EPA-R2-73-189
Aprs! 1973 Environmental Protection Technology Series
Baseline Measurement
Test Results for the Cat-Ox
Demonstration Program
Office of Research and Monrloring
US Environmental Protection Agency
Washington, DC 20460
-------
EPA-R2-73-189
Baseline Measurement
Test Results
for the Cat-Ox
Demonstration Program
by
J. Burton, G. Erskine, E. Jamgochian,
J. Morris, R. Reale, and W. Wheaton
The Mitre Corporation
Westgate Research Park
McLean, Virginia 22101
Interagency Agreement No. F192628-71-C-0002
and
Contract No. 68-02-0650
EPA Project Officer: G. S. Haselberger
Control Systems Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
Prepared for
OFFICE OF RESEARCH AND MONITORING
U. S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D. C. 20460
April 1973
-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for us.
11
-------
ABSTRACT
This report summarizes the results of the Baseline Measurement Test
conducted for the Cat-Ox Demonstration Program. The test was carried
out on Steam Generator Unit No. 4 of the Wood River Station of the
Illinois Power Company in November and December 1971. The report describes
the measurement program for the test and procedures used to process: data
output from the continuous measurement system; steam generator operating
data; and data obtained from manual measurements. It also provides
information on the data reduction system, and the contents of the data
base used for baseline test calculations. It presents test results for:
net and gross efficiency—varying load level, excess air, and fuel type;
gas mass flow and gas volume flow—varying load level and fuel type; and
grain loading—varying load level, fuel type, and the soot blowing cycle.
It also presents results for an overall sulfur balance, and for comparing
continuous measurement results with manual measurements and with theo-
retical values.
This report was submitted in partial fulfillment of Contracts F19268-71-
C-002 and 68-02-0650, under the sponsorship of the Environmental Protection
Agency.
iii
-------
CONTENTS
Page
Section
I Conclusions
3
II Introduction
III Measurement Program
31
IV Data Processing
V Analysis of Data
115
VI Appendices
-------
FIGURES
PAGE
1 CROSS SECTION OF DUCT AT LOCATION 1, PRIOR TO ECONOMIZER 21
SHOWING MEASUREMENT POINTS
2 CROSS SECTION OF DUCT AT LOCATION 2, IN AIR PREHEATER, 22
SHOWING MEASUREMENT POINTS
3 CROSS SECTION OF DUCT AT POINT 3, IN STACK, SHOWING 23
MEASUREMENT POINTS
Dl 197
D2 198
D3 199
D4 200
D5 201
D6 202
D7 203
D8 204
D9 205
D10 206
Dll 207
D12 208
D13 213
D14 214
D15 215
VI
-------
TABLES
Page
1 Test Schedule for Preliminary Measurement Subtask 8
2 Summary of Baseline Test Conditions 11
3 Baseline Measurement Parameters (Continuous and Manual 16
Measurements)
4 Baseline Measurement Parameters (Steam Generator Gauge 18
Board Readings)
5 Summary of Baseline Test Manual Measurement 25
6 Basic Record Format 35
7 Coal Composition Record Format 36
8 Gas Composition Record Format 37
9 Flue Gas Composition Record 38
10 Refuse Characteristics Record Format 39
11 Fuel Consumption Record Format 40
12 Air Heater Temperature Record Format 41
13 Ambient Conditions Record Format 42
14 Electrical Power Record Format 43
15 Operating Conditions Record Format 44
16 Miscellaneous Constants Record Format 45
17 Flow Characteristics Record Format 46
18 Duct Characteristics Record Format 47
19 Computation Modules 48
20 Flue Gas Data Inventory for Locations 1, 2, and 3 50
21 Air Heater Temperature Inventory 52
22 Flue Gas Flow Rate Inventory 53
vii
-------
TABLES (CONTINUED)
No. Page
23 Net and Gross Efficiency 63
24 Flow Rates for S02 at Location I 66
25 Flow Rates for CO at Location I 67
26 Flow Rates for 0- at Location 1 68
27 Flow Rates for N at Location 1 69
28 Flow Rates for All Gases at Location 1 70
29 Flow Rates for NO at Location 3 71
30 Flow Rates for S02 at Location 3 72
31 Flow Rates for C02 at Location 3 73
32 Flow Rates for 0 at Location 3 74
33 Flow Rates for N_ at Location 3 75
34 Flow Rates for All Gases at Location 3 76
35 Sulfur Balance 81
36 Grain Loading Measurements 83
37 Comparison of Continuous and Manual SO- at Locations 1 86
and 3 with Theoretical Values
38 Comparison of Continuous and Manual NO at Location 3 87
39 Comparison of Continuous 02 and CO with Orsat Measurements 89
at Location 3
40 Proximate and Ultimate Analyses of Coal (Dry Basis) 92
41 Proximate and Ultimate Analyses of Coal (As Received Basis) 94
42 Proximate Analysis of Fly Ash from Dust Collector 96
43 Proximate Analysis of Air Heater Hopper Ash 97
44 Proximate Analysis of Slag Samples 98
viii
-------
TABLES (CONTINUED)
No. Page
45 Proximate Analysis of Pulverizer Reject Samples 99
46 Comparison of Elemental Concentrations in Coal, 100
Pulverizer Rejects, Slag, and Fly Ash (MITRE Test
No. 1, 75 MW, B Fuel, No Soot Blowing, Normal Excess
Air, Normal Burner Angle)
47 Comparison of Elemental Concentrations in Coal, 101
Pulverizer Rejects, Slag, and Fly Ash (MITRE Test
No. 3, 75 MW, A Fuel, No Soot Blowing, Maximum Excess
Air, Normal Burner Angle)
48 Comparison of Elemental Concentrations in Coal, Pyrites, 102
Slag, and Fly Ash (MITRE' Test No. 22, 75 MW, D Fuel, No
Soot Blowing, Normal Excess Air, Normal Burner Angle)
49 Comparison of Elemental Concentrations in Coal, Pulverizer 103
Rejects, and Fly Ash (MITRE Test No. 5, 75 MW, C Fuel,
No Soot Blowing, Normal Excess Air, Normal Burner Angle)
50 Elemental Content of Flue Gas Particulate Matter, MITRE 104
Test No. 13: 35 MW, B Fuel, No Soot Blowing, Normal
Excess Air, Normal Burner Angle
51 Elemental Content of Flue Gas Particulate Matter, MITRE 105
Test No. 8: 100 MW, A Fuel, No Soot Blowing, Maximum
Excess Air, Normal Burner Angle
52 Elemental Content of Flue Gas Particulate Matter, MITRE 106
Test No. 20: 50 MW, C Fuel, No Soot Blowing, Normal
Excess Air, Normal Burner Angle
53 Elemental Content of Flue Gas Particulate Matter, MITRE 107
Test No. 19: 50 MW, A Fuel, No Soot Blowing, Maximum
Air, Normal Burner Angle
54 Elemental Content of Flue Gas Particulate Matter, MITRE 108
Test No. 17: 50 MW, A Fuel, Maximum Soot Blowing, Normal
Excess Air, Normal Burner Angle
55 Elemental Analyses of Coal for Cat-Ox Baseline Program 109
56 Determination of Bound S0» and SO., by Chemical Analysis 112
57 Determination of Polynuclear Aromatic Compounds Bound to 113
the Surface of Flue Gas Particulates
ix
-------
TABLES (CONCLUDED)
No. Page
Al Velocity Traverse at Economizer (Location 1) Test 118
9/28 - 9/29
A2 Velocity Traverse at Economizer (Location 1) Test 9/30 119
A3 Velocity Traverse at Economizer (Location 1) Test 10/1 120
A4 Velocity Traverse at Economizer (Location 1) Test 10/5 121
A5 Velocity Traverse at Economizer (Location 1) Test 10/6 122
A6 Velocity Traverse at Economizer (Location 1) Test 10/8 123
A7 Coal Analyses for Preliminary Test Runs 124
A8 Grain Loading at Air Heater (Location 2) Test 101 125
A9 Grain Loading at Air Heater (Location 2) Test 102 126
A10 Grain Loading at Air Heater (Location 2) Test 103 127
All Grain Loading at Air Heater (Location 2) Test 104 128
A12 Grain Loading at Air Heater (Location 2) Test 105 129
A13 Grain Loading at Air Heater (Location 2) Test 106 130
A14 Grain Loading at Air Heater (Location 2) Test 107 131
A15 Grain Loading at Air Heater (Location 2) Test 108 132
A16 Grain Loading at Air Heater (Location 2) Test 109 133
Dl 209
D2 211
x
-------
SECTION I
CONCLUSIONS
All primary objectives of the Baseline Measurement Test were achieved
in the five week period of testing on Steam Generator Unit No. 4 of the
Wood River Station of the Illinois Power Company.
A relationship was defined between control settings and operating con-
ditions for Unit No. 4 and flue gas properties at the Cat-Ox/Steam
Generator interface; baseline performance of the steam generator was
characterized in terms of emission levels and quantitative data were
obtained which can be used to support the establishment of realistic
performance standards. Operating experience was also obtained in the
testing and calibration of the measurement procedures and hardware to
be used in the one-year demonstration test, and quantitative information
was obtained on the overall operability and reliability of Steam Gener-
ator Unit No. 4.
Data are provided in this report in the form of tabular results for a
set of twenty-one separate tests, each at different operating conditions.
To maintain these conditions during each test (a period of approximately
ten hours), it was necessary to control the following: load factor,
fuel type, soot blowing, and excess air.
In general, no test results were found which were significantly different
from anticipated results, either in terms of magnitude or in terms of
effects of the parameters examined.
Net and gross efficiencies were on the average higher at a 75 MW load
level when compared with average values at 100 MW and 50 MW load levels;
but the differences were not of the magnitude to be significant. No
significant differences were found in net and gross efficiencies for
the three types of fuel tested at the 100 MW level.
Measured gas mass flow rates for sulfur dioxide were consistent with
control settings and sulfur content of the fuel. Measured gas flow
rates for carbon dioxide were not significantly different for the three
-------
types of fuel tested. Oxygen mass flow rates decreased with decreasing
load level, and were found not to be significantly different for two of
the fuel types for a fixed load level. Measured gas mass flow rates
for nitric oxide were significantly lower for tests performed with the
fuel type that was predominantly natural gas than for tests performed
with the other two fuel types.
Total gas mass flow rates were derived from the measured flow rates for
individual gases and, as such, showed the same relationships as the
individual gases (i.e., same decrease with decreasing load level and
same increase with increased excess air).
The results of a sulfur balance computation, comparing measurements of
sulfur flow input to the system in the fuel with sulfur flow output from
the system in the stack gas, were in good agreement for all tests. These
results led to the conclusion that the total combined error in sulfur
dioxide and gas flow measurements was low.
Grain loading measurements were found to be consistent with the ash
content of the fuels utilized and the soot blowing cycle employed. No
specific patterns were found in the analysis of results in terms of
mechanical collection efficiencies.
In the comparisons between manual sampling and continuous measurement
results with theoretical expected values of gaseous concentrations,
closer agreement was found between the continuous measurement results
and the theoretical values.
The proximate and ultimate analyses of the coal and the elemental analyses
of pulverizer rejects, furnace bottom ash, and fly ash did not provide
any specific pattern beyond the expected results. The elemental analyses
are of special value, however, in that they do provide the means for
determining emission rates to the ambient atmosphere for a number of
elements not usually examined in emission testing programs.
-------
SECTION II
INTRODUCTION
BACKGROUND
The Environmental Protection Agency (EPA) is actively engaged in a
number of programs to demonstrate sulfur oxide emission control pro-
cesses applicable to stationary sources. These demonstration programs
are based upon operation of an emission control system of such size and
for such duration as to permit technical and economic scale-up of
operating factors to define the commercial practicality of the process
for potential industrial users. Among the candidate processes to be
evaluated is the Cat-Ox process developed by Monsanto Enviro-Chem
Systems Inc. under contract to the Illinois Power Company and the
Environmental Protection Agency. The Cat-Ox process as developed by
Monsanto is based upon the catalytic oxidation of sulfur dioxide to
sulfur trioxide and subsequent reaction with water in the flue gas to
form sulfuric acid. The sulfuric acid formed is to be sold to offset
the operating costs associated with the process.
Four major task areas have been defined by MITRE under contract to EPA
to provide "Test Program Development Work of the Cat-Ox Demonstration
Unit (CPA 70-161)." The first of the task areas concerns the "Definition
of Test Requirements," determined by means of an examination of the
requirements of potential users, an examination of the stated technical
and economic capabilities of the Cat-Ox process, and the performance of
a requirements analysis defining the types and levels of test data required
to quantify the operability, reliability, and emission control effec-
tiveness of the Cat-Ox process. The second of the task areas concerns
a "Baseline Measurement Test," in which the baseline operability, reli-
ability, and emission levels of the stationary source are determined
prior to installation of the control process. The third task area
concerns the performance of a "One-Year Demonstration Test" wherein a
measurement program is conducted which will fully characterize the
Cat-Ox process emission control performance; quantify the operating
-------
economics of the process; and establish the operability, reliability,
and maintainability of the Cat-Ox process and the resulting effects on
the steam generator with which it is integrated. The fourth task area
concerns the "Demonstration Evaluation" where reduced test data are
translated into quantified statements on the technical and economic
adequacy of the process.
To date, the first two of the major task areas have been completed.
Requirements for testing have been defined in part in a baseline measure-
ment test plan for the Cat-Ox Demonstration Program, and the baseline
measurement test was conducted under the second major task in conformance
with this test plan.
TEST OBJECTIVES
The objectives of the Baseline Measurement Test are to: 1) determine
the relationship between control settings and operating conditions for
Unit No. 4, and flue gas properties at the Cat-Ox/Steam Generator
interface, 2) characterize baseline performance in terms of operability,
reliability, and emission levels of Unit No. 4 prior to installation of
the process, 3) test and calibrate measurement procedures and hardware
to be used in the one-year demonstration test, and 4) obtain quantitative
data supporting the establishment of realistic performance standards for
all emitted pollutants.
SCOPE OF TEST
To meet these objectives, a test program was developed which consisted
of twenty-one (21) separate tests, each of approximately ten hours
duration. These twenty-one tests were conducted over a five-week period
beginning November 8, 1971 and ending December 9, 1971.
Each of the twenty-one tests represented a particular combination of
operating levels for the major steam generator parameters (load factor,
fuel type, soot blowing, and excess air). The combinations of operating
levels were selected so as to provide the maximum of information in a
minimum number of tests, varying the parameters on a "one-at-a-time" basis.
-------
Two supplementary gas traversal tests were also conducted to determine
the pattern of leakage at the air heater (measurement position No. 2)
and the gas flow pattern midway in the stack (measurement position No. 3)
A supplementary test was also conducted in which all factors were held
constant except for burner angle, which was varied in steps from the
minimum to maximum position.
For all of the tests, key steam generator operating parameters were
monitored, samples of coal and ash were obtained at various points in
the steam generator, gas samples were manually obtained, particulate
grain loadings were determined by manual sampling, and temperatures,
pressures, gas flows and gas concentrations were monitored by a MITRE
designed continuous measurement system.
-------
SECTION III
MEASUREMENT PROGRAM
This section describes the procedures followed by the MITRE test team
in preparing for the test program, the steps followed in conducting the
tests, and the data management procedures utilized throughout the
measurement program.
Descriptive information is also provided in this section concerning the
measurement locations, measurement parameters, and the steam generator
operating conditions defined for each test.
PRELIMINARY MEASUREMENTS
As part of the Baseline Measurement Program, a number of preliminary
measurements were made prior to the initiation of the twenty-one tests.
The objective of this preliminary measurement effort was to provide the
necessary background information on isokinetic sampling techniques, rates
of particulate loading in sampling equipment, and effects of power plant
ambient conditions on the measurements.
This information was then used to determine ranges of gas and particu-
late concentrations to be encountered in the measurement program,
to confirm the sampling frequency and sampling positions utilized in
the measurement program, and to identify any changes in operating pro-
cedures or modifications in test equipment necessary for the primary
measurement effort.
The preliminary measurements were conducted over a two-week period
beginning September 28, 1971. A summary of the test schedule and test
conditions followed during this preliminary measurement effort is shown
in Table 1. As noted in Table 1, all preliminary runs were conducted
using Type A Peabody coal. Five of the preliminary runs were conducted
at the 100 MW load level representing the maximum gas flow conditions.
A sixth preliminary run was made at the 35 MW load level. In these
preliminary runs, excess air was varied from 115% to 145%. One pre-
liminary run was made with soot blowers in operation to measure the
maximum fly ash dust loading of the system.
7
-------
TABLE 1
TEST SCHEDULE FOR PRELIMINARY MEASUREMENT SUBTASK
DATE
(9/28)
(9/29)
9/30 '
O3
10/1
TEST CONDITIONS
100 MW Load
115% Excess Air
Coal Type A
No Soot Blowing
100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
MEASUREMENTS
• Temperature & Velocity
Traverse at Economizer
•Orsat & Moisture Content
at Economizer
•40-point mass loading at
front duct of air heater
(ports 1 and 2)
• Economizer Measurements
same as above
• 40-point mass loading at
front duct of air heater
(ports 1 and 2)
•Velocity Survey of air heater
back duct (ports 3 and 4)
• Economizer Measurements
same as above
•40-point mass loading at
back duct of air heater
(ports 3 and 4)
•Velocity Survey of air heater
front duct (ports 1 and 2)
REMARKS
Two days were required
to conduct the test,
due to time necessary
for test preparation
All tests also include static pressure measurements,
moisture content, and Orsat analysis for 0- and CO
-------
DATE
10/5
10/6
10/8
TABLE 1 (CONTINUED)
TEST SCHEDULE FOR PRELIMINARY MEASUREMENT SUBTASK
TEST CONDITIONS
100 MW Load
125% Excess Air
Coal Type A
Soot Blowing over
period of test
100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
35 MW Load
145% Excess Air
Coal Type A
No Soot Blwoing
MEASUREMENTS
• Economizer Measurements
same as above
• 40-point mass loading at
back duct of air heater
(ports 3 and 4)
• Economizer Measurements
same as above
• 2-separate single point
mass loading measurements
at back duct of air heater
•Velocity Survey of air heater
front duct and half of rear
duct
•Economizer Measurements
same as above
•40-point mass loading at
back duct of air heater
REMARKS
Test to show effect
of soot blowing (i.e.,
maximum fly-ash concen-
trations)
Test to show effectiveness
of single or ten-point
mass loading measurement
for subsequent tests
Test to show lowest
extreme in gas flow
and mass loading
-------
The preliminary measurements conducted at the air heater on 10/6/71
were intended to provide a comparison between (1) a 40-point, 2-probe
traverse of the rear duct (ports 3 and 4) and (2) a Id-point, single
probe traverse of half of the rear duct (port 4) with (3) a single
point, single probe sample from the rear duct (port 3, port 4).
From the results of this test, it was determined that the best method
for measuring grain loading at location 2 would consist of a 20-point,
2-probe traverse in one-half of each duct (a total of 40 points). The
halves selected are to be varied for the range of test conducted at
each load factor to insure thorough sampling of the total duct.
A complete summary of the results of the preliminary measurements effort
is provided in Appendix A.
MAIN MEASUREMENT PROGRAM
The main measurement program was initiated on November 8, 1971 following
the completion of the preliminary measurement effort, and the completion
of all required facility modifications (ports, sheds, and stack access
platform).
A summary of the Baseline test conditions is presented in Table 2. As
noted in Table 2, four load levels were examined in the tests: 100 MW,
75 MW, 50 MW, and 35 MW.
The four fuel types shown in Table 2 included Type A Peabody Coal (approx-
imately 2.7 Ibs S/10 BTU), Type B Freeman Coal (approximately 1.6 Ibs
S/10 BTU), Type C Coal, a mixture of Freeman Coal and Natural Gas (approx-
imately 1.0 Ibs S/10 BTU), and Type D metallurgical coal (source location
undefined, sulfur content approximately 1.0 Ibs S/10 BTU).
Two levels of soot blowing were investigated - no soot blowing and max-
imum soot blowing. However, on one test early in the series, an inter-
mediate level of soot blowing was examined.
Three levels of excess air were examined as shown in Table 1 - minimum
excess air, normal excess air, and maximum excess air.
10
-------
TABLE 2
SUMMARY OF BASELINE TEST CONDITIONS
TEST
NUMBER
11
9
8
12
7
6
1
18
13
4
5
10
20
2
3
17
19
21
14
15
22
DATE
NOV 8
NOV 9
NOV 10
NOV 11
NOV 12
NOV 15-16
NOV 14-15
NOV 16-17
NOV 17-18
NOV 18-19
NOV 21-22
NOV 22-23
NOV 23-24
NOV 29-30
NOV 30-DEC 1
DEC 1-2
DEC 2-3
DEC 3-4
DEC 6-7
DEC 7-8
DEC 8-9
LOAD
FACTOR
100 MW
100 MW
100 MW
100 MW
100 MW
100 MW
75 MW
50 MW
35 MW
75 MW
75 MW
100 MW
50 MW
75 MW
75 MW
50 MW
50 MW
35 MW
50 MW
50 MW
75 MW
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORMAL
MINIMUM
MAXIMUM
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
MINIMUM
NORMAL
NORMAL
NORMAL
NORMAL
MAXIMUM
NORMAL
MAXIMUM
NORMAL
NORMAL
MINIMUM
NORMAL
*Reduced level of soot blowing
11
-------
TEST OPERATING PROCEDURES
Of the 21 tests in the main measurement program, the first five tests
were performed during the normal day shift (approximately 8:00 a.m. to
4:00 p.m.). The remaining tests were conducted during the evening shift
(approximately 12:00 a.m. to 8:00 a.m.), in order to minimize the inter-
ference with higher-load daytime operations. In all cases, test personnel
were on-site for a period of 1-2 hours preceding the start of the test.
During this pre-test period, filters in the sampling lines were cleaned
and preheated, sampling probes were inserted in the ports, and the
instrumentation systems were calibrated.
Approximately one hour before the test, boiler controls were adjusted
to provide the required excess air and power settings. Excess air
was determined by MITRE gas measurements, and interative adjustments
were made until the desired level was reached. The boiler system was
then allowed to stabilize. When the system was stabilized and no vari-
ations in power level and excess air were observed, test personnel were
notified to start their respective assignments.
Assignments for the various test personnel varied somewhat for the
specific tests, but in general the following data collection efforts
were carried out:
1. Key steam generator operating parameters were
recorded from the control room instrumentation and
from various gauges on the steam generator. These
readings were entered in an "Operating Conditions
Log," generally on an hourly basis.
2. Samples of coal were obtained from each of the four
coal mills using the cyclone samplers and the techniques
described in the test plan. Ash samples were also taken
from the furnace bottom and from the air heater and
mechanical collector. The coal samples and the ash
samples were obtained over the period of test operation
12
-------
(8-10 hours) and blended at the conclusion of the
test so as to form single representative one quart
samples.
3. Data log tapes were generated (using the steam gener-
ator control computer) and "printouts" were developed
from the tapes on an hourly basis.
4. Relative humidity measurements were taken on an hourly
basis at the forced draft fan inlet using a sling
psychrometer.
5. The continuous measurement instrumentation system was
placed in operation at location 1 and location 2.
Strip charts and digital output derived from the system
were collected and logged at the conclusion of the test.
6. Gas samples were taken manually at location 1 and
location 3; grain loading samples were taken at
location 2 and location 3 as required for the specific
test.
7. On-site calculations were made with the programmable
calculator as described in the Test Plan.
Data from all of the above efforts were collected at the conclusion of
each test, marked with the appropriate identification number, noted in
the Master Data Log, and filed in a data test package (in accordance
with the data management procedures described in the Test Plan).
CONTINUOUS MEASUREMENT SYSTEM
The MITRE continuous measurement system consisted of a number of gas
sensors, velocity, pressure, and temperature transducers, a sample
handling system to condense water vapor, strip chart recorders, and
digital tape printers, and the necessary filters, probes, heated lines,
and valves to control the flow of flue gases to the sensors. The system
was designed to clean sampling line filters on a periodic basis by
"blowback" with pressurized air; and to maintain calibration of the
13
-------
sensors by the periodic introduction of known concentrations of test
gases into the system.
The continuous measurement system was constructed in two major sections,
each section separately contained in a shed enclosure for environmental
protection. The first section of the system was located at the econo-
mizer of the steam generator (measurement location 1). This portion
of the system consisted of a water vapor condenser, a sulfur dioxide
analyzer, an oxygen analyzer, and a velocity measurement system with
strip chart output. A temperature monitoring system with a digital
output was also located at this position. The second section of the
continuous measurement system was located in a shed mounted on the
roof of the steam generator building at a position opposite the mid-
point of the stack. At this location, the system included a water vapor
condenser, a sulfur dioxide analyzer, an analyzer for nitrogen dioxide
and nitrogen oxide, a carbon dioxide analyzer, a carbon monoxide analyzer,
a hydrocarbon analyzer, an oxygen analyzer, and a velocity measurement
system with strip chart output. The system at this location also
included a particulate monitoring system with digital output.
MANUAL MEASUREMENTS
Manual measurements were made during the Baseline Test program by the
MITRE test team and by a stack sampling subcontractor (Midwest Research
Institute).
The measurements by the MITRE test team included the observation and
recording of all major gauge board readings from the steam generator
control room, observation and recording of coal scale readings, measure-
ment of atmospheric pressure, and measurement of moisture content of
air at the forced draft fan inlet to the steam generator. The efforts
of the MITRE test team also included the collection of coal and ash
samples at various points in the steam generator.
The manual measurements by the Midwest Research Institute team included
the collection of gas samples at the economizer (measurement location 1)
and midway in the stack (measurement location 3). Particulate samples
14
-------
were also obtained by the Midwest Research Institute team at the air
heater (measurement location 2) and midway in the stack, Orsat analyzers
of the flue gas at the air heater were also conducted by Midwest Research
Institute.
MEASUREMENT PARAMETERS
The parameters monitored at each of the three measurement locations are
indicated in Table 3. The parameters shown as being monitored by the
continuous measurement system were normally measured on all of the
twenty-one tests. The manual measurements shown in Table 3, in most
cases, were varied for specific tests.
As mentioned previously, the parameters monitored by the MITRE test
team included the observation and recording of all major gauge board
readings from the control room, observation and recording of coal scale
readings, measurement of atmospheric pressure, and measurement of the
moisture content of the air at the forced draft fan inlet to the steam
generator. A listing of these parameters is provided in Table 4.
Information was also obtained from the steam generator control system
in the form of hourly printouts from the control system computer. Key
temperatures, pressures, flow rates, and electrical measurements were
recorded on these data log printouts, as well as several calculated
values (i.e., boiler efficiencies, integrated fuel flows).
MEASUREMENT LOCATIONS
The three locations utilized in the Baseline Measurement included:
location 1 - the flue section between the secondary superheater and
economizer, location 2 - in the inspection window area between the upper
and lower sections of the air preheater ducting, and location 3 - midway
in the stack.
The first of these locations, prior to the economizer, was selected
to provide data at the relatively high temperatures corresponding to
the inlet to a Cat-Ox system designed for installation in new steam
generators. Four ports were in existence at this location. Three
15
-------
TABLE 3
BASELINE MEASUREMENT PARAMETERS (CONTINUOUS AND MANUAL MEASUREMENTS)
LOCATION 1
(PRIOR TO ECONOMIZER)
CONTINUOUS, MEASUREMENT SYSTEM
°2
SO 2
TEMPERATURE, AIR HEATER, AIR IN
TEMPERATURE, AIR HEATER, AIR OUT
TEMPERATURE, AIR HEATER, GAS IN
TEMPERATURE, AIR HEATER, GAS OUT
TEMPERATURE, AIR ENTERING FORCED DRAFT FAN
HUMIDITY, AIR ENTERING FORCED DRAFT FAN
PITOT TUBE AP
STATIC PRESSURE GAS FLOW MEASUREMENT
FLUE GAS TEMPERATURE
MANUAL MEASUREMENTS
S03
S02
NOX
CO
C02
ORSAT 02
ORSAT C02
ORSAT CO
LOCATION 2
(BETWEEN UPPER AND LOWER
TUBES OF AIR HEATER)
(NO CONTINUOUS MEASUREMENT AT THIS LOCATION)
GRAIN LOADING
PARTICULATE SIZE DISTRIBUTION
ELEMENTAL ANALYSIS OF PARTICLES
BOUND CONSTITUENTS ON PARTICLES
PITOT TUBE AP
STATIC PRESSURE
FLUE GAS TEMPERATURE
GAS FLOW MEASUREMENT
-------
TABLE 3 (CONCLUDED)
BASELINE MEASUREMENT PARAMETERS (CONTINUOUS AND MANUAL MEASUREMENTS)
CONTINUOUS MEASUREMENT SYSTEM.
MANUAL MEASUREMENTS
LOCATION 3
(MIDWAY IN STACK)
OTHER LOCATIONS
GAS FLOW MEASUREMENT
PITOT TUBE AP
STATIC PRESSURE
FLUE GAS TEMPERATURE
GRAIN LOADING
so2
N°x
02
HYDROCARBON
CO
CO 2
(NO CONTINUOUS MEASUREMENTS AT OTHER LOCATIONS)
S03
S02
ORSAT 02
ORSAT CO2
ORSAT CO
Hg VAPOR
CO
C02
GRAIN LOADING
PARTICLE SIZE DISTRIBUTION
ELEMENTAL ANALYSIS OF PARTICLES
BOUND CONSTITUENTS ON PARTICLES
PITOT TUBES AP
STATIC PRESSURE
FLUE GAS TEMPERATURE
GAS FLOW MEASUREMENT
PROXIMATE & ULTIMATE ANALYSIS OF COAL
ELEMENTAL ANALYSIS OF COAL
ELEMENTAL ANALYSIS OF BOTTOM ASH
ELEMENTAL ANALYSIS OF AIR HEATER ASH
ELEMENTAL ANALYSIS OF MECHANICAL SEPARATOR ASH
PROXIMATE ANALYSIS OF PYRITE REJECTS
PROXIMATE ANALYSIS OF BOTTOM ASH
PROXIMATE ANALYSIS OF AIR HEATER ASH
PROXIMATE ANALYSIS OF MECHANICAL SEPARATOR ASH
ELEMENTAL ANALYSIS OF PYRITE REJECTS
-------
TABLE 4
BASELINE MEASUREMENT PARAMETERS
(STEAM GENERATOR GAUGE BOARD READINGS)
CONDENSER VACUUM (PSI)
ATM PRESS. AT AIR INTAKE (IN OF H )
O
HUMIDITY AT AIR INTAKE (%)
(INTEGRATOR LOG READINGS)
BOILER STEAM FLOW (LBS./HR.)
BOILER FW FLOW (LBS./HR.)
BEVEL GAS FLOW (LBS./HR.)
SH SPRAY FLOW (4TH FLOOR) (LBS./HR.)
RH SPRAY FLOW (4TH FLOOR) (LBS./HR.)
'A' COAL SCALE (CLICKS)
'B' COAL SCALE (CLICKS)
'C1 COAL SCALE (CLICKS)
'D' COAL SCALE (CLICKS)
(GAUGE BOARD READINGS)
(UTILITIES SECTION)
CONDENSER PRESSURE (IN OF Hg)
(FEEDWATER & STEAM SECTION)
DRUM PRESS (PSI)
D.C. HEATER PRESS (PSI)
4A BFP DISCH (PSI)
4B BFP DISCH (PSI)
BLR FEED HDR (PSI)
FW FLOW TO BLR (LBS./HR.)
MAINSTREAM TEMP (°F)
THROTTLE PRESSURE (PSI)
HOT REHT TEMP. (°F)
COLD REHT TEMP. (°F)
4A RH SPRAY VALVE (%)
4B RH SPRAY VALVE (%)
BURNER TILT (%)
4A SH SPRAY VALVE (%)
4B SH SPRAY VALVE (%)
AIR & FUEL SECTION
4A FD FAN DISCH. (IN OF H20)
4B FD FAN DISCH. (IN OF
FURN. DRAFT (IN OF H20)
RHTR. OUTLET (IN OF 1^0)
SUPHTR OUTLET (IN OF H20)
ECON. OUT (IN OF H20)
18
-------
TABLE 4 (CONCLUDED)
BASELINE MEASUREMENT PARAMETERS
(STEAM GENERATOR GAUGE BOARD READINGS)
4A AIR HEATER OUT (IN OF H20)
4B AIR HEATER OUT (IN OF H20)
4A DUST COL. OUT (IN OF H20)
4B DUST COL. OUT (IN OF H20)
STACK INLET (IN OF H20)
FLUE GAS 02 (%)
STEAM FLOW (LBS./HR.)
AIR FLOW (LBS./HR.)
UNIT GROSS GEN. (MW)
AH 4A GAS OUT (°F)
AH 4B GAS OUT (°F)
4A MILL (AMPS)
4B MILL (AMPS)
4C MILL (AMPS)
4D MILL (AMPS)
4A ID FAN (AMPS)
4B ID FAN (AMPS)
4A FD FAN (AMPS)
4B FD FAN (AMPS)
4A MILL FEEDER (%)
4B MILL FEEDER (%)
4C MILL FEEDER (%)
4D MILL FEEDER (%)
GAS VALVE (%)
4A ID FAN SPEED (RPM)
4B ID FAN SPEED (RPM)
4A ID FAN DAMPER (%)
4B ID FAN DAMPER (%)
4A FD FAN SHTOFF DAMP. (%)
4B FD FAN SHTOFF DAMP. (%)
4A FD FAN VANES (%)
4B FD FAN VANES (%)
FUEL AIR RATIO SET PT. (%)
19
-------
additional ports were constructed to bring the total to seven ports at
this location. Four measurement points were selected for each port so
as to provide the proper number and distribution of measurement points
in accordance with ASTM Standard D2928-71. "Standard Method for Sampling
Stacks for Particulate Matter." The numbers assigned to the ports and
points at location 1 and the associated dimensions are shown in Figure 1.
Location 2, between the upper and lower sections of the air preheater,
was selected as representative of a lower temperature condition prior to
any existing or planned flue gas treatment system. This location was
selected as the best available point prior to the mechanical collector
for the measurement of particulate. The ports and sampling points for
this location are shown in Figure 2. At location 2 there are two iden-
tical ducts, only one of which is shown in Figure 2. The twenty sampling
points which are shown directly in the line with the ports were reached
with a seventeen-foot sampling probe. The twenty sampling points which
are not directly in line with the ports were reached by an "offset" mod-
ification attached to the seventeen-foot probe.
Location 3, approximately 135 feet above the foundation of the 250-foot
stack, was selected to provide a condition representative of the flue
gas emitted to the atmosphere (and, in this instance, conditions which
will be seen at the reheat Cat-Ox/steam generator interface). Access at
this location was achieved by installing a platform around the stack
with a walkway to the adjacent power station roof. Four ports were
installed in the stack at this location as shown in Figure 3. Nine
measurement points were selected for each port to provide the proper
number and distribution of measurement points consistent with ASTM
Standard D2928-71.
MANUAL SAMPLING SCHEDULE
Table 5 provides a summary of the test conditions followed in the
Baseline Measurement program. Table 5 also presents a summary of the
schedule followed in obtaining manual samples at the three measurement
locations.
20
-------
-32' 4"-
4%'
POINT
POINT
POINT
— —
POINT
1
4
._
T H
3
• •
T 1~
2
1
•
PORT 1 | PORT 2
X*"
~-
•
.
•
I
I
I *
' I
I
I •
I
I
1
1
I
1 .
-1 +-_
|
•
i i _*.
i INSULATION *"
1
1
1
1
m
I
i 1 _
H 1
.
•
1
1
1
-4--—-L-
i
1
1
.
•
16'
_ —
PORT 3 | PORT 4 PORT 5 PORT 6 J PORT 7
I |
— — 6" !
I
1
|
i
i
. r\
! 1 1
i t
L _L
3y2"
1
15'
W
I
.4-4'
— 3'8"
-3'8" —
4'4"
-3'8"
EXISTING PORTS
ADDITIONAL
PORTS
-4'4"
0 5
I i I i j i
SCALE IN FEET
FIGURE 1
CROSS SECTION OF DUCT AT LOCATION 1, PRIOR TO ECONOMIZER,
SHOWING MEASUREMENT POINTS
-------
r 8.5
- 33' 7.5"-
5'3'
'PORT
INSULATION
0 5
I I I I | I
SCALE IN FEET
FIGURE 2
CROSS SECTION OF DUCT AT LOCATION 2, IN AIR PREHEATER,
SHOWING MEASUREMENT POINTS
-------
POWER
PLANT
BUILDING
• j>OI NT 1
•_POINT 2-
• POWT 3
» rum i / -\ v
• POTNT 8 \ \ ^ \ \
— x '
PORT 2
FIGURE 3
CROSS SECTION OF DUCT"AT POINT 3, IN STACK,
SHOWING MEASUREMENT POINTS
23
-------
-------
As noted in Table 5, emphasis was placed on the measurement of S0_, NO ,
^ X
CO, and CO- concentrations, and in the determination of mass loading.
These measurements were originally scheduled for all twenty-one tests
for correlation against the measurements obtained from the continuous
measurement instrumentation system. The gas measurements were subse-
quently rescheduled as shown in Table 5 so as to provide the maximum
coverage of test conditions with the resources allocated for the program.
Mass loading samples were obtained for all of the tests, since it was
anticipated that the portion of the continuous measurement system that
measured this parameter (3-tape sampling) would not be operable early
in the test schedule.
Particle size distributions were originally scheduled for each fuel
type (A, B, C, and D) with an extra sample scheduled for fuel type A.
However, difficulties were encountered on the B fuel test (test No. 6)
and an insufficient sample was obtained for the measurement.
Elemental analysis of the fly ash was scheduled for each of the fuel
types with extra samples scheduled for two 50 MW tests (test 17 and
test 19) to note any possible effect from soot blowing.
Bound constituents were determined (both by photoelectron spectroscopy
and chemical analysis) for tests representing the four fuel types, with
an extra sample scheduled for fuel type A.
Ultimate and proximate analysis of coal was scheduled for all of the
twenty-one tests, since these results were required for the calculation
of efficiencies and for other material balances.
Analyses of the ash at the various locations within the steam generator
system were scheduled as shown in Table 5 so as to provde a maximum of
information on a materials balance within the system.
MANAGEMENT OF DATA
The data management system used during the Baseline Measurement test
included a uniform labeling system for all data samples, and log sheets
forwarded from the test site.
27
-------
The purpose of the labeling system was to provide full and manageable
control of all data. Fourteen items were specified to be included on
the label; however, not all data, samples, or logs required all the items
The fourteen items included:
1. Label ID: XXYYZZ
(Where XX = type sample, i.e., CS = coal sample, PA = pit
ash sample, etc.; XY = test number, and ZZ = consecutive
sample number)
2. Parameters Measured
3. Date: (Day/Month/Year)
4. Location
5. Port of Measurement
6. Depth of Probe (inches)
7. Time of Samples (Time Range for Strip Charts)
8. Names of Data Collector
9. Name of I.P. Shift Supervisor
10. Fuel Type (A, B, C, or D)
11. Load Factor (MW)
12. Excess Air Ratio (Normal, Max, or Min)
13. Soot Blowers (Yes or No)
14. Burner Angle (Normal, Max, Min).
In addition to the uniform labeling system, a data management log was
used to verify the location and status of the various data packages.
This log, which served as the primary control log for all data packages,
was completed by a member of the MITRE test team at the completion of
each day's test run. The log included the following major entries:
1. Test Number and Date
2. Expected Variables
3. Coal and Refuse Sampling
4. Temperature Monitoring
5. Continuous Flue Gas Monitoring
6. Manual Flue Gas Sampling
28
-------
7. Operating Conditions
8. On-Site Calculations Performed
9. Personnel
10. Test Director Notes.
A full description of the complete data management log is provided in
Appendix II.
After the log sheet was completed for the test run, it was shipped along
with the continuous measurement data to the MITRE Washington facility.
The log sheet was then maintained in a MITRE control log in which MITRE
personnel noted the receipt and condition of the other data packages
associated with that day's test run.
After the data were received and logged at the MITRE Washington facility,
they were then stored in a central archive with controlled access.
These data were stored in labeled fiberboard file boxes (one box per
test day) under the custody and control of the MITRE Task Leader.
29
-------
SECTION IV
DATA PROCESSING
This section describes the procedures followed by the MITRE test team
in processing the data output from the continuous measurement system,
steam generator operating data, and data obtained from the manual
measurements made by the Midwest Research Institute. Information is
also provided in this section on the data reduction system developed
for MITRE's IBM 360/50 computer, and on the structure and contents of
the data base as used for baseline test calculations.
CONTINUOUSLY MEASURED DATA
The data output from MITRE's continuous measurement system consisted of
strip chart outputs from the sulfur dioxide analyzer at the economizer,
the oxygen analyzer at the economizer, the economizer velocity measure-
ment system, the sulfur dioxide analyzer at the stack, the stack analyzer
for nitrogen dioxide and nitrogen oxide, the carbon dioxide analyzer at
the stack, the carbon monoxide analyzer at the stack, the stack hydro-
carbon analyzer, the oxygen analyzer at the stack, and the stack velocity
measurement system. The continuous measurement system data output also
included the digital tape output from the temperature monitoring system
at the economizer, and strip chart output from a continuous recording
barometer.
Data from the strip charts were transcribed at hourly intervals based on
a visual averaging of the data over a one-hour period. If gaps in the
chart prevented transcription for a particular hour, the average value
for the test was substituted. Since the instruments were calibrated
prior to each test and were adjusted during the test as required, the
transcribed values needed only to be corrected for zero level offset.
The transcription process was straightforward for all gases except NO .
X
Here, the analyzer provided both NO- and NO + NO- values. The NO- data,
being within instrumental noise, were assumed to be zero and the NO + NO-
data were transcribed as NO only.
31
-------
STEAM GENERATOR OPERATING DATA
The steam generator operating data recorded for the Baseline Test
included all major gaugeboard readings, coal scale readings, atmospheric
pressure, and moisture content of the air at the inlet to the forced
draft fan as recorded manually on the operating conditions log sheet.
These data were recorded at approximately hourly intervals throughout
the duration of the test. Additional data in the form of key temper-
atures, pressures, and flow rates were also obtained on an hourly basis
in the form of printouts from the control system computer. No further
transcription was required of the steam generator operating data beyond
the original log sheet entries and the printouts, with the exception of
the fuel consumption rates.
The total coal consumption was obtained from the integrator dial on the
coal scales which indicated the number of 400-pound units supplied. To
obtain the consumption rate the dial reading at the beginning of a test
was subtracted from that at the end of the test, multiplied by 400, and
divided by the time interval. Consumption rates were computed for each
of the four coal scales and added to obtain the total coal consumption
rate for the test.
The gas consumption rate was computed in a similar manner. Integrator
4
meter values indicating 10 cubic foot units were used to calculate
an average value for the test. Gas pressure and temperature test
averages were also computed.
MANUAL MEASUREMENTS
Data obtained by the Midwest Research Institute as part of their manual
measurement program were entered directly on series of MRI field test
forms. Copies of these completed field test forms were forwarded to
MITRE; however, no further transcription of the data was performed by
MITRE. The data on the field test results were utilized along with the
analytical laboratory results to provide the required information on
grain loadings, gas concentrations, particulate mass flows, and gas
mass flows. All calculations required to provide this information
32
-------
were performed by the Midwest Research Institute using standard com-
putational procedures.
Data sheets reporting the results of analysis of natural gas samples
(as analyzed by MRI and the Illinois Geological Survey) were also
received at MITRE and utilized without further transcription.
DATA REDUCTION SYSTEM
As an aid to the analysis of baseline test results, a data reduction
system was developed for the IBM 360/50 computer at the MITRE/Washington
facility. The following discussion describes the structure of this
system and gives an inventory of the data base contents.
Data Reduction System Structure
The data reduction system consists of a data base of measurement values
and a PL/1 computer program. The data base, although large in terms
of manual processing, is relatively small from a computer standpoint
and does not require any specialized storage techniques or access
methods. It consists of unit records (i.e., card or card images on tape)
accessed in a conventional sequential fashion. Each record consists
of measurements of a single type identified in the following manner:
1. Type of Data
1 - Coal Composition
2 - Gas Composition
3 - Flue Gas Composition
4 - Refuse Characteristics
5 - Fuel Composition
6 - Air Heater Temperature
7 - Ambient Conditions
8 - Electrical Power
9 - Operating Conditions
A - Miscellaneous Constants
B - Flow Characteristics
C - Duct Characteristics
33
-------
2. Test Number
3. Date
4. Time
5. Location (does not apply to some data types)
1 - Economizer
2 - Air Heater
3 - Stack
6. Measurement Method (does not apply to some data types)
0 - Manual
X - Manual (Orsat)
1 - Continuous (MITRE Instrumentation)
2 - Continuous (IPC automatic data log)
The basic record format is given in Table 6. Detailed formats for each
data type are given in Tables 7 through 18.
The computer program to process the data has been designed as a main
program "shell" into which modules for the individual calculations can
be inserted. This main program reads the system control cards and
accesses individual records in the data base. Each module selects the
specific data values that are required for its calculations, performs
these calculations, and prints the results. If some of the required
data items cannot be found, the module will omit those calculations
which depend upon the missing items, but will perform the remainder of
its calculations. In addition, data items of a single type which have
the same test number, time, and data may reside on physically separate
records as long as they are placed in the proper columns. This flex-
ibility simplifies data transcription since measurements which should
reside in the same record may not be available at the same time or
recorded on the same source document. The modules being implemented are
as follows:
1. Efficiency Calculation
2. Excess Air Calculation
3. Volume and Mass Flow Calculations for Flue Gases
Table 19 summarizes the characteristics of these modules.
34
-------
TABLE 6
BASIC RECORD FORMAT
COLUMNS DESCRIPTION
Type of Data
Test Number
Date
Day
Month
Year
Time (24-hour clock)
Location
Measurement Method
Measurement Values
35
-------
TABLE 7
COAL COMPOSITION RECORD FORMAT
COLUMNS DESCRIPTION
1 "1"
2-9 Identification (Test Number and Date)
10 - 15 Unused
16 - 20 Ash Fraction
21 - 25 Carbon Fraction
26 - 30 Hydrogen Fraction
31 - 35 Nitrogen Fraction
36 - 40 Sulfur Fraction
41 - 45 Moisture Fraction
46 - 50 Heat Content (BTU/lb.)
36
-------
TABLE 8
GAS COMPOSITION RECORD FORMAT
COLUMNS DESCRIPTION
1 "2"
2-9 Identification (Test Number and Date)
10 - 15 Unused
16 - 20 Unused
21 - 25 Carbon Fraction
26 - 30 Hydrogen Fraction
31 - 35 Nitrogen Fraction
36 - 40 Sulfur Fraction
41 - 45 Unused
46 - 50 Heat Content (BTU/lb.)
51 - 56 Specific Gravity
37
-------
TABLE 9
FLUE GAS COMPOSITION RECORD
COLUMNS DESCRIPTION
1 "3"
2-15 Identification (Test Number, Date,
Time, Location, Method)
16 - 20 CO Fraction*
21 - 25 02 Fraction*
26 - 30 CO Fraction*
31 - 35 N2 Fraction*
36 - 40 SO- Fraction*
41 - 45 Hydrocarbon Fraction*
46 - 50 Hydrocarbon Molecular Weight
51 - 55 Hydrocarbon Heating Value (BTU/ft3)
56 - 60 NO Fraction*
61 - 65 N02 Fraction*
* A fraction value >1 implies that the units are ppm.
38
-------
TABLE 10
REFUSE CHARACTERISTICS RECORD FORMAT
COLUMNS DESCRIPTION
1 "4"
2-9 Identification (Test Number, Date)
10 - 15 Unused
16 - 20 Pit Ash Heating Value (BTU/lb.)
21 - 25 Fly Ash Heating Value (BTU/lb.)
26 - 30 Flue Gas Particulate Mass Flow Rate
(Ib./hr.)
39
-------
TABLE 11
FUEL CONSUMPTION RECORD FORMAT
COLUMNS DESCRIPTION
1 "5"
2-13 Identification (Test Number, Date,
Time)
14 - 15 Unused
16 - 20 Coal Consumption Rate (Ib/hr.) x 10~
21 - 25 Fuel Air Mixture Temperature (°F)
26 - 30 Gas Flow Rate (ft3/hr. x 10~3)
2
31 - 35 Gas Pressure (Ib/in )
36 - 40 Gas Temperature (°F)
40
-------
TABLE 12
AIR HEATER TEMPERATURE RECORD FORMAT
COLUMNS DESCRIPTION
1 "6"
2-13 Identification (Test Number, Date,
Time)
14 - 15 Unused
16 - 20 Air Heater Entering Air Temperature
(°F)
21 - 25 Air Heater Exit Gas Temperature (°F)
41
-------
TABLE 13
AMBIENT CONDITIONS RECORD FORMAT
COLUMNS DESCRIPTION
1 "7"
2-13 Identification (Test Number, Date,
.Time)
14 Unused
15 Identification (Method)
16 - 20 Ambient Temperature at Forced Draft
Fan (°F)
21 - 25 Relative Humidity Fraction at Forced
Draft Fan
26 - 30 Ambient Pressure at Forced Draft
Fan (inches Hg.)
42
-------
TABLE 14
ELECTRICAL POWER RECORD FORMAT
COLUMNS DESCRIPTION
1 "8"
2-13 Identification (Test Number, Date,
Time)
14 - 15 .Unused
16 - 20 Pulverizer No. 1 Current (amperes)
21 - 25 Pulverizer No. 2 Current (amperes)
26 - 30 Pulverizer No. 3 Current (amperes)
31 - 35 Pulverizer No. 4 Current (amperes)
36 - 40 Forced Draft Fan No. 1 Current
(amperes)
41 - 45 Forced Draft Fan No. 2 Current
(amperes)
46-50 I. D. Fan No. 1 Current (amperes)
51-55 I. D. Fan No. 2 Current (amperes)
43
-------
TABLE 15
OPERATING CONDITIONS RECORD FORMAT
COLUMNS DESCRIPTION
1 "9"
2-13 Identification (Test Number, Date,
Time)
14 - 15 Unused
16 - 20 Steam Flow (Ib./hr. x 10~3)
-------
TABLE 16
MISCELLANEOUS CONSTANTS RECORD FORMAT
COLUMNS DESCRIPTION
1 "A"
2-9 Identification (Test Number, Date)
10 - 15 Unused
16 - 20 Air Heater Leakage Fraction
45
-------
TABLE 17
FLOW CHAEACTERISTICS RECORD FORMAT
COLUMNS DESCRIPTION
1 "B"
2-15 .Identification (Test Number, Date,
Time, Location, Method)
16 - 20 Flue Gas Temperature (°F)
21 - 25 Duct Static Pressure (inches H20)
26 - 30 Flue Gas Velocity (ft/min.)
46
-------
TABLE 18
DUCT CHARACTERISTICS RECORD FORMAT
COLUMNS .DESCRIPTION
1 "C"
2-13 Unused
14 Identification (Location)
15 Unused
16 - 20 Area (ft2)
47
-------
TABLE 19
COMPUTATION MODULES
NAME OF MODULE
EFFICIENCY
EXCESS AIR
FLOW
REQUIRED DATA BASE RECORDS
1, 2, 3, 4, 5, 6, 7, 8, 9, A
3, 1, B, C,
PRINTED OUTPUT
Net Efficiency
Gross Efficiency
Electrical Power Inputs
Individual Losses
Radiation Loss
Excess Air Percentage
For Each Flue Gas Constituent:
Volume Flow (Actual)
Volume Flow (Standard Conditions)
Mass Flow
-------
Contents of the Data Base
The previous discussion of the data reduction system described the data
base with respect to its format and data storage capabilities. The
following discussion will describe the data base as it was actually used
for baseline test calculations. An inventory of all information contained
in the present version of the data base is given, together with an indi-
cation of the data selected for the final computations. The data base
itself is reproduced in Appendix C.
1. Coal Composition
The data base contains the as-received ash, carbon, hydrogen,
nitrogen, sulfur, moisture and heat value of the coal for all
21 tests as analyzed by Midwest Research Institute.
2. Gas Composition
For the three tests which used natural gas the data base
contains the as-received carbon, hydrogen, nitrogen, sulfur
and heat value of the gas as well as specific gravity.
3. Flue Gas Composition
Table 20 is an inventory of the flue gas measurements by
location, measurement type and gas constituent. It also
indicates which measurements were used in the final calcula-
tions. The manual and Orsat measurements consisted of a single
test value or, in some cases, the average of two values. The
continuous measurements consisted of hourly average values
transcribed from MITRE strip charts. The column entries which
appear on Table 20 and on Table 21 and 22 which are capital
letters (C, M, and 0) indicate whether, for these particular
gases and at these locations, continuous, manual, or Orsat
analysis results were used in the computations. Conversely,
a lower case entry (c, m, and o) indicates where the data could
not be used in the computation (incidences where data were
suspect, or lacking because of equipment failure).
49
-------
FLUE GAS DATA
TABLE 20
INVENTORY FOR LOCATIONS 1, 2, AND 3
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
LOCATION 1
°2
M C 0
C
C
C
C
C
C
C
C
C
C o
C
C
C
C
C
C
C o
C
C
C
C
co2
M C 0
H
M
M
M
M
M
M
M
M o
M
M
M
M
M
M
M o
M
so2
M C 0
C
C
m C
Ei C
m C
in C
ra C
in C
m C
n C
n C
ra C
El C
in C
ta C
m C
m C
El C
C
C
C
LOCATION 2
°2
M C 0
o
o
o
o
0
0
o
o
o
o
o
o
o
o
o
o
o
o
0
o
co2
M C 0
o
o
o
o
o
o
o
o
o
o
0
o
o
o
o
o
o
o
o
o
°2
M C 0
0
0
0
0
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
LOCATION 3
co2
M C 0
m 0
a 0
m 0
m 0
m C o
m C o
m C o
m C o
a C o
n C o
m C o
m C o
n C o
El C O
n C o
13 C O
m C o
m C o
C o
C o
C o
so2
M C 0
M
ci C
n C
m C
El C
m C
m C
m C
n C
El C
El C
ra C
m C
C
m C
m C
C
C
NO
M C 0
M
M
M
M
m C
C! C
El C
m C
a C
m C
m C
El C
El C
m C
m C
m C
M
n C
C
C
C
DATA USED IN COMPUTATION OF
EFFICIENCY, VOLUME FLOW, AND
MASS FLOW
C - CONTINUOUS (MITRE)
M - MANUAL
0 - ORSAT
DATA NOT USED
IN COMPUTATIONS
in - MANUAL
o - ORSAT
50
-------
4. Fuel Consumption
The data base contains the coal consumption rate, the fuel air
mixture temperature (assumed fixed at 150°F) and the natural gas
volume flow rates, pressures, and temperatures. These measurements
were obtained from Illinois Power continuous monitoring instru-
ments. Average values for each test were inserted into the
data base.
5. Air Heater Temperatures
Air input and gas output temperatures in the air heater were obtained
on an hourly basis from both the Illinois Power automatic data
log and the MITRE continuous measurements recorded on digital
tape. Table 21 is an inventory of these measurements which
indicates the data used in the computations.
6. Ambient Conditions
The data base contains the average ambient temperature, relative
humidity and barometric pressure for each of the 21 tests. These
values were obtained from a dry bulb thermometer, a sling psy-
chrometer, and a mercury column barometer, respectively. The
measurements were made near the forced draft fan inlet.
7. Electrical Currents
The pulverizer, forced draft fan and ID fan electrical current
consumptions were recorded from the Illinois Power continuous
monitoring instruments. The data base contains average values
for these currents for each of the 21 tests.
8. Steam Flow
For each test an average steam flow was obtained from the
Illinois Power continuous monitoring instruments.
9. Air Heater Leakage
A constant value of 10% was used as suggested by Illinois Power.
10. Flue Gas Flow Rates
Table 22 is an inventory of flue gas temperatures, static
pressures and velocities for each loaction. The continuous
measurements were taken from MITRE strip charts. An average
51
-------
TABLE 21
AIR HEATER TEMPERATURE
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
AIR
INPUT
C D
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
INVENTORY
GAS
OUTPUT
C D
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
Data used in computation
of efficiency:
C - Continuous (MITRE)
D - Automatic Data Log
Data not used
in computations:
d - Automatic Data Log
52
-------
TABLE 22
FLUE GAS FLOW RATE INVENTORY
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
LOCATION 1
TEMP.
C M A
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PRESS.
C M A
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
VELOCITY
C M A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
LOCATION 2
TEMP.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
PRESS.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
VELOCITY
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
LOCATION 3
TEMP.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
PRESS. 1 VELOCITY
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
DATA USED IN COMPUTATION
OF GAS FLOWS
C - CONTINUOUS (MITRE)
M - MANUAL
A - ARTIFICIAL (COMPUTED FROM ANOTHER LOCATION)
53
-------
test value was used. The manual measurements were taken once
per day by Midwest Research Institute and represent an average
value across the duct. It should be noted that the Location 1
velocities were calculated from the manual Location 2 velocities
according to the following equation.
Vol1+L
\ /P i
_ = (12460_
1,2 i i \TI 29.927 A2 2 \TZ 29.92/
l/\ 2/ 1,2
where
Vol. - location i volume flow
i
L. . - leakage from location i to location j
i»J
A. - location i area
i
V. - location i velocity
P, - location i pressure
T. - location i temperature
F. . - leakage fraction from location i to j
1 >J
54
-------
9. Duct Area
The data base contains average areas for the flue gas ducts
at locations 1, 2, and 3.
55
-------
SECTION V
ANALYSIS OF DATA
This section describes the computational procedures utilized in the
analysis of test results. Tabular displays of test results are presented
for net and gross efficiency varying load level and excess air; gas mass
flow and gas volume flow varying load level and excess air; and gas mass
flow and gas volume flow varying load level and fuel type (excess air
fixed). Results are also presented for an overall sulfur balance, for
grain loading varying load level and soot blowing (fixed fuel type) ,
comparison of continuous measurement results with manual measurements
and with theoretical values, and for grain loading varying load level
and fuel type.
NET AND GROSS EFFICIENCY AS A VARYING LOAD LEVEL AND EXCESS AIR
Computational Procedures
Net and gross efficiencies were computed for all of the 21 tests in the
Baseline Measurement Program.
The efficiency calculations performed were basically those of the ASME
publication PTC 4.1 using the heat loss method. Adjustments have been
made, where required, based on the Illinois Power Company's computer
performance calculations.
The efficiency factor (n) is given by the following equations:
ng = l- H-TTTT- '015-R
& fuel el
H. 1+B1
fuel el
n = gross efficiency factor
o
TI = net efficiency factor
L = heat losses (BTU/lb, as-fired fuel)
Hfuel = heatin8 value (BTU/lb, as-fired fuel)
57
-------
B . = electrical power consumed within system envelope
(BTU/lb, as-fired fuel)
B „ = electrical power consumed outside system envelope
(BTU/lb,as-fired fuel)
R = radiation loss
'The heat losses come from a variety of sources. The major ones are
indicated in the following equation.
L *
L = heat loss due to unburned carbon in refuse
L = heat loss due to formation of carbon monoxide
L, = heat loss due to sensible heat in flue dust
d
L., = heat loss due to heat in dry flue gas
= heat loss due to unburned hydrocarbons
L , = heat loss due to moisture in the air
mA
L _ = heat loss due to moisture in the fuel
mf
Iv. = heat loss due to moisture from burning of hydrogen
The major sources of electrical power consumption are indicated by the
following equations.
Bel = (BP1 + BP2 + BP3
Be2 = BFl+BF2+BIl+BI2+BS+Bw
Bp1 = electric power consumption of pulverizer No. 1
Bp_ = electric power consumption of pulverizer No. 2
Bp~ = electric power consumption of pulverizer No. 3
B . = electric power consumption of pulverizer No. 4
B_, = electric power consumption of F.D. fan 1
Fl
B.p9 = electric power consumption of F.D. fan 2
BT1 = electric power consumption of I.D. fan 1
58
-------
B = electric power consumption of I.D. fan 2
B = electric power consumption of ash sluice pump
o
B = electric power consumption of service water pump
w
R = pyrite rejection fraction
Heat Losses -
Wd Ashf
Luc = wj Hfly+I^7 Vt
CO
L
co co
g
LUC
Cb Cf 14500
Ld
t_ = t + FT (t - t )
G g L g a
0.24 x W_ (t - t )
LJ lj 3
4- rn 1 -i
•* r\ ' ~j ^~^~(. o ' *- ^ v1*1 n iwwy r~ i
WG = * 12(CO' + CO )^ *- K + Sf/2'67J
2g g
UHC W_
L - %-^
UHC W
g
CO,, 00 CO + Nn_ S0_ UHC
o
w - 2g "2g -g "2g a
g 8.76 12.04 13.75 6.01 385.29
59
-------
L . = w , W. (h_. - h_w)
mA mA A V RV
2.33 N0
2g
CO + C00
S 2g
'Cb + Sf
2.67
-Nf
0.7685
= Mf (1048-tfA+.48tG)
= 8.936 Hf (1048 -
W, = flue gas particulate mass flow rate (Ib/hr)
Wf = coal consumption rate (Ib/hr)
Hfl = heating value for fly ash (BTU/lb)
= heating value for pit ash (BTU/lb)
, = Ib ash per Ib fuel
Cf = Ib carbon per Ib fuel
Sf = Ib sulfur per Ib fuel
Hf = Ib hydrogen per Ib fuel
Mf = Ib water per Ib fuel
Nf = Ib nitrogen per Ib fuel
C, = Ib carbon burned per Ib fuel
3 3
C09 = ft carbon monoxide per ft dry flue gas
8 3 3
Oj = ft oxygen per ft dry flue gas
^ o
CO = ft carbon monoxide per ft dry flue gas
g 3 3
S0_ = ft sulfur dioxide per ft dry flue gas
^3 3
UHC = ft unburned hydrocarbons per ft dry flue gas
g 3
= BTU/ft of hydrocarbons
3 3
N? = ft nitrogen per ft dry flue gas (by difference)
= molecular weight of hydrocarbons
= corrected air heater exit gas temperature (°F)
t = air heater exit gas temperature (°F)
&
t,.. = fuel, air mixture temperature (°F)
X £*.
t = air heater entering air temperature (°F)
3.
60
-------
W = Ib dry flue gas per Ib fuel
G
W = flue gas specific weight
g
W = Ib water vapor per Ib dry air
mA
W. = Ib dry air supplied per Ib fuel
n.
F = Ib air leakage per Ib air to heater
J_i
hTT = enthalpy of vapor at t
V G
hpu = enthalpy of vapor at partial pressure corresponding to ambient
temperature and relative humidity
Electrical Power Consumption -
•a - 5.911 x Volt x Amp x PF
Volt = voltage (volts)
Amp = current (amperes)
PF = power factor fraction
Wf = coal consumption rate (Ib/hr)
Dual Fuel Operation - When natural gas is burned along with coal,
corrections must be applied to fuel composition values to convert natural
gas to an equivalent amount of coal.
W
V
c W + W
c g
C, = V (C - C ) + C
f c c g' g
S. = V (S - S ) -t- S
f c c g' g
p = V (H - H ) + H
f cx c g' g
p = V (N - N ) + N
f cv c g' g
p = V M
f c c
p n V (H , - H ) + H
fuel = c coal gas gas
61
-------
f = subscript for adjusted fuel values
c = coal
g = natural gas
W = coal consumption rate (Ib/hr)
W = gas consumption rate (Ib/hr)
O
C,S,H,N,M = coal composition as defined previously
Hfuel = adJusted fuel heating value (BTU/lb)
Hcoal = coal heatin§ value (BTU/lb)
H«oo = natural gas heating value (BTU/lb)
gas
Analysis and Interpretation of Results
As noted from Table 23 the average net efficiency for the tests performed
at the 100 MW load level and with A type fuel (Tests 11, 9, 8, 12, and 7)
is 88.5%. The average gross efficiency for these same tests is 88.4%.
The average net efficiency for the tests performed at the 75 MW load
level and with A type fuel (Tests 4, 2, and 3) is 90.9%. The average
gross efficiency for these same tests is 90.8%.
The average net efficiency for the tests performed at the 50 MW load level
and with A type fuel (Tests 17, 19, 14, and 15) is 89.5%. The average
gross efficiency for these same tests is 89.4%.
As expected from the computational procedures, gross efficiencies are
always equal to or less than net efficiences for the same test.
The averaged net and gross efficiencies for the three load levels do show
higher values at the 75MW load level when compared to the average values
at the 100 MW and 50 MW load level. However, these differences are not
of a magnitude to be significant.
A comparison of the average net and gross efficiencies for 100 MW A fuel
tests with the 100 MW B fuel test and the 100 MW C fuel test shows no
significant differences.
Similarly, no significant differences are shown between 75 MW A, B, and C
fuel tests and 50 MW A, B, and C fuel tests.
62
-------
TABLE 23
NET AND GROSS EFFICIENCY
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
TI
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
N'O
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
KORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM. NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
NORM.
KORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NET
EFFICIENCY
(%)
87.8
88.6
88.2
88.8
88.9
90.0
89.9
90.7
90.8
90.9
88.8
88.9
88.5
90.8
91.0
90.9
89.0
88.6
88.1
89.9
90.7
GROSS
EFFICIENCY
(%)
87.7
88.6
88.1
88.8
88.9
89.9
89.8
90.6
90.7
90.9
88.7
88.8
88.4
90.7
90.7
90.8
88.9
88.4
88.0
89.8
90.7
* REDUCED LEVEL OF SOOT BLOWING
63
-------
GAS MASS FLOW AND GAS VOLUME FLOW VARYING LOAD LEVEL, EXCESS AIR, AND
FUEL TYPE
Computational Procedures
Gas mass flows and gas volume flows were computed for Location 1
(economizer) for SO-, C02, 0-, N-, and total gases. Mass flows and
volume flows were also computed at Location 3 (midway in stack) for NO,
CO™, 0_, N», and for total gases.
The flow rates for these gases at the two locations were based upon
manual velocity measurements as determined by the Midwest Research
Institute stack sampling team. These velocity measurements were, in
turn, computed by MRI using the following.
/28.S4 29.92
MWC = 44C00 + 320_ + 28N. + 18H00
b i. li L i.
Pstatic * PA - Pstack/13-6
Uc = velocity (ft/min)
O
F = pitot correction factor (.9)
MW = molecular weight of stack gas
O
P . = static duct pressure (in. H )
static r g
T = stack temperature (°R = °F + 460)
AP = stack (pitot) pressure (in. H )
O
2' 2'= flue gas constituents (fraction by volume
N» moisture free)
N = 1 - C00 - 0« - H_0
H_0 = flue gas moisture fraction
P = atmospheric pressure (in. H )
A g
= stack pressure (in. H00)
64
-------
As described in Section IV, manual velocity measurements at Location 2
(air heater) were adjusted with respect to pressure, temperature, duct
area, and duct leakage to provide estimates of velocities at Loaction I
(economizer). This procedure was necessary because the velocity measuring
instrumentation at Location 1 did not function properly for the major
portion of the test program.
Volume flow rates were then calculated at the two locations for each
constituent using the measured velocities by means of the following
formula.
V = AV x Vol
m gas
3
V volume flow (ft /min)
A duct area (ft )
V velocity (ft/Min)
Vol = fraction by volume of gas constituent
gas
(as measured by instrumentation system)
Mas flow rates were also calculated for the various gaseous constituents
for the total gases using the formula:
[v I x MW 7/359 ft3/lb mole)
L mj L gas _\ 7J
3 . I [29.927/460 + 32\1
static] |^ ( )\
_ Sas
460)/P.
,1V IIMW
= .0458
460\/P
static
R = mass flow (Ib/min)
m
MW = molecular weight of gas constituent
gas
65
-------
TABLE 24
FLOW RATES FOR SO AT LOCATION 1
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3 PER
MIN.)
1615.9
1474.7
1615.5
1118.8
1615.4
679.6
491.8
1144.3
196.3
257.0
173.9
990.3
1276.6
673.7
785.9
589.3
738.1
404.4
VOLUME
FLOW
(STAND ART)
FT 3 PER
MIN.)
680.2
619.9
673.8
471.2
630.3
282.4
212.3
474.3
81.8
104.9
75.1
416.6
534.8
305.9
335.2
246.7
313.1
160.7
MASS FLOW
(LB. PER
MIN.)
121.4
110.6
120.2
84.1
112.5
50.4
37.9
84.6
14.6
18.7
13.4
74.3
95.4
54.6
59.8
44.0
55.9
28.7
* REDUCED LEVEL OF SOOT BLOWING
66
-------
TABLE 25
FLOW RATES FOR CO. AT LOCATION 1
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/20/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
KO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)
52,496
49,606
32,095
61,879
41,805
29,212
44,388
31,738
50,692
32,441
58,996
50,973
34,738
32,097
OLUME
LOW
STANDARD
T3 PER
UN.)
22,097
20,690
13,519
24,142
17,374
12,610
18,397
13,226
20,695
14,004
24,821
21,354
15,771
13,689
MASS FLOW
(LB. PER
MIN.)
2,709
2,536
1,657
2,959
2,130
1,546
2,255
1,621
2,537
1,717
3,042
2,617
1,933
1,678
* REDUCED LEVEL OF SOOT BLOWING
67
-------
TABLE 26
FLOW RATES FOR 0, AT LOCATION 1
MITRE
TEST
DATE NUMBER
11/8/71 11
U/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
E
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
tttN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MTN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3" PER
MIN.)
36,456
23,993
23,683
24,176
34,897
19,240
19,274
14,817
12,806
13,537
11,375
20,304
33,311
12,118
24,573
12,632
13,178
23,107
VOLUME
FLOW
/cf iwnipn
I O -I ATHL/rt-IVU
FT3 PER
MIN.)
15,345
10,086
9,878
10,183
13,615
7,996
8,320
6,141
5,337
5,526
4,911
8,542
13,955
5,501
10,480
5,288
5,589
9,181
MASS FLOW
(LB. PER
MIN.)
1,368
899
880
908
1,213
713
742
547
476
493
438
761
1,244
490
934
471
498
818
* REDUCED LEVEL OF SOOT BLOWING
68
-------
TABLE 27
FLOW RATES FOR N2 AT LOCATION 1
(NO FRACTION COUNTED AS N.)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
KIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3
PER MIN.)
638,546
600,010
482,031
710,484
334,532
252,178
435,611
512,065
598,158
324,657
430,498
510,615
275,612
356,697
VOLUME
FLOW
(STANDARD
FT 3 PER
MIN.)
268,778
250,261
203,034
277,195
139,029
108,861
180,539
213,394
244,201
140,152
181,120
213,906
125,127
152,125
MASS
FLOW
(LB. PER
MIN.)
20,968
19,524
15,839
21,625
10,846
8,493
14,084
16,648
19,051
10,934
14,130
16,688
9,762
11,868
* REDUCED LEVEL OF SOOT BLOWING
69
-------
TABLE 28
FLOW RATES FOR ALL GASES AT LOCATION 1
(S02, C02, 02, N2 WITH
NO FRACTION COUNTED AS N.)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
12/8/71 15 i 50
j
12/9/71 22
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SCOT
BLOWER
NO
NO
NO
YES*
YES
NO
SO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
FT3 PER
MIN.)
729,113
646,283
674,916
539,421
808,876
396,257
301,155
495,961
556,805
662,644
368,647
510,788
596,175
323,141
414,153
VOLUME
FLOW
(STANDARD
FT3 PER
MIN.)
306,900
271,668
281,504
227,207
315,582
164,682
130,003
205,551
232,039
270,528
159,142
214,900
249,749
146,705
176,629
MASS FLOW
(LB. PER
MIN.)
25,166
21,598
23,061
18,488
25,910
13,739
10,818
16,971
18,759
22,099
13,101
18,008
20,644
12,240
14,540
* REDUCED LEVEL OF SOOT BLOWING
70
-------
TABLE 29
FLOW RATES FOR NO AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
ran.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)
221.8
151.7
149.7
118.5
115.0
74.4
55.7
102.4
56.6
35.5
26.5
88.8
109.5
62.3
84.8
30.9
38.8
47.1
57.9
TOLUME
FLOW
STANDARD
FTJ PER
*EN.)
142.3
97.5
94.7
75.3
73.3
48.8
37.2
66.5
38.0
23.3
18.2
58.2
72.5
42.1
57.0
21.0
25.2
31.3
36.9
MASS FLOW
(LB. PER
MIN.)
11.9
8.1
7.9
6.3
6.1
4.1
3.1
5.6
3.2
1.9
1.5
4.9
6.1
3.5
4.8
1.8
2.1
2.6
3.1
* REDUCED LEVEL OF SOOT BLOWING
71
-------
TABLE 3 0
FLOW FATES FOR S02 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM,
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT^ PER
MIN.)
554.9
679.3
806.8
608,5
765.7
304.7
219.6
606.1
167.1
192.5
102.0
452.1
586.4
361.2
381.1
259.4
341.1
589.1
VOLUME
FLOW
(STANDARD
FT-5 PER
MIN.)
356.0
436.0
510.2
386.6
488.1
199.9
146.8
393.6
112.1
126.1
70.1
296.5
388.5
243.9
256.2
176.1
221.6
374.9
MASS FLOW
(LB. PER
MIN.)
63.5
77.9
91.0
69.0
87.1
35.7
26.2
70.2
20.0
22.5
12.5
52.9
69.3
43.5
45.7
31.4
39.6
66.9
* REDUCED LEVEL OF SOOT BLOWING
72
-------
TABLE 31
FLOW EATES FOR C02 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOOT
TYPE BLOW
A NO
A NO
A NO
A YES*
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
EXCESS
ER AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT ^ PER
MIN.)
46,737
47,415
53,335
45,041
55,686
27,973
20,501
41,380
32,880
47,093
22,775
36,375
41,285
24,589
26,459
19,297
27,002
25,786
39,472
VOLUME
FLOW
(STANDARD
FT ^ PER
MIN.)
29,281
30,454
33,728
28,611
35,502
18,351
13,705
26,869
22,059
30,837
15,656
23,856
27,350
16,605
17,789
13,102
17,547
17,116
25,120
MASS FLOW
(LB. PER
MIN.)
3,675
3,733
4,134'
3,507
4,352
2,249
1,680
3,293
2,704
3,780
1,919
2,924
3,352
2,035
2,180
1,606
2,151
2,098
3,079
* REDUCED LEVEL OF SOOT BLOWING
73
-------
TABLE 3 2
FLOW RATES FOR 0, AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD FUE
FACTOR TYP
100 A
100 A
100 A
100 A
100 A
75 B
100 B
50 B
35 B
75 A
75 C
100 C
50 C
75 A
75 A
50 A
50 A
35 A
50 A
50 A
75 D
L SOOT
E BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)
29,742
30,965
24,720
22,680
27,238
15,408
13,646
18,067
8,485
21,542
12,721
15,979
25,256
13,498
18,059
11,990
13,501
12,987
16,412
VOLUME
FLOW
(STANDARD
FT^ PER
MIN.)
19,079
19,888
15,632
14,407
17,365
10,108
9,122
11,731
5,693
14,106
8,744
10,479
16,731
9,116
12,142
8,141
8,773
8,620
10,445
MASS FLOW
(LB. PER
MIN.)
1,700
1,773
1,393
1,284
1,548
901
813
1,046
507
1,257
779
934
1,491
812
1,082
726
782
768
931
* REDUCED LEVEL OF SOOT BLOWING
74
-------
TABLE 33
FLOW RATES FOR N2 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE ELO
A NO
A NO
A NO
T EXCESS
HER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
A YES NORM.
A NO
A NO
A NO
A NO
D NO
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT ^ PER
MIN.)
347,624
307,852
316,059
250,990
319,719
162,228
125,742
231,253
223,571
290,170
144,559
206,926
245,528
143,898
165,008
122,802
150,424
148,038
233,098
VOLUME
FLOW
STANDARD
FT-> PER
>HN.)
222,996
197,725
199,870
159,437
203,830
106,427
84,060
150,157
149,993
190,009
99,370
135,709
162,654
97,177
110,937
83,378
97,752
98,260
148,345
MASS FLOW
(LB. PER
MIN.)
17,397
15,425
15,593
12,438
15,902
8,303
6,558
11,714
11,701
14,823
7,752
10,587
12,689
7,581
8,655
6,505
7,626
7,666
11,573
* REDUCED LEVEL OF SOOT BLOWING
75
-------
TABLE 34
FLOW RATES FOR ALL GASES AT LOCATION 3
(NO, S0, C0, 0, & N)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR.
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT 3 PER
MIN.)
424,879
387,063
395,070
319,438
403,524
205,988
160,163
291,409
265,160
359,034
180,184
259,821
312,764
182,408
209,992
154,380
191,306
186,857
289,629
VOLUME
FLOW
(STANDARD
FT ^ PER
MIN.)
272,554
248,601
249,835
202,917
257,258
135,135
107,071
189,217
177,894
235,102
123,858
170,399
207,196
123,184
141,181
104,818
124,319
124,027
184,322
MASS FLOW
(LB. PER
MIN.)
22,848
21,017
21,219
17,305
21,894
11,493
9,080
16,129
14,936
19,885
10,465
14,503
17,608
10,476
11,968
8,869
10,600
10,534
15,653
* REDUCED LEVEL OF SOOT BLOWING
76
-------
Gas
CO
co2
°2
N2
so2
N0£
NO
MW
gas
28.01
44.01
32.00
28.01
64.07
46.01
30.01
t = gas temperature (°F)
P . = see velocity calculation
static J
The results of these calculations are provided in Table 24 through 34.
Where no entries appear on these tables for volume flow and for mass flow,
the computations could not be performed because of insufficient data (due
to either equipment failure or instrument failure).
Analysis and Interpretation of Results
As noted in Table 24, the S02 flow rate at location 1 (stated in terms of
mass flow - Ibs per minute) appears to be consistent with the sulfur
content of the fuel. The average mass flow for three 100 MW A fuel tests
(tests 8, 12, and 7) is 117.4 Ibs/minute. The average sulfur content of
the coal consumed in these three A fuel tests was 3.42% (on "as fired"
dry basis). This average is greater than the 112.5 Ibs per minute recorded
for test 6, a 100 MW B fuel test which consumed fuel with a 2.88% sulfur
content. Both sets of tests in turn showed greater SO™ mass flow than
test 10, a 100 MW C fuel test (simulated 1.08% sulfur fuel). In a similar
comparison, the average S0« flow rate for three 75 MW A fuel tests (tests
4, 2, and 3) is 84.8 Ibs/minute. These three tests utilized coal of 3.32%
average sulfur content. This average was approximately equal to the 75MW
B fuel test (test 1) which utilized coal with an average sulfur content
of 3.29% sulfur. Both the A and B fuel tests showed a greater mass flow
of SO- than the 75 MW C fuel test (test 5) which utilized gas and coal
to simulate a 0.86% sulfur coal. The 75MW D fuel test (test 22) produced
an S0_ mass flow that was higher than expected; however, the analysis of
77
-------
the coal consumed in this test showed it to be of 1.4% sulfur content
rather than the expected .5% sulfur content. The SO- mass flows noted
for this test were therefore consistent with this measured sulfur content.
Similar relationships were found in the 50 MW tests with A, B, and C fuels.
No significant changes in S0_ mass flow were found which were traceable
to changes in the soot blowing cycle or in excess air settings.
Table 25 provides the C0_ flow rate at location 1 for the various tests.
An examination of the mass flow of CCL (in Ibs per minute) shows that for
a fixed fuel type the CO- mass flow decreases with decreasing load levels
(as would be expected with the reduced coal feed rates associated with
the lower loads). Table 25 also illustrates that, for a fixed load level,
the CCL mass flow rates were not significantly different for fuel types
A, B, and C.
Table 26 provides results on the 0- flow rates at location 1. These
results show that the ()„ mass flow rate decreases with decreasing load
level, and for a fixed load level is not significantly different for
fuel types A and B. Tests performed on C type fuel produced CL mass flow
rates which were both greater and lower than the corresponding tests with
A and B fuel dependent upon the load level. The greatest differences
were found between tests with fixed load level and fixed fuel types where
excess air was the parameter varied.
Flow rates for N? mass flow are shown on Table 27. These results show
that the N- mass flow rate decreases with decreasing load level, and for
fixed load levels are not significantly different for fuel types A, B,
and C. For fixed load levels and fixed fuel types, greater N_ mass flow
was found for the maximum excess air test.
The flow rates for all gases shown in Table 28 represent the total of
the previous four tables and, as such, show the same relationships as
the individual gases (i.e., same decrease with decreasing load level and
same increase with increased excess air).
Table 29 provides results on the NO flow rates as measured at location 3.
Tests performed on A type fuel produced NO mass flow rates which were both
78
-------
greater and lower than the corresponding tests with B fuel dependent
upon the load level. However, for all load levels, the NO flow rates
with C fuel (predominantly natural gas) were significantly lower than
the tests performed with A and B fuels.
Table 30 provides the SO- flow rates measured at location 3. The rela-
tionships noted in Table 30 are similar to those noted in Table 24 for
location 1, i.e., for a fixed fuel type the SO- mass flow is reduced for
reduced load levels. Inconsistencies were found in the comparison between
the 100 MW A fuel test (tests 8, 12, and 7) and the 100 MW B fuel test
(test 6). Although the sulfur content was lower for the B fuel, the SO-
mass flow measured on test 6 was greater than the average SO- mass flow
for tests 8, 12, and 7. The results from test 10 did show the lower
levels for SO mass flow expected for a 100 MW C fuel test. The average
SO mass flow rate for the three 75 MW A fuel tests (tests 4, 2, and 3)
is approximately equal to the mass flow for the 75 MW B fuel test (test 1);
however, as was previously noted, the sulfur content of the coal consumed
in these tests was approximately equal. As was true of the measurements
at location 1, the A and B fuel tests performed at the 75 MW load level
produced higher S02 mass flows than measured in the 75 MW C fuel test.
Similar relationships were found in the 50 MW tests with A, B, and C fuels.
The C0_ flow rates measured at location 3 are provided in Table 31. As
shown in Table 31, for fixed fuel types, the C0? mass flow decreases with
decreasing levels. Table 31 also illustrates that for a fixed load level,
the CO- mass flow rates were not significantly different for fuel types
A, B, and C.
Flow rates for 0- at location 3 are provided in Table 32. These results
show that the 0 mass flow rate decreases with decreasing load level
and for a fixed load level is not significantly different for fuel types
A and B. Tests performed with C fuel produced 0? mass flows which were
both greater and lower than the corresponding tests with A and B fuel
dependent upon the load level. Differences were found in 0- mass flow
rate between tests at the 50 MW load level with A fuel where excess air
was varied (tests 19, 14, and 15). Similar differences were not found
for 100 MW A fuel tests where excess air was varied.
79
-------
Flow rates for N2 at location 3, as shown in Table 33, illustrate that
the N mass flow rates decrease with decreasing load levels, and for
fixed load levels are not significantly different for fuel types A, B,
and C. For fixed load levels and fixed fuel types, greater N2 flow was
found for the maximum excess air tests.
The flow rates for all gases shown in Table 34 are based upon the totals
for all measured gases. The same relationships are therefore shown as
for the individual gases (i.e., same decrease in flow rate with decreasing
load level and same increase with increased excess air).
SULFUR BALANCE
Computational Procedures
For each of the tests performed in the baseline program, the average
coal consumption rate was determined utilizing the manual coal scale
readings. The average sulfur content of the coal (as determined by
chemical analysis) was then used with the coal scale readings to deternine
the rate of sulfur feed to the steam generator. Average S0? mass flow
readings from the continuous instrumentation system at the stack were ther
used to determine the average sulfur flow at the stack (where Ibs sulfur/
™ / . molecular weight sulfur n , ,
minute = Ibs S00/minute x — = - - - • u .- co - = Ibs SO /minute x oO).
0 • u .- co
2 molecular weight S0_ 2
The rate of sulfur feed into the steam generator was then compared with
the rate of sulfur flow through the stack.
Analysis and Interpretation of Results
The results of the sulfur balance calculations are summarized in Table
35. These results are based upon measurement of the SO concentration
of the stack gas with the exception of test 15 in which SO concentra-
tions measured at location 1 (economizer) were corrected using estimated •
system leakage values to provide an estimate of SO concentration in
the stack. In all cases, the measurements of SO concentrations do
not include measurement of the sulfur exhausted from the stack as SO
or the sulfur adsorbed on the ash as SO,, and S03> The results provided
in Table 35 show good agreement on the sulfur balance leading to the
conclusion that the total combined error in S02 and gas flow measurements
80
-------
TABLE 35
SULFUR BALANCE
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NO.
11
9
8
12
7
1
6
18
13
It
5
10
20
2
3
17
19
21
14
15
22
LOAD
(MW)
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM
MIN
MAX
NORM
NORM
NORM
NORM
NORM
NORM
MIN
NORM
NORM
NORM
NORM
MAX
NORM
MAX
NORM
NORM
MIN
NORM
BURNER
ANCLE
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
MIN
NORM
NORM
AVERAGE , .
COAL FLOW1'
(103 LB/1IR)
85.0
83.5
63.7
83.9
84.2
64.8
90.1
48.3
32.3
63.2
34.0
46.4
26.0
66.2
65.2
45.4
50.5
32.4
47.0
46.3
63.2
Z SULFUR
IN COAL<2)
3.37
3.40
3.37
3.24
3.28
3.16
2.76
2.57
2.51
3.37
1.83
1.65
1.68
2.87
3.31
3.46
3.47
3.09
2.74
3.37
1.33
AVERAGE
SULFUR FEED
(LB/HR)
2865
2839
2147
2718
2762
2048
2514
1241
811
2130
622
766
437
1900
2158
1571
1752
1001
1288
1560
841
AVERAGE
SULFUR FEED
(LB/MIN)
47.7
47.3
35.8
45.3
46.0
34.1
41.9
20.7
13.5
35.5
10.4
12.8
7.3
31.7
36.0
26.2
29.2
16.7
21.5
26.0
14.0
AVERAGE
S02 FLOW(3)
(LB/MIN)
63.5
77.9
91.0
69.0
87.1
35.7
26.2
70.2
20.0
22.5
12.5
52.9
69.3
43.5
45.7
31.4
39.6
46.6**
24.2
AVERAGE
SULFUR FLOW
(LB/MIN)
31.8
39.0
45.5
34.5
43.6
17.9
13.1
35.1
10.0
11.3
6.3
26.5
34.7
21.8
22.9
15.7
19.8
23.3**
12.1
SULFUR
FEED- FLOW
(LB/MIN)
4.0
6.3
0.5
-0.4
-1.7
2.8
0.4
0.4
0.4
1.5
1.0
5.2
1.3
4.4
6.3
1.0
1.7
2.7
1.9
* Reduced level of soot blowing
** Location 1
(1) Coal Scale Measurement
(2) Midwest & ICS Average
(3) MITRE Measurement at Location 3
-------
was low. As noted in Table 35, in all cases except two cases (tests 1
and 6), the sulfur feed rate exceeded the sulfur flow rate measured in
the stack indicating that there were, in fact, small unmeasured losses
of sulfur.
GRAIN LOADING VARYING LOAD LEVEL, FUEL TYPE, AND SOOT BLOWING
Computational Procedures
Grain loadings were determined at location 2 and location 3 for all tests
by means of manual measurements. These manual measurements were taken
by the Midwest Research Institute using the sampling train and the
operating techniques specified in the Federal Register of December 23, 1971
(Volume 36, Number 247).
As noted previously, the results of the preliminary measurement program
indicated that the best method for measuring grain loading at location 2
was a 20-point, two-probe traverse in one-half of each of the two ducts
(a total of 40 points). The halves selected were varied from test to
test to provide representative sampling of the total duct.
A location 3, the grain loading for the total stack was determined by a
32-point traverse to obtain representative samples.
A summary of the grain loading results is provided in Table 36. The
emission rates shown in Table 36 were computed using the measured grain
loadings and the manually determined gas mass flow with the appropriate
conversion factors to provide values in terms of pounds of particulates
per hour.
The mechanical collection efficiencies shown in Table 36 were calculated
using the emission rates for the two locations (location 2 prior to
collection and location 3 after collection). Because of the configuration
of the ducting, this collection efficiency reflects an ash removal capa-
bility that is a result, not only of the effects of the mechanical
collector proper but, also, of the lower tubes of the air heater, and the
ducting between the air heater and the stack. For this reason, the
efficiencies shown are not absolute values but are to be considered as
relative measurements to be used only in test-to-test comparisons.
82
-------
TABLE (h
GRAIN l.dADlNC HKASURKMKNTS
DATE
ll/H/71
11/9/71
11/10/71
11/11/71
11/12/71
11/16/71
11/15/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
ll/M/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MI THE
TEST NO. . l.n.M)
(OLD) ' 1'ACTOR
ELEL SHOT
ivri: : ui.nwrn
11 1110 A
9 100 A
8 ; 100 ' A
12 100 ' A
7 . 100 , A
1) 1 00 B
1
18
75
',0
13 35
4 75
5
10
20
2
3
17
19
21
14
15
22
75
100
50
75
75
50
50
35
50
50
75
11
H
I)
A
c:
c
c
A
A
A
A
A
A
A
n
EXCESS
AIR
NO NORM.
,-,o
Ml N.
NO ! MAX.
YE:,* ; NORM.
YES NORM.
NO NORM,
NO
YKS
NO
NO
NO
NORM.
NORM.
NORM.
M1N.
NORM.
YES NORM.
NO NORM.
NO : NORM.
NO i MAX.
YES
NO
NO
NO
NO
NO
NORM.
MAX.
NORM .
NORM.
MIN.
NORM.
AIR
HURNER
ANCLE
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORN.
NORM.
CKA1N • V.MNG
CRAINS/SCE
LOCATION 2 LOCATION 3
C RAINS/ACE
LOCATION 2 LOCATION 3
4.15 0.95 ! 2.42 0.61
'4. 58 0. 88 ' 2. 64 0. 58
4.41 0.94 2.55 0.60
4.25 1.16 2.44 0.75
5.09 1.44 2.94 0.91
5.38 1.50 2.96 0.93
4.48 1.34 2.49 0.85
5.5H 1.08 ! 3.14 0.68
7.RO 1.50 4.57 0.98
9.70 1.42 5.67 0.93
3.79 1.00
2.30 0.68
4.27 0.66 2.45 0.43
3.23 O.B9
5.71 1.24
6.12 1.38
1.89 0.59
3.23 0.78
3.49 0.90
3.63 1.12 2.20 0.76
6.03 0.87
4.18 0.68
6.35 1.15
7.05 0.85
3.72 0.54
2.69 1.12
4.82 1.16
4.10 0.90
2.80 0.75
3.52 0.57
2.47 0.45
3.85 0.79
4.28 0.60
2.27 0.37
1.62 0.77
2.76 0.76
2.40 0.60
1.62 0.48
EMISSION RATl:
LB/IIR. MECHANICAL
COLLECTOR
LOCATION 2 LOCATION 3 ' LFEJCIUKCY (2)
9128
B460
9796 2166 77.8
8252 2474 70.0
10596 3104 70.5
ASH CONTENT
OF COAL
AS RECEIVED liASIS
10.03
9.89
10.25
10.75
10.07
9808 2930 70.0 11.30
H990 185(, 79.5 10.42
9830 1672 83.0 12.15
3408 92.6 72.9 13.13
6176 1072 82.7
4978 1335 73.2
10.35
13.57
11160 2573 • 76.9 16.69
3(,76 1164 68.5 15.94
9096 1268 i 86.0 | '-85
7256 1215 83.3
7080 1067 84.9
4482 659 i 85.3
2412 1023 57.5
4862 1248 74.4
4222 956 77.5
4286 1200 72.0
10.00
10.14
9.5()
9.14
10.78
10.44
6.61
ed levol of Hoot blowing
-------
The ash content of the coal is determined by laboratory analysis is also
provided in Table 36 as a factor affecting the measured grain loading.
Analysis and Interpretation of Results
As noted in Table 36, tests were performed with type A fuel at two load
levels (100 MW and 50 MW) in which operating conditions were held constant
except for soot blowing.
In the first of these comparisons, test 7, an average value of 5.23 grains/
SCF was measured at location 2. This represents an increase over the
average grain loading measured in tests 11, 9, and 8 (4.38 grains/SCF).
For these three tests, no soot blowing was used during the period of the
test. The average ash content of the coal for tests 11, 9, and 8 was
approximately equal to that measured for test 7, indicating that the
differences in grain loading were not attributable to this source.
For these same tests, the grain loading measurements at location 3 were
also higher for the test in which soot blowing was conducted.
At the 50 MW level, the average grain loading measured at location 2 was
6.70 grains/SCF for test 17. In this test, soot blowing was used during
the test. This result is higher than any of the grain loading measure-
ments obtained for the 50 MW A fuel tests in which soot blowing was not
conducted (tests 19, 14, and 15). As was the case with the 100 MW com-
parisons, these 50 MW tests utilized coal of approximately the same ash
content.
Two tests were run in which soot blowing was used and all other operating
parameters were constant except for fuel type. In the first of these
tests (test 18), B fuel was utilized. This fuel has a higher ash content
than the A fuel, and for this B fuel test an average grain loading of
8.75 grains/SCF was recorded at location 2. This represents an increase
over the results recorded for test 17, in which A fuel was utilized.
For the A fuel test, an average grain loading of 6.70 grains/SCF was
measured. These two tests indicate the degree of change in grain
loading that is attributable to differences in ash content of the coal.
84
-------
No specific patterns were found in the analysis of results in terms of
the mechanical collection efficiencies. However, in general it was noted
that greater efficiencies were noted for the tests in which B fuel
was utilized.
COMPARISON OF CONTINUOUS MEASUREMENT RESULTS WITH MANUAL MEASUREMENTS
AND WITH THEORETICAL VALUES
Computational Procedures
As described in a previous section, the scope of the Baseline Measurement
Test included manual measurements as well as measurements obtained by
the continuous measurement systems. The manual gas measurements for
NO , CO, C09, and SO,, were determined by laboratory analysis of a grab
X £, £•
sample. Measurements of 0 and CO were made by means of Orsat
Analysis. In this section the results obtained from these manual
measurements are compared with the results obtained from the continuous
measurement system, and, where appropriate, a comparison is made with
theoretical expected gas concentrations.
The first of the comparisons is provided in Table 37. In Table 37, the
manual measurements, continuous measurement results, and theoretical gas
concentrations are provided for S0_ in ppm as measured at location 1 and
location 2. Where no values are shown, a measurement was not possible
because of equipment failure or loss or contamination of the sample. The
theoretical S09 values shown in Table 37 are based upon the standard
methods for estimating stack gas products as described in the "Manual
for Process Engineering Calculations" by Clarke and Davidson. The theo-
retical S09 values shown for location 3 were based upon the assumption
that there is a 15% leakage between location 1 and location 3. The values
for SO- at location 2 are therefore 85% of the theoretical values shown
for location 2.
A comparison of continuous and manual measurements for NO in ppm is
X
provided in Table 38 for location 3. The manual measurement results
for NO are also provided in Table 38 for location 2. These results from
location 2 are presented for the purpose of comparison with the results
85
-------
TABLE 37
COMPARISON OF CONTINUOUS AND MANUAL SO, AT LOCATIONS 1 AND 3 WITH THEORETICAL VALUES
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/R/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
100 C
50 C
75 A
75
50
A
A
i
50 j A
35 A
50
50
75
; A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YKS
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM,
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BUHNER
ANCLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
LOCATION 1
MANUAL
2541.3
1884.4
1571.1
1582.1
1272.8
1569.0
1847.5
1995.8
538.8
561.7
546.5
1812.9
1762.2
1543.9
1732.6
1415.2
COOT.
2055.0
2220.0
2216.3
2281.9
2393.6
2074.1
1997.1
1715.0
1632.1
2307.3
352.5
387.9
471.9
1938. a
2141.3
2085.0
1897.5
1875.0
1743.8
2107.5
735.0
THEORETICAL
S02 AT
LOCATION 1
2075
2211
2340
1957
1949
1480
1366
2551
888
683
627
2098
2220
2480
2070
2221
LOCATION 3
MANUAL
1306
1703
1800
1854
1767
1154
752
1917
443
426
386
1429
1305
861
451
CONT.
1755.0
2042.1
1905
1897.5
1479.0
1371.0
2080.0
630.0
536.3
566.3
1740.0
1875.0
1980.0
1815.0
1680.0
1782.9
2062.5
THEORETICAL
•JOj AT
LOCATION 3
1764
1879
1989
1663
1657
1258
1161
2168
755
580
533
1783
1887
2108
1759
1888
* REDUCED LEVEL
OF SOOT BLOWING
-------
TABU: in
COMPARISON OF CONTINUOUS AND MANUAL NOX AT LOCATION 3
DATE
11/8/71
11/9/71
11/9/71
U/JO/71
11/10/71
11/11/71
11/1 1/71
11/12/71
11/12/71
11/16/71
11/16/71
11/15/71
11/15/71
11/17/71
11/17/71
11/18/71
11/18/71
11/19/71
11/19/71
11/22/71
11/22/71
11/23/71
11/23/71
11/24/71
11/24/71
11/30/71
11/30/71
12/1/71
12/1/71
12/2/71
12/2/71
12/3/71
12/3/71
12/4/71
12/4/71
MITRE
1 EST
NO. (OLD)
11
9
9
8
8
12
12
7
7
6
6
1
1
18
18
13
13
4
4
5
5
10
10
20
20
2
2
3
3
17
17
19
19
21
21
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
100
100
100
]00
100
100
75
75
50
50
35
35
75
75
75
75
100
100
50
50
75
75
75
75
50
50
50
50
35
35
FUEL
TYPE
A
A
A
A
A
A
A
A
A
li
li
II
B
B
B
B
B
A
A
C
C
C
C
C
C
A
A
A
A
A
A
A
A
A
A
SOOT
BLOWER
NO
NO
NO
NO
NO
YES*
YES*
YES
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
EXCESS
AIR
NORM .
HIN.
MIN.
MAX.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
MIN.
MIN.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MAX.
MAX.
NORM.
NORM.
MAX.
MAX.
NORM.
NORM.
MEASURE!) liXCCSS AIR
LOCATION 2
81.5
64.2
64.2
y> . d
V> . (,
43.2
43.2
38.6
38.6
42.7
42.7
61 .9
61.')
72.5
72.5
87.8
87.8
30.7
30.7
35.4
35.4
52.7
52.7
30.3
30.3
35.0
35.0
47.1
47.1
38.5
38.5
64.3
64.3
51.7
51.7
LOCATION 3
64 . 2
36.6
36.6
47.3
47.3
60.5
60.5
38.3
38.3
40.3
40.3
57.4
57.4
58.5
58.5
69.3
69.3
27.4
27.4
42.5
42.5
41.3
41.3
34.4
34.4
36.8
36.8
52.5
52.5
38.3
38.3
69.3
69.3
61.2
61.2
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM .
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MANUAL NO
LOCATION 2
397
304
390
433
513
505
287
363
447
481
464
463
246
485
464
587
319
385
339
328
223
243
279
267
467
552
294
410
341
347
436
358
344
389
MANUAL NOX
LOCATION 3
651
378
411
453
591
349
436
321
437
466
466
419
461
570
684
387
443
330
271
308
367
264
235
262
412
450
426
558
323
295
406
403
368
276
CONTINUOUS NO
MEASUREMENTS
LOCATION 3
285
350
395
365
335
375
333
240
100
105
150
145
345
335
340
345
115
* REDUCED LEVEL OF SOOT BLOWING
-------
at location 3. A comparison with continuous measurements is not provided
since continuous NO measurements were not taken at location 2. Theo-
X
retical values for NO were not presented since there is no convenient
X
algorithm for estimating NO concentrations as a function of fuel and
X
operating parameters. As noted in Table 38, the continuous measurement
results at location 3 are reported in terms of NO concentration rather
than the total NO levels. These NO results do, however, represent a
X
close approximation of the total NO levels since the N0_ results were
X £.
considered to be of small magnitude and close to the noise level of the
instrument.
A comparison of continuous 0 and C0_ measurements and Orsat measurements
is provided for location 3 in Table 39. The values shown in Table 39
are in terms of decimal fractions (i.e., .075 equals 7.5%). Grab samples
of CO were also taken at location 1 and location 3 for laboratory analy-
sis. However, subsequent to the Baseline Test, it was determined that
these sample containers had leaked and the analytical results were there-
fore invalid.
Grab samples of CO were taken at location 1 and location 3 for laboratory
analysis. No evidence of CO was found in the grab samples and in addition
no evidence of CO was found in the readings of the continuous measurement
CO monitor located in the stack.
Analysis and Interpretation of Results
As noted on Table 37, there were several tests for which data were
not available from the manual and/or the continuous measurement
methods for S0_ analysis (due to either equipment failure or loss of
sample). For those tests where data were available from both the manual
and continuous measurements a comparison shows that at location 1 the
average of the manual samples is 82% of the average of the theoretical
values. For these same tests, the average of the continuous measurements
is 95% of the average of the theoretical values. The extremes of the
manual measurements occur in test 5 where the manual value is 61% of the
theoretical value, and test 13 where the manual value is 135% of the
88
-------
TABLE 39
COMPARISON OF CONTINUOUS 02 AND C02 WITH ORSAT MEASUREMENTS AT LOCATION 3
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
°2
CONT.
.0625
.071
.0675
.075
.0852
.062
.032
.060
.0706
.0615
.0807
.074
.086
.0776
.0705
.0695
.0565
ORSAT
.084
.058
.070
.080
.060
.078
.062
.079
.088
.047
.065
.065
.057
.058
.074
.066
.088
.082
.061
.067
.063
co2
CONT .
.135
.141
.138
.1355
.128
.142
.124
.1311
.1264
.140
.132
.1348
.126
.125
.1411
.138
.1362
ORSAT
.108
.128
.110
.1225
.125
.118
.126
.116
.104
.131
.103
.099
.106
.131
.118
.126
.104
.106
.126
.122
.126
* REDUCED LEVEL OF SOOT BLOWING
89
-------
theoretical value. The extremes for the continuous measurement at
location 1 occur in test 5 where the continuous measurement is 40% of
the theoretical value and test 13 where the continuous measurement is
119% of the theoretical value.
At location 3, the average of the manual measurements is 76% of the
average of the theoretical values for the tests having both manual and
continuous measurements. For these same tests, the average of the con-
tinuous measurement is 100% of the average of the theoretical values.
The extremes for the manual measurements occur in test 21 where the
manual value is 24% of the theoretical value and test 1 where the manual
value is 111% of the theorectical value. The extremes for the continuous
measurement occur in test 21 where the continuous measurement is 89% of
the theoretical value and test 1 .where the continuous measurement is 114%
of the theoretical value.
Table 38 provides a comparison of the continuous and manual measurements
for NO at location 3. Manual measurements taken at location 2 are also
x
provided in this Table. No consistent patterns are noted in Table 38
with respect to the effect of test conditions on NO concentrations, with
X
the exception of fuel type. For the test performed with C fuel (gas and
coal mixed) the NO levels were significantly lower than for the tests
X
performed with A and B fuel.
A comparison of continuous 0,, and CO- measurements and Orsat measurements
is provided in Table 39. A comparison of the average of the continuous
0_ and the Orsat 0? measurements shows good agreement whereas the average
of the continuous C0_ measurements were higher than the average of the
Orsat C0_ measurements.
ANALYSES OF COAL, PULVERIZER REJECTS, FURNACE BOTTOM ASH, AND FLY ASH
Results of Ultimate and Proximate Analyses
As indicated in Table 5 in Section 2, ultimate and proximate analyses
of pulverized coal from the coal mills were performed for each of the 21
tests in the Baseline Program. These analyses were performed both on an
"as received" basis and on a "dry" basis. The analyses were performed
90
-------
by two separate laboratories, the Industrial Testing Laboratories (sub-
contractor to the Midwest Research Institute) and the Illinois Geological
Survey. The results from the laboratories were then averaged as shown
in Table 40 and Table 41. The first and second digit of the sample
number shown on these Tables and on subsequent Tables correspond to
the MITRE test numbers (i.e., CS 01002 corresponds to a coal sample from
MITRE test number 1).
Proximate analyses were also performed on samples of fly ash removed
from the dust collector and the air heater. These analyses were performed
by the Industrial Testing Laboratories (subcontractor to the Midwest
Research Institute) for selected tests in the program and are summarized
in Table 42 and 43.
Proximate analyses were also performed on samples of ash taken from the
furnace bottom (slag samples) and from the pulverizer reject chute on the
coal mills. The results of these analyses as reported by the Industrial
Testing Laboratories are summarized in Table 44 and Table 45.
Results of Elemental Analyses
Trace element concentrations were determined on four of the tests in the
Baseline Program in the coal pulverizer rejects from the coal mills;
bottom ash (slag); and the fly ash collected in the air heater, the
mechanical collector, and locations 2 and 3. The results of these
analyses are summarized in Tables 46, 47, 48, and 49.
Trace element concentrations were also determined for samples of fly
ash collected from location 2 and location 3, for four tests in the
program. The results of these analyses are summarized in Tables 50
through Table 54.
Additional trace elemental analyses were provided by EPA on pulverized
coal for six of the test runs as summarized in Table 55.
Except for Table 55, which provides the results as parts-per-million, all
results of the elemental analyses are reported in terms of weight percent.
In the case of the analysis of fly ash at location 3, the results must be
multiplied with the fly ash emission rate to determine emission rates to
the ambient atmosphere.
91
-------
TABLE 40
PROXIMATE AKD ULTIMATE ANALYSES OF COAL
SAMPLE
NUM3SR
CS01002
CS02002
CS03002
CSOiC02
CS05002
CS06002
CS07002
CS08002
CS09C02
CS10002
CS11002
CS12002
CS13002
CSli002
DRY BASIS
PROXIMATE ANALYSES
=
10.86
11.0
10.9
10.32
10.7
H ^
5
Q
5g s
33.74
41.2
50.40
47.8
40.0 49.1
37.85
40.6
ULTIMATE ANALYSES
c
pa
70.25
70.07
70.16
51.83 71.30
43.6
10.5 | 39.2 i 50.2
10.43 1 33.07
10.7
10.6
41.2
39.6
10.82 33.45
11.1 40.0
11.0 39.2
14.09 35.21
14.8
51.50
48.1
49.3
50.74
48.9
49.8
50.70
37.0 43.2
14.4 3o.l
I
11.8
40.4
10.42 33.62
10.2 : 41.6
10.3
10.64
10.8
10.7
40.1
33.53
49.5
47.9
50.96
43.2
49.6
50.83
40.9 48.3
39.7
10.27 38.67
10.3 . 40.7
10.3 33.7
49.6
51.05
49.0
50.0
17.26 i 33.04 j 49.70
10.43 39.23
50.34
10.3 '41.6 48.1
10.4 40.4 49.2
11.15 | 37.79 i 51.06
10.8 41.3 47.9
11.0 39.5 : 49.5
13.60 ' 35.95 ! 50.45
14.2 : 33.5 47.3
11.30 , 37.13 : 51.57
11.5 40.5 . 43.1
11.-
33.3 , 49.3
70.41
70.86
70.69
70.29
70.49
70.79
70.15
70.47
69.23
8
Q
4.94
4.39
4.92
4.85
4.89
4.87
4.79
4.85
4.82
4.92
4.86
4.89
4.74
a
t;
1.39
1.32
1.36
1.22
1.41
1.32
1.31
1.40
1.36
1.36
1.39
1.33
1.52
63.19 4.55 1.36
63.74 4.65 1.44
70.10
71.99
4.85
4.93
70.48 ! 4.31
71.24
71.54
69.97
70.76
71.36
4.37
4.97
4.87
1.30
1.31
1.23
1.27
1.28
1.23
4.92 1 I. IS
5.02 1.37
70.21 4.73 1.27
71.04
66.46
4.33
1.32
4.42 1.48
70.93 4.95 1.31
70.52 4.30 1.26
70.73 4. S3 i 1.2)
70. ^2
4.34 : 1.30
69.92 ! 4.33 ' 1.26
70.07 4.34 ! 1.23
63.82 . 4.73 1.39
67.93 , 4.59 . 1.33
70.53 • 4.77 i 1.33
70.10 • 4.37 : 1.32
70.34
3.23
3.35
3.29
3.01
2.99
3.00
3.44
3.46
3.45
3.43
3.55
3.52
g
£
9.33
9.39
9.36
9.30
9.60
9.45
9.34
9.35
9.35
8.63
8.93
8.73
1.89 8.43
1.91 i 9.21
1.90 i 8.34
2.83 i 9.09
3.40 7.95
3.42
9.82
3.41 8.89
3.50
8.07
3.51 i 9.62
3.51 ; 8.85
3.50 I 7.98
3.57 : 9.93
3.54 3.96
1.71 3.67
3.47
3.91
3.54 ! 9.55
3.5! i 9.23
3.31 9.13
3.41 ! 9.77
3.36 : 9.43
2.53 ' 3.83
2.62 . 9.25
2.87 9.03
2.B3 9.37
4.82 1.3-, 2.83
9.23
|
Sg
12,624
12,632
12,623
12,664
12,655
12,660
12,133
12,656
12,397
12,630
12,546
12,583
12,267
12,151
12,209
12,570
12,645
12,694
12,670
12,625
12,613
12,619
12,697
12,677
12,1)37
11,719
12,595
SOURCE OF
ANALYSIS
ITL*
ISCS**
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISCS
AVERAGE
ITL
ISCS
AVE5ACE
ITL
ISCS
AVERAGE
ITL
ITL
ISCS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
12^656 | ISCS
12,626
AVERAGE
12,500 ITL
12,583 ISGS
12,544 AVERAGE
12,260 ITL
12,143
12,641
12,5*1
12,601
ISCS
ITL
ISCS
AVERAGE
I':;UST3IAL TS3TIM3 LA3CRATCRIES
ILLINOIS STATE GEC1.00ICAL SURVEY
92
-------
TABLE 40 (CONCLUDED)
PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NUMBER
CS150Q2
CS17002
CS18002
CS19002
CS20002
CS21002
CS22002
DRY BASIS
PROXIMATE ANALYSES
tH
<
10.91
10.6
10.8
10.58
10.4
10.4
12.64
12.7
12.7
9.97
10.2
10.1
16.61
9.52
9.4
9.5
6.94
6.7
6.8
VOLATILE
MATTER
38.50
41.3
39.9
38.95
41.5
40.2
36.31
38.8
37.6
39.62
42.3
41.0
32.85
56.43
41.6
35.46
37.4
36.4
FIXED CARBON
50.59
48.1
49.3
50.47
48.1
49.3
51.05
48.5
49.8
50.41
47.4
48.9
50.54
34.05
49.0
57.60
55.9
56.8
ULTIMATE ANALYSES
CARBON
70.53
70.83
70.68
70.58
70.73
70.66
69.71
69.49
69.60
HYDROGEN
4.81
4.86
4.83
4.83
4.84
4.84
4.78
4.62
4.70
i
71.09
71.41
71.25
67.52
71.72
72.07
71.90
75.85
76.13
76.00
4.86
4.91
4.89
4.45
4.87
4.97
4.92
4.97
4.93
4.95
NITROGEN
1.36
1.35
1.36
1.17
1.36
1.27
1.55
1.40
1.48
1.18
1.33
1.26
1.36
1.39
1.33
1.36
1.75
1.62
1.69
SULFUR
3.61
3.45
3.53
3.57
3.65
3.61
2.61
2.73
2.67
3.54
3.72
3.63
1.75
3.15
3.31
3.23
1.39
1.41
1.40
OXYGEN
8.78
8.92
8.85
9.27
9.01
9.14
8.71
9.05
8.88
9.36
8.41
8.89
8.31
9.35
8.97
9.16
9.13
9.20
9.17
HEATING VALUE,
BTU/LB.
12,557
12,631
12,594
12,637
12,681
12,659
12,299
12,347
12,323
12,732
12,730
12,731
11,654
12,858
12,821
12,840
13,413
13.393
13,403
SOURCE OF
ANALYSIS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
93
-------
TABLE 41
PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NUMBER
CS01002
CS02002
CS03002
CS04002
CS05002
CS06002
CS07002
CS08002
CS09002
CS10002
CS11001
AS RECEIVED BASIS
PROXIMATE ANALYSES
MOISTURE
4.02
4.2
4.1
4.52
4.3
4.4
4.13
4.0
4.1
4.31
4.2
4.3
3.69
3.6
3.6
4.1
3.89
4.0
3.9
3.66
4.0
3.8
3.66
4.0
3.8
3.29
3.84
4.3
4.1
LO
<
10.42
10.5
10.5
9.85
10.3
10.1
10.00
10.2
10.1
10.35
10.6
10.5
13.57
14.3
13.9
11.3
10.01
9.8
9.9
10.25
10.3
10.3
9.89
9.9
9.9
16.69
10.03
9.9
10.0
VOLATILE
MATTER
37.18
39.5
38.3
36.14
33.9
37.5
36.50
39.6
33.1
36.79
33.3
37.5
33.91
35.7
34.8
33.7
37.12
FIXED CARBON
48.38
45.8
47.1
49.49
46.5
48.0
49.37
46.2
47.8
48.55
46.8
46.7
48.83
46.4
47.6
45.9
43.98
39.9 46.3
38.5 47.6
37.12 48.97
39.3 46.4
33.2
37.26
39.1
33.2
31.95
47.7
49.19
47.0
43.1
48.07
37.22 ! 48.41
39.8 : 46.0
33.5 I 47.2
ULTIMATE ANALYSES
CARBON
67.43
67.13
67.3
68.08
67.39
67. 74
67.77
67.48
67.63
67.74
67.20
67.47
66.72
65.73
66.23
67.22
69.19
67.66
68.43
68.92
67.17
63.05
69.23
67.40
68.32
64.27
68.19
67.49
67.8 .
HYDROGEN
5.19
5.15
5.17
5.13
5.15
5.14
5.05
5.10
5.08
5.19
5.13
5.16
4.98
4.79
4.89
5.10
5.17
5.07
5.12
5.19
5.12
5.16
5.24
4.99
5.12
4.64
5.20
5.07
5.14
NITROGEN
1.33
1.27
1.31
1.16
1.35
1.26
1.26
1.34
1.30
1.30
1.33
1.32
1.46
1.31
1.39
1.24
1.26
1.18
1.22
1.23
1.22
1.23
1.32
1.22
1.27
1.43
1.26
1.21
1.24
SULFUR
3.10
3.21
3.16
2.87
2.86
2.87
3.30
3.32
3.31
3.33
3.40
3.37
1.82
1.84
1.83
2.76
3.27
3.28
3.28
3.37
3.37
3.37
3.37
3.43
3.40
1.65
3.34
3.39
3.37
OXYGEN
12.53
12.73
12.63
12.99
13.01
13.00
12.62
12.53
12.58
12.09
12.29
12.19
11.45
12.08
11.77
12.36
11.10
12.98
12.04
11.04
12.79
11.92
10.95
13.08
12.02
11.32
11.98
12.96
12.47
HEATING VALUE,
BTU/LB.
12,117
12,101
12,109
12,092
12,111
12,102
12,138
12,149
12,144
12,036
12,020
12,053
11,814
11,713
11,764
12,055
12,153
12,186
12,170
12,163
12,109
12,135
12,163
12,169
12,201
11,333
12,111
12,112
12,112
SOURCE OF
ANALYSIS
ITL*
ISCS**
AVERAGE
ITL
ISGS
AVERAGE
I XL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ISGS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
ISGS
AVERAGE
* INDUSTRIAL TESTING LABORATORIES
** ILLINOIS STATE GEOLOGICAL SURVEY
94
-------
TABLE 41 (CONCLUDED)
PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NT'MBER
CS12002
CS13002
CS14002
CS15002
CS17002
CS18002
CS19002
CS20002
CS21002
CS22002
AS RECEIVED BASIS
MOISTURE
3.59
3.9
3.7
3.45
3.8
3.6
4.58
4.4
4.5
4.30
4.6
4.5
4.12
4.4
4.3
3.88
4.2
4.0
4.08
4.6
4.3
4.04
4.00
4.6
4.3
4.71
5.0
4.9
E/5
<
10.75
10.4
10.6
13.13
13.7
13.4
10.78
11.0
10.9
10.44
10.1
10.3
10.14
9.9
10.0
12.15
12.2
12.2
9.56
9.8
9.7
15.94
9.14
8.9
9.1
6.61
6.4
6.5
VOLATILE
MATTER
36.43
39.7
38.1
34.71
37.0
35.9
35.43
38.7
37.1
36.84
39.4
38.1
37.35
39.7
38.5
34.90
37.2
36.1
38.00
40.4
39.2
31.53
54.17
39.7
33.79
35.5
34.6
FIXED CARBON
49.23
46.0
47.6
48.71
45.5
47.1
49.21
45.9
47.6
48.42
45.9
47.2
48.39
45.9
47.1
49.07
46.4
47 .7
48.36
45.2
46.8
48.50
32.69
46.8
54.89
53.1
54.0
CARBON
67.70
67.19
67.45
66.45
65.41
65.93
67.35
67.01
67.18
67.50
67.57
67.54
67.67
67.62
67.65
67.00
66.57
66.79
68.19
68.12
68.16
64.80
68.85
68.75
68.80
72.28
72.32
72.30
HYDROGEN
5.06
5.07
5.07
4.95
4.83
4.89
5.06
5.15
5.11
5.08
5.15
5.12
5.09
5.11
5.10
5.03
4.90
4.97
5.12
5.20
5.16
4.72
5.12
5.25
5.19
5.23
5.24
5.24
NITROGEN
1.25
1.22
1.24
1.34
1.28
1.31
1.33
1.26
1.30
1.30
1.29
1.29
1.12
1.30
1.21
1.49
1.35
1.42
1.13
1.27
1.20
1.30
1.33
1.27
1.30
1.67
1.54
1.61
SULFUR
3.19
3.28
3.24
2.49
2.52
2.51
2. lit
2.75
2.74
3.45
3.29
3.37
3.42
3.49
3.46
2.51
2.62
2.57
3.39
3.55
3.47
1.68
3.02
3.16
3.09
1.32
1.34
1.33
OXYGEN
9.18
12.85
11.01
11.64
12.28
11.96
12.74
12.87
12.31
12.23
12.60
12.42
12.56
12.52
12.54
11.82
12.40
12.11
12.61
12.11
12.36
11.56
12.54
12.65
12.60
12.89
13.18
13.04
HEATING VALUE,
BTU/LB.
12,051
12,097
12,080
11,837
11,686
11,762
12,062
12,009
12,034
12,017
12,050
12,034
12,116
12,123
12,120
11,813
11,829
11,821
12,213
12,144
12,179
11,184
12,344
12,231
12,288
12,781
12,724
12,753
SOURCE OF
ANALYSIS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
ISGS
ITL
ISGS
AVERAGE
95
-------
TABLE 42
PROXIMATE ANALYSIS OF FLY ASH FROM DUST COLLECTOR
SAMPLE
NUMBER
SAO 10 04
SA03004
SA05004
SA06004
SA08004
SA10004
SA13004
SA18004
SA20004
SA21004
SA22004
AS RECEIVED
PROXIMATE ANALYSIS, %
MOISTURE
0.16
0.19
0.10
0.23
0.11
0.15
0.24
0.23
0.16
0.25
0.16
PS
99.61
99.00
99.02
99.29
98.62
99.14
97.61
98.95
97.46
97.38
97.69
MATTER
VOLATILE
0.78
1.11
0.91
0.86
1.86
0.72
1.13
0.80
0.29
1.85
0.87
o
i
—
—
—
~
—
—
1.02
0.02
2.09
0.52
1.28
SULFUR
0.38
0.26
0.30
0.26
0.61
0.36
0.53
0.41
0.30
0.66
0.27
g
HEATING V
BTU/LB.
20
30
48
0
91
12
80
0
146
148
167
DRY BASIS
PROXIMATE ANALYSIS, %
X
in
99.77
99.19
99.12
99.52
98.77
99.30
97.84
99.18
97.62
97.62
97.85
H
H
H
H
0.78
1.11
0.91
0.86
1.86
0.72
1.13
0.80
0.29
1.85
0.87
0
u
o
w
—
~
—
—
—
—
1.02
0.02
2.09
0.53
1.28
SULFUR
0.38
0.26
0.30
0.26
0.61
0.36
0.53
0.41
0.30
0.66
0.27
w
HEATING V
BTU/LB.
20
30
48
0
91
12
80
0
146
148
167
-------
TABLE 43
PROXIMATE ANALYSIS OF AIR HEATER HOPPER ASH
SAMPLE
NUMBER
SA01002
SA05002
SAO 60 02
SA08002
SA10002
SA13002
SA18002
SA21002
SA22002
AS RECEIVED
PROXIMATE ANALYSIS, %
c2
5
H
to
M
O
£1
0.26
0.18
0.12
0.17
0.19
0.19
0.20
0.25
0.21
CO
98.52
98.82
99.21
98.43
97.78
98.03
98.17
98.13
97.17
&
H
H
g
w
eJ
H
3
d
>
1.72
2.26
2.12
2.79
2.38
0.94
1.10
1.36
1.76
si
o
u
o
w
X
f— t
IJ-I
_-
__
_-
—
—
0.84
0.53
0.26
0.86
ryS
tu
g
C/3
0.52
0.84
0.67
0.74
0.39
0.61
0.39
0.58
0.57
W
P
i
o •
£5 W
H hJ
H -^
9 H
PC rn
168
68
46
120
195
143
135
120
271
DRY BASIS
PROXIMATE ANALYSIS, %
in
98.78
99.00
99.33
98.60
97.97
98.22
98.37
98.38
97.37
0
H
H
^
W
i-l
M
H
3
>
1.72
2.26
2.12
2.79
2.38
0.94
1.10
1.36
1.76
f-,
o
(_}
h- 1
^
—
—
—
—
—
0.84
0.53
0.26
0.87
&
s
g
t/3
0.52
0.84
0.67
0.74
0.39
0.61
0.39
0.58
0.57
W*
n>
1
o •
a «
M i-J
H -v.
ag
W pq
168
68
46
120
195
143
135
120
272
-------
TABLE 4 A
PROXIMATE ANALYSIS OF SLAG SAMPLES
SAMPLE
NUMBER
PA01001
PA03001
PA05001
PA10001
PA21001
PA22001
AS RECEIVED
PROXIMATE ANALYSIS, %
MOISTURE
10.32
34.24
11.53
36.85
40.56
35.83
w
CO
86.74
63.52
88.26
61.74
58.00
63.93
MATTER
VOLATILE
2.11
1.66
0.38
1.19
1.08
0.19
g
u
0.83
0.58
—
0.22
0.36
0.05
SULFUR
0.48
0.39
0.03
0.12
0.24
0.14
w"
1
HEATING ^
BTU/LB.
374
241
13
145
113
16
DRY BASIS
PROXIMATE ANALYSIS, %
w
96.72
96.60
99.76
97.77
97.58
99.62
MATTER
VOLATILE
2.35
2.52
0.43
1.88
1.81
0.30
CD
U
M
0.93
0.88
—
0.35
0.61
0.08
SULFUR
0.53
0.59
0.05
0.19
0.41
0.22
W
P
HEATING \
BTU/LB.
417
366
15
230
190
25
co
CD
-------
TABLE 45
PROXIMATE ANALYSIS OF PULVERIZER REJECT SAMPLES
SAMPLE
NUMBER
RJ01001
RJ03001
RJ05001
RJ10001
RJ21001
RJ22001
AS RECEIVED
PROXIMATE ANALYSIS, %
MOISTURE
0.81
1.28
3.90
3.40
0.78
0.54
PC
CO
54.26
50.93
33.94
38.94
53.19
51.11
w
H
H
VOLATILE
20.88
10.45
26.72
24.51
15.21
18.48
d
cj
o
M
In
24.05
37.34
15.44
33.15
30.82
29.87
CO
26.07
27.61
16.95
11.27
20.86
20.68
w"
HEATING V
BTU/LB.
4,567
4,994
8,143
7,521
4,354
4,794
DRY BASIS
PROXIMATE ANALYSIS, %
P3
CO
54.70
51.59
35.15
40.31
53.61
51.39
PH
W
H
H
VOLATILE
21.05
10.59
27.67
25.37
15.33
18.58
io
o
o
H
24.25
37.82
15.99
34.32
31.06
30.03
CO
26.28
27.97
17.56
11.67
21.02
20.79
w
HEATING V
BTU/LB.
4,604
5,059
8,434
7,786
4,388
4,820
-------
TABLE 46
COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PULVERIZER REJECTS, SLAG, AND FLY ASH
(MITRE TEST NO. 1, 75 MW, B FUEL, NO SOOT BLOWING, NORMAL EXCESS AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ila
lie
Ca
Ccl
Co
Cr
Cu
I'i-
Ga
Ce
HI;
K
Mfi
Mn
Mo
Na
Ni
Pb
Sb
So
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL ,
CS01002*
0.9CO
0.03
<0.0002
0.250
0.0006
0.000
0.002
0.002
0.995
0.08
0.0
<0.0002
0.155
0.073
0 . 009
< 0.002
0.06
0.009
<0.003
<0.07
<0.06
<0.05
< 0.0005
<0.098
<0.01
•=0.02
0.11
PULVERIZER
REJECTS ,
RJ01001*
0.490
<0.03
<0.0002
1.61
0.0004
<0.003
0.002
0.003
13.1
<0.07
0.0
0.00006
0.127
0.071
0.007
<0.002
0.044
0.0009
< 0.003
<0.07
<0.06
<0.05
< 0.0005
<0.094
0.006
<0.02
0.011
SLAG ,
PA01001*
9.25
0.3
0.0004
3.45
<0.005
0.006
0.016
0.007
16.2
<0.02
<0.07
0.0003
1.48
0.519
0.057
0.00
0.379
0.013
0.009
0.06
<0.05
<0.1
0.004
1.31
0.008
0.04
0.038
FLY ASH FROM
AIR HEATER
ASH HOPPER ,
SA01002*
7.20
0.02
0.001
4.88
0.0009
0.004
0.010
0.008
14.8
<0.07
0.0
0.00003
1.48
0.500
0.090
<0.002
0.270
0.010
0.003
<0.06
<0.06
<0.05
0.004
0.380
0.006
<0.02
0.040
FLY ASH FROM
MECHANICAL
SEPARATOR ,
SA01004*
8.05
0.03
0.0008
1.96
0.002
0.004
0.013
0.007
10.7
<0.08
0.0
0.00004
1.80
0.280
0.036
0.002
0.460
0.040
<0.003
<0.07
<0.07
<0.05
0.003
0.550
<0.01
<0.02
0.057
FLUE GAS
PARTICULATES,
LOCATION 2,
AIR HEATER ,
DUCT, 206-2**
9.40
<0.04
0.001
2.38
0.016
0.006
0.05
0.010
11.7
<0.06
0.0
<0. 00002
1.84
0.620
0.050
<0.003
0.590
0.05
0.020
<0.06
<0.05
<0.05
0.003
0.580
0.010
0.02
0.59
FLUE GAS
PARTICULATES,
LOCATION 3,
STACK ,
206-3**
9.24
<0.04
0.001
0.970
0.002
0.007
0.740
0.020
11. 1
<0.06
0.0
0.002
2.36
0.660
0.080
<0.003
2.06
0.200
0.020
<0.06
<0.05
<0.05
<0.001
0.660
0.005
0.03
0.090
o
* MITRE SAMPLE NUMBER
** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER
-------
TABLE 47
COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PULVERIZER REJECTS, SLAG & FLY ASH
(MITRE TEST NO. 3, 75 MW, A FUEL, NO SOOT BLOWING, MAXIMUM EXCESS
AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL,
CS03002*
0.900
<0.2
<0.0002
0.480
<0.005
0.000
0.0005
1.24
<0.05
<0.07
0.00000
0.165
0.055
0.006
0.00
0.073
<0.002
<0.005
<0.05
<0.09
<0.1
<0.0005
0.060
<0.008
<0.04
0.009
PULVERIZER
REJECT,
RJ03001*
0.900
<0.2
<0.0002
0.210
0.003
0.004
0.003
19.3
<0.03
<0.07
0.00000
0.150
0.050
0.010
0.00
0.080
0.002
0.009
0.04
<0.05
<0.01
0.0005
0.050
0.004
<0.04
0.427
SLAG,
PA03001*
8.50
0.3
0.0004
4.27
0.006
0.016
0.007
16.8
<0.02
<0.07
0.00000
1.36
0.575
0.082
0.00
0.400
0.012
0.011
0.06
<0.05
<0.1
0.008
1.15
0.008
<0.04
0.032
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA03004
8.60
0.3
0.0008
3.30
0.005
0.014
0.008
12.2
<0.03
<0.07
0.00004
1.50
0.512
0.060
0.00
0.650
0.015
0.006
0.03
0.04
<0.1
<0.003
1.34
0.006
<0.04
0.044
* MITRE SAMPLE NUMBER
101
-------
TABLE 48
COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PYRITES, SLAG, AND FLY ASH
(MITRE TEST No. 22, 75 MW, D FUEL, NO SOOT BLOWING, NORMAL EXCESS AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL,
CS22002*
0.600
<0.2
<0.0002
0.250
<0.005
<0.002
0.0005
0.520
<0.05
<0.07
0.0001
0.131
0.050
0.002
0.00
0.053
<0.002
<0.005
<0.05
<0.09
<0.1
<0.0005
0.065
<0.008
<0.04
0.011
PULVERIZER
REJECT,
RJ22001*
0.500
<0.2
<0.0002
1.28
0.005
0.004
0.002
17.3
<0.02
<0.07
0.00000
0.110
0.105
0.014
0.00
0.063
0.001
0.011
0.04
0.08
<0.1
0.003
0.040
0.006
O.04
0.087
SLAG,
PA22001*
8.40
0.4
0.0008
4.55
0.007
0.018
0.006
16.6
<0.02
<0.07
0.00000
0.253
0.567
0.073
0.00
0.400
0.010
0.008
0.02
<0.05
<0.1
0.007
1.22
0.008
<0.04
0.026
FLY ASH FROM
AIR HEATER
HOPPER,
SA22002*
6.40
0.4
0.0006
7.90
0.006
0.020
0.008
17.0
<0.03
<0.007
0.00006
0.835
0.461
0.117
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA22004*
9.50
<0.2
0.001
1.78
0.007
0.023
0.009
6.70
<0.03
<0.007
<0. 00001
1.75
0.480
0.038
0.00 0.00
0.312 0.624
0.013 0.026
0.006 0.007
0.03 0.03
0.03 0.05
<0.1 I <0.1
0.009
0.780
0.004
<0.04
0.030
0.000
1.78
0.004
<0.04
0.046
FLUE GAS
PARTICULATES ,
LOCATION 2,
AIR HEATER,
221-2**
10.0
0.3
0.001
2.09
0.018
0.342
0.012
7.84
<0.02
<0.07
FLUE GAS
PARTICULATES ,
LOCATION 3,
STACK,
221-3**
9.50
0.3
0.002
1.33
0.014
0.626
0.021
8.24
<0.02
<0.07
0.0004 ! 0.0001
1.62
0.530
0.070
0.00
0.529
0.165
0.015
0.03
0.08
<0.1
0.003
1.61
0.01
<0.04
0.064
1.80
0.505
0.124
0.00
0.722
0.390
0.020
0.04
0.05
<0.1
<0.0005
1.64
0.008
<0.04
0.127
* MITRE SAMPLE NUMBER
** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER
102
-------
TABLE 49
COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PULVERIZES REJECTS, AND FLY ASH
(MITRE TEST NO. 5, 75 MW, C FUEL, NO SOOT BLOWING, NORMAL EXCESS
AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Kg
K
; >*
Mn
i Mo
Na
Ni
Pb
Sb
: Se
; Sn
Sr
: Ti
Tl
V
Zn
PULVERIZED
COAL,
CS05002*
PULVERIZER
REJECT,
RJ05001*
1.55
0.00
<0.0002
0.120
0.002
<0.004
0.000
0.002
2.30
<0.06
0.0
<0. 00003
0.290
0.085
O.C06
<0.003
0.10
0.004
0.007
<0.06
<0.05
<0.05
<0.001
0.200
<0.005
<0.02
0.007
SLAG,
PA05001*
10.2
<0.04
0.0006
5.36
0.021
0.004
0.009
0.009
9.43
<0.06
0.00
0.00002
2.68
0.720
0.075
<0.002
0.635
0.031
0.009
<0.06
<0.05
<0.5
0.009
0.575
0.003
0.02
0.045
FLY ASH FROM
AIR HEATER
HOPPER,
SA05002*
7.20
0.3
0.0004
7.00
0.007
0.025
0.010
19.7
<0.03
<0.007
0.00000
0.935
0.424
0.114
0.00
0.370
0.010
0.010
0.02
0.05
<0.1
0.006
0.870
0.008
<0.04
0.030
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA05004
10.15
0.4
0.0006
3.35
0.006
0.013
0.009
6.63
<0.03
<0.007
<0. 00001
1.87
0.580
0.051
0.00
0.220
0.017
0.007
0.04
0.02
<0.1
0.009
1.69
0.006
<0.04
0.060
FLUE GAS
P ARTICULATES ,
LOCATION 2,
AIR HEATER
DUCT, 211-2**
9.56
0.5
0.0008
3.40
0.014
0.249
0.011
7.27
0.03
<0.07
0.00005
1.77
0.533
0.073
<0.04
0.991
0.239
0.018
0.04
0.060
<0.1
0.004
1.40
0.006
<0.04
0.072
FLUE GAS
PARTICULATES ,
LOCATION 3,
STACK,
211-3**
7.35
0.3
0.0007
1.39
0.016
1.08
0.016
10.8
<0.06
<0.07
0.00008
1.50
0.422
0.200
0.00
0.750
0.600
0.014
<0.06
<0.05
<0.1
<0.003
0.965
0.008
<0.04
0.10
* MITRE SAMPLE NUMBER (OLD)
** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER
103
-------
TABLE 50
ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
MITRE TEST NO. 13: 35 MW, B FUEL, NO SOOT BLOWING,
NORM. EXCESS AIR, NORM. BURNER ANGLE
ELEMENT
ELEMENTAL CONTENT, WEIGHT PERCENT
LOCATION 2,
AIR HEATER.
NO. 209-2*
LOCATION 3,
STACK,
NO. 209-3*
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
As
Si
21
7
.08
.0009
1.82
.0009
.01
.15
.01
8.22
<.04
2.2
.89
.06
.003
6.29
.08
.03
<.04
<.04
<.04
.001
.59
.006
.04
.08
13.65
<.04
.0007
.62
.001
.011
1.68
.016
8.7
<.05
.74
.51
.14
.002
.88
.63
.02
.06
.05
.05
.0009
.50
.005
.03
.11
* Midwest Research Institute's Sample Number
104
-------
TABLE 51
ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
MITRE Test No. 8: 100 MW, A Fuel, No Soot Blowing,
Maximum Excess Air, Normal Burner Angle
ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
203-2*
30.9
0.4
0.002
1.33
0.004
0.030
0.050
0.030
14.8
0.07
<0.09
0.0006
2.54
0.770
0.090
<0.002
83.6
0.05
0.110
0.170
0.150
0.07
0.003
0.790
0.020
0.02
0.060
LOCATION 3,
STACK,
SAMPLE NO.
203-3*
31.8
0.6
0.002
1.14
0.003
0.020
0.220
0.040
11.7
<0.08
0.00
0.0004
2.42
0.670
0.080
0.008
48.6
0.09
0.160
0.130
0.06
0.07
<0.0005
0.930
0.010
<0.02
0.080
* Midwest Research Institute's Sample Number
105
-------
TABLE 52
ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
MITRE Test No. 20:
50 MW, C Fuel, No Soot Blowing, Normal
Excess Air, Normal Burner Angle
ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
213-2*
9.90
0.3
0.0005
2.62
<0.0005
0.012
0.175
0.012
5.60
0.06
0.07
0.0000
3.25
0.570
0.067
0.04
0.581
0.135
0.014
0.06
0.05
0.1
0.006
1.40
0.005
0.04
0.08
LOCATION 3,
STACK,
SAMPLE NO.
213-3*
9.51
0.3
0.0008
1.10
0.0026
0.011
0.926
0.019
6.47
<0.02
0.07
0.0003
2.28
0.560
0.107
0.00
0.911
0.515
0.017
0.04
0.005
<0.1
0.003
1.37
0.004
<0.04
0.16
* Midwest Research Institute's Sample Number
106
-------
TABLE 53
ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
MITRE Test No. 19: 50 MW, A Fuel, No Soot Blowing,
Maximum Excess Air, Normal Burner Angle
ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
217-2*
9.00 •
0.3
0.001
2.80
0.0022
0.008
0.125
0.010
11.9
<0.02
<0.07
0.0001
1.54
0.470
0.049
0.00
0.570
0.120
0.007
0.04
0.04
<0.1
<0.003
1.25
0.008
<0.04
0.066
LOCATION 3,
STACK,
SAMPLE NO.
217-3*
7.75
<0.2
0.001
1.17
0.001
0.013
0.725
0.020
11.4
<0.02
<0.07
0.0002
1.42
0.430
0.149
0.00
0.738
0.493
0.005
0.04
0.04
<0.1
<0.003
1.21
0.006
<0.04
0.088
* Midwest Research Institute's Sample Number
107
-------
TABLE 54
ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
MITRE TEST NO. 17: 50 MW, A Fuel, Maximum Soot Blowing,
Normal Excess Air, Normal Burner Angle
ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
216-2*
8.40
<0.2
0.001
2.57
<0.0005
0.010
0.330
0.026
10.9
<0.02
<0.07
0.0001
1.50
0.485
0.063
<0.04
0.591
0.237
0.015
0.04
0.05
<0.1
0.005
1.28
0.006
<0.04
0.168
LOCATION 3,
STACK,
SAMPLE NO.
216-3*
5.90
<0.2
0.0008
0.660
<0.0012
0.019
1.58
0.020
11.1
<0.02
<0.07
0.0002
1.
0.
.20
,351
0.230
0.00
0.570
1.37
0.012
0.04
0.05
<0.1
-------
TABLE 55
ELEMENTAL ANALYSES OF COAL FOR CAT-OX BASELINE PROGRAM
(Concentrations in ppra)
MITRE Test
Element No .
and Isotope
A 110
Ag
Al28
As76
198
Au
Ba139
Br80
Br82
Ca49
cd115
Ce141
Cl38
Co58
Co60
Cr51
Ce134
r 64
Cu
r 66
Cu
n 165
Dy
_ 152nl
Eu
Eu15208
Fe59
Ga72
Gd159
Ge75
Hf181
Hg2°3
,128
In116
Ir192
3
<. 7
8080
<1.2
..10
34
20
3
3640
<110
8.83
1220
<30
3.07
18.0
1.56
29
<20
0.58
0.2
.13
13,700
<2
<60
<4
.50
<.5
<1
<0.03
1.9
5
<. 6
13,300
4.8
0.7
48
3.9
22
5640
<-no
16.2
2760
<80
5.22
21.4
2.58
<20
<40
0.76
0.32
.26
9500
4.0
<40
<120
.81
<.6
<.05
<0.02
2.2
14
<• 2
10,800
2.44
.06
45
3.4
9.0
3290
<200
10.6
1250
<60
3.84
19.3
2.03
<20
<50
0.67
.30
.19
11,600
5.5
<4
<150
.60
.16
<2
0.029
1.6
18
<* 6
12,100
<5
0.15
53
32.5
19
<50
<90
13.0
1450
<70
4.40
19.4
2.35
<20
<20
0.77
0.31
0.20
10,900
4.2
<30
<40
.65
1.91
1.8
.073
6.7
20
<• 9
17,200
7.00
.003
92
7
20
7740
<300
21.1
2820
<90
5.98
24.2
3.32
<30
<60
1.2
0.56
0.32
8970
7.2
<70
<70
1.05
<.l
<.2
<0.05
5.3
22
<• 2
6170
1.6
.02
29
4.4
16
1910
30
8.97
2350
<30
4.02
12.2
1.13
<20
<30
0.42
.18
.12
4550
2.9
<20
<150
.42
<.3
.65
<0.01
1.8
Analyses performed by NASA Plunbrook Laboratory
109
-------
TABLE 55 (CONTINUED)
ELEMENTAL ANALYSES OF COAL FOR CAT-OX BASELINE PROGRAM*
(Concentrations in ppra)
MITRE Test
Element
and Isotope
42
K
140
La
Lu
27
56
« 99
Mo
101
Mo
24
Na
Nd14
65
Ni
Ft197
Rb86
Rb88
186
Re
104
Rh
s 37
Sc46
sb124
Se75
153
Sm
Sr87
117
Sn
Sn123
Sn125
Ta182
Tb16°
Th232
Tl51
LT23q
v52
187
W
Yb175
Zn65
Zr95
No. 3
2464
5.7
.36
<850
53
<700
<10
832
<2
<50
<170
12.3
<550
<0.2
<0.09
<90,000
2.67
0.84
3.12
.82
^30
<40
<50
<200
.12
.018
2.16
912
0.96
23
<0.3
1.88
<3000
<50
5
3932
7.2
.42
<1200
62
<260
<100
1070
<2
<400
<160
20.7
<200
<0.2
<0.04
<53,000
3.84
1.12
2.99
1.2
36
74.2
<40
<40
.27
.027
3.23
608
0.82
26
<0.4
4.06
220
<50
14
3429
7.3
.35
586
38
<300
<70
757
<7
<600
<200
16.8
<120
<.4
<.06
<9060
3.17
.62
2.86
1.1
<40
50
<15
<10
.18
.022
2.84
903
0.82
23
<2
.46
118
<50
18
3748
26
.32
<4000
49
<350
<40
833
<5
<300
<230
21.4
<300
<. 3
<. 2
<7000
3.42
.93
3.19
1.2
<20
66
<20
<70
.25
.025
2. 84
930
1.14
27
<2
1.83
148
<40
20
7130
17.2
.58
<450
95
<600
<50
1250
<7
<1000
<300
25.6
<300
<. 3
<0.03
**
4.56
1.39
4.15
2.23
56
76.5
<50
<500
.35
.036
4.19
1680
1.5
34
<4
3.63
264
<50
22
1690
5.4
.22
<600
25
<200
<10
487
<3
<200
<100
7.98
<400
<.3
<.06
<30,000
3.02
.86
1.77
0.81
<20
34
<2
<150
.17
.015
1.73
529
0.65
15
<2
.91
<400
<30
*Analyses performed by NASA Plumbrook Laboratory
**Data nissir.g
110
-------
Results of Analysis of Bound SO , SO , and Polynuclear Aromatic Compounds
Bound constituents were determined by chemical analysis by the Midwest
Research Institute for fly ash samples collected at location 2 and
location 3. The results of these analyses are provided in Tables 56
and 57.
As noted in Table 56, the bound SO,, concentration (measured as sulfates)
ranges from .15 microgram to .88 microgram per milligram of particulate.
For the two tests representing these extremes (test 22 and test 8), the
measured particulate emission rates at location 3 were respectively 1200
Ibs/hour and 2166 Ibs/hour. The measured gaseous SO,, mass flow rates at
location 3 for these tests were 1452 Ibs/hour and 3810 Ibs/hour, respec-
tively. Multiplying the bound S0? concentration ranges by the particu-
late emission rates provides a mass emission rate of bound SO in terms
of Ibs/hour. Comparison" of the mass rate against the gaseous mass flow
rates shows that the amount of bound S09 released to the atmosphere is on
-10
the order of 10 of the mass released in gaseous form.
Measurement of gaseous SO mass flow rates was not successfully accom-
plished in the baseline test due to problems with sample handling. For
this reason, no comparison can be made between the adsorbed S0_ (measured
as sulfites) and the gaseous S0_.
Table 57 is self-explanatory and provides the polynuclear aromatic hydro-
carbons bound to the surface of the particulates. Highest confidence
should be placed on those tests with the highest % of recovery (i.e., the
percentage of the original mass which can be accounted for as extracted
organic material and particulate fly ash). As noted in Table 57, the
organic materials found were Benzo (cc)Pyrene, and possibly Anthanthrene,
Chrysene, and 1,2-Benzanthrecene.
The chemical state of the sulfur adsorbed on the surface of fly ash samples
was also determined by the Oak Ridge National Laboratory. The results
of these analyses are provided in the Laboratory's final report which
appears as Appendix D. Three techniques were used by the Oak Ridge
National Laboratory to examine each of ten fly ash samples: photoelectron
111
-------
TABLE 56
DETERMINATION OF BOUND S02 AND S03 BY CHEMICAL ANALYSIS
TEST
NO.
8
8
1
-L
1
c;
j
5
17
17
22
22
LOAD
FACTOR
100
100
75
75
75
/ -J
75
50
50
75
75
FUEL
TYPE
A
A
B
B
c
C
A
A
D
D
SOOT
BLOWER
NONE
NONE
NONE
NONE
NONE
NONE
MAX.
MAX.
NONE
NONE
EXCESS
AIR
MAX.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
so2
MICROGRAM/
MILLIGRAM
PARTICIPATE
.77
.88
.30
.39
.16
.16
.37
.35
.4
.15
so3
MICROGRAM/
MILLIGRAM
PARTICULATE
5.77
7.65
9.34
24.10
0.67
15.84
13.69
3.77
2.25
1.63
LOCATION
2
3
2
3
2
3
2
3
2
3
-------
DATE:
MITRE
TEST NO. :
TEST CONDITIONS
Load Factor:
Fuel Type:
Soot Blower:
Excess Air:
Burner Angle:
TOTAL
RECOVERY %
Location 2
Location 3
BENZO(a)PYRENE
(Ug)
Location 2
Location 3
CONCENTRATION
(yg/mg)
Location 2
Location 3
OTHER POSSIBLE
COMPONENTS
Location 2
Location 3
TABLE 57
DETERMINATION OF POLYNUCLEAR AROMATIC COMPOUNDS
BOUND TO THE SURFACE OF FLUE GAS PARTICULATES
11/10/71
11/15/71
11/22/71
Anthanthrene
Anthanthrene
12/2/71
17*
12/9/71
22
100
A
None
Maximum
Normal
100.0
100.0
75 75
B C
None None
Normal Normal
Normal Normal
No Peaks 91.7
17.7 100.0
21.80
259.89 126.00
0.17
3.00 0.87
50
A
Maximum
Normal
Normal
25.0
31.2
200.00
185.90
0.72
0.83
75
D
None
Normal
37.5
No peaks
74.67
1.16
Chrysene;
1,2-Benzanthrecene
* Two samples were collected at each location during this test. Both samples were
combined for the determination of surface adsorbed polynuclear aromatic compounds,
113
-------
spectroscopy (ESCA); surface area determination by the BET method; total
sulfur determination by combustion analysis. One of the specimens was
also examined by infrared spectroscopy.
The following are firm conclusions that can be made:
1. The photoelectron spectroscopy results show that the oxidation
state of sulfur on the surfaces of all ten samples is +6.
2. The high intensities of photoelectron peaks arising from sulfur
indicate that in all samples most of the sulfur is segregated
at the surface rather than distributed homogeneously in the
solid phase.
3. Surface area measurements and total sulfur determinations show
that the degree of surface.coverage by sulfate salts varies 5-40
monolayers.
4. The spectrum of the sample studied by infrared spectroscopy
shows that sulfur is present on the surface as sulfate rather
than as adsorbed S0_. Apparent discrepencies between this
conclusion and the findings of MRI can be explained by the
greater sensitivity of the wet chemical methods used by MRI
as compared with infrared spectroscopy.
The following observations were also made; however, it was felt that more
study would be needed before they could be stated as firm conclusions:
1. Binding energies of S~ p electrons, determined by photoelectron
spectroscopy, closely match those for sulfates of polyvalent
+2 +3 +2
cations such as Fe , Fe , and Ca . The sulfur may be present
on the fly ash surfaces as calcium or iron sulfate.
2. Photoelectron peaks for silicon were broadened. This suggests
the presence of more than one chemical state of silicon. The
+4 oxidation state, indicating silicates of SiO_, is definitely
present, but lower oxidation states may be present also. Different
glass phases containing silicon may also have caused the peak
broadening. More study is necessary to be sure that the broaden-
ing of the silicon peaks is not due to interference by other elements.
114
-------
SECTION VI
APPENDICES
Page No.
A Results of Preliminary Measurement Test 117
B Data Management Log 135
C Data Base 143
D Studies of the Chemical State of Sulfur Adsorbed on 195
Surfaces of Fly Ash
115
-------
APPENDIX A
RESULTS OF PRELIMINARY MEASUREMENT TEST
117
-------
TABLE Al
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 9/28 - 9/29
100 MW LOAD
115% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
PERCENT 02 BY VOLUME (ORSAT) 3.3%
PERCENT C02 BY VOLUME (ORSAT) 15.7%
PERCENT MOISTURE 5.6%
MEASURED VELOCITY
PORT POINT (FEET/MINUTE)
1 1 1378
2 970
3 1214
4 1081
2 1 1643
2 1612
3 1057
4 1262
118
-------
TABLE A2
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 9/30
100 MW LOAD
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
PORT
POINT
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
4.3%
14.9%
6.1%
MEASURED VELOCITY
(FEET/MINUTE)
1150
1116
1537
1409
1522
888
1537
1370
1597
851
1052
1323
1465
1098
2052
1720
1185
1051
1154
927
2069
916
1076
918
689
873
119
-------
TABLE A3
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 10/1
100 MW LOAD
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
8.0%
12.0%
8.7%
PORT
POINT
1
2
3
4
1
2
3
4
1
2
3
4
MEASURED VELOCITY
(FEET/MINUTE)
1740
1001
1087
1582
1427
1208
1415
1457
1007
1085
1100
1177
120
-------
TABLE A4
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 10/5
100 MW LOAD
125% EXCESS AIR
COAL TYPE A
SOOT BLOWING OVER PERIOD OF TEST
PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
POINT
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
4.2%
14.7%
6.25%
MEASURED VELOCITY
(FEET/MINUTE)
855
1020
1025
850
1591
885
795
1372
1470
840
1090
1040
1155
960
930
890
1255
1035
1010
995
1480
940
740
978
1270
940
121
-------
TABLE A5
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 10/6
100 MW LOAD
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
PERCENT 02 BY VOLUME (ORSAT)
PERCENT CO2 BY VOLUME (ORSAT)
PERCENT MOISTURE
PORT
POINT
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
4.2%
14.4%
4.8%
MEASURED VELOCITY
(FEET/MINUTE)
836
902
864
1389
1514
770
942
1409
1644
857
983
1156
1370
1106
1131
1563
1491
723
975
1270
1531
695
940
1480
1223
858
122
-------
TABLE A6
VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST: 10/8
35 MW LOAD
145% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
PORT
POINT
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
5.6%
13.2%
2.3%
MEASURED VELOCITY
(FEET/MINUTE)
404
397
394
584
576
362
362
399
598
363
363
567
522
491
326
494
437
399
516
633
621
399
399
695
614
323
123
-------
TABLE A7
COAL ANALYSES FOR PRELIMINARY TEST RUNS
DATE
TEST CONDITIONS
MOISTURE
ASH
SULFUR BTU'S AS RECEIVED BTU DRY
BTU, MOISTURE
AND ASH FREE
to
10/28 100 MW LOAD 11.40
10/29 115% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
9/30 100 MW LOAD 11.95
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
10/1 100 MW LOAD 11.75
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
10/5 100 MW LOAD 11.15
125% EXCESS AIR
COAL TYPE A
SOOT BLOWING
OVER PERIOD
OF TEST
10/6 100 MW LOAD 12.98
125% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
10/8 35 MW LOAD 13.02
145% EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
10.02
9.48
10.13
10.67
3.01
2.96
2.87
2.91
10.42 2.87
10.72 2.95
11,041
11,032
11,027
11,072
10,797
10,780
12,462
12,529
12,495
12,462
12,407
12,394
14,051
14,040
14,115
14,163
14,094
14,137
-------
TABLE Ab
GSAIN LOADING AT AIR HEATER (LOCATION 2)
DATE
92871
AH TEMP
90.00
PU-II
1
2
3
4
5
t>
7
H
ly
10
1 1
12
13
14
J-,
1 6
17
1 ll<
1 19
1 20
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 H
2 9
2 10
2 11
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
2 20
P MOIST.
.0976
.
T!
2.
2.
S.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
ATM.
-E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oo
00
00
00
00
00
00
00
00
00
00
00
00
00
AVf.
1298
CHESS.
29.420
METER VOL
857.0100
858.3100
"59. 3500
"50.2000
861.2600
862. 3BOO
06J.6000
B64.9700
166.1300
867.4100
8h8.6000
069.B300
871.0300
872.1400
873.3100
874.4700
1)75.7200
877.0000
8'B.2000
879.3800
d80. 3300
591.4000
882.5000
883.5800
B84.7100
HB5.8i«00
BB6.9300
887.9500
888.9300
889.8500
891.0000
892.1400
893.2500
894. 3600
U95.5500
B96.ASOO
897.9200
899.2400
900.6000
901.8000
STACK VAC
8.5000
HLLT4 H
.083
.090
.065
.033
.093
.060
.100
.100
.100
.100
.0^6
.094
.085
.073
.090
.084
.100
.100
.091
.094
.058
.083
.075
.070
.092
.076
.075
.062
.060
.052
.150
.080
.090
.080
.093
.078
.115
.115
.110
.062
VEL. FLOrfHATE
.9334 2
25633.8
. CONOfNSATt
97.10000
PAPTlCULATt STACK
7.27270 173.
TEMP. IN TfcMP. OUT
92.000
94.000
95.000
98.000
100.000
100.000
102.000
106.000
109.000
112.000
96.000
100.000
100.000
104.000
106.000
100.000
103.000
107.000
110.000
113.000
100.000
102.000
106.000
10B.OOO
112.000
1 10.000
110.000
110.000
112.000
113.000
106.000
108.000
110.000
1 12.000
116.000
120.000
122.000
126.000
130.000
132.000
92.000
92.000
9?. 000
92.000
92.000
9i.OOO
94.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
98.000
98.000
98.000
99.000
100.000
100.000
100.000
100.000
100.000
102.000
104.000
104.000
104.000
106.000
106.000
106.000
106.000
106.000
106.000
106.000
108.000
108.000
110.000
110.000
TK.' IN VA-
6.5000
7. 1000
5.0000
4.0000
6.0000
6.5000
8.0000
B.OOOO
8.0000
8.0000
7. 0000
B.OOOO
8.0000
7.0000
S.OOOO
7.0000
9.0000
9.0000
it . 0 0 0 0
8.0000
5.0000
7.0000
7.0000
7.0000
B.OOOO
b. 0000
o.OOOO
7.0000
7.0000
7.0000
9.0000
9.0000
9.0000
9.0000
111. 0000
10.0000
12.0000
13.0000
13.0000
10.0000
AREA 1NIT.
70700 855
M*. TEMP
340.000
J-1.000
.US. 000
385.000
385,000
3n5.000
385.000
3H5.000
385.000
JP4. 000
405.000
405.000
405.000
400.000
-15.000
410.000
410.000
WO. 000
410.000
410.000
410.000
410.000
415.000
410.000
420.000
4^0.000
420.000
420.000
430.000
430.000
418.000
418.000
418.000
4 1H.OOO
418,000
418.000
41B.OOO
41b.OOO
418.000
418.000
VOL. P02
.8300 .0910
PCU2
.0970
. H0« TEMP. P«ObE HI :.
-80.000
-67.000
-77.000
-75.000
-'5.000
-80.000
-70.000
-65.000
-75.000
-76. 000
-70.000
-65.000
-65.000
-64.000
-65.000
-75.000
-70.000
-70.000
-75.000
-75.000
-80.000
-75.000
-65.000
-70.000
-65.000
-80.000
-10.000
-75.000
-80.000
-80.000
-75.000
-70.000
-70.000
-70. 000
-70.000
-75.000
-75.000
-75.000
-80.000
-80.000
.375f)
.3750
. 1741)
.3750
.3750
. 175(1
. 175 I
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
. 1750
.3750
.375o
.3750
.1750
.3750
.3750
.37SO
.3750
.3750
.3750
.3750
.3750
.3750
.3750
VEL» 1TV
1241.91
1 32".Mt>
1 iff. 52
799.82
1342.70
!<><.•>. 32
13')2.31
1392.31
1392.31
1 392.31
1306.. 17
1364.78
1298.75
1200.10
1144.10
1294.81
1412.76
1420. OS
1362.41
n6-i.72
107b.92
1287.^8
1221-.9-V
1182.0(1
1362.83
12S4. Hh
1230.49
1118.78
1106.82
1030.40
1 '3*. 2fl
1269.40
1346.41
126V. 411
1 lh-,66
1253.44
1521.96
1521. '16
148B.51
1285.17
ISO. RATIO tMIS. RATE PART. LOAD STD. LOAD
1.0039
UNDER 5 MICRONS
ANISO CORRECTION FACTOR
EMISSION
RATE
1.0000
2708.6811
PART. LOAD
STD. LOAD
1.4006
2. 3818
270B.6B
11 1
5 TO 80 MICRONS
1 .
2713.
1 .
2.
0019
BB70
4032
3B64
.4006 2
38 IB TKST:
OVER 80 MICRONS
1.0039
2719.1129
1.40S9
2.3910
9/2» -
ino MU
9/29
LOAD
115% F.XCKSS AIR
COAL IT
NO SOOT
['I! A
BLOWING
a n c o
-------
I ABU A'J
GRAIN LOADING AT All) IICAKR (LOCATION 2)
AIR TEMP
90.00
PORT
2 1
2 2
2 1
2 4
2 S
2 6
2 7
2 t)
2 9
2 10
2 11
2 12
2 13
2 1*
2 15
2 16
2 17
2 IB
2 19
2 20
1 1
1 2
1 J
1 *
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
I 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
. ATM.
TIMt
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
PflESS. STACK VAC.
29.420 8.1000
METEH VOL
B81.0000
881.9500
882.8700
883.7900
8B4. 7500
885.6900
8B6.6900
8B7.6600
888.6100
889.5500
b90.3'00
891.2900
892.2300
893.1300
894.1000
895.0400
895.9800
896.8800
897.7900
898.6700
899.2900
899.7300
900.2800
900.8700
901.3100
901.8300
902.4900
903.0700
903.5100
904.0500
904.6100
905.1400
905.7400
906.0800
906.5900
907.0900
90'. 5300
908.1000
908.7500
909.2200
DiLTA P
.1*5
.065
.080
.075
.087
.080
.095
.085
.085
.080
.058
.086
.086
.073
.092
.087
.080
,0'7
.077
.060
.081
.094
.085
.070
.085
.078
.095
.089
.087
.084
.080
.01*
.065
.030
.085
.069
.095
.090
.090
.0*0
P MOIST. AVE. VEL. FLOxRATE
.0991 1267. 6»08 220198.1
TEST
102
CONOENSAT
62.20000
TEMP. IN
100.000
100.000
102.000
106.000
108.000
loa.ooa
110.000
112.000
114.000
1 16.000
104.000
106.000
108.000
1 10.000
112.000
110.000
110.000
1 l-.OOJ
lit.. 000
118.000
98.000
'v n.OOO
100.000
100.000
102.000
103.000
1 0**000
1C5.000
106.000
107.000
100.000
100.000
101.000
101.000
103.000
104.000
105.000
106.000
107.000
108.000
DATE
93071
t (-ARTICULATE STACK AHEA INIT. VOL. P02
3.22910 173.70700 880.1500 .0<
TEMP. OUT
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
102.000
10-.000
104.000
106.000
106.000
106.000
106.000
106.000
106.000
10 6.0 on
107.000
108.000
99.000
100.0(10
100.100
loo.ooo
100.000
100.000
lou.ooo
101.000
102.000
102. OUO
100.000
102.000
102.000
102.000
102.000
102.000
102.000
102.000
103.000
103.000
TRAIN VAC.
6.0000
4.0000
4.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
b.OOOO
5.0000
5.0000
5.0000
5.0000
6.0000
6.0000
b.OOOO
6.0000
b.OOOO
6.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3 . 5 0 0 U
-.'1000
4.0000
4.0000
4.0000
3.0000
3.0000
3.0000
2.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
ISO. RATIO IM1S. HATL PART.
1.4563 1865.3039
UNDER 5 MICRONS 5 TO
ANISO CORRECTION FACTOH
EMISSION HATE
PART. LOAD
STO. LOAD
1.0000
1865.3039
. 9H83
1.6758
80 MICRONS
1.1658
2211. H061
1.1719
1.9871
Sin. TEMP.
200.000
JOO.OOO
J60.000
390.000
405.000
405.000
410.000
405.000
400.000
400.000
410.000
410.000
410.000
410.000
420.000
420.000
425.000
4 10.000
410.000
450.000
415.000
415.000
415.000
405.000
425.000
425.000
425.000
426.000
430.000
453.000
395.000
395.000
400.000
390.000
414.000
414.000
420.000
420.000
-20.000
42V. 000
HOX TfMP.
-70.000
-80.000
-HO. 000
-75.000
-75.000
-90.000
-bo.ouo
-75.000
-HO. 000
-80.000
-90.000
-85.000
-80.000
-BO. 000
-80.000
-85.000
-HO. 000
-80.000
-HO. 000
-HO. ooo
-90.000
-90.000
-90.000
-85.000
-05.000
-Hb.OOO
-95. 000
-90.000
-90.000
-90.000
-90.000
-85.000
-80.000
-85.0(10
-90.000
-90.000
-90.000
-90.000
-90.000
-90.000
LOAD STO. I OAD
.9883 1.6158
OVER hfl MICRONS
1 456 1
2716.4116
1.4392
2.4404
PC02
>00 .0980
PHORE DIA. VELOCITY
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
,i'500
.2500
TIST: ')/W
100 MU 1
1 2 ci % I'.X.'
COAI. TV!
NO i;iKvr
1481.13
1064.14
1226. 2K
1208.86
1313.42
1251. 4H
1376.44
1298.24
1294.48
1255. HI
1071.50
1309.62
1309.62
1206. 5M
1 362.30
1324.76
1273.95
1253.36
1253. 36
1118.75
1274.63
1373.11
1305./2
1178.13
1313.16
1257.93
13HK.26
13*4.46
1J32.27
1 12T.90
1252.17
12B3.10
1131.99
764.55
UO-. 9'
1175.75
1384.33
13-.7.41
1347.41
1354.28
.OAD
• [.- 1- 1; AIR
'!•: A
1M.OW1NC
irm?
-------
TABLE Al°
GRAIN LOADING AT AIR IILAUR (LOCATION 2)
AID TEMP. ATM.
90.00
POST
3 1
3 f
3 3
1 4
3 S
3 b
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 1*
3 IS
3 16
3 17
3 1H
3 19
3 20
4 1
« 2
4 3
<> 4
4 S
1 6
4 7
4 8
4 9
4 10
4 11
4 12
4 13
4 14
4 16
4 16
<• 17
4 IB
4 19
4 20
P HOIST.
.0927
T1HE
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
AVE.
1262
TEST DATE
103 100171
- CHESS. STACK VAC. CONDENSATE PAHTICULATE
29.420 7.4000 *?. 10000 3.256*0
METE" VOL
923.9500
924.5300
92S.IBOO
925.6800
926.1200
926.6100
927.2600
427.8400
923.3900
928.3600
929.4900
910.0200
930.5600
931.0500
931.6500
932.0800
932.5700
933.0000
933.6000
934.1500
934.6700
935.1900
935.6100
936.1700
936.6700
937.1800
937.6000
933.1900
938.6900
939.1000
939.6600
940.1700
940.6300
941.1400
941.7800
942.2400
942.8100
943.3500
943. 1)200
944.3500
STACK AREA INIT.
173.70700 923
OLLU P TEMP. IN TEMP. OUT TRJ1N VAC
.066
.095
.0>9
.072
.090
.074
.094
.096
.095
.090
.ofls
.065
.085
.065
.085
.075
.034
.084
.OBI
.089
.084
.084
.079
.060
.079
.078
.081
.075
.075
.079
.066
.090
.094
.074
.087
.089
.099
.084
.057
.090
VEL. fLOHRATE
.2019 219253.3
96.000
9H.OOO
98.000
99.000
100.000
102.000
103.000
104.000
106.000
107.000
99.000
100.000
101.000
103.000
104.000
105.000
106.000
108.000
110.000
112.000
96.000
96.000
97.000
93.000
100.000
100.000
102.000
103.000
104.000
105.000
96.000
96.000
97.000
98.000
100.000
101.000
102.000
103.000
103.000
104.000
ISO. RATIO
1.0537
UNDER S MICRONS
ANISO CO
EMISSION
RRECTIO
RATE
N TACTOR
1.0000
2599. 8540
PART. LOU)
STtt. LOAD
1.3834
2.3353
96.000
96.000
96.000
97.000
97.000
98.000
91.000
98.000
98.000
100.000
99.000
101.000
101.000
102.000
101.000
102.000
102.000
102.000
103.000
104.000
96.000
96.000
96.000
97.000
97.000
97.000
97.000
98.000
9B.OOO
98.000
96.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
EM1S. HATE
2599.8540
2.2000
2.2000
2.5000
2.5000
2.5000
2.0000
3.0000
3.0000
3.0000
3.0000
2.5000
3.0000
3.0000
2.3000
3.0000
3.0000
2.0000
2.0000
2.0000
3.0000
2.5000
3.0000
2.5000
2.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
2.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
2.0000
3.0000
. STK. TEMP
224.000
360.000
376.000
390.000
395.000
400.000
410.000
40S.OOO
415.000
415.000
Mb. 000
403.000
410.100
410.000
413.000
421.000
421.000
425.000
430.000
445.000
404.000
394.000
400.000
400.000
415.000
415.000
420.000
420.000
425.000
435.000
363.000
378.000
385.000
385.000
410.000
400.000
410.000
400.000
404.000
415.000
VOL. P02
.3700 .0800
PC02
.1200
. |0i TCMP. PROIE Din.
-80.000
-85.000
-80.000
-80.000
-85.000
-85.000
-85.000
-85.000
-as. ooo
-85.000
-85.000
-80.000
-80.000
-80.000
-30.000
-80.000
-80.000
-80.000
-80.000
-80.000
-100.000
-90.000
-90.000
-85.000
-85.000
-85.000
-85.000
-85.000
-85.000
-as. ooo
-90.000
-90.000
-85.000
-85.000
-30.000
-80.000
-80.000
-80.000
-85.000
-B5.000
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2600
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2600
.2500
.2500
.2500
.2500
• 2500
.2500
.2500
.2500
.2500
.2500
VELOCITY
1010.72
1319. b>7
1297.56
1176.80
1319.57
1200.0]
1360. J6
1370.79
1371.50
1334.92
129?. 31
1288.38
1293.59
1131.21
129S.H2
1222.78
1294.07
1297.0(1
1277.22
1350.04
1281.52
1274. OH
1234. VI
1080.57
1250.68
1242.74
1270.03
1222. Ott
1225.55
1264.89
1100.23
1306.39
1340.67
1189.52
130H.72
1316.05
1396.07
1278.55
1055.66
1334.92
PART. LOAD STD. LOAD
1.
5 TO 80 MICRONS
1.0261
2667.7926
1.4196
2.3968
3834 2.
3358 TEST:
OVER BO MICRONS
1.0537
2739.3771
1.4576
2.4611
10/1
100 MW L
.OAD
125% FXCFSS AIR
COAL TYI'
NO SOOT
'K A
BLOWING
-------
TABU Ail
GRAIN LOADING AT AIR MUTER (LOCATION
TEST DATE
2)
104 100571
AIR TEMP. MM.
90.
POST
* 1
4 I
4 J
4 4
4 5
1. 6
4 7
4 a
l> 9
4 10
1. 11
4 u
4 U
4 11.
4 IS
<> 16
4 17
4 U
4 14
4 20
3 1
3 2
3 J
3 »
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 U
3 15
3 16
I 17
3 la
3 19
3 20
.00
TIME
2.00
2.00
2.00
2.00
2.00
a. oo
2. 00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.10
2.00
2.00
2.00
2.00
p HOIST, m.
.0
742 120i
PRESS.
24.420
METEH VOL
962.7100
963.2200
963.7200
96*. 1*00
464.6200
965.1250
965.6250
966.1100
966.6100
967.0600
967.61100
961.3500
9t>8.Taoo
969.2500
969.7450
970.2400
970.T450
971.2550
971.7650
972.2520
972.7950
973.3400
973.8500
974.3200
974.8250
975.3240
975.8400
976.3820
976.9400
977.4700
973.0100
97S.4650
971.8500
979.S700
980.0000
9M.S300
9>1.1320
981.7400
982.3080
912.9920
STACK VAC
7.BOOO
DELTA P
.050
.070
.075
.050
.074
.075
.075
.069
.070
.067
.110
.098
.090
.060
.075
.068
.075
.075
.072
.067
.073
.085
.079
.057
.07*
.068
.083
.116
.095
.075
.080
.050
.t77
.090
.087
.07S
.lie
.097
.090
.100
VEL. FLOURATE
i.5424 i
!OB890.0
. CONOENSATE
33.20000
PARTICIPATE STACK
AREA INIT.
4.08360 173.70700 962
1EMP. IN TEMP. OUT
82.000
82.000
84.000
85.000
87.000
8H.OOO
89.000
90.000
91.000
92.000
87.000
88.000
89.000
90.000
91.000
92.000
93.000
94.000
95.000
96.000
86.000
87.000
88.000
89.000
90.000
91.000
92.000
93.000
94.000
95.000
88.000
89.000
90.000
92.000
93.000
94.000
95.000
96.000
96.000
98.009
ISO. RATIO
1.0557
UNDER 5 MICRONS
ANISO
CORRECTION r»CTOH
EMISSION rt»TE
PART.
STO.
1010
LOAD
1.0000
3254.1344
1.8175
?.9755
82.000
82.000
82.000
13.000
83.000
84.000
84.000
85.000
85.000
86.000
87.000
S7.000
88.000
aa.ooo
aa.ooo
aa.ooo
89.000
89.000
90.000
90.000
87.000
87.000
67.000
87.000
88.000
88.000
B8.000
89.000
89.000
90.000
89.000
89.000
90.000
90.000
90.000
90.000
91.000
91.000
92.000
92.000
TRAIN VAC
3.0000
3.0000
3.0000
2.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
J.OOOO
4.0000
4.0000
4.0000
J.OOOO
4.0000
4.0000
4.0000
4.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3.0000
3.0000
3.0000
3.0000
J.OOOO
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
(MIS. RATE PART.
3254.13
5 TO 8
1.
3342.
1.
3.
44 1
0 MICRONS
0271
2363
8667
0561
. STU. TEMP
385.000
370.000
3BO.OOO
3B2.000
395.000
405.000
395.000
381.000
398.000
410.000
277.000
337.000
355.000
355.000
J71.000
373.000
391.000
jre.ooo
J42.000
396.000
221.000
Jb9.QOO
3S3.000
362.000
375.000
371.000
376.000
370.000
387.000
390.000
380.000
373.000
377.000
3U2.000
JBb.ODO
392.000
385.000
397.000
400.000
425.000
LOAD STD.
.am 2
VOL.
.2200
P02
.0740
PC02
.1140
. KOX TEMP. PROBE DIA.
-78.
-72.
-72.
-75.
-75.
-75.
-75.
-75.
-80.
-DO.
-»5.
-B5.
-as.
-as.
-B5.
-85.
-85.
-85.
-»5.
-90.
-B5.
-SO.
-80.
-BO.
-80.
-80.
-80.
-80.
-80.
-B5.
-BO.
-77.
-77.
-BO.
-B3.
-83.
-85.
-85.
-83.
-83.
LOAD
.9755
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Tl-:sT:
OVER BO MICRONS
1.0557
3435.2415
1.9186
3.1411
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.250(1
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2SOO
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
10/5
100 HW u:
VELOCITY
1234.22
1144.22
1191.49
974.01
1194.04
1209.09
1202.0"
1143.52
1163.36
1146.09
1351.61
1257.16
1212.12
1049.72
1145.09
1129.79
1199.27
1190.07
11 hi. HI
1130.83
105H.41
1275. 22
1<*0 t.04
1027.53
1211.47
112'i.i.J
125(1.44
1261.26
1273.71
119H.56
1230.57
968.79
. 1205.12
1232.03
1287.09
1199.97
149B.96
1 36H.66
132u.b6
1412.19
IAD
}2'it. KXCRSS AIR
COAL TYIM
: A
SCXJT IlLOWING OVKR
PERIOD
OF TF.ST
-------
All TEMP. ATM. PRESS. STACK VAC.
90.00 29.420 '.2000
TABLt *i;
GRAIN LOADING AT AIR HtATER (LOCATION 2)
TEST DATE
105 100671
CONDENSATE PARTICIPATE STACK AREA INIT. VOL.
24.00000 3.54770 43.42700 15.7500
.0700
TIME MITER VOL. DELTA P TEMP. IN TEMP. OUT TRAIN VAC. STK. TEMP. iOX TEMP.
1 5.00 17.1000 .076 88.000
2 5.00 ltf.4440 .096 91.000
3 5.00 19.8550 .088 95.000
4 5.00 21.16(0 .072 9(1.000
5 5.00 22.5260 .084 100.000
6 5.00 23.K600 .070 102.000
7 5.00 25.2660 .090 104.000
« 5.00 26.6750 .085 106.000
9 5.00 27.8720 .057 107.000
10 5.00 29.2450 .087 108.000
P MOIST. »VE. VEL. FLOKRATE ISO. RATIO
.0823 1225.2793 53210.2 1.0736
UNDER 5 MICRONS
ANISO CORRECTION FACTOR 1.0000
EMISSION RATE 1111.9656
PART. LOAD 2.4381
STD. LOAD 1.9653
84.000 2.5000
85.000 2.5000
87.000 2.5000
89.000 2.5000
90.000 2.5000
93.000 2.5000
94.000 2.5000
96.000 2.5000
98.000 2.5000
100.000 3.0000
360.000 -7S.OOO
359.000 -75.000
358.000 -75.000
360.000 -75.000
375.000 -75.000
371.000 -75.000
382.000 -75.000
379.000 -75.000
380.000 -75.000
392.000 -75.000
.2500 11H5.2I
.2500 1331.27
.2500 1271.82
.2500 1153.62
.2500 1257.40
.2500 114S.OV
.2500 1306.97
.2500 1267. 89
.2500 1038.86
.2500 1292.62
EMIS. RATE PART. LOAD STD. LOAD
1111.9656 2.
5 TO 80 MICRONS
1.0355
1151.4202
2.5246
4.1060
4381 3.9653
OVEH 80 MICRONS TEST:
1.0736
1193.7777
2.6174
4.2570
10/h
100 HW LOAD
125Z EXCESS AIR
COAL TYPE A
NO SOOT BLOWING
-------
TABLE All
GRAIN LOADING AT AIR HEATER (LOCATION
TEST DATE
106 100671
AIR TEMP. ATM,
90
PORT
4 7
4 7
4 7
4 7
* 7
k 7
4 7
4 7
* 7
4 7
4 I
4 7
.00
TIME
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
S.OO
5.00
5.00
5.00
P 40IST. AVE.
, PRESS. STACK VAC
29.420
METER VOL
30.6900
32.1670
33.6450
35.1100
36.5850
3D. 0620
39.5400
41.0200
42.50SO
43.9920
45.4750
46.9610
7.2000
DELTA P
.086
.089
.087
.087
.087
.088
.087
.088
.086
.088
.086
.087
VEL. FLOkRATE
.0921 1293.7468
5618.4
. CDNOENSATE PARTICULATE STACK
35.25000
TEMP. IN
90.000
93.000
99.000
101.000
105.000
107.000
109.000
110.000
111.000
113.000
114.000
115,000
ISO. RATIO
1.1351
*. 3B390 *.
TEMP. OUT TRAIN VAC
92.000 2.5000
93.000 2.5000
93.000 2.5000
94.000 2.5000
95.000 3.0000
96.000 3.0000
98.000 3.0000
100.000 3.0000
101.000 3.0000
102.000 3.5000
103.000 3.5000
104.000 3.5000
EHIS. RATE PART.
AREA INIT.
3*270 29.
. 5TK. TEMP.
390.000
390.000
390.000
387.000
386.000
3H8.000
388.QOO
388.000
387.000
390.000
390.000
387.000
2)
VOL.
2*50
P02 PC02
•
BOH TEMP.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
000
000
000
000
000
000
000
000
000
000
000
000
0700 .1180
PROBE DIA.
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
• i?500
.2500
.2500
VELOCITY
1286.
130H.
1293.
1291.
1290.
1299.
1292.
1299.
1284.
Mul.
128(i.
1291.
27
52
73
45
6U
61
21
61
00
15
27
45
LOAD STD. LOAD
108.2997 2.2*89 3.
UNDER 5 MICRONS 5 TO BO MICRONS
ANISO
CORRECTION FACTOR
EMISSION HATE
PART.
STD.
LOAD
LOAD
1.0000
108.2997
2.2*89
1.731*
1.0633
115.1516
2.3912
3.9675
731*
OVER 80 MICRONS
1.1351
122.9295
2.5S27
4.235*
TKST: 10/6
100 MW 1.
125* KXC
COAL TYI
NO SIH1T
.OAI)
Kf>:; AIR
•i: A
IU.OWINI;
-------
TABLE A14
GRAIN LOADING AT AIR MEATErt (LOCATION 2)
TEST
107
LJ«TE
100671
AIR TEMP.
dO.00
ATM. PRESS.
11.420
STICK y*C.
7.2000
CONOENSATE PARTICIPATE
31.50000 4.06110
STACK AREA
4.34270
INIT. VOL.
46.9610
P02
.0700
PC02
.nuo
TIME METER VOL DELTA P TEMP. IN TEMP. OUT TRAIN VAC. STK. TEMP. »OX TEMP. PROBE D1A. VELOCITY
.2500 1*06.44
.2500 139?.72
.2500 1385.Bl
.2500 1383.37
.2500 1*06.44
.2500 1400.42
.2500 141S.7J
.2500 1402.06
.2500 1014.91
.2500 1413.2b
.2500 1407.20
.2500 1400.42
10/6
100 MW LOAD
125% EXCFSS AIR
COAL TYPE A
NO SOOT BLOWING
47 5
7 5
7 5
7 5
7 5
7 5
7 5
7 5
7 5
7 b
7 5
7 5
P MOIST.
.0794
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
Hi.
1402
48.4770
50.0250
51.5620
53.0950
54.6200
56.1660
57.7390
S9.3200
60.8850
62.4480
64.0050
65.5630
.103
.101
.100
.100
.103
.102
.104
.102
.104
.104
.103
.102
VEL. FLOKRATE
.4014
6090.2
90.000
94.000
97.000
102.000
105.000
107.000
109.000
112.000
112.000
113.000
114.000
114.000
ISO. RATIO
1.0914
UNDER 5 MICRONS
AN1SO CORRECTION FACTOR
EMISSION
HATE
PART. LOAD
STD. LOAD
1.0000
104.3398
1.9988
3.3369
92.
92.
93.
94.
95.
9f>.
97.
99.
100.
101.
102.
104.
EMIS
000
000
000
000
000
ooo
000
000
000
000
000
000
. RATE
104.3398
5
TO
1
loa
2
3
2.5000
2.5000
2.5000
2.5000
3.0000
.0000
.0000
.5000
.5000
.5000
.5000
3.5000
393.010
393.000
393.000
390.000
393.000
394.000
396.000
396.000
395.000
393.000
394.000
394.000
-75
-75
-75
-75
-75
-75
-72
-72
-72
-72
-72
-72
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PART. LOAD STB. LOAD
1.
80 MICRONS
.0437
.9004
.0861
.4828
9988 3.
3369
OVER 80 MICRONS
1.0914
113.8778
2.1815
3.6420
T/J.K.C-
-------
TABU MS
GRAIN LOADING AT AIR HL'ATEK (LOCATION
TEST U»TE
2)
108 100671
AIR TCHP. »IH.
90.00
POST Tint
4 1 5.00
4 «.' S.OO
* J 5.00
4 4 S.OO
4 5 5.00
4 b 5.00
4 7 5.00
4 » 5.00
4 V 5.00
4 10 S.OO
f MOIST. »Vf.
.0'B2 1261
PRESS.
29.420
METEH VOL
66.8580
6B.4100
64.7680
71.0BSO
72.4660
73.8960
75.2580
76.7170
77.9520
79. J290
STACK VAC
7.2000
ULLTA P
.076
.102
. 09B
.075
.041
.075
.105
.106
.061
.095
VEL. FLUURATC
.1*88
55636.1,
. CONOENSATE
23.25000
PARTICIPATE STACK
AREA INIT.
3.1H820 43.42700
TEMP. IN TEMP. OUT TUA1M VAC
Bk.OOO
87.000
92.000
95.000
97.000
99.000
101.000
103.000
104.000
10».000
ISO. RATIO
1.0465
UNDER 'J MICRONS
• NISO CORRECTION FACTOR
EMISSION RATE
PA&T. LOAD
SID. LOAD
1.0000
1025.1626
?.1*97
1.4949
86.000 2.5000
B6.000 2.5000
87.000 3.0000
SB. 000 J.OOOO
H9.000 3.0000
91.000 1.0000
92.000 1.5000
93.000 3.5000
94.000 3.0000
95.000 3.5000
EMIS. RATE PART.
1025.1626 2
5 TO DO MICHONS
1.0227
1048.4445
2.19B5
3.5743
. STK,
327
JS7
36^
365
381
375
JH5
377
382
399
65.
TEMP.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
VOL.
5630
BOX
-75
-75
-6H
-70
-70
-75
-70
-70
-73
-70
P02
.0700
PCO?
.1180
TIMP. PKOBt OIA.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.2500
.2500
.2500
.2500
.2500
.<"500
.2500
.2500
.2500
.2500
VELOCITY
1160.
136',.
134h.
117-J.
1312.
ll«7.
1-13.
1412.
1075.
1155.
14
40
3H
9B
31
11
00
97
08
\e
LOAD STD. LOAD
.1497
3.
4949
OVEH 80 MICRONS
1 .
1072.
2.
3.
0465
uotn
?49t>
6573
TI:ST:
10/6
100 MU LOAD
125X KXCK:
COAL TYI'i:
;s AIK
A
NO -SUIT BLOWING
-------
T
' ST
DATE
109 100871
AI3 TEMP
90.00
PO-fT
4 1
2
3
4
5
6
/
cj
9
10
11
12
13
14
15
16
1 J
11
I'*
20
I
2
l
4
'j
f,
3 /
3 8
3 9
3 10
3 II
3 12
J 13
) 14
i 15
3 16
3 17
3 In
3 19
3 20
P MOIST.
.0675
. ATM.
TIME
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
f .00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
AVE.
57B
PHESS.
29.420
STACK VAC.
2.1500
CUNDENSATE
59.9SOOO
PANICULATE
METER VOL DELTA P TEMP. IN TEMP.
106.9040
107.98QO
109.1770
110.1650
111.1800
112.1250
113.0700
114.0300
114.9000
115.7960
116.7350
117.7500
118.5820
119.5400
120.5650
121.4100
122.3270
123.2010
124.2250
125.1640
125.B900
126.7920
127.6.J80
128.5530
129.3940
130.2270
131.1620
133.1100
134.0600
134.9610
135.0250
136.7930
137.5970
138.5280
139.434U
140.3700
141.4360
142.9150
144.6810
146.4930
.020
.022
.023
.022
.01 r
.015
.017
.017
.012
.016
.0)6
.015
.017
.017
.015
.017
.015
.017
.016
.016
.008
.010
.017
.012
.010
.010
.015
.017
.016
.015
.01-
.015
.017
.016
.015
.017
.035
.055
.060
.090
VEL. FLOKWATE ISl
.1004
ANIbO CORRECTION FACTOR
EMISSION
RATE
PAHT. LOAD
100420. 1
UNDER
1
1041
1
STD. LOAD 1
77.000
H 1 .000
H4.000
BB.OOO
92.000
94. 000
95.000
97.000
97.000
97.000
79.000
81.000
82.000
H5.000
dH.OOO
90.000
92.000
93.000
94.000
95.000
69.000
70.000
72.000
75.000
77.000
79.000
H2.000
69.000
70.000
73.000
6rt . 000
70.000
73. 000
75, 000
79.000
80.000
66.000
69.000
93.000
99.000
. HATIO
1.0308
5 MICRON5
.0000
.3370
.2121
.8758
Bo.
82.
82.
82.
82.
H2.
B3.
83.
83.
64 .
BO.
80.
BO.
61.
1)1.
B2.
B2.
83.
83.
S3.
70.
70.
70.
70.
71.
71.
72.
70.
71.
71.
70.
70.
70.
71.
71.
72.
82.
83.
84.
75.
EMIS
10
5
5.11370
ST»Cn
173.
OUT TWAIN VAL
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001)
000
000
000
000
000
000
000
000
000
000
000
000
3.5000
3.5000
3.5000
3.5000
3.0000
J.OOOu
J.OOOO
3.0000
2.5000
3.0000
3.5000
3.0000
J.5000
3.5000
3.0000
3.5000
3.5000
3.5000
3.5000
3.5000
2.5000
2.5000
3.5000
3.5000
3.0000
i.OOOO
4.0000
4.0000
3.5000
3.5000
3.5000
3.5000
.0000
.0000
.0000
.0000
.5000
.0000
B.OOOO
000 12.0000
AKEA IN1T.
70700 105
* SlK. TEMP
320.000
323.000
326.000
326.000
330.000
332.000
332.000
332.000
333.000
339.000
340.000
338.000
341.000
341.000
347.000
348.000
348.000
346.000
355.000
364.000
310.000
332.000
334.000
333.000
335.000
335.000
344. 000
340.000
346.000
347.000
340.000
332.000
336.000
3JH.OOO
34J.OOO
354.000
354.000
356.000
355.000
375.000
VOL. P02
•b460 . 1080
. BOX TEMP. PR
-65.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-65.000
-65.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60. 000
-60.000
-60.000
-60.000
-55.000
-55. 000
-53.000
-53.000
-53,000
-55.000
-65.000
-60.000
-60.000
-60.000
-55.000
-53.000
-53.000
-53.000
-53.000
-53.000
-55.000
-55.000
-55.000
PC02
. 0840
«t 01 .. .
.5000
.5000
.5000
.5000
.5000
.5000
.500(1
.5000
.5000
.500.)
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.500:)
.5000
.5000
. '. 0 0 i)
.5001
.5000
,5oon
.5001
.500J
.5000
.5000
,5oon
.5000
.5000
.5000
.5000
.5000
.5000
•Jt L"<. I 1
5vl. 1C
621.1'.
1.3". V
622.33
548.45
5 ] *> . n 3
.>•» ..14
549.14
401.66
515.10
535.4)
517.7(1
552.25
552.25
52" .69
554.66
521.01
554 .6(1
54,1 ,4 J
543,40
J 7 1.44
4<<1 . 17
54'y ..T4
461 .66
421.97
421.97
5)9.7,.'
551. -.1
53'. 44
-12.1.6s
5 0 0 • * 5
515. HJ
550.53
534, n,
51 J.4,
556,72
79H.81
1002. bs
1041,. 5 )
1297.37
. (VATE PART. LOAD STU. LOAD
43.3370
1
TO 80 M1CHONS
1.0152
1059.1491
1.2305
1.9042
2121 1
B75B Ti:ST.
OVEH BO MICRONS
1.0308
1075.4478
1.2494
1.9335
JO/8
35 HW 1,0
\B
l'.5Z EXCESS AIR
COAI. TVI1
NO SOOT
', A
H.OWINC
-------
APPENDIX B
DATA MANAGEMENT LOG
135
-------
TEST NO.
DATA MANAGEMENT LOG
DATE
TEST START TIME
TEST END TIME
EXPECTED VARIABLES
LOAD FACTOR
FUEL TYPE
SOOT BLOWER
EXCESS AIR
35 50 75 100
ABC
NONE MAX MIN
NORMAL MAX MIN
BURNER ANGLE - NORMAL MAX MIN
COAL AND REFUSE SAMPLING
NO. OF AGG LABEL SENT TO SENTO ANALYSIS RCVD
SAMPLES LABELED ID ISGS MRI MITRE
COAL
MECH SEP. ASH
PIT ASH
COMMENTS ON COAL AND REFUSE SUBSYSTEM:
136
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P. 2
TEMP. MONITORING
HOURS
TIME TIME OF LABEL SENT TO RCVD
START END DATA ID MITRE MITRE
AIR TEMP. ENT AH
AIR TEMP. LV AH
GAS TEMP. LV ECON
GAS TEMP. LV AH
AIR TEMP. ENT FD FAN
HUMIDITY ENT FD FAN
TEMP. REF. JUNCTION
COMMENTS ON TEMPERATURE SUBSYSTEM:
CONTINUOUS FLUE GAS MONITORING
HOURS
TIME TIME OF LABEL SENT TO RCVD
START END DATA ID MITRE MITRE
LOG 1 TEMP
LOG 1 PRESSURE
137
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P. 3
HOURS
TIME TIME OF LABEL SENT TO RCVD
START END DATA ID MITRE MITRE
LOG 1 FLOW
LOG 1 SO,,
z
LOG 1 Qn
L.
LOG 2 TEMP.
LOG 2 PRESSURE
LOG 2 FLOW
LOG 2 PARTICULATES
LOG 3 TEMP.
LOG 3 PRESSURE
LOG 3 FLOW
LOG 3 PARTICULATES
LOG 3 SO,,
{.
LOG 3 NO
X
LOG 3 CO & CO,,
i.
LOG 3 HC
LOG 3 CL
i.
LOG 3 H^OVAPOR
COMMENTS ON CONTINUOUS FLUE GAS MONITORING:
138
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P. 4
MANUAL FLUE GAS SAMPLING
NO. OF SAMPLE LABEL SENT TO RCVD
SAMPLES TIME ID MRI MITRE
LOG 1 SO,,
LOG 1 NO
LOG 1 CO & CO,,
LOG 2 MASS LOADING
LOG 3 MASS LOADING
LOG 3 H.,50 MIST
2. 4
LOG 3 SO,,
*.
LOG 3 NO
X
LOG 3 CO & C00
COMMENTS ON MANUAL FLUE GAS SAMPLING:
OPERATING CONDITIONS LOG
SAMPLE HOURS
OCLOCK
OCLOCK
OCLOCK
OCLOCK
139
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P. 5
PRINT OUTS
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
LABEL ID
SENT TO MITRE
COMMENTS ON OPERATING CONDITIONS:
RCVD MITRE
OP. COND. LOG
PRINT OUTS
QUICK LOOK LOG AND COMPUTATIONS
NET EFF COMPUTATION OCLOCK
GROSS EFF COMPUTATION OCLOCK
FLOW COMPUTATION OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
140
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P. 6
MASS FLOW COMPUTATION
OTHER COMPUTATION
NUMBER OF DATA SHEETS
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
LABEL ID SENT TO MITRE RCVD MITRE
QUICK LOOK LOG
QUICK LOOK COMPU-
TATIONS
DATA SHEETS
COMMENTS ON QUICK LOOK:
PERSONNEL
MITRE
TEST DIRECTOR
DATA HANDLER
OTHERS
MRI
PARTY CHIEF
OTHERS
WOODRIVER
SUPERVISOR
141
-------
DATA MANAGEMENT LOG
TEST NO. (CONT) P, 7
COMMENTS OF TEST DIRECTOR
TEST DIRECTOR SIGNATURE
DATA HANDLER SIGNATURE
142
-------
APPENDIX C
DATA BASE
143
-------
SELECTION CARDS
ill
02
03
0
-------
KFC'J"D TYPt TEST
TIME LtC KETH
OuNS I AN T S
FL(,H
F LCW
1 [ Cu
E L ( *
F Lilt,
FLLW
f LC»
ILLW
( 1 C w
r L(,«
FLU*
FLEW
F LOW
E L L w
1 L L w
F L LW
ELlihl
FL(*
t Lfu
F L LW
FLOW
r L cw
F LOW
r LOU
FLOW
11
'.)')
0,1
12
07
01
Ob
Hi
^ ^
04
O'.i
10
,:Q
:))
H
19
14
1'j
d2
11
CM
uu
12
07
LEAKAGE
1 1 UMPEKATUFU -
1 1 TF*PrRATU«t =
1 1 TEMFERATIJRF >=
1 1 TEMPERATURE '
1 1 TFMPF RATURL =
1 1 TEMfTHATURE =
1 1 TEfPESATURE =
1 1 TEMFERATURE =
1 1 IF.TtRATURf -
1 1 Tf'PERATUKf =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 1 TEMFERATURE =
1 1 TFKPFRATUR1 =
1 1 TQMPEBATIIHE =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 0 TEMPERATURE =
1 0 TEMPERATURE =
1 0 Tt MPt: R ATURE =
1 0 TEMPERATURE =
1 0 TEMPERATURE -
.1
700
700
700
700
700
700
782
712
712
712
732
1,12
712
(.32
(>'i2
692
6'i2
742
STAT 1C
STATIC
STAT 1C
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STAT 1C
STAT 1C
STATIC
STAT 1C
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STATIC
STAT If.
STAT 1C
PRES =
I'RES »
PRES -
PRES «
PHFS -
F'FU S • -
PRES =
P RES =
PRES =
PRES =
PRFS =
PPfS =
PRES =
PRI S «
Ptvf S -
PRES "
PRCS -
PRES »
PRES =
PRES *
PRFS =
PRES =
PhES -
2 VLLCCITr
2 VELCCITY
2 VELOCITY
2 VELCCITY
2 VELlfCITY
2 VFIECITY
1). 2 ViLtXITY
!.'< VELOCITY
2. 6 Vf E f CI T Y =
2.7 VFLLCITY
4.3 VELOCITY
I. a VEIUCITY
3.3 VTLOCITY
1.6S VELCCITY
1. U VELTCITY
1.5 VFLECITY
1.6 VELCCITY
2.4 VELOCITY
VrLCiCITY = 14(,d
VELOCITY = 1222
VELOCITY = 1421,
VELOCITY = 1264
VFLCr. ITY i 1120
-------
RECORD TYPE T6ST DATE T1HE ICC CETH
FLCW
FLOW
FLUW
FLOW
FLOW
FLOW
FLOW
FLCW
FLOW
FLGW
FLOW
FLOW
FLCW
FLOW
FLCI.
FLCW
FLOW
FLCW
FLCW
FLOW
FLCW
FLCW
FLCW
FLOW
FLOW
FLCW
FLCW
01
06
la
13
04
05
10
20
02
03
17
19
21
14
15
22
11
09
08
12
07
01
06
18
13
04
05
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TEMPERATURE -
TEMPERATURE •
TEMPERATURE *
TEMPERATURE -
TEMPERATURE «
TEMPERATURE •
TEMPERATURE »
TEMPERATURE »
TEMPERATURE •
TEMPERATURE •
TEMPERATURE '
TEMPERATURE *
TEMPERATURE *
TEMPERATURE -
TEMPERATURE »
TEMPERATURE «
TEMPERATURE -
TEMPERATURE -
TEMPERATURE «
TEMPCRATURE -
TEMPERATURE -
TEMPERATURE »
TEMPERATURE -
TEMPERATURE -
TEMPERATURE »
TEMPERATURE •
TEMPERATURE «
STATIC PRES •
STATIC PRES «
STATIC PRES »
STATIC PRES -
STATIC PRES -
STATIC PRES *
STATIC PRES «
STATIC PRES -
STATIC PRES »
STATIC PRES -
STATIC PRES '
STATIC PRES =
STATIC PRES -
STATIC PRES -
STATIC PRFS -
STATIC PRES =
363 STATIC PRES -
368 STATIC PRES «
376 STATIC PRES '
375 STATIC PRES -
381 STATIC PRES -
382 STATIC PRES "
392 STATIC PRES »
357 STATIC PRES «
337 STATIC PRCS >
373 STATIC PRES •
348 STATIC PRES «
VEICCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELCCITY
VELOCITY
VfLCClTY
VCLC1C1TY
VELCCITY
VELCCITY
7 VELOCITY
7 VEICCITY
8.9 VELOCITY
6.5 VELOCITY
7.7 VELCCITY
5.25 VELCCITY
7.85 VELCCITY
3 VELOCITY
2.10 VELOCITY
4.50 VELCCITY
4.85 VELOCITY
* 1055
* 1582
« 775
" 589
970
* 1089
= 12?6
« 721
* 999
= 1H6
- 632
810
565
= 661
= 6B5
• 1076
- 1267
* 1076
= 1290
- 1134
= 1207
96i
= 1321
645
= 4S8
845
=• 886
-------
RECURU TYPE TEST CATE TIME LCC KETH
FLUW
FLCW
FLCW
FLOW
FLOW
FLCW
FLOW
FLCW
FLCW
FLCW
FLCW
FLCW
FLCW
FLOW
FLCW
FLOW
FLOW
FLOW
FLCW
FLCW
FLOW
FLCW
FLCW
FLCW
FLCW
FLCW
FLCW
10
20
02
03
17
19
21
1*
15
22
11
09
oa
12
07
01
06
13
13
04
05
10
20
02
03
17
19
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
1
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TEMPERATURE «
TEMPERATURE •
TEMPERATURE «
TEMPL-RATURF "
TEMPERATURE *
TEMPERATURE »
TEMPERATURE *
TEMPERATURE »
TEMPERATURE *
TEMPERATURE *
TEMPERATURE •
TEMPERATURE *
TFMFFRATURE •
TEMPERATURE -
TEMPERATURE «
TEMPERATURE -
TEMPERATURE -
TEMPERATURE •
TEMPERATURE •
TEMPERATURE -
TEMPERATURE =
TEMPERATURE °=
TEMPERATURE -
TEMPERATURE *
TEMPERATURE •
TEMPERATURE -
TEMPERATURE >
360
315
361
366
353
340
353
37*
359
368
296
292
304
302
308
312
309
285
266
292
272
290
253
283
206
276
273
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STAT 1C
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
PRES •
PRES »
PRES •
PRES -
PRES •
PRES •
PRES •
PRES •
PRES »
PRES •
PRES -
PRES *
PRES •
PKES -
PRES -
PRES «
PRES -
PRES •
PRES •
PRES •
PRES "
PRES «
PRES *
PRFS *
PRES -
PRES -
PRES -
7.20
2.70
4.60
5. SO
2.70
3.25
2.10
2.65
2.75
4.85
.57
• 64
.49
.51
.46
.51
.49
.52
.46
.49
.48
.60
.61
.64
.63
.60
.56
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VFLCCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VUCCITY
VELOCITY
VELOCITY
VFLCCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
- 1063
"> 561
« 667
•JOB
586
» 662
• 500
593
» 590
» 889
- 2032
- 1934
* 955
870
= 8RR
710
9C7
413
• 310
655
596
807
405
584
703
410
472
-------
KtCORD rrPE TEST DATE TIKE ICC KETH
FLLU
FLOW
FLOW
FLIU
UUCT
DUCT
DUCT
COAL
COAL
COAL
CCAL
COAL
COAL
COAL
COAL
I. LAI
COAL
COAL
COAL
CUAL
COAL
21
14
15
22
11
09
08
12
07
01
06
18
13
04
05
10
20
02
3 0 TEMPERATURE
3 0 TEMPERATURE
3 0 TEMPERATURE
3 0 TEMPERATURE
1 AREA
2 AREA
3 A8EA
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
261
284
278
-. 294
- 511.3
» 347.5
* 444.9
- .1003
- .0334
- .09B9
• .0337
• .1025
« .0337
- .1075
» .0319
« .1001
- .0327
• .1042
= .0310
* .1130
- .0276
- .1215
• .0251
= .1313
» .0249
» .1035
- .0333
- .1357
= .0182
* .1669
* .0165
• .1594
* .0168
» .0985
- .0287
STATIC PRES
STATIC PRES
STATIC PRES
STATIC PRES
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MUISTUHE
CARBON
MOISTURE
CARBON
MUISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MUISTURE
CARBON
MOISTURE
.55
.52
.56
.53
- .6819
- .0364
- .6923
* .0366
« .6692
- .0366
- .6770
- .0359
* .6919
- .0389
* .6743
» .1402
• .6722
* .0410
« .6700
• .0383
« .6645
- .0345
- .6774
• .0431
» .6t?2
- .0369
• .6427
- .0329
= .6480
» .0404
- .6808
- .0452
VELOCITY
VELOCITY
VELCCITY
VELOCITY
HYDROGEN
HEAT VALUE
HYDROGEN
HFAT VALUt
HYE.ROGEN
HEAT VALUF
HYTRCGEN
HfAT VALUt
HYCROGEN
HEAT VALUE
HYDROGEN
HfAT VALUE
HYDROGEN
HEAT VALUE
HYCROGEN
HEAT VALUF
HYUROGEN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HEAT VALUF
HYDROGEN
HEAT VALUE
HYCROGEN
HEAT VALUE
347
430
420
651
= .0520 NITROGEN
• 12111
* .0524 NITROGEN
- 12232
- .0519 NITROGEN
= 12163
* .0506 NITHOGFN
• 12051
- .0517 NITROGEN
- 12153
• .0519 NITROGEN
- 12117
- .0510 NITROGEN
= 12055
- .0503 MTROCFN
• 11813
« .0495 NITROGEN
• 11837
- .0519 NITROGEN
« 120B6
• .0498 NITROGEN
- 11814
= .0464 NITROGEN
* 11333
- .0472 NITROGEN
- 11184
= .0513 NITROGEN
- 12092
• .0126
• .0132
• .0123
• .0125
- .0126
• .0133
= .0124
• .0149
• .0134
= .0130
= .0146
- .0143
•= .0130
' .0116
-------
RECORD TYPE TEST DATE TICE LCC METH
CCAL
CCAL
CUAL
COAL
COAL
COAL
LtJAL
GAS
GAS
GAS
FLLE CAS
FLUE GAS
HUE GAS
FLUE GAS
FLUE GAS
fLLE GAS
03
17
19
21
14
15
22
05
10
20
11 1
11 081171 2200 1
11 081171 2300 1
11 0811)1 0000 1
11 091171 0100 1
11 2
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
CARBCN
HEAT VALUE
CARBON
HEAT VALUE
CARBON
HfAT VALUE
0 CC2
S02
NO
1 CC2
S02
NO
1 CC2
S02
NC
1 CC2
SD2
NC
1 C02
SC2
NO
0 CC2
502
NO
• .1000
• .0330
» .1014
* .0342
» .0956
* .0339
. .0914
• .0302
> .1078
• .0274
> .1044
* .0345
= .0661
- .0132
= .7238
- 22447
x .7240
« 22460
* .7360
» 22630
•
X
- 1965
- 2085
- 2085
- 2085
= 397
CARBON
MOISTURE
CARBCN
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARbPN
MOISTURE
CARBCN
MOISTURE
HYDROGEN
SP. GR.
HYDROGEN
SP. GR.
HYUROGEN
SP. GR.
C2
UHC
NU2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
N02
= .6777
- .0413
« .6767
> .0412
- .6819
- .0406
- .6865
- .0400
- .6735
* .0458
* .6750
» .0430
• .7228
- .0417
» .2545
* .588
= .2450
« .587
' .2450
- .585
•
a
• . 046
> .046
- .046
*
HYDROGEN
HEAT VALUE
HYCPCGEN
HEAT VALUE
HYDROGFN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGFN
HFAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HFAT VALUE
NITROGEN
NITROGEN
NI TPCGEN
CO
MOL V.GTIHCI
CC
MOL hGT(HC)
CC
MOL *GT
-------
RECORD TYPE
FLLE CAS
FLLE CAS
FLUE CAS
FLUE CAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE CAS
FLUE CAS
FLUE CAS
FLUE CAS
FLLE GAS
FLLE CAS
FLLE GAS
TEST DATE TIHE LCC ftlH
11 2 X C02
S02
NO
11 30 C02
S02
NO
11 3 X C02
S02
NO
09 10 C02
502
NO
09 091171 1200 1 1 CC2
S02
NO
09 091171 1300 1 1 CC2
S02
NO
09 091171 1400 1 1 CC2
S02
NO
09 051171 1500 1 1 CC2
502
NO
09 051171 UOC 1 1 CC2
502
NO
09 091171 1700 1 1 C02
502
NC
09 051171 1800 1 1 CC2
S02
NC
09 091171 1500 1 1 CC2
502
NC
09 091171 2000 1 1 CG2
SC2
HO
09 20 C02
S02
NO
as
'
=
X
•
"
•
-
•
a
-
-
*
-
.0770
6^1
.1080
.1025
2400
2400
2370
1980
2040
2070
2160
2220
2340
347
02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
C2
UHC
N02
C2
UHC
N02
02
UHC
NC12
C2
UHC
N02
02
UHC
N02
CC
« MOL
CO
MOL
• .0640 CO
- MOL
CO
MCL
« .027 CO
MCL
- .027 CO
= MOL
- .026 CO
MOL
- .028 CO
MCL
= .029 CO
= MCL
- .026 CC
MOL
- .025 CC
MOL
* .027 CC
MOL
• .036 CO
* MOL
CO
* MOL
n
kGTIHCI -
kGTIHCI «
UGTIHCI -
UGTIHCI -
kGTIHC) *
UGTIHCI »
fcCTIHCI •
UGTIHCI -
kGTIHCI =
kGTIHC) *
kGTIHC) «
UGTIHCI -
kCTIHCI =
kCTIHCI *
N?
HEATIUHC)
N2
HtATIUHCI
N2
HFATIUHC)
N2
HFATIUHCI
N2
HFATIUHC)
N2
HEATIUHC)
N2
HFATIUHC)
N2
HtATIUHCI
N2
HEATIUHCI
N2
HEATIUHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHC)
-------
CfcCORU TYPE TEST DATE TIME LCC FETH
FLUE GAS 09 2 X
FLLE (.AS 09 30
FLOE GAS C9 3 X
FLLE GAS 08 10
FLCt GAS 06 101171 150C 1 1
FLUE GAS 03 101171 ItOC 1 1
FLUE GAS 03 101171 1700 1 1
FLUE GAS 03 101171 160C 1 1
FLUE GAS OH 2 0
FLLE GAS 08 t X
FLUE CAS 03 30
FLLE GAS Oil 3 X
FLLt GAS 12 1 0
FELL GAS 12 111171 1100 1 1
C02
502
NO
C02
502
NC
C02
S02
NO
CC2
502
NO
C02
S02
NO
CC2
S02
NO
CC2
502
NO
CC2
SOZ
NO
C02
502
NO
C02
S02
NC
CC2
S02
NO
C02
502
NO
C02
502
NO
CC2
502
NO
» .1080
»
=
- .0230
=
39*
- .1280
=
•
' .0720
- 25*1
3
s
' 2220
•
,
" 2205
*
=
- 2205
*
=
* 2235
=
=
=
*33
• .1150
=
"
= .0860
1306
522
= .1100
*
=
- .0190
ina*
*
=
•= 2370
=
02
UHC
N02
U2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NQ2
C2
UHC
NU2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
- .0840 CC
« HOL
•
CC
« MUL
•
- .0560 CCl
= MfiL
-
CD
* HCL
-
- .050 CO
MCE
•
- .050 CO
MCL
X
• .050 CC
» HGL
•
- .050 cn
* MCL
•
cc
* HCL
•
« .OUOO CC
MHL
-
CC
("111
<•
* .0700 CC
MHL
"
CP
MOL
•
' .C37 cn
= MUL
=
.
hGT(HC) »
f
HGTIHCI .
s
hGTIHCI »
s
HGTIHCI "
f
hGTIHC) *
_
hGTIHC) -
_
UGTIHC) «
=
hGT (HC ) =
=
kGTIHCI «
«
hGTIHCI i
_
hGTIHCI i
=
hGTIHfl »
_
hGT ( HC 1 =
_
UGTIHC) *
N2
HEATIUHCI
N2
HFATIUHCI
N2
HEAT! UHC 1
N2
HFATIUHCI
K2
HFATIUHC 1
N2
HFATIUHC 1
N2
HFATI UHC )
N2
HfiATIUHC 1
N2
HE ATI UHC 1
N2
HF ATI UHC I
N2
HEATIUHCI
N2
HFATIUHC 1
K'2
HL «T I UHC I
N2
HI ATI UHC 1
-------
RECURO TrPE TEST BATE
FLLE GAS 12 111171
FLU: GAS 12 HUM
FLU CAS 12 111171
FLUE GAS 12 111171
FLLE GAS 12 111171
FLLE GAS 12 111171
FLUE GAS 12 111171
FLUt GAS 12
FLUt GAS 12
FLUE GAS 12 111171
FLUE GAS 12
FLLE GAS 07
FLUE GAS 07 121171
TIKE LCC
120C 1
1300 1
HOC 1
1500 1
ItCC 1
1700 1
1EOC 1
I
t
,
1600 3
I
1
OSOO 1
PETh
1 C02
SC2
NO
1 COZ
SC12
NO
1 C02
SC2
MCI
1 C02
S02
NC
1 CC2
S02
NC
1 CC2
SC2
NO
1 CC2
S02
NC
0 C02
502
NO
X CC2
S02
NC
C CC2
S02
NC
1 C02
SO'
NC
X CC2
S02
NO
0 C02
so;
NO
1 C02
SC2
NO
.
= 23<,0
=
3
= 22<35
*
X
= 2265
=
x
= 2250
"
X
x 2250
•
=
= 2235
*
=
2250
-
=
=
509
= .1250
=
=
= .0760
- 1703
302
-
1755
=
x .1225
X
•
= .0735
' 1571
=
=
= 2295
X
C2
UHC
NO 2
UJ
UHC
N02
L>2
DUG
N02
02
UHC
NO2
02
UtIC
NO 2
02
UHC
NO 2
02
UHC
NR2
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
02
UHC
NC2
02
UHC
NO 2
02
UHC
N02
- . C3t CO
• MO I
M
- .035 CC
" MCL
•
* .C37 CD
= HOL
"
* .039 CO
= MOt
•
« .C3B CO
MfL
-
* .038 CO
= MOL
•
= .037 CO
MOL
*
CC
= MUL
=
= .0650 CC
x POL
-
CC
* MOL
"
CC
Mfll
-
• .0800 CO
MOL
•
cc
MOL
-
" .035 CO
» MCL
X
.
hGTIHCI =
_
UGTIHTI =
=
•Grind =
_
WGTIHCI -
X
UGT(HC) =
=
ViGTlHO x
.
hGTIHCI =
=
V.GTIHCI =
=
HOT (HO =
.;.
hGTIHCI =
X
•GTIHCI "
x
W,T(HCI •*
_
WGT (HC \ =
=
hGTIHCI =
N2
HFATIUHC 1
N2
HEATIUHC 1
N2
HF ATI UHC 1
v,
HEf.TlUhf 1
N2
HTATIGhC 1
fv
"r ITIUF-r. |
,,,
HF £T I IJhT )
M2
HFJTIUhCI
N2
HI ATIUHL 1
NT
Hr AT I UHf )
N2
HE ATI UHf )
N2
HFATIUHC )
N2
HEATIUHT 1
N2
HE ATI UHT )
-------
rUCOPO TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLCE GAS
FLUE GAS
FLUE GAS
fLUE GAS
(-LLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
TEST OHt TIME LCC PETM
07 121171 1000 1 1 CC2
S02
NO
07 121171 1100 1 1 C02
S02
NO
07 121171 1200 1 1 CC2
S02
NO
07 121171 1300 1 1 CC2
S02
NO
07 121171 1400 1 1 CC2
SC2
NO
07 121171 1500 1 1 CC2
S02
NO
07 121171 UOC 1 1 CC2
S02
NO
07 121171 1700 1 1 C02
SQ2
NO
07 121171 1800 1 1 C02
S02
NO
07 121171 1100 1 1 C02
S02
KC
07 20 C02
SC2
NO
07 2 X C02
SH2
NO
07 30 C02
S02
NO
07 121171 1300 3 1 CC2
S02
NO
- 2340
- 2295
• 2280
- 2325
" 2355
*
- 2885
• 2370
- 2370
- 2370
« 2445
•
325
- .1300
« .0235
1800
379
- .135
" 1935
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NQ2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
M02
C2
UHC
ND2
02
UHC
N02
02
UHC
N02
02
UHC
N02
• .C35
• .037
• .C37
*
- .036
• .034
> .033
* .034
- .035
- .035
• .035
—
• .0600
*
-
» .044
cn
MUL
CC
MUL
CO
HOL
CO
HDL
CC
HOL
CO
HCL
CC
HOL
CC
HOL
CC
HOL
CC
MOL
CO
HOL
CC
HOL
CO
MOL
CO
HOL
KGTIHCI «
kGTIHCI *
kGTIHCI -
KGTIHCI *
kGTIHCI >
WGTIHCI -
KGTIHCI •
kGTIHCI *
KGTIHCI =
KGTIHCI »
kGTIHCI "
KGTIHCI *
KGTIHCI *
KGTIHCI -
N2
HEATIUHCI
N?
HEATIUHCI
N2
HEATIUHCI
N2
HE ATI UHC 1
N2
HE ATIUHC 1
N2
K»TIUHCI
N2
MFATIUHC)
HEATIUHCI
HEATIUHCI
N2
HCATIUHCI
HEATIUHCI
N2
HF.ATIUHCI
N2
HE ATI UHC 1
N2
HEATIUHCI
-------
TYPE TEST LATE TIKE LCC CETH
VJ1
£k
FLCE GAS
FLUfc GAS
FLGF GAS
FLUE GAS
FLUt GAS
FLUE GAS
FLUE GAS
fLLE GAS
FLUt GAS
FLLe GAS
FLUu HAS
fLCt GAS
FLLE GAS
FLLt GAS
07 121171 UOC 3 1 C02
SOi
NO
07 121171 15CO 3 1 C02
502
NO
07 121171 1600 3 1 CC2
S02
NO
37 1211)1 17CO 3 1 CC2
S02
NC
07 121171 IfiCO 3 1 C02
S02
NO
37 1211)1 1SOC 3 1 CC2
SO.:
NC
07 3 X CO:
SQ2
NO
01 1 C C02
S02
NC
01 141171 210J 1 1 C02
502
NO
01 141171 220C 1 1 C02
so:
NC
01 141171 23CO 1 1 C02
so:
\c
01 151171 3C30 1 1 C02
SC2
NO
01 151171 C10C 1 1 CO.;
S02
NO
01 151171 C2CO 1 1 C02
S02
NO
• .135
• 1965
-
= .135
' 1995
•
•= .135
= 2100
*
* . i ; 5
= 2J85
*
= .135
= 2085
*
- .1 >5
= 21 30
"
- .1260
=
=
= .0595
15U2
1
=
= 2130
=
-
- 2100
=
«
= 2040
=
s
= 2040
=•
=
= 207U
=
,
•= 2070
=
D2
UHC
HQ2
02
UHC
NU2
02
UHC
N02
02
UHC
NP2
C2
UHC
NIJ2
C2
UHC
M)2
C2
GHf
N02
C2
UHC
NU2
C2
UHC
M)2
C2
UHC
NU2
C2
UHC
NC2
02
UHC
NU2
t'2
LHC
N'J2
C2
UHC
N02
= .062 cn
* MIL hGT(HC) -
=
- .C62 Cf)
COL taGTIHLI =
"
« .C66 cr
KCL h5T(HLI =
*
= .C68 cn
"01 kGTIHC) =
=
= . Cft'< Cl
»LL kGTIHC) =
=
= .C67 cr
= MLLhGTIt-iO =
=
= .06 jo cr
1 MHLWGTlHri-
=
CC
= MDL kGT (|U 1 =
"
• .C31,- CC
"01 KGTIH'I =
-
- .C42 CC
= MnL hGT [Hr 1 =
'
- oC4e cn
M^L WGTInri =
=
= .C4", V:
PCI hGTIHCI =
•
* .C45 Cn
PTL KGTIHfl =
=
= .C45 cn
NC'L fcGTIHCI =
•
N2
HEATIGHC 1
N2
HEATIUnr )
N2
HfcAKUIir 1
N2
"FJTIUhf )
12
Hf/lTIUhf 1
N2
HFAT(i;>ir |
N2
l'FAT(UI'C 1
N2
HFATILHC)
N2
He ATI UHf 1
M2
HF AT ( LHC )
N2
HF AT ( UHL )
N2
F-LATIUHf. 1
\:
H- AT( UHC )
N2
HEATIUHCI
-------
ftECUKD TYPE TEST DATE TIfE LCC METH
FLLC GAS 01 15117] 0200 i
FLUE GAS 01 151171 0400 1
FILE GAS 01 151171 C500 1
FLUE GAS 01 151171 060C 1
FLUE GAS 01 151171 C70C 1
FLUE GAS 01 2
FLUE GAS 01 2
FLUE GAS 01 3
FLUt GAS 01 151171 0300 3
FLLE GAS 01 151171 0300 3
FILE GAS 01 151171 0400 3
FLLE GAS 01 151171 0400 3
FLUE GAS 01 151171 0500 2
FLUE GAS 01 151171 0500 3
1
1
1
1
1
c
X
0
1
1
1
1
1
1
C02
S02
NO
C02
S02
NO
C02
502
NU
CC2
S02
NO
CC2
502
NC
C02
S02
NU
C02
502
NC
C02
S02
NC
C02
SO?
NO
C02
S02
NO
C02
S02
NO
C02
502
NO
C02
S02
NO
C02
S02
NO
X
= 2055
-
x
- 2070
•
3
= 2070
"
=
= 2065
-
=
= 20U5
=
=
=
» 463
- .1120
=
=
- .0595
1U54
440
= . 140
=
-
3
=
= 350
- .140
=
•
=
=
370
= .142
=
•
B
*
380
02
UHC
NU2
02
UHC
NO 2
02
UHC
NU2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
L2
UHC
N(12
C2
UHC
NU2
02
UHC
K02
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2
" .046 CO
* HDL
-
» .C45 CO
= MOL
-
. .045 CO
MflL
•
• .044 CC
MCL
•
- ,04b cr
* MOL
"
CC
= MOL
•
= .0020 CC
= MGL
•
CC
MOL
"
« .072 CO
MOL
'
CO
MOL
-
- .C72 CC
MCL
•
CO
MOL
c
- .072 CO
MOL
•
CO
MOL
•
=
hGTIHCI *
B
KGTIHC) »
_
kGT 1HC) =
_
hGTIHCI -
_
kGTIHCI -
_
kGTIHCI =
=
kGTIHCI =
_
kGTIHCI =
_
fcuTIHCI =
_
kGT(HC) -
=
HGT 1 HC I =
=
HGTIHCI =
^
hGTIHCI -
=
hGTIHCI •
N2
HE ATI UHC )
N2
HEATIUHC I
N2
HEATIUHC 1
N2
HFATIUHC 1
N2
HEATIIIHC 1
HZ
HFATIUHT. )
N2
HF ATI UHF 1
N2
MFATIUHf )
M2
t^F ATI UHC 1
>!2
HEATIUHCI
N2
HE ATIUHF )
N2
HEATIUHf 1
N2
F-E ATI UHC 1
N2
HF AT I UHC )
-------
KECORO TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
fLUC GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE TIHE LCC fETH
01 151171 CtOC 3 1 C02
SO 2
NO
01 151171 OtOO 3 1 CC.2
S02
NO
01 151171 070C 3 1 C02
S02
NO
01 151171 070C 3 1 C02
S02
NO
01 3 * C02
S02
NO
On 10 CC2
S02
NO
06 151171 23CO 1 1 CC2
S02
NO
06 161171 0000 1 1 C02
S02
NO
06 161171 0100 1 1 CC2
S02
NO
06 161171 C200 1 1 C02
502
NO
06 161111 0300 1 1 CC2
502
NO
06 161111 0700 1 1 C02
S02
NO
06 161171 CaCC 1 1 C02
S02
NO
06 20 C02
S02
NO
' .141
« I860
360
» 1950
395
- .1180
= .0765
- 1272
= 1950
1950
• 1905
' 1920
= 1950
• 2115
• 2190
464
02
UHC
NU2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
NQ2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
= .070 CO
" HOL
CO
- HOL
=• .C69 CO
= HOL
CO
* MOL
- .0780 CO
HOL
CO
= HOL
= ,C39 CO
HOL
- .042 CO
= HOL
a
* .044 CO
HCL
= .044 CO
HCL
• .045 CO
HOL
* .044 CO
- HOL
« .044 CO
HOL
CO
HOL
UGTIHCI =
WGTIHCI "
WGTIHCI =
kGTIHCI =
kGTIHCI *
WGTIHCI -
WGTIHCI -
WGTIHCI -
WGTIHCI =
HGTIHCI =
tiGTIHC) =
WGTIHCI -
UGTIHCI >
hGTIHCI =
N2
HEATIUHCI
N2
HEATIUhCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HE AT IUHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HCATIUHCI
N2
HEAT! UHC 1
N2
hFATIUHCI
N2
HFATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
-------
KECOKD TVPt
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLCE GAS
TEST CATt TIHE LCC METH
06 2 X CC2
502
NO
06 30 C02
S02
NO
06 161171 0700 3 1 CC2
S02
NO
06 161171 0700 3 1 C02
502
NO
06 161171 0600 3 1 CC2
S02
NC
06 161171 0800 3 1 CC2
S02
NO
06 3 X CC2
502
NO
18 1 0 C02
S02
NO
18 161171 2300 1 1 CC2
502
NO
18 171171 OOCO 1 1 CC2
S02
NO
18 171171 0100 1 1 CC2
502
NO
18 171171 020C 1 1 CC2
502
NO
18 171171 030C 1 1 C02
502
NO
18 171171 0400 1 1 CC2
502
NO
- .1180
- .0905
" 1768
466
• .138
- 1905
*
« 285
• .138
" 1890
•
285
« .1260
• .1055
* 1569
1695
• 1740
- 1725
- 1710
- 1680
• 1710
02
UHC
NO 2
C2
UHC
NO 2
02
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
* .0650 CC
- MCL
•
CC
* HOL
*
* .067 CO
* MOL
&
* CO
* MOL
> .068 CO
• MO I
* CO
» MOL
- .0620 CO
• MOL
» CO
- MOL
• .C46 CO
« MOL
" .045 CO
MOL
*
• .045 CO
" MOL
a
- .045 CO
• MOL
• .C46 CC
MOL
• .052 CC
• MOL
UGTIHCI -
kGTIHCI -
WGTIHCI >
WGTIHC) •
kGTIHCI •
UGTIHCI *
kGTIHCI -
UGTIHCI *
kGTIHCI -
kGTIHCI *
c
kGTIHC) -
kGTIHCI •
•
WGTIHCI -
kGTIHCI •
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
MFATIUHCI
N2
HEAT! UHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
-------
RECORD TtPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATS TIKE LCC CETH
18 1711J1 050C 1 1 C02
SO 2
NO
18 171171 060C 1 1 CC2
S02
NO
18 171171 0700 1 1 C02
S02
NO
18 20 C02
S02
NO
18 2 * C02
S02
NO
18 30 CC2
SC2
NO
13 171171 0300 3 1 C02
SC2
NO
18 171171 0300 3 1 C02
S02
NO
18 171171 0400 3 1 C02
S02
NO
18 171171 040C 3 1 CC2
S02
NO
18 171171 050C 3 1 CQ2
S02
NO
18 171171 050C 3 1 C02
SD2
NO
18 171171 CiOC 3 1 C02
S02
NO
18 171171 0600 3 1 C02
S02
KG
> 1725
» 1725
- 1725
" 365
• .1025
« .0485
* 1154
627
« .136
= 1455
365
- .136
1470
355
= .136
* 1500
» 360
- .135
- 1485
m
365
02
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
02
UHC
NQ2
C2
UHC
NQ2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
02
UHC
N02
- .052 CO
* MOL
- .056 CC
MOL
- .050 CO
MOL
CC
= MOL
= .0900 CC
= MOL
CO
* MOL
* .075 CC
M(U
CO
MOL
- .075 CO
MOL
CO
MOL
* .074 CC
MCL
CO
HOL
- .076 CO
= MOL
« CO
MOL
UGTIHCI '
UGTIHCI -
UGTIHCI •
UGTIHCI -
UGTIHCI =
MCTIHCI =
KGTIHCI «
UGTIHCI -
UGTIHCI *
UGTIHCI -
UGTIHCI *
kGTIHC) -
UGT.HC, I
c
UGTIHCI *
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
^'2
HCATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
-------
RECflKD TYPE TEST DATE TINE LCC METh
FLUE GAS 18 171171 07CC 3 1 C02
S02
NC
FLUE GAS 18 171171 0700 3 1 CC2
SD2
KC
FLUE GAS 18 3 X C02
S02
NO
FLUE GAS 13 1 0 C02
S02
NO
FLUE GAS 13 171171 2300 1 1 C02
S02
NO
FLUE GAS 13 181171 0000 1 1 CC2
SC2
Nfl
FILE GAS U 181171 0100 1 1 CC2
S02
NO
Crj
-0 FLUE GAS 13 181171 020C 1 1 C02
S02
NC
FLUE GAS 13 1C1171 0200 1 1 CC2
S02
NO
FLLE GAS 13 181111 0400 1 1 CC2
S02
NO
FLUE CAS 13 181171 050C 1 1 CC2
SH2
NO
FLUE GAS 13 181171 CtOC 1 1 C02
S02
NO
FLLE GAS 13 181171 070C 1 1 C02
S02
NO
FLUE GAS 13 20 C02
S02
NC
- .136
- 1485
"
.
•
« 360
* .1160
*
•
• .0970
- 1848
=
,
" 1560
-
a
- 1680
*
=
= 1740
=
=
1740
=
=
* 16bO
•
=
« 1605
"
=
«
-
.
- 1560
•
,
- 1500
"
.
m
525
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
C2
UHC
N02
C2
UHC
N02
02
UHC
N02
- .074 CO
MOL
*
CG
* Mm
*
- .0790 cn
• MOL
-
co
= MQL
•
- .C6S CO
* MOL
•
* .C68 CO
= MflL
•
- .062 cn
MOL
=
= .C62 CT
MOL
=
* .063 Ctj
MC:L
*
- .063 Cn
Kt L
•
CO
» MOL
-
« .063 Cn
* MOL
•
- .062 CC
• MDL
•
co
• MOL
»
X
UGTIHCI »
a
kGT(HC) *
a
fcGTIHCI »
m
kGTIHC) -
a
WGTIHCI -
_
kGTIHC) -
_
kGTIHC) =
c
hGTIHCI »
_
kGTIHC) *
_
kGTIHCI *
c
WGTIHCI *
_
kGTIHC) •
_
kGTIHCI •
m
hGT(HC) •
N2
HEATIUHCI
N2
HEATIUHC)
N2
HEATIUHC)
N2
HE ATI UHC )
N,
HEATIUHC)
N2
HEATIUHC )
K,
HCATIUHCI
N2
HF ATI OhC )
N2
HFATIUhC)
112
HEATIUtiC I
N2
HEATIUHCI
N2
HEATIUHC)
N2
HEATIUHCI
N2
HEATIUHCI
-------
8ECORP TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLtE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLtE CAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
TEST DATE TIPE LCC MtTH
13 2 X CC2
S02
NO
13 30 C02
S02
NC
13 181171 0300 3 1 C02
S02
NO
13 181171 0400 3 1 C02
S02
NO
13 181171 0400 3 1 CC2
502
NO
13 161171 0500 3 1 CC2
SC2
NO
13 181171 0500 3 1 CC2
S02
NO
13 161171 OtOC 3 1 C02
S02
NO
13 181171 060C 3 1 CC2
502
NO
13 181171 C70C 3 1 C02
S02
NC
13 181171 070C 3 1 C02
S02
NO
13 3 X C02
S02
NO
04 1 0 C02
S02
NO
04 191171 0000 1 1 C02
S02
NO
* .0960
• .0370
752
• .128
* 1350
* .12B
•= 1425
335
- .128
= 1380
360
=• .126
1365
355
= .128
•= 1335
340
- .1040
3
» .0895
- 1996
a>
• 2216
C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
U2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
02
UHC
NU2
02
UHC
N02
02
UHC
N02
02
UHC
N02
- .1000 CC
MPL
*
CC
MOl
- .073 CO
" MOL
= .C88 cn
« MOL
cn
* MOL
- .087 CO
MCL
CO
= MOL
= .087 CO
MOL
= Ct>
MCL
• .091 CO
« MOL
CC
« MOL
* .0860 CC
» MOL
CC
* MOL
« .031 CO
= MOL
kGTIHCI »
kGTIHCI -
hGTIHCI =
WGTIHC) =
HGTIHC) *
hGTIHCI =
WGTIHC) -
HGTIHC) -
hGTIHCI -
kGTIHCI >
kbKHCI .
UGTIHC) -
h&TIHCI -
I.GTIHCI =
N2
HEATIUHCI
N2
HEAT! UHC I
N2
HEATIUHC)
N2
HEATIUHCI
HEATIUHCI
H2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHCI
N2
HEATIUHC)
N2
HEATIUHCI
K'2
HEATIUHC)
N2
HCATIUHCI
N2
HEATIUHC)
-------
KECUKD T»PE TEST DATE Tiff LCC METH
FLLE GAS
FLLL GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUF GAS
FLUt GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
04 191171 0100 1 1 C02
SD2
NO
04 191171 0200 1 1 CC2
502
NO
04 191171 0300 1 1 C02
S02
NO
04 191171 0400 1 1 C02
S02
NO
04 191171 05CO 1 1 CC2
502
NO
04 191171 OtOO 1 1 C02
S02
ND
04 1S1171 0700 1 1 C02
S02
NO
04 1 X CC2
S02
NO
04 20 C02
502
NO
04 2 X CC2
S02
NO
04 30 C02
S02
NO
04 19117] 0400 3 1 C02
S02
NO
04 191171 0500 3 1 C02
S02
NO
04 111171 0500 3 1 C02
S02
NO
m
- 2334
*
a
" 2334
*
a
= 2394
=
,
a 2355
"
a
• 2325
•
,
» 2250
•
„
a 2250
*
- .1420
•
•
a
a
352
- .1320
a
»
- .0755
1918
300
.
3
375
- .142
• 2130
•
a
a
365
02
UHC
N02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NC12
02
UHC
N02
• .031
•
- .C31
»
a .030
a
-
• .029
*
- . C29
"
> .028
a
»
= .030
a
•
a .0420
a
-
a
a
•
a .0510
=
m
a
-
m
a
a
• .062
a
M
„
a
a
CO
MOL
CO
MOL
CO
MC-L
cn
MOL
CO
MOL
CO
MDL
cn
KCL
CC
MOL
CC
MOL
CC
MOL
CC
MOL
CO
MUL
CO
MUL
CO
MOL
hGTIHCI a
=
WGTIHC. =
f
HGTIHC) «
„
HGTIHCI a
f
hGTIHCI a
=
hGT(HC) «
_
WGT(HC) *
,
kG T ( H C ) »
9
kGT(HC) *
K
hGT(HC) -
=
htiT(HC) =
.
kGT(HC) -
=
hGT(HC) •
B
hGTIHCI -
N2
HEATIUHCI
H2
HEATIUHCI
N2
HEATIUHC )
N'2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
N2
HFATIUHC 1
N2
HEATIUHCI
N2
HEATiunr i
N2
HEATIUHCI
N2
HEATIUHCI
N2
HE4TIUHCI
N2
HEATIUHC I
N2
HEATIUHCI
-------
HECGRU TYPE
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATC TIKE LCC HETH
04 1911)1 060C 3 1 C02
S02
NO
04 191171 0600 3 1 CC2
S02
NO
04 191171 0700 3 1 C02
S02
NO
04 191171 0700 3 1 C02
S02
NO
04 3 X C02
S02
NO
05 1 0 CC2
502
NO
05 211171 2300 1 1 CC2
S02
NC
05 221171 COOO 1 1 C02
S02
NO
05 221171 0100 1 1 C02
S02
NO
05 221171 C700 1 1 C02
S02
NO
05 20 C02
S02
NO
05 2 X CC2
S02
NO
05 30 C02
S02
NO
05 221171 0400 3 1 C02
S02
NO
- .142
- 2070
X
• 340
- .142
> 2040
325
* .1310
= .0570
539
210
210
420
570
333
= .1080
« .0735
443
303
200
C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
NQ2
02
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
CO
MOl
cn
MOL
- .062 CO
= MOL
CO
MOL
- .0470 CC
» MOL
CC
MOL
• .C23 CC
MOL
- .023 CO
MOL
• CO
MOL
• .C23 CO
MOL
CC
« HOL
• .0580 CO
MOL
CO
» MOL
CO
MOL
UGTIHC) *
UGTIHC 1 =
UGTIHC) =
kGTIHC) -
kGTIHCI -
UGTIHCI =
hGTIHCI -
kGTIHC) -
hGTIHC 1 *
UGTIHCI >
I.GTIHCI =
KGTIHCI =
WGTIHCI •
UGTIHCI *
N2
HEATIUHC)
M2
HEATIUHC)
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
H2
HEATIUHC 1
K2
HEATIUHC )
N2
HfATIUHC)
-------
RtCUKD TrPE TEST DATE TIME LCC
FILE GAS 05 iillll 0500 3
FLUE GAS 05 221171 0500
FLUE &»S 05 2211/1 0600 3
FLUE GAS 05 2211J1 C60C 3
FLUE GAS 05 221171 07CO 3
FLUE GAS 05
5; FLLt GAS 10
UJ
FILE GAS 13 231171 0000 1
FLLt GAS 10 231171 C100 1
FLLit GAS 10 231171 C200 1
FLCE GAS 10 231171 0300 1
FLUE GAS 10 2211 51 MOO 1
FLLE GAS 10 2311<1 CdOC 1
FLUE GAS 10 231171 C700
3
2
3
3
3
3
1
1
1
1
1
1
1
,
1
1
1
1
1
X
0
1
1
1
1
1
1
1
C02
502
NO
CC2
S02
NO
C02
S02
NO
CC2
502
NO
C02
S02
NO
C02
S02
NO
C02
S02
KC
C02
502
NO
CC2
S02
NO
C02
502
NO
C02
502
NO
C02
S02
NO
C02
S02
NO
C02
S02
NO
» .124
* 660
*
-
=
* 240
=
630
•
=
»
200
* .124
600
"
• .1030
»
*
• .0765
562
•
x
375
-
,
360
•
,
360
*
,
375
•
„
375
-
,
420
•
B
450
*
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
C2
UHC
NC2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
NO 2
» .C2S
X
•
M
»
-
_
9
•
f
»
•
» .035
"
« .0650
•
,
*
•
- .021
-
« .C21
•
- .021
•
« .021
9
'
" .021
>
-
• .019
»
•
" .019
•
•
CO
MDL
CO
MOL
CO
MOL
CO
»OL
CC
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
,
HGTIHCI »
s
UGTIHCI •
=
hGTIHCI «
m
hGTIHCI -
f
kGTIHCI *
B
bGTIHCI •
f
WGTIHCI «
c
UGT(HC) -
^
WGTIHCI «
a
hGT(HC) =
^
NGT(HC) »
f
kGTIHCI »
=
hGTIHCI •
a
kGTIHCI •
K2
HE6TIUHC I
N2
HE«TIUHCI
N2
HEATIUHC 1
N2
N2
HEATIUHCI
M2
HE ATI UHC)
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HE Ml UHC 1
N3
HFATIUHCI
N2
HEATIUHr 1
N2
HEAT IUHC 1
N2
HEATIUHCI
-------
RECORD TYPE
FLUE GAS
FLLE CAS
FLUE CAS
FLLE GAS
FLLE CAS
FLLt CAS
fLLE CAS
FLLE CAS
FLLE CAS
FLLE CAS
FLLE CAS
fLUE GAS
FLLE CAS
FLLE GAS
TEST CITE TIME LCC METH
10 20 C02
502
NO
10 2 X CC2
502
NC
10 30 C02
SU2
NO
10 231171 0200 3 1 C02
502
NO
10 231171 0300 3 1 C02
SO2
NC
10 231171 0300 3 1 C02
502
NO
10 231171 0400 3 1 C02
502
NO
10 231171 0400 3 1 CC2
S02
NO
10 231171 0500 3 1 C02
SP2
NO
10 231171 0500 3 1 C02
502
NO
10 221111 C600 3 1 C02
502
NO
10 231171 0600 3 1 C02
S02
NO
10 231171 C700 3 1 C02
502
NC
10 231171 C700 3 1 C02
S02
NG
233
* .0960
* .0300
426
315
= .130
510
•
- .130
540
= 85
x .131
100
=> .132
100
> .132
585
X
100
• .132
510
*
110
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
K02
02
UHC
N02
02
UHC
NC2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2
• CO
» MCL
- .0760 CC
« MOL
* CC
» MOL
X
- .060 CC
MCL
- .060 CO
* MOL
CO
= MOL
= .060 CO
MOL
CO
* MOl
- .060 CO
MOL
CO
= MOL
• CO
MOL
* CO
* MOl
" .060 CO
* MOL
*
CC
» MOL
X
fcGTIHCI x
kGTIHCI =
kGTIHCI -
kGTIHCI x
hGTIHCI «
c
kGTIHCI «
HGTIHCI x
WCT(HC) =
kGTIHCI =
HGTIHCI -
kGTIHfl x
kGTIHCI "
kGTIHC) x
kGTIHCI •
*J2
t-EATIUHCI
N2
HEATIUHC I
N2
HEATIUHCI
K2
HEATIUHCI
N2
HEATIUHCI
H2
HEATIUHCI
U2
HEATIUHCI
K2
HEATIUHCI
N2
HFATIUHCI
K2
HEATIUHCI
N2
HEATIUHCI
H2
HFATIUHC I
N2
HEATIUHC 1
N2
HEATIUHCI
-------
RECORD T»PE TEST DATE TIFE LCC fETH
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
10 3 * C02
S02
NO
20 10 CC2
S02
NO
20 2*1171 0000 1 1 C02
S02
NC
20 2*1171 0100 1 1 C02
S02
NO
20 2*1171 0200 1 1 C02
S02
NO
20 2*1171 C300 1 1 C02
S02
NO
20 2*1171 0*00 1 1 C02
S02
NO
20 2*1171 0500 1 1 C02
S02
NO
20 2*1171 CtOO 1 1 C02
302
NO
20 20 C02
S02
NO
20 2 X CC2
S02
NO
20 30 C02
S02
NO
20 2*1171 C300 3 1 C02
S02
NO
20 2*1171 C200 3 1 C02
S02
NO
- .0990
a
*
- .0880
5*7
•
.
525
*
=
*65
"
.
*80
*
*
• *50
«
.
» *50
*
*
* *65
•
„
*6B
•
m
*
273
* .1080
•
•
« .03*0
* 386
2*8
- .126
« 510
-
,
«
150
C2
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
C2
UHC
N02
- .0650
•
•
.
«
•
• .030
*
•
* .030
•
•
- .C28
•
"
- .030
•
•
- .030
•
"
- .032
•
•
' .036
•
•
M
•
•
- .0520
•
"
„
•
•
• .068
m
•
„
•
•
CO
MOL
CC
MOL
CC
HOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CO
MOL
CC
HCL
CC
MOL
CC
MOL
CC
MOL
*
UGTIHC) -
—
hGTIHCI -
x
WGTIHCI •
w
kGTIHC) *
m
WGTIHCI •
f
WGTIHCI -
m
hGTIHCI -
*
WGTIHCI -
,
WGTIHCI •
*
WGTIHCI •
„
hGTIHCI •
m
WGTIHCI -
,
kGTCHCI -
m
fcCTIHCI -
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HE4TIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
K2
HEATCUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
-------
RECORl' TVPE
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE T1PE LCC FETH
20 241111 0400 3 1 C02
S02
NO
20 241111 0400 ^ 1 C02
502
NO
20 241111 0500 3 1 C02
S02
NO
20 241111 0500 3 1 C02
S02
NO
20 241111 0400 3 1 C02
S02
NC
20 241111 0600 3 1 C02
S02
NO
20 241111 0700 3 1 C02
502
NO
20 241171 C700 3 1 CC2
S02
NC
20 3 X CC2
S02
NO
02 1 0 C02
S02
NO
02 301171 0000 1 1 CC2
S02
NO
02 301111 0100 1 1 C02
S02
NO
02 301111 0200 1 1 CC2
S02
NO
02 301111 1300 1 1 C02
502
NO
•= .126
a
140
- .128
555
135
- .126
» 600
155
- .126
600
155
• .1060
M
= .1155
1813
« 2025
- 2040
=:
- 2040
- 1980
C2
UHC
NO 2
02
UHC
N02
02
UHC
K02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
• .070 CO
MOL
»
CO
« MOl
* . 06B CC
MOL
CO
MOL
• .C73 CO
HUL
X
CO
MDL
• .014 CO
MCL
CO
MOL
' .0570 CO
» MOL
* CO
' MOL
- .042 CO
MOL
' .040 CC
» HOL
- .040 CO
MOL
* .041 CC
* MOl
kGTIHCI -
hGTCHCl *
kGTIHC) *
kGTIHCI =
hGTIHC) =
UGTIHC) =
hGTIHC) =
hGTCHCl -
bGTIHCI -
bGTIHC) =
hGTIHC) -
kGTIHCI -
hGTIHCI -
hGTIHCl =
N2
HF ATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HCATIUHCI
K'2
HFATI UHC I
N2
HE A T ( UHf, 1
N2
HF ATI UHC 1
N2
Hf ATIUHCI
N2
HEATIUHCI
12
Hf ATIUHCI
N2
HEATIUHCI
N2
HE AT I UHC)
N2
HE ATI UHC 1
N2
HEATIUHCI
-------
RECOKU TYPE TEST DATE TI*E LCC METH
FLLt GAS
FLUE GAS
FLL6 GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
ILLE GAS
02 301171 C4CC 1 1 C02
502
KC
02 301171 0500 1 1 C02
S02
NO
02 301171 0600 1 1 C02
S02
NO
02 301171 0700 1 1 C02
S02
NO
02 20 C02
S02
NO
02 2 X C02
S02
NO
02 30 C02
S02
NO
02 301171 C200 3 1 C02
S02
HO
02 301171 C200 3 1 C02
S02
NO
02 301171 C300 3 1 C02
S02
NO
02 301171 C30C 3 1 CE12
S02
NO
02 301171 0400 3 1 C02
S02
NC
02 301171 0400 3 1 C02
S02
NO
02 301171 0500 3 1 C02
S02
NO
- 1950
•= 2010
- 1740
• 1725
509
" .1320
« .0910
1429
431
- .138
1740
336
• .140
345
* .140
325
» .140
f
X
C2
UHC
NO 2
U2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NG2
02
UHC
N02
02
UHC
NO 2
02
UHC
NC12
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
- .040 CO
MOL
- .C39 CC
MOL
- .038 CO
HDL
" .038 CO
MOL
CO
MOL
- .0560 CO
« MOL
CO
* MOL
- .064 CO
MOL
- CO
• MOL
CO
» MOL
CO
MOL
CC
MOL
CO
MOL
* .060 CO
« MOL
kGTIHCI -
kGTIHCI -
kGTIHCI -
WGTIHCI =
fcGTIHCI *
HGTIHCI «
5
kGTIHC) =
kGTIHC) =
kGTIHCI -
fcGTIHCI =
kGTIHCI -
kGTIHCI •
kGTIHCI «
kGTIHCI *
H2
HEATIUhCI
HEATIUHC 1
NEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC)
N2
HEATIUHCI
N2
HE«T(UHC 1
H2
HTATIUHCI
N2
HEAT (UHC 1
M2
HEATIUHCI
N2
HFATIUHCI
N2
HEATItHCI
N2
HE ATI UHC 1
N2
HEATIUHCI
-------
UCCOKD TVPt
FLCE GAS
FLU GAS
fLUt GiS
FLl.F: GAS
F-LLf GAS
FLUL GAS
F LUF GAS
FLIE GAS
HUE GAS
FLUL GAS
FLLt GAS
FLLI: GAS
FLUt GAS
H.UE C-AS
TEST CA1E TIKF LCC fEIH
02 301171 C'jCO 3 1 C02
SO?
NO
02 301171 C60C 3 1 C02
S02
NO
02 301171 060C 3 1 C02
SC12
NO
02 301111 C700 3 1 C02
S02
NO
02 301171 07CO 3 1 CC2
S02
NO
02 3 X C02
SU2
NO
03 1 0 CC2
S02
NO
03 01U71 OOCC 1 1 C02
502
NG
03 011271 010C 1 1 CC2
S02
NC
03 011271 C20C 1 1 CC2
S02
NC
03 011271 030C 1 1 C02
S02
NO
03 011271 040C 1 1 C02
S02
NO
03 011271 050C 1 1 C02
S02
NO
03 011271 0600 1 1 CC2
S02
NO
340
.140
33'J
- .142
J70
= .1310
= .035b
1763
' 2160
2145
> 2145
- 2145
- 21tO
= 2130
= 2130
02
UHC
N02
C2
UHC
Nri2
02
UHC.
NU2
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NCI2
02
UHC
N02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
N02
cr
MOL kGTIHCI . =
.C60 Ctl
MOt kGTIHCI =
CO
= MOL hGT (HC) =
- .062 CO
MOL hGTIHCI "
CO
= MOL hGT (HC 1 =
= .0561: CO
= MOL kGTIHCI =
CC
- MOL kGT (HC 1 -
= .054 CC
mi kGTIHCI =
= .C5(, CC
Mill hGTIHCI -
= .05? CIJ
MOL h-GTIHCI =
= oC56 cr
= MOL hGT (Hf.) =
* oC56 Cn
= MOL hGT (HC) =
= .C56 CO
MOL WGT(HC) =
» .056 CO
MOL kGTIHC) =
N2
HFflTI UHC 1
N2
Hf All UHCI
N2
HF AT 1 UHC 1
N2
"FATIC'HC. 1
N2
HFATIIIHC 1
K2
HF AT 1 UHC )
^'2
Hf AT 1 UHf 1
"2
HFATIUHC 1
N2
HF ATI UHC )
N2
HF/ITI UHC 1
N2
HF ATI1HCI
N2
HF AT 1 UHC 1
r^r
HFATIUHC ]
N2
HE ATI UHC 1
-------
RECORD TYPE
FLLE GAS
FLLE CAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUF GAS
FLLE GAS
FLUF GAS
FLtE GAS
FLUE GAS
TEST DATE TIME LCC PETH
03 0112H 070C 1 1 C02
502
NO
03 20 C02
SQ2
NO
03 2 X C02
502
NO
03 30 C02
502
NO
03 011271 040C 3 1 CC2
502
NO
03 OH271 C40C 3 1 C02
502
NO
03 011271 05CC 3 1 CC2
502
NO
03 011271 C50C 3 1 C02
502
NC
03 011271 060C 3 1 Cf)2
S02
NO
03 011271 060C 3 1 C02
502
NO
03 011271 070C 3 1 C02
S02
NO
03 011271 0700 3 1 C02
502
NO
03 3 X C02
502
NO
17 10 C02
S02
NO
» 2115
352
• .1210
* .0435
- 1305
492
- .132
335
= .132
: M0
- .132
365
= .132
360
=• .1180
- .1075
02
UHC
NC2
02
UHC
N02
U2
UHC
N02
02
UHC
NU2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NP2
02
UHC
NO 2
02
UHC
NG2
02
UHC
NIJ2
02
UHC
NO 2
* .056 CO
MOL
CO
MCL
= .0690 CO
MOL
> CO
HOL
- .082 CO
MOL
CO
MOL
- .081 CO
MOL
CC
* MOl
- .080 CO
« MCIL
a
CO
MOL
* .080 CC
= MOL
CO
MCiL
* .0740 CO
* MOl
* CO
MOL
NGTIHC) =
UGT 1 HC 1 =
KGTIHCI *
UGTIHCI =
UGTIHCI -
kGTIHC) *
UGTIHCI *
1.GTIHCI =
kGTIHCI -
WGTIHCI =
hGTIHC) =
hGTIHCI =
kGTIHCI -
hGTIHCI =
N2
HFATIUHCI
N2
HFATIUHCI
K2
HFATIUHC 1
N'2
HF.ATIIIHC 1
N2
HFJTIUHt I
N2
HEATIUHC 1
N2
HEAUUHC I
N2
HEATIUHC 1
N2
HE ATIUHCI
f!2
HFATIUHCI
HE ATI UHf. 1
N2
HE ATI UHC 1
N2
HEATIUHC 1
K'2
HEATIUHCI
-------
RECORU T»PE
FLUE GAS
FLUE GAS
FLU GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
TEST DATE TICE ICC METH
17 021271 0000 1 1 C02
S02
NO
17 0212J1 C1CC 1 1 C02
SD2
NC
17 021271 C2CC 1 1 CC2
S02
NO
17 021271 0300 1 1 CC2
S02
NO
17 021271 040C 1 1 CC2
SO 2
NO
17 021271 05CC 1 1 CG2
S02
NO
17 021271 060C 1 1 CC2
Sf) 2
NO
17 021271 0700 1 1 CC2
S02
NC
17 20 C02
S02
NO
17 2 X C02
S02
NO
17 30 C02
S02
NO
17 021271 0300 3 1 C02
SCJ2
NO
17 021271 0400 3 1 CC2
S02
NO
17 021271 05CO 3 1 C02
S02
NO
= 2040
- 2100
* 2085
* 2070
- 2100
- 2100
= 2085
= 2100
3
344
= .12(10
> .OU45
309
- .134
= 1950
• .134
340
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
- .042 CO
MOL
* .034 CO
- MOL
- .037 CO
= MOL
* .036 CO
PCL
> .036 CO
MOL
- .037 CC
MPL
* .038 CO
* MCL
* .040 CC
* MOL
CO
* MOL
- .0600 CO
MOL
CO
M(1L
- .073 CO
MQL
- .074 CO
* MOL
* CO
" MOL
•
HGTIHCI -
kGTIHCI -
kGTIHC) =
kGTIHCI *
kGTIHC) -
kGTIHC) -
kGTIHC) *
kGTIHCI =
kGTIHCI =
kGTIHCI «
kGTIHCI =
kGTIHCI *
kGTIHC) =
kGTIHCI •
K'2
HEATIUHC)
K2
HE ATI UHC }
N2
HEATIUHC I
N2
HEATIUHCI
N2
HEATIUHCI
N2
HfATIUHC)
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC I
N2
HE ATI UHC I
N2
HEATIUHCI
-------
RECORD TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLF GAS
FLUE GAS
FLUE GAS
FLUt GAS
TEST DATE TINE LCC METH
17 021271 0500 3 1 CC2
502
NO
17 021271 C60C 3 1 CC2
502
NO
17 021271 OtCC 2 1 CU2
502
NO
17 C2U71 C700 3 1 CC2
S02
NO
17 021271 07CC 3 1 CC2
502
NO
17 3 X C02
S02
KO
19 1C C02
S02
NC
19 031271 C200 1 1 C02
S02
NC
19 331271 0300 1 1 C02
S02
NO
19 03U71 040C 1 1 C02
S02
NO
19 031271 0500 1 1 C02
502
NO
19 031271 0600 1 1 C02
S02
NO
19 031271 0700 1 1 C02
S02
NO
19 1 X C02
5(12
NO
- .134
- .136
« 2010
340
- .136
345
= .1260
- .0775
= 1733
- 1905
- 1890
• 1875
1890
1905
» 1920
• .1280
02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
• .075
- .074
B
- .074
c
a
* .0660
,
• .060
• .060
- . C59
- .C59
« .058
= .060
- .0620
CP
MCL
CO
MOL
CC
MOL
CO
MUL
CO
MOL
CC
MOL
CO
MOL
CC
MCL
CC
MOL
cn
MOL
CO
MOL
CO
MCL
CO
MDL
cn
MOL
c
kGTIHCI «
kGTIHCI =
kGTIHCI «
kGTIHCI '
kGTIHCI "
kGTIHC) =
kGTIHCI -
kGTIHCI -
kGTIHCI •
kGTIHCI "
kGTIHCI -
WGTIHCI =
WGT IHCI =
kGTIHCI =
N2
HCATIUHC )
HE ATI UHC 1
N2
HEATIUHCI
N2
N2
HEATIUHC)
r>2
HEATIUHf |
N2
Hf ATIUHCI
N'2
KCTIUHf 1
HFSTIUHCI
K2
HF ATIUHCI
Hf! ATI UHC. \
PL ATI UHC t
HZ
HF ATI OHf- I
HEATIUHCI
-------
RECORD TYPE
FLUF GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE TIHE ICC METH
19 20 C02
S02
NO
19 2 X C02
S02
NO
19 30 CC2
S02
NO
19 71 31 C02
502
NO
19 71 31 CC2
S02
NO
19 3 X C02
S02
NO
21 1 0 CU2
SC2
NO
21 041271 0100 1 1 C02
S02
NO
21 041271 C2CC 1 1 C02
SD2
HO
21 041271 0300 1 1 CC2
S02
NO
21 041271 0400 1 1 CC2
S02
NO
21 041271 C500 1 1 CD2
502
NO
21 041271 0600 1 1 C02
502
NO
21 041271 070C 1 1 CC2
502
NO
394
» .1090
*
- .0395
861
404
- .126
- 1815
,
• .1040
• .0755
• 1415
• I860
- 1875
* 1860
« 1875
- 1860
• 1890
*
•
1905
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
02
UHC
HO 2
CO
= MOL
- .OE40 CO
MCL
CC
HOL
- .086 CC
- HDL
CO
MOL
- .0880 CC
MOL
CC
* MOL
- .C54 CO
MOL
= .054 CC
* MOL
- .054 CO
MOL
- .C54 CO
MOL
- .054 CO
MOL
*
= .054 CO
MOL
- .054 CO
MCL
h&TIHCI -
£
kGT I HC ) -
HGTIHC) *
kGTIHCI -
kGTIHCI -
kGTIHCI -
kGTIHC) -
kGTIHCI *
hGTIHCI =
V.GTIHC) -
kGTIHC) =
kGTIHC) •
kGTIHC) •
kGTIHCI -
M2
HEATIUHCI
M2
HEAT(UHC)
U2
HEATIUI-C)
N2
HE ATI UHC )
N2
HEATIUHC)
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHC)
N2
HEATIUHCI
N2
HFAT(UHC)
N2
HEATIUHC I
M2
HEATIUHCI
N2
HEATIUHCI
-------
RECOKU TVPE
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATC TICE LCC METH
21 20 CC2
S02
NO
21 2 X CC12
S02
NO
21 30 C02
S02
NO
21 041271 020C 3 1 C02
SQ2
HC
21 041271 0300 3 1 C02
SOZ
NC
21 041271 0300 3 1 C02
S02
NO
21 041271 040C 3 1 CD2
S02
NO
21 041271 0400 3 1 CC2
S02
NO
21 041271 C500 3 1 CQ2
S02
NO
21 041271 0500 3 1 CC2
502
NO
21 041271 CtCC 3 1 C02
S02
NO
21 041271 CtCC 3 1 C02
S02
NO
21 041271 C70C 3 1 C02
S02
NO
21 041271 070C 3 1 C02
SQ2
NO
*
366
> .1100
« .0565
451
322
= .124
• .126
1710
* 195
= .126
= 1575
- 195
• .124
= 1665
195
- .126
1710
205
- .124
1740
210
02
UHC
NU2
C2
UHC
NU2
C2
UHC
N02
C2
UHC
NIJ2
02
UHC
N02
02
UHC
N02
02
UHC
N02
112
UHC
NU2
ri2
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
CO
MOL
« .0740 CC
MCL
* CD
» MOL
« .078 CO
MCL
• .077 CO
" MOL
CC
- HUL
- .077 CO
« MOL
* CO
« MUL
* .078 CC
* MOL
CO
" MOL
" .C7B CO
MOL
* CO
* MOL
' .078 CC
MOL
CC
MUL
fcGTIHCI >
fcGTIHCI *
fcGTIHCI -
kGTIHC) -
fcGTIHCI -
fcGTIHCI *
hGTIHCI *
X
MGTIHC) -
KCT(HCI =
fcGTIHCI =
fcGTIHCI =
fcGTIHCI =
fcGTIHCI -
WGTIHCI *
N2
hEATIUHC 1
H2
HF ATIUHC 1
N2
HEATIUHCI
HE ATI UHC 1
N2
HtATIUHCI
N2
HFATILHC)
112
HEATIUHCI
N2
HEATIUHCI
N2
HtATIUHCI
HFATIUHC 1
N2
HtATIUHC 1
N2
HP AT 1 UHC 1
H2
HEATIUHC 1
N2
HFATIUHC)
-------
RECORD TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATS TIPE LCC KETH
21 3 X C02
S02
NO
14 1 0 C02
SO?
HO
14 071271 0000 1 1 CC2
502
NO
14 071271 0100 1 1 C02
S02
NO
14 071271 0200 1 1 C02
502
NO
14 071271 0300 1 1 CC2
S02
NO
14 071271 040C 1 1 CQ2
502
NO
14 C71271 0500 1 1 CC2
502
NO
14 071271 OtOC 1 1 CC2
502
NO
14 071271 07CC 1 1 C02
502
NC
14 20 CC2
502
NO
14 2 X C02
502
NO
14 30 C02
S02
NO
14 071271 0100 3 1 CC2
502
NC
= .1060
X
-
»
« 1710
* 1725
= 1710
16')5
= 1740
- 1770
1785
1815
=
- .1220
B
- .140
1785
C2
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
x .0820 CC
MOL
- CC
• MOL
- .042 CC
MOL
x .036 CC
- MOL
x .037 CO
MOL
= .C37 CO
MOL
* .037 CO
MOL
x .036 CO
x MOL
x .C37 CO
x HOL
= .037 CO
MOL
X
CO
x MOl
. .0660 CO
MOL
» CO
MOL
x .068 CO
MOL
UGTIHCI x
UCT.HC, :
KGTIHCI *
UGTIHCI -
UGTIHCI -
WGTIHCI -
WGTIHCI x
kGTIHCI x
•C.TIHCI x
UGTIHCI =
UGTIHCI x
UGTIHCI ^
UGTIHCI x
h&TIHCI x
"2
HEATIUHCI
^2
HEATI UHC I
N2
HEJTIUHC 1
N2
HEATIUHC)
N2
HF.ATIUHCI
N2
HFATI UHC I
N2
HEATIUHCI
HEATIUHC I
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
-------
«fCU*[J TYPE
TFST C»T£ TIME LCC
14 071271 0100 3
14 071271 0200 3
14 071271 0200 3
14 0)1271 0300 3
14 C71271 0300 3
14 071271 0400 3
14 C71271 040C 3
14 071271 05CC 3
14 071271 050C 3
14 0712)1 060C 3
14 071271 0600 3
14 071271 0700 3
14 C71271 0700 3
14 3
HETH
1 CD2
S02
NO
1 C02
SQ2
NO
1 C02
S02
NO
1 CC2
S02
NO
1 CC2
S02
NC
1 C02
S02
NO
1 CC2
S02
NO
1 C02
SO?
KO
1 CC2
SC12
NCI
1 C02
S02
NO
1 C02
S02
NO
i co:
scz
NO
1 CC2
S02
NO
X CC2
502
NO
s
3
205
* .142
* 1725
•
»
a
200
• .142
- 1755
•
^
X
200
* .140
= 1785
=
«
=
195
» .140
" 1830
*
s
=
210
• .142
= Id 1 5
-
*
=
205
- .142
* 1765
•
,
=
205
« .1260
=
*
C2
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
NLJ2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N112
C2
UHC
N02
02
UHC
N02
U2
UHC
N02
U2
UHC
N02
02
UHC
NQ2
02
UHC
N02
CC
MOL
-
• .072 CC
MOL
-
CO
MOL
•
- .071 CO
• HCL
•
CO
HOL
-
- ,C71 CO
MOL
•
CC
* MGL
"
- .071 CC
HOL
•
CO
MOL
*
* .070 CC
HOL
•
CO
» MOL
•
* .C71 CC
= HOL
•
* CO
= MCL
"
» .OtlO CD
= MOL
*
.
hGT(HCI -
=
hGTIHC) =
s
ULiT(HC) *
_
HUT(HC) -
B
kGT(HC) *
=
hGT(HC» «
£
hGT (HC) *
£
kGTIHCI =
f
kGTIHCI >
x
kGT{HCI =
_
hGT(HC) •
_
HGTIHCI =
^
hGTIHCI =
_
hGTIHC) -
N'2
"FATIUHO
N2
HFJTIUHC)
N2
HEATIUHCI
N2
Hf ATIUHC 1
K2
Ht ATI UHC)
N,
H64TIUHC)
N2
HE AT(UHf )
M2
HTSTIUHC 1
^2
HE AT( UHC )
K2
HRATIUHC)
N2
HE«T(UHCI
N2
Ht AT(UHC)
N2
HtATIUHC 1
K2
HEAT (UHC I
-------
RECORD TYPE
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLt GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST 0»TE TIME LCC METH
15 1 0 C02
S02
NU
15 C61271 CCOC 1 1 CD2
SO?
NO
15 C61271 0100 1 1 CC2
S02
NO
15 C81271 C2CC 1 1 CC2
S02
NO
15 061271 C3CO 1 1 CG2
SO?
NO
15 C61271 040C 1 1 CC2
502
NO
15 C61271 050C 1 1 C02
SO?
NO
15 OH1271 OtOO 1 1 C02
S02
NO
15 C81271 0700 1 1 C02
S02
NO
15 20 C02
sn2
NO
15 2 X C02
SC2
NU
15 30 CC2
SJ2
NO
15 CB12M C100 ? 1 CC2
SO?
NO
15 CC1271 0100 3 1 CC2
SO?
NO
-
- 2070
• 2115
* 2115
= 2100
= 2115
- 2115
- 2115
* 2115
_
- .1220
•
= .UB
275
02
UllC
N02
U2
UllC
NU2
02
UMC
NO 2
C2
UHC
Nil 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NH2
02
UHC
N02
02
UHC
NO?
02
UHC
NO 2
0?
UHC
Nil 2
02
UHC
NO 2
» cci
• .C36 CO
« MOL
cu
MOL
- .0660 CO
MOL
CO
= HOL
= .070 CO
MOL
CO
MCL
^GT(HC) -
UGTIHC) =
hCTIHCI =
kGTIHC) -
kGTIHCI =
kGTIHCI =
WGTIhCI =
UGTIHCI -
kGT(HC) -
WGTIHCI =
UGKHCI =
k,GT(HCI -
kGKHCI -
hGTIHCI =
K2
HFATIUHCI
N2
HE AT(UHC I
N2
HE ATI UHC 1
N2
"FATIUHCI
N2
t-r*TIUHCI
N2
WEATIUHC 1
K2
HEATIUHf 1
N2
HE AT I UHC 1
H2
HFATIUHCI
<•:!
"F»T(UHr 1
N2
HE ATI UHC 1
K2
HfATIUhCI
N2
Hf UTIUHC 1
N2
HFATIUHC 1
-------
RECQKO TVPE
FLUF GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLF GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE- GAS
FLCE GAS
FLUC GAS
FLUE GAS
TEST CATt TIME LCC PETH
15 C81271 C20C 2 1 C02
S02
NO
15 CE1271 0200 3 1 C02
S02
NO
15 081271 030C 2 1 C02
S02
NO
15 C81271 C5CC 3 1 C02
S02
NO
15 Cfll2M 0500 3 1 CC2
S02
NO
15 OU1271 0600 3 1 C02
S02
NO
15 CB1271 0700 3 1 C02
S02
NO
15 3 X C02
502
NO
22 1 0 C02
S02
NO
22 CS1271 OOOC 1 1 C02
502
NO
22 091271 0100 1 1 CC2
SO 2
NO
22 C91271 020C 1 1 CC2
S02
NO
22 09U71 C30C 1 1 C02
502
NO
22 091271 040C 1 1 C02
S02
NC
« .138
265
* .136
= .140
240
235
245
• .1220
-
* 930
» 855
750
750
675
02
UHC
N02
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
M02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
C2
UHC
M>2
" .069 CO
MCL
CO
« MOl
CC
MOL
CO
- MDL
CC
MOL
CC
MOL
CO
• MOL
« .0670 C.C
* MOL
CO
MfL
- .042 CO
MOL
- .C42 CO
* MPL
» .042 CH
MCL
= .042 CO
= MOL
= .042 CC
MUL
a
fcGTIHCI «
fcGTIHCI •
fcGTIHCI «
fcGTIHC) -
fcGTIHCI «
hGTIHCI =
c
hGTIHCI =
fcGTIHCI »
fcGTIHCI =
kGTIHCI =
hGTIHCI -
fcGTIHCI =
hGTIHCI =
K2
HEAT IUHC 1
hEATIUHC 1
N2
HFATI UHC )
HF.ATIUHCI
^•2
HFATIUHC 1
MFATIUHC 1
N2
MF ATI UHC)
HEATIUHC 1
HEATIUHCI
N2
HF AT IUHC |
N2
HEATIUhC 1
N2
HFATIUHC 1
N2
HFATIUhC 1
M2
Hf: ATI UhC 1
-------
RECORD TYPE
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLF GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
TEST C»I[ TIFE ICC FETH
22 051271 05CO 1 1 C02
S02
NO
22 091/71 OtOC 1 1 C02
S02
NO
22 05U71 07CC 1 1 C02
S02
NO
22 20 C02
S02
NO
22 2 X CO?
S02
NO
22 30 CC2
S02
NO
22 091271 0100 2) 1 CC2
S02
NO
22 051271 02CC 3 1 CC2
S02
NO
22 C51271 0300 3 1 CC2
S02
NO
22 05U71 C40C 2 1 CC2
S(12
HC
22 051271 C5CC 3 1 C02
S02
NO
22 051271 CtOC 3 1 CC2
S02
NO
22 051271 C7CC 3 1 C02
S02
NO
22 3 1 C02
S02
KO
600
630
= 690
-
* .1310
=
=• .138
1920
=• .138
- 2040
> .139
=• 2040
- .136
= 2040
• .134
- 2130
« .134
- . 136
200
02
UHC
NLJ2
C2
UHC
N02
C2
UHC
NO 2
02
UHC
K02
02
UHC
NO 2
02
UHC
M02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NU2
02
UHC
NU2
C2
UHC
N02
* .042 CC
MCL
- .042 CO
« MOL
- .042 CC
MOL
CC
* MHL
- .0560 CC
MOL
CO
MOL
- .C56 CO
MUL
» .058 CO
MOL
= .056 CO
*° MOL
CU
= MOL
CO
MCL
CO
= MOL
CO
« MOL
CC
MOL
kGTtHCI >
kGTIHCI *
kGTIHCI -
fcGTIHCI =
kGTIHCI >
kGTIHCI =
kGTIHCI =
UGTIHCI -
kGTIHCI =
kGTIHCI =
kGTIHCI =
kGTIHCI *
kGTIHCI «
kGTIHCI =
KEdTIUHC 1
M2
HEATIUhC 1
N2
HEAT(UHC)
H2
HfATIUHC)
M2
Hf ATIUHCI
M2
HEATILhCI
Hf.ATIUHCI
N2
Hf ATIUHCI
N2
HfATIUHC 1
Hf ATIUHCI
N2
HEAKUHC 1
H2
HEATIUHCI
N2
HE ATI UHC I
N2
HEATIUHCI
-------
RCCURb lift TEST CATE
FLLE GAS 22
CONSUMPTION
CONSUMPTION
CUNSOMPT10N
CONSUMPTION
CONSUMPTION
11
12
07
CONSUMPTION 06
CONSUMPTION 01
CONSUMPTION
CONSUMPTION
CONSUMPTION
CONSUMPTION
CONSUMPTION
CUNSUMPTION
18
13
04'
05
10
20
CONSUMPTION 02
CONSUMPTION 03
CCNSUMPTICJN 17
CONSUMPTION 1')
TIME LCC HETH
3 X C02
S02
NO
CCAL
GAS
CCAL
GAS
CCAL
GAS
COAL
GAS
COAL
GAS
CCAL
GAS
COAL
GAS
roAL
GAS
COAL
GAS
CCAL
GAS
CCAL
CAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS
= .1260
TEMP
TEMP
TFMP
TEMP
TFMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TfMP
TEMP
TEMP
TEMP
TEMP
TEMP
- 85.
- aj.
* 63.
= 83.
: •*•
- 90.
; "•
» 48.
= 32.
= 63.
= 64^
- 65.
= 26.
« 66.
= 66.
65.
- 45.
- 50.
0
,5
7
9
2
1
8
3
3
2
0
0
4
0
0
9
2
2
4
5
C2
LIHC
N02
TEMPIFAI
TEMPIFAI
TEMPIFA)
TEMPIFAI
TFMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TCMPIFAI
TEMPIFAI
TtMPIFAl
* .0630
a
V
» 150
150
150
150
150
150
150
150
150
150
150
- 150
= 150
150
150
150
150
CC
MOL
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
N2
kGTIHCI • HEATIUHCI
FLOk
FLOW
FLOK
FLOU
FLOW
FLOM
FLOh
FLOh
FLOW
FLOW
FLQ1.
FLUW
FLOW
FLOh
FLOH
FLOW
FLON
GAS
GAS
GAS
GAS
= GAS
GAS
* GA S
GAS
= GAS
GAS
2S2 GAS
400 GAS
374 G«S
CAS
GAS
GAS
= GAS
PRES
PPE S
PRFS
PRFS
PPES
PRE S
PRE?
PhES
PRES
PKES
PPES
PPFS
PBFS
PkES
PfES
PkES
PRFS
-------
RfcCDRL) TYPE
CONSUMPTION
CCNSUMPTION
CCKSUMPTIEJN
CONSUMPTIUN
AIR
AIR
IIP
AIR
AIR
Alk
AIR
AIR
AIH
Al £
AIR
AIR
AIR
Alk
AIR
AIR
AIR
AIR
AIR
AIR
AIR
HEATER
HtATER
HEATER
HfcATER
MEATCR
HEATFR
HtATER
HEATE R
HFATtR
HEATER
HEATER
HEATER
HEATER
HEATFR
HEATER
HFATf-R
HEATER
HEATER
Mf. ATER
HEATER
HEATER
TEST
21
14
15
22
01
06
Ob
06
06
06
06
06
06
06
18
18
19
la
la
la
la
la
13
13
13
CATE
151171
151171
151171
161171
1611(1
1611M
161171
161171
161171
161111
161171
1)1171
171171
171171
171111
171171
171171
171171
171171
181171
181171
TIME LDC
0600
220C
2300
COCO
01CC
0200
0300
0400
0500
06CC
2300
OCCC
01CO
02CC
0300
0400
050C
0600
2300
0000
0100
CETH
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
COAL
GAS TEHP
COAL
GAS TEHP
CCAL
GAS TEHP
COIL
GAS TEHP
TEHPIA1RI
TEHPIAIRI
TEMPIAIR)
TEHPIAIRI
TFHPIAIR)
TEHPIAIRI
TEMPUIR)
TEHPIAIRI
TEHPIAIRI
TEHPUIR)
TEHPIAIR)
TEHPIAIR)
TEHPIAIRI
TEHPIAIR)
TFHPIAIR)
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TFHPIAIR!
- 32.4
- 47.0
•= 46.3
- 63.2
223
22t
228
228
226
228
228
228
233
237
-
237
237
236
236
236
236
237
- 240
240
242
TEHPIFAI
TEHPIFAI
TEHP(FA)
TFMPIFA)
TEMPIGASI
TEMPIGASI
TFHHGAS)
TFHPIGAS)
TEHP(GAS)
TFMPIGASI
TEHPIGASI
TFHPIGAS)
TEHP(GAS)
TEHPIGASI
TEMPI CAS)
TEMPIGAS)
TEMPIGASI
TEHPIGASI
TFMPIGAS)
TfMPICAS)
TfHPIGASI
TEHPIGAS)
TEMPICAS)
TEMPIGASI
TFMPIGAS )
150 GAS FLU*
150 GAS FlOfc
150 GAS FLOk
150 GAS FLOU
329
332
331
331
331
331
330
= 330
331
332
-
321
320
320
320
320
= 320
» 319
316
316
316
CAS PF.FS
GAS PRES
GAS PRES
GAS PISES
-------
REC.UKU TYPE TEST CME TIME LHC PfTH
MR HEATER
AIR ME/1TER
AIR HEATER
MR HEATFR
All- HEATI-«
AIR HIATER
A I P HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR H F A T I R
AIR HEATER
AIR HEATER
AIR HEATER
AIR HFATER
AIR HEATER
AIR HEATER
AIR HFATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATFR
13
13
13
13
13
04
04
04
04
04
04
04
04
05
05
05
05
05
05
05
05
05
10
10
10
10
10
161171 C2CC
141171 0300
161171 0400
181171 C5CC
181171 060C
1C1171
151171
191171
191171
151171
mm
191U1
151171
211171
2211)1
2211J1
2211/1
221171
2211 71
221171
221171
221171
231171
231171
231171
231171
231171
2300
COCO
0100
02CO
030C
040C
C500
0600
230C
OCCO
01CO
0200
0300
0400
0500
C60C
C700
2000
C10C
020C
0300
0400
1 TEMPMIR)
1 TFMPIA1H
1 TEMPIAIR)
1 TFMPIAIR)
1 TEMFIAIRI
1 TEKP(AIR)
1 TEMP(AIR)
1 TEHPIAIRI
1 TEHPIAIRI
1 TEHP(AIR)
1 TEPPIAIPI
1 TEMPI AIRI
1 TEMPIA1RI
1 TEMPIAIRI
1 TEKKAIRI
1 TEKPIAIR)
1 TFMPIAIRI
1 TFPPIAIRI
1 TEHKAIRI
1 TFMPUIR)
1 TEMPIAIP)
1 TFMPIAIR)
1 TEMPI AIRI
1 TEHPIAIRI
1 TEMPIAIR)
1 TEMPIAIRI
1 TEMPIAIR)
238 TEHPICASI
» 234 TEMPICASI
235 TEHPICASI
232 TEMPIGAS)
233 TEMPILASI
" 234
234
* 235
235
236
236
23t
235
235
231
235
235
235
235
235
235
235
235
235
236
236
237
TEMPIGAS)
TF:MP(l,ASI
TEMPIGAS)
TEMPIGASI
UMPIGASI
TEMPIGAS)
TEMPIGAS)
TEMPIGAS)
TEMPIGAS)
TFMPIGASI
TEMPIGAS)
TEMP (GAS)
TEMPIGAS)
TEMPIGASI
TFMPIGASI
TfMPIGAS!
TEMPIGAS)
TfHPICASI
TEMPIGASI
TEMPIGASI
TFMPIGAS)
TEMPIGASI
= 315
* 314
214
313
314
320
321
321
322
322
321
321
321
309
312
312
312
313
313
314
314
317
323
321
» 322
323
323
-------
RECORD TYPE TEST
MME LEC CETH
AIR
Alk
Alf
AIR
AIR
AIR
AIR
Alk
Alk
AIR
AIR
AIR
Alk
AIR
AIR
AIK
AlH
AIR
A18
AIR
AIR
AIP
AIR
AIR
Alk
AIR
AIR
HEATER
HEATER
HEATER
HEATLk
HEATLP
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATf R
Hf ATER
HEATER
HEATER
HiATi R
HEATFR
Ht ATF k
HEAT! R
HfATER
HEATEE,
HFATFF
HEATER
HEATER
HFATtR
HEATER
HEATER
10
10
10
20
23
20
20
20
20
20
20
02
02
02
02
02
02
U2
02
02
03
03
03
03
03
03
03
231171
231171
231171
241171
241111
241171
241171
241171
241171
2411)1
241171
2S1171
301171
301171
301171
301171
301171
301171
3C1171
301171
301171
011271
011271
C11271
011271
011271
011271
C500
C6CC
070C
0000
C1GC
0200
C300
040C
0500
CtCC
C700
02JC
OOGO
0100
02CC
0300
C40C
CbOC
C60C
C7CC
2300
JOOC
010C
0200
03CC
040C
C5CC
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TEMPCAIRI
TEMP(AIR)
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TE"PUI«I
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
Tf MPIAIPI
Tf MPIA1R)
TFMPIAIRI
TfMPIAIRI
TEMPIAIRI
TfMPIAIRI
TEMP(AIP)
TfMPIAIRI
HMPIAIRI
TFMPIAIRI
Tl "PIAIRI
TEMPIAIRI
TfMPIAIRI
TEMH AI R)
TEMPIAIRI
Tf MFIAIRI
236
* 236
234
234
234
234
234
234
234
234
234
233
233
233
233
233
= 233
233
» 234
234
234
234
= 234
234
234
* 234
234
TEMPICASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGAS)
TFMPIGASI
TEMPICASI
TFMPIGASI
TtMf'(GAS)
TFMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGAS)
TEMPIGAS)
TFMP IGASI
TEMPIGASI
TEMPIGASI
TtMPIGASI
TEMPIGASI
Tf HP IGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPICASI
323
323
• 324
306
306
306
306
306
306
306
306
323
323
323
324
32i>
326
326
= 32t>
327
327
327
327
327
- 32/
327
327
-------
kfCURO TYPE TEST
TICt LCC CETH
AlK
AIR
AID
AIR
AIR
AIR
Alt
AIR
A1K
AIR
A If
AIR
AIR
AIR
AIR
AIR
AIP
AIP
AIR
Alfc
AIR
tie
AIR
AIR
AIR
AIR
AI R
HEATER
HtATER
WATER
HEAEEF.
HEATER
htATEP
HEATER
HEATER
HEATER
HEATER
HEATtR
HEAThR
HEATER
HEATEK
HEATER
HEATER
HE ATtK
HEATER
Hf ATER
HEATER
Hf ATEh
HEATER
HEATER
HEATER
HEATFR
HEATEF
HEATtR
Oj
17
17
17
17
n
17
17
17
17
19
19
19
19
19
19
IV
19
19
19
19
21
21
21
21
21
21
0112)1
011271
021271
021271
C21271
021271
021271
021271
0212)1
021271
011271
011271
011271
021271
021271
0212(1
0212/1
021271
021271
021271
0212)1
031271
041271
0412)1
0412)1
0412)1
041271
C(Cc
230C
OOOC
0100
0200
030C
0400
0500
060C
070C
21CC
2200
230C
cooc
010C
020C
0300
040C
0500
060C
070C
2300
OOOC
010C
0200
C3CC
0400
1 TEHPIAIRI
1 TEMR(AIR)
1 TEHP(AIR)
1 TEMPIAIRI
1 TEHF(AIR)
1 TE^PIAIRI
1 TEMPIAIRI
1 TEHP(AIR)
1 TCMP(AIR)
1 TE1PIAIRI
1 TCHPIAIR)
1 TEHPIAIRI
1 TEHP(AIR)
1 TEMPIA1R)
1 TEMPIAIRI
1 TFMPUIRI
1 TEKPUIPI
1 TEMPIAIRI
1 TEMPIAIRI
1 TFMPIAIRI
1 TEMP(AIR)
1 TEHPIAIRI
1 TEMPIAIRI
1 TEHPIAIR)
1 TEMPIAIRI
1 TEHPIAIRI
1 TEMPIAIRI
234
223
223
223
223
223
223
231
« 242
238
23!)
» 235
235
236
236
236
236
236
23t
• 236
235
234
233
232
232
232
232
TEMPIGASI
TEMPIGAS)
TtMPIGASI
TEMPIGASI
TFHPIGASI
TEMPIGASI
TEMPIGASI
TEMP (GAS)
TEMPIGASI
TEMPICASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TFMPIGASI
TEMP IGASI
TEMT (GAS)
TEMPIGASI
TEMPIGASI
TFMKGASI
TEMPIGAS)
TEMPIGASI
TEMPIGASI
TEMMGAS 1
TEMPIGAS)
TfMPICASI
TEMP IGAS)
TFMP IGASI
328
319
319
« 319
31
-------
RELURU TYPE TEST
TIKE LCC PETH
A1K
AIR
AIH
AIK
AIK
A IF.
AIK
AIR
Alk
AID
AIK
AIK
AIK
AIK
AIK
AIK
AIR
AIK
AIK
«IK
AIK
AIK
AIK
AIK
AIK
AIK
AIR
HIATFF.
HIATEF
rir ATER
HtATER
HEATEK
HEATIK
HtATEB
HEATER
HEATER
Ht ATE K
HFATEK
HE ATfR
HEATER
HFATFR
Hf ATER
Ht ATFK
Hf ATEK
HEATER
HEATEK
HEATEK
HtATEK
HEATER
HFATEK
HFATfR
HtATEK
HE ATEK
HEATER
21
il
21
14
11
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
22
22
22
22
22
22
11
041271
041271
041271
061271
071271
071271
071271
0(1271
071271
071271
071271
071271
CE1271
081271
Odl271
C812M
081271
CB1271
CS1271
OB1271
CS1271
091271
C",1271
CS12)1
OS1271
091271
081171
0500
otoc
070C
230C
COOC
0130
o;cc
0300
04CC
0500
0(00
07CC
JOOC
010C
02CC
030C
04CC
0500
060C
07CC
0000
C1CC
020C
030C
04CC
0500
uoc
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
TEKPIAIRI
1FMPIAIKI
TEMPIAIRI
TFPPIAIKI
TFMPI4IRI
TECPIAIRI
TEWPIAIR)
TFMP(AIR)
TEMPIAIRI
TEHPIAIRI
TEKPIAIRI
TEMP(AIR)
TEKPIAIRI
TENP(AIB)
TEKP(AIR)
TEMPIAIRI
TEMPIAIKI
TEMPIAIRI.
TEKPU1R-]
TEMPI AIR)
TEMPIAIRI
TEMPIAIKI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIRI
TEMPIAIRI
232
232
234
"
=
233
217
1S9
199
2\t
232
235
237
237
237
262
257
257
257
263
312
319
322
320
322
•= 322
162
TEMPICASI
TfMPICASI
TFMPIGASI *
TtMPICASI
TFMPIGASI
TFMPIGASI
TLMPICASI
TtMPICASI
TtMPICASI
TFMPICASI
TEMPIGASI
TEMPIC.ASI
TEMPIGASI *
TFMPIGASI
TFMPIGASI
TTHPIGASI
TFMPIGAS) =
TEMPIGASI
TFMPIGASI
TFMPIGASI
TEMPICASI
TEMPIGASI
TFMPIGASI
TFMP(CAS) =
TFMPIGASI
TFMFIGASI
TEMPIGASI
336
335
339
420
3S9
391
388
3U6
391
393
385
385
396
355
332
377
370
367
4C6
400
397
39-0
3<3U
399
300
-------
PEL'JHU TVPc TEST
AH
AH
AH
SIP
AIK
A1K
AIR
AH
AH
AIK
A IF.
AH
AH
All-
AIR
AH
AH
AIP
AH
Alk
AH
AIR
AH
AIR
AIR
AI R
AIR
HEATER
HEATtR
HEATER
HtATFK
HEATEk
HEATER
HIATik
ME AT HP
HEATFk
HEATFR
HIATEP
HFATFk
HfATER
htAIER
HEATER
HEATER
HLATEk
HEATER
HFATER
HEATER
HEATER
HEATER
HEATER
HEATER
HfATER
HFATER
HEATEk
11
11
11
11
11
11
11
11
11
11
09
09
09
09
09
09
09
09
09
09
09
08
03
08
08
03
08
OdlUl
081171
oeim
OU1171
081171
081171
CtlHl
001171
081171
0811 71
091171
091171
091171
091171
091171
091171
091171
091171
091171
091171
091171
101071
101071
101C71
101C71
101071
101C71
1500
UOO
170C
1800
190C
2000
2100
220C
2300
ocoo
09CC
1000
HOC
1200
1300
1400
1500
HOC
170C
leoc
1900
0900
1CCC
11CO
1200
1300
1400
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPUIfiJ
TEMPIAIRI
TEMPIAIR]
TEHFIAIPI
TECPIAIRI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIR)
TECPIAIRI
TEMPIAIRI
TFMPIAIRI
TEMPIAIRI
TEMFIAIRI
TEKFIAIR)
TEMPIAIR)
IEMPIAHI
TEMPIAIRI
TENPIA1RI
TEMPIAIRI
TEMPIAIRI
TEMPIAIPI
TEMPIAIRI
TEMPIAIPI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
158
* 166
* 169
173
* 163
165
•= 169
169
169
170
163
160
158
157
156
157
160
161
163
164
160
162
164
170
175
17b
178
Tf MPICASI
TEMPIGASI
TEMPICASI
TEMPIGASI
TEMPIGASI
TFHPIGASI
TFMPIGASI
TFMPIGASI
TFMPIGASJ
TEMPIGASI
TEMPItASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
Tf MPIGASI
TFMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TfMP(GAS)
TEMPIGASI
TEHPIGASI
TEMPIGAS)
TFMPIGASI
TFMPIGAS)
301
300
302
3C4
302
306
300
302
* 303
302
299
299
296
299
299
301
303
301
302
303
300
303
302
305
308
310
310
-------
RECORD TYPE TEST
TIME LOG METH
AIR
MK
AIR
AIR
All-
AIR
AIR
AIR
AIR
AIR
AIR
AIP
AIR
AIR
AIR
AIR
AIR
UK
AIR
AIR
AIR
AIP
AIK
AIR
AIR
AIR
AIR
HEATER
HEATER
HEATER
HEATER
HEATER
HtATfR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATEF
WATER
HEATEK
HIATEK
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
08
oa
OB
08
12
12
12
12
12
12
12
12
12
12
07
07
07
07
07
07
07
07
07
01
01
01
01
101C71
101071
101071
101071
111171
111171
111171
111171
111171
111171
111171
111171
111171
111171
121171
121171
121171
121171
121171
121171
121171
121171
121171
141171
111171
151171
1511)1
150C
1600
1700
1£CC
090C
1000
1100
12CC
13CC
140C
150C
160C
1700
leoc
0900
1CCO
1100
1200
1300
HOC
1500
1600
170C
220C
2300
0000
0100
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPIAIRI
TFMPIAIRI
UHFUIRI
TEMPIAIR)
TEMPIAIR)
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIA1KI
TEHPIAIR)
TEMPU1RI
TEHPIAIR)
TEI"P(AIR)
TEMPIAIRI
TEMPIAIRI
TE»PIA1RI
TEMPIAIR)
TEHPIA1RI
TEMPIAIRI
TEHPIAIR)
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIRI
TEMPIAIRI
180
17U
175
176
173
175
170
170
17*
173
175
175
1BD
175
164
172
175
178
1U2
185
173
177
176
15t>
15<)
159
157
TEMPIGASI
TEHPIGASI
TFMPIGASI »
TEMPIGAS) =
TFHPIGASI
TEMPIGASI =
TFMPIGASI
TFHPIGASI
TEMPICASI
TIMPIGASI
TEMP (GAS I
TEHPIGASI
TEMPIGASI
TfMPIGASI
TEMPIGASI
TFMPIGAS) ~
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGAS)
TFHPIGASI
TEMPIGASI
TEMPIGASI =
308
310
311
313
303
306
304
306
307
3C9
310
309
310
310
305
310
310
311
312
311
313
316
312
315
312
311
310
-------
KLCUKU TYPE TEST
TIME ICC KETH
AIR
AIK
AIR
AIM
AIR
AI K
AIK
AIK
A 1H
Alt
AIR
AIK
AIK
AIK
AIR
AIK
All.
AIM
AIR
Alh
AIK
AIR
AIK
AIR
AIR
A IB
AIP
HEATER
HtATtK
htATEK
HEATEK
HEATEK
HtATEK
HEATER
HEATEK
HfATER
HEATEK
HEATEk
HEATER
HEATER
HEATER
HEATER
Hf ATEK
HEATER
HEATER
HEATER
HEATER
HFATER
HEATER
HEATER
HEATER
HEATER
HEATEK
HEATER
01
01
01
01
01
06
Oo
06
06
06
Id
13
Id
la
la
Id
18
Id
u
11
1 3
H
13
n
13
13
13
151171
151171
151171
151171
151171
161171
161171
1611 H
161171
161171
161171
171171
171171
171171
171171
171171
171171
171171
171171
HH171
1811 11
1E1171
1
-------
RECORD t»PE TEST
TIME ICC CETH
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
A1K
All.
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATtk
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
04
04
04
04
04
04
04
04
05
05
05
05
05
05
05
05
05
10
10
10
10
10
10
10
10
20
20
laim
191171
191171
191171
1S1171
1911)1
191171
191171
211171
221171
221171
221171
221171
221171
221171
221171
221171
231171
231111
231171
231171
231171
231171
231171
23UJ1
241171
241171
2300
0000
0100
0200
0300
0400
0500
060C
2300
OCOC
0100
0200
030G
0400
0500
otoc
0700
oooc
0100
0200
0300
0400
0500
060C
C700
0000
0100
2
2
2
2
2
2
2
2
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPIAIR)
TEMPIAIRI
TEHPIAIRI
TEMPIAIR)
TEHPIAIRI
TEfPlAIR)
TFMP(AIR)
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
155
149
154
° 166
.
=
-
* 167
171
3 166
167
167
165
* 165
164
170
163
162
161
159
161
= 166
161
152
163
184
193
TEMPIGASI
TEMPICAS)
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEMPIGASI
TEMPIGASI
TEHPIGASI
TEHPICASI
TEMPIGASI
TEHPIGASI
TEHPIGASI
TEMP (GAS I
TEMPIGASI
TEHPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEHPIGASI
TFMPIGASI
TEHPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
306
305
304
305
-
-
•
306
280
* 284
287
* 280
2B7
= 2B8
288
293
288
304
297
290
298
* 299
299
299
= 298
280
- 277
-------
RECOUP TYPE TEST
TIKE ICC KETH
AIK
Alt
AIR
AIR
AIR
AIR
All.
Alk
AIR
AIR
AIR
AIR
AIR
AIK
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
Alk
AIR
AIK
AIK
AIR
HEATEH
HEATER
HEATER
HEATER
HEATER
HEATER
HEATCR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HfATER
HEATFR
HEATER
HEATER
HEATER
HEATER
HEATER
20
20
20
20
20
20
02
02
02
02
02
02
02
02
03
03
03
03
03
03
03
03
03
17
17
17
ir
241171
241171
211171
241171
241171
2411il
301171
301171
301171
301171
301171
301171
301171
301171
301171
011271
011271
011271
011271
011271
011271
011271
011271
011271
021271
021271
021271
G20C
0300
0400
C500
0600
070C
0000
0100
0200
0300
0400
0500
0600
C7CC
2300
OOOC
010C
0200
030C
040C
0500
060C
070C
230C
0000
010C
0200
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHP(AIR)
TEHPIAIRI
TEMPIAIRI
TEKPIAIR)
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIR)
IEMPIA1RI
TEHPIAIRJ
TEMP(AIR)
TEHPIAIRI
TEHPIAIRI
TEHFIAIPI
TEHPIAIPI
TEMPIA1RI
TEHFIAIR)
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
202
» 197
193
196
" 196
• 185
• 162
= 168
« 167
* 167
172
» 169
* 168
=
157
159
156
152
- 15B
158
162
- 163
165
185
177
159
156
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TFHPIGASI
TFHPIGASI
TEHPIGASI
TEHPICASI
TEHPIGASI
TEMPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHP IGASI
TEMF IGASI
TFHPIGASI
TEHPIGASI
TFHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
276
276
277
276
276
282
295
257
= 299
• 2S9
306
302
310
302
• 291
• 298
' 291
• 290
297
" 298
- 299
299
299
297
295
295
294
-------
RECtMD TYPE TEST
TIPC LCC KETH
AIB
AIR
AlK
AIR
AIR
AIR
AIR
AIR
AIR
AIR
All.
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
Alk
AIR
hEATtR
HFATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATtR
HEATtR
HEATER
HEATtf
HEATEf
HEATFR
HEATEP
HEATER
HEATEP
HEATER
HfATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
17
17
17
17
17
19
19
19
19
19
IV
19
19
19
19
19
21
21
21
21
21
21
21
21
l
-------
RECUkl) TVPt TEST
TIKE LCC KETH
AIR HEATER
Al R HEATER
AIR HEATER
AIR HEATER
AIR HEATEK
AIR HEATEP
AIH HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HbATEK
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
14
1*
14
14
14
15
15
15
15
15
15
22
22
22
22
22
22
22
09
03
12
07
01
06
la
13
04
C71271
071271
C71271
071271
071271
C81271
031271
C81271
061271
C81271
OB1271
081271
C91271
091271
091271
091271
091271
091271
0300
0400
0500
060C
0700
010C
0200
0300
04CC
0500
060C
2300
0000
010C
020C
030C
040C
0500
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
TEMP(AIR)
TEMPIAIRI
TEMF(AIR)
TF.MPIAIRI
TEMPIAIR]
TEMPIAIRI
TFHPUIfil
TEMPIAIR)
TEMPUIRI
TEMPIAIRI
TEI-PIAIRI
TEMPIAIRI
TEMPIAIRI
T6MPIAIR)
TPMPIA1RI
TEMPIAIR)
TEMPIAIRI
TEMPIAIR I
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
a 99
98
» 16
- 98
* 98
== 16fl
= 166
164
= 166
166
16B
167
169
169
168
167
168
167
- 78.6
- 86.2
• 88.3
• 93.5
89.9
=« 95.6
= 64.7
- 87.5
• 78.1
TEMPI CAS 1
TEMPIGASI
TEMPIGASI *
TEMPIGA5I
TEMPIGASI *
Tf MP IGAS 1 =
TEMPIGASI
TEMPIGASI «
TEMPIGAS)
TFMPIGASI
TEMPIGASI =
TEMPIGAS) -
TFMPIGASI
TEMPIGAS)
TEMPIGASI
TfMPICAS)
TEMPIGASI
TFMPIGASI
R6L HUMID
REL HUMID
REL HUMID
RFL HUMID
REL HUMID
REL HUMID =
REL HUMID
REL HUMID
REL HUMID
297
297
297
298
21i
3U1
300
300
301
302
303
304
3C3
303
304
304
305
305
.43 PRESSURE
.31 PRESSURE
.29 PRESSURE
.30 FRFSSURF
.45 PRESSURE
.32 PRESSURE
.37 PRESSURE
.39 PRFSSURF
.30 PRESSURE
- 29.92
- 29.84
= 29.80
• 29.57
= 29.86
• 29.85
- 29.76
» 29.55
» 29.73
-------
RECJkU TYPE TEST
TIHE LCC VETH
A f ti I L N T
A M 13 1 1 N T
AMtilt NT
AMbllNT
AMbltNT
AMdlt NT
AMDIFNT
AMFtltNT
AMBHNT
AMEI tNT
AMlil ENT
AMltll NT
[LECTRICAL
ELECTRICAL
LLICTKICAL
I LECTklCAL
ELECTRICAL
F.LLCTF.1CAL
LL F CTk I CAL
ELECTRICAL
ELECTRICAL
tLECTRlCAl
05
10
20
02
03
17
19
21
14
15
11
22
11
09
08
12
07
06
01
la
13
04
0
0
0
0
0
0
0
0
0
0
0
0
TEMP
TFMP
TFMP
TFMP
1EMP
TF-P
TFP P
TEfP
TEMP
IFMP
TEMP
TEFP =
PULV 1
F . D . F AN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. n. FAN 1 =
PULV 1
F. C. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. [). FAN 1 =
70.9
69.8
70.0
77.5
74.5
67.0
70.9
70.5
71.3
76.0
72.0
81. 0
67.0
101.2
64.9
54. H
68.9
102.0
67.1
97. 7
67.1
55.0
71.0
99.2
60.1
86. 1
00.0
79.0
00.0
75.1
57.8
85.9
REL HUMID
REL HUMID *
RFL HUMID
REL HUMIO
REL HUMIC =
REL HUMID
RFL HUMID
RFL HUMID =
RtL HUMID
RFL HUMID
RtL HUMIU
RFL HUMID
PUIV 2 *
F. F. FAN 2 =
PULV 2
F. 1'. FAN 2 =
PULV 2
F. [ . FAN 2 =
PULV 2
t. [. FAN 2 =
PUl V 2 =
F. I). FAN 2 =
PULV 2
F. P. FAN 2 =
PULV 2
F. T . FAN 2 "
PULV 2
F. D. FAN 2 =
PULV 2 =
F. D. FAN 2 =
PULV 2 =
F. U. FAN 2 =
.32
.29
.40
.25
.29
.39
.32
.34
.55
.37
.55
.41
67.4
102.2
04.0
101. t
68.9
108.9
66.3
9C.9
67.6
103.4
71.6
109.8
61.5
93. J
59.3
84.5
00.0
OCol
61.9
91.0
PRESSURE
PRESSURE
PRFSSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE
FRF S SURF
FTSSU1?1"
PRESSURF
PPFSSUKf
"Prssyu-
PULV 3
I. D. FAN
PULV 3
I. D. FAN
PLLV 3
I . C . FAN
PUIV 3
I. 0. FAN
PLLV 3
I. D. FAN
FULV 3
I . F>. F AN
PULV 3
I. D. FAN
PUt V 3
I. '). FAN
PULV 3
I. U. FAN
PLLV 3
I. [). FAN
- 29.9-)
- 29.91
" 29.85
- 29.68
= 30.10
= 30.27
= 30.01
- 29.01
- 29.44
= 29. e3
= 2'.. D8
= 29.22
6 4 a t>
i ~ 183.0
65.6
1 = 177.1
64.0
1 = 1,0.:!
63.6
1 = 194.1
= f 3. 7
1 = 191.2
= 62.3
1 = 184.3
= 57.7
1 -- 162.3
= 56.5
1 -- IO'J.3
= 57.3
1 = 60s 7
= 57.9
1 - 155.9
PULV 4 = 65.4
I. t. ftf. i - 157.::
PULV 4 = c4.',
u r. F.-N ? = lii^i
FULV4 = t,}0L
I. f. r.-.\ 2 = 172.',
PULV 4 = 6-,. 3
I. E. FAN 2 = 155. (
PULV4 = 63.?
I. i;. F-4N 2 = 153.7
PULV 4 = 61,7
I. <". FAN 2 = 172.5
PUL V 4 = 5 7. C
I. T. FAN 2 = 129,^
I. E. FAN 2 = -i4.5
PUl V 4 = }tl. 3
I. C. FAK 2 - 54. a
PULV 4 = 59.0
I. E. FAN 2 = 40.',
-------
PfctflKU TYPt TEST DATE Tl^F LCC I*ETH
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTklCAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELLCTRICAL
LLICTRICAL
CCNOITHINS
CONDITIONS
CONDITIONS
CCKD1TIJNS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
05
10
20
02
03
17
19
21
14
15
22
11
C9
09
12
07
06
01
13
13
04
05
POLV
F. D.
PULV
F. IJ.
PULV
F. 0.
POLV
F. D.
PULV
F. D.
PULV
F. D.
PULV
F. D.
PULV
f. D.
PULV
F. 0.
PULV
f. 0.
PULV
f. a.
STtAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAP
STEAM
STEAK
STEAM
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1
FAN 1 «
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1 *
FAN 1 =
1
FAN 1 =
1
FAN 1 -
FLCW =
FLCu «
FLOW =
FLOW -
FLOW =
FLOW «
FLCW »
FU'H =
FLCW *
FLOW -
60.0
aa.a
64.6
100.0
SI. 4
89.9
59.7
90.0
58.0
95.0
00.0
74.3
00.0
03.3
59. a
76.8
00.0
78.0
00.0
79.7
59.6
86.2
706. 0
789. a
791.9
794.0
801. 1
799.0
U03.1
804. ti
806.5
810.1
PULV 2
F. L. FAN
PULV 2
f. U. FAN
POLV 2
E. Cu FAN
POLV 2
F. D. FAN
POLV 2
F. C. FAN
PULV 2
F. 0. FAN
PULV 2
f. 0. FAN
PULV 2
f. D. FAN
PULV 2
f, li. FAN
PULV 2
F. [. FAN
PULV 2
F. [. FAN
* 60.3
2 « 97.1
" 66.4
2 - 110.0
* 67.5
2 - 94.3
* 64.4
2 * 99.3
= 60.6
2 * 106.4
= 56.0
2 * 77.4
* 56.9
2 * bfl.S
« 6C. 3
2 - 77.7
- 57.0
2 « 79.7
- 5t.l
2 « 84.2
. 59.9
2 - 94.5
POLV 3
I. P. FAN 1
PULV ?
I. V. FAN 1
PULV 3
I. I). FAN 1
PLLV 3
I. 1). FAN 1
PULV 3
1. D. FAN 1
PULV 3
I. C. FAN 1
PULV 3
I. [i. FAN 1
PLLV 3
I. D. FAN 1
PULV 3
I. U. FAN 1
PULV 3
I. D. FAN 1
PULV 3
1. D. FAN 1
•= 00.
= 110.
* 00.
i 110.
s H.
= 81.
= 580
"125.
0
0
0
0
f"
4
0
1
* 60.3
" 120.1
= 58.
= 96.
= 5d.
= 92.
= 03.
= 77.
' 55*
« 93.
- 57.
= 78.
" 57=
= 1'17.
1
4
B
4
0
e
3
j
0
1
6
PULV 4 =
1= f. FAN 2 =
PUI V 4
I. P. FAN 2 =
PULV 4
I. T. FAN 2 =
PUI V 4 =
I. 0. FAN 2 =
PULV 4
!. r. . FAN 2 =
PLLV 4 =
I. C. FAN 2 "
PULV 4
T. D. FAN 2 =
PULV 4
I. C. FAN 2 =
PULV 4
I. C. FAK 2 «
PULV 4 =
I. El. FAN 2 =
PULV 4
I. I'. FAN 2 '
00.0
95.6
TO.O
13?. 1
!>.B
62.9
57.6
110.0
60o 3
lio.n
57.0
76,4
57.7
78.6
00.0
60. e
56 a 1
11.4
56. fc
57. r
5(. 1
96.1
-------
RECORD WE TEST
TIME ICC CETH
CONDITIONS
CONDITIONS
CCN01TIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
f.CNDITIUNS
CONDITIONS
10
20
02
03
17
1')
21
1*
15
12
STEUM FLOW « b!2.1
STEAM F1CH = 813.1
STEAM FLOH = 825.3
STEAM FUCU = 827.1
STtAM FICK = 828.8
STEAM FUJH = 030.2
STEAM FLOW * B31.9
STEAM FLOW = 835.8
STtAM FLOW - U37.5
STFAM FLCW = P39.2
-------
APPENDIX D
STUDIES OF THE CHEMICAL STATE
OF SULFUR ADSORBED ON SURFACES OF FLY ASH
195
-------
APPENDIX D
STUDIES OF THE CHEMICAL STATE
OF SULFUR ADSORBED ON SURFACES OF FLY ASH
DISCUSSION OF RESULTS OF PHOTOELECTRON SPECTRA OF ADSORBED SULFUR
The photoelectron spectrum of sulfur has two intense peaks which allow
easy identification of the element. These arise from electrons being
ejected from the 2p and 2s levels; they are referred to as the "S2p" and
"S2s" peaks in spectra. Both peaks were found for the fly ash samples.
Thus, there is not question that sulfur is present in high concentrations
on the surfaces of all the specimens. The S2p peak is the more intense,
allowing good statistics. Long counts were takne for this peak in order
to get accurate binding energy measurements of electrons in the S2p state.
It has been shown that chemical states of elements can be deduced from
1 2
binding energy measurements. '
Figures D1-D10 show the 2p spectra of sulfur adsorbed on the specimens
submitted. Figures D4-D10 include also a peak due to the ejection of
electrons from the 2s electron level of silicon. The second peak in
Figures D3-D10 will be called the Si 2s peak. The Si 2s peaks were
measured simultaneously with the S2p peaks because it was convenient
to do so at the spectrometer settings used. For all spectra shown in
the report, the upper scale on the abscissa indicates binding energy.
The lower scale indicates kinetic energy. The relationship between the
two scales is:
KINETIC ENERGY = 1487 ev - BINDING ENERGY
1 2
This relationship is discussed more thoroughly in attached references. '
Figures Dll and D12 show S2p spectra of sulfur in K-SO. and CsSO,, used
as standards.
The first column of Table Dl lists binding energies measured from the
peaks in Figures D1-D10. The second column lists binding energies of
standard compounds K_SO,, CaSO,, FeSO , FeCSO,)-, S°, Na S. The binding
energies for K_SO and CaSO, were measured in this laboratory. The rest
were taken from literature. It is seen that the binding energy of sulfur
and the fly ash samples is too high to correspond to any valence state
lower that +6. Also, there is a closer match to the binding energies of
sulfates of polyvalent cations than to monovalent cations.
196
-------
ORNL-DWG 72-771
FLY ASH 206-3
200
S 2p
ft
tt
V)
a.
o
3
n f
100
_LJ_
180
170 160
BINDING ENERGY (eV)
I I
I
1310 1320
KINETIC ENERGY (eV)
1330
Figure Dl
197
-------
ORNL-DWG 72-759
200
o.
o
100
FLY ASH 203-2
S2p
f\
i i l I
<80
170 160
BINDING ENERGY (eV)
1310 1320
KINETIC ENERGY (eV)
Figure D2
198
-------
140
tn
o. 100
o
ORNL-OWG 72-766
60
FLY ASH 206-2
180
170 160
BINDING ENERGY (eV)
I I
I I I I
1310 1320
KINETIC ENERGY (eV)
1330
Figure D3
199
-------
ORNL-DWG 72-767
100 —
Q.
O
170 160
——BINDING ENERGY (eV)
150
I I
I I
1320 1330
KINETIC ENERGY (eV) —*-
1340
Figure D4
200
-------
ORNL-DWG 72-762
100
to
Q.
O
FLY ASH 221-3
Si2s
• • •
-jj • . • !!.»:!<
£ s!)f 5<: i< I:*
fii^l-'lkp-
1
170
160 150
BINDING ENERGY (eV)
1320 1330
KINETIC ENERGY (eV)
1340
Figure D5
201
-------
Q. 200
o
ORNL-DWG 72- 765
FLY ASH 203-3
S2p
i i
H
V
Si2s
»
,;!. . .
-------
300
§200
100-
S2p
•J 1
170
I
ORNL-DWG 72-763
FLY ASH 211-3
Si2s
u
ft
i-
160 150
BINDING ENERGY (eV)
1320 1330
KINETIC ENERGY (eV)
1340
Figure D7
203
-------
300
— S2p
g- 200
100
i I
ORNL-DWG 72-764
FLY ASH 211-2
»
&
Si2s
i
.
?*•'•
! :'' '
170
160 150
BINDING ENERGY (eV)
1320 1330
KINETIC ENERGY (eV)
1340
Figure D8
204
-------
100
ORNL-DWG 72-760
FLY ASH 216, 2A-2B
S2p
Q.
o
50
170
160 150
BINDING ENERGY (eV)
1320 1330
KINETIC ENERGY (eV)
1340
Figure D9
205
-------
ORNL-DWG 72-761
FLY ASH 816, 3A-3B
100 -
Si 2s
V)
a.
o
50 -
170
160 150
BINDING ENERGY (eV)
1320 1330
KINETIC ENERGY (eV)
Figure D10
206
-------
<00
ORNL-DWG 72-756
tr>
Q.
o
50
CoSO,;
STD
HO 160
——BINDING ENERGY (eV)
KINETIC ENERGY (eV)
Figure Dll
207
-------
ORNL-DWG 72-757
200
ex
o
100
K2S04
STD
S2p
— * r • 3 ; *• • j .* ::
180
170 <60
BINDING ENERGY (eV)
<320
KINETIC ENERGY (eV)
1330
Figure D12
208
-------
TABLE Dl
PLY ASH
SAMPLE NO.
203-2
206-2
206-3
203-3
211-2
211-3
216-3A-313
216-2A-2B
221-3
221-2
52p BINDING
ENERGY, ev
168.6
168.1
169.0
168.5
168.5
168.2
168.8
168.7
168.8
168.8
STANDARDS
CaS04
FeS04
Fe2(S04)3
K2S04
Na2S03
' S
Na2S
52p BINDING
ENERGY, ev
168.6
168.0
168.3
167.3
165.8
160.8
209
-------
DISCUSSION OF THE RESULTS OF SURFACE AREA MEASUREMENTS AND TOTAL SULFUR
CONCENTRATION
The second column of Table D2 lists the surface areas (meters/gram)
measured for each of the fly ash samples. The technique for measurement
involved the adsorption of Krypton, using the theory of Brunauer, Emmett
and Teller (BET) for interpreting the results. The second column lists
the total concentration of sulfur (weight percent) for each sample. For
this analysis, a weighed portion of the specimen was decomposed in a bomb
with sodium metal. The H_S produced was vented from the bomb, trapped,
and measured titrimetrically.
The data in columns 2 and 3 of Table D2 were used to estimate the maximum
degree to which the fly ash surfaces could be covered with absorbed sulfur
compounds. To do this, it was assumed that the sulfur was entirely segre-
gated at the surface and that it was in the form of calcium sulfate. For
calcium sulfate the crystallographic unit cell dimensions are approximately
o o o
6.1 A x 6.9 A x 6.9 A. Each unit cell contains four molecules of CaSO..
4
With these assumptions, and the total sulfur concentration data, one can
calculate the volume of CaSO, that would coat each specimen. Dividing
by the respective surface areas, the average thickness of the surface
layers is obtained. It will be assumed that a "monomolecular layer" is
o o o
one unit cell length in thickness, about 6.5 A (average of 6.1 A and 6.9 A).
Dividing by this thickness, the surface coverages in monolayers are obtained.
They are listed, in column 4 of Table D2.
Thicknesses as great as those in Table D2 would cause the fly ash speci-
mens to behave as if they were pure CaSO,; and it appears that this is
the case. If a comparison of the intensities (above background) for the
S2p peaks of the fly ash specimens to those of the CaSO, and K-SO,
4 / 4 A
standards is made, it is found that they are approximately the same.
Because photoelectrons have a limited escape depth from solids, this
technique is able to examine only very thin surface layers of specimens.
The calculated thicknesses in Table D2 are, in most cases, greater than
the escape depth.
In comparing peak intensities, corrections must be made for changes in
x-ray tube power. Some specimens were run at a power 50% lower than that
used for the other specimens: 221-2, 216, 2A-2B; 216, 3A-3B; 221-3, CaSO .
210
-------
TABLE D2
THICKNESS OF
FLY ASH
SAMPLE
221-2
221-3
216-2A-2B
216-3A-3B
206-3
211-3
203-3
211-2
206-2
203-2
BET SURFACE
AREA, M^/gm
!.<*
1.63
0.42
1.39
0.70
1.50
1.49
2.12
0.65
2.80
TOTAL CONC.
SULFUR, %
0.58
1.04
0.78
1.52
0.80
0.52
1.67
0.55
0.615
2.48
COVERAGE,
MONOLAYERS
6
13
39
23
24
7
23
5
20
18
211
-------
The calculated surface thickness in Table D2 is thus consistent with
the assumption that almost all of the sulfate of the specimens is con-
centrated at the surface. The magnitude of the S2p peaks support this
also. If the sulfate had been dispersed homogeneously in the solid phase,
the photoelectron peaks would have been 20-40 times less intense.
OBSERVATIONS OF SILICON PEAKS
In Figures D4-D10, the Si 2S peak is presented along with the S2p peaks.
In figures D13-D14 Si 2p peaks for two of the fly ash specimens are
shown. The broadening of the silicon peaks toward lower binding energies
suggests that there may be more than one chemical state present. The
binding energy of the maximum of the peak corresponds to silicon as
silicates or as SiO_, but there may be lower oxidation states (silicon
carbide?). The broadening could also be due to silicon being present
in several types of glass phases. A firm statement cannot be made at
this time about whether or not silicon is present in more than one chemical
state. Further study is necessary to be sure that photoelectron peaks
or Auger peaks from other elements are not causing the broadening of
the silicon peaks.
EXAMINATION OF FLY ASH SAMPLE NO. 203-2 BY INFRARED SPECTROSCOPY
Experiments were performed to establish the feasibility of obtaining
information regarding the composition and nature of fly ash by a direct
measurement of the infrared absorption spectrum. Sample No. 203-2 was
mulled with nujol and spread on a AgBr window. The spectrum of this
sample was measured with a Perkin-Elmer model 621 spectrophotometer and
with a Digilab FTS-20 Fourier transform spectrophotometer. The results
are shown in Figure D15. Spectrum A was recorded on the 621, and spectrum
B was recorded using the FTS-20 system.
The absorption bands in the 450 cm , 600 cm , and 1000-1200 cm ,
2-
regions are due to SO. ion vibrations. The bands at 675, 730, 780,
-1 2-
and 795 cm may be due to CO, ion vibrations; a few additional experi-
ments could confirm this assignment. These measurements show that infra-
red spectral studies with fly ash samples can provide rapid qualitative
212
-------
200
Q.
o
400
fcflis
ORNL-DWG 72-772
FLY ASH 206-3
Si2p
t*
jS5?i»^. ££>;
>: 'grAraaStf
•sHrr
100 90
BINDING ENERGY (eV)
1380 B90
KINETIC ENERGY (eV)
1400
Figure D13
213
-------
(00
ORNL-DWG 72-755
400 90
BINDING ENERGY (eV)
I I I I I I I I
I I I I I I I I I I I I I ! I I I
1380 1390
KINFTIC ENERGY (eV)
4400
Figure D14
214
-------
ORNL- DWG. 72-884
to
M
Oi
o
in
or
H-
A
446
J L
I I I L
J I I L
1500
1000
500 0
FREQUENCY (cm-1)
500 700 900
Figure D15
-------
answers as to composition. With some simple procedures in sample
treatment, Raman spectroscopy could be applied as well in providing
additional information.
REFERENCES
1. K. Siegbohn et aL_. ESCA; Atomic Molecular and Solid State Structure
Studied by Means of Electron Spectroscopy (Almquist, Uppala, Sweden,
1967).
2. L. S. Hulett, R. A. Carlson, B. R. Fish, F. L. Durham, Proceedings
of the Symposium on Air Quality, 161st National Meeting of ACS,
Plenum Publishing Corp., New York, N. Y.
216
-------
BIBLIOGRAPHIC DATA 1- Report No. 2.
SHEET EPA-R2-73-189
it. Tide and Subtitle
3aseline Measurement Test Results for the
Cat-Ox Demonstration Program
-. Author(s) j. Burton, G. Erskine , E. Jamgochian, J. Morris ,
R Rpale anr> W Wheatrm
'. Performing Organization Name and Address
The Mitre Corporation
Vestgate Research Park
McLean, Virginia 22101
12. Sponsoring Organization Name and Address
CPA, Office of Research and Monitoring
tfERC/RTP, Control Systems Laboratory
Research Triangle Park, North Carolina 27711
3. Recipient's Accession No.
5. Report Date
April 1973
6.
8. Performing Organization Rept.
No.
10. Project/Task/Work Unit No.
'b&SPtfSffiSS* IAG
F192628-71-C-0002
13. Type of Report & Period
Covered
14.
IS. Supplementary Notes
16. Abstracts The report summarizes the results of the Baseline Measurement Test
conducted for the Cat-Ox Demonstration Program. The test was carried out on Steam
Generator Unit No. 4 of the Wood River Station of the Illinois Power Company in
November and December 1971. The report describes the measurement program for
:he test and procedures used to process: data output from the continuous measurement
system; steam generator operating data; and data obtained from manual measurements
:t also provides information on the data reduction system, and the contents of the data
)ase used for baseline test calculations. It presents test results for: net and gross
efficiency--varying load level, excess air, and fuel type; gas mass flow and gas
volume flow—varying load level and fuel type; and grain loading--varying load level,
:'uel type, and the soot blowing cycle. It also presents results for an overall sulfur
jalance, and for comparing continuous measurement results with manual measure-
ments and with theoretical values
17. Key Words and Document Analysis. 17a. Descriptors
Ur Pollution Data Processing
Boilers Continuous Sampling
Sufficiency
Sulfur
Flue Gases
*Desulfurization
Measurement
Catalysis
Dxidation
I7b. Identifiers/Open-Ended Terms
\ir Pollution Control
stationary Sources
"Cat-Ox Process
"Baseline Measurement Test
Catalytic Oxidation
17e- COSATI Field/Group 13B
1
Manual Measurements
18. Availability
Statement
Unlimited
19. Security Class (This
Report)
UNCLASSIFIED
20. Security Class (This
Page
UNCLASSIFIED
21. No. of Pages
22. Price
•ORM NTIS-3S (REV. 3-72)
USCOMM-OC 14932-P72
------- |