      .010 1
      .010
      .010
      .010 0
      .Ob? 0
      .010 0
      GRAM/HHP
      GRAM/btHP
      GRAM/BHP
      GRAM/HHP
      LH/BHP
      WET CONCENTRATION
      ALOt.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      HP
      .0
      .0
      .3
      .h
      .8
      .1
      .1
      .b
      .S
      .1
      .0
      .0
      .0
      .b
      .3
      .S
      .5
      .2
      .8
      .1
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      
      ALOE.
      0.0
      0.0
      0.0
      o.n
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      5750 5
      3850 3
      1250 1
      1350 1
      1000 5
      3500 5
      3150 1
      3050 1
      3150 1
      3350 b
      7100 b
      53bOO 3
      2300 3
      2700 1
      2800 1
      3050 1
      3150 1
      3200 1
      3100 5
      3bOO 5
      3000 1
      7000 5
      37200
      WEIGHTED
      HC
      3.71
      2.71
      1.81
      b.28
      7.71
      7.h2
      8.71
      8.07
      10.00
      12.51
      1.3b
      25.30
      11.10
      12.10
      10. SS
      10.35
      8.qo
      8.11
      b.59
      s.qq
      3.71
      1.85
      22.00
      
      
      
      
      
      CO
      .S35
      .87S
      .30b
      .SSO
      .122
      .103
      .7bO
      .b3fa
      .bl8
      .b58
      .7b3
      .085
      .537
      .ISO
      .lb?
      ,b15
      .751
      .870
      .113
      .2b1
      .853
      .751
      .911
      C02
      8.21
      10.81
      10.52
      10.27
      10.08
      10.11
      10.29
      10.18
      lO.Bfa
      9.11
      7.85
      1.28
      11.07
      10.72
      10.59
      10.31
      10.17
      10.38
      10. 2b
      9.71
      s.58
      8.01
      3.22
      NO
      31
      bb
      155
      23b
      318
      385
      581
      52b
      811
      3b2
      30
      q
      lllb
      1013
      807
      b25
      52b
      129
      253
      Ibl
      87
      31
      7
      GKAM/HK
      CO
      78.0
      55.7
      qs.5
      115.5
      200.3
      221.3
      212.7
      217.8
      29b.O
      502.1
      80.5
      2S.1
      311.8
      379.3
      351.2
      318.3
      271.3
      250.3
      200.2
      l?b.S
      121.2
      80.1
      10. s
      
      
      
      
      
      NU2
      .1
      .2
      .b
      1. 1
      2.0
      2.8
      1.9
      l.b
      8.b
      1.5
      .1
      .0
      18.1
      15.1
      10.5
      7.0
      1.9
      3.b
      l.b
      .q
      .1
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

      -------
                   G-53UO  ENGINE  NU  33
      ?3-M(IUF   EMISSIONS  TEST     RUN  4
                                                      b/13/75
      MODE
      1
      ?
      3
      4
      ^
      K
      7
      R
      q
      in
      11
      i?
      13
      1 1
      Ib
      IK
      17
      18
      iq
      20
      ? 1
      2?
      53
      SPttO
      bOO
      1450
      1450
      It 511
      It 50
      It50
      1 1 5 0
      1450
      1.450
      1450
      KOO
      1450
      5400
      2400
      5400
      5400
      5400
      5400
      5400
      ptnn
      2400
      bOO
      2400
      I'YNA .
      LOAD
      0.0
      0.0
      17.0
      38.0
      Sb . 0
      75.0
      33. 0
      115.0
      131.0
      1 4 R . (1
      n.n
      n.n
      155. n
      111.0
      34 . n
      an.n
      b3.0
      47.0
      33 . 0
      17.0
      0.0
      n . o
      0."
      HP
      0
      0
      b
      14
      50
      57
      34
      4 1
      47
      54
      0
      n
      75
      b7
      5b
      48
      38
      ?8
      20
      1 0
      n
      0
      11
      MAN.
      VAC.
      18.7
      iq . i
      17.5
      1 1 . b
      12.5
      q. q
      7. 5
      5 . P
      3.3
      1. 7
      18.7
      50. a
      5.1
      3.b
      b. 4
      7. q
      10.3
      15.?
      lt.1
      Ib. 3
      18.5
      18.8
      20.9
      FUEL
      LB/HR
      3. 3
      b. 1
      q.s
      12.5
      lb.4
      18.7
      
      21.8
      57.5
      34.4
      3. 5
      3.5
      38.8
      37.5
      31. b
      ?q.o
      55.0
      55.2
      18.7
      1H.1
      10.0
      5.b
      5.5
      RATt
      GM/HK
      1501
      277h
      t 318
      5bb5
      7421
      8505
      3004
      3305
      15320
      15b5?
      1442
      15b9
      17535
      17010
      1 4 3 b ?
      13J45
      .1 1340
      I 0 0 5 5
      8505
      b3 ?R
      4554
      lib]
      1134
      ALDt.
      -0
      -0
      -n
      -0
      -11
      -n
      -n
      -0
      -0
      -n
      -0
      -n
      = 0
      = 0
      = 0
      -0
      -0
      = 0
      «=o
      -0
      -n
      "0
      «n
      WF T
      HC
      b'400
      34011
      3550
      335(1
      3700
      3 5 1 1 0
      3300
      3000
      pqno
      3lon
      8000
      48800
      2350
      5300
      5800
      5950
      3100
      3100
      3300
      3450
      3 3 0 0
      SHOO
      4 b4 on
      r o 1 1 r F N
      CO
      5.787
      3.153
      30 758
      4.812
      5.110
      t. q?4
      4.508
      4,554
      40558
      b. 337
      7.400
      3 . 3 3 7
      3.387
      4 „ t 73
      4 „ 8Mb
      5.442
      5,175
      5 . 0 b 5
      5.314
      5,517
      4- „ 9 1 1>
      5, 323
      088?
      T R A T I 0 N
      C05
      ?. jq
      10, 3b
      10.30
      3.53
      3.51
      q.si
      q . bq
      q. 78
      q. bq
      R , bq
      b.qi
      4.83
      q . 3q
      q. is
      u H Q
      R. Ht
      q.i2
      8.80
      R. 78
      8. b7
      8, 35
      b „ bb
      3,05
      NO
      35
      78
      157
      32b
      tlb
      4tS
      tqq
      5S3
      803
      474
      58
      12
      qsb
      1070
      b?b
      4qq
      510
      4bq
      32b
      Ib9
      87
      32
      8
      "'Oi'E
      1
      5
      -1
      4
      5
      h
      7
      y
      3
      1 r)
      11
      1 2
      13
      1 4
      15
      IK
      1 7
      18
      19
      PO
      PI
      22
      ?3
      CYCLE
      
      
      
      
      r
      41 Oh.
      o.o
      o . o
      o.o
      o . o
      0 . 0
      0 . 0
      o.n
      n . n
      o.o
      (j . 0
      n . 0
      o . n
      n.n
      o.o
      O.o
      n.o
      o.o
      o.o
      n.n
      
      n.O
      o.o
      o.n
      ALCULATEP CRAM/HR
      HC CO N05
      b9.5
      K8. 1
      irib. 4
      155.0
      187.0
      504.1
      504.5
      ? 0 d . 0
      ?4b. 8
      3L5.8
      7b . 3
      5Rb. 8
      303. 7
      581. d
      585.3
      ?Kb . 0
      P 4 1.1 . 7
      2 19 . 9
      iqt. 7
      151. t
      110.8
      73.5
      b 1 3 . 9
      COMPOSI TE
      
      
      
      
      
      
      
      
      1 570
      1578
      5574
      3814
      551b
      5801
      5bt5
      b??b
      7803
      13041
      1457
      811
      1 0 4 n H
      1 10K9
      10077
      9910
      8113
      7257
      b331
      4R91
      33?3
      105b
      537
      HC
      cn
      N05
      ALOE
      HSFC
      1.3
      5. 5
      15. b
      t5.5
      b3. 9
      8b.l
      102.7
      154.4
      5?b.n
      1 b 0 . 5
      . q
      .5
      455.9
      435.3
      529.5
      1 4q . 4
      131 .b
      nn. t
      b3.q
      24. 7
      q.7
      . 9
      .3
      q . n?q
      551.854
      t . 130
      o . o o n
      . 709
      rt 7 0
      FAC,
      . 0 b 7
      .040
      .040
      .n40
      .040
      .040
      .040
      .040
      .040
      .040
      .Ob7
      .040
      .040
      .040
      .040
      .040
      .040
      .04(1
      .040
      . o 4 n
      .040
      .Ob 7
      .040
      'A
      HP A L L> t .
      0
      n
      
      
      
      1
      1
      1
      1
      5
      n
      n
      3
      5
      ?
      1
      1
      1
      
      
      n
      n
      n
      G R A M / 3 H P
      GRAM/HHP
      GRAM/ rt HP
      GRAM/RHP
      LB/BHP
      . 0
      . o
      . p
      . b
      . 8
      . I
      . 3
      . b
      . 9
      . 1
      . 0
      .0
      .0
      .7
      . 9
      . 9
      .5
      . 1
      , 8
      „ H
      . 0
      , n
      . 0
      HR
      HR
      HR
      HR
      Hrt
      0 „ 0
      0,0
      n. o
      0 „ 0
      0 . 0
      0 . 0
      o,, n
      o.o
      o.o
      o. o
      0 , 0
      0 . 0
      n . o
      0. 0
      o.o
      0,0
      o.o
      0 . 0
      u.o
      0,0
      0, 0
      0,0
      0 , 0
      
      
      
      
      
      EIGHTE'.i
      HC
      H .
      5.
      4 .
      b.
      7.
      8.
      80
      8,
      q .
      15.
      5 .
      29.
      12.
      11.
      11 .
      10,
      9.
      8.
      7.
      b.
      4 „
      4 ,.
      t "r „
      
      
      
      
      
      b4
      7?
      55
      50
      4 H
      17
      IB
      1?
      83
      b3
      09
      47
      15
      57
      49
      b4
      b3
      80
      79
      Ob
      43
      «y
      55
      
      
      
      
      
      (, H A M / H R
      CO N 0 5
      8t .
      51.
      91 .
      155.
      508.
      232.
      225.
      249,
      313.
      5?. 1 .
      95.
      35.
      4 1. b.
      445 .
      tO 3.
      39b,
      3 2 1.
      290 .
      253.
      195.
      133.
      b8.
      M.
      
      
      
      
      
      7
      1
      0
      b
      b
      0
      7
      1
      1
      b
      2
      4
      3
      8
      1
      4
      b
      3
      3
      b
      3
      4
      5
      
      
      
      
      
      *
      9
      •
      1.
      2.
      3.
      4.
      5.
      H.
      b.
      a
      «
      Ib.
      17.
      q.
      b.
      b.
      t.
      5.
      1.
      .
      e
      •
      
      
      
      
      
      1
      5
      b
      7
      8
      4
      1
      0
      a
      H.
      i
      0
      q
      4
      2
      0
      3
      4
      b
      0
      t
      1
      0
      
      
      
      
      
      

      -------
      HERCULES G-2300 ENGINE NO 33192b3
      ?3=MODE EMISSIONS TEST   RUN 5   b/20/72
      OYNA.
      MODE
      1
      S
      3
      *
      5
      b
      7
      8
      S
      10
      11 ,
      13
      13
      It
      15
      Ib
      17
      18
      19
      SO
      ei
      ??.
      S3
      
      MODE
      1
      2
      3
      i
      5
      b
      7
      H
      q
      10
      11
      12
      13
      1*
      15
      Ib
      17
      18
      19
      SO
      2]
      S?.
      23
      CYCLE
      
      
      
      
      SPEED
      bOO
      1*50
      1*50
      1*50
      1*50
      1*50
      1*50
      1*50
      1*50
      1*50
      bOO
      1*50
      2*00
      2*00
      2*00
      2*00
      2*00
      2*00
      2*00
      2*00
      2*00
      bOO
      2*00
      C
      ALOE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      n.o
      0.0
      n.o
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      n.o
      0.0
      n.n
      0.0
      0.0
      0.0
      0.0
      LOAD
      0.0
      n.o
      19.0
      38.0
      57.0
      75.0
      93.0
      113.0
      130.0
      1*1.0
      0.0
      0.0
      12b.O
      110.0
      S5.0
      79.0
      b3.0
      *7.0
      33.0
      17.0
      0.0
      0.0
      0.0
      HP
      0
      0
      7
      1*
      21
      27
      3*
      *1
      *7
      5*
      0
      0
      7b
      bb
      57
      *7
      38
      28
      20
      10
      0
      0
      0
      MAN. FUEL RATE
      VAC. LB/HR GM/HR
      18.7 3
      18.9 fa
      Ifa.* 9
      l*.b 12
      12.2 Ib
      9.9 19
      7.9 22
      5.1 25
      3.* 27
      1.7 31
      18. b 3
      20.9 3
      2.1 *0
      3.5 3b
      5.5 32
      7.b 30
      9.8 2b
      12.1 21
      1*.3 17
      Ib. 1 1*
      18.* 10
      18.^7 2
      20.9 2
      ALCULATED GRAM/HR
      HC
      b3.8
      75.2
      118.3
      1*2.1
      18b. 7
      212.8
      2*8.0
      2*5.3
      2b7.0
      317.9
      72.2
      b*2.*
      3*8.2
      3*8.9
      307.5
      29b.9
      255.0
      215.8
      185.7
      1SS.O
      111.5
      70. 7
      752.5
      COMPOSITE
      
      
      
      
      
      
      
      
      CO
      llbb
      1253
      2505
      3527
      *703
      5*37
      blS*
      fa**2
      7*31
      119*8
      12*3
      Bbl
      8b7b
      10882
      9583
      9133
      SOlfa
      b71b
      5579
      *788
      315*
      991
      3*0
      HC
      CO
      N02
      ALDE
      BSFC
      N02
      1.0
      *.3
      1*.9
      30.3
      55.1
      98.9
      93.7
      1*1.2
      178.9
      93.8
      .9
      .5
      *bb.b
      291.1
      220.7
      13b.7
      1*2.2
      8*. 3
      **.8
      20.2
      8.1
      .9
      .*
      9.8fal
      209.***
      3.b3b
      0.000
      .721
      .0 13*3
      .3 2835
      .5 *323
      .5 5b7H
      .1 7289
      .7 895*
      .1 10038
      .2 11*35
      .Z 12320
      .8 1***3
      .1 1*15
      .fa Ibl9
      .2 1822b
      .8 lb?15
      .7 1*815
      .* 13771
      .7 12111
      .8 9902
      .9 8101
      .7 bb91
      .0 *55*
      .7 121b
      .8 1293
      WT.
      FAC.
      ,0b7 0
      .0*0 0
      .0*0
      .0*0
      .0*0
      .0*0 1
      .0*0 1
      .0*0 1
      .0*0 1
      .0*0 2
      ,0b7 0
      .0*0 0
      .0*0 3
      .0*0 2
      .0*0 ?
      .0*0 1
      .0*0 1
      .0*0 1
      .0*0
      .0*0
      .0*0 0
      .Ob7 0
      .0*0 0
      GRAM/BHP
      GRAM/BHP
      GRAM/BHP
      GRAM/BHP
      LB/BHP
      ALDE.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      HP
      .0
      .0
      .3
      .b
      .8
      .1
      .3
      .b
      .9
      .2
      .0
      .0
      .0
      .b
      .3
      .9
      .5
      .1
      .8
      .*
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      
      ALDE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      WET CONCENTRATION
      HC
      7300 b
      *000 3
      *300 *
      *000 *
      *050 5
      3750 *
      3950 *
      3*50 *
      3*00 *
      3700 b
      8100 b
      51200 3
      2700 3
      3100 *
      3100 *
      3*00 5
      3150 *
      3300 5
      3500 5
      3700 5
      3bOO 5
      8*00 5
      *8000 1
      WEIGHTED
      HC
      *.2b
      3.01
      *.?3
      5.b9
      7.*7
      8.51
      9.92
      9.81
      10. b8
      12.71
      *.82
      25.70
      13.93
      13. 9b
      12.30
      11.88
      10.20
      8.b3
      7.*3
      b.3b
      *.*b
      *.?2
      30.10
      
      
      
      
      
      CO
      .bOb
      .301
      .508
      .91*
      .osn
      .7*2
      .852
      ,*8b
      .faflS
      .885
      .903
      .39fa
      .330
      ,7Bb
      .782
      .178
      .902
      .083
      ,20b
      .517
      .039
      .831
      .075
      C02
      8.02
      11.38
      10.78
      10. b*
      10. 3b
      10. bb
      10.7*
      11.25
      10. b7
      9.5b
      R.lb
      *,39
      10.53
      9.75
      9.8*
      10.25
      9. 7*
      9.73
      9.71
      9.b9
      9.30
      7.77
      2.37
      NO
      35
      b9
      Ib3
      257
      3faO
      525
      **9
      598
      b8b
      329
      31
      Id
      1090
      779
      b70
      *71
      529
      388
      25*
      1*2
      79
      33
      8
      GRAM/HR
      CO
      77.8
      50.1
      100.2
      1*1.1
      188.1
      217.5
      2*b.2
      257.7
      297.2
      *77.9
      82.9
      3*.*
      3*7.0
      *35.3
      383.3
      3b5.3
      320. b
      2b8.b
      223.2
      191.5
      12fa.2
      bb.l
      13. b
      
      
      
      
      
      N02
      .1
      .2
      .b
      1.2
      2.2
      *.o
      3.7
      5.b
      7.2
      3.8
      .1
      .0
      18.7
      11. fa
      8.8
      5.5
      5.7
      3.*
      1.8
      .8
      .3
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                          G--IO
      

      -------
      J.I. CASE  154 G ENGINE  NO 5707350
      2J-MOUE  EMISS1HNS TEST    RUN 3   a/11/72
      
      MODE
      i
      2
      3
      *
      5
      b
      7
      8
      q
      10
      11
      la
      13
      It
      IS
      Ib
      17
      18
      IS
      20
      51
      aa
      as
      
      uYNA ,
      SPEED LOAD
      500
      It 00
      1*00
      1*0(1
      itoo
      1*00
      1*00
      i*no
      1*00
      1*00
      snn
      1*00
      aioo
      aioo
      a 100
      2iuo
      aioo
      aioo
      aioo
      aioo
      aioo
      boo
      aioo
      0.0
      0.0
      ia.o
      as. 5
      35.0
      *7.0
      58.0
      70.0
      81.0
      4a.s
      n.o
      n.o
      74.5
      70.U
      bO.O
      50.0
      *0.0
      3n.o
      ao.u
      10 . U
      n.o
      n.o
      0.0
      
      HP
      0
      0
      *
      8
      ia
      ib
      an
      a*
      as
      32
      0
      0
      *e
      37
      31
      ab
      ai
      ib
      10
      5
      0
      0
      0
      MAN. FUEL RATE
      VAC. LB/HR GM/HR
      17.4 a.b u?q
      17.* b.i a?b?
      lb.3 7.0 3175
      It. 5 S.2 *173
      ia.8 10.3 *b?a
      10. b 11. b sab?
      1.1 12.1. 5851
      b. 8 1*. 7 bbfaS
      t.l lb.3 73H*
      a. a 17.7 8021
      18.5 a.b 1171
      20. b 2.1 1315
      5.b 22.1 103S7
      7.1 21. b 4748
      8.1 18.8 8528
      10.5 17. a ?80a
      le.e i*.s b?i3
      13. b 13.0 584?
      1*.1 11.7 5307
      15.7 11.1 5035
      lfa.2 10.* *717
      18.4 a.* 1081
      20.7 3.1 l*0b
      WEI CONCENTKA 1 ION
      ALDt.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -n
      -0
      CALCULATED GRAH/Hk rt T .
      MODE
      1
      a
      3
      *
      5
      b
      7
      8
      q
      in
      11
      12
      13
      It
      15
      Ib
      17
      18
      1H
      ao
      ai
      aa
      as
      CYCLE
      
      
      
      
      ALOE
      0.0
      0 . U
      0.0
      0.0
      0.0
      0.0
      n.o
      0 .0
      0.0
      n.o
      0. 0
      0.0
      n.o
      0.0
      n.o
      0.0
      0.0
      0.0
      0 . 0
      0.0
      0.0
      0.0
      0.0
      HC
      36.3
      1 0 * . 1
      108.1
      110. b
      117.1
      122.1
      iiu.a
      \ 1?.*
      iab.4
      IbS.S
      37.1
      538. d
      L 7 b . ')
      lbb.4
      151.1
      1*5.5
      ia*. ?
      107.4
      97.3
      i* . 4
      84.3
      33.3
      845.2
      COMPOSITE
      
      
      
      
      
      
      
      
      CO
      115*
      24*5
      3a?3
      3478
      *30B
      *bb7
      *408
      5*b5
      5833
      b477
      iiba
      70b
      77*4
      7717
      8837
      b*l*
      5554
      500 b
      *?sa
      *808
      *530
      101*
      *a?
      HC
      CO
      NO?
      ALDE
      BSFC
      NOa FAC.
      1.2 ,0b7 0
      *. o .0*0 n
      s. a .0*0
      10.4 .0*0
      Ib. 7 .0*0
      20.2 .0*0
      *1. 1 .0*0
      *5.8 .0*0 1
      8H.b .0*0 1
      40.0 .0*0 1
      1.2 . 0 b 7 0
      .* . 0*0 0
      1*8.1 .0*0 1
      10*. b .0*0 1
      72.0 .0*0 1
      51.1 .0*0 1
      55.0 .0*0
      *O.H .0*0
      11.5 .0*0
      11.1 .0*0
      1.5 .0*0 0
      1.1 .Ob7 0
      .3 .0*0 0
      ll.*45 GRAM/BHP
      305. *73 GRAM/BHP
      a. 530 GRAM/8HP
      0.000 GRAM/BHP
      .713 LB/BHP
      HP
      .0
      .0
      .a
      .3
      .5
      .7
      .8
      .0
      .1
      .3
      .0
      .0
      .7
      .5
      .3
      .0
      .8
      .b
      .*
      .2
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      ALOE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      *100 7
      5100 8
      5350 8
      *200 7
      3400 7
      3b50 b
      3*50 7
      3300 7
      3100 7
      2100 5
      *800 7
      5**00 3
      2550 5
      abOO 5
      2700 b
      2850 b
      2850 b
      2800 b
      2850 b
      2450 7
      2450 7
      *50U b
      75200 1
      WEIGHTED
      HC
      2.5b
      t .11
      *. ja
      * .*p
      * . b4
      *.ie
      *.*!
      * . 70
      5.08
      b.78
      a.*?
      21.53
      7.03
      b.b8
      b.05
      5.82
      *.44
      *.sa
      3.84
      3.74
      3.57
      2.22
      35.81
      
      
      
      
      
      CO
      . 301
      .21b
      .020
      ,*83
      .101
      .8b2
      .bO*
      .372
      .05*
      .110
      .**4
      .533
      .5bb
      .451
      .100
      .214
      .ase
      .*3a
      .aba
      ,*03
      .*04
      . 780
      .777
      C02
      7.
      b.
      7.
      7.
      8.
      8.
      10.
      10.
      10.
      7.
      7.
      *.
      4.
      4.
      8.
      8.
      8.
      8.
      8.
      7.
      7.
      7.
      a.
      28
      74
      Ib
      45
      Ofa
      *0
      3b
      *8
      70
      5*
      35
      32
      25
      05
      87
      78
      77
      51
      *0
      4b
      88
      *7
      52
      NO
      *5
      bb
      77
      iat
      IfaB
      180
      388
      37b
      bsa
      *b*
      *b
      13
      b*7
      til
      388
      3*4
      374
      314
      172
      10*
      4*
      *b
      8
      GRAM/HR
      
      77
      117
      130
      Ib4
      172
      18b
      lib
      218
      233
      271
      77
      28
      310
      308
      a?s
      asb
      aaa
      aoo
      181
      lie
      181
      b?
      17
      
      
      
      
      
      CO
      .0
      .8
      .4
      .1
      . 3
      .7
      .3
      .b
      .3
      .1
      .5
      .2
      .0
      .7
      .4
      .b
      .*
      .a
      .3
      .3
      .2
      .b
      .1
      
      
      
      
      
      N02
      .1
      .a
      .a
      .*
      .7
      .8
      l.b
      1.8
      3.5
      3.b
      .1
      .0
      5.4
      t.2
      a. 4
      2.*
      2. a
      l.b
      .8
      .*
      .*
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

      -------
      J.I. CASE 151 G ENGINE NO 5707350
      23-MODE EMISSIONS TEST   RUN t
      
      MODE
      1
      2
      3
      t
      5
      b
      7
      B
      4
      10
      11
      IS
      13
      I*
      15
      Ib
      17
      18
      IS
      20
      21
      22
      23
      
      OYNA .
      SPEED LOAD
      500
      If 00
      1*00
      1100
      It 00
      If DO
      It 00
      ItOO
      ItQO
      it on
      500
      If CIO
      2100
      2100
      210 n
      2100
      2100
      2100
      2100
      2100
      2100
      500
      2100
      0.0
      n.o
      11.5
      23.0
      35.0
      f b.O
      58,5
      70.5
      81.0
      92.5
      0.0
      0.0
      79.5
      70 . n
      fao.o
      50.0
      f 0.0
      30.5
      20.6
      9.0
      0.0
      0.0
      o.n
      
      HP
      0
      0
      t
      8
      12
      Ib
      20
      25
      28
      32
      n
      n
      t2
      37
      31
      2fa
      21
      Ib
      11
      5
      0
      0
      0
      MAN. FUEL HATE
      WEI CONCENTRATION
      VAC. LB/HR GM/HR ALOE.
      18.7 a.b 1179
      17.9 fa. 3 2858
      Ibo7 7.5 3t02
      15.1 8.S t037
      13. fa 10. a tta?
      11.8 11. t 5171
      9.1 13. t b078
      ?.o it.fa fabaa
      f.8 lb.3 739t
      a. 5 18.0 81b5
      19,1 2.7 iaas
      20.5 3. 9 1315
      5.5 23. 3 105b9
      7.5 21.7 98t3
      8,8 19.5 88t5
      10. t 17.7 8039
      12.1 lfa.1 7303
      13.3 It .5 bttl
      15.3 12.1 5t89
      lb.3 11,2 5080
      lb.5 10.7 f 85f
      19,1 a. 8 1370
      20. cl 3.2 1 f 5 a
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      CALCULATED GKAM/HK rJ I .
      MODE
      1
      2
      3
      t
      s
      b
      7
      a
      9
      10
      11
      12
      13
      It
      15
      Ib
      17
      18
      19
      20
      2 J
      22
      23
      CYCLE
      
      
      
      
      ALDt
      0.0
      0,0
      0.0
      0 . 0
      0. 0
      0.0
      0 . 0
      0.0
      0.0
      n.o
      0.0
      o.o
      n . o
      0.0
      0.0
      0.0
      0.0
      o.n
      0.0
      0.0
      0.0
      0.0
      0,0
      HC
      34. S
      109.0
      11?. 5
      lit .5
      12?. b
      135. H
      1 t 5 . cl
      It8. 7
      Ib3«2
      Jbt.3
      t 0 . f
      51?,,b
      lib . 2
      190.3
      178. t
      IbS.O
      if ?. a
      130.9
      110.1
      ma. 8
      103,7
      34 ,,5
      1017,2
      COMPOSITE
      
      
      
      
      
      
      
      
      CO
      1083
      2R19
      330b
      3755
      f 18b
      tS23
      t820
      509t
      5383
      5878
      llbS
      7 f 5
      ?73|:I
      77H9
      7089
      bSb3
      5972
      5233
      t?t 9
      f 7b8
      t 312
      1219
      tot
      HC
      CO
      NO 2
      ALOE
      bSPC
      N02 FAC. HP
      1.2 .Ob? 0.0
      3. 9 .Of 0 0.0
      b0b 8OtO .2
      11.7 .OtO .3
      Ib.b .OtO .5
      e 3 „ 5 .OtO . b
      5P.2 .OtO .8
      58,2 .Of 0 1.0
      113.2 .OtO 1.1
      90. 4 .Of 0 1.3
      1.3 .Ob? 0.0
      .3 .Of 0 0.0
      159.0 ,OtO 1,7
      iOb.S .OtO 1.5
      7b. 7 .OtO 1.3
      b 3 . 1 .OtO 1.0
      b 2 . f .OtO .8
      55.3 .OtO .b
      22.5 .OtO . t
      11.5 .oto .a
      11.3 a 0 t 0 0.0
      l.f .Ob? 0.0
      .3 0 o t o n . o
      12..7S4 GHAM/BHP HR
      301.513 GRAM/BHP HR
      ?,,8tl GRAM/BHP HR
      o.ooo GRAM/BMP HR
      ,8it LB/BHP HR
      ALDE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      5000
      blOO
      BfaOO
      f 550
      tf 00
      f aoo
      3750
      3500
      3tOO
      3100
      5100
      sasoo
      3900
      3050
      3150
      3250
      saon
      saoo
      saoo
      saso
      3300
      f 950
      dtooo
      
      b
      8
      7
      7
      7
      b
      b
      5
      5
      5
      7
      3
      5
      b
      b
      b
      b
      b
      b
      7
      b
      ?
      1
      WEIGHTED
      HC
      a. fafa
      t.3b
      f .70
      f .58
      5.10
      5. ft
      5.8t
      5.95
      b.53
      b.57
      a. 70
      20. ?1
      7.85
      7.fal
      7.13
      b.faO
      5.91
      5.23
      t.to
      t.ll
      t.15
      a.b3
      f O.bS
      
      
      
      
      
      CO
      .710
      .088
      .800
      .38b
      .151
      ."U7
      .133
      .93b
      .551
      .f 89
      .e?t
      .7bt
      .bbt
      .187
      .198
      .too
      .f 00
      .335
      ,83f
      .tbO
      .795
      .5b9
      .b53
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      C02
      7. 55
      7.30
      7.85
      8.20
      8.38
      8.bf
      S.ll
      9.30
      9.51
      9.faO
      7. fab
      f .37
      9.b7
      9.28
      9.11
      9.09
      9.09
      9.10
      8.80
      8.27
      8.33
      7.87
      1.93
      NO
      f b
      bS
      9f
      IfO
      172
      318
      fOf
      f!2
      710
      51b
      50
      9
      708
      Slf
      t08
      37t
      t07
      to?
      197
      109
      108
      53
      8
      GKAM/HK
      CO
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      72.
      lib.
      133.
      150.
      Ib7.
      180.
      192.
      aos.
      eis.
      235.
      77.
      29.
      309.
      3ia.
      as3.
      aba.
      338.
      209.
      190.
      190.
      172.
      81.
      Ib.
      
      
      
      
      
      2
      7
      3
      2
      t
      9
      8
      8
      3
      1
      7
      8
      5
      0
      b
      5
      9
      3
      0
      7
      5
      3
      2
      
      
      
      
      
      N02
      .1
      .2
      .3
      .5
      .7
      .9
      e.i
      2.3
      t.S
      3.b
      .1
      .0
      b.f
      t.3
      3.1
      a.s
      3.5
      2.2
      .9
      .5
      .5
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                         G-IZ
      

      -------
      J.I. CASE  159  G ENGINE NO  5707350
      53-MUDE  EMISSIONS TEST   RUN  5    2/15/75
      
      MODE
      i
      5
      1
      t
      5
      b
      7
      8
      9
      10
      1.1
      12
      13
      It
      IS
      Ib
      17
      18
      19
      20
      51
      25
      53
      
      MODE
      i
      5
      3
      t
      5
      b
      ?
      8
      q
      in
      11
      it
      13
      It
      15
      Ib
      17
      18
      19
      50
      51
      55
      53
      CYCLE
      
      
      
      
      
      OYNA
      SPEED LOAD
      500
      itoo
      .itoo
      itoo
      itoo
      itoo
      itoo
      itoo
      ItQO
      itoo
      500
      itoo
      5100
      5100
      2100
      2100
      2100
      2100
      2100
      5) on
      5100
      500
      5100
      
      ALDE
      0.0
      0.0
      o.u
      n.o
      H.O
      o.o
      0.0
      0 . 0
      n.o
      n. o
      n.n
      u.n
      0.0
      0.0
      0.0
      0.0
      n.o
      n.o
      0.0
      0 . 0
      0.0
      0.0
      n.o
      n.o
      0.0
      15.0
      53.5
      35. U
      tb.O
      58.5
      70. 0
      81.0
      91.0
      n.o
      0.0
      eo. n
      70.0
      b 0 . 0
      50 .0
      tn.s
      30.0
      20.5
      11.0
      0.0
      0.0
      0 . (1
      CALCULA]
      HC
      Bb.t
      Ib3. 0
      Itb. 5
      ltl.8
      153.5
      185. t
      19b . 8
      510.5
      Plb. 7
      215.2
      tO .9
      5t9.5
      158.1
      155.9
      itq.o
      513. B
      199.8
      170.8
      158.1
      133.9
      2b9.3
      t9.1
      887. t
      COMPOSI TE
      
      
      
      
      
      
      
      
      
      HP
      0
      0
      t
      8
      15
      Ib
      50
      5t
      58
      35
      0
      0
      t5
      37
      31
      5b
      51
      Ib
      11
      b
      0
      0
      0
      MAN. FUEL RATE
      VAC. LB/HR GM/HR
      17. b 5.8 1270
      18.0 5.7 558b
      17.3 b.t 5903
      It.S 8.7 3qtb
      12.8 9.b t35S
      10. b 11.9 5398
      8.t 13.9 fa3Q5
      b. 1 15. fa 707b
      3.8 17.5 7938
      5.3 17.9 81iq
      is. b 5.5 qqs
      50. b 3.1 ItOb
      t.O 2t.O 1088b
      5.8 55.8 103t2
      8.3 19.8 8981
      10.0 17.5 7938
      11. t lb.5 73t8
      13.3 13.8 b5hO
      It. 8 11.7 5307
      lb.5 10.3 tb75
      18. t 8.1 3b7t
      50.1 5.5 998
      21.2 3.1 ItOb
      Wt 1 CONCENTRA I
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      ALDt.
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      ED GRAM/MR W 1 .
      CO
      1550
      5953
      3295
      t5bq
      tS78
      550t
      59tS
      btqt
      bb3b
      b8St
      973
      730
      8558
      8350
      8113
      7555
      b?bl
      sqbi
      5blO
      5019
      ssqs
      qoi
      5t5
      HC
      CO
      N02
      ALDE
      BSFC
      N02 FAC.
      1. t .Ob? 0
      5.0 ,OtO 0
      5.7 .OtO
      b. 7 .OtO
      9.3 . 0 1 u
      It . 9 .OtO
      5fa. b .OtO
      37.5 .OtO 1
      79.7 .OtO 1
      bb. 1 .OtO 1
      1.1 .Ob? fl
      .5 .OtO 0
      133.7 .OtO 1
      lOb.S .OtO 1
      5b.7 .OtO 1
      tb.S .OtO 1
      tb.2 .OtO
      31.0 .OtO
      9 , t .OtO
      7. t .OtO
      o.? . 0 1 Q 0
      1.0 .Ob? 0
      .3 .OtO 0
      It.b31 GRAM/BHP
      332.815 GRAM/BHP
      2.0t3 GRAM/BHP
      o.ooo GRAM/BHP
      .802 LB/6HP
      HP
      .0
      .0
      .2
      .3
      .5
      .fa
      .8
      .0
      .1
      .3
      . 0
      .0
      . 7
      .5
      .3
      .0
      . 9
      .b
      . t
      .5
      . 0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      ALDE.
      0.0
      0.0
      0.0
      0.0
      o.n
      0.0
      0.0
      o.n
      0.0
      0.0
      o.u
      0.0
      0.0
      0.0
      0.0
      0 . U
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      bSOO b
      10200 9
      8500 9
      5900 8
      5700 8
      5500 8
      , t950 7
      tbSO 7
      t500 b
      tOSO b
      b200 7
      52800 3
      5500 b
      5300 b
      2550 b
      t500 7
      t500 7
      t 5 5 0 7
      teon s
      tbOO 8
      11000 7
      b?00 b
      B7500 5
      ^EIGH 1 ED
      HC
      3.7?
      b.55
      5. 8b
      5.b?
      fa. 13
      7.t5
      7.87
      8.t5
      8.b7
      8. t9
      5.73
      51.98
      b.35
      b.23
      5.9b
      8.55
      7.99
      b.83
      b.32
      5.3b
      10.77
      3.28
      35.50
      
      
      
      
      
      CO
      .qs?
      .ost
      .130
      .795
      .t3t
      .081
      .t03
      .101
      .3b?
      .505
      .307
      ,t?t
      .b89
      .078
      .873
      .023
      .035
      .3t3
      . t3t
      .533
      .27b
      .083
      .bt9
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      ION
      C05
      7.05
      b.10
      b.30
      7.03
      7.50
      7.38
      7.9b
      8. Ob
      8. bO
      8.59
      7.51
      t . 7b
      9.5t
      8.95
      8.5t
      8.15
      ?. qq
      7.81
      7.5U
      7.05
      b. b3
      b. Hb
      5.tb
      
      NO
      t8
      38
      tb
      8t
      lot
      133
      502
      stq
      tbS
      353
      50
      15
      5bO
      t?t
      5q5
      275
      2q3
      532
      8fa
      7?
      82
      t5
      10
      GKAM/HR
      
      81
      lib
      131
      170
      183
      250
      537
      559
      2bS
      275
      fat
      29
      330
      332
      32t
      288
      570
      538
      22t
      200
      It3
      bO
      51
      
      
      
      
      
      CO
      .t
      .9
      .8
      .8
      .1
      .5
      .8
      .8
      . t
      .t
      .9
      .5
      .3
      .8
      .5
      .9
      .t
      .5
      .t
      .8
      .9
      .1
      .8
      
      
      
      
      
      N05
      .1
      .1
      .1
      .3
      .t
      .fa
      1.1
      1.5
      3.2
      2 ,5
      .1
      .0
      5.3
      t.3
      5.3
      i.q
      1.8
      1.5
      .t
      .3
      .3
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                            G--13
      

      -------
      J.I.  CASE 159 G ENGINE NO 2707350
      P3-MUDE EMISSIONS TfcST   RUN b   2/lb/72
      
      MODE
      1
      2
      3
      4-
      5
      b
      7
      H
      q
      in
      11
      12
      13
      I1*
      15
      Ib
      17
      18
      19
      20
      •21
      22
      23
      
      OYNA.
      SPEED LOAD
      500
      itoo
      ItOO
      it 00
      ItOO
      itoo
      itoo
      itoo
      ItOO
      itno
      500
      itoo
      2100
      2100
      2100
      2100
      2100
      2100
      2100
      2ino
      2100
      500
      2100
      0.0
      0.0
      11.5
      23.0
      3*. 5
      tb.5
      58.0
      70.0
      81.5
      11.0
      0.0
      0.0
      71.5
      bb.O
      55.0
      1b.5
      38.0
      27.5
      11.5
      1.5
      0.0
      0.0
      0.0
      
      HP
      0
      U
      1
      H
      12
      Ib
      20
      21
      21
      32
      0
      0
      31
      3S
      21
      21
      20
      It
      10
      5
      0
      0
      0
      MAN. FUEL KATE
      VAC. L6/HK GM/HR
      11. b 2.b 1171
      11.2 t.7 2132
      17. 1 b.5 21t8
      IS.b 7.8 3538
      13.5 10.3 tb?2
      11.3 11. b 52b2
      8.1 13.1 b07B
      fa. 8 It. 8 b?13
      t.3 17.0 7711
      2.8 17.1 8111
      11.1 2.t lObl
      20.5 3.0 13bl
      5.1 2t.O 1088b
      b.,5 21.7 18t3
      8.2 11.3 8?bt
      1.1 17.7 8021
      11. b 15.2 b815
      13.1 13.0 5817
      It.b 12.1 5t81
      lb.5 1.8 1115
      18.2 7.2 32bb
      11.7 2.5 113t
      21.2 2.1 1315
      WET CONCENTRATION
      ALDt.
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      -0
      CALCULATED GRAh/HK WT.
      MODE
      1
      2
      3
      4.
      5
      b
      7
      8
      q
      10
      11
      1?
      13
      It
      15
      Ib
      17
      18
      IS
      20
      21
      22
      23
      CYCLe
      
      
      
      
      ALOE
      U . 0
      0.0
      o.u
      n.o
      0.0
      0.0
      n.o
      o.u
      n.o
      0.0
      n.o
      o.u
      N .0
      0.0
      n.o
      n.o
      n.n
      0.0
      0.0
      0.0
      n.n
      [1.0
      n.o
      HC
      bO.H
      13U.t
      117.3
      1 1 1 . 0
      138.7
      ISU.b
      Ib0.2
      Ibb. 7
      17B.1
      181.0
      51.0
      Sbb.fa
      S21. 3
      210. b
      lit .1
      183.5
      Ib0.3
      13fa.l
      12b.2
      1?0.1
      32b.b
      bb.l
      811.2
      COMPOSITE
      
      
      
      
      
      
      
      
      CO
      1081
      2237
      31b2
      3b53
      tSfal
      5005
      5183
      551b
      5113
      b3b3
      1020
      758
      8b50
      8387
      7811
      7251
      b082
      5515
      5t55
      1513
      3113
      lost
      523
      HC
      CO
      NU2
      ALOE
      BSFC
      N02 FAC.
      1.2 .Ob7 0
      1.8 .OtO 0
      t .1 .OtO
      7.8 .OtO
      It. 7 .OtO
      20.5 .OtO
      tt .b .OtO
      52.1 .OtO 1
      1U1.0 .OtO 1
      80. b .OtO 1
      1.2 ,0b7 0
      . t .OtO 0
      137.5 .OtO 1
      83.1 .OtO 1
      5t.7 .OtO 1
      53. t .OtO 1
      50.0 .OtO
      23.3 .OtO
      12. b .OtO
      8.2 .OtO
      5.8 .OtO 0
      1.1 .Ob? 0
      .3 .OtO 0
      It.tl? GRAM/BHP
      32b.ib3 GRAM/BMP
      2.3b8 GRAM/BHP
      0.000 GRAM/BHP
      .Bit LB/6HP
      HP
      .0
      .0
      .2
      .3
      .5
      .7
      .8
      .0
      .1
      .3
      .0
      .0
      .b
      . t
      .2
      .0
      .8
      .b
      .t
      .2
      .0
      .0
      .0
      HR
      HR
      HR
      HR
      HR
      ALDE.
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      u.o
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      
      
      
      
      
      HC
      7000 b
      1500 8
      btOO 8
      5200 8
      1700 7
      1550 7
      tlOO b
      3800 b
      3550 5
      3t50 b
      bbOO b
      55200 3
      3150 b
      3300 b
      3tSO b
      3550 b
      3b50 b
      3b50 7
      3b50 7
      1300 8
      ItSDO 7
      b100 b
      85bOO 2
      WEIGHTED
      HC
      t.Ob
      5.21
      t .bl
      t.Sb
      5.55
      b.03
      b.tl
      b.fa7
      7.1b
      7.2t
      3.10
      22.27
      8.17
      8.t3
      7.78
      ?.3t
      b.tl
      5.15
      5.05
      t.83
      13. Ob
      3.7t
      32.57
      
      
      
      
      
      CO
      .150
      .071
      .sts
      .218
      .bS2
      .183
      .5b1
      .221
      .88b
      .003
      .511
      .723
      .013
      .505
      .8b8
      .115
      .857
      .320
      .811
      .002
      .Ib3
      .111
      .721
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      C02
      b.71
      fa. 51
      fa. 11
      7.37
      7.71
      7.15
      8.58
      8.70
      I.Ob
      1.13
      b.SO
      1.2S
      B.lb
      8.51
      8.32
      8.23
      8.18
      8.13
      7.70
      7.38
      b.lb
      b.81
      2.55
      NO
      11
      10
      b8
      107
      ISO
      187
      311
      358
      bU3
      1fa3
      17
      13
      582
      31b
      212
      311
      313
      181
      110
      a?
      71
      10
      ID
      GKAci/HK
      
      72
      81
      12b
      lib
      182
      200
      207
      220
      231
      251
      b8
      30
      3tb
      335
      312
      210
      213
      220
      218
      181
      127
      70
      20
      
      
      
      
      
      CO
      .1
      .5
      .5
      .1
      .1
      .2
      .3
      .b
      .7
      .5
      .0
      .3
      .0
      .5
      .7
      .0
      .3
      .fa
      .2
      .7
      .7
      .3
      .1
      
      
      
      
      
      N02
      .1
      .1
      .2
      .3
      .b
      .8
      1.8
      2.1
      1.0
      3.2
      .1
      .0
      5.5
      3.1
      2.2
      2.1
      2.0
      .1
      .5
      .3
      .2
      .1
      .0
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                         G-I4-
      

      -------
                      APPENDIX H
      
      STATES INCLUDED IN NORTHERN,  CENTRAL
      AND SOUTHERN REGIONS FOR THE PURPOSE
       OF REGIONAL MASS EMISSIONS ANALYSIS
                         H-l
      

      -------
                   THREE REGIONS OF THE U. S.  AS DEFINED
                      FOR REGIONAL EMISSIONS ANALYSIS
      N o r t h e r n R e g ip n
      
      Idaho
      Maine
      Minnesota
      Montana
      New Hampshire
      North Dakota
      Oregon
      South Dakota
      Vermont
      Wa shington
      Wisconsin
      Wyoming
      Central R eg ion
      
      Colorado
      Connecticut
      Delaware
      Dist. of Columbia
      Illinois
      Indiana
      Iowa
      Kansas
      Kentucky
      Maryland
      Massachusetts
      Michigan
      Missouri
      Nebraska
      Nevada
      New Jersey
      New York
      Ohio
      Pennsylvania
      Rhode Island
      Utah
      Virginia
      West Virginia
      Southern Region
      
      Alabama
      Arizona
      A r ka n s a s
      California
      Florida
      Georgia
      Louisiana
      Mississippi
      New Mexico
      North Carolina
      Oklahoma
      South Carolina
      Tennessee
      Texas
                                     H-:
      

      -------
                                         TECHNICAL REPORT DATA
                                  (Please read IitUnictions on the reverse before completing)
       1. REPORT NO.
          APTD-1494
                                                             3. RECIPIENT'S ACCESSI ON- NO.
       4. TITLE AND SUBTITLE
          Exhaust Emissions From Uncontrolled  Vehicles and
          Related Equipment Using  Internal  Combustion Engines -
          Final  Report, Part 5 - Heavy-Duty Farm,  Construction,
                                                                 5. REPORT DATE
                                                                   nnt.nher  1Q73
                                                             6. PERFORMING ORGANIZATION CODE
         DRlftdustrial  Engines
      
      Charles T. Hare and  Karl  J.  Springer
                                                                 8. PERFORMING ORGANIZATION REPORT NO
      
      
                                                                      AR 898
       9. PERFORMING ORGANIZATION NAME AND ADDRESS
          Southwest Research Institute
          Post Office Drawer 28510
          Culebra Road
          San Antonio, Texas
                                                             10. PROGRAM ELEMENT NO.
                                                             11. CONTRACT/GRANT NO.
      
      
                                                                   EHS 70-108
       12. SPONSORING AGENCY NAME AND ADDRESS
          National Air Data Branch   OAOPS,  and  Emission  Contro
          Technology Division - OMSAPC
          Office of Air and Waste Management
          Ann  Arbor, Michigan  48105
                                                             13. TYPE OF REPORT AND PERIOD COVERED
                                                                   Final Report    Part  5
                                                             14. SPONSORING AGENCY CODE
       15. SUPPLEMENTARY NOTES
       16. ABSTRACT
          This report is part 5 of the  Final  Report on Exhaust Emissions from Uncontrolled
          Vehicles and Related Equipment  Using  Internal  Combustion Engines.  The engine
          categories covered in this  report  are heavy-duty gasoline and diesel engines used  in
          farm, construction, and industrial  applications.  The report includes descriptions
          and photographs of the test engines,  instrumentation systems used, explanations of
          test sequences and calculation  methods  employed.  The engines were tested using well
          accepted steady-state procedures for  gaseous emissions measurement, and in addition,
          the Federal procedure for smoke certification  was used for testing the diesel engine
          (except the Onan).  Some gaseous emissions were measured during transient operation
          of most of the engines, and particulate and smoke measurements were made during some
          of the same modes used for  gaseous  emissions sampling.  The emissions results obtain
          ed in this study, as well as  data  obtained from other sources, were used in conjunct
          ion with information on engine  population and  usage to estimate emission factors.
          National impact was estimated separately for each of three engine applications.  The
          categories of engines covered in this report appear to make some significant, but  no
          major, contributions to national nollutant totals from man-made sources.
      17.
                                      KEY WORDS AND DOCUMENT ANALYSIS
                        DESCRIPTORS
                                                    b. IDENTIFIERS/OPEN ENDED TERMS
                                                                              c. COSATI Field/Group
         Smoke
         Oxygen
         Aldehydes
         Diesel  engines
         Air  pollution
         Gasoline engines
         Exhaust emissions
                         Carbon  monoxide
                         Carbon  dioxide
                         Total hydrocarbons
                         Nitrogen  oxides
                         Light hydrocarbons
                         Chemical  analysis
                         Agriculture  machinery
      Particulates
      Emission factors
      Federal smoke tests
      Federal 13 mode test
      National emissions impac
      EMA-California ARB 13
         mode procedure
      13B
        . DISTRIBUTION STATEMENT  Cons true ti on equipment
      
         UNLIMITED
                                                19. SECURITY CLASS (This Report)
                               21 . NO. OF PAGES
      
                               	281
                                                20. SECURITY CLASS (Thispage)
                                                                          22. PRICE
      EPA Form 2220-1 (9-73)
                                                 H-3
      

      -------
                                                                 INSTRUCTIONS
      
          1.   REPORT NUMBER
              Insert the EPA report number as it appears on the cover of the publication.
      
          2.   LEAVE BLANK
      
          3.   RECIPIENTS ACCESSION NUMBER
              Reserved for use by each report recipient.
      
      
              Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently.  Set subtitle, if used in smaller
              type or otherwise subordinate it to main title. When a report is prepared in  more than one volume, repeat the primary title, ado volume
              number and include subtitle for the specific title.
      
          5   REPORT DATE
              Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g.. date of issue,  date of
              approve!, date of preparation, etc.}.
      
          6.   PERFORMING ORGANIZATION CODE
              Leave blank.
      
      
              Give name(s) in conventional order (John R. Doc, J. Robert Doe. etc.). List author's affiliation if it differs from the performing organi-
              zation.
      
          8.   PERFORMING ORGANIZATION REPORT  NUMBER
              Insert if performing organization wishes to assign this number.
      
          9.   PERFORMING ORGANIZATION NAME AND ADDRESS
              Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.
      
          10.  PROGRAM ELEMENT NUMBER
              Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
      
          11.  CONTRACT/GRANT NUMBER
              Insert contract or giant number under which  report was prepared.
      
          12.  SPONSORING AGENCY NAME AND ADDRESS
              Include ZIP code.
      
          13.  TYPE OF REPORT AND PERIOD COVERED
              Indicate interim final, etc., and if applicable, dates covered.
      
          14.  SPONSORING AGENCY CODE
              Leave blank.
      
          15.  SUPPLEMENTARY NpTES
              Enter information not included elsewhere but useful, such as:  Prepared in cooperation with, Translation of, Presented at conference of,
              To be published in, Supersedes, Supplements, etc.
      
          16.  ABSTRACT
              Include a brief ^200 words or less) factual summary of the most significant information contained in the report. If the report contains a
              significant bibliography or literature survey, mention it here.
      
          17.  KEY WORDS AND DOCUMENT  ANALYSIS
              (a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
              concept of  the research and are sufficiently specific and precise to be used as index entries for cataloging.
      
              (b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
              ended terms written in descriptor form for those subjects for which no descriptor exists.
      
              (c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List.  Since the ma-
              jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
              endeavor, or type of physical object.  The application(s)  will be cross-referenced with secondary Field/Group assignments that will follow
              the primary posting(s).
      
          18.  DISTRIBUTION STATEMENT
              Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited."  Cite any availability to
              the public,  with address and price.
      
          19.8.20. SECURITY CLASSIFICATION
              DO NOT submit classified reports to the National Technical Information service.
      
          21.  NUMBER OF PAGES
              Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.
      
          22.  PRICE
              Insert the price set  by  the National Technical Information Service or the Government Printing Office, if known.
      
      
           »U.S. Government Printing Office: 1974—747-796/366 Region No. 4
      
      
      
      EPA Form 2220-1 (9-73) (Reverse)                              Ufl
      

      -------