United States
          Environmental Protection
          Agency
            Office of Air Quality
            Planning and Standards
            Research Triangle Park. NC 27711
EMB Report No. 88 - MIN - 06A
April 1988
         Air
&ER&
Municipal Waste Combustion
HCI Continuous Monitoring  Study
          Emission Test Report

          Maine Energy Recovery Company
          Solid Waste-to-Energy Facility
          Refuse-Derived Fuel Process
          Biddeford, Maine

-------
            EMISSION TEST REPORT

       HC1 CONTINUOUS MONITORING FOR
      MUNICIPAL WASTE COMBUSTION STUDY
       MAINE ENERGY RECOVERY COMPANY
       SOLID WASTE-TO-ENERGY FACILITY
        REFUSE-DERIVED FUEL PROCESS
              BIDDEFORD,  MAINE
          ESED Project No.  86/19a
        EPA Contract No.  68-02-^336
           Work Assignment  No.  16
               Prepared for:

        Clyde E.  Riley, Task  Manager
        Emission Measurement  Branch
Emission Standards and Engineering Division
   U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
                Prepared by:

               Scott Shanklin
           J. Ron Jernigan, P.E.
      Entropy Environmentalists, Inc.
           Post Office Box 12291
Research Triangle Park, North Carolina 27711
               April 8, 1988

-------
                               TABLE OF CONTENTS


1.0  Introduction	  1
     1.1  Background	  1
     1.2  Purpose and Objectives	  1
     1. 3  Brief Process Description	  2
     1.4  Sampling Matrix	  2
     1.5  Quality Assurance/Quality Control	  5
     1.6  Schedule	  5
     1.7  Organization	  5

2 .0  Summary and Discussion of Results	  7
     2.1  Test Run 1	  7
     2 .2  Test Run 2	 15
     2 . 3  Test Run 3	 15

3.0  Process Description and Operation	 25
     3 • 1  Facility Description	 25
     3-2  Summary of Operations by Test Run	 30
     3-3  Summary of Operating Parameters During the Test Program	 31

4.0  HC1 Continuous Emission Monitoring System Descriptions	 43
     4.1  Thermo Electron Model 15 HC1 Analyzer/Model 200 Dilution System... 43
     4.2  Compur Model 4150 ZGSM HC1 Analyzer/Model 4330 Dilution System.... 44
     4.3  Bodenseewerk Spectran Model 677 IR HC1 Monitoring System	 45

5.0  Description of the HC1 CEM Sampling Program	 47
     5-1  Spray Dryer Inlet - Thermo Electron HC1 Monitoring System	 47
     5-2  Spray Dryer Outlet - Compur HC1 Monitoring System	 54
     5-3  Baghouse Outlet - Bodenseewerk HC1 Monitoring System	 54
     5-4  Data Acquisition System	 54

6. 0  Quality Assurance/Quality Control	 57
     6.1  HC1 Sampling System Inspection	 57
     6.2  Linearity Checks and Midrange QC Checks	 57
     6. 3  Calibrations and Drift Calculations	 57
     6.4  Wet Chemical Sampling for Performance Evalution Audits	 59
     Appendix A.  Test Program One-Minute Data Printouts
     Appendix B.  Sample Calculations
     Appendix C.  Daily Calibration Sheets
     Appendix D.  Daily System Check Lists
     Appendix E.  Quality Assurance Data
     Appendix F.  HC1 Calibration Cylinder Gases
     Appendix G.  Bodenseewerk Operation Procedures
     Appendix H.  Thermo Electron Operation Procedures
     Appendix I.  Compur Operation Procedures
     Appendix J.  Wet Chemical Sampling/Analytical Procedures
     Appendix K.  Spray Dryer Operating Data

-------
                               LIST OF TABLES

Table
Number                                                                Number

  1.1   Test Matrix for MERC Test Program                                3

  2.1   Summary of HC1 Monitoring Data,  Refuse-Derived  Fuel,
         Municipal Waste Combustor Test Program,  MERC,  December  198?     8

  2.2   Sampling Log Summary,  MERC - Biddeford                           9

  2.3   MRI Volumetric Flow Rate  and Moisture Data  Used in  HC1
         Monitoring Calculations  - MERC Test Program                    10

  2.4"   HC1 Monitoring Results -  Run 1                                 11

  2.5   HC1 Monitoring Results -  Run 2                                 16

  2.6   HC1 Monitoring Results -  Run 3                                 20

  3-1   Summary of Key Operating  Parameters During  the  MERC
         Test Program                                                  33

  6.1   HC1 CEM Linearity Check (3-Point)                               57

  6.2   Calibration Drift Results for Each Test Run                    57

-------
                                LIST OF FIGURES

Figure                                                                 Page
Number                                                                Number

1-1     Process schematic for MERC in Biddeford,  Maine;  sampling         4
          and monitoring locations are keyed to Table 1.1

1-2     Organizational scheme for MERC testing program                   6

2-1     HC1 Monitoring Data - Run #1                                    12

2-2     HC1 Monitoring Data - Run #1                                    13

2-3     HC1 Removal Efficiency - Run #1                                 14

2-4     HC1 Monitoring Data - Run #2                                    1?

2-5     HC1 Monitoring Data - Run #2                                    18

2-6     HC1 Removal Efficiency - Run #2                                 19

2-7     HC1 Monitoring Data - Run #3                                    21

2-8     HC1 Monitoring Data - Run #3                                    22

2-9     HC1 Removal Efficiency - Run #3                                 23

3~1     The Process Line for Unit A of the York County Waste-to-Energy  26
         Facility, Biddeford, Maine

3-2     Preparation of Refuse-Derived Fuel at MERC in Biddeford, Maine  27

3-3     Combustion Air Scheme at the MERC Facility in Biddeford, Maine  29

3-4     Location of Temperature, Pressure, and Flow Sensors at the
         MERC Facility                                                  32

3~5     RDF Heat Release and Steam Flow, Pressure, and Temperature
         as a Function of Time During the MERC Test Program             33

3~6     Combustion Air Parameters as a Function of Time During the
         MERC Test Program                                              36

3~7     Overfire Air Flow Pressures Measured During the MERC Test
         Program                                                        37

3-8     Flue Gas Temperature as a Function of Time During the MERC
         Test Program                                                   39

3~9     Spray Dryer Operating Parameters as a Function of Time During
         the MERC Test Program                                          40

3-10    Differential Pressures Across the Control Devices During the
         MERC Test Program                                              4l

(continued)

-------
List of Figures (continued)







5-1     Location of Testing Trailer and Sample Lines                    48




5-2     Field Evaluation Set-up                                         i»9




5-3     Top View of Spray Dryer Inlet and Outlet Sampling Locations     50




5~4     Spray Dryer Outlet Sampling System:  Passive Nozzle              52




5~5     Barrel Nozzle                                                   53




5-6     Location of Sampling Probe at the Baghouse Outlet               55

-------
                              1.0  INTRODUCTION

1.1  BACKGROUND

    The U. S. Environmental Protection Agency (EPA) published em advance
notice of proposed rulemaking in the Federal Register (July 7, 198?) which
describes upcoming emission standards development for new and modified
municipal waste combustors (MWC) under Section 111 of the Clean Air Act and
for existing MWC under Section lll(d) of the Act.  The Federal Register
notice culminates more than a year of work on the development of the
technical and health related documents which comprise EPA's Report to
Congress on MWC.  The Report to Congress was a joint effort involving the
Offices of Air Quality Planning and Standards (OAQPS),  Solid Waste (OSW),  and
Research and Development  (ORD).

    The OAQPS, through the Industrial Studies Branch (ISB in the Emission
Standards Division) and the Emission Measurement Branch (EMB in the Technical
Support Division), is responsible for reviewing the existing air emission
data base and gathering additional data where necessary.  As a result of this
review, several MWC emission tests have been performed and several more are
in the planning stages to support the current standards development work.   Of
particular importance is  a more complete data base on emerging air pollution
control technologies for  MWC.

    The emissions being studied in this assessment are the criteria
pollutants -- particulate matter  (PM), sulfur dioxide (S0_), nitrogen oxides
 (NO ), carbon monoxide (CO), and total hydrocarbons  (THC);  other acid gases,
sucn as hydrochloric acid (HC1); chlorinated organics,  including chlorinated
dibenzo-p-dioxins  (CDD),  chlorinated dibenzofurans (CDF), and dioxin
precursors;  and specific  metals, including arsenic (As), cadmium (Cd),  total
chromium  (Cr), mercury (Hg), nickel  (Ni),  and lead (Pb).


1.2  PURPOSE AND OBJECTIVES

    A number of MWC's have undergone emissions testing programs sponsored by
the EPA and others to supplement the data base on MWC.   However, no data are
currently available from  a state-of-the-art refuse-derived fuel (RDF) MWC
facility in terms of uncontrolled and controlled emission levels under normal
operating conditions or under normal variations in facility operation.   The
control technologies as well as the regulatory data requirements for RDF
facilities are the same as those for mass-burn facilities.

    Combustion Engineering (CE) and Babcock and Wilcox (B&W) are the two
principal suppliers of RDF combustor technology in the United States.  The EPA
is currently involved with Environment Canada in the planning of an extensive
test program at a CE-designed RDF facility with a spray dryer/fabric filter
(SD/FF) emission control  system located in Hartford, Connecticut.  The test
program will involve both characterization and performance testing of the
facility during the summer and fall of 1988.  However,  the data from this test
will not become available until late in EPA's regulatory development schedule.
Therefore, the test program at the Maine Energy Recovery Company (MERC) in
Biddeford, Maine, a B&W unit with an SD/FF emission control system, will
provide ESED with the opportunity to move ahead with regulatory development for
RDF MWC facilities with a limited amount of data, while awaiting the data from

-------
the CE-designed facility in Connecticut.   The  MERC test program was conducted
in conjunction with the compliance tests  for CDD/CDF conducted by Entropy for
MERC's holding company, KTI Holdings,  Inc.   Data from the compliance test will
also be available to EPA.

    Specific objectives of the Biddeford  test  program were:

    1.  To determine the level of uncontrolled MWC emissions,  including
        criteria pollutants, metals,  acid gases, and dioxin/furans, from a
        state-of-the-art refuse-derived fuel facility.

    2.  To determine the control efficiency on RDF MWC emissions, including
        criteria pollutants, metals,  acid gases, and dioxin/furans, of a
        spray dryer/fabric filter control system.

    Entropy conducted continuous emission monitoring for HC1 at the inlet to
the spray dryer, at the outlet of the spray dryer, and at the outlet of the
fabric filter.  Midwest Research Institute (MRI) performed manual sampling
for CDD/CDF, particulate matter, metals,  0  and CC^, and conducted
continuous emission monitoring of CO,  CO  ,  SO    0^,  NO^, and THC (see Table
1.1).  Sampling of the fly ash, lime  slurry, and refuse-derived fuel was also
conducted and coordinated by MRI.  The HC1 monitoring data collected by
Entropy is presented to compliment the other emission test data gathered by
MRI.

    Process and control system operating data  were collected over the course
of the test program by Radian Corporation (Radian).   This included all
computer-logged process data from the plant instrumentation and all available
emission control system parameters.   Collection of these data is described
and the data are summarized in Section 3-0 (prepared by Radian).


1.3  BRIEF PROCESS DESCRIPTION

    Figure 1.1 is a process schematic showing  the sampling and monitoring
locations for Unit A, one of the two  identical combustor systems at the Maine
Energy Recovery Company, which was tested during this program.  The facility
processes municipal waste through extensive sorting and shredding into
refuse-dgrived fuel.  The RDF plus supplemental fuel is used to fire two
150 x 10  Btu/hour boilers that can provide steam for up to 22 MW of power
generation, which is sold to Central  Maine Power.   The combustion gases from
each boiler pass through a spray dryer followed by a fabric filter and exit
through a common stack.  100% RDF was fired in both boilers during this test
program.

1.4  SAMPLING MATRIX

    Table 1.1 presents the overall test program matrix including sampling and
analytical procedures employed by Entropy and  MRI.  Sampling at all three
locations occurred simultaneously, and process samples  (fly ash, lime slurry,
and RDF) were taken at regular intervals  during the test periods.

-------
                                        TABLE 1.1.  TEST MATRIX FOR MERC TEST PROGRAM
Sample Sampling
Location Type Method
1-Spray dryer inlet Combustion M5
gas

MM5
M3
CEMS



2-Spray dryer outlet Combustion CEMS
gas

3-Fabric filter outlet Combustion MM5
gas
M5


M3
CEMS


Samp ling
Duration
4 hours


4 hours
4 hours




4 hours


4 hours

4 hours


4 hours
4 hours


Ana lysis
Parameter
Particulate
Metals (Cd , Cr . As ,
Pb, Hg)
CDD/CDF
o2, co2
CO, CO,,
so 2
THC
HC1°
CO
0
HCV
CDD/CDFd

Particulate
Metals ( Cd , Cr , As ,
Pb, Hg)
o2. co2
CO 0
so
NO
Analysis
Method
Gravime trie
AAS/ICAP

HRGC/HRMS
Orsat
NDIR
Pulsed fluorescenc
Heated FID







e

Infrared absorption
NDIR
Pol arographi c
Specific ion elect
HRGC/HRMS

Gravime trie
AA/ICAP

Orsat
NDIR, Polarographi
Pulsed fluorescenc
Chemiluminesence


rode






c
e

HC1 Infraredabsorption
A-Cyclone ash Fly ash Integrated
discharge grab

B-Fabric filter Fly ash Integrated
( Baghouse ) grab



C-Bottom ash discharge Bottom ash Integrated
grab

D-Spray dryer holding Lime slurry Integrated
tank grab

E-Boiler inlet RDF Integrated
grab
4 hours


4 hours




4 hours


4 hours
3- run
composite
4 hours

Metals
Percent Carbon
Percent combustibles
Percent carbon
Metals
Percent combustibles
Resistivity
K factor
Percent combustibles
Percent carbon
Metals
Me tals ( Cd , Cr ,
As, Hg, Pb)

Retained

AAS/ICAP
ASTM E830
ASTM E777
ASTM
AA/ICAP
ASTM
IEEE 548-1984

ASTM E830
ASTM E777
AA/ICAP
1CAP/AAS


Retained

















                                                            rformed by MRI;
                                                                                    mon i t c
                                                                                               by
 Numbers or letters refer to Figure 1.1.
 Separate analysis of front and back half.
 HC1 monitoring performed by Entropy; all other sampling
 Combined front- and back-half analysis.
eFlexible heated Teflon sample line will be used immediately following probe  to next  component  of  sampling  train.

ASSUMPTIONS
1.   Three identical test runs.
2.   Sampling time 4 hr
3.   Front half/back half PCDD/PCDF analyses on  inlet samples; combined  CDD/CDF  analysis  on  outlet  samples.
4.   No ash samples collected from the preheater/economizer discharge and  the  grate  siftings  hopper

-------
                                                                 i'6V-ime
                                                                 ^-'Slurry
 RDF
Boiler
                        riizerj  H
      Economizer!   M Preheater
   Bottom /
   Ash /*
Ash
Discharge
    Grulc
    Ash
           	> Combustion Gas

           — > Ash Discharge

                Sample Locations

            1  "i Ash Sample Locations

            /\ Plant Cems

             •  Off Line During Test
                                              Cyclones
Spray
Dryer
Absorber
(Scrub-
 ber)
                                                                            wv
                                                                                                  CO. C02
                                                                                                  Opacily
                                                                                            Identical
                                                                                            Boiler Unit B
          Figure  1-1.  Process schematic for MERC in Biddeford, Maine; sampling and monitoring locations are
                      keyed to Table 1.1.

-------
1.5  QUALITY ASSURANCE/QUALITY CONTROL

    Prior to performing this test, Entropy prepared both a Quality Assurance/
Quality Control (QA/QC) Project Plan and a Site-Specific Test Plan.  The QA/QC
Project Plan details all QA/QC activities undertaken for the test program; the
Site-Specific Test Plan describes the particulars of the sampling and
analytical procedures and the test locations.  Section 6.0 of this report
summarizes the results of the QA/QC activities performed by Entropy.  A
separate report by Research Triangle Institute (RTI) summarizes the results of
an external technical systems (checklist) audit on the HC1 monitoring performed
during the test program by RTI staff.

1.6  SCHEDULE

    The test program began with the on-site arrival of the Entropy test crew on
December 1, 1987.  The first seven days on-site were used to set up the three
HC1 monitoring systems and perform preliminary checks to ensure that all of the
monitoring equipment was functioning properly prior to the anticipated December
8 initiation of the testing.  The emissions testing was scheduled to be
conducted during a three day period.  However, the plant experienced numerous
process operating problems which caused delays and disruptions in the testing.
The three test runs were performed between December 9 and December 13, 198?•
The Entropy test crew departed the test site on December 16, 198? after
disassembling and packing the test equipment.


1.7  ORGANIZATION

    Mr. Mike Johnston of the Office of Air Quality Planning and Standards
(OAQPS) and Dr. Ted Brna of the Air & Energy Engineering Research Laboratory
(AEERL) participated as program coordinators.  Mr. Winton Kelly of Radian
assisted the program coordinators in monitoring the process operations.  The
test program coordinators were responsible for coordinating the overall test
program with the plant officials and assuring that the process and control
equipment operating conditions were suitable for testing.  Mr. Gene Riley of
OAQPS was the EPA Task Manager, and was responsible for coordinating the
efforts of the Entropy and MRI test crews.

    Mr. J. Ron Jernigan was the Project Coordinator for the HC1 monitoring
conducted by Entropy.  Mr. Scott Shanklin served as the HC1 Test Team Leader
and was responsible for field testing and on-site QA/QC activities.  The
organizational scheme showing Entropy in relationship to all parties involved
in the test program is shown in Figure 1.2.

-------
       Contractor

        MRI

        Radian

        Entropy (Source Test Div.)

        Entropy (CEM/Eng. Div.)

        RTI
         CONTRACTOR  EFFORT

              Scope of Work

          Conduct field test program

          Perform process monitoring

          Compliance field testing

          Conduct HCI monitoring

          Test program QA
                     Funding Source

                     AEERL

                     OAQPS

                     KTI Energy, Inc.

                     OAQPS/AEERL

                     AEERL
                           GOVERNMENT PERSONNEL  ON  TEST  SITE
                                EPA, AEERL


                                EPA, OAQPS


                                     MDEP
                       James Kilgroe
                       Ted Brna

                       Mike Johnston
                       Gene Riley

                       Scott Mason
                 MAINE  ENERGY  RECOVERY  COMPANY  TEST PROGRAM
                    MANAGEMENT  PROTOCOL  FOR DECISION  MAKING
AEERL  Coordinator
    James Kilgroe
        QA
   Judith Ford (EPA)
   Shri Kulkarni (RTI)
   MRI Test Crew
 (Emission Testing)
    George Schiel
                                        EPA  Project
                                        Coordinators
                                        James Kilgroe
                                          Ted Brna
                                        Mike Johnston
            OAQPS Coordinator
                Mike Johnston
     OAQPS
  Task  Manager
     Gene Riley
Entropy Test  Crew
   (HCI Testing)
     Ron Jernigan
    Scott Shanklin
     Keith Hazel
                                              KTI  Coordinators
                                                 Lynn Johnston
                                                  Frank Ferraro
                  KTI  Program Coordinator
                          Frank Ferraro
                      MERC  Coordinator
                          Gary Bates
      Radian
Process Monitoring
     Winton Kelly
              Figure 1.2. Organizational scheme for MERC testing program.
                                                                                      3516B 1/88

-------
                     2.0  SUMMARY AND DISCUSSION OF RESULTS
    The mean HC1 monitoring results and process HC1 scrubber removal
efficiencies are presented in Table 2.1.  The HC1 concentrations at the spray
dryer inlet (inlet) and spray dryer outlet (midpoint) sampling locations (TECO
and Compur GEMS's, respectively) were measured on a wet basis and converted to
dry basis values using EPA Method 4 data supplied by MRI.  The HC1 measurement
data for each test run were corrected for calibration drift using the pre- and
post-test calibration results according to the procedures in EPA Method 6C.

    HC1 removal efficiencies were calculated from the inlet to the midpoint
location, and from the inlet to the outlet location.  The removal efficiencies
were computed on a mass emission rate basis (Ib HCl/hr) using the Entropy HC1
continuous monitoring data collected at the three test locations and volumetric
flow rate data provided by MRI.

    The moisture and volumetric flow rate results as well as the test run times
utilized by Entropy in calculating the monitoring results and HC1 removal
efficiencies were obtained from MRI (see Tables 2.2 and 2.3, respectively).
The moisture values used to correct the inlet HC1 monitoring results were
averages of the results from the two trains (particulate/metals and CDD/CDF)
operated at the inlet location  (see Table 2.3).  The outlet moisture values
were used to correct the midpoint HC1 monitoring results since no manual
testing was conducted at the midpoint location.  The increase in the moisture
observed from the inlet to the outlet is the result of the spray dryer lime
slurry injection.  The volumetric flow rate values used to calculate the
percent removal efficiencies were also averages of the results from the two
trains operated at both the inlet and outlet (see Table 2.3).  The average of
the values from the two trains was used with inlet and outlet HC1 values; the
average of these averages (inlet averaged with outlet) was used with the
midpoint HC1 data.

    The HC1 monitoring data that were printed by the data acquisition system
during the testing program are presented in Appendix A.  The daily calibration
results manually recorded on calibration drift summary sheets are contained in
Appendix B.
2.1  TEST RUN 1

    The HC1 monitoring results for Test Run 1 are summarized in Table 2.4 and
are presented graphically in Figures 2-1 and 2-2.  The two trend graphs present
one-minute averages recorded throughout the test run, excluding any periods of
"process upsets".  Figure 2-2 presents the monitoring data corresponding to the
MRI metals train sampling times, and excludes the data collected during the MRI
sampling port changes.

    The mean HC1 concentration results were 560 ppm, 75 ppm, and 9 PPm HC1 at
the inlet, midpoint, and outlet locations, respectively.  The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were 8f% and $8%, respectively.  The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-3-

-------
                                   TABLE 2.1.

                         SUMMARY OF HC1  MONITORING DATA
                              REFUSE-DERIVED FUEL
                     MUNICIPAL WASTE COMBUSTOR  TEST PROGRAM
                         MAINE ENERGY RECOVERY  COMPANY
Test
Run
1
2
3
Spray Dryer Inlet
HC1 cone.
(ppmv, dry)
560
564
537
Spray Dryer Outlet
HC1 Cone. HC1 Removal
(ppmv, dry) (%)
75 86.7
8 98.6
1* 99.8*
Baghouse Outlet
HC1 Cone. HC1 Removal
(ppmv, dry) (%)
9 98.4
4 99-3
3 99.4
*The midpoint measurements  may  be  questionable  for Run  3 because  the  Compur CEMS
 accuracy is unknown at  this  low concentration  range.   The  Compur had not been
 operated and tested at  the outlet of HC1 control during previous EPA studies.

-------
TABLE' 2.2.   SAMPLING LOG SUMMARY,  MERC - BIDDEFORD
Sampling
Sample Times
Date Run Type Location (24 hr clock)
12/9



12/9


12/9


12/9


12/10




12/10



12/10



12/10




12/12






12/12





12/12





12/12




1 Metals Inlet 1530-1650
1718-1838


1 MM5 Inlet 1535-1655
1723-1843

1 Metals Outlet 1532-1652
1719-1839

1 MM5 Outlet 1535-1655
1720-1840

2 Metals Inlet 1250-1410
1435-1555
I64o-i8oo


2 MM5 Inlet 1245-1405
1431-1551
1636-1756

2 Metals Outlet 1246-1406
1433-1553
1636-1756

2 MM5 Outlet 1247-1302
1305-1410
1500-1620
1637-1757

3 Metals Inlet 1124-1139
1204-1309
1329-1449
1514-1524
1819-1834


3 MM5 Inlet 1120-1140
1200-1300
1325-1445
1510-1525
1815-1835

3 Metals Outlet 1117-1142
1200-1255
1325-1445
1510-1525
1815-1835

3 MM5 Outlet 1116-1141
1201-1256
1326-1446
1511-1531

Elapsed Averaging Times for HC1
Time Monitoring at All Locations*
Comments (min) (24 hr clock)
Stopped for port change;
run discontinued because
process down

Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port changes




Stopped for port changes



Stopped for port changes



Stopped to change XAD
and twice to change
ports


Process down 1139-1204
and 1524-1819 ; o the r
stops for port changes




Process down during
first and last stops;
other two stops for
for port changes


Process down during
first and last stops;
other two stops for
for port changes


Process down during
first stop; other two
stops for port changes


80
80
lo~0" total

80
80
l6~0~ total
80
80
l6~0 total
80
80
16~0~ total
80
80
80
2£o~ total

80
80
80
2^40 total
80
80
80
275" total
15
65
80
80
275~ total
15
65
80
10
15
185 total

20
60
80
15
20
195 total
25
55
80
15
20
195 total
25
55
80
20
18~0~ total
1530-1630
1630-1730
1730-1830
1830-1842









1300-1400
1400-1500
1500-1600
1600-1700
1700-1800













1115-1139
1204-1215
1215-1315
1315-1415
1415-1515
1515-1524
1819-1834

















•Periods when process was down were not included  in HC1 monitoring data averaging times;
 changes were included.
                                                           periods  during port

-------
              TABLE 2.3.   MRI VOLUMETRIC FLOW RATE AND MOISTURE DATA USED
                   IN HC1 MONITORING CALCULATIONS - MERC TEST PROGRAM
Run
No.
Inlet
Flow Rate Moisture
(dscfm) (%)
Outlet
Flow Rate Moisture
(dscfm) (%)
Midpoint**
Flow Rate Moisture
(dscfm) (%)
                                Particulate/Metals  Train
1
2
3
41,500
42,100
42,500
15-1
15.2
16.8
39,800
41,900
44,400
16.8
16.3
14.6*



CDD CDF Train
1
2
3
38,300
40,500
41,000
Average
1
2
3
39,900
41,300
41,800
14.3
14.4
16.0
39,200
41,100
42,500
of Particulate/Metals
14.7
14.8
16.4
39,500
41,500
43,500
15-3
13-5*
17.0



and CDD/CDF Trains***
16.1
16.3
17-0
39,700 16.1
41,400 16.3
42,600 17.0
  *Did  not  pass  final leak check; moisture values not used in averages.

 **No manual  testing was conducted at the midpoint.  Flow rate values  are  average  of
   inlet  and  outlet values; moisture values are outlet values (since increase  from
   inlet  to outlet moisture values is result of spray dryer).

***Calculated for use in determining (1) moisture corrections and  (2)  percent  removal
   efficiency of HC1 for midpoint and outlet locations.
                                       10

-------
                                  TABLE 2.4.

                        HC1 MONITORING RESULTS -  RUN 1
                    MAINE ENERGY RECOVERY COMPANY -  UNIT A
                               DECEMBER 9,  198?
-lour Time
1 15:30-16:30
2 16:30-17:30
3 17:30-18:30
4 18:30-18:42*
Test Average
(Time Weighted)
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
533
643
528
453
560
1040
443
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
66 87-7
134 79-3
38 92.8
21 95-4
75 86.7
321
13
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
10 98.1
11 98.3
7 98.7
6 98.7
9 98.4
82
5
Note:  Inlet and midpoint concentration measurements were made on a wet
       basis and corrected to a dry basis using the Method 4 moisture data
       provided by MRI.

          Inlet Moisture = l4.7# H20
       Midpoint Moisture = 16.1% HO (as measured at the baghouse
                                         outlet sample location)

* The test run was terminated at 18:42 because of process operating problems.
                                     11

-------
             Figure 2-1.  HC1 MONITORING  DATA -  RUN #1   12/9/87
          340
                             MAINE ENERGY RECOVERY COMPANY - UNIT A
     Q.
     Q.
IV)
             15:30
16:30
17:30
18:30
                                         CLOCK TIME
                   NOTE: Test run was ended at 18:38 due to Unit A process problems.

-------
      Figure 2-2.   HC1  MONITORING DATA - RUN #1     12/9/87
     320
                         MAINE ENERGY RECOVERY COMPANY - UNIT A
Q.
Q.
O
LJ
O
Z
O
O

O
X
  Midpoint
        15:30
16:30
17:30
18:30
                                     CLOCK TIME
               NOTE:  HCI data deleted during MRI sampling port change from
                     16:50 to 17:18. Test run was ended at 18:38 due to Unit A
                     process operating problems.

-------
o
o

4)
a:
4->
c
0)
o
4)
a.
100


 95


 90


 85


 80


 75


 70 -


 65 -


 60 -
            Figure  2-3.  HC1 REMOVAL EFFICIENCY  - RUN #1

                         MAINE ENERGY RECOVERY COMPANY - UNIT A
     55
       15:30
                                               ,' Inlet to Midpoint
                                              V
                       —I	
                       16:30
—I	
17:30
—l—
18:30
                                     CLOCK TIME

              NOTE:  Test run was ended at 18:38 due to Unit A process problems.

-------
    Babcock & Wilcox personnel on-site during the test program stated that the
fluctuations observed in the midpoint HC1 measurements during Run 1 were
evidence of unsteady scrubber operation.  The Unit A forced draft fan motor
malfunctioned at 18:38 and the run was terminated.

2.2  TEST RUN 2

    The HC1 monitoring results for Test Run 2 are summarized in Table 2.5 and
are presented graphically in Figures 2-4 and 2-5.  The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets."  Figure 2-5 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.

    The mean HC1 concentration results were 564 ppm, 8 ppm, and 4 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively.  The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were 98.6% and 99-3#, respectively.  The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-6.

    At approximately 13:45, the lime slurry flow rate into the spray dryer
system was increased by 100% due to higher than expected SO- emissions measured
by MRI.  This process change resulted in a reduction in the HC1 emissions
measured at the midpoint and improved the HC1 removal efficiency across the
spray dryer.

    The test run was begun at 12:45; however, the HC1 monitoring data
collection did not begin until 13:00 in order to allow sufficient time for the
HC1 CEMS's to collect representative effluent samples after returning from
their calibration modes.

2.3  TEST RUN 3

    The HC1 monitoring results for Test Run 3 are summarized in Table 2.6 are
are presented graphically in Figures 2-7 and 2-8.  The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets."  Figure 2-8 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.

    The mean HC1 concentration results were 537 ppm, 1 ppm, and 3 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively.  The mean HC1 removal
efficiency from the inlet to the outlet locations was 99-4%.  The removal
efficiency was calculated from the one-minute averaged emission rate values
(Ib HCl/hr) and shown in Figure 2-9-

    The midpoint data relative to the baghouse outlet data during Run 3 were
low, with many of the midpoint values recorded as zeros.  The scrubber
operating conditions were the same as during Run 2, but lower than expected
midpoint concentration measurements were recorded.  Visual inspection of the
Compur probe filters and the barrel nozzle did not indicate a problem which
would cause a low bias in the measurements.  The low measurements are most
likely due to questionable Compur monitor and/or dilution probe performance
during this test run at these extremely low HC1 emissions.

    The test run was interrupted on two occasions and was terminated at 18:34
because of process operating problems.
                                       15

-------
                               TABLE 2.5.

                     HC1 MONITORING RESULTS - RUN 2
                 MAINE ENERGY RECOVERY COMPANY - UNIT A
                           DECEMBER 10, 198?
-lour Time
1 13:00-14:00*
2 14:00-15:00
3 15:00-16:00
4 16:00-17:00
5 17:00-18:00
Test
Average
Highest 1-min.
average:
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
520
566
581
578
576
564
675
400
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
15 97-1
7 98.8
7 98.8
6 99-0
6 99-0
8 98.6
37
2
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
6 98.8
4 99.3
4 99-3
4 99-3
3 99-5
4 99-3
9
2
Note:  Inlet and midpoint  concentration measurements were  made  on a wet basis
       and corrected to a  dry basis  using  the Method 4 moisture data provided  by
       MRI.

          Inlet Moisture = 14.8%  HO
       Midpoint Moisture = l6.3#  HO (as measured  at the baghouse
                                        outlet  sample location)


* Manual testing began at  12:45;  HC1 monitoring  data collection did not begin
  until 13:00 in order to  allow sufficient time  for the HC1 GEMS's to collect
  representative effluent  samples after returning  from their calibration modes.
                                     16

-------
E
Q.
Q.
o


I


LJ
O

o
o

o
1
  Figure 2-4.  HC1 MONITORING  DATA - RUN #2    12/10/87



                   MAINE ENERGY RECOVERY COMPANY - UNIT A
   60 -
    50
    40  -^
    30  ^
    20  -
    10  -
       :00
                14:00
15:00
16:00
17:00
18:00
                              CLOCK TIME

-------
            Figure 2-5.   HC1 MONITORING DATA -  RUN  #2    12/10/87
oo
        TJ



        QL
        Q.
        LJ
        O
        •z.
        O
        O

        O
             70
                               MAINE ENERGY RECOVERY COMPANY - UNIT A
             60 -
             50 -
             40
             30
20 -
             10  -
               13:00
                                                     Inlet -f-  10
                             Midpoint
                                  Outlet
               14:00
  i            i
15:00        16:00

    CLOCK TIME
17:00
18:00
                      NOTE:  HCI data deleted during MRI sampling port changes from
                             14:1O to 14:35 and 15:55 to 16:4O.

-------
D

O

E
4)
OL

-t->
c
fl>
O

0)
Q.
     91
         Figure 2-6.   HC1 REMOVAL EFFICIENCY -  RUN  #2

                      MAINE ENERGY RECOVERY COMPANY - UNIT A
99



98



97 -



96 -



95 -



94 -



93 -



92 -
       13:00
              H
              II
              |l
              H
                       Inlet to Outlet

14:00
                                    Inlet to Midpoint
15:00        16:00

    CLOCK TIME
                                           „;
                                          '..".!
                                          \( ;;
                                            »
                                                  17:00
18:00

-------
                               TABLE 2.6.

                     HC1 MONITORING RESULTS - RUN 3
                 MAINE ENERGY RECOVERY COMPANY - UNIT A
                           DECEMBER 12,  198?
Inlet HC1
Hour Time (ppmv, dry)
1 11:15-11:39**
12:04-12:15
2 12:15-13:15
3 13=15-14:15
4 14:15-15:15
5 15:15-15:24**
18:19-18:34**
459
498
513
545
598
544
504
Removal
Midpoint HC1* Efficiency Outlet HC1
(ppmv. dry) (%) (ppmv, dry)
6
1
0
0
0
1
1
98.7
99-8
100
100
100
99-8
99-8
5
4
3
3
3
2
5
Removal
Efficiency
(*)
98.9
99-2
99-4
99-4
99-5
99-6
99-0
 Test Average
 (Time Weighted)

 Highest  1-min.
537
99-8
99-4
average:
Lowest 1-min.
average :
872

388
25

0
8

2
 Note:   Inlet and midpoint concentration measurements were made on a wet
        basis and corrected to a dry basis using the Method 4 moisture data
        provided by MRI.

           Inlet Moisture = l6.4# H20
        Midpoint Moisture = 17.0% H^O (as measured at the baghouse
                                         outlet sample location)

 *  The  midpoint results are questionable.  The scrubber operating conditions
   are  the  same as during Run 2, and lower than expected midpoint values
   were recorded.  The Compur CEMS accuracy is unknown at this low range
   because  the Compur had not been operated and tested at the outlet of HC1
   control  equipment during previous EPA studies.

**  The  test run was interrupted during 11:39-12:04 and 15:24-18:19 time
   periods,  and terminated at 18:34 because of process operating problems.
                                     20

-------
E
Q.
Q.
O


£
o:
UJ
o
z
o
o

o
I
Figure  2-7.  HC1 MONITORING  DATA - RUN #3

                     MAINE ENERGY RECOVERY COMPANY - UNIT A
                                                                     12/12/87
     45
      o
     40  -
     35  -
  30  -
     25
     20  -
  15  -
     10  -
         V
                 ^Midpoint
        11:15     12:15     13:15     14:15     15:15

                                      CLOCK TIME
                                                  16:15
17:15
18:15
             NOTE:  Unit A process operating problems caused test run interruptions

                   from 11:39 to 12:04 and 15:24 to 18:19, and ended the test run

                   at 18:34. Midpoint measurements are questionable for this run

                   because the Compur analyzer accuracy is unknown at this low  range.

-------
         Q.
         Q.
tV)
ro
         LU
         O
         z
         O
         O

         O
         X
             Figure  2-8,

               45
                  HC1  MONITORING  DATA  -  RUN #3
                    MAINE ENERGY RECOVERY COMPANY - UNIT A
                 12/12/87
40  -



35  -



30  -



25  -



20  -



15  -



10  -



 5  -
                                     Inlet -r- 20
                                           Outlet
                               Midpoint ._._ r.^^
                                       1—  ••••!
                 11:15     12:15     13:15     14:15     15:15
                                                  CLOCK TIME
16:15
                                                            17:15
18:15
                       NOTE;  HCI data delated during MRI sampling port changes from 13:09 to 13:29
                             and 14:49 to 15:14. UnH A process operating problems caused test run
                             interruptions from 11:39 to 12:04 and 15:24 to 18:19. and ended the test run
                             at  18:34.  Midpoint measurements are questionable for this run because the
                             Compur analyzer accuracy Is unknown at this low range.

-------
o
£
0)
a
0)
o
0)
a.
     100
             Figure  2-9.   HC1 REMOVAL EFFICIENCY
                             MAINE ENERGY RECOVERY COMPANY - UNIT A
                                                                    RUN  #3
             iV
       99  -
       98  -
97  -
                       Inlet to Midpoint
                                       Inlet to Outlet
       96  -
       95
                    	1	
                    12:15
                       —I	
                        13:15
—I	
 14:15
—I	
 15:15
—I	
 16:15
11:15
17:15
18:15
                                            CLOCK TIME
                 NOTE:  Unit A process operating problems caused test run interruptions from
                       11:39 to 12:04 and 15:24 to 18:19, and ended the test run at 18:34.
                       Midpoint measurements are questionable for this run because the Compur
                       analyzer accuracy is unknown at this low concentration range.

-------
          3.0  PROCESS DESCRIPTION AND OPERATION DURING TEST PROGRAM


    This section contains a description of the Maine Energy Recovery
Company's (MERC) York County Waste-to-Energy facility located in Biddeford,
Maine.  This section also summarizes the operation of the facility and the
key operating parameters that were measured during the test program.


3.1  FACILITY DESCRIPTION

    The MERC facility consists of two identical process lines with separate
emission control systems that exhaust to a common stack.  The process line is
illustrated in Figure 3~1-  Refuse-derived fuel (RDF) enters the combustor
and is fired with preheated combustion air.  Auxiliary fuel (natural gas or
fuel oil) is sometimes used.  The combustion gases pass through superheater,
economizer, and combustion air preheater heat recovery stations.  The
combustion gases then pass through a cyclone to remove large particulate, an
alkaline spray dryer to control acid gas emissions and lower the flue gas
temperature, and a fabric filter to reduce particulate emissions.  The flue
gas finally exhausts to the atmosphere through a 244-foot stack which is
common to both units.
    The MERC facility is rated at 500 tons/day of RDF.  The facility was
developed by KTI Holdings, Inc., and was designed and built by General
Electric Company.  Approximately 105,000 Ib/hr of steam at a temperature of
760 F and pressure of 675 psig (superheated) is generated by each unit.  The
steam from the boilers is supplied to a stem turbine which generates up to 22
MW of electricity.  The electricity is sold to Central Maine Power.

3.1.1  Preparation of Refuse-Derived Fuel

    At the MERC facility, preparation of RDF follows the scheme shown in
Figure 3~2.  Solid waste from local municipalities is received in packer
trucks and transfer trailers and is unloaded on the tipping floor which is
enclosed.  The waste is visually inspected and potentially explosive or
hazardous items are removed.  Over-sized waste is removed and sent to a shear
shredder.  The sorted waste is reduced in size by a flail mill and combined
with  the end product from the shear shredder.  Then, a magnetic separator
removes ferrous metal, which is reclaimed.  A trommel screen separates non-
processible wastes and the remaining refuse is shredded to a nominal top size
of 4  inches by the secondary shredder.  At this point, the waste has become
RDF.  MERC estimates that 607 tons/day of solid waste is processed to produce
500 tons/day RDF.
    If desired, as the RDF enters the combustor feed hopper, wood chips or
sewage sludge may be added.  To date, only wood chips have been used.  Sewage
sludge can be received into a separate hopper which is enclosed by a
hydraulically operated steel cover.  The sewage sludge has a design_moisture
content between 12 and 21 percent and a design feedrate of 0.833 yd /hr.
This amount of sludge, as a percentage of the total fuel volume, "has an
insignificant effect on the boiler's firing rate.  The fuel, whether RDF or
RDF mixed with wood chips and/or sewage sludge, is metered from  the hopper by
dual feeders to the stoker.
                                       25

-------
                                                                   Dilution
                                                                    Water
    RDF-

Auxiliary
  Fuel
Combustor/
  Boiler
          Grate
         Siftings
                Bottom
                 Ash
                        Economizer
                            Combustion Air
                              Preheater
                                                                                                          Stack
     Ash
     Discharge
                Figure  3-1.  The  process line  for Unit A  of the York  County Waste-to-Energy
                               Facility, Biddeford, Maine.

-------
                                                                                       Wood Chips
      Municipal
       Refuse
       (MSW)
co
-j
                                                                                                             Sewage
                                                                                                             Sludge
                   Over-Sized
                     Waste
                                                               Feed Hopper
                                                               for Combustor
           Ferrous Metal
          (to be reclaimed)
Non-Processibles
   to Landfill
To Feed
Conveyor
                      Figure 3~2-
Preparation of Refuse-Derived Fuel  at MERC in  Biddeford, Maine.

-------
3.1.2  Combustion Air

    Air from the tipping floow area and the boiler penthouse is withdrawn by
a forced-draft fan to supply the air heater section of the heat recovery
system.  The preheated combustion air is split to supply the natural gas
burners, overfire air ports, and undergrate air.   The combustion air scheme
is shown in Figure 3~3.   The slightly negative pressure in the tipping floor
area prevents the release of odors created by the solid waste.

3.1.3  Combustor and Boiler

    The combustor and boiler are combined into one unit called a controlled
combustion zone boiler by Babcock and Wilcox.  The combustion zone boiler is
rated  at 150 x 10  Btu/hr of steam.

    The stoker is a traveling grate located at the bottom of the boiler.  The
fuel from the feeders enters the front of the boiler.  If required to
maintain steam load, natural gas and #2 fuel oil burners located above the
feeders may be used.  The sulfur content of the natural gas and fuel oil are
limited by  the air permit to a maximum of 0.7 percent.

    The boiler is balanced  draft.  One fan (forced-draft) is used to feed
combustion  air and the second fan  (induced-draft) located just prior to the
stack  is used to draw out the combustion gases.  A control system based on
oxygen and  carbon monoxide  concentrations is used to optimize combustion
efficiency.  The target excess air level is in the range of five to ten
percent.

     In addition  to the waterwalls  in the combustion zone, the heat recovery
system includes  superheater, economizer, and combustion air heater sections.
At  the exit to  the air heater, the flue gas temperature is approximately
      .

3.1.^   Cyclone.  Spray Dryer, and Fabric Filter

    The combustion gases  from the  air heater enter a cylone-type mechanical
dust collector which removes large particulate.  Next, an alkaline spray
dryer  is used to control  acid gas  emissions.  The spray dryer is a reaction
vessel where lime slurry  is sprayed into the flue gas  that contains
particulate, SO^, acid gases, and  other pollutants in  gaseous and aerosol
form.   The  slurry water is  evaporated by the flue gas  heat and  the acid gases
react  with  the  lime.  Particulate  and excess lime serve as nucleation  for
volatile organic compounds  (VOC) and metal adsorption  and agglomeration.

    The lime-to-S02  reactant ratio and  the flue  gas  temperature at  the exit
to  the spray dryer can be controlled separately.  The  lime  that is  introduced
as  a slurry is  diluted with water  before entering the  reaction  vessel  at
rates  appropriate to achieve the desired SO- removal  and  temperature
reduction.   The  rate of slurry addition is varied based on  the  continuously
monitored SO  concentration at the outlet of the fabric  filter.  The  facility
is  required By  its operating permit to maintain  an outlet SO   concentration
of  30  ppm.   However, at no  time during  the test  program were  the facility's
S02 monitors providing accurate readings.  The spray  dryer  outlet  temperature
is  directly controlled by the amount of dilution water added  and is  typically


                                        28

-------
            Tipping
              Floor
            Boiler
          Penthouse
Combustion
    Air
                           F.D. Fan
VD
                                                                           Total Air
                                                                          Flow Meter
                                                           Secondary Air
                                                            Flow Meter
                                                  Overtired Air
                                                   Flow Meter
                                                              Natural
                                                            Gas Burner
                                                                                                          Undergrate
                                                                                                             Air
                                                                                               Overfire Air
                    Figure  3~3-   Combustion air  scheme at the  MERC Facility in Biddeford, Maine.
                                                                                                                      CO
                                                                                                                      ao

-------
    The fabric filter then  collects  the participate from the gas stream.  The
excess lime in the bag filter cake provides  a second-stage reaction site for
further acid gas removal.   The fabric  filter unit has six modules.  Five
modules filter flue gas while one module is  being cleaned in a continuous
cycle.  The total time needed to complete a  fabric filter cleaning cycle is
about 18 minutes.

3.1.5  Ash Handling

    An ash system removes  ash from  the stoker discharge, generating bank
hopper, air heater hopper,  mechanical  dust collector hopper, spray dryer, and
fabric'filter modules.  All of the hopper discharges are through rotary seal
valves.  This ensures a positive seal  to prevent boiler gases from entering
the ash conveyors and air  from entering the  hoppers and boilers.

    The ash from the fabric filter modules discharges into 6 identical drag/
screw  conveyors.  Each set of these  drag/screw conveyors discharges into one
of two identical drag chain collecting conveyors.  The spray dryer and
mechanical dust collector  discharge  directly onto these collecting drag chain
conveyors.  The generating hopper  and  air heater hopper discharge ash onto a
transverse drag conveyor which feeds to the  collecting drag conveyors.  The
combined fly ash from each collecting  conveyor is fed to one of two identical
ash conditioning screw conveyors.   The ash is conditioned by the addition of
water  at a controlled rate.

    The bottom ash from each stoker  discharges into one of the two submerged
drag  chain ash conveyors.   The discharge of  the ash conditioners deposits
into  the dewatering section of the bottom ash drag conveyor.  It is at this
point  that the fly and bottom ash  streams combine.  The combined ash streams
are then dumped  into a specially designed trailer for removal from the site.

    Dust control within the processing building is achieved through two
separate control systems.   One system  serves the tipping/processing area,
while  the other  serves the conveyors in the  boiler building and RDF reclaim
area.  Each system contains a baghouse, fan  duct hoods, and dust collection
ducts  at key conveyor and transfer processing points.  Dust laden air is
drawn  through one of two pulsed jet baghouses which exhaust in the vicinity
of the boiler forced-draft fan intake.  The  baghouse air exhaust thus becomes
incorporated into the combustion air for the boilers.  Dust captured by  the
baghouses is returned to and becomes a part  of the RDF fuel.


3.2  SUMMARY OF OPERATIONS BY TEST RUN

    Three test runs were conducted on  Unit A between December 8 and December
12, 1987.  During each test run only RDF was fired.

3-2.1  Operation During Run 1

    Run 1 was originally scheduled for December 8, but power problems in the
afternoon delayed Run 1 until December 9.  Both units were down overnight.

    The facility was still experiencing operational problems on the morning
of December 9-  The units  were started up in the morning and were preheated
on natural gas.  However,  problems with the  feeder conveyors delayed  bringing


                                       30

-------
the boilers up to full load until 1400.  At 1500, CEM data indicated that the
boilers were stabilized.

    Run 1 began at 1530 hours and continued until approximately 1840 hours,
when the Unit A forced-draft fan failed.  Two of three traverses had been
completed at the time of the shutdown.  Since replacement of the fan motor
required overnight work, Run 1 was considered to be complete.

3-2.2  Operations During Run 2

    Run 2 was conducted on December 10, 1987.  The fan was repaired at
approximately 0100 that morning, and both units were back on-line.  However,
at 1030, there was a feeder conveyor failure and a unit shutdown occurred.
The units were brought back on-line at  1200 hours, and Test 2 began at 12^5-
Facility personnel decided to increase  the lime slurry feed rate at 1330.
Minor excursions of SO.., were being experienced and the facility did not want
to exceed their permit range.  Therefore, the lime slurry feed rate was
increased from approximately 3-0 gpm to approximately g.O gpm.  This increase
reduced the HC1 concentrations at the midpoint and the outlet location to
almost 0.  Testing continued and was completed at 1800 hours.  All three
traverse points were sampled for a complete run.

3.2.3  Operations During Run 3

    Run 3 was  conducted on December 12, 198?•  Originally scheduled for
December 11, problems  continued throughout the day with feeder conveyors and
testing was postponed  until  the next day.  Test  3 began at 1115 hours.  A
brief  test  interruption occurred during 1138-1200 due to a feeder
malfunction.   Testing  continued until  1525, restarted at 1815, but was
stopped at  1830 due  to recurring feeder problems.  Throughout Run 3. the lime
slurry feed rate  was maintained between 7 and 8  gpm.  Due to  the  late hour
and  the  fact  that the  facility estimated  that the delay time  would be four  to
eight  hours.   The test was considered  complete at the end of  two  complete
port  traverses and  part of the third.

3.3   SUMMARY  OF OPERATING PARAMETERS  DURING THE  TEST PROGRAM

     This  section  summarizes  the values  of key operating parameters during  the
test  program.   The  purpose of  evaluating  these operating parameters was  to
determine:  1)  if  the system  was operating at normal conditions,  and 2)  if  the
system was  operating at similar conditions during each of  the three test
runs.   Only selected parameters are  discussed in this section.

     The  operating data were  recorded once every  four minutes  by  computer.
The  spray  dryer related operating  data showing each  four-minute  value  is
included  in Appendix K.   The locations of temperature, pressure,  and  flow
sensors  are indicated  in  Figure  3~^-   Also,  plots of  the  four-minute  data
versus time are presented in this  section.   The  plots have  been  reduced in
size  in  order to  present  all three runs on one page.  Full-sized plots  of
spray dryer related data for each  run are included  in Appendix K if more
detail is  required  by  the reader.

    Average values  for selected operating parameters  over  the actual  testing
intervals  are  summarized  in  Table  3-1-   On an average basis,  the combustor
operating  conditions appear  to be  about the  same for  all  three runs.   The
only  variation of consequence  is  the higher  air  flow  and  economizer  inlet


                                        31

-------
                                                                                   Dilution
                                                                                    Water
          RDF
      Auxiliary
        Fuel
                             \
                   \
        Combustor/
           Boiler
                  Grate
                Siftings
                        Bottom
                         Ash
OJ
Ash
Discharge
                                  Economizer
Combustion Air
   Preheater
                                                                                                                                Stack
                                    1 - Superheater steam llowrate, pressure, temperature and economizer Inlet Hue gas temperature
                                    2 • Economizer outlet Hue gas temperature and excess oxygen
                                    3 • Air heater outlet flue gas temperature and pressure
                                    4 • Spray dryer Inlet due gas temperature and pressure
                                    5 - Spray dryer outlet Hue gas temperature and pressure
                                    6 - Fabric (liter outlet temperature
                                    7 - Dilution water feedrate
                                    8 - Lime slurry (eedrale
                             Figure
                                   Location  of  temperature,  pressure,  and  flow  sensors  at  the
                                     the MERC Facility.

-------
  TABLE 3.1.   SUMMARY OF KEY  OPERATING PARAMETERS  DURING THE
               MERC TEST PROGRAM IN BIDDEFORD. MAINE

Parameter
Superheater steam
Flowrate (1,000 Ib/hr)
Pressure (psig)
Outlet temperature (°F)
Combustion Air
Total air flowrate (1,000 Ib/hr)
Undergrate air flowrate (1,000 lb/hr)a
Overfire air flowrate (1,000 Ib/hr)
Overfire air distribution (%)
Undergrate air pressure (in H-0)
Overfire air fan pressure (in HO)
Air heater inlet air temperature ( F)
Air heater outlet air temperature ( F)
Excess Oxygen (% by volume, wet)
left side
right side
6
Heat Release (10 Btu/hr)
Total (RDF + auxiliary fuel)
RDF only
Flue gas temperatures ( F)
Economizer inlet
Economizer outlet/air heater inlet
Air heater outlet
Spray dryer inlet
Spray dryer outlet/fabric filter inlet
Fabric filter outlet
Gas Differential Pressures (in H.O)
Undergrate to furnace
Dust collector (cyclone)
Spray dryer
Fabric filter
Flue gas pressures (in HjO)
Spray dryer inlet
Spray dryer outlet
I.D. fan suction
Lime Slurrv Feedrate (GPM)
Dilution Water Feedrate (GPM)
Total Lime Slurrv & Water Feedrate (GPM)

Run 1
12/9/87

106
663
746

124
50.0
71.2
60
-0.23
25.3
127
381

5.59
7.91


150
150

779
515
374
374
277
268

0.46
3.02
4.24
7.16

-7.20
11.5
-18.7
2.91
6.95
9.86
Run 2
12/10/87

109
676
751

123
64.1
73.2
60
-0.86
25.6
66
368

5 77
8.13


153
153

788
523
363
364
278
268

0.34
3.07
4.84
7.89

-7.25
-13.1
-21.0
6.70
3.39
10.1
Run 3
12/12/87

108
671
748

134
52.4
70.1
50
-0.26
25.0
118
385

5.78
8.02


151
150

801
532
383
384
279
268

0.44
3.37
5.17
8.22

-7.39
-13.4
-21.7
7.80
4.89
12.7
Average

108
670
748

127
55.5
71.5
57
-0.45
25.3
104
378

5.71
8.02


151
151

789
523
373
374
278
268

0.41
3.15
4 75
7.75

-7.28
-12.7
-20.5
5.80
5.07
10.9
Undergrate air flowrate was calculated as the difference between the total air
 flowrate and overfire  air  flowrate.

 Overfire air distribution  was calculated as the overfire air flowrate divided by
 the total air flowrate.
lmo/005
                                          33

-------
flue gas temperature during Run  3.   Although  the operating conditions appear
similar, there is no way  to judge  if the  entire combustor system reached the
same degree of thermal  equilibrium for each run.

    The emission control  system  was operated  differently during each run.
First,  the average lime slurry feed rate  increased during each test, with Run
2 being higher than Run 1,  and Run 3 being higher than Run 2.   This increase
in slurry flow,  combined  with the  higher  spray dryer inlet temperature and
air flow during Run 3,  is consistent with the increase in pressure drop
across the spray dryer  and fabric  filter  during each test.

3.3.1  Steam Load and Heat Release

    In Figure 3-5, RDF  heat release, superheater steam flow,  superheater
steam pressure,  and steam temperature at  the  superheater outlet are plotted
against time.  The RDF  heat release is calculated from the steam flow minus
the heat content supplied by any auxiliary fuel (natural gas  or fuel oil).
During this test program, only RDF was fired,  and sampling was discontinued
during periods when auxiliary natural gas firing was necessary.  Thus, for
this test program, the  RDF heat  release is equivalent to the  total heat
release.

    These combustion parameters  were operating in a similar and normal manner
for all three runs in which the  manual sampling trains were operating.  The
relative standard deviation of the steam  load was an average  of four percent
during the sampling periods.

3-3-2  Combustion Air

    Overfire air distribution, undergrate-to-furnace differential pressure,
and excess oxygen are plotted against time in Figure 3-6.  The overfire air
distribution was calculated by dividing the overfire air mass  flowrate by the
total air mass flowrate.

    The variation in excess oxygen was greater during Run 3 than in Runs 1
and 2.  During Run 3, the relative standard deviation was twenty two percent,
as compared to sixteen  and twelve  percent for Runs 1 and 2.  However, the
average concentrations  were not  significantly different.

    The overfire air (OF) distribution was lower and undergrate-furnace
differential pressure was higher during Run 3.  The average OF air
distribution was sixty  percent during Runs 1  and 2, but decreased to fifty
perent during Run 3. The undergrate-furnace  differential pressure increased
to 0.4 in. H20 during Run 3 from 0.3 in.  HO  during Run 2.

    The overfire air flow pressures were  measured in the combustor.  The
pressures measured during the MERC test program are presented in Figure 3-7.
Once the combustor is optimized, the pressures do not vary.  Pressurized air
from two air swept spouts is also  used to spray the RDF across the grate as
it enters the combustor-   The air  swept pressure is varied in a set range  in
order to spray the RDF  evenly across the  grate.

-------
                           Run 1
                                                   Run 2
                                                                      Run 3
VJ1
        BOO


        600


        400


        200


          0
 .X.
Start
Test
 Port
Change
Stop
Test
Start
Test
Stop/Start
    J
 Port
Change
Slop
Tesl
            15:25  16:00       17:00      18:00      12:45     14:00   1500  16:00
                          Time                                Time
Slarl Slop/Start   Stop/
^T*// st°P/slarl s!arl
                                                                                            Stop/Start
                                                                17:00     11:15    13:0014:0015:0016:0017:0018:0019:00
                                                                                      Time
                   Indicate periods in which manual sampling
                   trains were not operating
                                                                    KEY
                                                         D  RDF heat release (10' Btu/hr)
                                                         +  Superheater steam flow (1000 Ib/hr)
                                                         0  Superheater steam pressure (psig)
                                                         A  Steam temperature at the superheater outlet (°F)
                Figure  3-5.   RDF heat release and  steam  flow,  pressure,  and  temperature
                               as a  function  of time during the  MERC Test Program.

-------
                 Run  1
                      Run 2
                                                                 Run 3
    15:25 16:00
1.0
0.8-


0.6-


0.4-


0.2-
 17:00
Time
18:00   '12:45
                   Port
                  Change
14:00  15:00  16:00   17:00    1115  13:00    15:00
      Time                ixcv        Time
                          KEY
        D Excess Oxygen (left side, % by volume, wet)
        + Excess Oxygen (right side, %  by volume, wet)
            Start stop/Start     PoM    Slop  Start Stop/Start Stop/Start   EndTest
            Toe I   l J       r*h?*nnc*   Tnt*t \-    r f
          XTest
                     T
                                      Change   Test V
                             MA/  VI
                                                                                        Stop/Start
                                                                                  U
         12:45    14:00   15:00  16:00  17:00    11:15   13:00    15:00 ~1  17:00  '  19:00
                       Time                            Time
                           18:00
     Indicate periods in which manual sampling
     trains were not operating
                                   KEY
                       D  Overfire air distribution (fraction)
                       +  Undergrate-furnace differential pressure (In H,O) period
         Figure 3-6.   Combustion air parameters as  a function of time during the
                        MERC Test Program.

-------
Front
            E_
               G
                                      Rear
                        Combustion
                        Zone Boiler
                            Grate
                     Pressure (in H3O)
               A-23"
               B -24"
               C-23"
               D -24"
               E -23"
               F-24"
               G - 13"
               H -24"
               I - Air Swept Spout -
               J • Air Swept Spout
                  Range of 9" to 24"
                  Range of 9" to 24'
 Figure 3~
Overfire air flow pressures measured  during the MERC
 Test Program.
                              37

-------
 3-3-3  Temperature Profile

     The inlet and outlet  flue  gas  temperatures  of the economizer,  air heater,
 spray dryer,  and  fabric filter are plotted  against time in Figure 3-8.  The
 economizer inlet,  economizer outlet,  and  air heater outlet temperatures were
 ten to twenty degrees  ( F) hotter  during  Run 3-   However,  after the spray
 dryer, the flue gas temperature during Run  3 was  the same  as during Runs 1
 and 2.  The spray dryer outlet temperature  was  very consistent during all
 three runs.

 3-3-4  Spray  Dryer and Fabric  Filter

     The operation of the  spray dryer  and  fabric filter  was  evaluated using
 two plots.  The first plot (Figure 3-9) included  the  spray  dryer  inlet and
 outlet temperatures, the  lime  slurry  and  dilution water feed rates,  and the
 fabric filter differential pressure.  The second plot  (Figure 3-10)  includes
 the flue gas  differential pressures across the cyclone,  spray dryer,  and
 fabric filter.

     The difference  in spray dryer operation during  the  runs  is  shown clearly
 in  Figure  3-9-  During Run 2,   the lime slurry feed  rate was  increased
 significantly.  This increase was due to the high S0_ concentration  being
 monitoredat  the  fabric filter outlet by the test contractor, which  was  more
 than iMhin the permit level of 30 ppm.   Subsequently,  the lime slurry  feed
 rate was increased  from 3 gpm to over 7 gpm, and remained at  this level
 through Run 3.  A corresponding decrease in the dilution water  feed  rate was
 observed at this time such that the total lime  slurry and dilution water feed
 rate increased only slightly.   The spray dryer  outlet temperature remained
 constant throughout all three  test runs.   During Run 3, both  the dilution
 water  and the lime slurry feed rates increased  from Run 2.   This may  have
 been partially due to the higher spray dryer inlet temperature during Run 3
 However, the spray dryer outlet temperature remained consistent during all
    The differential pressures across all three control devices (cvclone
spray dryer, and fabric filter)  increased during Runs 2 and 3  with Run 3
having the greatest increase.   For Run 2, the increase in the lime slurry
feed rate may have caused the  pressure drop increase, since the pressure dron
across the cyclone did not change significantly.   However  for Run 3  a
                                                  **» ^ have'cau^the
                                      38

-------
         Run 1
Run 2
 Run 3
Start Port stop Start Port Slop SI
Test Change Test Test Stop/Start Change Test_ Te
800-
600-
400-
I
"'^H 	 «,M, 	 nii..",.,,'



" r



1
M|lt "'' /""u ii *' ''*



\
V
15:25 16:00 17:00 18:00
^ 	 "v



12:45 14:00
I
1 ^'^SA'"'M



W



X
''^^'IIL/ Hi



ar
st
V
r


15:00 16:00 17:00 11:
j
•V


SI°P End
Start jest
I
**S%*
S
S


iJ
0
ta


u\r^r*
p/ SI
rt SI


4
jpi
art
V^


Stop/Start
u
V y*»""H


-"



15 13:00 14:0015:0016:0017:0018:0019:00
         Time
Time
Time
  Indicate periods in which manual sampling
  trains were not operating
                   KEY
    D Economizer inlet gas temperature (°F)
    + Economizer outlet/air heater inlet gas temperature (°F)
    0 Air heater outlet gas temperature (°F)
    A Spray dryer inlet gas temperature (°F)
    x. Spray dryer outlet/fabric filter inlet temperature (°F)
    V Fabric filter outlet gas temperature (°F)
Figure  3-8.  Flue gas temperature as  a  function of  time during the MERC
              Test Program.

-------
                    Run  1
                                                          Run  2
                                                        Run 3
400
     Start

     Test
200
100
                       Port

                      Change
Slop Start

Test Test

'
A
/

A/w\/v*
r\ A A f\ A y
YwVwVV

."•»'
\ A^
V V

---"—^

\A'V\A/\
^ ***•*-**»•»-»•••«
-
V


in«<1f<'t»iii,iml«(iii.i.,<»'  "
    15:25  16:00       17:00       18:00      12:45      14:00   15:00  16:00   17:00     11:15   13:0014:0015:0016:0017:0018:0019:00



                   Time                                  Time                                Time
.   ..    ....      ,  .  ,     h. ,,        .       ,,
r — n    nd cate periods  n which manual samp ng

         trains were  not operating
                                                                       KEY

                                                        D  Spray dryer inlet gas temperature (°F)
                                                        .   0      .       ..  ... .  .  f. .....
                                                        +  Spray dryer outlet/fabric filter inlet gas temperature (°F)

                                                        0  Lime slurry feedrate (gpm x 10)

                                                        A  Dilution water feedrate (gpm x 10)
                                                                                                                      GC
                                                                                                                      04
      Figure 3~9-   Spray  dryer operating parameters  as a  function  of  time during

                      the MERC Test  Program.

-------
               Run 1
Start
Test
                   Run 2
Stop  Start
Test  Test
  1
                    Run 3
          Stop/Start
           Stop/Start
Slop Slart // Stop/  cinn/Qiari            End
Test Test/7 Start  SI°P'Sla" Slop/Start   Tesl
™~\T
15:25 16.00       17:00       18:00      12:45    14.00   15:00   16:00   17:00

               Time                                Time
                                           11:15  13:0014:00 15:00'16:00'17:00 18:00 19:00

                                                          Time
      Indicate periods in which manual sampling
      trains were not operating
                                            KEY
                             D Dust collector differential pressure (in H,O)
                             + Spray dryer differential pressure (in H2O)
                             0 Fabric filter differential pressure (in H,O)
   Figure  3-10.   Differential  pressures  across  the  control devices  during  the
                    MERC Test Program.
                                                                               cc
                                                                               §
                                                                               3
                                                                               ex

-------

-------
          4.0  HCl CONTINUOUS EMISSION MONITORING SYSTEM DESCRIPTIONS

    The following discusions briefly outline the operational principles of the
monitoring equipment employed to quantify the HCl concentrations at three
locations within the Unit A flue gas handing system.

    Entropy is currently evaluating these instruments in another study for the
EPA and has compiled information on their operational parameters and princi-
ples.  This information is presented in the descriptions that follow.  It
should be noted that operational characteristics of these instruments are not
yet fully established as they have been for SO  and NO  CEM systems.
                                              £_       X


4.1  THERMO ELECTRON MODEL 15 HCl ANALYZER/MODEL 200 DILUTION SYSTEM

    The Thermo Electron system was used at the spray dryer inlet monitoring
location  (see Section 5)•

    The Thermo Electron  (TECO) Model 15 Gas Filter Correlation  (GFC) HCl
analyzer  is an analytical instrument for continuous, real time measurement of
HCl on a  wet basis.

    GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within  the infrared  (IR) absorption spectrum by the measured gas to
that of other gases also present in the sample being analyzed.  The technique
is implemented by  using a high concentration sample of the measured gas (i.e.,
HCl) as a filter for the IR radiation  transmitted through the analyzer.  The
analyzer  contains  a correlation wheel  that consists of two hemispherical cells,
one filled with HCl and the other with N_.  Integral with the correlation wheel
is the chopper pattern necessary to produce the high frequency chop required by
the IR detector.

    Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HCl and N? as the filter wheel rotates.  The
radiation then passes through a narrow bandpass interference filter and enters
a multiple optical pass cell where it  is absorbed by the sample gas.  The IR
radiation that is  not absorbed then exits the sample cell and is measured by
the IR detector.

    The HCl gas filter produces a reference beam that cannot be further
attenuated by HCl  in the sample cell.  The N  side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that can
be absorbed by HCl in the cell.  The chopped detector signal is modulated by
the alteration between the two gas filters with an amplitude related to the
concentration of HCl in the sample cell.  Other gases do not cause modulation
of the detector signal, because they absorb the reference and measure beams
equally.  Thus, the GFC system responds specifically to HCl.

    With  the improved rejection of interference afforded by the GFC technique,
the sensitivity of the analyzer is increased by using multiple pass optics in
the sample cell, which leads to a large path length, and thus an improved
sensivity, in a small physical space.  This allows full scale sensitivity down
to 1 ppm.
                                       43

-------
    Because IR absorption is  a nonlinear measurement technique, the
instrument electronics transform  the  basic analyzer signal into a linear
output.   The exact calibration curve  is  stored in the computer's memory and
is used to linearize the instrument output over all the ranges.  The
microcomputer is used to process  signals from both a pressure and temperature
transducer to make corrections to the instrument output,  resulting in HC1
concentration measurements that are unaffected by changes in the temperature
or pressure of the sample gas.

    The analyzer has 10 selectable operating ranges from 0-5 ppm up to 0-5000
ppm HC1.   The analyzer was operated on the 0-100 ppm full scale range during
the test program.  The vendor claims  that the detection limit for this
instrument is 0.1 ppm.

    The Model 200 dilution system comprises the following components:

         •    In-situ dilution probe  with sample orifice,

         •    Transport tubing, and

         •    M200 stack probe control unit.

    The dilution probe is designed to extract a small amount of sample
continuously through a fine filter.   The sample flow rate is precisely
controlled to within 2% by a glass critical orifice of low coefficient of
expansion.  By reducing the pressure  after the fine filter with a precision
aspirator to create a vacuum of 0.46  bar in the volume downstream of the
critical orifice, a constant flow of  flue gas sample is drawn through the
orifice, thoroughly mixed with the aspirator air, and then transported through
the sample line  to the appropriate analyzer,

    The sampling system is designed  to permit stepwise dilution ratios of 12:1
to 350:1 within  the probe by a single selected orifice.

    Calibrations are performed by introducing calibration gas through the
calibration line to a point within the probe upstream of the first fine filter
in the probe dilution orifice.  In this way,  the calibration gas follows all of
the sample conditioning steps taken  by the flue gas sample.

    The lines transporting flue gas  sample and calibration gas are Teflon, and
the dilution air and vacuum lines are polyethylene.  The flue gas sample line
is heated to approximately 300 F.

    The dilution air and calibration  gas flow controls are contained within the
M200 control unit.


4.2  COMPUR MODEL 4l50 ZGSM HC1 ANALYZER/MODEL 4330 DILUTION SYSTEM

    The Compur system was used at the spray dryer outlet monitoring  location
(see Section 5).

    The Compur 4150 HC1 analyzer  uses an ion selective electrode (Cl~) to
measure (after dilution) HC1 concentrations in a range of 0-150 ppm  on a wet
basis.   Detection limits for this instrument are unknown.

-------
    The sample gas is drawn into the analyzer by means of an air aspirator.
The sample passes through an atomizer, the measuring cell, and then to the
waste reservoir, where the gas is exhausted from the analyzer.  A peristaltic
pump delivers absorption solution from the storage reservoir to the atomizer,
where it is atomized to an aerosol.  The HC1 in the gas sample passing
through the atomizer is scrubbed from the gas by the atomized absorbing
solution.  A highly enriched solution is produced and passed between two
electrodes, a reference and a chloride ion electrode.  The concentration
related potential of the electrodes is fed to the microprocessor.  The
corresponding HC1 concentration in units of grams per cubic meter is
displayed on a front panel digital display.  A 0 - 1 volt output is provided
for a data recorder -

    The analyzer performs its own internal calibration automatically at
selected time intervals by using a liquid standard.  Continuous
self-diagnostic routines verify proper operation of the analyzer.  The
alphanumeric display .and built-in printer provide status conditions of the
analyzer, alarm functions, and identification of the cause of any
malfunctions, as well as continuous updates on the concentration
measurements.

    Compur developed a dilution probe to be used in conjunction with the
Model 4150 analyzer to sample stack emissions.  The dilution probe is an
extractive sampling device that produces constant sample gas dilutions at
selected ratios varying from 10:1 to 100:1.   (The operating range of the
Compur monitoring system is decided upon in the field after the optimum
dilution ratio is chosen, and then verified using an independent analyzer and
calibration gases.)  The dilution probe is electrically heated to 200 C
(392 F) and is constructed of corrosion resistant materials.  The flue gas
sample line is also electrically heated (approximately 300 F).

    An air jet pump within the probe acts as an in-stack dilution device by
aspirating the flue gas sample through an orifice and diluting the gas sample
with dry regulating air.  By reducing the pressure downstream of the orifice
with the aspirator air, a constant flow of flue gas sample is drawn through
the orifice and mixed with the aspirator air.  The orifice operates within
the critical region, greatly reducing the influence of pressure fluctuations
at the sampling point which tend to affect the flow of sample gas and thereby
to change the dilution rate.

    Calibration of the system is performed by injecting calibration gas
through a transport tube to the probe, at a point upstream of the critical
orifice.  Thus, the calibration gas is conditioned in the same manner as the
flue gas sample (i.e., filtered, diluted, and transported).

    The Model 4150 analyzer continuously monitors all Model 4330 dilution
system parameters, such as probe temperature, pressures, and  flow rates.  The
analyzer's microprocessor calculates the actual HC1 concentrations present in
the effluent by correcting the analyzer measurements for the  dilution ratio
selected by the operator.


4.3  BODENSEEWERK SPECTRAN MODEL 67? IR HC1 MONITORING SYSTEM

    The Bodenseewerk system was used at the baghouse outlet monitoring
location (see Section 5).

-------
    The Bodenseewerk 677 HC1 analyzer employs the gas filter correlation
(GFC) technique with the multiple optical  pass cell and sampling system
maintained at an elevated temperature of l80°C (356 F).  HC1 concentrations
are recorded on a dry basis within a system range of 0-250 ppm.  The analyzer
measurement is made on a wet basis.   Molecular interaction between HC1 and
water vapor in the sample gas increases  the absorption  of IR as water vapor
content increases.  This phenomenon is used to compensate for the dilution
effect of water vapor in the sample gas.   The Bodenseewerk 677 analyzer was
configured at the factory for applications with approximately 15 percent
moisture content in the effluent.  Accordingly, the analyzer concentration
readings correspond to a dry measurement.   The vendor claims the detection
limit of this instrument is 2 ppm.

    GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR)  absorption spectrum by the measured gas
to that of other'gases also present in the sample being analyzed.  The
technique is implemented by using a high concentration  sample of the measured
gas  (i.e., HC1) as a filter for the IR radiation transmitted through the
analyzer.  The analyzer contains a correlation wheel that consists of two
hemispherical cells, one filled with HC1 and the other  with N_.  Integral
with the correlation wheel is the chopper  pattern necessary to produce the
high frequency chop required by the IR detector.

    Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N_ as  the filter wheel rotates.  The
radiation then passes through a narrow bandpass interference filter and
enters a multiple optical pass cell where  it is absorbed by the sample gas.
The IR radiation that is not absorbed then exits the sample cell and is
measured by the IR detector.

    The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1 in the sample cell. The N  side of the filter wheel is
transparent to the IR radiation and therefore produces  a measure beam that
can be absorbed by HC1 in the cell.   The chopped detector signal is modulated
by the alteration between the two gas filters with an amplitude related to
the concentration of HC1 in the sample cell.  Other gases do not cause
modulation of the detector signal, because they absorb  the reference and
measure beams equally.  Thus, the GFC system responds specifically to HC1.

    The sample gas is drawn from the effluent via a heated sample pump at a
rate of approximately 13 liters/minute.   A coarse, fritted filter is located
at the probe tip for^filtering particulate matter.  The sample gas is heated
to approximately 180 C  (356 F) , and it maintains this temperature throughout
the transport system and the sample cell until it is exhausted from the
analyzer.

    The Model 677 analyzer employs zero  air and an internal sealed gas cell
for zero and upscale calibration checks.  The monitoring system can  accept
calibration gases; the gas injection point is located at the probe.

    The concentration measurements in units of ppm (dry) are displayed on  a
front panel meter and are also recorded  by a built-in strip chart recorder.
A 0-1 volt output is provided for an external data-recording device.

-------
               5.0  DESCRIPTION OF THE HC1 CEM SAMPLING PROGRAM

    Three independent HC1 continuous emission monitoring systems were
employed by Entropy to measure HC1 emissions continuously at (1) the spray
dryer inlet, (2) the spray dryer outlet, and (3) the baghouse outlet.  All
three CEM systems used in the test program are complete in themselves; no
time-sharing was done. (See Figures 5.1 and 5.2.)  Both the spray dryer
outlet and the baghouse outlet monitoring systems were measuring low
concentrations of HC1 (i.e., generally < 100 ppm).   There are no data
available on the performance of the Compur HC1 CEMS for monitoring low HC1
emissions to support the accuracy of the Compur in this concentration range.
The Compur has not yet been operated and tested in the EPA's HC1 CEM
evaluation program at a source of controlled HC1 emissions.  The Bodenseewerk
HC1 CEMS has been operated at the outlet of HC1 control equipment during
previous studies.  Independent accuracy audits have provided verification of
the Bodenseewerk measurement data in terms of accuracy at the low
concentration levels.

    A brief description of each HC1 CEM system by sampling location is
outlined in the sections that follow.
5.1  SPRAY  DRYER  INLET  - THERMO ELECTRON HC1 MONITORING SYSTEM

    The Thermo  Electron (TECO) monitoring system was comprised of a Model 15
analyzer  (operated  on the  0-20 ppm analyzer range), a Model 200 probe control
unit,  and a dilution probe (45:1 dilution ratio).  This system was employed
to measure  HC1  emissions at  the spray dryer inlet location (see Figures 5-2
and 5-3).   The  operating range of the measurement system was 0-900 ppm HC1.
A three point linearity check was performed at the beginning of the test
program using the following  gases: 0 ppm, 428 ppm, and 88l ppm HC1.  Prior to
each test run,  a  two-point calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration (428 ppm).  The gases were injected through
the entire  sample handling system, which includes the dilution probe.  At the
conclusion  of the test  run,  the same two gases were again injected through
the measurement system  to  check for drift; no adjustments to the system were
made.  The  calibration  drift corrections to the HC1 measurement data were
made according  to the procedures in Method 6C.

    The analyzer  output signal was recorded by a computerized data
acquisition system.

    The TECO probe  dilution  ratio was verified at the beginning of the test
program by  flowing  a CO calibration gas  (Protocol No. 1 certification)
through the dilution system  and recording the response displayed by a
calibrated  CO analyzer.

    Since the TECO  system  measures HC1 on a wet basis, the results were
corrected to a  dry  basis using Method 4 results provided by MRI.


5.2  SPRAY  DRYER  OUTLET (MIDPOINT) - COMPUR HC1 MONITORING SYSTEM

    The Compur  Model 4150  HC1 analyzer with heated dilution probe  (dilution
ratio 40 to  1)  was  used to measure the HC1 concentrations at the spray dryer

                                       47

-------
  PIPE
FROM UME
 STORAGE
  SILO  .


DENSEEWERK
PLING PROBE 	 ^^







S
y
/N




*-
/





J










5








I.D.
FAN


UJ
CO

o
<
CD
f
(

( ^
•7^
j
^ 	 COM
SAM

   TECO HCI DILUTION
   SAMPLING PROBE
         DUST
       COLLECTOR
                                                          I.D.
                                                          FAN
  DUST
COLLECTOR
                         UNFT A
                                                            B
                                                            g
                                                                /  SPRAY  1
                                                                I  DRYER  i
                                                                  UNFT B
             FIGURE 5.1.  LOCATION OF TESTING TRAILER AND SAMPLE LINES
                                                                                    3516 B 11/87

-------
                                                       r
                                                                                        TRAILER
               BAGHOUSE
                OUTLET
                         100' HEATED
                       TEFLON TUBING
        L
 BODENSEEWERK
    PROBE

 SINTERED FILTER
                         CAL GAS INLET
                                                                        BODENSEEWERK
                                                                           ANALYZER
              SPRAY  DRYER
                 OUTLET
                          80' HEATED
                        TEFLON TUBING
-t=-
v£>
             COMPUR DILUTION
                  PROBE
            BARREL NOZZLE FOR
           PARTICULATE REMOVAL
                         CAL GAS INLET
                                                                            COMPUR
                                                                           ANALYZER
                                                                              DAS (COMPAQ PC)
             SPRAY  DRYER
                 INLET
                         120' HEATED
                        TEFLON TUBING
        L
 TECO DILUTION
    PROBE

SINTERED FILTER
                                     CAL GAS INLET
L_
TRAILER
                                             FIGURE 5.2. FIELD EVALUATION SET- UP.
                                                                                                               3516B 11/87

-------
                              BAGHOUSE
                 HCI
                 CEM
                 SAMPLE
                 PORT
                                                    SPRAY DRYER
                                                    OUTLET
                                                    SAMPLING
                                                    PORTS
                                                       SPRAY
                                                       DRYER
                                  OTHER
                                  SAMPLING
                                  PORTS (3)
FIGURE 5.3.  TOP VIEW OF SPRAY DRYER INLET AND OUTLET SAMPLING LOCATIONS.
                                                                         3516 11/87

-------
outlet (midpoint) location  (see Figures 5.2 and 5-3).  The operating range of
the Compur monitoring system was 0 - 268 ppm.  Collection of representative
samples at the spray dryer  outlet location was particularly difficult because
of the high particulate matter concentration in the effluent stream upstream
of the baghouse.  The particulate matter consisted of both fly ash and
evaporated lime slurry, which reacts with the sample gas stream to remove
HC1, thereby resulting in lower than actual HC1 gas concentration
measurements.  To minimize  these effects, specialized sampling approaches
were developed to separate  the reactive particulate from the sample gas
stream.

    Unexpected delays encountered during the equipment set-up and plant
process operating problems  reduced the available time to investigate each of
the four specialized sampling approaches proposed in the work plan.  The only
approach investigated  (due  to these time constraints) relied on a barrel
nozzle attached to  the end  of the Compur dilution probe (see Figures 5-2,
5-4, and 5-5)-  The barrel  nozzle is a totally passive device that minimizes
the amount of particulate that accumulates on the filters within the Compur
probe.  The barrel  nozzel attached to the Compur probe was used during the
set-up of the spray dryer outlet HC1 monitoring system and for acquiring
preliminary measurements.   This system was operated over a four hour sampling
period and was found to be  reliable and able to provide particulate
separation which resulted in the accumulation of only a minimum amount of
particulate.  The orientation of the holes in the barrel was 90  to the angle
of effluent flow.   HC1 calibration gas was then introduced into the sampling
system immediately  upstream of the glass wool in the probe tip to determine
if the collected particulate would react with the HC1 calibration gas and
create a low bias in the measurement.  A typical response to the calibration
gas injection was observed  with no apparent increase in the response time of
the measurement system to reach the expected value, thus indicating that the
particulate may be  unreactive by the time it reaches the glass wool.

    At the conclusion of each test day, the probe was removed from the duct
and disassembled for inspection and cleaning.

    A three-point linearity check was performed at the beginning of the test
program using the following gases: 0 ppm, 9^ ppm, and 221 ppm HC1.  Prior to
each test run, a two-point  calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration  (9^ ppm).  The gases were injected through
the entire sample handling  system, which includes the dilution probe.  At the
conclusion of the test run, the same two gases were again injected through
the measurement system to check for drift; no adjustments to the system were
made.  The calibration drift corrections to the HC1 measurement data were
made according to the procedures in Method 6C.

    The Compur probe dilution ratio was verified at the beginning of the test
program by flowing  a CO calibration gas  (Protocol No. 1 certification)
through the dilution system and recording the response displayed by a
calibrated CO analyzer.

    The analyzer output signal was recorded by a computerized data
acquisition system.  Since  the Compur system measures HC1 on a wet basis, the
results were corrected to a dry basis using Method 4 results provided by MRI.

-------
                         TO
                     HCI ANALYZER
                                        COMPUR
                                        DILUTION
                                        PROBE
                                        BARREL
                                        NOZZLE
EFFLUENT FLOW
                                                           IN HORIZONTAL DUCT
  S^SS^^^^
FIGURE  5.4  SPRAY  DRYER  OUTLET  SAMPLING  SYSTEM; PASSIVE NOZZLE
                                                                   3516 12/87

-------
                                                                           J_L
             TOP  VIEW
            FRONT VIEW
               SAMPLE
                FLOW
6"
o
o
o
o
o
o

-------
5.3  BAGHOUSE OUTLET - BODENSEEWERK HC1 MONITORING SYSTEM

    The Bodenseewerk Model 677 IR HC1 analyzer was employed to meaure HC1
concentrations within a range of 0-250 ppm HC1 at the baghouse outlet loca-
tion (see Figures 5.2 and 5.6)  A three point linearity check was performed
at the beginning of the test program using the following gases: 0 ppm,
47 ppm, and 94 ppm HC1.  Prior to each test run,  a two point calibration was
performed utilizing a zero gas and one upscale HC1 gas concentration  (47 ppm).
The gases were injected through the entire sample handling system.  At the
conclusion of the test run,  the same two gases were again injected through the
measurement system to check for drift; no adjustments to the system were made.
The calibration drift corrections to the HC1 measurement data were made
according to the procedures in Method 6C.

    The analyzer output signal was recorded by a computerized data acquisition
system.


5.4  DATA ACQUISITION SYSTEM

    The data acquisition system (DAS) developed by Entropy uses a Compaq
Portable Personal Computer with a 10 MB hard disk and an internal 12-bit
analog-to-digital converter with a 16 channel multiplexer.  Surge supressors
are provided to minimize data loss in the event of electrical disturbances.  In
addition to providing an instantaneous display of analyzer responses, the DAS
averaged the measurement data and documented analyzer calibrations.  The test
results and calibrations were stored on the hard disk and printed on an Epson
dot matrix printer.  Strip chart recorders were employed as a backup system.
The HC1 emissions from the three HC1 analyzer measurement locations were
recorded as 1-minute, 30-minute, and hourly averages.

    Each day, the stored measurement data generated by Entropy's testing were
provided to MRI on a floppy disk.

-------
                        PLATFORM
                         33' FROM
                         GROUND
                          LEVEL
       LADDER
  4' DIA.
TEST PORTS •
                                                               BODENSEEWERK
                                                                   PROBE
                                    FROM
                                    SPRAY
                                    DRYER
      FIGURE 5.6. LOCATION OF SAMPLING PROBE AT THE BAGHOUSE OUTLET
                                     55
3516 B 11/87

-------
                    6.0  QUALITY ASSURANCE/QUALITY CONTROL


    The quality assurance/quality control (QA/QC) activities for this test
program were previously described in detail in the "QA/QC Project Plan."  The
goals of the quality assurance activities were to quantify data accuracy and
precision and to maximize data capture.  Presently, there are no EPA test
methods or performance specifications for operating HC1 monitoring systems or
for conducting wet-chemical sampling for HC1.  Only recently have relatively
stable HC1 calibration gases become available.  The results of the QA/QC
activities performed are described below.


6.1  HC1 SAMPLING SYSTEM INSPECTION

    At the starf of each test day, an inspection of each component of the HC1
sampling systems was conducted.  The daily check lists that were filled out
are contained in Appendix C.  Due to a build-up of particulate matter in the
midpoint sampling system, the barrel nozzle device on the Compur dilution
probe was cleaned daily and the glass wool was replaced.  The TECO dilution
probe glass critical orifice was also inspected and the glass wool in the
probe tip replaced daily.


6.2  LINEARITY CHECKS AND MIDRANGE QC CHECKS

    A three-point linearity check was performed on each of the three
monitoring systems at the beginning of the test program.  These linearity
checks produced results that were all within the >0.995 correlation
coefficient  (r) acceptance criterion.  The calibration gas concentrations and
the monitor responses are presented in Table 6.1.

    The midrange QC checks proposed in the QA/QC Project Plan to be performed
at various times during the test program were not conducted because there
were no independent HC1 audit calibration gases provided.


6.3  CALIBRATIONS AND DRIFT CALCULATIONS

    The zero  and span calibration drift was calculated for each HC1
monitoring system for each test run.  The results of  the calibration drift
checks are presented in Table 6.2.  All of the results were less than the 20%
of span drift limit specified in the Quality Assurance Project Plan.  Prior
to each test  run, a two-point calibration was performed utilizing a zero gas
and one upscale HC1 calibration gas.   The gases were injected through  the
entire sample handling system which includes the probe.  At the conclusion of
the test run, the same two gases were injected through the measurement  system
to check for  drift; no adjustments to the system were made.  The calibration
drift corrections to the HC1 measurement data were made according to the
procedures in Method 6C.

    The calibration summary sheets for each test run  are contained in
Appendix B.
                                       57

-------
                                                              TABLE 6.1.



                                                  HC1 CEM LINEARITY CHECK  (3-Point)

Gas
Cone.
(ppm HC1)
0
428
881
TECO (12/9/87)
CEM
Response
(ppm HC1)
4
438
890
Correlation*
Coefficient


r = 0.999

Compur
Gas
Cone.
(ppm HC1)
0
94
221
CEM
Response
(ppm HC1)
1
93
248
(12/8/8?)
Correlation*
Coefficient


r = 0.998

Bodenseewerk
Gas CEM
Cone. Response
(ppm HC1) (ppm HC1)
0 0
47 42
94 95
(12/6/87)
Correlation*
Coefficient


r = 0.998

       'Acceptance criteria is r > 0.9950
Ul
oo
                                                           TABLE 6.2.

                                          CALIBRATION DRIFT RESULTS  FOR  EACH TEST RUN
Run
No.
1
2
3
TECO
Spray Dryer Inlet
Zero Span
(% span) (% span)
6.0 8.9
1.1 2.1
0.8 2.7
Compur
Spray Dryer Outlet
Zero Span
(% span) (% span)
0.7 1.9
0.4 -7.1
0.7 6.3
Bodenseewerk
Baghouse Outlet
Zero Span
(% span) (% span)
0 1.6
-0.2 1.2
-0.4 0.8
   Note:   Measurement data were adjusted assuming linear drift,  as  long as drift was  less  than  20%  of  span.   If  drift

          exceeded 20% of span, the measurement data were  rejected.

-------
6.4  WET CHEMICAL SAMPLING FOR PERFORMANCE EVALUATION AUDITS

    Entropy plannned to conduct performance evaluation audits to determine the
accuracy of each measurement system prior to the test program.  These relative
accuracy audits were to be performed on each of the three HC1 monitoring
systems by conducting three runs of wet chemical impinger sampling for HC1
simultaneously with HC1 monitoring during preliminary testing.  However,
several problems reduced the available time to perform all of the proposed
pre-test checks/audits prior to the start of the test program.  Unexpected
delays were encountered during the equipment set-up/start-up period (the
electrical contractor was slow to connect electrical power to the Entropy
equipment), the plant was not operating for 1-1/2 days during the scheduled
three-day preliminary testing period, and numerous process difficulties caused
delays throughout the test program.  These problems were discussed with the EPA
Task Manager, and he in turn informed Entropy that it would be acceptable to
perform the relative accuracy audits during the testing program when time
permitted.

    The relative accuracy audits on the HC1 CEMSs at the spray dryer inlet and
outlet locations could only be performed after each test program run because
all the available sample ports were being used during these test runs.  Also,
the areas  around the sample locations were too small to accomodate testing
personnel  and equipment while both MRI and Entropy were working simultaneously.

    The process operating problems that delayed and disrupted the test program
sampling runs also prohibited the performance of the performance audits at the
spray dryer inlet and outlet locations.

    The relative accuracy audit was performed at the baghouse outlet location.
The wet chemical impinger sampling was performed exactly as specified in the
work plan  (see Appendix I for the sampling/analytical procedures), with a
sampling period of 20 minutes. The impinger results, however, are
questionable.  The impinger sample results for each run were 1 ppm HC1, while
the averaged Bodenseewerk measurements over the same three sampling periods
were 6 ppm, 11 ppm, and 43 ppm.

    On-site titration analyses were not performed on these outlet samples
because the HC1 effluent concentrations at this location were expected to be
below the  quantifiable detection limit of 20 ppm HC1 for the mercuric nitrate
titration.  Therefore, the low results were not discovered until the 1C
analysis of the split samples was performed at the Entropy laboratory after the
test program was completed.  The reason for the low impinger measurements is
not known.

    Previous testing conducted at similar municipal waste incinerators has
revealed excellent agreement between the impinger sample results and
Bodenseewerk measurements, even at the low effluent concentrations  (<10 ppm
HC1).  Since the impinger results are questionable, they cannot be used to
validate the Bodenseewerk measurement data.  The previous comparative
measurements indicate there should be no reason to suspect the validity or
accuracy of the Bodenseewerk measurements.
                                       59

-------
             APPENDIX A.

Test Program One-Minute Data Printouts

•  Run 1
•  Run 2
•  Run 3
                 A-l

-------
A-2

-------
C O M ~T  I r-S L.J O 1	3 £3   E: il'-1 I 3 S I' O IKS S   M O f"4 I "1" O R: Z  BvS Q    t3 EE: ~F -•-••-1	?

SOURCE:    HC'l   CHARACTE'.RI ZAT TON TEST  PROGRAM  /  MA TIME  ENERGY  RECtJVERY  COMPANY

DATE:   12-OV--LC"S7
                                                                                11-.IF LIT
A/Jj  CHAN	DE.SCR:_I_P	I1 N I Tju				3Fl£il\l		____V0L/TAGE	CiFFSIX.;

      1
 AVERAGirJG  FERIGDS:    30  MINUTES,,
 NO  EMISSION RATE  CALGUL, '•> T 1 Oi iS
                                                       A-3

-------
HC1  CHARACTERIZATION TEST
12-09-1987
PRQ6RAM / MAINE ENEROY RECOVERY COMPANY


TIME
10:32
10s 33
10s 34
10:35
10:36
10: 37
10:38
10:39
10: 40
1 0 : 4 1
10:42
1 0 ; 43
10:44
10: 45
10: 46
10: 47
10: 48
10: 49
10:50
1 0 ; 5 1
10: 52
10:53
10:54
10:55
10:56
10:57
1 0 : 58
10: 59
1 1 : 00
AVERAGE
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl dr.yHC.;.l
5.7 2.5 0.3
2.1 2.1 -0. 1
4.6 2.1 0.1
1.8 1.9 0.4
3.9 1 . B 0.5
3.3 1.7 0 . 2
3.5 1.6 0.6
7.5 1-6 0.1
10.9 1 . 6 0 . 1
14.9 1.7 -0.3
14.9 1.7 -0.5
9.7 1.7 0.2
11.1 1.8 -0.4
-1.8 1.8 -0.4
2.4 1.8 0.7
-3.6 1.8 0.7
-1.7 2 . 0 0 . 8
-0.5 -a?/0 2.2 72.2
4 . 3 fttf 2.2 12.0
1.8 2.1 0.6
5.6 2.1 -0. 0
3.1 2.0 0 . 3
.3- f 1.9 1.1
6 . 3 ^A 2.0 1 . 0
22 . t^> 2 . 0 O.^****"
122.7 a (01* 1 • 9 ^"JTs
225 . 3 4^JL» ! • 9 ! • 2
275. 3 i |jA 1.9 1.1
317.41 1.9 0.8
VAUJEJ5 FOR THE LAST HOUR:29 MINUTES3 OF VALID
J5>^^ 1 . 9 ^f^
335.2 1.9 0.6
358. 0 2. 0 -0. 1
372.4 2.0 -0.4
383. 1 2.0 0.6 •
388.6 2.0 0.7 o Jju^tJIJ*^*
401.2 2.0 0.9 vP^ r^itjlQ****^
404.5 2.0 0.9 #Mt* ^\ ft^X
407.1 2.0 1.1 O£ I**!*1*
412.3 2.0 0 . 4 ^ ' ^ ^ —
422.6 2.0 0.5 ~**^
415.7 2.0 98.0
426.4 2.0 101.3
424.2 2.0 -0.4
426.7 2.0 0.2 — jBfrd
429.4 2.0 3.5
434.7 2.0 44.3
438.4 2.0 48. 8*1 \*k&wd
431.9 2 . 0 49.21 $fKM C&A
438.7 2.0 48. 3 J
439>>— - 2.0 48. 4j
-<5S3. 4 2.0 16.4
                             DATA

-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
/ MAINE ENERGY RECOVERY COMPANY


TIME
1 1 22
1 1 23
11 24
11 25
1 1 26
1 1 27
1 1 28
1 1 29
11 30
AVERAGE
11
1 1
1 1
11
11
1 1
1 1
1 1
1 1
1 1
1 1
1 1
11
11
1 1
1 1
1 1
1 1
1 1
11
1 1
1 1
1 1
11
1 1
1 1
11
11
1 1
11
12
30
31
•-!' j^.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
53
59
00
AVERAGE
12:00
AVERAGE
12:00
12:01
12:02
12:03
12; 04
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl dryHCl
213.2 /jt CVJtCv^
28.9 1.9 40.9 1 ^
32.1 1.8 44.6,, Wppt*HC( A~5
   47

-------
l-l C1  C H A R A CT E RI Z AT 10 N
12-09-1987
PROGRAM / MAINE ENERGY RECOVERY COMPANY


T' IME_ 	 _
12:05
12: 06
12: 07
1 2 : 08
12: 09
12: 10
1 2 : 1 1
1 *") H 1 r'>
,t j;., i) A di..
12: 13
12:14
1 2 s 1 5
12: 16
12:17
12:1 B
12: 1 9
12: 20
1 2 B 2 1
12: 22
1 '? : 7 3
1 2 : 2 4
1 2 : 25
12: 26
j <-\ <™i -7
,L ,^,, H rii,, /
12: 28
1 7 : 2 9
12: 30
AVERAGE
12:30
1 O u T 1
4. H^. b «,j .1
12: 32
12: 33
12:34
12s 35
12536
12s 37
12:38
12: 39
12:40
12: 41
12: 42
12: 43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12s 55
CHAM 1
INLET
..wtlt.HC.L.
33. 4
'?"? ~' '
2 7% B ^fi
27. 8
27. 6
25.5
27. 0
24 . 4
20. 9
20. 1
25. 1
19.6
20. 8
21. B
26. 0
20. 6
20. 8
22. 6
IB. 1
18.4
18. 3
r> o ty
25. 6
2 1 „ 7
15.4
13. 5
VALUES
23. 9
12.2
15. B
1 8 . 4
10.6
19. 1
17.3
1 0 . 2
16.3
15. 4
12.5
17.3
12.7
12.7
16.2
20. 2
17. 1
20. 1
16. 3
1 0 . 5
17.7
13.8
12.9
18.9
16.0
1 0 . 3
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCl
*<• !>•» :?:=
I /»1T 1 ^1T
^* 1.7^* 50. 5
1 1.7J. 50.7
1 1.5T 51.3
1 . 4 50 . 6
1 . 2 50 . B
1 , 1 50.8
1. 1 -s*rrT&""
1.1 21. 0
1.1 9.8
1.1 6.9
1.1 5.0
1.1 4.4
1.1 3.2
1.1 3.1
1.1 2 . 6
1 . 0 1 . 1
1.0 2.2
1. 0__ 1 . 5
oTT*" i . 5
1.0 1.3
1.1 1.3
1 . 4 1.2
1.6 1.3
1.9 1.1
FOR THE PREVIOUS 30
1.3 21.6
2-2-J//">* °'7
201.7 (ft**' 0.9
225.4 .£**. 0.6
200. 1 1 0. B
194. el 0.7
190.51 l.o
187.3 1.4
184.9 1.0
184.2 0.9
209.8 0.9
217.6 0.2
222. 4 -0. 0
226.0 0.2
228.9 1.1
229.1 0.7
IBB. 6 0.4
183.4 0.7
181.1 0.7
179.7 0.3
178.6 0.6
177.9 -0.7
206.0 -0.6
221.7 0.6
227.3 0.7,
230.5 0.7


^L
Ct**- ^
4iprl
r*0?*
C<* -ft



-^-—
•f/isb At/
tKl'f T
1














MINUTES



















A-6


-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
                                  /  MAINE ENERGY RECOVERY COMPANY
CHAN
INLET
T
1
1
1
1
1
I ME
2:
ff
O
aJu
2
•~<
56
57
58
59
00
1
wetHC.1
1
1
1
1
1
"T
6.
8.
O
O
CHAN
MID
2
CHAN 3
OUTLET
wetHCl drih'HCl
2*v»
0^'j
°\
0^
*»

T"
^
1
1
1
-j.
r>
93.
81 .
~7
/
9.
6 /i/ifl
4 ^J
&
"T 1
*H 0 . 7
"» 0 . B
1 0.5
0. 5
0. 1
AVb
                                   *$
                                  I
   RAGE VALUES FOR
   00     15.1
THE PREVIOUS 30 MINUTES
196.7       0.6
AV
1 /*!
13
13
1 3
13
13
13
13
13
13
13
13
1 3
1 3
13
1 3
13
13
13
13
1 3
13
13
13
13
,1,3
13
13
13
13
13
RAGE
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VALUES FOR
19. 5
17. 1
IB. 2
18. 2
16.2
12. 1
14. 2
16.3.
19. 1
16. 1
15. 1
ji. ji. D J^.
20 . B
9. 2
1 6 . 0
16.4
15.7
11.5
12.5
18. 3
18.9
11.2
14. 1
12. B
20. 1
14.6
12. 6
2 1 . 0
11.4
15. 4
12.1
THE LAST
99.0
177.9
177.2
181.1
213. 1
221 . 4
226. 6
53 . 4
51.7
BO. 9
95.3
107. 3
93.7
204. 5
226. 0
230. 9
233. 2
234. 4
~~i — r cr '"j
1 S —f
UES FOR THE
5.
B.
~^r
"T
8.
B.
O 0
4.
1.
6
7
9
IT"
j
9
"T
1
0
O
1
1
r™ |
1


1
1
1
65.
75.
16.
12.
66.
96.
OB.
07.
08.
PREV
7
8
~\
"**i
B
"T
T1
1
1
I DUS 3
t~)
10.
B.
8.
8.
B.
8.
8.
1 0 .
0
0
7
7
5
4
0
2
7
8
                                   MINUTES
                                       A-7

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
CHAN 1
INLET
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
I ME
"IT, T, Cp
,.,.
"JT*
3
ir,
.„,.
'T
7;
3
.„,.
..,.
..,,.
3
«i.
-.,,
-:;1
»;j-
..,,,
"!('
"•f
™r
4
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5 'o
56
57
5S
59
00
AVERAGE
1
4 : 00
AVERAGE
14:00
1
1
1
1
1
1
1
1
1
1
1
4 s 0 1
4:02
4s 03
4s 04
4 s 05
4 s 06
4s 07
4s 08
4:09
4: 10
4s 11
14: 12
1
1
1
1
1
1
1
1
4:13
4s 14
4:15
4: 16
4s 17
4r 18
4:19
4:20
14:21
1
1
4s 22
4s 23
14:24
1
4:25
wotHCl
1
1
1
2
1
1
1
1
1
1
1
2
±_
.••
1
1
1
2
1
.^
1
1
VAL
1
VAL
1
1
JL.
6.
4.
7 .
1.
B.
5.
7 .
2.
7 .
B.
7.
4.
1 .
1 .
5.
9.
B.
0 .
9.
0 .
9 .
8.
UE
7.
UE
6.
^.
0 .
2
9
1
4
B
^
-?
5
5
9
"T
6
0
_^
8
r;j
^ '
"T
3
O
nr
o
S
9
S
8
P
2
18.3
1
1
2
^i
1
^
2
1
1
1
ji.
1
1
1
1
1
1
1
1
6.
9.
T
j — ,
B.
0.
0.
7.
1.
8.
0 .
2.
2 .
~T
0.
5.
5.
cr
**?
19.
1
1
"^i
6.
.^
4
7
2
8
8
T
1
j^!
5
6
"7"
5
2
9
B
6
4
4
7
1
5
CHAM
MID
we



2
p^_'
1
1
1
j— i
1









j^.
1
1
t.HC
43.
9.
63 .
34.
24.
78.
76.
7 6 .
16.
07 .
1 .
0.
0 .
0 .
( j .
0 .
o .
0 .
96.
35.
75.
7 ~'' .
FOR THE
1
03.
FOR THE
134.


44.
94.
2
1
6
7
7
2
4
7
B
0
4
4
S
8
1
jj'
J
1
*"?
j^
0
e
"7
1
PREV
cr
_J
LAST
6
2
5
104. 2
1
1
1
1
1







2
1
1



12.
11.
15.
41 .
IB.
90.
0.
0.
0.
0.
0.
70.
37-
80.
73.
26.
87.
94.
100.


1
99-
99.
10.
9
7
1
7
4
4
1
,,-;
2
1
1
-^
•?
9
6
1
1
9
1
7
4
9
CHAN 3
OUTLET
dryHCl
1
1
1
1
1
2
ji.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10 US
1
2
4
6
7
9
"T
~T
"T
"T
2
1
4
9
6
7
B
7
4-
_,.
...,.
j;_
1

4
HOUR
B
1
1
1
1




1
1
1
1
1
1
1
1
2
1
0
0
9
9
9
9
1
5
4
T;
4
-T
2
1
10
1





1
1
0
9
8
7
7
9
2
1
T|
.6
. 2
. 6
. 7
.4
. 4
. 7
. 9
. 4
. 2!
"T
"T
. 6
. 1
n •-'
. 1
. 6
. B
. 0
D j'.'.'.
. 7
30 MINUTES
. 0
: 60 MINUTE £3 OF VALID
. 0
. 1
. 4
.4
. 1
. 4
. 0
. 1
. 5
.7
. 6
. 6
. 9
. 2
.7
.6
. 6
.8
. 9
m 2
. 1
. 8
. 8
. r7,
.6
7 A-8
                                                      DATA

-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY


TIME
14;26
14:27
14:28
14:29
14:30
AVERAGE
14:30
14:31
14; 32
14:33
14:34
14:35
14:36
14: 37
14:38
14:39
14: 40
14:41
14:42
14s 43
14: 44
14: 45
14: 46
14: 47
14: 48
14: 49
14:50
14:51
14; 52
14:53
14:54
14:55
14:56
14:57
14s 59
14: 59
15:00
AVERAGE
15: 00
AVERAGE
15 00
15 01
15 02
15 03
15 04
15 05
.15 06
15 07
.15 OS
CHAN 1
INLET
wetHCl
9. 9
20. 7
16.4
20. 0
20. 9
VALUES
16. 9
15. 2
21. 4
20. 1
IS. 3
16. 5
ji. •—' • ji.
19. 1
-li. •-' a J^.
25. 5
17. 1
18.0
24. 1
26. 8
28 . 2
23 . 5
v' "^ B ^
20. 7
' ^ !..' . V
35. 2
122. 8
233. 4
297. 4
313.9
316. 8
301 . 1
•—' jil O' o ji.
350. 6
395. 4
428. 1
446. 1
VALUES
131.7
VALUES
74.3
458. 9
466. 4
453. 2
463.6
447. 4
402. 1
389. 1
367.0
CHAN 2
MID
wetHCl

/V B9-9
pi 87.9
. 86.0
I B6.2
FOR TIME P
89. 0
87. 2
87. 4
87. 1
87 . 0
88. 1
88.6
89. 7
89. 1
88^
— -£^73
26. 0
12. 1
7.2
5. 2
4 . 2
3 . 6
-7T /-,
^1 . ^!*
14.0
1 Cliljrf-* l/» -
n v/IW*^^ ,-, c- ,~>
141-3.
60.9
72.9
72. 7
76.8
80. 7
99.3
109. 6
102.5
CHAN 3
OUTLET
dryHCl u if

4 gj»" 14.1 00T{ [f I . -ijT
^ ll 14-1 Qtlfl^
W ^ 1 M- . O 1
REVrDUS 30 MINUTES
11.5
1 3 . 0
10.8
1 0 . 2
^ff^io-i
* 8 B O
8. 7
9. 1
^*"*' 9. 2
9. 6
10.9
11.5
11.9
12. 6
12.5
11.1
9. 7
" " 9. 3
y 8.3
liltttl^ S" °
Ml' 9 o
i a:2
1 ^
9. 1
9. 2
1 0 . 9
4. 8
1 0 . 3
12.7
FOR THE PREVIOUS 30 MINUTES
56. 7
9.8
FOR THE LAST HOUR! 60 MINUTES OF VALID DATA
72.9 10.7
84. 8
61. 1
42. 0
34. 1
27 . 3
24. 1
20. 2
17.6
11.8
11.0
9. 7
11.2
15.9
11.8
10.1
10.7 A~9

-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME 	
15:09
15:10
15:11
15:12
15: 13
15: 14
15s 15
15: 16
15: 17
15: 18
15: 19
15:20
15:21
15: 22
15:23
1 5 : 2 4
15:25
15:26
15s 27
15:28
15: 29
15s 30
AVERAGE
15:30
15: 31
1 5 : 32
15: 33
15s 34
15:35
15:36
1 i:r . -r '7
i \..i B O /
15s 38
15:39
15: 40
15: 41
1 5 s 42
15:43
15:44
15: 45
15: 46
15: 47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15: 57
15:58
15:59
CHAN 1 C
INLET r
wetHCl ^
356. 6
357. 6
411.2
431.0
444.7
451 . 1
483. 0
480. 2
505 . 2
502. 2
476. 6
447'. 6
451 . 8
447. 9
425. 1
436. 0
445. 7
468.3
478. 2
461 . 4
436. 4
438. 7
VALUES FOR
442. 8
458. 8
457. 0
468. 7
510. 1
529 . 1
533.4
501 .4
493. 1
471.2
458.3
468. 1
466.2
458. 6
443. 0
425.5
431.2
444.2
458.2
433. 3
444. 1
457. 2
453.6
432.0
448. 1
456.5
463.4
471 . 2
470. 9
475.5
;HAN 2
11 1)
wetHCl
20. 5
33 . 9
57.6
64. 4
54 . 0
34. 9
22 . 0
15. 9
12.7
1 0 . B
9. 7
9. 4
1 0 . 4
15.4
26. 0
41.7
63. 7
78. 4
81 . 6
67. 1
43. 9
26.7
THE PRE
37. 1
18. 9
1 4 . 4
11.6
10.7
11.6
17.7
32 . 0
54.6
76.4
80. 2
78.3
61 . 6
42.7
30. 2
23. 4
20.6
17. 2
16.0
17. 4
21.4
29.7
44.9
62.4
82.0
91.9
85.9
68.8
47.7
36.7
CHAN 3
OUTLET
dryHCl
8.5
7.7
7.5
7 . 9
8. 5
7 . 9
7 . 3
7 . 2
7. 4
6. 9
6. 6
6. 4
7. 1
7. 1
7.8
8. B
8. 5
8. 1
8.2
8. 1
7. 9
7. 1
VIOUS 30
B . 7
6. 6
7.0
6.6
6. 4
82. 0
18. 4
B. 3
7.6
8. 0
9. 3
1 0 . 6
9.5
B. 1
7. 8
7. 5
7-0
7.2
8. 5
8.2
7.9
9. 5
10.9
12. 3
11.0
11.1
10.9
11.3
10. 1
9.2
                                   MINUTES
                                              *
                                       £-10

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE ENERGY  RECOVERY  COMPANY
12-09-1987
TIME
16:00
CHAN 1
INLET
wetHCl
500. 9
CHAN 2
MID
wetHCl
31.5
CHAN 3
OUTLET
dryHCl
7.8
AVERAGE VALUES FOR THE PREVIOUS  30  MINUTES
16:00    466.1      41.3       11.6
AVERAGE VALUES FOR THE LAST  HOUR:  60  MINUTES  OF  VALID  DATA
16:00    454.4      39.2       10.1
16:01
16:02
16:03
16: 04
16:05
16: 06
16:07
.16:08
1 6 : 09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
16: 16
16: 17
16: 18
16: 19
16:20
16:21
16:22
16: 23
16:24
16:25
16:26
16: 27
16:28
16:29
16:30
AVERAGE
16: 30
16:31
16:32
16: 33
16:34
16: 35
16:36
16:37
16:33
16:39
16:40
16:41
16:42
490. 0
513.8
544.7
589. 1
583. 5
549. 8
550. 6
537. 4
503. 2
474. 4
455.8
454. 7
cr* f-\ nr ^~i
vjUuJ . ^-
552.9
561 .4
589.3
592.6
573. 4
574. 8
563.0
548.5
547. 1
540. 7
552. 3
548.9
531. 1
504.7
523. 3
516.3
519. 9
VALUES
536. 4
cr /I nr '-i
_l 4 J . ji.
534. 5
514.4
488. 1
469. 1
479. 5
480. 4
478. 4
488.2
494. 3
496.6
505. 2
26.3
26. 9
28.5
35.5
56. 1
79. 1
120. 3
121. 2
103. 8
81.0
55.3
38.8
32. 6
33. 9
35.2
42 „ 2
53.5
60. 1
78. 8
109.6
128.5
148.4
146. 1
127. 1
101.4
69.2
47.7
40.5
35.6
31.5
FOR THE PREV
69.8
31.8
37.2
43.2
51.1
60. 5
75.4
90 . 9
92.5
90. 1
80. 6
68.5
51.5
8. 3
7. 9
8.2
7. 8
8. 6
9. 1
10.6
12. 6
12.8
13.7
11.5
10.2
8.5
7.5
7.7
7. 4
7. 8
8.7
1 0 . 0
12.0
13.6
13.0
12.8
12.4
12.2
10.7
8. 8
8. 7
8. 6
7. 9
IOUS 30
1 0 . 0
8. 2
8.6
9. 7
9.8
11.1
10.7
1 0 . 0
9.6
1 0 . 0
10.2
9.8
9.2
                                    MINUTES
                                         A-ll

-------
HC1 CHARACTER IZAT ION  TEST  PROGRAM / MAINE ENERGY RECOVERY COMPANY
12	09-1987

        CHAN 1     CHAM  2     Chi AN 3
        INLET      MID       OUTLET
             : 1     wet. H£l...	d r.y HQ1.
16;
16:
16s
16:
16:
16:
16;
1 6 s
16s
16s
16s
16:
16:
1 6 :
16s
16:
16:
17:
43
44
45
46
47
48
49
50
51
52
5 3
54
55
56
57
5B
59
00
AVERAGE
17;
AVE
17:
17:
17:
17:
17:
17s
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
00
.RAGE
00
01
02
0 3
04
05
06
07
08
09
1 0
1.1
1 2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
501.
499.
51B.
513.
4B5.
471 .
463.
463.
479.
498.
490.
512.
552.
587 .
621 .
6BO.
775.
887.
VALUE
532.
9
-T
4
9
1
6
0
7
B
1
1
~T
5
6
7
4
4
2.
S FOR
V-.J
VALUES FOR
534. 5
791 .
669.
631 .
692.
753.
790.
751 .
687.
622.
602.
59 B.
5B4.
603.
621 .
652.
724 .
735.
744.
690.
6 3 3 .
687.
750.
736.
679.
626.
595.
563.
567.
570.
6
o
•7
-T
7
2
6
6
B
2
4
0
T
Cj
~T
cr
9
7
9
0
"T
6
5
ji.
5
5
1
4
6
42 .
39.
36.
37.
40.
46.
53.
67.
91.
107.
114.
136.
108.
99.
91 .
105.
134 .
183.
THE.
77.
THE
7 ^ «
192.
145.
124.
174.
264.
268.
268.
260.
176.
1 19.
98.
77.
77.
87.
106.
161 .
204.
255.
262.
226.
224 .
159.
122.
86.
62.
50.
40.
37.
38.
cr
o
"T
4
5
0
9
9
5
7
9
cr
4
5
5
0
•T
"\
PREV
0
LAST
4
2
..•
••*!
9
7
7
7
5
cr
4
9
5
5
4
6
1
1
7
1
4
8
8
4
6
2
9
4
2
6
8.
8.
7 .
7.
B.
8.
9.
1 1 .
1 1 .
1 0 .
1 1 .
11 .
1 0 .
1 0 .
9.
8.
8.
8.
10 US 3
9.
HOUR:
9.
9.
9.
9.
1 0 „
12.
17.
^•' j/ B
23.
21 .
16.
13.
1 1 .
10.
1 0 .
10.
1 1 .
1 3 .
16.
19.
21 .
20.
IB.
15.
13.
12.
32.
14.
1 1.
12.
6
~T
4
6
1
7
T
2
2
6
1
jjl.
CT'
'T
6
4
6
4
:0 MINUTES
cr
60 MINUTES OF" VALID DATA
8
T;
-T
2
1
6
' — ,
c;
T;
o
7
;T
2
1
7,
2
Q
tr
8
7
7
6
4
0
B
8
6
2
8 A-12
B

-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY


TIME
17; 30
AVERAGE
17:30
17:31
17:32
17:33
17:34
17: 35
17:36
17:37
17:38
17:39
17s 40
17:41
17: 42
17: 43
17: 44
17: 45
17: 46
17: 47
17: 43
17: 49
17:50
17:51
17:52
.17: 53
.17: 54
17:55
17: 56
17: 57
17: 53
17:59
18: 00
AVERAGE
18: 00
AVERAGE
ISs 00
1 8 ; 0 1
18:02
18:03
18:04
18:05
18:06
18s 07
18s 08
18:09
18:10
18s 11
18:12
CHAN 1
INLET
wetHCl
561.9
VALUES
664. 0
535.9
508. 9
484. 4
496. S
511.9
520. 2
525. 2
503. 2
480. 6
490.7
524. 3
595. 8
642.3
643 . 0
557. 0
460. 7
432. 2
428. 9
414. 6
440. 2
471 .5
499. 3
552. 1
615.9
639. 0
647. 8
646. 8
653. 8
644. 7
632. 0
VALUE:;,:d
540. 0
VALUES
602. 0
607. 8
565. 2
535. 1
503 . 8
458. 3
480. 3
483.7
469.5
456.5
445.7
438. 8
449. 0
CHAN 2
MID
wetHCl
40.4
FOR THE PREV
147. 2
43.9
47. 4
48. 7
52.3
57.0
56.8
53.7
47.9
38.6
32. 8
31.6
35. 1
42. 0
52. 0
52. 1
43. 2
39. 4
38. 4
37. 1
37. 8
38. 8
T T /
•_'' -„"' a LJ
31.5
30. 0
26. 6
27.0
28. 3
31.8
37.5
41.9
FOR THE -'REV
40.5
FOR THE LAST
93. B
42.9
4 1 . 7
37. 6
31.6
25. 3
21 .8
20. 2
18.3
17.6
18.0
19.4
21. 1
CHAM 3
OUTLET
clryHCl
11.5
IOLJS 30 MINUTES
15. 1
10.6
1 0 . 4
10.7
9. 7
8. 9
9. 4
9. 1
8. 5
8. 3
8 . 3
7 . 8
7 . 9
8. 6
9. 1
9. 0
8. 8
9. 5
10.6
9. 5
7. 6
7. 8
8. 2
8. 4
9. 5
8. 9
8 . 3
7. 7
7. 4
"7 n 3
7. 4
IOUS 30 MINUTES
8. 8
HOUR: 60 MINUTES OF VALID DATA
11.9
8.2
9 . 6
9. 8
8. 8
7. 6
6.9
6. 5
6. 4
6. 2
6. 2
6 . 3
6.8 A 13

-------
HC1 CHARACTERIZATION
TEST PROGRAM / MAINE ENERGY  RECOVERY COMPANY


T i ME:
1 8 s 1 3
18s 14
18: 15
18:16
18: 17
18: 18
13: 19
18:20
18:21
18:22
18:23
18: 24
18: 25
18:26
18; 27
18: 23
18: 29
18: 30
AVERAGE:
IBs 30
1 8 : 3 1
18: 32
18; 33
18: 34
18: 35
18: 36
18:37
1 8 s 38
1 8 : 39
18: 40
18:41
18: 42
18: 43
18:44
18s 45
18:46
18:47
18:48
18:49
18s 50
18:51
18252
IBs 53
18:54
18:55
18:56
18:57
18:58
18s 59
19:00
CHAN 1
INLET
we-tHCl
442. 1
4 3 4 „ 2
412.8
407. 8
417. 0
420. 5
413. 0
378. 4
4' 04 . 0
427.8
432 . 0
427. 0
425, 6
409. 5
446. 9
457.2
449. 6
431.5
VALUES F
451.0
401 . 9
3B4. 6
38B. 1
390. 5
403 . 6
415. 1
441 . 7
463. 3
465. 2
454. B
470. 5
475. 4
304. 2
191. 1
165. 1
141.8
127.8
1 1 6 . 0
110.5
106.8
97.9
95.7
96. 1
SB . 0
82. 9
80. 2
B2.B
77. B
76.8
71.2
CHAM 2
M I D
wetHCl
23. 6
2 6 . 4
27.8
2 B . 2
28. 1
26. 3
23. 4
19.6
17.7
1 7 . 7
1B.B
2O. 6
2 1 „ 0
21.1
^L •„!' n J~-
25. 2
25. 7
24. 6
DR THE PREV:
24.5
21 . 9
19.3
IB. 1
1 7 . 1
17.2
16.B
15.5
16.7
IB. 4
20. 6
2 4 . 2
25. 9
17.6
11.9
9.5
B.7
8.8
B. 7
10.9
13.4
1 5 . 0
16.0
16.4
16.4
16.2
16.0
15.5
14. 9
14.5
14. 1
CHAN 3
OUTLET
dryHCl
7. 4
6. 9
6. 5
6. 4
6. 2
ur1 —7
vJ . /
5. 6
5.4
4.5
5. 1
5.7
5. B
6. 1
6 . 0
10. 1
7 . 0
6. 0
6.5
[QUS 30 MINUTES
6. 7
6. S
6. 3
6 . 2
6 . 3
6.B
7. 6
7. 1
6.7
5. 9
6. 1
6. 6
7. 0
6. 7
6.5
7.6
7. 1
5.9
4. 3
3 . 7
3. 4
3. 4
3. 6
4. 1
5.0
4.4
4.7
5.3
5. 3
5.6
5. 1
                           A-14

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE  ENERGY  RECOVERY  COMPANY
12-09-1987
LIME
AVERAGE VALUES FOR  THE  PREVIOUS  30  MINUTES
19:00    242.3       15.9       5.7
CHAN 1
INLET
wetHCl
CHAN 2
MID
wetHCl
CHAN 3
OUTLET
dryHCl
AVERAGE VALUES FOR  THE  LAST  HOUR:  60  MINUTES  OF  VALID  DATA
19500
346. 6
                            6.2
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
:
;
•
•
11
s
ji
;
;
•
•
•
a
;
;
;
•
;
n
•
a
B
3
•
*
a
•
5
3
5
jj
[j
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
75
74
71
68
65
65
65
62
61
60
59
57
60
cr L.
56
cr j-*i
-_J j^.
53
59
52
56
54
50
54
53
50
59
52
54
58
54
m
n

•
u
m
n
„
_
„
m
„
„
a
„
m
.
0
„
u
B
n
m
m
„
B
m
m
4
5
I £cY^
7 , (j>4
•7 1
4
-) *
7
5
0
9
5
0
at.
7
5
8
1
7
8
8
0
8
5
0
4
7
6
1
9
1 3
J. j^.
9
5
4
"T
T;
TC
~T
"T
-r
4
4
"?•
"T
'"T1
O
j-^
O
r~)
T'
^i
O
j— ,
O
'"71
r-,
O
O
a
m

•
n
0
m
B
q
a
p
„
,,
„
„
„
n
„
.
„
a
„
a
H
„
.
•
„
6
9
O 1$>™
6,^
H
6 '
4
O
1
0
ET*
TI
o
~T
0
9
9
9
9
9
8
B
8
8
8
7
7 40#
5
T1
5.
7.
6.
5.
5.
*"?
0 .
0 .
0 .
0.
— 0 .
-0 .
-0.
-o>*
0.
1 .
IB.
36 .
43.
46.
48.
48.
50,,
50.
50.
50.
50.
B^*!^:.
1 1.
4.
1
o
O
9
4
T
"^
5
'"o
~T
2
r^
fffr
/•-j
_,.
7
^
7
5
i
7
1
7
9
7
4
^0.

5
5
                                   \
AVERAGE  VALUES  FOR  THE PREVIOUS 30 MINUTES
19:30      59.3        4.1       19.6
 19:31
 19:32
 19:33
 19:34
 19
 19
 19
OD
36
37
 19
 19
 19
 19
 19
38
39
40
41
42
 19:43
58. 4
56. 1
54.7
52.5
54. 1
51.0
56. 0
55.6
57.4
52.5
54.4
53.6
                             A-15
                            0. 6

-------
HC1 CHARACTERIZATION
12	09	1987
TEST PROGRAM / MAINE ENERGY  RECOVERY COMPANY


TIME 	
19s 44
19:45
19:46
19: 47
1 9 : 48
19: 49
19:50
19:5 .1.
19:52
19 : 53
19:54
19s55
19:56
19:57
19:58
19:59
20; 00
AVERAGE
2 0 : 0 0
AVERAGE
20s 00
20: 01
20 : 02
20: 03
20: 04
20:05
20: 06
20: 07
20: 08
20:09
20: 10
20s 11
20: 12
20: 13
20: 14
20: 15
20s 16
20: 17
20: 18
20: 19
20 : 20
20:21
20 : 22
20:23
20:24
20:25
COMMENTS

Chi AN 1
INLET
wetjjC_l 	
57.7
55. B
59. 5
56 „ 3
52. 0
55.2
58.2
54.7
53. 4
54 . 0
54.8
57 . 7
58. 7
47- 0
57. 0
51.5^,
^^^feo. 7
VALUES F
55. 1
VALUES F
57 „ 7
60. 3 .*
74.3.4*
217.5
~T "T (") 'T'
380. 8\Jf
414. 1
440.2
456. 7
464. 3
479. 4
485. 7
487. 0
493.2
499-7
499. 1
498.2
505. 4
507. 0
507.2
504.8
510.8
509 . 4
329.8
133.8
1 04 . B
: End of
(CONTI
CHAN 2
M I D
	 wjgtHCj 	
93. 7 fMj£
94.7 ^t
95.9 *|4|
97 . 4 MJ
97.51 P
98.7Mj/1
97.7 ^
98. 6
99. 6
99.4
54 „ 0
16. 3
8.5
6 . 0
4. 7
3 ~>
3. 0
OR THE PREV
46. 0
OR THE LAST
25. 1
A flO** 2 . 8
* J • r> o
P^ ,A 2 . 7
yA^* 2. 6
2. 6
2. 7
2. 7
2. 6
2. 5
2 . 5
112.7
237. 6
236. 7
188. 1
174.7
204.8
206.3
2 . 1
2. 1
2 . 1
2. 0
i).-' m /^
2. 5
2. 4
2.2
Test Nou 1
NUED ON THE
CHAN 3
OUTLET
._d_ryllCJL
£. 0 . 3
0. 3
f ** 38 . 8
Jl 162.6
•riV"'-1 • 2 iftPKb £
57.6
55 . 0
49. 7
45. 5
41 . 1
38 . 2
36.2
34. 0
29. 4
9.7
2. 4
J. D ji
0 . 9
0. B
0 . 5
0. 6
0 . 3
-0 . 0
0.5
-0. 6
0. 3
0 . 5
and post-test calibration
NEXT PAGE)






















DATA

























check

                         A-16

-------
C O N T I N L J O U S   E M I S Q I O M S  M O N I T O R I M G  e E "T -	

SOURCES   HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE ENERGY RECOVERY COMPANY

DATE:   12- 10-1987      TI ME:   09! 02
A/0

CHAN
1
2
3
DESCRIP
INLET
M I D
OUTLET
UNITS
wetHCl
wotHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.00 V
0.93 V
9,21 V
ZERO
OFFSET
07,
07,
07.
AVERAQINQ  PERIODS a   '30 MINUTES,
NO EMISSION  RATE CALCULATIONS
                                   A-17

-------
HCl  CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
CHAN 1
INLET
TIME wet HCl
09s 09 79.7
09s 10 83. 3
09: 11 89.3
09: 12 87. 9
09; 13 86.8
09: 14 82. 7
09: 13 87. 0
09; 16 83. 5
09: 17 82. 5
09s 18 41.1
09: 19 8. 4
09s 20 4.4
09:21 4.7
0 '-9 : 2 2 4 . 3
09:23 4.9
09; 2 4 -0.7
09:25 6.9
09:26 3.2
09:27 4.2
09; 28 3.4
09:29 5.9
09: 30 4 . 5
09s 31 6.0
09:32 4.6
09:33 2.6
09s 34 1.7
09:35 -20.0
09s 36 -20.7
09:37 -20.7
09; 38 -20.6
09:39 -20.6
09:40 -20.6
09:41 -13.0
09:42 -10.4
09:43 -3.0
09s 44 5.1
09:45 8.4
09 : 46 1.6
09:47 -2.9
09:48 4^5-
09:49 .^^31579
09:50 177.8
09:51 274.1
09:52 316.2
09:53 346.5
09:54 359.9i
09:55 378.1
09:56 385.4
09:57 395.4
09:58 414.6
09:59 416.4
10:00 419.0
CHAN 2 CHAM 3
MID OUTLET
wet HCl dry HCl
0 .8 0.2
*tf*fe ° • s ° • 4
*.J O.B^ff& 10.3
P* O.S.^Lf 23.6
| 0.81 14.5
L 0.71 7.4
" 0.71 4.3
0 .7 2.5
•#V&0.7 1.1
frM- 0 .7 0.5
0 0.7 0 . 7
0 .7 0.7
0 . B 0 . 6
0.8 -0.0
0. B -0. 0
0 .9 0.5
1 . 0 0 . 6
1.0 32 . 8
1.0 169.8
1 . 0 0 , 3
1 . 0 0 . 1
1.1 0,4
1.1 52.1
•*, 1 • 1 49. 2
LUy>°Vk 1 • 1 48. 8
» -1 -1 /I O '">
*fl J. o J, *-)' / a -C.
^ viA ial 49- 1
^ 1.1 45.6
1.1 -18.3
1.2 -0.4
1-2 0 . 0
1.2 -0.4
1.3 -1.1
1 - 3 - 0 . 0
1.4 38.7
1.4 57.5
1.5 58.7
2Cr* 1.4 57.2
1.5 50.8
-" 1-5 44.3
1.4 37.8
1=4 18.0
. r.4 oW*- 1.4 4.4
. » 1.5 2.5
^ 1.5 1.7
1-5 1.1
1.5 1 , 0
1 . 5 o . 4
1-5 0.2
1-5 0.2
1-6 0 . B
1-6 1.6
                                    ,-^.tofet 0
                                   41 pr
                        A-18

-------
HC1 CHARACTERIZATION TEST PROGRAM
12- Kl~ 1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
AVERAGE
1 0 : 00
1 0 : 0 1
10:02
10:03
10:04
1 0 : 05
10: 06
10: 07
10: 08
1 0 : 09
10: 10 _
i 0 : 1 1
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: IB
10: 19
10: 20
10:21
10:22
10: 23
10: 24
10:25
10:26
10: 27
10: 28
10:29
10: 30
AVERAGE
10:30
1 0 : 3 1
10:32
10:33
10: 34
10: 35
10:36
10: 37
10: 38
10:39
10: 40
10:41
10: 42
1 0 : 43
10: 44
10:45
10: 46
10:47
CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl
VALUES FOR
89.5
423.1 Ctf*C -
426.4 4^'
426. 3
435.7
438.3
442. 4
446. 4
435. S
438. L_—
^SiETSTl
248. 2
27. 8
— 2 . 0
-14. 7
- 10.3
-8. 1
-o'.l&q
-5.6 I
-l:l\
0.1 *
-2.0
0. 7
1 . 6
-0. 9
3. 1
6 . b
4. 6
VALUES FOR
150. 5
1 . 8
-1.2
3. 9
-1.4
- 0 . 4
-0. 2
3.4
3. 6
1 . 4
-1 . 6
3. 9
1. 9
-0. 6
-0. 3
1 -0
2. 4
6. 6
CHAN 3
OUTLET
drvHCl
THE LAST HOUR: 52 MINUTES OF VALID DATA
1.1 17.7
1 .7
1 .7
1.7
1 .8
1 .8
1 . 8
1 .8
1 . 8
1 . 8
1. 7
1 . 7
1 .7
1 .7
1 . 7
1 .7
146.3
227. 7
173. 6
174. 7
224. 0
159. 5
1 .8
1 . 8
1 . 7
1 .7
1 .6
1 . 7
1 . 7
THE P
38. 3
1 . 6
1. 6
1 .6
1 .7
1 .7
1 .7
54. 3
77. 6
84.4
86.7
86.9
86.9
88.0
88.8
88. 3
89.0
0. 3
0. 6
0.6
0. 2
0 . 4
0 . 3
0. 3
0. 1
0 . 0
-0. 1
•— • f~"l 1
0.^^^^
^^&
*U. 6
3. 9
15. 1
25. 8
JJ^\ 39.9 1 /•jfUcV1'
C^ 43.1 ^ Ct* ^
48.9 A^l pP^ V
49.4 I
50. 0
50 . 4
50. 7
51.3
50. 6
50^7^
RE VIO US 30 MINUTES
22. 0
45. 0
31 . 2
18.4
1 0 . 5
8. 5 ^
"" s! 7 I 0*
4 . 7 L
4 . 2
3. 4
flA p0*. 2 . 9
•^IT. 2. 6
}M 1.9
2 . ji.
1.9
1. 8
, „ 1.8

-------
HC1 CHARACTERIZATION
12-10-1987
  TEST PROGRAM /
                                        NE  ENERGY RECOVERY COMPANY
T I ME
10 48
10
10
10
10
10
10
1 0
10
1 0
10
10
1 1.
49
50
51
52
53
54
55
56
57
58
59
00
/v»*^«-
CHAM
INLET
wetHC
1 .
ji, n
0.
-T
1.
3.
1 .
u^! •
6.
7 _
6.
o
6 .
1
1
6
ji.
5
5
6
8
8
9
rr
^.i
1
7
1
L""
i.J
CHAN 2
M I D
wetHCl
87.
'SA^-
""34.,
12.
7.
5.
4.
T
T
.j, n
Jl! a
J^. n
j^. n
8
S^
6 -7/v
0 ^ ;/
nr ^^
i_j
^"j
4
7
"T
0
7
5
4
CHAM 3
OUTLET
dryHCl
1 .
0.
-o 1 .
1 .
1 .
1 .
0 .
1 .
0 .
0 .
0 .
0 .
1 .
"T
8
1
'"'."'
4
1
8
1
7
7
4
8
0
AVERAGE VALUE:::; FOR
11  oo      2. i
THE PREVIOUS
 36.7
                                30 MINUTES
AV
n
1 1
1 1
1 1
1 1
1.1
1 1
1 1
11
1 1
11
1 1
1 1
11
1 1
1 1
11
11
1.1,
11
11
11
n
::RAGE
00
0 1
02
03
04
05
06
07
OB
09
1 0
11
12
1 3
14
15
16
17
18
19
20
2.1
22
VAL
7
_2
	 -i

_.



1

1

1
r--,
1
1
ui!
i
.«i!
.*;.,
1
1
1
UE;
L,
0.
T;
0.
1 .
o ,.
•_j' „
8.
4.
9.
4.
8.
4.
0 „
7.
2.
.ui! .
9.
_,.
4.
B.
2 .
2 .
G FOR
7
1
3
•tr
5
o
-T
6
0
8
9
1
0
6
0
~T
.^!
0
1
7
4
6
THE:
37.
2.
jj' a
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
•|
J. B
1 „
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1.
1 .
1.
LAST
in-
2
0
9
B
8
—
7
—
"7
7
"7
7
7
7
7
7
7
7
7
7
~7
7
HOUR; 60 MINUTES OF VALID DATA
33.8
0. B
0 . 6
0. 8
0 . 9
1 . 1
0 . 3
0 , 4
0.5
0. 1
0 . 5
0 . 6
0 . 0
0 . 5
0 . 9
0 . 0
0 . 5
0. 5
0 . 7
0 . 7
0. 6
0. 1
0. 1
COMMENTS:  Waiting far proper process operating  conditions
          •for Test tt2.
                        A-20

-------
HC1  CHARACTER I 2 AT I ON
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY

I
1
1
1
1
1
1
1
1
1
1
1
1
1
\_
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I ME
~>
""?
'"^
2
2
f^
r?
o
/--,
Al~
'">
'"J
2
2
2
2
2
2
/•->
•"o
o
'"?
o
o
'"7*
o
T
31
32
33
34
35
36
37
33
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
AVERAGE
13s 00
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
l^
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
01
02
03
04
05
06
07
08
09
10
1 1
12
13
14
15
16
17
18
19
20
Tea
>

CHAN 1
INLET
wetHCl
— 3
	 "T
— ^1
— 3
_T;
cr
v_>
	 -I
o
1
23
123
226
279
309
341
357
356
358
33 1
320
316
334
350
384
392
420
425
409
411
„
„
B
«
„
B
•
*
.
„
B
_
B
B
-
.
a
B
„
„
„
,,
,
.
„
•
6
7
9
7
7
4
7
r~\
0
6
1
9
O
6
4
4
_,.
E~
CJ
1
9
6
T1
8
7
1
1
9
5
5
*-^
VALUES
215. 1
396
380
4O2
429
413
421
432
449
433
427
437
450
459
456
444
41 1
410
414
414
424
.
„
,
B
B
„
.
.
„
„
.
„
m
„
.
.
•
„
.
„
7
7
7
6
4
8
9
4
5
~T
8
9
9
•T,
8
1
7
9
7
7
CCyn^i
fe/ j
^ " * ^^^ ^-w «
CHAfl 2
MID
wetHCl
1.
1 .
1 .
1.
1 .
1.
1 .
1.
_ 1 .
~" 1.
1 .
1 .
1 .
1.
1 .
1 .
1 .
''".'
4.
4.
4.
4.
4.
4.
5.
6 .
7 a
-7
/ .
6.
FOR THE
5.
C^"
4.
4.
4.
4.
C""
\-.l «
8.
1 1 .
15.
18.
21 .
20.
17.
1 3.
1 1 .
9.
8.
7.
7.
5
5
5
5
5
5
!>
6
6
7
7
7
7
7
7
6
T1
4
4
6
8
Q
5
4
j— \
"^
8
LAST
1
8
^i!
9
7
5
8
8
1
4
4
7
6
4
1
8
O
7
5
8
6
0*4.
PM<
t**/«j^*/«
CHAN 3
OUTLET
jjry.HC.1
16. 7
1
1
1
1
>
4.
~T
r^j
2x

y/1 0 .
f 11.
10.



















9.
9.
9.
9.
8.
9.
8.
8.
8.
7.
8.
7.
/_
UJ n
7.
"7
/ 0
7.
7.
7.
7.
7.
7.
HOURs
9.




















7.
B.
7.
7.
7.
7.
6.
6.
"7
/ .
'7 „
6.
7.
7-
7.
7 .
7.
6.
6.
6.
f£"
>.j .
6
|7,
9,xx*^^*N

7 ',/.'/' i /
4 djX' ty •/» a-f >^»4
5 o«^<»«. <^ M, -y
^L/~ ^^ j* i \f

~*:,
8
ji.'
9 i - '*' 	 ""1
7 r >__i_
-------
 C H A R A C T E R I Z A T 10 N T E 8 T
•10-1987.
                                / MAINE  ENERGY RECOVERY COMPANY


T ]; ME_
13' 21
,1,3 22
, u;p o™,.
4. <™> j^, O
13 24
1 •!!• ois;
.1 '.„' 4^. *J
j -^ f-w
3, ..j *L a
13 27
13 28
13 29
13 30
AVF.RAGE
13 30
13 31
13 32
1 ..'.:• •.-' •.-'
13 34
13 35
13 36
13 37
13 38
13 39
12; 40
13 41
13 42
13 43
1.3 44
13 45
13 46
13 47
13 48
13 49
13 50
13 51
13 52
13 53
13 54
13 55
13 56
13 57
13 58
13 59
14 00
AVERAGE
1 4 : 00
AVERAGE
14:00
14:01
14; 02
14s 03
CHAN 1
INLET
wet HCl
439. 0
424. 6
429.2
454.2
453. 1
463. 7
457.9
464. 6
466. 0
461 .3
VALUES
434.3
462. 0
463.8
455. 6
450.7
474 . 4
482.5
481.2
477. 3
487. 3
509. 6
485. 4
468. 4
465. 6
482.7
485. 3
479. 3
493. 5
516. 9
506. 4
485. 7
478.0
469. 6
453. 1
449.7
477.9
470.7
496.3
509 . 6
530.6
536.7
VALUES
482.9
VALUES
458.6
530. 6
505.5
475. 1
CHflfj 2
M I D
wet. HCl _ ..
8.2
9.9
13.6
1 8 . 6
24.8
30. 6
•^i 1 n 2
29.2
25. 4
20.8
FOR THE P REE VI
1 4 . 0
17.7
15.2
13,3
11.7
1 0 . 4
10.5
11.8
1 3 . 9
16.2
15.9
14.7
1 2 . 7
1 0 . 9
9 . 8
8.8
8 . 0
7 . 3
6 . 8
6. 4
6. 1
6 . 0
6 . 0
6. 2
6. 4
6.6
6.8
7. 1
7.4
7.8
8.0
FOR THE: PREV
9.9
FOR THE LAST
11.9
7.8
7.6
7.5 A.
CHAN 3
OUTLET
dry HCl
5. 2
5. 2
6 . 0
5. 8
6 . 0
6. 2
6. 4
6. 4
6 . 4
6. 1
OL.IS 30 MINUTES
6.7
6. 5
6. 4
6.2
6. 2
6. 0
5-7 , o*
5.2 . W**
6 „ 0 Mfe^* "^
5-3 /J^'M' ^
5.3 /y \ ^^
5 „ 5 •*****^
5.9
5 . 2
O . -.1''
JJn^g^^^ • • • M 1
NV^VA — „ pa^ / v#e* 1
5 . 3
5. 1
4. 9
5. 2
5. 0
4. 9
4.7
5. 1
4.8
5. 1
5 . 0
5, 3
CZ" T
wJ „ O
Id US 30 MINUTES
^ ^4-
HOUR: 60 MINUTES OF VALID DATA
yf &.\
4. 6
4.5
-22 4.9

-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
14: 04
1 4 : 05
1 4 : 06
14:07
14:03
1 4 : 09
1 4 : 1 0
14: 11
14: 12
14: 13
14: 14
14: 15
14: 16
14: 17
14: 18
14: 19
14: 20
14:21
14:22
14; 23
14: 24
14:25
14: 26
14: 27
14: 23
14:29
1 4 s 30
AVERAGE
14:30
14:31
14:32
14:33
14: 34
14:35
14:36
14:37
14:33
14:39
14:40
14: 41
14:42
14: 43
14: 44
14: 45
14:46
14s47
14: 43
14s 49
1 4 : 50
14:51
14:52
14:53
14:54
CHAN 1 CHAW 2
INLET MID
wetHCl wetHCl
476. 0
463. 8
489. 0
499. 6
515. 0
541.3
541.2
543.5
536. 5
519. 7
494. 3
480. 6
502. 3
492. 8
415. 2
358. 9
371.8
473.7
558 . O
562. 3
542. 5
533 . 6
54.1.8
542. 4
533. 7
534.2
508.2
VALUES FOR
502. 8
519. 8
528. 0
532. 6
538. 1
545.5
535.5
526.8
498. 2
475. 9
484. 4
510.3
507. 7
499. 7
499. 9
513.9
506. 1
500. 0
470. 4
468. 9
478. 9
451 . 6
463. 3
473. 1
467.6
7.
6.
6.
5.
mr
vJ .
5.
5.
5.
cr
5.
6.
6.
6.
6.
6.
5.
6.
7.
8.
8.
8.
8.
8.
7.
7.
8.
7.
THE
O =
6.
6.
6.
6.
6.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
6.
6.
5.
5.
5.
E~
xJ a
5.
5.
5.
^
8
6
8
4
O
O
71;
cr
8
1
-T
6
6
1
7
1
6
1
-T
7
6
4
9
8
0
'-TI
PREV
9
8
7
7
8
9
1
Tt
5
6
7
7
8
5
b
1
4
0
6
4
"T
0
o
o
0
CHAN 3
OUTLET
dryHCl
cr ^
5. 2
4. 8
5. 6
4. 9
4. 5
4. 3
4.2
4. 8
4. 5
4. 5
4.6
4.5
4. 9
4.9
4. 6
T cr'
3 . 7
4 . 3
4. 5
4. 9
5. 0
5. 8
5. 3
4. 9
5. 0
4. 8
IGUS 30 MINUTES
4. 7
4. 5
4.5
4. 5
4 . 4
4.5
4. 9
4.0
4. 9
4. 9
4. 4
4. 2
4 . 0
4 . 2
4 . 3
4. 8
5 . 3
5. 1
4. 9
4. 3
4. 4
4. 0
3. 6
3-9 A-23
4.0

-------
HC1 CHARACTERIZATION
12-- 10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY


T I ME
14:55
14:56
14:57
14:58
14:59
15sOO
AVERAGE
15; 00
AVERAGE
15: 00
15:0 1
15; 02
15: 03
15; 04
15; 05
15:06
15: 07
15: 08
15: 09
15: 10
1 5 ; 11
15; 12
15:13
15; 14
15: 15
15: 16
15: 17
15: 18
15; 19
1 5 : 20
15:21
1 5 : 2 2
15:23
15:24
15: 25
] C5 " '^ 6>
15: 27
15: 28
15:29
15: 30
AVERAGE
15:30
15:31
15 : 32
15s33
15:34
15:35
15:36
15:37
CHAN 1
INLET
wetHCl
461 . 8
462. 9
4-65.7
484.4
481 . 6
497. 2
VALUES
495. 0
VALUES
498. 9
520. 5
538. 3
552. 3
548. 7
555. 5
52 1 . 6
495. 2
505. 2
507. 8
488. 4
477.8
490. 4
496. 0
489.2
512. 1
524. 8
512.5
5 :i. 6 . 4
543.2
524.2
529. 4
553. 0
526.2
520. 1
521.1
515. 0
515.5
524.0
523. 2
520.0
VALUES
518.9
534.5
524.2
515. 1
505. 8
493.2
494. 2
475. 0
CHAR 2
MID
wetHCl
5. 2
5.5
6 . 0
6. 5
6. 9
7 . 2
FOR THE F'REV
6.5
FOR THE LAST
6.7
—7 •— i
/ . -C.
—f S~,
7.0
6.8
6. 6
6. 3
5. 9
5.6
5.4
5. 3
5. 3
5. 4
5.5
5. 8
6 . 0
6. 4
6 . 9
6. 9
7. 0
7. 1
7. 1
7. 1
6. 9
6.5
6. 3
6. 2
6. 1
6. 1
6. 1
6. 3
FOR THE F'REV
6. 3
6.6
6.8
7-0
7.0
7 . 0
6.8
6.4 A.
CHAN 3
OUTLET
clryHCl
4. 2
4. 3
3. 8
3 . 7
4. 5
4. 6
10 US 30 MINUTES
4. 4
HOUR: 60 MINUTES OF VALID DATA
4. 6
4 . 0
4. 3
4. 9
4. 5
4 . 3
4. 2
4. 1
3 . 7
4. 3
3. 9
4. 1
3. 8
4 . 2
4- . 0
4. 5
4. 1
4 . 0
3 . r^,
3. 2
3. 9
3 . 9
4. 1
4. 2
4 . 2
3. 9
3. 9
4. 4
3. 8
3. 4
3.7
IOUS 30 MINUTES
4.0
3. 6
3.7
4. 1
3. B
3. 9
4. 2
.94 4 . 0

-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
1 3 s
15:
15:
15:
15:
15:
15:
15:
1 5 :
15:
15:
15:
15s
15s
15s
15:
15:
15:
15:
15:
15:
15:
16s
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
CHAN 1
INLET
wetHCl
465.
457.
465.
470.
457.
472.
504.
559.
575.
552.
533.
525.
539.
555.
544.
533 .
510.
5 1 0 .
502.
489.
474.
452.
448.
6
0
6
2
5
8
j^.
4
0
6
8
0
9
6
•TJ
4
9
0
~T

-------
HC1 CHARACTERIZATION
12	10-1987
TEST
PROGRAM / MAINE ENERGY RECOVERY COMPANY


TTMF
1 J- ' J_L::'. .- 	
16; 23
16:26
16: 27
16:28
16:29
16: 30
AVERAGE
16s 30
1 6 ; 3 I
16:32
16:33
16: 34
16:35
16: 36
1 6 s 37
16: 38
16:39
16: 40
1 6 ; 4 1
16:42
16: 43
16: 44
T&r*l 5
16: 46
16: 47
16:48
16: 49
16:50
16:5 1
j / K" -""i
1 a £ ^.j ,,1:.
16:53
16:54
16s 55
16: 56
16:57
16:58
16:59
1 7 : 00
AVERAGE
1 7 : 00
AVERAGE
1 7 : 00
17:01
17s 02
17s 03
17:04
17:05
17; 06
17:07
CHAN 1
INLET
wetHCl
537.4
533. 2
517. 0
503. 3
486, 0
478. 9
VALUES
502.4
475. 1
486. 4
493. 7
5 1 0 . 8
5 0 0 . 9
505. 9
480. 4
472. 5
502. 5
521 . 9
539. 2
538. 9
543.2
535. 2
527. 1
5 3 1 . 2
530. 8
508. 6
458. 9
463.3
500. 8
512. 4
523.4
538. 0
532 . 0
531 . 8
549. 6
cr rr cr /
544. 2
539.5
VALUES
515. 1
VALUES
508. 8
535.3
544.7
529. 0
519. 1
514. 1
532. 3
560. 0
CHAN 2
M I D
wetHCl „ .
5.8
5. 6
5.5
5. 4
ctr ~^~
wJ . •-'
5. 3
FOR THE PREV
5. 7
cr l~i
1.J n -^
n." "T
wJ r, -Ji
5. 4
5. 5
5. 5
5. 6
5. 5
5. 5
5. 6
rr T
,J . .'
6 . 0
6. 1
6. 3
6. 0
5. 9
5. 9
5. 9
5. 6
5. 1
4. 9
4. 8
4. 6
4. 5
4. 6
4. 5
4. 6
4 . 7
4- . 9
5. 1
CU "T
^J „ -_j
FOR THE PREV
5.3
FOR THE LAST
5.5
5.6
5.8
6. 0
6. 2
6. 0
6.4
5.9
CHAN 3
OUTLET
dryHCl
3. 6
3. 2
3. 1
T T1
3 . 6
3 . 9
IOUB 30 MINUTES
4.5
3. 4
3 D £•
3. 9
"T " T
3 . 5
3 . 3
'"r /
._. „ o
3 . 0
3. 3
3. 7
3. 6
4. 1
3. 8
3. 6
4. 1
3 . 4
3 . 0
3. 6
~T T
4- . 0
4. 1
3 . 6
3 . 5
3 . 0
3. 5
3 . 6
4 . C)
3.5
3. 7
3. 8
'IOUS 30 MINUTES
3. 6
' HOUR: 60 MINUTES OF VALID DATA
4. 0
3.5
3. 7
4. 4
3. 8
4.2
3.8
-7- ^

-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY


TIME
1 7 : 08
17:09
17: 10
17: 11
17: 12
17: 13
17:14
17: 15
17: 16
17: 17
17:13
17: 19
1 7 : 20
17:21
17: 22
17:23
17:24
17:25
17:26
17:27
17: 23
17:29
17:30
CHAN 1
INLET
wetHCl
570. 3
545.8
553 . 6
554.0
cr T cr* /
>J O _> . O
534. 0
538. 4
537. 1
538. B
514.2
461 . 4
461.3
473. 7
452.3
438.6
434. 3
412.9
4O3. 7
490. 8
562.7
570. 7
520. 3
471 . 0
CHAN 2
MID
wetHCl
5.7
5. 5
5. 2
5.0
4.9
4.9
4.9
4.8
4.7
4.5
4. 5
5.2
5.7
6.4
7. 1
7 . 4
7. 4
7.5
7.6
7. 3
6. B
/ '">
Cf • ,i_
5.9
CHAN 3
OUTLET
dryHCl
._,. ^
-r r~^
3.2
3 "^
3. 5
3. 6
T; -T
3. 8
_,. _,.
3. 1
3. 1
2.5
3. 1
2. 8
2. 8
3. 1
3. 4
3 . 0
2 . 9
'? ~^
3 . 0
3. 9
4. 4
AVERAGE
17:30
VALUES
 510.3
                FOR THE
PREVIOUS 30
9       3.3
              MINUTES
17s
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17 3
17:
175
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
53
471 .
466.
467.
501 .
51 1 .
541.
566.
557.
562.
550 .
508.
494.
505.
483.
467.
454.
472.
492.
486.
506.
540.
552.
551 .
550.
542.
521.
491.
457.
5
3
4
9
9
0
.Ll
5
5
6
7
B
6
6
0
1
2
1
±
0
0
4
0
7
1
1
5
4
b.
6.
9.
9.
7-
5.
4.
~\
~T
~T
_,.
T
4.
4.
4.
5.
5 .
5 .
6.
O •
6.
6.
6.
7.
7.
6.
6.
5.
"7
4
6
6
0
1
o
4
jL
2
__,.
6
0
4
7
0
4
8
0
2
6
8
9
8
0
4
0
4
._•' .
3 .
"T
4.
4.
4.
"""I
._,.
_r
"T
•_' a
4.
"T
2 .
""•"t
"T
"T
"T
"T
3.
— j.
4.
4.
"^*i
4.
4.
•-' «
T(
5
6
1
"T
"*%
1
9
4
5
4
9
1
4
9
I— ,
8
6
0
2
2
7
0
2
B
0
2
8
6
                                       A-27

-------
HC1  CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
Chi AM 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME
17i 59
18:00
AVERAGE
18: 00
AVERAGE
18: 00
1 8 s 0 1
18:02
18: 03
18:04
18:05
18s 06
18: 07
18s 08
18:09
18s 10
18:11
18: 1 2
18: 13
18: 14
18: 15
18: 16
18:17
1 8 s 1 8
18: 19
1 8 s 20
1 8:21
18: 22
18: 23
18: 24
18:25
18: 26
18:27
18:28
18:29
18: 30
AVERAGE
18:30
18:31
18: 32
18: 33
18:34
18s 35
18:36
18:37
18:38
1 8 : 39
18:40
18:41
wetHCl wetHCl dryHC!
433. 6
422.6
VALUES FOR
504. 3
VALUES FOR
507. 3
432. 2
427. 9
42"^. 5
425.3
4 1 b . 5
352. 5 tl9ffl
146. 2 * 0.W
99. ul
B 1.2
73. 4
69. 9
63. 8
58. 6
62. 6
64. B
57. 6
42.7
39. 4
31.4
30 . 3
30. 1
26. 9
31.0
29 . 0
33. 1
20. 0
17.5
15. B
19. 4
VALUES FOR
*5TT8
24. 7
19. 5
23.2
17.9
14. 5
14.0
1 3 . 4
13.0
18.5
13.7
12.6
4.9
4.7
3. 4
3. 0
THE PREVIOUS 30 MINUTES
5.6
THE LAST H 01
5. 7
4. 4
4. 3
4. 3
	 4.4
mj"4~r£-> . K
3.9 "^ ?
~* 1 * J
jn. o o j y^
< 	 T B
2. 1
1 . 9
1.8
1 .B
1.7
1. 6
1.6
1.5
1 .5
1 . 4
1.4
1.3
1.3
\^fr~^
16. 3
%'ltMT
kZ.7\W*
65.7 |
67. 4
69. 5
70. B
3 . 6
JRs 60 MINUTES OF VALID DATA
3.5
2. 6
2. 9
3. 0
T1 3
2. 9
2. 9

2 . 6 t/0^ Jk x^1 1
/— , —/ jt \^JLn\f^
/ wJF^fi "
111
•
3 . 0
3. 1
3. 1
2. 7
2 „ 7
2.4
2. 1
1 .6
1.5
1 .7
1. 6
^Z' B 1
O T
2.6
3. 0
2. 9
3.1
THE PREVIOUS 30 MINUTES
t^-J.
71.5
72.9
73.2
73.6
73. 0
73.3
75.5
75.4
75.6
74.J>-*
*#€\^\£fYT>
2^ /i
2. 9
3. 4
3. 5
4. 4
4.3
5. 1
5. 1
5. 7
5. 9
5.8
5.9 A-28

-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY



TIME
18
13
18
18
18
10
18
18
18
18
18
18
18
18
18
18
18
18
19
:
:
:
5
!
:
:
:
M
;
:
;
:
•
3
;
:
42
43
44
45
46
47
49
49
50
51
52
53
54
55
56
57
53
59
00
AVERAGE
19
a
00
AVERAGE
19s 00
19
19
19
19
19
19
19
19
19
.19
19
.19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
.
;
;
.
^
.
.
3
;
;
a
5
5
;
2
a
*
;
s
;
;
!
3
3
3
01
02
03
04
05
06
07
08
09
10
1 1
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
CHAN
INLE
1 CHAN 2
T MID
wetHCl wetHCl
13
17
13
11
10
10
14
14
9
1 1
13
10
8
6
8
15
13
8
• 3 *Jk
. o Ctfft*
•5 ^VO

:?r
. 7
. 7
. 4
tnr
. 8
. 8
. 1
. 9
. 7
. 0
_T-
_,.
. 8
VALUES FOR
ly^«

VALUES FOR
9
1 1
o
-*7
1 1
78
220
316
364
389
405
412
421
430
436
437
440
441
446
446
--«T52"
438
314
107
61
48
41
31
. 4
. 8
_7y-
^^^^^
. D
. 6 J l|> |
• 6 \f)
:U*
. 9 *
. 0
. 0
. 1
. 8
. Zl
. 1
. 5
. 4
. 9
. 8
6_
• ^ -t^vfl
. O ' -^
.5.^
•H
.7?
r-,
. 9
.9
68.
35.
, 20.
15.
1 1.
9.
8.
6.
1 .
5.
-T
2 .
2.
j^. •
T1
1 .
1 .
1 .
THE
J3«*"f
THE
1 .
1.
1.
*A 1
f o!
I o •

191.
176.
175.
144.
<}*
^ T)
0.
0 .
0 .
0.
0.
0.
, 0.
0.
0.
0.
0.
0.
0.
0.

2 y*\
8 i (fit
7 1
9*
5
0
5
6
5
9
8
4
j^.
0
0
9
8
8
PREVI
•?
LAST
~7
8
7
~T
1
1
tr^yi
Oi C*^V
2f O^
2
6 ^^-

ji.
^1
2
2
r?
'T1
2
2
2
1
1
1
1
j^l
CHAN 3
OUTLET
dryHCl
6.
r
t 5.

% •
0 .
-0.
-0.
— 0 .
— 0 .
^^\.
18.
"T nr
OvJ -
42.
45.
47.
49.
50.
50.
50.
OUS ::
15*
HOUR:
C,''
28.
8.
4.
"T
1 .
1 .
1 ^""T""
if* 6 .
"T
1 .
1 .
0.
0.
0.
0.
0.
-- 0 .
0.
- 0 .
0 .
193.
1 1 .
— . C\
— '[
18.
47.
48.
0
6
5
(-y • J
8|#*>*
1
5
&* 1
& 1 /J*-*^^
9 • . y)A ^\^
1 AjJ(f(fl** \1^A
Q "\ 0*jA yiN
7 4"' U ftQV''
l\ ^
1 '
0
0
iO MINUTES

60 MINUTES OF VALID DATA
6
5
6
0
B
5
I^^jf^
6 V jJMV^^
5*
9
"T
7
8
6
5
0
4
1
4
1
7
5
9
2
'-7,
0 A - 2 9

-------
H C1  C H A R A C T E R I Z A T ION  T E S T PROGRAM
12	10	1987
                          / MAINE ENERGY RECOVERY  COMPANY


T I ME
19: 29
19:30
CHAN 1
INLET
_W|!.t.HCl
34. 8
3 1") ^'
                   CHAN  2     CHAN 3
                   MID        OUTLET
                  ...wetHCj.		dryHCl
                      0. i       48.3
                      0.1       48.4
AVERAGE  VALUES FOR
19:30     243.3
          "HE PREVIOUS :
           33.1       16,
                     1C  MINUTES
                     6
19 s 31
19: 3 2
J.9; 33
19s 34
19: 35
19 :
19:
19:
19:
19:4 0
17

15
17
14
14.
1 3
7
0
cr
i.J
7
1
                     48. 0
0. 1
0. 1
0. 1
0. 1
 0. 3
-1 . 5
-1 . 4
-2. 0
-1.5
 4 . 9
 •T1- —7
 •J1 » /
 0. 9
C 0 M M E N T S ( E;: n J  T o;;;; 1. tt 2 an d c ,s 1 i b r a t i cs n c: h & c k
                               A-30

-------
HC1 CHARAi
12--12-1987
TEST PRQQRAM / MAINE ENERI3Y  RECOVERY COMPANY


TIME
08: 22
08:23
08: 24
08: 25
08: 26
08:27
08:28
08: 29
08:30
08: 31
OS: 32
08: 33
08:34
08: 35
08: 36
08:37
08:38
08:39
08: 40
08: 41
08: 42
08: 43
08: 44
08: 45
08: 46
08: 47
08: 48
08: 49
08:50
08: 51
08:52
08:53
08:54
08: 55
08: 56
08:57
08:58
08: 59
09: 00
AVERAGE
09:00
09: 01
09:02
09:03
09:04
09 : 05
09: 06
09:07
09: 08
09: 09
09: 10
AO , 1 1
CHAN 1
INLET
wetHCl
1 .9
— 5 . 3
5. 7
0. 8
~0. 8
74. 6
206. 1
265. 2
308. 9
328. 1
348. 4
363. 5
371 . 1
383. 0
393.5
393. 4
395. 2
404. 6
4 0 5 . 3
4 10.2
411.9
410.2
416. 1
416.3
423. 5
423. 5
420. 7
430. 3
430. 0
431 . 9
431 . 1
432. 4
265. 1
81.1
52.7
42. 6
36. 8
26. 9
24. 0
VALUES
273. 4
21.3
24. 4
19-9
19. 9
10.5
15.0
15.6
15.7
12.0
15.4
L. 1
CHAN 2
MID
wetHCl
136.6
2 1 0 . 4
214. 0
218.4
226. 4
I 201.0
1^76. 3
.Vlffl74. 7
• irl :L73- 9
, rr 192. 0
1 217. 0
•f 4 	 , , 	 , . 	 . —7
T *•:• *- -- » /
226. 1
229. 0
230. 6
203. 7
175. 6
174. 1
180.4
219. 1
89. 0
0. 2
0 . 2
0 . 2
84. 1
217. 4
173. 9
179. 9
226. 8
207.8
1 .4
2 . 0
1 .9
1.7
1 . 6
1 .5
1 . 5
1.5
FOR THE LAST
138.9
I .5
1.5
1 .5
1.5
1 . 5
1 .5
1 . 5
1.5
1.5
1.5
i "=:
CHAN 3
OUTLET
dryHCl i i <-*&&+&
48.7 I C&* \
48.7 T 9 ,
48.7 ^- ta x£*A
^^^M jf* ^^W^ **
48. 1 / .- Mm *f
45. 0 V 	 - T/ fl '
1 .9
-0. 3
	 /~\ "~T"
-0. 7
-0. 2
4 . 3
14.2
15.5
14.9
1 5 . 0
1 5 . 0
14.5
12.2
1 0 . 4
8 . 7
8. 0
"7 "7
7 . 2
7. 1
7. 1
6 . 5
6 . 2
5.2
4. 9
4 . 9
5. 1
5 . 5
2. 4
0. 5
0 . 5
0. 5
-0. 1 ^^-**'*'"
-"^S*!^
6.2
HOUR: 39 MINUTES OF VALID DATA
11.5
15.3
21.0
24.3
28. 5
^2 R 7
34. 9
37.6
38.6 A-31
37. 9
36.5
_,_, 5-

-------
H 01  C H A R A C "I" E R11A "I" 10 M "I" E S1" P R Q (3 R A h
12-12-1907
/ MAINE ENERGY RECOVERY COMPANY


TI
09
09
09
09
09
09
09
09
09
09
C.) 9
09
09
09
09
09
09
09
09
AV
09


ME
H i -""i
H A. ,\'.'~
M i ..-'
5 14
: 15
: 16
; 17
s 13
; 19
; 20
„ '••;, 'i
H a~ all.
; 23
: 24
: 25
: 26
H P "7
i 28 1
: 29
; 30
ERAGE
H •.il'U
CHAM
INLET
wotHC
8.
9.
-T
6.
8.
5.
4.
4.
6.
6.
12.
rr
4.
i'' n
_-,,
IS;
1 115.
170.
VALUE
2-K"
,M(*r n
1

1
5!

7'
8
7 t
9
rr~
!_l
1
5
_,.
3
5
0
-'1
1
T
'" ' /
5^
9
c1!
•*.
CHAM
MID
w ethlC
y>^- i .
$rf*f i.
, A«-» 1 .
i J'
^ 1.
Y 1.
1.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 „
I £ 1.
.tft^ K
!ff J^-
-ToT
F'Cll"-!; THE
1 .
''"i
j;!,

1
5 (/
5 H
5l
2l
6
6
6
6
5
(\
/!
^y
3
^
^
1

uJ
PRE
E3
CHAN
QLJTL
....v-dryH
^' 26
gft> 3i
*i/ 37
Sr
40
42
44
45
46
47
47
47
42
23'.
9
6
r~6
1 B
*" ' 1 0
10
:vious
30,
tWj.
ET
C.I
. 1
. 8
. 7
^.
B U.'
. 8
. 4
'"?
. 1
. 0
. 1
. 9
. 6
. 0
. 8
^
. 4
. 0
. 4
30
S$
09 :
09:
09r,
09s
09;
09:
09:
09;
09 ;
09;
09:
09 :
09;
09:
09:
09s
09:
09 :
09:
09:
09s
09:
09:
09s
09:
09:
09:
09s
09:
10:
3 1
>.~> .c!
-.,. ...,,
34
35
3 6
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5.1
52
53
54
55
56
57
58
59
00
1 96.
^.. ji- O K
<~7i r\ ur
343.
417.
452.
475.
516.
479.
451 .
427.
368.
-7- r--| /~,
284.
230.
164.
135.
127.
125.
111.
110.
1 04 .
101.
96.
90.
101.
106.
101.
98.
1 03 .
5
1
0
4
8
7
r."
cr
-.>
cr
O
Q
1
B
6
~T
7
1
^i
c>
0
5
5
7
C)
4
5
1
1
7
6
1
35.
52.
57.
61 .
65.
66.
68.
69.
70.
76.
81.
85.
87.
87.
88.
44,
B.
_,.
1~ j^.' „
i B.
• 9.
7.
6.
cr
U .
5.
4.
4.
4.
4.
4.
9T*
2 !F
9i
3?
"T
5
7
B
7
j^.
B
8
7
7
-T
B
8

6
1 Jl
9*H
cr
^J
r--,
Jl.
6
4
9
6
5
T
T1
h 12.
^ 9.
-/
7.
1 C* .
10.
B.
7.
~" •-' O c
-1 .
O »
6.
6.
cr
wJ .
5 .
5.
4.
*• 3
<3.!
3lM^2.
" 2.
f~i
jL. •
O
O
1 .
r^i
1 .
1 .
1 .
1.
o
6
7
4
9
<3
4
7
5
4
1
4
-r
Tt
(j
'":•
^
8
1
8
9
T)
*-7i
5
9
0
7
1
4
9
                                     MINUTES
                                        A-32

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1 CHAN 2

II ME 	
AVERAGE
10: 00
AVERAGE
10: 00
1 0 : 0 1
10: 02
10: 03
10: 04
10: 05
10; 06
10:07
10:08
10: 09
10: 10
1 0 : 1 i
10: 12
10: 13
10:1 4
10: 15
10: 16
10: 17
10; 18
10: 19
10: 20
10:21
10: 22
10:23
10: 24
10: 25
10: 26
10: 27
10: 23
10: 29
10: 30
AVERAGE
10:30
1 0 5 3 1
10:32
10: 33
10:34
10:35
10: 36

10:37
10:38
10: 39
1 0 : 40
10:41
10: 42
i n. a.-i
INLET MID
_WKiHCI 	 	 __wet

"---— 	
VALUES FOR THE PREV
238.5 3
9. 4
VALUES FOR THE LAST
129.8 2
115.4 x
148.4^4
147. 4 j
132. el
110.1*
101.5
81.9
87. 2
79. 1
78.0
73. 6
79. 6
78. 8
76. 6
76. 2

44. 4 <^?i
^5 , 5 . ^A
23. 8 1
15.2*
24. 3
10.7
10. 1
14. 3
1 3 . 3
6. 0
10. 1
14. 2
7. 9
VALUES FOR TT
63 . 7
12.9
7. 5
4. 6
Tj ^ -
r~ 8.5
1 13.2 v

Y 76. 5 f £lii£^"
113. 7 t\Y
160. 0
191. 1
218.7
242.8 ^
TI /- "7 ~T
0. 6
4.4
4.4 , ffl
4. 2 -Mr
4 . O 1
3. 8^
3.5
3.4
3. 4
3. 4
~T "T
~T ~T
"T "T
~T T>
T T"
3. 1
^4—
.i . V
2 . 6 c^"
^3l
;;;1
/-_-, /-^
2. 1
2. 1
2 . 0
2. 0
1 .9
1 . 8
1 . 8
1 .7
\E PREV
2.9
1.6
1.7
1.5
1 . 3
1 . 3
1.3

1 . •-'
1 . 2
1 .3
1 .3
1 .4
1.4 |J
•| /}

CHAM 3
OUTLET
_cJr_y_HCl_
10 US 30 MINUTES
3.5
HOUR: 60 MINUTES OF VALID DATA
1 7 . 0
1.4
1 . 8 |
2.1^
*"? -rr
*i . --''
2. 4
1.9
2.4 V 'f*
2.1 * jH^*^
i-8 A^^" &\ ^
2. 1 ^ J !^^
1 • 8 .x**" /*j|j^<*\
2. 5 Q^ \
2. 7
\m
2.4
» 2.9
5. 8
7. 4
7. 1
6. 5
5. 5
5. 3
5. B
5. 6
4 . 5
3. 5
3. 2
10 US 30 MINUTES
•-• • •-•
3 . jJ
3 . 3
3. 5
3 . 3
3. 6
3.6
'~- t
*L . O
1 .7
!,°^ A-33
.^ . o
2. 6
( 4.1 4.4


-------
HC1 CHARACTERIZATION TEST
12	12-1987
PROGRAM / MAINE ENERGY RECOVERY  COMPANY

T I ME
10144
10143
10: 48
1 0 : 49
1 0 s 50
1 0 : 5 1
10: 52
10: 53
10:54
10:55
10: 56
10: 57
10; 58
10: 59
1 1 : 00
AVERAGE
1 1 : 00
AVL
11
1 1
11
11
11
11
1 1
11
1.1
1 1
1 1
11
1 1
:RABE
00
0 1
02
03
04
05
06
07
OS
09
1 0
1 1
12
CHAM
INLET
wetHC
UBS,
354,
3 4 2 .
337.
332 .
319.
• ''' j;'' j^ D
313.
3 2 4 .
309'.
314.
309.
31""' 1
338.
"T "T /I
1 CHAN 2
M 1 1)
1 wethIC
2
9 /-,.
ijPff
5 i
9 ]
4 r
6
3
--•.•
6
0
6
~7
_,.
9
VALUES FOR
224-.
VALUE
144 .
3-J .
3 1 B .
320.
342.
374 .
376.
382.
380.
380.
377.
329.
359.
7
S FOR
9
5
0
B
7
9
9
4
1
t—.
7
9
I,
Jt %•*
jil .
j^,' .
1 .
1 .
1 .
1 .
j~' n
J^. n
ll „
2 H
'7-
Jjl B
2.
THE
1 .
THE
2.
7'
-7
11.
34.
53.
66.
77.
83.
88.
91 .
68.
1
g
6
1
o
9
8
E
9
ji.'
5
5
6
6
7
6
P
p
L
4
5
4
-T
r>
9
7
6
B
8
T;
CHAN
QUT'L
d r y
r$&'
zt^9
1/&{
iff
i


i
i






REVIOUS

H
3
3
4
5
0
8
9
i — ,

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1 CHAN 2 CHAN 3 ,,
INLET MID OUTLET sL*^* P\JiA$
TIME
11: 16
11: 17
11:18
11: 19
1 1 : 20
11:21
11: 22
1 1 : 23
11:24
11:23
11:26
11:27
1 1 : 28
1 1 s 29
1 1 : 30
1 1 : 3 1
1 1 : 32
1 1 : 33
1 1 : 34
1 1 : 35
1 1 : 36
1 1 : 37
1 1 : 38
11:39
1 1 : 40
1 1 : 4 1
11:42
11:43
11 : 44
1 1 : 45
11:46
1 i 5 47
1 1 : 43
1 .1. : 49
11:50
11:51
1 1 s 52
1 1 : 53
11:54
1 1 s 55
i 1 : 56
11:57
1 .1. : 53
1 1 : 59
12sOO
12:01
12s 02
12:03
12:04
12:05
12: 06
12307
1 2 : 03
1 2 s 09
12:10
—WetHC! wetHCl drvHCl ^^— J-Ttt*A
441. 4
435. 0
399. 1
382. 5
400 . 0
4 18.1
405. i
412.6
434. 7
465. 1
502. 3
467.7 al
432.2 '
414.8
424. 4
374. 5
345. 8
323. 8
332. 7
324. 1
335. 8
353. 6
350. 7
340. 6
344. 4
415.5
422. 2
4 15.9
349. 1
262.7
239. 0
292, 7
347. 6
359. 0
365. 6
309. 3
304. 1
337. 6
379- 1
372. 4
354. 2
359. 9
378. 6
374. 9
401 . 7
434. 8
429. 2
420. 4
420. 0
430.3 yp
420.6 A"
423. 4
401 . 8
412.2
20. 6
16.2
13.2
11.0
9.6
8. 4
7. 4
6.3
5. 6
5.2
4.9
4.7 fa*
4. 6
4.6
4 . 6
4 . 4
4. 3
4 . 0
3 „ 8
3. 6
3 3
3 . 0
2. 8
2. 7
j''' a \."j
2. 4
2. 3
?:3
2 . 2
2. 1
2. 4
2. 4
2. 1
2 . 0
1 .9
1 . 9
1 .8
1 . 9
1 . 9
2. 1
2. 2
f- > -T-
2.5
2. 5
2. 4
2.4
/ / L
•*" " J- (7
2. 1
2. 0
2. 0
7.5*
6. 6
6. 8
6 . 0
6. 1
5.7
6. 2
5. 6
5 . 7
5. 6
5. 3
5-° 0
q.p.
4. 9
4 . 8
4.6 f \
4 • 2 ^WT •/£*
5. 0 •> h#<^ A '
4.8 U*'
4 . 5
4. 6
4- . 7
4. 7
4 . 0
3. 7
. Jj „ Jj
•, m ^
3.7 ^
4.0 ^ .j.
3.8 5 /
fl v^>(
4.1 j V VV1
3.8 aJ( V
3.4 , 
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE  ENERGY  RECOVERY COMPANY
12 "-12- 198 7


T I ME
12s"iT'
12; 12
12; 13
12: 14
12:15
AVERAGE
12: 15
12: 16
12: 17
12; IB
12: 19
12; 20
12:2 1
12; 22
12; 23
12: 24
| '•;.) „ <~> u-jj
12: 26
12: 27
12,i 28
12: 29
12: 30
12:31
12; 32
12: 33
12: 34
1 2 ; •.;!' 5
12: 36
12:37
1 2 : 38
12:39
12; 40
12:4 1
12: 42
12; 43
12: 44
12:45
AVERAGE
12: 45
12:46
12s 47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
CHAN 1
INLET
wpt HC1
4 1 9 - 0
456. 8
4'55. 1
449. 1
453. 7
VALUES
387. 7
468. 7
4B2. 2
479- 6
442. b
429. 7
433. 7
420. 5
4' 2 4' . 2
43.0. 4
438. 9
460. 1
460. 7
450. 0
442. 6
457. 3
448. 6
445. 7
433, 8
445. 1
461 . 6
453. 6
472. 5
4-54. 1
430. 9
427. 4
438. 7
449. 0
457. 0
437. 3
407. 8
VALUES
446. 1
389. 6
361 . 1
393. 7
419.7
444.6
422. 5
420. 1
446. 0
465. 9
473. 4
477.7
CHAN 2
M I D
wetHCl
2 . 0
2 . 0
2. 1
2. 1
/ADi>J L.(a&l
t'f^V^f' 	 ~- -£-y-~y'
M=tfR THE" LABT
3. 9
2. 2
J^' B 1^-
J''' . • "''
_j- ' K j^'
O 'I
2. 1
2 . '0
1 . 9
1 . B
1 . B
1 . 8
1 . 9
1 . 9
2. 0
2. 0
2 . 0
2 . (")
2. 0
2 . 0
2 . 0
2 . 0
2 . 0
jL. B ( •'
1 . 9
1. 8
1 .8
1. 9
1.9
2 . 0
2 . 0
FOR THE PREV1
2 . 0
1.9
l.B
1 .8
1 . B
1.8
1. B
l.B
l.B
l.B
1 . B
1.9
CHAN 3
OUTLET
dryHCl
3. B
5. 0
5. 1
4. 3
4 . 2
HDURr^C) MINUTES OF VALID DATA
4. 3
4 . 3
4- . 4
4. 1
4 . 0
3. 5
3. B
3. 8
3 . 5
3 . 6
3. 6.
3 n 7
3 n-
•j' . 5
3 „ 3
2. B
2. 6
'"' J
3 . 3
3. 4-
3 „ 0
3. 1
3. 7
3. 6
._' • t 5
3 "•'
2. 9
3. 1
•-• . 5
3.B
3. 9
OUS 30 MINUTES
'"!* cr
2. B
2.5
2.4
2.5
2. 6
2.4
2. 5
2. 7
2.B A-36
2.7

-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY


T'
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1


IME
2
2
2
3
3
T
3
T
T(
'T
**!*"
~T
._,,
~!j
•",?
T
...,.
-,,
3
57
58
59
( 1 ("l
* / v_/
ol
02
03
04
05
06
07
03
09
10
11
1 2
13
14
15
AVERAGE
1
A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
"T
15
VERAGE
3s 15
3
3
,_;i
3
3
"***
3
..,
3
3
3
3
3
.^i
3
3
3
3
3
•«'
3
3
3
3
'3
•la1
3
16
17
18
19
20
2 l
22
23
24
25
26
27
28
29
30
31
32
•-^i •«'
34
35
36
37
38
39
40
41
42
43
CHAN
INLET
1

CHAN
MID
f^
A,
CHAN
3
OUTLET
wetHCl WKtHCl
491 .
464.
450.
434.
434.
431 .
4 3 3 .
443.
425.
447.
462.
464.
455.
434.
458.
457.
458.
434.
418.
VALUE.
440.
VALUE
443.
419.
436.
420.
412.
420.
423.
454.
468.
485.
495.
483.
477.
449.
437.
430 .
424.
406.
390.
403.
412.
426.
431.
467.
481 .
506.
517.
528.
531 .
0
0
T
8
8
^
0
L.
S
~T
7
7
4
8
6
j;_
4
3
1
3
5
S
~T
8
6
1
9
4
6
o
o
J^
0
7
2
7
8
0
8
6
"7*
-T
5
5
4
2
6
_,.
9
0
8
1
1
1
1
2
T1
-C-
j~,
^j'
2
j^.
2
2
1
2
—i
^
'"^
1
FOR THE
1
FOR THE
1
1
1
1
1
1
1
1
1
jL.
'-j
ji.
2
T1
^'.'
1
1
1
1
1
1
1
1
1
ji.
j^!
o
2
.9
. 9
. 9
. 9
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0
0
. 9
. 0
. 0
. 0
. 0
. 9
PREV
. 9
LAST
. 9
. 8
.8
. 8
.8
. 8
.8
. 8
. 9
. 1
. 1
'"T1
. 1
. 0
. 0
. 9
. 9
.8
o
. 8
. 7
.8
.8
.9
. 0
. 0
. 0
. 0
. 0
dryHCl
- 	 ~ 	 —f- 	 :
7;
-r
2
T1
jU.
2
~?_
2
u^.
-T
-T
3
"T
.il
2
-r
2
2
10 US
2
HOUR
"T
^
"T
'~
ii_
2
2
^
..:-
T
"T
"^
"T
"\
"T
3
"T
'-^
"T
"T
'"•i
2
2
2
2
2
2
2
. 9
. 0
. 1
. 7
. 0
. 6
. 4
7
.6
. 7
. 1
. 3
. 2
. 0
. 8
. 8
. 0
. 7
. 9
30 MINUTES
. 7
: 60 MINUTES OF VAI 	 [ D DAT
. 1
. 0
. 0
. 8
. B
. 8
. 4
"^
. 9
. 4
. 6
. 8
. 2
. 5
. 7
. 6
'"TI
. .c.'
. 0
. 0
1
. 9
.8
. 8
.6
. 7
" ^ A-37
. 6

-------
HC1 CHARACTERIZATION TEST
12	12-1987
PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
13s 44
13:45
AVERAGE
13s 45
13s 46
13; 47
13: 48
13; 49
13: 50
1 3 s 5 1
13:52
13s 53
13» 54
13s 55
13: 56
13: 57
13s 50
13:59
14: 00
1 4 s 0 1
14:02
14; 03
14ii 04
14s 05
14s 06
14s 07
14s 08
14s 09
14:1 0
1 4 s 1 1
14:12
14: 13
14:1 4
14s 15
AVERAGE:
1 4 s 1 5
AVERAGE
14:15
1 4 1 1 6
14:17
14: 18
14s 19
14: 20
14:21
14s 22
14:23
14:24
14:25
14: 26
CHAN 1 C
INLET \v
wotHCl is
537 . 1
541.7
VALUES FOR
457. 4
520. B
509. 1
484. 7
482. :i
4 5 S . 6
448. 6
454 . 7
464 . 3
463. B
493.3
495. 1
5 1 2 . S
rr ~y ^-i I
uJ •_' ji. . O
5 2 4 n 2
512. 1
488.. 3
448. 4
439. 5
455. B
476. 0
4 1 0 . 0
426. 9
442. 4
51 B. 4
566. 3
550. 1
503. 1
45B. 6
464, 4
47B. 6
VALUES FOR
4B2. B
VALUES FOR
470. 1
510.9
546. 6
569. B
578. 9
593. 8
668. 9
696.7
714.0
729. 1
727.3
658 . B
:HAM 2
1 1 D
letHCII
2 . 0
2 . 0
THE PREV
1 .9
1. 9
1 . 9
1 . B
1 .7
1 . 7
1 „ 6
1 .6
1 . 6
1 . 6
1 „ 7
1 . S
1 . B
1 . 8
1 . B
1 „ 8
1 . 7
1 . 6
1 .5
]. . 4
1 . 4
1 . 4
1 . 4
1.4
1 . 6
1 .9
2. 1
j^. D ji'.'.
•"•;• j~r-
j--' B .ji
/•-, -7-
THE PREV
1 .7
THE LAST
1.8
r— , -7J-
J^. B •»'
T1 O
2. 1
2. 0
1. 9
1 .8
1.7
1 .7
1.7
l.B
1.8
CHAN 3
OUT' LET
dryHCl
2. 4
3 . 0
IOUS 30 MINUTES
3 . 0
3 . 0
2.7
3. 1
3. 1
2. 6
2. 1
2 . 1:
2. 1
2. 6
3. 0
j~;, cr
2. 9
2. 9
2. 9
2 . B
*".•' /.
J^ H LJ
2. 7
2 „ 4
'*."' "^
~ ji.
j;^ B (_"
3. 4
2. B
T1 T
/— , ~^-
2. 6
2. 7
2. 8
,-, -;;•
2. 4
2 . 7
IOUS 30 MINUTES
2. 6
HOUR: 60 MINUTES OF VALID
2. 8
3 . 0
2. 7
2.9
2.8
3 . 0
2.8
1 . 9
2. 0
r-j1, *^r
3. 1 A-38
3.7
                                                       DATA

-------
HC1 CHARACTERIZATION
12-12-1987
             TEST PROGRAM  /  MAINE ENERGY RECOVERY COMPANY


TIME
14:27
14:28
14:29
14:30
14:31
14: 32
14: 33
14: 34
14: 35
14:36
14: 37
14: 38
14: 39
14: 40
14:41
14: 42
14: 43
14: 44
14: 45
CHAN 1
INLET
wetHCl
689. 8
714. 9
680.4
606. 3
548.7
523. 3
490. 2
492. 9
471.4
482. 5
495. 9
M S 6 . 3
440. 9
448. 7
479. 8
470. 6
472. 7
433. 2
416. 8
CHAN 2
MID
wetHCl
1 . 8
1 .8
1 . 9
1 . 8
1. 7
1 /
i . LJ
1 . 6
1 . 5
i .5
1 . 6
1 .7
1 . 9
2 . 0
2. 0
2. 1
2 . 2
2 _ 7;
2. 3
2 . 2
CHAN 3
OUTLET
dryHCl

3. 2
3 . 5
-T- cr
_'' . -J
-T -T
3. 0
3. 7
3. 6
3. 7
3 3
3 , 5
3 . 5
3. 2
3. 1
3. 4
3. 9
3. 1
2. 8
2 . 6
 AVERAGE
 14: 45
14:
14s
14:
14:
14:
14:
14:
.14:
14:
14:
14:
14:
14:
14:
-j tr_- ,
4. v_J a
15s
15:
15:
15:
13:
15:
15:
15:
15:
15:
15:
15:
15:
15:
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
VALUE
          416.7
          426. 0
          440. 2
          459. 0
          460. 5
          455. 2
          461 . 5
          471 . 9
FOR
 15: 15
 509.
 507.
 513.
 502.
 490.
 472.
 443.
 439.
 430.
 431 .
 444.
 481 .
 512.
 506.
 501.
 493.
 464.
 462.
 457.
 455.
 462. 4
THE
1 .
2.
— i
1 .
1 .
1 .
2.
ji. •
"T1
2.
2 .
2.
2 .
2 .
2.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
.
1 a

^i. -
2.
jL. •
2.
1 .
1 .
1 .
PREVIOU
9
o
0
9
9
Cj
o
o
o
1
1
1
1
0
o
9
8
7
6
6
7
7
8
r~i
7

(.)
0
0
o
9
8
8
IS 30
3. 1
'-~, cr
3. 1
3 . 0
2. 8
/i
3. 8
3 . 1
3. 1
3 . 2
3 . 0
2. 9
2 . 9
3 . 2
•_:• . ^
3. 1
2 . 5
T1 "7
3 . 1
2. 9
_T- _,-
o ~^r
2. 1
'— i C"
.J.. • —•
— , IT"
^ . u
2.5
2. 9
2. 4
2. 6
2. 9
3. 1
-I I NUT t
                           A-39

-------
HC1 CHARACTERIZATION  TEST PROGRAM / MAINE  ENERGY RECOVERY COMPANY
12	12-1987

        CHAM 1     CHAN  2     CHAN 3
        INLET      MID       OUTLET
TI ME„		wist HC.1		wet H C.1	dr.y HC.1.

AVERAGE
15:15
AVERAGE
15: 15
15:16
15: 1 7
15: 10
15: 19
15: 20
15:2 1
15:22
15: 23
15s 24
15: 25
15: 26
15: 27
1 c; „ r-~, p
.1 -.J H -L <.J
15:29
15:30
15:3 1
15: 32
15s 33
15:3X1
15:35
15s 36
15s 37
15s 38
15: 39
15: 40
1 5 : 4 1
15; 42
15: 43
15: 44
15: 45
AVERAGE
15 45
15 46
15 47
15 48
15 49
15 50
15 51
15 52
15 53
15 54
15:55
15:56
15:57
15s 58

VALUES FOR
469. 3
VALUES FOR
515, 3
453. 7
453. 3
452. 2
M' / jl. e O A, I /
M
466. 7^
490. 5
497. 9
476. 7
460, 6
313.5
17B. 5
117. 0
96. 3
69. 5
' O c:;
O w . vJ
60. 2
50. E
46. 6
42.4
5 0 . 0
47. 2
44. B
36. 0
37 . B
34. 6
38. 0
31.4
36.7
33 . 5
27.7
VALUES FOR
189. 5
32. 3
21.7
29.7
17.0
24. 5
23.3
26.8
21.7
22.7
28. 9
2 1 . 0
23. 0
23.1

THE PREV
1 . 9
THE LAST
1 .9
1 . 7
1 .6
1. 6
1.6 „
1.6 >
1 . 7
1. B
1 . 9
1 .9
1 . B
1 . 6
1 . 5
1.5
1.4
1. 4-
1 .3
1 . 3
1 . 3
1 . 2
1.2
1 . 2
1 . 2
1. 1
1 . 1
1. 1
1 . 1
1 . 1
1 . 1
1 . 1
1 . 1
THE PREV
1. 4
1. 1
1 . 2
1 .2
1 . 2
1.2
1.2
1.2
1 . 2
1 .2
1 .2
1 .2
1.2
1.2

1C) US 30 MINUTES
2 . 9
HOUR: 60 MINUTES OF VALID DATA
3; . o
2 . 7
2. 2
1 . 9
2 . T;
T1 /- '
2. 6
2. 2
2. 7
2. 4
3. 2
3 „ 7
1.5 /
rv
- o . o /\
-0.5 ^
0 . 4 [pr
1 . 0 v
0 . B AT
1 ^ oft
0 . 3 \
1.2
1 . 5
1 . 3
0 . 6
1. 1
0. 4
0 . 2
0 . 3
0 . B
0. 1
-0. 0
IOUS 30 MINUTES
1. 4
0. 5
0. 1
0 . 4
0.7
0. 4
1 . 3
l.B
1. 5
1.6
0 . 5
-40. 6
-1.1
0. 6

-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
:
:
:
H
H
:
"
a
:
:
;
:
s
S
:
;
:
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
AVERAGE
16
«
1 5
AVERAGE
16: 15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
.16
16
16
.1.6
16
16
16
16
16
16
16
16
16
;
tt
*
;
5
^
jj
;
J
2
jj
;
2
5
H
2
3
*
3
•
5
3
«
a
jj
;
2
:
;
H
;
16
17
18
19
20
21
22
23
24
25
26
27
28
2 9
30
31
32
T T
34
35
36
37
38
39
40
41
42
43
44
45
CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl

















22.
29.
21 .
28.
18.
30 .
18.
28.
26.
24 .
26.
17.
T1 "^
14.
"T O
24.
28.
1
1
5
4
4
0
9
1
0
8
0
1
~T
7
2
0
4
VALUES FOR

24.
VALUE
106.










1
1
1
1
1
1
1
1
1
1
1
1
1
1
1





29-
21 .
.J-! ~7 -
j; 	 |i „
29.
_,._,.
58.
66.
93.
89.
09.
24.
1 2.
17.
13.
17.
19.
18.
34.
jJ- '—' »
21 .
13.
20,
03.
02.
90.
68.
53.
cr -7
J / .
63.
4
S FOR
9
2
6
7
"T
8
5
Q
4
5
8
~T
9
7
j^.
9
3
T
6
6
7
~T
9
7
9
9
7
1
T(
5
2
1.
1 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
-L a
1 .
1 .
THE
1 .
THE
1 „
1 .
1 .
1 .
1 .
1 .
1 .
jl. n
^ a
..-,.
T
~T
~"r
-Jj »
~^
O' n
~\
~\
6.
12.
19.
25.
3 1 .
"^ "^
29.
/•-, f~,
16.
1 1 .
8.
7.
6.
3
T;
j^.
-T
'T,
-T
'T
T;
-T
"\
-T
T|
-T
-T
-T
-T
~T
PREV
•-'
LAST
7;
"T
-1
5
7
9
^
7
.ii-
jL.
r-,
o
1
~T
2
^
8
jil
0
5
9
8
2
1
6
2
5
4
0
"T
CHAN 3
OUTLET
dryHCl

















IOUS
'
0
0
o
0
0
o
o
0
1
1
0
o
0
1
1
1
1

o
HOUR
0


















1
1
1
1
1
1
1
1
1



0
o
0
0
o
0
1
1
1
1
1
ji.
"T
6
8
9
9
9
0
2
r.r
— 7
D
8
inr
4
0
5
6
7
. 3
. 0
. 1
. 4
. 4
.7
. 5
. 7
. 0
. 4
. 6
. 8
. 9
. 1
. 5
. 0
. 1
30 MINUTES
. 7
; 6O MTNUTFB <">lr VAI, ID DATA
. 4
o
. 6 
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
12	12--1987

        CHAN 1    CHAN 2    CHAN 3
        INLET     MID       OUTLET
AVERAGE
16:45
.1.6: 46
16:47
16: 48
16: 49
.1.6: 50
16:5 1
1 6 ! 5 2
16: 53
16s 5 4
16:55
1.6s 56
16:57
16: 58
16: 59
17: 00
1 7 : 0 1
17s 02
17:03
17s 04
17:05
17:06
17:07
17: 08
17:09
17: 10
1 7 : 1 1
17:12
1 7 s 1 3
1 7 ; 1 4
17: 15
AVERAGE
1 7:15
AVERAGE
1 7:15
17:16
17 s 1 7
17:18
17: 19
17:20
17:21
17:22
17:23
17s 24
17:25
17:26
17:27
17: 28
VALUES FOR
85. 4
67.8
104.7
109, 4
120. 1
135. 1
146.3
150.3
155. 9
190. 0
j''' i1 ' • ''' o /
3 1 0 . 6
320. 4
309. 2
3 3 1 - 0
365. 4
382. 7
394. 6
335.3
369. 3
369.2
352. 0
339 . 0
335. 9
341 . 2
348. 0
37 1 „ 3
423;- 0
449. 8
492. 4
499. 6
VALUES F'OR
296. 4
VALUES FOR
190. 9
532 . 2
536. 3
490. 7
460. 2
420. 4
411.9
4 1 0 . 8
419.5
398. B
392.7
379.5
365. 4
398.4
THE PREV
9. 1
6.5
11.9
26. 1
4 0 . 9
5 1 . 0
32 . 3
1 6 . 8
12.5
11.3
1 0 , 9
9. 4
7.9
6 . 9
6. 2
5 . 5
£L" '~'i
vJ o jl..
4 . 6
4. 1
3. 6
~T T"
3. 1
3. „ 0
3 . 0
3 . 0
3^ . 1
"•^ '"?
3; „ 4
3 . 7
3. 9
3. 7
THE PREV
1 0 . 3
THE LAST
9. 7
3. 4
3 . 0
3.4
3. 7
2.8
_,.•' . '•,
2. 1
2. 1
2, 0
2. 1
'"•' T1
o o
2.3
1C) US 30 MINUTES
7. 1
11.7
20. 8
22. 7
22 . 2
26. 5
20. 0
16. 6
1 7 . 0
13., 1
8. 4
5. 8
4 . 8
G°2 1^
5.4 frr
5.6 jf.
5.2 y^
f
4.6 I
6. 8
6.7
5 . 6
4 . 9
4 . 2
4. 7
4. 8
4. 1
4. 1
4. 4
8. 9
8.8
1C) US 30 MINUTES
9. 6
HOUR: 60 MINUTES OF VALID DATA
8. 3
7. 8
6. 9
6. 2
6. 1
5. 8
5. 4
5. 2
6.8
7.5
6. 1
5.4
4.4
a. <=• A~42
4 . j

-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
17:29
17:30
17:31
17:32
17:33
17:34
17: 35
17: 36
17:37
17:38
17: 39
17: 40
17: 41
17: 42
17: 43
17: 44
17: 45
AVERAGE
17: 45
17: 46
17: 47
17; 48
17: 49
17: 50
17:51
17:52
17:53
17: 54
17:55
17: 56
17: 57
17:58
17:59
18: 00
1 8 : 0 1
18:02
18:03
18:04
18:05
1 3 : 06
18:07
18:08
18:09
18: 10
13:11
13: 12
18: 13
13: 14
13: 15
AVERAGE
19s 15

CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl
424.9
452. 7
434. 7
444. 0
443. 8
436.9
424. 6
398.7
407. 8
391 . 9
436.5
473. 4
482. 5
492. 6
492. 0
486. 7
451 . 0
VALUES FOR
439. 7
434. 3
394. 8
376. 6
343. 9
328. 1
325. 7
329. 0
334. 0
373. 0
399. 9
364.8
337. 7
309- 0
295.7
234. 8
267. 9
388.8
403. 2
398. 8
396. 9
390. 7
404. 2
395. 6
378. 0
370. 4
388. 7
384.7
438. 5
456. 5
464.0
VALUES FOR
370. 3
2. 3
2. 4
2.5
2.5
2 . 4
2. 2
r— , i— ,
2. 2
2. 1
2 . 0
ji. • jL,
2. 6
2. B
2 . 9
2. 8
2. 7
2.5
THE PREV
2.5
2. '"
2 . 4
2 . 3
2 . 2
2.2
2. 1
2 . 0
2. 0
2 . 1
^L . j^.
si . 2
2 . 2
2. 1
2. 0
1 .8
1 . 9
2 . 1
2. 4
2 . 9
3. 5
3. 6
3. 2
3 . 0
2.8
2.8
2. 6
2.5
2.6
2. 6
2. 5
THE PREV
2. 4
CHAN 3
OUTLET
dryHCl
	 : 	 £.„;_.. :__.i^..T-.
4. 0
4 . 0
4. 6
4. 1
4 . 2
4. 7
4 . 0
4.2
4. 1
3. 7
. '•, B ^
3. 5
3. 7
3. 6
3. 8
3. 5
3. 6


















IQUS 30 MINUTES
4 . 8
2. 9
1 . 1
T ~T
3 . 1
2 . 9
2. 7
3 . 0
^r '71
3 . 2
2. B
3. 5
3 . 6
3 . 0
3 . 3
2 . 9
2. 1
1 . 9
3. 1
3 . 4
3 . 5
3 . 6
3. 4
3. 1
3. 1
3. 3
2. 6
3 . 0
2. 9
3. 0
2. 7































IOUS 30 MINUTES
T (")

A-43

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE  ENERGY  RECOVERY COMPANY
12	12- "19 87
TI
IE
AVERAGE
18
IB
18
18
18
1 8
18
1 8
18
1 8
18
18
18
18
18
1 8
18
18
18
18
18
1 8
18
18
18
18
18
18
18
18
18
•
ii
X
;
;
j
1;
;
£
u
5
^
U
{}
U
u
n
-
s
1!
H
s
JJ
1!
r,
J
;
5
;
;
:
AVE
1 8
18
18
18
18
18
18
18
18
18
18
18
18
18
18
19
19
19
•
•
:
:
:
:
s
•
:
5
:
;
:
:
:
a
:
•
15
16
17
18
19
20
2 1
'? ''"•
,.j ...,,
24
25
26
27
28
2 '9
30
3 .1.
..... ,.?
33
34
35
3' 6
37
38
39
40
41
42
43
44
45
RAGE
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
CHAN
INLET
wetHC
VALUE
405.
455.
456.
457.
452.
428.
406.
~*i u: i '-,
379.
434.
472.
488.
46B.
460.
455.
398.
4 1 4 .
4 4 6 .
453.
439.
381 .
-^ /--, ,-.
*~ J'-. J^! B
175.
175.
199.
202.
195.
1 60.
126.
117.
VALUE
353.
1 0 1 .
96.
81.
79.
72.
63.
69.
59.
68.
52.
58.
49.
45.
49.
43.
43.
37.
1
1
8
0
1
5
4
6
9
7

6
T
0
9
6
B
4
^
(TI
/
C;
D
6
1
-T
'•TI
5
j^.
8
B
0
5
B
7
S
5
9
d-
^J
9
j^.
5
1
f—,
7
0
"T
4
tr
wJ
"T
B
T
7
7
CHAN
M 1 D
FOR THE
2.
2.
2 .
2 .
*L n
J^-' U
u^! B
1 .
1 .
/ 2 „
« if? 2 .
nf' 2.
j-'l! n
Jl! B
J± a
j^! n
j;:! B
a^'! B
-..'i' B
2! B
1.
1 .
_^ B
2.
T;
-T
-?;
2 .
ji' D
jl' D
2.
FOR THE
2.
2.
J^' D
o
T;
T,
-T
-T
-T
4.
4.
5.
cr
4.
4.
Tt
3.
2.
'•"i
1
LAST
5
5
77
7
5
._,.
1
8
9
1
j:.'.'
4
4 ^
5
-~f
4
-T
-T
4
•"71
B
8
5
~7
•7
J.'-
.tw
9
B
— 7
7
PREV
(nT
7
8
9
1
4
6
6
7
T;
9
-?;
2
5
0
5
1
B
CHAN
OLJTLE
dryHC
HOUR
3
7.
""•!'
6
7
7
5
5
4
4
4
O
4
4
4
4.
...,.
"^
"T
4
3
_.,
~T
-r
/™,
.ii!
j/
4^!
x'
/—,
,..,.
IOLJS
4
4
5
4
4
-T
-T
4
4
6
5
•?
T1
1
1
1
1
1
i;
-
„
.
»
c
-
B
„
„
n
„
H
„
n
„
u
B
B
„
B
B
0
„
.
„
B
m
n
.
.
•
'."'•
•

.
.
.

.









.
.
„,,,
T
],.
60 MINUTES OF VALID DATA
9
'-.i
2
8
.c.
0
7
cr
•-J
8
9
0 b
9
C'-
C;
5
.-,.
B
4
7
1
9
8
7 i ftff^
4 fy (^
8s I ft
(Nr

5 1 (?0\
3 ^
5
5
ID
0 MINUTES
1
7
0
9
7
8
8
4
9
pr
7
8
7
8
7
6
3 A-44
/*-,

-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
CHAN 1 CHAN 2
INLET MID
TIME wetHCl wetHCl
19:03
19: 04
19:05
19:06
19; 07
19:08
19: 09
19: 10
19: 1 1
19: 12
19: 13
19: 14
19:15
AVERAGE
19: 15
AVERAGE
19: 15
19: 16
19: 17
19: IS
19: 19
19: 20
19: 21
19:22
19:23
19:24
19:25
19:26
19:27
19:28
19:29
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19s 37
19:38
19:39
.19: 40
19:41
19:42
19:43
19: 44
.19:45
AVERAGE
1 O » /I R
41.8
33 . 9
37.7
37. 9
31. 9
34. 8
34. 5
38. 3
28. 0
39. 3
37. 4
32. 0
31.5
VALUES FOR
51.0
VALUES FOR
202. 3
38. 0
44. 1
36. 6
4 1 . 0
36. 5
34.3
34. 2
36 . 3
43. 6
32. 5
3 5 . 3
27. 9
36.7
30. 3
37. 1
30. 4
30. 9
34. 0
31.0
25. 3
'-j nr i-j
32. 4
23. 1
30 . 7
28. 9
30 . 0
26. 9
15.8
23. 2
22.5
VALUES FOR
r^1 _ R
2 . 7
2. 6
2.5
2. 4
2. 4
2.5
2.6
2. 7
2.7
2 . 7
2. 7
2. 6
2. 5
THE PREV
•-'• • 2
THE LAST
2. S
2. 4
2. 4
2. 6
O -T
j;- . ji.
2. 1
2 . 1
2. 1
2 . 1
2 . 2
2. 3
T-"1 9
2.2
2 . 2
/— i -71*
2. i
2 . 0
2. 0
2. 0
2. 0
2. 0
2. 1
2. 0
2.0
2. 0
2.0
1 .9
1.9
1.9
1.8
THE PREV
.•• _ 1
CHAN 3
OUTLET
rlryHCl
1
0
... (j
... Q
0
0
1
o
o
o
1
1
1
IOUS
o
HOUR
1
1
0
o
0
o
o
o
0
1
1
^^^^^

C_rf
o
0
0
o
0
o
-0
••- o
-0
o
_.(-)
0
o
o
0
o
IOUS
•1
. 0
. 8
. 0
. 0
. 4
. 6
. 0
. 8
. 8
. 8
O
. 0
. 4
30 MINUTES
. 4
s 60 MINUTES OF VALID DATA
. 0
. 0
. 8
B O
1-1
T
. 4
. 9
. 9
•4 AC*
• -• . . *//i*^*
j_3 JL&J& ' \
7_7XP •
. 1
. 6
. 9
. 7
i —
n wJ
. 6
. 6
. 0
. 1
. 1
. 1
. ('.')
. 4
. 4
. 4
T
.5
30 MINUTES
,.«, A 4 b

-------
HC1 CHARACTERIZATION TEST PROGRAM
12	12-1987
/ MAINE ENERGY RECOVERY COMPANY


TIME _
,19s 46
19:47
19s48
19s 49
19:50
1 9 s 5 .1
19552
19: 33
19s 54
19:55
19:56
19s 57
19:58
19: 59
20; 00
20 s 0 1
20 1 02
20: 03
20: 04
20s 05
20: 06
20s 07
20 s 08
20 r 09 	
"2.0: 10
20: 1 1
20: 12
20: 13
20: 14
20: 15
AVERAGE
20s 15
AVERAGE
^i") •! P-I1
.k,.U 1 wJ
20 16
20 17
20 IB
20 1 9
20 20
20 21
20 22
20 23
20 24
20 25
20 26
20 27
20 28
20 29
20 30
20 31
20 32
CHAN 1
INLET
wratHC.!..
"" 25. 6
18.9
22. 3
29.7
19.3
24.9
18. 6
22.'. 5
*".> P c~,
-1^.0 B ^-J
3 2 . 0
21.1
jl'' • .'' n • — '
22. 6
21 .5
28. 4
24.1
24. 3
20. 2
21.6
19. 1
2 1 . 0
24. 6
20. 0
1 9 , 7
1 B . 7
20. 1
12.2
19.7
11.5
12.4
VALUES
21 . 6
VALUES
26.7
14.8
8.7
6. 7
14. B
5.3
11.7
6. 7
11.9
7.9
12.9
12.5
17. 9
13.7
3. 5
B.5
8.6
13.8
CHAN 2
M I D
wstHCL
1.7
1 .7
1 . 7
1.7
1 .7
1. 7
1. 6
1.7
1.7
1 . 7
1.7
1 . 7
1 . 7
1 . 7
1.7
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 7
1 . 6
.1 . 7
HfcV* 1 . 7
* . / 1.8
. ^ 1.9
1.9
( 1.9
FDR THE P
1 .7
CHAN 3
OUTLET
	 clryHCl
0 . 8
1
0 . 4
--0. 2
-0. 1
•-0. 0
— U . 2
0 , 2
0. 2
0. 5
C) . 3
0 . 7
0 . 7
0. B
-0. 3
- f"l '"?
\_J B jl..
0 . 2
1 . 0
0 . 6
0 . 8
0 . 9
0 . 8
0 . 5
	 	 C' „ 7 	 — — ! 	 "*
	 On J^!
i£/ft 0. 3 Jf,f*
;/ 07 ^v
|<^ (X4 I**
1 S:St
RE VI 01.13 30 MINUTES
0 . 4
FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
1.9
1 .9
j i O
1.9
^1. B
~ z^r^^f
B. 0
5.6
5.7
22. B
43.4
57. B
72. 3
98. 4
105.0
108. 9
110.8
110.8
0 . 8
0 . 9
-0.7
-2 . 0
--1 .4
•••^ 	 ,-, p
-1.4
-1.7
fi^ - 1 1
V(\\ -2>>
i i\a -1.8
4 -1.4
-0 . B
-0. 4
-0 . 5
_ H *""*
1 • j^.
--2. 0 A-46
-2. 0

-------
          HC1  CHARACTERIZATION TEST PROGRAM /  MAINE ENERGY RECOVERY  COMPANY
          12-12-1987
12.2
20:49
20: 50
2o:51
20:52
?(!• L~,~
21:04
21:05
21:03
21:09
21: 10
21:11
21:12
21:13

2lil5
CHAN 1
INLET
TIME
20
20
20
20
20
20
20
20
20
20
20
20
20
:
•
•
•
•
»
•
•
a
M
•
•
A
•
33
34
35
36
37
38
39
40
41
42
43
44
45
wetHCl
8.
8.
9.
14.
T|
9.
5.
7.
9.
12.
14.
10.
5.
0
0
9
8
1
7
0
7
1
6
4
4
O
CHAN
MID
2 CHAN 3
OUTLET
wetHCl drvHCl
110.
105.
104.
99.
-TT;
7.
4.
-T
'•n
r~)
O
f— i cr
,•• . i ^
233.
-^
6
0
6
8
1
7;
~T
9
7
4
5
/
-2.
-2.
-1.
	 -j
-0.
-0.
_^i^
'3
24.
38.
43.
46.
47.
0
1
4
-T,
5
4
*.
2
2
2
4
7;
1
                                                I
          AVERAGE  VALUES FOR THE PREVIOUS 30 MINUTES
          20s45       9.9       49.9        5.8
          20: 46
          20s 47
                      8. 5
                      5. 4
                    — -j
                    j._ i
        447.2        0.2       -2.3
        444 . 1        0 , 2       -0. i
        451 . 6        r), 2       c'.O. Q
        450. O        0. 2      1.37. :1
        445.7        0.2        c.3
        459.9        0.2        :>.::;

       VALUES FOR THE  PREV10UG 30 MINUTE
21:15
VALUES
 126.0
               FOR
             HE  LAST
HOUR;
  12,
                                       MINU
                                                                  A-47

-------
4*}
 A-48

-------
    APPENDIX B.




Sample Calculations
        B-l

-------
B-2

-------
                             SAMPLE CALCULATIONS
 I.   Calibration Corrections



     From EPA Method 6C:



                             C

           C    - (C - C )  	—
   where:
      gas         -  C  - C

                      m    o




     C      Effluent gas concentration (corrected)
      gas

     C    - Average gas concentration indicated by gas analyzer


     C    - Average of initial and final calibration resonses for zero gas


     C    = Average of initial and final calibration responses for upscale


              calibration gas


     C    = Actual concentration of upscale calibration gas
      ma



For Run 1 (Inlet Location) from 15:30 to 16:30:
           C    = (501 - 29)(428)/(473 - 29)

                = 455 ppm HC1 (wet basis)
II.   Moisture Corrections



     For Run 1 (Inlet Location) from 15:30-16:30:



           moisture content = Ik.7% HO

          HC1 concentration = 501 ppm (wet basis)
     Proportion of water vapor, by volume (B  ):
                                            ws


           B   = % H-0/100
            ws      2


     Dry basis HC1 concentration (C )  from wet basis concentration (C )



           C  = C /(1-B  )
            o    w     ws


     From Test Condition 1 (Inlet)  from 15:30-16:30:



           B   = 14.7/100

            WS = 0.147



           C  = 501/U - 0.147)

            ° = 533 Ppm HC1 (dry basis)
                                      B-3

-------
III.   Percent Reduction
                       p    V
            PR-  1 -   °UT  °UT    x 100
                       CIN VIN
    where:
            PR = percent reduction of HC1
           C   = concentration of HC1 at the inlet (dry basis)
           V   = volumetric flow rate at the inlet (DSCFM)
          C    = concentration of HC1 at the outlet (dry basis)
          V    = volumetric flow rate at the outlet (DSCFM)

      For Test Condition 1 from 15:30 to 16:30
            PR =  1 - 66(39.700)    x 100
                      533(39,900)
               = 87.72 (see Table 2.4)
                                      B-4

-------
      APPENDIX C.




Daily Calibration Sheets
          C-l

-------
C-2

-------
SOURCE AND LOCATION Mdl*Jl £
DATE
Ay 7/37
                     ***paiKu -
                                                                         *  I  Pre-
                            ^ItAX P>\
PERSON CONDUCTING TEST

OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
d-2$£>f>f>*+
Of?*/
rr /47^
*"*/&
/ fr&ppv*
*ff*/
'4pf>»*
0% / l.fo
/9*1*
GAS CELL VALUE
( 41 PP^'
WfJ*-
£&*&*£& 4 &****
•fa dyt*an*if f*4
f
COMPUR
O~2Jp1S f>0*>\
Ofr*/*t
">4/>p^
Iff*/
/ VI ft*
IFF*/
'-6 H**
^A% / „
/i.i7-
LIQUID STANDARD
(Values in mV)
mnpp = "&.9*M
110= -4(e.1 *\i
in. l&.t»*I
119- (fO. $ *«/
/
^-fen^Me^^ p**e*
i , •' i
T* dtfHltHuf t*\







NA

TECO
0- ?0&pf>**
t>pf^/
r ^MPP*
ff
4fT^/
/4d?Pp^
if
4-rr*/
/ /^p^.
0.4% /
/i. i 7.
NA

LC^L^Cf^Apm*
IfP^^L^A^







                                                                   41I2DR15
       Pre  and  Post Test Calibration Check Worksheet

-------
SOURCE AND LOCATION

DATF
                         TIMF
                                      HCL  CALIBRATION  DRIFT
                                           DAILY WORKSHEET
                                                        PERSON CONDUCTING TEST.
                   BOOENSEEWERK
                                           COMPUR
                                                   TECO
 OPERATING
 RANGE
                       0-2&O PP*\
                                                 -  ^>
 CALIBRATION
 GAS VALUE
                          **/
                           '
o
I
 MONITOR
 RESPONSE
 TO CAL GAS
 DIFFERENCE
 (RESPONSE-
 CAL GAS VALUE)
 PERCENT SPAN
 (PASS/FAIL)
                         '
//,
                                       0.7
                               &
/.f
 MONITOR
 RESPONSE
 TO INTERNAL
 STANDARD
                       GAS CELL VALUE
                         ( 47 ppm)
            LIQUID STANDARD
             (Values In mV)
                                                              NA
                                                     NA
                                        uo-  -4£4
                                        Ul - .
                                        U2- -
                                             **
 COMMENTS
                                              .

                                                                                           12DR15
                               Pre  and Post Test Calibration Check Worksheet

-------
SOURCE AND LOCATION

DATF
        TIME
                                       HCL CALIBRATION  DRIFT
                                            DAILY WORKSHEET
                                                                  A
                                                    PERSON CONDUCTING TEST.
                    BODENSEEWERK
                     COMPUR
                                       TECO
  OPERATING
  RANGE
0
  CALIBRATION
  GAS VALUE
O POr
  MONITOR
  RESPONSE
  TO CAL GAS
O
           Pvr

  DIFFERENCE
  (RESPONSE-
  CAL GAS VALUE)
       4 ?p>
                                           /3 PP
 PERCENT SPAN
 (PASS/FAIL)
                  0.7
  MONITOR
  RESPONSE
  TO INTERNAL
  STANDARD
 GAS CELL VALUE
LIQUID STANDARD
 (Values In mV)
                                         NA
                                         NA
                                    DO1
                                    Ul
                                    U2>
                           /. 7
  COMMENTS

                                                                                            4112DR15
                                Pre and Post Test Calibration Check Worksheet

-------
                                            HCL  CALIBRATION  DRIFT


                                                 DAILY WORKSHEET
SOURCE AND LOCATION



DATE  /^/ ^
& ppm /
/4-7pf>ry\
1 /
-£>•*? ffr* /
' $& PPn^
/} n^^tfm
— is • ^
O ffm /
'?4ffrr\
i ppm /
/ 76 Wr^
I f>p>r\ /
'-tfff*
D 47, /
/-7/%
LIQUID STANDARD
(Values In mV)
SLOPE • -££•?
no- -4tt>.l>
in. /^.f
119 » ^.6


LEAB£ffi8ttR





NA

TECO
&' ^Z> /^^|
& Pi?m /
'4-2% pf»r\
f '
10 Ppm /
'447ff^
Ib Vf>>^ /
^ /Jpsn-^
/•/ft/
/J.i 7,
NA

^(ojyfGf^







o
I
                                     Pre  and Post Test Calibration Check Worksheet
                                                                                               4112DR15

-------
       HCL CALIBRATION DRIFT
DAILY WORKSHEET ~~
SOURCF AND LOCATION M&^ £ntvau /&t'£\/€w fafrtunu - £>/'M?-/m:-J , M&'m Side A
HATF /P//J/87
TIMF ^87^7 - 0^^
/ ' '

OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
D" z&o PP^\
Ofr/A1
7 f / ppm
1 1
D ppw /
i f
& Dpm /
"%/OA%
GAS CELL VALUE
( 41 ppm)
x / /
'*"
COMPUR
/"> — 9/ y
L/ e^-fco ppr*\
II
& PL>**\ /
tf-4- pfr>\
OO pptv\
1 pp^\ /
0.4% /
LIQUID STANDARD
(Values In mV)
110= -fy-}
in. l$2. S
i|?. £7 f
/
twT^'c ^
PERSON CONDUCTING 1
J.&AJ^lSGtffr'





NA

fFST ^>ls\Gr*U.lj(^

TECO
^- <7fl> pp^
(/) ppm /
4f^-o ppr*\
i/
3/^ /
/ X^-^ ^
* •
/A4 7,
NA

j-ggsK







                                                           4112DR15
Pre and Post Test Calibration Check  Worksheet

-------
SOURCE AND LOCATION

      A2//-2
DATE
        TIME
                                       HCL  CALIBRATION  DRIFT
                                            DAILY WORKSHEET
                                                                                   A
                                                   PERSON CONDUCTING TEST
                   BODENSEEWERK
                      COMPUR
                                                                          TECO
 OPERATING
 RANGE
0
                                    0 -

 CALIBRATION
 GAS VALUE
D PP^
                                   0 Pe
 MONITOR
 RESPONSE
 TO CAL GAS
 DIFFERENCE
 (RESPONSE-
 CAL GAS VALUE)
                          17
                          1 1
                                                     7
                                                                         PP
                                                                                 tIL
 PERCENT SPAN
 (PASS/FAIL)
 MONITOR
 RESPONSE
 TO INTERNAL
 STANDARD
 GAS CELL VALUE
  ( 4-7  ppm)
                                   LIQUID STANDARD
                                   (Values In mV)
                                         NA
                                                                            NA
                                   uo
                                   Ul
                                   U2
 COMMENTS
                   v
                               Pre and Post Test Calibration Check Worksheet
                                                                                             12DR15

-------
      APPENDIX D.




Daily System Checklists
          D-l

-------
D-2

-------
    HC1  GEMS  DAILY  INSPECTION  CHECK  LIST
                Characterization Test  - Marion County Facility
Date      /2/f/g?
Initials
TECO Model 15 Analyzer/Model 200 Dilution System

    M200 Control Unit
       Aspirator Air Pressure                 _ £>£> _ psi
       Orifice Vacuum                        _ "  ZC' /*#? J**»
       Zero Air Flow Rate                            «f     
-------
    HC1  CEMS  DAILY  INSPECTION  CHECK   LIST
                Characterization Test -  Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System

    M200 Control Unit
       Aspirator Air Pressure                       %?£>      psi
       Orifice Vacuum
       Zero Air Flow  Rate                            ^     Q scfh
       Calibration Gas Flow Rate              	A	 scfh

    TECO 15
       Sample Flow Rate                       	/, &     ipm
       Zero Pot Setting
       Span Pot Setting


   jnrp-uLzr 4150 ZGSM/4330 Dilution  System

    4330 Dilution Control Unit
       Aspirator Air  Delivery Pressure                fo£)     psi  ("4-. / ha r}
       Orifice Vacuum                             — %. I
       Probe Temperature
    4150 ZGSM
       Analyzer Sample Flow Rate                -44£> ^^    Iph
       Analyzer Inlet Pressure                       4-7      psj_
       System Vacuum                               , /4^ ^^
       Printer Paper Supply Adequate           Yes  i/-  No
       Absorbing Solution Tank Level
         (Capacity, 20 1)                     	/       ±
       Waste Tank Level  (Capacity,  20 1)              jfei	 1
       Calibration Solution Tank Level                  	
         (Capacity. 21)                             A  /_     -,
   Sampling System Flow Rate                        t?£T& JUvk
   System Blow Back Air Pressure                    ~2~,	
   Strip Chart Recorder Paper Supply OK        Yes]/   No
   Strip Chart Recorder Pens Inking            Yes  \/,  No"
                                                     No"
Heater Temperatures Within Limits          Yes
   Compressor  Delivery Air Pressure                   /^i^
   Compressor  Air Line Leaks  Detected          Yes	N^ . / ' PS1
   Electrical  Power Supply Adequate
                                  n-4

-------
    HC1  CEMS  DAILY  INSPECTION   CHECK  LIST
                Characterization Test - Marion County  Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System

    M200 Control Unit
       Aspirator Air Pressure                 	£>Q     psi
       Orifice Vacuum                             - /^- *y /^"//j, Rg^
       Zero Air Flow Rate                            4    (/scfh
       Calibration Gas Flow Rate              	4      scfh

    TECO 15
       Sample Flow Rate                             /,£>      1pm
       Zero Pot Setting                      _
       Span Pot Setting
            4150 ZGSM/4330 Dilution System

    4330 Dilution Control Unit
        Aspirator Air Delivery Pressure                f?5     psi  (3-8
        Orifice Vacuum                             - 7, £      psi
        Probe Temperature                     	/ ^	  C

    4150 ZGSM
        Analyzer Sample Flow Rate              	45&    ^Pn
        Analyzer Inlet Pressure                	4.1^     psi
        System Vacuum                         	
        Printer Paper Supply Adequate          Yes y/   No	
        Absorbing Solution Tank Level
          (Capacity, 20 1)                    	^	 1
        Waste Tank Level (Capacity, 20 1)       	/(^	 1
        Calibration Solution Tank Level
          (Capacity. 2 1)                      	0> 
-------
     APPENDIX E.




Quality Assurance Data
         E-l

-------
E-2

-------
                  EPA REFERENCE METHOD 6 CSO

                        SAMPLING  DATA
PL ANT/LOCATION   /I j"? A
                                                          JOB*
SAMPLING LOCATION.



RUN »	/	



STACK TEMPERATURE
                           /t,
                                -7
AMBIENT TEMPERATURE
. °F   METER



. °F   METER BOX
                                                      ?. *

BAROMETRIC PRESSURE, P
                          .2
                                    in. Ha
CLOCK TIME
/^ /O
/^ '^
/ 6 .?0
/o 3 ^
/6 ^(0


FOTAL VOLUME =
vm
DRY GAS MF.JER
READING ^1
yV
J/5^7. X-?J
2/ // -s'TrO
j"/^ 1"" ^uX^
g/^^. ^T^J
^/7V ^V
\

/^ VZ5^ ^
ROTAMETER
SETTING (cfh)
/ ^^






AVG.TEMP =
*nn Cavn)
DRY GAS METER
TEMPERATURE (°F)
^
^
5^>

-------
                  EPA REFERENCE METHOD 6 C90

                        SAMPLING  DATA
PL ANT/LOCATION   /^ ' 1 ^~ *—

                ,-? ,  /
SAMPLING LOG
RUN
             ANALYST
      TFMPFPATIIPr
B AROMETR 1C PRESSURE, P
                              Jn. Hq
                                                   JOB*
AVERAGE METER TEMP., T^  = (460 f tm(avg) ) =


£TD GAS MTTER VOLUME, V


     V,
                          (17.64 "R/in. Hg)
                                                       DATF

CLOCK TIME
/O ^
1 7 ^^
/ 7 (^ ^ "
/ 7 ' / ^
/7 A-


rOTAl VOLUME =
vm
DRY DAS METER
READING (ft3 )
J/7V- ^^7
]>nf.
-------
                   EPA REFERENCE METHOD 6 (SO


                         SAMPLING DATA
PL ANT/LOCATION   /"? /
                                                          JOB*
SAMPLING LOCATION _



RUN *	i2	   ANALYST
                                                          DATE
                                                               /2/7/T7
STACK TEMPERATURE
AMBIENT TEMPERATURE
                                          METER BOX FACTOR,
                                                                 7 6XJ
BAROMETRIC PRESSURE, P
                                     .in. Hq
CLOCK TIME
J7- ib"
JT*±
// /j-
//' v^
/7 V^


FOTAL VOLUME =
vm
DRY GAS METER
READING (-ftfT
^'
^/?0.5^^
jylv.^^
Ji^r^o
/2^^ ad2^'
jz^sr/^


|(/^^1 (ft3)
ROTAMETER
SETTING J^rffij
/ ^/C
/ /—






AVG.TEMP =
m  =




     STD GAS METER VOLUME, V f ...  	:
                       nustdj
                                                      dscf
         Vm(std)  =? (Vm) (¥)  (17.64 °R/in. Hg) (Pbar/T  )
                                               m
     COMMENTS:
                                   E-5
                              ENTROPY

-------
O;
           CC
                                                   E-6

-------
                      CUSTODY SHEET FOR REAGENT BOX  #
Date of Makeup
Individual Tare  of  Reagent:

Individual Tare  of  Reagent:
                          Initials
                                        Locked?
                                      mis. of

                                      mis. of
PLANT NAME
SAMPLING LOCATION
                                           7
Run
Number
Date
Used
Initials
Locked?
Date
Cleanup
Initials
Locked?
                   A
                  Date      Initials  Locked?
Received in Lab
Sampling Method:    jpy\
Remarks :
                           F-7

-------
         APPENDIX F.




HC1 Calibration Cylinder Gases
              F-l

-------
F-2

-------
The following calibration gases were used during this test program.
                         HC1 Calibration Gas Cylinders
Cylinder No.
K-9933
K-9308
K-9841
K-9983
K-9860
Tag Value
47 ppm
94 ppm
221 ppm
428 ppm
881 ppm
Balance Gas
Nitrogen
Nitrogen
Nitrogen
Nitrogen
Nitrogen
                          CO Calibration Gas Cylinders
Cylinder No.
   Tag Value
(EPA Protocol  1)
                                                         Balance Gas
   AAL-151?
   AAL-5330
    50.8  ppm
    ^38.8 ppm
                                                           Nitrogen
                                                           Nitrogen
                                     F-3

-------
           APPENDIX G.




Bodenseewerk Operation Procedures
                G-l

-------
G-2

-------
                      BODENSEEWERK OPERATIONAL PROCEDURES
    The entire Bodenseewerk sampling and analytical system is heated to
maintain a sample gas temperature of 180 C (356 F).  When the analyzer is
turned on, a warm-up period of 1 hour is necessary for all the temperatures
(probe, sample transport line, pump, and sample cell) to reach their set points
and stabilize.  A microprocessor monitors the system's parameters; at the
conclusion of the warm-up period, the system is ready for calibration.

    The Model 677 employs zero air and an internal sealed gas cell for zero and
upscale calibration checks.  The monitoring system is also capable of accepting
calibration gas; the gas injection point is located at the probe.
The probe also is backflushed with compressed air during the calibration
sequence.

    The operator can program the time intervals desired for the automatic
calibrations performed using zero air and the internal calibration cell.  The
duration of the calibration cycle is also selected by the operator.  First, the
entire sampling system is flushed with zero air to achieve a zero condition.
Any drift that may be detected then is corrected by the zero compensation
circuit.  Then, while the zero air is still flowing through the system, a gas
cell filled with a known quantity of HC1 gas is positioned so that the infrared
light passes through the gas cell.  After the response to the gas cell is
recorded, the analyzer returns to the flue gas sampling mode.

    A dynamic calibration of the system is possible by putting the analyzer in
the "standby" mode and replacing the zero air delivery line connected to the
probe with a calibration gas transport line.  A flowmeter within the analyzer
cabinet indicates the rate of sample flow exiting the optical cell.  The flow
rate of the calibration gas through the system can be observed using that flow
meter, and should be identical to the flow rate when sampling flue gas.  The
cylinder regulator should be adjusted to deliver the proper flow.
                               G-3

-------
             APPENDIX H.




Thermo Electron Operational Procedures
                  H-l

-------
H-2

-------
                     THERMO ELECTRON OPERATIONAL PROCEDURES
    Prior to calibration of the system, it should be ascertained that the
analyzer is operating properly.  A check of the internal diagnostics will
indicate if the condition of any component requires corrective action, i.e., an
element needs to be checked, cleaned, or replaced if found to be defective.

    When the power is turned on, the analyzer automatically enters the start-up
mode; the source turns on, all electronics are turned on, the chopper motor and
sample pump turn on, the heater in the pressure transducer turns on, and the
program initializes itself.   After the source stabilizes, the instrument
automatically goes into the "Run - Sample" mode.  The analyzer should be
allowed to warm-up for one hour, then the instrument service checks should be
performed.

    When calibrating the instrument, three thumbwheel switches are used to set
the zero reading of the instrument.  There are also three thumbwheel switches
available to set the instrument to the concentration of an upscale calibration
gas.  If the instrument is zeroed first, use of the span switches will not
affect the zero setting.

    A three-position switch located on the front panel of the M200 probe
control unit is used to manually select flue gas sample, zero air, or
calibration gas flow through the sampling system.  The two flow meters visible
through the front panel indicate zero air or span gas flow when in the
calibration mode.  A vacuum gauge indicates the vacuum at the probe downstream
of  the orifice.  The dilution  air and zero air gauges and regulators are
located behind the front panel.

    The calibration checks can  be performed both on the analyzer and the entire
monitoring system.  The zero and upscale calibration gases can be injected
directly into the analyzer, and the zero and span controls can be adjusted to
establish the instrument's calibration.  Calibration of the total monitoring
system is performed by  the injection of zero and calibration gas through a
transport line to a point within the probe, upstream of the critical orifice.
In  this way, the calibration gas follows the same path through all the
conditioning steps  (i.e.,  filtering and dilution)  taken by the flue gas sample.
                                   H-3

-------
        APPENDIX I.




Compur Operation Procedures
            1-1

-------
1-2

-------
                        COMPUR OPERATIONAL PROCEDURES

    The instrument requires a short period of time for start-up after the
system is turned on.  The warm-up serves to heat the probe and internal lines
through which the gas sample passes.  After temperatures reach set points,
time is taken for vacuum to build up in the system, since the 20 liter air
volume of the empty discharge tank must also be evacuated.  After
stabilization of the vacuum, the sample flow rate into the analyzer is
adjusted to 400 1/hr by needle valve adjustment.

    The flow rate of the absorbing solution should be checked so that the
targeted enrichment can be maintained throughout the operational period.
Accurate adjustment of the absorbing solution feed rate and the gas sample
flow rate is important for the accuracy of the measurement.

    The calibration program is then initiated.  The transport line for the
gas sample is flushed with compressed air and the electrodes are rinsed with
absorption solution.  After the zero value is recorded, the calibration
solution (typically J0% of the measuring range) passes between the two
electrodes and the upper calibration point is determined.  If either of the
calibration limits are exceeded, the computer attempts the calibration a
second time.  If a desired result is not obtained after a third attempt, the
instrument goes into a "standby" mode and the problem needs to be
investigated.  The entire program can be restarted by pressing INIT.  After
completing a successful calibration, the analyzer goes into the flue gas
measuring mode, if the dilution system is ready.

    The probe may be installed up to a distance of 65 feet from the control
unit.  (At distances greater than 65 feet, the dilution ratios provided by
Compur at the various aspirator air pressures measured at the control unit
cannot be used, due to the probable pressure drop through the longer length
of transport tubing.  The dilution ratio should be checked using non-reactive
calibration gases and an appropriate, independent analyzer.)  Dry controlled
air at a pressure greater than 90 psi is necessary for aspirator air and zero
air.  The aspirator air pressure is adjusted between 40 and 80 psi with the
aid of a pressure regulator and gauge located on the front panel of the probe
control unit.  The pressure is chosen depending on the desired dilution
ratio.  The vacuum gauge must indicate a pressure between -7 and -9-5 psi in
order for the orifice to operate within the critical region.

    The entire measurement system, including both the sampling and analytical
equipment, can be calibrated by injecting calibration gas into the chamber
within the dilution probe between the inlet filter and the orifice.
Compressed air injected in the same manner serves not only to produce a zero
condition, but also to back flush the probe tip filter.

    A three-way valve serves to select zero gas or calibration gas.  The
delivery pressure at the regulator connected to the calibration gas cylinder
should be adjusted to 15 psi in order to provide sufficient flow to the
probe.

    Since the dilution probe supplies approximately 33 liters/min diluted
sample and the analyzer uses only 7 liter/min, a "tee" must be mounted on the
sample line to exhaust the excess sample flow.
                                1-3

-------
                APPENDIX J.




Wet Chemical Sampling/Analytical Procedures
                     J-l

-------
J-2

-------
    The wet chemical procedure used for sampling hydrogen chloride (HC1) in
the MWC emissions involved absorbing the HC1 into a 0.1N sodium hydroxide
(NaOH) solution.  The stack samples collected at MERC were transported to
Entropy's laboratory for ion chromatographic (1C) analysis.

    The HC1 samples were collected with a sampling train similar to a Method
6 train.  The first three impingers contained 15 ml each of 0.1N NaOH.  The
fourth impinger  (a Mae West design) was filled with calcium sulfate
(Drierite) to protect the meter box from moisture.  The sampling rate was
2 liters per minute with a sampling time of 20 minutes.  Sample recovery
involved quantitatively combining the contents of all three impingers.
Deionized (DI) water was used to rinse the sampling train components.  The
total volume for each sample and rinse was kept below 100 ml.
    For analysis,  the  samples were quantitively  transferred to 100 ml
    imetric  flasks  and  volumed to  100 ml with D.I. H-0
split and then  transported  to the Entropy  laboratory.
volumetric flasks and volumed to 100 ml with D.I. H-O.  The samples were
    The  ion  chromatographic  (1C)  analysis  was performed  in Entropy's
laboratory using a Perkin-Elmer high-performance  liquid  chromatograph
(HPLC).  The analysis  was  performed  by  non-suppressed  ion chromatography on a
low-capacity resin-based ion exchange column  (Hamilton PRP-X100) using a 1.0
mM phathlate mobile phase  with the pH adjusted  to 4.5  with a saturated sodium
borate solution.   Forty  (40)-ml aliquots of each  sample  were used for the 1C
analysis and did not require any  pretreatment.  The quantifiable detection
limit  for the 1C analysis  is 4 ppm HC1.

    All  the  sampling components contacting the  stack gases were constructed
of glass.  A glass-lined probe and glass components were used to convey the
stack  gas to the first impinger.  A  three-way glass valve was mounted in-line
directly upstream of the first impinger.

    It was important to  maintain  the gas sample temperature above the water
dew point until  the sample reached the  first impinger.   This was accomplished
by wrapping  a heating  element around the glass  components of the train
between  the  heated probe and the  first  impinger.
                                  J-3

-------
       APPENDIX K.

Spray Dryer Operating Data
- Full size plots of operating data
- Printouts of four-minute readings
           K-l

-------
K-2

-------
                                                            RUN  1
i
UJ
      0)
      TJ
      V.^
      U
      _J
      il
      O
      a:
      CL
      D
      H
      <
      ir
      u
      o_
      5
      LJ
             900
             800 -
              700 -
600
              500 -
400 -
              300 -
              200
 For Figure 3-7.

          KEY
D Economizer inlet gas temperature (°F)
   Economizer outlet/air heater inlrt gas temperature (°
   Air heater outlet gas temperature (°F)
   Spray dryer inlet gas temperature (°F)
   Spray dryer outlet/fabric filter  inlet temperature (°F)
   Fabric filter outlet gas temperature (°F)
4-
0
A
                                                                         F)
                         V
       "I  I I  I  I  I  I I  I  I I  I  I  I I  I  I  I I  I  I  I I  I  I  I I  I  I  I I  I  I  I I  II  I I  I  I  I I  I  I  I I  I  I  I I  I
           15:33    15:53   16:13    16:33    16:53    17:13   17:33    17:53    18:13    18:33
                                                             TIME
          EC I
                 ECO
      O    ARM
                         A    ABI
X     ABO
V     FFO

-------
        900
                                                      RUN 2
 CP
 
-------
                                                        RUN 3
 U>
 a)
TJ
u
O
DC
Q_
Ld
a:
D
I-
<
ft:
id
CL
2
U
I-
        900
        800 -
700 -
        600 -
500 -
400 -
        300 -
        200
       \*#*fij*«&^^
                            For Figure 3-7.

                                      KEY
                           D Economizer inlet gas temperature (°F)
                           -I- Economizer outlet/air heater inlrt gas temperature (°F)
                           0 Air heater outlet gas temperature (°F)
                           A Spray dryer inlet gas temperature (°F)
                           x Spray dryer outlet/fabric filter inlet temperature (°F)
                           V Fabric filter outlet gas temperature (°F)
               III III III MM MM III Illl II I! Ill Mil III III III Illl Mil IIII III! Ill (III III III III III! Ill Mil III I Mil I III III III III I! I INI III! Ill I MM
                   11:43      12:43      13:43      14:43      15:43      16:43      17:43       18:43
                                                         TIME
     EC I
                 ECO
o
AHO
ABI
x
ABO
                                                              V
EFO

-------
                                                     RUN  1
u
_J
o
DC
m
LJ
>-
o:
o

<
rr
        400
        350  -i
        300  -
250 -
        200  -
150  -
        100 -
 For Figure 3-8.
          KEY
D  Spray dryer inlet gas temperature (°F)
+  Spray dryer outlet/fabric filter inlet gas temperature (°F)
0  Lime slurry feedrate (gpm x 10)
A  Dilution water feedrate (gpm x 10)
          0   I |  |  | |  |  |  | I  I  I I  I  I  M I  I  I I  I  I I  I  I  I I  I  I I  I  I  I I  I  I  I I  I  I  I I  I  I I  I  I  I I
                  15:33    15:53   16:13    16:33    16:53   17:13    17:33   17:53   18:13    18:33
                 D     ABI
                             +    ABO
                   TIME
                      O    LIME
A     OIL.

-------
                                                    RUN 2
X
I
y
a:
m
a:
u
a
a
£
n
       400
        300 -
                 250  -
                 200  -
                 150  -
        100 -
         50  -
          0
                                       For Figure 3-8.
                                                KEY
                                      D  Spray dryer inlet gas temperature (°F)
                                      +  Spray dryer outlet/fabric filter inlet gas temperature
                                      0  Lime slurry feedrate (gpm x 10)
                                      A  Dilution water feedrate (gpm x 10)
                 I M I I I II
                    13:05
                                      1 I I I I II I I I I I I  I I I I 1 I II I I I I I I I I  I I I I I I I  I I I I I I I  I I I I I I I  IT I I I I  I I I I?I IT I I
                                      13:37     14:09     14:41    15:13    15:53    16:25    16:57     17:29    18:01
D     ABI
                                ABO
                                                       O
                                                     TIME
                                                    LIME
DIL.
X
FFP

-------
                                                              RUN 3
i
CO
        a:
        u
       o

       or
       m

       if

       Q
       Z
       <

       a:
       on
       a
       a:
       o_
       in
                400
               350 -
               300 -
250 -
200 -
150 -
100 -
                 50
 For Figure 3-8.


           KEY

D  Spray dryer inlet gas temperature (°F)

+  Spray dryer outlet/fabric filter inlet gas temperature (°F)

0  Lime slurry feedrate (gpm x 10)

A  Dilution  water feedrate (gpm x 10)
                  0   III1ITTIIUIIIIII1II III! Illl Ill III! III III IIIII111 [HI I HI 11II

                          11:43      12:43      13:43      14:43      15:43
                                                               TIME
D     ABI
                                                    ABO
                                                    O
                                LIME
      iiniTTTm in in in i

16:43      17:43      18:43




         A     DIL.

-------
              10
                                                          RUN  1
•*!
 I
     If}
     LJ
     in
     UJ
     or
     n
i-
z
UJ
a
u
     Q
9 -




8 -



~i _





6 -




5 "~




4 -




3 -




2  -
                0
                                            For Figure 3-9.


                                                     KEY

                                           D Dust collector differential pressure (in H2O)

                                           + Spray dryer differential pressure (in H2O)

                                           0 Fabric filter differential pressure (in H2O)
                   I  I  II I  I  I  I

                   15:33    15:53




                   D     DUST
                           I  I I

                          16:13
                                                  16:33    16:53   17:13
17:33    17:53
18:13    18:33
                                                            TIME

                                              +     ABSORBER
                                                                O
        BAGHOUSE

-------
                                                     RUN 2
I
M
o
in
U
LY
D

(/I
LJ
Q:
D_

J
<
I-
Z
UJ
LY
u
LL
LL
Q
         10
                6 -
                5 -
                4 -
          1 -
          0
                                             For Figure 3-9.

                                                      KEY
                                            D  Dust collector differential pressure (in H20)
                                            +  Spray dryer differential pressure (in H2O)
                                            0  Fabric filter differential pressure (in H2O)
               II I I II I I II I I I  I I I I I Tl II I I I I  I I II I I I  I I I I I II I I I I I I I  I II M I  II I I I I I  I I I I II I  I II I I I  I I II I I

                   13:05    13:37     14:09     14:41     15:13    15:53    16:25     16:57     17:29    18:01
                  D
                             DUST
             TIME
+    ABSORBER
O
BAGHOUSE

-------
                                                      RUN  3
t/1
LJ
tr
D
LJ
a:
a.
z
UJ
K
u
li.
b_

Q
D Dust collector differential pressure (in H2O)

+ Spray dryer differential pressure (in H2O)

0 Fabric filter differential pressure (in H2O)
           1  -
           0
11:43
12:43
13:43
14:43
                     15:43
                                                       16:43
                                                                                    17:43
18:43
                   D
       DUST
              TIME
+     ABSORBER
                       O
                                        BAGHOUSE

-------
K-12

-------
                                          DATA CHANNEL  DEFINITIONS
                                          TREND LOG PARAMETER IDENTIFICATION
   UNIT A TREND L06 37
   NAINE ENERBY RECOVERY COMPANY
   YORK COUNTY HASTE-TO-ENERGY FACILITY
   BIDDEFORD,MAINE
CHANNEL NUMBER
   DPI371
   PI371
   PI372
   DPI372
   DPI373
   PI373
   TI3204
   TI3228
   AI3804
  A13604B
  AI3804A
   FI3202
HEADING DESCRIPTION
     DST CLTR
     GAS DF P

      ABSR IN
       SAS P

     ABSR OUT
      DIFF P

     ABSR GAS
      DIFF P

       BGHSE
      DIFF P

      ID FAN
      SUCT P

      ABSR IN
       6AS T

     ABSR OUT
       GAS T

      OUTLET
      6AS S02

      CORRTD
      GAS S02

      OUTLET
      GAS N01

     LIME SLRY
       FEED
               PARAMETER
DUST COLLECTOR GAS DIFFERENTIAL PRESSURE
      ABSORBER INLET GAS PRESSURE
      ABSORBER OUTLET GAS PRESSURE
   ABSORBER GAS DIFFERENTIAL PRESSURE
     BA6HOUSE DIFFERENTIAL PRESSURE
        ID FAN SUCTION PRESSURE
     ABSORBER INLET GAS TEMPERATURE
    ABSORBER OUTLET GAS TEMPERATURE
             OUTLET GAS S02
             CORRECTED S02
                                                               OUTLET GAS  NOI
                                                              LIME SLURRY  FEED
 UNITS


in.  H20


in.  H20


in.  H20


in.  H20


in.  H20


in.  H20


 deq F


 deq F


 PPHV
                                                   PPHV
                                                    6PM
                                                           K-13

-------
                                          TREND LOG PARAMETER IDENTIFICATION
    UNIT A TREND 106 38
    MAINE ENERSY RECOVERY  FACILITY
    YORK COUNTY HASTE-TO-ENER6Y  FACILITY
    BIDDEFORD,  MAINE
CHANNEL NUMBER
HEADIN6 DESCRIPTION
             PARAMETER
 UNITS
    FI3200
    PI200A
    FI3200
    T13800
     DILUTION
       WATER

     ST IN ST*
       PRESS

     DILUTION
       HATER

     BHSE OUT
       6AS T
          DILUTION HATER
STEAfl TURBINE INLET STEAM PRESSURE
          DILUTION HATER
  BA6HOUSE OUTLET  6AS TEMPERATURE
  6PM
 PSI6
  6PM
 deq F
   DPI3809
       BEHSE
      DIFF P
  BA6HOUSE DIFFERENTIAL PRESSURE
in. H20
    AI370A
       STACK
        CO
             STACK CO
 PPHV
    AI370B
       STACK
      OPACITY
           STACK OPACITY
    AI370C
       STACK
        C02
             STACK C02
                                                                                               1 voluie
    IIL320
    1IH320
      IN FAN
      CURRENT

      ID FAN
      CURRENT
          ID FAN CURRENT
          ID FAN CURRENT
                                                                                                 AflPS
                                                                                                 AMfS
    IIL320
      ID  FAN
      CURRENT
          ID FAN CURRENT
                                                                                                 AflPS
    IIL320
      ID  FAN
      CURRENT
          ID FAN CURRENT
                                                                                                 AHPS
                                                         K-14

-------
RADIAN  CORPORATION
02-Jan-SS
PROCESS DATA SUHttARY
MINE  ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE



J09DEC37
IG9DECS7
09DECS7
G9BEC37
G9DECS7
G9DEC37
G9DEC37
G9DEC37
0-9DEC37
G9DEC37
09DEC37
Q9DEC37
G9DEC37
09DEC37
09DEC37
G9DEC37
G9DEC37
G9DEC37
G9DEC37
iioncrav
G9DECS7
G9DEC37
G9DEC37
JQ9DECS7
(G9DEC37
IG9DEC37
(G9DEC37
I09DEC37
IG9DEC87
J09DEC37
G9DEC37
09DECS7
nsncrn?
G9DEC37
G9DEC37
09DEC87
09DEC87
09DECS7
09DEC37
09DECS7
;iqr,rr37

TIHE



15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:53
16:02
16:06
16:10
16:14
16:13
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:53
17:02
17:06
17:10
17:14
17:13
1 7 1 2 2
17:26
17:30
17:34
1 7 : 33
17:42
17:46
17:50
17:54
17:53
•fl.fi?

DST CLTR
GAS DF P
IN H20
DPI371
3.01
3.22
3.45
3.30
3.04
2.97
3.09
2.93
2.33
-7 /, C
J . U J
•7 1 ~J
2.73
2.87
3.02
2.37
2.85
2.91
2.57
2.79
3.11
3.05
2.96
7 10
3.30
3.23
3.11
2.97
3.11
2.9-4
2.94
2.38
2.95
2.33
2.94
3.05
2.33
2.38
3.09
3.01
2.91
2.95

ABSR IN
GAS P
IN H20
PI371
-7.53
-7.33
-7.86
-3.41
-6.97
-7.00
-7.59
-6.97
-6.72
-7.20
-7.64
-6.34
-7.13
-7.17
-6.73
-6.39
-7.05
-5.97
-6.63
-7.30
-7.34
-7.03
-7 77
-3.13
-7.58
-7.59
-7.27
-7.53
-6.95
-7.03
-7.02
-7.28
-6.72
-7.33
-7.56
-6.66
-6.97
-7.91
-7.23
-6.31
-6.31

ABSR OUT
GAS P
IN H20
PI372
-11.31
-11.72
-12.34
-12.91
-11.00
-11.23
-11.38
-11.00
-10.34
-11.63
-11.31
-10.31
-11.22
-11.41
-10.66
-10.33
-10.97
-9.66
-10.56
-11.53
-11.53
-11.03
-12.28
-12.72
-12.28
-11.33
-11.28
-11.34
-10.91
-11.34
-11.16
-11.53
-10.73
-11.41
-11.83
-10.66
-11.09
- ) ? 71
-11.50
-10.31
-10.97

ABSR GAS
DIFF P
IN H20
DPI372
4.14
4.43
4.92
4.67
4.30
4.17
4.33
4.14
4.05
4.27
4.50
3.90
4.03
4.23
4.03
3.95
4.06
3.61
3.83
4.30
4.20
4.09
4.42
4.55
4.66
4.52
4.11
4.23
4.14
4.17
4.06
4.16
4.06
4.09
4.31
3.97
4.03
4.36
4.23
4.05
4.14

B6HSE
DIFF P
IN H20
DPI373
7.31
6.33
8.13
3.09
6.69
7.42
7.69
6.44
7.38
7.69
6.77
7.05
7.16
6.50
7.38
7.27
6.22
6.73
7.34
6.59
7.25
7.33
6.98
7.98
8.06
6.33
7.56
7.83
6.47
7.27
7 97
6.53
7.30
7.41
6.64
6.95
7.44
6.36
6.92
6.63
6.50

ID FAN
SUCT P
IN H20
PI373
-19.19
-18.94
-20.94
-20.38
-18.56
-13.63
-19.63
-17.31
-18.25
-19.06
-19.25
-17.33
-18.13
-13.25
-18.38
-18.13
-17.50
-16.63
-17.88
-18.38
-13.81
-18.63
-19.00
-20.19
-20.33
-19.13
-13.81
-19.50
-17.94
-13.44
-18.31
-17.94
-13.25
-18.50
-18.56
-17.69
-13.38
-18.75
-18.50
-17.31
-17.33

ABSR IN
GAS T
DEG F
TI3206
377
375
375
331
331
376
374
374
374
373
375
375
373
372
373
374
374
374
372
371
373
374
373
•7T7
J,' J
375
377
376
374
373
373
374
373
372
372
374
374
372
j / j
376
376
777

ABSR OUT
GAS T
DEG F
TI3223
292
285
267
231
290
273
269
288
287
270
277
287
272
263
235
234
263
271
286
282
263
276
237
276
269
281
231
271
275
232
275
272
231
231
272
275
282
276
274
231
275

OUTLET
GAS S02
PPM
AI3304
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.02
3.58
-0.90
-0.90
-0.24
-0.53
-0.90
-0.90
-0.90
-0.90
-0.90
-0.51
-0 . 58
-0.90
0.51
-0.9 0
-0 . 90
-0.02
-0.15
-0.90
4.94
-0.90
-0.90
0.72
0.33
-0.90
-0.90
-0.90
-0.90
-0.10
-0.59
-0.90
-0.90
-0.90

CORRTD
GAS 302
I
A 1 3304 B
-0.11
-0.11
-0.11
-0.11
-0.11
-0.11
-0.11
-0.00
0.43
-0.11
-0.11
-0.03
-0.06
-0.11
-0.11
-0.11
-0.11
-0.11
-0.06
-0.07
-0.11
0.06
-0.11
-0.11
-0.00
-0.02
-O.ii
0.60
-0.11
-0.11
0.08
0.04
-0.11
-0.11
-0.11
-0.11
-0.01
-0.07
-0.11
-0.11
-0.11

OUTLET
GAS NO*
PPHV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01

LIME SLRY
FEED
6PK
F 1 3202
2.67
2.62
2.63
2.60
2.53
2.52
2.48
2.44
2.42
2.42
2.33
2.34
2.36
2.31
"> 79
2.34
2.30
2.27
2.25
2.27
9 T^
2.23
2.24
2.19
2.16
2.19
2.16
2.17
2.13
3.12
3.09
3.05
3.06
3.02
3.05
2.93
4.13
4.00
'.92
3.S4
3.76
                                                       K-15

-------
RADIAN CORPORATION
                                                                                                                    02-Jan-e3
PROCESS DATA  SUMMARY
MAINE ENERGY  RECOVERY  COMPANY
YORK COUNTY KASTE-TG-ENERGY  FACILITY
BICBEFORD  MAINE

UNIT A
DATE


09DEC87
09DEC37
09DEC97
09DEC87
09DEC37
09DECB7
09DEC37
109DEC37
I09DEC97
»09DECB7
t09DEC87

TIKE


18:04
18:10
18:14
18:18
18:22
18:26
19:30
18:34
18:38
18:42
18:44
AVERAGE
DST CLTR
6AS DF P
IN H20
2.87
3.14
3.34
3.47
3.49
3.27
3.09
3.04
0.29
0.11
0.10
3.02
ABSR IN
GAS P
IN H20
-4.99
-7.98
-7.43
-8.14


-7.14
-7.30
-2.09
-1.24
-1.15
-7.20
ABSR OUT
GAS P
IN H20
-11.04
-12.47
-12.22
-13.09
-13.47
-12.34
-11.59
-11.43
-2.77
-1.78
-1.45
-11.49
ABSR GAS
DIFF P
IN H20
3.99
4.34
4.43
4.81
4.83
4.80
4.25
4.22
0.78
0.53
0.50
4.24
BGHSE
DIFF P
IN H20
7.19
7.43
4.97
8.28
3.50
7.02
7.34
7.45
2.18
1.72
1.54
7.14
ID FAN
SUCT P
IN H2Q
-18.13
-19.38
-19.44
-21.04
-21.54
-20.04
-19.00
-18.94
-5.53
-3.73
-3.43
-18.71
ABSR IN
GAS T
DE6 F
371
371
370
370
374
378
373
374
372
343
355
374
ABSR CUT
GAS T
DEG F
274
281
280
272
280
282
271
273
279
244
273
277
OUTLET
GAS S02
PPHV
1.32
0.14
-0.90
-0.90
-0.90
0.49
0.22
-0.74
-0.90
-0.90
-0.90
-0.43
CORRTD
GAS S02
I
0.14
0.02
-0.11
-0.11
-0.11
0.08
0.03
-0.09
-0.11
-0.11
-0.11
-0.05
OUTLET LIME SLRY
GAS NOX
PPHV
-0.01
-0.01
-0.01
-0X11
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
GP«
3.73
3.71
3.47
3.42-
3.40
3.59
3.42
3.54
0.00
0.00
0.00
2.91
         *  -  NON-TEST PERIOD, NOT  INCLUDED IN AVERAGE
                                                         K-16

-------
RADIAN  CORPORATION
PROCESS  DATA SUMMARY
MAINE  ENERE'i RECOVERY COMPANY
YORK COUNTY  HA3TE-7Q-ENERGY FACILITr
BIDDEFDRD  MAINE
ONIT A
DATE



tQ9DEC37
IQ9DEC37
J09DEC37
09DEC37
09DEC87
09DEC37
09DEC87
Q9DEC87
09DEC37
09DEC87
09DEC87
09BEC87
09DECB7
09DEC37
09DECS7
09DEC37
09DEC37
09DEC37
09DEC37
09DEC37
09DEC87
09DEC87
09DEC37
09DEC87
tnQnrra7
* V 1 Jl_ w W 1
(09DEC37
IQ9DEC87
109DEC37
IQ9DEC37
109DEC37
tMncra?
T V 7 1/C L>C /
09DEC87
09DEC87
09DEC37
09DECS7
09DEC37
09DEC87
G9DECS7
09DECB7
09DEC87
09DEC37
TIME



15:18
15:22
15:2i
15:30
15:34
15:38
15:42
15:44
15:50
15:54
15:53
16:02
16:04
14:10
15:14
li:iB
14:22
16:24
16:30
ia:34
16:33
14:42
16:46
14:50
14:54
16:53
17:02
17:06
17:10
17:14
1 7 , i a
17:22
17:26
17:30
17:34
17:33
17:42
17:44
17:50
17:54
17:53
DILUTION
WATER
6PM
F 1 3200
4,30
ci ")n
10.84
3.34
5.00
3.63
9.69
5.03
4.S4
9.34
3.28
4.95
8.06
9.34
5.41
5.20
9.47
3.50
4.63
5.52
9.72
3.22
4.70
7.47
IA 1?
7.20
5.31
3.94
3.23
5.41
' A?
8. 19
5.69
c 17
7.98
7.53
5.33
' 77
J.JO
7 c T
5.70
6.52
ST IN STM DILUTION
PRESS KATER
PSIG GPM
PI200A F 1 3200
-2 4.30
-6 5.22
-5 10.84
-6 8.34
-7 5_AA
-2 3.43
-7 9.49
-3 5.03
-3 4.84
-8 9.34
-3 3.28
-8 4.95
-7 8.04
-3 9.34
-3 5.41
-8 5.20
-8 9.47
-3 3.50
4.63
5.52
9.72
3.22
4.70
7.67
10.13
7.20
5.81
8.94
3.28
5.61
7.03
3.19
5.49
c n-y
7.93
7.53
5.33
6.33
T c n
/ . v'i
5.70
6.52
BHSE OUT
6AS T
DEB F
T 1 3800
268
275
277
269
269
274
271
266
270
274
263
267
271
268
264
268
271
266
263
263
270
265
265
270
269
265
267
270
267
265
267
267
245
244
268
266
265
247
267
265
267
BSHSE
DIFF P
IN H20
DP 1 3309
7.31
7.33
6. S3
3.14
8.13
4.47
7.44
7.70
4.41
7.41
7.72
6.75
7.05
7.14
6.47
7.33
7.27
6.19
6.73
7.34
6.59
7.27
7.34
6.92
8.00
3.09
4.78
7.56
7.84
6.42
7.27
7.22
6.45
7.30
7.41
6.58
6.97
7.44
6.73
6.97
4.55
3 TAD:
CO
PPHV
AI370A
59.25
55.50
58.00
79.50
68.25
61.38
43.83
43.00
54.33
52.50
57.00
40.25
54 . 50
55.33
56.00
49.13
56.33
56.33
54.38
46.50
54.38
56.50
51.00
55.63
c, L n E,
56.33
56.25
53.25
63.33
56.33
57.38
63.33
57.33
52.50
60.38
43.50
50.50
54.33
4o.25
i6.25
56.25
STACK
OPACITY
Z
AI370S
49.88
48.43
49.88
49.33
49.88
49.38
49.88
49.33
49.38
49.38
49.88
49.33
49.88
49.88
49.88
49.88
40.38
-0.04
-0.04
-0.04
-0.04
-0.04
-0 . 04
-G.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
C02
V
AI370C
3.18
2.39
2.98
3.98
3.45
2.49
2.69
3.18
2.66
T ",q
2.59
2.93
2.49
2.49
2.30
2.69
2.89
2.98
2.68
T ?g
2.38
2.39
2.38
2.59
" 6'
2.78
2.69
2.73
2.88
2.68
2.69
3.09
2. 98
2.43
2.93
3.23
2.43
2.43
3.43
3.43
2.69
3D FAN
r!i&&£WT
AMPS
IIL32Q
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A Al
0.01
0.01
0.01
0.01
0.01
A Al
0.01
0.01
0.01
0.01
0.01
0 . 0 '
0.01
(.01
0.01
0.01
ID FAN
CURRENT
AMPS
HH320
98.75
97.25
99 . 00
102.50
100.50
97.50
98.00
98.50
97.00
97.25
98.50
98.50
96.25
97.50
98.00
97.00
96.75
97.25
94 . 50
95.75
98.25
93.50
97.25
98.50
IAA ^5
100.25
99 . 00
97.50
98.50
97.25
97 75
97.50
97.50
96.75
97.50
93.50
96.25
97 .00
93.50
93.25
97.25
T n riu
ri!j>BC&|T
AMPS
HL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
(1 fll
0.01
0.01
0 . 0 1
0.01
0 . 'J 1
,'; _ ,'i 1
.' . 0 1
' j . V 1
•} _ A I
','.01
ID FAN
rij&BC^T
AMPS
IIL320
0.01
0.01
A _ A [
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 '
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
C.Oi
O.J1
A At
0.01
A . A '
0.01
0.01
0.01
"' '\ '.
. '' '
'.' . '.' 1
i" A 1
,'. , 1
                                                        K-17

-------
RADIAN CORPORATION
PROCESS DATA  SUMMARY
MAINE ENERGY  RECOVERY  COMPANY
YORK COUNTY WASTE-TO-ENERGY  FACILITr
BIDDEFQRD  MAINE

UNIT A
DATE


09DEC97
09DECS7
09DEC37
09DEC97
Q9CECS7
09DEC37
09DEC87
09DEC37
I09DEC37
109DEC37
109DEC87
t09DECB7
TIME


13:02
13:06
13:10
13:14
18:13
13:22
18:26
19:30
19:34
13:33
13:42
18:46
DILUTION
WATER
6PM
7.00
5.14
5.34
7.80
6.56
5.81
3.53
8.13
4.75
5.27
0.41
0.30
ST IN STM DILUTION
PRESS WATER
PS!S 6PM
•7.00
5.14
5.34
7.80
6.56
5.81
8.53
8.13
4.75
5.27
0.41
0.30
BHSE OUT
5AS T
DEG F
266
265
267
268
265
267
269
266
264
267
264
260
BGHSE
3IFF P
IN H20
6.47
7.19
7.59
6.95
3.31
9.53
7.00
7.36
7.45
1.99
1.54
1.35
STACK
CO
PPttV
64.25
63.38
63.33
65.25
72.50
74.25
73.25
68.25
60.33
63.25
53.25
50.50
STACK
OPACITY
V
t.
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
49.83
49.38
49.83
-0.04
1.40
48.13
STACK
C02
>/
2.33
2.5?
2.43
* 1Q
2.63
3.23
3.43
2.99
2.79
2.68
1.98
i c,o
* > J 7
ID FAN
CURRENT
AMPS
0 ''"
O.Q1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AMPS
97 Ifl
97.00
93.75
IAA 15
102.75
102.75
100.25
9S.75
98.00
Q.09
0 . 08
0 . 08
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
         AVERAGE      6.95       -7     6.95      263     7.16

         >   NON-TEST PERIOD, VALUE NOT INCLUDED IN AVERAGE
60.13    20.1?
2.34
98.12
                                              A At
                                                          K-18

-------
RADIAN CORPORATION
02-Jan-SS
PROCESS  DATA  SUMMARY
MAINE  ENERGY  RECOVERY  COMPANY
YORK COUNTY HASTE-TO-ENERSY  FACILITY
BIDDEFORD  MAINE
UNIT A
DATE



I10DEC37
I1QDEC37
10DECS7
10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC87
10DEC87
1GDEC87
10DEC97
10DEC37
10DEC37
10DECB7
10DEC37
10DECS7
10DEC37
10DEC27
10DEC37
10DECB7
10DEC37
10DECS7
10DEC37
10DEC37
UODEC37
I10DECS7
I10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
i (iPCPOl
lUl'tld/
10DECS7
10DEC37
1QDECS7

TIME



12:38
12:42
12:46
12:50
12:54
i?.«ifl
13:02
13:06
13:10
13:14
13:1S
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:38
14:42
14:46
14:50
14:54
14:58
15:02
t P i j'i i,
1 J . V 0
15:10
15:14
15:13

DST CLTR
6AS DF P
IN H20
DPI371
3.18
3.07
3.23
3.0?
3.15
3.24
3.12
3.05
3.21
3.09
3.03
3.06
3.22
2.97
3.23
3.11
3.15
3.22
3.30
3.03
3.27
3.03
2.88
3.19
3.16
3.16
3.24
2.86
3.18
3.15
3.23
2.99
2.94
3.19
3.27
2.32
2.66
3.04

3.10
3.09
3.16

ABSR IN
GAS P
IN H20
PI371
-1.76
-5.92
-5.02
-4.36
-7.31
_T TIJ
-6.94
-7.84
-2.60
-7.61
-7.72
-7.48
-7.45
-7.70
-7.31
-3.19
-7.55
-7.67





-8.03
-3.13




-8.19









-8.16
-8.16


ABSR OUT
6AS P
IN H2D.
P1372
-13.94
-12.73
-13.00
-13.56
-12.1?
-12.97
-13.88
-12.84
-12.88
-12.91
-11.33
-11.97
-13.41
-13.50
-12.72
-12.56
-12.34
-12.91
-12.72
-13.06
-13.56
-13.38
-12.66
-12.50
-12.41
-12.25
-13.59
-13.23
-12.66
-12.56
-12.75
-14.03
-13.81
-12.33
-14.31
-14.59
-14.03
-13.56

-12.33
-12.50
-13.1?

ABSR GAS
DIFF P
IN H20
DPI372
4.67
4.97
4.66
4.53
4.72
4.52
4.75
5.13
4.43
4.30
4.31
4.25
4.48
5.27
4.53
4.33
4.45
4.45
4.59
5.34
5.00
5.00
5.25
4.33
4.41
4.94
4.94
5.27
4.41
4.39
4.53
5.30
5.44
4.45
5.27
6.23
5.97
4 an
~ • uu
4.33
4.31
4.44

BGHSE
DIFF P
IN H20
DPI373
7.77
7.39
8.34
7.84
7.08
7.98
8.00
7.41
8.06
7.61
6.67
7.86
3.25
7.19
7.92
3.03
7.08
3.00
8.06
7.38
3.66
8.53
7.19
7.81
3.19
7.47
8.44
8.31
6.95
3.09
8.25
7.50
8.31
3.19
7.83
3.34
3.66
7 39
. i J I
7.73
7.97
7.22

ID FAN
SUCT P
IN H20
PI373
-20.75
-20.69
-21.38
-20.56
-20.00
-20.69
-21.19
-21.00
-20.75
-20.00
-19.19
-19.75
-20.81
-20.88
-20.6?
-20.38
-19.75
-20.50
-21.00
-21.1?
-22.06
-21.94
-20.83
-20.31
-20.44
-20.75
-21.81
-21.94
-19.63
-20.44
-21.00
-21.19
-22.13
-20.83
-21.50
-23.44
-23.00
-20.69

-20.06
-20.19
-19.81

ABSR IN
8AS T
DEG F
TI3206
358
359
361
361
359
358
360
362
364
365
364
361
360
362
365
366
364
362
362
362
363
366
367
366
365
361
359
364
366
365
364
364
367
369
367
365
367
370

368
366
364

ABSR OUT
GAS T
DEG F
TI3223
278
287
277
268
230
287
273
271
286
283
267
274
290
281
266
279
233
275
272
277
232
284
275
272
273
230
280
280
276
276
280
281
278
276
277
281
280
276

274
278
231

OUTLET
GAS S02
PPMV
AI3804
0.41
0.13
-0.90
-0.59
-0.51
3.39
-0 . 90
4.86
-0.38
1.71
-0.90
1.38
-0.50
1.84
-0.87
2.66
-0.77
1.11
1.56
2.28
-0.75
2.53
-0.74
2.72
-0.43
1.81
0.48
0.00
-0.74
0.74
0.28
1.02
2.91
0.30
2.68
-0.82
4.67
[ 0.9

1.19
0.62
-0.90

CORRTD
GAS S02
I
AI38043
0.05
0.02
-0.11
-0.07
-0.06
0.46
-0.11
0.59
-0.05
0.20
-0.11
0.17
-0.06
0.22
-0.10
0.32
-0.09
0.13
0.19
0.28
-0.0?
0.30
-0.0?
0.33
-0.05
0.21
0.06
0.00
-0.0?
0.09
0.03
0.12
0.35
0.03
0.32
-0.10
0.57
A 17

0.14
0.07
-0.11

OUTLET
GAS NOX
PPMV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0 M

-0.01
-0.01
-0.01

LIME SLRY
FEED
GPM
F 1 3202
3.11
3.03
3.09
3.02
2.99
2.99
2.98
2.95
2.93
3.02
3.06
3.06
3.07
3.09
5.53
6.52
6.31
7.31
7.58
7.55
7.47
7.44
7.42
7.36
7.33
7.33
7.31
7.23
7 1'
7.23
7.25
7.25
7.27
7.25
7.28
7.25
7.27
7 ^7

7 "' 0
\36
"^ ^* A
                                                            K-19

-------
RADIAN CORPORATION
                                                                                                                      02-Jan-ee
PROCESS DATA SUHHARY
MAINE ENERGY RECOVERY COHPANY
YORK COUNTY MASTE-TO-ENERGY FACILITY
B1DDEFORD MAINE

UNIT A
DATE


10DECS7
10DECB7
10DEC37
1CDEC87
100EC87
10DECB7
10DEC37
10DECS7
I10DECB7
I10DEC37
I10DEC87
UODEC87
tlODEC87
UODEC87
110DEC87
J10DEC87
110DEC87
10DECB7
10DEC87
1QDEC37
10DEC97
10DEC87
10DEC87
10DECB7
10DEC37
10DECS7
10DECS7
10DEC37
10DECS7
10DEC87
10DEC87
1QDECB7
10DECB7
10DEC37
10DECB7
IODECB7
10DEC87
10DECB7
1QDEC87
1UDECS7


TIME DST
GAS
IN
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:33
17:42
17:46
17:50
17:54
17:58
AVERAGE
t NQN-TEST
CLTR
DF P
H20
3.16
3.19
3.03
3.09
3.05
3.13
3.16
3.21
3.19
3.05
3.07
3.08
3.16
3.10
3.13
3.17
3.08
3.26
3.14
3.37
2.34
2.82
3.08
3.21
2.96
3.10
3.14
3.12
3.22
3.13
2.77
2.82
2.30
2.78
2.69
2.94
3.20
3.23
2.91
3.04
3.07
PERIOD
ABSR IN ABSR OUT
GAS P GAS P
IN H20 IN H20
-12.66
-8.19 -12.69
-13.75
-12.81
-8.09 -12.44
-12.97
-12.81
-13.09
-14.09
-12.16
-7.95 -12.25
-13.38
-12.56
-7.95 -12.25
-13.03
-12.47
-8.00 -12.23
-13.03
-12.72
-13.31
-14.69
-12.34
-7.94 -12.34
-13.50
-12.69
-7.84 -12.38
-13.06
-12.34
-8.31 -12.88
-14.56
-14.31
-14.78

-14.50
-14.47
-13.72
-12.31
-13.41
-13.66
-11.91
-7.25 -13.11
, NOT INCLUDED IN
ABSR GAS
DIFF P
IN H20
4.44
4. 48
5.05
4.59
4.23
4.53
4.81
4. 84
4.84
4.28
4.23
4.80
4.45
4.27
4.45
4.53
4.23
4.53
4.75
4.77
5.55
4.78
4.31
4.72
4.88
4.33
4.53
4.39
4.55
5.33
6.48
6.36
6.77
6.14
5.94
4. 83
4.55
4.70
4.94
4.44
4.84
AVERAGE
BGHSE
DIFF P
IN H20
7.59
8.19
7.34
7.67
7.69
7.48
7.83
8.50
7.97
7.13
7.89
7.42
7.33
7.77
7.17
7. 86
7.91
7.41
7.75
B.59
B.13
7.56
7.69
7.64
7.61
8.00
7.44
7.44
8.28
8.19
8.59
9.06
8.63
8.31
8.69
7.33
7.30
8.47
3.22
7.05
7.39

ID FAN
SUCT P
IN H20
-20.19
-20.75
-21.31
-20.69
-19.69
-20.13
-20.94
-21.75
-21.13
-19.63
-19.88
-20.63
-20.44
-20.00
-19.31
-20.69
-20.13
-20.19
-20.75
-21.75
-22.13
-20.75
-19.88
-20.63
-20.75
-20.25
-20.19
-19.88
-21.00
-21.88
-23.50
-23.88
-23.81
-22.88
-23.06
-21.00
-19.94
-21.50
-21.56
-19.50
-20.93
K-20
ABSR IN
SAS T
DEE F
364
364
364
366
364
362
362
364
367
367
364
362
363
363
361
362
363
361
362
362
365
367
364
361
362
362
362
361
360
359
358
362
366
369
373
372
368
365
366
366
364

ABSR OUT
SAS T
DEE F
279
276
278
280
276
275
278
281
283
277
271
276
281
282
279
277
277
276
278
279
281
281
274
273
277
281
280
278
111
277
279
282
284
281
264
274
281
283
282
274
278

OUTLET
GAS S02
PPHV
1.39
-0.90
1.98
-0.90
-0.52
-0.80
0.84
-0.90
1.59
0.00
2.63
-0.30
-0.63
-0.01
2.22
-0.34
-0.65
1.57
3.97
-0.29
-0.90
0.65
3.52
0.93
-0.09
5.55
1.28
-0.26
1.81
7.00
1.34
-0.51
-0.18
7.97
-0.32
0.21
0.69
7.03
-0.82
-0.66
1.06

CORRTD
GAS S02
I
0.17
-0.11
0.24
-0.11
-0.06
-0.10
0.10
-0.11
0.19
-0.00
0.32
-0.04
-0.07
-0.00
0.27
-0.04
-0.08
0.19
0.48
-0.03
-0.11
0.08
0.43
0.12
-0.01
0.66
0.16
-0.03
0.22
0.84
0.17
-0.06
-0.02
0.96
-0.04
0.03
0.08
0.85
-0.10
-0.08
0.13

OUTLET L
GAS mi
pp«y
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01

.IHE ELRY
FEED
SPH
7.41
7.48
7.53
7.66
7.69
7.75
7.78
7.83
7. 84
7.92
7.94
7.91
7.98
8.00
8.03
8.00
3.06
8.06
8.09
8.25
3.25
8.31
8.34
8.33
8.23
8.28
8.19
8.16
8.09
8.06
3.03
8.09
0.00
8.13
3.16
7.98
7.98
7.97
7.92
7.91
6.70


-------
RADIAN CORPORATION
02-Jan-e8
PROCESS DATA SUMMARY
HAINE ENERGY RECOVERY  CDHPANY
YORK COUNTY KASTE-TO-ENERGY  FACILITY
BIDDEFORD MAINE
DATE



•10DECS7
UODEC87
10DEC37
10DEC87
10DECB7
10DEC37
10DECB7
10DEC37
10DECB7
10DEC-37
10DECS7
10DEC37
10DEC37
10DEC87
10DEC87
10DEC37
10DEC37
10DECS7
10DEC87
10DEC37
10DEC37
10DEC87
10DECS7
10DEC37
10DEC87
UODEC37
UODEC37
UODEC87
10DEC87
10DEC37
10DECS7
10DEC37
10DEC87
10DEC37
10DEC37
10DEC37
10DEC87
j ,_j-prj.
."'
10DEC37
10DEC87
TIME



12:33
12:42
I2:4i
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
no^
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
n-ia
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:58
15:02
i c<:06

i j : x 0
15:14
15:18
DILUTION
SATER
6PM
F 1 3200
3.45
6.00
8.56
5.22
2.31
6.38
8.25
4.41
4.72
3.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.63
1 .90
4.55
5.09
2.53
1.37
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.31
4.36

1.96
2.36
ST IN STM
PRESS
PSI6
PI200A
-2
-6
-5
-6
-7
-2
-7
-3
-3
-8
-8
-8
-7
-3
-3
-8
-8
-a























DILUTION
HATER
SPM
F 1 3200
3.45
6.00
8.56
5.22
2.31
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.68
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.86
2.70
1.96
2.36
BHSE OUT
GAS T
DE6 F
T 1 3800
267
271
270
264
266
271
268
264
269
271
265
264
270
271
264
266
269
263
265
266
269
271
269
266
267
269
269
270
268
267
268
269
269
268
267
269
270
269
267
267
269
BGHSE
DIFF P
IN H20
DP 1 3809
7.75
7.42
3.38
7.33
7.09
3.00
8.00
7.42
8.06
7.61
6.67
7.89
8.25
7.19
7.94
3.06
7.08
3.03
8.09
7.36
B.72
8.59
7.16
7.83
8.22
7.45
3.47
3.31
6.91
8.13
3.31
7.45
8.38
8.22
7.73
8.94
3.72
7.36
7.77
3 . 00
7 . 20
STACK
CO
PPMV
AI370A
40.50
42.50
44.38
54.33
43.25
65.50
49.25
42.50
42.38
43.38
39.50
35.50
35.38
47.25
49.25
44.38
39.50
42.50
43.38
46.50
46.38
42.50
46.38
46.50
39.50
64.25
56.25
50.50
48.25
44.38
46.25
40.50
47.25
48.25
63.38
45.33
49.63
43.13
46.00
42.33
33.38
STACK
OPACITY
I
AI370B
14.31
14.91
15.00
14.81
14.72
15.00
13.94
12.91
13.00
17.31
20.25
30.56
35.88
20.19
24.75
21.25
20.19
22.19
32.38
30.19
16.00
17.88
24.81
20.44
26.81
23.13
27.00
28.69
33.13
32.13
30.88
29.31
35.63
36.75
32.63
39.25
43.38
39.75
49.33
49.88
49.88
STACK
C02
I
AI370C
2.39
3.08
3.29
2.38
2.28
2.48
3.08
3.09
3.08
3.08
2.78
2.49
2.78
3.29
3.38
2.89
2.49
2.59
2.69
2.68
3.08
2.83
3.08
3.08
2.59
2.33
3.09
3.29
2.98
2.89
2.78
2.88
3.29
3.09
2.38
2.69
3.18
2.78
2.98
2.78
2.69
ID FAN
CURRENT
AMPS
HL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
101.25
101.50
102.25
100.75
100.25
101.00
102.00
102.00
100.25
99.25
99.25
98.75
100.75
102.75
101.00
99.25
99.75
100.50
101.75
103.00
103.50
103.25
102.50
100.00
100.25
102.25
103.50
103.50
99.75
99.75
101.25
103.25
104.25
100.75
104.25
107.75
106.00
iA! in
93 51
99.50
99.75
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
••1.01
•i ni
0.01
0 0 '
ID FAN
CURRENT
AMPS
I1L320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A A!
A ,••!
• J . 0 1
0.01
                                                           K-21

-------
RADIAN CORPORATION
                                                                                                                    02-Jan-BS
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
/ORK COUNTY WASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
JNIT A

  DATE
TIME
10DECS7
10DEC37
10DEC37
10DEr37
iftn[ra7
10DEC97
I10DEC37
11QDEC37
UODEC37
110DEC37
t!ODEC87
J10DEC37
UODECB7
HODEC37
J10DEC37
10DEC37
1GDEC37
10DEC37
10DEC37
10DECS7
10DEC97
10DEC37
10DEC87
10DEC87
1QDEC37
10DEC87
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
10DECS7
10DEC37
10DEC87
10DEC37
10DEC87
10DEC37
i W . k i.
15:26
15:30
1 5 : 34
15:46
15:50
15:54
15:53
ls:02
16:06
16:10
16:14
16:13
16:22
16:26
16:30
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:33
17:42
17:46
17:50
17:54
17:59
        AVERAGE
DILUTION ST IN STM DILUTION BHSE  OUT
 WATER     PRESS    HATER    SAS
   6PM      PS IS     6PM
           3.77
           3.40
           2.25
           2.54
           3.34
           1.80
           1.36
           2.73
           4.49
           1.93
           0.37
           0.73
           1.90
           2.25
           2.04
           1.93
             84
             64
             73
             94
           2.71
           2.54
           1.70
           0.20
           0.72
           1.72
           1.87
             77
             51
             48
           1.91
           4.16
           9.03
           4.05
           0.77
           0.53
           1.84

           3.77
                                        3.77
                                        3.40
                                        9  ?5
                                        2.54
                                        3.34
                                        1.30
                                        1.86
                                        2.73
                                        4.43
                                        1.93
                                        0.37
                                        0.73
                                        1.90
                                        2.25
                                        2.04
                                        1.93
                                        1.84
                                        1.64
                                        1.73
                                        1.94
                                        2.71
                                        2.54
                                        1.70
                                        0.20
                                        0.72
                                        1.72
                                        1.87
                                        1.77
                                        1.51
                                        1.48
                                        1.91
                                        4.16
                                        8.03
                                        4.05
                                        0.77
                                        0.53
                                        1.34
                                        3.51
                                        A .77
; OUT
i T
J F
269
248
268
269
268
267
269
270
269
265
266
268
270
269
268
268
267
267
268
269
270
268
266
267
268
269
268
268
267
268
270
272
272
264
264
268
270
271
263
BGHSE
DIFF P
IN H20
7.63
8.25
7.31
7.70
7.67
7.86
3.53
7.89
7.14
7.91
7.34
7.84
7.77
7.13
7.89
7.92
7.34
7.78
3.63
8.06
7.58
7.69
7.58
7.66
8.03
7.39
7.44
8.28
3.16
8.66
9.13
8.56
3.38
8.72
7.77
7.31
3.47
8.19
7.06
STACK
CO
PPMV
46.33
50.25
46.38
48.63
47.13
54.25
53.50
52.50
51.50
52.38
47.25
47.38
46.25
46.25
49.25
47.25
44.63
54.25
47.38
47.63
46.25
C 7 If
JJ.6j
62.50
54.38
49.25
44.63
50.13
54.13
43.25
47.88
68.00
95.00
66.25
51.88
47.63
43.88
54.63
51.25
53.38
STACK
OPACITY
I
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
-0.02
-0.04
-0.04
45.50
2.88
-0.02
46.25
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
10.97
49.38
37.33
49.88
-0.04
35.13
-0.04
-0.04
STACK
C02
I
3.01
2.89
2.89
2.98
2.69
3.18
3.29
3.18
2.98
2.69
2.99
2.89
2.78
2.78
3.09
2.78
2.78
2.59
2.78
3.08
2.59
2.28
2.59
2.89
2.78
2.73
2.98
3.08
2.38
2.38
3.08
3.18
3.29
3.33
2.89
2.59
3.29
3.18
2.73
10 FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
100.00
101.25
102.75
100.75
99.50
101.75
103.00
102.00
99.25
99.25
101.25
100.00
99.25
99.50
100.50
99.25
100.50
101.25
102.75
103.75
100.00
99.00
101.00
100.50
99.25
100.00
99.25
101.25
104.25
107.75
107.75
106.75
106.25
105.75
100.75
99.75
102.00
102.25
99.25
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
                                      268
             NON-TEST  PERIOD,  NOT INCLUDED  IN  AVERAGE
                                        7.92     43.92    25.M
                                                            K-22
                                                                                              0.01   101.71
                                                                                                     0.01
                                                                                                        0.01

-------
RADIAN CORPORATION
02-3 an-98
PROCESS  DATA  SUMMARY
HAINE ENERGY  RECOVERY  COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD  MAINE
UNIT A
DATE



I12DECS7
I12DEC37
12DEC87
12DEC87
12DECB7
12DEC87
12DECS7
12DECS7
112DECB7
J12DECS7
J12DEC87
J12DEC87
12DEC37
12DEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
12DEC37
12DECS7
1'DCCB7
12DEC37
112DEC87
I12DEC37
U2DEC37
U2DEC87
U2DEC87
U2DECB7
12DEC37
12DEC87
12DEC87
12DEC37
I2DEC87
12DEC37
12DEC37

TIME



11:12
11:14
11:20
11:24
11:23
11:32
ll:3i
11:40
11:44
11:48
11:52
11:56
12:00
12:04
12:08
12:12
12:16
' "' ' "'O
12:24
12:23
i?-T5
12:36
12:40
12:44
12:48
12:52
'"•c.6
13:00
13:04
13:08
13:12
13:16
13:20
13:24
13:28
13:32
13:36
13:40
13:44
13:48
13:52

DST CLTR
GAS DF P
IN H20
DPI371
3.46
3.51
3.23
3.43
3.41
3.27
3.61
3.61
2.96
3.34
3.57
3.01
3.38
3.52
2.93
3.51
3.41
3.20
3.45
3.45
3.24
3.40
3.34
3.39
3.36
3.33
3.43
3.36
3.33
3.45
3.38
3.32
3.39
3.42
3.33
3.30
3.34
3.39
3.38
3.45
3.38

ABSR IN
GAS P
IN H2C
PI 371
-8.19
-5.92
-5.02
-6.36
-8.06
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.67
-7.45
-7.70
-7.81
-7.61
-7.55
-7.67

-7.83


-8.22




-8.16


-8.22


-3.28


-7.94


-3.19


ABSR OUT
SAS P
IN H20
PI372
-12.91
-13.03
-13.84
-13.16
-13.16
-13.22
-13.53
-13.47
-14.78
-14,09
-14.31
-15.34
-13.75
-14.06
-14.75
-13.63
-13.66
-13.81
-13.16
-12.69
-14.16
-12.31
-12.84
-13.22
-13.03
-13.73
-12.66
-12.31
-13.88
-13.06
-12.78
-13.56
-12.59
-13.09
-13.84
-12.73
-12.69
-13.78
-13.41
-13.06
-13.44

ABSR 6AS
DIFF P
IN H20
DPI372
4.75
4.84
5.77
5.03
4.86
5.33
5.22
5.29
6.73
5.55
5.59
6.78
5.61
5.64
6.47
5.17
5.14
5.64
4.84
4.84
5.44
4.88
4.67
4.77
4.86
5.09
4.83
4.67
5.06
4.89
4.64
4.88
4.86
4.77
5.08
5.08
4.72
4.93
5.41
4.84
4.83

BGHSE
DIFF P
IN H20
DPI373
8.47
3.47
7.58
8.66
8.53
7.33
8.44
9.00
8.31
8.75
8.78
3.31
3.97
9.03
7.91
3.47
8.73
7.77
8.16
3.31
7.72
3.16
3.34
7.55
7.83
7.70
8.06
3.53
7.88
7.31
8.16
7.94
7.94
8.41
7.98
7.80
8.50
3.22
7.36
3.33
3.23

ID FAN
SUCT ?
IN H20
PI373
-21.38
-21.50
-21.31
-22.00
-21.38
-21.06
-22.13
-22.75
-23.50
-22.75
-22.88
-23.63
-23.06
-23.13
-22.31
-22.06
-22.38
-21.75
-21.19
-21.13
-21.56
-21.25
-21.13
-20.44
-20.75
-21.19
-21.13
-21.13
-21.31
-21.00
-20.81
-20.63
-20.94
-21.25
-21.44
-21.13
-21.13
-21.44
-21.69
-21.33
-21.25

ABSR IN
SAS T
DE6 F
T 1 3206
383
383
382
333
383
332
332
333
383
333
382
380
383
385
387
388
387
335
385
383
383
335
386
7Q?
380
381
331
331
382
7Q**
OOJ
384
333
381
382
335
385
382
331
333
384
382

ABSR CUT
GAS T
DEG F
TI3223
289
239
268
273
288
234
269
279
289
273
269
283
289
273
272
284
283
272
277
285
281
274
279
291
231
279
273
280
280
279
278
27?
278
281
281
276
275
281
283
277
274

OUTLET
GAS S02
PPHV
A 1 3804
3.05
8.81
10.53
8.94
10.81
11.78
9.59
4.09
9.09
7.78
8.22
9.06
12.72
6.61
7.06
4.20
5.42
3.53
7.34
7.92
7.59
2.48
3.03
7.61
2.48
2.13
13.38
-0.82
2.25
15.41
4.75
7.83
0.76
1.57
10.56
3.76
3.94
12.91
-0.08
-0.44
8.03

CQRRTD
SAS S02
I
AI3804B
0.37
1.05
1.27
1.07
1.30
1.42
1.11
0.47
1.05
0.90
0.98
1.08
1.50
0.79
0.84
0.50
0.66
0.42
0.88
0.96
0.91
0.29
0.37
0.91
0.30
0.25
1.60
-0.10
0.27
1.35
0.57
0.94
0.10
0.19
1.27
0.45
0.47
1.55
-0.01
-0.05
0.96

OUTLET
GAS NOK
PPMV
AI3304A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01

LIME SLRY
FEED
GPM
FI3202
7.39
7.38
7.33
7.36
7.33
7.33
7.28
7.27
7.25
7.22
7.22
7.17
7.13
7.13
8.09
3.03
3.00
7.97
7.92
7.91
7.86
7.84
7.84
7.34
7.31
7.83
7.73
7.81
7.73
7.75
7.73
7.72
7.70
7.86
7.83
\84
7.84
7.83
7.91
7.91
7.94
                                                               K-23

-------
RADIAN CORPORATION
                                                                                                                   02-jan-SS
PROCESS DATA SUMHARY
MAINE ENERGY RECOVERY  COMPANY
YORK COUNTY HASTE-TO-ENERGY  FACILITY
BIDDEFORD MAINE

UNIT A
DATE


12DEC37
12DEC87
12DEC87
12DECB7
12DEC37
12DEC37
12DEC97
12DECE7
12DEC87
12DEC87
12DEC97
12DEC87
12DEC87
112DECB7
I12DECS7
I12DEC37
I12DEC37
H2DECS7
I12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
U2DEC37
J12DEC37
I12DEC87
I12DEC37
112DEC37
•12DEC97
I12DEC37
•12DEC87
112DEC87
I12DEC97
112DEC37
jionrra?
U2DEC87
I12DEC87
112DEC37
I12DEC37
I12DEC37
I12DEC37
112DEC37
TIME


13:56
14:00
14:04
14:08
14:12
14:16
14:20
14:24
14:23
14:32
14:36
14:40
14:44
14:48
14:52
14:56
15:00
15:04
15:08
15:12
15:16
15:20
15:24
15:23
15:32
15:36
15:40
15:44
15:48
15:52
15:56
16:00
16:04
16:03
16:12
16:16
16:20
16:24
16:23
16:32
16:36
16:40
DST CLTR
GAS DF P
IN H20
3.41
3.37
3.36
3.4?
3.42
3.41
3.34
3.47
3.43
3.30
3.34
3.54
3.12
3.48
3.53
7 7?
3.45
3.38
3.30
3.42
3.41
3.51
3.60
3.36
3.02
2.30
1.77
2.09
2.25
2.05
1.34
1.93
2.30
2.19
2.20
2.58
2.68
2.77
2.35
2.11
2.27
2.01
ABSR IN
GAS P
IN H20

-3.09


-8.22












-7.84

-3.22
-3.03


-7.52
-6.73
-5.92
-4.84
-4.95
-5.05
-4.48
-4.93
-5.17
-5.69
-5.73
-5.70
-6.41
-7.42
-7.02
-6.16
-5.22
-6.03
-5.17
ABSR OUT
6AS P
IN H20 .
-13.00
-1 .78
-1 .38
-1 .59
-1 .06
-14.16
-12.75
-13.34
-14.44
-12.97
-13.66
-14.22
-12.81
-13.06
-13.50
-13.38
-13.16
-12.69
-13.00
-12.91
-12.94
-13.00
-13.23
-11.97
-10.59
-9.16
-7.44
-7.83
-7.97
-7.08
-7.70
-8.09
-3.83
-3.31
-3.63
-9.B3
-II !A
-10.56
-9.44
-3.22
-0 nc,
-8.00
AESR SAS
DIFF P
IN H20
5.05
4.77
4.95
4.92
4.77
5.00
5.00
4.91
5.03
5.45
5.36
5.06
5.63
4.80
4.99
5.41
4.75
4.66
5.25
4.77
4.77
5.22
5.17
4.64
4.14
3.23
2.55
2.94
3.10
2.82
2.59
2.75
3.17
2.99
3.02
3.52
3.66
3.77
3.23
2.93
3.16
2.77
BGHSE
DIFF P
IN H20
7.80
8.44
8.06
7.61
3.69
8.50
7.42
8.34
9.69
7.75
3.63
8.44
7.52
8.59
3.72
7.48
3.29
8.38
7.58
8.44
8.25
7.44
9.06
8.47
6.53
5.97
4.31
4.83
5.09
4.72
4.42
4.66
5.14
4.98
4.98
5.47
6.66
6.31
6.22
5.61
5.17
4.95
ID FAN
SUCT P
IN H20
-21.13
-21.31
-21.25
-20.63
-21.56
-21.81
-20.75
-21.31
-22.06
-21.56
-22.33
-21.83
-21.50
-21.50
-22.13
-21.33
-21.25
-21.06
-21.19
-21.38
-21.06
-21.00
-22.63
-20.94
-18.06
-14.91
-11.39
-12.75
-13.79
-12.75
-11.69
-12.34
-13.97
17 7Q
-lo. jo
-13 56
1 J . J J
-15.31
-16.88
-16.98
-15.56
-13.98
-14.06
-13.09
ABSR IN
GAS T
DEG F
381
392
382
381
382
333
333
383
385
337
389
389
393
386
386
388
388
385
383
383
382
392
384
371
346
331
324
319
311
306
305
304
305
310
717
J 1 !
325
334
345
355
359
360
358
ABSR OUT
GAS T
DES F
280
284
277
274
282
284
275
276
285
282
273
278
293
277
276
232
281
274
277
285
230
273
281
290
276
258
275
290
289
270
267
279
297
289
90 1
*.w 1
271
233
291
274
266
239
290
OUTLET
SAS 302
PPHV
5.72
1.50
10.72
1.04
2.95
3.75
1.91
13.44
11.73
3.01
3.84
0.22
-0.99
8.78
-0.82
-0.81
6.89
3.01
1.00
5.93
3.01
1.96
0.05
18.38
17.50
17.50
9.72
22.25
7.83
9.72
19.39
3.01
17.44
5.83
fl 73
C • . 3
17.50
13 59
1 •
0.69
0.18
1.29
0.13
0.35
1.05
0.23
1.61
1.41
0.3i
1.06
0.03
-0.11
1.05
-0.10
-0.10
0.82
0.36
0.12
0.70
0.36
!\ T7
J . i. J
0.01
2.20
2.10
2.10
1.17
2.65
0.94
0.70
0.97
0.36
2.09
0.70
! Ac,
i . 'J J
2.09
1 63
1 i 3 J
1.29
1.30
1 i?
"> 7C,
0.54
OUTLET I
GAS NOX
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
- 0 . 0 1
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-A (\ 1
V . Jl
-0.01
-0 01
U . V I
-0.01
-0.01
->"> fit
-i'i lit
-0.01
I ME ELfir
FEED
GPM
7.92
7.91
7.98
7.38
7.94
7.94
7.81
7.81
7.79
7.73
7.72
7.73
7.70
7.73
7.75
7.70
7.66
7.66
7.70
7.64
7.61
7.59
7.59
0 . 00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.07
M ftfl
J • US
0.09
ft ?5
v * *. J
0.21
0.21
ft "i
., ,,;,
"i < r
                                                              K-24

-------
RADIAN CORPORATION
02-Jari-S8
PROCESS  DATA SUMMARY
HAINE ENERBY RECOVER*  COMPANY
rORK COUNTY  WASTE-TQ-ENERGY  FACILITY
BIDDEFORD  MAINE
ON IT A
DATE


J12DEC97
U2DEC37
112DEC87
J12DECS7
J12DEC37
I12DECS7
I12DEC37
J12DEC37
112DEC37
<12DEC87
U2DEC37
tl2DECB7
I12DECS7
U2DEC87
U2DEC87
H2DEC87
U2DEC37
H2DEC37
•12DEC87
J12DEC87
U2BEC37
J12DECB7
j!?nr.na7
125ECB7
12DEC37
12DEC37
12DEC37
I2DEC87
ti?ncrg7
J12DEC87
U2DEC87
112BEC87
ti2DEC37
I12DEC87
U2DEC87
U2DEC37
U2DEC37
I12DECS7
I12DEC37
tiTirrp?
*i il/CLC-
I12DEC87
112DEC37

TIME


16:44
16:48
16:52
16:56
17:00
17:04
17:03
17:12
17:16
17:20
17:24
17:23
17:32
17:36
17:40
17:44
17:43
! 7 • E, 7'
17:56
13:00
13:04
18: 08
ia. n
13:16
13:20
18:24
13:23
13:32
18:36
13:40
18:44
13:43
13:52
18:56
19:00
19:04
19:03
19:12
19:16
19:20
19:24
19:28

DST CLTR
GAS DF ?
IN H2G
1.39
i in
2.39
2.59
2.93
3.05
3.26
3.45
3.25
3.42
3.26
3.46
3. 50
3.33
T ', C
3.51
3.40
f "" <
J.Oi
3.39
* c,^
J . Tfc
.54
.45
.32
.35
.43
7 91
2.91
2.13
2.41
2.56
*"' Q !
3.01
3.09
3.39
3.33
3.29
3.33
3.33
3.35
3.00
2 . 50

AESR IN ABSR OUT
GAS P GAS P
IN H20 IN H2G
-5.11 -7.31
-5.84 -9.03
-a. 13 -10.13
-6.31 -9.97
-7.23 -11.33
-7.05 -11.13
-7.64 -12.16
-14.06
-13.66
-13.56
-14.53
-12.69
-3.25 -13.06
-14.16
-13.69
-13.31
-14.44
-13.19
-13.88
-13.59
-13.33
-13.72
-13.91
-13.13
-13.09
-13.94
-14.81
-15.47


-14.69
-15.16
-14.13
-13.97
-14.44
-13.00
-7.31 -12.41
-3.09 -12.75
-12.6?
-7.92 -12.53
-7.20 -11.09
-6.27 -9.69

ABSR GAS
DIFF P
IN H2Q
2.65
3.05
3.91
3.55
3.98
4.16
4.44
5.13
5.53
C FM1
J.Ji
5.33
4.92
4.31
5.27
5.86
5.08
5.14
5.56
5.25
4.38
5.28
5.02
5.00
5.34
4.94
4.99
6.53
6.88
7.33
7.23
6.66
6.06
6.48
5.39
5.19
5.19
4.56
4.61
5.11
4.63
4.16
3.43

BSHSE
DIFF P
IN H20
4.80
5.31
7.45
7.28
7.06
7.30
3.25
3.19
8.34
3.53
3.00
7.91
3.66
8.31
3.00
8.34
8.56
7.91
3.50
8.13
8.03
8.69
8.25
7.77
8.50
8.47
3.38
9.34
9.66
8.88
9.09
8.73
7.39
9.00
3.50
7.11
7.61
7.69
6.89
7.69
7.27
5.36

ID FAN
SUCT P
IN H20
-12.31
-13.69
-13.06
-17.19
-13.00
-18.69
-20.19
-21.50
-22.31
-22.19
-21.81
-21.06
-21.56
-22.06
-22.25
-22.38
-22.06
-21.94
-22.19
-21.19
-21.75
-22.19
-21.63
-21.44
-21.75
-21.56
-23.38
-24.69
-25.50
-24.56
-24.25
-23.31
-22.38
-23.38
-22.19
-20.69
-19.88
-20.25
-20.33
-20.19
-19.00
-15.06

ABSR IN
SAS T
DE6 F
345
333
330
334
344
354
362
369
379
385
336
383
379
380
382
386
386
384
384
383
332
385
386
386
337
385
337
390
392
336
377
366
360
355
352
351
350
351
356
361
364
363

ABSR OUT
GAS T
DES F
256
264
275
275
279
281
233
287
291
276
263
280
287
280
273
282
284
274
276
283
280
276
279
281
279
274
231
236
290
288
277
264
279
293
273
264
239
292
267
273
296
276

OUTLET
SAS S02
PPHV
9.72
13.59
5.38
12.69
14.66
9.72
7.33
10.73
4.92
6.88
16.56
5.88
13.59
9.72
8.78
1.00
15.59
4.92
3.01
5.78
3.08
6.58
9.78
2.70
2.57
6.52
0.21
0.36
1.30
8.88
-0.90
0.26
12.09
5.48
2.58
13.03
12.66
11.22
16.25
5.27
6.69
11.03

CORRTD
GAS S02
I
1.09
1.59
0.69
1.52
1.76
1.17
0.94
1.29
0.59
0.82
1.99
0.70
1.63
1.17
1.05
0.12
1.87
0.59
0.36
0.69
0.37
0.78
1.18
0.33
0.31
0.79
0.02
0.03
0.14
0.86
-0.06
0.02
0.91
0.00
0.00
0.00
0.00
0.00
0.00
A A 0
0.38
0.66

OUTLET L
GAS NO*
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-.'I ,'lt
-0.01
-0.01

.IME SLRY
FEED
SPH
0.17
0.18
6.22
6.05
3.47
3.59
3.44
8.34
9.29
8.19
8.13
8.09
3.06
3.00
7.97
7.94
7.91
7.91
7.91
7.86
7.95
7.92
7.91
7.91
8.47
3.53
8.56
8.63
0.10
0.12
0.11
0.14
0.14
0.15
0.16
0.19
0.17
0.18
0.19
A ! Q
j.1'3
''''. lq
                                                           K-25

-------
RADIAN CORPORATION                                                                                                  02-Jan-88
PROCESS DATA SUMARY
Kfi!NE ENERGY RECOVERY COMPANY
YORK COUNTY KASTE-TO-ENERGY  FACILITY
BIDDEFORD MAINE

UNIT A

  DATE     TIME   DST CLTR   ABSR  IN ABSR  OUT   ABSR  GAS   BGHSE     ID  FAN   ABSR  IN   ABSR  OUT   OUTLET    CORRTD   OUTLET LIHE  SLRY
                  GAS DF  P    GAS  P    GAS  P      DIFF P    DIFF  P    SUCT  P    GAS  T     6AS  T     GAS  S02   GAS 302 GAS NOK   FEED
                   IN H20   IN  H20    IN H20     IN H20    IN  H20    IN  H20    DES  F     DE6  F      PPHV       I       PPHV     GPH

I12DEC37   19:32      2.50    -6.44    -10.03     3.52     5.08    -14.84      359      257      0.94      0.03    -0.01    0.20
112DEC87   19:36      2.44    -6.08    -9.59     3.45     5.14    -14.66      353      284      0.65      0.02    -0.01    0.21
         AVERAGE       3.37     -7.39    -13.42      5.17      9.22    -21.66      384      279      5.48      0.66     -0.01      7.80

         t  -  NON-TEST  PERIOD,  VALUE NOT INCLUDED  IN AVERAGE
                                                           K-26

-------
RADIAN CORPORATION
02-Jan-SE
PROCESS DATA  SUMMARY
MINE ENERSY  RECOVERY  COMPANY
YORK COUNTY WASTE-TQ-ENERGY  FACILIT/
B1DDEFORD  MAINE
UNIT A
DATE



I12DECS7
I12DEC87
112DEC37
12DEC37
12DEC87
12DEC37
12DECS7
12DEC87
•12DEC87
I12DEC87
112DEC87
U2DEC87
I12DEC87
12BEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DECS7
12DEC87
12DEC37
I12DEC87
t!2DEC87
U2DECS7
U2DEC37
J12DEC37
U2DEC87
12DEC87
12DEC37
12DEC87
12DEC87
i 'Ticrn?
i*yttC/
12DEC87
12DEC87
TIME



11:10
11:14
11-10
11:22
11:26
11:30
11:34
11:33
11:42
11:46
11:50
11:54
11:58
12:02
12:06
1 9 • 1 i'i
12:14
12:18
1 9i T>
12:26
12:30
12:34
12:33
12:42
12:46
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
DILUTION
WATER
GPM
FI3200
1.48
4.64
8.38
» ~r~T
* .00
!.?3
c c c
7.64
3.66
2.80
7.67
6.86
2.67
4.52
3.59
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
4.08
4.13
4.97
4.36
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
ST IN STM
PRESS
PSI6
PI200A
_•)
-6
-5
-6
_7
i
-7
-8
~J
-3
-8
-8
-7
-3
-g
-a
-8
-3























DILUTION
WATER
GPM
F 1 3200
1.43
4.64
8.88
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2.67
4.52
3.59
5.88
3.15
5.31
6.89
3.98
2.57
C EC
J. JJ
6.19
4.03
4.13
4.97
4.36
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
BHSE OUT
GAS T
DE6 F
T 1 3800
266
272
271
264
266
272
269
264
269
273
267
265
271
272
265
266
270
269
265
267
270
268
266
268
268
263
268
263
269
269
268
268
263
268
269
269
267
266
269
270
267
BSHSE
DIFF P
IN H20
DPI3809
3.41
7.52
8.50
3.31
7.66
3.34
8.31
7.72
9.13
9.09
7.67
8.97
9.22
3.06
8.91
8.75
7.77
3.47
3.53
7.43
8.16
3.53
7.75
7.91
3.25
7.77
8.25
7.31
8.16
8.44
7.72
7.33
3.50
7.94
7.38
8.31
3.00
7.36
3.50
8.19
7.67
STACK
CO
PPMV
AI370A
91.25
74.00
81.75
33.25
81.25
71.25
70.50
66.25
98.50
75.50
68.50
67.25
62.75
66.75
72.25
67.75
62.83
66.25
59.00
53.38
65.00
61.25
65.25
57.83
56.63
57.25
56.75
57.50
66.50
64.25
57.33
52.50
57.33
59.25
61.13
61.50
62.50
59.00
57.25
54.33
57.25
STACK
OPACITY
I
AI370B
44.25
44.33
44.00
46.63
43.33
46.38
44.00
41.83
41.13
44.50
41.38
45.83
49.88
44.75
47.00
40.13
46.13
46.38
41.13
45.63
40.50
49.83
47.25
47.75
41.00
43.13
42.50
43.50
48.63
49.25
49.83
49.75
49.88
49.88
49.88
49.88
49.88
43.75
49 aa
49.38
49.88
STACK
CQ2
V
i
AI370C
3.69
2.99
2.93
3.29
3.09
2.93
2.98
3.09
1.98
2.69
2.78
2.73
2.98
3.39
3.48
3.09
2.99
3.18
3.18
2.78
3.48
3.43
3.29
2.59
2.39
2.37
2.89
3.09
3.29
3.29
3.09
2.93
2.93
3.18
3.53
3.39
2.99
2.98
3.18
3.18
1.39
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
100.25
102.50
103.00
104.00
102.75
101.00
103.75
106.25
105.75
106.00
105.75
106.75
105.25
106.00
106.00
105.25
104.00
102.50
102.75
101.25
102.00
102.75
103.00
100.00
102.00
100.75
101.75
102.25
101.50
102.00
102.25
101.00
101.00
101.75
102.75
101.50
101.00
101.00
1 ;'! 1 1 c,
103.50
102.25
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
>') n 1
0.01
0.01
ID FAN
CURRENT
AMPS
I3L320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A !*. i
1 1 A !
r") ( l'l I
0 . 0 1
                                                               K-27

-------
RADIAN CORPORATE
                                                                                                            02-Jifi-SS
PROCESS DATA SUMAfi
DATE


12DEC37
12DECS7
12DECS7
12DEC87
12DEC37
12DECB7
12DEC87
12DEC37
pncraj
12DEC37
12DECS7
12DECB7
12DECB7
I12DEC37
I12DEC37
ti2DEC87
t!2DECS7
112DEC37
U2DEC37
12DECS7
iinrra?
* j. w L. u w '
12DEC37
12DEC37
I12DECS7
tl2D£C37
J12DEC37
I12DEC37
112DECS7
J12DEC37
U2DEC37
I12DEC37
112DEC37
I12DEC37
(J2DEC37
t!2DEC37
U2DEC37
112DEC37
*12DEC37
U2DEC37
H2DEC37
112DECS7
* r/ncra?
* » t-u b wC i
TIME


13:54
13:58
14:02
14:Gt
14:10
14:14
14:li
14:12
14:2=
14:30
14:34
14:33
14:4:
14:4t
14:50
14:54
14:53
t <;..-,"
15:06
15:10
15:14
15:15
15:22
15:2i
15:30
15:34
15:33
15:42
15:4s
1 C, ' C. '':
15:54
15:53
16:02
16:06
leliO
16:14
16:13
16:22
' 6: '6
16:30
16:34
lc:"a
DILUTION ST IN STH
«ATER PRESS
SPH PSIS
2.92
3.59
5.97
5.05
2.91
4.66
s.44
4.80
3.24
5.94
7.14
4.89
4 . 30
6.34
5.41
4.41
5.58
6.42
4.22
3.01
5.77
5.83
3.66
4.64
8.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.38
7.06
1.97
6.42
DILUTION
«ATER
BPH
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4 . 80
3.24
5.94
7.14
4.89
4.80
6.34
5.41
4.41
5. 53
6.42
4.22
3.01
5.77
5.83
3.66
4.64
3.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.33
7.06
1.97
6.42
BHSE OUT
GAS T
DEB F
266
269
270
267
267
270
270
266
268
271
269
266
269
270
268
26B
270
269
266
268
270
268
267
270
272
264
259
263
269
269
262
260
264
268
270
266
263
263
270
264
262
269
B6HSE
DIFF P
IN H20
3.56
8.31
7.61
3.22
3.44
7.33
3.47
8.09
7.64
8.75
8.63
7.53
3.41
3.66
7.61
8.56
8.47
7.36
3 . 50
3.56
7.39
3.22
3.83
7.92
3.00
6.34
4.61
4.22
4.95
4.70
4.30
4.39
4.72
4.86
4.92
4.83
6.03
6.34
6.59
5.03
5.91
5.09
STACK
CO
PPHV
55.38
56.38
51.50
59.33
64.25
64.25
57.75
59.25
76.25
69.25
73.25
77.25
72.50
65.25
69.25
71.50
64.25
63.33
60.50
54.38
57.25
62.50
63.33
100.00
42.50
20.56
11.59
7.72
1.62
2.55
0.69
3.56
3.56
4.58
6.53
12.53
27.44
53.33
eg TC
192.00
159.00
147.00
STACK
OPACITY
V
49.88
49.88
49.83
49.38
49.83
49.33
49.38
49.88
49.83
49.38
49.83
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.38
49.38
49.38
49.88
49.88
49.38
49.88
49.83
49.83
49.38
49.83
49.88
49.88
49.88
49.33
49.38
49.33
49.33
49.83
49.88
-0.04
-0.04
-0.04
-0.04
STACK
CQ2
I
2.78
3.39
2.39
2.98
3.18
3.29
3.09
2.78
3.38
3.79
4.08
3.98
3.69
2.93
3.48
3.69
3.48
2.89
2.89
3.13
2.39
3.09
3.29
1.93
0.20
0.10
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.40
0.59
0.69
0.69
0.99
1.39
0.39
0.59
0.49
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
I'l 01
0.01
0.01
0.01
ID FAN
CURRENT
ANPS
101.00
102.00
102.25
101.50
102.25
101.75
102.00
101.50
102.75
102.75
103.50
104.25
102.50
102.50
103.25
102.50
103.00
102.50
102.00
101.75
•02.50
101.50
103.75
105.25
101.25
95.50
90.25
83.50
92.25
91.25
39.50
89.50
90.75
91.00
91.25
91.25
94.75
94.50
os sn
90.50
90 . 50
90.00
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
i'; fit
0.01
0.01
C.01
ID FAN
CURRENT
A«PS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0 . 0 1
M fit
0.01
0 . 0 i
0.01
                                                           K-28

-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUHHARY
MINE ENERGY RECOVERY  COMPANY
YORK' COUNTY  KASTE-TO-ENERGY  FACILITY
EIDDEFORD  HA!HE

UNIT A
DATE
TIME DILUTION ST IN STH DILUTION EHSE OUT B6HSE
WATER PRESS HATER SAS T DIFF P
SP« PS!G SPH
U2DEC37
112DEC87
I12DEC37
H2DECB7
U2BEC37
ti2Dfrfl7
J12DEC37
U2DEC87
I12DECS7
U2DEC87
t'2DEC37
I12DEC37
112DEC37
I12DEC87
I12DEC97
»12DEC87
*nnrrs7
U2DEC87
I12DEC87
J12DEC37
U2DEC37
U2DEC37
ji Tiers?
(i?ncrB"!
12DEC37
12DEC37
12DEC37
i ^nrrn?
12DEC37
U2DEC97
112DEC37
U2DEC37
112DEC37
IpncraT
I12DEC37
I12DEC87
tf?r!JT!57
112DEC37
JI2DEC37
U2DEC37
I12DECS7
ti2DEC37
16:42
16:46
16:50
16:54
16:58
17,f|->
17:06
17:10
17:14
17:13
| 7, f)
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
13:02
13:06
i a • i A
13:14
13:13
13:22
13:26
IS: 30
13:34
13:33
13:42
13:46
13:50
13:54
13:58
19:02
19:06
19:10
19:14
!9:1S
19:22
19:26
10.53
1.53
-1.02
-1.02
-1 .02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.86
6.77
4.72
3.24
5.30
5.34
4.34
4.73
5.58
5.34
3.54
4.53
7.53
6.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.33
10.69
10.53
1.53
-1.02
-1.02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.36
6.77
4.72
3.24
5.30
5.84
4.84
4.78
5.58
5.34
3.54
4.53
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.33
2.09
6.30
11.59
6.39
3.38
10.69
DEG F IN H2G
268
256
253
262
263
265
267
269
272
273
266
264
268
271
267
266
270
270
266
268
270
269
268
269
270
268
267
270
272
271
273
267
262
270
273
264
263
272
271
262
267
273
4.80
4.92
7.44
6.97
6.95
7.56
7.30
3.06
3.83
3.22
8.00
3.50
8.22
3.03
8.56
8.28
3.16
3.69
3.44
7.73
3.69
3.50
7.89
3.31
8.22
7.73
8.73
9.19
3.72
9.69
9.41
7.94
3.69
9.13
7.72
8.16
7.38
6.77
7.69
7.94
6.73
6.30
STACK
CO
PPHV
222.00
136.50
139.00
224.00
129.00
68.25
58.33
57.33
79.25
76.25
71.50
62.38
54.50
61.38
61.33
60.38
58.25
59.38
61.38
57.25
31.25
60.88
59.00
60.33
67.75
75.50
64.75
72.00
61.33
34.25
93.50
137.00
89.25
57.00
27.00
18.63
12.53
9.66
11.69
8.91
11.34
12.38
STACK
OPACITY
•/
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.05
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
0.89
0.99
1.39
1.59
1.89
2.38
2.88
2.98
4.33
4.38
3.88
3.08
2.68
3.38
3.38
3.48
3.29
2.88
3.08
3.08
3.29
3.38
3.28
3.38
3.78
3.53
3.58
3.18
3.53
1.79
1.69
1.09
0.68
0.59
0.59
0.59
0.49
0.59
0.69
0.59
0.59
0.59
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AHPS
90.25
90.50
94.75
96.50
95.00
96.75
98.00
100.00
102.50
104.25
104.25
101.50
102.25
102.50
104.25
103.75
104.00
103.25
104.25
103.00
102.75
104.25
102.75
101.75
102.75
101.75
103.75
107.50
110.25
108.75
108.75
108.50
107.25
108.25
107.25
105.00
101.50
100.50
101.50
102.75
100.50
94.75
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0 . 0 1
AMPS
0.01
0.01
0.01
o.or
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.31
0.01
0 . 0 1
0 . 0 1
0 . 0 1
0 , 0 1
                                                              K-29

-------
RADIAN CORPORATION                                                                                                  02-Jan-SS
PROCESS DATA SUflHARY
MAINE ENERGY RECOVERY  COMPANY
YORK COUNTY HASTE-TO-ENERGY  FACILITY
BIDDEFGRD MAINE

UNIT A
DATE


H2DECB7
U2DEC87

TIHE DILUTION ST IN STM


19:30
19:34
AVERAGE
WATER PRESS
GPH PS! 6
9.44
1.56
4.39 -7
DILUTION
HATER
SPM
9.44
1.54
4.8?
BHSE OUT
GAS T
DE6 F
245
259
248
BEHSE
DIFF P
IN H20
5.89
5.00
8.20
STACK
CO
PPHV
12.53
11.34
44.02
STACK
OPACITY
I
-0.04
2.94
42.54
STACK
ID FAN
C02 CURRENT
I
0.60
0.59
3.23
AHPS
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
94.00
93.25
102.84
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
0.01
0.01
o.or
         t    NON-TEST PERIOD,VALUE  NOT  INCLUDED  IN AVERAGE
                                                              K-30

-------