U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
KECHELUS LAKE
KITTITAS COUNTY
WASHINGTON
EPA REGION X
WORKING PAPER No, 869
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
-------
REPORT
ON
KECHELUS LAKE
KITTITAS mm
WASHINGTON
EPA REGION X
WORKING PAPER No, 869
WITH THE COOPERATION OF THE
WASHINGTON DEPARTMENT OF ECOLOGY
AND THE
WASHINGTON NATIONAL GUARD
JULY, 1977
-------
REPORT ON KEECHELUS LAKE
KITTITAS COUNTY, WASHINGTON
EPA REGION X
by
National Eutrophication Survey
Water and Land Quality Branch
Monitoring Operations Division
Environmental Monitoring & Support Laboratory
Las Vegas, Nevada
and
Special Studies Branch
Corvallis Environmental Research Laboratory
Corvallis, Oregon
Working Paper No. 869
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
July 1977
-------
CONTENTS
Page
Foreword i i
List of Washington Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 11
V. Literature Reviewed 16
VI. Appendices 17
-------
ii
FOREWORD
The National Eutrophlcation Survey was Initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concen-
trations, and impact on selected freshwater lakes as a basis for
formulating comprehensive and coordinated national, regional, and
state management practices relating to point source discharge
reduction and nonpoint source pollution abatement in lake water-
sheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts
that:
a. A generalized representation or model relating
sources, concentrations, and Impacts can be
constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized
model can be transformed into an operational
representation of a lake, its drainage basin, and
related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and
watershed data collected from the study lake and its drainage
basin is documented. The report is formatted to provide state
environmental agencies with specific information for basin
planning [§303(e)j, water quality criteria/standards review
[§303(c]], clean lakes [§314(a,bj], and water quality monitoring
[§106 and §305(b)] activities mandated by the Federal Water
Pollution Control Act Amendments of 1972.
-------
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condition
are being made to advance the rationale and data base for refine-
ment of nutrient water quality criteria for the Nation's freshwater
lakes. Likewise, multivariate evaluations for the relationships
between land use, nutrient export, and trophic condition, by lake
class or use, are being developed to assist in the formulation of
planning guidelines and policies by the U.S. Environmental Protection
Agency and to augment plans implementation by the states.
ACKNOWLEDGMENTS
The staff of the National Eutrophication Survey (Office of
Research and Development, U.S. Environmental Protection Agency)
expresses sincere appreciation to the Washington Department of
Ecology for professional involvement, to the Washington National
Guard for conducting the tributary sampling phase of the Survey,
and to those Washington wastewater treatment plant operators who
provided effluent samples and flow data.
Ms. Barbara Blau, Lake Restoration Program, and the staff
of the Washington Department of Ecology, Lake Restoration Program,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports and provided critiques
most useful in the preparation of this Working Paper Series.
Major General Howard S. McGee, Adjutant General of Washington,
and Project Officer Colonel Clinton C. Johnson, who directed the
volunteer efforts of the Washington National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.
-------
IV
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF WASHINGTON
LAKE NAME
American Lake
Banks Lake
Chelan Lake
Diamond Lake
Green Lake
Keechelus Lake
Mayfield Lake
Medical Lake
Moses Lake
Ozette Lake
Sammamish Lake
Lake Whatcom
Lower Granite Reservoir
COUNTY
Pierce
Grant, Douglas
Chelan
Pend Oreille
King
Kittitas
Lewis
Spokane
Grant
Clallam
King
Whatcom
Garfield, Whatcom
-------
KEECHELUS LAKE
-------
REPORT ON KEECHELUS LAKE, WASHINGTON
STORET NO. 5306
I. CONCLUSIONS
A. Trophic Condition:*
Survey data indicate that Keechelus Lake is oligotrophic.
Chlorophyll a_ values in the lake ranged from 0.5 yg/1 in July
to 2.1 yg/1 in October, with a mean of 1.4 yg/1. Potential
for primary production as measured by algal assay control
yields was low on all three sampling occasions. Lake water
transparency was excellent. Of the 13 Washington lakes sampled
in 1975, 11 had higher median total phosphorus and inorganic
nitrogen values, and all had higher median orthophosphorus
levels than Keechelus Lake.
Survey limnologists did not report any problem algal blooms
or macrophytes during their visits to the.lake.
*See Appendix E.
-------
B. Rate-Limiting Nutrient:
The algal assay results indicate that Keechelus Lake was
limited by available phosphorus on all three sampling dates
(07/21/75, 09/12/75, 10/28/75). Lake data suggest nitrogen limi-
tation during the July sampling and phosphorus limitation during
September and October.
C. Nutrient Controllability:
1. Point sources -
There were no known municipal or industrial point sources
impacting Keechelus Lake during the sampling year. The present
2
phosphorus loading of 0.44 g P/m /yr is less than that proposed
by Vollenweider (1975) as an "oligotrophic" level. Unless
this loading rate is substantially increased, the excellent
trophic condition of Keechelus Lake should be maintained.
2. Nonpoint sources -
Meadow Creek contributed 17.4% of the total phosphorus
loading to Keechelus Lake. Gold Creek contributed 22.6% and
the minor tributaries and immediate drainage contributed 56.0%.
-------
II. LAKE AND DRAINAGE BASIN CHARACTERISTICS:
Lake and drainage basin characteristics are itemized below.
Lake morphometry data were provided by Wolcott (1965). Tributary
flow data were provided by the Washington District Office of the
U.S. Geological Survey (USGS). Outlet drainage area includes the
lake surface area. Mean hydraulic retention time was obtained by
dividing the lake volume by mean flow of the outlet. Precipitation
values are estimated by methods as outlined in National Eutrophi-
cation Survey (NES) Working Paper No. 175. A table of metric/
English conversions is included as Appendix A.
A. Lake Morphometry:
2
1. Surface area: 10.36 km .
2. Mean depth: 18.7 meters.
3. Maximum depth: 27.4 meters.
4. Volume: 193.658 x 106 m3.
5. Mean hydraulic retention time: 220 days.
-------
B. Tributary and Outlet:
(See Appendix B for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km?) (m3/sec)
B-l Meadow Creek 20.4 1.47
E-l Gold Creek 36.3 2.61
Minor tributaries and
immediate drainage - 74.6 6.12
Totals 131.3 10.20
2. Outlet - A-l Yakima River 141.7 10.18
C. Precipitation:
1. Year of sampling: 218.2 cm.
2. Mean annual: 167.2 cm.
-------
III. LAKE WATER QUALITY SUMMARY
Keechelus Lake was sampled three times during the open-water
season of 1975 by means of a pontoon-equipped Huey helicopter. Each
time, samples for physical and chemical parameters were collected
from three stations on the lake and from a number of depths at each
station (see map, page v). During each visit, depth-integrated
samples were collected from each station for chlorophyll a_ analysis
and phytoplankton identification and enumeration, and 18.9-liter
depth-integrated samples were composited for algal assays. Maximum
depths sampled were 29.0 meters at Station 01, 58.2 meters at Station
02, and 4.3 meters at Station 03. For a more detailed explanation
of NES methods, see NES Working Paper No. 175.
The results obtained are presented in full in Appendix C and
are summarized in III-A for waters at the surface and at the maximum
depth for each site. Results of the phytoplankton counts and chloro-
phyll a_ determinations are included in III-B. Results of the limiting
nutrient study are presented in III-C.
-------
CODE
AMD CHEMICAL CHARACTERISTICS
( 9/12/75 )
( 10/28/75 I
No
(DEC- C^;T )
0 .-1 .5 '-' DEPTH 6
MA* DEPTHo* 3
DISSOLVED OXYGEN (WG/L>
f>.-l.= M OEPT- 6
"AX DEPTH** 3
CONDUCTIVITY (UMNOM
O.-l.S M OEPTH 6
MAX DEPTH** 3
°H (STANDARD UNITS)
O.-l.5 M DEPTH 6
MAX DEPTH** 3
TOTAL ALKALINITY
O.-l.5 M DE^TH 6
MAX DEPTH** 3
TOTAL. P (MG/L)
O.-l.5 M DEPTH ' 6
MAX DEPTH"* 3
DISSOLVED OKTHO P
O.-l.^ M
MA" DEPTH**
AMMONIA
O.-l.S M DEPTH
KJELDAHL N
O.-l.S M OEPTH
""AX DEPTH***
SECCHI DISC VM
"• iNG
11 .4- 1
0.7- 1
S.H- 1
10. 0- 1
T».-
IS.-
7.4-
7. 1-
11.-
1.4.-
0.006-0.
0.006-0.
O.OOP-0.
O.OOP-0.
O.P20-0.
o. n?o-o.
o.o^o-o.
0 . (l ^ 0 - 0 .
0.200-0.
o.pno-o.
S * * * = "3
r '•' f-" 0 T i* \
3 . H 1 -> . •}
1.3 ^.7
0.0 3 . 0
1.0 1-1.6
2^, ??.
22. IF.
^.3 ^.o
7.4 7.1
19. ]6.
16. 14.
013 0.007
013 O.«n T
01S o.nn,?
013 O.nl
0^0 I) . 0 ? H.2
n.o- l.b
4.3- 5^.2
0.0- 1.5
4.3- S8.2
0.0- 1.5
4.3- st. 2
5***
N* -fflNGE
6
3
S
3
^>
3
6
2
6
3
6
3
6
3
b
3
6
3
6
3
16.3- 17.3
4.9- 17.2
fl,8-
9.2- 1
29.-
25.-
6.8-
6.5-
14.-
13.-
0.006-0.
0.005-0.
0.002-0.
0.002-0.
0.0?0-0.
0.020-0.
O.C20-0.
0.020-0.
0.200-0.
0.020-0.
9.0
0.3
33.
37.
7.1
7.0
19.
15.
010
009
010
002
060
070
020
020
200
?00
= 3
MEDIAN
17.0
5.5
8.8
10.2
33.
29.
7.0
6.8
15.
14.
0.006
0.007
0.002
0.002
0.0?0
0.020
0.020
0.020
0.200
0.200
MAX
DEPTH
RANGE
(METERS) N«
0.0-
4.3-
0.0-
4.3-
0.0-
4.3-
0.0-
21.6-
0.0-
4.3-
0.0-
4.3-
0.0-
4.3-
0.0-
4.3-
0.0-
4.3-
0.0-
4.3-
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
1.5
50.3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
c»«»
RANGE
8,3-
4.S-
9.8-
10.0-
1.-
1.-
6.6-
6.7-
12.-
15.-
0.006-0
0.005-0
0.002-0
0.002-0
0.020-0
0.020-0
0.020-0
0.020-0
0.200-0
0,200-0
9.4
8.6
10.2
10.4
29.
22.
7.0
7.0
23.
27.
.00*
.007
.005
.004
.020
.080
.030
.020
.200
.?00
= 3
MEDIAN
9.2
5.3
10.0
10.0
17.
11.
6.9
6.9
IB.
16.
0.007
0.006
0.002
0.003
0.020
0.070
0.020
0.020
O.?00
0.200
MAX
DEPTH
RANGE
(METERS)
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
0.0-
4.0-
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
1.5
47.2
ft. 9- 6.0
3.4- 6.4
6.4
4.6- 5.3
4.9
-i o. it?
AT
s = .NO. OF MTES CAMPLED ON This DATE
-------
B. Biological Characteristics:
1. Phytoplankton -
Sampling
Date
07/21/75
09/12/75
10/28/75
Dominant
Genera
1. Cyclotella
2. Chroomonas
3. Melosira
4. Cryptomonas
Other genera
Total
1. Chlorophytan Cell
2. Pi nobryon
3. Melosira
4. Cryptomonas
Other genera
Total
1. Chroomonas
2. Pinobryon
Other genera
Total
Algal
Units
per ml
466
89
89
22
666
195
195
130
22
542
24
24
48
-------
2. Chlorophyll a -
Sampling Station Chlorophyll
Date Number (yg/1 )
07/21/75 01 0.5
02 1.4
03 1.0
09/12/75 01 1.2
02 1.5
03 1.4
10/28/75 01 1.7
02 1.8
03 2.1
-------
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked
a. 07/21/75
Spike (mg/1)
Control
0.05 P
0.05 P + 1.0 N
1.00 N
b. 09/12/75
Ortho P
Cone, (mg/1)
<0.005
O.055
O.055
<0.005
Spike (mg/1)
Control
0.05 P
0.05 P + 1.0 N
1.00 N
Ortho P
Cone, (mg/1)
0.005
0.055
0.055
0.005
c.
10/28/75
Spike (mg/1)
Control
0.05 P
0.05 P + 1.0 N
1.00 N
Ortho P
Cone, (mg/1)
0.005
0.055
0.055
0.005
Inorganic N
Cone, (mg/1)
0.083
0.083
1.083
1.083
Inorganic N
Cone, (mg/1)
0.040
0.040
1.040
1.040
Inorganic N
Cone, (mg/1)
0.035
0.035
1.035
1.035
Maximum Yield
(mg/1-dry wt.)
0.3
3.5
23.4
0.4
Maximum Yield
(mg/1-dry wt.)
0.3
3.5
21.3
0.3
Maximum Yield
(mg/1-dry wt.)
0.2
0.9
25.9
0.2
-------
10
2. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum, indicate that the potential for primary productivity in
Keechelus Lake was moderately low during the three sample collection
times (07/21/75, 09/12/75, 10/28/75). In each assay a significant
increase in yield over that of the control occurred when phosphorus
was added alone and in combination with nitrogen, indicating phos-
phorus limitation. The addition of nitrogen alone did not stimulate
growth significantly beyond the control yields.
The mean inorganic nitrogen to orthophosphorus ratios in the
lake samples were approximately 9/1, 17/1, and 18/1 on the July,
September, and October sampling dates, respectively, suggesting
nitrogen limitation during the July sampling period and phosphorus
limitation during September and October.
-------
11
IV. NUTRIENT LOADINGS
(See Appendix D for data)
For the determination of nutrient loadings, the Washington
National Guard collected near-surface grab samples from each of the
tributary sites indicated on the map (page v). Sampling was begun
in September 1974, and was completed in August 1975.
Through an interagency agreement, stream flow estimates for
the year of sampling and a "normalized" or average year were provided
by the Washington District Office of the USGS for the tributary sites
nearest the lake.
In this report, nutrient loads for sampled tributaries were
determined by using a modification of a USGS computer program for
calculating stream loadings. Nutrient loads indicated for tributaries
are those measured minus known point source loads, if any.
Nutrient loadings for unsampled "minor tributaries and immediate
drainage" ("ZZ" of USGS) were estimated by using the mean annual
2
nutrient loads, in kg/km /yr, in Meadow Creek and Gold Creek at
2
Stations B-l and E-l and multiplying the means by the ZZ area in km .
-------
12
A. Waste Sources:
1. Known municipal - None
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
% of
Source kg P/yr total
a. Tributaries (nonpoint load) -
B-l Meadow Creek 785 17.4
E-l Gold Creek 1,025 22.6
b. Minor tributaries and immediate
drainage (nonpoint load) - 2,535 56.0
c. Known municipal STP's - None
d. Septic tanks* - None
e. Known industrial - None
f. Direct precipitation**- 180 4.0
Totals 4,525 100.0
2. Outputs - A-l Yakima River 1,685
3. Net annual P accumulation - 2,840
*Dion, N.P. et a!., 1976.
**Estimated (See NES Working Paper No. 175).
-------
13
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
% of
Source kg N/yr total
a. Tributaries (nonpoint load) -
B-l Meadow Creek 8,240 8.6
E-l Gold Creek 30,305 31.6
b. Minor tributaries and immediate
drainage (nonpoint load) - 46,250 48.2
c. Known municipal STP's - None
d. Septic tanks* - None
e. Known industrial - None
f. Direct precipitation** - 11,185 11.6
Total 95,980 100.0
2. Outputs - A-l Yakima River 40,835
3. Net annual N accumulation - 55,145
*Dion, N.P. et al., 1976.
**Estimated (See NES Working Paper No. 175).
-------
14
D. Mean Annual Nonpoint Nutrient Export by Subdrainage Area:
2 2
Tributary kg P/km /yr kg N/km /yr
Meadow Creek 39 404
Gold Creek 28 835
E. Mean Nutrient Concentrations in Ungaged Streams:
Mean Total P Mean Total H
Tributary (mg/1) (mg/1)
C-l Roaring Creek <0.007 <0.248
D-l Cold Creek <0.007 <0.265
1-F Cedar Creek* <0.008 0.228
1-G S. Fork Cedar River* <0.008 <0.227
1-H Rix River* <0.010 0.323
1-J Boulder Creek* <0.011 0.319
1-K Smay Creek* 0.010 0.328
1-L Friday Creek* 0.022 <0.225
1-M Greer River* <0.010 <0.116
*Special interest streams outside the watershed of Keechelus Lake.
-------
15
F. Yearly Loadings:
In the following table, the existing phosphorus annual loading
is compared to the relationship proposed by Vollenweider (1975).
Essentially, his "eutrophic" loading is that at which the receiving
waters would become eutrophic or remain eutrophic; his "oligotrophic"
loading is that which would result in the receiving water remaining
oligotrophic or becoming oligotrophic if morphometry permitted. A
"mesotrophic" loading would be considered one between "eutrophic"
and "oligotrophic".
Note that Vollenweider's model may not apply to lakes with
short hydraulic retention times or in which light penetration is
severely restricted by high concentrations of suspended solids in
the surface waters.
Total Yearly
Phosphorus Loading
(g/m?/yr)
Estimated loading for Keechelus Lake 0.44
Vollenweider's "eutrophic" loading 1.08
Vollenweider's "oligotrophic" loading 0.54
-------
16
V. LITERATURE REVIEWED
Dion, N.P., G.C. Bortleson, J.B. McConnell and L.M. Nelson. 1976.
Reconnaissance Data on Lakes in Washington, Volume 5, (Chelan,
Ferry, Kittitas, Klickitat, Okanogan, and Yakima Counties).
Washington State Department of Ecology, Water Supply Bulletin 43,
Volume 5.
U.S. Environmental Protection Agency. 1975. National Eutrophica-
tion Survey Methods 1973-1976. Working Paper No. 175. National
Environmental Research Center, Las Vegas, Nevada, and Pacific
Northwest Environmental Research Laboratory, Corvallis, Oregon.
Vollenweider, R.A. 1975. Input-Output Models With Special
Reference to the Phosphorus Loading Concept in Limnology.
Schweiz. Z. Hydrol. 37:53-84.
Wolcott, E.E. 1965. Lakes of Washington, Volume II. Washington
Division of Water Resources, Water Supply Bulletin, 14 and 15.
-------
17
VI. APPENDICES
APPENDIX A
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10" = acre/feet
Square kilometers x 0.3861 - square miles
Cubic meters/sec x 35.315 -• cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = Ibs/squarc mile
-------
APPENDIX B
TRIBUTARY FLOW DATA
-------
FLOW INFORMATION FOP WASHINGTON
11/16/76
LAKE
KEF.OF.Uis
TOTAL
KM)
141 .7
T»t°HTAPY
5306^1
5306«
530677
141.7
141.7
36.3
«5.0
85.0
5
8
1
?
5
5
JAM F F B
,?1 4.47
.69 fl.33
.25 1.20
.?3 2.13
.21 4.98
.21 4.98
MAR
4.96
6.63
0.9S
1.70
3.96
3.96
APP MJV
6.
12.
1.
3.
7.
7.
74
57
Rl
23
53
53
11.07
23. 7^
3.4T
6.06
14.24
14.?'
JUN
16.54
20.53
2.94
5.27
12.32
12.32
JUL
18.75
8.35
1.20
2.14
5.01
5.01
AUG
21.32
2.42
0.35
0.62
1.44
1.45
SFO
17.24
2.80
0.40
0.7?
1.67
1.6*
OCT
7.0?
6.91
1.00
1.77
4.13
4.13
SUMMARY
0
TAL DRAINAGE
AREA OF
LAKE
-
IJM OF CUB-DRAINAGE APEAS =
141 .7
226.6
TOTAL FLOW
TOTAL FLOW
IN =
OUT =
195.
244.
94
1H
MEAN MONTHLY FLO*S ANO DAILY FLOWS (OS)
TRIBUTARY MONTH YEA"
53f> 641
MEAN FLOW DAY
DAY
FLO* DAY
FLOW
530631
q
in
11
1 2
1
2
•>
4
5
6
7
u
9
in
11
12
1
2
3
4
5
6
7
$
74
74
74
74
75
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
13.989
13.790
2.274
0.903
fl.042
16.056
4.531
4.191
11.553
14.611
?4.919
25.230
0.320
0.255
0.813
2.064
1.994
0.807
0.69?
0.852
3.766
4.021
1.787
0.637
2?
19
16
4
15
4
3"
?2
19
16
4
15
4
in
11.950
2.322
2.294
4.644
6.173
33.414
4.332
0.133
0.099
0.357
0.470
0.691
6.145
0.303
in. 96
6.57
6.57
OEC
5.47
10.53
1.53
2.7?
6.40
MF.AM
10.m
1 0 . ? 0-
1.47
6.12
-------
TPIHi|T4WY FLO* INFORMATION TOP WASHINGTON
11/16/76
LAKF. cone 5306
5306F1
S30677
"ONTHLY FLO*s
MONJTH YEAR
9
in
11
l?
1
?
3
4
5
6
7
9
10
11
12
1
?
3
4
5
6
7
8
74
74
74
74
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
DAILY F|_0.«S(C"M
MEAN FLOW OAY
FLO* DAY
FLOW DAY
FLO*.
0.453 19
1.441 16
3t, Q 1
. Pfl 1
3.5f 0
1 .436
1.P40
1.515 15
6 .683
7.164 4
3.171 30
1.337
1.062
3.370
8.608
8.297
3.370
2.917
3.540
15.688
15.065
7.447
?.65C
0.283
0.920
P.163
10.2?2
1.906
-------
APPENDIX C
PHYSICAL AND CHEMICAL DATA
-------
cpa-LAS VEGAS
530601
47 19 30.0 1?1 20 45.0 3
KEECHELUS LAKE
^3037
I 3 0 ft O ?
DATE
TO
75/07/2)
75/n9/l?
75/10/2H
TIvF r
OF
)EPT^ WATEt;
DAf FEET
08
08
08
08
08
13
] T
13
13
13
13
10
10
10
10
10
55
55
55
55
55
55
55
55
55
55
55
40
40
40
40
40
OOQO
OOO1^
0020
0035
0066
0000
0005
0015
0030
0050
0071
000 '1
0005
0027
0060
009S
CFMT
1 3.«
13. P
13.2
7.4
2.7
16.
9.0
8.6
in. 6
n .n
H.fl
9,h
9.?
10.6
10.8
10.0
10. 0
10.8
10.2
10.0
00077
INC«£5
270
210
00094
CNDUCTVY
FIELD
MJCBOMHO
28
37
20
17
15
29
31
31
29
?5
25
28
?9
24
2*
22
HEPAI.FS 2111202
0070
00400
PM
S"
8.30
7.90
7.55
7.50
7.15
7.00
7.10
6.95
7.00
6.85
7.00
6.90
7.00
6,°0
6.90
6.95
FEET DEPTH CLASS
00410
T ALK
CAC03
MG/L
19
16
17
15
16
14
15
14
14
14
13
13
12
12
16
16
00610
NH3-N
TOTAL
MG/L
0.040
0.020K
0.020
0.030
0.030
0.02QK
0.020K
0.020K
0.020K
0.020K
0.020K
0.020K
0.020K
0.020K
0.020K
0.020K
00
006?5
TOT KJF.L
N
MG/L
0.600
0.200K
0.200*
0.200K
0.200K
0.200*
0.?OOK
0.200<
0.200K
0.200K
0.200K
0.200K
0.200*
0.200K
0.200K
0.200K
006?Q
fMO'fsNlOS
"J-TDTAL
MG/L
0.03"
0.020K
0.020K
0.020K
0.040
0.060
0.060
0.060
0.0?OK
0.020K
0.020K
0.020
0.020*
0.020*
0.030
0.070
00671
OHOS-DIS
O»THO
MG/L P
0.015*
0.011*
0.005*.
0.013*
O.Oll'
0.00?
o.oo?
0.002
o.oo?*
0.00?*
0.00?*
0.00?<
0.00?
0.00?*
o.oo?-*
o.oo''
TO
00665
TIME DEPTH PHOS-TOT
OF
FEET MG/L °
00031
IMCDT LT
75/07/21
75/09/12
75/lo/?e
08
08
08
02
oa
13
13
13
13
13
13
10
10
10
10
10
55
55
55
55
55
55
55
55
55
55
55
40
40
40
40
40
oooo
OOO1^
0020
0035
0066
0000
000=-
001^
0030
OO'-'O
0071
OOOo
000^
0027
00^0
009^
0,
0,
0,
0.
0.
0.
n ,
0,
0,
0,
0.
0,
0,
0,
0,
0,
.01 3
.008
.007
,000
.006
.006
.006
,007
,006
.006
,00C
.007
.006
.006
.006
,007
32217
CHLRPHYL
A
UG/L PERCENT
0.5
1.2
1.7
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
OiTE 7<=-/U/16
530603
4.7 20 55.0 121 22 05.0 3
*a?H I MGTON
53037
ni95 FEET DEPTH
no
OATF
r D 0 V
T0
75/17/21
75/Q9/12
75/10/2R
TI ••
nc
J~
0 i v
19
,19
19
19
09
09
19
15
15
15
15
15
15
15
15
19
09
19
09
09
09
19
onoi
n
F DEPTH wiTFu
T I. ti Ji
F
35
35
35
35
35
35
35
10
10
1 0
11
10
10
11
11
5 =
S5
55
55
55
55
55
EEr
oofip
1105
00?5
0051
010"
0151
Ol-M
0000
0005
Oil*
01 11
004=.
0085
012^
0165
0001
0105
002P
015^
0091
0120
115^
CC.^T
12
13
12
5
1
n
r,
17
1 7
16
15
9
5
4
4
9
Q
9
»
K
4
4
. •>
.1
.9
.0
.•=
.9
.7
.1
.n
.9
.7
.0
.2
.9
.9
.?
.4
.2
.3
.3
.7
.3
00300
no
MG/L
10.1
9.0
9.?
11.0
11.2
11. f
lo.6
R.ft
B.rt
9.4
h.9
10.2
10.8
10.6
10.2
9.8
10.?
10.0
11.0
10.2
10.0
10.0
00177
570
2^2
192
00410
T 4LK
00610 006?5
NH3-N TOT Kjr.L
TOTAL N
N-TOTat.
MG/L
00671
24
20
1H
h
11
12
15
33
33
33
31
?9
27
29
29
12
22
20
17
17
14
11
7.60
7.50
7.60
7.00
7.00
7. no
7.10
7.00
7.00
7.00
7.00
6.R5
6.70
6.55
6.50
7.00
7.00
7.00
6.90
6.80
6.70
6.70
19
16
17
12
12
16
14
15
19
15
16
15
14
15
15
22
14
16
16
17
16
15
0.0?0
0.020
0.020
0.030
0.030
0.030
0.030
0.020
0.020
0.020
0.020
0.020K
0.020K
0.020
0.020
0.030
0.020K
0.020K
0.020K
0.020K
0.020K
O.Q20K
0.400
0.200K
0.200K
0.200K
0.300
0.200K
0.200*
0.200*
0.200K
0.200K
0.200"
0.200K
0.200*
0.200"
0.020*
0.200*
0.200<
0.200*
0.200K
0.200K
0.200K
0.200K
n.020*
0.02"K
0.020K
0.030
0.060
0.070
0.070
0.020K
0.020K
0.020K
0.020K
0.0?0
0.060
0.060
0.070
0.020K
0.020
0.020
0.040
0.170
0.0*0
n.n^o
0.002
1.002K
0.002K
O.OD2K
0.002K
0.002K
0.00?K
0.003
0.003
0.003
0.003
0.004
0.003
0.002
0.002
0.002
0.004
0.004
0.002
0.002
0.002
0.003
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
MfiTl ElJTPOD"IC«TIOf
F.P&-LAS
53060?
47 20 55.0 121 2? 05.0 3
53037
FFET
2111202
CLASS no
F 3 n '•' OF
TO
75/17/21
75/09/12
75/10/28
94*
HQ
09
09
n9
09
09
no
15
15
15
15
15
15
15
15
09
n9
09
09
09
09
09
F
,S
3S
•JS
35
35
•?s
35
10
10
10
10
10
10
10
10
55
5^
55
55
=,=;
55
55
onoo
ooo^
002^
Onsr1
0100
n isn
0)91
0000
oooc
001^.
0030
004=.
008^
012^
Ol^t
nno"
onor-
002°
0055
009"
012"
0155
v"-,/L
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
65 32217
TOT CHL'P^YL
P U'-/L
007 1.4
006
006
006
007
006
013
006 1.5
006
OOP
00*
019
OOR
008
009
006 1 .8
007
OOS
013
006
005
005
TMCOT LT
-------
MAIL
EPA-l_AS VFGAS
otTE
ON Si
S3060?
*7 ?? 35.0
53037
2?
ASHINGTON
DATF
FPO'-'
TO
75/07/21
75/09/1?
75/1 o/23
T I^F
OF
DAY
10 30
10 TO
10 3n
14 40
14 40
1440
09 35
09 T5
09 3^
QFDT-.
FF~ T
noon
OOQ11
0014
OOQO
0005
0014
0000
0005
0013
0001
W4TEP
Tr "P
TFMT
1 1
1 1
1 1
17
17
17
«
H
«
0
. 7
.4
.3
.3
.3
.?
.3
.8
.6
00300
00
wr, /i.
5.
9.
10.
8.
9.
9.
9.
10.
10.
*
0
0
8
0
?
a
0
4
00077
FEET
?u:
CL5SS 00
10094
CMOUCTVV
FIELD
MICROMHO
IB
IB
?2
33
33
37
1"
IK
1*
004QO
Pf-
SI!
7.45
7.4Q
7.40
6.60
6.80
6.65
6.90
7.05
00410
T ALK
CAC03
wr,/L
U
11
14
14
17
U
2?
23
27
00610
NH3-N
TOTAL
HR/L
0.020K
0.020K
0.0?OK
0.0?OK
0.020
O.O?OK
0.020
O.O?OK
0.020K
00625
TOT KJh'L
N
MR/L
0.500
0.?OOK
0 .200K
0.200K
0.200
0. 200^
0.200K
0.200K
0.200K
006TO
NO''S-Nn^
N-TOTftL
MR/L
O.P?OK
0.020K
0. o^OK
0.0?OK
0.020K
0.020K
0.0?OK
0.020K
O.OPOK
00671
DHOS-OIS
0-TnO
MG/L o
0.00?
0.00?K
0.011
0.002K
0.010
0.002*
0.005
0.003
0.004
006*5
OATF TIMF. DEPTH PMOS-TOT
FPO" OF
TO DAY FFET f-'G/L D
75/07/21 10 30 0000 O.OOn
10 30 0005 0.007
10 30 0014 0.007
75/09/1? 14 40 0000 0.007
14 *o onoc o.oin
14 40 0014 0.00?
75/10/28 09 35 0000 O.OOfi
09 35 0005 0.007
09 3^ 0013 n.nr><,
3?217
A
UP/L
1.4
p.j
00031
TMCOT LT
PFKCFNT
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
APPENDIX D
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA
-------
STORET RETOIEV«L DATE 74./11/16
^'ATL EUT«OPHICATION SlJ°VEY
EPA- I.AS VEGAS
S306A1
47 IS 30.0 1?1 1" 45.0 4
=;3 KITTITAS CO HWY
O/KEECriELUS LAKE
B«DG ON GRAVEL ND 13 MI ** OF
?1 1 1204
FEET OFPTH CLASS on
DATE
F°OM
TO
/09/22
/10/1
-------
BETOIEVAI oarE 76/11/16
NATL EUTRQPHICATIQM
FPA- I. 45 VEGAS
RATE
FOOM
TO
TIME nFPT«-i
N-
FEET
74/OQ/2? 10 45
74/11/19 15 50
74/11/16 11 *5
47 1« 40.0 121 21 00.0 4
MEADOW C»F.EK
5? KITTITAS CO HWY
T/ntECnELUS L6«E 1304O?
ON G"4v/EL RO 15 MI NW OF
oooo FEET DEPTH CLASS on
006 30
•T(jT&l.
MR/L
0.160
0.008
0.00«
00635
TOT KJEL
N
"G/L
0. 100K
0. 100K
0.100K
00610
WH3-N
TOT4L
MG/L
0.0"5
0.010
0.0?<»
00671
PHOS-OIS
ORTMO
MG/L P
0.010
O.OO6'
0.00 UK
0066^
DLJOS-TOT
MG/L P
0.010
0.005
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
STO=ET RETRIEVAL OATE 76/11/lf.
NATL FUTPOPHICATION SURVEY
EPA- | AS VEGAS
DATE TIME OEPTw NQ?s,N03
FRO" OF N-TO
TO HAY FRET Mr;/
74/09/2? 11
74/10/19 16
74/11/16 12
15
OS
05
2? 35.0 4
5306C1
47 1<5 40.0 1?1
ROARING CPEEK
b.T KITTITAS CO HWY
T/KEECHELUS LAKE 13049?
BRDG ON UNIMOR RD 17 MI MW OF F
11F°ALE5 ?1112n4
noon FEET OE^TH CLASS "0
00610
TOT KJEL
N
MG/L
0.100K
0.043
0.033
TOTAL
MG/L
00671
PHOS-DIS
QOTHO
DHOS-TOT
0.200
0.015
0.015
0.024
MG/L
0.005
0.005
0.008K
0.005
0.005
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
SFT=IE\/AL DATE 7f-/ll/l(j
JTPODHICATION SURVEY
EPA- | AS VEGAS
OATF
TI^E OFPTw
M-
n a v FEET
74/09/?? 1? 30
74/]n/10 14 SS
74/11/16 10 45
00*30
?*,N03
0.04R
0.03?
0.016
00625
TOT KJEL
N
n. i no*
o.?oo
0.400
00610
MH3-N
n.010
0.016
00671
PHOS-OIS
O^THO
0.005K
0.005K
0.008K
«R 8RDG 1.
0000 FEET
0066S
°HOS-TOT
MG/L °
0.005K
0.005K
0.010K
530601
47 22 00.0 1?1 23 35.n 4
COLD CREEK
S3 KITTITAS en HWY
LAKE 13049?
MI 5 OF HYAK OF ELLENSRIlop
DEPTH CLASS oo
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
OETRTEVAL OATE
MATL
EPA- i AS VEGAS
00630
OATF TIME OEPT'-' MOPS.N01
FwOM OF M-T'1T4|.
TO OAv FEET MG/L
TOT
74/OQ/3? 11
74/10/19 14
74/11/lf. IP
50
20
1.048
K Jf.L
N
v5 /L
0 .1 OOK
0. 100K
O.POO
00^,10
NH3-N
TOTAL
MG/L
0.015
o.o?o
o.ooa
5306E1
47 23 40.0 121 22 50.0 4
ROLD C9EEK
S3 KITTIT6S CO HWY
T/KEECHELUS LAKE 130492
BANK SMO(_ .$ MI ME OF HYAK OF
0000 FEET DEPTH CLASS 00
MG/L
0066S
PHOS-DIS PHOS-TOT
MP/L P
O.OOSK
0.005K
0.010K
0.005K
0.005*
0.008K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
3ET3IFVAL
EUTROPHICATION
EPA- LA? VEGAS
53061F
47 ?? 10.0 131 37 25.0 4
CEDAR RIVER
5? 15 RANOEHA
T/KEECHEUJS LAKE
COYOTE PS ACC RD XING 1.4
CHES MOP
oooo FEET DEPTH CLASS no
TO
74/0^/28
74/1 1/lf,
74/13/14
75/06/17
75/"H/l«,
OF
na v
12 40
10 45
11 25
11 25
12 00
11 ™
FEET
00630
NO 3ll>N03
Nt-TOTAL
Mb/L
0.052
0.002
0 . 128
O.OflB
0.020
0.040
00625
TOT KJEL
N
MG/L
0.100
0.200
0.300
0.100
0.050
0.200
00610
MH3-NJ
TOTAL
MG/L
0.010
0.0?0
0.0«8
0.005
0.015
0.015
0067]
PHOS-r>IS
ORTHO
MG/L P
0.005K
0.005<
O.OOBK
0.005K
0.005K
0.005K
00665
PHOS-TOT
MG/L P
0.005K
O.OOS
0.010K
0.010K
0.010K
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
?TO»ET QET3IF.VAL
NATL
EPA- LAS VEGAS
F 76/H/lf>
53061G
47 18 20.0 121 30 50. P 4
S FORK CEDAR
53 15
T/KEECHELUS
LOGGING BO H»OG .6 MI
11FP6LES
0000 FF.FT OEUTH CLASS 00
1 31 1 Q1
OF N FORK
DATE
FSQM
TO
74/n9/?R
74/10/20
74/11/16
75/06/17
75/08/16
TI«E OEPT*
OF
0«v FEET
19 OS
11 15
11 50
12 45
14 50
00630
NOP^NOT
N-TOTAL
MG/L
o.ooe
0.016
0.024
0.005
0.010
00625
TOT KJEL
N
MG/L
0. 100K
0.100
0. 100K
0.550
00610
NHT-N
TOTAL
MG/L
0.005
0.015
0.04B
0.015
0.015
00671
PHOS-DIS
OPTHO
MG/L P
0.005K
0.005K
0.008K
0.005K
0.005
00^65
PHDS-TOT
MG/L f
0.005
0.005
0.010K
0.010K
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
STO=ET SETOTFVAL OATF
NATL EUTPCPHICATION S'.l°vEY
F.PA- LAS VEGAS
53061H
47 21 04. n 121 39 45. n 4
RIX RH/E4
5? 15 3ANUEWA
T/KEECHELtlS LAKE 1311^1
BANK SMPL 1 MI UPSTHM COYOTE PASS Mj
FEET DEI-TH CLASS on
DATF
TO
74/09/2S
74/10/20
74/11/16
74/12/14
75/06/17
75/08/16
TIMF 1
OF
DAY
12 00
10 15
10 55
10 50
11 00
12 45
00630
'JO?S.NO^
N-TI"IT AL
M o / L
0.02*
n.o?2
0.072
0.064
0.030
O.OPO
00625
TOT KJEL
N
MG/L
0.300
0.100
0.200
0.200
0.600
00610
Mn3-N
TOTAL
MG/L
0.025
0.015
0.016
0.005
0.020
0.015
00671
pHos-nis
OWTHO
MG/L P
0.005K
0.005K
o.noec
0.005K
0.020
0.005
00665
PHOS-TOT
MG/L ^
0.005
0.005
0.010K
0.010K
0.020
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
STORET RETRIEVAL DATE 76/11/16
NATL F.UTROPHICATIOI" SURVEY
EPA- L*S VEGAS
53061J
47 22 00.0 121 50 30.0 4
BOULDER CREEK
S3 1^ (HANDERA
T/KEECHELUS LAKE 1311O1
PRIVATE RO XING .8 M «?£• CHESTER MQWSF LK
11EPAI.ES !>lll?n4
0000 FEET DEPTH CLASS 0"
DATF TIME DEPTH MO;
FROM OF M-1
TO DAY FFET I
74/no/;?fl 11 m
74/10/20 n<3 55
74/11/16 10 25
74/12/14 10 20
75/08/16 11 50
0630
5.N03
nTAl.
G/L
0.036
o.osa
fl.096
0.088
0.0?5
00625
TOT KJEL
N
MG/L
0.200
0.300
0.300
0.200
0.300
00610
NH3-M
TOT3L
MG/L
0.010
0.030
0.0=16
0.010
0.020
00671
PHOS-OIS
npTHO
MG/L P
0.005^
0.005K
0.008K
0.005
0.005
OOf-65
PHOS-TOT
MG/L P
0.010
0.015
0.010K
0.010K
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
STO°ET tfETSjEVAL OATF
MAIL EUTOQPHICATIO'!
- LA? VEGAS
S30f>lK
47 13 30.0 1?1 3ft 10.0 *
S«flY CREEK
S3 7.S
DATF
FRQM
TO
/OP/2'
00630 006?5
TIME DEPTH MO.'^NOl TOT KjEL
nf N-TOTAL N
PAY FEET «G/L MG/L
1 19 00 0.03R 0.300
OOMO
MH3-N
TOTAL
MG/L
0.016
00671
PhOS-DIS
OflTHO
MG/L P
0.005K
T/KEECHELUS LAc.E 13
SEC RD RROG ?.A MI £ QF «Av
1jc~DAirc oillOn
1 t^OLtS »*1 1 1 cl
0000 FEET OE^TH CLASS 00
00<-65
PHOS-TOT
MR/L P
0.010
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
STOPFT
MATL
FFA- LAS VEGAS
O&TF.
OBTF
F^OM
TO
74/1
TIME
OF
FEET
11
47 13 15.0 I?! 27 20. n 4
T/KEEChELLIS LANE 1311Q?
BANK S^PL ABOUT I . 9 MI NF OF LESTFR
noon FF.FT DFF-TM CLAS? no
00630
N02\Nm
N-TnTAl.
MP /L
n . o 3 4
n . o 1 6
00625
TOT KJtL
W
MG/L
o . i o or
0.300
006)0
KJH3-N)
T 0 T A L
MG/L
n.nes
0.008
00671
PHOS-OIS
ORThf)
MG/L P
0.015
0.0?4
00665
°"OS-TOT
MT,/L 0
0.0?0
0.024
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
?TO°ET QETSIEV4L OATf-
NATL EUTPOPHICATIO\ S
EP4- |.AS VEC-AS
DATE TIME OEPTM
FRO" OF N-TiTAI.
TO HAY FFET •'-/L
12
n.
74/11/05
006?5
TOT KJEL
N
"G/L
0. 100K
o.ion<
00610
WH1-N
TOTAL
MG/L
0.010
o.nnn
00671
PHOS-01S
MG/L
0.010
O.OOS
47 i? so.o i?i a1^ 20.n 4
GREEN -RIVER
53 I6; LF^TF^
T/KEECHELli"; LAKE 131
BANK SMPL ABOUT 3.3 MI E OF
ll^.DALES ?111204
0000 FEfT DEPTH CLASS 00
00665
0.010
0.010K
K VALUE KNOWN TO BE LESS
THAN INDICATED
-------
APPENDIX E
PARAMETRIC RANKINGS OF LAKES
SAMPLED BY NES IN 1975
STATE OF WASHINGTON
Mean or median values for six of the key parameters evaluated
in establishing the trophic conditions of Washington lakes sampled
are presented to allow direct comparison of the ranking, by parameter,
of each lake relative to the others. Median total phosphorus, median
inorganic nitrogen and median dissolved orthophosphorus levels are
expressed in mg/1. Chlorophyll ^values are expressed in yg/1.
To maintain consistent rank order with the preceding parameters,
the mean Secchi disc depth, in inches, is subtracted from 500.
Similarly, minimum dissolved oxygen values are subtracted from 15
to create table entries.
-------
LAKE DATA TO BE USED IN RANKINGS
LAKE
CODE . LAKE NAME
5301 AMERICAN LAKE
5302 BANKS LAKE
5303 CHELAN LAKE
5304 DIAMOND LAKE
5305 GREEN LAKE
5306 KEECHELUS LAKE
5307 MAYFIELD LAKE
5308 MEDICAL LAKE
5309 MOSES LAKE
5310 07ETTE LAKE
5311 SAMMAMISH LAKE
5312 WHATCOM LAKE
5313 LOWER GRANITE RESERVOIR
MEDIAN
TOTAL P
0.027
0.021
0.005
O.OU
0.027
0.007
0.014
0.275
0.115
0.010
0.015
0.009
0.033
MEDIAN
INORG N
0.105
0.040
0.070
0.060
0.050
0.040
0.100
0.225
0.150
0.110
0.210
0.320
0.150
500-
MEAN SEC
343.000
364.533
111.900
303.667
415.000
280.250
402.000
401.714
463.600
403.333
374.000
288.000
435.500
MEAN
CHLORA
4.822
7.373
0.905
14.537
2.983
1.400
4.250
16.425
29.060
1.225
7*290
3.422
4.875
15-
MIN DO
15.000
10.800
6.400
14.200
10.600
9.200
10.600
15.000
14.600
7.200
14.600
10.800
7.200
MEDIi
DISS ORTi
0.007
0.007
0.003
0.010
0.009
0.002
0.007
0.166
0.038
0.009
0.006
0.009
0.022
AN
-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE
CODE LAKE NAME
5301 AMERICAN LAKE
5303 BANKS LAKE
5303 CHELAN LAKE
530* DIAMOND LAKE
5305 GREFN LAKE
530ft KEECHELUS LAKE
5307 MAYFIELD LAKE
5308 MEDICAL LAKE
5309 MOSES LAKE
5310 07ETTE LAKE
531] SAMMAMISH LAKE
5312 WHATCOM LAKE
5313 LOWER GRANITE RESERVOIR
MEDIAN
TOTAL P
29 (
42 (
100 1
6? .1
29 1
92 1
62 1
0 I
8 I
75 I
50
83
17
! 3)
: 5)
! 12)
! 7)
I 3)
I 11)
I 7)
[ 0)
I 1)
( 9)
( 6)
( 10)
( 2)
MEDIAN
INORG N
50 (
100 <
67 (
75 (
83 <
92 (
58 (
8 <
29 (
42 (
17 (
0 .(
29 (
6)
12)
8)
9)
10)
11)
7)
1)
3)
5)
2)
0)
3)
500-
MEAN SEC
67 1
58 1
100 1
75 I
17 i
92 i
33 i
4? i
0 <
25 '
50
S3
8
I 8)
! 7)
[ 12)
! 9)
t 2)
t 11)
( 4)
t 5)
C 0)
f 3)
< 6)
( 10)
( 1)
MEAN
CHLORA
50 (
25 1
100 (
17 1
75 1
83 1
58 1
8 1
0 I
92 1
33 '
67 i
42
! 6)
: 3)
: 12)
! 2)
: 9)
[ 10)
; 7)
i i)
t 0)
[ in
( 4)
( 8) •
( 5)
15-
MIN DO
4 (
46 I
100 1
33 1
62 1
75 1
.62 1
4 I
21 1
87 1
21
46 i
87
: f o)
[ 5)
! 12)
! 4)
[ 7)
I 9)
[ 7)
[ 0)
t 2)
[ 10)
( 2)
( 5)
( 10)
MEDIAN
DISS ORTHO
58 (
71 (
92 <
25 (
46 1
100 <
71 (
0 1
8 1
33 1
83 i
46 1
17 i
7)
: ft}
11)
: 3)
: 5>
: i?)
: P)
' f»
! 1)
; 4)
t i")
t 5)
t ?)
------- |