&EFK
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 83-CAT-11
August 1983
Air
Petroleum
Refineries -
Fluid Catalytic
Cracking Regenerators
Particulate Test
Method Evaluation
Emission Test Report
Phillips Petroleum Company
Sweeny, Texas
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
I ^i^Z ? Office of Air Quality Planning and Standards
lt/ Research Triangle Park, North Carolina 27711
April 18, 1984
MEMORANDUM
SUBJECT: Source Test Report
FROM: J.E. McCarley, Chief, Field Testing Section,
Emission Measurement Branch, ESED (MD-13)
TO: See Below
The enclosed final source test report is submitted for your
information. Any questions regarding the test should be directed
to the Project Officer (telephone: 8/629-5543). Additional copies
of this report are available from the ERC Library, Research Triangle
Park, North Carolina 27711.
Industry: Petroleum Refineries—Fluid Catalytic Cracking Regenerators
Process: Particulate Test Method Evaluation
Company: Phillips Petroleum Company
Location: Sweeny, Texas
Project Report Number: 83-CAT-ll
Project Officer: George W. Walsh
Enclosure
Addressees:
Ken Knapp, ESRL (MD-46)
Arch MacQueen, MDAD (MD--14)
Rodney Mi-dgett, EMSL (MD-77) .
Mark S. Siegler, DSSE (KD-EN-341)
Director, Air and Waste Management Division, Region VI
(copy enclosed for State agency)
Ann Ingram, EPA Library Services (KD-35)
-------
EMISSION TEST REPORT
METHOD DEVELOPMENT AND TESTING
FOR FCCU REGENERATORS
Phillips Petroleum Company
Sweeny, Texas
EMB Report No. 82-CAT-ll
ESED Project No. 82/04
by
PEDCo Environmental, Inc.
11499 Chester Road
P.O. Box 46100
Cincinnati, Ohio 45246-0100
Contract No. 68-02-3546
Work Assignment Nos. 14 and 20
PN: 3530-14 and 3530-20
EPA Task Manager
Mr. Winton Kelly
Emission Standards and Engineering Division
Emission Measurement Branch
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711-
March 1984
-------
DISCLAIMER
This report was furnished to the U.S. Environmental Protec-
tion Agency, Emission Measurement Branch, by PEDCo Environmental,
Inc., Cincinnati, Ohio, in fulfillment of Contract No. 68-02-3546,
Work Assignments 14 and 20. Its contents are reproduced herein
as received from PEDCo Environmental, Inc. The opinions, find-
ings, and conclusions expressed are those of the author and not
necessarily those of the Environmental Protection Agency. Men-
tion of company or product names does not constitute endorsement
or recommendation for use.
11
-------
CONTENTS
Page
Figures iv
Tables v
Acknowledgment vii
Quality Assurance Element Finder viii
1. Introduction 1-1
2. Process Operation 2-1
3. Sampling Location and Test and Analytical
Methods Used 3-1
Sampling location 3-1
Sampling methods 3-4
Sample analysis 3-8
4. Summary and Discussion of Test Results 4-1
Sample data 4-1
Thermogravimetric analytical results 4-4
Water-soluble sulfate analytical data 4-24
Recommendations for sample and analytical
methodology 4-35
5. Quality Assurance ' 5-1
References R-l
Appendix A Computer printouts and example calculations A-l
Appendix B Raw field data B-l
Appendix C Raw laboratory data C-l
Appendix D Sampling and analytical procedures D-l
Appendix E Calibration procedures and results E-l
Appendix F Quality assurance summary F-l
Appendix G Project participants and sample log G-l
ill
-------
FIGURES
Number Page
3-1 Sample Site Schematic 3-2
3-2 FCCU Sampling Site 3-3
4-1 Average Particulate Concentration in Run 9 at
Indicated Sample Heat-Conditioning Temperature 4-14
4-2 Average Particulate Concentration in Runs 2, 4,
6, and 10 at Indicated Conditioning Temperature 4-15
5-1 Audit Report Dry Gas Meter (Meter Box FB-2) 5-4
5-2 Audit Report Dry Gas Meter (Meter Box FB-3) 5-5
5-3 Audit Report Dry Gas Meter (Meter Box FB-5) 5-6
5-4 Audit Report Dry Gas Meter (Meter Box FB-7) 5-7
5-5 Thermocouple Digital Indicator Audit Data
Sheet (Indicator 124) 5-8
5-6 Thermocouple Digital Indicator Audit Data
Sheet (Indicator 125) 5-9
IV
-------
TABLES
Number Page
3-1 Sampling Matrix 3-5
3-2 Analytical Matrix 3-10
4-1 Summary of Sample Conditions 4-2
4-2 Summary of Thermogravimetric Analytical
Results 4-5
4-3 Within-Run Comparisons on a Total Weight Basis 4-7
4-4 Comparison of Weight Losses Above 160°C for 6-
and 24-Hour Heat-Conditioning Time Periods 4-8
4-5 Comparison of Filterable Particulate Concen-
trations After Conditioning at Temperature
160°, 232°, and 315°C 4-10
4-6 Filterable Particulate Relative Percent
Weight Loss After Conditioning at Tempera-
tures 160°, 232°, and 315°C 4-12
4-7 Summary of H2SO. and SO2 Analytical Data 4-16
4-8 Statistical Data for Grouped Runs After
Conditioning at Indicated Temperatures 4-21
4-9 Summary of Precision Estimates After Condi-
tioning at Indicated Temperatures 4-22
4-10 Summary of Water-Soluble Sulfate Analytical
Results 4-25
4-11 Summary of Results for Residual Sulfate on
Within-In Run Samples Conditioned at 315°C 4-27
4-12 Comparison of Within-In Run Particulate Con-
centrations After Correction for Residual
Sulfate to the M5W Test Results 4-29
v
-------
TABLES (continued)
Number Page
4-13 • Summary of Results for Residual Sulfate on
Samples Conditioned at 315°C 4-30
4-14 - Cations Found in Water Extraction by ICP 4-32
4-15 Soluble Sulfate Present in Sample Analyzed
by ICP 4-33
4-16 Charge Balance Results for Samples Analyzed
by ICP 4-34
5-1 Field Equipment Calibration 5-3
5-2 Example of a Thermogravimetric Analysis of
Filter and Acetone Blanks 5-10
5-3 Audit Report S02 Analysis 5-12
5-4 Reagent Blank Analysis for IPA and HjO- 5-12
5-5 Blank Analytical Data for Non-Water-Soluble
Sulfate Analyses 5-12
5-6 Blank Analysis Data for the Ion Chromatography
Analyses 5-12
VI
-------
ACKNOWLEDGMENT
Mr. Winton Kelly, EPA Task Manager, provided overall project
coordination and guidance and observed the test program. Mr.
K. C. Hustvedt, EPA Lead Engineer - Chemical and Petroleum Branch,
provided project coordination relative to process operation. Mr.
Lynn Sturrock represented Phillips Petroleum Products Company and
provided assistance in scheduling and process operation. Mr.
Charles Bruffey was the PEDCo Project Manager. Principal authors
were Messrs. Charles Bruffey and Thomas Wagner.
vn
-------
QUALITY ASSURANCE ELEMENT FINDER
Title page
Table of contents
Project description
QA objective for measurement of data in
terms of precision, accuracy, completeness,
representativeness, and comparability
Sampling procedures
Sample custody
Calibration procedures and frequency
Analytical procedures
Data reduction, validation, and
reporting
Internal quality control checks and
frequency
Performance and system audits and
frequency
Preventive maintenance procedures and
schedules
Specific routine procedures used to
assess data precision, accuracy, and
completeness of specific measurement
parameters involved
Corrective action
Quality assurance reports to management
Location
Section Page
11
1 1-1
Appendix F F-2
Appendix D D-l
Appendix C C-l
Appendix E E-l
Appendix D D-l
Section 5 5-1
Appendix F F-2
Section 5 5-1
Appendix F F-ll
Section 5 5-1
Appendix F F-3
Appendix F F-12
Appendix F F-4
Appendix F F-ll
Appendix F F-12
Vlll
-------
SECTION 1
INTRODUCTION
On March 8, 1974, the U.S. Environmental Protection Agency
(EPA) promulgated a New Source Performance Standard (NSPS) for
particulate emissions from fluid catalytic cracking unit (FCCU)
regenerators. The testing procedures in this standard specified
Method 5 for measurement of these emissions, and this method was
used to collect the data to support the NSPS in 1971 and 1972.
The facilities tested were conventional regenerators equipped
with electrostatic precipitators and carbon monoxide (CO) boil-
ers.
Since promulgation of the NSPS, the EPA has received several
requests for clarification of the intent of the emission regula-
tion. In response, the EPA has stated that the intent was to
control "catalyst fines" or "mineral dust," not the condensible
sulfates that are in the gas phase at the operating temperature
of the control device.
In the public notice of proposed rulemaking for a revision
to the FCCU new source standard,* the EPA stated that because
Method 5 is capable of collecting condensible matter that is not
controllable by the best emission-reduction systems, a facility
*44 FR 60759, Monday, October 22, 1979.
1-1
-------
using these control systems could be found in noncompliance if
significant quantities of such condensibles were present as a
result of feed changes or process variations. Consequently, EPA
is evaluating sampling and analytical parameters designed to
minimize the collection of condensible sulfate materials from
these sources.
As part of a study performed under contract to the Emission
Measurement Branch of the EPA, PEDCo Environmental, Inc., con-
ducted the second in a series of three atmospheric emission test
projects from November 9 through 14, 1982, at the Phillips
Petroleum Company refinery in Sweeny, Texas. Testing was per-
formed at the final exit stack of the FCCU regenerator. The
purpose of the study was either 1) to develop a modification to
EPA Reference Method 5, or 2) to develop a new method to minimize
the collection of condensible sulfate materials in the measure-
ment of particulate emissions from these sources.
All samples were collected by use of four single sample
trains at essentially a single point near the center of the FCCU
exit stack. A total of 10 test runs were made during the test
series. So that the effect of sample temperature on sulfate
collection could be evaluated, probe and filter box temperatures
were varied for each run as follows:
Probe and filter box
Sample designation sample temperature
M5 121°C (250°F)
MSB 160°C (320°F)
M5-450 232°C (450°F)
M5W 121°C (250°F)
1-2
-------
Paired trains were run at similar temperatures to allow within-
run data comparisons as well as comparisons between methods run
at different sample temperatures.
Probe rinse and filter sample fractions were subjected to a
thermogravimetric analysis at predetermined temperatures to
assess sample weight loss as a function of drying temperature.
In addition, several samples (designated M5W) collected at 121°C
(250°F) were analyzed for determination of total water-soluble
sulfate and subsequent particulate mass according to modified
procedures developed by the Texas Air Control Board.* This
method incorporates deionized water as the sample recovery sol-
vent, a series of gravimetric analyses, and an independent mea-
surement of water-soluble sulfates for subsequent derivation of
the mass of non-water-soluble particulate (matter that does not
contain any water-soluble sulfate). Water-soluble sulfate was
measured by ion chromatography. Select sample fractions also
were analyzed for cation species to characterize the water-
soluble sulfate other than sulfuric acid in the samples.
Each individual sample train was followed by a modified EPA
Method 8** impinger section to allow analysis of sulfates as
sulfuric acid (H-SO.) and sulfur dioxide (S02). Flue gas temper-
ature, moisture content, and composition [oxygen (0_), carbon
Texas Air Control Board - Laboratory Division. Determination
of Particulate in Stack Gases Containing Sulfur Dioxide.
December 1979.
**
40 CFR 60, Appendix A, Reference Method 8, July 1983.
1-3
-------
dioxide (CO2)/ and carbon monoxide (CO)] were measured in con-
junction with the emission tests.
Messrs. Winton Kelly and K. C. Hustvedt of the EPA observed
part of the test program and provided overall project coordina-
•
tion and guidance.
1-4
-------
SECTION 2
PROCESS OPERATION
PEDCo conducted this methods development project on FCC Unit
HOC No. 27.1 at Phillips Sweeny refinery. This unit represents a
potential new type of FCC unit for processing heavy oil. The
high-temperature regenerator burns the coke on the catalyst to
CO-. Particulate emissions are controlled by a Buell electro-
static precipitator (ESP). For reasons of confidentiality, this
report does not include a detailed description of Phillips'
process operation.
2-1
-------
SECTION 3
SAMPLING LOCATION, TEST, AND ANALYTICAL
METHODS USED
Four sample trains were used to collect all the samples at
essentially a single point near the center of the FCCU final exit
stack.
Figure 3-1 presents a schematic of the sample site setup
utilized during this study. By allowing four trains to sample
simultaneously at essentially the same point in the stack, this
sampling approach reduces the effect of spatial and temporal
variations in the velocity and particulate profiles on the sam-
pling results. It also permits a statistically significant
number of samples to be taken in a short time. Further, because
two of the four trains are identical for every run, the within-
train precision can be determined while the relationship of the
different trains is being compared.
This four-train sampling system was used to perform a total
of 10 runs and produced a total of 40 individual samples.
3.1 SAMPLING LOCATION
Testing took place at the FCCU final exit stack, as depicted
in Figure 3-2. Four 10.16-cm (4-in.) i.d. sampling ports were
available at 90 degrees off-center. As shown in Figure 3-1, all
3-1
-------
CATWALK
1.8m (6'-0") SPACING BETWEEN
STACK LINER AND OUTSIDE
GUARDRAIL
I 1 SAMPLE
I TRAIN C
Figure 3-1. Sample site schematic.
3-2
-------
3.05m
O:D:
i
FLOW
10 ft)
18.6m (61 ft)
6.7 DIAMETERS
26.8m (88 ft)
7.7 DIAMETERS
FROM ESP.
12.2m (40 ft)
*
3.6m (12 ft)
O.D.
224 ft
1.5m (5 ft)
21.3m (70 ft)
Figure 3-2. FCCU sampling site.
3-3
-------
four sampling ports were used in this study. The sampling plat-
form was approximately 48.8 m (160 ft) above grade.
3.2 SAMPLING METHODS
The four trains collected flue gas samples simultaneously
from four single points in the stack. Each point represented
similar velocity pressures and temperature as determined from a
velocity and temperature profile performed according to proce-
dures described in EPA Methods 1 and 2.* The desired sampling
time was 120 minutes, and readings of stack flue gas and sampling
train data were recorded at 10-minute intervals for each train.
A pitot tube and thermocouple located in each pair of trains were
used to set the isokinetic sampling rates, which were determined
by programmable calculators.
Table 3-1 presents the sampling matrix for this test series.
Brief descriptions of the particular conditions for each train
are as follows:
0 Method 5 - Designation M5
Filterable particulate was collected by use of a probe
and filter assembly heated to 121°C (250°F). Acetone
was used to rinse all sampling train components prior
to the filter.
0 Method SB - Designation MSB
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Acetone
was used to rinse all sampling train components prior
to the filter.
*
40 CFR 60, Appendix A, Reference Methods 1 and 2, July 1983.
3-4
-------
TABLE 3-1. SAMPLING MATRIX
Run
No.
1
2
3
4
5
6
Sampling
Train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sampling method3
M5
121°C (250°F)
X
X
X
X
X
X
MSB
160°C (320°F)
X
X
X
X
X
X
M5-450
232°C (450°F)
X
X
X
X
X
X
M5W
121°C (250°F)
X
X
X
X
X
X
(continued)
3-5
-------
TABLE 3-1 (continued)
Run
No.
7
8
9
10
Sampling
Train No.
7A
7B
7C
7D
8A
SB
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sampling method3
MS
121°C (250°F)
X
X
MSB
160°C (320°F)
X
X
X
X
X
X
M5-450
232°C (450°F)
X
X
X
X
M5W
121°C (250°F)
X
X
X
X
*M5 (Method 5) - Probe and filter heated to 121°C (250°F).
MSB (Method SB) - Probe and filter heated to 160°C (320°F).
M5-450 (Method 5-450) - Probe and filter heated to 232°C (450°F).
M5W (Method 5) - Probe and filter heated to 121°C (250°F); water rinse of
nozzle, probe, and front filter holder glassware.
3-6
-------
0 Method 5-450 - Designation M5-450
Filterable particulate was collected by use of a probe
and filter assembly heated to 232°C (450°F). Acetone
was used to rinse all sampling train components prior
to the filter.
0 - Method 5W - Designation M5W
Filterable particulate was collected by use of a probe
and filter assembly heated to 121°C (250°F). Deionized
distilled water was used to rinse all sampling train
components prior to the filter.
For each train, the probe and filter temperatures were set
at the predetermined temperature and monitored throughout each
test by the use of multiterminal digital indicators with the
thermocouples located in each probe and immediately behind the
Method 5 filter frits.
The Method 8 back half of each sampling train had four
impingers. An unheated Method 5 filter assembly was inserted
between the first and second impingers to preclude any sulfuric
acid mist carryover. The contents of each impinger were as
follows:
Impinger Contents - all runs
1 200 ml 80% IPA
2 100 ml 10% H20a
3 100 ml 10% H2O2
4 400 g silica gel
All the filters were Whatman Reeve Angel 934AH. The filters
used in the Method 5 position were heated to 300°C prior to their
identification and tare weighing.
The flue gas moisture content of each individual sampling
train was determined gravimetrically by weighing each impinger
3-7
-------
before and after every test. In addition, a flue gas grab sample
collected during each test was analyzed for oxygen, carbon diox-
ide, and carbon monoxide by use of an Orsat analyzer to facili-
tate calculation of the stack gas molecular weight.
3.3 SAMPLE ANALYSIS
Table 3-2 presents a matrix of the analytical plan followed
during this test program.
Particulate Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and then
weighed until a constant weight was achieved.* The acetone probe
rinse fraction was transferred to a tared beaker, evaporated to
dryness at ambient temperature and pressure, desiccated for 24
hours, and then weighed to a constant weight.*
After this initial analysis, the probe rinse and filter
fractions were heat-conditioned in an oven for 6 hours (except
where noted) according to the treatment sequence presented in
Table 3-2. When removed from the oven, each sample fraction was
cooled and desiccated for 24 hours and then weighed to a constant
weight.** Filter and acetone blanks were treated in a similar
manner as actual samples.
*
Previous data show that samples collected at 120°C will not
come to a constant weight. At least three separate weighings
were obtained, and the lowest weight achieved was reported as
the ambient weight.
**
Criteria as specified in 40 CFR 60, Appendix A, EPA Reference
Method 5, July 1983.
3-8
-------
Water-Soluble Sulfate Analysis
This method is designed to determine the particulate catch
corrected for any water-soluble sulfate retained in the Method 5
sample fractions. As documented in previous studies, the con-
densible sulfate problem can be attributed to sulfuric acid,
which makes a direct gravimetric analysis difficult for two
reasons. First, sulfuric acid is a powerful desiccating agent
itself; therefore, if a significant amount of sulfuric acid is
present, the Method 5 criteria for determining constant weight of
the particulate cannot be met. Second, the number of water
molecules associated with each sulfuric acid molecule is not
consistent. The water-soluble sulfate method developed by the
Texas Air Board was designed to overcome these problems. This
method converts any sulfuric acid present to suitable form for
accurate gravimetric analysis. Ammonium hydroxide is added to
form ammonium sulfate in the aqueous solutions. Ammonium hydrox-
ide is used because any excess reagent will evaporate. This
procedure enables the following determinations: the gross par-
ticulate (sulfate as ammonium sulfate plus other particulate);
the sulfate as ammonium sulfate from the Method 6 titration or
ion chromatography; and subsequently, the non-water-soluble
sulfate particulate by subtraction of the sulfate (as ammonium
sulfate) from the gross particulate.
Each sample fraction, including blanks, was handled and
analyzed as follows:
Filter - The filter was cut into small pieces and placed in
a 125-ml Erlenmeyer flask with a standard taper joint
3-9
-------
TABLE 3-2. ANALYTICAL MATRIX
Run
No.
1
2
3
4
5
6
Sampling
Train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sampling
method
M5
M5
M5W
M5W
M5B
M5B
M5-450
M5-450
M5W
M5W
M5
M5
M5-450
M5-450
M5B
MSB
MS
MS
M5W
M5W
MSB
MSB
M5-450
M5-450
Thermogravimetric analysis3
Ambient •*•
160° -»• 232°
+ 316°C
X
X
X
X
X
X
X (24)
X
Ambient •*
232° -»•
316°C
X
X
Ambient
+ 316°C
X
X
X
X
X
X
X
X
Water-soluble
sulfate .
determination
X
X
X
X
X
X
Cations
by ICPC
X
X
X
X
(continued)
3-10
-------
TABLE 3-2 (continued)
Run
No.
7
8
9
10
Sampling
Train No.
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sampling
method
MSB
M5B
M5W
M5W
M5-450
M5-450
M5W
M5W
M5
M5
MSB
MSB
MSB
MSB
M5-450
M5-450
Thermogravimetric analysis3
Ambient -»-
160° -*- 232°
+ 316°C
X
X (24)
X (24)
X
X (24)
X
Ambient -»•
232° *
316°C
X
X
Ambient
•*• 316°C
X
X
X
X
Water-soluble
sulfate b
determination
X
X
X
X
Cations.
by ICPC
X
X
X
X
. X
X
Thermogravimetric conditioning of probe rinse and filter fractions at indicated
temperatures after initial desiccation and ambient weights were obtained. The
designation (24) for select samples indicates a heat period of 24 hours. All
other samples were heat-conditioned for 6 hours.
In this procedure, the mass of total water-soluble sulfates in the sample was
determined and subtracted from the total sample mass.
°These samples were analyzed for cations by ICP analytical techniques.
Note: All back halves represent a modified Method 8, with analysis for sulfates
as sulfuric acid and sulfur dioxide.
3-11
-------
equipped with an air condenser. The shipping container was
rinsed into the flask. About 50 ml of distilled water was
added and gently refluxed for 6 to 8 hours. The solution
was then cooled and diluted with water to exactly 250 ml in
a volumetric flask. This was reserved for total soluble
sulfate analysis, which is described in the following sub-
section.
Probe Rinse - The probe wash was poured into a 250-ml volu-
metric flask. The sample bottle was rinsed with distilled
water, and the rinsings were added to the flask. The solu-
tion was then diluted to the mark with distilled water.
This solution was reserved for total soluble sulfate analy-
sis, which is described in the following subsection.
Total Soluble Sulfate Analysis—
A 15-ml aliquot was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet [making sure only solution (no solids) was transferred; if
necessary, a portion of the sample was centrifuged].* The sul-
fate ion (SO ~) concentration in each aliquot was determined by
ion chromatography (1C). A syringe was used to inject 1 ml of
the aliquot into a lOO-yl sample loop. The conductivity response
of the sample was compared with the calibration curve to obtain
the SO." concentration in milliliters per liter. Dilutions were
prepared and reanalyzed if the initial response was out of the
linear calibration range (i.e., greater than 15 mg/liter). Blank
filter and water samples were prepared and analyzed in the same
manner as the actual samples.
*
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
3-12
-------
Mass Determination—
Mass determination was made in the following manner.
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers, and the flask was rinsed with
distilled water to transfer all particulate matter. The
filter solution was in Beaker A, and the rinse solution was
in Beaker B. These solutions were evaporated to approxi-
mately 100 ml at 105°C and allowed to cool before the next
analysis was made.
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH.OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, cooled in a desiccator,
and weighed to a constant weight. Results were reported to
the nearest 0.1 mg. For this method, "constant weight"
means a difference of no more than 0.5 mg or 1 percent of
the total weight less beaker and/or filter tare, whichever
is greater, between two consecutive weighings, with no less
than 6 hours of desiccation time between weighings.
Calculations—
Nomenclature—
FP = weight of particulate on the filter in Beaker A*, mg
PRP = weight of probe rinse particulate in Beaker B*, mg
NWSSP = weight of non-water-soluble sulfate particulate**, mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of ammonium sulfate in probe rinse sample, mg
V = volume of solution evaporated in Beaker A (filter) or
evap Beaker B (probe rinse), ml
CSO = concentrati°n of sulfate in filter or probe rinse solu-
4 tion aliquots, mg/liter
*
Particulate with H2SO4 converted to (NH.KSO..
**
Particulate excluding water-soluble sulfates.
3-13
-------
Equations—
FP(mg) = gross weight Beaker A - tare weight Eq. 1
Beaker A - filter tare weight
PRP(mg) = gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = CSQ (mg/liter) x Veva (ml) x IQQQ ml Eq' 3
i ~>~ir /mg AS t
x i.J/o ( * pn )
Mass of Non-Water-Soluble Sulfate Particulate
The sum of the particulate* collected on the filter (FP) and
the particulate* collected in the probe rinse (PRP) is equal to
the sum of the non-water-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP + AS, + AS Eq. 4
f pr ^
The NWSSP can be found by rearranging the equation and
substituting appropriate values determined by Equations 1, 2,
and 3.
NWSSP = FP + PRP - AS, - AS Eq. 5
r pr ^
Sulfate (as Sulfuric Acid Mist) Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. If the pH was greater than 3, no ion
exchange column was used. The sample volume was diluted to 500
ml with 80 percent IPA. A 100 ml aliquot of this solution was
Particulate with H^SO. converted to (NH.J-SO..
3-14
-------
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. A blank was titrated for each sample in the
same manner.
Several samples required the use of an ion exchange column
to remove divalent cations (Cd , Ca , Fe , Zn ). A small ion
exchange column approximately 2.4 cm (1 in.) in depth and 1.9 cm
(3/4 in.) in diameter was prepared using a strong cation resin.
Twenty mis of sample was percolated through the column and col-
lected in a volumetric flask. The column was then rinsed with 20
mis of deionized, distilled water. The 40 ml solution (sample
and rinse) was then added to 160 ml of 100 percent IPA and ti-
trated per Method 6.
Sulfur Dioxide Analysis
The hydrogen peroxide sample solution was diluted to 500 ml
with deionized distilled water. A 20-ml aliquot of this solution
was pipetted into a 250-ml Erlenmeyer flask with 80 ml of 100
percent IPA and 2 to 3 drops thorin indicator. The solution was
then titrated to a pink end point with 0.0100 N barium perchlo-
rate. Blanks were titrated in a similar manner.
Sulfate Analysis by Ion Chromatography
Selected samples, as designated in Table 3-2, were analyzed
for total sulfates as SO. by standard ion chromatography (1C)
analytical techniques. In addition, within-run samples, heat-
conditioned to 315°C, were extracted with distilled water as
3-15
-------
described in Method M5W, and 1C was used to analyze aliquots for
total residual sulfates for comparative purposes.
Cation Analysis by Inductively Coupled Plasma (ICP)
The extracts of selected filter and rinse particulate (see
Table 3-2) were analyzed for cations. Metallic ions and a cross-
check on sulfur were determined by ICP.
3-16
-------
SECTION 4
SUMMARY AND DISCUSSION OF TEST RESULTS
The results of the field sampling program are summarized in
this section to allow both within-run and between-run data com-
parisons to be made, especially between the thermogravimetric and
water-soluble sulfate test results. Appendix A contains computer
printouts and example calculations. Appendices B and C contain
the raw field and laboratory data sheets, respectively. Appendix
D presents details of the sampling and analytical procedures
used, and Appendix E addresses equipment calibration guidelines
and results.
4.1 SAMPLE DATA
Table 4-1 summarizes pertinent sample data. The actual
probe and filter temperatures, stack temperature, and moisture
content represent average values for each individual sample
train. The isokinetic criteria defined in Reference Method 5*
were met in each case except Sample Run 2B, which had an exces-
sive post-test leak rate. As noted in Section 3, the desired
sample time was 120 minutes. Tests 5 and 7 were run for 90
minutes and Test 10 was run for 100 minutes.
*
40 CFR 60, Appendix A, Reference Method 5, July 1, 1983.
4-1
-------
TABLE 4-1. SUMMARY OF SAMPLE CONDITIONS
Test
No.
1
2
3
4
5
6
Date
(1982)
and time
(24-h)
11/9
11:57-
13:57
11/10
10:29-
12:29
11/10
14:00-
16:00
11/11
11:32-
13:32
11/11
15:33-
17:03
11/12
11:07-
13:40
Train
ID
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
60
Sample3
type
M5
M5
M5W
M5W
M5-450
M5-450
M5B
M5B
M5W
M5W
M5
M5
M5-450
M5-450
M5B
M5B
M5
M5
M5W
M5W
M5-450
M5-450
M5B
M5B
Sample temperature, °C
Probe
Desired
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
213 (416)
208 (406)
212 (413)
211 (411)
234 (453)
246 (476)
162 (324)
165 (328)
124 (255)
124 (256)
121 (250)
122 (252)
246 (476)
252 (486)
164 (328)
161 (321)
120 (248)
123 (254)
123 (253)
126 (258)
244 (472)
254 (489)
164 (327)
166 (330)
•F)
Filter
Desired
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
124 (256)
123 (254)
119 (246)
125 (257)
229 (444)
227 (441)
164 (327)
164 (327)
122 (252)
123 (253)
122 (251)
126 (259)
186 (367)
163 (326)
163 (325)
158 (316)
119 (247)
119 (246)
124 (255)
126 (258)
205 (400)
211 (412)
164 (327)
165 (330)
Metered
volume,
dNm3 (dscf)
2.94 (103.81)
3.05 (107.55)
3.24 (114.43)
3.19 (112.76)
2.81 (99.12)
2.62 (92.64)
3.28 (115.96)
3.25 (114.85)
2.86 (101.09)
3.00 (105.91)
3.29 (116.04)
3.25 (114.85)
2.88 (101.71)
3.15 (111.22)
3.40 (120.09)
3.29 (116.26)
2.14 (75.58)
2.24 (79.22)
2.48 (87.66)
2.47 (87.15)
2.84 (100.21)
3.02 (106.60)
3.35 (118.45)
3.30 (116.47)
Average
stack tem-
perature,
° r t'°f\
\ ) •
213 (416)
216 (421)
214 (418)
215 (419)
212 (414)
215 (419)
Average
moisture
content, t
12.1
11.7
12.3
11.4
13.7
9.4
I
ro
(continued)
-------
TABLE 4-1 (continued)
Test
No.
7
8
9
10
Date
(1982)
and time
(24-h)
11/12
15:31-
17:01
11/13
12:04-
14:04
11/14
10:18-
12:18
11/14
13:46-
15:26
Train
ID
7A
7B
7C
7D
8A
8B
8C
80
9A
9B
9C
9D
10A
10B
IOC
10D
Sample3
type
M5B
M5B
M5W
M5W
M5-450
M5-450
M5W
M5W
M5
M5
M5B
M5B
M5-450
M5-450
M5B
M5B
Sample temperature, °C
Probe
Desired
160 (320)
160 (320)
121 (250)
121 (250)
232 (450)
232 (450)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
168 (335)
159 (318)
124 (256)
143 (290)
242 (468)
233 (451)
120 (248)
130 (265)
128 (263)
127 (261)
185 (365)
169 (336)
234 (453)
246 (475)
159 (318)
166 (331)
°F)
Filter
Desired
160 (320)
160 (320)
121 (250)
121 (250)
232 (450)
232 (450)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
156 (314)
164 (328)
125 (256)
124 (256)
237 (459)
230 (446)
123 (253)
121 (250)
125 (258)
125 (257)
162 (324)
157 (315)
237 (459)
226 (439)
166 (331)
163 (326)
Metered.
volume,
dNm3 (dscf)
2.15 (75.97)
2.28 (80.70)
2.50 (88.40)
2.44 (86.23)
2.88 (101.56)
3.00 (105.99)
3.41 (120.42)
3.34 (117.98)
2.84 (100.34)
3.00 (106.14)
3.36 (118.54)
3.33 (117.60)
2.44 (86.04)
2.54 (89.57)
2.71 (95.76)
2.72 (96.05)
Average
stack tem-
perature,
°C (°F)
213 (416)
217 (422)
214 (418)
217 (422)
Average
moisture
content,0
13.4
10.7
9.5
11.1
\
U)
Designation:
M5 = Reference Method 5 - desired probe and filter temperature, 121°C (250°F).
M5B = Reference Method 5B - desired probe and filter temperature, 160°C (320°F).
M5-450 = Modified Method 5 - desired probe and filter temperature, 232°C (450°F).
M5W = Modified Method 5 - desired probe and filter temperature, 121°C (250°F) with a water rinse
of the probe and analysis for total water soluble sulfate and corresponding mass determina-
tion.
Represents average of moisture content as determined gravimetrically from two individual trains (C and
D only).
Represents average of moisture content as determined gravimetrically from Train C only.
-------
The moisture contents as determined gravimetrically are
probably biased low because of the inability to keep gases leav-
ing the last impinger below 20°C (68°F), particularly for the
high-temperature sample runs. Based on historial test results
from this source and results obtained from sampling runs 1, 3, 5,
and 7, the moisture content of the gas stream was approximately
13.5 percent.
4.2 THERMOGRAVIMETRIC ANALYTICAL RESULTS
Table 4-2 presents the thermogravimetric analytical results.
The filterable particulate reported in this table represents
material collected in the sample probe and on the filter for each
sample type (M5, MSB, M5-450). All weights are reported in
milligrams, and sample concentrations were reported in milligrams
per dry normal cubic meter.
As previously noted, the samples were heat-conditioned at
each designated interval for 6 hours, except for samples 3A and
C, 5B and D, and 1C, which were heated for 24 hours for compara-
tive purposes. Table 4-3 presents within-run comparisons on a
total weight basis, and Table 4-4 provides within-run comparisons
of the total losses and losses above 160°C. As shown, the ambi-
ent weights for each run, excluding 9C and 9D, were highly vari-
able, which made an absolute assessment of the effects of heat-
conditioning time difficult. With the exception of Run 10, the
ambient weights of samples ultimately heated for 24 hours ranged
from 9 to 55 percent higher than samples heated for 6 hours, and
4-4
-------
TABLE 4-2. SUMMARY OF THERMOGRAVIMETRIC ANALYTICAL RESULTS
Test
No.
7
/
Train
ID
1A -
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
7A
7B
7C
7D
8A
8B
8C
8D
Sample
type
M5
M5
M5W
M5W
M5-450
M5-450
MSB
MSB
M5W
M5W
MS
MS
M5-450
M5-450
MSB
MSB
MS
MS
M5W
M5W
M5-450
M5-450
MSB
MSB
MSB
MSB
M5W
M5W
M5-450
M5-450
M5W
M5W
Filterable particulate following conditioning
at indicated temperatures, °C (°F), mg
Ambient
Probe
131.6
136.4
-
-
31.4
25.8
29.9
30.1
_
_
131.6
141.3
69.0
26.5
35.8
55.9
134.3
47.5
-
24.9
39.5
35.3
22.8
22.3
41.4
-
-
35.0
28.4
-
-
Filter
93.0
84.6
-
-
38.2
38.5
45.0
45.5
—
_
112.2
119.0
37.6
39.4
44.6
42.0
62.6
40.7
-
34.2
35.0
43.3
40.4
25.8
27.4
-
-
49.7
56.8
-
-
160°C (320°F)
Probe
42.4
40.2
-
-
19.0
15.1
20.1
19.5
—
_
_
-
—
_
-
-
27. 5a
14.2
-
.
_
_
-
16. 4a
20. 2a
-
-
—
w
-
-
Filter
65.6
64.8
-
-
37.2
36.4
43.2
43.3
—
_
_
-
—
_
-
-
42. Oa
34.9
-
_
_
_
-
24. 8a
26. Oa
-
-
—
_
-
-
232°C (450°F)
Probe
23.8
23.6
-
-
14.2
8.9
15.5
14.5
—
.
40.0
40.5
—
_
-
-
15. la
9.6
-
14.3
18.5
16.1
12.6
12. 4a
15. 4a
-
-
24.3
_
-
-
Filter
68.5
67.4
-
36.4
36.0
42.1
42.5
—
_
91.9
101.6
—
_
-
-
40. 6a
34.1
-
32.4
33.8
40.4
38.4
23. 6a
24. 3a
-
-
48.5
_
-
-
316°C
Probe
18.0
19.0
-
10.8
5.9
12.5
11.6
—
_
31.5
34.1
14. Oa
10.3
14.6
17.8
12. 8a
5.5
-
12.0
15.3
14.1
10.6
11. Oa
13. 9a
-
-
22.3
17.6
-
-
600°F)
Filter
62.0
61.5
-
-
35.6
34.5
41.6
42.0
—
.
80.8
81.4
32. 8a
36.7
41.6
39.4
38. 6a
32.7
t^
31.6
33.1
38.8
36.6
23. 2a
22. 8a
-
-
47.1
53.7
-
-
(continued)
4-5
-------
TABLE 4-2 (continued)
Test
No.
10
Train
ID
9A .
9B
9C
9D
10A
10B
IOC
10D
Sample
type
M5
M5
MSB
M5B
M5-450
M5-450
MSB
M5B
Filterable participate following conditioning
at indicated temperatures, °C (°F), mq
Ambient
Probe
196.0
171.0
26.1
15.0
20.9
21.5
19.8
48.8
Filter
84.6
74.4
37.1
42.5
24.2
23.3
28.9
29.6
160°C
Probe
—
M
19. 2a
10.6
_
_
11. 3a
25.2
320°F)
Filter
—
_
34. 4a
41.1
.
•
27. la
27.4
232°C (450°F)
Probe
—
—
15. 4a
8.0
9.5
»
9.0a
20.2
Filter
—
—
32. 3a
40.6
23.0
,»
25. la
26.0
316°C
Probe
28.4
19.0
14. 6a
6.3
8.2
10. 2a
7.8d
16.2
600°F)
Filter
44.6
40. 6a
29. 9a
39.8
22.2
20. 2a
23. 8a
24.6
Heated for 24 hours; all others heated for 6 hours.
4-6
-------
TABLE 4-3. WITHIN-RUN COMPARISONS ON A TOTAL WEIGHT BASIS
Sample
ID
5A (24)
5B (6)
7A (6)
7B (24)
9C (24)
9D (6)
IOC (24)
10D (6)
4A (24)
4B (6)
Sample
type
M5
M5
MSB
MSB
MSB
MSB
MSB
MSB
M5-450
M5-450
Ambient
weight, mg
196.9
88.2
48.1
68.8
63.2
57.5
48.7
78.4
106.6
65.9
Weight after heating .
at indicated temperature, mg
160°C
69.5 (65)
49.1 (44)
41.2 (14)
46.2 (33)
53.6 (15)
51.7 (10)
38.4 (21)
52.6 (33)
-
232°C
55.7 (72)
43.7 (50)
36.0 (25)
39.7 (42)
47.7 (25)
48.6 (15)
34.1 (30)
46.2 (41)
-
315°F
51.4 (74)
38.2 (57)
34.2 (29)
36.7 (47)
44.5 (30)
46.1 (20)
31.6 (35)
40.8 (48)
46.8 (56)
47.0 (29)
Ambient weights (filter and probe rinse fractions) in milligrams.
3Weight after heat treatment at individual temperature. The numbers in
parentheses represents the relative percent weight loss for each heat
interval compared with ambient weight.
4-7
-------
TABLE 4-4. COMPARISON OF WEIGHT LOSS ABOVE 160°C FOR 6- AND 24-HOUR
HEAT-CONDITIONING TIME PERIODS
Run No.
5A
5B
7A
7B
9C
9D
IOC
10D
Sample
type
M5
M5
MSB
MSB
MSB
MSB
MSB
MSB
Heating
time, h
24
6
6
24
24
6
24
6
Ambient
weight, mg
196.9
88.2
48.1
68.8
63.2
57.5
48.7
78.4
Total weight
loss to 316°C
(600°F), mg
145.5
50.0
13.9
32.1
18.7
11.4
17.1
37.6
Weight loss
above 160°C
(320°F), mg
18.1
10.9
7.0
9.5
9.1
5.6
6.8
11.8
Weight loss
above 160°C
(320°F), %
12
22
50
30
49
49
40
31
4-8
-------
correspondingly, the relative percent weight loss for the 24-hour
samples was consistently higher than the percent weight observed
for sample fractions heated for 6 hours. In Run 10, however, the
sample heated for 6 hours had a higher ambient weight and also
showed a higher relative percent weight loss than the sample
heated for 24 hours.
Data from Runs 4 and 9 also indicate that no significant
difference exists between the 6- and 24-hour heat-conditioning
periods (less than 5 percent difference in the weights for each
conditioning temperature.)
In summary, the data indicate that either heat-conditioning
period is adequate and that final sample weights obtained at a
given conditioning temperature are more a function of the mass of
condensible material collected than the conditioning time inter-
val. This is consistent with the data obtained at the first FCCU
unit tested under this task assignment.*
Table 4-5 presents a comparison of particulate concentra-
tions after heat conditioning at the indicated temperatures. The
average concentration and standard deviations are given in milli-
grams per dry normal cubic meter for all samples of a similar
type and temperature. The number of data points at each tempera-
ture is also shown. Table 4-6 summarizes the relative percent
weight loss by sample fraction at the indicated temperatures.
*
PEDCo Environmental, Inc. Method Development and Testing for
PCCU Regenerators. Final Report. Prepared under Contract No.
68-02-3546, Task Nos. 14 and 20. February 1984.
4-9
-------
TABLE 4-5. COMPARISON OF FILTERABLE PARTICULATE CONCENTRATIONS
AFTER CONDITIONING AT TEMPERATURES 160°, 232°, AND 315eC
Run
No.
1A
IB
3C
3D
5AC
SB
9A
9B
Sample
ID
MS
MS
MS
MS
MS
MS
MS
MS
2C
2D
4C
4D
6C
60
7A
7BC
9CC
90
10CC
100
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Ambient
Total .
weight,
mg
224.6
221.0
243.8
260.3
196.9
88.2
280.6
24S.4
Concen- .
tration,
mg/m3
76.4
72.5
74.1
80.1
92.0
39.4
98.8
81.8
Average = 76.9
o^ = 17.6
Nd = 8
74.9
75.6
80.4
97.9
78.6
63.2
48.1
68.8
63.2
57.5
48.7
78.4
22.8
23.3
23.6
29.8
23.5
19.2
22.4
30.2
18.8
17.3
18.0
28.8
Average =23.1
°H ° 4.5
Nd = 12
160eC
Total
weight,
mg
108.0
105.0
-
69.5
49.1
-
Concen-
tration,
mg/m3
36.7
34.4
-
32.5
21.9
-
Average = 31.4
o = 6.5
N = 4
63.3
62.8
-
_
41.2
46.2
53.6
51.7
38.4
52.6
19.3
19.3
.
-
19.2
20.3
16.0
15.5
14.2
19.3
Average = 17.9
o - 2.3
N •= 8
232°C
Total
weight,
mg
92.3
91.0
131.9
142.1
55.7
43.7
-
Concen-
tration,
mg/m3
31.4
29.8
40.1.
43.7
26.0
19.5
-
Average = 31.8
a - 8.9
N = 6
57.6
57.0
.
56.5
51.0
36.0
39.7
47.7
48.6
34.1
46.2
17.6
17.5
.
16.9
15.5
16.7
17.4
14.2
14.6
12.6
17.0
Average = 16.0
o - 1.7
N - 10
315°C
Total
weight,
mg
80.0
80.5
112.3
115.5
51.4
38.2
73.0
59.6
Concen-
tration,
mg/m3
27.2
26.4
34.1
35.5
24.0
17.1
25.7
19.9
Average =26.2
o * 6.3
N = 8
54.1
53.6
56.2
57.2
52.9
47.2
34.2
36.7
44.5
46.1
31.6
40.8
16.5
16.5
16.5
17.4
15.8
14.3
15.9
16.1
13.2
13.8
11.7
15.0
Average =15.2
o « 1.7
N • 12
(continued)
4-10
-------
TABLE 4-5 (continued)
Run
No.
2A
2B
4AC
4B
6A
6B
8A
8B
IDA
106
Sample
ID
M5-450
M5-450
M5-450
MS-450
M5-450
M5-450
M5-450
H5-450
M5-450
H5-450
Ambient
Total ,
weight,
mg
69.6
64.3
106.6
65.9
59.1
74.5
84.7
85.2
45.1
44.8
Concen- .
tration,
mg/m3
24.8
24.5
36.9
20.9
20.8
24.7
29.4
28.4
18.5
17.6
Average =24.7
o5 = 5.8
Nd = 10
160°C
Total
weight,
mg
56.2
51.5
_
-
.
-
Concen-
tration,
mg/m3
20.0
19.7
-
.
_
-
Average =19.9
o = 0.2
N = 2
232°C
Total
weight,
mg
50.6
44.9
-
46.7
52.3
72.8
32.5
Concen-
tration,
mg/m3
18.0
17.1
-
16.4
17.3
25.3
13.3
Average = 17.9
o = 4.0
N = 6
315°C
Total
weight,
mg
46.4
40.4
46.8
47.0
43.6
48.4
69.4
71.3
30.4
30.4
Concen-
tration,
mg/mj
16.5
15.4
16.2
14.9
15.4
16.0
24.1
23.8
12.5
12.0
Average =16.7
o = 4.1
N = 10
Total filterable catch (probe rinse and filter).
Concentration in milligrams per dry normal standard cubic meter.
cStandard deviation with N-l weighting for sample data.
Number of data points.
4-11
-------
TABLE 4-6. FILTERABLE PARTICULATE RELATIVE PERCENT WEIGHT LOSS
AFTER CONDITIONING AT TEMPERATURES 160°, 232°, AND 315°C
I
M
to
Run
No.
1A
IB
3C
3D
5A
SB
9A
98
K
20
4C
40
6C
60
7A
7B
9C
90
IOC
10D
2A
28
4A
4B
6A
6B
8A
88
10A
10B
Sample
ID
MS
M5
MS
M5
MS
MS
MS
MS
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MS -450
M5-450
M5-4SO
MS -450
M5-4SO
M5-450
MS -450
M5-450
M5-450
M5-450
Ambient
temperature
Cone. . mq
Rinse
131.6
136.4
131.6
141.3
134.3
47.5
196.0
171.0
29.9
30.1
35.8
55.9
35.3
22.8
22.3
41.4
26.1
15.0
19.8
48.8
31.4
2S.8
69.0
26.5
24.9
39.5
35.0
2B.4
20.9
21.5
Filter
93.0
84.6
112.2
119.0
62.6
40.7
84.6
74.4
45.0
45.5
44.6
42.0
43.3
40.4
25.8
27.4
37.1
42.5
28.9
29.6
38.2
38.5
37.6
39.4
34.2
35.0
49.7
56.8
24.2
23.3
160°C (320°F)
Cone., mg
Rinse
42.4
40.2
-
27.5
14.2
.
20.1
19.5
-
-
16.4
20.2
19.2
10.6
11.3
25.2
19.0
15.1
-
-
-
-
filter
65.6
64.8
.
42.0
34.9
-
43.2
43.3
-
.
24.8
26.0
34.4
41.1
27.1
27.4
37.2
36.4
-
.
.
-
Ut. loss. I
Rinse
68
71
-
80
70
-
33
35
-
.
26
51
26
29
43
48
39
41
-
.
.
-
Filter
29
23
-
33
14
-
4
5
-
.
4
5
7
3
6
7
3
5
-
.
-
-
232°C (450T)
Cone . . mg
Rinse
23.8
23.6
40.0
40.5
1S.1
9.6
-
15.5
14.5
.
16.1
12.6
12.4
15.4
IS. 4
8.0
9.0
20.2
14.2
8.9
.
14.3
18.5
24.3
9.5
Filter
68.5
67.4
91.9
101.6
40.6
34.1
-
42.1
42.5
-
40.4
38.4
23.6
24.3
32.3
40.6
25.1
26.0
36.4
36.0
.
32.4
33.8
48. 5
23.0
0
Ut. loss, t
Rinse
82
83
70
71
89
80
.
48
52
.
54
45
44
63
41
47
55
59
55
66
.
43
53
31
56
Filter
26
20
18
15
35
16
-
6
7
-
7
5
9
11
13
4
13
12
5
6
-
5
4
2
5
315°C (600"F)
Cone . . mq
Rinse
18.0
19.0
31.5
34.1
12.8
5.5
28.4
19.0
12.5
11.6
14.6
17.8
14.1
10.6
11.0
13.9
14.6
6.3
7.8
16.2
10.8
5.9
14.0
10.3
12.0
15.3
22.3
17.6
8.2
10.2
Filter
62.0
61.5
80.8
81.4
38.6
32.7
44.6
40.6
41.6
42.0
41.6
39.4
38.8
36.6
23.2
22.8
29.9
39.8
23.8
24.6
35.6
34.9
32.8
36.7
31.6
33.1
47.1
53.7
22.2
20.2
Ut. loss. S
Rinse
86
86
76
76
90
88
86
89
58
61
59
68
60
54
51
66
44
58
61
67
66
77
80
61
52
61
36
38
61
53
Filter
33
27
28
32
38
20
47
45
8
8
7
6
10
9
10
17
19
6
18
17
7
9
13
7
8
S
5
5
8
13
Height loss »
Antlent weight - 160". 232". 315°C weight
ambient weight
x 100
-------
Figures 4-1 and 4-2 graphically depict some of these data. Table
4-7 summarizes the EPA Method 8* analytical results for sulfuric
acid (HjSOj and sulfur dioxide (SO-).
Data presented in Tables 4-5 and 4-6 show the effects of
sampling and analytical temperatures on the measurement of par-
ticulate emissions from this source. As expected, the M5 samples
collected at 121°C (250°F) showed considerably higher particulate
catch than the MSB [collected at 160°C (320°F) and M5-450 (col-
lected at 232°C (450°F)] sampling runs. The M5 runs averaged
220.1 mg total ambient weight, with a corresponding average
concentration of 76.9 mg/dNm3 and a standard deviation of 17.6
mg/dNm3. The M5B and M5-450 sample runs averaged 69.6 mg ambient
weight (23.1 mg/dNm3, standard deviation of 4.5 mg/dNm3) and 70.0
mg ambient weight (24.7 mg/dNm3, standard deviation of 5.8
mg/dNm3), respectively.
After thermal treatment to 315°C (600°F), the weight of the
M5 sample averaged 76.3 mg, with a corresponding average concen-
tration of 26.2 mg/dNm3 and a standard deviation of 6.3 mg/dNm3.
The concentrations of the MSB sample runs averaged 15.2 mg/dNm3,
with a standard deviation of 1.7 mg/dNm3; the M5-450 concen-
trations averaged 16.7 mg/dNm3, with a standard deviation of 4.1
mg/dNm3 (Table 4-5).
The MS rinse and filter samples consistently showed higher
relative percent weight losses at each conditioning temperature
than the MSB and M5-450 sample fractions (see Table 4-6). The
*
40 CFR 60, Appendix A, Reference Method 8, July 1983.
4-13
-------
100
80
ro
-o
UJ
60
40
20
M50
M5B&
I
AMBIENT 160 232
HEAT - CONDITIONING TEMPERATURE, 9c
315
Figure 4-1. Average participate concentration in Run 9 at
indicated sample heat-conditioning temperature.
4-14
-------
20
«_>
o
10
MSB A
M5 - 450 O
AMBIENT
160 232
CONDITIONING TEMPERATURE, °c
315
Figure 4-2. Average participate concentration in Runs 2, 4, 6,
and 10 at indicated conditioning temperature.
4-15
-------
TABLE 4-7. SUMMARY OF H2$04 AND S02 ANALYTICAL DATA
Test
No.
9
C,
A
•t
f.
\J
7
/
Train
ID
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
7A
7B
7C
7D
Sample
type
M5
M5
M5W
M5W
M5-450
M5-450
MSB
MSB
M5W
M5W
MS
MS
M5-450
M5-450
MSB
MSB
MS
MS
M5W
M5W
M5-450
M5-450
MSB
MSB
MSB
MSB
M5W
M5W
H2S04a
mg
28.9
16.3
23.3
68.3
69.2
102.0
40.7
78.7
42.1
79.5
21.9
32.9
207.0
201.0
193.0
278.0
40.0
71.3
54.3
86.2
189.0
252.0
226.0
182.0
135.0
148.0
109.0
154.0
mg/m3
9.8
5.3
7.2
21.4
24.6
38.9
12.4
24.2
14.7
26.5
6.7
10.1
71.9
63.8
56.8
84.5
18.7
31.8
21.9
34.9
66.5
83.4
67.5
55.2
62.8
64.9
43.6
63.1
Total S02b
mg
4130
3900
4560
4730
4000
3860
4740
4750
4060
4210
4670
4660
3910
4080
4560
4580
2840
3080
3390
3350
4030
4140
4680
4630
3120
3180
2650
3590
mg/m3
1404.8
1278.7
1407.4
1482.8
1423.5
1473.3
1445.1
1461.5
1419.6
1403.3
1419.5
1433.8
1357.6
1295.2
1341.2
1392.1
1327.1
1375.0
1366.9
1356.3
1419.0
1370.9
1397.0
1403.0
1451.2
1394.7
1060.0
1471.3
(continued)
4-16
-------
TABLE 4-7 (continued)
Test
No. '
i n
1U
Train
ID
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample
type
M5-450
M5-450
M5W
M5W
M5
M5
MSB
MSB
M5-450
M5-450
MSB
MSB
H2S043
mg
158.0
102.0
620.0
93.6
59.1
53.3
360.0
304.0
243.0
218.0
277.0
273.0
mg/m3
54.9
34.0
181.8
28.0
20.8
17.8
107.1
91.3
99.6
85.8
102.2
100.4
Total S02b
mg
3980
4050
3730
4650
4480
4400
4790
4920
3530
3560
4110
4020
mg/m3
1381.9
1350.0
1093.8
1392.2
1577.5'
1466.7
1425.6
1477.5
1446.7
1401.6
1516.6
1477.9
JTotal SO/ (SO^/H?SO-, mist) - analysis per Method 8 (40 CFR 60, Appendix A,
Reference Method 8, July 1982).
3Total S02 - analysis per Method 8.
4-17
-------
average M5 sample weight at 315°C was about 65 percent less than
the ambient weight, compared with 33 percent for the MSB sample
and 32 percent for the M5-450 sample. The largest percentage
weight loss for the M5 rinse and filter fractions occurred at
160°C, and the difference in percent weight loss above 160°C is
comparable to that in the MSB and M5-450 sample runs. Comparison
of weight loss by sample fraction shows that both the MSB and
M5-450 filter samples exhibited weight losses of less than 10
percent at each heat treatment. The MS filters showed weight
losses ranging from 14 to 47 percent, most of which occurred at
160°C. The weight loss from the probe rinse fraction of each
sample type varied considerably. For all sample types, the probe
rinse consistently showed higher relative percent weight loss
than the filter.
Figure 4-1 shows how the average particulate concentrations
in Run 9 compared according to whether sampling was performed by
Method 5 or Method SB. The largest difference occurs at ambient
temperature. The average concentration in the MS sample at
ambient temperature was 80 percent higher than the average con-
centration in the MSB samples. At 315°C, the average concentra-
tion of the MS samples was 41 percent higher than the average
concentration of the MSB samples. These results indicate that
the more condensible material collected, the greater the amount
that remains at each temperature. Figure 4-2 shows the same
comparison for MSB and M5-450 samples.
4-18
-------
These comparisons show that controlling the sampling temper-
ature to reduce the amount of the condensible particulate col-
lected has a significant impact on the data.
The data presented in Tables 4-5 and 4-6 and Figures 4-1 and
4-2 show that sample temperature is a significant variable that
directly affects the collection of condensible material in the
front half of the standard Method 5 sample train. The current
understanding of the thermogravimetric principle is that only
sulfate present as H-SO, is removed in the heating procedure,
particularly at 160°C. Other water-soluble sulfates (e.g.,
ammonium sulfate or metal sulfates) would not be removed depend-
ing, of course, on the conditioning temperature. Therefore, the
weight losses for each sample type that occur above 160°C are
probably attributable to volatili2ation of sulfate species other
than sulfuric acid. Subsection 4.3 of this report addresses
this.
Data presented in Table 4-7 confirm the relationship between
sample temperature and the collection of condensible material in
the front half of the sampling train. For each test type, the
H_SO4 content of the impinger section of the sampling train
increased with increasing sampling temperature. The average
concentration of H2S04 for all M5 sample runs was 15.1 mg/dNm3,
compared with 69.1 mg/dNm3 for MSB and 62.3 mg/dNm3 for M5-450.
Although the H-SO. results are variable, there is a general
within-run correlation between measured H2SO. and the relative
percent weight loss exhibited between similar samples. This
4-19
-------
would suggest that H-SO. is the primary sulfate species being
collected, and significantly higher sampling temperatures [>121°C
(250°F)]-are required to minimize the condensation of sulfuric
acid in the front half of the standard Method 5 sampling train.
Tables 4-8 and 4-9 present precision estimates for the heat
treatments evaluated. In Table 4-8, each group represents two
simultaneous runs of the same sample type. For each run group
and temperature, the table lists the mean filterable concentra-
tion, the standard deviation with N-l weighting for sample data,
and the percent coefficient of variation (CV), which expresses
the standard deviation as a percent of the mean concentration.
Table 4-9 summarizes precision estimates for M5, MSB, and M5-450
test data at each conditioning temperature. The mean filterable
concentrations were calculated by averaging the individual run
data to minimize roundoff errors. The mean standard deviations
were calculated by averaging standard deviation values for each
set of grouped runs (Table 4-8) to minimize the effect of tempo-
ral variation in emissions. In this way, the mean standard
deviation of the grouped runs (o in Table 4-9) more accurately
reflects method precision than does the standard deviation of
individual run concentrations (o in Table 4-5). The number of
data points included in each calculation is shown for considera-
tion in the evaluation of the precision estimates.
For a given group of runs, the within-run agreement was
expected to improve after each stage of heat treatment because of
further elimination of sulfate biases. Generally, the observed
4-20
-------
TABLE 4-8. STATISTICAL DATA FOR GROUPED RUNS AFTER CONDITIONING
AT INDICATED TEMPERATURES
i
ISJ
Run No.
1A-B
3C-0
5Ad-B
9A-B
2C-0
4C-D
6C-0
7A-Bd
9Cd-D
10Cd-0
2*-B
4Ad-B
6A-B
8A-B
10A-B
Sample
type
H5
MS
MS
MS
MSB
MSB
MSB
MSB
MSB
MSB
MS-4SO
MS-450
HS-4SO
M5-450
M5-450
Ambient
I.*
mg/dNm»
74. 5
77.1
65.7
90.3
23.1
26.7
21.4
26.3
18.1
23.4
24.7
26.9
22.8
28.9
18.1
°?
ng/dNm>
2.8
4.2
37.2
12.0
0.4
4.4
3.0
5.5
1.1
7.6
0.2
11.3
2.8
0.7
0.6
CV.C
t
3.8
5.5
56.6
13.3
1.7
16.5
14.2
21.0
6.1
32.5
0.8
39.1
12.3
2.4
3.3
160°C (320°F)
*.
mg/dNmi
35.6
.
27.2
-
19.3
-
-
19.8
15.8
16.8
19.9
-
-
-
-
o,
mg/dNmJ
1.6
.
7.5
-
0
-
-
0.8
0.4
3.6
0.2
-
-
-
-
cv.
(
4.5
.
27.6
-
0
-
.
4.0
2.5
21.4
1.0
-
-
-
-
232°C (450°F)
T.
mg/dNmJ
30.6
41.9
22. 8
-
17.6
-
16.2
17.1
14.4
14.8
17.6
-
16.9
-
-
0,
rog/dNm>
1.1
2.5
4.6
-
0.1
-
1.0
o.s
0.3
3.1
0.6
-
0.6
-
-
CV.
X
3.6
6.0
20.2
-
0.6
-
6.2
2.9
2.1
21.0
3.4
-
3.6
-
-
316°C (600-F)
I.
rog/dNm'
26.8
34.8
20.6
22.8
16.5
17.0
15.1
16.0
13.5
13.4
16.0
15.6
15.7
24.0
12.3
o.
mg/dNMJ
0.6
1.0
4.9
4.1
0
0.6
1.1
0.1
0.4
2.3
0.8
0.9
0.4
0.2
0.4
CV.
I
2.2
2.9
23.8
18.0
0
3.5
7.3
0.6
3.0
17.2
5.0
5.8
2.5
0.8
3.3
*Mean filterable concentration.
HHhtn-run standard deviation with N-l weighting for sample data.
'coefficient variance 1s the standard deviation expressed as a percent of the mean concentration.
Samples heated for 24 hours.
-------
TABLE 4-9. SUMMARY OF PRECISION ESTIMATES AFTER CONDITIONING
AT INDICATED TEMPERATURES
Run No.
1.3.5.9
2.4.6.
7.9.10
2.4.6
8,10
Sample
type
M5
MSB
HS-450
Ambient
I."
ng/dNm>
76.9
23.1
24.7
o.b
mg/dNm'
14.1
Nd-8
3.7
N • 12
3.1
N - 10
W.c
t
18.3
15.9
12.6
160eC (320°F)
I.
mg/dNm'
31.4
17.9
19.9
o.
mg/dNm'
4.6
N « 4
1.2
N • B
0.2
N • 2
w.
t
14.5
6.7
1.0
232°C (450-F)
T,
mg/dNm5
31.6
16.0
17.2
0.
mg/dNm'
2.7
N • 6
1.0
N • 10
0.6
N • 4
W.
X
8.6
6.3
3.5
316°C (600°F
T.
mg/dNm>
26.2
15.2
16.7
0.
mg/dNM'
2.7
N • 8
0.8
N • 12
0.5
N • 10
rv.
I
10.1
4.9
3.2
*Mean filterable concentration based on grouped run values.
bHean standard deviation of grouped runs (-^)-
Stean coefficient variation (percent) calculated from the mean standard deviation and the filterable and the mean filterable
concentration of grouped runs.
"* - Nwnber of data points.
4-22
-------
precision was better after heating at 160°C, and for some sam-
ples, after heating at the subsequent higher temperatures. The
precision decreased in some cases, however, probably as a result
of increased sample handling.
The mean standard deviation for four M5 run groups was 14.1
mg/dNm3 at ambient conditions, which corresponds to a mean coef-
ficient of variation (CV) of 18.3 percent. The six MSB run
groups had a mean standard deviation of 3.7 mg/dNm3 and a corre-
sponding mean CV of 15.9 percent at ambient conditions. The five
M5-450 run groups had a mean standard deviation of 3.1 mg/dNm3
and a corresponding mean CV of 12.6 percent at ambient condi-
tions.
The mean standard deviation for two M5 run groups heated to
160°C (320°F) was 4.6 mg/dNm3 and the corresponding CV was 14.5
percent, which was an improvement over results at ambient condi-
tions. For the four MSB run groups heated to 160°C, the mean
standard deviation and CV were 1.2 mg/dNm3 and 6.7 percent,
respectively. The one M5-450 run group heated to 160°C showed a
mean standard deviation of 0.2 mg/dNm3 and a CV of 1.0 percent.
Precision data for the MS run groups heated to 232°C (450°F)
included a mean standard deviation of 2.7 mg/dNm3 and a CV of 8.6
percent. For the five MSB run groups, the average standard
deviation and CV were 1.0 mg/dNm3 and 6.3 percent. The M5-450
runs showed a mean standard deviation of 0.6 mg/dNm3 and a CV of
3.5 percent.
Precision data for the MS groups heated to 316°C (600°F)
included a mean standard deviation of 2.7 mg/dNm3 and a CV of
4-23
-------
10.1 percent. For the MSB samples, the mean standard deviation
and CV were 0.8 mg/dNm3 and 4.9 percent. Four of the six MSB
runs, however, had a mean standard deviation of less than 1.0
mg/dNm3 and a corresponding CV of less than 4 percent. For the
M5-450 runs, the mean standard deviation and CV were 0.5 mg/dNm3
and 3.2 percent.
All of these statistical results indicate a high degree of
precision for the majority of samples. The enhanced precision of
each group was expected because of the reduction in the amounts
of condensible material from rinse and filter fractions. These
precision estimates are comparable to data obtained at the first
FCCU source evaluated under this task assignment.
4.3 WATER-SOLUBLE SULFATE ANALYTICAL DATA
Table 4-10 summarizes results from the water-soluble sulfate
analysis performed on the indicated samples. Since particulate
cannot be determined gravimetrically in the presence of sulfuric
acid (because of the inexact amount of water retained by the
acid), this method is designed to convert the acid to a nonhydro-
scopic, nonvolatile product (in this case ammonium sulfate). The
acid is converted to ammonium sulfate and the weight of ammonium
sulfate calculated from an independent sulfate determination is
subtracted from the total weight. Section 3 and Appendix D of
this report detail the sample preparation and analytical tech-
niques as well as equipment and reagents used to perform this
analysis. Appendix C contains data and example calculations for
this method.
4-24
-------
TABLE 4-10. SUMMARY OF WATER-SOLUBLE SULFATE ANALYTICAL RESULTS
Test No.
1C
ID
3A
3B
5C
5D
7C
7D
8C
8D
Sample
ID
M5W
M5W
M5W
M5W
M5W
M5W
M5W
M5W
M5W
M5W
Total
NWSSP,
mg
53.8
52.8
66.6
62.4
51.9
29. 9e
25.0
53.5
56.6
59.9
Concen-
tration,
mg/dNm3
16.6
16.6
23.3
20.8
20. 90
12. le
10. Of
21.9
16.6
17.9
Statistical data
for grouped runs
X b
" »
mg/dNm3
16.6
22.1
-
-
17.2
a,C
mg/dNm3
0.0
1.8
-
-
0.9
CV,d %
0
8.1
-
-
5.3
Average =19.3
o = 2.7
N = 8
aTotal non-water-soluble sulfate particulates (NWSSP of probe and filter
fractions) determined by the Texas Air Board water-soluble sulfate analyt-
ical method as modified, with ion chromatography used to determine water-
soluble sulfate.
Mean filterable concentration.
cWithin-run standard deviation with N-l weighting for sample data.
Coefficient of variance is the standard deviation expressed as a percent of
the mean concentration.
eOnly the filter fraction is reported. Results from this run not included in
the group averages.
Probe rinse value very low. Results from this run not included in group
averages.
4-25
-------
The M5W sample runs (excluding Runs 5D and 7C) showed an
average non-water-soluble sulfate particulate concentration of
19.3 mg/dNm3 with a standard deviation of 2.7 mg/dNm3. Statisti-
cal data for grouped runs (excluding Runs 5 and 7) exhibited a
high degree of precision, as characterized by a mean standard
deviation of 0.9 mg/dNm3 and a corresponding mean CV of 4.8
percent. A direct comparison of the M5W results with the ther-
mogravimetric results for M5 and M5-450 at 315°C (concentration
basis) shows that the M5W results averaged 19.3 mg/dNm3 for Runs
1 and 3, whereas the M5 results averaged 30.8 mg/dNm3 for the
same runs. In Run 8, the average values were 17.3 mg/dNm3 for
M5W and 24.0 mg/dNm3 for M5-450. No direct comparison with MSB
is possible.
These data are consistent with the basic principle of the
thermogravimetric procedure in that only H2S04 an(^ associated
water are removed by heating at 160°C, whereas additional sulfate
species (metal sulfates, ammonium sulfate, and possibly some
residual H2S04) could not be removed. If these other sulfate
species were water-soluble, the expected M5W results would be
lower because the method is designed to correct for total water-
soluble sulfate, which includes H2S04.
In an effort to characterize this difference, the within-run
heat-conditioned samples were extracted with water, and aliquots
were analyzed by ion chromatography (1C) for residual water-
soluble sulfates as S04~. Table 4-11 presents the results of the
within-run residual sulfate analysis. As shown, both the rinse
4-26
-------
TABLE 4-11. SUMMARY OF RESULTS FOR RESIDUAL SULFATE (SO/)
ON WITHIN-IN RUN SAMPLES CONDITIONED AT 315°C *
Sample
ID
1A
IB
3C
3D
5A
5B
7A
7B
8A
8B
a
Sample3
type
M5
M5
M5
M5
M5
M5
MSB
MSB
M5-450
M5-450
_b
Residual sulfate as SO."
Probe
rinse, mg
6.3
7.1
10.1
12.6
4.6
1.9
1.4
3.5
2.9
1.4
Filter, mg
19.5
20.7
28.5
28.9
12.9
7.1
3.1
3.1
3.8
4.5
Total , mg
25.8
27.8
38.6
41.5
17.5
9.0
4.5
6.6
6.7
5.9
These samples, previously heat-conditioned to 315°C, were extracted
with water and analyzed for total sulfate (S0,~) with ion chromato-
graphy.
5Total sulfate (S04~) determined by 1C from aliquots of probe rinse
and filter fractions.
4-27
-------
and filter fractions contained residual sulfate ranging from 1.4
to 12.6 mg in the probe fraction and from 3.1 to 28.9 mg in the
filter fraction. All samples exhibited the same basic character-
istics; i.e, residual water-soluble sulfate was found in each
sample fraction. Considerably more residual sulfate was present
in the M5 samples than in the MSB or M5-450 samples.
The particulate concentrations in samples conditioned to
315°C were corrected for residual sulfate and compared against
the M5W results. Table 4-12 summarizes the comparative data.
Considering the overall complexity of the M5W sample analysis and
the number of analytical steps involved in the thermogravimetric
and 1C procedures, the data in Table 4-12 show no significant
difference between the M5W results and the MS results heated to
315°C and corrected for residual sulfate. These data substanti-
ate the conclusion that the primary difference in particulate
concentrations between samples heat-conditioned to 315°C and the
calculated M5W results represent water-soluble sulfate species
not removed by thermal treatment. No conclusion can be drawn
from the comparison of M5W results with MSB and M5-450 results
based on a single run of each method.
As a further check, the remaining MS, MSB, and M5-450 sample
fractions were extracted with water and analyzed by 1C for resid-
ual sulfate. Table 4-13 summarizes these data, which exhibit
similar characteristics to the data presented in Tables 4-11 and
4-12. Residual sulfate as SO." was found in each sample, and
particulate concentrations corrected for residual SO ~ agreed
4-28
-------
TABLE 4-12. COMPARISON OF WITHIN-IN RUN PARTICULATE CONCENTRATIONS
AFTER CORRECTION FOR RESIDUAL SULFATE TO THE M5W TEST RESULTS
Sample
ID
1A M5
IB M5
1C M5W
ID M5W
3A M5W
3B M5W
3C M5
3D M5
5A M5
5B M5
5C M5W
5D M5W
7A M5B
7B MSB
7C M5W
7D M5W
8A M5-450
8B M5-450
8C M5W
8D M5W
Uncorrected parti cul ate
concentration, mg/dNm3
27.2
26.J
NAC
NA
NA
NA
34.1
35.5
24.0
17.1
NA
NA
15.9
16.1
NA
NA
24.1
23.8
NA
NA
Corrected partdculate
concentration, mg/dNm3
18.4
17.3
16.6
16.6
23.3
20.8
22.4
22.8
15.8
13.0
20.9.
12. ld
13.8
13. 20
10. Oe
21.9
21.8
21.8
16.6
17.9
The uncorrected concentrations for M5 and M5B samples are calculated
concentrations after conditioning at 315°C.
The corrected participate concentrations for the M5 and M5B samgles were
calculated by subtracting the weight of residual sulfate as SO. (Table 4-11)
from the total catch at 315°C and dividing by the sample volume.
cNot applicable.
Only the filter fraction is reported.
eProbe rinse value is very low.
4-29
-------
TABLE 4-13. SUMMARY OF RESIDUAL SULFATE (SO/) RESULTS
ON SAMPLES CONDITIONED AT 315°C *
Run
No.
2A
2B
2C
2D
4A
4B
4C
4D
6A
6B
6C
6D
9A
9B
9C
9D
10A
10B
IOC
10D
. Sample
ID
M5-450
M5-450
M5B
MSB
M5-450
M5-450
MSB
MSB
M5-450
M5-450
MSB
MSB
M5
MS
MSB
MSB
M5-450
M5-450
MSB
MSB
Total sulfates
as S0,~, mq
Rinse
0.9
1.0
2.4
2.4
4.0
1.4
2.7
4.0
0.8
3.5
4.1
1.7
10.4
7.4
2.2
1.4
0.8
1.2
1.6
4.4
Filter
3.0
3.2
3.5
4.8
3.2
3.8
4.1
4.1
3.0
3.5
4.6
3.3
16.1
13.1
3.4
4.0
2.8
2.6
4.1
4.1
Total"
3.9
4.2
5.9
7.2
7.2
5.2
6.8
8.1
3.8
7.0
8.7
5.0
26.5
20.5
5.6
5.4
3.6
3.8
5.7
8.5
Particulate3
concentration. mq/dNm3
Uncorrected
16.5
15.4
16.5
16.5
16.2
14.9
16.5
17.4
15.4
16.0
15.8
14.3
25.7
19.9
13.2
13.8
12.5
12.0
11.7
15.0
Corrected
15.1
13.8
14.7
14.3
13.8
13.3
14.5
14.9
14.0
13.7
13.2
12.8
16.4
13.0
11.6
12.2
11.0
10.5
9.6
11.9
Participate concentration in milligrams per cubic meter. The uncor-
rected concentrations represent rinse and filter catch after heat-con-
ditioning at 315°C. The corrected values represent particulate con-
centration after adjusting the sample fractions for the SO." values
obtained by 1C analysis.
3Total residual sulfate is the summation of the rinse and filter
fraction in milligrams.
4-30
-------
closely for each sample type. The average corrected MSB concen-
tration for Runs 2, 4, 6, and 10 was 13.2 mg/dNm3, compared with
13.2 mg/dNm3 for M5-450. The average corrected M5 concentration
for Run 9 was 14.7 mg/dNm3 compared with 11.9 mg/dNm3 for MSB.
For the characterization of sulfate species other than
H-SO., extracts of samples from Runs 2 and 9 were analyzed by ICP
for cations. The results of this analysis are presented in Table
4-14.
A 40-element ICP scan was performed. Four nonmetals were
included in this list—boron, phosphorous, silicon, and sulfur.
Sulfur was converted to the equivalent amount of sulfate. As
shown in Table 4-15, agreement is good between the sulfate values
obtained on the 1C and those obtained by ICP (except for Run 1C
filter) when one considers the ability of ICP to detect sulfur.
Twenty-four elements were below 0.01 mg/liter or not detected.
Three others (lithium, strontium, and titanium) were less than
0.1 mg/liter. At 0.1 mg/liter, the contribution of these ele-
ments is insignificant compared with that of calcium and sodium
at 2 mg/liter.
Table 4-16 presents the charge balance for the 16 samples
analyzed by ICP. Calculations of this charge balance are based
on each cation having the charge listed in Table 4-14 and all
_2
sulfate presented as SO. . The values for the M5W filter sam-
ples averaged 0.54 mg, and those for the probe rinse samples
averaged 0.09 mg. These values indicate that more than 46 per-
cent of the sulfate on the filter and more thna 90 percent of the
4-31
-------
TABLE 4-14. CATIONS FOUND IN WATER EXTRACTION BY ICP
Sample
ID
1A Probe rinse
1A Filter
IB Probe rinse
IB Filter
1C Probe rinse
1C Filter
ID Probe rinse
ID Filter
7A Probe rinse
7A Filter
7B Probe rinse
7B Filter
7C Probe rinse
7C Filter
7D Probe rinse
70 Filter
Sample
type
M5
M5
M5
M5
M5W
M5W
M5W
M5W
MSB
M5B
MSB
MSB
M5W
M5W
M5W
M5W
Metal , mq
Al+3
0.50
2.45
0.65
2.50
1.25
3.50
0.86
0.68
0.022
<0.01
0.075
<0.01
0.78
2.50
0.68
1.42
Ca+2
0.090
0.38
0.052
0.38
0.24
0.50
0.11
0.35
0.030
0.38
0.048
0.50
0.11
0.50
0.083
0.35
Fe+3
0.068
0.22
0.065
0.22
0.27
0.24
0.18
0.092
<0.002
<0.002
0.038
0.011
0.19
0.19
0.16
0.11
K+
<0.01
<0.01
<0.01
<0.01
0.28
0.50
<0.01
0.25
<0.01
<0.01
<0.01
<0.01
<0.01
0.42
0.31
0.30
Mg+2
<0.008
<0.008
<0.008
<0.008
0.038
0.010
<0.01
0.032
< 0.008
< 0.008
< 0.008
< 0.008
<0.01
0.040
0.079
0.045
Na+
0.35
0.65
0.32
0.70
1.37
1.45
0.72
0.78
0.24
0.52
0.27
0.55
0.24
0.70
0.39
0.72
Ni+2
0.006
0.06
0.007
0.06
0.049
0.062
0.008
0.011
< 0.0008
< 0.0008
< 0.0008
< 0.0008
0.062
0.038
0.004
0.032
V+2
<0.0008
0.072
<0.0008
0.065
0.031
0.095
0.002
NRa
< 0.0008
<0.0008
< 0.0008
< 0.0008
<0.001
0.060
0.030
0.062
Zn+2
o.2n
0.008
0.058
0.010
0.72
0.040
0.54
0.008
0.018
0.004
0.019
0.018
0.97
0.019
0.72
0.007
I
OJ
Ni
NR = Not reported.
-------
TABLE 4-15.
SOLUBLE SULFATE PRESENT IN SAMPLE
ANALYZED BY ICP
Sample ID
1A M5
IB M5
1C M5W
ID M5W
7A MSB
7B M5B
7C M5W
7D M5W
1C sulfate, mg
Probe rinse
6.3
7.1
109.0
62.1
1.4
3.5
124.4
99.5
Filter
19.5
20.7
44.2
10.6
3.1
3.1
44.0
18.5
ICP sulfate, mg
Probe rinse
5.3
6.8
105.9
52.6
1.3
3.1
97.1
83.9
Filter
16.5
19. 5a
4.1a
10.5
2.6
2.6
36.0
17.2
aProbable outlier.
4-33
-------
TABLE 4-16.
CHARGE BALANCE RESULTS FOR SAMPLES
ANALYZED BY ICP
Sample ID
1A M5
IB M5
1C M5W
ID M5W
7A MSB
7B M5B
7C M5W
7D M5W
Charge balance3
Probe rinse
0.65
0.65
0.11
0.12
0.51
0.34
0.06
0.07
Filter
0.83
0.80
0.55
0.64
0.65
0.78
0.39
0.59
Milliequivalents cations/mi 11iequivalents sulfate.
4-34
-------
probe rinse sulfate are present as sulfuric acid. This is in
direct contrast to the M5 and MSB samples after heat-conditioning
at 315°C; the average charge balance for the probe rinse of these
samples was 0.54. The average charge balance for the M5 and MSB
filters was 0.77, which means either that 77 percent of the
sulfate is present as metal sulfates or that some of the metal
salts on the filter and possibly all in probe rinse are present
as bisulfates. This would account for the charge balance being
less than 1.00. The formation of bisulfate is possible inasmuch
as these salts are not being formed in a true solution, but
rather in the gas phase, on the surface of the filter, or in a
nonaqueous solution (acetone).
Based on the information from the thermogravimetric analysis
and the results of these metal analyses, one might reasonably
conclude that sulfuric acid collected with the particulate matter
reacts to form metal sulfates and/or bisulfates. This artifact
formation explains why the greater the amount of sulfuric acid
collected during sampling, the higher the apparent particulate
catch after the different heat treatments.
4.4 RECOMMENDATIONS FOR SAMPLE AND ANALYTICAL METHODOLOGY
Data gathered during this study support previous work that
characterized condensible sulfate biases of particulate measure-
ments at source emission streams containing sulfur oxides. • • • •
The EPA has stated that the intent of the NSPS for particulate
4-35
-------
emissions from FCC units is to control "catalyst fines" or "min-
eral dust" and not the condensible sulfates that are present in
the gas phase at the control device operating temperature.
Emissions from fluid catalytic cracking and thermoform catalytic
cracking units are known to contain sulfur oxides; therefore,
sulfuric acid (H_SO.) and/or its metal and ammonium salts are the
most probable forms of water-soluble sulfates. Water-soluble
sulfate exists in many complex chemical forms, the most common
being sulfuric acid. The results of this study show that H2SO.
is the predominant sulfate species in the FCCU emission stream
and that metal sulfates, primarily sodium and calcium, constitute
the remaining water-soluble sulfate of any significance. There-
fore, a particulate sampling method designed to minimize the
collection of H2SO. and simultaneously reduce residual H2SO.
immediately prior to gravimetric analysis is required to minimize
potentially high biases in particulate measurements from these
sources.
It is evident that sample temperature significantly affects
the retention of condensible sulfate (H.SO. in this case) mate-
rial in the front half of the standard Method 5 sampling train.
The thermogravimetric and back-half H2SO. data show that at
sampling temperatures below 160°C (320°F), a significant amount
of H2S04 is retained in the front half of the Method 5 sampling
train. Increasing the sampling temperatures (MSB and M5-450)
reduces this amount, but does not eliminate it. If H2SO.
collected with the particulate condenses and reacts to form metal
4-36
-------
sulfates and/or bisulfates, this artifact formation compounds the
problem of accurately determining the true particulate emissions
(catalyst fines) from the source.
In summary, the greater the amount of H^SO. retained in the
probe and on the filter, the greater the positive bias in partic-
ulate measurements will be from these sources. Increased H-SO,
2 4
retention in the probe and on the filter also increases the
potential for artifact formation and additional positive bias in
particulate measurements.
From an analytical standpoint, the thermogravimetric proce-
dure is the easiest and least expensive technique for reducing
H2S04 bias on rinse and filter samples collected at this source.
The data clearly show that the greater the amount of condensible
sulfate (H2S04) initially collected, the more that will remain at
each heat interval, regardless of treatment temperature. The
analytical data indicate that H-SO. and its associated water are
significantly reduced by heating sample fractions to at least
160°C (320°F) prior to gravimetric analysis. Observed weight
losses at higher treatment temperatures are primarily attributa-
ble to the volatilization of residual H-SO. and other water-
soluble sulfates not removed by heating at 160°, 232°, or 315°C.
The results from the water-soluble sulfate analysis of selected
samples support this conclusion.
Based on the results of this and similar studies, ' ' 'b'b
PEDCo offers the following recommendations relative to sample and
analytical methodology for particulate measurement at FCCU
sources.
4-37
-------
Texas Air Control Board Method
The results of this study show that the Texas Air Control
Board (TACB) method, entitled "Determination of Particulate in
Stack Gases Containing Sulfur Dioxide," is applicable to these
sources. Modifications to procedures detailed in the TACB method
are presented in Section 3 and Appendix D of this report. A copy
of the method as received from the TACB is presented in Appen-
dix D.
Prior to analyzing field samples, PEDCo conducted an exten-
sive laboratory evaluation of the method. The experimental
design and the results of this study are described in a separate
method evaluation report issued under this task assignment. This
method entails the use of the sample procedures and temperature
[121°C (250°F)] described in EPA Reference Method 5, except that
the rinse agent is deionized distilled water instead of acetone.
The method converts any sulfuric acid present to a suitable form
for accurate gravimetric analysis. Ammonium hydroxide is added
to form ammonium sulfate in the aqueous solutions. The procedure
allows for the determination of gross particulate (sulfate as
ammonium sulfate and other particulate), the determination of
sulfate as ammonium sulfate from a Method 6 titration or ion
chromatography, and subsequently, the determination of non-water-
soluble sulfate particulate by the subtraction of sulfate (as
ammonium sulfate) from the gross particulate. No direct compar-
ison between this method and the thermogravimetric procedures is
4-38
-------
possible because the method corrects for total water-soluble sul-
fate (including H2SO4), whereas the thermogravimetric procedure
corrects primarily for H2SO. and associated water. Because this
method corrects for total water-soluble sulfate, the particulate
results obtained are expected to be equal to or lower than those
in samples collected at the same or higher temperature and ana-
lyzed thermogravimetrically, regardless of treatment temperature.
Considering the overall complexity of the analytical procedure,
the precision and accuracy of the method are exceptionally good,
as characterized by a mean standard deviation of 0.9 mg/dNm3 and
a mean relative standard deviation of 4.8 percent for this set of
data.
Modified Method 5
Because of the complexity of the TACB analytical procedure,
an alternative methodology incorporating higher sampling tempera-
tures in conjunction with the thermogravimetric analysis seems
appropriate. It is recommended that EPA Reference Method 5
sampling and analytical procedures, with the following modifica-
tions, be used to determine particulate emissions from sources of
this type:
1. Sample collection temperatures should be maintained at
no less than 160°C (320°F), and the probe and filter
temperature should be monitored directly by thermo-
couple leads located at the exit of the sample probe
and immediately behind the filter frit. Most commer-
cially available stack sampling equipment is capable of
maintaining front-half temperatures of 160°C (320°F);
however, sampling at temperatures above 205°C (400°F)
will probably require equipment modifications to ensure
maintenance of the temperature required and the integ-
rity of sampling train components.
4-39
-------
Prior to the gravimetric analysis, probe rinse and
filter fractions should be oven-heated at not less than
160°C (320°F) for 3 hours or more. Prior to weighing,
sample fractions should be allowed to cool in a
desiccator for approximately 2 hours and weighed
according to the constant weight criteria detailed in
Reference Method 5.
These results also indicate that the combination train
(Reference Methods 5 and 8) may not yield accurate
results for particulate and HjSO. unless the probes and
filter temperatures are considerably higher than 160°C
(320°F). Based on the data, this combination train can
be used to sample for particulate and S02 simultane-
ously, provided the train is air-purged for at least 15
minutes after testing is completed to remove the SO-
adsorbed in the IPA.
4-40
-------
SECTION 5
QUALITY ASSURANCE
Because the end product of testing is the production of
representative emission results, quality assurance is one of the
main facets of stack sampling. Quality assurance guidelines
provide the detailed procedures and actions necessary for defin-
ing and producing acceptable data. Four such documents were used
in this test program to ensure the collection of acceptable data
and to provide a definition of unacceptable data. The following
documents comprise the source-specific test plan prepared by
PEDCo and reviewed by the Emission Measurement Branch: the EPA
Quality Assurance Handbook Volume III, EPA-600/4-77-027; the
PEDCo Environmental Emission Test Quality Assurance Plan; and the
PEDCo Environmental Laboratory Quality Assurance Plan. The last
two, which are PEDCo's general guideline manuals, define the
company's standard operating procedures that are routinely fol-
lowed by the emission testing and laboratory groups. In addi-
tion, data obtained from a similar test program conducted under
this task assignment also were utilized to assess the between-
source analytical trends of the methods employed.
Appendix F provides more detail on other subjects related to
quality assurance (QA) such as QA objective; data reduction;
5-1
-------
quality control checks; performance and system audits; preventive
maintenance; precision, accuracy, and completeness; corrective
action; and quality assurance reports to management.
With regard, to this specific test program, the following
steps were taken to ensure that the testing and analytical proce-
dures would produce quality data.
0 Calibration of field sampling equipment. (Appendix E
describes calibration guidelines in more detail.)
c Checks of train configuration and calculations.
0 Onsite checks such as leak checks on the sampling
train, the pitot tube, and the Orsat line and quality
assurance checks of all test equipment prior to use.
0 Use of designated analytical equipment and sampling
reagents.
Table 5-1 lists the sampling equipment used for particulate
testing and the calibration guidelines and limits for this equip-
ment. In addition to the pre- and post-test calibrations, a
field audit was performed on the metering consoles used for
sampling. PEDCo-constructed critical orifices were used in this
audit. Figures 5-1 through 5-4 show an example audit run for
each metering console used for testing. Figures 5-5 and 5-6
present additional onsite quality assurance checks of the ther-
mocouple leads for the quad train probe and filter assemblies.
Onsite calculation checks were performed to ensure isokinetic
sampling rates. Pertinent test data were compared with expected
values as an additional validation check.
As a check on the reliability of the thermogravimetric
analytical procedure, sets of blank filters and acetone were
5-2
-------
TABLE 5-rl. FIELD EQUIPMENT CALIBRATION
in
I
U)
Equipment
Meter box
Pilot tube
Digital
Indicator
Thermocouple
Orsat analyzed
(ginger
thermometer
Balance
Barometer
Dry gas
thermometer
Probe nozzle
Train
A
B
C
D
A&B
C&D
MB
C&D
A&B
C&D
All
A
B
C
D
All
All
A
B
C
D
A
B
C
D
1.0.
No.
FB-3
FB-5
FB-7
FB-2
284
278
12S
124
203
143
394
290
28S
104
M-l
317
FB-3 Inlet
FB03 outlet
FB-5 Inlet
FB-5 outlet
FB-7 Inlet
FB-7 outlet
FB-2 Inlet
FB-2 outlet
1-A
2-A
1-B
2-B
1-C
2-C
1-0
2-0
Calibrated
against
Met test meter
Standard pi tot
tube
Millivolt signals
ASTH-2F
Standard gas
ASTM-2F
Type S weights
NBS traceable
k barometer
ASTH-2F
Cali per
Allowable
error
Y ±0.02 V
AH 0 ±0.15
(Y ±0.05 Y post-test)
Cp ±0.01
0.5%
1.5%
(±21 saturated)
±0. 51
±2°F
±0.5g
±0.10 In.Hg
(0.20 post-test)
tS-F
On ±0.004 In.
Actual
error
+ 0.003
- 0.09
+ 0.019
+ 0.002
+ 0.07
+ 0.015
+ 0.006
+ 0.04
+ 0.011
+ 0.006
- 0.07
+ 0.009
0.0
0.0
+ 0.4%
* 0.3%
+ 0.6X
* 0.61
- 0.3%
0°F
+ 1°F
- 2°F
+ 0.4 g
0.00 In.Hg
- 3°F
- 3°F
+ 4"F
- 2"F
+ 4"F
- 4"F
- 4°F
- 2°F
0.002
0.001
0.001
0.002
0.000
0.003
0.000
0.003
Within
allowable
limits
/
/
/
/
/
/
/
/
J
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Comments
•
Visually Inspected on site
Visually Inspected on site
-------
DATE: ///'S"/?^
BAROMETRIC PRESSURE (Pbar):
ORIFICE NO.
CLIENT:
H9
ORIFICE K FACTOR:
X (Q
METER BOX NO
PRETEST Y:
AUDITOR:
Orifice
manometer
reading
AH
in H20
2,^
Dry gas
meter
reading
Vvf
0
ft3
5^7.^0
.SVO-VS:
Temperatures
Ambient
w
°F
6C|
Q
Y deviation, %
(Y audit - Y pre-test)(100%)
(Y audit)
~ O . 07 1
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 5-1. Audit report dry gas meter (Meter Box FB-2)
5-4
-------
DATE:
CLIENT:
BAROMETRIC 'PRESSURE (Pbar): /ffi/ffin
ORIFICE NO. S~
. Hg METER BOX NO. ffi-fr
PRETEST Y: /^(?/.
ORIFICE K FACTOR: $W/2*/T^ AUDITOR: G$£t&*f'
Orifice
manometer
reading
AH
in H20
2.72
Dry gas
meter
reading
Vvf
ft3
ttyjoo
/%/oo
Temperatures
Ambient
°F
7Z
74
Dry gas meter
Inlet Outlet
w w
°F °F
&* ,??/
Y
deviation
-/.^x€
Vmstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
Audit Y
^ .
act
mstd
\ct
(1203)( 0 )( K )(Pbar)
(Ta + AeO)1^
a
Y deviation, %
(Y audit - Y pre-test)(100%)
(Y audit)
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 5-2. Audit report dry gas meter (Meter Box FB-3)
5-5
-------
DATE: _
BAROMETRIC PRESSURE (Pbar):
ORIFICE NO. //
CLIENT:
. Hg
ORIFICE K FACTOR:
METER BOX NO
PRETEST Y:
AUDITOR:
Orifice
manometer
reading
AH
in H20
Jb.fJL,
•3^35$
Dry gas
meter
reading
Vvf
•3
ftJ
7?/.f0d
f)CrtJ P^7i/i
JQ 1 . Q (J C/
Temperatures
Ambient
Tai/Taf
°F
7/c
7^
Dry gas meter
Inlet
°F
f
-------
DATE:
CLIENT:
BAROMETRIC'PRESSURE (Pb3r);29£g/in. Hg
ORIFICE NO.
ORIFICE K FACTOR: , 7^2 X i O~
METER BOX NO. _
PRETEST Y: _i
AUDITOR:
Orifice
manometer
reading
AH
in H20
1,2
Dry gas
meter
reading
Vvf
0
ft3
tmfCjctf
&T1. ttcws
Temperatures
Ambient
VTaf
°F
GQ
6°i
Dry gas meter
Inlet
°F
?y
76
Outlet
Toi/Tof
CF
7o
-7?^
Duration
of
run
__ • ._
mm
/^^
Dry gas
meter
vol ume
Vm
ft3
/Z.I
Average temperatures
Ambient
Ta
°F
-------
Indicator No. "** f?«f Operator
Test Point
No.
1
2
3
4
Millivolt
signal*
Equivalent
temperature,
°F*
S£-o
(oZ.-£r
<*^\ ,(
MZ/7,0
Digital Indicator
temperature reading,
•F
£9.0
W.W
VTo.3
/rZ7.>S"
Difference,
X
•*&£Pf
-z-&=&r°'W
.fOJl
. tr+O-K
^ *£• 3
Percent difference must be less than or equal to 0.52.
Percent difference:
(Equivalent temperature °R» Digital Indicator temperature reading °R)(100%)
(Equivalent temperature °R)
Where *R « °F + 460°F
These values are to be obtained from the calibration data sheet for the
calibration device.
Figure 5-5. Thermocouple digital indicator audit
data sheet (Indicator 124).
5-8
-------
Date
If/f/fZ
Indicator No.
Operator
Test Point
No.
1
2
3
4
Millivolt
signal*
Equivalent
temperature,
•F*
#,0
M<1
Yrt,/
III'?
Digital Indicator
temperature reading.
°F
tt.L
toW
*J&t
9l?Z,l
Difference.
%
+0,15'
+0.%
+O.W
+&-xr
Percent difference must be less than or equal to 0.52.
Percent difference:
(Equivalent temperature °R- Digital Indicator temperature reading °R)(100%)
(Equivalent temperature °R)
Where °R « °F + 460°F
These values are to be obtained from the calibration data sheet for the
calibration device.
Figure 5-6. Thermocouple digital indicator audit
data sheet (Indicator 125).
5-9
-------
resubmitted to the laboratory for blank analysis. Table 5-2
presents example results of the thermogravimetric blank analysis,
The reported net weights are reasonable (considering the number
of times each sample fraction was handled) and showed good ana-
lytical techniques.
TABLE 5-2. EXAMPLE OF A THERMOGRAVIMETRIC ANALYSIS OF
FILTER AND ACETONE BLANKS (milligrams)
Sample
Filter
Acetone*
Lab
ID
CQ73B
CQ769
Tare
weight
365.2
107. 964. S
Ambient temp.
Height
365.8
107.973.8
Net
+0.6
+9.3
Weight after conditioning at Indicated temperature
160°C
Height
365.6
107.969.6
Net
+0.4
+5.1
232°C
Height
365.4
107.965.4
Net
+0.2
+0.9
316"C
Height
365.6
107.963.9
Net
+0.4
•0.6
'initial volume, 412 ml.
Audit solutions prepared by the EPA were used to check the
analytical procedures and reagents for SO2 analysis. Table 5-3
presents the results of this analytical audit. Table 5-4 sum-
marizes the reagent blank analysis performed on the isopropanol
alcohol (IPA) and hydrogen peroxide used for sampling.
As an assessment of the reliability of the procedures used
to determine the non-water-soluble sulfate particulate concentra-
tion, blank filter and deionized distilled water samples were
analyzed along with each set of field samples. Table 5-5 pre-
sents example blank results of this check method. Table 5-6
summarizes blank analytical data for the ion chromatography
analyses performed on rinse and filter samples.
5-10
-------
TABLE 5-3. AUDIT REPORT S02 ANALYSIS
Plant
PN Number
s> -/•/
Date sample
Samples ana
Reviewed by
Sample
Number
m p C.^ t^ 1$ **
^^ *5 / 4>f
^\ 3 / s
^f ^ j fj *f
£ V^ ? ~i-
s received II- /i
lyzed by B. fetse.
r H'**^
/
Determined
173 J, 3
f^^
**U1
r-?3 Date a
'/e.
Date o
Source of
Sample
nalyzed
f Review
Accepted
Value
14 / £>, f
v-t-r*
&-/f~*3
Difference
+/.3
— ' ft 3
-/.f
5-11
-------
TABLE 5-4. REAGENT BLANK ANALYSIS FOR IPA AND
(mg of S04")
Sample type
10% H202
80% IPA
Lab
ID No.
CQ819
CQ860
As
so2
<0.2
-
As
H2S04
-
<0.1
TABLE 5-5. BLANK ANALYTICAL DATA FOR NON-WATER-SOLUBLE
SULFATE ANALYSES
Sample
type
Filter
Filter
Filter
Filter
Filter
Probe
rinse
(water)
Lab
ID
CQ871
CR295
CR296
CR297
CR298
CQ882
Net particu-
late weight in-
cluding ammonium
sulfate, mg
-10.8
+ 5.4
- 9.0
-11.2
1.9
1.2
r
SO
OU4 »
mg/ liter
3.79
10.6
4.05
3.25
5.35
0.30
Volume
evaporated,
ml
235
235
235
235
235
370
NWSSP,
mg
-12.0
+ 2.0
-10.3
-12.3
+ 0.2
+ 1.0
15 ml removed for 1C analysis.
TABLE 5-6. BLANK ANALYTICAL DATA FOR THE ION
CHROMATOGRAPHY ANALYSES
Sampl e
type
Rinse
(acetone)
Filter
Filter
Filter
Filter
Lab
ID
CQ769
CQ738
CR292
CR293
CR294
Cso4,
mg/liter
<1.00
4.39
1.29
1.26
1.30
Volume,
ml
250
250
250
250
250
so4=,
mg
<0.2
1.1
0.3
0.3
0.3
5-12
-------
Three of the five filter blanks were considered suspect
because of their relatively large negative values. Every possi-
ble check was performed to locate the discrepancies, and no
specific cause was found. When the tare and final weights of the
sample beakers were rechecked, no difference was noted. A second
set of filters was analyzed by M5W, and NWSSP values of +0.4,
-1.1, +0.4, and 1.7 mg were obtained. All of these values are
acceptable, and they correspond to the values obtained for Sam-
ples CR295 and CR298 reported in Table 5-5.
The 1C was calibrated daily with standard solutions of 1.0,
2.5, 5.0, 10.0, and 15.0 mg/liter. A standard reference solution
(SRS) at 8.0 ppm was analyzed at the beginning, the end, and
after every 10 samples during an analysis day. If the measured
SRS value was not within ±5 percent of the theoretical value, the
previous 10 samples were reanalyzed after the instrument was
recalibrated. Ten percent of the samples were analyzed in dupli-
cate, and these samples agreed within ±5 percent.
The sampling equipment, reagents, and analytical procedures
for this test series were in compliance with all necessary guide-
lines set forth for accurate test results as described in Volume
III of the Quality Assurance Handbook.*
*
Quality Assurance Handbook for Air Pollution Measurement Sys-
tems, Volume III, EPA-600/4-77-207b, August 1977.
5-13
-------
REFERENCES
1. Mitchell, W. J., and M. R. Midgett. A Means to Evaluate the
Performance of Stationary Source Test Methods. Environ-
mental Science and Technology, 10:85-88, 1976.
2. Oldaker, G. B. Condensible Particulate and Its Impacts on
Particulate Measurements. Draft Report. Prepared under EPA
Contract No. 68-01-4148, Task No. 69. May 1980.
3. Peters, E. T., and J. W. Adams. Sulfur Dioxide Interaction
With Filters Used for Method 5 Stack Sampling. In: Work-
shop Proceedings on Primary Sulfate Emissions From Combus-
tion Sources, Volume I - Measurement Technology. EPA-
600/9/78-020a, 1978. pp. 199-202.
4. Gushing, K. W. Particulate Sampling in Process Streams in
the Presence of Sulfur Dioxide. In: Workshop Proceedings
on Primary Sulfate Emissions From Combustion Sources, Volume
I - Measurement Technology. EPA-600/9-78-020a, 1978. pp.
202-227.
5. PEDCo Environmental, Inc. Comparative Evaluation of EPA
Methods 5 and 17. Draft Report. Prepared under EPA Con-
tract No. 68-02-3431, Task Nos. 88, 103, and 163. February
1983.
6. PEDCo Environmental, Inc. Method Development and Testing
for FCCU Regenerators. Final Report. Prepared under EPA
Contact No. 68-02-3546, Task Nos. 14 and 20. February 1984.
R-l
-------
APPENDIX A
COMPUTER PRINTOUTS AND EXAMPLE CALCULATIONS
Actual filter/probe temperatures are recorded on the field data
sheets in Appendix B.
A-l
-------
FIELD DATA
PLANT PHILLIPS SHEENY
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE M5
OPERATOR OSTERHOUT
AMBIENT TEMP.(DEG.F) 80.
BAR. PRESS. (IN.HG) 30.25
STATIC PRESS. (IN. H20) -1.36
FILTER NUMBER(S) 3450166
STACK INSIDE DIM. (IN) 106.00 .00
PITOT TUBE COEFF. .64
THERM. NO.
LEAKAGE .012 CFM « 10.0 IN.HG
METER CALIB. FACTOR 1.006
READ « RECORD DATA
TRAVERSE
POINT
NU.
INIT
>
1
ro
TOTALS
AVERAGE
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
120.0
CLOCK
TIME
(24-HR
1157
0
0
0
0
0
0
0
0
0
0
0
1357
EVERY 10.0
GAS METER
READING
(CU.FT.)
198.089
206.850
215.640
224.320
232.950
241.600
250.340
259.050
267.620
276.260
264.900
293.460
302.228
104.139
MINUTES
VELOCITY
HEAD
(IN.h2b)
2.200
2.200
2.200
2.150
2.200
2.200
2.200
2.150
2.200
2.150
2.150
2.200
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
2.97
2.96
2.99
2.95
3.01
3.01
3.02
2.96
3.02
2.96
2.98
3.05
2.99
H20)
ACTUAL
2.97
2.98
2.99
2.95
3.01
3.01
3.02
2.96
3.02
2.96
2.98
3.05
2.99
STACK
TEMP
(DEG.F)
416.
416.
416.
"15.
415.
415.
115.
415.
415.
414.
415.
414.
115.
DATE 11/09/82
HUN NUMBER 1A-MS
PROBE LENGTH S TYPE 6* GLASS
NUZZLE : 1.0. .222
ASSUMED MOISTURE 15.0
SAMPLE BOX NUMBER
METER BOX NUMBEK FB3
METER HEAD DIFF. 2.00
PHOBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METEH
TEMP
(UEG.F)
IKLET OUTLET
79. 77.
82. 77.
66. 78.
87. 78.
87. 78.
87. 79.
89. 79.
90. 79.
89. 79.
89. 79.
89. 79.
89. 79.
87. 78.
PUMP
VACUUM
(IN.HG)
5.3
6.2
5.7
5.6
6.7
7.4
7.8
8.0
8.2
8.2
8.5
9.1
7.2
SAMPLE
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(OEG.F)
82.
0.
104.
0.
97.
84.
82.
80.
61.
0.
84.
81.
65.
-------
PARTICIPATE FIELD DATA & KESULTS TAbULATIUN
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SWEENY OSTEHHUUT
TEST IA-M5
FCCU STACK
U>
ENGLISH UNITS
TEST
TB
TF
IT
NP
Y
DN
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
11
1157
1357
120.
12
1.
.
.
2.
/09/82
0
006
222 IN
84
99 IN-H20
METRIC UNITS
1
1157
1357
120
12
1
5
76
1/09/82
.0
.006
.6
.84
.0
,M
•MM-I
DROP
VP VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VHC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
UHO PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL.* DRY
PCU PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
MUS MOLECULAR NT-STACK GAS
104.139 CU-FT
2.949 CU-M
82.7 F
103.806 SCF
223.5
10.520 SCF
9.20
.908
14.40
2.70
.00
82.90
30.41
29.27
28.
2.
223.
•
9.
•
14.
2.
•
82.
30.
29.
1 C
939 3CP
5
298 9CP
20
908
40
70
00
90
41
27
-------
PR BAROMETRIC PKESSUHfc
PS1 STATIC PRE3 OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLOW RATE* DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
30.25
-1.38
30.15
41b.
105.7
9161.
13358920.
24199532.
92.0
224.6
IN-HG
IN-H20
IN-HG
F
FPS
SQ-IN
SCFH
ACFH
766.35
-35.05
765.77
213.
32.2
5.910
376265.
665258.
92.0
224.6
>M-HG
»»M-H20
PM-HG
C
WPS
SO-M
SCKH
ACKH
.0331 GR/OSCF*
76.416
MN
>
*> CS
FILTERABLE-160
MG. EPA 5
FILTERABLE-160
loa.o
.0161 GR/OSCF*
106.0
36.745 KG/D3CK
MN
CS
FILTERABLE-232
MG. tPA S
FILTERABLE-232
92.3
.0137 GR/OSCF*
92.3
31.4U3
CS
FILTERABLE-315
MG. EPA b
FILTERABLE-315
60.0
.0119 GR/OSCF*
60.0
27.216 PG/DSCP
* 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. IA-M5
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD a (17.647 • VM * Y * (PB » PM / 13.6)) / (TH «• 460.)
17.647 * 104.139 • 1.006 * C 30.25 » 2.992 / 13.6)
VMSTO a ......... ..—.... ... ....... . . = 103.006 OSCF
( 83. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC a .04707 * VLC
VNC • .04707 * 223. = 10.52 SCF
PERCENT MOISTURE IN STACK GAS
BNO * (100. * VMC) / (VMSTD * VMC)
100. * 10.52
8*0 * -...——— . = 9.20 PERCENT
103.606 « 10.52
MOLE FRACTION OF DRY STACK GAS
FMD = (100. • BwO) / 100.
100. - 9.2
FMD a —————•---—— = .906
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 • .44) + (P02 * .32) » (PN2 * PCO) * .28
MO = (14.40*4
-------
STACK 6AS VtLOCITY AT STACK CONDITIONS
OtLP = SUM. OF THE SQKHVH * (Ts + 460.))
VS = 85.49 * CP * OtLP / (SQRTCMnS * PS) * PNTS)
VS = 85.49 * .64 * 524.517 / (SQRT( 2p PERCENT ISOKINETIC
CTi ISO = (J05.5B*(TS»460.))*((0.002669*VLC)«lVM*Y*lPB*(PM/l3.b))/(TM+4bO.)))/(TT*VS*PS*DN*DN)
(305.58*( 415.*460.))*((0.002669* 223.)+( 104.139*1.006* ( 30.2S«( 2.992X13.b))/ ( 83.*460.)))
ISO » ——— ...—.... . . . . . .. ....... z 91,96 PERCENT
120. • 105.bb * 30.15 * .222 * .222
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VPSTD
CS = 0.001 • 224.6 • 15.43 / 103.806 = .0334 GH/USCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPEHATOR
AMBIENT TEMP.(OEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.UN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SWEENY
FCCU STACK
M5
USTERHUUT
80.
30.25
•1.38
3050177
108.00 .00
.84
.016 CFM 4 14.0 IN.HG
.980
DATE 11/04/82
RUN NUCBER 1B-M5
PROBE LENGTH ft TYPE 6* GLASS
NOZZLE : I.D. .221
ASSUMED MOISTURE 15.0
SAMPLE BOX NUKBER
FETER BOX NUMBER FB5
KETER HEAD OIFF. 1.95
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
READ ft RECORD DATA EVERY 10.0 MINUTES
>
TRAVERSE SAMPLE
POINT TIME
NU. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
SO.O
60.0
70.0
60.0
90.0
100.0
110.0
120.0
CLOCK
TIME
(24-HR
ft nr v i
CLUCK 1
1158
0
0
0
0
0
0
0
0
0
0
0
1356
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEPP
(CU.FT.) (IN.H2U) (IN.H20) (DEG.F)
DFSIRFD
808.887
818.210
827.670
837.000
846.010
855.200
864.500
873.770
883.050
892.340
901.620
910.910
920.343
2.200
2.200
2.200
2.150
2.200
2.200
2.200
2.150
2.200
2.150
2.150
2.200
a.*T
2.98
2.99
2.95
3.01
3.01
3.02
2.96
3.02
2.96
2.98
3.05
ACTUAL
2.97
2.98
2.99
2.95
3.01
3.01
3.02
2.96
3.02
2.96
2.98
3.05
DRY GAS METER PUPP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (DEG.F)
INPINGER
TEMP
(OEG.F)
IKLFT OUTLET
416.
416.
416.
•15.
415.
415.
415.
415.
415.
414.
415.
414.
82.
63.
92.
95.
97.
97.
99.
99.
99.
99.
99.
97.
81.
82.
85.
86.
85.
86.
87.
87.
89.
89.
89.
69.
8.1
6.8
8.4
6.3
9.6
11.0
11.3
11.7
12.0
12.0
12.3
13.2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
62.
0.
120.
0.
104.
91.
66.
62.
63.
0.
66.
77.
TOTALS
AVERAGE
120.0
111.456
2.99
2.99 415.
95.
86.
10.6
0.
68.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME AND ADORtSS TEST TEAM LEADER
PHILLIPS SHEENY USTERHUUT
TEST 1B-M5
FCCU STACK
TEST DATE
IB
TF
TT
NP
Y
ON
CP
PH
>
00 Vf
TM
VMSTD
VLC
VfcC
BhO
FMO
pco2
P02
PCD
PN2
MD
M*S
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT COS BY VOL., DRY
PERCENT 02 BY VOL.* DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., URY
MOLECULAR NT-DRY STACK GAS
MOLECULAR WT-STACK GAS
ENGLISH UNITS
11/09/82
lisa
1356
120.0
12
.986
.221 IN
.84
2.99 IN-H20
111.456 CU-FT
90.5 F
107.551 SCF
223.0
10.497 SCF
8.69
.911
14.40
2.70
.00
H2.90
30.41
29.31
METRIC UNITS
11/09/02
1158
13S8
120.0
12
.988
5.6
.84
76.0
3.156
32.5
3.045
223.0
.297
8.89
.911
14.40
2.70
.00
82.90
30.41
29.31
I'M
*M-H20
CU-M
c
3CI»
SCP
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES Of STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLO* RATE, DRV*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MM FILTERABLE-AMBIENT
MC. EPA 5
C3 FILTERABLE-AMBIENT
30.25 1N-HG
-1.38 IN-HZO
10.15 IN-HG
015. F
105.6 FPS
4161.
13395732.
20163640.
95.9
221.0
SO-IN
SCFH
ACFH
.0317 GR/DSCF*
768.35 CM-HG
-35.05 *M-H20
765.77 *M-HG
213. C
32.2 *PS
5.910 3Q-M
379327. SCNH
bBaeoe. ACMH
95.9
221.0
72.573 -PC/DSC*
MN
CS
FRTERABLE-160
MG. EPA 5
FRTERABLE-160
105.0
.0151 GR/DSCF*
105.0
3d.080 PG/DSC*
MN
CS
FILTERABLE-232
MG. EPA 5
FRTERABLE-232
91.0
91.0
.0131 GR/OSCF* 29.863 PS/DSC*
MN
CS
FILTERABLE-SIS
MG. EPA 5
FILTERABLE-315
80.5
60.5
.0115 6R/OSCF* 26.435 PC/DSC*
* 68 OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. IB-MS
FCCU STACK
VOLUME OF DRY CAS SAMPLED AT STANDARD CONDITIONS
VMSTD 3 (17.647 * VM * V * (PB + PM / 13.6)) / (TM t 460.)
17.647 * 111.456 * .988 * ( 30.25 » 2.992 / 13.6)
VMSTD s [[[ = 107.551 OSCF
( 91. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC 3 .04707 • VLC
VMC s .04707 • 223. 3 10.50 SCF
PERCENT MOISTURE IN STACK GAS
BMO 3 (100. * VNC) / (VMSTO » VMC)
100. * 10.50
BMO « ————. ....... . - 8.89 PERCENT
107.551 » 10.50
MOLE FRACTION OF DRV STACK GAS
FMO 3 (100. - BMO) / 100.
100. - 8.9
FMD 3 ....................... = .911
100.
AVERAGE MOLECULAR MEIGHT OF DRY STACK GAS
MO s (PC02 * .44) + (P02 • .32) * (PN2 » PCU) * .28
MU s (14.40*44/100) » ( 2.7*32/100) * ((82.9* .0) * 20/100 s 30.41
MOLECULAR WEIGHT OF STACK GAS
MMS s MO * (1. - (BwO/lUO)) » 16. » (BNU/100)
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DtLP * SUM. OF THE. SQRMVH • (TS « 460.))
VS = 85.09 * CP * OELP / (SQRUMMS * PS) * PNTS)
VS = 85.09 • .BO * 520.517 / (SORH 39.31 * 30.15) • 12. = 105.60 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/UO
OS = 105.60 * 9161. 3600/100 = 20183600. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO = 17.607 * US * PS • (1. - (6*0/100)) / (TS * 060.)
17.647 * 20163600. * 30.15 *(!.-( a.09/100))
OSSTO « —— * 13395732. SCFH
( 015. «• 060.)
PERCENT ISOKINETIC
ISO » (305.58*(TS»060.))*{(0.002669*VLC)»(VM*r*lPB«(PH/l3.6))/(TM*060.)))/(TT*VS*PS*DN«DM
(305.58*( 415.«460.))*((0.002669* 223.)»( 111.056* ,988*( 30.25»( 2.992/13.6))/( 91.*060.)))
ISO • — ...... — ...... ................... ................ 9 95.86 PERCENT
120. • 105.60 * 30.15 * .221 * .221
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN * 15.03 / VMSTO
CS = 0.001 » 221.0 * 15.03 / 107.551 = .0317 6R/03CF
-------
FIELD DATA
ro
PLANT PHILLIPS PETKO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5h
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) 76.
BAR. PRESS. (IN.HG) 30. 2b
STATIC PRESS. (IN. H20) -1.36
FILTER NUMBER(S) 3450170
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COfcFF. .84
THERM. NO.
LEAKAGE .000 CFH ol 6.
METER CALIB. FACTOR 1.001
READ 6 HECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
100.0
110.0
120.0
TIME
(24-HR
1156
1206
1216
1228
1238
1246
1258
1306
1316
1326
1338
1346
1356
READING
(CU.FT.)
587.157
597.000
606.660
616.350
626.060
635.780
645.440
655.130
664.790
674.490
664.020
693.720
701.297
HEAD
(IN.H20)
2.500
2.400
2.400
2.400
2.400
2.400
2.4QO
2.400
2.400
2.400
2.400
2.400
SWEENY
2 IN.HG
ORIFICE
PRESSURE
STACK
DIFFERENTIAL TE*P
(IN.
DESIRED
3.10
3.00
3.00
3.00
.00
.00
.10
.10
.00
.10
.10
.10
H20)
ACTUAL
3.10
3.00
3.00
3.00
3.00
3.00
3.10
3.10
3.00
3.10
3.10
3.10
(DEG.F)
on.
416.
416.
416.
416.
416.
415,
415.
416.
415.
415.
415.
DATE 11/09/62
RUN NUMBER 1CM5K
PROBE LENGTH ft TYPE 6 FT GLASS
NOZZLE : I.D. .224
ASSUMED MOISTURE 15.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB7
METER HEAD DIFF. 1.71
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEG
ULET
61.
84.
87.
90.
90.
92.
92.
92.
92.
93.
93.
93.
.F)
OUTLET
60.
60.
60.
62.
82.
83.
64.
64.
64.
85.
85.
85.
VACUUM
(IN.HG)
4.9
4.8
4.9
4.9
4.9
4.9
4.9
5.0
5.0
5.1
5.3
5.8
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(OEG.F)
76.
92.
96.
96.
94.
90.
84.
86.
62.
76.
60.
61.
TOTALS
AVERAGE
120.0
116.140
3.05
3.05 416.
90.
63.
5.0
0.
66.
-------
PARTICIPATE FIELD DATA A RESULTS TAbULATIUK
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 1CM5H
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
Pf
TIME-START
TIME-FINISH
NET TIME OF TEST, MlN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/09/82
lisa
1358
120.0
12
1.001
.224 IN
.84
3. OS IN-H20
METRIC UNITS
11/09/82
lisa
I35fl
120.0
12
1.001
5.7 fM
.84
77.5 KM-I
& DROP
£ VX VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TN AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VHC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 RY VOL., DRY
MD MOLECULAR WT-DHV STACK GAS
MMS MOLECULAR NT-STACK GAS
116.140 CU-FT
3.289 CU-M
86.4 F
114.427 SCF
310.7
14.625 SCF
11.33
.887
14.40
2.70
.00
82.90
30.01
29.01
30.2
3.240
310.7
.414
11.33
.B87
14.40
2.70
.00
82.90
30.41
29.01
C
30
SCI*
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK 6AS VELOCITY
AS STACK AREA
OSSTO STACK FLOH RATE* ORT*
US ACTUAL STACK FLOw RATE
ISO PERCENT ISOKJNETIC
* 66 DEC F, 29.92 IN.M6.
3o.c5 1IM-HG
-1.36 1N-H20
30.15 IN-NG
416. F
111.5 FPS
9161. SCI-IN
13758002. SCFH
25539960. ACFH
96.7
766.3b P»M-HG
-35.05 KM-H20
765.77 PM-HG
213. C
3«.0 KPS
5.910 SO-M
369611. SC*H
723215. ACPH
96.7
H
**
-------
EXAMPLE PARTICULATE CALCULATION;, TEST NO.
FCC STACK
VOLUMt OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 • VM * Y * (PB » PM / 13.6)) / (TM «• 460.)
17.647 * 116.140 * 1.001 * ( 30.25 + 3.050 / 13.6)
VMSTD s ————— — — .......... — ....... --- .... --- z 114.427 03CF
I 86. » 060.)
VOLUME OF MATER VAPOR AT STANOAKD CONDITIONS
VMC » .04707 • VLC
VMC * .04707 • 311. * 14.63 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. * VNC) / (VMSTD * VMC)
•> 100. * 14.6?
! BNO = — ---- ..... ------ ...... = 11.33 PERCENT
H 114.427 «• 14.62
Ln
MOLE FRACTION OF DRY STACK GAS
FMD e (100. - BMO) / 100.
100. - 11.3
FMD = —————
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO = (PC02 • .44) * (POi • .32) * (PN2 » PCO) * .28
MU s (14.40*44/100) * ( 2.7*32/100) » ((82. 9* .0) * 28/100 = 30.41
MOLECULAR HEIGHT OF STACK GAS
MhS « MO * (1. - (RwO/100)) + 18. * (BMO/100)
= 30.41* (1. -(11.33/100)) + la. * (11.33/100) = 29.01
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SORT(VH * (TS » 460.))
VS * aS.49 * CP • DELP / (SORTtHhS * PS) * PNTS)
VS s 65.49 * .64 * 551.064 / (SURT( 24.Ul * 30.15) * 12. = 111.52 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
QS s VS * AS * 3600/144
OS * 111.52 * 9161. 3600/144 s 25539960. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO * 17.647 • OS • PS » (1. - (BftO/100)) / (TS * 460.)
17.647 * 25539960. * 30.15 * (1. - (11.33/100))
OSSTO « —————— —— ... . .... s 13756892. SCFH
( 416. • 460.)
PERCENT ISOKINETIC
ISO a (305.56»(TS+460.))«((0.002669»VLC)+(VH«r*(PB+(PM/13.6))/(TM+460.)))/(TT«VS«PS*DN«DK)
(30S.56*( 416.+460.))*t(0.002669* 311.)>( 116.14Q*1.001*( 30.25+( 3.050/13.6))/( 66.+460.)))
ISO * ———————— ...... .... . ........... E 96.67 PERCENT
120. * 111.52 * 30.15 * .224 * .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN • 15.43 / VMSTO
CS * 0.001 * O.OOOOE+00 • 15.43 / 114.427 = O.OOOUE+00 GR/DSCF
-------
FIELD D»T»
>
I
PLANT PHILLIPS PETRO SWEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) Tb.
BAR. PRESS. UN. H6) 30.35
STATIC PRESS. (IN. H20) -1.36
FILTER NUMBER(S)
STACK INSIDE DIM. (IN) 106.00 .00
PITOT TUBE COEFF. ,e«
THERM. NO.
LEAKAGE .005 CFM • 7.2 IN.HG
METER CALIB. FACTOR ,98b
READ & RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TE*P
NO. (MIN.) (24-HR (CU.FT.) UN.H2U) (IN.H20) (DEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
100.0
110.0
120.0
ui»u^n 9
1200
1210
1220
1230
124V
12SO
1300
1310
1320
1330
134Q
1350
1400
OESIKEU
540.936
550.560
560.230
569.830
579.420
569.000
59B.590
606.150
617.710
627.350
636.940
646.510
656.139
2.500
2.400
2.400
2.400
2.400
2.400
2.4QO
2.400
2.400
2.400
2.400
2.400
3.10
3.00
3.00
3.00
.00
.00
.00
.00
.00
.00
.00
.00
ACTUAL
3.10
3.00
J.OO
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
DATE 11/09/62
RUN NUMBER ions*
PH08E LENGTH ft TYPE 6 FT GLASS
tOZZLE : 1.0. .226
ASSUMED MOISTURE 15. o
SAMPLE BOX NUMBER
PETER BOX NUMBER ?B2
*ETER HE»D 01FF. 1.73
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMP1NGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DE6.F) (DEG.F)
INLET OUTLET
«1T.
«16.
116.
416.
416.
416.
«15.
«l-3.
016.
«15.
015.
«15.
7«.
77.
82.
83.
84.
85.
86.
86.
»7.
87.
86.
«8.
76.
T6.
76.
76.
78.
60.
80.
61.
61.
61.
62.
62.
.5
.0
.6
.6
.8
.8
.8
.8
.8
.1
.2
.2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
82.
98.
112.
90.
80.
75.
74.
76.
78.
78.
72.
74.
TOTALS
AVERAGE
120.0
US.201
3.01
3.01 416,
84,
79.
5.9
82,
-------
PARTICIPATE FIELD DATA ft HtbULTS TAbULATlUN
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 1DM5H
FCC STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
V
ON
CP
T "
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
1
1200
1400
120
12
3
1/09/02
.0
.986
.226 IN
.64
.01 IM-H20
METRIC UNITS
1
1200
1400
120
12
5
76
1/09/82
.0
.966
.7
.84
.4
MM
MM-H20
00 VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VHC VOLUME OF NATER VAPOK
AT STANDARD CONDITIONS*
BftO PERCENT MOISTURE BY VOLUME
FMU MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DHY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL.* DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR NT-DRY STACK GAS
MfcS MOLECULAR NT-STACK GAS
115.201 CU-FT
3.262 CU-M
81.7 F
112.762 SCF
354.9
16.705 SCF
12.90
.671
14.40
2.70
.00
62.90
30.41
28.61
27
3
354
12
14
2
62
30
28
.6 C
.193 3CM
.9
.473 SO
.90
.871
.40
.70
.00
.90
.41
.81
-------
PB BAROMETRIC PKESSuRE
PS1 STATIC PHES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSbTO STACK FLOW RATE* DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISUKINETIC
* bfl OE6 F, 29.92 IN.MG.
30.25
•1.38
30.15
016.
111.9
9161.
13560616.
25626220.
95.0
IN-ht
IN-H20
1K-H6
F
FPS
SU-IN
SCFH
ACFN
768.35
-35.05
765.77
213.
30.1
5.910
384002.
725658.
95.0
PM-HG
KM-H20
*M-HG
C
*PS
SO-M
3CKH
ACMH
VO
-------
EXAMPLE PARTICIPATE CALCIILAT IUNS TEST NO.
FCC STACK
VOLUME OF OKV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 * VM • V * tPb » PM / 13.6)) / CTM * 460.)
17.647 • US. 201 * .986 * ( 30.25 » 3.006 / 13.6)
VMSTD » ————— — — — — — — ......................... a 112.762 DSCF
( 82. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC = .04707 • VLC
VNC 3 .04707 * 355. a 16.71 SCF
PERCENT MOISTURE IN STACK GAS
BhO * (100. • VNC) / (VMSTO * VWC)
100. * 16.71
*p BMO = — — --- - --- — ---- - s 12.90 PERCENT
I 112.762 » 16.71
to
O
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - 8NO) / 100.
100. • 12.9
FMD « ———— — — = .871
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD s (PC02 • ,«4) * (P02 • .32) «• (PN2 * PCO) * .28
MO s (14.40*44/100) + ( 2.7*32/100) » ((82.9* .0) * 20/100 s 30.41
MOLECULAR HEIGHT OF STACK GAS
MtlS s MD * (1. - (BMO/100)) » 18. * (BNU/100)
MMS s 30.41* (1. -(12.90/100)) » IB. • (1?. 90/100) = 28.81
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORTCVH • (TS + 460.))
VS = 85.49 * CP * DtLP / (SURT(HHS * PS) • PNTS)
VS e 85.49 • .84 * 551.060 / (SORT ( 20.61 * 30.15) • 12. = 111.69 FPS
STACK GAS VOLUMETRIC FLUX AT STACK CONDITIONS
OS = VS * AS • 3600/144
OS = 111.89 * 9161. 3bOO/144 = 25626220. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD • 17.647 * OS * PS * (1. • (BNO/100)) / (TS • 460.)
17.647 • 25626820. * 30.15 * (1. - (12.90/100))
OSSTD = — —— " — — — — = 13560816. SCFH
( 416. » 460.)
PERCENT ISOKINETIC
M ISO s (30S.58*(T3+460.))*1(0.002669*VLC)+(VI«*Y*(PB+(PP/13.6))/(TM«460.)))/(TT*VS*PS*ON*ON)
H
(305.58«( 416.+460.))*((0.002669* 355.)*( 115.201* .986*( 30.25*( 3.008/13.6))/( 82.+4*0.)))
ISO s —.— ...... ... ................... ..... ........ ........... ....... i 94.95 PERCENT
120. * 111.89 * 30.15 * .226 • .226
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS > 0.001 * MN • 15.43 / VMSTO
CS s 0.001 * 0.00006*00 * 15.43 / 112.7b2 = O.OOOOE*00 GR/DSCF
-------
FIELD DAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEG.F)
BAR.PRESS.(IN.MG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SWEENY
FCC STACK
M5-450
00
75.
30.13
-1.38
3450154
108.00 .00
.64
.007 CFM d 10.0 IN.HG
l.OOb
DATE 11/10/62
RUN NUKBER 2AM545
PROBE LENGTH ft TYPE 6* GLASS
NUZZLE : I.D. .219
ASSUMED MOISTURE 15.0
SAMPLE BOX NUKBER
KETER BOX NUMBER FBS
KETER HEAD DIFF. 2.00
PROBE HEATER SETTING 450.
HEATER BOX SETTING 450.
READ * RECORD DATA EVERY 10.0 MINUTES
to
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
ft nfv i
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TE*P
(CU.FT.) (IN.H2U) (IN.H20) (DEG.F)
DESIKEO
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
1029
0
0
V
0
0
0
0
0
0
0
0
1229
302.607
310.910
319.260
327.640
335.980
344.260
352.460
360.600
369.070
377.440
385.640
394.210
402.529
.950
.900
.950
.950
.950
.950
.950
.950
.950
.900
.950
.950
2.73
2.67
2.76
2.77
2.77
2.77
2.78
2.79
2.78
2.71
2.78
2.78
ACTUAL
2.73
2.67
2.76
2.77
2.77
2.77
2.78
2.79
2.78
2.71
2.78
2.78
DRY GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (DEG.F)
IMPIN6ER
TEMP
(DEG.F)
INLET OUTLET
415.
415.
415.
416.
417.
4|7.
416.
416.
417.
418.
417.
418.
75.
79.
85.
87.
89.
89.
89.
89.
89.
89.
89.
90.
75.
75.
76.
78.
80.
60.
61.
81.
81.
61.
61.
81.
7.8
9.4
8.6
6.7
8.7
9.6
10.2
10.1
10.1
9.9
9.8
10.2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
69.
88.
122.
108.
106.
107.
106.
110.
Ml.
105.
102.
104.
TOTALS
AVERAGE
120.0
99.922
2.76
2.76 416.
87,
79.
9.4
0.
103.
-------
PARTICIPATE FIELD DATA 6 RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SWEENY DO
TEST 2AM545
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
> VM
to
VHSTD
VLC
VNC
8*0
FMD
PC02
P02
PCO
PN2
MD
MHS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF hATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
11/10/82
1029
1229
120.0
12
1.006
.219 IN
.84
2.76 IN-H20
99.922 CU-FT
82.9 F
99.116 SCF
104.8
4.933 SCF
4.74
.953
IS. 00
1.30
.00
83.70
30.45
29.86
METRIC UMTS
11/10/82
1029
1289
120.0
12
1.006
5.6
.84
70.0
2.839
28.3
2.807
104.8
.140
4.74
.953
15. 00
1.30
.00
83.70
30.45
29.86
I'M
PM-H20
CU-M
C
SCM
3C*
-------
PB BAROMETRIC PkESSURt
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTU STACK FLON RATEt DHT*
QS ACTUAL STACK FLOft RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.13 1K-HG
-1.38 IN-M20
30.03 IN-HG
416. F
98.9 FPS
9161. SQ-IN
13049254. SCFH
22656108. ACFH
92.4
69.6
.0108 GR/DSCF*
765.30
-35.05
762.72
214.
30.2
5.910
369516.
641553.
92.4
69.6
KM-MG
KM-H20
fM-HG
C
CPS
SQ-M
SCCH
24.801 P'G/OSCH
MN
CS
FILTERABLE-160
MG. EPA S
FILTERABLE-160
56.2
.0087 GR/DSCF*
56.2
20.026 KG/OSO
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
50.6
50.6
.0079 GR/OSCF* 16.030 +G/OSC*
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
46.4
46.4
.0072 GH/OSCF* 16.534
* 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PART1COLATE CALCULATIONS TEST N0.2AM5 .04707 * 105. s 4.93 SCF
PERCENT MOISTURE IN STACK GAS
BHO « (100. • VNC) / (VMSTD * VHC)
100. * 4.93
BHO « —— —— ....... - fl.74 PERCENT
99.116 * 4.93
MOLE FRACTION OF DRV STACK GAS
FMD * (100. • BHO) / 100.
100. - 4.7
FMO » ————— —— = .953
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MD = (PC02 * ,44) * (P02 * .32) » (PN2 » PCO) * .28
MO s (15.00*44/100) «• ( 1.3*32/100) » ((83.7* .0) * 28/100 = 30.45
MOLECULAR HEIGHT OF STACK GAS
MNS s MO * (1. - (8*0/100)) + la. * (8HO/100)
MNS = 30.45* (1. -I 4.74/100)) * 18. • ( 4.74/100) = 29.06
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE S.QRUVH * (Ts » 4bU.))
VS = 85.49 • CP • OELP / (SQRTtMHS * PS) * PNTS)
VS = 69.49 * .64 * 495.016 / ISQRT( 29.86 * 30.03) * IS. - 98.93 FPS
STACK 6AS VOLUMETRIC FLUM AT STACK CONDITIONS
OS = VS * A3 * 3600/144
OS = 98.93 * 9161. 3600/144 = 22656108. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTO * 17.647 • OS • PS * (1. - (BMO/100)) / (TS » 460.)
17.647 * 22656108. • 30.03 •(!.-( 4.74/100))
OSSTO m [[[ = 13049254. SCFH
( 416. » 460.)
>
to PERCENT ISOKINETIC
0\
ISO » (305.5B«(TS«460.))*«0.002669*vLC)t(vM*Y*(P8*(PN/13.6))/(TM«460.)))/(TT*vS*PS*DN*DN)
(305.56»( 416.*460.))*((0.002669* 105.)*( 99.922*1.006* ( 30.13»( 2.7S7/13.6))/ ( 83.»460.)))
ISO s ...................... ..... .................................... ....... s 92.36 PERCENT
120. * 98.93 * 30.03 * .219 * .219
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTO
-------
FIELD DAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.UN.H20)
FILTER NUMBER(S)
STACK INSlOt DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SWEENY
FCC STACK
M5-050
00
75.
30.13
-1.38
3450155
10B.OO .00
.84
.076 CFM ol 12.0 IN.HG
.98tt
DATE 11/10/82
RUN NUMBER 2BM5«5
PHOBE LENGTH ft TYPE 6' GLASS
NOZZLE : 1.0. .223
ASSUMED fUISTURE 15.0
SAMPLE BOX NUMBER
KETER BOX NUMBER FBS
KETER HEAD OIFF. 1.95
PROBE HEATER SETTING «so.
HEATEH BOX SETTING 050.
READ 6 RECORD DATA EVERY 10.0 MINUTES
to
-J
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
n nrv \
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H2Q) (IN.H20) (OEG.F)
DESIRED
INIT 0
10.0
20.0
30.0
40.0
SO.O
60. 0
70.0
80.0
90.0
100.0
110.0
120.0
1030
0
0
0
0
0
0
0
0
0
0
0
1230
921.798
930.740
939.520
948.370
957.050
965.720
974.510
983.370
992.120
.880
9.680
18.490
27.382
.950
.900
.950
.950
.950
.950
.950
.950
.950
.900
.950
.950
a. 73
2.67
2.76
2.77
2.77
2.77
2.78
2.79
2.78
2.71
2.78
2.78
ACTUAL
2.73
2.67
2.76
2.77
2.77
2.77
2.78
2.79
2.78
2.71
2.78
2.78
URY GAS PETER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(OEG.F) (IN.HG) (DEG.F)
IMPINGER
TEMP
(OEG.F)
INLET OUTLET
415,
415,
415.
416.
417,
417,
416,
416.
417.
418.
417.
418.
80.
91.
94.
91.
97.
99.
too.
100.
99.
99.
99.
99.
79.
80.
81.
86.
85.
85.
86.
88.
ae.
89.
89.
89.
11.7
11.5
11.1
11.2
11.2
11.2
11.7
11.3
11.7
11.6
11.3
11.7
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
104.
118.
126.
110.
98.
95.
94.
96.
98.
96.
93.
95.
TOTALS
AVERAGE
120.0
96.464
2.76
2.76 416.
96.
66.
11.4
0.
102.
-------
PARTICIPATE FIELD DATA 6 HtSliLTS TABULATION
PLANT- NAME AND ADDRESS TEST TtAH LEADER
PHILLIPS SWEENY uo
TEST 2BM545
FCC STACK
ENGLISH UNITS
1
to
CO
TEST
TH
TF
TT
NP
V
DN
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
1
1030
1230
120
12
2
1/10/82
.0
.988
.223 IN
.84
.76 IN-H20
METRIC UNITS
11
1030
1230
120.
12
.
5.
.
70.
/10/82
0
988
7
84
0
KM
•MM-H20
V? VOLUME OF DRV 6AS SAMPLED
AT METER CONDITIONS
TM AVERAGE 6AS METER TEMP
VMSTD VOLUME OF DRV 6AS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
V*C VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
6*0 PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION D»Y GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRV
MD MOLECULAR NT-DKY STACK GAS
M*S MOLECULAR NT-STACK GAS
96.464 CU-FT
90.7 F
92.644 SCF
159. 5
7.508 SCF
2.732 CU-M
32.6 C
2.623 SCN
159.5
.213 SCN
7.50
.925
15.00
1.30
.00
83.70
30.45
29.52
7.50
.925
15.00
1.30
.CO
83.70
30.45
29.52
-------
PB BAROMETRIC PKESSUHE
PS1 STATIC PRES OF STACK GAS
PS STACK PRES, ASS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTU STACK FLON RATE, DRY*
OS ACTUAL STACK FLOn RATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30
-1
30
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST Nu.dBM545
FCC STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD * (17.647 • V* * Y * (PB * PM / 13.6)) / (TH + 460.)
17.647 * 96.464 * .988 * C 30.13 * 2.757 / 13.6)
VMSTD » ——— — — •- — . s 92.644 QSCF
( 91. * 4bO.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VMC = .04707 * 160. s 7.51 SCF
PERCENT MOISTURE IN STACK GAS
BNO s (100. * VNC) / (VMSTD » VHC)
^ 100. * 7.51
OJ BhO s ....... ... ........ s 7.50 PERCENT
0 92.644 * 7.51
MOLE FRACTION OF DRV STACK GAS
FMD s (100. - BMO) / 100.
100. - 7.5
FMD s ————............ = ,925
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD s (PC02 • .44) * (P02 • .32) * (PN2 » PCO) • .20
Ml) s (15.00*44/100) «• ( 1.3*32/100) + ((83.7* .0) * 28/100 = 30.45
MOLECULAR WEIGHT OF STACK GAS
MWS = MD • (1. - (BnO/100)) » 18. * (BhO/100)
MnS = 30.45* (1. -( 7.50/100)) * 18. * ( 7.50/100) = 29.52
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SQHT(VH « (TS » 460.))
VS = U5.49 « CP * OELP / (SQRUMNS * PS) * PNTS)
VS = 8S.49 • .aa • «95.016 / (SORT( 29.52 * 30.03) • 12. = 99.50 FPS
STACK 6A3 VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS s 99.50 * 9161. 3600/144 = 22787392. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD s 17.647 * OS • PS * (1. - (BwO/100)) / (TS * 460.)
17.647 • 22787392. * 30.03 •(!.-( 7.50/100))
OSSTO » —————-——————-—-.-—-----——-—«.— s 12745238. SCFH
( 416. » 460.)
I PERCENT ISOKINETIC
Ul
M ISO s (305.58*(TS*460.))*((0.002669*VLC)+(VM*Y*(P8«(PM/13.6))/(TM»460.)))/(TT*VS*PS*ON*DN)
(305.58*( 416. + 460.))*((0.002669* 160.)*( 96.464* .988*( 30.13«( 2.757/13.6))/( 91.»460.)))
ISO s — ..... ....... ........ ............... ............. ...... ...... s 85.25 PERCENT
120. * 99.50 * 30.03 * .223 * .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTD
CS = 0.001 * 64.3 • 15.43 / 92.644 s .0107 GR/USCF
-------
FIELD OAT*
u>
PLANT PHILLIPS PETKO SftEENY
SAMPLING LOCATION FCC OUTLET STACK
SAMPLE TYPE M5B
OPERATOR PHILLIPS
AMBIENT TEMP.(OEG.F) 82.
BAR. PRESS. (IN. HG) 30.13
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450156
STACK INSIDE DIM. (IN) 108.00 .UO
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM 4 9.5 IN.HG
METER CALIB. FACTOR 1.001
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TIME
(24-HR
1030
1040
1050
1100
1110
1120
1130
1140
1150
1«!00
1210
1220
1230
READING
ICU.FT.)
703.715
713.520
723.330
733.270
743.250
753.140
762.990
772.820
782.650
792.520
802.330
912.180
822.018
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
3.10
3.10
3.10
.20
.20
.20
.10
.10
.20
.20
.20
.20
H20)
ACTUAL
3.10
3.10
3.10
3.20
3.20
3.20
3.10
3.10
3.20
3.20
3.20
3.20
STACK
TEPP
(DEG.F)
423.
424.
"24.
125.
425.
125.
426.
426.
«25.
426.
«27.
426.
DATE 11/10/82
RUN NUPHER 2CM5B
PNObE LtNGTH ft TYPE 6 FT GLASS
NOZZLt : I.D. .224
ASSUMED MOISTURE is.o
SAPPLt BOX NUMBER
PETER BOX NUMBER FB?
PETER HEAD OIFF. 1.71
PROUE HEATER SETTING 320.
HEATEH BOX SETTING 320.
DRY GAS PETER PUMP SAPPLE IPPINGER
TEMP
(DEG
^LET
81.
83.
88.
91.
92.
93.
94.
94.
94.
94.
93.
94.
.F)
OUTLET
80.
80.
80.
t)2.
83.
84.
84.
85.
85.
86.
86.
86.
VACUUM
(IN.HG)
7.3
7.5
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(DEG.F)
78.
80.
90.
92.
82.
84.
82.
78.
78.
76.
77.
82.
TOTALS
AVERAGE
120.0
118.303
3.16
3.16 425.
91.
83.
7.9
0.
82.
-------
PARTICIPATE FIELD DATA 6 RESULTS TAHULATIO*
PLANT' NAME AND ADDRESS TEST TtAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 2CM5B
FCC OUTLET STACK
1
U)
LO
TEST
TB
TF
TT
NP
Y
DN
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS
11/10/62
1030
1230
120.0
12
1.001
.224 IN
.84
3.16 IN-H20
METRIC UNITS
11/10/62
1030
1230
120.0
12
1.001
5.7 *M
.84
60.2 *M»I
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VPSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.. DHY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL.* DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR NT-DRY STACK GAS
MMS MOLECULAR WT-STACK GAS
116.303 CU-FT
3.350 CU-M
87.
115.
327.
15.
11.
•
15.
1.
•
83.
30.
2«.
2 F
962 SCF
6
430 SCF
74
663
00
30
00
70
45
99
30
3
327
11
15
1
63
30
28
.6 C
.264 SCC
.8
.437 SCH
.74
.663
.00
.30
.00
.70
.45
.«»9
-------
PB BAROMETRIC PRESSURE
PS1 STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTU STACK FLOW RATEr DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISQKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.13 IN-Hb
-1.36 IN-H20
30.03 IN-HG
42b. F
112.2 FPS
9161. SU-IN
13571606. SCFH
25692156. ACFH
99.3
74.9
.0100 GR/OSCF*
765.30 fM-HG
•35.05 KM-H2U
762.72 PM-HG
218. C
34.2 »PS
5.910 SQ-M
384393. SCKH
727525. ACKH
99.3
74.9
22.812 >6/OSCK
U)
*>.
MN
CS
FILTERABLE-160
M6. EPA S
FILTERABLE-160
63.3
63.3
.0084 GR/OSCF* 19.279 KG/DSC*
MN
CS
FILTERABLE-232
MG. tPA 5
FILTERABLE-232
57.6
57.6
.0077 GR/OSCF* 17.543
MN
CS
FILTERABLE-31S
MG. EPA S
FILTERABLE-31S
54.1
.0072 GR/OSCF*
54.1
16.477 fG/OSCP
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS FE:>T NO. 2c*5B
FCC OUTLtT STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 * VM * Y * (P8 •» PM / 13.6)) / (TM * 460.)
17.647 * 118.303 * 1.001 • ( 30.13 + 3.156 / 13.6)
VMSTD = ———— — ........... .—.—........... — .. x 115.962 DSCF
I 87. * 460.)
VOLUME OF MATED VAPOR AT STANDARD CONDITIONS
VMC 3 .04707 * VLC
VNC * .04707 • 328. a 15.43 3CF
PERCENT MOISTURE IN STACK GAS
BNO s (100. * VMC) / (VMSTD » VMC)
> 100. * 15.43
I BHO s —————————.. - H.74 PERCENT
<*» 115.962 « 15.43
ui
MOLE FRACTION OF DRY STACK GAS
FMD = (100. • BMO) / 100.
100. - 11.7
FMD 3 ————............ - ,8B3
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 * .44) * (P02 • .32) * (PN2 » PCO) * .28
MO = (15.00*44/100) * ( 1.3«32/100) » ((83.7* .0) • 26/100 = 30.45
MOLECULAR WEIGHT OF STACK GAS
Mas a MO * (1. - (BttO/100)) + 18. * (BHU/100)
MfcS > 30.45* (1. -(11.74/100)) * 18. * (11.74/100) = 28.99
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP s SUM. OF THE SQRTCVH * (TS * 460.))
VS = 65.49 • CP * DELP / ISURT(MNS * PS) * PMTS)
VS = 85.49 * .84 * 553.094 / (SQRT( 2b.99 * 30.03) * 12. = 112.18 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
(33 = VS • A3 * 3600/144
OS = 118.18 * 9161. 3600/144 = 25692156. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD * 17.647 « OS • PS * 11. - (BWO/100)) / (TS » 460.)
17.647 * 25692156. * 30.03 * (1. • (11.74/100))
OSSTO * ———~— — — ———— -— • s 13574646. SCFH
( 425. * 460.)
& PERCENT ISOKINETIC
CT. ISO * (305.58*
-------
FIELD DATA
I
U)
PLANT PHILLIPS PtTKO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M58
OPERATOR PHILLIPS
AMBIENT TEMP.(DEG.F) 82.
BAR. PRESS. (IN. He) 30.13
STATIC PRESS. (IN. H20) -1.30
FILTER NUMBER(S) 3050157
STACK INSIDE DIM. (IN) loa.oo .00
PITOT TUBE COEFF. ,a«
THERM. NO.
LEAKAGE .010 CFM 4 9.
METER CALIB. FACTOR .966
READ I RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TIME
(24-HR
pi nrv i
v Luvn /
1032
1042
1052
1102
1112
1122
1132
1142
1152
1202
1212
1222
1232
READING
(CU.FT.)
656.462
666.240
676.070
685.930
695.790
705.680
715.570
725.490
735.390
745.260
755.110
764.960
774.804
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.4QO
2.400
2.4QO
2.400
2.400
2.400
SwEEMY
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
3.10
3.10
3.10
3.10
3.10
3.10
3.20
3.20
3.20
3.20
3.20
3.20
H20)
ACTUAL
3.10
3.10
3.10
3.10
3.10
3.10
3.20
3.20
3.20
3.20
3.20
3.20
STACK
TEPP
(DEG.F)
423.
424.
424.
«25.
423.
425.
426.
"26.
425.
426.
427.
426.
DATE 11/10/82
RUN NU*BEH 2DP5B
PROBt LENGTH ft TYPE 6 FT GLASS
NUZZLE : I.D. .227
ASSUMED MOISTURE 15.0
SAMPLE BOX NUKBER
PETER BOX NUMBER FB2
KETEH HEAD DIFF. 1.73
PROBE HEATEH SETTING 320.
HEATEN BOX SETTING 320.
DRY GAS PETER PUKP SAMPLE IPPINGER
TEMP
(DEC
IKLET
75.
ao.
85.
87.
88.
88.
90.
90.
90.
90.
90.
90.
.F)
OUTLET
77.
77.
78.
80.
81.
82.
83.
83.
84.
84.
85.
85.
VACUUM
(IN.HG)
7.5
7.8
7.8
8.0
8.0
8.0
8.0
8.0
a.u
8.0
8.0
8.0
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(DEG.F)
90.
74.
98.
98.
94.
88.
94.
96.
96.
86.
84.
88.
TOTALS
AVERAGE
120.0
118.322
3.15
3.15 425.
87.
62.
7.9
0.
91.
-------
PARTICIPATE FIELD DATA A KESULTS TABULATION
PLANT' NAME AND ADDRESS TEST UAH LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 2DM5B
FCC STACK
TEST DATE
TB
TF
TT
NP
y
DM
CP
> PM
1
OJ
co VM
TM
VMSTO
VLC
VfcC
6*0
f*Q
pcu2
P02
PCQ
PN2
MO
MhS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL MZO COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF HATER VAPON
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.* DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR HT-DRY STACK GAS
MOLECULAR fcT-STACK GAS
ENGLISH UNITS
11/10/62
1032
132
120.0
u
.986
.227 IN
.81
3.15 IN-H20
lie. 322 CU-FT
84.3 F
114. 852 SCF
324.2
IS. 260 SCF
11.73
.683
15.00
1.30
.00
83.70
30.45
20.99
METRIC UNITS
11/10/82
1032
1232
120.0
12
.986
5.8
.84
ao.o
3.350
29.0
3.252
324.2
.432
11.73
.883
15.00
1.30
.00
63.70
30.45
28.99
KM
PM-H20
CU-M
C
sec
sc*
-------
PB BAROMETRIC PRESSURE
PSI STATIC PHES OF STACK GAS
P3 STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLUM RATE* DRY*
US ACTUAL STACK FLO* RATE
ISO PERCENT I30K1NET1C
HN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.13
-1.38
3U.U3
42b.
112.2
9161.
13576492.
25691344.
95.6
75.6
IN-HG
1N-H*0
IN-HG
F
FPS
SO-IN
SCFH
ACFH
765.30
•35.05
762.72
218.
34.2
5.910
384446.
727502.
95.8
75.6
*M-HG
KM-H20
WM-HG
C
*P9
30-M
SCMH
ACfH
.0102 GR/D3CF*
23.248
U)
vo
MN
FlLTERABLE-lbO
MG. EPA 5
FlLTERABLE-lbO
62.8
.0084 GR/OSCF*
62. B
19.311 PG/DSC*
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
57.0
.0077 GR/DSCF*
57.0
17.528 CG/DSCI"
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
53.6
.0072 GR/OSCF*
53.6
16.482 PG/DSCP
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NU. 2DH5B
FCC STACK
VOLUME OF DHV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD B (17.647 * VM * Y * (PB * PM / 13.6)) / (TM + 460.)
17.647 * 118. 322 * .986 • ( 30.13 * 3.150 / 13.6)
VMSTO a [[[ = 114.852 DSCF
I 8U. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC • .04707 « VLC
VNC * .04707 • 324. = 15.26 SCF
PERCENT MOISTURE IN STACK GAS
BMO = (100. * VNC) / (VMSTD * V*C)
jL 100. * 15.26
O 8*0 s ................... ----- — s 11.73 PERCENT
114.852 • 15.26
MOLE FRACTION OF DRY STACK GAS
FMD s (100. > BNO) / 100.
100. - 11.7
FMD • ....... .-..———.-. s .883
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 * .44) * (P02 * .32) » (PN2 * PCO) • .28
MD s (15.00*44/100) «• ( 1.3*32/100) + ((83. 7* .0) * 88/100 = 30.45
MOLECULAR WEIGHT OF STACK GAS
MNS s MO • (1. - (BnO/100)) » 18. * (bftU/100)
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP » SUM. OF THE SORT(VH * (TS * 460.))
VS = 85.49 * CP • DELP / (SQRHMNS • PS) » PNTS)
VS = 85.49 * .84 * 553.090 / (SQRTt ?8.99 * 30.03) • 12. = 112.16 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS = 112.18 • 9161. 3600/144 : 25691344. ACFH
STACK CAS VOLUMETRIC FLO" AT STANDARD CONDITIONS
OSSTD * 17.647 • OS • PS • (I. - (BMO/100)) / (TS » 460.)
17.647 • 25691344. • 30.03 * (1. • (11.73/100))
OSSTD « —— —• — * 13576492. SCFH
I 425. * 460.)
1
M PERCENT ISOKINETIC
ISO « (305.5B*(TS*460.))*K0.002669*VLC)*(VM*Y*(PB«(PK/1J.6))/(TM*460.)))/(TT*VS*PS*ON*DM)
(30S.58«( 425.+460.))*((0.002669* 324.)*( 118.322* .986«( 30.13*1 3.150/13.6))/( 84.*460.)))
ISO r ...... .. . . .. ....... ....................... ... ... .... * 95.75 PERCENT
120. * 112.18 * 30.03 * .227 • .227
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN * 15.43 / VMSTD
CS = 0.001 * 75.6 • 15.43 / 114.852 = .0102 GR/DSCF
-------
FIELD DAT*
>
to
PLANT PHILLIPS SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5K
OPERATOR 00
AMBIENT TEMP. (DEG.F) 80.
BAR. PRESS. (IN. HG) 30.10
STATIC PRESS. (IN. H20) -1.36
FILTER NUMBER(S) 3450173
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM A 6.0 IN.HG
METER CALIB. FACTOR 1.006
READ 4 RECORD DATA
TRAVERSE
POINT
NO.
INIT
OTALS
VERAUE
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
120.0
CLOCK
TIME
(24-HR
1359
0
0
0
0
0
0
0
0
0
0
0
1559
EVERY 10.0
GAS METER
READING
(CU.FT.)
402.888
•11.520
420.040
428.670
•37.310
•45.940
454.440
462.990
471.490
479.860
468.300
•96.820
505.251
102.363
MINUTES
VELOCITY
HEAD
(IN.H20)
2.100
2.050
2.100
2.050
2.100
2.050
2.050
2.100
2.100
2.100
2.100
2.100
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
2.96
2.89
2.99
2.93
3.00
2.94
2.93
3.00
3.00
3.00
3.00
2.99
2.97
H20)
ACTUAL
2.96
2.89
2.99
2.93
3.00
2.94
2.93
3.00
3.00
3.00
3.00
2.99
2.97
STACK
TEPP
(DEG.F)
417.
418.
416.
415.
415.
414.
415.
416.
416.
416.
417.
417.
416.
DATE 11/10/82
RUN NUPBER 3AP5*
PHOBE LENGTH ft TYPE 6* GLASS
NUZZLE : I.D. .222
ASSUPED MOISTURE 12.0
SAPPLE BOX NUPBER
PETER BOX NUPBER FB3
PETER HtAu OIFF. 2.00
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS PETER
TEHP
(DEG.F)
INLET OUTLET
81. 81.
85. 81.
87. 61.
89. 61.
90. 62.
90. 62.
91. 82.
91. 82.
91. 81.
91. 61.
»9. 61.
89. 61.
69. 61.
PUPP
VACUUM
(IN.HG)
5.8
6.0
6.
6.
5.
6.
6.
6.
7.1
7.2
7.7
7.7
6.6
SAPPLE
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IPPINGER
TEMP
(DEG.F)
0.
75.
117.
122.
114.
93.
87.
87.
84.
83.
84.
85.
86.
-------
PARTICIPATE FIELD DATA 6 HE5ULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SWEENY DO
TEST 3AM5*
FCC STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
PC
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
1
1359
1559
120
12
1
2
1/10/82
.0
.006
.222 IN
.84
.97 IN-H30
METRIC UNITS
1
1359
1559
120
12
1
5
75
1/10/82
.0
.006
.6
.84
.4
KM
PM-I
I DROP
W VH VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TN AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BKO PERCENT MOISTURE BY VOLUME
FKO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCU PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR nT-ORY STACK GAS
M*3 MOLECULAH NT-STACK GAS
102.363 CU-FT
2.899 CU-M
85.0 F
101.093 SCF
214.0
10.073 SCF
9.06
.909
14.60
2.bO
.00
82.90
30.44
29.31
29
2
214
9
14
2
82
30
29
.4 C
.863 SCM
.0
.285 SCP
.06
.909
.60
.50
.00
.90
.44
.31
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
BSSTU STACK FLOW RATE, DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINCT1C
* 68 DEG f, 29.92 IN.HG.
30.10 IN-HG
•1.38 IM-H20
30.00 IN-HG
416. F
103.5 FPS
9161. 3U-IN
13021502. SCFH
23694372. ACFH
91.9
764.54 CM-HG
•35.05 *M-H20
761.96 PM-HG
213. C
31.5 KPS
5.910 SO-M
368730. SC^H
670954.
91.9
-------
EXAMPLE PARTICIPATE CALCULATIONS 1EST Nu. 3AM5"
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANUAHO CONDITIONS
VMSTD = (17.647 • VM • Y * (PB «• PM / 13.6)) / (TM * 460.)
17.647 * 102.363 * l.OOb * ( 30.10 * 2.969 / 13.6)
VMSTD s ----------------------------------------------------- 3 101.093 OSCF
I 6b. * 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC » .04707 • VLC
VHC * .04707 * 214. s 10.07 SCF
PERCENT MOISTURE IN STACK GAS
BNO * (100. • VNC) / (VMSTD * VMC)
>
' 100. « 10.07
£ BNO s — —• — = 9.06 PERCENT
101.093 + 10.07
MOLE FRACTION OF DRY STACK GAS
FMD * (100. - BHO) / 100.
100. • 9.1
FMD = ———————— = .909
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO = (PC02 * .44) * (P02 • .32) «• (PN2 » PCO) • ,2«
MO s (14.60*44/100) » ( 2.5*32/100) » ((88.9* .0) • 28/100 - 30.44
MOLECULAR WEIGHT OF STACK GAS
MWS = MO • (1. - (HwO/100)) » 18. * (BMO/100)
= 30.44* (1. -( 9.06/100)) * 1H. * ( 9.06/100) = 29.31
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SQRTCVH * (T3 * 460.))
VS » 85.49 * CP * OELP / (SQRT(MNS * PS) * PNTS)
VS = BS.49 * .64 * S12.633 / (SQRT( 29.31 * 30.00) * 12. s 103.46 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS a VS * AS • 3600/144
OS = 103.46 * 9161. 3600/144 = 23694372. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD * 17.647 • OS * PS • (1. - (BNO/100)) / (TS + 460.)
17.647 • 23694372. * 30.00 *(!.-( 9.06/100))
OSSTD • —-——— —— —— ———. = 13021502. SCFH
( 416. » 4bO.)
>
^ PERCENT ISOKINETIC
ISO = <305.5«*(T3*460.))*((O.U02669*VLC)*(VMM*(PB»IPM/13.6))/(TM*460.)))/(TT*VS*PS*DN*ON)
(305.58*( 416.«460.))*((0.002669* 2l4.)«( 102.363*1.006* ( 30.10«( 2.969/13.6))/( 85.»460.)))
ISO » ————— ............................... ........................................... * 91.68 PERCENT
120. • 103.46 « 30.00 * .222 * .222
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 « MN * IS.43 / VMSTD
CS = 0.001 • O.OOOOE+00 * 15.43 / 101.093 = O.OOOOE+00 SR/DSCF
-------
FIELD O»T*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEC.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALI8. FACTOR
PHILLIPS SHEENY
FCC STACK
DO
80.
30.10
•1.38
3450163
108.00
.84
DATE
RUN NUMBER
PROBE LENGTH & TYPE
NOZZLE : I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
HEAD OIFF.
.00
PROBE HEATER SETTING
HEATER BOX SETTING
.012 CFM ol 14.0 IN.HG
.980
11/10/92
3BN5*
6* GLASS
.221
12.0
FBS
1.95
250.
250.
READ * RECORD DATA EVERY 10.0 MINUTES
>
-J
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
n nrir 1
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL T£PP
(CU.FT.) (IN.H20) (IN.H20) (OEG.F)
DESIRED
INIT 0
10. 0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
1400
0
0
0
u
0
0
0
0
0
0
0
1600
28.882
37.770
46.970
56.290
65.470
74.690
83.850
93.120
102.380
111.650
120.960
130.340
139.609
2.100
2.050
2.100
2.050
2.100
2.050
2.050
2.100
2.100
2.100
2.100
2.100
2.96
2.89
2.99
2.93
3.00
2.94
2.93
3.00
3.00
3.00
3.00
2.99
ACTUAL
2.96
2.89
2.99
2.93
3.00
2.94
2.93
3.00
3.00
3.00
3.00
2.99
DRY GAS PETER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (OEG.F)
IMPINGER
TEMP
(OEG.F)
HLET OUTLET
417.
418.
416.
415.
415.
414.
415.
416.
416.
416.
417.
«17.
84.
89.
99.
99.
99.
100.
101.
101.
101.
100.
99.
97.
86.
85.
87.
88.
88.
88.
89.
89.
89.
89.
89.
88.
.3
.8
.8
.1
.3
.9
10.8
11.1
11.7
11.9
12.3
13.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
67.
78.
119.
125.
125.
99.
84.
85.
85.
87.
89.
83.
TOTALS
AVERAGE
120.0
110.727
2.97
2.97 416.
97.
88,
10.4
0.
94.
-------
PARTICIPATE FIELD DATA H RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SMEENV DO
TEST 3BMSN
FCC STACK
00
TEST
TB
TF
TT
NP
Y
ON
CP
PC
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/10/62
1400
1600
120.0
12
.988
.221 IN
.84
2.97 IN-H20
METRIC UNITS
11/10/62
1400
1600
120.0
12
.988
5.6 »»M
.84
75.4 *M-
DROP
VP VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DKY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRV
MO MOLECULAR NT-DRY STACK GAS
M*S MOLECULAR NT-STACK GAS
110.727 CU-FT
92.7 F
105.907 SCF
235.2
11.071 SCF
3.135 CU-M
33.7 C
2.999 SC*
235.2
.313 SO
9.46
.905
14.60
2.50
.00
62.90
30.44
29.26
9.46
.905
10.60
2.50
.00
82.90
30.44
29.26
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, AflS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE. DRY*
93 ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
• 68 DE6 F, 29.92 IN.HG.
30.10 IN-HG
•1.38 IN-HiO
30.00 IN-HG
416. F
103.5 FPS
9161. SQ-IN
12974910. SCFM
23714652. *CFH
97.5
.50 *M-HG
•35.05 KM-H2U
761.96 I»*-HG
213. C
31.6 *PS
5.910 SO-M
3674H. SOH
671528. ACCH
97.5
>
vo
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCC STACK
VOLUME OF DRY 6AS SAMPLED AT STANOAKD CONDITIONS
VMSTD * (17.647 • VM * Y * tPB * PM / 13.6)) / (TM + 460.)
17.647 • 110.787 * .988 * ( 30.10 «• Z.969 / 13.6)
VMSTO * — --- — — -------------------------- — ----- • ----- • = 105.907 USCF
( 93. » 4bO.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VNC = .04707 * VLC
VHC * .04707 * 235. = 11.07 SCF
PERCENT MOISTURE IN STACK GAS
•p BNO * (100. * VMC) / (VMSTO » VMC)
I
W 100. * 11.07
0 BNO x ———.——.———.. s 9.46 PEKCENT
105.907 » 11.07
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BHO) / 100.
100. - 9.5
FMD = .——.».....-.—.... r .905
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO * (PCOZ * .44) + (P02 * .32) * (PN2 » PCU) • .28
MD s (14.60*44/100) » ( Z. 5*32/100) * ((8^.9+ .0) * 28/100 = 30.44
MOLECULAR WEIGHT UF STACK GAS
MNS = MD * (1. - (8*0/100)) * 18. • (BttO/lOU)
MwS = 30.44* (1. •( 9.46/100)) » la. * ( 9.46/100) = 29.26
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SGRMVH • (TS * 460.))
V3 > 85.09 • CP * OELP / (SQRT(MHS * PS) • PUTS)
VS a 85. 49 • .84 • S14.633 / (SQ»T( ?9.86 • 30.00) • 12. = 103.55 FPS
STACK GAS VOLUMETRIC FLON AT STACK CONDITIONS
OS a VS • AS • 3600/144
OS = 103.55 * 9161. 3600/144 = 2371*653. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
QSSTD * 17.647 * OS * PS • (1. - (BNO/IOO)) / (TS * 460.)
17.647 * 83714658. * 30.00 »(!.-( 9.46/100))
OSSTO « ——..—..— — . — ... ......... ........... ...... = 18174910. SCFH
( 416. * 460.)
PERCENT ISOKINETIC
ISO « (305.58*(TS*460.))*((0.002669*VLC)*IVM*Y*(PB*(PM/13.6))/(TM*460.)))/(TT«VS«P3«DN*ON)
(305.58«( 416. »460.))«((0. 008669* 835. )*( 110.787* .986*( 30.10»( 8.969/13.6) )/( 93.4460.)))
130 s ............... ----- .... ---- .. ---- ....................... --- .... ---- ... ----- .... ------ ........... > 97. «7 PERCENT
180. * 103.55 • 30.00 • .881 • .881
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN • 15.43 / VMSTD
CS = 0.001 * O.OOOOE+00 • 15.43 / 105.907 * O.OOOOE+00 GR/DSCF
-------
FIELD DATA
m
PLANT PHILLIPS PETRO SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) 78.
BAR. PRESS. (IN. HG) 30.10
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450176
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COtFF. .84
THERM. NO.
LEAKAGE .000 CFM * 6.5 IN.H6
METER CALIB. FACTOR 1.001
READ * RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEPP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.HeO) (DEG.F)
INIT 0
10.0
20.0
30.0
40.0
SO.O
60.0
70.0
80.0
90.0
100.0
110.0
120.0
VUUvn i
1400
1410
1420
1430
1440
1450
1500
1510
1520
1530
1540
1550
1600
822.312
832.260
842.130
852.050
861.960
871.910
801.640
891.790
901.720
911.640
921.590
931.460
941.314
DESIRED
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
ACTUAL
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
DATE 11/10/82
RUN NUMBER sens
PHOBE LENGTH ft TYPE 6 FT GLASS
NOZZLE : 1.0. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUPBER
PETER BOX NUMBER FB7
PETER HEAD DIFF. 1.71
PROBE HEATER SETTING 250.
HEATEK BOX SETTING 250.
DRY GAS PETER PUMP SAPPLE IPPINGER
TEPP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (OEG.F) (OEG.F)
IKLET OUTLET
«23.
121.
421.
421.
419.
«19.
420.
420.
420.
420.
421.
420.
86.
»7.
90.
93.
94.
95.
96.
96.
96.
96.
94.
94.
85.
84.
84.
85.
«5.
85.
86.
08.
68.
88.
87.
87.
5.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.3
5.3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
78.
74.
72.
80.
90.
94.
*2.
86.
82.
76.
78.
84.
TOTALS
AVERAGE
120.0
119.002
3.20
3.20 420.
93.
66.
5.1
0.
83.
-------
PARTICULATE FIELD DATA & HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM
PHILLIPS PETRO SNEENT PHILLIPS
TEST 5CH5
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/10/82
1400
1600
120.0
12
1.001
.224 IN
.84
3.20 IN-H20
METRIC UNITS
11/10/82
1400
1600
120.0
12
1.001
5.7 fM
.84
81.3 PM-I
jp DROP
l!n VM VOLUME OF DRY GAS SAMPLED
w AT METER CONDITIONS
TN AVERAGE GAS METER TEMP
VP3TD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., OHY
P02 PERCENT 02 BY VOL.* DRY
PCU PERCENT CO BY VOL.* DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
MNS MOLECULAR NT-STACK GAS
119.002 CU-FT
3.370 CU-M
89.5 F
116.040 SCF
346.7
16.319 SCF
12.33
.877
14.60
2.50
.00
82.90
30.44
2B.90
32.0
3.286
346.7
.462
12.33
.877
14.60
2.50
.00
82.90
30.44
28.90
C
sex
sc»«
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES. ABS.
TS AVERAGE STACK TEMP
V3 AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLO* RATE* DRV*
8S ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG, EPA 5
CS FILTERABLE-AMBIENT
30.10 IN-HG
•1.38 IN-H20
30.00 IN-HG
4?0. F
112.1 FPS
9161. SO-IN
13534376. SCFH
25674512. ACFH
99.7
243.a
.0324 6R/OSCF*
764.54 KM-HG
-35.05 >M-H20
761.96 CM-HG
216. C
34.2 KP3
5.910 SO-M
363253. SCKH
727025. ACMH
99.7
243.6
74.203 HG/OSC*'
MN
> CS
en
FILTERABLE-232
M6. EPA 5
FILTERABLE-232
131.9
.0175 GN/OSCF*
131.9
40.145 fG/DSO
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
112.3
.0149 GR/DSCF*
112.3
34.100
* 66 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS UST NO.
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD * (17.647 • VM • Y • (PB * PM / 13.6)) / (TM + 060.)
17.647 • 119.002 * 1.001 * ( 30.10 + 3.200 / 13. 6)
VMSTD s .—— — — -- — - — -- — -- — .............. ---- ....... 3 116.040 OSCF
( 9u. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VHC » .04707 • 347. = 16.32 SCF
PERCENT MOISTURE IN STACK GAS
BNO > (100. * VMC) / (VMSTD » VHC)
100. • 16.32
> BNO = — — — — — ---- .— ---- - s 12.33 PERCENT
I 116.040 * 16.3?
Ul
LH
MOLE FRACTION OF DRY STACK GAS
FMD = (100. • BNO) / 100.
100. • 12.3
FMD s —————— ......... = .877
100.
AVERAGE MOLECULAR HEIGHT OF DHY STACK GAS
MD s (PC02 • .44) * (P02 • .32) * (PN2 * PCO) * .28
MD s (14.60*44/100) * ( 2.5*32/100) » (18*. 9* .0) • 28/100 = 30.44
MOLECULAR HEIGHT OF STACK GAS
MNS e MO * (I. - (BftO/lUO)) * 10. * (BWO/100)
MnS s 30.44* (1. -(12.33/100)) + 16. * (12.33/100) = 20.90
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP e SUM. OF THE SORTCVH * (TS » 460.))
VS a 85.49 • CP * DtLP / (SORT(MRS * PS) * PNTS)
VS = 65.49 * .04 • 551.600 / (SORT ( 20.90 • 30.00) • 12. = 112.11 FPS
STACK GAS VOLUMETRIC FLOM AT STACK CONDITIONS
OS « VS t AS * 3600/144
OS = 112.11 * 9161. 3600/144 = 25674512. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTD * 17.647 • OS • PS • (1. - (BNO/100)) / (TS » 460.)
17.647 • 25674512. • 30.00 * (1. • (12.33/100))
OSSTD * ———— ——... ................ . > 13534376. SCFH
( 420. * 460.)
PERCENT ISOKINETIC
ISO = (305.58*(T3+460.))*((O.U02669*VLC)+(VM*Y*(PB«(PH/13.6))/(TM*460.)))/(TT*VS«PS*DN*DN)
(305.58*( 420.*460.))*((0.002669* 347.)*( 119.002*1.001*( 30.10»( 3.200/13.6))/ ( 90.«460.)))
ISO * .............................. ...... ..... ........... . .. .... . .. s 99.66 PERCENT
120. * 112.11 * 30.00 * .224 * .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTD
CS s 0.001 * 243.8 * 15.43 / 116.040 = .0324 GH/D3CF
-------
FIELD DATA
PLANT PHILLIPS PETRO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEC. F) 80.
BAR. PRESS. (IN. HG) 30.10
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450162
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .010 CFM 4 7.
METER CALIB. FACTOR .986
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TIME
(24-HR
1402
1412
1422
1432
1442
1452
1502
1512
1522
1532
1542
1552
1602
READING
(CU.FT.)
775.388
785.400
795.210
805.040
814.900
824.860
834.720
844.680
854.650
864.660
874.540
884.390
894.116
HEAD
(IN.H20)
2.400
2.4QO
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
SrtEENY
5 IN.HG
ORIFICE
PRESSURE
STACK
DIFFERENTIAL TEMP
(IN.
DESIRED
3.10
3.10
3.10
3.20
3.20
3.20
3.20
3.20
3.20
3.?0
3.20
3.20
H20)
ACTUAL
3.10
3.10
3.10
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
(DEG.F)
423.
421 .
421 .
421 .
419.
419.
420.
420.
420.
420.
421.
420.
DATE 11/10/82
RUN NUfBtH 3DM5
PKOBE LENGTH ft TYPE 6 FT GLASS
NOZZLE i I.D. .226
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB2
METER HEAD DIFF. 1.73
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEC
INLET
80.
81.
85.
89.
90.
90.
90.
92.
92.
92.
89.
89.
.F)
OUTLET
62.
80.
81.
81.
82.
83.
84.
85.
85.
85.
84.
84.
VACUUM
(IN.HG)
6.0
5.8
5.8
5.8
5.6
5.6
5.8
6.0
6.0
6.2
6.2
6.2
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
U.
0.
TEMP
(DEG.F)
82.
66.
68.
64.
70.
72.
74.
82.
76.
70.
72.
78.
TOTALS
AVERAGE
120.0
118.728
3.17
3.17 420.
88.
83.
5.9
0.
73.
-------
PARTICIPATE FIELD DATA 6 RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 3DMS
FCC STACK
ENGLISH UNITS
1
ui
00
TEST
TB
TF
TT
NP
Y
UN
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST. MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
1
1402
1602
120
12
3
1/10/82
.0
.986
.226 IN
.64
.17 IN-H20
METRIC UNITS
1
1402
1602
120
12
5
80
1/10/82
.0
.966
.7
.84
.6
CM
C.M-H20
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VPSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
b*0 PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL.* DRY
P02 PERCENT Qi BY VOL.* DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL.* DRY
MD MOLECULAR MT-OftY STACK GAS
MMS MOLECULAR NT-STACK GAS
116.728 CU-FT
85.6 F
114.649 SCF
382.4
18.000 SCF
3.3b2 CU-M
29.6 C
3.252 SCM
382.4
.510 SCf
13.55
.665
14.60
2.50
.00
82.90
30.44
26.75
13.55
.865
14.60
2.50
.00
82.90
30.44
28.75
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
V3 AV6 STACK GAS VELOCITY
A9 STACK AREA
OSSTO STACK FLOW RATE. DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
30.10 1N-HG
-1.38 IN-H20
30.00 IN-HG
420. F
112.4 FPS
9161. SO-IN
13361276. SCFH
25742132. ACFH
96.0
260.3
.0350 GR/DSCF*
764.54 CM-HG
-35.05 CM-H20
761.96 KM-HG
216. C
3a,3 fPS
5.910 SO-M
37B918. 3CMH
728940. ACKH
96.0
260.3
80.046 PG/D3CP
>
en
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
142.1
142.1
.0191 GR/DSCF* 43.696 PG/OSCI"
CS
FILTERABLE-SIS
MG. EPA 5
FILTERABLE-315
US.5
115.5
.0155 GR/OSCF* 35.518 >G/D3O
* 66 OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 3DH5
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD s (17.647 * VM * Y * (PB » PM / 13.6)) / (TM + 460.)
17.647 * 118.736 * .966 * ( 30.10 «• 3.175 / 13.6)
VMSTD s • • = 114.849 DSCF
( 66. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC a .04707 * VLC
VHC * .04707 * 363. z 18.00 SCF
PERCENT MOISTURE IN STACK GAS
BHO * (100. • VNC) / (VMSTD * VHC)
to 100. * 18.00
I BHO s ......... ....... .. s 13.55 PERCENT
0\ 114.649 • 18.00
O
MOLE FRACTION OF DRV STACK GAS
FMD s (100. • BHO) / 100.
100. • 13.S
FMD * ....................... = .865
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO = (Pcoa * .44) * (poa * .3D » (PN2 » PCU) * .as
MU s (14.60*44/100) » ( 2.5*33/100) » ((83.9* .0) * 38/100 s 30.44
MOLECULAR HEIGHT OF STACK GAS
MttS s MD • (1. • (BnO/lUO)) » 16. » (bWU/100)
MHS = 30.44t (1. -C13.i5/100)) * 1«. • (13.55/100) s 28.75
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP a SUM. OF THE SORHVH * (TS » 460.))
VS = 85.49 • CP * DELP / (SORT(MNS * PS) • PNTS)
VS 3 85.49 • .84 • 551.608 / (SURT( 28.75 * 3U.OO) * 12. - 113.40 FPS
STACK GAS VOLUMETRIC FLO" AT STACK CONDITIONS
03 = VS • A3 • 3600/144
OS - 112.40 * 9161. 3600/144 = 25744132. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO > 17.647 * OS • PS • (1. - (BHO/100)) / (TS + 460.)
17.647 * 25742132. * 30.00 * (1. - (13.55/100))
OSSTD s — —————.................................... 3 13381278. SCFH
( 420. * 4bO.)
PERCENT ISOKINETIC
ISO * (305.58*(T9*460.))*((0.002669*VLCmVMr*(PB«(PM/13.6))/(TM*460.)))/(TT*VS*P8*ON*DN)
(305.58*( 420.*460.))*((0.002669* 382.)»< 118.728* .986*( 30.10+( 3.175/13.6))/( 66.4460.)))
ISO • ........ .... . ... ....... ................ . ............... * 98.01 PERCENT
120. • 112.40 • 30.00 * .226 • .226
PARTICIPATE LOADING •- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS > 0.001 • MN • 15.43 / VMSTD
CS = 0.001 * 260.3 * 15.43 / 114.849 = .0350 GR/DSCF
-------
FIELD DATA
a\
Ni
PLANT PHILLIPS SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5-450
OPERATOR DO
AMBIENT TEMP. (DEG.F) 75.
BAR. PRESS. (IN. HG) 29.92
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER13) 3450222
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .006 CFM 1 9.
METER CALIB. FACTOR 1.006
READ 6 RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TIME
(24-HR
1133
0
0
0
0
0
0
0
0
0
0
0
1333
READING
(CU.FT.)
505.563
513.940
522.300
531.040
539.530
548.060
556.660
565.250
573.880
582.490
591.170
599.800
608.480
HEAD
(IN.H20)
1.950
1.900
.950
.900
.900
.950
.950
.950
.950
.900
.900
.950
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
2.92
2.86
2.97
2.89
2.89
2.98
2.98
2.98
2.98
2.91
2.91
2.98
H20)
ACTUAL
2.92
2.86
2.97
2.89
2.89
2.98
2.98
2.98
2.98
2.91
2.91
2.98
STACK
TEMP
(DEG.F)
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
DATE 11/11/82
RUN NUMBER 4AM54S
PROBE LENGTH « TYPE 6* GLASS
NUZZLE : I.D. .219
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
METER BOX NUMBER FBS
METER HEAD UIFF. 2.00
PROBE HEATER SETTING 450.
HEATEH BOX SETTING 450.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEG
ULET
74.
77.
84.
86.
86.
88.
87.
88.
89.
89.
89.
89.
.F)
OUTLET
73.
73.
73.
75.
77.
79.
79.
79.
79.
79.
80.
80.
VACUUM
(IN.HG)
7.9
8.3
8.4
7.5
7.6
7.6
8.1
8.3
8.5
8.5
8.4
8.7
BOX TEMP
(DEG.F)
0.
0.
0.
0.
U.
0.
0.
0.
U.
0.
0.
0.
TEMP
(DEG.F)
0.
84.
132.
122.
110.
105.
99.
103.
109.
110.
101.
too.
TOTALS
AVERAGE
120.0
102.917
2.94
2.94 420.
86,
77,
8.1
0.
98,
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SHEENY oo
TEST OAM505
FCC STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
>PM
a\
wv»
TM
VMSTD
VLC
VMC
BNO
FMO
PC02
P02
PCO
PN2
MO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPIN6ERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOH
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.* DRY
PERCENT 02 BY VOL.* DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR WT-DHY STACK GAS
MOLECULAR NT-STACK GAS
11/11/82
1133
1333
120. 0
12
1.
•
»
2.
102.
81.
101.
140.
6.
6.
•
14.
1.
•
83.
30.
29.
006
219 IN
84
94 IN-H20
917 CU-FT
3 F
713 SCF
4
609 SCF
10
939
35
90
00
75
37
b?
METRIC UNITS
11/11/82
1133
1333
120.
12
1.
5.
f
74.
2.
27.
2.
140.
•
6.
.
14.
1.
.
83.
30.
29.
0
006
6
84
6
914
4
880
4
187
10
939
35
90
00
75
37
62
.CM
PM-H20
CU-M
C
sec
SCM
-------
PB BAROMETRIC PRESSURE
P31 STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEHP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTD STACK PLUM RATE* DRY*
OS ACTUAL STACK FLOH RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.S2 IN-Mb
-1.36 IM-H20
29.«2 IM-HG
420. F
99.6 FPS
9161. SO-IN
12802916. SCFH
22802056. ACFH
96.6
106.6
.0162 GH/DSCF*
759.97 fM-HG
-35.05 KM-H20
757.39 XM-HG
216. C
30.3 CPS
5.910 SO-M
362541. SCHH
645686. ACH-H
96.6
106.6
37.015
MN FILTERABLC-315
> MG. EPA 5
FILTERABLE-315
46.0
.0071 GR/OSCF*
46.6
16.250
* 68 DE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST
FCC STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTO = (17.647 * VM * Y • (PB * PM / 13.6)) / (TM + 460.)
17.647 * 102.917 * 1.006 * ( 29.92 » 3.938 / 13.6)
VMSTD = — — ------------------------ - ----------- - ------------ = 101.713 USCF
( 61. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC = .04707 * VLC
VMC = .04707 « 140. = 6.61 SCF
PERCENT MOISTURE IN STACK GAS
BNO = (100. • VHC) / (VMSTO * VNC)
•f 100. • 6.61
en BWO s —-—-•—— —..——. a 6.10 PERCENT
Ui 101.713 * 6.61
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BNO) / 100.
100. - 6.1
FMD * —————————— = .939
100.
AVERAGE MOLECULAR MfclGHT OF DRY STACK GAS
MD = (PC02 * .44) * (P02 * .32) * (PN2 * PCD) * .38
MD = (14.35*44/100) * ( 1.9*32/100) * ((83.6* .0) • 28/100 = 30.37
MOLECULAR HEIGHT OF STACK GAS
MMS = MD • (1. - (BWO/100)) * 18. * (BNU/100)
MNS = 30.37* (1. -( 6.10/100)) » 18. * t 6.10/100) = 29.62
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SQRTIVH * (TS * 460.))
VS = 85.49 * CP * DELP / (SORT(M*S * PS) * HNTS)
VS = 85.49 • .84 * 494.423 / (SORT( 29.62 • 29.82) * 12. = 99.5b FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
QS = VS • AS • 3600/144
OS = 99.Sb * 9161. 3600/144 = 22802056. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO s 17.647 • OS • PS • (1. - (BNO/100)) / (TS + 460.)
17.647 • 22602056. • 29.82 *(!.-( 6.10/100))
OSSTD * —— — ......... B 12802938. SCFM
( 420. * 460.)
> PERCENT ISOKINETIC
I
^ ISO > (305.58*(T3+4bO.))*((0.002bb9*VLC)+(VH*V*(PB«(PM/13.b))/(TM+4bO.)))/(TT*VS*PS*DN*0'i)
(305.58*( 420.+460.))*((0.002669* 140.)+( 102.917*1.006*( 29.92+( 2.938/13.6))/( 81.+ 460.)))
ISO s ———————— —. . ................... . ........... ....... r 96.61 PERCENT
120. * 99.56 * 29.82 * .219 * .219
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTO
CS = 0.001 • 106.6 * 15.43 / 101.713 = .0162 GR/OSCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEC.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBERIS)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SrtEtNY
FCC STACK
M5-450
DO
75.
29.92
-1.38
3450221
108.00 .00
.84
.Old CFM ol 15.5 IN.HG
.988
DATE 11/11/82
RUN NUMUtK 4BM545
PROBE LENGTH & TYPE 6* GLASS
NOZZLE ! I.U. .223
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
METEH BOX NUMBER FBS
METER HEAD DIFF. 1.95
PHOBE HEATER SETTING 450.
HEATER BOX SETTING 450.
READ « RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
r»i nr»tr I
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H20) (IN.H20) (DEG.F)
DESIRED
INIT 0
10. 0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
1134
0
0
0
0
0
0
0
0
0
0
0
1334
139.908
149.260 1.950
158.550
167.940
177.050
186.120
195.450
204.760
214.060
223.370
232.620
241.940
251.129
.900
.950
.900
.900
.950
.950
.950
.950
.900
.900
.950
2.92
2.86
2.97
2.69
2.69
2.98
2.96
2.98
2.98
2.91
2.91
2.98
ACTUAL
2.92
2.86
2.97
2.89
2.89
2.98
2.98
2.98
2.96
2.91
2.91
2.98
DRY GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (OEG.F)
IMPINGER
TEMP
(OEG.F)
INLET OUTLET
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
77.
81.
93.
91.
93.
94.
95.
95.
95.
94.
94.
95.
78.
78.
60.
62.
61.
62.
63.
83.
84.
84.
85.
85.
9.7
10.3
10.8
10.2
10.5
11.2
11.7
12.2
12.3
13.2
13.6
14.6
0.
0.
U.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
78.
116.
126.
104.
89.
89.
87.
89.
84.
87.
89.
TOTALS
AVERAGE
120.0
111.221
2.94
2.94 420.
91.
82.
11.7
0.
87.
-------
PARTICIPATE FIELD DATA A KESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SHEENY DO
TEST 4BM545
FCC STACK
oo
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MlN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
11/11/82
1134
1334
120.0
12
.988
.223 IM
.84
METRIC UNITS
11/11/82
1134
1334
120.0
12
.988
5.7
.84
I'M
TM
VPSTO
VLC
VMC
BfcO
FMD
PC02
P02
PCO
PM2
MD
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.* OHY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
2.94 IN-H20
111.221 CU-FT
86.8 F
106.884 SCF
192.4
9.056 SCF
74.6 MM-H20
3.149 CU-M
30.4 C
3.027 3CC
192.4
.256
7.81
.922
14.35
1.90
.00
83.75
30.37
29.41
7.81
.922
14.35
1.90
.00
83.75
30.37
29.41
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES UF STACK GAS
PS STACK PRES, A8S.
TS AVERAGE STACK TEMP
V3 AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE, DRY*
BS ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
C3 FILTERABLE-AMBIENT
29.92 IN-HG 759.97
-1.38 IN-H20 -35.05
29.82 IN-HG 757.39
420. F 216.
99.9 FPS 30.5
9161. SU-IN 5.910
12614894. 3CFH 357216.
22883944. ACFH 646005.
99.4 99.4
65.9 65.9
.0095 GR/OSCF* 21.776
CM-HG
C
VPS
Sg-M
3CWH
I
a>
vo
MN
CS
F1LTERABLE-315
MG. EPA 5
FILTERABLE-315
47.0
.0068 GR/DSCF*
47.0
15.530
* 68 OE6 F, 29,92 IN.H6.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST Nu. 7.8
FMO • ...——................ s .922
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO * (PC02 * .44) • (P02 * .32) * (PN2 * PCO) * .28
MO * (14.35*44/100) » ( 1.9*32/100) * ((83.8* .0) * 28/100 s 30.37
MOLECULAR HEIGHT OF STACK GAS
MftS s MD • (1. • (BMO/1UO)) » IB. • (BHO/100)
MNS s 30.37* (I. -t 7.01/100)) » 18. * ( 7.81/100) - 29.41
-------
STACK 6AS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SOHTIVH * (TS » 460.))
VS = 85.09 * CP * OELP / (SQRT(MHS * PS) » PNTS)
VS * 65.49 • .84 • 494.423 / (SORT( 29.41 * 29.82) • 12. = 99.92 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS * 99.92 • 9161. 3600/144 = 22883944. ACFH
STACK 6AS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTO • 17.647 • OS • PS * (1. • (BNO/100)) / (TS » 460.)
17.647 • 22883944. * 29.82 •
-------
FIELD DATA
PLANT PHILLIPS PtTkO SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP.(OEG.F) 75.
BAP.. PRESS. (IN. HG) £4.92
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450223
STACK INSIDE DIM. (IN) 106.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM a 8.5 IN.HG
METER CALIB. FACTOR I. 001
READ « RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H2U) (IN.H20) (DEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
bO.O
70.0
»0.0
90.0
100.0
110.0
120.0
VUUV" 9
1132
1142
1152
1202
1212
1222
1232
1242
1252
1302
1312
1322
1332
941.491
951.380
961.270
971.240
981.290
991.310
1.340
11.360
21.330
31.050
41.520
51.570
61.585
DESIRED
2.400
2.400
2.400
2.400
2.4QO
2.4QO
2.400
2.400
2.400
2.400
2.400
2.400
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
ACTUAL
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
DATE 11/11/82
RUN KUMbER 4CH58
PROBE LENGTH « TYPE 6 FT GLASS
NOZZLE : 1.0. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FB7
METER HEAD OIFF. 1.71
PROBE HEATER SETTING 320.
HEATEH BOX SETTING 320.
URY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
INLET OUTLET
«23.
420.
419.
418.
418.
417.
417.
417.
417.
416.
418.
417.
01.
«4.
88.
91.
92.
93.
93.
93.
94.
94.
94.
94.
80.
81.
81.
82.
83.
85.
85.
85.
86.
86.
86.
86.
.0
.0
.0
.2
.4
.4
.4
.4
.5
7.0
7.2
7.5
V.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
88.
84.
96.
98.
102.
110.
102.
62.
62.
78.
64.
84.
TOTALS
AVERAGE
120.0
120.094
3.20
3.20 416.
91.
84.
6.5
0.
91.
-------
PARTICIPATE FIELD DATA « RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST QCM5B
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
DN
CP
PM
1
Co VC
TK
VHSTD
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
ENGLISH UNITS
11/11/82
1132
1332
120
12
1
3
120
87
lib
.0
.001
.224 IN
.84
.20 IN-H20
.094 CU-FT
.4 F
.870 SCF
METRIC UNITS
11/11/62
1132
1332
120.0
12
1.001
5.7
.84
81.3
3.401
30.8
3.309
»M
PM-H20
CU-M
C
sc*
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VHC VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FPO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL.r DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR NT-DRY STACK GAS
MhS MOLECULAR NT-STACK GAS
301.6
14.19b SCF
301.6
.402 SO
10.83
.892
14.35
1.90
.00
83.75
30.37
29.03
10.83
.892
14.35
1.90
.00
83.75
30.37
29.03
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLO* RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.92 IN-HG
•1.30 IN-H20
29.82 IN-HG
418. F
112.0 FPS
9161. SO-IN
13711692. SCFH
25660428. ACFH
99.1
80.4
.0106 GR/OSCF*
759.97 CM-HG
-35.05 »»M-H20
757.39 CM-HG
214. C
34.2 PPS
5.910 SO-M
388280. SCCH
726626. ACMH
99.1
80.4
24.297
MN
CS
FILTERABLE-31S
MG. EPA 5
FILTERA8LE-31S
56.2
.0074 GR/OSCF*
56.2
16.983 HG/DSO
* 66 DE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NU.
FCC STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VM3TD * (IT. 647 • VM • Y • IPB * PM / 13. b)) / (TM * 460.)
17.647 * 120.094 * 1.001 * ( 29.9? * 3.200 / 13.6)
VMSTD « —————— --- — — --- ........ — .... --- ........ = 116.870 DSCF
( 87. » 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC a .04707 • VLC
VKC * .04707 • 302. = 14.20 SCF
PERCENT MOISTURE IN STACK GAS
BNO = (100. * VNC) / (VMSTD * VNC)
I 100. * 14.20
-J BHO « —————— ----- = 10.83 PERCENT
01 116.870 «• 14.20
MOLE FRACTION OF DRV STACK GAS
FMO s (100. » BHO) / 100.
100. . 10.8
FMD * —————— = .092
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD a (PC02 • .44) * (P02 » .32) * (PN2 * PCO) * .28
MD = (14.35*44/100) * ( 1.9*32/100) « ((83.8* .0) * 28/100 = 30.37
MOLECULAR WEIGHT OF STACK GAS
MNS « MD • (1. - (8*0/100)) » IB. • (BMO/100)
MHS s 30.37* (1. -(10.83/100)) » 18. * (10.83/100) = 29.03
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORT(VH * (TS + 460.))
VS = 65.49 • CP • OELP / (SORUMNS * PS) * HNTS)
VS = 85.49 * .04 • 550.877 / (SORTt 39.03 * 29.62) * 12. = 112.04 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s VS • AS * 3600/144
OS s 112.04 * 9161. 3600/144 x 25660426. ACFH
STACK GAS VOLUMETRIC FLOH AT STANDARD CONDITIONS
QSSTO 3 17.647 • OS * PS • (1. • (BHO/100)) / (TS * 460.)
17.647 * 25660420. • 29.62 • (1. • (10.63/100))
OSSTD « ————————— .... ........ s 13711692. SCFH
( 416. * 460.)
^ PERCENT ISOKINETIC
0\ ISO * (305.5e*(TS»460.))*((0.002669*VLC)*lVM*Y*(PB*lPM/13.6))/(TM»460.)))/(TT*V3*PS»DN*Df«)
(305.58*( 418.t460.))«((0.002669* 302.)•( 120.094*1.001*( 29.92*( 3.200/13.6))/ ( 67.^460.)))
ISO = —————. — . . — .... .. ......... ...... a 99.07 PERCENT
120. * 112.04 • 29.62 * .224 * .224
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTD
CS 3 0.001 • 60.4 * 15.43 / 116.670 s .0106 GR/USCF
-------
FIELD DAT*
I
-J
PLANT PHILLIPS PETHO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP.(OEG.F) 75.
BAR. PRESS. (IN. HG) 29.92
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450219
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM d 11.
METER CALIB. FACTOR .986
READ t RECORD DATA
TRAVERSE
POINT
NO.
INIT
HALS
/ERASE
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
120.0
CLOCK
TIME
(24-HR
ft np K i
HU(*n i
1134
1144
1154
1204
1214
1224
1234
1244
1254
1304
1314
1324
1334
EVERY 10.0
GAS METER
READING
(CU.FT.)
894.301
904.160
914.190
924.1*0
934.330
944.390
954.550
964.640
974.630
984.720
994.780
4.810
14.905
120.604
MINUTES
VELOCITY
HEAD
(IN.H20)
2.400
2.4QO
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
SHEENY
0 IN.HG
ORIFICE
DATE 11/11/82
RUN NUMBER 40*58
PKOBE LENGTH s TYPE 6 FT GLASS
NUZZLE : I.D. .227
ASSUMED MOISTURE 12.0
SAMPLE aox NUMBER
METER BOX NUMBER FB2
METER HEAU OIFF. 1.73
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.10
.20
.20
.20
.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.19
H20)
ACTUAL
3.10
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.19
STACK
TEMP
(DEG.F)
423.
420.
419.
418.
418.
417.
417.
417.
417.
416.
418.
417.
416.
DRY GAS METER
TEMP
(DEG.F)
1KLET OUTLET
74. 76.
79. 78.
84. 79.
87. 81.
89. 81.
90. 82.
90. 82.
90. 83.
90. 84.
90. 84.
90. 84.
90. 86.
87. 82.
PUMP
VACUUM
(IN.HG)
7.7
8.0
8.2
8.2
8.4
6.4
8.5
.5
.5
.0
.0
.5
8.5
SAMPLE
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(DEG.F)
76.
74.
74.
78.
86.
96.
88.
80.
62.
70.
78.
84.
81.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEA* LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 40M56
FCC STACK
TEST
TR
TF
TT
NP
Y
ON
CP
^ PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/11/82
1134
1334
120.0
12
.986
.227 IN
.84
3.19 IN-H20
METRIC
11/1
1134
1334
120.0
12
.98
5.8
.84
81.1
UNITS
1/82
6
PM
MM-
00
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCU PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAH MT-DHY STACK GAS
MMS MOLECULAR NT-STACK GAS
120.604 CU-FT
3.415 CU-M
84.3 F
116.261 SCF
338.1
15.914 SCF
12.04
.880
14.36
1.90
.00
83.75
30.37
2B.8H
29
3
338
12
14
1
83
30
28
.1 C
.292 SCC
.1
.451 SCP
.04
.880
.35
.90
.00
.75
.37
.88
-------
PB BAROMETRIC PHESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLO* RATE* DRY*
OS ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.92 1N-HG
-1.38 IN-H20
29.62 IN-HG
016. F
112.3 FP3
9161. SU-IN
13560952. 3CFH
25726784. ACFM
97.0
97.9
.0130 GR/DSCF*
759.97 KM-HG
-35.05 *M-H20
757.39 fM-MG
214. C
34.2 fPS
5.910 SO-M
384006. 3CCH
728505. »CMH
97.0
97.9
29.740
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
57.2
.0076 GR/OSCF*
57.2
17.376 .PG/OSC»
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO.
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD * (17.647 • VH * Y * (PH » PM / 13.6)) / (TM » 060.)
17. 6a7 * 120.604 * .966 * ( 29.92 * 3.192 / 13.6)
VMSTD = —————— — ———— ——— 3 116.261 USCF
( 84. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC > .04707 • VLC
VNC * .04707 • 336. = 15.91 SCF
PERCENT MOISTURE IN STACK GAS
BNO = (100. * VNC) / (VMSTD * VNC)
"f 100. * 15.91
oo BNO a ——— . . = 12.04 PERCENT
0 116.261 * 15.91
MOLE FRACTION OF DRV STACK GAS
FMO a (100. • BNO) / 100.
100. - 12.0
FMD a ....................... * .580
100.
AVERAGE MOLECULAR HEIGHT OF OHY STACK GAS
MD = (PC02 • .44) * (P02 * .32) » (PN2 * PCO) * .28
MD > (14.35*44/100) * ( 1.9*32/100) * (183.6* .0) * 28/100 * 30.37
MOLECULAR HEIGHT OF STACK GAS
MNS s MD * (1. - (BNO/100)) » 18. * (BWO/100)
MNS s 30.37* (1. -(12.04/100)) * 18. * (12.04/100) s 28.88
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP » SUM. OF THE SOHUVH * (TS * 060.))
VS * 85.49 * CP • OELP / (3QRT(MHS * PS) * PNTS)
VS = 85.49 * .64 • 550.877 / (SORT( 38.88 » 29.82) * 12. = 112.33 FPS
STACK GAS VOLUMETRIC FLUM AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS a 112.33 * 9161. 3600/144 = 257267*4. ACFH
STACK GAS VOLUMETRIC FLOH AT STANDARD CONDITIONS
OSSTO » 17.647 • QS • PS • (1. » (BwO/100)) / (TS » 460.)
17.647 * 25726764. • 29.82 * (1. - (12.04/100))
OSSTO * — • s 13560952. SCFH
( aid. » 460.)
^ PERCENT ISOKINETIC
00
I-1 ISO a (305.58*(T3»460.))*((0.002669*VLC)*(VM*Y*(PB+(PH/l3.6))/(TM*4bO.)))/(TT*VS«PS*DN*ON)
(305.58*( 418.+460.))*((0.002669* 338.)»( 120.604* .986*( 29.92M 3.192/13.6))/( 84.4460.)))
ISO s .... .... . . ...... ..... ...................... .... ...... ... 3 97.04 PERCENT
120. * 112.33 « 29.82 • .227 * .227
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS 8 0.001 * MN * 15.43 / VMSTO
CS = 0.001 * 97.9 * 15.43 / 116.261 = .0130 GR/DSCF
-------
FIELD DAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE OIM.CIN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SWEENY
FCC STACK
M5
DO
80.
29.Bl
-1.38
3450107
100.00 .00
.84
.006 CFM i 10.5 IN.HG
I.006
DATE 11/11/88
RUN NUC8EH SAM5
PHOBE LENGTH « TYPE 6* GLASS
MjZ/Lfc : 1.0. .222
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB3
METER HEAD DIFF. 2.00
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
READ « RECORD DATA EVERY 10.0 MINUTES
00
Ni
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
1*1 nrv 1
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL T£MP
(CU.FT.) (IN.H20) (IN.H20) (DEG.F)
DESIRED
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
OTALS 90.0
VERAGE
1532
0
0
0
0
0
0
0
0
1702
608.891
617.540
626.160
634.780
643.440
652.050
660.670
669.140
677.470
685.937
.900
.900
.900
.900
.900
.900
.850
.900
.850
77.046
2.91
2.90
2.93
2.94
2.94
2.94
2.86
2.94
2.8b
2.91
ACTUAL
2.91
2.90
2.93
2.94
2.94
2.94
2.86
2.94
2.86
2.91
DRY GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (DEG.F)
IMPINGER
TEMP
(OEG.F)
INLET OUTLET
113.
413.
413.
413.
413.
413.
412.
413.
413.
413.
80.
83.
85.
87.
89.
90.
89.
89.
89.
87.
80.
80.
80.
80.
80.
80.
80.
80.
80.
80.
5.6
6.1
6.3
6.5
6.5
7.5
7.6
7.8
8.0
6.9
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
89.
111.
121.
105.
97.
92.
89.
85.
88.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SHEENY DO
TEST 5AM5
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
> P"
00
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS
11/11/82
1532
1702
90.0
9
1.006
.£22 IN
.84
2.91 IN-H20
METRIC UNITS
11/11/82
1532
1702
90.0
9
1.006
5.6
.84
74.0
KM
KM-
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VNSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION DRY GAS
PCU2 PERCENT C02 BY VOL.* DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR nT-DRY STACK GAS
MftS MOLECULAR WT-STACK GAS
77.046 CU-FT
83.4 F
75.575 SCF
140.7
6.623 SCF
2.182 CU-M
28.5 C
2.140 SCM
140.7
.188 SO
8.06
.919
14.60
1.95
.00
83.45
30.41
29.41
8.06
.919
14.60
1.95
.00
83.45
30.41
29.41
-------
PB BAROMETRIC PRESSURE.
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLOW RATE, DRY*
QS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.81
-1.38
29.71
413.
98.6
9161.
124750B6.
22590B24.
95.6
19t>.9
IN-HG
IN-H20
IN-HG
F
FPS
SU-IN
SCFH
ACFH
757.17
-35.05
754.60
212.
30.1
5.910
353257.
639704.
95.6
196.9
*M-HG
*M-H20
MM-HG
C
CPS
SO-M
SCCH
ACKH
.0402 6R/OSCF*
92.015 *G/DSC*
CO
*«.
MN
CS
FILTERABLE-160
MG. EPA S
FILTERABLE-160
69.5
69.5
.0142 GR/OSCF* 32.479
MN
CS
FILTERABLE-232
MG. EPA 5
riLTERABLE-232
55.7
55.7
.0114 GR/DSCF* 26.030 CG/09C"
MN FILTERABLE-315
MG. EPA 5
CS
FILTERABLE-315
51.4
51.4
.0105 GR/OSCF* 24.020 PC/DSC*
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. SAMS
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD s (17.607 • VM • Y • (P8 » PM / 13.6)) / (TM + 460.)
17.647 • 77.046 • 1.006 • ( 29.81 * 2.913 / 13.6)
VMSTD = — ----- - -------------------------------------------- = 75.575 DSCF
( »3. «• 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC » .0*707 • VLC
VnC » .04707 • 141. a 6.62 SCF
PERCENT MOISTURE IN STACK GAS
BNO * (100. • VNC) / (VMSTD * VWC)
100. * 6.62
— — ----- — " — = 8.06 PERCENT
75.575 * 6.62
MOLE FRACTION OF CRT STACK GAS
FMD = (100. - BNO) / 100.
100. • B.l
FMO * — --- —-—..—— ..... 919
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 * .44) » (P02 • .32) * (PN2 + PCO) * .28
MO = (14.60*44/100) •» ( 2.0*32/100) » ((83. 0* .0) * 28/100 * 30.41
MOLECULAR HEIGHT OF STACK GAS
MNS * MD * (1. - (BhO/100)) » 18. * (BNO/100)
MMS = 30.41* (1. •( a. 06/100)) * 18. * ( 8.06/100) * 29.41
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE SOHHVH * (TS + 460.))
VS = 85.49 * CP • OELP / (SbRUMMS * PS) * PNTS)
VS s 65.49 * .84 * 365.442 / (SORT( 29.41 * 29.71) * 9. s 96.64 FP3
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
QS s VS • AS • 3600/144
OS s 98.64 * 9161. 3600/144 = 32590824. ACFH
STACK CAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO « 17.647 * US * PS * (1. - (BwO/100)) / (TS » 4oO.)
17.647 * 22590824. * 29.71 *(!.-( 8.06/100))
OSSTO • — —— ................ . f 12475086. SCFH
( 413. » 460.)
•f PERCENT I30KINETIC
00
> ISO • (305.58«(TS+460.))*1(0.002669«VLC)*IVM*Y*(PB«(PH/13.6))/(TM«460.)))/(TT*VS*P3«DN*DN)
(305.58*( 413.+460.))«((0.002669* 141.)*( 77.046*1.006* ( 29.81*( 2.913/13.6))/( 83.+460.}))
ISO * .............. . ............ ........ ....... . . . - 95.59 PERCENT
90. * 98.64 • 29.71 • .222 * .222
PARTICULATE LOADING — tPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN « 15.43 / VMSTO
CS s 0.001 * 196.9 * 15.43 / 75.575 s .0402 GR/DSCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SWEENEY
FCC STACK
M5
DO
60.
29.81
•1.38
3050106
lua.no .00
.014 CFM at 12.5 IN.HG
.960
DATE 11/11/82
RUN NUfBER 5BM5
PHOBE LENGTH & TYPE 6* GLASS
MIZZLE : I.D. .221
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
METEH BOX NUMBEH FB5
PETEH HtAU DIFF. 1.95
PHOBE HEAtEH SETTING 250.
HEA1EK BOX SETTING 250.
READ ft RECORD DATA EVERY 10.0 MINUTES
I
00
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
to.o
£0.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
CLOCK
TIME
(24-HR
fi np v i
IIUI.K 1
1533
0
0
0
0
0
0
0
0
1703
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEKP
(CO. FT.) (IN.H2U) (1M.H20) (DEG.F)
DESIRED
251.397
260.660 1.900
270.150 1.900
279.500
206.610
297.780
306.960
316.070
325.290
330.459
.900
.900
.900
.900
.650
.900
.850
2.91
2.90
2.93
2.94
2.94
2.94
2.86
2.94
2.86
ACTUAL
2.91
2.90
2.93
2.94
2.94
2.94
2.66
2.94
2.86
DRY GAS KETER PUPP SAMPLE
TEPP VACUUM BOX TEMP
(DEG.F) (IN.HG) (OEG.F)
IMPINGER
TEMP
(DEG.F)
IKLET OUTLET
«13.
«13.
413.
«13.
413.
413.
412.
413.
«13.
85.
61.
94.
94.
94.
"*.
".
97.
97.
84.
83.
84.
85.
85.
65.
86.
66.
86.
10.6
9.9
9.7
9.8
10.3
10.7
10.8
11.2
11.2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
63.
115.
122.
105.
<»4.
90.
•»o.
90.
TOTALS
AVERAGE
90.0
83.062
2.91
2.91 413
93.
65.
10.5
0.
68.
-------
PARTICIPATE FIELD DATA 6 HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SMEENEV DO
TEST 5BM5
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
1
00
00
VM
TM
VMSTO
VLC
VMC
BMU
FPD
PC02
P02
PCU
PN2
MD
M»*
TIME-START
TIME-FINISH
NET TIME OF TEST. MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
1MPINGERS AND SILICA GEL. ML.
VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRY
PERCENT 02 BY VOL.* DRY
PERCENT CO BY VOL.. DRY
PERCENT N2 BY VOL.. DRY
MOLECULAR M-DRY STACK GAS
MOLECULAR WT-STACK GAS
ENGLISH UNITS
11/11/02
1533
1703
90.0
9
.988
.221 IN
.84
2.91 IN-H20
83.062 CU-FT
88.9 F
79.217 SCF
136.0
6.402 SCF
7.48
.925
14.60
1.95
.00
83.45
30.41
29.49
METRIC UNITS
11/11/82
1533
1703
90.0
9
.988
5.6
.84
74.0
2.352
31.6
2.243
136.0
.181
7.48
.925
14.60
1.95
.00
83.45
30.41
29.49
MM
PM-H20
CU-M
C
sec
80
-------
PB BAROMETRIC PRESSURE
P31 STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLOH RATE, OUT*
US ACTUAL STACK FLON RATE
ISO PERCENT 1SOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.61
-1.38
29.71
413.
96.5
9161.
12538470.
22563208.
100.6
88.2
IN-Hli
IN-M20
IN-HG
F
FPS
SQ-IN
SCFH
ACFH
757.17
-35.05
750.60
212.
30.0
5.910
355052.
630922.
100.6
88.2
KM-HG
PM-H20
I»M-MG
C
>PS
SO-M
SCfH
AC"H
.0172 GR/DSCF*
39.323
MN
CS
FILTERABLE-lbO
MG. EPA 5
FILTERABLE-lbO
49.1
.0096 GR/OSCF*
21.891
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
13.7
.0085 GR/DSCF*
«3.T
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-SIS
38.2
38.2
.0074 6R/OSCF* 17.031 KG/DSC^
• 68 OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATION TEST NO.
FCC STACK
VOLUME OF DRY CAS SAMPLED AT STANDARD CONDITIONS
VHSTD * (17.647 • VM * Y * (Pb t PM / 13.6)) / (TM » 7.5
FMD » ...... ................. : .925
100.
AVERAGE MOLECULAR HEIGHT OF DKY STACK GAS
MD = (PC02 * .44) « (P02 • .32) » (PN2 + PCU) * .28
MU s (14.60*44/100) * ( 2.0*32/100) + ((83.4* .0) * 28/100 = 30.41
MOLECULAR HEIGHT OF STACK GAS
MHS s MO * (1. - (BhO/100)) + 18. • (BHO/100)
MHS • 30.41* (1. •( 7.46/100M » 16. • ( 7.48/10U) = 29.49
-------
>
STACK 6*3 VELOCITY *T STACK CONDITIONS
DELP c SUM. OF THE SORHVH • ITS «• 060.))
V3 « 85.09 • CP * DELP / ISORUMNS « PS) • PNTS)
VS * 65.09 • .80 • 36i.0fl«> / (SGRT( 29.49 * 29.71) * 9. = 98.58 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS * 3600/100
OS * 96.SZ * 9|61. 3600/100 = 22563208. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD • 17.607 * US * PS • (1. » (BNO/100)) / (TS * 060.)
17.607 * 22563208. « 29.71 *(!.-( 7.08/100))
OSSTD • -- — s 12538070. SCFH
C 013. * ObO.)
PERCENT ISOKINETIC
ISO * (305.58«(TS+060.))*((0.002669*VLC)+(VM*Y*(PB«(PM/13.6))/(TM«060.)))/(TT*VS*PS*ON*DN)
(SOS.58*( 013.*060.))*((0.002669* 136.)*( 83.062* .988*( 2<>.8l«( 2.913/13.6))/( 89.»060.)))
ISO * ......... ... . . ..................... ........... ..................... s 100.59 PERCENT
90. * 98.52 * 29.71 • .221 • .221
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 * MN * 15.03 / VMSTO
CS * 0.001 * 88.2 • 15.03 / 79.217 z .0172 GR/03CF
-------
FIELD DAT*
vo
ro
PLANT PHILLIPS PETHO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) 83.
BAR. PRESS. (IN.HG) 29.81
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450105
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .015 CFM at 7.
METER CALIB. FACTOR 1.001
READ « RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(HIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TIME
(24-HR
1532
1542
1552
1602
1612
1622
1632
1642
1652
1702
READING
ICU.FT.)
61.824
71.940
81.920
91.950
102.020
112.050
122.110
132.190
142.280
152.292
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
SHEENY
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.20
.20
.20
.20
.20
.20
.20
.20
.20
H20)
ACTUAL
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
3.20
STACK
TEMP
(DEG.F)
416.
416.
416.
416.
416.
416.
415.
415.
415.
DATE 11/11/82
RUN NUMBER SCM5M
PHOBE LENGTH & TYPE 6 FT GLASS
NUZZLE » I.D. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB7
METER HEAO OIFF. 1.71
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(UEG
INLET
86.
86.
89.
91.
92.
94.
94.
94.
94.
.F)
OUTLET
84.
84.
83.
83.
04.
85.
86.
85.
85.
VACUUM
(IN.HG)
6.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
BOX TEMP
(OEG.F)
0.
0.
0.
0.
o.
0.
0.
0.
0.
TEMP
(DEG.F)
78.
76.
86.
94.
80.
96.
106.
98.
86.
TOTALS
AVERAGE
90.0
90.468
3.20
3.20 416.
91,
84.
5.6
0.
89.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 5CM5W
FCC STACK
TEST DATE
TR
TF
TT
NP
Y
ON
CP
> PM
VO
U)
TM
VMSTO
VLC
VHC
BMO
FfO
PCU2
P02
PCO
PN2
MO
MHS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL»ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR nT-ORY STACK GAS
MOLECULAR nT-STACK GAS
ENGLISH UNITS
11/11/82
1532
1702
90
9
1
3
90
87
87
288
13
13
14
1
83
30
2B
.0
.001
.224 IN
.84
.20 IN-H20
.468 CU-FT
.7 F
.663 SCF
.8
.594 SCF
.43
.866
.60
.95
.00
.45
.41
.75
METRIC UNITS
11/11/82
1532
1702
90.0
9
1.001
5.7
.84
81.3
2.562
31.0
2.482
268.8
.385
13.43
.866
14.60
1.95
.00
83.45
30.41
28.75
KM
KM-H20
CU-M
C
SCM
SCK
-------
>
vo
PB BAROMETRIC PRESSURE
PSl STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
IS AVERAGE STACK TEMP
VS AV6 STACK 6*3 VELOCITY
AS STACK AREA
USSTO STACK FLO* RATE, DRV*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
• 6S OE6 F, 29.92 IN.H6.
29.81 IN-Hti
-1.36 IM-H20
29.7J IN-HG
416. F
112.6 FPS
9161. SU-IM
13372482. SCFH
25799232. ACFH
101.6
757.17 ^M-HG
•35.05 KM-H20
754.60 KM-HG
213. C
34.3 CPS
5.910 SU-M
370669. SCCH
730557. AC^H
101.6
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCC STACK
VOLUME UF OHY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO B (17.647 * VM * T * (PB * PM / 13. b)) / (TM » 460.)
17.607 * 90.468 * 1.001 * ( 29.81 t 3.200 / 13.6)
VMSTO » ———— — — — ............ — ..... — .. --- ... = 07.663 OSCF
( 86. t 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC a .04707 * VLC
VHC • .04707 * 289. = 13.59 SCF
PERCENT MOISTURE IN STACK GAS
8HO * (100. • VHC) / (VMSTD » VWC)
100. * 13.59
BNO a .—..——. .............. s 13.43 PERCENT
87.663 * 13.59
MOLE FRACTION OF CRT STACK GAS
FMD a (100. • BMO) / 100.
100. - 13.4
FMD a ————————— s .866
100.
AVERAGE MOLECULAR HEIGHT UF DRY STACK GAS
MO s (PC02 • .44) * (P02 • .32) «• (PN2 » PCO) * .28
MO - (14.60*44/100) » ( 2.0*32/100) » ((83.1* .0) * 28/100 s 30.41
MOLECULAR HEIGHT OF STACK GAS
HNS 2 MO * (1. - (RnO/100)) + la. * (BMU/100)
30.41* (1. -(13.13/100J) » )8. * (13.43/100) s 28.75
-------
STACK 6AS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE bQRT(VH * (TS * 460.))
VS » 85.49 * CP * DELP / (SQRT(MHS * PS) * PNTS)
VS » 85.49 * .64 • 41«J.589 / (SORT( 20.75 * 29.71) * 9. : 112.65 FPS
STACK GAS VOLUMETRIC FLUM AT STACK CONDITIONS
OS * VS • AS • 3600/144
OS * 112.65 * 9161. 3600/144 s 45799232. ACFH
STACK GAS VOLUMETRIC FLUX AT STANDARD CONDI!IONS
OSSTO • 17.647 • OS • PS • (1. - (BWO/100)) / (TS * 460.)
17.647 * 25799332. * 29.71 • (1. - (13.43/100))
OSSTD * .————— ...... . s 13372482. SCFH
( 416. + 4bO.)
>
vo PERCENT ISOKINETIC
ISO s (305.58*(TS»460.))*((0.002669*VLC)*(VM*Y*(PB*(PM/13.6))/(TM*460.)))/(TT*VS*PS*ON*DN)
(305.58M 416.*460.))*((0.002669* 289.)*( 90.468*1.001*( 29.81+( 3.200/13.6))/( 88.4460.)))
ISO s ................. . . ........ . ..... ........ .... ... f 101.60 PERCENT
90. * 112.65 • 29.71 • .224 * .224
PARTICIPATE LOADING " EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTO
CS * 0.001 • 0.0000t*00 « 15.43 / 87.663 s O.OOOOE«00 GR/DSCF
-------
FIELD OAT*
>
VO
PLANT PHILLIPS PETRO
SAMPLING LOCATION FCC OUTLET
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) 83.
BAR. PRESS. (IN. H6) 29.81
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450104
STACK INSIDE DIM. (IN) 1U8.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM 8 8.
METER CALIB. FACTOR .986
READ * RECORD DATA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
SO.O
60.0
70.0
80.0
90.0
CLOCK
TIME
(24-HR
f*i nr v )
ILUl n f
1534
1544
1554
1604
1614
1624
1634
164a
1654
1704
GAS METER
READING
(CU.FT.)
15.226
25.340
35.290
45.260
55.300
65.370
75.470
85.710
95.900
105.882
VELOCITY
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
SHEENY
0 IN.HG
ORIFICE
DATE it/ii/82
RUN NUMBER 501*5*
PROBE LENGTH « TYPE 6 FT GLASS
MIZZLE : I.D. .225
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
PETER BOX NUMBER rea
METER HEAD DIFF. 1.73
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
3.20
3.20
3.20
3.20
.20
.20
.20
.20
.20
H20)
ACTUAL
.20
.20
.20
.20
.20
.20
.20
.20
.20
STACK
TEMP
(DEG.F)
416.
416.
«16.
416.
«16.
«16.
«1S.
«15.
415.
DRY GAS METER
TEMP
(DEG.F)
INLET OUTLET
78. 80.
80. 60.
84. 80.
86. 00.
88. 82.
90. 82.
90. 83.
90. 83.
90. 83.
PUMP
VACUUM
(IN.HG)
1.9
.5
.0
.2
.2
.2
.4
.4
.4
SAMPLE
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(DEG.F)
78.
66.
70.
74.
74.
78.
84.
84.
76.
TOTALS
AVERAGE
90.0
90.656
3.20
3.20 416.
86.
81.
6.4
76.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO SWEENY PHILLIPS
TEST 5DM5*
FCC OUTLET
ENGLISH UNITS
1
vo
00
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME -FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
1
1534
1704
90
9
3
1/11/62
.0
.986
.225 IK
.81
.20 IN-H20
METRIC
1
1534
1704
90
9
1/1
.0
UNITS
1/82
.966
5
81
.7
.84
.3
PM
MM-H20
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TH AVERAGE GAS METEK TEMP
VMSTl) VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VNC VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
6MO PERCENT MOISTURE BY VOLUME
FMU MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR MT-OKY STACK GAS
MNS MOLECULAR NT-STACK GAS
90.656 CU-FT
83.0 F
87.140 SCF
301.9
14.210 SCF
2.567 CU-M
26.6 C
2.466 SCM
301.9
.402 SCK
14.02
.660
14.60
1.95
.00
83.45
30.41
26.67
14.02
.660
14.60
1.95
.00
83.45
30.41
26.67
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES Of STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
V9 AV6 STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLOW RATE, DRY*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISUK1NETIC
* 68 OE6 ft 29.92 IN.H6.
9161.
13297674.
25832036.
29.81 IN-HG
•1.38 IN-H20
29.71 IN-HG
4lto. t
112.8 FPS
SQ-IN
SCFH
101.0
ACFH
757.17 VM-HG
-35.05 I»M-H20
754.60 PM»HG
213. C
34.a .PPS
5.910 SO-M
376550. SC^H
731497. ACNM
101.0
I
vo
vo
-------
EXAMPLE PARTICIPATE CALCULATIONS IEST NO. SOMSW
FCC OUTLET
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO « (17.617 • VM * Y • (PB * PH / 13.6)) / CTM + 460.)
17.647 * 90.656 * .986 * ( £9.81 «• 3.200 / 13.6)
VMSTD s —«——— — — — = 87.148 OSCF
( 84. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC * .04707 * VLC
VNC * .04707 * 302. s 14.21 SCF
PERCENT MOISTURE IN STACK GAS
.p BHO « (100. • VHC) / (VMSTD * VWC)
H 100. * 14.21
O BWO * ——».—— ...... s 14.02 PERCENT
0 87,148 * 14.21
MOLE FRACTION OF DRY STACK GAS
FMO » (100. - BMO) / 100.
100. • 14.0
FMD » ———————— a .860
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD « IPC02 • .44) * (P02 • .32) * (PN2 + PCO) * .28
MO a (14.60*44/100) » ( 2.0*32/100) » ((83.0* .0) • 26/100 c 30.41
MOLECULAR WEIGHT OF STACK GAS
MWS s MO • (1. - (8*0/100)) + 18. • (BHO/100)
MUS • 30.41* (1. .(14.02/100)) + 10. * (14.02/100) * 28.67
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP « SUM. OF THE SORT(VH • (TS « 460.))
VS » 85.49 • CP • DELP / (SBRTfMNS * PS) * PNTS)
VS * 65.49 • .64 • 4U.569 / (S(|RT( 38.67 * 29.71) • 9. = 112.71 FPS
STACK CAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS * 112.79 • 9161. 3600/144 s 25832436. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTO • 17.647 • OS • PS • (1. - (BnO/100)) / (TS » 460.)
17.647 • 25832436. * 29.71 • (1. - (14.02/100))
OSSTO • ——..——— ................... ......... s 13297674. SCFM
( 416. « 460.)
PERCENT ISOKINETIC
ISO * (30S.S6*(TS+460.))*l(0.002669*VLC)*(VM*V*(PB+(PM'13.6))/(TM*460.)))/(TT*VS*PS*DN*DN)
(305.S8M 416.*460.))*((0.002669* 302.)»( 90.656* .986*( 29.8l*( 3.200/13.6))/( 64.•460.)))
ISO • .............................. [[[ = 101.03 PERCENT
90. • 112.79 * 29.71 * .225 • .225
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 • HN • 15.43 / VMSTD
-------
FlfcLD DATA
O
IO
PLANT PHILLIPS SfcEENV
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5-450
OPERATOR UO
AMBIENT TEMP. (DEC. F) 75.
BAR. PRESS. (IN.HG) 30.02
STATIC PRESS. (IN. H20) -1.3d
FILTER NUMBER(S) 3450226
STACK INSIDE UIM.(IN) 108.00 .00
PI TOT TUBE COEFF. .«a
THERM. NO.
LEAKAGE .OOa CFM d 13.0 IN.HG
METER CALIB. FACTOR i.oob
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL T£MP
NO. (MIN.) (24-HR (CU.FT.) (IN.H2U) (IN.H20) (DEG.F)
INIT 0
10.0
20. 0
30.0
40.0
SO.O
60. 0
70.0
60.0
90.0
100.0
110.0
120.0
kkUbl 1
1107
0
0
0
0
0
0
0
0
0
0
0
1340
DESIRED
685.934
694.360
702.950
711.580
720.200
728.620
737.070
745.610
7S4.130
7b2.540
771.100
779.620
787.942
.950
.900
.900
.900
.950
.950
.950
.950
.900
.950
.950
.900
2.92
2.88
2.90
2.91
3.00
.01
.03
.04
.96
.03
.00
2.95
ACTUAL
2.92
2.88
2.90
2.91
.00
.01
.03
.04
.96
.03
.00
2.95
DATE 11/12/82
RUN NUMBER 6AM545
PROBE LENGTH « TYPE 6* GLASS
NOZZLE I I.D. .219
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FB3
PETER HEAD OIFF. 2.00
PROBE HEATER SETTING 450.
HEATER BOX SETTING 450.
DRY GAS METER PUMP SAMPLE IMPINGE*
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
IfcLET OUTLET
419.
419.
419.
419.
419.
419.
«19.
«19.
419.
419.
419.
«19.
74.
85.
89.
91.
94.
97.
97.
98.
96.
95.
95.
95.
73.
77.
80.
81.
81.
81.
81.
82.
83.
83.
83.
84.
10.3
10.0
.6
.2
.0
.9
.7
10.0
10.3
11.1
11.2
11.3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
126.
95.
• 7.
0.
0.
«2.
V.
99.
TOTALS
AVERAGE
120.0
102.008
2.97
2.97 419.
92,
81,
10.1
0.
42.
-------
PARTICIPATE FIELD DATA A RESULTS TABULATION
PLANT- NAME AND ADORES* TEST TEAM LEADER
PHILLIPS SHEENY DO
TEST 6AM545
FCC STACK
O
W
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLlbH UNITS
11/12/82
1107
1340
120.0
12
1.006
.219 IN
.84
2.97 IN-H20
METRIC UNITS
11/12/82
1107
1340
120.0
12
1.006
5.6 CM
.84
75.4 PM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VPSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VNC VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
8*0 PERCENT MOISTURE BY VOLUME
FPO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., URY
MO MOLECULAR NT-DRY STACK GAS
MUS MOLECULAR NT-STACK GAS
102. 008 CU-FT
2.889 CU-M
86.5 F
100.208 SCF
146.0
6.872 SCF
6.42
.936
14.55
2.15
.00
83.30
30.41
29.62
30
2
146
6
14
2
83
30
29
.3 C
.838 SCM
.0
.195 SCM
.42
.936
.55
.15
.00
.30
.41
.62
-------
PB BAROMETRIC PRESSURE
PS1 STATIC PNES OF STACK CAS
P9 STACK PRES, ABS.
TS AVERAGE STACK TEMP
V8 AVC STACK GAS VELOCITY
A3 STACK AREA
USSTO STACK FLOH RATE* DRY*
03 ACTUAL STACK FLO* RATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
su.oa
-1.38
29.92
419.
99.3
9161.
12708366.
22750952.
95.3
59.1
1N-HG
IN-H20
IN-HG
F
FPS
SO-IN
SCFH
ACFH
762.51
-35.05
759.93
215.
30.3
5.910
362128.
644239.
95.3
59.1
KM-HG
I»M-H2
PM-HG
C
*P3
SO-M
3CHH
ACPH
.0091 GR/DSCF*
20.B29
> CS
o
itk
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
46.7
43.6
46.7
.0072 GR/OSCF* 16.459
43.6
.0067 GR/OSCF* 15.367 C6/D9O
• 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST
FCC STACK
VOLUME OF OUT GAS SAPPLbD *T STANDARD CONDITIONS
VMS TO • (17.64? * VM • T • (PB * PM / 13.6)) / (TM » 460.)
17.647 * 102.008 * 1.006 * I 30.02 • 2.969 / 13.6)
VMSTO » .............. ------- ..... ---- . --- . ----- ... ------- ... s 100.208 OSCF
( 66. * fltoO.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLC
VMC « .04707 • 146. a 6.87 3CF
PERCENT MOISTURE IN STACK GAS
8*0 • (100. • VMC) / (WMSTO * VNC)
> 100. • 6.87
I BMO • ......— .......... ........ = fc.flg PERCENT
g 100.208 * 6.87
Ui
MOLE FRACTION OF DRV STACK GAS
FMO • (100. • BMO) / 100.
100. - 6.4
FND • — — — .— ............ a .936
100.
AVERAGE MOLECULAR HEIGHT OF DHT STACK GAS
MO » (PC02 • .44) » (P02 « .32) • (PN2 » PCO) * .28
MO » (14.55*44/100) » ( 2.2*32/100) » ((83. 3* .0) • 28/100 = 30.41
MOLECULAR HEIGHT OF STACK GAS
MNS * MO • (I. - (BMO/100)) * 18. * (BMO/100)
MmS a 30.41* (1. >( 6.42/100)) * 18. • ( 6.42/100) * 29.62
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP » SUM. OF THE SOHT(VH * (TS * 460.))
VS * 65.49 • CP • OELP / (SuRT(MMS * PS) * PUTS)
VS * 65.09 • .64 * 494.142 / (SURT( 29.b2 * 29.92) • 12. = 99.34 FPS
STACK CAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS « VS • AS • 3600/144
OS * 99.34 • 9161. 3bOO/144 » 22750952. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD « 17.647 • OS • PS • (1. - (BNO/IOO)) / (TS * 460.)
17.647 • 227509S2. • 29.92 •(!.-( 6.42/100))
flSSTO » ———————— — ........ ......... z 12766366. SCFM
( 419. * 000.)
> •
I PERCENT ISOKINETIC
H
° ISO • (J05.58»(TS*460.))*U0.002669*VLC)«(VM«Y*(PB«(PM/13.6))/(TM*460.)))/(TT*VS*PS*ON*DIO
(305.56*( 419.»460.))*((0.002669* 146.)*( 102.006*1.006*( 30.02*( 2.969/13.6))/( 66.4460.)))
ISO * ————————————— [[[ c 95.29 PERCENT
120. • 99.34 • 29.92 * .219 • .219
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN * 15.43 / VMSTO
-------
FIELD DAT*
PLANT
SAMPLING LOCATION
SAMRLt TTPE
OPERATOR
AMBIENT TEMP.(OEG.F)
BAR.PRESS.(IN.MS)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITUT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SNELNY
FCC STACK
M5-450
DO
75.
30.02
-1.38
3450216
108.00 .00
.64
.016 CFM « 10.0 IN.HG
.988
DATE 11/12/82
RUN NUPBEK 6BM5as
PNOBE LENGTH t TYPE 6* GLASS
MJZ/Lt t I.D. .223
ASSUMED MOISTURE 8.0
SAMPLE BOX NUMBER
METER BUI NUMBER FBS
METER HEAD OIFF. 1.95
PROBE HEATER SETTING 050.
HEATER BOX SETTING 450.
READ * RECORD DATA EVERY 10.0 MINUTES
*
\->
o
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
n r\ftt \
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H2U) (IN.H20) (DEG.F)
DESIRED
INIT 0
to.o
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
100.0
110.0
120.0
DTALS 120.0
VEHAGE
1111
0
0
0
0
0
0
0
0
0
0
0
1349
339
346
357
366
376
385
394
404
• 13
423
432
442
451
112
.140
.460
.800
.910
.160
.450
.650
.380
.800
.340
.810
.160
.520
.950
.900
.900
.950
.950
.950
.950
.900
.950
.950
.900
.900
.360
2.92
2.90
2.91
3.00
3.01
3.03
3.04
2.96
3.03
3.00
2.95
2.95
2.97
ACTUAL
2.92 419.
2.90 419.
2.91 419.
3.00 419.
3.01 419.
3.03 419.
3.04 419.
2.96 419.
3.03 419.
3.00 419.
2.95 419.
2.95 419.
2.97 419.
DRV GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (OEG.F)
IMPINGER
TEMP
(DEG.F)
INLET OUTLET
62.
90.
94.
100.
105.
106.
109.
108.
107.
107.
1W5.
105.
102.
81.
83.
84.
86.
89.
91.
94.
95.
95.
95.
94.
93.
90.
17.2
.5
.2
.6
.7
.9
7.2
7.2
7.2
7.3
7.5
7.8
7.9
0.
0.
0.
0.
0.
0.
0.
0.
V.
0.
0.
0.
(I.
0.
0.
0.
126.
112.
106.
0.
0.
116.
0.
116.
0.
46.
-------
PARTICIPATE FIELD DATA « KESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TtAM LEADER
PHILLIPS SNEENT oo
TEST btfM54S
FCC STACK
00
ENGLISH UNITS
TEST
TB
TF
TT
NP
V
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
1
mi
1349
120
12
2
1/12/02
.0
.986
.223 IN
.64
.97 IN-H20
METRIC UNITS
1
till
1349
120
12
5
75
1/12/62
.0
.986
.7
.64
.6
I'M
PM-I
DROP
V* VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VPSTD VOLUME OF DRY GAS SAMPLEU
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VkC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE BT VOLUME
FHD MOLE FRACTION DRY GAS
PC02 PERCENT C02 OY VOL., DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO «Y VOL.* DRY
PN2 PERCENT N2 BY VOL., URY
MO MOLECULAR NT-DRY STACK GAS
MNS MOLECULAR NT-STACK GAS
112.380 CU-FT
3.182 CU-M
95.8 F
106.595 SCF
70.9
3.337 SCF
3.04
.970
14.55
2.15
.00
83.30
30.41
30.04
35.5
3.016
70.9
.095
3.04
.970
14.55
2.15
.00
63.30
30.41
30.04
C
3CM
30
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES» ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLO* RATE* OHV*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINtTIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.02
-1.38
P9.92
419.
98.6
9161.
13157606.
22S91388.
95. 0
74.5
lN-Mb
JN-H20
IN-HG
F
FPS
SU-1N
SCFH
ACFH
762.51
-35.05
759.93
215.
30.1
5.910
372584.
639720.
95.0
74.5
*M-M
fM-M
PM-H
C
*PS
SO-M
SCPH
ACMH
.0108 GR/DSCF*
24.684 .PC/DSC"
MN
o cs
vo
FILTERABLE-232
MG. EPA S
FILTERA6LE-232
52.3
.0076 GR/OSCF*
52.3
17.328 PC/DSC*
MN
CS
FILTERABLE-315
MG. EPA S
FILTERABLE-315
48.4
48.4
.0070 GR/OSCF* 16.036 PG/DSCP
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST N0.6BM5i j. 04/100)) * 10. * I 3.04/100) s 30.04
-------
STACK GAS VELOCITY AT STALK CONDIIIUNS
OELP • SUN. OF THt 50*11 VH * ITS * 46U.))
VS « 85.49 • CP • OfcLP / (SQRT(MMS • PS) * PNTS)
VS * 85.49 • .84 * 494.142 / (SQRT( 30.Oa * 29.92) • 12. = 96.64 FP3
STACK GAS VOLUMETRIC FLON AT STACK CONDITIONS
OS * VS • AS • 3600/144
OS * 98.64 * 9|6I. 3600/144 s 22591388. ACFM
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO 8 17.647 • OS • PS • (I. • (BhO/100)) / (TS » 460.)
17.647 • 22591388. • 29.92 •(!.-{ 3.04/100))
OSSTD « ——.--—.—————.. ................. . s 13157606. SCFM
( 419. * 460.)
PERCENT ISOKINETIC
ISO « (30S*58*(TS«460.))*((0.002669*VLC)«(VM*T*(PB«(PM/13.6))/(TM«460.)))/(TT*VS»PS<>DN*DN)
(305.58M 419.»«60.))*((0.002669* 71.)t( 112.380* .988*( 30.02«( 2.975/13.6))/( 96.^460.)))
ISO * — —...... ..... . [[[ ...... e 95.01 PERCENT
120. • 98.64 • 29.92 * .223 * .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS « 0.001 • MN * 15.43 / VMSTD
-------
FIELD DMA
PLANT PHILLIPS PETKO SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP.(DEG.F) 70.
BAR. PRESS. (IN. HG) 30.02
STATIC PRESS. (IN. H2U) -1.3d
FILTER NUMBER(S) 3450227
STACK INSIDE DIM. UN) toe.oo .00
PITOT TUBE COEFF. .64
THERM. NO.
LEAKAGE .000 CFM • 9.5 IN.HG
METfcR CALIB. FACTOR 1.001
READ 4 RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK 6*8 METER VELOCITY ORIFICE
DATE
RUN NUMBER
PROBt LENGTH ft TYPE
KUiZLt : 1.0.
Assufto MOISTURE
SAMPLE BOX NUMBER
ft TEH BOX NUMBER
METtR HEAD OIFF.
11/12/82
6CM5B
6 FT GLASS
.224
12.0
FB7
1.71
PROBE HEATER SETTING 320.
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (OEG.F)
DESIRED
INIT 0 1108 152. 538
10.0 1146 J62.100 2.400 .10
20.0 115* IH.aiO 2.300 .00
30.0 U06 181.670 2.400 .10
40.0 1216 191.680 2.400 .20
50.0 1*26 201.740 2.000 .20
60. 0 1236 211.830 2.400 ,2U
70.0 1246 221.970 2.400 .20
80. 0 1256 232.030 2.400 .20
90.0 1306 242.020 2.400 .20
100.0 1316 252.000 2.400 .20
110.0 132b 262.010 2.400 .20
120.0 1336 2/2.006 2.000 .20
ACTUAL
.10 419.
.00 419.
.10 420.
.20 418.
.20 418.
.20 4|9.
.20 418.
.20 419.
.20 419.
.20 419.
.20 418.
.20 418.
HEATER BOX SETTING
DRY GAS METER PUMP
TEMP VACUUM
(OEG.F) (IN.MG)
INLET OUTLET
76. 74. .8
T*. 74. .5
79. 75. .8
82. 76. .0
84. 76. .
-------
PARTICIPATE FIELD DATA 6 HESULTS IABULATIUN
PLANT* NAME AND ADDRESS TEST Tt»h LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 6CMSM
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME -FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZ2LE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
11/12/82
1108
1336
120.0
12
1.001
.224 IN
.84
METRIC UNITS
1
1108
1336
120
12
1
5
1/12/82
.0
.001
.7 MM
.84
TM
VMSTD
VLC
VNC
BfcU
FMD
PCU2
P02
PCU
PN2
MD
M*S
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT CO* BY VOL., DRV
PERCENT 02 BY VOL.* DRV
PERCENT CO BY VOL.* i)RV
PERCENT N2 BY VOL.* DRV
MOLECULAR MT-OHV STACK GAS
MOLECULAR NT-STACK GAS
3.17 IN-H20
119.470 CU-FT
80.4 PM-H20
3.383 CU-M
79.0 F
118.452 SCF
293.2
13.801 SCF
10.00
.896
14.55
2.15
.00
03.30
30.41
29.12
26
3
293
10
14
2
83
30
29
.1 C
.354 SCM
.2
.391 SCI*
.44
.896
.5b
.15
.00
.30
.41
.12
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
IS AVERAGE STACK 1EHP
VS AV6 STACK bAS VELOCITY
AS STACK AREA
USSTU STACK FLON RATE, DRY*
US ACTUAL STACK FLON MATE
ISO PERCENT I30KINET1C
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.02 IN-Hli 762.51
-1.38 1N-M20 -35.05
29.92 1N-HU 759.93
419. F 215.
111.5 FPS 34.0
9161. SU-IM 5.910
13746600. SCFH 389263.
25542974. ACFH 723300.
100.2 100.2
78.6 78.6
GR/OSCF* 23.436
PM-H20
KM-HG
C
fPS
50-M
SCMH
ACfH
>
M
H
MN
CS
FILTERABLE-232
M6. EPA S
FILTERABLE-232
56.5
.0074 GR/OSCF*
56.5
16.846 PG/DSCP
MN
CS
FlLTERABcE-315
M6. EPA 5
FILTERABLE-315
52.9
52.9
.0069 GR/OSCF* 15.773 CG/OSC**
• bS OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEJ>T NO.
FCC STACK
VULUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.64T • VM • V • (PB » PM / 13. b)) / ITM » 4bO.)
17. 647 • 119.470 • 1.001 • ( 30.02 + 3.167 / 13. b)
VMSTD * — — - — — • ---- ———————— -------- . ---- r 116.452 OSCF
I 79. » 4t>0.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC « .04707 • VLC
VNC • .04707 • 293. s 13.60 3CF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VNC} / (VMSTO * VMC)
100. • 13.60
BMO • — — — — ------ ........ 3 10.44 PERCENT
1I6.4S2 t 13.00
MOLE FRACTION OF DRV STACK GAS
FMD « (100. - BNO) / 100.
100. - 10.4
FMD • ............
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO s (PC04 * .44) * (P02 « .32) «• (PN2 » PCU) • .28
MU s (14.55*44/100) * ( 2.2*32/100) + ((83.3* .0) • 26/100 s 30.41
MOLECULAR HEIGHT OF STACK GAS
MNS » MO * (I. • (BwO/lUO)) «• |8. • (BHO/JOO)
MNS « 30.41* (1. -110.44/100)) + 16. • (10.44/100) s 29.12
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP • SUM. OF THt SOKT(VH * ITS * 160.))
VS * aS.49 • CP • DtLP / (SQRT(MMS * PSJ * PNTS)
VS =85.49 • .«« * 550.093 / (SGRU 29.12 * 29.92) * 12. = 111.53 FPS
STACK GAS VOLUMETRIC FLUX AT STACK CONDITIONS
OS 3 VS * AS * 3600/144
OS » 111.S3 • 9161. 3bOO/144 : 25542972. ACFH
STACK CAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO » 17.647 • OS * PS • (I. - (BnO/100)) / (TS » 460.)
17.647 • 25S42972. * 29.92 • (1. - (10.44/100))
OSSTO * ————————— .................... s 13746600. SCFH
( 419. » 460.)
I PERCENT ISOKINETIC
t->
£ ISO * (305.5e«(TS*460.))«((O.U02669«VLC)*(VMT*(PB*lPK/l3.6))/(TM*460.)))/(TT«VS«PS«DN«DN)
(305.56*( 419.+460.))*((0.002669* 293.)»( 119.470*1,001«( 30.02«( 3.167/13.6))/( 79.•460.)))
ISO * [[[ , |00.16 PERCENT
120. • 111.53 • 29.92 * .224 • .224
PARTICIPATE LOADING — EPA METHOD s (AT STANDARD CONDITIONS)
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC. F)
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN. H2U)
FILTER NUMBERIS)
STACK INSIDE DIM. (IN)
P1TUT TUBE COtFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS PETNO SHEENY
FCC STACK
M5
PHILLIPS
70.
30.02
-1.30
DATE
11/12/82
NUN NUMBER
PHOBE
NOZZLE
LENGTH • TYPE
I 1.0.
6DM58
6 FT
GLASS
.227
ASSUMED MOISTURE
3450226
RtAO * NECORD DATA EVERY
100.
.64
.010
.986
10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NU. (MIN.) (24-HR
1NIT 0 1110
10.0 1148
20.0 1158
30.0 1200
40.0 1210
50.0 U20
60.0 1230
70.0 1248
60.0 1250
90.0 1300
100.0 1316
110. 0 1328
120.0 1330
READING
(CU.
106
115
125
135
145
155
165
175
184
194
204
214
224
FT.)
.062
.660
.330
.270
.260
.260
.100
.050
.970
.760
.650
.620
.777
00
CFM
.00
rf 12.0 IN.HG
SAMPLE
METER
METER
PROBE
HEATER
BOX
BCX
HEAD
NUMBER
NUMBER
OIFF.
HEATER SETTING
BOX
SETTING
12.0
FB2
1.73
320.
320.
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEMP
(IN.
2
2
2
2
2
2
2
2
2
2
2
2
H20) (IN.H20) (OEG.F)
UESIREU
.400 3.10
.300 .00
.400 .10
.400 .10
.400 .20
.400 .20
.400 .20
.400 .20
.400 .20
.400 .20
.400 .20
.400 .20
ACTUAL
.10 419.
.00 419.
.10 420.
.10 4|6.
.20 416.
.20 419.
.20 416.
.20 419.
.20 419.
.20 419.
.20 416.
3.20 416.
DRY GAS METER
TEMP
(DEG.F)
PUMP
VACUUM
(IN.HG)
SAMPLE
BOX TEMP
(DEC.
F)
IMPINGER
TEMP
(DEG.F)
INLET OUTLET
66.
70.
74.
76.
ao.
02.
82.
82.
00.
ao.
82.
82.
70.
72.
72.
73.
76.
77.
77.
76.
76.
76.
76.
76.
7.5
.2
.0
.3
.5
.5
.2
.6
.0
.3
.6
10.2
0
0
0
0
0
0
0
0
0
0
0
0
*
.
.
.
.
.
.
.
.
.
.
.
T6.
78.
78.
'6.
102.
110.
66.
76.
76.
62.
90.
108.
TOTALS
AVEHAGE
120.0
118.715
3.16
3.16 419.
78.
75.
6.6
0.
69.
-------
PARTICIPATE FIELD DATA & MESULT& TABULATION
PLANT- NAME AND ADDRESS TEST UAM LEADER
PHILLIPS PETRO SWEENY PHILLIPS
TEST 60M5B
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PN
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING PulNTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSUKE
ENGLISH UNITS
11/12/62
1110
1338
120.0
12
.986
.227 IN
.64
3.16 1N-M20
METRIC UNITS
11/12/62
1110
1356
120.0
12
.966
5.8 I'M
.64
60.2 »M-I
DROP
VN VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METEN TEMP
VPSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPIN6ERS AND SILICA GEL,ML,
VNC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
fVQ MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL.. DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL.. DRY
PN2 PERCENT N2 BY VOL.. DRV
MD MOLECULAR NT-DRY STACK GAS
MfcS MOLECULAR NT-STACK GAS
116.715 CU-FT
76.5 F
116.460 SCF
224.9
1U.586 SCF
3.362 CU-M
24.7 C
3.298 SCM
224.9
.300 SCM
8.33
.917
14.55
2.15
.00
63.30
30.41
29.38
8.33
.917
14.55
2.15
.00
63.30
30.41
29.38
-------
PB BAROMETRIC PRESSURE
P3I STATIC PHES (If STACK GAS
PS STACK PRES, A8S.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLO* RATE* OUT*
US ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
UN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.02 1N-HU
-1.36 1N-H20
29.92 IN-Mb
419. F
111.0 FPS
9161. SU-IN
14006770. 3CFH
254*921*. ACFH
94.1
63.1
.0084 GR/DSCF*
762.51 CM-HG
-35.05 »>
759.93 KH-MG
215. C
33.8 KP3
5.910 SO-M
396630. SCMH
72U079. ACMH
94.1
63.2
19.163 PC/DSC?
vo
MN
CS
FILTERABLE-232
MG. EPA S
FILTERABLE-232
51. 0
51.0
.0068 GR/03CF* 15.465
MN
CS
FILTERABLE-31S
MG. iPA 5
FILTtRABLE-315
47.2
47.2
.0063 GR/DSCF* 14.313 V6/03C*
• 66 OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCC STACK
VOLUME OF DRV GA9 SAMPLED AT STANDARD CONDITIONS
VMSTD • (17.6«7 • VM * Y • 1PB * PM / 13.6)) / ITM t 460.)
17.647 • 118.715 • ,98b • ( 30.02 » 3.158 / 13.6)
VMSTO « ————— ——— — --- - --------- ... ---------- = 116.468 OSCF
{ T7. * 4bO.)
VOLUME OF MATED VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLC
VNC » .04707 * 235. * 10.59 SCF
PERCENT MOISTURE IN STACK GAS
BHO a (100. • VnC) / (VMSTO * VNC)
>
' 100. • 10.59
J3 BwO a ——————— : a. 33 PERCENT
O 116.466 + IV. 59
MOLE FRACTION OF DRY STACK GAS
FMD a (100. • 8*0) / 100.
100. - 8.5
FMO a ....................... s .917
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD * (PX02 • .««) * (P02 • .35) * (PN3 * PCO) • .28
MO s (14.55*44/100) » ( 2.2*3^/100) » ((83.3* .0) * 28/100 s 30.41
MOLECULAR HEIGHT OF STACK GAS
HNS a MO • (1. • (BMO/IOO)) * 18. • (BWO/IOO)
a 30.41* (1. -I 0.33/100)) * 18. • ( 8.33/100) s 29.38
-------
STACK GAS VtLOCITT AT STACK CONDITIONS
DELP • SUM. OF THE SQKUVH • ITS * 460.))
VS * dS.«9 • CP • OELP / (SURT(MNS * PS) • PNTS)
VS * *5.49 • .64 • 550.091 / (SQRT( 29.3B • 29.92) • 12. = lit.03 FPS
STACK CAS VOLUMETRIC FLO" AT STACK CONDITIONS
OS * VS • AS • 3600/144
OS * 111.03 • 9161. 3600/144 = 25429212. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
QSSTD * 17.647 • US • PS • (1. « IBNO/IOO)) / (TS « 460.)
17.647 • 25429212. • 29.92 •(!.-( 8.33/100))
QSSTD • —————— — ——— ................ . > 14006770. SCFH
( 419. » 460.)
>
ll PERCENT ISOKINETIC
H ISO » (30S.Sa*(TS»4bO.))*((0.002669*VLC)+(V**V*(PB«(PM/l3.6))/(TM«460.)))/(TT*VS*PS*DN*ON)
(305.5B*( 419.*4bO.))*((0.002669* 225.)»( 118.715* .9S6*( 30.02*( 3.156/13.6))/( 77.«460.)))
ISO « ........—.—...—...—.—[[[ m 94.12 PERCENT
120. • 111.03 • 29.92 • .227 • .227
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 * MN • 15.43 / VHSTO
-------
FIELD DATA
N)
to
PLANT PHILLIPS SMEENV
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5b
OPERATOR 00
AMBIENT TEMP. (DEG.F) 75.
BAR. PRESS. (IN.HG) SO. 10
STATIC PRESS. UN. H20) -1.38
F1LTEK NUMBER(S) 3450107
STACK INSIDE DIM. (IN) 1U8.00 .00
P1TOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .004 CFM d 8.
METER CALIB. FACTOR 1.006
READ * RECORD OAT*
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
to.o
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
CLOCK
TIME
(24-HR
pi npM i
ILULK J
1528
u
0
0
u
0
u
u
0
165«
EVERY 10.0
CAS METER
READING
(CO. FT.)
788.235
796.630
805.080
813.630
822.060
830.640
839.160
847.670
856.250
864.794
MINUTES
VELOCITY
MEAD
(IN.H20)
.950
.950
.950
.950
.950
.950
.950
.950
.950
5 IN.HG
ORIFICE
DATE It/12/82
RUN NUMBER 7AM5B
PHOBE LENGTH ft TYPE 6* GLASS
ItOZlLE : I.D. .222
ASSUMED MOISTURE 8.0
SAMPLt BOX NUMBER
ftTtfl BOX NUMBEH FBS
METER HEAD DIFF. 2.00
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
PRESSURE
DIFFERENTIAL
(IN.
DE3IKED
2.97
.99
.99
.01
.00
.01
.01
.01
.01
M20)
ACTUAL
2.97
2.99
2.99
.01
.00
.01
.01
.01
.01
STACK
TEMP
(OEG.F)
• 16.
416.
416.
416.
416.
416.
«16.
416.
416.
DRY GAS PETER
TEMP
(OEG.F)
INLET OUTLET
77. 77.
»0. 77.
85. 77.
89. 78.
90. 79.
90. 79.
90. 79.
90. 78.
90. 79.
PUMP
VACUUM
(IN.HG)
.9
.2
.3
.2
.3
.3
.6
.8
7.0
SAMPLE
BOX TEMP
(DEG.F)
0
0
0
0
0
0
0
0
U
IPPINGER
TEMP
(DEG.F)
0.
78.
0.
130.
0.
91.
89.
84.
82.
TOTALS
AVERAGE
90.0
76.559
3.00
3.00 416.
87,
78,
6.4
62.
-------
PARTICULME FIELD DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TtAM LEAOtR
PHILLIPS SWEENY 00
TEST 7AMSB
FCC STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME -FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DlAMtTER
PITOT TUBE COEFFICIENT
1
1528
1658
90
9
1
1/12/82
.0
.006
.222 IN
.84
METRIC UNITS
1
1528
1658
90
9
1
5
1/12/82
.0
.006
.6
.84
I'M
PC AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GfcL»ML.
VHC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRV bAS
PC02 PERCENT C02 BY VOL.* OUT
P02 PERCENT 02 BY VOL.* DRV
PCU PERCENT CO BY VOL.* URY
PN2 PERCENT N2 BY VOL.* ORY
MO MOLECULAR MT-DMV STACK GAS
MfcS MOLECULAR NT-STACK GAS
3.00 IN-M20
76.559 CU-FT
82.4 F
75.971 SCF
138.4
6.514 SCF
76.2 PM»H2U
2.168 CU-M
28.0 C
2.151 SC"
138.4
.184 SCP
7.90
.921
14.10
3.00
.00
82.90
30.38
29.40
7.90
.921
14. lu
3.00
.00
82.90
30.38
29.40
-------
PB BAROMETRIC PMESSURt
P3I STATIC PHES OF STACK GAS
PS STACK PRES, A8S.
TS AVERAGE STACK TtMP
¥3 AVG STACK GAS VELOCITY
AS STACK AREA
OSSTU STACK FLUX RAU, DRY*
us ACTUAL STACK FLO* MATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
30.tO IN-H6
-1.30 1N-H20
30.00 IN-HG
416. F
99.9 FP3
9161. SU-IN
12739670. SCFH
22869064. ACFH
94.1
46.1
.0098 GR/OSCF*
764.54 PM-HG
•35.05 KM-M20
7to 1.96 CM-HG
213. C
30.5 PPS
5.910 30-M
360755. SC»H
646150. AC*H
94.1
46.1
22.361 PC/DSC*
? "N
H
to CS
FILTERA8LE-160
MG. EPA 5
FILTERABLE-160
41.2
.0084 GR/OSCF*
41.2
19.153 PG/DSC"
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
36.0
36.0
.0073 GR/OSCF* 16.736 PG/D3CK
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
34.2
.0069 GR/OSCF*
34.2
15.899
• 68 DEC F, 29.92 IN.H6.
-------
EXAMPLE PARTICULAR CALCULATIONS TEST NU.
FCC STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD * (17.647 • VM • T • IPB * PM / 13. b)) / ITM » 460.)
17.647 • 76.559 • 1.006 * ( 30.10 * 3.000 / 13.6)
VMSTO « ——————— ---- - ------ . --- - --- . ---- — --- — = 75.971 03CF
( 82. » 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLC
VNC • .04707 • 138. = 6.51 9CF
PERCENT MOISTURE IN STACK GAS
BNO * (100. • VNC) / (VMSTD » VMC)
100. • 6.51
BHO » ——————— > 7.90 PEHCENT
75.971 » 6.51
MOLE FRACTION OF ORT STACK GAS
FMD * (100. • BNO) / 100.
100. - 7.9
FMD * ——————— c .921
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO s IPCO* • .44) » (POZ * .32) » (PN8 » PCO) * .38
MD = (14.10*44/100) «• ( 3.0*32/100) * ((88. 9» .0) * 26/100 s 30.38
MOLECULAR HEIGHT OF STACK GAS
MNS a MD * (1. - (BnO/luO)) » 10. • (UNO/100)
MnS a 30.38* (1. -( 7.90/lUO)) » 18. • ( 7.90/100) * 29.40
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP • SUM. OF THE SORTCVH • (TS * «60.))
WS s 65.49 • CP • DtLP / (SURT(MNS * PS) * PNTS)
VS * 65.49 • .64 * 371.973 / (SQRt( 2V.40 • 30.00) • 9. s 99.94 FPS
STACK GAS VOLUMtTHIC FLO* AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS * 99.94 • 9161. 3600/144 a 22669064. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTO « 17.647 • OS • PS • (1. • (BwO/lOO)) / (IS « 460.)
17.647 * 22689064. * 30.00 *(!.-( 7.90/100))
OSSTO » .——.——.———.— ................... c 12739870. SCFH
( 416. » 4bO.)
PERCENT ISOKINETIC
ISO « (30S.58*(T3»460.))*((O.U02669*VLCmVM*r*lPB+(PM/13.6))/(TM«460.)))/(TT*VS*P3*DN*OM
(305.56*( 416.+4bO.))*((0.002669* 138.)»( 76.559*1,006»( 30.10M 3.000/13.6))/( 62.«460.)))
ISO * .............................. [[[ s 94.09 PERCENT
90. * 99.94 • 30.00 • .222 • .222
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS » 0.001 • MN • 15.43 / VMSTD
-------
FIELD DATA
>
H
N>
PLANT PHILLIPS SWEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5B
OPERATOR UO
AMBIENT TEMP. (DEC. F) 75.
BAR. PRESS. (IN.HG) 30.10
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBEH(S) 3450145
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .8<4
THERM. NO.
LEAKAGE .016 CFM i 11.0 IN.HG
METER CALIB. FACTOR .988
RtAO « NECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TIME
(24-HR
1529
0
0
0
0
0
0
0
0
16S9
READING
(CU.FT.)
451.753
461.200
470.660
480.080
489.480
498.800
508.130
517.480
526.880
536. 2b7
HEAD
(IN.H20)
.950
.950
,9bO
.950
.950
.950
.950
.950
.950
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
2.97
2.99
2.99
3.01
3.00
3.01
3.01
3.01
3.01
H20)
ACTUAL
2.97
2.99
2.99
3.01
3.00
3.01
3.01
3.01
3.U1
STACK
TEPP
(OEG.F)
416.
416.
416.
416.
416.
416.
416.
416.
416.
DATE 11/12/82
RUN NUCBEH 7BP5B
PROBE LENGTH • TYPE 6* GLASS
KU2ZLE : I.U. .221
ASSUMED MOISTURE 8.0
SAPPLE BOX NUPBfcR
PETER BOX NUPBEN FB5
PETER HEAD UIFF. 1.95
PROBE HEATEN SETTING 320.
HEATER BOX SETTING 320.
DRY GAS PETER PUPP SAPPLE IPPINGER
TEMP
(DEG
INLET
89.
91.
95.
99.
101.
102.
101.
101.
101.
.F)
OUTLET
88.
89.
89.
89.
90.
90.
90.
90.
90.
VACUUM
(IN.HG)
.2
.2
.^
.V
.0
.0
.2
.4
.7
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(OEG.F)
0.
100.
0.
124.
U.
B7.
93.
87.
86.
TOTALS
AVERAGE
90.0
84.514
3.00
3.00 4|6.
98,
89.
9.2
0.
64.
-------
PARTICIPATE FIELD DATA « HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SHEENY DO
TEST 7BM5B
FCC STACK
TEST DATE
TB
TF
TT
NP
V
ON
CP
F «•
to
00 y,,
TP
VMbTD
VLC
VXC
BMO
FMD
PCU2
P02
PCU
PN2
MD
M»S
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPIN6ERS AND SILICA GEL. ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRV GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL.* DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRV
MOLECULAR NT-DRY STACK GAS
MOLECULAH NT-STACK GAS
ENGLISH UNITS
11/12/02
1529
1659
90.0
9
.900
.221 1*
.04
3.00 IM-H20
04.514 CU-FT
93.6 F
00.703 SCF
95.6
*
4.500 SCF
5.20
.947
14.10
3.00
.00
02.90
30.30
29.72
METRIC UNITS
11/12/02
1529
90.0
9
.900
5.6 MM
.64
76.2 MM-M20
2.393 CU-M
34.2 C
2.205 SCM
95.6
.127 SCM
5.20
,«47
14.10
3.00
.00
02.90
30.30
29. H
-------
PB BAROMETRIC PRESSURE
PSI STATIC PHES UF STACK GAS
PS STACK PRES, A83.
TS AVERAGE STACK TEMP
VS AVIt STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE* DRY*
QS ACTUAL STACK FLO" RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA S
CS FILTERABLE-AMBIENT
30.10 IN-Ht,
-1.38 1N-HIU
30.00 Ih-Mb
416. F
99.4 FPS
9161. SU-1N
13030212. SCFM
22764048. ACFH
98.6
68.8
764.54
-35. Ob
761.96
213.
30.3
5.910
368977.
644610.
98.6
68.8
PM-HG
PM-H20
PM-H6
C
fPS
SO-M
SCMH
ACMM
.0132 GR/DSCF*
30.109 PG/DSCP
to
vo
MN
C9
FILTERABLE-UO
M6. EPA S
FILTERABLE-160
46.2
46.2
.0088 GR/03CF* 20.218 PG/03C*
CS
FILTERABLE-232
MS. EPA 5
FILTERABLE-232
39.7
.0076 GR/03CF.
39.7
17.374
MN
CS
FlLTERABtE-315
M6. EPA S
FILTERABIE-315
36.7
.0070 GR/U3CF*
36.7
16.061
• 68 DEC F, 29.92 IN.HG.
-------
LO
O
EXAMPLE PARTICULATE CALCULATIONS TCbT NO. 7bN5B
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD • (17.647 • VM « Y • (PB » PM / 13.6)) / ITM » 460.)
17.6*7 • 84.S14 • .988 * ( 30.10 * 3.000 / 13.6)
VMSTD « ..—-—— . ........ .................. s 80.703 OSCF
I 9«t. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC » .04707 • VLC
VNC • .04707 • 96. * 4.50 SCF
PERCENT MOISTURE IN STACK GAS
BNO * (100. * VNC) / (VMSTO » VNC)
100. • 4.SO
BNO « .....—.................. * 5.Z8 PERCENT
80.704 + 4.50
MOLE FRACTION OF DRY STACK GAS
FMD * (100. - BNO) / 100.
100. . 5.3
FMD » ....................... z .947
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO » (PC02 • .44) 4 (P02 • .32) * (PN2 * PCO) * .28
MU * (14.10*44/100) « ( 3.0*32/100) * ((82.9* .0) • 28/100 = 30.38
MOLECULAR NEIGHT OF STACK GAS
MHS * MO • (1. • (BnO/100)) * 18. * (DHU/100)
MHS « 30.38* (1. •( 5.28/100)) *!«.»( 5.28/100) s 29.72
-------
STACK 6*3 VELOCITY AT STACK CONDITIONS
DELP » SUM. OF THE &OHTIVM • ITS * 460.))
VS * 65.49 » CP • DELP / OURT(MNS * PS) • PNTS)
VS * 65.49 • .04 • 371.973 / (SURT( 29.72 • 30.00) • 9. = 99.40 FPS
STACK GAS VOLUMETRIC FLO" AT STACK CONDITIONS
OS « V3 • A» • 3600/144
OS a 99.40 • 9161. 3600/144 : 22764048. ACFH
STACK 6AS VOLUMETRIC FLON AT STANDAHD CONDITIONS
OSSTD * 17.647 • OS • PS • (1. » (BNO/100)) / (TS * 460.)
17.647 • 22764046. • 30.00 •(!.»( 5.20/100))
QSSTO * ——————————————— m 13030212. SCFH
( 416. * 460.)
> PERCENT ISOKINETIC
I
I-1 ISO * (30S.S8*(TS«460.))*((0.002669*VLC)*(VM*r*(PB+(PM't3.6))/(TM+460.)))/(TT*VS*PS*ON*DN)
CO
H (305.56*( 416.«460.))*C(0.002669* 96.)*( 64.514* .966*( 30.10*( 3.000/13.6))/( 94.«460.)))
ISO « —————————————— ................................................. » 96.61 PERCENT
90. • 99.40 • 30.00 • .221 • .221
PARTICULATE LOADING — EPA METHOD S (AT STANDARD CONDITIONS)
CS * 0.001 * MN • 15.43 / VMSTO
CS ' 0.001 • 66.6 • 15.43 / 60.703 = .0132 6R/USCF
-------
FIELD DATA
to
PLANT PHILLIPS PETNO
SAMPLING LOCATION FCL STACK
SAMPLE TTPE MS
OPERATOR PHILLIPS
AMBIENT TEMP. (OEG.F) 73.
BAR. PRESS. (IN. HG) 30.10
STATIC PRESS. UN. H20) -1.38
FILTER NUMBERIS) 3450144
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000 CFM ri 12.
METER CALIB. FACTOR 1.001
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TIME
(24-HR
1529
1539
1549
1559
1609
1619
1629
1639
1649
1659
READING
(CU.FT.)
274.480
284.330
294.130
303.970
313.860
323.740
333.680
343.650
353.260
362.877
HEAD
(IN.H20)
2.400
2.400
2.4oO
2.400
2.400
2.400
2.400
2.300
2.300
SMEENY
5 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.10
.10
.10
.20
.20
.20
.20
.00
.00
H20)
ACTUAL
3.10
3.10
3.10
3.20
3.20
3.20
5.20
5.00
3.00
STACK
TEKP
(OEG.F)
416.
416.
4(5,
415.
415.
414.
414.
414.
414.
DATE 11/12/82
RUN NUMBER 7CM5H
PHOBE LENGTH • TYPE 6 FT GLASS
NOZZLE : I.D. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB7
METEH HEAD olff. i.M
PROBE HEATER SETTING 250.
HEATEN BOX SETTING 250.
DRV GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEC
INLET
75.
75.
76.
78.
78.
80.
80.
80.
80.
.F)
OUTLET
73.
73.
73.
73.
73.
74.
74.
74.
74.
VACUUM
(IN.HG)
10.2
10.5
10. «
11.0
10. tt
10.5
10.5
10.0
10.0
BOX TEMP
(OEG.F)
0.
0.
U.
0.
0.
0.
0.
g.
0.
TEMP
(OEG.F)
78.
74.
78.
88.
84.
78.
84.
77.
79.
TOTALS
AVERAGE
90.0
88.397
3.12
3.12 415.
78.
73.
10.5
0.
80.
-------
PARTICULATE FIELD DATA « HESULTS TAbULATIUN
PLANT- NAME AND ADDRESS TEST TEA* LEADER
PHILLIPS PETRO SHEENY PHILLIPS
TEST 7CM5N
FCC STACK
U)
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZ/LE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
1529
1659
90.0
9
1.001
.224 IK
.64
METRIC UNITS
11/12/62
1529
1659
90.0
9
1.001
5.7
.64
PM
PP AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL»ML,
VNC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
F»D MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.* DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRV
MO MOLECULAR HT-OHV STACK GAS
MHS MOLECULAR HT-STACK GAS
3.12 IK-H20
86.397 CU-FT
79.3 PM-H2U
2.503 CU-M
75.7 F
86.403 SCF
262.5
13.297 SCF
13.07
.869
14.10
3.00
.00
62.90
30.38
28.76
24
2
282
13
14
3
62
30
26
.3 C
.503 SCP
.5
.377 SCP
.07
.669
.10
.00
.00
,«0
.36
,T6
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, A8S.
TS AVERAGE STACK TEMP
VS AV6 STACK KAS VELOCITY
AS STACK AREA
QSSTD STACK FLOW RATE, DRV*
OS ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
* 68 DEC F, 29.92 Ih.HG.
30.10
•1.38
30.00
415.
111.5
9161.
13433432.
25536552.
102.0
IN-HG
1N-H20
IN-HG
F
FPS
3U-IN
3CFH
ACFH
764.54
-35.05
761. 9fc
213.
34.0
5.910
380389.
723119.
102.0
KM-HG
*M-H20
CM-hG
C
I»PS
SU-M
3CKH
ACMH
>
H
OJ
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 705*
FCC STACK
VOLUME OF DMT GAS SAMPLED AT STANDARD CONDITIONS
VMSTO * (17.647 • VM • T • IPB » PM / 13.6)) / (TM » 460.)
17.647 • 86.397 • I.001 * ( 30.10 * 3.122 / 13.6)
VMSTO = ————— ————. — — — = 88.403 OSCF
I 7b. » 460.)
VOLUME OF HATER VAPUR AT STANDARD CONDITIONS
VMC * .04707 • VLC
VNC « .04707 • 283. s 13.30 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VNC) / (VMSTD » VNC)
>
' 100. • 13.30
£, BMO « ————............. : 13.07 PEKCtNT
yi 80.403 * 13.30
MULE FRACTION OF DRY STACK GAS
FMD « (100. • BNO) / 100.
100. - 13.1
FMD • ———————— = .869
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO « (PC02 • .44) « (po2 • .32) « (PN2 «• PCU) * .28
MO « (14.10*44/100) * ( 3.0*32/100) » ((82.9* .0) * 28/100 9 30.38
MOLECULAR WEIGHT OF STACK GAS
MNS a Ml) • (1. - (8*0/100)) » 18. • (6*0/100)
MNS » 30.38* (1. -113.07/100)) • 18. • (13.07/100) * 28.76
-------
STACK GAS VELOCITY AT STACK CUNOIT1UNS
DELP « SUM. UF THE SQftUVH • (TS » 460.))
VS a 05.49 • CP • OELP / (SURUMMS • PS) * PNTS)
VS » 65.49 • .64 • 410.451 / (SURT( 28.76 • 30.00) * 9. = 111.50 FP3
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS s 111.50 * 9161. 3600/144 a 25536552. ACFH
STACK CAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO » 17.647 • OS • PS * (1. • (BNO/100)) / (TS * 460.)
IT.647 • 25536552. • 30.00 • (1. • (13.07/100))
OSSTO » ...——.————————..—.—..—.—.—. * 13433232. SCFH
( 415. » 460.)
>
|^ PERCENT ISOKIN6TIC
ISO • (30S.5e*(TS*460.))«((0.002669*VLC)*(VH*V*(PB«(PM/13.6))/(TM4460.)))/(TT*VS*PS«DN*ON)
(305.56*( 415.«460.))*((0.002669* 383.)»( 86.397*1.001*( 30.JO*( 3.122/13.6))/( 76.»460.)))
ISO « ———————............................... ................................. r 102.00 PERCENT
90. * 111.50 * 30.00 « .224 * .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN • 15.43 / VMSTO
CS a 0.001 • O.OOOOE«00 • 15.43 / 88.403 = O.OOOOE*00 GR/OSCF
-------
FIELD DAT*
>
H
LJ
PLANT PHILLIPS PETKO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP.(OEG.F) 73.
BAR. PRESS. (IN.HG) 30.10
STATIC PRESS.IIN.H20) -1.30
FILTE* NUMBER(S) 3450143
STACK INSIDE DIM. (IN) 108.00 .00
PITUT TUBE CObFF. .84
THERM. NO.
LEAKAGE .005 CFM 4 8.
METER CALIB. FACTOR .986
READ ft RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.
20.
30.
40.
50.
60.
70.0
ao.o
90.0
TIME
(24-HR
1531
1S4|
1551
1601
1611
1621
1631
1641
1651
1701
READING
(CU.FT.)
226.453
236.120
245.830
255.490
265.290
274.980
284.620
294.330
303.820
313.342
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.300
2.300
0 IN.HG
ORIFICE
PRESSURE STACK
UUFtRENTIAL TEPP
(IN.
DESIRED
.10
.10
.10
.10
.10
.10
.10
.00
.00
H20) (DEG.F)
ACTUAL
.10 4|6.
.10 416.
.10 415.
.10 415.
.10 4|S.
.10 414.
.10 414.
.00 414.
.00 414.
DATE 11/12/82
huh NUPBER TOMS*
PHOBE LENGTH « TYPE 6 FT GLASS
NUZZLE < I.U. .226
ASSUMED POISTUfcE 12.0
SAPPLE BOX NUPBEH
PETER BOX NUPBER FB?
PC.TER nt*o GIFF. 1.73
PHOBE HEATEH SETTING 250.
HEATER uux SETTING 250.
DNV GAS PETER PUPP SAPPLE IPPINGER
TEPP
(DEC
INLET
68.
68.
72.
75.
76.
77.
77.
77.
77.
.F)
OUTLET
68.
68.
68.
68.
70.
70.
70.
71.
71.
VACUUM
(IN.HG)
7.0
7.5
7.0
7.0
7.0
7.0
7.U
7.0
7.2
BOX TEMP
(DEG.F)
0.
0.
0.
fc.
V.
0.
(1.
0.
0.
TEMP
(DEG.F)
76.
75.
78.
72.
76.
74.
7*.
79.
81.
TOTALS
AVERAGE
90.0
86.889
3.08
3.08 415.
74.
69.
7.1
77.
-------
PARTICIPATE FIELD DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS PETRO PHILLIPS
TEST 70MSN
FCC STACK
TEST DATE
TB
TF
TT
NP
»
DK
CP
P*
1
W VM
00
T*
VMSTD
VLC
VhC
BNO
FfO
PC02
P02
PCU
P*2
MD
M»S
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL.* DRY
PERCENT N2 BY VOL., DRY
MOLECULAR HT-ORY STACK GAS
MOLECULAR NT-SI ACK GAS
ENGLISH UNITS
ll/U/82
1531
1701
90.0
9
.966
.226 IN
.64
3.06 IN-H20
66.889 CU-FT
71.7 F
86.228 SCF
291.5
13.721 SCF
13.73
.663
14.10
3.00
.00
62.90
30.38
26.68
METRIC UNITS
11/12/62
1531
1701
90.0
9
.986
5.7
.64
76.2
2.460
22.1
2.442
291.5
.389
13.73
.863
14.10
3.00
.00
82.90
30.38
28. 60
KM
PM-H20
CU-M
C
see
•c»
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AYR STACK (AS VELOCITY
AS STACK AREA
BSSTO STACK FLOW RATE, ORT*
8S ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
• 66 OEG F, 29.9? IM.H6.
30.JO IN-Ht,
-1.38 1N-H20
30.00 IN-Hb
«15. F
111.7 FPS
9161. SU-IN
13351062. SCFM
255725U. ACFH
96.3
764.54 VH-HG
•35.05 CM-M20
761.96 t»M-MG
213. C
34.0 PP9
5.910 Sg-M
376063. SCfH
724137.
90.1
10
vo
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST MJ. 70"5*
FCC STACK
VOLUME OF OHt GAS SAMPLED AT STANDARD CUNOITIONS
VMSTD * (17.647 • VM • Y * IPB * PM / 13.6)) / (TM » 460.)
17.647 • 86.889 * .986 * ( 30.10 » 3.076 / 13.6)
VMSTO » ...........————.—.-.—.........-.-...-... — . s 86.228 DSCF
I 72. * 460.)
VOLUME OF NAT^R VAPOR AT STANDARD CONDITIONS
VNC • .04707 • VLC
VftC • .04707 • Z92. s 13.73 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VMSTD * VNC)
> 100. • 13.73
• BNO • ——.-.—.—.——..— t 13.73 PERCENT
£ 86.226 * 13.72
O
MOLE FRACTION OF DRY STACK GAS
FMD » (100. • BNO) / 100.
100. - 13.7
FMD « ....................... s .863
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MD s (PC02 * ,44) * (P02 • .32) * (PN2 » PCO) • .28
MD « (14.10*44/100) » ( 3.0*32/100) » ((82.9» .0) • 26/100 s 30.38
MOLECULAR WEIGHT OF STACK GAS
HNS • MO • (I. • (BNO/1VO)) » 18. * (BNO/IOU)
MNS * 30.38* (1. -(11.73/100)) • 18. • (13.73/100) = 28.68
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OtLP * SUM* OF THE 30RUVH * US « 460.))
VS s BS.49 • CP • OELP / (SURT(MHS • PS) * PNTS)
VS * 85.49 • .64 • 410.451 / (SURTC 26.66 • 30.00) • 9. s 111.66 FPS
STACK 6AS VOLUMETRIC FLO* AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS s 111.66 • 9161. 3600/144 s 25572512. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD s 17.647 • 03 • PS * (1. • (BNO/100)) / (TS » 460.)
17.647 • 255T2512. * 30.00 • (I. • (13.73/100))
OSSTD * —————— ................ ....... s 13351063. SCFH
( 415. » 460.)
PERCENT ISOKINETIC
ISO a (30s*S6o(TS»4bO.))*((0.002b69*VLC)*(V)i*r*(PB«(PM/l3.6))/(TM+460.)))/(TT*VS*PS*ON*DN)
(305.56*( 415.»460.))«((0.002669* 292.)»( 66.669* .966*( 30.10+( 3.076/13.6))/( 72.«460.)))
ISO * ——————...... ................ .................. ..................... a 98.34 PERCENT
90. • 111.66 * 30.00 • .226 • .226
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 a 0.001 • MN • 15.43 / VMSTD
CS • 0.001 • O.OOOOE+VO • 15.43 / 66.226 s O.OOOOE*00 GR/OSCF
-------
FIELD DAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEG.F)
BAR.PRESS.(IN.Hb)
STATIC PRESS.UN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.UN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SnEtNV
FCC STACK
M5-450
00
SO.
30.39
-1.38
3450137
108.00 .00
.84
.006 CFM a 11.0 IN.HG
1.006
DATE 11/13/82
RUN NUMBER BAMSUS
PHOBE LENGTH t TYPE 6* GLASS
*UllLt t I.O. .219
ASSUMED MUISTUNE a.o
SAMPLE BOX NUMBER
METER BUR NUMBEK FBS
METER nt»o OIFF. 2.00
PROBE HEATER SETTING 450.
HtATER 00X SETTING 450.
READ » RECORD DATA EVERT 10.0 MINUTES
to
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
SO.O
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TIME
(24-HR
1203
0
0
0
0
0
0
0
0
0
0
0
1403
GAS METER VELOCITY
READING HEAD
(CU.FT.) (IN.H20)
865.047
873.580
881.960
890.300
898.780
907.230
915.630
924.100
932.670
941.110
949.560
958.120
966.713
.950
.900
.900
.950
.950
.900
.950
.950
.900
.900
.950
.950
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
2.91
2.84
2.86
2.96
2.96
2.89
2.97
2.97
2.90
2. 90
2.98
2.99
H20)
ACTUAL
2.91
2.84
2.86
2.96
2.96
2.89
2.97
2.97
2.90
2.90
2.98
2.99
STACK
TEMP
(DEG.F)
424.
424.
424.
425.
425.
424.
424.
423.
423.
424.
424.
424.
DRY GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.HG)
INLET OUTLET
79. 76.
81. 76.
06. 76.
91. 78.
92. 79.
91. 80.
91. 00.
90. 80.
91. 00.
91. 00.
92. 80.
93. 80.
7
2
7
7
7
8
0
4
3
J
8
a
SAMPLE
BOX TEMP
(DEG.F)
0.
0.
V.
0.
0.
0.
V.
0.
0.
u.
0.
0.
IMPINGER
TEMP
(DEG.F)
0.
14S.
163.
128.
112.
105.
103.
101.
98.
97.
105.
99.
TOTALS
AVERAGE
120.0
101.666
2.93
2.93 424,
89,
79.
9.2
0.
105.
-------
PARTICIPATE FIELD DATA 6 RESULTS 1AHULATIUN
PLANT- NAME AND ADDRESS IEST TEAH LEADER
PHILLIPS SHEENY oo
TEST 8AM545
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME -FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
11/13/82
1203
1403
120.0
12
1.006
.219 IN
.64
METRIC UNITS
11/13/62
1203
1403
120.0
12
1.006
5.6 KM
.84
PC AVERAGE ORIFICE PRESSURE
DROP
VP VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
1MPINGERS AND SILICA GEL,ML.
VhC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BfcO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BY VOL.* DRV
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRV
MO MOLECULAR HT-OHV STACK GAS
MNS MOLECULAR NT-STACK GAS
2.93 IN-H20
101.666 CU-FT
74.4 *M-H20
2.879 CU-M
S3. 9 F
101. 564 SCF
106.3
5.096 SCF
4.7S
.952
15.00
3.00
.00
82. 00
30.52
29.92
2B
2
108
4
15
3
82
30
29
.8 C
.876 SO
.3
.144 SO
.78
.952
.00
.00
.00
.00
.52
.92
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
V3 AV6 STACK GAS VELOCITY
AS STACK AREA
flSSTU STACK FLUX RATE* DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT I90K1NET1C
MN FILTERABLE-AMBIENT
NG. EPA 5
CS FILTERABLE-AMBIENT
30.39
-1.38
30. *9
424.
98.5
9161.
12988850.
22560172.
95.1
84.7
IK-Hb
IN-H20
IN-NU
F
FPS
SU-IN
SCFM
ACFM
771.91
-35.05
769.33
218.
30.0
5.910
367805.
638836.
95.1
84.7
PM-HG
PM-H2
VM-MG
C
VPS
sg-M
SCFM
ACCH
.0129 GR/OSCF*
29.453 »'G/OSCI'
MN
CS
FILTERABLE-232
MG. EPA S
FILTERABLE-232
72.8
.0111 GR/OSCF.
72.8
25.315 CG/DSCK
MN
CS
FILTERABLE-315
MG. EPA b
FILTERABLE-315
69.4
.0105 GK/DSCF*
69.4
24.133 VG/QSC*
• 68 OEG F, 29.92 Ih.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST no.»AM5a5
FCC STACK
VOLUME OF DRY GAS SAMPLED AT STANDAHD CONDITIONS
VMSTO * (17.647 • VM • T • (Ptf » PM / 13.6)) / (TM * 460.)
17.647 * 101.666 • 1.006 * ( 30.39 * 4.928 / 13.6)
VMSTO « ———————————— — = 101.564 OSCF
( 84. » 4t>0.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 • VLC
VNC • .04707 • 108. r 5.10 SCF
PERCENT MOISTURE IN STACK GAS
jp BNO s (100. • VNC) / (VMSTO » VNC)
M 100. • S.10
•* BMO « —————— s «.78 PERCENT
01 101.564 * 5.10
MULE FRACTION OF DRY STACK GAS
FMD s (100. • BNO) / 100.
100. - 4.8
FMD * ———————— s .952
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO s (PC02 • .44) • (P02 • .32) «• (PN2 • PCO) • .28
MD * (15.00*44/100) » ( 3.0*32/100) t ((82.0« .0) • 28/100 * 30.52
MOLECULAR HEIGHT OF STACK GAS
HNS * MO • (I. • (BNO/100)) * 18. * (BNO/100)
MNS • 30.52* (1. -I a. 78/100)) * 18. * ( 4.78/100) « 29.92
-------
STACK 6*3 VELOCITY AT SUCK CONDITIONS
OELP • SUM. OF THE SQKUVH • (TS » 460.))
VS = 65.49 • CP • OELP / 13QRT(MNS • PS) • PKTS)
VS * 65.49 * .64 • 495.546 / (SORT( 29.92 • 30.29) • 12. = 98.31 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
03 a VS • AS • 3600/144
OS * 98.51 • 9161. 3600/144 s 22560172. ACFH
STACK CAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO * 17.647 • OS • PS • (1. - (BMO/100)) / (TS « 460.)
17.647 • 22S60172. • 30.29 •(!.-( 4.76/100))
OSSTD * ——————————————— • 12966650. SCFM
( 424. * 460.)
>
,1 PERCENT ISOKINETIC
•Cfc
CTt ISO « (30S.S8*(TS*460.))*((0.002669*VLC)«lVH*y*(PB«(PM/l3.6))/(TM«460.)))/(TT*V3*PS*ON«ON)
(305.58*( 424.•460.))*((0.002669* 108.)»( 101.666*1.006*1 30.39«( 2.920/13.6))/( 64.4460.)))
ISO « .—..——.—...—...—..........—...............——......—........... s 95.09 PERCENT
120. * 98.51 • 30.29 * .219 • .219
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS « 0.001 . MN • 15.43 / VMSTD
CS * 0.001 • 64.7 • 15.43 / 101.564 s .0129 SR/DSCF
-------
FIELD UATA
I-1
4*
•si
PLANT PHILLIPS SWEENEY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5-450
OPERATOR 00
AMBIENT TEMP.(OEG.F) 50.
BAR. PRESS. (IN. HG) 30.39
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S) 3450171
STACK INSIDE DIM. (IN) 106.00 .00
PITUT TUBE COfcFF. .84
THERM. NO.
LEAKAGE .020 CFM i 12.5 IN.H6
METER CALIB. FACTOR .966
READ « RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (1N.H20) (DEG.F)
DESIRED
INIT 0
10. 0
20.0
30.0
•0.0
50.0
60.0
70.0
60.0
90.0
100.0
110.0
120.0
1204
0
0
0
0
0
0
0
0
0
0
0
1404
536.601
54S.760
554.690
563.930
573.100
562.020
590.930
599.900
6U8.690
617.810
626.760
635.850
644.913
.950
.900
.900
.950
.950
.900
.950
.950
.900
.960
.950
.950
2.91
2.64
2.86
2.96
2.96
2.69
2.97
2.97
2.90
2.90
2.98
2.99
ACTUAL
2.91
2.64
2.06
2.96
2.96
2.09
2.97
2.97
2.90
2.90
2.98
2.99
DATE 11/13/82
RUN NUMBER 8BM545
PROBE LENGTH • TYPE 6* GLASS
NOZ2LE > 1.0. .223
ASSUMED MOISTURE 0.0
SAMPLt BOX NUMBER
METER BOX NUMBER FB5
METER HEAD UIFF. 1.95
PROBE HEATER SETTING 450.
HfcATth BOX SETTING 450.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.PG) (DEG.F) (OEG.F)
INLET OUTLET
•24.
•24.
•24.
425.
425.
424.
424.
423.
•23.
424.
424.
•24.
76.
79.
S3.
09.
91.
93.
93.
95.
95.
95.
97.
96.
71.
73.
75.
77.
79.
01.
62.
63.
64.
as.
86.
07.
10.2
10.7
10.4
10.7
10.2
10.1
10.2
10.4
10.6
10.0
11.0
11.2
0.
0.
0.
0.
0.
V.
0.
0.
a.
0.
0.
0.
0.
109.
116.
114.
97.
95.
67.
90.
92.
105.
101.
95.
TOTALS
AVERAGE
120.0
108.312
2.93
2.93 424.
90.
80.
10.5
0.
92.
-------
PARTICIPATE FIELD DATA A RESULTS lAbULATIUN
PLANT* NAME AND ADDRESS ItST TEAM LEADER
PHILLIPS SWEENEY oo
TEST 8BM545
FCC STACK
TEST DATE
>
H
•U
00
TB
TF
TT
NP
Y
DM
CP
PN
Vf
TM
VMSTD
VLC
VhC
BhO
f¥Q
PC02
P02
PCO
PN2
MO
MM3
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF ORY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS ANU SILICA GEL, ML*
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT CO* BY VOL., DRV
PERCENT 02 BY VOL., ORY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
11/13/62
1204
1404
120.0
12
.988
.223 IN
.64
2.93 IN-H20
106.312 CU-FT
85.3 F
105.992 SCF
163.9
7.715 SCF
6.78
.932
15.00
3.00
.00
82.00
30.52
29.67
METRIC UNITS
11/13/82
1204
1404
120.0
12
.968
5.7
.84
74.4
3.067
29.6
3.001
163.9
.216
6.78
.932
15.00
3.00
.00
82.00
30.52
29.67
PM
KM-H20
CU-M
C
SCM
SO
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK P»ES, ABS.
IS AVERAGE STACK TEXP
VS AVb STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLO* RATE, DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
UN FILTERABLE-AMBIENT
MG. EPA <3
CS FILTERABLE-AMBIENT
30.39 IN-Hb
-1.38 1*-H20
30.29 IN-HG
024. F
90.9 FPS
9161. 30-IN
12768966. SCFH
2265542tt. ACFH
97.4
85.2
.0124 GR'DSCF*
771.91 PM-HG
-35.05 *N-H20
769.35 CM-HG
218. C
30.2 KPS
5.910 SB-M
361579. SCHH
641534. AC»H
97.4
85.2
28.390 VG/OSCf
MN
CS
FILTERABLE-315
MG. EPA 5
FlLTtRABLE-315
71.3
.0104 GK/03CF*
71.3
23.758 'CG/DSC"
• 66 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST Nu.8BM5«5
FCC STACK
VOLUME OF DHV GAS SAMPLED AT STANDARD CONDITIONS
VMSTO * (17.647 • VH • Y • IPB * PM / 13. b)) / (TM * 460.)
17.647 • 108.312 * .988 * ( 30.39 » 2.928 / 13.6)
VMSTD • —————— ---- — — --- ..... ---- ............... = 105. 992 03CF
1 85. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC • .04707 • VLC
VMC « .04707 * 164. s 7.71 SCF
PERCENT MOISTURE IN STACK GAS
BHO « (100. • VNC) / (VMSTD * VNC)
> 100. • 7*71
I BkO * .—————— r 6.78 PERCENT
£ 10S.992 * 7.71
O
MOLE FRACTION OF DRY STACK GAS
FMD « (too. • BNO) / 100.
100. - 6.8
———.. s .932
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MU * (PC02 * .44) + (P02 • .32) * (PN2 * PCO) • .28
MU « (15.00*44/100) * ( 3.0*32/100) » (182,0* .0) t 20/100 = 30.52
MOLECULAR HEIGHT OF STACK GAS
MNS • MO • (1. - (BNO/lOOj) * 18. * (BWO/IOO)
MNS * 30.52* (1. -( 6.78/100)) » 18. • ( 6.78/100) : 29.67
-------
STACK GAS VELOCITY AT STACK CUNUI1IUNS
OELP « SUM. OF THE SORUVH * ITS * 460.))
VS = AS.49 * CP • OELP / (SQRT(MNS * PS) • PNTS)
VS * aS.49 • .64 * 495.Sab / (SURT( 29.67 • 30.29) * |2. = 90.92 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS * 96.92 • 9|6t. 3600/144 a 226554*8. ACFH
STACK 6AS VOLUMETRIC FLO" AT STANDARD CONDITIONS
OSSTD « 17.647 • US • PS • (1. - (BnO/100)) / (TS » 460.)
17.647 • 22655428. * 30.29 * PERCENT ISOKINETIC
I
ISO « (305.S6*(TS+460.))*((0.002669*VLC)»(VM*To(PB«(PN/13.6))/(TM*460.)))/(TT*VS*PS*DN*OK)
Ul
(305.56*( 424.*460.))*((0.002669* 164.)»( 106.312* .96a«( 30.39»( 2.920/13.6))/C 65.4460.)))
ISO a ——.-.—.—..——[[[ a 97.35 PERCENT
120. • 98.92 * 30.29 • .223 • .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
-------
FIELD DATA
to
PLANT PHILLIPS PETRO SHEENY
SAMPLING LOCATION FCC STACK
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP.IOEG.F) 65.
BAR.PkE9S.(IN.HU) 30.39
STATIC PRESS. t IN. H20) -1.38
FILTER NUMBtR(S) 3450136
STACK INSIDE DIM. (IN) 106.00 .00
PITUT TUBE COEFF. .64
THERM. NO.
LEAKAGE .010 CFM 4 14.0 IN.HG
METER CALIB. FACTOR I. 001
RfcAtf * RECORD DATA EVERT 10. 0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NU. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (OEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
ftO.O
70.0
60.0
90.0
100.0
110.0
120.0
VhWV" 1
1340
1350
1400
1410
1420
1430
1440
1450
1500
1510
1520
1530
1540
363.537
373.350
363.080
392.670
402.640
412.710
422.490
432.230
442.000
451.840
461.440
471.290
461.126
DESIRED
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
ACTUAL
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
DATE 11/13/62
NUN NUMBER 8CM5*
PROBE LENGTH ft TYPE 6 FT GLASS
MUZZLE : 1.0. .224
ASSUMED MOI3TUHE 12.0
SAMPLE BOX NUMBER
PETER BOH NUMBER FBT
MtUN *tAU DIFF. 1.71
PROBE HEATER SETTING 250.
HEATEN BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(OEb.F) (IN.HG) (DEG.F) IDEG.F)
IHLET OUTLET
422.
«20.
419.
420.
419.
419.
420.
420.
420.
420.
419.
419.
64.
64.
06.
71.
73.
74.
74.
74.
76.
76.
76.
76.
62.
62.
62.
63.
64.
64.
64.
64.
66.
66.
65.
67.
10.0
9.5
9.5
9.5
6.U
7.5
7.5
7.5
7.5
6.2
1U.2
11.2
0.
0.
0.
fa.
0.
0.
0.
0.
0.
0.
0.
0.
T8.
62.
76.
63.
66.
66.
60.
77.
82.
66.
84.
76.
TOTALS
AVERAGE
120.0
117.589
3.10
3.10 420.
72.
64.
6.6
0.
62.
-------
PARTICIPATE FIELD DATA • RESULTS TABULATION
PLANT- NAME AND ADDRESS rtsr TEAM LEADER
PHILLIPS PETNO SHEENY PHILLIPS
TEST 6CM5*
FCC STACK
in
u>
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
11/13/62
1340
1540
120.0
12
1.001
.224 IN
.64
METRIC UNITS
11/13/62
1340
1540
1*0.0
12
1.001
5.7 I'M
.64
PM AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
*T STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.ML,
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BftO PERCENT MOISTURE BY VOLUME
ffl) MOLE FRACTION DRY GAS
PC02 PERCENT CO* BY VOL.. DRV
P02 PERCENT 02 BY VOL.. DRV
PCO PERCENT CO BY VOL.. DRV
PN2 PERCENT N2 BY VOL.. DRY
MO MOLECULAR MT-ORV STACK GAS
MhS MOLECULAR NT-STACK GAS
3.10 IN-H20
117. 569 CU-FT
78.7 *M-M2U
3.330 CU-M
68.1 F
120.423 SCF
304.6
14.330 SCF
10.64
.694
15.00
3.00
.00
82.00
30. b2
29.19
20.1
3.410
304.6
.406
10.64
.894
15.00
3.00
.00
82.00
30.52
29.19
C
3CM
sen
-------
PB BAROMETRIC PNESSURE
P3I STATIC PMES OF STACK GAS
PS STACK PRES, A8S.
T9 AVERAGE STACK TEHP
VS AV8 STACK GAS VELOCITY
AS STACK AREA
BSSTU STACK FLOW RATE. CRT*
0S ACTUAL STACK fLO* RATE
ISO PERCENT ISOKINETIC
• 68 OE6 F, 29.92 IN.H6.
30.39 H-Hb
•1.38 IK<-H20
30.i!9 IN-MG
420. F
111.0 FPS
9161. SU-IN
13799160. SCFH
25016508. ACFH
101.4
7T1.91 *M-HG
•35.05 *M-H20
769.33 fM-MG
215. C
33.8 PPS
5.910 SU-M
390751. SC»«M
719719. AOH
101.a
>
H
en
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 8 Ob*
FCC STACK
VOLUME OF DRY GAS SAMPLED At STANDARD CONDITIONS
VMSTD » (17.647 • VM • V • (PB * PM / 13.6)) / (TM » 460.)
17.647 • 117. 489 • 1.001 * ( 30.39 » 3.100 / |3.6)
VMSTO « —.————.——————— -------- ............ = 120.423 OSCF
( 66. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC s .04707 • VLC
VNC » .04707 • 309. » 14. 3« SCF
PERCENT MOISTURE IN STACK GAS
> BNO « (100. • VMC) / (VMSTD * VNC)
ft 100. * 14.34
JJJ BftO « —————— ---- ....... = JO. 64 PERCENT
120.423 » 14.34
MOLE FRACTION OF DRV STACK GAS
FMD 3 (100. • BMO) / 100.
100. - 10.6
FMD « ————— : .894
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO a (PC02 • .«4) • (P02 • .32) * (PN2 » PCO) • .28
MO 9 (15.00*44/100) • ( 3.0*32/100) » ((82. 0« .0) • 28/100 a 30.52
MOLECULAR HEIGHT OF STACK GAS
MUS * MO * (1. • 1BMO/IOO)) » 18. • (UNO/100)
MnS s 30.52* (I. •(10.64/100)) » 18. • (10.64/100) * 29.19
-------
STACK 6*3 VELOCITY AT STACK CONDITIONS
DtLP » SUM. OF THE SQMTIVH • ITS * 460.))
VS * 85.49 * CP • OELP / (SbRT(MMS * PS) * PNT3)
VS * 65.49 • .84 • 551.400 / 13QRK 29.19 • 30.29) • 12. = 110.96 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS z VS • A3 * 3600/144
OS s 110.98 • 9161. 3600/144 a 2S41t>508. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD = 17.647 • OS • PS • (1. - (BMO/100)) / (TS « 460.)
17.647 • 25416508. * 30.29 • (1. - (10.64/100))
OSSTD * ——.——— ....... .................... s 13799160. SCFH
( 420. * 460.)
PERCENT ISOKINETIC
ISO s (30S.S8*(TS«460.))*((0.002669*VLC)^(VM*T*(PB«(PM/|3.6))/(TM«460.)))/(TT*VS*PS*ON*DN)
(305.58*( 420.«460.))*((0.002669* 305.)»( 117.S89M.001* ( 30.39«( 3.100/13.6))/( 68.+460.)))
ISO * ............................... [[[ * 101.44 PERCENT
120. • 110.98 * 30.29 • .224 • .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN • 15.43 / VH3TO
-------
FIELD t*r»
in
•o
PLANT PHILLIPS PETHO SNEEM
SAMPLING LOCATION FCC STACK
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP.(OEG.F) 65.
BAR. PRESS. (IN.HG) 30.39
STATIC PRESS. UN. H2U) -1.38
FILTER NUMBERIS) 3450135
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .60
THERM. NO.
LEAKAGE .000 CFM i 12.5 IN.HG
METER CALIB. FACTOR .986
REAU » RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY URIF1CE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TIME
(24-HR
1342
1352
1402
1412
1422
1432
1442
1452
1502
1512
1522
1532
1542
READING
(CU.FT.)
313.856
323.440
333.120
343.010
352.850
362.120
372.040
381.800
391.410
401.130
410.830
420.540
430.349
PRESSURE
STACK
HEAD DIFFERENTIAL TE*">
(IN.H20) 11*.
DESIRED
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.4(,0
2.400
.00
.00
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
H)20)
ACTUAL
3.00
3.00
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
(DEC.F)
422.
420.
4 11.
420.
411.
411.
420.
420.
420.
4 it.
411.
411.
DATE 11/13/82
RUN MfBlK 80N5*
PHOBE LENGTH I TYPE 6 FT GLASS
fcUZZLt t 1.0. .227
ASSUHtO HOISTURE 12.0
SAMHLt BOX NUMBER
fETEH eux NUMBEH FB2
••ETt" HEAD OIFF. 1.73
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS PETER PUPP SAMPLE IMPINGER
TEHP
(OE6
IKLET
60.
60.
70.
70.
66 .
70.
70.
70.
71.
71.
71.
71.
.F)
OUTLET
60.
60.
61.
67.
60.
to.
to.
to.
to.
to.
t5.
65.
VACUUM
(IN.HG)
7.0
7.2
7.2
7.2
7.0
7.5
1.7
10.0
10.0
10.5
11.3
11.5
BOX TEMP
(OEG.F)
0.
0.
0.
0.
b.
0.
0.
0.
0.
V.
0.
0.
TEMP
(DEG.F)
80.
84.
14.
18.
88.
76.
72.
75.
78.
83.
74.
78.
TOTALS
AVERAGE
120.0
116.493
3.08
3.OS 420.
69.
to.
8.8
0.
82.
-------
PARTICULATE FIELD OATA & NEfcULTS TABULATION
PLANT- NAME AND AOOUfcSS TEST TEAM LEADER
PHILLIPS PETRO SNECNV PHILLIPS
TEST 00M5N
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
H
in
00 VM
TM
VMSTO
VLC
VNC
BNO
FPD
PC02
P02
PCO
PN2
MO
MNS
TIME-START
TIME-FINISH
NET TIME OF TEST, NIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY CAS SAMPLED
AT MfcTER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY CAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS ANU SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BV VOLUME
MOLE FRACTION DRY bAS
PERCENT £02 BT VOL., DRV
PERCENT 02 6V VOL., DRY
PERCENT CO 8V VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR MT-DRY STACK GAS
MOLECULAR NT-STACK UAS
ENGLISH UNITS
11/13/82
1302
120.0
12
.986
.227 IN
.84
3.08 1N-H20
116.493 CU-FT
60.0 F
117.983 SCF
303.9
10.305 SCF
10.81
.892
15.00
3.00
.00
02,00
30. 62
29.17
METRIC UNITS
11/13/62
1342
1542
120.0
12
.966
5.8
.64
78.3
3.299
18.9
3.341
303.9
.405
10.81
.692
15.00
3.00
.00
62.00
30.52
29.17
PM
'PM-H20
CU-M
C
• C»
3C"
-------
PB BAROMETRIC PhESSURt
P91 STATIC PRES OF STACK GAS
PS STACK PRE3, ASS.
T9 AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLOW RATE* OHV*
QS ACTUAL STACK FLOW NATE
130 PERCENT ISOKINETIC
• 66 DEG F, 29.92 IN.HG.
30.34
30.29 IN-HG
420. F
lll.U FPS
9161. SU-I1
SCFH
25425996. ACFH
96.9
771.91 »M-HG
•35.05 MM-M20
T«9.33 kM-HG
215. C
33.8 J»PS
5.9(0 S8-M
390136. 3CCH
719966.
96.9
Ul
VO
-------
EXAMPLE PARTICULAR CALCULATIONS TE5>T NU.
FCC STACK
VOLUME OF OUT GA3 SAMPLED AT STAND* HO CONDITIONS
VMS tD * (17.647 * VM • T « (Pb « PM / 13. b)) / (TM * 460.)
17.647 * 116.493 « .986 * ( 30.39 «• 3. OBJ / 13.6)
VMSTD • — — — — — ------ .... --- ......................... = 117.963 DSCF
1 66. «• 400.)
VOLUME OF MATER VAPOR AT STANDARD CONDITION!*
V«C « .0470? « VLC
VnC • .04707 • 304. B 14.30 SCF
PERCENT MOISTURE IN STACK 6A3
BMO * (100. • VMC) / (VMSTD » VNC)
100. • 14.30
BHO * .——————...—.—.. i 10. el PERCENT
117.983 » 14.30
MOLE FRACTION OF CRT STACK GAS
FMD 3 (100. • BMO) / 100.
100. > 10.6
....................... 9
100.
AVERAGE MOtfcCULAR HEIGHT OF DMT STACK GAS
MCI s (pcoa • .44) *• (poa * .3^1 •» CPN« » PCUI * .it
MU 3 (15.00*44/100) » C 3.0«3a/100) 4 (182.0* .0) » 28/100 = 30.52
MOLECULAR WEIGHT OF STACK CAS
MMS a MO • (I. - (BwO/100)) «• 16. • (BMO/IOU)
MNS a J0.5a» (i. -iio.tti/iuoj) * i«. • iio.ai/ioo) s 29. IT
-------
STACK 6*3 VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THt SORTIVH • ITS « 460.))
V3 * 85.49 * CP • OtLP / ISURT(MNS • PS) * HNTS)
VS * »5.«9 • .84 • 551.40U / (SURTt 29.17 • 3t>.29) « 12. = 111.02 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s yS • AS • 3600/iaa
OS * 111.02 • 9161. 3600/144 s 25425996. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDAND CONDITIONS
OS9TD * 17.647 • OS • PS • (I. - (6*0/100)) / (TS « 460.)
17.647 • 25425996. • 30.29 • Cl. - (10.81/100))
OSSTO » «————.—.—......—.—....——......... c 13777Q32. SCFM
( 420. » 460.)
M PERCENT ISOKINETIC
at
M I SO * (305.58*(TS«460.))*((O.U02669*vUC)MVM*r*(PBHPNS13.6))/(TM»46«.)))/(TT«VS*P9*DN*Oft)
(305.58*( 420.»«60.))*l(0.002669* 304.)*( 116.993* ,»8fc«( 30.39«( 3.083/13.6))/( 66.+460.)))
I30 a ..........—[[[ s 96.93 PERCENT
120. • 111.02 * 30.29 * .227 * .227
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
-------
FIELD DATA
a\
ro
PLANT
SAMPLIMC LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC.
BAR. PRESS. (IN. M6)
PHILLIPS SwEtNY
FCC STACK
M5
00
F) 50,
30.34
STATIC PRESS. (IN. H20) -1.30
FILTER NUMBER (s*
STACK 1NSIDL OIM.(
PI TOT TUBE UOEFF.
THERM. NO.
LEAKAGE
3450207
IN) 1U8.00
.8«
.002 CFM
.00
•> 7.
5 IN.HG
DATE
HUN NUPBEK
PROBE LENGTH • TYPE
NUmE 1 I.D.
ASSUMED POISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
PtTt* HEAD OUF.
PROBE HEATER SETTING
HEATER BOX SETTING
11/15/82
9AMS
6* GLASS
.222
8.0
FB3
2.00
250.
250.
METER CALIB. FACTOR i.oo*
READ » NECOKO DATA
TRAVERSE SAMPLE CLOCK
POINT
NO.
INIT
TIME TINE
(HIM.) (24-HR
ft nr tt i
IL.UU n J
0 1016
10.0 0
20.0 0
30.0 0
40.0 0
50.0 U
60.0 0
70.0 «
80.0 0
90.0 V
100.0 0
110.0 0
120.0 1216
EVERY 10. 0 MINUTES
GAS METER VELOCITY
READING MEAD
ICU.FT.) (IN
966. 96*
975.270
903.440
9S1.700
.070
S.440
16.760
25.140
33.600
at. 940
50.430
5S.920
67.302
,H20)
.900
.900
.900
.950
.900
.9vO
.900
.950
.900
.950
.950
.900
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIWEO
8.77
2.79
2.81
2.90
2.84
2.85
2.85
2.93
2.86
2.94
2.94
2.88
H20)
ACTUAL
2.77
2.79
2.81
2.90
2.84
2.85
2.85
2.93
2.86
2.94
2.94
2.88
STACK
TEPP
(DEG.F)
417.
417.
417.
417.
417.
•17.
417.
417.
417.
417.
417.
417.
DRY GAS PETER PUPP SAPPLE IPPINGER
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.HG) (DEG.
INLET OUTLEI
55. 52. 5.8
59. 53. 5.7
67. 55. 5.7
70. 57. 5.8
72. 59. 5.8
72. 59. 5.8
73. 59. 5.9
75. 59. 6.1
75. 60. 6.0
75. 61. 6.3
78. 62. 6.3
82. 65. 6.3
F) (DEG.F)
0.
65.
106.
116.
107.
62.
75,
75.
73.
73.
76.
75.
TOTALS
AVEKASE
120.0
100.336
2.86
2.86 417,
71,
58.
6.0
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PHILLIPS SWEENY uo
TEST 9AM5
FCC STACK
>
I-1
-------
PB BAROMETRIC PRESSURE
PS1 STATIC PHES OF STACK GAS
P3 STACK PRES, A83.
T3 AVERA.6E STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTU STACK FLOW RATE* DRY*
US ACTUAL STACK FL()H MATE
ISO PERCENT ISOK1NETIC
UN FILTERABLE-AMBIENT
MG. EPA 5
CS FILURABLE-AMBIENT
30.34 IN-Hl, 770. bit
•1.38 1N-H20 -35.05
30.24 U-M& 768.06
417. F 214.
99.4 FPS 30.3
9161. 30-fN 5.910
12592136. SCFH 356572.
22755056. ACFH 644355.
97.5 97.5
280.6 280.6
.0418 GR/DSCF* 95.563
HM-HG
fM-HG
C
fPS
SO-M
3CHM
ACHH
CS
FILTERABLE-SIS
MG. EPA 5
FILTERABLE-315
73.0
.0109 GR/DSCF*
73.0
24.861
• 6B DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULAR CALCULA1IONS TEST NO. 9AM5
FCC STACK
VOLUME OF OHV 6A3 SAMPLED AT STANDARD CONUITIONb
VMSTO * (17.647 • VM * V • IPO • PM / 13.6)) / (TM •» 4bO.)
17.647 • 100.336 • 1.006 • ( 30.34 * 2.«63 / 13.6)
VMSTO a ———————.............. .. ..... s 105.703 OSCF
( 6b. » 460.)
VOLUME OF NATER VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLl
VNC * .04707 • 219. • 10.32 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VMSTO « VNC)
100. • 10.32
> BMO s .......................... s 9.05 PERCENT
,L 103.703 * 10.32
0>
cn
MOLE FRACTION OF DRY STACK GAS
FMD a (100. • BNO) / 100.
100. • 9.1
FMD « ....................... = .909
100.
AVERAGE MOLECULAR NEI6HT OF ORV STACK GAS
MO s (PC02 • .44) » (P02 • .32) » (PN2 * PCU) • .2«
MO c (12.20*44/100) t ( 4.6*32/100) «• ((83.a* .9) « 25/10U s 30.14
MOLECULAR NEIGMT OF STACK GAS
MNS s MO * (1. • (BNO/1UO)) * IS. • (BMU/100)
MNS 8 30.14* (1. •»( 9.05/100)) *!«.*( 9.05/100) * 29.04
-------
SIACK 6*9 VELOCITT AT STACK CONDITIONS
OELP * SUM. OF THE 88HTIVH • ITS «• 460.))
VS = 85.49 * CP * OtLP / (SU»I(HNS * HS) « PNTSJ
VS ' B5.4S • .60) « a91.979 / tSOfU ( 29.1)4 * 30.24) • 12. s 99. 36 FP3
STACK 6A9 VOLUMtTRIC FLO" AT STACK CONDITIONS
OS * VS • AS * 3600/144
OS * 94. 3b * 9161. 5bO«/t«4 s £2755056. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDANO CONDITIONS
OSSTD « 17.647 • 93 • PS • It. - IBMO/lOO)) / ITS * 060.1
1T.*«7 • 22755056. • 30.24 •(!.-( 4.05/100))
OSSTD * .—.——— -------- .............................. x 12592136. SCFM
< 417. » «bO.)
PERCENT ISOKINETIC
ISO = (305.5««
-------
FIELD DATA
>
H
a\
PLANT PHILLIPS SHELNT
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR 00
AMBIENT TEMP. (OEG.F) 50.
BAR. PRESS. (IN. HG) 30.34
STATIC PRESS. ( IN. M20) -1.30
FILTER NUMBtHtS) 3450205
STACK INSIDE DIM. (IN) lOfl.OO .00
PITUT TUBE COtFF. .64
THERM. NO.
LEAKAGE .Old CFM « 14.0 IN.HC
METER CALIB. FACTOR .966
READ « RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK CA3 METER VELOCITY ORIFICE PRESSURE STACK
POINT riME TIME READING HEAD DIFFERENTIAL TE»P
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (OE6.F)
INIT 0
10.
20.
30.
40.
SO.
60.
70.
ao.
90.0
100. 0
110.0
120.0
bkU^n /
1017
0
0
0
0
0
0
u
0
0
0
0
1217
OESIMEO
645.186
6*3.910
662.570
671.300
600.000
608.800
697.560
706.450
715.430
784. 7SO
753.140
742.040
7b0.727
.900
.900
.900
.950
.900
.900
.900
.950
.900
.950
.950
.900
2.71
2.79
2.81
2.90
2.64
2.65
2.65
2.93
2.66
2.94
2.94
2.68
ACTUAL
2.77
2.79
2.01
2.90
2.64
2.85
4.05
2.93
2.66
2.94
2.94
2.86
DATE 11/15/82
RUM NUPBEK 9BMS
PROBE LtftbTH 6 TYPE 6* GLASS
NU24LE : 1.0. .221
ASSUMLD MOISTURE 8.0
SAfPLE BOX NUMBER
PETER BOX NUMBER FBS
PETER HCAO DIFF. 1.95
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
0*V GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (Ifc.HG) (OEG.F) (OEG.F)
IALET OUTLET
• 17.
«17.
• 17.
• 17.
• 17.
• 17.
• 17.
•17.
• 17.
• 17.
•17.
• 17.
59.
65.
70.
72.
76.
77.
79.
ao.
79.
79.
ao.
82.
5*.
56.
59.
61.
63.
64.
66.
66.
69.
70.
71.
73.
9.0
9.2
9.6
9.9
11.3
11.9
12.7
13.0
12.6
13.2
13.2
13.2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
55.
57.
75.
75.
79.
72.
66.
64.
69.
67.
64.
TOTALS
AVERAGE
120.0
105.541
2.66
2.66 *17,
75.
65.
11.6
62.
-------
PARTICULATE FIELD DAT* 6 RESULTS UbULATIOt
PLANT- NAME AND ADDRESS IE3T TEAM
PHILLIPS SwEtNY DO
TEST 98MS
FCC STACK
CO
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, Mlh.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZ4LE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/15/62
1017
1217
120. U
12
.986
.221 IN
.84
2.86 IN-H20
METRIC UNITS
1
1017
1217
120
12
5
72
1/15/82
.0
.988
.6 PM
.84
.7 PN-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TP AVERAGE GAS METER TEMP
VPSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL M20 COLLECTED IN
1MPINGERS AND SILICA GEL,MI.
VkC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BtaO PERCENT MOISTURE BY VOLUME
FPD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BT VUL.» DNY
P02 PERCENT 02 BY VOL.* U»Y
PCO PERCENT CO BY VOL., D»Y
PNet PERCENT N2 6V VOL., URY
MD MOLECULAR MT-ORY STACK GAS
MMS MOLECULAR "T-3UCK GAS
10S.S4I CU-FT
2.989 CU-M
69. r F
106.137 SCF
218.4
10.280 SCF
8.03
.912
12.20
4.60
.00
83.20
30.14
24.06
20
3
218
8
12
4
83
30
29
.9 C
.005 8CP
.4
.291 SCM
.83
.912
.20
.60
.00
.20
.14
.06
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES OF STACK GAS
P9 STACK PRES* AflS.
TS AVERAGE STACK TEMP
VS AVG STACK G*S VELOCITY
AS STACK AREA
USSTD STACK FLO* RATE. ORT*
US ACTUAL STACK FLOW RATE
ISO PERCENT 1SOK1NETIC
MM FILTERABLE-AMBIENT
MS. EPA 5
CS FILTERABLE-AMBIENT
30.34
-1.38
30.24
417.
99.3
9lbl.
1*617056.
22744488.
100.5
245.4
IM-HG
1N-M20
Ih-Mb
F
FPS
SU-Ift
SCFM
ACFH
770.64
•35.05
768.06
214.
30.3
5.910
357277.
644056.
100.5
245.4
*M-HG
PM-H2U
fM-HG
C
>»PS
SO-M
SCNH
ACMH
.0357 GR/OSCF*
81.659 CG/DSCf
H
O\
vo
MN
CS
FILTERABLE-SIS
MG. EPA S
FIi.TERABLE-315
59. b
.0087 GR/USCF*
59.6
19.832 *G/D3Cf
• 68 OE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST *u. <>BHS
FCC STACK
VOLUME Of ORT GAS SAMPLED AT STANDARD CONDITIONS
VMSTD * (17.647 • VH • Y • (PB » PM / 13.b)) / (TM + 460.)
17.647 * 10S.S41 • .986 • ( 30.34 » 2.863 / 13.6)
VMSTD * .—..——.— ... .......... ............ s 106.137 DSCF
( 70. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC a .04707 * VLC
VnC * .04707 • 816. s 10.26 SCF
PERCENT MOISTURE IN STACK GAS
8*0 * (100. • VNC) / (VMSTO » VNC)
100. • 10.28
> BNO a .——.——— ........ s a.83 PERCENT
,L 106.137 » 10.28
«J
O
MOLE FRACTION OF DRV STACK GAS
FMD s (100. • 6NO) / 10U.
100. - 6.8
FMD * .———.—.——— r .S12
100.
AVERAGE MOLECULAR HEIGHT OF OHT STACK GAS
MO a (PC02 • .44) * (P02 * .32) + (PN2 * PCU) • .28
MO a (12.20*44/100) + ( 4.6*32/100) * (183.2* .0) * 28/100 s 30.14
MOLECULAR HEIGHT OF STACK GAS
MNS a MO • (1. • (BnO/100)) * Id. • (HfcU/100)
VMS a 30.14* (1. -I d.83/100)) + Id. • ( 8.83/100) * 29.06
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SQRUVH • ITS » 460.))
VS * 8S.49 • CP • OtLP / (SQRTCMMS * PS) • PNTS)
VS s 65.49 • .84 • 491.179 / (SURTf 29.06 • 30.84) • 12. = 94.31 FPS
STACK 6AS VOLUMETRIC FLUN AT STACK CONDITIONS
OS * VS • AS • 3600/144
03 * 99.31 • 9161. 3600/144 = 22744488. ACFH
STACK 6AS VOLUMETRIC FLO" AT STANDARD CONDITIONS
OSSTO * 17.647 • 83 * PS • (1. - (BHO/100J) / (TS * 460.)
17.647 * 28744406. • 30.34 •(!.-( 0.83/100))
OSSTO « .————————— ... ............... s 12617056. SCFM
( 417. «• OeO.)
PERCENT ISOKINETIC
ISO * (30S.58«(TS*«60.))«<(0.002669«VLC)*(VMY*lPB«(PM/13.6))/(TM+4tO.)))/CTT«V3«l>3«DN«OM
(30S.58*( 417.+460.))*((0.002669* 218.)+( 10S.541* .988*( 30.344( 2.863/13.6))/( 70.«460.)))
ISO * —————————— [[[ « 100.45 PERCENT
120. • 99.31 • 30.24 • .221 • .221
PAPTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
-------
FIELD UATA
PLANT PHILLIPS PETHO
SAMPLING LOCATION FCC STACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DIG. F) SO.
BAR. PRESS. (IN. Mb) SO. 34
STATIC PRESS. UN. H20) -1.36
FILTER NUMBER13) 54SQ£0(>
STACK INSIDE UIH.(IN) 108.0(1 .00
PITOT TUBE CCfcFF. .84
THERM. NO.
LEAKAGE .015 CFM ti 16.
METER CALIB. FACTOR l.VOl
REAU « RECORD DATA EVtRY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
P01NI
NO.
INIT
OTALS
VERAGE
TIME
(MIN.)
0
10. 0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
120.0
TINE
(24-HR
f i fir W \
IL.UI R J
1016
1026
1036
1046
1056
1106
1116
1126
1136
1146
1156
1206
1216
READING
(CU.FT.)
481.347
490. ato
500.380
509.410
519.420
528.430
538.410
547.440
557. itlO
5bb.620
576.000
5bS.%60
594.419
115.572
HEAD
(IN.H20)
2.400
2.400
2.400
2.400
2.400
2.400
2.400
2.300
2.400
2.400
2.4VO
2.400
SNEtMV
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.00
.00
.00
.00
.00
3.00
3.00
2.90
3.00
3.00
3.10
3.10
3.01
H20)
ACTUAL
3.00
3.00
3.00
3.00
3.00
3.00
3.00
2.90
3.00
3.00
3. 10
3.10
3.01
STACK
TEPP
(DEG.F)
417.
416.
414.
416.
418.
418.
419.
419.
419.
421.
42ll
418.
DATE 11/14/82
RUN NUPBER 9CM5B
PROBE LENGTH 1 TYPE 6 FT GLASS
KU22LE 1 I.D. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
PETEN BOX NUMBER FBT
PETER HEAD OIFF. 1.71
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
DRY GAS PETER PUPP SAPPLE IMPINGER
TEPP
(OEG
IM-ET
52.
52.
se!
60.
60.
62.
64.
64.
65.
66.
66.
60.
.F)
OUTLET
50.
50.
50.
52.
54.
54.
54.
56.
56.
57.
58.
58.
54.
VACUUM
(IN.HG)
11.2
12.2
12.2
13.0
12.8
13.0
13.0
12.0
12.7
13.0
13.5
14.5
12.8
BOX TEMP
(DEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(OEG.F)
68.
74.
102.
90.
94.
92.
84.
78.
80.
84.
74.
78.
83.
-------
PARTICIPATE FIELD DATA & RESULTS TABULAUUK
PLANT- NAME AND ADDRESS TEST Tt*M LEADER
PHILLIPS PETHO SHEENT PHILLIPS
TEST 9CMSB
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
1
£j Vf
CO
Tf
VNSTO
VLC
VfcC
MHO
FKO
PC02
P02
PCO
PN2
MD
HNS
TIME-START
TIME-FINISH
NET TIME OF TEST, MlN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DRUP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPIN6ERS AND SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL., DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR HT-OHV STACK GAS
MOLECULAR nT-STACK GAS
ENGLISH UNITS
11/14/82
1016
1216
120.0
12
1.001
.224 IN
.64
3.01 IN-H20
113.572 CU-FT
57.3 F
118.535 SCF
265.4
13.434 SCF
10.16
.698
12.20
a. 60
.00
83.20
30.14
26.90
METRIC UNITS
11/14/82
1016
1216
120.0
12
1.001
5.7 MM
.64
76.4 MM-H20
3.216 CU-M
14.0 C
3.357 SC*
265.4
.360 8CH
10.18
.698
12.20
4.60
.00
63.20
30.14
26.90
-------
PS BAROMETRIC PKESSURE
P31 STATIC PHES OF STAt* GAS
PS STACK PRE3, ABS.
TS AVERAGE STACK TEMP
V3 AV6 STACK 6»S VELOCITY
A9 STACK AREA
8SSTO STACK FLO* RATE. DRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
KIN FILTERABLE-AMBIENT
MG. EPA S
CS FILTERABLE-AMBIENT
30.31 1K-HG
-1.38 IN-H20
3d.an IN-HG
416. f
111.3 FPS
9161. SO-1N
13914832. SCKM
35497008. ACFH
99.0
63.2
.0082 GR/D3CF*
770.64 CM-HG
-35.05 f*-M20
768.Ob PM-HG
215. C
33.9 CPS
5.910 Sg-M
394026. 5CKM
721999. ACfH
99.0
63.2
10.831 PC/DSC*
MN
CS
FILTERABLE-160
MG. EPA 5
FILTERABLE-160
53.6
.0070 GR/OSCF*
53.6
15.970 PG/D3CP
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
47.7
47.7
.0062 GR/OSCF. 14.212 PG/D3C*
MN
CS
FILTERABLE-31S
MG. EPA b
FILTERABLE-315
44.5
44.5
.0058 GR/OSCF* 13.259
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCC STACK
VOLUME OP DRY GAS SAHPLIO AT STANDAHD CONDITIONS
VMSTO • (IT. 641 • VM • Y • IPB * PM / 13.6)) / (TM «• 460.)
17.647 • 113.573 * 1.001 • ( 30.34 » 3.006 / 13.6)
VMSTD a ..——.—— ---- ........ --- . ---- .......... --- .. ----- = 1 10. 535 DSCF
( 57. » 460.)
VOLUME OP HATER VAPOR AT STANDARD CONDITIONS
VHC * .04707 * VLC
VftC • .04707 * Z8S. = 13.43 SCF
PERCENT MOISTURE IN STACK GAS
BNO « (100. • VNC) / (VMSTD » VNC)
> 100. • 13.43
' 8*0 « -....— ..———— ...... * 10.18 PERCENT
^ 116.535 * 13.43
U1
MOLE FRACTION OF DRY STACK GAS
FMO • (100. • BNO) / 100.
100. - 10. i
FMO * —— — .......... ...... = .898
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 • .«4) * (P02 * .32) 4 (PN2 * PCO) • .it
Ml) s (12.20*44/100) * ( 4.6*32/100) » «83.
-------
(Tl
STACK GAS VELOCITY AT STACK CONDITIONS
DELP • SUM. Of THE SOHT(VH • (TS « 460.))
VS 3 «S. 49 • CP • DfclP / (SURT(HMS * PS) • PNTS)
VS s 65.49 • .84 * 549.962 / (SURU 26.90 • 30.24) • 12. c 111.33 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS 3 VS * A3 • 3600/144
OS 3 111.33 • 9161. 3600/144 = £5497008. ACFH
STACK CAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO * 17.647 • 03 • PS • (1. - (BMO/100)) / (TS * 460.)
17.647 • 25497006. * 30.24 * (I. • (10.16/100))
OSSTO « -——..— ............... ----- ................... * 13914632. 3CFH
( 4U. » 460.)
PERCENT ISOKINETIC
ISO 3 (30S.S6t(TS«460.))*((0.002669*VLC)«(VM*Y*(PI)«(PM/l3.6))/(TM«4bO.)))/(TT*VS*PS*ON
-------
FIELD DAT*
-o
-J
PLANT PHILLIPS PETKO
SAMPLING LOCATION FCC J>TACH
SAMPLE TYPE MS
OPERATOR PHILLIPS
AMBIENT TEMP. (DEC. F) SO.
BAR. PRESS. (IN. H6) 30.34
STATIC PRESS. ( IN. H20) -1.36
FILTER NUMBER(S) 3450208
STACK INSIDE DIM. (IN) 106.00 .00
PITOT TUBE COEFF. .e«
THERM. NO.
LEAKAGE .010 CFM tf 10.
METER CALIB. FACTOR .906
REAU » RECORD DATA EVERY 10.0 MINUTES
TH A VERSE SAMPLE CLOCK 6AS METER VELOCITY
POINT TIME TIME READING HEAD
NO. (MIN.) (24-MB (CU.FT.) (IN.M20)
ft tfiftt i
CLUCKJ
1NIT 0 1016 430.548
10.0 1026 «4o.ooo a. 400
20.0 1038 449.270 2.400
30.0 1044 458.950 2.400
40.0 1056 468.570 2.400
50.0 1108 478.060 2.400
60.0 1118 487.490 2.400
70.0 1128 497.010 2.400
80.0 1136 506.230 2.300
90.0 1148 515.750 2.400
100.0 1158 525.410 2.400
110.0 1206 535.050 2.4UO
120.0 1218 544.773 2.400
SNEEItV
0 IN.HG
ORIFICE PRESSUHE STACK
DIFFERENTIAL TEMP
(IN.M20)
(DE6.F)
DESIRED ACTUAL
.00
.00
.00
.00
.00
.00
.00
.90
.00
.00
3.00
3.00
.00 417.
.00 416.
.00 414.
.00 416.
.00 418.
.00 418.
.00 419.
.90 419.
.00 419.
.00 421.
.00 421.
.00 421.
DATE
RUN NUPBER
PHOBE LENGTH « TYPE
NOZiLE : I.D.
ASSUMED POISTURE
SAPPLE BOB NUMBER
PETER BOX NUMBEN
METER HEAD OIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
11/14/82
9DM5B
6 FT GLASS
.226
12.0
FB2
l.M
320.
320.
DRY GAS METER PUMP SAMPLE IMPIN6ER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (OE6.F) (DEG.F)
INLET OUTLET
54. 54. 7.2
54. 54. 6.8
*4. 54. 7.0
58. 52. .5
58. 52. .0
58. 52. .0
59. 53. .2
60. 56. .8
61. 55. .0
62. 56. .5 0
64. 56. .5 0
64. 56. .5 0
72.
76.
66.
110.
«6.
66.
62.
76.
70.
74.
76.
76.
TOTALS
AvERAbE
120.0
114.225
2.99
2.99 418.
59.
54.
6.2
80.
-------
PARTICIPATE FIELD DATA h NESULTb TAbULATIb*
PLANT' NAME AND ADDRESS TEST TtAM LEADER
PHILLIPS PETRO SNEENV PHILLIPS
TEST 9DM5B
FCC STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLI6H UNITS
11/14/82
1018
1210
120.0
12
.986
.226 IN
.84
2.99 IN-H20
METRIC UNITS
11/14/82
1018
1218
120.0
12
.986
5.7 KM
.84
76.0 PM-I
> DROP
I
£J V* VOLUME OF DRY GAS SAMPLED
oo AT METER CONDITIONS
TP AVERAGE GAS METER TEMP
VPSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS ANU SILICA GEL,ML,
V*C VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BhO PERCENT MOISTURE BY VOLUME
F*D MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR NT-DRY STACK GAS
MftS MOLECULAR (NT-STACK GAS
CU-FT
56.5 F
117.596 3CF
243.5
11.462 SCF
3.234 CU-M
13.6 C
3.330 SCM
243.5
.325 SCf
8.08
.911
12.20
4.60
.00
83.20
30.14
29.06
8.88
.911
12.2V
4.60
.00
83.20
30.14
29.06
-------
PB BAROMETRIC PKESSuRt
PSI STATIC PMES OF STACK 6AS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK b*5> VELOCITY
AS STACK AREA
gSSTO STACK FLO" RATt, DRY*
OS ACTUAL STACK FtO* HATE
ISO PERCENT ISOKINETIC
NN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
30.34
-1.38
30.24
41B.
111.0
9161.
14077672.
25427770.
95.4
57.7
IN-HG
IN-H20
IN-HG
F
FPS
SU-IN
3CFH
ACFH
770.64
-35.05
768.06
215.
33.8
5.910
398637.
720038.
95.4
57.7
P»M-H6
PM-H20
PM-HG
C
fPS
SO-M
3CfM
AC»H
.0076 GR/OSCF*
17.329 KG/OSCf
VO
MN
CS
FILTERABLE-160
M6. EPA 5
FILTERABLE-160
51.7
.0068 GR/USCF*
51.7
15.527 PG/OSC"
CS
FILTERABLE-232
HG. EPA 5
FILTERABLE-232
48.6
.0064 GH/DSCF*
48.6
14.596 »G/D3Cf
MN FILTERABLE-315
MG. EPA 5
CS
FlLTtRABLE-315
4b.l
.0060 GR/OSCF*
46.1
13.845 PC/DSC*
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATION* itst NU. 9UM5B
FCC STACK
VOLUME OF OHY CAS SAKPLED AT STANUAHD CONDITIONS
VM3TD * (17.647 * VM • Y * (PB » PM / 13.6)) / (TM » 460.)
17.647 • 114. 42S * .966 • ( 30.34 * 2.992 / 13.6)
VMSTD • ..——.—— ------- ... .. ---- --- . ------- ... ----- ... 3 117.596 DSCF
I 57. * 460.)
VOLUME OF KATER VAPOR AT STANUAHD CONDITIONS
VMC * .04707 • VLC
a .04707 • 244. s U.«6
PERCENT MOISTURE IN STACK GAS
BMO * (100. * VNC) / (VM3TD » VNC)
> 100. • 11.46
' BNO a .———..——— — — c a. 08 PERCENT
Co 117.596 * 11.46
O
MOLE FRACTION OF DRY STACK GAS
FMO s (100. • 8HO) / 100.
100. - 8.9
FMD * — — .......
100.
AVEKAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO * (PC02 * .44) + (P02 • .32) + (PN2 » PCO) • .28
MO s IU. 20*44/100) » ( 4.6*32/100) » (183.2* .0) * 28/100 * 30.14
MOLECULAR HEIGHT OF STACK GAS
MuS a MO * (1. • (BftO/100)) * Itt. • (bNU/100)
MHS 3 30.14* (1. -I 8.88/100)) » 18. • ( 8.88/100) = 29.06
-------
STACK CAS VELOC1TT «T STACK CONDITIONS
DELP « SUM. OF THt SOMMVH * (IS » 460.))
VS » aS.49 • CP • OELP / ISURT(MHS • PS) * PN1S)
VS s ftS.49 • .64 • 509.96,; / (SURU 89.06 • 30.24) • 12. = 111.03 FP3
STACK GAS VOLUMETRIC FLOM AT bTACK CONDITIONS
OS » VS • AS • 3600/144
OS « 111.03 • 9161. 3600/144 c £5037776. ACFN
STACK CAS VOLUMETRIC FLOH AT STANDARD CONDITIONS
OSSTO « 17.647 • flS • P3 • (1. • (BNO/100)) / (TS » 460.)
17.647 • 85027776. • 30.24 •(!.-( 8.80/100))
OSSTO » ———.—————— ...................... e 14077672. SCFH
( 418. » 460.)
PERCENT ISOKINETIC
ISO s (305.sa*(TS»4feO.))*((0.002669*VlC)*(V**T*(PB»(PM/13.6))/(TM«4bO.)))/(TToVS*PS*DN*ON)
(30S.S8«( 4ia.«4bO.))*((0.002669* 204.)*( 114.225* .986*( 30.34»( 2.992/13.6))/( S7.*460.)))
ISO * .—..——[[[ * 95.59 PERCENT
120. • 111.03 • 30.24 • .226 « .226
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
-------
FItLO OAT*
PLANT
SAMPLING LOCATION
SAMPLE 1VPE
OPERATOR
AMBIENT TEMP.(DEC.F)
BAR.PRESS.(IN.H6)
STATIC PRESS.(IN.H20)
FILTER NUMBEROJ
STACK INSIDE DIM.(IN)
PITUT TUBE COLFF.
THEHM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SaEtNY
FCC STACK
M5-450
DO
60.
30.27
-1.30
34*0200
toa.oo .00
.64
.002 CFM • 10.0 IN.H6
I.OOb
DATE 11/15/82
RUN NUMBER 10AM54
PROBE LENGTH t TYPE 6* GLASS
HUZZLE t I.D. .219
ASSUMED MOISTURE 6.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FB3
PETER HEAD OIFF. 2.00
PROBE HEATER SETTING 450.
HEATER ttOX SETTING 450.
READ * RECORD DATA EVERT 10.0 MINUTES
00
Is)
TRAVERSE
POINT
NO.
IN1T
SAMPLE
TIME
(MIN.)
0
10. 0
20.0
30.0
40.0
50.0
60.0
70.0
00.0
90.0
100.0
CLOCK
TIME
(24-HR
1344
0
0
0
0
0
0
0
0
U
1524
GAS METER VELOCITY
READING HEAD
(CU.FT.) (IN
67.554
75.970
04.490
93.050
101.520
110.020
118.600
.H20)
.950
.950
.950
.950
.950
.950
127.260 2.000
135.990 2.050
144.600 2.000
153.105 1
.950
URIFICE
PRESSURE
DIFFERENTIAL
(IN.
UESIHEO
2.94
2.95
2.97
2.90
2.99
2.99
3.00
3.15
3.07
2.99
H20)
ACTUAL
2.94
2.95
2.97
2.90
2.99
2.99
3.08
3.15
3.07
2.99
STACK
TEPP
(OEG.F)
420.
420.
420.
420.
420.
420.
420.
420.
420.
420.
DRY GAS METER PUMP
TEMP VACUUM
(OEG.F) (IN.HG)
lltLET OUTLET
73. 71.
77. 72.
02. 72.
85. 73.
»7. 73.
87. 73.
87. 73.
87. 73.
87. 73.
87. 73.
2
0
a
2
3
7
0
2
1
9
SAMPLE
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(OEG.F)
0.
87.
167.
150.
121.
107.
107,
102.
102.
111.
TOTALS
AVERAGE
100.0
05.551
3.01
3.01 420,
84,
73.
0.6
105.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME ANU ADDRESS TEST UAM LEADER
PHILLIPS SNEENV uu
TEST 1UAM54
FCC STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
Ptf
H up
CO
LO
TM
VMSTO
VLC
V*C
B»0
FMU
PCU2
P02
PCO
PN2
MD
MMS
TIME-START
TIME -FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF WATER VAPOH
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRV GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL., DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRV
MOLECULAR NT-OHV STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
11/15/82
1344
1524
100.0
10
1.006
.219 IN
.84
3.01 IN-H20
85.551 CU-FT
78.3 F
86.037 SCF
74.2
3.493 SCF
3.90
.961
14.60
4.20
.00
81.20
30.50
30.02
METRIC UNITS
11/15/82
1344
1524
100.0
10
1.006
5.6
.84
76.5
2.423
25.7
2.436
74.2
.099
3.90
.961
14.60
4.20
.00
81.2(1
30.50
30.02
MM
MM-H20
CU-M
C
SO
3CM
-------
PB BAROMETRIC PRESSURE
P31 STATIC PRES OF STACK CAS
PS STACK PRES, A8S.
TS AVERAGE STACK TEMP
VS AVG STACK 6A& VELOCITY
AS STACK AREA
VSSTU STACK FLOW RATE, DRV*
US ACTUAL STACK FLOn HATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.27 IN-HG
•1.38 IK-H20
30.17 IN-MG
420. F
99.4 FPS
9161. SU-IN
13229304. SCFM
22754948. ACFH
94.9
4S.1
.0081 GR/DSCF*
768.86 PM-HG
"35. 05 fM-H20
216. C
30.3 *PS
5.910 30-M
374614. SCMH
644352. ACPH
94.9
45.1
18.513 PC/DSC?
MN
>
I CS
H1
00
FILTERABLE-232
M6. EPA 5
FILURABLE-232
32.5
.0058 GR/DSCF*
32.5
13.341 PC/DSC*
MN
CS
FILTERA8LE-315
MG. EPA 5
FILTERABLE-31S
30.4
.0055 GR/DSCF*
30.4
12.479 CG/OSC*
* 68 DEC F, 29.92 IN.HG.
-------
00
Ol
FCC STACK
VOLUME OF DMT 6*3 SAMPLED At STANUAND CONDITIONS
VMSTO * (17.647 • VM * Y • (PB + PM / 13.6)) / (TM «• 460.)
17.647 • 85.551 • 1.006 • ( 30.27 » 3.011 / |3.6)
VMSTO « ———————— .................... . 3 86.03? USCF
( 70. t 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC « .04707 • VLC
VNC » .04707 • 74. 3 3.49 SCF
PERCENT MOISTURE IN STACK GAS
RMO s (100. • VNC) / (VMSTD * VNC)
100. * 3.49
BMO c .......................... s 3.90 PEkCENT
86.037 * 3.49
MOLE FRACTION OF DRV STACK GAS
FMD s (100. • BMO) / 100.
100. • 3.9
FMD * —————— s .961
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD s (PC02 • .44) * (P02 • .32) » (PN2 t PCO) • .28
MO * (14.60*44/100) * ( 4.2*32/100) t ((81.2* .0) • 28/100 s 30.50
NOltCULAR HEIGHT OF STACK GAS
MNS » MO • (I. - (8*0/100)) « IB. • (UNO/100)
MMS s 30.50* (1. -( J.90/100)) » 18. * ( 3.90/100) = 30.02
-------
STACK GAS VELOCITY AT STACK CuNUITIUNS
DELP * SUN. OF THE SOHTlVh • (TS + 460.})
V3 * 85.49 • CP • OtLP / (SURT(HMS • PS) • PNTS)
VS > 0S.49 • .64 • 410.351 / (SURT( 30.02 • 3U.17) * 10. a 99.3b FP3
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS * VS • A* • 3600/144
OS * 99.Jb • 9161. 3600/144 s £2754948. ACFH
STACK CAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
QSSTO a 17.647 * OS * PS * (1. • (8*0/100)) / (TS • 460.)
17.647 • 22754948. • 30.17 •(!.-( 3.90/100))
QSSTO * ————.-.- ..... ..................... z 13229304. SCFM
( 420. * 460.)
> PERCENT ISOKINCTIC
^ ISO * (30S.58*(TS«460.))*((0.0026b9*VLC)MV»«*Y*tPB«(PM/l3.6))/(TM«460.)))/(TT*V3*PS*ON*ON)
(305.58«( 420.*460.))«((0.002669* 74.)«( 85.551*1.006*( 30.27*( 3.011/13.6))/( 78.4460.)))
ISO « .............................. [[[ . 94.90 PERCENT
100. • 99.36 * 30.17 * .219 * .219
PARTICULATE LOADING — fcPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN • 15.43 / VMSTO
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEG.F)
BAR.PRESS.(IN.H6)
STATIC PRESS. UN.M20)
FILTER NUMBtR(S)
STACK INSIDE DIM.(IN)
P1TOT TUBE COtFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
PHILLIPS SftEENV
FCC STACK
M5-450
DO
60.
JO.27
•1.36
3450199
106.00 .00
.64
.020 CFM ri 11.5 IN.HG
.968
DATE 11/15/62
RUN NUMBER 10BM54
PROBE LENGTH ft TYPE 6* GLASS
KOZZLE ! 1.0. .223
ASSUMED MOISTURE 6.0
SAMPLt BOX NUMBER
METER BOX NUMBER FBS
METER nt»o DIFF. 1.95
PNOBE HEATER SETTING 450.
HEATER BOX SETTING 450.
READ * RECORD DATA EVERY 10.0 MINUTES
H-
00
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
*»t «/• M \
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H2U) (1N.H20) (DEG.F)
DESIRED
INIT 0
10.0
20.0
50.0
10.0
50.0
60.0
70.0
60.0
90.0
100.0
OTALS 100.0
VERAGE
1345
0
0
0
0
0
V
0
0
0
1524
751.065
759.910
766.620
777.760
786.600
795.690
804.640
613.710
622.790
631.600
840.632
69.567
.950
.950
,9bO
.950
.950
.950
2. QUO
2.050
2.000
1.950
2.94
2.95
2.97
2.96
2.99
2.99
3.06
3.15
3.07
2.99
3.01
ACTUAL
2.94
2.95
2.97
2.98
2.99
2.99
5.06
3.15
3.07
2.99
3.01
URY GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(OEG.F) (Ih.HG) (DEG.F)
IMPINGER
TEMP
(DEG.F)
INLET OUTLET
420.
420.
420.
420.
420.
420.
420.
420.
420.
«20.
420.
74.
60.
62.
87.
90.
92.
93.
93.
93.
93.
86.
73.
74.
76.
79.
60.
81.
81.
61.
61.
61.
79.
9.1
9.6
10.4
10.2
10.2
10.1
10.2
10.3
10.3
10.9
10.2
0.
0.
u.
0.
0.
0.
0.
0.
0.
u.
0.
0.
76.
125.
110.
99.
67.
T7.
74.
75.
60.
61.
-------
PARTICIPATE FIELD DATA A
PLANT- NAME AND ADDRESS
PHILLIPS SNEfcNV
IABULATIUN
TEST UAH LEAOtR
DO
TEST 10BMS4
FCC STACK
TEST DATE
1
H
CD
00
TB
TF
TT
NP
Y
ON
CP
PM
V*
TN
VMSTO
VLC
VNC
8*0
FPO
PC02
P02
PCO
PN2
MO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMEUR
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS ANU SILICA GEL, ML.
VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRV GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRV
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-SUCK GAS
ENGLISH UNITS
11/15/82
1524
100
10
3
89
83
87
122
5
6
14
4
81
30
29
.0
.988
.223 in
.84
.01 IN-H20
.567 CU-FT
.2 F
.658 SCF
.0
.743 SCF
.15
.939
.60
.20
.00
.20
.50
.74
METRIC tNITS
11/15/82
1345
1524
100.0
10
.908
5.7
.84
76.5
2.536
28.4
2.482
122.0
.163
6.15
.939
14.60
4.20
.00
01.20
30.50
29.74
PM
PM-H20
CU-M
C
SO
so
-------
PB BAROMETRIC PRESSURE
P31 STATIC PKES OF STACK GAS
PS STACK PRE3, ABS.
TS AVERAGE STACK TEMP
V9 AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLU* RATE* ORV*
US ACTUAL STACK FLO* RATE
ISO PERCENT ISUKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
00
VO
MN FILTERA8LE-3IS
MG. EPA S
CS FILTERABLE-315
68 OE6 F, 29.92 IN.HG.
30. c! 7 I
•1.38 I
30.17 1N-HG
420. F
99.6 FPS
9161. 30-1N
ACFH
95. 0
4a.B
.0079 GR/OSCF*
•35.0b >>
766.28 KM-HG
^16. C
30.4 CPS
5.910 9U-M
367579. SCMH
607)69. ACMH
95.0
44.8
IB.050 K6/D3O
30.4
30.4
.0054 GH/DSCF*
12.246 PG/OSC*
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST
FCC STACK
VOLUME OF DMT GAS SAMPLED AT STANDARD CONDITIONS
VMS10 * (17.647 • WM • T • IPB » PM / 13.6)) / (TM • 460.)
17.647 • 89.567 * .986 • ( 30.37 * 3.011 / 13.6)
VMSTO * ——————— -------- .... ---------------- . ----- - = 87.658 USCF
I 83. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 • VLC
V*C • .04707 • 122. * 5.74 SCF
PERCENT MOISTURE IN STACK GAS
BMO « (100. • VMC) / (VMSTD * VNC)
> 100. • 5.74
I BHO « —————— s 6.15 PERCENT
Jo 87.658 * 5.74
o
MOLE FRACTION OF DRY STACK GAS
FMO * (100. • BNO) / 10V.
100. - 6.1
FMD • ————— 3 .939
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO a (PC02 • .44) * (P02 • .32) » (PN2 * PCO) * .28
MO 3 (14.60*44/100) » ( 4.2*32/100) «• ((81.2* .0) * 28/100 = 30.50
MOLECULAR HEIGHT OF STACK GAS
MhS s HD • (1. • (8MO/100)) + IB. • (BHU/100)
s 30.50* (1. -( 6.15/1(10)) » 18. • ( 6.15/100) • 29.74
-------
STACK GAS VELOCITY *T STACK CONDITIONS
OtLP * SUM. OF THt SOKHVH * ITS » 460.))
VS * 85.49 • CP • DELP / (SURTCMMS » PS) • PNTS)
VS * 05.49 • .04 • 416.351 / ISliHH 29.74 • 30.17) • 10. s 99.83 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS * 99.83 • 9161. 3600/144 = 22862208. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTO • 17.647 • OS • PS • (1. • (BHO/100)) / (TS * 460.)
17.647 • 22862208. • 30.17 •(!.-( 6.15/100))
OSSTD • ..——..—....................................... s 14980842. SCFM
( 420. • 460.)
>
*L PERCENT ISOKINETIC
vo
H ISO • (30S.50*(T8*460.))*((0.002669*VLC) + (VMV*(PB*(PM/13.6))/(TM*4bO.)
(305.58*( 420.»460.))•((«.002669* 122.)»( 89.567* .988*( 30.27«( 3.011/13.6))/( 83.+460.)))
ISO m —..——.————.—.——.—.—...——...——.———...—.————..—..——..— • 95.04 PERCENT
100. • 99.83 * 30.17 • .223 * .223
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS f 0.001 • MN * 15.43 / VMSTO
CS s 0.001 * 44.8 • 15.43 / 87.658 : .0079 GR/OSCF
-------
FIELD DATA
VO
NJ
PLANT PHILLIPS PETRO
SAMPLING LOCATION FCC oTACK
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP. (DEG.F) 63.
BAR. PRESS. (IN. HG) 30.34
STATIC PRESS. (IN. H20) -l.Stt
FILTER NUMDER(S)
STACK INSIDE DIM. (IN) 108.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .005 CFM d 7.
METER CALIB. FACTOR 1.001
READ ft RECORD DATA EVERY 10.0 MINUTtS
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
TIME
(24-HR
1345
1355
1405
1415
1425
1435
1445
1455
1505
1515
1525
READING
(CU.FT.)
595.168
604.610
613.920
623.230
632.500
641.840
651.120
660.340
669.620
676.940
648.090
HEAD
(IN.H20)
2.400
2.300
2.300
2.300
2.300
2.300
2.300
2.300
2.3UO
2.300
SHEENY
5 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
OESlHEb
3.00
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
H20)
ACTUAL
3.00
2.90
«!.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
STACK
TEHP
(DEG.F)
424.
425.
424.
423.
423.
424.
424.
425.
425.
425.
DATE 11/14/82
RUN NUMBER IOCMSB
PROBE LENGTH I TYPE 6 FT GLASS
N022LE > I.D. .224
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
METER BOX NUMBER FBT
*ETER HtAO OIFF. 1.71
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEC
INLET
61.
60.
66.
66.
68.
'0.
71.
71.
M.
71.
.F)
OUTLET
59.
58.
59.
59.
60.
60.
61.
61.
61.
62.
VACUUM
(IN.HG)
.2
.5
.2
.0
.0
.u
.1
.3
.5
.8
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(DEG.F)
76.
112.
12U.
96.
7a!
80.
81.
78.
88.
TOTALS
AVERAGE
100.0
92.922
2.91
2.91 424.
68.
60.
6.3
0.
90.
-------
PARTICIPATE FIELD DATA 6
PLANT- NAME AND ADDRESS
PHILLIPS PETRO SHEENY
TABULATION
TEST UAM LEADER
PHILLIPS
TEST IUCMSB
FCC STACK
TEST DATE
vo
w
TB TIME-START
TF TIME-FINISH
TT NET TIME OF TEST, MIN.
NP NET SAMPLING POINTS
Y METER CALIBRATION FACTOR
UN SAMPLING NOZiLfc OIAMtTER
CP PITOT TUBE COEFFICIENT
PM AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTU VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL M20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VfcC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BfcO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PCU2 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL.* ORV
MD MOLECULAR nT-OKY STACK GAS
M*S MOLECULAR NT-STACK GAS
ENGLISH UNITS
11/10/82
1305
100.0
10
1.001
.224 IN
.84
2.91 IN-H20
92.922 CU-FT
METRIC UNITS
tl/14/82
1345
1525
100.0
10
1.001
5.7 MM
.84
73.9 MM-H20
2.631 CU-M
63.8 F
95.756 SCF
253.5
11.932 SCF
11.08
.889
14.60
4.20
.00
81.20
30.50
29.12
17.6
2.712
253.5
.338
11.08
.889
14.60
4.20
.00
81.20
30.50
29.12
C
SO
so
-------
PB BAROMETRIC PHESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
T3 AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLOW RATE, OHY*
OS ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA b
CS FILTERABLE-AMBIENT
30.3M-HG
-35.05 *M-M20
7b8.0b PM-HG
218. C
33.3 fPS
5.910 SO-M
380632. SCPH
709294. «CMH
99.4
48.7
I7.9b2 VG/QSC*
MN
r«
CS
FILTERABLE-lbO
M6. EPA 5
FILTERABLE-160
38.4
.0062 GR/OSCF*
38.4
14.163 KG/D3O
MN
CS
FILTERABLE-232
M6. EPA S
FILTERABLE-232
34.1
34.1
.0055 GR/OSCF* 12.577 KG/DSC*
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-315
31.6
31.6
.0051 GM/DSCF* 11.655 PG/DSC"
• 68 DE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS JEST
FCC STACK
VOLUME OF OMV GAS SAMPLED AT STANDARD CUNUIHUNi
VMSIO * (17.647 * VM • Y • IPB * PM / 13.6)) / ITM * 460.)
17.647 • 92.922 • 1.001 * ( 30.34 » 2.910 / 13.6)
VMSTD » ——————— --- ............. --- . ----- ..... --- . s 95.756 DSCF
( 64. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC • .04707 • VlC
VNC « .04707 • 253. s 11.93 SCF
PERCENT MOISTURE IN STACK GAS
BUD * (100. • VNC) / (VMSTD » VNC)
> 100. • 11.93
iL BNO * ——————— s 11.08 PERCENT
VO 95.756 * 11.93
cn
MOLE FRACTION OF DRY STACK GAS
FMD s (100. • BNO) / 100.
100. - 11.1
——— s .889
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO « (PC02 • .44) • (P02 • .32) * (PN2 » PCO) • .28
MO * (14.60*44/100) * ( 4.2*32/100) * ((81.2* .0) • 28/100 a 30.50
MOLECULAR HEIGHT OF STACK GAS
MNS « MO • (I. • (BNO/IVO)) * 18. • (BNO/100)
MaS s 30.50* (1. -(11.08/100)) » 18. • (H.Oo/100) t 29.12
-------
STACK GAS VtlUClTY AT STACK CONDITIONS
OELP • SUM. OF THt SQRT(VH • (TS » 460.))
VS * 65.49 • CP • OELP / (SORT(MK3 * P3) * PNT3)
VS » 09.49 • .04 • 451.931 / ISORT( 29.12 * 30.24) • 10. s 109.37 FPS
STACK 6AS VOLUMETRIC FLON AT STACK CONDITIONS
OS * VS « AS • 3600/144
OS s 109.37 • 9161. 3600/144 s 25048336. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD « 17.647 • OS • PS • (1. - 18*0/100)) / (TS * 460.)
17.647 • 25040336. * 30.24 • (1. • (11.08/100))
OSSTO • ———————————— — ............. 8 13441008. SCFH
( 424. + 460.)
*? PERCENT ISOKINETIC
H
^ ISO » (305.50*(T3»460.))«((0.002669*VLC)*(VM*V«(PB»(PM/13.6))/(TM*460.)))/(TT*V3*P3«ON«OM
(305.50*( 424.4460.))*((0.002664* 253.)•( 92.922*1.001* ( 30.34«( 2.910/13.6))/( 64.«460.)))
ISO « ———————«.————.—.———.———————.———.———.—...——. s 99.37 PERCENT
100. * 109.37 * 30.24 • .224 • .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS » 0.001 • MN • 15.43 / VMSTD
CS « 0.001 • 48.7 • 15.43 / 95.756 s .0070 GR/USCF
-------
FltLO DATA
VO
PLANT PHILLIPS PETRO
SAMPLING LOCATION FCC OUTLET
SAMPLE TYPE M5
OPERATOR PHILLIPS
AMBIENT TEMP.(DEG.F) 63.
BAR. PRESS. (IN. HG) 30.34
STATIC PRESS. (IN. H20) -1.38
FILTER NUMBER(S)
STACK iNSIOt DIM. (IN) 108.00 .00
PITOT TUBE COtFF. .64
THERM. NO.
LEAKAGE .005 CFM a 10.
METER CALIB. FACTOR .986
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
TIME
(24-HR
1346
1356
1406
1416
1426
1436
1446
1456
150o
1516
1526
READING
(CU.FT.)
544.907
554.590
564.020
573.370
582.860
592.310
601.670
611.000
620.300
629.510
638.707
HEAD
(IN.H20)
2.400
2.300
2.300
2.300
2.300
2.300
2.300
2.300
2.300
2.300
SNELNY
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
3.00
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
H20)
ACTUAL
3.00
2.90
2. 40
2.90
2.90
2.90
2.90
2.90
2.90
2.90
STACK
TtMP
(DEG.F)
424.
425.
424.
423.
423.
424.
424.
425.
425.
425.
DATE 11/14/82
RUN NUMBtK 10DM5B
PROBE LENGTH t TYPE 6 FT GLASS
NO/2LE : I.D. .227
ASSUMED MOISTURE 12.0
SAMPLt BOX NUMBER
METER BOX MUMBErt FB2
METEH nt»o DIFF. 1.73
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
DRY GAS METEH PUMP SAMPLE IMP1N6ER
TEMP
(OEG
INLET
54.
59.
60.
64.
64.
64.
66.
66.
66.
66.
.F)
OUTLET
54.
55.
54.
56.
56.
56.
56.
56.
56.
56.
VACUUM
(IN.HG)
.8
.2
.5
.5
.2
.2
.2
.2
.2
.5
BOX TEMP
(OEG.F)
0.
0.
0.
0.
V.
0.
0.
0.
0.
0.
TEMP
(DEG.F)
76.
76.
104.
102.
92.
84.
78.
72.
72.
74.
TOTALS
AVERAGE
100.0
93.800
2.91
2.91 424.
63,
56.
8.5
0.
81.
-------
PARTICIPATE FIELD DATA ft HESULT3 T»BUL»TIUN
PLANT- NAME AND ADDRESS 1EST TEAM LtAOER
PHILLIPS PETRO SMEENT PHILLIPS
TEST 10DMSB
FCC OUTLET
ENGLISH UNITS
TEST DATE
!
VO
03
T8
TF
TT
NP
Y
ON
CP
PM
V,
T»
VXSTD
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DlAMfcTER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
1
1346
1526
100
10
2
93
59
96
1/14/82
.0
.986
.227 IN
.84
.91 IN-H20
.800 CU-FT
.2 F
.047 SCF
METRIC UNITS
1
1346
1526
100
10
5
73
2
15
2
1/14/82
.0
.986
.8
.84
.9
.656
.1
.720
I'M
PM-H20
CU-M
C
sec
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BhO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PCU2 PERCENT C02 BY VOL., D«Y
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRV
MO MOLECULAR HT-DMV STACK GAS
M*S MOLECULAR NT-STACK GAS
257.7
12.130 SCF
257.7
.343 SC*
11.21
.668
14.60
4.20
.00
61. 20
30.50
29.10
11.21
.666
14.60
4.20
.00
81.20
30.50
29. 1U
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRfcS, ABS.
T3 AVERAGE STACK TEMP
VS AVG STACK 6A3 VELOCITY
AS STACK AREA
QSSTO STACK FLOW RATE* DRY*
0S ACTUAL STACK FLON RATE
ISO PERCENT ISOKINET1C
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
10.34 IK-Hb
•1.36 I&-M20
30.24 IN-Mb
420. F
109.4 FPS
9161. SO-IN
13425574. SCFH
25055460. ACFH
97.2
70.4
.0126 GR/DSCF*
770.64 PM-hG
-35.05 PM-H20
7b6.0b PM-HG
218. C
33.3
5.910
380172.
709496. ACPH
97.2
76.4
26.629 PG/D3CP
30-M
MN
CS
vo
vo
FILTERABLE-160
MG. EPA S
FILTERABLE-160
52.6
.0065 GR/DSCF*
S2.6
19.342 PG/DSC*
MN
CS
FILTERABLE-232
MG. EPA S
FILTERABLE-232
46.2
.0074 GR/OSCF*
46.2
16.966 PG/D3C*
MN
CS
FILTERABLE-315
MG. EPA 5
FILTERABLE-SIS
40.6
40.6
.0066 GR/DSCF* 15.003 MG/OSC*
• 68 DE6 F, 29.92 IN.HG,
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST
FCC OUTLET
VOLUME OF DRY GAS SAMPLED AT STANUAHO CONDITIONS
VHSTO * {17.647 • VM • Y • IPB » PM / 13.6)) / (TM * 460.)
17.647 • 93. BOO * .906 • ( 30.34 «• 2.910 / 13.6)
VM3TO s — — — — — - ------- - -------- — ------- — — -------- s 96.047 OSCF
VOLUME OF MATED VAPOR AT STANDARD CONDITIONS
V*C 8 .04707 • VLC
VMC « .04707 • 258. s 12.13 SCF
PERCENT MOISTURE IN STACK GAS
BMO • (100. * VMC) / (VHSTO » VNC)
>
I 100. • 12.13
£> BHO « —— — ......... .......... - n.21 PERCENT
O 96.047 » 12.13
MOLE FRACTION OF ORT STACK GAS
FMO = (100. • BNO) / 100.
100. - 11.2
FMD « .-.-•———————. e .eee
too.
AVERAGE MOLECULAR MEIGHT OF DRV STACK GAS
MO * (PC02 • .44) * (P02 • .32) • (PN2 t PCO) * .28
MD a (14.60*44/100) * ( 4.2*32/100) * ((81. 2* .0) • 26/100 s 30.50
MOLECULAR HEIGHT OF STACK GAS
MNS « HD * (I. • (BMO/1UO)) t |8. • (BNU/100)
MHS a 30.50* (I. •(11.21/100)) • 10. • (11.21/100) 8 29.10
-------
STACK CAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE SORHVH • (TS * 460.))
VS « 09.49 • CP • OELP / (SURT(MNS * PS) * PNTS)
VS * 85.49 • .84 • 451.931 / ISURU 29.10 • 30.24) • 10. s 109.40 FP3
STACK 6A8 VOLUMETRIC FLO* AT STACK CONDITIONS
OS > VS • AS * 3600/144
OS * 10*.40 • 9161. 3600/144 * 25055480. ACFH
STACK CAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD • 17.64? • US • PS • (1. - (BNO/100)) / (TS » 460.)
17.647 • 25055480. • 30.24 • (1. - (11.21/100))
OSSTD « [[[ s 1J42SS74. 3CFH
( 424. » 460.)
>
ro PERCENT ISOKINETIC
o
M ISO * (JOS.S8*(TS«460.))M(0.002669*VLC)MVM«T«(PB«(PM/!3.6))/(TM+460.)))/(TT«VS*PS*ON*DN)
(305.98*( 424.*460.))«((0.002669* 258.)»( 93.800* .986*1 30.34«( 2.910/13.6))/( S9.«460.)))
ISO « ....... . . —. .............................. .... ..... .... » 97.17 PERCENT
100. • 109.40 • 30.24 • .227 • .227
PARTICULATE LOADING — EPA METHOD S (AT STANDARD CONDITIONS) .
CS * 0.001 • MN • IS.43 / VMSTO
-------
APPENDIX B
FIELD DATA
B-l
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Sampling location /-CC-
Inside of far wall to outside
of nipple 7 II
Inside of near wall to outside/of
nipple (nipple length) //
Stack I.D.
Nearest upstream disturbance _
Nearest downstream disturbance
Calculated by
dd
dd
SCHEMATIC OF SAMPLING LOCATION
TRAVERSE
POINT
NUMBER
/
2
£
rxJ&jr
FRACTION
OF STACK I.D.
,OM
,//f
M
HACK 1.0.
f/4T
f ROOUCT OF
COLUMNS I AND 3
(TO NEAREST If INCH)
NIPPLE
LENGTH
ff
TRAVERSE POINT LOCATION
FROM OUTSIDE OF NIPPLE
(SIM OF COLUMNS 4 ft 5)
&W
tin
yi
4&e
fo5^
B-2
-------
CAS VELOCITY AND VOLUME DATA
1.
PL V
PLANT AND CITY
i i /^"N/
SAMPLING
CLOCK
LOCATION TIME
RUN DATE
/ J \ A Ml fv\r-
34 3' 40
fvL Wtslk Httf
43
RUN
NUMBER
JA
«
46 69
AMB. TEMP. BAR. PRESS STATIC PRESS
OPERATOR (*F) (in. Hg) (in. R2O)
T^/M HO 3*>j(f -! 1*
y
MOLECULAR
WT.
.*.
40 jAAfe-rt'' **
f 31 31 3S 31
STACK INSIDE DIMENSION (in.) PI TOT
3IAM OR SIDE 1 SIDE 2 TUBE **
/. o. r . . . ./y
MOISTURE
tf.rt? ^***XH
5* 41 44 47 70 73 76
FIELD DATA
-l.t
-I.ST'
/^/-S
^ LJ:.-
Jlffat*^
B-3
-------
EMISSION TESTING FIELD DATA
Nliiln ]>|M|» uLitjii
-TTifc" ' ' llJtjM
Illltliiliihlli) uhthi ithi|i«
^^^^^^^•^^^^^^^^IIIB^^B^^^
... .. K . . \ttoi\te
51153 I 34
MM»M
. ft' )
MT CAS NCTEI
TCNPERATUU
-------
tsst
NGI
nun t tit? MII
i
I 11 I 11 I I I I 11 I 11 iflft/l
I
urn IK IOCAIIM
vmt tm
i i I l I I i i i
I I I I I I I I I
Mint I H.O. UniUtU I «TU I ««• CAl.lUA;
ToTI BBTn (i) |wi M. wi MJ 4 N t I *•"« » blTiigl
3
I
ICAKCMtCK
MCTM
c
ntm
«l
1
flk J
MI CAS HCTEB
TtNrCMTUU
oniricc russuu
oirrcMMTtM.
UNI.lM.M.OI
-------
EMISSION TESTING FIELD DATA
-------
ZfflSZJQIffiliinfflQCQClCllfflla^
/Vti/i|i(tfd)iSi lA^tTiftQi i3t.^giHiyi i i i i i i i i i i l/ili/Wf/hiZJ ipfOl!
K
lOCAt KM T
T"
I i I I I I 1
1 I
viMtai
HW MtU.
m In*, mi
iUllt
rum wwi(s)
M«CI IMIH
emi. (MM*)
DDn
trm it u u *?iSi i
^
'''''''''''
' ' ' ' « i i i i i i i i i i i i l/id^i i i I
P*ft
_l£jti
'»''''
Mftlt.
l.t.
» ' » '
ill !m
1 win
J_L
Mill CM.
final *
m.
UMCMCI
cm
JJJ.JV
rKTOi
JLL
»*»•
•AMU
IOIU1
AJ.
-------
1.1 -1
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
h,;t.:*
Sample location
Run number
Sample date
£7, f ~
y" Recovery date
Particulate sample type |X M5
Particulate filter number
Recovered by
M5-320
M5-450
M5W
Parjtjculate filter sample I.D.
Probe rinse &x.h«j^ I.D.
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
9
9
9
9
Total moisture
S-74.0 g
9
g
g
9
9
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER^) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
'
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Silica gel
4 041 A-
% spent
Received by
Remarks
LABORATORY CUSTODY
Date
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant nL//iAs f-&rEt>Lffzt^ Sample date /^/^Z-
Sample location ^/vi/27. / -o^f-L^ Recovery date lifl/2
Run number /fi-ftl^ Recovered by T&£~ fc£}^*
Parti cul ate sample type i/ M5 M5-320 M5-450
•^
M5W
Parti cul ate filter number •3¥5"*/77 ^ „
Parjtjculate filter sample I.D. *?&47 A "B "^
Probe rinse x^£<*vzJX;£~ I.D. <£o47A
Purge train 20 min (check when completed) ^
Location of filter in back half ^f^"6^ ( 4 ^"^
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt <£<£- g 7?£-3 g 6<>3> / g g
Initial wt ^/? .^ 9 ^^-X 9 S~S~3 *Oq g .
Net wt -/fc* g //^./ g O(PJ g g
Total moisture JLl£s g ^/)
Silica gel
*§£$ 9
(s$& g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received
Remarks
LABORATORY CUSTODY
Date
B-9
-------
l-l
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant rUi&XN V* VM^L^-^ Sample date ///? /
Sample location fa^l "3*1. ( - O(^.U^\~ Recovery date U/ty/l
Run number /£ - Mfw Recovered by rl^-^vK^
Parti cul ate sample type M5 M5-320 M5-450
f^
%-L-
s
Particulate filter number A^^of? 6 \S
Parltjculate filter sample I.D. f*9-S"0 £ /
Probe rinse 14-iJZ* I.D. ^$Z>^ s*
Purge train 20 min (check when completed)
Location of filter in back half *^^/ \t"Z- — '
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt &&•? g J?^*? g $f£Y g g ^
Initial wt 6&2^§ 6/4 3> g $&!• 6 g g /
Net wt Af»^ g tottfo g l2rf g g
Total moisture J/0.1 g 9 O
Silica gel
y^.y g
573^ g
JT?* / g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA 404 o A- v
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
H202
H20
Acetone 444 2. ft—
Samples stored and locked
Remarks
Received b.
Remarks
LABORATORY CUSTODY
Date
/ '
B-10
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number / T>
Sample date
•••^
Recovery date
Parti cul ate sample type
Partlculate filter number
Parjtjculate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
M5W
I.D. 4o
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLOT
DATE
COMMENTS:
_TESTNO__L
SAMPLING TME (24* CLOCK).
SAMPLING LOCATION jf^^.
SAMPLE TYPE (BAQftNtEGRATEJI, CONTINUOUS).
ANALYTICAL ME1
AMBIENT
OPERATOR.
RATURE.
ORSAT LEAK CHECKED
^\^^ RUN
GAS ^^^v.
C02
02(NET IS ACTUAL Oj
READING MINUS ACTUAL
C02 READING)
CO{NET IS ACTUAL CO
READING MINUS ACTUAL
Oj READING)
N2(NETIS1NMMUS
ACTUAL CO READING)
1
ACTUAL
READING
/4-fe
n.z-
NET
^.6
34
2
ACTUAL
READING
/^.3
i7.(
NET
«3
2.S
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
*.f
2.7
MULTIPLIER
44/100
32/100
a/ioo
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
ld, Ifclb-mole
TOTAL
0)
I
M
10
-------
Mf CAS NCTCM
TtNPKMTUU
-------
EMISSION TESTING FIELD DATA
i i i i i i i i i i i i i i
i t i i i i i i .....
StKI IMIOf
OINU. (IKMfS)
MLTU MMUKSI
if) !wi KO.IWI M. »
33133 I 34
otiricc russuu
MT CAS NCTCB
TCNrEMTURC
SANTLK M»
TOtfCUIVM
(AHI.ln.NjO)
OUTLET
IT !.«»
•out
-------
film » tu?
MMHIK IOUIIM
im
ZE&EZCIfZlCEEIMEDBDOIt&EEfifcBEEtiQC'Q]^
-------
EMISSION TESTING FIELD DATA
AMI I CIT?
1111 M i i • i i 11i •iit|.jii.iN'M'^'i"i"M»i"NtM»M»«i»i»«N»i miff;
, ir|*i
i i i i i ..... • il
Mil
Mln|ll«iH'vl"l>'l4>H>l*h'h'lv'M"l>*M*l|
' ' ' ' i ' ' i i ' ' i
im
n|«'M"H"l'»l"l"l'>|n|i>HnH
i i i i i t i
VtMIOi
««hi|n|»*l'»h»|i>|it|n|»i|n|ii|i^»«|n|i«|ti
i i » i i i i i
11*
(VI
3EG
MISS.
(1*. Mf)
>iiniiiii«
MM 1C
mss.
|l«. «t,0)
m
lltMllt
n
nuci
EE
tntiMn biutUi
t««}Mm»i|M[n|»>|n|ti]v
I I I M M 1 I
SI«CI IMIH
DIM*. (IOCMI)
Mil'
M
I) Mil
J_L
11*11
»I»lil*l»i*i*l«l»l"l»«l'»l'^«l'*N'*h«i'« »«lt'|M|i4t«
Mltil.
1.0.
I>|»|II|M|M «t|»|»
i i i i
V« p*»iil
III !wi Mi
NTTII MTU
W.IMI wJ • M t
fi5
J_L
KHI Ul.
t
niuUt bti*1
Q^^>.
IIAKCMCCI
cm
I*. Nf
rocTOi
«''"•*
r«et»
fllOl
TDM
c»
mm
iEE
n]i»u\
J-L
PKi
ti|n[t«Ii
AoTy
MAT Ml
l|ll|U|»l
l«llllMlll
AJLJL
AtCflM
MU
'ilnln
t!Mtf*te
IV •
6,56,
VBLOC1TT
oniricc VUSSUM
oirrcwtirriAL
DCal
STACK
1BWHATUU
IMUT
IT i.»r
in
4314314 4]4S|4«T4y
OUT CAS MCTta
TCMPCKATUKC
OUTUT
IT ».»f
owt
VACUUM,
57153 I 54
TtMTCAATUM
ii_il
.1
3
7S-
7
32-4
•7.8
JO
m
IS
.5?
r;
3 .f
320
32
*
705 ./L
3 .
Ajd.
60
It 3
^
310
Z.S .
^L,
.2-
2
.2-
^
3 ~>
/o.
m 2.
J.2—
3,2-
3 »7>-
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
J? y * j
Sample date
Sample location ' 6u^;f 2."?. 1 - KLLJ^O /*" Recovery date f//t&/
Run number ^/\ - &!£'&'£& Recovered by T-T^/O}*-^
Particulate sample type ' M5 vtfe?M5-320 ' ^" M5-450
'£i"
M5W
Particulate filter number 33S°OlS~4 i/
Partjculate filter sample I.D. B ^
Probe rinse /^-CJL/KWP— ^ I«D. 4o(*o&- ^
Purge train 20 min (check when completed) *S
Location of filter in back half «{7 • LABORATORY CUSTODY
/V<^ TC
-------
••'-I
Plant
Sample location
Run number 3
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date //
17 . I -
Recovery date
Particulate sample type
Parti cul ate filter number
Parlbjculate filter sample I.D.
Probe rinse
Recovered by
M5-320
V M5-450
M5U
I.D.
Purge train 20 min (check when completed) _
Location of filter in back half Tuxauviltl
1st
impinger
MOISTURE
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
1.
Total moisture
g
g
g
20.
SiUc.a.9^
g
g
77.3 g
% spent
ess i
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
V
40104-
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
**t
LABORADRY CUSTODY
Date
B-18
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant r>JcJkpl 'Wl/i
Sample location' tu\Z4 3u~
Run number 3 ^ - /*?&+
Particulate sample type
Particulate filter number
Parjt.iculate filter sample
Probe rinse f^uJ^ji^
Purge train 20 min (check <
Location of filter in back
1st
impinger
Final wt 6^6- / g
Initial wt 4>£l 7 g
Net wt Itf'd g
VQJUM^ . Sample date H/IO/&
7 . / e^^ila Recovery dAte ///^/
&&T3> Recovered by /'CYsfi^
M5 XC M5-320 <^ M5-450
34SZ? /S~& /
I.D. 4o65B \S
I.D. 4o&Q fa \/
when completed) */
half ~*^vesiA\ 14*2^—
MOISTURE
2nd 3rd 4th
impinger impinger Impinger
~?0°>D g £#.9 g g
^/5-9 g .s"?^^ g ? g
#&,/ g /^-^ g g
Total moisture ^/.^g *? £
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
HA IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
HA
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
6^ &/ LIQUID LEVEL MARKED ^
^6&&/^ f LIQUID LEVEL MARKED ^
LIQUID LEVEL MARKED
4o2^ A S is
^041 fr ^ tS .
^O^L M-- ^^ is/
2.
^I/
M5U
Silica gel
g
fy1 g
> % spent
/
^
•
A^
Received by ^J^z^
Remarks A^/6 ^
-------
'-I
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ^UM,jM*U
Sample location * U**A>
Run number 2D - M^
Particulate sample type
Parti cul ate filter number
Parltjculate filter sample
Probe rinse /5-
Purge train 20 min (check
.VtiKUAt**^ Sample date ll/IO/Q"*-
2L7 • ) - $-*^ g
Total moisture ^^'^9
4th
impinger Silica gel
— g "77,7 g
<^O % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
USTODY
B-20
-------
DRY MOLECULAR WEIGHT DETERMINATION
PUUIT
DATE
COMMENTS:
NO.
SAMPLING T«E (24* CLOCK) __
SMIPLING LPCATIOM fj^A- 27. >
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)
ANALYTICAL METHOD Qfc.-cA.t-
AMBIENT
OPERATOR
ORSAT LEAK CHECKED
^v^^^ RUM
GAS ^^^^
C02
02
-------
-EMISSION TESTING FIELD DATA
nun « cm
0*11
i OUT ION
UNTIE tm
TEC
>.|>IJ.ljt;|,0|,.|,t|,,|M|,,|,.|..|>l|^lM
i i
1 | |
I | | I I I I I I I I I I
i i i i i i i i i
oftutn
CO
MUSS.
SIM It
mss
(IN. M,)l (I*. M,0)
STKC IMIOf
OIK*. (IKMS
»MOT IMWI
DDnDDDPDDPfflPEiaDininPIDiDIIESiEIIlEEStfllDnDnifflffl^
NOM tarn «•• im
Mini.
•U». IsANndwTtl I MTEl
(I) ;wi NO.IWI wJ •
MTH CM.
IIM CMtCK
IK. H(] cru
K
rural
NUT SIT
HUT sn
w.
ftp
•fcaio
MIA
JNU
ii u mi< In In min IN
N hi it
72
u M it lit iriit n «*«'*'
(ll
••
Ml
tor
'•I'M
l i I I I I I I I
OBI rice rucssuw
OirrtWMTIAL
ORV CAS NCTCa
TCMPERATUItC
SANTLC Ml
TPVtaATWU
-------
L
KMT » Cltf
Mt(
1MHIW I OUT I0«
tm
L
I I I I I I
1
OHMIOI
Cf)
I IM. STMIC
WttSS. HIM.
I (IN. N9)l (I*
MLt»
•IS)
OIMU. (IKMSI
C»
i i i i i i i i i i i i I
i.o.
W-BT.
Wfll
MI n.
Mill
• N •
MTU CM
»«£!« »
ItAH CHtCK
cnT
m.
FACTO!
c
flCTM
UT
If COM
MTA
•IH
n nln
i i i
7iA
OUT CAS MCTCa
TtMPCKATURC
-------
EMISSION TESTING FIELD DATA
cit?
I >l 11* I«I i I' I • i »h«|i»r.HiiH'«l'«l't|.i|.tfri|t.|»iHili.|it|n|i.|tt|n|m i.|i,in
I I > I I I
Mil
i|»|u|ll|n|>1
urn IK IOUIION
»[«l|44|«v|M|u|«»|^|*|>l|w|\l|vi|%tJM|llj%||M|MJtl|«)|t||M|«l
tm
>i|tHM|M|n|njn|ti|M|n|n|ii|n|tt|i
'^"^^^^•"^^^^•^^—^^•^^•^M^^^^k^ v^hMAa^AB^^^ABka^^M^^^t^^^^^^
i i i i i i i i i i i I'AV5 i i i i i i i i i !
TTTrnn;
•ftMIOI
lim»t|nhri»i|i«|i»(i»l"l"l"i"l"l"l'H'i|
mill
i|« i| i|4« [««JM|t i[tt|% I|M[M|M \\ i
l ' i » ' ' « i «
SI«CI IHIM
OIMI. (IKtfi)
»
II MMtlMllMI
J_L
' ' ^ ' «
IUM
C»
ulnlu
TMI
n|i«in
XI.
MB
DR.* i
ihrftti
wini.
i.l.
till
m
UHI I
•I til Mill
MINI WJ • N f
IUK CNCCR
JLL
i|
Mr I*"""
MTlMAfinl I? |g»
k
y|ilfMoiniiM3ii4
mioiai i mi3l>
7al?6j?7t7»|7< 30131 J3?|33|34|35t3<|3?
•OIOT
VBUKITff
oniricc rwssuH
OirrCUMTIAL
IANI.lN.NjOI
N7-0
.4
IHl
9-
MO
i>
3.2^
w
Vo
IM
i. *>
7.49
ISJ
^.<
£.0 .
88!
TJTO
zr?
7o .
2 CO
to
Z .L
3 .
2-.
/ao •
92,7 .
7,0
»C
3
Ho .
7..
^9
2.5S
J_X
-------
i
I
UKI IHIH
OMB. IIIMS)
iTiti iG|
mi.
1717
•U). tyUrtl'lVUI ' WTII
II) !MI M.IMIIOJ • M t
• III OM.
racial *
ItMCNCCI
!t!t
MCTOI
'»*»,
i i i i A
onincc russuM
DirrcuwriAi.
•TACB
TWUUtVM
MT CAS NCTCB
TCNrtMTUU
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date ffl/t>/tr
Sample location £*,*.\{ "2-7 . 1 tru.1 Ust~
Recovery date III /Hi T
Run number ^A -W ^*LO Recovered by rC<~&^ ,'
Particulate sample type M5
M5-320 M5-450 \f M5W
Particulate filter number "3<{& / 7>3 ^
Parlticulate filter sample I.D. ^7% £
Probe rinse djHift- I.D.
w^*
^7/ ft u^-
Purge train 20 min (check when completed)
Location of filter in back half /V-^.^ *fjh &, ,
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
*
Final wt &r('t g 7^Lt> g ton,** g g //%? / g
Initial wt &6b-3§ ^>Of. £ g ^
Net wt (>.*{ g ?/,9 g J
Total moisture /
1?£ * { g g f>O2*S^ g
13-. / g g ^^.^> g
J/V g f ^ * spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^7//P ^x
IPA IMP. CONTAINER I.D. VOlQ A" '/ LIQUID LEVEL MARKED
H,0, IMP. CONTAINER I.D, VW fV* / LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA W/0 A/ t/
H,0, V*/^ A //
H,0 «yuW J •
Acetone vo Vi- j*' >l//
Samples stored and locked
Remarks
f
t^r
W i/
LABORATORY CUSTODY
Received by CV^*C2^£.£^/ ^-^V^C^eL, Date J/ //
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ~Pd//fs
Sample date ///t OSes'*—
Sample location (A^J\ 2*?.^ o^MjJ^ Recovery date //////fe'Z —
Run number ~3 S /*! 5T
Particulate sample type
Particulate filter number
Parjtjculate filter sample
Probe rinse J-lv^5
Purge train 20 min (check
i*J Recovered by f^l£$>,S,
M5 M5-320 M5-450 \/
34<£> I £3 •
I.D. */t>7< &* /
I.D. •-/OfffTi/
when completed) /X^
M5W
Location of filter in back half 6«^oea^i ?i£-x
1st
impinger
Final wt ^"/ 7 g
Initial wt &£>£ 4 g
Net wt -/^7 g
MOISTURE
2nd 3rd 4th
impinger impinger Impinger Silica gel
77^ 2- g 424-7 g g 95Q>4 g
^/f ,/ g ^7/Z.g g £>^
/r^/ g ^5,^g — g ^?,
Total moisture ^3/T^g <$*0 %
3 g
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
_ LIQUID LEVEL MARKED
v/ LIQUID LEVEL MARKED
IQUID LEVEL MARKED
J
Received by
Remarks
^
LABORATORY CUSTODY
A ' / S /
•^^yA^^L^L£r
Date
//
'//f/f
&~
B-27
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
'-I
Plant Plu
(lvV2kO
Sample location' C<_»vCt-
Run number
Particulate
Particulate
Parjticulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
30
sample
filter
filter
pa 5"
type
number
sample
4»*-r<»7^
vn. \ -**
/ V£>
•?<
I.D. f
p
Sample date ////6/ffZ-
~U6-JJ Recovery date ij/ii/S 2.
Recovered by P^x^/j^
M5-320 M5-450
H6 •
/D7X p ^
I.D. 071^ ^
M5W
20 min (check when completed) *s
filter in back half
1st
impinger
6>£T2. 1
&JS- t_x g
61
A
*?.£* g
>?<2-g
/* X^ _-t/i«>^
v
MOISTURE
2nd 3rd 4th
impinger impinger impinger Sil
to 7
*/^£>
g ^7^/ g g ^2
g A-5.f g - g f
Total moisture ^y>. 7" 9 &<£;
ica gel
V-6 g
?^/ g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
j /VN/LIQUID LEVEL MARKED
V67V_Jt
L
/L
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
-4*3$ A-
-&4/A-
,/
Received
Remarks
by d$*&£
LABORATORY CUSTODY
Date
B-28
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location fo^f- 2-~2-'( ^^4 Recovery
date t ///l/£ Z-
Run number 3*& - ^ ^> , Recovered by fiCj£L)S
Partlculate sample type *X M5 M5-320
M5-450 M5W
Partlculate filter number ^?^KZ> / b'T-^
PartJculate filter sample I.D. ^C\( $ S
y
Probe rinse A^17*1* I.D. */jH( A* '
Purge train 20 min (check when completed) */
Location of filter in back half /^T VjT *T2& -;
MOISTURE
1st 2nd 3rd
impinger Impinger Impinger
Final wt €!2£-S"~g ^?/.? g &2Z- f g
Initial wt <£?"£ -^ g &°? t g 5^^-^g
Net wt /f«2/£ g *7^* g Bl/fa g
Total moisture ^5^/7 g
^v J
4th
Impinger Silica gel
g <5;5"7- / g
£*$ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
iX
-/
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
A-
Received
Remarks
/
-
LABORATORY CUSTODY
Date
B-29
-------
PLANT
DRY MOLECULAR WEIGHT DETERMINATION
COMMENTS:
l\/lt>/&
SAMPLING TME (24% CLOCK).
SAMPLING LOCATION LL
SAMPLE TYPE (BAG. INTEGRATED,
ANALYTICAL METHOD OR
OPERATOR.
.ORSAT LEAK CHECKED ,
\^ RUN
GAS ^\
C02
02
-------
PIMT I Cltf
iiiilithiiihij
ri i i i i i i i i i i i i i i i
Mtf
I t I I I I I I i ' I I 1 I 1
t tin
Mt. Ml. I $1*1 It
in* rant. mss.
rn In*. m)' U* ",o)|
runt
SIKI IKIH
DIMM.
ocirirt rucssuM
oirrtuwriAL
MT CAS MCTKB
TCMPCMTUW
SAMPLC W»
TCNKMTOM
-------
EMISSION TESTING FIELD DATA
t i i i i i i i i i i I i i i i
STKI IMIH
OIMU. (IKKS)
T7
tact! «• rm
yitu. I H.O. lumi iMtii i MTII I *«• ut.T IIAK CHCCK [ K
i.o. «6. (U !MI M.JWI M.| * N • I »*»«• » fiiT^l cn» '«c
MTU MTII Ul.lUAKCMECK
1 FACTM » '
H I A%fi/T
r«CTM
|£gl
/,r. i..!. 111
IVCM
*T*
-AU. .17.
MV CAS HCTE*
TtMPtllATUBt
SAMTLC BOI
TtMKRATIMS
-------
ESS
vMUKioutim
vmt wt
. . . . . . . . s . . . . . • . . .
i
"
•(•MM
(*ri
MfU.
(I*. Nf
SMI It
rtm
f II it|
MLIll
Sl*tl IHIM
•!«•. |l*Ki
rim
IMf
I jVfelUlrtrjSIiJ
. DO.&
, .
-------
TBST1NU M£t,U UrtlA
Ui/iJiii/
i i i i i 1 1 i i
. . i . i . ......
MAM IHI«
OINU. itLni I «iu I •nuat.j
!MI M.IWI wj • N 01 MC»O« »nr
i6tiiMS.s. i , , , i . , . I
, . IFVB.ZI lAl.3>
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
/P3L
Sample date
Sample location 6/Jrt" £7*l ^)t^r/ff Recovery
date tl/H/8*2—
Run number *t A $£ V5"P Recovered by
Part icul ate sample type M5 M5-320
Parti cul ate filter number 3^z> 2*2.**-' *
iX M5-450 M5W
Parjticulate filter sample I.D. /**' £ "
Probe rinse j(uz1&*'£ I.D. 46&\$T *
Purge train 20 min (check when completed)
Location of filter in back half /^V>a^ -~fatff
9
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt -£?>T7g ^?^» / g 6£T). O g
Initial wt .;6j\D^ 9 &f^% g -&*&*$ g
Net wt >r^.^ g 9£,7 g ^Y g
Total moisture /^./g
4th
Impinger Silica gel
g ~&±i /~J g
^O * spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER!S) I.D.
IPA
H202
H20
Acetone
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
plant rkuay-
Sample location lflfir\ •*•
Run number *f S X/
Parti cul ate sample type
Particulate filter number
Parjtjculate filter sample
Probe rinse -/K^fiV^V
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt S^TT^> g
Initial wt £66 5^ q
Net wt — 5/..S g
Sample date //////&-
7- 1 Oixt7 £7"* Recovery
<6 ¥"$& Recovered by P
m M5-320
fZ+Z022\ /
X * U • T w * £j
I.D. */jjVA
when completed! '
half f&*2&/ ~fA
;
MOISTURE
2nd 3rd
impinger impinger
^7^- / g &&zT.I g
/JM^^g ^? g
Total moisture /£?, 7 g
date ll/nS&l'
^C^S
*XM5-450
!9 '
r~
4th
impinger Sil
g /£
g ^2
8^
M5W
ica gel
?^^> g
&? g
7-7 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LABORATMY CUSTODY
Date
-------
I-1
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
flsfoa
Sample location
Run number */C Mo O Recovered by
Sample date _
Recovery date tl/ll/g.£-~
Partlculate sample type
Partlculate filter number
M5
M5-320
M5-450
H5W
Parjtjculate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
filter sample
20 min (check
I.D. 4*8? B •/
I.D. tftj
when completed) /X
filter in back half /^ Y^ ^L
1st
impinger
~J/'?(2 „
/6 /' B g
6*^S-^ g
/0f./ g
MOISTURE
2nd 3rd
impinger impinger
60 3- Z- g 4CT2. 7 g
fl.1 g 10 ,L g
^7A
C*t/ '
i
4th
Impinger Silica gel
g x/£9-"2_g
g S"2 1 • ~l~ g
g 77, «> g
Total moisture 3<{£> g
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
^/ LIQUID LEVEL MARKED
7 LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
. till'
% spent
Received by
Remarks
LABORATORY CUSTODY
B-37
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
Particulate sample type
Parti cul ate filter number
M5
Recovered by
M5-320
M5-450
M5W
i/9
VM/iZ
Parltjculate filter sample I.D.
Probe rinse jT/us^tsiC^ I.D.
Purge train 20 min (check when completed)
Location of filter in back half /—
1st
impinger
MOISTURE
2nd
impinger
3rd
impinger
4th
Impinger
Final wt
Initial wt
Net wt
g
g
g
g
g
g
g
g
9
9
9
Total moisture
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Silica gel
8^7 g
7?.* g
% spent
Received by
Remarks
iABORATOR^CUSTODY
^M^A
-Date
B-38
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
COMMENTS:
lt/lt/6
_TtST NO.
SAMPLING THE (24% CLOCK).
SAMPLING LOCATHMI Ce~.
• I '
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)
ANALYTICAL METHOD
AMBIENT TEMPERATURE.
OPERATOR.
.ORSAT LEAK CHECKED
\. RUN
GAS ^^\
C02
02(NET IS ACTUAL Oj
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
0| READING)
N2(NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
\4&
\lo>l~
NET
«.r
If
2
ACTUAL
READING
frl~
IGJ
NET
*3-
Z.I
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
f&
tf
MULTIPLIER
^/lOO
32,100
a/ioo
a/ioo
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj, Ib 'fcHiole
-------
EMISSION TESTING FIELD DATA
I I I 1 11 I I I I I I I
3lt|Mlll|l>|ll|M|«t|M|tl
• -^ i • • I •
30l3IJ3?|3 3|343 513««:
43|43|4 4|45
•ANTtC WHI
TOtfMATUBl
-------
00^^0™^100^^
oniricc russuM
oirrKuirriM.
STAC!
fBWUATUW
io.«r
OUT CAS NCTU
TCNPCRATUMC
-------
EMISSION TESTING FIELD DATA
-------
P1MI • Cltt | MH
/gWi/i/y>i5« i/feitinai t5meriMU . • . . i . . , i i IMi/iMi/SizEiFicxT
IK IOCAIIW I
fc
I I I I I I I I 1 I I
VtMtV
M. tut It
msi. ntst
SIKI IMIH
IT&rtgftd I /ft/i/i/i/iA5i i i i i i i i i t i i I
ritegl
nun
i . lAoA . . I. . A . . K^.Vi .. I
MCi
^/o^
l.|.|.|.l»|.NNN..N4.|Mh.|.,h^
^i rf it,
i.r
i i i i i i i I i3-t2iVi(d i i i i
« , -'««•
If I !lOI MlMI M
ll.ll>l>l|Hh »
1 I
• H t
• til CM
T
IIAICMCCI
cm
Ik. *t
i <«MM »«i»'h>
1
ficrm
I I I I A
MCTM
(It
MAI in
•r
mom
•At*
r>.-,tH- -»• -^
D n a IE CD oa E IE JB n c CD c EE ED IE ro ED ET EC EI EE 'Ei c sn SE ET z ED E E ID
*OI«V
. na
vtLocirv
cwiricc russuM
oirrtuirriAi.
I»l40|4
tract
IttLCT
IT_ i ,»r
^i«
43l43|44|45|4«|47
Mff CAS NCTM
TCMrtMTtlllC
OUTLET
VACUUM,
salsa IS4
/=•
Sf
/o.
2^5 .<
7.O
20 .
7_.
0
»3b .
>W
Z, J
3 m-7_
3 .
~7o
Vo .
m 30
J .
7o.
£2.
zr*
20 .
^
'•. i
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant rlvldps Sample date M//'/
Sample location 'U»3 27 / o^lLi' Recovery date ////A
^^ ^^^^^jT ^
Run number 5>73 M^ , Recovered by fo-^S
Particulate sample type // M5 M5-320 M5-450
fr
/iP'i^~g tj^>'T g
Net wt -/7,9 g 12, ^ g f*f. & g -**" g
/ ^ ^.
Total moisture JT'0'I g »5
Silica gel
T/i^. 7 g
^ry. /
_iw? y «
"prr ' & g
7/.f g
^
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. "4^94/4- !/
IPA IMP. CONTAINER I.D. ^g>95/^t// LIQUID LEVEL MARKED
H202 IMP. CONTAINER I.D. *fOj6A~v LIQUID LEVEL MARKED
£ t ^M_.^_^^^___^^^^B^VM. ^
BLANK CONTAINER(S) I.D. 7 LIQUID LEVEL MARKED
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
Received
Remarks
«• LABORATO
CJJSTODY
B-44
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant VLlKf^)
Sample location u*«Cl 23. 1
Run number ^"/3 /^-S"
Parti cul ate sample type
Parti oil ate filter number
Parjjculate filter sample
Probe rinse A-e*,Le^> —
Sample date -i/Sil/B
- ^r>.%VLV*' Recovery date / // 1 2,
Recovered by (Pefjy:,
I/ M5 M5-320 M5-450
"5*rsrJ /06 "
I.D. *lo9*7R ^
I.D. ^o°nfr-
•2-
/02^
M5U
Purge train 20 min (check when completed) X^
Location of filter in back
1st
impinger
Final wt &7^$ g
Initial wt J>SO.~~f g
Net wt ~41V g
half -^J^f- /f2—
MOISTURE
2nd 3rd 4th
impinger Impinger Impinger
Total moisture l£t>.O g £()
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER^ ) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
^O^BA- • / LIQUID LEVEL MARKED /-
i&9 9 A- V LIQUID LEVEL MARKED S
LIQUID LEVEL MARKED
4O3J&" S ^ /U£s *j J *
y
B-45
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location &»rf Z7./ '-
Run number
Sample date
M5
Particulate sample type
Particulate filter number
Parjtjculate filter sample I.D. ^ fOQ &
Probe rinse uJ#'£t^- I.D.
Recovery date ////2/^ ^
Recovered by ^C^~^£> ^
M5-320 M5-450/ M5W
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
Final wt
Initial wt
Net wt
1st
impinger
0
2nd
impinger
7of.o
3rd
impinger
4th
impinger
9
9
^-7
g
g
*/*.?- g
Zrt.t g
g
g
g
Silica gel
g
Total moisture
RECOVERED SAMPLE
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
(Of A- I/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
/ LIQUID LEVEL MARKED
77:
LABORATORY CUSTODY
Received by
Remarks At6 •
Date
B-'46
-------
-t-l
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant \JCALtt>&
Sample location U***\ ZT7
Run number J5"*fr P\BTU
Part icul ate sample type
Parti cul ate filter number
Parjjculate filter sample I
Probe rinse A-jv-P
Purge train 20 min (check w
Location of filter in back
1st
impinger
Final wt /6^Y g
Initial wt £fl.S~ g
Net wt /0/M 9
Sampl e date // /n/2*2-
, J -toJrljjr Recovery date /'//»/£
Recovered by *"F)o^lP-- —
M5 M5-320 M5-450
*34-te> IO* g S&f g g 94
£03.\ g 5^/g g g Q$
fa^n g tf£>L g — — g £
Total moisture £&/*9 g ^*
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
RECOVERED SAMPLE
4+ei ^/^3//-/
-------
DRY MOLECULAR WEIGHT DETERMINATION
PUNT
PITF
PLULfr4
t . V .^ -•* »
COMMENTS:
.TEST MO
SAMPLING TME (24* CLOCK)
SAMPLING
SAMPLE TYPE (BAG, INTEGRATED, CONTI
ANALYTICAL METHOD
AMBIENT TEMPERATURE.
OPERATOR_
ORSAT LEAK CHECKED
\. RUN
GAS ^\
C02
02(NET IS ACTUAL 0}
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
0; READING)
N2(METismNmus
ACTUAL CO READING)
1
ACTUAL
READING
141
I&-1
NET
H-7
2-5
2
ACTUAL
READING
/^.r
161
NET
/^
/•?
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
ifo
tff
MULTIPLIER
w/ioo
32,100
a/ioo
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj. Ib'lb-mle
TOTAL
*>.
00
-------
tlttT t CITI
IOUI ION
yum im
~ ^ ..--•• oj omnsEmomoBDEEDc
I
riA i i
i > 111
WtMIM
MH». rust.
I'M ||l. H,)l (I*. N.O)
riiui
SMCI IKIH
OHM.
|>IIOT|TMtlH
DnE
UMIBMtm
•DIIU.
1.0.
"|0« pmiUui j Mm
(I) !«OI NO I Ml WJ 6 N •
ICAKCNtCK
l». H9
cm
I
mem
c
r«cT«
NUT UTlMA! SO
«».
»f
•tOMO
MU
JUil
D^DcolZjlaDDlDQCDnC
o«iricc russu
DirrCMNTIM.
M* CAS MCTCB
TtMPtltATUU
-------
EMISSION TESTING FIELD DATA
«11|>l«J>I• I'I*11|ii|ii|ii|iilulit|ii|iiliiji«belii|}i|»lii|itlii|i>i>i|NlMlii|ulii
WV tfi v •>»' ' ' 'iji Afe 17 ' r ' ' 'n ' ' ' ' ' ' ' ' '
HlHI MMtl*(S)
NJ). vuntlwrti I MTU
It) !MI W.MI w A M •
-------
VWlllft IOUIIM
iPihiiiliiiiPiSi
i i i ititt Ilil i/iliZ/iXiZl
I iAV5
II* ft! Si.
MM ft
ntst
riiui HMU(S)
SIAtl IMIM
•1MB. IIKKS)
ritn TMM
rat «.
(•
M I I I I I I I I I i
ril*W
EIlD
i i i i i l I l i Ihq^ i i I i l i l l
2.7«
*/i^/
i.r T w.
Ill !«uw.iwiMJ ant | '«*<•
I Mm i «"• m.| i
•JT
I 1^1 rfiti
i|I* I i i IFi8iTi)/7il i I)j3toi/i I .9i«rPiQrii i
CMCI
era
MJMJV
i
MCTOi
MhHu^M*'
r«CT«
l>|ll|Mpl
HUT KT
sn
u
-------
EMISSION TESTING FIELD DATA
Kim • tin
1 1 1 1 i 1 1 1 1 1
Mil
SMPlllft lOCAtlON
.....
wmi tm
n|»»|M|n|n|»t|n|n|M|M|n|n|n|n|i
•—
jn|»|i»|n
MCSS.
(II. M.O)
'I I I I I I
I I I I /I
ilfcl IMIH
DIMM. HUMS)
r«|n|u
/
i ipiiu. I y. L^itUtu I aiiit I aim CM.I tc*» CKC« I j| j ~t [
1.1. 11 •». ill !MI W.IMIMJ •«• I »«ci«f K7JU cm '*»" »«""
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant p/L|ukA Sample date l(/l2/£"Z__
Sample location CuvTt 27. ( • o^ld? Recovery date fi/d
Run number 6/1 WS"4S"G> Recovered by $C/\ Jj£>
Particulate sample type M5 M5-320 i/ M5-450
y^2_
M5W
Particulate filter number '3G> ^/
Probe rinse /44o fr "/ ^
Silica gel
^/fr-^g
2Jto ^ g
7^,7 g
' D % spent
y
/
H,0, ^>5fyf / ^
MgU 46* * i™ *^^ t^^
Acetone y/j/^^ ^ ^
Samples stored and locked
Remarks
< >f LABORATORY CUSTODY .
Received by OS^^^^ ^^(^fu^L^ Date ////P/f?~^
Remarks /£^/ . $ P3P
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant PlufiKM^ Sample date II//V0'"
Sample location C6«J/(2f?./ er^^\ Recovery date \iJl2j&
Run number &&/ty5~3'^E> Recovered by ^c^x£
Particulate sample type M5 M5-320 v^M5-450
M5W
Particulate filter number "3*fS& 2/^X
Parjtjculate filter sample I.D. ^lo^fe ,/
Probe rinse /U^d^A-- I.D. ^J/o^A-
Purge train 20 min (check when completed) iS
Location of filter in back half \\~L~*
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger Impinger
Final wt ^"^f1/ 9 ^^ & 9 o?C^/ g g
Initial wt 6^7-4 g £&<&<$ g &2-2* g g
Net wt ~/^.Vg 10 b g W,°? g g
Total moisture 1°$ 9 ^^
Silica gel
84T2> ~i^ g
42.0 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
-------
-'-I
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant TpAJ2&Jk4
' 1^
Sample location Luij. ^
Run number ^CL ft £~B
Parti cul ate sample type
Particulate filter number
Parltjculate filter sample
Probe rinse /q^, {^0 ^
Purge train 20 min (check
Sample date / I//2A
~J . I ~ fnsJe&.*' Recovery date H//2/
Recovered by OCfTy^
M5 i/ M5-320 M5-450
S^5^> 2.2? *'
I.D. /2_ S «---
I.D. "imA-
when completed) *^
^^
'e^-
M5W
Location of filter in back half ^jUxto^v. Pa '2-vJ 'T^cn^r^,
1st
impinger
Final wt *77/- f1 9
Initial wt 6^4 g
Net wt f/7,0 g
1 0
MOISTURE
2nd 3rd 4th
impinger Impinger impinger
6 /2 • & g ^fi- / g g
^iftD g C»M'7 g g
Total moisture JL^,9^g ^
Silica gel
gj ^&» t* g
&if ^^ _
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. /Z/3- */
IPA IMP. CONTAINER I.D. 4//3/r- "\7 LIQUID LEVEL MARKED
(/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
v/
Received by
Remarks
LABOBATORY CUSTODY
Date
B-55
-------
'-I
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant pU^jftd
Sample location (jud-{ aL
Run number ^T) /?? 5~~JL—
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt ~7S6>I g
Initial wt o /T' 2--2-g S
I.D. //6~Z3 ^ ,
I.D. 4n*~/Q- '
when completed) VX
half (§3c^K. l^2^lp^M^b
MOISTURE
2nd 3rd 4th
impinger impinger impinger
$82-3 g dfJ. S g g
(?O/* / g &O6>'8 g g
7^.^ g /?.V g g
Total moisture $Af,l g *?&
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
4f UFA'S
4 lit A- I/ LIQUID LEVEL MARKED "
^ 1 1*1 & / LIQUID LEVEL MARKED ^
/ LIQUID LEVEL MARKED
A ^ i/
•+OJ*} & >/ -^,
4o4lA ^ . I/.
<2/9^ ^ f
81^
/s'1-
M5W
Silica gel
7^O-^ g
o^TZ-^ g
77'? 9
% spent
**
^
Received by CA<^^^t:
Remarks /^£tf • ^~<-
r LABORATORY CUSTODY /
^^ (V^^L^^ — Date ////£/
O^? /fcfcZ-- ' /
'SZ^~
B-56
-------
DRY MOLECULAR WEIGHT DETERMINATION
SAMPLING TMI; (24* CLOCK)
SAMPLING LQCATIMI d«^l I 27.1 -
COMMENTS:
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS);
ANALYTICAL METHOD.
AMBIENT TEMPERATURE j
OPERATOR.
.ORSAT LEAK CHECKED
'^^^ RUN
GAS ^"^v^
C02
02(NET IS ACTUAL 0}
READING MMUS ACTUAL
C0? READING)
COfllET IS ACTUAL CO
READING MNUS ACTUAL
Oj READING)
N20IETIS1IIMIUS
ACTUAL CO READING)
1
ACTUAL
READING
l<^
/6-6
KET
tt-S"
2-1
2
ACTUAL
READING
11- G
I6.B
NET
tt^
Z^
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
#&
^|f
MULTIPLIER
w/ioo
3^.100
a/wo
a/!00
•OLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
•,. IHb-nole
TOTAL
w
I
01
-------
EMISSION TESTING FIELD DATA
nun * cm
Mil
VMHIM 10UIION
UNTIE rm
fl \ \ Su
i i i i i i
i
HMf
MISS.
STATIC
WHS.
(II. H,0)
nun wains)
SIACI IMIH
DIMtH. (IKNCS)
M TOT mm
TUN •o. I
e» I , 1
DnnDDDDuDIDtDEffllDiDiniSiliniSDGDiaiESlEntDtDP^
Sid 1/1*. I.
ifc
yumio
1917017117 7| 7 3l7
3t 139l4Q| 4
42j43|44|43|46[47
57153 I 54
VCLOCITY
omricc russuM
oirrcuNTiAL
UH|.ln.N}0|
STACK
TKfVCMTUM
Mf CAS MZTEK
TtMPCKATUItC
I HUT
IT. I.»F
/7
VACUUM,
•AfVU Ml
TOtfCMTWM
IN»IHCC«
flWCM
OUTUT
-------
I SIM It
«**.
-. -,.
MIIU.
i.o.
I I I iZlA|/l
i I i I
(t)
utmcUfti
;wi W.IMI wJ
Htui
• N 0
i i
"'»I"
on.
t
LCAKCNCCI
1H. MS
(JJ)
K
FKTOi
I I
MUt UtlMAT
•cr.
tt
HOMO
I Ml*
MM
UJ 2] ED 01 u ED UJ ID ID CC CD ID C
A I
OKIrtec rucssuac
DirrCWMTIAL
M* CAS NCTKB
TtMPCRATUItC
-------
EMISSION TESTING FIELD DATA
HAW t CHI
i i i i i i i i i i
0*11
-^r •- J i I 1 fl
)ili/i)iVi8i2.
VMKIK IOUIKW
A«JL«^^_Aa_Af>^
i5iti«iciKi
i i i i i i i i
tin
I I I i I I I I I I 1
Ml IM. SIMIt
HI* MISS. MUlt.
CM l(|«. H«)I (I*. *,(
HUH NMMI(S)
itAll IHIM
OMB. (UCtfS)
MtOT IMM
BliniBffllDfflOgPE^
iitiiiifrti i i i n i i i i i i
rrf
iY.. .........
. . | . , A . . b^.Vi . . I
|t|i|«hl«M«l»l'»l"l'i|'»H'*N"l"T»
Ifclfftl
I I I 11 11
»int.
t>|l*|l>JM|tli M|ll
I I I
ill !K»
JLJ.
mm
• N •
mL
iaZik
Mfll CAi.
f
m.
ICAK CMCK_
cm
"l"l*'l»'^
K
MCTOH
ttcm
H|«l|t4JI<
A I I
Nf.
JJL
•fens
•At*
Jil
S
15MG
mu
1*12012112 2(2 3(2
42(43(44|45 14«|4
52(53 I 54
voivr
TIM
|}« kr
VBUKITV
». fk'
on i rice rurssuu
DirrCMCHTtJkk
STACK
niVMUTUM
MV CAS NCTKB
TtNPCMTUHC
IMUT
•2.7 */
QC5IIIED
».»r
VACUUM.
OUTUT
T_ ».
"•Hit
TtMMM
•r
A"
IM>t
C
•r
ii
23
3 ./
75
/O
16
5
/o
2.S9
*
3.;
~73
^ /f
3.2—
So
w
i
yo »5
7o .
W*
o c/
TT
2.^3
O
34,2. .5»7-7
2..
¥/
ZCO
/oo ,
//^j .
-------
t fVJuilUvjPft ifieiTirioi i i i ! i i i i i i i i i i • i i
&l&ItEDCQQJlDQQQEBfflDQQtfQQBCO^
I 111 11 I I I I I I I
llK5|
1 I 1 I I I I I I I t
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
'-I
Plant OkJUUxA^
Sample location (^^( ^
Run number ^7Q Al^TS
Parti cul ate sample type
Particulate filter number
Parjticulate filter sample
Probe rinse /^ f<|^/U2_^
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt ^Q>a g
Initial wt 697 9 g
Net wt ~
7. 1 - cn+-\ LtJr Recovery date ff//$ff
Recovered by ' '
M5 tX M5-320 M5-450
3*^5^ Ky ^
I.D. 4/Z/a ,./
x I.D. ^/2/A^
when completed)
half
MOISTURE
2nd 3rd 4th
impinger impinger impinger
£23.0 g Itftf g g
£^£- Q g £jf-& g g
1W g fLl g — g
Total moisture IZK.tf' g
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
RECOVERED SAMPLE
4/ ;2,*L>A ^ LIQUID LEVEL MARKED
-?A23>4 ^ LIQUID LEVEL MARKED
^
-^
M5U
Silica gel
B74.0 a
g/^g
% spent
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
Received by
Remarks
-LABORATORY CUSTODY
Date
B-62
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
Sample location U*^()C7 / ff>./^ Recovery date ififlffS
Run number */*$ fl£& Recovered by
Parti cul ate sample type M5 S M5-320
y /
M5-450 M5W
Particulate filter number *S f-$Q /^S~^
Parti cul ate filter sample I.D. <7/243 S
Probe rinse /^Jto^^ I.D. fAZ^/
Purge train 20 min (check when completed)
Location of filter in back half J f Z^
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt S~?2-^ g *?^7^~~g &£&•? \
4th
impinger Silica gel
j g ?3/.3 g
Initial wt Q~?''b 9 &03-2 g S^j-^> g g &43>*>§
Net wt -/i/./ g ^->^g ^^3^ <
) g 77. 0 g
Total moisture 7t££ g % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
/ LIQUID LEVEL MARKED
]7 LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORJhUSTODY.
B-63
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant 'HLJl.p^
Sample location U*ut 3-7*
Run number T7 C- />? *Tt
Particulate sample type
Particulate filter number
Parjt.iculate filter sample
Probe rinse i,d&.~t&.s~
Purge train 20 min (check
Sample date (\/[~L/&7^
I tfK-Ud' Recovery date ///13/ff^
O Recovered by PCO5
M5 M5-320 M5-450 u/
-3 g g $£%
M.f* If.*' g -^ g ^/
Total moisture £%%/$ g %
•3^
rJXg
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
T&4IA-
X
Acetone •4642.4'
Samples stored and locked
Remarks
Received
Remarks
LABORATORY CUSTODY.
Date
B-64
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant \ Vullips
Sample location tjLj*A 2?\
Run number 7^r> m ,
J Recovered by ^Cxf^y^
M5 M5-320 M5-450
'S'fSO /4~5 ^
I.D. //S/3
I.D. 41I&A-1/
when completed) */
2~-
/^Z^
/ M5W
Location of filter in back half ] H 1^
/
1st
impinger
Final wt 7f3.9 g
Initial wt ^5^,£ 9
Net wt D7'' 9
MOISTURE
2nd 3rd 4th
impinger impinger impinger
0/7 £, g ^fb-i g g
•lit C i&f'/ - _
7?'^ g YAK g ^^ g
Total moisture P%y g Jt?
Silica gel
*?32- 7 g
^^» 6 g
£3*Y g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
RECOVERED SAMPLE
^
\S
46
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples stored and locked
Remarks
Received
Remarks
- LABORADRY CUSTODY
Date
B-65
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
COMMENTS:
.TEST NO.
SAMPLING TIC (24* CLOCK).
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED i^
"\. RUN
GAS ^\^
C02
02(*ET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
COOIET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2(NET IS 111 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
*M
/7/
NET
ff.t
10
2
ACTUAL
READING
A/''
tl.\
NET
/*/,/
3.0
i
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
MULTIPLIER
44/100
3*/100
a/ioo
a/ioo
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj, Ib fcniole
^^•^••••^•^^^^^^•••••^•••^•••^^•••^••••i^
••^^•H^BBHiB^B^H^iMH^B^^MBIMiMi^^H^^Ma^^^H
I
o\
en
-------
,TA
' "" n^QMinnnmnBDnnaionnBC^
i i i i i i i
•MB.
OKMtOI
IM. STMIC
Mtu. WM.
l". Ha)l (l
rirni
iMCI IMIOI
OIIU.
»ltOT TMM
tUM MQ. 1
C» I . I
L
i.o.
riciai T
LCAKCMCI
Ik. ng
cm
i
ntcm
•At SIT
MAT SO
•cr.
•r
ttam
Ml*
/.AC
H|M|»t|t|
vtbocin
MEAD
(*» I.U.1,0
Mf CAS NCTKB
TCNKMTUM:
MMTLC BOI
nnruutvu
-------
EMISSION TESTING FIELD DATA
«cut
CMtl
tout ION
UMflE
I I i
i I I I I
OMM1M
1INP
CO
331
'A
MM 1C
ratss.
(li
mill MMtl(S)
SI«CI
DIMM.
HtOT
IUW
C*
TMW
fl|M|'t
n|n|n|«
I I
I I I I I I I I I I I I I I I I I
J i I I I 1 I
J_L
h^
incniA«Tm
T7TTP
ln|iihi|n|'«|'»|"l"l"l'«"
m/n.
i.o.
n|u|»i|ti[n
iu>. UWMI Iwtu I HIIU
If) INI Ml Ml tO \ AN*
»||I|»|»|M|»V nlJHu|ii|«il«i|«»
1
Will CAl
MOM f
LIAK CNfCK
cm
in. H9
HCTOH
MAT sn
«».
•»
warn
MIA
J"5»
'tJHfl
7%T
• IH»J« » • »L«l«'«"Hh»«««»h«"»
lIlllM tilt
.UL4.I.,
p
AZU
>I|»|M|M|»
WltllMhtMlll
U|II|MJII
n|n|n|n
i i i i i
L J^
A)u7i A^ri
1 I I A A I
i_ A I
3$|3»UQ|«1
4^43U7TQl
32133 I 34
33l36l 37
ociricc russuu
oirrcuMTiAk
STACK
1UWCMATUM
MV CAS MCTCB
TCNPCMTUM:
INLET
IT I.»F
*ln
V7i/
v5y
.HMF
VACUUM,
SANf LB M»
TOtfEAATUU
OUTLET
«T_ ».»F
"out
*
/o
IMMMCUI
EA
•r
1ST
to
/7
///
7J
^4
7&!7
fe
ri-
(C.7?
L!?^"
z
£.
//.c
ll±L
-------
UK! IMIH
•MM. (UMSI
l.k. 7* i*. ifei sTioiioi'ij ""• I »•"«» 'piTiJ era I '*"» I mm JJTsii UiTwil "J* |*|'»
^••^^^^•-•^•^^•^•-^^^•^••^••^^•^•^•^•^^••^••^•^•^•^^^•^^^^^t^ ^^i • • •• ^^^ ^ ^^^^^^^•^••^^^y^4V^^^^^^^^^^^^^ ^•[^•^^^^•^•^•A MI^»
i i i i I i2iZ^ I i . i i l/i^ I . i lKB.llli7./i llioir.^1 l/i^ka/i i I i i i i I I 1 i i Ui^pl L^'cj |
-------
EMISSION TESTING FIELD DATA
*Mt t CUT
Mil
VMTIIW IMAtlM
• ••^.•l» • •, . • • •^•l« ^»fc-J» J • I —A—^—fc^dfc^* —* - J "j L 1__l _J__J__I_|_i.
i i i i i i i i i t l(ili/rt»Vi82i .Ffrc. .SW^t. ......... i .. i I .M,5 ......... j
VtMTOI
111*
CO
I SMI It
rtm
, -,. in- «,o)
rum
1MCI (HIM
ritOT IMM
OIMM. (IMS) I 7!* "*•
MCK
BiniriiiEnffl^
i i i i i i i i i i i
.........
iflTi
. i . . i i .
Mini.
l.i.
IMI
N^O. lywtr Um 1 MTU
ill ;HU wniM » M •
J_L
Mill CM.
ittiat ?
ICM WCCI_
crn
1*.
' « i t A
c
r«ci«
4Hl|l»| Illli
mill nil
"»"T2
23|26l27f?ir2<
43l43|44J4l|46l4
12J13 I 14
•OIVT
VELOCITY
omricc russuu
DirrcuMTUL
(ANI.tn.NjOl
•TKCB
MT CAS NCTKB
TtMrtRATUMC
. 5^56
DCSIKCR
MUT
IT l.»r
VACUUM,
CUTLET
IT. i.«r
)0 .
3 .o
.O
cy ^ j>
. IZ.O
j • n
.O
6e>
"7.2
Jo
343 .0 1 0
Z
-7 .
35Z. .
.1
3C7-.
y/9
7 .
S
153
3RI .SOD
7 .
7o
6.V
9.7
i2-t.
3
JL!
-75?
/oo .
/o.
.1
2J+Z
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant MI >. ft, p$
Sample location '^//"A/-
Run number &rf /f ^*- \
Parti cul ate sample type
Particul ate filter number
Parjtjculate filter sample
Probe rinse ^i.&ft»
Purge train 20 min (check
Sample date ll/13/g
/ 0«rl£T Recovery date u//3.
'/& Recovered by \h£f^£-'
M5 M5-320 ^ M5-450
3<^^ < 3V c/
I.D. V/^^> 5^X
^r I.D. v/^o^-X
when completed) x^
\1*
//>-?
/& ^- ->
M5W
Location of filter in back half /^V ^ 3jtf>>
1st
impinger
Final wt ~?/j » ^ g
Initial wt 6/5£-^ g
Net wt - l&.f g
c
MOISTURE
2nd 3rd 4th
impinger impinger impinger
k /. L' g y ^3 .Xfl g
^7d? g ^^,J g g
.4t g ^//9.? g . g
Total moisture /^o. ?^g fo
Silica gel
.^9 til ~~ i
Cn \j 1 f
814. 0 g
?7,7 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
>/
Received by
Remarks
XABORATORf CUSTODY
Date
///s/fe*
l&
B-71
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant W.'ffog- Sample date ll/lB/8^
Sample location 4^,7 tf,/ 0«-T/eT Recovery date n//^/^'2L^
Run number B>B M5 ' ^^ Recovered by r^^b^
Particulate sample type M5 M5-320 *X M5-450
M5W
Particulate filter number JJf£O /"?/ *'
Paritjculate filter sample I.D. V/?3 & «-
Probe rinse n^-ro^C I.D. i//33"A *
Purge train 20 min (check when completed) t^
Location of filter in back half /— f}^ "^2y
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt $~2*£-8 g /i&'4 g 66r}.£~q g
Initial wt 622-9 g £?/. 7 g ^}£~-7 g g
xi *^ J A ^V &f i ^/
Net wt - T /. / g //5, / g v A * g g
Total moisture /P^/ ' g <^S"
Silica gel
T^^O g
"~ % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
S
// LIQUID LEVEL MARKED
~ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
-A
Received
Remarks
LABORAI0RY CUSTODY
Date
/
B-72
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant tikiffiff^
Sample location Uj-f
Run number 0 C~ M- £ ,
Partlculate sample type
Partlculate filter number
Parjb.iculate filter sample
Probe rinse n^-d
Purge train 20 min (check
Sample date /IffS-i
«J*7 / (1^-rhf Recovery date /}//£
'J Recovered by '
M5 M5-320 M5-450
3^.^r> /J^" *s
I.D. V/?t R ^
I.D. Ljftbk'/
when completed)
f?J^
7&2—
t/M5W
Location of filter in back half /^/J-^ -fto
1st
impinger
Final wt jf/0, 1 g
Initial wt <^4'7. 2 g
Net wt 1^3.3 g
" /
MOISTURE
2nd 3rd 4th
impinger impinger Impinger
A^A / Q wAv- \ a a
Q^ g if,*'* g
Total moisture Q^T-b 9 ?D
Silica gel
/Wtf 9
8f5>Z g
r/o g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
# S
#77 A
/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received b
Remarks
LABORATORY CUSTODY
Date
B-73
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant MiMfpf-
Sample location ^>;7" 7-7. /
Run number #& M*f (J
Part icul ate sample type
Particulate filter number «3«
Parjt.iculate filter sample I.D.
Probe rinse /i^O
Purge train 20 min (check when
Sample date /(/ /"$/&<-
/3^-^ i^
, V/7^ B /
^ I.D. V/?^/) t.
completed)
date n/l£'/&7—
^cih^
M5-450 y M5W
X
Location of filter in back half /^'1~3^ 3j®s.
f
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt /67 o g bJ>$<% g ^2-J g
Initial wt ~&\ *?• £ g g 9-7. Tg
moisture fybtyf*! g
4th
impinger Silica gel
g fcf7? g
9&/)& • r Q
*— g e/^g
85 — % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
/.
^
LIQUID LEVEL MARKED
J/LIQUID LEVEL MARKED
/ LIQUID LEVEL MARKED
Received by
Remarks
B-74
-------
DRY MOLECULAR WEIGHT DETERMINATION
COMMENTS.
TFSTMO
SAMPLING THE (24% CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG. INTEGRATI
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
\/
.ORSAT LEAK CHECKED
to
1
-J
tn
^^^^ RUN
GAS ^^^^
C02
02
£T>
MULTIPLIER
44/WO
M,100
a/ioo
a'ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj. Ib'b-MOte
TOTAL
-------
EMISSION TESTING FIELD* DATA
*M1 I CITl
Mil
1 OUt ION
wmi tm
iltuiih* ;
M n M In hi n
fi/iMUli
-i »i/
i i i i i i i i i i i
i i
twn.
OPfMIOI
PWSS.
(I*. Ngt
MM 1C
PUSS.
(II.
rum
SI«tI IHIM
OlMi. (IKMCS)
ruoi
IUM
TMW
3E
HIM \n
im
•ami.
i.o.
TOT
WTII I
MIM
KHI
a H •
wni CM..
r«c?« v
ICAK CHtCK
'*•
K
r«cro«
'i told
i i i i
nlMl:
J_L
IM
•Utt
f
191301? I i 7317312
75|76J77|78|71 30|3lpa|33lJ
-------
T
*
SHI It
ratss.
I" SO)
STKI IKIOf
DIMM. (IKKS)
Hllll •Mtl(S)
•V>« MWltwili I MTfl
(I) !wi M.IWI to a
'iy'i«m»i'i»i»i'ii"p'i'»pt|i»pt|upi|n
43J43M 4 |45|4
-------
EMISSION TESTING FIELD DATA
flttt I lift
Mil
VMPllW tOUt ION
I i V
Ii)/i'fl/ig.a •F.c.c. 6.1-.gjci)l
. ............
tm
I I t i I I I I I (
•MMIM
•M. fUt 1C
MISS. «m.
HUM WMU(S)
1MCI IHIH
OMB. (IKttS)
ilEDIZfflfflinPlDIEDClP^
i|t|i|«l»li|»l«l*l»»l"l"l"H'»N"l"l'«
/^ ifni
*
V
^5 «D
.So .
hoc*
52-8 . f 3o
3
3
Z.
Z.M
3.
1 Zoc?
2- .3
//
kk.
^-li
/3
J^o
^9V J9i9
sz
3»)
-------
I trvhnltl tt a>i$t
ywtiK IOUIIM
mnFR
tSfhgicifci i i i i i i i i
im
i i i i i i
.lil.NUI.
VIMtOI
Mtjt»jnHnH'»t'»l"H'*M»'l"M»«l»I"T»'
n/iinipi5i 11111 i 111111 ass
[ nn m FT FT! FE FT R! P) ?I1 ^Tl FT FT FT? F1 F< m
•OIOT
VtLOClTff
•SAD
(A*,). ia.1,0
OMiricc russuM
OirrCUMTIAL
lo*
"2-^S
7/7
Zo .
. 2.70
2—»
y/-
7 .z 5^C>
.V
y/
s/-
f
2.
.0
3fr
//CJ
S'*-'
SO
bo.
II
¥/#
5
76.
7 .0/0
7 .
3 .0
$
52>
01
7 .
96 .
.6
/do •
^ *//r>
Soo
o
/zo
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant fTv/M.p^
Sample location U^\ 3L~7- 1 "- "2tO~^ S
Parjtjculate filter sample I.D. 4/?^ t,
Probe rinse Au£^r^- I.D.
•/
Wfaf\ ,/
Purge train 20 min (check when completed) ^/
Location of filter in back half /- ^?& J&A
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt b3®- ^— g /•*-'• ^ — ^g ^fc/-/ g g rW. / g
Initial wt 6773 g <£$4-£ g £~5
Net wt g g
Total moisture
f/. 5 g g 8~?7. / g
g g g
g ^^ % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
/
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
ODY
ate
B-80
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant y->iu/[i|SS
Sample location Ccwv-t 2/7
Run number 9 R fY\ tT~
Parti cul ate sample type i
Particulate filter number
Parjtjculate filter sample
Probe rinse $Lf?C6n
}/ M5 M5-320 M5-450
34£t? J2^5^"*/
I.D. v/vr}?*/
I.D. 4/fafr^
when completed) X
half l^+y^'TlM
MOISTURE
2nd 3rd 4th
impinger impinger Impinger
^73^-9 g £(£',6 g g
6/83 g S"?/2- g g
g g g
Total moisture g
££-
ll*
M5W
Silica gel
872^9
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
QUID LEVEL MARKED
LEVEL MARKED
LIQUID LEVEL MARKED
4041A
Received by
Remarks
'
- LABORATORY CUSTODY
Date
B-81
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant -HJ(,p<;
Sample location Ce«~iV 2.^
Run number 7 £ #7 4TJ3
Part icul ate sample type
Parti cul ate filter number
Parlticulate filter sample
Probe rinse KL&ft+i£
Sample date ////5/^'Z"'
M - tn.-^ta-Ar' Recovery date ?///>57^2-
Recovered by pO^O^
M5 i/' M5-320 M5-450
•344Z) 3.0 6 tX
I.D. y/wft »'
KD. V/ft'JQ vX
•^
M5W
Purge train 20 min (check when completed) . ^
Location of filter in back
1st
impinger
Final wt *^b-7 g
Initial wt &&2.-O g
Net wt g
half /fil^'faf),
MOISTURE
2nd 3rd 4th
impinger impinger impinger Sil
5^7. <£ g 5^6?. 2- g g 2>^
g g g
Total moisture g ^S
ica gel
2?^g
y-6 g
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
^
/ ^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
, LABORATORY CUSTODY
Date
B-82
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ^M/'pS
Sample location
Run number
Sample date _
Recovery date A
/??£7S
Particulate sample type _
Particulate filter number
Parjjculate filter sample I.D.
Probe rinse
M5
Recoered by
M5-320
Recov
/X
M5-450
M5W
308
I.D.
Purge train 20 min (check when completed]
Location of filter in back half
MOISTURE
Final wt
Initial wt
Net wt
1st 2nd
impinger impinger
604- L 9 7f ?• 2* 9
9 9
Total moisture
3rd
impinger
/rrJ'-/ g
C8.? g
9
9
4th
impinger
9
9
9
75
Silica gel
^/Z" 9
371- / g
9
r"~ % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D. ^
BLANK CONTAINER(S) I.D.
IPA 4040&
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
V
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
*
X
Received by(
Remarks
LABORATORY CUSTODY
Date
B-83
-------
DRY MOLECULAR WEIGHT DETERMINATION
PIAMT.
_TE$T NO
SAMPLING THE (24* CLOCK)
SAMPLING
'J
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) -*••&_ ^
ANALYTICAL METHOD.
AMBIENT TEMPERATURE.
OPERATOR
.ORSAT LEAK CHECKED \
COMMENTS:
^v,^^ RUN
GA$ ^^\
C02
02(NET IS ACTUAL 0|
READING MINUS ACTUAL
C02 READING)
COfNET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2(NET IS IN MINUS
ACTUAL CO READING)
1
ACTUAL
READING
\zct-_
/6.8
NET
12 -*2-
4.(s
2
ACTUAL
READING
n .1
/t.»
NET
a, 2
«•(,
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
MULTIPLIER
w/ioo
32/100
a/100
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
ld, ftfc-nole
TOTAL
(0
I
00
-------
OKMIM
I SIM 1C I
MISS. I
_. .-,. (II. ",0)
Mlffl MMtl(S)
SIACB IHIH
•MI.
ntoi TMW
TUM I 10.
Mtt
Mint.
>
(t) !«oi M.IMI w
MT»
• N •
MTII CM
f
ICAKCKtCR
Jl. Ng CHI
ntcm
MAT UT
ttr.
tf
UCOM
MU
i|n|u|n
NT CAS MCTE«
TCMrEDATUU
-------
EMISSION TESTING FIELD DATA
n*« t cm
Mt(
urn IK iout ION
ymt tm
I 1 I i i
SIM 1C
STACI IMIH
OUCH. (IKMCS)
TMW
jPiOi
MT CAS NCTKA
TtMPLRATUM:
-------
KMT * Cltf
•Llfc
ft
I"!"!"
i i i i i
OAII
»«|n|ti[ir|iilMju|«i
WMKIK IOUTIM
U-t iFiCI4( Ml
INFI
OUTLET
4T »•*»
"out
6
ZJi
•r^
-??t:
36 .
2;^.
?.<
32,3
7^«»
00
5o .
2. .c
60 .
. I7O
2- .?
79
6.
(a(n/C>
1\
3J^
^:
X
I
2 -v
-339
1 1
-------
EMISSION TESTING FIELD DATA
AMI i Off
ll>l>I'l*lPl'l*I(ll*ll|]"I"l'4l<>ll>l"l'lll*N"l"l'>l'4l'>l'0|ii|Mlii MJi>|ii|i>|ii|M|ti|«i
'-'i' 'I ' ' ' '.' W ' ' i ' i»' i r i i i T i i i i i i i—i—i_ iii i i i• i J.I
JilL
iTtT1
i
ETR
i i n i i i i i i i
MIC
umiM lotAtiott
' I ' ' I I ' I I ' « '
vmi TTH
iNMHnHMli.!.,!,.!,,!.;
i ' « ' M i ' i i (
OHMTOO
'lohMyhJltiii
>|n|n|»|t«|n|n[ii
il ipi5i i i i i i i i i i i i
1INP
en
II If M
MISS.
DM.
"l"l»l
SIM 1C
fit Si
(1*.
SB
M n
Jill
nun MMIUIS)
''I'' I I I I I i I l I I I I
StACI IMIH
OlMtM. IIKMS)
I (.1 I I A I I
MOM men A» im
|i|»M«|t|»M»H"N"H"l"l"l"l'«
ifiTi
' ' ' ' ' ' '
Mf/ll.
HA.
n|»|i>l/i|/i
' ' i '
IvuntUtu I
!toi M.IIOI wj
wtci
AH*
•IHy
TO
J_L
H|lHu|M|«l|«l|«f
0*72
Mill CM.
f«£IOI »
IH. Hg
ICAK CMCCK
cm
lo
^R
K
ncTM
' ' i '^
C
r*tt«
* l I
WAT SCT
TUH
TMW
Itlfilil fi|i«j>t
' ' ' '
HiE
nlri
io^
MAT S(1
^•^
ttr.
•r
K|I>|II|II
•CCMO
DMA
JU«
^L
O-
yui»m
17|H
IVfrOm T 33I3JI?
3JI3914014
43J43I44T431
5115 Si 54
57
JUVEKM
•OIOT
TIM
•AMNJNCV |}4 hr
TlWC,al»
VCLOCITV
omricc russuac
I. (K'
STACK
mwcMTuu
OKV CAS NCTCB
TrNPCRATUItC
(ANI.ln.NjOI
M
NUT
IT l.»r
in
VACUIM,
CAIVLB MM
TENTCIUTUU
OUTLET
tT ».
out
IMINCU
fCNTCM
•r
/O.
i V
£0.
2^.
9 .
*37r>
/,&
JS
/of
.-3/0
2. m
•>- 32^3
3^.3
09
6o|
7.-J.
•4P^
y .L 3
"*
2^.3
2^T
V2.T
,133?
72^
/CX)
2. ,c
2-3
//O .
' '
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location '1jj~j~ ^77
Sample date
Recovery date //
Run number /O ft At 6~ -
Particulate sample type
M5
Recovered by
M5-320
M5-450
M5W
Particulate filter number
Parltjculate filter sample I.D.
Probe rinse
47/78
I.D.
¥71? t
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
.TA
6766
g
g
g
57573
g
g
Total moisture
g
g
g
g
g
8t> J.2> g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
/
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
B-89
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant V^l/lfll-
Sample location l/fdrf" t
Run number /Q $ ftf *T-
Particulate sample type
Parti cul ate filter number
Parltjculate filter sample
Probe rinse ft L^n/Oy
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt "iYfy 9
Initial wt 670-4 g
Net wt g
Sample date ////V
3tf / flttrltST Recovery date //X/6*
-t/SV Recovered by VC^J*^
M5 M5-320 v/ M5-450
-3* /?? *s
I.D. 7iP# S
I I.D. /?J^^ ^
when completed) L^X
half /& 1*2*4 '?*&,
MOISTURE
2nd 3rd 4th
impinger impinger impinger
S^3 8 g &O * 2* g g
g g g
Total moisture g
# *-
7^2,
M5U
Silica gel
^^-^ g
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
/L
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
IQUID LEVEL MARKED
Samples
Remarks
H202
H20
Acetone
stored and locked
/?3X
W4/6
ffffcA
>^ J/
//, V,
U\/ u/
STODY
Received by
Remarks
7//^/
B-90
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant +fkn(i'fK~
Sample location -^/^i"
Sample date ////S/i
\ / 0rtrlteT' , Recovery date 1( //67
£1—
^2-
Run number /^£ /U 5^ B Recovered by f^^T^S
Parti culate sample type
Parti culate filter number
Parjtj culate filter sample
Probe rinse /rttfTbt
' M5 i/MB-320 ' M5-450
r? f && /*)& /
I.D. mx^ p> /
vt I.D. V?Jt3/r^
M5W
Purge train 20 min (check when completed) »X^
Location of filter in back
1st
impinger
Final wt ?2Z # g
Initial wt fo//.6 g
Net wt g
half /&1t'2***2jM0 •
^
MOISTURE
2nd 3rd 4th
impinger Impinger Impinger
7&T. t> g g £cT£-f g
5"^/t- g g l*J/>0 g
g g g
Total moisture g
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
^?W fC ^ , LIQUID LEVEL MARKED
tfilsfc / LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
tffOA ' ^
W3?A^ J
yfriti */,
£/0yj.f\ v
Silica gel
?29.7 g
/V*/ g
g
% spent
^
x-/^
Received by LJ2£*>t.
Remarks A^^i . *?~#3
LABORAJJ«Y CUSTODY
4^ l_b^^6>fe^x Date ////,
>(>£>£ f /'
/^
B-91
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant Mr/fip^ Sample date / \/lf/Vt'
Sample location ///S^V*" l3/ fltAf/*rf^ Recovery date / ^ / /O^^-
Run number //9/) X/5\o Recovered by ^C. 3 T\S
Particulate sample type M5 $/ M5-320 M5-450
M5W
Particulate filter number 3^-5^ l#4
Parjtjculate filter sample I.D. 7j.(/ ft ^
Probe rinse Ht.&etiv^ I.D. /7*LfcA
Purge train 20 min (check when completed) ^^
Location of filter in back half /*^¥ 3?^ ~TJl>i?\
0T-. y
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt 7£?.7 g &814 g 6(AL g g
Initial wt 69^- Z. g £~~?8-f g 6*fti.4' g g
Net wt g g g g
Total moisture g
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. U7)4?'& ^
IPA IMP. CONTAINER I.D. y7A7 /T"^ LIQUID LEVEL MARKED
H,0, IMP. CONTAINER I.D. k"T^ ft I/LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. /LIQUID LEVEL MARKED
IPA WVW V
H,0? ^?9/^^ i^
H,0 Y/W/i J i
Silica gel
f4/7 g
^? ^ g
g
% spent
Acetone ^r^ n *
Samples stored and locked
Remarks
. . LABORATORY CUSTODY
Received by (\/bi?>i^
-------
DRY MOLECULAR WEIGHT DETERMINATION
PIAMT
DATE
COMMENTS:
.TEST HO.
SAMPLING THE (24% CLOCK).
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
^^x. RUN
GAS ^\
C02
02
-------
APPENDIX C
LABORATORY RESULTS
C-l
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 363o -it-
Plant
Sample location
Relative humidity £QP/O
Run No.
Analyst _
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C&7&?
CO 7 34
(20738
COTOQ
Sample I.D.
/Am*
IAMS
Container No.
4o4P.fl
^V-3*
3W£
W3&
Initial Vol. (ml)
4/3- nil's '
3l3mJL'i ;
" *><4So «cO
* 32>-7 •
o
to
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total partlculate
Lab No.
CQ7b
CQ72>
CQ72&
CQ70Q
Initial wt.
(ambient)
.3 „
I2>t.(o ''
O.lo '
tz.o •/
^whfe '
Heat to
320°F,
3 hour
cool,
weigh
5.1 /
W-4- *
O.4- /
66- (o ••/
\oB,o'
Heat to
450°F,
3 hour
cool,
weigh
O,3 /
tt.8 -
O.3. v/
b8.S /
W.3 X-
Heat to
600°F,
3 hour
cool,
weigh
-O.bs
/?-0 ^
0.4- v
62.G *
00. 0 <,'
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
otic
t '
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN
Plant U,S. CPA - £rt\e> - Ph,ll.'os Petea leom
Sample location
Relative humidity 60%
Run No.
Analyst
Density of acetone (pa) .
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6076?
CQ~Mo
CO 7 19
CO 701
Sample I.D.
I6MS
i&ms
Container No.
40*3. ft
Uotf74
3JL ^
3fo6-S s
o
I
OJ
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CQJM
CQ140
CQ732
CQlol
Initial wt.
(ambient)
4,3 ,
/36//-y
O,(o -
8+.(o '
^1,0 Z
Heat to
320°F,
3 hour
cool,
weigh
5.1 ,
40, a./
a^ .
&.<& •/
[os.o'C
Heat to
450°F,
3 hour
cool,
weigh
a^? ^
«?3.6 •
P-5L «,
6>7-4 ,/
^?/.o ^
Heat to
600°F,
3 hour
cool,
weigh
-O>(0 ~
11.0 S
(9-4 u
6/.S •
gO-5 *^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
m
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3550-<4-
Plant U.S. £Pft-£m&-Ph',l\;p'<;
Sample location
Relative humidity £0%
Run No. _
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£738
CQ~7IO
Sample I.D.
zAnwtso
2AmS45O
Container No.
WA/J
*
10,% •
a 4- -
35,& ^
^.-f^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600° F,
24 hour
cool,
weigh
Remarks
Data reviewed by
*' * ' *
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN 3530-4:
Plant
. £f>A -
- Ph.H, o
Sample location
Relative humidity 5o°/o
Run No.
Analyst
Density of acetone (pa) .
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ7W
c.cn<&.
CO 736
coin
Sample I.D.
P-6^5^/6C»
^nswso
Container No.
4o0 /55
Tare Ut. (mg)
/OJ^fo^.S '
106013 r? '
36,5,3* "
&>7<0 •
Analysis results
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
&37#?
62743*
69730
CQ-lli
Initial wt.
(ambient)
4-3 .
ze.e •/
O>(0 ^
30.6 '
^3 '*
Heat to
320°F,
3 hour
cool,
weigh
5-/ -
is.i y
0,4- „
3b.+ '
51-5 '
Heat to
450°F,
3 hour
cool,
weigh
.
M '
e>2- -
36,0 »/
HW *s
Heat to
600°F,
3 hour
cool,
weigh
-o.^^
6.1 /
O'± v
3^.5 •
^o4^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
o
Ul
Remarks
Data reviewed by
J i\ aa ft ~.
Oi/C
If •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETR1C PARTICIPATE ANALYSIS
PN 3S3Q-'*/-
Plant
U<*. CPA- -EMI - Ph. //,>* PMot^m Run No. M ms B
\ location
ve humidity ^tf^/p
Analyst
Density of acetone (pa)
C« JbA/6!-5
.74oQ
(g/ml)
•^^••••^^•••HM— ^•^^^•^••^^^^^^•^•^•W
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQltf
CQ~14*>
£0738
CQ-IiV-
Sample I.D.
ZdrtSB
3-&mz>6
Container No.
4049-4
fobBA
3W84
4o66
Initial Vol. (ml)
•Y/PW-s -
(47 mi's •/
*3 «/
3fefc^- ^
o
I
a\
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
OQ-[5 '
c-4- <•
&,<(> i/
5
-------
PN 3S3Q-/4-
Plant U,S.
Sample location
Relative humidity 5o9o
Run No.
Analyst Q,. To/v/es
Density of acetone (pa) «
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Q/FlbQ
C07^"
(LQl$b
£07/3
Sample I.D.
2T>msR
?b m 5rt
Container No.
4W2A
4057/f
*WBA
4o$76
Initial Vol. (ml)
Wind's *
^/4/nt's
*Wsoi(,o
* 3^60/57
Tare Wt. (mg)
fo744.S ~
lo*fao7>2- "
WS.l- '
36^,3 s
o
-J
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CO 76,4
CQ744
£0738
££>7/3
Initial wt.
(ambient)
4.3 .
3ai s
0<(ff
45.5 ^
75.^ xv
Heat to
320°F,
3 hour
cool,
weigh
5 y
0-«f- -
¥P.O *^
S3rfe^.
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
AJLaJL.
fr
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S.VW4-
Plant
Sample location
Relative humidity 5o°/o
~ Ph,/l.pS
Run No.
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ7£9
CA}!*$
CG73?
6(97/4
Sample I.D.
3<2/?75
3#r?5
Container No.
<4otlzA
toJAA
2>W>&
t4o-7Z&
Initial Vol. (ml)
4/.3-MJ0'S> „
^7fm4's '
*3450 /frO
*3V.SO/7£>
Tare Wt. (ing)
107W?4 ?/-
Initial wt.
(ambient)
1,2>
I2>l.b J
O,(c .,
IIZ'3. S
2+3.3 "V
Heat to
320°F,
3 hour
cool,
weigh
6,\ x
o.
-------
PN 3530-
Plant U. S- EPA -EM6 -Phlllif
Run No. 3£)/Vl5
Sample location
Relative humidity
Analyst C~
7o
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£Q1M
Ccn<&
C.Q73B
COliS
Sample 1.0.
XbMS
3fc/r?S
Container No.
fotfcA
<4cn,A
30488
<4cni&
Initial Vol. (ml)
/^An0't> ^
3^^'i •
^3V50/fc^
"-&jfott>di
Tare Wt. (mg)
lo74to*S. .
/05366.7 •
34»SA ^
36^0 ^
o
vo
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total partial late
Lab No.
CQlbt
tJG)T&>
CQ13S
£#7/5
Initial wt.
(ambient)
4'*
/¥/'3 •/
O,(e
111,0 J
P-foO-3 '*
Heat to
320°F,
3 hour
cool,
weigh
5./ .
0* -
—
Heat to
450°F,
3 hour
cool,
weigh
0,1 .
4o,S /
O.2- *
I0l,6> S
\w.\ (,
Heat to
600°F,
3 hour
cool,
weigh
-o.b^
3*/-,/^
0,4- -
6t>4-S
Hs.S'.
Heat to
320°F,
24 hour
cool,
weigh
^
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F.
24 hour
cool,
weigh
Remarks
Data reviewed by
•*
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3
Plant (JL'S.ePA—&nt>- Philips
Sample location
Relative humidity
Run No.
Analyst C>
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
OAlltA
CQ-14H
C$738
CQ-llto
Sample I.D.
Mm<<4So
Utonz^o
Container No.
A. •
SfcS'A S
35<.y
H
O
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
CQlCefl
CJQ147
GQ73V
CQ1((o
Initial wt.
(ambient)
1*3 ~
IrfiO «/
f?.fe? -
2>7,fe -
lOb.tt '«
Heat to
320° F,
3 hour
cool,
weigh
5.1 „
o,+ -
Heat to
450°F.
3 hour
cool,
weigh
. .
O'^- -
Heat to
600°F,
3 hour
cool,
weigh
"O.fc -
a^- -
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
IW'
32.8 '
u.e '
Remarks
Data reviewed by
etc
f •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN &.-30-/4-
Plant #*S. CPto - £me>-PhJ/,0s Prteo
Sample location
Relative humidity
Run No.
Analyst £. ToA/£3
Density of acetone (pa) .73Q$
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ7b<1
CO 74S
£073?
C£7/7
Sample I.D.
y&ms4so
4e>ms+ -
Jfc.7 ^
^7.0 ^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
t •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S30-/4-
Plant U» S. EVA - EM& - Ph, II, p
Sample location
Relative humidity 5o°/o
Run No.
Analyst
Density of acetone (pa) ,
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ7fc3
CQVtt
CO 73 »
CQlrt
Sample I.D.
y&msft
4
Container No.
ttX+ZA
toSlA
3W6
<+o$is
Initial Vol. (ml)
4/cP-m^ „
¥3^m/'i /
# SVSOlbO
*3+SOd-H
Tare Wt. (mg)
to7^(o4->5 ~
105131.? •
3b6'3L
2>
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
CQ7&3
COW
CQldS
CQ-JI&
Initial wt.
(ambient)
4'3 .
35.8 V
O<4 -
—
Heat to
450°F,
3 hour
cool,
weigh
0<.3L^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600° F.
24 hour
cool,
weigh
Remarks
Data reviewed by r%axuusy
ctic
r •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN
Plant
li. s
Sample location
Relative humidity SD°/o
Run No.
Analyst C.
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CG>7fc>9
C0 150
&P738
£0-7/4
Sample I.D.
4t>srtsA
-
3b3*d'* /
KMSOHoO
*-2>
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S3P-/4-
Plant
Sample location
Relative humidity 50%
-Ph,il\p
Run No.
Analyst
. J3A/6.S
Density of acetone (pa) •7*?o8
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-ltf
C&lSi
CQ73$
CQ72-0
Sample I.D.
SAMS
5Art$
Container No.
VO^ZA
<4o4'S -
lo3.\ ^
3fe>5.a "•
3*>2.
. .
Heat to
600°F,
3 hour
cool ,
weigh
-0,b .
0,4 •
-
Heat to
320°F,
24 hour
cool,
weigh
£7.5 /
49,0 '
M,S '
Heat to
450°F,
24 hour
cool,
weigh
/5// /
yo.
-------
PN 5530 -14-
Plant U'S. CPA-EMA-Ph,!);/)
Sample location
Relative humidity 5O°/o
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
(LQ-ltoQ
CQ152.
&Q-J3&
CQ-I£\
Sample I.D.
SAfnS
56/775
Container No.
4W-4
Wlf\
3Wfi
trf-IA
Initial Vol. (ml)
V/£m£',3 ^
304ml'* •
«-3V5^/fco
•^•3^50/06?
Tare Ut. (mg)
I074b4>5 .
l&Wo^b S
2>teS.3i.
337* f ^
o
M
Ul
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total partlculate
Lab No.
(LQlkA
C$752.
&S>738
£G>73L|
Initial wt.
(ambient)
4.3 .
^7' 5 ^
0.(<7 „
<^0.7 y
88'3i x^
Heat to
320°F,
3 hour
cool,
weigh
5./ ^
/v.^ y
(9,4
34.^9 ^
W.l's
Heat to
450°F,
3 hour
cool,
weigh
04 .
^G •/
a a ,
3^./ •
¥3-7 ^
Heat to
600° F,
3 hour
cool,
weigh
"0,6 ^
5-5 ^
O.4- ^
3-?'7 •
3?.P-^
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3630-14-
Plant
- Ph,ll,t>
Sample location _
Relative humidity
Run No.
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQftf
CO 753
CQ-739
CO 12-2.
Sample I.D.
MMSUZo
(0#tr>SLl£o
Container No.
40V2A
mob*
3W6
V/066
Initial Vol. (ml)
^//A-rt/'s
3&1*dL
-------
PN 3S30-/4-
Plant
Sample location
Relative humidity So°r0
'*-
Run No. b&fffS4So
Analyst
(2-
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-ttf
CQTS4-
&Q753
CO 73-3
Sample I.D.
i
b6ms4so
6>6(7is4So
Container No.
4o4JL/f
4io1A
3W/S
/o3a
Initial Vol. (ml)
4£ ~
lOloCR 3-' < ^
SfcS'SL -
3^6,A ^
o
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
6fl7fc
dGn*+
CO 738
GQ-13*
Initial wt.
(ambient)
^ ^
3^/5 /
O.(e ^
35.0 /
7^.5
Heat to
320°F,
3 hour
cool,
weigh
6>t .
0.+ ~
Heat to
450°F,
3 hour
cool,
weigh
oA.
n,s J
O,2- -
33.y •
5^3 xx
Heat to
600°F,
3 hour
cool,
weigh
-Oifa
15.3'
0.4- -
53,1 -
^4"-
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh m
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S3o -f
Plant UfS.
- fail,'
*
Run No.
Sample location
Relative humidity So°to
Analyst (L
Density of acetone (pa) 773O$
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
(LQ-UA
CQ165
££-73?
CQf^
Sample 1.0.
6>£ms6
tocmse,
Container No.
404* A
*///>/?
34
-------
PN
Plant
Sample location
Relative humidity 5oo/a
Run No. _
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-lM
CjQ-l6(o
CQ73V
607*6
Sample I.D.
(?&»$&
bt>ms&
Container No.
UOV^A
V//SA
&<+*6
miss
Initial Vol. (ml)
413*1*1'*
3crt*d'* '
#$*KoiZ,3-
3^73?
GX?7>5
Initial wt.
(ambient)
-5 .
&•! J
O'b
40>4 s
bZ<3-' '
Heat to
320°F,
3 hour
cool,
weigh
6.1 ^
D<<4 ^
Heat to
450°F,
3 hour
cool,
weigh
0<<\ _
!*<(* /
0-3- .
5?<* *
SI.O ^
Heat to
600°F,
3 hour
cool,
weigh
-O>(0 *
lO,(t> •'
. O.±~
&e.(t> */
^7<5L^
Heat to
320°F.
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600° F,
24 hour
cool,
weigh
Remarks
Data reviewed by
CHc
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3650 -/
Plant U,S. £?A~E,M0>-Ph,11,' fe-teofeo/n
Sample location
Relative humidity 6o°/o
Run No.
Analyst _
Density of acetone (pa)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CjQ-UA
CG7S7
C<373?
CQ-lM,
Sample I.D.
7#"'>S6
7d/77S£
Container No.
^
Initial wt.
(ambient)
4.5 „
22<*> J
O><*
35 ^
i/? x /
Heat to
320°F,
3 hour
cool,
weigh
s,/.
/fc.(e ^
. 11-0 /
O-4~ -
^3'9. ^
3^,^L^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by rfjLu
f\ D a f\^**
61
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN
Plant U<$. CPfi -
Sample location
Relative humidity
Run No. "7/SAT75A
Analyst
To/ae s
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C&M
CA-7S9
C073&
CQ-li-t
Sample 1.0.
l&msfi
76/r>S£
Container No.
^( w
Heat to
450°F,
3 hour
cool,
weigh
- O<3 ~
0-^ ^
Heat to
600°F.
3 hour
cool,
weigh
-O.1o ^
O>4 -
Heat to
320°F,
24 hour
cool,
weigh
PO/3L ^
^fc.O ^
mo.z. '*
Heat to
450°F,
24 hour
cool,
weigh
/5.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U-S. E
Sample location
Relative humidity So°/o
-Ph.lL'n
Run No. _
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CjQlW
60754
&?73fr
(LQ73-}
Sample I.D.
fr?/r>s
Vfrmsvso
Container No.
W-3LA
V-/30*
&
-------
PN 3S3Q- m-
Plant
. CPA -
Sample location
Relative humidity SO°/o
Run No.
Analyst C- Jo/v/es
Density of acetone (pa)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
COW
CQtfoO
£73?
CQ-724
Sample I.D.
0fi*>S
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C&-1M
C076O
CO 730
CjQlM
Initial wt.
(ambient)
4.3 -
£0.4 J
O.(+ .,
5fe'8 •/
8>s.^x ^
Heat to
320°F,
3 hour
cool,
weigh
s.t
—
a*f ^
—
—
Heat to
450°F,
3 hour
cool,
weigh
0* .
. —
0'3L -
—
Heat to
600°F,
3 hour
cool,
weigh
-D/fc -
n.d> •/
(P.4- -
53,7 •
7/.3 x-
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by (^JOJJ^JL^
*'• • . • • • •• .
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant
Sample location _
Relative humidity
Run No. _
Analyst _
Density of acetone (pa)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-HoOi
CO l(e l
CQ1M
CO 730
Sample I.D.
4ArtS
<\Am$
Container No.
7f^U-5 S
*&SOl(ffO
*2>t*so2crr
Tare Wt. (mg)
/074fc,S *
/C?434, / */
2>b '
2&0,(e '/
Heat to
320°F,
3 hour
cool.
weigh
5-1 _
—
O.H .
— -
Heat to
450°F,
3 hour
cool,
weigh
o>1^
0.0- ,
Heat to
600°F,
3 hour
cool ,
weigh
~0' ^
1W
0.+ „
tWib ^
73,0 ^
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
LULJV J> *•>*.
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
Plant
Sample location
Relative humidity So°/o
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S30-/4
Run No. _
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-7M
COlb3L
£0738
&P73/
Sample I.D.
3BM6
161*5
Container No.
VOVJ.A-
Hi<+SA
&<*&&
4/vs/s
Initial Vol. (ml)
4tJ-ml's /
SlbrnJi's ^
«-3W5o/fco
*-3t/SOp^5
Tare Ht. (mg)
HnA.
2>S,0 •
o
to
en
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total part Icul ate
Lab No.
CJQ-Hcft
e.*^ ^
Heat to
450°F,
3 hour
cool,
weigh
o,q ^
c?.x ^
—
Heat to
600°F,
3 hour
cool,
weigh
^0,6 ^
/f.O •
0,4- »
t+0<"'
Heat to
320°F,
24 hour
cool,
weigh
Heat to
450°F,
24 hour
cool,
weigh
-
Heat to
600°F,
24 hour
cool,
weigh
Remarks
Data reviewed by
*' '• ' »
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S3Q-/4
Plant 6(,S.£PA~€rm£- Ph.liips
Sample location
Relative humidity SO«YO
Run No.
Analyst
Density of acetone (pa) /7
C$738
(367733-
Sample I.D.
4cms&
4Cf»56
Container No.
t+&4}f{
m<4*A
&H6&
<*«+&&
Initial Vol. (ml)
V/a/n^
<3/
Tare Wt. (mg)
/07(0&3L -"
bW.q /
o
I
N>
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total parti cul ate
Lab No.
£Q7fc*?
dQl^A
C$738
09732.
Initial wt.
(ambient)
4.* „
d~3- ~
Heat to
600°F,
3 hour
cool ,
weigh
-O.b .
o>± '
Heat to
320°F,
24 hour
cool ,
weigh
/f'A ^
3^.4- /
53' (a •/
Heat to
450°F,
24 hour
cool ,
weigh
/S4- •
3?/3 ^
V7^7 V
Heat to
600°F,
24 hour
cool,
weigh
/>6? ^
p^/9 ^
WS*>
Remarks
Data reviewed by
* ' ' *
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
PN
Plant
Run No.
Sample location
Relative humidity 6o°fo
Analyst Ci Jb/vl&s
Density of acetone (pa) <~1clo&
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
GQ7fc4
CQlb+
£0738
C0733
Sample I.D.
4LMS&
ID n*s &
Container No.
WM
VI Si A
SW86
V/s/fl
Initial Vol. (ml)
/ »/
Wfc ^
Heat to
600°F,
3 hour
cool ,
weigh
~Oi(o ^
. fc'3 ^
a4~ -
31/S •
^6// ''
Heat to
320° F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600° F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
(tit
f . •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S5D-/4-
Plant
Run No. (0 A MS 4 SO
Sample location
Relative humidity Scx>/o
Analyst C. 3
Density of acetone (pa)
(q/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ1W
CQUZ
C*073B
£0734-
Sample I.D.
[OfrnS*fS0
lornnS
^7/rJ'S /
«-3YSO/feo
ttolvo
Tare Wt. (mg)
lcn4M>.$ ^
Io6i$2»a. •
3fc5.O. ^
3fcP^ ^
ro
oo
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
£<27fc<\ ~
1>S /
0.3L v
34,0 s
32'S ''
Heat to
600° F,
3 hour
cool ,
weigh
~0,6> •
9'3L ^
c?.
-------
GRAvWTRiWARTfflu\TE rmivsff
PN
Plant
Sample location
Relative humidity So°{»
Run No.
Analyst
Density of acetone (pa) -"73 08
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-IM
CGnbt*
co~i^e>
CQ73S
Sample I.D.
loAfHs+so
lotrnwso
Container No.
<4o& A
oA
S^Vgfi
V7P06
Initial Vol. (ml)
m^nJL'^ ^
3 /
*5
/Ofc747r<5> S
36.5'^. ^
3b6.l x
o
I
M
VO
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CQ~lto<1
CGTfcfc
ttj)73g
£0735
Initial wt.
(ambient)
3.3 „
2t,S /
O,(* x
P-3.3 ^
w,s x«/
Heat to
320°F,
3 hour
cool,
weigh
S.f ^
o.<* ^
Heat to
450°F,
3 hour
cool,
weigh
o,q ^
as-
—
Heat to
600°F,
3 hour
cool ,
weigh
-0,
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530-^
Plant
-Cfn&~f>h.H,f>*
Run No. locmsB
Sample location
Relative humidity 5O°/0
Analyst <2,CT(WgS
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CQ-lloQ
CQ-K07
C0738
<2073fo
Sample I.D.
/o<2/r»s6
locmsA
Container No.
tow A
<^3A
&V8&
W*^
Initial Vol. (ml)
/P-*u0'3 ^
^68mfS ^
* 3VS/fco
3^5O lib
Tare Wt. (mg)
/079fr*/.S ^
lOloyt&b >/
3to6>SL
$<01<<0 •
o
w
o
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
£<5>7fc
QjGnun
Ctf7&6
£73fo
Initial wt.
(ambient)
9-5 .
/f.g ^
CV^>
ze* '
V8-7 x^
Heat to
320°F,
3 hour
cool ,
weigh
5-t ^
0.4 ~
Heat to
450°F,
3 hour
cool ,
weigh
0<<\ .
C?'3L .
Heat to
600°F,
3 hour
cool ,
weigh
-O
-------
PN
Plant
Sample location _
Relative humidity
-Ph,ll,o<
Run No.
Analyst C-
Density of acetone (pa)
(g/ml)
Sample type
•*.
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Miter blank
Filter
Lab No.
CQ-IM
OQ-lbQ
00756
Co
SwSoiW-
Tare Wt. (mg)
/076^'5 ^
i&tZSl'b y
3to5.&
2>&?<3L ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C0764
(LQlbG
C£>73e
C0737
Initial wt.
(ambient)
4.3
W( -
1S>3L S
O-f-k ^
}1,+ <
SZ.b /
Heat to
450°F,
3 hour
cool,
weigh
O,<\ ^
^.a. •/
o>-^ «
&>,0 *
*&,*"'
Heat to
600°F,
3 hour
cool ,
weigh
~Ol(0 X
/6.A /
a 4- s
W,
-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
PHILLIPS PETROLEUM
PN 3530-14
Summary S0« Analysis
Sample ID
1AM5
1BM5
1CM5W
1DM5W
2AM5450
2BM5450
2CM5B
2DM5B
3AM5W
3BM5W
3CM5
3DM5
4AM5450
4BM5450
4CM5B
4DM5B
5AM5
5BM5
5CM5W
5DM5W
6AM5450
6BM5450
6CM5B
6DM5B
7AM5B
7BM5B
7CM5W
7DM5W
8AM5450
8BM5450
8CM5W
8DM5W
9AM5
9BM5
9CM5B
9DM5B
10AM5450
10BM5450
10CM5B
10DM5B
Blank-H202
PEDCo No.
CQ779
CQ780
CQ781
CQ782
CQ783
CQ784
CQ785
CQ786
CQ787
CQ788
CQ789
CQ790
CQ791
CQ792
CQ793
CQ794
CQ795
CQ796
CQ797
CQ798
CQ799
CQ800
CQ801
CQ802
CQ803
CQ804
CQ805
CQ806
CQ807
CQ808
CQ809
CQ810
CQ811
CQ812
CQ813
CQ814
CQ815
CQ816
CQ817
CQ818
CQ819
p
total mg
4130
3900
4560
4730
4000
3860
4740
4750
4060
4210
4670
4660
3910
4080
4560
4580
2840
3080
3390
3350
4030
4140
4680
4630
3120
3180
2650
3590
3980
4050
3730
4650
4480
4400
4790
4920
3530
3560
4110
4020
<0.2
C-32
-------
SUMMARY H2S04 ANALYSIS
Sample ID PEDCo No. HpSO^. total mg
1AM5 CQ820 28.9
1BM5 CQ821 16.3
1CM5W CQ822 23.3
1DM5W CQ823 68.3
2AM5450 CQ824 69.2
2BM5450 CQ825 102
2CM5B CQ826 40.7
2DM5B CQ827 78.7
3AM5W CQ828 42.1
3BM5W CQ829 79.5
3CM5 CQ830 21.9
3DM5 CQ831 32.9
4AM5450 CQ832 207
4BM5450 CQ833 201
4CM5B CQ834 193
4DM5B CQ835 278
5AM5 CQ836 40.0
5BM5 CQ837 71.3
5CM5W CQ838 54.3
5DM5W CQ839 86.2
6AM5450 CQ840 189
6BM5450 CQ841 252
6CM5B CQ842 226
6DM5B CQ843 182
7AM5B CQ844 135
7BM5B CQ845 148
7CM5W CQ846 109
7DM5W CQ847 154
8AM5450 CQ848 158
8BM5450 CQ849 102
8CM5W CQ850 620
8DM5W CQ851 93.6
9AM5 CQ852 59.1
9BM5 CQ853 53.3
9CM5B CQ854 360
9DM5B CQ855 304
10AM5450 CQ856 243
10BM5450 CQ857 218
10CM5B CQ858 277
10DM5B CQ859 273
Blank- I PA CQ860 <0.1
C-33
-------
LABORATORY REPORT
U.S. EPA PN: 3530-14 1-28-83
Phillips Petroleum
Nonwater Soluble Sulfate Particulate Analysis
„ Volume
Run No.
1CM5W-F
1CM5W-PR
1DM5W-F
1DM5W-PR
3AM5W-F
3AM5W-PR
3BM5W-F
3BM5W-PR
5CM5W-F
5CM5W-PR
5DM5W-F
5DM5W-PR
7CM5W-F
7CM5W-PR
7DM5W-F
7DM5W-PR
8CM5W-F
8CM5W-PR
8DM5W-F
8DM5W-PR
Blank-F
Blank-PR
Blank-F
Blank-F
Blank-F
Blank-F
*15 ml
Lab No.
CQ861
CQ872
CQ862
CQ873
CQ863
CQ874
CQ864
CQ875
CQ865
CQ876
CQ866
CQ877
CQ867
CQ878
CQ868
CQ879
CQ869
CQ880
CQ870
CQ881
CQ871
CQ882
CR295
CR296
CR297
CR298
Net Weight,
mg
99.8
155.3
56.7
91.7
99.3
120.7
72.7
97.9
Not Analyzed
Not Analyzed
89.6
104.9
81.1
164.1
49.7
159.0
61.9
43.7
65.6
94.5
(-10.8)
1.2
5.4
(-9.0)
(-11.2)
1.9
^S04'
mg/1
177.0
286.8
42.54
173.4
156.6
326.0
91.36
182.0
184.6
199.7
176.2
383.8
74.06
277.2
54.06
65.74
65.56
154.4
3.79
0.30
10.6
4.05
3.25
5.35
were removed for ion chromatography
Reviewed by: S^e?.
Evaporated*
ml
235
365
235
343
235
229
235
314
235
439
235
309
235
344
235
349
235
372
235
370
235
235
235
235
analysis.
«^<- J.tfr&atrJ^
NWSSP,
mg
42.6
11.3
42.9
9.9
48.7
18.0
43.2
19.3
29.9
(-15.7)
24.1
1.0
25.8
27.8
44.4
12.1
44.4
15.5
(-12.0)
1.0
2.0
(-10.3)
(-12.3)
0.2
^<2*~fj
C-34
-------
LABORATORY REPORT
U.S. EPA; PN 3530-14
MARCH 8, 1983
PHILLIPS SAMPLES
Run No.
1AM5-PR
1AM5-F
1BM5-PR
1BM5-F
2AM5-450-PR
2AM5-450-F
2BM5-450-PR
2BM5-450-F
2CM5B-PR
2CM5B-F
2DM5B-PR
2DM5B-F
3CM5-PR
3CM5-F
3DM5-PR
3DM5-F
4AM5-450-PR
4AM5-450-F
4BM5-450-PR
4BM5-450-F
4CM5B-PR
4CM5B-F
4DM5B-PR
4DM5B-F
5AM5-PR
5AM5-F
Lab No.
CQ739
CQ708
CQ740
CQ709
CQ741
CQ710
CQ742
CQ711
CQ743
CQ712
CQ744
CQ713
CQ745
CQ714
CQ746
CQ715
CQ747
CQ716
CQ748
CQ717
CQ749
CQ718
CQ750
CQ719
CQ751
CQ720
so.,
ml/liter
25.12
78.04
28.40
82.71
3.68
12.12
3.97
12.66
9.53
13.92
9.60
19.36
40.42
113.9
50.41
115.6
15.83
12.83
5.80
15.34
10.71
16.44
15.99
16.40
18.49
51.44
Volume, ml
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
S04, mg
6.3
19.5
7.1
20.7
0.9
3.0
1.0
3.2
2.4
3.5
2.4
4.8
10.1
28.5
12.6
28.9
4.0
3.2
1.4
3.8
2.7
4.1
4.0
4.1
4.6
12.9
(continued)
C-35
-------
PHILLIPS SAMPLES (continued)
Run No.
5BM5-PR
5BM5-F
6AM5-450-PR
6AMB-450-F
6BM5-450-PR
6BM5-450-F
6CM5B-PR
6CM5B-F
6DM5B-PR
6DM5B-F
7AM5B-PR
7AM5B-F
7BM5B-PR
7BM5B-F
8AM5-450-PR
8AM5-450-F
8BM5-450-PR
8BM5-450-F
9AM5-PR
9AM5-F
9BM5-PR
9BM5-F
9CM5B-PR
9CM5B-F
9DM5B-PR
9DM5B-F
10AM5-450-PR
10AM5-450-F
10BM5-450-PR
10BM5-450-F
Lab No.
CQ752
CQ721
CQ753
CQ722
CQ754
CQ723
CQ755
CQ724
CQ756
CQ725
CQ757
CQ726
CQ758
CQ727
CQ759
CQ728
CQ760
CQ729
CQ761
CQ730
CQ762
CQ731
CQ763
CQ732
CQ764
CQ733
CQ765
CQ734
CQ766
CQ735
Cso4«
ml/liter
7.76
28.29
3.36
12.10
14.19
14.07
16.48
18.35
6.79
13.32
5.46
12.47
14.14
12.26
11.54
15.08
5.69
18.18
41.68
64.50
29.51
52.37
8.77
13.65
5.56
15.90
3.42
11.09
4.97
10.58
Volume, ml
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
S04, mg
1.9
7.1
0.8
3.0
3.5
3.5
4.1
4.6
1.7
3.3
1.4
3.1
3.5
3.1
2.9
3.8
1.4
4.5
10.4
16.1
7.4
13.1
2.2
3.4
1.4
4.0
0.8
2.8
1.2
2.6
(continued)
C-36
-------
PHILLIPS SAMPLES (continued)
Run No. Lab No. ml/liter Volume, ml S04, mg
10CM5B-PR CQ767 6.20 250 1.6
10CM5B-F CQ736 16.22 250 4.1
10DM5B-PR CQ768 17.78 250 4.4
10DM5B-F CQ737 16.58 250 4.1
Blank-PR CQ769 <1.00 250 <0.2
Blank-F CQ738 4.39 250 1.1
Blank-F CR292 1.29 250 0.3
Blank-F CR293 1.26 250 0.3
Blank-F CR294 1.30 250 0.3
Reviewed by
C-37
-------
LABORATORY REPORT
U.S. EPA; PN 3530-14
MARCH 7, 1983
SO V
weight, mg weight, mg 4' evap* NWSSP,
PHILLIPS SAMPLES
Net Net C
ight, mg weight, mg
Run No. Lab No. Ambient M5W mg/liter ml mg
5CM5W-PR CQ876 90.6 77.9 166.6 200 32.1
5CM5W-F CQ865 - 129.2 317.8 250 19.9
Reviewed by
C-38
-------
Cation Data
C-39
-------
PAGE1
RECEIVED: 06/02/83
Analytical Serv REPORT
06/20/8309:25:20
LAB I 83-06-016
REPORT Pedco Environmental
TO 11499 Ch«»ter Road
PREPARED Radian Analytical Service*
BY B5Q1 MoPac Blvd.
Cincinnati. Ohio 45246
ATTEN Mr. Tom Wagnor
P.O. Boi 9948
Austin, T»«a« 78766
CLIENT PEP CO
ATTEN
PHONE (512) 454-4797
COMPANY Pedco Environmental
FACILITY
SAMPLES _9_
CERTIFIED BY
CONTACT HEINRICH
WORK ID ICP Analu«i«
TAKEN
tor •»tract*
TRANS UPS
TYPE *ater«
P.O. » PEI-83-7139L-353Q-14
JUN231983
PEDCO ENVIRONMENTAL
INVOICE undor separate cover
SAflPLE IDENTIFICATION
1C i Cft 9*,
*• ftl CQ 861
° 02 CQ 862
01 CQ 868
Analytical Serv TEST CODES and NAMES used on this report
ICP 4O Complete ICPES Analysis
-------
•It AH
PA6E2
RECEIVED: 06/02/83
SAMPLE ID CO 861 1C
HAN
DATE ANALYZED 06/06/83
CODE METAL RESULT
AO Silver <. OO2
AL
A8
AU
B
0
i BA
»-•
BE
BI
CA
CD
CO
CR
CU
FE
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
NOTES AND DEFINITIONS
14
C06
C O3
0.61
COO1
COOO5
COS
2. O
CO02
COO6
COO1
COO1
O. 98
FOR THIS
Analytical !
1
FRAC
Date
CODE
HO
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
REPORT.
iv REPORT
Results by Sample
LAB I 83-06-016
FRACTION 01A TEST CODE ICP 40 NAME Complete ICPES Analysis
All result* reported in .
• not analyzed
less than 9 times the detection limit.
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
^, O3
COS
2.0
<. 001
0.042
<. 001
<. 002
9.8
O. 25
1. 5
COS
<. 03
9.5
<. 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
U
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium COS
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanad i um
Tungsten
Yttrium
Zinc
2.2
C 12
0.020
C 1O
COOS
C09
CO6
0.36
COS
C002
0. 16
MA
NA
-------
O
N>
'AGE 3 Analytical Serv REPORT LAB * 83-06-016
IECEIVED: 06/02/83 Results by Sample
lAflPLE ID CQ 862 1C FRACTION 02A TEST CODE ICP 40 NAUE Comolete ICPES Analysis
Date & Time Collected not specified Category
DATE
CODE
AO
AL
AS
AU
BA
BE
BI
CA
CD
CO
CR
CU
FE
fOTES
ANALYZED 06/06/83
METAL RESULT C
Silver C 002
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINIT1
All results
2.7
<. 06
C03
O. 85
COO1
C 0009
COS
1.4
COO2
C006
0.008
0. 37
tONS FOR THIS REPORT.
reported in uq/ml
:ODE METAL
HG Mercury
IN Indium
K Potassium
LI Lithium
MO Magnesium
MN Manganese
MO Molybdenum
NA Sodium
NI Nickel
X Phosphorous
PB Lead
PT Platinum
^8^ Sulfur
SB Antimony
unless otherwise
RESULT
COS
COS
1.0
0.031
O. 13
O. 002
O. O24
3. 1
O. O45
O. 5S
COS
C03
14
COS
specified.
VERIFIED BY DLH
CODE METAL RESULT
SE Selenium C OS
>>S*^ Silicon
SN Tin
SR Strontium
TE Tellurium
TI Titanium
TL Thallium
U Uranium
V Vanadium .
U Tungsten
Y Yttrium
ZN Zinc
2.4
C 12
O. O16
C 10
0. O41
C09
CO6
O.
CO3
C002
0.032
NA
NA
NA - not analyzed
* - less than 5 times the detection limit.
-------
RECEIVED: 06/02/83
SAMPLE ID C3 867 1C
LAB t 83-06-016
Results by Sample
DATE ANALYZED Q6/OA/B3
CODE METAL RESULT
AO Silver C OO2
AL
AS
AU
B
BA
BE
BI
CA
CD
CO
CR
CU
FE
Aluminum
Arsenic
Oold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
1O
CO*
COS
O. 57
<. 001
COOOS
COS
2,0
COO2
COO6
COO1
CO01
O. 77
Date
CODE
HO
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 03A TEST CODE ICP 40 NAHE Complete ICPES Analysis
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
NOTES AND DEFINITIONS FOR THIS REPORT.
All results reported in ua/ml unless otherwise specified.
NA « not analyzed
* • less than 9 times the detection limit.
ted not specified
RESULT
<. 03
<. 05
1,7
O-OO^
O. 16
<. OO1
<, 002
2.8
0. 15
* 1
<. OS
COS
48
<. 03
CODE
8E
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Cateqoru
VERIFIED BY DLH
METAL RESULT
Selenium COS
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
4.8
C 12
0.019
<. 1O
COOS
<. O9
<. 04
O. 24
C03
<. 002
0.077
NA
NA
-------
RADIAN
c o» r»o«»/< T M> •«
PAGES
RECEIVED: 06/02/83
SAMPLE ID CQ 868 1C
Analytical Serv REPORT
Results by Sample
LAB • 83-06-016
DATE
CODE
AO
AL
AS
AU
B
£•*
•u
BE
BX
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED O6/O6/83
METAL RESULT CODE
Silver <. OO2 HO
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
9,7
< O6
^,03
0.82
<. OO1
0.001
<. 05
1.4
<. 002
<. 006
o. 023
<;,ooi
0.43
FOR THIS REPORT.
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION MA TEST CODE ICPJQ NAflE Complete 1CPES Analysis
All results reported in .
NA * not analyzed
* - less than 9 times the detection limit.
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ua/ml unless otherwise specified.
ted not specified
RESULT
^•O3
^.0?
1.2
O. O35
O. }8
O. OO2
0.027
2.9
0. 13
0.44
<. O8
<. O3
23
COS
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. O8
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
1.4
<. 12
O. O19
<. 1O
0.038
<. O9
<. 04
O. 23
<. 03
<. OO2
0. O28
NA
NA
-------
RECEIVED: 06/02/83
SAHPLE ID CO 871 1C
Analytical serv REPORT
Results by Sample
LAB * 83-06-016
DATE ANALYZED O6/O6/B3
CODE METAL RESULT
AO Silver C OO2
AL
AS
AU
B
O BA
£ BE
BI
CA
CD
CO
CR
CU
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
C O9
CO6
C OS
0.68
COO1
COOO9
CO9
1T 1
C002
C006
0.003
< 001
0. O19
Date
CODE
HO
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 05A TEST CODE ICP 40 NAME Complete ICPES Analysis
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ted not specified
RESULT
C03
<. 09
O. 82
0.019
O. 16
C001
0.023
1.4
<. OO3
<. IB
COS
<. 03
1. 5
<. 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Categoru
VERIFIED BY DLH
METAL RESULT
Selenium COS
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
6.9
C 12
0.008
C 1O
0.023
C09
C06
O. O13
COS
COO2
COO3
NA
NA
NOTES AND DEFINITIONS FOR THIS REPORT.
All re«ult» reported in .
NA - not analyzed
« m le«« than 9 times the detection limit.
uo/ml unless otherwise specified.
-------
CtMVWMMI •»
PACE 7
RECEIVED: 06/02/83
SAMPLE ID CQ 872 1C
DATE
CODE
AO
AL
AS
AU
B
n BA
« BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Analytical !
1
FRAC'
Date
ANALYZED QA/QA/83
METAL RESULT CODE
Si Ivor C OO2 HO
Aluminum
Arsenic
Gold
Boron
Barium
3.3
<;, PA
C03
O. 33
COO1
Beryllium C OOOS
Bismuth ,
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
C OS
0.64
<; 002
C006
Q. 04O
C001
0.70
FOR THIS REPORT.
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
S
SB
v REPORT
Results by Sample
LAB I 83-06-016
FRACTION 06A TEST CODE ICPJO NAflE Complete ICPES Analysis
All results reported in .
NA • not analyzed
* - le«« than 9 times the detection limit.
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ua/ml unless otherwise specified.
ted not specified
RESULT
<. 03
COS
O. 75
<. OO05
O. 10
0.024
0.021
3.6
O. 13
2.9
COB
COS
93
CO3
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
S* Ionium COS
Silicon
Tin
Strontium
Tollurium
Titanium
Thallium
Ur an i urn
Vanad i urn
Tung* ton
Yttrium
Zinc
1.0
C 12
O. O1O
C 10
COOS
C09
COA
0. O81
CO3
C002
1.9
NA
NA
-------
PAGES
RECEIVED: 06/02/83
SAMPLE ID CQ 873 1C
Analytical Serv REPORT
Results by Sample
LAB I 83-06-016
DATE
CODE
AG
AL
AS
AU
B
9 BA
*>.
^ BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED OA/OA/B3
METAL RESULT CODE
Silver C O02 HG
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
24
CO&
CO3
0- 17
COO1
<;, oops
COS
0.32
COO2
C006
C001
0. O19
Or 49
FOR THIS REPORT.
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
8
SB
FRACTION 07A TEST CODE ICP 40 NAHE Complete ICPES Analysis
All results reported in .
NA « not analyzed
* • less than S times the detection limit.
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
<. 03
COS
<. 04
<. 0005
<. O3
0. OO3
<. OO2
2.0
O. O22
2.9
<. 08
COS
49
CO3
CODE
SE
81
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
8* Ionium C OS
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
0.86
C 12
0.008
C 10
COOS
C09
C 06
0. OO6
COS
COO2
l.S
NA
NA
-------
PAGE?
RECEIVED: 06/02/83
SAHPLE ID CQ 878 1C
DATE ANALYZED 06/06/83
CODE METAL RESULT
AO Silver C OO2
AL
AS
AU
B
BA
BE
BI
CA
CD
CO
CR
CU
FE
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
2. 4
C 06
<. O3
O. O34
C 001
<. OOO3
<. 03
O. 33
C. OO2
<. OO6
0. 013
0.019
0. 39
Date
CODE
HG
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
S
SB
Analytical Serv REPORT
Results by Sample
FRACTION DBA TEST CODE ICP 40 Ni
Date & Time Collected not specified
METAL RESULT
Mercury <. Q3
Indium COS
Potassium <. O4
Lithium C 001
Magnesium <. O3
Manganese Q. Q46
MO Molybdenum <. OO2
Sodium 0.73
Nickel O. 19
P Phosphorous 3. 1
Lead <. OS
Platinum <. O3
Sulfur 1OO
Antimony <. O3
LAB ft 83-06-016
NOTES AND DEFINITIONS FOR THIS REPORT.
iflE Complete ICPES Analysis
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
U
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. 08
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
1.4
< 12
0.008
<. 1O
<. 003
<. 09
<. OA
<. O03
<. 03
<. 002
3. O
NA
NA
All results reported in .
NA * not analyzed
* » less than 3 times the detection limit.
uo/ml unless otherwise specified.
-------
PAGE 10
RECEIVED: 06/02/83
SAIffLE ID CQ 879 1C
Analytical Serv REPORT
Results by Sample
LAB I 83-06-016
DATE
CODE
AO
AL
AS
AU
B
o
vo
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED O6/Q&/B3
METAL RESULT CODE
Silver C, OO2. HO
Aluminum i. 9
Arsenic *CJi>6
Gold C. Q3.
Boron Q«_3g
Barium ^iJ?°t
Beru Ilium C. QOOS
Bismuth C. 09
Calcium 0. 23
Cadmium ^.092
Cobalt C.OQfc
Chromium Q^ OJ3.
Copoer C OO1
Iron 0. 43
AND DEFINITIONS FOR THIS REPORT.
IN
K
LI
MO
MN
MO
NA
NI
P
PB
PT
8
SB
FRACTION 09A TEST CODE ICP 40 NAHE Complete ICPES Analysis
All result* reported in .
NA * not analyzed
» » less than 3 times the detection limit
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
<. O3
COS
O. 86
O. 019
0.22
9r OQ2
O.O23
1. 1
O.O12
3.0
<. 08
C 03
78
COS
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
U
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium COS
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
O. 66
<. 12
0.009
<. 1O
0. 033
<.09
<.O6
O. O84
COS
COO2
2. O
NA
NA
-------
APPENDIX D
SAMPLING AND ANALYTICAL PROCEDURES
D-l
-------
DETERMINATION OF PARTICULATE, SULFUR DIOXIDE,
AND SULFATE EMISSIONS
All samples were collected using an EPA Method 5* sampling
train with a Method 8* back half. Method 5 sampling procedures
were utilized for all tests, except as noted.
SAMPLING APPARATUS
Each sampling train was set up as shown in Figure D-l. Each
train consisted of:
Nozzle - Stainless steel (316) with sharp, tapered leading
edge and accurately measured round opening.
Probe - Borosilicate glass with a heating system capable of
maintaining the desired gas temperature at the exit end
during sampling.
Pitot Tube - Type S pitot tube that met all geometry stan-
dards was attached to the probe to monitor stack gas veloc-
ity.
Filter Holder - Pyrex glass with heating system capable of
maintaining a filter temperature at desired levels.
Draft Gauge - An inclined manometer made by Dwyer with a
readability of 0.01 inch H20 in the 0 to 10 inch range was
used.
Impingers - Four impingers connected in series with glass
ball joints. The first, third, and fourth impingers were of
the Greenburg-Smith design, modified by replacing the tip
with a 1/2 inch I.D. glass tube extending to 1/2 inch from
the bottom of the flask.
40 CFR 60, Appendix A, Reference Methods 5 and 8, July 1982.
D-2
-------
HEATED AREA.
STACK WALL
PROBE
(FILTER HOLDER
THERMOMETER
I
o
i
U)
TEMPERATURE SENSOR LOCATION
THERMOMETER
ORIFICE
ICE WATER BATH
BY-PASS
VALVE
MANOMETER
VACUUM GAUGE
Jb ? .
VACUUM LINE
MAIN VALVE
VACUUM PUMP
IMPINGER CONTENTS
RUNS 1-10
1. 200 ml 80% IPA
2. 100 ml 10% H202
3. 100 ml 10% H?02
4. 400 g SILICA GEL
Figure D-l. Method 5 sampling train.
-------
Metering System - Vacuum guage, leak-free pump, thermometers
capable of measuring temperature to within 5°F, calibrated
dry gas meter, related equipment to maintain an isokinetic
sampling rate, and to determine sample volume. The dry gas
meter was made by Rockwell and the fiber vane pump was made
by Gast.
The back half of each sample train was a Method 8 with four
impingers. An unheated Method 5 filter assembly was inserted
between the first and second impingers to preclude any sulfuric
acid mist carryover. The contents of each impinger were as
follows:
Impinger Contents - All Runs
1 200-ml 80% IPA
2 100-ml 10% H20a
3 100-ml 10% H202
4 400-grams silica gel
All filters were Whatman Reeve Angel 934AH and the filters
used in the Method 5 position were heated to 300°C prior to
identification and tare weighing.
The particular conditions for each train are described
briefly below:
0 Method 5 - Designation M5
Filterable particulate was collected using a probe and
filter assembly heated to 121°C (250°F). Acetone was
used to rinse all sample train components prior to the
filter.
0 Method 5B - Designation MSB
Filterable particulate was collected using a probe and
filter assembly heated to 160°C (320°F). Acetone was
used to rinse all sample train components prior to the
filter.
D-4
-------
0 Method 5-450 - Designation M5-450
Filterable particulate was collected using a probe and
filter assembly heated to 232°C (450°F). Acetone was
used to rinse all sample train components prior to the
filter.
0 Method 5W - Designation M5W
Filterable particulate was collected using a probe and
filter assembly heated to 121°C (250°F). Deionized,
distilled water was used to rinse all sample train
components prior to the filter.
For each train, the probe and filter temperatures were set
at the predetermined temperature and monitored using multi-
terminal digital indicators with thermocouple leads located in
each probe and immediately behind the Method 5 filter frits.
Each individual sample train was leak checked at the sample
site prior to testing by plugging the sample nozzle and pulling a
15 in.Hg vacuum and at the end of each test by pulling a vacuum
equal to the highest vacuum recorded during the test.
The pitot tube and lines were leak checked at the test site
prior to each test run and at the conclusion of each test run.
The check was made by blowing into the impact opening of the
pilot tube until 3 or more inches of water was recorded on the
manometer and then capping the impact opening and holding it for
15 seconds to assure it was leak free. The static pressure side
of the pitot tube was leak checked using the same procedure,
except suction was used to obtain the 3 in. H2O manometer read-
ing. Crushed ice was placed around the impingers in an attempt
to keep the temperature of the gas leaving the last impinger at
68°F or less.
D-5
-------
Flue gas moisture content was determined gravimetrically by
weighing each impinger before and after each test. Additionally,
a flue gas grab sample collected during each test was analyzed
for O2, C02, and CO using an Orsat analyzer to facilitate calcu-
lation of the stack gas molecular weight.
SAMPLE LABELING
The sample label identifies the test run number, sample
train, and each component of the individual train. The run
number are consecutive from 1 to 10. Since each run consists of
four single trains, each train was identified by a letter A, B,
C, or D.
The last item of the label identifies the sample method and
the component of the recovered sample. For example, identifica-
tion No. 1A M5-IPA indicates Test Run 1, Sample Train A, Method 5
sample method at 121°C (250°F) and the IPA impinger contents and
rinse. Another example is 9C MSB-Probe indicating Test Run 9,
Sample Train C, Method 5B sample method at 160°C (320°F) and the
probe rinse fraction.
SAMPLE RECOVERY
The components of each individual train were labeled and
disassembled at the stack for transport to the sample clean-
up/setup area. The filter and probe assemblies were recovered as
follows:
0 All filters were carefully removed from the filter
holder and placed in a petri dish. These filters were
carefully sealed and labeled.
D-6
-------
0 For Methods 5, 5B, and M5-450 loose particulate from
all sample exposed surfaces prior to the filter and
acetone washings was placed in a polyethylene con-
tainer, sealed, and labeled. For Method 5W, deionized,
distilled water was used for the probe rinse. Par-
ticulate was removed from the nozzle and probe with
nylon brush. The liquid level was marked after each
container was sealed.
The impinger section of each individual sample train (Method
8) was purged with ambient air at the recovery site for 15 min-
utes before recovering the contents. The impingers were removed
from the ice bath prior to purging.
The contents were recovered as follows:
0 After gravimetric weighing, the contents (80 percent
IPA) of the first impinger were placed in a polyethyl-
ene container. The impinger and connecting glassware
prior to the backhalf filter were rinsed with 80 per-
cent IPA and the rinse was added to the container along
with the backhalf filter. The container was then
sealed, labeled, and the liquid level marked.
0 After gravimetric weighing, the contents of the second
and third impingers were placed in a polyethylene
container. The impingers and connecting glassware were
rinsed with deionized, distilled water and the rinse
was added to the container. The container was then
sealed, labeled, and the liquid level marked.
0 The color of the silica gel was noted on the sample
recovery sheet and the net weight gain determined
gravimetrically.
Blank samples were taken each day of sampling for the fol-
lowing: acetone; deionized, distilled water; 80 percent IPA; 10
percent H-O-; and a filter. In addition, each probe was rinsed
prior to initial use with either acetone or water (depending on
method type) and these rinses were retained for probe rinse blank
analysis.
D-7
-------
SAMPLE RECEIPT AND CHAIN OF CUSTODY
Every sample entering the lab for analysis was assigned a
unique alphanumeric identity on a Sample Receipt and Record Sheet
(log). In the sample log-in book, this number was correlated
with sample identification label and with the number of the
analysis requisition form.
The analysis requisition is a triplicate form that lists the
client, project number, type and number of samples submitted, and
analysis required. It also assigns analysts to specific tasks
and shows the number of hours estimated for those tasks.
The top sheet of the requisition form was placed in the
requisition binder; the middle sheet was placed with the samples
and later with the raw data. The bottom sheet was given to the
person requesting the analyses.
The samples remained in a locked sample storage room until
removed for analysis. Transfer was documented on a Sample Con-
trol Record which is maintained by the sample custodian. The
Sample Control Record documents all custody changes which occur
in the laboratory and each procedure performed on the sample.
Release of sample requires notation of the Sample Control
Record and verification of information and sample container
condition. If the sample is to be transferred between two per-
sons (i.e., two analysts), the transfer must take place through
the sample custodian. In other words, the sample will be re-
turned to the sample custodian and reissued.
D-8
-------
SAMPLE ANALYSIS
Particulate Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
to the nearest 0.1 mg until a constant weight was achieved.* The
probe rinse fraction was transferred to a tared beaker and evapo-
rated to dryness at ambient temperature and pressure, desiccated
for 24 hours, and weighed to the nearest 0.1 mg until a constant
weight was achieved.* After this initial analysis, probe rinse
and filter fractions were heat conditioned in an oven for 6 hours
(except where noted) following the specified treatment sequence.
Each sample fraction was cooled and desiccated for 24 hours after
removal from the oven and weighed to the nearest 0.1 mg until a
constant weight** was achieved.
Water Soluble Sulfate Determination
Each sample fraction plus blanks were handled and analyzed
as follows:
° Filter - The filter was cut into small pieces and
placed in a 125-ml Erlenmeyer flask with a standard
type joint equipped with an air condenser. The con-
tents of the shipping container were rinsed into the
flask. About 50 ml of distilled water was added and
the contents gently refluxed for 6 to 8 hours. The
solution was then cooled and diluted with water to
exactly 250 ml in a volumetric flask. This solution
was reserved for total soluble sulfate analysis, which
is described below.
*
Previous data have shown that samples collected at 120°C would
not come to a constant weight. At least three separate weigh-
ings were obtained and the lowest weight achieved was reported
as the ambient weight.
40 CFR 60, Appendix A, Method 5, July 1982.
D-9
-------
0 Probe Rinse - The probe wash was poured into a 250 ml
volumetric flask. The sample bottle was rinsed with
distilled water and the rinsings were added to the
flask. The solution was then diluted to the mark with
distilled water (or, if greater than 250 ml, the volume
was measured). This solution was reserved for total
soluble sulfate analysis, which is described below.
Total Soluble Sulfate—
A 15-ml aliquot* was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet (only solution was transferred—no solid; if necessary, a
portion of the sample was centrifuged). The sulfate ion (SO.=)
concentration in each aliquot was determined by ion chromato-
graphy (1C). A syringe was used to inject 1 ml of the aliquot
into the 100-pl sample loop of the 1C. The conductivity response
of the sample was compared with the calibration curve to obtain
S04~ concentration in ml/liter. Dilutions were prepared and
reanalyzed if the initial response was out of the linear calibra-
tion range (i.e., greater than 15 mg/liter). Blank filter and
water samples were prepared and analyzed in the same manner as
the actual samples.
Mass Determination—
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers, and the flask was rinsed with
distilled water to transfer all particulate matter. The
filter solution was in Beaker A and the rinse solution was
in Beaker B. These solutions were evaporated to approxi-
mately 100 ml at 105°C and allowed to cool before the next
analysis was made.
*
The pipet is not rinsed. This deviation from normal procedures
is necessary because the volume removed from the volumetric
flask is required in the calculations.
D-10
-------
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH.OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, then cooled in a desic-
cator and weighed to a constant weight. Results were re-
ported to the nearest 0.1 xng. For this method, "constant
weight" means a difference of no more than 0.5 mg or 1
percent of the total weight less beaker and/or filter tare,
whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weigh-
ings.
Calculations —
Nomenclature —
FP = weight of particulate* on the filter in Beaker A,
mg
PRP = weight of probe rinse particulate* in Beaker B,
mg
NWSSP = weight of nonwater-soluble sulfate particulate**,
mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of AS in probe rinse sample, mg
V = volume of solution evaporated in Beaker A (filter)
p or Beaker B (probe rinse) , ml
C_o = concentration of sulfate in filter or probe rinse
4 solution aliquots, mg/liter
Equations —
FP(mg) = gross weight Beaker A - tare weight Eq. 1
Beaker A - filter tare weight
PRP(mg) = gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = C^ (mg/liter) x Vowsr^ (ml) x liter — Eq. 3
5°4 evap 1000 ml
x 1.376 (^ AS )
mg S04
*
Particulate with H,SO. converted to \nuAi~avA,
** * * * * 4
Particulate exlcuding water-soluble sulfates.
D-ll
-------
Mass of Non-Water-Soluble Sulfate Particulate
The sum of the particulate* collected on the filter (FP) and
the particulate* collected in the probe rinse (PRP) is equal to
the sum of nonwater-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP + AS, -I- AS Eq. 4
i pr ^
The NWSSP can be found by rearranging the equation and
substituting appropriate values determined using Equations I, 2,
and 3.
NWSSP = FP + PRP - ASf - AS Eq. 5
Sulfate (as Sulfuric Acid Mist) Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. If the pH was greater than 3, no ion ex-
change column was used. The sample volume was diluted to 500 ml
with 80 percent IPA. A 100 ml aliquot of this solution was
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. A blank was titrated for each sample in the
same manner.
Several samples required the use of an ion exchange column
to remove divalent cations (Cd++, Ca++, Fe++, Zn+ ). A small ion
exchange column approximately 2.4 cm (1 in.) in depth and 1.9 cm
(3/4 in.) in diameter was prepared using a strong cation resin.
*
Particulate with H2S04 converted to
D-12
-------
Twenty mis of sample was percolated through the column and col-
lected in a volumetric flask. The column was then rinsed with 20
mis of deionized, distilled water. The 40 ml solution (sample
and rinse) was then added to 160 ml of 100 percent IPA and ti-
trated per Method 6.
Sulfur Dioxide Analysis
The sample was diluted to 500 ml with deionized, distilled
water. A 20 ml aliquot of this solution was pipetted into a 250
ml Erlenmeyer flask with 80 ml of 100 percent IPA and 2 to 3
drops of thorin indicator. The solution was then titrated to a
pink end point using 0.0100 N barium perchlorate. A blank was
titrated in the same manner.
D-13
-------
Modified December 20, 1979
Laboratory Division
Texas Air Control Board
DETERMINATION' OF PARTIQJLATE IN
STACK GASES CONTAINING SULFUR OXIDES
Participate is collected on a glass fiber filter and in the first
impinger. The particulate caught is determined gravimetrically
after analyzing the samples for ammonia and sulfur trioxide/
sulfuric acid. The sulfur trioxide/sulfuric acid is converted to
ananonium sulfate and the weight of ammonium sulfate formed subtracted
from the total weight. Ammonium sulfate formed from ammonia present
in the stack is accounted for separately.
B. APPLICABILITY
This method is applicable to stack samples that may contain sulfur oxides
or sulfur oxides and ammonia in appreciable amounts. Fine particulate will"7
penetrate the stack sampling filter and be caught in the first impinger. ^/
This particulate will often be water or acid soluble and cannot be deter-
mined by a filtration technique. Particulate also cannot be determined -j
gravimetrically in the presence of appreciable sulfuric acid as an inexact^
amount of water will be retained by the acid. This method converts the
acid to a non-hygroscopic, non-volatile product. Results obtained by
this technique are 1 to 2$ low. If an unheated filter is used then this
same technique mist be used for analysis of the probe wash and filter.
Araronia in the stack will combine with the sulfur oxides to form
ammonium sulfate. The ammonium sulfate is determined from the amount of
ammonia and sulfate present in the sample and reported separately.
Thorin indicator used in the Ba(Cl 04)2 titration+is a^ivalent Cation
indicator. Any divalent cation such as Cd*4, Cn , Fe , and Zn will
interfere. An interfering ion will turn the thorin pink as soon as the
indicator is added. Therefore sulfur oxides analysis done on the filter
and probe wash must be done using an alternate method, such as ion
chromatography, if these cations are present.
C. APPARATUS
250 ml beakers
Thermostatically controlled oven, preferably with a fan
Analytical balance with 0.1 mg sensitivity
125 ml Erlenmeyer flask with standard taper joints,
Hatching air condenser
Additional apparatus as specified in the "Determination /»
of Sulfur Dioxide, Sulfur Trioxide, and Sulfuric "~
Acid Mist in Stack Gas"
Additional apparatus as specified in the "Determination
of Ammonia", if ammonia is present in the stack
D-15
-------
50 ml volumetric flasks
The following equipment is necessary if samples are to be analyzed by
ion chromatography:
Dionex Ion Chromatograph equipped with 3 x 250 ran anion separator
column and 6 x 250 mm cation suppressor column
Electronic filter to suppress the cyclic signal created by
pulsating pressure in the detector cell
Electronic integrator
Pipettors with disposable plastic tips capable of transferring
0.10, 0.25, 0.50, 0.75, and 1.0 ml quantities, either alone
or in combination
Sufficient disposable 20 ml plastic beakers
1 - 5 ml plastic syringe, with tapered Luer tip
1 - 4000 ml volumetric flask
3 - 500 ml volumetric flasks
6 - 100 ml volumetric flasks
Membrane filters, 0.45 pm ]>ore size, for aqueous solutions
Apparatus for suction filtration of aqueous solutions
All reagents should be ACS reagent grade
(I) Concentrated ammonium hydroxide (MLOH)
(2) Phenolpthalein indicator
Dissolve 0.05 g phenolphthalein in 50 ml ethanol
and add 50 ml distilled water
(3) Additional reagents as specified in the "Determination
of Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid
Mist in Stack Gas"
(4) Additional reagents as specified in the "Determination
of Ammonia"
The following reagents are necessary if samples are to be analyzed
by ion chromatography:
(5) Stock NaHOO ^ Solut;ion
Dissolve 25.20 g NaH003 in distilled water in a 500 ml
volumetric flask. Dilute to the mark with distilled water
(6) Stock Na?OH Solution
Dissolve Z5.44 g Na^COj in distilled water in a 500 ml
volumetric flask and dilute to the mark.
(7) Eluent Buffer Solution
Pipet 20 ml NaHO)3 stock solution and 10 ml ^CCh into a 4000 ml
volumetric flask and dilute to volume with distilled water. This
solution is 0.003 M in NaHC03 and 0.0012 M in Na2G03. Filter the
solution through a 0.45 pro pore size membrane filter and store in
a flexible plastic bottle out of contact with air. (To achieve the
desired retention time, separation, etc. the eluent buffer may vary
from 0.0009 M carbonate to 0.0015 M carbonate).
D-16
-------
(8) Sulfate Stock Standard
Dissolve O.liod g anhydrous Na^SO* in distilled water in a
500 ml volumetric flask and dilute to the nark, live solution
contains a concentration of 150 yg SOI/ml.
E. COLLECTION OF SANPLE
The sample is collected using a normal stack sampling train set up /
for isokinetic collection of particulate and SOj/H^SO, and/or S02« (_
An 801 isopropyl alcohol solution is used to trap the SOjA^SC^ and
particulate and a 61 hydrogen peroxide solution is used to trap 502.
*—
F. TEST PROCEDURE
(1) Sample Preparation
(a) Pour the probe wash into a 500 ml volumetric flask. Rinse
the sample bottle with distilled water. Four the rinsings
into the volumetric flask. Dilute to the mark with distilled
water.
(b) Cut the filter into snail pieces and place in a 125 rl " ~
Erlenmeyer flask equipped with an air condenser. Add
50 ml of distilled water and reflux gently for six to
eight hours. Pipet a 5 ml aliquot into a 50 ml volumetric
flask. Dilute to the mark with distilled water. Place
the rest of the extract and the filter in a 250 ml beaker.
Rinse Erlenmeyer flask with three 10 ml portions of dis-
tilled water. Pour rinsings into the 250 ml beaker.
(c) Pour the contents of the first impinger into a 500 ml
volumetric flask. Rinse the impinger or sample bottle
with distilled water several times. Pour the rinsings into
the sane flask. Dilute to the mark with distilled water.
(2) Ammonia Analysis
Following procedures in ^Determination of Ammonia** for analysis
and preparation of the standard curve, analyze the probe wash,
filter extract, and contents of first impinger for ammonia.
For the probe wash and first impinger use 5 ml aliquots taken
from the samples after dilution to 500 ml and dilute with dis-
tilled water again to 500 ml. Another dilution may be necessary
so extra developed blank should be prepared.
For the filter take a 10 ml aliquot from the diluted sample in
the 50 ml volumetric flask and dilute this with distilled water
to 100 ml in a volumetric flask. Use this as the sample for
ammonia analysis. Another dilution may be necessary, so extra
developed blank should be prepared.
-------
(3) Sulfate Analysis
reduresijiJ'De termination of Sulfur Dioxide,
^Sulfur Trioxia7^TD!a'-Sulfuric Acid Mistin Stack Gas!!.
pbe wash, filter extiail, Una contentsof
first impinger. For the probe wash and first irapinger
take 5 ml aliquots taken from the sample after dilution
to 500 ml. For the filter extract take 5 ml aliquots
from the sample in the 50 ml volumetric flask.
Check the sample pH before beginning titrations. The sample
solution should be acidic. If there is excess teL, the
solution will be basic giving a poor end point for the
Ba(C10,)7 titration. If the solution is basic, acidify
it usingTO.
If divalent cations are present, then thorin indicator will
not work. The samples must then be analyzed by ion chroma-
tography.
CD) Procedure for Ion Chromatographic Analysis
Using a pipettor with disposable tips, transfer 0.50 and
1.0 ml SGjj stock standard into 100 ml volumetric flasks
and dilute to volume with distilled water. These standards
contain 0.75 yg SOjj/ml and 1.50 yg S0|/ml.
Set the punp in the ion chromatograph to give an eluent buffer
solution flow rate which provides a convenient retention time
for SOjj and complete separation from other ions. (Eluent
buffer strength may also have to be varied). The chromatograph
output should be connected through the electronic filter and
the integrator to the recorder, in that order. Set the
electronic filter so that the signal from the pulsating pressure
in the detector cell just disappears from the recorder trace.
Transfer portions of the standards and samples to disposable
plastic beakers vhich have been pre-rinsed with distilled
water. Inject them into the instrument, taking care to rinse
the syringe with eluent or distilled water between solutions
and to avoid the introduction of air bubbles into the instru-
ment. Using the integrated values of samples and standards
determine the approximate sulfate concentrations. From these
values determine the proper range for the standard curve.
Prepare and run five standards to cover this range. Using
the integrated values for peak areas of standards and samples,
calculate a standard curve and from it the SO^ concentrations.
(4) Participate Analysis
(a) Preparation
Allow the beakers to equilibrate in a humidity controlled
environment for at least 24 hours before use. Label and
weigh sufficient 250 ml beakers for the number of samples
and blanks.
D-18
-------
(b) Sample Analysis
Place samples in the tared beakers; Boil the samples
reducing the volume to approximately 100 ml to remove
any residual SCK. Add 5 drops of phenolpthalein. Add
concentrated NH^CH dropwise until the samplr turns pink.
This converts all the H-SO^ to (Nfy), S04. The exact
amount of NtLGH added is not inportant as long as there
is an excess to assure that all the H2S04 has been converted.
Evaporate the samples by heating in an oven at a temperature
at which the participate is neither lost nor altered, generally
105° C. Cool the beakers to room temperature and allow them
to equilibrate for at least 6 hours in the same humidity con-
trolled environment as before. Weigh the beakers. Place the
beakers in the oven again. Heat for at least 2 hours. Cool
and allow to equilibrate in the humidity controlled environ-
ment for 6 hours. Repeat the process until constant weight
(within 0.5 mg or II of the particulate weight, which ever is
greater) is obtained.
(c) Special Handling :
After evaporation, beakers containing deliquescent samples
should be placed in desiccators to equilibrate to keep
moisture content to a minimum. Weigh to a constant weight
as before.
G. CALCULATIONS
(1) Probe Wash and First Impinger
(a) g NH, - v . ( ^ /ml)(0.05) (ml g/pg)
3 (5
(b) See "Determination of Sulfur Dioxide, Sulfur Trioxide, and
Sulfuric Acid Mist in Stack Gas" for standardization calculations.
[Volume Ba (Cl 0^)?] [Normality Ba CC1 Oa)?] [0.049 g/eq I/ml] [sample volume]
aliquot volume
«= [volume Ba (Cl 04)2] (Nonnality Ba (Cl 04)2] [0.049 g/eq I/ml] [100]
for a 5 ml aliquot, 500 ml sample volume
D-19
-------
1
(c) Particulate
g [Particulate + (^4)2 S04] * Final beaker weight - Initial beaker wt.
8 (NH4)2 S04 from NH3 and H2S04 in stack «
[g NH3] [MW (NH4)2 S04] (g NH3) (132.13 g/roole)
[MW NH,] [2] (17.03 g/mole) (2)
(g !NH3) (3.88)
g (NH4), SO. from H7SC. « g H,SO. (from b) x
^ Z4 Z4
MW H2S04
« g H2S04 x 1.347
Particulate <* g [Particulate + (NH4)2 S04] - [g(NH4)2 S04 from NH3
and tifQi in stack] - [g (NH4)2 S04 from H2S04]
(2) Filters
(a) g m, - 3 (10° ^ (50 nd) (50 ml) .
(10 ml) (5 ml) (106 yg/g)
(b) g H2S04
[VoluTne Ba (Cl 0A)?] [Normality Ba (Cl 0A)?] [0.049 g/eq 1 /ml] [sample vol.]
aliquot volume
[Volume Ba (Cl 04)7] [Normality Ba (Cl 0A)7] [0.049 g/eq I/ml] [50 ml] [50 ml]
[5 ml] [5 ml]
[Volume Ba (Cl 04)2] [Normality Ba (Cl 04)2] [0.049 g/eq I/ml] [100]
(c) Particulate
g [Particulate «• (NH4)2 S04] * Final beaker weight - Initial beaker weight
- filter weight
g (NH.)7 SO. from NHT and H7SO. in stack = [g ^]\VK (NH^^JO^ c ( ^0(3.881
4 * * * " 4 [MW NH3] [2] 3
g (NH4)2 SO. from H?SO, = g H7SOA (from b) x KK - g H7SOA x 1.347
^* MW H2S04 z 4
g Particulate «= [g [Particulate + (NH4)2 S04]] - (g(NH4)2 S04 from NH3 and
in stack] - [g (NH4)2 S04 from
D-20
-------
H. QUALITY CONTROL
Follow procedures out-lined in "Determination of Ammonia" and "Determination
of Sulfur Dioxide, Sulfur Trioxide, and Sulfuric Acid Mist" for ammonia
and sulfate analyses.
In addition:
Reweigh 4 out of the batch of clean beakers. If the weight of any one •
beaker does not agree within 0.5 mg of original weight, then all the
beakers roust be reweighed.
Reweigh 76 or at least 4 out of a batch of clean filters. If any weight
does not agree within 0.5 mg, then the entire batch of filters irust be
reweighed.
Run a distilled water blank using a known amount of distilled water
(at least 200 ml). Follow the procedure in F 4 b. The blank should
contain less than 0.1 mg/1 solid material.
D-21
-------
APPENDIX E
CALIBRATION PROCEDURES AND RESULTS
E-l
-------
CALIBRATION PROCEDURES AND RESULTS
All of the equipment used was calibrated according to the
procedures outlined in Maintenance, Calibration, and Operation of
Isokinetic Source-Sampling Equipment.*
NOZZLE DIAMETER
The nozzles were calibrated by making three separate measure-
ments using different inside diameters and calculating the aver-
age. If a deviation of more than 0.002 inches was found the
nozzle was either discarded or reamed out and remeasured. A
micrometer was used for measuring. These calibration data are
shown in Figures E-la and E-lb.
PITOT TUBE CALIBRATION
The pitot tubes used in sampling were constructed by PEDCo
Environmental and met all requirements of Method 2, Section 4.1
of the Federal Register.** Therefore, a baseline coefficient of
0.84 was assigned to each pitot tube. See Figures E-2 and E-3
for alignment requirements of Method 2, and Figures E-4a and E-4b
for actual inspection data of the pitot tubes used during the
test program.
Office of Air Programs Publication No. APTD-0576.
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-2
-------
NOZZLE CALIBRATION
Date
Calibrated by
Nozzle
identification
number
r**~A.
6-
£ -
D,, in.
0.12,3
/**/
0,LZ*j
D2, in.
tf.e*/
,*z;
G»Z1(/
0 « Z-Z6
D3, in.
o.**3
O ^2^.
0,*zV
" ^^
AD, in.
*.*>o;*
^ »^ ^/
0. 0
avg
*.«
O >***•
0.12
where:
Dl 2 3
•!•»*» -3 »
AD
avg
nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
maximum difference in any two measurements, in.
Tolerance = 0.004 in.
average of D^, D,, and D-
Figure E-la. Nozzle calibration data.
E-3
-------
Date
NOZZLE CALIBRATION
Calibrated
Nozzle
identification
number
3C2*
zc
— '
DI, in.
.*,?
^
.*L
DJI in.
-»*
'^
•^
D3, in.
.2)1
.2^4
.2ZS
AD, in.
•^
.««*.
^-»
avg
•)/^
•* "•( '
!z*-
.•2Z"
where :
Dl 2 3 ~ nozzle diameter measured on a different diameter, in.
' ' ' Tolerance •= measure within 0.001 in.
AD = maximum difference in any two measurements, in.
avg
Tolerance = 0.004 in.
average of D., D,, and D-.
Figure E-lb. Nozzle calibration data.
E-4
-------
TRANSVERSE
TUBE AXIS
FACE
•- OPENING ~
PLANES
(a) ENDVIEW
LONGITUDINAL 1
TUBE AXIS
A-SIDE PLANE
1
0.48 cm < Dt < 0.95 cm
(3/16 1n.) l (3/8 1n.)
B-SIDE PLANE
(b)
NOTE:
^•I^^^M
PA tl.05 Dt < P < 1.50 Dt
A or B
(c)
Figure E-2. Properly constructed Type S pltot tube, shown 1n: (a) end view;
face opening planes perpendicular to transverse axis; (b) top view; face open-
Ing planes parallel to longitudinal axis; (c) side view; both legs of equal
length and centerlines coincident, when viewed from both sides. Baseline
coefficient values of 0.84 may be assigned to pitot tubes constructed this way.
E-5
-------
TRANSVERSE
TUBE AXIS
LONGITUDINAL
TUBE AXIS
(c)
(e)
(f)
B2 (+ or -)
Bl (+ or -)
• i
Figure E-3. Types of face-opening misalignment that can result from field
use or Improper construction of Type S pitot tubes. These will not affect
Cp so long as a] and 82 <10°, BI and 82 <5°, z <0.32 (1/8 1n.) and w <0.08
cm (1/32 1n.).
E-6
-------
Pilot Tube No. *78 Date / /7/ffJ- Inspector £.
' ' J
al
Degrees
2. ^
<10°
a2
Degrees
i @
<10°
Degrees
0,0
<5°
Degrees
;?.*-:>
<5°
Inches
0-3?^
0.185 < Pt <0.380
p
Inches
o. 162-
•
1.05 Dt
Inches
0. 3.*{>*>
-
Y
Degrees
).C
-
Degrees
0,0
-
Inches
0.0(1
<0.125
P . (d)
sin vv/
Inches
O. oo C>
<0. 03125
Inches
o.^eo
1.05 Dt
-------
Pilot Tube No. *gg
Date
Inspector £ A*TT*& A
Degrees
2,o
<10°
"t
Inches
3 "XT"
0.185 < Pt <0.380
Y
Degrees
/,O
-
f
°2
Degrees
tf>.x^
<10°
P
Inches
/,£>*&
-
Degrees
/.£>
-
Degrees
/./o
<5°
1.05 Dt
Inches
i^c^^x
-
D /*, \
psin ^'
Inches
-0/-7VS"
<0.125
^2
Degrees
S.Tfo
1.05
Dt 5° Dt
P2
Inches
.5-c-o
1.05 Dt
-------
DRY GAS METER AND ORIFICE METER
Figure E-5 was the set-up used for the initial and post-test
calibration. A wet test meter with a 2-cubic-feet-per-minute
capacity and +1 percent accuracy was used. The pump was run for
approximately 15 minutes at an orifice manometer setting of 0.5
inch of water to heat up the pump and wet the interior surface of
the wet test meter. The information on Figure E-6 (example
calculation sheet) was gathered for the initial calibration and
then, the ratio of accuracy of the wet test meter to the dry test
meter, and the AH@ were calculated.
POST-TEST METER CALIBRATION CHECK
A post-test meter calibration check was made on the meter
box used during the test to check its accuracy against its last
calibration check. This post-test calibration must be within +5
percent of the initial calibration. The initial calibration was
performed as described in APTD-0576. The post-test calibration
was performed using the same method as the initial calibration.
Three calibration runs were made using the average orifice
setting obtained during each test run and with the vacuum set at
the average value obtained during each test run. After running
the post-test calibration check all three runs were within the +5
percent range allowed by the Federal Register.*
The initial and post-test meter box calibration data are
presented in Figures E-7a through E-7h.
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-9
-------
/GLASS TUBE
' THERMOMETER
UMBILICALJ
I
HETER BOX *^
PRESSURE
CONTROL
VALVE
U - TUBE
MANOMETER
*~4
MET TEST METER
Figure 1-5. Calibration setup.
BATE
HER* BOX NO.
BAROMETRIC PRESSURE.
in. Wq.
DRY OAS METER HO.
Or i fie«
•anoaeter
•etting
AH
in. HjO
0.5
1.0
1.5
2.0
1.0
4.0
Cat volume
w*t test
Mter
V
")
5
S
10
10
10
10
C«» volume
dry «••
•wtcr
Vd'
ft3
W*t t«»t Dry «•• Mt*r
••t«r
!„,
•r
Inl«t
*di'
•r
outlet
*««•
•r
Average
V
•r
Ti»e
t,
•in
t
AM*
AH
0.5
1.0
1.5
a.o
1.0
4.0
ITT
0.0MB
0.07)7
0.110
0.147
•.221
0.2*4
T
V* Fh
AM*
0.0)17 AH [
-------
BATE:
CA11MATOR:
MX •>.
IAJBCTMC MESSWC
Xff .
AW wtt not deviate »y eore thin 0.1S In M^O.
Average
AM
AH/1 J.6)(TW* 460)
(0.0317)1 AM )
•(T*_w)i»nr
. «V. >_J
O.S
J_
1.0
)f
u
.(
1.S
(,*3/M(
.(
t.l
H J
K^St-S
.(
5T
s.o
4.0
I/At?
I/ct3/9 M 4,0 1
. S
Figure E-7a. Particulate sampling meter box initial calibration.
E-ll
-------
DATE: ////9/fe
BAROMETRIC PRESSURE (Pkar): 29.63ln. Hg
PLANT: ff^f-i\_L
PROJECT MANAGER:
/3?OFf £V
METER BOX NO.
PRETEST Y:
PROJECT NO.
CALIBRATOR:
/,73
Orifice
manometer
setting
*
AH
in. H20
Wet test
meter
volume
ft
Dry gas
meter
volume
Vd
ft3
Temperatures
et es
meter
Dr
Inlet
Td1
/ as meter
OutletAveraqe
L,, 1. "
di
Vacuum
setting
**
In. Hg
Duration
of run
min
357.72:
73
72-
3,0
10 (£7-
7J
74
"
3 0
II
22
76
IsT
Post-test average
w
)(P
bar
(0.0317)( AH )
-------
DATE:
CALIBRATOR:
MCTER IOX MO.
re-
-'a "* M
iAROMETRlC PRESSURE (l»b)
1n. Kg
Leak Checks:
Positive (minimum S 1n. H;0):
Negative (within 3 in. Mg of absolute):
•Not to exceed O.OOS cfn.
Cfil*
in. Hg
Orifice
manometer
setting
AH
1n
Volume
wet test
meter
ft
Volume
dry gas
meter
ft
Temperatures
Net es
meter
Dry gas meter
ne
T1
;
tlet
To
Average
Duration
of
test
m1n
Vacuum
setting
In
Mg
AMP
n H20
0.5
if If. ooO
72.
0
.0
0*
1.1 (
1.0
fir
1.17
1.5
&•?
04.697
12,0
2.0-2-
2.0
3.0
lo.ee>*>
(0.0
4.0
•v must not deviate by more than +0.02 >.
AHP must not deviate by more than 0.15 In HjO.
Average
2.e>£>
AM9
AH
AH/13.6)(TW * 460)
(0.0317)( AH
rb )(Td4460)['
* 460)(»
O.S
1.0
lO>.»00)t 2.*. 630
l.O
1.5
to
.ooo )( *
-------
DATE:
METER BOX NO. F8 ~
BAROMETRIC PRESSURE (Pbar): ?92£1n- Hg
PLANT: Ptt I'LL i ftA
PROJECT MANAGER: CHUCXT 3gbPr£l^
PRETEST Y:
PROJECT NO.
CALIBRATOR:
AH
\^
0
V
0^"
y
1r
0°
)'
>°V
w
Pbar X Td*460
(0.0317K AH )
( Vd )(Pbar + AH/13. 6)(TW + 460)
(T-KBOJf
^
.2
//.° X
( /AC? )(
,0 )
7*-]
3/0
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test Y +0.05Y
Post-test AH9 must be within the range, pre-test AH@ +0.15
Figure E-7d. Particulate sampling meter box post-test calibration.
E-14
-------
DATE
CALIBRATOR:
NETER BOX NO.
BAROMETRIC PRESSURE
Ltak Checks:
Positive (minimum 5 In. M20):
Negative (wUMn 3 1n. Mg of absolute):// &PVU ctm*
to exceed O.OOS cfm.
in. MQ
-------
DATE: ////B/?£
BAROMETRIC PRESSURE
PLANT:
n. Hg
PROJECT MANAGER:
METER BOX NO.
PRETEST Y: O.ttt
PROJECT NO. .
CALIBRATOR:
Orifice
manometer
setting
*
AH
H20
Wet test
meter
volume
ft
Dry gas
meter
volume
ft
Temperatures
et test
meter
Tw
D
Inlet
Td1
gas meter
OutletlAverage
di
°F
''d
°F
Vacuum
setting
in. Hg
Duration
of run
0
min
2.0
(Z
7
7V
7
12
is-
u
7
7E
ur
Post-test average***
w
bar
(0.0317)( AH )
AH/13.6)(T
W
Tw+460)(
)
2
•3
F
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test y +0.05?
Post-test AH$ must be within the range, pre-test AH@ +0.15
Figure E-7f. Particulate sampling meter box post-test calibration,
E-16
-------
DATE:
CALIBRATOR:
NETER IOX NO.
IARONETRIC PRESSURE
If.
In. Kg
Leak Checks:
Positive (minimum S 1n. H20): _
Negative (within 3 in. Ng of absolute):
*Wot to exceed O.OOS efm.
GOO I
efm*
in. Hg
Orifice
manometer
setting
AH
in HjO
Volume
wet test
•eter
ft
Volume
dry gas
•eter
ft
Temperatures
et est
•eter
Dry gas meter
inlt
T
tlet
To
Average
Duration
Of
test
Vacuum
setting
In
Hg
AH9
n M20
0.5
77
1.0
•76.0
fz
76
1.5
76
•70. O
So
2.0
01.3
3.0
too
8*-
4.0
ID, 00$
/o.o
Q.V1
T «u$t not deviate by «ore than +0.02 Y.
AW aust not deviate by more than 0.15 in H20.
Average
1,71
AH«
AH
)(Td*460)
( Vd )(Pb + AH/1 3. 6} (Tw * 460)
(0.0317)( AH )
( Pb )(Td + 460)
r
0.5
Hf
( £30. 0 1
3 S
CSt.f
. OUO
1.0
(l9.0o.7H 2.1.
HJV/.e-l
0 ) G!?.
.(
1.5
jn.sf°
5.
. 0
2.0
2.0 )
. ( -ft. ooO
3.0
I/. 3 If MS*. «•?/ Mr*o.O\
.(
4.0
tl 0. COO
tO.
fe,
f /O
Figure E-7g. Particulate sampling meter box initial calibration.
E-17
-------
DATE: .
BAROMETRIC PRESSURE (P^): 3?,7an. Hg
PLANT:
METER BOX NO.
PRETEST Y:
PROJECT NO.
F8~~7
/• 7/
PROJECT MANAGER:
S?u>P£jgX CALIBRATOR: 7 .
Orifice
manometer
setting
*
AH
in. H20
Wet test
meter
volume
ft
Dry gas
meter
vol ume
Vd
ft3
Temperatures
e es
meter
Tw
Or
^nlet
Tdi
°F
/ gas meter
Outlet
Tdi
Average
Vacuum
setting
in. Hg
Duration
of run
0
min
73
76
II
77
1-0
"7
10
fe
73
c
Post-test average***
AHP
w
bar
Td*460
)(P
bar
AH/13. 6)(TW* 460)
(0.0317)( AH )
460>
"(T+460)(
w
w
)( Iffffif
)(
f
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test Y +.0.05Y
Post-test AH6 must be within the range, pre-test AH@ +6.15
Figure E-7h. Particulate sampling meter box post-test calibration.
E-18
-------
THERMOCOUPLES
Thermocouples were calibrated by comparison against an
ASTM-2F thermometer at approximately 32°F, ambient temperature,
100°F, and 500°F. The thermocouples read within 1.5 percent of
the reference thermometer throughout the entire range when ex-
pressed in degrees Rankine. If a thermocouple did not read
within 1.5 percent, a correction formula based on a least squares
analysis of the data was utilized. The correction formula cor-
rected the data 1.5 percent. Each thermocouple was checked at
ambient temperature at the test site to verify the calibration.
Calibration data are presented in Figures E-8a and E-8b.
DIGITAL INDICATOR FOR THERMOCOUPLE READOUT
A digital indicator was calibrated by feeding a series of
millivolt signals to the input, and comparing the indicator
reading with the reading the signal should have generated. Error
did not exceed 0.5 percent when the temperature's were expressed
in degrees Rankine. Calibration data are shown in Figures E-9a
and E-9b.
DRY GAS THERMOMETERS
The dry gas thermometers were calibrated by comparison
against an ASTM-2F thermometer at approximately 32°F, at ambient
temperature, and at approximately 110°F. The thermometers agreed
within 5°F of the reference thermometer. Impinger thermometers
were calibrated in the same manner at approximately 32°F and
E-19
-------
Date:
Thermocouple No. ;
Ambient temperature: 7*? °r Barometric pressure;
Cal ibrator : (3. fir**^*-*,.*^ Reference : _ A3TA* -
" ll'j
Reference
point
Nc.
/
-9
>>
?
V
Source, *
(specify)
*
/
3
J _j
Reference
thermometer
temperature,
op* * *
7
O.S&
-o.. 1.5%.
Figure E-8a. Thermocouple calibration data sheet.
E-20
-------
THERMOCOUPLE CALIBRATION DATA SHEET
Date:
Thermocouple No.:
Ambient temperature; 7/ °F Barometric pressure;
Hg
Calibrator : /?.
«•>•.
< -I ^»..v
Reference;
AST/*
Reference
point
No.
/
2
3
y
Source,*
(specify)
Z
/
3
3
Reference
thermometer
temperature,
op***
71
?•/
'21
yy&
Thermocouple
%
temperature,
oF
70
JV
121
yv»
Difference,
%**
o,/9
o. Ct>
QOO
£>. oC?
Correction factor****: Slope:
Intercept:
Reference
point
No.
Reference
thermometer
temperature,
Op
Corrected
thermocouple
temperature ,
°F
Difference,
%**
Critical test points are 32°, 100°, and 500°.
*Source: 1) Ice bath
2) Ambient
3) Furnace
**Percent difference
Reference temp. °F - thermocouple temp. °F
(Reference temp. °F * 460°F)
x 100%
Each percent difference must be less than or equal to 1.5%.
***Reference thermometer must be ASTM.
****Correction factor must be determined if any percent difference
is >1.5%.
Figure E-8b. Thermocouple calibration data sheet
E-21
-------
Date
Indicator No. /2.y Operator f
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
°F*
7^.5^
J7. &
11B.7
f38.o
//8£.8
Digital Indicator
temperature reading,
°F
726
J2. f
/ft. 8 -
4-39. £
// 9/- o
Difference,
%
f.Z/
Q.I0
0.17
O.ttr
ail
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature reading °R)(100%)
(Equi valent temperature °R)
Where °R - °F + 460°F
*See thermocouple digital Indicator calibration verification device calibra-
tion for these values.
**This point 1s ambient temperature. The device 1s off and therefore is
supplying no signal other than ambient temperature.
Figure E-9a. Thermocouple digital indicator calibration
data sheet.
E-22
-------
Date
Indicator No.
Operator
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
°F*
?y
32.0
/te.-r
£?8.O
If8&- 8
Digital Indicator
temperature reading,
°F
r''*-
33*7
Zoo. 1L
£3^2^
j/ee. t
Difference,
X
o. e>7
c>.'3f
0.23
&.IZ
«.y/
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature reading °R)( 100?D
(Equivalent temperature R)
Where °R = °F •»• 460°F
*See thermocouple digital Indicator calibration verification device calibra-
tion for these values.
**This point 1s ambient temperature. The device 1s off and therefore 1s
supplying no signal other than ambient temperature.
Figure E-9b. Thermocouple digital indicator calibration
data sheet.
E-23
-------
ambient temperature and agreed within 2°F of the reference ther-
mometer. The thermometers were checked prior to each test series
at ambient temperature to verify calibration. Calibration data
are included in Figures E-lOa through E-lOd and E-lla through
E-llc.
BALANCE
The balance was calibrated by comparison with Class-S
standard weights and agreed within 0.5 g. Calibration data are
shown in Figure E-12.
BAROMETER
The field barometer was calibrated to within 0.1 in.Hg of an
NBS-traceable mercury-in-glass barometer before each test series.
The field barometer was checked against the mercury-in-glass
barometer after each test series to determine if it read within
0.2 in.Hg. If it did not reading within 0.2 in.Hg, a correction
factor was determined for the last test series. Calibration data
are included in Figure E-13.
ORSAT ANALYZER
The orsat analyzer was calibrated before each test series by
determining the percentages of carbon dioxide, oxygen, and carbon
monoxide in a calibration gas containing known percentages of
each. The analyzer read within 0.5 percent of the known value
for each gas. Calibration data are shown in Figures E-14a
through E-14c.
E-24
-------
Date:
Calibrator*^ A
Inlet
Meter Box No.
Reference:
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
??.*-
32. &
(*2- 0
Dry gas
thermometer
temperature ,
•r
70
32. f
/Zo
Difference,
•F**
3.^
#.f
2.&
Outlet
Reference
point
No.
1
2
3
Source '
2
1
3
Reference
thermometer
temperature ,
•F
75. f~
?*fo
/32.0
Dry gas
thermometer
temperature ,
•F
7Z
3/^sT
/-20
Difference,
•F*«
/ . JT
e>.3~
^.0
•Source: 1) Xce bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5*F.
Figure E-lOa. Dry gas thermometer calibration data sheet.
E-25
-------
Date:
Meter Box No.:
Calibrator:,
Inlet
"*•
Reference;
Reference
point
No.
1
2
3
Source *
2
1
3
Kef trance
thermometer
temperature ,
•F
7-2.0
•32. 7
//«.*>
Dry gas
thermometer
temperature ,
•F
7Z
32.
//3
Difference,
•F**
A. O
0.7
J.O
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
?*.o
2?. 7
//V,o
Dry gas
thermometer
temperature ,
•F
T/
3o
f/2.
Difference,
•p*«
AO
^•7
^.c?
•Source: 1) Zee bath
2) Ambient
3) Water bath
•'Difference must be less than or equal to +5*F.
Figure E-lOb. Dry gas thermometer calibration data sheet.
E-26
-------
Pate:
Meter Box No.:
Calibrator: 8.
Inlet
Re f • renee :
-JL f-
Reference
point
Mo.
1
2
3
Source •
2
1
3
Reference
thermometer
temperature ,
•r
72.0
32 7
/OB.O
Dry g»s
thermometer
temperature ,
•r
7£
liT
io£>
Difference,
•r.«
yc?
3>. *?
^.0
Outlet
Reference
point
Mo.
1
2
3
Source •
2
1
3
Reference
thermometer
temperature ,
•F
72 0
32.7
/(?.J~
Dry gas
thermometer
temperature ,
•r
73
3«/
Iff
Difference,
•r«*
/. o
/••3
2.^
•Source: 1) Zee bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5*F.
Figure E-lOc. Dry gas thermometer calibration data sheet.
E-27
-------
Date:
Meter Box No. :
Calibrator: S.
Inlet
Reference : AS 7 M —
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
?2.o
35. 5^
//9.&
Dry gas
thermometer
temperature ,
•P
76
38
//"?
Difference,
•r»*
yo
V. f
s.o
Outlet
Reference
point
Mo.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72.0
373
ff?.0
Dry gas
thermometer
temperature ,
•F
•72
37
f/3
Difference,
•F**
G. O
0.3
y.o
•Source: 1) Zee bath
2) Ambient
3) Water bath
••Difference must be lets than or equal to ±5*F.
Figure E-lOd. Dry gas thermometer calibration data sheet.
E-28
-------
Date:
Ambient temperature:
Calibrator: /?, A
Thermometer No.:
_°F Impinger: ^
Reference:
TO,:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
72-
33. f
Thermocouple
temperature,
•F
7/
32.
Difference,
•p**
/ o
If
*Source: 1) Ice Bath
: D
2) Ambient
"Difference must be less than +2°F at both points
Figure E-lla. Thermometer calibration data sheet.
E-29
-------
Date:
'82.
Thermometer No.:
Ambient temperature:
Calibrator: 8. A^j
. &
BF Implnger:
Reference:
NO,:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
72.0
J3. O
Thermometer
temperature,
°F
72. S~
3
-------
Thermometer No.: X9O
Date:
Ambient temperature: 72.0 °F Impinger: *>—'
Calibrator: /? A r,~± \-
-------
Balance
No.
Date
Calibrator
Mass determl
Error
•w-g
ned for
Error
Error
2DO.I
-r-0,/
Error must not exceed 0.5 grams at each point.
Figure E-12. Balance calibration data sheet.
E-32
-------
BAROMETER
- NO.
PRETEST
BAROMETER
READING
REFERENCE
BAROMETER
READING
;•>.
-7 ..
DIFFERENCE*
,00
DATE
CALIBRATOR
POST-TEST
BAROMETER
READING
REFERENCE
BAROMETER
READING
DIFFERENCE**
.CL
DATE
ff
*Barometer 1s adjusted so that difference does not exceed 0.05 In. Hg.
**Barometer 1s not adjusted. If difference exceed 0.10 1n. Hg, Inform project
manager Immediately.
Figure E-13. Barometer calibration log.
E-33
-------
Reference Gas: A6A Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat Ho.:
Gas (circle one): 02
C0
Calibrator
Date
//
Value Det.
5.5%
«t
Figure E-14a. Orsat calibration data sheet -
E-34
-------
Reference Gas: AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VIIi46-23
Orsat No.:
Gas (circle one): Q)J C0a CO
Calibrator
Date
Value Del.
4.5%
5.0%
5.5%
Figure E-14b. Orsat calibration data sheet -
E-35
-------
Reference Gas: AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
Gas (circle one): 02 C02
Calibrator
Date
Value Del.
—i-.
I
5%
5.0%
5.5%
"t
i
i
T
—4-
.j—
i
i
Figure E-14c. Orsat calibration data sheet
E-36
- CO.
-------
APPENDIX F
QUALITY ASSURANCE SUMMARY
F-l
-------
QUALITY ASSURANCE
The following summary addresses the general steps taken to
insure data quality and accuracy for any given emission test
project.
PROJECT ORGANIZATION AND RESPONSIBILITIES
The project organization and responsibilities of the project
team are generally defined in the test plan. Specific responsi-
bilities for this field test are shown in Appendix G, Project
Participants.
QUALITY ASSURANCE OBJECTIVE
The primary objective of this program is to develop a modifi-
cation to EPA Reference Method 5* (or develop a new method) that
will minimize the collection of condensible sulfate materials in
the measurement of particulate emissions from fluid catalytic
cracking unit (FCCU) regenerators. Therefore, all procedures
used in the collection and analysis of emission samples were as
outlined in applicable EPA reference methods, where applicable.
The sample methodology used for this project (quad train - single
point) has been previously validated specifically for research
and methods development type projects. Test results were pre-
sented in several units to allow for their comparison with data
from other organizations wishing access to the data summary.
F-2
-------
DATA REDUCTION, VALIDATION, AND REPORTING
Data reduction and reporting provide one of the greatest
potential sources of system error. To help minimize this source
of error, PEDCo performs most test method calculations by use of
a validated computer program. The field data sheets are set up
on standard computer cards to allow accurate input of data into
the computer by individuals unfamiliar with testing procedures.
The data printout is then validated by comparison with the field
and analytical data sheets. In addition, hand calculation checks
generally are made to validate the computer output. Other data
validations are made whenever possible.
PERFORMANCE AND SYSTEM AUDITS AND FREQUENCY
When feasible, PEDCo performs both performance and system
audits. Three types of performance audits were performed for
this test program. All dry gas meter systems were audited for
accuracy in the field by the use of a critical orifice. In
addition, the analytical procedure for sulfur dioxide was audited
for accuracy by the use of audit samples supplied by EPA prior to
sample analysis. Also, onsite calculations were used to check
the completeness and accuracy of the particulate test data.
SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION,
ACCURACY, AND COMPLETENESS
Because the precision of the standard EPA reference methods
used had previously been determined, no further attempt was made
to assess data precision. These precision results are summarized
F-3
-------
in "The EPA Program for the Standardization of Stationary Source
Emission Test Methodology, A Review," EPA-600/4-76-044. The
comparability (relative accuracy) of the different methods
studies is made using the EPA Method 5 results as the standard.
Presently, there is no particulate standard method for the MSB,
M5-450, and M5W samples since particulate emissions are defined
by regulation as the material collected on a filter and probe at
Three audit procedures were used to determine accuracy.
Accuracy audit procedures used for the dry gas meter and sulfur
dioxide, analysis are the standardized written procedures used by
the EPA Quality Assurance Division program. The procedure for
determining data completeness is the same as that for New Source
Performance Standards, as documented in the Code of Federal
Registers 40 CFR 60, Section 60.8
INTERNAL QUALITY CONTROL CHECKS
Several internal quality control checks are usually made for
each test. Normally, most of these checks deal with the field
sampling analysis. For this test series, control samples for the
sulfur dioxide analytical procedures were analyzed. Also, filter
and reagent blanks were returned to the laboratory for gravi-
metric analysis. A quality control check of both the initial and
final weighing was thus provided. Results of the control sample
checks are included in Section 5. Blanks were analyzed according
to procedures used for the M5W and 1C analytical work.
F-4
-------
CORRECTIVE ACTION
PEDCo has two methods for corrective action. The first
involves the use of control limits, such as audit sample results,
control sample results, and calibration results. When any of
these limits show that the integrity of the data is questionable
the procedure is repeated, additional data are collected, or the
data are rejected. The second method involves the use of red
tags. Whenever any piece of equipment is suspected of producing
unacceptable data, the entire apparatus or malfunctioning com-
ponent is replaced and a red tag is placed on the item. That
piece of equipment is then rejected until its ability to perform
its function correctly is verified by the proper individuals.
The use of numerous control limits and the red tagging system
reduces the amount of unacceptable data and provides a system by
which to track and correct items and procedures that show an
unusally high occurrence of unacceptability.
PREVENTIVE MAINTENANCE PROCEDURES AND SCHEDULES
PEDCo has a very comprehensive preventive maintenance pro-
gram. Many of the major components of test equipment have pre-
test checklists. These checklists ensure that all functions are
checked and action is taken to repair or replace any part that
shows probability of malfunction. The checks are made before
every field test series, however, only the control console (meter
box) check are recorded. Even though PEDCo's preventive mainte-
nance program and schedule are not in writing, our commitment of
F-5
-------
•three full-time experienced persons for the express purpose of
equipment construction, preparation, calibration, and maintenance
has created a program based on experience and skill that cannot
be matched by a written guideline.
QUALITY ASSURANCE REPORTS TO MANAGEMENT
The standard quality assurance procedures used in this test
program generated sufficient documentation to indicate the data
quality. All evidence of the execution of the quality assurance
guidelines is reviewed by management. In addition, during weekly
meetings of all PEDCo's EMB task managers and project managers,
all aspects of the project are discussed including the quality
assurance of each task. No written report results from this
meeting because all interested parties are verbally apprised of
the situation during each meeting.
Two other reports are made to managements, which are not EMB
task related. PEDCo's emission test and laboratory groups par-
ticipants in all national audits by EPA's Quality Assurance
Division, and PEDCo's quality assurance coordinator, Tom Wagner,
makes several independent checks for management.
F-6
-------
APPENDIX G
PROJECT PARTICIPANTS AND SAMPLING LOG
G-l
-------
TABLE 6-1. FIELD TEST CREW AND RESPONSIBILITIES
Name
C. Bruffey
D. Osterhout
M. Phillips
R. Antesberger
D. Scheffel
P. Clarke
W. Kelly
K.C. Hustvedt
Title
Project Manager
Engineer
Engineer
Technician
Technician
Engineer
U.S. EPA - EMB
U.S. EPA - ISB/CPB
Field test assignment
Coordinated test activity; sample train
setup and disassembly
Site leader; parti cul ate tests FCCU
outlet stack; meter reader quad train
Parti cul ate tests meter reader-quad
train
Assisted at sample site; quad train
assembly and disassembly
Site leader; clean up area; setup and
recovered sample trains
Setup and recovered sample trains;
Orsat analysis
Observer
Observer - process operation
G-2
-------
TABLE 6-2. SAMPLE LOG
Date (1982)
Activities
November 4-5
November 8
November 9
November 10-12
November 13
November 14
November 15
Sample site and equipment setup. All
initial measurements were obtained.
Sample recovery and setup area organized.
No tests were performed. FCCU was not
operational at full load.
One test run was performed.
Two test runs per day were performed.
One test run was performed.
Off-day
Final test run was performed. Packed
equipment and left site.
G-3
------- |
|