APTD-1494
October 1973
EXHAUST EMISSIONS
FROM UNCONTROLLED VEHICLES
AND RELATED EQUIPMENT
USING INTERNAL
COMBUSTION ENGINES
PART 5:
FARM, CONSTRUCTION,
AND INDUSTRIAL ENGINES
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
APTD-1494
EXHAUST EMISSIONS
FROM UNCONTROLLED VEHICLES
AND RELATED EQUIPMENT
USING INTERNAL COMBUSTION ENGINES
PART 5: FARM, CONSTRUCTION,
AND INDUSTRIAL ENGINES
Prepared by
Charles T . Hare and Karl J . Springer
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78284
Contract No. EHS-70-108
EPA Project Officer: William Rogers Oliver
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
October 1973
-------
This report is issued by the Environmental Protection Agency to
report technical data of interest to a limited number of readers.
Copies are available free of charge to Federal employees, current
contractors and grantees, and nonprofit organizations - as supplies
permit - from the Air Pollution Technical Information Center,
Environmental Protection Agency, Research Triangle Park, North Carolina
27711, or from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia 22151.
This report was furnished to the Environmental Protection Agency by
Southwest Research Institute, San Antonio, Texas in fulfillment of
Contract No. EHS 70-108. The contents of this report are reproduced
herein as received from the Southwest Research Institute. The
opinions, findings, and conclusions expressed are those of the
author and not necessarily those of the Environmental Protection
Agency. Mention of company or product names is not to be considered
as an endorsement by the Environmental Protection Agency
Publication No. APTD-1494
11
-------
ABSTRACT
This report is part 5 of the Final Report on Exhaust Emissions from
Uncontrolled Vehicles and Related Equipment Using Internal Combustion
Engines, Contract EHS 70-108. The engine categories covered in this
report are heavy-duty gasoline and diesel engines used in farm, construc-
tion, and industrial applications. Exhaust emissions from twelve engines
were measured, including eight diesels and four gasoline engines.
The four gasoline engines were a Ford G5000, a Hercules G-2300,
a J. I. Case 159G, and a Wisconsin VH4D. The eight diesel engines tested
were an Aliis-Chalmers 3500, a Caterpillar D6C, a Detroit Diesel 6V-71,
an International D407, a John Deere 6404, a Mercedes-Benz OM636, an
Onan DJBA, and a Perkins 4. 236. The engines were tested using well-
accepted steady-state procedures for gaseous emissions measurement,
and in addition, the Federal procedure for smoke certification was used
for testing the diesel engines (except the Onan). Some gaseous emissions
were measured during transient operation of most of the engines, and
particulate and smoke measurements were made during some of the same
modes used for gaseous emissions sampling.
The analysis techniques which were used included FIA for total
hydrocarbons; NDIR for CO, CO2, and NO; chemiluminescence for NO and
NOX; electrochemical analysis for O-,; gas chromatograph for light hydro-
carbons; the MBTH method for total aliphatic aldehydes (RCHO) and the
chromotropic acid method for formaldehyde (HCHO); an experimental
dilution-type sampling device for particulate; and the PHS full-flow smoke-
meter for smoke (diesels only). Hydrocarbons were also measured by
NDIR for tests on the gasoline engines, and the FIA was heated to 160°F
for tests on gasoline engines, but to about 360°F for diesel engine tests.
The twelve engines were operated on eddy-current stationary dyna-
mometers, the largest of which had provision for the extra inertia required
for Federal smoke tests. One of the dynamometers had motoring capability
for closed-throttle modes on gasoline engines, so the three larger gasoline-
fueled units were operated on this dynamometer. The emissions results
obtained in this study, as well as data obtained from other sources, were
used in conjunction with information on engine population and usage to
estimate emission factors. Estimates of emission factors were made using
emissions data developed on as broad a range of engines as possible, taking
into account that several of the engines tested under this contract (as well
as others on the market) are widely used in more than one of the three
areas of application treated in this report (farm, construction, and indus-
trial). National impact was estimated separately for each of the three
engine applications, based on population and usage information developed
independently for each application.
iii
-------
FOREWORD
The project for which this report constitutes part of the end product
was initiated jointly on June 29, 1970, by the Division of Motor Vehicle
Research and Development and the Division of Air Quality and Emission
Data, both divisions of the agency known as NAPCA. Currently, these
offices are the Emission Characterization and Control Development Branch
of the Office of Mobile Source Air Pollution Control, and the National
Air Data Branch of the Office of Air Quality Planning and Standards,
respectively. Both offices are within the Office of Air and Water Programs,
Environmental Protection Agency. The subject contract number is
EHS 70-108, and the project is identified within Southwest Research
Institute as 11-2869-001.
This report (Part 5) covers the heavy-duty farm, construction, and
industrial engine portion of the characterization work only; and the six other
items in the characterization work have been or will be covered by six other
parts of the final report. In the order in which the final reports have been
or will be submitted, the seven parts of the characterization work include:
Locomotives and Marine Counterparts; Outboard Motors; Motorcycles;
Small Utility Engines; Farm, Construction, and Industrial Engines; Gas
Turbine "Peaking" Power Plants and Snowmobiles. Other efforts which
have been conducted as separate phases of Contract EHS 70-108 include:
measurement of gaseous emissions from a number of aircraft turbine
engines; measurement of crankcase drainage from a number of outboard
motors; and investigation of emissions control technology for locomotive
diesel engines; and those phases either have been or will be reported
separately.
Cognizant technical personnel for the Environmental Protection
Agency are currently Messrs. William Rogers Oliver and David S. Kircher,
and past Project Officers include Messrs. J. L. Raney, A. J. Hoffman,
B. D. McNutt, and G. J. Kennedy. Project Manager for Southwest Research
Institute has been Mr. Karl J. Springer, and Mr. Charles T. Hare has car-
ried the technical responsibility.
The offices of the sponsoring agency (EPA) are located at 2565
Plymouth Road, Ann Arbor, Michigan 48105 and at Research Triangle Park,
North Carolina 27711. The contractor (SwRI) is located at 8500 Culebra
Road, San Antonio, Texas 78284.
The assistance of several corporations, groups, and individuals has
contributed materially to the success of the farm, construction, and indus-
trial engine portion of this project. Appreciation is expressed to: Allis-
Chalmers (Mr. William Hamilton); Caterpillar Tractor Co. (Mr. Don
Henderson and Mr. Duane E. Evans); Detroit Diesel Allison Division,
General Motors Corp. (Mr. David F. Merrion and Mr. John W. Caradonna);
iv
-------
The General Motors Environmental Activities Staff (Mr. George Hanley);
Ford Tractor Operations (Mr. John H. Zich); Hercules Engine Division,
White Engines, Inc. (Mr. Robert L. Bodnar); International Harvester Com-
pany (Mr. Charles R. Hudson); J. I. Case Co. (Mr. Don Shelton and Mr.
John Crowley); John Deere (Mr. Robert Parker); Mercedes-Benz of North
America, Inc. (Mr. Gerhard Langhans and Mr. K. H. Faber); Onan (Mr.
J. C. Hoiby); Perkins Engines, Inc. (Mr. Neville Hartwell); and Teledyne
Wisconsin Motor (Mr. John A. Gresch).
Thanks are also expressed to the OAP Emissions Survey Subcommittee
of the Emissions Standards Committee, Engine Manufacturers Association.
This group is composed largely of the gentlemen listed above (with their
company affiliations), and it contributed a great deal in recommending
engines to be tested and in supplying other technical information on usage
and duty cycles. Until recently, the chairman of this subcommittee was
Mr. John Crowley, and his substantial efforts over a period of more than
two years are very much appreciated.
The SwRI personnel involved in the farm, construction, and indus-
trial engine tests included Russel T. Mack, lead technician; Joyce McBryde
and Joyce Winfield, laboratory assistants; and Orville Davis, William P.
Jack, Ernest Krueger, and Nathan Reeh, technicians. These people all
made major contributions to the research effort which are sincerely ap-
preciated.
-------
TABLE OF CONTENTS
Page
LIST OF ILLUSTRATIONS viii
LIST OF TABLES xii
I. INTRODUCTION *
II. OBJECTIVES 2
III. TEST DOCUMENTATION, INSTRUMENTATION,
AND PROCEDURES 3
A. Engine Specifications and Descriptions 3
B. Instrumentation and Measurement Techniques 8
C. Emissions Test Procedures and Fuel Specifications 11
D. Estimation of Unmeasured Emissions 19
IV. EMISSION TEST RESULTS 22
A. Results of Gaseous Emissions Tests 22
B. Results of Particulate Emissions Tests 40
C. Results of Diesel Smoke Tests 41
D. Emissions Data from Other Sources 44
V. ESTIMATION OF EMISSION FACTORS AND NATIONAL
IMPACT FOR HEAVY-DUTY ENGINES USED IN FARM
APPLICATIONS 47
A. Analysis of Population and Usage for Heavy-Duty
Farm Engines 47
B. Development of Emission Factors for Farm
Engines 59
C. Estimation of National Emissions Impact for
Farm Engines 63
vi
-------
TABLE OF CONTENTS (Cont'd)
Page
VI. ESTIMATION OF EMISSION FACTORS AND NATIONAL
IMPACT FOR HEAVY-DUTY ENGINES USED IN
CONSTRUCTION APPLICATIONS 69
A. Analysis of Population and Usage for Heavy-Duty
Construction Engines 69
B. Development of Emission Factors for Construction
Engines 72
C. Estimation of National Emissions Impact for
Construction Engines 78
VII. ESTIMATION OF EMISSION FACTORS AND NATIONAL
IMPACT FOR HEAVY-DUTY ENGINES USED IN
INDUSTRIAL APPLICATIONS 87
A. Analysis of Population and Usage for Heavy-Duty
Industrial Engines 87
B. Development of Emission Factors for Industrial
Engines 90
C. Estimation of National Emissions Impact for In-
dustrial Engines 92
VIII. SUMMARY 96
LIST OF REFERENCES 10Z
APPENDIXES
A. Graphical Presentation of Emissions from Diesel
Engines Used in Farm, Construction, and Industrial
Applications
B. Data from Federal Smoke Tests on Diesel Engines
Used in Farm, Construction, and Industrial
Applications
C. Tabular Performance and Emissions Data on
Diesel Engines Used in Farm, Construction, and
Industrial Applications
D. Computer-Generated Data Printouts and Calculation
of Brake Specific Emissions for Diesel Engines
Used in Farm, Construction, and Industrial Applications
E. Graphical Presentation of Emissions from Gasoline
Engines Used in Farm, Construction, and Industrial
Applications
vii
-------
TABLE OF CONTENTS (Cont'd)
APPENDIXES (Cont'd)
F. Tabular Performance and Emissions Data on
Gasoline Engines Used in Farm, Construction,
and Industrial Applications
G. Computer-Generated Data Printouts and Calcu-
lation of Brake Specific Emissions for Gasoline
Engines Used in Farm, Construction, and
Industrial Applications
H. States Included in Northern, Central, and Southern
Regions for the Purpose of Regional Mass
Emissions Analysis
viil
-------
LIST OF ILLUSTRATIONS
Figure Page
1 Allis-Chalmers 3500 Diesel Engine 5
2 Caterpillar D6C Diesel Engine 5
3 Detroit Diesel 6V-71 Diesel Engine 5
4 International Harvester D407 Diesel Engine 5
5 John Deere 6404 Diesel Engine 6
6 Mercedes-Benz OM636 Diesel Engine 6
7 Onan DJBA Diesel Engine 6
8 Perkins 4. 236 Diesel Engine 6
9 Ford G5000 Gasoline Engine 7
10 Hercules G-2300 Gasoline Engine ?
11 J. I. Case 159G Gasoline Engine 7
12 Wisconsin VH4D Gasoline Engine 7
13 Instrumentation used for Measurement _of
Gaseous Emissions from Diesel Engines 9
14 Instrumentation used for Measurement of
Gaseous Emissions from Gasoline Engines 9
15 500-hp Capacity Eddy-Cur rent Dynamometer
used for Tests of Large Diesel Engines 9
16 250-hp Capacity Eddy-Current Dynamometer
used for Tests of Smaller Engines 9
17 FLA Oven/Detector Unit Used for Hydrocarbon
Analysis 10
lx
-------
LIST OF ILLUSTRATIONS (Cont'd)
Figure Page
18 Flo-Tron Fuel Flow Measurement Device of
the Type Used During Most Emissions Tests 1®
19 PHS Light Extinction Smokemeter 10
20 Experimental Dilution-Type Particulate
Sampler 10
21 Experimental Population Models for Farm
Tractors 50
22 Comparison of Known and Calculated Values
for Market Percentage of Diesel Farm Tractors,
1950 Through 1971 53
23 Usage as a Function of Rated Engine hp for
Various Categories of Construction Equipment 71
24 Value of Industrial Engines as a Function of
Engine Rated Horsepower 88
-------
LIST OF TABLES
Page
Specifications of Test Engines 4
Description of Steady-State Gaseous Emissions
Test Procedures 13
3 Operating Speeds Used During Emission Tests 14
4 Values of Constants in "Carbon Balance" Mass
Emission Equations 16
5 Federal Emissions Test Fuel Requirements
and Typical Specifications of Fuels Used 19
6 Data on Light Hydrocarbon Emissions from
Heavy-Duty Diesel Engines Used in Farm,
Construction, and Industrial Applications 23
7 Data on Light Hydrocarbon Emissions from
Heavy-Duty Gasoline Engines Used in Farm,
Construction, and Industrial Applications 25
8 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for an Allis-Chalmers 3500 Diesel
Engine 27
9 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Caterpillar D6-C Diesel Engine 28
10 Mass Emissions and Brake Specific Emissions of
Major Gaseous Pollutants and Aldehyde Concen-
trations for a Detroit Diesel 6V-71 Diesel Engine 29
11 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for an International Harvester D407
Diesel Engine 30
xi
-------
LIST OF TABLES (Cont'd)
Table Pag*
12 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a John Deere 6404 Diesel Engine 31
13 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Mercedes-Benz OM636 Diesel
Engine 32
14 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for an Onan DJBA Diesel Engine 33
15 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Perkins 4. 236 Diesel Engine 34
16 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Ford G5000 Gasoline Engine 35
17 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Hercules G-2300 Gasoline
Engine 36
18 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations fora J. I. Case 159G Gasoline
Engine 37
19 Mass Emissions and Brake Specific Emissions
of Major Gaseous Pollutants and Aldehyde Con-
centrations for a Wisconsin VH4D Gasoline
Engine 38
20 Cycle Composite Brake Specific Gaseous
Emissions from Eight Farm, Construction, and
• Industrial Diesel Engines (On-Highway Weighting
Factors) 39
xii
-------
LIST OF TABLES (Cont'd)
Table Page
21 Cycle Composite Brake Specific Gaseous
Emissions from Four Farm, Construction,
and Industrial Gasoline Engines (On-Highway
Weighting Factors) 40
22 Particulate Concentration Data on F, C, & I
Engines 42
23 Mass and Brake Specific Particulate Emissions
from F, C, & I Engines 43
24 Summary of Federal Smoke Test Results 43
25 Average Steady-State Smoke from Diesel Engines 44
26 Emissions Data on Diesel Engines Developed by
Other Sources, Based on 13- or 21-Mode
Procedures
27 Average Brake Specific Emissions from Diesels
by Engine Type, Test Engines Compared to
Data from Other Sources
28 Data on the U. S. Farm Wheel Tractor Population 48
29 Comparison of Data Calculated by Survival Models
to Known Facts about the Farm Tractor Popula-
tion 4
30 Classification of Farm Tractor Production by
PTO Horsepower, 1952 Through 1971 52
31 Mean Farm Tractor PTO Horsepower by Power
Category for 1964-1971 54
32 Estimated Structure of the Farm Tractor Popu-
lation as of 12/31/72 55
33 Applications of Heavy-Duty Engines on Farms
(Other than Tractors) and Assumed Character-
istics of the Applications
xiii
-------
LIST OF TABLES (Cont'4)
Table P^i
34 Two Independent Estimates of Annual Usage
of Tractors as a Function of Tractor Age 57
35 Major U. S. Crop Acreage (1970) and Estimated
Machine Hours Required for Harvesting 58
36 Farm Tractor Mode Weighting Factors for the
13-Mode Gaseous Emissions Procedure 60
37 Farm Engine Mode Weighting Factors for the
21-Mode (23 for Gasoline Engines) Procedure
and the (Special 7-Mode) Particulate Measure-
ment Procedure 61
38 Composite Mass and Brake Specific Emissions
for Test Engines Weighted to Simulate Farm
Tractor and Farm Non-Tractor Applications 62
39 Computation, of Composite Brake Specific
Emission Factors for Farm Tractor and Non-
Tractor Applications of Heavy-Duty Diesel
and Gasoline Engines 64
40 National Emissions Impact Estimates for Heavy-
Duty Farm Engines 65
41 Information Pertinent to Evaporative Emissions
from Heavy-Duty Gasoline Farm Engines 66
42 Comparison of Heavy-Duty Farm Engine
Emissions Estimates with EPA Nationwide Air
Pollutant Inventory Data 67
43 Computation of Average Years of Service for
Several Categories of Construction Equipment 70
44 Typical Total Yearly Shipments and Domestic
Shipments over Computed Average Life for
Construction Equipment 72
xiv
-------
LIST OF TABLES (Cont'd)
Table Page
45 Summary of Manufacturers ' Construction
Equipment Duty Cycle Data Based on 13-Mode
Cycle 74
46 Mode Weighting Factors for Characterization of
Emissions from Construction Equipment 76
47 Composite Mass and Brake Specific Emissions
for Test Engines Weighted to Simulate Four
Types of Construction Usage 77
48 Computation of Category Composite Brake
Specific Emission Factors for Heavy-Duty
Engines Used in Construction Applications 79
49 National Emissions Impact Estimates for
Heavy-Duty Construction Engines 81
50 Comparison of Heavy-Duty Construction Engine
Emissions Estimates with EPA Nationwide Air
Pollutant Inventory Data 83
51 Comparison of Emission Estimates for Gasoline-
and Diesel-Powered Equipment with a Previous
Emission Estimate 83
52 Estimate of Seasonal, Regional, and Urban-Rural
Distribution of Emissions from Construction
Equipment 84
53 Computation of Industrial Gasoline Engine
Average Horsepower Based on Assumptions
about Double-Classification of Small Utility
Engines 90
54 Computation of Composite Brake Specific
Emission Factors for Industrial Applications of
Heavy-Duty Diesel and Gasoline Engines 91
55 National Emissions Impact Estimates for
Heavy-Duty Industrial Engines 93
xv
-------
LIST OF TABLES (Cont'd)
Table
56 Comparison of Heavy-Duty Industrial Engine
Emissions Estimates with EPA Nationwide Air
Pollutant Inventory Data 93
57 Estimate of Seasonal, Regional, and Urban-Rural
Distribution of Emissions from Industrial Engines 94
xvi
-------
I. INTRODUCTION
The program of research on which this report is based was initiated
by the Environmental Protection Agency to (1) characterize emissions from
a broad range of internal combustion engines in order to accurately set
priorities for future control, as required, and (2) assist in developing more
inclusive national and regional air pollution inventories. This document,
which is Part 5 of what is planned to be a seven-part final report, concerns
emissions from farm, construction, and industrial engines and the national
impact of these emissions.
Emissions data on some of the engines considered to be important to
the heavy-duty farm, construction, and industrial engine categories have
been developed outside the subject contract, and where possible these data
will be considered in developing emission factors. Although the procedures
used to acquire data in the subject program were related to those used (or
proposed) for emissions certification, it should be noted that they were used
in this project for research purposes only. No consideration has been
given to the potential usefulness of the procedures used for anything except
research purposes.
The testing portion of the work on farm, construction, and industrial
engines began about February 1, 1972, and extended until about February 1,
1973. The engines tested, then, were representative of production prior
to testing dates, and may not have incorporated all the latest emission
control technology. This extended test period reflects the scheduling of
numerous other tests during the same time period, including both those
applying to the subject contract (outboards, motorcycles, locomotives,
etc. ) and some applying to other contracts. All the tests were performed
in the SwRI Emissions Research Laboratory.
-------
II. OBJECTIVES
The objectives of the heavy-duty farm, construction, and industrial
engine part of this project were to obtain emissions data on a variety of
engines, and to use these and other available emissions data in conjunction
with information on engine population and usage to estimate emission factors
and national impact. The emissions to be measured for all the engines
included hydrocarbons by FIA; CO, COz, and NO by NDIR: NO and NOX by
chemiluminescence; Q£ by electrochemical analysis; light hydrocarbons by
gas chromatograph; aldehydes by wet chemistry; and particulate by gravi-
metric analysis. In addition, hydrocarbons were to'be measured by NDIR
for gasoline engines, and smoke by the PHS full-flow smokemeter for diesel
engines. These emission measurements are essentially the same as those
made on all the other categories of engines tested under this contract.
Emission measurement procedures for engines similar to those tested
(but for highway applications only) had already been given a great deal of
consideration when the subject tests began, so it was not necessary to develop
procedures from scratch. It became a secondary objective, however, to
determine how the on-highway procedures should be modified (if, indeed,
they should be modified at all) to better represent off-highway applications
of the engines tested.
-------
in. TEST DOCUMENTATION,
INSTRUMENTATION, AND PROCEDURES
This section of the report includes descriptions and photographs
of the test engines, descriptions and photographs of the instrumentation
systems used, and explanations of the test sequences and calculation
methods employed. In brief, the engines were chosen to be as represen-
tative as possible of those used in the field, but no attempt was made to
use a national probability sample or any similarly structured group due
to the extremely small number of engines to be tested. The test proce-
dures used for gaseous emissions were similar to the "Federal 13-mode"
test^1) or the "EMA-California 13-mode" test<2), except that some of
them had 21 modes (diesel) or 23 modes (gasoline). The instrumentation
used was representative of state-of-the-art practice, although occasional
instrument downtime did prevent the acquisition of some data during a
few runs.
A. Engine Specifications and Descriptions
In order to show the extent to which available diesel and gasoline
engines for F, C, & I (farm, construction, and industrial) applications
were represented by those chosen for testing under this contract, the
major specifications of the test engines have been assembled to form
Table 1. Power outputs ranged from under 15 hp to over 200 hp for diesels
(almost 300 hp if it is assumed that the 6V-71 is representing an 8V-71),
and from 30 hp to about 85 hp for spark-ignition engines. In major design
features, the gasoline engines were similar to each other except for the air
cooling and "Vee" block design of the Wisconsin VH4D. In contrast, the
diesel engines were of a variety of types. The single 2-stroke engine tested
had open combustion chambers and used blower scavenging; and the 4-stroke
engines included turbocharged models with both open and precombustion
chambers, and naturally aspirated models with both open and precombustion
chambers. In addition, one of the two naturally aspirated 4-stroke engines
with prechambers was air cooled, while the other was water cooled. It
should be noted that the test engines were representative of production
prior to 1972 models (generally), and that they may not have incorporated
the latest in emission control technology. The engines were supplied on
loan by their manufacturers, and were assumed to be correctly adjusted
and ready to operate unless their performance indicated otherwise.
The primary applications of the engines tested are distributed quite
evenly among the farm, construction, and industrial categories. This dis-
tribution holds within the diesel group and within the gasoline group as well
as the entire sample of engines. It is also obvious that an effort was made
to test products of as many different manufacturers as possible, since no
two test engines were made by the same company.
-------
TABLE 1. SPECIFICATIONS OF TEST ENGINES
Diesel
Mfr. & Model
displacement, in
cyls. (arrangement-no. )
cycle
aspiration
comb, chamber
rated hp @ rpm
rated torque (ft Ibf) @ rpm
cooling medium
weight, Ibf
injection system
Diesel
Mfr. & Model
displacement, in^
cyls. (arrangement-no.)
cycle
aspiration
comb, chamber
rated hp @ rpm
rated torque (ft Ibf) @ rpm
cooling medium
weight, Ibf
injection system
Gasoline
Mfr. & Model
displacement, in^
cyls. (arrangement-no.)
rated hp @ rpm
rated torque (ft Ibf) @ rpm
cooling medium
weight, Ibf
carburetion
* measured or otherwise acquired, but not from mfr's. data
AC 3500
426
1-6
4-stroke
Turbo
open
157 @ 2200
438 @ 1700*
water
1300*
Simm's pump
J D 6404
404
1-6
4-stroke
Turbo
open
129 @ 2200
340 @ 1500
wate r ..
*
approx. 1500
Roosa-pump
Ford G5000
256
1-4
71 @ 2100
206 @ 1100
water
860
IV updraft
Cat D6C
638
1-6
4-stroke
Turbo
pre-cup
149 @ 1900*
486 @ 1400*
water
2000*
own -pump
M-B OM636
108
1-4
4-stroke
Natural
pre-cup
29 @ 2400
60 @ 2000
water
388
Bosch-pump
Here. G-2300
226
1-4
84. 5 @ 2400
205 @ 1400
water
590
IV updraft
D D 6V-71
426
V-6
2-stroke
Blower
open
208 @ 2100*
557 @ 1600*
water
I960*
own-unit
Onan DJBA
60
1-2
4-stroke
Natural
pre-cup
14.6 @ 2400
36 @ 1800
air
270
Bosch-pump
J I Case 159G
159
1-4
48 @ 2100
131 @ 1200
water
approx. 600*
IV updraft
Int D407
407
1-6
4-stroke
Natural
open
112 @ 2400
274 @ 1800*
water
approx. 1600*
Roosa-pump
Per 4.236
236
1-4
4-stroke
Natural
open
80 @ 2500
197 @ 1300
water
596
C. A. V. -pump
Wise VH4D
108
V-4
30 @ 2800
66 @ 1700
air
310
IV updraft
To provide better visualization of the test engines, photographs
of them appear as Figures 1 through 12. These photos also show some
of the mechanical equipment and exhaust systems, as well as air and
fuel flow measuring instrumentation.
-------
Figure 1. Allis-Chalmers 3500
Diesel- Engine
Figure 2. Caterpillar D6C
Diesel Engine
Figure 3. Detroit Diesel 6V-71
Diesel Engine
Figure 4. International
Harvester D407 Diesel
Engine
-------
Figure 5. John Deere 6404
Diesel Engine
Figure 6. Mercedes-Benz
OM636 Diesel Engine
Figure 7. Onan DJBA Diesel
Engine
Figure 8. Perkins 4. 236
Diesel Engine
-------
Figure 9. Ford G5000
Gasoline Engine
Figure 10. Hercules G-2300
Gasoline Engine
Figure 11. J. I. Case 159G
Gasoline Engine
Figure 12. Wisconsin
VH4D Gasoline Engine
(Photo Supplied by Teledyne-
Wisconsin Motor)
-------
B. Instrumentation and Measurement Techniques
The types of instrumentation used for measuring emissions during
tests on the F, C, & I engines have already been mentioned, but in this
section they will be described in more detail. The nondispersive infrared
analyzers used for measurement of CO, CO^, and NO (plus hydrocarbons
for gasoline engines) were Beckman 315A's and 315B's, and the electro-
chemical oxygen analyzer was a Beckman model 715. For tests on the
four gasoline engines and on the Onan DJBA, the chemiluminescent NOX
analyzer used was a Thermo-Electron unit. For tests on the other diesel
engines, the chemiluminescent instrument used was one of several fabri-
cated by SwRI for use in the Emissions Research Laboratory. The flame
ionization analyzers used for total hydrocarbon measurements during all
the tests were units fabricated in and for the Emissions Research Labora-
tory. These FIA units have temperature capability from room temperature
to 400 °F, and they use positive-pressure detectors and Keithley 417K
chromatograph electrometers. Readout for all the instruments except NDIR
NO, O2, and NDIR hydrocarbons (when used) was provided by either a Texas
Instruments 4-pen or a Rikadenki 6-pen recorder.
The instrumentation package used for gaseous emissions measure-
ments on all the diesel engine tests except those on the Onan DJBA is
shown in Figure 13, and the package used for the remaining tests is shown
in Figure 14. Figure 15 shows the 500 hp-capacity eddy current dyna -
mometer used for tests on the larger diesel engines (Allis-Chalmers,
Caterpillar, Detroit Diesel, International Harvester, and John Deere),
including the inertia wheel under the guard in the background which was
coupled to the dynamometer for Federal smoke tests. Figure 16 shows
the 250 -hp capacity eddy current dynamometer used for testing of the other
water-cooled engines (Mercedes-Benz, Perkins, Ford, Hercules, and J.
I. Case), including the 50 hp electric motor used to "motor" the gasoline
engines at closed throttle. The gearbelt and pulleys, covered by a guard
when in operation, were changed as necessary to provide the required
crankshaft speeds. The two smallest engines were air-cooled (Onan and
Wisconsin), and were operated on a 50 hp-capacity eddy current dyna-
mometer (not shown). This 50 hp unit did not have motoring capability, so
the rated and intermediate speed modes run at closed throttle were deleted
from the Wisconsin's operating schedule.
A detailed view of the FIA oven/detector assembly is shown in Figure
17, including the apparatus for aldehyde and light hydrocarbon sampling.
The aldehyde bubblers are on the side of the oven, and a bag is shown at the
rear of the oven being filled for light hydrocarbon analysis. The methods
employed for batch sampling were the MBTH method^3' for total aliphatic
aldehydes (RCHO) and the chromotropic acid method^4) for formaldehyde
(HCHO). The chromatograph employed for light hydrocarbon analysis used
-------
Figure 13. Instrumentation Used
for Measurement of Gaseous
Emissions from Diesel
Engines
Figure 14. Instrumentation
Used for Measurement of
Gaseous Emissions from
Gasoline Engines
Figure 15. 500-hp Capacity
Eddy-Cur rent Dynamometer
Used for Tests of Large
Diesel Engines
Figure 16. 250-hp Capacity
Eddy-Current Dynamometer
Used for Tests of Smaller
Engines
-------
Figure 17. FIA Oven/Detector
Unit Used for Hydrocarbon
Analysis
Figure 18. Flo-Tron Fuel
Flow Measurement Device of
the Type Used During Most
Emissions Tests
Figure 19. PHS Light Extinction
Smokemeter
Figure 20. Experimental
Dilution-Type Particulate
Sampler
10
-------
a 10 ft by 1/8 inch column packed with a mixture of phenyl isocyanate and
Porasil C, and a 1 inch by 1/8 inch precolumn packed with 100-120 mesh
Porapak N. This chromatograph analysis was sensitive to seven compounds
(methane through butane), although in many cases one or more of the
seven compounds was not present in measureable amounts.
Figure 18 shows one of three Flo-tron fuel mass flow measuring
devices which were employed during the subject tests (another is shown
in Figure 4 with the International Harvester D407 engine). These devices
were used for tests on most of the engines, and a weight-time system
(using a scale and stopwatch) was used for the remaining tests. Air flow
measurements on all the diesel engines except the Detroit Diesel and the
Onan were taken using one or a combination of the long radius nozzles
mounted in the plenum shown in Figure 4. Air flow to the Detroit Diesel
was measured with a laminar flow element, and no air flow data were
acquired on the Onan.
Smoke measurements on the diesel engines were made using a
PHS light extinction smokemeter such as the one shown in Figure 19. This
instrument, or a substantial equivalent, is required by Federal law for
smoke certification^ '. and in all cases readout was provided by a strip
chart recorder. Exhaust particulate was measured under steady-state
conditions by the experimental dilution-type sampling device shown in
Figure 20. This device was developed to meet the objective of measuring
particulate at atmospheric pressure and 85°F, and it uses primary filters
having a mean flow pore size of 0,45 micron (1.77 x 10 in). The sampler
has continuous flow indication which permits adjustment of the sample rate
within ± 2% of the desired value, and this rate is set as near isokinetic as
possible. It is recognized, however, that the best the system can do is to
match probe entrance velocity to exhaust bulk velocity, rather than match
the instantaneous velocity vector as required for true isokinetic sampling.
The hot exhaust sample is cooled and diluted by a known flow of prepurified
dry compressed air (metered via a critical orifice) before being filtered,
then mixed flow is totalized by a Rootsmeter. Total exhaust sample flow
over the sampling period (5 to 10 minutes) is determined by subtracting
the dilution gas flow from the total (mixed) flow. Filters are preweighed
(clean) and then weighed after use (a minimum of four independent weighings
both before and after)in a humidity-controlled environment, and the final
two weights must be within 0. 2 mg of each other. Particulate amounts
collected during tests on th^ F, C, & I engines ranged from about 10 mg
to over 100 mg, and the electronic balance used to weigh the filters had
an accuracy of ± 0. 1 mg.
C. Emissions Test Procedures and Fuel Specifications
Nearly all the gaseous and particulate emissions tests conducted
11
-------
on the F, C, & I engines were composed of a number of steady-state con-
ditions run in a prescribed sequence. In these steady-state procedures,
no attempt was made to compute emissions during transients (while engine
load and/or speed were changing). The test procedures are all based
on the EMA-California ARB 13-mode procedure'^) with variations to
accomodate the needs of the subject program. A few additional runs were
made with continuous readouts of engine rpm, HC, CO, and NOX, to
determine whether emissions during transients were sufficiently different
from emissions during steady-state operation to warrant their inclusion
in calculations leading to emission factors. It was found that excursions
of emission values beyond normal limits did occur in some cases, but
that these excursions did not combine in magnitude and duration to
make any significant change in the overall emissions picture.
The only other tests involving transients were the Federal smoke
tests on the diesel engines, which are composed almost solely of accel-
erations and lug-downs(^). The steady-state gaseous emissions test
procedures used for diesels had either 21 or 13 modes, and those used
for gasoline engines had either 23 or 13 modes (the 13-mode tests were
identical for diesel and gasoline engines). These procedures are descri-
bed in Table 2, which gives engine speed and percent of full load at that
speed by mode. The notes following Table 2, especially (c), are important
to prevent confusion when referring to Appendixes F and G for data on
the gasoline engines. To elaborate on the point made in note (c), the
computer program used to calculate brake specific emissions required
mode data in the order shown in Table 2. It is obvious from inspection
of Figure 16 that the engine and dynamometer had to be stopped to change
closed-throttle "motoring" speeds, because belts and pulleys were removed
and replaced to accomplish speed changes. Therefore, the test sequence
could not be run in the order required for computer input without mid-test
shutdowns, and it was decided to defer the closed-throttle modes until the
remainder of the tests had been conducted. The belt connecting the dyna-
mometer to the electric motor was removed for all the non-motored con-
ditions to prevent possible frictional losses.
Reiterating another point made earlier, no closed-throttle "motoring"
data were acquired on the Wisconsin VH4D engine because it was operated
on a smaller dynamometer which did not have motoring capability. Absence
of the closed-throttle data also made it impractical to obtain composite
brake specific emissions on the Wisconsin by corr puter, so no computer
data appear for this engine in Appendix G.
The 13-mode procedures (performed in addition to 21- or 23-mode
tests, and at different speeds) were run to provide a better basis for
"mapping" emissions from the test engines according to speed and load,
and thus they were termed "mapping runs" and given designations such
12
-------
as M-l, M-2, and so on. At least two 13-mode runs were made on each
engine except the Caterpillar D6C, the exception being made because this
engine's assumed operating speed range was very narrow (1400 to 1900
rpm) and because its emissions were observed not to vary significantly
TABLE 2. DESCRIPTION OF STEADY-STATE
GASEOUS EMISSIONS TEST PROCEDURES
Mode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Notes:
21-Mode (Diesel)
Engine rpm
Low Idle
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Low Idle
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Low Idle
Load
%
0
0
12.
25
37.
50
62.
75
87.
100
0
100
87.
75
62.
50
37.
25
12.
0
0
5
5
5
5
5
5
5
5
13-Mode (Gasoline
and Diesel)
Engine rpm
Low Idle
Speed No. 3
Low Idle
Load
00
00
25
50
75
100
0
100
75
50
25
0
0
23-Mode (Gasoline)
Engine rpm
Low Idle
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Intermediate
Inte rmediate
Low Idle
Intermediate
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Rated
Low Idle
Rated
Load
0
0
12.5
25
37. 5
50
62. 5
75
87. 5
100
0
CT(C)
100
87. 5
75
62. 5
50
37. 5
25
12. 5
0
0
CT
(a)rpm lower than Speed No. 4, either above or below Intermediate,
as needed.
(b)rpm between Rated and Intermediate, generally closer to
Rated than Intermediate
(C)CT means "Closed Throttle" or "motored" conditions the order
of conditions shown was used for computer setup only (Appendixes
D and G) - actual run sequence and tabular data (Appendixes C
and F) had non-motored Rated speed modes as 12-20, followed
in order by Low idle, Intermediate CT, and Rated CT
13
-------
with operating speed (see Figures A-2, A-10, and A-18 in Appendix A).
These 13-mode tests were run using Speed No., 3 in place of Intermediate,
and Speed No. 4 in place of Rated, as shown in Tables 2 and 3. Note
that speed No. 3 was chosen below normal intermediate for the 6V-71
and the Onan because they were assumed to have some applications
utilizing these lower speeds.
The speeds chosen as "rated" and "intermediate" were manufacturer's
rated speed, and either peak torque speed or 60% of rated speed (whichever
was higher), respectively. For convenience, the operating speeds used for
test purposes are summarized in Table 3. This information in conjunction
with that in Table 2 yields full descriptions of all'the steady-state operating
conditions used for measurement of gaseous emissions. Particulate
measurements were generally conducted at seven steady-state conditions
only, due to their large time requirements. These conditions -were; low
idle; 100%, 50%, and zero load at intermediate speed; and 100%, 50%, and
zero load at rated speed. Each particulate condition was repeated several
TABLE 3. OPERATING SPEEDS USED DURING EMISSIONS TESTS
Engine rpm at Condition
Engine
Inter-
mediate
Rated
Speed
No. 3
Speed
No. 4
Low Idle
1500
1400
1600
1800
1500
1400
1800
1450
2200
1900
2100
2500
2200
2400
2400
2400
1700
-
1200
2100
1700
1700
1500
1700
2000
_
1800
2300
1900
2100
Z100
2100
800
640
440
700
800
700
*1500
620
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Harvester D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
Ford G5000
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
^Minimum ungoverned speed - governed 1000 rpm idle used for two
of the four 13-mode runs conducted
times to check on the repeatability of the results, and to provide reasonably
accurate averages. The gaseous emissions acquired by batch sampling,
namely aldehydes and light hydrocarbons (by gas chromatograph), were'
measured at Z5% power increments during the 21-mode and 23-mode runs
1400
1450
1400
1700
2100
2400
2100
2800
1600
1750
1600
2000
1900
2100
1900
2400
660
600
490
920
14
-------
only. In addition, these batch-sampled emissions were also measured
during the motored closed-throttle conditions on the Ford G5000 and
Hercules G-2300 engines (modes 12 and 23 of the 23-mode procedure
shown in Table 2).
Computation of mass-based emissions by mode from concentration
data, fuel flow, and (in some cases) air flow was performed by one of two
techniques. The first method was substantially equivalent to that outlined
in the EMA-California ARB 13-mode diesel emissions measurement
procedure, using the following basic equations for each mode. The third
equation was originally written in terms of NO rather than NOX, but
otherwise they are the same as the original ones. The NOX concentration
grams HC per hour = 0.0132 (ppmC) (exhaust flow, lbm/min)
grams CO per hour = 0. 0263 (ppm CO) (exhaust flow, lbm/min)
grams NOX (as NO2) per hour = 0. 0432 (ppm NOX) (exhaust flow,
lbm/min)
in the third equation was that obtained from the chemiluminescent analyzer.
These equations were used in the computer program to generate mass
emissions data on all the diesel engines except the Onan DJBA,for which
no air flow data were taken. They were also used to generate the tabular
data given in Appendix C for the Caterpillar, International Harvester, and
John Deere engines. Brake specific emissions data by mode were ob-
tained by simply dividing the mass emissions results by power output.
All exhaust flow and concentration data used in these equations, as well
as throughout the remainder of this report, are on a "wet" basis. The
computer data (Appendixes D and G) have been corrected for removal of
combustion water only, but all the other data have been corrected for
removal of atmospheric moisture as well.
The assumptions inherent in the three conversion equations above
are that (1) the molecular weight of the exhaust gases is the same as that
of air (28. 97), and (2) the atomic hydrogen/carbon ratio of the exhaust
hydrocarbons is 2.00. In a later section of the report, mass emissions
of aldehydes and particulate will be presented. They were computed using
the following basic equations, which are consistent in assumptions with
the three already given.
grams RCHO (as HCHO) per hour = 0. 0282 (ppm RCHO) (exhaust flow,
lbm/min)
grams particulate per hour = 0. 802 (particulate concentration, mg/SCF)
(exhaust flow, lbm/min)
The second method of computing mass emissions by mode from con-
centration data was a fuel-based technique, sometimes called the "carbon
15
-------
balance" method. The principal advantage of this method is that air flow
measurement is not required, which helps to assure that emissions
(especially from gasoline engines) are not being upset by the measure-
ment process. The basic equation for conversion of hydrocarbon con-
centrations to mass emissions is the same for gasoline and diesel engine
emissions, but the constants in the equations for the other constituents
are not the same for gasoline and diesel engines. The following general
equations apply to both gasoline and diesel emissions, providing that the
grams HC per hour = 0.0454 (ppmC) (fuel rate, lbm/hr)/(total carbon)
grams CO per hour = Kco (ppm CO) (fuel rate, lbm/hr)/(total carbon)
grams NOX (as NO2) per hour = KNQX (ppm NOX) (fuel rate, lbm/hr)/
(total carbon)
grams RCHO (as HCHO) per hour = KRCHO (ppm RCHO) (fuel rate,
lbm/hr)/(total carbon)
grams particulate per hour = Kpart (particulate concentration,
mg/SCF) (fuel rate, lbm/hr)/(total carbon)
and total carbon = %HC (as C) + %CO +%CO2
applicable constants are selected from Table 4.
TABLE 4. VALUES OF CONSTANTS IN "CARBON BALANCE"
MASS EMISSION EQUATIONS
Type of Fuel
Constituent Constant Gasoline Diesel
CO KCO 0.0916 0.0906
NOX as N02 KNOX 0. 150 0. 149
RCHO as HCHO KRCHO 0.0982 0.0971
Particulate KPart. 2- 79 2.76
The principal assumption inherent in this second computation method
is that exhaust hydrocarbons have the same atomic hydrogen/carbon ratio
as fuel hydrocarbons (1. 85 for gasoline and 2. 00 for diesel fuel). An ad-
ditional assumption was made for calculation of particulate rate, namely
that the exhaust molecular weight was equal to that of air. All the species
concentrations used in the "carbon balance" equations were on a wet basis.
This second set of equations, with constants as shown in Table 4, was used
in the computer program to generate mass emissions data on all the
gasoline engines except the Wisconsin. They were also used to calculate the
tabular values in Appendix F for all the gasoline engines, and the tabular
16
-------
values in Appendix C for five diesels (Aliis-Chalmers, Detroit Diesel,
Mercedes-Benz, Onan, and Perkins). Computer runs were not made for
the Onan and Wisconsin engines because in each case some required data
were missing.
The initial computation of composite brake specific emissions on the
F, C, & I engines was performed using mode weighting factors originally
specified for on-highway engines. These factors for diesels were 0. 20/3 =
0.0667 for idles, and 0. 8/18 - 0.0444 for all the other modes. For gasoline
engines, the factors were 0. 20/3 = 0. 0667 for idles, and 0. 8/20 = 0. 04 for
all the other modes. Computation using these factors was a convenience,
since the computer programs had incorporated them, but this use does not
preclude the possibility of using other factors later in the report when
emission factors and impact are calculated. Determination of reasonable
mode weighting factors will be discussed in more detail for each application
category following section IV (section V for farm engines, section VI for
construction, and section VII for industrial engines).
Once mass emissions by mode have been determined by one of the
methods outlined above, the definitions and equations below can be used to
M^ = individual mode emissions, g/hr
W^ - individual time-based mode weighting factor
hp^ = individual mode power, hp
n = number of modes (13, 21, or 23)
n
cycle composite g/hr = \
i=l
n
Z
M.W.
1 !
cycle composite g/bhp hr =
n
calculate cycle composite emissions based on whatever weighting factors
are deemed appropriate for the particular application.
After the composite emissions were calculated for diesels, a "cor-
rection factor" taken from Federal regulatiohs(l) was applied to the £IOX
results, and it is shown below. The quantity "H" is humidity of intake air
diesel NOX correction factor =
1 -0.0025 (H-7.5)
17
-------
in grains water per pound dry air, and the equation is designed to revise
NO emissions to the value which would have occurred had the humidity
during the test been 75 grains water per pound dry air. Federal emissions
regulations for gasoline engines include different correction factors for
light-duty and heavy-duty engines, so it is not really clear which factor
should be used for the F, C, and I engines. The computer results in Ap-
pendix G do not include a correction factor at all, nor do any data presented
(for gasoline or diesel engines) on a mode-by-mode basis in either the Appen-
dixes or the text. Only cycle composite NOX emissions have been corrected
to 75 grains humidity.
It would seem logical on the surface that the heavy-duty factor should
be applied, since the F, C, & I engines are of the heavy-duty type, but
consideration should be given to the derivation of this factor. The original
work(5) shows derivation of the factor only on the basis of complete 9-mode
Federal (heavy-duty) truck tests, using a set of mode weighting factors
required through 1973. These weighting factors give a composite load
factor between 0.45 and 0. 5, whereas those which will become effective
in 1974 yield a load factor between 0. 2 and 0. 25. On the other hand, the
light-duty factor does not seem applicable to the test engines, because it
applies to low-load factor road route operation.
Comparison 01 the HD and LD correction factors shows agreement
within approximately 1% from 75 grains down to about 30 grains, but also
a rapid divergence above 75 grains. At 101 grains, for instance (highest
humidity recorded during gasoline engine tests), the LD factor is 1. 139 and
the HD factor only 1.068. In the absence of a humidity correction factor
derived especially for the 23-mode procedure, a somewhat arbitrary de-
cision must be made, and that decision is that the heavy-duty factor^) (shown
below) will be used. The data in Appendixes E, F, and G have not been
gasoline NOX correction factor = 0.634 = 0. 00654 H - 0. 0000222 H2
corrected to 75 grains, nor have the mode data in the text, but the cycle
composite results in the text have been corrected
Fuels used in performing tests on the F, C, & I engines met the
requirements for emission test fuels as listed in Federal regulations(1).
The diesel fuel used was number 2 grade, and the gasoline was a leaded
type. Federal fuel requirements are listed in Table 5, along with typical
specifications of the fuels used for testing. The hydrogen/carbon ratios of
the fuels were not measured, but rather they were assumed when necessary
to be 2.00 for diesel fuel and 1. 85 for gasoline. These assumptions, as
mentioned earlier in this section, are consistent with the practice used
in formulating Federal calculation procedures.
18
-------
D. Estimation of Unmeasured Emissions
A number of important exhaust constituents were measured during
tests under the subject contract, but a few measurements of less important
emissions had to be neglected due either to time and financial constraints
or the lack of a reliable analysis method. Using these criteria, it was
decided to estimate emissions of sulfur oxides (SOX), evaporative hydro-
carbons, and crankcase (blowby) hydrocarbons rather than attempt to
measure them.
Taking the oxides of sulfur first, instrumentation for the measure-
ment of this pollutant in raw exhaust has not been developed to the same
TABLE 5. FEDERAL EMISSIONS TEST FUEL REQUIREMENTS
AND TYPICAL SPECIFICATIONS OF FUELS USED
Gasoline
No. 2 Diesel Fuel
Property
Cetane
IBP, °F
10% pt. , °F
50% pt. , °F
90% pt. , °F
EP, °F
Gravity, °API
Sulfur, %
Aromatics, %
Flash Point, °F
Viscosity, cs.
Federal
Require-
ment
42-50
340-400
400-460
470-540
550-610
580-660
33-37
0.2-0.5
27 (Min)
130 (Min)
2.0-3.2
Typical
Specifi-
cation
45.5
392
439
520
582
648
33.8
0.32
36.7
180
2.5
Federal
(1973) Typical
Require- Specifi-
Property
Octane, Res.
Lead, g/gal
IBP, °F
10% pt. , °F
50% pt. , °F
90% pt. , °F
EP, °F
Sulfur, %
Phosphorus
RVP, psi
Olefins, %
Aromatics, %
ment
100 (Min)
3. 1-3.3
75-95
120-135
200-230
300-325
41 5 (Max)
0. 10
0
8.7-9.2
10 (Max)
35 (Max)
cation
102
3.2
90
126
216
311
360
0.01
0
9.0
0.6
28.6
point as that for other common combustion products, so it has become more
or less accepted practice to calculate sulfur oxide emissions based on fuel
sulfur content. The assumption is usually made for convenience that all the
19
-------
sulfur oxidizes to SC>2, and thus the mass emission rate of SOX is taken to
be 2. 00 times the rate at which sulfur is entering the engine in the fuel
(2. 00 is the ratio of the molecular weight of SC>2 to the atomic weight of S).
This technique is fairly accurate for 4-stroke gasoline engines and all
diesels, in which substantially all the fuel is burned. Emission rates will
be calculated and included in section IV, based on assumed fuel sulfur con-
tents of 00043% by weight for gasoline and 0. 22% for no. 2 diesel fuel\ '.
Regarding emission of hydrocarbons due to evaporation, it will
first be assumed that evaporation of diesel fuel is negligible, although
doubtless some spillage losses do occur. Evaporation of gasoline includes
spillage losses, running losses from fuel tank and carburetor, "hot soak"
losses from fuel tank and carburetor, and diurnal breathing losses from
the fuel tank. Spillage and venting during tank filling is probably significant,
but analysis of these losses is beyond the intended scope of the subject work.
All losses from the carburetor will be neglected due to lack of information,
but it is probable that these losses are not large because the carburetors
most commonly used are updraft types, located well to the side of the engine
and (as much as possible) out of the path of natural convection heat transfer
from the engine block.
Although fuel tanks on tractor-type equipment are located directly
over the engine in many cases, no information is available on running or
hot soak losses from them. It is possible, however, to estimate diurnal
breathing losses. In the case of engines used for industrial purposes, the
end usage is so varied that an estimate for fuel tank size will have to be
made, but better data will be available on this point for tractors and similar
equipment. Diurnal losses are primarily functions of fuel vapor pressure,
vapor space in the tank, and the range of tank temperatures during the day.
The best available information on gasoline evaporative emissions^'
°» 9, 10) was developed for passenger cars, and consequently no specific
data are given for fuel tanks exposed to direct sunlight or positioned directly
over the engine. Comparison of shaded and unshaded storage tank losses
has been made, however, indicating that 4 times as much evaporation can
occur from an unshaded tank as from a shaded oneUO). This comparison
study was based on a 4-week observation period of 300-gallon tanks, each
initially full, with removal of 75 gallons of fuel at the end of each week.
It seems apparent that the evaporative loss factor for tractor-type equip-
ment and power units having their tanks over the engine and at least par-
tially exposed to sunlight should be higher than that for units having protected
fuel supplies. Determining the fractions of power units in each of the two
groups (exposed tank and protected tank) will be done later in the report.
The diurnal emission rate which seems most reasonable for auto-
mobiles, assuming a fuel Rvp (Reid vapor pressure) of 9.0 psi(6), is
20
-------
about (2. Og hydrocarbons)/(gallon tank volume day)(?. 8, 9, 10). This rate
means that a car with a 20 gallon tank would lose 40 g/day, or that one
with a 10 gallon tank would lose 20 g/day, and so on. This factor is based
on a temperature swing of 25°F to 30°F, with a maximum of 85°F to 90°F.
An increase in the maximum temperature would cause greater evaporation,
of course, and it is felt that the conditions encountered by tractor fuel tanks
would include these higher maximum temperatures. A conservative esti-
mate for unprotected tanks, based on available information(9), would be
about (4. Og hydrocarbons)/(gallon tank volume day), or double the rate for
a protected tank. Should better information on evaporative losses from off-
road equipment become available, the estimates can be revised. For the
present, however, the factors of 2g and 4g per gallon tank volume day will
be used for protected and unprotected tanks, respectively. Some seasonal
and regional variations in evaporative emissions undoubtedly occur, and
attempts to include these variations will be made when emissions impact
is estimated.
Emissions from automobile crankcases have been controlled
for some time by positive crankcase ventilation (PCV) systems, but
there has been no general requirement for control of crankcase
emissions from engines operated off-road. Consequently, most of
the F, C, & I category heavy duty gasoline engines do not employ
crankcase emission controls as standard equipment, although they
are generally available as an option. Of the four gasoline engines
tested under this part of the contract, only the Wisconsin employed
a crankcase emission recirculating system.
Prior to legislation requiring PCV systems and other controls
on automobiles, several studies were done to determine the amount
and composition of crankcase emissions from 4-stroke gasoline en-
gines^ ' '. The best-supported generalization which can be derived
from the results of these studies is that crankcase hydrocarbon emissions
amount to about 20% of those in the exhaust, and that emission of other
common pollutants is negligible. This estimate will be used to deter-
mine hydrocarbon emission factors for gasoline engines later in the
report, with attempts to take into account fractions of production sold
with,and without control systems. The discussion on crankcase emissions
applies only to gasoline engines, of course, since those fromdiesels are
considered negligible.
21
-------
IV. EMISSION TEST RESULTS
Most of the raw emissions data which form the basis for this section
of the report are given in the Appendixes, with the exceptions of aldehyde,
particulate, and light hydrocarbon concentrations, and steady-state smoke.
The data not included in the Appendixes will be presented in this section of
the text. Appendixes A through D provide data on the eight diesel engines
tested, while Appendixes E through G do the same for the four gasoline
engines tested.
The emission results are broken up into four subsections, with
gaseous emissions first and particulate second. A subsection on smoke
(from diesels only) follows, and the fourth division includes emission data
contributed by manufacturers and that obtained from other sources outside
the subject contract.
A. Results of Gaseous Emissions Tests
Complete basic gaseous emissions data (except aldehydes, light
hydrocarbons, and particulate) are given in Appendix C for the diesel en-
gines and in Appendix F for the gasoline engines. In addition, graphs
showing emission concentrations (HC, CO, and NOX only) as functions of
load with speed as parameter are given in Appendix A for diesel engines
and in Appendix E for gasoline engines. The data in Appendixes C and
F can be used to assess repeatability, giving an indication of variation
inherent in engine operation and the test procedures used.
This subsection contains concentration data on aldehydes and light
hydrocarbons, as well as data on a mass basis and on a brake specific
basis for the major gaseous pollutants (HC, CO, NOX, aldehydes, and SOX).
The light hydrocarbon analysis was sensitive to seven compounds, from
methane through butane, although in many instances not all the compounds
were present in measurable amounts (0. 1 ppm or more). The light hydro-
carbon concentrations which will be given in this report are on a wet basis,
and are expressed as ppm of the compound, not ppm C.
Table 6 gives light hydrocarbon data on the diesel engines tested,
and only 5 compounds are shown because neither propane nor butane was
found in any of the diesel exhaust samples. Table 7 presents corresponding
data on the gasoline engines, but with all seven compounds represented.
The data were taken during operation on the 21-mode procedure (diesels)
or the 23-mode procedure (gasoline engines), at 25% power increments plus
two idle modes and (in the case of the gasoline engines only) closed throttle
modes.
The primary usage of the light hydrocarbon data would occur in at-
tempting to describe the combustion processes taking place, but such an
22
-------
TABLE 6. DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
DIESEL ENGINES USED IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
Condition
Speed Load
Idle 0
Inter- 0
mediate 25%
50%
75%
100%
Rated
0
25%
50%
75%
100%
Condition
Load
0
Inter- 0
mediate 25%
50%
75%
100%
Rated
0
25%
50%
75%
100%
ppm Concentrations, A-C 3500 Engine
CH4
15.
11.
9.4
10.
13.
15.
8.9
6.8
4.8
5.2
6. 3
ppm
CH4
3.9
4. 0
2.6
2. 0
3. 0
2. 7
1. 7
1. 8
2.2
1. 8
1. 7
C2H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H4
11.
10.
3.8
9.6
14.
6.8
7.2
4. 2
4.0
9.9
12.
Concentrations, D.
C2H6
0. 0
0.0
0. 0
0. 0
0. 0
0. 0
0.0
0. 0
0. 0
0.0
0. 0
C2H4
1.4
1.5
0.4
0. 0
0. 2
3. 7
2. 7
0.6
0.2
0. 1
2.6
C2H2
0.0
0.0
0.0
0.6
2. 3
1. 7
0.0
0.0
0.0
2.6
0.5
D. 6V-71
C2H2
2.8
0. 0
0. 0
0. 0
0. 0
0. 5
0. 0
0. 7
1. 1
2.3
2.6
C3H6
0.0
0. 0
0.0
0. 0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
0. 0
0. 0
0. 0
0. 0
0.0
0.0
ppm Concentrations, Cat. D6-C Engine
CH4
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
ppm
CH4
4. 2
4. 7
3. 8
4. 2
7. 1
43.
3.6
4.0
3. 4
4. 1
8. 5
C2H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
C2H4
7.9
4. 3
2. 1
4.9
4.8
6.0
4.8
2.2
5.8
5.7
5. 2
Concentrations, I.
C2H6
0.0
0.0
0.0
0.0
0.2
0. 5
0.0
0.0
0.0
0.0
0.4
C2H4
5.0
11.
7.4
6.8
12.
56.
8.6
9.6
7.4
9.9
34.
C2H2
3.3
2.0
1.0
2.6
2.6
3.7
2. 2
1.2
3. 3
3. 3
3.0
H. D407
C2H2
1.0
1.8
1.4
1.4
2.0
12.
1.4
2.0
1.4
1.4
3.0
C3H6
2. 3
2.0
0.6
1. 5
2. 2
1.9
1. 7
0.6
2. 1
2.0
1.6
Engine
C3H6
0.6
2.0
1. 0
1. 0
3.2
6.8
1.4
1.6
1.0
2.4
12.
-------
TABLE 6 (Cont'd). DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
DIESEL ENGINES USED IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
Condition
Speed Load
Idle
0
Inter- 0
mediate 25%
50%
75%
100%
Rated 0
25%
50%
75%
100%
Condition
Speed Load
Idle
0
Inter- 0
mediate 25%
50%
75%
100%
Rated
0
25%
50%
75%
100%
ppm Concentrations, J. D. 6404 Engine
CH4
7. 1
18.
9.0
7. 1
6.4
16.
8.2
5.4
2.8
3.8
5. 1
ppm
CH4
3.4
4. 8
2. 7
3.2
4.6
22.
6.0
6.0
4.6
1.9
4. 1
C2H6
0. 1
1.0
0. 2
0. 1
0. 3
0.0
0.0
0.0
0.0
0. 3
0.3
C2H4
18.
55.
23.
14.
35.
32.
21.
9.0
15.
41.
35.
C2H2
3.0
8.0
5. 1
2.2
1. 7
7. 3
3.6
1.4
0.0
1.3
2. 7
Concentrations, OnanDJBA
C2H6
0.0
0.0
7.9
0.0
0.0
0.6
0.0
0. 2
0. 1
0.0
0.0
C2H4
9.2
12.
0.0
8.8
8.0
17.
16.
16.
7.6
6.2
8.2
C2H2
0. 7
1.6
0.0
0.7
1.6
8.6
2. 3
5.9
9.6
0.6
1. 3
C3H6
0. 5
12.
2.7
1. 5
6.9
1.4
1. 3
0.0
2.6
7. 7
1.4
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
2. 7
2. 1
1. 7
1.4
0.0
0.0
ppm Concentrations, M-B. OM636 Engine
CH4
3. 1
3.8
3.4
3.8
2.9
3.4
4. 2
4. 5
5. 3
3.6
4. 1
C2H6
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0. 0
0.0
0.0
C2H4
3.8
5.7
7. 4
6.4
5. 2
8.9
9.0
14.
21.
12.
8. 1
C2H2
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
ppm Concentrations, Perkins 4. 236
CH4
5. 1
9.0
4.5
2.3
2.8
28.
5.6
7. 8
1. 7
3.0
13.
C2H6
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
C2H4
5.2
6.8
5. 1
2.9
5.4
22.
8.2
6.6
4.6
5.4
17.
C2H2
0.0
0.0
0.0
0.0
0.0
5.3
0.0
0.0
0.0
0.0
3.2
C3H6
0.0
0. 0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 0
Engine
C3H6
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
C ondition
TABLE 7. DATA ON LIGHT HYDROCARBON EMISSIONS FROM HEAVY-DUTY
GASOLINE ENGINES USED IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
ppm Concentrations, Ford G5000 Engine
ine
CO
Ul
Speed Load
Idle 0
Inter- CT
mediate 0
25%
50%
75%
100%
Rated CT
0
25%
50%
75%
100%
Condition
Speed Load
CH4 i
512
1210
1850
595
465
378
476
1320
1010
535
386
376
300
ppm
CH4
C2H6
28
197
46
28
21
18
23
203
42
30
21
18
17
C2H4
162
583
365
181
135
107
95
741
279
183
135
117
101
C3H8
0.0
1.0
0.0
0.0
0.0
0.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
Concentrations, J. I.
C2H6
C2H4
C3H8
C2H?.
186
504
861
177
134
94
75
582
393
161
111
92
71
Case
C2H2
C3H6
56
171
106
69
55
43
49
189
77
65
50
42
43
C4H10
0.0
158.
0.0
0.0
0. 0
0.0
0.0
122.
0.0
0.0
0.0
0.0
0.0
159G Engine
C3H6
C4H10
CH4
924
555
370
315
192
239
323
149
366
284
219
303
226
ppm
CH4
C2H6
26
67
27
22
10
12
7
27
17
16
12
13
10
C2H4
259
271
243
175
86
104
97
98
170
138
105
126
98
Concentrations
C2H6
C2H4
C3Hg
0.0
3.6
0.0
0.0
0.0
0.0
1.8
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
741
364
189
119
61
82
85
79
190
99
67
83
69
C3t
70
93
*6 C4H10
0.0
66.
58 0.0
109
32
44
59
32
38
44
41
52
41
, Wisconsin VH4D
C3H8
C2H2
C3K
0.0
0.0
0.0
0.0
41.
0.0
0.0
0.0
0. 0
0. 0
Engine
[6 C4H10
Idle
558
14
140 0.0
209
39
0.0
298
13
93
0.0
174
46
0.0
Inter-
mediate
Rated
CT
0
25%
50%
75%
100%
CT
0 "
25%
50%
75%
100%
-
865
550
348
357
296
_
305
476
286
369
488
-
23
12
8
8
8
_.
12
14
12
13
16
-
216
128
84
77
74
_
97
122
91
103
137
' -
0.0
0.0
0.0
0.0
0.0
_.
0.0
0.0
0.0
0.0
0.0
-
326
169
99
91
75
_
84
152
86
106
168
-
57
32
22
20
25
_
45
46
35
41
52
-
0.0
0.0
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0
-
755
265
151
396
323
_
408
478
314
262
272
-
17
9
2
17
9
_
22
22
13
12
24
-
189
82
42
111
73
_
138
173
90
88
112
-
0.6
0.0
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0
-
405
123
66
127
107
_
185
201
90
94
79
-
75
39
46
29
81
_
52
103
81
57
41
-
0.0
5.3
0.0
0.0
0.0
_
0.0
0.0
0.0
0.0
0.0
-------
investigation is outside the intended scope of this project. Likewise, it
would serve no real purpose at this point to ct>mpute light hydrocarbon
emissions on a mass or brake specific basis, so they appear only as
concentrations.
The most comprehensive body of processed data to be presented in
this subsection is the mode-by-mode summary of mass emissions (g/hr) and
brake specific emissions (g/hp hr) for the twelve test engines. This sum-
mary makes up Tables 8 through 19, and includes aldehyde concentrations
as well as the mass-based data. The data can be weighted on a mode-by-
mode basis to compute composite mass and brakfe specific emissions, as
was discussed in section III. C. , and the first attempt at such a computation
will utilize the weighting factors commonly used for on-highway engines
(see section III. C. ). The use of these factors gives a uniform basis for
comparison of data generated under the subject program to a large body of
existing data on other engines, but it does not carry with it the assertion
that the on-highway factors necessarily apply to farm, construction, or
industrial applications. The mode NOX data have not been corrected for
humidity, so if other composites are calculated, they will have to be
corrected individually.
Subject to the foregoing qualifications, then, the composite brake
specific emissions from the eight diesel engines tested are presented in
Table 20, and those from the gasoline engines are shown in Table 21. The
data on the diesels show considerable variation from engine to engine,
depending on induction system, injection system, combustion chamber
design, and so forth. Variation among the gasoline engines was much
less pronounced than among the diesels, and had the J. I. Case been run
with lower intake and exhaust restrictions the variation would probably
have been smaller still. Note that operation of the Case engine (which
was the first gasoline engine tested in the F, C, & I category) at high
intake and exhaust restrictions was the result of the contractor's mis-
interpretation of information received regarding upcoming Federal test
procedures for heavy-duty gasoline engines. The mistake was rectified
prior to testing the other gasoline engines, but it rendered the Case
data less usable than that for the other gasoline engines. The correct
precedents for setting intake and exhaust restrictions were utilized on
all the engines except the J. I. Case, namely the EMA-California ARB
procedure(2) for diesels, and the new Federal regulations on gasoline
engines' •*•).
Aldehydes were not measured for every mode, so the value for the
average idle was given its normal weight (0. 2) and data for the other
modes were given the weights 0. 8/n, where n was the number" of modes
during which data were taken. Later in the report, the brake specific
data (with other weighting factors, if necessary)'from test engines and
those from outside sources will be used to estimate emission factors.
26
-------
TABLE 8. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR AN ALLIS-CHALMERS 3500 DIESEL ENGINE
Condition
Concentrations,
ppm
Mass Emissions, g/hr
Specific Emissions, g/bhp hr
Speed
Idle
1500
1700
2000
2200
Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
RCHO
42
44
-
28
-
33
-
20
-
23
_
-
-
-
-
-
-
-
-
-
20
-
18
-
18
-
25
-
27
HCHO
'27
29
_
22
-
32
-
16
-
23
.
-
-
-
-
.
-
-
-
-
18
-
16
-
16
-
23
-
25
HC
20.9
31.7
27.3
31.4
38.3
41.6
40. 3
39.0
26.5
13.3
35.5
34.4
36.5
39.7
15.8
30.0
32.9
33.4
36.9
31.6
40.0
37.9
42.8
42.3
42. 1
44.2
46.7
47.5
45.8
CO
130.
170.
130.
100.
87.2
110.
200.
300.
920.
1880.
160.
'99.2
100.
280.
1420.
140.
98. 5
110.
190.
820.
130.
130.
110.
110.
103.
130.
160.
250.
430.
NOX
65.6
120.
290.
460.
630.
780.
1090.
1115.
1260.
1260.
150.
460.
790.
1230.
1430.
170.
470.
850.
1330.
1580.
180.
310.
450.
620.
820.
1030.
1280.
1510,
1680.
RCHO
7.4
12.
-
9.4
-
12.
_
8.
-
10.
_
-
.
-
-
_
-
-
-
-
9.3
-
9.1
-
10.
-
16.
-
19.
SOX
5.0
9.5
19.6
28.7
38. 5
49.5
60.5
72.0
84.6
98.0
14.
33. 1
55.7
79.6
107.
18.
39.1
63.3
88.8
117.
22.4
31.9
43.5
55.7
68. 5
80.6
93.8
108.
120.
HC
-
_
1.82
1.05
0.860
0.696
0.539
0.437
0.255
0. 113
_
1.02
0.54
0.39
0. 12
.
0.89
0.45
0.33
0.22
_
2. 03
1. 08
0.755
0.564
0.474
0.418
0.363
0.319
CO
-
_
8.55
3. 13
2. 15
1.83
2.64
3.49
8.76
15.81
_
2.92
1.52
2.72
10.55
.
2.67
1.53
1. 71
5.51
_
5.82
2.78
1.97
1.68
1.46
1.47
1.92
2.98
NOX
-
_
19.1
15. 3
13.9
13.0
12.5
12.4
12. 0
10.6
_
13.6
11.7
12. 1
10.6
_
12.7
11.5
11.9
3. 7
_
16.6
11.4
11.2
9.92
11.0
11.4
11.5
11.7
RCHO SOX
-
_ —
1.30
0.31 0.958
0.858
0.20 0.828
0.808
0.09 0.801
0. 846
0.09 0.817
- .
0.974
0.819
0. 796
0.821
_
1.06
0.855
0.807
0.780
_
1.71
0.24 1.17
0.994
0.14 0.916
0.867
0.15 0.853
0.834
0.13 0.797
-------
TABLE 9. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A CATERPILLAR D6-C DIESEL ENGINE
Condition
ts)
00
Concentrations,
PPi"
Mass Emissions, g/hr
Specific Emissions, g/bhp hr
Speed
Idle
1400
1900
Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
RCHO
26
24
-'
14
-
13
-
13
-
9
12
-
7
-
10
-
11
-
10
HCHO
12
12
.
4
-
5
-
7
-
5
5
-
6
-
3
.
8
-
5
HC
7.31
11.09
7.68
6.56
5.36
5. 17
5.30
5. 15
5.03
4.43
14. 80
7.70
6.99
6.71
7.22
6.67
6.15
5.84
6.48
CO
57. Z
120.
76.9
40.4
29. 4
23.8
33.6
36.3
37. 3
51.0
150.
196. 1
73.7
63.4
63.8
50.9
52.8
60.6
73.2
NOX
20.9
52. 2
110.
190.
300.
390.
440.
440.
440.
450.
82.4
130
210.
300.
400.
490.
550.
590.
620.
RCHO
5.6
11.
-
6.4
-
6.2
-
6.5
-
5.
7. 1
-
4.
-
5.8
-
7.2
-
7.4
SOX
6.2
15.2
23.4
31.9
40. 9
48. 7
60. 7
71.7
84.0
97. 0
25. 3
33. 5
44.5
54.3
64.5
77.6
89.8
103.
118.
HC
-
.
0.479
0.206
0. Ill
0. 081
0. 659
0.053
0.044
0.034
_
0.412
0. 185
0. 118
0. 109
0.070
0.054
0.044
0.043
CO
-
_
4.57
1.26
0.61
0.37
0.42
0. 38
0.33
0.39
-
5. 17
1.97
1. 13
0. 85
0.54
0.47
0.46
0.49
NOX
-
_
6.61
5. 84
6. 11
6. 16
5.46
4. 58
3.89
3.46
_
7. 02
5.49
5.43
5.42
5.24
4.92
4.52
4. 18
RCHO
-
_
-
0.20
-
0. 10
-
0.07
-
0.04
.
-
0. 1
-
0. 08
-
0.06
-
0.05
sox
-
_
1.46
1.00
0.849
0.762
0.756
0. 748
0.764
0.746
-
1.
-------
TABLE 10. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A DETROIT DIESEL 6V-71 DIESEL ENGINE
Concentrations,
Ma sa Em i a a ions, g/hr
Specific Emissions, g/bhp hr
Speed
Idle
1200
1600
1800
2100
Load
0
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5
S0%
62. 5%
75%
87.5
100%
RCHO
12
_
-
-
-
-
23
-
14
-
13
-
7
-
11
„
-
-
-
-
10
-
8
-
7
-
9
-
10
HCHO
7
_
-
-
-
-
13
.
7
-
8
_
4
-
7
_
-
-
.
-
5
-
5
-
4
-
6
-
7
HC
12.3
24.5
31.2
33.7
39.7
41. 1
40. 8
39.7
41.3
46.0
46.5
48.7
53.5
64.2
65.5
62.9
59.9
55.8
58.6
63.8
95.1
87. 7
81.4
79.5
79.7
76.9
80.4
83.7
86.7
CO
54.6
140.
56.8
30.0
100.
3810.
150.
92.5
59.3
47.3
40.6
39.1
69.3
440.
2350.
130.
55.0
38.6
84.8
2170.
150.
110.
90.5
81.6
81.2
72.3
78.8
180.
760.
NOX
100.
170.
781.
1410.
2070.
1650.
310.
660.
1040.
1580.
I960.
2510.
2970.
3120.
2770.
430.
1190.
2000.
3210.
3250.
-730.
1120.
1620.
2070.
2680.
3250.
4030.
4330.
4180.
RCHO
3.0
_,
-
-
-
-
22.
-
14.
-
14.
-
7.
-
12.
_
-
-
-
-
16.
-
12.
-
10.
-
13.
-
14.
SOX
5.6
13.4
36.7
59.5
83.2
118.
22.4
34.7
47. 1
59.7
75.4
88.4
104.
124.
143.
27.5
53.7
83.2
120.
161.
36.5
48.7
63.9
78.2
96.6
110.
135.
155.
175.
HC
-
_
0.969
0.513
0.405
0. 317
„
1.77
0.964
0.715
0.539
0.449
0.415
0.428
0.386
.
1.31
0.603
0.421
0.342
.
3.51
1.58
1.03
0.768
0.593
0.519
0.440
0.417
CO
-
_
1.76
0.457
1.01
29.30
_
4. 14
1.38
1.07
0.471
0.361
0. 537
2.93
13.83
_
1.20
0.416
0.608
11.7
_
4.49
1.76
1.06
0.783
0.556
0.509
0.960
3.65
NOX
-
_
24.3
21.4
21. 1
12.7
.
29.5
24.4
24.5
22. 7
23.2
23. 1
20.8
16.3
_
25.9
21.6
23. 1
17.5
.
44.9
31.4
26.8
25.9
25. 1
26.0
23.7
20. 1
RCHO SOX
-
.
1. 14
0.904
0. 849
0.906
-
1.55
0.34 1.10
0.927
0.16 0.875
0.804
0.6 0.803
0.828
0.07 0.842
-
1. 17
0.898
0.858
0. 847
_
1.95
0.2 1.28
1.02
0.1 0.966
0. 849
0.09 0.898
0.862
0.06 0.834
-------
TABLE 11 . MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF..MAJOR .GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR AN INTERNATIONAL HARVESTER D407 DIESEL ENGINE
Concentrations,
Condition
Speed
Idle
1800
2100
2300
2500
Load
0
0
12.5%
25%
37.5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%'
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
22
29
-
20
-
15
-
13
-
24
_
-
-
-
-
_
-
-
-
-
14
-
23
.
32
-
18
.
16
HCHO
16
13
.
10
-
9
-
7
-
10
.
-
-
-
-
_
-
-
-
-
13
-
V
.
17
-
8
.
7
HC
34.
109.
93.
99.
92.
100.
98.
121.
148.
120.
139.
118.
120.
141.
153.
148.
134.
131.
139.
204.
145.
139.
145.
139.
149.
143.
144.
162.
202.
67
4
0
0
0
2
0
8
3
9
5
5
5
0
5
5
5
0
5
0
0
4
5
8
8
5
0
8
5
Mass Emissions, g/hr
CO
34.
112.
111.
100.
109.
111.
146.
304.
799.
2340.
138.
135.
154.
288.
2246.
149.
140.
162.
300.
1903.
175.
177.
169.
164.
162.
190.
244.
410.
815.
05
5
3
6
5
3
8
5
8
5
0
5
0
5
5
0
0
5
5
5
5
0
8
3
8
0
8
0
NO
33.
46.
86.
145.
201.
277.
383.
474.
584.
624.
59.
172.
343.
619.
749.
81.
206.
375.
786.
963.
97.
135.
210.
291.
415.
563.
724.
900.
5 1008.
X
87
8
0
5
5
3
5
8
3
5
9
0
0
5
5
9
5
5
5
5
0
8
3
0
8
3
3
0
8
RCHO
3. 1
10
-
7. 0
-
5.2
-
4.5
-
8.3
.
-
-
-
-
_
-
-
-
-
6.5
-
18.
-
15.
-
8.3
-
7. 5
SOX
2.8
11.
18.
24. 1
31.7
38.3
46. 1
56. 5
66.5
77.2
14.
28. 5
46. 1
63.9
87.2
17.
31.3
48.7
63.7
91.8
20.2
26. 1
34.3
41.5
49.7
59.5
67.5
77.6
88.0
Specific Emissions, g/bhp hr
HC
7.85
4. 13
2.56
2. 09
1.64
1.69
1.77
1.26
CO
9. 38
4. 19
3.04
2. 32
2.45
4.23
9.53
24.4
10. 4
5.26
3. 40
2.73
2.09
1.74
1. 68
1. 85
13.26
6. 12
4. 00
2.97
2.77
2.95
4.23
7.44
NO,,
7.26
6.06
5.60
5.78
6.39
6.59
6.96
6.49
RCHO SO..
4.46 5.10 6.47
2.30 2.94 6.54
1.80 3.68 7.90
1.46 21.4 7.14
4.88 5.08 7.48
2.37 2.95 6.81
1.69 3.63 9.50
1.86 17.31 8.76
10. 17
7.59
7. 10
7.59
8.22
8.74
9.31
9.31
0. 29
0.11
0.062
0.086
0.65
0.27
0. 101
0. 068
1.5
1.01
0.881
0.798
0.768
0. 784
0. 791
0.803
1.07
0.878
0.815
0.831
1. 14
0.882
0.769
0.835
1.96
1.24
1.01
0.907
0.868
0.814
0.803
0. 804
-------
TABLE 12 . MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A JOHN DEERE 6404 DIESEL ENGINE
Concentrations,
Condition
Speed
Idle
1500
1700
1900
2200
Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
112
209
-
177
.-
137
-
138
-
Ill
_
-
-
-
-
_
-
-
-
-
139
-
86
-
74
-
142
-
102
HCHO
62
141
-
128
-
95
-
97
-
66
_
-
-
-
-
_
-
-
-
-
60
-
51
-
49
-
83
-
68
HC
65.4
280.
230.
180.
180.
190.
200.
210.
210.
180.
180.
150.
170.
210.
230.
160.
140.
180.
230.
270.
190.
170.
150.
240.
200.
230.
240.
260.
280.
Mass Emissions, g/hr
CO
NO,
78. 5 20. 7
450.
280.
140.
140.
140.
170.
220.
490.
900.
320.
210.
150.
230.
580.
23.6
45.0
91.4
140.
190.
250.
290.
430.
500.
14. 9
77.4
180.
350.
670.
240. 33.5
180. 100.
130. 230.
220. 450.
440. 900.
250. 57. 3
200. 120.
170. 160.
110. 250.
100. 330.
110. 470.
160. 630.
260. 880.
350. 1190.
RCHO SO,
19.2 5.0
64.2
58.9
50.9
55.6
48.2
63.5
44.
43.
91.7
72.5
15.
20.6
28.3
35.9
45.3
53. 1
60. 7
72.6
80. 6
17.
32.5
50.5
69.7
91.2
20.
35.9
57.5
76.2
98.4
24. 3
36.7
44.9
55.9
67. 1
79.4
89.6
102.
112.
Specific Emissions, g/bhp hr
HC
17.8
6.86
4.46
3. 55
3.09
2.67
2.25
1.79
8.74
4. 50
4. 73
2.81
2.60
2.34
2. 15
2. 06
CO
21.9
7. 15
3.48
2.65
2.53
2.75
5.33
9.05
5.96 8.36
3.30 2.84
2.81 2.97
2.27 5.75
4.46 5.78
2.87 2.11
2.37 2.32
2.15 3.49
10.2
4.90
2. 10
1.44
1.25
1.53
2. 13
2.55
NO,
3.52
3.49
3.54
3. 55
3.89
4.22
4.67
5.04
3. 07
3. 44
4.63
6. 58
3. 22
3.61
4. 72
7. 10
6.41
4.63
4.87
4. 83
5.46
6. 12
7.28
7.29
RCHO
2.26
0.969
0. 713
0.468
1.27
0.62
0. 917
0. 517
1.61
1.09
0.919
0.861
0.813
0.778
0.797
0.783
1.29
0.986
0.917
0. 894
1. 14
0.905
0.803
0.781
1.82
1.31
1.08
0.973
0.916
0.896
0. 848
0.802
-------
TABLE 13. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A MERCEDES-BENZ OM636 DIESEL ENGINE
Condition
Load
1400
ro
1700
2100
2400
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
Concentrations,
RCHO
24
27
-
24
_
23
.
26
-
26
_
-
.
-
-
_
.
-
-
-
34
-
35
-
29
-
28
-
22
HCHO
18
21
_
19
_
21
_
24
-
25
.
-
-
-
-
_
-
-
-
-
27
-
26
-
22
.
22
-
19
HC
3.59
6.50
6.59
6.50
6.73
6.88
6.60
5.85
5.92
8.68
8.44
9.81
11.7
7.43
7.71
8.48
26.7
10.4
7.43
9.74
20.7
26.5
28.4
23.6
20. 7
17. 1
12.6
10.9
7.7
Mass Emissions, g/hr
CO
14. 4
27. 8
18.4
18.6
18.0
18.3
18.7
19. 4
24.0
87. 7
32.4
31.4
32.8
23.6
13.0
23.0
42.5
37.6
33.0
200.
69.9
44. 0
39.1
41.6
51. 3
36.9
49. 1
98.8
250.
NOX
12.8
11.5
20.7
26.6
32.3
38. 1
38.9
37. 5
35.9
42.4
15. 7
28.0
42.2
51.2
44.3
13.5
30.3
43.7
58.9
59.9
19.0
23.3
31.7
40.7
54.6
64.7
70.6
67.6
63.4
RCHO SOX
1.1 2.4
2.2 4.2
6.2
2.0 7.2
8.4
1.8 10.
11.
2.0 13.
15.
2.1 17.
5.8
9.2
12.
16.
20.8
6.0
11.
16.
21.4
28.3
5.3 8.4
11.
4.7 13.
15.
3.9 18.
20.6
3. 7 23. 2
26.7
2.9 30.3
Specific Emissions, g/bhp hr
HC
3.22
1.59
1. 09
0. 84
0.64
0.47
0.41
0.53
1.89
1. 12
0.48
0.37
4.05
0. 79
0.38
0.37
7.68
3.94
2.39
1.44
0.97
0.58
0.44
0. 27
CO
8.99
4.56
2.91
2.24
1.83
1.60
1.68
5. 37
6. 04
3.15
1. 51
6.21
6.44
2.87
1.68
7.64
13.0
5.44
4.23
3.58
2.91
2.28
3.93
8.81
NOX
10. 1
6.50
5.22
4.66
3.78
3.86
2.50
2.60
5.39
4.05
3.28
2. 13
4.59
3.34
3.00
2.29
6.80
4.40
4.09
3.80
3.63
3.27
2.70
2. 21
RCHO SOX
2.9
0.48 1.8
1.4
0.22 1.2
1.1
0.17 1.0
1. 1
0.13 1.0
1.8
1.2
1.0
0.998
1. 7
1.2
1.08
1.08
3.2
0.65 1.8
1.5
0.27 1.2
1. 15
0.17 1.07
1.07
0.10 1.06
-------
TABLE 14.
MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR AN ONAN DJBA DIESEL ENGINE
Concentrations,
PPt"
Mass Emissions, g/hr
Specific Emissions, g/bhp hr
UJ
Speed
Idle
1500
1800
Z100
Z400
Load
0
0
25%
50%
75%
100%
0
12. 5%
Z5%
37. 5%
50%
6Z.5%
75%
87. 5%
100%
0
Z5%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
RCHO
ZO
_
_
-
.
t»
iz
_
iz
_
17
.
36
.
7
.
-
-
_
-
33
-
19
13
-
9
_
12
HCHO
IZ
_
_
-
-
-
6
_
7
_
7
.
32
.
6
^
-
.
.
-
16
_
11
-
6
-
7
-
9
HC
6.87
6.92
6.99
4.99
5.95
8.75
9.90
9. 34
9.47
7.89
7.38
6.84
7.32
7,81
9.68
20.9
11.7
7. 11
5.52
9.33
20. 2
16.6
12.9
9.64
10.2
7.43
7.25
7.18
11.1
CO
31. 1
33. 1
12.9
12.3
20.6
49.3
58.2
28.7
18.8
15.7
13.9
13.4
14.9
19.8
50.7
66.7
32.2
19.6
14.8
41.2
70.3
40.5
33.6
26. 4
23.3
18.5
17.8
15.2
31.8
NOX
11. 1
11.5
29.3
43.3
56.1
30.3
11.5
23.6
36. 1
46.5
49.9
50.6
46.9
40.4
32.9
14.3
30. 1
48. 1
47.7
38.7
-15-1
22.9
33.7
50.9
46.1
50.9
48.8
43.3
43.6
RCHO
0.79
_
.
.
-
-
0.62
.
0.65
_
0.89
-
1.9
-
0.37
_
-
-
-
-
2.3
-
1.3
-
0.91
-
0.62
-
0.87
sox
2.1
2.5
3.8
5.1
8.2
8.7
3.0
4. 1
4.8
5.5
6.4
7.2
8.3
9.5
11.
3.8
5.5
7.0
9.0
13.
4.4
5.3
6.6
7.5
8.7
9.6
11.
12.
15.
HC
-
_
3.88
1.20
0.97
1.03
_
6.93
3.50
1.96
1.38
1.02
0.91
0.83
0. 91
_
4.00
1.25
0.66
0.77
_
10. 2
3. 94
1.96
1.55
0.91
0. 74
0.62
0.88
CO
-
_
6.31
2.95
3.33
5.74
_
21.3
7.01
3.90
Z.61
1.99
1.86
2. 11
4.79
_
11.5
3.51
1.80
3.35
.
24.9
10.2
5.38
3.55
2.26
1.81
1.32
2.51
NOX RCHO
-
_ .
14. 1
10.3
9.12
3.67
.
17.5
13.4 0.24
11.6
9.30 0.17
7.54
5. 82 0. 24
4.30
3.10 0.035
.
10.8
8.55
5.79
3.26
_
14. 1
10.3 0.41
10. 3
7.03 0.14
6.24
4.96 0.063
3.77
3.50 0.069
sox
-
_
1.8
1.2
1.3
1.0
_
3.0
.8
.4
.2
. 1
.0
1.0
1.1
.
1.9
1.2
1.1
1. 1
_
3.3
2.0
1. 5
1.3
1.2
1.1
1.0
1.2
-------
TABLE 15. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A PERKINS 4. 236 DIESEL ENGINE
Concentrations,
Condition
Speed
Idle
1450
1700
2100
"2400
Load
0
0
12. 5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
-37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
31
39
-
25
-
43
-
23
-
30
m
-
-
-
-
_
-
-
-
-
34
-
53
-
51
-
19
-
37
HCHO
16
24
-
13
-
35
-
12
-
22
_
-
-
-
-
..
-
-
-
-
21
-
34
.
34
-
10
-
26
HC
8.
23.
19.
18.
17.
17.
14.
12.
14.
11.
29.
26.
25.
25.
17.
32.
28.
25.
21.
13.
35.
30.
24.
19.
18.
14.
12.
16.
6.
47
1
7
3
3
9
2
5
9
0
7
7
1
2
6
5
6
0
8
5
7
9
5
8
8
5
3
0
69
Mass Emissions, g/hr
CO
14.
46.
52.
53.
42.
30.
26.
36.
145.
820.
55.
59.
36.
29.
970.
54.
64.
53.
34.
820.
73.
87.
96.
89.
69.
58.
56.
170.
770.
4
4
4
9
4
8
6
2
2
9
5
2
7
9
0
4
2
3
0
6
4
3
2
NOX RCHO SOX
8.65 1.8
25. 9 7.3
54. 1
99.5 4.4
170.
260: 7.9
350.
450. 4. 1
500.
480. 5.5
33.4
120.
310.
530.
540.
51.0
140.
330.
670.
740.
38. 8 8. 2
72. 1
120. 14.
190.
310. 14.
450.
700. 5.4
790.
770. 10.5
1.
5.
8.
12.
15.
20.
24.
28.
33.
40.
4.
13.
22.
31.
45.
8.
17.
25.
37.
55.
10.
15.
20.
25.
30.
36.
43.
50.
60.
5
6
8
2
5
9
7
7
6
6
4
3
9
8
5
5
3
4
7
9
7
7
3
7
Specific Emissions, g/bhp hr
HC CO NOX RCHO SO
91
40
89
0.68
0. 50
0. 32
0.33
0.25
1.69
0. 87
0.59
0.30
0.20
0.43
0.74
1.68
14
27
0.69
0.50
0.26
0.21
0. 24
0. 17
7.75
4. 14
2.19
1. 17
0. 81
0. 93
3. 15
16.2
9. 00
5. 00
3. 14
1.81
1.22
1.16
2.57
10.2
8.01
7.63
8.74
-9.89
10. 7
11.4
10.9
9.43
4.19 8.30
1.27 10.6
0.68 12.5
16.6 9.32
3.-81 8.50
1.58 9.86
0.67 13.0
11.9 10.8
7.43
6.24
6.68
7.99
9.51
14.7
11.9
10. 2
1. 3
0.34 0.91
0. 79
0.30 0.766
0. 748
0.10 0.740
0.738
0.11 0.803
0.95
0. 776
0. 734
0. 786
0.99
0.760
0.970
0. 804
1.6
1.06
0.903
0.806
0.770
0.09 0.760
0.754
0.14 0.803
0.80
0. 37
-------
TABLE 16. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A FORD G5000 GASOLINE ENGINE
Concentrations,
Condition
Speed
Idle
1400
1600
1900
2100
Load
0
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
84
192
71
-
71
-
70
-
77
-
82
_
-
-
-
-
.
-
-
-
-
194
84
-
70
-
76
-
63
-
63
HCHO
57
126
46
-
49
-
49
-
56
-
64
_
-
-
-
-
_
-
-
-
-
129
58
-
49
-
57
-
46
-
48
Mass Emissions, g/hr
HC
87.2
434.
260.
130.
150.
180.
190.
180.
200.
200.
230.
265.
161.
205.
208.
236.
182.
160,
302.
236.
275.
538.
180.
170.
180.
190.
210.
230.
220.
220.
250.
CO
549.
625.
2770.
3110.
3610.
4320.
4740.
3940.
4770.
4810.
5640.
2100.
3970.
5160.
5280.
6040.
2360.
4380.
5380.
6380.
6940.
667.
3040.
3740.
4790.
5220.
5610.
5810.
5950.
5900.
5150.
Specific Emissions, g/bhp hr
HC CO NOV RCHO SO,
0.406 6.73 1.3
10. 7
48.5
110.
170.
210.
340,
410.
460.
720,
5. 3
7.3
11,
13.
3.6
4.8
6.05
7.29
8. 54
9.67
11.5
.12. 2
13. 7
19. 8
11.0
8. 80
7. 00
5. 38
5. 05
4. 21
4 . 21
18. 9
10.0
7.43
5. 91
5.20
4.23
3. 57
3.51
470.
270.
220.
180.
150.
120.
100.
110.
11.1 272.
6. 54 166.
4.60 116.
3.95 101.
9.50 260.
8.82 158.
4.53 123.
4. 09 104.
430.
280.
200.
160.
110.
110.
100.
70.
2.61
3. 04
3.98
4.26
4.61
5.79
6. 90
6.05
2.62
3.75
5.28
5. 20
2.52
4. 12
5.07
5.72
5.52
6.06
6.64
7. 37
7. 76
7. 77
7.48
10. 1
0.40
0. 30
0. 30
0.28
0.42
0.32
0. 25
0.22
0. 53
0. 324
0. 277
0. 244
0. 223
0.212
0.203
0. 186
0.337
0. 223
0. 198
0. 188
0.297
0.218
0. 200
0. 199
0. 545
0. 347
0. 281
0.243
0. 221
0.220
0. 198
0. 193
-------
TABLE 17. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A HERCULES G-ZSOO GASOLINE ENGINE
Concentrations,
Condition
Speed
Idle
1450
1750
Z100
2400
Load
0
CT
0
1Z. 5%
25%
37. 5%
50%
62. 5%
75%
87.5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
ppm
RCHO
41
149
18
-
21
-
29
-
37
-
21
.
-
-
-
-
_
-
-
-
-
141
31
-
35
-
45
-
33
-
45
HCHO
2-8
96
9
-
12
-
22
-
29
-
15
_
-
-
-
-
_
-
-
-
-
81
19
-
21
_
30
-
21
-
28
Mass Emissions, g/hr
Specific Emissions, g/bhp hr
HC
65.6
620.
71. 3
110.
150.
190.
200.
220.
230.
260.
310.
85.3
170.
2ZO.
240.
260.
95.3
164.
230.
270.
290.
640.
100.
150.
180.
200.
220.
250.
270.
290.
290.
CO
1200.
740.
1310.
2410.
4950.
5540.
5890.
6460.
7610.
12800.
1249.
1680.
4790.
6770.
8260.
13180.
2500.
5490.
7640.
9820.
12620.
280.
3140,
4680,
5760.
6650.
7460.
8480.
9090.
10130.
9130.
NOX RCHO
0.
0.
4.
14.
33.
57.
81.
100.
130.
210.
120.
8.
40.
120.
200.
200.
6.
49.
150.
240.
250.
0.
8.
22.
42.
83.
120.
140.
220.
360.
440.
993 0. 85
403 3.84
46 0. 75
3
6 1.7
0
8 3.6
.
5.7
_
4.3
32
9
-
-
-
93
9
-
-
-
359 4.43
90 2.1
5
9 4. 1
1
7.4
-
7.2
-
12.
SOX
1.
1.
2.
3.
4.
6.
7.
8.
9.
10.
13.
3.
5.
8.
10.
13.
3.
6.
9.
12.
14.
1.
3.
5.
6.
8.
9.
11.
12.
14.
15.
2
3
4
6
92
48
29
11
21
6
0
0
54
15
7
8
3
28
32
0
6
0
9
54
98
54
71
2
6
4
4
HC
-
-
16.
11.
9.
7.
6.
5.
5.
5.
_
10.
6.
5.
4.
.
8.
6.
4.
4.
_
-
14.
9.
7.
6.
5.
4.
4.
3.
9
1
26
49
61
59
42
74
7
93
06
17
94
35
99
00
9
17
21
04
40
88
45
89
CO
-
-
360.
230.
240..
200.
170.
160.
160.
240.
_
300.
210.
170.
210.
_
300.
200.
180.
180.
_
-
480.
300.
240.
200.
180.
170.
150.
120
NOX RCHO
2.
2.
2.
3.
3.
3.
4.
2.
2.
3.
4.
3.
2.
4.
4.
3.
2.
2.
3.
3.
3.
4.
5.
5.
•
.
14
43 0. li
78
01 0. 13
04
29 0. 14
46
26 0. 08
.
59
87
12
15
_
54
29
52
53
„
.
30
56 0.22
45
37 0. 20
35
19
43
81 0. 17
SOX
-
-
0. 54
0. 356
0. 316
0. 269
0. 240
0. 228
0. 225
0. 242
_
0.351
0.257
0.226
0.220
_
0. 347
0.261
0.224
0. 205
_
-
0.565
0. 364
0. 304
0.258
0. 238
0.224
0. 218
0. 204
-------
TABLE 18. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A J. I. CASE 159G GASOLINE ENGINE
Concentrations,
Condition
Speed
Idle
1400
1600
1900
2100
.Load
0
CT
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
CT
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
„„. ppm
RCHO
112
_
111
-
154
-
114
-
114
-
139
-
-
-
-
-
-
-
-
-
-
.
104
-
106
-
114
-
107
-
124
HCHO
61
_
72
-
90
-
64
-
66
-
80
_
-
-
-
-
_
-
-
-
-
_
64
-
79
-
58
-
66
-
71
HC
Mass Emissions, g/hr
CO
54.4 1090.
547.
130.
120.
28.8
140.
150.
150.
160.
170.
180.
136.
154.
174.
195.
196.
132.
145.
170.
253.
20'0.
908.
210.
110.
120.
140.
160.
200.
130.
180.
190.
Specific Emissions, g/bhp hr
HC CO NO,, RCHO SO,,
732.
2780.
3260.
3920.
4410.
4930.
5220.
5630.
5970.
6530.
0.42
2.60
4.66
9.24
14. 3
19.7
41. 4
48. 4
95. 7
79.5
2700. 2. 1'f
4600. 9.61
5960. 20.6
6740. 48.0
6700. 170.
3390. 3.68
5570. 11.8
6500. 48.6
7300. 75.0
6770. 198.
477.
3920.
4790.
5140.
5430.
6080.
6870.
7480.
8040.
8100.
0. 32
8 ,.49
9. 59
16.0
37.6
53.4
54. 5
65. 1
100.
145.
3.98
8.24
9.05
10.4
17. 1
6.3
7.84
11.4
13.3
19. 0
1. 2
2.2
2.7
3.4
3. 94
4.95
5.23
5.81
6.55
6.98
2.2
3.8
5.34
6.51
8.74
2.7
4.68
6.20
7.49
9.09
1.2
3.7
4. 14
4. 64
5. 27
6.09
6.83
7.57
8.54
9.21
30. 1
14. 9
11. 1
9.26
6. 14
6.63
6.35
5. 73
20. 5
11.7
8.90
7.23
8.01
5.52
5.06
4.65
800.
480.
300.
300.
260.
230.
220.
200.
18.3 548.
10. 1 347.
7.22 250.
5. 83 200.
13.9 535.
7.75 295.
8.01 231.
5.06 171.
930.
490.
350.
280.
270.
240.
220.
200.
14
14
18
23
1. 14
1.19
1.78
5.07
1. 13
2.21
2.38
5.01
88
63
40
46
12
11
76
1.02
0.558
2.02
1.97 0.423
3.48
2.47
0. 532
0.739
0.545
0.431
3.51 0.461
0.65
0. 42
0. 323
0.306
0. 256
0. 236
0. 231
0.218
0.46
0.311
0. 241
0.260
0.450
0.282
0.237
0. 230
0. 80
0.438
0. 340
0. 293
0. 265
0.245
0.235
0.223
-------
TABLE 19. MASS EMISSIONS AND BRAKE SPECIFIC EMISSIONS OF MAJOR GASEOUS POLLUTANTS
AND ALDEHYDE CONCENTRATIONS FOR A WISCONSIN VH4D GASOLINE ENGINE
oo
Concentrations,
Condition
Speed
Idle
1700
2000
2400
2800
Load
0
0
12.5%
25%
37. 5%
50%
62. 5%
75%
87. 5%
100%
0
25%
50%
75%
100%
0
25%
50%
75%
100%
0
12.5%
25%
37. 5%
50%
62.5%
75%
87. 5%
100%
ppm
RCHO
32
28
-
23
-
25
.
30
-
23
_
-
-
.
-
_
-
-
.
-
23
.
27
-
23
-
21
.
26
HCHO
18
13
-
9
-
12
.
16
-
13
_
-
-
-
-
_
-
-
-
-
12
-
14
-
12
_
12
-
14
Mass Emissions, g/hr
HC
64.2
110.
82.6
84.4
110.
110.
120.
120.
110.
120.
89.8
91.8
120.
110.
120.
78.4
110.
130.
120.
140.
120.
120.
150.
150.
150.
150.
150.
150.
190.
CO
1069.
2044.
2277.
2166.
2823.
3362.
3685.
3735.
3999.
4865.
2083.
2573.
3829.
4522.
4784.
1969.
3495.
4285.
5088.
5241.
2636.
3278.
4050.
4554.
5041.
5544.
5625.
5050.
5497.
NOX RCHO
1.04 0.5
2.03 0.8
3.67
11.9 1.0
22. 1
29.5 1.5
43.5
67. 0 2. 0
160.
110. 2.2
3. 19
17.9
47.9
120.
180.
4.43
19. 4
67.9
170.
230.
6.83 1.1
11.4
22.0 2.5
35.2
71.1 2.1
130.
180. 2.5
300.
270. 3. 7
5Oy
1.0
1.8
2. 1
2.7
3. 1
3.6
4. 1
4. 41
5.19
5.81
2.0
2.9
4.29
5. 31
6.44
2.2
3.5
4.88
6.20
7.29
2.8
3.4
4. 14
4. 72
5.46
6.40
6.87
7.26
8.00
Specific Emissions, g/bhp
HC
-
_
3K 7
14. 9
12. 5
10. 1
8.79
6.82
5. 73
5.37
_
14. 1
9.24
5.72
4.42
-
14. 3
8.68
5.60
4. 70
-
30.4
18. 3
14.5
9.74
7.42
6.21
5.48
6. 04
CO
-
_
805.
380.
332.
297.
260.
336.
202.
215.
-
396.
295.
232.
184.
-
472.
290.
230.
177.
-
821.
507.
440.
320.
281.
237.
182.
174.
NOV RCHO
-
_
1.29
2.09 5.5
2.60
2.60 7.6
3.07
3.94 0.12
8. 15
4.96 0.10
_
2.76
3.68
6. 30
6. 94
-
2.62
4.60
7.74
7.83
-
2.85
2.75 0.31
3.39
4.51 0.50
6.55
7.64 0.10
10.9
8.64 0.37
hr
SOX
-
_
0.75
0.48
0.37
0.32
0.29
0.259
0.262
0.256
_
0.44
0. 330
0.272
0_. 248
-
0.47
0. 329
0.279
0.246
-
0.85
0. 52
0.450
0.346
0. 323
0.290
0.262
0.253
-------
TABLE 20. CYCLE COMPOSITE BRAKE SPECIFIC GASEOUS EMISSIONS
FROM EIGHT FARM, CONSTRUCTION, AND INDUSTRIAL DIESEL
ENGINES (ON-HIGHWAY WEIGHTING FACTORS)
Composite Brake Specific Emissions, g/bhp hr
Engine
Allis-Chalmers
3500
Caterpillar
D6C
Detroit Diesel
6V-71
International
Harvester
D407
John Deere
6404
Mercedes-Benz
OM636
Onan DJBA
Perkins 4. 336
Run
1
2
3
4
5
6
Avg.
1
5
6
Avg.
3
4
5
Avg.
4
5
6
7
Avg.
1
2
3
5
Avg
1
2
3
4
5
6
7
Avg
2
3
4
Avg.
1
2
3
4
5
6
HC
0. 577
0.629
0. 590
0.668
0.631
0. 595
0.615
0.046
0. 175
0. 154
0. 125
0.776
0.745
0.586
0. 702
2.74
2.93
2.63
2.51
2.70
3.94
3.65
3.64
3.72
3. 74
1.02
1.22
1. 52
1.34
1. 24
1. 12
1.03
1. 21
1. 72
2. 12
1. 84
1.89
0. 576
0. 585
0.645
0.651
0.739
0. 757
CO
4.91
4.77
4.46
4. 82
4.38
4.94
4.71
1. 00
1.22
1. 17
1. 13
2.57
3.09
3.22
2.96
7. 80
7. 52
6.92
7. 20
7.36
4.63
3.82
4. 75
4.99
4. 54
5.36
5.30
5.94
5.80
4.28
4. 18
4. 58
5. 06
6.51
6.01
6.21
6.24
4.98
5. 12
4. 94
4. 71
5.29
4.71
NOx
11.9
11.9
10.6
12. 1
11. 5
11. 2
11.5
5.12
5. 18
5.28
5.19
20.4
19.6
20.5
20.2
8. 12
8. 30
8. 19
8. 13
8. 18
5.45
5.97
5.60
6.07
' 5. 77
3.64
3.29
3. 52
3.43
2.96
3. 19
3. 23
3. 33
6. 72
6.61
6.60
6.64
10. 7
10.4
10. 6
11. 1
10. 5
11. 1
HC+NOX
12.5
12. 5
11. 2
12.8
12.2
11.8
12.2
5.16
5.35
5.43
5.31
21.2
20.4
21. 1
20.9
10.9
11.2
10. 8
10.6
10.9
9. 39
9.62
9. 24
9. 79
9.51
4.66
4. 51
5.04
4.78
4.20
4.32
4.27
4. 54
8. 44
8. 73
8.44
8. 54
11.3
11. 0
11. 3
11. 7
11. 2
11.9
*RCHO *SOX
0.20 0.920
0.12 0.891
0.15 0.958
0. 19 0. 914
1.1 0.960
0.30 1.33
0.21 1.40
Avg. 0.659 4.96 10.7
11.4
0.27 0.848
"•Computed from average emissions and power, not from individual run values
39
-------
TABLE 21. CYCLE COMPOSITE BRAKE SPECIFIC GASEOUS EMISSIONS
FROM FOUR FARM, CONSTRUCTION, AND INDUSTRIAL GASOLINE
ENGINES (ON-HIGHWAY WEIGHTING FACTORS)
Composite Brake Specific Emissions, g/bhp hr
Engine Run
Ford G5000 1
2
3
4
5
Avg.
Hercules 2
G-2300 3
4
5
Avg.
tj.L Case 3
159G 4
5
6
Avg.
Wisconsin 1
VH4D 2
3
4
HC
8.92
8.80
8.91
8. 89
8.78
8.86
8. 16
8. 82
9.08
9.86
8.98
11. 5
12. 8
14.6
14.5
13.4
15.6
8. 11
9. 58
9.66
CO
171
155
157
153
159
210
201
210
333
326
316
300
321
301
315
NOX
6.36
6.94
6.78
6.73
6.68
6.
4.
4.
4.
3.
4.
2.
2.
1.
2.
2.
5.
5.
5.
5.
70
07
32
89
08
55
73
15
20
10
50
28
21
HC+NOX *RCHO *SOX_
15.
15.
15.
15.
15.
15.
12.
12.
13.
13.
13.
15.
16.
15.
20.
13.
14.
14.
3
7
7
5
6 0. 34
9
4.
o
1 0. 17
a
4
3
f.
5 **0.67
7
6
Q
9
0.259
0. 278
0.316
Avg.** 10.7 309 5.27 16.0 0.15 0.355
*computed from average emissions and power, not from individual run values
thigh intake and exhaust restrictions used on this engine during tests
**does not include CT modes at intermediate and rated speeds
These estimates will be made separately for the farm, construction, and
industrial applications, taking into account the different duty cycles
encountered in each application.
B. Results of Particulate Emissions Tests
Particulate emissions from the F, C, & I engines were measured by
the experimental dilution-type sampling device already described in section
III. Since sampling was as near isokinetic as possible, and since no cor-
40
-------
rections for retention of particles in the sampling system upstream of the
filter were made, it is felt that the normal experimental error was in the
direction of low concentrations. Thus, it seems logical that the particulate
results should tend to be conservative rather than high, which is preferable
to error in the other direction when making impact assessments based on
small samples.
The particulate results represent 308 tests (208 on the diesels and
100 on the gasoline engines), and all the individual run data will be presented
to document the repeatability of the procedure. This full presentation of
data should permit independent assessment of the data on each engine, and
it will be obvious that repeatability differed considerably from engine to
engine. The amounts of variation due to engine and to procedure have
not been determined. Sampling was limited to seven conditions on each
engine (0, half, and full loads at intermediate and rated speeds, plus low
idle) to prevent using an inordinate amount of analysis time.
The individual mode and average mode particulate concentration
data on each engine are given in Table 22, and if the specific crankshaft
speeds used are of interest, they can be obtained from Table 3. Particu-
late levels for the diesels correlated to some extent with visible smoke,
especially at high smoke levels, but sometimes a considerable amount of
particulate was measured under conditions where smoke was barely
readable. Invariably, however, high visible smoke was measured as a
high particulate level.
Making the assumption that exhaust molecular weight was equal to
that of air, mass and brake specific particulate rates were calculated for
each of the engines, and these data appear in Table 23. For these compu-
tations, average idle modes were weighted 0. 2, and the other six modes
were weighted 0. 8/6 = 0. 133. These weighting factors yield a load factor
for the composite cycle of 0.4, just like those used,for gaseous emissions
data. The weighting factors can be revised to reflect other operating cycles,
if necessary.
C. Results of Diesel Smoke Tests
Smoke tests consisting of accelerations and lug-downs as required
by Federal Regulations^ ' were performed on seven of the eight diesel en-
gines tested. The exception was the Onan DJBA engine, which was operated
on a small dynamometer having no extended inertia capability. The Federal
smoke evaluation data are given in full in Appendix B, and the results are
summarized in Table 24. Several of the engines which should have been
operated with 3 inch exhaust pipe for the smoke tests had already been fitted
with 4 inch pipe for gaseous emissions tests, so it was left in place for the
smoke tests and the results were "corrected" by Bouguer's Law(13> ^).
The "c factor" is the average of the nine highest 1/2-second opacity readings
during both the accelerations and the lug-downs, and its computation will
41
-------
TABLE 22. PARTICULATE CONCENTRATION DATA ON F, C, & I ENGINES
Condition Particulate Results, mg/SCF
Particulate Results, mg/SCF
Idle 0
Inter. 0
Inter, half
Inter, full
Rated 0
Rated half
Rated full
Idle 0
Inter. 0
Inter, half
Inter, full
Rated 0
Rated half
Rated full
Idle 0
Inter. 0
Inter, half
Inter, full
Rated 0
Rated half
Rated full
Idle 0
Inter. 0
Inter, half
Inter., full
Rated 0
Rated half
Rated full
Idle 0
Inter. 0
Inter, half
Inter, full
Rated 0
Rated half
Rated full
Idle 0
Inter. 0
Inter, half
Inter, full
Rated 0
Rated half
Rated full
Run 1
Run 2 Run 3 Run 4
Avg.
Allis-Chalmers 3500,
6.07
3.82
3.65
16.5
2. 54
3.46
3.50
0.57
0. 17
0. 53
0. 68
0.22
0.84
0. 56
4.00
6.90
6.04
21. 5
4.89
2.90
4.22
5.84
4.56
3. 31
5. 17
5.46
7. 75
7.96
2. 81
2.97
3.55
2.56
2.52
1.19
6.27
1.07
0.85
0. 50
5. 57
1. 14
1.00
5.93
4.65 4.70 5.28
3.24 3.75 3.60
4.94 3.54 3.81
18.9 16.2 17.8
3.16 2.45 2.35
3.26 3.44 3.39
3.84 3.43 3.69
Detroit Diesel 6V-71
0.79 0.54 1.59
0.43 0.38 0.30
0.38 0.78 0.56
0.53 0.59 0.63
0.24 0.10 0.32
0.64 0.61 0.43
0.82 0.77
John Deere 6404
4. 44 4. 40 4. 67
8.40 6.39 7.27
7.42 7.09 8.23
22.0 22.3 23.6
2.48 3.54 3.76
3.60 4.81 4.02
6.55 7.67 6.30
*Onan DJBA
6.34 7.41 6.18
4.62 4.60 4.18
4.43 3.19 3.63
4.69 5.33 5.69
5.46 5.48 5.56
8.41 9.60
8.71 7.55
Ford G5000
1.26
2.61 2.73
3.48
2.60 2.17 2.65
2.55
1.43 1.49 .1.87
3.74 4.25 3.72
J. I. Case 159 G
1.47 1.94 1.99
0.87 1.11 1.19
0.50 1.06 0.82
4.30 4.07 4.51
0.91 0.70 0.81
0.87 0.66 0.84
3.09 2.95
5. 18
3.60
3.98
17.4
2.62
3.39
3.62
0. 87
0.32
0.56
0.61
0.22
0.63
0.72
4. 50
7.24
7. 2C
22.4
3.67
3.84
6. 18
6.44
4.49
3.64
5.22
5.49
8.59
8.07
2.04
2.77
3.52
2.50
2.54
1.50
4.49
1.62
1.01
0. 72
4.61
0.89
0. 84
3.99
Run 1
Run 2
Run 3
Caterpillar
2.
0.
1.
1.
1.
1.
2.
31
90
11
59
44
96
35
2.
1.
1.
1.
0.
2.
2.
38
22
09
62
44
73
45
2.
0.
1.
-
0.
2.
-
43
60
41
-
62
09
International
2.
4.
6.
19.
5.
6.
10.
50
01
53
5
65
40
5
4.
2.
10.
21.
7.
7.
11.
81
39
2
8
13
28
8
3.
5.
7.
19.
5.
5.
11.
yu
04
28
3
62
47
6
Run 4
D6C
-
-
-
-
-
1.
-
-
-
-
-
-
36
-
Avg.
2.
0.
1.
1.
0.
2.
2.
37
94
20
60
83
04
40
D407
6.
5.
8.
18.
6.
9.
14.
94
87
52
4
05
42
3
4.
4.
8.
19.
6.
7.
12.
b4
33
13
8
11
14
0
Mercedes-Benz OM636
2.
3.
5.
10.
8.
9.
10.
48
54
26
4
93
93
8
4.
3.
5.
8.
9.
6.
6.
bi
31
80
27
42
70
43
i.
3.
5.
9.
8.
7.
6.
Perkins
0.
0.
0.
11.
11.
9.
12.
83
34
82
7
6
03
4
1.
0.
1.
11.
9.
11.
9.
31
86
23
8
43
5
54
0.
1.
1.
11.
10.
7.
11.
J/
32
60
74
47
14
25
-
-
-
9.
-.
-.
11.
19
5
3.
3.
5.
9.
8.
7.
8.
12
39
55
40
94
92
74
4.236
93
81
61
6
0
33
0
1.
1.
0.
11.
8.
-.
7.
41
12
99
3
04
24
1.
1.
1.
11.
9.
9.
10.
12
26
16
6
77
29
0
Hercules G-2300
1.
4.
1.
1.
2.
1.
1.
09
30
33
87
13
58
84
3.
2.
0.
1.
1.
1.
2,
94
29
90
88
03
35
66
3.
1.
0.
2.
2.
2.
2.
06
82
63
00
30
34
02
-.
3.
1.
2.
-.
-.
2.
68
56
38
67
2.
3.
1.
2.
1.
1.
2.
70
02
10
03
82
76
30
Wisconsin VH4D
3.
2.
3.
5.
2.
2.
2.
17
79
78
74
87
76
57
4.
4.
5.
4.
3.
2.
3.
58
47
19
00
40
58
42
3.
3.
3.
4.
2.
3.
2.
27
98
97
36
98
35
47
3.
5.
4.
2.
-.
3.
3.
70
06
36
47
34
15
3.
5.
4.
4.
3.
3.
2.
68
43
32
14
08
01
90
"idle values shown are at low (1000 rpm) idle --at 1500 rpm (ungoverned idle), values
were 3. 92, 4.04, 4.46, and 4. 20 (average 4. 16)
42
-------
TABLE 23. MASS AND BRAKE SPECIFIC PARTICULATE
EMISSIONS FROM F, C, & I ENGINES
Engine
Diesels Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International D407
John Deere 6404
Mercedes Benz OM636
Onan DJBA
Perkins 4. Z36
Gasoline Ford G5000
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
Mass Rate, g/hr
66. 1
23. 2
16. 1
90.6
91.4
20. 0
10. 0
39.5
9.72
6.86
5.52
6.56
Brake Specific,
g/hp hr
1. 23
0.42
0. 21
2. 20
1. 89
2. 22
2. 12
1. 54
0. 44
0. 29
0.41
0.61
TABLE 24. SUMMARY OF FEDERAL SMOKE TEST RESULTS
Engine
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International D407
John Deere 6404
Mercedes-Benz OM636
Perkins 4. 236
Exhaust Pipe
Diameter, in
4*
4*
4
4*
4*
2
2
Smoke Intensity, % Opacity
Factor (a) Factor (b)
37. 2(29. 5)F** 29. 7(23.2)
4.7(3.5) 2.4(1.8)
1.9 1.2
17.5(13.4) 18.8(14.5)
64.2(53.7) 25.0(19.4)
9.5 10.5
5.6 8.5
Factor (c)
45.9(36.9)
8.6(6.5)
3. 5
28.4 (22. 2)
82.4 (72. 8)
14. 0
10. 1
*standard diameter from Federal procedure is 3 inches
**numbers in parentheses corrected to 3 inch diameter by Bouguer's Law
43
-------
be required for certification of on-road diesel engines beginning with the
1974 model year.
Smoke from the diesel engines was also measured during steady-
state conditions, which were the same speed/load conditions used for par-
ticulate sampling. Average values for steady-state smoke are given in
Table 25, showing an extremely wide range from engine to engine. The
condition which produced the greatest smoke intensity from most of the en-
gines was full load at intermediate speed, perhaps not surprisingly since
TABLE 25. AVERAGE STEADY-STATE SMOKE FROM DIESEL ENGINES
Engine
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International D407
John Deere 6404
Mercedes OM636
Onan DJBA
Perkins 4. 236
Exhaust Pipe
Diameter, in.
4
4
4
4
4
2
2
2
Smoke Intensity in % Opacity at Condition
Load at Load at
Low Inter. Speed^ Rated Speed
Idle
0. 5
2. 3
0. 5
1. 2
2. 0
1. 0
0. 5
1. 0
0
1. 0
2. 0
0. 8
1. 0
1.9
1. 5
0. 8
1. 0
half
2.8
3. 0
1. 0
4. 5
7. 3
1. 5
2. 0
1. 0
full
31. 5
4. 5
1. 0
20. 0
25. 5
8. 5
2. 5
10. 3
0
1. 2
3. 2
1. 0
1. 0
2. 2
2. 0
1. 0
1. 7
half
5. 0
2. 3
1. 0
4. 0
5. 5
1. 5
1. 0
1.4
full
7. 3
2.7
1.5
9.2
6.0
8. 0
3.0
7. 7
this point is at a boundary of the operating envelope. The smoke intensities
in Table 25 correlate only roughly with the average particulate rates shown
in Table 22, yielding an index of determination of 0. 66 for the relationship
y -1. 04 + 1. 11 x , where y is smoke (% opacity) and x is particulate (mg/
SCF). The program on which the curve fit was obtained did not include trial
of a basic equation of the form predicted by theory (x A In y^—11 Qft). so no
index of determination was obtained for that form.
D. Emissions Data from Other Sources
The number of engines -tested under the subject program was limited
by cost and time considerations, and this restrictioa was reasonable in view
of the relatively low priority that F, C, & I engines >~ave in the total air
pollution picture. The rather limited program scope did, however, make it
necessary to obtain as much information on engines not tested as possible,
and several sources were very helpful(15> *6, 17, 18, 19)_ Data on diesel
engines from all these sources is presented as Table 26, but model desig-
nations have been withheld in several instances to avoid releasing confidential
data. The weighted averages at the bottom of each category were calculated
by weighting the emission data points according to the number of engines
represented by each point (assumed to be 1 if number of engines was not
available).
44
-------
TABLE 26. EMISSIONS DATA ON DIESEL ENGINES DEVELOPED BY
OTHER SOURCES, BASED ON 13- OR 21-MODE PROCEDURES
Engine
Number of
Brake Specific
Emissions, g/hp hr
Type
4SNADI
Mfr. & Model
Cat. /Ford 1145
Cat. /Ford 1145
Cat. /Ford 1150
Cummins NH-220
Cummins NH-220
Cummins V-378
Cummins V-504
Cummins V-555
Cummins V-903
Cummins V-903
CM DH-478
Int. DV550B
(Note 1)
Engines
5
1
5
6
1
1
1
1
5
1
4
1
6
Tests
10
N. A.
10
N. A.
1
1
1
1
10
1
8
2
N. A.
Weighted Averages
4STCDI
Cummins NTC-335
Cummins NTC-335
Mack ENDT 673B
Mack ENDT 675
Mack ENDT 675
Mack ENDT 864
(Note 1)
(Note 2)
4
1
2
2
1
1
2
N. A.
8
1
4
4
4
1
N. A.
N. A.
HC
3.09
2.16
3.37
0.35
0. 36
1. 14
1.2
0.90
3.81
0.83
2. 8)
3.52
2.33
2.34
0.46
0. 13
2.27
1.61
1. 18
2. 00
2.85
1.7
CO
5.91
7.40
6.62
9.05
7.44
6.25
5. 70
4.28
5.30
4.37
5.59
6. 32
6.03
6.41
2.78
2. 30
3.25
4,80
5.37
4. 47
4.40
3.4
NOY
11.68
5.52
9.97
6.71
8.53
10.76
10.08
7.22
6. 81
6. 70
7. 24
8.21
11. 38
8.86
10. 21
10. 39
14. 30
12. 29
10.66
12. 1
14. 75
17.3
Weighted Averages
4SNAPC (Note 2)
N. A.
N. A.
1.45
0.4
Weighted Averages
1.24
3.68
2.4
8.45
12.43
5.6
4STCPC
Cat.
(Note
(Note
1674
2)
1)
1
3
1
6
N. A.
N. A.
Weighted Averages
2SBSDI
Det.
Det.
Det.
Det.
(Note
Die.
Die.
Die.
Die.
1)
6V
6V
8V
8V
-53
-71
-71
-71
5
10
5
1
1
10
20
10
N. A.
N.A.
0.
0.
0.
0.
1.
1.
0.
2.
0.
21
34
3
31
64
17
82
59
7
1.
2.
2.
2.
8.
9.
7.
6.
6.
54
41
3
21
76
39
09
58
1
4.82
5.91
6. 1
5.73
18. 12
13.91
16. 54
18.57
14.7
15.71
.Note 1; from reference 16
Note 2: withheld to avoid disclosure of confidential information
Abbreviations: 4S and 23 mean 4-stroke and 2-stroke, respectively; NA means
naturally aspirated; TC means turbocharged; BS means
blower-scavenged; DI means direct injection; PC means
pre-combustion chamber injection
45
-------
The averages were generally quite close to those for similar engine
types tested under the contract, as shown in Table 21. Differences which
were most significant were NO^ on the 4STCDI category, and in this case
the engines tested under the program simply emitted relatively low NOX.
Both CO and NOX showed considerable differences for the 2SBSDI category
(Detroit Diesel engines), in this case presumably due to the use of older
injection systems in some of the engines from which the "other sources"
data were obtained. Since the correlation between data obtained under the
subject contract and those obtained from outside sources is reasonably
good, the former will be used in computing factors and impact
except where such use would compromise accuracy. The reason for
preference of data developed under this program is simply that it is fully
documented, whereas some of the other data must be accepted at face
value with little knowledge of how it was obtained.
TABLE 27. AVERAGE BE^KE SPECIFIC EMISSIONS FROM DIESELS
BY ENGINE TYPE, TEST ENGINES COMPARED
TO DATA FROM OTHER SOURCES
HC, g/hp hr
CO, g/hp hr
NOX, g/hp hr
Engine Type
4SNADI
4STCDI
4SMAPC
4STCPC
2SBSDI
Test
Data
1. 68
2. 18
1. 55
0. 12
0. 70
Outside
Data
2. 34
1.45
0.4
0. 31
1. 24
Test
Data
6. 16
4.62
5. 65
1. 13
2.96
Outside
Data
6.41
3.68
2.4
2. 21
8.45
Test
Data
9. 44
8.64
4. 98
5. 19
20. 2
Outside
Data
8. 86
12.43
5.6
5. 73
15. 71
46
-------
V. ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
FOR HEAVY-DUTY ENGINES USED IN FARM APPLICATIONS
This report section will treat farm engines as a category apart from
the construction category and the industrial category. The idea behind this
approach is that emission results for all three categories should be drawn
from as many sources as possible, but that emission factors and impact
estimates should be treated separately due to differences in duty cycles and
makeup of the categories with regard to engine type and size. Sections VI
and VII will treat construction and industrial engines, respectively.
A. Analysis of Population and Usage for Heavy-Duty Farm Engines
In contrast to several of the other engine categories being studied under
the subject contract, a good deal of information is available on farm equipment
production and populationl^O, 21)- Some of these statistics are presented in
Table 28, and they form the basis for the farm tractor population analysis
which is a necessary input to emission factor computation. The major items
of information which do not appear to be available in published statistics are
the sizes and types (gasoline and diesel) of machines which constitute the
present population, so estimates will have to be made based on the data in
Table 28 and some reasonable assumptions. Wheel tractors will be handled
first, and other farm machinery afterward.
The most complex problem requiring solution in order to get a true
picture of the present population is selection of a mathematical population
model which is consistent with known facts. That is, it is necessary to know
how many units produced in each of the prior years is still in service in 1972,
because this knowledge will lead to accurate breakdowns by engine size and
by type of fuel used. The function used to attempt a definition of the farm
tractor population was
-n
where Si = number of units surviving in 1972 out of the Ni units produced in
year i (age = A^), k - l/An , and n - an exponent greater than zero. The
constant Ac is called the "characteristic age", and both it and the exponent
"n" must be determined by trial and error. If a value for n is assumed first,
successive approximation will yield a value for k = 1 /A£ to complete the
relationship
i=52 i=52
Si ~ Y] Nie~]f:Ain = 4. 469xl06 (1972 population)
i = 0 i-0
This equation is the "first check", assuring that the selected function will in
47
-------
TABLE 28. DATA ON THE U. S. FARM WHEEL TRACTOR POPULATION
Year
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
I960
1959
1958
1957
1956
1955
1954
1953
1952
1951
1950
1949
1948
1947
1946
1945
1944
1943
1942
1941
1940
1939
1938
1937
1936
1935
1934
1933
1932
1931
1930
1929
1928
1927
1926
1925
1924
1923
1922
1921
1920
Age
.Aj
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Sales =
NJ, Units
xlO-3
157
132
136
144
158
177
185
162
157
155
153
138
124
215
194
186
167
268
203
315
334
442
402
430
422
334
197
171
220
101
152
256
206
166
166
166
166
145 (a)
22 (a)
oU)
0(a)
47 (a)
145 (a)
140
140
140
140
140
10o(a)
128(a)
105(a)
55 (a)
182 (a)
Total
Units in
Use xlO-3
4469
4562
4619
4712
4766
4786
4783
4787
4786
4778
4763
4743
4688
4673
4620
4570
4480
4345
4243
4100
3907
3678
3399
3123
2821
2613
2480
2354
2215
2100
1885
1675
1545
1445
1370
1230
1125
1048
1016
1019
1022
997
920
827
782
693
621
549
496
428
372
343
246
Avg. Wheel
Tractor PTO
hp Sold
.
76.6
72.4
72.8
69.5
68.2
65.9
63.1
59.3
57.5
55.3
51.6
47.7
45.6
45.9
44.9
41.0
39.8
38.8
34.8
30.9
29.4
29.0
28.4
27.0
26.1
26.2
26.6
27.4
27.6
.
.
-
_
_
_
_
_
_
_
.
-
_
_
_
_
_
_
_
^
_
Avg. Belt
hp in Use
.
45.2
45.0
42.2
40.8
39.3
38.2
36.7
35.8
34.8
33.9
33.0
32.6
31.3
30.5
29.7
29.3
29.0
28.3
28.0
27.7
27.6
27.4
_
-
»
_
.
_
_
_
.
-
_
„
_
.
.
-
.
_
.
.
—
_
_^
_
% Wheel Tractors
Sold
Gasoline
24.3
28.5
30. 2
29.1
33.3
39.8
40.6
42. 2
47.2
52.9
49. 1
55.4
64.6
71.7
78.2
82.5
83.9
86.7
93.1
94.3
Diesel
75.7
71.5
69.0
69.3
65.5
58.1
56.6
54.1
48.5
42.7
46.8
40.8
30.6
23.2
16.3
12.5
12.6
11.4
5.6
5.7
'a'estimated from change in population for following year
48
-------
fact compute the correct present population when applied to known sales
data. The next step is to apply the same model to previous years and
determine whether or not it still calculates the correct number. Some of
the models tried are plotted in Figure 21, to show the effect of variation
in the exponent n.
Intuitively, the curves for n=2 and n = 3 seem to approximate the fraction
of wheel tractors surviving in the expected way, but mathematical checks
are a more accurate way of determining the correctness of the models.
The two checks employed were (1) calculation of populations for prior
years based on the survival models with comparison to known values, and
(2) calculation of average horsepower of tractors in the field with checks
against a known value. The results of these checks are shown in Table 29,
and it is apparent that none of the models is without flaws. The model with
n= 1 calculates both population and horsepower values which are too low,
and the model with n = 3 calculates very high populations and a slightly low
horsepower value. The model with n • 2 calculates moderately high populations
TABLE 29. COMPARISON OF DATA CALCULATED BY SURVIVAL MODELS
TO KNOWN FACTS ABOUT THE FARM WHEEL TRACTOR POPULATION
Percentage Prediction Error for Model
Statistic Known Value n=l.Ac=27.55 n=2.Ac=25.40 n=3.Ac=24. 54
1972 Tractor Population 4.469xl06 +0.1 +0.2 0.0
1965 Tractor Population 4.787xl06 -5.7 +1.4 +4.8
I960 Tractor Population 4.688x10° -2.4 +8.3 +11.6
1971 Average Horsepower 45.2 -12.3 -5.5 -3.3
and a moderately low horsepower value. Conceding that it is a compromise
the model with n - 2 will be used to determine the age distribution of tractors
in use. Calculations with this model lead to an average age for tractors in
use of about 15 years, and an average service life of about 22 years, both of
which seem quite reasonable in light of available information. The average
age is
*
i=52
i = 0
~ the average service life is calculated by
i = 0
49
-------
1.0
0. 0
25.40
10
30
40
50
1970
I960
I I
1950 1940
Calendar Year
1930
1920
FIGURE 21. EXPERIMENTAL POPULATION MODELS
FOR FARM TRACTORS
50
-------
52
^R =
The values apply only to the population at the end of 1972, structured as
assumed by n=2, Ac = 25.40.
In order to arrive at accurate emission factors for tractors, it is also
necessary to determine the fraction of the present population powered by
diesel engines (as opposed to gasoline engines). This task would not be
so difficult if average power and fraction of tractors sold with diesel engines
had been relatively constant in the past, but over the past 20 years the
average horsepower of tractors sold has more than doubled, and the market
share of diesels has risen from essentially zero to more than 75%. As
a minimum, it is necessary to determine the fraction of each power category
equipped with diesel engines for each year over which data are available.
Performing such a calculation requires a set of assumptions based on
the best available information, and if the assumptions are reasonable, then
the calculated overall percentage of each year's production powered by diesels
should be the same as the known value. The basic data on production by power
category are given in Table 30(20), an(j a set of assumptions which permit
computation of the fraction of diesel-powered tractors in each model year/
power classification is summarized below. These assumptions are based on
1. 100% of tractors produced having 80 PTO hp or more were
diesels
2. in the size range 35 to 79 hp, and for the years 1962-1971,
% diesels - [45 + 0.47 (median hp in category)] (model year 1952 <
3. in the size range 35 hp and up, and for the years 1952-1961
% diesels = 100 (model year 1952)
20
4. 10% of tractors produced having less than 35 PTO hp were
diesels
the ideas that very large tractors are predominantly diesel, that very small
tractors are predominantly gasoline, and that the percentage of diesels in the
mid-size ranges varies directly with power output and the number of years
since the diesel market percentage was essentially zero. The overall
51
-------
ts)
TABLE 30. CLASSIFICATION OF FARM TRACTOR PRODUCTION BY
PTO HORSEPOWER, 1952 THROUGH 1971
Percent of Market by PTO Horsepower Class(20)
Year
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959
1958
1957
1956
1955
1954
1953
1952
to 34
6.5
5.8
5.6
6.2
6.3
5. 1
7.2
12.2
13.2
12.0
12.2
16.9
22.8
21. 1
28.9
34.5
35.8
48.4
62.2
77.4
35-39 40-49*
14.9 4.5
17.7 4.0
16.0 4.7
16.0 6.2
15.9 8.2
15.9 10.1
15.4 12.9
13.5 17.3
11.8 22.5
17.7 20.0
36.8
36.9
34.5
40.9
42.2
45.2
45.3
37.5
15. 1
22.6
50-59*
12. 1
13.0
13. 3
14.0
14.0
14. 1
9.5
12.8
11.9
15. 1
60.0
46.2
42.6
38.0
28.8
20.2
18.9
14. 1
22.6
-
60-69
11.2
13.9
14.4
12.4
11.0
16.6
17. 1
14.0
15. 3
17.2
-
-
-
-
-
-
-
-
-
-
70-79* 80-89
5. 1
5.7
7.3
9.2
10.2
6.2
9.6
8.7
15.
'8.0
-
-
_
-
-
-
-
-
-
-
3.2
3.9
3.3
3. 1
3. 7
4. 3
3.6
4.4
7
-
-
-
-
-
-
-
-
-
-
-
100- 110- 120-
90-99* 109* 119 129
17.4 6.0 8.9 1.9
17.2 8.5 3.5 2.9
18.1 17.3
23.7 9.2
23.1 7.6
22. 2 5. 5
22. 5 2. 3
15.0 2.1
9.6 -
_
_
_
_
_
-
_
_
-
_
_
130- 140
139 up
6.2 1.9
3.0 1.0
_
-
-
-
-
-
-
-
-
-
_
-
-
-
-
-
-
-
*Values in these columns which terminate lines are understood to include all higher
horsepower values not classified for those years.
-------
100
Q
80
ra
1*
o
4->
CJ
n)
E
f-i
a
S 60
V
60
rt
1 40
o
^
4)
DH
•u
0)
J<
I 20
Calculated Value
Known Value
I
1950
1955 I960
Tractor Model Year
1965
1970
FIGURE 22. COMPARISON OF KNOWN AND CALCULATED
VALUES FOR MARKET PERCENTAGE OF DIESEL FARM
TRACTORS, 1950 THROUGH 1971
53
-------
percentages of production using diesel engines calculated on the basis of the
assumptions (1971-1963) are not exactly the same as the known figures, but
are reasonably close, as shown in Figure 22. Now if it is further assumed
that the mean PTO horsepower for gasoline and diesel engines is the same
within each power category, it becomes possible to estimate the overall percent-
age of farm tractor horsepower which is diesel and that which is gasoline.
The mean PTO horsepower for tractors sold in each power category
back to 1964(2°) is given in Table 31, along with the values which will be used
for calculations in earlier years leading to an estimate of the present popula-
tion. For earlier years, it is also necessary to assume values for categories
such as "90 hp and up", "70 hp and up", and so forth. In each case, the value
assumed for these latter categories is 10 horsepower above the lower boundary
of the category. Although it is probably a weak assumption, it will also be
assumed that the average service life of diesel and gasoline tractors in all
power categories is the same.
TABLE 31. MEAN FARM TRACTOR PTO HORSEPOWER BY
POWER CATEGORY FOR 1964-197l(20)
Hp Class
up to 35
35-39
40-49
50-59
60-69
70-79
80-89
90-99
Mean PTO Horsepower by Year
1964
30. 0
37.0
45. 1
57.7
65. 1
76.4
85.0
91.9
05. 1
1965
30.0
37.0
45.0
55. 0
65.0
73. 2
87. 0
92. 0
105.0
1966
32.0
38.0
46. 0
54. 0
65.0
74. 0
87.0
92. 0
118.0
1967
32.0
38. 5
46. 0
56.0
65. 5
75. 0
87. 0
92.5
119.0
1968
30. 5
37.5
46.5
55.0
66.0
76. 0
87.0
94.6
111. 7
1969
30. 8
38. 0
46. 5
53. 5
66.8
76. 0
86. 1
94.9
118. 1
1970
30. 8
37. 5
45. 0
55.0
65. 0
75.0
85.0
95.0
117. 7
1971
31.0
38. 0
43. 3
53. 0
65. 0
73. 5
85. 0
94. 0
121. 3
Assumed for
Earlier Years'
Calculations
30
37
45
55
65
75
85
95
Based on all the foregoing discussion and qualifications, Table 32
presents an estimate of the structure of the farm tractor population as of
December 31, 1972. Summing the columns on the right yields approximately
206 x 1Q6 tractor PTO hp in use, with 111x10° hp in gasoline engines and
95. 4x106 hp in diesels. A comparable estimate of total hp in use based on U. S.
Statistical Abstracts is also 206xlo6 hp(21). Using data from Table 32, the
average PTO horsepower of gasoline farm tractors is calculated to be 35. 6 hp,
and that for diesels is calculated to be 69. 7 hp. These summaries pertain only
to tractor hp in the field, and probably do not represent the correct ratio of
horsepower-hours used because usage undoubtedly Varies with both machine
size and age.
54
-------
TABLE 32. ESTIMATED STRUCTURE OF THE FARM TRACTOR
POPULATION AS OF 12/31/72
Units Surviving x 10
Hp of Units Surviving x 10
-6
Year
1972**
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
I960
1959
1958
1957
1956
1955
1954
1953
1952
1951
1950
1949
1948
1947
1946
1945
1944
1943
1942
1941
1940
1939
1938
1937
1936
1935
1934
1933
1932
1931
1930
1929
1928
1927
1926
1925
1924
1923
1922
1921
1920
Total
157
132
135
142
154
170
175
150
142
137
131
114
99
165
143
131
112
171
123
188
180
223
190
189
173
127
69
55
65
27
38
58
42
31
28
25
22
17
2
0
0
3
9
8
7
6
5
5
3
3
0
1
3
Gasoline
31
32
38
43
45
57
70
61
60
65
69
56
55
107
103
102
92
143
107
168
.170
223
190
189
173
127
69
55
65
27
38
58
42
31
28
25
22
17
2
0
0
3
9
8
7
6
5
5
3
3
0
1
3
Diesel*
126
100"
97
99
109
113
105
89
82
72
62
58
44
58
40
29
20
28
16
12
10
.
-
_
-
-
.
.
.
.
.
-
-
_
-
.
.
-
-
.
.
-
-
_
-
-
.
-
-
-
-
-
-
Total
12.2
10.1
9.77
10.3
10.7
11.6
11.5
9.47
8.42
7.88
7.24
5.88
4.72
7.52
6.56
5.88
4.59
6.81
4.77
6.26
5.56
6.56
5.51
5.37
4.67
3.31
1.81
1.46
1.78
0.75
0.95
1.45
1.05
0.62
0.56
0.50
0.44
0.34
0.04
0.00
0.00
0.06
0. 18
0.16
0. 14
0.12
0.10
0.10
0.06
0.06
0.00
0.02
0.06
Gasoline
1.22
1.31
2.03
1.86
2.25
2.81
3.08
2.93
3.20
3.43
3.83
2.89
2.61
4.86
4.70
4.60
3.79
5.71
4.14
5.83
5.24
6.56
5.51
5.37
4.67
3.31
1.81
1.46
1.78
0.75
0.95
1.45
1.05
0.62
0.56
0.50
0.44
0. 34
0.04
0.00
0.00
0.06
0. 18
0.16
0. 14
0. 12
0. 10
0. 10
0.06
0.06
0.00
0.02
0.06
Diesel
11.0
8.80
7.74
8.41
8.45
8.79
8.42
6.54
5.22
4.45
3.41
2.99
2.11
2.66
1.86
1.28
0.80
1. 10
0.63
0.43
0.32
.
-
.
-
-
-
-
-
.
.
-
-
_
-
_
.
.
-
.
_
.
-
.
_
_
_
-
.
.
_
.
.
* includes LPG-powered units, estimated to total about 4% of the population
**e8ti mated
55
-------
Compared to that for farm tractors, only a small amount of information
ii available on other heavy-duty engines used on farms. The major uses of
these engines other than tractors include self-propelled combines and forage
harvesters, and engines used on irrigation pumps and as auxiliary engines on
pull-type combines and balers. A tabulation of engine applications and some
characteristics of the machines which will be assumed typical for the purposes
of this report is given in Table 33. It is conceded that these assumptions have
little basis except availability of the machines in the current market(20), but
such estimates are necessary in lieu of comprehensive data. Summing the
estimated horsepower of tractors and other powered farm machines yields
approximately 319x10^ hp, which compares quite well with the 301x106 hp figure
from Statistical Abstracts'").
Having arrived at a structure for the population of heavy-duty engines
used in farm applications, the next step is to determine representative annual
usage rates for the various categories of machines. Once again, the best data
available are on tractors, with one broadband estimate of 550 hours per year
for "grain belt" usage(^3). Another estimate is "almost a linear relationship
to tractor horsepower ranging from 450 hr for a 50 hp tractor to 800 hr for a
140 hp tractor'^S), or in other words, usage in hours = 450 + 3. 89 (hp-50).
The latter estimate weights usage somewhat more heavily toward newer
tractors, since the newer units have higher average power ratings, but it is
TABLE 33. APPLICATIONS OF HEAVY-DUTY ENGINES
ON FARMS (OTHER THAN TRACTORS) AND ASSUMED
CHARACTERISTICS OF THE APPLICATIONS
Units in service
x 10-3(20)
% using engines
Typical size
Typical hp
% gasoline
% diesel
Application
Combine,
Self-
Propelled
434
100
14 ft
110
50
50
Corn Pickers
Combine,
Pull Type
289
25
8 ft
25
100
0
& Picker-
Shellers
687
-
2-row
-
-
-
Pick-up
Balers
655
50
6 ton/hr
40
100
0
Forage
Harves-
ters
295
10
12 ft or
3- row
140
0
100
Other
(Misc)
1205
100
-
30
50
50
based on relatively new (in-warranty) units. To account for decreased usage
with age, the further assumption will be made that usage decreases linearly
with age to 50 hours per year for the few 1920 model units still in service.
The complete usage equation can then be written
(usage in hours)i = 450 + 3. 89 (hpi-50) - 5. 45 (A})
56
-------
for any year, and the average usage (separately for gasoline and diesel
units) is calculated by
52
450 (53) + £ 3.89 (hp^SO) - 5.45 (A^
average usage in hr/yr = 1-
Number of Units in Service
This computation yields mean usages of 490 hours/year for diesel tractors
and 291 hours/year for gasoline tractors. One independent appraisal of the
accuracy of these estimates can be obtained using data from yet another
(p r V
"'. These data indicate that the annual usage of tractors is
quite heavily weighted in the direction of newer models, as shown in the
second column of Table 34. Using average horsepower sold (Table 28)
TABLE 34. TWO INDEPENDENT ESTIMATES OF ANNUAL USAGE
OF TRACTORS AS A FUNCTION OF TRACTOR AGE
Percent Total Tractor Hours Used by Age Group
Tractor Age, Calculated from Tables 28 and 32
up to (years) First Estimate^^) (and Usage Equation Above)
2 8 12.4
5 25 27.0
9 50 45.2
16 75 66.?
27 95 95.4
and units surviving (Table 32) in conjunction with the power-age-usage rela-
tionship presented above, the figures in the third column of Table 34 were
calculated for comparison. Part of the disagreement for the younger groups of
tractors may be due to inconsistency in the definition of tractor age (for
example, the "first estimate" may assume that only tractors of age 1 are in-
cluded in the "up to 2" category, whereas the calculated values assume that
all tractors up to and including age 2 are covered by the "up to 2" category).
In any case, the two age-usage relationships are quite similar overall, and
the usage estimate resulting in the calculated values described above (third
column of Table 34) will be assumed adequate for the purposes of this report.
Annual usage of other farm implements which employ heavy-duty engines
is not as readily available as that for tractors, so a different approach will be
used to estimate their annual operating time. Usage of specific-purpose imple-
ments is controlled primarily by total crop acreage for which they are required,
and documentation of acreage is available^24'. Table 35 shows acreage of major
crops^4' harvested by the machines listed in Table 33, as well as estimates of
total machine hours required for harvesting by powered and non-powered
machines(26). Summing the operating hours for the machine categories (with
57
-------
TABLE 35. MAJOR U. S. CROP ACREAGE (1970) AND ESTIMATED
MACHINE HOURS REQUIRED FOR'HARVESTING(24> 26)
Crop
U.S. Acreage Powered Machine & Non-Powered Machine
Required hours xlO"6 & Req'd. hours xlO"6
xlO'
Corn 57.4
Wheat 44. 3
Oats 18.6
Sorghum 13.8
Barley 9.6
Rye 1. 5
Other Grains, *25
Seeds, & Legumes
Hay, Straw, & **70
Forage
pull combine - 0. 76
s-p combine - 6.45
pull combine 1.17
s-p combine -' 9. 96
pull combine - 0. 49
s-p combine - 4. 18
pull combine - 0. 37
s-p combine - 3. 10
pull combine - 0. 25
s-p combine 2. 16
pull combine - 0. 04
s-p combine 0. 34
pull combine - 0. 66
s-p combine - 5.62
corn-picker - 19. 1
pull combine - 2. 28
pull combine - 3. 51
pull combine 1.48
pull combine 1. 10
pull combine 0. 76
pull combine 0. 12
pull combine - 1. 98
pick-up baler 7.83 pick-up baler - 7.83
forage harvester-3.53 forage harvester-3.53
*only that portion of crops assumed harvested by combine is listed
**assuming 80% of hay acreage is baled or cut by field forage harvesters,
and that 17.8x10 acres of straw or other forage is harvested.
engines), pull combines account for about 3. 74x10^ hours per year, self-
propelled combines for about 31. 8 xlO", balers for about 5. 22x10 , and self-
propelled forage harvesters account for about 3. 53xlO& hours annually. These
figures translate into annual usage per (motorized) machine of 52 hours for
pull-type combines, 73 hours for self-propelled combines, 24 hours for
balers, and 120 hours for self-propelled forage harvesters. All these
annual usage figures seem low from an economic standpoint, so the
situation must be that a wide range of usage occurs for each type of
machine, depending on farm size and use of custom operations.
No data are available on the miscellaneous (Table 33) heavy-duty
engines used on farms, although their existence is documented by census
58
-------
figures (24). For the purposes of this report, usage of these engines
will be assumed to average 50 hours per year, which is about the mini-
mum usage which would justify having the engine at all. It is assumed
that the miscellaneous engines include irrigation pump engines (which
would have high usage), and those used on welders, large compressors,
and auxiliary generators (which probably have low usage).
B. Development of Emission Factors for Farm Engines
Having compiled estimates for the population and annual usage of
heavy-duty farm engines in the previous section, it now becomes
necessary to assign emission factors to that population. This task
requires examination of farm engine duty cycles to determine how the
mode emissions data in Section IV should be weighted for each applica-
tion, and it requires the determination of which test engines should be
assumed to represent each application. The first part of this task
was referred to in section II, Objectives, as a modification of the
calculation procedures already discussed in sections III. C. and IV. A.
Fortunately, there is a good representation of farm engines among the
test engine group, with at least 5 of the 8 diesels and 3 of the 4 gasoline
engines tested being used in farm equipment.
Farm tractor duty cycles have been researched by several investi-
gators for different purposes (23), and the results of some of these
studies are shown in Table 36. In addition, a "consensus" weighting
factor schedule is given in Table 36, differing only slightly from the
average of factors from sources A through D. This "consensus"
schedule will be used to recompute cycle composite brake specific
emissions from the test engines which are used in the farm tractor
application. Most of the mode emissions data were generated on
21-mode (or 23-mode for gasoline engines) procedures, or in the
case of particulate, on procedures having only 7 modes. Weighting
factors for the procedures having 21 (23 for gasoline engines) or 7
modes (derived from the ones given above for the 13-mode procedure)
are shown in Table 37. These factors yield a composite load factor
of about 0. 57 for farm tractors, which is somewhat higher than that
for many other applications of heavy-duty engines. Since no data are
available on the normal speed-load schedule of heavy-duty farm engines
used in applications other than tractors, the factors shown in the four
right-hand columns of Table 37 will be used. These factors are based
on the ideas that most non-tractor farm engines are governed at or near
rated speed, and that they spend little time at idle. The composite
load factor resulting from these latter weighting factors is about 0. 52,
which is lower than that for tractors but higher than that expected for
on-road engine usage. Note also that the closed-throttle modes (12
and 23) of the gasoline schedule have been given zero weight because
they are assumed largely inapplicable to farm operation.
59
-------
TABLE 36. FARM TRACTOR MODE WEIGHTING FACTORS FOR THE
13-MODE GASEOUS EMISSIONS PROCEDURE^1' 23)
Mode(s)
1+7+13
2
3
4
5
6
8
9
10
11
12
Sources:
Mode Weighting Factors by Source
Source A Source B Source C Source D
0.079
0.058
0.07
0.00
Consensus
For Report
0.06
0.022
0.059
0.060
0, 056
0.005
0.057
0.092
0.076
0.061
0.021
0.01
0.02
0.035
0.40
0.00
0. 158
0.256
0. 160
0.097
0.048
0. 132
0.205
0. 151
0. 113
0.034
A.
B.
C.
D.
0.01
0.02
0.035
0.40
0.00
0.00
0.40
0.035
0.02
0.01
use -
0.00
0.0014
0.0040
0.0956
0.0127
0.0249
0.4395
0.3519
0.0231
0.0469
Agricultural
0.03
0.05
0.05
0. 11
0.01
0. 10
0.32
0. 17
0.06
0.04
Engineering,
Feb. 1969
general farm use - John Deere data
Allis-Chalmers data
Detroit Diesel - Allison data - hard plowing alfalfa
To arrive at cycle composite gaseous emissions with mode weighting
factors as described in Tables 36 and 37, the average mode mass emissions
from Tables 8-19 were used rather than going back to each individual run.
Particulate emissions were computed in the same way, using data on
individual mode mass emissions which do not appear explicitly in the
report. Composite mass and brake specific NOX emissions were
corrected for humidity using the factors given in section III. C. ^hese
reweighted composite data are given in Table 38 for both farm tractor
and farm non-tractor applications. The engines omitted from the
tractor weighting schedule (Cat. D6-C, M-B OM636, Onan DJBA,
Here. G-2300, and Wise. VH4D) are assumed not to be used in farm
tractors, so their emissions will not be used in computing emission
factors for farm tractor applications.
Having developed brake specific emissions for a number of farm
tractor and farm non-tractor engines, it remains to combine them in
such a way that they form a reasonable representation of machines used
in the field. This task requires the assumption of a fraction of total
diesel tractor horsepower hours for each of the five diesels listed at
the top of Table 38, and corresponding assumptions for the two gaso-
line engines used in tractor service. It further requires the assumption
of fractions of total non-tractor horsepower hours for all 12 engines
60
-------
TABLE 37. FARM TRACTOR MODE WEIGHTING FACTORS FOR
THE 21-MODE (23 FOR GASOLINE ENGINES) PROCEDURE
AND THE (SPECIAL 7-MODE) PARTICULATE
MEASUREMENT PROCEDURE
Tractor Mode Weighting
Factors by Procedure
Weighting Factors by Procedure
for Applications other, than Tractors
.lode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Particulate*
0.06
0.055
0.13
0.065
0.07
0.36
0.26
-
.
-
.
-
.
.
.
-
.
-
.
.
.
_
21 -Mode
0.02
0.0225
0.02
0.025
0.025
0.025
0.04
0.055
0.03
0.0075
0. 02
0.075
0.105
0.16
0.1225
0.085
0.0575
0.03
0.025
0.03
0.02
.
-
23-Mode**
0.02
0.0225
0.02
0.025
0.025
0.025
0.04
0.055
0.03
0.0075
0.02
0.00
0.075
0.105
0. 16
0. 1225
0.085
0.0575
0.03
0.025
0.03
0.02
0.00
Particulate*
0.04
0.06
0.09
0.09
0.12
0.42
0.18
-
-
.
-
.
.
.
.
-
-
.
-
-
-
-
-
13 -Mode
0.0133
0.035
0.04
0.055
0.055
0.055
0.0133
0.11
0.16
0.25
0. 13
0.07
0.0133
_
.
-
-
-
-
-
-
-
-
21-Mode
0.0133
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.0133
0.06
0.06
0.06
0.14
0.14
0. 14
0.04
0.04
0.04
0.0133
-
-
23-Mode**
0.0133
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.0133
0.00
0.06
0.06
0.06
0.14
0. 14
0. 14
0.04
0.04
0.04
0.0133
0.00
^sequence of conditions as shown in Table 22
**sequence as shown in Table 2
61
-------
to
TABLE 38. COMPOSITE MASS AND BRAKE SPECIFIC EMISSIONS FOR TEST ENGINES WEIGHTED
TO SIMULATE FARM TRACTOR AND FARM NON-TRACTOR APPLICATIONS
Mass Emissions in g/hr, Tractor Weighting Specific Emissions in g/hphr, Tractor Weighting
Engine
Allis-Chalmers 3500
Detroit Dies. 6V-71
International Har. D407-
John Deere 6404
Perkins 4. 236
Ford G5000
J. I. Case 159G
HC
40.7
69.5
136.
216.
15.8
202.
150.
CO
Z14.
168.
284.
196.
130.
4860.
5980.
NOX
874.
2630..
518.
432.
432.
269.
49.4
RCHO
13.
12.
9.0
64.
7. 8
11.
11.
SOX
70.5
102,
52.4
67. 1
32.2
8. 62
6.05
Particulate
64.5
21.9
108.
91.3
57.2
13.6
6.86
HC
0.505
0.615
2.23
2.93
0.392
5.36
6.73
CO
2.66
1.49
4.67
2.66
3.22
129.
268.
NOV
10.8
23.3
8.51
5.86
10. 7
7. 14
2. 22
RCHO
0. 16
0. 11
0.15
0.88
0. 19
0.28
0.50
SOX
0. 875
0.903
0.862
0. 910
0.799
0. 229
0. 271
Particulate
0.792
0. 195
1.77
1.22
1.42
0.355
0. 307
Mass Emissions
in g/hr, Farm Non-Tractor Weighting
Specific Emissions
in g/hphr, Farm Non-Tractor Weighting
Engine
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
HC
39. 8
6.88
71.3
136.
213.
15.2
9.59
17.4
CO
231.
66.3
183.
304.
198.
55.6
26.4
137.
NOX
780.
353.
2380.
449.
368.
42.
39.
354.
RCHO
12.
6.3
12.
10.
57.
2 3.4
8 1.0
9.4
SOX
65.3
64.0
93.8
49.0
62.7
16. 3
8. 30
29.6
Particulate
67.3
30.6
21.3
106.
91.2
26.9
13.4
59.7
HC
0. 550
0.093
0.706
2.49
3.21
1.03
1.50
0.428
CO
3. 19
0.897
1.81
5.56
2.98
3.76
4. 13
3.81
NOX
10. 8
4. 78
23.5
8.22
5.54
2.85
6.23
9.83
RCHO
0. 16
0.084
0. 12
0. 19
0.86
0.26
0. 16
0.26
SOX
0.905
0.866
0.929
0.897
0. 944
1. 10
1.30
0.823
Particulate
" 0.902
0.404
0.207
1.90
1.34
2.01
2. 08
1.63
Ford G5000 200. 4870.
Hercules G2300 214. 6820.
J. I. Case 159G 154. 5770.
Wisconsin VH4D 137. 4330.
232. 10. 8.07 11.4 5.91 144.
141. 5.9 9.23 8.82 5.96 190.
44.5 11. 5.77 6.01 7.66 287.
80.0 2.1 5.02 7.89 9.26 293.
6.85 0.30 0.238 0.327
3.93 0.16 0.257 0.240
2.21 0.55 0.287 0.293
5.41 0.14 0.339 0.512
-------
with emissions computed on the farm non-tractor operating schedule
(bottom of Table 38). Without question these assumptions will be
arbitrary, but lacking a complete census of engines in the field, they
are necessary. The assumptions made for the purpose of this report
are listed in Table 39, along with the contribution of each engine to the
composite factors and the co.mposite factors themselves. The composite
emission factors thus generated appear reasonable, but they could be
computed more precisely by the same methods if more comprehensive
data on the farm engine population becomes available.
C. Estimation of National Emissions Impact for Farm Engines
Calculation of total exhaust emissions (or "national impact") from
farm tractors is relatively straightforward at this point, using the
composite emissions factors from Table 39 and the tractor horsepower
and hours usage from section V. A. Assuming that (flywheel hp/PTO hp) =
1. 15 and that the tractor load factor is 0. 57, a typical calculation would be
— Diesel Farm Tractor Exhaust HC - 95.4 x 1 O6 PTO hp
yr
x *' 15 fly_wheel hP x 0. 57 hp used
1. 00 PTO hp X flywheel hp
X490 hr operation x 1. 70 g HC
yr hp hr
1.10 x10-6 ton 3
x — = 57.3 x 10J ton/yr,
g
and this result is shown along with corresponding results for other
tractor engine types and pollutants in Table 40. Crankcase (blowby)
hydrocarbon emissions from gasoline engines were estimated at 20%
of exhaust hydrocarbons according to the rationale developed in section
III. D.
Total horsepower hours for the farm non-tractor applications
were calculated using the assumptions in Table 33 and usage informa-
tion later in section V. A. Engine power in Table 33 was assumed to
be flywheel power, and the co.mposite load factor of 0. 5Z was used
uniformly to calculate emission loadings as given in Table 40.
Evaporative emissions from gasoline-powered machines were com-
puted by arriving at fuel tank volumes with enough capacity for about
8 hours' normal operation. These volumes and other information
pertaining to evaporative emissions computation are summarized in
Table 41. For the purposes of this report, the U.S. was divided into
three regions (Northern, Central, and Southern), and the states included
in each region are shown in Appendix H. The Northern region is ap-
proximately between 49° and 43° north latitude, the Central region between
43° and 37°, and the Southern region between 37° and 31°. Adoption of
these arbitrary regions permitted computation of average days per year
during which each machine was ready for use, by assuming the number of
63
-------
TABLE 39. COMPUTATION OF COMPOSITE BRAKE SPECIFIC EMISSION FACTORS FOR FARM TRACTOR
AND NON-TRACTOR APPLICATIONS OF HEAVY-DUTY DIESEL AND GASOLINE ENGINES
Engine Type
*Assumed Fraction of Contribution to Composite Emission Factor, g/hp hr
and Application Engine
Diesel Farm Allis-Chalmers 3500
Tractor
Detroit Diesel 6V-71
Category hp hrs
0.
0.
International Harv. D407 0.
*
John Deere 6404
Perkins 4. 236
Category Composite Emission
Gasoline Farm Ford G5000
Tractor
\ •
J. I. Case 159G
Category Composite Emission
0.
0.
Factors =
0.
**0.
Factors =
25
05
35
25
10
90
10
HC
0.
0.
0.
0.
0.
1.
4.
0.
5.
126
031
780
732
039
71
82
673
49
0.
0.
1.
0.
0.
3.
116.
26.
143.
CO
665
074
63
665
322
36
8
NOV
2.70
1. 16
2.98
1.46
1.07
9.37
6.43
0.22Z
6.62
RCHO
0. 04
0.006
0. 052
0. 22
0. 019
0. 34
0.25
0. 050
0. 30
SOX Particulate
0.219
0. 045
0. 302
0.228
0. 080
0. 874
0. 206
0. 027
0.233
0. 198
0.010
0. 620
0.305
0. 142
1. 28
0. 320
0.031
0. 351
Diesel Farm
Non-Tractor
£
Allis-Chalmers 3500 0.15
Caterpillar D6C 0.02
Detroit Diesel 6V-71 0.05
International Harv. D407 0. 36
John Deere 6404 0. 15
Mercedes-Benz DM636 0.02
Onan DJBA 0. 05
Perkins 4.236 0. 20
= Category Composite Emission Factors =
0.082 0.478 1.62 0.024 0.136 0.135
0.002 0.018 0.096 0.002 0.017 0.008
Gasoline Farm
Non-Tractor
£
Ford G5000
Hercules G2300
J. I. Case 159G
Wisconsin VH4D
0.30
0. 30
**0.05
0.35
= Category Composite Emission Factors :
0.
0.
0.
0.
0.
0.
1.
1.
1.
0.
3.
7.
035
896
482
021
075
086
68
77
79
383
24
18
0.
2.
0.
0.
0.
0.
4.
43.
57.
14.
103.
218.
091
00
447
075
206
762
08
2
0
4
1.
2.
0.
0.
0.
1.
9.
2.
1.
0.
1.
5.
18
96
831
057
312
97
03
06
18
110
89
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
006
068
13
005
008
052
30
090
048
028
049
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
046
323
142
022
065
165
916
071
077
014
119
281
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
010
684
201
040
104
326
51
098
072
015
180
365
*assumptions are arbitrary and do not reflect actual market on population percentages - see discussion p. 61
**low weights given the Case engine's emissions because it was erroneously run with high restrictions - see
discussion p. 26
-------
TABLE 40.
NATIONAL EMISSIONS IMPACT ESTIMATES FOR
HEAVY-DUTY FARM ENGINES
Pollutant
HC (Exhaust)
Engine Application/Type
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
HC (Evaporative) Tractor/Gasoline
Non-Tractor/Gasoline
HC (Crankcase)
HC (Total)
CO
NOX as N02
RCHOas HCHO
so,
Particulate
Tractor/Gasoline
Non-Tractor/Gasoline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gas-oline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non-Tractor/Gasoline
Tractor/Diesel
Tractor/Gasoline
Non-Tractor/Diesel
Non -Tractor /Gasoline
g/unit yr
xlO'3
38.3
37.3
3.2
9.0
15.6
2. 1
7.5
1.8
38.3
60.4
3.2
12.4
75.2
971.
7.9
275,
210.
45.2
17.4
6.6
7.6
2.0
0.6
0.3
19.6
1.6
1.8
0.4
28.7
2.4
2.9
0. 5
ton/yr
xlO"3
57.6
128.
3.0
12.2
52.7
2.9
25.6
2.4
57.6
206..
3.0
17.5
113.
3330.
7.4
369.
316.
155.
16.3
8,9
11.
7.0
0.5
0.4
29.5
5.4
1.7
0.5
43. 1
8.2
2.7
0.6
Total for Pollutant
ton/yr x 10'3
201.
55.6
28.0
284.
3820.
496.
19.
37. 1
54.6
65
-------
days available for outdoor (tractor) work in each region (180 days for the
Northern region, 225 for the Central, and 270 for the Southern region).
The assumed days available for tractor work were weighted by
the fractions of units in each region to arrive at the average tractor
"usage" (days), and ratios of annual machine usage in hours were
used to compute corresponding "days of usage" for the other applica-
tions. As an example, "days of usage" for self-propelled combines
were calculated by
days of usage (S-P combines) = 229 days pc
73 S-P combine hr/yr
J£ ...i • _•—-. —.— -~ -- .If I I I
291 gasoline tractor hr/hr
= 57 days
Note that this computation is used only to estimate the number of days
per year during which fuel can evaporate from the tanks.
The evaporation factors in the last column of Table 41 were
chosen on the basis of discussion in section III. D. The higher factor
(for "unprotected" tanks) was deemed appropriate for tractors due to
tank location and temperature extremes encountered, and it was
assumed that half the engines in each other application had unpro-
tected tanks (4.0 g HC/gallon tank volume day) and the other half had
protected tanks (2,0 g HC/gallon tank volume day). A typical
computation is evaporative hydrocarbons from gasoline farm tractors,
which is performed
(g/unit yr) gasoline farm tractor evap. HC ~ 229 *-x—: =r--—x 17 gal
yr gal vol day
= 15.6 x 10-3 g/unit yr.
TABLE 41. INFORMATION PERTINENT TO EVAPORATIVE
EMISSIONS FROM HEAVY-DUTY GASOLINE FARM ENGINES
Assumed
Tank
Application Vol, gal
Fraction of
Units in Region
Tractor 17
S-P Combine 40
Pull Combine 10
Baler 15
Miscellaneous 11
North
0.207
0.245
0.245
0.267
0.277
Central
0.495
0.576
0.576
0.571
0.441
South
0. 298
0.179
0.179
0.162
0. 282
Average
Usage* Evap. Factor,
days/yr g/gal vol. day
229
56
40
18
39
4.0
3.0
3.0
3.0
3.0
•* Number of days on which engine is assumed to be in
use or ready for use, and thus to have fuel in the tank.
66
-------
To put emissions from farm machinery in perspective, Table 42
shows them compared to revised 1970 EPA Air Pollution Inventory
data^ '. Note that this use of revised 1970 Inventory data is a departure
from the practice followed in the previous final reports under the subject
contract. The revised figures were not available for inclusion in the
previous reports. In some cases, the estimated emissions from farm
equipment make a small but significant contribution to the national totals
from mobile sources, which is not unexpected due to the high usage and
relatively large population of this equipment.
TABLE 42. COMPARISON OF HEAVY-DUTY FARM ENGINE EMISSIONS
ESTIMATES WITH EPA NATIONWIDE AIR POLLUTANT
INVENTORY DATA
1970 EPA Inventory Data,
106 tons/yr(27) (Revised)
Heavy-Duty Farm Engine
Estimates as % of
All Sources
27.3
100.7
22.1
33.4
25.5
Mobile Sources
15.2
78.1
11.0
1. 0
0.9
All Sources
1.04
3.79
2.24
0.11
0. 21
Mobile Sources
1.87
4.89
4.51
3. 7
6.1
Pollutant
Hydrocarbons
CO
NOX
S0x
Particulate
For farm machinery, the seasonal factors involved in usage are
quite complex, so no attempt will be made to construct a seasonal
emissions breakdown. A breakdown into urban and rural usage seems
unnecessary, since most agriculture, involving powered implements is
performed in rural areas. A regional breakdown is possible, however,
with the result thaf some 16% of emissions from heavy-duty farm engines
appear to occur in the Northern region, 49% in the Central region, and
35% in the Southern region (states in each region shown in Appendix H).
It should be noted, of course, that emissions from farm equipment do
not generally occur in areas where air pollution problems are severe,
so their impact should be considered in view of this factor,
In summary, the major assumptions made in computation of
national emissions impact for farm equipment were:
1. The 1972 farm tractor population (4.469 x 106) and the
populations of other major items of equipment (combines,
balers, etc.) are correct as given in the literature, (see
pp. 47, 48, 54, & 56)
2. Tractor usage in hr/yr can be approximated by
450 + 3.89 (hp-50) - 5.45 (A^ for tractors of given
horsepower and age. (see pp. 54 & 55)
67
-------
3. Total operating time for equipment such as combines
and balers can be estimated from total U. S. crop
average, (see pp. 57 & 58)
4. The fraction of tractors of a given age A^ still surviving
can be approximated by the function Fi = Si/Ni =e-()-00155Ai
(see pp. 49, 50 & 55)
5. Diesel and gasoline horsepower in the field can be
approximated using the following considerations;
(see pp. 49, 51-54)
a. large tractors are predominantly diesel
b. small tractors (considering entire population) are
predominantly gasoline
c. diesel market penetration is proportional to
machine size and is increasing linearly with
time.
6. Engine operating cycles can be estimated from
manufacturers' operating data, and from consideration
of the type of operation each type of engine undergoes
in the field, (see pp. 58-60)
7. Emissions from heavy duty farm engines can be
estimated by combining results of tests conducted
under the subject program in a reasonable way.
(see pp. 61-63)
68
-------
VI. ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
FOR HEAVY-DUTY ENGINES USED IN CONSTRUCTION
APPLICATIONS
The construction applications of heavy-duty engines are treated
in this section as a category separate from the farm and industrial
applications. The reason for this approach is to utilize emissions
data from the greatest number of engines in determining emission
factors, while still separating the applications from one another
along logical lines such as load factors anH duty cycles.
A. Analysis of Population and Usage for Heavy-Duty Contruction
Engines
Compared to the farm engine category, relatively few data are
available on sales and population of construction equipment. The
scarcity of information is partially due to the industry's general
policy of not releasing production statistics, but also to the compara-
tively small amount of government record-keeping which is done on
the construction industry. The major sources of data on construction
equipment^19' 21> 28' 29' 30' 31)include useful generalizations on
horsepower (total) in use, load factors and duty cycles for the larger
machines, annual usage, and limited information on unit shipments by
year. They do not include, however, any specific population data by
machine type and manufacturer (or engine type), so estimates of this
type (necessary to computation of emission factors and impact) will
have to be made in lieu of factual information.
The usage of construction equipment is high and severe, as
documented by several sources ' '' ' ' ' ', so the useful life
of the machines (in years) is correspondingly short. ^Since comprehensive
population data are not available for construction equipment, estimates
will have to be made based on what is known about useful life of the
various equipment items (in total operating hours), their annual usage,
and shipments of each type of machine over the years. The total
number of operating hours which heavily-loaded machinery will endure
appears to be 10, 000 to 15, 000 hours, with the failure point being
defined as the number of hours at which maintenance expense and down-
time become prohibitive. Depending on the type of operation required
by a given owner, a machine may undergo high-load operation constantly
until it is traded in, or its degree of usage may be tapered off as it
ages to extend its life.
To determine life (in years) of each major equipment category, it
will be assumed for the purpose of this report that track tractors and
69
-------
track loaders are good for 10, 000 hours, and that all other categories
of mobile construction equipment will last 12,-000 hours. It is now
necessary to estimate annual usage for the various types of machines
so that life (in years) can be calculated.
Several sources of annual usage information are available ' ' ' ' '
and a synopsis of this information is provided in Figure 23. No clear
consensus on usage as a function of power can be drawn, especially
when the Caterpillar data are included, but the relationship shown on
the graph (arrived at by trial and error),
usage (hr/yr) = 0.1 (hp)1<8 + 500,
provides a reasonable estimate for most of the smaller machines. The
points for large scrapers and off-highway trucks (upper right portion
of graph) are the only data available for these categories, so they will
both be assigned a usage value of 2000 hr/yr on an arbitrary basis.
The same usage will be assumed for wheel dozers. Note that 2080
hr/yr corresponds to working a 40-hour week all year long.
Data on the categories of mobile construction equipment necessary
to computing average life (in years) are given in Table 43, along with
the computed value itself (last column). This value for the life of
each type of construction equipment should provide some idea of the
number of years' shipments which are still in service, with corrections
still to be made for exports.
TABLE 43. COMPUTATION OF AVERAGE YEARS OF SERVICE FOR
SEVERAL CATEGORIES OF CONSTRUCTION EQUIPMENT
Category
Assumed
Service
Life, hr
Assumed
-Avg. hp
Tracklaying Tractors
Tra.cklaying Shovel Loaders
Motor Graders
Scrapers
Off-Highway Trucks
Wheel Loaders
Wheel Tractors
Rollers
Wheel Dozers
10, 000
10, 000
12, 000
12, 000
12,000
12,000
12,000
12, 000
12, 000
120
65
90
475
400
130
75
75
300
Annual
Operation
hr/yr
1050
1100*
830
2000
2000
1140
740
740
2000
Computed
Life, yr
9..5
9. 1
14.5
6.0
6.0
10.5
16.2
16.2
6.0
Compromise between data from references 12 & 30 and usage vs. hp
model above.
70
-------
2000
1600
0)
c
o
a
be
rt
rt
d
1200
800
400
I I
40 hr/week
G G
Usage (hr/yr)-0. 1 (hp)1' 8+ 500
Caterpillar
Other Data (S
Confidential)
© John Deere
ce
I
I
100
200 300
Rated Engine hp
400
500
FIGURE 23. USAGE AS A FUNCTION OF RATED ENGINE HP FOR
VARIOUS CATEGORIES OF CONSTRUCTION EQUIPMENT
71
-------
Shipments of most types ;of construction machineryV^Si 29; have
not shown steady increases over the past 10 to 15 years, but rather
they have shown variation about a more-or-less central or "typical"
value. The generalization holds best for equipment items which are well-
established and not undergoing major changes in sales, but this des-
cription applies well to almost all the categories of equipment. Based
on this idea, a typical value has been arrived at for total yearly ship-
ments of machines in each category over the period of its computed
average life, and these values are given in Table 44. The table also
gives estimates of domestic shipments (total shipments x 90%) over
the computed average life for each category, which will be assumed
for the purposes of this report to be the present population of machines
in each category.
There are many other types of mobile and semi-mobile machines
used in construction, including belt loaders, cranes, excavators,
compressors, pumps, mixers, pavers, trenchers, vibratory compactors,
and generators. Most of these machines are not broken out separately
in available statistics, but a review of the machines currently available
(33, 34) indicates that a typical unit may have an engine of 120 hp and
a usage of perhaps 1000 hr/yr. It is estimated that at least 100, 000
such machines are currently in use.
TABLE 44. TYPICAL TOTAL YEARLY SHIPMENTS AND DOMESTIC
SHIPMENTS OVER COMPUTED AVERAGE LIFE FOR
CONSTRUCTION EQUIPMENT
Typical Total Domestic Shipments over
Category Annual Shipments Computed Average Life
Tracklaying Tractors 23,000 197,000
Tracklaying Shovel Loaders 10,500 86,000
Motor Graders 7, 300 95, 300
Scrapers 5,000 27,000
Off-Highway Trucks 3, 850 20, 800
Wheel Loaders 14,200 134,000
Wheel Tractors
(incl. loader-backhoes) 30,000 437,000
Rollers 5,600 81,600
Wheel Dozers 500 2, 700
B. Development of Emission Factors for Construction Engines
Emission factors for construction engines depend on the composition
of the population by size and type of engine, as well as the duty cycle on
which the engines are run. Addressing the latter topic first, a good
72
-------
deal of information is available on duty cycles for heavy machinery
such as scrapers, tracklaying tractors, wheel loaders, and off-
highway trucks ' 9' 21, 30, 31). Information on duty cycles of
rollers, wheel tractors, and motor graders, however, is very
scarce. The available data on duty cycles are summarized in
Table 45 in terms of weighting factors for the 13-mode cycle (see
Table 2 for 13-mode cycle description if necessary). It should
be noted that the composite load factors shown are not based on
fuel usage, but that they are calculated by
13
composite load factor \~^ w- IT- •
LJ * i(
i=l
where
W^ - time-based mode weighting factor, and
Fi = fraction of maximum load at the speed for that mode.
This calculation gives a good approximation of a fuel-based load
factor, whereas a similar calculation based on fraction of maximum
(mode 8) horsepower will uniformly yield a factor which is lower than
the fuel-based factor. In addition to the data in Table 45, composite
load factors are given in the Caterpillar data v^O) for wheel loaders
(0.55), off-highway trucks (0.45), motor graders (0.50), and track
loaders (0. 65).
In assessing the validity of the data in Table 45, it should be noted
that the Allis-Chalmers information (code B) was supplied not as shown,
but as total factors at each power increment for both operating speeds.
It is quite possible that the factor for, say, modes 6 and 8 for track
tractors (supplied as 0. 70) should have been split something other than
50-50 , but no additional information was given to indicate what the split
should be. Another point, first raised by Mr. John Crowley of the
EMA-OAP Emissions Survey Subcommittee t"'. is that the Allison
data include very little time for warm up and idling, which would not
necessarily be the case in practice.
The approach taken in order to develop logical duty cycles was
to m'odify the Detroit Diesel - Allison data such that idles were weighted
0. 15 for track tractors, scrapers, and off-highway trucks, and 0. 10 for
wheel loaders. The weighting factors for modes 2-6 and 8-12 were then
multiplied by 0. 85 -r (1. 0-original idle weight) for the first three appli-
cations above or by 0. 90-f- (1. 0-original idle weight) for wheel loaders,
so the'sum of weighting factors in each case was still 1. 0. The modi-
fied Allison data for track tractors and scrapers were then averaged
with the Caterpillar data for track tractors and scrapers, respectively,
73
-------
TABLE 45. SUMMARY OF MANUFACTURERS' CONSTRUCTION EQUIPMENT
DUTY CYCLE DATA BASED ON 13 -MODE CYCLE
{see Table 2)
Mode(s) Application
Factors by Source
~~ABC&f
Application
Factors by Source
~A B B
0.02
0.03
0.04
0.04
0.07
0.25
0.20
0. 10
0.05
0.05
0.59
0
0
0.035
0.10
0.35
0.35
0. 10
0.035
0
0
0.88
0.013
0.007
0.020
0.033
0.009
0.466
0.230
0.077
0.091
0.047
0.75
0.03 0.015 0.015 0.044
0.05 0 0 0.158
0.05 0.010 0.075 0.185
0.05 0.225 0.15 0.008
0.07 0.15 0.25 0.054
1,7.13 Tracklaying 0.15 0.03 0.006 Scraper '0.15 0.02 0.02 0.001
Tractor
2
3
4
5
6
8
9
10
11
12
Composite Load Factor
0.
0.
0.
0.
0.
0.
10
15
15
10
10
46
0.
0.
0.
0.
0.
15
225
10
0
015
74
0.
0.
0.
0.
0.
25
15
075
0
015
80
0.
0.
0.
0.
0.
201
198
112
039
0
60
Mode(s) Application
Factors by Source
1. 7, 13
2
3
4
5
6
8
9
10
11
12
Wheel
Loader
0.05 0.016
0.02
0.03
0.15
0. 15
0. 125
0. 125
0. 15
0. 15
0.03
0.02
0.64
0.002
0.064
0. 171
0
0
0.209
0.349
0. 144
0.046
0
0.66
Application
Off-
Highway
Truck
Factors by Source
B(e* C
0.035 0.113
0.038
0.060
0. 162
0.122
0.100
0. 100
0.122
0. 162
0.060
0.038
0.038
0.035
0.013
0.009
0.029
0.447
0.075
0..110
0.014
0.117
Composite Load Factor 0.64 0.66 0. 58 0.62
Source A is Caterpillar <19- 30), Source B is Allis-Chalmers <31), Source C is
Detroit Diesel-Allison*31'
*a'average of 9 usage cycles ^b' self-loading scraper (c) elevating scraper
(«) average of 6 usage cycles (e) average of 2 truck types
74
-------
to obtain the consensus factors for these two applications. Likewise,
the Allison data for wheel loaders and off-highway trucks were
averaged with corresponding Allis-Chalmers data to obtain consensus
factors on these two latter applications.
The results of these procedures are given in Table 46, and it
will be assumed that motor graders operate on the scraper cycle,
that wheel tractors and wheel dozers operate on the track tractor
cycle and that track loaders operate on the wheel loader cycle.
For brevity, the track tractor cycle has been denoted C-l, the
scraper cycle C-2, the wheel loader cycle C-3, and the off-highway
truck cycle has been denoted C-4. In addition, it will be assumed
that the "on-highway" 13-mode weighting factors apply to roller
operation (0. 20 for sum of idles, 0. 08 for other modes), and that
the weighting factors developed for farm non-tractor operation (semi-
mobile) apply to the miscellaneous category of construction engines
(Table 37). This- latter cycle will henceforth be called "general
purpose", with either "construction" or "industrial" added to denote
the category of engines for which it is used in each instance. As
stated in section V. B. , the general-purpose factors were ". . . based
on the ideas that most (of these) engines are governed at or near
rated speed, and that they spend little time at idle, " and these ideas
hold equally well for miscellaneous construction engines. The con-
sensus factors in Table 46 yield composite (calculated) load factors
of about 0. 61 for C-l, 0. 49 for C-2, 0. 62 for C-3, and 0. 58 for C-4.
The composite load factor for the 13-mode "on-highway'1 schedule
is 0.40, and that for the general purpose construction schedule is
about 0. 52. Development of new composite cycles was considered an
important secondary objective of the project, and the above discussion
shows one of the ways in which this objective was met.
Computation of cycle composite mass emissions with mode weights
as given in Table 46 followed the same procedure outlined in section V.
These reweighted data are presented in Table 47, noting that the com-
posite emissions based on the 13-mode "on-highway" factors appear
in Tables 20, 21, and 23, and that those based on the general purpose
construction schedule are given in Table 38 (under farm non-tractor
heading). One outstanding feature of the data in Table 47 is the
relatively small variation in composite specific emissions from one
weighting schedule to another. This insensitivity of the specific
emissions to the schedule reinforces the idea that errors in the
weighting factors probably have a relatively weak effect on the overall
emissions results.
To arrive at category composite emission factors for construction
equipment, it is now necessary to assume a distribution for each
category composed of test engines in some combination. These
attempts are not estimates of the actual category compositions, but
rather combinations which should produce reasonable category com-
posite emission factors. The assumptions will be arbitrary, but they
75
-------
TABLE 46. MODE WEIGHTING FACTORS FOR CHARACTERIZATION OF
EMISSIONS FROM CONSTRUCTION EQUIPMENT
Procedure
Particulate(b)
23-Mode(c'
(a)C-l is for
C-2 is for
C-3 is for
C-4 is for
Mode C - 1
1 0. 150
2 0.028
3 0. 046
4 0.061
5 0. 094
6 0. 171
7 0.450
1 0.050
2 0.009
3 0. 009
4 0.010
5 0.013
6 0.016
7 0.017
8 0.019
9 0.020
10 0.022
11 0.050
12 0.000
13 0.186
14 0. 150
15 0.114
16 0.081
17 0.048
18 0.042
19 0.037
20 0.031
21 0.026
22 0.050
23 0.000
C-2
0. 150
0. 102
0. 145
0.069
0.096
0. 195
0.242
0.050
0.018
0.034
0.050
0.053
0.056
0.036
0.015
0.023
0. 031
0.050
0.000
0.074
0.081
0.087
0.077
0.067
0.051
0.036
0.032
0.027
0. 050
0.000
C-3
0.075
0. 044
0. 193
0. 109
0.036
0.225
0. 317
0.025
0.006
0.015
0.023
0.052
0.081
0.060
0.040
0.036
0.033
0.025
0.000
0.085
0. 106
0. 126
0. 101
0.076
0.048
0.019
0. 012
0. 005
0. 025
0.000
track and wheel tractors and
C-4 Procedure
0.092 13-Mode
0.069
0. 126
0. 106
0.097
0. 194
0. 314
0.031
0.020
0.023
0.026
0.037
0.047
0.042 21 -Mode
0. 036
0. 035
0. 035
0.031
0.000
0. 153
0. 105
0.056
0.067
0.078
0. 049
0.021
0.032
0.044
0.031
0. 000
wheel dozers
scrapers and motor graders
wheel loaders
and track loaders
Mode C-l
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0.050
0.016
0.018
0.028
0.034
0.039
0.050
0.324
0.198
0.083
0.064
0.045
0.050
0.050
0.009
0.009
0.010
0.013
0.016
0.017
0.019
0.020
0.022
0.050
0. 186
0. 150
0. 114
0.081
0.048
0.042
0. 037
0.031
0.026
0. 050
C-2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
050
034
092
104
028
058
050
136
159
122
066
050
050
050
018
034
050
053
056
036
015
023
031
050
074
081
087
077
067
051
036
032
027
050
C-3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
025
Oil
044
153
075
062
025
158
234
141
036
010
025
025
006
015
023
052
081
060
040
036
033
025
085
106
126
101
076
048
019
012
005
025
C-4
0.031
0.037
0. 047
0.087
0.066
0.064
0.031
0.264
0.097
0. 134
0.036
0.075
0.031
0.031
0. 020
0.023
0.026
0.037
0. 047
0. 042
0.036
0.035
0.035
0.031
0. 153
0. 105
0.056
0.067
0.078
0.049
0.021
0.032
0.044
0.031
off-highway trucks
("'sequence of conditions as
'c'sequence of conditions as
shown
shown
in Table 22
in Table 2
76
-------
TABLE 47.
COMPOSITE MASS AND BRAKE SPECIFIC EMISSIONS FOR TEST ENGINES WEIGHTED TO SIMULATE
FOUR TYPES OF CONSTRUCTION USAGE
Engine
Allis -Chalmers
3500
Caterpillar D6-C
Detroit Diesel
6V-71
International
Harvester
D407
John Deere 6404
Perkins 4.236
Ford G5000
(G256)
Hercule* G-2300
J. I. Case 159G
Weighting
Schedule*
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-l
C-2
C-3
C-4
C-l
C-2
C-3
C-l
C-2
C-3
C-l
C-2
C-3
C-l
C-2
C-3
Wisconsin VH4D C-3
Mass Emissions in g/hr
HC
39.5
37. 1
39.6
38.7
6. 70
6.70
6.22
6.75
68. 3
60.9
65.5
66.9
137.
121.
130.
210.
195.
210.
210.
14. 1
15.7
14.7
212.
185.
199
220.
197.
225.
148.
136.
148.
CO
262.
234.
261.
282.
65.9
61.8
53.9
64.9
276.
211.
227.
284.
375.
294.
338.
220.
201.
209.
233.
222.
139.
153.
4530.
4250.
4810.
6Q80.
6060.
7130.
5930.
5200.
5910.
133. 4270.
NOV
908.
730.
900.
856.
384.
321.
395.
365.
2650.
2130.
2620.
2450.
568.
418.
519.
521.
350.
434.
447.
461.
338.
433.
313.
213.
268.
20R.
138.
174.
58.
41.
50.
101.
RCHO
14.
12.
13.
13.
6.6
6.4
6.5
6.6
12.
12.
12.
12.
8. 1
8. 3
8.2
61.
56.
61.
58.
7.9
7. 5
7.5
11.
9.3
11.
6.0
5. 1
6.2
4 12.
1 10.
3 12.
2.2
SO* Part.
73.4 66.1
58. 7 60. 1
71.0 72.7
68.5 70.5
71.8 34.9
58.0 27.9
73.1 31.9
67.4 30.9
106. 21.6
85.2 18.8
102. 21.6
99.4 20.4
54.1 115.
44.0 96.8
52.9 115.
69.6 97.0
55.8 87.0
66.7 105.
64.5 102.
34.4 59.5
26.6 46.1
32.1 52.6
8.81 17.6
7.30 12.6
8.60 15.6
10.0 11. I
8. 30 8. 29
9.79 10.0
6.16 9.59
5.21 6.40
6.03 8.28
5.17 8.56
Specific
HC CO
0.465 3.09
0.563 3.55
0.483 3.19
0.492 3.59
0.078 0.767
0.099 0.916
0.073 0.630
0. 084 0. 806
0.578 2.33
0.661 2.29
0.565 1.96
0.608 2.58
2.16 5.90
2.42 5.88
2.07 5.38
2.68 2.81
3.24 3.35
2.79 2.78
2.92 3.24
0. 330 5. 19
0.483 4.29
0.361 3.75
5.26 112.
6.00 138.
5.15 125.
5.17 164.
6.07 186.
5.52 175.
6.30 253.
7.46 286.
6.45 258.
7.81 251.
Emissions in g/hphr
NO,,
10.7
11.1
11.0
10.9
4.46
4. 75
4.65
4. 55
22.4
23. 1
22.6
22.2
8.95
8. 36
8.25
6.67
5.83
5. 75
6.21
10.8
10.4
10.6
7.75
6.91
6.94
4.8"
4.23
4.27
2.48
2.26
2. 20
5.91
RCHO
0. 15
0. 17
0. 15
0. 16
0.074
0. 092
0.074
0.079
0. 094
0. 12
0.099
0. 11
0. 12
0. 16
0. 13
0.75
0. 91
0. 78
0. 78
0. 18
0.22
0. 18
0.26
0.29
0. 27
0. 16
0. 15
0. 15
0. 50
0. 56
0.50
0.12
SO,,
0.864
0.890
0.866
0.871
0.835
0.860
0. 861
0.839
0.895
0.924
0.884
0.904
0.852
0.880
0. 841
0.890
0.928
0.885
0.897
0.806
0.818
0.789
0.218
0.237
0.223
0. 235
0.255
0. 240
0.262
0.286
0.263
0.304
Part.
0.732
0.886
0.817
0.862
0.383
0'. 404
0.351
0. 371
0. 172
0. 199
0. 174
0.141
1.72
1.91
1.72
.16
.40
.29
.36
. 33
.39
. 32
0.413
0.397
0.376
0. 247
0.249
0.230
0.387
0.344
0.339
0.470
C-2 applies to scrapers and motor graders
C-3 applies to track loaders and wheel loaders
C-4 applies to off-highway trucks
-------
are also necessary because the distribution of engines in service is
simply not known. With these qualifications, the assumptions made
for the purposes of this report are given in Table 48, along with the
assumed contribution of each engine to the category composite factors
and the composite factors themselves. These factors appear reason-
able, but confidence in them could certainly be strengthened if more
data were available on engines operating in the field.
C. Estimation of National Emissions Impact for Construction
Engines
Proceeding along a course parallel to that us"ed on farm equipment
in section V, impact estimates have been calculated for the various
categories of construction equipment, and they appear in Table 49.
The numbers on which the estimates are based were taken from Tables
43, 44, and 48, and a sample calculation for hydrocarbons from track-
laying tractors is
(ton/yr)track tractor HC = 197, 000 units x !2_££ x 0.61
unit
0 HC i i rw i n-6 ton
x 1050 hr/yr x 0. 685 f-^1 x *• IUx lu = 11,400 ton/yr.
} hphr g
It was assumed that diesel engines produce negligible crankcase vent
losses, and that all the gasoline engines used in construction have
uncontrolled crankcase vents. It was also assumed that evaporation
of diesel fuel is negligible, that gasoline evaporated from unprotected
tanks (wheel tractors, motor graders, and half the tanks used on rollers
and miscellaneous engines) at the rate of 4g/(gallon tank volume day);
and that gasoline evaporated from protected tanks (half of those used
on rollers and miscellaneous engines) at the rate of 2g/(gallon tank volume
day).
The average length of the construction season (in days) was computed
by assuming a 7-month season in the Northern region (down to 43° north
latitude), an 8-month season in the Central region (43° to 37°), and a
9-month season in the Southern Region (37° and further south). These
seasons were weighted by the distribution of contractors' work (excluding
homebuilding) (35) as of October 1972, which was 9. 2% in the Northern
region, 51. 7% in the Central region, and 39. 1% in the Southern region.
The result was a weighted mean season of 249 days, which is the period
over which the evaporative emissions were assumed to occur. The
fuel tanks on the gasoline-powered equipment were assumed to be ade-
quate for 8 hours of normal operation, and their volumes were then calcu-
lated using fuel consumption figures for the test engines.
To place emissions from construction equipment in perspective,
Table 50 shows them compared to revised 1970 EPA Air Pollution
78
-------
TABLE 48. COMPUTATION OF CATEGORY COMPOSITE BRAKE SPECIFIC EMISSION
FACTORS FOR HEAVY-DUTY ENGINES USED IN CONSTRUCTION APPLICATIONS
*As8umed
Fraction of
Category Contribution to Category Emission Factor, g/hp hr
Application Engine hp hrs
Tracklaying Allis-Chalmers 3500 0
Tractor Caterpillar D6C 0
(C-l) Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
Perkins 4. 236 0
} =Category Composite Emission Factors
Wheel Allis-Chalmers 3500 0
Tractor International Har. D407 0
(C-l) John Deere 6404 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G ** 0
\ =Category Composite Emission Factors
Wheel Allis-Chalmers 3500 0
Dozer Caterpillar D6C 0
(C-l) Detroit Diesel 6V-71 0
John Deere 6404 0
^ =Category Composite Emission Factors
Scraper Allis-Chalmers 3500 0
(C-2) Caterpillar D6C 0
Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
y =Category Composite Emission Factors
Motor Grader Caterpillar D6C 0
(C-2) Detroit Diesel 6V-71 0
International Har. D407 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G **0
y =Category Composite Emission Factors
Wheel Loader Allis-Chalmers 3500 0
(C-3) Caterpillar D6C 0
Detroit Diesel 6V-71 0
International Har. D407 0
John Deere 6404 0
Perkins 4. 236 0
Ford G5000 (G256) 0
Hercules G-2300 0
J. I. Case 159G* 0
_ Wisconsin VH4D 0
y=Category Composite Emission Factors
Continued on next page.
. 10
.45
. 15
. 10
. 10
. 10
•
.20
.25
.20
. 25
.06
.03
.01
•
. 10
.40
.40
. 10
=
.20
.20
. 30
. 10
.20
. 50
. 25
. 10
. 10
.02
.02
.01
. 10
'.20
.20
. 12
. 10
. 12
.07
.07
.01
.01
*assumptions are arbitrary and do not reflect
percentages - see discussion p. 74
HC
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*•
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
046
035
087
216
268
033
685
093
540
536
082
316
155
063
78
046
031
231
268
576
113
020
198
242
648
22
050
165
242
048
120
121
075
821
048
015
113
298
279
043
360
386
064
078
63
actual
CO NOX
0.
0.
0.
0.
0.
0.
2.
0.
1.
0.
1.
6.
4.
2.
18.
0.
0.
0,
0.
1.
0.
0.
0.
0.
0.
2.
0.
0.
0.
0.
2.
3.
2.
11.
0.
0.
0.
0.
0.
0.
8.
12.
2.
2.
28.
309
345
350
590
281
519
39
618
48
562
30
72
92
53
1
309
307
932
281
83
710
183
687
588
670
84
458
572
588
429
76
72
86
4
319
127
392
646
278
450
75
2
58
51
3
market or
**low weights given the Case engine's emissions because it
was
1.
2.
3.
0.
0.
1.
9.
2.
2.
1.
2.
0.
0.
0.
9.
1.
1.
8.
0.
12.
2.
0.
6.
0.
1.
12.
2.
5.
0.
1.
0.
0.
0.
10.
1.
0.
4.
0.
0.
1.
0.
0.
0.
0.
10.
07
01
36
895
667
08
08
14
24
33
70
465
147
025
05
07
78
96
667
5
22
950
93
836
17
1
38
78
836
04
138
085
023
3
10
930
52
990
575
27
486
299
022
059
3
RCHO
0.015
0.033
0. 014
0.012
0.075
0. 018
0. 17
0.030
0. 030
0. 15
0. 045
0.016
0. 005
0.005
0. 28
0.015
0.030
0.038
0. 075
0. 16
0. 034
0.018
0.036
O.Olf
0. 18
0.28
0. 046
0.030
0. 016
0.022
0. 006
0.003
0.006
0. 13
0.015
0.015
0.020
0. 016
0.078
0.022
0.019
0. 010
0.005
0. 001
0.20
_SOX
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
086
376
134
085
089
081
851
173
213
178
202
013
007
003
789
086
334
358
089
867
178
172
277
088
186
901
430
231
088
082
005
005
003
844
087
172
177
101
088
095
016
017
003
003
759
Part.
0.073
0. 172
0. 026
0. 172
0. 116
0. 133
0.692
0. 146
0.430
0. 232
0.332
0.025
0.007
0. 004
1. 18
0.073
0. 153
0. 069
0. 116
0.411
0. 177
0. 081
0. 060
0. 191
0. 280
0. 789
0.202
0. 050
o. 191
0. 139
0. 008
0. 005
0.003
0. 598
0. 082
0.070
0.035
0. 206
0. 129
0. 158
0.026
0.016
0. 003
0.005
0.730
population
erroneously
run with high restrictions - see discussion p. 26
79
-------
TABLE 48. (Cont'd.) COMPUTATION OF CATEGORY COMPOSITE BRAKE SPECIFIC
EMISSION FACTORS FOR HEAVY-DUTY ENGINES USED
IN CONSTRUCTION APPLICATIONS
*As8umed
Fraction of
Contribution to Category Emission Factor, g/hphr
Application Engine
Tracklaying Allis-Chalmers 3500
Loader (C-3) Caterpillar D6C
International Har. D407
Perkins 4. 236
hp hrs
0
0
0
0
y =Category Composite Emission Factors
Off-Highway Allis-Chalmers 3500
Truck (C-4) Caterpillar D6C
Detroit Diesel 6V-71
John Deere 6404
0
0
0
0
y =Category Composite Emission Factors
Roller Detroit Diesel 6V-71
(13-Mode Mercedes-Benz OM636
On-Highway) Perkins 4. 236
Ford G5000 (G256)
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
0
0
0
0
0
**o
0
. 15
.65
. 10
. 10
s
.20
. 15
.50
. 15
a
.20
.05
.05
.30
.30
.02
.08
y =Category Composite Emission Factors "
Miscellaneous Allis-Chalmers 3500
(General Caterpillar D6C
Purpose Detroit Diesel 6V-71
Const. ) International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
Ford G5000 (G256)
Hercules G-2300
J. I. Case 159G
Wisconsin VH4D
0
0
0
0
0
0
0
0
0
0
**0
0
.05
.05
.40
. 10
.05
.08
.02
. 10
.04
.08
.01
.02
HC
0.072
0.047
0.207
0.036
0.362
0.098
0.013
0. 304
0.438
0.853
0. 140
0.060
0.033
2.66
2.69
0.268
0.857
6.71
0.028
0.005
0.282
0. 249
0. 160
0.082
0.030
0.043
0.236
0.477
0.077
0. 185
CO
0.
0.
0.
0.
1.
0.
0.
1.
0.
2.
0.
0.
0.
47.
63.
6.
24.
193.
0.
0.
0.
0.
0.
0.
0.
0.
5.
15.
2.
5.
478
413
538
375
80
718
121
29
486
62
592
253
248
7
0
32
7
159
045
724
556
149
301
083
381
76
2
87
86
NOx
1.
3.
0.
1.
6.
2.
0.
11.
0.
14.
4.
0.
0.
2.
1.
0.
0.
8.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
65
02
825
06
56
18
682
1
932
9
04
166
535
01
22
176
422
57
540
239
40
822
277
228
125
983
274
314
022
108
RCHO
0.022
0.048
0.013
0.018
0. 10
0.032
0. 012
0.055
0. 12
0.22
0.030
0.015
0.014
0. 10
0.051
0.013
0.012
0. 24
0.008
0.004
0. 048
0. 019
0.043
0.021
0. 003
0.026
0.012
0.013
0. 006
0.003
SOX
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
130
560
084
079
853
174
126
452
135
887
192
066
042
078
083
006
028
495
045
043
372
090
047
088
026
082
010
021
003
007
Part.
0. 123
0.228
0. 172
0. 132
0.655
0. 172
0.056
0.070
0. 204
0. 502
0. 042
0. Ill
0. 077
0. 132
0.087
0.008
0.049
0.506
0.045
0.020
0.083
0. 190
0.067
0. 161
0.042
0. 163
0.013
0.019
0. 003
0.010
) =Category Composite Emission Factors
1.85 32.1
13.3
0.21
0.834 0.816
*assumptions are arbitrary and do not reflect actual market or population
percentages see discussion p. 74
**lbw weights given the Case engine's emissions because it was erroneously
run with high restrictions - see discussion p. 26
80
-------
TABLE 49.
Pollutant
HC (Exhaust)
NATIONAL EMISSIONS IMPACT ESTIMATES FOR HEAVY-DUTY
CONSTRUCTION ENGINES
HC
(Evaporative)
HC
(Crankcase)
HC (Total)
CO
Engine Application
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
Wheel Tractor
Motor Grader
Wheel Loader
Roller
Miscellaneous
Wheel Tractor
Motor Grader
Wheel Loader
Roller
Miscellaneous
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
(g/unityr)
Gasoline
121.
-
-
154.
275.
-
-
205.
254.
22.9
24.9
33.9
20.9
25.4
24. 1
30.8
54.9
41.1
50.7
168.
.
-
210.
364.
.
-
267.
330.
3200.
-
4560.
8050.
-
-
4500.
7720.
x 10"3
Diesel
52.6
49.7
211.
568.
20.5
96.6
16.0
396.
18.3
71.4
-
-
-
.
52.6
49.7
211.
568.
20.5
96.6
16.0
396.
18.3
71.4
184.
720.
670.
1320.
81. 1
286.
79.8
1220.
61.8
188.
ton/yr Total for Pollutant,
xlO'3 ton/yr x 10'3
11.4
29.0
0.3
16.9
3.2
22.1
1.0
4.5
13.4
12.7 114.
1.7
0.2
1.5
1.3
0.7 5.4
1.7
0.2
2.4
2.6
1.3 8.2
11.4
32.4
0.3
16.9
3.6
26.0
1.0
4.5
17.3
14.7 128.
39.9
295.
0.8
39.2
43.8
383.
4.9
14.0
285.
220. 1330.
Continued on next page.
81
-------
TABLE 49. (Cont'd.)
NATIONAL EMISSIONS IMPACT ESTIMATES FOR HEAVY-
DUTY CONSTRUCTION ENGINES
Pollutant
NOX as NO2
RCHO as
HCHO
SOX as SO2
Particulate
Engine Application
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
Tracklaying Tractor
Wheel Tractor
Wheel Dozer
Scraper
Motor Grader
Wheel Loader
Tracklaying Loader
Off-Highway Truck
Roller
Miscellaneous
(g/unit
yr) x ID'3
Gasoline Diesel
.
144.
.
-
120.
268.
-
-
121.
187.
5.9
-
-
7.3
11.
-
5.6
9.0
.
5.2
-
-
6.3
12.1
-
-
6.2
10.6
_
8. 1
-
7.8
15.4
-
-
8.7
11.7
698.
334.
4580.
5630.
397.
1240.
291.
6910.
351.
1030.
13.
10.
59.
130.
4.6
21.4
4.4
102.
5.5
13.9
65.4
30.3
317.
419.
32.4
94.1
37.8
412.
22.6
64.7
53.2
45.5
150.
367.
23.0
88.8
29.0
233.
16.8
63.2
ton/yr Total for Pollutant,
x 10~3 ton/yr x 10~3
151.
147.
5.6
167.
39.5
140.
18.0
79.4
17.1
91.3 856.
2.8
4.6
0. 1
3.9
0.5
2.7
0.3
1.2
0.5
1.4 18.
14.2
12.8
0.4
12.4
3.2
10.3
2.3
4.7
1.0
5.7 67.0
11.5
19.2
0.2
10.9
2.3
9.9
1.8
2.7
1.0
5.6 65.1
-------
TABLE 50. COMPARISON OF HEAVY-DUTY CONSTRUCTION ENGINE
EMISSIONS ESTIMATES WITH EPA NATIONWIDE AIR
POLLUTANT INVENTORY DATA
1970 EPA Inventory Data,
106 tons/yr(27) (Revised)
All Sources
27. 3
100. 7
22. 1
33.4
25. 5
Mobile Sources
15. 2
78. 1
11. 0
1. 0
0.9
Heavy-Duty Construction
Engine Estimates as % of
All Sources
0. 469
1. 32
3. 87
0. 20
0.26
Mobile Sources
0.842
1. 70
7.78
6.7
7.2
Pollutant
Hydrocarbons
CO
NOX
SOX
Particulate
Inventory data \'i. Construction engines appear to make relatively
small contributions to total hydrocarbons and CO, but more significant
contributions to totals of the other emissions. The emissions impact
values presented here differ sharply, in some cases, with previously-
published values for construction equipment, and the reason for the
differences is primarily the inclusion of some gasoline-powered
machinery in the subject estimates. The influence of the gasoline
engines is illustrated by Table 51, which compares the results of a
previous study' ' with those of the subject work. While the agreement
between the earthmoving machinery contribution from this study and
the total of the previous work is not perfect, it shows few basic dis-
agreements. If SOX were calculated for the previous study by the
same method used for this report, for instance, the resulting figure
would be about 62, 800 tons rather than the 107, 000 tons shown. On
the particulate values, it can only be said that the emission factors
used were substantially different.
TABLE 51. COMPARISON OF EMISSION ESTIMATES FOR GASOLINE-
AND DIESEL-POWERED EQUIPMENT WITH A PREVIOUS
EMISSION ESTIMATE
Estimated Ton/yr xlO"3
Coverage of Estimate/Source
All Const. Equpt. /this report
Gasoline Const. Equpt. /this report
Diesel Const. Equpt. /this report
Earthmoving Equpt. */this report
Earthmoving Equpt.
HC
128.
55.
72.
63.
2
8
3
CO
1330.
1110.
220.
176.
NOX
856.
35.6
820.
583.
SOX Particulate
67.
1.
65.
46.
0
6
4
6
65.
2.
62.
38.
0
2
8
4
44.0 223. 625. 107.
20. 0
*does not include any gasoline-powered equipment or any rollers, wheel
dozers, wheel tractors (except scraper tractors), or miscellaneous engines
83
-------
Some of the information required to summarize emissions from
construction equipment on a seasonal/regional basis has already been
developed, namely the assumed operating seasons and fractions of the
engine population in the three regions. No data are available, however,
on the distribution of construction activity between urban/suburban
and rural areas, so it will be estimated that 75% of the activity is in
urban/suburban areas. These simplistic assumptions permit the
compiling of Table 52, which gives valuable results even though it is
necessarily quite heavily qualified. The analysis estimates that some
20% of emissions from construction equipment occur in the winter
months, about 30% in the summer months, and that spring and fall
each account for about 25%. It also estimates that about 8% of
emissions from construction equipment occur in the Northern region,
50% in the Central region, and 42% in the Southern region, (states
included in regions shown in Appendix H).
TABLE 52. ESTIMATE OF SEASONAL, REGIONAL, AND URBAN-RURAL
DISTRIBUTION OF EMISSIONS FROM CONSTRUCTION
EQUIPMENT
.Percentage of Annual Nationwide Emissions by Season
Urban/Suburban Areas
Region
Northern
Central
Southern
Dec-
Feb
0. 83
7. 01
7. 06
Mar-
May
1.46
9.34
7.95
Jun-
Aug
2. 09
11.68
8. 83
Sep-
Nov
1.46
9. 34
7.95
Rural Areas
Dec-
Feb
0. 28
2. 34
2. 35
Mar-
May
0.49
3. 11
2.65
Jun-
Aug
0. 70
3. 89
2. 94
Sep-
Nov
0.49
3. 11
2.65
Subtotals
7.80
49.82
42.38
Subtotals 14.90 18.75 22.60 18.75 4.97 6.25 7.53 6.25
Totals
75.00
25. 00
100.00
In summary, the major assumptions made in computation of
national emissions impact for construction equipment were:
1. The service life of construction machinery is 10, 000 to
12, 000 hours, as shown in the tabulation at the end of
this summary; and the average horsepower of machines
in several categories is as shown in the same tabulation
(see pp. 68 & 69)
2. Annual operating time for construction machines can be
approximated by
usage (hr/yr) = 500 + 0. 1 (hp) 1'8;
84
-------
except for tracklaying shovel loaders, off-highway trucks,
and scrapers, for which other data are available, (see
pp. 69 & 70)
3. The life of construction equipment (in years) computed
from service life (in hours) and usage (in hours/year),
can be used with typical annual shipments to estimate
number of units in service, as shown in the tabulation
on the next page, (see pp. 69 &; 71)
4. Emissions from heavy duty construction engines can be
estimated by combining results of tests conducted under
the subject program in a reasonable way. (see pp. 78 & 79)
5. Engine operating cycles can be estimated from manufacturers'
operating data, (see pp. 71-77)
85
-------
TABULATION OF PERTINENT ASSUMPTIONS AND COMPUTED VALUES
00
Category
Assumed Annual
Service Assumed Operation, Computed
Life, hr Avg. hp hr/yr Life, yr
Typical Total
Annual
Shipments
^Domestic Shipments
Over Computed
Average Life
Track Tractors
Track Shovel Loaders
Motor Graders
Scrapers
Off-Hwy. Trucks
Wheel Loaders
Wheel Tractors
Rollers
Wheel Dozers
General Purpose
10,000
10, 000
12, 000
12, 000
12, 000
12,000
12, 000
12, 000
12, 000
-
120
65
90
475
400
130
75
75
300
120
1050'
1100
830
2000
2000
1140
740
740
2000
1000
9.5
9. 1
14. 5
6.0
6.0
10.5
16. 2
16.2
6.0
-
23, 000
10, 500
7,300
5,000
3, 850
14, 200
30, 000
5, 600
500
-
197,000
86, 000
95, 300
27, 000
20,800
134,000
437, 000
81, 600
2, 700
100,000
^including assumption of 10% exports
-------
VII. ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT
FOR HEAVY-DUTY ENGINES USED IN INDUSTRIAL
APPLICATIONS
This section treats industrial engines as a category separate from
farm and construction engines for purposes of estimating emission factors
and national emissions impact. This approach permits utilization of
emission data from the largest number of engines in determining emission
factors, while still retaining separation between the application categories,
Some of the engine applications included in the industrial classification
are: fork lifts; mobile refrigeration units; auxiliary engines for hy-
draulic pump service on garbage trucks and other large vehicles;
generator and pump service for utilities, airports, and state mainte-
nance organizations; logging; mining; quarrying; oil field operations;
and portable well-drilling equipment.
A. Analysis of Population and Usage for Heavy-Duty Industrial
Engines
Of the three application categories for heavy-duty engines which are
discussed in this report, the industrial category is the most difficult to
define. The attempt made here is to include the engine applications
named above while excluding applications such as agriculture, construc-
tion, railway motive power, marine propulsion, miscellaneous small
engine applications, and others covered by separate reports under the
subject contract. The greatest difficulties occur in separating engines
classified as "miscellaneous 4-stroke small utility engines"^") and
engines designed for railway motive power from available production
and shipment statistics^''.
As averages over the past 10 years, shipments of industrial gasoline
engines have averaged about 1. 1 million, and industrial diesel engine
shipments have averaged about 50, 000. No data are available on the
size distribution of this particular group of engines, but data are given
regarding the value of the engines at the manufacturer's plant. For
the years 1969-1970, the average value of gasoline engines was about
$120, and that for diesel engines was about $1900 (excluding engines
for railway motive power). In order to interpret these values in terms
of engine horsepower, other tables in the Bureau of the Census data * '
were consulted, with the results shown in Figure 24. These data
indicate that the average horsepower of gasoline engines shipped was
about 10, and that the average horsepower of diesel engines shipped
was about 125.
Considering the detail with which applications of diesel engines
(other than industrial) have been dealt under the subject contract, the
value of 50, 000 engine shipments per year can probably be assumed
87
-------
10,
1000,0
O4
o
O
h
lOOto
10
1. 0
4 5 6 7 8 9 10
10 100
Engine Rated Horsepower
4 & 6 7 B 9 10
1000
FIGURE 24. VALUE OF INDUSTRIAL ENGINES AS A FUNCTION OF
ENGINE RATED HORSEPOWER <37)
88
-------
to exclude most of the unwanted applications. For gasoline engines,
however, the average horsepower estimate of 10 indicates that a
large number of engines already treated in the Part 4 Final Report (
on small general utility engines are showing up in the industrial gasoline
engine shipment figures. These engines made their appearance under
the "miscellaneous 4-stroke" category in that report, and the current
population of the category was estimated at 6. 38 million. The category
was assumed to include industrial applications of small utility engines,
so duplication must be avoided here.
The average rated horsepower of engines in the "miscellaneous
4-stroke" category' ' was assumed to be 3. 86 hp, so if the fraction
of gasoline engines classified "industrial" in the statistics^ ' which
are actually in the small engine category were known, a new average
horsepower and unit value could be computed. The fraction of ship-
ments currently double-classified is not known, but an increasing
series of fractions can be assumed, and the subsequent calculations
should show what fraction is reasonable. This computation is outlined
in Table 53, and it is apparent that a substantial number of engines
classified industrial are actually in the small engine group, judging
by the computed average horsepower values.
Estimation of a reasonable average horsepower for gasoline in-
dustrial engines is not straightforward, but a look through listings of
engines available over the past years ' ' indicates a horsepower
range from under 20 hp to over 250 hp for n on -auto motive* engines.
Considering that the industrial rating of most engines is very conserva-
tive, that is, it may be only around half the maximum (intermittent)
rating, 55 hp (continuous rating) seems like a reasonable average.
This engine might have a maximum (intermittent) rating of 75 to 80
hp, but it will be considered as rated on a continuous basis for this
report. The result of this computation, then, is that an estimated
132,000 industrial gasoline engines are shipped each year, with the
remainder of those classified "industrial" in the Bureau of the Census
data (^) assumed included with other small engines in an earlier
report (36)(that is, 88% of the gasoline engines classified "industrial"
will be assumed to be small utility engines).
* Usage of industrial engines is another unknown, but for the pur-
poses of this report it will be assumed as approximately one-half
that predicted for comparably-sized construction engines by the
relationship shown in Figure 23. These values would be 600 hours
for diesels and 300 hours for gasoline engines. Useful service life
for-industrial engines probably depends to a large extent on type of
operation, but since no positive information is available, the values
of 5000 hr for diesel engines and 2500 hr for gasoline engines will be
used. These figures result in population estimates of 417.000 for
89
-------
TABLE 53. COMPUTATION OF INDUSTRIAL GASOLINE ENGINE
AVERAGE HORSEPOWER BASED ON ASSUMPTIONS
ABOUT DOUBLE-CLASSIFICATION OF
SMALL UTILITY ENGINES
Assumed Fraction
Industrial Gasoline Computed Industrial
Engines Currently Gasoline Engine Average Value,
Double-Classified Average Horsepower Dollars (Fig. 24)
0 10 120
0.10 11 120
0.20 12 170
0.30 13 200
0.40 14 220
0.50 16 280
0.60 19 370
0.70 24 510
0. 80 35 400
0.85 45 420
0.88 55 450
0.90 65 480
0.92 81 520
0.94 106 600
industrial diesel engines (where imports and exports are assumed to
balance) and 990, 000 for industrial gasoline engines (where 10% of
production is assumed to be exported).
B. Development of Emission Factors for Industrial Engines
The duty-cycles of industrial engines are undoubtedly of many
types, but no specific information is available on them which would
permit computation of emission factors on a rigorous basis. In the
absence of data, a duty cycle termed "general purpose industrial"
will be used, with weighting factors as shown on the right side of
Table 37 and composite emissions as shown at the bottom of Table 38
(called the "farm non-tractor" schedule in Tables 37 and 38). The
general purpose industrial cycle is the same as both the farm non-tractor
and general purpose construction cycles, with basis as discussed in
section V. B. This cycle development was the final effort involved in
achieving the secondary objective of modifying existing procedures,
which was mentioned in section II.
Composite emissions for the category of industrial engines were
determined by weighting emissions from each of the test engines as
shown in Table 54. This weighting procedure is not an attempt to
reconstruct the industrial engine population, but is rather intended to
compute reasonable emission factors only. These category composite
90
-------
TABLE 54. COMPUTATION OF COMPOSITE BRAKE SPECIFIC EMISSION FACTORS
FOR INDUSTRIAL APPLICATIONS OF HEAVY-DUTY DIESEL
AND GASOLINE ENGINES
*Assumed
Fraction of
Category Contribution to Category Emission Factor, g/hphr
Engine Type
Industrial
Diesel
1 Category
Industrial
Gasoline
Engine hp hours
Allis-Chalmers 3500
Caterpillar D6C
Detroit Diesel 6V-71
International Har. D407
John Deere 6404
Mercedes-Benz OM636
Onan DJBA
Perkins 4. 236
0.08
0.05
0.40
0.15
0.07
0.05
0.05
0.15
Composite Emission Factors -
Ford G5000 (G256)
Hercules G-2300
0.35
0.40
J. I. Case 159G **0.05
> - Category
Wisconsin VH4D
0.20
Composite Emission Factors =
HC
0.
0.
0.
0.
0.
0.
0.
0.
1.
2.
2.
0.
1.
6.
044
005
282
374
225
052
075
064
12
07
38
383
85
68
CO
0.
0.
0.
0.
0.
0.
0.
0.
3.
50.
76.
14.
58.
199.
255
045
724
834
209
188
206
572
03
4
0
4
6
NOX
0.864
0.239
9.40
1.23
0.388
0. 142
0.312
1.47
14.0
2.40
1.57
0. 110
1. 08
5. 16
RCHO
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
013
004
048
028
060
013
008
039
21
10
064
028
028
22
SOX
0.072
0. 043
0.372
0. 135
0.066
0.055
0.065
0. 123
0.931
0.083
0. 103
0.014
0.068
0.268
Part.
0.072
0.020
0.083
0.285
0. 094
0. 100
0. 104
0. 244
1.00
0. 114
0.096
0.015
0. 102
0.327
*assumptions are arbitrary and do not reflect actual market or population
percentages - see discussion p. 87
**low weight given the Case engine's emissions because it was erroneously run
with high restrictions - see discussion p. 26
91
-------
factors could be made much more rigorous if more data were available
on the makeup of the population of industrial ergines in service.
C. Estimation of National Impact for Industrial Engines
Using essentially the same methods as used for farm and construc-
tion engines, impact estimates have been made for emissions from
industrial engines. The same assumptions on crankcase vent and
evaporative losses were made for industrial engines as were made
for construction engines (section VI. C. ), except that all industrial
engines were assumed to have evaporative losses of 3g/(gallon tank
volume day). This latter factor is the same as assuming that half
the gasoline engines had protected tanks and the other half had unpro-
tected tanks. In addition, the annual days of usage for industrial
engines was assumed to be the same as for construction engines in
each region. When combined with the assumption that industrial engines
are distributed in proportion to population (9. 4% in the Northern region,
55. 6% in the Central, and 35. 0% in the Southern region) ^38\ the weighted
mean season for use is 248 days, which is the period over which evapora-
tive emissions were assumed to occur. For gasoline engines averaging
55 hp, the nominal fuel tank volume computed was 25 gallons.
Impact estimates based on the assumptions and data presented
alone are given in Table 55. Gasoline engines appear to dominate the
hydrocarbon and (especially) the CO emissions, while the diesels produce
considerably more NOX. Table 56 gives a comparison of industrial
engine emissions to revised 1970 EPA Air Pollution Inventory Data ^ ',
indicating that industrial engines make small but significant contribu-
tions only to national totals of CO and NOX. Industrial engine contribu-
tions to hydrocarbons, SOX, and particulate appear to be minimal.
To develop a breakdown of emissions from industrial engines on
a seasonal, regional, and urban/rural basis, it will be necessa.yto
make several assumptions. First, it will be assumed that industrial
engines are distributed in proportion to population. It will also be
assumed that the distribution of annual operating time follows that
developed for estimation of evaporative emissions,' and that the engine
distribution among urban/suburban and rural areas is proportional to
the (urban + suburban) and rural populations, respectively.
The results of this analysis are given in Table 57, indicating that
about 74% of emissions from industrial engines may occur in urban/
suburban areas. The table also shows that about 20% of industrial
engine emissions occur in winter, 30% in the summer, and 25% each
-------
TABLE 55. NATIONAL EMISSIONS IMPACT ESTIMATES FOR
HEAVY-DUTY INDUSTRIAL ENGINES
Pollutant
HC (Exhaust)
g/unit yr ton/yr
Engine Type x IP"3 x 10"3
Diesel
Gasoline
HC (Evaporative) Gasoline
HC (Crankcase) Gasoline
HC( Total)
CO
NOX as
Diesel
Gasoline
Diesel
Gasoline
Diesel
Gasoline
RCHO as HCHO Diesel
Gasoline
SOX as SO2
Particulate
Diesel
Gasoline
Diesel
Gasoline
43. 7
57. 3
18.6
11. 5
43. 7
87. 4
118.
1710.
546.
44. 3
8. Z
1. 9
36. 3
2. 3
39. 0
2. 8
20. 1
62. 5
20. 3
12. 5
20. 1
95.3
54. 3
1860.
251.
48. 3
3. 8
2. 1
16. 7
2. 5
17.9
3. 1
Total for Pollutant
ton/yr x 10~3
82.
20.
12.
6
3
5
115.
1910.
299.
5.
19.
21.
9
2
0
TABLE 56. COMPARISON OF HEAVY-DUTY INDUSTRIAL ENGINE
EMISSIONS ESTIMATES WITH EPA NATIONWIDE AIR
POLLUTANT INVENTORY DATA
Pollutant
Hydrocarbons
CO
NOX
SOX
Particulate
1970 EPA Inventory Data,
106 tons/yr(27) (Revised)
All Sources
27. 3
100. 7
22. 1
33. 4
25. 5
Mobile Sources
15. 2
78. 1
11.0
1.0
0.9
Heavy-Duty Industrial
Engine Estimates as % of
All Sources
0.421
1. 90
1.42
0. 06
0. 08
Mobile Sources
0. 757
2.45
2. 72
1.9
2. 33
-------
in fall and spring. On a regional basis, about 8% of these emissions
occur in the Northern region, 54% in the Central region, and 38% in
the Southern region (regions defined in Appendix H). Compared to the
distribution of population quoted earlier, the emission estimates are
weighted less heavily toward the north and more heavily toward the
south due to the graduation of assumed working season length from
north to south.
TABLE 57. ESTIMATE OF SEASONAL, REGIONAL, AND URBAN-RURAL
DISTRIBUTION OF EMISSIONS FROM INDUSTRIAL ENGINES
Percentage of Annual Nationwide
Urban/Suburban Areas
Region
Northern
Central
Southern
Dec-
Feb
0. 72
7.66
6. 16
Mar-
May
1. 25
10. 21
6.92
Jun-
Aug
1.79
12. 76
7.69
Sep-
Nov
1. 25
10.21
6.92
Dec-
Feb
0. 42
2.44
2. 32
Emissions by Season
Rural
Mar-
May
0. 74
3. 26
2.61
Areas
Jun-
Aug
1, 06
4. 07
2. 90
Sep-
Nov
0. 74
3. 26
2. 61
Subtotals
7.97
53.87
38. 13
Subtotals 14.54 18.38 22.24 18.38 5.18 6.61 8.03 6.61
Totals
73. 54
26.43
99.97
In summary, the major assumptions made in computation of national
emissions impact for industrial engines were:
1. Engine shipments as reported by the Bureau of the Census^'),
the total value of such shipments, and the values of the
engines shipped according to power output can be used to
estimate the average power output of industrial engines.
(see pp. 84-86)
2. A high percentage of gasoline engines classified "industrial"
in the Bureau of the Census statistics are actually in the
light-duty engine category covered by an earlier report^"/.
(see pp. 86 & 87)
3. Annual usage of industrial engines is approximately one-
half that of construction engines of similar power output,
and service life is 2500 hr for gasoline engines and 5000
hr for diesel engines. Population of industrial engines
can be estimated using the Bureau of the Census shipment
figures and the service life and annual usage estimates
just given, (see pp. 86 & 87)
94
-------
4. Emissions from heavy duty industrial engines can be
estimated by combining results of tests conducted under
the subject program in a reasonable way. (see pp. 87-89)
5. Engine operating cycles- can be estimated by considering
the type of operation most industrial engines undergo in
the field, (see pp. 58 & 59)
95
-------
VIII. SUMMARY
This report is the end product of a study on emissions from heavy-
duty diesel and gasoline engines used in farm, construction, and
industrial applications. It is Part 5 of a planned seven-part final
report on "Exhaust Emissions from Uncontrolled Vehicles and Related
Equipment Using Internal Combustion Engines," Contract EHS 70-108.
The report includes test data, documentation, and discussion on detailed
emissions characterization of eight diesel engines and four gasoline
engines, as well as estimated emission factors and national emissions
impact for each of the three applications separately. Asa part of the
final report on the characterization phase of EHS 70-108, this report
does not include information on aircraft turbine emissions, outboard
motor crankcase drainage, or locomotive emissions control technology.
As required by the contract, these three latter areas have been or will
be reported on separately.
Emission measurements on the twelve heavy-duty engines were
conducted in the Emissions Research Laboratory, utilizing several
electric engine dynamometers. Most of the data were acquired by
operating the engines on the "21-mode" or "23-mode" mapping proce-
dures or some variation thereof, with the exception of "transient"
smoke data acquired by using the Federal smoke test procedure.
Gaseous emission measurements were also acquired during transient
operation, but the results did not justify a detailed analysis.
The exhaust products measured included total hydrocarbons by FIA;
CO, CC>2. NO, and hydrocarbons (HC for gasoline engines only) by NDIR;
O2 by electrochemical analysis; light hydrocarbons by gas chromatograph;
aldehydes by wet chemistry; particulate by gravimetric analysis; and
smoke (diesel engines only) by the PHS light extinction smokemeter.
Evaporative losses of gasoline, crankcase vent hydrocarbon emissions
from gasoline engines, and SOX emissions were calculated rather than
being measured. Emission factors and national impact were computed
(separately for each of the three applications) for total hydrocarbons,
CO, NOX, RCHO (aldehydes), particulate, and SOX.
Reiterating qualifications given earlier in the text, the major
assumptions made in computation of national emissions impact for farm
equipment were:
1. The 1972 populations of farm tractors and other major
items of powered farm equipment are correct as given
in the literature, (see pp. 47, 48, 54 & 56)
2. Tractor usage in hr/yr can be approximated by
450 + 3.89 (hp-50) - 5.45 (age, yr). (see pp. 54 & 55)
3. Total operating time for equipment except tractors
96
-------
can be estimated from total U. S. crop average
(see pp. 57 & 58)
4. The fraction of tractors of age A^ still surviving can
be approximated by Fj = S^N- = e~0-00155A i. (see
pp. 49, 50, & 55)
5. Diesel and gasoline horsepower in the field can be
approximated using the following considerations;
(see pp. 49, 51-54)
a. large tractors are predominantly diesel
b. small tractors (considering entire population)
are predominantly gasoline
c. diesel market penetration is proportional to
machine size and is increasing linearly with time.
6. Engine operating cycles can be estimated from
manufacturers' operating data, and from consideration
of the type of operation each type of engine undergoes
in the field, (see pp. 58-60)
7. Emissions from heavy duty farm engines can be
estimated by combining results of tests conducted
under the subject program in a reasonable way.
(see pp. 61-63)
The major assumptions made in computation of national emissions
impact for construction equipment were:
1. The service life of construction machinery is 10, 000 to
12, 000 hours, and the average horsepower of machines
in several categories is as shown on the next page.
(see pp. 68 & 69)
2. Annual operating time for construction machines can
be approximated by
usage (hr/yr) = 500 + 0. 1 (hp) 1-8;
except for tracklaying shovel loaders, off-highway trucks,
and scrapers, for which other data are available, (see
pp. 69 & 70)
3. The life of construction equipment (in years), computed
from service life (in hours) and usage, can be used with
typical annual shipments to estimate number of units in
service, as shown on the next page, (see pp. 69 & 71).
97
-------
TABULATION OF PERTINENT ASSUMPTIONS AND COMPUTED VALUES FOR CONSTRUCTION EQUIPMENT
--O
00
Category
Assumed Annual Typical Total
Service Assumed Operation, Computed Annual
Life, hr Avg. hp hr /yr Life, yr Shipments
^'Domestic Shipments
Over Computed
Average Life
Track Tractors
Track Shovel Loaders
Motor Graders
Scrapers
Off-Hwy. Trucks
Wheel Loaders
Wheel Tractors
Rollers
Wheel Dozers
General Purpose
10, 000
10, 000
12, 000
12, 000
12, 000
12, 000
12, 000
12, 000
12, 000
-
120
65
90
475
400
130
75
75
300
120
1050
1100
830
2000
2000
1140
740
740
2000
1000
9.5
9. 1
14, 5
6.0
6.0
10. 5
16. 2
16.2
6.0
-
23, 000
10, 500
7, 300
5, 000
3, 850
14, 200
30, 000
5, 600
500
-
197, 000
86, 000
95, 300
27, 000
20, 800
134, 000
437, 000
81, 600
2, 700
100, 000
*including assumption of 10% exports
-------
4. Emissions from construction engines can be estimated
by combining results of tests conducted under the
subject program in a reasonable way. (see pp. 70 & 79)
5. Engine operating cycles can be estimated from
manufacturers' operating data, (see pp. 71-77)
The major assumptions made in computation of national
emissions impact for industrial engines -were:
1. Engine shipments as reported by the Bureau of the Census^-*'*
the total value of such shipments, and the values of the
engines shipped according to power output ca.n be used
to estimate the average power output of industrial
engines, (see pp. 84-86)
2. A high percentage of gasoline engines classified "industrial"
in the Bureau of the Census statistics are actually in the
light-duty engine category covered by an earlier report(->").
(see pp. 86 & 87)
3. Annual usage of industrial engines ie approximately
one-half that of construction engines of similar povver
output, and service life is 2500 hr for gasoline tnginas
and 5000 hr for diesel engines. Population of industrial
engines can be estimated using the Bureau of the
Census shipment figures and the service life and annual
usage estimates just given, (see pp= 86 & 87)
4. Emissions from industrial engines can be estimated
by combining results of tests conducted under the
subject program in a reasonable way. (see pp. 87-89)
5. Engine operating cycles can be eotimated by considering
the type of operation most industrial engines undergo
in the field, (see pp. 58 & 59)
The estimates of total emissions impact made in this report
are on the basis of engine populations, annual usage, and engine size
and type, rather than on the basis of fuel consumed by the category as
a whole. The decision to base estimates on work output was made for
two major reasons. First, assumptions such as annual usage and popula-
tion composition are easier to deal with in terms of personal experience
than a number for overall fuel consumption which is nearly impossible
to check. It is also more straightforward to check the smaller
99
-------
assumptions statistically, should it be considered desirable at some
point to generate more accurate impact estimates. Second, the validity
of overall fuel usage data is very much in doubt. The Bureau of Mines
off-highway diesel fuel estimates^3?' 40), for instance, do not include
any heating oil used in off-highway equipment, and all diesel fuel sold
by distributors who sell less than 420, 000 gallons of distillate fuel
annually is not reported at all. Furthermore, considering any sort of
realistic need on the part of agriculture, construction, and industry,
the Bureau of Mines off-highway diesel fuel usage estimates simply
seem unreasonably low.
Data on gasoline usage by the Department of Transportation^1)
seem closer to fact, but even these estimates of off-highway gasoline
usage are undoubtedly low because.
1. Gasoline used in lawn, garden, and recreational engines,
outboard motors, and off-road vehicles is largely
purchased through normal retail outlets. Such fuel
is taxed and included with on-road fuel estimates.
2. Construction and industrial concerns which operate
both highway and off-highway equipment often buy
fuel for all uses at once, and do not go to the trouble
of securing tax exemption for the (sometimes
relatively small) amounts used in off-highway
equipment. The part used off-highway is thus taxed,
and included with on-road fuel estimates.
For clarity, estimated emissions from F, C, & I engines as per-
centages of revised 1970 national totals from all sources and mobile
sources are presented in the following tabulation. As shown above,
National Total Used Percent of National Total for Pollutant
for Comparison Application HC CO NOX SOX Part.
All Sources 1970 Farm 1.0 3,8 2.2 0.11 0.21
(Revised) Construction 0.47 1.3 3.9 0.20 0.26
Industrial 0.42 1.9 1.4 0.06 0.08
Mobile Sources 1970 Farm 1.9 4.9 4.5 3.7 6.1
(Revised) Construction 0.84 1.7 7.8 6.7 7.2
Industrial 0.76 2.4 2.7 1.9 2.3
these estimates are highly qualified, and should be used only with full
knowledge of the accuracy of data and assumptions used in arriving at
them. In the regional order Northern-Central-Southern, emissions from
farm engines are estimated to be distributed l6%-49%-35%, those from
construction engines 8%-50%-42%, and those from industrial engines
8%-54%-38%. It is also estimated that 75% of construction equipment
100
-------
emissions and 74% of industrial engine emissions occur in urban/suburban
areas, while virtually all emissions from farm equipment occur in rural
areas.
The categories of engines covered in this report appear to make
some significant, but not major, contributions to national pollutant totals
from man-made sources. It should be recognized, however, that the
estimates are based on many assumptions and data items which are un-
proven, but as reasonable as possible. If more precise estimates are
to be made, a great deal of quantitative information on engine population
and usage must be gathered as a prerequisite.
101
-------
LIST OF REFERENCES
1. Federal Register, Vol. 37, No. 221 Part II, Subparts Hand J, November
15, 1972. ~
2. R. G. Bascom and G. C. Hass, "A Status Report on the Development
of the 1973 California Diesel Emissions Standards." SAE Paper No.
700671, 1970.
3. Sawicki, E. , et al, The 3-Methyl-3-benzathiazalone Hydrazone Test,
Anal, Chem. 33:93, 1961.
4. Altshuller, A. P. , et al, Determination of Formaldehyde in Gas Mixtures
by the Chromotropic Acid Method, Anal, Chem. 33:621, 1961.
5. S. R. Krause, "Effect of Engine Intake-Air Humidity, Temperature,
and Pressure on Exhaust Emissions. " SAE Paper No. 710835, 1971.
6. Petroleum Products Survey No. 73, U.S. Department of the Interior,
Bureau of Mines, January 1972.
7. D. T. Wade, "Factors Influencing Vehicle Evaporative Emissions."
SAE Paper No. 670126, 1967.
8. P. J. Clarke, et al, "An Adsorption-Regeneration Approach to the
Problem of Evaporative Control." SAE Paper No. 670127, 1967.
9. Edwin E. Nelson, "Hydrocarbon Control for Los Angeles by Reducing
Gasoline Volatility. " SAE Paper No. 690087, 1969.
10. Marvin W. Jackson and Robert L. Everett, "Effect of Fuel Composition
on Amount and Reactivity of Evaporative Emissions. " SAE Paper No.
690088, 1969.
11. P. A. Bennett, et al, "Reduction of Air Pollution by Control of Emis-
sions from Automotive Crankcases, " Paper No. 142A presented
January I960 at the SAE Annual Meeting.
12. G. M. Heinen, "We've Done the Job - What's Next?" SAE Paper No.
690539, 1969.
13. Optical Properties and Visual Effects of Smoke-Stack Plumes, A co-
operative study: Edison Electric Institute and U.S. Public Health
Service, Publication No. 999-AP-30, Cincinnati, 1967.
102
-------
LIST OF REFERENCES (Cont'd)
14. John O. Storment and Karl J. Springer, "Evaluation of Diesel Smoke
Inspection Procedures and Smokemeters. " Final Report by South-
west Research Institute to the Environmental Protection Agency on
Contract EHS 70-109, July 1972.
15. Confidential Emissions Data From Three Manufacturers Submitted
to C. T. Hare of SwRI at the Request of the Project Officer.
16. W. F. Marshall and R. D. Fleming, "Diesel Emissions Reinventoried. "
Report of Investigations 7530 by the U.S. Department of the Interior,
Bureau of Mines, 1972.
17. John O. Storment and Karl J. Springer, "A Surveillance Study of
Smoke from Heavy-Duty Diesel-Powered Vehicles Southwestern
U. S. A. " Final Report to the Environmental Protection Agency on
Contract EHS 70-109, June 1973.
18. Data Submitted to Karl J. Springer by A. H. Glasenapp, Experimental
Engineering Section of Engineering Division, Truck and Coach Division
of General Motors Corporation.
19. R. D. Henderson, "Air Pollution and Construction Equipment. " SAE
Paper No. 700551, 1970.
20. Implement & Tractor magazine, Statistical Issues from 1964 through
1972, "Red Book" Specification Issues, and Others.
21. Information on Farm Tractor and Industrial Equipment Population
and Usage Sent to SwRI by Mr. James W. Walker (John Deere), Chair-
man of the EMA-OAP Emissions Survey Subcommittee. Sources
Referenced Include SAE Papers, EPA Reports, Manufacturers' Data,
Implement (k Tractor magazine, and Statistical Abstracts of the United
States.
22. Implement &c Tractor magazine, April 7, 1967.
23. Information on Farm Tractor Duty Cycles and Annual Usage Sent to
C. T. Hare by Mr. John H. Crowley (J. I. Case), Past Chairman
of the EMA-OAP Emissions Survey Subcommittee. Sources Refer-
enced Include Agricultural Engineering (May 196l and February 1969),
Detroit Diesel-Allison Division of General Motors Corporation, and
John Deere Company.
103.
-------
LIST OF REFERENCES (Cont'd)
24. Statistical Abstracts of the United States, 1971.
25. Implement & Tractor magazine, February 7, 1973, Referencing an
ASAE Paper, "A Projection of New Problems and Opportunities for
Tractor Safety, " by Prof. Richard G. Pfister, Michigan State Uni-
versity.
26. Bainer, et al, Principles of Farm Machinery, John Wiley & Sons,
New York, 1955.
27. 1970 EPA Air Pollution Inventory Estimates (revised), 1973 Annual
Report of the Council on Environmental Quality.
28. Automotive Industries Statistical Issues, 1960-1973.
29. Current Industrial Reports, Construction Machinery 1970 (and Other
Years), Series MA-35D(70)-1, U.S. Department of Commerce,
Bureau of the Census.
30. R. D. Henderson, "Digging Into Air Pollution Problems--An Earth-
mover's Viewpoint. " SAE Paper No. 720609, 1972.
31. Information on Construction Equipment Duty Cycles Sent to C. T.
Hare by Mr. John H. Crowley (J. I. Case), Past Chairman of the
EMA-OAP Emissions Survey Subcommittee. Sources Referenced
are Allis-Chalmers and Detroit Diesel-Allison Division of General
Motors Corporation.
32. Confidential Sales Data from a Manufacturer, Submitted to C. T. Hare
of SwRI.
33. Construction Methods & Equipment, November and December 1972.
34. Construction Equipment, February 1973.
35. Construction Methods & Equipment, December 1972.
36. Charles T. Hare and Karl J. Springer, "Exhaust Emissions from
Uncontrolled Vehicles and Related Equipment Using Internal Com-
bustion Engines. " Final Report Part 4, Small Air-Cooled Spark
Ignition Utility Engines, Contract EHS 70-108 with the Environmental
Protection Agency, May 1973.
104
-------
LIST OF REFERENCES (Cont'd)
37. Current Industrial Reports, Internal Combustion Engines 1971 (and
Prior Years to 1964), Series MA-35L(71)-1, U. S. Department of
Commerce, Bureau of the Census.
38. The World Almanac, 1972 Edition, Luman H. Long (ed), Newspaper
Enterprise Association, Inc., New York, 1971.
39. Sales of Fuel Oil and Kerosine in 1965 (1966, 1968, 1969, 1970),
Mineral Industry Surveys, U. S. Department of the Interior, Bureau
of Mines.
40. (form for reporting of) Fuel Oil and Kerosine Sales and Inventories
(by individual companies), U. S. Department of the Interior,
Bureau of Mines.
41. State Motor-Fuel Tax Receipts, Table MF-1 (1968-1971); Motor-
Fuel Consumption, Table MF-2 (1968-1971); Analysis of Private
and Commercial Use of Gasoline for Nonhighway Purposes,
Table MF-24 (1968-1971); U. S. Department of Transportation,
FHA, Bureau of Public Roads.
105
-------
APPENDIX A
GRAPHICAL PRESENTATION OF
EMISSIONS FROM DIESEL ENGINES USED
IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
A-l
-------
1900 rpi
1900 rprr
25 50 75
Percent of Full Load
Percent of Fall Load
FIGURE A-l.HYDROCARBON EMISSIONS FROM AN ALLIS-CHALMERS
3500 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
FIGURE A-2. HYDROCARBON EMISSIONS FROM A CATERPILLAR
D6C ENGINE AS A FUNCTION OF LOAD AT TWO SPEEDS
I I
25 50 75
Percent of Full Load
FIGURE A-3. HYDROCARBON EMISSIONS FROM A DETROIT DIESEL
6V-71 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
5OO
O
Z5 SO 75 IOO
PERCENT OF FOUL LQM>
. HYDROCARBON EMISSIONS FROM AN
HARVtSTER 0401 EN&IME AS A FUNCTION OF LOAD AT FOOR
A-2
-------
PERCENT OF FOL-U LOAD
E A-£ HYDROCAfc&ON EMISSIONS FROM A JOKN DEE.RE
E^friNt. ftt A. FUMCT'CN) Of LC^D /ST FOUR SPEEDS.
2400 rp-
I I
2100 rpir
1 700 rprr
25 50 75
Percent of Full Load
FIGURE A-6, HYDROCARBON EMISSIONS FROM A MERCEDES-
BENZ OM636 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
2400 rpi
25 50 7
Percent of Fall Load
25 50 75
Percent of Full Load
FIGURE A-7. HYDROCARBON EMISSIONS FROM AN ONAN DJBA
ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
FIGURE A-8. HYDROCARBON EMISSIONS FROM A PERKINS
4. 236 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
-------
50
nt of Full Load
FIGURE A-9. CARBON MONOXIDE EMISSIONS FROM AN ALLI3-
CHALMERS 3500 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
FIGURE A-10. CARBON MONOXIDE EMISSIONS FROM A CATERPILLAR
D6C ENGINE AS A FUNCTION OF LOAD AT TWO SPEEDS
Purc«nt of Full load
FIGURE A-JJ CARBON MONOXIDE EMISSIONS FROM A DETROIT
DILSJtL fiV-7 1 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
25 SO -75
PE.RCENT OF FOUL LOftO
A-12 . CARfcON MONOXIDE EMISSIONS. FROM AN 1 NTE-RNAT IQNftL
&STER D4O7 ENGrlNE AS A FUUCT10N OF LOAD AT FOUR SPEEDS
-------
A. 1200
O
0 10OO
600
600
400
25 50 75
PERCENT OF FULL LOAD
RC- M3. CARBON ttONOXIDE EMISSIONS FROM A JOHN OEtRt
W04- EN&INL A5 A FUNCTION OF LOftD AT FOUR SPEEDS
1800
1600
1-100
1200
g 800
a
I
Percent of Full Load
FIGURE A-14. CARBON MONOXIDE EMISSIONS FROM A MERCEDES-
BENZ OM636 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
0 rpnr
00 rpnr
Z5 50 75
Percent of Full Load
FIGURE A-I5. CARBON MONOXIDE EMISSIONS FROM AN ONAN
DJBA ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
450 rptr
2-100 rprr
400 rprr
ZS '50 75 100
Percent of Full Load
FIGUREA-16. CARBON MONOXIDE EMISSIONS FROM A PERKINS
4. 236 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
A-5
-------
2200
2000
1800
1600
E
a
1400
5 1200
2 1000
/OOO rptr
Percent of Full Load
Percent of Full Load
FIGURE A-17. OXIDES OF NITROGEN EMISSIONS FROM
AN ALLIS-CHALMERS 3500 ENGINE AS A FUNCTION
OF LOAD AT FOUR SPEEDS
FIGURE A-18. OXIDES OF NITROGEN EMISSIONS FROM A
CATERPILLAR D6C ENGINE AS A FUNCTION OF LOAD AT TWO SPEEDS
2200
2000
1800
a.
^ 1600
x
O
•z.
— 1400
c
o
i 1200
z
° I00°
TJ
I 800
600
400
2100 r£n
50 75
at at Full Load
FIGURE A-19. OXIDES OF NITROGEN EMISSIONS FROM A
DETROIT DIESEL 6V-71 ENGINE AS A FUNCTION OF LOAD
AT FOUR SPEEDS
FIWREV20.OX.IOEi OF NITRO&tN EMliilONS FROM AN \NTERNATIONM-
HMWESTE.R MOT EN&INE Ai f, FUNCTION OF LOAD AT FOUR. SPEtDS
A- 6
-------
25 SO 75
PE.RCENT OF FULL LOAD
MDFS CF NlTfiQGLN EMISSIONS FROM A JOHN
ENC-1NL AS A FUNCTION OF LOAD M FQOR SPtE
I I
1400 rpi
FIGURE A-22. OXIDES OF NITROGEN EMISSIONS FROM A MERCEDES-
BENZ OM636 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
^ 300
O
25 50 7
Percent of Full Load
FIGURE A-E3.OXIDES OF NITROGEN EMISSIONS FROM AN ONAN
DJBA ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
Percent of Full Load
FIGURE A-Zt. OXIDES OF NITROGEN EMISSIONS FROM A PERKINS
4. 236 ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
-------
APPENDIX B
DATA FROM FEDERAL SMOKE TESTS
ON DIESEL ENGINES USED IN FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
B-l
-------
FEDERAL SMOKE TRACE EVALUATION
Date I \ /ii/72.
Vehicle
Engine Model ALUS -C ftAUM ERi 3SOO
Evaluated by J. IA> .
Run No. 1
Accelerations
First Sequence Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %~
1
2
3
4
5
Q>
7
B
<)
\0
I t
I 1
\ 3
h \ 4
1 £
2.-J.5
38. S
43.3.
4-0..0
44-0
36-S
3fc.O
2>fe.O
31.0
31.5
51.0
40.0
2,4.0 1
51-5
27.5
1
2
3
4-
S
G
7
B
>
.0
i I
1 1
IS
14-
15
Z7.0
17.2
3&.0
41. S
4-0-0
40.5
3fo.S
35,0
33.S
3S.O
2L8.5
44 .5
38-0
23>£
Zfl.S
1
2
3
4-
S
G
7
8
9
0
1
2
5
4
5
Z9.0
3
Factor (a)
V.
580.2.
45
Lugging
First Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
Second Sequence
Third Sequence
1
z
3
4
5
Total Smoke
Z<).0
2.9.0
2.V.2
^9.0
•2L9.S
% >4-"l.l
1
Z
3
4-
S
2^.0
Z8.S
i9.0
Z8.5
30. S
»44.S
I
2.
3
4-
S
2.0.0
^6.s
2.9.5
31.0
3Z,0
153.0
Factor (b)
44S.Z
2^.1 %
15
Peak Readings
First Sequence
Interval No.
j \\ A
4A J
SA.
Sm oke %
SI.O
44r.O
44.0
Total Smoke % >4i.O
Factor (c) -
413.0
9
Second Sequence
Interval No. Smoke %
4 A 41.ST I
C, A 40.S "J
I -Ld.S
45.9 %
B-2
Third Sequence
Interval No. Smoke %
»2_A 4.9.Q "1
sA 4ft. S\
4- A 46.0 J
I4S.5
-------
FEDERAL SMOKE TRACE EVALUATION
veiiicie -
Engine Model CATERPILLAR
Accelerations
First Sequence
JJate i / iu / I*.
D6C
Second Sequence
Evaluated by O. UJ.
Run No. 1
Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
1
2.
3
4
5
7
6
9
10
1 1
12.
>3
14-
IS
6.5
9.0
6.4
fc.0
fc.S
3.5
3.0
3.0
3.2
3,£
3,4
2.1
2.0
2.C,
2.1
1
2
3
4-
5
fe
1
6
9
10
I 1
12
13
14
15
9.0
10,0
r 9.2
7.0
4,5
4.1
3.0
4,0
3,0
4.5
3.5
4,5
3.B
2.4
2,0,
Total Smoke % 70.5
(o4.8
"75. I
Factor (a) - 2 I O . 4-
4.1 %
45
Lugging
First Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
Second Sequence
Third Sequence
1
2
3
4
5
a.s
2,2
2.4-
Z.9
2.3
1
z
3
4
S
2.5
2.5
2.7
2.Q,
2. 1
1
2.
3
4
5
2,2
2.4-
5.0
l.fc
2.2
Total Smoke % 12,3
12.4-
l 1.4
Factor (b) -
3
-------
FEDERAL SMOKE TRACE EVALUATION
Vehicle J^^3^^^3^^^_
Engine Model DETROIT DIESEL
10/I2./72L
Evaluated by 0. IA].
Run No. 1
Accelerations
First Sequence
Second Sequence
Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
1
2.
3
4
5
i
\i
\ z
\ 4
\ S
2.0
2.8
3.O
5.2
2.. 5
».9
1.3
1. 1
o.?
o.b
0-7
0.7
O.Q.
o.fc
O.fo
1
2.
3
4-
5
-8
1.2-
1.)
1.0
0.9
0-9
o-9
0.9
OJ_
Total Smoke %
2.2.7
Factor (a) 79.
7 = 1.3 y.
45
Lugging
First Sequence Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No.
1
2.
3
4
5
Total Smoke %
Factor (b) H
Peak Readings
1.7 I 1
1.3 2 \
1.3 3 (
I.C. 4
1.4- S
• 1 1
.-L 2
>.) 3
3.? 4
D.J S
1.3 S.I
!> .S = I.Z %
Smoke %
2.0
1. 1
1.0
>.o
1.0
G.\
15
First Sequence Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No.
2_A
iA
4-A
4.0 | 4-A '.
3.3 3A s
3.Z I 2A 2
i.2 2.A
i.O 3A
-.8 4-A
Total Smoke % tO.S 9.Q
Factor (c) - Z> 1
.& - s.sy.
9
Smoke %
4.3
4.3 j
3.1
12.. 3,
B-4
-------
FEDERAL SMOKE TRACE EVALUATION
Vehicle
Engine Model I. \-\. D4-Q7
Date 5/2-4-/7Z
Evaluated by J • k).
Run No. I
Accelerations
First Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
Second Sequence
Third Sequence
1
1
i
4
£
2.1.0
IT. £
15.3
15.0
I2.Q,
14. Z
1 3.S
M,3
I 3.4
1 2,5
1 1.4
12. 1
1
2
3
4
5
-------
Vehicle _—-;———————-
Engine Model DE.LRE. fe4O4
Accelerations
First Sequence
FEDERAL SMOKE TRACE EVALUATION
Date 3/8/72
Evaluated by
Run No. |
J.U.
Second Sequence
Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
1
2
3
4
5
6
7
8
<=>
10
I 1 1
I 1
\ 3
I 4
l 6
80.0
77.5
75. <}
69. 2>
G7.0
72.5
67.7
G7.8
G4.8
59.0
59.l
71.0
59.0
5O.O
44.0
44.5
49.0
42.5
1
2
3
4
5
(o
7
&
9
vO
\ \
\ 2
1 3
\ 4
1 5
75.0
84.0
19.3
8
-------
Vehicle
Engine Model MERCEDES
FEDERAL SMOKE TRACE EVALUATION
Date 1 /ZG. /73
Evaluated by 1
Run No. ~T"
. H.
Accelerations
First Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke %
Second Sequence
Third Sequence
1
z
2)
4-
5
fo
1
8
9
10
\ 1
12
13
14
IS
12.. 0
18. S
8-5
6.6
9.0
T-2>
7.G, j
9.5
1.5
0.0 3 »0.4
4 lO.S 4 \3,0
5 9.5 5 13.5
4-8-8 51,9
IO.S/0
Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke %
2 A 14.S I IA \9.0
1 A 12.S 5L 13.5
i2A \Z.Q 1 4L 13.0
2.9.O 45. S
14,0%
B-7
-------
FEDERAL SMOKE TRACE EVALUATION
Engine Model pE,R.Ktf
Accelerations
First Sequence
D -i f r> \
OS 4.22>Co
Second
0 /fo /-?2_
Sequence
Evaluated by
Run No.
J.vO.
I
Third Sequence
Interval No. Smoke % Interval No. Smoke % Interval No. Smoke
I
2.
3
4
5
Q>
7
6
9
i 0
i I
i ^
I T>
\ 4-
1S
15.0
7
ft
9
0
>
Z
3
4
5
ia.s
8.5
4-8
S.I
-8
61.B
S.4 %
80.3
45
Lugging
First Sequence
Interval No.
Second Sequence Third Sequence
Interval No. Smoke % Interval No. Smoke
1
2
3
4
5
&.S
9.5
6.5
8.5
6-9
1
2
3
4
5
9.0
8.5
6.5
9.5
9.5
i
•2.
3
4
5
-).(o
fc.S
6.2
->.3
8.5
Total Smoke % 43. 9
Factor (b)
12.7.3
15
4-S.O
B.S
58.4-
Peak Readings
First Sequence
Second Sequence
Interval No. Smoke % Interval No. Smoke %
! 1 A
i ZL
1 5L
15. 0
%s
6-9
4L
5L
IL
9.S 1
9-S 1
Third Sequence
Interval No. Smoke %
IA
2A
9.0 t~ 'sL -
\a.S
6.5
6.5
Total Smoke
Faclor (c)
33. 4-
90,9
aa.o
B-i
-------
APPENDIX C
TABULAR PERFORMANCE AND EMISSIONS
DATA ON DIESEL ENGINES USED IN FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
C-l
-------
o
MODE
1
2
3
4
5
<0
7
8
9
1 0
1 1
I Z
I 3
1 4-
1 5
1 6
I 7
16
\ 9
ZO
2.1
EMfrlNE
SPEED,
RPM
800
\Soo
IS£>0
\SD&
I5"OO
ISOD
I SOB
15-00
tsoo
Isoo
Bo&
2Z0e>
ZI-Oo
i^0o
2.1,00
2iOO
tl.00
fiOO
^^oo
^00
Boo
OBSERVED
POWER,
lit
is. 5
30,5-
4s:o
t>0.0
ns.o
9o.o
!OS.O
iy~o.o
\4°i o
130.0
lll.o
/.?
71-1
5^.7
3k1
16.2
AIR
FLOJ,
'^•/hr
34,2.
43/
L, .38
/P^O
fctr
ts.e
721
7fc6
771/
793
3 Si
1349
/2fc8
/Z/2.
;/4s"
//P"?
1040
6~.l>
I3-2.
l*-4
/•/
EXttAUST
LnHa
0.0
O.i.
O.i
0-3
-0.3
0-4
o.C
6.1*
o. k_
O.^
^0
/-9
/.«•
I'S"
1.3
J.I
M
* ft
o,^
o.o
F\A
HO,
la^rnC
240
/88
iff 8
IBB
Z28
^40
)S^
Mb
131.
5-t,
Z4@
IT.T,
IS-0
I4B
/48
/rt
I kO
no
/5Tfc
;7z
300
ND\R
CO,
t>H
T?4
5^
J94
3/4
3.61
342-
S2.0
687
Z.S'/f
4"? /T
8^3
7/4
^98
3fl5"
i7/
ifco
23fl
2«
267
34fc
8-Jo
ND^R
C02,
%
|.3&
4.38
S.72.
4.^8
4-/8
3.U
Z..2Z
1.33
NOR
MO,
)pf>.n
23Z
273
i,3t
97^
/i94.
/S-62.
;92-2.
AOtS
£,204
2088
233
\lo°ll
/(,&£>
/4lo
U33
I0Z3
643
640
443
11° 1
111
C.L.
NO,
*>*>">
zoz
ZZI
5-it
694
I2Z/
<4SS
/t>'8
/«9g
/95-fi
/8ff9
zn
Ibot
IS3S
(3^3
ll-to
9fc6
7^4
to 7
sxi
i-J/
IT
C.L.
N0»^
^t>-
Z20
2.48
4/o
938
/2-M
iei I
/fc>04
/9ff3
/96C
/^/i
i44
lfc>34
/s9o
/34'7
//£-f
180
799
424
S"4 4>
2.47
Z23
°*,
X
:
ENGINE-
R.UN /
3SOO
DAT E //
As/
72.
BAROME/TE R , c
WET
DRy BQL& TEMP.,
-------
n
MODE
1
2
3
4
S
44
i,t,z
lolB
706
133
7-73
Qii,
&41
3
43-0
49-7
2.fe
hi.!
^•t,
47.5*
47.0
34-
18. k>
3.1.4
Ik.C
II. IP
l.lo
TEHPERA.TURE^F
^nftKE
MR
'/Z
fli
72.
'//
7Z.
72-
73
72.
73
73
T3
73
7J
73
73
-7^
^
^
m.
m.
73
FUEL
u
74
7Z
rlo
10
ID
It
72.
74
IS
97
73
76
77
77
77
77
76
78
78
7?
EX.H-
ftUST
3/2.
339
•fS'l
S5^
t,S8
77
*?/4
1031
nss
/2^4
412
//02.
//Z3
/i>48
9^.7
88^
7
b.O
fe-Z
fe-8
7-2.
8-Z.
^-2-
/o.t
/./
2--J.S-
J7-4
i.£>
'4-3
/?.2-
/•i-
EXHAUST
L"HA
0.0
0.1.
0,t-
o.S
0-3
<5'3
c-4
^.C
0.1
o,g
0.0
1.1
/.7
l-S
I- 3
l.o
o.t
01
0.4
0,5-
o.o
F\A
HC,
i^r«C
2,88
2.40
I1&
2.14
2S4
2-S-&
248
zzo
//4
bZ
l°li
14-1
IS~2
I bo
Iti
IS&
;7Z
/64
/7g
/£fc
32<3
ND\R
cox
^K
333
l»30
-H^
340
m
2/9
S»
2.070
zool
2.ZS-
Ib2l
IS52.
Wl
II8&
95-B
?72
£//
42-7
2-1 B
>&(o
C.L.
NO,
t>t"«
;5-9
^OS"
492.
8 of
/P57
/z93
/48&
/t,&i
IBo2
/4.9S"
2.44
/363
;3?£-
/iot
IDSI
311
111
£37
39o
1/8
;5"/
c.u.
NO*,
^t>-
ZO^
2s-x
^9
gs£
;/42-
7335"
/S-S4.
7742.
ye?o
P49
^70
/493
1417
U47
7007
8S£T
7iO
£•^0
39?
if*
2.02.
°^
%
ENG1N E-
P.UN 2.
D/\T£
WET
DRY BUL& TEMP.,
-------
o
MODE
1
2
3
4
5
<6
7
8
9
1 0
1 I
\ 2.
\ 3
1 4-
1 5
1 £>
1 7
15
\ 9
2O
21
ENGINE
SPEEt>
RPM
&00
ISoo
ISOO
ISOO
ISOO
IS 00
IS oo
ISoo
ISOO
ISOO
&00
2200
Z.ZOO
ZiOO
ZZOO
Zioo
ZZOO
2.1.00
2.200
2.100
BOG
OBSERVED
POWER,
K>
1^0
3o.O
4S-0
loO.O
HG.t)
10-Q
IDS.O
116-0
>£•£>. 0
IZ2.0
ll^.o
14 6
is-.s
si.s-
38-1
11.1
AIR
FLOVJ,
Ib /
m/V\r
343
loll
M5
k72
673
lOlo
7/6
77S
79(,
8/6
331
/Be"*
/337
/a 8J.
//98
// 30
/o78
fOt£-
°IT)
<*13
M3
FUEL
FUOVJ,
Ib /
W/K»
-2.6
S.I
9. a
Hi
i?-4
iS./
50.5"
56-4
43.5-
491
^.4
6t>.£
S4-£
48-0
4l-ff
^4-s"
.2.8.2.
23,0
li.2.
II. S
Z-4
TEMPER ftTURE/F
INTAKE
AIR
73
73
74
73
72
72.
1}
73
74
74
73
73
74
7S
74
74
72.
73
74
74
74
FUEL
^
74
H
73
1*
75-
77
78
7?
"»?
83
77
^
S/
80
ft/
8J
8|
81
81
82.
EXH-
hUS.T
25-3
3/7
4'*
S24
(L44
77?
W
101-Z
IIS3
I3ffo
-79
ti7
x.sz
4.BL
4-U
5.11
Z>><)
i.ll
ND1R
MO,
Ip^tn
J9X
212-
£"27
7f9
10^0
13 it
ISIO
/Gil
/982-
;9/i
^56
/S-4.3
'494
'3J3
//27
9A4
7fcS
£-9 2
432L
i£-»
/9/
C.L.
NO,
*>»>">
2ZO
Zlb
SiS
735"
losb
,ii£
>484
/fct2.
/«4^
nos"
J.SB
I31S
13 bo
)/78
\0\°l
95-4
703
S23
^79
2;z
C.L.
NOS
f}*
2.41
ZSZ
573
84 i
;o99
li&l
/S-/3
/7o3
/87Z.
/73^
i^3
/413
^388
liok
/o-CV\ALN\E.RS
DAT E // /A&/72-
. 47
WET
DRY BULB TEMP..,
-------
o
NODE
1
•7
3,
~r
Q
1 0
I 2.
l _>
1 A-
1 5
1 (o
\ i
1 6
l 9
2O
L \
EW&INE
SPEEI>
RPM
800
is'oo
15~OO
I5OO
IS'OO
IS~OP
ISOO
oOO
L£OD
J-LUP
2.ZOO
Z.Z00
aoo
1.7-0 Q
22.00
•5 7 Qft
Boo
OBSERVED
•POWER,
^
15". O
.29.S1
44.0
S9.D
94,0
89.o
\oq.o
II 9.0
/44 0
IE /.O
III. 0
4
74. 1
5-5.7
K..1
/&-3
AIR.
FLOJ,
lb~A,
-344
kz^
£>42.
£>S"O
6.72.
lOta
HZ
"58
78k
83Z
332.
/388
/ 33*7
/3-S3
M49
f/3 1
(Ob7
/pl^
•Ifc?
954
j)4o
FUEU
FUOVJ,
lb»/K.
2. la
5". 4
to
/4>o
'8-8
-M-t
^-9-8
35--4
4/1- S"
tf.^
2.4
fco-3
£•4-0
4b9
40.4
JM.o
i'/.1?
Z2..I
b. /
i / ,*
''•I
J-'^
TEMPE
INTAKE
AIR
73
74-
74
11
73
93
72-
?t
74
"jr
93
74
^4
75
7/
73
74
7/
73
75"
75"
.RATU
FUEL
87
8^
8/
l°l
W
Bo
82-
92
84
B£T
83
8S^
36
87
.87
87
8"
87
8t>
&7
B8
^E,°F
EXH-
WJST
Ji4
J5"0
440
5-34
!<, SO
773
90Z
1 Oil
//43
;a08
4-Z*
y/ B&
// 2-7
toco
1U
If)
6?9
s^/
49^
-84
RESTR
INTAKE
UHjO
/•3
^••4
5-.%
£-.9
fe.o
6-S
•S
8-0
4.0
10. 1
l.o
Z°I.O
J7-5"
44.3
22- O
/9-8
11-S
fp.O
/4-S"
/3.0
'. 2.
1CTIOH5
EXV\AOST
L" V\^
f'.O
o.;
n \
G.-L
0.3
0-4
O,^
O.lc.
0.1
0-8
0.0
l.°i
l>t>
i.r
'•3
It
t>'"l
o,7
o.f
o,^
F\ A.
HC,
»^^mC
ZkQ
Z24
iBto
201
2-4°
ZE4
z<9 o
2.33
/£~4
9Z
Z2O
ILo
/4>g
172.
174
/7fe
/84
Zoo
190
i ii.
340
NDVR
CO,
^^m
V5^
645"
4*>7
3feo
^98
^5^3
5"44
925"
iz?4
45-7"
fei f
ii77
4/0
2^
Z2.3
22.5
US
22f
24 Z
Z9i
823
NDtR
C02,
%
I.St>
1.12-
2.03
4.06
5"-44
6-49
T-t^
S-S'e
9.43
1 O.Ob
1.33
• II
0-72
^-98
^'5-2
S".7d
S.oS
4.1^
3-lt
2-19
• -) /
l.2b
ND1R
WO,
Iplptv,
ZOI
3.S2.
Sill
88^
1213
/44^
/&&/
;887
jofcS"
me
•XVS"
/t>33
/S"4 b
»3bO
// 84
979
8^4
t/7
43(
i^J
Z£>2
C. L.
NO,
*>!"«
IBS
2.1k
S^i
6S6
// 5/
1 5 Ck O
/3"7
95 (1
07
/Sia
/B34
2^4
)S27
/^*7
;32t
1 31
vSx
to/ to
4/2-
2.Z8
<>T
c.u.
NO^
^™
ZZ3
2fel
59;
3JJ.
lion
I^S"i
1 loQ-S
^814
H^O
/%74
2.93
^-^
/5?£"
ISOQ
I3k&
inn
180
V9O
...£'7.
_4-*4
^-5"S
9 I O
•2.' /
p,
zx
7
/o
i. .
ENGINE- ALUS
3SOO
DAT E // A6 A 2- WET e,OLE> Tt.MP., °f _££_
R , i.« VU ,g^.44 DRV BULB TEMP., °F _1L_
-------
o
NODE
1
2
3
4
5
1
I Z
I ?>
\ 4-
I 5
1 6
1 7 •
16
\ 9
20
2 1
ENG-INE
SPEEI5
RPM
Boo
15-00
15-00
ISOO
ISoo
IS~oo
ISoo
!S~00
IZO&
ISOO
"boo
Zloo
2.2.00
HOO
ZlOO
•3.1.00
ZiOO
ZiOO
2.2.0O
Zloo
Boo
OBSERVED
POWER,
kit
/4-o
Jo-o
4.s:s
to.o
7s-. o
QO.S
lf>4 0
1*0.0
14k. 0
130.0
II 1-0
92.4
14.1
££,n
3t>.7
18.2>
AIR
FLOW,
lb~A,
35-5-
t24»
fc49
45S
4.7?
7i?
737
7fc7
8//
8 so
343
<353
ill 0
/ 2.5-5-
N£-
1140
I01O
toil
9.?7
9AS-
3SS-
FUEL
FUOH
lb-/K.
L.O
£,£
9-f
14-0
iq.2-
24,4
Jo.k
$£,.0
42..S-
46-r
^.5-
59.r
^3.^)
46.9
•?0.3
34-4
11.1
il.S
!£•£
II. 0
l.G
TEMPERATURE,0?
INTAKE
AIR
7^
V4
T2,
73
74
72.
T3
94
74
74
73
74
73
73
•?4
7/
72.
m
no
rlo
r±
FUEL
11
1L.
74
73
74
7s-
11
77
7<»
80
82-
77
31
8'
82-
9/
52
82.
8/
3/
82
EXH-
AUST
3*2-
33^
4ZP-
5Z2.
fc43
790
905-
IOZ4.
IIS1
IW)
4tr
//7S"
Mil
IDSI
971
S37.
7^fe
757
5l\
49T
304
RE STRICT \OU5
INTAKE
L^HjO
1.0
S.O
s.t>
6.0
t.5"
7.0
ao
7.5-
9-0
ID.O
1.0
2.0.0
i^.O
A4-O
A/. £•
/^.s-
11. 0
is:o
9-0
7.5"
I-O
EXHAOST
L«HA
0-^
C-i
0-i
0.3
0-4
0.4
0,5"
c.S
0*
0*
o-z.
l.°l
/.&
I.S
i-Z
I.I
0.8
o.t
a.?
0-4
o.X
F\A
HC,
^^mC
Z9Z-
2.14
IB*
204.
24 1,
254
240
208
132-
-S-4
2-4,4
/42-
ISZ.
IS- 2.
/s-fc
/to
/fc8
/&2-
;78
/9fc
35i
NDVR
CO,
V>^
8^9
£-40
3fe6
277
-2Zfc
282.
107
773
A024
4/4.7
7*7
^/fi
54i
233
211
201
110
Z04
ill
3-.ni
BS-I
ND\R
coa/
%
M3
1.12.
2.92.
4. IL
S.4S
4,.4fc
7-tff
8-tS-
9.44
10. IS
/.33
7.98
7-72.
6,98
6.4^
^••73
4-92.
4./2,
3,20
2-24
/.33
ND1R
MO,
^^w
zo/
Z74
s9
938
/Z3/
/S/ 0
/*? oo
\°IS1
io9o
Z04S"
242-
/fc'7
;si4
;34o
)lo;
980
804
604
444
2-fc2.
/9i
C.L.
NO,
»>t>m
nf
i30
£-t>Q
Bid
im
/484
lle^.f
1911
/9fcZ
Hoo
7fo3
1511
'48/
/324
l/Zfc
939
782.
S89
4ZZ
Z33
It4
C.L,
NO^
\V~
2-lla
JLT!
(olS
94 /
/279
ISU
/t>71
i9S3
2-001.
/9Z7
792-
/5"?a
)So8
/3S4
//S"4
^^3
7^1
S99
431
ifc4
118
°».
X
ENGINE- ALL1S - CHALMERS 3SOO
RUN 5-
'it.
WET e^ULB TEMR, °F_££_
DRY BULB TEMP., °F 7 Z
-------
O
MODE
1
2
3
4
5
<0
7
8
9
1 0
l l
~)
i)
1 A-
1 5
I £
I 7
1 6
t 9
ZO
2 1
EW&INE
SPEED
RPM
BOO
1500
ISOO
ISoo
ISoo
iroo
TOO
IS~00
15-00
ISOO
boo
22_#3
2.2.0 fj
2.2.00
2.3.00
Z2-00
2-200
^^.oo
2.2-^e
72.00
QOQ
OBSERVED
POWER,
tit
/5.S-
30-0
4£~,0
4o.o
74.S"
9o.O
/os.o
J/9.0
143.0
130.0
il/.O
91-4
74.8
^.-7
34-7
n.(
i
AIR
FLOK),
Ib /
"Vht
3fet
fcSt,
£47
!*(*(*
tBi
t<»4
72Z
vs?
820
8So
332.
.136-?
'33fc
/3S3
//78
M3fc
/o73
/o/t.
^4?
9^4,
3£TS
FUEL
Ft- OH
Ib /
""/K»
2-6
s-.sr
lo.o
/4-S"
/9.C
^4-4
?D.O
ss.s
•n.°i
Sl-t
3-0
s?.o
S3.S-
4fc-4
39,?.£•
n-o
t6t> /^-o
S3o ;4-o
•••^ -mi '•-'
73 11 2'>? !•<>
EXI\AUST
i« V\3
0.0
02-
«• *
0-3
.?•<>
0-4
0-i,
O-'l
J,.g
1:0
0.0
1,1
l,°l
1.1
(.4
_rz.
1,0
D 8
5 5"
c C
/>•€>
FV ^
HC,
|p|^n>0
^t.8
Z*b
ns
CJ6
i.3fc
13 b
2iZ
/^fe
'2-4
50
A48
/z&
i44
H4,
'48
JS-2.
IS8
11"-
!!»&>
(78
3»fc
:-iD»R
cox
^^>m
8t2
kll
4-45-
33?
205-
342-
521
&6Z.
3-£~0(*
44S-4
8Z3
fo/7
41!
2<}3
3rlO
MB
2'IQ
?'-•$
2 '-. 3
'j - •'
&77
Nom
C02/
V
/o
I.4O
1.12-
2.gt
4-n
£T.^2-
&-4S-
7 73
0.fc<.
9-ff/
/O-I4
1.33
&-I3
7.73
7. or
fo.S2.
ff.T)
S.OS
4.11
^•^l*
'•11,
i 33
NDIR
MO,
W"
(82.
^32.
^7
394
nn
/47<
^33
,'?j'/
304 2.
/95S"
^43
yr7
*8
/ :t
IIG3
95-*
774
4 04
^Zl
2Si
l Bt
C. L.
NO,
V>t"*
/T?
HO
4«i
B/fc
/oey
/33/
IZlQ
/fc97
/799
'74 1
J^7
/194
m.i
;AO;
/oza
C.L.
N0^y
lf.^m
2.2-3
a4/«
S'BO
863
//22
;2£-S
ir-i
ns'i
iBSl
nfc8
211
iqll
I^OD
1230
ll>q\.
8fc3 873
feU 704
532. ^4 i
564.
: ;/
U4
*• "5 '*=
^3i
> ^ / ri/
°».
%
_
_ _
_._ —
ENGINE-
US- C
iSOO
DAT
- r,!-'
VJET
DRY
-------
o
00
MODH
i
2
3
4
5
G
7
8
9
SO
! 1
i, Z
13
ENGINE
SPES.D,
RPM
goo
IH DO
/?/>
11 OO
noo
I'JOO
Boo
ZGOQ
Zooo
Zoos
iot>&
Zvoo
800
03SEPNED
POWER,
hS»
3"4 0
68.0
/£>2.0
135.0
/48-0
II/.O
74,0
36.9
A ! R
FLOW.
»»«,/.
/(n-
__
?UEL
FUNvJ,
5b /
/Vv^
2.fe
t-7
ifc-S"
i'.'.fo
39.*
i3.7
2.4
<-«>;r
44- s"
3/.7
Jl^_
n .
/•O
*'f
TEMPERATORE,°p JR.tSTRICTiOMS
WTAK.E
AIR
T»
^
T2.
12
"B
74
•7^
73
74
^
91
73
V-?
FUEL
81
^a
•'?*,
75-
7<"
•?s
3?,
73
S<
3Z
83
83
S4
£XH-
AOST
SMTA'^t
i-rx^Q
1.0
7.0
0.2
•?.£-
i' 3
)£•-?.
U-4
10-2.
I.I
£X!JAOST
in«a
FiA
HC,
t'f'wC
240
18-3.
I 74-
130
l?fe
ffk
I&O
I£>4
/3Z.
I3fc
)£•£>
/fc4
2T4
ND1R
C-O,
*>^
755
4So
277
ill
£24.
19/9
434
/a 4 4
BSI
zzr
•LI°I
3^1
79s
ND1R
C02,
X
/.14>
.'.72-
4./1
4.39
6-38
,89
/•afc
8.78
^38
S-,^8
4 ot
l.i)'J
/•Zfe
NDI R
NO,
J>t»m
233
.2.4.3
Slo
nsz
i f: 7 (
/9B4
i9r
1131
/S-69
/^£-6
70S-
ibi
2.0Z
C.I,.
NO,
\.\>™
Z20
2 3 1
7Si
li^/
/T4
m?
284
)597
1472.
/Oto
fcSTfe
140
/84
C..U.
NO^,
V>K
241
2W.
•797
1201
(7*9
'840
3sz
;ts~/
/5T/3
/088
tfcC
Zff/
^'^
o,,
«/
/o
E NG- 1 N
M-i
DATE
WET SULE.TEHR/F S7
BAROMETER^ U B*, 2^.37 DRY BULB TEMR, °F_7£_
-------
O
MODE
1
2,
3
4
5
EN&INE
SPEED,
RPM
800
noo
I'lOO
\noa
11 GO
6 \noo
7
8
9
SO
Boo
iooo
2.C&&
2.30®
5| 2*0.30
j 2 \'LO.on
\ 3 \&oo
OBSERVED
POWER,
ht>
54-0
k3.o
loz.o
l$4-e
I-1&.0
ni-o
•~,4.o
31,3
AIR
FLOW,
'Vh,
FUEL
FUBVO,
Ib /
"/W
2.S-
6.6
Jfo.<7
18-2.
45; 2,
TEMPERATURE, °F
INTAKE
MR
74
74
7Z
IT,
n
£LfLi 94-
^•4 L74
isS<&
?J
4^S I 74
31,1
!=).$
1.0
2.$
V^f
91
I—, .-.
/' J?
V^'J'
FUEL
8/
18
Ik
Iff
1b
7B
Si
IB
81
82
83
§3
94
EXH-
^OST
— __
RESTRICTIONS
>MTAKt
i-nttiO
/•O
T,0
6-3.
^,i
lf'3
14.0
/.^
a,%
!8-i
(£•.2.
/?-4
lo.l-
/• 1
EXHAOST
in H^
— —
FIA
HC,
S>f>mC
2^2
Z32U
2./0
2<3^
/•9Z
7/0
/9&
/OS
.' ^ ^
-T{>
/^2.
I Si*
/t4
2feo
ND1R
CO,
*>?>•*
SS'o
f88
2.T7
283
44-4
J."5U
fo4Z.
I3S9
S 5"/
J.?4
^'y?
" -' "t-
8So
NDIR
C02,
•y
/o
/.;?
/.•?i
4-'a
&.s^
8-2S"
•?. ,^
/•2?
8.72.
7.38
5.9*
4.»2.
M-?
/.;-?
NDIR
NO,
f>f>m
//^
C.L.
NO,
^*»
/rs
22.1
741
I2-S"/
/4.?7
/?37
^ &4
1532.
1-^31
H.-&I
b££
^3i>
/73
C.L.
NO^,
^H
202.
ifoO
V77
/Z7-?
/7/S
/7?8
^04
!ffl2
i-j-rs
ID1S
(,'^0
2.5-1
Z02-
<\
%
ALL1S-
'iSO O
72,
WET BrJLBTEKR,°F S"?
BAROMETER., Ln Ho, 29-3? DRY BULB TEMR, "F_V£_
-------
'- ;ODE
1
"-
i 3
A-
i 5
6
7
^
c,
>0
1 1
12
,3
1
! 14
15
__!C3
57
\&
19
20
Zl
ENCIfJE
SPEED
RPM
GSO
! 400
1400
1400
1400
1400
1400
1400
14-00
1400
GSO
8900
\%0
!9C&
',900
IS 00
nco
I\e
.
»5.<)
51.3
4-7.6
Q>3.0
79. a
94.3
M 0 . G
12-7.9
144.3
li I. 9
'•05,9
9 i.a
"72.2
53.8
3 'o.7
I&.4
"
'MR.
FLOW,
>b-A»
4-SG
911
95G
974
991
9R9
(005
1010
1047
1061
4-53
1539
1430
I35G
I33.O
12S2
1255
mi
12 SO
1 2 2,4
4 SQ>
FUEL.
FLOW},
>!>„/
/Uti-
3.4-
7.3
1 2.Z
lCo.0
20. 4
24.1
50.5
35,2
40. &
4S. G
3.5
58.S
SO.&
44. 0
3&.E.
85
73
77
77
7?
81
62
85
91
94
92
32
94-
95
95
94-
c/2
91
.J^
&G
8£
FUEL
&0
80
7&
78
77
78
78
77
73
80
80
7G
73
70
o
&0
60
GO
73
77
77
78
E.MY
PR E-
TOR60
27--V
288
552
411
508
593
&?5
795
O1)"
1017
454
935
959
902
&OS
"*33
t.Si
55G
47 &
400
2r0£
E^H.
POs^-
TOP.BO
•Z45
2GG>
323
354
454
535
G33
73&
6 C, 3
1007
4-1 1
90G
6tfc
7a&
ro&9
GIG
537
4-7 0
4 ! 4
RESIRICHOMS
iNTAtCt,
t« rijO
! .5
Z.5
2.5
4.0
4.0
4.0
4-0
4.0
4.0
4.0
1.5
7,0
7,0
5. 5
s.s
£7 i~
5,5
4.0
4,0
3-5 (c j 4-0
2 32
FXHAUiT
t« Hi
o.o
0, 1
0.1
0,2
0,3
0,4
0,5
O.Q,
0,7
0,8
0.0
1.4
1.3
1. 1
1.0
0,9
0,S
0,7
0&
0.5
O.O
F\ A
HC,
t>v™c
it
^4
(c,
\
8
8
\0
\^
\ 2
10
1 2
&
G
4
&
_ _
7G
NDlR
CO,
Vt>«
2^r9
Z75
155
102.
7(5
SO
74-
8fc
73
97
Z22.
98
73
74
2S
Q6_
89
\ 14
14 1
23,4
302
NDIR
C02/
y.
1.2G
1.53
2.4S
3.5\
4.24
5,\7
(b.10
fo.90
7.5fc
&,49
1,44
7,(o5
7, l&
fe.5,,0
5.84-
5,10
4.2-4
3.Q.4-
?-.Gf-
1.98
1 , ! 9
NblR
h40x
t>j5v«
5G
(o4
i SO
2-7 9
438
548
G-15
GtO
570
553
93
5i4
573
SfcS
521
448
^5?
^47
150
&3
SG
C. L.
MOS,
t>]p«
5<
G3
144-
Zt3
40 Cb
52,3
593
585
55 G
533
&7
529
545
SS4-
502
4-50
3S1
2.ZA
141
84
44
c ,u.
M Ox
(pjpv^
45
59
119
2SS
4-OG
533
593
586
S5€>
533
85
5\0
527
554
488
4-40
3ZI
^3J4
14-1
84
41
POLKS.
°>,
%
\&. 1
\l.b
it. 3
15.3
11,7
l 2.4
10.7
9.5
6. 5
7.2
18,0
&.S
0.5
1O.3
n.2>
12,4"
13,5
I4.G
15,9
16.9
i&.l
ENi C \ ME.
ROM l
&AROMETEB, i
?. 2O
lot T
DC.Y
°F
-------
n
MODE
1
2
3
4
5
6
7
6
9
10
1 1
12.
13
14
15
_l_<0_
17
16
19
ZO
21
ENCIME
SPEED
RPM
G>40
1400
1400
1400
1400
1400
1400
1400
1400
1400
40
mo
1900
1900
1900
IS 00
1900
1900
1900
1900
640
OBSERVED
POU)tR,
^
15.")
31,7
41,6
G3,5
1 9,8
94.1
i 1 i. 1
130.2
152. O
131.7
M 4.0
95.0
76.0
51.0
31.4
1 6.4-
ftlK.
FLOUJ,
lb~A,
4U
9sa
<>5<)
959
S57
975
991
1023
1055
\\ 16
43)
1505
1406
»338
12.85
125")
1235
1230
1224
1242
42>£
FUFU
FLOlO,
'V>>/
/h»
3.O
7,5
11.5
15. &
20. 0
24.4
2.9.8
34,1
41. 6
SO.Q
3.0
60.0
51. t
4S.S
3^.0
55.0
Z7.2
21. G
IG.5
12,5
3.0
TE.MPERATURt , «f
INTAKE
A\K.
81
IB
11
_!].
T)
19
61
&4
ftt
59
93
&5
92.
92
92
9)
&&
&1
85
62
&\
FUEL
90
SO
9i
9G
100
102
104-
ioa
106
106
102
no
106
106
I03.0
12.0
M.b
U.2
U. 0
11.0
U.O
1.5
EXrtAOiT,
'« Hs
O.O
O.2
O.2
0.3
0.4
0.4
0.5
O.fc
0.7
0.9
0.0
1,5
1.4
I.Z
1-0
0,9
0.&
0,7
O.G
0.5
O.O
Fl A
HC/
l?y«C
72
64
(06
56
36
3G
5G
32
30
28
82.
2G
24
iG
30
34
34
3G
40
7G
l\4
ND>R
COX
I>1P«
Z7fc
275
166
90
G3
*>-
4&
(b4
1 60
219
417
59&
64O
G4?
60s
550
G4
606
6,34
60\
5&1
48 \
36 1
269
169
1 I \
64
C. L.
NO*,
HP"
13
80
153
262
403
539
S&9
570
547
530
68
566
SfeP
545
SlG,
432.
331
229
»47
95
62
c .u.
NO,
IPK
34
50
125
23_8
384
506
557
S5(b
519
503
43
557
SfcO
527
493
413
312
210
1 24-
60
28
POLNR.
°b,
%
CATER PILL AR. P&C
DATE 2./IQ/12.
RUN
BAROMETER, tv\
. 34
WET EjOLb T 6N\e, "F 59
DR.Y 8ULB TEMP.X O
74
-------
o
MODE
4-
6
Q
'0
1 L
1 3
14
1 O
Ivo
7
o
i Q
I 7
2O
21
ENCIME
SPEED
RPM
(o4O
\ A t\r\
1400
1400
1400
1400
1400
1 A f\ A
I'UlV)
iH-Ovl
IH-UU
C^AC\
i Q c\r\
1 7UU
190O
1900
i onn
l Qftfi
1 ?UU
1 Q C\(\
i o r\n
1^00
. t)
-7/r A
'O. *t-
c "7 n
£> /. U
2.Pi fl
oo, U
l Q f\
1 7" u.^.
a n
i.v
^ a r"
57. D
5Z.5
45.4
2.^ 7
37. i-
a-i /•
OZ ,^o
1 ~l K.
790
no
1 /.o
2r\
. 7
TEf
INTAKE
A(K.
(9
-7 Q
' 7
T<1
/ 7
BU
19
so
& 1
D 1
ftc
Dt>
ft fl
DO
ftft
7U
aa
Do
TQ
'7
0 C"
85
c>9
QQ
O7
AR
DO
BC:
0^>
ai
Ol
Q/N
OiJ
19
80
VIPERS
CiR
7O
.
7t>
1 U L
1 Oto
1 QO
I 10
1 I 0
i i n
1 1 U
i r\f
1 Olo
1 U^
Q .
7 0
1 1 O
I 0
l OQ,
l r\A
1 UT-
1 HT
1 AA
1 UU
i r\r\
1 UU
1 1\(\
100
01
auRt
EX.B.
TOR 60
^ aa
/-O7
173
0 r/\
3bU
430
52|
G\3
/ \4
o3Q)
741
i rtC.1.
lutsj
^RO
iOO
<^nc
705
10 1 0
914
R4I
OH(
/=> 1
(o5(o
c:';"?
i>o (
Ain
402
24&
,»F
&AH.
TOR.6O
Z5^l-
/.7t>
7, O Q
->Z7
59 /
414
511
REST(^\C
IWWit,
c«M1o
.5
b.5
fo.^
fo.o
/, 0
.0
.5
O,0
8/-
.s
Q r-
7.5
l-S
IS. 5
i A c.
14. 5
»B>.0
U^
\ I. b
i, &
i i rv
II . U
1 \ O
I 1. U
11. 0
1.5
,-noios
EXH/KOiT
tM ^i>
.O
.2
.2.
O.3
0.3
0.4
O.S
,6
0,1
On
-V
On
l.(o
,4
1.2
i /\
I- U
•9
'&
Or
,6
0,6
0,0
FlA
HC,
IP r** *«*
84
10
36
30
28
2.0)
24
2.2.
20
4-
Ryl
O^-
24
24
30
3O
3Q,
34-
1 r
ovo
>» f\
4-AJ
64
0(o
ND»u;
CO,
tt*.
355
3 1 4-
^ZO
90
63
~IB
74
62
85
S7
o-ir
21 fM
-> /
J:D
4bl
3cJ2
o r, -i
231
\ 0 Q
1 ^
1 02
4C,
C. L.
NOX/
^«
r rx
to to
Q £-
Do
i C-Q
1 S7
26 o
423 /
S42
A C
^-±>
A Q 1
4-7 1
S4O
534
zr APi
tDUU
41 \
320
•? nft
l O A
1 ^.T-
GO
2-1
POLM?.
0,,
%
RON
CATERPILLAR D&C DATE. _Z_/^_/2^. WtT buLfc TEMR, <>F _GJ
&AR.ONU T t R, i»\ H^. 2-9.32. DRV BULB TEMP.X °F 7
-------
MODE
1
2
3
4
5
o
440
OBSERVED
POWER,
22-1
42,7
t.1.0
86-4
/£>$. 3
I2.9.S
141- 1
/ta.5-
205". 8
702. 0
/s-4.7
/as.©
/«.£
77.0
.5,2. jT
•24.£-
AIR
FLOVJ,
5-S-S-
^z/3
2Z/3
^273
i/7^
2.11 S
Z'Ole
z^0
**• * ' -^
A/?3
Sit
Z87S"
2844
^S ^to
-2. "? ^1
^44
C.L.
234
£.12.
44r
474
?*1
/i C 0
1 fo &&
/^'4
/&r
/7S4
JLB8
^0/4
«^£>73
/^4
/^3fe
/i*r
^4^
M3
•474
Jg^
470
WET &ULE, TEMR^°
2,?. S6 DRY BULB TEMP.^ °
X
—
f >S8
F 7/
-------
o
MODE
1
2
3
4
5
00
ItoOO
lloOO
440
Zioo
HOO
3.100
it oo
2.1 00
il 00
1/00
i/ DO
1JOD
440
OBSERVED
POWER,
21-1
41.7
ks.i
d. c~ Q
D ~> , /
108.3
in-t,
141.7
no. 7
ioB.L
1 &Z, 7
/•S"4-7
/A9.S-
/OS.O
Tl.O
£-1.1
AS.i
AIR
FLOVJ,
S(,0
i/74
J>/94
2.112.
zne.
z,si
ZlSZ
2.IS-&
2.1 S'O
2.111.
2.<)S&
2t43
1B4L
^83/
i
37.0
44-0
S2.£
tl.£
1*.1>
a.ff
S7-S-
78.0
M.o
54.0
S3.ff
39..?
3l.f
AM>
H.O
3.0
TEMPER AT URE/F
INTAKE
AIR
74
73
72.
74
7/
74
7Z
72.
1L,
72
75-
75"
77
74
74
73
74
73
74
75"
72.
FUEL
K4
/1 9
(14
/^S
/Jlfe
fV?
/27
;^7
/2T
;z-7
}^^
»»4
/3/
/54
/55"
;3t>
/3-;
/3-»
/37
;37
>2.s
o.S
11.5
II. 5"
IO.O
to- s"
(0.0
II. 0
ll. £"
11. 0
O.Z
L" H^
o.»
/•7
/•9
^.o
a.l
2.S-
X.5-
3.5
3.0
3-4
i>.l
5-.0
s-.o
4^4.
4.'
4,3
3.8
3.5;
3-3
^>.J
FlA
HC,
88
"74
54
84
86
^
loo
lit
/2B
13 Z.
/og
/-fi-
/3z-
'30
'3o
/te
111.
lite
ND\R
CO,
2-/D
/72.
I/O
73
48
48
47
83
4447
224
6f&
ls-3
£•&
48
~~o
73
99
/8fo
NDIR
V
/o
1 ,00
1.00
I-S3
1.0-S
5,71
3-3/
3.ge
478
S-,5-/
6.af
0.7f
ffi4g
S.il
4^5
3.79
i.St
),91
!• 00
O.fcO
NDIR
MO,
2t4
i/2.
3S/
S78
719
loll
ago
/sst
!!><)<,
isu.
211
/?»
/7/&
/S-4J
mi
lllO
8fcS-
48?
A4.S-
C.L.
NO,
J>3£T
/BO
394
fc/S"
5SD
1103
14 o<)
H>94
/778
/s^r
227
*743
)eoe
/fc/4
/384
Uld
^
443
A??
22_l
C.L.
Z54
Z02.
4/3
44<1
897
//T£"
;s-«
/g?fi
/^^t
/fc8o
A so
/&&!
/1*t
<770
/484
11*0
-~^
4fc7
^9S
3LS7
X
ENGINE- DETKQiT OlESEL
RUN 4
DATE :o /2./72_
WET
TEMR,
DRY BULB TEMP., °F 72.
-------
o
MODE
7
a.
1 L
\ "\
1 A_
\ _>
1 (-
I lo
i /
i e>
l Q
1 7
zo
2 1
EIMG-INE
SPEED
RPM
44 °
/4>O
1 1 r\n
lloOO
llfOO
Iboo
llfOO
It* nn
iL.no
44O
2/ £>O
2.1 DO
3.1 OO
ynoo
2. IOO
0.100
OLIOO
2.1 DO
44^
OBSERVED
POWER,
hj.
^-2,^
43.2.
Io4 • &
ot>- 4
1 vo .3
/>• B. S
ISO.1)
2. OQ. fc
/ 30 - 7
/ £> 3,t>
77. 0
s-/. /
J S". Z_
AIR.
FLOK),
Ib /
™/V\r
^47
•Z-2/ S
2 Z2-8
2I1S
a. (? 7
2. /4 7
' /«-»
^~ ^ ••
--/ S~b
Z 1 e>4
5"^ I
^ »34
-^- D 3 /
•2- 7O7
J.74 4
i 73^
-2-775-
i777
3.68O
^^^4
5-68
FUEU
fUOH
lb«/
^-4
//• 2.
l&.l
3-4 '2-
3/ '2-
38.S
4=-O
<"/ ^
, «
t>3. 0
7>t. /
^•2.
o8«i
78-5
bfaO
S7,0
47.7
39.2.
J^.5-
i4,l
183
3.5
TEMPf
INTAKE
AIR
75
72-
73
fi
7/
7^
73
/ 9
73
74
72.
7/
1 £
73
' 4
1 0
74
7Z
7/
73
iRATU
FUEL
99
1 Bl
1 J (e
'/9
/ A /
/ 2 2.
/2.2-
1 2~^t
I'J-i
12- :>
1 ^ i
/' t>
12.$
1 3-7
16 1
1 41.
>3i
' ~J ~j
I- S
/? i
RE,°F
EXH-
AUST
310
3.S2.
jL^O
—
3&I
? ' '
487
5'5?
to SO
72 7
82fc
J'O /
34. £°
S^Z.
7/8
428
** r *
- , <<»
*(70
7X£T
3^1
'37
7 74
RESTR
INTAKE
C-nHjO
O.£T
7.0
7-2.
1-0
*> . o
t.£
t 4
b. (»
t.fc
t-7
O.S"
)7.5"
//- 5"
l/.o
10.^
IC'1
II, t>
ll.l
II-O
i/.B
o 5"
VCT V f}M5
EXrtAOST
L«HA
0 /
7.9
2 .0
i-o
• i
P -3
J.S"
x '8
3.o
3.4
0.0
Q.°l
£. 2 —
4 - fc
4. z
^. 9
5- a
J.5"
.?- ^-*
-" '-3
£>: 0
FV A
HC,
^^mC
1 la
Bo
1T-
74
74
78
»2.
Q-7
So
/C 8
7*8
78
IPO
,02.
I/O
94
ND\R
cox
V>f>m
2.10
J4-T
^ 7
4 /
48
48
4-i
o »
o j
4"'
J.SOI
J-3b
tblf
/S 3
8 3
77
72.
73
H(p
' '°
ZZ3
ND\R
C02/
%
(3-'r?3
O.1?1?
1 52.
Z.li.
3 .1 1
-31
3. "7 7
. _ .
T **
b-XB
S,7fc
-S"'2 o
4.^0
J- /O
iiisn
Ili
„
l'3i
[.OO
0-lalo
r401R
MO,
Iplprn
242-
' 2_
4»3
fcoi.
r* , a
B/7
/t>7i
4
/3 £7
/7fo
i L i 1
/' T*
/7i O
7faO'
I4ot-
94>Z
^44
44 /
ne
3-S~4
C. L.
NO,
»*"«
2 '4
/ 7*7
393
4/3
R^J >»
044
/4J./
/*f z/
...
o^ w
7742.
1*47
227
ngo
'0T '
. .
/ow *»
745-2.
7/4 1»
8?7
6^e
437
2fc8
.23.5"
C.U.
NOK/
\>t>~-
2 4Z
3.0 s
fc£"2.
oa o
07 /
Is 4^
7787
/fc32-
•^
/ 7 / 7
,. ga
7^52-
/ J-O3
q
732.
69Z-
All
474.
^98
347
2'
X.
1
ENG1N E-
(oV - 'I /
DATE
WET e>oi.e, TEMP.,
DRV BUL& TEMP., °F ?/
-------
o
JMODE.
8
2
3
4
5
G
7
8
9
10
1 1
1 2
1 3
EN&INE
SPEED,
RPM
440
HOO
13.00
liOO
12.00
/loo
440
i boo
>&ot>
l&oo
iQoo
iQoo
440
OBSERVED
POWER,
h^
2.4-. o
49- 2.
13.i
98.1
140.0
IOS-0
bt.3
54 '2-
AIR
FLOW
""vW
FUEL
FLOVU,
'Vh,
2-fe
6.3
/8.S-
29.5
4/-S"
jg-9.0
2.fc
0(?.&
t/-9
4'. 6
A7.0
/3.<)
^•9
TEMPERATURE, °F
INTAKE
AIR
74
74
V3
TL
10
74
7s:
01
73
n
n
7;
7t
FUEL
Ml
ni
til
no
no
12.0
no
lie
'24
H6
I3o
\lo
i y '>
EXH-
AOST
RESTRICT\ONS
IMTAKE
CwttjO
0.7
j.s-
4-0
4-0
4.o
3.Q
0.7
9-0
8-7
fi.S"
8.r
8.7
o.s-
E^HAOST
in Ha
0-1
f.f
l-o
1.1-
'-4
1.7
O.I
4.0
3-7
3.1
3L..L
1-3
P./
FIA
HC,
^^n^C
70
80
84
90
704
/Ob
83
lOla
102.
loo
102.
It*
82.
ND1R
CO,
^f^m
20?
it,0
72
3k
n&
So^g
333
/8fct
82.
a.-*
37
no
210
KOIR
C02,
%
/.O4
0-926
2-25-
^-64
4.94,
t.S-3
/,78
t./S-
4^6.
3.5-X
2./J
OA1I,.
O-bko
NDlR
1HOX
^t>m
Ito
'41-
5793
"?97
/"jsrS'
(37i
2.72
/5~2.fe
/s-ac
/o<»3
6/4
2.42.
2.33
C.L.
NO,
t^"
224
/Si
lain
11 1/
1^73
/271?
22/
/£T38
IL.HZ.
1081
4/3
'^
/ft
C.L.
NO*,
H-
ZH
/8o
^£•6
HI I
m4
^334
Z42
/^i^
'6/a
//£-t
647
22.J
21)
o,.
y
/'o
ENG-INE.
DIFSFL t>V-ll
RUN /H-f
DATE
23
/72.
BAROMETER, Ln
2.9-
BQLBTEKP/F
DRY BUUBTEMR^'F *7 2.
-------
O
MODE.
1
2
3
4
5
€>
7
8
9
10
1 1
1 2
1 3
ENG-INE
SPEED,
RPM
44 £>
/Zoo
(7-00
17.00
17.00
1100
44o
I Boo
IQoo
I0oo
l&oo
19 00
440
OBSERVED
POWER,
ht>
i43
49.-S"
7-'. 3
96.8
/40. o
/O4. O
bl-B
34. (e
AIR
FLOW
lb-A,
FUEL
FLtwO,
'Vh.
-2-7
•?./
/S.3
So.-L
4'-«
5^.o
2-6
8o.S-
58-4
t>»c
la
^o
8&
^fc
m.
iii-
IDO
113
ie&
/OQ
110
IZZ.
Illo
NDIR
CO,
*>|>m
2.ZZ
23S-
65"
47
/S3
Soi^
2.IO
/<»<,/
7o
4&
61
72-3
/"?7
NDIR
CO2,
V
So
l./i
A/2.
i.3)
3.78
3-^9
^.tr
/.£>£•
4-27
4-77
J.S/
2./8
A/1
1.00
NDIR
NO,
*>t>r«
)6/
U/
SSI
IIL
/44^
/194
^12.
/48C
/5/4
/oz7
5^7 1
/ei
y^i
C.L.
NO,
*>>>•"
/V9
/sz
fc/;
104.6
ISlcl
/Z49
i/4
'4^4
/s-4.3
I OSlo
.5-43
111
x/7
C.L.
NO*,
V-H
2>0
IQI
fcST
;is-s
'707
/33/
^37
/5"47
/t0
///3
632.
i/9
^3^7
°*.
%
ENG-INE. [>erKoi r
DATE
72-
MAPPING- RUN M-2.
BAROMETER^ Ln
Z?
WEF BOLBTEKR/F (,O
DRY BULB TEMR, T_72-_
-------
n
i
i—'
00
MODE
O
5
0
1 I
2.
I 3
4-
5
1 (o
\ 1
o
1 y
ZO
1
ENG-INE
SPEED
RPM
~7 r\r\
1 uu
i o r\r^
\ DUO
1 Q/NfN
1 DUU
i or\/\
1 o*JO
i Qr>r\
I O'-'1-'
i ft.AA
\ QUU
1 QPiCl
1 ouu
i Q /Nf\
i ouu
i Q r\r\
1 cAMJ
i o.r\n
1 O^H.l
1 /TAA
2 fJL)
25OO
250O
25<_O
2500
25OO
2500
2500
25OO
-7/NP\
/uu
OBSERVED
POWER,
M>
1-1 r
1 f- , -0
/4 .O
-3 /- r\
_->
lO(o.
•) 1.7
79.1
*Q^I>»vJ
52.5
40.0
2S.8
1 3. i
AIR
FLOVJ,
"""Ar
FUEL
FLOVJ,
'Vk..
I (
U*o
5.9
12.0
IS-7
1 /• /
Z.3.O
27. 0
^2.o
39.0
43. e>
oO-/>
33. \
2.O.5
2^. /
1 - L
ICo.O
13. /.
10.0
.(D
TEHPf
INTAKE
AIR
QO
7Z_
„
O /
Q Ci
OO
QQ
O7
" /
BO
o;
R<1
O/
^o
Qf\
89
C\f\
70
DO
i>
35
&7
Q
o /
ftr
06
A~7
ft/
HP>
DO
„ .
' 1
LRATU
pt \cr i
~
/O
00
/v'
^ '
/ '>
/'-
Qf
VL,
}-.
/
C)A
/fj
A n
9y
I 00
01
02
1 05
1 0(<%
r\ «
)^
102
/ -
Jvf
RE/F
EXH-
AUST
^ -10
o /3
zgu
347
17
T / O
r
— '' Vf)
l~ 1
<^.O
Q 1 1
0 1 1
731
1 0>o2
933
"24-
o OQ
750
677
570
518
442
-)7o
Z79
RESTR
INTAKE
U^O
v Qi
1-7
1 1. /.
I 0. •)
0 . J
. 1 . i
\ O.r,
i r\ -7
1 U. /
. fv C
1 O.b
10.7
7- /
I 9«7
1 7iO
\ 7-7
_ _
1 7. 7
20.Z
Z.O.4
20.6
20.4
20.2
„
1- /
IC.TVOM5
EXftAOST
L«Ha
r\ r»
4O
c.Qr>
t> V1-1
ftcrv
05O
IO4O
oZO
1080
825
740
OlU
790
/ /O
/oO
Q \ r\
o»o
onO
r ~j.r\
fciO
ND(R
CO,
(>*»«
X>O7
— «O
34 \
007
o f>/-
^ /to
1 A~I
34 /
/I Q Q
4 O/
103o
25 3o
'5OO
1 81 y
Q \/r
7lb
501
4 1 3
371
.
3/4
3 07
403
4/06
26;
ND1R
C02/
%
Kb 1
1 /* Q
1.107
•to5
.50
.4 1
.44
to. 41
—Iff
/-fob
O. ti 1
7"T\5
.37
7-51
t>.55
r
o-7 1
•70
4-7 fi
•*-)
,5O
.83
2.12
. 51
NOIR
MO,
V>\p^
i QT
1 7 1
\ r\*7
1 t>/.
1 / /
*} TO
i. 1 L
1T1
o /3
4-9 1
"7r»"7
/o /
Q -TO
0 \L
9Qn
ol
103Z
1 184
1 015
o7s
r ftr
(oofo
oO^
2. On
3oO
A 5) 7
1 60
86
1Z7
C.L.
NO,
)>(»«
1 \ r
54
,
1 _>^>
0 « /\
2AO
_ .
oA^>
A (A Q
•4-VO
71 O
12
(\ /\rv
900
1045
IQ>
13i8
17 1
95g
/3fc
^43
o o'Q
oob
249
147
81
1 1 5,
C.L.
NOS
^J>-
1 b5
Q Q
7Q
92
2,7 Z
4~O 1
544
I4?
C\ O 1
^13
1017
\ OO
1405
12 o/
1003
-|Q 'I
I02
r 0-7
5^3
^ A O
^+48
1 i
103
IS1
H8
°*.
y.
1 O-O
\ o r
' a.(o
.0
5. \
13-8
12.2
. *. c
10. o
8r
.(D
6.7
4-5
*O-7
. 1
7.«
1 1.2
12.2
13.5
14. /
15.7
16-fc
17.4
EN&INE-
R.ON Z
INTERNATIONAL.
DATE S/q/72.
WET &OL&
DRY BOLB
72
8O
-------
o
MODE
1
2
3
4
5
:>
01
95
91
'3V
?PJ
37
•XiH
rl4
^S'5
\02
'}•)
95
57
99
^7
95
93
EXH-
AUST
2%
2(oO
333
409
41) 2
:/)8
fe?0
6\':l
^72
\B58
£55
-3, [)0
'' • . " . ;i
&£t
•?9<)
702
(oB
G3\
459
5fo^
27^
RESTRICTION
INTAKE
un HZO
!.-)
n.Q,
1 1.3
II- 0
n.i
\o.9
%0. 7
\1.1
10.7
10. 0
2.1
a&
19-1
*%8
\%?
19.9
20.2
20.2
20.0
201
1.9
EXHAUST
L"H3
0.0
0.2
0.4
0,1-
0.3
0.4
0.5
0-1
0,9
0-9
0,0
K5
l.S
K4
1.3
1.2.
l. \
o,-)
O.B
•^.?
<";, 0
Fl A
HC,
fc>t>mC
465
S95
520
505
^BO
535
5£-0
710
905
800
•DS-O
940
7 IS
665
710
7t>5
Cc-70
fef-O
t')0
7ZO
SPf.
ND»R
cox
^t>sn
2.5?.
35)
33fo
297
318
337
457
93!
2265
fo5<3 0
2Eol
*4?,8
7B
532
379
32fc
sn
32O
334
3fcO
\90
t4D!R
C02/
%
I.4O
I.Toi
2.5G
3.4b
A. 42
5,32
6.42
l.foO
&.7I
5.95
1-47
8.71
7.1T*
7.I&
6.28
S.18
4-&7
3,81
3,04
^-24
\.£\
NDIR
MO,
V>'P^
12-1
G.O
S34-
273
3&G
4(o?
4Z
I14E,
1055
927
7ia
532
402
207
14-0
73
100
C.L.
NO,
t>f>m
108
53
12&
221
341
482
foB^
S92.
IG5S
i\o?
135
1314
IU3
^43
706
5S8
3B3,
245
»47
&G
IOG
C.L.
NGu,
\>^m
I(o2
91
179
288
333
G>20
74b
92G
10&9
1153
154
1*3 P>5
\)13
9B6
7S2
£54
429
30 1
104
!44
IS4
°*.
X
16.9
18.7
17.2
ifo.o
14.2
12.8
\\.2_
9.0
7.2
4.8
\B,&
7.3
8,7
10,0
u.s
\2,9
14.0
iS.I
IG-3
n.fe
»8.Q)
EN&iN E. INTERN AT jQM
3
D40"i
DATE
BAROMErER
V-U
29.
WET &ULE. TEMR, °F _G8_
DRY SUL& TEMP.y °F 7G
-------
0
ro
o
\r^
-j
t.
3
4
C.
6
7
6
9
10
1 2
I 3
1 A-
1 5
1 6
I 7
1 6
1 9
2O
2 1
t"7-i:iE
^o.
«PH
i Q fx f\
IftOO
IROO
IfsOD
IBOO
!600
!g>00
1800
1800
/ u u
2500
2500
2500
250O
2500
2500
2SDO
2500
/suu
70O
•j
I2.O
24.O
3k. 0
4&.O
50.0
7'1.0
84.0
9fc.Q
! \ i .
i 00.
6S.5
71.7
56.7
42.5
29.2
14.2
*.1P.
21>S
722
728
72k
710
715
104
110
708
693
293
945
944
9£0
9C6
9S&
958
961
9,
1.7
~. /
M
1 5 , ?
1 C, . ~
1 ') . 2
^- _! . 'r
1-7.°,
3 H .4
'i?, .2
1 •_'
4fB.G>
40.7
34 .£
10. r<
2£.l
21. 1
17.0
13.5
1 0. 1
1 -7
TF-MPf
,-M/-
At R
o4
Cl
o 1
80
"19
71)
-;'}
30
80
R2
-
0 /
M
rr>2
B2
ft 4
84
82
81
SI
Cj I
nl
^
HO
FU'tL
"O
)O
90
90
90
91
92
92
9?.
95
Ck 1
7 1
95
98
100
100
91
90
93
9£
) -
C\ 1
V 1
RE °F
EXH-
ftOST
'!
^— 'T'O
^45'
3^9
4 OP,
5)3
GOO
fc79
796
\0lfc
1 Ofct
475
931
9£>7
8B3
788
697
ColO
52i
454
-• J'l
2. .'<;
RESTR
INTAK.E
U H,0
2 . 1
\ 1 . 4
U.&
U.5
li.O
\\.'i
\ \.\
i 1.3
1\.2
10.6
i (\
K l->
\<).9
19.1
»%9
20.2
203
20.2
20.3
20.5
2 ". /
r
ItVlOMS
K^
J.O
o. z
0,4
0.5
0.5
n.fc
0.&
i,0
».o
1.0
f\ Pi
0 . U
S. £
\.£
1.4
1. 3
1.2.
1.0
L_0.5
0,0
C:. ]
c, ,o
Ft A
H C,
4fcS
toOb
S55
520
5 10
545
580
HO
9!5
870
5-i-i>
\04-0
8
NDiR
CO,
t» b EYl
^-O±>
a ~7/r
D /O
371
322
3!9
372
481
10 !0
ZfaSfo
7198
j-^>i
^163
1 »3O
G&3
50fo
4\B
434
448
47fc
4oO
3) /
N D \ K
coa/
/o
1 Z5 1
\ zr /-
1 . 0(0
2.£l
3.35
4.24
5.20
6. IS
7.24
8.24
9.28
1 -4- I
8-73
7.78
6.81
303
205
1 IS
74
r\
i
"> o
S 7 . 2
. Q
I Q.O
17.5
lt.\
14. fc
13.0
H.4-
7.2 I
4.CJ
^ .
l o> to
6.3
B.l
9,7
1 1. I
12. Q>
13.8
15-1
Kb. 2
n.s
t Q ^3
1 0. 3
EN&IN E- INTEKNM
R.OM 4
D407
DATE
TEHR,
. 17 DRY BOLB TEMP., °F _74_
-------
MODE
1
7
3
4
5
<&
1
8
9
1 0
1 Z
I 3
1 4-
1 5
1 6
1 7
1 6
1 9
2O
i
ENG-IKE
SPEED,
RPM
~i r\ f\
\ 2 ./
534
415
50Z
595
702
819
920
107|
b32
990
346
S70
/ \D /
*O / /
Q>19
535
472
40fc
T >^/l
2/4
RESTR
INTAKE
un^O
. /
\ l.lo
1 1.4
\1.4
1 1.2
11.8
11.5
\\-(o
11.5
10.4
1 . 7
n.&
20,3
20. (c
20.2
20.7
2.0.7
2.0.&
20.5
•-
/ i . . n
•.- * •
ICT\OU5
EXeiAOST
L«HA
r\ /^\
L).U
. X.
0.3
0.4
0.3
0.3
0.5
0.6
\.o
0-8
•U
1-Z
\. \
1.0
0.9
0.5
O.fc
n.t
O.t
'. . (f
FVA
HC,
t>^mC
A!5
575
545
570
55O
Sf.0
(biO
7fcO
980
800
540
1050
830
720
7fcO
7fcS
750
725
740
-{*•>[
/o'_,
^ -
f v.(
NDIR
CO,
t>t»">
•7 /LR
2 TO
32^
314
28&
29fc
32fc
435
9t>7
2819
7133
57
1837
fe95
548
42G
384-
37 G
390
40S
40o
' ' C 0
^L O /-
ND\R
coz/
%
1 4 1
1 4\
1 -Co 1
2.S&
3.59
4.5G
5.47
6.51
7.78
9-10
10. %
.13
8.57
7.fc2
£•?£
5.13
4.43
3.^4
2.89
/ , o
. c
-^2
NO\R
MO,
^™
A ^>
' ^7
'3
141
258
38&
533
779
913
M09
1141
I O -A
1 34
1337
1222
1011
757
577
435
295
188
13
1 A 1
1 "t-2.
C.L.
NO,
>t>m
i 1 )
53
\24
227
337
4G4
68h
B3G
1 045
1094-
1 44
I3fo£"
H99
984
7SG
558
408
284
i (j (^i
I Ob
Q~7
O /
C.L.
NO*,
^t>^
\ t,r>
I tovj
"y_
158
219
393
£19
743
581
10&9
112.7
I Q -7
i 57
1410
1244
!0l7
784
£9£
422
iOZ
209
54
i r n
1 vo 7
2'
X
\ Q 1
' O.O
17.5
l£.8
14.2
\2.7
11.0
9.\
(o.b
4.5
\ ~i n
1 '. 0
7.2
8.2
9-5
11.1
12 -4
13.5
\S. 1
15.7
1 Co .7
1 T 0)
1 / . 7
ENGINE-.
5
INTER MAT 10NAL D407
DATE
9 /72
WET
29. 12 DRY BULB TEMP., °F 77
-------
MODE
1
2
j
4
5
12.0
24.0
3fc-0
-feOO! 4S.O
BOO
IQ'70
1800
\aoo
"700
2500
2500
2500
2500
ZSOO
2SOO
2500
2500
2500
700
feO.O
12.0
84.0
9fe.O
\09.
%.7
82.5
fo&.3
55.0
41.7
27.5
13.3
AIR
FLOW,
Ib /
™/hf
304
740
1 12.
730
73G
12 Co
730
711
724
712-
Z9I
950
960
955
%5
%S
976
967
9
&ftl
(b09
514
444
3d 2
2(^4
RESTRICT i OKIS
INTAKE
UHp
2.0
\ t.(o
n.9
n.7
n,x
\\.7
n . -
U.5
11,4
10.?
O
20. »
20.0
2.0.2.
20.4
20, <)
ZO.l
2^.R
If-.1?
2 ^ 7"
I. T
EKHAUST
lnH3
o.o
O.3
0 4
O.S
o.fc
O.'i
o,».
..0
1.7
I. 1
0. 1
L4
i-3
1.2
t.2
I. t
1.0
^•?
0,F>
O.G
- _ \
FIA
HC,
l?|3mC
4fo4
&9I
513
55Z
553
fell
133
fell
521)
730
5^2
8 Be.
711
701
|>««
170.
339
33fc
322
307
331
'"3
ci44
Z\0&
fcfc3O
258
!72
247
ND1R
coz/
%
1.41
I.(b7
2.«
m
73
!34
239
351
5.44,! 477
5
C.L.
NO,
Ipfim
135
72
9)
250
300
4fe3
C.L,
NOR/
^»t>«.
119
67
143
2.5
V7.9
18.£
1?.0
EN&1N E- INTERN AT ION M- D407
-------
o
MODE
7
3
4
5
<0
1
8
9
1 0
1 1
1 2
1 3
1 4-
1 5
1 G
1 7
I 5
i 9
20
i. \
fH.-.1(-e
RPM
/oo
\ Rr\r>
\&00
l&OO
l&OO
l&OO
l&OO
l&OO
IbOO
l&OO
~i r\r\
1 UU
2500
2500
250O
2500
2500
2500
2500
2500
25 00
~~i r\r\
;uu
nr-^ *.«=&
PfMOFR
12.0
24.0
3(o.O
4ft, 0
i>0.0
12,0
R4.0
9(o.t
10&.
95.8
&2.S
(LI. 5
54.2
40.0
27.5
12.5
AIR
FLC.V. '
l°™/
_ ) O- 1
140
712.
130
13k
726
129
113
72G
712
-i. 72.
950
959
956
966
%5
911
9(bt
964
972
2.80
F'..-|.
Ft i"l1,l-
**/!-,*.
. ,
• ^>
r ,
— ' .'i
B.I
12.3
15, P,
19.0
23.4
27.5
32.5
39-2
. I
43.4
40.2
33.7
29.2
24,1
20. Q,
\8.l
12.2
1 0 .YJ
1 r
1 . (o
T-;-,rr
2<>('
fpESTP.
INTAKE
.2
-
\ 1 . 7
1 1.4
1 1.7
11.1
U.5
H.2
11.2
11.4
\1.2
^
' • 7
20. Z
20.3
20. Z
20.7
20.7
21.0
20.7
207
20.7
,.
I. J
icrvws.
EXV\A'JLT
. 1
'--)- D
0.4
0.5
0.5
O.fc
0.7
0,9
1,1
1,2
. I
1,4
1,3
1,2.
1, 1
1.0
0-&
0,7
0.7
0 .(c
o. \
f ', A
HC
53
Q O Q
ty 2- /
491
150
Gi2
750
(b ^ I
&4 9
3(c9
592
434
130
582
£33
513
553
474
£43
454
o 12.
434
r * o i- R
ro.
27 1
3L2
2G 1
3 1 1
422
339
410
323
2147
1035
248
1711
848
524
403
350
353
35 L
; i D \ R
< .O ,
1 • 2 /
1 4T
1 . ^ /
2.35
3.24
4.18
5.13
(b.30
1.32
d.4O
9-44
1 i O
!• 6 z.
6,32
7,55
6.87
5.88
5.07
4.24
3.52
2.G7
2 .03
C I
1 . to i
H O * R
MO,
pprn
I Lo
'-D /
149
274
365
545
737
b~M
I0t»7
1\89
1 /^ O
l^-/.
1418
mi
9SO
74-9
544
375
273
Ifcl
9->
3
A Q
I 4/
C, L.
NO,
PP"-
i r\^7
1 O /
A Q
TO
125
218
334
464
111
S97
10P,(b
1169
1 2
-------
o
tNJ
MODE
1
2
3
4
5
6
7
6
9
10
! 1
1 2
\ 3>
ENG-INE
SPEED,
RPM
700
2JOO
2100
2100
1100
2100
700
2300
2300
2300
2300
2300
700
OBSERVED
POWER,
ht>
Zfc.G
52.5
78.4
105.
\ 10.
82.8
£5.2
27.0>
AIR
FLOW
lk-A,
301
858
040
838
82>G
818
294-
835
894
907
891
898
306
FUEL
FUvJ,
ib /
•"/W
1.1
fc.7
14.5
23,8
S1.9
43. a
\. 1
4(o.2
2.2.6
24,0
15.2
8.4
1.5
TEMPERATURE, °F
INTAKE
AIR
95
92
91
90
91
92
)4
92
93
94
92
92
93
FUEL
109
10)
99
99
100
103
103
90
91
93
95
^7
iOO
EXH-
AUST
RESTRICTIONS
INTAKE,
i-n HjO
2.3
15. S
IS.G
16.3
15-2
14.3
i-9
H.2-
17.7
n.9
n.7
\7.&
2.2
EXHAOST
InH^
0.0
O.3
O.fc
O.(b
0.9
0.8
0.0
1.2
I, 1
0-8
0-7
0.5
0.0
FIA
HC,
^-C
550
7fcO
(o£0
f>«.
271
385
367
428
743
5793
2%
4241
(o83
405
355
3&4
2.47
NDIR
C02,
%
1.41
1-82
3.59
5.47
7.09
9.54
^.47
9-47
7-32
5.40
3.70
2.03
1.5Z
NDIR
NO,
^*>"
\ \
9Q,
12
-------
o
MODE
1
2
3
4
5
G
7
8
9
10
1 1
1 2
1 3
ENG-INE
SPEED,
RPM
700
2.100
2100
2.100
2160
2100
100
2300
23&0
2300
230G
2300
100
OBSERVED
POWER.,
ht>
2(r,.G>
£2.5
78-4
IOS.
1 10.
82. a
55.2
21. (b
AIR
FLOW
fc«/hr
322?
82>7
841
845
83Z
808
328
875
692.
90G
9 IO
905
285
FUEL
FLOVJ,
'V*.
I.G
7.0
14.2
22.4
32. I
43. (o
1. 1
4S. 9
M.I
24-9
l 6-3
8.3
1.4
TEMPERATURE, T
MTA»;E
AIR
95
9Z
9°
91
9\
•)2
05
•)3
^3
33
94-
72
03
FOEL
lot
99
too
104
99
^5
•)7
98
101
101
!OZ
»o'z
%
EXH-
AOST
RESTRICTIONS
INTAKE
UH20
2.2,
15.2
is,4
\s.4
\S. |
(4-4
2-4
n.o
n.&
n.8
»8-3
^8.2
»-9
EXHAOST
in Ha
0.0
0.4
0.5
0.7
\-\
\.o
0-0
\.z
1.0
0.8
0-1
0.6
0.0
FIA
HC,
*>f-«C
560
fc^O
fclO
G30
740
790
500
IOZO
fcfcO
G1S
G55
120
5fc5
ND1R
CO,
^»f>«,
27)
3t>">
14Z
93
173
foOG
\019
1155
no
V540
127S
G2J
306
107
149
C.L.
NO,
t^*»
IOZ
58
Z>7
SOI
317
1175
155
\397
1131
545
259
10&
»25
C.L.
NO*,
H~
145
\OI
274
5i6
940
1185
119
I4£Z
\\54
5S4
2>0fc
125
130
Q..
V
/o
18.6
1B.2
15.4
\?.5
9.2
4-9
i&.fc
S.3
9.\
12.2
15.1
11,7
16.3
ENG-INE. INTERNATIONAL- D401
MAPPING- ROM K-2
DATE
5/ 9 /72
WET BOLBTEMR,°F_fc7
BAROMETER, Lrv H., 29.08 DRY BULB TEHR, °F__/S_
-------
o
MODE
1
1
A
1 c
1 to
' /
I O
'7
20
Zl
ENCIfOE
SPEED
RPM
oOO
1SOO
\50O
\soo
150O
1SOO
ISOO
150O
oOO
220O
2200
z^oo
^LZOO
2200
2.20O
220O
8
3?. O
52.5
b5.O
7 O-^
a i t~
7 !•_>
1 ZQ. 3
1 O3. "4-
Ofc>-5
t>o. 2
O i. 1
20-7
oo, /
1 Ato
AIR
FLOW,
lb"A*
i 'D
(o44
G>7 1
7 IB
147
184
?3
Q/l o
O42
07 7
ofc 7
2,-j o
i 'O
1453
14 15
1 351
1 -D1(J
MO/
\ UoO
1 033
953
359
FUEL
FLOlO,
lb~/,.
o. r\
O.\J
7, ft
14, d
1 O.4
? 2,O
2fc.2
/ 7. ^f
ifc. 3
07. to
. 0
5t>. U
5 1. G
44- (o
07. o
2. -2 /-^
6^»vJ
o~7 r
z2.t>
. o
1 Z.U
2.fc>
TEHPE
INTAKt
A\R.
O/1
7^4-
O A
7^-
QT
7 /
QQ
77
„ ,
7M3
9 '
<\^
)5
oy\
7^
<\ ft
74-
OC
7O
C\A
?4
f\ A
94
f\ n
93
0^2
93
E,°F
TUR60
2,
74 1
034
(X A -J
74 /
1 pi i r»
IVJ 7U
cic\
(\ Q-i
77 /
1 QA
7 7L)
C\/\ /*
7H'+
RQ^
O7— '
ft. 1C\
o/u
-7.1C.
CCA
fo(o4
P- Q/-
5ofc
475
^
3(o2
BOOST
'/
i-rtj
Or\
0.1
1-0
, 4
5.5
. 1
1 0.0
i -\ -i
* to. 2
i ft r
i O.io
.S
1 ( <^,
2.4,0
I Q A
1 O.-'t
\4 ^2,
\H . i>
v \ r>
\ \> u
-1 -J
/• /
b.^
• o
.0
RES1R1C
iWftHf.
,« M^O
1 ft
1, Q
4 ,o
.5
CD. 2
r ^
to-^
/. /
-j /i
/-4
8 a
i3
cs n
7'W
Q A
i -7
Z.O.— >
o i o
on A
t /I -7
1 ^ ^
1-3 -I
1 i- /
1 0 £L
1 0. /
1 .7
.TlOMS
tXHAOST
'« Hs
A r\
• 2
0,2
,2
. ±)
,4
.i>
Ot
• O
r\ Q
0-7
.O
Z. /
?.s
.2
Q
1 A
| O
I- L
.c.
.fc
0.0
P 1 A
HC,
P>™ C
1 i5(o
3100
/4UU
1 A Q Q
\ T DO
\ 1* \ O
I ^-7fci
totSo
O7Z
/Os-
/va8
792
\00&
ND1R
CO,
^VM
1
454
4oo
C (t~l
i 6 o Z
/.^u^
r: Q -A
OO^
4Q-1
•^toO
4v^
-7 -2f
,
l £T f\
I OU
I C-.A
SS
o^o
537
445
N DIR
C02,
y.
i.bi
I. ^o
5, 1 t
• 1 0
C \ Q
->. 1 O
.Ob
(O. D(O
~1 ^R
,^4-
• ' /
\ c.-T,
~J QO
'• 7Z_
. fco
f' IQ
(o- 1 7
r 4C
5-10
• 'O
4<^Q
.77
4 A f
• 'Ko
3.5^
.55
1. 53>
NO\ P,
MO,
^^
4-f
*°
9
45
1 7 G>
278
37G
4o2_
C Q A
b 74-
07
lo(o
1 1 £- 0
M D Z
Ofc2
^ /I"!
(o'H /
£;^.n
JOU
c? /- r
O4
55
C. L.
NO,,
i>y>«
oS
42
1 10
204
Z ^O
3So
47 1
r p. o
v>U O
~l n r\
1 0 /
oOt)
*) T~l
1 Q>7
9Z
89
C.L.I
NO,
Mr-
3 "7
_) 2.
1 (o
G2
1 7 (o
2(oG
349
4(o(o
C QQ
b V 7
I 1 1
((o /
1 1 z_
Q 1 "1
7 1 '
03 /
ft
Co t>2
55 1
3o2
252
200
43
58
4J
Pi,
/o
- --
EMC\ ME- JOHN
R.ON 1
/72
BAC.OMC
WET tULL TEMR,"F 54-
DRV BULB TEMP.X °
7 I
-------
O
IXJ
MODE
1
2
3
4-
5
G
7
6
9
10
1 1
1 1
13
14
15
_Jfc_
17
\B
19
20
Zl
ENCIME
SPEED
RPM
800
I5OO
1500
I50O
I50O
ISOO
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2200
2200
2200
2200
800
OBSERVED
POUJER,
ut>
13.0
20,. O
30.0
52,5
£5.0
18. 0
91,0
\03 5
13,4.9
lll.O
104.1
B(o.£
(o9.7
51.3
34.5
21.9
'MK.
tLouj,
lb~A,
310
(o(o3
(o
1050
I03G
97rt.
TURBO
412
413
45&
541
(L3|
141
837
916
m
1014
G30
94 S
993
951
&97
833
154
673
G2S
4^7
Z.41)
BOOST
Pf^ESS^
L« H^
0.4
>.2
1-8
3.5
t.O
1.2
9.G
(2,4
IS. 7
13. S
0,5
23.2
23.S
20.1
\7.2
14.4
10.5
7. 1
5.9
3. 1
0.0
REST RICT \ONlS
INTAKE
>n ^0
1,5
5,0
5,3
6,3
G.O
fc.S
1,0
B.O
9.0
^.S
1.5
25.0
2_2.5
20,5
\8.5
17. S
\s,o
'3,0
12.5
\\.S
>. S
EXrtAUSl
C" U$
0.0
0,2
0,2
0,2
0,4
0.5
o,t
O.tt
1.0
\.'L
0.0
5.0
2.1)
2.(o
2.1
2.0
\.7
1.4
1.2
0.9
0.0
F\/\
HC/
ip>« c
1 1R4
lllfo
I4SC,
nth
1058
\0&ft
\\20
lld>8
\li<0
9tO
6t4
600
&\G
184
130,
104
t>40
fc40
fcSfc
BIG
784
ND)R
COX
VlP1^
301
")44
/72
474
302
300
551)
483
vOhO
O&fc
353
4fci
320
\S9
^9
87
138
43fc
4S4
50>2
5(o7
N D\R
C02/
V.
1.52
1 11
2.1)!
4.03
4.95
5-75
(b.fol
7.34
8,00
e.38
1. 69
9.ofe
7.34
fc.78
fe.lS
5. 75
4,l)(c
4.30
3.SO
2.S3
2.50j
ND\R
NOX
t>lp~
91
37
73
i t5
2t2>
3(o4
4 Co 6
561
fc97
&48
1 11
1240
^43
(oCoC,
517
440
294
2\3
V56
83
83
C. L.
NO*,
t^jp^
57
87
95
183
2S5
329
431
S31)
0)43
783
7&
1155
549
(o03
444
3^)0
28)
Z02
163
79
80
c ,u .
NO,
MP«
73
~i c
o-,n
149
234
31G
427
530
fciP,
744
73
\ H8
835
fc.03
444
390
281
193
n?
5}
5?
POLKK.
P./
%
-1
-
E N C \ M E- JOHN DeEKE-
R.UN Z
3 /
-------
n
M
00
MODE
1
1
Q
'0
1
I 2.
1 3
14
15
I fc>
i 7
O
• 7
20
Zl
ENC.IME
SPEED,
R.PM
tjOL)
1 5 00
1 5 O O
1 500
1 z>u O
i a r\c\
I oOU
i c. nr\
oOO
22OO
220O
220O
220O
2200
220U
L /DO
22OD
2 100
boo
O&SEKVED
POU3E.R,
UJ,
I 2. 5
9 / r\
A ^ Pi
_>c. u
r /~ c;
~i~ir
°l 1 Pi
i p. -> /r
I Uz.o
1 6 4 , 5
/_ 1 . U
03.4
o 7o
too. 9
52. 1
a/\ £:
OMO
i -7 /~
1 /.to
MR.
FLOW,
lb~A*
„
o:>7
Co4O
to4-(o
" ft Q.
Q? 0 O
-i o A
/ .54
"7 flr
;o(o
T3 c
oW
D^ A
o(o4
Q.Q. 1
DO 1
2. r-O.
555
14 (oft
1393
1 32 /
1 O Q^~
12 05
1 1 /4
1115
1 Olo2
IU i /
Q 1r
TD(O
o49
FUEL.
F-LOUO,
(b-Vh,
^ ^
^ , ~
• 8
I U.U
I ^ ?>
IT R
1 /. O
•7 ^k 9
5 r ^r
Z \o, b
0 (-S /-
oU. (o
1 r 0
41 A
. o
SG.4
5 ' • O
44'fc
59. tt
3)^.0
0 r\ O
^7- /
7 7 A
i -7 o
1 /. O
1 1 A
1 I , O
. 5
TE.MPE
INTAKE
AIR.
/(J
b 7
/ 1
-jf\
/O
(0
H> 7
f Q
tc 7
/t>
"Ift
|U
-7 i
1 1
10
70
C c\
(o )
(c ;
~l A
/o
(o7
70
"in
/D
~i n
/L>
TA
-7 p.
/U
KATUR,
r-vrx
VO
)0
)0
(\p.
V
r\ r.
90
^
) I
GO
yz
C\o
J*-
£,°F
TOR.60
, _ Q
4 DO
4O I
4 (LI —
^^n
(o55
/oo
B34
93 1
100 ^>
507
r\ r 0
950
Q~!C
7 /5
O, y^ ^
7At
AQO
O 7/.
Q 0 >t
D'^'H
(o / 1
r u r\
_>Vv)
4 0*1
. 'o
BOOST
PRESS,
L«^
0-3
0. ft
1. 5
5,2
5, I
, 1
12 .(o
lb-7
' D. 0
0.3
25.^
/4 .1
o 1 O
' 0. ->
1 ''L, R
, f> f
-i n
\ • }
" '~
RESTRIC
>mAKE
irt tA^O
1 .7
• 5
b U
. /
C r*
(o,0
~7 0
/. /.
-7 A
/,T-
50
,/
8-7
, /
Q C
i -7
1 ' /
1 A £Z
24- ,-i
o r\ ~i
0 T
' 7- /
i ( C
1 £^ Pi
i c? 2
1 D. O
1 / .5
' . o
1 - tj
_T\OK)S
EXKAVJST
;« HJ,
Or\
.2
• /.
OT
• o
UA
A
u.±>
,5
Or
• b
A ~)
U. /
0/^v
• O
3,0
o -7
/• /
.(o
1 r\
-^.U
i r
I. to
1 .4
I. Z
•0
.0
FIA
HC/
py™ c.
7
~1 C~l
1-iZ
IcOO
"7 AA
~7CO
q
'JOA -
-/ [• n
'c4
ND1R
CO,
H>«
^h^Z
1 1 3o
r\ 0-7
L3o /
to 1 2-
4-35
~>7^-
. 0 .
A ^ *
O7 ^>
l O 2, ^
0 o -7 Ci
337
ioO
452
007
2o
2.07
-i i A
3. 1 4
All
•17
r T d
~7 f\T
'. / 1
&c;n
O| PiA
LOU
~1 Q/"
/, 7(0
~I 7. \
(,O 1
,
(o. /fc>
, - .
(o. olo
/r -/A
5-7 ,.
• '4
/\ ^t £T
^.-JD
a r; c:
:x_O
-7 /• a
/.(oO
• 54
NWR
NO,
»>*>«
5lc
•=> /
1 _> o
61 ^
A
A \ o
S I (r
f ^ \
927
Q/l
o4
Ci/-Q
o5o
rA i
O^t 1
^ 1 \
0 Q \
30 1
T Q -J
3o3
o r\-i
xiU /
1 49
'4
(o5
C. L.
NO*,
PV>«
Q Q
OD
37
85
1 / 4
250
a, o a.
~> ^- D
Ann
4-Z.i
1 2
r a c
VODO
-J Q Q
70^
Qfi
7O
1 IBS
847
r i A
to 1 ^1-
-
4 /fo
1 1 i.
d>(oD
oVo5
1 Q C
1 i5
1 oGi
/fo
(08
C.L.
NO,
flP"*
r o
loo
25
5 /
/HU
a 9 o
O'i ±1
A n O
51 o
1 J-
f *2C
~1C*^
1^2.
7O
1 130
Q -, £-
Doo
/" 1 A
(O 14-
4-9 1
i5o
-i /- i
0(0 1
Q9
i ;Z
129
52
45
POLKK.
03/
%
G4O4
G /72.
R.UN
BAROMtTF R, ;
DRY BULB
.X °F
7G
-------
O
MODE
1
2
3
4-
5
G
7
6
9
'0
1 1
\2.
13)
14
15
IG
»7
l&
19
zo
Zl
NCIWE
SPEED
K.PM
800
1500
1500
1500
1500
ISOO
1500
1500
1500
ISOO
BOO
2100
2200
2200
2200
2200
2200
2200
2200
2200
800
OBSERVED
POUJER,
v,y»
12.5
2G.O
Z9.0
SI. 5
GS.S
_J8.o
91.0
102.5
I3(o.4
I 19.S
104.1
8fc.S
G6.9
5 1.3
34,5
n. G
ME.
FLOW/
b~A,
359
(544
GG 1
103
718
74B
820
633
6-87
859
3k 9
!4
22.4
27.G
i\.2
Z(c.. ft
39.8
2.Q>
5(o.4
50. (o
45.4
40-4
42.
)&9
9&2
9SO
890
8i2
_7f9
(o75
590
478
Z.42
BOOST
PRESS^
L" ^
0.2
1.0
1.6
i.4
5,2
7.fc
10. C,
13.1
\fc.G
18.0
0.4
2C,.0
23. &
20.9
18.1
14.2
10. G
7.3
4.1)
2.(o
( .1
RESTRICT* QMS
NTAICt,
>n rt^O
1.7
5.2
5.5
G.O
r0.3
fc.&
8.0
&.3
^.2.
8.7
1.7
15. 0
22.8
10.7
10.0
17.3
14.3
13.3
12.3
\\.o
1-7
rXWAOiT
'" ^2>
0.0
O.I
O.I
0.2
0.3
0.4-
0.5
0.&
0.7
0.7
o.o
2.8
2.7
2.G
2.1
1.9
i.G
1.3
l.l
0.8
0.0
F> A
HC/
py« c
T(o8
1392
1 152
97(o
&9fc
944
1008
1040
lOSfc
IOO&
944
(02.4
944
328
8ftO
784
720
lit
751
8fo4
7£,ft
ND\I?
CO,
HP«
S23
1 IfcO
983
G&O
480
487
508
S79
1154
132&
4-75
5?0
45Q>
331
255
248
289
3G&
4G1
598
499
N D1R
C07/
y.
l.d.3
2.03
2,95
4.14
5.04
G.ll
G.18
7.S7
8.22
8.88
0.8t
7.8Z
7.18
fo.9l
G.38
5.71
5.07
4-.2.l
3.4ft
2.41
1.38
ND>R
NOX
V-lp-
B3
27
G>3
I 45
24\
22,9
433
540
(ofcfc
8?.1)
84-
i igs
883
(o71
513
5
-------
n
OO
o
MODE
1
2
3
4
5
G
7
&
9
10
J 1
1 2
1 3
ENGINE
SPEED,
RPM
680
1100
noo
noo
noo
noo
870
i°>OQ
1SOO
1<)00
noo
1900
650
OBSERVED
POWER,
ht>
25.5
Si,5
7G.5
(01.0
1 2.7(o
iZ32>
ibll
1002
&<)0
811
357
FUEL
FLOW,
lb~/h.
2.5
R.2
IG.O
25,2
34. t
4L.4
2.4
4-9,0
38.8
29.2
16.4
<).&
2.4
TEMPERATURE, °F
INTAKE
AIR
"71
1 1
72
72
7 3
7 'i
74
72
"Ji
74
73
73
73
FUEL
%
%
97
98
^)
iOO
100
101
100
98
^8
31
•)&
EXH.
PRE-
TORBO
517
4G7
5")£
778
905
I0\7
SfcO
976
954
&57
702
504
4\4
BOOST
PRESS,,
in H3
0.2
i.(b
3,9
^.o
14,3
7\.2
O.E
21.^
n.3
l).8
5.9
2.4
0.2
RESTRICTIONS
INTAKE,
In^O
1.7
^c
(088
\ 120
6^2
848
944
%0
720
^fcO
928
800
704
8~
GG
2(o
139
2-71
435
847
12
957
SS&
300
150
44
44
C.L.
NO,
Ft>«
(b3
14
1 12
2(o2
4&0
841
(ol
944
£.58
295
14)
40
3
-------
o
MODE
1
2
3
4
5
G
7
&
9
1 0
J 1
1 2
\ 3
ENGINE
SPEED
RPM
ato
noo
noo
\'/00
noo
r/oo
810
1900
1900
1900
l<)00
i9oo
850
OBSERVED
POVJER,
ht-
2S.O
51.0
15.5
\02.0
175.4
•)5.o
i
S>4
92
^4
94
r)l
94
()Z
92
EXH.
P RE-
TURBO
44G
422
SfcS
742
P.P-&
\o^o
(ol2
995
95(o
B(oO
723
540
4»9
BOOST
PRESS,,
in \\3
0.2
I 3
5.8
8.6
\S.O
20. 7
O.i
2 2 .-?
n.2
11.4
5.7
2.5
0.2
RESTRICTIONS
INTAKE,
in^O
1.7
fc.S
7.5
9,0
M.3
12.7
1.7
\7.5
\3,7
11.7
•)-&
P.. 3
1.7
EXHAUST,
on M^
0.0
0.2
0.5
O.G
o.b
1.2
0.0
i.e.
1.2
0.^
o.t,
0,4
0.0
FIA
HC,
t^Hc
/04
U20
816
&(o4
^92
^(c.0
7 SI
oto
")Z8
&l8
30")
4G,<)
G50
&04
NDIR
C02x
%
l.&,3
2. 1C,
4.13
S.1)!
7.22
6.52
\.17
8.22
7.IG
5,97
4.40
2-42
I.Sfc
NDIR
NO/
n>«
55
27
13^
30&
518
^lO
&3
I07\
fe24
3SO
174
foi
£4
C.L.
NOX/
V^~
71
42
154
284
494
854
^G
982.
571
32U
173
71
11
C.L.
NO,
H»w
55
25
\2A
2B4
4&5
844
82
^55
553
12C,
IG6
54
t4
P0iy\(?.
°»,
%
JOHN DELRL (o4 04
MAPPING-
DATE
BAROMETER, i«\
WET &OL& TE.MR, °F _^2_
DRY BULB TE^R, °F 78
-------
o
NODE
)
2
3
4
5
6
7
8
9
1 0
1 I
t Z
1 3
I 4-
1 5
1 6
1 7
16
I 9
20
2.1
EKJG-INE
SPEEt)
RPM
fc&o
\qoo
\4oo
\Qoo
1400
I4oo
\%00
HOO
\AOO
1400
nco
•i-QOO
2403
2^fffo
facs
2-400
2-100
•J.4 f^>
2Jr^
"•1 '. J
'103
OBSERVED
POWER,
h*
2-0
4.0
6>.l
8-0
iff'l
/*•'
14 ••
tk.l
JZ*.Z-
3-4.Z
3./.L
n-s
/••
9-.
1-1
3-'i-
/MR.
FLOJ,
'Vw
3
/Tff
/7t
/IS"
H4
I7/
/72.
/70
/b7
/fe3
0"?
ZB/
261
zei
29/
287
287
293
287
-2?9
?/
FUEL
FLOV),
VK»
/.3
/.
3./
3-4
^.L
4-5-
£-.£"
fef
7-'
5-4
I.I
l£.ta
ll.Z
II. U
1.1
s-a
{, S
b-3
5:2-
4-.1
/./
TEMPER A.TURE/F
INTftW
AIR
73
Ti
7J-
73
O "
/v°
O S
73
11
*!
ti
75
7i.
'1
7S-
74
7.T
74
^
73
72.
7^
FUEL
T7
7t
7fo
7t
74>
74
vs
73
73
7^
74
74
74
7*
7k
7-7
77
T7
T)
77
"'' 7
EXH-
ftUST
RESTRvC-TVOHiS
INTAKE
UHjO
0-8
S-3
'V-B
4-4
•S-i
4-s-
4-3
4-2.
5.9
^.r
;.8
/a.o
?.fc
9-i
?.o
1.1.
9.5-
//. 8
I/.'?
I3.f
;-2
EKftAOST
LnH^
o. )
0.3
0.4
0.4
0.5-
o.S
o.s
o.s
t*.i*
o.S
O.I
).t>
1.1
l.i.
1-4
1.*
/.o
l.o
0.9
o.°i
o-l
F»A
HC,
t>t>mC
;jfl
ue>
'47
ISB
\tf
•ztf
(U
'7S"
140
-24/
//»
/&4
id
A-St*
32&
/&
-206
4-30
22-4
'»/
«/
NDIR
CO,
*>K
4 (S--
32i
Alf
ii3
ifez
3U?
.18*
297
^9
'•4/4
^•9-f
^4^5
442-
j^a
4(4
4£T5
aet.
f/Z
311
417
304
NDIR
coa/
o/
/o
A.f4
i.lS
^9J
4-iff
s.n
s.m
6>-l>5
1.81
S.tfc
/*,Z2.
2.5-0
/P. 70
S.&4
S-24
t.7fl
S-.TI
«.w
^.38
S.7/
i.ot.
s .^-a
NDIR
MO,
^V»"
C.L.
NO,
l>t>*
ZZ7
4.T
179
AlO
A74
A«>8
a<»7
3/ 2.
^Of
J-4T
a/;
3/o
3£T4
Si/
323
Z2fc
y^o
us
S3
-^
/5-?
C.L.
N0»,
»>»>«>
4ii
<.t
Ml
133
3oo
3zo
3/6>
3/9
3/4
2£-S~
a. 23
2/7
Ss-4
'7Z
325
2L»S-
/91
/fi-4
/ii.
7?
/99
^
y.
ENGINE-.
RON /
DATE ' /4 A 3
WET C.OL& TEMRJ°F
DRV BULB TEMP.y °
-------
o
w
u>
MODE
1
2
3
4
5
6
7
8
9
1 0
1 I
1 Z
I 3
I 4-
1 5
1 6
1 7
1 6
l 9
ZO
2. \
ENGINE
SPEED
RPM
100
1400
(4 00
14.00
1400
tAoo
(400
14 00
1400
14 oa
7oo
2400
2400
2-4 Oo
3-qoo
2 4 06
3*00
24 f>n
2100
i«J 00
','f'O
OBSERVED
POWER.
K).
2.. o
4.0
fc./
8.0
I 0. I
I i I
/«•'
lt>. I
20.1
3.4.5
S-l'i
I1'3
14-1
ct. 1
T.o
3.2.
AIR.
FLOVJ,
lb~/.
A\r
9^
ir/r
/or
/•?i
m
iii
lb&
/fcS
111
tb<*
11
281
2 So
2&S
1.8S-
uet?
3*1.
112.
111
x"?2-
e^
FUEL
FLOX),
VK»
'•4
2-1
3.2-
3 S"
4-'^
f .4
5-.T
^.4
78
36.
(.4
y.T.'
/? /
n. t.
10. 1
&•'!
'' 1
io.lo
5-.4
40
'•4
TEHPERATURE^F
INTAKE
MR
77
73
14
11
11
11
10
ID
75
75"
7<^
^4
78
71
11
'IB
'/&
11
7fo
75"
'H
FUEL
101
loo
°>t,
94
^^
»
"?c
9o
92.
^4
^s-
lo^
IDo
1*t
W
99
'•r
'-?',•
^'
?9
9 '
EXH-
ftUST
• --
RESTRICTVOI>15
INTAKE
i.nHzO
/ 3
48
4-S-
4 '
4»
3.9
3.fc
3-4
^
29
/.(,
10-0
1-0
90
^.1
9.4
(0-J
:D."
;i '
I" ?
> i'
EXHAUST
L« UA
0-<
o-3
o-3
0,4
0,4
D-S-
0-£
o.L
o.t,
O.I*
01
/.9
/ 8
1.'?
i.S
'•4
/./
ro
l.o
C'.'-l
3 1
F\A
HC,
>f>mC
ii-?/
Ib4
/49
1^0
•':,?
hlc
/?r
172-
Iho
^54
/ti.
/3o
/fct
/40
i98
j/t
37t
599
J^-2
2"i
14^
ND\R
CO,
t^rrv
feo'
i-7?';
/•?••-'
^'r|
^»5
Zter
Z92-
3/4
4l£T
/4«.t
4/9
/t79
44^
3^5
4b2-
3?'
=;(!,/
ffpr
367
4fcc)
?^rz
ND\R
C02/
%
J? -3;
" fc2.
?.?/
^."'0
,"ir
S".97
7.ofe
7-74
9.3?
.' " S' O
; az
/'P.? -3
^ .*
(M
41
'45"
»t4
£2g
AS-S"
i8£-
JTT
Jfco
12 &
Z4^
Zg£
j"!!
^23
294
^44
/5Z
J/J
v^
21
\ 4 1
C.L.
NO*,
H>«
z^a
/04
/00
itt,
Zfc9
i79
Jc-8
"07
Zfci
? 5 ^
--J ~
;BT
-T2-2-
3 * '•!
.-'84
i^T/
/47
.M7
' ? '
t7
;7&
°*.
X.
EN&)N E-
DATE I /4 A.
&/\ROME.TE R , i«
WET EAJLe>TEMR,0F
DRY BULB TEMP., °F
-------
o
MODE
1
2
3
4
5
<0
7
8
9
1 0
1 !
1 Z
1 3
\ 4-
1 5
1 6
1 7
16
1 9
20
2. 1
ENG-INE
SPEED
RPM
100
1400
IQQO
1^00
14.00
1400
1400
1400
1400
14QO
100
2.400
£400
2400
£400
24.00
3*400
1400
2400
2400
100 ,
OBSERVED
POWER,
^
z.o
4.0
&>.!
8-0
I 0-1
1Z.I
H-l
It,. 1
3_%.T-
54.5
3.1-7.
ii.i-
14.1
9-/
i.i
3-1
AIR
FLOKt
'Vht
9£
m
J7Z
194.
171
/fo9
/t>7
/fe0
14-9
Ifol
101
IOT.
103
lOi
'Jo
1r>
92.
fc
EXH-
ftUST
RESTRlCTiOUS
INTAKE
UHjO
/-3
^.^
5,9
4-.*
3.1
3+
3,3
3.1
3.0
23
1.0
9.5-
8.1
1.0
9.3
<)-4
IP-2
1-&
°I.S
1°>
l-l
EUVViUST
«-«HA
(3,1
C.2
»-3
0-4
0,4
O.g
&.S
C/.&,
£>.b
i'.le.
O.I
1.1
/.g
1.9
;.a
/•4
/•Z.
/./
1.0
1.0
o-t
FIA
HC,
t>|3mC
•2.10
3S8
Ai7
J^,&
237
24&
2.3fe
iifo
a/?^
33%
/£•*
II&
111.
zto
aea,
4<»0
440
.T/?.
^•04
-"It
/7I
ND\R
CO,
*>t>™
45-V-
5-^7
ai. i
•2S2,
an
2.24
231
3.^3
3C7
/5-fco
191
3fc Zfc
IS>o
fi3
400
436
397
356
507
4'ft
ilS
ND!»«
/38
4&
/3o
C?fo
iii
38^
J»4
^02-
i9g.
JS3
4»fc
J/o
3o3
311
3t>£
ass
/8Z
^3?
82.
39
/3->
C.L.
NO^
v>*>™
»7fc
9f
no
I-JCT—
1-43
4/5-
J^^s-
5^4
At1?
AS3
if/
3/6
3oJ
Ji^-
30£-
Z&6
I6&
/se
/Zo
13
ns
Q*,
Y«
EN&IN E-
DATE. I
/1 3
BAROMETER, i.«
2.1, /£
WET £>OUe>
DRY BULB TEMP., °F
-------
o
Ijj
IJ1
MODE
1
2
3
4
5
z.o
4.0
(b.l
8.0
10-t
li, \
M.I
ft.l
-28.2.
A4.f
i/.X
/as
/4.I
9./
7./
3.2.
AIR.
FLOVJ,
"Vw
9/
nz-
ns-
ni
it«>
/fcfc
)L1
Ih4
lt>^
HE
F<5
i17
ins
2.74
273
/»3
191
tsZ
103
104
104
104
10 S
lot,
/Pi
/P7
;ot
/ot
'04
iff,
EXW-
KUST
RESTRVtnoMS
INTAHE
LnHjO
o.-?
s.7
4-8
4-4
4.0
.3.8
3-1
3-4
3-3
3,<
/./
I.L,
8-6
9.4
3.4
9.f
S.I
.o
/o-3,
/i?.'?
1.0
EXftftWST
«•" Wa
O.J
o-3
0.3
0.4
£>.£•
£>.£•
0.S-
0.4,
fl.fe
«.7
0-»
/•9
1.8
t.1
l.i
'•4
/.l
l-o
|.0
0.^
fl. 1
F\A
HC,
JjjJmC
}iO
13$
IbZ.
/e>3
/B5"
iOfc
/"?4
/*4
3.»o
J-fcO
/3/
111,
172.
/•?6
i82-
^00
43d
ss-t
4Bo
s^e
/03
ND\R
CO,
t>)>M
B7&
a?4
ifco
^foi.
^44
i.78
279
as-t
45-^
IAS8
334
i4B5-
722.
405
445
465-
3fc?
312
2k3
4*3
580
NDIH
coz/
%
A.SS
^.Cl
J.97
4-t-S
5~.5/
fc-42-
7-2.2.
S-34
9.5-i
(a.4^
.2.54-
/a- 84
•J.94
8.T7
7.4i
6.94
£-.40
*89
J.96.
-Z.44
-2.tT
ND\R
NO,
\>V«n
C.L.
NO,
\>t>m
/s-
/^
lt£-
io?
^4f
^tr
^8?
S. S3
^44,
'2.3
Z05
3/0
326
S0 /
A7fi
yes
r36
67
•9'
'16
C.U
NOR/
^t»m
m
is
>fc4
/•??
444
28/
i83
A/
isr
i7
/8*7
ZSo
SIS'
23 /
30 /
ago
/92
/s-fe
/Of
4>7
/£>
°^
y.
ENGINE-
RON 4
OHt,3
-------
o
I
UO
MODE
1
2
3
4
5
6
7
8
9
1 0
1 I
I 2.
I 3
1 4-
1 5
1 G
1 7
16
I 9
ZO
2 I
ENG-IHE
SPEEI5
RPM
T60
I40o
1400
\460
1400
1400
1400
1400
1400
1400
noo
S.4CO
2.400
5.400
2.400
1400
2.400
i-J-00
Moo
2.4 OO
700
OBSERVED
POWER,
lit
1..I
4-*
£-3
5-4
(f>5
IZ.l,
/4.?
/fc.s
A
TEMPERKTURE/F
INTAKE
AIR
S-6.
^4
S3
£2.
si-
s'*
rr ff
-'^
£•(>
&(.
S"l
kZ
72-
12
72.
7/
7o
fcf
4.6
:7
^4
FUEL
a1?
8^
sa
87
88
8ft
B1?
<»/
95-
•»4
?<.
17
let
'»4
/04
fP4
1 04
tc2
io2
,'02-
(02.
EXH-
AUST
RESTRlC.T\t>MS
INTAtE
UHp
J.P
5-.T
S-.o
4-4
4.0
3.8
3.r
3.3
3.0
^.8
/.o
/£>.0
8.7
! • .'.">
EXWAUST
L»\\&
l.o
5.1
-£T.0
44
^.0
3.8
3.S
3-3
3. £?
i.&
/.o
10:0
9.1
14
il-l
ll.J.
IT..S
li-<}
I2..&
I l.o
1.0
F\A
HC,
t>f»mC
i8o
io4
177
/fcS-
186
'74
/ta
MO
MO
200
/oe
/20
MO
Zt>o
i.kC
111
31k
5"oo
4t3
a^2.
/4S-
ND\R
CO,
t>f>m
474
547
2H
'73
m
H.&
n»
/gfc
(95-
77/
334
/74&
5-«4
3SV
J75
3a^
J.86
i93
2.SS
446
J47
ND»R
coix
»/
/o
i.4.7
a..4r
S.4*-
•4.0'
^-./o
-r.ta
6.41
?.7o
8.4.3
•?.^
i.40
IV'fS1
^,4.3
7.59
t.,8/
A? 3
^•.C'7
4-28
3.42-
J.t7
a. 4°
ND1R
MO,
t>t»»
2Z6
84
/s-9
20?
2.25"
27t>
323
3.<*&
I"!-?
S.f7
It/
24>
370
J>m
l&o
4-2-
lt>1-
l&l
ZZ4
it?
J94
isa
J8Z
i34
11.1
3ol
311
344
i»4
A/8
'££
//7
70
35-
1 10
C.L.
NO*,
>f.m
114
-78
/40
i/7
its-
i>4
3/7
id9
2^6
^5?
y?z
3 04
32.4
344
Sot
232-
20o
/44
'?
^6
ifeo
0^
y.
—
EN&1N E.
KON ^>
DATE /
BAROME-VER, i-v,
WET &OL& TEHR, °F
DRY 6UL& TEMP.,
-------
o
MODE
1
2
3>
4
5
6
7
6
9
1 0
1 1
I 1
15
1 4-
1 5
1 G
1 7
16
l 9
20
2 1
ENGINE
SPEC I)
RPM
TOO
1400
(40O
1400
14,00
(400
/400
'400
1400
1*00
TOO
3.400
3.400
2.400
24.00
2400
Z40o
2-400
3-400
2.400
loo
OBSERVED
POWER,
Kt>
Z.I
4-1-
6-3
fi.4
10. S
/a <•
/4-/7
;&.8
i-7-4
AS-.fl
2.2.-'
19,. S
14-1
II. 1
1-4
st>
AIR
FLOVJ,
"v-Xht
4
/7t
C75-
ns
/73
/7x
/72-
/^.
/t
/t"»
^/
2.7S"
J-74
J8o
2-So
i»0
2-87
5.8?
2-37
2.93
87
FUEL
fLOVO,
VK.
/-i
2.1
3.1
$•&
4.3
S--3
S-,8
6-f
?•<.
3.7
/.z.
IS.-),
12.4
II. <•
10. 1
84
7-4
^4
f.4
^3
(-2.
TEMPERATURE,°F
INTAKE
AIR
47
fcS"
fc2_
t>X
4.2-
^2-
4i
fcs
t.7
t,B
11
7t
8/
3'
a/
9o
7S
78
77
It,
7£
FUEL
£"
1«J
101
105
101
108
101
lot
/ef
/oft
/o?
101
'»3
101
lei
101
101
101
102.
101.
103
EX.H-
MUST
RESTRICTXOU5
INTAKE
i-n H^
1.0
5.<\
4.9
4-1
4.2.
4,0
3.1
3.S
3.1
3.1
l-o
f-4
9-r
9-3
9.8
II- 8
11-2.
ll-'S,
/i-3
/i.1?
/•o
EXW\UST
l« HA
0,1
If -I
0.4
0.4
0-4
0..T
0.£
0.^
0-fe
0-b
O.I
/•8
/.6
1.1
Lie
1-3
hi
l-o
l.o
t-o
{>.<
FlA
HC,
|af>mC
/03
/«>9
133
131
I4o
(SI
I3Z
1-3-0
us-
144
104
9fr
I4i
ie>o
HfO
3ot>
404
S2lo
S3i
3.DO
/3o
ND\R
CO,
v>^
4iO
5o6
i«»5
il.4.
^47.
i£-9
A40
^77
us
en
4-1.1.
1548
5"63
34"\
361
33o
3iS
ne
3*o
311
2ZI
ND\R
C02/
o/
/o
5-41
2.5%
J-47
f.S'J
4*3
fc.o/
6-5-0
«./7
8.33
ie->l
2-SS
lo-lo
9-ftl
8.44
0.27
£.«J
S--34
448
s.ns
i-7g
i.40
ND\R
MO,
^w,
/S-O
11
Itf
i»n
usi
34.5
3&1
3St>
3S1
26S
llo
34.1
311,
4/00
342.
3lo
13i
1^
7S
3t>
/3-T
C.L.
tMO,
M>m
I3l
fcl
III
ISi
2ZO
3.11
3/7
327
504
J77
no
33S-
3£1
374
335-
^70
ay^
/3i
a?
-fS"
124
C.L.
NO^
^t>«
/54
96
(S3
//
^^5
J09
33S
321
3 04
3.11
Ibi.
33t>
3t>Z
J74
340
^90
•Z2S"
JSS
//9
74
740
°«.
%
ENGINE-
R.UN (o
DATE / / /73
21-S*
WET
DRV BULB TEMP., °F
-------
o
NODE
1
2
3
4
5
6
7
8
9
1 0
I I
1 Z
\ 3
1 4-
1 5
1 6
I 7
16
l 9
20
2.1
ENGINE
SPEED
RPM
loo
1400
1400
1400
1400
1400
(4 00
lAOo
1400
1400
100
JL-JOO
2-4 0°
Moo
2400
14 oo
3.4 00
3-400
3.400
24 ?o
100
OBSERVED
POWER,
M>
y-,\
4'T-
^-3
8.4
10. £
li.L.
M-7
/fc.g
j2.9'4
3.S-.8
2-Z.I
19,. S.
14-1
II- 1
1-1
3-3
AIR
FLOVJ,
'b~/ht
&\
/73
;73
I 70
It9
C70
;67
iiar)
/£>&>
lt><»
89
A7t
2?4
i8o
260
*8t
i84
28fe
.23
if 3
87
FUEL
FLOH
VK,
/'t-
2.2.
^•1
3,6
4.'
£,2.
^-,g
6.£
o.a
e.t,
/.3
/4."3
M.I
li-i
q.q
8.a
'j.i.
fc-4
^••1
3
IP4
IP4
IP3
r?4
IP^
;t>4
/f4
104
/£<;
10^
104
EXH-
AUST
RESTRICT i OMS
INTAKE
C-nHjO
l'2-
5-7
£ 1.
44
4*4
4-1-
4-0
3-7
3-7
3.£-
/./
9.7
5A
8e
R^
9.^
II. 0
IZ.Z
/;.?
0.7
I.I
EXttAUST
L"Ha
o.'
0-3
f -3
£>-4
P-4
o.S'
0.5-
0-S-
o.S-
O.L
O.I
i. a
/•8
/•t
/.-?
/./
I.D
Dfl
i-1
0.&
,«, t
FlA
HC,
Js^C
Tl
;/0
;zs
I3S-
I4L,
1.5-0
13 i
132.
J2fc
2fZ
lOT.
84
I/O
/So
^3X
194
S91
-?4t>
4t>8
^54
/44
ND\R
CO,
V>H
3to
572
^<)r
^4=4
ifo4
J-TZ
^£•0
aeo
i9f
92.7
3^
lS3o
S9i
^Z3
4H
39.*
360
i/8
367
44>o
509
ND1R
C02/
%
2-3Z
s.-^S
3-t,o
4-Z9
4.<»i
4. .03
V.06
7.9 /
9.34
to. IS
y. 53
(o.b9
;o-of
s-^
•7.1/
6-43
5-.1S-
4.5-4
5-73
4'?4
A- 46
ND1R
MO,
y»ipm
lt,i>
6^
\S2.
1-50
ZVj
338
389
3S^
J.9i
3JT/
/62.
34?
34,1
-^84
-J94
3tr
3. ^35
^^i
/P7
*J
/37
C.L.
NO,
t>t>m
/fc3
44
131
114
i3l
2-&0
3z(.
33C>
3-13
SLS?
/t9
3il
^25
JS-6
J5-0
307
^»7
»3fc
78
^/
//7
C.L.
NOR/
^^«,
n 2.
10*?
>4,s-
Z2-7
is-8
J^>4
344
33?
i93
-s?
/ao
3iS
33^
/
-------
n
MODE
1
z
3
4
5
6
7
8
9
IO
1 1
1 2
1 3
ENGINE
SPEED,
RPM
loo
1100
IIDo
11 00
! 700
' '! 0 0
'ic-
^ 5,
ZiOJ
3-100
2 ! !>O
7-100
7 oo
OBSERVED
POWER,
h|>
S.Z-
10-4
15. It,
2o,B
2^.7,
l°>.1
13.1
t,.<*
AIR
FLOW
lb«vW
FUEL
FLO\^
lbv*.
J 2-
2. °<
4,5-
.5:0
"• C>
/:>.4
/. z
14. Z.
IP.'?
'!•">
C.I,
' e>
/.z.
TEHPERATORE,°F
INTAKE
AIR
V4
no
lo°l
60
t,Q
10
11
n
^4
ik
it>
'!-•
^
FUEL
9C
K
id
I0i
/rz
lr>q
If*
II 0
I/O
no
110
1 ' '
1 r>-*
EXH-
/SOS.T
RESTRICTIONS
INTAKE.
uH2o
l.o
rt.'l
ir.*
{..4
fo.o
,^/>
2 °
n.1
t\.'L
&.0
&.0
8.0
1-Z.
EXHAOST
in H«
O.I
D.ff
0. S
D.I,
0-8
0-1
O.I
1.4
I 3
I.Z.
O.°l
0 %
' ,
FIA
HCX
t>F»C
3e+
^i-ft
^ (?f?
Ait
no
I£-D
9i
M
:3o
;sr
-f?x
/ " f>
95-
ND1R
CO,
Ipfm
i?^
-*4fr
^ !,? --
set
zri*
IZOIt,
472.
/5-Zt>
SH
~ r^^
C1 Q^J
• 0 1
/ ">i"
2 9J
NDIR
C.02^
%
S.-S4
2. 52
^.i7
-T.5?
7.86
/o.4l
^.75
'°'-??
8-E-»
•« 1-7
•H0
^.?o
i.4>
NDIR
NO,
^^>r«
/74
"?2.
> ^ ^
5 ('i
502-
339
ii>
Jo?
1
-' So
/7 o
S3
/ i,D
C.L.
NO,
V>^»"
/5"4
7 /
; _""9
- ^- (^
334
3\l
l°ll
?2.-1
': ' t*
" f.
lt*r
(.7
'-?6
C.L.
NO*,
»>!>«
/77
^f
Iff
;Q
345-
311
X05
Z-Z.1
?1~
z-fa
i^
^t
/T(o
^.
y
/o
ENG-l N£ HERCEDfcS- BE ME OMb'^fe
CAPPING- ROM )M-i
DATE i / 10 /73
Ln
WET BULB TEKR,°F_IT_
DRy BULB TEMR, °F_^_
-------
o
I
4^
O
MODE.
1
2
3
4
5
6
7
8
9
10
1 1
1 2
13
ENG-INE
SPEED
RPM
loo
/7PO
1*100
noo
1100
n eo
10t>
3.10®
JUO£>
$.100
3LI00
ZIDO
*100
OBSERVED
POWER,
ht>
-S-.2-
/0'4
/5-.fc
3-0 •&
Zt>.2,
19.7
I3./
b.6
AIR
FLOW
'"-/hr
FUEL
FL6VO,
Ib /
-
L-3
d-l
lt>-4
o.f
yf.z
/p. 4
*•/
s-.fe
j-4
'•4
TEMPERATURE, °F
INTAKE
AIR
79
It.
74
7;
7Z.
73
73
74
77
79
7&
7?
75*
FOEL
^2-
95-
95-
9s-
9fc
7
7d
IOo
100
too
/SI
/e»3
/o3
EXH-
AOST
RESTRICTIONS
IMTAKE
i«HaO
0.9
7-t
6.7
i.o
5-.B
r-5"
/.z.
^.0
9-6
8-2
8-0
8.0
/•z
EXHAOST
tnHa
OJ
o.r
0.5*
*.;,
o.fe
»,9
c./
(•f
'•3
M
/•O
0-9
«>•*
FIA
HC,
f>f>r«C
^^
//^>
Z20
232.
ISO
too
se
J14
/3o
114
fr/t
I&6
/10
NDIR
CO,
^f=m
445"
3Z?
-?/3
J44
55-4
n^4
J4
/ 6 0 !
!!,£•
33o
3*4
?P?
;"?£•
NDIR
C02^
V
/o
i.*4
?.75
4-4 (.
t./z-
p./z-
/».t(.
^•^8
10-53
B-^i-
4,72.
4'42-
a.6.8
2--M
NDl R
NO,
J>f>m
111
4
/S8
-^^
388
3ss:
as-o
^7
Jt4>
i^o
/0Z
83
£-{, 1
C.L.
NO,
\>l*
IS<)
7/
/4I
^38
3i3
i7
ioz
^7&
3oz
ZiS
/4^
£"8
/12.
CL.L.
NO,,,
V-K
I&7
11
no
;U8
3x8
3oo
A/(
-i?8
3o 3
221
isi.
7S-
HT-
Q,.
y
/o
ENGrl N £.
MAPPING- ROM
-BE-M^
DATE I / 10/73
In
WET BOLBTEMR , °F
DRY BULB TEMR, °F
-------
o
MODE
•7
*
4
5
/o
S-.951
^»44
4.74>
^•44
J-8/
5-13
5. So
2..IL
/<**)
TEMPE
INTAKE
/MR
72.
73
73
74
74
?4
74
'/•f
74
74
74
48
74
/&
7&
/ ^
74
7fc
r)t>
74.
i
! ' fo
-RATU
rut L
7Z
74
8i
84
84
88
^o
£>
*?4
*?.S~
7^
7^
S3
9 /
9fe
v 4
97
/03
; oo
f oo
1 oo
RE./F
EXH-
AUST
2.^ O
^> o o
J fe>O
42.0
4£>
£•£-0
4&o
7 70
9/o
< D&Q
40O
J2 3 o
/030
.370
y&o
fe /O
0/0
5-AO
4^S~o
3 7O
23.2-
f-3
^3, 3
0-i
,
^2.
.
£). /£"
.'£"
<9. Z-
F\A
HC,
^f^mC
3-^5-
45"o
4i-?
42?
-S-S'O
J96
244
-IfoST
ili
32b
.234
^£•8
i7O
/ a
»1*>T
333.
-2.t>4
410
oi-3
^SU
-5'-'0
ND\R
CO,
ft»"
9^fl
/X44
^>44
4fco
506
J64
i8o
35"fr"
9/
4 1
/ 54
3s^
41? 7
£78
A/7
^e>o
^Z4
4.0 o
/2 3
j4 =
44 i
447
<^-S~4
*tO 1
30o
1 SI
^
'04
C.L. |
NO*, ''
^/
1 fff 1^,0
/38 I5~.1
2lf-o '47
4 3 / J /J. S
S7Z y 2 i J
t
£45" 9- /
,
^3.4 V-4 '
4/8 3.0
202. /£"•&,
34T -=.3
f4'i i-2-
4 » 7 /'O
494 9-2.
444 /«-•?
I
401? 1 //. 7
32i\ iZ-.l
~~ '
^ *^ /3- 7
/4O /5"-S
' 8 3 1 5"- 4
£ ^4 G I N E-
2-
O TO ^ ,-/ p J 3
& ARCH si
WET iibL2> TEHh^
DRY SOLB TEMP.^
-------
o
MODE
1
•7
L.
3
4
5
03
i • l <-J
5,'i.k,
o^lo
•1-33
a, - .'2.
?.7'.'i
3-34
2.?;
2 . .1 '-S
;.2o
TEKlPERATURF_/P
INTAKE
MR
•73
73
74
74
'74
7f
74
.71
?r
?r
75-
74
7^
?fc
77
77
77
-?4
75-
7£T
'7^
FUEL
68
It*
82.
&£
SB
3
EXH-
AUST
310
3OD
370
430
S~0<5
58o
690
Wo
> 3
tf.r
-2,
€>.!
<9-2.
<3.2_
0.Z-
O.T-
0 - 2,
0- 1
^-7.
•T 7 ,-) "7
-;- i— dX ' ji»=
3 tOr> /. i>
£>.Z-
Fl A
HC,
(D^imC
^Z^
4^4.
=i,fc
J^.6
^/2
3^5"
793
324
3 1 5
40O
iOI
3io
230
221
^30
32C
35Z-
4^(0
<^^^
i>0&
7 S3
ND\R
CO,
IP^
073
1/4^
^70 O
2:11
353
21Z
ZBI
i?a
-1^0
9CZ
8/3
3-S2.
5£-
i£7
J-4?
3T/
^"il
jTS~4
&9,t
HOt
7j 7
NDIR
C02/
%
J.foS"
^.rs-
3-47
4."
4-?z
£.30
(ff.hO
l.S-4
a-?4
/O. o?
2-2S"
8.33
S./3
7-2Z
&•&£>
^•08
J?"./2.
4.4-2-
3.5-9
y.&i
i-^q
NDIR
MO,
\>^rn
;aT
/SO
«i4fe
3^3
5--??
£22
&?7
£91
£~/0
3&1
73
448
4f)5
488
49/
4ii
^^^
302.
2^3
!0tf
'42-
C.L.
NO,
V>t»rr,
lo&
1°!
i3^
3^7
526
s-^-s
S86,
£>S
^?&/
38^
"4
422.
42-4
44S
42-^
3@4
3ZS
0-40
H5-
7i
^7
C.L.
NOS
V>1^-
;ss
IS la.
y-bi
4ss-
bo°l
634,
fc^-ff
ssn
4&1
4o&
/6t
42S"
438
4S-8
46.3
4^4.
-370
3 04
i<3
/34
^7_
°^
'%
Ik-O
Ik-o
/4-7
13.6
/J.-?
lo.-)
tj.O
?, S"
£". i,
* a
— ' • *.
IS 1
*5,(c,
I*.*
•7.9
9-2-
10. s:
1Z.O
/ 3 • ^ I
/"}-3
»5". »
/i.O
EN&IN E.
DAT E /f / L / T
WET
f. /£" DRV BULB TEMP., °F _7_2-_
-------
O
MODE
1
2
5
4
5
6
7
8
9
1 0
1 1
I Z
I 5
1
RPM
(£"00
l&oo
/8<50
'800
;8^o
J8oo
/8&o
J8oo
/3ao
)&£>0
IS~oe>
i-1 oo
2400
J- 4 oo
24 ff
^•< PO
2/)C^
.-.jw
zqoo
•2. 4 ot>
/ ^ r1 o
OBSERVED
POWER,
h>
M4
.2.fc&
3-9?
-SV32.
fe.tr
7.97
q.BI
10.1
H'l
II: t
^.60
1.°)S
L, 36
4- 76
3.11
/,S8
AIR
FLOVv),
^Ar
FOEL
FUOX),
VK»
/•'3
/.„!
yVC',1
2.32.
2-i.i.
J-Z6
3-SS
1 il
4-Tf-
S-io
1.03,
7-iS-
t>,os~
£••3°!
1.86,
4.11
3.74
3-7
^.--3
2 H
1.10
TEMPER ATURE/F
INTAKE
AIR
73
74
74
vr
7£T
75
7ff
7S"
7^
7^r
f'C"
is
It,
71,
7^
95-
75"
7^
7^
'/£-
7£~
FUEL
74
73
So
3:^
97
8?
93
9t
??
f7
loo
88
07
9s-
97
96
f>0
lo^
103
107-
1 O O
EXH-
AUST
33o
3/o
3^:o
^1O
4^0
5-^0
6SO
Iko
8Bo
noo
?2o
HID
ID 10
870
7to
fc'/o
-"•Jt'>
^-^O
^fcO
31°
2-)0
RESTRICTION
INTAKE
UHp
1.0
/•sr
/••^
/ 2-
(.2-
;.*
/.£>
/.O
,.0
/,0
1.0
i-s-
i.-}
;•&
/.^
2.0
;.^
2-0
2.2_
^•3
1.0
EXrtAOSl
L"HA
C-l
0. /
o-i
0<
01
02-
0-2.
o-3
o 3
0.4
0-2.
0-3
0.2
ff 5
*'o
#-z
0 2.
^•i-
? 'i.
-1 7.
/5, 7_
F\A
HC,
J^l^mC
JSt
3r1
;a&
3iS"
^"38
3oi
576
30!
2B£
4SO
^4&
J£"4
226.
IBS'
l°>t
31*1.
^k,°l
3o°i
4^B
ST&S-
^let
ND\R
CO,
*>H
S^8
118,2.
$o°l
31*>
l°iS
1&1-
2S7
291
31 &
ioqo
823
4>&
2£t>
2*18
3 01
-548
1'?
492.
<^fc4
10 11
I0<\\
ND\R
C02/
%
i-^
2.-80
3-44
4-34
^.03
^•,04
^.S8
7.6f
8.^4
10-44
231
IO-4F
°l.lk,
777
6.7/
^.^
NDJR
MO,
*>f>««
(2.0
/'3
i4S-
406.
.yd'
6/S"
£-94
-£T4t
47?
321
ion
335
377
•790
se<7
4 OB
343
Ib4
/4fc
&C.
64
C.L.
NO,
>t»m
?£
73
^/4
3^
46^
547
-S-88
5a3
484
38^
Il3
31<)
430
jit,
131
371
2J1
±47
/Si
82.
3/
C. L.
NOS
^t»m
/5?
/43
A6/
4/4
5"4Z-
6^3
loll.
SSI
Sob
372-
705-
311
43o
<$S&
401
4/£T
347
300
a/3
'45-
/5"3
°».
X
/^-/
15.1
I4..G
13-4
l2,o
to. 7
1-4
7.6
£.0
3.'
/5"-7
44
^./
7.1
1.4
ID- L
//•8
IZ7
13.1
14-7
/5.4
ENG1N E-
DAT E //
'Ti.
WET
31.24. DRY BULB TEMP., °F 72-
-------
o
MODE.
1
2
3
4
5
6
7
8
9
10
I 1
1 Z
\ 3
EN&INE
SPEED.
RPn
IS~00
ISO a
ISOO
ISOO
I£TOO
IS-00
2.1 OO
•3.100
xi oo
7 1 OO
2/00
IS 00
OBSERVED
POWER,
ht>
2-/4
4 2^>
fc.43
B.I')
12. <
8.70
S.tl
2.10
AIR
FLOW
lb«vW
FUEL
FLOVU,
Ib /
•Yhr-
/-23
z.oi
2.14
3-3o
4-6S-
1.13.
(,.<.(.
4.72.
S-46
2.fo3
/.ft/
/.Z7
TEMPERATUREX°F
IMTAK.E
MR
^S"
Tfe
T7
?T
75
74
73
?3
73
'•f
^
14
FOEL
&o
84
8^
84
05-
8S>
82.
as
?4
11
11
%
EXH-
ftOST
Z.DO
310
41o
IcIO
1040
loo
&S&
%oe>
Uo
SGQ
3kO
2°IO
RESTRICTIONS
IK1TA
I-S
/.$
hS
i.l
/.8
/•Z
EXHAOST
lnHa
5-2.
0. 2.
C.Z.
tf-2.
0-3
c-z.
tf-4
0-3
0-3
o-i
D.T,
0.1-
FIA
HC,
>>fmC
SIS
4fc4
3^1
J2-?
774
482.
4SV>
2?2-
^f5
/86
482-
3+1
NDIR
CO,
t>f»«
9/3
Jz8
400
t>m
;/?
^*s-
4/£-
fc^Z
393
/33
J33
SIT-
4i^
it4
n
j/9
C.L.
NO,
t'^'"
8/
4/0
^A?
^$r
33&
9?
33T
475-
4^4
i4 /
ks-
*?0
C.L.
NO^
H"
ISS
444
fc«fft
ASS1
349
'?A
344
^04
444
i9TEKRy°F fefi
Zl.OT- DRY BULB TEHR, "F 74
-------
o
MODE.
1
z
3
4
5
fc
/
8
CJ
SO
1 5
1 2.
r( 3
i *->
ENG-INE
SPEED,
RPM
\S~oo
IS~oo
iffOO
1^0 a
t$00
ISOO
3,1 00
2 1 50
2,1 CO
2-160
2.1 Od
IS0O
06SEPNED
POWER,
hi-
2.16
4.S4
£.72.
5.79
11. 7
9 17,
6-/£~
3-06
AIR
FLOW,
fc«/hr
_ —
FUEL
FLIWO,
'V*.
/./
1,64
2,^
3.(,S
4.14,
I.OQ,
&.£>£
4.1,9
3.U
2.3!
/.9t
US
TEMPERATURE, °F
INTAKE
AIR
w
11
n
17
n
n
n
n
11
ig
IB
n
FOEL
8x
85"
86
86
!
°CL
H
^
98
99
9?
too
EXH-
/SOST
Z'lO
310
5^0
110
IOOO
3bo
WO
930
lo^G
Sao
570
3&&
RESTRICTIONS
INTAKE
i« Hp
I.O
I.O
1.0
0.1
0-8
1-0
1-3
l.S
i.°i
l.t>
t-7
I.O
EXHAUST
inMa
O.I
O.I
0,1$
0-2.
o,3
0.2.
0.3
D.I.
0.2-
o.i.
&,/
0.1
FIA
HC,
t>t>mC
Sfl?
340
110
lt>S
437
210
111
/s
ilk
120
3S1
322
NDIR
CO.
t>|>«*
840
Z30
23?
3oo
/21&>
7/2.
393
££7
50?
5^3
IP$Z
141
NDIR
C.O2,
V
/o
2,7/
4-4/
S-.S9
7-38
10,15
2.^
.30
1.3l
5", 3 2-
f.8/
5'S"£:
^•34
NDIR
NO,
t>^rr.
/46
i-3f
747
778
4/Pi
/s-g-
^30
S1??
432-
^04
101
II 4
C.L.
NO,
t,^^
0?
4<»a
9/S
647
59/
/Z8
474
i'Sff
^(,7
^02.
e$
^
C.L.
NO^,
frj>-
/SB
579S-
^70
^?£~
394
20Q
3-BS
£!,L
50^
3b°l
llsO
i&9
P..
y
A>
/£.e
M.I
/l.S
B.n
4.0
I&-S-
S--4
8,2
U'O
/3.g
ttf.O
It,. 4,
LT-lGr 1 N £ QftJ^.'O
-IAPPIN.CT
DATE _» I 2- / 72,
BAROMETER, In
WET BOLE. TEMP, °F^
DRV BULB TEMR, T_
-------
o
MODE
1
2
3
4
5
G
7
8
9
10
1 1
1 Z
13
ENG-INE
SPEED,
RPfA
IOOO
ISOO
lS~Oo
ISao
IS 00
/SOD
lOOQ
JUoo
Z/oo
3-1 0?
2/00
2./06
icoa
OBSERVED
POWER,
ht>
/.?/
J.^4
esis
1.1,7
ll.B
<). S3
(,.40
$.!&
AIR
FLOW
lb-A,
FUEL
FUWO,
lb-/
"Vhf
0-95"
A/6
A86
2.52.
S.f7
3-7-7
«?.9d
d.^4
4.84
3.^2
^•8-7
/.g/
(P. 83
TEMPERATURE, °F
INTAKE
AIR
7^
''IB
79
7^
7^
79
7*
79
79
79
79
79
79
FUEL
79
So
83
£:$-
8?
92
92.
9£T
9^
97
99
/<9^
I0i>
EXH-
AOST
^'iO
?$o
'• "So
470
feio
SS-<3
ZS-o
/Ids
130
1 10
(olD
3 Bo
230
RESTRICTIONS
IKJTAK.E
IrvHjO
(9 5"
/.£>
.5-9
M
c.S
-9
(9.5
/•r
1-4
1.*-
>-4
»-8
o.s~
EXHAOST
inHa
O./
0.2.
0.1.
<9<2
D-2-
0'-2-
0-1
0.4
D.t>r«C
^-ST?
38S"
irs
^.big
atz.
£04
^4 S
45-0
220
2^2.
9flo
/.T9<3
3fo
NWR
CO,
l>f>m
l-to
9'Z
444
3.11
343
•4^4
r?t>7
/43r«
^/7
C^
55-9
S<)o
(,47
Stol-
93
i^.4
^"23
4^7
ZZ7
I3),m
IL.S-
11
311
5-47
4.08
>5"/9
12.7.
BS-o
114
423
A07
/zt
/3?
C.L.
N0^x
t>h«
.230
/49
38o
^2?
646
-T2Z
/7S"
3S7
449
462.
2-29
't>£~
111
Q..
%
it,. 4
lt>.'4
I4J
li.2.
?.?
L.1
/i-9
1.3
7.3
//•a
!$.£•
/4.S
/6.^
ENG-l NE . ONflN DJ 6 .-i
DATE
MAPPING- RUM /Vl-3
BAROKETER Ln
WET BOLBTEMR,°F_68_
DRY BOUB
-------
o
MODE
1
2
3
4
5
fc
7
8
9
IO
1 1
1 2
I 3
ENGINE
SPEED,
RPM
1000
1 5 do
iSoo
1500
1500
IS~00
/ooo
3.100
Z/0&
1.IO&
1-1 00
Zl 00
/ooo
OSSERMED
POWER.,
ht>
Z.D(,
4.01
&•/£•
8.11.
II- 2.
lt>A4
4-21
2./i
AIR
FLOW
lb"VW
FUEL
FLOVO,
lb /
~/W
o.Ql
1.3.2.
/•83
J-4B
,M3
4'DO
o.nn
s-.<)/
5.75"
293
a,s?
/.9fc
«3.8'
TEMPERATURE., °F
IMTAK.E
AIR
1i>
77
77
97
?7
77
76
78
78
?3
78
70
?-?
FOEL
62.
?3
75-
78
8/
0?
/
9o
100
102-
10$
/t>4
9o
EXH-
/\OST
3.^0
jLlt>
3 BO
•S'OO
ls£0
880
loo
los-o
73^
^0
4L,0
3&o
J-VO
RESTRICTIONS
INTAKE
tntt^O
O.S"
1.0
1.0
o.B
0.8
o.B
o.S"
l.$
'•4
/.4
I.B
0.5-
EXHAOST
in Ha
0-1
6-T-
0-2-
6.2.
fl.'t.
o.z.
O.I
0.4
0-3
r>.±
0-2.
D Z.
0. 1
FIA
HC,
w^c
251
305
24-0
196
iho
1-10
US'
2.-2.0
>t>9
its
22.2.
372-
112.
ND1R
CO,
*>)>«,
(oOl
73'}
JL^B
3o7
35-8
£.12.
&SI
3-85
271
310
^oo
/tiB
(>£"!
NDIR
C02,
%
2.41
2~U
3*4
£"•47
fc.77
8-32
2.30
-•*/
S-.14
4..SS1
3. S3
*-to
J..4O
NDIR
NO,
l»t>m
20ZT
;ss
4&Z.
579
(>?0
£-13
111
447
SIT.
3?2.
3-40'l
Ilk
C.L.
NO,
»>>>•"
/fi^-
-2.S3
/9£-
f33
632.
6^3
S-37
224
466,
sn
41B
272.
HS
•Z'4
°*.
%
It. 3
13.3
14.0
I/.4
9.3
6-2-
/*-3
5"' 2
ID-8
IZ.1
/4'S-
ts.s
11*. 1
DrV/^/V DJ60
DATE
/72-
MAPPING- RUM M-4
BAROMETER, Ln H»,
WEF BULE,TEKR,°F_.S7_
DRY BULB TEMR, °F_7^_
-------
MODE
S
! '~'
o
4
5
•o
i 7
L§_
1 9
1 0
1 1
I Z
1 3
1 4-
1 5
1 6
1 7
16
l 9
20
2 1
EN&INE
SPEED,
RPM
too
!4D"
(4S"0
l^iTO
1450
H£-O
Hi~<2
14 So
* S) F* r*.
i4;ov
MS-o
40
2.402
2400
2400
2400
2400
2400
2400
Z40O
2400
bOO
OBSERVED
POWER,
H>>
L.9
13-0
f?.&
2S-/7
32.0
AIR.
FLOVJ,
lb~A
' V\v
;s-v
S&S'
3 8s-
FUEL
FUOH
VK.
0.7
3.i>
«?-2.
3Si 1 fc.O
2-7 ?
u-^73
37J
5C/'^ 3t4
45-. 5
-5Z>- 4
7S-.4,
64,6
57-0
it- 8
J-7.S
28-2.
/&.*>
9-i
ifc/
2>S-7
/s^
5^80
&7S-
^7£-
-S-97
«5-7^
S80
S7")
^60
£Bo
'14
t.9
?,fc
12.2.
13. 1
11. S,
ZP-lo
o.£
3C.Z
2S-.1,
2/-3
n.?
/5-S-
I2.S-
IO.Z
5-1
s-.r
o-?
TEMPERATURE, °F
INTAKE
AIR
l?/
S7
3?
8?
9o
"90
;
44
'??
/oo
9?
96
99
9"}
96
97
9fc
«7
^fc
94.
9t
FUEL
79
79
79
79
00
ei
81
83
£>
51
0S"
ss-
86
Si,
ftt
84
8t
87
8?
87
57
EXH-
AUST
ZVo
EfcS"
336
425-
s>t>
loOb
738
©3f
loqq
me
5o7
tztf
/o9?
93 r
eos
7l?
(iZ/
S-3S
^xri
233
25-i
RESTRICTVOM5
INTAK.E
en HjO
2-0
«/-0
-H.O
1^.5-
lo.s
/0-S"
/o.s
(0.3
;p. o
>P.<3
2.0
(9-5-
/9-S
/v.s
H.5-
20. 0
20-0
2.0-O
Zo-o
ZO.Q
2.0
EXHAUST
L«H3
D-0.Sfe
0-34
0.51
o.s?
0-kC
0-kl
&•&,£
0-07
/.So
/•32
i.n
i-t>t>
t-oo
0.94
09(.
0-83
^•er
o.oi
F4A
HC,
t)^mC
J2.SO
Z33
/44
tile
162
Ho
US
!32
H2
7S
25-i
38
96
18
109
131
141,
I&O
236
3Z»
324
ND»R
CO,
£f>t«
163. -
^4?
266
3; i
.250
/se
ND\R
coix
%
i./B
I-:--!
-£- / ^
3.Pf
<9-sB
o. /4
/S<5 i £..4^
C7f
fo4l
45-i 5"
221
3365*
740
2,/f
210
1S<)
322
350
340
331
**&
7.4S-
•?.3=
10.32,
L /-/ft
•m
3.7o
7-38
lf.17.
^.33
4.^.
5-55-
^.70
l. to
l.ll
ND1R
KiO,
^>1pw
f2
101
IIS
330
Stl
808
K&B
I4SO
Ittt
t^o3
ill
/87S"
1624-
tSU
1023
7iS"
524
338
2/t
131
IffZ
C.L.
NO,
^>t=m
/ •>
ttf (L.
tn
}Sg
3! 3
ssg
814
ItH.
(483
fjsi
Ik 52
78
/779
/838
/s/z
•»T?
701)
48 /
21*4
tst
83
tb
C.L.
NO*,
^^m
74
84
/??
53?
^83
837
/•224
?r/i>
Ig/C-
Ite*6,
e^
H93
/8*r
l£3
>e>or)
723
OU& TEMR,
DRY BULB TEMP., »F 7.T
-------
O
MODE
0
a,
s~
to
7
Q
i r>
i i
1 Z
i 2>
1 A-
' T-
i cr
1 D
1 (o
I -T
1 /
1 O
\ V
ZO
2 1
ENGINE
SPEED
RPM
taOD
r~
I3 -> °
(4£"o
\^f~O
M £"°
' T £""
^
/ *? .- '
!
/ -".SO
f. -t '3
fe£>0
OBSERVED
POWER,
m>
4 ..6
'3-4
/ 9- 2
2^.5"
3 2 . fc
4 5". 7
'
5"o. 8
V 5". o
6& 6
-S"7. O
47-4
-?7- 8
28 2
/9. 2
7> 6
AIR
FLOVJ,
lk~/
/ 5"fc
377
i S/
^J-i) i.
211
? 49
i 4fi»
J?6-f
2 6> '
3 £"9
/ 1> P
S7 7
.57 /
S7 '
Sit °l
S 1 1
S7 /
£•73
S'7'7
^T 7 ^
/4^
FOEU
FUOH
VK.
08
2.7
4-2
to.O
*7'4
9-4
1 1 • 1
/3- 7
17 • 0
20 0
o .6
3o-o
24'2
2 /• 6
/ &-3
'4-5"
/2. 2
• 4
^>'3
/?.S"
0.4
TE.HPE
INTAKE
AIR
93
9 3
9o
93
93
93
94
97
93
^4
9s
/ 0 i
10 2.
/o /
/5 .'
/ ' ?
9&
97
97
= RATU
FUEL
87
86
8t
84
87
7
87
87
87
87
S7
88
89
90
92.
92
92
"/x.
ii.
-tz.
Z
^E/F
EX.H-
AUST
Z76
2Sg>
3 7
4^9
50 /
b/ 6
/2o
546
/O / 2.
/ / £"3
288
/2.3 6
/o7 4
96/
827
7/5-
(• 2<^
S"44
4s^
389
25-;
RESTR
INTAKE
J.nH20
Z.Z
II 0
II • O
II 0
I0-f>
10- 5"
/O '5
ID'S
10-S
! 0 ' O
2" S
,'9 s
/ 7 3
/9-s
/T. s
/ 9' ?
ZO :O
20 O
2. 0 O
2. -9
ICTVOU5
EXhAUST
«-"Ha
O.OZ
0^4
o. i.6
0-28
0-^2
0. £"O
O -Si
O.fcfe
0.^4
^•68
0.04
'•42
/•32
1 /£)
'•'7
o 9?
0.94
O.87
0-8S"
0'86
O.o2
FVA
HC,
^r>mc
320
2.S-0
2O6
/ 9E
/78
/tfe
/5"2.
/30
'34
loo
2.64
S"O
7g
1o
I2&
226
2.92.
288
ND\R
CO,
\?H
So'?
283
5o5"
327
263
/87
.
' »2
2/8
loot
Q-l £5
2-1 1
3504
6/0
2.bl
24-5
2 £7
323
3£O
3ie>
294
2 -ft
ND\R
C0±,
%
/./9
'•32
2-3O
3-30
404}
5.33
6 '46
7.73
I'll
lO'jL 1
I-2.Z
9-9^>
.4?
.50
fc f o
5". 34
i 35
2 77
2. o4
/•/9
ND»R
MO,
V^m
fc>4
83
/ 79
339
.fro 4
806
/ ? 7^
/ 127
( 966
1 ft93
/s;
/92S"
/63O
/ b/ '
(/4S
793
i37
832
2/7
/40
loZ
C.L.
NO,
>(>m
6g
74
ns
342
53*
5*8
1 1 ^ ^
/5"76
/ 7 9 /
' »84.
6?
nzo
1 903
IS20
1 OTIo
1/0
4 s~o
2 34
1 62-
92
t>5
c. u.
NO^
*>*>">
86
Bo
Z02.
380
S79
p96
/ 2 27
/e 3/
' 35"6
1123
95"
/773
/ 8 7o
/5"74
/ / 8
724
469
293
!&/
loft
Bf
*'
X
ENGINE-
2-
WET
DRY BULB TEMP., °F
-------
o
MODE
1
2
3
4
5
Z4oo
2400
2400
24,00
2400
bW
OBSERVED
POWER,
hi.
fc-
12-1
20.3
2ia,5
32. t,
3?. S-
45.7
S/.S"
Vfc'Z
46 6
57. fe
40-o
39.0
2.8.S
/9-8
9.4>
AIR
FLOVJ,
lb~/W
/r
^88
:'S?
-'94
38o
37fe
-37f
373
34^
3<°?>
/fct,
5?^
S-^2-
F94
^94
S^Z
^98
S'JS
S- "5 8
bo 3
/£-/
FUEL
FUOH
VK.
i.o
z.&
47
5-. 9
s.o
?-8
/2-3
1-9-3
n-o
ZO-2.
o.&
ZQ.'i
" f~ 2
;?;.«
/8-4
/5-.S-
/3.0
10.4
8-0
i-.ft
o.fl
TEMPER ATURE/F
INTAKE
AIR
69
04
83
83
34
84
82-
85"
86
87
90
88
93
OT
99
90
87
87
87
S.
8fc
FUEL
76
78
7?
79
79
T?
7?
80
80
80
Bo
9»
8'
9/
82
82
9Z
B/
a/
9/
a/
EXH-
ftUST
373
213
341
4»2
S-/8
bit
734
8STO
902
liSo
Z13
IZZO
/079
9^3
825"
7/9
fc21
T34
^47
.^8fc
2J8
RESTRICT\OM5
INTAKE
i-nV^O
2.0
n-o
10-ff
10. t,
10.4.
10. £
ID'le
\t>.£
ID- I
10.2.
i.o
II. B
(9-3
}°>- 3
\<\.o
i<).o
lo.o
,?0.£-
20.0
lO.q-
1 7
EHrtAUST
L«H3
O.07
O.Z9
0.29
0-31
0-37
o.s;/
O.fcO
0.42
O'hl
o.fcS
0.08
/•38
/.S4
/,2S~
/./S
/.ol
1-03
o.n
t>.ss
0.97
0 O^
FlA
HC,
t>f>mC
3/4,
226
224
221
a oo
zoa
/49
148
154
too
272
60
/3Z
9o
98
/*2
/44
/84
240
J?og
3^4
ND\R
cox
t>t>™
2£~S.
270
330
3s-/
^42
200
/75
201
£32
4487
284.
2<)S7
tS-4
^2
Z33
283
37Z
401
379
J?3/
Ji?4
ND\R
C02/
V
/o
/.3Z
(.45-
2-3^
^•/7
4-2.9
5,lfl
6-fc/
7-4,6
S.98
10-40
i-IB
1 O,l£
S.S^
7.3Z
£>. 34
S-34
442
3-34
1.11
l.°ll
LIZ
ND\R
MO,
V>)pm
83
83
/98
298
538
82/
IZOh
/534.
nto
1^10
lit
/98T
/85T'
/s-«3
1142
807
5-5 6
^40
zt&
140
111
C.L.
NO,
*>!"«
90
84-
/8/
3^8
5"93
84/7
//IS"
ISSI
nsz
H33
82
nss
>0o3
1242
883
U8
37/
224
/34
7fi
52
C.L.
NOS
H>«<
9T
102.
HI
3U
t20
898
I/TO
lt>32
iBZIo
n&s
90
n<)4
lb&4
,2S5-
1 10
fc37
376
231
I4S-
to
no
°»,
X
ENGINE.
DATE
2-34
WET e>OLe. T&MR. °F 64
DRY BULB TEMP.. °F 73
-------
o
MODE
I
2
5
4
S
Cb
7
8
9
1 0
I l
1 Z
EN&INE
SPEEI;
RPH
640
H^o
/4S-0
1-4 5"0
Jf.5"(3>
(4S-0
/4^P
(45"0
MS-O
/4£"o
MO
2400
! b ?4C«>
1 Jr
1 5
1 £
1 7
1 &
1 9
2O
2 1
i^C'O
2.400
2400
•2.400
2400
24^^
2400
640
OBSERVED
POWER,
ht-
6.4
13.1
/?.«.
;u./
J3-o
3.s
46-o
.5V. »
7S-0
AIR
FLOJ,
lh-A,
;/,o
3fr8
2 05
FUE\-
FLOH
VK.
0.?
.2..S"
4-2.
5-, 5
£ 7 -' 7, 8
274
3?o
aVo
3fc4
U/
/£•?
583
i/
98
98
9b
9?
9fc
FUEL
8)
82
8?
8£
&i
33
83
04
8f
8^
as-
0^
p,;-
&t
&fc
S7
8?
S7
87
S?
3?
EXH-
AUST
z^3
ZloZ
33S
1-34
6"48
fo/o
nB
©S1?
9^2.
//H.S"
i8?
IMS'
f o S 2
?7£-
Slf
7Z0
fc44
S&S
^68
394
247
RESTKlCT\OUS
INTAKE
^•\ HjO
2.0
1 !•
/0.£T
»».s-
to.S
\o.S
10. S
\O.G
10, S
10, £
1.0
19.5-
rl'f
>°>'f
I9.S-
/^.s-
J.0.0
20.0
?. 0-0
?-^>^"
^.r
EHWAOST
i« HA
O.M
a,2/a
&.3/
0.34
0-3S
0-44
0-£"4
C».5"7
O.t^
o.tt
o ,oV
/•37
Mfc
/./6
l./o
(.06
0-97
0,11
0.07
^,8^
o.P4
FVA
HC,
bKC
32.0
zto
fee
Hto
/4
202
/94
/4t
I3Z
1ST,,
^4»
3Z
f^4
86
/3o
l&^
2-09
2640
M<*
X4i
233
Z1Z
3BS-
40J
566
332
^84
ND\R
C02/
%
/.2S
/•44>
2. (8
3-24
Ub
S.i°!
fo-4fc
7.^8
9-20
/i>.4J
i.yf
16.10
8.60
7.&Z
6.48
S-41
4-Sfc
J.&3
^.04
2.04
hl°!
NO\R
KJO,
ip^m
ffZ
92
?90
30S"
fo4/
94^
/3^8
Kill
/93
/5-2.
122
l°i&(,
ZO !1
i'fti'f
//13
%'LT-
5-4^
2 So
ZZ&
1^0
Iz
C.L.
NO,
t>f>m
9fc
73
(to
323
S7S
Q7Z
HB7
;^99
/'V^S'
/fofcfc
BO
/6?6
C.L.
NORx
V|>rn
3
3?
/^
S4B
4.21
$90
/Z/5"
JS-feg
/8ii
/ fc 7 9
8£
/7£T^
; -J-ft ,' p, | 17
0-,
X
j
i
~= 1
5'i /i?j ~~ —
/034
74^
4. t£~
28S"
/?4
101
10
;ofc3
??•?
4?o
A99
/89
Ilk
9/
— __
ENGINE-
RUN 4
DAT E
BAROMETER , L
^,26 DRY BULB TEMP., °F
-------
o
MODE
1
2
5
4
5
6
7
8
9
1 0
1 \
\ z
13
I 4-
1 5
1 6
1 7
16
1 9
20
21
ENGINE
SPEED
RPiM
&4o
/4S-0
\OfSO
14? a
iqs-o
iqs-o
/4£~o
14^0
KS-Q
I45~0
Mo
£400
I4"o
2.3,00
Zqoo
24-00
24°o
2400
2400
2.400
t>40
OBSERVED
POWER,
ht-
h.s
,'3,4
/9.Z
its,.£
32,3
38-1
0
kiz
HB
657
lt>24
lit,/
227
/z/3
/ofc3
947
836
727
629
5-3 /
41^
JSfc
i34
RESTRICTION
INTAKE
U HZ0
X..O
II- S'
H.5"
f/.O
11-0
II 1
no
10. 9
II- 0
10- 3
2.0
ZI.O
2o. B
ZI-O
2.1-0
2I.S-
2.2.0
x/.r
21-5
21-5
2.0
EKrtAUST
"•"Hi
O'OS
0,Z7
(5.2 0
0.22.
O.37
0.5-/
O.feo
.i,£-
O.fc7
/3.fe3
0.07
I.3&
1.32
(.24
/./ft
1-10
1.0$
O.^lo
D-to
O.BB
o 04
F»A
HC,
^^<^C
320
302
•3-lSe
2.72
Zfct
ZtvO
zsq
16-0
Zlk,
I4&
3. SO
ho
ISO
4
no
is- 2
Ib*
118
iho
3ZO
m
ND)R
CO,
£f>m
270
2.81
32?
354
i73
/4>3
IS-o
2-3-0
IZ^Z
£733
-Z44
52/3
5fl
207
Z2I
2&1
?4^
.?fc2
340
330
30&
ND\R
C0lx
V
/o
/.2S~
1.5-1
-2-43
-J.45T
4-?3
-S7S-2
t-s-?
7.9 i
?-^
1C- SO
1.21
10. IZ
®-€S
7-44
6.S9
s:?2
4.-7Z
3.t>l
a.76
2/7
/•25T
ND1R
MO,
^.ym
64
73
/i-7
J24-
535-
Bli
lis-5-
15-11
>84S~
I&I&
III
)1b<)
1722
/4o?
//OS
74"?
49a
306
m
u^
92
C.L.
NO,
lPt>m
&e
70
lid.
369
fe£f
^*?
/3?1?
/t?6
1830
nss
8/
/7&3
(83?
/q.68
lib'?
7S3
46'
283
(T
loo
Hi
C.L,
TsiOx/
>&>«<
13
101
2.14
407
?£>2,
If 2.7
icoa
f]1O
l&td
n^o
f 3
182"?
I1'8
l£~3t>
IZOB
111=
soo
J.^7
/•?4
/2/
9t
°^
X
ENGINE-
DATE /g / /6/7Z.
B/\ROMEVER, L« V
VJET e>OL& TEHR.
fa 8
^q,/'9 DRY BULB TEMP., °F 74
-------
o
MODE
I
7
z
A
-f
a
Q
l r\
I ^,
i A_
t 5
1 £
1 7
1 &
1 9
20
EN&IKE
SPEEI5
RPM
J * ~-_
rf
^ •
/2. 7
J#.8
ife.-S
33.O
;>3.&
45-- 7
75"- <»
£.7-2
48-0
57. g
38.2.
If- 2
?. 6
AIR
FLOVO,
'b~A,
/ £•/
330
3&L,
397
390
37k
37'
3kg
? fc£>
^5?
1 i>T-
S7?
-£•^6
S"t 2-
SBo
>seo
£88
sio
£-?4
A"? 4
/^/
FUEL
FUOVO,
Ib /
*/K»
c.a
i.te
4.4
• 8
yo-9
11.5
Zo 7
0-i,
3 P. 5
JS-7
J3-S
llo-O
n.&
10. h
7.0
-5-6
(9 8
TEHPE
INTAKE
/MR
84
84
94
S3
fl£~
35"
94
fo
°iZ
81
9fc
94
14
10
39
37
67
rf-T
_RATU
Qo
Qo
BO
Q s\
BO
Qo
f-\ —
QO
o /^
8'
a /
/i /
9/
Q /
8/
Q i
Q 9
82
^
82.
82
83
84
94
83
RE,°F
EXH-
ftUST
Z0£
2,£4
34 fe
4i 6
^£"/3
420
949
A r &
8S7
102.1
IlkS"
2.32.
. « . /
\0°l1
Q L »
S33
726
s>/9
5-43
4^
RESTR
INTAK.E
LnHjO
2.O
;i.s"
11-4
I/ 3
II.O
. „
II- O
11.2.
II.O
10. &
J.,0
3-1,0
21, 0
21,0
i/..5~
^ ;-5"
Zi.S
2i.&
i 'i f\
1:0
\CTIOU5
EXrtAUST
L« H3
o o3
o 27
0-i9
/, o j
t>'34-
n *i t>
0-38
0..S"3
O'bl
0-71
0-73
0.43
o-s9
/'40
1.27
l-llo
\.0°l
1.03
0,<)£
O.^l
P- 83
0.04
FXA
HO,
V>^C
3/L,
21B
254
ZS6
2.46
11%.
^54-
\ Tto
ZiZ,
hi
1 loO
fL2
ISO
'fco
208
270
3'O
3/4
ND\R
CO,
|pt>m
2S8
270
329
338
ZtZ
107
/73
12-02.
52 SI
2.45"
I&IO
787
1 O O
« ^ a
xs~d
•> ^ >t
334
273
340
3o*
3.1O
ND\R
C02,
%
C-^
/•3»
2-23
4 .. -.
J.C8
4-0/
S.7.0
6-44
7-89
9.20
/0.35"
/-^4
3-74
/7 T /
fc-37
ST38
4.27
3.S4
*) / 4
J.fcS
/.03
0.9f
ND1R
WO,
^V"-n
fc4
64
it?
4 d O
j-ty
C, M
514
n . /
90&
/2?4
i / /> *
19 '2.
I rt A »
/2 /
/9/4
/75 '
/ ^* £T2
003
£~0/
348
J2./6,
Oi
12.
C.L.
NO,
l>^m
jT8
<>(
/»4
32-2.
b 92.
897
/ / T^
fe7b
1 5 ko
73
IS12.
I 7 '/
O TO
\03I
t>94
42.'
Z7J
<5"4
T5D
>53
C.U.
NO^
>l>-
8/
84
2JS
5fe
t>34
760
1 3 1 O
1 1 i£
i 7S4
/fo£.7
77
/fc5"8
ISo4
'T-; ^-
1 O&S
72.2-
4?r
217
174
%
78
o
2,
X
ENGINE-
DATE 10
WET &ULB
DRY BOLE, TEMP., °F 75"
-------
o
ttODE.
I
2
3
4
5
6
7
6
9
IO
1 1
1 2
1 3
EN&INE
SPEED,
RPn
loO^
i 100
1100
inoo
1100
60S
2/00
2100
2100
2100
2IOo
2100
iaOS
OBSERVED
POWER,
ht>
14'4
Z&.1
42.1
57. 8
40. S
SI. ^
23 -la
ll».9>
AIR
FLOW
fc-Ar
FUEL
FUVJ,
Ib /
"Vhf
0
3.4
6.0
II- 2.
IS.&
43. /
0.5-
.m
;.o
J3.0
8.7
4-4
0-51
o.£S
O.BC
0.0-}
i.ot
0-9^
c.as
0.7fe
D'k°l
O'Ol
FtA
HO,
^"•C
30X
302.
no
234
24l>
/48
2-49
lib
zio
3M
3^2.
*/o O
2iO
ND\R
CO.
H>w
^^r
210
315-
11,3
141
Si 41
183
3S-4I
/83
307
3 oi
zst,
3.OQ
ND1R
C02,
%
;./9
/•4s
3.i>9
S".2?
7-4 S
/o-36
l-ii
tO-S'Z
7.11
£"•13
3-4f»m
fo4
83
330
347
1 1> n
/«43
in
ZObO
n&3
<*'b
313
/49
IIS.
C.L.
NO,
t>>>^
fe/
73
3^
6/3
,'5~24
t£4£-
76
/79S1
'5-97
8/4.
3/7
I0\
t>1
(L.L.
NO^,
H-
a/
93
?4-7
sr-?
Ib33
t*1&
8?
;&o8
(ferr
Sf4
43S
/i3
^J
P..
%
ENG-l N E.
DATE 10
I IB It
MAPPING RON M- I
BAROMETER U
, 14
WET BOLE, TEKR,°F_U_
DRY BULBTEHR, °F 74-
-------
o
I
Ln
MODE
1
2
3
4
5
6
7
6
9
10
1 1
1 Z
\ 3
EN&INE
SPEED,
RPM
loOS
1100
ilov
iloo
noo
noo
loOS
2,1 00
2100
2,100
ZlOo
2100
6of
06SERVED
POWER,
hl>
14-0
.28.9
^•C
£-£•2.
68.2.
&>.<)
J4-'
r/.s
AIR
FLOW
lk"A,
FUEL
FL5VO,
^/^
o-k
3.?
6-7
//.a
/SMJ
i-'8
o-fc
3Vfc
/8-t
/X. 8
.9.5-
4-1
tf.7
TEMPERATURE, °F
INTAKE
A\R
9Z
88
85"
87
87
8?
94
88
94
9Z
8?
57
83
FUEL
88
88
88
88
80
89
90
39
89
8^
3^
3}
90
EXH-
MJST
Z3&
Z90
4/7
439
62^
mi
ifc9
U99
943
907
5-2 /
336
.221
RESTRICTIONS
INTAKE
i-«WjO
Z.0
/3,^
/3.7
n.z
13.0
)3.0
2,0
;?,r
/7-0
n-s
16.0
\t>.0
2.0
EXHAOST
in H^
^-03
0.47
0.4£-
0,5-;
O.S7
0.81
0,0^
/.07
/5-.1??
O,g7
o.is
fi.tf
0.03,
RA
HC,
t>t»«c
^io
57£
3/6
^94
304
/fcft
3/8
//e
/8o
2/0
76(3
3io
31,8
NDIR
CO,
^[>m
ZS'Q
307
338
/B7
111
4Z77
^4^"
Jfc/r
J2.5-
2/2.
ZB8
2.Sh
134
NDIR
CO2^
7o'
1-24
/•S8
3-3.T
^40
7.S9
/0-44
/.^
IO.S2.
1.SI
S.il
3.tf
/•84
/.»s
NDIR
NO,
^f»rn
b4
64
J4^
m
iu>i
IB8S
III
2038
Ib8f>
8+6
371
ISO
&*
C.L.
NO,
t^m
fc7
73
331,
89/
15-bl
te'to
SOS
nzf
1*37
800
3/7
m
it,
C.L.
NO*,
i>^-
9-9
98
J«
933
/fcs-?
Ibll
97
nst,
/(,!&
8/4
33fc
Ji7
84
Q..
y
/o
ENG-l NE.
DATE
MAPPING- RUN
'72- WET BOLBTEHR,°F_k£_
, In Ho, 21. IZ DRY 6ULB TEMR, °F 73
-------
O
MODE
1
2
3
4
5
6
7
8
9
10
1 1
1 2
1 3
ENGINE
S.PEE.D,
RPM
40£-
11 00
noo
lisa
noo
n OD
loOS
ZIOO
ZIOO
Zloo
Zioo
ZIOO
boS
08SERMED
POWER,
ht>
/4-4
5.^-9
4:2-5"
£-9.1
&q.&
Si.O
33- i,
/7-3
AIR
FLOW
lb-A,
FUEL
FLOVJ,
lb~/w
0-&
34
£•7
II- i
IS.S
23-3
o.q
2<&.0
It.D
IZ.t*
8-4
4-S-
0-1
TEMPERATURE, °F
INTAKE
AIR
^'J
at
81
84
87
89
?£•
M
9S-
^4
93
8?
80
FUEL
^9
79
79
T?
•?9
8/
31
82.
a^.
83
83
93
32
EXH-
AOSy
Z21
i2-
41£T
fci9
&oa
//*.?
ji/t,
//?•?
934
i>?4
s^r
343
•23?
RESTRICTIONS
INTAKE
i.n HaO
2-C
/?.9
/3.£"
/3-7
13- 3
/J-.0
J-3
/7-3
/7-4
'7-8
'8.0
/8-3
5.O
EXHAUST
in Ha
0.04
0-44
04 1
^.5;
0.5"!
O.lto
0.07
1,01
0.97
0.gr
0.8'
0.7/
/?.o4
FIA
HC,
t>t>«c
22.S
13fl
2.10
^ot>
21+
/86
i56
/£)g
/4B
/5f
;&8
zz^
i44
ND1R
CO.
t>t»»
^4T
AT/
J29
A/J
>kl
£211
22£-
$312.
;?4
23ft
292.
2-f)
5L34
NDIR
C02,
V
/o
;-2t
/.s-3
3.11
^..2.4
4.96
9-70
/'/Z
9-4*7
U3
4-^7
2.9/
/•£T9
tf.998
NDIR
NO,
^f>m
4,4
t>4
^99
786
/4fto
/76t
93
/944
Is-fS"
00+
5-48
HI
•74
C.L.
NO,
^^.^
95
39
?
/853
/08
ZOIO
/959
9*0
3S8
/5"4
/Ofc
°*.
%
ENG-l NE
r«\APPING- RUM M-3
DATE
72-
BAR.OKETER Ln
WET
DRy BULB TEMR, "V
-------
O
MODE
1
Z
3
4
5
6
7
6
9
10
1 1
1 Z
\ 3
ENGINE
SPEED,
RPM
t,os-
1100
1100
11 00
1100
\100
bOS"
ZIOO
2.1 05
2100
it 00
2/00
bos
OSSEPNED
POWER.,
ht>
,4.4
Z&.€
4*'9
^&.ie
be-z
so-i
33-1
Id 8
AIR
FLOW
*"/•,,'
FUEL
FLtWd,
lb-A.
0.1
*-4
'1.0
//•4
/£•/?
X3.0
0.7
;?';.fe
/ 3. '7
/*.«
5-4
4-S
(,
0.01
1.01
0.17
OSS'
&.&I
0,11
0.04
FIA
HC,
f'^C
234
264
232
ir8
i76
^I2
270
1/2
/U
/74
3-0 (e
2lo
m
ND1R
CO,
^
/97
iS-9
*9/
/ts1
/26
Soil
^35"
J548
//£"
m
is-4
io9
m
NDIR
C02>
%
/./«
I'S3
3.31
£.30
n.so
10.2$
1.32
;o.4t
7-S4
5-. /7
J-44
MB
M
NDIR
NO,
f>^m
04
^Z
59fc
9^9
Ibsl
zioo
IS!
2/23
I1S7
"in
1*9
;9o
/5Z
C.L.
NO,
t^m
90
8fc
582
^//
;t>98
/4>9/
/07
^42
/714
8S7
J62
/3/
05
C.L.
NO*,
^.^
94
/o9
1*s
??<"
/T?4
into
IOB
/<>&/
1112.
1/2.
3&J
If/
1 D2.
°».
y
/o
K INS.
ENG-INE.
CAPPING- RUN M-4
DATE /Q//9 /7Z
BAROMETER./ Ln
WEF BULB TEMP,
DRY BUUB TEMR,
-------
APPENDIX D
COMPUTER-GENERATED DATA PRINTOUTS
AND CALCULATION OF BRAKE SPECIFIC EMISSIONS
FOR DIESEL, ENGINES USED IN FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
D-l
-------
PROJECT1 Il-28b9-01
ENGINE' AC 3500
DATE OF TEST1 11-28-72 TEST NO.l
SERIAL NO.1 3D-173tt
MODE
1
2
3
t
5
b
?
B
9
10
11
12
13
It
15
Ib
17
18
1=1
20
21
rtODE
1
2
3
t
S
b
7
8
9
10
11
12
13
It
IS
Ifa
17
18
19
2n
21
CYCLE
ENGINE
SPEED
RPM
800
1500
1500
1500
1500
1500
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2200
2200
2200
2200
800
HC
PPM
240
188
158
188
228
2tO
18fa
19b
135
Sb
248
122
150
14-8
its
15b
IfaO
170
ISfa
172
300
TORQUE POWER
LB-FT BMP
0.0 0.0
1.8 .5
54.3 15.5
10b.8 30.5
157. b 45.0
210.1 bO.O
2b2.b 75.0
315.1 90.0
3b?.fa 105.0
420.2 120.0
1.8 .3
355.4 Its. 9
309.9 129.8
2bt.t 110.7
218.8 91.7
l?b.8 74.1
133.1 55.7
87.5 3b.7
f 3.8 18.3
1.8 .7
0.0 0.0
CO + NO-H-
PPM PPM
801 21b
571 255
397 593
31b 912
2b3 120b
343 Itb7
521 Ifa88
888 1908
237b 2033
t883 1915
830 217
715 ISfat
tOO 1558
30b 132b
272 1145
2b2 951
210 785
25t 59b
270 413
350 245
899 179
COMPOSITE BSHC =
BSCO+ =
BSN02++=
BSHC + BSN02tt=
FUEL
FLOfl
LB/MIN
.05
.09
.lb
.2t
.32
.t2
.50
.bl
.b9
.80
.Of
1.01
.87
.77
.bS
.5b
.ts
,3b
.2h
.18
.Ot
WEIGHTED
BHP
0.00
.02
.fa8
1.34
1.S8
2.bt
3.30
3.9b
t.b2
5.28
.02
b.55
5.71
t.87
t.03
3.2b
2.t5
l.bl
.81
.03
0.00
.577
t.908
ll.SSb
12.tfa3
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
b.04 b.09
10.51 lO.faO
10. b3 10.79
11.00 11.21
11.09 11. tl
11. t? 11.89
12.02 12.52
12.77 13.38
12.98 13. b8
13.21 It. 01
5.8b 5.90
22. t8 23. t9
21.lt 22.01
20.20 20.97
19.09 19.75
18. t9 19.05
17. 3t 17.79
Ib.Sb lb.92
15. b8 15. 9t
19.92 20.10
5.85 5.89
BSHC BSCOt
G/HP HR G/HP HR
ft K
52.b3 318.78
l.tS 7.28
.
-------
PROJECT1 ll-28faq-01
ENGINE1 AC 3500
DATE OF TEST' 11-28-75 TEST NO.2
SERIAL NO.1 3D-173ff
MODE
1
2
3
f
5
fa
7
a
q
10
11
12
13
It
IS
Ifa
17
18
11
20
21
ENGINE
SPEED
RPM
8no
1500
1500
1500
1500
1500
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2200
2200
2200
2200
800
TORQUE
LB-FT
1
1
52
105
15?
210
2b2
315
3b7
fib
1
3bO
315
271
225
180
13f
SI
f 5
1
1
.8
.8
.5
.0
.b
.1
.b
.1
.b
.7
.8
.b
.1
.f
.8
.3
.8
.0
.5
.8
.8
POWER
3HP
15
30
f 5
bO
75
SO
105
US
151
132
113
Sf
75
5b
38
IS
.3
.5
.0
.0
.0
.0
.0
.0
.0
.0
.3
.1
.0
.?
.b
.5
.5
.1
.1
.7
.3
FUEL
FLOW
LB/MIN
.05
.10
.Ifa
.25
.33
.f e
.51
.bl
.72
.83
.Of
1.02
.SI
.7S
.b8
.58
.f f
.37
.27
.IS
.Of
AIR
FLOW
LB/MIN
5.
10.
10.
11.
11.
11.
12.
12.
13.
If.
5.
23.
22.
21.
IS.
18.
17.
17.
Ib.
15.
5.
S2
51
73
03
21
77
21
8S
bO
05
73
Ifa
77
f 2
Sf
Sb
SS
Of
20
b2
73
EXHAUST
FLOW
LB/MIN
5.
10.
10.
11.
11.
12.
12.
13.
If.
If.
5.
2f .
23.
22.
20.
IS.
18.
17.
Ib.
15.
5.
S7
bl
8S
28
5f
IS
72
SO
32
88
77
18
b8
21
b2
Sf
f 3
f 1
f 8
81
77
FUEL
AIR
RATIO
.008
.DOS
.015
.022
.02S
.035
.Of S
.Of 7
.053
.05S
.008
.Off
.Of 0
.037
.03f
.031
.025
.022
.017
.012
.008
MODE
HC
PPM
CO +
PPM
WEIGHTED BSHC
BSCO+ BSN02t+
PPM
BHP
G/HP HR G/HP HR G/HP HR
1
2
3
f
5
b
7
8
q
10
ll
12
13
If
IS
Ib
17
18
IS
20
21
CYCLE
288
2fO
1S8
21f
25f
25b
2f 8
220
llf
b2
1S2
If2
152
IbO
Ib2
158
172
18f
178
18b
320
S37 17b
b2f 2f5
ff8 Sf7
3fl 8b7
275 llbO
320 Ifff
533 Ibf3
825 18fl
2f?f 1SSO
f2b2 ISIS
bS3 27b
fa?S ISbO
f38 1500
2Sf 1301
2f8 Ilf8
237 S35
22S 75b
2f2 5S8
257 flS
2S7 2f3
85b 18b
COMPOSITE BSHC =
BSCO+ =
BSN02++=
BSHC t BSN02++=
.02
.02
.bb
1.32
1.S8
2.bf
3.30
3.Sb
f .b2
5.2f
.02
b.bS
5.81
5.00
f .Ib
3.32
2.f 8
l.bB
.8f
.03
.02
.b2S
f .773
11.S13
12.5f2
85.08 551.80
b?.21 3f8.25
l.SO 8.55
I.Ob 3.37
.Bfa 1.85
.bS 1.71
.Sb 2.38
.ff 3.25
.21 8.87
.10 If. 02
5f.87 3Sf.7S
.30 2.8b
,3b 2.07
,fl 1.51
.f? I.f2
.5f I.b2
.7f 1.S7
1.11 2.S1
2.03 S.8f
52. Sf IbS.bS
Sl.fS f87.32
GRAM/BHP HR
GRAM/BMP HR
GRAM/BHP HR
GRAM/BHP HR
170.51
22f .53
17.15
If .08
12.85
12. b?
12. Of
11. S3
11.72
10. 3b
258. 3fa
10. ?S
11. b3
10. ss
10.81
10. fS
10. bb
11.80
15. bf
228. 7S
17f .02
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-3
-------
PROJECT1 Il-28b9-01
ENGINE' AC 350H
DATE OF TEST1 11-28-72 TEST NO.3
SERIAL NO.' 3D-17311
MODE
1
a
3
i
5
b
7
8
9
10
11
12
13
It
IS
Ib
1?
in
IS
20
21
MODE
1
2
3
1
5
b
7
8
9
10
11
12
13
it
15
Ib
17
18
11
20
21
CYCLE
ENGINE
SPEED
RPM
800
1500
IbOO
1500
1500
1500
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2?no
2200
2200
2200
800
HC
PPM
272
221
180
19b
231
232
221
20b
112
b8
212
128
lib
152
150
128
IbO
178
170
178
300
TORQUE POWER
LB-FT BMP
0.0 0.0
1.8 .5
52.5 15.0
105.0 30.0
157. fa 15.0
210.1 bO.O
2b2.b 75.0
315.1 90.0
3b7.b 105.0
411.9 118.5
1.8 .3
357.1 149. b
315.1 132.0
271.1 113.7
225.8 94. b
180.3 75.5
134.8 5fa,5
91.0 38.1
45.5 19.1
1.8 .7
1.8 .3
CO+ NO++
PPM PPM
842 175
b!2 194
435 482
341 730
287 995
307 1200
49b 1424
788 Ibb2
21b5 1792
44b9 1722
SbO 280
b43 1404
389 13b2
24b 1195
212 1025
214 842
204 b99
218 512
233 39b
272 230
775 17fa
. COMPOSITE BSHC =
BSCOt =
BSN02-H- =
BSHC + BSN02++=
FUEL
FLOW
LB/MIN
.01
.09
.Ib
.21
.32
.12
.51
.bl
.71
.83
.01
1.01
.91
.80
.b9
.57
.17
.3?
.27
.19
.01
WEIGHTED
BMP
0.00
.02
.bb
1.32
1.98
2.b4
3.30
3.9b
4.b2
5.21
.02
b.58
5.81
5.00
4.1b
3.32
2.48
I.b8
.84
.03
.02
.590
1.1b2
10.b03
11.194
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.72 5.7b
10.40 10.49
10.71 10.87
11.20 11.44
11.21 11.53
11.77 12.19
11.97 12.18
12. 9b 13.57
13. 2b 13.97
13. bO 11.13
5.54 5.58
23.15 24. Ib
22.28 23.19
21.37 22.17
19. 9b 20. b5
18.83 19.40
17. 9b 18.43
lb.92 17.29
lb.29 lb.5b
15.72 15.91
5.72 5.7b
BSHC BSCO+
G/HP HR G/HP HR
R R
b2.0b 337. b4
1.72 8.30
.99 3.43
.79 1.94
.b2 I.fa4
.49 2.17
.41 3.12
.25 7.57
.11 11.31
58.59 308.12
.27 2.73
.31 1.7S
.39 1.2b
.43 1.22
.43 1.45
.b9 1.75
1.07 2.bO
1.S5 5.32
50.98 155.33
85.54 110.27
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.008
.009
.015
.022
.029
.03b
.012
.017
.053
.Obi
.008
.011
.041
.037
.035
.031
.02b
.022
.017
.012
.007
BSN02++
G/HP HR
R
175. bl
lb.10
12.04
11.01
10.53
10.24
10.82
10.30
9. Ob
253.35
S.80
10.33
10.07
9.bb
9.35
9.85
10. bl
11.84
215.32
Ib3.91
+ CONVERTED TO WET BASIS
t+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-4
-------
PROJFCT' Il-28b9-01
ENGINE1 AC 3500
DATE OF TEST1 11-28-72 TEST NO.f
SERIAL NO.1 3D-173**
MODE
1
2
3
*
5
b
7
8
q
10
ll
12
13
1*
IS
Ib
1?
18
IS
20
21
MODE
1
2
3
*
5
b
?
8
9
10
11
12
13
11
15
Ib
17
18
11
20
21
CYCLE
ENGINE TORQUE POWER
SPEED
RPM
800
1500
1500
1500
1500
1500
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2200
2200
2200
2200
800
HC
PPM
2b8
22*
18b
202
2 + 0
25*
2*0
230
ISb
92
220
IbO
Ib8
172
17*
17b
18*
200
ISO
192
3*0
L8-FT BMP
0.0 0.0
0.0 0.0
52.5 15.0
103.3 29.5
15*. 1 **.0
20b.b 59.0
259.1 7*.0
311. b 89.0
3fa2.* 103.5
*13.2 118.0
0.0 0.0
355.* 1*8.9
311. b 130.5
2bb. 1 111.5
220. b 92.*
17b. 8 7*. 1
133.1 55.7
87.5 3b.7
*3.8 18.3
3.5 1.5
0.0 0.0
CO+ NO++
PPM PPM
9bb 197
b52 2*7
*7* 5b2
3b7 875
300 1188
35fa 1*20
5*7 Ib38
928 1837
2273 200*
*S** 1909
bb7 2fa9
b80 1592
*13 1510
271 1329
225 1158
22? 957
21b 78b
231 b03
2*5 *22
285 2*5
830 198
COMPOSITE BSHC =
BSCO + =
BSN02++=
BSHC + BSN02++=
FUEL
FLOW
LB/MIN
.0*
.09
.Ib
.23
.31
.*!
.50
.59
.b9
.82
.0*
1.00
.90
.78
.b?
.57
.*b
.37
.27
.19
.n*
WEIGHTED
BMP
0.00
0.00
.bfa
1.30
1.9*
2.bO
3.2b
3.92
*.55
5.19
0.00
b.S5
5.7*
*.90
*.o?
3.2fa
2.*5
l.bl
.81
.Ob
0.00
.bb8
*.817
12.109
12.777
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.73 5.77
10. *0 10. *9
10.70 10. 8b
10.8* 11.07
11.20 11.51
11. 7b 12.17
12.0* 12.5*
12. b* 13.23
13.10 13.79
13.87 I*.fa9
5.5* 5.58
23.1* 2*.l*
22.29 23.19
21.38 22. Ib
19.98 20. b5
18. 8b 19. f3
17.81 18.2?
17.15 17.52
lb.12 lb.39
15.57 15. 7b
5.72 5.7b
BSHC BSCO+
G/HP HR G/HP HR
R R
R R
1.78 9.03
1.00 3. b?
.83 2.07
.b9 1.93
.5* 2.**
.*5 3.b3
.27 7.9b
.15 1*.88
R R
.3* 2.90
,39 1.93
.*S l.*2
.51 1.32
.bl l.Sfa
.80 1.8b
1.2b 2.90
2.2* 5.75
27.23 80.51
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.008
.009
.015
.022
.028
.035
.0*1
.0*7
.053
.059
.007
.0*3
.040
.037
.03*
.030
.02b
.021
.017
.012
.007
BSN02++
G/HP HR
R
R
17.59
1*.19
13. *3
12. b5
11.99
11.80
11.5*
10.27
R
11. Ib
11.59
11. *2
11.18
10.85
11.13
12. *5
lb.31
113.88
R
+ CONVERTED TO WET BASIS
t+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-5
-------
PROJECT1 Il-28fa9-01
ENGINE' AC 3500
DATE OF TEST' 11-29-72 TEST NO.5
SERIAL NO.1 30-17311
MODE
1
2
3
*
S
b
7
8
9
10
11
12
13
It
IS
Ib
17
18
IS
20
21
MODE
1
2
3
1
5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
19
20
21
CYCLE
ENGINE
SPEED
RPM
BOO
1500
1500
1500
1500
1500
1500
1500
1500
1500
800
2200
2200
2200
2200
2200
2200
2POO
2200
2200
son
HC
PPM
292
221
181
201
2tb
251
210
208
132
51
2b1
112
152
152
15b
IbO
Ib8
182
178
lib
332
TORuUE POWER
LB-FT BHP
1.8 .3
1.8 .5
19.0 11.0
105.0 30.0
15S.3 15.5
210.1 bO.O
2b2.b 75.0
31b.9 90.5
3b5.9 101.5
121. S 120.5
5.3 .8
318.1 115. 9
309.9 129.8
2bb.l 111.5
220. b 92.1
17b.8 71.1
133.1 55.7
87.5 3b.7
13.8 18.3
5.3 2.2
0.0 0.0
CO+ NO++
PPM PPM
859 18b
559 253
372 551
291 900
227 1135
285 1391
b97 153b
775 1791
2022 1912
1189 1881
775 221
519 1182
3fa8 1157
231 1251
213 llOfa
202 902
1S2 711
20b 557
221 109
272 211
857 177
COMPOSITE BSHC =
BSCOf =
BSN02t+=
BSHC + BSN02-H- =
FUEL
FLOW
LB/MIN
.03
.09
.Ib
.02
.32
.11
.bO
.bO
.71
.77
.01
.99
.77
.78
.b?
.57
.Ib
.3b
.2b
.18
.01
WEIGHTED
BHP
.02
.02
.b2
1.32
2.00
2.b1
3.30
3.98
l.bO
5.30
.05
b.12
5.71
1.90
1.07
3.2b
2.is
l.bl
.81
.10
0.00
.b31
1.380
11.525
12.15fa
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.91 5.91
10. bO lO.fal
10.82 10.98
10.91 10.93
11.28 11. bO
12.12 12.53
12.28 12.88
12.78 13.38
13.51 11.22
11.17 11.91
5.72 5.7b
22.55 23.51
21.83 22.faO
20.92 21.70
19.92 20.59
19.00 19.57
17.83 18.29
lb.85 17.21
15.95 lb.21
15.12 IS.bO
5.91 5.95
BSHC BSCO +
G/HP HR G/HP HR
85.90 503. b3
fa3.23 311. Ib
1.90 7.b7
.98 2.79
.83 1.52
.70 l.Sfa
.51 3.15
.tl 3.01
.21 7.21
.09 13. bb
25.10 lib. 71
.30 2.20
.35 I.fa9
.39 1.20
.tfa 1.25
.Sfa 1.1Q
.73 l.fas
1.13 2. 51
2.08 5.13
18.35 50.80
« R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.OOb
.009
.015
.002
.028
.031
.019
.017
.052
.055
.007
.011
.035
.037
.031
.030
.02b
.021
.Olfa
.012
.007
B3N02-H-
G/HP HR
179.50
233.19
18.75
11. Ib
12.50
12.57
11.10
11.11
11.21
10.08
b9.faO
10.33
10.9fa
10.52
10. bS
10.30
10.51
11.30
15. b3
73.92
R
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-G
-------
PROJECT1 Il-28b9-01
ENGINE" AC 3500
DATE OF TEST1 11-29-72
SERIAL NO.' 3D-17344
TEST NO.fa
MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
14
15
Ifa
17
18
19
20
21
MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
14
15
Ib
17
18
19
20
21
CYCLE
FNGlNE
SPEED
RPM
800
1500
1500
1500
1500
1500
1500
1500
1500
1SDO
800
2200
2200
2200
2200
2200
2200
2200
2?00
2200
800
HC
PPM
2fa8
21fa
178
198
23b
23b
222
19fa
124
50
248
128
144
14b
14R
152
158
172
Ibfa
178
31b
TORQUE
POWER
FUEL
FLOW
LB-FT
0.
1.
54.
105.
157.
210.
2bO.
315.
3b7.
41b.
1.
341.
309.
2bb.
220.
178.
133.
87.
45.
•5.
5.
CO +
PPM
870
b25
448
341
288
344
522
8fa4
2507
4422
827
fa21
413
294
272
250
240
255
282
33b
884
0
8
3
0
fa
1
8
1
fa
7
8
4
9
1
fa
fa
1
5
5
3
3
BHP
0.0
.5
15.5
30.0
45.0
faO.O
74.5
90.0
105.0
119.0
.3
143.0
129.9
111.5
92.4
74.8
55.7
3fa.7
19.1
2.2
.a
NO + +
PPM
Ib8
215
48fa
827
HOfa
1358
1547
1774
1875
1781
223
1459
1428
1223
10b5
878
718
559
390
232
Ib8
LB/MIN
.04
.09
.17
.24
.32
.41
.50
.59
.71
.85
.05
.95
.89
.77
.fab
.57
.4fa
.3b
. ?b
.18
.04
WEIGHTED
BHP
0
1
1
2
3
3
4
5
b
5
4
4
3
2
1
COMPOSITE BSHC =
BSCO+ =
BSN02+t=
BSHC + BSN02-H-S
4.
11.
11.
.00
.02
,b8
.32
.18
,b4
.28
.9fa
.62
.24
.02
.29
.71
.10
.07
.29
.45
.bl
.84
.10
.05
595
940
24fa
842
AIR
FLOW
LB/MIN
fa. 10
lO.faO
10.81
11.10
11.38
11.57
12.03
12. b2
13. b?
14.17
5.53
23.13
22. 2b
20.88
19. b3
18.94
17.89
lb.94
lb.ll
15.44
S.91
BSHC
G/HP HR
R
bO.9?
l.bb
. 19
.81
.62
.49
.38
.22
.08
68.50
.28
.34
.37
.43
.62
.69
1.07
1.88
16.69
31.03
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
6.14
10. b9
10.98
11.34
11.70
11.98
12.53
13.21
14.38
15.02
5.58
24.08
23.15
2l.fa5
20.29
19.51
18.35
17.30
lb.37
15. b2
5.95
BSCO +
G/HP HR
R
351.49
8.34
3.40
1.97
1.81
2.31
3.33
9.03
14.68
455.00
2.75
1.94
1.50
1.57
1.71
2.08
3.16
6.38
62.72
173.03
HR
HR
HR
HR
FUEL
AIR
RATIO
.007
.009
.015
.022
.029
.035
.042
.047
.052
.060
.009
.041
.040
.037
.034
.030
.026
.021
.016
.012
.007
B3N02-H-
G/HP
198
14
13
12
11
11
11
11
9
201
10
11
10
10
9
10
11
14
71
54
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
*
•
•
•
•
HR
R
21
88
50
43
71
24
25
01
71
95
62
00
27
10
89
21
39
45
17
07
t CONVERTED TO WET BASIS
•H- CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-7
-------
PRIMECT •
'CAT PbC
HATE UP TEST'2-1-72 rEST NO.l
L M.:.' 1A481P
MfU'E PNGINE TORNUE POWER
SI-EEL'
1
,-1
;-i
M.
L,
I,
7
f;
q
10
ii
12
1:)
1.^
Iti
Ib
IV
in
I'l
en
2J
MU'JE
1
2
3
4
5
b
7
8
S
in
11
12
13
14
15
Ib
1?
18
14
20
21
CYCLE
RPM
bbt,
1 S- Q G
I'rOn
1 4 0 U
1400
1 'r 0 0
14QO
14 CO
If 00
1 «• n n
hbO
14 [iO
14L-0
HOD
1 4 n i. i
l s n n
1 4 t . 0
ISnp
14i.Mj
1400
b5il
HC
PPM
2b
24
b
4
8
8
10
12
12
10
IP
b
b
4
3
b
t
+
4.
20
7b
L*-KT BHP
u . o o . n
[i . 0 0 . 0
5 H . 5 1 5 . S
117.3 31.3
17H.b 47. b
2 3 b . 3 b 3 . 0
247. h 74.3
3 5 3 . h S t . 3
41U.S ll'J.b
4 7 4 . ? 1 2 7 . H
i). i.l >1.0
4- U 4 . ^ 1 4 b . 3
3 5 H . b 127.4
3 0 L . 1 1 U d . 4
2 5 .H . 8 S I . 8
1 4 S . b 7 = . 2
1'1U.H 5 3. a
1 n .1. . b 3 b . 7
5 1 1 . R H . 4
:1. 0 J . n
n.n .i.d
CU+- NO + +
PPM PPM
252 54
278 b2
15? 14b
103 271
77 427
50 535
75 5S8
B8 5S3
74 553
S8 537
224 SI
SS 51S
74 557
75 54S
25 507
8S 45b
SO 330
115 240
143 14b
237 81
3 0 b 54
COMPOSITE BSHC =
BSCO+ =
BSN02+t=
BSHC + BSN02++=
FUEL
FLOW
Lh/ I!N
.'ib
.13
. PU
.27
. 34
. 40
.51
,54
. hB
. ^b
. 'Tb
. 47
. -It
. 73
. ^4-
.52
. 45
. 34
. JH
. P2
.'Ib
WEIGHTED
BHP
0.00
0.00
.70
1.38
2. OS
2.7?
3.4S
4.15
4.87
5.b3
0.00
b.44
5.b3
4 . 7S
4.04
3.18
2.37
I.b2
.81
O.OQ
0.00
.04b
.SSS
S.llb
5.1b2
AIR EX^AUSI
FLO^ FLO*^'
L B / ^ I "^ LB/MIN
7.bO 7. bb
1 b . 2 8 15.41
1 b . 4 3 1 b . 1 3
lh.23 lb.50
Ib. 52 lh. 8b
lfa.48 lb.88
lb.75 17. 2b
17.00 I 7 . 5 S
17.45 1«. 13
17. bH IB. 44
7.55 7.bl
2S.bS 2b.b2
P 3 . H 3 P ^ . b 7
22. b f) 23.33
PP.17 22. «1
2M.H7 21.34
P , 1 . 4 2 21.37
L 4 . 5 2 14.41
2H.5D 20.78
P U . b 7 2 U . 7 4
7.b<» 7.KS
BSHC BSCO+
G/HP HR G/HP HR
R H
R R
.08 4.20
.03 1.44
.04 .71
.03 ,3b
.03 .43
.03 .43
.03 .3£
.02 .37
R R
.01 .47
.02 .38
.01 .42
.03 .17
.02 .70
.02 .S4
.03 I.fa4
.Ob 4.25
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.OTJ7
.OOS
.013
.Olb
.021
.024
.030
.035
.034
.043
. 01)9
.038
.035
.032
.024
.1)25
.021
.020
. 0 1. 4
.nil
.007
BSN02++
G/HP MR
K
R
b.41
b.17
b.53
b.lS
S.fa2
4.78
3. SI
3.34
H
4.08
4 ,b4
6.08
5.44
5.83
S.bS
5.bl
7.11
R
R
CONVERTED TU ^ET BASIS
COlMVERTEO TO WET BASIS AND CORRECTED TO 75 GRAINS
f
-------
'CAT obC
IMTE UK TtST'a-?-?
SfcHI AL NO. ' 1A*H1B
TEST NO.
MODE ENGINE Ti.)Wi4UC P. HEW
SPEED
.1
d
3
*
s
b
7
H
S
1U
U
IS
1^
lu
IS
lh
1"'
1H
H
2.
0.
i).
cut
PPM
333
3**
228
1*2
115
b3
88
be
18
13*
253
111
125
113
12V
128
1*1
IbB
822
277
332
COMPOSITE
BSHC +
•-MP
0 O.n
u o.n
3 lh.3
5 33.7
i * i; . B
8 bS.d
1 88. b
* 18.5
4 US. 3
2 13H. 7
it o.n
h 131. .5
•1 1 1 't . K
I 1*1.8
3 8 J . ti
i b*. 1
h >»"•.*
U 3c? . 1
.-1 i > . J
0 0 . 0
1 1 1 • . ')
NO + +
PPM
3b
53
125
251
310
*15
53*
581
501
520
71
*85
t18
*81
*U2
3*b
2b7
200
13*
71
3b
BSHC s
BSCO* a
BSN02++S
HSN02++S
FUEL
f-'LOrt
LH/-IIN
.05
..!.*
.80
.88
,.}b
.*5
.5*
. b3
.?t
.88
.05
. S5
.78
.hi
.1.0
.50
. * 3
. Tb
. ?q
. ^i
."5
WEIGHTED
BHP
0.00
0.00
.72
1.**
2.1*
2.10
3.b3
*.33
5.07
5.75
0.00
5.7*
5.0*
*.35
3,b5
2.10
2.17
l.*5
.75
0.00
0.00
.110
1.385
*.71S
».82*
AIR tXHAUST
FLO1^ FLOW
LB/MIN LB/MIN
?.*8 7.*?
15. 1h lb.10
lb.1 1 Ib. 31
1 h . 1 .1. i b . 3 1
lb.2b Ih.b2
1 b . S 0 J. b . 1 S
Ib. 71 17.85
1 7 . ?S 1 7 . 8 8
18.05 1 H . 7 1
18.80 11. b8
b . 1 H b . S 7
23. 85 2*. 70
c-a.7d 83 . ^b
88.87 8a.1b
81.58 28. 1H
81.15 8 I . b b
8 0 . 7 a r- 1 . 1 S
80.50 ? n . 8 b
80.55 80. Ht
80.52 80.73
b . 1 i h . H H
BSHC BSCO+
G/HP HR G/HP HR
H H
R R
.53 5.8*
.2* 1.87
.1* 1.03
.18 -*3
.U* ,*8
.03 .30
.03 .*8
.0* .53
R R
.Ob .55
.05 .b?
.Ob .bl
.Ob .81
.08 1.10
.08 1.51
.18 2.80
.21 7.10
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.OOb
.001
.013
.017
.oa a
.087
.038
.037
.0*1
.'J**
* 0 0 7
,03b
.03*
. 0 3 I
. 0 8 U
.0?*
.081
.0). H
.01*
. 0 1 0
. un ;
BSN02-H-
G/HP HR
H
R
5.*1
S.b8
5.7b
5.50
*.82
*.15
3.53
3.38
R
3.17
*.*2
*.H
5.57
*.12
*.13
5.*8
7.07
R
H
COWVEKTEO TU XfcT BASIS
CONVEKTEO TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER HEX Lb. OHf AIM
-------
TEST NU.3
ENGINL
•CAT
DbC SERIAL NO. ' 1 A481H
MOPE ENGINE TORUUE
P 1 1 iv E H
SPEEQ
i
,?
3
t
s
t.
->
!3
')
ID
U
If
1 1
It
IS
Ib
1 >
Irt
I'l
2h
2.1
MODE
1
2
3
t
5
b
7
8
S
10
11
12
13
It
15
Ib
1 ?
18
IS
20
21
CYCLE
KPN
btO
1400
1400
1400
1400
ItOO
14-00
It 00
itro
14-00
bHO
1 H 0 0
isnu
1SOO
1 S[MJ
ISO 0
1SOU
1SOO
ison
isnu
htn
HC
PPM
?b
bb
48
48
4t
tt
tt
tt
t2
to
80
22
20
18
18
20
2t
2t
28
b2
108
LB-FT
0.0
0.0
bt . 8
15b .0
18S.1
253.8
3ih.q
381. b
1 1 L . 2
tSi.S
li. U
378.1
330. S
281. S
23t .b
187.3
143. b
St. 5
45.5
0.0
0.0
CO +
PPM
332
318
315
SI
7b
b3
75
fa2
S8
15S
253
b2
4S
25
25
38
2fa
51
117
IS?
27S
rlHP
O.fl
0.0
17.3
3J.b
5 0 . t
b?.7
8t.5
101.7
117. b
131.1
.1.0
13b.H
1 1 S . 7
102.0
8t . S
b7.8
51. S
3t.3
l'i . S
u.n
1! .0
N0t +
PPM
17
34
112
ass
42S
Sbb
fa05
588
5bl
5b8
34
575
5SO
583
SIS
427
32fa
212
130
b8
34
COMPOSITE BSHC =
BSCOt =
BSNOa++=
BSHC + BSNUa-H-s
FUb'L
FLOW
LB/I-1IN
.05
.13
.20
.27
.3b
. tt
.52
.H3
. Id
.81
.us
.se
.HI
.71
.be
.52
. tt
. 3b
.2H
. ?2
."5
WEIGHTED
BHP
0.00
0.00
,7b
1.48
2.2e
e.sa
3.?e
4.48
5.17
5.77
0.00
b.oa
s. a?
4.4S
3.73
e.ss
e.as
1.50
.72
0.00
0.00
.its
-S53
5.123
5. 28S
AIR EXHAUST
FLO'4 FLOW
LB/MIN Ub/MlN
7.S7 8.02
It. 03 Ib.lb
lb.01 lb.?l
lb.00 lb.27
It. 03 lb.3S
lb.23 Ib.b7
lh.53 17.04
17.03 17. bb
17.82 18. 54
18.30 IS. 11
7.3d 7.37
2t.es 25.17
23.10 2 3. Ml
22.22 22. S3
?i.fa2 ee.at
21.33 2 1 . 8 b
21.00 21.44-
20. b2 PQ.S8
2 0 . b S 20.^3
£ 0 . S 3 2 .1 . 1 S
7.15 7.17
8SHC BSCOt
G/HP HR G/HP HR
R R
R R
,5S 7.78
.a? i.ib
.IS .bS
.14 .41
.13 .40
.10 .as
.OS .tl
.08 .bl
R R
.05 .30
.05 ,2b
.05 .15
.Ob .18
.OS .33
.13 .38
.IS .83
.47 3. SO
R R
R R
GRAM/BHP HR
GHAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.007
.008
.012
.01?
.022
.027
.032
.037
.041
.Ott
.01)7
.038
.035
.032
. OdS
.025
.021
. 01 >
. U 1 1
. 0 .L 1
. 0 ii 7
BSNOa+t
G/HP HR
R
R
4.55
5.43
b.02
b.03
5.28
4.41
3.82
3.57
R
4.57
5. OS
5.bb
5.88
5.S4
5.81
s.ba
7. ia
R
R
+ CONVERTED TO WET BASIS
++ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
W41ER PER LB. DRY AIR
D-IO
-------
PKi)JECT'll-28b9-01
'CAT DbC
UATE OF TEST'2-i-72
SERIAL NO.'
TEST NO.*
MODE ENGINE
SPEED
.1
2
J
4
s
b
V
K
'i
11!
1!
id
n
IV
Ih
lh
1?
1«
1«
21)
g.i
ilUUE
1
2
3
*
5
b
7
8
1
10
11
12
13
It
15
Ib
17
18
11
20
ei
CYCLE
RPM
b*0
1*00
1* OU
I1- 00
i*ou
1*00
1 * 0 f I
1*00
IU'0
1*00
b*u
i s o u
i 4 n u
1 H IJ U
I'lOO
1^00
I'lOO
moo
i H n u
1 ^ 0 IJ
b*U
HC
PPM
12
faO
58
32
32
32
3b
3*
3*
32
12
32
32
3*
3b
38
38
3b
*2
bO
9b
T 0 R CJ U £ P 0 W E H
LH-KT i>HP
a. n o.o
o.o o.n
bi.3 lb.3
12d.5 3?.?
1 8 -J . 8 t 4 . 0
2*8. b bb.3
3HM.S H2.h
3 b '1 . * 4 H . 5
M-3i:.4- IIS. 3
tH(l.2 130.7
D.D C.O
37H.S 137. t
33^. b 120.3
2 8 f! . S 1 0 H . 5
2 3 H.I 8h.l
18S.1 b8.*
1*1.8 51.3
S*.5 3*. 2
* "' . 3 1 V . 1
u . o e . o
l. i . 0 C.O
Ct)+ NO + +
PPM PPM
30b 35
252 52
1 3 J 1*0
51 2bO
2b **0
2b 555
12 bOb
25 bOO
37 573
bl 557
1*5 52
111 Sfat
112 57S
112 5*9
127 *87
1*0 385
1*1 31b
Ib8 175
lib 103
277 51
30fa 52
COMPOSITE BSHC =
BSCO+ =
BSN02++S
BSHC •(• BSN02 + + =
FUEL
FLUW
LB/HIN
.1)5
..13
.11
.37
.33
-*2
.ra
.hi
.71
.82
.05
.13
.H£
,'n
.hO
.52
.*3
.3b
.28
.22
.05
WEIGHTED
BHP
0.00
0.00
.72
1.**
2.1b
2.92
3.b3
*.33
5.07
5.75
0.00
b.05
5.21
*.bO
3.79
3.01
2.2b
1.50
.75
0.00
0.00
.185
1.082
S.Obf
5.2*1
AIR EXHAUST
FLOW FLOW
LH/MIN Lrt/MIN
8.02 8.07
15.92 lb.05
15.93 lb.12
15.92 lb.11
15.10 lfa.23
lb.17 lfa.59
lfa.*5 Ib.lb
17.02 17. b3
17.10 18. bl
18.82 11. b*
7 . * b 7 . S 0
2*. 52 25. *5
23.20 2*.U2
22.30 23.01
21.88 2?.*8
21. *2 21.9*
20.18 21. * 1
20.82 21.18
20.82 1 1 . HJ
21.07 21.21
7.35 7.*0
BSHC BSCO+
G/HP HR G/HP HR
R R
R R
.7b 3.39
.21 .b?
.1* .23
.11 .17
.10 .07
.08 .12
.07 .Ib
.Ob .2*
R R
.08 .5*
.08 .51
.10 .bS
.12 .87
.Ib 1.18
.21 1.55
.29 2.7*
.b8 b.35
R R
R R
GKAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.OOb
.008
.012
.017
.021
.02b
.031
.03b
.0*0
.0**
. DU7
.038
.035
.032
.028
.02*
. 02)
.017
,UJ>
. nj o
.0(17
BSN02++
G/HP HR
R
R
5.97
5.5b
b.30
b.Ol
5.38
t.b*
*.oo
3.b2
K
*.S1
*.99
5.22
5.50
5.33
5.71
*.b8
5.*8
R
R
CONVERTED TU WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-l I
-------
PROJECT1 J.l-28bS-01
tNUINh 'CAT UfaC
DATE OF TEST'2-10-72 IEST
SERIAL NO.1 1 A1818
MUUE
J.
2
t
'I.
h
h
f
H
1
10
J. t
Ir?
1 *
la
IS
Ih
IV
1H
1^
20
2 i.
MODE
1
2
3
f
5
b
7
8
S
10
11
12
13
If
15
Ih
17
18
IS
20
21
CYCLE
H N G I N E
SPEED
KPM
BID
lino
1*00
1*00
1 1 [1 o
HOO
nou
1100
J 1 0 U
i^no
h4-U
1SOO
1 H r i u
1 S 01)
i s o o
IS (JO
1 H U U
1HOO
1HOCI
1HOO
htU
HC
PPM
72
fat
bb
58
38
3b
3b
32
30
28
82
2b
21
2b
3D
31
31
3b
id
7b
114
TORiglJE POWER
LB-h'T BMP
d.o a . o
(1.0 U . 0
54. 5 15. S
1 1 ci . n 31.?
1 7 li . b t V . b
2 3 H . 1 b 3 . 5
2SCI. f 71. b
355. t S^.?
til..? 1 ] j. . J
tHH.t 13U. 2
ii.n o.n
t2IJ.2 ISr-'.O
Sb1*.! 131.7
sih.i 11^ .n
2bH.b SS.Q
21H.1 7b.n
1 5 7 . b 5 V . n
1 0 J . 3 3 7 . t
bil . H 18. t
11 .0 U . f)
( i . n ii . 0
CU+ NO-H-
PPM PPM
27S tf
27S fal
170 152
SI 2bfa
fat 3S7
b t 570
75 blO
88 b!7
7t S7b
10S 52t
225 bl
110 575
99 b02
112 571
12b 553
139 t57
Itl 3tt
Ib8 25b
222 Ibl
330 IQfa
359 fa 1
COMPOSITE BSHC =
BSCO-f =
B3N02+t=
bSHC t BSN02++=
FUEL
FLOW
LB/MIN
.(15
.12
.IS
.2b
.33
.^1
.50
.67
.b^
.R3
.U5
i.na
. 8b
.7fa
. bS
.55
."S
.^b
.?7
.21
.('5
WEIGHTED
tiHP
0. 00
0.00
.70
l.fO
2. OS
2.7S
3.51
t.17
t ,8S
5.73
0.00
b.bS
5.80
5.02
t.18
3.3t
2.51
l.bt
.81
0.00
0.00
.175
1.225
5.178
5.353
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
7.78 7.83
15. S7 Ib.OS
15. S8 lb.17
15. SB lfa.2t
15. SS lh.28
lb.25 Ib.bb
lb.52 17.02
17.05 17. b2
17.58 18.27
18. bO IS.tS
7.18 7.23
25.08 ?fa.08
23. t 7 £t. 33
22.30 23. Ob
21.12 22.07
? Ci . S 8 21.53
20.58 21.03
2 n . 5 n 2 0 . B b
2 1 1 . t 0 e n . h 7
2i'i.?n 20. HI
7.2S 7.30
BSHC BSCU+
G/HP HR G/HP HR
K R
R R
.8S t.55
.3S 1.22
.17 .58
.12 .tt
.10 .12
.08 -t3
.07 .32
.Ob .t3
R R
.Ufa .50
.Ob ,f8
.07 ,5S
.OS .77
.13 l.Ot
.17 1.3b
.27 a.fb
.5S b.57
K R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GKAM/BHP HR
FUEL
AIR
RATIO
,orib
.008
.012
. Olfa
.051
.025
.030
.033
.031
.015
. i"J 1 1 7
. u -.- n
.037
.031
.050
.0?b
. oes
.018
o i ) .1 3
. IJ 1 n
. 0 : i 7
3 s M '_ .; -t- +
G»^HF hR
K
b , V _
s , ,; M
S , ;., vj
b . T'
S.brt
1 , Sb
t .01
3.38
H
t., eb
1 , 80
4. SH
5,55
5 .''.=}
5 . 'f Q
fa , i S
7,8^
K
K
COINVEPTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER L6. DRY AIR
D-IZ
-------
PROJECT'Il-£8b9-01
ENiJIiMF. 'CAT ObC
DATE OF TEST'£-10-
S F R 1 A L NO.1 1 A t H 1 H
TFST NO.b
MODE
l.
2
1
t
s
h
i
H
H
in
u
.' e
I'J
I1*
.n
lh
1 >
1H
1-1
£n
2'
MODE
l
c
j,
t
5
b
7
8
4
10
1.1
12
13
It
15
Ib
17
18
IS
20
21
CYCLE
F. N G I N
SPEED
RPrl
btO
1100
itoo
1100
lino
IIQO
1 1 0 0
itoo
It 00
HOD
blO
1900
1 H 1 1 1 1
19QO
i H n n
1900
J 9 0 i.i
1900
1HUU
isno
bt 0
HC
PPM
81
70
3b
30
£8
2b
£1
22
20
It
Bt
£i
£1
30
30
3b
31
3b
to
bt
lOfa
E TORIjUt PlliiER
Lfl-FT
1).
(J.
bl.
1E2.
IBS.
£1b .
3 Ob.
3bS .
t 3t .
t 90 .
(J.
1 13 .
Jb7.
313.
?bt .
£08.
15 ).
10S.
52.
I.
n.
CO*
PPM
3bO
318
223
91
bt
7b
75
b£
8b
98
£79
111
111
75
113
lit
115
129
Ib9
£fat
319
COMPOSITE
BSHC +
bHP
0 0.0
0 d.O
3 lb.3
5 32.7
b 19.5
1 b5.3
t 81.7
1 98.5
£ 115.7
£ 130.7
n u . o
2 1 1 9 . 5
b 1 3 3 . n
t 1 1 H . 1
1 °5 . b
3 75.1
b 57.0
0 38.0
5 19.0
B .fa
li H . (i
N0t +
PPM
3b
b£
115
290
t57
bit
faSt
b3t
591
bOl
51
550
Sfal
592
537
t53
370
229
125
99
tt
BSHC =
BSCO+ =
BSN02++=
BSN02-H- =
FUEL
FLOW
LB/IUIM
.Pb
.12
. J. S
.27
. MS
. il
. <-,?
. hi
.73
.8t
.US
. HS
. I-' V
.7b
. »>b
- '-it
. ub
. 47
.SB
. £1
.ns
WEIGHTED
bHP
0.00
0.00
.72
l.tt
2.18
2.87
3.59
f.33
5.09
5.75
0.00
b.58
5.85
t.99
t.21
3.32
2.51
l.fa?
. 8t
.03
0.00
.ISt
1.170
5.275
S.t29
AIf< EXHAOSI
FLOW FLOW
LR/MIN L H / M I N
7.92 7.97
15.95 lb.07
15.95 lb.lt
16.93 lb.£G
lb.2 - Ib. bO
ib.53 Ib.St
Ib.HB 17.50
17.3? 17. 9b
IB. 08 IP. HI
19.08 19.92
7.35 7.10
25 . H-2 £b. 11
£3.90 £ t . ? 7
£?.78 23.51
£ i . 7 0 £ 2 . 3 b
£ J . 1 _J £ 1 . b 7
2n. H? £1.33
2H.72 21.09
£0.73 £ 1 . U 1
£0.98 2J . 19
7. 7R 7.83
BSHl bSCO-t-
G/HP HR G/HP HR
R R
R R
.1? 5.78
.20 1.18
.12 .57
.09 .52
.07 .t2
.05 .30
.Ot .37
.03 .38
R R
.Ob .51
.Ob .5t
.OB .n
.09 .b9
.If .8b
.17 1.13
.2b 1.88
.58 t.92
28. 2b 231.98
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.Odfa
.OU8
.012
.01?
. 0£2
.025
.030
.037
.011
.ott
. nil?
.039
. U 3 V
. 03'-l
. U;HU
.0£b
.022
.CUR
.011
.niu
. Uflb
BSN02++
G/HP HR
K
H
b.21
b.2Q
b.b2
b.88
b.Ofa
5.00
t . 17
3. 9fa
R
t.20
t ,5t
5.31
5.f3
5.b2
5.98
5.50
5.99
It3. 35
R
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-13
-------
PROJECT1 Il-28b1-01
ENGINE1 UM hV-71N
DATE OF TEST1 10-21-72 TEST NO.3
SERIAL NO.1 00000
MODE
i
2
3
1
5
b
7
8
1
10
11
12
13
11
15
Ib
17
18
IS
20
81
Mf.Dt
I
2
3
1
5
h
7
H
7.0 2.?
3.5 .3
CO+ NO+- +
PPM PPM
22b 18t
162 Ibt
87 32t
t9 507
37 73b
5t 1032
et 1310
ta i5t?
3S1 Ibb2
21t3 153b
162 28t
t5S Ib15
15 1701
3b 1571
t8 1218
t8 1081
tl 85t
fa2 bb2
7t t53
11 283
187 253
TE BSHC =
BSCO+ =
BSN02++=
BSHC + BSN02++=
FUEL
FLOW
LB/MIN
.ot
.20
.30
.31
.t?
.63
.73
.88
1.03
1.17
.01
i.ts
1.27
1.1?
.88
.73
.65
.53
.38
.28
.05
WEIGHTED
bHP
.03
.05
1.01
1.88
2.82
3.8n
t.7b
S.bb
b.51
7.t2
.02
I.Ob
8.01
6.81
5.67
1.17
3.31
2.31
1.08
.12
.02
.77b
2.572
20.135
21.211
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
1.25 1.21
36.88 37.08
3b.88 37.18
36.88 37.27
36. 33 36.71
36.25 36.88
36.77 37.50
37. bb 38.51
3fa.22 37.25
Sb.aa 37.31
8.7b 8.80
17.11 tS.36
17. 8a 11.01
lb.12 17.51
18.11 11.87
15.77 1b.50
16.11 1h. 71
16.75 17.28
11.03 H.11
11.08 11. 3b
1.51 1. bt
BSHC 6SCO+
G/HP HR G/HP HR
2b.?fa 125.11
11.05 118.31
2.10 3. hi
1.15 1.12
.71 .Sb
.bO .27
.53 .22
.t8 .38
-t8 2.bl
.tb i2.51
t1.3b 128.11
.tfa 2.10
-tl .fa?
.51 .21
.61 .11
.75 .58
.«"» .78
I.t5 1.16
3.35 3.S8
30.72 15.83
tS.bl 161.65
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.DOS
.005
.008
.011
.013
.017
.050
.023
.021
.032
.005
.030
.027
.025
.018
.016
.011
.011
.008
.OOb
.005
BSN02++
G/HP HR
167.16
216.10
22.66
11.15
18.27
11.03
11. bl
20.01
17.85
11.72
3fa?.53
17.57
11.11
20.18
21.72
21.31
22.12
25.77
31.51
215.50
351.55
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
PER LB. DRY AIR
D-I4-
-------
PROJECT- u-28bs-oi
ENGINE1 GM bV-71N
DATE OF TEST" 10-21-72 TEST N0.1
SERIAL NO.' 00000
MODE ENGINE TORQUE PO^ER
SPEED
1
2
3
1
5
b
7
8
9
10
11
12
13
11
15
lb
1?
18
is
20
21
MODE
1
2
3
4
5
h
7
R
q
in
11
12
1?
1 1
15
lb
17
18
IS
20
21
CVCLE
RPM
iin
ibno
ibnn
IbOO
IbQO
ibuo
IbOO
IbOO
IbOO
IbOO
iin
2100
210IJ
2100
2100
2100
2100
2101)
2100
2100
11 LI
HC
PPM
88
SI
81
81
88
SI
100
lib
138
132
108
112
132
130
130
130
128
128
131
138
lib
LB-FT
5.
3.
71.
110.
213.
281.
355.
125.
191.
5bO.
3.
521.
15b.
38b.
323.
2b2.
192.
127.
b3.
7.
3.
COt
PPM
213
171
111
73
19
18
18
81
17^
21b9
22b
b23
155
59
18
bO
faO
b 1
71
9S
187
COMPOSITE
3
5
8
1
b
S
1
1
q
2
5
7
q
S
q
b
b
8
n
0
5
HHP
.1
1.1
21. q
12.7
bS.l
as. q
108.3
129. fa
119. S
170.7
.3
208. b
182.7
151.7
12S.5
105.0
77.0
51.1
25.2
2.8
.3
NO-t-t
PPM
252
203
3b1
551
711
S81
1221
11b5
Iblb
11S1
2b2
lb2S
IblO
llbb
1270
1055
822
b35
1fa2
2qi
252
FUEL
FLOW
LB/MIN
1
1
1
1
1
WEI
.01
.17
.27
.38
.50
.b2
.73
.87
.02
.20
.01
.lb
.30
.10
.S3
. 8S
.bb
.52
.13
.32
.05
GHTED
BHP
1
2
3
1
5
b
7
q
8
b
5
1
3
2
1
BSHC =
BSCO+ =
BSHC +
BS
B!
iN02++=
5N02 •*••*• =
3.
iq.
20.
.03
.05
.9b
.88
.8b
.78
. 7b
.70
.59
.51
.02
.18
.01
.81
.70
.b2
.31
.25
.11
.12
.02
715
087
b15
38S
AIR
FLOW
LB/MIN
S.31
3fa.23
3b.57
3b.20
3 b . 3 0
35.89
35. Sb
35. Sb
35.83
3b.27
9.22
17.81
17.75
1b.2b
1b.2b
19.05
lb.50
17.89
19.01
18. Sb
S.bO
BSHC
G/HP HR
21.77
12.35
1.87
.15
.bb
.53
.*s
.tl
."*5
.38
15.01
.11
.*7
.53
.b3
.82
1.03
1 . bn
3.*7
32. Ob
50.37
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
9.38
3b.10
3b.81
3b.S8
3b.80
Sfa.51
3b.faq
3b.83
3b.85
37.17
q . 2b
19.30
19.05
17. =lb
17. iq
19.91
17. lb
18.11
19.11
IS. 28
S.bS
BSCO +
G/HP
119.
I5b.
1.
1.
•
•
„
•
3.
11.
187.
3.
1.
.
•
•
•
1.
3.
t5.
Ibl,,
HR
HR
HR
HR
HR
IS
15
S3
bb
72
51
13
b3
Ob
2b
b2
87
OS
18
lb
75
q?
51
80
faq
82
FUEL
AIR
RATIO
.001
.005
.007
.011
.011
.017
.020
.021
.O2q
.033
.005
.030
.027
.021
.020
.018
.011
.011
.ooq
.OOb
.nus
BSN02+t
G/HP
232.
2qs.
2b.
20.
18.
18.
17.
1?.
17.
It.
357.
lb.
19.
19.
20.
21.
21.
25.
39.
221.
358.
HR
53
92
52
12
18
07
87
qs
17
11
01
b3
03
39
00
bS
7b
98
12
59
23
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-15
-------
PROJECT1 ll-28b9-Ul
ENGINE' b M b V - 7 1 N
DATE OF TEST1 10-25-72 TEST NO.5
SERIAL NO.' nonon
Mflpt
1
2
3
4
5
b
7
8
9
10
11
12
13
14
15
Ib
17
18
19
20
21
Mr,Mt
1
i?
3
4
5
b
7
^
q
in
11
.1?
1.3
14
IS
Ib
1 7
1 H
1 9
20
21
CYCLE
EN.= IM
SPEED
RPM
440
ibnn
IbOU
IbOU
IbOO
ibon
1 b lj 1.1
l K 1 1 n
Ibnrj
IbOO
44IJ
2100
2 L n u
2100
21fJli
210H
2 inn
2 1 U 0
2 mo
2100
44[J
HC
PPM
7b
80
72
74
74
78
82
92
108
104
80
108
98
98
10U
100
102
1112
104
110
94
•_ TDkiJL
>E
P 0 if E K FUEL
FLOW
LB-FT
3.
3.
73.
141.
211).
283.
355.
421.
495.
558.
3.
521.
45b.
388.
327.
259.
192.
127.
b3.
7.
3.
CO +
PPM
213
149
98
t-2
49
48
48
84
498
2531
238
b?3
155
84
72
72
73
73
87
112
225
COMPOSITE
5
5
5
8
1
b
4
9
4
5
5
7
9
b
4
1
b
8
0
0
5
BHP
.3
1.1
22.4
43.2
b4.0
8b. 4
108.3
128.5
150.9
170.1
.3
208. b
J82.7
155.4
130.9
103. b
77.0
51.1
25.2
2.8
.3
NO+- +
PPM
237
207
394
587
800
1049
129b
1535
1708
1577
247
1701
1713
1595
13b4
1080
840
b48
449
287
247
LB/MIN
i
i
i
i
i
WEI
.04
. lq
.30
.40
.52
,b4
.75
.8b
.05
.21
.05
.47
.31
.11
.95
.79
.b5
.54
.40
.31
.Ob
GHTCn
BHP
1
2
3
4
5
b
7
q
8
b
5
4
3
2
1
BSHC =
BSCO + =
BSN02-H- =
BSHC t
BS
JNQP + .).-
3.
20.
2L.
.02
.05
.99
.90
.82
.80
.7b
.bb
.b4
.49
.02
.18
.ot
.84
.7b
,5b
.39
.25
. 11
.12
.02
58b
223
539
12b
AIR
FLOW
LB/MIN
9.12
3b.88
37.14
3b.S8
37.51
3b.29
35.79
35.89
35.94
3fa.0b
9.01
47.24
47.18
48.99
45.73
45.57
4b.5fl
4b.28
48.00
48.73
9.47
BSHC
G/HP H R
31.33
3b.7Q
1.59
.B4
.58
.44
.37
.35
.35
.30
32_b3
.33
.34
. t2
. t 7
.59
.83
1.23
2 . b4
25.43
40.30
GKAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/bHP
EXHAUST
FLOW
LB/MIN
9.1b
37.07
37.44
3b.9R
38.03
3b.93
3b.54
3b.75
3b . 99
37.27
9. Ob
f P. 71
48.49
50.10
4b. b8
4b. 3b
47.23
4b . 8?
48.40
49.04
9.53
BSCO-t-
G/HP
175.
13fa.
4.
1.
a
a
„
«
3.
14.
193.
t .
1.
•
a
a
1.
1.
4.
51.
192.
HR
HR
HR
HK
HR
03
bl
32
39
7b
54
43
b3
21
58
52
.13
08
71
b7
85
18
77
37
38
38
FUEL
AIR
RATIO
.004
.005
.008
.011
.014
.018
.021
.024
.029
.034
.OOb
.031
.028
.023
.021
.017
.014
.012
.on 8
.onb
.nob
BSN02++
G/HP
319.
310.
28.
21.
20.
19.
18.
18.
18.
14.
329.
17.
19.
22.
21.
20.
22.
25.
37.
217.
345.
HR
b4
81
41
72
54
37
89
95
08
92
27
Ib
b4
21
02
88
27
b3
27
41
99
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
*MER PER LB. DRY AIR
D-IG
-------
PROJECT1 Il-28b9-01 DATE OF TEST1 5-09-78
ENGINE' INTERNATIONAL D*O? SERIAL NO.' 5*725
TEST NO.*
MODE
1
2
3
*
5
b
7
8
9
10
11
12
13
1*
15
Ib
17
Ifl
IS
20
21
ENGINE
SPEED
RPM
700
1800
ItfOO
IB 01)
1800
1800
1ROO
1800
1800
1800
700
2500
2500
2500
2500
2500
2500
2500
2500
2500
700
TORQUE
LB-FT
0
0
35
70
105
1*0
175
210
2*5
280
0
238
210
180
150
1J S
8S
bl
2H
0
0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
. 0
.1
.1
.3
.b
.0
. 3
.3
.8
.0
.0
POWER
BHP
0
0
12
2*
3b
*8
bO
72
fl*
Sb
0
113
100
85
71
Sb
*2
2S
1*
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.3
.0
.a
.7
.7
.5
.2
. ?
.0
.n
FUEL
FLOW
LB/MIN
.03
.OS
.15
.20
.25
.32
.38
.*b
.5b
.b*
.02
.78
.b8
.57
.51
. *2
.35
.28
. ?2
.1?
.03
AIR
FLOW
LB/MIN
*.
12.
12.
12.
11.
U.
11.
11.
11.
11.
*.
15.
15.
15.
15.
15.
15.
Ib.
Ib.
Ifa.
*.
S7
02
13
10
8*
92
73
8*
80
55
89
7*
73
82
S3
9*
97
02
Oh
08
b9
EXHAUST
FLOW
LB/MIN
5
12
12
12
1?
12
1?
12
12
12
*
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
*
.00
.11
.28
.31
.09
.2*
. J 1
.30
.3b
.19
.91
.52
.*!
.39
.**
,3b
.32
.30
. ?8
.25
.72
FUEL
AIR
RATIO
.OOb
.008
.013
.017
.022
.027
.032
.039
.0*7
.055
.00*
.0*9
.0*3
.03fa
.032
.02b
.022
.018
.01*
.010
.OOb
M 0 0 E
HC
PPM
COt
PPM
NO++ WEIGHTED BSHC
BSCO +
PPM
BHP
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-17
BSN02++
G/HP HR G/HP HR G/HP HR
1
2
3
*
5
b
7
8
S
10
11
12
13
1*
15
Ib
17
18
19
20
21
CYCLE
*b5
b05
555
520
510
5*5
580
710
915
870
5*5
10*0
8faO
700
705
730
700
700
730
780
575
COMPOSI
289
382
378
328
325
37H
4-90
102*
2b79
7253
2bb
220*
11*2
b73
51*
*25
**2
*57
*85
*89
32*
TE
BSHC +
Ib5
90
183
29*
397
5b5
730
933
1123
1239
171
1*71
1319
1091
8b3
b2*
*3b
313
212
119
180
BSHC =
BSCO+ =
BSN02++=
BSN02++=
0
0
1
1
2
2
3
3
*
0
*
*
3
3
2
1
1
0
0
2.
7.
8.
10.
.00
.00
.53
.Ob
.58
.11
.b*
.17
.70
.22
.00
.99
.*0
.78
.15
.*9
.87
.28
.b2
.00
.00
7**
80*
115
859
7.
3.
2.
1.
1.
1.
1.
1.
2.
1.
1.
2.
2.
3.
5.
11.
R
R
50
52
2b
83
5*
bO
78
*b
R
00
8b
7b
13
78
55
Ib
Q8
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
10.
*.
2.
2.
2.
*.
10.
2*.
8.
*.
3.
3.
3.
*.
b.
1*.
HR
HR
HR
HR
R
R
18
*3
87
5*
bO
bO
3b
22
R
*S
S3
38
10
23
*b
72
bb
R
R
8.
b.
5.
b.
b.
b.
7.
b.
9.
S.
9.
8.
7.
7.
7.
10.
R
R
08
50
77
23
3fa
8S
1*
79
R
2b
35
00
55
78
23
55
51
R
R
-------
PROJECT1 Il-28b1-01 DATE OF TEST' 5-9-72 TEST NO.5
ENGINE' INTERNATIONAL DID? SERIAL NO.' 54725
MODE ENGINE TORQUE
SPEED
1
2
3
4
5
b
7
8
S
10
11
12
13
It
Ib
Ib
17
18
11
20
21
MODE
1
2
3
4
5
b
7
8
q
10
1 1
12
13
It
15
Ib
17
18
IS
20
21
CYCLE
RPM
700
1800
1800
1800
1800
1800
1800
1800
1800
1800
700
2500
2500
2500
2500
2500
2500
2500
2500
25UO
700
HC
PPM
415
575
545
570
550
5bO
blO
7bO
180
800
540
1050
830
720
7bO
7b5
750
725
740
785
bOO
LB-FT
0.0
0.0
33.3
70.0
105.0
140.1
175.1
210.1
245.1
280.1
0.0
225.8
117.8
lhl.8
140.1
112.0
84.0
5b.O
28.0
0.0
0.0
CO +
PPM
254
335
320
214
302
333
443
18b
28b1
7232
2bb
18bt
110
557
434
312
383
318
413
41b
281
POWER
BHP
o.n
0.0
11.4
24.0
3b.O
48.0
bo.n
72.0
84.0
Ifa.O
0.0
107.5
14.2
80.8
bb.7
53.3
40.0
2b.7
13.3
o.n
0. 0
NO-H-
PPM
Ibb
15
Ib3
281
407
53b
7h7
110
1123
1157
lib
1448
1281
1047
801
fa!5
437
312
217
151
17b
COMPOSITE BSHC =
BSCO+ =
BSN02-H-S
BSHC + B
SN02 + -t- =
FUEL
FLOW
LB/MIN
.02
.01
.14
.20
.2b
.33
.31
.4b
.5b
.b4
.02
.73
.bt
.55
.48
.41
.3H
.21
.22
.Ib
.02
WEIGHTED
BHP
0.00
0.00
.50
I.Ob
1.58
2.11
2.b4
3.1?
3.70
4.22
0.00
4.73
4.14
3.5b
2.13
2.35
1.7b
1.1?
.51
0.00
0.00
2.127
7.520
8.215
11.222
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.13 5.15
12. Ib 12.25
12. Ob 12.20
12.01 12.21
12.04 12.30
11.11 12.32
12. Ob 12.45
11.71 12.25
11.88 12.44
11.40 12.04
4.81 4. SI
15.81 Ib.St
15.18 Ib.b2
15. 7b lb.31
Ib. 12 Ib.bO
lb.10 lb.51
Ib.lb lb.50
ib.ia ih.47
lb.2b lb.48
Ib.lb Ib. 32
5.25 5.27
BSHC BSCOt
G/HP HR G/HP HH
R R
R R
7.70 1.01
3.B3 3.13
2.48 2.72
1.10 2.25
l.b? 2.42
1.71 4.41
1.12 11.18
1.32 23.8fa
R R
2.13 7.54
1.13 4.22
1.12 2.Sb
2.50 2.84
3.13 3.11
4.08 4.1fa
5.11 fa. 47
12.07 13.44
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.005
.008
.012
.Olb
.022
.02?
.033
.031
.04?
.05b
.004
.04b
.040
.035
.030
. 02b
.021
.018
.014
.oin
.004
BSN02-H-
G/HP HR
R
R
7.54
fa. 35
b.OO
b.14
b.87
b.bl
7.18
fa. 27
R
l.faS
1.7?
1.13
8.70
8.22
7.78
8.34
11.57
R
R
t CONVERTED TO WET BASIS
t+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LH. DRY AIR
-------
PROJECT1 ll-28bS-01 DATE OF TEST1 S~10»?2 TEST NO.fa
ENGINE1 INTERNATIONAL D107 SERIAL NO.1 51725
MODE
1
2
3
1
5
b
7
8
S
10
11
ie
13
11
15
Ib
17
18
IS
20
21
MODE
1
2
1
1
5
b
7
8
S
10
11
12
13
11
15
Ib
17
18
IS
20
21
CYCLE
ENGINE
SPEED
RPM
700
1800
1800
1800
1BOO
1800
1800
1800
1800
1800
700
2500
2500
2500
2500
2500
250H
2500
2500
2500
700
HC
PPM
Ibl
bSl
513
5S2
553
b!2
533
b71
82S
730
5S2
888
711
701
bSl
701
big
711
bbl
553
3H5
TORQUE
LB-FT
0.0
0.0
35.0
70.0
105.0
110.1
175.1
210.1
215.1
?80.1
0.0
22S.3
2 U 3 . 1
173.3
1 1 3 . b
115.5
87.5
57.8
28.0
0.0
0.0
COt
PPM
a??
317
311
317
311
311
13?
8ba
213b
b7?l
2b5
i?sa
sne
511
iei
3Sb
3bO
38b
38S
3bB
esi
POWER
BHP
0.0
0.0
12.11
ai.o
3b.O
18.0
bO.O
?a.o
81.0
Sb.n
0.0
los.a
9b.7
82.5
b8.3
55.0
11.7
a?. 5
13.3
0.0
0.0
NOtt
PPM
188
SI
151
2b8
3bl
sao
?ia
8SS
1058
118b
Ib3
1181
1331
1071
831
bll
113
32?
aio
ibi
153
COMPOSITE BSHC =
BSCO+ =
BJ
BSHC + B£
5N02 •*••»• =
5N02++=
FUEL
FLOW
LB/MIN
.03
.OS
.15
.21
. ?b
.32
.38
.18
.58
. bb
.03
.73
.b5
.57
.IS
.12
.35
.28
.23
.17
.02
WEIGHTED
BHP
0.00
0.00
.53
I.Ob
l.Sfl
2.11
a.bi
3.17
3.70
1.22
0.00
1.80
1.25
3.b3
3.01
a. 12
1.83
1.21
.59
0.00
0.00
2.b32
b.S22
8.18b
10.818
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
I.Sb 1.SS
12.17 12. 2b
12.33 12.18
12. Ib ia.37
12.1? 12. bS
11.87 12. IS
11.79 12.17
12.07 12.55
12.0? 12. bO
11. bb 12.32
5.05 5.08
15.82 lb.55
15. Rb lb.51
15.93 lb.50
lh.02 lb.51
lb.18 Ib.bO
lfa.2b Ih.bl
lb.?b lb.51
lb.08 Ib . 31
lb.32 Ib.lS
1 . 8b 1.88
BSHl BSCOt
G/HP HR G/HP HR
R R
R R
7.01 9.39
1.03 1.29
2.57 2.91
2. US 2.30
1.13 2.31
1.51 3.95
l.bl 8.13
1.21 aa.bs
R R
1.78 7.15
l.bO 1.08
1.85 8.8b
a. oe a.be
2.7S 2.83
3.38 3.77
5. faS b.ll
10. b? 12.50
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.005
.007
.012
.017
.021
.027
.03?
.010
.018
.OSb
.005
,01b
.011
.03b
.031
. 02b
.022
.018
.011
. oin
. nni
BSN02+t
G/HP HR
R
R
b.7b
5.97
5.51
5.71
fa.ei
b.77
b.85
b.57
R
9.70
S.81
s.as
8.71
8.01
7.12
8.38
11. OS
R
R
+ CONVERTED TO WET BASIS
•(•+ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-19
-------
PROJECT1 Il-28b9-01 DATE OF TEST1 5-11-72 TEST NO.?
ENGINE1 INTERNATIONAL D107 SERIAL NO.1 51725
MODE
1
2
3
1
5
b
7
H
9
10
11
12
13
11
15
lb
17
IB
19
?n
21
MUDF
1
a
B
i
5
b
?
R
S
in
1 1
12
13
11
15
lb
17
IS
IS
20
21
CYCLE
ENGINE
SPEED
RPM
700
1800
1800
1800
1800
180U
1800
18DO
1800
1800
700
2500
2500
2500
2500
2500
2500
2500
2500
2500
700
HC
PPM
553
829
bSl
750
b32
750
hSl
819
8bH
59?
131
730
588
533
513
553
171
513
151
572
131
TORQUE
POWER
FUEL
FLOW
LB-FT
0.
0.
35.
70.
105.
110.
175.
210.
215.
281.
0.
22?.
201.
1?3.
111.
113.
81.
57.
2b.
0.
0.
CO +
PPM
277
358
3b?
317
130
315
178
938
2181
710b
251
1739
858
531
111
357
3bO
3b?
39n
3S1
288
COMPOSITE
0
0
0
0
0
1
1
1
1
9
D
b
3
3
8
8
0
8
3
0
0
BHP
0.0
0.0
12.0
21.0
3b.O
18.0
bO.n
72.0
81.0
9b.b
0.0
108.3
S5.8
82. S
b7.5
51.2
10.0
27.5
12.5
0.0
0.0
NO + +
PPM
Ibl
SO
179
275
395
515
781
939
1158
12b8
Ib2
1122
1259
1017
7b5
570
109
281
159
129
151
BSHC =
BSCO + =
BSN02+t=
BSHC +
8SN02++=
LB/MIN
.03
.09
.11
.20
,2b
.32
.39
.lb
.51
.b5
.02
.72
.b?
.5b
.19
.11
."SI
.30
.20
.18
.09
WEIGHTED
BHP
0
0
1
1
2
2
3
3
1
0
1
1
3
2
2
1
1
0
0
2.
7.
8.
10.
.00
.00
.53
.Ob
.58
.11
.bl
.17
.70
.25
.00
.77
.22
,b3
.S7
.38
.7b
.21
.55
.00
.00
509
195
133
hll
AIR
FLOW
LB/MIN
5.07
12.33
11. 8b
12.18
12.2?
12.10
12.15
11.88
12.10
11.87
I.Bb
15.81
15.98
15.93
lb.09
lb.09
lb.28
lb.10
lb.0?
lfa.19
l.b?
BSHC
G/HP HR
R
R
9.13
5.11
2.90
2.5b
1.91
1.12
1.73
1.01
R
1.*?
1.33
i.n
l.bb
2.22
2. bO
1.27
7.80
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
5.10
12.12
12.00
12.38
1P.53
12.12
1P.51
12.31
12. bl
12.52
*.88
lb.5b
Ib.bS
lb.19
lb.58
lb.50
Ib.b2
lb.10
lh.27
lb.37
1. 70
BSCO +
G/HP
9.
1.
3.
2.
2.
1.
8.
21.
b.
3.
2.
2.
2.
3.
5.
13.
HR
HR
HR
HR
HR
R
R
b5
30
93
35
b3
23
b3
23
R
99
92
80
b5
8b
91
b8
35
R
R
FUEL
AIR
RATIO
.005
.008
.01?
.017
.021
.02b
.032
.039
.015
.055
.001
.Olfa
.012
.035
.H30
.02b
.021
.019
.013
.Oil
.onb
BSN02++
G/HP
7.
b.
5.
b.
7.
b.
7.
7.
9.
9.
8.
8.
7.
7.
7.
8.
HR
H
R
72
11
93
09
05
95
53
10
R
10
15
78
12
50
35
32
93
R
R
CONVERTED TO WET BASIS
CONVERTED TU wET BASIS AND CORRECTED TO 75 GRAINS
WATER PER Lb. DRY AIR
D-ZO
-------
PROJECT'u-28bs-cii
ENGINE 'JOHN DEERE bllll
DATE OF TEST'3-3-72 TEST NO.l
SERIAL NO. ' TR03-311102
MODE ENGINE TUKQUE
PUWEH
SPEF.O
1
2
3
1
5
b
7
B
q
10
11
Id
13
It
Ib
Ib
IV
1H
14
2:)
21
MUDK
1
2
3
1
"5
b
7
8
q
10
11
ie
13
It
15
Ib
1?
18
.1 S
20
21
CYCLE
RPM
you
1500
1500
1500
1 S l) 0
IS 00
1500
IbOO
IbllU
1 5 0 Ll
800
2?on
S S 0 0
2200
£200
2200
2200
2200
2 2 U 0
2 200
SflU
MC
PPM
125b
3200
2100
14-88
1312
12Sb
1280
1072
?3b
592
528
b5b
falO
b5b
faB8
blO
5q2
701
Vb8
qq2
1008
Lb-f- T
0 . 0
0 . 0
15.5
S2.8
1 3b.b
183.8
22V. b
271 .9
320. 1
357.1
0.0
323. q
287.1
2lb. B
20b. b
Ib2.8
121 .3
80. b
12.0
n.o
0.0
Cut
PPM
bSS
1320
1072
blO
t51
t5q
tst
b?3
13f 8
2215
5SO
188
111
239
138
152
Ibb
258
351
513
153
BMP
0.0
0.0
13.0
2b.5
sq.o
52.5
b5.0
7H.5
SI. 5
102.0
0.0
135.7
120.3
103.1
8b.5
b8.2
52.1
33.7
17.b
0.0
n.o
N0t +
PPM
12
8
11
ifaa
253
317
115
550
b51
b71
H2
lObl
79b
SS7
ISO
337
271
1S8
115
SS
51
COMPOSITE BSHC =
BSCOt =
BSN02+t=
BSHC + BSN02++=
FUEL
FLOW
LB/MIN
.05
.13
.18
.25
.31
.38
.11
-IS
.bl
.bb
.05
-S3
,8b
.71
.bb
.55
.Ib
.38
.30
.20
.01
WEIGHTED
BMP
0.00
U.OO
.57
1.17
1.72
2.31
2.8b
3.15
1.03
1.1S
0.00
S.S7
5.2S
1.55
3.81
3.00
2.2S
1.18
.77
0.00
0.00
3.S3S
l.bSb
5. IIS
S.387
AIR tXriAUSr
FLOW FLOW
LB/MIN LB/MIN
b.30 b.35
10.71 10.87
11. IS 11.37
11. Sb 12.21
12.15 12. 7b
13.07 13.15
13.22 13. bb
ll'.03 11.52
11. b5 IS.Sb
11.15 15.11
b.30 b.35
21.21 25.11
23. SS 21.15
22.51 23.25
21.81 22.50
1S.7S 20.31
IS. 02 IS. 18
18.00 18.38
17.21 17.51
is. as ib.os
5.S8 b.02
BSHC B3CU+
G/HP HR G/HP HR
K K
R R
27.70 21. b5
S.OS 7.7b
5 . b b 3.88
1.38 3.10
3.55 2.73
2.b2 3.2B
i.faa 5. si
l.lb 8.75
R R
l.bO 2.38
1.72 2.22
1.S5 1.11
2.3b -SI
S.52 1.1S
2.S2 I.b3
5. Ob 3.bS
10.08 S.1S
R R
R R
GKAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.008
.012
.Olb
.021
.025
.02S
.033
.035
.012
.Olfa
.007
.D3S
,03b
.033
.030
.028
.021
.021
.017
.013
.007
BSNlia-H-
G/HP HR
R
R
1.57
3.23
3.5?
3.81
1.01
1.10
1.71
'KSO
R
8.50
b.SS
5.80
5.50
«*.35
1.3S
l.bb
b.21
R
R
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER L8. DRY AIR
D-21
-------
PROJECT ' Il-28b9-01
ENGINE 'JOHN DEERE b404
OATE OF TEST'3-b-72 TEST NO.8
SERIAL NO.'TR03-311102
MODE
1
a
3
4
b
b
7
8
q
11J
11
12
13
I*
15
Ib
IV
19
IS
20
21
NUDE
1
a
3
4
5
b
7
8
q
10
1 1
18
i •)
It
IB
Ib
17
ia
is
20
21
CYCLE
ENGINE
SPEED
KP'1
800
1500
1500
1500
1500
1500
1500
1500
1500
1500
800
edOO
22no
8500
a a no
2200
221)0
22110
a?uu
?aou
800
HC
PPM
1184
177b
145b
llfaB
1088
1088
1120
llbB
113b
qbo
8b4
800
81b
784
?3b
704
b40
b40
b5b
81fa
784
COMPOSI
I'JRiJUE PUHEK
LB-FT BHP
0.0 0.0
0.0 0.0
45.5 13.0
HI .0 ab.o
13b. b 39.0
183.8 Sa.5
227. b bS.O
273.1 78. 0
318. b qi.O
3ha . f 103.5
0.0 0.0
325.1 1 3 1 . S
?88 .S 121.0
a^80 b lOt.l
aob.b 80.5
Ibb. 3 bH. 7
152, b 51.3
ae.a 3'f.s
b b . b a v . s
0.0 0.0
o.u u.o
CU+ NOt-f
PPM PPM
sob qn
S5b 3b
783 71
tai ibi
307 a5b
30t 35t
3fab 45b
4-Bq 5bt
1094 b?7
aoia sat
3ss ioq
4?b laas
sas si?
iba b5a
100 504
89 42S
140 30b
454 aiq
4ea ibi
570 80
453 ba
TE BSHC =
BSCO+ =
BSN02++=
BSHC t 6SN02++=
FUEL
KLOH
LB/MIN
.04
.12
.17
.23
.30
.37
.44
.51
. bO
.b8
.04
.q4
.85
.75
.b5
.58
.4?
.37
.34
.21
.04
WEIGHTED
BMP
0.00
0.00
.57
1.14
1.72
2.31
a.8b
3.t3
4.00
4.55
0.00
5.S4
5.33
4.58
3.81
3.07
2.2b
1.52
i.23
0.00
0.00
s.bsa
3.820
5.S72
S.b24
AIK EXHAUST
FLOW FLOW
Lfl/MIN LB/MIN
b.17 b.21
11.05 11.17
11.14 11.31
11.23 11.4fa
12.1? 12.47
12.50 12.87
12. 97 13.41
13.57 14.08
14.50 15.10
15.37 lb.05
5.83 5.87
24.10 25.04
aa.sa 23. b?
21. qa a2.b?
ao.qq ai.b4
20.51 21. OS
18. S3 1S.40
17.50 17.87
17.27 17. bl
Ib.ab lb.47
5.bb 5.70
6SHC BSCU-f
G/HP HR G/HP HR
K K
R R
ib.72 17. qa
b.80 5.58
4.bq a. 58
3.5a l.Sfa
3.U5 1.98
2.78 2.32
2.49 4.78
1.S7 8.20
R R
l.^b 2.32
2.11 l.b?
2.25 .93
2.43 .bb
2.8i .71
3.19 1.39
4.38 b.19
5.47 8.01
R R
K R
GRAM/BHP HR
GRAM/bHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.007
.011
.015
.021
.025
.029
.034
.037
.041
.044
.007
.039
.037
.034
.031
.028
.025
.021
.oao
.013
.007
BSNOa++
G/HP HR
K
R
a.bb
3. Ob
3.54
3.75
4.07
4.40
4.8b
5.52
R
9.82
7.75
b.13
5.44
S.bl
5.00
4.90
4.40
H
R
t CONVtRTED TO HET BASIS
++ CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WA1ER PER LB. DRY AIR
D-22
-------
PROJFCT1ll-5Hb1-01
ENGINE 'JOHNJ DEERE blOl
DATE OF TEST'3-fa-72 TEST NO.3
SERIAL NO.'TR03-311102
MUDfc" F.N&lNt rURUUE PUviER
SPEEO
1
2
3
1
5
b
7
8
q
1U
U
15
1 J
11
15
lb
17
13
11
20
51
MUDE
j.
2
3
1
S
b
7
8
•-)
J.U
11
12
13
11
J.5
lb
17
18
11
50
21
CYCLE
RPH
sou
1500
15 LIU
150U
1500
15 Oil
150 U
1500
1500
1500
SOU
520 U
d20U
5200
22DIJ
2500
5500
5500
5500
5500
8 0 IJ
HC
PPM
7b8
1108
113b
IbO
128
S7fa
1072
1152
1200
105fa
115
81b
880
818
81b
755
b88
701
755
880
781
LB-FT HHP
0.0 0.0
0.0 0.0
13.8 15.5
11.0 5 b . 0
138.3 31.5
185. b 53.0
551.3 b5.5
571.1 77.5
318. b 11.0
358.1 105.5
0.0 0.0
325. 1 131.1
588.1 151.0
51b.8 103.1
508.3 87.3
Ibl.b b8.1
151.3 55.1
85.3 31.5
15.0 17. b
0.0 0.0
0.0 0.0
CUt NO+t
PPM PPM
115 5b
113b 1
181 3b
bll 137
138 221
311 312
111 115
512 515
1510 b35
5525 81b
311 81
553 1111
152 818
310 b31
5b5 5U7
5fa? 377
511 513
375 205
181 118
b21 73
521 bl
COMPOSITE BSHC =
BSCOt =
BSN02t+=
BSHC t BSN02tt=
FUEL
FLOW
LB/MIN
.01
.13
.17
.23
.30
.31
.11
.51
.bO
.bl
.01
.11
.85
.71
. bb
.55
.11
.37
.30
.20
.01
WEIGHTED
BHP
0.00
0.00
.55
1.11
I.?*
2.33
5.88
3.11
1.00
1.51
0.00
5.11
b.32
1.55
3.81
3.03
2.21
1.52
.77
0.00
0.00
3.b15
1.717
5.5SS
1.211
AIR EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.11 fa. 03
10. bb 1U.71
10. ?b 10.13
11.17 11.70
15.53 15.53
13.10 13.11
13.55 13. bl
13. b5 11.13
11.10 15.00
11. b8 15.37
5.11 b.03
51. 5b 55.20
23.51 51. Ob
22.11 25.85
21.15 25.08
11.57 50.15
18.58 11.07
17.70 18.0?
lb.15 17.55
15. bO 15.80
5.85 5.8b
BbHC BSCUt
G/HP HR G/HP HR
R R
R R
13.11 55.75
5.70 7.57
3.88 3.bb
3.28 5.b1
5.1b 5.71
2.77 5.81
5.bl 5.38
2. US 8.78
R R
2.21 2.71
2.31 2.37
2.17 1.17
2.73 1.77
2.10 2.05
3.33 2.83
1.87 5.18
1.73 12.18
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIH
RATIO
.007
.012
.015
.020
.051
.030
.033
.03?
.015
.017
.007
.031
.037
.031
.o:-ii
.058
.02b
.051
.018
.013
.Ou?
BSN05tt
G/HP HR
R
R
1.3?
5.b?
3. Ob
3.13
3.75
1.03
1.55
5.21
R
1.03
7.21
b.05
5.51
1.75
1.b3
l.bS
b.25
R
R
t CONVERTED TO WET BASIS
t+ LONVtRTEO TO WET BASIS AND CORRECTED TO 75 GRAINS
R PER LB. DRY AIR
D-Z3
-------
PROJECT'll-28b9-01
ENGINE 'JOHN DEERE bioi
DATE OF TEST'3-b-72 TEST N0.1
SERIAL NO.'TR03-3J.1102
M U 0 E
1
2
3
1
b
b
7
B
9
1G
li
12
13
It
15
Ib
17
18
14
20
21
nUDt
1
2
3
1
5
b
?
8
q
10
11
12
13
It
IS
Ib
1?
18
IS
20
21
CYCLE
FNGINE
SPEED
RPM
800
isnn
1SOO
1500
IbOO
1500
1500
1500
1500
isno
800
2200
2200
2200
2200
2200
2200
220U
2200
2200
KOO
"C
PPM
7b8
13=12
1152
47b
84fa
911
1008
1010
105b
1008
411
1021
911
128
880
781
720
73fa
752
Bfal
7b8
1UKUUE POWER
LB-FT 6HP
0.0 0.0
0.0 0.0
13.8 12.5
Hl.O 2b.O
13b.b 39.0
183.8 52.5
224.3 b5.5
273.1 78.0
318. h 91. tl
358.9 102.5
0.0 0.0
325. b 13b.1
2H5.1 119.5
218. b 101.1
20b. b 8b.S
Ibl.b b8.9
122.5 51.3
82.3 31.5
12.0 17. b
o.n o.o
0.0 0.0
COt NO + +
PPM PPM
535 8b
1180 28
1003 b5
b95 151
190 219
197 351
520 tt8
592 559
1281 b8S
2371 8bS
t81 8b
bOt 1228
fb5 S13
33S 700
2b5 532
25t f08
295 291
375 210
171 152
blO bS
510 57
COMPOSITE BSHC =
BSCO+ =
BSN02++=
BSHC + BSN02t+=
FUEL
FLOW
LB/MIN
.0*
.12
.17
.2t
.30
.3?
.tb
.52
.bl
.bb
.Ot
.9t
.81
.?b
.b7
.5b
.tb
.37
.29
.21
.01
WEIGHTED
BHP
0.00
0.00
.55
1.11
1.72
2.31
2.88
3.13
1.00
1.51
0.00
b.OO
5.2b
1.58
3.81
3.03
2.2b
1.52
.77
0.00
0.00
3.719
1.98b
b.073
9.792
AIK EXHAUST
FLOW FLOW
LB/MIN LB/MIN
5.98 b.02
10.71 lO.Bfa
11.02 11.19
11.72 11. 9b
11.97 12.27
12.1fa 12.83
13. b7 11.13
13.89 11.11
11.79 15.10
11.31 11.97
b.15 b.19
21.13 25.37
23.18 21.02
22.08 22.81
21. b2 22.29
19.70 20. 2b
18.55 19.01
17.fa2 17.94
lb.93 17.22
lb.20 lb.11
b.15 b. 19
BSHC BSCO+
G/HP HR G/HP HR
K K
K R
13. bl 23. b2
5.H2 8.10
3.72 I.Ob
3. US 3.20
2.87 2.95
2.51 2.88
2.3b 5.70
1.41 4.11
R R
2.51 2.95
2.5U 2.1b
2.b9 1.9b
2.99 1.80
3.01 l.Sb
3.52 2.87
5.07 5.15
9.71 12.13
R R
R R
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/HHP HR
FUEL
AIR
RATIO
.007
.011
.015
.020
.025
.030
.031
.037
.011
.Olb
.007
.038
.03b
.031
.031
.028
.025
.021
.017
.013
.nob
BSN02++
G/HP HR
K
R
2.50
2.49
3.39
3.71
1.1?
l.lb
5.01
B.lfa
R
9.87
7.92
b.b3
5.92
5.18
f.bS
1.75
b.11
R
R
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WA1ER PER IB. DRY AIR
D-2.4
-------
PROJECT' 11-23'j^
ENGINE1 MERC€0'£S OHbSb
DATE 0? TEST' l-Of-73 TEST NO.l
SERIAL MQ.1 fa3t> . 1*l-011b2S
MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
20
21
ENGINE
SPEED
RPM
b80
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
700
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
700
MODE HC
1
2
3
*
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
11
20
21
PPM
138
138
1*7
158
isq
2oq
lib
17b
1*0
2*1
118
18*
202
25b
328
lib
20fa
230
22*
Ibl
81
CYCLE COMPOS
+
+.+
B
CONVERTED
CONVERTED
WATER PEP
TORQUE
L3-FT
0.
0.
7.
15.
22.
30.
37.
*s.
52.
bO.
0.
bl.
53.
*b.
37.
30.
11.
15,
7.
0.
0.
CO+-
PPM
*18
337
22?
21b
2bb
27*
285
211
303
1*31
3*8
2*28
**b
*03
*18
*5*
211
31?
315
*2*
307
J.TE
M,C t
10 WE
10 WE
0
0
b
1
7
2
8
3
q
*
0
7
b
3
q
q
8
5
i
0
0
pnwE"
BHP
0.0
0.0
2.0
*.o
b.l
8.0
10.1
12.1
1* . 1
lb.1
0.0
28.2
2*.E
31.2
17.3
1*. 1
1.1
7.1
3.2
0.0
0.0
ND-H-
PPM
213
b*
ibq
iqq
2b2
283
281
2q5
212
233
iqq
2q2
333
3*0
30*
213
151
111
78
50
1*8
BSHC =
F)S
8J;
(.0+ •-
M02++-
8SM02++-
l'
i
1 Ei. DRY
1 A S I S
BASIS .'
AIR
D
FUEL
FLOW
LB/MIi'J
.02
.03
.05
.Ob
.0?
.07
.01
.11
.12
.1*
.02
.2b
.20
.11
.Ib
.15
.11
.10
.01
.0?
.02
WEIGHTED
BHP
0.00
0.00
.01
.18
.27
.35
.**
.53
.b2
.71
0.00
1.2*
1.08
.13
. 7b
.b2
.to
.31
.1*
0.00
0,00
J. . 0 1 1
?.358
3 „ b * 2
* . b fa 1
-ID CORM.t.
'15
AIR
FLOW
LB/MIP'
1.55
2. q
2.93
2. qi
2.90
2.85
2.87
2. '8*
2. 79
2.71
l.*8
*.b9
*.b8
*.b8
*.b8
*.78
*.78
*.88
*. ?q
*. qq
1.52
BSHC
G/HP HI!
w
R
2.85
1.5*
1.22
1.00
.7b
.57
.38
.5b
0
o*3
.53
.78
1.21
.10
1.*?
2.1*
* * *)
R
R
GRAM/BHP
GRAM/BMf
GRAM/BIIP
GRAM/BIIP
TED TO V
EXHAUST
FLOW
LB/MIN
1.57
2.15
2.11
2. Ib
2.17
2.12
2.1b
2.1*
2.10
2.85
1.50
*«15
*.81
*.87
*.8*
*» 93
*.10
t.qq
*.87
5. Ob
1.5*
FUEL
AIR
RATIO
•
•
•
•
•
•
•
•
•
•
•
•
»
•
*
•
•
*
•
•
•
01*
Oil
018
Oil
02*
02b
032
038
0*2
052
012
055
0**
0*1
035
031
02*
022
018
01*
01?
BSCO + BSN02++
G/HP
8.
*.
3.
2.
2.
1.
1.
b.
11.
2.
2.
3.
*.
*.
5.
12.
HR
HR
MR
HP
HR
R
R
58
11
**
b2
20
87
b*
fa?
R
21
3*
**
07
1?
13
87
*7
R
R
G/HP
10.
b.
5.
*.
3.
3.
2.
1 .
2.
2.
3.
3.
3.
3.
3.
5.
HR
R
R
75
33
5*
**
5b
11
bO
71
R
21
88
38
b?
21
53
bl
08
R
R
'.i GRAINS
-------
PROJECT' ii
ENGINE' MERCEDES OMfa3b
DATE OF TEST1 l-Of-73 TEST NO.2
SERIAL NO.' b3b.9fl-019b25
MODE
1
2
3
f
5
b
7
8
9
10
U
12
13
It
15
Ib
17
18
19
20
21
MODE
1
2
3
1
5
b
7
B
9
in
ll
12
13
If
15
Ib
17
ie
19
20
21
CYCLE
ENGINE
SPEED
RPM
700
1*00
1*00
IfOO
IfOO
ifoo
ifoo
ifoo
1*00
1*00
700
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
700
HC
PPM
231
Ib*
1*9
1*7
Ibl
17b
175
172
IfcO
25*
Ib2
130
Ibb
198
298
31b
37b
399
353
272
1*0
COMPOSI
TORQUE
LB-FT
0.0
0.0
7. fa
15.1
22.7
30.2
37.8
*5.3
52.9
bO.*
0.0
bl.7
53. b
*fa.3
37.9
30.9
19.8
15.*
7.1
0.0
0.0
C04-
PPM
bOb
*01
281
2b*
270
271
29fa
318
*21
1*85
*23
1701
*55
*01
*b8
397
3bb
380
372
*7b
353
POWER
BMP
0.0
0.0
2.0
*.o
b.l
8.0
10.1
12.1
If .1
lb.1
0.0
28.2
2*. 5
21.5
17.3
l*.l
9.1
7.0
3.2
0.0
0.0
NO+ +
PPM
15*
b*
137
15*
21b
2*1
2b8
2bO
2*5
22*
229
2fa7
303
30*
2b?
230
1*3
10b
70
30
138
TE BSHC =
BSCOf =
BSN02++=
BSHC + BSN02++=
FUEL
FLOW
LB/MIN
.02
.0*
.05
.Ob
.07
.08
.09
.11
.13
.1*
.02
.25
.22
.19
.17
.1*
.12
.11
.09
.07
.02
WEIGHTED
BHP
0.00
0.00
.09
.18
.27
.35
.**
.53
.*?
.71
0.00
1.2*
1.08
.93
.7b
.b2
.*0
.31
.If
0.00
0.00
1.221
5.297
3.28fa
f .SOfa
AIR
FLOW
LB/MIN
1.5*
2.91
2.92
2.88
2.85
2.85
2.80
2.80
2.88
2.7b
1.51
*.b8
f .bb
f.75
*.75
*.7b
*.8fa
*.8b
*.87
*.87
l.*8
BSHC
G/HP HR
P
R
2.89
l.*2
1.08
.85
.bb
.55
.*5
.bO
R
.30
.ff
.bl
1.12
l.*S
2.73
3.73
7.11
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
l.Sb
2.95
2.98
2.9f
2.92
2.93
2.90
2.91
3.01
2.90
1.53
f .93
f .88
f .95
f .92
f .90
f .98
*.97
*.9b
*.9*
1.50
BSCO +
G/HP HR
R
R
10. 8b
5.07
3.f3
2.59
2.2f
2.01
2.3b
7.03
R
7.82
2.38
2,fb
3.50
3.b3
5.30
7.08
If .95
R
R
HR
HR
HR
HR
FUEL
AIR
RATIO
.015
.013
.018
.020
.025
.029
.03*
.038
.0*5
.052
.015
.05*
.0*7
.0*1
.035
.030
.025
.OP9
.018
.01*
.Olb
BSN02++
G/HP HR
R
R
8.b?
*.87
*.51
3.80
3.33
2.70
2.2b
1.7*
R
2.02
2.bl
3. Ob
3.28
3.*b
3.3*
3.25
f.bl
R
R
+ CONVERTED TO WET BASIS
+t CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-26
-------
PROJECT' ll-28bS-OOl
ENGINE' MERCEDES OMfa3b
DATE OF TEST1 1-05-73 TEST NO.3
SERIAL NO.' b3b.S*l-01Sb25
MODE
1
2
3
*
5
b
7
8
q
10
11
15
13
If
15
Ib
17
18
IS
80
21
ENGINE
SPEED
RPM
700
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
700
a*oo
2*00
2*00
2*00
2*00
2*00
2*00
21+00
2*00
700
TORQUE
LB-FT
0.0
0.0
7.b
15.1
22.7
30.2
37.8
*5.3
52. S
bO.*
0.0
bl.7
53. b
*b.3
37.7
30. S
IS. 8
15.5
7.1
0.0
0.0
POWER
BMP
0.0
0.0
2.0
*.o
b.l
8.0
10.1
12.1
l*.l
lb.1
0.0
28.2
2*. 5
21.2
17.2
l*.l
S.I
7.1
3.2
n.o
0.0
FUEL
FLOW
LB/MIN
.02
.03
.05
.Ob
.07
.08
.OS
.11
.12
.1*
.02
.25
.23
.20
.17
.15
.12
.11
.OS
.07
.02
AIR
FLOW
LB/MIN
1.5*
2.87
P. 87
2. SO
2.85
2.82
2.78
2.80
2.78
2.b8
1.53
*.5*
*.bb
*.70
*.bS
*. 70
*.70
*.8*
* .83
*.88
i.sn
EXHAUST
FLOW
LB/MIN
l.Sfa
2. SO
?.S2
2.Sfa
2.S2
2. SO
2.87
2. SO
2. SO
2.82
1.S5
4.7S
*.8S
*.8S
*.87
*.85
*.82
*.S5
*.S2
*.SS
LSI
FUEL
AIR
RATIO
.013
.010
.017
.021
.025
.028
.032
.038
.0*5
.052
.013
.055
,0*S
.0*2
.037
.033
.02b
.023
.01S
.01*
.01?
MODE
HC
PPM
NO-n- WEIGHTED BSHC
BSCO +
PPM
PPM
BMP
+ CONVERTED TO WET BASIS
+ •)• CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-2.1
BSN02-H-
G/HP HR G/HP HR G/HP HR
1
2
^
f
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
IS
2n
?1
CYCLE
270
338
2h7
2b8
237
2*0
23b
21b
20b
332
152
13b
1S2
210
252
*00
**0
512
501
32b
.171
*b*
557
?bb
273
220
228
23b
258
321
1581
2S*
2*27
1027
*72
*0b
**5
383
3*3
3S5
*23
?S8
COMPOSITE
BSHC f
133
*7
12t
171
205
377
305
2S3
287
2*5
20S
273
2S4.
310
2S5
2*S
177
135
sn
38
130
BSHC =
BSCO+ =
BSN02++=
BSN02++=
0
0
0
1
1
0
0
1.
5.
3.
5.
.00
.00
.OS
.18
.27
.35
.**
.53
.b2
.71
.00
.2*
.08
.S3
.?b
,b2
.*0
.31
.1*
.00
.00
521
S37
521
0*2
5.
2.
1.
1.
•
•
•
•
•
•
•
•
1.
3.
*.
10.
R
R
07
bO
51
1*
8S
bS
Sb
77
R
31
51
b*
S*
82
OS
73
10
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
10
5
2
2
1
1
1
7
10
5
2
3
*
5
b
15
HR
HR
HR
HR
R
R
.05
.2S
.7S
.Ib
.77
.fa3
.7*
.2S
R
.85
.*0
.87
.02
.02
.3b
.31
.7b
R
R
7
S
*
5
3
3
2
1
2
2
3
3
3
*
1
5
R
R
.8*
.*3
.27
.8b
.75
.0*
.55
.8b
R
.00
.5*
.OS
.bO
.70
.07
.OS
.23
R
R
-------
PROJECT1 Il-28fa9-001
ENGINE1 MERCEDES OMb3fa
DATE OF TEST" 1-05-73 TEST NO.*
SERIAL NO.1 fa3fa.9*l-019b2S
MODE
1
2
3
*
5
b
7
8
9
10
11
12
13
11
15
Ib
17
18
19
20
21
MODE
1
2
3
*
"5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
19
20
21
CYCLE
ENGINE
SPEED
RPM
700
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
700
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
700
HC
PPM
120
133
Ib2
183
185
20fa
19*
Ib*
200
2bO
131
112
172
198
29?
380
*88
55b
*80
358
103
TORQUE
LB-FT
0.0
0.0
7.b
15.1
22.7
30.2
37.8
*5.3
52.9
bQ.*
0.0
bl.7
53. b
*fa.3
37.9
30.9
19.8
15.5
7.1
0.0
0.0
cot
PPM
385
279
2b5
2b7
P*8
28*
28*
2bl
*70
l*8b
339
2*75
735
*13
*53
*9b
373
379
3b9
*91
38b
POWER
BMP
0.0
0.0
2.0
*.o
b.l
8.0
10.1
12.1
l*.l
lb.1
0.0
28.2
2*. 5
21.2
17.3
l*.l
9.1
7.1
3.2
0.0
0.0
Nfl-n-
PPM
15*
bO
128
Ib*
205
2*8
2b3
287
252
2**
181
277
307
325
298
277
18b
13b
8b
*1
1*7
COMPOSITE BSHC =
BSCO + =
BSN02++S
BSHC t BSN02++=
FUEL
FLOW
LB/MIN
.02
.03
.05
.Ob
.07
.08
.10
.11
.12
.15
.02
.25
.22
.1H
.17
.15
.12
.11
.09
.Ob
.02
WEIGHTED
BHP
0,00
0.00
.09
.18
.27
.35
.**
.53
,b2
.71
0.00
1.2*
1.08
.13
.7b
.b2
-*0
.31
.1*
0.00
0.00
1.3*5
5.802
3.*3?
*.777
AIR
FLOW
LB/MIN
1.52
2.87
a. si
5.85
?.81
2.7b
2.78
2.7*
2.70
2.88
l.*9
*.b2
*.59
*.S7
*.57
*.57
*.58
*.b8
*.fa9
*.b9
1.39
BSHC
G/HP HR
R
R
3.12
1.7*
l.lb
.Ib
.73
.51
.53
.b5
R
.2b
.*5
.59
1.0?
I.b8
3.3*
*.97
9.35
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
1.5*
2.90
2.9b
2.91
P. 88
2.8*
2.87
8.85
2.83
3.03
1.50
*.87
*.B1
*.77
*.7*
*.72
*.70
*.79
*.7B
*.?5
l.*l
BSCO+
G/HP HR
R
R
10.17
5.07
3.10
2.b*
2.13
1. b2
2.*7
7.3b
R
11.25
3.80
2.**
3.?b
*.3b
5.09
b.75
1*.32
R
R
HR
HR
HP
HR
FUEL
AIR
RATIO
.012
.011
.018
.021
.025
.028
.035
.039
.0*5
.051
.01?
.055
.0*9
.0*?
.037
.032
.027
.023
.020
.01*
.01*
BSN02++
G/HP HP
R
R
8.0*
5.12
*.22
3.78
3.23
2.93
2.18
1.98
R
2.07
2.bl
3.1b
3.51
*.oo
*.17
3.99
S.*8
R
R
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-28
-------
PROJECT1 Il-28b1-001
ENGINE' MERCEDES OMbSb
DATE OF TEST' 1-08-73 TEST NO.S
SERIAL NO.1 b3b.9*l-019b25
MODE
1
2
3
*
5
b
7
8
9
10
11
12
13
1*
15
Ib
1?
18
11
20
21
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
19
20
51
CYCLE
ENGINE
SPEED
RPM
700
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
700
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
700
HC
PPM
280
20b
17?
IbS
188
17*
Ib8
1*0
1*0
200
108
120
1*0
200
2bO
*32
37b
500
*b3
2*2
1*5
COMPOS
TORQUE
POWER
FUEL
FLOW
LB-FT
0.
0.
7.
IS.
23.
31.
31.
*7.
55.
b3.
0.
b*.
Sb.
*8.
*0.
32.
2*.
Ib.
8.
0.
0.
cru
PPM
*77
3*7
23b
173
192
Ib8
180
18b
19b
77*
335
1752
58b
352
380
38*
289
29*
357
**8
3*9
ITE
0
0
9
8
b
5
-------
PROJECT1 ll-38fa9-OUl
tNGINE' MEKCEDES
DATE OF TEST' 1-09-73 TEST NO.fa
SERIAL NO.' fa3h.9tl-019fa35
MODE
1
g
3
t
5
b
7
8
q
10
11
12
13
It
IS
Ib
17
Id
19
an
81
MODE
1
a
3
t
5
b
7
8
9
10
11
13
13
It
15
Ib
17
18
19
en
31
CYCLE
ENGINE
SPEED
RPM
700
itoo
itOO
it on
itoo
itoo
itoo
itoo
iton
itoo
70U
2 1 0 0
at no
atoo
atou
atoo
a t n o
a ton
aton
atou
700
HC
PPM
103
109
133
132
ito
151
132
120
115
Itt
lot
9b
It2
180
2faO
300
tot
53b
ssa
300
130
TORuUE
LB-FT
n.o
0.0
7.9
15.8
23. b
31.5
39. t
t7.3
55.1
bd.O
n.o
bt.3
Sb.S
t6.3
to. t
3a. a
at. 3
lb.1
8.3
0.0
li. 0
CO +
PPM
tia
310
29t
2bt
3t3
3faO
2t8
280
2fab
827
t3S
1557
58b
351
383
333
317
379
331
373
333
POwEK
BHP
n.o
0.0
3.1
t.a
fa. 3
R.t
10.5
13. b
It. 7
Ib. R
o.n
29.4-
25.8
32.1
18. S
It. 7
11.1
7. t
3.8
o.n
0.0
NO + +
PPM
lib
55
98
13t
195
239
279
391
3b8
c!tt
151
39b
31?
331
29b
239
189
121
77
to
109
COMPOSITE BSHC
BSCO+ =
BS
BSHC + 83
N02++=
N02++=
FUEL
FLOW
LB/MIN
.02
.Of
.05
.Ob
.07
.09
.10
.11
.13
.It
.ne
.as
.a?
. 1 9
.17
.IS
.1?
.11
.f!9
.07
.0?
WEIGHTED
BHP
0.00
0.00
.09
.18
.28
.37
.tb
.55
.bS
. ?t
0.00
1.29
l.lt
-97
.81
.bS
.t9
.32
.17
0.00
0.00
1.119
t.180
3.198
t.317
AIR
FLOW
LB/MIN
l.Sb
a. 93
2.92
2.93
3.89
3.87
3.87
3.82
2.R.I
a. ?3
i . sa
t.R9
t.57
t .b?
t.b7
t.fa?
f .78
t.78
t . 79
t . 89
l.f 5
BSHC
G/HP HR
R
R
3.t9
1.3t
.87
.70
. t9
.37
.30
.33
R
.31
.35
.53
-90
1.30
2.3b
t . b9
9. Ob
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
1.58
3.97
3.98
2.99
3.9b
3.9fa
3.97
3.93
2.93
3.88
1.5t
t.8t
t. 79
t .fib
t.8t
t.82
t .91
f .89
t .88
t .9b
l.t?
BSCOt
G/HP HR
R
R
10. 9b
t.9t
3.00
3. tl
i . at
1.71
1.39
3.73
R
b. 7t
2.8b
3.03
2.bt
3.8b
3.b8
t.Bfa
10.91
R
^
HR
HR
HR
HR
KUfcL
AIR
RATIO
.013
.013
.018
.033
.025
.031
.03t
.Otl
. OH 5
. Ob 1
.013
.055
.Ot9
.Otl
. n 3 fa
.031
,03b
.022
. ni9
. n ). s
.nit
BSN02t+
G/HP HR
ft
ft
b.02
t.ll
3.95
3.bt
3. tO
3.92
2.31
1.80
R
3.10
2.5t
3.15
3.35
3.38
3.bl
t.39
R
R
CONVERTED TO KET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-30
-------
PROJECT1 ll-28bS-001
ENGINE" MERCFDFS OMb3b
DATE OF TEST1 1-09-73 TEST NO.7
SERIAL NO.1 b3b-sti-oiSb2S
MODE
1
2
3
1
5
b
7
8
S
10
11
12
13
It
15
lb
17
18
IS
20
21
ENGINE
SPEED
RPM
700
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
1*00
700
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
e*oo
700
TORQUE
LB-FT
0.0
0.0
7.S
15.8
23. b
31.5
3S.*
*7.3
55.1
b3.0
0.0
b*,3
Sb.S
*8.3
*0.*
32.2
2*. 3
lb.1
8.3
0.0
0.0
POWER
BMP
0.0
0.0
2.1
*.2
b.3
8.*
10.5
15. b
1*.7
lb.8
0.0
2S.*
25.8
22.1
18.5
1*.7
11.1
7.*
3.8
0.0
0.0
FUEL
FLOW
LB/MIN
.02
.0*
.05
.Ob
.07
.ns
.10
.11
.13
.1*
.02
.25
.23
.IS
.lb
.15
.13
.11
.OS
.07
.02
AIR
FLOW
LB/MIN
l.*S
2.88
2.88
2.83
2.81
P.83
2.78
2.78
2.77
2.77
1 .*8
*.bO
*.57
*.bb
*.bb
*.7b
*.7b
*.77
*.8B
*.8S
l.*5
EXHAUST
FLOW
LB/MIN
1.51
2. SI
2. S3
2.8S
2.88
?.S2
2.88
2.88
2. SO
2. SI
1.50
*.8S
*.80
*.85
*.82
*.S1
*.8S
*.87
*.S7
*.Sb
l.*7
FUEL
AIR
RATIO
.013
.013
.01S
.022
.02*
.031
.035
.03S
.0*7
.052
.015
.05*
.051
.0*0
.035
.031
,0?7
.022
.018
.01*
.01*
MODE
HC
PPM
ND + + WEIGHTED BSHC
BSCO+
PPM
PPM
BHP
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-31
G/HP HR G/HP HR G/HP HR
1
2
3
*
5
b
7
8
S
10
11
12
13
1*
IS
lb
17
18
IS
20
21
CYCLE
71
113
128
135
l*b
150
132
132
13b
202
102
8* 1
110
180
232
2S*
372
**0
*08
30*
1**
COMPOSITE
BSHC
3bO
373
2S?
2faS
2bS
?7*
2bO
281
300
S31
35S
8*2
53b
*2b
*17
3S7
3b3
220
3bS
*b2
30S
+
1*5
5S
117
172
20b
2*S
2S1
302
2bl
230
1*S
287
288
317
312
27*
IS*
122
faS
3b
103
BSHC =
BSCO + =
BSN02++=
BSNOa-n-s
0
0
0
1
1
0
0
1.
*.
3.
*.
.00
.00
.OS
.18
.28
.37
.*b
.55
.b5
.7*
.00
.2S
.1*
.S7
.81
.b5
,*S
.32
.17
.00
.00
033
57S
23*
2fc>7
R
R
2.3b
1.23
.88
.bS
.*8
-*0
.35
.tb
R
.18
.27
.52
.80
1.30
2.1b
3.8*
7. OS
R
R
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
10.
*.
3.
2.
1.
1.
1.
*.
7.
2.
2.
2.
3.
*.
3.
12.
HR
HR
HR
HR
R
R
SO
7S
IS
sn
87
bS
5b
2*
R
SS
b2
*b
8b
*R
20
82
77
R
R
7.
5.
*.
3.
3.
2.
2.
1.
2.
2.
3.
3.
3.
3.
3.
3.
R
R
05
13
08
7*
**
SS
22
72
R
0*
32
01
52
SS
b8
*7
S2
R
R
-------
PROJECT1 ll-2BhS-(H
ENGINE1 PERKINS t.?3b
OATE UP TEST' 10-11-78 TEST NO.l
SERIAL NO.'23bUElS43
MODE ENGINE TORQUE POWER
SPEED
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
IS
20
21
Mf.n,-
1
P
3
4
5
b
7
8
M
in
1 1
1 2
13
It
15
] S
17
in
1 4
r-n
2 I
r r r L E
KPM
btO
ItSil
1450
1450
lt5H
1450
145H
If 50
It 50
If Sn
btll
2tQu
2 toe
2 tOO
2 f n u
2 t n 1 1
2tnn
2 1 n u
2tno
2*0d
htr]
HC
PPM
280
238
l qt
17b
152
ito
138
132
112
78
252
3P
8b
78
108
132
1th
180
238
328
324
LB-FT
2.b
2.b
24 . q
47.3
70. q
S3. 2
HS.b
143.1
Ibf.l
182.5
2.b
Ib5. 4
1*5.7
124.7
1PP.4
62.7
bl.7
40.7
21.0
2. b
1.3
CO +
PPM
187
248
273
321
?5b
1S2
153
175
bbl
4b21
227
3431
754
223
214
2b4
32S
35?
347
337
2b4
BHP
.3
.7
b. s
13.0
IS.b
25.7
33. U
3S. c«
45.3
50.4
.3
75. b
bb.b
57.0
tb.8
37.8
28.2
18. h
S.b
1.2
.2
NO + +
PPM
S7
lOb
187
34b
5S]
847
1245
1550
ISIS
1877
138
ISbb
1S11
Ibll
1073
803
551
355
227
14b
107
COMPOSITE BSHC =
RSCO+ =
BS
N02+f =
BSHC + BSN02++=
FUEL
FLOW
L8/MIN
.01
.Ob
.07
.10
.11
.Ib
.20
.23
.2S
.34
.01
.50
.43
.35
.2S
.2b
.21
.17
.13
.OS
.01
WEIGHTED
BHP
.02
.03
.30
.57
.8b
1.13
1.45
1.74
l.SS
2.22
.02
3.33
2. S3
2.51
2. Ob
l.bb
1.24
.82
.42
.05
.01
.57b
4.S7b
10.b?S
11. 2S5
AIR
FLOW
LB/MIN
?.bi
b.41
b.41
b.37
H.28
b.21
b.lS
b.Ob
b.Ol
5.S<5
2.5b
S.b7
S.5S
S.5S
S.b2
S.bS
S.h7
S.b5
S.b7
S.b7
2.43
BSHC
G/HP HR
30.28
28.03
2.41
1.15
.bfa
.4b
.35
.28
.21
.13
2b.70
.07
.17
.18
.30
.4b
. b8
1.25
3.21
35.22
b5.18
GKAM/BHP
GRAM/8HP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LB/MIN
2.b2
b.47
b.48
b.*7
h. 3S
b.37
b.3S
t>. as
b.30
b.2S
2.57
1C.1?
.in. 02
q q i|
s.si
q. si
q. 88
q. pa
Q. Rl
S.7b
2. t*
BSCO +
G/HP HR
40. 3b
58.28
fa. 75
4.18
2.20
1.25
.78
.73
2.42
15.18
47.81
12.14
2.S8
1.02
1.1S
1.82
3.03
4.Sb
S.32
72.20
105.88
HR
HR
HR
HR
FUEL
AIR
RATIO
.004
.DOS
.011
.Olb
.018
.02b
.033
.03R
.048
.058
.003
.052
.Oft
.037
.031
.027
.022
.018
.flit
.OOS
.003
BSN02++
G/HP HR
3t.2b
40. 8b
7.bO
7.40
8.35
S.05
10.42
10. bb
11.52
10.13
47.82
11.43
12.42
12.14
S.82
s.os
8.34
8.10
10.01
51.40
70. 5S
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
«* FER PER LB. DRY AIR
D-3Z
-------
PROJECT- n-28bq-oi
ENGINE' PERKINS 0
DATE OF TEST1 10-11-78
SERIAL NO. ' 23hUEJ St3
TEST NO.2
MODE ENGINE TOPQl'E
POWER
SPFED
1
2
3
t
5
b
7
t'
q
10
11
12
13
It
IB
lb
17
18
IS
20
21
HOOF:
i
?
3
't
s
b
7
ti
q
1U
1 1
12
13
It
15
lb
17
18
i q
2.0
? l
CYCLE
RPM
btO
ItSO
It 50
itsu
It 511
ItSO
It 50
1 1 5rj
It50
ItSO
Sto
at oo
at no
2 tno
atou
2 ton
aton
atoo
a too
?. t on
btn
HC
PPM
320
250
20b
1S2
178
Ibb
152
130
13t
150
2fat
50
78
70
100
128
132
170
aab
asa
288
LR-f-'T
a.b
a. b
at . q
t?.3
?u . s
S3. a
us. s
1 1 3 . .1
Ibt.i
i fa . s
a.b
IbS. t
its. ?
12t . 7
ina.t
82.7
hl . 7
to. 7
21.0
2.b
1.3
CO +
PPM
315
288
311
33t
3b8
1S1
IbS
323
1018
tsis
27?
3357
b22
2faS
2tS
abs
33S
358
33b
302
esa
BHP
.3
.7
b. S
13.0
IS.b
as.?
33.0
3 q . s
t 5 . 3
50. t
.3
75. b
fab. b
57.0
tb. 8
37. 9
28 . P
18. b
S. b
1.2
.2
NO + +
PPM
b5
85
182
338
515
835
1205
Ifab3
300t
1S33
15t
ISbl
Ifafa?
Ibbt
Ilb8
55?
stq
3S2
323
Itt
105
COMPOSITE BSHC =
BSCOt =
BSN02-H- =
BSHC •(• BS
N02++=
FUEL
FLOW
L B / M I N
.01
.Ot
.07
.10
.12
. lb
.18
.23
.as
.33
.01
.50
.to
.3b
.30
.at
.20
.lb
.10
.ot
.01
WEIGHTED
BHP
.02
.03
.30
.57
.8b
1.13
1. 15
1.7t
l.sq
a. 22
.02
3.33
a. sa
a. si
a. ob
l.bb
i.at
.83
.te
.05
.01
.585
5.125
lO.tl?
n.ooa
AIR
FLOW
LH/MIN
a.bo
b . 28
b. 35
b. 7b
b.28
b.15
b.13
b.07
b.Ol
s.sq
2.71
S.b3
S.52
S.52
" e T "
".52
S.52
S. 55
S.b2
S. b5
a.t3
BSHC
G/HP HR
St.bO
28. ?q
2.53
1.33
.77
. st
.38
.37
.as
.as
3S. b2
.OS
.15
.lb
.as
.tt
.fad
1.17
s.oe
31.13
57. SO
GRAM. /BHP
GRAM/BMP
GRAM/BHP
GRAM/BHP
EXHAUST
FLOW
LR/MIN
P.fal
hisa
b.t?
b.8h
b. tO
fa. 31
b.31
b. 30
b . as
b.32
10.12
s . S2
q. sa
q. ?s
q. ?b
S.?2
S.71
q. 72
° . b H
2. tt
BSCO +
G/HP HR
b?.bO
bb.Ot
7.fa2
t.be
a. si
i.as
.83
.S3
3.73
15. SO
bl.Sl
11.83
a.tt
1.33
1.37
1.80
a.ss
t.Sl
S.Sfa
fat. as
100.78
HR
HR
HR
HR
FUEL
AIR
RATIO
.005
.007
.011
.015
.020
.oeb
.030
.038
.Ot?
.05b
.out
.052
.Ot2
.038
.032
.025
.021
.Olb
.011
.ont
.003
BSN02t+-
G/HP HR
23.10
32.03
7.3t
7. b?
7.28
8. 7t
S.Sb
11. tb
ia.oa
10. ta
Sb.bt
11. 3t
10.73
12. tb
10. Sfa
b.ei
8.18
8.83
S. 7t
50.28
b8.87
CONVERTED TO WET BASIS
CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
«ATER PER LB. DRY AIH
0-33
-------
PROJECT1 11-
ENGINE1 PFrJK
MODE
1
2
3
4
5
b
7
S
S
10
11
12
13
14
15
Ib
17
18
IS
20
?l
MOilP
J
2
?
4
5
b
7
H
q
1 fi
1 1
J 2
1 3
J 4
15
Ib
17
1 3
1H
20
PI
CV( L
F N r, i ,\ p.
SPEED
KHM
^40
1450
145"
1450
1450
145U
1 4 5 U
1450
1450
14 5 U
b4ll
2400
24 OU
2 4 0 LI
2400
2400
240(1
240H
2*00
24(Ju
K4n
HC
PPM
31fa
228
224
222
2nn
208
148
148
184
100
272
bO
132
so
S8
142
14b
184
240
308
304
28bS-01
INS 4.23b
TORQUE
LB-HT
a.b
2.b
24. q
4b.O
73.5
S5.8
118.2
143.1
Jb5.4
18b.4
2.b
lbb.8
145.7
12b.O
105.0
85.3
b3.0
43.3
21.0
3.1
?.b
cot
PPM
2b3
275
33b
35S
2b7
204
177
210
541
47b8
28S
3001
bbS
24b
237
289
37S
408
385
337
302
DATE OF TEST1 10-13-72 TEST NO. 3
SERIAL NO.' 23bu&ii43
POWEK
BHP
.3
.7
h . q
12.7
20.3
2b.5
32. b
3S.5
M-5 . 7
SI. 5
. 3
7b.2
bb. b
57. b
48.0
3S.O
28.8
11.8
S. b
1.8
•^
NO + +
PPM
85
85
201
304
548
837
1228
1470
178S
1143
124
2014
1887
1531
Ilb8
823
53b
34b
221
142
104
.E COMPOSITE BSHC =
BSCO-t- =
BSN02++=
BSHC + BS
N02++=
FUEL
FLOW
LR/MIN
.02
.05
.08
.10
.13
.Ib
.20
.24
.28
-34
.01
.51
.42
.3b
- SI
.2b
.22
.17
.13
.10
.01
WFir,HTEH
BHP
.02
.03
.30
,5b
.81
l.lb
1.44
1.7*
2.01
2.2b
.02
3.35
2.13
2.53
2.11
1.72
1.27
.87
.42
.08
.02
.b45
4.S44
10.b21
11. 2b?
AIR EXHAUST
FLOW FLOW
L8/MIN LB/1IN
2.b5 2. b7
b.47 b.52
b.49 b. 57
b.5b b.bfa
b.33 b.4b
fa.2b b.42
b.24 b.44
b.21 b.45
b.15 b.43
fa. 13 (-.47
2. 7b 2-77
S . 5 8 1 n . o 1
s . 8 7 10.21
s . S 0 1 n . 2 b
q. so m . ?i
q . H 7 1 n . 1 3
s . s b i n . 1 8
s . s b l n . 1 3
s . q b J. o . n s
10.00 10.10
2.52 ?-53
BSHC BSCO+
G/HP HR G/HP HK
3^.?b 57.57
27.05 bS.OO
2.H2 8.42
1.54 4.S5
.84 2.24
.b? 1.30
.31 -12
.32 .SO
.34 2.00
.17 15.75
31.12 bS.11
.10 10.45
.27 2.72
.21 l.lb
.28 1.33
.4S l.S?
.b8 3.52
1.24 5.50
3.33 10. bb
22.81 49.7?
31.77 b2.83
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
FUEL
AIR
RATIO
.nob
.007
.012
.015
.021
.02h
.033
.038
. 04b
.055
.OUb
. 051*
. 04?
.037
.(.131
.02b
.022
.017
.013
.010
.005
BSN02-H-
G/HP HR
30.57
32.11
8.28
b.88
7.54
8.78
10.48
10. 3b
10.81
10.55
4fa.35
11.53
12. bO
11.78
10.73
1.23
8.18
7.b4
10.03
34. 4b
35.53
+ CONVERTED TO WET BASIS
t-f CONVERTED TO WET BASIS AND CORRECTED TO 75 GRAINS
WATER PER LB. DRY AIR
D-54
-------
PROJECT' ll
ENGINE1 PERKINS t.?3b
DATE OF TEST' 1.0-13-72 TEST NO.t
SERIAL NO.' ?3bUElSt3
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
It
15
lb
.17
18
IS
20
?1
E^f.-I'ME
S P F E U
bin
It 5Q
It 511
l*5n
1 1 b U
It50
It 50
It50
It 50
It 50
btO
2 1 0 0
2tQO
2t(jO
2 1 o 0
2 too
2*1)0
2 t Q u
2tnu
2tnn
Ml,
Tiiw.gu
LB-FT
2.
2.
2t .
t7.
70.
St.
US.
It3.
Ibb .
.165.
2.
Ib1*.
It 5.
127.
105.
85 .
b3.
t 2 .
22.
2.
2.
E P n *' E R
6HH
b
b
q
3
q
5
5
1
8
1
b
1
7
4
0
3
1.1
n
3
b
b
b
13
l s
2b
33
39
tb
51
75
bb
58
ts
3S
28
1 s
10
1
.3
.7
. q
.0
.b
.1
.0
.5
.0
.1
w 3
.0
.b
.2
. 0
.0
. fl
.2
.2
.2
.3
FUEL
FLOW
LH/MIN
.01
.Ot
.07
.09
.13
.lb
.18
.23
.25
.3t
.01
.51
. t3
.38
.31
.25
.22
.18
. 13
.OS
.01
AIR
FLOW
LB/MIN
2
b
b
(,
b
b
b
b
b
b
2
q
s
q
q
q
q
q
q
q
2
. bb
.tb
. sq
.39
.31
.2t
.17
.17
.Ob
.01
.b2
.71
.52
.b2
.Sb
.52
.b2
.b2
.b7
.b5
.SO
EXHAUST
FLOw
2.
b.
h.
b.
b.
b.
b.
b.
b.
b.
2.
10.
q.
10.
9.
s.
9.
s.
Q ^
9.
2.
b7
50
tb
t8
tt
to
35
+ 0
31
35
b3
22
95
00
8?
77
Rt
MO
BO
?t
51
FUEL
AIR
RATIO
.OOb
.OOb
.011
.Olt
.021
.02b
.029
.038
.nti
.05?
.DOt
.052
.Of;
.otn
.03.?
.02?
.Or>3
.(.UP
.nit
.009
.005
Mil OF
PPM
WFir,HTFD BSHC
BSCU +
BSN02++
PPM
PPM
BMP
G/HP HH G/HP hk G/HP HR
1
?
3
4
S
b
7
fl
4
in
11
J2
13
) t
15
A b
17
IS
IS
en
21
CYCLE
320
2hn
1RB
19b
ISt
202
ISt
Itb
182
15b
2tO
32
12t
8b
130
Ibh
IbO
198
2tO
318
320
250
838
2bO
2Sb
231
155
130
Ib3
559
t?tt
213
2890
b5t
2t5
237
27b
39?
tQ7
373
338
289
COMPOSITE
BSHC +
101
SI
197
38.3
b57
9tl
130b
Ih57
1998
1989
121
1972
2027
1751
1183
815
5tS
3t7
22b
139
92
BSHC
BSCO+ =
8SN02t+- =
BSN08 + 4- =
1
1
1
2
2
3
2
2
2
1
1
.
t .
11.
11.
.02
.03
.30
.57
.Hb
.15
.t5
. 7t
.03
.25
.02
.30
.S3
.Sb
.11
.72
.27
.8t
.t5
.05
.08
bSl
70 b
059
710
35.
30.
2.
1.
.
m
m
1
^
*
2b.
.
.
*
s
a
^
i.
3.
3t.
33.
31
78
33
29
8t
b5
tq
31
33
2b
US
Ob
2t
20
35
55
72
33
Ot
07
18
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
55
5b
b
3
2
1
2
15
tb
10
2
1
1
1
3
5
q
78
59
HR
HR
HR
HR
.00
.11
.t2
.87
.00
.00
.bb
.bS
.01
.51
.09
.35
.57
.11
.28
.82
.58
.t7
.t2
.Ob
.b7
3b
35
7
8
q
q
10
U
U
10
t2
11
13
13
10
8
8
7
S
t8
31
.58
.tt
.Sb
.21
.33
.S8
.8b
.bl
.83
.3b
.St
.bl
.08
.00
.51
.83
.Ot
,bt
.38
,b8
.11
+ CONVERTED TO WET BASIS
++ CONVERTED TO WET BASIS AND CORRECTED 10 75 GRAINS
wAIER PER LB. DRY AIR
D-35
-------
PROJECT1 11-
ENGINE
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
19
20
21
nr,.,h
i
•5
^
*
5
b
7
S
u
in
1 1
12
J 3
1*
1 5
Ib
1 ?
Ltf
1 ^
2>1
2 I
CYCLE
' p^f
FNGINI
"PEED
RPM
h*u
1*50
1 * 5 U
1*50
l*mi
1*50
l*5n
1*50
1*50
1*50
b*U
cf *OU
2*011
2*00
2*nn
2*on
2*00
2*nn
2*00
2*00
b*0
Hf
PPM
320
302
2?h
272
?bb
2bO
25*
150
2lb
1*8
250
bO
150
9*
110
152
Ib*
198
2bO
320
32*
•28b9-U]
DATE OF
TEST1 10-18-72 TEST NO. 5
-------
PROJECT' u-?8bq-oi
ENGINE
MOPE
l
2
3
f
5
b
7
M
q
10
u
12
13
If
15
Ib
17
18
IS
20
?1
M 0 0 t
1
2
q
1
5
b
7
H
q
1')
1 1
1 ?.
1 -»
If
14
Ib
17
18
iq
en
g I
CYCLE
HE*K]
F N r; i ^ E
SPEED
RpV:
bf u
If 511
1>*50
If 5ll
If 50
If 50
If 5n
If 5il
If 50
1 f 5 U
bti'
2f on
2 f n u
c'f nu
2f no
2 f fin
2t nn
2 f n u
2 f n f,
2 f o r>
bf i)
HC
PPM
31b
2S8
272
2b2
25f
25b
2f b
1S2
25f
lib
232
b2
IbO
108
122
150
Ib8
208
270
310
31f
COMPOS
:NS f.a
'3b
T n P a U E P n h E R
LB-FT
2.
2.
2f .
f b .
b8.
Sb .
US.
If 0.
Ib5.
181.
1.
Ib5.
If ?.
127.
105.
P2.
bi.
f2.
21.
3.
?-
CO +
PPM
2b3
275
33b
3f b
2b8
isn
175
303
1227
532b
251
18f b
801
233
213
2bf
3f 1
382
3f 8
312
27b
ITE
b
b
q
0
3
8
5
5
^
2
9
a
1
^
0
7
7
U
0
q
b
BHP
-?
.7
b. S
12.7
18.8
2b . 5
33.0
38.8
fS.7
50. 0
.2
75. b
b?.2
58.2
f 8. n
37.8
28.2
1 S. 2
q . fa
J. . R
.3
N 0 + 1
PPM
b8
b8
i?q
317
5f 8
85f
1305
1778
2038
issi
130
203S
2023
Ibb8
1217
857
53f
372
231
if q
qs
BSHC =
BSCOf =
BSN02-H- =
bSHC +
RSN02++=
DATE OF
SERIAL
FUEL
FLOW
L B / M 1 N
.01
.Of
.07
. 10
.13
.18
.23
.2b
. 2S
.3f
.01
.51
.f3
.37
.31
.27
.21
.18
.13
. HS
.OJ
^ E I f, H T E 1
BHP
.02
.03
.30
.5b
.83
l.lb
I.f5
1.71
2.01
2.20
.01
3.33
2 . Sb
2.5b
2.11
l.bb
1.2f
.8f
.f2
.OB
.0?
.757
f .712
11.112
11.870
TEST1 10-
NO.' 23bUE
AIR
FLUW
L R / M I M
2.52
b.50
b.f 3
b.f 5
b. 3f
b.27
b.18
bl If
b.10
5.q?
2.70
q. bi
S. 27
q. 37
S. b?
q . b?
S.80
s. 83
q . qn
q.qo
P. 51
;> bSHC
G/HP HR
33.02
35.50
3 . 3S
i . 7q
1.15
.82
.b3
. f 2
. l+7
.32
51.fe7
.11
.30
.21*
.33
.52
. 7S
1 . f 3
3.72
22. 72
32. b8
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
18-72 TEST NO.b
iqf 3
EXHAUST
(•LOW
LB/MIN
2.53
b.5f
b.55
b.f?
b.f5
b.fl
b. f 0
b . 3S
b . Pb
2.71
10.12
q. ?o
q . 7f
R. qs
° . qf
J n . n i
1 o . n i
1 o . n 3
q . qq
P.5P
BSCU +
G/HP HR
Sf .80
b5.3f
8.35
f .70
2.f2
1.22
. 8S
1.31
f.52
17. 5f
11J.H7
b.50
3. Of
1.03
1.17
1.82
3. IS
5.23
S.55
f 5.5b
57.25
HR
HR
HR
HR
FUEL
AIR
R A T I C
.005
.007
.011
.Olb
.021
. O2q
.037
.Of 2
.Of 8
.058
.OOf
.053
.Of b
.osq
.032
.028
.022
.018
.013
.ooq
.005
l
B3N02++
G/HP
23.
2b.
7.
7.
8.
8.
10.
12.
12.
10.
Sf .
11.
12.
12.
10.
S.
8.
8.
10.
35.
33.
HR
32
52
PS
Ob
12
SS
S5
b7
32
77
81
7S
bl
05
S3
73
20
3b
f 2
bf
f f
CONVERTED TO ^ET BASIS
CONVERTED TO ^ET BASIS AND CORRECTED TO 75 GRAINS
txAIER PER LB. DRY AIR
D-37
-------
APPENDIX E
GRAPHICAL PRESENTATION OF
EMISSIONS FROM GASOLINE ENGINES USED
IN FARM, CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
E-l
-------
.1
PEPCE.AJT OF TULL LOAD
PERCENT OF FU LL LOAD
iC-.'Jf'V t-1 HVDROChPLON EM ISSlOMC FROM A FORD G-500O
EN T-. INC AS A FUNCTION OF LD PiD AT FOUR ^PEE OS,
FIGURE E-Z. HYDROCARBON EMISSIONS FROM A HERCULES G-2300
ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
cJ 6OOO -
£ 50CO -
PERC.EMT OF FULL LOAD
2400 rp
2000 rprr
ENGlNL AS A FUNCTION OF LOAD AT FOUR
50 75
Percent of Full Load
FIGURE E-4.HYDROCARBON EMISSIONS FROM A WISCONSIN
VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
E-2
-------
^s so
PE.RCEWV OF FULL
is
LOKD
--. C*\RE,ON. MONOXJOt EMISSIONS FSOK1 A FORD OSOOO
E- ft- A. FUKJCTlOtO OF LX)AD ftT FQOH SPEEDS
.1
50 75 100
PERCENT OF FULL LOAD
FIGURE E-6. CARBON MONOXIDE EMISSIONS FROM A HERCULES G-2300
ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
S 5
3 -
.1
2000 rprr
25 50 76
PERCENT OF FOUL LOKD
25 50 75
Percent of Full Load
FIGUREEi CARCON MONOXIDE EMISSIONS FROM A j.i,
159 G EM&iWE ftS A VUKCTlON OF LOAD AT FOUR
FIGURE E-8. CARBON MONOXIDE EMISSIONS FROM A WISCONSIN
VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
-------
^<- h
25 SO 75
PEKCEMT OF FULL LOA.&
E. M EMllHOKJi, FROKl A FOP-,0
Oti Or LO/SL AT FOUR SfEEDl
50 75 100
PERCENT OF FULL LOAD
FIGURE E-10.OXIDES OF NITROGEN EMISSIONS FROM A HERCULES G-230
ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
S JOOO -
2800 rprr
2400 rprr
25 50
PERCENT OF FULL.
000 rprn
Percent of Full Load
Fir.nPt E II OMDEs OP NiTROCrfM EH\SS\ONS, FROM ft J.I. C
15^0 trJGlNL Al ft FUNCTION OF LOhD ftT FOOR SPLE.D3
FIGURE E-12. OXIDES OF NITROGEN EMISSIONS FROM A WISCONSIN
VH4D ENGINE AS A FUNCTION OF LOAD AT FOUR SPEEDS
-------
APPENDIX F
TABULAR PERFORMANCE AND EMISSIONS DATA
ON GASOLINE ENGINES USED IN FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
F-l
-------
MODE
1
2
3
4
5
6
7
&
9
I 0
1 I
1 2
1 3
1 4
1 S
1 &
I 7
I 8
l 9
2O
2 \
Z 2
2 3
LNCINE
SPEED
RPM
G15
140O
1400
1400
1400
1400
1400
1400
1400
1400
dfcO
210O
2 100
2100
2100
2100
2 100
2100
2 100
2K.O
G.45
1450
ZISO
O&SERVED
PQVJER,
ut>
&.S
l 3,0
i 8.0
25. &
il.8
i&,2
44.4
52. a
70.4
58. &
50,4
47.0
2,'-- .(.
73.2
IG.8
8.4
FUEL
FLOiX),
lb-A.
3.2
7.3
10. Z
1 -9
15-1
17.4
19.4
22.3
25.4
2R.6
2.1
L7.7
30.7
2S.5
2S.I
20. 4
18.4
10. &
12.0
9-7
3.2
3.3
3.3
TEMR, °F
INTAKE
A>R
Gh
72
11
IB
&o
1C-
!
1164
1112
10^5
9&9
923
ft&2
life
42 C
413
RESTRICTIONS
INTAKE,
Lw V\.0
0.0
0.2
0.4
0.5
O.I
1. \
1.4
1.5
l.H
2-8
Q. 1
4. ft
3.S
3.0
2.2
1.8
1.3
0.')
"«(£,!
j*\ (-A
0.1
O.O
O.O
EXHAUST
it\ Ha
3.0
0,0
0,0
o.o
0.0
0.0
o.o,
O.I
o.i
0.2
0.0
0.4
0,2
0.2.
O.I
0.1
O.I
0.1
(• r,
O.o
o.o
o.o
MANIFOLD
VACUUM,
in l-\,- 0^
r ••/•!"
ND^R
HC,
^«cfe
33(o
584
313
199
105
13G
I2t
US
9fc
6C,
264
147
73
8S
9^
ns
I3U
13£
1?G
179
320
Z .'*0
." -C
ND>R
CO,
%
1.^5
(o.52
5.41
6.42
5.18
4.(oO
4.S9
3.B4
5.1C,
2.)?
?.n
2.:?
3.03
3.42
3.R7
4-08
4.S9
4-BI
4.93
^.08
2.71
2.I&
Ml
ND1R
co,,
9.t8
l.SO
9.02
ft. 93
9.12.
9,(D9
0 ti O
/ - O 7
10. so
10.13
10.75
10. tS
11.39
10-74
lO.tl
10.47
>o.i&
9.ft7
9.75
9.4 ft
ft.&O
9.6V
G.Ol
4.0O
ND1R
NO,
l*~
\95
122
3\1
4 It
4C,(»
(c.75
P'9h
1139
1234
l 1 12
123
noi
! d 1 0
1SOO
1495
I2fc4
1013
782
3tQ,
ISG
B9
33
23
e.L.
MO,,
t-J"*
72
to
245
344
440
0.45
327
990
11 C0£
Ufc^
10
I94t
1490
1379
1310
1140
5f.&
&9
-------
MODE
1
2
3
4
5
G
7
6
__ 9
1 0
1 \
1 2.
1 3
1 4
1 S
1 G
I 7
I 6
1 9
2O
2 \
Z 2
2 3
E.NC.INE
SPEED
RPM
(bio
1400
400
1400
1400
1400
1400
1400
14.0ft
1400
600
2100
2100
2100
2100
2100
2100
2100
2'<00
2100
fefci
1450
2150
OE6ERN/ED
POVJER,
U|>
(o.G
13.3
20,0
2
33.2
3?.9
4fc..C.
52. 8
70.9
(f 2.0
£3.0
44.1
1.5.2
2'o.B
'7.8
8.9
FUEL
FLOlM,
lb-A»
30
7.1
ft.')
M.I
\4.4
lfe.2
l5
\2l7
744
1101
\?£9
1199
1164
1 10G
1053
973
899
P.7I
&bb
436
40|
RESTRICT 10 MS
NlAW
L«rtzO
a >
o.r
•O.i
14
O.H
O.1)
1. ?•
l.G,
/ . £
7 -7
Q.\
4 8
3.8
2.1)
7.2
i-7
1.3
o.?,
O.Cr
.'!.!
O.I
3.0
0,0
EXHAUST
Lh Ho
r).o
0.0
-, r-
fl ;'
O/;
^
"• ;
i
o.\
o.l
0.0
0.1
' _
07
0.?
.•• -,
0.1
C.. 1
O.r
f; r
C, f
f .r
r."
MANIFOLD
VACUUM,
l" ^
19.4
19.4
11.9
ifc.i
13.9
M.9
9.3
7.2
4.7
2.0
\9.7
3.1
..0
8.1
vo,9
13.4
14.8
lfe-9
*&.&
2<\0
'').',
-.''.4
'> \ 4
HA
HC,
J.HC-
G550
11,100
wo
4400
1900
r,T/;.
' w
i 000
;f.^
:(,00
CcOOO
I1) {TO
?100
MD\R
HC,
^-C6
It?
290
?43
'7?,
15-
117
12C-
1 16
9fe
^fc
Z2G
76
7&
~" 1 "~
2700
2900
3100
3SSO
G900
7000
P4C'0
3ft, SOO
2&.50Q
8S
95
U4
135
ISO,
244
405
2G.3O
4040
ND(R
CD,
%
2.52.
G.34
6.4C,
L.05
•1 .7 I
4.4?
4.04
Z.U
3,0ft
3.03
2.35
2.21
2-93
3.15
3.G.9
4.01
4.3C,
4,7?
4 .t^
s.n
2.70
2.SG
1-94
NDIR
C02,
y0
9, P>3
7.55
8.t3
R.U
B.94
9.12
9.35
9.73
in.B
n.ii
9.93
U.IS
\0.46
10.09
10.07
>0.04
9.t.4
9.55
9.Zfi
&.41
9.4t
5.70
3.84
ND1R
NO,
t>K
89
3R
2 1 1
219
G9C
fo2\
950
1205
133&
',0^1
69
i?B|
''97
£> ^
I4iol
12 tt
1071
CcM
440
132
89
93
1\
CA.
NO,,
\>K
10
58
i&9
348
503
5ft?
755
UO
1220
1\23.
70
1&T?
1397
»iil
I3\0
mi
^84
i20
SH
10S
59
10.9
8.2
C. L.
MO,
tt"
3
45-9
3&G
9(c
5G
7.2
4.7
P5LAR.
0^
/O
2.3
1.9
1.5
l.G
1.5
1.&
1.5
1.4
1. 1
0.9
1.7
0,8
0.7
7
0.1
0.7
0.7
0-7
0,9
1.7
2,3
7.8
10. 2
ENGl
RUN
NE
FORD
-SOOO
DATL
2.
u U, 29.04
WEI
DRY
&UL& TE MP.
BULB TEM R,
72.
-------
MODE
1
2
3
4
5
6
7
6
9
1 0
I \
\ 2.
I 3
1 4
! 5
1 G
_ I 7
\ 8
I 9
2O
2 \
Z 2.
2 3
tNClNE
SPEtfc
RPt-1
(oSS
14-00
1450
1400
1400
1400
1400
1400
1400
1400
GSS
2.1OO
210O
2\00
2. 10O
2.100
ZtOO
Z\00
2100
2 \00
&S5
145O
215O
OBSERVED
P&VJER,
Ut>
6,90
442
4^>9
RESTRICTIONS
INTAKE,
in W20
O. \
0.2
O.Z.
0.4
0-7
\.o
1.4
\.7
1.9
2.7
o.i
4.Q,
3.9
2-&
2.3
\-8
1.2
0.9
O.G
0.3
O.I
n.c
Ci.O
EXHAUST
i>v H3
o.o
0.0
0,0
0.0
o.o
0.0
0.1
0,1
o.i
0.2
0.0
0.4
0.3
0.3
0,2
0.2
M
O.I
0.0
0.0
o.o
0.0
r .r
MANIFOLD
VACUUM,
in l-Vj
\9.7
w.&
l&.S
It.S
14.0
12.2
10-2.
7.7
5.1
2.4
v%9
1.2.
5-9
8-9
H. 1
12,9
»&.o
\(o-9
»8-2
20.1
20.|
;'\.4
2;.G
Ft A\
HC,
^-C
«)000
12,700
4950
4300
4000
3550
2950
2.850
2.700
2fcSO
8950
2200
2150
1300
IfcSO
2&SO
3300
3500
3700
fcsoo
9000
2>(o,000
34,CC\0
ND\R
HC,
tt>~C6
zaO>
4 SO
sio
»97
!<<,£>
\55
13£
1\5
105
9S
2>\G
9t
7t
4.40
3.94
3.39
2.84
3.25
2.\S
2.17
3.0\
3.30
3.51
3.9S
4.45
4.Q>&
4.90
5.1G
2.88
2.47
2.li
NDIR
coa/
%
10.40
7.60
9.20
9.fc8
9.79
10.00
103?
I6.fe4
11.07
10-94
10. £0
11. S3
10.93
10. (o5
10.43
10.21
S.99
9-t.l.
*).5I
b.t,5
9.79
G.OS
3.&3
NDIR
NO,
t>t»»
e.9
S7
211
43>7
SfcS
(o9C.
8&>2
1 IM-
1308
c>80
ft9
103.5
140T
\47£
1413
1157
992-
779
475
145
77
Co9
71
CA.
MO,,
1?K
78
55
191
2>83
518
751
789
lOfeO
11 &5
I0fe9
C>8
190S
\450
1371
1317
1154
&95
(i>40
42C,
1 15
<0\
\0.0
6.S
C, L.
MO,
n»-
70
43
H3
383
5\|
(o4.8
757
103.7
\2\0
940
fc4
1&5\
\4«7
1339
1251
till
&52
G30
2.64
\10
50)
G.8
S.O
POLAP.
oa/
%
2.1
1-7
1.0
1. 1
1. 1
1. 1
1. 1
M
KO
0-9
2-i
0.7
O.C,
O.b
o.t
0.1,
07
0.7
0.8
l.(o
2.5
7.8
9.7
ENGI
RUN
FORD G-SOOO
DATE -'/3O/72
BAROME.TER, L«
TEMP.
28.99 DRV BULBTE.MR
74
-------
MODE
1
3
4
5
6
7
6
9
i 0
1 1
1 1
1 3
i 4
1 5
1 G
! i7
i 'i
r
L_L?
1 O
!
'- ''
- ;
E.NCINE
SPEED
RPM
~) r\r\
\ 4OO
1400
1400
14-00
1400
1400
1400
1400
1400
ftT
(oo-}
2100
2100
2100
2100
2100
2100
2100
2 1 00
2 1 00
i£>-;C
^TTT;
OftStRVtD
POWER,
tvt»
G.G
14.0
20.0
Z7.0
33.2
"2 G 0
4-(o. v)
53.9
72.4
&>2.0
53.0
44.1
35.2
2t.3
n.8
8.9
FUEL
FLOvJ,
lb~A,
0 o
3. 2
.^
8.7
1 1,1
13.5
iG.t
\b.9
20.7
23.8
27.2
3. 1
55. .1
31.2
17,4
24,ft
22.1
\9.3
15,5
12.9
7,0
~AJ
-5. L
3,5
TEMT
INTAKE
AIR
r^-i
•a
INTAKE,
i.* WjO
ti. I
o,/
0-7
o.1)
1.3
l.fc
1.8
2-8
. 1
4.8
3.7
2.8
7.3
\.&
1-2
v-),1)
o.o
n> !•
0 . \
CTIOMS
EXHAUST,
l« Ha
p. r\
O. O
0.0
o.o
o.o
0.0
o.o
0,1
0. 1
0.3
.0
0.5
0.4
0.3
0.1
0.1
o.i
o.l
o.o
c.c
0. i>
r r
11 '^
MANIFOLD
VACUUM,
in A5
' T •}
'. /. — '
\Pl.l
14,3
n-9
•).•)
7.S
5.1
2.1
> 7- o
3-1
Q>.2
9,0
11.4
17.9
\L.O
10,. 7
JB.(r.
iO.O
.
•;'. i , 7
FIA
HC
I>HC.
8^00
50OO
4400
4000
3700
3000
2850
2 £50
2500
oleOO
2200
2300
?S50
2BOO
3000
3200
3^00
3700
tiOoo
i_00
41,000
ND\R
HC,
^•"Cc
T-J-I
523
210
ns
I3G
137
iot
9&
7fc
1 o2
It
*>«
1 O 1
213
440
581
7 1C,
?>74
991
liOfc
1080
Qr\
7U
19&I
1549
1497
1424-
1257
1038
12G
3G5
132
89
7 "S
71
C.L.
NO,,
\=K
(.r/
o
113
4-99
jftn
\37?
136C,
1285
1144
897
(o42
384
103
(oO
10,0
6.8
C, L.
MO,
I>H
5S
I(o4-
343
473
(o03
700
9o&
y\2s
^H
f«f\
1&45
\ D 7fo
1333
\2B5
1047
BS4
(o21
331
9 v>
54-
7 |
S.I
POLAR.
o,,
7.
•^ r
i. to
2. 3
\ i
i . _j
1.4
\,2
1.3
\,1
I- 1
0,9
./.
0.9
0.8
0,6
O.b
0.&
0.&
0.&
1.0
'•7
2.-S
'• /
9.2
cvsoo
e>,-,RO
-------
MODE
Z
3
4
5
fe
7
S
9
I 0
1 1
1 Z
1 3
1 4
1 5
_A 7
1 9
1O
z \
z z
z 3
E NCI ME
SPEED
RPM
~7 r\p>
l/LUO
1400
1400
1400
1400
1400
1400
'.4,00
14 DO
/ uu
2100
2100
2100
2100
2_\00
2100
r-oo
I ['0
(o 7r>
145O
ObSERMT D
POWER.
'oVf
1 i.3
20.0
2(o.(o
33.2
39-9
4 ^
" ^
•n. /
P..4
13.7
n.7
2\.0
23.8
2R.2
.j _
_>. 2
34.4
32.2
27.2
24.4
22.5
18- 9
\2-l
/ • 2-
7 0
-J • /-
3.3
, 3
TEMT
IN1AK-
AIR
^
>--
72
/4
7\
7 1
70
/ 0
79
77
77
7C
7'4
74
/4
o2_
/4-
3, °F
' ' r
.' Z --
792
02-1
i OS. Pi
1 1 32
1 i n -}
\ \ -1 Q
f ? n
^jU
1274
1231
\17£
1126
092
939
K4
;nl
Slo
4-j -i
i 1
\ v>
RE5"VR\
IN1AKE
"Hi°
0.2
0.2
o.ft
1 .2
I.C,
?. 1
n r)
. i
4.7
3.7
2.9
\.&
1.7
I.I
0.9
O.C
' •-•
'.VI
r
<>.'
CTlOMS
EXHAUST
ih H.I
0.0
C.I
0. 1
0,1
0.7-
0.3
0.4
0.4
• i. 0
O.fc
0.4
0.3
0.2.
0.2
0. \
0. \
D.O
0- C
,t
• ^
MANIFOLD
VACUUM,
in K3
^ <•), j
12.4
10,2
7.C,
c.o
2.(c
0. 0
l 1.4
13,4
17.0
\ h. (r.
/ 0.. 2
W-fi
-,
^ m
, .-
FIA
HC,
)>»»«. C-
/ 2O(j
>4 ,4 00
4700
4000
3 (.00
3300
2800
2700
2200
2300
(ooUO
2200
24SO
2700
3000
3300
3750
4050
4300
.
vj 1 00
1 0 , 000
NDIR
HC,
tt-Cs
/rr_ \
121
12S
10£
9£
tQ, 1
c
^/ _^
&5
95
1 IS
1 \5
145
\99
.
o 14
4 1 2
^-OHU
'H bD
NDIR
CO,
V
/o
7 1C!
( RQ
b.CS.7
(p. U
^l9
3,8\
3.3\
2.80
2.97
• i> 1
2.27
3. OS
3.31
3. S3
4.10
4.4k
4.84
4. IS
5.7 i,
I. tot>
.42
Z.O(o
NDIR
CO,,
V
/o
e-,73
9.22
9. £3
»0.23
10.47
10. &9
\6.t&
9-75
l\-3Z
10. (o7
\o.47
(0.44
10.02
9. SI
^.27
O.5 7
7. -jS
5 a o
://-
3.^2
NDIR
NO,
I**
&Q
O7
,
/ ^,
\ Q A
(o7|
923
11 Z
144
34]
5(2
G4I
803
mo
\2fc7
1053
-Irt
1720
142&
I3S3
1079
C97
3fc8
"(p
x>3
/•Co
C. L.
MO,
f>H
rr- 7
— ' '
A -2
\44
491
i. 1
1 2
1. 1
\.2
M
1.0
0.9
\.o
•7 r
y,U
0.7
0.7
0.7
0.8
0.8
0.6
0.9
2.0
3. 1
.O
7- O
ENGINE
RUN
FORD 0-5000
Df\TL
BAROME.TER,
VOET
DRY
BULB TEMP.
BULB TEMR,
-------
MODE
1
Z
3
4-
5
6
7
8
9
1 0
I 1 1
hi"
! 3
ENGINE
SPEED
RPM
(oSO
ItOO
It 00
IfcOO
it no
ItrOO
(bSO
l^OQ
\900
1900
mo
1900
G50
OBSERVED
POVJER,
bV,t>
14.4
11. G
4£.G
tO. 4
G7.9
52.2
3'4 .Z
It.t
FUEL
FLOvJ,
V*
3.2
7.3
\2.8
it. 3
20.9
27.5
3.3
35.4
25. ">
16.3
10. £
5.4
3.3,
TEMP, °F
INTAKE
AIR
74
7G
1G
11
78
19
78
P>4
B2
hi
13
74
74
EXHAUST
G99
£55
780
9(o7
1 I \J
\ia&
R?0
i ? 7.0
123
7-B
3.2
20.2
3.7
&.Z
^3.Z
'.L-7
\9.4
0 0 0 . 0 ' '1 £
FIA
HC,
t-KC.
Q><)00
8400
4foOO
z,tco
2^00
2700
1100
2£,00
?ftOO
2,£00
4 ISO
L ? SO
7400
ND\R
I\C,
M«»C6
?25
247
19B
n?
i2£
105
^S8
UE,
05
05
1 55
I5G
NDIR
CO,
%
2.1Q,
G.34
5.31
4.41
3.49
NDIR
eo2,
Vo
9.&2
9.43
a.fc?
9.45
10.15
3.3| 10.25
2.48
3.05
3.48
4 .3£
5. C.8
4.92
NDIR
NO,
H"
B9
.B?
351
C.L.
NOX/
k-K
0>8
54
281
7^2 Co4l
107Z j 975
C.L.
NO,
*>)»«•
G>1
S3
273
P01/\R.
°a,
%
3.0
3.0
1,4
^24 | 1.1
92 1
1072 9^4 I 953
10.05 11! 8G
10. 4k
10.24
9. fol
8^7
8.69
\42S 9B7
1231 S5G
778
2SG
98
739
200
5G
70,
?22
ft 13
1.0
0.9
*.&
°: B
G.B
14 C, 0.8
"78 i'u
52. ! 2-0
2'J5 2.80 9.^0 58 52 41} : 3.0
ENGINE
GrSOOO
DATE
hAAPPlNCr RUN
BAROMETER, i.n
9.03
WET BUL& TtHF... °F 'r 8
DRY BOL8 TEKiP.,, " F 7t
-------
MODE
I
2
3
4-
5
6
7
8
~~ 9
I 0
i i
I 2
1 3
ENGINE
SPEED
RPM
0,50
KoOO
KoOO
Kb 00
KoOO
KoOO
£.50
noo
\900
»<}00
.900
OOO
CD SO
OBSERVED
POVJER,
bK^
14.8
30.4
44.8
S8.8
(o(o.£S
51-8
34.2
\1.\
FUEL
FLOW,
Sk
3,2
7.7
12. £
11- \
2S,0
2-?.$
3.0
?>2..l
2~!.£
19.9
15.1
ft.(o
i.l
TEMP, °F
INTAKE
AIR
74
74
~19.5
2.4
__7.8
U-3
\t.O
^•4-
1^.8
FIA
HC,
J>J>«C
BIOO
14 ,000
44OO
2,fe50
2100
2350
?>
13£
\>S
329
5C,
7S
\03
\24-
147
501
NOIR
COX
%
\.as
&•"
3?
^b
2,60.
(5(o7
1010
V07I
100
13S(o
io9ft
8S7
511
U9"
3.l3i \00
C.L.
NOX/
H>-
54
52
314
0>27
9fe2
1037
S-4
109 1
1002
(»&)8
4I€
^
44-
C.L.
NO,
t-H
5\
47
2.6
29.Oft DRY 6DLB TE.MR, °F
-------
MODE
1
2
3
4-
5
G
7
8
9
10
I I
IZ
13
14
15
\(o
17
18
19
2.0
2.1
Z2
23
ENGINE
SPEED,
RPtl
GOO
1450
1450
1450
1450
I4SO
1450
1450
1450
1450
(boo
2.400
2400
Z400
2400
2.400
2.400
2.400
2400
2400
£>OO
1400
2450
OBSERVED
POVIER,
Ut>
(b.9
\3.7
20.3
27-0
33.4
39.4
45.8
55.3
75.G
fe4.8
5G.4
45. G
37.2.
27. 1
16.5
9.0
FUEL
FLOW,
Vw
2.8
(o.3
8.8
12.8
15-5
n.3
I1). 9
24.8
2fc.S
33.2
2.7
38.1
35.G
32.1
27.3
23.?
22.0
IB. 2
14.1
10.0
2.4
2.6
2.6
TEMR,°F
INTAKE
AIR
8fo
8&
87
85
87
88
88
87
87
85
64
8S
88
87
87
6?
8?
88
86
86
64
80
91
EKH-
AOST
549
59\
1099
U09
475
1 22k
1235
1188
1147
U30
10fc3
\009
94(0
913
5
2.3
2.4-
2.2
!.&
1.4
\.Z
O.b
O.fo
0-3
O.O
0.0
EXttAUST
l« Ha
O.O
0.0
0.0
0.0
0.0
0.0
O.I
O.I
O.I
o.i
0.0
0.)
o.i
O.J
O.I
0-!
0.0
0.0
0.0
0.0
0.0
0.0
0-0
M*N»FOLD
VACUUM,
iw IX,,
19. »
19.3
\8.7
>9.0
21.0
20. S>
FIA
WL,
H.»C
5900
3500
3900
3800
3750
3feOO
3500
3200
3050
2850
9fcOO
1BSO
2050
Z200
2200
2500
2450
2700
ZfcSO
2700
7000
S4,000
43,800
NDIR
Y£f
H-c^
\
32\
71
80
8?
98
9&
98
80
71
fc?
27(o
3538
2I9G
ND\R
to,
y.
5.17
3.2?
4-52
4.94
5.03
4-90
4.&
7-11
G.59
3.54
4,13
4.53
4.59
4.83
4,82.
5.4fc
5.20
5.28
5.7G
2.G.1
0-94
NE>\R
C02,
%
b.O?
io.0.5|
10.44
9.79
%1?
10-^8
10.2.0
9.12
9.22
\0.14
7.28
3.85
2.&2
ND\R.
NO,
W
39
79
145
Z59
325
392
449
1084
89 I
70S
G(bG
551
531
238
I7<8
106
39
52
42.
C.L.
N0*x
H>~
34
72
»3G
255
3Z4
40 (i.
44>7
590)
190
380
25
1015
914
703
~
29
70
»32
23&
303
394
44G
58G
747
35?
18
982
892
(o7l
575
458
459
23B
145
90
24
1.8
3.1
POLKR.
°*,
%
2.5
1. 1
0.8
0.&
0-9
0-8
0.6
O.fc
0.&
0.9
3. \
0,5
0.4
0-4
o.t
0.4
0.4
0.4
0.5
I.Z
2-7
10.
-------
MODE
1
2
! ^
4-
5
6
! 7
8
9
10
1 1
12
13
14
15
Ifc
U
18
19
2.0
2.1
Z2
23
ENGINE
SPEED,
RPM
(bOO
1450
1450
!4SO
1450
!4SO
S4SO
14-50
J4SO
1450
(bOO
2400
2400
2400
2400
2400
2400
2400
2400
2.400
00
1400
2450
OBSERVED
POVJER.
kKV
(o.9
13.9
20.3
2.7.0
34.1
40. fc
47.4
54.0
7fc.Z
Gfc.O
56, .4
48.0
37.8
28.8
\%2
IO.Z
FUEL
FLOW,
VK,
3.Z
5-5
9.5
52.5
Ifc.t
I 9-1
21.4-
22.£
17.&
33.8
3.0
39.5
37.5
33.2
28.5
24.2
21.8
lfc.8
\4.)
10.0
3.2
3.3
2.
(072.
135
821
&1)!
^55
9? 7
104-3
HOG
1095
550
\2fcB
122.4
l\9t
1155
n 12
\0fc7
10»4
941
9M
.0
8.1
10.3
\2.0
\4.l
>G.O
18-3
18.8
20.9
20.^
FIA
HC,
H»»C
5750
3850
4250
4350
4000
3500
3450
3050
3150
3350
7400
2300
2700
Z800
3050
3150
32.00
3400
3foOO
1000
7000
53,fcOO
i7,ZOO
NDIR
V\C,
^HCfc
\5(o
8&
90
155
\£5
125
145
99
97
>05
X07
(ol
70
80
88
97
97
5^
70
5Z
19&
3(»49
2335
ND\R
COX
X
5.83
3.8\
4.23
4-90
5.03
5.0i
4.fc7
4.fc3
4.S4
(b.G4
\R
C02,
%
8.05
\0.fo5
1033
10.10
9.9!
\0-lfe
10. I 1
jo. 48
\0.(b8
9.24
7.7Z
\0.&&
10.53
\0.4I
\0.\3
10.25
10.10
10.09
9.54
9.40
7.87
4.\9
3.\~
57
90.
\ SG
179
333
38Q>
457
511
503
341
3&
1217
\OOI
831
714
549
479
279
185
105
4S
71
42-
C.L.
NO*,
^«
33
G4
153
22>2
3>S3
37?
571
523
&0|
35fc
3>0
\I2G>
995
794
G14
51G
422.
2L49
IGI
85
33
8.7
(b.fc
C.L.
NO,
^^^
2.7
G>3
145
2.15
2&3
3 It.
437
494
71&
314
\9
>030
931
740
583
4
»2.7
HERCULES Q-23QO
-------
MODE
i
i
•7
i.
3
4-
5
6
1
8
9
10
\ I
12
I ?-
14
15
16
U
18
19
20
•? *
/- 1
Z/i
2.
20
3
ENGIhJE
SPEED,
RPM
r r>r\
tO^-'vJ
i A a r\
1450
1450
1450
1450
1450
1450
1450
1450
1450
r r\ r\
(£>v) vJ
2.400
2400
2400
2400
2400
2400
2400
2400
2400
P\ p
to « i
13.8
20. (o
27. 2,
33.7
40. (o
47. S
53. G
14.1
&» 2.
38.8
37,5
Sl.G)
29.0
25.0
22.2
*&7
14.1
1 0- O
2/-
.(«>
3.5
• O
TEM
INTAKE
AIR
o3
83
84
83
51
SI
90
&9
oo
C\ I
Q ft
07
95
93
95
99
101
10O
97
9C»
« ,
7«>
r^r-
75
*33
RT
O /
R,°F
EX.H-
AOST
T-\£> /
(030
74-4
810
900
959
1003
10fc3
1087
1089
527
1240
^.4fc
I17G
1\40
11 12
1070
10 13
9«s5
9 '6
500
4-20
-1 g- £-
/55
RtSTR
INTAKE
i^l^O
.O
O.4
0.5
0.5
0-7
1.0
1.5
l.t
l.fe
o.o
. 0
|,0
2,0
2.3
2.0
1.7
1.4
\.\
07
0-5
,0
.0
, 0
a lows
EXUAOST
l«Ha
.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
. 0
MANIFOLD
VACUUM.
i« U5
' O. I
19.'
17.5
14. (o
12.2
9.9
7.5
5.2
3.3
1.7
' 6 • /
1.\
?. f.
J.Vp
fc.4
7.9
tO-3
12.1
14,1
(6,3
8.5
o.o
/0.9
1 ,\J
FIA
(AC,
J»HC
(o400
3400
3550
3950
3700
3500
3300
3000
2900
3100
oooo
2350
2300
2800
2950
3100
3100
3300
3450
3300
8400
48,800
, ,,,.,.
4fo, 0
ND1R
HCx
^KCfc
12-9
1
89
118
\TJ
118
\27
11
&9
88
,
1 k>(o
81
1\
80
80
89
89
89
W
D \
O I
A ^1
44-
/./33
_ _ «
^1/7
ND1R
to,
°/
5/ Q
.toO
.10
3.fc?
4-72
5.51
4.83
4.43
4.47
4.47
fo.22
'. Zp
3.9|
4.3$
4.1^
5.34
5.06
4-97
5.22
5.4\
• oZ,
STJ
• 12.
.2 /
•0 /
ND\R
C02^
%
7*7 f
./(o
10. 1Q
\0.12
9.07
9.03
9.14
9-53
9.foO
9.51
8.53
G>79
9.2Z
9.02
S73
&.
154
321
40J
4-37
491
544
789
445
27
%9
1051
-------
RODE
.
1 z
a
4-
5
fc
7
8
9
to
1 !
12
15
14
15
16
U
18
19
2.0
2.1
Z2
23
EMGiNE
iPEEI>
RPM
£,00
5450
!4SO
145Q
1450
1450
1450
1450
1450
1450
GOO
2400
2400
2400
2400
2400
2400
2400
2.4-00
2400
(bOO
1400
2450
OEoERMEb
POvJEK
bV,^
(0,5
\3.a
20>7
2.7.2
33-9
41.0
47-1
54.0
75. G
66.0
57.0
47.4
37.8
28.2
0.2
9..&
2.8
TEMP,DF
INTAKE
A IF;
78
18
80
80
5!
fcl
81
63
82
83
82
82.
87
90
92.
93
90
88
88
8?
8&
92
85
EX.tt-
AUST
435
G27.
IfoO
82 S
92)
9G,8
1021
1081
1120
1104
52,8
\275
12.41
II&7
1144
ino
\071
1013
949
B92
fc30
420
528
RtSTRlCnOWS
WTP,XE
i.v\ HjO
o.o
0.4
0.4
0.5
0.7
\.o
1.4
1.7
1-7
0.0
0.0
1.0
2.1
2.1
2.0
l.ft
1.5
1.0
0-7
0.5
0.0
0.0
0.0
EXHAUST
i« H&
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
0-0
o.o
o.o
h-'iKH'.fOLD
VACUUM,
Iw Us
16.7
16.9
lfc.4
14.6
12.2
9.9
7-9
5.|
3.4
1.7
t8.fc
2.1
3.5
5.5
7.fc
9-8
»2.1
14.3
\fe.l
\8.4
18.7
20-9
20.9
F1A
KC,
H-c
7300
4000
4300
4000
4050
3750
3950
3450
MOO
3700
&IOO
2700
3)00
3100
MOO
3150
3300
3500
3700
3fcOO
8400
51,200
48,000
KJD1R
'hC.
^KCfe
1Q.S
97
115
134
144
153
143
144-
\0(o
1 15
237
52
I0(b
(ol
208
30t>5
2074
ND)R
^v
%
2.8
^2
4i
C.L.
HO^
fp^
34
Q>&
IfcO
252
353
514
44|
5B7
Q>73
323
30
iot>9
7fo3
fc57
442
518
361
2-49
13?
77
33
12
8.1
L.L.
NO ,
f>t»*
2?
(o&
147
235
302
4b3
410
545
-------
MODE
1
2
3
4-
5
<0
7
8
9
1 0
i i
I 2
1 3
ENGINE
SPEED
RPM
(oOO
1750
nso
»7£0
nso
nso
52
&«7
970
1056
U34-
5^0
\»90
H4-3
JOH
9&9
8fo2.
455
RESTRICTIONS
INTAKE^
i« l\20
0.0
0.5
0-7
M
2.0
1.0
0.0
M
2.Z
KG
0.6
0.4
0,0
EWAUST,
in \\^
0.0
o.o
0.0
o.o
o.o
0-0
0.0
o.o
o.o
0-0
o.o
0.0
0.0
MANIFOLD
V^UUM,
*.« ^
19.0
\9.0
14-7
<0.3
5.9
2.0
\B.B
2.1
s-9
«o.S
\5.0
18. ft
I&.9
FIA
HC,
^«C
5200
3200
5550
3200
2BOO
2300
(b900
2200
2550
2850
2.I5O
3200
(bOOO
NDIR
HC,
W»«C6
129
90
UB
127
127
107
\7?
98
108
6Z
&0
90
150
NDIR
C-0,
%
5.79
3.03
5.09
4,79
4.72
5.72.
7.31
4.97
4.74
4.8G
S.24
4.16
5. 4S
NDIR
CO,,
Yo
fc.54
9.5fc
&.7I
9.07
9.15
6-99
!>•«
58
128
315
593
7 S3
-
34
99
274
5£~
27
91
2(oS
534
598
508
2.1
(003
728
557
2S3
71
23
POLAR.
o,,
%
3-1
1.5
0.9
o.?
o.&
O.Q>
2.2
O.fc
0.7
0.&
0.7
1.9
3-7
ENGINE HE-RCULES G-23OQ
MAPPING-
DAT E 6/20/72.
BAROMETER, i
WET BUL&
29.03 DRY &OLB TE.MR, 4F
7S
-------
MODE
1
2
3
4-
5
6
7
8
9
\ 0
i i
1 2
I 3
ENG-INE
SPEED
RPM
GOO
1750
1750
1750
1750
\~15O
(bOO
2-100
2100
2100
2100
2100
(bOO
OBSERVED
POVIER,
bkj>
15.8
31,5
47. Z
G3.0
70.9
£3.5!
83.5
974
1074
II \9
o
0.4
0-6
1.4
1-9
0.5
0.0
1.0
2.1
1.6
0.9
0.4
0.0
EXHAUST,
Lvx ^
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
MANIFOLD
VA.CUUM,
tn %
18.7
19.1
14.7
10.3
fc.l
2.1
18.8
2.2
5.3
10-3
14.7
19.0
19-1
F1A
we,
H>«C
6000
3150
3900
3300
2800
2500
7300
2£00
2.800
2350
3200
3200
M£0
NDIR
HC,
W>-ct
99
109
*98
178
Ifcl
147
ze&
12&
105
128
»2>7
72.
189
NDIR
CO,
o/
/o
it-75
3.S4
5.37
5.H
4-81
(b.20
fc.53
5.3\
4.98
4.B)
5.23
4-14
5.9b
NDIR
CO,,
V.
fc.S5
9.00>
8.4«>
8.48
8.75
6.0B
|>M
58
tO
304
535
750
484
38
G>2>3
723
0.2.4
349
98
48
C.L.
N0»,
n>-
35
86(b
(oOl
SOB
fc4
34
C.I.
NO,
*>H
28
83
2.44
52(b
(o77
42>7
i|
558
_ DRY BOLB TLMfi, *F
7S
-------
MODE
1
i
3
4
5
6
7
6
9
I 0
1 t
1 2
1 5
1 4
I 5
_l &
__l 7
I 8
1 9
2O
z \
z. z
23
ENCiNE
SPEtD.
RPM
350
1400
1 400
1400
I 400
1 400
1400
1400
1400
\400
470
Z| 00
2100
210O
2\OO
2100
210O
2100
2100
2\00
500
r
0&5LKVLD
POWER,
U|>
4.Z
8,2
\2.t,
1<0. I
20.3
_ Mi5_
28.2
32.7
42.0
3fe.8
5\.2
2G.2
2i.3>
IL.&
10,2
S.O
FUE L
f LOvJ,
IbvV
2.7
~1 1
8. 1
9.5
l 1.4
12.5
>3.&
IS-1
\(o,3
18.2
2.G
24.1
23.0
19.7
l(o.7
15.8
1^.2
12.3
11.3
10. &
2.4
TEMP, ° F
NiAva
A»K
&1
(o1)
74
&2
8(0
8G
8&
&9
6^
91
<) 1
88
8&
9<
9Z
92
96
•)1
E^H^UM
315
(oG5
729
801
84:8
892
9fo5
998
1028
lOfcl
l0
O.I
0
MANIFOLD
VACUUM,
in (Atj
1C..C,
17.0
Ifc.S
14.8
12.6
1 1.1
9.4
7. 1
4-7
2.4
18. G
S.S
>^C.
1250
B'^'-O
5400
4900
48SO
4700
4150
3900
3850
3350
3200
3300
3500
3700
3 BOO
3800
3B50
36SO
3") 00
S5SO
NmR
HC,
^-cfe
19Q>
273
273
28&
310
310
2<)&
2R7
287
2H
4t
40,
93
»47
ife9
224
37 \
349
470
424
580
42&
32 0>
340
319
239
IfcO
IfoO
i(b9
no
C.L.
N0»,
IPK
16
76
64-
85
1 13
li&
254
2&>3
3t5
349
C. L.
MO,
tt"
75
75
54
84
^ 13
^2>4-
2.50
2(o3
3
-------
MODE
i
2
3
4
5
6
7
6
9
1 0
1 \
1 2.
1 3
1 4
1 5
_) 6
__\_7
I 8
I 9
ZO
z \
zz
23
ENG.INE
SPEED
RPtl
47O
14-00
1400
1400
1400
1400
1400
1400
1400
1400
490
ZIOO
11 00
2(00
2100
2100
ZIOO
2100
ZIOO
2\00
510
I18£-
ZOfoO
OBSERVED
PC.VJE?,
tv^
4.2
8.Z
12. Z
lfc.4
20,3
24.5
2B.4
32.4
__4rl.l
3G.8
51.5
2(b.l
21,0
l&~8_
10.5
£.2
FUEL
F LO'A),
'SC
2.(o
(b.l
1.0
9.2.
10,2.
U.fc
12.9
14.7
1G.3
11.7
Z.G
22.9
21. &
18. 8
n.2
14-8
I2>. 0
1 \.1
\\. \
10.4
2.4
2.9
3, 1
TEMP. °F
INHALE
A\R
&4
61
81
80
82.
83.
52
83
87
88
90
84
87
86
89
9I~
91
W.
&3
\088
1045
1014
963
95&
H7
741
411
354
RE_3TVR \CT\OMS
INTAKE,
t« \\£i
1.4
2,2
3.1
4,5
5.C.
(b.8
8.1
9.9
12.7
14. S
1.3
13. 1
19.1
l<..3_
11. (o
10.1
8.8
6.8
5.1)
5.J-C-
4900
59 00
5550
4200
5900
5«
e>7
73
100
>32
\&9
Z4fo
38"?
313
• 63
134-
121
^7
36
6fc
t.L.
NO,,
lf^
44
(o7
77
>13
\(oS
178
383
380
644-
458
45
fc2-9
48t
383
345
574
-3\5
no
»03
93
4-5
13
8
C. L.
MO,
H»*
41
G4
74
119
»(ol
176
319
359
0,7
o.ft
0.8
O.ft
0.&
0.6
0.&
0.9
2.1
9.
-------
MODE
i
2
3
4
5
6
7
6
9
1 0
1 \
I 2
1 i
I 4
1 5
_l Q>
_l 7
\ 8
I 9
2.0
2 \
Z2.
Z3
ENGINE
SPEED
Rpn
4-90
\40O
1400
1400
1400
1400
1400
(400
1400
1400
510
2100
2.100
2\00
2\00
2100
2100
2100
2\00
2\oo
4-90
1400
2080
Of,5ER^ED
POVJER,
U|>
4.0
8.0
i 2.2
Kb. \
20.5
24.7
18.4
32.4
4-1.6
3fc-8
31.5
it. 2
2\,0
16.0
IO.&
4.1
FUEL
F LOVO,
'Vw
2.6
G.3
7,5
8-9
10.2
11.4
13. 4
14-6
\0
9Z
91
30
88
&1
85
..§.7.
86
90
8
0.4
0.3
0.1
0.2
0
0
O
MAMIFOLD
VACUUM,
in ^
16.1
n-9
\G.7
15.1
13.6
11.6
9.1
1,0
4.8
2.S
0.1
S.5
7.5
8,8
10,4
12.)
133
15,3
It., 3
lfc.5
19.1
20.C
20.^
F|/\
HC,
I>KC-
5000
GIOO
5(oOO
4£SO
4400
4200
3750
3500
3400
3100
5100
2900
3050
3150
3250
3100
3200
3200
2350
3300
49£0
52,80G
84,0,00
ND\R
HC,
bl'-Ct
85
I85
134
155
*35
155
155
93
115
134
114
134-
125
104
104
n0
69
134
1C.8
208
391
404
104
5H
43
10\
5O9
401
3GI
3&2
403
I&5
105
lOfc
47
5
3
POLAR.
o,,
7.
2.4
1.5
l. I
9J
1 .5
0.9
0.9
1. 1
1. 1
0.&
i- a
0.8
0.1
0.1_
0,&
0.6
o,&
O.ft
0.6
0.9
2.0
9.6
13.9
EMGl
RUN
NE
4
1. CALL 159 &•
2/1 \
BAROME.TERX
VJET
DRY
BUL& TEMP.
BULB TEMR,
5&
>F 72.
-------
MOCE
1
2
3
4
5
6
7
6
9
I 0
1 1
I 2
1 3
I 4
1 5
_JJ>_
__L7
\ 8
1 9
ZO
z \
Z Z
z i
ENCiNE
SPEED
RPM
4&0
1400
1400
1400
1400
1400
1400
1400
14-00
1400
510
2[00
2100
2100
2 \00
1100
2100
2100
2 1 GO
2100
500
1405
20&O
05SERMED
POvJtR.
fcVJ>
4.2
6.2
12.1
Ife.l
10. 5
24.G
28.4
2.1.8
4-2.0
3.2
2-1.3
15.6
10.&
5.B
FUEL
F LO.4
8.1
9.G
lt.9
13.9
15. G
n.s
n,9
2.1
2.4.0
22.8
»%8
11,5
IG>.2
13:A
'-'.•.7
10.3
a. i
2.2
3.1
3, I
TEMR, °F
INTAKE
AIR
90
90
69
&9
91
91
95
9i
%
95
97
°>\
95
99
95
96
%
?&
%
95
95
80
9Z
EXH^ST
(oO4
48
~n(<>
820
8&4
9i(o
^83
102\
1051
Bfol
11 'AS
H(o4
11 13
1051
1052
1012
959
_9l2
901
122
337
42Z
RESTRICT 10 US
IN1AW,
c«HzO
1,1
2.1
2,4
4.3
5.Q)
1.5
W
10. &
\3.5
\(o.3
1.3
24.8
n.?
1 3. a
U.3
9.
5-7
43
3. 1
1.3
0.4
0.4
EXHAUST
IK H3
o
O
O.I
O.I
0.1
0.3
0.4
0.5
0.1
o.b
0. 1
l.fe
1.4
1. 1
o.^
o.t
0.4
0.3
0.1
O.|
C
O
C
MANIFOLD
VACUUM,
in !-\3
ii.e
1 8,0
11.3
|4.5
|2, 8
10. (o
8.4
fo.\
3-8
2.2.
>e.(o
4.0
5.B
6.3
\o.o
1 1.4
13.3
14. a
l(o.5
(ft. 4
20.1
20. (o
> 1.2
FI/\
HC,
i>j--c.
G>500
»o,zoo
6100
5700
5100
5SOO
4^50
4450
4200
40SO
£200
2200
2300
2530
42-00
4200
4250
4800
4tOO
11,000
CtlOO
52,800
h"/,2()0
ND\R
HC,,
J>»>«C6
ZOI
\°>b
^Qa^
1 ?_T
2.18
zi •)
142
195
m
i%i
loo
115
115
I45
H6
166
Itjo
11 fc
145
12- (06
2.11
2,945
t^35
NDlR
CO,
%
&.9I
8,^
9.01
6.13
fc.31
6.04
1.55
1.05
fc.35
_6
1.00
1.-2.5
8.31
b.47
1.22
(b.04
3.42
2. fcO
NDlR
C04/
%
Cb.^T
(b.Ofo
fc.lt>
G.<)9
1.15
1.54
l.<)\
8.01
8.54
6.52
7. It
9.11
8.&9
6.1&
8.10
1.^5
1J5
1.15
1.00
fc.58
(b.BI
4.t»-
(si
4"«
46
36
4(o
83
104
132
100
24ft
4fcr
310
50
55fc
410
290
Z(c5
2^1
231
85
77
87
42
15
9
C. L.
MO,
ft"
43
28
59
&l
100
118
l%
247
4(o2
2,07
44
55(o
447
2 &(o
246
2-1?
231
&5
12
61
35
7
4
POLAR.
o,,
y.
2.4-
1.8
1.3
1.0
I.O
0.9
».o
1. 1
I.O
o.1)
2.0
0.&
O.(o
0,1
0.6
0.8
o.&
O.1)
0.9
1.5
3-7
8.3
12.^
EMGl
RUN
J.I.
BAROME.TLR,
28.c
VJET &UL& TEMP., °F 57
DRV BULBTEMR, ° F 7G
-------
MODE
1
z
3
4
5
00
2100
2100
500
140O
ZO&5
0&SE.RVI.D
POVOE1?,
U|>
4.0
ft.O
(2. I
',fc.3
20.3
24. G
26.5
31.8
39.1
54 _.C,
2 8. 9
24.4
zo.o
14.4
10.2
5.0
FUEL
F LOV),
lb-/C
/Vw
Z.fc
4. 1
S
()4t
')'-;£,
\04I
>OSi
841
» Iftfi
H4t
1 104
lot')
10-11
1002
950
9?lc
b7\
fcfci
5(tfc
414
RESTRICTIONS
INTAKE,
i« WZ0
l.i
1.9
2.G
3.^
5.4
fc.5
P.4
»o.\
li.O
15.8
1.4
23.^
16.1
IS. 8
12.1
1.0, I
5.0
fc.i
5.0
Z.1)
1.4
0.4
0.4
EXHAUST
u H3
0
0
0, I
0,1
0,2
0.2.
0,4
O.fc
0,8
0.3
0
1.5
1.2
1.0
0.&
O.(o
0.4-
0,2
o.\
0.1
0
o
o
MANIFOLD
VACUUM,
in A^
19. fo
\f].2
17.4
15.C,
I'i.C
1L2
V)
£
)24
134
165
155
\54
134
134
783
Jt7
45 3O
7235
ND>R
CO,
7o
7
ND1R
co,y
%
(o.fe3
(b.45
(b.&4
7.29
7-fc4
7.&1
ft.50
8.51
8.&1
9-03
&.80
8.87
8.50
8.24-
§.lfe
8.40
M4^
7.63
7.31
fo.lO
6.77
4.19
2.51
NDtR
NO,
(>^
54
60
80
i ao
1 fc2
l 90
328
247
593
454
55
C.I.
NO,,
H>«"
40
39
Q>7
lOfc
14V
IBS
341
350
591
458
4F 74-
-------
^
o
MODE
1
z
3
4
5
G
7
8
9
1 0
1 1
1 2
1 3
EN&INE
SPEED
RPM
00
700
OBSERVED
POVOER,
bm>
8.4
it. 8
24.6
33. Q>
59.9
31.6
22.3
10.0
FUEL
FLOW,
V*
3.0
96
96
100
EXHAUST
4SZ
A
we,
t>KC
fc(b50
B300
5500
4tOO
4000
2100
blOO
2550
3300
3400
4000
(LOGO
7100
NDIR
HC,
W»C6
212.
30&
(b.75
7,&4
8. OS
£.78
NDIR
coz/
Yo
G.4-5
-
41
4-G
101
118
10G
506
41
411
210
148
94
G>0
47
C.L.
NOX/
H>*
39
4C,
10?
I4Z
174
ta\
31
785
4\9
312.
10
-------
MODE
1
2
3
4
5
6
7
8
9
I 0
i \
\ ^
1 3
EN&INE
SPEED
RPM
(o40
1600
1600
KbOO
IfoOO
IfcOO
800
I9OO
1900
1900
l<)00
1900
7
8.4
17,6
ZG.O
33. \
\xoo
\0<)Q
1020
892.
803
525
RESTRICTIONS
INTAKE
i«R20
O.4
1.4
3.4
1. 1
\3-2.
ZO. 1
0.4
2.1.5
Ifc.Z
10.5
S.S
2.1
0.4
EXHAUST,
In \\A
0.0
0.0
0,3
0.3
O.fo
l.Q,
o.o
l.fc
0-9
0.5
0.1
0.0
0.0
MANIFOLD
N/KCUUM,
C-v l\^
19.8
i<).9
IS. 5
12.1
7.2
3.5
19.5
3.^c
9000
8000
£400
4250
3800
2900
fc450
2<)00
5500
3800
4400
7000
6900
ND\R
\\C,
W"-Ct
324
427
299
2U
2fc5
222
183
233
196
IG.5
l&(o
2\9
295
NDIR
to,
%
3.33
7,58
8.18
7.59
G.GO
4,49
S.7&
4.24
G.45
G.&9
6,15
8.57
G.n
NDIR
CO,,
Vo
8.05
6.91
7.31
1.49
8.2fc
9.79
G.74
9.11
8,45
ND1R
NO,
y>t>-
46
*
52
31
9&
n I
307
19k
43
841
37t
31 1
I0|
50
38
C.L.
NO,
»>H
4-5
2^
90
153
2-99
752.
55
798
35?
303
98
4t
POLAR.
°a,
%
4,0
2.1
1.7
0.8
o.a_
O.G
3.5
O.S
O.fc
0.1
0.6
1. 1
32 3.5
EN&INE J.I. CASE 159 &
DATE 3/11/12
MAPPING- RUN
BAROMETER, i-«
WET BUL& TEMP.X °F 56
DRY BOLB TEMP.X °F 13
-------
MODE
1
2
2.
4-
5
6
7
8
9
10
1 1
12
13
14
15
\<0
\1
18
19
2.0
2.1
22
23
ENGINE
SPEED,
RPM
890
noo
1700
1700
1700
("700
1700
1700
1100
(700
900
2800
2800
2800
2800
2500
2600
Z&OO
2800
ZftOO
900
OBSERVED
POVJER,
LV^
2-8
5-7
5.5
» 1-3
14.2
17-0
19- R
22.7
32.7
28. fc
Z4.S
20.4
l
73
74
74-
74
EX.H-
AOST
G^O
7 SO
795
690
950
1010
IOBS
1 1 10
1200
\2.0S
IR
C02,
V
/o
&>.Z2
(b.35
7.24
9.07
&.&7
9-0«
23
I 2.
Z?
I(o9
25(b
527
39&
(oOB
1144
73&
47
1X28
1477
104-3
824
53 B
342
Z46
157
!Z
-------
MODE
\
1
7
2
A.
c;
f.
7
0
o
Q
I r\
1 O
1 1
1 9
I 2
. _
1 D
1 A
1 4
1 C
I t5
1
nr>n
\~it\f\
\~i r\f\
Q 7 £T
7/.O
7P i\n
AOUU
ZoOU
2oOO
/.OU U
2800
2-BDO
•? oftn
/.O^U
2.QOO
•7 DA r\
/-OUU
V50
OBSERVED
POVJER..
Ut
• O
• 7
8CT
.tj
1 1 ^
1 /I 0
i T r\
I /.U
-
* />0
22.7
-> * -7
o). /
/-A8
2i<&
1 7. 6
15.9
1.0
•9
4-0
FUEL
FLOW,
'Vw
.4
•4
,e
7 A
q A
ir\ f«
\ 1 /A
1 1 .°t
14 ft
,r C
lOO
• 3
Z.O. l_
6.4
1 /.(o
i f ~i
\\i>./
14-t)
,
1 L.\o
1 • 1
O. 7
. 3
2.5
TEM
NTAK.E
AIR
/to
/fo
/O
~}D
/O
Tfl
/O
-to
-Ib
/ 7
T 0
/ 7
f\ 1
O 1
61
1
1
61
1
81
1
1
D"
81
'
81
1
1
61
1
Q 1
01
O 1
Ol
81
1
R,°F
EKrt-
AOST
fo4O
you
ooO
070
Q/l f\
/^R)
i r\ t c\
ir\ Q r\
IUOU
\ \4O
\ 1 \ C\
\i cr\
|i.t>U
7^0
i "3\~ir\
looU
) oOL)
\ O CTk
i /.DO
) 1 10
10 SO
JOOO
980
70O
RESTRA
INTAKE
i.*iy)
. 1
.2
Oa
. O
.4
0-7
. /
ft <)
u.y
t ^v
1' ^
0 A
z-u
2Q
• O
. 1
. I
•2
»3
20
• O
., 1
.5
1-2
•8
.(o
O. l
CTIOUS
EXWWST
«rta
.u
4V)
.0
Of\
. u
rv A
Ot\
• U
01
01
. i
00
. 2
. 2
• 0
O.A
.*f
.^f-
.6
OOL
.O
Of)
.2
. 2
• 2
Or\
.O
.O
,O
MANIFOLD
VACUUM.
In V\a
FIA
HC,
t>^c
(o'WO
4^VOO
D^V^L)
^700
n -~IQC\
9~j^n
- , ori
24i.t)
\ R ?V\
1 D*JU
1 /OU
^400
i —ll~r\
1 /oU
, f~ f r\
1 C3/.U
•JAHH
i.Uo'-'
^-> 1 U
•j \ p /\
31 DO
oZ«0
*n uu
4-200
4oOO
oOOO
NDIR
l\C,
^KCfc
Z^tA
1/7
llO 7
„
1 5 7
i f f\
1 v>\J
i cr<»
lt>7
\cr\
lou
i a a
I3o
1
1 1 /
10?
321
i l fi
O 7.
73
q i
7 1
Q i
J 1
0 /
25
1 2?
1 27
o
1 (07
27fo
NDIR
CO,
°/0
SD ft
• 00
• /o
c: ^9
^ \c*
*O • "X)
5-> Q
- '/
• C>^t
4 Oft
•70
.54
/.zs
4/1 9
.'t-/.
'^•7
S, Db
^: C,^
6l\ O
.UZ.
jC ^2 r\
VO.OU
- ..
o.4fe>
fo/^^
.AV>
.03
7.2fe
NE.1R
CO.,
%
. B2
of
o. .pip
8RC
,0i>
8t^
Q A Q
/•47
9O C
.Zi>
. /2
q -14
~i t»c-
/.7->
9 rift
.DO
9 A I
,UI
&/- -)
.to /
Q Af~
D.^o
81.-)
.O /
81 1
.LI
6Af\
.TV
7.fc>4
ND\R
NOX
^«
—"7
S3.
Oo
i r\-j
ID /
1 ?4
„,
/- r x>
1 \ *l
^J I-*
^H> /
574
,
i *-l)io
i3Q
41
\O *7 1
1 40 o
QAt»
7ftcr
y| /^ »
4v> 1
•7 Q Q
Z7 7
O f\~J
l J> 1
O^C
7^-5
4-7
C.L.
N0»x
^«
-20
OO
cq
07
Oft
7"
i -JT
1 / /
-jrft
an -7
Ar\O
t> If-
n Oft
1 1 7O
1 DO
(ot)/-
4i
ft 1
1 1 D 1
1 A 1 *Z
^c:^.
7oj
-7f\Q
/U7
Acre
TOO
2^0
1 7"H
1 <-. /-
ft r\
90
4O
C.L.
NO,
^-
1
£;l
^7
Ok ^
7 0
1 / /
•j^fi
*-*•* v
^.n-j
/1A cr
CT)
. QJJ
1 1 7Q
G.R?
2,C
1 1 "7 1
M / 1
l An "z.
Q ^. 1
7-> 1
T AQ
/(J7
44-4.
T-T-T"
7 ft 1
1
•*ri
OLT
• to f
.
Ov /b
. 64
WISCONSIN VH4D DATE H/27/72.
WET
RUN
BAROMETER/^
Z6.9O DRY BUUB TEMP., T 74
-------
MODE
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
15
19
zo
2.1
Z2
23
EN&IME
SPEED,
RPM
9OO
1700
noo
1700
1700
1700
1700
noo
noo
noo
900
2800
2800
2800
2800
2.800
280O
2800
2800
2&00
900
OBSERVED
POVIER.
kK>
2.8
5.7
8.5
\ 1.3
14.1
17.0
H.&
22.7
31.0
27. Z
23.3
19.4
15.4
9.3
7.9
4.0
FUEL
FLOW,
VH,
2, .4
4-2
5.Z.
fc.O
7-7
9-1
10.3
1 1.3
13.1
14-7
2.4
2.0.4
18- fc
17.2
Kc.Cc,
14.0
II. 8
9-7
6.8
«>.?
2.fc
TEMP,°F
INTAK.E
AIR
75
75
75
7k
7fc
7fc
7fc
7fe
77
77
77
77
-??
79
79
79
79
79
-/)
19
79
EXH-
AUST
(oSO
7 2O
800
870
930
1010
1070
(130
1200
1250
0
2450
2fo50
3320
4OOO
4110
42SO
5300
TfoOO
ND1R
HC,
>KCfe
Ztfe
279
»70
\fcl
170
1 10
12?
12?
no
91
2-10
i 1 1
92
92
91
130
130
13?
150
'61
27 &
ND1R
to,
y.
fc.BO
fo.&4
(b.OS
5.26
S.77
8
854
503
309
2.15
I2\
108
41
C.L.
NOV
ft"
47
47
8-
30.
3fc
82
2.00
305
34(
4£fc
-------
MODE
1
2
3.
4
5
e,
7
8
9
10
1 1
12
15
14
15
16
U
15
»9
2.0
2.1
22
23
ENGINE
SPEED,
RPM
900
noo
uoo
noo
\700
\700
1700
noo
\700
noo
\ooo
2-800
2.800
1800
2800
2.800
Z800
2BOO
Z800
2800
1000
OBSERVED
POVJER,
Ut>
2.8
5.7
8-5
U.3
14-2
17.0
19- &
21.1
31-0
2/7.3
23.3
15.4-
15.4
9.3
1-9
4.0
FUEL
FLOW,
VK,
2.7
4.3
5-.t>
15.0
2.6
£0.3
16.7
il. &
Ib.l
13.3
ii. s
10.8
8-7
7.79
179
!~
31
49
63
Z04
302
351
453
0,18
H70
-------
t\J
cr-
MODE
1
2
3
4
5"
<0
7
8
9
1 0
i i
1 2
1 3
ENGINE
SPEED,
RPr-i
IOOQ
zooo
2000
2000
ZOOO
ZOOO
1000
24OO
2.400
2400
2400
2400
»000
OBSERVED
POVJER,
bK(>
-Cfe
27(0
109
io>3
I(o9
159
129
254
14-9
138
»7?
2.31
2S4
512
NDIR
to,
%
fc.93
t.84-
5.81
S.82
s.\o
4.70
63
29
C.L.
NO,,
H»-
43
fcS
252
447
9il
VMS
49
(252
1080
552
2>?
62
4\
C.V..
NO,
»>»>-
39
(oO
24ft
440
3IC,
\\\S
4-1
)20S
I07fe
S4«
2-19
&0
34
POLAR.
o,,
%
O.B3
0.59
O.fc3
o.s(»
0.43.
0.34-
0.50
0.3t
O.M
O.iS
O.lfc
0.5?
O.fcS
WISCONSIN \ HAD
DATE U/29/-I2
MAPPING-
BAROMETER,
WET BUL6 TEMP, °F _-5_4_
Z9.4O DRV BULB TtMR, %F ~>Q
-------
MODE
1
2
3
4-
5
6
7
8
9
1 0
i i
t 2
1 3
ENGINE
SPEED
RPM
900
2.000
ZOGO
2000
ZOOO
2.000
(000
2400
2400
Z400
Z.400
2.4-00
1000
OBSERVED
POVJER,
bKf>
b.s
13.0
19.5
2-t.O
29.fc
Z2.Z
14. &
7.4
FUEL
FLOW,
Vhr
Z.fc
5.3
7.S
10.8
13,7
lfc.2.
2.7
i&-9
15.?
12.5
S.fc
S,
3.1
0.1
4.3
21
l.<0
0.8
O.S
O.i
EXHAUST,
i* ^
o.o
0.)
OJ
o.\
o.z
5.3
o.o
0.4
0.3
0.2
o.»
o.\
o.O
^PiN\FOLD
VKCUUM.
C« ^
FtA
we,
n>~c.
Id.fcOO
fe,280
4,^9 D
3,58G
2,4)80
2,^90
!2,8t>0
2,480
2,fcSO
3,4fcO
3,750
4,500
1,400
ND\R
«Cx
H-Cfc
299
22.1
180
IS?
147
1X9
321
)SQ
12J
lb>
\79
It)
300
ND1R
tOx
%
1.98
fc.92
5.>o
S.&3
(o.25
4.15
fo.bS
4.1^
5.23
5.15
6.31
5.95
(o.4?
NDIR
coz/
Yo
1.22
8.2-t
&.B8
8.98
9.5?
9.93
8.27
IO.O&
9.9
47
lZfc3
UZ&
574
233
83
35
C.L.
NO,,
V-K
37
0,3
Z44-
435
94-3
1048
51
1ZOO
ion
557
233
63
41
C.L.
NO,
*>*>»•
27
to
235
43S
9Zk
1044
4-!
12.00
1061
SSI
2B.I
15
3(o
POLAR.
°2,
%
0.49
O.OB
0.01
0>09
O.Oi
o.os
0.08
0.01
0.03
0.03
0.03
0-01
0.09
ENGINE WISCONSIN VH4J?
MAPPING-
DATE '> A?/72-
BAROMETER, i"
2.3-
WET BOL& TEMP.. °F
DRV &ULB TEMP., *F
12.
-------
APPENDIX G
COMPUTER-GENERATED DATA PRINTOUTS
AND CALCULATION OF BRAKE SPECIFIC EMISSIONS
FOR GASOLINE ENGINES USED IN FARM,
CONSTRUCTION, AND INDUSTRIAL APPLICATIONS
G-l
-------
b n H i b N b I N b NO E1 8 8 b 5 3
)F ti-'ISSIONS TEST KUN 1
I'OL'E
J
f
H
t
b
b
7
b
b
in
.1 i
id
J 3
It
lb
lb
1?
lb
14
dl
?\
d?
5;i
HODb
1
P
4
t
b
h
V
i'
9
U
11
12
1 j
It
J b
lb
17
IB
] 4
PC.
2J
ap
2J
CYCLE
bPttP
bSli
1 t (i Li
1*01'
1*111'
l * n 1 1
it mi
.1 * n i.'
J. * LI L:
i * 1 1 f."
itiiii
bbh
i'-rin
P inn
dllH>
d 1 (J 1 1
f.MllL
d J U 1 1
d 11 i 1 '
P. 1 n 1 1
c' 1 l 1 1 i
d 1 LHi
bSh
dinn
L
A L D b .
II. f.
n.n
i ' . '
i1 . i
".i
<'.'
n . i
i' . ii
1 1 . f
n . I.
U . 1'
P.I'
l. . i
C.l'
M . i.
1 1 . i '
i1 . (.'
fi . C
n . n
( . i'
h . i
n . i .
i:. I.
L.I..I-
UYNA ,
L n A o
n.fi
o.n
IB.fj
37.0
b*.n
7 3. fj
41.0
104.0
127.0
lb J . U
0.0
0 . 0
1 .H t . 1 1
1 J P . U
Hb.D
K n . u
b*. n
t f< . n
32.11
J h.O
n . c
n.ri
ii.ii
HP
0
0
b
13
19
db
32
38
**
53
D
0
70
59
5U
*P
3*
2b
17
8
U
0
Ij
h A IM . FUtu R A "1 t
VAC. L6/HK GM/HR ALDt.
19. U 3.2 1*52
19. 2 7.2 32*8
17.9 10.2 *b22
15.9 11.4 5343
13.8 15.1 b85*
11.9 17.5 7415
4.8 14.* 881)4
?.* 22.3 ICUOb
5.1 25. * 115U3
P.I 28. b 1P455
14.3 3.1 1397
21.* 3.3 1*79
3.1 37.7 17119
7.1 30.7 13935
4.11 28.5 1241*
11.2 25.1 11385
13.1 20.* 42b3
15.* 18.* 83b*
lb.5 15.8 71*9
1«. 5 12.0 5*52
IS. 8 9.7 >+>+0*
19.7 3.2 l*bl
21.3 3.3 1*88
-0
-0
-U
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
aLCOLATLO GRAM/HK WT.
HL
HO. 7
dS*.2
1 1 J, . b
L 5 d . l
1 98 . b
1 S 7.b
c1 1 1 U . t
Pl'1.5
i >.; i . H
P P 9 . b
h 2 . n
* 13. 1
P b b . b
ddb . 3
dlS.b
P 2 V . b
195.5
187.4
1. 7 1 . 1
.1 J 4 . 2
1 b 2 . ll
7b. *
*«4.b
L'SITE
cu
*bt
2812
3395
3498
tfib 7
5025
53*2
5*3*
5 2 n 2
bb'M 7
*bb
5b8
57U2
blbS
b253
h 0 R 7
S23b
52**
*b5*
3b87
31*3
boa
b47
HC
CO 1
N02
AIDE
riSFC
N02 FAC. HP
a. 8 ,ob? o.o
*. 3 .0*0 0.0
2b.a .0*0 .3
t 1. 7 .0*0 .5
b8 . 0 .0*0 .8
115.8 .0*0 l.Q
1 b 5 . b .0*0 1.3
230.3 .0*0 1.5
315.* .0*0 1 .8
358.4 .0*0 2.1
2 . * .Ob? 0.0
.5 .0*0 fl . 0
795. b .0*0 2.8
*91.0 .0*0 P.*
tit .2 .0*0 2.0
338. 3 ,0*U 1.7
atu.b .0*0 1.3
Ibl.l .0*0 1 .0
110.7 .0*0 .7
*2.2 .OtO .3
1 3.P .0*0 0.0
P. 2 .Ob? 0.0
.3 .0*0 0.0
8.41b GRAM/BHP HR
70. RO* GRAM/BMP HR
7.353 GRAM/BMP HR
0.000 GKAM/BhP HR
.705 LR/BHP HR
ALDE.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WET
HC
b900
12000
*bOO
*200
*300
3500
3350
2900
2250
2500
bOOO
32500
2200
2300
2*50
2950
3100
3350
3bOO
3250
5000
7000
30500
CONCENTRATION
i
b
5
5
5
*
*
3
3
3
2
2
2
3
3
3
*
t
t
*
5
a
2
WEIGHTED
5.
10.
5.
fa.
7.
7.
8.
8.
7.
9.
*.
lb.
10.
9.
8.
9.
7.
7.
b.
*.
b.
5.
19.
HC
38
17
bb
08
4*
51
02
Ob
28
14
1*
52
7*
05
79
10
82
52
8*
77
08
10
58
CO
,9b2
.572
.*bO
,*fa5
.21?
,b37
,*21
.872
.18b
.017
.18*
.21*
.312
.101
.*50
.407
.110
.b29
.8*8
.97?
.119
.728
.1*9
coe
4.75
7.5fa
4.04
9.01
9.20
9.77
4.97
10.38
10.82
10.8*
10.73
b.17
11. *9
10.83
10.70
10. Sb
10.2?
9. 45
4.83
9.5b
8.8?
9.95
*.o?
NO
73
bl
2*7
3*b
***
bSO
83*
948
1175
1177
70
11
19b3
1503
1391
1321
11*4
8bb
702
3*b
131
bd
S
GRAM/HR
30
112
135
159
14*
201
213
217
208
223
30
22
228
2*b
250
2*3
209
204
18b
1*7
125
*0
27
CO
.4
.5
.8
.4
.?
.0
.7
.*
.1
.9
.*
.7
.1
. b
.1
.5
.*
.8
.2
.5
. 7
.1
.4
NU2
.a
.2
1.0
1.7
2.7
*.b
b.b
9.2
12. b
1*.*
.2
.0
31.8
19. b
Ib.b
13.5
9.b
b.*
*.*
1.7
.5
.1
.0
G--2
-------
FORD bSCHiQ ENGINE NO E188b53
23-MODE fMSSIMNS TEST RUN 2
3/21/72
MOl'E
1
?
3
4-
c,
b
7
8
q
in
11
12
13
It
15
Ib
J 7
18
1=1
20
21
22
23
SPEED
b50
itno
It 00
It 00
item
It OCi
It Q(i
item
1 1 0 0
It 0(i
bso
Iton
510 0
a IOC:
2101'
2100
elOL
2 inc.
2100
elOLi
2100
fa SO
2 lor
UYMA,
LOAD
0.0
n.o
iq.o
38.0
57.0
?b.O
15. 0
1 1 1 . 0
133.0
151.0
o.rj
0.0
ist.o
118.0
101.0
8t .0
b?.0
51.0
3t .0
17.0
n.o
n.o
LI. 0
MAN. FUEL KATE.
HP
0
0
7
13
20
2?
33
to
t?
53
0
0
70
ba
53
tt
35
2?
18
q
0
0
0
VAC. LB/HR GM/HR
11.1 3.
11. t 7.
17. 1 8.
lb.1 11.
is. q it.
11. q ib.
1.3 18.
?.? ea.
t. ? at.
2.0 27.
11.7 3.
21. t 3.
3. a St.
b.O 31.
8.7 27.
10. q at.
13. t 21.
it. 8 iq.
ib.q it.
18.5 la.
ao.o q.
11.8 3.
21. t 3.
CALCULATED GKAM/HR
MODE
1
2
3
|+
5
b
7
fc
q
10
J 1
12
13
It
15
J fa
1 ?
18
11
?n
2J
22
23
CYCLE
AL OE .
(1.0
n.c
O.l
0 . ('
O.l'
o.n
0.0
0.0
0.0
O.fJ
o . n
n. (i
0 .0
0.0
0.0
0.0
n.(<
0 . 0
0.0
0.0
0.0
0.0
0.0
COHPl
HC
70.7
235.0
1 3 2 . fa
153.5
i?i.e
142.1
18b. 3
221. t
211.8
eat .H
b2.8
177. b
223.3
213.8
eut.i
201.7
1M8.0
18b. 7
Ibl.fa
251. b
lib. fa
18. S
ttO.fa
iSITE
CO
5bl
27tq
sosq
3 fa (i 8
tt35
t785
tan
5t52
5131
5b01
503
b52
517S
bll?
5721
58bl
Sb03
5381
tt7t
3511
2180
bSl
bit
HC
CO
Noa
ALDE
BSFC
i itat
i seib
i tota
1 5035
t bStl
a 73fab
i saio
5 10117
5 11122
i iae?t
0 13b5
3 isao
7 1572b
s ita?i
s latbi
t 11015
s lies
3 8750
8 bb15
1 5t8t
0 tOfal
t 1551
0 13t7
WT.
N02 FAC.
2.5 .
t.a .
17. t
to. 8
77.8
103.0
150.3
238. t .
33t.S .
Stl.O
a. 5 .
.5 .
733. a .
515. 1
t!7.S .
ate.t
370. b
IIS. 7
95.0 .
ti.o .
i.s .
e.t
• t .
8.7S5
151.207
7.078
0.000
.bSl
Ob? 0
oto o
nto
oto
oto
oto i
oto i
oto i
oto i
OtO 2
Ob7 0
oto o
oto a
oto a
oto a
OtO 1
OtO 1
OtO 1
oto
oto
oto o
Ob7 0
oto o
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
LB/BHF1
ALDE.
HP
.0
.0
.3
.5
.8
.1
.3
.b
.1
.1
.0
.0
.8
.5
.1
.8
.t
.1
.7
. t
.0
.0
.0
HR
HR
HR
HR
HR
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
ALOE.
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WET CONCENTRATION
HC
b550 2.
11100 b.
teso s.
ttOO 5.
3100 t.
3700 t.
3150 t.
3000 3.
abOQ 3.
eboo 3.
booo a.
38500 2.
1150 2.
2100 2.
2300 3.
2700 3.
2100 t.
3100 t.
3550 t.
blOO t.
7000 5.
8 1 0 0 3 .
28500 1.
WEIGHTED
HC
t.72
q. to
5.31
b.lt
7.17
7.b1
?.ts
8.8b
8.17
1.37
t.11
11.10
8.13
8.55
8.1b
8.31
7.12
7.1?
b.tb
10.18
7.8b
b.bO
17. b3
CO
573
127
S3?
Ill
778
5b2
013
b57
111
0?b
380
bOl
231
171
112
73b
Ob3
tai
8b5
?ba
asa
738
Ifa?
coa
q.ib
7.faS
8.7b
8.87
1.07
1.25
q. t?
1.8b
10.28
10.28
10.07
5.80
11.30
10.81
10. b3
10. ea
10.18
q. ?q
q.tq
q.ti
8.53
q.si
3.10
NO
71
51
112
353
510
517
7bS
173
1237
1131
71
11
1103
152b
1117
1328
1111
S11
fa21
too
IQfa
bO
8
GRAM/HR
CO
37.1
101.1
iaa.3
111.3
177.1
111.1
115. b
ais.i
aos.s
aat.i
33. b
2b.l
207. a
211.7
228.8
231.5
221.1
215. b
178.1
112.0
111.2
13.1
at.b
N02
.a
«2
.7
l.b
3.1
1.1
b.O
1.5
13.1
13. b
.a
.0
28.1
20. b
lb.7
13.7
10.8
8.0
3.8
2.0
.1
.2
.0
G-3
-------
FOkD (.-Bono ENGINE NO E188b53
23-MdDt thissiohs TEST RUN 3
3/30/72
MUUE
]
2
3
t
5
h
7
8
q
in
U
le
1 H
it
IS
lb
17
IK
1Q
2u
51
5S
23
H Out
1
e
3
4
S
h
7
8
q
10
11
It'
13
It
1?
lb
17
lb
is
50
?J
-------
FUKD t,5nno ENGINE NO 11 8 8 b 5 3
23--.ni)F. EMISSIONS TEST HUN 4
3/3)772
!• ODt
J
2
3
t
5
b
7
8
9
in
11
12
13
14
15
Ib
1 7
IK
J4
2n
21
22
23
•" 0 L< t
1
c
~3
it
t,
h
>
H
q
ll-
11
12
13
1 t
15
1H
17
IK
J H
20
£1
22
23
rvc it
S P E E" 0
bSU
14 on
140U
1 4 f j ( ,
.1 4on
1400
l frui
1 1 o n
1 1 fj L,
It nil
h50
1 ton
2100
2100
2 .1 0 0
2 J 0 1 1
2) mi
2 1 0 0
21 no
21 or
2101
bSl
2 1 n (•
c
i L i; t .
n . n
II . 1
'"-' . ' '
n . o
0 . L.
0 . U
n . o
II . C'
n . n
M.I
M . i
P. . f
[I . M
0.0
• \ . c
n , r.
" . !•
0 . M
n . U
n.o
o . o
o.n
n . n
C C M-
UYNA ,
LOAL-
n.o
0.0
14.0
3H.O
b?.U
-"b . 0
45.0
114.0
133.0
154.0
0.0
0 .0
1 3 R . 0
118.0
101.0
84.0
b 7 . U
5i .n
34 . n
17.0
0 . U
0. 0
0.0
HP
0
0
7
13
20
27
33
to
47
54
0
0
72
K2
53
44
35
27
18
9
0
0
0
r-1 A l\l . h
UtL
VAC. LB/HR
19.3 3
19.5 b
18.1 8
Ib. 3 11
14.3 13
11.4 Ib
9,4 18
7.5 20
5.1 2 j
2.2 c7
19.8 3
21.4 3
3 o 1 35
b.2 31
9.0 27
11.4 ^4
12.4 22
15.0 18
Ib. 7 15
18 . b 12
20,0 9
20.0 3
21,7 3
,2
.4
. 7
. 1
. 5
.b
. q
. 7
. a
. 2
. 1
. 2
. 3
. 2
. 4
.4
. 1
.3
, S
„ q
. 1
. 0
.5
K A T t
C- M / H R
1433
3112
34bO
5017
b!37
7534
8555
4344
1 C 7 4 b
12352
140b
14Sb
15444
14148
12429
11272
10038
8287
7044
58b5
4105
13E3
1574
IN t 1 C U N C (7 N T R A i 1 G N
ALDt.
-0
-0
-0
-0
-0
-0
-0
-0
"0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
- U
-0
-0
HC
8tOO 1.
12bOO fa.
5000 5.
440U 5.
t 0 0 0 4 .
3700 4.
- 3000 3.
2850 3.
2550 3 .
2 5 0 U 3 ,.
BbOO 2 .
24000 2.
2200 Co
2300 3 .
2550 3.
2800 3.
3000 4 .
3200 4 .
3 b 0 0 v> ,
3700 S „
bOOO 5.
7500 £0
41000 2 „
ALCULATEuGRArVh^ w T . uhltjHTEiJ
HC
48.8
253.4
134.1
152.3
172.3
147.3
IPb . 4
1 4 7 . b
2 n 4 . d
223.8
9b . ?
371 . /
2^5 . b
2 3 1 . 0
224.5
210.4
2 n 5 . 7
.174.7
1 73. U
14b . d.
1 71. b
7b. 7
b24.3
C-SI 1 F
CO
4bO
2794
3034
3499
4158
4844
4970
5001
5057
5947
537
bSl
47b2
b!21
5752
57S1
57b7
5075
4b?5
40b5
29bt
54b
b55
hC
CU 1
NOc
ALDt
6SFC
N02
2 ., t
3.3
15 . b
42,0
72, 3
112,8
148,5
217,1
3 0 b . ?
305,4
2 . "
e v
733.7
472.5
t i 0 . 0
337.5
2b4 . c
Ib4 . h
103.8
51.1
q D 4
2.1
.5
8,843
57,325
b „ 7bc
0.000
.b54
F AC „
.087
.040
.040
. 040
.040
.040
.040
,040
.040
.040
. Ob7
.040
,040
. 040
,040
.040
.040
.040
.04(1
.040
.040
.Ob?
.040
C-K*
0
0
1
1
1
1
2
0
0
2
2
2
1
1
1
0
0
0
f '/ b H P
GRAM/bHP
GKA
GKA
n/bHP
M/BHP
LB/6HP
HP
.0
.0
. 3
.5
.8
. 1
.3
.b
.4
.2
.0
,0
.4
. 5
. 1
, 8
. 4
.1
. 7
. 4
.0
c 0
.0
HR
HR
h'R
MR
HR
ALL'S,
0.0
0.0
0.0
0.0
o .n
0 . 0
o.o
0, 0
0.0
0.0
0 ,0
0 .0
0. 0
0.0
0.0
0.0
U . 0
0.0
U. U
0. 0
0.0
0.0
0.0
HC
b.54
1 0 . 1 b
5.3b
b.D4
b. 89
7.89
7.4?
7.90
3ol7
8.45
b, 45
14.8?
10.22
9.24
8.48
8. 74
8.23
7.14
b. 92
5.85
b.6b
5.11
25.17
co roi-
933 ",^1
8bt 7.3d
599 8 . b b
003 4.05
778 9.07'
5 U 3 3 ., i b
950 XM8
571 i , b i
125 i 0 ., 0 ~
284 10,.-'
3 b 5 T . c M
51b 5., ' '-
024 11
017 1 0 .„ b
234 10. h J
fa 7 5 10. T- 0
1 b 3 10.1?
471 4 , L> \j
815 4 , ':• S
043 9 „ 3 P
132 H. fcP
b 4 5 1 J 1 u
112 '1.07
G R A H / H !•;
C 0 N u ;:
30.7 .2
111.8 ,1
121.4 , b
134,9 U 7
1 b b . 3 2 , '-1
144,0 M , 5
148,8 5,4
200,0 P. '
202.3 ,17.7
237.4 i I , r?
35.8 J
2b.i
190,5
2 4 4 o 9 •. * .-
230,1 Ib ':
2 3 1 . b l-o 5
230.7 10, b
2 0 2 o 9 t, „ 8
187.0 'J „ ?
1 b 2 , b 7- . 0
1 1 8 o t. . H
3 b . 4 „ i
2b,2 ; !i
I'!,
b -
'I-
175
3b:
!f. '7 i:
L 7- .
" ' f
, M ;
i ^
'
c '
_1 ,
; : 0 i
< ' -
) ",• 0 -
J 3 >J :
} } b '
•' 1 1.
L" .. i
-: i_
t
G-5
-------
F U h1 •_) bb n Ii G t N G IN E NO E 1 8 8 b b 3
Pd-MfH)t (-MISSIONS TEST HUN S
3/31/75
NODE
j
c
d
t
b
b
7
t
c
1L
11
ve
13
It
Ib
Ib
1?
18
IS
S\:
P.I
aa
^
u Y N A .
SKEO. LOAO
hSO
it (l(i
it no
i t uti
i too
i1* in
it i.n,
It ||[.
i tn(,
1 t f. f!
hbO
1 tQI,
aim.
ainii
a j mi
a INI.
31 PR
51MO
31 no
aim.
a j 1 1 1
F-b'l.'
a j n o
0 . 1.1
n.o
IS.fi
38.0
57.U
?h.O
SS.O
1 1 "• . 0
.133.0
1 b 1 . U
0.0
0.0
] 3 7 . n
118.0
1U1.0
at .0
b?.IJ
5J .0
3t . u
17.0
0 . 0
o.o
o.u
HP
0
0
7
13
ao
a?
33
to
t?
b3
0
0
?a
ba
53
tt
35
a?
18
q
C
0
0
fiAN. FUEL RATE
VAC. LB/HR GM/HR ALOE.
30.5 3.
IS. 8 b.
18. b 8.
Ib. 3 10.
It. 5 13.
15. t 15.
10. a i?.
?.b 51.
5.0 53.
a. h aa.
a n.o 3.
31. t 3.
3.b at.
b.a 33.
S.3 27.
11. t at.
13. t aa.
15. n IB.
17.0 15.
18. b 13.
30.3 S,
IS. 8 3.
31.5 3.
i itat
S 3130
t 3810
fa t855
? blSfa
b ?OSt
? 8038
0 S53b
8 107Sb
2 15787
a itsb
3 ltS7
t 15b23
a itssa
1 15315
t nots
5 101S?
S 8555
8 71tS
1 5503
a tibs
a it?n
3 ItS?
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
CALCULATED Gf
h
4
H.
1 1
id
1 H
I1!
J C.
] b
17
If
1 u
51
a i
a a
s'-
(. YC LE
Al. l)h
n.o
n.i
o . f
'•• . I
0 . r
o . l
O.I
n .(
i1 . (
0 . 0
P.I'
I' . 1
(i . 1
1 ' . !
n . n
0 . I
0 . 0
n . i
o.o
n.o
" . '
i' . 0
n . o
L C ••
ML
77.1
a 7 3 . H
] 15 . 5
1 i1 ? . S
1 tH . S
IbS . li
1 bt . 8
J HO . b
Ib8 . 5
a n a . a
7b . b
t ? a . b
Ptb. 1
asa . a
533 . *
a t1 8 . B
a?s . t
a .1 5 . B
1 4 3 . b
Ibl. t
ISO . b
life. ?
S3a.H
H t: S I T F.
CO
5ea
a?ba
3U78
3t38
t08b
*3U +
tsab
tstu
ttoi
bb3a
53b
bdb
5503
btt S
S8bS
bb3H
58t 7
bebb
t 755
3bbb
30tb
tub
b?l
HC
cu
Noa
ALOE
HSFC
rjoa F
a. 3
3.t
11. S .
3 b . 7
71. H
lot .u
1*8.5
3b3. 3
3 3 b . 3 .
351. S .
a. 7
.S
b t b . t
tSt . b
343. b
3at . b
aba . b
Ibb.b .
sh . a
tb.b .
ci.a
a. b
.t .
8.777
IbB.bati
b. b7b
o . r.: o o
. b53
AC.
Ob? 0
oto o
oto
oto
oto
oto j
uto i
oto i
uto i
oto a
Ob? 0
oto o
oto a
oto a
oto a
oto i
oto i
o*n i
uto
oto
oto n
Ob? 0
oto n
GRAM/BhP
GPAM/bMP
GHAM/BHP
GRAM/bHF
LB/6HP
HP
.0
.0
.3
.5
.8
.1
.3
.b
. S
.1
.0
.0
.S
.5
.1
.8
.t
.1
.7
.t
.0
.0
.0
HR
HR
HR
HR
HR
ALOE.
0.0
0.0
0.0
0.0
0.0
0.0
Q.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0
rtET CONCENTRATION
HC CO C03
7500 5
ItOOO b
t?00 fa
tOOO 5
3bOO t
3300 t
5800 3
e?oo 3
3300 3
3300 3
faSOO 5
3t 000 5
5300 3
3t50 3
5700 3
3000 3
3300 t
3750 t
t050 t
t300 t
b?00 5
1 0 U 0 0 1
33faOO 3
WEIGHTED
HC
5. It
10. HS
t .bl
5.13
b.OO
b.3b
b. IS
7.35
b. 73
8.35
5.11
17.lt
S. 81
10. OS
S. 3t
S.1S
S.18
8.b3
7.7*
b. tb
7.b5
7.S3
31.33
,t!5
. S8S
.51t
.353
.857
.t21
.873
.3bl
.850
.017
.350
.tbl
.313
.101
.3bl
.588
.Ib3
.52S
.8SO
.830
.303
.bSl
.OSb
10. Ib
7.bl
8.8b
S.3b
S.bb
S.S7
10.38
10. bl
11.05
10. Bt
S.SO
b.03
11. tS
10.83
lO.fal
10. SH
10.17
S.Sb
S.bb
S.tl
8.bS
S. bS
3.S8
NU
bS
53
l*b
3tfa
51S
bbO
80S
118b
1385
lOfaB
71
11
17tb
itta
1371
1382
loss
dbb
bOb
373
S8
bt
8
GRAM/HK
CO
at. s
110.5
133.1
137. S
Ib3.t
173.5
173.0
181. fa
17b.O
331.3
35.7
3S.1
308.1
358.0
eat. 8
551.3
533. S
510. b
188. S
ltb.3
131.8
37.0
3b.S
N02
.5
.1
.5
1.5
3.S
t.a
5.S
10.5
13.1
12. S
.a
.0
55.8
IS. 8
15.7
13.0
10.1
b.b
3.8
l.S
. t
.a
.0
&-e
-------
HERCULES fi-asoo ENGINE NO 33i92b3
P3-MOQE EMISSIONS TEST RUN 2 b/lb/72
MODE
i
a
3
t
5
h
7
H
9
in
11
12
13
It
15
Ib
17
18
19
2n
21
22
?-
OYNA
SPEED LOAD
bOO
It50
It50
It 50
It 50
itso
It50
It5 0
It50
It 50
hOO
It50
at no
2 1 0 0
atoo
atoo
at oo
atoo
aton
atoo
atoo
bOO
aton
o.o
n.o
19.0
37.0
5b.O
7t.O
92.0
10R.O
lae.o
its.o
o.n
o.o
12b.O
108.0
9t.O
7 b . 0
b2.0
ts.u
31.0
15.0
0.0
n . o
n.o
HP
0
0
7
13
20
27
33
39
tb
5t
n
0
7b
b5
5b
tb
37
2?
19
9
0
0
0
MAN.
FUEL RATE
VAC. LB/HR GM/HR
19.1
19.3
lb.9
It. 5
12.3
10.1
8.1
b.2
3. 7
1.5
18.9
21.0
2.3
t.2
b.2
8. t
10. t
12. b
It. 3
Ib. t
18.7
19.0
21.0
2.8 iabi
b.3 28tO
8.8 397t
12.8 5788
15.5 70t9
17.3 7838
19.9 9031
2t.8 112b3
2b.5 12025
33.2 150b9
2.7 1207
2.8 12bl
38.7 175b8
35.h lb!35
32.1 It579
27.3 1237t
23.9 10859
22.0 99bl
18.2 82t2
It. 2 bt59
10.0 tS18
2.t 1089
?.b llbl
HET CONCENTRATION
ALDE.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
CALCUIATED r,KAM/HH ^T.
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
It
m
ib
17
18
iq
2n
21
22
?3
CYCLE
ALDE
n.n
o.o
n.n
o.o
n . n
o.n
n.o
o.n
O.n
o.o
n.o
o.o
n.o
o.n
n.o
o.o
o.n
n .11
n . o
o.o
n.o
n.o
n.n
HC
52. b
b9.7
inl.f
ltb.2
177.9
190.5
207.5
2 1 1 . 0
2t9.3
2h8.3
79.7
5b7.8
22t . b
P.20.2
P17.1
183. b
I7b.2
Ibt.b
It?. 7
1 1 1 . 8
Ht . 7
St.?
bia.H
COMPOSI TE
CO
9b3
1319
atos
390?
t889
531b
5711
b9qh
781t
13h81
1121
5bb
8R33
9099
91?b
7858
b9tO
bR19
b!2t
tb22
30t?
923
273
HC
cn
N02
ALDE
HSFC
Noa
1.0
t.?
11.9
33.1
51.8
72.3
93.3
151.3
21 ?. b
120.2
. 7
.3
t 15. b
330.8
233.9
170. b
110. b
Bb.R
t7.0
?2.t
9.1
.8
.t
8.157
209.708
3.811
0.000
. 70b
FAC.
.Ob? n
.oto o
.oto
.oto
.oto
.oto i
.oto , i
.oto i
.oto i
.Of 0 2
.Ob? 0
.oto o
.Of) 3
.OtO 2
,otn a
.oto i
. n t n i
.oto i
.oto
.oto
.oto o
.Ob? 0
.Of 0 0
GRAM/BHP
GRAM/BHP
GRAM/BHP
GHAM/aHP
L6/BHP
HP
.0
.0
.3
.5
.8
. 1
. 3
.b
.9
.1
.0
.0
. 0
.b
.3
.8
.5
. 1
.7
.t
.0
.0
.0
HR
HR
HR
HR
HR
ALDE.
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
o.n
n.o
o.o
o.n
o.o
o.o
o.o
o.o
o.n
o.o
o.o
HC
5900 5
3500 3
3900 t
3800 5
3750 5
3bOO t
3500 t
3200 t
3050 t
2850 7
9bOO b
5tOOO 2
1850 3
2050 t
2200 t
2200 t
2500 t
etso s
e?oo s
2b50 5
2700 t
7 n n o 5
t3800
WEIGHTED
HC
3.51
2. 79
t.05
5.85
7.12
7.b2
8.30
9.bt
9.97
10.73
5.32
22.71
8.98
8.81
H.b8
7.3t
7.05
h.58
5.91
t.59
3.39
3.b5
at. 75
CO
.3tt
.e??
.587
.022
.101
.973
.7b9
.bOO
.732
.195
,b81
.bb?
,b02
.19t
.bOt
.bb2
.875
,02b
.Stl
.282
.807
.853
.955
C02
8.20
10.be
10.31
9.b5
9.38
q.ta
10.12
10. Of
9.b7
8.53
b.89
3.93
10. b8
10. b2
9.95
9.95
10.28
9. 5b
9.25
9.3b
9.32
7.39
2 . R8
NO
35
71
138
259
329
t!2
t?t
b05
802
385
25
8
1031
928
71t
bib
t?3
389
259
15b
8 f
31
B
I;KAM/HR
CO
bt .2
52.8
9b. 3
15b. 1
195. b
212. fa
228. t
279.8
312. b
5t?.2
7t.7
22.7
353.3
3 h t . 0
3b?.0
31t . 3
277. b
272.8
2t5.0
18t.9
121.9
bl.b
10.9
N02
.1
.2
.5
1.3
a.i
e.9
3.7
b.l
8.7
t.8
.0
.0
Ib.b
13.2
9.t
b.8
t . t
3.5
1.9
.9
.t
.1
.0
G-7
-------
HtRCULfS G-2300 ENGINE NO 331S2b3
23-MODE EMISSIONS TEST RUN 3 b/19/72
MODE
i
a
3
1
5
b
7
R
q
in
11
12
1 i
11
ib
lb
17
18
11
20
21
2?
23
0 V N A .
SPEED LOAD
bOO
1150
1150
1150
1150
H50
1150
1150
1150
H50
boo
1150
2100
2100
2100
2100
510(1
2100
2100
2100
2100
bOO
2100
0.0
0.0
1=1.0
38.0
bb.O
71.0
S1.0
112.0
130.0
H8.0
0.0
0.0
127.0
110.0
S1.0
80.0
b3.0
1H.O
32.0
17.0
0.0
0.0
n. n
•
HP
0
0
7
11
20
27
31
11
17
51
0
0
7b
bb
Sb
18
38
29
iq
10
0
0
0
MAN.
FUEL RATE
VAC. LB/HR GM/HR
18. b
is. q
Ib.b
11.1
12.3
s.q
7.5
5.1
3.2
1.1
18.1
20. q
2.0
3.7
b.n
8.2
10.3
12.0
11, i
lb.0
18.3
18.8
20. q
CALCULATED GRAM/HR
MODt
1
?.
3
4
5
h
7
H
q
in
11
12
13
11
15
It.
17
Ifi
19
20
21
5?.
?3
CYCLE
ALDE
0.0
0.0
n.n
0.0
n. n
n. o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
n.n
o.o
n.n
o.n
o.o
HC
5b. 1
b8 .1
120.1
157. U
193. b
190.1
217. ?
201.8
2iq.q
312.7
b5.1
b32.b
277.5
302.5
271.8
258. 7
222. b
203. b
ihi.a
119. 7
q2.8
72.7
519.9
COMPOSITE
cu
llfaS
1393
21b3
3b38
500H
5b08
bOb?
bl St.
7101
12551
1207
735
8b20
9181
8851
795,9
b782
b258
500b
1123
3031
120b
273
HC
cn
N02
ALDE
HSFC
N02
1.1
3.S
11. b
28.3
51.1
hq.b
121.7
115. b
211.1
112.1
.9
.3
159.0
37b.8
2b3.0
175. S
123.1
qo.7
10. 7
22. b
8.S
1.2
.3
8. 81b
2 0 0 . q 1 7
3.S23
0.000
.710
3.2 1138
5.S 2b85
q.S 1318
12.5 5bbS
Ib.b 7552
1S.1 8b1b
21.1 S71b
22.5 1020b
27. b 12533
33.8 1530q
3.0 135b
3.3 1501
3S.5 178qq
37.5 17001
33.2 15055
28.5 12911
21.2 1098?
21. H 9902
lb.8 7blh
11.1 b378
10.0 1551
3.3 1501
2.b llbl
WT.
FAC.
.Ob? 0
.010 n
.010
.010
.010
.010 1
.010 1
.010 1
.010 1
.010 2
,0b7 0
.010 0
.010 3
.010 2
.010 ?
.010 1
.010 1
.010 1
.010
.010
.010 0
.Ob? 0
.010 0
GRAM/HHP
GRAM/btHP
GRAM/BHP
GRAM/HHP
LH/BHP
WET CONCENTRATION
ALOt.
HP
.0
.0
.3
.h
.8
.1
.1
.b
.S
.1
.0
.0
.0
.b
.3
.S
.5
.2
.8
.1
.0
.0
.0
HR
HR
HR
HR
HR
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
ALOE.
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
5750 5
3850 3
1250 1
1350 1
1000 5
3500 5
3150 1
3050 1
3150 1
3350 b
7100 b
53bOO 3
2300 3
2700 1
2800 1
3050 1
3150 1
3200 1
3100 5
3bOO 5
3000 1
7000 5
37200
WEIGHTED
HC
3.71
2.71
1.81
b.28
7.71
7.h2
8.71
8.07
10.00
12.51
1.3b
25.30
11.10
12.10
10. SS
10.35
8.qo
8.11
b.59
s.qq
3.71
1.85
22.00
CO
.S35
.87S
.30b
.SSO
.122
.103
.7bO
.b3fa
.bl8
.b58
.7b3
.085
.537
.ISO
.lb?
,b15
.751
.870
.113
.2b1
.853
.751
.911
C02
8.21
10.81
10.52
10.27
10.08
10.11
10.29
10.18
lO.Bfa
9.11
7.85
1.28
11.07
10.72
10.59
10.31
10.17
10.38
10. 2b
9.71
s.58
8.01
3.22
NO
31
bb
155
23b
318
385
581
52b
811
3b2
30
q
lllb
1013
807
b25
52b
129
253
Ibl
87
31
7
GKAM/HK
CO
78.0
55.7
qs.5
115.5
200.3
221.3
212.7
217.8
29b.O
502.1
80.5
2S.1
311.8
379.3
351.2
318.3
271.3
250.3
200.2
l?b.S
121.2
80.1
10. s
NU2
.1
.2
.b
1. 1
2.0
2.8
1.9
l.b
8.b
1.5
.1
.0
18.1
15.1
10.5
7.0
1.9
3.b
l.b
.q
.1
.1
.0
-------
G-53UO ENGINE NU 33
?3-M(IUF EMISSIONS TEST RUN 4
b/13/75
MODE
1
?
3
4
^
K
7
R
q
in
11
i?
13
1 1
Ib
IK
17
18
iq
20
? 1
2?
53
SPttO
bOO
1450
1450
It 511
It 50
It50
1 1 5 0
1450
1.450
1450
KOO
1450
5400
2400
5400
5400
5400
5400
5400
ptnn
2400
bOO
2400
I'YNA .
LOAD
0.0
0.0
17.0
38.0
Sb . 0
75.0
33. 0
115.0
131.0
1 4 R . (1
n.n
n.n
155. n
111.0
34 . n
an.n
b3.0
47.0
33 . 0
17.0
0.0
n . o
0."
HP
0
0
b
14
50
57
34
4 1
47
54
0
n
75
b7
5b
48
38
?8
20
1 0
n
0
11
MAN.
VAC.
18.7
iq . i
17.5
1 1 . b
12.5
q. q
7. 5
5 . P
3.3
1. 7
18.7
50. a
5.1
3.b
b. 4
7. q
10.3
15.?
lt.1
Ib. 3
18.5
18.8
20.9
FUEL
LB/HR
3. 3
b. 1
q.s
12.5
lb.4
18.7
21.8
57.5
34.4
3. 5
3.5
38.8
37.5
31. b
?q.o
55.0
55.2
18.7
1H.1
10.0
5.b
5.5
RATt
GM/HK
1501
277h
t 318
5bb5
7421
8505
3004
3305
15320
15b5?
1442
15b9
17535
17010
1 4 3 b ?
13J45
.1 1340
I 0 0 5 5
8505
b3 ?R
4554
lib]
1134
ALDt.
-0
-0
-n
-0
-11
-n
-n
-0
-0
-n
-0
-n
= 0
= 0
= 0
-0
-0
= 0
«=o
-0
-n
"0
«n
WF T
HC
b'400
34011
3550
335(1
3700
3 5 1 1 0
3300
3000
pqno
3lon
8000
48800
2350
5300
5800
5950
3100
3100
3300
3450
3 3 0 0
SHOO
4 b4 on
r o 1 1 r F N
CO
5.787
3.153
30 758
4.812
5.110
t. q?4
4.508
4,554
40558
b. 337
7.400
3 . 3 3 7
3.387
4 „ t 73
4 „ 8Mb
5.442
5,175
5 . 0 b 5
5.314
5,517
4- „ 9 1 1>
5, 323
088?
T R A T I 0 N
C05
?. jq
10, 3b
10.30
3.53
3.51
q.si
q . bq
q. 78
q. bq
R , bq
b.qi
4.83
q . 3q
q. is
u H Q
R. Ht
q.i2
8.80
R. 78
8. b7
8, 35
b „ bb
3,05
NO
35
78
157
32b
tlb
4tS
tqq
5S3
803
474
58
12
qsb
1070
b?b
4qq
510
4bq
32b
Ib9
87
32
8
"'Oi'E
1
5
-1
4
5
h
7
y
3
1 r)
11
1 2
13
1 4
15
IK
1 7
18
19
PO
PI
22
?3
CYCLE
r
41 Oh.
o.o
o . o
o.o
o . o
0 . 0
0 . 0
o.n
n . n
o.o
(j . 0
n . 0
o . n
n.n
o.o
O.o
n.o
o.o
o.o
n.n
n.O
o.o
o.n
ALCULATEP CRAM/HR
HC CO N05
b9.5
K8. 1
irib. 4
155.0
187.0
504.1
504.5
? 0 d . 0
?4b. 8
3L5.8
7b . 3
5Rb. 8
303. 7
581. d
585.3
?Kb . 0
P 4 1.1 . 7
2 19 . 9
iqt. 7
151. t
110.8
73.5
b 1 3 . 9
COMPOSI TE
1 570
1578
5574
3814
551b
5801
5bt5
b??b
7803
13041
1457
811
1 0 4 n H
1 10K9
10077
9910
8113
7257
b331
4R91
33?3
105b
537
HC
cn
N05
ALOE
HSFC
1.3
5. 5
15. b
t5.5
b3. 9
8b.l
102.7
154.4
5?b.n
1 b 0 . 5
. q
.5
455.9
435.3
529.5
1 4q . 4
131 .b
nn. t
b3.q
24. 7
q.7
. 9
.3
q . n?q
551.854
t . 130
o . o o n
. 709
rt 7 0
FAC,
. 0 b 7
.040
.040
.n40
.040
.040
.040
.040
.040
.040
.Ob7
.040
.040
.040
.040
.040
.040
.04(1
.040
. o 4 n
.040
.Ob 7
.040
'A
HP A L L> t .
0
n
1
1
1
1
5
n
n
3
5
?
1
1
1
n
n
n
G R A M / 3 H P
GRAM/HHP
GRAM/ rt HP
GRAM/RHP
LB/BHP
. 0
. o
. p
. b
. 8
. I
. 3
. b
. 9
. 1
. 0
.0
.0
.7
. 9
. 9
.5
. 1
, 8
„ H
. 0
, n
. 0
HR
HR
HR
HR
Hrt
0 „ 0
0,0
n. o
0 „ 0
0 . 0
0 . 0
o,, n
o.o
o.o
o. o
0 , 0
0 . 0
n . o
0. 0
o.o
0,0
o.o
0 . 0
u.o
0,0
0, 0
0,0
0 , 0
EIGHTE'.i
HC
H .
5.
4 .
b.
7.
8.
80
8,
q .
15.
5 .
29.
12.
11.
11 .
10,
9.
8.
7.
b.
4 „
4 ,.
t "r „
b4
7?
55
50
4 H
17
IB
1?
83
b3
09
47
15
57
49
b4
b3
80
79
Ob
43
«y
55
(, H A M / H R
CO N 0 5
8t .
51.
91 .
155.
508.
232.
225.
249,
313.
5?. 1 .
95.
35.
4 1. b.
445 .
tO 3.
39b,
3 2 1.
290 .
253.
195.
133.
b8.
M.
7
1
0
b
b
0
7
1
1
b
2
4
3
8
1
4
b
3
3
b
3
4
5
*
9
•
1.
2.
3.
4.
5.
H.
b.
a
«
Ib.
17.
q.
b.
b.
t.
5.
1.
.
e
•
1
5
b
7
8
4
1
0
a
H.
i
0
q
4
2
0
3
4
b
0
t
1
0
-------
HERCULES G-2300 ENGINE NO 33192b3
?3=MODE EMISSIONS TEST RUN 5 b/20/72
OYNA.
MODE
1
S
3
*
5
b
7
8
S
10
11 ,
13
13
It
15
Ib
17
18
19
SO
ei
??.
S3
MODE
1
2
3
i
5
b
7
H
q
10
11
12
13
1*
15
Ib
17
18
19
SO
2]
S?.
23
CYCLE
SPEED
bOO
1*50
1*50
1*50
1*50
1*50
1*50
1*50
1*50
1*50
bOO
1*50
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
2*00
bOO
2*00
C
ALOE.
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
n.n
0.0
0.0
0.0
0.0
LOAD
0.0
n.o
19.0
38.0
57.0
75.0
93.0
113.0
130.0
1*1.0
0.0
0.0
12b.O
110.0
S5.0
79.0
b3.0
*7.0
33.0
17.0
0.0
0.0
0.0
HP
0
0
7
1*
21
27
3*
*1
*7
5*
0
0
7b
bb
57
*7
38
28
20
10
0
0
0
MAN. FUEL RATE
VAC. LB/HR GM/HR
18.7 3
18.9 fa
Ifa.* 9
l*.b 12
12.2 Ib
9.9 19
7.9 22
5.1 25
3.* 27
1.7 31
18. b 3
20.9 3
2.1 *0
3.5 3b
5.5 32
7.b 30
9.8 2b
12.1 21
1*.3 17
Ib. 1 1*
18.* 10
18.^7 2
20.9 2
ALCULATED GRAM/HR
HC
b3.8
75.2
118.3
1*2.1
18b. 7
212.8
2*8.0
2*5.3
2b7.0
317.9
72.2
b*2.*
3*8.2
3*8.9
307.5
29b.9
255.0
215.8
185.7
1SS.O
111.5
70. 7
752.5
COMPOSITE
CO
llbb
1253
2505
3527
*703
5*37
blS*
fa**2
7*31
119*8
12*3
Bbl
8b7b
10882
9583
9133
SOlfa
b71b
5579
*788
315*
991
3*0
HC
CO
N02
ALDE
BSFC
N02
1.0
*.3
1*.9
30.3
55.1
98.9
93.7
1*1.2
178.9
93.8
.9
.5
*bb.b
291.1
220.7
13b.7
1*2.2
8*. 3
**.8
20.2
8.1
.9
.*
9.8fal
209.***
3.b3b
0.000
.721
.0 13*3
.3 2835
.5 *323
.5 5b7H
.1 7289
.7 895*
.1 10038
.2 11*35
.Z 12320
.8 1***3
.1 1*15
.fa Ibl9
.2 1822b
.8 lb?15
.7 1*815
.* 13771
.7 12111
.8 9902
.9 8101
.7 bb91
.0 *55*
.7 121b
.8 1293
WT.
FAC.
,0b7 0
.0*0 0
.0*0
.0*0
.0*0
.0*0 1
.0*0 1
.0*0 1
.0*0 1
.0*0 2
,0b7 0
.0*0 0
.0*0 3
.0*0 2
.0*0 ?
.0*0 1
.0*0 1
.0*0 1
.0*0
.0*0
.0*0 0
.Ob7 0
.0*0 0
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
LB/BHP
ALDE.
HP
.0
.0
.3
.b
.8
.1
.3
.b
.9
.2
.0
.0
.0
.b
.3
.9
.5
.1
.8
.*
.0
.0
.0
HR
HR
HR
HR
HR
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
ALDE.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WET CONCENTRATION
HC
7300 b
*000 3
*300 *
*000 *
*050 5
3750 *
3950 *
3*50 *
3*00 *
3700 b
8100 b
51200 3
2700 3
3100 *
3100 *
3*00 5
3150 *
3300 5
3500 5
3700 5
3bOO 5
8*00 5
*8000 1
WEIGHTED
HC
*.2b
3.01
*.?3
5.b9
7.*7
8.51
9.92
9.81
10. b8
12.71
*.82
25.70
13.93
13. 9b
12.30
11.88
10.20
8.b3
7.*3
b.3b
*.*b
*.?2
30.10
CO
.bOb
.301
.508
.91*
.osn
.7*2
.852
,*8b
.faflS
.885
.903
.39fa
.330
,7Bb
.782
.178
.902
.083
,20b
.517
.039
.831
.075
C02
8.02
11.38
10.78
10. b*
10. 3b
10. bb
10.7*
11.25
10. b7
9.5b
R.lb
*,39
10.53
9.75
9.8*
10.25
9. 7*
9.73
9.71
9.b9
9.30
7.77
2.37
NO
35
b9
Ib3
257
3faO
525
**9
598
b8b
329
31
Id
1090
779
b70
*71
529
388
25*
1*2
79
33
8
GRAM/HR
CO
77.8
50.1
100.2
1*1.1
188.1
217.5
2*b.2
257.7
297.2
*77.9
82.9
3*.*
3*7.0
*35.3
383.3
3b5.3
320. b
2b8.b
223.2
191.5
12fa.2
bb.l
13. b
N02
.1
.2
.b
1.2
2.2
*.o
3.7
5.b
7.2
3.8
.1
.0
18.7
11. fa
8.8
5.5
5.7
3.*
1.8
.8
.3
.1
.0
G--IO
-------
J.I. CASE 154 G ENGINE NO 5707350
2J-MOUE EMISS1HNS TEST RUN 3 a/11/72
MODE
i
2
3
*
5
b
7
8
q
10
11
la
13
It
IS
Ib
17
18
IS
20
51
aa
as
uYNA ,
SPEED LOAD
500
It 00
1*00
1*0(1
itoo
1*00
1*00
i*no
1*00
1*00
snn
1*00
aioo
aioo
a 100
2iuo
aioo
aioo
aioo
aioo
aioo
boo
aioo
0.0
0.0
ia.o
as. 5
35.0
*7.0
58.0
70.0
81.0
4a.s
n.o
n.o
74.5
70.U
bO.O
50.0
*0.0
3n.o
ao.u
10 . U
n.o
n.o
0.0
HP
0
0
*
8
ia
ib
an
a*
as
32
0
0
*e
37
31
ab
ai
ib
10
5
0
0
0
MAN. FUEL RATE
VAC. LB/HR GM/HR
17.4 a.b u?q
17.* b.i a?b?
lb.3 7.0 3175
It. 5 S.2 *173
ia.8 10.3 *b?a
10. b 11. b sab?
1.1 12.1. 5851
b. 8 1*. 7 bbfaS
t.l lb.3 73H*
a. a 17.7 8021
18.5 a.b 1171
20. b 2.1 1315
5.b 22.1 103S7
7.1 21. b 4748
8.1 18.8 8528
10.5 17. a ?80a
le.e i*.s b?i3
13. b 13.0 584?
1*.1 11.7 5307
15.7 11.1 5035
lfa.2 10.* *717
18.4 a.* 1081
20.7 3.1 l*0b
WEI CONCENTKA 1 ION
ALDt.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-n
-0
CALCULATED GRAH/Hk rt T .
MODE
1
a
3
*
5
b
7
8
q
in
11
12
13
It
15
Ib
17
18
1H
ao
ai
aa
as
CYCLE
ALOE
0.0
0 . U
0.0
0.0
0.0
0.0
n.o
0 .0
0.0
n.o
0. 0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
0 . 0
0.0
0.0
0.0
0.0
HC
36.3
1 0 * . 1
108.1
110. b
117.1
122.1
iiu.a
\ 1?.*
iab.4
IbS.S
37.1
538. d
L 7 b . ')
lbb.4
151.1
1*5.5
ia*. ?
107.4
97.3
i* . 4
84.3
33.3
845.2
COMPOSITE
CO
115*
24*5
3a?3
3478
*30B
*bb7
*408
5*b5
5833
b477
iiba
70b
77*4
7717
8837
b*l*
5554
500 b
*?sa
*808
*530
101*
*a?
HC
CO
NO?
ALDE
BSFC
NOa FAC.
1.2 ,0b7 0
*. o .0*0 n
s. a .0*0
10.4 .0*0
Ib. 7 .0*0
20.2 .0*0
*1. 1 .0*0
*5.8 .0*0 1
8H.b .0*0 1
40.0 .0*0 1
1.2 . 0 b 7 0
.* . 0*0 0
1*8.1 .0*0 1
10*. b .0*0 1
72.0 .0*0 1
51.1 .0*0 1
55.0 .0*0
*O.H .0*0
11.5 .0*0
11.1 .0*0
1.5 .0*0 0
1.1 .Ob7 0
.3 .0*0 0
ll.*45 GRAM/BHP
305. *73 GRAM/BHP
a. 530 GRAM/8HP
0.000 GRAM/BHP
.713 LB/BHP
HP
.0
.0
.a
.3
.5
.7
.8
.0
.1
.3
.0
.0
.7
.5
.3
.0
.8
.b
.*
.2
.0
.0
.0
HR
HR
HR
HR
HR
ALOE.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
*100 7
5100 8
5350 8
*200 7
3400 7
3b50 b
3*50 7
3300 7
3100 7
2100 5
*800 7
5**00 3
2550 5
abOO 5
2700 b
2850 b
2850 b
2800 b
2850 b
2450 7
2450 7
*50U b
75200 1
WEIGHTED
HC
2.5b
t .11
*. ja
* .*p
* . b4
*.ie
*.*!
* . 70
5.08
b.78
a.*?
21.53
7.03
b.b8
b.05
5.82
*.44
*.sa
3.84
3.74
3.57
2.22
35.81
CO
. 301
.21b
.020
,*83
.101
.8b2
.bO*
.372
.05*
.110
.**4
.533
.5bb
.451
.100
.214
.ase
.*3a
.aba
,*03
.*04
. 780
.777
C02
7.
b.
7.
7.
8.
8.
10.
10.
10.
7.
7.
*.
4.
4.
8.
8.
8.
8.
8.
7.
7.
7.
a.
28
74
Ib
45
Ofa
*0
3b
*8
70
5*
35
32
25
05
87
78
77
51
*0
4b
88
*7
52
NO
*5
bb
77
iat
IfaB
180
388
37b
bsa
*b*
*b
13
b*7
til
388
3*4
374
314
172
10*
4*
*b
8
GRAM/HR
77
117
130
Ib4
172
18b
lib
218
233
271
77
28
310
308
a?s
asb
aaa
aoo
181
lie
181
b?
17
CO
.0
.8
.4
.1
. 3
.7
.3
.b
.3
.1
.5
.2
.0
.7
.4
.b
.*
.a
.3
.3
.2
.b
.1
N02
.1
.a
.a
.*
.7
.8
l.b
1.8
3.5
3.b
.1
.0
5.4
t.2
a. 4
2.*
2. a
l.b
.8
.*
.*
.1
.0
-------
J.I. CASE 151 G ENGINE NO 5707350
23-MODE EMISSIONS TEST RUN t
MODE
1
2
3
t
5
b
7
B
4
10
11
IS
13
I*
15
Ib
17
18
IS
20
21
22
23
OYNA .
SPEED LOAD
500
If 00
1*00
1100
It 00
If DO
It 00
ItOO
ItQO
it on
500
If CIO
2100
2100
210 n
2100
2100
2100
2100
2100
2100
500
2100
0.0
n.o
11.5
23.0
35.0
f b.O
58,5
70.5
81.0
92.5
0.0
0.0
79.5
70 . n
fao.o
50.0
f 0.0
30.5
20.6
9.0
0.0
0.0
o.n
HP
0
0
t
8
12
Ib
20
25
28
32
n
n
t2
37
31
2fa
21
Ib
11
5
0
0
0
MAN. FUEL HATE
WEI CONCENTRATION
VAC. LB/HR GM/HR ALOE.
18.7 a.b 1179
17.9 fa. 3 2858
Ibo7 7.5 3t02
15.1 8.S t037
13. fa 10. a tta?
11.8 11. t 5171
9.1 13. t b078
?.o it.fa fabaa
f.8 lb.3 739t
a. 5 18.0 81b5
19,1 2.7 iaas
20.5 3. 9 1315
5.5 23. 3 105b9
7.5 21.7 98t3
8,8 19.5 88t5
10. t 17.7 8039
12.1 lfa.1 7303
13.3 It .5 bttl
15.3 12.1 5t89
lb.3 11,2 5080
lb.5 10.7 f 85f
19,1 a. 8 1370
20. cl 3.2 1 f 5 a
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
CALCULATED GKAM/HK rJ I .
MODE
1
2
3
t
s
b
7
a
9
10
11
12
13
It
15
Ib
17
18
19
20
2 J
22
23
CYCLE
ALDt
0.0
0,0
0.0
0 . 0
0. 0
0.0
0 . 0
0.0
0.0
n.o
0.0
o.o
n . o
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0,0
HC
34. S
109.0
11?. 5
lit .5
12?. b
135. H
1 t 5 . cl
It8. 7
Ib3«2
Jbt.3
t 0 . f
51?,,b
lib . 2
190.3
178. t
IbS.O
if ?. a
130.9
110.1
ma. 8
103,7
34 ,,5
1017,2
COMPOSITE
CO
1083
2R19
330b
3755
f 18b
tS23
t820
509t
5383
5878
llbS
7 f 5
?73|:I
77H9
7089
bSb3
5972
5233
t?t 9
f 7b8
t 312
1219
tot
HC
CO
NO 2
ALOE
bSPC
N02 FAC. HP
1.2 .Ob? 0.0
3. 9 .Of 0 0.0
b0b 8OtO .2
11.7 .OtO .3
Ib.b .OtO .5
e 3 „ 5 .OtO . b
5P.2 .OtO .8
58,2 .Of 0 1.0
113.2 .OtO 1.1
90. 4 .Of 0 1.3
1.3 .Ob? 0.0
.3 .Of 0 0.0
159.0 ,OtO 1,7
iOb.S .OtO 1.5
7b. 7 .OtO 1.3
b 3 . 1 .OtO 1.0
b 2 . f .OtO .8
55.3 .OtO .b
22.5 .OtO . t
11.5 .oto .a
11.3 a 0 t 0 0.0
l.f .Ob? 0.0
.3 0 o t o n . o
12..7S4 GHAM/BHP HR
301.513 GRAM/BHP HR
?,,8tl GRAM/BHP HR
o.ooo GRAM/BMP HR
,8it LB/BHP HR
ALDE.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
5000
blOO
BfaOO
f 550
tf 00
f aoo
3750
3500
3tOO
3100
5100
sasoo
3900
3050
3150
3250
saon
saoo
saoo
saso
3300
f 950
dtooo
b
8
7
7
7
b
b
5
5
5
7
3
5
b
b
b
b
b
b
7
b
?
1
WEIGHTED
HC
a. fafa
t.3b
f .70
f .58
5.10
5. ft
5.8t
5.95
b.53
b.57
a. 70
20. ?1
7.85
7.fal
7.13
b.faO
5.91
5.23
t.to
t.ll
t.15
a.b3
f O.bS
CO
.710
.088
.800
.38b
.151
."U7
.133
.93b
.551
.f 89
.e?t
.7bt
.bbt
.187
.198
.too
.f 00
.335
,83f
.tbO
.795
.5b9
.b53
C02
7. 55
7.30
7.85
8.20
8.38
8.bf
S.ll
9.30
9.51
9.faO
7. fab
f .37
9.b7
9.28
9.11
9.09
9.09
9.10
8.80
8.27
8.33
7.87
1.93
NO
f b
bS
9f
IfO
172
318
fOf
f!2
710
51b
50
9
708
Slf
t08
37t
t07
to?
197
109
108
53
8
GKAM/HK
CO
72.
lib.
133.
150.
Ib7.
180.
192.
aos.
eis.
235.
77.
29.
309.
3ia.
as3.
aba.
338.
209.
190.
190.
172.
81.
Ib.
2
7
3
2
t
9
8
8
3
1
7
8
5
0
b
5
9
3
0
7
5
3
2
N02
.1
.2
.3
.5
.7
.9
e.i
2.3
t.S
3.b
.1
.0
b.f
t.3
3.1
a.s
3.5
2.2
.9
.5
.5
.1
.0
G-IZ
-------
J.I. CASE 159 G ENGINE NO 5707350
53-MUDE EMISSIONS TEST RUN 5 2/15/75
MODE
i
5
1
t
5
b
7
8
9
10
1.1
12
13
It
IS
Ib
17
18
19
20
51
25
53
MODE
i
5
3
t
5
b
?
8
q
in
11
it
13
It
15
Ib
17
18
19
50
51
55
53
CYCLE
OYNA
SPEED LOAD
500
itoo
.itoo
itoo
itoo
itoo
itoo
itoo
ItQO
itoo
500
itoo
5100
5100
2100
2100
2100
2100
2100
5) on
5100
500
5100
ALDE
0.0
0.0
o.u
n.o
H.O
o.o
0.0
0 . 0
n.o
n. o
n.n
u.n
0.0
0.0
0.0
0.0
n.o
n.o
0.0
0 . 0
0.0
0.0
n.o
n.o
0.0
15.0
53.5
35. U
tb.O
58.5
70. 0
81.0
91.0
n.o
0.0
eo. n
70.0
b 0 . 0
50 .0
tn.s
30.0
20.5
11.0
0.0
0.0
0 . (1
CALCULA]
HC
Bb.t
Ib3. 0
Itb. 5
ltl.8
153.5
185. t
19b . 8
510.5
Plb. 7
215.2
tO .9
5t9.5
158.1
155.9
itq.o
513. B
199.8
170.8
158.1
133.9
2b9.3
t9.1
887. t
COMPOSI TE
HP
0
0
t
8
15
Ib
50
5t
58
35
0
0
t5
37
31
5b
51
Ib
11
b
0
0
0
MAN. FUEL RATE
VAC. LB/HR GM/HR
17. b 5.8 1270
18.0 5.7 558b
17.3 b.t 5903
It.S 8.7 3qtb
12.8 9.b t35S
10. b 11.9 5398
8.t 13.9 fa3Q5
b. 1 15. fa 707b
3.8 17.5 7938
5.3 17.9 81iq
is. b 5.5 qqs
50. b 3.1 ItOb
t.O 2t.O 1088b
5.8 55.8 103t2
8.3 19.8 8981
10.0 17.5 7938
11. t lb.5 73t8
13.3 13.8 b5hO
It. 8 11.7 5307
lb.5 10.3 tb75
18. t 8.1 3b7t
50.1 5.5 998
21.2 3.1 ItOb
Wt 1 CONCENTRA I
ALDt.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
ED GRAM/MR W 1 .
CO
1550
5953
3295
t5bq
tS78
550t
59tS
btqt
bb3b
b8St
973
730
8558
8350
8113
7555
b?bl
sqbi
5blO
5019
ssqs
qoi
5t5
HC
CO
N02
ALDE
BSFC
N02 FAC.
1. t .Ob? 0
5.0 ,OtO 0
5.7 .OtO
b. 7 .OtO
9.3 . 0 1 u
It . 9 .OtO
5fa. b .OtO
37.5 .OtO 1
79.7 .OtO 1
bb. 1 .OtO 1
1.1 .Ob? fl
.5 .OtO 0
133.7 .OtO 1
lOb.S .OtO 1
5b.7 .OtO 1
tb.S .OtO 1
tb.2 .OtO
31.0 .OtO
9 , t .OtO
7. t .OtO
o.? . 0 1 Q 0
1.0 .Ob? 0
.3 .OtO 0
It.b31 GRAM/BHP
332.815 GRAM/BHP
2.0t3 GRAM/BHP
o.ooo GRAM/BHP
.802 LB/6HP
HP
.0
.0
.2
.3
.5
.fa
.8
.0
.1
.3
. 0
.0
. 7
.5
.3
.0
. 9
.b
. t
.5
. 0
.0
.0
HR
HR
HR
HR
HR
ALDE.
0.0
0.0
0.0
0.0
o.n
0.0
0.0
o.n
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0 . U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
bSOO b
10200 9
8500 9
5900 8
5700 8
5500 8
, t950 7
tbSO 7
t500 b
tOSO b
b200 7
52800 3
5500 b
5300 b
2550 b
t500 7
t500 7
t 5 5 0 7
teon s
tbOO 8
11000 7
b?00 b
B7500 5
^EIGH 1 ED
HC
3.7?
b.55
5. 8b
5.b?
fa. 13
7.t5
7.87
8.t5
8.b7
8. t9
5.73
51.98
b.35
b.23
5.9b
8.55
7.99
b.83
b.32
5.3b
10.77
3.28
35.50
CO
.qs?
.ost
.130
.795
.t3t
.081
.t03
.101
.3b?
.505
.307
,t?t
.b89
.078
.873
.023
.035
.3t3
. t3t
.533
.27b
.083
.bt9
ION
C05
7.05
b.10
b.30
7.03
7.50
7.38
7.9b
8. Ob
8. bO
8.59
7.51
t . 7b
9.5t
8.95
8.5t
8.15
?. qq
7.81
7.5U
7.05
b. b3
b. Hb
5.tb
NO
t8
38
tb
8t
lot
133
502
stq
tbS
353
50
15
5bO
t?t
5q5
275
2q3
532
8fa
7?
82
t5
10
GKAM/HR
81
lib
131
170
183
250
537
559
2bS
275
fat
29
330
332
32t
288
570
538
22t
200
It3
bO
51
CO
.t
.9
.8
.8
.1
.5
.8
.8
. t
.t
.9
.5
.3
.8
.5
.9
.t
.5
.t
.8
.9
.1
.8
N05
.1
.1
.1
.3
.t
.fa
1.1
1.5
3.2
2 ,5
.1
.0
5.3
t.3
5.3
i.q
1.8
1.5
.t
.3
.3
.1
.0
G--13
-------
J.I. CASE 159 G ENGINE NO 2707350
P3-MUDE EMISSIONS TfcST RUN b 2/lb/72
MODE
1
2
3
4-
5
b
7
H
q
in
11
12
13
I1*
15
Ib
17
18
19
20
•21
22
23
OYNA.
SPEED LOAD
500
itoo
ItOO
it 00
ItOO
itoo
itoo
itoo
ItOO
itno
500
itoo
2100
2100
2100
2100
2100
2100
2100
2ino
2100
500
2100
0.0
0.0
11.5
23.0
3*. 5
tb.5
58.0
70.0
81.5
11.0
0.0
0.0
71.5
bb.O
55.0
1b.5
38.0
27.5
11.5
1.5
0.0
0.0
0.0
HP
0
U
1
H
12
Ib
20
21
21
32
0
0
31
3S
21
21
20
It
10
5
0
0
0
MAN. FUEL KATE
VAC. L6/HK GM/HR
11. b 2.b 1171
11.2 t.7 2132
17. 1 b.5 21t8
IS.b 7.8 3538
13.5 10.3 tb?2
11.3 11. b 52b2
8.1 13.1 b07B
fa. 8 It. 8 b?13
t.3 17.0 7711
2.8 17.1 8111
11.1 2.t lObl
20.5 3.0 13bl
5.1 2t.O 1088b
b.,5 21.7 18t3
8.2 11.3 8?bt
1.1 17.7 8021
11. b 15.2 b815
13.1 13.0 5817
It.b 12.1 5t81
lb.5 1.8 1115
18.2 7.2 32bb
11.7 2.5 113t
21.2 2.1 1315
WET CONCENTRATION
ALDt.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
CALCULATED GRAh/HK WT.
MODE
1
2
3
4.
5
b
7
8
q
10
11
1?
13
It
15
Ib
17
18
IS
20
21
22
23
CYCLe
ALOE
U . 0
0.0
o.u
n.o
0.0
0.0
n.o
o.u
n.o
0.0
n.o
o.u
N .0
0.0
n.o
n.o
n.n
0.0
0.0
0.0
n.n
[1.0
n.o
HC
bO.H
13U.t
117.3
1 1 1 . 0
138.7
ISU.b
Ib0.2
Ibb. 7
17B.1
181.0
51.0
Sbb.fa
S21. 3
210. b
lit .1
183.5
Ib0.3
13fa.l
12b.2
1?0.1
32b.b
bb.l
811.2
COMPOSITE
CO
1081
2237
31b2
3b53
tSfal
5005
5183
551b
5113
b3b3
1020
758
8b50
8387
7811
7251
b082
5515
5t55
1513
3113
lost
523
HC
CO
NU2
ALOE
BSFC
N02 FAC.
1.2 .Ob7 0
1.8 .OtO 0
t .1 .OtO
7.8 .OtO
It. 7 .OtO
20.5 .OtO
tt .b .OtO
52.1 .OtO 1
1U1.0 .OtO 1
80. b .OtO 1
1.2 ,0b7 0
. t .OtO 0
137.5 .OtO 1
83.1 .OtO 1
5t.7 .OtO 1
53. t .OtO 1
50.0 .OtO
23.3 .OtO
12. b .OtO
8.2 .OtO
5.8 .OtO 0
1.1 .Ob? 0
.3 .OtO 0
It.tl? GRAM/BHP
32b.ib3 GRAM/BMP
2.3b8 GRAM/BHP
0.000 GRAM/BHP
.Bit LB/6HP
HP
.0
.0
.2
.3
.5
.7
.8
.0
.1
.3
.0
.0
.b
. t
.2
.0
.8
.b
.t
.2
.0
.0
.0
HR
HR
HR
HR
HR
ALDE.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
7000 b
1500 8
btOO 8
5200 8
1700 7
1550 7
tlOO b
3800 b
3550 5
3t50 b
bbOO b
55200 3
3150 b
3300 b
3tSO b
3550 b
3b50 b
3b50 7
3b50 7
1300 8
ItSDO 7
b100 b
85bOO 2
WEIGHTED
HC
t.Ob
5.21
t .bl
t.Sb
5.55
b.03
b.tl
b.fa7
7.1b
7.2t
3.10
22.27
8.17
8.t3
7.78
?.3t
b.tl
5.15
5.05
t.83
13. Ob
3.7t
32.57
CO
.150
.071
.sts
.218
.bS2
.183
.5b1
.221
.88b
.003
.511
.723
.013
.505
.8b8
.115
.857
.320
.811
.002
.Ib3
.111
.721
C02
b.71
fa. 51
fa. 11
7.37
7.71
7.15
8.58
8.70
I.Ob
1.13
b.SO
1.2S
B.lb
8.51
8.32
8.23
8.18
8.13
7.70
7.38
b.lb
b.81
2.55
NO
11
10
b8
107
ISO
187
311
358
bU3
1fa3
17
13
582
31b
212
311
313
181
110
a?
71
10
ID
GKAci/HK
72
81
12b
lib
182
200
207
220
231
251
b8
30
3tb
335
312
210
213
220
218
181
127
70
20
CO
.1
.5
.5
.1
.1
.2
.3
.b
.7
.5
.0
.3
.0
.5
.7
.0
.3
.fa
.2
.7
.7
.3
.1
N02
.1
.1
.2
.3
.b
.8
1.8
2.1
1.0
3.2
.1
.0
5.5
3.1
2.2
2.1
2.0
.1
.5
.3
.2
.1
.0
G-I4-
-------
APPENDIX H
STATES INCLUDED IN NORTHERN, CENTRAL
AND SOUTHERN REGIONS FOR THE PURPOSE
OF REGIONAL MASS EMISSIONS ANALYSIS
H-l
-------
THREE REGIONS OF THE U. S. AS DEFINED
FOR REGIONAL EMISSIONS ANALYSIS
N o r t h e r n R e g ip n
Idaho
Maine
Minnesota
Montana
New Hampshire
North Dakota
Oregon
South Dakota
Vermont
Wa shington
Wisconsin
Wyoming
Central R eg ion
Colorado
Connecticut
Delaware
Dist. of Columbia
Illinois
Indiana
Iowa
Kansas
Kentucky
Maryland
Massachusetts
Michigan
Missouri
Nebraska
Nevada
New Jersey
New York
Ohio
Pennsylvania
Rhode Island
Utah
Virginia
West Virginia
Southern Region
Alabama
Arizona
A r ka n s a s
California
Florida
Georgia
Louisiana
Mississippi
New Mexico
North Carolina
Oklahoma
South Carolina
Tennessee
Texas
H-:
-------
TECHNICAL REPORT DATA
(Please read IitUnictions on the reverse before completing)
1. REPORT NO.
APTD-1494
3. RECIPIENT'S ACCESSI ON- NO.
4. TITLE AND SUBTITLE
Exhaust Emissions From Uncontrolled Vehicles and
Related Equipment Using Internal Combustion Engines -
Final Report, Part 5 - Heavy-Duty Farm, Construction,
5. REPORT DATE
nnt.nher 1Q73
6. PERFORMING ORGANIZATION CODE
DRlftdustrial Engines
Charles T. Hare and Karl J. Springer
8. PERFORMING ORGANIZATION REPORT NO
AR 898
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southwest Research Institute
Post Office Drawer 28510
Culebra Road
San Antonio, Texas
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
EHS 70-108
12. SPONSORING AGENCY NAME AND ADDRESS
National Air Data Branch OAOPS, and Emission Contro
Technology Division - OMSAPC
Office of Air and Waste Management
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final Report Part 5
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report is part 5 of the Final Report on Exhaust Emissions from Uncontrolled
Vehicles and Related Equipment Using Internal Combustion Engines. The engine
categories covered in this report are heavy-duty gasoline and diesel engines used in
farm, construction, and industrial applications. The report includes descriptions
and photographs of the test engines, instrumentation systems used, explanations of
test sequences and calculation methods employed. The engines were tested using well
accepted steady-state procedures for gaseous emissions measurement, and in addition,
the Federal procedure for smoke certification was used for testing the diesel engine
(except the Onan). Some gaseous emissions were measured during transient operation
of most of the engines, and particulate and smoke measurements were made during some
of the same modes used for gaseous emissions sampling. The emissions results obtain
ed in this study, as well as data obtained from other sources, were used in conjunct
ion with information on engine population and usage to estimate emission factors.
National impact was estimated separately for each of three engine applications. The
categories of engines covered in this report appear to make some significant, but no
major, contributions to national nollutant totals from man-made sources.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Smoke
Oxygen
Aldehydes
Diesel engines
Air pollution
Gasoline engines
Exhaust emissions
Carbon monoxide
Carbon dioxide
Total hydrocarbons
Nitrogen oxides
Light hydrocarbons
Chemical analysis
Agriculture machinery
Particulates
Emission factors
Federal smoke tests
Federal 13 mode test
National emissions impac
EMA-California ARB 13
mode procedure
13B
. DISTRIBUTION STATEMENT Cons true ti on equipment
UNLIMITED
19. SECURITY CLASS (This Report)
21 . NO. OF PAGES
281
20. SECURITY CLASS (Thispage)
22. PRICE
EPA Form 2220-1 (9-73)
H-3
-------
INSTRUCTIONS
1. REPORT NUMBER
Insert the EPA report number as it appears on the cover of the publication.
2. LEAVE BLANK
3. RECIPIENTS ACCESSION NUMBER
Reserved for use by each report recipient.
Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used in smaller
type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, ado volume
number and include subtitle for the specific title.
5 REPORT DATE
Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g.. date of issue, date of
approve!, date of preparation, etc.}.
6. PERFORMING ORGANIZATION CODE
Leave blank.
Give name(s) in conventional order (John R. Doc, J. Robert Doe. etc.). List author's affiliation if it differs from the performing organi-
zation.
8. PERFORMING ORGANIZATION REPORT NUMBER
Insert if performing organization wishes to assign this number.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.
10. PROGRAM ELEMENT NUMBER
Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
11. CONTRACT/GRANT NUMBER
Insert contract or giant number under which report was prepared.
12. SPONSORING AGENCY NAME AND ADDRESS
Include ZIP code.
13. TYPE OF REPORT AND PERIOD COVERED
Indicate interim final, etc., and if applicable, dates covered.
14. SPONSORING AGENCY CODE
Leave blank.
15. SUPPLEMENTARY NpTES
Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented at conference of,
To be published in, Supersedes, Supplements, etc.
16. ABSTRACT
Include a brief ^200 words or less) factual summary of the most significant information contained in the report. If the report contains a
significant bibliography or literature survey, mention it here.
17. KEY WORDS AND DOCUMENT ANALYSIS
(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.
(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
ended terms written in descriptor form for those subjects for which no descriptor exists.
(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the ma-
jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow
the primary posting(s).
18. DISTRIBUTION STATEMENT
Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to
the public, with address and price.
19.8.20. SECURITY CLASSIFICATION
DO NOT submit classified reports to the National Technical Information service.
21. NUMBER OF PAGES
Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.
22. PRICE
Insert the price set by the National Technical Information Service or the Government Printing Office, if known.
»U.S. Government Printing Office: 1974—747-796/366 Region No. 4
EPA Form 2220-1 (9-73) (Reverse) Ufl
-------
|