EPA-R2-73-189

Aprs! 1973               Environmental Protection Technology Series
Baseline Measurement
Test Results  for the Cat-Ox
Demonstration  Program

                              Office of Research and Monrloring
                              US Environmental Protection Agency
                              Washington, DC 20460

-------
                                       EPA-R2-73-189

 Baseline  Measurement

         Test  Results

       for the  Cat-Ox

Demonstration  Program
                   by

     J. Burton, G. Erskine, E. Jamgochian,
      J. Morris, R. Reale, and W. Wheaton

            The Mitre Corporation
           Westgate Research Park
           McLean, Virginia 22101
  Interagency Agreement No.  F192628-71-C-0002
                  and
          Contract No.  68-02-0650
    EPA Project Officer:  G. S. Haselberger

         Control Systems Laboratory
    National Environmental Research Center
  Research Triangle Park, North Carolina 27711
               Prepared for

       OFFICE OF RESEARCH AND MONITORING
     U. S. ENVIRONMENTAL PROTECTION AGENCY
           WASHINGTON, D. C. 20460

               April 1973

-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication.  Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for us.
                                 11

-------
                                ABSTRACT
This report summarizes the results of the Baseline Measurement Test
conducted for the Cat-Ox Demonstration Program.  The test was carried
out on Steam Generator Unit No. 4 of the Wood River Station of the
Illinois Power Company in November and December 1971.  The report describes
the measurement program for the test and procedures used to process:  data
output from the continuous measurement system; steam generator operating
data; and data obtained from manual measurements.  It also provides
information on the data reduction system, and the contents of the data
base used for baseline test calculations.  It presents test results for:
net and gross efficiency—varying load level, excess air, and fuel type;
gas mass flow and gas volume flow—varying load level and fuel type; and
grain loading—varying load level, fuel type, and the soot blowing cycle.
It also presents results for an overall sulfur balance, and for comparing
continuous measurement results with manual measurements and with theo-
retical values.
This report was submitted in partial fulfillment of Contracts F19268-71-
C-002 and 68-02-0650, under the sponsorship of the Environmental Protection
Agency.
                                  iii

-------
                                CONTENTS



                                                                     Page
Section



   I         Conclusions


                                                                        3
   II        Introduction



   III       Measurement Program


                                                                        31
   IV        Data Processing



   V         Analysis of Data


                                                                       115
   VI        Appendices

-------
                                FIGURES


                                                                     PAGE

 1      CROSS  SECTION  OF  DUCT AT  LOCATION  1,  PRIOR TO  ECONOMIZER        21
       SHOWING  MEASUREMENT  POINTS

 2      CROSS  SECTION  OF  DUCT AT  LOCATION  2,  IN  AIR PREHEATER,           22
       SHOWING  MEASUREMENT  POINTS

 3      CROSS  SECTION  OF  DUCT AT  POINT  3,  IN  STACK,  SHOWING             23
       MEASUREMENT POINTS

 Dl                                                                    197

 D2                                                                    198

 D3                                                                    199

 D4                                                                    200

 D5                                                                    201

 D6                                                                    202

 D7                                                                    203

 D8                                                                    204

 D9                                                                    205

 D10                                                                   206

 Dll                                                                   207

D12                                                                   208

D13                                                                   213

D14                                                                   214

D15                                                                   215
                                  VI

-------
                                 TABLES
                                                                     Page
1    Test Schedule for Preliminary Measurement Subtask                  8

2    Summary of Baseline Test Conditions                               11

3    Baseline Measurement Parameters (Continuous and Manual            16
     Measurements)

4    Baseline Measurement Parameters (Steam Generator Gauge            18
     Board Readings)

5    Summary of Baseline Test Manual Measurement                       25

6    Basic Record Format                                               35

7    Coal Composition Record Format                                    36

8    Gas Composition Record Format                                     37

9    Flue Gas Composition Record                                       38

10   Refuse Characteristics Record Format                              39

11   Fuel Consumption Record Format                                    40

12   Air Heater Temperature Record Format                              41

13   Ambient Conditions Record Format                                  42

14   Electrical Power Record Format                                    43

15   Operating Conditions Record Format                                44

16   Miscellaneous Constants Record Format                             45

17   Flow Characteristics Record Format                                46

18   Duct Characteristics Record Format                                47

19   Computation Modules                                               48

20   Flue Gas Data Inventory for Locations 1, 2, and 3                 50

21   Air Heater Temperature Inventory                                  52

22   Flue Gas Flow Rate Inventory                                      53

                              vii

-------
                            TABLES (CONTINUED)

 No.                                                                   Page

 23   Net and Gross Efficiency                                          63

 24   Flow Rates for S02 at Location I                                  66

 25   Flow Rates for CO  at Location I                                  67

 26   Flow Rates for 0- at Location 1                                   68

 27   Flow Rates for N  at Location 1                                   69

 28   Flow Rates for All Gases at  Location 1                            70

 29   Flow Rates for NO at Location 3                                   71

 30   Flow Rates for S02 at Location 3                                  72

 31   Flow Rates for C02 at Location 3                                  73

 32   Flow Rates for 0  at Location 3                                   74

 33   Flow Rates for N_  at Location 3                                   75

 34   Flow Rates for All Gases at  Location 3                            76

 35    Sulfur Balance                                                    81

 36    Grain Loading  Measurements                                         83

 37    Comparison of  Continuous and Manual  SO-  at  Locations  1            86
      and  3 with Theoretical Values

 38    Comparison of  Continuous and Manual  NO  at  Location 3             87

 39    Comparison of  Continuous 02  and CO   with Orsat  Measurements       89
      at Location 3

40   Proximate  and  Ultimate Analyses of Coal  (Dry  Basis)               92

41   Proximate  and  Ultimate Analyses of Coal  (As Received  Basis)       94

42   Proximate  Analysis  of Fly Ash from Dust  Collector                  96

43   Proximate  Analysis  of Air Heater Hopper  Ash                       97

44   Proximate Analysis  of Slag Samples                                 98
                                 viii

-------
                           TABLES (CONTINUED)

No.                                                                 Page

45   Proximate Analysis of Pulverizer Reject Samples                  99

46   Comparison of Elemental Concentrations in Coal,                 100
     Pulverizer Rejects, Slag, and Fly Ash (MITRE Test
     No. 1, 75 MW, B Fuel, No Soot Blowing, Normal Excess
     Air, Normal Burner Angle)

47   Comparison of Elemental Concentrations in Coal,                 101
     Pulverizer Rejects, Slag, and Fly Ash (MITRE Test
     No. 3, 75 MW, A Fuel, No Soot Blowing, Maximum Excess
     Air, Normal Burner Angle)

48   Comparison of Elemental Concentrations in Coal, Pyrites,        102
     Slag, and Fly Ash (MITRE' Test No. 22, 75 MW, D Fuel, No
     Soot Blowing, Normal Excess Air, Normal Burner Angle)

49   Comparison of Elemental Concentrations in Coal, Pulverizer      103
     Rejects, and Fly Ash (MITRE Test No. 5, 75 MW, C Fuel,
     No Soot Blowing, Normal Excess Air, Normal Burner Angle)

50   Elemental Content of Flue Gas Particulate Matter, MITRE         104
     Test No. 13:  35 MW, B Fuel, No Soot Blowing, Normal
     Excess Air, Normal Burner Angle

51   Elemental Content of Flue Gas Particulate Matter, MITRE         105
     Test No. 8:  100 MW, A Fuel, No Soot Blowing, Maximum
     Excess Air, Normal Burner Angle

52   Elemental Content of Flue Gas Particulate Matter, MITRE         106
     Test No. 20:  50 MW, C Fuel, No Soot Blowing, Normal
     Excess Air, Normal Burner Angle

53   Elemental Content of Flue Gas Particulate Matter, MITRE         107
     Test No. 19:  50 MW, A Fuel, No Soot Blowing, Maximum
     Air, Normal Burner Angle

54   Elemental Content of Flue Gas Particulate Matter, MITRE         108
     Test No. 17:  50 MW, A Fuel, Maximum Soot Blowing, Normal
     Excess Air, Normal Burner Angle

55   Elemental Analyses of Coal for Cat-Ox Baseline Program          109

56   Determination of Bound S0» and SO., by Chemical Analysis         112

57   Determination of Polynuclear Aromatic Compounds Bound to        113
     the Surface of Flue Gas Particulates

                             ix

-------
                            TABLES (CONCLUDED)

 No.                                                                  Page

 Al   Velocity Traverse at  Economizer (Location 1)  Test               118
      9/28 - 9/29

 A2   Velocity Traverse at  Economizer (Location 1)  Test 9/30          119

 A3   Velocity Traverse at  Economizer (Location 1)  Test 10/1          120

 A4   Velocity Traverse at  Economizer (Location 1)  Test 10/5          121

 A5   Velocity Traverse at  Economizer (Location 1)  Test 10/6          122

 A6   Velocity Traverse at  Economizer (Location 1)  Test 10/8          123

 A7   Coal Analyses  for Preliminary  Test  Runs                          124

 A8   Grain Loading  at  Air  Heater  (Location  2)  Test 101               125

 A9   Grain Loading  at  Air  Heater  (Location  2)  Test 102               126

 A10   Grain Loading  at  Air  Heater  (Location  2)  Test 103               127

 All   Grain Loading  at  Air  Heater  (Location  2)  Test 104               128

 A12   Grain Loading  at  Air  Heater  (Location  2)  Test 105               129

 A13   Grain Loading  at  Air  Heater  (Location  2)  Test 106               130

 A14   Grain Loading  at  Air  Heater  (Location  2)  Test 107               131

 A15   Grain Loading  at  Air  Heater  (Location  2)  Test 108               132

A16   Grain Loading  at  Air  Heater  (Location  2)  Test 109               133

 Dl                                                                    209

 D2                                                                    211
                                x

-------
                              SECTION I
                             CONCLUSIONS
 All  primary  objectives  of  the Baseline Measurement Test were achieved
 in the  five  week period of testing on Steam Generator Unit No. 4 of the
 Wood River Station of the  Illinois Power Company.
 A relationship was defined between control settings and operating con-
 ditions  for  Unit No. 4  and flue gas properties at the Cat-Ox/Steam
 Generator interface; baseline performance of the steam generator was
 characterized in terms  of  emission levels and quantitative data were
 obtained which can be used to support the establishment of realistic
 performance  standards.   Operating experience was also obtained in the
 testing  and  calibration of the measurement procedures and hardware to
 be used  in the one-year demonstration test, and quantitative information
 was  obtained on the overall operability and reliability of Steam Gener-
 ator Unit No. 4.
 Data are provided in this  report in the form of tabular results for a
 set  of  twenty-one separate tests, each at different operating conditions.
 To maintain  these conditions during each test (a period of approximately
 ten  hours),  it was necessary to control the following:  load factor,
 fuel type, soot blowing, and excess air.
 In general, no test results were found which were significantly different
 from anticipated results, either in terms  of magnitude or in terms of
 effects of the parameters examined.
Net and gross efficiencies were on the average higher at a 75 MW load
 level when compared with average values at 100 MW and 50 MW load levels;
but the differences were not of the magnitude to be significant.   No
 significant differences were found in net  and gross efficiencies for
 the  three types of fuel tested at the 100  MW level.
Measured gas mass flow  rates for sulfur dioxide were consistent with
 control settings and sulfur content of the fuel.  Measured gas flow
 rates for carbon dioxide were not significantly different for the three

-------
 types of fuel tested.   Oxygen mass  flow  rates  decreased with  decreasing
 load level,  and were  found  not to be  significantly different  for  two of
 the fuel types for  a  fixed  load level.   Measured  gas mass  flow rates
 for nitric oxide were  significantly lower  for  tests performed with  the
 fuel type that was  predominantly natural gas than for  tests performed
 with the other two  fuel types.
 Total gas mass flow rates were derived from the measured flow rates for
 individual gases and,  as such,  showed the  same relationships  as the
 individual gases (i.e.,  same  decrease with decreasing  load level  and
 same increase  with  increased  excess air).
 The  results  of a sulfur balance  computation, comparing measurements of
 sulfur  flow  input to the system  in  the fuel with  sulfur flow  output from
 the  system in  the stack gas, were in  good  agreement for all tests.  These
 results  led  to the  conclusion  that  the total combined  error in sulfur
 dioxide  and  gas  flow measurements was low.
 Grain loading  measurements were  found to be consistent with the ash
 content  of the  fuels utilized  and the soot blowing cycle employed.  No
 specific  patterns were found in  the analysis of results in terms of
mechanical collection efficiencies.
 In the comparisons between manual sampling and continuous measurement
 results with theoretical expected values of gaseous concentrations,
 closer agreement was found between the continuous measurement results
and  the  theoretical values.
The proximate  and ultimate analyses of the coal and the elemental analyses
of pulverizer  rejects, furnace bottom ash, and fly ash did not provide
any specific pattern beyond the expected results.  The elemental analyses
are of special value,  however, in that they do provide the means for
determining emission rates to the ambient atmosphere for a number of
elements not usually examined in emission testing programs.

-------
                              SECTION II
                             INTRODUCTION
BACKGROUND
The Environmental Protection Agency (EPA) is actively engaged in a
number of programs to demonstrate sulfur oxide emission control pro-
cesses applicable to stationary sources.  These demonstration programs
are based upon operation of an emission control system of such size and
for such duration as to permit technical and economic scale-up of
operating factors to define the commercial practicality of the process
for potential industrial users.  Among the candidate processes to be
evaluated is the Cat-Ox process developed by Monsanto Enviro-Chem
Systems Inc. under contract to the Illinois Power Company and the
Environmental Protection Agency.  The Cat-Ox process as developed by
Monsanto is based upon the catalytic oxidation of sulfur dioxide to
sulfur trioxide and subsequent reaction with water in the flue gas to
form sulfuric acid.  The sulfuric acid formed is to be sold to offset
the operating costs associated with the process.
Four major task areas have been defined by MITRE under contract to EPA
to provide "Test Program Development Work of the Cat-Ox Demonstration
Unit (CPA 70-161)."  The first of the task areas concerns the "Definition
of Test Requirements," determined by means of an examination of the
requirements of potential users,  an examination of the stated technical
and economic capabilities of the Cat-Ox process, and the performance of
a requirements analysis defining the types and levels of test data required
to quantify the operability, reliability, and emission control effec-
tiveness of the Cat-Ox process.  The second of the task areas concerns
a "Baseline Measurement Test," in which the baseline operability, reli-
ability, and emission levels of the stationary source are determined
prior to installation of the control process.  The third task area
concerns the performance of a "One-Year Demonstration Test" wherein a
measurement program is conducted which will fully characterize the
Cat-Ox process emission control performance; quantify the operating

-------
 economics of the process;  and establish the  operability,  reliability,
 and maintainability of  the Cat-Ox process  and  the  resulting  effects on
 the steam generator with which it is  integrated.   The  fourth task area
 concerns the "Demonstration Evaluation" where  reduced  test data are
 translated into  quantified statements  on the technical and economic
 adequacy of the  process.
 To date, the first  two  of  the major task areas have been  completed.
 Requirements for testing have been defined in  part in  a baseline measure-
 ment test plan for  the  Cat-Ox Demonstration  Program, and  the baseline
 measurement test was  conducted under  the second major  task in conformance
 with this test plan.
 TEST OBJECTIVES
 The objectives of the Baseline Measurement Test are to:   1)  determine
 the relationship between control  settings  and operating conditions for
 Unit No.  4,  and  flue gas properties at  the Cat-Ox/Steam Generator
 interface,  2)  characterize baseline performance in terms of operability,
 reliability,  and emission  levels  of Unit No. 4 prior to installation of
 the process,  3)   test and  calibrate measurement procedures and hardware
 to  be used  in  the one-year demonstration test, and 4)  obtain quantitative
 data supporting  the establishment  of realistic performance standards for
 all emitted  pollutants.
 SCOPE OF  TEST
 To  meet these  objectives, a test program was developed which consisted
 of  twenty-one  (21) separate tests, each of approximately  ten hours
 duration.  These  twenty-one tests were  conducted over a five-week period
 beginning November 8, 1971 and  ending December 9, 1971.
 Each  of the  twenty-one tests represented a particular combination of
 operating levels  for the major steam generator parameters (load factor,
 fuel  type, soot blowing, and excess air).  The combinations of operating
 levels were selected so as to provide the maximum of information in a
minimum number of tests, varying the parameters on a "one-at-a-time" basis.

-------
Two supplementary gas traversal tests were also conducted to determine
the pattern of leakage at the air heater (measurement position No.  2)
and the gas flow pattern midway in the stack (measurement position No. 3)
A supplementary test was also conducted in which all factors were held
constant except for burner angle, which was varied in steps from the
minimum to maximum position.
For all of the tests, key steam generator operating parameters were
monitored, samples of coal and ash were obtained at various points in
the steam generator, gas samples were manually obtained, particulate
grain loadings were determined by manual sampling, and temperatures,
pressures, gas flows and gas concentrations were monitored by a MITRE
designed continuous measurement system.

-------
                             SECTION III
                        MEASUREMENT PROGRAM
This section describes the procedures followed by the MITRE test team
in preparing for the test program, the steps followed in conducting the
tests, and the data management procedures utilized throughout the
measurement program.
Descriptive information is also provided in this section concerning the
measurement locations, measurement parameters, and the steam generator
operating conditions defined for each test.
PRELIMINARY MEASUREMENTS
As part of the Baseline Measurement Program, a number of preliminary
measurements were made prior to the initiation of the twenty-one tests.
The objective of this preliminary measurement effort was to provide the
necessary background information on isokinetic sampling techniques, rates
of particulate loading in sampling equipment, and effects of power plant
ambient conditions on the measurements.
This information was then used to determine ranges of gas and particu-
late concentrations to be encountered in the measurement program,
to confirm the sampling frequency and sampling positions utilized in
the measurement program, and to identify any changes in operating pro-
cedures or modifications in test equipment necessary for the primary
measurement effort.
The preliminary measurements were conducted over a two-week period
beginning September 28, 1971.  A summary of the test schedule and test
conditions followed during this preliminary measurement effort is shown
in Table 1.  As noted in Table 1, all preliminary runs were conducted
using Type A Peabody coal.  Five of the preliminary runs were conducted
at the 100 MW load level representing the maximum gas flow conditions.
A sixth preliminary run was made at the 35 MW load level.  In these
preliminary runs, excess air was varied from 115% to 145%.  One pre-
liminary run was made with soot blowers in operation to measure the
maximum fly ash dust loading of the system.
                                   7

-------
                                                       TABLE  1

                                   TEST  SCHEDULE  FOR PRELIMINARY MEASUREMENT  SUBTASK
      DATE

      (9/28)
      (9/29)
      9/30  '
O3
      10/1
TEST CONDITIONS

100 MW Load
115% Excess Air
Coal Type A
No Soot Blowing
100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
    MEASUREMENTS

• Temperature & Velocity
 Traverse at Economizer
•Orsat & Moisture Content
 at Economizer
•40-point mass loading at
 front duct of air heater
 (ports 1 and 2)

• Economizer Measurements
 same as above
• 40-point mass loading at
 front duct of air heater
 (ports 1 and 2)
•Velocity Survey of  air heater
 back duct  (ports 3  and 4)

• Economizer Measurements
 same as above
•40-point mass loading at
 back duct of air heater
 (ports 3 and 4)
•Velocity Survey of  air heater
 front duct  (ports 1 and 2)
    REMARKS

Two days were required
to conduct the test,
due to time necessary
for test preparation
       All tests also include static pressure measurements,
       moisture content, and Orsat analysis for 0- and CO

-------
DATE
10/5
10/6
10/8
                                           TABLE 1 (CONTINUED)

                             TEST SCHEDULE FOR PRELIMINARY MEASUREMENT SUBTASK
TEST CONDITIONS

100 MW Load
125% Excess Air
Coal Type A
Soot Blowing over
period of test

100 MW Load
125% Excess Air
Coal Type A
No Soot Blowing
35 MW Load
145% Excess Air
Coal Type A
No Soot Blwoing
   MEASUREMENTS

• Economizer Measurements
 same as above
• 40-point mass loading at
 back duct of air heater
 (ports 3 and 4)

• Economizer Measurements
 same as above
• 2-separate single point
 mass loading measurements
 at back duct of air heater
•Velocity Survey of air heater
 front duct and half of rear
 duct

•Economizer Measurements
 same as above
•40-point mass loading at
 back duct of air heater
   REMARKS

Test to show effect
of soot blowing (i.e.,
maximum fly-ash concen-
trations)
Test to show effectiveness
of single or ten-point
mass loading measurement
for subsequent tests
Test to show lowest
extreme in gas flow
and mass loading

-------
 The preliminary measurements conducted at the air heater on 10/6/71
 were intended to provide a comparison between (1) a 40-point,  2-probe
 traverse of the rear duct (ports 3 and 4) and (2) a Id-point,  single
 probe traverse of half of the rear duct (port 4)  with (3)  a single
 point, single probe sample from the rear duct (port 3,  port 4).
 From the results of this test, it was determined  that the best method
 for measuring grain loading at location 2 would consist of a 20-point,
 2-probe traverse in one-half of each duct (a total of 40 points).  The
 halves selected are to be varied for the range of test  conducted at
 each load factor to insure thorough sampling of the total duct.
 A complete summary of  the results of the preliminary  measurements effort
 is provided in Appendix A.
 MAIN MEASUREMENT PROGRAM
 The main measurement program was  initiated on November  8,  1971 following
 the completion of the  preliminary measurement effort, and  the  completion
 of all  required facility  modifications  (ports,  sheds, and  stack  access
 platform).
 A  summary  of the Baseline test  conditions is  presented  in  Table  2.  As
 noted in Table 2,  four  load  levels were  examined  in the tests:   100 MW,
 75  MW,  50 MW,  and 35 MW.
 The four fuel  types shown in Table 2  included Type  A  Peabody Coal (approx-
 imately  2.7 Ibs  S/10  BTU),  Type  B Freeman Coal (approximately 1.6 Ibs
 S/10  BTU), Type  C Coal,  a mixture of Freeman Coal  and  Natural Gas (approx-
 imately  1.0 Ibs  S/10  BTU),  and Type D metallurgical  coal  (source location
 undefined, sulfur content  approximately  1.0 Ibs S/10  BTU).
Two levels of  soot blowing were investigated  - no soot  blowing and max-
imum soot blowing.  However, on one  test early in the series,  an inter-
mediate  level  of  soot blowing was examined.
Three levels of  excess air were examined as shown in Table  1 - minimum
excess air, normal excess air, and maximum excess air.
                                   10

-------
                               TABLE  2




                 SUMMARY OF  BASELINE  TEST CONDITIONS
TEST
NUMBER
11
9
8
12
7
6
1
18
13
4
5
10
20
2
3
17
19
21
14
15
22

DATE
NOV 8
NOV 9
NOV 10
NOV 11
NOV 12
NOV 15-16
NOV 14-15
NOV 16-17
NOV 17-18
NOV 18-19
NOV 21-22
NOV 22-23
NOV 23-24
NOV 29-30
NOV 30-DEC 1
DEC 1-2
DEC 2-3
DEC 3-4
DEC 6-7
DEC 7-8
DEC 8-9
LOAD
FACTOR
100 MW
100 MW
100 MW
100 MW
100 MW
100 MW
75 MW
50 MW
35 MW
75 MW
75 MW
100 MW
50 MW
75 MW
75 MW
50 MW
50 MW
35 MW
50 MW
50 MW
75 MW
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORMAL
MINIMUM
MAXIMUM
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
MINIMUM
NORMAL
NORMAL
NORMAL
NORMAL
MAXIMUM
NORMAL
MAXIMUM
NORMAL
NORMAL
MINIMUM
NORMAL
*Reduced level of soot blowing
                                   11

-------
 TEST OPERATING PROCEDURES
 Of the 21 tests in the main  measurement program,  the first five tests
 were performed during the normal day shift  (approximately 8:00 a.m. to
 4:00 p.m.).   The remaining tests were  conducted during the evening shift
 (approximately 12:00 a.m. to 8:00  a.m.), in order to minimize the inter-
 ference with  higher-load daytime operations.  In  all cases, test personnel
 were on-site  for a period of 1-2 hours preceding  the start of the test.
 During this pre-test period,  filters in the sampling lines were cleaned
 and preheated,  sampling probes were inserted in the ports, and the
 instrumentation systems were calibrated.
 Approximately  one  hour before the  test, boiler controls were adjusted
 to  provide the  required excess air and power settings.  Excess air
 was  determined  by  MITRE gas measurements, and interative adjustments
 were  made until the desired  level was reached.  The boiler system was
 then  allowed  to stabilize.  When the system was stabilized and no vari-
 ations  in power  level and excess air were observed, test personnel were
 notified to start  their respective assignments.
 Assignments for the various test personnel varied somewhat for the
 specific tests, but in general the following data collection efforts
were  carried out:
      1.  Key steam generator  operating parameters were
         recorded from the control room instrumentation and
         from various gauges on the steam generator.  These
         readings were entered in an "Operating Conditions
         Log,"  generally on an hourly basis.
      2.  Samples of coal were obtained from each of the four
         coal mills using the cyclone samplers and the techniques
         described in the test plan.  Ash samples were also taken
         from the furnace bottom and from the air heater and
         mechanical collector.  The coal samples and the ash
         samples were obtained over the period of test operation
                                  12

-------
           (8-10 hours) and blended at the conclusion of the
           test so as to form single representative one quart
           samples.
      3.   Data log tapes were generated (using the steam gener-
           ator control computer) and "printouts" were developed
           from the tapes on an hourly basis.
      4.   Relative humidity measurements were taken on an hourly
           basis at the forced draft fan inlet using a sling
           psychrometer.
      5.   The continuous measurement instrumentation system was
           placed in operation at location 1 and location 2.
           Strip charts and digital output derived from the system
          were collected and logged at the conclusion of the test.
      6.   Gas samples were taken manually at location 1 and
           location 3; grain loading samples were taken at
           location 2 and location 3 as required for the specific
           test.
      7.  On-site calculations were made with the programmable
           calculator as described in the Test Plan.
Data from  all of the above efforts were collected at the conclusion of
each test, marked with the appropriate identification number, noted in
the Master Data Log, and filed in a data test package (in accordance
with the data management procedures described in the Test Plan).
CONTINUOUS MEASUREMENT SYSTEM
The MITRE  continuous measurement system consisted of a number of gas
sensors, velocity, pressure, and temperature transducers, a sample
handling system to condense water vapor, strip chart recorders, and
digital tape printers, and the necessary filters, probes, heated lines,
and valves to control the flow of flue gases to the sensors.  The system
was designed to clean sampling line filters on a periodic basis by
"blowback" with pressurized air; and to maintain calibration of the

                                    13

-------
 sensors by the periodic introduction of known  concentrations of test
 gases into the system.
 The continuous measurement  system was  constructed  in  two major sections,
 each section separately contained in a shed enclosure for environmental
 protection.   The  first  section of the  system was located at the econo-
 mizer of the steam generator  (measurement location 1).  This portion
 of the system consisted of  a water vapor condenser, a sulfur dioxide
 analyzer,  an oxygen analyzer, and a  velocity measurement system with
 strip chart  output.  A  temperature monitoring  system with a digital
 output was also located at  this position.  The second section of the
 continuous measurement  system was located in a shed mounted on the
 roof of the  steam generator building at a position opposite the mid-
 point of the stack.  At this location,  the system  included a water vapor
 condenser, a sulfur  dioxide analyzer,  an analyzer  for nitrogen dioxide
 and nitrogen oxide,  a carbon dioxide analyzer, a carbon monoxide analyzer,
 a  hydrocarbon analyzer,  an oxygen analyzer, and a  velocity measurement
 system with  strip  chart  output.  The system at this location also
 included a particulate  monitoring system with digital output.
 MANUAL  MEASUREMENTS
 Manual  measurements were made during the Baseline  Test program by the
 MITRE  test team and by  a stack sampling subcontractor (Midwest Research
 Institute).
 The measurements by  the MITRE test team included the observation and
 recording of  all major  gauge board readings from the steam generator
 control  room, observation and recording of coal scale readings, measure-
ment of  atmospheric pressure, and measurement of moisture content of
 air at  the forced draft  fan inlet to the steam generator.  The efforts
 of the MITRE  test team  also included the collection of coal and ash
 samples  at various points in the steam generator.
 The manual measurements by the Midwest Research Institute team included
 the collection of gas samples at the economizer (measurement location 1)
and midway in the stack  (measurement location 3).  Particulate samples

                                   14

-------
 were also obtained  by the  Midwest  Research  Institute team at the air
 heater (measurement location  2)  and midway  in the stack, Orsat analyzers
 of the flue gas  at  the air heater  were also conducted by Midwest Research
 Institute.
 MEASUREMENT PARAMETERS
 The parameters monitored at each of the  three measurement locations are
 indicated in Table  3.   The parameters shown as being monitored by the
 continuous  measurement system were normally measured on all of the
 twenty-one  tests.   The manual measurements  shown in Table 3, in most
 cases,  were varied  for specific  tests.
 As mentioned previously, the  parameters  monitored by the MITRE test
 team included the observation and  recording of all major gauge board
 readings  from the control  room,  observation and recording of coal scale
 readings, measurement  of atmospheric pressure, and measurement of the
 moisture  content of the air at the forced draft fan inlet to the steam
 generator.   A listing of these parameters is provided in Table 4.
 Information was  also obtained from the steam generator control system
 in the form of hourly  printouts  from the control system computer.  Key
 temperatures, pressures, flow rates, and electrical measurements were
 recorded  on these data log printouts, as well as several calculated
 values  (i.e., boiler efficiencies, integrated fuel flows).
MEASUREMENT LOCATIONS
The three locations utilized in the Baseline Measurement included:
location 1 -  the flue section between the secondary superheater and
economizer, location 2 - in the inspection window area between the upper
and lower sections of the air preheater ducting, and location 3 - midway
in the stack.
   The first of these locations,  prior to the economizer, was selected
to provide data at the relatively high temperatures corresponding to
the inlet to  a Cat-Ox system designed for installation in new steam
generators.   Four ports were in existence at this location.  Three
                                    15

-------
                                                                TABLE 3
                                  BASELINE MEASUREMENT PARAMETERS (CONTINUOUS AND MANUAL MEASUREMENTS)
LOCATION 1
   (PRIOR TO ECONOMIZER)
CONTINUOUS, MEASUREMENT SYSTEM

°2
SO 2
TEMPERATURE, AIR HEATER, AIR IN
TEMPERATURE, AIR HEATER, AIR OUT
TEMPERATURE, AIR HEATER, GAS IN
TEMPERATURE, AIR HEATER, GAS OUT
TEMPERATURE, AIR ENTERING FORCED DRAFT FAN
HUMIDITY, AIR ENTERING FORCED DRAFT FAN
PITOT TUBE AP
STATIC PRESSURE        GAS FLOW MEASUREMENT
FLUE GAS TEMPERATURE
MANUAL MEASUREMENTS

S03
S02
NOX
CO
C02
ORSAT 02
ORSAT C02
ORSAT CO
LOCATION 2
   (BETWEEN UPPER AND LOWER
    TUBES OF AIR HEATER)
 (NO CONTINUOUS MEASUREMENT AT THIS LOCATION)
GRAIN LOADING
PARTICULATE SIZE DISTRIBUTION
ELEMENTAL ANALYSIS OF PARTICLES
BOUND CONSTITUENTS ON PARTICLES
                                                                                            PITOT TUBE AP
                                                                                            STATIC PRESSURE
                                                                                            FLUE GAS TEMPERATURE
                                                                             GAS FLOW MEASUREMENT

-------
                                                        TABLE 3   (CONCLUDED)

                                BASELINE MEASUREMENT PARAMETERS (CONTINUOUS AND MANUAL MEASUREMENTS)
                                     CONTINUOUS MEASUREMENT SYSTEM.
                                                                                            MANUAL MEASUREMENTS
LOCATION 3
   (MIDWAY IN STACK)
OTHER LOCATIONS
                                                            GAS FLOW MEASUREMENT
PITOT TUBE AP
STATIC PRESSURE
FLUE GAS TEMPERATURE

GRAIN LOADING
so2

N°x
02
HYDROCARBON
CO

CO 2
(NO CONTINUOUS MEASUREMENTS AT OTHER LOCATIONS)
S03
S02
ORSAT 02
ORSAT CO2
ORSAT CO
                                                                                                        Hg VAPOR
CO

C02
GRAIN LOADING
PARTICLE SIZE DISTRIBUTION
ELEMENTAL ANALYSIS OF PARTICLES

BOUND CONSTITUENTS ON PARTICLES
                                                                                            PITOT TUBES AP
                                                                                            STATIC PRESSURE
                                                                                            FLUE GAS TEMPERATURE
                                                                              GAS FLOW MEASUREMENT
                                                                                            PROXIMATE & ULTIMATE ANALYSIS OF COAL

                                                                                            ELEMENTAL ANALYSIS OF COAL
                                                                                            ELEMENTAL ANALYSIS OF BOTTOM ASH

                                                                                            ELEMENTAL ANALYSIS OF AIR HEATER ASH
                                                                                            ELEMENTAL ANALYSIS OF MECHANICAL SEPARATOR ASH

                                                                                            PROXIMATE ANALYSIS OF PYRITE REJECTS
                                                                                            PROXIMATE ANALYSIS OF BOTTOM ASH

                                                                                            PROXIMATE ANALYSIS OF AIR HEATER ASH

                                                                                            PROXIMATE ANALYSIS OF MECHANICAL SEPARATOR ASH
                                                                                            ELEMENTAL ANALYSIS OF PYRITE REJECTS

-------
                  TABLE 4

       BASELINE MEASUREMENT PARAMETERS
   (STEAM GENERATOR GAUGE BOARD READINGS)
CONDENSER VACUUM (PSI)

ATM PRESS. AT AIR INTAKE (IN OF H )
                                 O
HUMIDITY AT AIR INTAKE (%)
(INTEGRATOR LOG READINGS)
     BOILER STEAM FLOW (LBS./HR.)
     BOILER FW FLOW (LBS./HR.)
     BEVEL GAS FLOW (LBS./HR.)
     SH SPRAY FLOW (4TH FLOOR) (LBS./HR.)
     RH SPRAY FLOW (4TH FLOOR) (LBS./HR.)
     'A' COAL SCALE (CLICKS)
     'B' COAL SCALE (CLICKS)
     'C1 COAL SCALE (CLICKS)
     'D' COAL SCALE (CLICKS)
(GAUGE BOARD READINGS)
     (UTILITIES SECTION)
         CONDENSER PRESSURE (IN OF Hg)
     (FEEDWATER & STEAM SECTION)
         DRUM PRESS (PSI)
         D.C.  HEATER PRESS (PSI)
         4A BFP DISCH (PSI)
         4B BFP DISCH (PSI)
         BLR FEED HDR (PSI)
         FW FLOW TO BLR (LBS./HR.)
         MAINSTREAM TEMP  (°F)
         THROTTLE PRESSURE (PSI)
         HOT REHT TEMP.  (°F)
         COLD REHT TEMP.  (°F)
         4A RH SPRAY VALVE (%)
         4B RH SPRAY VALVE (%)
         BURNER TILT (%)
         4A SH SPRAY VALVE (%)
         4B SH SPRAY VALVE (%)
     AIR & FUEL SECTION
         4A FD FAN DISCH. (IN  OF  H20)
         4B FD FAN DISCH. (IN  OF
         FURN. DRAFT (IN  OF H20)
         RHTR. OUTLET (IN OF 1^0)
         SUPHTR OUTLET (IN OF  H20)
         ECON. OUT (IN OF H20)
                         18

-------
         TABLE 4  (CONCLUDED)

    BASELINE MEASUREMENT PARAMETERS
(STEAM GENERATOR GAUGE BOARD READINGS)
      4A AIR HEATER OUT (IN OF H20)
      4B AIR HEATER OUT (IN OF H20)
      4A DUST COL. OUT (IN OF H20)
      4B DUST COL. OUT (IN OF H20)
      STACK INLET (IN OF H20)
      FLUE GAS 02 (%)
      STEAM FLOW (LBS./HR.)
      AIR FLOW (LBS./HR.)
      UNIT GROSS GEN. (MW)
      AH 4A GAS OUT (°F)
      AH 4B GAS OUT (°F)
      4A MILL (AMPS)
      4B MILL (AMPS)
      4C MILL (AMPS)
      4D MILL (AMPS)
      4A ID FAN (AMPS)
      4B ID FAN (AMPS)
      4A FD FAN (AMPS)
      4B FD FAN (AMPS)
      4A MILL FEEDER (%)
      4B MILL FEEDER (%)
      4C MILL FEEDER (%)
      4D MILL FEEDER (%)
      GAS VALVE (%)
      4A ID FAN SPEED (RPM)
      4B ID FAN SPEED (RPM)
      4A ID FAN DAMPER (%)
      4B ID FAN DAMPER (%)
      4A FD FAN SHTOFF DAMP. (%)
      4B FD FAN SHTOFF DAMP. (%)
      4A FD FAN VANES (%)
      4B FD FAN VANES (%)
      FUEL AIR RATIO SET PT. (%)
                      19

-------
 additional ports were constructed  to  bring  the  total  to  seven ports at
 this location.   Four measurement points were  selected for  each port so
 as to provide the proper  number and distribution  of measurement points
 in accordance with ASTM Standard D2928-71.  "Standard Method for Sampling
 Stacks for Particulate  Matter."  The  numbers  assigned to the ports and
 points at  location 1 and  the  associated dimensions are shown in Figure 1.
 Location 2,  between the upper and  lower sections  of the air preheater,
 was selected as  representative of  a lower temperature condition prior to
 any existing or  planned flue  gas treatment  system.  This location was
 selected as  the  best available point  prior  to the mechanical collector
 for the  measurement  of  particulate.   The ports  and sampling points for
 this  location are  shown in Figure  2.  At location 2 there are two iden-
 tical  ducts,  only  one of which is  shown in  Figure 2.   The twenty sampling
 points which  are shown  directly in the line with  the  ports were reached
 with  a seventeen-foot sampling probe.  The  twenty sampling points which
 are not  directly in  line with  the  ports were reached  by an "offset" mod-
 ification  attached  to the seventeen-foot probe.
 Location 3, approximately 135  feet above the foundation of the 250-foot
 stack, was selected  to  provide a condition  representative of the flue
 gas emitted to the atmosphere (and, in this  instance,  conditions which
will be seen  at  the  reheat Cat-Ox/steam generator interface).  Access at
 this  location was achieved by  installing a platform around the stack
with a walkway to the adjacent power station roof.  Four ports were
 installed  in  the stack  at this location as shown  in Figure 3.  Nine
measurement points were selected for each port  to provide the proper
number and distribution of measurement points consistent with ASTM
Standard D2928-71.
MANUAL SAMPLING  SCHEDULE
Table 5 provides a summary of  the test conditions followed in the
Baseline Measurement program.   Table 5 also presents  a summary of the
schedule followed in obtaining manual samples at  the  three measurement
locations.
                                     20

-------
                                       -32' 4"-
                                                                                       4%'
POINT
POINT




POINT
— — 	

POINT
1
4
._
T H
3


• •

T 1~
2

1
•
PORT 1 | PORT 2

X*"



~-

•



.

•
I
I
I *
' I
I
I •
I
I
1
1
I
1 .
-1 	 +-_
|
•
i i _*.
i INSULATION 	 *"


1
1
1
1
m



I
i 1 _
H 1
.

•
1
1
1
-4--—-L-
i
1
1
.

•
16'
_ —

PORT 3 | PORT 4 PORT 5 PORT 6 J PORT 7
I |
— — 6" !
I
1


|
i
i
. r\


! 1 1
i t
L _L





	
3y2"
	









1
15'





W





I
               .4-4'
— 3'8"
-3'8" —
4'4"
-3'8"
EXISTING PORTS
                   ADDITIONAL
                   PORTS
-4'4"
                                            0            5
                                            I   i  I   i  j   i
                                             SCALE IN FEET
                                         FIGURE 1
                CROSS SECTION OF DUCT AT LOCATION 1, PRIOR TO ECONOMIZER,
                              SHOWING MEASUREMENT POINTS

-------
r 8.5
                                       - 33' 7.5"-
                                                                                  5'3'
                     'PORT
INSULATION
                                    0          5
                                    I  I  I  I  |  I

                                    SCALE IN FEET
                                     FIGURE 2
               CROSS SECTION OF DUCT AT LOCATION 2, IN AIR PREHEATER,
                           SHOWING MEASUREMENT POINTS

-------
POWER
PLANT
BUILDING
                              • j>OI NT 1
                              •_POINT 2-
                              • POWT 3
                              » rum i  /   -\             v

                              • POTNT 8 \ \    ^  \     \
                              —     x                    '
                                                               PORT 2
                            FIGURE 3
           CROSS SECTION OF DUCT"AT POINT  3,  IN  STACK,
                  SHOWING MEASUREMENT POINTS
                               23

-------


-------
As noted in Table 5, emphasis was placed on the measurement of S0_, NO ,
                                                                 ^    X
CO, and CO- concentrations, and in the determination of mass loading.
These measurements were originally scheduled for all twenty-one tests
for correlation against the measurements obtained from the continuous
measurement instrumentation system.  The gas measurements were subse-
quently rescheduled as shown in Table 5 so as to provide the maximum
coverage of test conditions with the resources allocated for the program.
Mass loading samples were obtained for all of the tests, since it was
anticipated that the portion of the continuous measurement system that
measured this parameter (3-tape sampling) would not be operable early
in the test schedule.
Particle size distributions were originally scheduled for each fuel
type (A, B, C, and D) with an extra sample scheduled for fuel type A.
However, difficulties were encountered on the B fuel test (test No. 6)
and an insufficient sample was obtained for the measurement.
Elemental analysis of the fly ash was scheduled for each of the fuel
types with extra samples scheduled for two 50 MW tests (test 17 and
test 19) to note any possible effect from soot blowing.
Bound constituents were determined (both by photoelectron spectroscopy
and chemical analysis) for tests representing the four fuel types, with
an extra sample scheduled for fuel type A.
Ultimate and proximate analysis of coal was scheduled for all of the
twenty-one tests, since these results were required for the calculation
of efficiencies and for other material balances.
Analyses of the ash at the various locations within the steam generator
system were scheduled as shown in Table 5 so as to provde a maximum of
information on a materials balance within the system.
MANAGEMENT OF DATA
The data management system used during the Baseline Measurement test
included a uniform labeling system for all data samples, and log sheets
forwarded from the test site.

                                27

-------
 The purpose of the labeling  system was  to  provide  full  and manageable
 control of all data.   Fourteen  items were  specified  to  be included on
 the label; however, not  all  data,  samples, or  logs required all the items
 The fourteen items included:
      1.   Label ID:  XXYYZZ
          (Where XX =  type sample,  i.e., CS = coal  sample, PA = pit
          ash sample,  etc.; XY = test number, and ZZ  = consecutive
          sample number)
      2.   Parameters Measured
      3.   Date:   (Day/Month/Year)
      4.   Location
      5.   Port  of Measurement
      6.   Depth  of  Probe  (inches)
      7.   Time of Samples (Time  Range for Strip Charts)
      8.   Names  of  Data Collector
      9.   Name of I.P. Shift Supervisor
    10.   Fuel Type  (A, B, C, or D)
    11.   Load Factor  (MW)
    12.   Excess Air Ratio (Normal, Max, or Min)
    13.   Soot Blowers (Yes or No)
    14.   Burner Angle (Normal, Max, Min).
In addition  to  the uniform labeling system, a data management log was
used  to verify  the location and status of the various data packages.
This  log, which served as the primary control log for all data packages,
was completed by a member of the MITRE test team at  the completion of
each  day's test run.  The log included the following major entries:
      1.  Test Number and Date
      2.  Expected Variables
      3.  Coal and Refuse Sampling
     4.  Temperature Monitoring
     5.  Continuous Flue Gas Monitoring
     6.  Manual Flue Gas Sampling
                                   28

-------
     7.  Operating Conditions
     8.  On-Site Calculations Performed
     9.  Personnel
    10.  Test Director Notes.
A full description of the complete data management log is provided in
Appendix II.
After the log sheet was completed for the test run, it was shipped along
with the continuous measurement data to the MITRE Washington facility.
The log sheet was then maintained in a MITRE control log in which MITRE
personnel noted the receipt and condition of the other data packages
associated with that day's test run.
After the data were received and logged at the MITRE Washington facility,
they were then stored in a central archive with controlled access.
These data were stored in labeled fiberboard file boxes (one box per
test day) under the custody and control of the MITRE Task Leader.
                                   29

-------
                             SECTION IV
                          DATA PROCESSING
This section describes the procedures followed by the MITRE test team
in processing the data output from the continuous measurement system,
steam generator operating data, and data obtained from the manual
measurements made by the Midwest Research Institute.   Information is
also provided in this section on the data reduction system developed
for MITRE's IBM 360/50 computer, and on the structure and contents of
the data base as used for baseline test calculations.
CONTINUOUSLY MEASURED DATA
The data output from MITRE's continuous measurement system consisted of
strip chart outputs from the sulfur dioxide analyzer  at the economizer,
the oxygen analyzer at the economizer, the economizer velocity measure-
ment system, the sulfur dioxide analyzer at the stack, the stack analyzer
for nitrogen dioxide and nitrogen oxide, the carbon dioxide analyzer at
the stack, the carbon monoxide analyzer at the stack, the stack hydro-
carbon analyzer, the oxygen analyzer at the stack, and the stack velocity
measurement system.  The continuous measurement system data output also
included the digital tape output from the temperature monitoring system
at the economizer, and strip chart output from a continuous recording
barometer.
Data from the strip charts were transcribed at hourly intervals based on
a visual averaging of the data over a one-hour period.  If gaps in the
chart prevented transcription for a particular hour,  the average value
for the test was substituted.  Since the instruments  were calibrated
prior to each test and were adjusted during the test  as required, the
transcribed values needed only to be corrected for zero level offset.
The transcription process was straightforward for all gases except NO .
                                                                     X
Here, the analyzer provided both NO- and NO + NO- values.  The NO- data,
being within instrumental noise, were assumed to be zero and the NO + NO-
data were transcribed as NO only.
                                  31

-------
 STEAM GENERATOR OPERATING DATA
 The steam generator operating  data recorded  for the  Baseline Test
 included all major gaugeboard  readings,  coal scale readings, atmospheric
 pressure,  and moisture  content of  the  air  at the inlet  to  the forced
 draft fan  as recorded manually on  the  operating conditions log sheet.
 These data were recorded  at  approximately  hourly intervals throughout
 the duration of the test.  Additional  data in the form  of key temper-
 atures,  pressures,  and  flow  rates  were also  obtained on an hourly basis
 in the form of printouts  from  the  control  system computer.  No further
 transcription was  required of  the  steam  generator operating data beyond
 the original log sheet  entries and the printouts, with  the exception of
 the fuel consumption rates.
 The total  coal consumption was obtained  from the integrator dial on the
 coal scales  which  indicated  the number of  400-pound  units supplied.  To
 obtain the  consumption  rate  the dial reading at the  beginning of a test
 was subtracted from that  at  the end of the test,  multiplied by 400, and
 divided  by  the time interval.   Consumption rates were computed for each
 of the four  coal scales and  added  to obtain  the total coal consumption
 rate for the  test.
 The gas  consumption rate was computed  in a similar manner.  Integrator
                           4
 meter  values  indicating 10   cubic  foot units were used  to calculate
 an average value for the test.  Gas pressure  and  temperature test
 averages were  also  computed.
 MANUAL MEASUREMENTS
 Data obtained by the Midwest Research  Institute as part of their manual
measurement program were entered directly  on  series of MRI field test
 forms.  Copies of these completed  field test  forms were forwarded to
MITRE; however, no  further transcription of  the data was performed by
MITRE.  The data on  the field  test results were utilized along with the
 analytical laboratory results  to provide the  required information on
 grain loadings, gas concentrations, particulate mass flows, and gas
mass flows.  All calculations required to provide this information
                                   32

-------
were performed by the Midwest Research Institute using standard com-
putational procedures.
Data sheets reporting the results of analysis of natural gas samples
(as analyzed by MRI and the Illinois Geological Survey) were also
received at MITRE and utilized without further transcription.
DATA REDUCTION SYSTEM
As an aid to the analysis of baseline test results, a data reduction
system was developed for the IBM 360/50 computer at the MITRE/Washington
facility.  The following discussion describes the structure of this
system and gives an inventory of the data base contents.
Data Reduction System Structure
The data reduction system consists of a data base of measurement values
and a PL/1 computer program.  The data base, although large in terms
of manual processing, is relatively small from a computer standpoint
and does not require any specialized storage techniques or access
methods.  It consists of unit records (i.e., card or card images on tape)
accessed in a conventional sequential fashion.  Each record consists
of measurements of a single type identified in the following manner:
     1.   Type of Data
         1 - Coal Composition
         2 - Gas Composition
         3 - Flue Gas Composition
         4 - Refuse Characteristics
         5 - Fuel Composition
         6 - Air Heater Temperature
         7 - Ambient Conditions
         8 - Electrical Power
         9 - Operating Conditions
         A - Miscellaneous Constants
         B - Flow Characteristics
         C - Duct Characteristics
                                  33

-------
       2.  Test Number
       3.  Date
       4.  Time
       5.  Location (does not apply to some data types)
           1 - Economizer
           2 - Air Heater
           3 - Stack
       6.   Measurement Method (does not apply  to some  data types)
           0 - Manual
           X - Manual  (Orsat)
           1 - Continuous (MITRE  Instrumentation)
           2 - Continuous (IPC automatic data  log)
 The  basic  record  format  is  given in Table  6.   Detailed  formats for each
 data type  are given in Tables 7  through 18.
 The  computer program  to  process  the data has  been designed as a main
 program "shell" into  which  modules for the individual calculations can
 be inserted.   This main  program  reads  the  system control  cards and
 accesses individual records in the data base.   Each module selects the
 specific data values  that are required for its  calculations, performs
 these calculations, and  prints the results.   If some of the required
 data items  cannot be  found, the  module will omit those  calculations
which depend  upon the missing items, but will perform the remainder of
 its  calculations.  In addition,  data items of a single  type which have
 the  same test  number, time, and  data may reside on physically separate
 records as  long as they  are placed in  the  proper columns.  This flex-
 ibility simplifies data  transcription  since measurements which should
 reside in  the  same record may not  be available  at the same time or
recorded on  the same  source document.   The modules being implemented are
 as follows:
      1.  Efficiency  Calculation
      2.  Excess Air  Calculation
      3.  Volume and Mass Flow Calculations for Flue Gases
Table 19 summarizes the characteristics of these modules.

                                    34

-------
               TABLE 6
         BASIC RECORD FORMAT

COLUMNS                     DESCRIPTION
                            Type of Data
                            Test Number
                            Date
                                  Day
                                  Month
                                  Year
                            Time (24-hour clock)
                            Location
                            Measurement Method
                            Measurement Values
                      35

-------
                     TABLE 7




         COAL COMPOSITION RECORD FORMAT









COLUMNS                 DESCRIPTION





1                       "1"




2-9                   Identification (Test Number and Date)




10 - 15                 Unused




16 - 20                 Ash Fraction




21 - 25                 Carbon Fraction




26 - 30                 Hydrogen Fraction




31 - 35                 Nitrogen Fraction




36 - 40                 Sulfur Fraction




41 - 45                 Moisture Fraction




46 - 50                 Heat Content (BTU/lb.)
                           36

-------
              TABLE  8




    GAS COMPOSITION RECORD FORMAT









COLUMNS            DESCRIPTION




1                  "2"




2-9              Identification (Test Number and Date)




10 - 15            Unused




16 - 20            Unused




21 - 25            Carbon Fraction




26 - 30            Hydrogen Fraction




31 - 35            Nitrogen Fraction




36 - 40            Sulfur Fraction




41 - 45            Unused




46 - 50            Heat Content (BTU/lb.)




51 - 56            Specific Gravity
                      37

-------
                         TABLE 9

               FLUE GAS COMPOSITION RECORD



          COLUMNS            DESCRIPTION


          1                  "3"

          2-15             Identification (Test Number, Date,
                             Time, Location, Method)

          16 - 20            CO  Fraction*

          21 - 25            02 Fraction*

          26 - 30            CO Fraction*

          31 - 35            N2 Fraction*

          36 - 40            SO- Fraction*

          41 - 45            Hydrocarbon Fraction*

          46 - 50            Hydrocarbon Molecular Weight

          51 - 55            Hydrocarbon Heating Value (BTU/ft3)

          56 - 60            NO Fraction*

          61 - 65            N02 Fraction*
* A fraction value >1 implies that the units are ppm.
                                38

-------
                 TABLE  10

 REFUSE CHARACTERISTICS RECORD FORMAT



COLUMNS            DESCRIPTION

1                  "4"

2-9              Identification (Test Number, Date)

10 - 15            Unused

16 - 20            Pit Ash Heating Value (BTU/lb.)

21 - 25            Fly Ash Heating Value (BTU/lb.)

26 - 30            Flue Gas Particulate Mass Flow Rate
                   (Ib./hr.)
                     39

-------
              TABLE 11


    FUEL CONSUMPTION RECORD FORMAT





COLUMNS            DESCRIPTION


1                  "5"


2-13             Identification (Test Number, Date,
                   Time)


14 - 15            Unused


16 - 20            Coal Consumption Rate (Ib/hr.) x 10~


21 - 25            Fuel Air Mixture Temperature  (°F)


26 - 30            Gas Flow Rate (ft3/hr. x 10~3)

                                      2
31 - 35            Gas Pressure (Ib/in )


36 - 40            Gas Temperature (°F)
                 40

-------
                    TABLE  12

     AIR HEATER TEMPERATURE RECORD FORMAT



COLUMNS                DESCRIPTION

1                      "6"

2-13                 Identification (Test Number, Date,
                       Time)

14 - 15                Unused

16 - 20                Air Heater Entering Air Temperature
                       (°F)

21 - 25                Air Heater Exit Gas Temperature (°F)
                       41

-------
               TABLE 13

   AMBIENT CONDITIONS RECORD FORMAT



COLUMNS            DESCRIPTION

1                  "7"

2-13             Identification (Test Number, Date,
                   .Time)

14                 Unused

15                 Identification (Method)

16 - 20            Ambient Temperature at Forced Draft
                   Fan (°F)

21 - 25            Relative Humidity Fraction at Forced
                   Draft Fan

26 - 30            Ambient Pressure at Forced Draft
                   Fan (inches Hg.)
                  42

-------
               TABLE 14

    ELECTRICAL POWER RECORD FORMAT



COLUMNS            DESCRIPTION

1                  "8"

2-13             Identification (Test Number, Date,
                   Time)

14 - 15            .Unused

16 - 20            Pulverizer No. 1 Current (amperes)

21 - 25            Pulverizer No. 2 Current (amperes)

26 - 30            Pulverizer No. 3 Current (amperes)

31 - 35            Pulverizer No. 4 Current (amperes)

36 - 40            Forced Draft Fan No. 1 Current
                   (amperes)

41 - 45            Forced Draft Fan No. 2 Current
                   (amperes)

46-50            I. D. Fan No. 1 Current (amperes)

51-55            I. D. Fan No. 2 Current (amperes)
                   43

-------
                TABLE 15

  OPERATING CONDITIONS RECORD FORMAT



COLUMNS            DESCRIPTION

1                  "9"

2-13             Identification (Test Number, Date,
                   Time)

14 - 15            Unused

16 - 20            Steam Flow (Ib./hr. x 10~3)

-------
               TABLE 16




MISCELLANEOUS CONSTANTS RECORD FORMAT









COLUMNS            DESCRIPTION





1                  "A"




2-9              Identification (Test Number, Date)




10 - 15            Unused




16 - 20            Air Heater Leakage Fraction
                   45

-------
               TABLE 17

  FLOW CHAEACTERISTICS RECORD FORMAT



COLUMNS            DESCRIPTION


1                  "B"

2-15             .Identification (Test Number, Date,
                   Time, Location, Method)

16 - 20            Flue Gas Temperature (°F)

21 - 25            Duct Static Pressure (inches H20)

26 - 30            Flue Gas Velocity (ft/min.)
                   46

-------
              TABLE 18




  DUCT CHARACTERISTICS RECORD FORMAT









COLUMNS            .DESCRIPTION





1                  "C"




2-13             Unused




14                 Identification (Location)




15                 Unused




16 - 20            Area (ft2)
                   47

-------
                                   TABLE 19

                             COMPUTATION MODULES
NAME OF MODULE
EFFICIENCY
EXCESS AIR

FLOW
REQUIRED DATA BASE RECORDS
1, 2, 3, 4, 5, 6, 7, 8, 9, A
3, 1, B, C,
PRINTED OUTPUT


Net Efficiency
Gross Efficiency
Electrical Power Inputs
Individual Losses
Radiation Loss

Excess Air Percentage

For Each Flue Gas Constituent:
  Volume Flow (Actual)
  Volume Flow (Standard Conditions)
  Mass Flow

-------
Contents of the Data Base
The previous discussion of the data reduction system described the data
base with respect to its format and data storage capabilities.  The
following discussion will describe the data base as it was actually used
for baseline test calculations.  An inventory of all information contained
in the present version of the data base is given, together with an indi-
cation of the data selected for the final computations.  The data base
itself is reproduced in Appendix C.
     1.  Coal Composition
         The data base contains the as-received ash, carbon, hydrogen,
         nitrogen, sulfur, moisture and heat value of the coal for all
         21 tests as analyzed by Midwest Research Institute.
     2.  Gas Composition
         For the three tests which used natural gas the data base
         contains the as-received carbon, hydrogen, nitrogen,  sulfur
         and heat value of the gas as well as specific gravity.
    3.  Flue Gas Composition
        Table 20 is an inventory of the flue gas measurements by
        location, measurement type and gas constituent.  It also
        indicates which measurements were used in the final calcula-
        tions.  The manual and Orsat measurements consisted of a single
        test value or, in some cases, the average of two values.  The
        continuous measurements consisted of hourly average values
        transcribed from MITRE strip charts.  The column entries which
        appear on Table 20 and on Table 21 and 22 which are capital
        letters  (C, M, and 0) indicate whether, for these particular
        gases and at these locations, continuous, manual, or Orsat
        analysis results were used in the computations.  Conversely,
        a lower case entry (c, m, and o) indicates where the data could
        not be used in the computation (incidences where data were
        suspect, or lacking because of equipment failure).
                                  49

-------
                 FLUE GAS DATA
      TABLE 20

INVENTORY FOR LOCATIONS 1, 2,  AND 3
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
LOCATION 1
°2
M C 0
C
C
C
C
C
C
C
C
C
C o
C
C
C
C
C
C
C o
C
C
C
C
co2
M C 0

H
M
M
M
M
M
M
M
M o
M
M
M
M
M
M
M o
M



so2
M C 0
C
C
m C
Ei C
m C
in C
ra C
in C
m C
n C
n C
ra C
El C
in C
ta C
m C
m C
El C
C
C
C
LOCATION 2
°2
M C 0

o
o
o
o
0
0
o
o
o
o
o
o
o
o
o
o
o
o
0
o
co2
M C 0

o
o
o
o
o
o
o
o
o
o
0
o
o
o
o
o
o
o
o
o
°2
M C 0
0
0
0
0
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
C o
LOCATION 3
co2
M C 0
m 0
a 0
m 0
m 0
m C o
m C o
m C o
m C o
a C o
n C o
m C o
m C o
n C o
El C O
n C o
13 C O
m C o
m C o
C o
C o
C o
so2
M C 0


M
ci C
n C
m C
El C
m C
m C
m C
n C
El C
El C
ra C
m C
C
m C
m C
C

C
NO
M C 0
M
M
M
M
m C
C! C
El C
m C
a C
m C
m C
El C
El C
m C
m C
m C
M
n C
C
C
C
DATA USED IN COMPUTATION OF
EFFICIENCY, VOLUME FLOW, AND
MASS FLOW

C - CONTINUOUS (MITRE)
M - MANUAL
0 - ORSAT
                DATA NOT USED
                IN COMPUTATIONS
                in - MANUAL
                o - ORSAT
                                        50

-------
 4.  Fuel Consumption
     The data base contains the coal consumption rate, the fuel air
     mixture temperature (assumed fixed at 150°F)  and the natural gas
     volume flow rates, pressures, and temperatures.   These measurements
     were obtained from Illinois Power continuous  monitoring instru-
     ments.  Average values for each test were inserted into the
     data base.
 5.  Air Heater Temperatures
     Air input and gas output temperatures in the  air heater were obtained
     on an hourly basis from both the Illinois Power automatic data
     log and the MITRE continuous measurements recorded on digital
     tape.  Table 21 is an inventory of these measurements which
     indicates the data used in the computations.
 6.  Ambient Conditions
     The data base contains the average ambient  temperature, relative
     humidity and barometric pressure for each of  the 21 tests.  These
     values were obtained from a dry bulb thermometer, a sling psy-
     chrometer, and a mercury column barometer,  respectively.  The
     measurements were made near the forced draft  fan inlet.
 7.  Electrical Currents
     The pulverizer, forced draft fan and ID fan electrical current
     consumptions were recorded from the Illinois  Power continuous
     monitoring instruments.  The data base contains average values
     for these currents for each of the 21 tests.
 8.  Steam Flow
     For each test an average steam flow was obtained from the
     Illinois Power continuous monitoring instruments.
 9.  Air Heater Leakage
     A constant value of 10% was used as suggested by Illinois Power.
10.  Flue Gas Flow Rates
     Table 22 is an inventory of flue gas temperatures, static
     pressures and velocities for each loaction.  The continuous
     measurements were taken from MITRE strip charts.  An average
                               51

-------
TABLE 21
AIR HEATER TEMPERATURE
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
AIR
INPUT
C D





C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
INVENTORY
GAS
OUTPUT
C D





C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
Data used in computation
of efficiency:

C - Continuous (MITRE)
D - Automatic Data Log
Data not used
in computations:

d - Automatic Data Log
                        52

-------
                         TABLE 22

                FLUE GAS FLOW RATE INVENTORY
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
LOCATION 1
TEMP.
C M A
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PRESS.
C M A
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
VELOCITY
C M A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
LOCATION 2
TEMP.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
PRESS.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
VELOCITY
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
LOCATION 3
TEMP.
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
PRESS. 1 VELOCITY
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
C M A
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
DATA USED IN COMPUTATION
OF GAS FLOWS

C - CONTINUOUS (MITRE)
M - MANUAL
A - ARTIFICIAL (COMPUTED FROM ANOTHER LOCATION)
                             53

-------
 test value was  used.   The manual  measurements were  taken once
 per day  by Midwest  Research Institute and represent an average
 value across  the  duct.   It should be noted that  the Location 1
 velocities were calculated from the  manual Location 2  velocities
 according  to  the  following equation.
 Vol1+L
                                    \           /P        i
                                 _   =        (12460_
                  1,2  i  i \TI  29.927     A2  2  \TZ  29.92/
             l/\ 2/    1,2
where
Vol. - location i volume flow
   i
L. . - leakage from location i to location j
 i»J
A.   - location i area
 i
V.   - location i velocity
P,   - location i pressure
T.   - location i temperature
F. . - leakage fraction from location i to j
 1 >J
                         54

-------
9.  Duct Area
    The data base contains average areas for the flue gas ducts
    at locations 1, 2, and 3.
                              55

-------
                               SECTION V
                           ANALYSIS OF DATA
This section describes the computational procedures utilized in the
analysis of test results.  Tabular displays of test results are presented
for net and gross efficiency varying load level and excess air; gas mass
flow and gas volume flow varying load level and excess air; and gas mass
flow and gas volume flow varying load level and fuel type (excess air
fixed).  Results are also presented for an overall sulfur balance, for
grain loading varying load level and soot blowing (fixed fuel type) ,
comparison of continuous measurement results with manual measurements
and with theoretical values, and for grain loading varying load level
and fuel type.
NET AND GROSS EFFICIENCY AS A VARYING LOAD LEVEL AND EXCESS AIR
Computational Procedures
Net and gross efficiencies were computed for all of the 21 tests in the
Baseline Measurement Program.
The efficiency calculations performed were basically those of the ASME
publication PTC 4.1 using the heat loss method.  Adjustments have been
made, where required, based on the Illinois Power Company's computer
performance calculations.
The efficiency factor (n) is given by the following equations:
                  ng  =  l-  H-TTTT- '015-R
                   &           fuel    el
                             H.  1+B1
                              fuel    el
n      =  gross efficiency factor
 o
TI      =  net efficiency factor
L      =  heat losses (BTU/lb, as-fired fuel)
Hfuel  =  heatin8 value (BTU/lb, as-fired fuel)
                                57

-------
 B .     =  electrical power consumed within system envelope
           (BTU/lb, as-fired fuel)
 B „     =  electrical power consumed outside system envelope
           (BTU/lb,as-fired fuel)
 R      =  radiation loss
'The  heat losses  come from a variety of sources.   The major ones  are
 indicated in  the following equation.
           L   *
L     =  heat loss  due to unburned carbon  in refuse
L     =  heat loss  due to formation of  carbon monoxide
L,    =  heat loss  due to sensible heat in flue dust
 d
L.,    =  heat loss  due to heat in dry flue gas
      =  heat loss  due to unburned hydrocarbons
L  ,   =  heat loss due to moisture in  the air
 mA
L  _   =  heat loss due to moisture in  the fuel
 mf
Iv.    =  heat loss due to moisture from burning of hydrogen
The major sources of electrical power  consumption are indicated by the
following equations.
               Bel  =  (BP1 + BP2 + BP3
               Be2  =  BFl+BF2+BIl+BI2+BS+Bw
Bp1  =  electric power consumption of pulverizer No. 1
Bp_  =  electric power consumption of pulverizer No. 2
Bp~  =  electric power consumption of pulverizer No. 3
B .  =  electric power consumption of pulverizer No. 4
B_,  =  electric power consumption of F.D. fan 1
 Fl
B.p9  =  electric power consumption of F.D. fan 2
BT1  =  electric power consumption of I.D. fan 1
                                58

-------
B    =  electric power consumption of  I.D.  fan  2


B    =  electric power consumption of  ash sluice  pump
 o

B    =  electric power consumption of  service water  pump
 w

R    =  pyrite rejection fraction



     Heat Losses -



                Wd         Ashf


       Luc   =  wj  Hfly+I^7  Vt
                   CO

       L
        co      co
                  g
                             LUC

                Cb     Cf   14500
       Ld
                t_  =  t  + FT  (t  -  t  )
                 G      g    L   g    a
                0.24 x W_  (t  - t  )
                        LJ   lj    3
                                               4- rn 1               -i
                           •* r\   '  ~j ^~^~(. o   '  *- ^ v1*1 n   iwwy  r~            i


                WG  =  	*  12(CO'  + CO  )^	*- K + Sf/2'67J
                                    2g     g
                UHC  W_

       L    -  	%-^
        UHC         W
                     g
                       CO,,     00        CO   + Nn_    S0_      UHC
                                                                 o
w   -    2g   "2g      -g   "2g       a

 g     8.76   12.04      13.75      6.01   385.29
                                    59

-------
      L .    =  w ,  W.  (h_. - h_w)
       mA       mA  A   V    RV
2.33 N0
2g
CO + C00
S 2g
'Cb + Sf
2.67
-Nf
                               0.7685
            =  Mf (1048-tfA+.48tG)
            =  8.936  Hf (1048 -
W,    =   flue  gas particulate mass  flow rate (Ib/hr)
Wf    =   coal  consumption  rate  (Ib/hr)
Hfl   =   heating value  for fly  ash  (BTU/lb)
      =   heating value  for pit  ash  (BTU/lb)
    ,  =   Ib ash per Ib  fuel
Cf    =   Ib carbon per  Ib  fuel
Sf    =   Ib sulfur per  Ib  fuel
Hf    =   Ib hydrogen per Ib fuel
Mf    =   Ib water per Ib fuel
Nf    =   Ib nitrogen per Ib fuel
C,     =   Ib carbon burned  per Ib  fuel
           3                        3
C09   =   ft  carbon monoxide per  ft  dry flue  gas
   8       3               3
Oj    =   ft  oxygen per ft  dry flue gas
           ^                        o
CO    =   ft  carbon monoxide per  ft  dry flue  gas
  g        3                        3
S0_   =   ft  sulfur dioxide per ft   dry flue  gas
   ^3                             3
UHC   =   ft  unburned hydrocarbons per  ft  dry flue gas
   g           3
      =  BTU/ft  of hydrocarbons
           3                3
N?    =  ft  nitrogen per ft  dry flue gas  (by difference)
      =  molecular weight of hydrocarbons
      =  corrected air heater exit gas temperature  (°F)
t     =  air heater exit gas temperature  (°F)
 &
t,..    =  fuel, air mixture temperature (°F)
 X £*.
t     =  air heater entering air temperature  (°F)
 3.

                             60

-------
W    =  Ib dry flue gas per Ib fuel
 G

W    =  flue gas specific weight

 g

W    =  Ib water vapor per Ib dry air
 mA

W.   =  Ib dry air supplied per Ib fuel
 n.

F    =  Ib air leakage per Ib air to heater
 J_i

hTT   =  enthalpy of vapor at t
 V                            G

hpu  =  enthalpy of vapor at partial pressure corresponding  to  ambient


        temperature and relative humidity



     Electrical Power Consumption -
                     •a  -  5.911 x Volt x Amp x PF
Volt  =  voltage  (volts)


Amp   =  current  (amperes)


PF    =  power factor fraction


Wf    =  coal consumption rate  (Ib/hr)



     Dual Fuel Operation - When natural gas is burned along with  coal,


corrections must be applied to  fuel composition values to  convert natural


gas to an equivalent amount of  coal.
                                  W

                        V
                         c     W  + W
                                c    g
                        C,  =  V   (C  - C ) + C
                         f      c   c    g'    g
                        S.  =  V   (S  - S ) -t- S
                         f      c   c    g'    g
 p     =  V (H  - H ) + H
 f         cx c    g'    g

 p     =  V (N  - N ) + N
 f         cv c    g'    g

 p     =  V M
 f         c c

 p  n     V (H   , - H   ) + H
 fuel  =   c  coal    gas     gas
                                 61

-------
 f          =  subscript for adjusted fuel values
 c          =  coal
 g          =  natural gas
 W          =  coal consumption rate (Ib/hr)
 W          =  gas consumption rate (Ib/hr)
  O
 C,S,H,N,M  =  coal composition as defined previously
 Hfuel      =  adJusted fuel heating value (BTU/lb)
 Hcoal      =  coal heatin§ value (BTU/lb)
 H«oo        =  natural gas heating value (BTU/lb)
  gas
 Analysis  and Interpretation of Results
 As noted  from Table 23 the  average net  efficiency for the tests performed
 at the 100  MW load  level  and with A  type  fuel  (Tests 11, 9,  8, 12, and 7)
 is 88.5%. The average gross  efficiency  for these same tests is 88.4%.
 The average  net efficiency  for the tests  performed at the 75 MW load
 level and with A  type fuel  (Tests  4, 2, and 3) is 90.9%. The average
 gross efficiency  for  these  same  tests is  90.8%.
 The average  net efficiency  for the tests  performed at the 50 MW load level
 and with A  type fuel  (Tests  17,  19,  14, and 15)  is 89.5%. The average
 gross efficiency  for  these  same  tests is  89.4%.
 As expected  from  the  computational procedures, gross efficiencies are
 always equal to or less than net  efficiences for the same test.
The averaged net  and  gross  efficiencies for the  three load levels do show
higher values at  the  75MW load level when compared to the average values
 at the 100 MW and 50 MW load level.  However,  these differences are not
of a magnitude to be significant.
A comparison of the average net and  gross efficiencies for 100 MW A fuel
tests with the 100 MW B fuel test  and the 100  MW C fuel test shows no
significant differences.
Similarly, no significant differences are shown between 75 MW A, B, and C
fuel tests and 50 MW A, B,  and C  fuel tests.
                                62

-------
                                        TABLE 23



                                  NET AND GROSS EFFICIENCY
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
TI
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
N'O
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
KORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM. NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
NORM.
KORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NET
EFFICIENCY
(%)
87.8
88.6
88.2
88.8
88.9
90.0
89.9
90.7
90.8
90.9
88.8
88.9
88.5
90.8
91.0
90.9
89.0
88.6
88.1
89.9
90.7
GROSS
EFFICIENCY
(%)
87.7
88.6
88.1
88.8
88.9
89.9
89.8
90.6
90.7
90.9
88.7
88.8
88.4
90.7
90.7
90.8
88.9
88.4
88.0
89.8
90.7
* REDUCED LEVEL OF SOOT BLOWING
                                              63

-------
 GAS MASS FLOW AND GAS VOLUME FLOW VARYING LOAD LEVEL, EXCESS AIR,  AND
 FUEL TYPE
 Computational Procedures
 Gas mass flows and gas volume flows were computed for Location 1
 (economizer)  for SO-, C02,  0-, N-, and total gases.   Mass flows and
 volume flows  were also computed at Location 3 (midway in stack) for NO,
 CO™, 0_, N»,  and for total  gases.
 The flow rates for these gases at  the two locations  were based upon
 manual velocity measurements as determined by the Midwest Research
 Institute stack sampling team.  These velocity measurements were,  in
 turn,  computed by MRI using the following.
                                 /28.S4     29.92
                       MWC      =   44C00 + 320_ + 28N.  + 18H00
                          b              i.       li       L       i.
                       Pstatic  *  PA  - Pstack/13-6
Uc      =  velocity  (ft/min)
 O
F       =  pitot correction factor  (.9)
MW      =  molecular weight of stack gas
  O
P     .  =  static duct pressure  (in. H )
 static                r              g
T       =  stack temperature  (°R =  °F + 460)
AP      =  stack (pitot) pressure (in. H  )
                                        O
  2'  2'=  flue gas constituents (fraction by volume
N»         moisture free)
N       =  1 - C00 - 0« - H_0
H_0     =  flue gas moisture fraction
P       =  atmospheric pressure  (in. H )
 A                                    g
        =  stack pressure (in. H00)
                               64

-------
As described in Section IV, manual velocity measurements at Location  2
(air heater) were adjusted with respect to pressure, temperature,  duct
area, and duct leakage to provide estimates of velocities at Loaction I
(economizer).  This procedure was necessary because the velocity measuring
instrumentation at Location 1 did not function properly for the major
portion of the test program.
Volume flow rates were then calculated at the two locations for each
constituent using the measured velocities by means of the following
formula.
            V   =  AV x Vol
             m             gas
                                             3
                   V          volume flow  (ft /min)
                   A          duct area  (ft )
                   V          velocity (ft/Min)
                   Vol     =  fraction by  volume of gas  constituent
                      gas
                              (as measured by instrumentation  system)
Mas flow rates were also calculated for  the various gaseous  constituents
for the total gases using  the formula:
                      [v I  x MW    7/359  ft3/lb mole)
                      L mj    L gas _\	7J
                              3     . I  [29.927/460 + 32\1
                              static]  |^      (        )\
_      Sas
 460)/P.
                           ,1V IIMW
               =  .0458
                               460\/P
                                     static
                  R      =  mass  flow (Ib/min)
                   m
                  MW     =  molecular weight  of  gas  constituent
                    gas
                                 65

-------
                                          TABLE 24
                               FLOW RATES FOR SO  AT LOCATION 1
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3 PER
MIN.)


1615.9
1474.7
1615.5
1118.8
1615.4
679.6
491.8
1144.3
196.3
257.0
173.9
990.3
1276.6
673.7
785.9

589.3
738.1
404.4
VOLUME
FLOW
(STAND ART)
FT 3 PER
MIN.)


680.2
619.9
673.8
471.2
630.3
282.4
212.3
474.3
81.8
104.9
75.1
416.6
534.8
305.9
335.2

246.7
313.1
160.7
MASS FLOW
(LB. PER
MIN.)


121.4
110.6
120.2
84.1
112.5
50.4
37.9
84.6
14.6
18.7
13.4
74.3
95.4
54.6
59.8

44.0
55.9
28.7
* REDUCED LEVEL OF  SOOT  BLOWING
                                              66

-------
                                         TABLE 25
                              FLOW RATES FOR CO.  AT  LOCATION  1
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/20/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
KO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)


52,496

49,606
32,095
61,879
41,805
29,212
44,388
31,738
50,692
32,441
58,996
50,973
34,738
32,097




OLUME
LOW
STANDARD
T3 PER
UN.)


22,097

20,690
13,519
24,142
17,374
12,610
18,397
13,226
20,695
14,004
24,821
21,354
15,771
13,689




MASS FLOW
(LB. PER
MIN.)


2,709

2,536
1,657
2,959
2,130
1,546
2,255
1,621
2,537
1,717
3,042
2,617
1,933
1,678




* REDUCED LEVEL OF SOOT BLOWING
                                               67

-------
                                         TABLE  26




                                FLOW RATES  FOR 0, AT LOCATION  1
MITRE
TEST
DATE NUMBER
11/8/71 11
U/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
E
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
tttN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MTN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3" PER
MIN.)


36,456
23,993
23,683
24,176
34,897
19,240
19,274
14,817
12,806
13,537
11,375
20,304
33,311
12,118
24,573

12,632
13,178
23,107
VOLUME
FLOW
/cf iwnipn
I O -I ATHL/rt-IVU
FT3 PER
MIN.)


15,345
10,086
9,878
10,183
13,615
7,996
8,320
6,141
5,337
5,526
4,911
8,542
13,955
5,501
10,480

5,288
5,589
9,181
MASS FLOW
(LB. PER
MIN.)


1,368
899
880
908
1,213
713
742
547
476
493
438
761
1,244
490
934

471
498
818
* REDUCED LEVEL  OF  SOOT BLOWING
                                              68

-------
                                          TABLE  27




                                FLOW RATES FOR N2 AT LOCATION 1




                                  (NO FRACTION COUNTED AS N.)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
KIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT3
PER MIN.)


638,546

600,010
482,031
710,484
334,532
252,178
435,611
512,065
598,158
324,657
430,498
510,615
275,612
356,697




VOLUME
FLOW
(STANDARD
FT 3 PER
MIN.)


268,778

250,261
203,034
277,195
139,029
108,861
180,539
213,394
244,201
140,152
181,120
213,906
125,127
152,125




MASS
FLOW
(LB. PER
MIN.)


20,968

19,524
15,839
21,625
10,846
8,493
14,084
16,648
19,051
10,934
14,130
16,688
9,762
11,868




* REDUCED LEVEL OF SOOT BLOWING
                                             69

-------
                                         TABLE 28

                             FLOW  RATES  FOR ALL GASES AT LOCATION 1
                                     (S02, C02, 02, N2 WITH
                                    NO FRACTION COUNTED AS N.)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
12/8/71 15 i 50
j
12/9/71 22
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SCOT
BLOWER
NO
NO
NO
YES*
YES
NO
SO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
FT3 PER
MIN.)


729,113
646,283
674,916
539,421
808,876
396,257
301,155
495,961
556,805
662,644
368,647
510,788
596,175
323,141
414,153




VOLUME
FLOW
(STANDARD
FT3 PER
MIN.)


306,900
271,668
281,504
227,207
315,582
164,682
130,003
205,551
232,039
270,528
159,142
214,900
249,749
146,705
176,629




MASS FLOW
(LB. PER
MIN.)


25,166
21,598
23,061
18,488
25,910
13,739
10,818
16,971
18,759
22,099
13,101
18,008
20,644
12,240
14,540




* REDUCED LEVEL OF SOOT BLOWING
                                              70

-------
                                         TABLE  29




                               FLOW RATES FOR NO AT  LOCATION  3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
ran.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)


221.8
151.7
149.7
118.5
115.0
74.4
55.7
102.4
56.6
35.5
26.5
88.8
109.5
62.3
84.8
30.9
38.8
47.1
57.9
TOLUME
FLOW
STANDARD
FTJ PER
*EN.)


142.3
97.5
94.7
75.3
73.3
48.8
37.2
66.5
38.0
23.3
18.2
58.2
72.5
42.1
57.0
21.0
25.2
31.3
36.9
MASS FLOW
(LB. PER
MIN.)


11.9
8.1
7.9
6.3
6.1
4.1
3.1
5.6
3.2
1.9
1.5
4.9
6.1
3.5
4.8
1.8
2.1
2.6
3.1
* REDUCED LEVEL OF SOOT BLOWING
                                              71

-------
                                           TABLE 3 0
                               FLOW FATES FOR S02 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM,
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT^ PER
MIN.)


554.9
679.3
806.8
608,5
765.7
304.7
219.6
606.1
167.1
192.5
102.0
452.1
586.4
361.2
381.1
259.4
341.1

589.1
VOLUME
FLOW
(STANDARD
FT-5 PER
MIN.)


356.0
436.0
510.2
386.6
488.1
199.9
146.8
393.6
112.1
126.1
70.1
296.5
388.5
243.9
256.2
176.1
221.6

374.9
MASS FLOW
(LB. PER
MIN.)


63.5
77.9
91.0
69.0
87.1
35.7
26.2
70.2
20.0
22.5
12.5
52.9
69.3
43.5
45.7
31.4
39.6

66.9
* REDUCED LEVEL OF SOOT  BLOWING
                                             72

-------
                                         TABLE  31
                              FLOW EATES FOR C02 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOOT
TYPE BLOW
A NO
A NO
A NO
A YES*
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
EXCESS
ER AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT ^ PER
MIN.)


46,737
47,415
53,335
45,041
55,686
27,973
20,501
41,380
32,880
47,093
22,775
36,375
41,285
24,589
26,459
19,297
27,002
25,786
39,472
VOLUME
FLOW
(STANDARD
FT ^ PER
MIN.)


29,281
30,454
33,728
28,611
35,502
18,351
13,705
26,869
22,059
30,837
15,656
23,856
27,350
16,605
17,789
13,102
17,547
17,116
25,120
MASS FLOW
(LB. PER
MIN.)


3,675
3,733
4,134'
3,507
4,352
2,249
1,680
3,293
2,704
3,780
1,919
2,924
3,352
2,035
2,180
1,606
2,151
2,098
3,079
* REDUCED LEVEL OF SOOT BLOWING
                                              73

-------
                                          TABLE 3 2




                                FLOW RATES FOR  0, AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD FUE
FACTOR TYP
100 A
100 A
100 A
100 A
100 A
75 B
100 B
50 B
35 B
75 A
75 C
100 C
50 C
75 A
75 A
50 A
50 A
35 A
50 A
50 A
75 D
L SOOT
E BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FTJ PER
MIN.)


29,742
30,965
24,720
22,680
27,238
15,408
13,646
18,067
8,485
21,542
12,721
15,979
25,256
13,498
18,059
11,990
13,501
12,987
16,412
VOLUME
FLOW
(STANDARD
FT^ PER
MIN.)


19,079
19,888
15,632
14,407
17,365
10,108
9,122
11,731
5,693
14,106
8,744
10,479
16,731
9,116
12,142
8,141
8,773
8,620
10,445
MASS FLOW
(LB. PER
MIN.)


1,700
1,773
1,393
1,284
1,548
901
813
1,046
507
1,257
779
934
1,491
812
1,082
726
782
768
931
* REDUCED LEVEL OF SOOT BLOWING
                                               74

-------
                                       TABLE 33
                              FLOW RATES FOR N2 AT LOCATION 3
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE ELO
A NO
A NO
A NO
T EXCESS
HER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
A YES NORM.
A NO
A NO
A NO
A NO
D NO
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT ^ PER
MIN.)


347,624
307,852
316,059
250,990
319,719
162,228
125,742
231,253
223,571
290,170
144,559
206,926
245,528
143,898
165,008
122,802
150,424
148,038
233,098
VOLUME
FLOW
STANDARD
FT-> PER
>HN.)


222,996
197,725
199,870
159,437
203,830
106,427
84,060
150,157
149,993
190,009
99,370
135,709
162,654
97,177
110,937
83,378
97,752
98,260
148,345
MASS FLOW
(LB. PER
MIN.)


17,397
15,425
15,593
12,438
15,902
8,303
6,558
11,714
11,701
14,823
7,752
10,587
12,689
7,581
8,655
6,505
7,626
7,666
11,573
*  REDUCED LEVEL OF SOOT BLOWING
                                              75

-------
                                          TABLE 34
                            FLOW RATES FOR ALL GASES AT LOCATION 3
                                  (NO, S0, C0, 0, & N)
MITRE
TEST
DATE NUMBER
11/8/71 11
11/9/71 9
11/10/71 8
11/11/71 12
11/12/71 7
11/15/71 1
11/16/71 6
11/17/71 18
11/18/71 13
11/19/71 4
11/22/71 5
11/23/71 10
11/24/71 20
11/30/71 2
12/1/71 3
12/2/71 17
12/3/71 19
12/4/71 21
12/7/71 14
12/8/71 15
12/9/71 22
TEST CONDITIONS
LOAD
FACTOR.
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL SOO
TYPE BLO
A NO
A NO
A NO
T EXCESS
WER AIR
NORM.
MIN.
MAX.
A YES* NORM.
A YES
B NO
B NO
B YES
B NO
A NO
C NO
C YES
C NO
A NO
A NO
A YES
A NO
A NO
A NO
A NO
D NO
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
VOLUME
FLOW
(ACTUAL
FT 3 PER
MIN.)


424,879
387,063
395,070
319,438
403,524
205,988
160,163
291,409
265,160
359,034
180,184
259,821
312,764
182,408
209,992
154,380
191,306
186,857
289,629
VOLUME
FLOW
(STANDARD
FT ^ PER
MIN.)


272,554
248,601
249,835
202,917
257,258
135,135
107,071
189,217
177,894
235,102
123,858
170,399
207,196
123,184
141,181
104,818
124,319
124,027
184,322
MASS FLOW
(LB. PER
MIN.)


22,848
21,017
21,219
17,305
21,894
11,493
9,080
16,129
14,936
19,885
10,465
14,503
17,608
10,476
11,968
8,869
10,600
10,534
15,653
*  REDUCED LEVEL OF SOOT BLOWING
                                              76

-------
Gas
CO
co2
°2
N2
so2
N0£
NO
MW
gas
28.01
44.01
32.00
28.01
64.07
46.01
30.01
                  t        =  gas temperature (°F)
                  P     .   =  see velocity calculation
                   static                J
The results of these calculations are provided in Table 24 through 34.
Where no entries appear on these tables for volume flow and for mass flow,
the computations could not be performed because of insufficient data (due
to either equipment failure or instrument failure).
Analysis and Interpretation of Results
As noted in Table 24, the S02 flow rate at location 1 (stated in terms of
mass flow - Ibs per minute) appears to be consistent with the sulfur
content of the fuel.  The average mass flow for three 100 MW A fuel tests
(tests 8, 12, and 7) is 117.4 Ibs/minute.  The average sulfur content of
the coal consumed in these three A fuel tests was 3.42% (on "as fired"
dry basis).  This average is greater than the 112.5 Ibs per minute recorded
for test 6, a 100 MW B fuel test which consumed fuel with a 2.88% sulfur
content.  Both sets of tests in turn showed greater SO™ mass flow than
test 10, a 100 MW C fuel test (simulated 1.08% sulfur fuel).  In a similar
comparison, the average S0« flow rate for three 75 MW A fuel tests (tests
4, 2, and 3) is 84.8 Ibs/minute.  These three tests utilized coal of 3.32%
average sulfur content.  This average was approximately equal to the 75MW
B fuel test (test 1) which utilized coal with an average sulfur content
of 3.29% sulfur.  Both the A and B fuel tests showed a greater mass flow
of SO- than the 75 MW C fuel test (test 5) which utilized gas and coal
to simulate a 0.86% sulfur coal.  The 75MW D fuel test (test 22) produced
an S0_ mass flow that was higher than expected; however, the analysis of
                                77

-------
 the coal consumed in this test showed it to be of 1.4% sulfur content
 rather than the expected .5% sulfur content.  The SO- mass flows noted
 for this test were therefore consistent with this measured sulfur content.
 Similar relationships were found in the 50 MW tests with A, B, and C fuels.
 No significant changes in S0_ mass flow were found which were traceable
 to changes in the soot blowing cycle or in excess air settings.
 Table 25 provides the C0_ flow rate at location 1 for the various tests.
 An examination of the mass flow of CCL (in Ibs per minute) shows that for
 a fixed fuel type the CO- mass flow decreases with decreasing load levels
 (as would be expected with the reduced coal feed rates associated with
 the lower loads).  Table 25 also illustrates that, for a fixed load level,
 the CCL mass flow rates were not significantly different for fuel types
 A, B,  and C.
 Table 26 provides results on the 0- flow rates at location 1. These
 results show that the ()„ mass flow rate decreases with decreasing load
 level,  and for a fixed load level is not significantly different for
 fuel types A and B.   Tests  performed on C type fuel produced CL  mass flow
 rates which were both greater and lower than the corresponding tests with
 A  and B fuel dependent upon the load level.   The greatest differences
 were found between tests with fixed load level and fixed fuel types where
 excess  air was  the parameter varied.
 Flow rates  for  N? mass flow are shown on Table 27.   These results show
 that the  N-  mass  flow rate  decreases  with decreasing load level,  and for
 fixed load levels are not significantly different for fuel types  A, B,
 and  C.   For fixed load levels and fixed fuel types,  greater N_ mass flow
 was  found for  the maximum excess air  test.
 The  flow  rates  for all gases  shown in Table  28 represent the total of
 the  previous four tables  and,  as such,  show  the same relationships as
 the  individual  gases  (i.e.,  same decrease with decreasing load level and
 same increase with increased  excess air).
 Table 29  provides  results on  the NO flow rates as measured at location 3.
Tests performed on A  type fuel produced NO mass  flow rates which were both
                                 78

-------
greater and lower than the corresponding tests with B fuel dependent
upon the load level.  However, for all load levels, the NO flow rates
with C fuel (predominantly natural gas) were significantly lower than
the tests performed with A and B fuels.
Table 30 provides the SO- flow rates measured at location 3.  The rela-
tionships noted in Table 30 are similar to those noted in Table 24 for
location 1, i.e., for a fixed fuel type the SO- mass flow is reduced for
reduced load levels.  Inconsistencies were found in the comparison between
the 100 MW A fuel test (tests 8, 12, and 7) and the 100 MW B fuel test
(test 6).  Although the sulfur content was lower for the B fuel, the SO-
mass flow measured on test 6 was greater than the average SO- mass flow
for tests 8, 12, and 7.  The results from test 10 did show the lower
levels for SO  mass flow expected for a 100 MW C fuel test.  The average
SO  mass flow rate for the three 75 MW A fuel tests (tests 4, 2, and 3)
is approximately equal to the mass flow for the 75 MW B fuel test (test 1);
however, as was previously noted, the sulfur content of the coal consumed
in these tests was approximately equal.  As was true of the measurements
at location 1, the A and B fuel tests performed at the 75 MW load level
produced higher S02 mass flows than measured in the 75 MW C fuel test.
Similar relationships were found in the 50 MW tests with A, B, and C fuels.
The C0_ flow rates measured at location 3 are provided in Table 31.  As
shown in Table 31, for fixed fuel types, the C0? mass flow decreases with
decreasing levels.  Table 31 also illustrates that for a fixed load level,
the CO- mass flow rates were not significantly different for fuel types
A, B, and C.
Flow rates for 0- at location 3 are provided in Table 32.  These results
show that the 0  mass flow rate decreases with decreasing load level
and for a fixed load level is not significantly different for fuel types
A and B.  Tests performed with C fuel produced 0? mass flows which were
both greater and lower than the corresponding tests with A and B fuel
dependent upon the load level.  Differences were found in 0- mass flow
rate between tests at the 50 MW load level with A fuel where excess air
was varied (tests 19, 14, and 15).  Similar differences were not found
for 100 MW A fuel tests where excess air was varied.
                                   79

-------
  Flow  rates  for  N2  at  location  3,  as  shown  in Table  33,  illustrate that
  the N mass  flow rates  decrease with decreasing  load  levels,  and for
  fixed load  levels  are not significantly different for fuel  types A,  B,
  and C.   For  fixed  load  levels  and  fixed fuel types, greater N2  flow  was
  found for the maximum excess air  tests.
  The flow rates  for all  gases shown in Table 34 are  based  upon the totals
  for all  measured gases.  The same relationships  are therefore shown  as
  for the  individual gases (i.e., same decrease in flow rate  with decreasing
  load  level  and  same increase with increased excess  air).
  SULFUR BALANCE
  Computational Procedures
  For each of  the tests performed in the baseline  program,  the  average
  coal  consumption rate was determined utilizing the manual coal  scale
  readings.  The  average  sulfur  content of the coal (as determined by
  chemical analysis) was  then used with the coal scale  readings to deternine
  the rate of  sulfur feed to the steam generator.  Average  S0?  mass flow
  readings from the  continuous instrumentation system at  the  stack were ther
  used  to  determine  the average  sulfur flow at the stack  (where Ibs sulfur/
              ™ /  .       molecular weight sulfur   n        ,  ,
 minute = Ibs S00/minute x — = - - - •  u .- co - = Ibs SO  /minute x oO).
                0                      •  u .- co
                2          molecular weight S0_            2
 The rate of sulfur feed into the steam generator was then compared with
 the rate of sulfur flow through the stack.
 Analysis and Interpretation of Results

The results of  the sulfur balance calculations are summarized  in Table
35.  These results are based upon measurement of the SO   concentration
of the stack gas with the exception of test 15 in which  SO   concentra-
tions measured  at location 1 (economizer) were corrected  using estimated •
system leakage  values to provide an estimate of SO  concentration in
the stack.  In  all cases, the measurements of SO  concentrations  do
not include measurement of the sulfur exhausted from the  stack as SO
or the sulfur adsorbed on the ash as SO,,  and S03> The results  provided
in Table 35 show good agreement on the sulfur balance leading  to  the
conclusion that the total combined error  in S02 and gas flow measurements
                              80

-------
                                                                        TABLE 35

                                                                     SULFUR BALANCE
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NO.
11
9
8
12
7
1
6
18
13
It
5
10
20
2
3
17
19
21
14
15
22
LOAD
(MW)
100
100
100
100
100
75
100
50
35
75
75
100
50
75
75
50
50
35
50
50
75
FUEL
A
A
A
A
A
B
B
B
B
A
C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM
MIN
MAX
NORM
NORM
NORM
NORM
NORM
NORM
MIN
NORM
NORM
NORM
NORM
MAX
NORM
MAX
NORM
NORM
MIN
NORM
BURNER
ANCLE
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
MIN
NORM
NORM
AVERAGE , .
COAL FLOW1'
(103 LB/1IR)
85.0
83.5
63.7
83.9
84.2
64.8
90.1
48.3
32.3
63.2
34.0
46.4
26.0
66.2
65.2
45.4
50.5
32.4
47.0
46.3
63.2
Z SULFUR
IN COAL<2)
3.37
3.40
3.37
3.24
3.28
3.16
2.76
2.57
2.51
3.37
1.83
1.65
1.68
2.87
3.31
3.46
3.47
3.09
2.74
3.37
1.33
AVERAGE
SULFUR FEED
(LB/HR)
2865
2839
2147
2718
2762
2048
2514
1241
811
2130
622
766
437
1900
2158
1571
1752
1001
1288
1560
841
AVERAGE
SULFUR FEED
(LB/MIN)
47.7
47.3
35.8
45.3
46.0
34.1
41.9
20.7
13.5
35.5
10.4
12.8
7.3
31.7
36.0
26.2
29.2
16.7
21.5
26.0
14.0
AVERAGE
S02 FLOW(3)
(LB/MIN)


63.5
77.9
91.0
69.0
87.1
35.7
26.2
70.2
20.0
22.5
12.5
52.9
69.3
43.5
45.7
31.4
39.6
46.6**
24.2
AVERAGE
SULFUR FLOW
(LB/MIN)


31.8
39.0
45.5
34.5
43.6
17.9
13.1
35.1
10.0
11.3
6.3
26.5
34.7
21.8
22.9
15.7
19.8
23.3**
12.1
SULFUR
FEED- FLOW
(LB/MIN)


4.0
6.3
0.5
-0.4
-1.7
2.8
0.4
0.4
0.4
1.5
1.0
5.2
1.3
4.4
6.3
1.0
1.7
2.7
1.9
  * Reduced level of  soot  blowing
 ** Location 1

(1) Coal Scale Measurement
(2) Midwest & ICS Average
(3) MITRE Measurement at Location  3

-------
 was low.  As noted in Table 35,  in all cases except two  cases (tests  1
 and 6), the sulfur feed rate exceeded the sulfur flow rate measured in
 the stack indicating that there  were, in fact,  small unmeasured losses
 of sulfur.
 GRAIN LOADING VARYING LOAD LEVEL,  FUEL TYPE, AND SOOT BLOWING
 Computational Procedures
 Grain loadings were  determined at  location 2 and location 3 for all tests
 by means of manual measurements.   These manual  measurements were taken
 by the Midwest Research Institute  using the sampling train and  the
 operating techniques specified in  the Federal Register of December 23,  1971
 (Volume 36,  Number 247).
 As noted previously, the results of  the preliminary measurement  program
 indicated that the best method for measuring grain  loading at location  2
 was a 20-point,  two-probe traverse in one-half  of each of the two ducts
 (a total of  40 points).   The halves  selected were varied  from test to
 test to provide representative sampling of the  total duct.
 A  location 3,  the  grain loading for  the total stack was determined by  a
 32-point traverse  to obtain representative samples.
 A  summary of  the grain  loading results  is  provided  in Table 36.  The
 emission rates  shown in Table 36 were computed  using the  measured grain
 loadings  and  the manually  determined gas mass flow  with the appropriate
 conversion factors to provide values  in terms of  pounds of  particulates
 per hour.
 The mechanical  collection  efficiencies  shown  in Table  36  were calculated
 using the emission rates  for the two  locations  (location  2  prior to
 collection and  location  3  after collection).  Because  of  the configuration
of the  ducting, this  collection efficiency  reflects  an ash  removal capa-
bility  that is a result, not only of the effects of  the mechanical
 collector proper but, also, of the  lower tubes of  the  air  heater, and the
ducting between the  air heater and the  stack.  For  this reason,  the
efficiencies shown are not absolute values but are  to be  considered as
relative measurements to be used only in test-to-test comparisons.
                                 82

-------
                                                                                    TABLE  (h




                                                                           GRAIN  l.dADlNC  HKASURKMKNTS
DATE
ll/H/71
11/9/71
11/10/71
11/11/71
11/12/71
11/16/71
11/15/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
ll/M/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MI THE
TEST NO. . l.n.M)
(OLD) ' 1'ACTOR
ELEL SHOT
ivri: : ui.nwrn
11 1110 A
9 100 A
8 ; 100 ' A
12 100 ' A
7 . 100 , A
1) 1 00 B
1
18
75
',0
13 35
4 75
5
10
20
2
3
17
19
21
14
15
22
75
100
50
75
75
50
50
35
50
50
75
11
H
I)
A
c:
c
c
A
A
A
A
A
A
A
n
	
EXCESS
AIR
NO NORM.
,-,o
Ml N.
NO ! MAX.
YE:,* ; NORM.
YES NORM.
NO NORM,
NO
YKS
NO
NO
NO
NORM.
NORM.
NORM.
M1N.
NORM.
YES NORM.
NO NORM.
NO : NORM.
NO i MAX.
YES
NO
NO
NO
NO
NO
NORM.
MAX.
NORM .
NORM.
MIN.
NORM.
AIR
HURNER
ANCLE
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORN.
NORM.
	
CKA1N • V.MNG
CRAINS/SCE
LOCATION 2 LOCATION 3
C RAINS/ACE
LOCATION 2 LOCATION 3
4.15 0.95 ! 2.42 0.61
'4. 58 0. 88 ' 2. 64 0. 58
4.41 0.94 2.55 0.60
4.25 1.16 2.44 0.75
5.09 1.44 2.94 0.91
5.38 1.50 2.96 0.93
4.48 1.34 2.49 0.85
5.5H 1.08 ! 3.14 0.68
7.RO 1.50 4.57 0.98
9.70 1.42 5.67 0.93
3.79 1.00
2.30 0.68
4.27 0.66 2.45 0.43
3.23 O.B9
5.71 1.24
6.12 1.38
1.89 0.59
3.23 0.78
3.49 0.90
3.63 1.12 2.20 0.76
6.03 0.87
4.18 0.68
6.35 1.15
7.05 0.85
3.72 0.54
2.69 1.12
4.82 1.16
4.10 0.90
2.80 0.75
3.52 0.57
2.47 0.45
3.85 0.79
4.28 0.60
2.27 0.37
1.62 0.77
2.76 0.76
2.40 0.60
1.62 0.48
EMISSION RATl:
LB/IIR. MECHANICAL
COLLECTOR
LOCATION 2 LOCATION 3 ' LFEJCIUKCY (2)
9128
B460
9796 2166 77.8
8252 2474 70.0
10596 3104 70.5
ASH CONTENT
OF COAL
AS RECEIVED liASIS
10.03
9.89
10.25
10.75
10.07
9808 2930 70.0 11.30
H990 185(, 79.5 10.42
9830 1672 83.0 12.15
3408 92.6 72.9 13.13
6176 1072 82.7
4978 1335 73.2
10.35
13.57
11160 2573 • 76.9 16.69
3(,76 1164 68.5 15.94
9096 1268 i 86.0 | '-85
7256 1215 83.3
7080 1067 84.9
4482 659 i 85.3
2412 1023 57.5
4862 1248 74.4
4222 956 77.5
4286 1200 72.0
10.00
10.14
9.5()
9.14
10.78
10.44
6.61
ed levol of Hoot blowing

-------
 The ash content of the coal is determined by laboratory analysis  is  also
 provided in Table 36 as a factor affecting the measured grain loading.
 Analysis and Interpretation of Results
 As noted in Table 36, tests were performed with type A fuel at two load
 levels (100 MW and 50 MW)  in which operating conditions were held constant
 except for soot blowing.
 In the first of these comparisons, test  7,  an average value of 5.23  grains/
 SCF was measured at location 2.   This  represents  an  increase over the
 average grain loading measured in tests  11,  9,  and 8 (4.38  grains/SCF).
 For these  three tests,  no  soot blowing was  used during the  period of the
 test.   The average ash content of the  coal  for  tests 11,  9,  and 8 was
 approximately equal to  that measured for test 7,  indicating that  the
 differences  in grain loading were not  attributable to this  source.
 For these  same tests,  the  grain loading  measurements at location  3 were
 also higher  for the test in which soot blowing  was conducted.
 At  the 50  MW level,  the average grain  loading measured at location 2 was
 6.70 grains/SCF for test 17.   In this  test,  soot  blowing was used during
 the test.  This result  is  higher than  any of  the  grain loading measure-
 ments  obtained for  the  50  MW A fuel tests in  which soot blowing was not
 conducted  (tests  19,  14, and 15).  As  was the case with the 100 MW com-
 parisons,  these 50  MW  tests  utilized coal of  approximately  the same ash
 content.
 Two  tests were  run  in which  soot blowing was  used and all other operating
 parameters were  constant except  for fuel type.  In the  first of these
 tests  (test  18), B  fuel was  utilized.  This fuel has  a  higher  ash content
 than the A fuel, and for this B  fuel test an  average  grain  loading of
 8.75 grains/SCF was recorded at  location 2.   This represents  an increase
 over the results recorded for  test 17, in which A fuel  was  utilized.
 For  the A fuel  test, an average  grain  loading of  6.70  grains/SCF was
measured.  These two tests indicate the degree  of change in  grain
 loading that is attributable to  differences in  ash content  of  the coal.
                                 84

-------
No specific patterns were found in the analysis of results in terms of
the mechanical collection efficiencies.  However, in general it was noted
that greater efficiencies were noted for the tests in which B fuel
was utilized.
COMPARISON OF CONTINUOUS MEASUREMENT RESULTS WITH MANUAL MEASUREMENTS
AND WITH THEORETICAL VALUES
Computational Procedures
As described in a previous section, the scope of the Baseline Measurement
Test included manual measurements as well as measurements obtained by
the continuous measurement systems.  The manual gas measurements for
NO , CO, C09, and SO,, were determined by laboratory analysis of a grab
  X        £,        £•
sample.  Measurements of 0  and CO  were made by means of Orsat
Analysis.   In this section the results obtained from these manual
measurements are compared with the results obtained from the continuous
measurement system, and, where appropriate, a comparison is made with
theoretical expected gas concentrations.
The first of the comparisons is provided in Table 37.  In Table 37, the
manual measurements, continuous measurement results, and theoretical gas
concentrations are provided for S0_ in ppm as measured at location 1 and
location 2.  Where no values are shown, a measurement was not possible
because of equipment failure or loss or contamination of the sample.  The
theoretical S09 values shown in Table 37 are based upon the standard
methods for estimating stack gas products as described in the "Manual
for Process Engineering Calculations" by Clarke and Davidson.  The theo-
retical S09 values shown for location 3 were based upon the assumption
that there is a 15% leakage between location 1 and location 3.  The values
for SO- at location 2 are therefore 85% of the theoretical values shown
for location 2.
A comparison of continuous and manual measurements for NO  in ppm is
                                                         X
provided in Table 38 for location 3.  The manual measurement results
for NO  are also provided in Table 38 for location 2.  These results from
location 2 are presented for the purpose of comparison with the results
                                   85

-------
                                   TABLE  37

COMPARISON OF CONTINUOUS AND MANUAL SO, AT LOCATIONS 1 AND 3 WITH THEORETICAL VALUES
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71
11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/R/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4
5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A
C
100 C
50 C
75 A
75
50
A
A
i
50 j A
35 A
50
50
75
; A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
YKS
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM,
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BUHNER
ANCLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
LOCATION 1
MANUAL


2541.3
1884.4
1571.1
1582.1
1272.8
1569.0
1847.5
1995.8
538.8
561.7
546.5
1812.9
1762.2
1543.9
1732.6
1415.2



COOT.
2055.0
2220.0
2216.3
2281.9
2393.6
2074.1
1997.1
1715.0
1632.1
2307.3
352.5
387.9
471.9
1938. a
2141.3
2085.0
1897.5
1875.0
1743.8
2107.5
735.0
THEORETICAL
S02 AT
LOCATION 1


2075
2211
2340
1957
1949
1480
1366
2551
888
683
627
2098
2220
2480
2070
2221



LOCATION 3
MANUAL


1306
1703
1800
1854
1767
1154
752
1917
443
426
386
1429
1305

861
451



CONT.



1755.0
2042.1
1905
1897.5
1479.0
1371.0
2080.0
630.0
536.3
566.3
1740.0
1875.0
1980.0
1815.0
1680.0
1782.9

2062.5
THEORETICAL
•JOj AT
LOCATION 3


1764
1879
1989
1663
1657
1258
1161
2168
755
580
533
1783
1887
2108
1759
1888



                                                                                                   * REDUCED LEVEL
                                                                                                     OF SOOT BLOWING

-------
                                                                TABU:  in



                                              COMPARISON OF CONTINUOUS AND MANUAL NOX AT LOCATION 3
DATE
11/8/71
11/9/71
11/9/71
U/JO/71
11/10/71
11/11/71
11/1 1/71
11/12/71
11/12/71
11/16/71
11/16/71
11/15/71
11/15/71
11/17/71
11/17/71
11/18/71
11/18/71
11/19/71
11/19/71
11/22/71
11/22/71
11/23/71
11/23/71
11/24/71
11/24/71
11/30/71
11/30/71
12/1/71
12/1/71
12/2/71
12/2/71
12/3/71
12/3/71
12/4/71
12/4/71
MITRE
1 EST
NO. (OLD)
11
9
9
8
8
12
12
7
7
6
6
1
1
18
18
13
13
4
4
5
5
10
10
20
20
2
2
3
3
17
17
19
19
21
21
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
100
100
100
]00
100
100
75
75
50
50
35
35
75
75
75
75
100
100
50
50
75
75
75
75
50
50
50
50
35
35
FUEL
TYPE
A
A
A
A
A
A
A
A
A
li
li
II
B
B
B
B
B
A
A
C
C
C
C
C
C
A
A
A
A
A
A
A
A
A
A
SOOT
BLOWER
NO
NO
NO
NO
NO
YES*
YES*
YES
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
EXCESS
AIR
NORM .
HIN.
MIN.
MAX.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
MIN.
MIN.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MAX.
MAX.
NORM.
NORM.
MAX.
MAX.
NORM.
NORM.
MEASURE!) liXCCSS AIR
LOCATION 2
81.5
64.2
64.2
y> . d
V> . (,
43.2
43.2
38.6
38.6
42.7
42.7
61 .9
61.')
72.5
72.5
87.8
87.8
30.7
30.7
35.4
35.4
52.7
52.7
30.3
30.3
35.0
35.0
47.1
47.1
38.5
38.5
64.3
64.3
51.7
51.7
LOCATION 3
64 . 2
36.6
36.6
47.3
47.3
60.5
60.5
38.3
38.3
40.3
40.3
57.4
57.4
58.5
58.5
69.3
69.3
27.4
27.4
42.5
42.5
41.3
41.3
34.4
34.4
36.8
36.8
52.5
52.5
38.3
38.3
69.3
69.3
61.2
61.2
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM .
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM .
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MANUAL NO
LOCATION 2
397
304
390
433

513
505
287
363
447
481
464
463
246
485
464
587
319
385
339
328
223
243
279
267
467
552
294
410
341
347
436
358
344
389
MANUAL NOX
LOCATION 3
651
378
411
453
591
349
436
321
437
466
466
419
461
570
684
387
443
330
271
308

367
264
235
262
412
450
426
558
323
295
406
403
368
276
CONTINUOUS NO
MEASUREMENTS
LOCATION 3










285
350
395

365

335
375
333
240

100
105
150
145
345
335

340

345



115
* REDUCED LEVEL OF SOOT BLOWING

-------
 at location 3.  A comparison with continuous measurements is not provided
 since continuous NO  measurements were not taken at location 2.   Theo-
                    X
 retical values for NO  were not presented since there is  no convenient
                      X
 algorithm for estimating NO  concentrations as  a function of fuel and
                            X
 operating parameters.  As noted in Table 38, the continuous measurement
 results at location 3 are reported in terms of  NO concentration  rather
 than the total NO  levels.   These NO results do, however,  represent  a
                  X
 close approximation of the total NO  levels since the N0_  results were
                                    X                   £.
 considered to be of small magnitude and close to the noise level of  the
 instrument.
 A comparison of continuous  0  and C0_ measurements and Orsat measurements
 is  provided  for location 3  in Table 39.   The values shown  in Table 39
 are in terms of decimal fractions (i.e.,  .075 equals 7.5%).   Grab samples
 of  CO  were  also taken at location 1 and  location 3 for laboratory analy-
 sis.   However,  subsequent to the Baseline Test,  it was determined that
 these sample containers had leaked and the analytical results were there-
 fore  invalid.
 Grab  samples of CO were taken at location 1 and  location  3 for laboratory
 analysis.  No  evidence  of CO was found in the grab samples and in addition
 no  evidence  of  CO was  found in the readings  of the continuous measurement
 CO  monitor located in  the stack.
 Analysis and Interpretation  of Results
 As  noted on  Table 37,  there  were several  tests for which data were
 not available from the manual  and/or  the  continuous measurement
 methods for  S0_  analysis  (due  to  either equipment  failure  or  loss  of
 sample).  For those tests where  data were  available  from both the manual
 and continuous measurements  a  comparison  shows that at  location  1  the
 average of the manual samples  is  82%  of the  average of  the theoretical
 values.  For these same tests,  the  average  of the  continuous  measurements
 is 95% of the average of  the  theoretical  values.   The  extremes of  the
manual measurements occur in  test  5 where  the manual value  is 61% of  the
 theoretical value, and  test  13 where  the manual value  is 135% of  the
                                    88

-------
                                         TABLE 39
            COMPARISON  OF  CONTINUOUS 02 AND C02 WITH ORSAT MEASUREMENTS AT LOCATION 3
DATE
11/8/71
11/9/71
11/10/71
11/11/71
11/12/71
11/15/71
11/16/71
11/17/71
11/18/71
11/19/71

11/22/71
11/23/71
11/24/71
11/30/71
12/1/71
12/2/71
12/3/71
12/4/71
12/7/71
12/8/71
12/9/71
MITRE
TEST
NUMBER
11
9
8
12
7
1
6
18
13
4

5
10
20
2
3
17
19
21
14
15
22
TEST CONDITIONS
LOAD
FACTOR
100
100
100
100
100
75
100
50
35
75

75
100
50
75
75
50
50
35
50
50
75
FUEL
TYPE
A
A
A
A
A
B
B
B
B
A

C
C
C
A
A
A
A
A
A
A
D
SOOT
BLOWER
NO
NO
NO
YES*
YES
NO
NO
YES
NO
NO

NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
EXCESS
AIR
NORM.
MIN.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.

NORM.
NORM.
NORM.
NORM.
MAX.
NORM.
MAX.
NORM.
NORM.
MIN.
NORM.
BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.

NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
MIN.
NORM.
NORM.
°2
CONT.
	
	
	
	
.0625
.071
.0675
.075
.0852
.062

.032
.060
.0706
.0615
.0807
.074
.086
.0776
.0705
.0695
.0565
ORSAT
.084
.058
.070
.080
.060
.078
.062
.079
.088
.047

.065
.065
.057
.058
.074
.066
.088
.082
.061
.067
.063
co2
CONT .
	
	
	
	
.135
.141
.138
.1355
.128
.142

.124
.1311
.1264
.140
.132
.1348
.126
.125
.1411
.138
.1362
ORSAT
.108
.128
.110
.1225
.125
.118
.126
.116
.104
.131

.103
.099
.106
.131
.118
.126
.104
.106
.126
.122
.126
* REDUCED LEVEL OF SOOT BLOWING
                                       89

-------
 theoretical value.   The extremes for the continuous  measurement  at
 location 1 occur in test 5 where the continuous  measurement  is 40%  of
 the theoretical value and test  13 where the continuous  measurement  is
 119% of the theoretical value.
 At location 3,  the  average of the manual measurements is  76% of  the
 average of the  theoretical values for the tests  having  both  manual  and
 continuous measurements.   For these  same tests,  the  average  of the  con-
 tinuous measurement is  100% of  the average of  the  theoretical values.
 The extremes  for the manual measurements occur in  test  21 where  the
 manual  value  is 24% of  the theoretical value and test 1 where the manual
 value is 111% of the theorectical value.   The  extremes  for the continuous
 measurement occur in test  21 where the continuous  measurement is 89% of
 the theoretical value and  test  1 .where the continuous measurement is 114%
 of the  theoretical  value.
 Table 38 provides a comparison  of the  continuous and manual  measurements
 for NO   at location 3.  Manual  measurements taken  at location 2  are also
      x
 provided in this  Table.  No  consistent patterns  are  noted in Table  38
 with respect  to the effect  of test conditions  on NO  concentrations, with
                                                   X
 the exception of  fuel type.  For the  test performed  with C fuel  (gas and
 coal mixed) the NO   levels were significantly  lower  than for the tests
                  X
 performed  with  A  and  B  fuel.
 A  comparison  of continuous 0,, and CO-  measurements and  Orsat measurements
 is  provided in  Table  39.  A  comparison of the  average of the continuous
 0_  and  the Orsat  0? measurements  shows  good agreement whereas the average
 of  the  continuous C0_ measurements were  higher than  the average of  the
 Orsat C0_  measurements.
 ANALYSES OF COAL, PULVERIZER REJECTS,  FURNACE BOTTOM ASH, AND FLY ASH
 Results of Ultimate and Proximate  Analyses
As  indicated  in Table 5 in Section 2,  ultimate and proximate analyses
 of  pulverized coal  from the  coal mills were performed for each of the 21
 tests in the  Baseline Program.   These  analyses were  performed both  on an
 "as  received" basis and on a "dry" basis.  The analyses were performed
                                 90

-------
by two separate laboratories, the Industrial Testing Laboratories (sub-
contractor to the Midwest Research Institute) and the Illinois Geological
Survey.  The results from the laboratories were then averaged as shown
in Table 40 and Table 41.  The first and second digit of the sample
number shown on these Tables and on subsequent Tables correspond to
the MITRE test numbers (i.e., CS 01002 corresponds to a coal sample from
MITRE test number 1).
Proximate analyses were also performed on samples of fly ash removed
from the dust collector and the air heater.  These analyses were performed
by the Industrial Testing Laboratories (subcontractor to the Midwest
Research Institute) for selected tests in the program and are summarized
in Table 42 and 43.
Proximate analyses were also performed on samples of ash taken from the
furnace bottom (slag samples) and from the pulverizer reject chute on the
coal mills.  The results of these analyses as reported by the Industrial
Testing Laboratories are summarized in Table 44 and Table 45.
Results of Elemental Analyses
Trace element concentrations were determined on four of the tests in the
Baseline Program in the coal pulverizer rejects from the coal mills;
bottom ash (slag); and the fly ash collected in the air heater, the
mechanical collector, and locations 2 and 3.  The results of these
analyses are summarized in Tables 46, 47, 48, and 49.
Trace element concentrations were also determined for samples of fly
ash collected from location 2 and location 3, for four tests in the
program.  The results of these analyses are summarized in Tables 50
through Table 54.
Additional trace elemental analyses were provided by EPA on pulverized
coal for six of the test runs as summarized in Table 55.
Except for Table 55, which provides the results as parts-per-million, all
results of the elemental analyses are reported in terms of weight percent.
In the case of the analysis of fly ash at location 3, the results must be
multiplied with the fly ash emission rate to determine emission rates to
the ambient atmosphere.

                                 91

-------
                                           TABLE 40
                            PROXIMATE AKD ULTIMATE ANALYSES OF COAL




SAMPLE
NUM3SR
CS01002


CS02002



CS03002


CSOiC02


CS05002



CS06002
CS07002


CS08002


CS09C02


CS10002
CS11002


CS12002


CS13002

CSli002


DRY BASIS
PROXIMATE ANALYSES


=

10.86
11.0
10.9
10.32
10.7

H ^
5
Q
5g s

33.74
41.2

50.40
47.8
40.0 49.1
37.85
40.6
ULTIMATE ANALYSES

c
pa

70.25
70.07
70.16
51.83 71.30
43.6
10.5 | 39.2 i 50.2

10.43 1 33.07
10.7
10.6
41.2
39.6
10.82 33.45
11.1 40.0
11.0 39.2
14.09 35.21
14.8
51.50
48.1
49.3
50.74
48.9
49.8
50.70
37.0 43.2
14.4 3o.l
I
11.8
40.4
10.42 33.62
10.2 : 41.6
10.3
10.64
10.8
10.7
40.1
33.53
49.5

47.9
50.96
43.2
49.6
50.83
40.9 48.3
39.7
10.27 38.67
10.3 . 40.7
10.3 33.7
49.6
51.05
49.0
50.0
17.26 i 33.04 j 49.70
10.43 39.23
50.34
10.3 '41.6 48.1
10.4 40.4 49.2
11.15 | 37.79 i 51.06
10.8 41.3 47.9
11.0 39.5 : 49.5
13.60 ' 35.95 ! 50.45
14.2 : 33.5 47.3
11.30 , 37.13 : 51.57
11.5 40.5 . 43.1
11.-
33.3 , 49.3
70.41
70.86

70.69
70.29
70.49
70.79
70.15
70.47
69.23

8
Q

4.94
4.39
4.92
4.85
4.89
4.87

4.79
4.85
4.82
4.92
4.86
4.89
4.74

a
t;

1.39
1.32
1.36
1.22
1.41
1.32

1.31
1.40
1.36
1.36
1.39
1.33
1.52
63.19 4.55 1.36
63.74 4.65 1.44

70.10
71.99
4.85
4.93
70.48 ! 4.31
71.24
71.54
69.97
70.76
71.36
4.37
4.97
4.87

1.30
1.31
1.23
1.27
1.28
1.23
4.92 1 I. IS
5.02 1.37
70.21 4.73 1.27
71.04
66.46
4.33
1.32
4.42 1.48
70.93 4.95 1.31
70.52 4.30 1.26
70.73 4. S3 i 1.2)
70. ^2
4.34 : 1.30
69.92 ! 4.33 ' 1.26
70.07 4.34 ! 1.23
63.82 . 4.73 1.39
67.93 , 4.59 . 1.33
70.53 • 4.77 i 1.33
70.10 • 4.37 : 1.32
70.34




3.23
3.35
3.29
3.01
2.99
3.00

3.44
3.46
3.45
3.43
3.55
3.52

g
£

9.33
9.39
9.36
9.30
9.60
9.45

9.34
9.35
9.35
8.63
8.93
8.73
1.89 8.43
1.91 i 9.21
1.90 i 8.34

2.83 i 9.09
3.40 7.95
3.42
9.82
3.41 8.89
3.50
8.07
3.51 i 9.62
3.51 ; 8.85
3.50 I 7.98
3.57 : 9.93
3.54 3.96
1.71 3.67
3.47
3.91
3.54 ! 9.55
3.5! i 9.23
3.31 9.13
3.41 ! 9.77
3.36 : 9.43
2.53 ' 3.83
2.62 . 9.25
2.87 9.03
2.B3 9.37
4.82 1.3-, 2.83
9.23

|

Sg

12,624
12,632
12,623
12,664
12,655
12,660

12,133
12,656
12,397
12,630
12,546
12,583
12,267
12,151
12,209

12,570
12,645
12,694
12,670
12,625
12,613
12,619
12,697
12,677
12,1)37
11,719
12,595


SOURCE OF
ANALYSIS
ITL*
ISCS**
AVERAGE
ITL
ISGS
AVERAGE

ITL
ISCS
AVERAGE
ITL
ISCS
AVE5ACE
ITL
ISCS
AVERAGE

ITL
ITL
ISCS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
12^656 | ISCS
12,626
AVERAGE
12,500 ITL
12,583 ISGS
12,544 AVERAGE
12,260 ITL
12,143
12,641
12,5*1
12,601
ISCS
ITL
ISCS
AVERAGE
I':;UST3IAL TS3TIM3 LA3CRATCRIES
ILLINOIS STATE GEC1.00ICAL SURVEY
                                                 92

-------
         TABLE 40 (CONCLUDED)




PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NUMBER
CS150Q2

CS17002

CS18002


CS19002

CS20002
CS21002

CS22002

DRY BASIS
PROXIMATE ANALYSES
tH
<
10.91
10.6
10.8
10.58
10.4
10.4
12.64
12.7
12.7

9.97
10.2
10.1
16.61
9.52
9.4
9.5
6.94
6.7
6.8
VOLATILE
MATTER
38.50
41.3
39.9
38.95
41.5
40.2
36.31
38.8
37.6

39.62
42.3
41.0
32.85
56.43
41.6

35.46
37.4
36.4
FIXED CARBON
50.59
48.1
49.3
50.47
48.1
49.3
51.05
48.5
49.8

50.41
47.4
48.9
50.54
34.05
49.0

57.60
55.9
56.8
ULTIMATE ANALYSES
CARBON
70.53
70.83
70.68
70.58
70.73
70.66
69.71
69.49
69.60
HYDROGEN
4.81
4.86
4.83
4.83
4.84
4.84
4.78
4.62
4.70
i
71.09
71.41
71.25
67.52
71.72
72.07
71.90
75.85
76.13
76.00
4.86
4.91
4.89
4.45
4.87
4.97
4.92
4.97
4.93
4.95
NITROGEN
1.36
1.35
1.36
1.17
1.36
1.27
1.55
1.40
1.48

1.18
1.33
1.26
1.36
1.39
1.33
1.36
1.75
1.62
1.69
SULFUR
3.61
3.45
3.53
3.57
3.65
3.61
2.61
2.73
2.67

3.54
3.72
3.63
1.75
3.15
3.31
3.23
1.39
1.41
1.40
OXYGEN
8.78
8.92
8.85
9.27
9.01
9.14
8.71
9.05
8.88

9.36
8.41
8.89
8.31
9.35
8.97
9.16
9.13
9.20
9.17

HEATING VALUE,
BTU/LB.
12,557
12,631
12,594
12,637
12,681
12,659
12,299
12,347
12,323

12,732
12,730
12,731
11,654
12,858
12,821
12,840
13,413
13.393
13,403
SOURCE OF
ANALYSIS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE

ITL
ISGS
AVERAGE
ITL
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
                   93

-------
                                                   TABLE 41
                                    PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NUMBER
CS01002

CS02002

CS03002

CS04002

CS05002

CS06002
CS07002

CS08002

CS09002

CS10002
CS11001

AS RECEIVED BASIS
PROXIMATE ANALYSES
MOISTURE
4.02
4.2
4.1
4.52
4.3
4.4
4.13
4.0
4.1
4.31
4.2
4.3
3.69
3.6
3.6
4.1
3.89
4.0
3.9
3.66
4.0
3.8
3.66
4.0
3.8
3.29
3.84
4.3
4.1
LO
<
10.42
10.5
10.5
9.85
10.3
10.1
10.00
10.2
10.1
10.35
10.6
10.5
13.57
14.3
13.9
11.3
10.01
9.8
9.9
10.25
10.3
10.3
9.89
9.9
9.9
16.69
10.03
9.9
10.0
VOLATILE
MATTER
37.18
39.5
38.3
36.14
33.9
37.5
36.50
39.6
33.1
36.79
33.3
37.5
33.91
35.7
34.8
33.7
37.12
FIXED CARBON
48.38
45.8
47.1
49.49
46.5
48.0
49.37
46.2
47.8
48.55
46.8
46.7
48.83
46.4
47.6
45.9
43.98
39.9 46.3
38.5 47.6
37.12 48.97
39.3 46.4
33.2
37.26
39.1
33.2
31.95
47.7
49.19
47.0
43.1
48.07
37.22 ! 48.41
39.8 : 46.0
33.5 I 47.2
ULTIMATE ANALYSES
CARBON
67.43
67.13
67.3
68.08
67.39
67. 74
67.77
67.48
67.63
67.74
67.20
67.47
66.72
65.73
66.23
67.22
69.19
67.66
68.43
68.92
67.17
63.05
69.23
67.40
68.32
64.27
68.19
67.49
67.8 .
HYDROGEN
5.19
5.15
5.17
5.13
5.15
5.14
5.05
5.10
5.08
5.19
5.13
5.16
4.98
4.79
4.89
5.10
5.17
5.07
5.12
5.19
5.12
5.16
5.24
4.99
5.12
4.64
5.20
5.07
5.14
NITROGEN
1.33
1.27
1.31
1.16
1.35
1.26
1.26
1.34
1.30
1.30
1.33
1.32
1.46
1.31
1.39
1.24
1.26
1.18
1.22
1.23
1.22
1.23
1.32
1.22
1.27
1.43
1.26
1.21
1.24
SULFUR
3.10
3.21
3.16
2.87
2.86
2.87
3.30
3.32
3.31
3.33
3.40
3.37
1.82
1.84
1.83
2.76
3.27
3.28
3.28
3.37
3.37
3.37
3.37
3.43
3.40
1.65
3.34
3.39
3.37
OXYGEN
12.53
12.73
12.63
12.99
13.01
13.00
12.62
12.53
12.58
12.09
12.29
12.19
11.45
12.08
11.77
12.36
11.10
12.98
12.04
11.04
12.79
11.92
10.95
13.08
12.02
11.32
11.98
12.96
12.47

HEATING VALUE,
BTU/LB.
12,117
12,101
12,109
12,092
12,111
12,102
12,138
12,149
12,144
12,036
12,020
12,053
11,814
11,713
11,764
12,055
12,153
12,186
12,170
12,163
12,109
12,135
12,163
12,169
12,201
11,333
12,111
12,112
12,112
SOURCE OF
ANALYSIS
ITL*
ISCS**
AVERAGE
ITL
ISGS
AVERAGE
I XL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ISGS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
ISGS
AVERAGE
*  INDUSTRIAL TESTING LABORATORIES

** ILLINOIS STATE GEOLOGICAL SURVEY
                                                     94

-------
         TABLE 41  (CONCLUDED)




PROXIMATE AND ULTIMATE ANALYSES OF COAL
SAMPLE
NT'MBER
CS12002

CS13002

CS14002

CS15002

CS17002

CS18002

CS19002

CS20002
CS21002

CS22002

AS RECEIVED BASIS
MOISTURE
3.59
3.9
3.7
3.45
3.8
3.6
4.58
4.4
4.5
4.30
4.6
4.5
4.12
4.4
4.3
3.88
4.2
4.0
4.08
4.6
4.3
4.04
4.00
4.6
4.3
4.71
5.0
4.9
E/5
<
10.75
10.4
10.6
13.13
13.7
13.4
10.78
11.0
10.9
10.44
10.1
10.3
10.14
9.9
10.0
12.15
12.2
12.2
9.56
9.8
9.7
15.94
9.14
8.9
9.1
6.61
6.4
6.5
VOLATILE
MATTER
36.43
39.7
38.1
34.71
37.0
35.9
35.43
38.7
37.1
36.84
39.4
38.1
37.35
39.7
38.5
34.90
37.2
36.1
38.00
40.4
39.2
31.53
54.17
39.7

33.79
35.5
34.6
FIXED CARBON
49.23
46.0
47.6
48.71
45.5
47.1
49.21
45.9
47.6
48.42
45.9
47.2
48.39
45.9
47.1
49.07
46.4
47 .7
48.36
45.2
46.8
48.50
32.69
46.8

54.89
53.1
54.0
CARBON
67.70
67.19
67.45
66.45
65.41
65.93
67.35
67.01
67.18
67.50
67.57
67.54
67.67
67.62
67.65
67.00
66.57
66.79
68.19
68.12
68.16
64.80
68.85
68.75
68.80
72.28
72.32
72.30
HYDROGEN
5.06
5.07
5.07
4.95
4.83
4.89
5.06
5.15
5.11
5.08
5.15
5.12
5.09
5.11
5.10
5.03
4.90
4.97
5.12
5.20
5.16
4.72
5.12
5.25
5.19
5.23
5.24
5.24
NITROGEN
1.25
1.22
1.24
1.34
1.28
1.31
1.33
1.26
1.30
1.30
1.29
1.29
1.12
1.30
1.21
1.49
1.35
1.42
1.13
1.27
1.20
1.30
1.33
1.27
1.30
1.67
1.54
1.61
SULFUR
3.19
3.28
3.24
2.49
2.52
2.51
2. lit
2.75
2.74
3.45
3.29
3.37
3.42
3.49
3.46
2.51
2.62
2.57
3.39
3.55
3.47
1.68
3.02
3.16
3.09
1.32
1.34
1.33
OXYGEN
9.18
12.85
11.01
11.64
12.28
11.96
12.74
12.87
12.31
12.23
12.60
12.42
12.56
12.52
12.54
11.82
12.40
12.11
12.61
12.11
12.36
11.56
12.54
12.65
12.60
12.89
13.18
13.04
HEATING VALUE,
BTU/LB.
12,051
12,097
12,080
11,837
11,686
11,762
12,062
12,009
12,034
12,017
12,050
12,034
12,116
12,123
12,120
11,813
11,829
11,821
12,213
12,144
12,179
11,184
12,344
12,231
12,288
12,781
12,724
12,753

SOURCE OF
ANALYSIS
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ISGS
AVERAGE
ITL
ITL
ISGS
ITL
ISGS
AVERAGE
                     95

-------
                     TABLE 42
PROXIMATE ANALYSIS OF FLY ASH FROM DUST COLLECTOR

SAMPLE
NUMBER
SAO 10 04
SA03004
SA05004
SA06004
SA08004
SA10004
SA13004
SA18004
SA20004
SA21004
SA22004
AS RECEIVED
PROXIMATE ANALYSIS, %

MOISTURE
0.16
0.19
0.10
0.23
0.11
0.15
0.24
0.23
0.16
0.25
0.16

PS
99.61
99.00
99.02
99.29
98.62
99.14
97.61
98.95
97.46
97.38
97.69
MATTER
VOLATILE
0.78
1.11
0.91
0.86
1.86
0.72
1.13
0.80
0.29
1.85
0.87
o
i
—
—
—
~
—
—
1.02
0.02
2.09
0.52
1.28

SULFUR
0.38
0.26
0.30
0.26
0.61
0.36
0.53
0.41
0.30
0.66
0.27
g
HEATING V
BTU/LB.
20
30
48
0
91
12
80
0
146
148
167
DRY BASIS
PROXIMATE ANALYSIS, %

X
in
99.77
99.19
99.12
99.52
98.77
99.30
97.84
99.18
97.62
97.62
97.85
H
H
H
H
0.78
1.11
0.91
0.86
1.86
0.72
1.13
0.80
0.29
1.85
0.87
0
u
o
w
—
~
—
—
—
—
1.02
0.02
2.09
0.53
1.28

SULFUR
0.38
0.26
0.30
0.26
0.61
0.36
0.53
0.41
0.30
0.66
0.27
w
HEATING V
BTU/LB.
20
30
48
0
91
12
80
0
146
148
167

-------
                 TABLE 43
PROXIMATE ANALYSIS OF AIR HEATER HOPPER ASH









SAMPLE
NUMBER
SA01002
SA05002
SAO 60 02
SA08002
SA10002
SA13002
SA18002
SA21002
SA22002
AS RECEIVED
PROXIMATE ANALYSIS, %





c2
5
H
to
M
O
£1
0.26
0.18
0.12
0.17
0.19
0.19
0.20
0.25
0.21







CO

98.52
98.82
99.21
98.43
97.78
98.03
98.17
98.13
97.17
&
H
H
g
w
eJ
H
3
d
>
1.72
2.26
2.12
2.79
2.38
0.94
1.10
1.36
1.76


si
o

u

o
w
X
f— t
IJ-I
_-
__
_-
—
—
0.84
0.53
0.26
0.86






ryS
tu
g
C/3
0.52
0.84
0.67
0.74
0.39
0.61
0.39
0.58
0.57


W
P
i

o •
£5 W
H hJ
H -^
9 H
PC rn
168
68
46
120
195
143
135
120
271
DRY BASIS
PROXIMATE ANALYSIS, %







in

98.78
99.00
99.33
98.60
97.97
98.22
98.37
98.38
97.37
0
H
H
^
W
i-l
M
H
3
>
1.72
2.26
2.12
2.79
2.38
0.94
1.10
1.36
1.76


f-,
o

(_}

h- 1
^
—
—
—
—
—
0.84
0.53
0.26
0.87






&
s
g
t/3
0.52
0.84
0.67
0.74
0.39
0.61
0.39
0.58
0.57


W*
n>
1

o •
a «
M i-J
H -v.
ag
W pq
168
68
46
120
195
143
135
120
272

-------
                                                          TABLE 4 A

                                              PROXIMATE ANALYSIS OF SLAG SAMPLES

SAMPLE
NUMBER
PA01001
PA03001
PA05001
PA10001
PA21001
PA22001
AS RECEIVED
PROXIMATE ANALYSIS, %

MOISTURE
10.32
34.24
11.53
36.85
40.56
35.83

w
CO
86.74
63.52
88.26
61.74
58.00
63.93
MATTER
VOLATILE
2.11
1.66
0.38
1.19
1.08
0.19
g
u
0.83
0.58
—
0.22
0.36
0.05

SULFUR
0.48
0.39
0.03
0.12
0.24
0.14
w"
1
HEATING ^
BTU/LB.
374
241
13
145
113
16
DRY BASIS
PROXIMATE ANALYSIS, %

w
96.72
96.60
99.76
97.77
97.58
99.62
MATTER
VOLATILE
2.35
2.52
0.43
1.88
1.81
0.30
CD
U
M
0.93
0.88
—
0.35
0.61
0.08

SULFUR
0.53
0.59
0.05
0.19
0.41
0.22
W
P
HEATING \
BTU/LB.
417
366
15
230
190
25
co
CD

-------
                   TABLE 45
PROXIMATE ANALYSIS OF PULVERIZER REJECT SAMPLES

SAMPLE
NUMBER
RJ01001
RJ03001
RJ05001
RJ10001
RJ21001
RJ22001
AS RECEIVED
PROXIMATE ANALYSIS, %

MOISTURE
0.81
1.28
3.90
3.40
0.78
0.54

PC
CO
54.26
50.93
33.94
38.94
53.19
51.11
w
H
H
VOLATILE
20.88
10.45
26.72
24.51
15.21
18.48
d
cj
o
M
In
24.05
37.34
15.44
33.15
30.82
29.87

CO
26.07
27.61
16.95
11.27
20.86
20.68
w"
HEATING V
BTU/LB.
4,567
4,994
8,143
7,521
4,354
4,794
DRY BASIS
PROXIMATE ANALYSIS, %

P3
CO
54.70
51.59
35.15
40.31
53.61
51.39
PH
W
H
H
VOLATILE
21.05
10.59
27.67
25.37
15.33
18.58
io
o
o
H
24.25
37.82
15.99
34.32
31.06
30.03

CO
26.28
27.97
17.56
11.67
21.02
20.79
w
HEATING V
BTU/LB.
4,604
5,059
8,434
7,786
4,388
4,820

-------
                                                            TABLE 46
                      COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PULVERIZER REJECTS, SLAG, AND FLY ASH
                    (MITRE TEST NO. 1,  75 MW, B FUEL, NO SOOT BLOWING, NORMAL EXCESS AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ila
lie
Ca
Ccl
Co
Cr
Cu
I'i-
Ga
Ce
HI;
K
Mfi
Mn
Mo
Na
Ni
Pb
Sb
So
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL ,
CS01002*
0.9CO
0.03
<0.0002
0.250
0.0006
0.000
0.002
0.002
0.995
0.08
0.0
<0.0002
0.155
0.073
0 . 009
< 0.002
0.06
0.009
<0.003
<0.07
<0.06
<0.05
< 0.0005
<0.098
<0.01
•=0.02
0.11
PULVERIZER
REJECTS ,
RJ01001*
0.490
<0.03
<0.0002
1.61
0.0004
<0.003
0.002
0.003
13.1
<0.07
0.0
0.00006
0.127
0.071
0.007
<0.002
0.044
0.0009
< 0.003
<0.07
<0.06
<0.05
< 0.0005
<0.094
0.006
<0.02
0.011
SLAG ,
PA01001*
9.25
0.3
0.0004
3.45
<0.005
0.006
0.016
0.007
16.2
<0.02
<0.07
0.0003
1.48
0.519
0.057
0.00
0.379
0.013
0.009
0.06
<0.05
<0.1
0.004
1.31
0.008
0.04
0.038
FLY ASH FROM
AIR HEATER
ASH HOPPER ,
SA01002*
7.20
0.02
0.001
4.88
0.0009
0.004
0.010
0.008
14.8
<0.07
0.0
0.00003
1.48
0.500
0.090
<0.002
0.270
0.010
0.003
<0.06
<0.06
<0.05
0.004
0.380
0.006
<0.02
0.040
FLY ASH FROM
MECHANICAL
SEPARATOR ,
SA01004*
8.05
0.03
0.0008
1.96
0.002
0.004
0.013
0.007
10.7
<0.08
0.0
0.00004
1.80
0.280
0.036
0.002
0.460
0.040
<0.003
<0.07
<0.07
<0.05
0.003
0.550
<0.01
<0.02
0.057
FLUE GAS
PARTICULATES,
LOCATION 2,
AIR HEATER ,
DUCT, 206-2**
9.40
<0.04
0.001
2.38
0.016
0.006
0.05
0.010
11.7
<0.06
0.0
<0. 00002
1.84
0.620
0.050
<0.003
0.590
0.05
0.020
<0.06
<0.05
<0.05
0.003
0.580
0.010
0.02
0.59
FLUE GAS
PARTICULATES,
LOCATION 3,
STACK ,
206-3**
9.24
<0.04
0.001
0.970
0.002
0.007
0.740
0.020
11. 1
<0.06
0.0
0.002
2.36
0.660
0.080
<0.003
2.06
0.200
0.020
<0.06
<0.05
<0.05
<0.001
0.660
0.005
0.03
0.090
o
        *  MITRE SAMPLE NUMBER

        ** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER

-------
                                   TABLE 47

COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL,  PULVERIZER REJECTS,  SLAG & FLY ASH
          (MITRE TEST NO. 3, 75 MW, A FUEL, NO SOOT BLOWING,  MAXIMUM EXCESS
                           AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL,
CS03002*
0.900
<0.2
<0.0002
0.480

<0.005
0.000
0.0005
1.24
<0.05
<0.07
0.00000
0.165
0.055
0.006
0.00
0.073
<0.002
<0.005
<0.05
<0.09
<0.1
<0.0005
0.060
<0.008
<0.04
0.009
PULVERIZER
REJECT,
RJ03001*
0.900
<0.2
<0.0002
0.210

0.003
0.004
0.003
19.3
<0.03
<0.07
0.00000
0.150
0.050
0.010
0.00
0.080
0.002
0.009
0.04
<0.05
<0.01
0.0005
0.050
0.004
<0.04
0.427
SLAG,
PA03001*
8.50
0.3
0.0004
4.27

0.006
0.016
0.007
16.8
<0.02
<0.07
0.00000
1.36
0.575
0.082
0.00
0.400
0.012
0.011
0.06
<0.05
<0.1
0.008
1.15
0.008
<0.04
0.032
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA03004
8.60
0.3
0.0008
3.30

0.005
0.014
0.008
12.2
<0.03
<0.07
0.00004
1.50
0.512
0.060
0.00
0.650
0.015
0.006
0.03
0.04
<0.1
<0.003
1.34
0.006
<0.04
0.044
     * MITRE SAMPLE NUMBER
                                         101

-------
                                                     TABLE  48
                      COMPARISON OF ELEMENTAL CONCENTRATIONS IN COAL, PYRITES, SLAG, AND FLY ASH
              (MITRE  TEST No. 22, 75 MW, D FUEL, NO SOOT BLOWING, NORMAL EXCESS AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Hg
K
Mg
Mn
Mo
Na
Ni
Pb
Sb
Se
Sn
Sr
Ti
Tl
V
Zn
PULVERIZED
COAL,
CS22002*
0.600
<0.2
<0.0002
0.250

<0.005
<0.002
0.0005
0.520
<0.05
<0.07
0.0001
0.131
0.050
0.002
0.00
0.053
<0.002
<0.005
<0.05
<0.09
<0.1
<0.0005
0.065
<0.008
<0.04
0.011
PULVERIZER
REJECT,
RJ22001*
0.500
<0.2
<0.0002
1.28

0.005
0.004
0.002
17.3
<0.02
<0.07
0.00000
0.110
0.105
0.014
0.00
0.063
0.001
0.011
0.04
0.08
<0.1
0.003
0.040
0.006
O.04
0.087
SLAG,
PA22001*
8.40
0.4
0.0008
4.55

0.007
0.018
0.006
16.6
<0.02
<0.07
0.00000
0.253
0.567
0.073
0.00
0.400
0.010
0.008
0.02
<0.05
<0.1
0.007
1.22
0.008
<0.04
0.026
FLY ASH FROM
AIR HEATER
HOPPER,
SA22002*
6.40
0.4
0.0006
7.90

0.006
0.020
0.008
17.0
<0.03
<0.007
0.00006
0.835
0.461
0.117
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA22004*
9.50
<0.2
0.001
1.78

0.007
0.023
0.009
6.70
<0.03
<0.007
<0. 00001
1.75
0.480
0.038
0.00 0.00
0.312 0.624
0.013 0.026
0.006 0.007
0.03 0.03
0.03 0.05
<0.1 I <0.1
0.009
0.780
0.004
<0.04
0.030
0.000
1.78
0.004
<0.04
0.046
FLUE GAS
PARTICULATES ,
LOCATION 2,
AIR HEATER,
221-2**
10.0
0.3
0.001
2.09

0.018
0.342
0.012
7.84
<0.02
<0.07
FLUE GAS
PARTICULATES ,
LOCATION 3,
STACK,
221-3**
9.50
0.3
0.002
1.33

0.014
0.626
0.021
8.24
<0.02
<0.07
0.0004 ! 0.0001
1.62
0.530
0.070
0.00
0.529
0.165
0.015
0.03
0.08
<0.1
0.003
1.61
0.01
<0.04
0.064
1.80
0.505
0.124
0.00
0.722
0.390
0.020
0.04
0.05
<0.1
<0.0005
1.64
0.008
<0.04
0.127
*  MITRE SAMPLE NUMBER
** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER
                                                          102

-------
                                                    TABLE  49

               COMPARISON OF ELEMENTAL CONCENTRATIONS  IN COAL, PULVERIZES REJECTS, AND  FLY ASH
                         (MITRE TEST NO.  5, 75 MW,  C FUEL, NO  SOOT  BLOWING, NORMAL EXCESS
                                             AIR, NORMAL BURNER ANGLE)
ELEMENTAL CONTENT BY WEIGHT (WEIGHT PERCENT)
ELEMENT
Al
Ba
Be
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Kg
K
; >*
Mn
i Mo
Na
Ni
Pb
Sb
: Se
; Sn
Sr
: Ti
Tl
V
Zn
PULVERIZED
COAL,
CS05002*



























PULVERIZER
REJECT,
RJ05001*
1.55
0.00
<0.0002
0.120
0.002
<0.004
0.000
0.002
2.30
<0.06
0.0
<0. 00003
0.290
0.085
O.C06
<0.003
0.10
0.004
0.007
<0.06
<0.05
<0.05
<0.001
0.200
<0.005
<0.02
0.007
SLAG,
PA05001*
10.2
<0.04
0.0006
5.36
0.021
0.004
0.009
0.009
9.43
<0.06
0.00
0.00002
2.68
0.720
0.075
<0.002
0.635
0.031
0.009
<0.06
<0.05
<0.5
0.009
0.575
0.003
0.02
0.045
FLY ASH FROM
AIR HEATER
HOPPER,
SA05002*
7.20
0.3
0.0004
7.00

0.007
0.025
0.010
19.7
<0.03
<0.007
0.00000
0.935
0.424
0.114
0.00
0.370
0.010
0.010
0.02
0.05
<0.1
0.006
0.870
0.008
<0.04
0.030
FLY ASH FROM
MECHANICAL
SEPARATOR,
SA05004
10.15
0.4
0.0006
3.35

0.006
0.013
0.009
6.63
<0.03
<0.007
<0. 00001
1.87
0.580
0.051
0.00
0.220
0.017
0.007
0.04
0.02
<0.1
0.009
1.69
0.006
<0.04
0.060
FLUE GAS
P ARTICULATES ,
LOCATION 2,
AIR HEATER
DUCT, 211-2**
9.56
0.5
0.0008
3.40

0.014
0.249
0.011
7.27
0.03
<0.07
0.00005
1.77
0.533
0.073
<0.04
0.991
0.239
0.018
0.04
0.060
<0.1
0.004
1.40
0.006
<0.04
0.072
FLUE GAS
PARTICULATES ,
LOCATION 3,
STACK,
211-3**
7.35
0.3
0.0007
1.39

0.016
1.08
0.016
10.8
<0.06
<0.07
0.00008
1.50
0.422
0.200
0.00
0.750
0.600
0.014
<0.06
<0.05
<0.1
<0.003
0.965
0.008
<0.04
0.10
*  MITRE SAMPLE NUMBER (OLD)

** MIDWEST RESEARCH INSTITUTE SAMPLE NUMBER
                                                          103

-------
                              TABLE 50

         ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER

         MITRE TEST NO. 13:  35 MW, B FUEL, NO SOOT BLOWING,
                            NORM. EXCESS AIR, NORM. BURNER ANGLE
ELEMENT
                               ELEMENTAL  CONTENT, WEIGHT PERCENT
LOCATION 2,
AIR HEATER.
NO. 209-2*
                       LOCATION 3,
                       STACK,
                       NO. 209-3*
  Al
  Ba
  Be
  Ca
  Cd
  Co
  Cr
  Cu
  Fe
  Ga
  Ge
  Hg
  K
  Mg
  Mn
  Mo
  Na
  Ni
  Pb
  Sb
  Se
  Sn
  Sr
  Ti
  Tl
  V
  Zn
 As
  Si
    21
  7
 .08
 .0009
1.82
 .0009
 .01
 .15
 .01
8.22
<.04
     2.2
      .89
      .06
      .003
     6.29
      .08
      .03
     <.04
     <.04
     <.04
      .001
      .59
      .006
      .04
      .08
13.65
 <.04
  .0007
  .62
  .001
  .011
 1.68
  .016
 8.7
 <.05
                             .74
                             .51
                             .14
                             .002
                             .88
                             .63
                             .02
                             .06
                             .05
                             .05
                             .0009
                             .50
                             .005
                             .03
                             .11
 * Midwest Research Institute's Sample Number
                                104

-------
                             TABLE  51
          ELEMENTAL CONTENT  OF  FLUE GAS PARTICULATE MATTER

         MITRE Test No.  8:   100 MW, A Fuel, No Soot Blowing,
                            Maximum Excess Air, Normal Burner Angle
                        ELEMENTAL  CONTENT, WEIGHT PERCENT
ELEMENT

  Al
  Ba
  Be
  Ca
  Cd
  Co
  Cr
  Cu
  Fe
  Ga
  Ge
  Hg
  K
  Mg
  Mn
  Mo
  Na
  Ni
  Pb
  Sb
  Se
  Sn
  Sr
  Ti
  Tl
  V
  Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
203-2*

 30.9
  0.4
  0.002
  1.33
  0.004
  0.030
  0.050
  0.030
 14.8
  0.07
 <0.09
  0.0006
  2.54
  0.770
  0.090
 <0.002
 83.6
  0.05
  0.110
  0.170
  0.150
  0.07
  0.003
  0.790
  0.020
  0.02
  0.060
LOCATION 3,
STACK,
SAMPLE NO.
203-3*

31.8
 0.6
 0.002
 1.14
 0.003
 0.020
 0.220
 0.040
11.7
<0.08
 0.00
 0.0004
 2.42
 0.670
 0.080
 0.008
48.6
 0.09
 0.160
 0.130
 0.06
 0.07
<0.0005
 0.930
 0.010
<0.02
 0.080
* Midwest Research Institute's Sample Number
                               105

-------
                             TABLE 52

          ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER
     MITRE Test No. 20:
 50 MW, C Fuel, No Soot Blowing, Normal
 Excess Air, Normal Burner Angle
                        ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT

  Al
  Ba
  Be
  Ca
  Cd
  Co
  Cr
  Cu
  Fe
  Ga
  Ge
  Hg
  K
  Mg
  Mn
  Mo
  Na
  Ni
  Pb
  Sb
  Se
  Sn
  Sr
  Ti
  Tl
  V
  Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
213-2*

 9.90
 0.3
 0.0005
 2.62
<0.0005
 0.012
 0.175
 0.012
 5.60
 0.06
 0.07
 0.0000
 3.25
 0.570
 0.067
 0.04
 0.581
 0.135
 0.014
 0.06
 0.05
 0.1
 0.006
 1.40
 0.005
 0.04
 0.08
LOCATION 3,
STACK,
SAMPLE NO.
213-3*

 9.51
 0.3
 0.0008
 1.10
 0.0026
 0.011
 0.926
 0.019
 6.47
<0.02
 0.07
 0.0003
 2.28
 0.560
 0.107
 0.00
 0.911
 0.515
 0.017
 0.04
 0.005
<0.1
 0.003
 1.37
 0.004
<0.04
 0.16
* Midwest Research Institute's Sample Number
                                106

-------
                            TABLE 53
          ELEMENTAL CONTENT  OF  FLUE GAS PARTICULATE MATTER

         MITRE Test No.  19:   50 MW, A Fuel, No Soot Blowing,
                             Maximum Excess Air, Normal Burner Angle
                        ELEMENTAL  CONTENT, WEIGHT PERCENT
ELEMENT

  Al
  Ba
  Be
  Ca
  Cd
  Co
  Cr
  Cu
  Fe
  Ga
  Ge
  Hg
  K
  Mg
  Mn
  Mo
  Na
  Ni
  Pb
  Sb
  Se
  Sn
  Sr
  Ti
  Tl
  V
  Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
217-2*

  9.00   •
  0.3
  0.001
  2.80
  0.0022
  0.008
  0.125
  0.010
 11.9
 <0.02
 <0.07
  0.0001
  1.54
  0.470
  0.049
  0.00
  0.570
  0.120
  0.007
  0.04
  0.04
 <0.1
 <0.003
  1.25
  0.008
 <0.04
  0.066
LOCATION 3,
STACK,
SAMPLE NO.
217-3*

  7.75
 <0.2
  0.001
  1.17
  0.001
  0.013
  0.725
  0.020
 11.4
 <0.02
 <0.07
  0.0002
  1.42
  0.430
  0.149
  0.00
  0.738
  0.493
  0.005
  0.04
  0.04
 <0.1
 <0.003
  1.21
  0.006
 <0.04
  0.088
* Midwest Research Institute's Sample Number
                                107

-------
                             TABLE 54

          ELEMENTAL CONTENT OF FLUE GAS PARTICULATE MATTER

     MITRE TEST NO. 17:  50 MW, A Fuel, Maximum Soot Blowing,
                         Normal Excess Air,  Normal Burner Angle
                      ELEMENTAL CONTENT, WEIGHT PERCENT
ELEMENT

  Al
  Ba
  Be
  Ca
  Cd
  Co
  Cr
  Cu
  Fe
  Ga
  Ge
  Hg
  K
  Mg
  Mn
  Mo
  Na
  Ni
  Pb
  Sb
  Se
  Sn
  Sr
  Ti
  Tl
  V
  Zn
LOCATION 2,
AIR HEATER,
SAMPLE NO.
216-2*

  8.40
 <0.2
  0.001
  2.57
 <0.0005
  0.010
  0.330
  0.026
 10.9
 <0.02
 <0.07
  0.0001
  1.50
  0.485
  0.063
 <0.04
  0.591
  0.237
  0.015
  0.04
  0.05
 <0.1
  0.005
  1.28
  0.006
 <0.04
  0.168
LOCATION 3,
STACK,
SAMPLE NO.
216-3*

  5.90
 <0.2
  0.0008
  0.660
 <0.0012
  0.019
  1.58
  0.020
 11.1
 <0.02
 <0.07
  0.0002
  1.
  0.
  .20
  ,351
 0.230
 0.00
 0.570
 1.37
 0.012
 0.04
 0.05
<0.1

-------
                              TABLE 55
       ELEMENTAL ANALYSES OF COAL FOR CAT-OX BASELINE PROGRAM
                       (Concentrations in ppra)
MITRE Test
Element No .
and Isotope
A 110
Ag
Al28
As76
198
Au
Ba139
Br80
Br82
Ca49
cd115
Ce141
Cl38
Co58
Co60
Cr51
Ce134
r 64
Cu
r 66
Cu
n 165
Dy
_ 152nl
Eu
Eu15208
Fe59
Ga72
Gd159
Ge75
Hf181
Hg2°3
,128
In116
Ir192
3

<. 7
8080
<1.2

..10
34
20
3
3640
<110
8.83
1220
<30
3.07
18.0
1.56
29
<20
0.58
0.2
.13
13,700
<2
<60
<4
.50
<.5
<1
<0.03
1.9
5

<. 6
13,300
4.8

0.7
48
3.9
22
5640
<-no
16.2
2760
<80
5.22
21.4
2.58
<20
<40
0.76
0.32
.26
9500
4.0
<40
<120
.81
<.6
<.05
<0.02
2.2
14

<• 2
10,800
2.44

.06
45
3.4
9.0
3290
<200
10.6
1250
<60
3.84
19.3
2.03
<20
<50
0.67
.30
.19
11,600
5.5
<4
<150
.60
.16
<2
0.029
1.6
18

<* 6
12,100
<5

0.15
53
32.5
19
<50
<90
13.0
1450
<70
4.40
19.4
2.35
<20
<20
0.77
0.31
0.20
10,900
4.2
<30
<40
.65
1.91
1.8
.073
6.7
20

<• 9
17,200
7.00

.003
92
7
20
7740
<300
21.1
2820
<90
5.98
24.2
3.32
<30
<60
1.2
0.56
0.32
8970
7.2
<70
<70
1.05
<.l
<.2
<0.05
5.3
22

<• 2
6170
1.6

.02
29
4.4
16
1910
30
8.97
2350
<30
4.02
12.2
1.13
<20
<30
0.42
.18
.12
4550
2.9
<20
<150
.42
<.3
.65
<0.01
1.8
Analyses performed by NASA Plunbrook Laboratory
                               109

-------
                            TABLE 55  (CONTINUED)
            ELEMENTAL ANALYSES OF COAL FOR CAT-OX BASELINE PROGRAM*
                            (Concentrations in ppra)
MITRE Test
Element
and Isotope
42
K
140
La
Lu
27

56

« 99
Mo
101
Mo
24
Na
Nd14
65
Ni
Ft197
Rb86
Rb88
186
Re
104
Rh
s 37
Sc46
sb124
Se75
153
Sm
Sr87
117
Sn
Sn123
Sn125
Ta182
Tb16°
Th232
Tl51
LT23q
v52
187
W
Yb175
Zn65
Zr95
No. 3


2464

5.7
.36

<850

53
<700

<10

832
<2

<50
<170
12.3
<550

<0.2

<0.09
<90,000
2.67
0.84
3.12

.82
^30

<40
<50
<200
.12
.018
2.16
912
0.96
23

<0.3
1.88
<3000
<50
5


3932

7.2
.42

<1200

62
<260

<100

1070
<2

<400
<160
20.7
<200

<0.2

<0.04
<53,000
3.84
1.12
2.99

1.2
36

74.2
<40
<40
.27
.027
3.23
608
0.82
26

<0.4
4.06
220
<50
14


3429

7.3
.35

586

38
<300

<70

757
<7

<600
<200
16.8
<120

<.4

<.06
<9060
3.17
.62
2.86

1.1
<40

50
<15
<10
.18
.022
2.84
903
0.82
23

<2
.46
118
<50
18


3748

26
.32

<4000

49
<350

<40

833
<5

<300
<230
21.4
<300

<. 3

<. 2
<7000
3.42
.93
3.19

1.2
<20

66
<20
<70
.25
.025
2. 84
930
1.14
27

<2
1.83
148
<40
20


7130

17.2
.58

<450

95
<600

<50

1250
<7

<1000
<300
25.6
<300

<. 3

<0.03
**
4.56
1.39
4.15

2.23
56

76.5
<50
<500
.35
.036
4.19
1680
1.5
34

<4
3.63
264
<50
22


1690

5.4
.22

<600

25
<200

<10

487
<3

<200
<100
7.98
<400

<.3

<.06
<30,000
3.02
.86
1.77

0.81
<20

34
<2
<150
.17
.015
1.73
529
0.65
15

<2
.91
<400
<30
 *Analyses performed by NASA Plumbrook Laboratory
**Data nissir.g
                                   110

-------
Results of Analysis of Bound SO ,  SO , and Polynuclear Aromatic Compounds
Bound constituents were determined by chemical analysis by the Midwest
Research Institute for fly ash samples collected at location 2 and
location 3.  The results of these  analyses are provided in Tables 56
and 57.
As noted in Table 56, the bound SO,, concentration (measured as sulfates)
ranges from .15 microgram to .88 microgram per milligram of particulate.
For the two tests representing these extremes (test 22 and test 8), the
measured particulate emission rates at location 3 were respectively 1200
Ibs/hour and 2166 Ibs/hour.  The measured gaseous SO,, mass flow rates at
location 3 for these tests were 1452 Ibs/hour and 3810 Ibs/hour, respec-
tively.  Multiplying the bound S0? concentration ranges by the particu-
late emission rates provides a mass emission rate of bound SO  in terms
of Ibs/hour.  Comparison" of the mass rate against the gaseous mass flow
rates shows that the amount of bound S09 released to the atmosphere is on
               -10
the order of 10    of the mass released in gaseous form.
Measurement of gaseous SO  mass flow rates was not successfully accom-
plished in the baseline test due to problems with sample handling.  For
this reason, no comparison can be  made between the adsorbed S0_ (measured
as sulfites) and the gaseous S0_.
Table 57 is self-explanatory and provides the polynuclear aromatic hydro-
carbons bound to the surface of the particulates.  Highest confidence
should be placed on those tests with the highest % of recovery (i.e., the
percentage of the original mass which can be accounted for as extracted
organic material and particulate fly ash).  As noted in Table 57, the
organic materials found were Benzo (cc)Pyrene, and possibly Anthanthrene,
Chrysene, and 1,2-Benzanthrecene.
The chemical state of the sulfur adsorbed on the surface of fly ash samples
was also determined by the Oak Ridge National Laboratory.  The results
of these analyses are provided in the Laboratory's final report which
appears as Appendix D.  Three techniques were used by the Oak Ridge
National Laboratory to examine each of ten fly ash samples:  photoelectron
                                 111

-------
                      TABLE  56
DETERMINATION OF BOUND S02 AND S03 BY CHEMICAL ANALYSIS


TEST
NO.
8
8
1
-L
1
c;
j
5
17
17
22
22


LOAD
FACTOR
100
100
75
75
75
/ -J
75
50
50
75
75


FUEL
TYPE
A
A
B
B
c
C
A
A
D
D


SOOT
BLOWER
NONE
NONE
NONE
NONE
NONE
NONE
MAX.
MAX.
NONE
NONE


EXCESS
AIR
MAX.
MAX.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.


BURNER
ANGLE
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
NORM.
so2
MICROGRAM/
MILLIGRAM
PARTICIPATE
.77
.88
.30
.39
.16
.16
.37
.35
.4
.15
so3
MICROGRAM/
MILLIGRAM
PARTICULATE
5.77
7.65
9.34
24.10
0.67
15.84
13.69
3.77
2.25
1.63


LOCATION
2
3
2
3
2
3
2
3
2
3

-------
DATE:
MITRE
TEST NO. :
TEST CONDITIONS
  Load Factor:
  Fuel Type:
  Soot Blower:
  Excess Air:
  Burner Angle:
TOTAL
  RECOVERY %
    Location 2
    Location 3
  BENZO(a)PYRENE
       (Ug)
    Location 2
    Location 3
  CONCENTRATION
     (yg/mg)
    Location 2
    Location 3
OTHER POSSIBLE
COMPONENTS
    Location 2
    Location 3
                                           TABLE  57
                         DETERMINATION OF POLYNUCLEAR AROMATIC  COMPOUNDS
                          BOUND TO THE SURFACE OF  FLUE GAS  PARTICULATES
11/10/71
11/15/71
11/22/71
Anthanthrene
Anthanthrene
12/2/71
                                            17*
12/9/71
                                            22
100
A
None
Maximum
Normal
100.0
100.0




75 75
B C
None None
Normal Normal
Normal Normal
No Peaks 91.7
17.7 100.0
21.80
259.89 126.00
0.17
3.00 0.87
50
A
Maximum
Normal
Normal
25.0
31.2
200.00
185.90
0.72
0.83
75
D
None
Normal

37.5
No peaks
74.67

1.16

                            Chrysene;
                            1,2-Benzanthrecene
* Two samples were collected at each location during this test.   Both samples were
  combined for the determination of surface adsorbed polynuclear aromatic compounds,
                                          113

-------
 spectroscopy (ESCA);  surface area determination by the BET method; total
 sulfur  determination  by combustion analysis.  One of the specimens was
 also  examined by  infrared spectroscopy.
 The following are firm conclusions that can be made:
      1.   The photoelectron spectroscopy results show that the oxidation
          state of sulfur on the surfaces of all ten samples is +6.
      2.   The high intensities of photoelectron peaks arising from sulfur
          indicate that in all samples most of the sulfur is segregated
          at  the surface rather than distributed homogeneously in the
          solid phase.
      3.   Surface  area measurements and total sulfur determinations show
          that the  degree of surface.coverage by sulfate salts varies 5-40
          monolayers.
     4.   The  spectrum of the sample studied by infrared spectroscopy
          shows that sulfur is present on the surface as sulfate rather
          than as adsorbed S0_.   Apparent discrepencies between this
          conclusion and the findings  of MRI can be explained by the
          greater sensitivity of the wet chemical methods used by MRI
          as compared with infrared spectroscopy.
The following observations were also  made;  however, it was felt that more
study  would be needed before they could be  stated as firm conclusions:
     1.   Binding energies of S~ p electrons, determined by photoelectron
         spectroscopy, closely  match  those  for sulfates of polyvalent
                           +2    +3        +2
         cations such as  Fe  ,  Fe  ,  and Ca  .  The sulfur may be present
         on the  fly ash  surfaces as calcium or iron sulfate.
    2.   Photoelectron peaks for silicon were broadened.   This suggests
         the presence of  more than one chemical state of silicon.  The
         +4 oxidation state,  indicating silicates of SiO_, is definitely
         present,  but lower oxidation states may be present also.  Different
         glass phases containing silicon may also have caused the peak
         broadening.   More study is necessary to be sure that the broaden-
         ing of  the silicon peaks  is  not due to interference by other elements.

                                   114

-------
                               SECTION VI

                               APPENDICES


                                                                 Page No.

A     Results of Preliminary Measurement Test                         117

B     Data Management Log                                             135

C     Data Base                                                       143

D     Studies of the Chemical State of Sulfur Adsorbed on             195
      Surfaces of Fly Ash
                                   115

-------
            APPENDIX A




RESULTS OF PRELIMINARY MEASUREMENT TEST
                117

-------
                              TABLE Al

            VELOCITY TRAVERSE AT ECONOMIZER  (LOCATION  1)
TEST:  9/28 - 9/29
       100 MW LOAD
       115% EXCESS AIR
       COAL TYPE A
       NO SOOT BLOWING

PERCENT 02 BY VOLUME (ORSAT)     3.3%
PERCENT C02 BY VOLUME (ORSAT)   15.7%
PERCENT MOISTURE                 5.6%
                                          MEASURED VELOCITY
         PORT            POINT              (FEET/MINUTE)

           1               1                    1378
                           2                     970
                           3                    1214
                           4                    1081

           2               1                    1643
                           2                    1612
                           3                    1057
                           4                    1262
                                 118

-------
                             TABLE  A2

            VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST:  9/30
       100 MW LOAD
       125% EXCESS AIR
       COAL TYPE A
       NO SOOT BLOWING

PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
         PORT
POINT
  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4
        4.3%
       14.9%
        6.1%
MEASURED VELOCITY
  (FEET/MINUTE)

      1150
      1116
      1537
      1409

      1522
       888
      1537
      1370

      1597
       851
      1052
      1323

      1465
      1098
      2052
      1720

      1185
      1051
      1154
       927

      2069
       916
      1076
       918

       689
       873
                                 119

-------
                             TABLE  A3

            VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST:  10/1
       100 MW LOAD
       125% EXCESS AIR
       COAL TYPE A
       NO SOOT BLOWING

PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
        8.0%
       12.0%
        8.7%
         PORT
POINT

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4
MEASURED VELOCITY
  (FEET/MINUTE)

      1740
      1001
      1087
      1582

      1427
      1208
      1415
      1457

      1007
      1085
      1100
      1177
                                 120

-------
                              TABLE  A4

            VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST:  10/5
       100 MW LOAD
       125% EXCESS AIR
       COAL TYPE A
       SOOT BLOWING OVER PERIOD OF TEST
PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
                         POINT
                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4

                           1
                           2
                           3
                           4
 4.2%
14.7%
 6.25%
          MEASURED VELOCITY
            (FEET/MINUTE)

                 855
                1020
                1025
                 850

                1591
                 885
                 795
                1372

                1470
                 840
                1090
                1040

                1155
                 960
                 930
                 890

                1255
                1035
                1010
                 995

                1480
                 940
                 740
                 978

                1270
                 940
                                 121

-------
                               TABLE  A5

            VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST:  10/6
       100 MW LOAD
       125% EXCESS AIR
       COAL TYPE A
       NO SOOT BLOWING

PERCENT 02 BY VOLUME (ORSAT)
PERCENT CO2 BY VOLUME (ORSAT)
PERCENT MOISTURE
         PORT
POINT
  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4
        4.2%
       14.4%
        4.8%
MEASURED VELOCITY
  (FEET/MINUTE)

       836
       902
       864
      1389

      1514
       770
       942
      1409

      1644
       857
       983
      1156

      1370
      1106
      1131
      1563

      1491
       723
       975
      1270

      1531
       695
       940
      1480

      1223
       858
                                 122

-------
                              TABLE  A6

            VELOCITY TRAVERSE AT ECONOMIZER (LOCATION 1)
TEST:  10/8
       35 MW LOAD
       145% EXCESS AIR
       COAL TYPE A
       NO SOOT BLOWING

PERCENT 02 BY VOLUME (ORSAT)
PERCENT C02 BY VOLUME (ORSAT)
PERCENT MOISTURE
         PORT
POINT
  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4

  1
  2
  3
  4
        5.6%
       13.2%
        2.3%
MEASURED VELOCITY
  (FEET/MINUTE)

       404
       397
       394
       584

       576
       362
       362
       399

       598
       363
       363
       567

       522
       491
       326
       494

       437
       399
       516
       633

       621
       399
       399
       695

       614
       323
                                 123

-------
                                                  TABLE  A7

                                    COAL ANALYSES FOR PRELIMINARY TEST RUNS
    DATE
        TEST CONDITIONS
MOISTURE
ASH
SULFUR    BTU'S AS RECEIVED    BTU DRY
BTU, MOISTURE
AND ASH FREE
to
10/28   100 MW LOAD         11.40
10/29   115% EXCESS AIR
        COAL TYPE A
        NO SOOT BLOWING

9/30    100 MW LOAD         11.95
        125% EXCESS AIR
        COAL TYPE A
        NO SOOT BLOWING

10/1    100 MW LOAD         11.75
        125% EXCESS AIR
        COAL TYPE A
        NO SOOT BLOWING

10/5    100 MW LOAD         11.15
        125% EXCESS AIR
        COAL TYPE A
        SOOT BLOWING
         OVER PERIOD
         OF TEST

10/6    100 MW LOAD         12.98
        125% EXCESS AIR
        COAL TYPE A
        NO SOOT BLOWING

10/8    35 MW LOAD          13.02
        145% EXCESS AIR
        COAL TYPE A
        NO SOOT BLOWING
                                           10.02
                                            9.48
                                           10.13
                                           10.67
                      3.01
                      2.96
                      2.87
                      2.91
                                            10.42     2.87
                                            10.72      2.95
                       11,041
                       11,032
                       11,027
                       11,072
                                     10,797
                                     10,780
                                12,462
                                12,529
                                12,495
                                12,462
                                        12,407
                                        12,394
   14,051
   14,040
   14,115
   14,163
                                             14,094
                                             14,137

-------
                TABLE   Ab
  GSAIN LOADING AT  AIR  HEATER (LOCATION 2)
 DATE
92871
AH TEMP
90.00
PU-II
1
2
3
4
5
t>
7
H
ly
10
1 1
12
13
14
J-,
1 6
17
1 ll<
1 19
1 20
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 H
2 9
2 10
2 11
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
2 20
P MOIST.
.0976

.

T!
2.
2.
S.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.



ATM.

-E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oo
00
00
00
00
00
00
00
00
00
00
00
00
00
AVf.
1298

CHESS.
29.420
METER VOL
857.0100
858.3100
"59. 3500
"50.2000
861.2600
862. 3BOO
06J.6000
B64.9700
166.1300
867.4100
8h8.6000
069.B300
871.0300
872.1400
873.3100
874.4700
1)75.7200
877.0000
8'B.2000
879.3800
d80. 3300
591.4000
882.5000
883.5800
B84.7100
HB5.8i«00
BB6.9300
887.9500
888.9300
889.8500
891.0000
892.1400
893.2500
894. 3600
U95.5500
B96.ASOO
897.9200
899.2400
900.6000
901.8000
STACK VAC
8.5000
HLLT4 H
.083
.090
.065
.033
.093
.060
.100
.100
.100
.100
.0^6
.094
.085
.073
.090
.084
.100
.100
.091
.094
.058
.083
.075
.070
.092
.076
.075
.062
.060
.052
.150
.080
.090
.080
.093
.078
.115
.115
.110
.062
VEL. FLOrfHATE
.9334 2

25633.8

. CONOfNSATt
97.10000
PAPTlCULATt STACK
7.27270 173.
TEMP. IN TfcMP. OUT
92.000
94.000
95.000
98.000
100.000
100.000
102.000
106.000
109.000
112.000
96.000
100.000
100.000
104.000
106.000
100.000
103.000
107.000
110.000
113.000
100.000
102.000
106.000
10B.OOO
112.000
1 10.000
110.000
110.000
112.000
113.000
106.000
108.000
110.000
1 12.000
116.000
120.000
122.000
126.000
130.000
132.000
92.000
92.000
9?. 000
92.000
92.000
9i.OOO
94.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
96.000
98.000
98.000
98.000
99.000
100.000
100.000
100.000
100.000
100.000
102.000
104.000
104.000
104.000
106.000
106.000
106.000
106.000
106.000
106.000
106.000
108.000
108.000
110.000
110.000
TK.' IN VA-
6.5000
7. 1000
5.0000
4.0000
6.0000
6.5000
8.0000
B.OOOO
8.0000
8.0000
7. 0000
B.OOOO
8.0000
7.0000
S.OOOO
7.0000
9.0000
9.0000
it . 0 0 0 0
8.0000
5.0000
7.0000
7.0000
7.0000
B.OOOO
b. 0000
o.OOOO
7.0000
7.0000
7.0000
9.0000
9.0000
9.0000
9.0000
111. 0000
10.0000
12.0000
13.0000
13.0000
10.0000
AREA 1NIT.
70700 855
M*. TEMP
340.000
J-1.000
.US. 000
385.000
385,000
3n5.000
385.000
3H5.000
385.000
JP4. 000
405.000
405.000
405.000
400.000
-15.000
410.000
410.000
WO. 000
410.000
410.000
410.000
410.000
415.000
410.000
420.000
4^0.000
420.000
420.000
430.000
430.000
418.000
418.000
418.000
4 1H.OOO
418,000
418.000
41B.OOO
41b.OOO
418.000
418.000
VOL. P02
.8300 .0910
PCU2

.0970
. H0« TEMP. P«ObE HI :.
-80.000
-67.000
-77.000
-75.000
-'5.000
-80.000
-70.000
-65.000
-75.000
-76. 000
-70.000
-65.000
-65.000
-64.000
-65.000
-75.000
-70.000
-70.000
-75.000
-75.000
-80.000
-75.000
-65.000
-70.000
-65.000
-80.000
-10.000
-75.000
-80.000
-80.000
-75.000
-70.000
-70.000
-70. 000
-70.000
-75.000
-75.000
-75.000
-80.000
-80.000
.375f)
.3750
. 1741)
.3750
.3750
. 175(1
. 175 I
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
.3750
. 1750
.3750
.375o
.3750
.1750
.3750
.3750
.37SO
.3750
.3750
.3750
.3750
.3750
.3750
.3750
VEL» 1TV
1241.91
1 32".Mt>
1 iff. 52
799.82
1342.70
!<><.•>. 32
13')2.31
1392.31
1392.31
1 392.31
1306.. 17
1364.78
1298.75
1200.10
1144.10
1294.81
1412.76
1420. OS
1362.41
n6-i.72
107b.92
1287.^8
1221-.9-V
1182.0(1
1362.83
12S4. Hh
1230.49
1118.78
1106.82
1030.40
1 '3*. 2fl
1269.40
1346.41
126V. 411
1 lh-,66
1253.44
1521.96
1521. '16
148B.51
1285.17
ISO. RATIO tMIS. RATE PART. LOAD STD. LOAD
1.0039

UNDER 5 MICRONS
ANISO CORRECTION FACTOR
EMISSION
RATE
1.0000
2708.6811
PART. LOAD
STD. LOAD
1.4006
2. 3818
270B.6B

11 1

5 TO 80 MICRONS
1 .
2713.
1 .
2.
0019
BB70
4032
3B64
.4006 2

38 IB TKST:

OVER 80 MICRONS
1.0039
2719.1129
1.40S9
2.3910




9/2» -
ino MU
9/29
LOAD
115% F.XCKSS AIR
COAL IT
NO SOOT


['I! A
BLOWING


                                                                                               	a n c o

-------
              I ABU   A'J
GRAIN LOADING AT All) IICAKR (LOCATION 2)


AIR TEMP
90.00
PORT
2 1
2 2
2 1
2 4
2 S
2 6
2 7
2 t)
2 9
2 10
2 11
2 12
2 13
2 1*
2 15
2 16
2 17
2 IB
2 19
2 20
1 1
1 2
1 J
1 *
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
I 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20


. ATM.
TIMt
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00




PflESS. STACK VAC.
29.420 8.1000
METEH VOL
B81.0000
881.9500
882.8700
883.7900
8B4. 7500
885.6900
8B6.6900
8B7.6600
888.6100
889.5500
b90.3'00
891.2900
892.2300
893.1300
894.1000
895.0400
895.9800
896.8800
897.7900
898.6700
899.2900
899.7300
900.2800
900.8700
901.3100
901.8300
902.4900
903.0700
903.5100
904.0500
904.6100
905.1400
905.7400
906.0800
906.5900
907.0900
90'. 5300
908.1000
908.7500
909.2200
DiLTA P
.1*5
.065
.080
.075
.087
.080
.095
.085
.085
.080
.058
.086
.086
.073
.092
.087
.080
,0'7
.077
.060
.081
.094
.085
.070
.085
.078
.095
.089
.087
.084
.080
.01*
.065
.030
.085
.069
.095
.090
.090
.0*0
P MOIST. AVE. VEL. FLOxRATE
.0991 1267. 6»08 220198.1
TEST
102
CONOENSAT
62.20000
TEMP. IN
100.000
100.000
102.000
106.000
108.000
loa.ooa
110.000
112.000
114.000
1 16.000
104.000
106.000
108.000
1 10.000
112.000
110.000
110.000
1 l-.OOJ
lit.. 000
118.000
98.000
'v n.OOO
100.000
100.000
102.000
103.000
1 0**000
1C5.000
106.000
107.000
100.000
100.000
101.000
101.000
103.000
104.000
105.000
106.000
107.000
108.000
DATE
93071






t (-ARTICULATE STACK AHEA INIT. VOL. P02
3.22910 173.70700 880.1500 .0<
TEMP. OUT
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
102.000
10-.000
104.000
106.000
106.000
106.000
106.000
106.000
106.000
10 6.0 on
107.000
108.000
99.000
100.0(10
100.100
loo.ooo
100.000
100.000
lou.ooo
101.000
102.000
102. OUO
100.000
102.000
102.000
102.000
102.000
102.000
102.000
102.000
103.000
103.000
TRAIN VAC.
6.0000
4.0000
4.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
b.OOOO
5.0000
5.0000
5.0000
5.0000
6.0000
6.0000
b.OOOO
6.0000
b.OOOO
6.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3 . 5 0 0 U
-.'1000
4.0000
4.0000
4.0000
3.0000
3.0000
3.0000
2.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
ISO. RATIO IM1S. HATL PART.
1.4563 1865.3039
UNDER 5 MICRONS 5 TO
ANISO CORRECTION FACTOH
EMISSION HATE
PART. LOAD
STO. LOAD
1.0000
1865.3039
. 9H83
1.6758
80 MICRONS
1.1658
2211. H061
1.1719

1.9871
Sin. TEMP.
200.000
JOO.OOO
J60.000
390.000
405.000
405.000
410.000
405.000
400.000
400.000
410.000
410.000
410.000
410.000
420.000
420.000
425.000
4 10.000
410.000
450.000
415.000
415.000
415.000
405.000
425.000
425.000
425.000
426.000
430.000
453.000
395.000
395.000
400.000
390.000
414.000
414.000
420.000
420.000
-20.000
42V. 000
HOX TfMP.
-70.000
-80.000
-HO. 000
-75.000
-75.000
-90.000
-bo.ouo
-75.000
-HO. 000
-80.000
-90.000
-85.000
-80.000
-BO. 000
-80.000
-85.000
-HO. 000
-80.000
-HO. 000
-HO. ooo
-90.000
-90.000
-90.000
-85.000
-05.000
-Hb.OOO
-95. 000
-90.000
-90.000
-90.000
-90.000
-85.000
-80.000
-85.0(10
-90.000
-90.000
-90.000
-90.000
-90.000
-90.000
LOAD STO. I OAD
.9883 1.6158
OVER hfl MICRONS
1 456 1
2716.4116
1.4392
2.4404




PC02
>00 .0980



PHORE DIA. VELOCITY
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
,i'500
.2500
TIST: ')/W
100 MU 1
1 2 ci % I'.X.'
COAI. TV!
NO i;iKvr

1481.13
1064.14
1226. 2K
1208.86
1313.42
1251. 4H
1376.44
1298.24
1294.48
1255. HI
1071.50
1309.62
1309.62
1206. 5M
1 362.30
1324.76
1273.95
1253.36
1253. 36
1118.75
1274.63
1373.11
1305./2
1178.13
1313.16
1257.93
13HK.26
13*4.46
1J32.27
1 12T.90
1252.17
12B3.10
1131.99
764.55
UO-. 9'
1175.75
1384.33
13-.7.41
1347.41
1354.28
.OAD
• [.- 1- 1; AIR
'!•: A
1M.OW1NC

                                                                                                 irm?

-------
               TABLE  Al°
GRAIN LOADING AT AIR IILAUR (LOCATION 2)
AID TEMP. ATM.
90.00
POST
3 1
3 f
3 3
1 4
3 S
3 b
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 1*
3 IS
3 16
3 17
3 1H
3 19
3 20
4 1
« 2
4 3
<> 4
4 S
1 6
4 7
4 8
4 9
4 10
4 11
4 12
4 13
4 14
4 16
4 16
<• 17
4 IB
4 19
4 20
P HOIST.
.0927

T1HE
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
AVE.
1262

TEST DATE
103 100171
- CHESS. STACK VAC. CONDENSATE PAHTICULATE
29.420 7.4000 *?. 10000 3.256*0
METE" VOL
923.9500
924.5300
92S.IBOO
925.6800
926.1200
926.6100
927.2600
427.8400
923.3900
928.3600
929.4900
910.0200
930.5600
931.0500
931.6500
932.0800
932.5700
933.0000
933.6000
934.1500
934.6700
935.1900
935.6100
936.1700
936.6700
937.1800
937.6000
933.1900
938.6900
939.1000
939.6600
940.1700
940.6300
941.1400
941.7800
942.2400
942.8100
943.3500
943. 1)200
944.3500
STACK AREA INIT.
173.70700 923
OLLU P TEMP. IN TEMP. OUT TRJ1N VAC
.066
.095
.0>9
.072
.090
.074
.094
.096
.095
.090
.ofls
.065
.085
.065
.085
.075
.034
.084
.OBI
.089
.084
.084
.079
.060
.079
.078
.081
.075
.075
.079
.066
.090
.094
.074
.087
.089
.099
.084
.057
.090
VEL. fLOHRATE
.2019 219253.3


96.000
9H.OOO
98.000
99.000
100.000
102.000
103.000
104.000
106.000
107.000
99.000
100.000
101.000
103.000
104.000
105.000
106.000
108.000
110.000
112.000
96.000
96.000
97.000
93.000
100.000
100.000
102.000
103.000
104.000
105.000
96.000
96.000
97.000
98.000
100.000
101.000
102.000
103.000
103.000
104.000
ISO. RATIO
1.0537

UNDER S MICRONS
ANISO CO
EMISSION
RRECTIO
RATE
N TACTOR

1.0000
2599. 8540
PART. LOU)
STtt. LOAD
1.3834
2.3353
96.000
96.000
96.000
97.000
97.000
98.000
91.000
98.000
98.000
100.000
99.000
101.000
101.000
102.000
101.000
102.000
102.000
102.000
103.000
104.000
96.000
96.000
96.000
97.000
97.000
97.000
97.000
98.000
9B.OOO
98.000
96.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
97.000
EM1S. HATE
2599.8540

2.2000
2.2000
2.5000
2.5000
2.5000
2.0000
3.0000
3.0000
3.0000
3.0000
2.5000
3.0000
3.0000
2.3000
3.0000
3.0000
2.0000
2.0000
2.0000
3.0000
2.5000
3.0000
2.5000
2.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
2.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
2.0000
3.0000
. STK. TEMP
224.000
360.000
376.000
390.000
395.000
400.000
410.000
40S.OOO
415.000
415.000
Mb. 000
403.000
410.100
410.000
413.000
421.000
421.000
425.000
430.000
445.000
404.000
394.000
400.000
400.000
415.000
415.000
420.000
420.000
425.000
435.000
363.000
378.000
385.000
385.000
410.000
400.000
410.000
400.000
404.000
415.000
VOL. P02
.3700 .0800
PC02
.1200
. |0i TCMP. PROIE Din.
-80.000
-85.000
-80.000
-80.000
-85.000
-85.000
-85.000
-85.000
-as. ooo
-85.000
-85.000
-80.000
-80.000
-80.000
-30.000
-80.000
-80.000
-80.000
-80.000
-80.000
-100.000
-90.000
-90.000
-85.000
-85.000
-85.000
-85.000
-85.000
-85.000
-as. ooo
-90.000
-90.000
-85.000
-85.000
-30.000
-80.000
-80.000
-80.000
-85.000
-B5.000
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2600
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2600
.2500
.2500
.2500
.2500
• 2500
.2500
.2500
.2500
.2500
.2500
VELOCITY
1010.72
1319. b>7
1297.56
1176.80
1319.57
1200.0]
1360. J6
1370.79
1371.50
1334.92
129?. 31
1288.38
1293.59
1131.21
129S.H2
1222.78
1294.07
1297.0(1
1277.22
1350.04
1281.52
1274. OH
1234. VI
1080.57
1250.68
1242.74
1270.03
1222. Ott
1225.55
1264.89
1100.23
1306.39
1340.67
1189.52
130H.72
1316.05
1396.07
1278.55
1055.66
1334.92
PART. LOAD STD. LOAD
1.

5 TO 80 MICRONS
1.0261
2667.7926
1.4196
2.3968




3834 2.

3358 TEST:

OVER BO MICRONS
1.0537
2739.3771
1.4576
2.4611




10/1
100 MW L

.OAD
125% FXCFSS AIR
COAL TYI'
NO SOOT


'K A
BLOWING



-------
TABU Ail
GRAIN LOADING AT AIR MUTER (LOCATION
TEST DATE
2)



104 100571
AIR TEMP. MM.
90.
POST
* 1
4 I
4 J
4 4
4 5
1. 6
4 7
4 a
l> 9
4 10
1. 11
4 u
4 U
4 11.
4 IS
<> 16
4 17
4 U
4 14
4 20
3 1
3 2
3 J
3 »
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 U
3 15
3 16
I 17
3 la
3 19
3 20
.00
TIME
2.00
2.00
2.00
2.00
2.00
a. oo
2. 00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.10
2.00
2.00
2.00
2.00
p HOIST, m.
.0

742 120i

PRESS.
24.420
METEH VOL
962.7100
963.2200
963.7200
96*. 1*00
464.6200
965.1250
965.6250
966.1100
966.6100
967.0600
967.61100
961.3500
9t>8.Taoo
969.2500
969.7450
970.2400
970.T450
971.2550
971.7650
972.2520
972.7950
973.3400
973.8500
974.3200
974.8250
975.3240
975.8400
976.3820
976.9400
977.4700
973.0100
97S.4650
971.8500
979.S700
980.0000
9M.S300
9>1.1320
981.7400
982.3080
912.9920
STACK VAC
7.BOOO
DELTA P
.050
.070
.075
.050
.074
.075
.075
.069
.070
.067
.110
.098
.090
.060
.075
.068
.075
.075
.072
.067
.073
.085
.079
.057
.07*
.068
.083
.116
.095
.075
.080
.050
.t77
.090
.087
.07S
.lie
.097
.090
.100
VEL. FLOURATE
i.5424 i

!OB890.0

. CONOENSATE
33.20000
PARTICIPATE STACK
AREA INIT.
4.08360 173.70700 962
1EMP. IN TEMP. OUT
82.000
82.000
84.000
85.000
87.000
8H.OOO
89.000
90.000
91.000
92.000
87.000
88.000
89.000
90.000
91.000
92.000
93.000
94.000
95.000
96.000
86.000
87.000
88.000
89.000
90.000
91.000
92.000
93.000
94.000
95.000
88.000
89.000
90.000
92.000
93.000
94.000
95.000
96.000
96.000
98.009
ISO. RATIO
1.0557

UNDER 5 MICRONS
ANISO
CORRECTION r»CTOH
EMISSION rt»TE
PART.
STO.
1010
LOAD


1.0000
3254.1344


1.8175
?.9755
82.000
82.000
82.000
13.000
83.000
84.000
84.000
85.000
85.000
86.000
87.000
S7.000
88.000
aa.ooo
aa.ooo
aa.ooo
89.000
89.000
90.000
90.000
87.000
87.000
67.000
87.000
88.000
88.000
B8.000
89.000
89.000
90.000
89.000
89.000
90.000
90.000
90.000
90.000
91.000
91.000
92.000
92.000
TRAIN VAC
3.0000
3.0000
3.0000
2.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
J.OOOO
4.0000
4.0000
4.0000
J.OOOO
4.0000
4.0000
4.0000
4.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3.0000
3.0000
3.0000
3.0000
3.0000
J.OOOO
3.0000
3.0000
3.0000
3.0000
J.OOOO
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
(MIS. RATE PART.
3254.13

5 TO 8
1.
3342.
1.
3.
44 1

0 MICRONS
0271
2363
8667
0561
. STU. TEMP
385.000
370.000
3BO.OOO
3B2.000
395.000
405.000
395.000
381.000
398.000
410.000
277.000
337.000
355.000
355.000
J71.000
373.000
391.000
jre.ooo
J42.000
396.000
221.000
Jb9.QOO
3S3.000
362.000
375.000
371.000
376.000
370.000
387.000
390.000
380.000
373.000
377.000
3U2.000
JBb.ODO
392.000
385.000
397.000
400.000
425.000
LOAD STD.
.am 2

VOL.
.2200
P02
.0740
PC02
.1140
. KOX TEMP. PROBE DIA.
-78.
-72.
-72.
-75.
-75.
-75.
-75.
-75.
-80.
-DO.
-»5.
-B5.
-as.
-as.
-B5.
-85.
-85.
-85.
-»5.
-90.
-B5.
-SO.
-80.
-BO.
-80.
-80.
-80.
-80.
-80.
-B5.
-BO.
-77.
-77.
-BO.
-B3.
-83.
-85.
-85.
-83.
-83.
LOAD
.9755

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

Tl-:sT:

OVER BO MICRONS
1.0557
3435.2415
1.9186
3.1411


.2500
.2500
.2500
.2500
.2500
.2500
.2500
.250(1
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2SOO
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500

10/5
100 HW u:


VELOCITY
1234.22
1144.22
1191.49
974.01
1194.04
1209.09
1202.0"
1143.52
1163.36
1146.09
1351.61
1257.16
1212.12
1049.72
1145.09
1129.79
1199.27
1190.07
11 hi. HI
1130.83
105H.41
1275. 22
1<*0 t.04
1027.53
1211.47
112'i.i.J
125(1.44
1261.26
1273.71
119H.56
1230.57
968.79
. 1205.12
1232.03
1287.09
1199.97
149B.96
1 36H.66
132u.b6
1412.19


IAD
}2'it. KXCRSS AIR
COAL TYIM
: A
SCXJT IlLOWING OVKR




PERIOD

OF TF.ST


-------
All TEMP.  ATM. PRESS.   STACK  VAC.
   90.00       29.420       '.2000
                  TABLt  *i;
     GRAIN LOADING AT AIR HtATER (LOCATION 2)
TEST       DATE
105       100671

 CONDENSATE PARTICIPATE   STACK  AREA  INIT. VOL.
  24.00000       3.54770     43.42700     15.7500
                                                                                          .0700
        TIME   MITER  VOL.   DELTA P  TEMP. IN  TEMP. OUT   TRAIN VAC.   STK. TEMP.  iOX TEMP.
1 5.00 17.1000 .076 88.000
2 5.00 ltf.4440 .096 91.000
3 5.00 19.8550 .088 95.000
4 5.00 21.16(0 .072 9(1.000
5 5.00 22.5260 .084 100.000
6 5.00 23.K600 .070 102.000
7 5.00 25.2660 .090 104.000
« 5.00 26.6750 .085 106.000
9 5.00 27.8720 .057 107.000
10 5.00 29.2450 .087 108.000
P MOIST. »VE. VEL. FLOKRATE ISO. RATIO
.0823 1225.2793 53210.2 1.0736
UNDER 5 MICRONS
ANISO CORRECTION FACTOR 1.0000
EMISSION RATE 1111.9656
PART. LOAD 2.4381
STD. LOAD 1.9653
84.000 2.5000
85.000 2.5000
87.000 2.5000
89.000 2.5000
90.000 2.5000
93.000 2.5000
94.000 2.5000
96.000 2.5000
98.000 2.5000
100.000 3.0000
360.000 -7S.OOO
359.000 -75.000
358.000 -75.000
360.000 -75.000
375.000 -75.000
371.000 -75.000
382.000 -75.000
379.000 -75.000
380.000 -75.000
392.000 -75.000
.2500 11H5.2I
.2500 1331.27
.2500 1271.82
.2500 1153.62
.2500 1257.40
.2500 114S.OV
.2500 1306.97
.2500 1267. 89
.2500 1038.86
.2500 1292.62
EMIS. RATE PART. LOAD STD. LOAD
1111.9656 2.
5 TO 80 MICRONS
1.0355
1151.4202
2.5246
4.1060
4381 3.9653
OVEH 80 MICRONS TEST:
1.0736
1193.7777
2.6174
4.2570

10/h
100 HW LOAD
125Z EXCESS AIR
COAL TYPE A
NO SOOT BLOWING

-------
TABLE All
GRAIN LOADING AT AIR HEATER (LOCATION
TEST DATE
106 100671
AIR TEMP. ATM,
90
PORT
4 7
4 7
4 7
4 7
* 7
k 7
4 7
4 7
* 7
4 7
4 I
4 7
.00
TIME
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
S.OO
5.00
5.00
5.00
P 40IST. AVE.
, PRESS. STACK VAC
29.420
METER VOL
30.6900
32.1670
33.6450
35.1100
36.5850
3D. 0620
39.5400
41.0200
42.50SO
43.9920
45.4750
46.9610
7.2000
DELTA P
.086
.089
.087
.087
.087
.088
.087
.088
.086
.088
.086
.087
VEL. FLOkRATE
.0921 1293.7468



5618.4

. CDNOENSATE PARTICULATE STACK
35.25000
TEMP. IN
90.000
93.000
99.000
101.000
105.000
107.000
109.000
110.000
111.000
113.000
114.000
115,000
ISO. RATIO
1.1351

*. 3B390 *.
TEMP. OUT TRAIN VAC
92.000 2.5000
93.000 2.5000
93.000 2.5000
94.000 2.5000
95.000 3.0000
96.000 3.0000
98.000 3.0000
100.000 3.0000
101.000 3.0000
102.000 3.5000
103.000 3.5000
104.000 3.5000
EHIS. RATE PART.
AREA INIT.
3*270 29.
. 5TK. TEMP.
390.000
390.000
390.000
387.000
386.000
3H8.000
388.QOO
388.000
387.000
390.000
390.000
387.000
2)
VOL.
2*50




P02 PC02
•
BOH TEMP.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
000
000
000
000
000
000
000
000
000
000
000
000
0700 .1180
PROBE DIA.
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
• i?500
.2500
.2500


VELOCITY
1286.
130H.
1293.
1291.
1290.
1299.
1292.
1299.
1284.
Mul.
128(i.
1291.
27
52
73
45
6U
61
21
61
00
15
27
45
LOAD STD. LOAD
108.2997 2.2*89 3.

UNDER 5 MICRONS 5 TO BO MICRONS
ANISO
CORRECTION FACTOR
EMISSION HATE
PART.
STD.
LOAD
LOAD




1.0000
108.2997
2.2*89
1.731*
1.0633
115.1516
2.3912
3.9675

731*



OVER 80 MICRONS
1.1351
122.9295
2.5S27
4.235*








TKST: 10/6
100 MW 1.
125* KXC
COAL TYI
NO SIH1T



.OAI)
Kf>:; AIR
•i: A
IU.OWINI;










-------
                                                             TABLE  A14
                                                 GRAIN LOADING AT  AIR MEATErt (LOCATION 2)
                                    TEST
                                    107
                                    LJ«TE
                                  100671
AIR TEMP.
   dO.00
ATM. PRESS.
    11.420
STICK y*C.
   7.2000
CONOENSATE PARTICIPATE
 31.50000      4.06110
STACK AREA
   4.34270
INIT. VOL.
   46.9610
P02
 .0700
PC02
.nuo
        TIME   METER  VOL  DELTA P  TEMP.  IN   TEMP.  OUT   TRAIN VAC.  STK. TEMP.   »OX  TEMP.   PROBE D1A.   VELOCITY

                                                                                                  .2500    1*06.44
                                                                                                  .2500    139?.72
                                                                                                  .2500    1385.Bl
                                                                                                  .2500    1383.37
                                                                                                  .2500    1*06.44
                                                                                                  .2500    1400.42
                                                                                                  .2500    141S.7J
                                                                                                  .2500    1402.06
                                                                                                  .2500    1014.91
                                                                                                  .2500    1413.2b
                                                                                                  .2500    1407.20
                                                                                                  .2500    1400.42


                                                                                                  10/6
                                                                                                  100 MW LOAD
                                                                                                  125%  EXCFSS AIR
                                                                                                  COAL  TYPE A
                                                                                                  NO SOOT BLOWING
47 5
7 5
7 5
7 5
7 5
7 5
7 5
7 5
7 5
7 b
7 5
7 5
P MOIST.
.0794
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
Hi.
1402
48.4770
50.0250
51.5620
53.0950
54.6200
56.1660
57.7390
S9.3200
60.8850
62.4480
64.0050
65.5630
.103
.101
.100
.100
.103
.102
.104
.102
.104
.104
.103
.102
VEL. FLOKRATE
.4014
6090.2
90.000
94.000
97.000
102.000
105.000
107.000
109.000
112.000
112.000
113.000
114.000
114.000
ISO. RATIO
1.0914
UNDER 5 MICRONS
AN1SO CORRECTION FACTOR
EMISSION
HATE


PART. LOAD
STD. LOAD



1.0000
104.3398
1.9988
3.3369
92.
92.
93.
94.
95.
9f>.
97.
99.
100.
101.
102.
104.
EMIS
000
000
000
000
000
ooo
000
000
000
000
000
000












. RATE
104.3398
5




TO
1
loa
2
3
2.5000
2.5000
2.5000
2.5000
3.0000
.0000
.0000
.5000
.5000
.5000
.5000
3.5000
393.010
393.000
393.000
390.000
393.000
394.000
396.000
396.000
395.000
393.000
394.000
394.000
-75
-75
-75
-75
-75
-75
-72
-72
-72
-72
-72
-72
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PART. LOAD STB. LOAD
1.
80 MICRONS
.0437
.9004
.0861
.4828




9988 3.
3369

OVER 80 MICRONS
1.0914
113.8778
2.1815
3.6420








                                                                                                                                  	T/J.K.C-

-------
TABU MS
GRAIN LOADING AT AIR HL'ATEK (LOCATION
TEST U»TE
2)




108 100671
AIR TCHP. »IH.
90.00
POST Tint
4 1 5.00
4 «.' S.OO
* J 5.00
4 4 S.OO
4 5 5.00
4 b 5.00
4 7 5.00
4 » 5.00
4 V 5.00
4 10 S.OO
f MOIST. »Vf.
.0'B2 1261
PRESS.
29.420
METEH VOL
66.8580
6B.4100
64.7680
71.0BSO
72.4660
73.8960
75.2580
76.7170
77.9520
79. J290
STACK VAC
7.2000
ULLTA P
.076
.102
. 09B
.075
.041
.075
.105
.106
.061
.095
VEL. FLUURATC
.1*88
55636.1,
. CONOENSATE
23.25000
PARTICIPATE STACK
AREA INIT.
3.1H820 43.42700
TEMP. IN TEMP. OUT TUA1M VAC
Bk.OOO
87.000
92.000
95.000
97.000
99.000
101.000
103.000
104.000
10».000
ISO. RATIO
1.0465
UNDER 'J MICRONS
• NISO CORRECTION FACTOR
EMISSION RATE
PA&T. LOAD
SID. LOAD
1.0000
1025.1626




?.1*97
1.4949
86.000 2.5000
B6.000 2.5000
87.000 3.0000
SB. 000 J.OOOO
H9.000 3.0000
91.000 1.0000
92.000 1.5000
93.000 3.5000
94.000 3.0000
95.000 3.5000
EMIS. RATE PART.
1025.1626 2
5 TO DO MICHONS
1.0227
1048.4445
2.19B5
3.5743
. STK,
327
JS7
36^
365
381
375
JH5
377
382
399
65.
TEMP.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
VOL.
5630
BOX
-75
-75
-6H
-70
-70
-75
-70
-70
-73
-70
P02
.0700
PCO?
.1180
TIMP. PKOBt OIA.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.2500
.2500
.2500
.2500
.2500
.<"500
.2500
.2500
.2500
.2500




VELOCITY
1160.
136',.
134h.
117-J.
1312.
ll«7.
1-13.
1412.
1075.
1155.
14
40
3H
9B
31
11
00
97
08
\e
LOAD STD. LOAD
.1497
3.
4949
OVEH 80 MICRONS
1 .
1072.
2.
3.
0465
uotn
?49t>
6573

TI:ST:

10/6




100 MU LOAD




125X KXCK:
COAL TYI'i:
;s AIK
A


NO -SUIT BLOWING

-------



T
' ST
DATE






109 100871
AI3 TEMP
90.00
PO-fT
4 1
2
3
4
5
6
/
cj
9
10
11
12
13
14
15
16
1 J
11
I'*
20
I
2
l
4
'j
f,
3 /
3 8
3 9
3 10
3 II
3 12
J 13
) 14
i 15
3 16
3 17
3 In
3 19
3 20
P MOIST.
.0675


. ATM.

TIME
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
f .00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
AVE.
57B


PHESS.
29.420
STACK VAC.
2.1500
CUNDENSATE
59.9SOOO
PANICULATE

METER VOL DELTA P TEMP. IN TEMP.
106.9040
107.98QO
109.1770
110.1650
111.1800
112.1250
113.0700
114.0300
114.9000
115.7960
116.7350
117.7500
118.5820
119.5400
120.5650
121.4100
122.3270
123.2010
124.2250
125.1640
125.B900
126.7920
127.6.J80
128.5530
129.3940
130.2270
131.1620
133.1100
134.0600
134.9610
135.0250
136.7930
137.5970
138.5280
139.434U
140.3700
141.4360
142.9150
144.6810
146.4930
.020
.022
.023
.022
.01 r
.015
.017
.017
.012
.016
.0)6
.015
.017
.017
.015
.017
.015
.017
.016
.016
.008
.010
.017
.012
.010
.010
.015
.017
.016
.015
.01-
.015
.017
.016
.015
.017
.035
.055
.060
.090
VEL. FLOKWATE ISl
.1004


ANIbO CORRECTION FACTOR
EMISSION
RATE

PAHT. LOAD
100420. 1

UNDER
1
1041
1
STD. LOAD 1
77.000
H 1 .000
H4.000
BB.OOO
92.000
94. 000
95.000
97.000
97.000
97.000
79.000
81.000
82.000
H5.000
dH.OOO
90.000
92.000
93.000
94.000
95.000
69.000
70.000
72.000
75.000
77.000
79.000
H2.000
69.000
70.000
73.000
6rt . 000
70.000
73. 000
75, 000
79.000
80.000
66.000
69.000
93.000
99.000
. HATIO
1.0308

5 MICRON5
.0000
.3370
.2121
.8758
Bo.
82.
82.
82.
82.
H2.
B3.
83.
83.
64 .
BO.
80.
BO.
61.
1)1.
B2.
B2.
83.
83.
S3.
70.
70.
70.
70.
71.
71.
72.
70.
71.
71.
70.
70.
70.
71.
71.
72.
82.
83.
84.
75.
EMIS
10

5




5.11370
ST»Cn
173.
OUT TWAIN VAL
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001)
000
000
000
000
000
000
000
000
000
000
000
000
3.5000
3.5000
3.5000
3.5000
3.0000
J.OOOu
J.OOOO
3.0000
2.5000
3.0000
3.5000
3.0000
J.5000
3.5000
3.0000
3.5000
3.5000
3.5000
3.5000
3.5000
2.5000
2.5000
3.5000
3.5000
3.0000
i.OOOO
4.0000
4.0000
3.5000
3.5000
3.5000
3.5000
.0000
.0000
.0000
.0000
.5000
.0000
B.OOOO
000 12.0000
AKEA IN1T.
70700 105
* SlK. TEMP
320.000
323.000
326.000
326.000
330.000
332.000
332.000
332.000
333.000
339.000
340.000
338.000
341.000
341.000
347.000
348.000
348.000
346.000
355.000
364.000
310.000
332.000
334.000
333.000
335.000
335.000
344. 000
340.000
346.000
347.000
340.000
332.000
336.000
3JH.OOO
34J.OOO
354.000
354.000
356.000
355.000
375.000
VOL. P02
•b460 . 1080
. BOX TEMP. PR
-65.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-65.000
-65.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60.000
-60. 000
-60.000
-60.000
-60.000
-55.000
-55. 000
-53.000
-53.000
-53,000
-55.000
-65.000
-60.000
-60.000
-60.000
-55.000
-53.000
-53.000
-53.000
-53.000
-53.000
-55.000
-55.000
-55.000
PC02
. 0840
«t 01 .. .
.5000
.5000
.5000
.5000
.5000
.5000
.500(1
.5000
.5000
.500.)
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.500:)
.5000
.5000
. '. 0 0 i)
.5001
.5000
,5oon
.5001
.500J
.5000
.5000
,5oon
.5000
.5000
.5000
.5000
.5000
.5000


•Jt L"<. I 1
5vl. 1C
621.1'.
1.3". V
622.33
548.45
5 ] *> . n 3
.>•» ..14
549.14
401.66
515.10
535.4)
517.7(1
552.25
552.25
52" .69
554.66
521.01
554 .6(1
54,1 ,4 J
543,40
J 7 1.44
4<<1 . 17
54'y ..T4
461 .66
421.97
421.97
5)9.7,.'
551. -.1
53'. 44
-12.1.6s
5 0 0 • * 5
515. HJ
550.53
534, n,
51 J.4,
556,72
79H.81
1002. bs
1041,. 5 )
1297.37
. (VATE PART. LOAD STU. LOAD
43.3370

1

TO 80 M1CHONS
1.0152
1059.1491
1.2305
1.9042




2121 1

B75B Ti:ST.

OVEH BO MICRONS
1.0308
1075.4478
1.2494
1.9335




JO/8
35 HW 1,0

\B
l'.5Z EXCESS AIR
COAI. TVI1
NO SOOT


', A
H.OWINC



-------
    APPENDIX B




DATA MANAGEMENT LOG
         135

-------
 TEST NO.
                        DATA MANAGEMENT LOG
                 DATE
 TEST  START TIME

 TEST  END TIME
EXPECTED VARIABLES

LOAD FACTOR

FUEL TYPE

SOOT BLOWER

EXCESS AIR
35   50   75   100

ABC

NONE   MAX   MIN

NORMAL   MAX   MIN
BURNER ANGLE    -   NORMAL   MAX   MIN
COAL AND REFUSE SAMPLING
               NO. OF  AGG      LABEL  SENT TO  SENTO  ANALYSIS RCVD
               SAMPLES LABELED  ID     ISGS     MRI    MITRE
COAL
MECH SEP. ASH
PIT ASH


















COMMENTS ON COAL AND REFUSE SUBSYSTEM:
                                 136

-------
                        DATA MANAGEMENT LOG

                      TEST NO.  	 (CONT)  P.  2
TEMP. MONITORING
                                       HOURS
                          TIME   TIME  OF     LABEL  SENT TO  RCVD
                          START  END   DATA   ID     MITRE   MITRE
AIR TEMP. ENT AH
AIR TEMP. LV AH
GAS TEMP. LV ECON
GAS TEMP. LV AH
AIR TEMP. ENT FD FAN
HUMIDITY ENT FD FAN
TEMP. REF. JUNCTION










































COMMENTS ON TEMPERATURE SUBSYSTEM:
CONTINUOUS FLUE GAS MONITORING
                                       HOURS
                          TIME   TIME  OF     LABEL  SENT TO  RCVD
                          START  END   DATA   ID     MITRE   MITRE
LOG 1 TEMP
LOG 1 PRESSURE












                                 137

-------
                         DATA MANAGEMENT LOG

                       TEST NO. 	 (CONT)  P.  3
                                        HOURS
                           TIME    TIME   OF      LABEL   SENT TO   RCVD
                           START   END    DATA    ID      MITRE   MITRE
LOG 1 FLOW
LOG 1 SO,,
z
LOG 1 Qn
L.
LOG 2 TEMP.
LOG 2 PRESSURE
LOG 2 FLOW
LOG 2 PARTICULATES
LOG 3 TEMP.
LOG 3 PRESSURE
LOG 3 FLOW
LOG 3 PARTICULATES
LOG 3 SO,,
{.
LOG 3 NO
X
LOG 3 CO & CO,,
i.
LOG 3 HC
LOG 3 CL
i.
LOG 3 H^OVAPOR






































































































COMMENTS ON CONTINUOUS FLUE GAS MONITORING:
                                138

-------
                        DATA MANAGEMENT LOG

                      TEST NO.  	 (CONT)  P.  4
MANUAL FLUE GAS SAMPLING
                        NO.  OF    SAMPLE   LABEL   SENT  TO   RCVD
                        SAMPLES   TIME     ID      MRI       MITRE
LOG 1 SO,,
LOG 1 NO
LOG 1 CO & CO,,
LOG 2 MASS LOADING
LOG 3 MASS LOADING
LOG 3 H.,50 MIST
2. 4
LOG 3 SO,,
*.
LOG 3 NO
X
LOG 3 CO & C00













































COMMENTS ON MANUAL FLUE GAS SAMPLING:
OPERATING CONDITIONS LOG
SAMPLE HOURS
OCLOCK

OCLOCK
OCLOCK

OCLOCK
                                 139

-------
                        DATA MANAGEMENT LOG




                      TEST NO. 	  (CONT) P. 5
PRINT OUTS
OCLOCK




OCLOCK




OCLOCK




OCLOCK




OCLOCK




OCLOCK




OCLOCK




OCLOCK
          OCLOCK




          OCLOCK




          OCLOCK




          OCLOCK




          OCLOCK




          OCLOCK




          OCLOCK




          OCLOCK
                   LABEL ID
SENT TO MITRE
COMMENTS ON OPERATING CONDITIONS:
RCVD MITRE
OP. COND. LOG
PRINT OUTS






QUICK LOOK LOG AND COMPUTATIONS




NET EFF COMPUTATION   	  OCLOCK




GROSS EFF COMPUTATION 	  OCLOCK




FLOW COMPUTATION                 OCLOCK
                 OCLOCK




                 OCLOCK




                 OCLOCK
              OCLOCK




              OCLOCK




              OCLOCK
                                 140

-------
                       DATA MANAGEMENT LOG




                     TEST NO.  	 (CONT)  P.  6
MASS FLOW COMPUTATION




OTHER COMPUTATION





NUMBER OF DATA SHEETS
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK
OCLOCK

                   LABEL ID     SENT TO MITRE     RCVD MITRE
QUICK LOOK LOG
QUICK LOOK COMPU-
TATIONS
DATA SHEETS









COMMENTS ON QUICK LOOK:
PERSONNEL





MITRE




TEST DIRECTOR




DATA HANDLER




OTHERS
MRI




PARTY CHIEF




OTHERS
WOODRIVER
SUPERVISOR
                                 141

-------
                       DATA MANAGEMENT LOG




                     TEST NO.  	 (CONT)  P,  7
COMMENTS OF TEST DIRECTOR
                                 TEST  DIRECTOR SIGNATURE
                                 DATA HANDLER SIGNATURE
                                 142

-------
APPENDIX C




DATA BASE
  143

-------
SELECTION CARDS
ill
02
03
0
-------
KFC'J"D TYPt   TEST
                             TIME   LtC  KETH
OuNS I AN T S
FL(,H
F LCW
1 [ Cu
E L ( *
F Lilt,
FLLW
f LC»
ILLW
( 1 C w
r L(,«
FLU*
FLEW
F LOW
E L L w
1 L L w
F L LW
ELlihl
FL(*
t Lfu
F L LW
FLOW
r L cw
F LOW
r LOU
FLOW

11
'.)')
0,1
12
07
01
Ob
Hi
^ ^
04
O'.i
10
,:Q
:))
H
19
14
1'j
d2
11
CM
uu
12
07
LEAKAGE
1 1 UMPEKATUFU -
1 1 TF*PrRATU«t =
1 1 TEMFERATIJRF >=
1 1 TEMPERATURE '
1 1 TFMPF RATURL =
1 1 TEMfTHATURE =
1 1 TEfPESATURE =
1 1 TEMFERATURE =
1 1 IF.TtRATURf -
1 1 Tf'PERATUKf =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 1 TEMFERATURE =
1 1 TFKPFRATUR1 =
1 1 TQMPEBATIIHE =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 1 TEMPERATURE =
1 0 TEMPERATURE =
1 0 TEMPERATURE =
1 0 Tt MPt: R ATURE =
1 0 TEMPERATURE =
1 0 TEMPERATURE -
.1
700
700
700
700
700
700
782
712
712
712
732
1,12
712
(.32
(>'i2
692
6'i2
742






STAT 1C
STATIC
STAT 1C
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STAT 1C
STAT 1C
STATIC
STAT 1C
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STATIC
STATIC
STAT 1C
STATIC
STAT If.
STAT 1C

PRES =
I'RES »
PRES -
PRES «
PHFS -
F'FU S • -
PRES =
P RES =
PRES =
PRES =
PRFS =
PPfS =
PRES =
PRI S «
Ptvf S -
PRES "
PRCS -
PRES »
PRES =
PRES *
PRFS =
PRES =
PhES -

2 VLLCCITr
2 VELCCITY
2 VELOCITY
2 VELCCITY
2 VELlfCITY
2 VFIECITY
1). 2 ViLtXITY
!.'< VELOCITY
2. 6 Vf E f CI T Y =
2.7 VFLLCITY
4.3 VELOCITY
I. a VEIUCITY
3.3 VTLOCITY
1.6S VELCCITY
1. U VELTCITY
1.5 VFLECITY
1.6 VELCCITY
2.4 VELOCITY
VrLCiCITY = 14(,d
VELOCITY = 1222
VELOCITY = 1421,
VELOCITY = 1264
VFLCr. ITY i 1120

-------
RECORD TYPE  T6ST   DATE   T1HE  ICC  CETH
FLCW
FLOW
FLUW
FLOW
FLOW
FLOW
FLOW
FLCW
FLOW
FLGW
FLOW
FLOW
FLCW
FLOW
FLCI.
FLCW
FLOW
FLCW
FLCW
FLOW
FLCW
FLCW
FLCW
FLOW
FLOW
FLCW
FLCW
01
06
la
13
04
05
10
20
02
03
17
19
21
14
15
22
11
09
08
12
07
01
06
18
13
04
05
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TEMPERATURE -
TEMPERATURE •
TEMPERATURE *
TEMPERATURE -
TEMPERATURE «
TEMPERATURE •
TEMPERATURE »
TEMPERATURE »
TEMPERATURE •
TEMPERATURE •
TEMPERATURE '
TEMPERATURE *
TEMPERATURE *
TEMPERATURE -
TEMPERATURE »
TEMPERATURE «
TEMPERATURE -
TEMPERATURE -
TEMPERATURE «
TEMPCRATURE -
TEMPERATURE -
TEMPERATURE »
TEMPERATURE -
TEMPERATURE -
TEMPERATURE »
TEMPERATURE •
TEMPERATURE «
STATIC PRES •
STATIC PRES «
STATIC PRES »
STATIC PRES -
STATIC PRES -
STATIC PRES *
STATIC PRES «
STATIC PRES -
STATIC PRES »
STATIC PRES -
STATIC PRES '
STATIC PRES =
STATIC PRES -
STATIC PRES -
STATIC PRFS -
STATIC PRES =
363 STATIC PRES -
368 STATIC PRES «
376 STATIC PRES '
375 STATIC PRES -
381 STATIC PRES -
382 STATIC PRES "
392 STATIC PRES »
357 STATIC PRES «
337 STATIC PRCS >
373 STATIC PRES •
348 STATIC PRES «
VEICCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELCCITY
VELOCITY
VfLCClTY
VCLC1C1TY
VELCCITY
VELCCITY
7 VELOCITY
7 VEICCITY
8.9 VELOCITY
6.5 VELOCITY
7.7 VELCCITY
5.25 VELCCITY
7.85 VELCCITY
3 VELOCITY
2.10 VELOCITY
4.50 VELCCITY
4.85 VELOCITY
* 1055
* 1582
« 775
" 589
970
* 1089
= 12?6
« 721
* 999
= 1H6
- 632
810
565
= 661
= 6B5
• 1076
- 1267
* 1076
= 1290
- 1134
= 1207
96i
= 1321
645
= 4S8
845
=• 886

-------
RECURU TYPE  TEST   CATE   TIME  LCC  KETH
FLUW
FLCW
FLCW
FLOW
FLOW
FLCW
FLOW
FLCW
FLCW
FLCW
FLCW
FLCW
FLCW
FLOW
FLCW
FLOW
FLOW
FLOW
FLCW
FLCW
FLOW
FLCW
FLCW
FLCW
FLCW
FLCW
FLCW
10
20
02
03
17
19
21
1*
15
22
11
09
oa
12
07
01
06
13
13
04
05
10
20
02
03
17
19
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
1
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TEMPERATURE «
TEMPERATURE •
TEMPERATURE «
TEMPL-RATURF "
TEMPERATURE *
TEMPERATURE »
TEMPERATURE *
TEMPERATURE »
TEMPERATURE *
TEMPERATURE *
TEMPERATURE •
TEMPERATURE *
TFMFFRATURE •
TEMPERATURE -
TEMPERATURE «
TEMPERATURE -
TEMPERATURE -
TEMPERATURE •
TEMPERATURE •
TEMPERATURE -
TEMPERATURE =
TEMPERATURE °=
TEMPERATURE -
TEMPERATURE *
TEMPERATURE •
TEMPERATURE -
TEMPERATURE >
360
315
361
366
353
340
353
37*
359
368
296
292
304
302
308
312
309
285
266
292
272
290
253
283
206
276
273
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STAT 1C
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
STATIC
PRES •
PRES »
PRES •
PRES -
PRES •
PRES •
PRES •
PRES •
PRES »
PRES •
PRES -
PRES *
PRES •
PKES -
PRES -
PRES «
PRES -
PRES •
PRES •
PRES •
PRES "
PRES «
PRES *
PRFS *
PRES -
PRES -
PRES -
7.20
2.70
4.60
5. SO
2.70
3.25
2.10
2.65
2.75
4.85
.57
• 64
.49
.51
.46
.51
.49
.52
.46
.49
.48
.60
.61
.64
.63
.60
.56
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VFLCCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VUCCITY
VELOCITY
VELOCITY
VFLCCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
- 1063
"> 561
« 667
•JOB
586
» 662
• 500
593
» 590
» 889
- 2032
- 1934
* 955
870
= 8RR
710
9C7
413
• 310
655
596
807
405
584
703
410
472

-------
KtCORD rrPE  TEST   DATE   TIKE  ICC  KETH
FLLU
FLOW
FLOW
FLIU
UUCT
DUCT
DUCT
COAL
COAL
COAL
CCAL
COAL
COAL
COAL
COAL
I. LAI
COAL
COAL
COAL
CUAL
COAL
21
14
15
22



11
09
08
12
07
01
06
18
13
04
05
10
20
02
3 0 TEMPERATURE
3 0 TEMPERATURE
3 0 TEMPERATURE
3 0 TEMPERATURE
1 AREA
2 AREA
3 A8EA
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
261
284
278
-. 294
- 511.3
» 347.5
* 444.9
- .1003
- .0334
- .09B9
• .0337
• .1025
« .0337
- .1075
» .0319
« .1001
- .0327
• .1042
= .0310
* .1130
- .0276
- .1215
• .0251
= .1313
» .0249
» .1035
- .0333
- .1357
= .0182
* .1669
* .0165
• .1594
* .0168
» .0985
- .0287
STATIC PRES
STATIC PRES
STATIC PRES
STATIC PRES



CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MUISTUHE
CARBON
MOISTURE
CARBON
MUISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MUISTURE
CARBON
MOISTURE
.55
.52
.56
.53



- .6819
- .0364
- .6923
* .0366
« .6692
- .0366
- .6770
- .0359
* .6919
- .0389
* .6743
» .1402
• .6722
* .0410
« .6700
• .0383
« .6645
- .0345
- .6774
• .0431
» .6t?2
- .0369
• .6427
- .0329
= .6480
» .0404
- .6808
- .0452
VELOCITY
VELOCITY
VELCCITY
VELOCITY



HYDROGEN
HEAT VALUE
HYDROGEN
HFAT VALUt
HYE.ROGEN
HEAT VALUF
HYTRCGEN
HfAT VALUt
HYCROGEN
HEAT VALUE
HYDROGEN
HfAT VALUE
HYDROGEN
HEAT VALUE
HYCROGEN
HEAT VALUF
HYUROGEN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HEAT VALUF
HYDROGEN
HEAT VALUE
HYCROGEN
HEAT VALUE
347
430
420
651



= .0520 NITROGEN
• 12111
* .0524 NITROGEN
- 12232
- .0519 NITROGEN
= 12163
* .0506 NITHOGFN
• 12051
- .0517 NITROGEN
- 12153
• .0519 NITROGEN
- 12117
- .0510 NITROGEN
= 12055
- .0503 MTROCFN
• 11813
« .0495 NITROGEN
• 11837
- .0519 NITROGEN
« 120B6
• .0498 NITROGEN
- 11814
= .0464 NITROGEN
* 11333
- .0472 NITROGEN
- 11184
= .0513 NITROGEN
- 12092







• .0126
• .0132
• .0123
• .0125
- .0126
• .0133
= .0124
• .0149
• .0134
= .0130
= .0146
- .0143
•= .0130
' .0116

-------
RECORD TYPE  TEST   DATE   TICE  LCC   METH
CCAL
CCAL
CUAL
COAL
COAL
COAL
LtJAL
GAS
GAS
GAS
FLLE CAS
FLUE GAS
HUE GAS
FLUE GAS
FLUE GAS
fLLE GAS
03
17
19
21
14
15
22
05
10
20
11 1
11 081171 2200 1
11 081171 2300 1
11 0811)1 0000 1
11 091171 0100 1
11 2
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
ASH
SULFUR
CARBCN
HEAT VALUE
CARBON
HEAT VALUE
CARBON
HfAT VALUE
0 CC2
S02
NO
1 CC2
S02
NO
1 CC2
S02
NC
1 CC2
SD2
NC
1 C02
SC2
NO
0 CC2
502
NO
• .1000
• .0330
» .1014
* .0342
» .0956
* .0339
. .0914
• .0302
> .1078
• .0274
> .1044
* .0345
= .0661
- .0132
= .7238
- 22447
x .7240
« 22460
* .7360
» 22630
•
X
- 1965
- 2085
- 2085
- 2085
= 397
CARBON
MOISTURE
CARBCN
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARBON
MOISTURE
CARbPN
MOISTURE
CARBCN
MOISTURE
HYDROGEN
SP. GR.
HYDROGEN
SP. GR.
HYUROGEN
SP. GR.
C2
UHC
NU2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
N02
= .6777
- .0413
« .6767
> .0412
- .6819
- .0406
- .6865
- .0400
- .6735
* .0458
* .6750
» .0430
• .7228
- .0417
» .2545
* .588
= .2450
« .587
' .2450
- .585
•
a
• . 046
> .046
- .046
*
HYDROGEN
HEAT VALUE
HYCPCGEN
HEAT VALUE
HYDROGFN
HEAT VALUE
HYDROGEN
HEAT VALUE
HYDROGFN
HFAT VALUE
HYDROGEN
HEAT VALUE
HYDROGEN
HFAT VALUE
NITROGEN
NITROGEN
NI TPCGEN
CO
MOL V.GTIHCI
CC
MOL hGT(HC)
CC
MOL *GT
-------
RECORD TYPE
FLLE CAS
FLLE CAS
FLUE CAS
FLUE CAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE CAS
FLUE CAS
FLUE CAS
FLUE CAS
FLLE GAS
FLLE CAS
FLLE GAS
TEST DATE TIHE LCC ftlH
11 2 X C02
S02
NO
11 30 C02
S02
NO
11 3 X C02
S02
NO
09 10 C02
502
NO
09 091171 1200 1 1 CC2
S02
NO
09 091171 1300 1 1 CC2
S02
NO
09 091171 1400 1 1 CC2
S02
NO
09 051171 1500 1 1 CC2
502
NO
09 051171 UOC 1 1 CC2
502
NO
09 091171 1700 1 1 C02
502
NC
09 051171 1800 1 1 CC2
S02
NC
09 091171 1500 1 1 CC2
502
NC
09 091171 2000 1 1 CG2
SC2
HO
09 20 C02
S02
NO

as
'
=
X
•
"
•
-
•
a
-
-
*
-


.0770
6^1
.1080
.1025
2400
2400
2370
1980
2040
2070
2160
2220
2340
347

02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
C2
UHC
N02
C2
UHC
N02
02
UHC
NC12
C2
UHC
N02
02
UHC
N02

CC
« MOL
CO
MOL
• .0640 CO
- MOL
CO
MCL
« .027 CO
MCL
- .027 CO
= MOL
- .026 CO
MOL
- .028 CO
MCL
= .029 CO
= MCL
- .026 CC
MOL
- .025 CC
MOL
* .027 CC
MOL
• .036 CO
* MOL
CO
* MOL

n
kGTIHCI -
kGTIHCI «
UGTIHCI -
UGTIHCI -
kGTIHC) *
UGTIHCI »
fcCTIHCI •
UGTIHCI -
kGTIHCI =
kGTIHC) *
kGTIHC) «
UGTIHCI -
kCTIHCI =
kCTIHCI *

N?
HEATIUHC)
N2
HtATIUHCI
N2
HFATIUHC)
N2
HFATIUHCI
N2
HFATIUHC)
N2
HEATIUHC)
N2
HFATIUHC)
N2
HtATIUHCI
N2
HEATIUHCI
N2
HEATIUHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHC)

-------
CfcCORU  TYPE   TEST   DATE    TIME   LCC   FETH







FLUE  GAS       09                   2      X









FLLE  (.AS       09                   30









FLOE  GAS       C9                   3      X









FLLE  GAS       08                   10









FLCt  GAS       06   101171   150C    1      1









FLUE  GAS       03   101171   ItOC    1      1









FLUE  GAS       03   101171   1700    1      1









FLUE  GAS       03   101171   160C    1      1









FLUE  GAS       OH                   2      0









FLLE  GAS       08                   t      X









FLUE  CAS       03                   30









FLLE  GAS       Oil                   3      X









FLLt  GAS       12                    1      0









FELL  GAS       12    111171  1100    1      1
C02
502
NO
C02
502
NC
C02
S02
NO
CC2
502
NO
C02
S02
NO
CC2
S02
NO
CC2
502
NO
CC2
SOZ
NO
C02
502
NO
C02
S02
NC
CC2
S02
NO
C02
502
NO
C02
502
NO
CC2
502
NO
» .1080
»
=
- .0230
=
39*
- .1280
=
•
' .0720
- 25*1
3
s
' 2220
•
,
" 2205
*
=
- 2205
*
=
* 2235
=
=
=
*33
• .1150
=
"
= .0860
1306
522
= .1100
*
=
- .0190
ina*
*
=
•= 2370
=
02
UHC
N02
U2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NQ2
C2
UHC
NU2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
- .0840 CC
« HOL
•
CC
« MUL
•
- .0560 CCl
= MfiL
-
CD
* HCL
-
- .050 CO
MCE
•
- .050 CO
MCL
X
• .050 CC
» HGL
•
- .050 cn
* MCL
•
cc
* HCL
•
« .OUOO CC
MHL
-
CC
("111
<•
* .0700 CC
MHL
"
CP
MOL
•
' .C37 cn
= MUL
=
.
hGT(HC) »

f
HGTIHCI .

s
hGTIHCI »

s
HGTIHCI "

f
hGTIHC) *

_
hGTIHC) -

_
UGTIHC) «

=
hGT (HC ) =

=
kGTIHCI «

«
hGTIHCI i

_
hGTIHCI i

=
hGTIHfl »

_
hGT ( HC 1 =

_
UGTIHC) *

N2
HEATIUHCI

N2
HFATIUHCI

N2
HEAT! UHC 1

N2
HFATIUHCI

K2
HFATIUHC 1

N2
HFATIUHC 1

N2
HFATI UHC )

N2
HfiATIUHC 1

N2
HE ATI UHC 1

N2
HF ATI UHC I

N2
HEATIUHCI

N2
HFATIUHC 1

K'2
HL «T I UHC I

N2
HI ATI UHC 1


-------
RECURO TrPE  TEST    BATE







FLLE GAS      12    111171









FLU: GAS      12    HUM









FLU CAS      12    111171









FLUE GAS      12    111171









FLLE GAS      12    111171









FLLE GAS      12    111171









FLUE GAS      12    111171
FLUt GAS       12
FLUt GAS       12
FLUE GAS       12    111171
FLUE GAS       12
FLLE GAS       07
FLUE GAS       07    121171
TIKE LCC
120C 1


1300 1


HOC 1


1500 1


ItCC 1


1700 1


1EOC 1


I


t


,


1600 3


I


1


OSOO 1


PETh
1 C02
SC2
NO
1 COZ
SC12
NO
1 C02
SC2
MCI
1 C02
S02
NC
1 CC2
S02
NC
1 CC2
SC2
NO
1 CC2
S02
NC
0 C02
502
NO
X CC2
S02
NC
C CC2
S02
NC
1 C02
SO'
NC
X CC2
S02
NO
0 C02
so;
NO
1 C02
SC2
NO

.
= 23<,0
=
3
= 22<35
*
X
= 2265
=
x
= 2250
"
X
x 2250
•
=
= 2235
*
=
2250
-
=
=
509
= .1250
=
=
= .0760
- 1703
302
-
1755
=
x .1225
X
•
= .0735
' 1571
=
=
= 2295
X

C2
UHC
NO 2
UJ
UHC
N02
L>2
DUG
N02
02
UHC
NO2
02
UtIC
NO 2
02
UHC
NO 2
02
UHC
NR2
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
02
UHC
NC2
02
UHC
NO 2
02
UHC
N02

- . C3t CO
• MO I
M
- .035 CC
" MCL
•
* .C37 CD
= HOL
"
* .039 CO
= MOt
•
« .C3B CO
MfL
-
* .038 CO
= MOL
•
= .037 CO
MOL
*
CC
= MUL
=
= .0650 CC
x POL
-
CC
* MOL
"
CC
Mfll
-
• .0800 CO
MOL
•
cc
MOL
-
" .035 CO
» MCL
X

.
hGTIHCI =

_
UGTIHTI =

=
•Grind =

_
WGTIHCI -

X
UGT(HC) =

=
ViGTlHO x

.
hGTIHCI =

=
V.GTIHCI =

=
HOT (HO =

.;.
hGTIHCI =

X
•GTIHCI "

x
W,T(HCI •*

_
WGT (HC \ =

=
hGTIHCI =


N2
HFATIUHC 1

N2
HEATIUHC 1

N2
HF ATI UHC 1

v,
HEf.TlUhf 1

N2
HTATIGhC 1

fv
"r ITIUF-r. |

,,,
HF £T I IJhT )

M2
HFJTIUhCI

N2
HI ATIUHL 1

NT
Hr AT I UHf )

N2
HE ATI UHf )

N2
HFATIUHC )

N2
HEATIUHT 1

N2
HE ATI UHT )


-------
rUCOPO TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLCE GAS
FLUE GAS
FLUE GAS
fLUE GAS
(-LLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
TEST OHt TIME LCC PETM
07 121171 1000 1 1 CC2
S02
NO
07 121171 1100 1 1 C02
S02
NO
07 121171 1200 1 1 CC2
S02
NO
07 121171 1300 1 1 CC2
S02
NO
07 121171 1400 1 1 CC2
SC2
NO
07 121171 1500 1 1 CC2
S02
NO
07 121171 UOC 1 1 CC2
S02
NO
07 121171 1700 1 1 C02
SQ2
NO
07 121171 1800 1 1 C02
S02
NO
07 121171 1100 1 1 C02
S02
KC
07 20 C02
SC2
NO
07 2 X C02
SH2
NO
07 30 C02
S02
NO
07 121171 1300 3 1 CC2
S02
NO

- 2340
- 2295
• 2280
- 2325
" 2355
*
- 2885
• 2370
- 2370
- 2370
« 2445
•
325
- .1300
« .0235
1800
379
- .135
" 1935

02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NQ2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
M02
C2
UHC
ND2
02
UHC
N02
02
UHC
N02
02
UHC
N02

• .C35
• .037
• .C37
*
- .036
• .034
> .033
* .034
- .035
- .035
• .035
—
• .0600
*
-
» .044

cn
MUL
CC
MUL
CO
HOL
CO
HDL
CC
HOL
CO
HCL
CC
HOL
CC
HOL
CC
HOL
CC
MOL
CO
HOL
CC
HOL
CO
MOL
CO
HOL

KGTIHCI «
kGTIHCI *
kGTIHCI -
KGTIHCI *
kGTIHCI >
WGTIHCI -
KGTIHCI •
kGTIHCI *
KGTIHCI =
KGTIHCI »
kGTIHCI "
KGTIHCI *
KGTIHCI *
KGTIHCI -

N2
HEATIUHCI
N?
HEATIUHCI
N2
HEATIUHCI
N2
HE ATI UHC 1
N2
HE ATIUHC 1
N2
K»TIUHCI
N2
MFATIUHC)
HEATIUHCI
HEATIUHCI
N2
HCATIUHCI
HEATIUHCI
N2
HF.ATIUHCI
N2
HE ATI UHC 1
N2
HEATIUHCI

-------
            TYPE   TEST   LATE    TIKE   LCC  CETH
VJ1
£k
FLCE GAS


FLUfc GAS


FLGF GAS


FLUE GAS


FLUt GAS


FLUE GAS


FLUE GAS


fLLE GAS


FLUt GAS


FLLe GAS


FLUu HAS


fLCt GAS


FLLE GAS


FLLt GAS


07 121171 UOC 3 1 C02
SOi
NO
07 121171 15CO 3 1 C02
502
NO
07 121171 1600 3 1 CC2
S02
NO
37 1211)1 17CO 3 1 CC2
S02
NC
07 121171 IfiCO 3 1 C02
S02
NO
37 1211)1 1SOC 3 1 CC2
SO.:
NC
07 3 X CO:
SQ2
NO
01 1 C C02
S02
NC
01 141171 210J 1 1 C02
502
NO
01 141171 220C 1 1 C02
so:
NC
01 141171 23CO 1 1 C02
so:
\c
01 151171 3C30 1 1 C02
SC2
NO
01 151171 C10C 1 1 CO.;
S02
NO
01 151171 C2CO 1 1 C02
S02
NO
• .135
• 1965
-
= .135
' 1995
•
•= .135
= 2100
*
* . i ; 5
= 2J85
*
= .135
= 2085
*
- .1 >5
= 21 30
"
- .1260
=
=
= .0595
15U2
1
=
= 2130
=
-
- 2100
=
«
= 2040
=
s
= 2040
=•
=
= 207U
=
,
•= 2070
=
D2
UHC
HQ2
02
UHC
NU2
02
UHC
N02
02
UHC
NP2
C2
UHC
NIJ2
C2
UHC
M)2
C2
GHf
N02
C2
UHC
NU2
C2
UHC
M)2
C2
UHC
NU2
C2
UHC
NC2
02
UHC
NU2
t'2
LHC
N'J2
C2
UHC
N02
= .062 cn
* MIL hGT(HC) -
=
- .C62 Cf)
COL taGTIHLI =
"
« .C66 cr
KCL h5T(HLI =
*
= .C68 cn
"01 kGTIHC) =
=
= . Cft'< Cl
»LL kGTIHC) =
=
= .C67 cr
= MLLhGTIt-iO =
=
= .06 jo cr
1 MHLWGTlHri-
=
CC
= MDL kGT (|U 1 =
"
• .C31,- CC
"01 KGTIH'I =
-
- .C42 CC
= MnL hGT [Hr 1 =
'
- oC4e cn
M^L WGTInri =
=
= .C4", V:
PCI hGTIHCI =
•
* .C45 Cn
PTL KGTIHfl =
=
= .C45 cn
NC'L fcGTIHCI =
•
N2
HEATIGHC 1

N2
HEATIUnr )

N2
HfcAKUIir 1

N2
"FJTIUhf )

12
Hf/lTIUhf 1

N2
HFAT(i;>ir |

N2
l'FAT(UI'C 1

N2
HFATILHC)

N2
He ATI UHf 1

M2
HF AT ( LHC )

N2
HF AT ( UHL )

N2
F-LATIUHf. 1

\:
H- AT( UHC )

N2
HEATIUHCI


-------
ftECUKD  TYPE   TEST    DATE    TIfE  LCC  METH







FLLC GAS       01    15117]  0200   i









FLUE GAS       01    151171  0400   1









FILE GAS       01    151171  C500   1









FLUE GAS       01    151171  060C   1









FLUE GAS       01    151171  C70C   1









FLUE GAS       01                   2









FLUE GAS       01                   2









FLUE GAS       01                   3









FLUt GAS       01    151171  0300   3









FLLE GAS       01    151171  0300   3









FILE GAS       01    151171  0400   3









FLLE GAS       01    151171  0400   3









FLUE GAS       01    151171  0500   2









FLUE GAS       01    151171  0500   3
1


1


1


1


1


c


X


0


1


1


1


1


1


1


C02
S02
NO
C02
S02
NO
C02
502
NU
CC2
S02
NO
CC2
502
NC
C02
S02
NU
C02
502
NC
C02
S02
NC
C02
SO?
NO
C02
S02
NO
C02
S02
NO
C02
502
NO
C02
S02
NO
C02
S02
NO
X
= 2055
-
x
- 2070
•
3
= 2070
"
=
= 2065
-
=
= 20U5
=
=
=
» 463
- .1120
=
=
- .0595
1U54
440
= . 140
=
-
3
=
= 350
- .140
=
•
=
=
370
= .142
=
•
B
*
380
02
UHC
NU2
02
UHC
NO 2
02
UHC
NU2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
L2
UHC
N(12
C2
UHC
NU2
02
UHC
K02
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2
" .046 CO
* HDL
-
» .C45 CO
= MOL
-
. .045 CO
MflL
•
• .044 CC
MCL
•
- ,04b cr
* MOL
"
CC
= MOL
•
= .0020 CC
= MGL
•
CC
MOL
"
« .072 CO
MOL
'
CO
MOL
-
- .C72 CC
MCL
•
CO
MOL
c
- .072 CO
MOL
•
CO
MOL
•
=
hGTIHCI *

B
KGTIHC) »

_
kGT 1HC) =

_
hGTIHCI -

_
kGTIHCI -

_
kGTIHCI =

=
kGTIHCI =

_
kGTIHCI =

_
fcuTIHCI =

_
kGT(HC) -

=
HGT 1 HC I =

=
HGTIHCI =

^
hGTIHCI -

=
hGTIHCI •

N2
HE ATI UHC )

N2
HEATIUHC I

N2
HEATIUHC 1

N2
HFATIUHC 1

N2
HEATIIIHC 1

HZ
HFATIUHT. )

N2
HF ATI UHF 1

N2
MFATIUHf )

M2
t^F ATI UHC 1

>!2
HEATIUHCI

N2
HE ATIUHF )

N2
HEATIUHf 1

N2
F-E ATI UHC 1

N2
HF AT I UHC )


-------
KECORO TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
fLUC GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE TIHE LCC fETH
01 151171 CtOC 3 1 C02
SO 2
NO
01 151171 OtOO 3 1 CC.2
S02
NO
01 151171 070C 3 1 C02
S02
NO
01 151171 070C 3 1 C02
S02
NO
01 3 * C02
S02
NO
On 10 CC2
S02
NO
06 151171 23CO 1 1 CC2
S02
NO
06 161171 0000 1 1 C02
S02
NO
06 161171 0100 1 1 CC2
S02
NO
06 161171 C200 1 1 C02
502
NO
06 161111 0300 1 1 CC2
502
NO
06 161111 0700 1 1 C02
S02
NO
06 161171 CaCC 1 1 C02
S02
NO
06 20 C02
S02
NO

' .141
« I860
360
» 1950
395
- .1180
= .0765
- 1272
= 1950
1950
• 1905
' 1920
= 1950
• 2115
• 2190
464

02
UHC
NU2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
NQ2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02

= .070 CO
" HOL
CO
- HOL
=• .C69 CO
= HOL
CO
* MOL
- .0780 CO
HOL
CO
= HOL
= ,C39 CO
HOL
- .042 CO
= HOL
a
* .044 CO
HCL
= .044 CO
HCL
• .045 CO
HOL
* .044 CO
- HOL
« .044 CO
HOL
CO
HOL

UGTIHCI =
WGTIHCI "
WGTIHCI =
kGTIHCI =
kGTIHCI *
WGTIHCI -
WGTIHCI -
WGTIHCI -
WGTIHCI =
HGTIHCI =
tiGTIHC) =
WGTIHCI -
UGTIHCI >
hGTIHCI =

N2
HEATIUHCI
N2
HEATIUhCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HE AT IUHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HCATIUHCI
N2
HEAT! UHC 1
N2
hFATIUHCI
N2
HFATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI

-------
KECOKD TVPt
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLCE GAS
TEST CATt TIHE LCC METH
06 2 X CC2
502
NO
06 30 C02
S02
NO
06 161171 0700 3 1 CC2
S02
NO
06 161171 0700 3 1 C02
502
NO
06 161171 0600 3 1 CC2
S02
NC
06 161171 0800 3 1 CC2
S02
NO
06 3 X CC2
502
NO
18 1 0 C02
S02
NO
18 161171 2300 1 1 CC2
502
NO
18 171171 OOCO 1 1 CC2
S02
NO
18 171171 0100 1 1 CC2
502
NO
18 171171 020C 1 1 CC2
502
NO
18 171171 030C 1 1 C02
502
NO
18 171171 0400 1 1 CC2
502
NO

- .1180
- .0905
" 1768
466
• .138
- 1905
*
« 285
• .138
" 1890
•
285
« .1260
• .1055
* 1569
1695
• 1740
- 1725
- 1710
- 1680
• 1710

02
UHC
NO 2
C2
UHC
NO 2
02
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02

* .0650 CC
- MCL
•
CC
* HOL
*
* .067 CO
* MOL
&
* CO
* MOL
> .068 CO
• MO I
* CO
» MOL
- .0620 CO
• MOL
» CO
- MOL
• .C46 CO
« MOL
" .045 CO
MOL
*
• .045 CO
" MOL
a
- .045 CO
• MOL
• .C46 CC
MOL
• .052 CC
• MOL

UGTIHCI -
kGTIHCI -
WGTIHCI >
WGTIHC) •
kGTIHCI •
UGTIHCI *
kGTIHCI -
UGTIHCI *
kGTIHCI -
kGTIHCI *
c
kGTIHC) -
kGTIHCI •
•
WGTIHCI -
kGTIHCI •

N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
MFATIUHCI
N2
HEAT! UHC )
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI

-------
RECORD TtPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATS TIKE LCC CETH
18 1711J1 050C 1 1 C02
SO 2
NO
18 171171 060C 1 1 CC2
S02
NO
18 171171 0700 1 1 C02
S02
NO
18 20 C02
S02
NO
18 2 * C02
S02
NO
18 30 CC2
SC2
NO
13 171171 0300 3 1 C02
SC2
NO
18 171171 0300 3 1 C02
S02
NO
18 171171 0400 3 1 C02
S02
NO
18 171171 040C 3 1 CC2
S02
NO
18 171171 050C 3 1 CQ2
S02
NO
18 171171 050C 3 1 C02
SD2
NO
18 171171 CiOC 3 1 C02
S02
NO
18 171171 0600 3 1 C02
S02
KG

> 1725
» 1725
- 1725
" 365
• .1025
« .0485
* 1154
627
« .136
= 1455
365
- .136
1470
355
= .136
* 1500
» 360
- .135
- 1485
m
365

02
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
02
UHC
NQ2
C2
UHC
NQ2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
02
UHC
N02

- .052 CO
* MOL
- .056 CC
MOL
- .050 CO
MOL
CC
= MOL
= .0900 CC
= MOL
CO
* MOL
* .075 CC
M(U
CO
MOL
- .075 CO
MOL
CO
MOL
* .074 CC
MCL
CO
HOL
- .076 CO
= MOL
« CO
MOL

UGTIHCI '
UGTIHCI -
UGTIHCI •
UGTIHCI -
UGTIHCI =
MCTIHCI =
KGTIHCI «
UGTIHCI -
UGTIHCI *
UGTIHCI -
UGTIHCI *
kGTIHC) -
UGT.HC, I
c
UGTIHCI *

N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
^'2
HCATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI

-------
RECflKD TYPE TEST DATE TINE LCC METh
FLUE GAS 18 171171 07CC 3 1 C02
S02
NC
FLUE GAS 18 171171 0700 3 1 CC2
SD2
KC
FLUE GAS 18 3 X C02
S02
NO
FLUE GAS 13 1 0 C02
S02
NO
FLUE GAS 13 171171 2300 1 1 C02
S02
NO
FLUE GAS 13 181171 0000 1 1 CC2
SC2
Nfl
FILE GAS U 181171 0100 1 1 CC2
S02
NO
Crj
-0 FLUE GAS 13 181171 020C 1 1 C02
S02
NC
FLUE GAS 13 1C1171 0200 1 1 CC2
S02
NO
FLLE GAS 13 181111 0400 1 1 CC2
S02
NO
FLUE CAS 13 181171 050C 1 1 CC2
SH2
NO
FLUE GAS 13 181171 CtOC 1 1 C02
S02
NO
FLLE GAS 13 181171 070C 1 1 C02
S02
NO
FLUE GAS 13 20 C02
S02
NC

- .136
- 1485
"
.
•
« 360
* .1160
*
•
• .0970
- 1848
=
,
" 1560
-
a
- 1680
*
=
= 1740
=

=
1740
=
=
* 16bO
•
=
« 1605
"
=
«
-
.
- 1560
•
,
- 1500
"
.
m
525

C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
N02

02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
C2
UHC
N02
C2
UHC
N02
02
UHC
N02

- .074 CO
MOL
*
CG
* Mm
*
- .0790 cn
• MOL
-
co
= MQL
•
- .C6S CO
* MOL
•
* .C68 CO
= MflL
•
- .062 cn
MOL
=

= .C62 CT
MOL
=
* .063 Ctj
MC:L
*
- .063 Cn
Kt L
•
CO
» MOL
-
« .063 Cn
* MOL
•
- .062 CC
• MDL
•
co
• MOL
»

X
UGTIHCI »

a
kGT(HC) *

a
fcGTIHCI »

m
kGTIHC) -

a
WGTIHCI -

_
kGTIHC) -

_
kGTIHC) =


c
hGTIHCI »

_
kGTIHC) *

_
kGTIHCI *

c
WGTIHCI *

_
kGTIHC) •

_
kGTIHCI •

m
hGT(HC) •


N2
HEATIUHCI

N2
HEATIUHC)

N2
HEATIUHC)

N2
HE ATI UHC )

N,
HEATIUHC)

N2
HEATIUHC )

K,
HCATIUHCI


N2
HF ATI OhC )

N2
HFATIUhC)

112
HEATIUtiC I

N2
HEATIUHCI

N2
HEATIUHC)

N2
HEATIUHCI

N2
HEATIUHCI


-------
8ECORP TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLtE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLtE CAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
TEST DATE TIPE LCC MtTH
13 2 X CC2
S02
NO
13 30 C02
S02
NC
13 181171 0300 3 1 C02
S02
NO
13 181171 0400 3 1 C02
S02
NO
13 181171 0400 3 1 CC2
502
NO
13 161171 0500 3 1 CC2
SC2
NO
13 181171 0500 3 1 CC2
S02
NO
13 161171 OtOC 3 1 C02
S02
NO
13 181171 060C 3 1 CC2
502
NO
13 181171 C70C 3 1 C02
S02
NC
13 181171 070C 3 1 C02
S02
NO
13 3 X C02
S02
NO
04 1 0 C02
S02
NO
04 191171 0000 1 1 C02
S02
NO

* .0960
• .0370
752
• .128
* 1350
* .12B
•= 1425
335
- .128
= 1380
360
=• .126
1365
355
= .128
•= 1335
340
- .1040
3
» .0895
- 1996
a>
• 2216

C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
U2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
02
UHC
NU2
02
UHC
N02
02
UHC
N02
02
UHC
N02

- .1000 CC
MPL
*
CC
MOl
- .073 CO
" MOL
= .C88 cn
« MOL
cn
* MOL
- .087 CO
MCL
CO
= MOL
= .087 CO
MOL
= Ct>
MCL
• .091 CO
« MOL
CC
« MOL
* .0860 CC
» MOL
CC
* MOL
« .031 CO
= MOL

kGTIHCI »
kGTIHCI -
hGTIHCI =
WGTIHC) =
HGTIHC) *
hGTIHCI =
WGTIHC) -
HGTIHC) -
hGTIHCI -
kGTIHCI >
kbKHCI .
UGTIHC) -
h&TIHCI -
I.GTIHCI =

N2
HEATIUHCI
N2
HEAT! UHC I
N2
HEATIUHC)
N2
HEATIUHCI
HEATIUHCI
H2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHCI
N2
HEATIUHC)
N2
HEATIUHCI
K'2
HEATIUHC)
N2
HCATIUHCI
N2
HEATIUHC)

-------
KECUKD T»PE TEST DATE Tiff LCC METH
FLLE GAS


FLLL GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUF GAS


FLUt GAS


FLUE GAS


FLUE GAS


FLLE GAS


FLUE GAS


FLUE GAS


FLUE GAS


04 191171 0100 1 1 C02
SD2
NO
04 191171 0200 1 1 CC2
502
NO
04 191171 0300 1 1 C02
S02
NO
04 191171 0400 1 1 C02
S02
NO
04 191171 05CO 1 1 CC2
502
NO
04 191171 OtOO 1 1 C02
S02
ND
04 1S1171 0700 1 1 C02
S02
NO
04 1 X CC2
S02
NO
04 20 C02
502
NO
04 2 X CC2
S02
NO
04 30 C02
S02
NO
04 19117] 0400 3 1 C02
S02
NO
04 191171 0500 3 1 C02
S02
NO
04 111171 0500 3 1 C02
S02
NO
m
- 2334
*
a
" 2334
*
a
= 2394
=
,
a 2355
"
a
• 2325
•
,
» 2250
•
„
a 2250
*
- .1420
•
•
a
a
352
- .1320
a
»
- .0755
1918
300
.
3
375
- .142
• 2130
•
a
a
365
02
UHC
N02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NC12
02
UHC
N02
• .031

•
- .C31

»
a .030
a
-
• .029

*
- . C29

"
> .028
a
»
= .030
a
•
a .0420
a
-
a
a
•
a .0510

=
m
a
-
m
a
a
• .062
a
M
„
a
a
CO
MOL

CO
MOL

CO
MC-L

cn
MOL

CO
MOL

CO
MDL

cn
KCL

CC
MOL

CC
MOL

CC
MOL

CC
MOL

CO
MUL

CO
MUL

CO
MOL


hGTIHCI a

=
WGTIHC. =

f
HGTIHC) «

„
HGTIHCI a

f
hGTIHCI a

=
hGT(HC) «

_
WGT(HC) *

,
kG T ( H C ) »

9
kGT(HC) *

K
hGT(HC) -

=
htiT(HC) =

.
kGT(HC) -

=
hGT(HC) •

B
hGTIHCI -

N2
HEATIUHCI

H2
HEATIUHCI

N2
HEATIUHC )

N'2
HEATIUHCI

N2
HEATIUHC 1

N2
HEATIUHCI

N2
HFATIUHC 1

N2
HEATIUHCI

N2
HEATiunr i

N2
HEATIUHCI

N2
HEATIUHCI

N2
HE4TIUHCI

N2
HEATIUHC I

N2
HEATIUHCI


-------
HECGRU TYPE
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATC TIKE LCC HETH
04 1911)1 060C 3 1 C02
S02
NO
04 191171 0600 3 1 CC2
S02
NO
04 191171 0700 3 1 C02
S02
NO
04 191171 0700 3 1 C02
S02
NO
04 3 X C02
S02
NO
05 1 0 CC2
502
NO
05 211171 2300 1 1 CC2
S02
NC
05 221171 COOO 1 1 C02
S02
NO
05 221171 0100 1 1 C02
S02
NO
05 221171 C700 1 1 C02
S02
NO
05 20 C02
S02
NO
05 2 X CC2
S02
NO
05 30 C02
S02
NO
05 221171 0400 3 1 C02
S02
NO

- .142
- 2070
X
• 340
- .142
> 2040
325
* .1310
= .0570
539
210
210
420
570
333
= .1080
« .0735
443
303
200

C2
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
NQ2
02
UHC
NQ2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2

CO
MOl
cn
MOL
- .062 CO
= MOL
CO
MOL
- .0470 CC
» MOL
CC
MOL
• .C23 CC
MOL
- .023 CO
MOL
• CO
MOL
• .C23 CO
MOL
CC
« HOL
• .0580 CO
MOL
CO
» MOL
CO
MOL

UGTIHC) *
UGTIHC 1 =
UGTIHC) =
kGTIHC) -
kGTIHCI -
UGTIHCI =
hGTIHCI -
kGTIHC) -
hGTIHC 1 *
UGTIHCI >
I.GTIHCI =
KGTIHCI =
WGTIHCI •
UGTIHCI *

N2
HEATIUHC)
M2
HEATIUHC)
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC 1
H2
HEATIUHC 1
K2
HEATIUHC )
N2
HfATIUHC)

-------
    RtCUKD TrPE   TEST    DATE   TIME  LCC


    FILE GAS       05    iillll  0500   3




    FLUE GAS       05    221171  0500




    FLUE &»S       05    2211/1  0600   3




    FLUE GAS       05    2211J1  C60C   3




    FLUE GAS       05    221171  07CO   3




    FLUE GAS       05




5;  FLLt GAS       10
UJ



    FILE GAS       13    231171  0000   1




    FLLt GAS       10    231171  C100   1




    FLLit GAS       10    231171  C200   1




    FLCE GAS       10    231171  0300   1




    FLUE GAS       10    2211 51  MOO   1




    FLLE GAS       10    2311<1   CdOC   1




    FLUE GAS       10    231171   C700
3


2


3


3


3


3


1


1


1


1


1


1


1


,


1


1


1


1


1


X


0


1


1


1


1


1


1


1


C02
502
NO
CC2
S02
NO
C02
S02
NO
CC2
502
NO
C02
S02
NO
C02
S02
NO
C02
S02
KC
C02
502
NO
CC2
S02
NO
C02
502
NO
C02
502
NO
C02
S02
NO
C02
S02
NO
C02
S02
NO
» .124
* 660
*
-
=
* 240
=
630
•
=
»
200
* .124
600
"
• .1030
»
*
• .0765
562
•
x
375
-
,
360
•
,
360
*
,
375
•
„
375
-
,
420
•
B
450
*
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
C2
UHC
NC2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
NO 2
» .C2S
X
•
M
»
-
_
9
•
f
»
•
» .035

"
« .0650

•
,
*
•
- .021

-
« .C21

•
- .021

•
« .021
9
'
" .021
>
-
• .019
»
•
" .019
•
•
CO
MDL

CO
MOL

CO
MOL

CO
»OL

CC
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

,
HGTIHCI »

s
UGTIHCI •

=
hGTIHCI «

m
hGTIHCI -

f
kGTIHCI *

B
bGTIHCI •

f
WGTIHCI «

c
UGT(HC) -

^
WGTIHCI «

a
hGT(HC) =

^
NGT(HC) »

f
kGTIHCI »

=
hGTIHCI •

a
kGTIHCI •

K2
HE6TIUHC I

N2
HE«TIUHCI

N2
HEATIUHC 1

N2


N2
HEATIUHCI

M2
HE ATI UHC)

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HE Ml UHC 1

N3
HFATIUHCI

N2
HEATIUHr 1

N2
HEAT IUHC 1

N2
HEATIUHCI


-------
RECORD TYPE
FLUE GAS
FLLE CAS
FLUE CAS
FLLE GAS
FLLE CAS
FLLt CAS
fLLE CAS
FLLE CAS
FLLE CAS
FLLE CAS
FLLE CAS
fLUE GAS
FLLE CAS
FLLE GAS
TEST CITE TIME LCC METH
10 20 C02
502
NO
10 2 X CC2
502
NC
10 30 C02
SU2
NO
10 231171 0200 3 1 C02
502
NO
10 231171 0300 3 1 C02
SO2
NC
10 231171 0300 3 1 C02
502
NO
10 231171 0400 3 1 C02
502
NO
10 231171 0400 3 1 CC2
S02
NO
10 231171 0500 3 1 C02
SP2
NO
10 231171 0500 3 1 C02
502
NO
10 221111 C600 3 1 C02
502
NO
10 231171 0600 3 1 C02
S02
NO
10 231171 C700 3 1 C02
502
NC
10 231171 C700 3 1 C02
S02
NG

233
* .0960
* .0300
426
315
= .130
510
•
- .130
540
= 85
x .131
100
=> .132
100
> .132
585
X
100
• .132
510
*
110

02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
K02
02
UHC
N02
02
UHC
NC2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2

• CO
» MCL
- .0760 CC
« MOL
* CC
» MOL
X
- .060 CC
MCL
- .060 CO
* MOL
CO
= MOL
= .060 CO
MOL
CO
* MOl
- .060 CO
MOL
CO
= MOL
• CO
MOL
* CO
* MOl
" .060 CO
* MOL
*
CC
» MOL
X

fcGTIHCI x
kGTIHCI =
kGTIHCI -
kGTIHCI x
hGTIHCI «
c
kGTIHCI «
HGTIHCI x
WCT(HC) =
kGTIHCI =
HGTIHCI -
kGTIHfl x
kGTIHCI "
kGTIHC) x
kGTIHCI •

*J2
t-EATIUHCI
N2
HEATIUHC I
N2
HEATIUHCI
K2
HEATIUHCI
N2
HEATIUHCI
H2
HEATIUHCI
U2
HEATIUHCI
K2
HEATIUHCI
N2
HFATIUHCI
K2
HEATIUHCI
N2
HEATIUHCI
H2
HFATIUHC I
N2
HEATIUHC 1
N2
HEATIUHCI

-------
RECORD T»PE TEST DATE TIFE LCC fETH
FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


FLUE GAS


10 3 * C02
S02
NO
20 10 CC2
S02
NO
20 2*1171 0000 1 1 C02
S02
NC
20 2*1171 0100 1 1 C02
S02
NO
20 2*1171 0200 1 1 C02
S02
NO
20 2*1171 C300 1 1 C02
S02
NO
20 2*1171 0*00 1 1 C02
S02
NO
20 2*1171 0500 1 1 C02
S02
NO
20 2*1171 CtOO 1 1 C02
302
NO
20 20 C02
S02
NO
20 2 X CC2
S02
NO
20 30 C02
S02
NO
20 2*1171 C300 3 1 C02
S02
NO
20 2*1171 C200 3 1 C02
S02
NO
- .0990
a
*
- .0880
5*7
•
.
525
*
=
*65
"
.
*80
*
*
• *50
«
.
» *50
*
*
* *65
•
„
*6B
•
m
*
273
* .1080
•
•
« .03*0
* 386
2*8
- .126
« 510
-
,
«
150
C2
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02
C2
UHC
N02
- .0650
•
•
.
«
•
• .030
*
•
* .030
•
•
- .C28
•
"
- .030
•
•
- .030
•
"
- .032
•
•
' .036
•
•
M
•
•
- .0520
•
"
„
•
•
• .068
m
•
„
•
•
CO
MOL

CC
MOL

CC
HOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CO
MOL

CC
HCL

CC
MOL

CC
MOL

CC
MOL

*
UGTIHC) -

—
hGTIHCI -

x
WGTIHCI •

w
kGTIHC) *

m
WGTIHCI •

f
WGTIHCI -

m
hGTIHCI -

*
WGTIHCI -

,
WGTIHCI •

*
WGTIHCI •

„
hGTIHCI •

m
WGTIHCI -

,
kGTCHCI -

m
fcCTIHCI -

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HE4TIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

K2
HEATCUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI

N2
HEATIUHCI


-------
RECORl' TVPE
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE T1PE LCC FETH
20 241111 0400 3 1 C02
S02
NO
20 241111 0400 ^ 1 C02
502
NO
20 241111 0500 3 1 C02
S02
NO
20 241111 0500 3 1 C02
S02
NO
20 241111 0400 3 1 C02
S02
NC
20 241111 0600 3 1 C02
S02
NO
20 241111 0700 3 1 C02
502
NO
20 241171 C700 3 1 CC2
S02
NC
20 3 X CC2
S02
NO
02 1 0 C02
S02
NO
02 301171 0000 1 1 CC2
S02
NO
02 301111 0100 1 1 C02
S02
NO
02 301111 0200 1 1 CC2
S02
NO
02 301111 1300 1 1 C02
502
NO

•= .126
a
140
- .128
555
135
- .126
» 600
155
- .126
600
155
• .1060
M
= .1155
1813
« 2025
- 2040
=:
- 2040
- 1980

C2
UHC
NO 2
02
UHC
N02
02
UHC
K02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
02
UHC
N02

• .070 CO
MOL
»
CO
« MOl
* . 06B CC
MOL
CO
MOL
• .C73 CO
HUL
X
CO
MDL
• .014 CO
MCL
CO
MOL
' .0570 CO
» MOL
* CO
' MOL
- .042 CO
MOL
' .040 CC
» HOL
- .040 CO
MOL
* .041 CC
* MOl

kGTIHCI -
hGTCHCl *
kGTIHC) *
kGTIHCI =
hGTIHC) =
UGTIHC) =
hGTIHC) =
hGTCHCl -
bGTIHCI -
bGTIHC) =
hGTIHC) -
kGTIHCI -
hGTIHCI -
hGTIHCl =

N2
HF ATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HCATIUHCI
K'2
HFATI UHC I
N2
HE A T ( UHf, 1
N2
HF ATI UHC 1
N2
Hf ATIUHCI
N2
HEATIUHCI
12
Hf ATIUHCI
N2
HEATIUHCI
N2
HE AT I UHC)
N2
HE ATI UHC 1
N2
HEATIUHCI

-------
RECOKU TYPE TEST DATE TI*E LCC METH
FLLt GAS
FLUE GAS
FLL6 GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
ILLE GAS
02 301171 C4CC 1 1 C02
502
KC
02 301171 0500 1 1 C02
S02
NO
02 301171 0600 1 1 C02
S02
NO
02 301171 0700 1 1 C02
S02
NO
02 20 C02
S02
NO
02 2 X C02
S02
NO
02 30 C02
S02
NO
02 301171 C200 3 1 C02
S02
HO
02 301171 C200 3 1 C02
S02
NO
02 301171 C300 3 1 C02
S02
NO
02 301171 C30C 3 1 CE12
S02
NO
02 301171 0400 3 1 C02
S02
NC
02 301171 0400 3 1 C02
S02
NO
02 301171 0500 3 1 C02
S02
NO
- 1950
•= 2010
- 1740
• 1725
509
" .1320
« .0910
1429
431
- .138
1740
336
• .140
345
* .140
325
» .140
f
X
C2
UHC
NO 2
U2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NG2
02
UHC
N02
02
UHC
NO 2
02
UHC
NC12
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
- .040 CO
MOL
- .C39 CC
MOL
- .038 CO
HDL
" .038 CO
MOL
CO
MOL
- .0560 CO
« MOL
CO
* MOL
- .064 CO
MOL
- CO
• MOL
CO
» MOL
CO
MOL
CC
MOL
CO
MOL
* .060 CO
« MOL
kGTIHCI -
kGTIHCI -
kGTIHCI -
WGTIHCI =
fcGTIHCI *
HGTIHCI «
5
kGTIHC) =
kGTIHC) =
kGTIHCI -
fcGTIHCI =
kGTIHCI -
kGTIHCI •
kGTIHCI «
kGTIHCI *
H2
HEATIUhCI
HEATIUHC 1
NEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC)
N2
HEATIUHCI
N2
HE«T(UHC 1
H2
HTATIUHCI
N2
HEAT (UHC 1
M2
HEATIUHCI
N2
HFATIUHCI
N2
HEATItHCI
N2
HE ATI UHC 1
N2
HEATIUHCI

-------
UCCOKD TVPt
FLCE GAS
FLU GAS
fLUt GiS
FLl.F: GAS
F-LLf GAS
FLUL GAS
F LUF GAS
FLIE GAS
HUE GAS
FLUL GAS
FLLt GAS
FLLI: GAS
FLUt GAS
H.UE C-AS
TEST CA1E TIKF LCC fEIH
02 301171 C'jCO 3 1 C02
SO?
NO
02 301171 C60C 3 1 C02
S02
NO
02 301171 060C 3 1 C02
SC12
NO
02 301111 C700 3 1 C02
S02
NO
02 301171 07CO 3 1 CC2
S02
NO
02 3 X C02
SU2
NO
03 1 0 CC2
S02
NO
03 01U71 OOCC 1 1 C02
502
NG
03 011271 010C 1 1 CC2
S02
NC
03 011271 C20C 1 1 CC2
S02
NC
03 011271 030C 1 1 C02
S02
NO
03 011271 040C 1 1 C02
S02
NO
03 011271 050C 1 1 C02
S02
NO
03 011271 0600 1 1 CC2
S02
NO

340
.140
33'J
- .142
J70
= .1310
= .035b
1763
' 2160
2145
> 2145
- 2145
- 21tO
= 2130
= 2130

02
UHC
N02
C2
UHC
Nri2
02
UHC.
NU2
02
UHC
NU2
02
UHC
N02
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
NCI2
02
UHC
N02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
N02

cr
MOL kGTIHCI . =
.C60 Ctl
MOt kGTIHCI =
CO
= MOL hGT (HC) =
- .062 CO
MOL hGTIHCI "
CO
= MOL hGT (HC 1 =
= .0561: CO
= MOL kGTIHCI =
CC
- MOL kGT (HC 1 -
= .054 CC
mi kGTIHCI =
= .C5(, CC
Mill hGTIHCI -
= .05? CIJ
MOL h-GTIHCI =
= oC56 cr
= MOL hGT (Hf.) =
* oC56 Cn
= MOL hGT (HC) =
= .C56 CO
MOL WGT(HC) =
» .056 CO
MOL kGTIHC) =

N2
HFflTI UHC 1
N2
Hf All UHCI
N2
HF AT 1 UHC 1
N2
"FATIC'HC. 1
N2
HFATIIIHC 1
K2
HF AT 1 UHC )
^'2
Hf AT 1 UHf 1
"2
HFATIUHC 1
N2
HF ATI UHC )
N2
HF/ITI UHC 1
N2
HF ATI1HCI
N2
HF AT 1 UHC 1
r^r
HFATIUHC ]
N2
HE ATI UHC 1

-------
RECORD TYPE
FLLE GAS
FLLE CAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUF GAS
FLLE GAS
FLUF GAS
FLtE GAS
FLUE GAS
TEST DATE TIME LCC PETH
03 0112H 070C 1 1 C02
502
NO
03 20 C02
SQ2
NO
03 2 X C02
502
NO
03 30 C02
502
NO
03 011271 040C 3 1 CC2
502
NO
03 OH271 C40C 3 1 C02
502
NO
03 011271 05CC 3 1 CC2
502
NO
03 011271 C50C 3 1 C02
502
NC
03 011271 060C 3 1 Cf)2
S02
NO
03 011271 060C 3 1 C02
502
NO
03 011271 070C 3 1 C02
S02
NO
03 011271 0700 3 1 C02
502
NO
03 3 X C02
502
NO
17 10 C02
S02
NO

» 2115
352
• .1210
* .0435
- 1305
492
- .132
335
= .132
: M0
- .132
365
= .132
360
=• .1180
- .1075

02
UHC
NC2
02
UHC
N02
U2
UHC
N02
02
UHC
NU2
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NP2
02
UHC
NO 2
02
UHC
NG2
02
UHC
NIJ2
02
UHC
NO 2

* .056 CO
MOL
CO
MCL
= .0690 CO
MOL
> CO
HOL
- .082 CO
MOL
CO
MOL
- .081 CO
MOL
CC
* MOl
- .080 CO
« MCIL
a
CO
MOL
* .080 CC
= MOL
CO
MCiL
* .0740 CO
* MOl
* CO
MOL

NGTIHC) =
UGT 1 HC 1 =
KGTIHCI *
UGTIHCI =
UGTIHCI -
kGTIHC) *
UGTIHCI *
1.GTIHCI =
kGTIHCI -
WGTIHCI =
hGTIHC) =
hGTIHCI =
kGTIHCI -
hGTIHCI =

N2
HFATIUHCI
N2
HFATIUHCI
K2
HFATIUHC 1
N'2
HF.ATIIIHC 1
N2
HFJTIUHt I
N2
HEATIUHC 1
N2
HEAUUHC I
N2
HEATIUHC 1
N2
HE ATIUHCI
f!2
HFATIUHCI
HE ATI UHf. 1
N2
HE ATI UHC 1
N2
HEATIUHC 1
K'2
HEATIUHCI

-------
RECORU T»PE
FLUE GAS
FLUE GAS
FLU GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
TEST DATE TICE ICC METH
17 021271 0000 1 1 C02
S02
NO
17 0212J1 C1CC 1 1 C02
SD2
NC
17 021271 C2CC 1 1 CC2
S02
NO
17 021271 0300 1 1 CC2
S02
NO
17 021271 040C 1 1 CC2
SO 2
NO
17 021271 05CC 1 1 CG2
S02
NO
17 021271 060C 1 1 CC2
Sf) 2
NO
17 021271 0700 1 1 CC2
S02
NC
17 20 C02
S02
NO
17 2 X C02
S02
NO
17 30 C02
S02
NO
17 021271 0300 3 1 C02
SCJ2
NO
17 021271 0400 3 1 CC2
S02
NO
17 021271 05CO 3 1 C02
S02
NO

= 2040
- 2100
* 2085
* 2070
- 2100
- 2100
= 2085
= 2100
3
344
= .12(10
> .OU45
309
- .134
= 1950
• .134
340

02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02

- .042 CO
MOL
* .034 CO
- MOL
- .037 CO
= MOL
* .036 CO
PCL
> .036 CO
MOL
- .037 CC
MPL
* .038 CO
* MCL
* .040 CC
* MOL
CO
* MOL
- .0600 CO
MOL
CO
M(1L
- .073 CO
MQL
- .074 CO
* MOL
* CO
" MOL
•

HGTIHCI -
kGTIHCI -
kGTIHC) =
kGTIHCI *
kGTIHC) -
kGTIHC) -
kGTIHC) *
kGTIHCI =
kGTIHCI =
kGTIHCI «
kGTIHCI =
kGTIHCI *
kGTIHC) =
kGTIHCI •

K'2
HEATIUHC)
K2
HE ATI UHC }
N2
HEATIUHC I
N2
HEATIUHCI
N2
HEATIUHCI
N2
HfATIUHC)
N2
HEATIUHCI
N2
HEATIUHC 1
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHC I
N2
HE ATI UHC I
N2
HEATIUHCI

-------
RECORD TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLF GAS
FLUE GAS
FLUE GAS
FLUt GAS
TEST DATE TINE LCC METH
17 021271 0500 3 1 CC2
502
NO
17 021271 C60C 3 1 CC2
502
NO
17 021271 OtCC 2 1 CU2
502
NO
17 C2U71 C700 3 1 CC2
S02
NO
17 021271 07CC 3 1 CC2
502
NO
17 3 X C02
S02
KO
19 1C C02
S02
NC
19 031271 C200 1 1 C02
S02
NC
19 331271 0300 1 1 C02
S02
NO
19 03U71 040C 1 1 C02
S02
NO
19 031271 0500 1 1 C02
502
NO
19 031271 0600 1 1 C02
S02
NO
19 031271 0700 1 1 C02
S02
NO
19 1 X C02
5(12
NO

- .134
- .136
« 2010
340
- .136
345
= .1260
- .0775
= 1733
- 1905
- 1890
• 1875
1890
1905
» 1920
• .1280

02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2

• .075
- .074
B
- .074
c
a
* .0660
,
• .060
• .060
- . C59
- .C59
« .058
= .060
- .0620

CP
MCL
CO
MOL
CC
MOL
CO
MUL
CO
MOL
CC
MOL
CO
MOL
CC
MCL
CC
MOL
cn
MOL
CO
MOL
CO
MCL
CO
MDL
cn
MOL

c
kGTIHCI «
kGTIHCI =
kGTIHCI «
kGTIHCI '
kGTIHCI "
kGTIHC) =
kGTIHCI -
kGTIHCI -
kGTIHCI •
kGTIHCI "
kGTIHCI -
WGTIHCI =
WGT IHCI =
kGTIHCI =

N2
HCATIUHC )
HE ATI UHC 1
N2
HEATIUHCI
N2
N2
HEATIUHC)
r>2
HEATIUHf |
N2
Hf ATIUHCI
N'2
KCTIUHf 1
HFSTIUHCI
K2
HF ATIUHCI
Hf! ATI UHC. \
PL ATI UHC t
HZ
HF ATI OHf- I
HEATIUHCI

-------
RECORD TYPE
FLUF GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUt GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST DATE TIHE ICC METH
19 20 C02
S02
NO
19 2 X C02
S02
NO
19 30 CC2
S02
NO
19 71 31 C02
502
NO
19 71 31 CC2
S02
NO
19 3 X C02
S02
NO
21 1 0 CU2
SC2
NO
21 041271 0100 1 1 C02
S02
NO
21 041271 C2CC 1 1 C02
SD2
HO
21 041271 0300 1 1 CC2
S02
NO
21 041271 0400 1 1 CC2
S02
NO
21 041271 C500 1 1 CD2
502
NO
21 041271 0600 1 1 C02
502
NO
21 041271 070C 1 1 CC2
502
NO

394
» .1090
*
- .0395
861
404
- .126
- 1815
,
• .1040
• .0755
• 1415
• I860
- 1875
* 1860
« 1875
- 1860
• 1890
*
•
1905

02
UHC
NO 2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
NU2
02
UHC
NO 2
02
UHC
HO 2

CO
= MOL
- .OE40 CO
MCL
CC
HOL
- .086 CC
- HDL
CO
MOL
- .0880 CC
MOL
CC
* MOL
- .C54 CO
MOL
= .054 CC
* MOL
- .054 CO
MOL
- .C54 CO
MOL
- .054 CO
MOL
*
= .054 CO
MOL
- .054 CO
MCL

h&TIHCI -
£
kGT I HC ) -
HGTIHC) *
kGTIHCI -
kGTIHCI -
kGTIHCI -
kGTIHC) -
kGTIHCI *
hGTIHCI =
V.GTIHC) -
kGTIHC) =
kGTIHC) •
kGTIHC) •
kGTIHCI -

M2
HEATIUHCI
M2
HEAT(UHC)
U2
HEATIUI-C)
N2
HE ATI UHC )
N2
HEATIUHC)
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HFATIUHC)
N2
HEATIUHCI
N2
HFAT(UHC)
N2
HEATIUHC I
M2
HEATIUHCI
N2
HEATIUHCI

-------
RECOKU TVPE
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATC TICE LCC METH
21 20 CC2
S02
NO
21 2 X CC12
S02
NO
21 30 C02
S02
NO
21 041271 020C 3 1 C02
SQ2
HC
21 041271 0300 3 1 C02
SOZ
NC
21 041271 0300 3 1 C02
S02
NO
21 041271 040C 3 1 CD2
S02
NO
21 041271 0400 3 1 CC2
S02
NO
21 041271 C500 3 1 CQ2
S02
NO
21 041271 0500 3 1 CC2
502
NO
21 041271 CtCC 3 1 C02
S02
NO
21 041271 CtCC 3 1 C02
S02
NO
21 041271 C70C 3 1 C02
S02
NO
21 041271 070C 3 1 C02
SQ2
NO

*
366
> .1100
« .0565
451
322
= .124
• .126
1710
* 195
= .126
= 1575
- 195
• .124
= 1665
195
- .126
1710
205
- .124
1740
210

02
UHC
NU2
C2
UHC
NU2
C2
UHC
N02
C2
UHC
NIJ2
02
UHC
N02
02
UHC
N02
02
UHC
N02
112
UHC
NU2
ri2
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02

CO
MOL
« .0740 CC
MCL
* CD
» MOL
« .078 CO
MCL
• .077 CO
" MOL
CC
- HUL
- .077 CO
« MOL
* CO
« MUL
* .078 CC
* MOL
CO
" MOL
" .C7B CO
MOL
* CO
* MOL
' .078 CC
MOL
CC
MUL

fcGTIHCI >
fcGTIHCI *
fcGTIHCI -
kGTIHC) -
fcGTIHCI -
fcGTIHCI *
hGTIHCI *
X
MGTIHC) -
KCT(HCI =
fcGTIHCI =
fcGTIHCI =
fcGTIHCI =
fcGTIHCI -
WGTIHCI *

N2
hEATIUHC 1
H2
HF ATIUHC 1
N2
HEATIUHCI
HE ATI UHC 1
N2
HtATIUHCI
N2
HFATILHC)
112
HEATIUHCI
N2
HEATIUHCI
N2
HtATIUHCI
HFATIUHC 1
N2
HtATIUHC 1
N2
HP AT 1 UHC 1
H2
HEATIUHC 1
N2
HFATIUHC)

-------
RECORD TYPE
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST CATS TIPE LCC KETH
21 3 X C02
S02
NO
14 1 0 C02
SO?
HO
14 071271 0000 1 1 CC2
502
NO
14 071271 0100 1 1 C02
S02
NO
14 071271 0200 1 1 C02
502
NO
14 071271 0300 1 1 CC2
S02
NO
14 071271 040C 1 1 CQ2
502
NO
14 C71271 0500 1 1 CC2
502
NO
14 071271 OtOC 1 1 CC2
502
NO
14 071271 07CC 1 1 C02
502
NC
14 20 CC2
502
NO
14 2 X C02
502
NO
14 30 C02
S02
NO
14 071271 0100 3 1 CC2
502
NC

= .1060
X
-
»
« 1710
* 1725
= 1710
16')5
= 1740
- 1770
1785
1815
=
- .1220
B
- .140
1785

C2
UHC
NO 2
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NO 2
02
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N02
C2
UHC
NO 2
C2
UHC
NO 2
02
UHC
N02

x .0820 CC
MOL
- CC
• MOL
- .042 CC
MOL
x .036 CC
- MOL
x .037 CO
MOL
= .C37 CO
MOL
* .037 CO
MOL
x .036 CO
x MOL
x .C37 CO
x HOL
= .037 CO
MOL
X
CO
x MOl
. .0660 CO
MOL
» CO
MOL
x .068 CO
MOL

UGTIHCI x
UCT.HC, :
KGTIHCI *
UGTIHCI -
UGTIHCI -
WGTIHCI -
WGTIHCI x
kGTIHCI x
•C.TIHCI x
UGTIHCI =
UGTIHCI x
UGTIHCI ^
UGTIHCI x
h&TIHCI x

"2
HEATIUHCI
^2
HEATI UHC I
N2
HEJTIUHC 1
N2
HEATIUHC)
N2
HF.ATIUHCI
N2
HFATI UHC I
N2
HEATIUHCI
HEATIUHC I
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI
N2
HEATIUHCI

-------
«fCU*[J  TYPE
TFST C»T£ TIME LCC
14 071271 0100 3


14 071271 0200 3


14 071271 0200 3


14 0)1271 0300 3


14 C71271 0300 3


14 071271 0400 3


14 C71271 040C 3


14 071271 05CC 3


14 071271 050C 3


14 0712)1 060C 3


14 071271 0600 3


14 071271 0700 3


14 C71271 0700 3


14 3


HETH
1 CD2
S02
NO
1 C02
SQ2
NO
1 C02
S02
NO
1 CC2
S02
NO
1 CC2
S02
NC
1 C02
S02
NO
1 CC2
S02
NO
1 C02
SO?
KO
1 CC2
SC12
NCI
1 C02
S02
NO
1 C02
S02
NO
i co:
scz
NO
1 CC2
S02
NO
X CC2
502
NO

s
3
205
* .142
* 1725
•
»
a
200
• .142
- 1755
•
^
X
200
* .140
= 1785
=
«
=
195
» .140
" 1830
*
s
=
210
• .142
= Id 1 5
-
*
=
205
- .142
* 1765
•
,
=
205
« .1260
=
*

C2
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
N02
02
UHC
NLJ2
02
UHC
NO 2
02
UHC
NO 2
02
UHC
N112
C2
UHC
N02
02
UHC
N02
U2
UHC
N02
U2
UHC
N02
02
UHC
NQ2
02
UHC
N02

CC
MOL
-
• .072 CC
MOL
-
CO
MOL
•
- .071 CO
• HCL
•
CO
HOL
-
- ,C71 CO
MOL
•
CC
* MGL
"
- .071 CC
HOL
•
CO
MOL
*
* .070 CC
HOL
•
CO
» MOL
•
* .C71 CC
= HOL
•
* CO
= MCL
"
» .OtlO CD
= MOL
*

.
hGT(HCI -

=
hGTIHC) =

s
ULiT(HC) *

_
HUT(HC) -

B
kGT(HC) *

=
hGT(HC» «

£
hGT (HC) *

£
kGTIHCI =

f
kGTIHCI >

x
kGT{HCI =

_
hGT(HC) •

_
HGTIHCI =

^
hGTIHCI =

_
hGTIHC) -


N'2
"FATIUHO

N2
HFJTIUHC)

N2
HEATIUHCI

N2
Hf ATIUHC 1

K2
Ht ATI UHC)

N,
H64TIUHC)

N2
HE AT(UHf )

M2
HTSTIUHC 1

^2
HE AT( UHC )

K2
HRATIUHC)

N2
HE«T(UHCI

N2
Ht AT(UHC)

N2
HtATIUHC 1

K2
HEAT (UHC I


-------
RECORD TYPE
FLUE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLt GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLUE GAS
TEST 0»TE TIME LCC METH
15 1 0 C02
S02
NU
15 C61271 CCOC 1 1 CD2
SO?
NO
15 C61271 0100 1 1 CC2
S02
NO
15 C81271 C2CC 1 1 CC2
S02
NO
15 061271 C3CO 1 1 CG2
SO?
NO
15 C61271 040C 1 1 CC2
502
NO
15 C61271 050C 1 1 C02
SO?
NO
15 OH1271 OtOO 1 1 C02
S02
NO
15 C81271 0700 1 1 C02
S02
NO
15 20 C02
sn2
NO
15 2 X C02
SC2
NU
15 30 CC2
SJ2
NO
15 CB12M C100 ? 1 CC2
SO?
NO
15 CC1271 0100 3 1 CC2
SO?
NO

-
- 2070
• 2115
* 2115
= 2100
= 2115
- 2115
- 2115
* 2115
_
- .1220
•
= .UB
275

02
UllC
N02
U2
UllC
NU2
02
UMC
NO 2
C2
UHC
Nil 2
C2
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NH2
02
UHC
N02
02
UHC
NO?
02
UHC
NO 2
0?
UHC
Nil 2
02
UHC
NO 2

» cci
• .C36 CO
« MOL
cu
MOL
- .0660 CO
MOL
CO
= HOL
= .070 CO
MOL
CO
MCL

^GT(HC) -
UGTIHC) =
hCTIHCI =
kGTIHC) -
kGTIHCI =
kGTIHCI =
WGTIhCI =
UGTIHCI -
kGT(HC) -
WGTIHCI =
UGKHCI =
k,GT(HCI -
kGKHCI -
hGTIHCI =

K2
HFATIUHCI
N2
HE AT(UHC I
N2
HE ATI UHC 1
N2
"FATIUHCI
N2
t-r*TIUHCI
N2
WEATIUHC 1
K2
HEATIUHf 1
N2
HE AT I UHC 1
H2
HFATIUHCI
<•:!
"F»T(UHr 1
N2
HE ATI UHC 1
K2
HfATIUhCI
N2
Hf UTIUHC 1
N2
HFATIUHC 1

-------
RECQKO TVPE
FLUF GAS
FLLE GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE GAS
FLLF GAS
FLUE GAS
FLUE GAS
FLUE GAS
FLLE- GAS
FLCE GAS
FLUC GAS
FLUE GAS
TEST CATt TIME LCC PETH
15 C81271 C20C 2 1 C02
S02
NO
15 CE1271 0200 3 1 C02
S02
NO
15 081271 030C 2 1 C02
S02
NO
15 C81271 C5CC 3 1 C02
S02
NO
15 Cfll2M 0500 3 1 CC2
S02
NO
15 OU1271 0600 3 1 C02
S02
NO
15 CB1271 0700 3 1 C02
S02
NO
15 3 X C02
502
NO
22 1 0 C02
S02
NO
22 CS1271 OOOC 1 1 C02
502
NO
22 091271 0100 1 1 CC2
SO 2
NO
22 C91271 020C 1 1 CC2
S02
NO
22 09U71 C30C 1 1 C02
502
NO
22 091271 040C 1 1 C02
S02
NC

« .138
265
* .136
= .140
240
235
245
• .1220
-
* 930
» 855
750
750
675

02
UHC
N02
02
UHC
NO 2
C2
UHC
N02
02
UHC
N02
02
UHC
M02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
N02
02
UHC
NU2
02
UHC
NO 2
02
UHC
NO 2
C2
UHC
N02
C2
UHC
M>2

" .069 CO
MCL
CO
« MOl
CC
MOL
CO
- MDL
CC
MOL
CC
MOL
CO
• MOL
« .0670 C.C
* MOL
CO
MfL
- .042 CO
MOL
- .C42 CO
* MPL
» .042 CH
MCL
= .042 CO
= MOL
= .042 CC
MUL
a

fcGTIHCI «
fcGTIHCI •
fcGTIHCI «
fcGTIHC) -
fcGTIHCI «
hGTIHCI =
c
hGTIHCI =
fcGTIHCI »
fcGTIHCI =

kGTIHCI =
hGTIHCI -
fcGTIHCI =
hGTIHCI =

K2
HEAT IUHC 1
hEATIUHC 1
N2
HFATI UHC )
HF.ATIUHCI
^•2
HFATIUHC 1
MFATIUHC 1
N2
MF ATI UHC)
HEATIUHC 1
HEATIUHCI
N2
HF AT IUHC |
N2
HEATIUhC 1
N2
HFATIUHC 1
N2
HFATIUhC 1
M2
Hf: ATI UhC 1

-------
RECORD TYPE
FLLE GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLE GAS
FLLF GAS
FLLE GAS
FLLE GAS
FLUE GAS
FLLE GAS
TEST C»I[ TIFE ICC FETH
22 051271 05CO 1 1 C02
S02
NO
22 091/71 OtOC 1 1 C02
S02
NO
22 05U71 07CC 1 1 C02
S02
NO
22 20 C02
S02
NO
22 2 X CO?
S02
NO
22 30 CC2
S02
NO
22 091271 0100 2) 1 CC2
S02
NO
22 051271 02CC 3 1 CC2
S02
NO
22 C51271 0300 3 1 CC2
S02
NO
22 05U71 C40C 2 1 CC2
S(12
HC
22 051271 C5CC 3 1 C02
S02
NO
22 051271 CtOC 3 1 CC2
S02
NO
22 051271 C7CC 3 1 C02
S02
NO
22 3 1 C02
S02
KO

600
630
= 690
-
* .1310
=
=• .138
1920
=• .138
- 2040
> .139
=• 2040
- .136
= 2040
• .134
- 2130
« .134
- . 136
200

02
UHC
NLJ2
C2
UHC
N02
C2
UHC
NO 2
02
UHC
K02
02
UHC
NO 2
02
UHC
M02
02
UHC
N02
02
UHC
N02
C2
UHC
N02
02
UHC
NO 2
02
UHC
NO 2
02
UHC
NU2
02
UHC
NU2
C2
UHC
N02

* .042 CC
MCL
- .042 CO
« MOL
- .042 CC
MOL
CC
* MHL
- .0560 CC
MOL
CO
MOL
- .C56 CO
MUL
» .058 CO
MOL
= .056 CO
*° MOL
CU
= MOL
CO
MCL
CO
= MOL
CO
« MOL
CC
MOL

kGTtHCI >
kGTIHCI *
kGTIHCI -
fcGTIHCI =
kGTIHCI >
kGTIHCI =
kGTIHCI =
UGTIHCI -
kGTIHCI =
kGTIHCI =
kGTIHCI =
kGTIHCI *
kGTIHCI «
kGTIHCI =

KEdTIUHC 1
M2
HEATIUhC 1
N2
HEAT(UHC)
H2
HfATIUHC)
M2
Hf ATIUHCI
M2
HEATILhCI
Hf.ATIUHCI
N2
Hf ATIUHCI
N2
HfATIUHC 1
Hf ATIUHCI
N2
HEAKUHC 1
H2
HEATIUHCI
N2
HE ATI UHC I
N2
HEATIUHCI

-------
 RCCURb lift  TEST    CATE






 FLLE  GAS       22
CONSUMPTION







CONSUMPTION






CUNSOMPT10N







CONSUMPTION







CONSUMPTION
               11
12






07
CONSUMPTION   06
CONSUMPTION   01
CONSUMPTION







CONSUMPTION







CONSUMPTION







CONSUMPTION







CONSUMPTION







CUNSUMPTION
18







13







04'







05







10







20
CONSUMPTION    02







CONSUMPTION    03







CCNSUMPTICJN    17







CONSUMPTION    1')
TIME LCC HETH
3 X C02
S02
NO
CCAL
GAS
CCAL
GAS
CCAL
GAS
COAL
GAS
COAL
GAS
CCAL
GAS
COAL
GAS
roAL
GAS
COAL
GAS
CCAL
GAS
CCAL
CAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS
COAL
GAS



= .1260
TEMP
TEMP
TFMP
TEMP
TFMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TfMP
TEMP
TEMP
TEMP
TEMP
TEMP
- 85.
- aj.
* 63.
= 83.
: •*•
- 90.
; "•
» 48.
= 32.
= 63.
= 64^
- 65.
= 26.
« 66.
= 66.
65.
- 45.
- 50.
0
,5
7
9
2
1
8
3
3
2
0
0
4
0
0
9
2
2
4
5

C2
LIHC
N02
TEMPIFAI
TEMPIFAI
TEMPIFA)
TEMPIFAI
TFMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TEMPIFAI
TCMPIFAI
TEMPIFAI
TtMPIFAl

* .0630
a
V
» 150
150
150
150
150
150
150
150
150
150
150
- 150
= 150
150
150
150
150

CC
MOL
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS
GAS



N2
kGTIHCI • HEATIUHCI
FLOk
FLOW
FLOK
FLOU
FLOW
FLOM
FLOh
FLOh
FLOW
FLOW
FLQ1.
FLUW
FLOW
FLOh
FLOH
FLOW
FLON
GAS
GAS
GAS
GAS
= GAS
GAS
* GA S
GAS
= GAS
GAS
2S2 GAS
400 GAS
374 G«S
CAS
GAS
GAS
= GAS
PRES
PPE S
PRFS
PRFS
PPES
PRE S
PRE?
PhES
PRES
PKES
PPES
PPFS
PBFS
PkES
PfES
PkES
PRFS

-------
RfcCDRL) TYPE
CONSUMPTION
CCNSUMPTION
CCKSUMPTIEJN
CONSUMPTIUN
AIR
AIR
IIP
AIR
AIR
Alk
AIR
AIR
AIH
Al £
AIR
AIR
AIR
Alk
AIR
AIR
AIR
AIR
AIR
AIR
AIR
HEATER
HtATER
HEATER
HfcATER
MEATCR
HEATFR
HtATER
HEATE R
HFATtR
HEATER
HEATER
HEATER
HEATER
HEATFR
HEATER
HFATf-R
HEATER
HEATER
Mf. ATER
HEATER
HEATER
TEST
21
14
15
22
01
06
Ob
06
06
06
06
06
06
06
18
18
19
la
la
la
la
la
13
13
13
CATE

151171
151171
151171
161171
1611(1
1611M
161171
161171
161171
161111
161171
1)1171
171171
171171
171111
171171
171171
171171
171171
181171
181171
TIME LDC

0600
220C
2300
COCO
01CC
0200
0300
0400
0500
06CC
2300
OCCC
01CO
02CC
0300
0400
050C
0600
2300
0000
0100
CETH

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
COAL
GAS TEHP
COAL
GAS TEHP
CCAL
GAS TEHP
COIL
GAS TEHP
TEHPIA1RI
TEHPIAIRI
TEMPIAIR)
TEHPIAIRI
TFHPIAIR)
TEHPIAIRI
TEMPUIR)
TEHPIAIRI
TEHPIAIRI
TEHPUIR)
TEHPIAIR)
TEHPIAIR)
TEHPIAIRI
TEHPIAIR)
TFHPIAIR)
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TFHPIAIR!
- 32.4
- 47.0
•= 46.3
- 63.2
223
22t
228
228
226
228
228
228
233
237
-
237
237
236
236
236
236
237
- 240
240
242
TEHPIFAI
TEHPIFAI
TEHP(FA)
TFMPIFA)
TEMPIGASI
TEMPIGASI
TFHHGAS)
TFHPIGAS)
TEHP(GAS)
TFMPIGASI
TEHPIGASI
TFHPIGAS)
TEHP(GAS)
TEHPIGASI
TEMPI CAS)
TEMPIGAS)
TEMPIGASI
TEHPIGASI
TFMPIGAS)
TfMPICAS)
TfHPIGASI
TEHPIGAS)
TEMPICAS)
TEMPIGASI
TFMPIGAS )
150 GAS FLU*
150 GAS FlOfc
150 GAS FLOk
150 GAS FLOU
329
332
331
331
331
331
330
= 330
331
332
-
321
320
320
320
320
= 320
» 319
316
316
316
CAS  PF.FS







GAS  PRES






GAS  PRES






GAS  PISES

-------
REC.UKU TYPE  TEST    CME    TIME  LHC  PfTH
MR HEATER
AIR ME/1TER
AIR HEATER
MR HEATFR
All- HEATI-«
AIR HIATER
A I P HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR H F A T I R
AIR HEATER
AIR HEATER
AIR HEATER
AIR HFATER
AIR HEATER
AIR HEATER
AIR HFATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATFR
13
13
13
13
13
04
04
04
04
04
04
04
04
05
05
05
05
05
05
05
05
05
10
10
10
10
10
161171 C2CC
141171 0300
161171 0400
181171 C5CC
181171 060C
1C1171
151171
191171
191171
151171
mm
191U1
151171
211171
2211)1
2211J1
2211/1
221171
2211 71
221171
221171
221171
231171
231171
231171
231171
231171
2300
COCO
0100
02CO
030C
040C
C500
0600
230C
OCCO
01CO
0200
0300
0400
0500
C60C
C700
2000
C10C
020C
0300
0400
1 TEMPMIR)
1 TFMPIA1H
1 TEMPIAIR)
1 TFMPIAIR)
1 TEMFIAIRI
1 TEKP(AIR)
1 TEMP(AIR)
1 TEHPIAIRI
1 TEHPIAIRI
1 TEHP(AIR)
1 TEPPIAIPI
1 TEMPI AIRI
1 TEMPIA1RI
1 TEMPIAIRI
1 TEKKAIRI
1 TEKPIAIR)
1 TFMPIAIRI
1 TFPPIAIRI
1 TEHKAIRI
1 TFMPUIR)
1 TEMPIAIP)
1 TFMPIAIR)
1 TEMPI AIRI
1 TEHPIAIRI
1 TEMPIAIR)
1 TEMPIAIRI
1 TEMPIAIR)
238 TEHPICASI
» 234 TEMPICASI
235 TEHPICASI
232 TEMPIGAS)
233 TEMPILASI
" 234
234
* 235
235
236
236
23t
235
235
231
235
235
235
235
235
235
235
235
235
236
236
237
TEMPIGAS)
TF:MP(l,ASI
TEMPIGAS)
TEMPIGASI
UMPIGASI
TEMPIGAS)
TEMPIGAS)
TEMPIGAS)
TEMPIGAS)
TFMPIGASI
TEMPIGAS)
TEMP (GAS)
TEMPIGAS)
TEMPIGASI
TFMPIGASI
TfMPIGAS!
TEMPIGAS)
TfHPICASI
TEMPIGASI
TEMPIGASI
TFMPIGAS)
TEMPIGASI
= 315
* 314
214
313
314
320
321
321
322
322
321
321
321
309
312
312
312
313
313
314
314
317
323
321
» 322
323
323

-------
RECORD  TYPE  TEST
                              MME  LEC   CETH
AIR
Alk
Alf
AIR
AIR
AIR
AIR
Alk
Alk
AIR
AIR
AIR
Alk
AIR
AIR
AIK
AlH
AIR
A18
AIR
AIR
AIP
AIR
AIR
Alk
AIR
AIR
HEATER
HEATER
HEATER
HEATLk
HEATLP
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATf R
Hf ATER
HEATER
HEATER
HiATi R
HEATFR
Ht ATF k
HEAT! R
HfATER
HEATEE,
HFATFF
HEATER
HEATER
HFATtR
HEATER
HEATER
10
10
10
20
23
20
20
20
20
20
20
02
02
02
02
02
02
U2
02
02
03
03
03
03
03
03
03
231171
231171
231171
241171
241111
241171
241171
241171
241171
2411)1
241171
2S1171
301171
301171
301171
301171
301171
301171
3C1171
301171
301171
011271
011271
C11271
011271
011271
011271
C500
C6CC
070C
0000
C1GC
0200
C300
040C
0500
CtCC
C700
02JC
OOGO
0100
02CC
0300
C40C
CbOC
C60C
C7CC
2300
JOOC
010C
0200
03CC
040C
C5CC
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TEMPCAIRI
TEMP(AIR)
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TE"PUI«I
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
Tf MPIAIPI
Tf MPIA1R)
TFMPIAIRI
TfMPIAIRI
TEMPIAIRI
TfMPIAIRI
TEMP(AIP)
TfMPIAIRI
HMPIAIRI
TFMPIAIRI
Tl "PIAIRI
TEMPIAIRI
TfMPIAIRI
TEMH AI R)
TEMPIAIRI
Tf MFIAIRI
236
* 236
234
234
234
234
234
234
234
234
234
233
233
233
233
233
= 233
233
» 234
234
234
234
= 234
234
234
* 234
234
TEMPICASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGAS)
TFMPIGASI
TEMPICASI
TFMPIGASI
TtMf'(GAS)
TFMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGAS)
TEMPIGAS)
TFMP IGASI
TEMPIGASI
TEMPIGASI
TtMPIGASI
TEMPIGASI
Tf HP IGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPICASI
323
323
• 324
306
306
306
306
306
306
306
306
323
323
323
324
32i>
326
326
= 32t>
327
327
327
327
327
- 32/
327
327

-------
kfCURO TYPE  TEST
                           TICt  LCC  CETH
AlK
AIR
AID
AIR
AIR
AIR
Alt
AIR
A1K
AIR
A If
AIR
AIR
AIR
AIR
AIR
AIP
AIP
AIR
Alfc
AIR
tie
AIR
AIR
AIR
AIR
AI R
HEATER
HtATER
WATER
HEAEEF.
HEATER
htATEP
HEATER
HEATER
HEATER
HEATER
HEATtR
HEAThR
HEATER
HEATEK
HEATER
HEATER
HE ATtK
HEATER
Hf ATER
HEATER
Hf ATEh
HEATER
HEATER
HEATER
HEATFR
HEATEF
HEATtR
Oj
17
17
17
17
n
17
17
17
17
19
19
19
19
19
19
IV
19
19
19
19
21
21
21
21
21
21
0112)1
011271
021271
021271
C21271
021271
021271
021271
0212)1
021271
011271
011271
011271
021271
021271
0212(1
0212/1
021271
021271
021271
0212)1
031271
041271
0412)1
0412)1
0412)1
041271
C(Cc
230C
OOOC
0100
0200
030C
0400
0500
060C
070C
21CC
2200
230C
cooc
010C
020C
0300
040C
0500
060C
070C
2300
OOOC
010C
0200
C3CC
0400
1 TEHPIAIRI
1 TEMR(AIR)
1 TEHP(AIR)
1 TEMPIAIRI
1 TEHF(AIR)
1 TE^PIAIRI
1 TEMPIAIRI
1 TEHP(AIR)
1 TCMP(AIR)
1 TE1PIAIRI
1 TCHPIAIR)
1 TEHPIAIRI
1 TEHP(AIR)
1 TEMPIA1R)
1 TEMPIAIRI
1 TFMPUIRI
1 TEKPUIPI
1 TEMPIAIRI
1 TEMPIAIRI
1 TFMPIAIRI
1 TEMP(AIR)
1 TEHPIAIRI
1 TEMPIAIRI
1 TEHPIAIR)
1 TEMPIAIRI
1 TEHPIAIRI
1 TEMPIAIRI
234
223
223
223
223
223
223
231
« 242
238
23!)
» 235
235
236
236
236
236
236
23t
• 236
235
234
233
232
232
232
232
TEMPIGASI
TEMPIGAS)
TtMPIGASI
TEMPIGASI
TFHPIGASI
TEMPIGASI
TEMPIGASI
TEMP (GAS)
TEMPIGASI
TEMPICASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TFMPIGASI
TEMP IGASI
TEMT (GAS)
TEMPIGASI
TEMPIGASI
TFMKGASI
TEMPIGAS)
TEMPIGASI
TEMPIGASI
TEMMGAS 1
TEMPIGAS)
TfMPICASI
TEMP IGAS)
TFMP IGASI
328
319
319
« 319
31
-------
RELURU TYPE  TEST
                            TIKE   LCC   PETH
A1K
AIR
AIH
AIK
AIK
A IF.
AIK
AIR
Alk
AID
AIK
AIK
AIK
AIK
AIK
AIK
AIR
AIK
AIK
«IK
AIK
AIK
AIK
AIK
AIK
AIK
AIR
HIATFF.
HIATEF
rir ATER
HtATER
HEATEK
HEATIK
HtATEB
HEATER
HEATER
Ht ATE K
HFATEK
HE ATfR
HEATER
HFATFR
Hf ATER
Ht ATFK
Hf ATEK
HEATER
HEATEK
HEATEK
HtATEK
HEATER
HFATEK
HFATfR
HtATEK
HE ATEK
HEATER
21
il
21
14
11
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
22
22
22
22
22
22
11
041271
041271
041271
061271
071271
071271
071271
0(1271
071271
071271
071271
071271
CE1271
081271
Odl271
C812M
081271
CB1271
CS1271
OB1271
CS1271
091271
C",1271
CS12)1
OS1271
091271
081171
0500
otoc
070C
230C
COOC
0130
o;cc
0300
04CC
0500
0(00
07CC
JOOC
010C
02CC
030C
04CC
0500
060C
07CC
0000
C1CC
020C
030C
04CC
0500
uoc
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
TEKPIAIRI
1FMPIAIKI
TEMPIAIRI
TFPPIAIKI
TFMPI4IRI
TECPIAIRI
TEWPIAIR)
TFMP(AIR)
TEMPIAIRI
TEHPIAIRI
TEKPIAIRI
TEMP(AIR)
TEKPIAIRI
TENP(AIB)
TEKP(AIR)
TEMPIAIRI
TEMPIAIKI
TEMPIAIRI.
TEKPU1R-]
TEMPI AIR)
TEMPIAIRI
TEMPIAIKI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIRI
TEMPIAIRI
232
232
234
"
=
233
217
1S9
199
2\t
232
235
237
237
237
262
257
257
257
263
312
319
322
320
322
•= 322
162
TEMPICASI
TfMPICASI
TFMPIGASI *
TtMPICASI
TFMPIGASI
TFMPIGASI
TLMPICASI
TtMPICASI
TtMPICASI
TFMPICASI
TEMPIGASI
TEMPIC.ASI
TEMPIGASI *
TFMPIGASI
TFMPIGASI
TTHPIGASI
TFMPIGAS) =
TEMPIGASI
TFMPIGASI
TFMPIGASI
TEMPICASI
TEMPIGASI
TFMPIGASI
TFMP(CAS) =
TFMPIGASI
TFMFIGASI
TEMPIGASI
336
335
339


420
3S9
391
388
3U6
391
393
385
385
396
355
332
377
370
367
4C6
400
397
39-0
3<3U
399
300

-------
PEL'JHU TVPc   TEST
AH
AH
AH
SIP
AIK
A1K
AIR
AH
AH
AIK
A IF.
AH
AH
All-
AIR
AH
AH
AIP
AH
Alk
AH
AIR
AH
AIR
AIR
AI R
AIR
HEATER
HEATtR
HEATER
HtATFK
HEATEk
HEATER
HIATik
ME AT HP
HEATFk
HEATFR
HIATEP
HFATFk
HfATER
htAIER
HEATER
HEATER
HLATEk
HEATER
HFATER
HEATER
HEATER
HEATER
HEATER
HEATER
HfATER
HFATER
HEATEk
11
11
11
11
11
11
11
11
11
11
09
09
09
09
09
09
09
09
09
09
09
08
03
08
08
03
08
OdlUl
081171
oeim
OU1171
081171
081171
CtlHl
001171
081171
0811 71
091171
091171
091171
091171
091171
091171
091171
091171
091171
091171
091171
101071
101071
101C71
101C71
101071
101C71
1500
UOO
170C
1800
190C
2000
2100
220C
2300
ocoo
09CC
1000
HOC
1200
1300
1400
1500
HOC
170C
leoc
1900
0900
1CCC
11CO
1200
1300
1400
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPUIfiJ
TEMPIAIRI
TEMPIAIR]
TEHFIAIPI
TECPIAIRI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIR)
TECPIAIRI
TEMPIAIRI
TFMPIAIRI
TEMPIAIRI
TEMFIAIRI
TEKFIAIR)
TEMPIAIR)
IEMPIAHI
TEMPIAIRI
TENPIA1RI
TEMPIAIRI
TEMPIAIRI
TEMPIAIPI
TEMPIAIRI
TEMPIAIPI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
158
* 166
* 169
173
* 163
165
•= 169
169
169
170
163
160
158
157
156
157
160
161
163
164
160
162
164
170
175
17b
178
Tf MPICASI
TEMPIGASI
TEMPICASI
TEMPIGASI
TEMPIGASI
TFHPIGASI
TFMPIGASI
TFMPIGASI
TFMPIGASJ
TEMPIGASI
TEMPItASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
Tf MPIGASI
TFMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TfMP(GAS)
TEMPIGASI
TEHPIGASI
TEMPIGAS)
TFMPIGASI
TFMPIGAS)
301
300
302
3C4
302
306
300
302
* 303
302
299
299
296
299
299
301
303
301
302
303
300
303
302
305
308
310
310

-------
RECORD  TYPE  TEST
                              TIME  LOG   METH
AIR
MK
AIR
AIR
All-
AIR
AIR
AIR
AIR
AIR
AIR
AIP
AIR
AIR
AIR
AIR
AIR
UK
AIR
AIR
AIR
AIP
AIK
AIR
AIR
AIR
AIR
HEATER
HEATER
HEATER
HEATER
HEATER
HtATfR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATEF
WATER
HEATEK
HIATEK
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
08
oa
OB
08
12
12
12
12
12
12
12
12
12
12
07
07
07
07
07
07
07
07
07
01
01
01
01
101C71
101071
101071
101071
111171
111171
111171
111171
111171
111171
111171
111171
111171
111171
121171
121171
121171
121171
121171
121171
121171
121171
121171
141171
111171
151171
1511)1
150C
1600
1700
1£CC
090C
1000
1100
12CC
13CC
140C
150C
160C
1700
leoc
0900
1CCO
1100
1200
1300
HOC
1500
1600
170C
220C
2300
0000
0100
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPIAIRI
TFMPIAIRI
UHFUIRI
TEMPIAIR)
TEMPIAIR)
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIA1KI
TEHPIAIR)
TEMPU1RI
TEHPIAIR)
TEI"P(AIR)
TEMPIAIRI
TEMPIAIRI
TE»PIA1RI
TEMPIAIR)
TEHPIA1RI
TEMPIAIRI
TEHPIAIR)
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TFMPIAIR)
TEMPIAIRI
TEMPIAIRI
180
17U
175
176
173
175
170
170
17*
173
175
175
1BD
175
164
172
175
178
1U2
185
173
177
176
15t>
15<)
159
157
TEMPIGASI
TEHPIGASI
TFMPIGASI »
TEMPIGAS) =
TFHPIGASI
TEMPIGASI =
TFMPIGASI
TFHPIGASI
TEMPICASI
TIMPIGASI
TEMP (GAS I
TEHPIGASI
TEMPIGASI
TfMPIGASI
TEMPIGASI
TFMPIGAS) ~
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGAS)
TFHPIGASI
TEMPIGASI
TEMPIGASI =
308
310
311
313
303
306
304
306
307
3C9
310
309
310
310
305
310
310
311
312
311
313
316
312
315
312
311
310

-------
KLCUKU TYPE  TEST
                           TIME  ICC   KETH
AIR
AIK
AIR
AIM
AIR
AI K
AIK
AIK
A 1H
Alt
AIR
AIK
AIK
AIK
AIR
AIK
All.
AIM
AIR
Alh
AIK
AIR
AIK
AIR
AIR
A IB
AIP
HEATER
HtATtK
htATEK
HEATEK
HEATEK
HtATEK
HEATER
HEATEK
HfATER
HEATEK
HEATEk
HEATER
HEATER
HEATER
HEATER
Hf ATEK
HEATER
HEATER
HEATER
HEATER
HFATER
HEATER
HEATER
HEATER
HEATER
HEATEK
HEATER
01
01
01
01
01
06
Oo
06
06
06
Id
13
Id
la
la
Id
18
Id
u
11
1 3
H
13
n
13
13
13
151171
151171
151171
151171
151171
161171
161171
1611 H
161171
161171
161171
171171
171171
171171
171171
171171
171171
171171
171171
HH171
1811 11
1E1171
1
-------
RECORD t»PE  TEST
                            TIME   ICC  CETH
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
A1K
All.
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATtk
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
04
04
04
04
04
04
04
04
05
05
05
05
05
05
05
05
05
10
10
10
10
10
10
10
10
20
20
laim
191171
191171
191171
1S1171
1911)1
191171
191171
211171
221171
221171
221171
221171
221171
221171
221171
221171
231171
231111
231171
231171
231171
231171
231171
23UJ1
241171
241171
2300
0000
0100
0200
0300
0400
0500
060C
2300
OCOC
0100
0200
030G
0400
0500
otoc
0700
oooc
0100
0200
0300
0400
0500
060C
C700
0000
0100
2
2
2
2
2



2
2
2
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEMPIAIR)
TEMPIAIRI
TEHPIAIRI
TEMPIAIR)
TEHPIAIRI
TEfPlAIR)
TFMP(AIR)
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEMPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
155
149
154
° 166
.
=
-
* 167
171
3 166
167
167
165
* 165
164
170
163
162
161
159
161
= 166
161
152
163
184
193
TEMPIGASI
TEMPICAS)
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEMPIGASI
TEMPIGASI
TEHPIGASI
TEHPICASI
TEMPIGASI
TEHPIGASI
TEHPIGASI
TEMP (GAS I
TEMPIGASI
TEHPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEMPIGASI
TEHPIGASI
TFMPIGASI
TEHPIGASI
TEMPIGASI
TFMPIGASI
TEMPIGASI
TEMPIGASI
306
305
304
305
-
-
•
306
280
* 284
287
* 280
2B7
= 2B8
288
293
288
304
297
290
298
* 299
299
299
= 298
280
- 277

-------
RECOUP TYPE  TEST
                           TIKE  ICC   KETH
AIK
Alt
AIR
AIR
AIR
AIR
All.
Alk
AIR
AIR
AIR
AIR
AIR
AIK
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
Alk
AIR
AIK
AIK
AIR
HEATEH
HEATER
HEATER
HEATER
HEATER
HEATER
HEATCR
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HfATER
HEATFR
HEATER
HEATER
HEATER
HEATER
HEATER
20
20
20
20
20
20
02
02
02
02
02
02
02
02
03
03
03
03
03
03
03
03
03
17
17
17
ir
241171
241171
211171
241171
241171
2411il
301171
301171
301171
301171
301171
301171
301171
301171
301171
011271
011271
011271
011271
011271
011271
011271
011271
011271
021271
021271
021271
G20C
0300
0400
C500
0600
070C
0000
0100
0200
0300
0400
0500
0600
C7CC
2300
OOOC
010C
0200
030C
040C
0500
060C
070C
230C
0000
010C
0200
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHP(AIR)
TEHPIAIRI
TEMPIAIRI
TEKPIAIR)
TEHPIAIRI
TEHPIAIRI
TEMPIAIRI
TEHPIAIRI
TEMPIAIR)
IEMPIA1RI
TEHPIAIRJ
TEMP(AIR)
TEHPIAIRI
TEHPIAIRI
TEHFIAIPI
TEHPIAIPI
TEMPIA1RI
TEHFIAIR)
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
TEHPIAIRI
202
» 197
193
196
" 196
• 185
• 162
= 168
« 167
* 167
172
» 169
* 168
=
157
159
156
152
- 15B
158
162
- 163
165
185
177
159
156
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TFHPIGASI
TFHPIGASI
TEHPIGASI
TEHPICASI
TEHPIGASI
TEMPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHP IGASI
TEMF IGASI
TFHPIGASI
TEHPIGASI
TFHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
TEHPIGASI
276
276
277
276
276
282
295
257
= 299
• 2S9
306
302
310
302
• 291
• 298
' 291
• 290
297
" 298
- 299
299
299
297
295
295
294

-------
RECtMD TYPE   TEST
                            TIPC   LCC   KETH
AIB
AIR
AlK
AIR
AIR
AIR
AIR
AIR
AIR
AIR
All.
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
AIR
Alk
AIR
hEATtR
HFATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATtR
HEATtR
HEATER
HEATtf
HEATEf
HEATFR
HEATEP
HEATER
HEATEP
HEATER
HfATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
HEATER
17
17
17
17
17
19
19
19
19
19
IV
19
19
19
19
19
21
21
21
21
21
21
21
21
l
-------
RECUkl) TVPt  TEST
                            TIKE   LCC  KETH
AIR HEATER
Al R HEATER
AIR HEATER
AIR HEATER
AIR HEATEK
AIR HEATEP
AIH HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HEATER
AIR HbATEK
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
14
1*
14
14
14
15
15
15
15
15
15
22
22
22
22
22
22
22
09
03
12
07
01
06
la
13
04
C71271
071271
C71271
071271
071271
C81271
031271
C81271
061271
C81271
OB1271
081271
C91271
091271
091271
091271
091271
091271









0300
0400
0500
060C
0700
010C
0200
0300
04CC
0500
060C
2300
0000
010C
020C
030C
040C
0500









2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
TEMP(AIR)
TEMPIAIRI
TEMF(AIR)
TF.MPIAIRI
TEMPIAIR]
TEMPIAIRI
TFHPUIfil
TEMPIAIR)
TEMPUIRI
TEMPIAIRI
TEI-PIAIRI
TEMPIAIRI
TEMPIAIRI
T6MPIAIR)
TPMPIA1RI
TEMPIAIR)
TEMPIAIRI
TEMPIAIR I
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
TEMP
a 99
98
» 16
- 98
* 98
== 16fl
= 166
164
= 166
166
16B
167
169
169
168
167
168
167
- 78.6
- 86.2
• 88.3
• 93.5
89.9
=« 95.6
= 64.7
- 87.5
• 78.1
TEMPI CAS 1
TEMPIGASI
TEMPIGASI *
TEMPIGA5I
TEMPIGASI *
Tf MP IGAS 1 =
TEMPIGASI
TEMPIGASI «
TEMPIGAS)
TFMPIGASI
TEMPIGASI =
TEMPIGAS) -
TFMPIGASI
TEMPIGAS)
TEMPIGASI
TfMPICAS)
TEMPIGASI
TFMPIGASI
R6L HUMID
REL HUMID
REL HUMID
RFL HUMID
REL HUMID
REL HUMID =
REL HUMID
REL HUMID
REL HUMID
297
297
297
298
21i
3U1
300
300
301
302
303
304
3C3
303
304
304
305
305
.43 PRESSURE
.31 PRESSURE
.29 PRESSURE
.30 FRFSSURF
.45 PRESSURE
.32 PRESSURE
.37 PRESSURE
.39 PRFSSURF
.30 PRESSURE


















- 29.92
- 29.84
= 29.80
• 29.57
= 29.86
• 29.85
- 29.76
» 29.55
» 29.73

-------
RECJkU TYPE  TEST
                           TIHE  LCC  VETH
A f ti I L N T
A M 13 1 1 N T
AMtilt NT
AMbllNT
AMbltNT
AMdlt NT
AMDIFNT
AMFtltNT
AMBHNT
AMEI tNT
AMlil ENT
AMltll NT
[LECTRICAL
ELECTRICAL
LLICTKICAL
I LECTklCAL
ELECTRICAL
F.LLCTF.1CAL
LL F CTk I CAL
ELECTRICAL
ELECTRICAL
tLECTRlCAl
05
10
20
02
03
17
19
21
14
15
11
22
11
09
08
12
07
06
01
la
13
04
0
0
0
0
0
0
0
0
0
0
0
0










TEMP
TFMP
TFMP
TFMP
1EMP
TF-P
TFP P
TEfP
TEMP
IFMP
TEMP
TEFP =
PULV 1
F . D . F AN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. n. FAN 1 =
PULV 1
F. C. FAN 1 =
PULV 1
F. D. FAN 1 =
PULV 1
F. [). FAN 1 =
70.9
69.8
70.0
77.5
74.5
67.0
70.9
70.5
71.3
76.0
72.0
81. 0
67.0
101.2
64.9
54. H
68.9
102.0
67.1
97. 7
67.1
55.0
71.0
99.2
60.1
86. 1
00.0
79.0
00.0
75.1
57.8
85.9
REL HUMID
REL HUMID *
RFL HUMID
REL HUMIO
REL HUMIC =
REL HUMID
RFL HUMID
RFL HUMID =
RtL HUMID
RFL HUMID
RtL HUMIU
RFL HUMID
PUIV 2 *
F. F. FAN 2 =
PULV 2
F. 1'. FAN 2 =
PULV 2
F. [ . FAN 2 =
PULV 2
t. [. FAN 2 =
PUl V 2 =
F. I). FAN 2 =
PULV 2
F. P. FAN 2 =
PULV 2
F. T . FAN 2 "
PULV 2
F. D. FAN 2 =
PULV 2 =
F. D. FAN 2 =
PULV 2 =
F. U. FAN 2 =
.32
.29
.40
.25
.29
.39
.32
.34
.55
.37
.55
.41
67.4
102.2
04.0
101. t
68.9
108.9
66.3
9C.9
67.6
103.4
71.6
109.8
61.5
93. J
59.3
84.5
00.0
OCol
61.9
91.0
PRESSURE
PRESSURE
PRFSSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE
FRF S SURF
FTSSU1?1"
PRESSURF
PPFSSUKf
"Prssyu-
PULV 3
I. D. FAN
PULV 3
I. D. FAN
PLLV 3
I . C . FAN
PUIV 3
I. 0. FAN
PLLV 3
I. D. FAN
FULV 3
I . F>. F AN
PULV 3
I. D. FAN
PUt V 3
I. '). FAN
PULV 3
I. U. FAN
PLLV 3
I. [). FAN
- 29.9-)
- 29.91
" 29.85
- 29.68
= 30.10
= 30.27
= 30.01
- 29.01
- 29.44
= 29. e3
= 2'.. D8
= 29.22
6 4 a t>
i ~ 183.0
65.6
1 = 177.1
64.0
1 = 1,0.:!
63.6
1 = 194.1
= f 3. 7
1 = 191.2
= 62.3
1 = 184.3
= 57.7
1 -- 162.3
= 56.5
1 -- IO'J.3
= 57.3
1 = 60s 7
= 57.9
1 - 155.9












PULV 4 = 65.4
I. t. ftf. i - 157.::
PULV 4 = c4.',
u r. F.-N ? = lii^i
FULV4 = t,}0L
I. f. r.-.\ 2 = 172.',
PULV 4 = 6-,. 3
I. E. FAN 2 = 155. (
PULV4 = 63.?
I. i;. F-4N 2 = 153.7
PULV 4 = 61,7
I. <". FAN 2 = 172.5
PUL V 4 = 5 7. C
I. T. FAN 2 = 129,^
I. E. FAN 2 = -i4.5
PUl V 4 = }tl. 3
I. C. FAK 2 - 54. a
PULV 4 = 59.0
I. E. FAN 2 = 40.',

-------
PfctflKU TYPt   TEST    DATE    Tl^F   LCC   I*ETH
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTklCAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELECTRICAL
ELLCTRICAL
LLICTRICAL
CCNOITHINS
CONDITIONS
CONDITIONS
CCKD1TIJNS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
05
10
20
02
03
17
19
21
14
15
22
11
C9
09
12
07
06
01
13
13
04
05
POLV
F. D.
PULV
F. IJ.
PULV
F. 0.
POLV
F. D.
PULV
F. D.
PULV
F. D.
PULV
F. D.
PULV
f. D.
PULV
F. 0.
PULV
f. 0.
PULV
f. a.
STtAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAP
STEAM
STEAK
STEAM
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1
FAN 1 «
1
FAN 1 =
1
FAN 1 =
1
FAN 1 =
1 *
FAN 1 =
1
FAN 1 =
1
FAN 1 -
FLCW =
FLCu «
FLOW =
FLOW -
FLOW =
FLOW «
FLCW »
FU'H =
FLCW *
FLOW -
60.0
aa.a
64.6
100.0
SI. 4
89.9
59.7
90.0
58.0
95.0
00.0
74.3
00.0
03.3
59. a
76.8
00.0
78.0
00.0
79.7
59.6
86.2
706. 0
789. a
791.9
794.0
801. 1
799.0
U03.1
804. ti
806.5
810.1
PULV 2
F. L. FAN
PULV 2
f. U. FAN
POLV 2
E. Cu FAN
POLV 2
F. D. FAN
POLV 2
F. C. FAN
PULV 2
F. 0. FAN
PULV 2
f. 0. FAN
PULV 2
f. D. FAN
PULV 2
f, li. FAN
PULV 2
F. [. FAN
PULV 2
F. [. FAN









* 60.3
2 « 97.1
" 66.4
2 - 110.0
* 67.5
2 - 94.3
* 64.4
2 * 99.3
= 60.6
2 * 106.4
= 56.0
2 * 77.4
* 56.9
2 * bfl.S
« 6C. 3
2 - 77.7
- 57.0
2 « 79.7
- 5t.l
2 « 84.2
. 59.9
2 - 94.5









POLV 3
I. P. FAN 1
PULV ?
I. V. FAN 1
PULV 3
I. I). FAN 1
PLLV 3
I. 1). FAN 1
PULV 3
1. D. FAN 1
PULV 3
I. C. FAN 1
PULV 3
I. [i. FAN 1
PLLV 3
I. D. FAN 1
PULV 3
I. U. FAN 1
PULV 3
I. D. FAN 1
PULV 3
1. D. FAN 1









•= 00.
= 110.
* 00.
i 110.
s H.
= 81.
= 580
"125.
0
0
0
0
f"
4
0
1
* 60.3
" 120.1
= 58.
= 96.
= 5d.
= 92.
= 03.
= 77.
' 55*
« 93.
- 57.
= 78.
" 57=
= 1'17.









1
4
B
4
0
e
3
j
0
1
6









PULV 4 =
1= f. FAN 2 =
PUI V 4
I. P. FAN 2 =
PULV 4
I. T. FAN 2 =
PUI V 4 =
I. 0. FAN 2 =
PULV 4
!. r. . FAN 2 =
PLLV 4 =
I. C. FAN 2 "
PULV 4
T. D. FAN 2 =
PULV 4
I. C. FAN 2 =
PULV 4
I. C. FAK 2 «
PULV 4 =
I. El. FAN 2 =
PULV 4
I. I'. FAN 2 '









00.0
95.6
TO.O
13?. 1
!>.B
62.9
57.6
110.0
60o 3
lio.n
57.0
76,4
57.7
78.6
00.0
60. e
56 a 1
11.4
56. fc
57. r
5(. 1
96.1










-------
RECORD WE  TEST
                            TIME  ICC  CETH
CONDITIONS
CONDITIONS
CCN01TIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
CONDITIONS
f.CNDITIUNS
CONDITIONS
10
20
02
03
17
1')
21
1*
15
12
                                             STEUM FLOW  « b!2.1




                                             STEAM F1CH  = 813.1




                                             STEAM FLOH  = 825.3




                                             STEAM FUCU  = 827.1




                                             STtAM FICK  = 828.8




                                             STEAM FUJH  = 030.2




                                             STEAM FLOW  * B31.9




                                             STEAM FLOW  = 835.8




                                             STtAM FLOW  - U37.5




                                             STFAM FLCW  = P39.2

-------
               APPENDIX D

      STUDIES OF THE CHEMICAL STATE
OF SULFUR ADSORBED ON SURFACES OF FLY ASH
              195

-------
                               APPENDIX D
                      STUDIES OF THE CHEMICAL  STATE
                OF SULFUR ADSORBED ON SURFACES OF FLY ASH
 DISCUSSION OF RESULTS OF PHOTOELECTRON SPECTRA OF ADSORBED  SULFUR
 The photoelectron spectrum of sulfur has two  intense peaks  which  allow
 easy identification of the element.   These  arise from electrons being
 ejected from the 2p and 2s levels;  they are referred to  as  the "S2p" and
 "S2s" peaks in spectra.   Both peaks  were found for the fly  ash samples.
 Thus, there is not question that  sulfur is  present in high  concentrations
 on the surfaces of all the specimens.   The  S2p peak is the  more intense,
 allowing good statistics.   Long counts  were takne for this  peak in order
 to get accurate binding  energy measurements of electrons in the S2p state.
 It has been shown that chemical states  of elements can be deduced from
                              1 2
 binding energy measurements.   '
 Figures D1-D10 show the  2p spectra of sulfur  adsorbed on the specimens
 submitted.   Figures D4-D10 include also  a peak due to the ejection of
 electrons  from the 2s  electron level of  silicon.   The second peak in
 Figures D3-D10 will be called  the Si 2s  peak.   The Si 2s peaks were
 measured simultaneously with  the  S2p peaks  because it was convenient
 to  do  so at  the spectrometer  settings used.   For  all spectra shown in
 the report,  the upper  scale on the abscissa indicates binding energy.
 The lower  scale indicates  kinetic energy.   The  relationship between the
 two scales  is:
                   KINETIC  ENERGY = 1487  ev  - BINDING ENERGY
                                                                      1 2
 This relationship  is discussed  more thoroughly  in  attached references.  '
 Figures  Dll  and D12  show S2p spectra of  sulfur  in  K-SO.  and CsSO,, used
 as standards.
 The first  column of  Table  Dl lists binding  energies measured from the
 peaks  in Figures D1-D10.   The second column lists binding energies of
 standard compounds K_SO,,  CaSO,, FeSO ,  FeCSO,)-,  S°, Na S.   The binding
 energies for K_SO   and CaSO, were measured  in this laboratory.   The rest
were taken from literature.   It is seen  that the binding energy of sulfur
 and the  fly ash  samples is too high to correspond  to any valence state
 lower  that +6.  Also,  there is  a closer match to the binding energies of
 sulfates of polyvalent cations  than to monovalent  cations.
                                 196

-------
                                              ORNL-DWG 72-771
                                           FLY ASH 206-3
  200
      S 2p
                                ft
                               tt
V)
a.
o
                                     3
                                      n f
  100
                                                      _LJ_
             180
    170                160

   BINDING ENERGY  (eV)
      I  I
I
                  1310               1320

                         KINETIC ENERGY  (eV)
                            1330
                             Figure Dl
                             197

-------
                                            ORNL-DWG 72-759
   200
o.
o
   100
                                      FLY ASH 203-2
                                S2p
  f\

                                                   i  i  l  I
             <80
 170               160
BINDING ENERGY (eV)
                 1310               1320
                         KINETIC ENERGY (eV)
                            Figure D2
                            198

-------
   140
tn
o.  100
o
                                            ORNL-OWG  72-766
   60
                                        FLY ASH  206-2
             180
              170                160

             BINDING ENERGY  (eV)
      I  I
I  I  I  I
                  1310               1320

                         KINETIC ENERGY (eV)
                                      1330
                             Figure D3
                             199

-------
                                               ORNL-DWG  72-767
  100  —
Q.
O
              170                160
                  ——BINDING ENERGY (eV)
150
                                                   I  I
        I  I
                    1320                1330
                  KINETIC  ENERGY (eV) —*-
     1340
                               Figure D4
                           200

-------
                                             ORNL-DWG 72-762
  100
to
Q.
O
                                            FLY ASH  221-3
                                          Si2s
                             •    • •
                      -jj • .  • !!.»:!<
                      £ s!)f 5<: i< I:*
                        fii^l-'lkp-

                                        1
              170
 160               150

BINDING ENERGY (eV)
                   1320               1330

                          KINETIC  ENERGY (eV)
                        1340
                              Figure D5
                                 201

-------
Q.  200
o
                                                 ORNL-DWG 72- 765
                                              FLY  ASH  203-3
                  S2p
                  i i
                  H
                 V
                                               Si2s
              »
                          ,;!.   .  . 
-------
300
§200
 100-
              S2p
            •J 1

           170
                 I
                                            ORNL-DWG 72-763
                                         FLY ASH  211-3
                                              Si2s
                                              u

                                            ft
                                       i-
                                160                 150

                              BINDING ENERGY (eV)
                1320                1330

                       KINETIC ENERGY (eV)
                                                        1340
                            Figure D7
                                203

-------
   300
       —       S2p
g-  200
   100
       i I
                                              ORNL-DWG 72-764
                                          FLY ASH  211-2
»


&
                                              Si2s

                                               i
                   .
                  ?*•'•

                         !  :''    '
             170
 160                150


BINDING ENERGY  (eV)
                  1320               1330


                          KINETIC ENERGY (eV)
                         1340
                              Figure D8
                                 204

-------
  100
                                             ORNL-DWG 72-760
                                   FLY ASH 216, 2A-2B
                S2p
Q.
o
  50
              170
 160                150

BINDING ENERGY (eV)
                  1320                1330

                          KINETIC ENERGY (eV)
                         1340
                              Figure D9
                                  205

-------
                                               ORNL-DWG 72-761
                                        FLY ASH 816, 3A-3B
  100  -
                                            Si 2s
V)
a.
o
   50 -
              170
 160                150
BINDING ENERGY (eV)
                   1320               1330
                           KINETIC  ENERGY (eV)
                               Figure D10
                                  206

-------
  <00
                                          ORNL-DWG 72-756
tr>
Q.
o
  50
                                         CoSO,;

                                          STD
                  HO                 160

                     ——BINDING ENERGY (eV)
                      KINETIC  ENERGY (eV)
                          Figure Dll
                               207

-------
                                          ORNL-DWG 72-757
  200
ex
o
  100
               K2S04
                STD
                                S2p
       —   *     r • 3 ; *• • j .*  ::
         180
 170                <60
BINDING ENERGY (eV)
                                <320
                      KINETIC ENERGY (eV)
                         1330
                          Figure D12
                                208

-------
                              TABLE Dl
PLY ASH
SAMPLE NO.
203-2
206-2
206-3
203-3
211-2
211-3
216-3A-313
216-2A-2B
221-3
221-2
52p BINDING
ENERGY, ev
  168.6
  168.1
  169.0
  168.5
  168.5
  168.2
  168.8
  168.7
  168.8
  168.8
STANDARDS

  CaS04
  FeS04
  Fe2(S04)3
  K2S04
  Na2S03
 ' S
  Na2S
52p BINDING
ENERGY, ev
  168.6
  168.0
  168.3
  167.3
  165.8
  160.8
                                    209

-------
 DISCUSSION OF THE RESULTS OF SURFACE AREA MEASUREMENTS AND TOTAL  SULFUR
 CONCENTRATION
 The second column of Table D2 lists the surface areas  (meters/gram)
 measured for each of the fly ash samples.   The technique  for measurement
 involved the adsorption of Krypton, using the  theory of Brunauer,  Emmett
 and Teller (BET)  for interpreting the results.   The second column  lists
 the total concentration of sulfur (weight percent) for each sample.   For
 this analysis,  a  weighed portion of the specimen was decomposed in a  bomb
 with sodium metal.   The H_S produced was  vented from the  bomb, trapped,
 and measured titrimetrically.
 The data in columns  2 and 3 of Table D2 were used to estimate the  maximum
 degree to which the  fly ash surfaces could be  covered  with absorbed sulfur
 compounds.   To  do this, it was assumed that the sulfur was entirely segre-
 gated at the surface and that  it was in the form of calcium sulfate.  For
 calcium sulfate the  crystallographic unit  cell  dimensions  are approximately
     o       o        o
 6.1 A x 6.9 A x 6.9  A.   Each unit cell contains  four molecules of  CaSO..
                                                                      4
 With these  assumptions,  and the  total  sulfur concentration data, one  can
 calculate the volume of CaSO,  that  would  coat each specimen.  Dividing
 by  the respective surface  areas,  the average thickness  of  the surface
 layers is obtained.   It will be  assumed that a  "monomolecular layer"  is
                                             o                 o         o
 one unit cell length in  thickness,  about 6.5 A  (average of 6.1 A and  6.9 A).
 Dividing by  this  thickness,  the  surface coverages in monolayers are obtained.
 They  are listed, in column  4  of Table D2.
 Thicknesses  as  great as  those  in  Table D2 would  cause  the  fly ash speci-
 mens  to  behave  as if they were pure  CaSO,;  and  it appears  that this is
 the case.  If a comparison of  the intensities (above background) for the
 S2p peaks of the  fly ash specimens  to  those of the CaSO, and K-SO,
                                                       4      /  4  A
 standards is made, it is found that  they are approximately  the same.
Because  photoelectrons have  a  limited  escape depth from solids, this
 technique is able to examine only very  thin surface layers of specimens.
The calculated  thicknesses in Table D2  are, in most cases, greater than
 the escape depth.
 In comparing peak intensities, corrections must be made for changes in
 x-ray tube power.  Some specimens were run at a power 50% lower than that
 used for the other specimens:  221-2, 216, 2A-2B; 216, 3A-3B; 221-3, CaSO .
                                 210

-------
TABLE D2
                           THICKNESS OF
FLY ASH
SAMPLE
221-2
221-3
216-2A-2B
216-3A-3B
206-3
211-3
203-3
211-2
206-2
203-2
BET SURFACE
AREA, M^/gm
!.<*
1.63
0.42
1.39
0.70
1.50
1.49
2.12
0.65
2.80
TOTAL CONC.
SULFUR, %
0.58
1.04
0.78
1.52
0.80
0.52
1.67
0.55
0.615
2.48
COVERAGE,
MONOLAYERS
6
13
39
23
24
7
23
5
20
18
  211

-------
 The calculated surface thickness in Table D2 is thus  consistent  with
 the assumption that almost all of the sulfate of the  specimens is  con-
 centrated at the surface.  The magnitude of the S2p peaks  support  this
 also.   If the sulfate had been dispersed homogeneously  in  the solid  phase,
 the photoelectron peaks would have been 20-40 times less intense.
 OBSERVATIONS OF SILICON PEAKS
 In Figures D4-D10, the Si 2S peak is presented along with  the S2p  peaks.
 In figures D13-D14 Si 2p peaks for two of the fly  ash specimens  are
 shown.   The broadening of the silicon peaks toward lower binding energies
 suggests that there may be more than one chemical  state present.   The
 binding energy of the maximum of the peak corresponds to silicon as
 silicates or as SiO_, but there may be lower oxidation states (silicon
 carbide?).   The broadening could also be due to  silicon being present
 in several types of glass phases.   A firm statement cannot be made at
 this time about whether or not silicon is present  in more  than one chemical
 state.   Further study is  necessary  to be sure  that photoelectron peaks
 or Auger peaks   from other elements  are  not  causing the broadening of
 the silicon peaks.
 EXAMINATION OF  FLY ASH  SAMPLE  NO. 203-2  BY INFRARED SPECTROSCOPY
 Experiments  were performed to  establish  the  feasibility of obtaining
 information  regarding the composition and nature of fly ash by a direct
 measurement  of  the infrared  absorption spectrum.   Sample No. 203-2 was
 mulled with  nujol  and spread on  a AgBr window.  The spectrum of this
 sample was measured with  a Perkin-Elmer model 621  spectrophotometer and
with a Digilab  FTS-20 Fourier  transform  spectrophotometer.   The results
 are shown in  Figure D15.   Spectrum A  was  recorded  on the 621, and spectrum
 B was recorded  using  the  FTS-20  system.
The absorption bands  in the  450  cm   ,  600  cm   , and 1000-1200 cm   ,
                      2-
regions are due  to SO.    ion vibrations.  The bands at 675, 730,  780,
          -1                   2-
and 795 cm   may be due to CO,   ion  vibrations; a few additional experi-
ments could confirm this assignment.  These measurements show that infra-
red spectral studies with  fly  ash samples can provide rapid qualitative

                               212

-------
  200
Q.
o
  400
fcflis
                                       ORNL-DWG 72-772
                                     FLY  ASH 206-3
                   Si2p
                  t*
                                           jS5?i»^. ££>;
                                            >: 'grAraaStf
                                               •sHrr
                         100                90

                        BINDING ENERGY  (eV)
            1380               B90

                   KINETIC  ENERGY (eV)
                                         1400
                       Figure D13
                        213

-------
(00
                                            ORNL-DWG 72-755
                    400                 90
                    BINDING ENERGY (eV)
          I  I  I  I  I  I  I  I
I  I  I  I I  I  I  I  I  I  I  I I  !  I  I  I
       1380               1390
               KINFTIC ENERGY (eV)
               4400
                      Figure D14

                       214

-------
                                                               ORNL- DWG. 72-884
to
M
Oi
      o
      in
      or
      H-
                            A
                                                          446
           J	L
I   I	I	L
       J	I	I	L
                1500
         1000
    500           0

FREQUENCY  (cm-1)
500    700    900
                                   Figure D15

-------
answers as to composition.  With some simple procedures in sample
treatment, Raman spectroscopy could be applied as well in providing
additional information.

REFERENCES

1.  K. Siegbohn et aL_.  ESCA;  Atomic Molecular and Solid State Structure
    Studied by Means of Electron Spectroscopy (Almquist, Uppala, Sweden,
    1967).

2.  L. S.  Hulett, R. A. Carlson, B. R. Fish, F.  L. Durham, Proceedings
    of the Symposium on Air Quality, 161st National Meeting of ACS,
    Plenum Publishing Corp., New York, N. Y.
                                216

-------
BIBLIOGRAPHIC DATA 1- Report No. 2.
SHEET EPA-R2-73-189
it. Tide and Subtitle
3aseline Measurement Test Results for the
Cat-Ox Demonstration Program
-. Author(s) j. Burton, G. Erskine , E. Jamgochian, J. Morris ,
R Rpale anr> W Wheatrm
'. Performing Organization Name and Address
The Mitre Corporation
Vestgate Research Park
McLean, Virginia 22101
12. Sponsoring Organization Name and Address
CPA, Office of Research and Monitoring
tfERC/RTP, Control Systems Laboratory
Research Triangle Park, North Carolina 27711
3. Recipient's Accession No.
5. Report Date
April 1973
6.
8. Performing Organization Rept.
No.
10. Project/Task/Work Unit No.
'b&SPtfSffiSS* IAG
F192628-71-C-0002
13. Type of Report & Period
Covered
14.
IS. Supplementary Notes
16. Abstracts The report summarizes the results of the Baseline Measurement Test
conducted for the Cat-Ox Demonstration Program. The test was carried out on Steam
Generator Unit No.  4 of the Wood River Station of the Illinois Power Company in
November and December 1971. The report describes the measurement program for
:he test and procedures  used to process: data output from the continuous measurement
system; steam generator operating data; and data obtained from manual measurements
:t also  provides information on the data reduction system, and the contents of the data
)ase used for baseline test calculations. It presents test  results for: net and gross
efficiency--varying load level, excess  air, and fuel type; gas mass flow and gas
volume flow—varying load level and fuel type; and grain loading--varying load level,
:'uel type, and the soot blowing cycle. It also presents results for an overall sulfur
jalance,  and for comparing continuous  measurement results with manual  measure-
                                                  ments and with theoretical  values
17. Key Words and Document Analysis. 17a. Descriptors
Ur Pollution               Data Processing
Boilers                     Continuous Sampling
Sufficiency
Sulfur
Flue Gases
*Desulfurization
Measurement
Catalysis
Dxidation
I7b. Identifiers/Open-Ended Terms
\ir Pollution Control
stationary Sources
"Cat-Ox Process
"Baseline  Measurement Test
Catalytic Oxidation

17e- COSATI Field/Group  13B
                    1
Manual Measurements
18. Availability
Statement
Unlimited
19. Security Class (This
Report)
UNCLASSIFIED
20. Security Class (This
Page
UNCLASSIFIED
21. No. of Pages
22. Price
•ORM NTIS-3S (REV. 3-72)
                                                                     USCOMM-OC 14932-P72

-------