United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park. NC 27711
EMB Report No. 88 - MIN - 06A
April 1988
Air
&ER&
Municipal Waste Combustion
HCI Continuous Monitoring Study
Emission Test Report
Maine Energy Recovery Company
Solid Waste-to-Energy Facility
Refuse-Derived Fuel Process
Biddeford, Maine
-------
EMISSION TEST REPORT
HC1 CONTINUOUS MONITORING FOR
MUNICIPAL WASTE COMBUSTION STUDY
MAINE ENERGY RECOVERY COMPANY
SOLID WASTE-TO-ENERGY FACILITY
REFUSE-DERIVED FUEL PROCESS
BIDDEFORD, MAINE
ESED Project No. 86/19a
EPA Contract No. 68-02-^336
Work Assignment No. 16
Prepared for:
Clyde E. Riley, Task Manager
Emission Measurement Branch
Emission Standards and Engineering Division
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
Prepared by:
Scott Shanklin
J. Ron Jernigan, P.E.
Entropy Environmentalists, Inc.
Post Office Box 12291
Research Triangle Park, North Carolina 27711
April 8, 1988
-------
TABLE OF CONTENTS
1.0 Introduction 1
1.1 Background 1
1.2 Purpose and Objectives 1
1. 3 Brief Process Description 2
1.4 Sampling Matrix 2
1.5 Quality Assurance/Quality Control 5
1.6 Schedule 5
1.7 Organization 5
2 .0 Summary and Discussion of Results 7
2.1 Test Run 1 7
2 .2 Test Run 2 15
2 . 3 Test Run 3 15
3.0 Process Description and Operation 25
3 • 1 Facility Description 25
3-2 Summary of Operations by Test Run 30
3-3 Summary of Operating Parameters During the Test Program 31
4.0 HC1 Continuous Emission Monitoring System Descriptions 43
4.1 Thermo Electron Model 15 HC1 Analyzer/Model 200 Dilution System... 43
4.2 Compur Model 4150 ZGSM HC1 Analyzer/Model 4330 Dilution System.... 44
4.3 Bodenseewerk Spectran Model 677 IR HC1 Monitoring System 45
5.0 Description of the HC1 CEM Sampling Program 47
5-1 Spray Dryer Inlet - Thermo Electron HC1 Monitoring System 47
5-2 Spray Dryer Outlet - Compur HC1 Monitoring System 54
5-3 Baghouse Outlet - Bodenseewerk HC1 Monitoring System 54
5-4 Data Acquisition System 54
6. 0 Quality Assurance/Quality Control 57
6.1 HC1 Sampling System Inspection 57
6.2 Linearity Checks and Midrange QC Checks 57
6. 3 Calibrations and Drift Calculations 57
6.4 Wet Chemical Sampling for Performance Evalution Audits 59
Appendix A. Test Program One-Minute Data Printouts
Appendix B. Sample Calculations
Appendix C. Daily Calibration Sheets
Appendix D. Daily System Check Lists
Appendix E. Quality Assurance Data
Appendix F. HC1 Calibration Cylinder Gases
Appendix G. Bodenseewerk Operation Procedures
Appendix H. Thermo Electron Operation Procedures
Appendix I. Compur Operation Procedures
Appendix J. Wet Chemical Sampling/Analytical Procedures
Appendix K. Spray Dryer Operating Data
-------
LIST OF TABLES
Table
Number Number
1.1 Test Matrix for MERC Test Program 3
2.1 Summary of HC1 Monitoring Data, Refuse-Derived Fuel,
Municipal Waste Combustor Test Program, MERC, December 198? 8
2.2 Sampling Log Summary, MERC - Biddeford 9
2.3 MRI Volumetric Flow Rate and Moisture Data Used in HC1
Monitoring Calculations - MERC Test Program 10
2.4" HC1 Monitoring Results - Run 1 11
2.5 HC1 Monitoring Results - Run 2 16
2.6 HC1 Monitoring Results - Run 3 20
3-1 Summary of Key Operating Parameters During the MERC
Test Program 33
6.1 HC1 CEM Linearity Check (3-Point) 57
6.2 Calibration Drift Results for Each Test Run 57
-------
LIST OF FIGURES
Figure Page
Number Number
1-1 Process schematic for MERC in Biddeford, Maine; sampling 4
and monitoring locations are keyed to Table 1.1
1-2 Organizational scheme for MERC testing program 6
2-1 HC1 Monitoring Data - Run #1 12
2-2 HC1 Monitoring Data - Run #1 13
2-3 HC1 Removal Efficiency - Run #1 14
2-4 HC1 Monitoring Data - Run #2 1?
2-5 HC1 Monitoring Data - Run #2 18
2-6 HC1 Removal Efficiency - Run #2 19
2-7 HC1 Monitoring Data - Run #3 21
2-8 HC1 Monitoring Data - Run #3 22
2-9 HC1 Removal Efficiency - Run #3 23
3~1 The Process Line for Unit A of the York County Waste-to-Energy 26
Facility, Biddeford, Maine
3-2 Preparation of Refuse-Derived Fuel at MERC in Biddeford, Maine 27
3-3 Combustion Air Scheme at the MERC Facility in Biddeford, Maine 29
3-4 Location of Temperature, Pressure, and Flow Sensors at the
MERC Facility 32
3~5 RDF Heat Release and Steam Flow, Pressure, and Temperature
as a Function of Time During the MERC Test Program 33
3~6 Combustion Air Parameters as a Function of Time During the
MERC Test Program 36
3~7 Overfire Air Flow Pressures Measured During the MERC Test
Program 37
3-8 Flue Gas Temperature as a Function of Time During the MERC
Test Program 39
3~9 Spray Dryer Operating Parameters as a Function of Time During
the MERC Test Program 40
3-10 Differential Pressures Across the Control Devices During the
MERC Test Program 4l
(continued)
-------
List of Figures (continued)
5-1 Location of Testing Trailer and Sample Lines 48
5-2 Field Evaluation Set-up i»9
5-3 Top View of Spray Dryer Inlet and Outlet Sampling Locations 50
5~4 Spray Dryer Outlet Sampling System: Passive Nozzle 52
5~5 Barrel Nozzle 53
5-6 Location of Sampling Probe at the Baghouse Outlet 55
-------
1.0 INTRODUCTION
1.1 BACKGROUND
The U. S. Environmental Protection Agency (EPA) published em advance
notice of proposed rulemaking in the Federal Register (July 7, 198?) which
describes upcoming emission standards development for new and modified
municipal waste combustors (MWC) under Section 111 of the Clean Air Act and
for existing MWC under Section lll(d) of the Act. The Federal Register
notice culminates more than a year of work on the development of the
technical and health related documents which comprise EPA's Report to
Congress on MWC. The Report to Congress was a joint effort involving the
Offices of Air Quality Planning and Standards (OAQPS), Solid Waste (OSW), and
Research and Development (ORD).
The OAQPS, through the Industrial Studies Branch (ISB in the Emission
Standards Division) and the Emission Measurement Branch (EMB in the Technical
Support Division), is responsible for reviewing the existing air emission
data base and gathering additional data where necessary. As a result of this
review, several MWC emission tests have been performed and several more are
in the planning stages to support the current standards development work. Of
particular importance is a more complete data base on emerging air pollution
control technologies for MWC.
The emissions being studied in this assessment are the criteria
pollutants -- particulate matter (PM), sulfur dioxide (S0_), nitrogen oxides
(NO ), carbon monoxide (CO), and total hydrocarbons (THC); other acid gases,
sucn as hydrochloric acid (HC1); chlorinated organics, including chlorinated
dibenzo-p-dioxins (CDD), chlorinated dibenzofurans (CDF), and dioxin
precursors; and specific metals, including arsenic (As), cadmium (Cd), total
chromium (Cr), mercury (Hg), nickel (Ni), and lead (Pb).
1.2 PURPOSE AND OBJECTIVES
A number of MWC's have undergone emissions testing programs sponsored by
the EPA and others to supplement the data base on MWC. However, no data are
currently available from a state-of-the-art refuse-derived fuel (RDF) MWC
facility in terms of uncontrolled and controlled emission levels under normal
operating conditions or under normal variations in facility operation. The
control technologies as well as the regulatory data requirements for RDF
facilities are the same as those for mass-burn facilities.
Combustion Engineering (CE) and Babcock and Wilcox (B&W) are the two
principal suppliers of RDF combustor technology in the United States. The EPA
is currently involved with Environment Canada in the planning of an extensive
test program at a CE-designed RDF facility with a spray dryer/fabric filter
(SD/FF) emission control system located in Hartford, Connecticut. The test
program will involve both characterization and performance testing of the
facility during the summer and fall of 1988. However, the data from this test
will not become available until late in EPA's regulatory development schedule.
Therefore, the test program at the Maine Energy Recovery Company (MERC) in
Biddeford, Maine, a B&W unit with an SD/FF emission control system, will
provide ESED with the opportunity to move ahead with regulatory development for
RDF MWC facilities with a limited amount of data, while awaiting the data from
-------
the CE-designed facility in Connecticut. The MERC test program was conducted
in conjunction with the compliance tests for CDD/CDF conducted by Entropy for
MERC's holding company, KTI Holdings, Inc. Data from the compliance test will
also be available to EPA.
Specific objectives of the Biddeford test program were:
1. To determine the level of uncontrolled MWC emissions, including
criteria pollutants, metals, acid gases, and dioxin/furans, from a
state-of-the-art refuse-derived fuel facility.
2. To determine the control efficiency on RDF MWC emissions, including
criteria pollutants, metals, acid gases, and dioxin/furans, of a
spray dryer/fabric filter control system.
Entropy conducted continuous emission monitoring for HC1 at the inlet to
the spray dryer, at the outlet of the spray dryer, and at the outlet of the
fabric filter. Midwest Research Institute (MRI) performed manual sampling
for CDD/CDF, particulate matter, metals, 0 and CC^, and conducted
continuous emission monitoring of CO, CO , SO 0^, NO^, and THC (see Table
1.1). Sampling of the fly ash, lime slurry, and refuse-derived fuel was also
conducted and coordinated by MRI. The HC1 monitoring data collected by
Entropy is presented to compliment the other emission test data gathered by
MRI.
Process and control system operating data were collected over the course
of the test program by Radian Corporation (Radian). This included all
computer-logged process data from the plant instrumentation and all available
emission control system parameters. Collection of these data is described
and the data are summarized in Section 3-0 (prepared by Radian).
1.3 BRIEF PROCESS DESCRIPTION
Figure 1.1 is a process schematic showing the sampling and monitoring
locations for Unit A, one of the two identical combustor systems at the Maine
Energy Recovery Company, which was tested during this program. The facility
processes municipal waste through extensive sorting and shredding into
refuse-dgrived fuel. The RDF plus supplemental fuel is used to fire two
150 x 10 Btu/hour boilers that can provide steam for up to 22 MW of power
generation, which is sold to Central Maine Power. The combustion gases from
each boiler pass through a spray dryer followed by a fabric filter and exit
through a common stack. 100% RDF was fired in both boilers during this test
program.
1.4 SAMPLING MATRIX
Table 1.1 presents the overall test program matrix including sampling and
analytical procedures employed by Entropy and MRI. Sampling at all three
locations occurred simultaneously, and process samples (fly ash, lime slurry,
and RDF) were taken at regular intervals during the test periods.
-------
TABLE 1.1. TEST MATRIX FOR MERC TEST PROGRAM
Sample Sampling
Location Type Method
1-Spray dryer inlet Combustion M5
gas
MM5
M3
CEMS
2-Spray dryer outlet Combustion CEMS
gas
3-Fabric filter outlet Combustion MM5
gas
M5
M3
CEMS
Samp ling
Duration
4 hours
4 hours
4 hours
4 hours
4 hours
4 hours
4 hours
4 hours
Ana lysis
Parameter
Particulate
Metals (Cd , Cr . As ,
Pb, Hg)
CDD/CDF
o2, co2
CO, CO,,
so 2
THC
HC1°
CO
0
HCV
CDD/CDFd
Particulate
Metals ( Cd , Cr , As ,
Pb, Hg)
o2. co2
CO 0
so
NO
Analysis
Method
Gravime trie
AAS/ICAP
HRGC/HRMS
Orsat
NDIR
Pulsed fluorescenc
Heated FID
e
Infrared absorption
NDIR
Pol arographi c
Specific ion elect
HRGC/HRMS
Gravime trie
AA/ICAP
Orsat
NDIR, Polarographi
Pulsed fluorescenc
Chemiluminesence
rode
c
e
HC1 Infraredabsorption
A-Cyclone ash Fly ash Integrated
discharge grab
B-Fabric filter Fly ash Integrated
( Baghouse ) grab
C-Bottom ash discharge Bottom ash Integrated
grab
D-Spray dryer holding Lime slurry Integrated
tank grab
E-Boiler inlet RDF Integrated
grab
4 hours
4 hours
4 hours
4 hours
3- run
composite
4 hours
Metals
Percent Carbon
Percent combustibles
Percent carbon
Metals
Percent combustibles
Resistivity
K factor
Percent combustibles
Percent carbon
Metals
Me tals ( Cd , Cr ,
As, Hg, Pb)
Retained
AAS/ICAP
ASTM E830
ASTM E777
ASTM
AA/ICAP
ASTM
IEEE 548-1984
ASTM E830
ASTM E777
AA/ICAP
1CAP/AAS
Retained
rformed by MRI;
mon i t c
by
Numbers or letters refer to Figure 1.1.
Separate analysis of front and back half.
HC1 monitoring performed by Entropy; all other sampling
Combined front- and back-half analysis.
eFlexible heated Teflon sample line will be used immediately following probe to next component of sampling train.
ASSUMPTIONS
1. Three identical test runs.
2. Sampling time 4 hr
3. Front half/back half PCDD/PCDF analyses on inlet samples; combined CDD/CDF analysis on outlet samples.
4. No ash samples collected from the preheater/economizer discharge and the grate siftings hopper
-------
i'6V-ime
^-'Slurry
RDF
Boiler
riizerj H
Economizer! M Preheater
Bottom /
Ash /*
Ash
Discharge
Grulc
Ash
> Combustion Gas
— > Ash Discharge
Sample Locations
1 "i Ash Sample Locations
/\ Plant Cems
• Off Line During Test
Cyclones
Spray
Dryer
Absorber
(Scrub-
ber)
wv
CO. C02
Opacily
Identical
Boiler Unit B
Figure 1-1. Process schematic for MERC in Biddeford, Maine; sampling and monitoring locations are
keyed to Table 1.1.
-------
1.5 QUALITY ASSURANCE/QUALITY CONTROL
Prior to performing this test, Entropy prepared both a Quality Assurance/
Quality Control (QA/QC) Project Plan and a Site-Specific Test Plan. The QA/QC
Project Plan details all QA/QC activities undertaken for the test program; the
Site-Specific Test Plan describes the particulars of the sampling and
analytical procedures and the test locations. Section 6.0 of this report
summarizes the results of the QA/QC activities performed by Entropy. A
separate report by Research Triangle Institute (RTI) summarizes the results of
an external technical systems (checklist) audit on the HC1 monitoring performed
during the test program by RTI staff.
1.6 SCHEDULE
The test program began with the on-site arrival of the Entropy test crew on
December 1, 1987. The first seven days on-site were used to set up the three
HC1 monitoring systems and perform preliminary checks to ensure that all of the
monitoring equipment was functioning properly prior to the anticipated December
8 initiation of the testing. The emissions testing was scheduled to be
conducted during a three day period. However, the plant experienced numerous
process operating problems which caused delays and disruptions in the testing.
The three test runs were performed between December 9 and December 13, 198?•
The Entropy test crew departed the test site on December 16, 198? after
disassembling and packing the test equipment.
1.7 ORGANIZATION
Mr. Mike Johnston of the Office of Air Quality Planning and Standards
(OAQPS) and Dr. Ted Brna of the Air & Energy Engineering Research Laboratory
(AEERL) participated as program coordinators. Mr. Winton Kelly of Radian
assisted the program coordinators in monitoring the process operations. The
test program coordinators were responsible for coordinating the overall test
program with the plant officials and assuring that the process and control
equipment operating conditions were suitable for testing. Mr. Gene Riley of
OAQPS was the EPA Task Manager, and was responsible for coordinating the
efforts of the Entropy and MRI test crews.
Mr. J. Ron Jernigan was the Project Coordinator for the HC1 monitoring
conducted by Entropy. Mr. Scott Shanklin served as the HC1 Test Team Leader
and was responsible for field testing and on-site QA/QC activities. The
organizational scheme showing Entropy in relationship to all parties involved
in the test program is shown in Figure 1.2.
-------
Contractor
MRI
Radian
Entropy (Source Test Div.)
Entropy (CEM/Eng. Div.)
RTI
CONTRACTOR EFFORT
Scope of Work
Conduct field test program
Perform process monitoring
Compliance field testing
Conduct HCI monitoring
Test program QA
Funding Source
AEERL
OAQPS
KTI Energy, Inc.
OAQPS/AEERL
AEERL
GOVERNMENT PERSONNEL ON TEST SITE
EPA, AEERL
EPA, OAQPS
MDEP
James Kilgroe
Ted Brna
Mike Johnston
Gene Riley
Scott Mason
MAINE ENERGY RECOVERY COMPANY TEST PROGRAM
MANAGEMENT PROTOCOL FOR DECISION MAKING
AEERL Coordinator
James Kilgroe
QA
Judith Ford (EPA)
Shri Kulkarni (RTI)
MRI Test Crew
(Emission Testing)
George Schiel
EPA Project
Coordinators
James Kilgroe
Ted Brna
Mike Johnston
OAQPS Coordinator
Mike Johnston
OAQPS
Task Manager
Gene Riley
Entropy Test Crew
(HCI Testing)
Ron Jernigan
Scott Shanklin
Keith Hazel
KTI Coordinators
Lynn Johnston
Frank Ferraro
KTI Program Coordinator
Frank Ferraro
MERC Coordinator
Gary Bates
Radian
Process Monitoring
Winton Kelly
Figure 1.2. Organizational scheme for MERC testing program.
3516B 1/88
-------
2.0 SUMMARY AND DISCUSSION OF RESULTS
The mean HC1 monitoring results and process HC1 scrubber removal
efficiencies are presented in Table 2.1. The HC1 concentrations at the spray
dryer inlet (inlet) and spray dryer outlet (midpoint) sampling locations (TECO
and Compur GEMS's, respectively) were measured on a wet basis and converted to
dry basis values using EPA Method 4 data supplied by MRI. The HC1 measurement
data for each test run were corrected for calibration drift using the pre- and
post-test calibration results according to the procedures in EPA Method 6C.
HC1 removal efficiencies were calculated from the inlet to the midpoint
location, and from the inlet to the outlet location. The removal efficiencies
were computed on a mass emission rate basis (Ib HCl/hr) using the Entropy HC1
continuous monitoring data collected at the three test locations and volumetric
flow rate data provided by MRI.
The moisture and volumetric flow rate results as well as the test run times
utilized by Entropy in calculating the monitoring results and HC1 removal
efficiencies were obtained from MRI (see Tables 2.2 and 2.3, respectively).
The moisture values used to correct the inlet HC1 monitoring results were
averages of the results from the two trains (particulate/metals and CDD/CDF)
operated at the inlet location (see Table 2.3). The outlet moisture values
were used to correct the midpoint HC1 monitoring results since no manual
testing was conducted at the midpoint location. The increase in the moisture
observed from the inlet to the outlet is the result of the spray dryer lime
slurry injection. The volumetric flow rate values used to calculate the
percent removal efficiencies were also averages of the results from the two
trains operated at both the inlet and outlet (see Table 2.3). The average of
the values from the two trains was used with inlet and outlet HC1 values; the
average of these averages (inlet averaged with outlet) was used with the
midpoint HC1 data.
The HC1 monitoring data that were printed by the data acquisition system
during the testing program are presented in Appendix A. The daily calibration
results manually recorded on calibration drift summary sheets are contained in
Appendix B.
2.1 TEST RUN 1
The HC1 monitoring results for Test Run 1 are summarized in Table 2.4 and
are presented graphically in Figures 2-1 and 2-2. The two trend graphs present
one-minute averages recorded throughout the test run, excluding any periods of
"process upsets". Figure 2-2 presents the monitoring data corresponding to the
MRI metals train sampling times, and excludes the data collected during the MRI
sampling port changes.
The mean HC1 concentration results were 560 ppm, 75 ppm, and 9 PPm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were 8f% and $8%, respectively. The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-3-
-------
TABLE 2.1.
SUMMARY OF HC1 MONITORING DATA
REFUSE-DERIVED FUEL
MUNICIPAL WASTE COMBUSTOR TEST PROGRAM
MAINE ENERGY RECOVERY COMPANY
Test
Run
1
2
3
Spray Dryer Inlet
HC1 cone.
(ppmv, dry)
560
564
537
Spray Dryer Outlet
HC1 Cone. HC1 Removal
(ppmv, dry) (%)
75 86.7
8 98.6
1* 99.8*
Baghouse Outlet
HC1 Cone. HC1 Removal
(ppmv, dry) (%)
9 98.4
4 99-3
3 99.4
*The midpoint measurements may be questionable for Run 3 because the Compur CEMS
accuracy is unknown at this low concentration range. The Compur had not been
operated and tested at the outlet of HC1 control during previous EPA studies.
-------
TABLE' 2.2. SAMPLING LOG SUMMARY, MERC - BIDDEFORD
Sampling
Sample Times
Date Run Type Location (24 hr clock)
12/9
12/9
12/9
12/9
12/10
12/10
12/10
12/10
12/12
12/12
12/12
12/12
1 Metals Inlet 1530-1650
1718-1838
1 MM5 Inlet 1535-1655
1723-1843
1 Metals Outlet 1532-1652
1719-1839
1 MM5 Outlet 1535-1655
1720-1840
2 Metals Inlet 1250-1410
1435-1555
I64o-i8oo
2 MM5 Inlet 1245-1405
1431-1551
1636-1756
2 Metals Outlet 1246-1406
1433-1553
1636-1756
2 MM5 Outlet 1247-1302
1305-1410
1500-1620
1637-1757
3 Metals Inlet 1124-1139
1204-1309
1329-1449
1514-1524
1819-1834
3 MM5 Inlet 1120-1140
1200-1300
1325-1445
1510-1525
1815-1835
3 Metals Outlet 1117-1142
1200-1255
1325-1445
1510-1525
1815-1835
3 MM5 Outlet 1116-1141
1201-1256
1326-1446
1511-1531
Elapsed Averaging Times for HC1
Time Monitoring at All Locations*
Comments (min) (24 hr clock)
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port changes
Stopped for port changes
Stopped for port changes
Stopped to change XAD
and twice to change
ports
Process down 1139-1204
and 1524-1819 ; o the r
stops for port changes
Process down during
first and last stops;
other two stops for
for port changes
Process down during
first and last stops;
other two stops for
for port changes
Process down during
first stop; other two
stops for port changes
80
80
lo~0" total
80
80
l6~0~ total
80
80
l6~0 total
80
80
16~0~ total
80
80
80
2£o~ total
80
80
80
2^40 total
80
80
80
275" total
15
65
80
80
275~ total
15
65
80
10
15
185 total
20
60
80
15
20
195 total
25
55
80
15
20
195 total
25
55
80
20
18~0~ total
1530-1630
1630-1730
1730-1830
1830-1842
1300-1400
1400-1500
1500-1600
1600-1700
1700-1800
1115-1139
1204-1215
1215-1315
1315-1415
1415-1515
1515-1524
1819-1834
•Periods when process was down were not included in HC1 monitoring data averaging times;
changes were included.
periods during port
-------
TABLE 2.3. MRI VOLUMETRIC FLOW RATE AND MOISTURE DATA USED
IN HC1 MONITORING CALCULATIONS - MERC TEST PROGRAM
Run
No.
Inlet
Flow Rate Moisture
(dscfm) (%)
Outlet
Flow Rate Moisture
(dscfm) (%)
Midpoint**
Flow Rate Moisture
(dscfm) (%)
Particulate/Metals Train
1
2
3
41,500
42,100
42,500
15-1
15.2
16.8
39,800
41,900
44,400
16.8
16.3
14.6*
CDD CDF Train
1
2
3
38,300
40,500
41,000
Average
1
2
3
39,900
41,300
41,800
14.3
14.4
16.0
39,200
41,100
42,500
of Particulate/Metals
14.7
14.8
16.4
39,500
41,500
43,500
15-3
13-5*
17.0
and CDD/CDF Trains***
16.1
16.3
17-0
39,700 16.1
41,400 16.3
42,600 17.0
*Did not pass final leak check; moisture values not used in averages.
**No manual testing was conducted at the midpoint. Flow rate values are average of
inlet and outlet values; moisture values are outlet values (since increase from
inlet to outlet moisture values is result of spray dryer).
***Calculated for use in determining (1) moisture corrections and (2) percent removal
efficiency of HC1 for midpoint and outlet locations.
10
-------
TABLE 2.4.
HC1 MONITORING RESULTS - RUN 1
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 9, 198?
-lour Time
1 15:30-16:30
2 16:30-17:30
3 17:30-18:30
4 18:30-18:42*
Test Average
(Time Weighted)
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
533
643
528
453
560
1040
443
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
66 87-7
134 79-3
38 92.8
21 95-4
75 86.7
321
13
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
10 98.1
11 98.3
7 98.7
6 98.7
9 98.4
82
5
Note: Inlet and midpoint concentration measurements were made on a wet
basis and corrected to a dry basis using the Method 4 moisture data
provided by MRI.
Inlet Moisture = l4.7# H20
Midpoint Moisture = 16.1% HO (as measured at the baghouse
outlet sample location)
* The test run was terminated at 18:42 because of process operating problems.
11
-------
Figure 2-1. HC1 MONITORING DATA - RUN #1 12/9/87
340
MAINE ENERGY RECOVERY COMPANY - UNIT A
Q.
Q.
IV)
15:30
16:30
17:30
18:30
CLOCK TIME
NOTE: Test run was ended at 18:38 due to Unit A process problems.
-------
Figure 2-2. HC1 MONITORING DATA - RUN #1 12/9/87
320
MAINE ENERGY RECOVERY COMPANY - UNIT A
Q.
Q.
O
LJ
O
Z
O
O
O
X
Midpoint
15:30
16:30
17:30
18:30
CLOCK TIME
NOTE: HCI data deleted during MRI sampling port change from
16:50 to 17:18. Test run was ended at 18:38 due to Unit A
process operating problems.
-------
o
o
4)
a:
4->
c
0)
o
4)
a.
100
95
90
85
80
75
70 -
65 -
60 -
Figure 2-3. HC1 REMOVAL EFFICIENCY - RUN #1
MAINE ENERGY RECOVERY COMPANY - UNIT A
55
15:30
,' Inlet to Midpoint
V
—I
16:30
—I
17:30
—l—
18:30
CLOCK TIME
NOTE: Test run was ended at 18:38 due to Unit A process problems.
-------
Babcock & Wilcox personnel on-site during the test program stated that the
fluctuations observed in the midpoint HC1 measurements during Run 1 were
evidence of unsteady scrubber operation. The Unit A forced draft fan motor
malfunctioned at 18:38 and the run was terminated.
2.2 TEST RUN 2
The HC1 monitoring results for Test Run 2 are summarized in Table 2.5 and
are presented graphically in Figures 2-4 and 2-5. The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets." Figure 2-5 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.
The mean HC1 concentration results were 564 ppm, 8 ppm, and 4 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were 98.6% and 99-3#, respectively. The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-6.
At approximately 13:45, the lime slurry flow rate into the spray dryer
system was increased by 100% due to higher than expected SO- emissions measured
by MRI. This process change resulted in a reduction in the HC1 emissions
measured at the midpoint and improved the HC1 removal efficiency across the
spray dryer.
The test run was begun at 12:45; however, the HC1 monitoring data
collection did not begin until 13:00 in order to allow sufficient time for the
HC1 CEMS's to collect representative effluent samples after returning from
their calibration modes.
2.3 TEST RUN 3
The HC1 monitoring results for Test Run 3 are summarized in Table 2.6 are
are presented graphically in Figures 2-7 and 2-8. The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets." Figure 2-8 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.
The mean HC1 concentration results were 537 ppm, 1 ppm, and 3 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1 removal
efficiency from the inlet to the outlet locations was 99-4%. The removal
efficiency was calculated from the one-minute averaged emission rate values
(Ib HCl/hr) and shown in Figure 2-9-
The midpoint data relative to the baghouse outlet data during Run 3 were
low, with many of the midpoint values recorded as zeros. The scrubber
operating conditions were the same as during Run 2, but lower than expected
midpoint concentration measurements were recorded. Visual inspection of the
Compur probe filters and the barrel nozzle did not indicate a problem which
would cause a low bias in the measurements. The low measurements are most
likely due to questionable Compur monitor and/or dilution probe performance
during this test run at these extremely low HC1 emissions.
The test run was interrupted on two occasions and was terminated at 18:34
because of process operating problems.
15
-------
TABLE 2.5.
HC1 MONITORING RESULTS - RUN 2
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 10, 198?
-lour Time
1 13:00-14:00*
2 14:00-15:00
3 15:00-16:00
4 16:00-17:00
5 17:00-18:00
Test
Average
Highest 1-min.
average:
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
520
566
581
578
576
564
675
400
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
15 97-1
7 98.8
7 98.8
6 99-0
6 99-0
8 98.6
37
2
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
6 98.8
4 99.3
4 99-3
4 99-3
3 99-5
4 99-3
9
2
Note: Inlet and midpoint concentration measurements were made on a wet basis
and corrected to a dry basis using the Method 4 moisture data provided by
MRI.
Inlet Moisture = 14.8% HO
Midpoint Moisture = l6.3# HO (as measured at the baghouse
outlet sample location)
* Manual testing began at 12:45; HC1 monitoring data collection did not begin
until 13:00 in order to allow sufficient time for the HC1 GEMS's to collect
representative effluent samples after returning from their calibration modes.
16
-------
E
Q.
Q.
o
I
LJ
O
o
o
o
1
Figure 2-4. HC1 MONITORING DATA - RUN #2 12/10/87
MAINE ENERGY RECOVERY COMPANY - UNIT A
60 -
50
40 -^
30 ^
20 -
10 -
:00
14:00
15:00
16:00
17:00
18:00
CLOCK TIME
-------
Figure 2-5. HC1 MONITORING DATA - RUN #2 12/10/87
oo
TJ
QL
Q.
LJ
O
•z.
O
O
O
70
MAINE ENERGY RECOVERY COMPANY - UNIT A
60 -
50 -
40
30
20 -
10 -
13:00
Inlet -f- 10
Midpoint
Outlet
14:00
i i
15:00 16:00
CLOCK TIME
17:00
18:00
NOTE: HCI data deleted during MRI sampling port changes from
14:1O to 14:35 and 15:55 to 16:4O.
-------
D
O
E
4)
OL
-t->
c
fl>
O
0)
Q.
91
Figure 2-6. HC1 REMOVAL EFFICIENCY - RUN #2
MAINE ENERGY RECOVERY COMPANY - UNIT A
99
98
97 -
96 -
95 -
94 -
93 -
92 -
13:00
H
II
|l
H
Inlet to Outlet
14:00
Inlet to Midpoint
15:00 16:00
CLOCK TIME
„;
'..".!
\( ;;
»
17:00
18:00
-------
TABLE 2.6.
HC1 MONITORING RESULTS - RUN 3
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 12, 198?
Inlet HC1
Hour Time (ppmv, dry)
1 11:15-11:39**
12:04-12:15
2 12:15-13:15
3 13=15-14:15
4 14:15-15:15
5 15:15-15:24**
18:19-18:34**
459
498
513
545
598
544
504
Removal
Midpoint HC1* Efficiency Outlet HC1
(ppmv. dry) (%) (ppmv, dry)
6
1
0
0
0
1
1
98.7
99-8
100
100
100
99-8
99-8
5
4
3
3
3
2
5
Removal
Efficiency
(*)
98.9
99-2
99-4
99-4
99-5
99-6
99-0
Test Average
(Time Weighted)
Highest 1-min.
537
99-8
99-4
average:
Lowest 1-min.
average :
872
388
25
0
8
2
Note: Inlet and midpoint concentration measurements were made on a wet
basis and corrected to a dry basis using the Method 4 moisture data
provided by MRI.
Inlet Moisture = l6.4# H20
Midpoint Moisture = 17.0% H^O (as measured at the baghouse
outlet sample location)
* The midpoint results are questionable. The scrubber operating conditions
are the same as during Run 2, and lower than expected midpoint values
were recorded. The Compur CEMS accuracy is unknown at this low range
because the Compur had not been operated and tested at the outlet of HC1
control equipment during previous EPA studies.
** The test run was interrupted during 11:39-12:04 and 15:24-18:19 time
periods, and terminated at 18:34 because of process operating problems.
20
-------
E
Q.
Q.
O
£
o:
UJ
o
z
o
o
o
I
Figure 2-7. HC1 MONITORING DATA - RUN #3
MAINE ENERGY RECOVERY COMPANY - UNIT A
12/12/87
45
o
40 -
35 -
30 -
25
20 -
15 -
10 -
V
^Midpoint
11:15 12:15 13:15 14:15 15:15
CLOCK TIME
16:15
17:15
18:15
NOTE: Unit A process operating problems caused test run interruptions
from 11:39 to 12:04 and 15:24 to 18:19, and ended the test run
at 18:34. Midpoint measurements are questionable for this run
because the Compur analyzer accuracy is unknown at this low range.
-------
Q.
Q.
tV)
ro
LU
O
z
O
O
O
X
Figure 2-8,
45
HC1 MONITORING DATA - RUN #3
MAINE ENERGY RECOVERY COMPANY - UNIT A
12/12/87
40 -
35 -
30 -
25 -
20 -
15 -
10 -
5 -
Inlet -r- 20
Outlet
Midpoint ._._ r.^^
1— ••••!
11:15 12:15 13:15 14:15 15:15
CLOCK TIME
16:15
17:15
18:15
NOTE; HCI data delated during MRI sampling port changes from 13:09 to 13:29
and 14:49 to 15:14. UnH A process operating problems caused test run
interruptions from 11:39 to 12:04 and 15:24 to 18:19. and ended the test run
at 18:34. Midpoint measurements are questionable for this run because the
Compur analyzer accuracy Is unknown at this low range.
-------
o
£
0)
a
0)
o
0)
a.
100
Figure 2-9. HC1 REMOVAL EFFICIENCY
MAINE ENERGY RECOVERY COMPANY - UNIT A
RUN #3
iV
99 -
98 -
97 -
Inlet to Midpoint
Inlet to Outlet
96 -
95
1
12:15
—I
13:15
—I
14:15
—I
15:15
—I
16:15
11:15
17:15
18:15
CLOCK TIME
NOTE: Unit A process operating problems caused test run interruptions from
11:39 to 12:04 and 15:24 to 18:19, and ended the test run at 18:34.
Midpoint measurements are questionable for this run because the Compur
analyzer accuracy is unknown at this low concentration range.
-------
3.0 PROCESS DESCRIPTION AND OPERATION DURING TEST PROGRAM
This section contains a description of the Maine Energy Recovery
Company's (MERC) York County Waste-to-Energy facility located in Biddeford,
Maine. This section also summarizes the operation of the facility and the
key operating parameters that were measured during the test program.
3.1 FACILITY DESCRIPTION
The MERC facility consists of two identical process lines with separate
emission control systems that exhaust to a common stack. The process line is
illustrated in Figure 3~1- Refuse-derived fuel (RDF) enters the combustor
and is fired with preheated combustion air. Auxiliary fuel (natural gas or
fuel oil) is sometimes used. The combustion gases pass through superheater,
economizer, and combustion air preheater heat recovery stations. The
combustion gases then pass through a cyclone to remove large particulate, an
alkaline spray dryer to control acid gas emissions and lower the flue gas
temperature, and a fabric filter to reduce particulate emissions. The flue
gas finally exhausts to the atmosphere through a 244-foot stack which is
common to both units.
The MERC facility is rated at 500 tons/day of RDF. The facility was
developed by KTI Holdings, Inc., and was designed and built by General
Electric Company. Approximately 105,000 Ib/hr of steam at a temperature of
760 F and pressure of 675 psig (superheated) is generated by each unit. The
steam from the boilers is supplied to a stem turbine which generates up to 22
MW of electricity. The electricity is sold to Central Maine Power.
3.1.1 Preparation of Refuse-Derived Fuel
At the MERC facility, preparation of RDF follows the scheme shown in
Figure 3~2. Solid waste from local municipalities is received in packer
trucks and transfer trailers and is unloaded on the tipping floor which is
enclosed. The waste is visually inspected and potentially explosive or
hazardous items are removed. Over-sized waste is removed and sent to a shear
shredder. The sorted waste is reduced in size by a flail mill and combined
with the end product from the shear shredder. Then, a magnetic separator
removes ferrous metal, which is reclaimed. A trommel screen separates non-
processible wastes and the remaining refuse is shredded to a nominal top size
of 4 inches by the secondary shredder. At this point, the waste has become
RDF. MERC estimates that 607 tons/day of solid waste is processed to produce
500 tons/day RDF.
If desired, as the RDF enters the combustor feed hopper, wood chips or
sewage sludge may be added. To date, only wood chips have been used. Sewage
sludge can be received into a separate hopper which is enclosed by a
hydraulically operated steel cover. The sewage sludge has a design_moisture
content between 12 and 21 percent and a design feedrate of 0.833 yd /hr.
This amount of sludge, as a percentage of the total fuel volume, "has an
insignificant effect on the boiler's firing rate. The fuel, whether RDF or
RDF mixed with wood chips and/or sewage sludge, is metered from the hopper by
dual feeders to the stoker.
25
-------
Dilution
Water
RDF-
Auxiliary
Fuel
Combustor/
Boiler
Grate
Siftings
Bottom
Ash
Economizer
Combustion Air
Preheater
Stack
Ash
Discharge
Figure 3-1. The process line for Unit A of the York County Waste-to-Energy
Facility, Biddeford, Maine.
-------
Wood Chips
Municipal
Refuse
(MSW)
co
-j
Sewage
Sludge
Over-Sized
Waste
Feed Hopper
for Combustor
Ferrous Metal
(to be reclaimed)
Non-Processibles
to Landfill
To Feed
Conveyor
Figure 3~2-
Preparation of Refuse-Derived Fuel at MERC in Biddeford, Maine.
-------
3.1.2 Combustion Air
Air from the tipping floow area and the boiler penthouse is withdrawn by
a forced-draft fan to supply the air heater section of the heat recovery
system. The preheated combustion air is split to supply the natural gas
burners, overfire air ports, and undergrate air. The combustion air scheme
is shown in Figure 3~3. The slightly negative pressure in the tipping floor
area prevents the release of odors created by the solid waste.
3.1.3 Combustor and Boiler
The combustor and boiler are combined into one unit called a controlled
combustion zone boiler by Babcock and Wilcox. The combustion zone boiler is
rated at 150 x 10 Btu/hr of steam.
The stoker is a traveling grate located at the bottom of the boiler. The
fuel from the feeders enters the front of the boiler. If required to
maintain steam load, natural gas and #2 fuel oil burners located above the
feeders may be used. The sulfur content of the natural gas and fuel oil are
limited by the air permit to a maximum of 0.7 percent.
The boiler is balanced draft. One fan (forced-draft) is used to feed
combustion air and the second fan (induced-draft) located just prior to the
stack is used to draw out the combustion gases. A control system based on
oxygen and carbon monoxide concentrations is used to optimize combustion
efficiency. The target excess air level is in the range of five to ten
percent.
In addition to the waterwalls in the combustion zone, the heat recovery
system includes superheater, economizer, and combustion air heater sections.
At the exit to the air heater, the flue gas temperature is approximately
.
3.1.^ Cyclone. Spray Dryer, and Fabric Filter
The combustion gases from the air heater enter a cylone-type mechanical
dust collector which removes large particulate. Next, an alkaline spray
dryer is used to control acid gas emissions. The spray dryer is a reaction
vessel where lime slurry is sprayed into the flue gas that contains
particulate, SO^, acid gases, and other pollutants in gaseous and aerosol
form. The slurry water is evaporated by the flue gas heat and the acid gases
react with the lime. Particulate and excess lime serve as nucleation for
volatile organic compounds (VOC) and metal adsorption and agglomeration.
The lime-to-S02 reactant ratio and the flue gas temperature at the exit
to the spray dryer can be controlled separately. The lime that is introduced
as a slurry is diluted with water before entering the reaction vessel at
rates appropriate to achieve the desired SO- removal and temperature
reduction. The rate of slurry addition is varied based on the continuously
monitored SO concentration at the outlet of the fabric filter. The facility
is required By its operating permit to maintain an outlet SO concentration
of 30 ppm. However, at no time during the test program were the facility's
S02 monitors providing accurate readings. The spray dryer outlet temperature
is directly controlled by the amount of dilution water added and is typically
28
-------
Tipping
Floor
Boiler
Penthouse
Combustion
Air
F.D. Fan
VD
Total Air
Flow Meter
Secondary Air
Flow Meter
Overtired Air
Flow Meter
Natural
Gas Burner
Undergrate
Air
Overfire Air
Figure 3~3- Combustion air scheme at the MERC Facility in Biddeford, Maine.
CO
ao
-------
The fabric filter then collects the participate from the gas stream. The
excess lime in the bag filter cake provides a second-stage reaction site for
further acid gas removal. The fabric filter unit has six modules. Five
modules filter flue gas while one module is being cleaned in a continuous
cycle. The total time needed to complete a fabric filter cleaning cycle is
about 18 minutes.
3.1.5 Ash Handling
An ash system removes ash from the stoker discharge, generating bank
hopper, air heater hopper, mechanical dust collector hopper, spray dryer, and
fabric'filter modules. All of the hopper discharges are through rotary seal
valves. This ensures a positive seal to prevent boiler gases from entering
the ash conveyors and air from entering the hoppers and boilers.
The ash from the fabric filter modules discharges into 6 identical drag/
screw conveyors. Each set of these drag/screw conveyors discharges into one
of two identical drag chain collecting conveyors. The spray dryer and
mechanical dust collector discharge directly onto these collecting drag chain
conveyors. The generating hopper and air heater hopper discharge ash onto a
transverse drag conveyor which feeds to the collecting drag conveyors. The
combined fly ash from each collecting conveyor is fed to one of two identical
ash conditioning screw conveyors. The ash is conditioned by the addition of
water at a controlled rate.
The bottom ash from each stoker discharges into one of the two submerged
drag chain ash conveyors. The discharge of the ash conditioners deposits
into the dewatering section of the bottom ash drag conveyor. It is at this
point that the fly and bottom ash streams combine. The combined ash streams
are then dumped into a specially designed trailer for removal from the site.
Dust control within the processing building is achieved through two
separate control systems. One system serves the tipping/processing area,
while the other serves the conveyors in the boiler building and RDF reclaim
area. Each system contains a baghouse, fan duct hoods, and dust collection
ducts at key conveyor and transfer processing points. Dust laden air is
drawn through one of two pulsed jet baghouses which exhaust in the vicinity
of the boiler forced-draft fan intake. The baghouse air exhaust thus becomes
incorporated into the combustion air for the boilers. Dust captured by the
baghouses is returned to and becomes a part of the RDF fuel.
3.2 SUMMARY OF OPERATIONS BY TEST RUN
Three test runs were conducted on Unit A between December 8 and December
12, 1987. During each test run only RDF was fired.
3-2.1 Operation During Run 1
Run 1 was originally scheduled for December 8, but power problems in the
afternoon delayed Run 1 until December 9. Both units were down overnight.
The facility was still experiencing operational problems on the morning
of December 9- The units were started up in the morning and were preheated
on natural gas. However, problems with the feeder conveyors delayed bringing
30
-------
the boilers up to full load until 1400. At 1500, CEM data indicated that the
boilers were stabilized.
Run 1 began at 1530 hours and continued until approximately 1840 hours,
when the Unit A forced-draft fan failed. Two of three traverses had been
completed at the time of the shutdown. Since replacement of the fan motor
required overnight work, Run 1 was considered to be complete.
3-2.2 Operations During Run 2
Run 2 was conducted on December 10, 1987. The fan was repaired at
approximately 0100 that morning, and both units were back on-line. However,
at 1030, there was a feeder conveyor failure and a unit shutdown occurred.
The units were brought back on-line at 1200 hours, and Test 2 began at 12^5-
Facility personnel decided to increase the lime slurry feed rate at 1330.
Minor excursions of SO.., were being experienced and the facility did not want
to exceed their permit range. Therefore, the lime slurry feed rate was
increased from approximately 3-0 gpm to approximately g.O gpm. This increase
reduced the HC1 concentrations at the midpoint and the outlet location to
almost 0. Testing continued and was completed at 1800 hours. All three
traverse points were sampled for a complete run.
3.2.3 Operations During Run 3
Run 3 was conducted on December 12, 198?• Originally scheduled for
December 11, problems continued throughout the day with feeder conveyors and
testing was postponed until the next day. Test 3 began at 1115 hours. A
brief test interruption occurred during 1138-1200 due to a feeder
malfunction. Testing continued until 1525, restarted at 1815, but was
stopped at 1830 due to recurring feeder problems. Throughout Run 3. the lime
slurry feed rate was maintained between 7 and 8 gpm. Due to the late hour
and the fact that the facility estimated that the delay time would be four to
eight hours. The test was considered complete at the end of two complete
port traverses and part of the third.
3.3 SUMMARY OF OPERATING PARAMETERS DURING THE TEST PROGRAM
This section summarizes the values of key operating parameters during the
test program. The purpose of evaluating these operating parameters was to
determine: 1) if the system was operating at normal conditions, and 2) if the
system was operating at similar conditions during each of the three test
runs. Only selected parameters are discussed in this section.
The operating data were recorded once every four minutes by computer.
The spray dryer related operating data showing each four-minute value is
included in Appendix K. The locations of temperature, pressure, and flow
sensors are indicated in Figure 3~^- Also, plots of the four-minute data
versus time are presented in this section. The plots have been reduced in
size in order to present all three runs on one page. Full-sized plots of
spray dryer related data for each run are included in Appendix K if more
detail is required by the reader.
Average values for selected operating parameters over the actual testing
intervals are summarized in Table 3-1- On an average basis, the combustor
operating conditions appear to be about the same for all three runs. The
only variation of consequence is the higher air flow and economizer inlet
31
-------
Dilution
Water
RDF
Auxiliary
Fuel
\
\
Combustor/
Boiler
Grate
Siftings
Bottom
Ash
OJ
Ash
Discharge
Economizer
Combustion Air
Preheater
Stack
1 - Superheater steam llowrate, pressure, temperature and economizer Inlet Hue gas temperature
2 • Economizer outlet Hue gas temperature and excess oxygen
3 • Air heater outlet flue gas temperature and pressure
4 • Spray dryer Inlet due gas temperature and pressure
5 - Spray dryer outlet Hue gas temperature and pressure
6 - Fabric (liter outlet temperature
7 - Dilution water feedrate
8 - Lime slurry (eedrale
Figure
Location of temperature, pressure, and flow sensors at the
the MERC Facility.
-------
TABLE 3.1. SUMMARY OF KEY OPERATING PARAMETERS DURING THE
MERC TEST PROGRAM IN BIDDEFORD. MAINE
Parameter
Superheater steam
Flowrate (1,000 Ib/hr)
Pressure (psig)
Outlet temperature (°F)
Combustion Air
Total air flowrate (1,000 Ib/hr)
Undergrate air flowrate (1,000 lb/hr)a
Overfire air flowrate (1,000 Ib/hr)
Overfire air distribution (%)
Undergrate air pressure (in H-0)
Overfire air fan pressure (in HO)
Air heater inlet air temperature ( F)
Air heater outlet air temperature ( F)
Excess Oxygen (% by volume, wet)
left side
right side
6
Heat Release (10 Btu/hr)
Total (RDF + auxiliary fuel)
RDF only
Flue gas temperatures ( F)
Economizer inlet
Economizer outlet/air heater inlet
Air heater outlet
Spray dryer inlet
Spray dryer outlet/fabric filter inlet
Fabric filter outlet
Gas Differential Pressures (in H.O)
Undergrate to furnace
Dust collector (cyclone)
Spray dryer
Fabric filter
Flue gas pressures (in HjO)
Spray dryer inlet
Spray dryer outlet
I.D. fan suction
Lime Slurrv Feedrate (GPM)
Dilution Water Feedrate (GPM)
Total Lime Slurrv & Water Feedrate (GPM)
Run 1
12/9/87
106
663
746
124
50.0
71.2
60
-0.23
25.3
127
381
5.59
7.91
150
150
779
515
374
374
277
268
0.46
3.02
4.24
7.16
-7.20
11.5
-18.7
2.91
6.95
9.86
Run 2
12/10/87
109
676
751
123
64.1
73.2
60
-0.86
25.6
66
368
5 77
8.13
153
153
788
523
363
364
278
268
0.34
3.07
4.84
7.89
-7.25
-13.1
-21.0
6.70
3.39
10.1
Run 3
12/12/87
108
671
748
134
52.4
70.1
50
-0.26
25.0
118
385
5.78
8.02
151
150
801
532
383
384
279
268
0.44
3.37
5.17
8.22
-7.39
-13.4
-21.7
7.80
4.89
12.7
Average
108
670
748
127
55.5
71.5
57
-0.45
25.3
104
378
5.71
8.02
151
151
789
523
373
374
278
268
0.41
3.15
4 75
7.75
-7.28
-12.7
-20.5
5.80
5.07
10.9
Undergrate air flowrate was calculated as the difference between the total air
flowrate and overfire air flowrate.
Overfire air distribution was calculated as the overfire air flowrate divided by
the total air flowrate.
lmo/005
33
-------
flue gas temperature during Run 3. Although the operating conditions appear
similar, there is no way to judge if the entire combustor system reached the
same degree of thermal equilibrium for each run.
The emission control system was operated differently during each run.
First, the average lime slurry feed rate increased during each test, with Run
2 being higher than Run 1, and Run 3 being higher than Run 2. This increase
in slurry flow, combined with the higher spray dryer inlet temperature and
air flow during Run 3, is consistent with the increase in pressure drop
across the spray dryer and fabric filter during each test.
3.3.1 Steam Load and Heat Release
In Figure 3-5, RDF heat release, superheater steam flow, superheater
steam pressure, and steam temperature at the superheater outlet are plotted
against time. The RDF heat release is calculated from the steam flow minus
the heat content supplied by any auxiliary fuel (natural gas or fuel oil).
During this test program, only RDF was fired, and sampling was discontinued
during periods when auxiliary natural gas firing was necessary. Thus, for
this test program, the RDF heat release is equivalent to the total heat
release.
These combustion parameters were operating in a similar and normal manner
for all three runs in which the manual sampling trains were operating. The
relative standard deviation of the steam load was an average of four percent
during the sampling periods.
3-3-2 Combustion Air
Overfire air distribution, undergrate-to-furnace differential pressure,
and excess oxygen are plotted against time in Figure 3-6. The overfire air
distribution was calculated by dividing the overfire air mass flowrate by the
total air mass flowrate.
The variation in excess oxygen was greater during Run 3 than in Runs 1
and 2. During Run 3, the relative standard deviation was twenty two percent,
as compared to sixteen and twelve percent for Runs 1 and 2. However, the
average concentrations were not significantly different.
The overfire air (OF) distribution was lower and undergrate-furnace
differential pressure was higher during Run 3. The average OF air
distribution was sixty percent during Runs 1 and 2, but decreased to fifty
perent during Run 3. The undergrate-furnace differential pressure increased
to 0.4 in. H20 during Run 3 from 0.3 in. HO during Run 2.
The overfire air flow pressures were measured in the combustor. The
pressures measured during the MERC test program are presented in Figure 3-7.
Once the combustor is optimized, the pressures do not vary. Pressurized air
from two air swept spouts is also used to spray the RDF across the grate as
it enters the combustor- The air swept pressure is varied in a set range in
order to spray the RDF evenly across the grate.
-------
Run 1
Run 2
Run 3
VJ1
BOO
600
400
200
0
.X.
Start
Test
Port
Change
Stop
Test
Start
Test
Stop/Start
J
Port
Change
Slop
Tesl
15:25 16:00 17:00 18:00 12:45 14:00 1500 16:00
Time Time
Slarl Slop/Start Stop/
^T*// st°P/slarl s!arl
Stop/Start
17:00 11:15 13:0014:0015:0016:0017:0018:0019:00
Time
Indicate periods in which manual sampling
trains were not operating
KEY
D RDF heat release (10' Btu/hr)
+ Superheater steam flow (1000 Ib/hr)
0 Superheater steam pressure (psig)
A Steam temperature at the superheater outlet (°F)
Figure 3-5. RDF heat release and steam flow, pressure, and temperature
as a function of time during the MERC Test Program.
-------
Run 1
Run 2
Run 3
15:25 16:00
1.0
0.8-
0.6-
0.4-
0.2-
17:00
Time
18:00 '12:45
Port
Change
14:00 15:00 16:00 17:00 1115 13:00 15:00
Time ixcv Time
KEY
D Excess Oxygen (left side, % by volume, wet)
+ Excess Oxygen (right side, % by volume, wet)
Start stop/Start PoM Slop Start Stop/Start Stop/Start EndTest
Toe I l J r*h?*nnc* Tnt*t \- r f
XTest
T
Change Test V
MA/ VI
Stop/Start
U
12:45 14:00 15:00 16:00 17:00 11:15 13:00 15:00 ~1 17:00 ' 19:00
Time Time
18:00
Indicate periods in which manual sampling
trains were not operating
KEY
D Overfire air distribution (fraction)
+ Undergrate-furnace differential pressure (In H,O) period
Figure 3-6. Combustion air parameters as a function of time during the
MERC Test Program.
-------
Front
E_
G
Rear
Combustion
Zone Boiler
Grate
Pressure (in H3O)
A-23"
B -24"
C-23"
D -24"
E -23"
F-24"
G - 13"
H -24"
I - Air Swept Spout -
J • Air Swept Spout
Range of 9" to 24"
Range of 9" to 24'
Figure 3~
Overfire air flow pressures measured during the MERC
Test Program.
37
-------
3-3-3 Temperature Profile
The inlet and outlet flue gas temperatures of the economizer, air heater,
spray dryer, and fabric filter are plotted against time in Figure 3-8. The
economizer inlet, economizer outlet, and air heater outlet temperatures were
ten to twenty degrees ( F) hotter during Run 3- However, after the spray
dryer, the flue gas temperature during Run 3 was the same as during Runs 1
and 2. The spray dryer outlet temperature was very consistent during all
three runs.
3-3-4 Spray Dryer and Fabric Filter
The operation of the spray dryer and fabric filter was evaluated using
two plots. The first plot (Figure 3-9) included the spray dryer inlet and
outlet temperatures, the lime slurry and dilution water feed rates, and the
fabric filter differential pressure. The second plot (Figure 3-10) includes
the flue gas differential pressures across the cyclone, spray dryer, and
fabric filter.
The difference in spray dryer operation during the runs is shown clearly
in Figure 3-9- During Run 2, the lime slurry feed rate was increased
significantly. This increase was due to the high S0_ concentration being
monitoredat the fabric filter outlet by the test contractor, which was more
than iMhin the permit level of 30 ppm. Subsequently, the lime slurry feed
rate was increased from 3 gpm to over 7 gpm, and remained at this level
through Run 3. A corresponding decrease in the dilution water feed rate was
observed at this time such that the total lime slurry and dilution water feed
rate increased only slightly. The spray dryer outlet temperature remained
constant throughout all three test runs. During Run 3, both the dilution
water and the lime slurry feed rates increased from Run 2. This may have
been partially due to the higher spray dryer inlet temperature during Run 3
However, the spray dryer outlet temperature remained consistent during all
The differential pressures across all three control devices (cvclone
spray dryer, and fabric filter) increased during Runs 2 and 3 with Run 3
having the greatest increase. For Run 2, the increase in the lime slurry
feed rate may have caused the pressure drop increase, since the pressure dron
across the cyclone did not change significantly. However for Run 3 a
**» ^ have'cau^the
38
-------
Run 1
Run 2
Run 3
Start Port stop Start Port Slop SI
Test Change Test Test Stop/Start Change Test_ Te
800-
600-
400-
I
"'^H «,M, nii..",.,,'
" r
1
M|lt "'' /""u ii *' ''*
\
V
15:25 16:00 17:00 18:00
^ "v
12:45 14:00
I
1 ^'^SA'"'M
W
X
''^^'IIL/ Hi
ar
st
V
r
15:00 16:00 17:00 11:
j
•V
SI°P End
Start jest
I
**S%*
S
S
iJ
0
ta
u\r^r*
p/ SI
rt SI
4
jpi
art
V^
Stop/Start
u
V y*»""H
-"
15 13:00 14:0015:0016:0017:0018:0019:00
Time
Time
Time
Indicate periods in which manual sampling
trains were not operating
KEY
D Economizer inlet gas temperature (°F)
+ Economizer outlet/air heater inlet gas temperature (°F)
0 Air heater outlet gas temperature (°F)
A Spray dryer inlet gas temperature (°F)
x. Spray dryer outlet/fabric filter inlet temperature (°F)
V Fabric filter outlet gas temperature (°F)
Figure 3-8. Flue gas temperature as a function of time during the MERC
Test Program.
-------
Run 1
Run 2
Run 3
400
Start
Test
200
100
Port
Change
Slop Start
Test Test
'
A
/
A/w\/v*
r\ A A f\ A y
YwVwVV
."•»'
\ A^
V V
---"—^
\A'V\A/\
^ ***•*-**»•»-»•••«
-
V
in«<1f<'t»iii,iml«(iii.i.,<»' "
15:25 16:00 17:00 18:00 12:45 14:00 15:00 16:00 17:00 11:15 13:0014:0015:0016:0017:0018:0019:00
Time Time Time
. .. .... , . , h. ,, . ,,
r — n nd cate periods n which manual samp ng
trains were not operating
KEY
D Spray dryer inlet gas temperature (°F)
. 0 . .. ... . . f. .....
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
GC
04
Figure 3~9- Spray dryer operating parameters as a function of time during
the MERC Test Program.
-------
Run 1
Start
Test
Run 2
Stop Start
Test Test
1
Run 3
Stop/Start
Stop/Start
Slop Slart // Stop/ cinn/Qiari End
Test Test/7 Start SI°P'Sla" Slop/Start Tesl
™~\T
15:25 16.00 17:00 18:00 12:45 14.00 15:00 16:00 17:00
Time Time
11:15 13:0014:00 15:00'16:00'17:00 18:00 19:00
Time
Indicate periods in which manual sampling
trains were not operating
KEY
D Dust collector differential pressure (in H,O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H,O)
Figure 3-10. Differential pressures across the control devices during the
MERC Test Program.
cc
§
3
ex
-------
-------
4.0 HCl CONTINUOUS EMISSION MONITORING SYSTEM DESCRIPTIONS
The following discusions briefly outline the operational principles of the
monitoring equipment employed to quantify the HCl concentrations at three
locations within the Unit A flue gas handing system.
Entropy is currently evaluating these instruments in another study for the
EPA and has compiled information on their operational parameters and princi-
ples. This information is presented in the descriptions that follow. It
should be noted that operational characteristics of these instruments are not
yet fully established as they have been for SO and NO CEM systems.
£_ X
4.1 THERMO ELECTRON MODEL 15 HCl ANALYZER/MODEL 200 DILUTION SYSTEM
The Thermo Electron system was used at the spray dryer inlet monitoring
location (see Section 5)•
The Thermo Electron (TECO) Model 15 Gas Filter Correlation (GFC) HCl
analyzer is an analytical instrument for continuous, real time measurement of
HCl on a wet basis.
GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR) absorption spectrum by the measured gas to
that of other gases also present in the sample being analyzed. The technique
is implemented by using a high concentration sample of the measured gas (i.e.,
HCl) as a filter for the IR radiation transmitted through the analyzer. The
analyzer contains a correlation wheel that consists of two hemispherical cells,
one filled with HCl and the other with N_. Integral with the correlation wheel
is the chopper pattern necessary to produce the high frequency chop required by
the IR detector.
Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HCl and N? as the filter wheel rotates. The
radiation then passes through a narrow bandpass interference filter and enters
a multiple optical pass cell where it is absorbed by the sample gas. The IR
radiation that is not absorbed then exits the sample cell and is measured by
the IR detector.
The HCl gas filter produces a reference beam that cannot be further
attenuated by HCl in the sample cell. The N side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that can
be absorbed by HCl in the cell. The chopped detector signal is modulated by
the alteration between the two gas filters with an amplitude related to the
concentration of HCl in the sample cell. Other gases do not cause modulation
of the detector signal, because they absorb the reference and measure beams
equally. Thus, the GFC system responds specifically to HCl.
With the improved rejection of interference afforded by the GFC technique,
the sensitivity of the analyzer is increased by using multiple pass optics in
the sample cell, which leads to a large path length, and thus an improved
sensivity, in a small physical space. This allows full scale sensitivity down
to 1 ppm.
43
-------
Because IR absorption is a nonlinear measurement technique, the
instrument electronics transform the basic analyzer signal into a linear
output. The exact calibration curve is stored in the computer's memory and
is used to linearize the instrument output over all the ranges. The
microcomputer is used to process signals from both a pressure and temperature
transducer to make corrections to the instrument output, resulting in HC1
concentration measurements that are unaffected by changes in the temperature
or pressure of the sample gas.
The analyzer has 10 selectable operating ranges from 0-5 ppm up to 0-5000
ppm HC1. The analyzer was operated on the 0-100 ppm full scale range during
the test program. The vendor claims that the detection limit for this
instrument is 0.1 ppm.
The Model 200 dilution system comprises the following components:
• In-situ dilution probe with sample orifice,
• Transport tubing, and
• M200 stack probe control unit.
The dilution probe is designed to extract a small amount of sample
continuously through a fine filter. The sample flow rate is precisely
controlled to within 2% by a glass critical orifice of low coefficient of
expansion. By reducing the pressure after the fine filter with a precision
aspirator to create a vacuum of 0.46 bar in the volume downstream of the
critical orifice, a constant flow of flue gas sample is drawn through the
orifice, thoroughly mixed with the aspirator air, and then transported through
the sample line to the appropriate analyzer,
The sampling system is designed to permit stepwise dilution ratios of 12:1
to 350:1 within the probe by a single selected orifice.
Calibrations are performed by introducing calibration gas through the
calibration line to a point within the probe upstream of the first fine filter
in the probe dilution orifice. In this way, the calibration gas follows all of
the sample conditioning steps taken by the flue gas sample.
The lines transporting flue gas sample and calibration gas are Teflon, and
the dilution air and vacuum lines are polyethylene. The flue gas sample line
is heated to approximately 300 F.
The dilution air and calibration gas flow controls are contained within the
M200 control unit.
4.2 COMPUR MODEL 4l50 ZGSM HC1 ANALYZER/MODEL 4330 DILUTION SYSTEM
The Compur system was used at the spray dryer outlet monitoring location
(see Section 5).
The Compur 4150 HC1 analyzer uses an ion selective electrode (Cl~) to
measure (after dilution) HC1 concentrations in a range of 0-150 ppm on a wet
basis. Detection limits for this instrument are unknown.
-------
The sample gas is drawn into the analyzer by means of an air aspirator.
The sample passes through an atomizer, the measuring cell, and then to the
waste reservoir, where the gas is exhausted from the analyzer. A peristaltic
pump delivers absorption solution from the storage reservoir to the atomizer,
where it is atomized to an aerosol. The HC1 in the gas sample passing
through the atomizer is scrubbed from the gas by the atomized absorbing
solution. A highly enriched solution is produced and passed between two
electrodes, a reference and a chloride ion electrode. The concentration
related potential of the electrodes is fed to the microprocessor. The
corresponding HC1 concentration in units of grams per cubic meter is
displayed on a front panel digital display. A 0 - 1 volt output is provided
for a data recorder -
The analyzer performs its own internal calibration automatically at
selected time intervals by using a liquid standard. Continuous
self-diagnostic routines verify proper operation of the analyzer. The
alphanumeric display .and built-in printer provide status conditions of the
analyzer, alarm functions, and identification of the cause of any
malfunctions, as well as continuous updates on the concentration
measurements.
Compur developed a dilution probe to be used in conjunction with the
Model 4150 analyzer to sample stack emissions. The dilution probe is an
extractive sampling device that produces constant sample gas dilutions at
selected ratios varying from 10:1 to 100:1. (The operating range of the
Compur monitoring system is decided upon in the field after the optimum
dilution ratio is chosen, and then verified using an independent analyzer and
calibration gases.) The dilution probe is electrically heated to 200 C
(392 F) and is constructed of corrosion resistant materials. The flue gas
sample line is also electrically heated (approximately 300 F).
An air jet pump within the probe acts as an in-stack dilution device by
aspirating the flue gas sample through an orifice and diluting the gas sample
with dry regulating air. By reducing the pressure downstream of the orifice
with the aspirator air, a constant flow of flue gas sample is drawn through
the orifice and mixed with the aspirator air. The orifice operates within
the critical region, greatly reducing the influence of pressure fluctuations
at the sampling point which tend to affect the flow of sample gas and thereby
to change the dilution rate.
Calibration of the system is performed by injecting calibration gas
through a transport tube to the probe, at a point upstream of the critical
orifice. Thus, the calibration gas is conditioned in the same manner as the
flue gas sample (i.e., filtered, diluted, and transported).
The Model 4150 analyzer continuously monitors all Model 4330 dilution
system parameters, such as probe temperature, pressures, and flow rates. The
analyzer's microprocessor calculates the actual HC1 concentrations present in
the effluent by correcting the analyzer measurements for the dilution ratio
selected by the operator.
4.3 BODENSEEWERK SPECTRAN MODEL 67? IR HC1 MONITORING SYSTEM
The Bodenseewerk system was used at the baghouse outlet monitoring
location (see Section 5).
-------
The Bodenseewerk 677 HC1 analyzer employs the gas filter correlation
(GFC) technique with the multiple optical pass cell and sampling system
maintained at an elevated temperature of l80°C (356 F). HC1 concentrations
are recorded on a dry basis within a system range of 0-250 ppm. The analyzer
measurement is made on a wet basis. Molecular interaction between HC1 and
water vapor in the sample gas increases the absorption of IR as water vapor
content increases. This phenomenon is used to compensate for the dilution
effect of water vapor in the sample gas. The Bodenseewerk 677 analyzer was
configured at the factory for applications with approximately 15 percent
moisture content in the effluent. Accordingly, the analyzer concentration
readings correspond to a dry measurement. The vendor claims the detection
limit of this instrument is 2 ppm.
GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR) absorption spectrum by the measured gas
to that of other'gases also present in the sample being analyzed. The
technique is implemented by using a high concentration sample of the measured
gas (i.e., HC1) as a filter for the IR radiation transmitted through the
analyzer. The analyzer contains a correlation wheel that consists of two
hemispherical cells, one filled with HC1 and the other with N_. Integral
with the correlation wheel is the chopper pattern necessary to produce the
high frequency chop required by the IR detector.
Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N_ as the filter wheel rotates. The
radiation then passes through a narrow bandpass interference filter and
enters a multiple optical pass cell where it is absorbed by the sample gas.
The IR radiation that is not absorbed then exits the sample cell and is
measured by the IR detector.
The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1 in the sample cell. The N side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that
can be absorbed by HC1 in the cell. The chopped detector signal is modulated
by the alteration between the two gas filters with an amplitude related to
the concentration of HC1 in the sample cell. Other gases do not cause
modulation of the detector signal, because they absorb the reference and
measure beams equally. Thus, the GFC system responds specifically to HC1.
The sample gas is drawn from the effluent via a heated sample pump at a
rate of approximately 13 liters/minute. A coarse, fritted filter is located
at the probe tip for^filtering particulate matter. The sample gas is heated
to approximately 180 C (356 F) , and it maintains this temperature throughout
the transport system and the sample cell until it is exhausted from the
analyzer.
The Model 677 analyzer employs zero air and an internal sealed gas cell
for zero and upscale calibration checks. The monitoring system can accept
calibration gases; the gas injection point is located at the probe.
The concentration measurements in units of ppm (dry) are displayed on a
front panel meter and are also recorded by a built-in strip chart recorder.
A 0-1 volt output is provided for an external data-recording device.
-------
5.0 DESCRIPTION OF THE HC1 CEM SAMPLING PROGRAM
Three independent HC1 continuous emission monitoring systems were
employed by Entropy to measure HC1 emissions continuously at (1) the spray
dryer inlet, (2) the spray dryer outlet, and (3) the baghouse outlet. All
three CEM systems used in the test program are complete in themselves; no
time-sharing was done. (See Figures 5.1 and 5.2.) Both the spray dryer
outlet and the baghouse outlet monitoring systems were measuring low
concentrations of HC1 (i.e., generally < 100 ppm). There are no data
available on the performance of the Compur HC1 CEMS for monitoring low HC1
emissions to support the accuracy of the Compur in this concentration range.
The Compur has not yet been operated and tested in the EPA's HC1 CEM
evaluation program at a source of controlled HC1 emissions. The Bodenseewerk
HC1 CEMS has been operated at the outlet of HC1 control equipment during
previous studies. Independent accuracy audits have provided verification of
the Bodenseewerk measurement data in terms of accuracy at the low
concentration levels.
A brief description of each HC1 CEM system by sampling location is
outlined in the sections that follow.
5.1 SPRAY DRYER INLET - THERMO ELECTRON HC1 MONITORING SYSTEM
The Thermo Electron (TECO) monitoring system was comprised of a Model 15
analyzer (operated on the 0-20 ppm analyzer range), a Model 200 probe control
unit, and a dilution probe (45:1 dilution ratio). This system was employed
to measure HC1 emissions at the spray dryer inlet location (see Figures 5-2
and 5-3). The operating range of the measurement system was 0-900 ppm HC1.
A three point linearity check was performed at the beginning of the test
program using the following gases: 0 ppm, 428 ppm, and 88l ppm HC1. Prior to
each test run, a two-point calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration (428 ppm). The gases were injected through
the entire sample handling system, which includes the dilution probe. At the
conclusion of the test run, the same two gases were again injected through
the measurement system to check for drift; no adjustments to the system were
made. The calibration drift corrections to the HC1 measurement data were
made according to the procedures in Method 6C.
The analyzer output signal was recorded by a computerized data
acquisition system.
The TECO probe dilution ratio was verified at the beginning of the test
program by flowing a CO calibration gas (Protocol No. 1 certification)
through the dilution system and recording the response displayed by a
calibrated CO analyzer.
Since the TECO system measures HC1 on a wet basis, the results were
corrected to a dry basis using Method 4 results provided by MRI.
5.2 SPRAY DRYER OUTLET (MIDPOINT) - COMPUR HC1 MONITORING SYSTEM
The Compur Model 4150 HC1 analyzer with heated dilution probe (dilution
ratio 40 to 1) was used to measure the HC1 concentrations at the spray dryer
47
-------
PIPE
FROM UME
STORAGE
SILO .
DENSEEWERK
PLING PROBE ^^
S
y
/N
*-
/
J
5
I.D.
FAN
UJ
CO
o
<
CD
f
(
( ^
•7^
j
^ COM
SAM
TECO HCI DILUTION
SAMPLING PROBE
DUST
COLLECTOR
I.D.
FAN
DUST
COLLECTOR
UNFT A
B
g
/ SPRAY 1
I DRYER i
UNFT B
FIGURE 5.1. LOCATION OF TESTING TRAILER AND SAMPLE LINES
3516 B 11/87
-------
r
TRAILER
BAGHOUSE
OUTLET
100' HEATED
TEFLON TUBING
L
BODENSEEWERK
PROBE
SINTERED FILTER
CAL GAS INLET
BODENSEEWERK
ANALYZER
SPRAY DRYER
OUTLET
80' HEATED
TEFLON TUBING
-t=-
v£>
COMPUR DILUTION
PROBE
BARREL NOZZLE FOR
PARTICULATE REMOVAL
CAL GAS INLET
COMPUR
ANALYZER
DAS (COMPAQ PC)
SPRAY DRYER
INLET
120' HEATED
TEFLON TUBING
L
TECO DILUTION
PROBE
SINTERED FILTER
CAL GAS INLET
L_
TRAILER
FIGURE 5.2. FIELD EVALUATION SET- UP.
3516B 11/87
-------
BAGHOUSE
HCI
CEM
SAMPLE
PORT
SPRAY DRYER
OUTLET
SAMPLING
PORTS
SPRAY
DRYER
OTHER
SAMPLING
PORTS (3)
FIGURE 5.3. TOP VIEW OF SPRAY DRYER INLET AND OUTLET SAMPLING LOCATIONS.
3516 11/87
-------
outlet (midpoint) location (see Figures 5.2 and 5-3). The operating range of
the Compur monitoring system was 0 - 268 ppm. Collection of representative
samples at the spray dryer outlet location was particularly difficult because
of the high particulate matter concentration in the effluent stream upstream
of the baghouse. The particulate matter consisted of both fly ash and
evaporated lime slurry, which reacts with the sample gas stream to remove
HC1, thereby resulting in lower than actual HC1 gas concentration
measurements. To minimize these effects, specialized sampling approaches
were developed to separate the reactive particulate from the sample gas
stream.
Unexpected delays encountered during the equipment set-up and plant
process operating problems reduced the available time to investigate each of
the four specialized sampling approaches proposed in the work plan. The only
approach investigated (due to these time constraints) relied on a barrel
nozzle attached to the end of the Compur dilution probe (see Figures 5-2,
5-4, and 5-5)- The barrel nozzle is a totally passive device that minimizes
the amount of particulate that accumulates on the filters within the Compur
probe. The barrel nozzel attached to the Compur probe was used during the
set-up of the spray dryer outlet HC1 monitoring system and for acquiring
preliminary measurements. This system was operated over a four hour sampling
period and was found to be reliable and able to provide particulate
separation which resulted in the accumulation of only a minimum amount of
particulate. The orientation of the holes in the barrel was 90 to the angle
of effluent flow. HC1 calibration gas was then introduced into the sampling
system immediately upstream of the glass wool in the probe tip to determine
if the collected particulate would react with the HC1 calibration gas and
create a low bias in the measurement. A typical response to the calibration
gas injection was observed with no apparent increase in the response time of
the measurement system to reach the expected value, thus indicating that the
particulate may be unreactive by the time it reaches the glass wool.
At the conclusion of each test day, the probe was removed from the duct
and disassembled for inspection and cleaning.
A three-point linearity check was performed at the beginning of the test
program using the following gases: 0 ppm, 9^ ppm, and 221 ppm HC1. Prior to
each test run, a two-point calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration (9^ ppm). The gases were injected through
the entire sample handling system, which includes the dilution probe. At the
conclusion of the test run, the same two gases were again injected through
the measurement system to check for drift; no adjustments to the system were
made. The calibration drift corrections to the HC1 measurement data were
made according to the procedures in Method 6C.
The Compur probe dilution ratio was verified at the beginning of the test
program by flowing a CO calibration gas (Protocol No. 1 certification)
through the dilution system and recording the response displayed by a
calibrated CO analyzer.
The analyzer output signal was recorded by a computerized data
acquisition system. Since the Compur system measures HC1 on a wet basis, the
results were corrected to a dry basis using Method 4 results provided by MRI.
-------
TO
HCI ANALYZER
COMPUR
DILUTION
PROBE
BARREL
NOZZLE
EFFLUENT FLOW
IN HORIZONTAL DUCT
S^SS^^^^
FIGURE 5.4 SPRAY DRYER OUTLET SAMPLING SYSTEM; PASSIVE NOZZLE
3516 12/87
-------
J_L
TOP VIEW
FRONT VIEW
SAMPLE
FLOW
6"
o
o
o
o
o
o
-------
5.3 BAGHOUSE OUTLET - BODENSEEWERK HC1 MONITORING SYSTEM
The Bodenseewerk Model 677 IR HC1 analyzer was employed to meaure HC1
concentrations within a range of 0-250 ppm HC1 at the baghouse outlet loca-
tion (see Figures 5.2 and 5.6) A three point linearity check was performed
at the beginning of the test program using the following gases: 0 ppm,
47 ppm, and 94 ppm HC1. Prior to each test run, a two point calibration was
performed utilizing a zero gas and one upscale HC1 gas concentration (47 ppm).
The gases were injected through the entire sample handling system. At the
conclusion of the test run, the same two gases were again injected through the
measurement system to check for drift; no adjustments to the system were made.
The calibration drift corrections to the HC1 measurement data were made
according to the procedures in Method 6C.
The analyzer output signal was recorded by a computerized data acquisition
system.
5.4 DATA ACQUISITION SYSTEM
The data acquisition system (DAS) developed by Entropy uses a Compaq
Portable Personal Computer with a 10 MB hard disk and an internal 12-bit
analog-to-digital converter with a 16 channel multiplexer. Surge supressors
are provided to minimize data loss in the event of electrical disturbances. In
addition to providing an instantaneous display of analyzer responses, the DAS
averaged the measurement data and documented analyzer calibrations. The test
results and calibrations were stored on the hard disk and printed on an Epson
dot matrix printer. Strip chart recorders were employed as a backup system.
The HC1 emissions from the three HC1 analyzer measurement locations were
recorded as 1-minute, 30-minute, and hourly averages.
Each day, the stored measurement data generated by Entropy's testing were
provided to MRI on a floppy disk.
-------
PLATFORM
33' FROM
GROUND
LEVEL
LADDER
4' DIA.
TEST PORTS •
BODENSEEWERK
PROBE
FROM
SPRAY
DRYER
FIGURE 5.6. LOCATION OF SAMPLING PROBE AT THE BAGHOUSE OUTLET
55
3516 B 11/87
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL
The quality assurance/quality control (QA/QC) activities for this test
program were previously described in detail in the "QA/QC Project Plan." The
goals of the quality assurance activities were to quantify data accuracy and
precision and to maximize data capture. Presently, there are no EPA test
methods or performance specifications for operating HC1 monitoring systems or
for conducting wet-chemical sampling for HC1. Only recently have relatively
stable HC1 calibration gases become available. The results of the QA/QC
activities performed are described below.
6.1 HC1 SAMPLING SYSTEM INSPECTION
At the starf of each test day, an inspection of each component of the HC1
sampling systems was conducted. The daily check lists that were filled out
are contained in Appendix C. Due to a build-up of particulate matter in the
midpoint sampling system, the barrel nozzle device on the Compur dilution
probe was cleaned daily and the glass wool was replaced. The TECO dilution
probe glass critical orifice was also inspected and the glass wool in the
probe tip replaced daily.
6.2 LINEARITY CHECKS AND MIDRANGE QC CHECKS
A three-point linearity check was performed on each of the three
monitoring systems at the beginning of the test program. These linearity
checks produced results that were all within the >0.995 correlation
coefficient (r) acceptance criterion. The calibration gas concentrations and
the monitor responses are presented in Table 6.1.
The midrange QC checks proposed in the QA/QC Project Plan to be performed
at various times during the test program were not conducted because there
were no independent HC1 audit calibration gases provided.
6.3 CALIBRATIONS AND DRIFT CALCULATIONS
The zero and span calibration drift was calculated for each HC1
monitoring system for each test run. The results of the calibration drift
checks are presented in Table 6.2. All of the results were less than the 20%
of span drift limit specified in the Quality Assurance Project Plan. Prior
to each test run, a two-point calibration was performed utilizing a zero gas
and one upscale HC1 calibration gas. The gases were injected through the
entire sample handling system which includes the probe. At the conclusion of
the test run, the same two gases were injected through the measurement system
to check for drift; no adjustments to the system were made. The calibration
drift corrections to the HC1 measurement data were made according to the
procedures in Method 6C.
The calibration summary sheets for each test run are contained in
Appendix B.
57
-------
TABLE 6.1.
HC1 CEM LINEARITY CHECK (3-Point)
Gas
Cone.
(ppm HC1)
0
428
881
TECO (12/9/87)
CEM
Response
(ppm HC1)
4
438
890
Correlation*
Coefficient
r = 0.999
Compur
Gas
Cone.
(ppm HC1)
0
94
221
CEM
Response
(ppm HC1)
1
93
248
(12/8/8?)
Correlation*
Coefficient
r = 0.998
Bodenseewerk
Gas CEM
Cone. Response
(ppm HC1) (ppm HC1)
0 0
47 42
94 95
(12/6/87)
Correlation*
Coefficient
r = 0.998
'Acceptance criteria is r > 0.9950
Ul
oo
TABLE 6.2.
CALIBRATION DRIFT RESULTS FOR EACH TEST RUN
Run
No.
1
2
3
TECO
Spray Dryer Inlet
Zero Span
(% span) (% span)
6.0 8.9
1.1 2.1
0.8 2.7
Compur
Spray Dryer Outlet
Zero Span
(% span) (% span)
0.7 1.9
0.4 -7.1
0.7 6.3
Bodenseewerk
Baghouse Outlet
Zero Span
(% span) (% span)
0 1.6
-0.2 1.2
-0.4 0.8
Note: Measurement data were adjusted assuming linear drift, as long as drift was less than 20% of span. If drift
exceeded 20% of span, the measurement data were rejected.
-------
6.4 WET CHEMICAL SAMPLING FOR PERFORMANCE EVALUATION AUDITS
Entropy plannned to conduct performance evaluation audits to determine the
accuracy of each measurement system prior to the test program. These relative
accuracy audits were to be performed on each of the three HC1 monitoring
systems by conducting three runs of wet chemical impinger sampling for HC1
simultaneously with HC1 monitoring during preliminary testing. However,
several problems reduced the available time to perform all of the proposed
pre-test checks/audits prior to the start of the test program. Unexpected
delays were encountered during the equipment set-up/start-up period (the
electrical contractor was slow to connect electrical power to the Entropy
equipment), the plant was not operating for 1-1/2 days during the scheduled
three-day preliminary testing period, and numerous process difficulties caused
delays throughout the test program. These problems were discussed with the EPA
Task Manager, and he in turn informed Entropy that it would be acceptable to
perform the relative accuracy audits during the testing program when time
permitted.
The relative accuracy audits on the HC1 CEMSs at the spray dryer inlet and
outlet locations could only be performed after each test program run because
all the available sample ports were being used during these test runs. Also,
the areas around the sample locations were too small to accomodate testing
personnel and equipment while both MRI and Entropy were working simultaneously.
The process operating problems that delayed and disrupted the test program
sampling runs also prohibited the performance of the performance audits at the
spray dryer inlet and outlet locations.
The relative accuracy audit was performed at the baghouse outlet location.
The wet chemical impinger sampling was performed exactly as specified in the
work plan (see Appendix I for the sampling/analytical procedures), with a
sampling period of 20 minutes. The impinger results, however, are
questionable. The impinger sample results for each run were 1 ppm HC1, while
the averaged Bodenseewerk measurements over the same three sampling periods
were 6 ppm, 11 ppm, and 43 ppm.
On-site titration analyses were not performed on these outlet samples
because the HC1 effluent concentrations at this location were expected to be
below the quantifiable detection limit of 20 ppm HC1 for the mercuric nitrate
titration. Therefore, the low results were not discovered until the 1C
analysis of the split samples was performed at the Entropy laboratory after the
test program was completed. The reason for the low impinger measurements is
not known.
Previous testing conducted at similar municipal waste incinerators has
revealed excellent agreement between the impinger sample results and
Bodenseewerk measurements, even at the low effluent concentrations (<10 ppm
HC1). Since the impinger results are questionable, they cannot be used to
validate the Bodenseewerk measurement data. The previous comparative
measurements indicate there should be no reason to suspect the validity or
accuracy of the Bodenseewerk measurements.
59
-------
APPENDIX A.
Test Program One-Minute Data Printouts
• Run 1
• Run 2
• Run 3
A-l
-------
A-2
-------
C O M ~T I r-S L.J O 1 3 £3 E: il'-1 I 3 S I' O IKS S M O f"4 I "1" O R: Z BvS Q t3 EE: ~F -•-••-1 ?
SOURCE: HC'l CHARACTE'.RI ZAT TON TEST PROGRAM / MA TIME ENERGY RECtJVERY COMPANY
DATE: 12-OV--LC"S7
11-.IF LIT
A/Jj CHAN DE.SCR:_I_P I1 N I Tju 3Fl£il\l ____V0L/TAGE CiFFSIX.;
1
AVERAGirJG FERIGDS: 30 MINUTES,,
NO EMISSION RATE CALGUL, '•> T 1 Oi iS
A-3
-------
HC1 CHARACTERIZATION TEST
12-09-1987
PRQ6RAM / MAINE ENEROY RECOVERY COMPANY
TIME
10:32
10s 33
10s 34
10:35
10:36
10: 37
10:38
10:39
10: 40
1 0 : 4 1
10:42
1 0 ; 43
10:44
10: 45
10: 46
10: 47
10: 48
10: 49
10:50
1 0 ; 5 1
10: 52
10:53
10:54
10:55
10:56
10:57
1 0 : 58
10: 59
1 1 : 00
AVERAGE
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl dr.yHC.;.l
5.7 2.5 0.3
2.1 2.1 -0. 1
4.6 2.1 0.1
1.8 1.9 0.4
3.9 1 . B 0.5
3.3 1.7 0 . 2
3.5 1.6 0.6
7.5 1-6 0.1
10.9 1 . 6 0 . 1
14.9 1.7 -0.3
14.9 1.7 -0.5
9.7 1.7 0.2
11.1 1.8 -0.4
-1.8 1.8 -0.4
2.4 1.8 0.7
-3.6 1.8 0.7
-1.7 2 . 0 0 . 8
-0.5 -a?/0 2.2 72.2
4 . 3 fttf 2.2 12.0
1.8 2.1 0.6
5.6 2.1 -0. 0
3.1 2.0 0 . 3
.3- f 1.9 1.1
6 . 3 ^A 2.0 1 . 0
22 . t^> 2 . 0 O.^****"
122.7 a (01* 1 • 9 ^"JTs
225 . 3 4^JL» ! • 9 ! • 2
275. 3 i |jA 1.9 1.1
317.41 1.9 0.8
VAUJEJ5 FOR THE LAST HOUR:29 MINUTES3 OF VALID
J5>^^ 1 . 9 ^f^
335.2 1.9 0.6
358. 0 2. 0 -0. 1
372.4 2.0 -0.4
383. 1 2.0 0.6 •
388.6 2.0 0.7 o Jju^tJIJ*^*
401.2 2.0 0.9 vP^ r^itjlQ****^
404.5 2.0 0.9 #Mt* ^\ ft^X
407.1 2.0 1.1 O£ I**!*1*
412.3 2.0 0 . 4 ^ ' ^ ^ —
422.6 2.0 0.5 ~**^
415.7 2.0 98.0
426.4 2.0 101.3
424.2 2.0 -0.4
426.7 2.0 0.2 — jBfrd
429.4 2.0 3.5
434.7 2.0 44.3
438.4 2.0 48. 8*1 \*k&wd
431.9 2 . 0 49.21 $fKM C&A
438.7 2.0 48. 3 J
439>>— - 2.0 48. 4j
-<5S3. 4 2.0 16.4
DATA
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
1 1 22
1 1 23
11 24
11 25
1 1 26
1 1 27
1 1 28
1 1 29
11 30
AVERAGE
11
1 1
1 1
11
11
1 1
1 1
1 1
1 1
1 1
1 1
1 1
11
11
1 1
1 1
1 1
1 1
1 1
11
1 1
1 1
1 1
11
1 1
1 1
11
11
1 1
11
12
30
31
•-!' j^.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
53
59
00
AVERAGE
12:00
AVERAGE
12:00
12:01
12:02
12:03
12; 04
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl dryHCl
213.2 /jt CVJtCv^
28.9 1.9 40.9 1 ^
32.1 1.8 44.6,, Wppt*HC( A~5
47
-------
l-l C1 C H A R A CT E RI Z AT 10 N
12-09-1987
PROGRAM / MAINE ENERGY RECOVERY COMPANY
T' IME_ _
12:05
12: 06
12: 07
1 2 : 08
12: 09
12: 10
1 2 : 1 1
1 *") H 1 r'>
,t j;., i) A di..
12: 13
12:14
1 2 s 1 5
12: 16
12:17
12:1 B
12: 1 9
12: 20
1 2 B 2 1
12: 22
1 '? : 7 3
1 2 : 2 4
1 2 : 25
12: 26
j <-\ <™i -7
,L ,^,, H rii,, /
12: 28
1 7 : 2 9
12: 30
AVERAGE
12:30
1 O u T 1
4. H^. b «,j .1
12: 32
12: 33
12:34
12s 35
12536
12s 37
12:38
12: 39
12:40
12: 41
12: 42
12: 43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12s 55
CHAM 1
INLET
..wtlt.HC.L.
33. 4
'?"? ~' '
2 7% B ^fi
27. 8
27. 6
25.5
27. 0
24 . 4
20. 9
20. 1
25. 1
19.6
20. 8
21. B
26. 0
20. 6
20. 8
22. 6
IB. 1
18.4
18. 3
r> o ty
25. 6
2 1 „ 7
15.4
13. 5
VALUES
23. 9
12.2
15. B
1 8 . 4
10.6
19. 1
17.3
1 0 . 2
16.3
15. 4
12.5
17.3
12.7
12.7
16.2
20. 2
17. 1
20. 1
16. 3
1 0 . 5
17.7
13.8
12.9
18.9
16.0
1 0 . 3
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCl
*<• !>•» :?:=
I /»1T 1 ^1T
^* 1.7^* 50. 5
1 1.7J. 50.7
1 1.5T 51.3
1 . 4 50 . 6
1 . 2 50 . B
1 , 1 50.8
1. 1 -s*rrT&""
1.1 21. 0
1.1 9.8
1.1 6.9
1.1 5.0
1.1 4.4
1.1 3.2
1.1 3.1
1.1 2 . 6
1 . 0 1 . 1
1.0 2.2
1. 0__ 1 . 5
oTT*" i . 5
1.0 1.3
1.1 1.3
1 . 4 1.2
1.6 1.3
1.9 1.1
FOR THE PREVIOUS 30
1.3 21.6
2-2-J//">* °'7
201.7 (ft**' 0.9
225.4 .£**. 0.6
200. 1 1 0. B
194. el 0.7
190.51 l.o
187.3 1.4
184.9 1.0
184.2 0.9
209.8 0.9
217.6 0.2
222. 4 -0. 0
226.0 0.2
228.9 1.1
229.1 0.7
IBB. 6 0.4
183.4 0.7
181.1 0.7
179.7 0.3
178.6 0.6
177.9 -0.7
206.0 -0.6
221.7 0.6
227.3 0.7,
230.5 0.7
^L
Ct**- ^
4iprl
r*0?*
C<* -ft
-^-—
•f/isb At/
tKl'f T
1
MINUTES
A-6
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
/ MAINE ENERGY RECOVERY COMPANY
CHAN
INLET
T
1
1
1
1
1
I ME
2:
ff
O
aJu
2
•~<
56
57
58
59
00
1
wetHC.1
1
1
1
1
1
"T
6.
8.
O
O
CHAN
MID
2
CHAN 3
OUTLET
wetHCl drih'HCl
2*v»
0^'j
°\
0^
*»
T"
^
1
1
1
-j.
r>
93.
81 .
~7
/
9.
6 /i/ifl
4 ^J
&
"T 1
*H 0 . 7
"» 0 . B
1 0.5
0. 5
0. 1
AVb
*$
I
RAGE VALUES FOR
00 15.1
THE PREVIOUS 30 MINUTES
196.7 0.6
AV
1 /*!
13
13
1 3
13
13
13
13
13
13
13
13
1 3
1 3
13
1 3
13
13
13
13
1 3
13
13
13
13
,1,3
13
13
13
13
13
RAGE
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VALUES FOR
19. 5
17. 1
IB. 2
18. 2
16.2
12. 1
14. 2
16.3.
19. 1
16. 1
15. 1
ji. ji. D J^.
20 . B
9. 2
1 6 . 0
16.4
15.7
11.5
12.5
18. 3
18.9
11.2
14. 1
12. B
20. 1
14.6
12. 6
2 1 . 0
11.4
15. 4
12.1
THE LAST
99.0
177.9
177.2
181.1
213. 1
221 . 4
226. 6
53 . 4
51.7
BO. 9
95.3
107. 3
93.7
204. 5
226. 0
230. 9
233. 2
234. 4
~~i — r cr '"j
1 S —f
UES FOR THE
5.
B.
~^r
"T
8.
B.
O 0
4.
1.
6
7
9
IT"
j
9
"T
1
0
O
1
1
r™ |
1
1
1
1
65.
75.
16.
12.
66.
96.
OB.
07.
08.
PREV
7
8
~\
"**i
B
"T
T1
1
1
I DUS 3
t~)
10.
B.
8.
8.
B.
8.
8.
1 0 .
0
0
7
7
5
4
0
2
7
8
MINUTES
A-7
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
CHAN 1
INLET
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
I ME
"IT, T, Cp
,.,.
"JT*
3
ir,
.„,.
'T
7;
3
.„,.
..,.
..,,.
3
«i.
-.,,
-:;1
»;j-
..,,,
"!('
"•f
™r
4
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5 'o
56
57
5S
59
00
AVERAGE
1
4 : 00
AVERAGE
14:00
1
1
1
1
1
1
1
1
1
1
1
4 s 0 1
4:02
4s 03
4s 04
4 s 05
4 s 06
4s 07
4s 08
4:09
4: 10
4s 11
14: 12
1
1
1
1
1
1
1
1
4:13
4s 14
4:15
4: 16
4s 17
4r 18
4:19
4:20
14:21
1
1
4s 22
4s 23
14:24
1
4:25
wotHCl
1
1
1
2
1
1
1
1
1
1
1
2
±_
.••
1
1
1
2
1
.^
1
1
VAL
1
VAL
1
1
JL.
6.
4.
7 .
1.
B.
5.
7 .
2.
7 .
B.
7.
4.
1 .
1 .
5.
9.
B.
0 .
9.
0 .
9 .
8.
UE
7.
UE
6.
^.
0 .
2
9
1
4
B
^
-?
5
5
9
"T
6
0
_^
8
r;j
^ '
"T
3
O
nr
o
S
9
S
8
P
2
18.3
1
1
2
^i
1
^
2
1
1
1
ji.
1
1
1
1
1
1
1
1
6.
9.
T
j — ,
B.
0.
0.
7.
1.
8.
0 .
2.
2 .
~T
0.
5.
5.
cr
**?
19.
1
1
"^i
6.
.^
4
7
2
8
8
T
1
j^!
5
6
"7"
5
2
9
B
6
4
4
7
1
5
CHAM
MID
we
2
p^_'
1
1
1
j— i
1
j^.
1
1
t.HC
43.
9.
63 .
34.
24.
78.
76.
7 6 .
16.
07 .
1 .
0.
0 .
0 .
( j .
0 .
o .
0 .
96.
35.
75.
7 ~'' .
FOR THE
1
03.
FOR THE
134.
44.
94.
2
1
6
7
7
2
4
7
B
0
4
4
S
8
1
jj'
J
1
*"?
j^
0
e
"7
1
PREV
cr
_J
LAST
6
2
5
104. 2
1
1
1
1
1
2
1
1
12.
11.
15.
41 .
IB.
90.
0.
0.
0.
0.
0.
70.
37-
80.
73.
26.
87.
94.
100.
1
99-
99.
10.
9
7
1
7
4
4
1
,,-;
2
1
1
-^
•?
9
6
1
1
9
1
7
4
9
CHAN 3
OUTLET
dryHCl
1
1
1
1
1
2
ji.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10 US
1
2
4
6
7
9
"T
~T
"T
"T
2
1
4
9
6
7
B
7
4-
_,.
...,.
j;_
1
4
HOUR
B
1
1
1
1
1
1
1
1
1
1
1
1
2
1
0
0
9
9
9
9
1
5
4
T;
4
-T
2
1
10
1
1
1
0
9
8
7
7
9
2
1
T|
.6
. 2
. 6
. 7
.4
. 4
. 7
. 9
. 4
. 2!
"T
"T
. 6
. 1
n •-'
. 1
. 6
. B
. 0
D j'.'.'.
. 7
30 MINUTES
. 0
: 60 MINUTE £3 OF VALID
. 0
. 1
. 4
.4
. 1
. 4
. 0
. 1
. 5
.7
. 6
. 6
. 9
. 2
.7
.6
. 6
.8
. 9
m 2
. 1
. 8
. 8
. r7,
.6
7 A-8
DATA
-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
14;26
14:27
14:28
14:29
14:30
AVERAGE
14:30
14:31
14; 32
14:33
14:34
14:35
14:36
14: 37
14:38
14:39
14: 40
14:41
14:42
14s 43
14: 44
14: 45
14: 46
14: 47
14: 48
14: 49
14:50
14:51
14; 52
14:53
14:54
14:55
14:56
14:57
14s 59
14: 59
15:00
AVERAGE
15: 00
AVERAGE
15 00
15 01
15 02
15 03
15 04
15 05
.15 06
15 07
.15 OS
CHAN 1
INLET
wetHCl
9. 9
20. 7
16.4
20. 0
20. 9
VALUES
16. 9
15. 2
21. 4
20. 1
IS. 3
16. 5
ji. •—' • ji.
19. 1
-li. •-' a J^.
25. 5
17. 1
18.0
24. 1
26. 8
28 . 2
23 . 5
v' "^ B ^
20. 7
' ^ !..' . V
35. 2
122. 8
233. 4
297. 4
313.9
316. 8
301 . 1
•—' jil O' o ji.
350. 6
395. 4
428. 1
446. 1
VALUES
131.7
VALUES
74.3
458. 9
466. 4
453. 2
463.6
447. 4
402. 1
389. 1
367.0
CHAN 2
MID
wetHCl
/V B9-9
pi 87.9
. 86.0
I B6.2
FOR TIME P
89. 0
87. 2
87. 4
87. 1
87 . 0
88. 1
88.6
89. 7
89. 1
88^
— -£^73
26. 0
12. 1
7.2
5. 2
4 . 2
3 . 6
-7T /-,
^1 . ^!*
14.0
1 Cliljrf-* l/» -
n v/IW*^^ ,-, c- ,~>
141-3.
60.9
72.9
72. 7
76.8
80. 7
99.3
109. 6
102.5
CHAN 3
OUTLET
dryHCl u if
4 gj»" 14.1 00T{ [f I . -ijT
^ ll 14-1 Qtlfl^
W ^ 1 M- . O 1
REVrDUS 30 MINUTES
11.5
1 3 . 0
10.8
1 0 . 2
^ff^io-i
* 8 B O
8. 7
9. 1
^*"*' 9. 2
9. 6
10.9
11.5
11.9
12. 6
12.5
11.1
9. 7
" " 9. 3
y 8.3
liltttl^ S" °
Ml' 9 o
i a:2
1 ^
9. 1
9. 2
1 0 . 9
4. 8
1 0 . 3
12.7
FOR THE PREVIOUS 30 MINUTES
56. 7
9.8
FOR THE LAST HOUR! 60 MINUTES OF VALID DATA
72.9 10.7
84. 8
61. 1
42. 0
34. 1
27 . 3
24. 1
20. 2
17.6
11.8
11.0
9. 7
11.2
15.9
11.8
10.1
10.7 A~9
-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
15:09
15:10
15:11
15:12
15: 13
15: 14
15s 15
15: 16
15: 17
15: 18
15: 19
15:20
15:21
15: 22
15:23
1 5 : 2 4
15:25
15:26
15s 27
15:28
15: 29
15s 30
AVERAGE
15:30
15: 31
1 5 : 32
15: 33
15s 34
15:35
15:36
1 i:r . -r '7
i \..i B O /
15s 38
15:39
15: 40
15: 41
1 5 s 42
15:43
15:44
15: 45
15: 46
15: 47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15: 57
15:58
15:59
CHAN 1 C
INLET r
wetHCl ^
356. 6
357. 6
411.2
431.0
444.7
451 . 1
483. 0
480. 2
505 . 2
502. 2
476. 6
447'. 6
451 . 8
447. 9
425. 1
436. 0
445. 7
468.3
478. 2
461 . 4
436. 4
438. 7
VALUES FOR
442. 8
458. 8
457. 0
468. 7
510. 1
529 . 1
533.4
501 .4
493. 1
471.2
458.3
468. 1
466.2
458. 6
443. 0
425.5
431.2
444.2
458.2
433. 3
444. 1
457. 2
453.6
432.0
448. 1
456.5
463.4
471 . 2
470. 9
475.5
;HAN 2
11 1)
wetHCl
20. 5
33 . 9
57.6
64. 4
54 . 0
34. 9
22 . 0
15. 9
12.7
1 0 . B
9. 7
9. 4
1 0 . 4
15.4
26. 0
41.7
63. 7
78. 4
81 . 6
67. 1
43. 9
26.7
THE PRE
37. 1
18. 9
1 4 . 4
11.6
10.7
11.6
17.7
32 . 0
54.6
76.4
80. 2
78.3
61 . 6
42.7
30. 2
23. 4
20.6
17. 2
16.0
17. 4
21.4
29.7
44.9
62.4
82.0
91.9
85.9
68.8
47.7
36.7
CHAN 3
OUTLET
dryHCl
8.5
7.7
7.5
7 . 9
8. 5
7 . 9
7 . 3
7 . 2
7. 4
6. 9
6. 6
6. 4
7. 1
7. 1
7.8
8. B
8. 5
8. 1
8.2
8. 1
7. 9
7. 1
VIOUS 30
B . 7
6. 6
7.0
6.6
6. 4
82. 0
18. 4
B. 3
7.6
8. 0
9. 3
1 0 . 6
9.5
B. 1
7. 8
7. 5
7-0
7.2
8. 5
8.2
7.9
9. 5
10.9
12. 3
11.0
11.1
10.9
11.3
10. 1
9.2
MINUTES
*
£-10
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
16:00
CHAN 1
INLET
wetHCl
500. 9
CHAN 2
MID
wetHCl
31.5
CHAN 3
OUTLET
dryHCl
7.8
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
16:00 466.1 41.3 11.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
16:00 454.4 39.2 10.1
16:01
16:02
16:03
16: 04
16:05
16: 06
16:07
.16:08
1 6 : 09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
16: 16
16: 17
16: 18
16: 19
16:20
16:21
16:22
16: 23
16:24
16:25
16:26
16: 27
16:28
16:29
16:30
AVERAGE
16: 30
16:31
16:32
16: 33
16:34
16: 35
16:36
16:37
16:33
16:39
16:40
16:41
16:42
490. 0
513.8
544.7
589. 1
583. 5
549. 8
550. 6
537. 4
503. 2
474. 4
455.8
454. 7
cr* f-\ nr ^~i
vjUuJ . ^-
552.9
561 .4
589.3
592.6
573. 4
574. 8
563.0
548.5
547. 1
540. 7
552. 3
548.9
531. 1
504.7
523. 3
516.3
519. 9
VALUES
536. 4
cr /I nr '-i
_l 4 J . ji.
534. 5
514.4
488. 1
469. 1
479. 5
480. 4
478. 4
488.2
494. 3
496.6
505. 2
26.3
26. 9
28.5
35.5
56. 1
79. 1
120. 3
121. 2
103. 8
81.0
55.3
38.8
32. 6
33. 9
35.2
42 „ 2
53.5
60. 1
78. 8
109.6
128.5
148.4
146. 1
127. 1
101.4
69.2
47.7
40.5
35.6
31.5
FOR THE PREV
69.8
31.8
37.2
43.2
51.1
60. 5
75.4
90 . 9
92.5
90. 1
80. 6
68.5
51.5
8. 3
7. 9
8.2
7. 8
8. 6
9. 1
10.6
12. 6
12.8
13.7
11.5
10.2
8.5
7.5
7.7
7. 4
7. 8
8.7
1 0 . 0
12.0
13.6
13.0
12.8
12.4
12.2
10.7
8. 8
8. 7
8. 6
7. 9
IOUS 30
1 0 . 0
8. 2
8.6
9. 7
9.8
11.1
10.7
1 0 . 0
9.6
1 0 . 0
10.2
9.8
9.2
MINUTES
A-ll
-------
HC1 CHARACTER IZAT ION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12 09-1987
CHAN 1 CHAM 2 Chi AN 3
INLET MID OUTLET
: 1 wet. H£l... d r.y HQ1.
16;
16:
16s
16:
16:
16:
16;
1 6 s
16s
16s
16s
16:
16:
1 6 :
16s
16:
16:
17:
43
44
45
46
47
48
49
50
51
52
5 3
54
55
56
57
5B
59
00
AVERAGE
17;
AVE
17:
17:
17:
17:
17:
17s
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
00
.RAGE
00
01
02
0 3
04
05
06
07
08
09
1 0
1.1
1 2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
501.
499.
51B.
513.
4B5.
471 .
463.
463.
479.
498.
490.
512.
552.
587 .
621 .
6BO.
775.
887.
VALUE
532.
9
-T
4
9
1
6
0
7
B
1
1
~T
5
6
7
4
4
2.
S FOR
V-.J
VALUES FOR
534. 5
791 .
669.
631 .
692.
753.
790.
751 .
687.
622.
602.
59 B.
5B4.
603.
621 .
652.
724 .
735.
744.
690.
6 3 3 .
687.
750.
736.
679.
626.
595.
563.
567.
570.
6
o
•7
-T
7
2
6
6
B
2
4
0
T
Cj
~T
cr
9
7
9
0
"T
6
5
ji.
5
5
1
4
6
42 .
39.
36.
37.
40.
46.
53.
67.
91.
107.
114.
136.
108.
99.
91 .
105.
134 .
183.
THE.
77.
THE
7 ^ «
192.
145.
124.
174.
264.
268.
268.
260.
176.
1 19.
98.
77.
77.
87.
106.
161 .
204.
255.
262.
226.
224 .
159.
122.
86.
62.
50.
40.
37.
38.
cr
o
"T
4
5
0
9
9
5
7
9
cr
4
5
5
0
•T
"\
PREV
0
LAST
4
2
..•
••*!
9
7
7
7
5
cr
4
9
5
5
4
6
1
1
7
1
4
8
8
4
6
2
9
4
2
6
8.
8.
7 .
7.
B.
8.
9.
1 1 .
1 1 .
1 0 .
1 1 .
11 .
1 0 .
1 0 .
9.
8.
8.
8.
10 US 3
9.
HOUR:
9.
9.
9.
9.
1 0 „
12.
17.
^•' j/ B
23.
21 .
16.
13.
1 1 .
10.
1 0 .
10.
1 1 .
1 3 .
16.
19.
21 .
20.
IB.
15.
13.
12.
32.
14.
1 1.
12.
6
~T
4
6
1
7
T
2
2
6
1
jjl.
CT'
'T
6
4
6
4
:0 MINUTES
cr
60 MINUTES OF" VALID DATA
8
T;
-T
2
1
6
' — ,
c;
T;
o
7
;T
2
1
7,
2
Q
tr
8
7
7
6
4
0
B
8
6
2
8 A-12
B
-------
HC1 CHARACTERIZATION
12-09-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
17; 30
AVERAGE
17:30
17:31
17:32
17:33
17:34
17: 35
17:36
17:37
17:38
17:39
17s 40
17:41
17: 42
17: 43
17: 44
17: 45
17: 46
17: 47
17: 43
17: 49
17:50
17:51
17:52
.17: 53
.17: 54
17:55
17: 56
17: 57
17: 53
17:59
18: 00
AVERAGE
18: 00
AVERAGE
ISs 00
1 8 ; 0 1
18:02
18:03
18:04
18:05
18:06
18s 07
18s 08
18:09
18:10
18s 11
18:12
CHAN 1
INLET
wetHCl
561.9
VALUES
664. 0
535.9
508. 9
484. 4
496. S
511.9
520. 2
525. 2
503. 2
480. 6
490.7
524. 3
595. 8
642.3
643 . 0
557. 0
460. 7
432. 2
428. 9
414. 6
440. 2
471 .5
499. 3
552. 1
615.9
639. 0
647. 8
646. 8
653. 8
644. 7
632. 0
VALUE:;,:d
540. 0
VALUES
602. 0
607. 8
565. 2
535. 1
503 . 8
458. 3
480. 3
483.7
469.5
456.5
445.7
438. 8
449. 0
CHAN 2
MID
wetHCl
40.4
FOR THE PREV
147. 2
43.9
47. 4
48. 7
52.3
57.0
56.8
53.7
47.9
38.6
32. 8
31.6
35. 1
42. 0
52. 0
52. 1
43. 2
39. 4
38. 4
37. 1
37. 8
38. 8
T T /
•_'' -„"' a LJ
31.5
30. 0
26. 6
27.0
28. 3
31.8
37.5
41.9
FOR THE -'REV
40.5
FOR THE LAST
93. B
42.9
4 1 . 7
37. 6
31.6
25. 3
21 .8
20. 2
18.3
17.6
18.0
19.4
21. 1
CHAM 3
OUTLET
clryHCl
11.5
IOLJS 30 MINUTES
15. 1
10.6
1 0 . 4
10.7
9. 7
8. 9
9. 4
9. 1
8. 5
8. 3
8 . 3
7 . 8
7 . 9
8. 6
9. 1
9. 0
8. 8
9. 5
10.6
9. 5
7. 6
7. 8
8. 2
8. 4
9. 5
8. 9
8 . 3
7. 7
7. 4
"7 n 3
7. 4
IOUS 30 MINUTES
8. 8
HOUR: 60 MINUTES OF VALID DATA
11.9
8.2
9 . 6
9. 8
8. 8
7. 6
6.9
6. 5
6. 4
6. 2
6. 2
6 . 3
6.8 A 13
-------
HC1 CHARACTERIZATION
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
T i ME:
1 8 s 1 3
18s 14
18: 15
18:16
18: 17
18: 18
13: 19
18:20
18:21
18:22
18:23
18: 24
18: 25
18:26
18; 27
18: 23
18: 29
18: 30
AVERAGE:
IBs 30
1 8 : 3 1
18: 32
18; 33
18: 34
18: 35
18: 36
18:37
1 8 s 38
1 8 : 39
18: 40
18:41
18: 42
18: 43
18:44
18s 45
18:46
18:47
18:48
18:49
18s 50
18:51
18252
IBs 53
18:54
18:55
18:56
18:57
18:58
18s 59
19:00
CHAN 1
INLET
we-tHCl
442. 1
4 3 4 „ 2
412.8
407. 8
417. 0
420. 5
413. 0
378. 4
4' 04 . 0
427.8
432 . 0
427. 0
425, 6
409. 5
446. 9
457.2
449. 6
431.5
VALUES F
451.0
401 . 9
3B4. 6
38B. 1
390. 5
403 . 6
415. 1
441 . 7
463. 3
465. 2
454. B
470. 5
475. 4
304. 2
191. 1
165. 1
141.8
127.8
1 1 6 . 0
110.5
106.8
97.9
95.7
96. 1
SB . 0
82. 9
80. 2
B2.B
77. B
76.8
71.2
CHAM 2
M I D
wetHCl
23. 6
2 6 . 4
27.8
2 B . 2
28. 1
26. 3
23. 4
19.6
17.7
1 7 . 7
1B.B
2O. 6
2 1 „ 0
21.1
^L •„!' n J~-
25. 2
25. 7
24. 6
DR THE PREV:
24.5
21 . 9
19.3
IB. 1
1 7 . 1
17.2
16.B
15.5
16.7
IB. 4
20. 6
2 4 . 2
25. 9
17.6
11.9
9.5
B.7
8.8
B. 7
10.9
13.4
1 5 . 0
16.0
16.4
16.4
16.2
16.0
15.5
14. 9
14.5
14. 1
CHAN 3
OUTLET
dryHCl
7. 4
6. 9
6. 5
6. 4
6. 2
ur1 —7
vJ . /
5. 6
5.4
4.5
5. 1
5.7
5. B
6. 1
6 . 0
10. 1
7 . 0
6. 0
6.5
[QUS 30 MINUTES
6. 7
6. S
6. 3
6 . 2
6 . 3
6.B
7. 6
7. 1
6.7
5. 9
6. 1
6. 6
7. 0
6. 7
6.5
7.6
7. 1
5.9
4. 3
3 . 7
3. 4
3. 4
3. 6
4. 1
5.0
4.4
4.7
5.3
5. 3
5.6
5. 1
A-14
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
LIME
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
19:00 242.3 15.9 5.7
CHAN 1
INLET
wetHCl
CHAN 2
MID
wetHCl
CHAN 3
OUTLET
dryHCl
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
19500
346. 6
6.2
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
:
;
•
•
11
s
ji
;
;
•
•
•
a
;
;
;
•
;
n
•
a
B
3
•
*
a
•
5
3
5
jj
[j
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
75
74
71
68
65
65
65
62
61
60
59
57
60
cr L.
56
cr j-*i
-_J j^.
53
59
52
56
54
50
54
53
50
59
52
54
58
54
m
n
•
u
m
n
„
_
„
m
„
„
a
„
m
.
0
„
u
B
n
m
m
„
B
m
m
4
5
I £cY^
7 , (j>4
•7 1
4
-) *
7
5
0
9
5
0
at.
7
5
8
1
7
8
8
0
8
5
0
4
7
6
1
9
1 3
J. j^.
9
5
4
"T
T;
TC
~T
"T
-r
4
4
"?•
"T
'"T1
O
j-^
O
r~)
T'
^i
O
j— ,
O
'"71
r-,
O
O
a
m
•
n
0
m
B
q
a
p
„
,,
„
„
„
n
„
.
„
a
„
a
H
„
.
•
„
6
9
O 1$>™
6,^
H
6 '
4
O
1
0
ET*
TI
o
~T
0
9
9
9
9
9
8
B
8
8
8
7
7 40#
5
T1
5.
7.
6.
5.
5.
*"?
0 .
0 .
0 .
0.
— 0 .
-0 .
-0.
-o>*
0.
1 .
IB.
36 .
43.
46.
48.
48.
50,,
50.
50.
50.
50.
B^*!^:.
1 1.
4.
1
o
O
9
4
T
"^
5
'"o
~T
2
r^
fffr
/•-j
_,.
7
^
7
5
i
7
1
7
9
7
4
^0.
5
5
\
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
19:30 59.3 4.1 19.6
19:31
19:32
19:33
19:34
19
19
19
OD
36
37
19
19
19
19
19
38
39
40
41
42
19:43
58. 4
56. 1
54.7
52.5
54. 1
51.0
56. 0
55.6
57.4
52.5
54.4
53.6
A-15
0. 6
-------
HC1 CHARACTERIZATION
12 09 1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
19s 44
19:45
19:46
19: 47
1 9 : 48
19: 49
19:50
19:5 .1.
19:52
19 : 53
19:54
19s55
19:56
19:57
19:58
19:59
20; 00
AVERAGE
2 0 : 0 0
AVERAGE
20s 00
20: 01
20 : 02
20: 03
20: 04
20:05
20: 06
20: 07
20: 08
20:09
20: 10
20s 11
20: 12
20: 13
20: 14
20: 15
20s 16
20: 17
20: 18
20: 19
20 : 20
20:21
20 : 22
20:23
20:24
20:25
COMMENTS
Chi AN 1
INLET
wetjjC_l
57.7
55. B
59. 5
56 „ 3
52. 0
55.2
58.2
54.7
53. 4
54 . 0
54.8
57 . 7
58. 7
47- 0
57. 0
51.5^,
^^^feo. 7
VALUES F
55. 1
VALUES F
57 „ 7
60. 3 .*
74.3.4*
217.5
~T "T (") 'T'
380. 8\Jf
414. 1
440.2
456. 7
464. 3
479. 4
485. 7
487. 0
493.2
499-7
499. 1
498.2
505. 4
507. 0
507.2
504.8
510.8
509 . 4
329.8
133.8
1 04 . B
: End of
(CONTI
CHAN 2
M I D
wjgtHCj
93. 7 fMj£
94.7 ^t
95.9 *|4|
97 . 4 MJ
97.51 P
98.7Mj/1
97.7 ^
98. 6
99. 6
99.4
54 „ 0
16. 3
8.5
6 . 0
4. 7
3 ~>
3. 0
OR THE PREV
46. 0
OR THE LAST
25. 1
A flO** 2 . 8
* J • r> o
P^ ,A 2 . 7
yA^* 2. 6
2. 6
2. 7
2. 7
2. 6
2. 5
2 . 5
112.7
237. 6
236. 7
188. 1
174.7
204.8
206.3
2 . 1
2. 1
2 . 1
2. 0
i).-' m /^
2. 5
2. 4
2.2
Test Nou 1
NUED ON THE
CHAN 3
OUTLET
._d_ryllCJL
£. 0 . 3
0. 3
f ** 38 . 8
Jl 162.6
•riV"'-1 • 2 iftPKb £
57.6
55 . 0
49. 7
45. 5
41 . 1
38 . 2
36.2
34. 0
29. 4
9.7
2. 4
J. D ji
0 . 9
0. B
0 . 5
0. 6
0 . 3
-0 . 0
0.5
-0. 6
0. 3
0 . 5
and post-test calibration
NEXT PAGE)
DATA
check
A-16
-------
C O N T I N L J O U S E M I S Q I O M S M O N I T O R I M G e E "T -
SOURCES HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
DATE: 12- 10-1987 TI ME: 09! 02
A/0
CHAN
1
2
3
DESCRIP
INLET
M I D
OUTLET
UNITS
wetHCl
wotHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.00 V
0.93 V
9,21 V
ZERO
OFFSET
07,
07,
07.
AVERAQINQ PERIODS a '30 MINUTES,
NO EMISSION RATE CALCULATIONS
A-17
-------
HCl CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
CHAN 1
INLET
TIME wet HCl
09s 09 79.7
09s 10 83. 3
09: 11 89.3
09: 12 87. 9
09; 13 86.8
09: 14 82. 7
09: 13 87. 0
09; 16 83. 5
09: 17 82. 5
09s 18 41.1
09: 19 8. 4
09s 20 4.4
09:21 4.7
0 '-9 : 2 2 4 . 3
09:23 4.9
09; 2 4 -0.7
09:25 6.9
09:26 3.2
09:27 4.2
09; 28 3.4
09:29 5.9
09: 30 4 . 5
09s 31 6.0
09:32 4.6
09:33 2.6
09s 34 1.7
09:35 -20.0
09s 36 -20.7
09:37 -20.7
09; 38 -20.6
09:39 -20.6
09:40 -20.6
09:41 -13.0
09:42 -10.4
09:43 -3.0
09s 44 5.1
09:45 8.4
09 : 46 1.6
09:47 -2.9
09:48 4^5-
09:49 .^^31579
09:50 177.8
09:51 274.1
09:52 316.2
09:53 346.5
09:54 359.9i
09:55 378.1
09:56 385.4
09:57 395.4
09:58 414.6
09:59 416.4
10:00 419.0
CHAN 2 CHAM 3
MID OUTLET
wet HCl dry HCl
0 .8 0.2
*tf*fe ° • s ° • 4
*.J O.B^ff& 10.3
P* O.S.^Lf 23.6
| 0.81 14.5
L 0.71 7.4
" 0.71 4.3
0 .7 2.5
•#V&0.7 1.1
frM- 0 .7 0.5
0 0.7 0 . 7
0 .7 0.7
0 . B 0 . 6
0.8 -0.0
0. B -0. 0
0 .9 0.5
1 . 0 0 . 6
1.0 32 . 8
1.0 169.8
1 . 0 0 , 3
1 . 0 0 . 1
1.1 0,4
1.1 52.1
•*, 1 • 1 49. 2
LUy>°Vk 1 • 1 48. 8
» -1 -1 /I O '">
*fl J. o J, *-)' / a -C.
^ viA ial 49- 1
^ 1.1 45.6
1.1 -18.3
1.2 -0.4
1-2 0 . 0
1.2 -0.4
1.3 -1.1
1 - 3 - 0 . 0
1.4 38.7
1.4 57.5
1.5 58.7
2Cr* 1.4 57.2
1.5 50.8
-" 1-5 44.3
1.4 37.8
1=4 18.0
. r.4 oW*- 1.4 4.4
. » 1.5 2.5
^ 1.5 1.7
1-5 1.1
1.5 1 , 0
1 . 5 o . 4
1-5 0.2
1-5 0.2
1-6 0 . B
1-6 1.6
,-^.tofet 0
41 pr
A-18
-------
HC1 CHARACTERIZATION TEST PROGRAM
12- Kl~ 1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
AVERAGE
1 0 : 00
1 0 : 0 1
10:02
10:03
10:04
1 0 : 05
10: 06
10: 07
10: 08
1 0 : 09
10: 10 _
i 0 : 1 1
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: IB
10: 19
10: 20
10:21
10:22
10: 23
10: 24
10:25
10:26
10: 27
10: 28
10:29
10: 30
AVERAGE
10:30
1 0 : 3 1
10:32
10:33
10: 34
10: 35
10:36
10: 37
10: 38
10:39
10: 40
10:41
10: 42
1 0 : 43
10: 44
10:45
10: 46
10:47
CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl
VALUES FOR
89.5
423.1 Ctf*C -
426.4 4^'
426. 3
435.7
438.3
442. 4
446. 4
435. S
438. L_—
^SiETSTl
248. 2
27. 8
— 2 . 0
-14. 7
- 10.3
-8. 1
-o'.l&q
-5.6 I
-l:l\
0.1 *
-2.0
0. 7
1 . 6
-0. 9
3. 1
6 . b
4. 6
VALUES FOR
150. 5
1 . 8
-1.2
3. 9
-1.4
- 0 . 4
-0. 2
3.4
3. 6
1 . 4
-1 . 6
3. 9
1. 9
-0. 6
-0. 3
1 -0
2. 4
6. 6
CHAN 3
OUTLET
drvHCl
THE LAST HOUR: 52 MINUTES OF VALID DATA
1.1 17.7
1 .7
1 .7
1.7
1 .8
1 .8
1 . 8
1 .8
1 . 8
1 . 8
1. 7
1 . 7
1 .7
1 .7
1 . 7
1 .7
146.3
227. 7
173. 6
174. 7
224. 0
159. 5
1 .8
1 . 8
1 . 7
1 .7
1 .6
1 . 7
1 . 7
THE P
38. 3
1 . 6
1. 6
1 .6
1 .7
1 .7
1 .7
54. 3
77. 6
84.4
86.7
86.9
86.9
88.0
88.8
88. 3
89.0
0. 3
0. 6
0.6
0. 2
0 . 4
0 . 3
0. 3
0. 1
0 . 0
-0. 1
•— • f~"l 1
0.^^^^
^^&
*U. 6
3. 9
15. 1
25. 8
JJ^\ 39.9 1 /•jfUcV1'
C^ 43.1 ^ Ct* ^
48.9 A^l pP^ V
49.4 I
50. 0
50 . 4
50. 7
51.3
50. 6
50^7^
RE VIO US 30 MINUTES
22. 0
45. 0
31 . 2
18.4
1 0 . 5
8. 5 ^
"" s! 7 I 0*
4 . 7 L
4 . 2
3. 4
flA p0*. 2 . 9
•^IT. 2. 6
}M 1.9
2 . ji.
1.9
1. 8
, „ 1.8
-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM /
NE ENERGY RECOVERY COMPANY
T I ME
10 48
10
10
10
10
10
10
1 0
10
1 0
10
10
1 1.
49
50
51
52
53
54
55
56
57
58
59
00
/v»*^«-
CHAM
INLET
wetHC
1 .
ji, n
0.
-T
1.
3.
1 .
u^! •
6.
7 _
6.
o
6 .
1
1
6
ji.
5
5
6
8
8
9
rr
^.i
1
7
1
L""
i.J
CHAN 2
M I D
wetHCl
87.
'SA^-
""34.,
12.
7.
5.
4.
T
T
.j, n
Jl! a
J^. n
j^. n
8
S^
6 -7/v
0 ^ ;/
nr ^^
i_j
^"j
4
7
"T
0
7
5
4
CHAM 3
OUTLET
dryHCl
1 .
0.
-o 1 .
1 .
1 .
1 .
0 .
1 .
0 .
0 .
0 .
0 .
1 .
"T
8
1
'"'."'
4
1
8
1
7
7
4
8
0
AVERAGE VALUE:::; FOR
11 oo 2. i
THE PREVIOUS
36.7
30 MINUTES
AV
n
1 1
1 1
1 1
1 1
1.1
1 1
1 1
11
1 1
11
1 1
1 1
11
1 1
1 1
11
11
1.1,
11
11
11
n
::RAGE
00
0 1
02
03
04
05
06
07
OB
09
1 0
11
12
1 3
14
15
16
17
18
19
20
2.1
22
VAL
7
_2
-i
_.
1
1
1
r--,
1
1
ui!
i
.«i!
.*;.,
1
1
1
UE;
L,
0.
T;
0.
1 .
o ,.
•_j' „
8.
4.
9.
4.
8.
4.
0 „
7.
2.
.ui! .
9.
_,.
4.
B.
2 .
2 .
G FOR
7
1
3
•tr
5
o
-T
6
0
8
9
1
0
6
0
~T
.^!
0
1
7
4
6
THE:
37.
2.
jj' a
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
•|
J. B
1 „
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1.
1 .
1.
LAST
in-
2
0
9
B
8
—
7
—
"7
7
"7
7
7
7
7
7
7
7
7
7
~7
7
HOUR; 60 MINUTES OF VALID DATA
33.8
0. B
0 . 6
0. 8
0 . 9
1 . 1
0 . 3
0 , 4
0.5
0. 1
0 . 5
0 . 6
0 . 0
0 . 5
0 . 9
0 . 0
0 . 5
0. 5
0 . 7
0 . 7
0. 6
0. 1
0. 1
COMMENTS: Waiting far proper process operating conditions
•for Test tt2.
A-20
-------
HC1 CHARACTER I 2 AT I ON
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
I
1
1
1
1
1
1
1
1
1
1
1
1
1
\_
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I ME
~>
""?
'"^
2
2
f^
r?
o
/--,
Al~
'">
'"J
2
2
2
2
2
2
/•->
•"o
o
'"?
o
o
'"7*
o
T
31
32
33
34
35
36
37
33
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
AVERAGE
13s 00
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
l^
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
01
02
03
04
05
06
07
08
09
10
1 1
12
13
14
15
16
17
18
19
20
Tea
>
CHAN 1
INLET
wetHCl
— 3
"T
— ^1
— 3
_T;
cr
v_>
-I
o
1
23
123
226
279
309
341
357
356
358
33 1
320
316
334
350
384
392
420
425
409
411
„
„
B
«
„
B
•
*
.
„
B
_
B
B
-
.
a
B
„
„
„
,,
,
.
„
•
6
7
9
7
7
4
7
r~\
0
6
1
9
O
6
4
4
_,.
E~
CJ
1
9
6
T1
8
7
1
1
9
5
5
*-^
VALUES
215. 1
396
380
4O2
429
413
421
432
449
433
427
437
450
459
456
444
41 1
410
414
414
424
.
„
,
B
B
„
.
.
„
„
.
„
m
„
.
.
•
„
.
„
7
7
7
6
4
8
9
4
5
~T
8
9
9
•T,
8
1
7
9
7
7
CCyn^i
fe/ j
^ " * ^^^ ^-w «
CHAfl 2
MID
wetHCl
1.
1 .
1 .
1.
1 .
1.
1 .
1.
_ 1 .
~" 1.
1 .
1 .
1 .
1.
1 .
1 .
1 .
''".'
4.
4.
4.
4.
4.
4.
5.
6 .
7 a
-7
/ .
6.
FOR THE
5.
C^"
4.
4.
4.
4.
C""
\-.l «
8.
1 1 .
15.
18.
21 .
20.
17.
1 3.
1 1 .
9.
8.
7.
7.
5
5
5
5
5
5
!>
6
6
7
7
7
7
7
7
6
T1
4
4
6
8
Q
5
4
j— \
"^
8
LAST
1
8
^i!
9
7
5
8
8
1
4
4
7
6
4
1
8
O
7
5
8
6
0*4.
PM<
t**/«j^*/«
CHAN 3
OUTLET
jjry.HC.1
16. 7
1
1
1
1
>
4.
~T
r^j
2x
y/1 0 .
f 11.
10.
9.
9.
9.
9.
8.
9.
8.
8.
8.
7.
8.
7.
/_
UJ n
7.
"7
/ 0
7.
7.
7.
7.
7.
7.
HOURs
9.
7.
B.
7.
7.
7.
7.
6.
6.
"7
/ .
'7 „
6.
7.
7-
7.
7 .
7.
6.
6.
6.
f£"
>.j .
6
|7,
9,xx*^^*N
7 ',/.'/' i /
4 djX' ty •/» a-f >^»4
5 o«^<»«. <^ M, -y
^L/~ ^^ j* i \f
~*:,
8
ji.'
9 i - '*' ""1
7 r >__i_
-------
C H A R A C T E R I Z A T 10 N T E 8 T
•10-1987.
/ MAINE ENERGY RECOVERY COMPANY
T ]; ME_
13' 21
,1,3 22
, u;p o™,.
4. <™> j^, O
13 24
1 •!!• ois;
.1 '.„' 4^. *J
j -^ f-w
3, ..j *L a
13 27
13 28
13 29
13 30
AVF.RAGE
13 30
13 31
13 32
1 ..'.:• •.-' •.-'
13 34
13 35
13 36
13 37
13 38
13 39
12; 40
13 41
13 42
13 43
1.3 44
13 45
13 46
13 47
13 48
13 49
13 50
13 51
13 52
13 53
13 54
13 55
13 56
13 57
13 58
13 59
14 00
AVERAGE
1 4 : 00
AVERAGE
14:00
14:01
14; 02
14s 03
CHAN 1
INLET
wet HCl
439. 0
424. 6
429.2
454.2
453. 1
463. 7
457.9
464. 6
466. 0
461 .3
VALUES
434.3
462. 0
463.8
455. 6
450.7
474 . 4
482.5
481.2
477. 3
487. 3
509. 6
485. 4
468. 4
465. 6
482.7
485. 3
479. 3
493. 5
516. 9
506. 4
485. 7
478.0
469. 6
453. 1
449.7
477.9
470.7
496.3
509 . 6
530.6
536.7
VALUES
482.9
VALUES
458.6
530. 6
505.5
475. 1
CHflfj 2
M I D
wet. HCl _ ..
8.2
9.9
13.6
1 8 . 6
24.8
30. 6
•^i 1 n 2
29.2
25. 4
20.8
FOR THE P REE VI
1 4 . 0
17.7
15.2
13,3
11.7
1 0 . 4
10.5
11.8
1 3 . 9
16.2
15.9
14.7
1 2 . 7
1 0 . 9
9 . 8
8.8
8 . 0
7 . 3
6 . 8
6. 4
6. 1
6 . 0
6 . 0
6. 2
6. 4
6.6
6.8
7. 1
7.4
7.8
8.0
FOR THE: PREV
9.9
FOR THE LAST
11.9
7.8
7.6
7.5 A.
CHAN 3
OUTLET
dry HCl
5. 2
5. 2
6 . 0
5. 8
6 . 0
6. 2
6. 4
6. 4
6 . 4
6. 1
OL.IS 30 MINUTES
6.7
6. 5
6. 4
6.2
6. 2
6. 0
5-7 , o*
5.2 . W**
6 „ 0 Mfe^* "^
5-3 /J^'M' ^
5.3 /y \ ^^
5 „ 5 •*****^
5.9
5 . 2
O . -.1''
JJn^g^^^ • • • M 1
NV^VA — „ pa^ / v#e* 1
5 . 3
5. 1
4. 9
5. 2
5. 0
4. 9
4.7
5. 1
4.8
5. 1
5 . 0
5, 3
CZ" T
wJ „ O
Id US 30 MINUTES
^ ^4-
HOUR: 60 MINUTES OF VALID DATA
yf &.\
4. 6
4.5
-22 4.9
-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
14: 04
1 4 : 05
1 4 : 06
14:07
14:03
1 4 : 09
1 4 : 1 0
14: 11
14: 12
14: 13
14: 14
14: 15
14: 16
14: 17
14: 18
14: 19
14: 20
14:21
14:22
14; 23
14: 24
14:25
14: 26
14: 27
14: 23
14:29
1 4 s 30
AVERAGE
14:30
14:31
14:32
14:33
14: 34
14:35
14:36
14:37
14:33
14:39
14:40
14: 41
14:42
14: 43
14: 44
14: 45
14:46
14s47
14: 43
14s 49
1 4 : 50
14:51
14:52
14:53
14:54
CHAN 1 CHAW 2
INLET MID
wetHCl wetHCl
476. 0
463. 8
489. 0
499. 6
515. 0
541.3
541.2
543.5
536. 5
519. 7
494. 3
480. 6
502. 3
492. 8
415. 2
358. 9
371.8
473.7
558 . O
562. 3
542. 5
533 . 6
54.1.8
542. 4
533. 7
534.2
508.2
VALUES FOR
502. 8
519. 8
528. 0
532. 6
538. 1
545.5
535.5
526.8
498. 2
475. 9
484. 4
510.3
507. 7
499. 7
499. 9
513.9
506. 1
500. 0
470. 4
468. 9
478. 9
451 . 6
463. 3
473. 1
467.6
7.
6.
6.
5.
mr
vJ .
5.
5.
5.
cr
5.
6.
6.
6.
6.
6.
5.
6.
7.
8.
8.
8.
8.
8.
7.
7.
8.
7.
THE
O =
6.
6.
6.
6.
6.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
6.
6.
5.
5.
5.
E~
xJ a
5.
5.
5.
^
8
6
8
4
O
O
71;
cr
8
1
-T
6
6
1
7
1
6
1
-T
7
6
4
9
8
0
'-TI
PREV
9
8
7
7
8
9
1
Tt
5
6
7
7
8
5
b
1
4
0
6
4
"T
0
o
o
0
CHAN 3
OUTLET
dryHCl
cr ^
5. 2
4. 8
5. 6
4. 9
4. 5
4. 3
4.2
4. 8
4. 5
4. 5
4.6
4.5
4. 9
4.9
4. 6
T cr'
3 . 7
4 . 3
4. 5
4. 9
5. 0
5. 8
5. 3
4. 9
5. 0
4. 8
IGUS 30 MINUTES
4. 7
4. 5
4.5
4. 5
4 . 4
4.5
4. 9
4.0
4. 9
4. 9
4. 4
4. 2
4 . 0
4 . 2
4 . 3
4. 8
5 . 3
5. 1
4. 9
4. 3
4. 4
4. 0
3. 6
3-9 A-23
4.0
-------
HC1 CHARACTERIZATION
12-- 10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
T I ME
14:55
14:56
14:57
14:58
14:59
15sOO
AVERAGE
15; 00
AVERAGE
15: 00
15:0 1
15; 02
15: 03
15; 04
15; 05
15:06
15: 07
15: 08
15: 09
15: 10
1 5 ; 11
15; 12
15:13
15; 14
15: 15
15: 16
15: 17
15: 18
15; 19
1 5 : 20
15:21
1 5 : 2 2
15:23
15:24
15: 25
] C5 " '^ 6>
15: 27
15: 28
15:29
15: 30
AVERAGE
15:30
15:31
15 : 32
15s33
15:34
15:35
15:36
15:37
CHAN 1
INLET
wetHCl
461 . 8
462. 9
4-65.7
484.4
481 . 6
497. 2
VALUES
495. 0
VALUES
498. 9
520. 5
538. 3
552. 3
548. 7
555. 5
52 1 . 6
495. 2
505. 2
507. 8
488. 4
477.8
490. 4
496. 0
489.2
512. 1
524. 8
512.5
5 :i. 6 . 4
543.2
524.2
529. 4
553. 0
526.2
520. 1
521.1
515. 0
515.5
524.0
523. 2
520.0
VALUES
518.9
534.5
524.2
515. 1
505. 8
493.2
494. 2
475. 0
CHAR 2
MID
wetHCl
5. 2
5.5
6 . 0
6. 5
6. 9
7 . 2
FOR THE F'REV
6.5
FOR THE LAST
6.7
—7 •— i
/ . -C.
—f S~,
7.0
6.8
6. 6
6. 3
5. 9
5.6
5.4
5. 3
5. 3
5. 4
5.5
5. 8
6 . 0
6. 4
6 . 9
6. 9
7. 0
7. 1
7. 1
7. 1
6. 9
6.5
6. 3
6. 2
6. 1
6. 1
6. 1
6. 3
FOR THE F'REV
6. 3
6.6
6.8
7-0
7.0
7 . 0
6.8
6.4 A.
CHAN 3
OUTLET
clryHCl
4. 2
4. 3
3. 8
3 . 7
4. 5
4. 6
10 US 30 MINUTES
4. 4
HOUR: 60 MINUTES OF VALID DATA
4. 6
4 . 0
4. 3
4. 9
4. 5
4 . 3
4. 2
4. 1
3 . 7
4. 3
3. 9
4. 1
3. 8
4 . 2
4- . 0
4. 5
4. 1
4 . 0
3 . r^,
3. 2
3. 9
3 . 9
4. 1
4. 2
4 . 2
3. 9
3. 9
4. 4
3. 8
3. 4
3.7
IOUS 30 MINUTES
4.0
3. 6
3.7
4. 1
3. B
3. 9
4. 2
.94 4 . 0
-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
1 3 s
15:
15:
15:
15:
15:
15:
15:
1 5 :
15:
15:
15:
15s
15s
15s
15:
15:
15:
15:
15:
15:
15:
16s
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
CHAN 1
INLET
wetHCl
465.
457.
465.
470.
457.
472.
504.
559.
575.
552.
533.
525.
539.
555.
544.
533 .
510.
5 1 0 .
502.
489.
474.
452.
448.
6
0
6
2
5
8
j^.
4
0
6
8
0
9
6
•TJ
4
9
0
~T
-------
HC1 CHARACTERIZATION
12 10-1987
TEST
PROGRAM / MAINE ENERGY RECOVERY COMPANY
TTMF
1 J- ' J_L::'. .-
16; 23
16:26
16: 27
16:28
16:29
16: 30
AVERAGE
16s 30
1 6 ; 3 I
16:32
16:33
16: 34
16:35
16: 36
1 6 s 37
16: 38
16:39
16: 40
1 6 ; 4 1
16:42
16: 43
16: 44
T&r*l 5
16: 46
16: 47
16:48
16: 49
16:50
16:5 1
j / K" -""i
1 a £ ^.j ,,1:.
16:53
16:54
16s 55
16: 56
16:57
16:58
16:59
1 7 : 00
AVERAGE
1 7 : 00
AVERAGE
1 7 : 00
17:01
17s 02
17s 03
17:04
17:05
17; 06
17:07
CHAN 1
INLET
wetHCl
537.4
533. 2
517. 0
503. 3
486, 0
478. 9
VALUES
502.4
475. 1
486. 4
493. 7
5 1 0 . 8
5 0 0 . 9
505. 9
480. 4
472. 5
502. 5
521 . 9
539. 2
538. 9
543.2
535. 2
527. 1
5 3 1 . 2
530. 8
508. 6
458. 9
463.3
500. 8
512. 4
523.4
538. 0
532 . 0
531 . 8
549. 6
cr rr cr /
544. 2
539.5
VALUES
515. 1
VALUES
508. 8
535.3
544.7
529. 0
519. 1
514. 1
532. 3
560. 0
CHAN 2
M I D
wetHCl „ .
5.8
5. 6
5.5
5. 4
ctr ~^~
wJ . •-'
5. 3
FOR THE PREV
5. 7
cr l~i
1.J n -^
n." "T
wJ r, -Ji
5. 4
5. 5
5. 5
5. 6
5. 5
5. 5
5. 6
rr T
,J . .'
6 . 0
6. 1
6. 3
6. 0
5. 9
5. 9
5. 9
5. 6
5. 1
4. 9
4. 8
4. 6
4. 5
4. 6
4. 5
4. 6
4 . 7
4- . 9
5. 1
CU "T
^J „ -_j
FOR THE PREV
5.3
FOR THE LAST
5.5
5.6
5.8
6. 0
6. 2
6. 0
6.4
5.9
CHAN 3
OUTLET
dryHCl
3. 6
3. 2
3. 1
T T1
3 . 6
3 . 9
IOUB 30 MINUTES
4.5
3. 4
3 D £•
3. 9
"T " T
3 . 5
3 . 3
'"r /
._. „ o
3 . 0
3. 3
3. 7
3. 6
4. 1
3. 8
3. 6
4. 1
3 . 4
3 . 0
3. 6
~T T
4- . 0
4. 1
3 . 6
3 . 5
3 . 0
3. 5
3 . 6
4 . C)
3.5
3. 7
3. 8
'IOUS 30 MINUTES
3. 6
' HOUR: 60 MINUTES OF VALID DATA
4. 0
3.5
3. 7
4. 4
3. 8
4.2
3.8
-7- ^
-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
1 7 : 08
17:09
17: 10
17: 11
17: 12
17: 13
17:14
17: 15
17: 16
17: 17
17:13
17: 19
1 7 : 20
17:21
17: 22
17:23
17:24
17:25
17:26
17:27
17: 23
17:29
17:30
CHAN 1
INLET
wetHCl
570. 3
545.8
553 . 6
554.0
cr T cr* /
>J O _> . O
534. 0
538. 4
537. 1
538. B
514.2
461 . 4
461.3
473. 7
452.3
438.6
434. 3
412.9
4O3. 7
490. 8
562.7
570. 7
520. 3
471 . 0
CHAN 2
MID
wetHCl
5.7
5. 5
5. 2
5.0
4.9
4.9
4.9
4.8
4.7
4.5
4. 5
5.2
5.7
6.4
7. 1
7 . 4
7. 4
7.5
7.6
7. 3
6. B
/ '">
Cf • ,i_
5.9
CHAN 3
OUTLET
dryHCl
._,. ^
-r r~^
3.2
3 "^
3. 5
3. 6
T; -T
3. 8
_,. _,.
3. 1
3. 1
2.5
3. 1
2. 8
2. 8
3. 1
3. 4
3 . 0
2 . 9
'? ~^
3 . 0
3. 9
4. 4
AVERAGE
17:30
VALUES
510.3
FOR THE
PREVIOUS 30
9 3.3
MINUTES
17s
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17 3
17:
175
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
53
471 .
466.
467.
501 .
51 1 .
541.
566.
557.
562.
550 .
508.
494.
505.
483.
467.
454.
472.
492.
486.
506.
540.
552.
551 .
550.
542.
521.
491.
457.
5
3
4
9
9
0
.Ll
5
5
6
7
B
6
6
0
1
2
1
±
0
0
4
0
7
1
1
5
4
b.
6.
9.
9.
7-
5.
4.
~\
~T
~T
_,.
T
4.
4.
4.
5.
5 .
5 .
6.
O •
6.
6.
6.
7.
7.
6.
6.
5.
"7
4
6
6
0
1
o
4
jL
2
__,.
6
0
4
7
0
4
8
0
2
6
8
9
8
0
4
0
4
._•' .
3 .
"T
4.
4.
4.
"""I
._,.
_r
"T
•_' a
4.
"T
2 .
""•"t
"T
"T
"T
"T
3.
— j.
4.
4.
"^*i
4.
4.
•-' «
T(
5
6
1
"T
"*%
1
9
4
5
4
9
1
4
9
I— ,
8
6
0
2
2
7
0
2
B
0
2
8
6
A-27
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
Chi AM 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME
17i 59
18:00
AVERAGE
18: 00
AVERAGE
18: 00
1 8 s 0 1
18:02
18: 03
18:04
18:05
18s 06
18: 07
18s 08
18:09
18s 10
18:11
18: 1 2
18: 13
18: 14
18: 15
18: 16
18:17
1 8 s 1 8
18: 19
1 8 s 20
1 8:21
18: 22
18: 23
18: 24
18:25
18: 26
18:27
18:28
18:29
18: 30
AVERAGE
18:30
18:31
18: 32
18: 33
18:34
18s 35
18:36
18:37
18:38
1 8 : 39
18:40
18:41
wetHCl wetHCl dryHC!
433. 6
422.6
VALUES FOR
504. 3
VALUES FOR
507. 3
432. 2
427. 9
42"^. 5
425.3
4 1 b . 5
352. 5 tl9ffl
146. 2 * 0.W
99. ul
B 1.2
73. 4
69. 9
63. 8
58. 6
62. 6
64. B
57. 6
42.7
39. 4
31.4
30 . 3
30. 1
26. 9
31.0
29 . 0
33. 1
20. 0
17.5
15. B
19. 4
VALUES FOR
*5TT8
24. 7
19. 5
23.2
17.9
14. 5
14.0
1 3 . 4
13.0
18.5
13.7
12.6
4.9
4.7
3. 4
3. 0
THE PREVIOUS 30 MINUTES
5.6
THE LAST H 01
5. 7
4. 4
4. 3
4. 3
4.4
mj"4~r£-> . K
3.9 "^ ?
~* 1 * J
jn. o o j y^
< T B
2. 1
1 . 9
1.8
1 .B
1.7
1. 6
1.6
1.5
1 .5
1 . 4
1.4
1.3
1.3
\^fr~^
16. 3
%'ltMT
kZ.7\W*
65.7 |
67. 4
69. 5
70. B
3 . 6
JRs 60 MINUTES OF VALID DATA
3.5
2. 6
2. 9
3. 0
T1 3
2. 9
2. 9
2 . 6 t/0^ Jk x^1 1
/— , —/ jt \^JLn\f^
/ wJF^fi "
111
•
3 . 0
3. 1
3. 1
2. 7
2 „ 7
2.4
2. 1
1 .6
1.5
1 .7
1. 6
^Z' B 1
O T
2.6
3. 0
2. 9
3.1
THE PREVIOUS 30 MINUTES
t^-J.
71.5
72.9
73.2
73.6
73. 0
73.3
75.5
75.4
75.6
74.J>-*
*#€\^\£fYT>
2^ /i
2. 9
3. 4
3. 5
4. 4
4.3
5. 1
5. 1
5. 7
5. 9
5.8
5.9 A-28
-------
HC1 CHARACTERIZATION
12-10-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
18
13
18
18
18
10
18
18
18
18
18
18
18
18
18
18
18
18
19
:
:
:
5
!
:
:
:
M
;
:
;
:
•
3
;
:
42
43
44
45
46
47
49
49
50
51
52
53
54
55
56
57
53
59
00
AVERAGE
19
a
00
AVERAGE
19s 00
19
19
19
19
19
19
19
19
19
.19
19
.19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
.
;
;
.
^
.
.
3
;
;
a
5
5
;
2
a
*
;
s
;
;
!
3
3
3
01
02
03
04
05
06
07
08
09
10
1 1
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
CHAN
INLE
1 CHAN 2
T MID
wetHCl wetHCl
13
17
13
11
10
10
14
14
9
1 1
13
10
8
6
8
15
13
8
• 3 *Jk
. o Ctfft*
•5 ^VO
:?r
. 7
. 7
. 4
tnr
. 8
. 8
. 1
. 9
. 7
. 0
_T-
_,.
. 8
VALUES FOR
ly^«
VALUES FOR
9
1 1
o
-*7
1 1
78
220
316
364
389
405
412
421
430
436
437
440
441
446
446
--«T52"
438
314
107
61
48
41
31
. 4
. 8
_7y-
^^^^^
. D
. 6 J l|> |
• 6 \f)
:U*
. 9 *
. 0
. 0
. 1
. 8
. Zl
. 1
. 5
. 4
. 9
. 8
6_
• ^ -t^vfl
. O ' -^
.5.^
•H
.7?
r-,
. 9
.9
68.
35.
, 20.
15.
1 1.
9.
8.
6.
1 .
5.
-T
2 .
2.
j^. •
T1
1 .
1 .
1 .
THE
J3«*"f
THE
1 .
1.
1.
*A 1
f o!
I o •
191.
176.
175.
144.
<}*
^ T)
0.
0 .
0 .
0.
0.
0.
, 0.
0.
0.
0.
0.
0.
0.
0.
2 y*\
8 i (fit
7 1
9*
5
0
5
6
5
9
8
4
j^.
0
0
9
8
8
PREVI
•?
LAST
~7
8
7
~T
1
1
tr^yi
Oi C*^V
2f O^
2
6 ^^-
ji.
^1
2
2
r?
'T1
2
2
2
1
1
1
1
j^l
CHAN 3
OUTLET
dryHCl
6.
r
t 5.
% •
0 .
-0.
-0.
— 0 .
— 0 .
^^\.
18.
"T nr
OvJ -
42.
45.
47.
49.
50.
50.
50.
OUS ::
15*
HOUR:
C,''
28.
8.
4.
"T
1 .
1 .
1 ^""T""
if* 6 .
"T
1 .
1 .
0.
0.
0.
0.
0.
-- 0 .
0.
- 0 .
0 .
193.
1 1 .
— . C\
— '[
18.
47.
48.
0
6
5
(-y • J
8|#*>*
1
5
&* 1
& 1 /J*-*^^
9 • . y)A ^\^
1 AjJ(f(fl** \1^A
Q "\ 0*jA yiN
7 4"' U ftQV''
l\ ^
1 '
0
0
iO MINUTES
60 MINUTES OF VALID DATA
6
5
6
0
B
5
I^^jf^
6 V jJMV^^
5*
9
"T
7
8
6
5
0
4
1
4
1
7
5
9
2
'-7,
0 A - 2 9
-------
H C1 C H A R A C T E R I Z A T ION T E S T PROGRAM
12 10 1987
/ MAINE ENERGY RECOVERY COMPANY
T I ME
19: 29
19:30
CHAN 1
INLET
_W|!.t.HCl
34. 8
3 1") ^'
CHAN 2 CHAN 3
MID OUTLET
...wetHCj. dryHCl
0. i 48.3
0.1 48.4
AVERAGE VALUES FOR
19:30 243.3
"HE PREVIOUS :
33.1 16,
1C MINUTES
6
19 s 31
19: 3 2
J.9; 33
19s 34
19: 35
19 :
19:
19:
19:
19:4 0
17
15
17
14
14.
1 3
7
0
cr
i.J
7
1
48. 0
0. 1
0. 1
0. 1
0. 1
0. 3
-1 . 5
-1 . 4
-2. 0
-1.5
4 . 9
•T1- —7
•J1 » /
0. 9
C 0 M M E N T S ( E;: n J T o;;;; 1. tt 2 an d c ,s 1 i b r a t i cs n c: h & c k
A-30
-------
HC1 CHARAi
12--12-1987
TEST PRQQRAM / MAINE ENERI3Y RECOVERY COMPANY
TIME
08: 22
08:23
08: 24
08: 25
08: 26
08:27
08:28
08: 29
08:30
08: 31
OS: 32
08: 33
08:34
08: 35
08: 36
08:37
08:38
08:39
08: 40
08: 41
08: 42
08: 43
08: 44
08: 45
08: 46
08: 47
08: 48
08: 49
08:50
08: 51
08:52
08:53
08:54
08: 55
08: 56
08:57
08:58
08: 59
09: 00
AVERAGE
09:00
09: 01
09:02
09:03
09:04
09 : 05
09: 06
09:07
09: 08
09: 09
09: 10
AO , 1 1
CHAN 1
INLET
wetHCl
1 .9
— 5 . 3
5. 7
0. 8
~0. 8
74. 6
206. 1
265. 2
308. 9
328. 1
348. 4
363. 5
371 . 1
383. 0
393.5
393. 4
395. 2
404. 6
4 0 5 . 3
4 10.2
411.9
410.2
416. 1
416.3
423. 5
423. 5
420. 7
430. 3
430. 0
431 . 9
431 . 1
432. 4
265. 1
81.1
52.7
42. 6
36. 8
26. 9
24. 0
VALUES
273. 4
21.3
24. 4
19-9
19. 9
10.5
15.0
15.6
15.7
12.0
15.4
L. 1
CHAN 2
MID
wetHCl
136.6
2 1 0 . 4
214. 0
218.4
226. 4
I 201.0
1^76. 3
.Vlffl74. 7
• irl :L73- 9
, rr 192. 0
1 217. 0
•f 4 , , , . . —7
T *•:• *- -- » /
226. 1
229. 0
230. 6
203. 7
175. 6
174. 1
180.4
219. 1
89. 0
0. 2
0 . 2
0 . 2
84. 1
217. 4
173. 9
179. 9
226. 8
207.8
1 .4
2 . 0
1 .9
1.7
1 . 6
1 .5
1 . 5
1.5
FOR THE LAST
138.9
I .5
1.5
1 .5
1.5
1 . 5
1 .5
1 . 5
1.5
1.5
1.5
i "=:
CHAN 3
OUTLET
dryHCl i i <-*&&+&
48.7 I C&* \
48.7 T 9 ,
48.7 ^- ta x£*A
^^^M jf* ^^W^ **
48. 1 / .- Mm *f
45. 0 V - T/ fl '
1 .9
-0. 3
/~\ "~T"
-0. 7
-0. 2
4 . 3
14.2
15.5
14.9
1 5 . 0
1 5 . 0
14.5
12.2
1 0 . 4
8 . 7
8. 0
"7 "7
7 . 2
7. 1
7. 1
6 . 5
6 . 2
5.2
4. 9
4 . 9
5. 1
5 . 5
2. 4
0. 5
0 . 5
0. 5
-0. 1 ^^-**'*'"
-"^S*!^
6.2
HOUR: 39 MINUTES OF VALID DATA
11.5
15.3
21.0
24.3
28. 5
^2 R 7
34. 9
37.6
38.6 A-31
37. 9
36.5
_,_, 5-
-------
H 01 C H A R A C "I" E R11A "I" 10 M "I" E S1" P R Q (3 R A h
12-12-1907
/ MAINE ENERGY RECOVERY COMPANY
TI
09
09
09
09
09
09
09
09
09
09
C.) 9
09
09
09
09
09
09
09
09
AV
09
ME
H i -""i
H A. ,\'.'~
M i ..-'
5 14
: 15
: 16
; 17
s 13
; 19
; 20
„ '••;, 'i
H a~ all.
; 23
: 24
: 25
: 26
H P "7
i 28 1
: 29
; 30
ERAGE
H •.il'U
CHAM
INLET
wotHC
8.
9.
-T
6.
8.
5.
4.
4.
6.
6.
12.
rr
4.
i'' n
_-,,
IS;
1 115.
170.
VALUE
2-K"
,M(*r n
1
1
5!
7'
8
7 t
9
rr~
!_l
1
5
_,.
3
5
0
-'1
1
T
'" ' /
5^
9
c1!
•*.
CHAM
MID
w ethlC
y>^- i .
$rf*f i.
, A«-» 1 .
i J'
^ 1.
Y 1.
1.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 „
I £ 1.
.tft^ K
!ff J^-
-ToT
F'Cll"-!; THE
1 .
''"i
j;!,
1
5 (/
5 H
5l
2l
6
6
6
6
5
(\
/!
^y
3
^
^
1
uJ
PRE
E3
CHAN
QLJTL
....v-dryH
^' 26
gft> 3i
*i/ 37
Sr
40
42
44
45
46
47
47
47
42
23'.
9
6
r~6
1 B
*" ' 1 0
10
:vious
30,
tWj.
ET
C.I
. 1
. 8
. 7
^.
B U.'
. 8
. 4
'"?
. 1
. 0
. 1
. 9
. 6
. 0
. 8
^
. 4
. 0
. 4
30
S$
09 :
09:
09r,
09s
09;
09:
09:
09;
09 ;
09;
09:
09 :
09;
09:
09:
09s
09:
09 :
09:
09:
09s
09:
09:
09s
09:
09:
09:
09s
09:
10:
3 1
>.~> .c!
-.,. ...,,
34
35
3 6
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5.1
52
53
54
55
56
57
58
59
00
1 96.
^.. ji- O K
<~7i r\ ur
343.
417.
452.
475.
516.
479.
451 .
427.
368.
-7- r--| /~,
284.
230.
164.
135.
127.
125.
111.
110.
1 04 .
101.
96.
90.
101.
106.
101.
98.
1 03 .
5
1
0
4
8
7
r."
cr
-.>
cr
O
Q
1
B
6
~T
7
1
^i
c>
0
5
5
7
C)
4
5
1
1
7
6
1
35.
52.
57.
61 .
65.
66.
68.
69.
70.
76.
81.
85.
87.
87.
88.
44,
B.
_,.
1~ j^.' „
i B.
• 9.
7.
6.
cr
U .
5.
4.
4.
4.
4.
4.
9T*
2 !F
9i
3?
"T
5
7
B
7
j^.
B
8
7
7
-T
B
8
6
1 Jl
9*H
cr
^J
r--,
Jl.
6
4
9
6
5
T
T1
h 12.
^ 9.
-/
7.
1 C* .
10.
B.
7.
~" •-' O c
-1 .
O »
6.
6.
cr
wJ .
5 .
5.
4.
*• 3
<3.!
3lM^2.
" 2.
f~i
jL. •
O
O
1 .
r^i
1 .
1 .
1 .
1.
o
6
7
4
9
<3
4
7
5
4
1
4
-r
Tt
(j
'":•
^
8
1
8
9
T)
*-7i
5
9
0
7
1
4
9
MINUTES
A-32
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1 CHAN 2
II ME
AVERAGE
10: 00
AVERAGE
10: 00
1 0 : 0 1
10: 02
10: 03
10: 04
10: 05
10; 06
10:07
10:08
10: 09
10: 10
1 0 : 1 i
10: 12
10: 13
10:1 4
10: 15
10: 16
10: 17
10; 18
10: 19
10: 20
10:21
10: 22
10:23
10: 24
10: 25
10: 26
10: 27
10: 23
10: 29
10: 30
AVERAGE
10:30
1 0 5 3 1
10:32
10: 33
10:34
10:35
10: 36
10:37
10:38
10: 39
1 0 : 40
10:41
10: 42
i n. a.-i
INLET MID
_WKiHCI __wet
"---—
VALUES FOR THE PREV
238.5 3
9. 4
VALUES FOR THE LAST
129.8 2
115.4 x
148.4^4
147. 4 j
132. el
110.1*
101.5
81.9
87. 2
79. 1
78.0
73. 6
79. 6
78. 8
76. 6
76. 2
44. 4 <^?i
^5 , 5 . ^A
23. 8 1
15.2*
24. 3
10.7
10. 1
14. 3
1 3 . 3
6. 0
10. 1
14. 2
7. 9
VALUES FOR TT
63 . 7
12.9
7. 5
4. 6
Tj ^ -
r~ 8.5
1 13.2 v
Y 76. 5 f £lii£^"
113. 7 t\Y
160. 0
191. 1
218.7
242.8 ^
TI /- "7 ~T
0. 6
4.4
4.4 , ffl
4. 2 -Mr
4 . O 1
3. 8^
3.5
3.4
3. 4
3. 4
~T "T
~T ~T
"T "T
~T T>
T T"
3. 1
^4—
.i . V
2 . 6 c^"
^3l
;;;1
/-_-, /-^
2. 1
2. 1
2 . 0
2. 0
1 .9
1 . 8
1 . 8
1 .7
\E PREV
2.9
1.6
1.7
1.5
1 . 3
1 . 3
1.3
1 . •-'
1 . 2
1 .3
1 .3
1 .4
1.4 |J
•| /}
CHAM 3
OUTLET
_cJr_y_HCl_
10 US 30 MINUTES
3.5
HOUR: 60 MINUTES OF VALID DATA
1 7 . 0
1.4
1 . 8 |
2.1^
*"? -rr
*i . --''
2. 4
1.9
2.4 V 'f*
2.1 * jH^*^
i-8 A^^" &\ ^
2. 1 ^ J !^^
1 • 8 .x**" /*j|j^<*\
2. 5 Q^ \
2. 7
\m
2.4
» 2.9
5. 8
7. 4
7. 1
6. 5
5. 5
5. 3
5. B
5. 6
4 . 5
3. 5
3. 2
10 US 30 MINUTES
•-• • •-•
3 . jJ
3 . 3
3. 5
3 . 3
3. 6
3.6
'~- t
*L . O
1 .7
!,°^ A-33
.^ . o
2. 6
( 4.1 4.4
-------
HC1 CHARACTERIZATION TEST
12 12-1987
PROGRAM / MAINE ENERGY RECOVERY COMPANY
T I ME
10144
10143
10: 48
1 0 : 49
1 0 s 50
1 0 : 5 1
10: 52
10: 53
10:54
10:55
10: 56
10: 57
10; 58
10: 59
1 1 : 00
AVERAGE
1 1 : 00
AVL
11
1 1
11
11
11
11
1 1
11
1.1
1 1
1 1
11
1 1
:RABE
00
0 1
02
03
04
05
06
07
OS
09
1 0
1 1
12
CHAM
INLET
wetHC
UBS,
354,
3 4 2 .
337.
332 .
319.
• ''' j;'' j^ D
313.
3 2 4 .
309'.
314.
309.
31""' 1
338.
"T "T /I
1 CHAN 2
M 1 1)
1 wethIC
2
9 /-,.
ijPff
5 i
9 ]
4 r
6
3
--•.•
6
0
6
~7
_,.
9
VALUES FOR
224-.
VALUE
144 .
3-J .
3 1 B .
320.
342.
374 .
376.
382.
380.
380.
377.
329.
359.
7
S FOR
9
5
0
B
7
9
9
4
1
t—.
7
9
I,
Jt %•*
jil .
j^,' .
1 .
1 .
1 .
1 .
j~' n
J^. n
ll „
2 H
'7-
Jjl B
2.
THE
1 .
THE
2.
7'
-7
11.
34.
53.
66.
77.
83.
88.
91 .
68.
1
g
6
1
o
9
8
E
9
ji.'
5
5
6
6
7
6
P
p
L
4
5
4
-T
r>
9
7
6
B
8
T;
CHAN
QUT'L
d r y
r$&'
zt^9
1/&{
iff
i
i
i
REVIOUS
H
3
3
4
5
0
8
9
i — ,
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1 CHAN 2 CHAN 3 ,,
INLET MID OUTLET sL*^* P\JiA$
TIME
11: 16
11: 17
11:18
11: 19
1 1 : 20
11:21
11: 22
1 1 : 23
11:24
11:23
11:26
11:27
1 1 : 28
1 1 s 29
1 1 : 30
1 1 : 3 1
1 1 : 32
1 1 : 33
1 1 : 34
1 1 : 35
1 1 : 36
1 1 : 37
1 1 : 38
11:39
1 1 : 40
1 1 : 4 1
11:42
11:43
11 : 44
1 1 : 45
11:46
1 i 5 47
1 1 : 43
1 .1. : 49
11:50
11:51
1 1 s 52
1 1 : 53
11:54
1 1 s 55
i 1 : 56
11:57
1 .1. : 53
1 1 : 59
12sOO
12:01
12s 02
12:03
12:04
12:05
12: 06
12307
1 2 : 03
1 2 s 09
12:10
—WetHC! wetHCl drvHCl ^^— J-Ttt*A
441. 4
435. 0
399. 1
382. 5
400 . 0
4 18.1
405. i
412.6
434. 7
465. 1
502. 3
467.7 al
432.2 '
414.8
424. 4
374. 5
345. 8
323. 8
332. 7
324. 1
335. 8
353. 6
350. 7
340. 6
344. 4
415.5
422. 2
4 15.9
349. 1
262.7
239. 0
292, 7
347. 6
359. 0
365. 6
309. 3
304. 1
337. 6
379- 1
372. 4
354. 2
359. 9
378. 6
374. 9
401 . 7
434. 8
429. 2
420. 4
420. 0
430.3 yp
420.6 A"
423. 4
401 . 8
412.2
20. 6
16.2
13.2
11.0
9.6
8. 4
7. 4
6.3
5. 6
5.2
4.9
4.7 fa*
4. 6
4.6
4 . 6
4 . 4
4. 3
4 . 0
3 „ 8
3. 6
3 3
3 . 0
2. 8
2. 7
j''' a \."j
2. 4
2. 3
?:3
2 . 2
2. 1
2. 4
2. 4
2. 1
2 . 0
1 .9
1 . 9
1 .8
1 . 9
1 . 9
2. 1
2. 2
f- > -T-
2.5
2. 5
2. 4
2.4
/ / L
•*" " J- (7
2. 1
2. 0
2. 0
7.5*
6. 6
6. 8
6 . 0
6. 1
5.7
6. 2
5. 6
5 . 7
5. 6
5. 3
5-° 0
q.p.
4. 9
4 . 8
4.6 f \
4 • 2 ^WT •/£*
5. 0 •> h#<^ A '
4.8 U*'
4 . 5
4. 6
4- . 7
4. 7
4 . 0
3. 7
. Jj „ Jj
•, m ^
3.7 ^
4.0 ^ .j.
3.8 5 /
fl v^>(
4.1 j V VV1
3.8 aJ( V
3.4 ,
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12 "-12- 198 7
T I ME
12s"iT'
12; 12
12; 13
12: 14
12:15
AVERAGE
12: 15
12: 16
12: 17
12; IB
12: 19
12; 20
12:2 1
12; 22
12; 23
12: 24
| '•;.) „ <~> u-jj
12: 26
12: 27
12,i 28
12: 29
12: 30
12:31
12; 32
12: 33
12: 34
1 2 ; •.;!' 5
12: 36
12:37
1 2 : 38
12:39
12; 40
12:4 1
12: 42
12; 43
12: 44
12:45
AVERAGE
12: 45
12:46
12s 47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
CHAN 1
INLET
wpt HC1
4 1 9 - 0
456. 8
4'55. 1
449. 1
453. 7
VALUES
387. 7
468. 7
4B2. 2
479- 6
442. b
429. 7
433. 7
420. 5
4' 2 4' . 2
43.0. 4
438. 9
460. 1
460. 7
450. 0
442. 6
457. 3
448. 6
445. 7
433, 8
445. 1
461 . 6
453. 6
472. 5
4-54. 1
430. 9
427. 4
438. 7
449. 0
457. 0
437. 3
407. 8
VALUES
446. 1
389. 6
361 . 1
393. 7
419.7
444.6
422. 5
420. 1
446. 0
465. 9
473. 4
477.7
CHAN 2
M I D
wetHCl
2 . 0
2 . 0
2. 1
2. 1
/ADi>J L.(a&l
t'f^V^f' ~- -£-y-~y'
M=tfR THE" LABT
3. 9
2. 2
J^' B 1^-
J''' . • "''
_j- ' K j^'
O 'I
2. 1
2 . '0
1 . 9
1 . B
1 . B
1 . 8
1 . 9
1 . 9
2. 0
2. 0
2 . 0
2 . (")
2. 0
2 . 0
2 . 0
2 . 0
2 . 0
jL. B ( •'
1 . 9
1. 8
1 .8
1. 9
1.9
2 . 0
2 . 0
FOR THE PREV1
2 . 0
1.9
l.B
1 .8
1 . B
1.8
1. B
l.B
l.B
l.B
1 . B
1.9
CHAN 3
OUTLET
dryHCl
3. B
5. 0
5. 1
4. 3
4 . 2
HDURr^C) MINUTES OF VALID DATA
4. 3
4 . 3
4- . 4
4. 1
4 . 0
3. 5
3. B
3. 8
3 . 5
3 . 6
3. 6.
3 n 7
3 n-
•j' . 5
3 „ 3
2. B
2. 6
'"' J
3 . 3
3. 4-
3 „ 0
3. 1
3. 7
3. 6
._' • t 5
3 "•'
2. 9
3. 1
•-• . 5
3.B
3. 9
OUS 30 MINUTES
'"!* cr
2. B
2.5
2.4
2.5
2. 6
2.4
2. 5
2. 7
2.B A-36
2.7
-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
T'
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
IME
2
2
2
3
3
T
3
T
T(
'T
**!*"
~T
._,,
~!j
•",?
T
...,.
-,,
3
57
58
59
( 1 ("l
* / v_/
ol
02
03
04
05
06
07
03
09
10
11
1 2
13
14
15
AVERAGE
1
A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
"T
15
VERAGE
3s 15
3
3
,_;i
3
3
"***
3
..,
3
3
3
3
3
.^i
3
3
3
3
3
•«'
3
3
3
3
'3
•la1
3
16
17
18
19
20
2 l
22
23
24
25
26
27
28
29
30
31
32
•-^i •«'
34
35
36
37
38
39
40
41
42
43
CHAN
INLET
1
CHAN
MID
f^
A,
CHAN
3
OUTLET
wetHCl WKtHCl
491 .
464.
450.
434.
434.
431 .
4 3 3 .
443.
425.
447.
462.
464.
455.
434.
458.
457.
458.
434.
418.
VALUE.
440.
VALUE
443.
419.
436.
420.
412.
420.
423.
454.
468.
485.
495.
483.
477.
449.
437.
430 .
424.
406.
390.
403.
412.
426.
431.
467.
481 .
506.
517.
528.
531 .
0
0
T
8
8
^
0
L.
S
~T
7
7
4
8
6
j;_
4
3
1
3
5
S
~T
8
6
1
9
4
6
o
o
J^
0
7
2
7
8
0
8
6
"7*
-T
5
5
4
2
6
_,.
9
0
8
1
1
1
1
2
T1
-C-
j~,
^j'
2
j^.
2
2
1
2
—i
^
'"^
1
FOR THE
1
FOR THE
1
1
1
1
1
1
1
1
1
jL.
'-j
ji.
2
T1
^'.'
1
1
1
1
1
1
1
1
1
ji.
j^!
o
2
.9
. 9
. 9
. 9
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0
0
. 9
. 0
. 0
. 0
. 0
. 9
PREV
. 9
LAST
. 9
. 8
.8
. 8
.8
. 8
.8
. 8
. 9
. 1
. 1
'"T1
. 1
. 0
. 0
. 9
. 9
.8
o
. 8
. 7
.8
.8
.9
. 0
. 0
. 0
. 0
. 0
dryHCl
- ~ —f- :
7;
-r
2
T1
jU.
2
~?_
2
u^.
-T
-T
3
"T
.il
2
-r
2
2
10 US
2
HOUR
"T
^
"T
'~
ii_
2
2
^
..:-
T
"T
"^
"T
"\
"T
3
"T
'-^
"T
"T
'"•i
2
2
2
2
2
2
2
. 9
. 0
. 1
. 7
. 0
. 6
. 4
7
.6
. 7
. 1
. 3
. 2
. 0
. 8
. 8
. 0
. 7
. 9
30 MINUTES
. 7
: 60 MINUTES OF VAI [ D DAT
. 1
. 0
. 0
. 8
. B
. 8
. 4
"^
. 9
. 4
. 6
. 8
. 2
. 5
. 7
. 6
'"TI
. .c.'
. 0
. 0
1
. 9
.8
. 8
.6
. 7
" ^ A-37
. 6
-------
HC1 CHARACTERIZATION TEST
12 12-1987
PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
13s 44
13:45
AVERAGE
13s 45
13s 46
13; 47
13: 48
13; 49
13: 50
1 3 s 5 1
13:52
13s 53
13» 54
13s 55
13: 56
13: 57
13s 50
13:59
14: 00
1 4 s 0 1
14:02
14; 03
14ii 04
14s 05
14s 06
14s 07
14s 08
14s 09
14:1 0
1 4 s 1 1
14:12
14: 13
14:1 4
14s 15
AVERAGE:
1 4 s 1 5
AVERAGE
14:15
1 4 1 1 6
14:17
14: 18
14s 19
14: 20
14:21
14s 22
14:23
14:24
14:25
14: 26
CHAN 1 C
INLET \v
wotHCl is
537 . 1
541.7
VALUES FOR
457. 4
520. B
509. 1
484. 7
482. :i
4 5 S . 6
448. 6
454 . 7
464 . 3
463. B
493.3
495. 1
5 1 2 . S
rr ~y ^-i I
uJ •_' ji. . O
5 2 4 n 2
512. 1
488.. 3
448. 4
439. 5
455. B
476. 0
4 1 0 . 0
426. 9
442. 4
51 B. 4
566. 3
550. 1
503. 1
45B. 6
464, 4
47B. 6
VALUES FOR
4B2. B
VALUES FOR
470. 1
510.9
546. 6
569. B
578. 9
593. 8
668. 9
696.7
714.0
729. 1
727.3
658 . B
:HAM 2
1 1 D
letHCII
2 . 0
2 . 0
THE PREV
1 .9
1. 9
1 . 9
1 . B
1 .7
1 . 7
1 „ 6
1 .6
1 . 6
1 . 6
1 „ 7
1 . S
1 . B
1 . 8
1 . B
1 „ 8
1 . 7
1 . 6
1 .5
]. . 4
1 . 4
1 . 4
1 . 4
1.4
1 . 6
1 .9
2. 1
j^. D ji'.'.
•"•;• j~r-
j--' B .ji
/•-, -7-
THE PREV
1 .7
THE LAST
1.8
r— , -7J-
J^. B •»'
T1 O
2. 1
2. 0
1. 9
1 .8
1.7
1 .7
1.7
l.B
1.8
CHAN 3
OUT' LET
dryHCl
2. 4
3 . 0
IOUS 30 MINUTES
3 . 0
3 . 0
2.7
3. 1
3. 1
2. 6
2. 1
2 . 1:
2. 1
2. 6
3. 0
j~;, cr
2. 9
2. 9
2. 9
2 . B
*".•' /.
J^ H LJ
2. 7
2 „ 4
'*."' "^
~ ji.
j;^ B (_"
3. 4
2. B
T1 T
/— , ~^-
2. 6
2. 7
2. 8
,-, -;;•
2. 4
2 . 7
IOUS 30 MINUTES
2. 6
HOUR: 60 MINUTES OF VALID
2. 8
3 . 0
2. 7
2.9
2.8
3 . 0
2.8
1 . 9
2. 0
r-j1, *^r
3. 1 A-38
3.7
DATA
-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
14:27
14:28
14:29
14:30
14:31
14: 32
14: 33
14: 34
14: 35
14:36
14: 37
14: 38
14: 39
14: 40
14:41
14: 42
14: 43
14: 44
14: 45
CHAN 1
INLET
wetHCl
689. 8
714. 9
680.4
606. 3
548.7
523. 3
490. 2
492. 9
471.4
482. 5
495. 9
M S 6 . 3
440. 9
448. 7
479. 8
470. 6
472. 7
433. 2
416. 8
CHAN 2
MID
wetHCl
1 . 8
1 .8
1 . 9
1 . 8
1. 7
1 /
i . LJ
1 . 6
1 . 5
i .5
1 . 6
1 .7
1 . 9
2 . 0
2. 0
2. 1
2 . 2
2 _ 7;
2. 3
2 . 2
CHAN 3
OUTLET
dryHCl
3. 2
3 . 5
-T- cr
_'' . -J
-T -T
3. 0
3. 7
3. 6
3. 7
3 3
3 , 5
3 . 5
3. 2
3. 1
3. 4
3. 9
3. 1
2. 8
2 . 6
AVERAGE
14: 45
14:
14s
14:
14:
14:
14:
14:
.14:
14:
14:
14:
14:
14:
14:
-j tr_- ,
4. v_J a
15s
15:
15:
15:
13:
15:
15:
15:
15:
15:
15:
15:
15:
15:
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
VALUE
416.7
426. 0
440. 2
459. 0
460. 5
455. 2
461 . 5
471 . 9
FOR
15: 15
509.
507.
513.
502.
490.
472.
443.
439.
430.
431 .
444.
481 .
512.
506.
501.
493.
464.
462.
457.
455.
462. 4
THE
1 .
2.
— i
1 .
1 .
1 .
2.
ji. •
"T1
2.
2 .
2.
2 .
2 .
2.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
.
1 a
^i. -
2.
jL. •
2.
1 .
1 .
1 .
PREVIOU
9
o
0
9
9
Cj
o
o
o
1
1
1
1
0
o
9
8
7
6
6
7
7
8
r~i
7
(.)
0
0
o
9
8
8
IS 30
3. 1
'-~, cr
3. 1
3 . 0
2. 8
/i
3. 8
3 . 1
3. 1
3 . 2
3 . 0
2. 9
2 . 9
3 . 2
•_:• . ^
3. 1
2 . 5
T1 "7
3 . 1
2. 9
_T- _,-
o ~^r
2. 1
'— i C"
.J.. • —•
— , IT"
^ . u
2.5
2. 9
2. 4
2. 6
2. 9
3. 1
-I I NUT t
A-39
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12 12-1987
CHAM 1 CHAN 2 CHAN 3
INLET MID OUTLET
TI ME„ wist HC.1 wet H C.1 dr.y HC.1.
AVERAGE
15:15
AVERAGE
15: 15
15:16
15: 1 7
15: 10
15: 19
15: 20
15:2 1
15:22
15: 23
15s 24
15: 25
15: 26
15: 27
1 c; „ r-~, p
.1 -.J H -L <.J
15:29
15:30
15:3 1
15: 32
15s 33
15:3X1
15:35
15s 36
15s 37
15s 38
15: 39
15: 40
1 5 : 4 1
15; 42
15: 43
15: 44
15: 45
AVERAGE
15 45
15 46
15 47
15 48
15 49
15 50
15 51
15 52
15 53
15 54
15:55
15:56
15:57
15s 58
VALUES FOR
469. 3
VALUES FOR
515, 3
453. 7
453. 3
452. 2
M' / jl. e O A, I /
M
466. 7^
490. 5
497. 9
476. 7
460, 6
313.5
17B. 5
117. 0
96. 3
69. 5
' O c:;
O w . vJ
60. 2
50. E
46. 6
42.4
5 0 . 0
47. 2
44. B
36. 0
37 . B
34. 6
38. 0
31.4
36.7
33 . 5
27.7
VALUES FOR
189. 5
32. 3
21.7
29.7
17.0
24. 5
23.3
26.8
21.7
22.7
28. 9
2 1 . 0
23. 0
23.1
THE PREV
1 . 9
THE LAST
1 .9
1 . 7
1 .6
1. 6
1.6 „
1.6 >
1 . 7
1. B
1 . 9
1 .9
1 . B
1 . 6
1 . 5
1.5
1.4
1. 4-
1 .3
1 . 3
1 . 3
1 . 2
1.2
1 . 2
1 . 2
1. 1
1 . 1
1. 1
1 . 1
1 . 1
1 . 1
1 . 1
1 . 1
THE PREV
1. 4
1. 1
1 . 2
1 .2
1 . 2
1.2
1.2
1.2
1 . 2
1 .2
1 .2
1 .2
1.2
1.2
1C) US 30 MINUTES
2 . 9
HOUR: 60 MINUTES OF VALID DATA
3; . o
2 . 7
2. 2
1 . 9
2 . T;
T1 /- '
2. 6
2. 2
2. 7
2. 4
3. 2
3 „ 7
1.5 /
rv
- o . o /\
-0.5 ^
0 . 4 [pr
1 . 0 v
0 . B AT
1 ^ oft
0 . 3 \
1.2
1 . 5
1 . 3
0 . 6
1. 1
0. 4
0 . 2
0 . 3
0 . B
0. 1
-0. 0
IOUS 30 MINUTES
1. 4
0. 5
0. 1
0 . 4
0.7
0. 4
1 . 3
l.B
1. 5
1.6
0 . 5
-40. 6
-1.1
0. 6
-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
:
:
:
H
H
:
"
a
:
:
;
:
s
S
:
;
:
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
AVERAGE
16
«
1 5
AVERAGE
16: 15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
.16
16
16
.1.6
16
16
16
16
16
16
16
16
16
;
tt
*
;
5
^
jj
;
J
2
jj
;
2
5
H
2
3
*
3
•
5
3
«
a
jj
;
2
:
;
H
;
16
17
18
19
20
21
22
23
24
25
26
27
28
2 9
30
31
32
T T
34
35
36
37
38
39
40
41
42
43
44
45
CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl
22.
29.
21 .
28.
18.
30 .
18.
28.
26.
24 .
26.
17.
T1 "^
14.
"T O
24.
28.
1
1
5
4
4
0
9
1
0
8
0
1
~T
7
2
0
4
VALUES FOR
24.
VALUE
106.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
29-
21 .
.J-! ~7 -
j; |i „
29.
_,._,.
58.
66.
93.
89.
09.
24.
1 2.
17.
13.
17.
19.
18.
34.
jJ- '—' »
21 .
13.
20,
03.
02.
90.
68.
53.
cr -7
J / .
63.
4
S FOR
9
2
6
7
"T
8
5
Q
4
5
8
~T
9
7
j^.
9
3
T
6
6
7
~T
9
7
9
9
7
1
T(
5
2
1.
1 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
-L a
1 .
1 .
THE
1 .
THE
1 „
1 .
1 .
1 .
1 .
1 .
1 .
jl. n
^ a
..-,.
T
~T
~"r
-Jj »
~^
O' n
~\
~\
6.
12.
19.
25.
3 1 .
"^ "^
29.
/•-, f~,
16.
1 1 .
8.
7.
6.
3
T;
j^.
-T
'T,
-T
'T
T;
-T
"\
-T
T|
-T
-T
-T
-T
~T
PREV
•-'
LAST
7;
"T
-1
5
7
9
^
7
.ii-
jL.
r-,
o
1
~T
2
^
8
jil
0
5
9
8
2
1
6
2
5
4
0
"T
CHAN 3
OUTLET
dryHCl
IOUS
'
0
0
o
0
0
o
o
0
1
1
0
o
0
1
1
1
1
o
HOUR
0
1
1
1
1
1
1
1
1
1
0
o
0
0
o
0
1
1
1
1
1
ji.
"T
6
8
9
9
9
0
2
r.r
— 7
D
8
inr
4
0
5
6
7
. 3
. 0
. 1
. 4
. 4
.7
. 5
. 7
. 0
. 4
. 6
. 8
. 9
. 1
. 5
. 0
. 1
30 MINUTES
. 7
; 6O MTNUTFB <">lr VAI, ID DATA
. 4
o
. 6
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12 12--1987
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
AVERAGE
16:45
.1.6: 46
16:47
16: 48
16: 49
.1.6: 50
16:5 1
1 6 ! 5 2
16: 53
16s 5 4
16:55
1.6s 56
16:57
16: 58
16: 59
17: 00
1 7 : 0 1
17s 02
17:03
17s 04
17:05
17:06
17:07
17: 08
17:09
17: 10
1 7 : 1 1
17:12
1 7 s 1 3
1 7 ; 1 4
17: 15
AVERAGE
1 7:15
AVERAGE
1 7:15
17:16
17 s 1 7
17:18
17: 19
17:20
17:21
17:22
17:23
17s 24
17:25
17:26
17:27
17: 28
VALUES FOR
85. 4
67.8
104.7
109, 4
120. 1
135. 1
146.3
150.3
155. 9
190. 0
j''' i1 ' • ''' o /
3 1 0 . 6
320. 4
309. 2
3 3 1 - 0
365. 4
382. 7
394. 6
335.3
369. 3
369.2
352. 0
339 . 0
335. 9
341 . 2
348. 0
37 1 „ 3
423;- 0
449. 8
492. 4
499. 6
VALUES F'OR
296. 4
VALUES FOR
190. 9
532 . 2
536. 3
490. 7
460. 2
420. 4
411.9
4 1 0 . 8
419.5
398. B
392.7
379.5
365. 4
398.4
THE PREV
9. 1
6.5
11.9
26. 1
4 0 . 9
5 1 . 0
32 . 3
1 6 . 8
12.5
11.3
1 0 , 9
9. 4
7.9
6 . 9
6. 2
5 . 5
£L" '~'i
vJ o jl..
4 . 6
4. 1
3. 6
~T T"
3. 1
3. „ 0
3 . 0
3 . 0
3^ . 1
"•^ '"?
3; „ 4
3 . 7
3. 9
3. 7
THE PREV
1 0 . 3
THE LAST
9. 7
3. 4
3 . 0
3.4
3. 7
2.8
_,.•' . '•,
2. 1
2. 1
2, 0
2. 1
'"•' T1
o o
2.3
1C) US 30 MINUTES
7. 1
11.7
20. 8
22. 7
22 . 2
26. 5
20. 0
16. 6
1 7 . 0
13., 1
8. 4
5. 8
4 . 8
G°2 1^
5.4 frr
5.6 jf.
5.2 y^
f
4.6 I
6. 8
6.7
5 . 6
4 . 9
4 . 2
4. 7
4. 8
4. 1
4. 1
4. 4
8. 9
8.8
1C) US 30 MINUTES
9. 6
HOUR: 60 MINUTES OF VALID DATA
8. 3
7. 8
6. 9
6. 2
6. 1
5. 8
5. 4
5. 2
6.8
7.5
6. 1
5.4
4.4
a. <=• A~42
4 . j
-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
TIME
17:29
17:30
17:31
17:32
17:33
17:34
17: 35
17: 36
17:37
17:38
17: 39
17: 40
17: 41
17: 42
17: 43
17: 44
17: 45
AVERAGE
17: 45
17: 46
17: 47
17; 48
17: 49
17: 50
17:51
17:52
17:53
17: 54
17:55
17: 56
17: 57
17:58
17:59
18: 00
1 8 : 0 1
18:02
18:03
18:04
18:05
1 3 : 06
18:07
18:08
18:09
18: 10
13:11
13: 12
18: 13
13: 14
13: 15
AVERAGE
19s 15
CHAN 1 CHAN 2
INLET MID
wetHCl wetHCl
424.9
452. 7
434. 7
444. 0
443. 8
436.9
424. 6
398.7
407. 8
391 . 9
436.5
473. 4
482. 5
492. 6
492. 0
486. 7
451 . 0
VALUES FOR
439. 7
434. 3
394. 8
376. 6
343. 9
328. 1
325. 7
329. 0
334. 0
373. 0
399. 9
364.8
337. 7
309- 0
295.7
234. 8
267. 9
388.8
403. 2
398. 8
396. 9
390. 7
404. 2
395. 6
378. 0
370. 4
388. 7
384.7
438. 5
456. 5
464.0
VALUES FOR
370. 3
2. 3
2. 4
2.5
2.5
2 . 4
2. 2
r— , i— ,
2. 2
2. 1
2 . 0
ji. • jL,
2. 6
2. B
2 . 9
2. 8
2. 7
2.5
THE PREV
2.5
2. '"
2 . 4
2 . 3
2 . 2
2.2
2. 1
2 . 0
2. 0
2 . 1
^L . j^.
si . 2
2 . 2
2. 1
2. 0
1 .8
1 . 9
2 . 1
2. 4
2 . 9
3. 5
3. 6
3. 2
3 . 0
2.8
2.8
2. 6
2.5
2.6
2. 6
2. 5
THE PREV
2. 4
CHAN 3
OUTLET
dryHCl
: £.„;_.. :__.i^..T-.
4. 0
4 . 0
4. 6
4. 1
4 . 2
4. 7
4 . 0
4.2
4. 1
3. 7
. '•, B ^
3. 5
3. 7
3. 6
3. 8
3. 5
3. 6
IQUS 30 MINUTES
4 . 8
2. 9
1 . 1
T ~T
3 . 1
2 . 9
2. 7
3 . 0
^r '71
3 . 2
2. B
3. 5
3 . 6
3 . 0
3 . 3
2 . 9
2. 1
1 . 9
3. 1
3 . 4
3 . 5
3 . 6
3. 4
3. 1
3. 1
3. 3
2. 6
3 . 0
2. 9
3. 0
2. 7
IOUS 30 MINUTES
T (")
A-43
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12 12- "19 87
TI
IE
AVERAGE
18
IB
18
18
18
1 8
18
1 8
18
1 8
18
18
18
18
18
1 8
18
18
18
18
18
1 8
18
18
18
18
18
18
18
18
18
•
ii
X
;
;
j
1;
;
£
u
5
^
U
{}
U
u
n
-
s
1!
H
s
JJ
1!
r,
J
;
5
;
;
:
AVE
1 8
18
18
18
18
18
18
18
18
18
18
18
18
18
18
19
19
19
•
•
:
:
:
:
s
•
:
5
:
;
:
:
:
a
:
•
15
16
17
18
19
20
2 1
'? ''"•
,.j ...,,
24
25
26
27
28
2 '9
30
3 .1.
..... ,.?
33
34
35
3' 6
37
38
39
40
41
42
43
44
45
RAGE
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
CHAN
INLET
wetHC
VALUE
405.
455.
456.
457.
452.
428.
406.
~*i u: i '-,
379.
434.
472.
488.
46B.
460.
455.
398.
4 1 4 .
4 4 6 .
453.
439.
381 .
-^ /--, ,-.
*~ J'-. J^! B
175.
175.
199.
202.
195.
1 60.
126.
117.
VALUE
353.
1 0 1 .
96.
81.
79.
72.
63.
69.
59.
68.
52.
58.
49.
45.
49.
43.
43.
37.
1
1
8
0
1
5
4
6
9
7
6
T
0
9
6
B
4
^
(TI
/
C;
D
6
1
-T
'•TI
5
j^.
8
B
0
5
B
7
S
5
9
d-
^J
9
j^.
5
1
f—,
7
0
"T
4
tr
wJ
"T
B
T
7
7
CHAN
M 1 D
FOR THE
2.
2.
2 .
2 .
*L n
J^-' U
u^! B
1 .
1 .
/ 2 „
« if? 2 .
nf' 2.
j-'l! n
Jl! B
J± a
j^! n
j;:! B
a^'! B
-..'i' B
2! B
1.
1 .
_^ B
2.
T;
-T
-?;
2 .
ji' D
jl' D
2.
FOR THE
2.
2.
J^' D
o
T;
T,
-T
-T
-T
4.
4.
5.
cr
4.
4.
Tt
3.
2.
'•"i
1
LAST
5
5
77
7
5
._,.
1
8
9
1
j:.'.'
4
4 ^
5
-~f
4
-T
-T
4
•"71
B
8
5
~7
•7
J.'-
.tw
9
B
— 7
7
PREV
(nT
7
8
9
1
4
6
6
7
T;
9
-?;
2
5
0
5
1
B
CHAN
OLJTLE
dryHC
HOUR
3
7.
""•!'
6
7
7
5
5
4
4
4
O
4
4
4
4.
...,.
"^
"T
4
3
_.,
~T
-r
/™,
.ii!
j/
4^!
x'
/—,
,..,.
IOLJS
4
4
5
4
4
-T
-T
4
4
6
5
•?
T1
1
1
1
1
1
i;
-
„
.
»
c
-
B
„
„
n
„
H
„
n
„
u
B
B
„
B
B
0
„
.
„
B
m
n
.
.
•
'."'•
•
.
.
.
.
.
.
„,,,
T
],.
60 MINUTES OF VALID DATA
9
'-.i
2
8
.c.
0
7
cr
•-J
8
9
0 b
9
C'-
C;
5
.-,.
B
4
7
1
9
8
7 i ftff^
4 fy (^
8s I ft
(Nr
5 1 (?0\
3 ^
5
5
ID
0 MINUTES
1
7
0
9
7
8
8
4
9
pr
7
8
7
8
7
6
3 A-44
/*-,
-------
HC1 CHARACTERIZATION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
CHAN 1 CHAN 2
INLET MID
TIME wetHCl wetHCl
19:03
19: 04
19:05
19:06
19; 07
19:08
19: 09
19: 10
19: 1 1
19: 12
19: 13
19: 14
19:15
AVERAGE
19: 15
AVERAGE
19: 15
19: 16
19: 17
19: IS
19: 19
19: 20
19: 21
19:22
19:23
19:24
19:25
19:26
19:27
19:28
19:29
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19s 37
19:38
19:39
.19: 40
19:41
19:42
19:43
19: 44
.19:45
AVERAGE
1 O » /I R
41.8
33 . 9
37.7
37. 9
31. 9
34. 8
34. 5
38. 3
28. 0
39. 3
37. 4
32. 0
31.5
VALUES FOR
51.0
VALUES FOR
202. 3
38. 0
44. 1
36. 6
4 1 . 0
36. 5
34.3
34. 2
36 . 3
43. 6
32. 5
3 5 . 3
27. 9
36.7
30. 3
37. 1
30. 4
30. 9
34. 0
31.0
25. 3
'-j nr i-j
32. 4
23. 1
30 . 7
28. 9
30 . 0
26. 9
15.8
23. 2
22.5
VALUES FOR
r^1 _ R
2 . 7
2. 6
2.5
2. 4
2. 4
2.5
2.6
2. 7
2.7
2 . 7
2. 7
2. 6
2. 5
THE PREV
•-'• • 2
THE LAST
2. S
2. 4
2. 4
2. 6
O -T
j;- . ji.
2. 1
2 . 1
2. 1
2 . 1
2 . 2
2. 3
T-"1 9
2.2
2 . 2
/— i -71*
2. i
2 . 0
2. 0
2. 0
2. 0
2. 0
2. 1
2. 0
2.0
2. 0
2.0
1 .9
1.9
1.9
1.8
THE PREV
.•• _ 1
CHAN 3
OUTLET
rlryHCl
1
0
... (j
... Q
0
0
1
o
o
o
1
1
1
IOUS
o
HOUR
1
1
0
o
0
o
o
o
0
1
1
^^^^^
C_rf
o
0
0
o
0
o
-0
••- o
-0
o
_.(-)
0
o
o
0
o
IOUS
•1
. 0
. 8
. 0
. 0
. 4
. 6
. 0
. 8
. 8
. 8
O
. 0
. 4
30 MINUTES
. 4
s 60 MINUTES OF VALID DATA
. 0
. 0
. 8
B O
1-1
T
. 4
. 9
. 9
•4 AC*
• -• . . *//i*^*
j_3 JL&J& ' \
7_7XP •
. 1
. 6
. 9
. 7
i —
n wJ
. 6
. 6
. 0
. 1
. 1
. 1
. ('.')
. 4
. 4
. 4
T
.5
30 MINUTES
,.«, A 4 b
-------
HC1 CHARACTERIZATION TEST PROGRAM
12 12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME _
,19s 46
19:47
19s48
19s 49
19:50
1 9 s 5 .1
19552
19: 33
19s 54
19:55
19:56
19s 57
19:58
19: 59
20; 00
20 s 0 1
20 1 02
20: 03
20: 04
20s 05
20: 06
20s 07
20 s 08
20 r 09
"2.0: 10
20: 1 1
20: 12
20: 13
20: 14
20: 15
AVERAGE
20s 15
AVERAGE
^i") •! P-I1
.k,.U 1 wJ
20 16
20 17
20 IB
20 1 9
20 20
20 21
20 22
20 23
20 24
20 25
20 26
20 27
20 28
20 29
20 30
20 31
20 32
CHAN 1
INLET
wratHC.!..
"" 25. 6
18.9
22. 3
29.7
19.3
24.9
18. 6
22.'. 5
*".> P c~,
-1^.0 B ^-J
3 2 . 0
21.1
jl'' • .'' n • — '
22. 6
21 .5
28. 4
24.1
24. 3
20. 2
21.6
19. 1
2 1 . 0
24. 6
20. 0
1 9 , 7
1 B . 7
20. 1
12.2
19.7
11.5
12.4
VALUES
21 . 6
VALUES
26.7
14.8
8.7
6. 7
14. B
5.3
11.7
6. 7
11.9
7.9
12.9
12.5
17. 9
13.7
3. 5
B.5
8.6
13.8
CHAN 2
M I D
wstHCL
1.7
1 .7
1 . 7
1.7
1 .7
1. 7
1. 6
1.7
1.7
1 . 7
1.7
1 . 7
1 . 7
1 . 7
1.7
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 6
1 . 7
1 . 6
.1 . 7
HfcV* 1 . 7
* . / 1.8
. ^ 1.9
1.9
( 1.9
FDR THE P
1 .7
CHAN 3
OUTLET
clryHCl
0 . 8
1
0 . 4
--0. 2
-0. 1
•-0. 0
— U . 2
0 , 2
0. 2
0. 5
C) . 3
0 . 7
0 . 7
0. B
-0. 3
- f"l '"?
\_J B jl..
0 . 2
1 . 0
0 . 6
0 . 8
0 . 9
0 . 8
0 . 5
C' „ 7 — — ! "*
On J^!
i£/ft 0. 3 Jf,f*
;/ 07 ^v
|<^ (X4 I**
1 S:St
RE VI 01.13 30 MINUTES
0 . 4
FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
1.9
1 .9
j i O
1.9
^1. B
~ z^r^^f
B. 0
5.6
5.7
22. B
43.4
57. B
72. 3
98. 4
105.0
108. 9
110.8
110.8
0 . 8
0 . 9
-0.7
-2 . 0
--1 .4
•••^ ,-, p
-1.4
-1.7
fi^ - 1 1
V(\\ -2>>
i i\a -1.8
4 -1.4
-0 . B
-0. 4
-0 . 5
_ H *""*
1 • j^.
--2. 0 A-46
-2. 0
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
12.2
20:49
20: 50
2o:51
20:52
?(!• L~,~
21:04
21:05
21:03
21:09
21: 10
21:11
21:12
21:13
2lil5
CHAN 1
INLET
TIME
20
20
20
20
20
20
20
20
20
20
20
20
20
:
•
•
•
•
»
•
•
a
M
•
•
A
•
33
34
35
36
37
38
39
40
41
42
43
44
45
wetHCl
8.
8.
9.
14.
T|
9.
5.
7.
9.
12.
14.
10.
5.
0
0
9
8
1
7
0
7
1
6
4
4
O
CHAN
MID
2 CHAN 3
OUTLET
wetHCl drvHCl
110.
105.
104.
99.
-TT;
7.
4.
-T
'•n
r~)
O
f— i cr
,•• . i ^
233.
-^
6
0
6
8
1
7;
~T
9
7
4
5
/
-2.
-2.
-1.
-j
-0.
-0.
_^i^
'3
24.
38.
43.
46.
47.
0
1
4
-T,
5
4
*.
2
2
2
4
7;
1
I
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
20s45 9.9 49.9 5.8
20: 46
20s 47
8. 5
5. 4
— -j
j._ i
447.2 0.2 -2.3
444 . 1 0 , 2 -0. i
451 . 6 r), 2 c'.O. Q
450. O 0. 2 1.37. :1
445.7 0.2 c.3
459.9 0.2 :>.::;
VALUES FOR THE PREV10UG 30 MINUTE
21:15
VALUES
126.0
FOR
HE LAST
HOUR;
12,
MINU
A-47
-------
4*}
A-48
-------
APPENDIX B.
Sample Calculations
B-l
-------
B-2
-------
SAMPLE CALCULATIONS
I. Calibration Corrections
From EPA Method 6C:
C
C - (C - C ) —
where:
gas - C - C
m o
C Effluent gas concentration (corrected)
gas
C - Average gas concentration indicated by gas analyzer
C - Average of initial and final calibration resonses for zero gas
C = Average of initial and final calibration responses for upscale
calibration gas
C = Actual concentration of upscale calibration gas
ma
For Run 1 (Inlet Location) from 15:30 to 16:30:
C = (501 - 29)(428)/(473 - 29)
= 455 ppm HC1 (wet basis)
II. Moisture Corrections
For Run 1 (Inlet Location) from 15:30-16:30:
moisture content = Ik.7% HO
HC1 concentration = 501 ppm (wet basis)
Proportion of water vapor, by volume (B ):
ws
B = % H-0/100
ws 2
Dry basis HC1 concentration (C ) from wet basis concentration (C )
C = C /(1-B )
o w ws
From Test Condition 1 (Inlet) from 15:30-16:30:
B = 14.7/100
WS = 0.147
C = 501/U - 0.147)
° = 533 Ppm HC1 (dry basis)
B-3
-------
III. Percent Reduction
p V
PR- 1 - °UT °UT x 100
CIN VIN
where:
PR = percent reduction of HC1
C = concentration of HC1 at the inlet (dry basis)
V = volumetric flow rate at the inlet (DSCFM)
C = concentration of HC1 at the outlet (dry basis)
V = volumetric flow rate at the outlet (DSCFM)
For Test Condition 1 from 15:30 to 16:30
PR = 1 - 66(39.700) x 100
533(39,900)
= 87.72 (see Table 2.4)
B-4
-------
APPENDIX C.
Daily Calibration Sheets
C-l
-------
C-2
-------
SOURCE AND LOCATION Mdl*Jl £
DATE
Ay 7/37
**M
TIME
HCL CALIBRATION DRIFT
DAILY WORKSHEET
Cf>**paiKu -
* I Pre-
^ItAX P>\
PERSON CONDUCTING TEST
OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
d-2$£>f>f>*+
Of?*/
rr /47^
*"*/&
/ fr&ppv*
*ff*/
'4pf>»*
0% / l.fo
/9*1*
GAS CELL VALUE
( 41 PP^'
WfJ*-
£&*&*£& 4 &****
•fa dyt*an*if f*4
f
COMPUR
O~2Jp1S f>0*>\
Ofr*/*t
">4/>p^
Iff*/
/ VI ft*
IFF*/
'-6 H**
^A% / „
/i.i7-
LIQUID STANDARD
(Values in mV)
mnpp = "&.9*M
110= -4(e.1 *\i
in. l&.t»*I
119- (fO. $ *«/
/
^-fen^Me^^ p**e*
i , •' i
T* dtfHltHuf t*\
NA
TECO
0- ?0&pf>**
t>pf^/
r ^MPP*
ff
4fT^/
/4d?Pp^
if
4-rr*/
/ /^p^.
0.4% /
/i. i 7.
NA
LC^L^Cf^Apm*
IfP^^L^A^
41I2DR15
Pre and Post Test Calibration Check Worksheet
-------
SOURCE AND LOCATION
DATF
TIMF
HCL CALIBRATION DRIFT
DAILY WORKSHEET
PERSON CONDUCTING TEST.
BOOENSEEWERK
COMPUR
TECO
OPERATING
RANGE
0-2&O PP*\
- ^>
CALIBRATION
GAS VALUE
**/
'
o
I
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
'
//,
0.7
&
/.f
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
( 47 ppm)
LIQUID STANDARD
(Values In mV)
NA
NA
uo- -4£4
Ul - .
U2- -
**
COMMENTS
.
12DR15
Pre and Post Test Calibration Check Worksheet
-------
SOURCE AND LOCATION
DATF
TIME
HCL CALIBRATION DRIFT
DAILY WORKSHEET
A
PERSON CONDUCTING TEST.
BODENSEEWERK
COMPUR
TECO
OPERATING
RANGE
0
CALIBRATION
GAS VALUE
O POr
MONITOR
RESPONSE
TO CAL GAS
O
Pvr
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
4 ?p>
/3 PP
PERCENT SPAN
(PASS/FAIL)
0.7
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
LIQUID STANDARD
(Values In mV)
NA
NA
DO1
Ul
U2>
/. 7
COMMENTS
4112DR15
Pre and Post Test Calibration Check Worksheet
-------
HCL CALIBRATION DRIFT
DAILY WORKSHEET
SOURCE AND LOCATION
DATE /^/ ^
& ppm /
/4-7pf>ry\
1 /
-£>•*? ffr* /
' $& PPn^
/} n^^tfm
— is • ^
O ffm /
'?4ffrr\
i ppm /
/ 76 Wr^
I f>p>r\ /
'-tfff*
D 47, /
/-7/%
LIQUID STANDARD
(Values In mV)
SLOPE • -££•?
no- -4tt>.l>
in. /^.f
119 » ^.6
LEAB£ffi8ttR
NA
TECO
&' ^Z> /^^|
& Pi?m /
'4-2% pf»r\
f '
10 Ppm /
'447ff^
Ib Vf>>^ /
^ /Jpsn-^
/•/ft/
/J.i 7,
NA
^(ojyfGf^
o
I
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
HCL CALIBRATION DRIFT
DAILY WORKSHEET ~~
SOURCF AND LOCATION M&^ £ntvau /&t'£\/€w fafrtunu - £>/'M?-/m:-J , M&'m Side A
HATF /P//J/87
TIMF ^87^7 - 0^^
/ ' '
OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
D" z&o PP^\
Ofr/A1
7 f / ppm
1 1
D ppw /
i f
& Dpm /
"%/OA%
GAS CELL VALUE
( 41 ppm)
x / /
'*"
COMPUR
/"> — 9/ y
L/ e^-fco ppr*\
II
& PL>**\ /
tf-4- pfr>\
OO pptv\
1 pp^\ /
0.4% /
LIQUID STANDARD
(Values In mV)
110= -fy-}
in. l$2. S
i|?. £7 f
/
twT^'c ^
PERSON CONDUCTING 1
J.&AJ^lSGtffr'
NA
fFST ^>ls\Gr*U.lj(^
TECO
^- <7fl> pp^
(/) ppm /
4f^-o ppr*\
i/
3/^ /
/ X^-^ ^
* •
/A4 7,
NA
j-ggsK
4112DR15
Pre and Post Test Calibration Check Worksheet
-------
SOURCE AND LOCATION
A2//-2
DATE
TIME
HCL CALIBRATION DRIFT
DAILY WORKSHEET
A
PERSON CONDUCTING TEST
BODENSEEWERK
COMPUR
TECO
OPERATING
RANGE
0
0 -
CALIBRATION
GAS VALUE
D PP^
0 Pe
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
17
1 1
7
PP
tIL
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
( 4-7 ppm)
LIQUID STANDARD
(Values In mV)
NA
NA
uo
Ul
U2
COMMENTS
v
Pre and Post Test Calibration Check Worksheet
12DR15
-------
APPENDIX D.
Daily System Checklists
D-l
-------
D-2
-------
HC1 GEMS DAILY INSPECTION CHECK LIST
Characterization Test - Marion County Facility
Date /2/f/g?
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure _ £>£> _ psi
Orifice Vacuum _ " ZC' /*#? J**»
Zero Air Flow Rate «f
-------
HC1 CEMS DAILY INSPECTION CHECK LIST
Characterization Test - Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure %?£> psi
Orifice Vacuum
Zero Air Flow Rate ^ Q scfh
Calibration Gas Flow Rate A scfh
TECO 15
Sample Flow Rate /, & ipm
Zero Pot Setting
Span Pot Setting
jnrp-uLzr 4150 ZGSM/4330 Dilution System
4330 Dilution Control Unit
Aspirator Air Delivery Pressure fo£) psi ("4-. / ha r}
Orifice Vacuum — %. I
Probe Temperature
4150 ZGSM
Analyzer Sample Flow Rate -44£> ^^ Iph
Analyzer Inlet Pressure 4-7 psj_
System Vacuum , /4^ ^^
Printer Paper Supply Adequate Yes i/- No
Absorbing Solution Tank Level
(Capacity, 20 1) / ±
Waste Tank Level (Capacity, 20 1) jfei 1
Calibration Solution Tank Level
(Capacity. 21) A /_ -,
Sampling System Flow Rate t?£T& JUvk
System Blow Back Air Pressure ~2~,
Strip Chart Recorder Paper Supply OK Yes]/ No
Strip Chart Recorder Pens Inking Yes \/, No"
No"
Heater Temperatures Within Limits Yes
Compressor Delivery Air Pressure /^i^
Compressor Air Line Leaks Detected Yes N^ . / ' PS1
Electrical Power Supply Adequate
n-4
-------
HC1 CEMS DAILY INSPECTION CHECK LIST
Characterization Test - Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure £>Q psi
Orifice Vacuum - /^- *y /^"//j, Rg^
Zero Air Flow Rate 4 (/scfh
Calibration Gas Flow Rate 4 scfh
TECO 15
Sample Flow Rate /,£> 1pm
Zero Pot Setting _
Span Pot Setting
4150 ZGSM/4330 Dilution System
4330 Dilution Control Unit
Aspirator Air Delivery Pressure f?5 psi (3-8
Orifice Vacuum - 7, £ psi
Probe Temperature / ^ C
4150 ZGSM
Analyzer Sample Flow Rate 45& ^Pn
Analyzer Inlet Pressure 4.1^ psi
System Vacuum
Printer Paper Supply Adequate Yes y/ No
Absorbing Solution Tank Level
(Capacity, 20 1) ^ 1
Waste Tank Level (Capacity, 20 1) /(^ 1
Calibration Solution Tank Level
(Capacity. 2 1) 0>
-------
APPENDIX E.
Quality Assurance Data
E-l
-------
E-2
-------
EPA REFERENCE METHOD 6 CSO
SAMPLING DATA
PL ANT/LOCATION /I j"? A
JOB*
SAMPLING LOCATION.
RUN » /
STACK TEMPERATURE
/t,
-7
AMBIENT TEMPERATURE
. °F METER
. °F METER BOX
?. *
BAROMETRIC PRESSURE, P
.2
in. Ha
CLOCK TIME
/^ /O
/^ '^
/ 6 .?0
/o 3 ^
/6 ^(0
FOTAL VOLUME =
vm
DRY GAS MF.JER
READING ^1
yV
J/5^7. X-?J
2/ // -s'TrO
j"/^ 1"" ^uX^
g/^^. ^T^J
^/7V ^V
\
/^ VZ5^ ^
ROTAMETER
SETTING (cfh)
/ ^^
AVG.TEMP =
*nn Cavn)
DRY GAS METER
TEMPERATURE (°F)
^
^
5^>
~D
r^
5t? C°F)
AVERAGE METER TEMP., T = (460 + tm(avq) ) =
m
STD GAS METER VOLUME, V ,,..
' mCrtdJ
(17.64 °R/in. Hg)
.dscf
COMMENTS:
E-3
ENTROPY
-------
EPA REFERENCE METHOD 6 C90
SAMPLING DATA
PL ANT/LOCATION /^ ' 1 ^~ *—
,-? , /
SAMPLING LOG
RUN
ANALYST
TFMPFPATIIPr
B AROMETR 1C PRESSURE, P
Jn. Hq
JOB*
AVERAGE METER TEMP., T^ = (460 f tm(avg) ) =
£TD GAS MTTER VOLUME, V
V,
(17.64 "R/in. Hg)
DATF
CLOCK TIME
/O ^
1 7 ^^
/ 7 (^ ^ "
/ 7 ' / ^
/7 A-
rOTAl VOLUME =
vm
DRY DAS METER
READING (ft3 )
J/7V- ^^7
]>nf.
-------
EPA REFERENCE METHOD 6 (SO
SAMPLING DATA
PL ANT/LOCATION /"? /
JOB*
SAMPLING LOCATION _
RUN * i2 ANALYST
DATE
/2/7/T7
STACK TEMPERATURE
AMBIENT TEMPERATURE
METER BOX FACTOR,
7 6XJ
BAROMETRIC PRESSURE, P
.in. Hq
CLOCK TIME
J7- ib"
JT*±
// /j-
//' v^
/7 V^
FOTAL VOLUME =
vm
DRY GAS METER
READING (-ftfT
^'
^/?0.5^^
jylv.^^
Ji^r^o
/2^^ ad2^'
jz^sr/^
|(/^^1 (ft3)
ROTAMETER
SETTING J^rffij
/ ^/C
/ /—
AVG.TEMP =
m =
STD GAS METER VOLUME, V f ... :
nustdj
dscf
Vm(std) =? (Vm) (¥) (17.64 °R/in. Hg) (Pbar/T )
m
COMMENTS:
E-5
ENTROPY
-------
O;
CC
E-6
-------
CUSTODY SHEET FOR REAGENT BOX #
Date of Makeup
Individual Tare of Reagent:
Individual Tare of Reagent:
Initials
Locked?
mis. of
mis. of
PLANT NAME
SAMPLING LOCATION
7
Run
Number
Date
Used
Initials
Locked?
Date
Cleanup
Initials
Locked?
A
Date Initials Locked?
Received in Lab
Sampling Method: jpy\
Remarks :
F-7
-------
APPENDIX F.
HC1 Calibration Cylinder Gases
F-l
-------
F-2
-------
The following calibration gases were used during this test program.
HC1 Calibration Gas Cylinders
Cylinder No.
K-9933
K-9308
K-9841
K-9983
K-9860
Tag Value
47 ppm
94 ppm
221 ppm
428 ppm
881 ppm
Balance Gas
Nitrogen
Nitrogen
Nitrogen
Nitrogen
Nitrogen
CO Calibration Gas Cylinders
Cylinder No.
Tag Value
(EPA Protocol 1)
Balance Gas
AAL-151?
AAL-5330
50.8 ppm
^38.8 ppm
Nitrogen
Nitrogen
F-3
-------
APPENDIX G.
Bodenseewerk Operation Procedures
G-l
-------
G-2
-------
BODENSEEWERK OPERATIONAL PROCEDURES
The entire Bodenseewerk sampling and analytical system is heated to
maintain a sample gas temperature of 180 C (356 F). When the analyzer is
turned on, a warm-up period of 1 hour is necessary for all the temperatures
(probe, sample transport line, pump, and sample cell) to reach their set points
and stabilize. A microprocessor monitors the system's parameters; at the
conclusion of the warm-up period, the system is ready for calibration.
The Model 677 employs zero air and an internal sealed gas cell for zero and
upscale calibration checks. The monitoring system is also capable of accepting
calibration gas; the gas injection point is located at the probe.
The probe also is backflushed with compressed air during the calibration
sequence.
The operator can program the time intervals desired for the automatic
calibrations performed using zero air and the internal calibration cell. The
duration of the calibration cycle is also selected by the operator. First, the
entire sampling system is flushed with zero air to achieve a zero condition.
Any drift that may be detected then is corrected by the zero compensation
circuit. Then, while the zero air is still flowing through the system, a gas
cell filled with a known quantity of HC1 gas is positioned so that the infrared
light passes through the gas cell. After the response to the gas cell is
recorded, the analyzer returns to the flue gas sampling mode.
A dynamic calibration of the system is possible by putting the analyzer in
the "standby" mode and replacing the zero air delivery line connected to the
probe with a calibration gas transport line. A flowmeter within the analyzer
cabinet indicates the rate of sample flow exiting the optical cell. The flow
rate of the calibration gas through the system can be observed using that flow
meter, and should be identical to the flow rate when sampling flue gas. The
cylinder regulator should be adjusted to deliver the proper flow.
G-3
-------
APPENDIX H.
Thermo Electron Operational Procedures
H-l
-------
H-2
-------
THERMO ELECTRON OPERATIONAL PROCEDURES
Prior to calibration of the system, it should be ascertained that the
analyzer is operating properly. A check of the internal diagnostics will
indicate if the condition of any component requires corrective action, i.e., an
element needs to be checked, cleaned, or replaced if found to be defective.
When the power is turned on, the analyzer automatically enters the start-up
mode; the source turns on, all electronics are turned on, the chopper motor and
sample pump turn on, the heater in the pressure transducer turns on, and the
program initializes itself. After the source stabilizes, the instrument
automatically goes into the "Run - Sample" mode. The analyzer should be
allowed to warm-up for one hour, then the instrument service checks should be
performed.
When calibrating the instrument, three thumbwheel switches are used to set
the zero reading of the instrument. There are also three thumbwheel switches
available to set the instrument to the concentration of an upscale calibration
gas. If the instrument is zeroed first, use of the span switches will not
affect the zero setting.
A three-position switch located on the front panel of the M200 probe
control unit is used to manually select flue gas sample, zero air, or
calibration gas flow through the sampling system. The two flow meters visible
through the front panel indicate zero air or span gas flow when in the
calibration mode. A vacuum gauge indicates the vacuum at the probe downstream
of the orifice. The dilution air and zero air gauges and regulators are
located behind the front panel.
The calibration checks can be performed both on the analyzer and the entire
monitoring system. The zero and upscale calibration gases can be injected
directly into the analyzer, and the zero and span controls can be adjusted to
establish the instrument's calibration. Calibration of the total monitoring
system is performed by the injection of zero and calibration gas through a
transport line to a point within the probe, upstream of the critical orifice.
In this way, the calibration gas follows the same path through all the
conditioning steps (i.e., filtering and dilution) taken by the flue gas sample.
H-3
-------
APPENDIX I.
Compur Operation Procedures
1-1
-------
1-2
-------
COMPUR OPERATIONAL PROCEDURES
The instrument requires a short period of time for start-up after the
system is turned on. The warm-up serves to heat the probe and internal lines
through which the gas sample passes. After temperatures reach set points,
time is taken for vacuum to build up in the system, since the 20 liter air
volume of the empty discharge tank must also be evacuated. After
stabilization of the vacuum, the sample flow rate into the analyzer is
adjusted to 400 1/hr by needle valve adjustment.
The flow rate of the absorbing solution should be checked so that the
targeted enrichment can be maintained throughout the operational period.
Accurate adjustment of the absorbing solution feed rate and the gas sample
flow rate is important for the accuracy of the measurement.
The calibration program is then initiated. The transport line for the
gas sample is flushed with compressed air and the electrodes are rinsed with
absorption solution. After the zero value is recorded, the calibration
solution (typically J0% of the measuring range) passes between the two
electrodes and the upper calibration point is determined. If either of the
calibration limits are exceeded, the computer attempts the calibration a
second time. If a desired result is not obtained after a third attempt, the
instrument goes into a "standby" mode and the problem needs to be
investigated. The entire program can be restarted by pressing INIT. After
completing a successful calibration, the analyzer goes into the flue gas
measuring mode, if the dilution system is ready.
The probe may be installed up to a distance of 65 feet from the control
unit. (At distances greater than 65 feet, the dilution ratios provided by
Compur at the various aspirator air pressures measured at the control unit
cannot be used, due to the probable pressure drop through the longer length
of transport tubing. The dilution ratio should be checked using non-reactive
calibration gases and an appropriate, independent analyzer.) Dry controlled
air at a pressure greater than 90 psi is necessary for aspirator air and zero
air. The aspirator air pressure is adjusted between 40 and 80 psi with the
aid of a pressure regulator and gauge located on the front panel of the probe
control unit. The pressure is chosen depending on the desired dilution
ratio. The vacuum gauge must indicate a pressure between -7 and -9-5 psi in
order for the orifice to operate within the critical region.
The entire measurement system, including both the sampling and analytical
equipment, can be calibrated by injecting calibration gas into the chamber
within the dilution probe between the inlet filter and the orifice.
Compressed air injected in the same manner serves not only to produce a zero
condition, but also to back flush the probe tip filter.
A three-way valve serves to select zero gas or calibration gas. The
delivery pressure at the regulator connected to the calibration gas cylinder
should be adjusted to 15 psi in order to provide sufficient flow to the
probe.
Since the dilution probe supplies approximately 33 liters/min diluted
sample and the analyzer uses only 7 liter/min, a "tee" must be mounted on the
sample line to exhaust the excess sample flow.
1-3
-------
APPENDIX J.
Wet Chemical Sampling/Analytical Procedures
J-l
-------
J-2
-------
The wet chemical procedure used for sampling hydrogen chloride (HC1) in
the MWC emissions involved absorbing the HC1 into a 0.1N sodium hydroxide
(NaOH) solution. The stack samples collected at MERC were transported to
Entropy's laboratory for ion chromatographic (1C) analysis.
The HC1 samples were collected with a sampling train similar to a Method
6 train. The first three impingers contained 15 ml each of 0.1N NaOH. The
fourth impinger (a Mae West design) was filled with calcium sulfate
(Drierite) to protect the meter box from moisture. The sampling rate was
2 liters per minute with a sampling time of 20 minutes. Sample recovery
involved quantitatively combining the contents of all three impingers.
Deionized (DI) water was used to rinse the sampling train components. The
total volume for each sample and rinse was kept below 100 ml.
For analysis, the samples were quantitively transferred to 100 ml
imetric flasks and volumed to 100 ml with D.I. H-0
split and then transported to the Entropy laboratory.
volumetric flasks and volumed to 100 ml with D.I. H-O. The samples were
The ion chromatographic (1C) analysis was performed in Entropy's
laboratory using a Perkin-Elmer high-performance liquid chromatograph
(HPLC). The analysis was performed by non-suppressed ion chromatography on a
low-capacity resin-based ion exchange column (Hamilton PRP-X100) using a 1.0
mM phathlate mobile phase with the pH adjusted to 4.5 with a saturated sodium
borate solution. Forty (40)-ml aliquots of each sample were used for the 1C
analysis and did not require any pretreatment. The quantifiable detection
limit for the 1C analysis is 4 ppm HC1.
All the sampling components contacting the stack gases were constructed
of glass. A glass-lined probe and glass components were used to convey the
stack gas to the first impinger. A three-way glass valve was mounted in-line
directly upstream of the first impinger.
It was important to maintain the gas sample temperature above the water
dew point until the sample reached the first impinger. This was accomplished
by wrapping a heating element around the glass components of the train
between the heated probe and the first impinger.
J-3
-------
APPENDIX K.
Spray Dryer Operating Data
- Full size plots of operating data
- Printouts of four-minute readings
K-l
-------
K-2
-------
RUN 1
i
UJ
0)
TJ
V.^
U
_J
il
O
a:
CL
D
H
<
ir
u
o_
5
LJ
900
800 -
700 -
600
500 -
400 -
300 -
200
For Figure 3-7.
KEY
D Economizer inlet gas temperature (°F)
Economizer outlet/air heater inlrt gas temperature (°
Air heater outlet gas temperature (°F)
Spray dryer inlet gas temperature (°F)
Spray dryer outlet/fabric filter inlet temperature (°F)
Fabric filter outlet gas temperature (°F)
4-
0
A
F)
V
"I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
15:33 15:53 16:13 16:33 16:53 17:13 17:33 17:53 18:13 18:33
TIME
EC I
ECO
O ARM
A ABI
X ABO
V FFO
-------
900
RUN 2
CP
-------
RUN 3
U>
a)
TJ
u
O
DC
Q_
Ld
a:
D
I-
<
ft:
id
CL
2
U
I-
900
800 -
700 -
600 -
500 -
400 -
300 -
200
\*#*fij*«&^^
For Figure 3-7.
KEY
D Economizer inlet gas temperature (°F)
-I- Economizer outlet/air heater inlrt gas temperature (°F)
0 Air heater outlet gas temperature (°F)
A Spray dryer inlet gas temperature (°F)
x Spray dryer outlet/fabric filter inlet temperature (°F)
V Fabric filter outlet gas temperature (°F)
III III III MM MM III Illl II I! Ill Mil III III III Illl Mil IIII III! Ill (III III III III III! Ill Mil III I Mil I III III III III I! I INI III! Ill I MM
11:43 12:43 13:43 14:43 15:43 16:43 17:43 18:43
TIME
EC I
ECO
o
AHO
ABI
x
ABO
V
EFO
-------
RUN 1
u
_J
o
DC
m
LJ
>-
o:
o
<
rr
400
350 -i
300 -
250 -
200 -
150 -
100 -
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
0 I | | | | | | | I I I I I I M I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
15:33 15:53 16:13 16:33 16:53 17:13 17:33 17:53 18:13 18:33
D ABI
+ ABO
TIME
O LIME
A OIL.
-------
RUN 2
X
I
y
a:
m
a:
u
a
a
£
n
400
300 -
250 -
200 -
150 -
100 -
50 -
0
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
I M I I I II
13:05
1 I I I I II I I I I I I I I I I 1 I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IT I I I I I I I I?I IT I I
13:37 14:09 14:41 15:13 15:53 16:25 16:57 17:29 18:01
D ABI
ABO
O
TIME
LIME
DIL.
X
FFP
-------
RUN 3
i
CO
a:
u
o
or
m
if
Q
Z
<
a:
on
a
a:
o_
in
400
350 -
300 -
250 -
200 -
150 -
100 -
50
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
0 III1ITTIIUIIIIII1II III! Illl Ill III! III III IIIII111 [HI I HI 11II
11:43 12:43 13:43 14:43 15:43
TIME
D ABI
ABO
O
LIME
iiniTTTm in in in i
16:43 17:43 18:43
A DIL.
-------
10
RUN 1
•*!
I
If}
LJ
in
UJ
or
n
i-
z
UJ
a
u
Q
9 -
8 -
~i _
6 -
5 "~
4 -
3 -
2 -
0
For Figure 3-9.
KEY
D Dust collector differential pressure (in H2O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H2O)
I I II I I I I
15:33 15:53
D DUST
I I I
16:13
16:33 16:53 17:13
17:33 17:53
18:13 18:33
TIME
+ ABSORBER
O
BAGHOUSE
-------
RUN 2
I
M
o
in
U
LY
D
>
(/I
LJ
Q:
D_
J
<
I-
Z
UJ
LY
u
LL
LL
Q
10
6 -
5 -
4 -
1 -
0
For Figure 3-9.
KEY
D Dust collector differential pressure (in H20)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H2O)
II I I II I I II I I I I I I I I Tl II I I I I I I II I I I I I I I I II I I I I I I I I II M I II I I I I I I I I I II I I II I I I I I II I I
13:05 13:37 14:09 14:41 15:13 15:53 16:25 16:57 17:29 18:01
D
DUST
TIME
+ ABSORBER
O
BAGHOUSE
-------
RUN 3
t/1
LJ
tr
D
LJ
a:
a.
z
UJ
K
u
li.
b_
Q
D Dust collector differential pressure (in H2O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H2O)
1 -
0
11:43
12:43
13:43
14:43
15:43
16:43
17:43
18:43
D
DUST
TIME
+ ABSORBER
O
BAGHOUSE
-------
K-12
-------
DATA CHANNEL DEFINITIONS
TREND LOG PARAMETER IDENTIFICATION
UNIT A TREND L06 37
NAINE ENERBY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD,MAINE
CHANNEL NUMBER
DPI371
PI371
PI372
DPI372
DPI373
PI373
TI3204
TI3228
AI3804
A13604B
AI3804A
FI3202
HEADING DESCRIPTION
DST CLTR
GAS DF P
ABSR IN
SAS P
ABSR OUT
DIFF P
ABSR GAS
DIFF P
BGHSE
DIFF P
ID FAN
SUCT P
ABSR IN
6AS T
ABSR OUT
GAS T
OUTLET
6AS S02
CORRTD
GAS S02
OUTLET
GAS N01
LIME SLRY
FEED
PARAMETER
DUST COLLECTOR GAS DIFFERENTIAL PRESSURE
ABSORBER INLET GAS PRESSURE
ABSORBER OUTLET GAS PRESSURE
ABSORBER GAS DIFFERENTIAL PRESSURE
BA6HOUSE DIFFERENTIAL PRESSURE
ID FAN SUCTION PRESSURE
ABSORBER INLET GAS TEMPERATURE
ABSORBER OUTLET GAS TEMPERATURE
OUTLET GAS S02
CORRECTED S02
OUTLET GAS NOI
LIME SLURRY FEED
UNITS
in. H20
in. H20
in. H20
in. H20
in. H20
in. H20
deq F
deq F
PPHV
PPHV
6PM
K-13
-------
TREND LOG PARAMETER IDENTIFICATION
UNIT A TREND 106 38
MAINE ENERSY RECOVERY FACILITY
YORK COUNTY HASTE-TO-ENER6Y FACILITY
BIDDEFORD, MAINE
CHANNEL NUMBER
HEADIN6 DESCRIPTION
PARAMETER
UNITS
FI3200
PI200A
FI3200
T13800
DILUTION
WATER
ST IN ST*
PRESS
DILUTION
HATER
BHSE OUT
6AS T
DILUTION HATER
STEAfl TURBINE INLET STEAM PRESSURE
DILUTION HATER
BA6HOUSE OUTLET 6AS TEMPERATURE
6PM
PSI6
6PM
deq F
DPI3809
BEHSE
DIFF P
BA6HOUSE DIFFERENTIAL PRESSURE
in. H20
AI370A
STACK
CO
STACK CO
PPHV
AI370B
STACK
OPACITY
STACK OPACITY
AI370C
STACK
C02
STACK C02
1 voluie
IIL320
1IH320
IN FAN
CURRENT
ID FAN
CURRENT
ID FAN CURRENT
ID FAN CURRENT
AflPS
AMfS
IIL320
ID FAN
CURRENT
ID FAN CURRENT
AflPS
IIL320
ID FAN
CURRENT
ID FAN CURRENT
AHPS
K-14
-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUHttARY
MINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
J09DEC37
IG9DECS7
09DECS7
G9BEC37
G9DECS7
G9DEC37
G9DEC37
G9DEC37
0-9DEC37
G9DEC37
09DEC37
Q9DEC37
G9DEC37
09DEC37
09DEC37
G9DEC37
G9DEC37
G9DEC37
G9DEC37
iioncrav
G9DECS7
G9DEC37
G9DEC37
JQ9DECS7
(G9DEC37
IG9DEC37
(G9DEC37
I09DEC37
IG9DEC87
J09DEC37
G9DEC37
09DECS7
nsncrn?
G9DEC37
G9DEC37
09DEC87
09DEC87
09DECS7
09DEC37
09DECS7
;iqr,rr37
TIHE
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:53
16:02
16:06
16:10
16:14
16:13
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:53
17:02
17:06
17:10
17:14
17:13
1 7 1 2 2
17:26
17:30
17:34
1 7 : 33
17:42
17:46
17:50
17:54
17:53
•fl.fi?
DST CLTR
GAS DF P
IN H20
DPI371
3.01
3.22
3.45
3.30
3.04
2.97
3.09
2.93
2.33
-7 /, C
J . U J
•7 1 ~J
2.73
2.87
3.02
2.37
2.85
2.91
2.57
2.79
3.11
3.05
2.96
7 10
3.30
3.23
3.11
2.97
3.11
2.9-4
2.94
2.38
2.95
2.33
2.94
3.05
2.33
2.38
3.09
3.01
2.91
2.95
ABSR IN
GAS P
IN H20
PI371
-7.53
-7.33
-7.86
-3.41
-6.97
-7.00
-7.59
-6.97
-6.72
-7.20
-7.64
-6.34
-7.13
-7.17
-6.73
-6.39
-7.05
-5.97
-6.63
-7.30
-7.34
-7.03
-7 77
-3.13
-7.58
-7.59
-7.27
-7.53
-6.95
-7.03
-7.02
-7.28
-6.72
-7.33
-7.56
-6.66
-6.97
-7.91
-7.23
-6.31
-6.31
ABSR OUT
GAS P
IN H20
PI372
-11.31
-11.72
-12.34
-12.91
-11.00
-11.23
-11.38
-11.00
-10.34
-11.63
-11.31
-10.31
-11.22
-11.41
-10.66
-10.33
-10.97
-9.66
-10.56
-11.53
-11.53
-11.03
-12.28
-12.72
-12.28
-11.33
-11.28
-11.34
-10.91
-11.34
-11.16
-11.53
-10.73
-11.41
-11.83
-10.66
-11.09
- ) ? 71
-11.50
-10.31
-10.97
ABSR GAS
DIFF P
IN H20
DPI372
4.14
4.43
4.92
4.67
4.30
4.17
4.33
4.14
4.05
4.27
4.50
3.90
4.03
4.23
4.03
3.95
4.06
3.61
3.83
4.30
4.20
4.09
4.42
4.55
4.66
4.52
4.11
4.23
4.14
4.17
4.06
4.16
4.06
4.09
4.31
3.97
4.03
4.36
4.23
4.05
4.14
B6HSE
DIFF P
IN H20
DPI373
7.31
6.33
8.13
3.09
6.69
7.42
7.69
6.44
7.38
7.69
6.77
7.05
7.16
6.50
7.38
7.27
6.22
6.73
7.34
6.59
7.25
7.33
6.98
7.98
8.06
6.33
7.56
7.83
6.47
7.27
7 97
6.53
7.30
7.41
6.64
6.95
7.44
6.36
6.92
6.63
6.50
ID FAN
SUCT P
IN H20
PI373
-19.19
-18.94
-20.94
-20.38
-18.56
-13.63
-19.63
-17.31
-18.25
-19.06
-19.25
-17.33
-18.13
-13.25
-18.38
-18.13
-17.50
-16.63
-17.88
-18.38
-13.81
-18.63
-19.00
-20.19
-20.33
-19.13
-13.81
-19.50
-17.94
-13.44
-18.31
-17.94
-13.25
-18.50
-18.56
-17.69
-13.38
-18.75
-18.50
-17.31
-17.33
ABSR IN
GAS T
DEG F
TI3206
377
375
375
331
331
376
374
374
374
373
375
375
373
372
373
374
374
374
372
371
373
374
373
•7T7
J,' J
375
377
376
374
373
373
374
373
372
372
374
374
372
j / j
376
376
777
ABSR OUT
GAS T
DEG F
TI3223
292
285
267
231
290
273
269
288
287
270
277
287
272
263
235
234
263
271
286
282
263
276
237
276
269
281
231
271
275
232
275
272
231
231
272
275
282
276
274
231
275
OUTLET
GAS S02
PPM
AI3304
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.02
3.58
-0.90
-0.90
-0.24
-0.53
-0.90
-0.90
-0.90
-0.90
-0.90
-0.51
-0 . 58
-0.90
0.51
-0.9 0
-0 . 90
-0.02
-0.15
-0.90
4.94
-0.90
-0.90
0.72
0.33
-0.90
-0.90
-0.90
-0.90
-0.10
-0.59
-0.90
-0.90
-0.90
CORRTD
GAS 302
I
A 1 3304 B
-0.11
-0.11
-0.11
-0.11
-0.11
-0.11
-0.11
-0.00
0.43
-0.11
-0.11
-0.03
-0.06
-0.11
-0.11
-0.11
-0.11
-0.11
-0.06
-0.07
-0.11
0.06
-0.11
-0.11
-0.00
-0.02
-O.ii
0.60
-0.11
-0.11
0.08
0.04
-0.11
-0.11
-0.11
-0.11
-0.01
-0.07
-0.11
-0.11
-0.11
OUTLET
GAS NO*
PPHV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
LIME SLRY
FEED
6PK
F 1 3202
2.67
2.62
2.63
2.60
2.53
2.52
2.48
2.44
2.42
2.42
2.33
2.34
2.36
2.31
"> 79
2.34
2.30
2.27
2.25
2.27
9 T^
2.23
2.24
2.19
2.16
2.19
2.16
2.17
2.13
3.12
3.09
3.05
3.06
3.02
3.05
2.93
4.13
4.00
'.92
3.S4
3.76
K-15
-------
RADIAN CORPORATION
02-Jan-e3
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY KASTE-TG-ENERGY FACILITY
BICBEFORD MAINE
UNIT A
DATE
09DEC87
09DEC37
09DEC97
09DEC87
09DEC37
09DECB7
09DEC37
109DEC37
I09DEC97
»09DECB7
t09DEC87
TIKE
18:04
18:10
18:14
18:18
18:22
18:26
19:30
18:34
18:38
18:42
18:44
AVERAGE
DST CLTR
6AS DF P
IN H20
2.87
3.14
3.34
3.47
3.49
3.27
3.09
3.04
0.29
0.11
0.10
3.02
ABSR IN
GAS P
IN H20
-4.99
-7.98
-7.43
-8.14
-7.14
-7.30
-2.09
-1.24
-1.15
-7.20
ABSR OUT
GAS P
IN H20
-11.04
-12.47
-12.22
-13.09
-13.47
-12.34
-11.59
-11.43
-2.77
-1.78
-1.45
-11.49
ABSR GAS
DIFF P
IN H20
3.99
4.34
4.43
4.81
4.83
4.80
4.25
4.22
0.78
0.53
0.50
4.24
BGHSE
DIFF P
IN H20
7.19
7.43
4.97
8.28
3.50
7.02
7.34
7.45
2.18
1.72
1.54
7.14
ID FAN
SUCT P
IN H2Q
-18.13
-19.38
-19.44
-21.04
-21.54
-20.04
-19.00
-18.94
-5.53
-3.73
-3.43
-18.71
ABSR IN
GAS T
DE6 F
371
371
370
370
374
378
373
374
372
343
355
374
ABSR CUT
GAS T
DEG F
274
281
280
272
280
282
271
273
279
244
273
277
OUTLET
GAS S02
PPHV
1.32
0.14
-0.90
-0.90
-0.90
0.49
0.22
-0.74
-0.90
-0.90
-0.90
-0.43
CORRTD
GAS S02
I
0.14
0.02
-0.11
-0.11
-0.11
0.08
0.03
-0.09
-0.11
-0.11
-0.11
-0.05
OUTLET LIME SLRY
GAS NOX
PPHV
-0.01
-0.01
-0.01
-0X11
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
GP«
3.73
3.71
3.47
3.42-
3.40
3.59
3.42
3.54
0.00
0.00
0.00
2.91
* - NON-TEST PERIOD, NOT INCLUDED IN AVERAGE
K-16
-------
RADIAN CORPORATION
PROCESS DATA SUMMARY
MAINE ENERE'i RECOVERY COMPANY
YORK COUNTY HA3TE-7Q-ENERGY FACILITr
BIDDEFDRD MAINE
ONIT A
DATE
tQ9DEC37
IQ9DEC37
J09DEC37
09DEC37
09DEC87
09DEC37
09DEC87
Q9DEC87
09DEC37
09DEC87
09DEC87
09BEC87
09DECB7
09DEC37
09DECS7
09DEC37
09DEC37
09DEC37
09DEC37
09DEC37
09DEC87
09DEC87
09DEC37
09DEC87
tnQnrra7
* V 1 Jl_ w W 1
(09DEC37
IQ9DEC87
109DEC37
IQ9DEC37
109DEC37
tMncra?
T V 7 1/C L>C /
09DEC87
09DEC87
09DEC37
09DECS7
09DEC37
09DEC87
G9DECS7
09DECB7
09DEC87
09DEC37
TIME
15:18
15:22
15:2i
15:30
15:34
15:38
15:42
15:44
15:50
15:54
15:53
16:02
16:04
14:10
15:14
li:iB
14:22
16:24
16:30
ia:34
16:33
14:42
16:46
14:50
14:54
16:53
17:02
17:06
17:10
17:14
1 7 , i a
17:22
17:26
17:30
17:34
17:33
17:42
17:44
17:50
17:54
17:53
DILUTION
WATER
6PM
F 1 3200
4,30
ci ")n
10.84
3.34
5.00
3.63
9.69
5.03
4.S4
9.34
3.28
4.95
8.06
9.34
5.41
5.20
9.47
3.50
4.63
5.52
9.72
3.22
4.70
7.47
IA 1?
7.20
5.31
3.94
3.23
5.41
' A?
8. 19
5.69
c 17
7.98
7.53
5.33
' 77
J.JO
7 c T
5.70
6.52
ST IN STM DILUTION
PRESS KATER
PSIG GPM
PI200A F 1 3200
-2 4.30
-6 5.22
-5 10.84
-6 8.34
-7 5_AA
-2 3.43
-7 9.49
-3 5.03
-3 4.84
-8 9.34
-3 3.28
-8 4.95
-7 8.04
-3 9.34
-3 5.41
-8 5.20
-8 9.47
-3 3.50
4.63
5.52
9.72
3.22
4.70
7.67
10.13
7.20
5.81
8.94
3.28
5.61
7.03
3.19
5.49
c n-y
7.93
7.53
5.33
6.33
T c n
/ . v'i
5.70
6.52
BHSE OUT
6AS T
DEB F
T 1 3800
268
275
277
269
269
274
271
266
270
274
263
267
271
268
264
268
271
266
263
263
270
265
265
270
269
265
267
270
267
265
267
267
245
244
268
266
265
247
267
265
267
BSHSE
DIFF P
IN H20
DP 1 3309
7.31
7.33
6. S3
3.14
8.13
4.47
7.44
7.70
4.41
7.41
7.72
6.75
7.05
7.14
6.47
7.33
7.27
6.19
6.73
7.34
6.59
7.27
7.34
6.92
8.00
3.09
4.78
7.56
7.84
6.42
7.27
7.22
6.45
7.30
7.41
6.58
6.97
7.44
6.73
6.97
4.55
3 TAD:
CO
PPHV
AI370A
59.25
55.50
58.00
79.50
68.25
61.38
43.83
43.00
54.33
52.50
57.00
40.25
54 . 50
55.33
56.00
49.13
56.33
56.33
54.38
46.50
54.38
56.50
51.00
55.63
c, L n E,
56.33
56.25
53.25
63.33
56.33
57.38
63.33
57.33
52.50
60.38
43.50
50.50
54.33
4o.25
i6.25
56.25
STACK
OPACITY
Z
AI370S
49.88
48.43
49.88
49.33
49.88
49.38
49.88
49.33
49.38
49.38
49.88
49.33
49.88
49.88
49.88
49.88
40.38
-0.04
-0.04
-0.04
-0.04
-0.04
-0 . 04
-G.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
C02
V
AI370C
3.18
2.39
2.98
3.98
3.45
2.49
2.69
3.18
2.66
T ",q
2.59
2.93
2.49
2.49
2.30
2.69
2.89
2.98
2.68
T ?g
2.38
2.39
2.38
2.59
" 6'
2.78
2.69
2.73
2.88
2.68
2.69
3.09
2. 98
2.43
2.93
3.23
2.43
2.43
3.43
3.43
2.69
3D FAN
r!i&&£WT
AMPS
IIL32Q
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A Al
0.01
0.01
0.01
0.01
0.01
A Al
0.01
0.01
0.01
0.01
0.01
0 . 0 '
0.01
(.01
0.01
0.01
ID FAN
CURRENT
AMPS
HH320
98.75
97.25
99 . 00
102.50
100.50
97.50
98.00
98.50
97.00
97.25
98.50
98.50
96.25
97.50
98.00
97.00
96.75
97.25
94 . 50
95.75
98.25
93.50
97.25
98.50
IAA ^5
100.25
99 . 00
97.50
98.50
97.25
97 75
97.50
97.50
96.75
97.50
93.50
96.25
97 .00
93.50
93.25
97.25
T n riu
ri!j>BC&|T
AMPS
HL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
(1 fll
0.01
0.01
0 . 0 1
0.01
0 . 'J 1
,'; _ ,'i 1
.' . 0 1
' j . V 1
•} _ A I
','.01
ID FAN
rij&BC^T
AMPS
IIL320
0.01
0.01
A _ A [
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 '
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
C.Oi
O.J1
A At
0.01
A . A '
0.01
0.01
0.01
"' '\ '.
. '' '
'.' . '.' 1
i" A 1
,'. , 1
K-17
-------
RADIAN CORPORATION
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY WASTE-TO-ENERGY FACILITr
BIDDEFQRD MAINE
UNIT A
DATE
09DEC97
09DECS7
09DEC37
09DEC97
Q9CECS7
09DEC37
09DEC87
09DEC37
I09DEC37
109DEC37
109DEC87
t09DECB7
TIME
13:02
13:06
13:10
13:14
18:13
13:22
18:26
19:30
19:34
13:33
13:42
18:46
DILUTION
WATER
6PM
7.00
5.14
5.34
7.80
6.56
5.81
3.53
8.13
4.75
5.27
0.41
0.30
ST IN STM DILUTION
PRESS WATER
PS!S 6PM
•7.00
5.14
5.34
7.80
6.56
5.81
8.53
8.13
4.75
5.27
0.41
0.30
BHSE OUT
5AS T
DEG F
266
265
267
268
265
267
269
266
264
267
264
260
BGHSE
3IFF P
IN H20
6.47
7.19
7.59
6.95
3.31
9.53
7.00
7.36
7.45
1.99
1.54
1.35
STACK
CO
PPttV
64.25
63.38
63.33
65.25
72.50
74.25
73.25
68.25
60.33
63.25
53.25
50.50
STACK
OPACITY
V
t.
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
49.83
49.38
49.83
-0.04
1.40
48.13
STACK
C02
>/
2.33
2.5?
2.43
* 1Q
2.63
3.23
3.43
2.99
2.79
2.68
1.98
i c,o
* > J 7
ID FAN
CURRENT
AMPS
0 ''"
O.Q1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AMPS
97 Ifl
97.00
93.75
IAA 15
102.75
102.75
100.25
9S.75
98.00
Q.09
0 . 08
0 . 08
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
AVERAGE 6.95 -7 6.95 263 7.16
> NON-TEST PERIOD, VALUE NOT INCLUDED IN AVERAGE
60.13 20.1?
2.34
98.12
A At
K-18
-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERSY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
I10DEC37
I1QDEC37
10DECS7
10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC87
10DEC87
1GDEC87
10DEC97
10DEC37
10DEC37
10DECB7
10DEC37
10DECS7
10DEC37
10DEC27
10DEC37
10DECB7
10DEC37
10DECS7
10DEC37
10DEC37
UODEC37
I10DECS7
I10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
i (iPCPOl
lUl'tld/
10DECS7
10DEC37
1QDECS7
TIME
12:38
12:42
12:46
12:50
12:54
i?.«ifl
13:02
13:06
13:10
13:14
13:1S
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:38
14:42
14:46
14:50
14:54
14:58
15:02
t P i j'i i,
1 J . V 0
15:10
15:14
15:13
DST CLTR
6AS DF P
IN H20
DPI371
3.18
3.07
3.23
3.0?
3.15
3.24
3.12
3.05
3.21
3.09
3.03
3.06
3.22
2.97
3.23
3.11
3.15
3.22
3.30
3.03
3.27
3.03
2.88
3.19
3.16
3.16
3.24
2.86
3.18
3.15
3.23
2.99
2.94
3.19
3.27
2.32
2.66
3.04
3.10
3.09
3.16
ABSR IN
GAS P
IN H20
PI371
-1.76
-5.92
-5.02
-4.36
-7.31
_T TIJ
-6.94
-7.84
-2.60
-7.61
-7.72
-7.48
-7.45
-7.70
-7.31
-3.19
-7.55
-7.67
-8.03
-3.13
-8.19
-8.16
-8.16
ABSR OUT
6AS P
IN H2D.
P1372
-13.94
-12.73
-13.00
-13.56
-12.1?
-12.97
-13.88
-12.84
-12.88
-12.91
-11.33
-11.97
-13.41
-13.50
-12.72
-12.56
-12.34
-12.91
-12.72
-13.06
-13.56
-13.38
-12.66
-12.50
-12.41
-12.25
-13.59
-13.23
-12.66
-12.56
-12.75
-14.03
-13.81
-12.33
-14.31
-14.59
-14.03
-13.56
-12.33
-12.50
-13.1?
ABSR GAS
DIFF P
IN H20
DPI372
4.67
4.97
4.66
4.53
4.72
4.52
4.75
5.13
4.43
4.30
4.31
4.25
4.48
5.27
4.53
4.33
4.45
4.45
4.59
5.34
5.00
5.00
5.25
4.33
4.41
4.94
4.94
5.27
4.41
4.39
4.53
5.30
5.44
4.45
5.27
6.23
5.97
4 an
~ • uu
4.33
4.31
4.44
BGHSE
DIFF P
IN H20
DPI373
7.77
7.39
8.34
7.84
7.08
7.98
8.00
7.41
8.06
7.61
6.67
7.86
3.25
7.19
7.92
3.03
7.08
3.00
8.06
7.38
3.66
8.53
7.19
7.81
3.19
7.47
8.44
8.31
6.95
3.09
8.25
7.50
8.31
3.19
7.83
3.34
3.66
7 39
. i J I
7.73
7.97
7.22
ID FAN
SUCT P
IN H20
PI373
-20.75
-20.69
-21.38
-20.56
-20.00
-20.69
-21.19
-21.00
-20.75
-20.00
-19.19
-19.75
-20.81
-20.88
-20.6?
-20.38
-19.75
-20.50
-21.00
-21.1?
-22.06
-21.94
-20.83
-20.31
-20.44
-20.75
-21.81
-21.94
-19.63
-20.44
-21.00
-21.19
-22.13
-20.83
-21.50
-23.44
-23.00
-20.69
-20.06
-20.19
-19.81
ABSR IN
8AS T
DEG F
TI3206
358
359
361
361
359
358
360
362
364
365
364
361
360
362
365
366
364
362
362
362
363
366
367
366
365
361
359
364
366
365
364
364
367
369
367
365
367
370
368
366
364
ABSR OUT
GAS T
DEG F
TI3223
278
287
277
268
230
287
273
271
286
283
267
274
290
281
266
279
233
275
272
277
232
284
275
272
273
230
280
280
276
276
280
281
278
276
277
281
280
276
274
278
231
OUTLET
GAS S02
PPMV
AI3804
0.41
0.13
-0.90
-0.59
-0.51
3.39
-0 . 90
4.86
-0.38
1.71
-0.90
1.38
-0.50
1.84
-0.87
2.66
-0.77
1.11
1.56
2.28
-0.75
2.53
-0.74
2.72
-0.43
1.81
0.48
0.00
-0.74
0.74
0.28
1.02
2.91
0.30
2.68
-0.82
4.67
[ 0.9
1.19
0.62
-0.90
CORRTD
GAS S02
I
AI38043
0.05
0.02
-0.11
-0.07
-0.06
0.46
-0.11
0.59
-0.05
0.20
-0.11
0.17
-0.06
0.22
-0.10
0.32
-0.09
0.13
0.19
0.28
-0.0?
0.30
-0.0?
0.33
-0.05
0.21
0.06
0.00
-0.0?
0.09
0.03
0.12
0.35
0.03
0.32
-0.10
0.57
A 17
0.14
0.07
-0.11
OUTLET
GAS NOX
PPMV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0 M
-0.01
-0.01
-0.01
LIME SLRY
FEED
GPM
F 1 3202
3.11
3.03
3.09
3.02
2.99
2.99
2.98
2.95
2.93
3.02
3.06
3.06
3.07
3.09
5.53
6.52
6.31
7.31
7.58
7.55
7.47
7.44
7.42
7.36
7.33
7.33
7.31
7.23
7 1'
7.23
7.25
7.25
7.27
7.25
7.28
7.25
7.27
7 ^7
7 "' 0
\36
"^ ^* A
K-19
-------
RADIAN CORPORATION
02-Jan-ee
PROCESS DATA SUHHARY
MAINE ENERGY RECOVERY COHPANY
YORK COUNTY MASTE-TO-ENERGY FACILITY
B1DDEFORD MAINE
UNIT A
DATE
10DECS7
10DECB7
10DEC37
1CDEC87
100EC87
10DECB7
10DEC37
10DECS7
I10DECB7
I10DEC37
I10DEC87
UODEC87
tlODEC87
UODEC87
110DEC87
J10DEC87
110DEC87
10DECB7
10DEC87
1QDEC37
10DEC97
10DEC87
10DEC87
10DECB7
10DEC37
10DECS7
10DECS7
10DEC37
10DECS7
10DEC87
10DEC87
1QDECB7
10DECB7
10DEC37
10DECB7
IODECB7
10DEC87
10DECB7
1QDEC87
1UDECS7
TIME DST
GAS
IN
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:33
17:42
17:46
17:50
17:54
17:58
AVERAGE
t NQN-TEST
CLTR
DF P
H20
3.16
3.19
3.03
3.09
3.05
3.13
3.16
3.21
3.19
3.05
3.07
3.08
3.16
3.10
3.13
3.17
3.08
3.26
3.14
3.37
2.34
2.82
3.08
3.21
2.96
3.10
3.14
3.12
3.22
3.13
2.77
2.82
2.30
2.78
2.69
2.94
3.20
3.23
2.91
3.04
3.07
PERIOD
ABSR IN ABSR OUT
GAS P GAS P
IN H20 IN H20
-12.66
-8.19 -12.69
-13.75
-12.81
-8.09 -12.44
-12.97
-12.81
-13.09
-14.09
-12.16
-7.95 -12.25
-13.38
-12.56
-7.95 -12.25
-13.03
-12.47
-8.00 -12.23
-13.03
-12.72
-13.31
-14.69
-12.34
-7.94 -12.34
-13.50
-12.69
-7.84 -12.38
-13.06
-12.34
-8.31 -12.88
-14.56
-14.31
-14.78
-14.50
-14.47
-13.72
-12.31
-13.41
-13.66
-11.91
-7.25 -13.11
, NOT INCLUDED IN
ABSR GAS
DIFF P
IN H20
4.44
4. 48
5.05
4.59
4.23
4.53
4.81
4. 84
4.84
4.28
4.23
4.80
4.45
4.27
4.45
4.53
4.23
4.53
4.75
4.77
5.55
4.78
4.31
4.72
4.88
4.33
4.53
4.39
4.55
5.33
6.48
6.36
6.77
6.14
5.94
4. 83
4.55
4.70
4.94
4.44
4.84
AVERAGE
BGHSE
DIFF P
IN H20
7.59
8.19
7.34
7.67
7.69
7.48
7.83
8.50
7.97
7.13
7.89
7.42
7.33
7.77
7.17
7. 86
7.91
7.41
7.75
B.59
B.13
7.56
7.69
7.64
7.61
8.00
7.44
7.44
8.28
8.19
8.59
9.06
8.63
8.31
8.69
7.33
7.30
8.47
3.22
7.05
7.39
ID FAN
SUCT P
IN H20
-20.19
-20.75
-21.31
-20.69
-19.69
-20.13
-20.94
-21.75
-21.13
-19.63
-19.88
-20.63
-20.44
-20.00
-19.31
-20.69
-20.13
-20.19
-20.75
-21.75
-22.13
-20.75
-19.88
-20.63
-20.75
-20.25
-20.19
-19.88
-21.00
-21.88
-23.50
-23.88
-23.81
-22.88
-23.06
-21.00
-19.94
-21.50
-21.56
-19.50
-20.93
K-20
ABSR IN
SAS T
DEE F
364
364
364
366
364
362
362
364
367
367
364
362
363
363
361
362
363
361
362
362
365
367
364
361
362
362
362
361
360
359
358
362
366
369
373
372
368
365
366
366
364
ABSR OUT
SAS T
DEE F
279
276
278
280
276
275
278
281
283
277
271
276
281
282
279
277
277
276
278
279
281
281
274
273
277
281
280
278
111
277
279
282
284
281
264
274
281
283
282
274
278
OUTLET
GAS S02
PPHV
1.39
-0.90
1.98
-0.90
-0.52
-0.80
0.84
-0.90
1.59
0.00
2.63
-0.30
-0.63
-0.01
2.22
-0.34
-0.65
1.57
3.97
-0.29
-0.90
0.65
3.52
0.93
-0.09
5.55
1.28
-0.26
1.81
7.00
1.34
-0.51
-0.18
7.97
-0.32
0.21
0.69
7.03
-0.82
-0.66
1.06
CORRTD
GAS S02
I
0.17
-0.11
0.24
-0.11
-0.06
-0.10
0.10
-0.11
0.19
-0.00
0.32
-0.04
-0.07
-0.00
0.27
-0.04
-0.08
0.19
0.48
-0.03
-0.11
0.08
0.43
0.12
-0.01
0.66
0.16
-0.03
0.22
0.84
0.17
-0.06
-0.02
0.96
-0.04
0.03
0.08
0.85
-0.10
-0.08
0.13
OUTLET L
GAS mi
pp«y
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
.IHE ELRY
FEED
SPH
7.41
7.48
7.53
7.66
7.69
7.75
7.78
7.83
7. 84
7.92
7.94
7.91
7.98
8.00
8.03
8.00
3.06
8.06
8.09
8.25
3.25
8.31
8.34
8.33
8.23
8.28
8.19
8.16
8.09
8.06
3.03
8.09
0.00
8.13
3.16
7.98
7.98
7.97
7.92
7.91
6.70
-------
RADIAN CORPORATION
02-Jan-e8
PROCESS DATA SUMMARY
HAINE ENERGY RECOVERY CDHPANY
YORK COUNTY KASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
DATE
•10DECS7
UODEC87
10DEC37
10DEC87
10DECB7
10DEC37
10DECB7
10DEC37
10DECB7
10DEC-37
10DECS7
10DEC37
10DEC37
10DEC87
10DEC87
10DEC37
10DEC37
10DECS7
10DEC87
10DEC37
10DEC37
10DEC87
10DECS7
10DEC37
10DEC87
UODEC37
UODEC37
UODEC87
10DEC87
10DEC37
10DECS7
10DEC37
10DEC87
10DEC37
10DEC37
10DEC37
10DEC87
j ,_j-prj.
."'
10DEC37
10DEC87
TIME
12:33
12:42
I2:4i
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
no^
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
n-ia
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:58
15:02
i c<:06
i j : x 0
15:14
15:18
DILUTION
SATER
6PM
F 1 3200
3.45
6.00
8.56
5.22
2.31
6.38
8.25
4.41
4.72
3.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.63
1 .90
4.55
5.09
2.53
1.37
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.31
4.36
1.96
2.36
ST IN STM
PRESS
PSI6
PI200A
-2
-6
-5
-6
-7
-2
-7
-3
-3
-8
-8
-8
-7
-3
-3
-8
-8
-a
DILUTION
HATER
SPM
F 1 3200
3.45
6.00
8.56
5.22
2.31
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.68
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.86
2.70
1.96
2.36
BHSE OUT
GAS T
DE6 F
T 1 3800
267
271
270
264
266
271
268
264
269
271
265
264
270
271
264
266
269
263
265
266
269
271
269
266
267
269
269
270
268
267
268
269
269
268
267
269
270
269
267
267
269
BGHSE
DIFF P
IN H20
DP 1 3809
7.75
7.42
3.38
7.33
7.09
3.00
8.00
7.42
8.06
7.61
6.67
7.89
8.25
7.19
7.94
3.06
7.08
3.03
8.09
7.36
B.72
8.59
7.16
7.83
8.22
7.45
3.47
3.31
6.91
8.13
3.31
7.45
8.38
8.22
7.73
8.94
3.72
7.36
7.77
3 . 00
7 . 20
STACK
CO
PPMV
AI370A
40.50
42.50
44.38
54.33
43.25
65.50
49.25
42.50
42.38
43.38
39.50
35.50
35.38
47.25
49.25
44.38
39.50
42.50
43.38
46.50
46.38
42.50
46.38
46.50
39.50
64.25
56.25
50.50
48.25
44.38
46.25
40.50
47.25
48.25
63.38
45.33
49.63
43.13
46.00
42.33
33.38
STACK
OPACITY
I
AI370B
14.31
14.91
15.00
14.81
14.72
15.00
13.94
12.91
13.00
17.31
20.25
30.56
35.88
20.19
24.75
21.25
20.19
22.19
32.38
30.19
16.00
17.88
24.81
20.44
26.81
23.13
27.00
28.69
33.13
32.13
30.88
29.31
35.63
36.75
32.63
39.25
43.38
39.75
49.33
49.88
49.88
STACK
C02
I
AI370C
2.39
3.08
3.29
2.38
2.28
2.48
3.08
3.09
3.08
3.08
2.78
2.49
2.78
3.29
3.38
2.89
2.49
2.59
2.69
2.68
3.08
2.83
3.08
3.08
2.59
2.33
3.09
3.29
2.98
2.89
2.78
2.88
3.29
3.09
2.38
2.69
3.18
2.78
2.98
2.78
2.69
ID FAN
CURRENT
AMPS
HL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
101.25
101.50
102.25
100.75
100.25
101.00
102.00
102.00
100.25
99.25
99.25
98.75
100.75
102.75
101.00
99.25
99.75
100.50
101.75
103.00
103.50
103.25
102.50
100.00
100.25
102.25
103.50
103.50
99.75
99.75
101.25
103.25
104.25
100.75
104.25
107.75
106.00
iA! in
93 51
99.50
99.75
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
••1.01
•i ni
0.01
0 0 '
ID FAN
CURRENT
AMPS
I1L320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A A!
A ,••!
• J . 0 1
0.01
K-21
-------
RADIAN CORPORATION
02-Jan-BS
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
/ORK COUNTY WASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
JNIT A
DATE
TIME
10DECS7
10DEC37
10DEC37
10DEr37
iftn[ra7
10DEC97
I10DEC37
11QDEC37
UODEC37
110DEC37
t!ODEC87
J10DEC37
UODECB7
HODEC37
J10DEC37
10DEC37
1GDEC37
10DEC37
10DEC37
10DECS7
10DEC97
10DEC37
10DEC87
10DEC87
1QDEC37
10DEC87
10DEC37
10DEC37
10DECS7
10DEC37
10DEC37
10DECS7
10DEC37
10DEC87
10DEC37
10DEC87
10DEC37
i W . k i.
15:26
15:30
1 5 : 34
15:46
15:50
15:54
15:53
ls:02
16:06
16:10
16:14
16:13
16:22
16:26
16:30
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:33
17:42
17:46
17:50
17:54
17:59
AVERAGE
DILUTION ST IN STM DILUTION BHSE OUT
WATER PRESS HATER SAS
6PM PS IS 6PM
3.77
3.40
2.25
2.54
3.34
1.80
1.36
2.73
4.49
1.93
0.37
0.73
1.90
2.25
2.04
1.93
84
64
73
94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
77
51
48
1.91
4.16
9.03
4.05
0.77
0.53
1.84
3.77
3.77
3.40
9 ?5
2.54
3.34
1.30
1.86
2.73
4.43
1.93
0.37
0.73
1.90
2.25
2.04
1.93
1.84
1.64
1.73
1.94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
1.77
1.51
1.48
1.91
4.16
8.03
4.05
0.77
0.53
1.34
3.51
A .77
; OUT
i T
J F
269
248
268
269
268
267
269
270
269
265
266
268
270
269
268
268
267
267
268
269
270
268
266
267
268
269
268
268
267
268
270
272
272
264
264
268
270
271
263
BGHSE
DIFF P
IN H20
7.63
8.25
7.31
7.70
7.67
7.86
3.53
7.89
7.14
7.91
7.34
7.84
7.77
7.13
7.89
7.92
7.34
7.78
3.63
8.06
7.58
7.69
7.58
7.66
8.03
7.39
7.44
8.28
3.16
8.66
9.13
8.56
3.38
8.72
7.77
7.31
3.47
8.19
7.06
STACK
CO
PPMV
46.33
50.25
46.38
48.63
47.13
54.25
53.50
52.50
51.50
52.38
47.25
47.38
46.25
46.25
49.25
47.25
44.63
54.25
47.38
47.63
46.25
C 7 If
JJ.6j
62.50
54.38
49.25
44.63
50.13
54.13
43.25
47.88
68.00
95.00
66.25
51.88
47.63
43.88
54.63
51.25
53.38
STACK
OPACITY
I
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
-0.02
-0.04
-0.04
45.50
2.88
-0.02
46.25
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
10.97
49.38
37.33
49.88
-0.04
35.13
-0.04
-0.04
STACK
C02
I
3.01
2.89
2.89
2.98
2.69
3.18
3.29
3.18
2.98
2.69
2.99
2.89
2.78
2.78
3.09
2.78
2.78
2.59
2.78
3.08
2.59
2.28
2.59
2.89
2.78
2.73
2.98
3.08
2.38
2.38
3.08
3.18
3.29
3.33
2.89
2.59
3.29
3.18
2.73
10 FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
100.00
101.25
102.75
100.75
99.50
101.75
103.00
102.00
99.25
99.25
101.25
100.00
99.25
99.50
100.50
99.25
100.50
101.25
102.75
103.75
100.00
99.00
101.00
100.50
99.25
100.00
99.25
101.25
104.25
107.75
107.75
106.75
106.25
105.75
100.75
99.75
102.00
102.25
99.25
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
268
NON-TEST PERIOD, NOT INCLUDED IN AVERAGE
7.92 43.92 25.M
K-22
0.01 101.71
0.01
0.01
-------
RADIAN CORPORATION
02-3 an-98
PROCESS DATA SUMMARY
HAINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
I12DECS7
I12DEC37
12DEC87
12DEC87
12DECB7
12DEC87
12DECS7
12DECS7
112DECB7
J12DECS7
J12DEC87
J12DEC87
12DEC37
12DEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
12DEC37
12DECS7
1'DCCB7
12DEC37
112DEC87
I12DEC37
U2DEC37
U2DEC87
U2DEC87
U2DECB7
12DEC37
12DEC87
12DEC87
12DEC37
I2DEC87
12DEC37
12DEC37
TIME
11:12
11:14
11:20
11:24
11:23
11:32
ll:3i
11:40
11:44
11:48
11:52
11:56
12:00
12:04
12:08
12:12
12:16
' "' ' "'O
12:24
12:23
i?-T5
12:36
12:40
12:44
12:48
12:52
'"•c.6
13:00
13:04
13:08
13:12
13:16
13:20
13:24
13:28
13:32
13:36
13:40
13:44
13:48
13:52
DST CLTR
GAS DF P
IN H20
DPI371
3.46
3.51
3.23
3.43
3.41
3.27
3.61
3.61
2.96
3.34
3.57
3.01
3.38
3.52
2.93
3.51
3.41
3.20
3.45
3.45
3.24
3.40
3.34
3.39
3.36
3.33
3.43
3.36
3.33
3.45
3.38
3.32
3.39
3.42
3.33
3.30
3.34
3.39
3.38
3.45
3.38
ABSR IN
GAS P
IN H2C
PI 371
-8.19
-5.92
-5.02
-6.36
-8.06
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.67
-7.45
-7.70
-7.81
-7.61
-7.55
-7.67
-7.83
-8.22
-8.16
-8.22
-3.28
-7.94
-3.19
ABSR OUT
SAS P
IN H20
PI372
-12.91
-13.03
-13.84
-13.16
-13.16
-13.22
-13.53
-13.47
-14.78
-14,09
-14.31
-15.34
-13.75
-14.06
-14.75
-13.63
-13.66
-13.81
-13.16
-12.69
-14.16
-12.31
-12.84
-13.22
-13.03
-13.73
-12.66
-12.31
-13.88
-13.06
-12.78
-13.56
-12.59
-13.09
-13.84
-12.73
-12.69
-13.78
-13.41
-13.06
-13.44
ABSR 6AS
DIFF P
IN H20
DPI372
4.75
4.84
5.77
5.03
4.86
5.33
5.22
5.29
6.73
5.55
5.59
6.78
5.61
5.64
6.47
5.17
5.14
5.64
4.84
4.84
5.44
4.88
4.67
4.77
4.86
5.09
4.83
4.67
5.06
4.89
4.64
4.88
4.86
4.77
5.08
5.08
4.72
4.93
5.41
4.84
4.83
BGHSE
DIFF P
IN H20
DPI373
8.47
3.47
7.58
8.66
8.53
7.33
8.44
9.00
8.31
8.75
8.78
3.31
3.97
9.03
7.91
3.47
8.73
7.77
8.16
3.31
7.72
3.16
3.34
7.55
7.83
7.70
8.06
3.53
7.88
7.31
8.16
7.94
7.94
8.41
7.98
7.80
8.50
3.22
7.36
3.33
3.23
ID FAN
SUCT ?
IN H20
PI373
-21.38
-21.50
-21.31
-22.00
-21.38
-21.06
-22.13
-22.75
-23.50
-22.75
-22.88
-23.63
-23.06
-23.13
-22.31
-22.06
-22.38
-21.75
-21.19
-21.13
-21.56
-21.25
-21.13
-20.44
-20.75
-21.19
-21.13
-21.13
-21.31
-21.00
-20.81
-20.63
-20.94
-21.25
-21.44
-21.13
-21.13
-21.44
-21.69
-21.33
-21.25
ABSR IN
SAS T
DE6 F
T 1 3206
383
383
382
333
383
332
332
333
383
333
382
380
383
385
387
388
387
335
385
383
383
335
386
7Q?
380
381
331
331
382
7Q**
OOJ
384
333
381
382
335
385
382
331
333
384
382
ABSR CUT
GAS T
DEG F
TI3223
289
239
268
273
288
234
269
279
289
273
269
283
289
273
272
284
283
272
277
285
281
274
279
291
231
279
273
280
280
279
278
27?
278
281
281
276
275
281
283
277
274
OUTLET
GAS S02
PPHV
A 1 3804
3.05
8.81
10.53
8.94
10.81
11.78
9.59
4.09
9.09
7.78
8.22
9.06
12.72
6.61
7.06
4.20
5.42
3.53
7.34
7.92
7.59
2.48
3.03
7.61
2.48
2.13
13.38
-0.82
2.25
15.41
4.75
7.83
0.76
1.57
10.56
3.76
3.94
12.91
-0.08
-0.44
8.03
CQRRTD
SAS S02
I
AI3804B
0.37
1.05
1.27
1.07
1.30
1.42
1.11
0.47
1.05
0.90
0.98
1.08
1.50
0.79
0.84
0.50
0.66
0.42
0.88
0.96
0.91
0.29
0.37
0.91
0.30
0.25
1.60
-0.10
0.27
1.35
0.57
0.94
0.10
0.19
1.27
0.45
0.47
1.55
-0.01
-0.05
0.96
OUTLET
GAS NOK
PPMV
AI3304A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
LIME SLRY
FEED
GPM
FI3202
7.39
7.38
7.33
7.36
7.33
7.33
7.28
7.27
7.25
7.22
7.22
7.17
7.13
7.13
8.09
3.03
3.00
7.97
7.92
7.91
7.86
7.84
7.84
7.34
7.31
7.83
7.73
7.81
7.73
7.75
7.73
7.72
7.70
7.86
7.83
\84
7.84
7.83
7.91
7.91
7.94
K-23
-------
RADIAN CORPORATION
02-jan-SS
PROCESS DATA SUMHARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
12DEC37
12DEC87
12DEC87
12DECB7
12DEC37
12DEC37
12DEC97
12DECE7
12DEC87
12DEC87
12DEC97
12DEC87
12DEC87
112DECB7
I12DECS7
I12DEC37
I12DEC37
H2DECS7
I12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
U2DEC37
J12DEC37
I12DEC87
I12DEC37
112DEC37
•12DEC97
I12DEC37
•12DEC87
112DEC87
I12DEC97
112DEC37
jionrra?
U2DEC87
I12DEC87
112DEC37
I12DEC37
I12DEC37
I12DEC37
112DEC37
TIME
13:56
14:00
14:04
14:08
14:12
14:16
14:20
14:24
14:23
14:32
14:36
14:40
14:44
14:48
14:52
14:56
15:00
15:04
15:08
15:12
15:16
15:20
15:24
15:23
15:32
15:36
15:40
15:44
15:48
15:52
15:56
16:00
16:04
16:03
16:12
16:16
16:20
16:24
16:23
16:32
16:36
16:40
DST CLTR
GAS DF P
IN H20
3.41
3.37
3.36
3.4?
3.42
3.41
3.34
3.47
3.43
3.30
3.34
3.54
3.12
3.48
3.53
7 7?
3.45
3.38
3.30
3.42
3.41
3.51
3.60
3.36
3.02
2.30
1.77
2.09
2.25
2.05
1.34
1.93
2.30
2.19
2.20
2.58
2.68
2.77
2.35
2.11
2.27
2.01
ABSR IN
GAS P
IN H20
-3.09
-8.22
-7.84
-3.22
-3.03
-7.52
-6.73
-5.92
-4.84
-4.95
-5.05
-4.48
-4.93
-5.17
-5.69
-5.73
-5.70
-6.41
-7.42
-7.02
-6.16
-5.22
-6.03
-5.17
ABSR OUT
6AS P
IN H20 .
-13.00
-1 .78
-1 .38
-1 .59
-1 .06
-14.16
-12.75
-13.34
-14.44
-12.97
-13.66
-14.22
-12.81
-13.06
-13.50
-13.38
-13.16
-12.69
-13.00
-12.91
-12.94
-13.00
-13.23
-11.97
-10.59
-9.16
-7.44
-7.83
-7.97
-7.08
-7.70
-8.09
-3.83
-3.31
-3.63
-9.B3
-II !A
-10.56
-9.44
-3.22
-0 nc,
-8.00
AESR SAS
DIFF P
IN H20
5.05
4.77
4.95
4.92
4.77
5.00
5.00
4.91
5.03
5.45
5.36
5.06
5.63
4.80
4.99
5.41
4.75
4.66
5.25
4.77
4.77
5.22
5.17
4.64
4.14
3.23
2.55
2.94
3.10
2.82
2.59
2.75
3.17
2.99
3.02
3.52
3.66
3.77
3.23
2.93
3.16
2.77
BGHSE
DIFF P
IN H20
7.80
8.44
8.06
7.61
3.69
8.50
7.42
8.34
9.69
7.75
3.63
8.44
7.52
8.59
3.72
7.48
3.29
8.38
7.58
8.44
8.25
7.44
9.06
8.47
6.53
5.97
4.31
4.83
5.09
4.72
4.42
4.66
5.14
4.98
4.98
5.47
6.66
6.31
6.22
5.61
5.17
4.95
ID FAN
SUCT P
IN H20
-21.13
-21.31
-21.25
-20.63
-21.56
-21.81
-20.75
-21.31
-22.06
-21.56
-22.33
-21.83
-21.50
-21.50
-22.13
-21.33
-21.25
-21.06
-21.19
-21.38
-21.06
-21.00
-22.63
-20.94
-18.06
-14.91
-11.39
-12.75
-13.79
-12.75
-11.69
-12.34
-13.97
17 7Q
-lo. jo
-13 56
1 J . J J
-15.31
-16.88
-16.98
-15.56
-13.98
-14.06
-13.09
ABSR IN
GAS T
DEG F
381
392
382
381
382
333
333
383
385
337
389
389
393
386
386
388
388
385
383
383
382
392
384
371
346
331
324
319
311
306
305
304
305
310
717
J 1 !
325
334
345
355
359
360
358
ABSR OUT
GAS T
DES F
280
284
277
274
282
284
275
276
285
282
273
278
293
277
276
232
281
274
277
285
230
273
281
290
276
258
275
290
289
270
267
279
297
289
90 1
*.w 1
271
233
291
274
266
239
290
OUTLET
SAS 302
PPHV
5.72
1.50
10.72
1.04
2.95
3.75
1.91
13.44
11.73
3.01
3.84
0.22
-0.99
8.78
-0.82
-0.81
6.89
3.01
1.00
5.93
3.01
1.96
0.05
18.38
17.50
17.50
9.72
22.25
7.83
9.72
19.39
3.01
17.44
5.83
fl 73
C • . 3
17.50
13 59
1 •
0.69
0.18
1.29
0.13
0.35
1.05
0.23
1.61
1.41
0.3i
1.06
0.03
-0.11
1.05
-0.10
-0.10
0.82
0.36
0.12
0.70
0.36
!\ T7
J . i. J
0.01
2.20
2.10
2.10
1.17
2.65
0.94
0.70
0.97
0.36
2.09
0.70
! Ac,
i . 'J J
2.09
1 63
1 i 3 J
1.29
1.30
1 i?
"> 7C,
0.54
OUTLET I
GAS NOX
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
- 0 . 0 1
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-A (\ 1
V . Jl
-0.01
-0 01
U . V I
-0.01
-0.01
->"> fit
-i'i lit
-0.01
I ME ELfir
FEED
GPM
7.92
7.91
7.98
7.38
7.94
7.94
7.81
7.81
7.79
7.73
7.72
7.73
7.70
7.73
7.75
7.70
7.66
7.66
7.70
7.64
7.61
7.59
7.59
0 . 00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.07
M ftfl
J • US
0.09
ft ?5
v * *. J
0.21
0.21
ft "i
., ,,;,
"i < r
K-24
-------
RADIAN CORPORATION
02-Jari-S8
PROCESS DATA SUMMARY
HAINE ENERBY RECOVER* COMPANY
rORK COUNTY WASTE-TQ-ENERGY FACILITY
BIDDEFORD MAINE
ON IT A
DATE
J12DEC97
U2DEC37
112DEC87
J12DECS7
J12DEC37
I12DECS7
I12DEC37
J12DEC37
112DEC37
<12DEC87
U2DEC37
tl2DECB7
I12DECS7
U2DEC87
U2DEC87
H2DEC87
U2DEC37
H2DEC37
•12DEC87
J12DEC87
U2BEC37
J12DECB7
j!?nr.na7
125ECB7
12DEC37
12DEC37
12DEC37
I2DEC87
ti?ncrg7
J12DEC87
U2DEC87
112BEC87
ti2DEC37
I12DEC87
U2DEC87
U2DEC37
U2DEC37
I12DECS7
I12DEC37
tiTirrp?
*i il/CLC-
I12DEC87
112DEC37
TIME
16:44
16:48
16:52
16:56
17:00
17:04
17:03
17:12
17:16
17:20
17:24
17:23
17:32
17:36
17:40
17:44
17:43
! 7 • E, 7'
17:56
13:00
13:04
18: 08
ia. n
13:16
13:20
18:24
13:23
13:32
18:36
13:40
18:44
13:43
13:52
18:56
19:00
19:04
19:03
19:12
19:16
19:20
19:24
19:28
DST CLTR
GAS DF ?
IN H2G
1.39
i in
2.39
2.59
2.93
3.05
3.26
3.45
3.25
3.42
3.26
3.46
3. 50
3.33
T ', C
3.51
3.40
f "" <
J.Oi
3.39
* c,^
J . Tfc
.54
.45
.32
.35
.43
7 91
2.91
2.13
2.41
2.56
*"' Q !
3.01
3.09
3.39
3.33
3.29
3.33
3.33
3.35
3.00
2 . 50
AESR IN ABSR OUT
GAS P GAS P
IN H20 IN H2G
-5.11 -7.31
-5.84 -9.03
-a. 13 -10.13
-6.31 -9.97
-7.23 -11.33
-7.05 -11.13
-7.64 -12.16
-14.06
-13.66
-13.56
-14.53
-12.69
-3.25 -13.06
-14.16
-13.69
-13.31
-14.44
-13.19
-13.88
-13.59
-13.33
-13.72
-13.91
-13.13
-13.09
-13.94
-14.81
-15.47
-14.69
-15.16
-14.13
-13.97
-14.44
-13.00
-7.31 -12.41
-3.09 -12.75
-12.6?
-7.92 -12.53
-7.20 -11.09
-6.27 -9.69
ABSR GAS
DIFF P
IN H2Q
2.65
3.05
3.91
3.55
3.98
4.16
4.44
5.13
5.53
C FM1
J.Ji
5.33
4.92
4.31
5.27
5.86
5.08
5.14
5.56
5.25
4.38
5.28
5.02
5.00
5.34
4.94
4.99
6.53
6.88
7.33
7.23
6.66
6.06
6.48
5.39
5.19
5.19
4.56
4.61
5.11
4.63
4.16
3.43
BSHSE
DIFF P
IN H20
4.80
5.31
7.45
7.28
7.06
7.30
3.25
3.19
8.34
3.53
3.00
7.91
3.66
8.31
3.00
8.34
8.56
7.91
3.50
8.13
8.03
8.69
8.25
7.77
8.50
8.47
3.38
9.34
9.66
8.88
9.09
8.73
7.39
9.00
3.50
7.11
7.61
7.69
6.89
7.69
7.27
5.36
ID FAN
SUCT P
IN H20
-12.31
-13.69
-13.06
-17.19
-13.00
-18.69
-20.19
-21.50
-22.31
-22.19
-21.81
-21.06
-21.56
-22.06
-22.25
-22.38
-22.06
-21.94
-22.19
-21.19
-21.75
-22.19
-21.63
-21.44
-21.75
-21.56
-23.38
-24.69
-25.50
-24.56
-24.25
-23.31
-22.38
-23.38
-22.19
-20.69
-19.88
-20.25
-20.33
-20.19
-19.00
-15.06
ABSR IN
SAS T
DE6 F
345
333
330
334
344
354
362
369
379
385
336
383
379
380
382
386
386
384
384
383
332
385
386
386
337
385
337
390
392
336
377
366
360
355
352
351
350
351
356
361
364
363
ABSR OUT
GAS T
DES F
256
264
275
275
279
281
233
287
291
276
263
280
287
280
273
282
284
274
276
283
280
276
279
281
279
274
231
236
290
288
277
264
279
293
273
264
239
292
267
273
296
276
OUTLET
SAS S02
PPHV
9.72
13.59
5.38
12.69
14.66
9.72
7.33
10.73
4.92
6.88
16.56
5.88
13.59
9.72
8.78
1.00
15.59
4.92
3.01
5.78
3.08
6.58
9.78
2.70
2.57
6.52
0.21
0.36
1.30
8.88
-0.90
0.26
12.09
5.48
2.58
13.03
12.66
11.22
16.25
5.27
6.69
11.03
CORRTD
GAS S02
I
1.09
1.59
0.69
1.52
1.76
1.17
0.94
1.29
0.59
0.82
1.99
0.70
1.63
1.17
1.05
0.12
1.87
0.59
0.36
0.69
0.37
0.78
1.18
0.33
0.31
0.79
0.02
0.03
0.14
0.86
-0.06
0.02
0.91
0.00
0.00
0.00
0.00
0.00
0.00
A A 0
0.38
0.66
OUTLET L
GAS NO*
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-.'I ,'lt
-0.01
-0.01
.IME SLRY
FEED
SPH
0.17
0.18
6.22
6.05
3.47
3.59
3.44
8.34
9.29
8.19
8.13
8.09
3.06
3.00
7.97
7.94
7.91
7.91
7.91
7.86
7.95
7.92
7.91
7.91
8.47
3.53
8.56
8.63
0.10
0.12
0.11
0.14
0.14
0.15
0.16
0.19
0.17
0.18
0.19
A ! Q
j.1'3
''''. lq
K-25
-------
RADIAN CORPORATION 02-Jan-88
PROCESS DATA SUMARY
Kfi!NE ENERGY RECOVERY COMPANY
YORK COUNTY KASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE TIME DST CLTR ABSR IN ABSR OUT ABSR GAS BGHSE ID FAN ABSR IN ABSR OUT OUTLET CORRTD OUTLET LIHE SLRY
GAS DF P GAS P GAS P DIFF P DIFF P SUCT P GAS T 6AS T GAS S02 GAS 302 GAS NOK FEED
IN H20 IN H20 IN H20 IN H20 IN H20 IN H20 DES F DE6 F PPHV I PPHV GPH
I12DEC37 19:32 2.50 -6.44 -10.03 3.52 5.08 -14.84 359 257 0.94 0.03 -0.01 0.20
112DEC87 19:36 2.44 -6.08 -9.59 3.45 5.14 -14.66 353 284 0.65 0.02 -0.01 0.21
AVERAGE 3.37 -7.39 -13.42 5.17 9.22 -21.66 384 279 5.48 0.66 -0.01 7.80
t - NON-TEST PERIOD, VALUE NOT INCLUDED IN AVERAGE
K-26
-------
RADIAN CORPORATION
02-Jan-SE
PROCESS DATA SUMMARY
MINE ENERSY RECOVERY COMPANY
YORK COUNTY WASTE-TQ-ENERGY FACILIT/
B1DDEFORD MAINE
UNIT A
DATE
I12DECS7
I12DEC87
112DEC37
12DEC37
12DEC87
12DEC37
12DECS7
12DEC87
•12DEC87
I12DEC87
112DEC87
U2DEC87
I12DEC87
12BEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DECS7
12DEC87
12DEC37
I12DEC87
t!2DEC87
U2DECS7
U2DEC37
J12DEC37
U2DEC87
12DEC87
12DEC37
12DEC87
12DEC87
i 'Ticrn?
i*yttC/
12DEC87
12DEC87
TIME
11:10
11:14
11-10
11:22
11:26
11:30
11:34
11:33
11:42
11:46
11:50
11:54
11:58
12:02
12:06
1 9 • 1 i'i
12:14
12:18
1 9i T>
12:26
12:30
12:34
12:33
12:42
12:46
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
DILUTION
WATER
GPM
FI3200
1.48
4.64
8.38
» ~r~T
* .00
!.?3
c c c
7.64
3.66
2.80
7.67
6.86
2.67
4.52
3.59
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
4.08
4.13
4.97
4.36
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
ST IN STM
PRESS
PSI6
PI200A
_•)
-6
-5
-6
_7
i
-7
-8
~J
-3
-8
-8
-7
-3
-g
-a
-8
-3
DILUTION
WATER
GPM
F 1 3200
1.43
4.64
8.88
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2.67
4.52
3.59
5.88
3.15
5.31
6.89
3.98
2.57
C EC
J. JJ
6.19
4.03
4.13
4.97
4.36
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
BHSE OUT
GAS T
DE6 F
T 1 3800
266
272
271
264
266
272
269
264
269
273
267
265
271
272
265
266
270
269
265
267
270
268
266
268
268
263
268
263
269
269
268
268
263
268
269
269
267
266
269
270
267
BSHSE
DIFF P
IN H20
DPI3809
3.41
7.52
8.50
3.31
7.66
3.34
8.31
7.72
9.13
9.09
7.67
8.97
9.22
3.06
8.91
8.75
7.77
3.47
3.53
7.43
8.16
3.53
7.75
7.91
3.25
7.77
8.25
7.31
8.16
8.44
7.72
7.33
3.50
7.94
7.38
8.31
3.00
7.36
3.50
8.19
7.67
STACK
CO
PPMV
AI370A
91.25
74.00
81.75
33.25
81.25
71.25
70.50
66.25
98.50
75.50
68.50
67.25
62.75
66.75
72.25
67.75
62.83
66.25
59.00
53.38
65.00
61.25
65.25
57.83
56.63
57.25
56.75
57.50
66.50
64.25
57.33
52.50
57.33
59.25
61.13
61.50
62.50
59.00
57.25
54.33
57.25
STACK
OPACITY
I
AI370B
44.25
44.33
44.00
46.63
43.33
46.38
44.00
41.83
41.13
44.50
41.38
45.83
49.88
44.75
47.00
40.13
46.13
46.38
41.13
45.63
40.50
49.83
47.25
47.75
41.00
43.13
42.50
43.50
48.63
49.25
49.83
49.75
49.88
49.88
49.88
49.88
49.88
43.75
49 aa
49.38
49.88
STACK
CQ2
V
i
AI370C
3.69
2.99
2.93
3.29
3.09
2.93
2.98
3.09
1.98
2.69
2.78
2.73
2.98
3.39
3.48
3.09
2.99
3.18
3.18
2.78
3.48
3.43
3.29
2.59
2.39
2.37
2.89
3.09
3.29
3.29
3.09
2.93
2.93
3.18
3.53
3.39
2.99
2.98
3.18
3.18
1.39
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
100.25
102.50
103.00
104.00
102.75
101.00
103.75
106.25
105.75
106.00
105.75
106.75
105.25
106.00
106.00
105.25
104.00
102.50
102.75
101.25
102.00
102.75
103.00
100.00
102.00
100.75
101.75
102.25
101.50
102.00
102.25
101.00
101.00
101.75
102.75
101.50
101.00
101.00
1 ;'! 1 1 c,
103.50
102.25
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
>') n 1
0.01
0.01
ID FAN
CURRENT
AMPS
I3L320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
A !*. i
1 1 A !
r") ( l'l I
0 . 0 1
K-27
-------
RADIAN CORPORATE
02-Jifi-SS
PROCESS DATA SUMAfi
DATE
12DEC37
12DECS7
12DECS7
12DEC87
12DEC37
12DECB7
12DEC87
12DEC37
pncraj
12DEC37
12DECS7
12DECB7
12DECB7
I12DEC37
I12DEC37
ti2DEC87
t!2DECS7
112DEC37
U2DEC37
12DECS7
iinrra?
* j. w L. u w '
12DEC37
12DEC37
I12DECS7
tl2D£C37
J12DEC37
I12DEC37
112DECS7
J12DEC37
U2DEC37
I12DEC37
112DEC37
I12DEC37
(J2DEC37
t!2DEC37
U2DEC37
112DEC37
*12DEC37
U2DEC37
H2DEC37
112DECS7
* r/ncra?
* » t-u b wC i
TIME
13:54
13:58
14:02
14:Gt
14:10
14:14
14:li
14:12
14:2=
14:30
14:34
14:33
14:4:
14:4t
14:50
14:54
14:53
t <;..-,"
15:06
15:10
15:14
15:15
15:22
15:2i
15:30
15:34
15:33
15:42
15:4s
1 C, ' C. '':
15:54
15:53
16:02
16:06
leliO
16:14
16:13
16:22
' 6: '6
16:30
16:34
lc:"a
DILUTION ST IN STH
«ATER PRESS
SPH PSIS
2.92
3.59
5.97
5.05
2.91
4.66
s.44
4.80
3.24
5.94
7.14
4.89
4 . 30
6.34
5.41
4.41
5.58
6.42
4.22
3.01
5.77
5.83
3.66
4.64
8.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.38
7.06
1.97
6.42
DILUTION
«ATER
BPH
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4 . 80
3.24
5.94
7.14
4.89
4.80
6.34
5.41
4.41
5. 53
6.42
4.22
3.01
5.77
5.83
3.66
4.64
3.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.33
7.06
1.97
6.42
BHSE OUT
GAS T
DEB F
266
269
270
267
267
270
270
266
268
271
269
266
269
270
268
26B
270
269
266
268
270
268
267
270
272
264
259
263
269
269
262
260
264
268
270
266
263
263
270
264
262
269
B6HSE
DIFF P
IN H20
3.56
8.31
7.61
3.22
3.44
7.33
3.47
8.09
7.64
8.75
8.63
7.53
3.41
3.66
7.61
8.56
8.47
7.36
3 . 50
3.56
7.39
3.22
3.83
7.92
3.00
6.34
4.61
4.22
4.95
4.70
4.30
4.39
4.72
4.86
4.92
4.83
6.03
6.34
6.59
5.03
5.91
5.09
STACK
CO
PPHV
55.38
56.38
51.50
59.33
64.25
64.25
57.75
59.25
76.25
69.25
73.25
77.25
72.50
65.25
69.25
71.50
64.25
63.33
60.50
54.38
57.25
62.50
63.33
100.00
42.50
20.56
11.59
7.72
1.62
2.55
0.69
3.56
3.56
4.58
6.53
12.53
27.44
53.33
eg TC
192.00
159.00
147.00
STACK
OPACITY
V
49.88
49.88
49.83
49.38
49.83
49.33
49.38
49.88
49.83
49.38
49.83
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.38
49.38
49.38
49.88
49.88
49.38
49.88
49.83
49.83
49.38
49.83
49.88
49.88
49.88
49.33
49.38
49.33
49.33
49.83
49.88
-0.04
-0.04
-0.04
-0.04
STACK
CQ2
I
2.78
3.39
2.39
2.98
3.18
3.29
3.09
2.78
3.38
3.79
4.08
3.98
3.69
2.93
3.48
3.69
3.48
2.89
2.89
3.13
2.39
3.09
3.29
1.93
0.20
0.10
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.40
0.59
0.69
0.69
0.99
1.39
0.39
0.59
0.49
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
I'l 01
0.01
0.01
0.01
ID FAN
CURRENT
ANPS
101.00
102.00
102.25
101.50
102.25
101.75
102.00
101.50
102.75
102.75
103.50
104.25
102.50
102.50
103.25
102.50
103.00
102.50
102.00
101.75
•02.50
101.50
103.75
105.25
101.25
95.50
90.25
83.50
92.25
91.25
39.50
89.50
90.75
91.00
91.25
91.25
94.75
94.50
os sn
90.50
90 . 50
90.00
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
i'; fit
0.01
0.01
C.01
ID FAN
CURRENT
A«PS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0 . 0 1
M fit
0.01
0 . 0 i
0.01
K-28
-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUHHARY
MINE ENERGY RECOVERY COMPANY
YORK' COUNTY KASTE-TO-ENERGY FACILITY
EIDDEFORD HA!HE
UNIT A
DATE
TIME DILUTION ST IN STH DILUTION EHSE OUT B6HSE
WATER PRESS HATER SAS T DIFF P
SP« PS!G SPH
U2DEC37
112DEC87
I12DEC37
H2DECB7
U2BEC37
ti2Dfrfl7
J12DEC37
U2DEC87
I12DECS7
U2DEC87
t'2DEC37
I12DEC37
112DEC37
I12DEC87
I12DEC97
»12DEC87
*nnrrs7
U2DEC87
I12DEC87
J12DEC37
U2DEC37
U2DEC37
ji Tiers?
(i?ncrB"!
12DEC37
12DEC37
12DEC37
i ^nrrn?
12DEC37
U2DEC97
112DEC37
U2DEC37
112DEC37
IpncraT
I12DEC37
I12DEC87
tf?r!JT!57
112DEC37
JI2DEC37
U2DEC37
I12DECS7
ti2DEC37
16:42
16:46
16:50
16:54
16:58
17,f|->
17:06
17:10
17:14
17:13
| 7, f)
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
13:02
13:06
i a • i A
13:14
13:13
13:22
13:26
IS: 30
13:34
13:33
13:42
13:46
13:50
13:54
13:58
19:02
19:06
19:10
19:14
!9:1S
19:22
19:26
10.53
1.53
-1.02
-1.02
-1 .02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.86
6.77
4.72
3.24
5.30
5.34
4.34
4.73
5.58
5.34
3.54
4.53
7.53
6.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.33
10.69
10.53
1.53
-1.02
-1.02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.36
6.77
4.72
3.24
5.30
5.84
4.84
4.78
5.58
5.34
3.54
4.53
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.33
2.09
6.30
11.59
6.39
3.38
10.69
DEG F IN H2G
268
256
253
262
263
265
267
269
272
273
266
264
268
271
267
266
270
270
266
268
270
269
268
269
270
268
267
270
272
271
273
267
262
270
273
264
263
272
271
262
267
273
4.80
4.92
7.44
6.97
6.95
7.56
7.30
3.06
3.83
3.22
8.00
3.50
8.22
3.03
8.56
8.28
3.16
3.69
3.44
7.73
3.69
3.50
7.89
3.31
8.22
7.73
8.73
9.19
3.72
9.69
9.41
7.94
3.69
9.13
7.72
8.16
7.38
6.77
7.69
7.94
6.73
6.30
STACK
CO
PPHV
222.00
136.50
139.00
224.00
129.00
68.25
58.33
57.33
79.25
76.25
71.50
62.38
54.50
61.38
61.33
60.38
58.25
59.38
61.38
57.25
31.25
60.88
59.00
60.33
67.75
75.50
64.75
72.00
61.33
34.25
93.50
137.00
89.25
57.00
27.00
18.63
12.53
9.66
11.69
8.91
11.34
12.38
STACK
OPACITY
•/
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.05
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
0.89
0.99
1.39
1.59
1.89
2.38
2.88
2.98
4.33
4.38
3.88
3.08
2.68
3.38
3.38
3.48
3.29
2.88
3.08
3.08
3.29
3.38
3.28
3.38
3.78
3.53
3.58
3.18
3.53
1.79
1.69
1.09
0.68
0.59
0.59
0.59
0.49
0.59
0.69
0.59
0.59
0.59
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AHPS
90.25
90.50
94.75
96.50
95.00
96.75
98.00
100.00
102.50
104.25
104.25
101.50
102.25
102.50
104.25
103.75
104.00
103.25
104.25
103.00
102.75
104.25
102.75
101.75
102.75
101.75
103.75
107.50
110.25
108.75
108.75
108.50
107.25
108.25
107.25
105.00
101.50
100.50
101.50
102.75
100.50
94.75
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0.01
0 . 0 1
AMPS
0.01
0.01
0.01
o.or
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 . 0 1
0 . 0 1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.31
0.01
0 . 0 1
0 . 0 1
0 . 0 1
0 , 0 1
K-29
-------
RADIAN CORPORATION 02-Jan-SS
PROCESS DATA SUflHARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFGRD MAINE
UNIT A
DATE
H2DECB7
U2DEC87
TIHE DILUTION ST IN STM
19:30
19:34
AVERAGE
WATER PRESS
GPH PS! 6
9.44
1.56
4.39 -7
DILUTION
HATER
SPM
9.44
1.54
4.8?
BHSE OUT
GAS T
DE6 F
245
259
248
BEHSE
DIFF P
IN H20
5.89
5.00
8.20
STACK
CO
PPHV
12.53
11.34
44.02
STACK
OPACITY
I
-0.04
2.94
42.54
STACK
ID FAN
C02 CURRENT
I
0.60
0.59
3.23
AHPS
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
94.00
93.25
102.84
ID FAN
CURRENT
AMPS
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
0.01
0.01
o.or
t NON-TEST PERIOD,VALUE NOT INCLUDED IN AVERAGE
K-30
------- |