United States
Environmental Protection
Agency
Office of Air Quality EMB Report 91 -CEP-17
Planning and Standards Volume I
Research Triangle Park NC 27711 June 1991
Air
Chromium Electroplaters
Emission Test Report
Remco Hydraulics, Inc.
Willits, California
-------
HEXAVALENT CHROMIUM EMISSIONS
EVALUATION
REMCO HYDRAULICS
WILLITS, CALIFORNIA
Prepared for:
United States Environmental Protection Agency
Emissions Measurement Branch
Research Triangle Park, North Carolina
EPA Contract No. 68D90155
May 1992
Prepared by:
Advanced Systems Technology, Inc.
ONE SECURITIES CENTRE
3490 Piedmont Road, NE,»Suite 1410
Atlanta, GA 30305-1550
(404)240-2930
Fax: (404)240-2931
and
Pacific Environmental Services, Inc.
4700 Duke Drive, Suite 150
Mason, OH 45040
(513) 398-2556
Fax: (513)398-3342
-------
TABLE OF CONTENTS
Sections Page
1.0 Introduction 1-1
2.0 Process Description 2-1
3.0 Summary of Results 3-1
4.0 Sampling Locations and Test Methods 4-1
5.0 Quality Assurance and Project Log 5-1
APPENDICES
A Process Data - MRI A-l
B Field Data Sheets B-l
C Laboratory Analysis Reports C-l
D Calculations D-l
E Draft Method - Determination of Hexavalent
Chromium Emissions from Decorative and Hard Chrome
Electroplating E-l
F Determination of Total Chromium and Hexavalent
Chromium Emissions from Stationary Sources
(CARB425) F-l
G Equipment Calibration Data G-l
-------
FIGURES AND TABLES
Figures
1 Plating Tank and Scrubber Configuration 4-2
2 Schematic of the Hexavalent Chromium
Sampling Train 4-5
Tables
1 Summary of Stack Gas Conditions 3-5
2 Colorimetric Analysis of Hexavalent Chromium
Emissions 3-6
3 ICP Analysis of Total Chromium Emissions 3-7
4 Ion Chromatography Analysis of Hexavalent Chromium
Emissions 3-8
5 Summary of Chromium Removal Efficiencies 3-9
6 Colorimetric Analysis of Plating Solutions and
Scrubber Water 3-11
7 Comparative Analysis of Scrubber Rinseate 3-11
11
-------
SECTION 1
INTRODUCTION
Emission source tests were conducted at the Remco Hydraulics, Inc. located in Willits,
California. The objective was to conduct simultaneous inlet and outlet measurements of
hexavalent chromium (Cr+6) emissions that are controlled by an extended packed-bed scrubber.
The scrubber is used to control emissions from the seven hard chromium plating tanks at the
facility.
The scrubber system at Remco incorporates the use of a coalescing mesh pad in the design.
The use of this type of mesh pad is believed to represent state-of-the-art control technology for
the collection of chromic acid mist. This was the primary reason the air emissions evaluation
was done at Remco. In addition, the Remco plant is considered to be representative of other
plants in the industry that perform hard chromium plating and is equipped with draft hoods that
appear to be effective in directing the mist from the plating tanks to the control system.
Testing was conducted during the week of June 17, 1991. Emission samples were collected
using a modification of USEPA Method 13B. Samples were analyzed on-site for Cr"1"6 using the
diphenylcarbazide colorimetric method. Upon completion of field activities, samples were
shipped to a contract lab and analyzed for Cr+6 and total chrome using ion chromatography
procedures. The primary organizations involved in the test program were Pacific Environmental
Services, Inc., Remco Hydraulics, Inc., Midwest Research Institute and the USEPA, Emissions
Measurement Branch (EMB).
1-1
-------
2.0 PROCESS OPERATION
2.1 PROCESS DESCRIPTION
Remco Hydraulics, Inc., in Willits, California, is a job
shop that performs hard chromium electroplating of hydraulic
cylinders, shock absorbers, offshore equipment, and accumulators.
The plating shop consists of seven hard chromium plating tanks.
The plating shop typically operates 5 days per week, 16 hours per
day, and 52 weeks per year.
During this source test, six of the seven plating tanks were
in operation. Table 2-1 presents the dimensions and operating
parameter maximum values for each plating tank. The plating
solution in each tank consists of chromic acid at a concentration
of 240 grams per liter (g/L) (32 ounces per gallon [oz/gal]), and
sulfuric acid, a catalyst, at a concentration of 2.4 g/L
(0.32 oz/gal). All the plating tanks are equipped with heating
and cooling systems and are air agitated to maintain uniform
plating bath temperature and composition. During testing, dummy
if
rods were plated in each of the plating tanks. Table 2-2
identifies the plating tank and the number, dimensions, and
surface area of each rod plated.
2.2 AIR POLLUTION CONTROL
A schematic of the exhaust system on the plating tanks is
shown in Figure 2-1. The capture and control system was
manufactured and installed by Duall Industries, Inc., in
February 1989. Tank Nos. 1 and 2 are equipped with double-sided
hoods and Tank Nos. 3 through 7, the round tanks, are equipped
with circular hoods. The ventilation hoods appeared to be
2-1
-------
TABLE 2-1. DIMENSIONS AND OPERATING PARAMETERS FOR THE SEVEN
HARD CHROMIUM PLATING TANKS AT REMCO HYDRAULICS, INC.
Tank No.
1
2
3
4
5
6
7a
Dimensions, (l,w,d) or
(dia.,h), m (ft)
4.0,1.5,2.1
(13.3,4.9,7.0)
3.7,1.7,2.1
(12.0,5.5,6.9)
0.91,9.4
(3.0,31.0)
1.2,11.6
(4.0,38.0)
0.91,6.1
(3.0,20.0)
1.2,15.2
(4.0,50.0)
1.2,18.3
(4.0,60.0)
Capacity, liters
(gallons)
11,360(3,000)
11,360(3,000)
6,060 (1,600)
13,250 (3,500)
4,000 (1,060)
17,790 (4,700)
21,580 (5,700)
Maximum rated
voltage, per cell,
volts
2® 15
2® 15
15
15
15
2@ 15
2® 15
Maximum rated current
per cell, amperes
10,000; 3,000
12,000; 3,000
8,000
16,000
8,000
2 ® 12,000
2 @ 12,000
aPlating tank was not operated during the emission test.
2-2
-------
TABLE 2-2.
DESCRIPTION OF PARTS PLATED DURING SOURCE TEST
AT REMCO HYDRAULICS, INC.
Tank No.
1A
IB
2A
2B
3
4
5
6
7
No. of parts
1
1
1
1
1
1
1
1
Dimensions of parts, in
Diameter
12.5
6.5
13
11
11
11
11
10.25
Length
54.5
72
72
51
149
149
149
230
Surface area
plated, in.^
2,140
1,470
2,940
1,762
5,149
5,149
5,149
7,406
Not running
2-3
-------
to
QUUQ
TANK 1
- SAMPLING LOCATION A AT INLET
})- SAMPLING LOCATION B AT INLET
)- SAMPLING LOCATION C AT OUTLET
ODD
nnn
J
Figure 2-1. Schematic of the ventilation and control system for the
hard chromium plating tanks at Remco Hydraulics, Inc.
-------
effective in directing the mist from the plating tanks to the
control device.
The chromium emissions from the plating tank(s) are
exhausted to a single packed-bed scrubber located on a mezzanine
beside the plating tanks. The design airflow rate of the
scrubber is 850 cubic meters per minute (m3/min) (30,000 cubic
feet per minute [ft3/min]). The fan downstream of the scrubber
requires a 50-horsepower motor to ventilate the plating tanks.
The scrubbing water flow rate is approximately 1,140 liters per
minute (300 gallons per minute).
Within the scrubber system, the velocity of the gas stream
is reduced to less than 150 meters per minute (500 feet per
minute), and the gas stream is humidified by a spray of water.
Water is sprayed countercurrent to the gas flow through
22 nozzles. The saturated gas stream then passes through a
packed bed of polypropylene, spherical-type mass packing. The
packed bed is approximately 2.4 meters (m) (8.0 feet [ft]) high,
3.0 m (10 ft) wide, and 1.8 m (6 ft) deep. The pressure drop
across the packing media is approximately 0.30 kPa
(1.2 in. w.c.). Entrained mist and water droplets impinge on the
packing and drain to the recirculation tank.
A series of 5 water spray lines with 10 spray nozzles per
line is located over the packed bed. The overhead water sprays
are used to ensure the entire packing section is wetted to
prevent chromium buildup on the packing and aid in chromium
removal. After operating the scrubber over a period of time, the
vendor recommended that only the first two overhead spray lines
be operated because the operation of all five spray lines
resulted in reentrainment and two lines were sufficient to keep
the bed wetted. Behind the packed bed is a mist elimination
section that removes entrained water droplets. The first stage
allows large droplets to settle by gravity to the bottom of the
scrubber. The second stage consists of two mesh pads in series:
(1) a composite pad to intercept and coalesce small droplets; and
(2) a backup pad to eliminate reentrainment from the composite
pad.
2-5
-------
These- pads are composed of multiple layers of a patented
mesh material. Each layer is woven with fibers with the same
diameter. The smaller the fiber diameter used, the greater the
ability of the pad to capture small particles. In the composite
mesh pad, the material layers in the center of the pad are
composed of extremely small-diameter fibers (0.01 to
0.02 centimeters [cm] [4 to 8 thousandths of an inch (mil)]).
The material layers on either side of the center are composed of
progressively larger diameter fibers (0.04 to 0.09 cm [16 to
37 mils]). As the gas stream flows through the composite mesh
pad, the small particles that escape the packed bed impinge on
the pad and coalesce into larger droplets. These enlarged
particles are then removed in the back side of the composite mesh
pad or in the backup mesh pad located downstream of the composite
pad. The backup mesh pad is composed of multiple layers of
material with a fiber diameter of 0.09 cm (37 mils). Each of the
mesh pads is split into two sections, each approximately 2.4 m
(8 ft) high and 0.09 m (3.7 ft) wide. The thickness of the
composite mesh pad is 16.5 cm (6.5 in.), and the thickness of the
backup mesh pad is 6.1 cm (2.4 in.) . The design pressure drop.
across the pads is 1.2 kPa (4.75 in. w.c.). The composite mesh
pad was originally designed for continuous irrigation with
»
recirculated water to aid in droplet enlargement and to prevent
excess chromium from building up and plugging the pad. The back-
up mesh pad is not continuously irrigated; however, a fresh water
spray line is located prior to this pad to enable the pad to be
washed down if a buildup of chromium is detected on the pad.
The scrubber water drains into a sump in the bottom of the
scrubber and is recirculated by a pump. A level indicator (sight
gauge) is used to monitor the water level in the tank, which
holds approximately 3,790 L (1,000 gal) of water. Approximately
760 L (200 gal) of water are drained from the recirculation tank
to the plating tanks each day to make up for plating solution
evaporation losses and to reduce the chromic acid concentration
in the scrubber water.
2-6
-------
Prior' to testing, the exhaust rate through the scrubber was
measured at the stack. The measured exhaust rate was
approximately 350 m3/min (12,500 ft3/min), which was less than
half of the design air flow rate. Therefore, testing of the unit
was delayed one day until modifications could be made to increase
the exhaust rate. These modifications consisted of increasing
the fan speed, shutting down the recirculation sprays to the
composite mesh pad, and increasing the water flow rate to the
packed-bed section. These modification increased the exhaust
rate to approximately 710 m3/min (25,000 ft3/min). At this
ventilation rate, the scrubber was operating within its designed
gas velocity range, and the capture efficiency of the ventilation
system was adequate to operate all of the plating tanks.
Discontinuing the wash to the composite mesh pad reduced the
pressure drop across the pad to 0.52 kPa (2.0 in. w.c.}.
Personnel at Kimre, Inc., the manufacturer of the mesh pads, felt
that the continuous irrigation of the composite mesh pad was not
required, and a periodic washdown would be sufficient to clean
the pad. Therefore, the scrubber was believed to be operating at
or near optimal conditions at the exhaust rate of 710 m3/min
(25,000 ft3/min). This exhaust rate was maintained over the
course of the three test runs.
>
2.3 PROCESS CONDITIONS DURING TESTING
Three mass emission test runs were conducted at the inlet
locations and the outlet of the scrubber system to characterize
the performance of a scrubber system that incorporated the use of
a composite mesh pad. Each test run was 6 hours in duration.
Test run No. 1 was interrupted for approximately 15 minutes when
the control panel on the fan overheated and caused the fan to
lose power. All of the test runs were interrupted briefly to
change test ports. No other interruptions occurred during
sampling.
Process operating parameters monitored and recorded during
each test run included the voltage, current, and plating solution
temperature of each plating tank in operation. A description
(dimensions and surface areas) of each part plated also was
2-7
-------
recorded for each test run. Process data sheets documenting the
process and control device operating parameters during mass
emission testing are presented in Appendix E. Data on the
average operating parameters recorded during the mass emission
test runs are presented in Table 2-3. The total amount of
current supplied to the.tanks during each test run is calculated
in terms of ampere-hours and included in Appendix E. A tabular
summary of the total current values is presented in Table 2-4.
Composite samples were taken from each plating tank to
determine the chromic acid concentration of the plating solution
during each mass emission test run. Composite samples of the
scrubber water were also collected during each test run to
determine the average scrubber water concentration. The chromic
acid concentration of the composite samples is reported in
Section 3 of this report. In addition to the composite samples,
grab samples of the scrubber water were taken over the course of
each test run to monitor the increase in the chromic acid
concentration. The chromic acid concentration of these grab
samples were determined by using a hydrometer. The
concentrations of these grab samples are reported in Appendix E.
The chromic acid concentration measured by the hydrometer were
compared to the concentration measured using the colorimetric
analysis for one sample to determine the accuracy of the
hydrometer. The results of this comparison indicated that the
concentration as determined by the hydrometer was approximately
7.5 g/L (1 oz/gal) higher than the actual concentration
determined by the colorimetric analysis.
Therefore, the chromic acid concentrations reported in
Appendix E should be adjusted down by 7.5 g/L (l oz/gal) to
obtain the actual concentrations in the scrubber water during
sampling.
Control device operating parameters monitored during each
test run consisted of the pressure drops across the packing media
and mesh pads. The average pressure drops across the packing
media and mesh pads were 0.30 kPa (1.2 in. w.c.) and 0.60 kPa
(2.3 in. w.c.), respectively. A visual inspection was also
2-8
-------
TABLE 2-3.
AVERAGE OPERATING PARAMETERS MONITORED DURING
EACH MASS EMISSIONS TEST RUN
Run No.
1
2
3
"
Tank No.
1A
IB
2A
2B
3
4
5
6
1A
IB
2A
2B
3
4
5
6
1A
IB
2A
2B
j 3
4
5
6
Operating voltage,
volts
8.0
8.3
9.0
8.0
7.7
12.1
7.1
11.9
11.8
8.0
8.4
9.6
8.0
7.4
11.4
7.0
11.5
11.5
8.0
8.4
9.6
8.0
7.7
11.2
7.2
11.4
11.2
Operating current,
amperes
8,630
2,670
8,770
2,670
6,290
10,910
7,340
7,380
5,680
8,500
2,710
9,360
2,700
5,840
10,630
7,400
7,130
5,790
8,250
2,680
9,550
2,690
6,010
10,360
7,260
6,740
5,410
Temp.,
op
126
126
127
127
124
139
133
134
134
126
127
126
126
125
138
131
137
137
121
121
123
123
121
135
127
125
125
2-9
-------
TABLE 2-4. TOTAL AMPERE-HOURS SUPPLIED TO PLATING
TANKS DURING MASS EMISSION TEST RUNS
Test run No.
1
2
3
Total current, ampere-hoursa
Inlet-A
136,840
140,530
139,090
Inlet-B
229,690
221,320
213,710
Outlet
381,430
376,200
366,740
aThe cumulative inlet ampere-hours will not equal the outlet ampere-hours due to slight
differences in the sampling time.
2-10
-------
performed periodically during the test runs to ensure proper
operation of the control system.
Following the first test run, the composite mesh pad was
washed for approximately 5 to 10 minutes. During this time, it
was observed that the drainage system on the scrubber could not
handle the increased water flow rate, and scrubber water had
backed up into the outlet transition zone of the scrubber. The
scrubber was turned off, and the backup mesh pad and outlet
transition zone were rinsed with fresh water and drained through
drain holes located in the bottom of the outlet transition zone
behind the backup mesh pad. This section was irrigated with
fresh water until the water leaving the drains ran clear. The
scrubber was then brought back on line and operated without any
parts being plated in the plating tanks until the next morning.
The second test run was conducted over the course of the
next day. Following the second test run, the water flow rate to
the packed-bed section was decreased, and the composite mesh pad
was washed down. During the washdown, however, the sump began to
overfill with water. The scrubber was turned off, and the
drainage system was examined to determine if any modifications
could be made to increase the rate at which water is drained from
the scrubber. The examination revealed that the drainage line
>
extended below the fluid level in the recirculation tank, which
hampered the liquid flow from the scrubber. The drain line was
shortened to a point above the fluid level in the recirculation
tank, which allowed the drainage system to handle the full flow
of water to the composite mesh pad.
.Following this change to the drainage line, the composite
mesh pad was washed down for approximately 15 minutes, and the
scrubber was brought back on line at a ventilation rate lower
than that at which it had operated during the previous two test
runs. After the scrubber had operated at this lower ventilation
rate for about 15 minutes, reentrained water was observed
escaping the second pad which, once again, contaminated the
outlet transition zone with chromium. The scrubber was turned
off and rinsed with fresh water, as had been done the day before,
2-11
-------
and allowed to run overnight. In this instance, however, parts
were plated in the plating tanks overnight due to production
demands.
The next day, the third test run was conducted. Following
this test run, the scrubber was turned off before the composite
mesh pad was washed. The pad was irrigated with recirculated
water for a period of 15 minutes. The pad was allowed to drain
an additional 15 minutes after the spray nozzles were turned off
and before the fan was restarted. The scrubber was then brought
back on line successfully with no reentrainment problems. As a
result, this washdown sequence has been incorporated into the
plant's routine maintenance schedule.
Although problems were encountered with the washdown
sequence over the course of the source tests, the scrubber was
operating at or near optimum conditions during testing.
Therefore, the emissions test data can be used to characterize
the performance of a scrubber system that incorporates the use of
a composite mesh pad.
2-12
-------
SECTION 3
SUMMARY AND DISCUSSION OF RESULTS
Simultaneous sampling was conducted at Inlets IA and IB and at the outlet of the packed bed
scrubber (see Figure 1 on page 4-2) under normal operating conditions of the plating processes
and control system. Three isokinetic tests were conducted at each site. A sampling time of 360
minutes was employed on each run to insure collection of adequate quantities of chromium at
the outlet.
In addition to the emission samples, grab samples of the operating plating baths and of the
scrubber water were composited during each sampling run. All of these samples were
colorimetrically analyzed on-site for Cr"1"6. All of the emission samples and a set of scrubber
water samples were later analyzed off-site for Cr"1"6 and total chrome using ion chromatography
with a post column reactor for Cr+6. Inductively Coupled Argon Plasmology was used to
determine total chrome.
In order to meet the California standard for chromium emissions, the outlet location must
emit no more than 0.006 milligrams per amp hour or the control device must achieve an
efficiency of 99.8%. Emissions at the outlet averaged 0.004 milligrams per amp hour and the
efficiency of the control device averaged 99.991%.
Summary of Stack Gas Conditions
Stack gas conditions at each sampling location are presented in Table 1. Volumetric flow
rates at each location showed little variation between runs. At Inlet A, the velocity averaged
41.02 feet per second (fps), with average temperature of 72°F and moisture content of 1.05%.
Volumetric flow rates averaged 13,428.4 actual cubic feet per minute (acfm) and 12,643.0 dry
standard cubic feet per minute (dscfm).
At Inlet B, the velocity averaged 44.43 fps, with average temperatures of 73°F and moisture
content of 1.29%. Average volumetric flow rates were 10,599.0 acfm and 9,901.5 dscfm.
Conditions at the outlet averaged 38.18 fps, 70°F, and 1.88% moisture. Volumetric flow rates
at the outlet averaged 25,613.2 acfm and 24,022.8 dscfm.
The stack gases at all sampling locations were essentially ambient air and were assigned a
dry molecular weight of 29.0 Ib/lb mole. Variations of isokinetic sampling rates were within
allowable limits on all sampling runs.
3-1
-------
REMCO HYDRAULICS, INC.
(AMP-HOUR RESULTS)
Run No. mg/ah (gr/ah)
IA-1 144.00 (2.22)
IA-2 107.00 (1.65)
IA-3 138.00 (2.13)
AVERAGE 130.00 (2.01)
IB-1 0.52 (0.008)
IB-2 0.98 (0.015)
IB-3 8.20* (0.127)
AVERAGE 0.75 (0.012)
O-l 0.004 (6.25 X 10'5)
0-2 0.002 (3.1 X lO'5)
0-3 0.006 (9.3 x 10's)
AVERAGE 0.004 (6.2 x 10~s)
* Results for this run not included in average; it is
suspected that the probe may have contacted the duct wall
during testing.
3-1-A
-------
Discussion of Chromium Samples
Following completion of each sampling run, chromium samples were recovered and
analyzed on-site for Cr+6 using the diphenylcarbazide method (see Appendix D). Results of
these analyses are summarized in Table 2.
Table 2 shows that Inlet A accounts for more than 96% of the chromium going to the
scrubber. This finding is consistent with the layout of the process (see Section 2). Inlet A
receives emissions from the large rectangular plating tanks while Inlet B receives emissions from
the deep cylindrical tanks. The rectangular tanks account for the majority of surface area and
would be expected to account for a proportionately larger share of total emissions to the
scrubber.
The total mass of Cr+6 sampled and the volumetric flow rates at each sampling location were
used to calculate emission concentrations and mass emission rates. The average over three
sampling runs results in a mass emission rate of 6.19 pounds per hour (Ib/hr) at Inlet A and 0.24
Ib/hr at Inlet B. For the outlet, an average mass emission rate of 5.36 x Itt4 Ib/hr was
calculated with this analysis procedure.
After the completion of on-site sampling and analysis, chromium samples were stored on
ice and shipped to the Research Triangle Institute Laboratory. Ion chromatography analyses
were employed at this location using a post column reactor to determine Cr+6 and total
chromium was determined by Ion Chromatography. Results of these analyses are reported in
Table 3 (ICP analysis for Cr+6) and Table 4 (1C analysis for total Cr).
These analytical procedures produced results which were highly consistent with the
colorimetric results reported on Table 2. All three methods exhibited a high degree of
consistency from sample to sample. It is normal for ICP analysis for total chromium to result
in lower mass quantitation than are found by 1C analysis for Cr+6.
At Inlet A, 1C analysis for Cr"1"6 produced an average mass emission rate of 6.59 Ib/hr while
ICP analysis for total Cr resulted in a calculation of 6.18 Ib/hr. At Inlet B, emission rates were
0.252 Ib/hr for Cr+6 (1C) and 0.2326 Ib/hr for total Cr (ICP). At the outlet, emission rates were
5.38 x 10^* Ib/hr for Cr+6 (1C) and 5.48 x IQ* Ib/hr for total Cr (ICP).
3-2
-------
Summary of Scrubber Removal Efficiencies
Chromium removal efficiencies for the scrubber system were determined by simultaneously
sampling the two inlets and the outlet of the scrubber to determine the mass emission rate at
each location. Capture efficiency is represented by the equation:
CE = Ci-Co x 100
Ci
where: CE = % Capture Efficiency
Ci = Sum of mass emission rates at inlets to scrubber
Co = Mass emission rate at the scrubber outlet
Mass emission rates for the three analytical procedures presented in Tables 2, 3, and 4 are
discussed above. The resultant removal efficiencies are reported in Table 5. Once again the
various analytical procedures produced highly comparable results. It is also apparent that the
scrubber performed at a high level of efficiency during the test. All of the analysis procedures
resulted in chromium removal efficiencies of greater than 99.99%.
3-3
-------
Plating Tank Solution and Scrubber Rinse
During each sampling run, grab samples of the plating solution were obtained from plating
tanks 1-6 and a sample of rinsewater was obtained from the scrubber. During the final run,
scrubber samples were taken during the beginning, middle, and end of the sampling period.
These samples were analyzed on-site for Cr+6 and the resultant concentrations are summarized
in Table 6. The scrubber water samples were also shipped out for Ion Chromatography analysis.
These results are summarized in Table 7.
3-4
-------
TABLE 1
SUMMARY OF STACK GAS CONDITIONS
INLET A
Run No.
1
2
3
Average
Velocity
fps1
40.79
40.89
42.38
41.02
Temp.
°F
75
71
69
72
Flow Rate
acfinb
13,246.3
13,278.9
13,760.0
13,428.4
dscfmc
12,424.8
12,504.4
12,999.7
12,643.0
Moisture
%
0.78
1.17
1.19
1.05
%
Isokinetic
Variation
95.98
95.11
95.86
95.65
INLET B
Run No.
1
2
3
Average
Velocity
fps-
43.88
44.07
45.33
44.43
Temp.
op
75
74
69
73
Flow Rate
acfmk
10,468.8
10,513.1
10,815.2
10,599.0
dscfm"
9,779.5
9,781.0
10,144.1
9,901.5
Moisture
%
1.21
1.35
1.31
1.29
%
Isokinetic
Variation
98.10
96.92
91.44
95.49
OUTLET
Run No.
1
2
3
Average
Velocity
fps1
38.23
37.69
38.62
38.18
Temp.
op
72
72
69
71
Flow Rate
acfmb
25,647.0
25,282.3
25,910.2
25,613.2
dscfmc
24,012.8
23,674.2
24,381.3
24,022.8
Moisture
%
1.74
1.93
1.97
1.88
%
Isokinetic
Variation
99.04
98.93
99.82
99.26
'Feet per second at stack conditions
bActual cubic feet per minute at stack conditions
"Dry standard cubic feet per minute at 68°F and 29.92" Hg
3-5
-------
TABLE 2
COLORBMETRIC ANALYSIS OF HEXAVALENT CHROMIUM EMISSIONS
INLET A
Run No.
1
2
3
Average
Total
Mass Sampled
"g1
1,372,008.00
919,228.20
1,266,384.00
-
Emission
Concentration
Ib/dscf*
9.58 x 10*
6.43 x 10*
8.46 x 10*
-
Mass
Emission Rate
Ib/hr*
7.14
4.83
6.60
6.19
Grain/Dscf
6.71 x la2
4.50 x 10-2
5.92 x 10*
Gram/Dscm
1.53 x 10-'
1.03 x la1
1.35 x 10-'
INLET B
Run No.
1
2
3
Average
Total
Mass Sampled
ug1
9,375.00
15,489.60
127,694.00
-
Emission
Concentration
lb/dscf>
7.08 x 10-"
1.18x 10-7
9.99 x 10-7
-
Mass
Emission Rate
Ib/hr*
0.0416
0.0695
0.067
0.2394
Grain/Dscf
4.96 x 104
8.26 x 104
6.99 x 10-3
Gram/Dscm
1.13x 10°
1.89 x la3
1.60 x la2
OUTLET
Run No.
1
2
3
Average
Total
Mass Sampled
ug1
41.20
64.10
29.50
-
Emission
Concentration
Ib/dscf*
3.42 x 10-'°
5.40 x 10-'°
2.39 x 10-'°
-
Mass
Emission Rate
lb/hi*
4.92 x 104
7.67 x 1O4
3.50 x 1O4
5.36 x 1O4
Grain/Dscf
2.39 x 10^
3.80 x 10*
1.67x10*
Gram/Dscm
5.47 x 10*
8.69 x 10*
3.83 x 10*
"Micrograms of hexavalent chromium
kPounds per dry standard cubic foot at 68°F and 29.92"
'Pounds per hour
Hg
3-6
-------
TABLE 3
ICP ANALYSIS OF TOTAL CHROMIUM EMISSIONS
INLET A
Run No.
1
2
3
Average
Total
Mass Sampled
"g1
1,338,000
968,000
1,248,033
-
Emission
Concentration
lb/dscf
9.34 x 10*
6.78 x 10*
8.34 x 10*
-
Mass
Emission Rate
Ib/hr*
6.96
5.08
6.50
6.18
Grain/Dscf
6.54 x 10-2
4.74 x 10"2
5.84 x lO'2
Gram/Dscm
1.50 x 10-'
1.09 x ID"1
1.34 x 10-'
INLET B
Run No.
1
2
3
Average
Total
Mass Sampled
"g1
9,000
14,900
124,254
-
Emission
Concentration
lb/dscf
6.80 x 10-"
1.14x 1(X7
9.71 x Itf7
-
Mass
Emission Rate
lb/hi*
0.0399
0.0669
0.5910
0.2326
Grain/Dscf
4.77 x 104
7.98 x IO4
6.80 x 10-'
Gram/Dscm
1.09 x 10"3
1.83 x 10-3
1.56 x IO-2
OUTLET
Run No.
1
2
3
Average
Total
Mass Sampled
ug"
47.00
25.50
65.50
-
Emission
Concentration
lb/dscf*
3.90 x 10-'°
2.15x 10-'°
5.31 x ID"10
-
Mass
Emission Rate
Ib/hi*
5.62 x ID"4
3.05 x lO"4
7.77 x 1O4
5.48 x 104
Grain/Dscf
2.73 x 10*
1.51 x 10*
3.71 x 10*
Gram/Dscm
6.24 x 10"6
3.44 x 10*
8.50 x 10*
"Micrograms of hexavalent chromium
•"Pounds per dry standard cubic foot at 68°F and 29.92" Hg
'Pounds per hour
3-7
-------
TABLE 4
ION CHROMATOGRAPHY ANALYSIS OF HEXAVALENT CHROMIUM EMISSIONS
INLET A
Run No.
1
2
3
Average
Total Mass Sampled
ug1
1,390,000
1,050,000
1,350,030
~
Emission
Concentration
Ib/dscf*
9.70 x 10-*
7.35 x 10*
9.02 x 10-*
~
Mass Emission Rate
Ib/hi*
7.23
5.51
7.04
6.59
INLET B
Run No.
1
2
3
Average
Total Mass Sampled
ug1
9,850
15,100
135,258
~
Emission
Concentration
lb/dscf
7.44 x 10-"
1.15X 10-7
1.06 X 106
-
Mass Emission Rate
Ib/hr"
0.0437
0.0678
0.6430
0.252
OUTLET
Run No.
1
2
3
Average
Total Mass Sampled
ug1
43.30
25.50
66.80
-
Emission
Concentration
Ib/dscf*
3.59 x 10-'°
2.15x ID"10
5.42 x 10-'°
-
Mass Emission Rate
Ib/hr-
5.18 x ID"4
3.05 x 104
7.92 x 10-4
5.38 x 10<
'Micrograms of hexavalent chromium
"Pounds per dry standard cubic foot at 68°F and 29.92" Hg
'Pounds per hour
3-8
-------
TABLE 5
SUMMARY OF CHROMIUM REMOVAL EFFICIENCIES
Cr+* - Colorimetric Analysis
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run No. 3
Inlet
Outlet
Mass Emission Rate
Ib/hr
7.1816
0.000492
4.8995
0.000767
7.207
0.000350
Removal Efficiency
%
99.9931
99.9843
99.9951
Average Removal Efficiency (Colorimetric Analysis): 99.9908%
Cr+* - Ion Chromatography
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run No. 3
Inlet
Outlet
Mass Emission Rate
Ib/hr
7.274
0.000518
5.578
0.000305
7.683
0.000792
Removal Efficiency
%
99.9929
99.9945
99.9897
Average Removal Efficiency (1C Analysis): 99.9922%
3-9
-------
TABLE 5 (continued)
SUMMARY OF CHROMIUM REMOVAL EFFICIENCIES
Total Cr - ICP Analysis
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run No. 3
Inlet
Outlet
Mass Emission Rate
Ib/hr
7.000
0.000562
5.150
0.000305
7.091
0.000777
Removal Efficiency
%
99.9919
99.9941
99.9891
Average Removal Efficiency (ICP Analysis): 99.9917%
3-10
-------
TABLE 6
COLORIMETRIC ANALYSIS OF PLATING SOLUTIONS AND SCRUBBER WATER
Plating Task #1
Plating Task #2
Plating Task #3
Plating Task #4
Plating Task #5
Plating Task #6
Scrubber Composite
(Rinse Water)
Scrubber Start
Scrubber Middle
Scrubber End
Concentration of Cr+6 (ug/ml)
Run 01
125,592
125,592
125,592
126,928
128,264
125,592
12,078
Run n
125,319
121,098
126,638
122,681
122,681
125,319
4,876
Run #3
118,724
119,779
116,085
120,834
121,362
126,111
16,674
17,102
14,774
19,840
TABLE 7
COMPARATIVE ANALYSIS OF SCRUBBER RINSEATE
Scrubber Rinseate
Run tt\ Composite
Run #2 Composite
Run #3 Composite
Run #4 Start
Run #5 Middle
Run #6 End
Concentration (ug/ml)
Cr+«
(colon metric)
12,078
4,876
16,674
17,102
14,774
19,840
Cr+
-------
SECTION 4
SAMPLING LOCATIONS AND TEST METHODS
Sampling Locations
A schematic of the plating tank, scrubber configuration and sampling locations is presented
in Figure 1.
Inlet A
Inlet A is located in the duct that captures emissions from the large rectangular plating tanks
(tanks 1 and 2). The straight run at this site was approximately 4 feet and the duct diameter was
31.5 inches. The horizontal duct required a vertical traverse for sampling. Due to the short
straight run, a 24 point sampling traverse was employed and a cyclonic flow check was
conducted. The cyclonic flow check indicated the presence of an acceptable laminar flow at the
sampling point.
Inlet B
Inlet B is located in the duct that captures emissions from tanks 3 through 7. This duct also
presented a short, horizontal straight run of approximately 4 feet with an inside diameter of 27.0
inches. A vertical traverse with a 24 point sampling traverse was employed. A cyclonic flow
check was conducted and indicated the presence of an acceptable laminar flow at this sampling
point.
Outlet
The outlet measurement site is located in a vertical, 35 x 46 inch duct. A stack extension
was installed at this location to provide an adequate straight run for the sampling points. A 25
point (5x5) sampling array was employed and a cyclonic flow check was conducted to insure the
presence of an acceptable laminar flow.
Plating Tanks and Scrubber Effluent
Plating tank solutions were sampled directly from the tanks and scrubber effluent samples
were obtained from the scrubber effluent discharge. These sampling points are presented in
Figure 1.
Test Methods
The sampling methods used in this test program included EPA Methods 1, 2, and 4 and a
modification in Method 13B's sampling train. A brief description of each method is given in
the following text.
4-1
-------
IN)
V T/WK 3 TAJIK 4 TANK 5
- SAMPLING LOCATION A AT INLET
- SAMPLING LOCATION £ AT INLET
- SAMPLING LOCATION C AT OUTLET
- SAMPLING LOCATION 0_ TANX 1
- SAMPLING LOCATION £_ TANK 2
- SAMPLING LOCATION F TANK 3
- SAMPLING LOCATION G TANK 4
- SAMPLING LOCATION H. TANK 5
- SAMPLING LOCATION I_ TANK 6
- SAMPLING LOCATION J. TANK 7
• SAMPLING LOCATION K SCRUBBER WATER
Figure 1. Plating tank and Scrubber configuration
-------
Location of Traverse Points
USEPA Method 1, "Sample and Velocity Traverses for Stationary Sources" was used to
determine the location of traverse points for each measurement site. Cyclonic flow checks were
conducted at both inlet measurement sites and at the outlet.
Stack Gas Velocity
USEPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type
S Pilot Tube)" was used to determine the stack velocity and temperature at each measurement
site. Type K thermocouples were affixed to S-type pilot tubes having an assigned coefficient
of 0.84. The velocity pressure was measured on an inclined manometer. The volumetric flow
rate was calculated from Ihe stack gas velocity and the stack cross-sectional area.
Since Ihis source is an ambienl source, a dry molecular weighl of 29.0 was assigned.
Stack Gas Moisture Content
USEPA Method 4, "Determination of Moislure Conlenl in Slack Gas" was used to
determine Ihe slack gas moislure content This measuremenl procedure was conducted
simullaneously wilh Ihe hexavalenl chromium sampling procedure.
Hexavalenl Chromium Emissions
A modification of USEPA Melhod 13B, "Determination of Total Fluoride Emissions from
Stationary Sources," was used lo determine Ihe hexavalenl chromium emissions. The sample
Irain was modified by utilizing 0.1 Normal Sodium Bicarbonate as Ihe impinger solution and by
placing a teflon-coaled glass fiber filter between the third and fourth impinger.
The sample train consisted of a Pyrex nozzle and probe connected to the impingers and filter
assembly followed by vacuum pump, dry gas meter and calibrated orifice. A schematic of Ihe
sample Irain is presenled in Figure 2. Triplicate six hour measuremenl runs were conducted al
each site.
Tank and Scrubber Solutions
Grab samples from each location were obtained during Ihe six-hour emissions lesl. The
grab samples were mixed lo form composite samples.
4-3
-------
Analytical Procedures
Emission Samples
Following the recovery of the emissions samples, the recovered samples were analyzed on-
site to determine the hexavalent chromium concentration. The samples were analyzed using the
diphenylcarbazide calorimetric method. This method is presented in Appendix D. Upon the
completion of the field activities, the emission samples were packed in coolers and submitted
to a contract laboratory to be analyzed for hexavalent chromium and total chromium using ion
chromatography procedures.
In addition to the emissions samples, grab samples of the plating tank solutions and the
scrubber effluent water were analyzed on-site for hexavalent chromium. Scrubber effluent
samples were also analyzed using ion chromatography for hexavalent and total chromium.
4-4
-------
PROSE
STACK WALL
TEMPERATURE SENSOR
X**
REVERSE-TYPE
PITOTTUBE
PITOT MANOMETER
THERMOMETERS
ORIFICE
ORIFICE ~/7~j|
MANOMETER '
|L
THERMOMETER
CHECK VALVE
VACUUM LINE
VACUUM GAUGE
AIR-TIGHT PUMP
DRY TEST METER
Figure 2. Schematic of the hexavalent chromium sampling train
-------
SECTION 5
QUALITY ASSURANCE PROCEDURES AND PROJECT LOG
Quality Assurance
The equipment used in this test program was calibrated as specified in each respective
method. Pre- and post-test equipment calibration data are presented in Appendix F.
All field data was recorded on standard data sheets and field analytical data was documented
in a notebook. These are presented in Appendix B.
Quality assurance (QA) of the sample analyses included the preparation of a standard curve
and reagents on a daily basis. Sample QA also included analyzing reagent blanks and one
standard or duplicate sample with each set of samples being analyzed.
Test Program Personnel
The following is a list of the field team personnel involved in the completion of this test
program:
Frank Clay - USEPA Project Officer
Helen J. Owens - Project Manager; laboratory analyses
John Chehaske - Meter reader, outlet
Eric Hollins - Site Erection Coordinator; meter reader, inlet
Jay Morgan - Meter reader, inlet
Joey Fuller - Technician
Darren Machuga -Technician
Project Log
The following is a summary of the field activities:
6/16/91 - Travel to Willits, California.
6/17/91 - Inventory equipment, initial set-up.
6/18/91 - Completion of site set-up, preliminary velocity traverses, modify
process operation to meet test condition requirements.
6/19/91 - Completion of one, six-hour measurement run at each site,
recovery and analysis of emission samples.
6/20/91 - Completion of one, six-hour measurement run at each site,
recovery and analysis of emission samples.
6/21/91 - Completion of one, six-hour measurement run at each site,
recovery and analysis of emission samples; site restoration, pack
and ship equipment.
6/22/91 - Travel
5-1
-------
APPENDIX A
PROCESS DATA - MRI
A-l
-------
APPENDIX B
FIELD DATA SHEETS
B-l
-------
SAMPLE RECOVERY DATA
Sample Location: //*/
Sample Type:
Sample Recovery Person:
Comments:
FRONT HALF
Acetone
Container No.: rA-
Filter
Container No.:
Description of Filter:
Samples stored and locked:
BAC.K HALF/MOISTURE
Container No:
,/
Liquid Level Marked:
Sealed:
Sealed:
Description of Impinger Catc.h:
-------
O PACIFIC ENVIRONMENTAL SERVICES. INC.
'hllll {Kft'n a /-f*i/
dimpling Ij
Sample Ty pi
Hun Numbc
O|>cnil()r
llarumclric
Static Prcssi
Tiller Numt
Pretest Lea
Pretest Pilo
Pretest Ore:
Rend and R
Page
Ncalion /'•'f^T' /I
dlf "*
r I* ~ /
Pressure (6 ) cX. d'*>
ire ft! ) - /. 7 (?<*<.<>')
*risl
kRalc= fl.0/fam<3> / T" In.
1 Leak Check A^-""^
Kg
it Leak Clicck
ecord all Data Every / -f Minutes
/ of 2-
liivcite
I'oinl
Number
' '*• "*-s-S
A- 1
3
•f
j
b
;r
5-
l/
/ c
: 1
1 3.
Sampling / dodi Time
Time. / /1^hour~~5
(mb.) / V--tledrr^,
0 1 10 '•&
i r / >o'.+<>
Je / // 00
j-r / //./('
(.C 1 ;' i.ct
s\ I K :vr
ro i '7:<.'-'
/6' r / n :, >
/ *- C* 1 1 2 . "i>0
Mr / .'2^yi'
1 i 0 1 /*% . «^-c
/ 6 r / f"p- "
/ re) Ijf: 5o
/
/
/
/
/
/
/
/
/
/
'
~ Uu Mcl^i
Retclin|
(Ua) n J
O7Q.IZ1
1(o. 15-
88. OG
Qf.OL
!^3. q^
li~V. 71
lLf.fi iff
' i, - r . 2 0
m.89
!f^ ^^
-ic* 0 y^fo
lit!
la.
Fill 1.1) DATA
Schematic of
Traverse Point La
Temp. Sensor ID No.
4
0. y
o,r^
/?/ 5"^
O-5't.
O . !b"^
OiiTcc Pia DirreieoiUI
(^I)b:ii2o
l)abcd
• . • \ \ . •
(•jrjEg
0.^3
o ,\\
O.<«~L
I, (5
=5.o
•3. u
/. z
]./
?
^-
'tl.llC 1 J
I'ilDl TII
Ni>rzle 1
Assume
Meter 1
Meler6
Meier C
Referei
PoslTe
Pc«sl Te
Post Tc
u-nj;
he
1)
dr.
UK
II
ian
ctf
II
n r
1C
j
TeL / 1
T^np.*
\
-
F
/
/
/
/
/
/
/
/
/
/
/
—
III anil 1^
ID. No.
loislure.
Number
ima
P.
A
—
IT0 —
(J, 272 ,
% -2*1
Ciiiiilcnscis
V, : Sili
Tut
~\\ m*| „.„ __ . .. ,
jtiij ii
&f~*
(jt i7& -~ o. }?ۥ
Si/?-//
'. If
/ , fj2- y
r * -- d#
£~*tr
.eak Rale = (/' U/ O cfni <3t / In. l?g
ilol Ixak Oieck
)r»l Uak Giec
1
/
/ ]
/ /
/ /
/
/
/
' J
/
/
/
i " •'
/
Imp
Te
o
"gel
mp.
F
L 3~
(0O
i0*\
diGi
G> 1
69
TZ
7 0
C-?
$'/
5^
k
Dijr Cat Meier Temp.
Inlet
7 /
77
£Z
B<&
Cj /
9w
Itf3
)CLC
to'y
iC '/-
/
Cj.6'
OIT
Dulld
7 c)
7 3
7 7
SO
64
87
'
-------
Page Z- ol
Plant Name:
Run Number:
Test Dale: _ J
JA-/
Operator: /' // / a /v
Traverse
I'ninl
Number
0-1
z
3
y
5'
c.
7
)
7
/ u
/ (
ll.
Sampling / Clock Time
Time. / (24 hour
(min.) / clock)
O i /'?:oL
/ < / 'i .1?
1G / / / ' j Z
VS~ //^:/7
6 c; / /s'.v-J
7>x / /r ./7
761 //:r.3x
/£.-• r ' /«' '/
' i » 1 l(a,& i
i ? >'"/ (bi7
'•!'"^ l<^3.
/ yer'*' loii
/ ^-t;11'/ no 7
37Z.o4
.^7,i'5"
y^ZO6
iVn =
TO,3-m
Velocity
Header,)
iiLlljU
1
^ i
Y./
^e
•i.t*
•3: 2
?. *>
3.3
Actual
f//
4.Z
^,1
H.I
^.1
H-l
/-, /
•?.tf
'5 t
3.2.
3 ^
5-3
AH •-
ltt'1
Sock
Temp. ° F
m
rt
17
•IB
77
17
7b-
-7 -r
/ ''
7T
77
77
1~7
17
Tr-
7'rP
5^-K
Pfohc
Temp./ filler
Temp." l; ,
1 j
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Itupingcr
Temp.
8F
^"/^
Uiillcl
fBnoi) °n
'V<~
9^
9to
9b
9t
97
/••. -y
'.' S
9o
^u
9a~
?to
Qb
Pump
Vacuum
In.Ilg
&
(*
fe
fa
^.
s^
6>
/
l^>
<;>
<;,
-^
^>""
6"
-------
• • ••• «BKa*
O PACIFIC ENVIRONMENTAL SERVICES. INC.
Pl;inl y\ *'* • ./- //>/ f/>-st.. ft'ft
Dale ^ ~2-O/- '//
Sampling Ijx-nlinn _£ » / tSf~ /-I
Sample Ty|>c (. r f
Him Niimlicr -1 /I ' .A-
Operator ,2 //, S f>, "4,
| ^ -j . - y
flammclric Pressure (K ) ^-j^- ^
Static Pressure (It ) - / ?
l-'illcr Nnrnbcr(s)
Pretest Leak Rale = C.OC ) cfm (S> /^~ In llg
Prclcsl Pilot Leak Clicck ^-"'
Prclcsl Orsal Leak Clicck
Head and Record all Data Every ' S"~ Minutes
I-IHLDDAIA
A -<•..'•'•••
Schematic of
Traverse Point Layout
m,
CO
Ni
I'lnlic 1 cngih a
riinl Tnlic I.I).
N../7IC 1 I)
Assumed
Meier lloi
MelerA 1
Meter Ga
Iteferencc
CllllllcllStlS
" V • S'l!r;i |vl _.
Tnl:il II II
..llyx: ^' C-/*~*.
Nn tb'S'R-
0,370
Mnisliiic. % -^^
Nintilirf 'MO " It
(•3
inma
6p
Cost Test Irak
I'iKl Test I'ilol
Pcsl Test Orsal
I-B^
\. (Jl&
i - <,'. (*.
Rale = ?, ()•:' 1 cfm (3> f in. llf
Ixak Gieck
Ixak Clieck
page / of -<
I'uinl
Number
A- 1
z
7
y
5-
C-
7
k~
7
< 0
t /
/ 2-
Samplln| / Clock Tlroe
Time. / (U huur
(min) / clod)
0 1 UK?
' J ' / O^HO
3^ / «yf5S
v*r / 1010
(-. <^ / |0'">
7.$' / IOHC
'/ C 1 lOfjb
/ 0 ; / i i io
/ i O 1 || JS
f 3 5~ 1 ||^0
x^ e 1 liGO
'' L' *~ 1 l2'O
/ Z c? 1 \12^
1
1
1
1
1
1
1
1
1
1
1
Temp. Sensor 10 No.
tiii Meier
Rei'.;
^"i-.<"'-
JV ^5, >~/
C^.r, /t/
5- ^f. y/x
I'M
"S-Vi.llo
Velocilj
llciJ.J t'i)
b HjO
O. 1^
O, / 1
0,20
Ol. XX
cn, y?
d 5/
&C
. "]i ID
1 1 1
Hiilu: Fid DiireicDlul
(cll)b II2()
jjciued
c- OG
O / 'j(^
0 -Sfc
C' i fci
t . 1
2,8
?/ /
?. ''
/. c
2, '/
I 0
AH
S.C-C
Artuil
s
O.'^fc
(J, (<-t
C;.'3
O .to L
(. 1
2.i6
J, f-
/ /
-r. ^
i.Q
£>j
~>, ' C
sua
Temp • I-'
^ ." • 7
H=
11
10
7/
/-*
Sy
7/
TS 7|
fL
^"3|
1
Temp / 1 illei
Temp.* F
/
—
•*-
"~7"
I /
/
/ /
/
/
/
/
/
/
'\
/
/
/ \
/
/
/
/
/
/
1
liopiligef
Temp.
:Sz
7D
•11
^ r*
6- V
t i
t/y
6- *~
Diy (iai Meier Tciop.
Itifcl
I'Ri )° 1*
V6
7'j"
HO
B-^~
^h
42
9 7
?f
to f
i a i
* »
/w y
-TI-\
q
^~
J"
r? j"
-------
Page
of
Plant Name:
Run Number:
><*•/<
/
Tesl Date:
Operator:
-.-.-
Traverse
Point
Number
I?-/
2.
;
y
V
6
7
5-
7
( t)
! /
/z.
Sampling / Qock Time
Time, / (24-hour
(min.) / clock)
C 1 il'.rf
f '- /
?•> /
xr /
Crf /
?r >
••/ 1 i
U' r /
f *^ '
, ; r /
' t?" C1' /
' d r /
// o ' »<»<
/
/
/
/
/
/
/
/
/
/
/
Gas Mclcr
Reading
(\t)f|3
5"/f, WO
'j'o'i", s"8
572.13
o88.8«'t
LiCo.^l
oai. ^M
te ^ft . & ^
Ci-i'tS , (0(£
.', 7Z, 5"
(.•,^'r( . T7
7oM.^n
11-1 . n
73^. Til
Velocity
Header,)
irtlhU
a 7x7
0,15"
0.7M
o/n
0,1"S
O;7^
O.TT
6.15'
o,i?9
O.kS
f i . S'.S
o./jT
Orifice Prcj. Differential
(/:JI)in. 11,0
Desired
v. /
H.i
M.I
H,o
H.O
q.i
^. 3
^, 1
••3,8
••J.u
1. i
•a.\
Actual
y; /
4,1
4. V
4,0
4-6
4.1
4, 5
4.1
3,fe
3:1,
VI
3:1
Slack
Icnip. ° F
(?)
76
11
18
78
78
•78
7«
79
79
11
71
71
Probe
Teni|i. / Filler
Temp0 1-
1
/
/
/
1
1
1
1
1
1
1
1
1
1
1
1
/
/
/
/
/
/
/
/
liupinger
Temp.
•F
1C
k:T
(o7
fcri
ni
A*-5"
V'{
5'H
.-f'l
VH
T-r
.v^"
Dry Gas Meter Temp.
Inlet
Cfch)-F
?y
/o3
IcT
(O^;
I0
-------
Page 2 ol if
Plant Name:
Run Number:
.*- 5
Test Date:
Operator:
/,»
Pc-^rre^r L&tit. foul - O.COL
Traverse
Point
Number
/s
/; - y
j
.>*
X
<"
/ ..
~
/".
X
•y
: ')
//
ij.
Sampling / Qock Time
Time, / (24-hour
(min.) / dock)
0 I ir.tr
! \~ In* :•
J- I ;/."•:•<•
c -'" ' |?.iO
'• / ' pis"
^.•' 7 iZ'HC-
v /.' / ii.^r
/'/ »" 7 i3,.o,
/ -? •' ' i >,;•<'
- / ' / l^.Mr ,
'' cc ' n-.-ir
/ ^"r / 1*1 (.',
>!'c ' i<*.:a
/
/
/
/
/
/
/
/
/
/
/
Gas Meier
Reading
(V,)fU
i^ 7JJ
^ '' * V
'i 1 2, ±7
ct -IN . "
*(.'t
4 "«-.
H.«
•M 'J
-
?'*
1 1
n
'IK
78
1ct
h^
&J
f,l
79
Probe
Temp./ Filter
Temp.0 V
1
\ 1 \
, / !
/ ' /
.- / :'
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Impinger
Temp.
°r
5"fc
C2-
r,r
toM
faV
b-r
•J7
1U
58
6" 7
5b
SB
Dry Gas Meter Temp.
Inlet
(E.in)°F
J*^'
7?
/ d J
IUS"
I0'|
ioe
/o;<
iC/}
io^i
ICA
K,B
luB
Unllcl
(t,,,,,)0^
i" ^
*?/
33
9'- i.
i ..:• L
IOZ
iOi
»Ci
Pump
Vacuum
In. llg
y^
f
^
H
*f
'H
"-f
^
3
^
Ji>
.y
-------
r~r~7/^7'==^
Of PACIFIC ENVIRONMENTAL SERVICES. INC.
A / ' / '
Hani flr.*> f .j //y ,- />.„ tt /, ( j
Dale (,-?-/-'•//
Sampling Ixicnliun / 'i / r^f- '//
Sample Type f > f "
Hun Number ./"//- 5
()|tcralnr <•" '.' , /2 xt";
llaromclric Pressure (R ) J * . f £'
Static Pressure (P. ) - 1. 7
Piltcr Ntimbcr(s) ~"~
Prclcsl Leak Rale = t-1. t'# 5~cfm O / O In. llg
Prelcsl Pilol Leak Check * —
In r~l l~» !"» A '!' A
'lllLIJ UA 1 A
('nl
"2
1:0
I'tolic 1 tnglli ami Tyi
I'iliil Tulic I.D. Nil.
Nnnle 111 0.
Assumed Moisluic, ?
Meter llot Number .
Melerallfid /.
Meter Gamma /
Referenda p /
Post Test Ixak Rale
ClIllllcllSLIS
V • S'l'r;> prl - ...
TiMMI^n
*. $' ' C" /<"~*
j - ^ ff
J -7 f
(, 2.
/*i,\~//
/ '•?
(Jilr
- f. &
= O.V/Y cfm© /' O in. llf
Pretest Orsal Leak Oicck
Post Test Pilol locale Check
Read and P
Page
ecord all Data Gvery / J" Minutes Travrrfc Poliil 1 a
/ of J»
Tiiveise
I'olnl
Number
>S.NS^^
A-,'
/'.
X
V
r
£
7
5
•;
/ ,;
/ i.
Sitaplbi / dock Time
Time. / (Z4-bour
(rnb.) / clock)
£' / 7 It^1
' r / # jc1^
;^- i a-*?
ft" 1 B - 3-2.
^ t.' 1 R -r7
7 >~ 1 7.42
? -' 1 O^li
•• "5" / O'RI
/£« / C.V-H1
' > r / 1007.
' -' '.<5 / (0 1 1
/ '- f / 10.32.
' i' ff / /--i^'l
/
/
/
/
/
/
/
/
/ 4*v
/
/ =••/";
U«j Mclct
73i. % 7
7 1*/, 5/
77 7x ^7
7rv. ^^
7 <,*. 0 X
? 7< , 0 i-
T ij jfj jl Ci
/ O i » "•7
6dO > -^ 3
B/fc . /"ii^
63i. €>?.
S^t • HT)
>?(•>/. n
"a 7 7, d4 fi]
b. llJO
^N^-V^
M ^
Q,l J
C7,/ Z
&/ J
(7, 2c
6', r/
O.TJ
C-.fc-s"
o.s*7
0.-51
0.7Z
v7»?jT?
(dl)b. 11,0
beibcd
>\^-^^vS
,72.
0, 7±
C, Li
O. 7 i
/, Z-
,?, J-
4 . O
3.7
3.1
^ 1
'•^ fe
4 -O
Art
^. L.^^
Actuil
•^g^X-S^
,'72.
i ~? ~i
6. (f «'
0, -7^.
/, '>'—•
2 1 y
•4.0
^, ~
^.1
^^ 1
3.8
<{ .(j
t,ou( l>r»l Tesl Or». Leak Cheek
Slid
Temp. • |:
(T,>
^^^
6£
6^
C-^
(,S"
C 7
k&
Col
-70
7<
72-
ts
.S
T
— /— :
/ ;
/ ;
/ i
/ i
/
/
1
!
; / \
/ !
i / i
/
/
I / :
i / ;
/
/
/
/
/
/
/
Iroptngci
Temp.
•F
N\-X\^0
r ^
Y y-
V--7
T?
t~u
5 T-
:')'5"
t"8
59
•?#
64
(&0
Dry CM Meier Temp.
Inlet
r BI» r P
«VS'^-;'v vxv
C-/
C '. ?
-?S
? £
$- o"
& r
90
*?*<
•yff
c/t>
97
cyc^
"Ti'A q \
^
5"J"0
Oullcl
-^S s^-^^.
LO
C- 3
C- t'
/" 6'
7 .<
7 <*
KO
P '•*
^•ts
0,7
f-M
90
fump
Vacuum
In II8
vv'x"^
/
/
/
/
/
J
^-/
ft
3
3
^
tj
-------
SAMPLE RECOVERY DATA
Plant: ' f
Date: C? - 20-^f
Sample Location:
Sample Type: Cr
^gr ' n "
Sample Recovery Person:
Comments:
Run No.: T
Sample Box No.: f
Job No.
Filter No.:
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Sealed:
Sealed:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
IMP. NO.
1
2
3
4
5
6
CONTENTS
/JaHCG^
(Ua H tO^
rvir
Sxcrc/^i 6e u
TOTAL
1NITIAL
VOL (ml )
lOO
ICO
WEIGHT (arams / 1
INITIAL
562.3
57/.4 .
^26. B
674.4
FINAL 1 NET 1
577, Z
5£i.;T
*/3/.8
7lg.9
K'.9
10 >(
5.C
W.O
&a..O
Description of Impinger Catch:
-------
SAMPLE RECOVERY DATA
Plant: '
Date: (* - 2O-Sf
Run
Sample Box No.:
Job No.
Sample Location:
Sample Type: Cr
Sample Recovery Person: b
Comments:
Filter No.:
KMI
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed;
Sealed:
Sealed:
IMP. NO.
1
2
3
4
5
6
CONTENTS
/UaHCO^
lUa 11 CO*
(V\T
SzUTCrt 6e u
TOTAL
INITIAL
VOL (ml )
lOO
100
WEIGHT (arams; 1
INITIAL I FINAL 1 NET
562.3.
5*7 /. 4
^26. B
67^.9
577, Z
SSi-S"
^3/.e»
7.^.9
K',9
10. \
s,o
f1 .0
^'.C'
Description of Implnger Catch:
-------
SAMPLE RECOVERY DATA
Plant:
Date:
KcMco (-/.-> (Nr^a'-i-c •:>
6 -f'if "ii Sample Box No.:
Run No.: J-A'2,
1 Job No.:
Sample Location:
Sample Type:
"H
Sample Recovery Person: 1) I^.KH
Comments:
Filter No.:
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Description of Filter:
Samples stored and locked:
BAC.K HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
Sealed:
Sealed;
IMP. NO.
1
2
3
4
5
6
CONTENTS
AA HCG^
tO* HCCi
MT
Srcrcrf 6ec
TOTAL
iNIiiAL
VOL fml )
/^O
I'JO
UEiGHT (arams; 1
INITIAL
5ul.O
5"7i . V
^Zfc.C?
c>97.9
FINAL 1 NET 1
5*8.'. 3
sVi.2.
•?3i,^
"/«", 3
.'9.^
-2.7
5.0
57.4
n.o
Description of Impinger Catch
-------
n UBJ
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
/ ;- . 3^-- ^
C,S^2
^.^33
C,CIT|
STACK I.D.
3 .5"
•i
>
PRODUCT OF
COLUMNS 2 AND 3
(TO NEAREST I/8 INCH)
L . ^ t 2
r r
';."?2.
.. .^
7 i.s
/Uf
26. f 4
r s : ^
J ~ "?£.
/"? 7?
x^i ^i
SO 3li
DISTANCE B
C.L-j-
4
TRAVERSE POINT LOCATION
-FROM OUTSIDE OF NIPPLE
(SUM OF COLUMNS 4 & 5)
0,c\\2-
t^
$.qy
5>" ^3
^. I3
II.1I6
2J>. :>£
2k. I 7
^S.C3
^''i. i>'-i
'5 ) , C-ct
-------
PRELIMINARY VELOCITY TRAVERSE
PI ant : A/- cc My*/t*»/,: r .inh
Run No. /»-v /-^ Time
^0
: /
Xj7/
- • ^^
Date: f. // r/*/
Location/
Stack I.I
Barometr
Stack Gai
Operator:
Pi tot Tut
ThermocoL
Tempera tt
Pi tot Tut
Traverse
Point
llurocr
4 ' /
•^
3
f
r
£
?
j-
7
/d
//
i7
: . ' _/* /•*# Xf
].: . ^ / (x J
3: -/ ?
)e Numoer: s - r/f
ole No. i/4
re Readout
e Leak Chec
Velocity
Head (Aps)
in. HiO
/? \ J
6, 3
it
/2-
C] Samplino^' C
I Location
\
t
1
1
1
T
Schematic a£ Traverse Point layout
Velocity
Head (APSJ
in. M-,0
0.4?
o.o*
0 ,#7
O.Vfr
o,//
0,^4
d. 32-
0, 3^
0, 30
0, 27
o.zy
S tach
Temp.
?y-
Cyclonic
Flow Chech
• fron .'lull
f~-
/ t
~7y \ j 5~
7?
73
7?
7X
7^
*?/.
7y
7?
?3
73
&
O
&
' r
. 7
- z.
- Z
- r
" 'S
o
-------
mw mi mum asm
3 PACIFIC ENVIRONMENTAL SERVICES, INC.
'l:inl /U-?riM.'o WvjcXfu.vjuc_
•>
Uatc css/l*! fi |
Sampling Lo
Sample Typx
llun Numbc
Operator
Jaromclric
Static Prcssi
Filter Numt
Pretest Lea
Pretest Pilo
Pretest Ores
Read and fl
Page
cation _IZtX!<^
B /
-j
h'
'3
k
7
9
'I
/C
//
/z.
A l
2
3
t/
•y
c
7
s
^
/c
//
Sampling / dock Time
Time. / (24-hour
(mia.) / clod)
/
o / !-y,'j
••f /
30 /
1K /
bo
M.^7
'|t
^/.M
N 1:1. D DATA
Schematic of
Traverse Point La
Temp. Sensor 10 No.
Velodlf
iic.J4 ro
b. IhO
^'.^
o
.7V
O,G7
o
0
. 72.
.71
0.7Z
O:fcrt
0^6.
o.-j-^
O.V/
O -6-3
O
, TZ
0-^j
dJilo :•?
£)
.70
C,al»ed
•^.•^.v^'
3.1
•7 <
3. t'
^.o
3-0
U
/ 2.
i. (
2-7
3-O
2 -3
£ I o
Z 7
^.'1
* t/
/. T
•2.7
/'. "3
/. t,
/.k
/.«-/
/.;?
Artuil
^j-^sx ->^>
'•> • !
^-'i
'7.C-
"> O
5.0
2. !?
i. S
£.2.
Z 1
2-7
">. o
:3 '^
^.•s7
Z.j
2 r'\
2 b'
2 7
-2 -7
/. ?
l-fa
/<(o
z.y
l.'Zj
o
c
N
(l
()
I'tnlic Iriiplh ai
I'ildl 1 ulic ID.
NnnJe 1 l>.
Assumed Muisl
Meter Ihn Nurr
MclcrAlKjD
Meter Gamma
Reference p
Post Test L
:ak
,,ny,«
•V-
Cm
V, : Sili
Tut
M |*vl
,11^(1
r4 ^W>r,
N» *>- 3A
o. zs?
me. % -^~
hc, MB •
AV'o
// ':•>.•: :(\\^°
-^'l l.i, .."^ -7^
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Irapinger
Temp.
• F
>>-\\\->;;;
Lk
b'L
i>l
-'*
&o
60
4,-ej
*>~7
TS
'Jit
'ytf
r-g
7V
6tJ
5T>
SO
^•j)
jjt>
J>Z)
<5?J)
^)~0
5^j
3&
k
Dty Gil Meier Temp.
Inlet
r&b, )• F
•v V-;-.' .•..:•."•
7&
'$3.
- 1
T'i?
^j^i
/t>z
/<9 /
14 f
/0^s"\>- \>>"
& 7
£"•(
7V
"'fL
'**•/
"??
^1
57
S'';
^
?*7
P '?
j?^
%'S~
3(tL
j (j
^ *j
'3' V
^?
??
37
JT<5~
'-G
Funip
Vicuuin
lo.llg
^-
^
^
6
6j
'>
V
7
±>
<5~
5
_$•
3-
3
tr
5-
J
^5*
-------
5=='
SAMPLE RECOVERY DATA
PI ant:
Date: C<~
Run No.: -
Sample Location:
Sample Type: •"""' C
Sample Recovery Person: ^
Comments:
Sample Box No.:
'/•' "
Job No.:
Filter No.:
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
Sealed:
Sealed:
Description of Impinger Catch:
-------
•» «w mtm VBH
•3 PACIFIC ENVIRONMENTAL SERVICES, INC.
Dale \/JLOIe*i
Sampling L<
Sample Typ
Run Numbc
Upcralor _
fl.iromclric
Static Prcssi
Tiller Numt
Prclcsl Lea
Prclcsl Pilo
I'rclcsl Ors:
Head and P
Page
•cation -Xut1 1 &
r • — • *" -^- c?
.^.| -^p
Pressure (K ) -2S . X 1
ire (It 1 -3.1
>cr(s)
c Rale = O.oc^cfin© 'V |n.
1 Leak Check !^Z.
Hg
1 Leak Check AJA
rrd all Data Gvery / 7 Minutes
of /
Illvciie
I'oinl
Number
.-^•^•^
7> i
•7
3
*
y
6
•1
%
c\
10
u
iZ_
A /
2.
3
4
V
&
1
S
'i
it
u
Sampling / dock Tine
Time. / (14-hour
(mb.) / clock)
.. — /
O / (L/jZ-.S
!-^ 1
"(J. /
ll:3 1
'*U /
7T /
l?C /
/C5" /
/ ^•^ 1
'3tT /
ihV 1
'S /
;'7o /
^S'lT /
3oO /
S/'i" /
^>b(-> l
Uu Meier
Reidinf
t".H...Li
t '"> . :»' i
.:~1 •&!
'-'1. 5G
'-•'x ^ ^>~"
ft'l.CZ.
£/. ^^
V5', oo
'0 7. 7C|
n~$.yl
.'35. 3';
A/5" -'t^
/^r7. IW/tift
ii\,-)\J
/S'if. 25
/r(r/. <^T
^(2 .f ^
/?2c ,v£
Jl'-lL.'.oL)
Z'7| | O"?
•^LO,6'i
-fiD'Zy
^'H-7i5
VI 1:1.1) DA 1 A [
t
p
p
N
P
fv
N
K
r
"l
»2
VJ
tube l-cnplli a
lot Tulic I.D.
nnle ID
id 1Yi«c
Nu •)• 1i\-
C,zw5
Ciiiulciiscis
V, : Siti
lni
, ,., i
alllll
^./ t^^
L«umcd Muisluie, % J^-
lelcr Ikn Nun
fclcrA 11(20
Icier Gamma
cfcrcncoa p
,h» /MrVl3
f.oi^i
/ - «/. i
Pnsi Tcsl Irak Rale = OX'O^- . cfmO / in. lie
Schcnialicof
Traverse Point La
Temp. Sensor ID No.
Vclocilf
lleij^ t.)
b.lhO
^&V^
i-^.6'7
0
O
."76
•70
^.6CI
0, t7
O. ^^
0
6
*7
.*>$"
£> S3
O.T51
O-^1
3-?l
'fi;
£>,
^1
ftl
O-t)"7
O
•A7
i^CnU
£>.<*i~
O^il
0,31
o.SI
£>-35
btol—
12, Vf> 2*55. '3 o
Oiiflce Fid. Diircreollil
(tii)b. H2n
Ixlicd
•.\\<:^.\\\^:
__', <7
x7 H
2. f
/ ^
2. "a
2. T
z.3
2. ^
/. 3
2. 3
.2.1
?•??
7 $
2L.'<
Z.I
Z.I
2.T
/,7
1,3
i. "S
'.3
2.6
Actull
^s<<\->^
". •>?
2,--f
£.'•(
^- S
i'-S
* 7
2.3
23
/. s
?. Z-
i?->
7. i
il-i
^- ^
z..y
2.9,
'? -1
2-7
K7
i,-^
1.7
'• !>
2.6
I'Hsl Test Pilot Ijeak Check
^
l-OUl rnslTcsl Orsal liak Check .*>.1/V
Slick
1'emp. • !•
^^^
(V -/
6(0
6>^
<^'T
£>'/
70
70
71
•72-
7V
75"
^6
7'y
Tj~
?k
•11
7f
7^
vv;
rg>
gb
Fid-e
Temp. / Filtei
Temp/ F
xvN-.'v^.'vV-O.'1
/
/ i
/
/ j
/
/
/
/
/
/
/
/
/
' i
/
/
/
/
/
i /
/
/
[rapiiiger
Temp.
•F
>;\v\>>'
£ 7
£Z-
^ /
6'Z.
GJ1/
u?J?
^/ ^.
6 5
c; 2.
^? 1
£,«y
6/
5"?
^^
'yta
''T
-3 ^i^
5" 7
^
5*r
<,-£,"
•7>~
>"7
Dry Gti Meier Temp.
Inlci
ft., »e F
.\.sVx- :•-.-:>
C3*5"
•7-1
^C;
"7^1
Sr5"
96
/OcJ
97
/Oc^/
^17
/£
/o /
TV
/05-
/O -
/&5"
/Of,
ttk
1 65
/oz
/o3
G^ Z.-^ 7 7 7tf CT /
Uullcl
fTinu.!^
C-\v\ xxx-.^.x
b\
^X?
Vjcuuin
lo.llg
V
(/
o
<.}
V
'/
V
V
Ji
y
V
V
y
y
•y
V
V
s'
^
_^
25
<^T *V6 */
1f-C> '
-------
SAMPLE RECOVERY DATA
Plant: '
Run No.:
Date: to - fS1 - 9/
Sample Location:
Sample Type: (ir +
Sample Recovery Person: /}
Comments:
FRONT HALF
Acetone
Container No.:
Job No.
Liquid
Level Marked:
Filter
Container No.:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
Sealed:
Sealed:
TOTAL
Description of Impinger Catch:
-------
L_-JL__JL_J
07 PACIFIC ENVIRONMENTAL SERVICES. INC.
Dale Clii\J/A
kRalc= J.CO^/cto,© Jtf In.
1 Leak Check °^L
Hg
il Leak Check AJ/I\
ccord all Data Every l*j Minutes
of /
Ttiveitc
I'oinl
Number
'•'•"v -Iv?"
fi, 1
z
5
i/
6"
4
7
•2
*l
/O
/I
/Z-
A- i
2
?
4
«f
d
"7
i
^
10
/|
Sioplln| / dock Tine
Time. / (24 hour
(into.) / clock)
/ _
o / o, '•/'•)"*
i") /
><_; /
if^ /
(•C 1
7*3 /
MC /
ic>r /
/ZJ /
iw /
I^Z) /
/6>i~ /
/*0 / jiZZ-
/fi T /
ZiO /
r^*r /
2w6' /
/^T /
no /
^•if /
"5CC /
;.T /
13^' /
(JM Meier
Re>din|
(vbi)n J
5^',-, .tL. ^
3>'f t>'l
-•'! . 7s"
Vfs.'H
?>kC:.c^>
>->«-/ , ^^.
^>5 7iL>*T
J'tX> «3M
t4/-S (^^-
HZ.L.05
ij^.7u
nq.-f£/
7'P . 27
*TZM . iio
5tf'.t>-5'
5"JD.7Z.
5^ • 7 Z-
^^ >H
r>'7'). ?'7
IM ELI) DATA
&
[' • /z\A
CO
N,
Piol>c l-cnglli a
Pilot Tulic ID.
Nozzle ID.
Assumed M
Meter IT<)« t
Meter A ll(!
Meter Gam
Referenced
Post Test 1 j
Sclicmalicof
Traverse Point La
Temp. Sensor ID No.
Velocity
llcid.( ti)
to. HjjO
V^\'\^.v
c
i: fc
O . feH
df. '^
o. ^3
o. lt
(JiD "^
C -^^
o -^
n h^\
f\ t^^^
O \0 ^
o.y\
0 "7^
O
.17
<^,75
°i72
O, Tj
o
-10
0. >i\
£>. Ml
t).2??
Q,^2~
O.L>\
(^11) to. lt?O
Ocjlicd
^N^.^V^''
". s
J. T
".c;
<.o
1,O
Z..6)
~ _ b
2..M
2L.f
Z.Z-
2 .<"
1.7
l-'b
£-3
7«-|
^•^
^ .^>
T-.l
I.L
/•i.
I.I
|,H
Actuil
V^-CV\\ .\^'
-" • 'S
2. 7
> ,
7,--''
i.O
i. 6,
z. >
I-M
z.f
•2.-I-
2..-T
i.'?'
2."*?
^ 3
Z.^
-?-M
v?.3
•7.1
1,2.
i-i.
'.I
j, "3
h6!
oisl
Jun
D
ma
P .
:ak
C.n
V, : Sili
lot
iilcnscis
r;1 p'-l , . ,
r.lll^M
any,* V tV- ffd^^
M.. V-3A °
<&. zv? X 2.j#
ure, % 2-
,hrr A*ft - / 3
I.^O
AO/CI
i-'~^.it) |TZ;.I
Rale- 0.003 elm O '7 in. lie
Post Test Pilot Ixak Check f5(^
youl pnsl Tesl Oraal ^^ O>=ck ^/^
Slid
Temp. »P
^\sj$^
*>1/
'r?
c O
c 2..
iJ^^
(s^
6 "7
C7
&»
-71
?">
7>
I/
65
65"
£>•£"
71
•^ tJ
77
7k
7^
76
PioJie
Temp. / Fillet
Temp.4 F
\ x\ '•-''/• --rV>N
/
/
/
/
/
/
/
/
/
/
/
/
1
1
1
1
1
1
1
1
1
1
/
»1 3 1*," l?-\ 0% f).L>i. ,.1 i,ff 77
Irapioger
Temp.
•F
^"2-
^o
£3
6->3
li'd?
66^
5*7
^5
6Z
^?O
d»cP
£.-(
tTS"
3-5-
yy
52>
^
*57i
^
yv
57
57
Dry Gn Meier Terop.
Inlet
("BioTP
'•5
f<-«-/
7"^>
7 ill
31
3 £
?«4
?*5"
"^?
r1l
ti ^
^*lfl?
Ifc.
^"02
C,c,
/d>«3
/U/
/oi.
/DS
/£>O
/^z.
let
\to~l-.
Uullcl
l-TL »0 R
1 l»n,.lj 1*
•>• 1
7V
i>"V
c —
6'>
^'^
~7 |
"7 "^
7-5"
71
7^1
5 '5
ft^?
S6
S5$
fC
.
13
1"S
W
?<-/
9?"
l*ump
Vacuum
lo Hg
Vv>.N^
J^
V
V
*j
3
a
a
y
3
25>
j^
-^
J3
.3,
5
_5
j
3
2,
•/^
il
^
57 /03 rfo~ 2.
-------
tr"
SAMPLE RECOVERY DATA
Plant:
Date: &- 2O -
if. /
i.P>
<\'#S
r? . i
Description of Impinger Catch
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
C ,
T *
T7T
rEA 1 e1- B
PLANT.
DATE _
SAMPLING LOCATION
INSIDE OF FAR WALL TO
OUTSIDE OF NIPPLE. (DISTANCE A) _
INSIDE OF NEAR WALL TO
OUTSIDE OF NIPPLE. (DISTANCE B) _
STACK I.D.. (DISTANCE A - DISTANCE B).
NEAREST UPSTREAM DISTURBANCE
NEAREST DOWNSTREAM DISTURBANCE' (n)
CALCULATOR 111
V.>
K°
SCHEMATIC OF SA/iIPLING LOCATION
TRAVERSE
POINT
NUMBER
1
2
<\
b"
L
1
8
^
10
(I
12
*
FRACTION
OF STACK I.D.
0.0 ?.l
O.Oi.7
(j . n ft
0 171
fj . ->Sb
Ct^t\(\
G.T50
0.873.
o.fe^?
0,M3^
0.979
STACK I.D.
77.0
PRODUCT OF
COLUMMS 2 AND 3
(TO NEAREST 1/8 INCH)
r, ^7
i 9m
-^ ,^
1, iVi
L,~t^0
3 fciZ.
• 7 38£
?L> Z±0
27-Zlt
?^>-?-i4
2^, i
-------
Plant:_
Run No..
Date:
u
;
PRELIMINARY VELOCITY TRAVERSE
.Job No.
_Time: il.oo
Location:.
Stack I.P.: ^7
Barometric Pressure, in. Hg:__
Stack Gauge Pressure, in. H,0:
Operators: -"* ~~'A
Pitot Tube Number:.
Thermocouple No..
"3
Temperature Readout I.P.:
Pitot Tube Leak Check:
Location
Schematic of Traverse Point Layout
Traverse
Point
Number
A/
z
3
^/
5~
^
7
V
^
10
//
/2-
Velocity
Head tAps )
in. H-.0
0. 15"
0. ,'k
o. n
0- '-7
o, n
o. IH;
O. \'2-
o. !|
o. )O
Stack
Temp.
(T,.), T
S5"
«5"
^5-
^S"
8V
25-
Bt
25"
^5"
0. /D | S^
0. \O
0. l\
&
?5~
Cyclonic
Flow Check
• from Hull
^yz 1
v
(*
5"
3
O
0
O
o
-
!3
n
Traverse
Point
llumbor
B f
2
3
5~
6
7
*
5
IO
II
It-
velocity
Head (Aps)
in. MoO
0, |fr
0. 1 1
o. ig
0. !^
0. I5?
o.ik
o. 13
<^. 15"
0. 17
0. ZD
o. -2G
0. ,-q
S tacX.
Temp.
(T^), T
s^
^
^
^
^
s^1
^
35"
8^
•ST
«5T
^
Cyclonic
Flow Chech
• from Mull
'1
II
4
?
k
2.
O
^
o
-
-
-z.
-------
Plant:_
Run No.
Date:
2
PRELIMINARY VELOCITY TRAVERSE
_Job No.
Time:
R>.
Location:^
Stack I.D.:____7.
Barometric Pressure, in. Hq: -£%:~lo
Stack Gauge Pressure, in. H.,0: -l.g
Operators:. '"" ~
Pitot Tube Number:.
Thermocouple No..
3 f~>
Temperature Readout 1.0.:.
Pitot Tube Leak Check:
Location
Schematic at Traverse Point Layout
Traverse
Point
llurbcr
A (
z
3
L/
T
L
i
t
*\
10
il
12-
Velocity
Head (Aps )
in. H->0
0.^
O.i^
0. 3Z
0-33
o-lo
0. ^°\
o, 20
o, n
0.22
S tack
Temp.
(7V),T
•11-
12-
12-
7^
-iz.
13
~N
7V
7V.
0. 2,0 | 7M
0,3|
0, 2S
•13
13
Cyclonic
Flow Chech
• from Mull
T
—
O
—
—
o
7
•z
Traverse
Point
Mumbcr
"R 1
•Z
3
4
^
t*
7
*
*i
10
\i
/z
Velocity
Head (Ap<-)
^
in. II iO
O.M
o.Zl
o.3\
0.3^-
o. 3c>
o. 3o
0- ^
o. 50
c.^
0.^
o,^\
O . (oO
S tach
Temp.
(T^). T
7Z
72
12_
•72
75>
13
1^
1^
7^
7k
76
Cyclonic
Flow Chech
• fron !Jull
ID
$
• —
12.
T
—
—
5-
—
O
rtf*\5\
10
-------
am tm mem «•»•
CJ PACIFIC ENVIRONMENTAL SERVICES, INC.
Dale & - >& / - /
Sampling l.i
Sample Typ<
11 un Numbc
Dpcralnr
>cnliun f)f,ff-(f> •/•
c fT >*-
r -/
llaromclric Pressure (R ) ^^.'7^'
Static Press
filter Numl
Pretest Lea
Pretest Tito
Pretest Ore.
Read and R
jre (P. ) - .. 1 ^
>er(s)
k Rale = f, CO -r'rfm (o
1 Leak Check c?/<
D /,-4
P>~ 1
8- 2.
rs-t
R- 1
C- o"
C'-V
C- .1
c • a
c - /
C -/
fl- •>'
^T " *"T
/?-j?
£-2
Simplln| / Clock Time
Time. / (M hour
(mln.) / dock)
O itc--,c
2. 1 lr-i?
•I. / /C-'-^^'
i -"T" ' lO ' <4 1
1C 1 / C : *>~' 1/4:0?
Z4o >H:.3^
<•" TS- l/4:4f?
370 H$-:03
rju Meier
Reidinf
-!T ^. ~ / j
£'>, 'W 37
-3 Z . C- 3
^/Z. e c
f-3 yy
<& ">" V<7
7 •?, 1 6'V"
7?.o 5o"~
^Sr''. /
'? 7 . 2 /
'V6. F
r'.^/. -•5"Sv.-6"
/3ifS?r
/."Jtfe %"&
l^f, -£
/-•T7. 79
/<5 9. V2
'ff>.V/2
/Sr3- V/^
/ *? / ^7 ^^
2/^/7 SP/T
zen. 6c
HEM) DATA
3
c
1
3*-"
^
•
» R C 9 ^
mi
(),
N
I'lolic 1 x-nglli and T
Pilot Tulicl.U. No.
Nuzzle 1 P. 0. Z.
Assumed Moisture,
Meter !l<>« Number
Melerall6P L
Meter Gamma
Reference} p
1
V, : Sili
Tin
IlkllSIMS
VI n-l
p|>e V >? c<"/<^ 4 <: £ . Mf it
-.5 -^
g7 2-tf.?- . £.<-! 7
% ' 2 '
M FI ~ I n
. ~7 7 7
^ a i//?
Or V £>
Tmi Test leak Rate = <£ Q & . efm fu) l~l's?. in. lip
Sclicmalicof
Traverse Point La
Temp. Sensor ID No.
Vtodl,
llciJ.( Pi)
b. IhO
S^^'^
^r 3^
.C
f.
^7
v/
d> 6-5
0.
97
s'f-r3
C.2.X
O.3 1
/. -1C
1:4 C
/.-jO
J.6C
^,^S
3- 7f
^^. /7
/,-•>""
/, 2C
/ . .^^;
A7--T
' /CT-^
tT.9.-*-
/. c.y
/ 2-^
S.fC
e.c)o
~Ta
72
72.
7?
7C
7O
„ ^fjc*
7V
7,3
7o
7/
7/
73
7V
7^
7.J
l»f«l Tr«l Oraal l*ak Check
1
Tctup. / Fillet
Temp/ F
>y-Y:-'/ v ",vos
y^^ •//-:> M t
,^0i?//r^- /
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
trap
Te
•
in[ci
mp.
F
•^•\\^.':
,.lt.rl
-•, r '-Z.
<&P
<&2.
/S'cf
-5"?
<£•(
-r-;
.T7
^'6
<&
r?
~r? rJ
,j-y
-•so-
5"*?
-TS*
d"7
•r
V
^•y
Dry Gil Meier Temp.
Inlet
•V>''-N-'".^
.•>- 7
.5- y
a? 'i
<•>?•
1C
7-3
721
7V
72.
7V
77
•?-y
7V
79
7?
77
79
Uullel
x^>- vX->xV".
T<-
r"7
.•$'*/
t- /
<^ ^
c- £
£5"
6 7
<£ 5"
<&?
•-?-/-
T/
7V
7-3
TV
vv
-7.-T
7V
7V
J'Ullljl
Viciiuin
In .llg
','V v 'x^
7
^
/-? -V
/6
&
£ YZ.
7
1C
t~7
S~ l/z.
&
6 l/z.
/c? 7/V
J7
f 3L/
o /'-y
&
6 *'z-
12.
-------
Page
Plant Name:
Run Number:
A - /
/o-/
Sampling /Clock Time
Time. / (24 -hour
(min.) / dock)
25-3' / A^V/*"
-300 /
C?00 ' /^,^35
3/5' 1 /3;s'o
3i4!30 (/f-.-s?.:30
3Z4.T I'G>-IZ:30
-1-3C/ 1 ie,;ig;oo
34$- lj<2:iv
360 '/6rW
37,-j- in '.03
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Gas Mclcr
Reading
(V,)ft3
e.Z£.0a
Ji35^g^2
23.->:*^z
z.^m.-.tf
£41.843
Z47.S'y3
2 5- -3.«?/
Z4/.9/
2 ?. 26
5"-
^<
C7.30
C.67
o.rz.
!&*
Q.(fW\
Orifice Pres. Differential
(All) in. II,O
Desired
3. -3^>
O T^e)
/, 0 3
/ .£?.< ci &
I.G3
I.CO
\f /n
T^^y-
/. / 5"
z.-rc
Z-.^O
&\--
&-**
i.'Tl
Slack
Temp. ° F
(V
7-3
For!
-73
-73
/^M Z
73
7.3
73
T6U
WF
ttyR
Probe
TCIIIJI. / Tiller
Temp.0 I'
1
5- /
/
/
(Oct) 1^7
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
linpinger
Temp.
«F
-5-4
**i
5TV
-------
SAMPLE RECOVERY DATA
Plant:
.< :-.n
Run No.:
O- I
Date: &-i74t?-*?l Sample Box No.: n/~/
Sample Location: >>'crit_
Sample Type: £,*"
Job No
.. y-
Sample Recovery Person:
Comments:
Filter No.: —
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
cL
Sealed:
Sealed
IMP. NO.
1
2
3
4
5
6
CONTENTS
TOTAL
INIiIAL
VOL (ml )
IOO
ICO
-o-
WE:GHT (arams ; 1
INITIAL
-r r/.. a
•-S~&2. V
^7£.4
7^3. 7
FINAL 1 NET 1
607.9
o"69. z
479.1
777.9
5"fc. 1
(0.8
2-7
M.I
99,8
Description of Impinger Catch
-------
O PACIFIC ENVIRONMENTAL SERVICES. INC.
FII'LD DA IV
Dale
iig I-ocalion ','<.. //.-.-• 1-
:Ty|>c C. •
Run Number <• " ".
ll.irornclric Pressure (R )
Static Prcssirre (I*, ) z.
! Nonibcr(s)
Prclcst Ixak Rale = f.'. <.'•>' V cfm @ /
Pretest Pilot Leak Clicck C i<
Pretest Oreat Ixak Oicck
.In.llg
f
A H
CO
N.
Ciiinlciiscis
V( : Silic:i j;cl
Tnlalll 0
Prnlic I tiiRili and Tyi>t V •£*/-•• .- i'
I'ilnl Tulic I.I). No. *)'- ^-
Noetic I IV *. -47. S.--LJS _ C.S^I
Assumed Moisture. % 2 '•'-
Mclci lloi Nunilicr _
Mcleift llfifl /. '/.? 7
Mclcr Gamma /. •-• ''•/J"-
ncfeieuccrt p C. '•/ '7
Read anil Record all Data livery
/ 5"
Mimilu
Schematic of
Traverse Point
Post Test Uak Rale = f-./O£
Post Test Pilot Ixak Check
Post Test Orsai Ixak Check _
cfm fii)
in llg
Page / of
luvciic
1'iiinl
.-5 - .!•
A • i
/: - •;
£ ~
/-' - /
/. ./
/»' ')
/s- -
o- ^
/•>• .^
/=?- /
/3 ' /
<"'• - i "
•'." ' *-i
C_ - 1
C J.
c " /
•J - /
/; /f
77- •/
/i .:7
/; j
/?•/
Simplbi| / Clock Tine
Time. / (24 bom
(min.) / clock)
/
/ c '• .:•-••
/ :~ 1 • / •=/ ^
-!,,' / .-- / -, ","
••/r /^.-/j
^-r //<•::'>•
?-r i / f •• ••/ 1
7 :t- //(.'--y-s"
70 / //: c?(?
/ <- '>' ///•/ s"
/.?.£? Ill': '1O
i 3 •••>' i it •• -v jr
1 -,-(-. 1 /?•,""
/ */£' 1 .T '••''/
/ • 1 1 '•" ' i r-'-
i *?'• 1 , 'Z • j /
/ ••? -r / > e -y^-
^ y c //.-•/•/
... . «
.7.7 •;" / / ^ /^
^•Vr' //7r.7^?
2">> l/-l--J~
Zr^zZlO 1 / ^i:i •$
-+f-$?YTl ^:if
Temp. Sensor ID tlo.
(ill Mcici
(Mu) n )
:*', -> ~C. ,
1 ' • .. .' .'
' ( :• . "I V
:"*,'. J.' ••"
- ., .... ^.
7-V^ . 5' TV
.?•/. S'"J-:V
-i;> S- 7C-)
<'/', / V
37.3 . 'j'c*'
?? 3.. 7-S'
rc7. ^.-s-
>'/' 7. -r-'c" ^
v-;o
-/'/V-r<5
•/ ~>
t" ; •'/
'". ».;'
r, o' /
' . /' 7
<.-,.
C. Z 7
(.--"•> fl
!Z . "•> -'V
<". '/••/
r. 7 ••/
S' /v /
,- r-./
^ _• .;-
<.': 1Z.
f. f>'C
.-• ->f>
•5' '/•;
tT- 3 •;
--•• . r s'
/" -?/-
.'. •< /
;.?-
0lin("jV)b.n|roeoliil
1 killed
/ "j
/ '.-
• ... -
- ^ -.
.;' v "5"
» 7"-
_/.-.,-
/./S'
/. ~.c
/ , f- '•>
?.. '/•-.'
'77 • d'
,-• .-/.-
.•• ? "5
/•i 5"
.' 7^
.'.' -.' S'
,7 77- c.
^. 7
£: f}£
.' •: •>'
-• :.-,-
•"• 1 '
Acluil
/. :•}£
f. ir
/. '/ '^
•-• ••- c
i . / -;'
}' •' t • ', '
i. C-f
/.. / S '
.'. 1C
i • :'- -5 '
?. . 7 •> "
' ; >:•; t- !'
(*^,'~
'.'.'t i
/. :.T j'
7. 7-j'
J. '".' •>"
hiiu-r;- /
cTx 7^-.
<^- '/<£•
J . f~ *)
Slick
leinp * |;
•'<- i-
<.'.• C-
~7i~
._-. 7
>"•'-/ /-.
1C-
~7C
"H
7/
(j?
'f ''f'.>
7-3
~?
7 7
73
7 «-*•
73"
-•r
-•-•/
-? r-
Temp / I'illci
Temp.* I"
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
liopingci
Temp.
<-y
'• ' V
'. J"
•TV
"j ">
r;
•>' >"
-r 7
-T7
S'O
rT "7
'rij
-•$ '7
.ry
c:c^
<".J
£^
t-c
'\~.
l)i)f (iii Mclci Tciop
Inlrl " '
._.< -&in r i;
< ^-
'..1 ~'
c." /
7 /
-7r
7/
7.".
V'J
76
~!
TV
7 F
*.',•
• T-;- y •/
g»«y
C' ;
«'-V'
Viciiuin
In llg
_ji
^..
/ / ' • i
1 7-x-V
V
-'/ 'XV
<5" /^
7
"5 !'•=••
"i ''•'.:.
•^ /xv
V
-------
Page
of
Plant Name:
Run Number:
/7-y JV&
Q-Z.
Test Date:
Operator:
Traverse
Point
Number
n-i
E - 3'
G-*j
£- 'I
E- 2.
£-/
£-/
Sampling / Dock Time
Time. / (24-hour
(min.) / clock)
3~t-&-.lccl /-/:33
s-t-jTsfol /vr-s/r
3^e?f*-l l'4:$'O
^-^fyicl / -Tecs'
-34S' lj.-f:20
360 lit': 3. -5'
S7.-T ' 15:^0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Gas Meier
Reading
(VOftJ
GO I. $'17
$'oi. -rc?7
&/O* IO
&i?-n
.5~Z7^S~
sm.io
*.*6.i4z.
I/,, ,,i •:•:
Velocity
Header,)
ia.IliO
Si-a
c*zc
<3.Z7
-7--5/
O.6C
3..9-S-
£N
^
,t5S'T_
Orifice Prcs. Differential
(All)ill. HjO
Desired
IJ To
I. OO
>.o<>-
f.zo
Z..6G
3-30
n T~£
Actual
Cltia »t ^
1.00
1,0 *>'
I.Z.O
2., 60
3.30
s~r Q-Z.
^
I.T±
Slack
Temp. • F
m
ff. Pa
7-5"
-7 6"
7-5~
7-V
7V
.i'
v-.-
7-s-
Probe
Temp./ Filler
Temp.0 F
:-*S '
/
/
/
/
/
/
/
/
>:.( /«$<.
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Impinger
Temp.
°F
63
Dry Gu Meier Temp.
Inlet
fK,|,)'F
87
*7
KZ
to
^
r^ •- ?s
(Juliet
(•»«,•) •*
**/
5'3
S'.3
r-y
*S"
Pump
Vacuum
In.llg
V
V
V
7/^
It
-------
SAMPLE RECOVERY DATA
Plant:
Date: 6 -IS -;il
Run No.: C-2.
Sample Location: S c' ft v* fti-\f
Sample Box No.: \jj - \
Q,.: T , ,= T
Job No.:
Sample Type: Cr
Sample Recovery Person:
Comments:
Filter No.:
FRONT HALF
Acetone
Liquid
Container No.: Level Marked:
Filter
Container No. :
Sealed:
Sealed:
Description of Filter:
Sarr.ples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed;
IMP. NO.
1
2
3
4
5
6
CONTENTS
AJa HCG,
AJ* HCO.
ivir
.
S-LLIUA C^ L.
TOTAL
ifUTIAL
VOL ^ml }
iCC
fOC
WEIGHT (arams ;
INITIAL
2"5/.^
561. 3
^71.^
8/-^.7
FINAL
S'y?, ?
r ^-, ^
v- ^-: /
-------
im H mm !••«•
O PACIFIC ENVIRONMENTAL SERVICES, INC.
I'lanl Ae»iHi?/s M y d r,-i f J /' f *
Dale (L,-"
A-!T
A-4
A-1
A-Z.
/}- i
/}- I
A-.-T
8- 4
S--$
ff-i
ft-/
ff-i
c-5-
fL-£j
C-3
C-2
C-l
r~ /
r, - -r
r>-j/
n- i
r>- z
n- i
Siraplln| / Clock Time
Time. / (24-bour
(mio.) / clod)
/
0 1 <37-V?
/ 5*;-V9
7. -5" ' <59 '^V
7.5" /9.'0.5'
90 loi-.zo
i o -i- / 07 : ;{ 5"
/ * o / o 9 ; J~°
/ 3 r I 10 :or
I ro i m -<•
/re 1 "••>»
— /
/ .?<.7 / /^7 ' .:T«2
/ 9 .5" / // : O 7
2/0 lifZZ.
z?*- Itr:s7
-Z2.-T ///-.I?
«?V^ '//--. 5V
2 V.l" '/e? "09
£170 '/J'JV
t-'ST //,: MV
(ni Mclct
(v«a) n '
•T5*6. 7,? 'j
.5"*^. V7
•T7r. 74
g*/4. ^33
/T/V, /33
£>Z2 . 9c>
<63S./<&
fc */ . r7
•. ri. 3 r
C C6.
uc. -
&75'+Oi
&5-.mz.
69?.. /V
VO5'.<5V
7/9.975*
""^/ ^ ^7*7 y
7 *^ ^- ^- cP
736. 9S"
7V V 7. ^
vlnislmc.
Number
f,i
mma
^P.
/|>C
V7 -<;. =
% <2
/^/?
Cm
V, : Sill
T..I
lllcilMJIS
•:l iii-l
:,lll II
<£/^t s s Z. / >-/ e V
?
?<«; ^'. 2^7
-/-,
/, 727
// c Vc
^. .^"(^
Post Tesl Ixak Rale = ^- ^
Scticnu
Traverse PC
Temp. Sensor ]
Velocity
llciJ.( !•»)
b 11^0
v ' \ '•
^ 36
0.3 9"
0. V5~
c..<*?<3
C'^if?
r/-0
^,3/
0i. .3 3
o.
3V
fl.f-f*
o, *•;
T~?7—
o,*?r
0. 2 C
C.. 16
o. $•-"
O.&7
5 tot
0,2. <£,
(^.
O.
2 -T
30
O
7-, ,- 7
0-7-v
^-77
1. f f
''.'•)')'
^ ,'~~'°
•? j >.
Artuil
.•>'•• ' -% ••<;•
/. 3 5-
/,//<,-
/- 7<7
2.Z*,'
"5 • 6^7
il'/r^^rt.^
/,/ 5-
/- c? --T
/ • o ^7
1.70
? ^
f. ?/
7/
c? 95^
/'. -VC1
/(?
.3.-5<7
-.r/ c^/i.-.
<^Vv"9
c,nsl 1C1' fl«al Ixak Clieck /V/^*
Slack
lemp. •!•'
(r,)
-V> v-->^
6Z-
62
<&2
V ^/
65"
* ^/^ f •
^ S
6* t^
^l t-i
67
c'C-
r7V X
^
72.
7^-
72.
7£°
1
Temp / rillci
Temp." F
/
/
/
/
/
/
/
/
/
/
/
/
£~y^l ^.7~
/
/
/
/
/
/
/
/
/
/
/
Iropingei
leinp.
o i:
j I 4!
21 £1
47
.">'/
-rv
.5-7
.-T&
S"7
t»i
60
£/
C- 1
-S'57
-•r?
^. «,-
.^-^
.-5-9
•i'S"
DIJ (in Mclct Temp.
Inlet
^ 7
T'V
--T9
6 3
<£.-s'
6^.
<£&•
11
7f
7 r
7 ^
77
'•?$
? 1
&'Z
y~
*4
<;
- ^
Umlcl
> / ^~
V 7
f/
4~^J
.-S'7
^-<7
vi •/
64
6X
7C^
7- Z
7 .Z.
7 1
7V
7V
77
/ 9
y*
I'unip
Viciiuin
ID llg
5"
-f^
/ ?-
-V
4}/4
4 y^
6
1 O
2 , >'~
£ 3/^
V ^v
x, ^
• f
3-l'iJ
'S Vv
V
// x'a
LM.-IU
.lit
. V i*
-------
Page
of
Plant Name:
Run Number:
Test Date:
Operator:
Traverse
Point
Number
n-i
•-- S~
E-f
'~ - 3
£-Z
L--I
/.--/
Sampling /Clock Time
Time. / (24 -hour
(min.) / clock)
• ICC ' 'Z'-i'y
.3 OG 1 IZ. ^6
-3/5' / /3."//'
>?.^0 ' M;2<^
3 ^vr" 7 M.'V/
5otf / /.^--/fi
S7S' '141 1}
1
I
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
Gns Meter
Reading
(V,)H3
7 7 3. .5=^6"
773. r^V
7FZ.17
7/. /C>
Poo- / S~
i'/o ^O
ST %'. o P'V
Velcxrity
1 lcad(.P,)
in.lllO
-T/c-
O.Z.&
•£. Z 7
0.3J
0.4>S~
e.^S-7
/£"
Orifice Prcs. Differential
(^JI)iii. lljO
Desired
o r^ <_
1 .O£>
1 , & *-
l.?.O
Z.fO
5 -W5'
A'D Z
Actual
.llrti-lQ e'.
1 . OC'
I.V*-
1.20
2. S"<5
3 Va'
Cl\> Vc
Stack
Temp. ° F
(U
^or/
7^
7V
11
73
7/
.. c?-3
Prohc
Temp./ Filler
Tcuip." I-'
t- /
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Impingcr
Temp.
«,7
6 Z.
•*-'/
*'?
^rr
'5 /
Dry CJaa Meter Temp.
lulci
(•GM.)*P
PJT
?
S'o
S-6
5-7
IJullcl
cr..,,,,)°r
?V
py
n
vz.
S" 3
Pump
Vucuiini
In. Mg
3'^
.3%-
.V ^
S^^
// '/i
-------
SAMPLE RECOVERY DATA
v< /
Sample Box No.:
Run No.;_
/T•- f
O - 3
Sample Location:
Job No.:
Sample Type:
Sample Recovery Person: "p ^Acu.u^ L- 'I... ri ^
Comments:
FRONT HALF
Acetone
Container No.:
Filter
Container No.:
Liquid
Level Marked:
Description of Filter:
Samples stored and locked:
BACK HALF/MOISTURE
Container No:
Liquid Level Marked:
Sealed:
Sealed:
Sea 1ed :
Description of Impinger Catch:
-------
DATA
Plant
Date
•//£5- Job No. 4-371
Sampling location
Calibrated pressure differential across
orifice, in. H-O
Average meter temperature (ambient + 20°F), °F
Percent moisture in gas stream by volume, %
Barometric pressure at meter, in. Eg
Station pressure in stack, in. Ha
(Pm±0.073 x stack gauge pressure, in. H20)
Ratio of static pressure to merer pressure
Average stack temperature, °F
Average velocity head, in. H.,3 •
Maximum velocity head, in. E-.0
j.
C factor
Calculated nozzle diameter, in.
Actual nozzle diameter, in.
Reference Ap, in. H-O
m
avg
wo
ava
/. "727
2.
LO
-------
OBI
TRAVERSE POINT LOCATIONS FOR RECTANGULAR DUCTS
PLANT.
DATE I 1 7V^^rt
SAMPLING LOCATION
INSIDE STACK DIMENSIONS " -"
INSIDE OF NEAR WALL TO
OUTSIDE OF NIPPLE. (Distance B}
EQUIVALENT STACK 1.0. 3v''.r '"
NEAREST UPSTREAM DISTURBANCE_ZiL£l
NEAREST DOWNSTREAM DISTURBANCE ,/f
NUMBER OF TRAVERSE POINTS ~ 5 ARRAY
CALCULATOR H P -^ I C ,V
5_
•51
ILLUSTRATE
PORT LOCATIONS^..
AND
STACK DIMENSIONS
J
K
INCREMENT
DIMENSIONS
->- 7
- 3-~ir
Hf
fx
-u-
TRAVERSE
POINT
NUMBER
/
_;
•a
-?
.-
INSIDE OF NEAR
WALL TO TRAVERSE
POINT
(Distance A)
4,6
/ 2x<£
>5.0
3?. 2
4 1,4
DISTAfJCE B
O.?-S
•'"'-, "; f~~
~- **
0 *•• ."
J •-• ."
-\ _ •
TRAVERSE POINT LOCATION
FROM OUTSIDE OF NIPPLE
(SUM OF DISTANCES A+B)
«..?<:
/A/, 05
>. -5
3>J. ^'5
^ ; {, •<:
PORT
LOCATION
DISTANCE
FROM
EDGE OF STACK
-------
Plant: *
Run No._j
Date: r/,w
PRELIMINARY VELOCITY TRAVERSE
,-^,->.. ^ydr.,{V/|it Job: NO.
Location:
Stack I.D.:
Barometric Pressure, in. Hq: O
J.'C
0 . 0'' 1
O O c"
0, /4
O.Z5
0 . 0-"!
O.CM
C . 0-1'
O. 0
c-. i "'
vlx : >-• ^.
.0. o^
0.0%
0, 10
0. ft
S tacJ-.
Temp.
(T^). T
b-1
67
^7
6^
6G
L~l
•o /
67
6 7
46
&1
^7
67
66
6(c
Cyclonic
Flow Check
* frcn Mull
-
&
O
c
(T
r
r
,-.
r"
\__
r
r-.
C
.-.
^.-
,!^^
Location
Scliematis o£ Traverse Point layout
3
*»
ARC
Traverse
Point
(lumber
^ '
2
~~>
u
T
c- !
-
*--.
Lj
^~
Velocity
Head (A Ps
In. IHO
0,^^
0.07
0. 0%
0. /u
0. l*\
0 . Of
O . OS'
o. o £
0. ]
o. n
Stack
Temp.
(T ) , *!"
67
4,7
^-7
u-j
67
un
tn
(cH
67
67
Cyclonic
Flow Chech
* fron !Iuli
O
1
0
G
C
f~
c.
c
(Jt
'~\
*~s
-------
Plant: 7?f>.^,r.a
Run No.
Date:
PRELIMINARY VELOCITY TRAVERSE
.Job No.
Location:
Stack I.D.: 3 s"r x O
O. L
o.tr
e. /5"
Ktf,
O.Z5-
o.Vt,
S tacr.
Temp.
(T^). T
6?
6?
/ 5?
U7 O
<^^
67
^^ i
70
70
^?
<^7
Cyclonic
Flow Chech
• frcn !Jull
-------
Plant:_
Run No..
Date:
PRELIMINARY VELOCITY TRAVERSE
-3
.Job No..
.Time: /*
Location:
Stack I.D.:.
Barometric Pressure, in. Hg:
Stack Gauge Pressure, in. H,0: =.
Operators:.
Pi tot Tube Number:.
Thermocouple No..
,$•- p
Temperature Readout I.D.:
Pitot Tube Leak Check:
/V7S-/0
Location
T
Schematic of Traverse Point layout
Traverse
Point
Hu.T.ser
A~l
- z
- 3
- V
- r
Z-l
-a
- 3
-v
-5-1
£- /
~e
-3
-!
" i
-r
Velocity
Head (Aps )
in. IfiO
(P. 5~V
€>. 3cT
C7. ZV
o. 17
&, If
O. . /7 1
f\ / hi \
•O. f'f- \
0. IF \
S tach
Temp.
( T ) •«•
\ ^^ t , .
7V
7V
7V
7V
7V
76
7<£
7V
7r
75^
76
76
76
7j I
V
7V
Cyclonic
Flow Chech
• frca Mull
1
1
1
1
!
i
!
1
!
i
Traverse
Poir.r
Ilur.rx! r
0-(
- z
- 3
i
1
! -^
_ ^-
£• - /
- z
- 3
- 4
-r
Velocity
Head (Aps5
in. M-iO
0. S7
0. V/
o.Zo
0. 16,
o. n
0.5-7
0. VS~
o.zi
O.lt,
1 ^. /?
S tacr.
Tenp.
(T, ). T
16
16
77
77
77
77
77
77
7?
1 7,
Cyclonic
Flow Chech
• fron !Iull
|
1 1
-------
Plant:_
Run No..
Date:
PRELIMINARY VELOCITY TRAVERSE
.Job No.
Time:
Location:.
Stack I.P.: .7.V-" * v^ "
Barometric Pressure, in. Hg:_
Stack Gauge Pressure, in. H20:
Operators: CJ,^ka*kc J ~
Sampling
Location
- o.
Pi tot Tube Number:.
Thermocouple No..
Schematis at. Traverse Point Layout
Temperature Readout I.O.:
Pitot Tube Leak Check:
Traverse
Point:
tlu-bcr
f-5-
-*/
-J
- 2.
velocity
Head (Aps )
in. \\iQ
O.Z.S-
0. Z4
O.Z6,
o, s-&
- / | ^-77
D-r'
-V
-3
^
- /
C- 5-
- V
- 3
-a
-i
o.zz
O."Z.?)
O.Z7
O.S'Z
0. VZ.
0, 2.3
6. 25*
d5.Z?
0,
-------
Plant:_
Run No.
Date:
PRELIMINARY VELOCITY TRAVERSE
0
.Job No.
.Time:
Location:
C f a r k T I") • A/ X " v T *- •'
JkaUK L.u. *-[ (a if ^> .s
Barometric Pressure, in. Hg:
Stack Gauge Pressure, in. H..O: - o~
Operators:.
Pitot Tube Number:.
Thermocouple No..
Temperature Readout I.D.:.
Pitot Tube Leak Check:
Sampling
Location
Schematic o£ Traverse Poine layout
Traverse
Point
llu-bcr
/?-5~
-•V
- 3
-2
-/
5-5-
-V
-3
-£
-/
^- s-
-4
-3
-z
- 1
Velocity
Head (Aps
in. H-.0
o.zc,
O.Z~l
0~3Z
0. 41
0,71
G.ZS'
0.2.1
0.-Z.V
0.3&
o.&z.
o. ^l
0. Z I
O. Z<-{
0.45"
.&%•
S tacfc
Temp.
(T^), T
7 1
-11
71
11
11
71
71
71
71
71
70
-11
71
-71
7 /'
Cyclonic
Flow Chech
• frctn Hull
1
;
Traverse
Poir.r
MurcoT
o- r
- 4
-5
^
'I
E - 5-
-4
-3
- ^
-/
Velocity
Head (A Ps'
in. M-,0
0. Zl
O.Zl
o.z4
o.Vs'
o. 73
O.'iZ.
O.Zl
a 23
o. 5-3
0.66
S tacr.
Temp.
(T^). T
11
71
1 1
71
7(
71
H
71
73
73
Cyclonic
Flow Chech
• fron !Iull
-------
Plant:_
Run No..
Date:
PRELIMINARY VELOCITY TRAVERSE
.Job No.
.Time:
Location:
Stack I.D.:.
Barometric Pressure, in. Hg:
Stack Gauge Pressure, 1n. H,0: -
Operators:
Locacion
PHot Tube Number:.
Thermocouple No..
Schematic o£ Traverse Point Layout
Temperature Readout I.O.:
PUot Tube Leak Check:
Traverse
Foinc
Hurbcr
£--/
-e
- 3
-V
- r
o- *-
-4
-3
- e
-/
cT- s-
- V
- 3
- ^
— /
Velocity
Head (Aps)
in. H->0
. P5-
^. ^^
0. £7
. Z5"
O.Z7
O.Z.V
o.ai
0.3 /
O.6I
o.&s'
£>. 2^
«S>.27
. J
-------
PRELIMINARY VELOCITY TRAVERSE
Plant: TcV^rf^
Run No. prr.t;\,<.< 7
Job No.
Time:
Date: <£ -?L-> -^ /
Location: <3<_,-t-l<-.i- •
Stack I.D.: 3^" * kr
? ff. 7f 1
— &- -~ "s
Pi tot Tube Number: • 5 - ?
Thermocouple No.
Temperature Readout I.D.: j^\j
^- in
Pi tot Tube Leak Check: n*f
Location
Schematic ot Traverse Point Layout
Traverse
Point
llu-ber
/*-
*'-*>
A-Z
A-l
4-.r
Velocity
Head (Aps)
in. H-,0
O.3-7
.3
0.^6
0.1?
C.37
Stack
Temp.
(T^), T
6S~"
-=f-h
<£5~
6S~
<^r
65-
Cyclonic
Flow Chech
• from Mull
Traverse
Point
Number
Velocity
Head (Aps)
in. n-,0
S tach
Temp.
(Tw). T
Cyclonic
Flow Chech
• fron (lull
-------
PACIFIC ENVIRONMENTALSERVICES, INC.
Prepared By
ZIZ-
I*}.-
? 5"
rr.
> v
/7.7S-
Date
Checked By
Project No.
Page
of
Client
Location
Date
Sheet Title
-------
-------
£
JH-
;
5
kl
men
^
Luxm
LOco
k.
la
/au2
/MMU
23
tr
iv/
a
4?/yiflfr
^
S
£uib^
21
^
JIX
Q.
j[a
±i
M
3QC
^a
iic
5S
&4TC
TO
Id
ML
*.*
LS
25,
•M
25,
O
J£Q
rn
f]
3M
{•(
5(1
COD
5O
::flb
OQ
^
r.in
o
00
10
E:^
^
5
OL
0
«X
!!£•
i i i
-------
-------
-------
-Ulh
cL
M
or
M
XT)
X»
r£
5.
10
55.
iiSQ
ao
-------
APPENDIX C
LABORATORY ANALYSIS REPORTS
c-i
-------
RESEARCH TRIANGLE INSTITUTE
Center for Environmental Measurements and Quality Assurance
August 27, 1991
Ms. Helen Owens
Pacific Environmental Services
4700 Duke Drive, Suite 150
Mason, OH 45040
Dear Ms. Owens,
Enclosed are the Cr(VI) and total chromium results as determined by ion
chromatography and ICP, respectively, for the impinger samples received on
July 2, 1991 for RTI Project No. 4848-02E, Pacific Environmental Services P.O.
No. 91-167.
If you have any questions, please call me at 919-541-6569 or Peter Grohse
at 919-541-6897.
Sincerely,
Kate K. Luk, Ph.D.
Ref: 4848-02E
cc: W. Gutknecht
P. Grohse
J. Merricks
C. Decker
Post Office Box 12194 Research Triangle Park, North Carolina 27709-2194
Telephone 919 541-6914 Fax: 919 541-5929
-------
RTI Project No. : 4848-02E
Samples Impinger Samples
Company Pacific Environmental Services (P.0.# 91-167)
Analyte Cr(VI)
Method of Analysis : Ion Chromatography (Cr(VI)); ICP (Total Cr)
Samples Received : 7-2-91
Report Date : 8-27-91
Sample
91-779 z»i*i-A--\
91-780 J/."/ A - x
91-781 J./*/- f- -i (*•••,„;
91-782 r./.rf - > tfcv^
91-783 Jo/.,/ a -/
91-784 J»'*t ib • *
91-785 T,/cf 8 - 3 C«,.,rr;
91-786 Jrtyt/ B-* ( F,H*r.
91-787 0»iitf - i
91-788 „>•/« V - x
91-789 orfitt - ^ trf'1"")
91-790 0vn
-------
RTI Project No. : 4848-02E
Samples : QC for Implnger Samples
Company : Pacific Environmental Services (P.OJ 91-167)
Analyte : Cr(VI)
Method of Analysis : Ion Chromatography (Cr(VI)); ICP (Total Cr)
Samples Received : 7-2-91
Report Date : 8-27-91
Calibration Check Sample, ug/mL
Total Total
Cr(VI) Cr(VI) Cr Cr
ug/mL ug/mL ug/mL ug/mL
Sample Measured Expected Measured Expected
0.0102
0.0106
0.0107
0.0100
0.0100
0.0100
1.87
2.10
2.03
2.00
2.00
2.00
QC
QC
QC
Results of Blank, Duplicate, and Spike for Cr(VI) Analysis, ug/mL
Spike Spike Spike
Cr(VI) Cr(VI) Cr(VI) Cr(VI)
ug/mL ug/mL ug/mL %
Sample Measured Measured Expected Recovery
RTI DIW
91-787 Dup
91-795 Dup
91-788 Spk
ND
0.0411
0.0115
— _
0.0102
_ —
0.0100
_«.
102
Results of SRM, Blank, Duplicate, and Spike for Total Cr Analysis, ug/mL
Spike Spike Spike
Total Total Total Total Total
Cr Cr Cr Cr Cr
ug/mL ug/mL ug/mL ug/mL %
Sample Measured Expected Measured Expected Recovery
Reagent Blk
SRM WP481
91-781 Dup
91-784 Dup
91-784 Spk
91-780 Spk
ND
0.0524
47.3
2.97
—
—
ND
0.0520
—
--
—
—
_-
—
—
—
4.28
1.90
_-
—
—
—
4.00
2.00
—
—
—
107
95
ND : Non-detectable; less than detection limit
-------
ilCML Hl£QUEST AND CHAIN OF CUSTODY
PLANT: j^tmC-O
PROJECT NO.:
RECOVERY ~.
PERSON: IJ,
/
/6~. /fOLLX/US
SAMPLE
TECHNICIAN:
SAMPLE IDENTIFICATION
COLLECTION
DATE TIME
SAMPLE NAME
NUMBER OF
CONTAINERS
ANALYTICAL REQUEST
/
COMMENIS
(Type ol container.
special prepaiallon,
soeclal handllna. elc.l
X
* ion
9/-780
(o-ZO
lA-2
6-2.1
X
91-783
X
Ifi-Z
6
X
£
9/-78S-
6?-z
X
X
9/-7O,
6-21
/-787
0-2
X
/ - 7B9
0-3
X
X
9/-790
O-3
X
X
CT. f\
L>ens
RELINQUISI lER'S NAME:
RECEIVER'S NAME:
DAAE/TIME
01
ELlpQI IESI lER'S SIGNATURE
OATP/TIMF
SHIPPER'S NAME AND
IDENTIFICAflON NUMMEI1
-------
ANALYTICAL REQUEST AND CHAIN OF CUSTODY
PLANT:
RECOVERY
PERSON: *[).
PROJECT NO.:
i
/
SAMPLE
TECHNICIAN:
, /4oe<_£«OS;
SAMPLE IDENTIFICATION
COLLECTION
DATE TIME
SAMPLE NAME
NUMBER OF
CONTAINERS
7
ANALYTICAL REQUEST
/
COMMENIS
ol conlalnor.
»p«clal preparallon.
BDeclal handllna. elc.l
- 79f
X
9/-79Z.
Frcreft
9/-79S
0 utter
X
Ouruer
X
I/- 79k
X
SCO -
9(-798
X
X
X
X
X
9/-80I
£/oo
ELINQUISIIER'S NAME:
1
ijai/
^ DA
TE /TIME
ELINQUESHER'S SIGNATURE
9026966480
SHIPPER'S NAME AND
-------
APPENDIX D
CALCULATIONS
D-l
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
REMCO HYDRAULICS
INLET A
6-19-91/
IA-1
CLIENT/PROJECT tf:
SAMPLE LOCATION:
DATE/TIME:
RUN tf:
STATIC PRESSUREC "H20 ):
BAROMETRICC "HG ):
SAMPLE TIMECmin ):
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.C inches):
METER GAMMA:
LEAK RATEC IF<0.02):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 ••
% C02 :
VOL CONDENSATECml ):
ANALYTE tfl :
MOLE WEIGHT:
ug/sample :
ANALYTE «2 :
MOLE WEIGHT:
ug/sample :
XXXXXXXXXXXXXXXXXXXXX
GAS VELOCITY ( Vs)
STACK GAS FLOW ( Qs)
MOISTURE (£H20 )
STACK GAS TEMP
ISOKINETIC
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs): 6.70E-02
9.58E-06
: NA
-1 .90
28.80
360.00
332.344
0.707
2.97
75.0
95.0
0.84
0.270
1 .028
"HG
Vm( corr )
DSCF
•R
•R
An( ft "2)
28.66
332.344
315.233
535.0
555.0
3.98E-04
1 As(ft~2) 5.41
31 .50
DRY MOLE WT 29.00
ST MOLE WT 28.91
52.70 % H20 0.78
HEXAVALENT CHROMIUM
1372008.00
CALCULATED RESULTS
40.79
XXXXXXXXXXXXXXXXXXX
FT/SEC
13246.3
12424.8
0.78
75
95.98
ACFM
DSCFM
%
Deg F
%
EMISSION RATE (Er ):
EMISSION DATA FOR
CONCENTRATION (Cs ):
EMISSION RATE (Er ):
COMMENTS:
7.14E+00
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
NA Gr/DSCF
NA Ib/DSCF
NA PPM
NA
COLOR I METRIC ANALYSIS
Ib/hr
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT «:
SAMPLE LOCATI ON:
DATE/TIME:
RUN if:
STATIC PRESSURE* "H20):
SAROMETRICC "HG ):
SAMPLE TIME( min ):
ACTUAL METER VOLUME:
SO. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP 'F:
Cp PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATEC IF
-------
EMISSION TEST CALCULATIONS
§-5LANT Tyrrrr, Hstd = ^5- 'ft** dscf
Volume Water Vapor Collected, Standard Conditions
Jmpi^ers = V^ = 0.04707 (Vf - VjL) = 0.04707 ( ) = scf
Silica Gel = VWSg = 0.04707 (Wf - WjL, = 0.04707 ( S*1 ) = T^7~"scf
Vw = V + Vws = 3.Vifi
std = wc wsg = 3.Vifi scf
Percent Moisture, By Volume
iv, -
V
w
Molecular Weight, Stack Gas
Dry Molecular Weight, Md = 0.440 (%C02) + 0.320(%02) + 0.280 (|N2 + ,0,,
= 0.440 ( ) + 0.320( ) 4- 0.280 ( )
- mole
Percent Excess Air, %EA =
" 1ylnnr( ,.0.5( -
"00 - X100
o (Bws) . „,, -, (1- A»j , + 18.0
-------
jyr.vc \Ld
XA-l
6. Stack Gas Velocity, Average
V,
)aVg /rfc-1 » 85.49 (£•?«/ )(0.1ol5)/- —
V ** V (23. U- )
^-O->
avg
7. Sf.-K:k Vbli-^trJc Flow Rate. AcLvnl Conditions (stack Tm«ratuco and Pressure)
^(circular) -f ° X "• <« *2'*\ SO X Vs (5.454 X 10^, (d2,
V 144 )
= 60 X A/fr. y (5.454 x 10-3) ( 3l s,. }2
'3
"or" Qa (rectangular) = 60 X
= 60 X
= 60 X V (L X W) 6.944 X 10
(
) 6.944 X 10
"3
acfm
8. Stack Volumetric Flow Rate, Sta;x]ard Conditions (68°F, 29.92 in. llg)
.2J.,,,. \
55 o" /
dscfhi
9. Isokjjnetic Variation
T V
= K
*s Vs An 9-
944 ^T^777~T~T777
C -1--3 >
^ WS'
(555' ) (3/b.
./£* )
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
REMC:D HYDRAULICS
INLET A
6-20-9 1,'
IA-2
-1 .90
29.91
360.00
330.710
0.711
3.00
71 .0
94.0
0.34
0.270
1 .028
CLIENT/PROJECT #:
SAMPLE LOCATION:
DATE/TIME:
RUN »:
STATIC PRESSUREC "H20 ):
SARCMETRICC "HG ):
'SAMPLE TIME(min):
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP 'F:
Cp PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATE( IF<0.02 ) :
CIRC STACK? 1=Y.O=N:
DIA OR DIM ( inches ):
% 02 :
% C.02 :
VGL CONDENSATEC ml ):
ANALYTE tfl :
MOLE WEIGHT:
ug/sample :
ANALYTE tt2 :
MOLE WEIGHT:
ug/sample =
xx-xxxxxxxxxxxxxxxxxxx
GAS VELOCITY ( Vs )
STACK GAS FLOW (Qs )
MOISTURE ( 5SH20 )
STACK GAS TEMP
ISOKINETIC
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION ( Cs ): 4.50E-02
: 6.43E-06
: NA
"HG
Vm(corr )
DSCF
'R
23.67
330.710
314.382
531.0
554.0
An(ft"2) 3.98E-04
1 As(ft~2) 5.41
31 .50
DRY MOLE WT 29.00
ST MOLE WT 28.37
79.00 % H20 1.17
HEXAVALENT CHROMIUM
919228.20
CALCULATED RESULTS
40.39
XXXXXX-XXXXXXXXXXXX*
FT/SEC
13278.9
12504.4
1.17
71
95.11
ACFM
DSCFM
%
Deg F
%
EMISSION RATE ( Er):
EMISSION DATA FOR
CONCENTRATION (Cs):
EMISSION RATE ( Er ,':
4.83E+00
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
NA Gr/DSCF
NA Ib/DSCF
NA PPM
NA Ib/hr
ANALYSIS
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT «:
SAMPLE LOCATION:
DA TEXT!ME:
RUN 3:
STATIC PRESSUREC "H20 )
BAROMETRICC "HG .)
SAMPLE TIME( min )
ACTUAL METER VOLUME
SQ. ROOT /\P
AVG ORIFICE /\H
AVG STACK TEMP "F
AVG METER TEMP 'F
Cp PI TOT
NOZZLE DIA.( inches )
METER GAMMA:
LEAK RATEC IF<0.02 )
CIRC STACK? 1=Y,0=N
DIA OR DIM ( inches )
% 02 ••
% C02
VOL CONDENSATECmi ):
ANALYTE tfl :
MOLE WEIGHT:
ug/sample :
ANALYTE »2 :
MOLE WEIGHT:
ug/sampie :
GAS VELOCITY ( Vs .):
STACK GAS FLOW ( Q:5 }:
MOISTURE (3H2G ):
STACK GAS TEMP :
ISOKINETIC :
EMISSION DATA FOR
CONCENTRATION (Cs ):
EMISSION RATE ( Er):
EMISSION DATA FOR
CONCENTRATION (Cs)-
REMCO HYDRAULICS
II-.'LET A
6-2C-'f •/
IA-2
-1 .90
28.81
360.00
330.710
0.711
3.00
71 .0
94 .0
0.34
0.270
1 .028
"HG
Vm( corr )
DSCF
•R
•R
An( ft ~2)
28.67
330.710
314.382
53 1 . 0
554.0
3.93E-04
1
31 .50
79.00
FOTAL Ci-'XOMIUM
963000.00
HEXAV.-_E:-JT CHROMIUM
1050000.00
CAL..;:j:..--7.-::: RESULTS
40.39
As(ft"2)
DRY MOLE WT
ST MOLE WT
2 H20
FT/SEC
13273.9
12^04.4
1 .17
71
95 . 1 1
ACFM
DSCFM
%
Deg F
%
;UM
.74E-02
.7SE-06
NA
HROMIUM
14E-02
35E-06
NA
Gr/DSCF
Ib/DSCF
PPM
ib/hr
Gr/DSCF
Ib/DSCF
5.41
29.00
28.87
1.17
EMISSION RATE • Er 5:
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT tf
SAMPLE LOCATION:
RUN ;r:
STATIC PRE3SUREC "H20 ):
BAROMETRIC; "HG ):
'"SAMPLE TIME(min):
ACTUAL METER VOLUME:
SO. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP *F:
AVG METER TEMP "F;
Cp PI TOT :
NOZZLE DIA.C inches ):
METER GAMMA:
LEAK RATEC IF<0.02 ):
CIRC STACK? 1=Y,0-N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATECrnl ):
ANALYTE Jfl :
MOLE WEIGHT:
ug/sample :
ANALYTE tt2 :
MOLE WEIGHT:
ug/snmple :
GAS VELOCITY ( Vs )
STACK GAS FLOW ( Qs )
MGISTURi: ( SH2C )
STACK GAS TEMP
I SDK I NET 1C
REMCO HYDRAULICS
INLET A
6-21-91/
IA-3
-1 .90
28.30
360.00
344.523
0.738
3.25
69.0
91 .0
0.84
0.270
1 .028
"HG
Vm( corr )
DSCF
•R
•R
An( ft~2)
28.66
344.523
329.391
529.0
551 .0
3.98E-04
1 As(ft~2)
31 .50
DRY MOLE WT
ST MOLE WT
84.00 % H20
HEXAVALENT CHROMIUM
1266384.00
CALCULATED RESULTS
42.38
13760.0
12999 .7
1 .19
69
95.86
;ION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs ): 5.92E-02
: 8.46E-06
: NA
EMISSION.RATE ( Er ):
EMISSION DATA FOR
CONCENTRATION (Cs):
EMISSION RATE ( E.- ;:
6.60E+00
NA
NA
NA
FT/SEC
ACFM
DSCFM
Deg F
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
Ib/DSCF
PPM
NA Ib/hr
TR : c ANAL YS i s
5.41
29.00
1 .19
-------
PACIFIC ENVIRONMENTAL SERVICES EM I SSI C.MS CALCULATIONS
CLIENT/PROJECT «:
SAMPLE LOCATION:
DATE/TIME:
RUN Jf:
STATIC PRESSURE( "H20):
BAROMETRICC "HG ):
SAMPLE TIME(min):
ACTUAL METER VOLUME:
SO. ROOT /\p:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATE( IF <0.02 ):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDE.MSATECml ):
ANALYTE #1 :
MOLE WEIGHT:
ug/sample :
ANALYTE *»2 :
MOLE WEIGHT:
ug/sample :
RCM'
C.I l
T *-.:!
6-2
IA-
"r A
-1?!
- 1 . 90
23.80
360.00
344.523
0.738
69.0
91 .0
0.34
0.270
1 .028
."HG
Vm( co'rr )
DSCF
i
•R
•R
An( ft~2)
23.66
344.523
329.391
529.0
551 .0
3.98E-04
•OTAL c:^i
1
31 .50
34 .00
' CHROMIUM
:5C030.00
As( ft~2)
DRY MOLE WT
ST MOLE WT
% H20
*-s»t —••- .— — (
C A t_ *_,•->_.-! . C.
GAS VELOCITY ( Vs)
STACK GAS FLOW ( Qs)
MOISTURE (XH20)
STACK GAS TEMP
I SDK INET 1C
EMISSION DATA FOR TOTAL. CH
CONCENTRATION ( Cs):
EMISSION RATE ( Er ):
EMISSION DATA FOR HEXAVA:.:Zi
CONCENTRATION ( Cs ;:
5.33E-02
S.34E-06
NA
A .50E-rOO
' CHROMIUM
6.31E-02
•? .••;.:E-C6
NA
FT/SEC
i:£ 760.0
• '-1099 __ ->
1.19
69
95.86
ACFM
DSCFH
%
Deg F
Of
A3
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
i b/DSC.-
PPM
5.41
29.00
28.37
1 .19
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT »:
SAMPLE LOCATION:
DATE/TIME:
RUN it:
STATIC PRESSUREC "H20):
BAROMETRICC "HG):
'SAMPLE TIME(min):
ACTUAL METER VOLUME:
SQ. ROOT /\P
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.C inches ):
METER GAMMA:
LEAK RATEC IF <0.02 ):
CIRC STACK? 1=Y,0-N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATECml ):
ANALYTE ttl :
MOLE WEIGHT:
ug/sampls :
ANALYTE «2 :
MOLE WEIGHT:
ug/sample :
GAS VELOCITY ( Vs )
STACK GAS FLOW ( Qs )
MOISTURE ( 3JH2CI)
STACK GAS TEMP
I SDK I NET 1C
REMCO HYDRAULICS
INLET b
6-19-91/
IB-!
-1 .80
28.80
360.00
307.264
0.760
2.57
75.0
90.0
0.84
0.248
1 .019
"HG
Vm( corr )
DSCF
•R
•R
An( ft~2)
28.67
307.264
291 .224
535.0
550.0
3.35E-04
1 As(ft~2)
27.00
DRY MOLE WT
ST MOLE WT
75.80 % H20
HEXAVALENT CHROMIUM
9375.00
CALCULATED RESULTS
43.88
10468.3
9779.5
1.21
75
98.10
FT/SEC
ACFM
DSCFM
Deg F
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATI ON (Cs ): 4 .96E-04
: 7.08E-08
: NA
EMISSION RATE ( Er J.-
EM I SSI ON DATA FOR
CONCEN'TRAT I ON ( C:5 .):
EMISSION RATE ( Er):
4.16E-02
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
NA Gr/DSCF
NA Ib/DSCF
NA PPM
NA Ib/hr
•RIMETR.M: ANALYSES
3.98
29.00
28.87
1 .21
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT tf:
SAMPLE LOCATION:
DATE/TIME:
RUN H :
STATIC PRESSUREC "H20)
3AROMETRIC( "HG}
SAMPLE- TIME( min )
ACTUAL METER VOLUME
SQ. ROOT /\P
AVG ORIFICE /\H
AVG STACK TEMP 'F
AVG METER TEMP "F
Cp PI TOT
NOZZLE DIA.( inches )
METER GAMMA
LEAK RATEC IF<0.02 )
CIRC STACK? 1=Y,0=N
DIA OR DIM ( inches )
% 02
% C02
VOL CONDENSATECml )
ANALYTE ttl
MOLE WEIGHT
ug/sample
ANALYTE «2
MOLE WEIGHT
ug/sampie
*x-*******************
GAS VELOCITY (Vs.)
STACK GAS FLOW ( Qs)
MOISTURE (%H20 )
STACK GAS TEMP
I SDK I NET1C
EMISSION DATA FOR
CONCENTRATION (Cs ):
EMISSION RATE (Er ):
EMISSION DATA FOR
CONCENTRATION (Cs }:
REMCG HYDRAULIC:
INLET b
6-19-91,'
IB-1
-1 .30
28.30
360.00
307.264
0.760
2.57
75.0
90.0
0.34
0.24S
1 .019
"HG
i
Vrti( corr )
DSCF
!
"R
•R
An( ft~2)
28.67
307.264
291 .224
535.0
550.0
3.35E-04
1
27.00
As( ft~2)
DRY MOLE WT
ST MOLE WT
75.30
TOTAL CHROMIUM
9000.00
HEXAVALEMT CHROMIUM
9S50.00
CALCULATED RESULTS
10463.3
9779.5
1 .21
75
93 . 10
TOTAL ~:-:RGMIUM
FT/SEC
ACFM
DSCFM
Deg F
4.76E-04 Gr/DSCF
6.30E-08 Ib/DSCF
NA PPM
::;.99E-02
HE: 'A'vALE-:T ;:HROM i UM
5.21E-04
NA
!b/hr
Gr/DSCF
Ib/DSCF
PPM
3.98
29.00
28.87
1 .21
"MISSION RATE ( £r ;:
-------
EMISSION TEST CALCULATIONS
PLANT £L'/"'-ICO do.(\ftflULrCS
SOURCE/RUN 16 "/
DATE
1. Leakage Correction for Volume Metered
-V = Vm - (Lp-La)e = Vm - (Lp-0.02)8 = (
)-(.
-0.02) (
2. Volume Metered, Standard Conditions (68°F, 29.92 in.Hg)
13.6
= 17.64
17.64 ( #7.
dscf
scf
I
I. Percent Moisture, By Volume
Vw,
1,019
3. Volume Water Vapor Collected, Standard Conditions
Jnpingers = V^ = 0.04707 (Vf - Vj_) = 0.04707 ( ) =
Silica Gel = VWSg = 0.04707 (Wf - Wi) = 0.04707 (75". 6 ) * 3.fffe6 scf
scf
VwStd + Vmstd ( 3.
Molecular Weight, Stack Gas
Dry Molecular Weight, Md = 0.440 (%C02) + 0.320(%02) + 0.280 (%N2 + %CO)
= 0.440 ( ) + 0.320( ) + 0.280 ( )
Md = 29 Ib/JjD - mole
, ^-
c. 5
Percent Excess Air,%EA
- 0.5 %CO
J.264(%N2H%02-0.5 %CO J
%EA =
X100
._(
)-0.5(
_0.264(
-0.5(
X 100
+18.0
+18.0 (O
-------
6. Stack Gas Velocity, Average
)avg
= 85.49
<2e.bl)U«.7t
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT »:
SAMPLE LOCATION:
DATE/ TIME':
RUN !»:
STATIC PRESSURE( "H20 ):
: 3AROMETRICC "HG ):
SAMPLE TIME(min):
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.( inches):
METER GAMMA;
LEAK RATEC IF <0.02 ) =
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 =
VOL CONDENSATECml ):
ANALYTE »1 :
MOLE WEIGHT:
ug/sample :
ANALYTE «2 =
MOLE WEIGHT:
ug/sample :
GAS VELOCITY ( Vs )
STACA GAS FLOW ( Qs )
MOISTURE (%H20 )
STACK GAS TEMP
I SDK I NET 1C
REMCO HYDRAULICS
INLET B
6-2C-91/
IB-2
-3.70
28.81
360.00
304.700
0.762
2.43
74.0
92.0
0.84
0.248
1 .019
"HG 23.54
Vm(corr) 304.700
DSCF 287.744
"R 534.0
•R 552.0
An(ft~2) 3.35E-04
1 As(ft~2)
27.00
DRY MOLE WT
ST MOLE WT
83.60 % H20
HEXAVALENT CHROMIUM
15489.00
CALCULATED RESULTS
44 .07
10513.1
9781.0
1 .35
74
96.92
FT/SEC
ACFM
DSCFM
Deg F
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs): 8.29E-04
: 1.18E-07
: NA
EMISSION RATE ( Er J.-
EM I SSI ON DATA FOR
CONCENTRATION ( Cs ) =
EMISSION RATE ( Er ):
6.95E-02
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
NA Gr/DSCF
NA Ib/DSCF
NA PPM
3.98
29.00
28.35
1 .35
NA
lb/hr
:;:LGR:METRIC ANALYSIS
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
REr.JfJ HYDRAULICS
INLET 3
6-20-91.'
IB-;:
CLIENT/PROJECT »:
SAMPLE LOCATION:
DATE/TIME:
RUN »:
STATIC PRESSUREC "H20 )
8AROMETRICC "HG }
SAMPLE TIMEC min )
ACTUAL METER VOLUME
SQ. ROOT /\P
AVG ORIFICE /\H
AVG STACK TEMP 'F
AVG METER TEMP T
Cp PITOT
NOZZLE DIA.C inches )
METER GAMMA
LEAK RATE( IF<0.02 )
CIRC STACK? 1=Y,0=N
DIA OR DIM (inches )
% 02
% C02 :
VOL CONDENSATEC ml '::
ANALYTE ttl :
MOLE WEIGHT:
ug/sample :
ANALYTE »2 "•
MOLE WEIGHT:
ug/sample :
XXXXXXXXXXXXXXXXXXXXX
GAS VELOCITY ( Vs):
STACK GAS FLOW (Qs ):
MOISTURE (%H20 ):
STACK GAS TEMP :
I SDK I NET 1C :
EMISSION DATA FOR TOTAL CHROMIUM
CONCENTRATION (Cs ):
-3.70
23.81
360.00
304.700
0.762
2.43
74.0
92.0
0.34
0.248
1 .019
"HG
Vm( corr )
DSCF
*R
'R
An( ft "2)
28.54
304.700
287.744
534.0
552.0
3.35E-04
1
27.00
33.60
TOTAL ^HROMIUM
•4900.00
KEXAVALiNT CHROMIUM
15100.00
CALC'JLATZD RESULTS
44.07
As(ft~2) 3.98
DRY MOLE WT 29.00
ST MOLE UT 23.85
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT »:
SAMPLE LOCATION:
DATE/TIME:
RUN »:
STATIC PRESSUREC "H20 )'
BAROMETRICC "HG ):
''SAMPLE TinE(min):
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP ' F :
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATE( IF <0.02 ) :
CIRC STACK? 1=Y,0=N=
DIA OR DIM ( inches):
% 02 •
% C02 :
VOL CONDENSATECml ):
ANALYTE tfl :
MOLE WEIGHT:
ug/sample :
ANALYTE #2 :
MOLE WEIGHT:
ug/sample :
REMCO HYDRAULICS
INLET B
6-21-91/
IB-3
-4.20
28.80
360.00
295.127
0.787
2.26
69.0
86.0
0.84
0.248
1 .019
"HG
Vm(corr )
DSCF
•R
28.49
295.127
281.548
529.0
546.0
An(ft~2) 3.35E-04
GAS VELOCITY ( Vs )
STACK GAS FLOW ( Qs )
MOISTURE ( 5KH20 )
STACK GAS TEMP
I SDK I NET 1C
1 As(ft~2)
27.00
DRY MOLE WT
ST MOLE WT
79.70 % H2C
HEXAVALENT CHROMIUM
127694.00
CALCULATED RESULTS
45.33
10815.2
10144.1
1 .31
69
91 .44
FT/SEC
ACFM
DSCFM
Dec F
EMISSION DATA FOR HEXAVAI.ENT CHROMIUM
CONCENTRATION (Cs ): 6.98E-03
: 9.98E-07
: NA
EMISSION RATE ( Er):
EMISSION DATA FOR
CONCENTRATION ( Cs):
EMISSION RATE ( Er):
6.07E-01
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
NA Gr/DSCF
NA Ib/DSCF
NA PPM
3.98
29.00
28.36
1 .31
NA
Ib/hr
:E~R::: ANALYSE:-:
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT «:
SAMPLE LOCATION:
DATE/TIME:
RUN »:
STATIC PRESSUREC "H20 ):
BAROMETRICC "HG ):
SAMPLE TIMEC min )
ACTUAL METER VOLUME:
SO. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP 'F:
CP PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATE( IF<0.02):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATECml }:
ANALYTE 91 •
MOLE UEIGHT:
ug/sample '-
ANALYTE «2 :
MOLE WEIGHT:
ug/sample :
GAS VELOCITY ( Vs )
STACK GAS FLOW ( Qs )
MOISTURE (SH20 )
STACK GAS TEMP
I SDK I NET 1C
EMISSION DATA FOR
CONCENTRATION (Cs):
EMISSION RATE ( Er ):
EMISSION DATA FOR
CONCENTRATION ( C
REMCO HYDRAULICS
INLET 3
6-
13
2 1-9 1/
-
-4.20
28.30
360.00
• 'oc. 1 9-7
b. ' w^ • A b. /
0.787
2.26
69.0
86.0
0.84
0.248
1 .019
"HG
Vm( corr )
DSCF
•R
•R
An( ft~2 )
28.49
295.127
281 .548
529.0
546.0
3.35E-04
1
27.00
79.70
TOTAL CHROMIUM
As(ft~2) 3.98
DRY MOLE WT 29.00
ST MOLE WT 28.86
% H2C 1.31
124254.00
XAVALENT CHROMIUM
CAL
135258.00
CULATED RESULTS
4i .00
10315.2 ACFM
10144.1 DSCFM
i .O I
69
91 .44
Deg F
ev
x>
TOTAL CHSIHMIUM
6.30E-03 Gr/DSCF
9.71E-07 Ib/DSCF
NA PPM
5.91E-0! Ib/hr
HEX AVALE.M T CHROM IUM
1 .06E-06
Gr/DSCF
Ib/DSCF
PPM
EMISSION RATE f Er ',:
ib/hr
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
El X t* M F> L_ EL C A l_ C U l__ «** T X OIM
CLIENT/PROJECT NUMBER: REMCO HYDRAULICS.
SAMPLE LOCATION: INLET A
DATE/TIME: 6-19-91/
RUN «: IA-1
1. SAMPLE VOLUME(DSCF):
Vmc = Vm-(Lp-La )XTime = Vm-(Lp-0 .02 )XTime = 332.344
Vm(std) = 17.647XVmc*YX( Pbar+/\H/13 .6 )/Tm( 'R ) = 315.233
2.MOISTURE FRACTION:
XH20 = 100XVlcX0.04707/( VlcXO.04707+Vm(std ) ) = 0.78
2.MOLECULAR WEIGHT:
Md = 0.44X( 2SC02 )+0.32X( %02 )+0.28( SN2+35CO ) = 29.00
Ms = MdX( 1-Bws )+( IS.OXBws ) = 28.91
3.VOLUMETRIC FLOW RATE(Q):
Vs = 85.49*Cp*Avg( /\P**0.5 )X [Ts( "R )/(Ps"HgXMs )]"0.5 = 40.3
Qa = Vs*60*As( ft2) = 13246.2
Qstd = QaK17.647H( 1-%H20 )XPs/Ts( "R ) = 12424.S
4.ISOKINETIC:
%l - 0.0945«Ts( "R )xvm( std )/tPsxVsXAnXTimeX( 1-Bws )] = 95.98
EMISSION DATA FOR
5. CONCENTRATIONCs): '
Cs(gr/dscf) = 0 .0154*Wt( mg )/Vm( std ) = 6.7CE-02
Cs(lb/dscf) = 2.20E-06*Mn(mg)/Vstd = 9.53E-06
Cs(ppm ) = 3.855E03XCs( Ib/dscf )/mole wt = NA
6.EMISSION RATE( Er ):
Er( Ib/hr ) = Cs(Ib/dscf )KQstdX60 = 7.14E+00
EMISSION DATA FOR
7 .CONCENTRATIONCCs ):
Cs(gr/dscf) = 0.0154*wt( mg )/Vm( std ) = NA
Cs(lb/dscf) = 2.20E-06*Mn( mg )/Vstd = NA
Cs(ppm ) = 3.855E03XCs( Ib/dscf )/mole wt = NA
8. EM I SSI ON RATE( Er ):
Er(lb/hr) = Cs( Ib/dscf )J(GstdX60 - NA
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
REMCO HYDRAULICS
OUTLET
6-19-91/
0-1
CLIENT/PROJECT If:
SAMPLE LOCATION:
DATE/TIME:
RUN #:
STATIC PRESSUREC "H20 ):
. 3AROMETRICC "HG ):
SAMPLE TIME( min )
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP "F:
Cp PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATEC IF <0.02 ):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATECml ):
ANALYTE ttl :
MOLE WEIGHT:
ug/sample :
ANALYTE #2 •
MOLE WEIGHT:
ug/sample :
X-XXXXXXXXXXXXXXXXXXX*
GAS VELOCITY ( Vs):
STACK GAS FLOW ( Qs ):
MOISTURE ( 25H20 ) =
oTACK 13AS TEMP :
I SON;NET 1C :
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs): 2.39E-06
: 3.42E-10
: NA
-0.33
28.75
375.00
265.773
0.664
1 .71
72.0
72.0
0.34
0.247
1 .042
"HG
Vm( corr )
DSCF
"R
'R
An( ft~2)
23.73
265.778
265.264
532.0
532 . 0
3.33E-04
0 As(ft~2) 11.18
1610.00
DRY MOLE WT 29.00
ST MOLE WT 28.81
99.80 % H20 1.74
HEXAVALENT CHROMIUM
41 .20
CALCULATED RESULTS
38.23
XXXXXXXXXXXXXXXXXXX
FT/SEC
25647.0
24012.3
1 .74
72
99.04
ACFM
DSCFM
O/
AJ
Deg F
%
EMISSION RATE ( Er ):
EMISSION DATA FOR
CONCENTRATION ( Cs ):
EMISSION RATE ( Er ):
4.92E-04
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
* '.T1 ' V* C7 """ CT
NA Gr/DSCF
NA Ib/DSCF
NA PPM
NA Ib/hr
;c ANALv:-:; s
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT »:
SAMPLE LOCATION:
DATE/TIME:
RUN tf:
STATIC PRESSUREC "H20 ):
BAROMETRIC( "HG ):
SAMPLE TIMEC min ):
ACTUAL METER VOLUME:
SO. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F•
AVG METER TEMP "F:
Cp PITOT :
NOZZLE DIA.C inches ):
METER GAMMA;
LEAK RATEC IF<0.02 ):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATEC ml ):
ANALYTE JK :
MOLE WEIGHT:
ug/sample :
ANALYTE #2 :
MOLE WEIGHT;
ug/sample :
REMCC- HYDRAULICS
OUTLET
GAS VELOCITY (Vs.;:
STACK GAS FLOW ( Qs '<:
MOISTURE (SH20 ):
STACK GAS TEMP :
ISOKINETIC :
EMISSION DATA FOR
CONCENTRATION (Cs ):
EMISSION RATE (Er ;:
EMISSION DATA FOR
CONCENTRATION (Cs ) •
0-1
-0.33
28.75
375.00
265.778
0.664
1 .71
72.0
72.0
0.34
0.247
1 .042
0
1610.00
Vm(corr )
DSCF
•R
•R
28 .73
265.773
265.264
532.0
532.0
An(ft-2) 3.33E-04
99.30
As( ft-2)
DRY MOLE WT
ST MOLE WT
% H20
CHROMIUM
47.00
1: CHROMIUM
43.30
ATED RESULTS
ALCUL
25647.0
24012 .3
i .74
99.04
TCTA! CHROMIUM
2.73E-06
3.90E-1C
NA
5.62E-04
HEXA'-,'ALI:\'7 CHROM I UM
2.31E-06
NA
FT/SEC
ACFM
DSCFM
Deg F
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
Ib/DSCF
PPM
11.13
29.00
28 .31
1 .74
EMISSION RATE ( Er ::
It/hr
-------
EMISSION TEST CALCULATIONS
-'LANT
SOURCE/RUN kgai
DATE
1. Leakage Correction for Volume Metered
Vnb=.Vm- (Lp-La) 6 = Vm - (Lp-0.02)8= (
)-(
-0.02) (
Vnb=
ft
2. Voluma Metered, Standard Conditions (68 °F, 29.92 in.Hg)
*
,..,
= 17.64
= 17.64
dscf
Volume Water Vapor Collected, Standard Conditions
Inpingers = V^ = 0.04707 (Vf - V$) = 0.04707 (
Silica Gel = VWSg = 0. 04707 (Wf - Wi) = 0.04707 ( ^-
Percent Moisture, By Volume
std
Vw
std
scf
scf
Molecular Weight, Stack Gas
Dry Molecular Weight, Md = 0.440 (%CO2) + 0.320(%02) + 0.280 (%N2 + %CO)
= 0.440 ( ) + 0.320( ) -f 0.280 ( )
Percent Excess Air,%EA =
%0? - 0.5 %CO
_0.264UN2H%02-0.5 %CO
IEA =
X100
(
)-0.5(
_0-264(
-0.5(
X 100
+18.0
-1-18.0
lb/U>-mole
-------
lY
£-1
6. Stack Gas Velocity, Average
VSavg = 85'49CP VAP' )avg _ /-iS_.' = 85.49 ' ' ^'^ }
savg • 2L* f t/s
7. Sh-irk Volunctrjc Flew lUitc, Artiwl Conditions (Stnck Torijr:raturc and Pressure)
Qa (circular) -/^Jl^J^/^. 60 X Vs (5.454 X ICT3) (d2,
v i44 ;
= 60 X (5.454 X 10~3) ( )
"3
= 60 X 3.V ^ ( 35 X Vi; ) 6.944 X 10"3
Qa = ^-5. bM acfm
8. Stack Volumetric Flow Rate, StajxJard Conditions (60°F, 29.92 in. Hg)
"or" Qa (rectangular) = 60 X Vc j = 60 X V (L X W) 6.944 X 10
a \ J.4*4! / S
dscfni
9. Isokinetic Variation
T V
%I = K s m(std)
P V A 9 1H3
s s n Jws
= 0.0944 (^.73 ) (^jj ) (5.35//0-/ ) (3V-b ) ( l-c'-tv/)
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT tf:
SAMPLE LOCATION:
DATE/TIME:
RUN it :
STATIC PRESSUREC "H20 )'
. BAROMETRIC( "HG ):
SAMPLE TIMEC min ):
ACTUAL METER VOLUME:
SID. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP 'F:
AVG METER TEMP 'F:
Cp PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATE( IF<0.02):
CIRC STACK? 1=Y,0=N:
01 A OR DIM ( inches ):
% 02 ••
% C02 :
VOL CQNDENSATE( m 1 ) :
AMALYTE tfl :
MOLE WEIGHT:
ug/sample =
ANALYTE tt2 :
MOLE WEIGHT:
REMC3 HYDRAULICS
OUTLET
6-20-91/
GA:; VELOCITY c vs )
TACK GAS FLOW ' Qs )
MOISTURE ( ZH20 ,
STACK GAS TEMP
ISGKINETIC
-0.33
28.31
375.00
264.138
0.655
1 .72
72.0
78.0
0.84
0.247
1 .042
"HG
VmC corr )
DSCF
"R
"R
An( ft~2)
28.79
264.130
261 .236
532.0
533.0
3.33E-C4
0 As( ft~2 )
1610.00
DRY MOLE WT
ST MOLE LJT
109.40 % H20
HEXAVALENT CHROMIUM
64 . 10
CALCULATED RESULTS
37.69
23674.2
1 .93
72
98.93
FT/SEC
ACFM
DSCFM
a'
/o
Deg F
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs ): 3 . 78E-06
5.40E-10
: NA
EMISSION RATE ( Er):
EMISSION DATA FOR
CONCENTRATION (C3 ):
EMISSION RATE fEr;:
7.67E-04
NA
NA
NA
Gr/DSCF
Ib/DSCF
PPM
lb/hr
Gr/DSC?
1 b/DSCr
PPM
1 i . 13
29.00
23.79
1 .93
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT If:
SAMPLE LOCATION:
DATE/TIME:
RUN tf:
STAT:IC PRESSUREC "H20 ):
BAROMETRIC^ "HG ):
SAMPLE TIMEC min ):
ACTUAL METER VOLUME:
SG. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP "F:
Cp PI TOT :
NOZZLE DIA.( inches ):
METER GAMMA;
LEAK RATEC IF O --> -3
^.-/ — O^. . 3
23674 .2
1 .93
72
98 . 93
ACFM
DSCFM
%
Deg F
(V
A)
TOTA; CHROMIUM
1.50E-06
2.15E-1C
NA
:3.05E-04
HEXAVAi.ENT CHROMIUM
!.30E-06
.: . 15E-10
NA
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
ib/DSCF
PPM
EMISSION RATE ( Er):
i (-. /i-i^
i o / r\ r
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
REMCU HYDRAULICS
OUTLET
6-21-91/
0-3
CLIENT/PROJECT #:
SAMPLE LOCATION:
DATE/TIME:
RUN ,'! :
STATIC PRESSUREC "H20 ):
BAROMETRIC( "HG ):
SAMPLE TIME(min ):
ACTUAL METER VOLUME:
SO. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP *F:
Cp PITOT :
NOZZLE DIA.( inches ):
METER GAMMA:
LEAK RATEC IF <0.02 ):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CCNDENSATE(rnl ;:
ANALYTE it 1 :
MOLE WEIGHT:
ug/sample :
ANALYTE «2 :
MOLE WEIGHT:
ug/sample :
X*XXXXXXXXXXXXXXXXXXX
GAS VELOCITY (Vs )
STACK GAS FLOl-J ( Qs )
MOISTURE (SH20 )
STACK GAS TEMP
ISOKINETIC
EMISSION DATA FOR HEXAVALENT CHROMIUM
CONCENTRATION (Cs): 1.67E-06
: 2.39E-10
: NA
-0.33
28.80
375.00
271 .961
0.673
1 .82
69.0
73.0
0.34
0.247
1 .042
"HG
Vm( corr )
DSCF
•R
•R
An( ft" 2)
23.73
271 .961
271 .471
529.0
533.0
3.23E-04
0 As( ft "2) 11.18
1610.00
DRY MOLE WT 29.00
ST MOLE WT 28.73
116.10 % H20 1.97
HEXAVALENT CHROMIUM
29.50
CALCULATED RESULTS
38.62
XXXXXXXXXXXXXXXXXXX
FT/SEC
25910.2
24381 .3
1 .97
69
99.82
ACFM
DSCFM
%
Deg F
%
EMISSION RATE ( Er):
EMISSION DATA FOR
CONCENTRATION (Cs):
3.50E-04
NA
NA
NA
NA
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
-------
PACIFIC ENVIRONMENTAL SERVICES EMISSIONS CALCULATIONS
CLIENT/PROJECT #:
SAMPLE LOCATION:
DATE/TIME:
RUN «:
STATIC PRESSUREC "H20 ):
BAROMETRICC "HG ):
SAMPLE TIMEC min ):
ACTUAL METER VOLUME:
SQ. ROOT /\P:
AVG ORIFICE /\H:
AVG STACK TEMP "F:
AVG METER TEMP 'F:
Cp PI TOT :
NOZZLE DIA.( inches ):
METER GAMMA;
LEAK RATE( IF<0.02):
CIRC STACK? 1=Y,0=N:
DIA OR DIM ( inches ):
% 02 :
% C02 :
VOL CONDENSATEC ml ):
ANALYTE tfl :
MOLE UEIGHT:
ug/sample :
ANALYTE *2 =
MOLE WEIGHT:
ug/sample :
REMCO HYDRAULICS
OUTLET
6-21-9I/
0-3
-0.33
28.80
375.00
271 .961
0.673
1 .82
69.0
73.0
0.84
0.247
1 .042
"HG
Vm( corr )
DSCF
•R
•R
An( ft~2)
28.73
271 .961
271 .471
529.0
533.0
3.33E-04
0 As(ft~2) 11.18
1610.00
DRY MOLE WT 29.00
ST MOLE WT 28.78
116.10 % H20 1.97
TOTAL CHROMIUM
65.50
HEXAVALENT CHROMIUM
66.80
CALCULATED RESULTS
3S.62
25910.2
243S1 .3
1 .97
69
99.82
ACFM
DSCFM
Of
A3
Deg F
%
GAS VELOCITY ( Vs )
STACK GAS FLOW ( Qs )
MOISTURE (%H20 )
STACK GAS TEMP
ISOKINETIC
EMISSION DATA FOR TOTAL CHROMIUM
CONCENTRATION (Cs ): 3.72E-06
: 5.31E-10
: NA
7.77E-04
HEXAVALENT CHROMIUM
3.79E-06
5.42E-10
NA
xxxxxxxxxxxxxxxxxxx
FT/SEC
EMISSION RATE (Er ):
EMISSION DATA FOR
CONCENTRATION (Cs ):
Gr/DSCF
Ib/DSCF
PPM
Ib/hr
Gr/DSCF
Ib/DSCF
PPM
EMISSION RATE (Er ):
7 .92E-04
Ib/hr
-------
Remco Hydraulics - Process Emission Rates
Run# I-A I-B 0-1
mg/Ah (gr/Ah) "VAn (gr/Ah) ^/Ah (gr/Ah)
1 139 (2.15) 0.473(0.007) 0.004 (6.2xlO'5)
2 98.7(1.52) 0.824(0.013) 0.002 (3.1X10'5)
3 127 (1.96) 7.53* (0.116) 0.006 (9.3X10'5)
Avg 122 (1.88) 0.649(0.010) 0.004 (6.2xlO's)
*Not included in average
-------
HEXAVALENT CHROMIUM
Ion Chromotography
Remco Hydraulics - Process Emission Rates
Run# I-A I-B OUTLET
mg/Ah (gr/Ah) °«/Ah (gr/Ah) "'/Ah ("7 Ah)
1 156 (0.068) 0.52 (0.008) 0.004 (6.2xlO'5)
2 118(0.052) 0.98(0.015) 0.002 (3. IxlO'5)
3 145(0.063) 8.20* (0.127) 0.006 (9.3xlO'5)
Avg 140 (0.061) 0.75 (0.012) 0.004 (6.2xlO'5)
*Not included in average
-------
APPENDIX E
DRAFT METHOD - DETERMINATION OF HEXAVALENT
CHROMIUM EMISSIONS
FROM DECORATIVE AND HARD
CHROME ELECTROPLATING
E-l
-------
DRAFT - 12/90
Method - Determination of Hexavalent Chromium
Emissions from Decorative and Hard Chrome Electroplating
1. Applicability and Principle
1.1 Applicability. This method applies to the determination of
hexavalent chromium (Cr*) in emissions from decorative and hard chrome
electroplating operations.
1.2 Principle. Emissions are collected from the source by use of
Method 5 (Appendix A, 40 CFR Part 60), with the filter omitted. The first and
second impingers are charged with 0.1N sodium hydroxide. The collected
samples remain in an alkaline solution until analysis, and are analyzed for
Cr** by the diphenylcarbazide colorimetric method.
2. Range. Sensitivity. Precision, and Interferences
2.1 Range. A straight line response curve can be obtained in the range
5 fig Cr*YlOO ml to 100 fig Cr'YlOO ml. For a minimum analytical accuracy of
±10 percent, the lower limit of the range is 10 jug/100 ml. The upper limit
can be extended by appropriate dilution.
2.2 Sensitivity. A minimum detection limit of 1 fig Cr^/100 ml has been
observed.
2.3 Precision. To be determined.
2.4 Interference. Molybdenum, mercury and vanadium react with
diphenylcarbazide to form a color; however, approximately 20 mg of these
elements can be present in a sample without creating a problem. Iron produces
a yellow color, but this effect is not measured photometrically at 540 nm.
-------
3. Apparatus
3.1 Sampling Train. Same as Method 5, Section 2.1, but omit filter,
and use quartz probe tip in place of stainless steel.
3.2 Sample Recovery. Same as Method 5, Section 2.2, but use 0.1N NaOH
in place of acetone.
3.3 Analysis. The following equipment is needed.
3.3.1 Beakers. Borosilicate, 250-ml, with watchglass covers.
3.3.2 Volumetric Flasks. 100-ml and other appropriate volumes.
3.3.3 Pipettes. Assorted sizes, as needed.
3.3.4 Spectrophotometer. To measure absorbance at 540 nm.
4. Reagents
Unless otherwise indicated, all reagents shall conform to the
specifications established by the Committee on Analytical Reagents of the
American Chemical Society. Where such specifications are not available, use
the best available grade.
4.1 Sampling.
4.1.1 0.1N NaOH.
4.2 Sample Recovery.
4.2.2 0.1N NaOH.
4.3 Analysis. The following reagents are required.
4.3.1 Water. Deionized distilled, meeting American Society for Testing
and Materials (ASTM) specifications for type 2 reagent - ASTM Test
Method D 1193-77 (incorporated by reference - see § 61.18).
4.3.2 Potassium Dichromate Stock Solution. Dissolve 141.4 mg of
analytical reagent grade K:Cr,0, in water, and dilute to 1 liter
^
(1 ml - 50 ng Cr").
-------
4.3.3 Potassium Dichromate Standard Solution. Dilute 10.00 ml K,Cr:0,
stock solution to 100 ml (1 ml = 5 fig Cr*4) with water.
4.3.4 Sulfuric Acid, 10 Percent (v/v). Dilute 10 ml H2S04 to 100 ml in
water.
4.3.5 Diphenylcarbazide Solution. Dissolve 250 mg of 1,
5-diphenylcarbizide in 50 ml acetone. Store in a brown bottle. Discard when
the solution becomes discolored.
5. Procedure
5.1 Sampling. Same as Method 5, Section 4.1, except omit the filter
and filter holder, and place 100 ml of 0.1N NaOH in each of the first two
impingers.
5.2 Sample Recovery. Measure the volume and place all liquid in the
first, second, and third impingers in a labelled sample container (Container
Number 1). Use 200 ml of 0.1N NaOH to rinse the probe, three impingers, and
connecting glassware. Place this wash in the same container. Place the
silica gel from the fourth impinger in Container Number 3.
5.3 Preservation. Analyze all samples within of collection.
5.4 Reagent Blank Preparation. Place 400 ml of 0.1N NaOH in a labelled
sample container (Container Number 2).
5.5 Silica Gel Weighing. Weigh the spent silica gel (Container
Number 3) or silica gel plus impinger to the nearest 0.5 g using a balance.
This step may be conducted in the field.
5.6 Analysis.
5.6.1 Color Development and Measurement. After stirring the sample in
Container Number 1, transfer a 50-ml or smaller measured aliquot to a 100 ml
.-* _
volumetric flask and add sufficient water to bring the volume to approximately
-------
80 ml. Adjust the pH to 2 ± 0.5 with 10 percent H2S04, add 2.0 ml of
diphenykarbazide solution, and dilute to volume with water. Allow the
solution to stand about 10 minutes for color development. For each set of
samples analyzed, treat an identical aliquot of reagent blank solution from
Container Number 2 in the same way. Transfer a portion of the sample to a
1-cm absorption cell, and measure the absorbance at the optimum wavelength
(Section 6.2.1). .Measure and subtract the reagent blank absorbance reading,
if any, to obtain a net reading. If the absorbance of the sample exceeds the
absorbance of the 100 ^g Cr*4 standard as determined in Section 6.2.2, dilute
the sample and the reagent blank with equal volumes of water.
5.6.2 Check for Matrix Effects on the Cr* Results. Since the analysis
for Cr* by colorimetry is sensitive to the chemical composition of the sample
(matrix effects), the analyst shall check at least one sample from each source
using the method of additions as follows:
Obtain two equal volume aliquots of the same sample solution. The
aliquots should each contain between 30 and 50 fig of Cr*. Now treat both the
spiked and unspiked sample aliquots as described in Section 5.6.1.
Next, calculate the Cr* mass C,, in fig in the aliquot of the unspiked
sample solution by using the following equation:
A.
C, - C, Eq. -1
A, - A,
where:
C, » Cr* in the standard solution, fig.
A, « Absorbance of the unspiked sample solution.
At - Absorbance of the spiked sample solution.
Volume corrections will not be required since the solutions as analyzed
s*
have been made to the same final volume. If the results of the method of
-------
additions procedure used on the single source sample do not agree to within 10
percent of the value obtained by the routine spectrophotometric analysis, then
reanalyze all samples from the source using this method of additions
procedure.
6. Calibration
6.1 Sampling Train. Perform all of the calibrations described in
Method 5, Section 5.
6.2 Spectrophotometer Calibration.
6.2.1 Optimum Wavelength Determination. Calibrate the wavelength scale
of the spectrophotometer every 6 months. The calibration may be accomplished
by using an energy source with an intense line emission such as a mercury
lamp, or by using a series of glass filters spanning the measuring range of
the spectrophotometer. Calibration materials are available commercially and
from the National Bureau of Standards. Specific details on the use of such
materials are normally supplied by the vendor; general information about
calibration techniques can be obtained from general reference books on
analytical chemistry. The wavelength scale of the spectrophotometer shall
read correctly with ±5 nm at all calibration points; otherwise, repair and
recalibrate the spectrophotometer. Once the wavelength scale of the
spectrophotometer is in proper calibration, use 540 nm as the optimum
wavelength for the measurement of the absorbance of the standards and samples.
Alternatively, a scanning procedure may be employed to determine the
proper measuring wavelength. If the instrument 1s a double-beam
spectrophotometer, scan the spectrum between 530 and 550 nm using the 50 /uj
Cr*4 standard solution (Section 4.3.4) in the sample cell and a blank solution
_--
in the reference cell. If a peak does not occur, the spectrophotometer is
-------
malfunctioning. When a peak is obtained within the 530 to 550 nm range,
record and use the wavelength at which this peak occurs as the optimum
wavelength for the measurement of absorbance of both the standards and the
samples. For single-beam spectrophotometer, follow the scanning procedure
described above, except scan the blank and standard solutions separately. For
this instrument, the optimum wavelength is the wavelength at which the maximum
difference in absorbance between the standard and the blank occurs.
6.2.2 Spectrophotometer Calibration. Alternative calibration
procedures are allowed, provided acceptable accuracy and precision can be
demonstrated. Add 0.0 ml, 1 ml, 2 ml, 5 ml, 10 ml, 15 ml, and 20 ml of the
working standard solution (1 ml - 5 m Cr") to a series of seven 100-ml
volumetric flasks. Dilute each to mark with water. Analyze these calibration
standards as in Section 5.6.1. Repeat this calibration procedure on each day
that samples are analyzed. Calculate the spectrophotometer calibration factor
Kt as follows:
K m A, + 2A, + 5A, + 10A4 + ISA, + 20A,
A,1 + V + A,' + V + V + V Eq-'2
where:
Kt - Calibration factor.
A, - Absorbance of the 5 fig Cr7lOO ml standard.
A, - Absorbance of the 10 fig Cr7lOO ml standard.
A, - Absorbance of the 25 fig Cr'/lOO ml standard.
A4 - Absorbance of the 50 fig Cr«/100 ml standard.
A, - Absorbance of the 75 fig Cr7lOO ml standard.
A, - Absorbance of the 100 fig Cr*/lQQ ml standard.
-------
6.2.2.1 Spectrophotometer Calibration Quality Control. Multiply the
absorbance value obtained for each standard by the Ke factor (least squares
slope) to determine the distance each calibration point lies from the
theoretical calibration line. These calculated concentration values shall not
differ from the actual concentrations (i.e., 5, 10, 25, 50, 75, and 100 m
Cr-/100 ml) by more than _ percent for five of the six standards.
7. Emission C
Carry out the calculations, retaining at least one extra decimal figure
beyond that of the acquired data. Round off figures after final calculations.
7.1 Total Cr* in Sample. Calculate m, the total n Cr* in each sample,
as follows:
V
where:
V., Ke AF
m = —
E°.- -3
V., « Volume in ml of total sample.
A - Absorbance of sample.
F = Dilution factor (required only if sample dilution was needed to
to reduce the absorbance into the range of calibration).
V. - Volume in ml of aliquot analyzed.
7.2 Average Dry Gas Meter Temperature and Average Orifice Pressure
Drop. Same as Method 5, Section 6.2.
7.3 Dry Gas Volume, Volume of Water Vapor, Moisture Content. Same as
Method 5, Sections 6.3, 6.4, and 6.5, respectively.
-------
7.4 Cr* Emission Concentration. Calculate c. (g/dscm), the Cr*4
concentration in the stack gas, dry basis, corrected to standard conditions,
as follows:
c, - (10- g///g)[m/V.(IU)] Eq. -4
7.5 Isokinetic Variation, Acceptable Results. Same as Method 5,
Sections 6.11 and 6.12, respectively.
8. Bibliography
8.1 Test Methods for Evaluating Solid Waste. U.S. Environmental
Protection Agency. SW-846, 2nd Edition. July 1982.
8.2 Cox, X.B., R.W. Linton, and F.E. Butler. Determination of Chromium
Speciation in Environmental Particles - A Multitechnique Study of Ferrochrome
Smelter Dust. Accepted for publication in Environmental Science and
Technology.
8.3 Same as in Bibliography of Method 5, Citations 2 to 5 and 7.
-------
APPENDIX E.
AMPERE-HOUR CALCULATIONS
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 1A
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time: 10:30
Stop time: 17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-A
i; ; Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
: Subtotal
13:01
13:15
13:30
• Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:30
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
13:58
14:15
14:16
Time interval, min
Inlet-A
-
-
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
13
1
14
Outlet
-
2
2
-
2
15
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
8,100
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,600
8,600
Ampere-hours
Inlet-A
-
-
-
—
2,125
2,125
2,125
2,125
1,558
10,058
280
280
2,125
2,125
4,250
1,842
10,902
425
1,983
2,125
4,533
-
1,863
143
2,006:;;
Outlet
-
280
280
-
280
2,125
2,125
2,125
2,125
1,558
10,608
~
280
2,125
2,125
4,250
1,842
10,622
-
1,983
2,125
I 4,108
3,967
2,437
143
•6,547
E-l
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 1A
Date: June 19, 1991
Inlet-A Inlet-B
Start time:
Stop time:
10:30 Start time: 10:30
17:02 Stop time; 17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-A
14:18
15:15
15:15
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:02
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-A
2
27
30
18
77
2
10
15
27
14
1
30
17
62
360
Outlet
—
27
30
18
75
—
10
15
25
-
2
30
18
50
375
Current,
amperes
8,600
8,600
8,800
8,800
8,800
8,800
8,800
9,000
9,000
9,000
9,000
Ampere-hours
Inlet-A
287
3,870
4,400
2,640
11,197
293
1,467
2,200
3,960
2,100
150
4,500
2,550
9,300
51,960
Outlet
-
3,870
4,400
2,640
10,910.
-
1,467
2,200
3,667
—
300
4,500
2,700
: 7,500
53,960
E-2
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. IB
Date: June 19, 1991
Inlet-A Inlet-B
Start time:
Stop time:
10:30 Start time: 10:30
17:02 Stop time; 17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-A
-
-
; Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
v Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
Subtotal
13:01
13:15
13:30
Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
»
14:02
14:15
14:16
Time interval, min
Inlet-A
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
13
1
14
Outlet
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
2,600
2,600
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
Ampere-hours
Inlet-A
-
-
-
650
663
663
663
486
3,125
88
88
663
675
1,350
585
3,449
135
630
675
1,440
-
585
45
630
Outlet
-
87
87
-
740.
663
663
663
486
3,215
-
88
663
675
1,350
585
3,361
-
630
675
1,305
1,260
765
45
2,070
E-3
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. IB
Date: June 19, 1991
Inlet-A Inlet-B
Start time;
Stop time;
10:30 Start time: 10:30
17:02 Stop time; 17:14
Outlet
Start time: 10:10
Stop time; 17:03
Time, 24-h clock
Inlet-A
14:18
14:45
15:45
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:02
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
. 15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-A
2
27
30
18
77
2
10
15
27
14
1
30
17
62
360
Outlet
—
27
30
18
75
-
10
15
25
~
2
30
18
50
375
Current,
amperes
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,750
2,750
2,750
2,700
Ampere-hours
Inlet-A
90
1,215
1,350
810
3,465
90
450
675
1,215
642
46
1,375
765
2,828
16,150
Outlet
—
1,125 .
1,350
810
3,375.
-
450
675
1,125
-
92
1,375
810
2,277
16,820
E-4
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 2A
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time: 10:30
Stop time: 17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-A
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
• Subtotal
13:01
13:15
13:30
Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-A
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
13
1
14
Outlet
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
8,800
8,600
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
Ampere-hours
Inlet-A
-
-
2,150
2,200
2,200
2,200
1,613
10,363
293
293
2,150
2,200
4,400
1,907
U,243p;-:
440
2,053
2,200
4,693ifV:
-
1,907
147
2;054>:;:-::--
Outlet
293
293 V
-
2,437
2,200
2,200
2,200
1,613
10,650
-
293
2,150
2,200
4,400
1,907
0fiq;95a-:.: •
~
2,053
2,200
•••i;-; 4,253::.. -
4,107
2,493
147
pi 6,747
E-5
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 2A
Date: June 19, 1991
Inlet-A Inlet-B
Start time:
Stop time;
10:30 Start time: 10:30
17:02 Stop time: 17:14
Outlet
Start time: 10:10
Stop time; 17:03
Time, 24-h clock
Inlet-A
14:18
15:15
15:15
15:33
Subtotal
15:35
15:45
16:00
;: Subtotal
16:14
16:15
16:45
17:02
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-A
2
27
30
18
77
2
10
15
27
14
1
30
17
62
360
Outlet
-
27
30
18
75
-
10
15
25
— .
2
30
18
50
375
Current,
amperes
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
Ampere-hours
Inlet-A
293
3,960
4,400
2,640
11,293
293
1,467
2,200
3,960
2,053
147
4,400
2,493
9,093
52,700
Outlet
-
3,960
4,400
2,640
11,000.
~
1,467
2,200
3,667
—
293
4,400
2,640
7,333
54,890
E-6
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 2B
Date: June 19, 1991
Inlet-A
Start time:
Stop time:
10:30
17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-A
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
• Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
i Subtotal
13:01
13:15
13:30
i;; Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-A
-
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
13
1
14
Outlet
-
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
2,600
2,600
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
Ampere-hours
Inlet-A
-
-
-
650
663
663
663
486
3,125
88
88
663
663
1,325
574
3,401
133
618
663
1,414
-
574
44
":6lff£ :•;•••:
Outlet
-
87
87
-
737
663
663
663
486
3,212
-
88
663
663
1,325
574
3,313
-
618
663
1,281
1,237
750
44
i 2,031
E-7
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 2B
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-A
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:02
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-A
2
27
30
18
77
2
10
15
27
14
1
30
17
62
360
Outlet
-
27
30
18
75
-
10
15
25
—
2
30
18
50
375
Current,
amperes
2,650
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
Ampere-hours
Inlet-A
88
1,215
1,350
810
3,463
90
450
675
1,215
630
45
1,350
765
2,790
16,030
Outlet
-
1,215
1,350
810
3,375
-
450
675
1,125
—
90
1,350
810
2,250;
16,590
E-8
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 3
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-B
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
• Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
Subtotal
13:01
13:15
13:30
•Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-B
-
—
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
17
1
18
Outlet
—
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
6,500
6,400
6,300
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
Ampere-hours
Inlet-B
-
-
-
-
1,600
1,575
1,550
1,550
1,137
7,412
207
207
1,550
1,550
3,100
1,343
7,957;;;-;/S-
310
1,447
1,550
3;307
-
1,757
103
1,860 ;
Outlet
-
217
217
-
1,813
1,575
1,550
1,550
1,137
7,625
-
207
1,550
1,550
3,100
1,343
::1::t:;7;750-- /
-
1,447
1,550
: 2,997
2,893
1,757
103
;C.^V'4:,753:--
E-9
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 3
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
Sabtot^
16:14
16:15
16:45
17:12
i Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-B
2
27
30
18
77
2
10
15
27
-
1
30
27
58
360
Outlet
-
27
30
18
75
-
10
15
25
-.
2
30
18
50
375
Current,
amperes
6,200
6,200
6,300
6,300
6,300
6,300
6,300
6,300
6,300
6,400
6,400
Ampere-hours
Inlet-B
207
2,790
3,150
1,890
8,037
210
1,050
1,575
2,835
-
105
3,200
2,880
6,185
37,590
Outlet
'—
2,790
3,150
1,890
7,830
—
1,050
1,575
2,625
-
210
3,200
1,920
5>330
39,130
E-10
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 4
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
Subtotal
13:01
13:15
13:30
; Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-B
-
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
17
1
IS
Outlet
—
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
11,200
11,200
11,200
11,000
11,400
11,400
11,400
11,400
11,500
11,600
11,600
11,600
11,600
11,600
11,600
11,600
11,600
11,600
Ampere-hours
Inlet-B
-
-
-
2,800
2,800
2,750
2,850
2,090
13,290
380
380
2,875
2,900
5,800
2,513
14,848
580
2,707
2,900
6,187
-
3,287
193
3,480
Outlet
-
373
373
~
3,173
2,800
2,750
2,850
2,090
13,663;
—
380
2,875
2,900
5,800
2,513
_J4j468:
-
2,707
2,900
5*607
5,413
3,287
193
8,893
E-ll
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 4
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:12
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-B
2
27
30
18
77
2
10
15
27
-
1
30
27
58
360
Outlet
-
27
30
18
75
-
10
15
25
-
2
30
18
50
375
Current,
amperes
11,600
11,600
11,600
11,600
11,600
11,600
11,600
11,600
11,600
11,700
11,600
Ampere-hours
Inlet-B
387
5,220
5,800
3,480
14,887
387
1,933
2,900
5,220
-
193
5,850
5,220
11,263
69,180
Outlet
—
5,220
5,800
3,480
14,500
-
1,933
2,900
4,833
-
387
5,850
3,480
9;717
72,050
E-12
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 5
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
-
—
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
? ; Subtotal
13:01
13:15
13:30
• i Subtotal .
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-B
-
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
17
1
18
Outlet
-
2
2
-
17
15
15
15
11
75
—
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
7,400
7,400
7,200
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
Ampere-hours
Inlet-B
-
-
-
1,850
1,800
1,850
1,850
1,357
8,707
247
247
1,850
1,850
3,700
1,603
9,497
370
1,727
1,850
3,947
-
2,097
123
2,220
Outlet
-
247
247
~
2,097
1,800
1,850
1,850
1,357
8,954
-
247
1,850
1,850
3,700
1,603
9,250
-
1,727
1,850
3V577 : ,
3,453
2,097
123
5,673 ?
E-13
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 5
Date: June 19, 1991
Inlet-A
Start time:
Stop time:
10:30
17:02
Inlet-B
Start time: 10:30
Stop time: 17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-B
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:12
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-B
2
27
30
18
77
2
10
15
27
-
1
30
27
58
360
Outlet
-
27
30
18
75
—
10
15
25
-
2
30
18
50
375
Current,
amperes
7,400
7,400
' 7,400
7,400
7,400
7,400
7,400
7,100
7,100
7,100
7,100
Ampere-hours
Inlet-B
247
3,330
3,700
2,220
9,497
247
1,233
1,850
3,330
—
118
3,550
3,195
6,863
44,060
Outlet
-
3,330
3,700
2,220
9,250
-
1,253
1,850
3,083
-
237
3,550
2,130
5,917
45,950
E-14
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 6; Rectifier No. 1
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
r Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
•Subtotal
13:01
13:15
13:30
Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-B
-
-
—
15
15
15
15
11
77
2
2
15
15
30
13
77
3
14
15
32
-
17
1
18
Outlet
-
2
2
-
17
15
15
15
11
75
—
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
7,200
7,200
7,000
7,200
7,200
7,200
7,200
7,200
7,200
7,300
7,400
7,400
7,400
7,400
7,500
7,500
7,400
7,400
7,400
Ampere-hours
Inlet-B
-
—
-
1,750
1,800
1,800
1,800
1,320
8,470
240
240
1,825
1,850
3,700
1,603
9,458
370
1,750
1,875
3,995tv;;,|;:
-
2,097
123
2;226*i;.;
Outlet
' —
240
240
-
1,983
1,800
1,800
1,800
1,320
8,703
—
240
1,825
1,850
3,700
1,603
9,218
—
1,750
1,875
:>-::i3,625 : '
3,453
2,097
123
?$/ 5,673 ..
E-15
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 6; Rectifier No. 1
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time: 10:30
Stop time: 17:14
Outlet
Start time: 10:10
Stop time: 17:03
Time, 24-h clock
Inlet-B
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
;:/v;':.Subtotal
16:14
16:15
16:45
17:12
Subottal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-B
2
27
30
18
77
2
10
15
27
-
1
30
27
58
360
Outlet
-
27
30
18
75
—
10
15
25
-
2
30
18
50
375
Current,
amperes
7,400
7,500
7,600
7,600
7,600
7,400
7,600
7,600
7,600
7,600
7,600
Ampere-hours
Inlet-B
247
3,375
3,800
2,280
9,720
253
1,233
1,900
3,386
—
127
3,800
3,420
7,347
44,580
Outlet
- ,
3,375
3,800
2,280
9,455
-
1,233
1,900
3;133
-
253
3,800
2,280
6,333
46,380
E-16
-------
Ampere-hour Calculations
Test Run No. 1
Tank No. 6; Rectififer No. 2
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time:
Stop time:
10:30
17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
-
-
Subtotal
10:30
10:45
11:00
11:15
11:30
11:41
;;; ^Subtotal
11:43
11:45
12:00
12:15
12:45
12:58
, Subtotal
13:01
13:15
13:30
Subtotal
14:02
14:15
14:16
Subtotal
Outlet
10:10
10:12
10:28
10:45
11:00
11:15
11:30
11:41
11:43
11:45
12:00
12:15
12:45
12:58
13:01
13:15
13:30
14:02
14:15
14:16
Time interval, min
Inlet-B
-.
-
-
15
15
15
15
11
71
2
2
15
15
30
13
77
3
14
15
32
-
17
1
18
Outlet
-
2
2
-
17
15
15
15
11
75
-
2
15
15
30
13
75
-
14
15
29
28
17
1
46
Current,
amperes
5,400
5,400
5,400
5,600
5,500
5,500
5,400
5,400
5,600
5,600
5,600
5,600
5,600
5,700
5,700
5,700
5,800
5,800
Ampere-hours
Inlet-B
-
-
-
1,350
1,350
1,400
1,375
1,008
6,483
180
180
1,400
1,400
2,800
1,213
7,173
280
1,330
1,425
3,035
-
1,643
97
1,740
Outlet
-
180
180
-
1,530
1,350
1,400
1,375
1,008
6,663
~
180
1,400
1,400
2,800
1,213
6,993
-
1,330
1,425
2,755
2,660
1,643
97
4,400
E-17
-------
Ampere-hour Calculations (continued)
Test Run No. 1
Tank No. 6; Rectifier No. 2
Date: June 19, 1991
Inlet-A
Start time: 10:30
Stop time: 17:02
Inlet-B
Start time: 10:30
Stop time: 17:14
Outlet
Start time:
Stop time:
10:10
17:03
Time, 24-h clock
Inlet-B
14:18
14:45
15:15
15:33
Subtotal
15:35
15:45
16:00
Subtotal
16:14
16:15
16:45
17:12
Subtotal
TOTAL
Outlet
14:18
14:45
15:15
15:33
15:35
15:45
16:00
16:13
16:15
16:45
17:03
Time interval, min
Inlet-B
2
27
30
18
77
2
10
15
27
-
1
30
27
58
360
Outlet
—
27
30
18
75
-
10
15
25
-
2
30
18
50
375
Current,
amperes
5,800
5,800
5,800
5,800
5,800
5,800
5,800
5,900
5,900
6,000
6,000
Ampere-hours
Inlet-B
193
2,610
2,900
1,740
7,443
193
967
1,450
2,610
-
98
3,000
2,700
5,798
34,280
Outlet
-
2,610
2,900
1,740
7,250
—
967
1,450
:2>4i7::;.:. ••
—
197
3,000
1,800
4,997
35,660
E-18
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 1A
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
9:25
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
Subtotal
12:01
12:25
:;-;-;4Subtotal
12:48
13:15
13:16
Subtotal
13:18
13:45
14:15
14:33
Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:25
12:48
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-A
-
20
30
28
78
2
30
30
15
77
1
24
25
-
27
1
28
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
24
24
23
27
1
51
-
27
30
18
75
Current,
amperes
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
8,500
Ampere-hours
Inlet-A
-
2,833
4,250
3,967
11,050
283
4,250
4,250
2,125
10,908
142
3,400
. •• :.
3)542.:' m-':
-
3,825
142
3,967
283
3,825
4,250
2,550
10,908
Outlet
—
2,408
4,250
3,967
10,625
-
4,250
4,250
2,125
10,625
-
3,400
:^;?,:;:;;3;400: •
3,258
3,825
142
7,225;
-
3,825
4,250
2,550
10,625
E-19
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 1A
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Tune, 24-h clock
Inlet-A
14:35
14:45
15:15
15:45
15:48
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-A
2
10
30
30
3
75
360
Outlet
-
10
30
30
5
75
375
Current,
amperes
8,500
8,500
8,500
8,500
8,500
Ampere-hours
Inlet-A
283
1,417
4,250
4,250
425
10,625
51,000
Outlet
' —
1,417
4,250
4,250
708
10,625
53,130
E-20
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. IB
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
9:25
9:45
10:15
10:43
!:} : Subtotal
10:45
11:15
11:45
12:00
Subtotal
12:01
12:25
Subtotal
12:48
13:15
13:16
:. Subtotal
13:18
13:45
14:15
14:33
.;;.;:; Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:25
12:48
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-A
-
20
30
28
78
2
30
30
15
77
1
24
25
-
27
1
28
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
24
24
23
27
1
51
-
27
30
18
75
Current,
amperes
2,650
2,650
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,750
2,750
2,750
2,750
2,750
2,750
2,750
Ampere-hours
Inlet-A
-
883
1,325
1,260
3,468
900
1,350
1,350
675
4,275
45
1,080
1,125
—
1,238
46
1,284
92
1,238
1,375
825
3,530
Outlet
-
751
1,325
1,260
3,336
~
1,350
1,350
675
3.375
-
1,080
1,080
1,054
1,238
46
2;338>
-
1,238
1,375
825
3,438
E-21
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. IB
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
14:35
14:45
15:15
15:45
15:48
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-A
2
10
30
30
3
75
360
Outlet
—
10
30
30
5
75
375
Current,
amperes
2,750
2,750
2,750
2,750
2,750
Ampere-hours
Inlet-A
92
458
1,375
1,375
138
3,438
17,120
Outlet
—
458
1,375
1,375
229
3,437
17,000
E-22
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 2A
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
9:25
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
: Subtotal
12:01
12:25
Subtotal
12:48
13:15
13:16
;; Subtotal
13:18
13:45
14:15
14:33
Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:25
12:48
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-A
-
20
30
28
78
2
30
30
15
77
1
24
25
-
27
1
28
2
27
30
18
77
Outlet
—
17
30
28
75
-
30
30
15
75
--
24
24
23
27
1
51
-
27
30
18
75
Current,
amperes
9,000
9,000
9,200
9,200
9,400
9,400
9,400
9,400
9,400
9,500
9,400
9,400
9,400
9,400
9,400
9,400
Ampere-hours
Inlet-A
—
3,000
4,500
4,293
11,793
307
4,700
4,700
2,350
12,057
157
3,760
3,91ft- -:••*;:••
—
4,230
157
4,387
313
4,230
4,700
2,820
12,063
Outlet
-
2,550
4,500
4,293
11,343
-
4,700
4,700
2,350
11,750
-
3,760
3,760
3,642
4,230
157
8;029
-
4,230
4,700
2,820
li;750
E-23
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 2A
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time: 9:28
Stop time: 15:50
Time, 24-h clock
Inlet-A
14:35
14:45
15:15
15:45
15:48
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-A
2
10
30
30
3
75
360
Outlet
—
10
30
30
5
75
375
Current,
amperes
9,400
9,500
9,600
9,600
9,600
Ampere-hours
Inlet-A
313
1,583
4,800
4,800
480
11,976
56,190
Outlet
— .
1,583
4,800
4,800
800
11,983
58,620
E-24
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 2B
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
9:25
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
Subtotal
12:01
12:25
; Subtotal
12:48
13:15
13:16
; Subtotal
13:18
13:45
14:15
14:33
Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:25
12:48
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-A
-
20
30
28
78
2
30
30
15
77
1
24
25
—
27
1
28
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
24
24
23
27
1
51
-
27
30
18
75
Current,
amperes
2,600
2,600
2,600
2,650
2,700
2,700
2,700
2,700
2,700
2,700
2,750
2,750
2,750
2,750
2,750
2,750
Ampere-hours
Inlet-A
-
867
1,300
1,213
3,380
88
1,350
1,350
675
3,463
45
1,080
1,125
-
1,238
46
1,284
92
1,238
1,375
825
3,530
Outlet
•~
737
1,300
1,213
3,250
~
1,350
1,350
675
3,375
-
1,080
1,080
1,035
1,238
46
2,319
-
1,238
1,375
825
3,438
E-25
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 2B
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-A
14:35
14:45
15:15
15:45
15:48
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-A
2
10
30
30
3
75
360
Outlet
-
10
30
30
5
75
375
Current,
amperes
2,750
2,750
2,750
2,750
2,750
Ampere-hours
Inlet-A
92
458
1,375
1,375
138
3,438
16,220
Outlet
—
458
1,375
1,375
229
3,437;
16,900
E-26
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 3
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
9:23
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
if ::: Subtotal
12:01
12:23
: Subtotal
12:46
13:15
13:16
I ; Subtotal
13:18
13:45
14:15
14:33
; ;; Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:23
12:46
13:15
13:16
•
13:18
13:45
14:15
14:33
Time interval, min
Inlet-B
-
22
30
28
80
2
30
30
15
77
1
22
23
-
29
1
30
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
22
22
23
29
1
53
-
27
30
18
75
Current,
amperes
6,500
6,500
6,500
6,500
5,600
5,600
5,600
5,600
5,600
5,600
5,600
5,600
5,600
5,600
5,600
5,600
Ampere-hours
Inlet-B
-
2,383
3,250
3,033
8,666
217
2,800
2,800
1,400
7,217
93
2,053
2,146
-
2,706
93
2,799
187
2,520
2,800
1,680
7,187
Outlet
-
1,842
3,250
3,033
8,125
-
2,800
2,800
1,400
7,000
-
2,053
2,053
2,147
2,706
93
4,946
-
2,520
2,800
1,680
7,000
E-27
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 3
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
14:35
14:45
15:15
15:45
15:46
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-B
2
10
30
30
1
73
360
Outlet
-
10
30
30
5
75
375
Current,
amperes
5,600
5,600
5,600
5,600
5,600
Ampere-hours
Inlet-B
187
933
2,800
2,800
93
6,813
34,800
Outlet
—
933
2,800
2,800
467
7,000
36,130
E-28
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 4
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time: 9:28
Stop time: 15:50
Time, 24-h clock
Inlet-B
9:23
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
'i ; Subtotal
12:01
12:23
; Subtotal
12:46
13:15
13:16
'^Subtotal
13:18
13:45
14:15
14:33
|! Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:23
12:46
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-B
-
22
30
28
80
2
30
30
15
77
1
22
23
—
29
1
30
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
22
22
23
29
1
53
-
27
30
18
75
Current,
amperes
11,000
11,200
11,200
11,000
11,000
11,000
11,000
11,000
11,000
11,000
11,200
11,200
11,200
10,000
10,000
10,000
Ampere-hours
Inlet-B
-
4,033
5,600
5,227
14,860
367
5,500
5,500
2,750
14,177
183
4,033
4,216
-
5,413
187
5,600
373
4,500
5,000
3,000
12,873
Outlet
-
3,117
5,600
5,227
13,944
-
5,500
5,500
2,750
13*750
-
4,033
4,033
4,217
5,413
187
9,817
--
4,500
5,000
3,000
12,500
E-29
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 4
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
14:35
14:45
15:15
15:45
15:46
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-B
2
10
30
30
1
73
360
Outlet
—
10
30
30
5
75
375
Current,
amperes
10,000
10,000
10,000
10,000
10,000
Ampere-hours
Inlet-B
333
1,667
5,000
5,000
167
12,167
63,830
Outlet
'—
1,667
5,000
5,000
833
12,500;
66,540
E-30
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 5
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
9:23
9:45
10:15
10:43
::•:; Subtotal
10:45
11:15
11:45
12:00
|i::;;:;:Sub'total
12:01
12:23
Subtotal
12:46
13:15
13:16
Subtotal
13:18
13:45
14:15
14:33
• Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:23
12:46
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-B
-
22
30
28
80
2
30
30
15
77
1
22
23
-
29
1
30
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
22
22
23
29
1
53
-
27
30
18
75
Current,
amperes
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
7,400
Ampere-hours
Inlet-B
-
2,713
3,700
3,453
9,866
247
3,700
3,700
1,850
9,497
123
2,713
2,836
-
3,577
123
3,700
247
3,330
3,700
2,220
9,497
Outlet
-
2,097
3,700
3,453
9,250:
-
3,700
3,700
1,850
9,250
-
2,713
2,713
2,837
3,577
123
6,537; :
-
3,330
3,700
2,220
9,250
E-31
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 5
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time: 9:28
Stop time: 15:50
Time, 24-h clock
Inlet-B
14:35
14:45
15:15
15:45
15:46
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-B
2
10
30
30
1
73
360
Outlet
-
10
30
30
5
75
375
Current,
amperes
7,400
7,400
7,400
7,400
7,400
Ampere-hours
Inlet-B
247
1,233
3,700
3,700
123
9,003
44,400
Outlet
-
1,233
3,700
3,700
617
9,250
46,250
E-32
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 6; Rectifier No. 1
Date: June 20,"1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
9:23
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
Subtotal
12:01
12:23
Subtotal
12:46
13:15
13:16
Subtotal
13:18
13:45
14:15
14:33
: Subtotal
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:23
12:46
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-B
—
22
30
28
80
2
30
30
15
77
1
22
23
-
29
1
30
2
27
30
18
77
Outlet
-
17
30
28
75
-
30
30
15
75
-
22
22
23
29
1
53
-
27
30
18
75
Current,
amperes
5,600
5,700
5,800
5,800
6,000
6,000
6,000
6,000
6,000
7,000
7,200
7,200
7,200
7,300
7,300
7,300
Ampere-hours
Inlet-B
—
2,053
2,850
2,707
7,610
193
3,000
3,000
1,500
7,693
100
2,200
2,300
-
3,480
120
3,600
240
3,285
3,650
2,190
9,365
Outlet
-
1,587
2,850
2,707
7,144
-
3,000
3,000
1,500
7,500
~
2,200
2,200
2,683
3,480
120
6,283
-
3,285
3,650
2,190
9,125
E-33
-------
Ampere-hour Calculations (continued)
Teat Run No. 2
Tank No. 6; Rectifier No. 1
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time: 9:28
Stop time: 15:50
Time, 24-h clock
Inlet-B
14:35
14:45
15:15
15:45
15:46
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-B
2
10
30
30
1
73
360
Outlet
—
10
30
30
5
75
375
Current,
amperes
7,300
7,000
7,000
7,000
7,000
Ampere-hours
Inlet-B
243
1,167
3,500
3,500
117
8,527
39,100
Outlet
-
1,167
3,500
3,500
583
8,750
41,000
E-34
-------
Ampere-hour Calculations
Test Run No. 2
Tank No. 6; Rectifier No. 2
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time:
Stop time:
9:23
15:46
Outlet
Start time:
Stop time:
9:28
15:50
Time, 24-h clock
Inlet-B
9:23
9:45
10:15
10:43
Subtotal
10:45
11:15
11:45
12:00
Subtotal
12:01
12:23
Subtotal
12:46
13:15
13:16
Subtotal
13:18
13:45
14:15
14:33
:A::.;;:iSubtbtaI
Outlet
9:28
9:45
10:15
10:43
10:45
11:15
11:45
12:00
12:01
12:23
12:46
13:15
13:16
13:18
13:45
14:15
14:33
Time interval, min
Inlet-B
-
22
30
28
80
2
30
30
15
77
1
22
23
-
29
1
30
2
27
30
18
77
Outlet
-
17
30
28
75
—
30
30
15
75
-
22
'22
23
29
1
53
-
27
30
18
75
Current,
amperes
7,000
7,000
7,000
7,200
7,400
7,400
7,400
7,400
7,400
6,000
6,000
6,000
6,000
6,000
6,000
6,000
Ampere-hours
Inlet-B
-
2,567
3,500
3,267
9,334
240
3,700
3,700
1,850
9,490
123
2,713
2i836i»
-
2,900
100
3,000
200
2,700
3,000
1,800
7,700
Outlet
• —
1,983
3,500
3,267
8,750
-
3,700
3,700
1,850
9,250
-
2,713
^:/ > 2,713
2,300
2,900
100
5,300
-
2,700
3,000
1,800
7>50o; :
E-35
-------
Ampere-hour Calculations (continued)
Test Run No. 2
Tank No. 6; Rectifier No. 2
Date: June 20, 1991
Inlet-A
Start time: 9:25
Stop time: 15:48
Inlet-B
Start time: 9:23
Stop time: 15:46
Outlet
Start time: 9:28
Stop time: 15:50
Time, 24-h clock
Inlet-B
14:35
14:45
15:15
15:45
15:46
Subtotal
TOTAL
Outlet
14:35
14:45
15:15
15:45
15:50
Time interval, min
Inlet-B
2
10
30
30
1
73
360
Outlet
-
10
30
30
5
75
375
Current,
amperes
6,000
5,600
5,600
5,600
5,600
Ampere-hours
Inlet-B
200
933
2,800
2,800
93
6,826
39,190
Outlet
—
933
2,800
2,800
467
7,000
40,510
E-36
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 1A
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Tune, 24-h clock
Inlet-A
7:47
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
: ; Subtotal
10:22
10:45
10:47
Subtotal
11:25
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
10:47
11:25
11:37
-
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-A
-
28
30
19
77
1
10
30
30
5
76
2
23
2
27
-
12
12
2
6
30
30
9
77
Outlet
—
26
30
19
75
-
10
30
30
5
75
-
23
2
25
38
12
50
-
6
30
30
9
75
Current,
amperes
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
8,250
Ampere-hours
Inlet-A
-
3,850
4,125
2,613
10,588
138
1,375
4,125
4,125
688
10,451
275
3,163
275
. 3,713
-
1,650
1,650
275
825
4,125
4,125
1,238
10,588
Outlet
-
3,575
4,125
2,613
10,313 ;:
-
1,375
4,125
4,125
688
10,313
-
3,163
275
3,438
5,225
1,650
6,875
-
825
4,125
4,125
1,238
10,313
E-37
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 1A
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-A
12:56
13:15
13:45
14:25
KtSubtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-A
2
19
30
40
91
360
Outlet
-
19
30
26
75
375
Current,
amperes
8,250
8,250
8,250
8,500
Ampere-hours
Inlet-A
275
2,613
4,125
5,667
12,680
49,670
Outlet
-
2,613
4,125
3,683
10,421
51,670
E-38
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. IB
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-A
7:47
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
Subtotal
10:22
10:45
10:47
Subtotal
11:25
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
10:47
11:25
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-A
-
28
30
19
77
1
10
30
30
5
76
2
23
2
27 '
-
12
12
2
6
30
30
9
77
Outlet
-
26
30
19
75
-
10
30
30
5
75
-
23
2
25
38
12
50
-
6
30
30
9
75
Current, ,
amperes
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,650
2,725
2,725
2,725
2,725
2,700
2,700
2,700
Ampere-hours
Inlet-A
—
1,237
1,325
839
3,401
44
442
1,325
1,325
221
3,357
88
1,016
88
1,192
-
545
545
91
273
1,350
1,350
405
3,469
Outlet
-
1,148
1,325
839
3,312
-
442
1,325
1,325
221
3,313
-
1,016
88
1,104
1,726
545
2,271
-
273
1,350
1,350
405
3,378
E-39
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. IB
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-A
12:56
13:15
13:45
14:25
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-A
2
19
30
40
91
360
Outlet
-
19
30
26
75
375
Current,
amperes
2,700
2,725
2,725
2,700
Ampere-hours
Inlet-A
90
863
1,363
1,800
4,116
16,080
Outlet
863
1,363
1,170
3,396
16,770
E-40
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 2A
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-A
7:47
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
; Subtotal
10:22
10:45
10:47
V Subtotal
11:25
11:37
•; -Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
10:47
11:25
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-A
-
28
30
19
77
1
10
30
30
5
76
2
23
2
27
-
12
12
2
6
30
30
9
77
Outlet
—
26
30
19
75
-
10
30
30
5
75
-
23
2
25
38
12
50
—
6
30
30
9
75
Current,
amperes
9,400
9,500
9,500
9,500
9,500
9,600
9,400
9,400
9,400
9,400
9,400
9,600
9,600
9,600
9,600
9,500
9,600
9,600
Ampere-hours
Inlet-A
—
4,387
4,750
3,008
12,145
158
1,583
4,800
4,700
783
12,024
313
3,603
313
4,229
-
1,920
1,920
320
960
4,750
4,800
1,440
12,270
Outlet
—
4,073
4,750
3,008
11,831
-
1,583
4,800
4,700
783
11;866 :
-
3,603
313
3,916
6,080
1,920
SvOOO
-
960 .
4,750
4,800
1,440
11,950
E-41
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 2A
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-A
12:56
13:15
13:45
14:25
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-A
2
19
30
40
91
360
Outlet
-
19
30
26
75
375
Current,
amperes
9,600
9,600
9,600
9,600
Ampere-hours
Inlet-A
320
3,040
4,800
6,400
14,560
57,150
Outlet
-
3,040
4,800
4,160
12,000
59,560
E-42
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 2B
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Tune, 24-h clock
Inlet-A
7:47
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
Subtotal
10:22
10:45
10:47
;: Subtotal
11:25
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
10:47
,
11:25
11:37
-
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-A
-
28
30
19
77
1
10
30
30
5
76
2
23
2
27
-
12
12
2
6
30
30
9
77
Outlet
-
26
30
19
75
-
10
30
30
5
75
-
23
2
25
38
12
50
-
6
30
30
9
75
Current,
amperes
2,600
2,650
2,650
2,650
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
2,700
Ampere-hours
Inlet-A
-
1,213
1,325
839
3,377
44
450
1,350
1,350
225
3,419
90
1,035
90
1,215
-
540
540
90
270
1,350
1,350
405
3,465
Outlet
-
1,127
1,325
839
3,291
-
450
1,350
1,350
225
3,375
—
1,035
90
1,125
1,710
540
2,250
-
270
1,350
1,350
405
3,375 ;
E-43
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 2B
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-A
12:56
13:15
13:45
14:25
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-A
2
19
30
40
91
360
Outlet
—
19
30
26
75
375
Current,
amperes
2,700
2,750
2,750
2,750
Ampere-hours
Inlet-A
90
871
1,375
1,833
4,169
16,190
Outlet
-
871
1,375
1,192
3,438
16,850
E-44
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 3
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-B
7:45
8:15
8:45
9:04
pvSubtotal
9:05
9:15
9:45
10:15
10:20
! Subtotal
10:22
10:45
Subtotal
11:22
11:37
^Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
11:22
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-B
-
30
30
19
79
1
10
30
30
5
76
2
23
25
-
15
15
2
6
30
30
9
77
Outlet
-
26
30
19
75
-
10
30
30
5
75
-
23
23
37
15
52
-
6
30
30
9
75
Current,
amperes
6,400
6,400
6,400
6,400
6,400
6,400
6,400
6,400
6,400
6,400
5,500
5,500
5,500
5,500
5,500
5,500
5,500
Ampere-hours
Inlet-B
-
3,200
3,200
2,027
8,427
107
1,067
3,200
3,200
533
8,107
213
2,453
2,666
—
1,375
1,375
183
550
2,750
2,750
825
7,058
Outlet
• -
2,773
3,200
2,027
8,000
-
1,067
3,200
3,200
533
SiOQp
~
2,453
2,453 :
3,392
1,375
4,767
-
550
2,750
2,750
825
6,875
E-45
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 3
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-B
12:56
13:15
13:45
14:22
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-B
2
19
30
37
88
360
Outlet
-
19
30
26
75
375
Current,
amperes
5,500
5,500
5,500
5,500
Ampere-hours
Inlet-B
183
1,742
2,750
3,392
8,067
35,700
Outlet
-
1,742
2,750
2,383
6,875
36,970
E-46
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 4
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-B
7:45
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
Subtotal
10:22
10:45
Subtotal
11:22
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
11:22
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-B
-
30
30
19
79
1
10
30
30
5
76
2
23
25
—
15
15
2
6
30
30
9
77
Outlet
-
26
30
19
75
-
10
30
30
5
75
-
23
23
37
15
52
-
6
30
30
9
75
Current,
amperes
10,500
10,800
10,800
10,800
10,800
10,800
10,800
10,800
10,800
10,800
10,000
10,000
10,000
10,000
10,000
10,000
10,000
Ampere-hours
Inlet-B
-
5,250
5,400
3,420
14,070
180
1,800
5,400
5,400
900
13,680
360
4,140
4,500
-
2,500
2,500
333
1,000
5,000
5,000
1,500
12,833
Outlet
-
4,550
5,400
3,420
13,370
-
1,800
5,400
5,400
900
13,500
-
4,140
4,140
6,167
2,500
M67
-
1,000
5,000
5,000
1,500
12i500
E-47
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 4
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-B
12:56
13:15
13:45
14:22
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-B
2
19
30
37
88
360
Outlet
—
19
30
26
75
375
Current,
amperes
10,000
10,000
10,000
10,000
Ampere-hours
Inlet-B
333
3,167
5,000
6,167
14,667
62,250
Outlet
—
3,167
5,000
4,333
12,500
64,680
E-48
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 5
Date: June 21,T 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-B
7:45
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
Subtotal
10:22
10:45
Subtotal
11:22
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
11:22
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-B
-
30
30
19
79
1
10
30
30
5
76
2
23
25
- '
15
15
2
6
30
30
9
77
Outlet
-
26
30
19
75
—
10
30
30
5
75
-
23
23
37
15
52
-
6
30
30
9
75
Current,
amperes
6,400
7,400
7,400
7,400
7,400
7,400
6,400
6,400
6,400
6,400
6,400
6,400
6,400
7,400
7,400
7,400
7,400
Ampere-hours
Inlet-B
-
3,200
3,700
2,343
9,243
123
1,233
3,700
3,200
533
8,789
213
2,453
2,666
-
1,600
1,600
213
740
3,700
3,700
1,110
9,463
Outlet
-
2,773
3,700
2,343
8,816
-
1,233
3,700
3,200
533
8,666
-
2,453
2,453!
3,947
1,600
5,547
-
740
3,700
3,700
1,110
9,250
E-49
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 5
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-B
12:56
13:15
13:45
14:22
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-B
2
19
30
37
88
360
Outlet
-
19
30
26
75
375
Current,
amperes
7,400
7,400
7,400
7,400
Ampere-hours
Inlet-B
247
2,343
3,700
4,563
10,853
42,610
Outlet
• -
2,343
3,700
3,207
9,250
43,980
E-50
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 6; Rectifier No. 1
Date: June 21, 1991
Inlet-A Inlet-B
Start time: 7:47
Stop time: 14:25
Start time: 7:45
Stop time: 14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-B
7:45
8:15
8:45
9:04
Subtotal
9:05
9:15
9:45
10:15
10:20
: Subtotal
10:22
10:45
/Subtotal
11:22
11:37
; Subtotal
11:39
11:45
12:15
12:45
12:54
;< Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
11:22
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-B
-
30
30
19
79
1
10
30
30
5
76
2
23
25
-
15
15
2
6
30
30
9
77
Outlet
-
26
30
19
75
-
10
30
30
5
75
-
23
23
37
15
52
-
6
30
30
9
75
Current,
amperes
6,400
6,600
6,600
6,600
6,600
6,700
6,700
6,700
6,700
6,700
6,800
6,800
6,800
6,800
6,800
6,900
6,900
Ampere-hours
Inlet-B
-
3,200
3,300
2,090
8,590
110
1,100
3,350
3,350
558
8,468
223
2,568
2,791
-
1,700
1,700
227
680
3,400
3,450
1,035
8,792
Outlet
-
2,773
3,300
2,090
8,163
-
1,100
3,350
3,350
558
8,358
~
2,568
2;568
4,193
1,700
5,893
-
680
3,400
3,450
1,035
8,565
E-51
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 6: Rectifier No. 1
Date: June 21, 1991
Inlet-A
Start time: 7:47
Stop time: 14:25
Inlet-B
Start time: 7:45
Stop time: 14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-B
12:56
13:15
13:45
14:22
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-B
2
19
30
37
88
360
Outlet
—
19
30
26
75
375
Current,
amperes
6,900
7,000
7,000
6,900
Ampere-hours
Inlet-B
230
2,217
3,500
4,255
10,202
40,540
Outlet
-
2,217
3,500
2,990
8,707
42,250
E-52
-------
Ampere-hour Calculations
Test Run No. 3
Tank No. 6; Rectifier No. 2
Date: June 21, 1991
Inlet-A Inlet-B
Start time: 7:47
Stop time: 14:25
Start time: 7:45
Stop time: 14:22
Outlet
Start time: 7:49
Stop time: 14:11
Time, 24-h clock
Inlet-B
7:45
8:15
8:45
9:04
Subtotal
9:05
.9:15
9:45
10:15
10:20
Subtotal
10:22
10:45
Subtotal
11:22
11:37
Subtotal
11:39
11:45
12:15
12:45
12:54
Subtotal
Outlet
7:49
8:15
8:45
9:04
9:05
9:15
9:45
10:15
10:20
10:22
10:45
11:22
11:37
11:39
11:45
12:15
12:45
12:54
Time interval, min
Inlet-B
-
30
30
19
79
1
10
30
30
5
76
2
23
25
-
15
15
2
6
30
30
9
77
Outlet
—
26
30
19
75
-
10
30
30
5
75
-
23
23
37
15
52
-
6
30
30
9
75
Current,
amperes
5,000
5,200
5,200
5,200
5,200
5,400
5,400
5,400
5,400
5,400
5,500
5,500
5,500
5,500
5,600
5,600
5,600
Ampere-hours
Inlet-B
-
2,500
2,600
1,647
6,747
87
867
2,700
2,700
450
6,804
180
2,070
2,250
-
1,375
1,375
183
550
2,800
2,800
840
7,173
Outlet
-
2,167
2,600
1,647
6,414 ;
-
867
2,700
2,700
450
6,717
-
2,070
2,070:1;
3,392
1,375
4,767
—
550
2,800
2,800
840
6,990
E-53
-------
Ampere-hour Calculations (continued)
Test Run No. 3
Tank No. 6; Rectifier No. 2
Date: June 21, 1991
Inlet-A
Start time:
Stop time:
7:47
14:25
Inlet-B
Start time:
Stop time:
7:45
14:22
Outlet
Start time:
Stop time:
7:49
14:11
Time, 24-h clock
Inlet-B
12:56
13:15
13:45
14:22
Subtotal
TOTAL
Outlet
12:56
13:15
13:45
14:11
Time interval, min
Inlet-B
2
19
30
37
88
360
Outlet
-
19
30
26
75
375
Current,
amperes
5,600
5,600
5,700
5,600
Ampere-hours
Inlet-B
187
1,773
2,850
3,453
8,263
32,610
Outlet
-
1,773
* 2,850
2,427
7,050
34,010
E-54
-------
Process Data Sheets
Remco Hydraulics, Inc.
Willits, California
Test Run No. 1 Date: 6/19/91 Page 1 of 5
Time
10:10
10:30
10:45
11:00
Tank No.
1A
IB
2A
2B
3
4
5
6
1A
IB
2A
2B
3
4
5
6
6
2A
2B
1A
IB
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,100
2,600
8,800
2,600
6,500
8,500
2,550
8,600
2,600
6,500
11,200
7,400
7,200
5,400
8,600
2,600
8,500
2,600
6,400
11,200
7,400
7,000
5,400
8,500
2,650
8,800
2,650
6,300
11,200
7,400
7,200
5,400
Operating
voltage,
volts
9
8.6
9
8
7.6
11.6
8.0
8.2
9.0
8.0
7.6
12
7.0
12
11.8
9.0
8.0
8.2
8.2
7.6
12
7.0
12
11.8
8.2
8.2
9.0
8.0
7.8
12
7
12
11.8
Operation
temp., °F
120
120
120
120
120
120
120
120
120
Notes
Start test® 10:10
Stop test @ 10: 12
Fan down
Baume reading of scrubber water = 3.0
Scrubber water cone. = 4. 1 oz/gal
Start test @ 10:30
AP pack = 1.3
A? pad = 2.0
Composite samples taken of scrubber water and
plating tanks
AP pack =1.3
AP pad = 2.0
-------
Test Run No. 1 Date: 6/19/91 Page 2 of 5
Time
11:15
11:30
11:45
12:00
12:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,500
2,650
8,800
2,650
6,200
11,000
7,400
7,200
5,600
8,500
2,650
8,800
2,650
6,200
11,400
7,400
7,200
5,500
8,500
2,650
8,800
2,650
6,200
11,400
7,400
7,200
5,400
8,500
2,650
8,600
2,650
6,200
11,500
7,400
7,300
5,600
8,500
2,700
8,800
2,650
6,200
11,600
7,400
7,400
5,600
Operating
voltage,
volts
8.2
8.2
9.0
8.0
7.8
12
7.0
12
11.8
8.2
8.2
9.0
8.0
7.8
12
7
12
11.8
8.2
8.2
9
8.0
7.6
12
7.2
12
11.8
8.0
8.2
9.0
8.0
7.8
12
7.2
12
11.8
8.0
8.3
9.0
8.0
7.8
12
7.2
12
11.8
Operation
temp., °F
Notes
APpack = 1.3
A? pad = 2.0
A? pack = 1.3
AP pad = 2.0
-------
Test Run No. 1 Date: 6/19/91 Page 3 of 5
Time
12:45
1:15
1:45
2:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,500
2,700
8,800
2,650
6,200
11,600
7,400
7,400
5,600
8,500
2,700
8,800
2,650
6,200
11,600
7,400
7,500
5,700
8,500
2,700
8,800
2,700
6,200
11,600
7,400
7,400
5,700
8,600
2,700
8,800
2,700
6,200
11,600
7,400
7,400
5,800
Operating
voltage,
volts
8.0
8.4
9.0
8.0
7.6
12
7
12
11.8
8.0
7.4
9
8.0
7.7
12.2
7.2
12.2
11.8
8.0
8.4
9.0
8.0
7.8
12.2
7.2
11.8
11.8
8.0
8.4
9.0
8.0
7.8
12.2
7.2
11.8
11.8
Operation
temp., °F
125
125
125
125 '
125
140
132
138
Notes
AP pack = 1.3
A? pad = 2.0
AP pack = 1.3
AP pad = 2.0
Scrubber water
Baume reading = 3
Cone. =4.1 oz/gal
Composite samples taken from plating tanks and
scrubber water
-------
Test Run No. 1 Date: 6/19/91
Time
2:45
3:15
3:45
4:15
4:45
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
1A
IB
2A
2B
3
4
S
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,600
2,700
8,800
2,700
6,200
11,600
7,400
7,500
5,800
8,800
2,700
8,800
2,700
6,300
11,600
7,400
7,600
5,800
8,800
2,700
8,800
2,700
6,300
11,600
7,400
7,400
5,800
9,000
2,700
8,800
2,700
6,300
11,600
7,100
7,600
5,900
9,000
2,750
8,800
2,700
6,400
11,700
7,100
7,600
6,000
Operating
voltage,
volts
8.0
8.4
9.0
8.0
7.8
12.2
7.0
11.8
11.8
8.0
8.4
9.0 *
8.0
7.8
12.4
7.0
11.8
11.8
8.0
8.4
9.0
8.0
7.8
12.4
7.0
11.8
11.8
8.0
8.4
9.0
8.0
7.8
12.4
7.0
12
11.8
8.0
8.4
9.0
8.0
7.8
12.4
7.0
12.0
11.8
Operation
temp., °F
129
129
128
128
125
144
135
142
132
132
130
130
130
148
138
149
Page 4 of 5
Notes
APpack = 1.3
AP pad = 2.0
AP pack = 1.3
AP pad = 2.0
A? pack = 1.3
AP pad = 2.0
Last composite samples taken from plating tanks
and scrubber water
-------
Test Run No. 1 Date: 6/19/91 Page 5 of 5
Time
5:15
5:30
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
9,000
2,700
8,800
2,700
6,400
11,600
7,100
7,600
6,000
9,000
2,700
8,800
2,700
6,400
11,600
7,100
7,600
6,000
Operating
voltage,
volts
8.0
8.4
9.0
7.0
7.8
12.4
7.0
11.8
11.8
8.0
8.4
9.0
8.0
7.8
12.4
7.0
11.8
11.8
Operation
temp., °F
Notes
Stopped testing @ 5:03
-------
Process Data Sheets
Remco Hydraulics, Inc.
Willits, California
Test Run No. 2 Date: 6/20/91 Page 1 of 4
Time
9:15
9:45
10:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,500
2,600
9,000
2,550
6,500
10,800
7,400
6,700
5,400
8,500
2,650
9,000
2,600
6,500
11,000
7,400
7,000
5,600
8,500
2,650
9,000
2,600
6,500
11,200
7,400
7,000
5,700
Operating
voltage,
volts
8.0
8.4
9.6
8.0
8.0
11.6
7.4
12
11.8
8.0
8.4
9.6
8.0
8.0
11.6
7.2
12
11.8
8.0
8.4
9.6
8.0
8.0
11.6
7.2
12
11.8
Operation
temp., °F
115
115
120
120
120
127
120
110
Notes
Scrubber water
Baume reading =1.0
Cone. = 2.0 oz/gal
Start testing @ 9:23
AP pack = 2.5
APpad = 1.2
First composite samples taken from plating tanks
and scrubber water
,
AP pack = 2.4
A? pad = 1.2
-------
Test Run No. 2 Date: 6/20/91 Page 2 of 4
Time
10:45
11:15
11:45
12:15
12:45
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,500
2,700
9,200
2,650
6,500
11,200
7,400
7,200
5,800
8,500
2,700
9,400
2,700
5,600
11,000
7,400
7,400
6,000
8,500
2,700
9,400
2,700
5,600
11,000
7,400
7,400
6,000
8,500
2,700
9,400
2,700
5,600
11,000
7,400
7,400
6,000
8,500
2,750
9,500
2,700
5,600
11,000
7,400
6,000
7,000
Operating
voltage,
volts
8.0
8.4
9.6
8.0
8.0
11.8
7.2
12.0
11.6
8.0
8.4
9.6
8.0
7.2
11.6
7.0
12
11.8
8.0
8.4
9.6
8.0
7.2
11.6
7.0
11.8
11.8
8.0
8.4
9.6
8.0
7.2
11.6
7.0
11.8
11.8
8.0
8.4
9.6
8.0
7.2
11.6
7.0
11.6
11.6
Operation
temp., °F
124
124
126
126
124
140
133
130
Notes
A? pack = 2.4
APpad = 1.2
Tank 3 was dropped down to 5,500 A © 1 1:00
because rectifier overheated
AP pack = 1.2
AP pad = 2.4
AP pack = 1.2
AP pad = 2.4
Scrubber water
Baume reading = 1.5
Cone. = 2.5 oz/gal
Composit samples taken from plating tanks and
scrubber water
-------
Test Run No. 2 Date: 6/20/91 Page 3 of 4
Time
1:15
1:45
2:15
2:45
3:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
Operating
current,
amperes
8,500
2,750
9,400
2,750
5,600
11,200
7,400
6,000
7,200
8,500
2,750
9,400
2,750
5,600
10,000
7,400
6,000
7,300
8,500
2,750
9,400
2,750
5,600
10,000
7,400
6,000
7,300
8,500
2,750
9,500
2,750
5,600
10,000
7,400
5,600
7,000
8,500
2,750
9,600
2,750
5,600
10,000
7,400
5,600
7,000
Operating
voltage,
volts
8.0
8.4
9.6
8.0
7.2
11.6
7.0
11.6
11.6
8.0
8.4
9.6
8.0
7.2
11
7.0
11.6
11.4
8.0
8.4
9.6
8.0
7.2
11
7.0
11.6
11.5
8.0
8.4
9.6
8.0
7.2
10.8
7.0
10.8
11
8.0
8.4
9.6
8.0
7.2
11.0
7.0
10.8
10.8
Operation
temp., °F
129
129
130
130
125
146
137
140
130
130
130
130
125
142
137
145
130
130
129
129
125
142
136
146
Notes
AP pack = 1.2
A? pad = 2.4
Reduced Tank 4 to 10,000 A at 1:37 due to high
operating temperature
AP pack = 1.2
AP pad = 2.4
•
Scrubber water cone, prior to bleed off to plating
tanks
Baume reading = 2.0
Cone. =2.8 oz/gal
Scrubber water cone, after bleed off to plating
tanks
Baume reading =1.75
Cone. = 2.4 oz/gal
Reduced current load on Tank 6 to 5,600 A and
7,000 A due to high operating temperature @ 2:20
AP pack = 1.2
AP pad = 2.4
Last composite samples taken from plating tanks
and scrubber water.
-------
Test Run No. 2 Date: 6/20/91
Time
3:45
4:00
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
Operating
current,
amperes
8,500
2,750
9,600
2,750
5,600
10,000
7,400
5,600
7,000
8,500
2,750
9,600
2,750
5,600
10,000
7,400
5,600
7,000
Operating
voltage,
volts
8.0
8.4
9.6
8.0
7.2
10.8
7.0
10.6
10.8
8.0
8.4
9.6
8.0
7.2
11
7.0
10.8
10.8
Operation
temp., °F
Page 4 of 4
Notes
A? pack = 1.2
A? pad = 2.4
AP pack = 1.2
AP pad = 2.4
Stopped testing @ 4:50
-------
Process Data Sheets
Remco Hydraulics, Inc.
Willits, California
Test Run No. 3
Time
7:45
8:15
8:45
9:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5.
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,000
2,600
9,600
2,600
6,400
10,400
7,400
6,400
5,000
8,250
2,650
9,400
2,600
6,400
10,500
6,400
6,400
5,000
8,250
2,650
9,500
2,650
6,400
10,800
7,400
6,600
5,200
8,250
2,650
9,500
2,700
6,400
10,800
7,400
6,600
5,200
Date: 6/21/91 Page 1 of 3
Operating
voltage,
volts
8.0
8.4
9.6
8.0
8.0
11.4
7.4
11.5
11.2
8.0
8.4
9.6
8.0
8.0
11.4
7.4
11.4
11.2
8.0
8.5
9.6
8.0
8.0
11.4
7.3
11.5
11.2
8.0
8.5
9.6
8.0
8.0
11.4
7.2
11.5
11.2
Operation
temp., °F
115
115
120
120
120
120
118
110
118
118
123
123
122
141
123
116
Notes
Start test @ 7:45
Composite samples taken from plating tanks and
scrubber water
Scrubber water
Baume reading = 4.0
Cone. = 5.5 oz/gal
A? pack =1.2
A? pad = 2.2
A? pack = 1.2
A? pad = 2.2
Scrubber water
Baume reading = 4.5
Cone. = 6.2 oz/gal
A? pack = 1.2
APpad = 2.1
-------
Test Run No. 3 Date: 6/21/91 Page 2 of 3
Time
9:45
10:15
11:00
11:15
11:45
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
Operating
current,
amperes
8,250
2,650
9,600
2,700
6,400
10,800
7,400
6,700
5,400
8,250
2,650
9,400
2,700
6,400
10,800
6,400
6,700
5,400
8,250
2,700
9,600
2,700
6,400
11,000
7,400
6,800
5,400
8,250
2,725
9,600
2,700
67400
10,000
7,400
6,800
5,500
8,250
2,725
9,600
2,700
5,500
10,000
7,400
6,800
5,500
Operating
voltage,
volts
8.0
8.4
9.6
8.0
8.0
11.4
7.2
11.4
11.2
8.0
8.4
9.6
8.0
8.0
11.4
7.2
11.4
11.2
8.0
8.4
9.6
8.0
8.0
11.4
7.2
11.4
11.2
8.0
8.4
9.6
8.0
8.0
11.0
7.1
11.4
11.2
8.0
8.4
9.6
8.1
7.4
10.0
7.1
11.4
11.2
Operation
temp., °F
122
122
124
124
121
139
131
128
Notes
Scrubber water
Baume reading = 5.0
Cone. = 6.8 oz/gal
Baume readings are approximately reading about
an ounce per gallon too high because of metal
contaminants as determined by comparing
concentration per hydrometer by that detected
using colorimetric method.
A? pack =1.1
APpad = 2.1
Drained approximately -200 gallons out of
scrubber water recirculation tank.
Scrubber water
Baume reading = 3.5
Cone. = 4.8 oz/gal
Collected composite samples from plating tanks
and scrubber water
Rectifier on Tank No. 4 getting hot; dropped amps
by 1,000 at 11:15
APpack= 1.2
APpad = 2.1
Tank No. 3 rectifier overheated-shutdown at 11:25
Tank No. 3 backup at 11:30 at 5.500A
-------
Test Run No. 3 Date: 6/21/91 Page 3 of 3
Time
12:15
12:45
1:15
1:45
2:15
Tank No.
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
3
4
5
6
6
1A
IB
2A
2B
^
J
4
5
6
6
1A
IB
2A
26
3
4
5
6
6
Operating
current,
amperes
8,250
2,700
9,500
2,700
5,500
10,000
7,400 '
6,800
5,600
8,250
2,700
9,600
2,700
5,500
10,000
7,400
6,900
5,600
8,250
2,725
9,600
2,700
5,500
10,000
7,400
7,000
5,600
8,250
2,725
9,600
2,750
5,500
10,000
7,400
7,000
5,700
8,500
2,700
9,600
2,750
5,500
10,000
7,400
6,900
5,600
Operating
voltage,
volts
8.0
8.4
9.6
8.0
7.4
11.0
7.2
11.4
11.2
8.0
8.4
9.6
8.0
7.4
11.0
7.2
11.3
11.2
8.0
8.4
9.6
8.0
7.2
11
7.2
11.4
11.2
8.0
8.4
8.0
7.3
nf\
.u
7.2
11.4
11.2
8.0
8.4
9.6
8.0
7.3
11.0
7.2
11.3
11.2
Operation
temp., °F
124
124
123
123
122
138
132
134
125
125
125
125
122
138
132
138
Notes
A? pack = 1.2
A? pad = 2.1
Scrubber water
Baume reading = 4.25
Cone. = 6.0 oz/gal
&P pack = 1.2
APpad = 2.1
Last composite samples taken from plating tanks
and scrubber water
Scrubber water
Baume reading = 5.0
Cone. = 6.8 oz/gal
AP pack = 1.2
APpad = 2.1
Stopped testing at 2:25
-------
APPENDIX F
DETERMINATION OF TOTAL CHROMIUM
AND HEXAVALENT
CHROMIUM EMISSIONS
FROM STATIONARY SOURCES (CARB 425)
F-l
-------
State of California
Air Resources Board
Method 425
Determination of Total Chromium and Hexavalent Chromium
Emissions from Stationary Sources
Adopted: January 22, 1987
Amended: September 12, 1990
-------
TABLE OF CONTENTS
METHOD 425
DETERMINATION OF TOTAL CHROMIUM AND HEXAVALENT CHROMIUM
EMISSIONS FROM STATIONARY SOURCES
page
1 APPLICABILITY. PRINCIPLE, AND FIGURES 1
2 RANGE. SENSITIVITY, PRECISION. AND INTERFERENCES
3 APPARATUS 7
4 REAGENTS 8
5 SAMPLE COLLECTION. PRESERVATION. AND HANDLING H
6 PROCEDURES FOR SAMPLE RECOVERY. PREPARATION. AND ANALYSIS 12
7 CALIBRATION. QUALITY CONTROL. AND DATA REPORTING 15'
8 REFERENCES 19
-------
METHOD 425
DETERMIKATION OF TOTAL CHROMIUM AND HEXAVALENT CHROMIUM
EMISSIONS FROM STATIONARY SOURCES
1 APPLICABILITY, PRINCIPLE. AND FIGURES
1. 1 APPLICABILITY
This method applies to the determination of hexavalent chromium
(Cr(VI)) and total chromium emissions from stationary sources.
Applicability has been demonstrated for the metal finishing and
glass industries. Its applicability has not been demonstrated
for sources with high particulate mass emission rates.
1. 2 PRINCIPLE
Particulate emissions are collected from the source in an
alkaline medium by use of CARB Method 5, with modifications noted
in this method. The components of the collected sample are each
divided into two equal portions with one portion of each
component used for total chromium analysis and the other portion
used for hexavalent chromium analysis.
1. 2. I Hexavalent Chromium Analysis
For the hexavalent chromium analysis the collected sample
component portions are extracted in an alkaline solution and
analyzed by the diphenylcarbazide colorimetric method.
1. 2. 2 Total Chromium Analysis
For the total chromium analysis the collected samples must be
prepared in order to convert organic forms of chromium to
inorganic forms, to minimize organic interferences, and to
convert the rarcple to a suitable solution for analysis.
Samples are then subjected to an acid digestion procedure.
Following the appropriate, dissolution and dilution of the
sample, a representative aliquot is placed manually or by
means of an automatic sampler into a graphite tube furnace.
The sample aliquot is then slowly evaporated to dryness,
charred (ashed), and atomized. The absorption of hollow
cathode radiation during atomization will be proportional to
the chromium concentration.
1. 3 FIGURES
The following figures summarize features of this method.
425 - 1
-------
1. 3. 1 Figure 1.
Sample Collection and Recovery for Hexavalent and Total Chromium
sample
0.1 N NaOH rinse at lab See Section 6.2
i
glass-lined probe 0.1 N NaOH impingers
I V
filter
container 1
> 100ml
split
extract filter in 0.1 N
NaOH impinger solution
The filter should be
combined on site
if a clean room
is available.
The volumes of containers
1 and 2 and each of the splits
must be measured and recorded.
probe impinger/
filter
I
Hexavalent Chromium
Analysis
probe impinger/
filter
\
[Total Chromium
Analysis
irnium)
?is J
Optionally, the protocol may call for
extraction of the filter in only one of
the impinger liquids, which will create
three sample recoveries for analysis..
•*- See Figures 2 & 3
425 - 2
-------
1. 3. 2 Figure 2.
Hexavalent Chromium Analysis
f
See Figure 1
and Sections
6.4 and 6.5
optionally, the protocol may call for
extraction of the filter in only one of
the impinger liquids, which will create
sample recoveries for analysis^
typically:
two separate analyses
transfer ~ 35 ml
to a 100mL beaker
f
I
adjust the pH to 1±0.2 with 6N sulfuric acid
add 1.0 ml of diphenylcarbazide solution
bring to volume in a 50 mL volumetric flask
dilute to volume with water
- let color develop 10 minutes
filter to remove suspended solids after
pre-wetting medium retention filter paper with
a few ml each of first reagent blank and then sample
measure absorbance of a sample portion
and reagent blank at 540 nm
if reading exceeds calibration,
dilute with reagent blank or
remeasure using less of remaining sample
425 - 3
-------
1. 3. 3 Figure 3.
Total Chromium Analysis
(
See Figure 1
and Sections
6.4 and 6.5
optionally, the protocol may call for
extraction of the filter in only one of
the impinger liquids, which will create
sample recoveries foranalysisj
typically:
two separate analyses
f add 10 ml HN03 1 pn f reflux to near dryness]
add 5 ml HN03 ] pn f reflux to near dry ness
I
transfer to a volumetric flask and
adjust to a predetermined volume
inject a measured aliquot
in uL amounts into a furnace type
atomic absorption spectrophotometer
measure absorbance of a sample portion
and reagent blank at 357.9 nm
425 - 4
-------
2 RANGE, SENSITIVITY. PRECISION, AND INTERFERENCES
2. 1 RANGE
2. 1. 1 Hexavalent Chromium
A straight line response curve was obtained in the range 0.5
ug Cr(VI)/50 mL to 3.0 ug Cr(VI)/50 ml. For a minimum
analytical accuracy of 100 ± 10 percent, the lower limit of
the range is 2 ug/lOOmL. The upper limit can be extended by
appropriate dilution or by using a smaller cell path length
after recalibration for the smaller cell. (Reference 8.3)
2. 2 SENSITIVITY
The minimum sampling volume should be calculated for each test
and should be based upon [1] the targeted minimum detectable
concentration at the source, [2] the expected minimum detection
limit achievable at the laboratory, and [3] the sampling time
limitations at the source.
2. 2. 1 Hexavalent Chromium
A minimum detection limit, of 0.2 ug Cr(VI)/50mL using a 5 cm
cell, has been observed. (Reference 8.3)
2. 3 PRECISION FOR HEXAYALENT CHROMIUM
The overall precision for sample collection and analysis for
Cr(VI) will be determined after/data are collected from a test
protocol which includes multiple simultaneous sampling
techniques.
*
2. 4 INTERFERENCES
2. 4. 1 Interferences of Hexavalent Chromium
Molybdenum, mercury and vanadium react with diphenylcarbazide
to form a color; however, approximately 20 mg of elements can
be present in a sample without creating a problem. Iron
produces a yellow color, but this effect 1s not measured
photometrically at 540 nra.
2. 4. 2 Interferences for Total Chromium
2. 4. 2. 1 The long residence time and high concentrations of the
atomized sample in the optical path of the graphite furnace
can result in severe physical and chemical interferences. '
Furnace parameters must be optimized to minimize these
effects. If the analyte is not completely volatilized and
removed from the furnace during atoraization, memory effects
will occur. If this situation is detected, the tube should
be cleaned by operating the furnace at higher atomization
temperatures.
425 - 5
-------
2. 4. 2. 2 Nitrogen should not be used as the purge gas because of a
possible CN band interference.
2. .4. 2. 3 Low concentrations of calcium may cause interferences; at
concentrations above 200 mg/L calcium's effect is constant.
Calcium nitrate is therefore added to ensure a known
constant effect. This step may be omitted if the sample is
known to be free of calcium or no analytical interferences
are expected.
2. 5 ALTERNATIVE METHODS
Direct Measurement of Gas Volumes through Pipes and Small
Ducts
Air Resources Board Method 2A may be used, where applicable,
as an alternative to pitot tube methods specified in Method 5,
as referenced herein.
Hexnvalent Chromium Determination by Ion Chromatography
For hexavalent chromium concentrations which are within the
detection range of ion chromatographv. this analytical method
may be used Instead of the colon'metrv method specified in
these pages. This option applies only to the analysis of
hexavalent chromium. The remainder of the test method shall
be performed as specified.
Total Chromium Determination by Flame Atomic
Absorption Spectroscopy ., .r
For high total chromium concentrations which are within the
detection range of flame atomic absorption Spectroscopy. this '
analytical method may be used instead of the furnace type
method specified in these pages. This option applies only to
the analysis of total chromium. The remainder of the test
method shall be performed as specified.
Other Methods
The Executive Officer or authorized representative may approve
an alternative test method (including other techniques or
conditions) for the determination of hexavalent and/or total
chromium emissions from stationary sources. To approve an
alternative method, the Executive Officer or authorized
representative may require the submission of test data
demonstrating that the alternative method is equivalent to
Method 425.
425 - 6
-------
3 APPARATUS
All surfaces which may come in contact with sample must be glass,
Teflon, or other similarly non-metallic (stainless steel may be a
source of chromium contamination) inert material. See Section 5.2.
Any other sampling apparatus which, after review by the Executive
Officer, is deemed equivalent for the purposes of this test method,
may be used.
3. 1 SAMPLING TRAIN
Except where otherwise noted in this method, same as CARB Method
5, Section 2.1. Exceptions include a glass nozzle, a glass lined
stainless steel probe. 0.1 N NaOH in the first two impingers, a
Teflon-coated glass fiber filter, and a silica gel moisture trap
after the filter. As shown 1n Figure 1, sample flow should be
through the probe first, then the impingers, and then the filter.
3. 2 SAMPLE RECOVERY
Except where otherwise noted in this method, same as CARB Method
5, Section 2.2. Also, see Section 6. 2 of this method.
3. 3 ANALYSIS
The following apparatus and materials are needed:
3. 3. 1 Analysis of Hexavalent Chromium
3. 3. 1. 1 100 raL beakers . . .V"
3. 3. 1. 2 Filtration Apparatus
Vacuum unit constructed of glass, to accommodate sintered
glass funnels. Medium porosity filter paper is optional.
Wherever filtering Is specified, centrlfuglng may also J>e
performed at the analyses option.
3. 3. 1. 3 Volumetric Flasks
100-mL and other appropriate volumes.
3. 3. 1. 4 Hot Plate
3. 3. 1. 5 Pipettes
Assorted sizes, as needed.
s*
3. 3. 1. 6 Spectrophotometer
To measure absorbance at 540nm.
3. 3. 2 Analysis of Total Chromium
425 - 7
-------
3. 3. 2. 1 Philips Beakers
Borosilicate. 125mL, with digestion covers.
3. 3. 2. 2 Chromium Hollow Cathode Lamp or Electrodeless Discharge
Lamp.
3. 3. 2. 3 Graphite Furnace
Any graphite furnace device with the appropriate
temperature and timing controls.
3. 3. 2. 4 Strip Chart Recorder
A recorder is recommended for furnace work so that there
will be a permanent record and so that any problems with
the analysis such as drift, incomplete atomization, losses
during charring, changes in sensitivity, etc., can easily
be recognized.
4 REAGENTS
Unless otherwise indicated, all reagents must conform to the
specifications established by the Committee on Analytical Reagents
of the American Chemical Society. Where such specifications are not
available, use the best available grade.
4. 1 SAMPLING
Except where otherwise noted in.this method, same as CARB method
5, Section 3.1, except Teflon-coated glass fiber filters are•••
used, and 0.1 N NaOH is used in the first two impingers. See
section 4.3.2 below.
4. 2 SAMPLE RECOVERY
Except where otherwise noted in this method, same as CARB Method
5, Section 3.2. ^
4. 3 REAGENTS FOR HEXAYALENT CHROMIUM
4. 3. 1 Type II Water
Type II water is deionized and distilled, meeting American
Society for Testing and Materials (ASTM) specification for
type reagent - ASTM Test Method 0 1193-77. The water should be
monitored for impurities.
4. 3. 2 Batch of 0.12 NaOH Solution, Analytical Reagent Grade
The same batch of 0.1N NaOH solution should be used for
impinger sampling, sample recovery, preparation, extraction,
and analysis. Therefore, sampling and analytical personnel
should coordinate their plans so that all steps in sampling
425 - 8
-------
and analysis use the same batch of solution which will be
prepared fresh for each source test. Typically, dissolve 4.0
g NaOH in water in a 1 liter volumetric flask and dilute to
the mark. Repeat, as necessary, so that a single batch of
sufficient volume is prepared to serve all of the needs of
sampling and analysis. Store the solution in a tightly capped
polyethylene bottle.
4. 3. 3 Potassium Oichromate Stock Solution
Dissolve 2.829 g of analytical reagent grade potassium
dichromate (K-Cr.,07) in water, and dilute to 1 liter (1 mL •
1000 ug Cr(Vlf)/ '
4. 3. 4 Potassium Oichromate Standard Solution
Dilute 10.00 ml potassium dichromate stock solution to 100 mL
(1 ml = 100 ug Cr(VI) with water.
4. 3. 5 Sulfuric Acid, 6N, Analytical Reagent Grade
Dilute 166 ml sulfuric acid to 1000 mL in water.
4. 3. 6 Diphenylcarbazide Solution. Analytical Reagent Grade
Dissolve 0.5 g of 1,5-diphenylcarbazide in 100 mL acetone.
Store in a brown bottle. Discard when the solution becomes
discolored.
4. 3. 7 O.il Potassium Permanganate Solution . ,
Analytical Reagent Grade
•
4. 3. 8 0.011 Potassium Permanganate Solution
Analytical Reagent Grade
4. 3. 9 Removal of Reducing Agents in the Reagents
The 0.1 N NaOH extraction solution (4.3.2) and the 6N sulfuric
acid solution (4.3.5) may contain small amounts of reducing
agents that can react with the hexavalent chromium. Potassium
permanganate is added to these reagents in order to neutralize
these reducing agents. Pipette 3 roL of the extraction
solution into cuvettes A and B. Use cuvette A as a sample
cell and cuvette B as a reference cell. Zero the Instrument
at 528 run with both cuvettes. Wait 10 minutes. Add an
adequate amount (uL) of 0.011 potassium permanganate solution "
(4.3.8) to cuvette A. Enough should be added so that after 10
minutes a slight change in absorbance is observed. This step
may have to be repeated a number of times in order to
determine the required amount of potassium permangante that is
required. From the change in absorbance, calculate the amount
of potassium permanganate that is needed to nuetralfze the
i
f
425 - 9
-------
reducing agents found in the reagents. Then pipette the
proper volume of higher concentration 0.1% potassium
permanganate solution (4.3.7) into the reagents. This is done
by assuming that the number of milliequivalents of reducing
agents in the reagents are equal to the number of
milliequivalents of 0.1X potassium permanganate pipetted.
This procedure is repeated with the 6N sulfurlc acid solution.
4. 4 REAGENTS FOR TOTAL CHROMIUM
4. 4. 1 ASTM Type II Water (ASTH D1193)
Refer to section 4.3.1.
4. 4. 2 Concentrated Nitric Acid
4. 4. 2. 1 Reagent preparation should use Ultrex or equivalent grade
HN03.
4. 4. 2. 2 Glassware cleaning should use ACS reagent grade HNO-.
4. 4. 3 Hydrogen Peroxide (302) (Optional), Analytical Reagent Grade
4. 4. 4 Matrix Modifier
Follow manufacturer's recommendations, when interferences are
suspected.
4. 4. 5 Total Chromium Standard Stock Solution (lOOOmg/L)
Either procure a certified aqueous standard from a supplier
(Spex Industries, Alpha Products, or Fisher Scientific) and
verify by comparison with a second standard, or dissolve 2.829
g of Potassium 01chromate (K?Cr207, analytical reagent grade)
in Type II water and dilute to I liter.
4. 4. 6 Total Chromium Working Standards
All total chromium preparations injected for analysis shall be
prepared to contain 1.02 (v/v) HNOV The zero standard shall
be 1.0 % (v/v) HN03. J
5 SAMPLE COLLECTION. PRESERVATION, AND HANDLING
5. 1 SAMPLE COLLECTION
**
Except where otherwise indicated in this method, all samples are -
collected from the source by use of CARB Method 5. Exceptions
include a glass nozzle, a glass lined stainless steel probe, 0.1
N NaOH in the first two impingers, and a Teflon-coated glass
fiber filter. As shown in Figure 1, sample flow should be
through the probe first, then the impingers, and then the filter.
-------
5. 2 SAMPLE HANDLING AND PRESERVATION
All surfaces which may come in contact with sample must be glass,
Teflon, or other similarly non-metallic (even stainless steel may
be a source of chromium contamination) inert material and must be
prewashed with detergents, soaked in 1:1 HMO- for several hours,
.rinsed with Type II water, and finally rinsed with 0.1 N NaOH
batch solution. For awkward objects, such as long glass probes,
soaking may be replaced by careful wiping.
5. 2. 1 Probes are generally the most difficult sampling apparatus to
clean. Therefore, before use in sampling, to ensure that
sampling equipment is clean and free of chromium
contamination, apparatus which nay come in contact with sample
must be cleaned until a sample of final rinse for each probe
has been analyzed as below the detection limit for total
chromium. The procedures of Section 6 shall be followed for
this contamination check.
If the specified glass probes are in short supply, the
cleaning protocol required above could double the number of
days necessary to complete a series of tests. Two options
exist which reduce mid-course delays in a sampling effort:
5. 2. 1. 1 Another cleaning procedure may be used if it is tested and
documented as achieving the objective of no detectable
chromium in the last probe cleaning rinse. Testing and
documentation shall include: a pre-test visit to the
intended site, collection of samples from an intended test
point with the highest expected concentration of chromium,
trials of other cleaning/procedures, and documentation of
those which pass the analytical tests and are used instead
of the cleaning procedures in Section 5.2.1 above.
5. 2. 1. 2 The risk of mid-course cleaning delays may be reduced by
the use of a sufficient number of probes which have been
pre-cleaned and contamination checked by the procedures of
Sections 5.2.1 or 5.2.1.1* Extra probes should be included
to allow for breakage.
6 PROCEDURES FOR SAMPLE RECOVERY. PREPARATION, AND ANALYSIS
6. 1 SILICA GEL WEIGHING
For stack gas moisture determination, weigh the spent silica gel
or silica gel plus impinger to the nearest 0.5 g using a balance.
This step may be conducted in the field.
6. 2 SAMPLE COLLECTION AND RECOVERY
The sample is collected using probe, irapingers, and filter.
425 - 11
-------
6. 2. 1 Probe
The probe is rinsed with 0.1 N NaOH. The total rinse volume
should exceed 100 ml and be stored in container 1. (Measure
the volume.) The probe rinse 1s transported to a clean room
or to a site with laboratory conditions where it is split with
half saved for hexavalent chromium analysis and half saved for
total chromium analysis. Each sample split 1s ~60mL.
(Measure the volumes.)
6. 2. 2 Irapingers and Filter
The sampling and analytical personnel shall discuss the
expected sample concentrations and the analytical limits of
detection for hexavalent and total chromium. The impinger
catch and filter should be handled one of two ways depending
on these expectations as directed in Sections 6.2.2.1 and
6.2.2.2 below.
6. 2. 2. 1 Higher Concentrations
If it is not considered important to minimize the dilution
of any sample component, then the contents of both
impingers (-200mL total) shall be combined and stored in
container 2. (Measure the volume.) As soon as possible,
the filter is transported in a filter container to a site
with laboratory conditions where 1t should be extracted In
all of the impinger solution from container 2. The
extraction should include .shaking for a minimum of 30
minutes. The alkaline impinger medium ..will .retard
reduction of.hexavalent chromium.--The-extract solution Is
split with half saved for hexavalent chromium analysis and
half saved for total chromium analysis. Each sample split*
is -100 ml. (Measure the volumes.)
6. 2. 2. 2 Lower Concentrations
If it is. considered important to minimize the dilution of
any sample component, then the contents of each impinger
(-IQOmL each) may be stored in containers 2 and 3.
(Measure the volumes.) The filter shall be extracted in
only one of the impinger contents, whichever 1s suspected
to have the higher concentration. The extraction shall
include shaking for a minimum of 30 minutes. The contents
of the first Impinger are stored in container 2 and those
of the second impinger in container 3. Whichever Impinger
contents are not used for extraction must be handled as a
third sample recovery requiring separate analyses. Both
sample recoveries are split as described above. Each
sample split is -50 ml. (Measure the volumes.)
425 - 12
-------
6. 3 REAGENT BLANK PREPARATION
Hexavalent Chromium Reagent Blank
to a
of dtphenylcirtwUde Mlutlo ' ""
Total Chromium Reagent Blank
For total chromium, the reagent blank is simply l % m
6. 4 SAMPLE PREPARATION 3*
6. 4. 1 Hexavalent Chromium Sample Preparation
fe^XTtt^H » 0352miit°hf 6SK°1Ut!?n t0 a «*
1.0 mL of diphenylcarbazide solution 5oN.Sulfuric «W. add
water in a 5QP mL voJumetMc "ask and J?te J° V0]uhle vit"
10 minutes. (This leaves at east 15 J V°lor,deveIoP f°r
-«••« in a &o mL volumetric flask and i^f , VOIUfne wtth
10 minutes. (This leaves at east 15 J V°lor,deveIoP f°r
further analyses. The total volume nVc of,samPle split for
known at this point.) e of samPle sPHt must be
6- 4. 2 Total Chromium Sample Preparation
. , -»
Insoluble material that could elSTuL » J0??6* *nd
-------
6. 5 ANALYSIS
6. 5. 1 Hexavalent Chromium Analysis
The analyst must filter the preparation for clarity at this
point. Medium retention filter paper should be used. The
filter paper shall be pre-wetted with a few mL of reagent
blank and sample preparation. This will prime the filter so
that it won't absorb color complex.
Transfer a portion of the filtered preparation into a 5 cm
absorption cell.
Measure the absorbance at the optimum wavelength of 540 nm.
Subtract the sample blank absorbance reading to obtain a net
reading.
If the absorbance reading of a sample preparation exceeds the
calibration range, dilute with reagent blank or re-measure
using less of the sample preparation. (There should be about
15mL remaining at this point. See Sections 6.2.1. 6.2.2.1,
and 6.2.2.2.)
6. 5. 2 Check for Matrix Effects on the Cr(VI) Results
As the analysis for Cr(VI) by colorimetry is sensitive to the
chemical composition of the sample (matrix effects), the
analyst shall check at least one sample from each source using
the following method: Obtain two equal volume aliquots of the
same sample solution, the aliquots-should-each contain —
between 6 and 10 ug of Cr(VI) (less if not possible). Spike
one of the aliquots with an aliquot of standard solution that '
contains between 6 and 10 ug of Cr(VI). Now treat both the
spiked and unspiked sample aliquots as described in Section
6.4.1 above. Next, calculate the Cr(VI) mass Cs, In ug in the
aliquot of the unspiked sample solution by using the following
equation:
Cs = Ca As Eq. 1
At-As
where:
Ca = Cr(VI) in the standard solution, ug.
As « Absorbance of the unspiked sample solution.
At • Absorbance of the spiked sample solution.
Volume corrections will not be required since the solutions as
analyzed have been made to the same final volume. If the
results of this method used on the single source sample do not
agree to within 10 percent of the value obtained by the
425 - 14
-------
routine spectrophotometric analysis, then reanalyze all
samples from the source using the method of standard additions
procedure.
6. 5. 3 Total Chromium Analysis
The 357.9-nm wavelength line shall be used.
Follow the manufacturer's operating instructions for all other
spectrophotometer parameters.
Furnace parameters suggested by the manufacturer should be
employed as guidelines. Since temperature-sensing mechanisms
and temperature controllers can vary between instruments or
with time, the validity of the furnace parameters must be
periodically confirmed by systematically altering the furnace
parameters while analyzing a standard. In this manner, losses
of analyte due to higher than necessary temperature settings
or losses in sensitivity due to less than optimum settings can
be minimized. Similar verification of furnace parameters may
be required for complex sample matrices.
Inject a measured uL aliquot of preparation into the furnace
and atomize. If the concentration found exceeds the
calibration range, the sample should be diluted in the same
acid matrix and reanalyzed. The use of multiple injections
can improve accuracy and help detect furnace pipetting errors.
Subtract a sample blank reading from a sample reading to
obtain a net reading. .'
7 CALIBRATION, QUALITY CONTROL, AND DATA REPORTING
*
7. 1 GENERAL
Perform all of the calibrations described in CARB Method 5,
Section 5, with any modifications appropriate for this method.
7. 2 CALIBRATION AND QUALITY CONTROL FOR HEXAVALENT CHROMIUM
7. 2. 1 Calibrate the wavelength scale of the spectrophotometer every
6 months. The calibration may be accomplished by using an
energy source with an Intense line emission such as a mercury
lamp, or by using a series of glass filters spanning the
measuring range of the spectrophotometer. Calibration
materials are available commercially and from the National
Institute of Standards and Technology. Specific details on
the use of such materials should be supplied by the vendor;
general information about calibration techniques can be
obtained from general reference books on analytical chemistry.
The wavelength scale of the spectrophotometer must read
correctly within ±5 nra at all calibration points; otherwise,
the spectrophotometer shall be repaired and recalibrated.
Once the wavelength scale of the spectrophotometer is in
425 - 15
-------
proper calibration, use 540 nm as the optimum wavelength for
the measurement of the absorbance of the standards and
samples.
7. 2. 2 Alternatively, a scanning procedure may be employed to
determine the proper measuring wavelength. If the instrument
is a double-beam spectrophotometer, scan the spectrum between
530 and 550 nm using a 50 ug Cr(VI) standard solution 1n the
sample cell and a reagent blank solution in the reference
cell. If a peak does not occur, the spectrophotometer is
malfunctioning and should be repaired. When a peak is
obtained within the 530 to 550 nm range, the wavelength at
which this peak occurs shall be the optimum wavelength for the
measurement of absorbance of both the standards and the
samples. For a single-beam spectrophotometer, follow the
scanning procedure described above, except that the reagent
blank and standard solutions shall be scanned separately. The
optimum wavelength shall be the wavelength at which the
maximum differences in absorbance between the standard and the
reagent blank occurs.
7. 2. 3 Either (1) run a series of chromium standards and construct a
calibration curve by plotting the concentrations of the
standards against the absorbances or (2) if necessary, for the
method of standard additions, plot added concentration versus
absorbance.
7. 2. 4 Each standard for hexavalent chromium is made up fresh in a
separate 50mL volumetric flask starting with 35 ml of the same
batch of NaOH solution reserved for its sample set. Then an...l
appropriate amount of hexavalent chromium-is added to each
calibration standard, starting with none for the zero
standard. Then 6N suIfuric acid and diphenylcarbazide
solution are added in the same manner as in sample
preparation.
7. 3 CALIBRATION AND QUALITY CONTROL FOR TOTAL CHROMIUM
7. 3. 1 Either (1) run a series of chromium standards and reagent
blanks and construct a calibration curve by plotting the
concentrations of the standards against the absorbances or (2)
for the method of standard additions, plot added concentration
versus absorbance. For instruments that read directly in
concentration, set the curve corrector to read out the proper
concentration.
Calibration standards for total chromium should start with IX
v/v HNO, with no chromium for the zero standard with
appropriate increases in total chromium concentration in the
other calibration standards. The calibration standards should
be prepared following the steps outlined in sample
preparation.
425 - 16
-------
7. 3. 2 Run a check standard after approximately every 10 sample
injections. Standards are run in part to monitor the life and
performance of the graphite tube. Lack of reproducibility or
a significant change in the signal for the standards indicates
that the tube should be replaced.
7. 3. 3 Duplicates, spiked samples, and check standards should be
routinely analyzed.
7. 3. 4 Calculate metal concentrations (1) by the method of standard
additions, or (2) from a calibration curve, or (3) directly
from the instrument's concentration readout. All dilution or
concentration factors must be taken into account.
Concentrations reported for multiphased or wet samples must be
appropriately qualified (e.g., 5 ug/g dry weight).
7. 3. 5 Calibration curves must be composed of a minimum of a reagent
blank and three total chromium standards. A calibration curve
should be made for every batch of samples, unless check
standards remain within 10* of the last calibration curve.
7. 3. 6 Dilute samples with reagent blank solution if they are more
concentrated than the highest standard or if they fall on the
plateau of a calibration curve.
7. 3. 7 Employ a minimum of one matrix-matched sample blank per sample
batch to determine if contamination or any memory effects are
occurring.
7. 3. 8 Test the system with check standards after approximately every.
15 samples. .. ._...' .:. _"
7. 3. 9 Run one duplicate sample for every 10 samples, providing there*
is enough sample for duplicate analysis. A duplicate sample
is a sample brought through the whole sample preparation.
7. 3.10 Spiked samples or standard reference materials shall be used
daily to ensure that correct procedures are being followed and
that all equipment is operating properly. This will serve as
a check on calibration standards, too.
7. 3.11 Whenever sample matrix problems are suspected, the method of
standard additions shall be used for the analysis of all
extracts, or whenever a new sample matrix is being analyzed.
7. 3.12 The concentration of all calibration standards should be
verified against a quality control check sample obtained from
an outside source.
7. 3.13 All quality control data should be maintained and available
for easy reference or inspection.
425 - 17
-------
7. 4 DATA REPORTING
Carry out the calculations, retaining at least one extra decimal
figure beyond that of the acquired data. Round off figures after
final calculations.
7. 4. 1 Total Cr(VI) in Sample
Calculate and report mh. the total ug Cr(YI) 1n the sample.
This can be obtained fPom the calibration curve or from the
method of standard additions. Note that m. is the sum of the
masses of hexavalent chromium analyses performed on all sample
splits. Also take in account the dilutions when calculating
mh.
Report these calculations based on net readings, but report
all sample blank data, too.
7. 4. 2 Total Chromium in the Sample
Calculate and report m*. the total ug of chromium in the
sample. This can be obtained from the calibration curve or
from the method of standard additions. Note that nk is the
sum-of the masses of total chromium analyses performed on all
sample splits. Also take into account the necessary dilutions
when calculating out m*.
Report these calculations based on net readings, but report
all sample blank data, too.
7. 4. 3 Average Dry Gas.Meter Temperature and Average Orifice Pressure
Drop
Except where otherwise noted in this method, same as Method 5,
Section 6.2.
7. 4. 4 Dry Gas Volume, Volume of Water Vapor, Moisture Content
Except where otherwise noted in this method, same as Method 5,
Sections 6.3, 6.4, and 6.5, respectively.
7. 4. 5 Cr(VI) Emission Concentration
Calculate and report [h]_ (g/dscm), the Cr(YI) concentration
in the stack gas, dry basis, corrected to standard conditions,
as follows:
[h]s = (10-6g/ug)(mh/Ym(std))
425 - 18
-------
7. 4. 6 Total Chromium Emission Concentration
Calculate and report [tL (g/dscm), the total chromium
concentration in the stack gas, dry basis, corrected to
standard conditions as follows:
[t]s «= (10-6g/ug)(mt/Vm(std))
7. 4. 7 Isokinetic Variation, Acceptable Results
Except where otherwise noted in this method, same as Method 5,
Sections 6.11 and 6.12, respectively.
8 REFERENCES
8. 1 US. Environmental Protection Agency/Office of Solid Waste,
Washington, D.C., "Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods, "SW-846 (1986). Third Edition.
8. 2 Same as in Bibliography of Method 5, Citations 2 to 6 and 7.
8. 3 California Air Resources Board, Inorganic Analysis Section.
(1988)
425 - 19
-------
APPENDIX G
EQUIPMENT CALIBRATION DATA
G-l
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date -.) ~
Thermocouple number .^> ft
Ambient temperature 1 '">$ °
Calibrator G G-« Reference: mercury-in-glass
Barometric pressure Pg.r .s in. Hg
other
3 re 7 y
Reference
point
number
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
Source
(specify)
Reference
thermometer
temperature ,
oF
1 3. fr
;\ \ L
Thermocouple
potentiometer
temperature,
or
TV,
H«
Temperature
difference,
aEvery 30°C (50°F) for each reference point.
3Type of calibration system used.
:F(ref temp, °C +273) - (test thermom temp, °C + 273)1
L:ref temp, °C + 273J
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Thermocouple number
Ambient temperature 3^-4- °Cr Barometric pressure 7 7..fJ in. Hg
Calibrator C- ^ Reference: mercury-in-glass /TJ~"? i /^
other
Reference
point
number
Source"
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
oT
Temperature
difference,
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
aEvery 30°C (50°F) for each reference point.
3Type of calibration system used.
, r ^ • -i
- (ref temp, °C + 273) - (test thermom temp, °C + 273)|
. ref temp, °C + 273 ^J
100£l.5%.
-------
• TEMPERATURE SENSOR CALIBRATION•DATA FORM
Date
Thermocouple number f 'I
Ambient temperature 14- °C f~ Barometric pressure «*r &.T in. Hg
Calibrator C- f->••.- Reference: mercury-in-glass /U7/>-> 3 F
other
Reference
point •
number
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
Source
(specify)
Reference
thermometer
temperature ,
14.-
^ ~ r '
,,,
Thermocouple
potentiometer
temperature ,
Or
u.
' \ * \
Temperature
difference,
*Every 30°C (50°F) for each reference point.
5Type of calibration system used.
:f(ref temp, °C + 273) - (test thermom temp, °C + 273)1
Lref temp, "C + 273J
100£1.5%.
-------
• TEMPERATURE SENSOR CALIBRATION•DATA FORM
Date
Thermocouple number
Ambient, temperature __2_H_°C: Barometric pressure 3 * 'o ~ in. Hg
Calibrator !c '-''" Reference: mercury-in-glass /?;;.?/•> ; g
other
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Or
Thermocouple
potentiometer
temperature,
Or
Temperature
difference,
1. AMBIENT
AIR
1
2. BOILING
H20
3. ICE
H20
J.
Every 30°C (50°F) for each reference point.
5Type of calibration system used.
(ref temp, °C + 273) - (test thermom temp, °C + 273)
I-
ref temp, °C + 273
100£l.5%.
-------
IT"-
TEMPERATURE SENSOR CALIBRATION • DATA FORM
Thermocouple number b •
Date "^~C, -1!
Ambient temperature '7 3.4- °gF Barometric pressure H^f in. Hg
Calibrator G (.-**< Reference: mercury-in-glass -fl^r, i F
ifc'7Jf
other
Reference
point •
number
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
Source
(specify)
Reference
thermometer
temperature,
oF
*^ „ i
/ ^, f
~)
-k'S .4-
A <
4c.^
Thermocouple
potentiometer
temperature,
Or
1 3 f
acS.'f-
1- - • 4-
Temperature
difference,
%
aEvery 30 °C (50°F) for each reference point.
Type of calibration system used.
c(ref temp. °C + 273) - (test thermom temp, °C
f
L
ref temp
273
273)
1
J
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Thermocouple number 5" -s
°f-
gf- Barometric pressure 3 •>. j- ; in. Hg
Ambient temperature 11. -'
Calibrator C-c,. Reference: mercury-in-glass
other
3-fc/v,
Reference
point
number
Source"
(specify)
Reference
thermometer
temperature,
oF
Thermocouple
potentiometer
temperature,
Or
Temperature
difference,
1. AMBIENT
AIR
1/4-
2. BOILING
H20
3. ICE
H20
1 .1.
Every 30°C (50°F) for each reference point.
5Type of calibration system used.
T(ref temp, °C +273) - (test thermom temp, °c
Lref temp, °C + 273'
273)1
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Thermocouple number
•-G-C-
Ambient temperature 73 °C Barometric pressure 2q.?C in. Hg
Calibrator C G-v Reference: mercury-in-glass r\•>-<•> \,-
other
c -
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
oF
Thermocouple
potentiometer
temperature ,
o T
Temperature
difference,
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
73
'V.I
> b
Every 30°C (50°F) for each reference point.
*Type of calibration system used.
:F(ref temp, °C + 273) - (test thermom temp, °C + 273)
L ref temp, °C -t- 273 .
-------
TEMPERATURE SENSOR CALIBRATION • DATA FORM
IT"-
Date
3 -
Thermocouple number
Ambient temperature ">!•)- °€fi Barometric pressure 3 s> in. Hg
Calibrator C- f.,K/ Reference: mercury-in-glass fl-3~Tw
other
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Or
Temperature
difference,
1. AMBIENT
AIR
7
2. BOILING
H20
. C,
3. ICE
H20
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
c|(ref temp, °C + 273) - (test thermom temp, °C + 273)1
Lref temp, "C + 273J
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
.3-
Thermocouple number C G-
Ambient temperature *74.d~ °CK Barometric pressure 2 q..f 3 in. Hg
Calibrator Cc>.^ Reference: mercury-in-glass
other Tic ^e
Reference
point •
number
1. AMBIENT
AIR
2. BOILING
H20
3. ICE
H20
Source
(specify)
Reference
thermometer
temperature,
"?* -4-
*~\ r* c f cP
^7 *- / • O
f 3 Z_
Thermocouple
potentiometer
temperature,
o F
7f-4-
f i-Z-
Temperature
difference,
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
"
|"
L
(ref temp, °C + 273) - (test thermom temp, °C » 273)
"^
ref temp
273
100£l.5%,
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date •,,
it
Ambient temperature
Calibrator
Thermocouple number
~ /
Barometric pressure
in. Hg
Reference: mercury-in-glass
other
TH-1F
Reference
point
number3
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Temperature
difference,
y
/o
IV
- .7,0
^ocj
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
r r £ -if.n
Cl(ref temp
r
(
L
°j£ +
- (test thermom temp
ref temp, °jf + 2^5
273)
^
='JY!=.e::vE';TiL SEPVICES. INC. •
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Thermocouple number SH"
Ambient temperature ~7l5 °£? Barometric pressure
Calibrator /^/^^. Reference: mercury-in-glass
other
in. Hg
T /I -
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Temperature
difference,
y
/o
0
33
Z/0
0
*Every 30°C (50°F) for each reference point.
3Type of calibration system used.
-r / H<*d
' (ref temp, °-e + 2^-3) - (test thermom temp,
r
°xg
ref temp,
:•.-.•=•.--L :==I.:CES. INC.
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
did fil
f i
Ambient temperature
Calibrator
_ Thermocouple number J//- .3
Barometric pressure 2?/£ in. Hg
Reference: mercury-in-glass
other
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Temperature
difference,
y
fa
3Y
0
30°C (50°F) for each reference point.
Type of calibration system used.
'[•
(ref temp,
£ ^° -\
+ 273) - {test thermom temp, °,€ + 273)
ref temp, °J2 + 2^3 u(.o J
100l.5%,
"ACiFlC b-.'VicC'/.'J'.TiL SERVICES. INC.
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date k /6 /^ / Thermocouple number Stf" V
Ambient te
Calibrator
Reference
point
number
ftirt&t+t
~£<± 6Lo
<£>^
U/'^** i-^o
fyvKt
/
mperature _^<> °&£ Barometric pressure
#&&
Source
(specify)
Reference: mercury-in-glass
other
Reference
thermometer
temperature,
9 or p
7£
33
Z/c
Thermocouple
potentiometer
temperature,
°7r
Temperature
difference,
%
-.11
-20
-, ^5
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
C|~(ref temp, °C + 273) - (test thermom temp, °C + 273)1
L ref temp, °C + 273 J 100<1.5%.
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Thermocouple number $U-
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Ambient temperature
Calibrator
"7^
Thermocouple number J>//-6
°Z Barometric pressure 7JJ59 in. Hg
Reference: mercury-in-glass
other
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Temperature
difference,
y
/a
l-j ^jih^
75
35
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
_ i- <- W<,<)
(ref temp,
r
L
t< "
-f 2^3) - (test thermom temp, °JB +
ref temp, °je +
100<1.5%.
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
(n /L /f /
- -
Thermocouple number 5/7'
Ambient temperature
Calibrator
"75"
Barometric pressure 23.$$ in. Hg
Reference: mercury- in-glass
other
Reference
point
number
4-W
faJf
\b>»j(v\
Source
(specify)
Reference
thermometer
temperature,
°C
7
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. MB- 3 BAROMETRIC PRESS. 29.60 IN. HG.
DATE: 6-7-91 PERFORMED BY : R KOLDE
RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6
dHd ("H20) 0.50 0.75 1.00 1.50 2.00 4.OO
INITIAL WTM- 485.307 491.165 501.471 512.230 522.381 534.895
FINAL WTM 490.380 501.163 511.920 522.090 533.914 544.795
INITIAL DGM 539.300 545.200 555.600 566.502 576.800 589.500
FINAL DGM 544.400 555.300 566.200 576.501 588.502 599.500
TEMP. WTM (F) 74.0 74.0 74.0 74.0 74.0 74.0
TEMP. DGM (F) 81.0 83.000 86.0 89.0 92.0 95.0
TEST TIME (MIN.) 13.6 21.1 20.3 15.3 16.0 9.3
X##XXXXXXXXXXXXXXXXXwXXXX*#-X-**XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
NET VOLUME WTM 5.073 9.99-3 10.449 9.860 11.533 9.90O
NET VOLUME DGM 5.100 .10.100 10.600 9.999 11.702 10.000
Y 1.006 1.005 1.005 1.010 1.014 1.01?
dH@ 2.014 1.RS2 2.103 2.017 2.140 1.942
AVERAGE Y = 1 .010
ACCEPTABLE Y PANGLT ~ 0.990 TO 1.030
AVERAGE due = 2.016
ACCEPTABLE dHB RANGE - 1.816 TO 2.216
Y •- ( Vw •< Pb x (
( Tw i- 460 )
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. /f0 ~$ BAROMETRIC PRESS. 2-f,f0 IN. HG,
DATE:
(j(7fcl(
PERFORMED BY :
dHd C"H20)
INITIAL WTM
FINAL WTM
INITIAL DGM
FINAL DGM
TEMP. WTM (F:>
TEMP. DGM C;F:>
TEST TIME CMIN. !>
RUN 1
0.50
RUN 2
0.7!
RUN 3
1.00
RUN 4 RUN 5
1.50
5£6, 576.'
s
NET VOLUME WTM
NET VOLUME DGM
Y
dH@
#•*••*••*••**••!
AVERAGE Y =
ACCEPTABLE Y RANGE =
AVERAGE dH@ =
ACCEPTABLE dH@ RANGE
Y = CVw x Pb y, C
TO
TO
00
RUN &
4.00
f/
dH« = 0.0217 x dHd /
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
6/7 A/
Thermocouple number
Ambient temperature 7V °*ef Barometric pressure
Calibrator @J4-&&~ Reference: mercury-in-glass
other
in. Hg
+£'77*1-
Reference
point
number
^
xt?
) f 'A* \ • 1 0
J i'J L
Source
(specify)
dj-H-^t"
^
-3vj£i\-
Reference
thermometer
temperature,
7V
>
I-
Thermocouple
potentiometer
temperature,
•Z f
73
35
m
Temperature
difference,
%
°
,20
.yo
30°C (50°F) for each reference point.
3Type of calibration system used.
r £ «fO- t~ 46- •
' (ref temp, °JZ + 2^3) - (test thermom temp, °JZ + 2^3)
Iref temp,°Q +
100<1.5%.
°AC;F'C h':. ='.'.VE'.T:.L uE=.VICES. i
-------
D;-: ••&•: MI=::!•:!•> ->:•.) ORIFICE CALIBRATION
LON'TM. oCX N:j . 'W-iil i-.V-i::-i'f-'-u-:'ll I'..1 PRESS.. 29.::^ IN. '••!•';.
ijA1'"'-" c -/••?! '-;:;'-::!^':;••••;!::.;.:; BY ;
t . 00
-l .A24
j ..892
;)O.. 101
j . 104
990 . 50'5
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. flfe-SO BAROMETRIC PRESS. 2-7- S"# IN« HG>
6/6/1;
DATE:
PERFORMED BY :
dHd C"H20:>
INITIAL WTM
FINAL WTM
INITIAL DGM
FINAL DGM
TEMP. WTM (F:>
TEMP. DGM CF:>
TEST TIME (MIN. !>
RUN 1
0 . 50
NET VOLUME WTM
NET VOLUME DGM
Y
dH@
0 . 000
0. 000
ERR
RUN 2
0 .75
RUN 3
1 . 00
RUN 4
1 . 50
2.00
'171.7*0
RUN 6
4 . 00
0. 000
o.'ooo
' ERR
ERR
f.li
0 . 000
(°>PV?
(.) . (.)(.)<.»
ERR
ERR
0 . 000
0. 000
ERR
ERR
0. 000
0 . 000
ERR
ERR
0. 000
0.000
ERR
ERR
AVERAGE Y = ERR
ACCEPTABLE Y RANGE =
AVERAGE dHS = ERR
ACCEPTABLE dH@ RANGE =
ERR
ERR
TO
TO
ERR
ERR
Y = CVw *.>: Pb x
(Tw -i- 460 :>
(.
= 0.0317 x dHd / CPb "'"2
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date
Ambient temperature
Calibrator
Thermocouple number M&fa-
°^F Barometric pressure 2#^S in. Hg
Reference: mercury-in-glass
other
Reference
point
number
/•} w&
^,
SJ*T
Z
Reference
thermometer
temperature,
6f
33
32
2-oi-
Thermocouple
potentiometer
temperature,
68
33
3Y
2,0 (p
Temperature
difference,
.11
C?
•20
'll
aEvery 30°C (50°F) for each reference point.
Type of calibration system used.
cf(ref temp, °C + 273) - -(test thermom temp, °C + 273)
L ref temp, °C + 273
-------
-------
'<"•'•• i™.';.'I' . '''-'' '' F I C!":i ' .;';:'. 1 BRi':'. ! i ! J
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. M&-// BAROMETRIC PRESS. 2?. #& IN. HG,
DATE: £/7/«»/ PERFORMED BY : /.£<£<
RUN 5
RUN 1 RUN 2 RUN 3 RUN 4
RUN 6
dHd C"H2D)
INITIAL WTM
FINAL WTM
INITIAL DGM
FINAL DGM
TEMP. WTM CF:>
TEMP. DGM <:F:>
TEST TIME CMIN. :>
0.50
0.75
3 1D.
1 . 00
1.50
V 11,7 21
. $0$
-(((.
NET VOLUME WTM
NET VOLUME DGM
Y
dH@
***•*
AVERAGE Y =
ACCEPTABLE Y RANGE =
AVERAGE dH@ =
ACCEPTABLE dH@ RANGE
TO
TO
Y = (Vw x Pb x (
CTw -»- 460)
dH<2 = 0.0317 x dHd / «Pb CTd «• 460 » x C CTw + 4BCn ,
2.00 4.00
,\M mse*
.7^70 SMZ,7e^
fait. Zee fr I'j. S *Z-
7>
"TV
>• *•»•** *•*-•<
x time:- / Vw:>--2
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. in$-l/ BAROMETRIC PRESS. 2^£? IN. HG.
DATE: (e/?/1(
PERFORMED BY :
RUN 1
RUN 2
dHd <:"H20:)
INITIAL WTM
FINAL WTM
INITIAL DGM
FINAL DGM
TEMP. WTM
TEMP. DGM <:F:>
TEST TIME CMIN. !>
RUN 3
(£>.&>
< -j"i/\
*• E • *.' '.'
RUN 4
1.50
RUN
2.00
RUN 6
4. 00
•?f
NET VOLUME WTM
NET VOLUME DGM
Y
*******
AVERAGE Y =
ACCEPTABLE Y RANGE =
AVERAGE dHd! =
ACCEPTABLE dH@ RANGE
Y = CVw x Pb x <:
+ 4&o:>
TO
TO
S = 0.0217 x dHd / / VwJ-2
-------
tr"-
TEMPERATURE SENSOR CALIBRATION DATA FORM
Date (g h /f /
Thermocouple number
Ambient temperature "73 °& Barometric pressure
Calibrator (2, /&-/£4, Reference: mercury- in-glass
other
? 6 in. Hg
- 3f~
Reference
point
number
Source
(specify)
Reference
thermometer
temperature,
Thermocouple
potentiometer
temperature,
Temperature
difference,
0
33
33
0
^
o
30°C (50°F) for each reference point.
Type of calibration system used.
ref temp, °C + 273) - (test thermom temp,
273)
ref temp, °C + 273
PACiFIC b'.'VIPQ.'.-VE'.'TAL 3E=v:CES. INC.
-------
DRY !_;A-:' 'iL::7i::R A;;D OR "~;.CK. CALIBRAT'TON
•.:\;K ">;;';;.... BJX MO. Mi::; 1.3 BAROMFi'RK; PRESS.. 2?.-so IN. MG.
D.V;";:::'• '•• ."•-•'.'• ^--PFOxM!;-D :.:•(' ' R K
RUr; \. RIJ!-; 2 RUM 3 RUN 4 RUM b RUM •••
"I!••!'.:; •: "H20 :
INI :':*•>!_ w•!•:•
'." j „ / !'"'•
:1-V . 109
1 ,.OO
337.070 3-^i
36.301 347.357' 35
4'? ..2OO 6oO . :3OO 67-
••' >.'.• .500 671. .00 1. oh
4 .00
58 .. 267
' flf'1
-------
DRY GAS METER AND ORIFICE CALIBRATION
CONTROL BOX NO. /f/!?-/> BAROMETRIC: PRESS. ~2s?-t~*> IN- HG.
DATE: / /-,/„, PERFORMED BY :
RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6
dHd C "H20:> 0.50 0. 75 1.00 1.50 2.00 4.00
INITIAL WTM 3^.72^ J/V.
FINAL WTM ~>l ?>' *<1
TEST TIME CMIN.) , „ ,„
/'M7.O 22.?8.*S 2of-)*.t1 /<27.?5
NET VOLUME WTM
NET VOLUME DGM
Y
AVERAGE Y = ERR
ACCEPTABLE Y RANGE = ERR TO ERR
AVERAGE dH<2 = ERR
ACCEPTABLE dH@ RANGE = ERR TO ERR
Y = CVw x Pb x C
(.'Tw + 460)
INITIAL DGM (f32.^00 63£,*o (0^200
£*> £>7/.OOt Mi 1&
FINAL DGM •--*.">*
TEMP. WTM CF!)
TEMP. DGM CF) 7( &£ $&L /£-, ^
• -K- *•*••*••*••>«••»•• •¥• **-><•**- **** ^ ^ *.* ^* ^. *
O. OOO ('). (")(')(") C) (•)(")(")
0.000 O.i'Tio '").!")(")(")
ERF: EPR ERR
ERR EPR ERR
O.OOO O.OnO O. (")<")(")
O . (")(")(") i") '"K")(") f) (")O(")
ERR ERR ERR
ERF: ERR ERF:
dHS = 0.0317 x dHd / CPb (Td •»- 4&0> i -; OiTw + 460 > x ti
ime) ,' Vw;i--2
-------
TEMPERATURE SENSOR CALIBRATION DATA FORM
b-L
Date f,/£ /W
Thermocouole number
Ambient temperature
Calibrator
^
C Barometric pressure
in. Hg
Reference: mercury- in-glass
other
Reference
point
number
1-4 IX* lf)l /L.J
~Cr e. (^i O
*— C-«- L If
$«,+<
{jj^ri^ (^p
Ml
Source
(specify)
^L^l-
iSM^f
^.Uf
o^^
jCuvAf
(9«v4t-
Reference
thermometer
temperature,
°C
67
w
3^
31
(io
no
Thermocouple
potentiometer
temperature,
°C
7o
70
3y
35
/7t>
M(
Temperature
difference,
%
.11
.H
6
•Zo
C?
J^
*Every 30°C (50°F) for each reference point.
5Type of calibration system used.
'|(ref temp, °C + 273) - (test thermom temp, °C + 273)
Lref temp, °C + 273
100^1.5%.
-------
POSTTEST DRY GAS METER CALIBRATION
MB #:
DATE:
PLANT:
VACUUM ( "Hg )
/\H ( "H20)
INITIAL RTM
FINAL RTM
INITIAL DGM
FINAL DGM
TEMP. RTM (F)
TEMP. DGM (F)
TEST TIME (MIN.
A£,A£,UA/.A£A£4£A/--¥-¥-VA£A£ju..tt.
TVTVTVT\TVTVTVTl TV TV TV TV TV TV TV
NET VOLUME RTM
NET VOLUME DGM
Y
/\H@
XXXXX*XXX*XXXXX;
PRIOR Y =
RECHECK Y =
% DIFFERENCE =
10
7-2-91
REMCO HYD
RUN 1
17.50
1 .75
977.332
984.835
832.596
839.755
76.0
78.0
) 10.0
wwwv/ww \g w w y \/. ^ iVi V AJ
TV TV TV TV TV TV TV TV TV TV TV TV TV TV T<
7.503
7.159
1 .047
1 .807
KXXXXXXXXXXXXXX
1 .042
1 .040
-0.208
BAROMETRIC PRESS.
*
PERFORMED BY:
PRETEST Y :
RUN 2
17.50
1 .75
984.835
992.341
839.755
847.024
76.0
81 .0
10.0
'- V A/ V- A£ -W A/ V, M V, A/ V- W -V-V- V- -V- -MA/- V V
rTVTVTVTVTVTVTVTvTVTVTVTVTVTVTVTVTVTVTVTVTVT'
7.506
7.269
1.038
1 .796
XXXXXXXXXXXXXXXXXXXXXi<
29.12
D MACHUG/:
1 .042
RUN 3
17.50
1 .75
992.341
999.842
847.024
854.310
77.0
82.0
10.0
t A/ A£ AC A£ A£ A£ ^ \/ \.
CTl-TVTVTVTVTVTVTVT
7.501
7.286
1.035
1 .801
rHXXXXXXXX
AVERAGE /\H@ = 1.801
Y = ( Vw x Pb x (Td + 460)) / (Vd (Pb + (dHd / 13.6))x(Tw + 460)
/\H@ = 0.03.1.7 x /\H / ( Pb ( Tel + 460)) x ( ( Tw + 460) x time) / Vw V
-------
POSTTEST DRY GAS METER CALIBRATION
MB #:
DATE:
PLANT:
VACUUM ( "Hg )
/\H ( "H20 )
INITIAL RTM
FINAL RTM
INITIAL DGM
FINAL DGM
TEMP. RTM ( F )
TEMP. DGM (F )
TEST TIME (MIN.
xxx£#xxxxxxxxxx.
NET VOLUME RTM
NET VOLUME DGM
Y
/\H@
XXXXXXXXXXXXXXX9
PRIOR Y =
RECHECK Y =
% DIFFERENCE -
11
6-24-91
REMCO HYD.
RUN 1
6.00
3.00
885.766
895.206
142.102
151 .430
78.0
91 .0
) 10.0
*¥¥¥¥¥¥¥-*WW*V-
7V7\7\^^7s^7\^7\*^7v7\7V-
9.440
9.328
1 .029
1 .909
1 .028
1 .035
0.653
BAROMETRIC PRESS.
PERFORMED BY:
PRETEST Y :
RUN 2
6.00
3.00
895.206
904.615
151 .430
160.758
75.0
92.0
10.0
W'VVVVVV^V^VVV^V^V^VVVV
*7t7?7V7t777v7V7v7t77/\777t7t7777777V/^77X
9.409
9.328
1 .033
1 .897
fXXXXXXXXXXXXXXXXXXXXX
29.36
R. Kolde
1 .028
RUN 3
6.00
3.00
904.615
914.014
160.758
170.061
71 .0
92.0
10.0
xxxxxxxx*
9.399
9.303
1 .042
1 .873
XXXXXXXXX
AVERAGE /\H@ = 1 .893
Y = ( Vw x Pb x ( Td + 460)) / (Vd x (Pb + ( dHd / 13.6) x ( tw + 460.))
/\H@ = 0.0317 x /\H / ( Pb ( Td + 460)) x ( ( Tw + 460) x time) / Vw )~2
-------
POSTTEST DRY GAS METER CALIBRATION
MB »:
DATE :
PLANT:
VACUUM ( "Hg)
/\H ( "H20)
INITIAL RTM
FINAL RTM
INITIAL DGM
FINAL DGM
TEMP. RTM (F)
TEMP. DGM (F)
TEST TIME (MIN.
\f \f W \S \f W W y W W, W W W W W
TV TV TV TV TV TV TV TV-TV TV TV TV TV TV TV
NET VOLUME RTM
NET VOLUME DGM
Y
/\HO
xxxxxxxxxxxxxxx-
PRIOR Y =
RECHECK Y =
% DIFFERENCE =
13
6-24-91
REMCO HYD.
RUN 1
6.00
2.42
915.034
923.620
601 .399
609.695
75.0
81 .0
) 10.0
Lf.^ V V y ^i^ w ,w w ^.^ v^ i
TV T\ ^ TV TV TV TV TV TV TV TV TV TV TV T
8.586
8.296
1 .040
1 .858
KXXXXXXXXXXXX*
1 .019
1 .044
2.453
BAROMETRIC PRESS.
PERFORMED BY:
PRETEST Y :
RUN 2
6.00
2.42
923.620
936.440
609.695
622.141
76.0
86.0
15.0
/w w \s w w w w w .y; w; v/ \y, \f-\f- -W^ M V^ V. ^f, ^ A£ ^ X
VTVTVTVTVTVTVTvTVTVTvTVTvTv TVWTVTVTvTVTVTV^T
12.820
12.446
1 .043
1 .865
txxxxxxxxxxxxxxxxxxxxxx*
29.63
D. MACHUi
1 .019
RUN 3
6.00
2.42
936.440
945.065
622.141
630.515
76.0
89.0
10.0
t ^ v y y y y y i y . ;
trTVWTVTVTVT\T\TV"
8.625
8.374
1 .049
1 .821
rXXXXXXXXJ
AVERAGE /\H@ = 1.848
Y = ( Vw x Pb x (Td + 460)) / ( Vd ( Pb + ( dHd / 13.6))x(Tw + 460)
/\H@ = 0.0317 x /\H / (Pb ( Td + 460)) x ( (Tw + 460) x time) / Vw )'
-------
ADDENDUM FOR THE U.S. ENVIRONMENTAL PROTECTION AGENCY TEST
REPORT FOR THE MAY 1991 SOURCE TEST AT THE REMCO HYDRAULICS
INCORPORATED ELECTROPLATING FACILITY IN WILLITS, CALIFORNIA
At the request of Midwest Research Institute, this addendum
has been prepared for the Remco Hydraulics Test Report. The
changes are minor and adjust the control device efficiency values
found in the report.
At Inlet B on run three, it is suspected that the probe
touched the stack wall and produced a high bias for that run. The
emission results from that run are nearly an order of magnitude
greater than the emission results from the other two runs at Inlet
B. The sample from Inlet B for run three was analyzed twice to
insure that the bias was not due to an analytical error. The
second analysis confirmed that the first analytical value was
correct. For this addendum, run three was not used in the pounds
per hour emission rate or the control device efficiency
calculations. The attached page shows the differences that occur
when run three is not used in data results.
The addendum changes pertain to Chapter 3 only, and a
replacement for the entire chapter is provided.
-------
REMCO HYDRAULICS - COMPARISON OF AVERAGE EFFICIENCIES
The table below presents a comparison of the efficiencies of
the control device when the averages of runs one, two and three are
compared with the averages of runs one and two only.
Three analytical techniques were used: (1) the
diphenylcarbazide (colorimetric) method for hexavalent chromium,
(2) ion chromatography with a post column reactor (1C) for
hexavalent chromium, and (3) inductively coupled argon plasmology
(ICP) for total chromium.
During run three at inlet B, it is suspected that the probe
touched the stack wall and introduced a high bias into the data.
This is the reason for comparing the averages of runs one, two and
three with the averages of runs one and two only.
ANALYSIS TYPE
AVERAGE
% EFFICIENCY
RONS 1.2. & 3
AVERAGE
% EFFICIENCY
RUNS 1 & 2
AVERAGE
fPERCEMTl
HEX CHROMIUM
COLORIMETRIC
99.9908%
99.9887%
-0.0021%
TOTAL CHROMIUM
ICP ANALYSIS
99.9917%
99.9930%
4-0.0013%
HEX CHROMIUM
1C ANALYSIS
99.9922%
99.9937%
+0.0015%
AVERAGE
99.9916%
99.9918%
+0.0002%
Note: The extreme right hand column gives the percent difference
when the average of all three runs is compared with the average of
runs one and two only. A plus sign (+) indicates that the
efficiency of the control device went up when run three was
eliminated and a minus sign (-) indicates that the efficiency went
down when run three was eliminated.
-------
SECTION 3
SUMMARY AND DISCUSSION OF RESULTS
Simultaneous sampling was conducted at Inlets IA and IB and at the outlet of the packed bed
scrubber (see Figure 1 on page 4-2) under normal operating conditions of the plating processes
and control system. Three isokinetic tests were conducted at each site. A sampling time of 360
minutes was employed on each run to insure collection of adequate quantities of chromium at
the outlet.
In addition to the emission samples, grab samples of the operating plating baths and of the
scrubber water were composited during each sampling run. All of these samples were
colorimetrically analyzed on-site for Cr*6. All of the emission samples and a set of scrubber
water samples were later analyzed off-site for Cr"1* and total chrome using ion chromatography
with a post column reactor for Cr*6. Inductively Coupled Argon Plasmology was used to
determine total chrome.
In order to meet the California standard for chromium emissions, the outlet location must
emit no more than 0.006 milligrams per amp hour or the control device must achieve an
efficiency of 99.8%. Emissions at the outlet averaged 0.004 milligrams per amp hour and the
efficiency of the control device averaged 99.994 % based on the average of Cr**
emissions from runs one and two only1.-
Summary of Stack Gas Conditions *
Stack gas conditions at each sampling location are presented in Table 1. Volumetric flow
rates at each location showed little variation between runs. At Inlet A, the velocity averaged
41.02 feet per second (fps), with average temperature of 72°F and moisture content of 1.05%.
Volumetric flow rates averaged 13,428.4 actual cubic feet per minute (acfm) and 12,643.0 dry
standard cubic feet per minute (dscfm).
At Inlet B, the velocity averaged 44.43 fps, with average temperatures of 73°F and moisture
content of 1.29%. Average volumetric flow rates were 10,599.0 acfm and 9,901.5 dscfm.
Conditions at the outlet averaged 38.18 fps, 70°F, and 1.88% moisture. Volumetric flow rates
at the outlet averaged 25,613.2 acfm and 24,022.8 dscfm.
The stack gases at all sampling locations were essentially ambient air and were assigned a
dry molecular weight of 29.0 Ib/lb mole. Variations of isokinetic sampling rates were within
allowable limits on all sampling runs.
1 During run three, it is suspected that the probe touched the
stack wall during the test. The emission calculations and
efficiencies are based on the average of runs one and two only.
3-1
-------
1 April 1993
REMCO HYDRAULICS, INC.
(AMP HOUR RESULTS)
Run No. rag/ah (gr/ah)
IA-1 144.00 (2.22)
IA-2 107.00 (1.65)
IA-3 138.00 (2.13)
AVERAGE 130.00 (2.01)
IB-1 0.52 (0.008)
IB-2 0.83 (0.013)
IB-3 8.20* (0.127)*
AVERAGE "0.68 (0.011)
O-l 0.004 (6.25 X 10"S)
0-2 0.002 (3.1 x 10"5)
O-3 0.006 (9.3 X 10'5)
AVERAGE 0.004 (6.2 x 10'5)
a
* Results for this run not included in average; it is suspected
that the probe may have contacted the duct wall during testing.
3-l-A
-------
Discussion of Chromium Samples
Following completion of each sampling run, chromium samples were recovered and
analyzed on-site for Cr*6 using the diphenylcarbazide method (see Appendix D). Results of
these analyses are summarized in Table 2.
Table 2 shows that Inlet A accounts for more than 96% of the chromium going to the
scrubber. This finding is consistent with the layout of the process (see Section 2). Inlet A
receives emissions from the large rectangular plating tanks while Inlet B receives emissions from
the deep cylindrical tanks. The rectangular tanks account for the majority of surface area and
would be expected to account for a proportionately larger share of total emissions to the
scrubber. • .......
The total mass of Cr*6 sampled and the volumetric flow rates at each sampling location were
used to calculate emission concentrations and mass emission rates. The average over three
sampling runs results in a mass emission rate < 5.99' pounds per hour (Ib/hr) at Inlet A and 0.0556
Ib/hr at Inlet B. For the outlet, an average mass emission rate of6.30x 1C4 Ib/hr was
calculated with this analysis procedure.
After the completion of on-site sampling and analysis, chromium samples were stored on
ice and shipped to the Research Triangle Institute Laboratory. Ion chromatography analyses
were employed at this location using a post column reactor to determine Cr*6 and total
chromium was determined by Ion Chromatography. Results of these analyses are reported in
Table 3 (ICP analysis for Cr*6) and Table 4 (1C analysis for total Cr).
>/. •
These analytical procedures produced results which were highly consistent with the
colorimetric results reported on Table 2. All three methods exhibited a high degree of
consistency from sample to sample. It is normal for ICP analysis for total chromium to result
in lower mass quantitation than are found by 1C analysis for Cr*6.
At Inlet A, 1C analysis for Cr*.6 produced an avera£e_mass_ emission rate 0:61.37 Ib/hr while
ICP analysis for total Cr resulted in a calculation 6.02 Ib/hr. At Inlet B, emission rates were
. 0558 Ib/hr for Cr*6 (1C) and. 0534 Ib/hr for total Cr (ICP). At the outlet, emission rates were
4.12 x 104 Ib/hr for Cr*6 (1C) and4.34x 1O4 Ib/hr for total Cr (ICP).
3-2
-------
Summary of Scrubber Removal Efficiencies
Chromium removal efficiencies for the scrubber system were determined by simultaneously
sampling the two inlets and the outlet of the scrubber to determine the mass emission rate at
each location. Capture efficiency is represented by the equation:
CE = Ci-Co x 100
Ci
where: CE = % Capture Efficiency
Ci = Sum of mass emission rates at inlets to scrubber
Co = Mass emission rate at the scrubber outlet
Mass emission rates for the three analytical procedures presented in Tables 2, 3, and 4 are
.discussed above. The resultant removal efficiencies are reported in Table 5. Once again the
various analytical procedures produced highly comparable results. It is also apparent that the
scrubber performed at a high level of efficiency during the test. All of the analysis procedures
resulted in chromium removal efficiencies of greater than 99.9%.
3-3
-------
Hating Tank Solution and Scrubber Rinse
During each sampling run, grab samples of the plating solution were obtained from plating
tanks 1-6 and a sample of rinsewater was obtained from the scrubber. During the final run,
scrubber samples were taken during the beginning, middle, and end of the sampling period.
These samples were analyzed on-site for Cr*6 and the resultant concentrations are summarized
in Table 6. The scrubber water samples were also shipped out for Ion Chromatography analysis.
These results are summarized in Table 7.
3-4
-------
SUMMARY OF STACK GAS CONDITIONS
INLET A
Run No.
1
2
3
Average
i
Velocity
fps1
40.79
40.89
42.38
41.02
Temp.
"F
75
. 71
69
72
Flow Rate
acton*
13,246.3
13,278.9
13,760.0
13,428.4
dscfrn*
12,424.8
12,504.4
12,999.7
12,643.0
Moisture
%
0.78
1.17
1.19
1.05
%
Isokinetic
Variation
95.98
95.11
95.86
95.65
INLET B
Run No.
1
2
3
Average
Velocity
fps- .:
43.88
44.07
45.33
44.43
Temp.
.F
75
74
69
73
Flow Rate
acfmk
10,468.8
10,513.1
10,815.2
10,599.0
dscfm"
9,779.5
9,781.0
10,144.1
9,901.5
Moisture
%
1.21
1.35
1.31
1.29
%
Isokinetic
Variation
98.10
96.92
91.44
95.49
OUTLET
Run No.
1
2
3
Average
Velocity
fps"
38.23
37.69
38.62
38.18
Temp.
'F
72
72
69
71
Flow Rate
acfmb
25,647.0
25,282.3
25,910.2
. 25,613.2
dscfm"
24,012.8
23,674.2
24,381.3
24,022.8
Moisture
%
1.74
1.93
1.97
1.88
%
Isokinetic
Variation
99.04
98.93
99.82
99.26
'Feet per second at stack conditions ; •'
bActual cubic feet per minute at stack conditions
'Dry standard cubic feet per minute at 68°F and 29.92" Hg
3-5
-------
TABLE 2
COLORIMETRIC ANALYSIS OF HEXAVALENT CHROMIUM EMISSIONS
INLET A
Run No.
1
2
3d
Average
Total
Mass Sampled •,
ug*
1,372,008.00
919,228.20 !
1,266,384.00
--
Emission
Concentration
lb/dscf*
9.58 x 10*
6.43 x 10*
8.46 x 10*
--
Mass
Emission Rate
Ib/hr"
7.14
4.83
6.60
5.99
Grain/Dscf
i
6.71 x 10-'
4.50 x 10-2
5.92 x 10°
Gram/Dscm
1.53 x 10-'
1.03 x ia'
1.35 x ia1
INLET B
Run No.
1
2
3d
Average
Total
Mass Sampled
utf
9,375.00
15,489.60
127,694.00
--
Emission
Concentration^
lb/dscf *
7.08 x 104
l.lSxlO"7
9.99 x 10-7
~
Mass
Emission Rate
Ib/hr*
0.0416
0.0695
0.067
0.0556
Grain/Dscf
4.96 X 10-4
8.26 x 10-4
6.99 x 10-'
Gram/Dscm
1.13x ia3
1.89x ia3
1.60 x ia2
OUTLET
Run No.
1
2
3d
Average
Total
Mass Sampled
Ug-
41.20
64. 10
29.50
-
Emission
Concentration
lb/dscf
3.42 x ia10
5.40 x 10-'°
2.39 x 10-'°
—
Mass
Emission Rate
Ib/hr*
4.92 x 10-4
7.67 x I04
3.50 x 10-4
6.30 X 10'4
Grain/Dscf
i 2.39 x 10*
3.80 x 10*
1.67x 10*
Gram/Dscm
5.47 x 10«
8.69 x 10*
3.83 x 10*
'Micrograms of hexavalent chromium
kPounds per dry standard cubic foot at 68°F and
•Pounds per hour
d This run omitted from ave
touched the stack wall during
29.92" Hg
age. It is suspected that the
testing.
probe
-------
; TABLE 3
ICP ANALYSIS OF TOTAL CHROMIUM EMISSIONS
INLET A
Run No.
1
2
3"
Average
Total
Mass Sampled
"g*
1,338,000
968,000
1 .248,0:1 :»
--
Emission
Concentration
Ib/dscP
9.34 x 10-*
6.78 x 10*
H.M x I0«
--
Mass
Emission Rate
lb/hr«
6.96
5.08
6.50
6.02
•1
Grain/Dscf
6.54 x 10-'
4.74 x 10-'
5.84 x 10'
Gratn/Dscm
1.50x ia1
1.09x la1
1.34 x 10'
INLET B
Run No.
1
2
3d
Average
Total
Mass Sampled
ug-
9,000 :
14,900 '
124,254
"™ (
Emission
Concentration*
Ib/dscf-
6.80 x 10*
1.14x 10-7
9.71 x 10-7
••
Mass
Emission Rate
Ib/hr*
0.0399
0.0669
0.5910
0.0534
Grain/Dscf
4.77 x 10"
7.98 x 10"
6.80 x 10-'
Gram/Dscm
1.09 x Iff3
1.83 x 10-J
1.56 x 10-2
OUTLET
Run No.
1
2
3d
Average
Total
Mass Sampled
ug- :
47.00
25.50 j
65.50
l
Emission
Concentration
Ib/dscf*
3.90 x 10-'°
2.15x 10-'°
5.31 x ia10
-
Mass
Emission Rate
Ib/hi-
5.62 x KT1
3.05 x 10-4
7.77 x 10"
4.34 X 10'4
Grain/Dscf
2.73 x 10*
1.51 x 10*
3.71 x 10*
Gram/Dscm
6.24 x 10*
3.44 x 10*
8.50 x 10*
'Micrograms of hexavalent chromium
kPounds per dry standard cubic foot at 68°F and 29.92" Hg
•Pounds per hour . -
d This run omitted from average. It is suspected that the
touched the stack wall during testing. 3.7
probe
-------
TABLE 4
ION CHROMATOGRAPHY ANALYSIS OF HEXAVALENT CHROMIUM EMISSIONS
INLET A
Run No.
I
2
3d
Average
Total Mass Sampled
ug-
1,390,000
1,050,000
1,350,030
•-
Emission
Concentration
Ib/dscf*
9.70 x 10-*
7.35 x 10-*
9.02 x 10-«
--
Mass Emission Rate
lb/hi*
7.23
5.51
7.04
6.37
INLET B
Run No.
1
2
3d
Average
Total Mass Sampled
.. ug-
9,850
15,100
; 135,258
t
Emission
Concentration
Ib/dscP
7.44 x lO*
1.15X 10-'
1.06 X 106
•-
Mass Emission Rate
Ib/hi*
0.0437
0.0678
0.6430
0.0558
OUTLET
Run No.
1
2
3d
Average
Total Mass Sampled
ug«
: 43.30
25.50
66.80
-
Emission
Concentration
Ib/dHcf*
3.59 x 10-'° i
2.15x 10-10
5.42 x 10-'°
--
Mass Emission Rate
Ib/hr*
5.18 x 10*
3.05 x 10-1
7.92 x KT*
4.12 x 10-*
'Micrograms of hexavalent chromium
'Pounds per dry standard cubic foot at 68°F and 29.92" Hg
"Pounds per hour
d This run omitted from average. It is suspected that the probe
touched the stack wall during testing.
3-8
-------
TABLE 5
SUMMARY OF CHROMIUM REMOVAL EFFICIENCIES
Cr+* - Colorimetric Analysis
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run NO. 3«
Inlet
Outlet
Mass Emission Rate
Ib/hr
7.1816
0.000492
4.8995
0.000767
7.207
0.000350
Removal Efficiency
%
99.9931
99.9843
99.9951
Average Removal Efficiency (Colorimetric Analysis): 99 . 9887%
Cr+* - Ion Chromatography
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run No. 3"
Inlet
Outlet
Mass Emission Rate
• Ib/hr
7.274
0.000518
5.578
0.000305
7.683
0.000792
Removal Efficiency
%
99.9929
99.9945
99.9897
Average Removal Efficiency (1C Analysis): $9.9937%
• This run omitted from average. It is suspected that the probe
touched the stack wall during testing.
3-9
-------
TABLE 5 (continued)
SUMMARY OF CHROMIUM REMOVAL EFFICIENCIES
Total Cr - ICP Analysis
Run No. 1
Inlet
Outlet
Run No. 2
Inlet
Outlet
Run NO 3*
Inlet
Outlet
Mass Emission Rate
Ib/hr
7.000
0.000562
5.150
0.000305 ..
7.091
0.000777
Removal Efficiency
99.9919
99.9941
99.9891 ,
Average Removal Efficiency (ICP Analysis): ;99 .9930%
• This run omitted from average. It is suspected that the probe
touched the stack wall during testing.
3-10
-------
j TABLE 6
COLORIMETRIC ANALYSIS OF PLATING SOLUTIONS AND SCRUBBER WATER
Plating Task #1
Plating Task #2
Plating Task #3
Plating Task #4
Plating Task HS
Plating Task #6
Scrubber Composite
(Rinse Water)
Scrubber Start
Scrubber Middle
Scrubber End
Concentration of Cr46 (ug/ml)
Run 01
125,592
125,592
125,592
126,928
128,264
125,592
12,078
*
Run #2
125,319
121,098
126,638
122,681
122,681
125,319
4,876
Run #3
118,724
119,779
116,085
120,834
121,362
126,111
16,674
17,102
14,774
19,840
TABLE 7
t)MPARATIVE ANALYSIS OF SCRUBBER RINSEATE
Scrubber Rinseate
Run #\ Composite
Run #2 Composite
Run #3 Composite
Run #4 Start
Run #5 Middle
Run #6 End
Concentration (ug/ml)
Cr16
(colorimetric)
12,078
4,876
16,674
17,102
14,774
19,840
Cr'«
(1C)
14,700
4,490
16,220
17,450
14,400
19,600
Toliil Cr
(ICP)
12,450
5,200
17,500
18,500
13,400
18,900
------- |